Commit graph

73 commits

Author SHA1 Message Date
Matthew Farrellee
477bcd4d09
feat: allow dynamic model registration for nvidia inference provider (#2726)
# What does this PR do?

let's users register models available at
https://integrate.api.nvidia.com/v1/models that isn't already in
llama_stack/providers/remote/inference/nvidia/models.py

## Test Plan

1. run the nvidia distro
2. register a model from https://integrate.api.nvidia.com/v1/models that
isn't already know, as of this writing
nvidia/llama-3.1-nemotron-ultra-253b-v1 is a good example
3. perform inference w/ the model
2025-07-17 12:11:30 -07:00
Sergey Yedrikov
30be1fd8b7
fix: SQLiteVecIndex.create(..., bank_id="test_bank.123") - bank_id with a dot - leads to sqlite3.OperationalError (#2770) (#2771)
# What does this PR do?
Resolves https://github.com/meta-llama/llama-stack/issues/2770. It
replaces characters in SQLite table names that are not alphanumeric or
underscores with underscores and quotes the table names with square
brackets in SQL statements.

Closes #[2770]

## Test Plan
I added a ".123" suffix to the bank_id on the following line
```
    index = await SQLiteVecIndex.create(dimension=embedding_dimension, db_path=db_path, bank_id="test_bank.123")
```
in tests/unit/providers/vector_io/test_sqlite_vec.py, which, without the
fix in place, demonstrates the issue.
2025-07-16 08:25:44 -07:00
Matthew Farrellee
a3e249807b
chore: remove vision model URL workarounds and simplify client creation (#2775)
The vision models are now available at the standard URL, so the
workaround code has been removed. This also simplifies the codebase by
eliminating the need for per-model client caching.

- Remove special URL handling for meta/llama-3.2-11b/90b-vision-instruct
models
- Convert _get_client method to _client property for cleaner API
- Remove unnecessary lru_cache decorator and functools import
- Simplify client creation logic to use single base URL for all models
2025-07-16 07:10:04 -07:00
Varsha
4ae5656c2f
feat: Implement keyword search in milvus (#2231)
Some checks failed
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 7s
Integration Tests / discover-tests (push) Successful in 8s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 10s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 6s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 9s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 10s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 8s
Test Llama Stack Build / generate-matrix (push) Successful in 8s
Python Package Build Test / build (3.13) (push) Failing after 6s
Unit Tests / unit-tests (3.12) (push) Failing after 6s
Unit Tests / unit-tests (3.13) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 13s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 15s
Test External Providers / test-external-providers (venv) (push) Failing after 9s
Test Llama Stack Build / build-single-provider (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 14s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 19s
Integration Tests / test-matrix (push) Failing after 8s
Test Llama Stack Build / build (push) Failing after 5s
Python Package Build Test / build (3.12) (push) Failing after 51s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 55s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 57s
Update ReadTheDocs / update-readthedocs (push) Failing after 50s
Pre-commit / pre-commit (push) Successful in 2m9s
# What does this PR do?
This PR adds the keyword search implementation for Milvus. Along with
the implementation for remote Milvus, the tests require us to start a
Milvus containers locally.

In order to verify the implementation, run:
```
pytest tests/unit/providers/vector_io/remote/test_milvus.py -v -s --tb=short --disable-warnings --asyncio-mode=auto
```

You can also test the changes using the below script:
```
#!/usr/bin/env python3
import asyncio
import os
import uuid
from typing import List

from llama_stack_client import (
    Agent, 
    AgentEventLogger, 
    LlamaStackClient, 
    RAGDocument
)


class MilvusRAGDemo:
    def __init__(self, base_url: str = "http://localhost:8321/"):
        self.client = LlamaStackClient(base_url=base_url)
        self.vector_db_id = f"milvus_rag_demo_{uuid.uuid4().hex[:8]}"
        self.model_id = None
        self.embedding_model_id = None
        self.embedding_dimension = None
        
    def setup_models(self):
        """Get available models and select appropriate ones for LLM and embeddings."""
        models = self.client.models.list()
    
        # Select embedding model
        embedding_models = [m for m in models if m.model_type == "embedding"]
        if not embedding_models:
            raise ValueError("No embedding models found")
        self.embedding_model_id = embedding_models[0].identifier
        self.embedding_dimension = embedding_models[0].metadata["embedding_dimension"]
        
    def register_vector_db(self):
        print(f"Registering Milvus vector database: {self.vector_db_id}")
        
        response = self.client.vector_dbs.register(
            vector_db_id=self.vector_db_id,
            embedding_model=self.embedding_model_id,
            embedding_dimension=self.embedding_dimension,
            provider_id="milvus-remote",  # Use remote Milvus
        )
        print(f"Vector database registered successfully")
        return response
        
    def insert_documents(self):
        """Insert sample documents into the vector database."""
        print("\nInserting sample documents...")
        
        # Sample documents about different topics
        documents = [
            RAGDocument(
                document_id="ai_ml_basics",
                content="""
                Artificial Intelligence (AI) and Machine Learning (ML) are transforming the world.
                AI refers to the simulation of human intelligence in machines, while ML is a subset
                of AI that enables computers to learn and improve from experience without being
                explicitly programmed. Deep learning, a subset of ML, uses neural networks with
                multiple layers to process complex patterns in data.
                
                Key concepts in AI/ML include:
                - Supervised Learning: Training with labeled data
                - Unsupervised Learning: Finding patterns in unlabeled data
                - Reinforcement Learning: Learning through trial and error
                - Neural Networks: Computing systems inspired by biological brains
                """,
                mime_type="text/plain",
                metadata={"topic": "technology", "category": "ai_ml"},
            ),
        ]
        
        # Insert documents with chunking
        self.client.tool_runtime.rag_tool.insert(
            documents=documents,
            vector_db_id=self.vector_db_id,
            chunk_size_in_tokens=200,  # Smaller chunks for better granularity
        )
        print(f"Inserted {len(documents)} documents with chunking")
                
    def test_keyword_search(self):
        """Test keyword-based search using BM25."""
        
        queries = [
            "neural networks",
            "Python frameworks",
            "data cleaning",
        ]
        
        for query in queries:
            response = self.client.vector_io.query(
                vector_db_id=self.vector_db_id,
                query=query,
                params={
                    "mode": "keyword",  # Keyword search
                    "max_chunks": 3,
                    "score_threshold": 0.0,
                }
            )
            
            for i, (chunk, score) in enumerate(zip(response.chunks, response.scores)):
                print(f"  {i+1}. Score: {score:.4f}")
                print(f"     Content: {chunk.content[:100]}...")
                print(f"     Metadata: {chunk.metadata}")    

                
    def run_demo(self):       
        try:
            self.setup_models()
            self.register_vector_db()
            self.insert_documents()
            self.test_keyword_search()
        except Exception as e:
            print(f"Error during demo: {e}")
            raise


def main():
    """Main function to run the demo."""
    # Check if Llama Stack server is running
    demo = MilvusRAGDemo()    
    try:
        demo.run_demo()
    except Exception as e:
        print(f"Demo failed: {e}")

if __name__ == "__main__":
    main()
```

[//]: # (## Documentation)

---------

Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
2025-07-14 19:39:55 -04:00
Matthew Farrellee
f731f369a2
feat: add infrastructure to allow inference model discovery (#2710)
# What does this PR do?

inference providers each have a static list of supported / known models.
some also have access to a dynamic list of currently available models.
this change gives prodivers using the ModelRegistryHelper the ability to
combine their static and dynamic lists.

for instance, OpenAIInferenceAdapter can implement
```
   def query_available_models(self) -> list[str]:
      return [entry.model for entry in self.openai_client.models.list()]
```
to augment its static list w/ a current list from openai.

## Test Plan

scripts/unit-test.sh
2025-07-14 11:38:53 -07:00
Derek Higgins
a7ed86181c
fix(faiss): Delete file contents from kvstore (#2686)
Remove both the metadata and content from the kvstore when a file is
being removed from the vector store.

Closes: #2685

Also add faiss provider to openai_vector_stores test suite

---------

Signed-off-by: Derek Higgins <derekh@redhat.com>
Co-authored-by: raghotham <rsm@meta.com>
2025-07-14 13:58:23 -04:00
Matthew Farrellee
68e7978c88
chore: block network access from unit tests (#2732)
Some checks failed
Python Package Build Test / build (3.12) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 10s
Unit Tests / unit-tests (3.12) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 11s
Python Package Build Test / build (3.13) (push) Failing after 8s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 10s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 16s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 15s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 13s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 16s
Update ReadTheDocs / update-readthedocs (push) Failing after 10s
Integration Tests / test-matrix (push) Failing after 10s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 18s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 14s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 16s
Test Llama Stack Build / build (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 14s
Pre-commit / pre-commit (push) Successful in 1m0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 4s
Integration Tests / discover-tests (push) Successful in 5s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 4s
Test Llama Stack Build / generate-matrix (push) Successful in 5s
Test External Providers / test-external-providers (venv) (push) Failing after 4s
Test Llama Stack Build / build-single-provider (push) Failing after 7s
# What does this PR do?
this blocks network access for all `tests/unit/` tests.
`tests/integration/` are untouched.

it also introduces an `allow_network` marker to explicitly allow network
access.

## Test Plan
`./scripts/unit-tests.sh`
2025-07-12 16:53:54 -07:00
Ben Browning
51d9fd4808
fix: Don't cache clients for passthrough auth providers (#2728)
Some checks failed
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 43s
Unit Tests / unit-tests (3.12) (push) Failing after 45s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 4s
Integration Tests / discover-tests (push) Successful in 6s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 7s
Pre-commit / pre-commit (push) Successful in 2m8s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 4s
Test Llama Stack Build / generate-matrix (push) Successful in 5s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 7s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 9s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 9s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 11s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 12s
Test Llama Stack Build / build-single-provider (push) Failing after 7s
Python Package Build Test / build (3.13) (push) Failing after 5s
Python Package Build Test / build (3.12) (push) Failing after 7s
Unit Tests / unit-tests (3.13) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 13s
Test External Providers / test-external-providers (venv) (push) Failing after 7s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 12s
Update ReadTheDocs / update-readthedocs (push) Failing after 6s
Integration Tests / test-matrix (push) Failing after 6s
Test Llama Stack Build / build (push) Failing after 4s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 12s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 16s
# What does this PR do?

Some of our inference providers support passthrough authentication via
`x-llamastack-provider-data` header values. This fixes the providers
that support passthrough auth to not cache their clients to the backend
providers (mostly OpenAI client instances) so that the client connecting
to Llama Stack has to provide those auth values on each and every
request.

## Test Plan

I added some unit tests to ensure we're not caching clients across
requests for all the fixed providers in this PR.

```
uv run pytest -sv tests/unit/providers/inference/test_inference_client_caching.py
```


I also ran some of our OpenAI compatible API integration tests for each
of the changed providers, just to ensure they still work. Note that
these providers don't actually pass all these tests (for unrelated
reasons due to quirks of the Groq and Together SaaS services), but
enough of the tests passed to confirm the clients are still working as
intended.

### Together

```
ENABLE_TOGETHER="together" \
uv run llama stack run llama_stack/templates/starter/run.yaml

LLAMA_STACK_CONFIG=http://localhost:8321 \
uv run pytest -sv \
  tests/integration/inference/test_openai_completion.py \
  --text-model "together/meta-llama/Llama-3.1-8B-Instruct"
```

### OpenAI

```
ENABLE_OPENAI="openai" \
uv run llama stack run llama_stack/templates/starter/run.yaml

LLAMA_STACK_CONFIG=http://localhost:8321 \
uv run pytest -sv \
  tests/integration/inference/test_openai_completion.py \
  --text-model "openai/gpt-4o-mini"
```

### Groq

```
ENABLE_GROQ="groq" \
uv run llama stack run llama_stack/templates/starter/run.yaml

LLAMA_STACK_CONFIG=http://localhost:8321 \
uv run pytest -sv \
  tests/integration/inference/test_openai_completion.py \
  --text-model "groq/meta-llama/Llama-3.1-8B-Instruct"
```

---------

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-07-11 13:38:27 -07:00
Matthew Farrellee
30b2e6a495
chore: default to pytest asyncio-mode=auto (#2730)
# What does this PR do?

previously, developers who ran `./scripts/unit-tests.sh` would get
`asyncio-mode=auto`, which meant `@pytest.mark.asyncio` and
`@pytest_asyncio.fixture` were redundent. developers who ran `pytest`
directly would get pytest's default (strict mode), would run into errors
leading them to add `@pytest.mark.asyncio` / `@pytest_asyncio.fixture`
to their code.

with this change -
- `asyncio_mode=auto` is included in `pyproject.toml` making behavior
consistent for all invocations of pytest
- removes all redundant `@pytest_asyncio.fixture` and
`@pytest.mark.asyncio`
 - for good measure, requires `pytest>=8.4` and `pytest-asyncio>=1.0`

## Test Plan

- `./scripts/unit-tests.sh`
- `uv run pytest tests/unit`
2025-07-11 13:00:24 -07:00
Francisco Arceo
6a6b66ae4f
chore: Adding unit tests for OpenAI vector stores and migrating SQLite-vec registry to kvstore (#2665)
# What does this PR do?

This PR refactors and the VectorIO backend logic for `sqlite-vec` and
adds unit tests and fixtures to make it easy to test both `sqlite-vec`
and `milvus`.

Key changes:
- `sqlite-vec` migrated to `kvstore` registry
- added in-memory cache for sqlite-vec to be consistent with `milvus`
- default fixtures moved to `conftest.py` 
- removed redundant tests from sqlite`-vec`
- made `test_vector_io_openai_vector_stores.py` more easily extensible 


## Test Plan
Unit tests added testing inline providers.

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-07-10 14:22:13 -04:00
Francisco Arceo
83c89265e0
chore: Adding unit tests for Milvus and OpenAI compatibility (#2640)
Some checks failed
Integration Tests / test-matrix (server, 3.13, agents) (push) Failing after 13s
Integration Tests / test-matrix (server, 3.13, inference) (push) Failing after 9s
Integration Tests / test-matrix (server, 3.13, datasets) (push) Failing after 11s
Integration Tests / test-matrix (server, 3.13, post_training) (push) Failing after 7s
Integration Tests / test-matrix (server, 3.13, providers) (push) Failing after 5s
Integration Tests / test-matrix (server, 3.13, scoring) (push) Failing after 5s
Integration Tests / test-matrix (server, 3.13, tool_runtime) (push) Failing after 4s
Integration Tests / test-matrix (server, 3.13, vector_io) (push) Failing after 13s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 14s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 10s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 7s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 5s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 5s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 5s
Test Llama Stack Build / generate-matrix (push) Successful in 36s
Test Llama Stack Build / build-single-provider (push) Failing after 36s
Python Package Build Test / build (3.13) (push) Failing after 2s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 36s
Test External Providers / test-external-providers (venv) (push) Failing after 4s
Test Llama Stack Build / build (push) Failing after 3s
Update ReadTheDocs / update-readthedocs (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 8s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 45s
Python Package Build Test / build (3.12) (push) Failing after 17s
Unit Tests / unit-tests (3.13) (push) Failing after 18s
Pre-commit / pre-commit (push) Successful in 1m35s
# What does this PR do?
- Enabling Unit tests for Milvus to start to test OpenAI compatibility
and fixing a few bugs.
- Also fixed an inconsistency in the Milvus config between remote and
inline.
- Added pymilvus to extras for testing in CI

I'm going to refactor this later to include the other inline providers
so that we can catch issues sooner.

I have another PR where I've been testing to find other bugs in the
implementation (and required changes drafted here:
https://github.com/meta-llama/llama-stack/pull/2617).

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-07-08 00:50:16 -07:00
Derek Higgins
f77d4d91f5
fix: handle encoding errors when adding files to vector store (#2574)
Some checks failed
Integration Tests / test-matrix (server, 3.13, datasets) (push) Failing after 12s
Integration Tests / test-matrix (server, 3.13, inference) (push) Failing after 8s
Integration Tests / test-matrix (server, 3.13, inspect) (push) Failing after 8s
Integration Tests / test-matrix (server, 3.13, post_training) (push) Failing after 7s
Integration Tests / test-matrix (server, 3.13, scoring) (push) Failing after 6s
Integration Tests / test-matrix (server, 3.13, providers) (push) Failing after 9s
Integration Tests / test-matrix (server, 3.13, vector_io) (push) Failing after 6s
Integration Tests / test-matrix (server, 3.13, tool_runtime) (push) Failing after 8s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 7s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 10s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 7s
Test Llama Stack Build / generate-matrix (push) Successful in 5s
Python Package Build Test / build (3.13) (push) Failing after 1s
Python Package Build Test / build (3.12) (push) Failing after 1s
Update ReadTheDocs / update-readthedocs (push) Failing after 3s
Test External Providers / test-external-providers (venv) (push) Failing after 6s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 6s
Test Llama Stack Build / build (push) Failing after 5s
Unit Tests / unit-tests (3.12) (push) Failing after 7s
Unit Tests / unit-tests (3.13) (push) Failing after 7s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 45s
Test Llama Stack Build / build-single-provider (push) Failing after 37s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 33s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 43s
Pre-commit / pre-commit (push) Successful in 1m35s
- Add try-catch block around data.decode() to handle UnicodeDecodeError
- Implement UTF-8 fallback when detected encoding fails
- Return empty string when both encodings fail
- add unit tests

Fixes #2572: UnicodeDecodeError when uploading files with problematic
encodings

Signed-off-by: Derek Higgins <derekh@redhat.com>
2025-07-04 12:10:18 +02:00
Francisco Arceo
ea80ea63ac
chore: Updating chunk id generation to ensure uniqueness (#2618)
# What does this PR do?
This handles an edge case for `generate_chunk_id` if the concatenation
of the `document_id` and `chunk_text` combination are not unique. Adding
the window location ensures uniqueness.

## Test Plan
Added unit test

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-07-04 10:26:35 +05:30
Akram Ben Aissi
f4950f4ef0
fix: AccessDeniedError leads to HTTP 500 instead of error 403 (#2595)
Resolves access control error visibility issues where 500 errors were
returned instead of proper 403 responses with actionable error messages.

• Enhance AccessDeniedError with detailed context and improve exception
handling
• Enhanced AccessDeniedError class to include user, action, and resource
context
  - Added constructor parameters for action, resource, and user
- Generate detailed error messages showing user principal, attributes,
and attempted resource
- Backward compatible with existing usage (falls back to generic
message)

• Updated exception handling in server.py
  - Import AccessDeniedError from access_control module
  - Return proper 403 status codes with detailed error messages
- Separate handling for PermissionError (generic) vs AccessDeniedError
(detailed)

• Enhanced error context at raise sites
- Updated routing_tables/common.py to pass action, resource, and user
context
- Updated agents persistence to include context in access denied errors
  - Provides better debugging information for access control issues

• Added comprehensive unit tests
  - Created tests/unit/server/test_server.py with 13 test cases
  - Covers AccessDeniedError with and without context
- Tests all exception types (ValidationError, BadRequestError,
AuthenticationRequiredError, etc.)
  - Validates proper HTTP status codes and error message formats


# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan

```
server:
  port: 8321
    access_policy:
    - permit:
        principal: admin
        actions: [create, read, delete]
        when: user with admin in groups
    - permit:
        actions: [read]
        when: user with system:authenticated in roles
```
then:

```
curl --request POST --url http://localhost:8321/v1/vector-dbs \
  --header "Authorization: Bearer your-bearer" \
  --data '{
    "vector_db_id": "my_demo_vector_db",
    "embedding_model": "ibm-granite/granite-embedding-125m-english",
    "embedding_dimension": 768,
    "provider_id": "milvus"
  }'
 
```

depending if user is in group admin or not, you should get the
`AccessDeniedError`. Before this PR, this was leading to an error 500
and `Traceback` displayed in the logs.
After the PR, logs display a simpler error (unless DEBUG logging is set)
and a 403 Forbidden error is returned on the HTTP side.

---------

Signed-off-by: Akram Ben Aissi <<akram.benaissi@gmail.com>>
2025-07-03 10:50:49 -07:00
Sébastien Han
ac5fd57387
chore: remove nested imports (#2515)
# What does this PR do?

* Given that our API packages use "import *" in `__init.py__` we don't
need to do `from llama_stack.apis.models.models` but simply from
llama_stack.apis.models. The decision to use `import *` is debatable and
should probably be revisited at one point.

* Remove unneeded Ruff F401 rule
* Consolidate Ruff F403 rule in the pyprojectfrom
llama_stack.apis.models.models

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-06-26 08:01:05 +05:30
Ben Browning
2d9fd041eb
fix: annotations list and web_search_preview in Responses (#2520)
# What does this PR do?


These are a couple of fixes to get an example LangChain app working with
our OpenAI Responses API implementation.

The Responses API spec requires an annotations array in
`output[*].content[*].annotations` and we were not providing one. So,
this adds that as an empty list, even though we don't do anything to
populate it yet. This prevents an error from client libraries like
Langchain that expect this field to always exist, even if an empty list.

The other fix is `web_search_preview` is a valid name for the web search
tool in the Responses API, but we only responded to `web_search` or
`web_search_preview_2025_03_11`.


## Test Plan


The existing Responses unit tests were expanded to test these cases,
via:

```
pytest -sv tests/unit/providers/agents/meta_reference/test_openai_responses.py
```

The existing test_openai_responses.py integration tests still pass with
this change, tested as below with Fireworks:

```
uv run llama stack run llama_stack/templates/starter/run.yaml

LLAMA_STACK_CONFIG=http://localhost:8321 \
uv run pytest -sv tests/integration/agents/test_openai_responses.py \
  --text-model accounts/fireworks/models/llama4-scout-instruct-basic
```

Lastly, this example LangChain app now works with Llama stack (tested
with Ollama in the starter template in this case). This LangChain code
is using the example snippets for using Responses API at
https://python.langchain.com/docs/integrations/chat/openai/#responses-api

```python
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(
    base_url="http://localhost:8321/v1/openai/v1",
    api_key="fake",
    model="ollama/meta-llama/Llama-3.2-3B-Instruct",
)

tool = {"type": "web_search_preview"}
llm_with_tools = llm.bind_tools([tool])

response = llm_with_tools.invoke("What was a positive news story from today?")

print(response.content)
```

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-06-26 07:59:33 +05:30
Francisco Arceo
82f13fe83e
feat: Add ChunkMetadata to Chunk (#2497)
# What does this PR do?
Adding `ChunkMetadata` so we can properly delete embeddings later.

More specifically, this PR refactors and extends the chunk metadata
handling in the vector database and introduces a distinction between
metadata used for model context and backend-only metadata required for
chunk management, storage, and retrieval. It also improves chunk ID
generation and propagation throughout the stack, enhances test coverage,
and adds new utility modules.

```python
class ChunkMetadata(BaseModel):
    """
    `ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional information about the chunk that
        will NOT be inserted into the context during inference, but is required for backend functionality.
        Use `metadata` in `Chunk` for metadata that will be used during inference.
    """
    document_id: str | None = None
    chunk_id: str | None = None
    source: str | None = None
    created_timestamp: int | None = None
    updated_timestamp: int | None = None
    chunk_window: str | None = None
    chunk_tokenizer: str | None = None
    chunk_embedding_model: str | None = None
    chunk_embedding_dimension: int | None = None
    content_token_count: int | None = None
    metadata_token_count: int | None = None
```
Eventually we can migrate the document_id out of the `metadata` field.
I've introduced the changes so that `ChunkMetadata` is backwards
compatible with `metadata`.

<!-- If resolving an issue, uncomment and update the line below -->
Closes https://github.com/meta-llama/llama-stack/issues/2501 

## Test Plan
Added unit tests

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-06-25 15:55:23 -04:00
ehhuang
d3b60507d7
feat: support auth attributes in inference/responses stores (#2389)
# What does this PR do?
Inference/Response stores now store user attributes when inserting, and
respects them when fetching.

## Test Plan
pytest tests/unit/utils/test_sqlstore.py
2025-06-20 10:24:45 -07:00
Ihar Hrachyshka
a2f054607d
fix: cancel scheduler tasks on shutdown (#2130)
# What does this PR do?

Scheduler: cancel tasks on shutdown.

Otherwise the currently running tasks will never exit (before they
actually complete), which means the process can't be properly shut down
(only with SIGKILL).

Ideally, we let tasks know that they are about to shutdown and give them
some time to do so; but in the lack of the mechanism, it's better to
cancel than linger forever.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

Start a long running task (e.g. torchtune or external kfp-provider
training).
Ctr-C the process in TTY. Confirm it exits in reasonable time.

```
^CINFO:     Shutting down
INFO:     Waiting for application shutdown.
13:32:26.187 - INFO - Shutting down
13:32:26.187 - INFO - Shutting down DatasetsRoutingTable
13:32:26.187 - INFO - Shutting down DatasetIORouter
13:32:26.187 - INFO - Shutting down TorchtuneKFPPostTrainingImpl
    Traceback (most recent call last):
      File "/opt/homebrew/Cellar/python@3.12/3.12.4/Frameworks/Python.framework/Versions/3.12/lib/python3.12/asyncio/runners.py", line 118, in run
        return self._loop.run_until_complete(task)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
      File "/opt/homebrew/Cellar/python@3.12/3.12.4/Frameworks/Python.framework/Versions/3.12/lib/python3.12/asyncio/base_events.py", line 687, in run_until_complete
        return future.result()
               ^^^^^^^^^^^^^^^
    asyncio.exceptions.CancelledError

    During handling of the above exception, another exception occurred:

    Traceback (most recent call last):
      File "<frozen runpy>", line 198, in _run_module_as_main
      File "<frozen runpy>", line 88, in _run_code
      File "/Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/dsl/executor_main.py", line 109, in <module>
        executor_main()
      File "/Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/dsl/executor_main.py", line 101, in executor_main
        output_file = executor.execute()
                      ^^^^^^^^^^^^^^^^^^
      File "/Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/dsl/executor.py", line 361, in execute
        result = self.func(**func_kwargs)
                 ^^^^^^^^^^^^^^^^^^^^^^^^
      File "/var/folders/45/1q1rx6cn7jbcn2ty852w0g_r0000gn/T/tmp.RKpPrvTWDD/ephemeral_component.py", line 118, in component
        asyncio.run(recipe.setup())
      File "/opt/homebrew/Cellar/python@3.12/3.12.4/Frameworks/Python.framework/Versions/3.12/lib/python3.12/asyncio/runners.py", line 194, in run
        return runner.run(main)
               ^^^^^^^^^^^^^^^^
      File "/opt/homebrew/Cellar/python@3.12/3.12.4/Frameworks/Python.framework/Versions/3.12/lib/python3.12/asyncio/runners.py", line 123, in run
        raise KeyboardInterrupt()
    KeyboardInterrupt


13:32:31.219 - ERROR - Task 'component' finished with status FAILURE
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
INFO     2025-05-09 13:32:31,221 llama_stack.providers.utils.scheduler:221 scheduler: Job
         test-jobc3c2e1e4-859c-4852-a41d-ef29e55e3efa: Pipeline [1m[95m'test-jobc3c2e1e4-859c-4852-a41d-ef29e55e3efa'[1m[0m
         finished with status [1m[91mFAILURE[1m[0m. Inner task failed: [1m[96m'component'[1m[0m.
ERROR    2025-05-09 13:32:31,223 llama_stack_provider_kfp_trainer.scheduler:54 scheduler: Job
         test-jobc3c2e1e4-859c-4852-a41d-ef29e55e3efa failed.
         ╭───────────────────────────────────── Traceback (most recent call last) ─────────────────────────────────────╮
         │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/src/llama_stack_provider_kfp_trainer/scheduler.py:45   │
         │ in do                                                                                                       │
         │                                                                                                             │
         │    42 │   │   │                                                                                             │
         │    43 │   │   │   job.status = JobStatus.running                                                            │
         │    44 │   │   │   try:                                                                                      │
         │ ❱  45 │   │   │   │   artifacts = self._to_artifacts(job.handler().output)                                  │
         │    46 │   │   │   │   for artifact in artifacts:                                                            │
         │    47 │   │   │   │   │   on_artifact_collected_cb(artifact)                                                │
         │    48                                                                                                       │
         │                                                                                                             │
         │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/dsl/base_compon │
         │ ent.py:101 in __call__                                                                                      │
         │                                                                                                             │
         │    98 │   │   │   │   f'{self.name}() missing {len(missing_arguments)} required '                           │
         │    99 │   │   │   │   f'{argument_or_arguments}: {arguments}.')                                             │
         │   100 │   │                                                                                                 │
         │ ❱ 101 │   │   return pipeline_task.PipelineTask(                                                            │
         │   102 │   │   │   component_spec=self.component_spec,                                                       │
         │   103 │   │   │   args=task_inputs,                                                                         │
         │   104 │   │   │   execute_locally=pipeline_context.Pipeline.get_default_pipeline() is                       │
         │                                                                                                             │
         │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/dsl/pipeline_ta │
         │ sk.py:187 in __init__                                                                                       │
         │                                                                                                             │
         │   184 │   │   ])                                                                                            │
         │   185 │   │                                                                                                 │
         │   186 │   │   if execute_locally:                                                                           │
         │ ❱ 187 │   │   │   self._execute_locally(args=args)                                                          │
         │   188 │                                                                                                     │
         │   189 │   def _execute_locally(self, args: Dict[str, Any]) -> None:                                         │
         │   190 │   │   """Execute the pipeline task locally.                                                         │
         │                                                                                                             │
         │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/dsl/pipeline_ta │
         │ sk.py:197 in _execute_locally                                                                               │
         │                                                                                                             │
         │   194 │   │   from kfp.local import task_dispatcher                                                         │
         │   195 │   │                                                                                                 │
         │   196 │   │   if self.pipeline_spec is not None:                                                            │
         │ ❱ 197 │   │   │   self._outputs = pipeline_orchestrator.run_local_pipeline(                                 │
         │   198 │   │   │   │   pipeline_spec=self.pipeline_spec,                                                     │
         │   199 │   │   │   │   arguments=args,                                                                       │
         │   200 │   │   │   )                                                                                         │
         │                                                                                                             │
         │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/local/pipeline_ │
         │ orchestrator.py:43 in run_local_pipeline                                                                    │
         │                                                                                                             │
         │    40 │                                                                                                     │
         │    41 │   # validate and access all global state in this function, not downstream                           │
         │    42 │   config.LocalExecutionConfig.validate()                                                            │
         │ ❱  43 │   return _run_local_pipeline_implementation(                                                        │
         │    44 │   │   pipeline_spec=pipeline_spec,                                                                  │
         │    45 │   │   arguments=arguments,                                                                          │
         │    46 │   │   raise_on_error=config.LocalExecutionConfig.instance.raise_on_error,                           │
         │                                                                                                             │
         │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/local/pipeline_ │
         │ orchestrator.py:108 in _run_local_pipeline_implementation                                                   │
         │                                                                                                             │
         │   105 │   │   │   )                                                                                         │
         │   106 │   │   return outputs                                                                                │
         │   107 │   elif dag_status == status.Status.FAILURE:                                                         │
         │ ❱ 108 │   │   log_and_maybe_raise_for_failure(                                                              │
         │   109 │   │   │   pipeline_name=pipeline_name,                                                              │
         │   110 │   │   │   fail_stack=fail_stack,                                                                    │
         │   111 │   │   │   raise_on_error=raise_on_error,                                                            │
         │                                                                                                             │
         │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/local/pipeline_ │
         │ orchestrator.py:137 in log_and_maybe_raise_for_failure                                                      │
         │                                                                                                             │
         │   134 │   │   logging_utils.format_task_name(task_name) for task_name in fail_stack)                        │
         │   135 │   msg = f'Pipeline {pipeline_name_with_color} finished with status                                  │
         │       {status_with_color}. Inner task failed: {task_chain_with_color}.'                                     │
         │   136 │   if raise_on_error:                                                                                │
         │ ❱ 137 │   │   raise RuntimeError(msg)                                                                       │
         │   138 │   with logging_utils.local_logger_context():                                                        │
         │   139 │   │   logging.error(msg)                                                                            │
         │   140                                                                                                       │
         ╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
         RuntimeError: Pipeline [1m[95m'test-jobc3c2e1e4-859c-4852-a41d-ef29e55e3efa'[1m[0m finished with status
         [1m[91mFAILURE[1m[0m. Inner task failed: [1m[96m'component'[1m[0m.
INFO     2025-05-09 13:32:31,266 llama_stack.distribution.server.server:136 server: Shutting down
         DistributionInspectImpl
INFO     2025-05-09 13:32:31,266 llama_stack.distribution.server.server:136 server: Shutting down ProviderImpl
INFO:     Application shutdown complete.
INFO:     Finished server process [26648]
```

[//]: # (## Documentation)

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-06-19 17:01:33 +02:00
ehhuang
db2cd9e8f3
feat: support filters in file search (#2472)
# What does this PR do?
Move to use vector_stores.search for file search tool in Responses,
which supports filters.

closes #2435 

## Test Plan
Added e2e test with fitlers.
myenv ❯ llama stack run llama_stack/templates/fireworks/run.yaml

pytest -sv tests/verifications/openai_api/test_responses.py \
  -k 'file_search and filters' \
  --base-url=http://localhost:8321/v1/openai/v1 \
  --model=meta-llama/Llama-3.3-70B-Instruct
2025-06-18 21:50:55 -07:00
Sumit Jaiswal
90d03552d4
feat: To add health check for faiss inline vector_io provider (#2319)
Some checks failed
Integration Tests / test-matrix (library, 3.10, inspect) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.10, providers) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.10, tool_runtime) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.10, scoring) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.10, vector_io) (push) Failing after 13s
Integration Tests / test-matrix (library, 3.10, inference) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.11, agents) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.11, inference) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.11, inspect) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.11, datasets) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.11, post_training) (push) Failing after 5s
Integration Tests / test-matrix (library, 3.11, providers) (push) Failing after 5s
Integration Tests / test-matrix (library, 3.11, scoring) (push) Failing after 5s
Integration Tests / test-matrix (library, 3.11, tool_runtime) (push) Failing after 4s
Integration Tests / test-matrix (library, 3.11, vector_io) (push) Failing after 5s
Integration Tests / test-matrix (library, 3.12, agents) (push) Failing after 4s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 6s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 4s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 6s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 4s
Integration Tests / test-matrix (library, 3.12, providers) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.12, tool_runtime) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, vector_io) (push) Failing after 7s
Test External Providers / test-external-providers (venv) (push) Failing after 1m1s
Unit Tests / unit-tests (3.11) (push) Failing after 1m11s
Unit Tests / unit-tests (3.10) (push) Failing after 1m13s
Unit Tests / unit-tests (3.12) (push) Failing after 1m9s
Unit Tests / unit-tests (3.13) (push) Failing after 15s
Pre-commit / pre-commit (push) Successful in 1m52s
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
To add health check for faiss inline vector_io provider.

I tried adding `async def health(self) -> HealthResponse:` like in
inference provider, but it didn't worked for `inline->vector_io->faiss`
provider. And via debug logs, I understood the critical issue, that the
health responses are being stored with the API name as the key, not as a
nested dictionary with provider IDs. This means that all providers of
the same API type (e.g., "vector_io") will share the same health
response, and only the last one processed will be visible in the API
response.
I've created a patch file that fixes this issue by:
- Storing the original get_providers_health method
- Creating a patched version that correctly maps health responses to
providers
- Applying the patch to the `ProviderImpl` class

Not an expert, so please let me know, if there can be any other
workaround using which I can get the health status updated directly from
`faiss.py`.

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Added unit tests to test the provider patch implementation in the PR.
Adding a screenshot with the FAISS inline vector_io health status as
"OK"


![faiss_health_check](https://github.com/user-attachments/assets/d769e762-890c-41ea-a596-5e90951f79a4)
2025-06-18 17:56:25 +02:00
Varsha
2e8054bede
feat: Implement hybrid search in SQLite-vec (#2312)
Some checks failed
Integration Tests / test-matrix (library, 3.11, agents) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.11, datasets) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.11, inspect) (push) Failing after 15s
Integration Tests / test-matrix (library, 3.11, inference) (push) Failing after 16s
Integration Tests / test-matrix (library, 3.11, vector_io) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.11, post_training) (push) Failing after 25s
Integration Tests / test-matrix (library, 3.11, providers) (push) Failing after 24s
Integration Tests / test-matrix (library, 3.11, scoring) (push) Failing after 22s
Integration Tests / test-matrix (library, 3.11, tool_runtime) (push) Failing after 14s
Integration Tests / test-matrix (library, 3.12, agents) (push) Failing after 6s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, providers) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, tool_runtime) (push) Failing after 7s
Integration Tests / test-matrix (library, 3.12, vector_io) (push) Failing after 41s
Test Llama Stack Build / generate-matrix (push) Successful in 37s
Test Llama Stack Build / build-single-provider (push) Failing after 37s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 35s
Test External Providers / test-external-providers (venv) (push) Failing after 5s
Update ReadTheDocs / update-readthedocs (push) Failing after 5s
Unit Tests / unit-tests (3.11) (push) Failing after 6s
Unit Tests / unit-tests (3.12) (push) Failing after 6s
Unit Tests / unit-tests (3.13) (push) Failing after 6s
Test Llama Stack Build / build (push) Failing after 7s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 18s
Unit Tests / unit-tests (3.10) (push) Failing after 17s
Pre-commit / pre-commit (push) Successful in 2m0s
# What does this PR do?
Add support for hybrid search mode in SQLite-vec provider, which
combines
keyword and vector search for better results. The implementation:

- Adds hybrid search mode as a new option alongside vector and keyword
search
- Implements query_hybrid method in SQLiteVecIndex that:
  - First performs keyword search to get candidate matches
  - Then applies vector similarity search on those candidates
- Updates documentation to reflect the new search mode

This change improves search quality by leveraging both semantic
similarity
and keyword matching, while maintaining backward compatibility with
existing
vector and keyword search modes.

## Test Plan
```
pytest tests/unit/providers/vector_io/test_sqlite_vec.py -v -s --tb=short
/Users/vnarsing/miniconda3/envs/stack-client/lib/python3.10/site-packages/pytest_asyncio/plugin.py:217: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"

  warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
=============================================================================================== test session starts ===============================================================================================
platform darwin -- Python 3.10.16, pytest-8.3.5, pluggy-1.5.0 -- /Users/vnarsing/miniconda3/envs/stack-client/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.16', 'Platform': 'macOS-14.7.6-arm64-arm-64bit', 'Packages': {'pytest': '8.3.5', 'pluggy': '1.5.0'}, 'Plugins': {'html': '4.1.1', 'json-report': '1.5.0', 'timeout': '2.4.0', 'metadata': '3.1.1', 'anyio': '4.8.0', 'asyncio': '0.26.0', 'nbval': '0.11.0', 'cov': '6.1.1'}}
rootdir: /Users/vnarsing/go/src/github/meta-llama/llama-stack
configfile: pyproject.toml
plugins: html-4.1.1, json-report-1.5.0, timeout-2.4.0, metadata-3.1.1, anyio-4.8.0, asyncio-0.26.0, nbval-0.11.0, cov-6.1.1
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function
collected 10 items                                                                                                                                                                                                

tests/unit/providers/vector_io/test_sqlite_vec.py::test_add_chunks PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_vector PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_full_text_search PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_full_text_search_k_greater_than_results PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_chunk_id_conflict PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_generate_chunk_id PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid_no_keyword_matches PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid_score_threshold PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid_different_embedding PASSED
```

---------

Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
2025-06-13 15:54:06 -04:00
Ibrahim Haroon
a34cef925b
fix(faiss): handle case where distance is 0 by setting d to minimum positive… (#2387)
# What does this PR do?
Adds try-catch to faiss `query_vector` function for when the distance
between the query embedding and an embedding within the vector db is 0
(identical vectors). Catches `ZeroDivisionError` and then appends `(1.0
/ sys.float_info.min)` to `scores` to represent maximum similarity.

<!-- If resolving an issue, uncomment and update the line below -->
Closes [#2381]

## Test Plan
Checkout this PR

Execute this code and there will no longer be a `ZeroDivisionError`
exception
```
from llama_stack_client import LlamaStackClient

base_url = "http://localhost:8321"
client = LlamaStackClient(base_url=base_url)

models = client.models.list()
embedding_model = (
    em := next(m for m in models if m.model_type == "embedding")
).identifier
embedding_dimension = 384

_ = client.vector_dbs.register(
    vector_db_id="foo_db",
    embedding_model=embedding_model,
    embedding_dimension=embedding_dimension,
    provider_id="faiss",
)

chunk = {
    "content": "foo",
    "mime_type": "text/plain",
    "metadata": {
        "document_id": "foo-id"
    }
}

client.vector_io.insert(vector_db_id="foo_db", chunks=[chunk])
client.vector_io.query(vector_db_id="foo_db", query="foo")
```

### Running unit tests
`uv run pytest tests/unit/rag/test_rag_query.py -v`

---------

Signed-off-by: Ben Browning <bbrownin@redhat.com>
Co-authored-by: Ben Browning <bbrownin@redhat.com>
2025-06-07 16:09:46 -04:00
Sumit Jaiswal
33ecefd284
feat: To add health status check for remote VLLM (#2303)
Some checks failed
Integration Tests / test-matrix (library, 3.10, agents) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.10, datasets) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.10, inference) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.10, inspect) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.10, post_training) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.10, providers) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.10, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.11, agents) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.10, tool_runtime) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.11, datasets) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.11, inference) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.11, inspect) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.11, post_training) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.11, scoring) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.11, providers) (push) Failing after 15s
Integration Tests / test-matrix (library, 3.12, agents) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.11, tool_runtime) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.12, providers) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 9s
Test External Providers / test-external-providers (venv) (push) Failing after 7s
Unit Tests / unit-tests (3.10) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.12, tool_runtime) (push) Failing after 11s
Unit Tests / unit-tests (3.11) (push) Failing after 9s
Unit Tests / unit-tests (3.13) (push) Failing after 8s
Unit Tests / unit-tests (3.12) (push) Failing after 8s
Pre-commit / pre-commit (push) Successful in 56s
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
To add health status check for remote VLLM
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
PR includes the unit test to test the added health check implementation
feature.
2025-06-06 15:33:12 -04:00
Ashwin Bharambe
3251b44d8a
refactor: unify stream and non-stream impls for responses (#2388)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 3s
Integration Tests / test-matrix (http, datasets) (push) Failing after 9s
Integration Tests / test-matrix (http, agents) (push) Failing after 10s
Integration Tests / test-matrix (http, inference) (push) Failing after 9s
Integration Tests / test-matrix (http, inspect) (push) Failing after 8s
Integration Tests / test-matrix (http, post_training) (push) Failing after 9s
Integration Tests / test-matrix (http, providers) (push) Failing after 10s
Integration Tests / test-matrix (http, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, agents) (push) Failing after 9s
Integration Tests / test-matrix (http, tool_runtime) (push) Failing after 10s
Integration Tests / test-matrix (library, datasets) (push) Failing after 10s
Integration Tests / test-matrix (library, inspect) (push) Failing after 9s
Integration Tests / test-matrix (library, inference) (push) Failing after 9s
Integration Tests / test-matrix (library, post_training) (push) Failing after 10s
Integration Tests / test-matrix (library, providers) (push) Failing after 9s
Integration Tests / test-matrix (library, scoring) (push) Failing after 9s
Test External Providers / test-external-providers (venv) (push) Failing after 7s
Integration Tests / test-matrix (library, tool_runtime) (push) Failing after 11s
Unit Tests / unit-tests (3.11) (push) Failing after 8s
Unit Tests / unit-tests (3.12) (push) Failing after 7s
Unit Tests / unit-tests (3.13) (push) Failing after 9s
Unit Tests / unit-tests (3.10) (push) Failing after 30s
Pre-commit / pre-commit (push) Successful in 1m18s
The non-streaming version is just a small layer on top of the streaming
version - just pluck off the final `response.completed` event and return
that as the response!

This PR also includes a couple other changes which I ended up making
while working on it on a flight:
- changes to `ollama` so it does not pull embedding models
unconditionally
- a small fix to library client to make the stream and non-stream cases
a bit more symmetric
2025-06-05 17:48:09 +02:00
grs
7c1998db25
feat: fine grained access control policy (#2264)
This allows a set of rules to be defined for determining access to
resources. The rules are (loosely) based on the cedar policy format.

A rule defines a list of action either to permit or to forbid. It may
specify a principal or a resource that must match for the rule to take
effect. It may also specify a condition, either a 'when' or an 'unless',
with additional constraints as to where the rule applies.

A list of rules is held for each type to be protected and tried in order
to find a match. If a match is found, the request is permitted or
forbidden depening on the type of rule. If no match is found, the
request is denied. If no rules are specified for a given type, a rule
that allows any action as long as the resource attributes match the user
attributes is added (i.e. the previous behaviour is the default.

Some examples in yaml:

```
    model:
    - permit:
      principal: user-1
      actions: [create, read, delete]
      comment: user-1 has full access to all models
    - permit:
      principal: user-2
      actions: [read]
      resource: model-1
      comment: user-2 has read access to model-1 only
    - permit:
      actions: [read]
      when:
        user_in: resource.namespaces
      comment: any user has read access to models with matching attributes
    vector_db:
    - forbid:
      actions: [create, read, delete]
      unless:
        user_in: role::admin
      comment: only user with admin role can use vector_db resources
```

---------

Signed-off-by: Gordon Sim <gsim@redhat.com>
2025-06-03 14:51:12 -07:00
Ben Browning
8bee2954be
feat: Structured output for Responses API (#2324)
# What does this PR do?

This adds the missing `text` parameter to the Responses API that is how
users control structured outputs. All we do with that parameter is map
it to the corresponding chat completion response_format.

## Test Plan

The new unit tests exercise the various permutations allowed for this
property, while a couple of new verification tests actually use it for
real to verify the model outputs are following the format as expected.

Unit tests:

`python -m pytest -s -v
tests/unit/providers/agents/meta_reference/test_openai_responses.py`

Verification tests:

```
llama stack run llama_stack/templates/together/run.yaml
pytest -s -vv 'tests/verifications/openai_api/test_responses.py' \
  --base-url=http://localhost:8321/v1/openai/v1 \
  --model meta-llama/Llama-4-Scout-17B-16E-Instruct
```

Note that the verification tests can only be run with a real Llama Stack
server (as opposed to using the library client via
`--provider=stack:together`) because the Llama Stack python client is
not yet updated to accept this text field.

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-06-03 14:43:00 -07:00
Ashwin Bharambe
dbe4e84aca
feat(responses): implement full multi-turn support (#2295)
I think the implementation needs more simplification. Spent way too much
time trying to get the tests pass with models not co-operating :(
Finally had to switch claude-sonnet to get things to pass reliably.

### Test Plan

```
export TAVILY_SEARCH_API_KEY=...
export OPENAI_API_KEY=...

uv run pytest -p no:warnings \
   -s -v tests/verifications/openai_api/test_responses.py \
 --provider=stack:starter \
  --model openai/gpt-4o
```
2025-06-02 15:35:49 -07:00
Ben Browning
17f4414be9
fix: remote-vllm event loop blocking unit test on Mac (#2332)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 6s
Integration Tests / test-matrix (http, datasets) (push) Failing after 9s
Integration Tests / test-matrix (http, scoring) (push) Failing after 8s
Integration Tests / test-matrix (http, inspect) (push) Failing after 9s
Integration Tests / test-matrix (http, post_training) (push) Failing after 10s
Integration Tests / test-matrix (library, datasets) (push) Failing after 9s
Integration Tests / test-matrix (library, agents) (push) Failing after 9s
Integration Tests / test-matrix (http, inference) (push) Failing after 11s
Integration Tests / test-matrix (http, tool_runtime) (push) Failing after 10s
Integration Tests / test-matrix (http, agents) (push) Failing after 14s
Integration Tests / test-matrix (http, providers) (push) Failing after 13s
Integration Tests / test-matrix (library, inference) (push) Failing after 9s
Test External Providers / test-external-providers (venv) (push) Failing after 5s
Integration Tests / test-matrix (library, inspect) (push) Failing after 10s
Integration Tests / test-matrix (library, scoring) (push) Failing after 8s
Integration Tests / test-matrix (library, providers) (push) Failing after 10s
Integration Tests / test-matrix (library, tool_runtime) (push) Failing after 9s
Unit Tests / unit-tests (3.11) (push) Failing after 8s
Unit Tests / unit-tests (3.10) (push) Failing after 8s
Unit Tests / unit-tests (3.12) (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 7s
Update ReadTheDocs / update-readthedocs (push) Failing after 7s
Integration Tests / test-matrix (library, post_training) (push) Failing after 29s
Pre-commit / pre-commit (push) Successful in 1m11s
# What does this PR do?

The remote-vllm `test_chat_completion_doesnt_block_event_loop` unit test
was often failing for me on a Mac with a `httpx.ReadError`. I traced
this back to the swap to the `AsyncOpenAI` client in the remote-vllm
provider as where this started, and it looks like the async client needs
a bit more accurate HTTP request handling from our mock server.

So, this fixes that unit test to send proper Content-Type and
Content-Length headers which makes the `AsyncOpenAI` client happier on
Macs.

## Test Plan

All the test_remote_vllm.py unit tests consistently pass for me on a Mac
now, without any flaking in the event loop one.

`pytest -s -v tests/unit/providers/inference/test_remote_vllm.py`

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-06-02 11:24:12 -04:00
Francisco Arceo
f328436831
feat: Enable ingestion of precomputed embeddings (#2317)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 3s
Integration Tests / test-matrix (http, inspect) (push) Failing after 9s
Integration Tests / test-matrix (http, post_training) (push) Failing after 9s
Integration Tests / test-matrix (http, agents) (push) Failing after 10s
Integration Tests / test-matrix (http, datasets) (push) Failing after 10s
Integration Tests / test-matrix (http, inference) (push) Failing after 10s
Integration Tests / test-matrix (library, agents) (push) Failing after 9s
Integration Tests / test-matrix (http, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, datasets) (push) Failing after 8s
Integration Tests / test-matrix (http, providers) (push) Failing after 9s
Integration Tests / test-matrix (http, tool_runtime) (push) Failing after 10s
Integration Tests / test-matrix (library, inference) (push) Failing after 9s
Test External Providers / test-external-providers (venv) (push) Failing after 6s
Integration Tests / test-matrix (library, inspect) (push) Failing after 8s
Integration Tests / test-matrix (library, providers) (push) Failing after 8s
Integration Tests / test-matrix (library, scoring) (push) Failing after 8s
Integration Tests / test-matrix (library, post_training) (push) Failing after 10s
Unit Tests / unit-tests (3.11) (push) Failing after 7s
Unit Tests / unit-tests (3.10) (push) Failing after 9s
Unit Tests / unit-tests (3.13) (push) Failing after 7s
Integration Tests / test-matrix (library, tool_runtime) (push) Failing after 9s
Unit Tests / unit-tests (3.12) (push) Failing after 9s
Update ReadTheDocs / update-readthedocs (push) Failing after 7s
Pre-commit / pre-commit (push) Successful in 1m15s
2025-05-31 04:03:37 -06:00
Ashwin Bharambe
bfdd15d1fa
fix(responses): use input, not original_input when storing the Response (#2300)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Integration Tests / test-matrix (http, datasets) (push) Failing after 9s
Integration Tests / test-matrix (http, tool_runtime) (push) Failing after 7s
Integration Tests / test-matrix (http, providers) (push) Failing after 7s
Integration Tests / test-matrix (http, agents) (push) Failing after 9s
Integration Tests / test-matrix (http, inference) (push) Failing after 10s
Integration Tests / test-matrix (http, post_training) (push) Failing after 9s
Integration Tests / test-matrix (http, inspect) (push) Failing after 10s
Integration Tests / test-matrix (http, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, agents) (push) Failing after 10s
Integration Tests / test-matrix (library, datasets) (push) Failing after 9s
Integration Tests / test-matrix (library, inference) (push) Failing after 7s
Test External Providers / test-external-providers (venv) (push) Failing after 6s
Integration Tests / test-matrix (library, post_training) (push) Failing after 8s
Integration Tests / test-matrix (library, scoring) (push) Failing after 10s
Integration Tests / test-matrix (library, providers) (push) Failing after 10s
Integration Tests / test-matrix (library, tool_runtime) (push) Failing after 9s
Integration Tests / test-matrix (library, inspect) (push) Failing after 11s
Unit Tests / unit-tests (3.10) (push) Failing after 8s
Unit Tests / unit-tests (3.12) (push) Failing after 9s
Unit Tests / unit-tests (3.11) (push) Failing after 9s
Unit Tests / unit-tests (3.13) (push) Failing after 7s
Update ReadTheDocs / update-readthedocs (push) Failing after 5s
Pre-commit / pre-commit (push) Failing after 53s
We must store the full (re-hydrated) input not just the original input
in the Response object. Of course, this is not very space efficient and
we should likely find a better storage scheme so that we can only store
unique entries in the database and then re-hydrate them efficiently
later. But that can be done safely later.

Closes https://github.com/meta-llama/llama-stack/issues/2299

## Test Plan

Unit test
2025-05-28 13:17:48 -07:00
Ashwin Bharambe
5cdb29758a
feat(responses): add output_text delta events to responses (#2265)
This adds initial streaming support to the Responses API. 

This PR makes sure that the _first_ inference call made to chat
completions streams out.

There's more to be done:
 - tool call output tokens need to stream out when possible
- we need to loop through multiple rounds of inference and they all need
to stream out.

## Test Plan

Added a test. Executed as:

```
FIREWORKS_API_KEY=... \
  pytest -s -v 'tests/verifications/openai_api/test_responses.py' \
  --provider=stack:fireworks --model meta-llama/Llama-4-Scout-17B-16E-Instruct
```

Then, started a llama stack fireworks distro and tested against it like
this:

```
OPENAI_API_KEY=blah \
   pytest -s -v 'tests/verifications/openai_api/test_responses.py' \
   --base-url http://localhost:8321/v1/openai/v1 \
  --model meta-llama/Llama-4-Scout-17B-16E-Instruct 
```
2025-05-27 13:07:14 -07:00
ehhuang
15b0a67555
feat: add responses input items api (#2239)
# What does this PR do?
TSIA

## Test Plan
added integration and unit tests
2025-05-24 07:05:53 -07:00
ehhuang
5844c2da68
feat: add list responses API (#2233)
# What does this PR do?
This is not part of the official OpenAI API, but we'll use this for the
logs UI.
In order to support more filtering options, I'm adopting the newly
introduced sql store in in place of the kv store.

## Test Plan
Added integration/unit tests.
2025-05-23 13:16:48 -07:00
Varsha
e92301f2d7
feat(sqlite-vec): enable keyword search for sqlite-vec (#1439)
# What does this PR do?
This PR introduces support for keyword based FTS5 search with BM25
relevance scoring. It makes changes to the existing EmbeddingIndex base
class in order to support a search_mode and query_str parameter, that
can be used for keyword based search implementations.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
run 
```
pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py -v -s --tb=short --disable-warnings --asyncio-mode=auto
```
Output:
```
pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py -v -s --tb=short --disable-warnings --asyncio-mode=auto
/Users/vnarsing/miniconda3/envs/stack-client/lib/python3.10/site-packages/pytest_asyncio/plugin.py:207: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"

  warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
====================================================== test session starts =======================================================
platform darwin -- Python 3.10.16, pytest-8.3.4, pluggy-1.5.0 -- /Users/vnarsing/miniconda3/envs/stack-client/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.16', 'Platform': 'macOS-14.7.4-arm64-arm-64bit', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'html': '4.1.1', 'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0'}}
rootdir: /Users/vnarsing/go/src/github/meta-llama/llama-stack
configfile: pyproject.toml
plugins: html-4.1.1, metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0
asyncio: mode=auto, asyncio_default_fixture_loop_scope=None
collected 7 items                                                                                                                

llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_add_chunks PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_query_chunks_vector PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_query_chunks_fts PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_chunk_id_conflict PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_register_vector_db PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_unregister_vector_db PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_generate_chunk_id PASSED
```


For reference, with the implementation, the fts table looks like below:
```
Chunk ID: 9fbc39ce-c729-64a2-260f-c5ec9bb2a33e, Content: Sentence 0 from document 0
Chunk ID: 94062914-3e23-44cf-1e50-9e25821ba882, Content: Sentence 1 from document 0
Chunk ID: e6cfd559-4641-33ba-6ce1-7038226495eb, Content: Sentence 2 from document 0
Chunk ID: 1383af9b-f1f0-f417-4de5-65fe9456cc20, Content: Sentence 3 from document 0
Chunk ID: 2db19b1a-de14-353b-f4e1-085e8463361c, Content: Sentence 4 from document 0
Chunk ID: 9faf986a-f028-7714-068a-1c795e8f2598, Content: Sentence 5 from document 0
Chunk ID: ef593ead-5a4a-392f-7ad8-471a50f033e8, Content: Sentence 6 from document 0
Chunk ID: e161950f-021f-7300-4d05-3166738b94cf, Content: Sentence 7 from document 0
Chunk ID: 90610fc4-67c1-e740-f043-709c5978867a, Content: Sentence 8 from document 0
Chunk ID: 97712879-6fff-98ad-0558-e9f42e6b81d3, Content: Sentence 9 from document 0
Chunk ID: aea70411-51df-61ba-d2f0-cb2b5972c210, Content: Sentence 0 from document 1
Chunk ID: b678a463-7b84-92b8-abb2-27e9a1977e3c, Content: Sentence 1 from document 1
Chunk ID: 27bd63da-909c-1606-a109-75bdb9479882, Content: Sentence 2 from document 1
Chunk ID: a2ad49ad-f9be-5372-e0c7-7b0221d0b53e, Content: Sentence 3 from document 1
Chunk ID: cac53bcd-1965-082a-c0f4-ceee7323fc70, Content: Sentence 4 from document 1
```

Query results:
Result 1: Sentence 5 from document 0
Result 2: Sentence 5 from document 1
Result 3: Sentence 5 from document 2

[//]: # (## Documentation)

---------

Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
2025-05-21 15:24:24 -04:00
Derek Higgins
3339844fda
feat: Add "instructions" support to responses API (#2205)
# What does this PR do?
Add support for "instructions" to the responses API. Instructions
provide a way to swap out system (or developer) messages in new
responses.


## Test Plan
unit tests added

Signed-off-by: Derek Higgins <derekh@redhat.com>
2025-05-20 09:52:10 -07:00
Jash Gulabrai
1a770cf8ac
fix: Pass model parameter as config name to NeMo Customizer (#2218)
# What does this PR do?
When launching a fine-tuning job, an upcoming version of NeMo Customizer
will expect the `config` name to be formatted as
`namespace/name@version`. Here, `config` is a reference to a model +
additional metadata. There could be multiple `config`s that reference
the same base model.

This PR updates NVIDIA's `supervised_fine_tune` to simply pass the
`model` param as-is to NeMo Customizer. Currently, it expects a
specific, allowlisted llama model (i.e. `meta/Llama3.1-8B-Instruct`) and
converts it to the provider format (`meta/llama-3.1-8b-instruct`).

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
From a notebook, I built an image with my changes: 
```
!llama stack build --template nvidia --image-type venv
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient

client = LlamaStackAsLibraryClient("nvidia")
client.initialize()
```
And could successfully launch a job:
```
response = client.post_training.supervised_fine_tune(
    job_uuid="",
    model="meta/llama-3.2-1b-instruct@v1.0.0+A100", # Model passed as-is to Customimzer
    ...
)

job_id = response.job_uuid
print(f"Created job with ID: {job_id}")

Output:
Created job with ID: cust-Jm4oGmbwcvoufaLU4XkrRU
```

[//]: # (## Documentation)

---------

Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
2025-05-20 09:51:39 -07:00
Ben Browning
10b1056dea
fix: multiple tool calls in remote-vllm chat_completion (#2161)
# What does this PR do?

This fixes an issue in how we used the tool_call_buf from streaming tool
calls in the remote-vllm provider where it would end up concatenating
parameters from multiple different tool call results instead of
aggregating the results from each tool call separately.

It also fixes an issue found while digging into that where we were
accidentally mixing the json string form of tool call parameters with
the string representation of the python form, which mean we'd end up
with single quotes in what should be double-quoted json strings.

Closes #1120

## Test Plan

The following tests are now passing 100% for the remote-vllm provider,
where some of the test_text_inference were failing before this change:

```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic" LLAMA_STACK_CONFIG=remote-vllm python -m pytest -v tests/integration/inference/test_text_inference.py --text-model "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic"

VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic" LLAMA_STACK_CONFIG=remote-vllm python -m pytest -v tests/integration/inference/test_vision_inference.py --vision-model "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic"

```

All but one of the agent tests are passing (including the multi-tool
one). See the PR at https://github.com/vllm-project/vllm/pull/17917 and
a gist at
https://gist.github.com/bbrowning/4734240ce96b4264340caa9584e47c9e for
changes needed there, which will have to get made upstream in vLLM.

Agent tests:

```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic" LLAMA_STACK_CONFIG=remote-vllm python -m pytest -v tests/integration/agents/test_agents.py --text-model "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic"
````

---------

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-05-15 11:23:29 -07:00
Ben Browning
b42eb1ccbc
fix: Responses API: handle type=None in streaming tool calls (#2166)
# What does this PR do?

In the Responses API, we convert incoming response requests to chat
completion requests. When streaming the resulting chunks of those chat
completion requests, inference providers that use OpenAI clients will
often return a `type=None` value in the tool call parts of the response.
This causes issues when we try to dump and load that response into our
pydantic model, because type cannot be None in the Responses API model
we're loading these into.

So, strip the "type" field, if present, off those chat completion tool
call results before dumping and loading them as our typed pydantic
models, which will apply our default value for that type field.

## Test Plan

This was found via manual testing of the Responses API with codex, where
I was getting errors in some tool call situations. I added a unit test
to simulate this scenario and verify the fix, as well as manual codex
testing to verify the fix.

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-05-14 14:16:33 -07:00
Ilya Kolchinsky
5052c3cbf3
fix: Fixed an "out of token budget" error when attempting a tool call via remote vLLM provider (#2114)
# What does this PR do?
Closes #2113.
Closes #1783.

Fixes a bug in handling the end of tool execution request stream where
no `finish_reason` is provided by the model.

## Test Plan
1. Ran existing unit tests
2. Added a dedicated test verifying correct behavior in this edge case
3. Ran the code snapshot from #2113

[//]: # (## Documentation)
2025-05-14 13:11:02 -07:00
Ilya Kolchinsky
43d4447ff0
fix: remote vLLM tool execution now works when the last chunk contains the call arguments (#2112)
# What does this PR do?
Closes #2111.
Fixes an error causing Llama Stack to just return `<tool_call>` and
complete the turn without actually executing the tool. See the issue
description for more detail.

## Test Plan
1) Ran existing unit tests
2) Added a dedicated test verifying correct behavior in this edge case
3) Ran the code snapshot from #2111
2025-05-14 11:38:00 +02:00
Ben Browning
8e316c9b1e
feat: function tools in OpenAI Responses (#2094)
# What does this PR do?

This is a combination of what was previously 3 separate PRs - #2069,
#2075, and #2083. It turns out all 3 of those are needed to land a
working function calling Responses implementation. The web search
builtin tool was already working, but this wires in support for custom
function calling.

I ended up combining all three into one PR because they all had lots of
merge conflicts, both with each other but also with #1806 that just
landed. And, because landing any of them individually would have only
left a partially working implementation merged.

The new things added here are:
* Storing of input items from previous responses and restoring of those
input items when adding previous responses to the conversation state
* Handling of multiple input item messages roles, not just "user"
messages.
* Support for custom tools passed into the Responses API to enable
function calling outside of just the builtin websearch tool.

Closes #2074
Closes #2080

## Test Plan

### Unit Tests

Several new unit tests were added, and they all pass. Ran via:

```
python -m pytest -s -v tests/unit/providers/agents/meta_reference/test_openai_responses.py
```

### Responses API Verification Tests

I ran our verification run.yaml against multiple providers to ensure we
were getting a decent pass rate. Specifically, I ensured the new custom
tool verification test passed across multiple providers and that the
multi-turn examples passed across at least some of the providers (some
providers struggle with the multi-turn workflows still).

Running the stack setup for verification testing:

```
llama stack run --image-type venv tests/verifications/openai-api-verification-run.yaml
```

Together, passing 100% as an example:

```
pytest -s -v 'tests/verifications/openai_api/test_responses.py' --provider=together-llama-stack
```

## Documentation

We will need to start documenting the OpenAI APIs, but for now the
Responses stuff is still rapidly evolving so delaying that.

---------

Signed-off-by: Derek Higgins <derekh@redhat.com>
Signed-off-by: Ben Browning <bbrownin@redhat.com>
Co-authored-by: Derek Higgins <derekh@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-05-13 11:29:15 -07:00
Sébastien Han
c91e3552a3
feat: implementation for agent/session list and describe (#1606)
Create a new agent:

```
curl --request POST \
  --url http://localhost:8321/v1/agents \
  --header 'Accept: application/json' \
  --header 'Content-Type: application/json' \
  --data '{
  "agent_config": {
    "sampling_params": {
      "strategy": {
        "type": "greedy"
      },
      "max_tokens": 0,
      "repetition_penalty": 1
    },
    "input_shields": [
      "string"
    ],
    "output_shields": [
      "string"
    ],
    "toolgroups": [
      "string"
    ],
    "client_tools": [
      {
        "name": "string",
        "description": "string",
        "parameters": [
          {
            "name": "string",
            "parameter_type": "string",
            "description": "string",
            "required": true,
            "default": null
          }
        ],
        "metadata": {
          "property1": null,
          "property2": null
        }
      }
    ],
    "tool_choice": "auto",
    "tool_prompt_format": "json",
    "tool_config": {
      "tool_choice": "auto",
      "tool_prompt_format": "json",
      "system_message_behavior": "append"
    },
    "max_infer_iters": 10,
    "model": "string",
    "instructions": "string",
    "enable_session_persistence": false,
    "response_format": {
      "type": "json_schema",
      "json_schema": {
        "property1": null,
        "property2": null
      }
    }
  }
}'
```

Get agent:

```
curl http://127.0.0.1:8321/v1/agents/9abad4ab-2c77-45f9-9d16-46b79d2bea1f
{"agent_id":"9abad4ab-2c77-45f9-9d16-46b79d2bea1f","agent_config":{"sampling_params":{"strategy":{"type":"greedy"},"max_tokens":0,"repetition_penalty":1.0},"input_shields":["string"],"output_shields":["string"],"toolgroups":["string"],"client_tools":[{"name":"string","description":"string","parameters":[{"name":"string","parameter_type":"string","description":"string","required":true,"default":null}],"metadata":{"property1":null,"property2":null}}],"tool_choice":"auto","tool_prompt_format":"json","tool_config":{"tool_choice":"auto","tool_prompt_format":"json","system_message_behavior":"append"},"max_infer_iters":10,"model":"string","instructions":"string","enable_session_persistence":false,"response_format":{"type":"json_schema","json_schema":{"property1":null,"property2":null}}},"created_at":"2025-03-12T16:18:28.369144Z"}%
```

List agents:

```
curl http://127.0.0.1:8321/v1/agents|jq
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  1680  100  1680    0     0   498k      0 --:--:-- --:--:-- --:--:--  546k
{
  "data": [
    {
      "agent_id": "9abad4ab-2c77-45f9-9d16-46b79d2bea1f",
      "agent_config": {
        "sampling_params": {
          "strategy": {
            "type": "greedy"
          },
          "max_tokens": 0,
          "repetition_penalty": 1.0
        },
        "input_shields": [
          "string"
        ],
        "output_shields": [
          "string"
        ],
        "toolgroups": [
          "string"
        ],
        "client_tools": [
          {
            "name": "string",
            "description": "string",
            "parameters": [
              {
                "name": "string",
                "parameter_type": "string",
                "description": "string",
                "required": true,
                "default": null
              }
            ],
            "metadata": {
              "property1": null,
              "property2": null
            }
          }
        ],
        "tool_choice": "auto",
        "tool_prompt_format": "json",
        "tool_config": {
          "tool_choice": "auto",
          "tool_prompt_format": "json",
          "system_message_behavior": "append"
        },
        "max_infer_iters": 10,
        "model": "string",
        "instructions": "string",
        "enable_session_persistence": false,
        "response_format": {
          "type": "json_schema",
          "json_schema": {
            "property1": null,
            "property2": null
          }
        }
      },
      "created_at": "2025-03-12T16:18:28.369144Z"
    },
    {
      "agent_id": "a6643aaa-96dd-46db-a405-333dc504b168",
      "agent_config": {
        "sampling_params": {
          "strategy": {
            "type": "greedy"
          },
          "max_tokens": 0,
          "repetition_penalty": 1.0
        },
        "input_shields": [
          "string"
        ],
        "output_shields": [
          "string"
        ],
        "toolgroups": [
          "string"
        ],
        "client_tools": [
          {
            "name": "string",
            "description": "string",
            "parameters": [
              {
                "name": "string",
                "parameter_type": "string",
                "description": "string",
                "required": true,
                "default": null
              }
            ],
            "metadata": {
              "property1": null,
              "property2": null
            }
          }
        ],
        "tool_choice": "auto",
        "tool_prompt_format": "json",
        "tool_config": {
          "tool_choice": "auto",
          "tool_prompt_format": "json",
          "system_message_behavior": "append"
        },
        "max_infer_iters": 10,
        "model": "string",
        "instructions": "string",
        "enable_session_persistence": false,
        "response_format": {
          "type": "json_schema",
          "json_schema": {
            "property1": null,
            "property2": null
          }
        }
      },
      "created_at": "2025-03-12T16:17:12.811273Z"
    }
  ]
}
```

Create sessions:

```
curl --request POST \
  --url http://localhost:8321/v1/agents/{agent_id}/session \
  --header 'Accept: application/json' \
  --header 'Content-Type: application/json' \
  --data '{
  "session_name": "string"
}'
```

List sessions:

```
 curl http://127.0.0.1:8321/v1/agents/9abad4ab-2c77-45f9-9d16-46b79d2bea1f/sessions|jq
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   263  100   263    0     0  90099      0 --:--:-- --:--:-- --:--:--  128k
[
  {
    "session_id": "2b15c4fc-e348-46c1-ae32-f6d424441ac1",
    "session_name": "string",
    "turns": [],
    "started_at": "2025-03-12T17:19:17.784328"
  },
  {
    "session_id": "9432472d-d483-4b73-b682-7b1d35d64111",
    "session_name": "string",
    "turns": [],
    "started_at": "2025-03-12T17:19:19.885834"
  }
]
```

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-05-07 14:49:23 +02:00
Kevin Postlethwait
a57985eeac
fix: add check for interleavedContent (#1973)
# What does this PR do?
Checks for RAGDocument of type InterleavedContent

I noticed when stepping through the code that the supported types for
`RAGDocument` included `InterleavedContent` as a content type. This type
is not checked against before putting the `doc.content` is regex matched
against. This would cause a runtime error. This change adds an explicit
check for type.

The only other part that I'm unclear on is how to handle the
`ImageContent` type since this would always just return `<image>` which
seems like an undesired behavior. Should the `InterleavedContent` type
be removed from `RAGDocument` and replaced with `URI | str`?

## Test Plan


[//]: # (## Documentation)

---------

Signed-off-by: Kevin <kpostlet@redhat.com>
2025-05-06 09:55:07 -07:00
Derek Higgins
2e807b38cc
chore: Add fixtures to conftest.py (#2067)
Add fixtures for SqliteKVStore, DiskDistributionRegistry and
CachedDiskDistributionRegistry. And use them in tests that had all been
duplicating similar setups.

## Test Plan
unit tests continue to run

Signed-off-by: Derek Higgins <derekh@redhat.com>
2025-05-06 13:57:48 +02:00
Ben Browning
f1b103e6c8
fix: openai_compat messages system/assistant non-str content (#2095)
# What does this PR do?

When converting OpenAI message content for the "system" and "assistant"
roles to Llama Stack inference APIs (used for some providers when
dealing with Llama models via OpenAI API requests to get proper prompt /
tool handling), we were not properly converting any non-string content.

I discovered this while running the new Responses AI verification suite
against the Fireworks provider, but instead of fixing it as part of some
ongoing work there split this out into a separate PR.

This fixes that, by using the `openai_content_to_content` helper we used
elsewhere to ensure content parts were mapped properly.

## Test Plan

I added a couple of new tests to `test_openai_compat` to reproduce this
issue and validate its fix. I ran those as below:

```
python -m pytest -s -v tests/unit/providers/utils/inference/test_openai_compat.py
```

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-05-02 13:09:27 -07:00
Ihar Hrachyshka
9e6561a1ec
chore: enable pyupgrade fixes (#1806)
# What does this PR do?

The goal of this PR is code base modernization.

Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)

Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-05-01 14:23:50 -07:00
Matthew Farrellee
88a796ca5a
fix: allow use of models registered at runtime (#1980)
# What does this PR do?

fix a bug where models registered at runtime could not be used.

```
$ llama-stack-client models register test-model --provider-id nvidia --provider-model-id meta/llama-3.1-70b-instruct

$ curl http://localhost:8321/v1/openai/v1/chat/completions \                                                        
-H "Content-Type: application/json" \
-d '{
  "model": "test-model",
  "messages": [{"role": "user", "content": "What is the weather like in Boston today?"}]
}'

=(client)=> {"detail":"Internal server error: An unexpected error occurred."}
=(server)=> TypeError: Missing required arguments; Expected either ('messages' and 'model') or ('messages', 'model' and 'stream') arguments to be given
```

*root cause:* test-model is not added to ModelRegistryHelper's
alias_to_provider_id_map.

as part of the fix, this adds tests for ModelRegistryHelper and defines
its expected behavior.

user visible behavior changes -

| action | existing behavior | new behavior |
| -- | -- | -- |
| double register | success (but no change) | error |
| register unknown | success (fail when used) | error |

existing behavior for register unknown model and double register -
```
$ llama-stack-client models register test-model --provider-id nvidia --provider-model-id meta/llama-3.1-70b-instruct-unknown
Successfully registered model test-model

$ llama-stack-client models list | grep test-model
│ llm │ test-model                               │ meta/llama-3.1-70b-instruct-unknown │     │ nv… │

$ llama-stack-client models register test-model --provider-id nvidia --provider-model-id meta/llama-3.1-70b-instruct       
Successfully registered model test-model

$ llama-stack-client models list | grep test-model
│ llm │ test-model                               │ meta/llama-3.1-70b-instruct-unknown │     │ nv… │
```

new behavior for register unknown -
```
$ llama-stack-client models register test-model --provider-id nvidia --provider-model-id meta/llama-3.1-70b-instruct-unknown
╭──────────────────────────────────────────────────────────────────────────────────────────────────╮
│ Failed to register model                                                                         │
│                                                                                                  │
│ Error Type: BadRequestError                                                                      │
│ Details: Error code: 400 - {'detail': "Invalid value: Model id                                   │
│ 'meta/llama-3.1-70b-instruct-unknown' is not supported. Supported ids are:                       │
│ meta/llama-3.1-70b-instruct, snowflake/arctic-embed-l, meta/llama-3.2-1b-instruct,               │
│ nvidia/nv-embedqa-mistral-7b-v2, meta/llama-3.2-90b-vision-instruct, meta/llama-3.2-3b-instruct, │
│ meta/llama-3.2-11b-vision-instruct, meta/llama-3.1-405b-instruct, meta/llama3-8b-instruct,       │
│ meta/llama3-70b-instruct, nvidia/llama-3.2-nv-embedqa-1b-v2, meta/llama-3.1-8b-instruct,         │
│ nvidia/nv-embedqa-e5-v5"}                                                                        │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
```

new behavior for double register -
```
$ llama-stack-client models register test-model --provider-id nvidia --provider-model-id meta/llama-3.1-70b-instruct
Successfully registered model test-model

$ llama-stack-client models register test-model --provider-id nvidia --provider-model-id meta/llama-3.2-1b-instruct 
╭──────────────────────────────────────────────────────────────────────────────────────────────────╮
│ Failed to register model                                                                         │
│                                                                                                  │
│ Error Type: BadRequestError                                                                      │
│ Details: Error code: 400 - {'detail': "Invalid value: Model id 'test-model' is already           │
│ registered. Please use a different id or unregister it first."}                                  │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
```


## Test Plan

```
uv run pytest -v tests/unit/providers/utils/test_model_registry.py
```
2025-05-01 12:00:58 -07:00
Derek Higgins
64829947d0
feat: Add temperature support to responses API (#2065)
# What does this PR do?
Add support for the temperature to the responses API 


## Test Plan
Manually tested simple case
unit tests added for simple case and tool calls

Signed-off-by: Derek Higgins <derekh@redhat.com>
2025-05-01 11:47:58 -07:00
Ben Browning
6378c2a2f3
fix: resolve BuiltinTools to strings for vllm tool_call messages (#2071)
# What does this PR do?

When the result of a ToolCall gets passed back into vLLM for the model
to handle the tool call result (as is often the case in agentic
tool-calling workflows), we forgot to handle the case where BuiltinTool
calls are not string values but instead instances of the BuiltinTool
enum. This fixes that, properly converting those enums to string values
before trying to serialize them into an OpenAI chat completion request
to vLLM.

PR #1931 fixed a bug where we weren't passing these tool calling results
back into vLLM, but as a side-effect it created this serialization bug
when using BuiltinTools.

Closes #2070

## Test Plan

I added a new unit test to the openai_compat unit tests to cover this
scenario, ensured the new test failed before this fix, and all the
existing tests there plus the new one passed with this fix.

```
python -m pytest -s -v tests/unit/providers/utils/inference/test_openai_compat.py
```

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-05-01 08:47:29 -04:00