# What does this PR do?
Adds input validation for mode in RagQueryConfig
This will prevent users from inputting search modes other than `vector`
and `keyword` for the time being with `hybrid` to follow when that
functionality is implemented.
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
```
# Check out this PR and enter the LS directory
uv sync --extra dev
```
Run the quickstart
[example](https://llama-stack.readthedocs.io/en/latest/getting_started/#step-3-run-the-demo)
Alter the Agent to include a query_config
```
agent = Agent(
client,
model=model_id,
instructions="You are a helpful assistant",
tools=[
{
"name": "builtin::rag/knowledge_search",
"args": {
"vector_db_ids": [vector_db_id],
"query_config": {
"mode": "i-am-not-vector", # Test for non valid search mode
"max_chunks": 6
}
},
}
],
)
```
Ensure you get the following error:
```
400: {'errors': [{'loc': ['mode'], 'msg': "Value error, mode must be either 'vector' or 'keyword' if supported by the vector_io provider", 'type': 'value_error'}]}
```
## Running unit tests
```
uv sync --extra dev
uv run pytest tests/unit/rag/test_rag_query.py -v
```
[//]: # (## Documentation)
# What does this PR do?
this blocks network access for all `tests/unit/` tests.
`tests/integration/` are untouched.
it also introduces an `allow_network` marker to explicitly allow network
access.
## Test Plan
`./scripts/unit-tests.sh`
# What does this PR do?
previously, developers who ran `./scripts/unit-tests.sh` would get
`asyncio-mode=auto`, which meant `@pytest.mark.asyncio` and
`@pytest_asyncio.fixture` were redundent. developers who ran `pytest`
directly would get pytest's default (strict mode), would run into errors
leading them to add `@pytest.mark.asyncio` / `@pytest_asyncio.fixture`
to their code.
with this change -
- `asyncio_mode=auto` is included in `pyproject.toml` making behavior
consistent for all invocations of pytest
- removes all redundant `@pytest_asyncio.fixture` and
`@pytest.mark.asyncio`
- for good measure, requires `pytest>=8.4` and `pytest-asyncio>=1.0`
## Test Plan
- `./scripts/unit-tests.sh`
- `uv run pytest tests/unit`
# What does this PR do?
Adding `ChunkMetadata` so we can properly delete embeddings later.
More specifically, this PR refactors and extends the chunk metadata
handling in the vector database and introduces a distinction between
metadata used for model context and backend-only metadata required for
chunk management, storage, and retrieval. It also improves chunk ID
generation and propagation throughout the stack, enhances test coverage,
and adds new utility modules.
```python
class ChunkMetadata(BaseModel):
"""
`ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional information about the chunk that
will NOT be inserted into the context during inference, but is required for backend functionality.
Use `metadata` in `Chunk` for metadata that will be used during inference.
"""
document_id: str | None = None
chunk_id: str | None = None
source: str | None = None
created_timestamp: int | None = None
updated_timestamp: int | None = None
chunk_window: str | None = None
chunk_tokenizer: str | None = None
chunk_embedding_model: str | None = None
chunk_embedding_dimension: int | None = None
content_token_count: int | None = None
metadata_token_count: int | None = None
```
Eventually we can migrate the document_id out of the `metadata` field.
I've introduced the changes so that `ChunkMetadata` is backwards
compatible with `metadata`.
<!-- If resolving an issue, uncomment and update the line below -->
Closes https://github.com/meta-llama/llama-stack/issues/2501
## Test Plan
Added unit tests
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
his PR allows users to customize the template used for chunks when
inserted into the context. Additionally, this enables metadata injection
into the context of an LLM for RAG. This makes a naive and crude
assumption that each chunk should include the metadata, this is
obviously redundant when multiple chunks are returned from the same
document. In order to remove any sort of duplication of chunks, we'd
have to make much more significant changes so this is a reasonable first
step that unblocks users requesting this enhancement in
https://github.com/meta-llama/llama-stack/issues/1767.
In the future, this can be extended to support citations.
List of Changes:
- `llama_stack/apis/tools/rag_tool.py`
- Added `chunk_template` field in `RAGQueryConfig`.
- Added `field_validator` to validate the `chunk_template` field in
`RAGQueryConfig`.
- Ensured the `chunk_template` field includes placeholders `{index}` and
`{chunk.content}`.
- Updated the `query` method to use the `chunk_template` for formatting
chunk text content.
- `llama_stack/providers/inline/tool_runtime/rag/memory.py`
- Modified the `insert` method to pass `doc.metadata` for chunk
creation.
- Enhanced the `query` method to format results using `chunk_template`
and exclude unnecessary metadata fields like `token_count`.
- `llama_stack/providers/utils/memory/vector_store.py`
- Updated `make_overlapped_chunks` to include metadata serialization and
token count for both content and metadata.
- Added error handling for metadata serialization issues.
- `pyproject.toml`
- Added `pydantic.field_validator` as a recognized `classmethod`
decorator in the linting configuration.
- `tests/integration/tool_runtime/test_rag_tool.py`
- Refactored test assertions to separate `assert_valid_chunk_response`
and `assert_valid_text_response`.
- Added integration tests to validate `chunk_template` functionality
with and without metadata inclusion.
- Included a test case to ensure `chunk_template` validation errors are
raised appropriately.
- `tests/unit/rag/test_vector_store.py`
- Added unit tests for `make_overlapped_chunks`, verifying chunk
creation with overlapping tokens and metadata integrity.
- Added tests to handle metadata serialization errors, ensuring proper
exception handling.
- `docs/_static/llama-stack-spec.html`
- Added a new `chunk_template` field of type `string` with a default
template for formatting retrieved chunks in RAGQueryConfig.
- Updated the `required` fields to include `chunk_template`.
- `docs/_static/llama-stack-spec.yaml`
- Introduced `chunk_template` field with a default value for
RAGQueryConfig.
- Updated the required configuration list to include `chunk_template`.
- `docs/source/building_applications/rag.md`
- Documented the `chunk_template` configuration, explaining how to
customize metadata formatting in RAG queries.
- Added examples demonstrating the usage of the `chunk_template` field
in RAG tool queries.
- Highlighted default values for `RAG` agent configurations.
# Resolves https://github.com/meta-llama/llama-stack/issues/1767
## Test Plan
Updated both `test_vector_store.py` and `test_rag_tool.py` and tested
end-to-end with a script.
I also tested the quickstart to enable this and specified this metadata:
```python
document = RAGDocument(
document_id="document_1",
content=source,
mime_type="text/html",
metadata={"author": "Paul Graham", "title": "How to do great work"},
)
```
Which produced the output below:

This highlights the usefulness of the additional metadata. Notice how
the metadata is redundant for different chunks of the same document. I
think we can update that in a subsequent PR.
# Documentation
I've added a brief comment about this in the documentation to outline
this to users and updated the API documentation.
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
This PR fixes the behavior of the `/tool-runtime/rag-tool/query`
endpoint when invoked with an empty `vector_db_ids` parameter.
As of now, it simply returns an empty result, which leads to a
misleading error message from the server and makes it difficult and
time-consuming to detect the problem with the input parameter.
The proposed fix is to return an indicative error message in this case.
## Test Plan
Running the following script:
```
agent = Agent(
client,
model=MODEL_ID,
instructions=SYSTEM_PROMPT,
tools=[
dict(
name="builtin::rag/knowledge_search",
args={
"vector_db_ids": [],
},
)
],
)
response = agent.create_turn(
messages=[
{
"role": "user",
"content": "How to install OpenShift?",
}
],
session_id=agent.create_session(f"rag-session")
)
```
results in the following error message in the non-patched version:
```
{"type": "function", "name": "knowledge_search", "parameters": {"query": "installing OpenShift"}}400: Invalid value: Tool call result (id: 494b8020-90bb-449b-aa76-10960d6b2cc2, name: knowledge_search) does not have any content
```
and in the following one in the patched version:
```
{"type": "function", "name": "knowledge_search", "parameters": {"query": "installing OpenShift"}}400: Invalid value: No vector DBs were provided to the RAG tool. Please provide at least one DB.
```