# What does this PR do?
* Adds a horizontal nav bar for easy access to the API reference and the
Llama Stack Github repo
<img width="2696" height="520" alt="image"
src="https://github.com/user-attachments/assets/82daffe1-c206-4e20-b95b-1e090011eecc"
/>
## Test Plan
* Built the docs and ran the local HTML server to verify changes
# What does this PR do?
Adds a write worker queue for writes to inference store. This avoids
overwhelming request processing with slow inference writes.
## Test Plan
Benchmark:
```
cd /docs/source/distributions/k8s-benchmark
# start mock server
python openai-mock-server.py --port 8000
# start stack server
LLAMA_STACK_LOGGING="all=WARNING" uv run --with llama-stack python -m llama_stack.core.server.server docs/source/distributions/k8s-benchmark/stack_run_config.yaml
# run benchmark script
uv run python3 benchmark.py --duration 120 --concurrent 50 --base-url=http://localhost:8321/v1/openai/v1 --model=vllm-inference/meta-llama/Llama-3.2-3B-Instruct
```
## RPS from 21 -> 57
# What does this PR do?
Add Kubernetes authentication provider support
- Add KubernetesAuthProvider class for token validation using Kubernetes
SelfSubjectReview API
- Add KubernetesAuthProviderConfig with configurable API server URL, TLS
settings, and claims mapping
- Implement authentication via POST requests to
/apis/authentication.k8s.io/v1/selfsubjectreviews endpoint
- Add support for parsing Kubernetes SelfSubjectReview response format
to extract user information
- Add KUBERNETES provider type to AuthProviderType enum
- Update create_auth_provider factory function to handle 'kubernetes'
provider type
- Add comprehensive unit tests for KubernetesAuthProvider functionality
- Add documentation with configuration examples and usage instructions
The provider validates tokens by sending SelfSubjectReview requests to
the Kubernetes API server and extracts user information from the
userInfo structure in the response.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
What This Verifies:
Authentication header validation
Token validation with Kubernetes SelfSubjectReview and kubernetes server
API endpoint
Error handling for invalid tokens and HTTP errors
Request payload structure and headers
```
python -m pytest tests/unit/server/test_auth.py -k "kubernetes" -v
```
Signed-off-by: Akram Ben Aissi <akram.benaissi@gmail.com>
# What does this PR do?
Improved bedrock provider config to read from environment variables like
AWS_ACCESS_KEY_ID. Updated all
fields to use default_factory with lambda patterns like the nvidia
provider does.
Now the environment variables work as documented.
Closes#3305
## Test Plan
Ran the new bedrock config tests:
```bash
python -m pytest tests/unit/providers/inference/bedrock/test_config.py
-v
Verified existing provider tests still work:
python -m pytest tests/unit/providers/test_configs.py -v
One needed to specify record-replay related environment variables for
running integration tests. We could not use defaults because integration
tests could be run against Ollama instances which could be running
different models. For example, text vs vision tests needed separate
instances of Ollama because a single instance typically cannot serve
both of these models if you assume the standard CI worker configuration
on Github. As a result, `client.list()` as returned by the Ollama client
would be different between these runs and we'd end up overwriting
responses.
This PR "solves" it by adding a small amount of complexity -- we store
model list responses specially, keyed by the hashes of the models they
return. At replay time, we merge all of them and pretend that we have
the union of all models available.
## Test Plan
Re-recorded all the tests using `scripts/integration-tests.sh
--inference-mode record`, including the vision tests.
# What does this PR do?
BFCL scoring function is not supported, removing it.
Also minor fixes as the llama stack run is broken for open-benchmark for
test plan verification
1. Correct the model paths for supported models
2. Fix another issue as there is no `provider_id` for DatasetInput but
logger assumes it exists.
```
File "/Users/swapna942/llama-stack/llama_stack/core/stack.py", line 332, in construct_stack
await register_resources(run_config, impls)
File "/Users/swapna942/llama-stack/llama_stack/core/stack.py", line 108, in register_resources
logger.debug(f"registering {rsrc.capitalize()} {obj} for provider {obj.provider_id}")
^^^^^^^^^^^^^^^
File "/Users/swapna942/llama-stack/.venv/lib/python3.13/site-packages/pydantic/main.py", line 991, in __getattr__
raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}')
AttributeError: 'DatasetInput' object has no attribute 'provider_id'
```
## Test Plan
```llama stack build --distro open-benchmark --image-type venv``` and run the server succeeds
Issue Link: https://github.com/llamastack/llama-stack/issues/3282
**Description:**
Adding information and guidelines on when contributors should create an
in-tree vs out-of-tree provider.
Im still learning a bit about this subject so Im very open to feedback
on this PR
Will also add this section to the API Providers section of the docs
# What does this PR do?
Finding these issues while moving to github pages.
## Test Plan
uv run --group docs sphinx-autobuild docs/source docs/build/html
--write-all
# What does this PR do?
the post training docs are missing references to the more indepth
`huggingface.md` and `torchtune.md` which explain how to actually use
the providers.
These files show up in search though.
Add references to these files into the `inline_..md` files currently
pointed to by `index.md`
Signed-off-by: Charlie Doern <cdoern@redhat.com>
The `trl` dependency brings in `accelerate` which brings in nvidia
dependencies for torch. We cannot have that in the starter distro. As
such, no CPU-only post-training for the huggingface provider.
The starter distribution added post-training which added torch
dependencies which pulls in all the nvidia CUDA libraries. This made our
starter container very big. We have worked hard to keep the starter
container small so it serves its purpose as a starter. This PR tries to
get it back to its size by forking off duplicate "-gpu" providers for
post-training. These forked providers are then used for a new
`starter-gpu` distribution which can pull in all dependencies.
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR removes `init()` from `LlamaStackAsLibrary`
Currently client.initialize() had to be invoked by user.
To improve dev experience and to avoid runtime errors, this PR init
LlamaStackAsLibrary implicitly upon using the client.
It prevents also multiple init of the same client, while maintaining
backward ccompatibility.
This PR does the following
- Automatic Initialization: Constructor calls initialize_impl()
automatically.
- Client is fully initialized after __init__ completes.
- Prevents consecutive initialization after the client has been
successfully initialized.
- initialize() method still exists but is now a no-op.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
fixes https://github.com/meta-llama/llama-stack/issues/2946
---------
Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
Adds flexible CORS (Cross-Origin Resource Sharing) configuration support
to the FastAPI
server with both local development and explicit configuration modes:
- **Local development mode**: `cors: true` enables localhost-only access
with regex
pattern `https?://localhost:\d+`
- **Explicit configuration mode**: Specific origins configuration with
credential support
and validation
- Prevents insecure combinations (wildcards with credentials)
- FastAPI CORSMiddleware integration via `model_dump()`
Addresses the need for configurable CORS policies to support web
frontends and
cross-origin API access while maintaining security.
Closes#2119
## Test Plan
1. Ran Unit Tests.
2. Manual tests: FastAPI middleware integration with actual HTTP
requests
- Local development mode localhost access validation
- Explicit configuration mode origins validation
- Preflight OPTIONS request handling
Some screenshots of manual tests.
<img width="1920" height="927" alt="image"
src="https://github.com/user-attachments/assets/79322338-40c7-45c9-a9ea-e3e8d8e2f849"
/>
<img width="1911" height="1037" alt="image"
src="https://github.com/user-attachments/assets/1683524e-b0c9-48c9-a0a5-782e949cde01"
/>
cc: @leseb @rhuss @franciscojavierarceo
# What does this PR do?
Small docs change as requested in
https://github.com/llamastack/llama-stack/pull/3160#pullrequestreview-3125038932
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
# What does this PR do?
Creates a structured testing documentation section with multiple detailed pages:
- Testing overview explaining the record-replay architecture
- Integration testing guide with practical usage examples
- Record-replay system technical documentation
- Guide for writing effective tests
- Troubleshooting guide for common testing issues
Hopefully this makes things a bit easier.
# What does this PR do?
Refactors the OpenAI responses implementation by extracting streaming and tool execution logic into separate modules. This improves code organization by:
1. Creating a new `StreamingResponseOrchestrator` class in `streaming.py` to handle the streaming response generation logic
2. Moving tool execution functionality to a dedicated `ToolExecutor` class in `tool_executor.py`
## Test Plan
Existing tests
**Description:**
The standard markdown [!NOTE] format is not supported on Sphinx
generated documentation, replacing those instances. Also updating other
Notes, Tips and Warning blocks throughout the source docs
WIP: Working to update the provider code gen
# What does this PR do?
the minimum python version for the project was bumped to 3.12 a couple
months ago, but there remains some artifacts in the repo suggesting we
support >=3.10
Signed-off-by: Nathan Weinberg <nweinber@redhat.com>
# What does this PR do?
- Adds documentation on how to contribute a Vector DB provider.
- Updates the testing section to be a little friendlier to navigate.
- Also added new shortcut for search so that `/` and `⌘ K` or `ctrl+K`
trigger search
<img width="1903" height="1346" alt="Screenshot 2025-08-11 at 10 10
12 AM"
src="https://github.com/user-attachments/assets/6995b3b8-a2ab-4200-be72-c5b03a784a29"
/>
<img width="1915" height="1438" alt="Screenshot 2025-08-11 at 10 10
25 AM"
src="https://github.com/user-attachments/assets/1f54d30e-5be1-4f27-b1e9-3c3537dcb8e9"
/>
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
- Add new Vertex AI remote inference provider with litellm integration
- Support for Gemini models through Google Cloud Vertex AI platform
- Uses Google Cloud Application Default Credentials (ADC) for
authentication
- Added VertexAI models: gemini-2.5-flash, gemini-2.5-pro,
gemini-2.0-flash.
- Updated provider registry to include vertexai provider
- Updated starter template to support Vertex AI configuration
- Added comprehensive documentation and sample configuration
<!-- If resolving an issue, uncomment and update the line below -->
relates to https://github.com/meta-llama/llama-stack/issues/2747
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Eran Cohen <eranco@redhat.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
# What does this PR do?
Update Milvus doc on using search modes.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
# What does this PR do?
`AgentEventLogger` only supports streaming responses, so I suggest
adding a comment near the bottom of `demo_script.py` letting the user
know this, e.g., if they change the `stream` value to `False` in the
call to `create_turn`, they need to comment out the logging lines.
See https://github.com/llamastack/llama-stack-client-python/issues/15
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
---------
Signed-off-by: Dean Wampler <dean.wampler@ibm.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
Remove pure venv (without uv) references in docs
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
A bunch of miscellaneous cleanup focusing on tests, but ended up
speeding up starter distro substantially.
- Pulled llama stack client init for tests into `pytest_sessionstart` so
it does not clobber output
- Profiling of that told me where we were doing lots of heavy imports
for starter, so lazied them
- starter now starts 20seconds+ faster on my Mac
- A few other smallish refactors for `compat_client`
As the title says. Distributions is in, Templates is out.
`llama stack build --template` --> `llama stack build --distro`. For
backward compatibility, the previous option is kept but results in a
warning.
Updated `server.py` to remove the "config_or_template" backward
compatibility since it has been a couple releases since that change.
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR is responsible for removal of Conda support in Llama Stack
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Closes#2539
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
# What does this PR do?
Adds support to Vector store Open AI APIs in Qdrant.
<!-- If resolving an issue, uncomment and update the line below -->
Closes#2463
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
Co-authored-by: ehhuang <ehhuang@users.noreply.github.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
# What does this PR do?
This PR (1) enables the files API for Weaviate and (2) enables
integration tests for Weaviate, which adds a docker container to the
github action.
This PR also handles a couple of edge cases for in creating the
collection and ensuring the tests all pass.
## Test Plan
CI enabled
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
**Description**
This PR adjusts the external providers documentation to align with the
new providers format. Splits up sections into the existing external
providers and how to create them as well.
<img width="1049" height="478" alt="Screenshot 2025-07-31 at 9 48 26 AM"
src="https://github.com/user-attachments/assets/f13599cb-2fd1-4e57-8ca9-27b067264e33"
/>
Open to feedback and adjusting titles
What does this PR do?
This PR adds support for Direct Preference Optimization (DPO) training
via the existing HuggingFace inline provider. It introduces a new DPO
training recipe, config schema updates, dataset integration, and
end-to-end testing to support preference-based fine-tuning with TRL.
Test Plan
Added integration test:
tests/integration/post_training/test_post_training.py::TestPostTraining::test_preference_optimize
Ran tests on both CPU and CUDA environments
---------
Co-authored-by: Ubuntu <ubuntu@ip-172-31-43-83.ec2.internal>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
**Description**
This PR removes some of the warnings when uv builds the docs
- Errors appear when generating docs about .md files not appearing in
toctree. ~~Adding content to the `providers-gen.py ` file that adds `---
orphan: true ---` to to each file.~~. Added a toctree generator to the
`providers-gen.py` file, this gets rid of the errors in the builds.
- Deletes the `_openai_compat` files, extension of PR #2849
- Adds the `files` APIs section to the `providers` toctree on the index
page
- Manually adds the `--- orphan: true ---` to the advanced apis. Ill try
to find a way to modify the providers code gen so it automatically adds
it, but this fixes the errors.
- Adds the `testing.md` to the `contributing` toctree
- Adds `starting_llama_stack_server.md` to `distributions` toctree
There are some other warnings im still looking at but this PR gets rid
of most of the toctree errors
Theres also an issue with the actual distribution-codegen that I can
investigate in another PR. Opened a bug for it here #2873