Commit graph

113 commits

Author SHA1 Message Date
Dmitry Rogozhkin
80f2032485
Fix running stack built with base conda environment (#903)
Fixes: #902

For the test verified that llama stack can run if built:
* With default "base" conda environment
* With new custom conda environment using `--image-name XXX` option
In both cases llama stack starts fine (was failing with "base") before
this patch.

CC: @ashwinb

Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
2025-01-29 21:24:22 -08:00
Yuan Tang
53721e91ad
Fix validator of "container" image type (#901)
This was missed in https://github.com/meta-llama/llama-stack/pull/802
somehow.
2025-01-29 09:36:52 -08:00
Ashwin Bharambe
aee6237685 Small refactor for run_with_pty 2025-01-28 09:32:33 -08:00
Vladislav Bronzov
8332ea23ad
Add run win command for stack (#890)
# What does this PR do?

Add win platform run command for stack

- [x] Addresses issue (#issue)


## Test Plan

Please describe:
 - tests you ran to verify your changes with result summaries.
 - provide instructions so it can be reproduced.


## Sources

Please link relevant resources if necessary.
https://github.com/meta-llama/llama-stack/pull/889


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-28 08:04:28 -08:00
Ashwin Bharambe
891bf704eb
Ensure llama stack build --config <> --image-type <> works (#879)
Fix the issues brought up in
https://github.com/meta-llama/llama-stack/issues/870

Test all combinations of (conda, container) vs. (template, config)
combos.
2025-01-25 11:13:36 -08:00
Yuan Tang
6da3053c0e
More generic image type for OCI-compliant container technologies (#802)
It's a more generic term and applicable to alternatives of Docker, such
as Podman or other OCI-compliant technologies.

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-01-17 16:37:42 -08:00
Ashwin Bharambe
03ac84a829 Update default port from 5000 -> 8321 2025-01-16 15:26:48 -08:00
Ashwin Bharambe
cee3816609
Make llama stack build not create a new conda by default (#788)
## What does this PR do?

So far `llama stack build` has always created a separate conda
environment for packaging the dependencies of a distribution. The main
reason to do so is isolation -- distributions are composed of providers
which can have a variety of potentially conflicting dependencies. That
said, this has created significant annoyance for new users since it is
not at all transparent. The fact that `llama stack run` is actually
running the code in some other conda is very surprising.

This PR tries to make things better. 

- Both `llama stack build` and `llama stack run` now accept an
`--image-name` argument which represents the (conda, docker, virtualenv)
image you want to operate upon.
- For the default (conda) mode, the script checks if a current conda
environment exists. If one exists, it uses it.
- If `--image-name` is provided, that option is used. In this case, an
environment is created if needed.
- There is no automatic `llamastack-` prefixing of the environment names
done anymore.


## Test Plan

Start in a conda environment, run `llama stack build --template
fireworks`; verify that it successfully built into the current
environment and stored the build file at
`$CONDA_PREFIX/llamastack-build.yaml`. Run `llama stack run fireworks`
which started correctly in the current environment.

Ran the same build command outside of conda. It failed asking for
`--image-name`. Ran it with `llama stack build --template fireworks
--image-name foo`. This successfully created a conda environment called
`foo` and installed deps. Ran `llama stack run fireworks` outside conda
which failed. Activated a different conda, ran again, it failed saying
it did not find the `llamastack-build.yaml` file. Then used
`--image-name foo` option and it ran successfully.
2025-01-16 13:44:53 -08:00
Xi Yan
32d3abe964
[CICD] Github workflow for publishing Docker images (#764)
# What does this PR do?

- Add Github workflow for publishing docker images. 
- Manual Inputs
- We can use a (1) TestPyPi version / (2) build via released PyPi
version

**Notes**
- Keep this workflow manually triggered as we don't want to publish
nightly docker images

**Additional Changes**
- Resolve issue with running llama stack build in non-terminal device
```
  File "/home/runner/.local/lib/python3.12/site-packages/llama_stack/distribution/utils/exec.py", line 25, in run_with_pty
    old_settings = termios.tcgetattr(sys.stdin)
                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
termios.error: (25, 'Inappropriate ioctl for device')
```
- Modified build_container.sh to work in non-terminal environment


## Test Plan

- Triggered workflow:
3562217878
<img width="1076" alt="image"
src="https://github.com/user-attachments/assets/f1b5cef6-05ab-49c7-b405-53abc9264734"
/>


- Tested published docker image
<img width="702" alt="image"
src="https://github.com/user-attachments/assets/e7135189-65c8-45d8-86f9-9f3be70e380b"
/>


- /tools API endpoints are served so that docker is correctly using the
TestPyPi package
<img width="296" alt="image"
src="https://github.com/user-attachments/assets/bbcaa7fe-c0a4-4d22-b600-90e3c254bbfd"
/>

- Published tagged images:
https://hub.docker.com/repositories/llamastack
<img width="947" alt="image"
src="https://github.com/user-attachments/assets/2a0a0494-4d45-4643-bc29-72154ecc54a5"
/>


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-15 09:01:33 -08:00
Dinesh Yeduguru
a174938fbd
Fix telemetry to work on reinstantiating new lib cli (#761)
# What does this PR do?

Since we maintain global state in our telemetry pipeline,
reinstantiating lib cli will cause us to add duplicate span processors
causing sqlite to lock out because of constraint violations since we now
have two span processor writing to sqlite. This PR changes the telemetry
adapter for otel to only instantiate the provider once and add the span
processsors only once.

Also fixes an issue llama stack build


## Test Plan

tested with notebook at
https://colab.research.google.com/drive/1ck7hXQxRl6UvT-ijNRZ-gMZxH1G3cN2d#scrollTo=9496f75c
2025-01-14 11:31:50 -08:00
Yuan Tang
9ec54dcbe7
Switch to use importlib instead of deprecated pkg_resources (#678)
`pkg_resources` has been deprecated. This PR switches to use
`importlib.resources`.

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-01-13 20:20:02 -08:00
raghotham
ff182ff6de
rename LLAMASTACK_PORT to LLAMA_STACK_PORT for consistency with other env vars (#744)
# What does this PR do?

Rename environment var for consistency

## Test Plan

No regressions

## Sources

## Before submitting

- [X] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [X] Ran pre-commit to handle lint / formatting issues.
- [X] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [X] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
Co-authored-by: Yuan Tang <terrytangyuan@gmail.com>
2025-01-10 11:09:49 -08:00
Yuan Tang
24fa1adc2f
Expose LLAMASTACK_PORT in cli.stack.run (#722)
This was missed in https://github.com/meta-llama/llama-stack/pull/706. I
tested `llama_stack.distribution.server.server` but didn't test `llama
stack run`. cc @ashwinb

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2025-01-10 09:13:49 -08:00
Xi Yan
596afc6497
add --version to llama stack CLI & /version endpoint (#732)
# What does this PR do?

- add --version to llama stack CLI 
- add /version endpoint
- run OpenAPI generator for the new endpoint

## Test Plan

**CLI**
<img width="184" alt="image"
src="https://github.com/user-attachments/assets/3acb1d22-453e-4b79-baf6-e98e88d0671c"
/>



**endpoint**
<img width="430" alt="image"
src="https://github.com/user-attachments/assets/79cdd670-493b-40cf-8f9e-28a4ac0988ac"
/>


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-08 16:30:06 -08:00
Xi Yan
3c72c034e6
[remove import *] clean up import *'s (#689)
# What does this PR do?

- as title, cleaning up `import *`'s
- upgrade tests to make them more robust to bad model outputs
- remove import *'s in llama_stack/apis/* (skip __init__ modules)
<img width="465" alt="image"
src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2"
/>

- run `sh run_openapi_generator.sh`, no types gets affected

## Test Plan

### Providers Tests

**agents**
```
pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8
```

**inference**
```bash
# meta-reference
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

# together
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py 
```

**safety**
```
pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B
```

**memory**
```
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384
```

**scoring**
```
pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
```


**datasetio**
```
pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py
pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py
```


**eval**
```
pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py
```

### Client-SDK Tests
```
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk
```

### llama-stack-apps
```
PORT=5000
LOCALHOST=localhost

python -m examples.agents.hello $LOCALHOST $PORT
python -m examples.agents.inflation $LOCALHOST $PORT
python -m examples.agents.podcast_transcript $LOCALHOST $PORT
python -m examples.agents.rag_as_attachments $LOCALHOST $PORT
python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT
python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT
python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT

# Vision model
python -m examples.interior_design_assistant.app
python -m examples.agent_store.app $LOCALHOST $PORT
```

### CLI
```
which llama
llama model prompt-format -m Llama3.2-11B-Vision-Instruct
llama model list
llama stack list-apis
llama stack list-providers inference

llama stack build --template ollama --image-type conda
```

### Distributions Tests
**ollama**
```
llama stack build --template ollama --image-type conda
ollama run llama3.2:1b-instruct-fp16
llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct
```

**fireworks**
```
llama stack build --template fireworks --image-type conda
llama stack run ./llama_stack/templates/fireworks/run.yaml
```

**together**
```
llama stack build --template together --image-type conda
llama stack run ./llama_stack/templates/together/run.yaml
```

**tgi**
```
llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-27 15:45:44 -08:00
Yuan Tang
987e651755
Add missing venv option in --image-type (#677)
"venv" option is supported but not mentioned in the prompt.

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
2024-12-21 21:10:13 -08:00
Aidan Do
76eb558bde
doc: llama-stack build --config help text references old directory (#596)
# What does this PR do?

- llama-stack build --config help text references example_configs which
no longer exists
- Update to refer new directory format to avoid confusion

## Before submitting

- [x] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
2024-12-10 17:42:02 -08:00
Ashwin Bharambe
fa68ded07c Remove the unnecessary message after llama stack build 2024-12-10 09:46:56 -08:00
Ashwin Bharambe
e951852848 Miscellaneous fixes around telemetry, library client and run yaml autogen
Also add a `venv` image-type for llama stack build
2024-12-08 20:40:22 -08:00
Ashwin Bharambe
358db3c5b6 No need to use os.path.relpath() when Path() knows everything anyway 2024-11-23 11:45:47 -08:00
Dalton Flanagan
b007b062f3
Fix llama stack build in 0.0.54 (#505)
# What does this PR do?

Safety provider `inline::meta-reference` is now deprecated. However, we 

* aren't checking / printing the deprecation message in `llama stack
build`
* make the deprecated (unusable) provider

So I (1) added checking and (2) made `inline::llama-guard` the default

## Test Plan

Before

```
Traceback (most recent call last):
  File "/home/dalton/.conda/envs/nov22/bin/llama", line 8, in <module>
    sys.exit(main())
  File "/home/dalton/all/llama-stack/llama_stack/cli/llama.py", line 46, in main
    parser.run(args)
  File "/home/dalton/all/llama-stack/llama_stack/cli/llama.py", line 40, in run
    args.func(args)
  File "/home/dalton/all/llama-stack/llama_stack/cli/stack/build.py", line 177, in _run_stack_build_command
    self._run_stack_build_command_from_build_config(build_config)
  File "/home/dalton/all/llama-stack/llama_stack/cli/stack/build.py", line 305, in _run_stack_build_command_from_build_config
    self._generate_run_config(build_config, build_dir)
  File "/home/dalton/all/llama-stack/llama_stack/cli/stack/build.py", line 226, in _generate_run_config
    config_type = instantiate_class_type(
  File "/home/dalton/all/llama-stack/llama_stack/distribution/utils/dynamic.py", line 12, in instantiate_class_type
    module = importlib.import_module(module_name)
  File "/home/dalton/.conda/envs/nov22/lib/python3.10/importlib/__init__.py", line 126, in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
  File "<frozen importlib._bootstrap>", line 1050, in _gcd_import
  File "<frozen importlib._bootstrap>", line 1027, in _find_and_load
  File "<frozen importlib._bootstrap>", line 1004, in _find_and_load_unlocked
ModuleNotFoundError: No module named 'llama_stack.providers.inline.safety.meta_reference'
```

After

```
Traceback (most recent call last):
  File "/home/dalton/.conda/envs/nov22/bin/llama", line 8, in <module>
    sys.exit(main())
  File "/home/dalton/all/llama-stack/llama_stack/cli/llama.py", line 46, in main
    parser.run(args)
  File "/home/dalton/all/llama-stack/llama_stack/cli/llama.py", line 40, in run
    args.func(args)
  File "/home/dalton/all/llama-stack/llama_stack/cli/stack/build.py", line 177, in _run_stack_build_command
    self._run_stack_build_command_from_build_config(build_config)
  File "/home/dalton/all/llama-stack/llama_stack/cli/stack/build.py", line 309, in _run_stack_build_command_from_build_config
    self._generate_run_config(build_config, build_dir)
  File "/home/dalton/all/llama-stack/llama_stack/cli/stack/build.py", line 228, in _generate_run_config
    raise InvalidProviderError(p.deprecation_error)
llama_stack.distribution.resolver.InvalidProviderError: 
Provider `inline::meta-reference` for API `safety` does not work with the latest Llama Stack.
- if you are using Llama Guard v3, please use the `inline::llama-guard` provider instead.
- if you are using Prompt Guard, please use the `inline::prompt-guard` provider instead.
- if you are using Code Scanner, please use the `inline::code-scanner` provider instead.
```

<img width="469" alt="Screenshot 2024-11-22 at 4 10 24 PM"
src="https://github.com/user-attachments/assets/8c2e09fe-379a-4504-b246-7925f80a6ed6">

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-22 16:23:44 -05:00
Ashwin Bharambe
068ac00a3b
Don't depend on templates.py when print llama stack build messages (#496) 2024-11-20 15:44:49 -08:00
Ashwin Bharambe
681322731b
Make run yaml optional so dockers can start with just --env (#492)
When running with dockers, the idea is that users be able to work purely
with the `llama stack` CLI. They should not need to know about the
existence of any YAMLs unless they need to. This PR enables it.

The docker command now doesn't need to volume mount a yaml and can
simply be:
```bash
docker run -v ~/.llama/:/root/.llama \
  --env A=a --env B=b
```

## Test Plan

Check with conda first (no regressions):
```bash
LLAMA_STACK_DIR=. llama stack build --template ollama
llama stack run ollama --port 5001

# server starts up correctly
```

Check with docker
```bash
# build the docker
LLAMA_STACK_DIR=. llama stack build --template ollama --image-type docker

export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"

docker run -it  -p 5001:5001 \
  -v ~/.llama:/root/.llama \
  -v $PWD:/app/llama-stack-source \
  localhost/distribution-ollama:dev \
  --port 5001 \
  --env INFERENCE_MODEL=$INFERENCE_MODEL \
  --env OLLAMA_URL=http://host.docker.internal:11434
```

Note that volume mounting to `/app/llama-stack-source` is only needed
because we built the docker with uncommitted source code.
2024-11-20 13:11:40 -08:00
Xi Yan
6765fd76ff
fix llama stack build for together & llama stack build from templates (#479)
# What does this PR do?

- Fix issue w/ llama stack build using together template
<img width="669" alt="image"
src="https://github.com/user-attachments/assets/1cbef052-d902-40b9-98f8-37efb494d117">

- For builds from templates, copy over the
`templates/<template-name>/run.yaml` file to the
`~/.llama/distributions/<name>/<name>-run.yaml` instead of re-building
run config.


## Test Plan

```
$ llama stack build --template together --image-type conda
..
Build spec configuration saved at /opt/anaconda3/envs/llamastack-together/together-build.yaml
Build Successful! Next steps:
   1. Set the environment variables: LLAMASTACK_PORT, TOGETHER_API_KEY
   2. `llama stack run /Users/xiyan/.llama/distributions/llamastack-together/together-run.yaml`
```

```
$ llama stack run /Users/xiyan/.llama/distributions/llamastack-together/together-run.yaml
```

```
$ llama-stack-client models list
$ pytest -v -s -m remote agents/test_agents.py --env REMOTE_STACK_URL=http://localhost:5000 --inference-model meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo
```
<img width="764" alt="image"
src="https://github.com/user-attachments/assets/b805b6c5-a316-4561-8fe3-24fc3b1f8b80">


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-18 22:29:16 -08:00
Ashwin Bharambe
2a31163178
Auto-generate distro yamls + docs (#468)
# What does this PR do?

Automatically generates
- build.yaml
- run.yaml
- run-with-safety.yaml
- parts of markdown docs

for the distributions.

## Test Plan

At this point, this only updates the YAMLs and the docs. Some testing
(especially with ollama and vllm) has been performed but needs to be
much more tested.
2024-11-18 14:57:06 -08:00
Vladimir Ivić
f1b9578f8d
Extend shorthand support for the llama stack run command (#465)
**Summary:**
Extend the shorthand run command so it can run successfully when config
exists under DISTRIBS_BASE_DIR (i.e. ~/.llama/distributions).

For example, imagine you created a new stack using the `llama stack
build` command where you named it "my-awesome-llama-stack".

```
$ llama stack build

> Enter a name for your Llama Stack (e.g. my-local-stack): my-awesome-llama-stack
```

To run the stack you created you will have to use long config path:
```
llama stack run ~/.llama/distributions/llamastack-my-awesome-llama-stack/my-awesome-llama-stack-run.yaml
```

With this change, you can start it using the stack name instead of full
path:
```
llama stack run my-awesome-llama-stack
```

**Test Plan:**
Verify command fails when stack doesn't exist
```
python3 -m llama_stack.cli.llama stack run my-test-stack
```

Output [FAILURE]
```
usage: llama stack run [-h] [--port PORT] [--disable-ipv6] config
llama stack run: error: File /Users/vladimirivic/.llama/distributions/llamastack-my-test-stack/my-test-stack-run.yaml does not exist. Please run `llama stack build` to generate (and optionally edit) a run.yaml file
```

Create a new stack using `llama stack build`.
Name it `my-test-stack`.

Verify command runs successfully
```
python3 -m llama_stack.cli.llama stack run my-test-stack
```

Output [SUCCESS]
```
Listening on ['::', '0.0.0.0']:5000
INFO:     Started server process [80146]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://['::', '0.0.0.0']:5000 (Press CTRL+C to quit)
```
2024-11-15 23:16:42 -08:00
Martin Hickey
0c750102c6
Fix build configure deprecation message (#456)
# What does this PR do?

Removes from the `llama build configure` deprecation message the
`--configure` flag because the `llama stack run` command does not
support this flag.

Signed-off-by: Martin Hickey <martin.hickey@ie.ibm.com>
2024-11-14 09:56:03 -08:00
Xi Yan
748606195b
Kill llama stack configure (#371)
* remove configure

* build msg

* wip

* build->run

* delete prints

* docs

* fix docs, kill configure

* precommit

* update fireworks build

* docs

* clean up build

* comments

* fix

* test

* remove baking build.yaml into docker

* fix msg, urls

* configure msg
2024-11-06 13:32:10 -08:00
Ashwin Bharambe
4aa1bf6a60
Kill --name from llama stack build (#340) 2024-10-28 23:07:32 -07:00
Xi Yan
07f9bf723f
fix broken --list-templates with adding build.yaml files for packaging (#327)
* add build files to templates

* fix templates

* manifest

* symlink

* symlink

* precommit

* change everything to docker build.yaml

* remove image_type in templates

* fix build from templates CLI

* fix readmes
2024-10-25 12:51:22 -07:00
Ashwin Bharambe
afae4e3d8e Update docker build flow a little 2024-10-25 10:06:21 -07:00
Ashwin Bharambe
5bed6c276c Move function around 2024-10-25 09:18:22 -07:00
Xi Yan
23210e8679
llama stack distributions / templates / docker refactor (#266)
* docker compose ollama

* comment

* update compose file

* readme for distributions

* readme

* move distribution folders

* move distribution/templates to distributions/

* rename

* kill distribution/templates

* readme

* readme

* build/developer cookbook/new api provider

* developer cookbook

* readme

* readme

* [bugfix] fix case for agent when memory bank registered without specifying provider_id (#264)

* fix case where memory bank is registered without provider_id

* memory test

* agents unit test

* Add an option to not use elastic agents for meta-reference inference (#269)

* Allow overridding checkpoint_dir via config

* Small rename

* Make all methods `async def` again; add completion() for meta-reference (#270)

PR #201 had made several changes while trying to fix issues with getting the stream=False branches of inference and agents API working. As part of this, it made a change which was slightly gratuitous. Namely, making chat_completion() and brethren "def" instead of "async def".

The rationale was that this allowed the user (within llama-stack) of this to use it as:

```
async for chunk in api.chat_completion(params)
```

However, it causes unnecessary confusion for several folks. Given that clients (e.g., llama-stack-apps) anyway use the SDK methods (which are completely isolated) this choice was not ideal. Let's revert back so the call now looks like:

```
async for chunk in await api.chat_completion(params)
```

Bonus: Added a completion() implementation for the meta-reference provider. Technically should have been another PR :)

* Improve an important error message

* update ollama for llama-guard3

* Add vLLM inference provider for OpenAI compatible vLLM server (#178)

This PR adds vLLM inference provider for OpenAI compatible vLLM server.

* Create .readthedocs.yaml

Trying out readthedocs

* Update event_logger.py (#275)

spelling error

* vllm

* build templates

* delete templates

* tmp add back build to avoid merge conflicts

* vllm

* vllm

---------

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
Co-authored-by: Yuan Tang <terrytangyuan@gmail.com>
Co-authored-by: raghotham <rsm@meta.com>
Co-authored-by: nehal-a2z <nehal@coderabbit.ai>
2024-10-21 11:17:53 -07:00
Ashwin Bharambe
1ff0476002 Split off meta-reference-quantized provider 2024-10-10 16:03:19 -07:00
Ashwin Bharambe
6bb57e72a7
Remove "routing_table" and "routing_key" concepts for the user (#201)
This PR makes several core changes to the developer experience surrounding Llama Stack.

Background: PR #92 introduced the notion of "routing" to the Llama Stack. It introduces three object types: (1) models, (2) shields and (3) memory banks. Each of these objects can be associated with a distinct provider. So you can get model A to be inferenced locally while model B, C can be inference remotely (e.g.)

However, this had a few drawbacks:

you could not address the provider instances -- i.e., if you configured "meta-reference" with a given model, you could not assign an identifier to this instance which you could re-use later.
the above meant that you could not register a "routing_key" (e.g. model) dynamically and say "please use this existing provider I have already configured" for a new model.
the terms "routing_table" and "routing_key" were exposed directly to the user. in my view, this is way too much overhead for a new user (which almost everyone is.) people come to the stack wanting to do ML and encounter a completely unexpected term.
What this PR does: This PR structures the run config with only a single prominent key:

- providers
Providers are instances of configured provider types. Here's an example which shows two instances of the remote::tgi provider which are serving two different models.

providers:
  inference:
  - provider_id: foo
    provider_type: remote::tgi
    config: { ... }
  - provider_id: bar
    provider_type: remote::tgi
    config: { ... }
Secondly, the PR adds dynamic registration of { models | shields | memory_banks } to the API surface. The distribution still acts like a "routing table" (as previously) except that it asks the backing providers for a listing of these objects. For example it asks a TGI or Ollama inference adapter what models it is serving. Only the models that are being actually served can be requested by the user for inference. Otherwise, the Stack server will throw an error.

When dynamically registering these objects, you can use the provider IDs shown above. Info about providers can be obtained using the Api.inspect set of endpoints (/providers, /routes, etc.)

The above examples shows the correspondence between inference providers and models registry items. Things work similarly for the safety <=> shields and memory <=> memory_banks pairs.

Registry: This PR also makes it so that Providers need to implement additional methods for registering and listing objects. For example, each Inference provider is now expected to implement the ModelsProtocolPrivate protocol (naming is not great!) which consists of two methods

register_model
list_models
The goal is to inform the provider that a certain model needs to be supported so the provider can make any relevant backend changes if needed (or throw an error if the model cannot be supported.)

There are many other cleanups included some of which are detailed in a follow-up comment.
2024-10-10 10:24:13 -07:00
Dalton Flanagan
441052b0fd avoid jq since non-standard on macOS 2024-10-04 10:11:43 -04:00
Xi Yan
62d266f018
[CLI] avoid configure twice (#171)
* avoid configure twice

* cleanup tmp config

* update output msg

* address comment

* update msg

* script update
2024-10-03 11:20:54 -07:00
Xi Yan
b9b1e8b08b
[bugfix] conda path lookup (#179)
* fix conda lookup

* comments
2024-10-03 10:45:16 -07:00
Ashwin Bharambe
e9f6150588 A bit cleanup to avoid breakages 2024-10-02 21:31:09 -07:00
Ashwin Bharambe
988a9cada3 Don't ask for Api.inspect in stack build 2024-10-02 21:10:56 -07:00
Ashwin Bharambe
fe4aabd690 provider_id => provider_type, adapter_id => adapter_type 2024-10-02 14:05:59 -07:00
Ashwin Bharambe
df68db644b Refactoring distribution/distribution.py
This file was becoming too large and unclear what it housed. Split it
into pieces.
2024-10-02 14:03:02 -07:00
Xi Yan
73decb3781 re-build from name 2024-09-30 16:22:52 -07:00
Xi Yan
4897bf2f85 allow --name to re-build from config 2024-09-30 16:18:12 -07:00
Xi Yan
d28c3dfe0f
[CLI] simplify docker run (#159)
* bake run.yaml inside docker, simplify run

* add docker template examples

* delete generated Dockerfile

* unique deps

* clean up debug

* default entrypoint

* address comments, update output msg

* update msg

* build output msg

* configure msg

* unique special_deps

* remove quotes in configure
2024-09-30 15:04:04 -07:00
Xi Yan
f6a6598d1a
[bugfix] fix #146 (#147)
* more robust image type

* lint
2024-09-28 17:47:00 -07:00
Xi Yan
6a8c2ae1df
[CLI] remove dependency on CONDA_PREFIX in CLI (#144)
* remove dependency on CONDA_PREFIX in CLI

* lint

* typo

* more robust
2024-09-28 16:46:47 -07:00
Ashwin Bharambe
fe460ba103 Avoid importing a lot of stuff 2024-09-28 16:06:10 -07:00
Xi Yan
4ae8c63a2b pre-commit lint 2024-09-28 16:04:41 -07:00
Russell Bryant
f70c88ab7a
configure: Fix a error msg typo (#131)
I got this error message and noticed the typo in the message. It
directed the user to run `llama stack build first`, which is not a
valid command.

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2024-09-27 14:00:25 -07:00