Commit graph

1129 commits

Author SHA1 Message Date
Ashwin Bharambe
b822149098 Update start conda 2024-11-18 16:07:27 -08:00
Ashwin Bharambe
47c37fd831 Fixes 2024-11-18 16:03:53 -08:00
Ashwin Bharambe
3aedde2ab4 Add a pre-commit for distro_codegen but it does not work yet 2024-11-18 15:21:13 -08:00
Dinesh Yeduguru
57a9b4d57f
Allow models to be registered as long as llama model is provided (#472)
This PR allows models to be registered with provider as long as the user
specifies a llama model, even though the model does not match our
prebuilt provider specific mapping.
Test:
pytest -v -s
llama_stack/providers/tests/inference/test_model_registration.py -m
"together" --env TOGETHER_API_KEY=<KEY>

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-18 15:05:29 -08:00
Ashwin Bharambe
2a31163178
Auto-generate distro yamls + docs (#468)
# What does this PR do?

Automatically generates
- build.yaml
- run.yaml
- run-with-safety.yaml
- parts of markdown docs

for the distributions.

## Test Plan

At this point, this only updates the YAMLs and the docs. Some testing
(especially with ollama and vllm) has been performed but needs to be
much more tested.
2024-11-18 14:57:06 -08:00
Xi Yan
0784284ab5
[Agentic Eval] add ability to run agents generation (#469)
# What does this PR do?

- add ability to run agents generation for full eval (generate +
scoring)
- pre-register SimpleQA  benchmark llm-as-judge scoring function in code


## Test Plan


![image](https://github.com/user-attachments/assets/b4b6f086-1be4-4c2a-8ab0-6839f0067c0a)


![image](https://github.com/user-attachments/assets/05bb7a09-2d7a-4031-8eb6-e1ca670ee439)


#### Simple QA w/ Search

![image](https://github.com/user-attachments/assets/0a51e3f3-9fc7-479b-8295-89aed63496e0)

- eval_task_config_simpleqa_search.json
```json
{
    "type": "benchmark",
    "eval_candidate": {
        "type": "agent",
        "config": {
            "model": "Llama3.1-405B-Instruct",
            "instructions": "Please use the search tool to answer the question.",
            "sampling_params": {
                "strategy": "greedy",
                "temperature": 1.0,
                "top_p": 0.9
            },
            "tools": [
                {
                    "type": "brave_search",
                    "engine": "brave",
                    "api_key": "API_KEY"
                }
            ],
            "tool_choice": "auto",
            "tool_prompt_format": "json",
            "input_shields": [],
            "output_shields": [],
            "enable_session_persistence": false
        }
    }
}
```

#### SimpleQA w/o Search

![image](https://github.com/user-attachments/assets/6301feef-2abb-4bee-b50c-97da1c90482b)


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-18 11:43:03 -08:00
Vladimir Ivić
f1b9578f8d
Extend shorthand support for the llama stack run command (#465)
**Summary:**
Extend the shorthand run command so it can run successfully when config
exists under DISTRIBS_BASE_DIR (i.e. ~/.llama/distributions).

For example, imagine you created a new stack using the `llama stack
build` command where you named it "my-awesome-llama-stack".

```
$ llama stack build

> Enter a name for your Llama Stack (e.g. my-local-stack): my-awesome-llama-stack
```

To run the stack you created you will have to use long config path:
```
llama stack run ~/.llama/distributions/llamastack-my-awesome-llama-stack/my-awesome-llama-stack-run.yaml
```

With this change, you can start it using the stack name instead of full
path:
```
llama stack run my-awesome-llama-stack
```

**Test Plan:**
Verify command fails when stack doesn't exist
```
python3 -m llama_stack.cli.llama stack run my-test-stack
```

Output [FAILURE]
```
usage: llama stack run [-h] [--port PORT] [--disable-ipv6] config
llama stack run: error: File /Users/vladimirivic/.llama/distributions/llamastack-my-test-stack/my-test-stack-run.yaml does not exist. Please run `llama stack build` to generate (and optionally edit) a run.yaml file
```

Create a new stack using `llama stack build`.
Name it `my-test-stack`.

Verify command runs successfully
```
python3 -m llama_stack.cli.llama stack run my-test-stack
```

Output [SUCCESS]
```
Listening on ['::', '0.0.0.0']:5000
INFO:     Started server process [80146]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://['::', '0.0.0.0']:5000 (Press CTRL+C to quit)
```
2024-11-15 23:16:42 -08:00
Dinesh Yeduguru
57bafd0f8c
fix faiss serialize and serialize of index (#464)
faiss serialize index returns a np object, that we first need to save to
buffer and then write to sqllite. Since we are using json, we need to
base64 encode the data.

Same in the read path, we base64 decode and read into np array and then
call into deserialize index.

tests:
torchrun $CONDA_PREFIX/bin/pytest -v -s -m "faiss"
llama_stack/providers/tests/memory/test_memory.py

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-15 18:02:48 -08:00
Dinesh Yeduguru
ff99025875
await initialize in faiss (#463)
tests:
```
 torchrun $CONDA_PREFIX/bin/pytest -v -s -m "faiss" llama_stack/providers/tests/memory/test_memory.py
```

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-15 14:21:31 -08:00
Ashwin Bharambe
20bf2f50c2 No more model_id warnings 2024-11-15 12:20:18 -08:00
Xi Yan
e8112b31ab
move hf addapter->remote (#459)
# What does this PR do?

- move folder
## Test Plan

**Unit Test**
```
pytest -v -s -m "huggingface" datasetio/test_datasetio.py
```

**E2E**
```
llama stack run 
```

```
llama-stack-client eval run_benchmark meta-reference-mmlu --num-examples 5 --output-dir ./ --eval-task-config ~/eval_task_config.json --visualize
```
<img width="657" alt="image"
src="https://github.com/user-attachments/assets/63d53f9d-6c7e-4667-af8c-9d16c91ae6e3">



## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-14 22:41:19 -05:00
Xi Yan
788411b680 categorical score for llm as judge 2024-11-14 22:33:59 -05:00
Dinesh Yeduguru
0850ad656a
unregister for memory banks and remove update API (#458)
The semantics of an Update on resources is very tricky to reason about
especially for memory banks and models. The best way to go forward here
is for the user to unregister and register a new resource. We don't have
a compelling reason to support update APIs.


Tests:
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m
"chroma" --env CHROMA_HOST=localhost --env CHROMA_PORT=8000

pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m
"pgvector" --env PGVECTOR_DB=postgres --env PGVECTOR_USER=postgres --env
PGVECTOR_PASSWORD=mysecretpassword --env PGVECTOR_HOST=0.0.0.0

$CONDA_PREFIX/bin/pytest -v -s -m "ollama"
llama_stack/providers/tests/inference/test_model_registration.py

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-14 17:12:11 -08:00
Xi Yan
2eab3b7ed9 skip aggregation for llm_as_judge 2024-11-14 17:50:46 -05:00
Ashwin Bharambe
acbecbf8b3
Add a verify-download command to llama CLI (#457)
# What does this PR do?

It is important to verify large checkpoints downloaded via `llama model
download` because subtle corruptions can easily happen with large file
system writes. This PR adds a `verify-download` subcommand. Note that
verification itself is a very time consuming process (and will take
several **minutes** for the 405B model), hence this is a separate
subcommand (and not part of the download which can already be
time-consuming) and there are spinners and a bit of a "show" around it
in the implementation.

## Test Plan

<img width="1012" alt="image"
src="https://github.com/user-attachments/assets/f82b0d42-2a15-4917-b85e-6d3cd7d31e55">
2024-11-14 11:47:51 -08:00
Ashwin Bharambe
0713607b68
Support parallel downloads for llama model download (#448)
# What does this PR do?

Enables parallel downloads for `llama model download` CLI command. It is
rather necessary for folks having high bandwidth connections to the
Internet in order to download checkpoints quickly.

## Test Plan


![image](https://github.com/user-attachments/assets/f5df69e2-ec4f-4360-bf84-91273d8cee22)
2024-11-14 09:56:22 -08:00
Martin Hickey
0c750102c6
Fix build configure deprecation message (#456)
# What does this PR do?

Removes from the `llama build configure` deprecation message the
`--configure` flag because the `llama stack run` command does not
support this flag.

Signed-off-by: Martin Hickey <martin.hickey@ie.ibm.com>
2024-11-14 09:56:03 -08:00
Xi Yan
58381dbe78
local persistence for eval tasks (#453)
# What does this PR do?

- add local persistence for eval tasks
- follow https://github.com/meta-llama/llama-stack/pull/375

## Test Plan

1. fresh llama stack run
2. kill server
3. restart server: llama stack run

<img width="690" alt="image"
src="https://github.com/user-attachments/assets/3d76e477-b91a-43a6-86ea-8e3ef2d04ed3">

Using run.yaml
```yaml
eval_tasks:
  - eval_task_id: meta-reference-mmlu
    provider_id: meta-reference-0
    dataset_id: mmlu
    scoring_functions:
      - basic::regex_parser_multiple_choice_answer
```

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-14 10:36:23 -05:00
Dinesh Yeduguru
46f0b6606a
init registry once (#450)
We are calling the initialize function on the registery in the common
routing table impl, which is incorrect as the common routing table is
the base class inherited by each resource's routing table. this change
moves remove that and add the initialize to the creation, where it inits
once server run.

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-13 22:20:57 -08:00
Dinesh Yeduguru
efe791bab7
Support model resource updates and deletes (#452)
# What does this PR do?
* Changes the registry to store only one RoutableObject per identifier.
Before it was a list, which is not really required.
* Adds impl for updates and deletes
* Updates routing table to handle updates correctly



## Test Plan
```
❯ llama-stack-client models list
+------------------------+---------------+------------------------------------+------------+
| identifier             | provider_id   | provider_resource_id               | metadata   |
+========================+===============+====================================+============+
| Llama3.1-405B-Instruct | fireworks-0   | fireworks/llama-v3p1-405b-instruct | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.1-8B-Instruct   | fireworks-0   | fireworks/llama-v3p1-8b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.2-3B-Instruct   | fireworks-0   | fireworks/llama-v3p2-1b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
❯ llama-stack-client models register dineshyv-model --provider-model-id=fireworks/llama-v3p1-70b-instruct
Successfully registered model dineshyv-model
❯ llama-stack-client models list
+------------------------+---------------+------------------------------------+------------+
| identifier             | provider_id   | provider_resource_id               | metadata   |
+========================+===============+====================================+============+
| Llama3.1-405B-Instruct | fireworks-0   | fireworks/llama-v3p1-405b-instruct | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.1-8B-Instruct   | fireworks-0   | fireworks/llama-v3p1-8b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.2-3B-Instruct   | fireworks-0   | fireworks/llama-v3p2-1b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
| dineshyv-model         | fireworks-0   | fireworks/llama-v3p1-70b-instruct  | {}         |
+------------------------+---------------+------------------------------------+------------+
❯ llama-stack-client models update dineshyv-model --provider-model-id=fireworks/llama-v3p1-405b-instruct
Successfully updated model dineshyv-model
❯ llama-stack-client models list
+------------------------+---------------+------------------------------------+------------+
| identifier             | provider_id   | provider_resource_id               | metadata   |
+========================+===============+====================================+============+
| Llama3.1-405B-Instruct | fireworks-0   | fireworks/llama-v3p1-405b-instruct | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.1-8B-Instruct   | fireworks-0   | fireworks/llama-v3p1-8b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.2-3B-Instruct   | fireworks-0   | fireworks/llama-v3p2-1b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
| dineshyv-model         | fireworks-0   | fireworks/llama-v3p1-405b-instruct | {}         |
+------------------------+---------------+------------------------------------+------------+
llama-stack-client models delete dineshyv-model
❯ llama-stack-client models list
+------------------------+---------------+------------------------------------+------------+
| identifier             | provider_id   | provider_resource_id               | metadata   |
+========================+===============+====================================+============+
| Llama3.1-405B-Instruct | fireworks-0   | fireworks/llama-v3p1-405b-instruct | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.1-8B-Instruct   | fireworks-0   | fireworks/llama-v3p1-8b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+
| Llama3.2-3B-Instruct   | fireworks-0   | fireworks/llama-v3p2-1b-instruct   | {}         |
+------------------------+---------------+------------------------------------+------------+

```

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-13 21:55:41 -08:00
Xi Yan
4253cfcd7f
local persistent for hf dataset provider (#451)
# What does this PR do?

- local persistence for HF dataset provider
- follow https://github.com/meta-llama/llama-stack/pull/375

## Test Plan

**e2e**
1. fresh llama stack run w/ yaml
2. kill server
3. restart llama stack run w/ yaml

```yaml
datasets:
  - dataset_id: mmlu
    provider_id: huggingface-0
    url:
      uri: https://huggingface.co/datasets/llamastack/evals
    metadata:
      path: llamastack/evals
      name: evals__mmlu__details
      split: train
    dataset_schema:
      input_query:
        type: string
      expected_answer:
        type: string
```
<img width="686" alt="image"
src="https://github.com/user-attachments/assets/d7737931-6a7d-400a-a17d-fef6cbd97eea">


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-14 00:08:37 -05:00
Dinesh Yeduguru
e90ea1ab1e
make distribution registry thread safe and other fixes (#449)
This PR makes the following changes:
1) Fixes the get_all and initialize impl to actually read the values
returned from the range call to kvstore and not keys.
2) The start_key and end_key are fixed to correct perform the range
query after the key format changes
3) Made the cache registry thread safe since there are multiple
initializes called for each routing table.

Tests:
* Start stack
* Register dataset
* Kill stack
* Bring stack up
* dataset list
```
 llama-stack-client datasets list
+--------------+---------------+---------------------------------------------------------------------------------+---------+
| identifier   | provider_id   | metadata                                                                        | type    |
+==============+===============+=================================================================================+=========+
| alpaca       | huggingface-0 | {}                                                                              | dataset |
+--------------+---------------+---------------------------------------------------------------------------------+---------+
| mmlu         | huggingface-0 | {'path': 'llama-stack/evals', 'name': 'evals__mmlu__details', 'split': 'train'} | dataset |
+--------------+---------------+---------------------------------------------------------------------------------+---------+
```

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-13 15:12:34 -08:00
Dinesh Yeduguru
787e2034b7
model registration in ollama and vllm check against the available models in the provider (#446)
tests:
pytest -v -s -m "ollama"
llama_stack/providers/tests/inference/test_text_inference.py

pytest -v -s -m vllm_remote
llama_stack/providers/tests/inference/test_text_inference.py --env
VLLM_URL="http://localhost:9798/v1"

---------
2024-11-13 13:04:06 -08:00
Ashwin Bharambe
7f6ac2fbd7 allow seeing warnings with traces optionally 2024-11-13 12:27:19 -08:00
Ashwin Bharambe
96e7ef646f
add support for ${env.FOO_BAR} placeholders in run.yaml files (#439)
# What does this PR do?

We'd like our docker steps to require _ZERO EDITS_ to a YAML file in
order to get going. This is often not possible because depending on the
provider, we do need some configuration input from the user. Environment
variables are the best way to obtain this information.

This PR allows our run.yaml to contain `${env.FOO_BAR}` placeholders
which can be replaced using `docker run -e FOO_BAR=baz` (and similar
`docker compose` equivalent).

## Test Plan

For remote-vllm, example `run.yaml` snippet looks like this:
```yaml
providers:
  inference:
  # serves main inference model
  - provider_id: vllm-0
    provider_type: remote::vllm
    config:
      # NOTE: replace with "localhost" if you are running in "host" network mode
      url: ${env.LLAMA_INFERENCE_VLLM_URL:http://host.docker.internal:5100/v1}
      max_tokens: ${env.MAX_TOKENS:4096}
      api_token: fake
  # serves safety llama_guard model
  - provider_id: vllm-1
    provider_type: remote::vllm
    config:
      # NOTE: replace with "localhost" if you are running in "host" network mode
      url: ${env.LLAMA_SAFETY_VLLM_URL:http://host.docker.internal:5101/v1}
      max_tokens: ${env.MAX_TOKENS:4096}
      api_token: fake
```

`compose.yaml` snippet looks like this:
```yaml
llamastack:
    depends_on:
    - vllm-0
    - vllm-1
      # image: llamastack/distribution-remote-vllm
    image: llamastack/distribution-remote-vllm:test-0.0.52rc3
    volumes:
      - ~/.llama:/root/.llama
      - ~/local/llama-stack/distributions/remote-vllm/run.yaml:/root/llamastack-run-remote-vllm.yaml
    # network_mode: "host"
    environment:
      - LLAMA_INFERENCE_VLLM_URL=${LLAMA_INFERENCE_VLLM_URL:-http://host.docker.internal:5100/v1}
      - LLAMA_INFERENCE_MODEL=${LLAMA_INFERENCE_MODEL:-Llama3.1-8B-Instruct}
      - MAX_TOKENS=${MAX_TOKENS:-4096}
      - SQLITE_STORE_DIR=${SQLITE_STORE_DIR:-$HOME/.llama/distributions/remote-vllm}
      - LLAMA_SAFETY_VLLM_URL=${LLAMA_SAFETY_VLLM_URL:-http://host.docker.internal:5101/v1}
      - LLAMA_SAFETY_MODEL=${LLAMA_SAFETY_MODEL:-Llama-Guard-3-1B}
```
2024-11-13 11:25:58 -08:00
Sarthak Deshpande
838b8d4fb5
PR-437-Fixed bug to allow system instructions after first turn (#440)
# What does this PR do?

In short, provide a summary of what this PR does and why. Usually, the
relevant context should be present in a linked issue.

- [This PR solves the issue where agents cannot keep track of
instructions after executing the first turn because system instructions
were not getting appended in the messages list. It also solves the issue
where turns are not being fetched in the appropriate sequence.]
Addresses issue (#issue)


## Test Plan

Please describe:
- I have a file which has a precise prompt which requires more than one
turn to be executed will share the file below. I ran that file as a
python script to make sure that the turns are being executed as per the
instructions after making the code change
 
```
import asyncio
from typing import List, Optional, Dict

from llama_stack_client import LlamaStackClient
from llama_stack_client.lib.agents.event_logger import EventLogger

from llama_stack_client.types import SamplingParams, UserMessage
from llama_stack_client.types.agent_create_params import AgentConfig

LLAMA_STACK_API_TOGETHER_URL="http://10.12.79.177:5001"

class Agent:
    def __init__(self):
        self.client = LlamaStackClient(
            base_url=LLAMA_STACK_API_TOGETHER_URL,
        )


    def create_agent(self, agent_config: AgentConfig):
        agent = self.client.agents.create(
            agent_config=agent_config,
        )
        self.agent_id = agent.agent_id
        session = self.client.agents.session.create(
            agent_id=agent.agent_id,
            session_name="example_session",
        )
        self.session_id = session.session_id

    async def execute_turn(self, content: str):
        response = self.client.agents.turn.create(
            agent_id=self.agent_id,
            session_id=self.session_id,
            messages=[
                UserMessage(content=content, role="user"),
            ],
            stream=True,
        )

        for chunk in response:
            if chunk.event.payload.event_type != "turn_complete":
                yield chunk


async def run_main():
    system_prompt="""You are an AI Agent tasked with Capturing Book Renting Information for a Library.
You will politely gather the book and user details one step at a time to send over the book to the user. Here’s how to proceed:

1.	Data Security: Inform the user that their data will be kept secure.

2.	Optional Participation: Let them know they are not required to share details but that doing so will help them learn about the books offered.

3.	Sequential Information Capture: Follow the steps below, one question at a time. Do not skip or combine questions.

Steps
Step 1: Politely ask to provide the name of the book.

Step 2: Ask for the name of the author.

Step 3: Ask for the Author's country.

Step 4: Ask for the year of publication.

Step 5: If any information is missing or seems incorrect, ask the user to re-enter that specific detail.

Step 6: Confirm that the user consents to share the entered information.

Step 7: Thank the user for providing the details and let them know they will receive an email about the book.

Do not do any validation of the user entered information.

Do not print the Steps or your internal thoughts in the response.

Do not print the prompts or data structure object in the response

Do not fill in the requested user data on your own. It has to be entered by the user only.

Finally, compile and print the user-provided information as a JSON object in your response.

"""

    agent_config = AgentConfig(
        model="Llama3.2-11B-Vision-Instruct",
        instructions=system_prompt,
        enable_session_persistence=True,
    )

    agent = Agent()
    agent.create_agent(agent_config)

    print("Agent and Session:", agent.agent_id, agent.session_id)

    while True:
        query = input("Enter your query (or type 'exit' to quit): ")
        if query.lower() == "exit":
            print("Exiting the loop.")
            break
        else:
            prompt = query
            print(f"User> {prompt}")
            response = agent.execute_turn(content=prompt)
            async for log in EventLogger().log(response):
                if log is not None:
                    log.print()

if __name__ == "__main__":
    asyncio.run(run_main())
```

Below is a screenshot of the results of the first commit
<img width="1770" alt="Screenshot 2024-11-13 at 3 15 29 PM"
src="https://github.com/user-attachments/assets/1a7a090d-fc92-49cc-a786-bfc812e3d9cc">
Below is a screenshot of the results of the second commit
<img width="1792" alt="Screenshot 2024-11-13 at 6 40 56 PM"
src="https://github.com/user-attachments/assets/a9474f75-cd8c-4d49-82cd-5ff81ff12b07">
Also a screenshot of print statement to show that the turns being
fetched now are in a sequence
<img width="1783" alt="Screenshot 2024-11-13 at 6 42 22 PM"
src="https://github.com/user-attachments/assets/b906404e-a3e4-48a2-b893-69f36bbdcb98">

## Sources

Please link relevant resources if necessary.


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [x] Wrote necessary unit or integration tests.
2024-11-13 10:34:04 -08:00
Xi Yan
94a6f57812
change schema -> dataset_schema for register_dataset api (#443)
# What does this PR do?

- API updates: change schema to dataset_schema for register_dataset for
resolving pydantic naming conflict
- Note: this OpenAPI update will be synced with
llama-stack-client-python SDK.

cc @dineshyv 

## Test Plan

```
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-13 11:17:46 -05:00
Xi Yan
d5b1202c83
change schema -> dataset_schema (#442)
# What does this PR do?

- `schema` should not a field w/ pydantic warnings
- change `schema` to `dataset_schema`

<img width="855" alt="image"
src="https://github.com/user-attachments/assets/47cb6bb9-4be0-46a5-8701-24d24e2eaabd">


## Test Plan

```
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py
```


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-13 10:58:12 -05:00
Xi Yan
c29fa56dde
add inline:: prefix for localfs provider (#441)
# What does this PR do?

- add inline:: prefix for localfs provider

## Test Plan

```
llama stack run

datasetio:
  - provider_id: localfs-0
    provider_type: inline::localfs
    config: {}
```

```
pytest -v -s -m meta_reference_eval_fireworks_inference eval/test_eval.py
pytest -v -s -m localfs datasetio/test_datasetio.py
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-13 10:44:39 -05:00
Ashwin Bharambe
36b052ab10 slightly update README.md 2024-11-12 22:11:46 -08:00
Ashwin Bharambe
12947ac19e
Kill "remote" providers and fix testing with a remote stack properly (#435)
# What does this PR do?

This PR kills the notion of "pure passthrough" remote providers. You
cannot specify a single provider you must specify a whole distribution
(stack) as remote.

This PR also significantly fixes / upgrades testing infrastructure so
you can now test against a remotely hosted stack server by just doing

```bash
pytest -s -v -m remote  test_agents.py \
  --inference-model=Llama3.1-8B-Instruct --safety-shield=Llama-Guard-3-1B \
  --env REMOTE_STACK_URL=http://localhost:5001
```

Also fixed `test_agents_persistence.py` (which was broken) and killed
some deprecated testing functions.

## Test Plan

All the tests.
2024-11-12 21:51:29 -08:00
Dinesh Yeduguru
fdff24e77a
Inference to use provider resource id to register and validate (#428)
This PR changes the way model id gets translated to the final model name
that gets passed through the provider.
Major changes include:
1) Providers are responsible for registering an object and as part of
the registration returning the object with the correct provider specific
name of the model provider_resource_id
2) To help with the common look ups different names a new ModelLookup
class is created.



Tested all inference providers including together, fireworks, vllm,
ollama, meta reference and bedrock
2024-11-12 20:02:00 -08:00
Ashwin Bharambe
afe4a53ae8 Check vLLM registration 2024-11-12 13:14:36 -08:00
Ashwin Bharambe
1aeac7b9f7 Change order of building the Docker 2024-11-12 13:09:04 -08:00
Ashwin Bharambe
998419ffb2 use image tag actually! 2024-11-12 12:57:08 -08:00
Ashwin Bharambe
2c294346ae Update provider types and prefix with inline:: 2024-11-12 12:54:44 -08:00
Ashwin Bharambe
896b304e62 Use tags for docker images instead of changing image name 2024-11-12 12:42:30 -08:00
Ashwin Bharambe
983d6ce2df
Remove the "ShieldType" concept (#430)
# What does this PR do?

This PR kills the notion of "ShieldType". The impetus for this is the
realization:

> Why is keyword llama-guard appearing so many times everywhere,
sometimes with hyphens, sometimes with underscores?

Now that we have a notion of "provider specific resource identifiers"
and "user specific aliases" for those and the fact that this works with
models ("Llama3.1-8B-Instruct" <> "fireworks/llama-3pv1-..."), we can
follow the same rules for Shields.

So each Safety provider can make up a notion of identifiers it has
registered. This already happens with Bedrock correctly. We just
generalize it for Llama Guard, Prompt Guard, etc.

For Llama Guard, we further simplify by just adopting the underlying
model name itself as the identifier! No confusion necessary.

While doing this, I noticed a bug in our DistributionRegistry where we
weren't scoping identifiers by type. Fixed.

## Feature/Issue validation/testing/test plan

Ran (inference, safety, memory, agents) tests with ollama and fireworks
providers.
2024-11-12 12:37:24 -08:00
Ashwin Bharambe
09269e2a44
Enable sane naming of registered objects with defaults (#429)
# What does this PR do? 

This is a follow-up to #425. That PR allows for specifying models in the
registry, but each entry needs to look like:

```yaml
- identifier: ...
  provider_id: ...
  provider_resource_identifier: ...
```

This is headache-inducing.

The current PR makes this situation better by adopting the shape of our
APIs. Namely, we need the user to only specify `model-id`. The rest
should be optional and figured out by the Stack. You can always override
it.

Here's what example `ollama` "full stack" registry looks like (we still
need to kill or simplify shield_type crap):
```yaml
models:
- model_id: Llama3.2-3B-Instruct
- model_id: Llama-Guard-3-1B
shields:
- shield_id: llama_guard
  shield_type: llama_guard
```

## Test Plan

See test plan for #425. Re-ran it.
2024-11-12 11:18:05 -08:00
Ashwin Bharambe
d9d271a684
Allow specifying resources in StackRunConfig (#425)
# What does this PR do? 

This PR brings back the facility to not force registration of resources
onto the user. This is not just annoying but actually not feasible
sometimes. For example, you may have a Stack which boots up with private
providers for inference for models A and B. There is no way for the user
to actually know which model is being served by these providers now (to
be able to register it.)

How will this avoid the users needing to do registration? In a follow-up
diff, I will make sure I update the sample run.yaml files so they list
the models served by the distributions explicitly. So when users do
`llama stack build --template <...>` and run it, their distributions
come up with the right set of models they expect.

For self-hosted distributions, it also allows us to have a place to
explicit list the models that need to be served to make the "complete"
stack (including safety, e.g.)

## Test Plan

Started ollama locally with two lightweight models: Llama3.2-3B-Instruct
and Llama-Guard-3-1B.

Updated all the tests including agents. Here's the tests I ran so far:

```bash
pytest -s -v -m "fireworks and llama_3b" test_text_inference.py::TestInference \
  --env FIREWORKS_API_KEY=...

pytest -s -v -m "ollama and llama_3b" test_text_inference.py::TestInference 

pytest -s -v -m ollama test_safety.py

pytest -s -v -m faiss test_memory.py

pytest -s -v -m ollama  test_agents.py \
  --inference-model=Llama3.2-3B-Instruct --safety-model=Llama-Guard-3-1B
```

Found a few bugs here and there pre-existing that these test runs fixed.
2024-11-12 10:58:49 -08:00
Dinesh Yeduguru
8035fa1869 versioned persistence key prefixes 2024-11-12 10:30:39 -08:00
Xi Yan
cb77426fb5
fix fireworks (#427) 2024-11-12 12:15:55 -05:00
Xi Yan
ec4fcad5ca
fix eval task registration (#426)
* fix eval tasks

* fix eval tasks

* fix eval tests
2024-11-12 11:51:34 -05:00
Xi Yan
84c6fbbd93
fix tests after registration migration & rename meta-reference -> basic / llm_as_judge provider (#424)
* rename meta-reference -> basic

* config rename

* impl rename

* rename llm_as_judge, fix test

* util

* rebase

* naming fix
2024-11-12 10:35:44 -05:00
Ashwin Bharambe
3d7561e55c
Rename all inline providers with an inline:: prefix (#423) 2024-11-11 22:19:16 -08:00
Ashwin Bharambe
f4426f6a43 Fix bug in llama stack build; SERVER_DEPENDENCIES were dropped 2024-11-11 20:12:13 -08:00
Ashwin Bharambe
506b99242a Allow specifying TEST / PYPI VERSION for docker name 2024-11-11 19:56:42 -08:00
Ashwin Bharambe
36da9a600e add explicit platform 2024-11-11 19:30:15 -08:00
Ashwin Bharambe
218803b7c8 add pypi version to docker tag 2024-11-11 19:20:31 -08:00
Ashwin Bharambe
343458479d Make sure TEST_PYPI_VERSION is used in docker builds 2024-11-11 18:40:13 -08:00