Commit graph

6 commits

Author SHA1 Message Date
Francisco Arceo
82f13fe83e
feat: Add ChunkMetadata to Chunk (#2497)
# What does this PR do?
Adding `ChunkMetadata` so we can properly delete embeddings later.

More specifically, this PR refactors and extends the chunk metadata
handling in the vector database and introduces a distinction between
metadata used for model context and backend-only metadata required for
chunk management, storage, and retrieval. It also improves chunk ID
generation and propagation throughout the stack, enhances test coverage,
and adds new utility modules.

```python
class ChunkMetadata(BaseModel):
    """
    `ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional information about the chunk that
        will NOT be inserted into the context during inference, but is required for backend functionality.
        Use `metadata` in `Chunk` for metadata that will be used during inference.
    """
    document_id: str | None = None
    chunk_id: str | None = None
    source: str | None = None
    created_timestamp: int | None = None
    updated_timestamp: int | None = None
    chunk_window: str | None = None
    chunk_tokenizer: str | None = None
    chunk_embedding_model: str | None = None
    chunk_embedding_dimension: int | None = None
    content_token_count: int | None = None
    metadata_token_count: int | None = None
```
Eventually we can migrate the document_id out of the `metadata` field.
I've introduced the changes so that `ChunkMetadata` is backwards
compatible with `metadata`.

<!-- If resolving an issue, uncomment and update the line below -->
Closes https://github.com/meta-llama/llama-stack/issues/2501 

## Test Plan
Added unit tests

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-06-25 15:55:23 -04:00
Francisco Arceo
f328436831
feat: Enable ingestion of precomputed embeddings (#2317)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 3s
Integration Tests / test-matrix (http, inspect) (push) Failing after 9s
Integration Tests / test-matrix (http, post_training) (push) Failing after 9s
Integration Tests / test-matrix (http, agents) (push) Failing after 10s
Integration Tests / test-matrix (http, datasets) (push) Failing after 10s
Integration Tests / test-matrix (http, inference) (push) Failing after 10s
Integration Tests / test-matrix (library, agents) (push) Failing after 9s
Integration Tests / test-matrix (http, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, datasets) (push) Failing after 8s
Integration Tests / test-matrix (http, providers) (push) Failing after 9s
Integration Tests / test-matrix (http, tool_runtime) (push) Failing after 10s
Integration Tests / test-matrix (library, inference) (push) Failing after 9s
Test External Providers / test-external-providers (venv) (push) Failing after 6s
Integration Tests / test-matrix (library, inspect) (push) Failing after 8s
Integration Tests / test-matrix (library, providers) (push) Failing after 8s
Integration Tests / test-matrix (library, scoring) (push) Failing after 8s
Integration Tests / test-matrix (library, post_training) (push) Failing after 10s
Unit Tests / unit-tests (3.11) (push) Failing after 7s
Unit Tests / unit-tests (3.10) (push) Failing after 9s
Unit Tests / unit-tests (3.13) (push) Failing after 7s
Integration Tests / test-matrix (library, tool_runtime) (push) Failing after 9s
Unit Tests / unit-tests (3.12) (push) Failing after 9s
Update ReadTheDocs / update-readthedocs (push) Failing after 7s
Pre-commit / pre-commit (push) Successful in 1m15s
2025-05-31 04:03:37 -06:00
Francisco Arceo
8e7ab146f8
feat: Adding support for customizing chunk context in RAG insertion and querying (#2134)
# What does this PR do?
his PR allows users to customize the template used for chunks when
inserted into the context. Additionally, this enables metadata injection
into the context of an LLM for RAG. This makes a naive and crude
assumption that each chunk should include the metadata, this is
obviously redundant when multiple chunks are returned from the same
document. In order to remove any sort of duplication of chunks, we'd
have to make much more significant changes so this is a reasonable first
step that unblocks users requesting this enhancement in
https://github.com/meta-llama/llama-stack/issues/1767.

In the future, this can be extended to support citations.


List of Changes:
- `llama_stack/apis/tools/rag_tool.py`
    - Added  `chunk_template` field in `RAGQueryConfig`.
- Added `field_validator` to validate the `chunk_template` field in
`RAGQueryConfig`.
- Ensured the `chunk_template` field includes placeholders `{index}` and
`{chunk.content}`.
- Updated the `query` method to use the `chunk_template` for formatting
chunk text content.
- `llama_stack/providers/inline/tool_runtime/rag/memory.py`
- Modified the `insert` method to pass `doc.metadata` for chunk
creation.
- Enhanced the `query` method to format results using `chunk_template`
and exclude unnecessary metadata fields like `token_count`.
- `llama_stack/providers/utils/memory/vector_store.py`
- Updated `make_overlapped_chunks` to include metadata serialization and
token count for both content and metadata.
    - Added error handling for metadata serialization issues.
- `pyproject.toml`
- Added `pydantic.field_validator` as a recognized `classmethod`
decorator in the linting configuration.
- `tests/integration/tool_runtime/test_rag_tool.py`
- Refactored test assertions to separate `assert_valid_chunk_response`
and `assert_valid_text_response`.
- Added integration tests to validate `chunk_template` functionality
with and without metadata inclusion.
- Included a test case to ensure `chunk_template` validation errors are
raised appropriately.
- `tests/unit/rag/test_vector_store.py`
- Added unit tests for `make_overlapped_chunks`, verifying chunk
creation with overlapping tokens and metadata integrity.
- Added tests to handle metadata serialization errors, ensuring proper
exception handling.
- `docs/_static/llama-stack-spec.html`
- Added a new `chunk_template` field of type `string` with a default
template for formatting retrieved chunks in RAGQueryConfig.
    - Updated the `required` fields to include `chunk_template`.
- `docs/_static/llama-stack-spec.yaml`
- Introduced `chunk_template` field with a default value for
RAGQueryConfig.
- Updated the required configuration list to include `chunk_template`.
- `docs/source/building_applications/rag.md`
- Documented the `chunk_template` configuration, explaining how to
customize metadata formatting in RAG queries.
- Added examples demonstrating the usage of the `chunk_template` field
in RAG tool queries.
    - Highlighted default values for `RAG` agent configurations.

# Resolves https://github.com/meta-llama/llama-stack/issues/1767

## Test Plan
Updated both `test_vector_store.py` and `test_rag_tool.py` and tested
end-to-end with a script.

I also tested the quickstart to enable this and specified this metadata:
```python
document = RAGDocument(
    document_id="document_1",
    content=source,
    mime_type="text/html",
    metadata={"author": "Paul Graham", "title": "How to do great work"},
)
```
Which produced the output below: 

![Screenshot 2025-05-13 at 10 53
43 PM](https://github.com/user-attachments/assets/bb199d04-501e-4217-9c44-4699d43d5519)

This highlights the usefulness of the additional metadata. Notice how
the metadata is redundant for different chunks of the same document. I
think we can update that in a subsequent PR.

# Documentation
I've added a brief comment about this in the documentation to outline
this to users and updated the API documentation.

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-05-14 21:56:20 -04:00
Ilya Kolchinsky
dd7be274b9
fix: raise an error when no vector DB IDs are provided to the RAG tool (#1911)
# What does this PR do?
This PR fixes the behavior of the `/tool-runtime/rag-tool/query`
endpoint when invoked with an empty `vector_db_ids` parameter.
As of now, it simply returns an empty result, which leads to a
misleading error message from the server and makes it difficult and
time-consuming to detect the problem with the input parameter.
The proposed fix is to return an indicative error message in this case.


## Test Plan
Running the following script:
```
agent = Agent(
    client,
    model=MODEL_ID,
    instructions=SYSTEM_PROMPT,
    tools=[
        dict(
            name="builtin::rag/knowledge_search",
            args={
                "vector_db_ids": [],
            },
        )
    ],
)

response = agent.create_turn(
    messages=[
        {
            "role": "user",
            "content": "How to install OpenShift?",
        }
    ],
    session_id=agent.create_session(f"rag-session")
)
```
results in the following error message in the non-patched version:
```
{"type": "function", "name": "knowledge_search", "parameters": {"query": "installing OpenShift"}}400: Invalid value: Tool call result (id: 494b8020-90bb-449b-aa76-10960d6b2cc2, name: knowledge_search) does not have any content
```
and in the following one in the patched version:
```
{"type": "function", "name": "knowledge_search", "parameters": {"query": "installing OpenShift"}}400: Invalid value: No vector DBs were provided to the RAG tool. Please provide at least one DB.
```
2025-05-12 11:25:13 +02:00
Ben Browning
00570fde31
chore: Get sqlite_vec and vector_store unit tests passing (#1413) 2025-03-05 13:20:13 -05:00
Ashwin Bharambe
4ca58eb987 refactor: tests/unittests -> tests/unit; tests/api -> tests/integration 2025-03-04 09:57:00 -08:00