# What does this PR do?
his PR allows users to customize the template used for chunks when
inserted into the context. Additionally, this enables metadata injection
into the context of an LLM for RAG. This makes a naive and crude
assumption that each chunk should include the metadata, this is
obviously redundant when multiple chunks are returned from the same
document. In order to remove any sort of duplication of chunks, we'd
have to make much more significant changes so this is a reasonable first
step that unblocks users requesting this enhancement in
https://github.com/meta-llama/llama-stack/issues/1767.
In the future, this can be extended to support citations.
List of Changes:
- `llama_stack/apis/tools/rag_tool.py`
- Added `chunk_template` field in `RAGQueryConfig`.
- Added `field_validator` to validate the `chunk_template` field in
`RAGQueryConfig`.
- Ensured the `chunk_template` field includes placeholders `{index}` and
`{chunk.content}`.
- Updated the `query` method to use the `chunk_template` for formatting
chunk text content.
- `llama_stack/providers/inline/tool_runtime/rag/memory.py`
- Modified the `insert` method to pass `doc.metadata` for chunk
creation.
- Enhanced the `query` method to format results using `chunk_template`
and exclude unnecessary metadata fields like `token_count`.
- `llama_stack/providers/utils/memory/vector_store.py`
- Updated `make_overlapped_chunks` to include metadata serialization and
token count for both content and metadata.
- Added error handling for metadata serialization issues.
- `pyproject.toml`
- Added `pydantic.field_validator` as a recognized `classmethod`
decorator in the linting configuration.
- `tests/integration/tool_runtime/test_rag_tool.py`
- Refactored test assertions to separate `assert_valid_chunk_response`
and `assert_valid_text_response`.
- Added integration tests to validate `chunk_template` functionality
with and without metadata inclusion.
- Included a test case to ensure `chunk_template` validation errors are
raised appropriately.
- `tests/unit/rag/test_vector_store.py`
- Added unit tests for `make_overlapped_chunks`, verifying chunk
creation with overlapping tokens and metadata integrity.
- Added tests to handle metadata serialization errors, ensuring proper
exception handling.
- `docs/_static/llama-stack-spec.html`
- Added a new `chunk_template` field of type `string` with a default
template for formatting retrieved chunks in RAGQueryConfig.
- Updated the `required` fields to include `chunk_template`.
- `docs/_static/llama-stack-spec.yaml`
- Introduced `chunk_template` field with a default value for
RAGQueryConfig.
- Updated the required configuration list to include `chunk_template`.
- `docs/source/building_applications/rag.md`
- Documented the `chunk_template` configuration, explaining how to
customize metadata formatting in RAG queries.
- Added examples demonstrating the usage of the `chunk_template` field
in RAG tool queries.
- Highlighted default values for `RAG` agent configurations.
# Resolves https://github.com/meta-llama/llama-stack/issues/1767
## Test Plan
Updated both `test_vector_store.py` and `test_rag_tool.py` and tested
end-to-end with a script.
I also tested the quickstart to enable this and specified this metadata:
```python
document = RAGDocument(
document_id="document_1",
content=source,
mime_type="text/html",
metadata={"author": "Paul Graham", "title": "How to do great work"},
)
```
Which produced the output below:

This highlights the usefulness of the additional metadata. Notice how
the metadata is redundant for different chunks of the same document. I
think we can update that in a subsequent PR.
# Documentation
I've added a brief comment about this in the documentation to outline
this to users and updated the API documentation.
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
note: the openai provider exposes the litellm specific model names to
the user. this change is compatible with that. the litellm names should
be deprecated.
# What does this PR do?
Checks for RAGDocument of type InterleavedContent
I noticed when stepping through the code that the supported types for
`RAGDocument` included `InterleavedContent` as a content type. This type
is not checked against before putting the `doc.content` is regex matched
against. This would cause a runtime error. This change adds an explicit
check for type.
The only other part that I'm unclear on is how to handle the
`ImageContent` type since this would always just return `<image>` which
seems like an undesired behavior. Should the `InterleavedContent` type
be removed from `RAGDocument` and replaced with `URI | str`?
## Test Plan
[//]: # (## Documentation)
---------
Signed-off-by: Kevin <kpostlet@redhat.com>
# What does this PR do?
Mainly tried to cover the entire llama_stack/apis directory, we only
have one left. Some excludes were just noop.
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
When converting OpenAI message content for the "system" and "assistant"
roles to Llama Stack inference APIs (used for some providers when
dealing with Llama models via OpenAI API requests to get proper prompt /
tool handling), we were not properly converting any non-string content.
I discovered this while running the new Responses AI verification suite
against the Fireworks provider, but instead of fixing it as part of some
ongoing work there split this out into a separate PR.
This fixes that, by using the `openai_content_to_content` helper we used
elsewhere to ensure content parts were mapped properly.
## Test Plan
I added a couple of new tests to `test_openai_compat` to reproduce this
issue and validate its fix. I ran those as below:
```
python -m pytest -s -v tests/unit/providers/utils/inference/test_openai_compat.py
```
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
The goal of this PR is code base modernization.
Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)
Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
Nullable param type is not supported, e.g. ['string', 'null'], since it
fails type validation.
Tests:
Run inference with
messages:
- content: You are a helpful assistant that can use tools to get
information.
role: system
- content: What's the temperature in San Francisco in celsius?
role: user
tools:
- function:
description: Get current temperature for a given location.
name: get_weather
parameters:
additionalProperties: false
properties:
location:
description: "City and country e.g. Bogot\xE1, Colombia"
type: string
unit:
description: "Unit of temperature, default to celsius"
type: [string, "null"] # <= nullable type
required:
- location
type: object
type: function
Co-authored-by: Eric Huang <erichuang@fb.com>
# What does this PR do?
When the result of a ToolCall gets passed back into vLLM for the model
to handle the tool call result (as is often the case in agentic
tool-calling workflows), we forgot to handle the case where BuiltinTool
calls are not string values but instead instances of the BuiltinTool
enum. This fixes that, properly converting those enums to string values
before trying to serialize them into an OpenAI chat completion request
to vLLM.
PR #1931 fixed a bug where we weren't passing these tool calling results
back into vLLM, but as a side-effect it created this serialization bug
when using BuiltinTools.
Closes#2070
## Test Plan
I added a new unit test to the openai_compat unit tests to cover this
scenario, ensured the new test failed before this fix, and all the
existing tests there plus the new one passed with this fix.
```
python -m pytest -s -v tests/unit/providers/utils/inference/test_openai_compat.py
```
Signed-off-by: Ben Browning <bbrownin@redhat.com>
Include the tool call details with the chat when doing Rag with Remote
vllm
Fixes: #1929
With this PR the tool call is included in the chat returned to vllm, the
model (meta-llama/Llama-3.1-8B-Instruct) the returns the answer as
expected.
Signed-off-by: Derek Higgins <derekh@redhat.com>
Test plan:
python tests/verifications/generate_report.py --providers
fireworks,together,llama_meta_ref,openai
Co-authored-by: Eric Huang <erichuang@fb.com>
# What does this PR do?
Now a separate thread is started to execute training jobs. Training
requests now return job ID before the job completes. (Which fixes API
timeouts for any jobs that take longer than a minute.)
Note: the scheduler code is meant to be spun out in the future into a
common provider service that can be reused for different APIs and
providers. It is also expected to back the /jobs API proposed here:
https://github.com/meta-llama/llama-stack/discussions/1238
Hence its somewhat generalized form which is expected to simplify its
adoption elsewhere in the future.
Note: this patch doesn't attempt to implement missing APIs (e.g. cancel
or job removal). This work will belong to follow-up PRs.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
Added unit tests for the scheduler module. For the API coverage, did
manual testing and was able to run a training cycle on GPU. The initial
call returned job ID before the training completed, as (now) expected.
Artifacts are returned as expected.
```
JobArtifactsResponse(checkpoints=[{'identifier': 'meta-llama/Llama-3.2-3B-Instruct-sft-0', 'created_at': '2025-03-07T22:45:19.892714', 'epoch': 0, 'post_training_job_id': 'test-job2ee77104-2fd3-4a4e-84cf-f83f8b8f1f50', 'path': '/home/ec2-user/.llama/checkpoints/meta-llama/Llama-3.2-3B-Instruct-sft-0', 'training_metrics': None}], job_uuid='test-job2ee77104-2fd3-4a4e-84cf-f83f8b8f1f50')
```
The integration test is currently disabled for the provider. I will look
into how it can be enabled in a different PR / issue context.
[//]: # (## Documentation)
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
TLDR: Changes needed to get 100% passing tests for OpenAI API
verification tests when run against Llama Stack with the `together`,
`fireworks`, and `openai` providers. And `groq` is better than before,
at 88% passing.
This cleans up the OpenAI API support for image message types
(specifically `image_url` types) and handling of the `response_format`
chat completion parameter. Both of these required a few more Pydantic
model definitions in our Inference API, just to move from the
not-quite-right stubs I had in place to something fleshed out to match
the actual OpenAI API specs.
As part of testing this, I also found and fixed a bug in the litellm
implementation of openai_completion and openai_chat_completion, so the
providers based on those should actually be working now.
The method `prepare_openai_completion_params` in
`llama_stack/providers/utils/inference/openai_compat.py` was improved to
actually recursively clean up input parameters, including handling of
lists, dicts, and dumping of Pydantic models to dicts. These changes
were required to get to 100% passing tests on the OpenAI API
verification against the `openai` provider.
With the above, the together.ai provider was passing as well as it is
without Llama Stack. But, since we have Llama Stack in the middle, I
took the opportunity to clean up the together.ai provider so that it now
also passes the OpenAI API spec tests we have at 100%. That means
together.ai is now passing our verification test better when using an
OpenAI client talking to Llama Stack than it is when hitting together.ai
directly, without Llama Stack in the middle.
And, another round of work for Fireworks to improve translation of
incoming OpenAI chat completion requests to Llama Stack chat completion
requests gets the fireworks provider passing at 100%. The server-side
fireworks.ai tool calling support with OpenAI chat completions and Llama
4 models isn't great yet, but by pointing the OpenAI clients at Llama
Stack's API we can clean things up and get everything working as
expected for Llama 4 models.
## Test Plan
### OpenAI API Verification Tests
I ran the OpenAI API verification tests as below and 100% of the tests
passed.
First, start a Llama Stack server that runs the `openai` provider with
the `gpt-4o` and `gpt-4o-mini` models deployed. There's not a template
setup to do this out of the box, so I added a
`tests/verifications/openai-api-verification-run.yaml` to do this.
First, ensure you have the necessary API key environment variables set:
```
export TOGETHER_API_KEY="..."
export FIREWORKS_API_KEY="..."
export OPENAI_API_KEY="..."
```
Then, run a Llama Stack server that serves up all these providers:
```
llama stack run \
--image-type venv \
tests/verifications/openai-api-verification-run.yaml
```
Finally, generate a new verification report against all these providers,
both with and without the Llama Stack server in the middle.
```
python tests/verifications/generate_report.py \
--run-tests \
--provider \
together \
fireworks \
groq \
openai \
together-llama-stack \
fireworks-llama-stack \
groq-llama-stack \
openai-llama-stack
```
You'll see that most of the configurations with Llama Stack in the
middle now pass at 100%, even though some of them do not pass at 100%
when hitting the backend provider's API directly with an OpenAI client.
### OpenAI Completion Integration Tests with vLLM:
I also ran the smaller `test_openai_completion.py` test suite (that's
not yet merged with the verification tests) on multiple of the
providers, since I had to adjust the method signature of
openai_chat_completion a bit and thus had to touch lots of these
providers to match. Here's the tests I ran there, all passing:
```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run
```
in another terminal
```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct"
```
### OpenAI Completion Integration Tests with ollama
```
INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run
```
in another terminal
```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0"
```
### OpenAI Completion Integration Tests with together.ai
```
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" llama stack build --template together --image-type venv --run
```
in another terminal
```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct-Turbo"
```
### OpenAI Completion Integration Tests with fireworks.ai
```
INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" llama stack build --template fireworks --image-type venv --run
```
in another terminal
```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.1-8B-Instruct"
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
This PR adds two methods to the Inference API:
- `batch_completion`
- `batch_chat_completion`
The motivation is for evaluations targeting a local inference engine
(like meta-reference or vllm) where batch APIs provide for a substantial
amount of acceleration.
Why did I not add this to `Api.batch_inference` though? That just
resulted in a _lot_ more book-keeping given the structure of Llama
Stack. Had I done that, I would have needed to create a notion of a
"batch model" resource, setup routing based on that, etc. This does not
sound ideal.
So what's the future of the batch inference API? I am not sure. Maybe we
can keep it for true _asynchronous_ execution. So you can submit
requests, and it can return a Job instance, etc.
## Test Plan
Run meta-reference-gpu using:
```bash
export INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct
export INFERENCE_CHECKPOINT_DIR=../checkpoints/Llama-4-Scout-17B-16E-Instruct-20250331210000
export MODEL_PARALLEL_SIZE=4
export MAX_BATCH_SIZE=32
export MAX_SEQ_LEN=6144
LLAMA_MODELS_DEBUG=1 llama stack run meta-reference-gpu
```
Then run the batch inference test case.
# What does this PR do?
This stubs in some OpenAI server-side compatibility with three new
endpoints:
/v1/openai/v1/models
/v1/openai/v1/completions
/v1/openai/v1/chat/completions
This gives common inference apps using OpenAI clients the ability to
talk to Llama Stack using an endpoint like
http://localhost:8321/v1/openai/v1 .
The two "v1" instances in there isn't awesome, but the thinking is that
Llama Stack's API is v1 and then our OpenAI compatibility layer is
compatible with OpenAI V1. And, some OpenAI clients implicitly assume
the URL ends with "v1", so this gives maximum compatibility.
The openai models endpoint is implemented in the routing layer, and just
returns all the models Llama Stack knows about.
The following providers should be working with the new OpenAI
completions and chat/completions API:
* remote::anthropic (untested)
* remote::cerebras-openai-compat (untested)
* remote::fireworks (tested)
* remote::fireworks-openai-compat (untested)
* remote::gemini (untested)
* remote::groq-openai-compat (untested)
* remote::nvidia (tested)
* remote::ollama (tested)
* remote::openai (untested)
* remote::passthrough (untested)
* remote::sambanova-openai-compat (untested)
* remote::together (tested)
* remote::together-openai-compat (untested)
* remote::vllm (tested)
The goal to support this for every inference provider - proxying
directly to the provider's OpenAI endpoint for OpenAI-compatible
providers. For providers that don't have an OpenAI-compatible API, we'll
add a mixin to translate incoming OpenAI requests to Llama Stack
inference requests and translate the Llama Stack inference responses to
OpenAI responses.
This is related to #1817 but is a bit larger in scope than just chat
completions, as I have real use-cases that need the older completions
API as well.
## Test Plan
### vLLM
```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct"
```
### ollama
```
INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0"
```
## Documentation
Run a Llama Stack distribution that uses one of the providers mentioned
in the list above. Then, use your favorite OpenAI client to send
completion or chat completion requests with the base_url set to
http://localhost:8321/v1/openai/v1 . Replace "localhost:8321" with the
host and port of your Llama Stack server, if different.
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
## Test Plan
export MODEL=accounts/fireworks/models/llama4-scout-instruct-basic;
LLAMA_STACK_CONFIG=verification pytest -s -v tests/integration/inference
--vision-model $MODEL --text-model $MODEL
# What does this PR do?
Move around bits. This makes the copies from llama-models _much_ easier
to maintain and ensures we don't entangle meta-reference specific
tidbits into llama-models code even by accident.
Also, kills the meta-reference-quantized-gpu distro and rolls
quantization deps into meta-reference-gpu.
## Test Plan
```
LLAMA_MODELS_DEBUG=1 \
with-proxy llama stack run meta-reference-gpu \
--env INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct \
--env INFERENCE_CHECKPOINT_DIR=<DIR> \
--env MODEL_PARALLEL_SIZE=4 \
--env QUANTIZATION_TYPE=fp8_mixed
```
Start a server with and without quantization. Point integration tests to
it using:
```
pytest -s -v tests/integration/inference/test_text_inference.py \
--stack-config http://localhost:8321 --text-model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
# What does this PR do?
- **chore: mypy for strong_typing**
- **chore: mypy for remote::vllm**
- **chore: mypy for remote::ollama**
- **chore: mypy for providers.datatype**
---------
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
Move pagination logic from LocalFS and HuggingFace implementations into
a common helper function to ensure consistent pagination behavior across
providers. This reduces code duplication and centralizes pagination
logic in one place.
## Test Plan
Run this script:
```
from llama_stack_client import LlamaStackClient
# Initialize the client
client = LlamaStackClient(base_url="http://localhost:8321")
# Register a dataset
response = client.datasets.register(
purpose="eval/messages-answer", # or "eval/question-answer" or "post-training/messages"
source={"type": "uri", "uri": "huggingface://datasets/llamastack/simpleqa?split=train"},
dataset_id="my_dataset", # optional, will be auto-generated if not provided
metadata={"description": "My evaluation dataset"}, # optional
)
# Verify the dataset was registered by listing all datasets
datasets = client.datasets.list()
print(f"Registered datasets: {[d.identifier for d in datasets]}")
# You can then access the data using the datasetio API
# rows = client.datasets.iterrows(dataset_id="my_dataset", start_index=1, limit=2)
rows = client.datasets.iterrows(dataset_id="my_dataset")
print(f"Data: {rows.data}")
```
And play with `start_index` and `limit`.
[//]: # (## Documentation)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
1) Uses otel compatible id generation for stack
2) Stack starts returning trace id info in the header of response
3) We inject the same trace id that we have into otel in order to force
it to use our trace ids.
## Test Plan
```
curl -i --request POST \
--url http://localhost:8321/v1/inference/chat-completion \
--header 'content-type: application/json' \
--data '{
"model_id": "meta-llama/Llama-3.1-70B-Instruct",
"messages": [
{
"role": "user",
"content": {
"type": "text",
"text": "where do humans live"
}
}
],
"stream": false
}'
HTTP/1.1 200 OK
date: Fri, 21 Mar 2025 21:51:19 GMT
server: uvicorn
content-length: 1712
content-type: application/json
x-trace-id: 595101ede31ece116ebe35b26d67e8cf
{"metrics":[{"metric":"prompt_tokens","value":10,"unit":null},{"metric":"completion_tokens","value":320,"unit":null},{"metric":"total_tokens","value":330,"unit":null}],"completion_message":{"role":"assistant","content":"Humans live on the planet Earth, specifically on its landmasses and in its oceans. Here's a breakdown of where humans live:\n\n1. **Continents:** Humans inhabit all seven continents:\n\t* Africa\n\t* Antarctica ( temporary residents, mostly scientists and researchers)\n\t* Asia\n\t* Australia\n\t* Europe\n\t* North America\n\t* South America\n2. **Countries:** There are 196 countries recognized by the United Nations, and humans live in almost all of them.\n3. **Cities and towns:** Many humans live in urban areas, such as cities and towns, which are often located near coastlines, rivers, or other bodies of water.\n4. **Rural areas:** Some humans live in rural areas, such as villages, farms, and countryside.\n5. **Islands:** Humans inhabit many islands around the world, including tropical islands, island nations, and islands in the Arctic and Antarctic regions.\n6. **Underwater habitats:** A few humans live in underwater habitats, such as research stations and submarines.\n7. **Space:** A small number of humans have lived in space, including astronauts on the International Space Station and those who have visited the Moon.\n\nIn terms of specific environments, humans live in a wide range of ecosystems, including:\n\n* Deserts\n* Forests\n* Grasslands\n* Mountains\n* Oceans\n* Rivers\n* Tundras\n* Wetlands\n\nOverall, humans are incredibly adaptable and can be found living in almost every corner of the globe.","stop_reason":"end_of_turn","tool_calls":[]},"logprobs":null}
```
Same trace id in Jaeger and sqlite:


# What does this PR do?
Clean up mypy violations for inline::{telemetry,tool_runtime,vector_io}.
This also makes API accept a tool call result without any content (like
RAG tool already may produce).
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
In this PR, we added a new eval open benchmark IfEval based on paper
https://arxiv.org/abs/2311.07911 to measure the model capability of
instruction following.
## Test Plan
spin up a llama stack server with open-benchmark template
run `llama-stack-client --endpoint xxx eval run-benchmark
"meta-reference-ifeval" --model-id "meta-llama/Llama-3.3-70B-Instruct"
--output-dir "/home/markchen1015/" --num-examples 20` on client side and
get the eval aggregate results
These block on io reads which in turn block the
server. Move them to their own thread.
Closes: #1697
# What does this PR do?
To avoid blocking the main eventloop, updates datasetio/localfs to load
data in a seperate thread
Signed-off-by: Derek Higgins <derekh@redhat.com>
### What does this PR do?
Currently, `ToolCall.arguments` is a `Dict[str, RecursiveType]`.
However, on the client SDK side -- the `RecursiveType` gets deserialized
into a number ( both int and float get collapsed ) and hence when params
are `int` they get converted to float which might break client side
tools that might be doing type checking.
Closes: https://github.com/meta-llama/llama-stack/issues/1683
### Test Plan
Stainless changes --
https://github.com/meta-llama/llama-stack-client-python/pull/204
```
pytest -s -v --stack-config=fireworks tests/integration/agents/test_agents.py --text-model meta-llama/Llama-3.1-8B-Instruct
```
# Summary:
Includes fixes to get test_agents working with openAI model, e.g. tool
parsing and message conversion
# Test Plan:
```
LLAMA_STACK_CONFIG=dev pytest -s -v tests/integration/agents/test_agents.py --safety-shield meta-llama/Llama-Guard-3-8B --text-model openai/gpt-4o-mini
```
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with
[ReviewStack](https://reviewstack.dev/meta-llama/llama-stack/pull/1550).
* #1556
* __->__ #1550
# What does this PR do?
create a new dataset BFCL_v3 from
https://gorilla.cs.berkeley.edu/blogs/13_bfcl_v3_multi_turn.html
overall each question asks the model to perform a task described in
natural language, and additionally a set of available functions and
their schema are given for the model to choose from. the model is
required to write the function call form including function name and
parameters , to achieve the stated purpose. the results are validated
against provided ground truth, to make sure that the generated function
call and the ground truth function call are syntactically and
semantically equivalent, by checking their AST .
## Test Plan
start server by
```
llama stack run ./llama_stack/templates/ollama/run.yaml
```
then send traffic
```
llama-stack-client eval run-benchmark "bfcl" --model-id meta-llama/Llama-3.2-3B-Instruct --output-dir /tmp/gpqa --num-examples 2
```
[//]: # (## Documentation)
# What does this PR do?
Updated all instances of datetime.now() to use timezone.utc for
consistency in handling time across different systems. This ensures that
timestamps are always in Coordinated Universal Time (UTC), avoiding
issues with time zone discrepancies and promoting uniformity in
time-related data.
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
This PR has two fixes needed for correct trace context propagation
across asycnio boundary
Fix 1: Start using context vars to store the global trace context.
This is needed since we cannot use the same trace context across
coroutines since the state is shared. each coroutine
should have its own trace context so that each of it can start storing
its state correctly.
Fix 2: Start a new span for each new coroutines started for running
shields to keep the span tree clean
## Test Plan
### Integration tests with server
LLAMA_STACK_DISABLE_VERSION_CHECK=true llama stack run
~/.llama/distributions/together/together-run.yaml
LLAMA_STACK_CONFIG=http://localhost:8321 pytest -s --safety-shield
meta-llama/Llama-Guard-3-8B --text-model
meta-llama/Llama-3.1-8B-Instruct
server logs:
https://gist.github.com/dineshyv/51ac5d9864ed031d0d89ce77352821fe
test logs:
https://gist.github.com/dineshyv/e66acc1c4648a42f1854600609c467f3
### Integration tests with library client
LLAMA_STACK_CONFIG=fireworks pytest -s --safety-shield
meta-llama/Llama-Guard-3-8B --text-model
meta-llama/Llama-3.1-8B-Instruct
logs: https://gist.github.com/dineshyv/ca160696a0b167223378673fb1dcefb8
### Apps test with server:
```
LLAMA_STACK_DISABLE_VERSION_CHECK=true llama stack run ~/.llama/distributions/together/together-run.yaml
python -m examples.agents.e2e_loop_with_client_tools localhost 8321
```
server logs:
https://gist.github.com/dineshyv/1717a572d8f7c14279c36123b79c5797
app logs:
https://gist.github.com/dineshyv/44167e9f57806a0ba3b710c32aec02f8
## What does this PR do?
Created a new math_500 open-benchmark based on OpenAI's [Let's Verify
Step by Step](https://arxiv.org/abs/2305.20050) paper and hugging face's
[HuggingFaceH4/MATH-500](https://huggingface.co/datasets/HuggingFaceH4/MATH-500)
dataset.
The challenge part of this benchmark is to parse the generated and
expected answer and verify if they are same. For the parsing part, we
refer to [Minerva: Solving Quantitative Reasoning Problems with Language
Models](https://research.google/blog/minerva-solving-quantitative-reasoning-problems-with-language-models/).
To simply the parse logic, as the next step, we plan to also refer to
what [simple-eval](https://github.com/openai/simple-evals) is doing,
using llm as judge to check if the generated answer matches the expected
answer or not
## Test Plan
on sever side, spin up a server with open-benchmark template `llama
stack run llama_stack/templates/open-benchamrk/run.yaml`
on client side, issue an open benchmark eval request `llama-stack-client
--endpoint xxx eval run-benchmark "meta-reference-math-500" --model-id
"meta-llama/Llama-3.3-70B-Instruct" --output-dir "/home/markchen1015/"
--num-examples 20` and get ther aggregated eval results
<img width="238" alt="Screenshot 2025-03-10 at 7 57 04 PM"
src="https://github.com/user-attachments/assets/2c9da042-3b70-470e-a7c4-69f4cc24d1fb"
/>
check the generated answer and the related scoring and they make sense
# What does this PR do?
This PR converts blocking calls for in built tools like wolfram, brave,
tavily and bing into non blocking async calls
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
pytest -s -v tool_runtime/test_builtin_tools.py --stack-config=together
--text-model=meta-llama/Llama-3.1-8B-Instruct
Used the command above to get the below results
<img width="1710" alt="image"
src="https://github.com/user-attachments/assets/76b0ca06-f6e4-45fa-a114-0449bef2325b"
/>
<img width="1389" alt="image"
src="https://github.com/user-attachments/assets/5220ccbb-7882-4240-b17e-f362ad46d25b"
/>
<img width="1432" alt="image"
src="https://github.com/user-attachments/assets/bb93a41e-e82a-4c98-a22d-6b0e320aa974"
/>
[//]: # (## Documentation)
---------
Co-authored-by: sarthakdeshpande <sarthak.deshpande@engati.com>
# What does this PR do?
This commit introduces a new logging system that allows loggers to be
assigned
a category while retaining the logger name based on the file name. The
log
format includes both the logger name and the category, producing output
like:
```
INFO 2025-03-03 21:44:11,323 llama_stack.distribution.stack:103 [core]: Tool_groups: builtin::websearch served by
tavily-search
```
Key features include:
- Category-based logging: Loggers can be assigned a category (e.g.,
"core", "server") when programming. The logger can be loaded like
this: `logger = get_logger(name=__name__, category="server")`
- Environment variable control: Log levels can be configured
per-category using the
`LLAMA_STACK_LOGGING` environment variable. For example:
`LLAMA_STACK_LOGGING="server=DEBUG;core=debug"` enables DEBUG level for
the "server"
and "core" categories.
- `LLAMA_STACK_LOGGING="all=debug"` sets DEBUG level globally for all
categories and
third-party libraries.
This provides fine-grained control over logging levels while maintaining
a clean and
informative log format.
The formatter uses the rich library which provides nice colors better
stack traces like so:
```
ERROR 2025-03-03 21:49:37,124 asyncio:1758 [uncategorized]: unhandled exception during asyncio.run() shutdown
task: <Task finished name='Task-16' coro=<handle_signal.<locals>.shutdown() done, defined at
/Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py:146>
exception=UnboundLocalError("local variable 'loop' referenced before assignment")>
╭────────────────────────────────────── Traceback (most recent call last) ───────────────────────────────────────╮
│ /Users/leseb/Documents/AI/llama-stack/llama_stack/distribution/server/server.py:178 in shutdown │
│ │
│ 175 │ │ except asyncio.CancelledError: │
│ 176 │ │ │ pass │
│ 177 │ │ finally: │
│ ❱ 178 │ │ │ loop.stop() │
│ 179 │ │
│ 180 │ loop = asyncio.get_running_loop() │
│ 181 │ loop.create_task(shutdown()) │
╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
UnboundLocalError: local variable 'loop' referenced before assignment
```
Co-authored-by: Ashwin Bharambe <@ashwinb>
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
```
python -m llama_stack.distribution.server.server --yaml-config ./llama_stack/templates/ollama/run.yaml
INFO 2025-03-03 21:55:35,918 __main__:365 [server]: Using config file: llama_stack/templates/ollama/run.yaml
INFO 2025-03-03 21:55:35,925 __main__:378 [server]: Run configuration:
INFO 2025-03-03 21:55:35,928 __main__:380 [server]: apis:
- agents
```
[//]: # (## Documentation)
---------
Signed-off-by: Sébastien Han <seb@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
Fix import errors due to `chardet` and `pypdf` not being installed while
imported from `url_utils.py`.
Closes#1432
## Test Plan
Now able to run the server with the config.
[//]: # (## Documentation)
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
The commit addresses the Ruff warning B008 by refactoring the code to
avoid calling SamplingParams() directly in function argument defaults.
Instead, it either uses Field(default_factory=SamplingParams) for
Pydantic models or sets the default to None and instantiates
SamplingParams inside the function body when the argument is None.
Signed-off-by: Sébastien Han <seb@redhat.com>
A self-respecting server needs good observability which starts with
configurable logging. Llama Stack had little until now. This PR adds a
`logcat` facility towards that. Callsites look like:
```python
logcat.debug("inference", f"params to ollama: {params}")
```
- the first parameter is a category. there is a static list of
categories in `llama_stack/logcat.py`
- each category can be associated with a log-level which can be
configured via the `LLAMA_STACK_LOGGING` env var.
- a value `LLAMA_STACK_LOGGING=inference=debug;server=info"` does the
obvious thing. there is a special key called `all` which is an alias for
all categories
## Test Plan
Ran with `LLAMA_STACK_LOGGING="all=debug" llama stack run fireworks` and
saw the following:

Hit it with a client-sdk test case and saw this:

Original telemetry outputs for agent turns look like this.
Note: how output was a `str(message)` making it difficult to read them
back for downstream tasks ( eg. building eval datasets )
```
{
│ │ 'input': [
│ │ │ '{"role":"system","content":"You are a helpful assistant. Use search tool to answer the questions. "}',
│ │ │ '{"role":"user","content":"Which teams played in the NBA western conference finals of 2024","context":null}'
│ │ ],
│ │ 'output': "content: tool_calls: [ToolCall(call_id='8b7294ec-a83f-4798-ad8f-6bed662f08b6', tool_name=<BuiltinTool.brave_search: 'brave_search'>, arguments={'query': 'NBA Western Conference Finals 2024 teams'})]"
│ },
```
Updated the outputs to be structured .
## Test
```python
import uuid
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types.agent_create_params import AgentConfig
model_id = "meta-llama/Llama-3.1-8B-Instruct"
agent_config = AgentConfig(
model=model_id,
instructions="You are a helpful assistant who will use the web search tools to help with answering questions.\nOnly provide final answer in short without writing full sentences. Use web search",
toolgroups=["builtin::websearch"],
enable_session_persistence=True,
)
agent = Agent(client, agent_config)
session_id = agent.create_session(uuid.uuid4().hex)
response = agent.create_turn(
messages=[
{
"role": "user",
"content": "latest news about llama stack",
}
],
session_id=session_id,
stream=False,
)
pprint(response)
```
Output:
```
Turn(
│ input_messages=[UserMessage(content='latest news about llama stack', role='user', context=None)],
│ output_message=CompletionMessage(
│ │ content="The latest news about Llama Stack is that Meta has released Llama 3.2, which includes small and medium-sized vision LLMs (11B and 90B) and lightweight, text-only models (1B and 3B) that fit onto select edge and mobile devices. Additionally, Llama Stack distributions have been released to simplify the way developers work with Llama models in different environments. However, a critical vulnerability has been discovered in Meta's Llama-Stack, which puts AI applications at risk.",
│ │ role='assistant',
│ │ stop_reason='end_of_turn',
│ │ tool_calls=[]
│ ),
│ session_id='77379546-4598-485a-b4f4-84e5da28c513',
│ started_at=datetime.datetime(2025, 2, 27, 11, 2, 43, 915243, tzinfo=TzInfo(-08:00)),
│ steps=[
│ │ InferenceStep(
│ │ │ api_model_response=CompletionMessage(
│ │ │ │ content='',
│ │ │ │ role='assistant',
│ │ │ │ stop_reason='end_of_turn',
│ │ │ │ tool_calls=[
│ │ │ │ │ ToolCall(
│ │ │ │ │ │ arguments={'query': 'latest news llama stack'},
│ │ │ │ │ │ call_id='84c0fa10-e24a-4f91-a9ff-415a9ec0bb0b',
│ │ │ │ │ │ tool_name='brave_search'
│ │ │ │ │ )
│ │ │ │ ]
│ │ │ ),
│ │ │ step_id='81c16bd3-eb00-4721-8edc-f386e07391a3',
│ │ │ step_type='inference',
│ │ │ turn_id='2c6b5273-4b16-404f-bed2-c0025fd63b45',
│ │ │ completed_at=datetime.datetime(2025, 2, 27, 11, 2, 44, 637149, tzinfo=TzInfo(-08:00)),
│ │ │ started_at=datetime.datetime(2025, 2, 27, 11, 2, 43, 915831, tzinfo=TzInfo(-08:00))
│ │ ),
│ │ ToolExecutionStep(
│ │ │ step_id='4782d609-a62e-45f5-8d2a-25a43db46288',
│ │ │ step_type='tool_execution',
│ │ │ tool_calls=[
│ │ │ │ ToolCall(
│ │ │ │ │ arguments={'query': 'latest news llama stack'},
│ │ │ │ │ call_id='84c0fa10-e24a-4f91-a9ff-415a9ec0bb0b',
│ │ │ │ │ tool_name='brave_search'
│ │ │ │ )
│ │ │ ],
│ │ │ tool_responses=[
│ │ │ │ ToolResponse(
│ │ │ │ │ call_id='84c0fa10-e24a-4f91-a9ff-415a9ec0bb0b',
│ │ │ │ │ content='{"query": "latest news llama stack", "top_k": [{"title": "Llama 3.2: Revol. ....... Hacker News.", "score": 0.6186197, "raw_content": null}]}',
│ │ │ │ │ tool_name='brave_search',
│ │ │ │ │ metadata=None
│ │ │ │ )
│ │ │ ],
│ │ │ turn_id='2c6b5273-4b16-404f-bed2-c0025fd63b45',
│ │ │ completed_at=datetime.datetime(2025, 2, 27, 11, 2, 46, 272176, tzinfo=TzInfo(-08:00)),
│ │ │ started_at=datetime.datetime(2025, 2, 27, 11, 2, 44, 640743, tzinfo=TzInfo(-08:00))
│ │ ),
│ │ InferenceStep(
│ │ │ api_model_response=CompletionMessage(
│ │ │ │ content="The latest news about Llama Stack is that Meta has released Llama 3.2, which includes small and medium-sized vision LLMs (11B and 90B) and lightweight, text-only models (1B and 3B) that fit onto select edge and mobile devices. Additionally, Llama Stack distributions have been released to simplify the way developers work with Llama models in different environments. However, a critical vulnerability has been discovered in Meta's Llama-Stack, which puts AI applications at risk.",
│ │ │ │ role='assistant',
│ │ │ │ stop_reason='end_of_turn',
│ │ │ │ tool_calls=[]
│ │ │ ),
│ │ │ step_id='37994419-5da3-4e84-a010-8d9b85366262',
│ │ │ step_type='inference',
│ │ │ turn_id='2c6b5273-4b16-404f-bed2-c0025fd63b45',
│ │ │ completed_at=datetime.datetime(2025, 2, 27, 11, 2, 48, 961275, tzinfo=TzInfo(-08:00)),
│ │ │ started_at=datetime.datetime(2025, 2, 27, 11, 2, 46, 273168, tzinfo=TzInfo(-08:00))
│ │ )
│ ],
│ turn_id='2c6b5273-4b16-404f-bed2-c0025fd63b45',
│ completed_at=datetime.datetime(2025, 2, 27, 11, 2, 48, 962318, tzinfo=TzInfo(-08:00)),
│ output_attachments=[]
)
```
## Check for Telemetry
```python
agent_logs = []
for span in client.telemetry.query_spans(
attribute_filters=[
{"key": "session_id", "op": "eq", "value": session_id},
],
attributes_to_return=['input', 'output'],
):
agent_logs.append(span.attributes)
pprint(json.loads(agent_logs[-1]['output']))
```
```
{
│ 'content': "The latest news about Llama Stack is that Meta has released Llama 3.2, which includes small and medium-sized vision LLMs (11B and 90B) and lightweight, text-only models (1B and 3B) that fit onto select edge and mobile devices. Additionally, Llama Stack distributions have been released to simplify the way developers work with Llama models in different environments. However, a critical vulnerability has been discovered in Meta's Llama-Stack, which puts AI applications at risk.",
│ 'tool_calls': []
}
```
`ChatCompletionResponseEventType: start` is ignored and not yielded in
the agent_instance as we expect that to not have any content.
However, litellm sends first event as `ChatCompletionResponseEventType:
start` with content ( which was the first token that we were skipping )
```
LLAMA_STACK_CONFIG=dev pytest -s -v tests/client-sdk/agents/test_agents.py --inference-model "openai/gpt-4o-mini" -k test_agent_simple
```
This was failing before ( since the word hello was not in the final
response )