Kill the `builtin::rag` tool group completely since it is no longer
targeted. We use the Responses implementation for knowledge_search which
uses the `openai_vector_stores` pathway.
---------
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
# What does this PR do?
Refactor setting default vector store provider and embedding model to
use an optional `vector_stores` config in the `StackRunConfig` and clean
up code to do so (had to add back in some pieces of VectorDB). Also
added remote Qdrant and Weaviate to starter distro (based on other PR
where inference providers were added for UX).
New config is simply (default for Starter distro):
```yaml
vector_stores:
default_provider_id: faiss
default_embedding_model:
provider_id: sentence-transformers
model_id: nomic-ai/nomic-embed-text-v1.5
```
## Test Plan
CI and Unit tests.
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
remove telemetry as a providable API from the codebase. This includes
removing it from generated distributions but also the provider registry,
the router, etc
since `setup_logger` is tied pretty strictly to `Api.telemetry` being in
impls we still need an "instantiated provider" in our implementations.
However it should not be auto-routed or provided. So in
validate_and_prepare_providers (called from resolve_impls) I made it so
that if run_config.telemetry.enabled, we set up the meta-reference
"provider" internally to be used so that log_event will work when
called.
This is the neatest way I think we can remove telemetry from the
provider configs but also not need to rip apart the whole "telemetry is
a provider" logic just yet, but we can do it internally later without
disrupting users.
so telemetry is removed from the registry such that if a user puts
`telemetry:` as an API in their build/run config it will err out, but
can still be used by us internally as we go through this transition.
relates to #3806
Signed-off-by: Charlie Doern <cdoern@redhat.com>
The `trl` dependency brings in `accelerate` which brings in nvidia
dependencies for torch. We cannot have that in the starter distro. As
such, no CPU-only post-training for the huggingface provider.
The starter distribution added post-training which added torch
dependencies which pulls in all the nvidia CUDA libraries. This made our
starter container very big. We have worked hard to keep the starter
container small so it serves its purpose as a starter. This PR tries to
get it back to its size by forking off duplicate "-gpu" providers for
post-training. These forked providers are then used for a new
`starter-gpu` distribution which can pull in all dependencies.