mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
4 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
|
3130ca0a78
|
feat: implement keyword, vector and hybrid search inside vector stores for PGVector provider (#3064)
# What does this PR do? <!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. --> The purpose of this task is to implement `openai/v1/vector_stores/{vector_store_id}/search` for PGVector provider. It involves implementing vector similarity search, keyword search and hybrid search for `PGVectorIndex`. <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> Closes #3006 ## Test Plan <!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* --> Run unit tests: ` ./scripts/unit-tests.sh ` Run integration tests for openai vector stores: 1. Export env vars: ``` export ENABLE_PGVECTOR=true export PGVECTOR_HOST=localhost export PGVECTOR_PORT=5432 export PGVECTOR_DB=llamastack export PGVECTOR_USER=llamastack export PGVECTOR_PASSWORD=llamastack ``` 2. Create DB: ``` psql -h localhost -U postgres -c "CREATE ROLE llamastack LOGIN PASSWORD 'llamastack';" psql -h localhost -U postgres -c "CREATE DATABASE llamastack OWNER llamastack;" psql -h localhost -U llamastack -d llamastack -c "CREATE EXTENSION IF NOT EXISTS vector;" ``` 3. Install sentence-transformers: ` uv pip install sentence-transformers ` 4. Run: ``` uv run --group test pytest -s -v --stack-config="inference=inline::sentence-transformers,vector_io=remote::pgvector" --embedding-model sentence-transformers/all-MiniLM-L6-v2 tests/integration/vector_io/test_openai_vector_stores.py ``` Inspect PGVector vector stores (optional): ``` psql llamastack psql (14.18 (Homebrew)) Type "help" for help. llamastack=# \z Access privileges Schema | Name | Type | Access privileges | Column privileges | Policies --------+------------------------------------------------------+-------+-------------------+-------------------+---------- public | llamastack_kvstore | table | | | public | metadata_store | table | | | public | vector_store_pgvector_main | table | | | public | vector_store_vs_1dfbc061_1f4d_4497_9165_ecba2622ba3a | table | | | public | vector_store_vs_2085a9fb_1822_4e42_a277_c6a685843fa7 | table | | | public | vector_store_vs_2b3dae46_38be_462a_afd6_37ee5fe661b1 | table | | | public | vector_store_vs_2f438de6_f606_4561_9d50_ef9160eb9060 | table | | | public | vector_store_vs_3eeca564_2580_4c68_bfea_83dc57e31214 | table | | | public | vector_store_vs_53942163_05f3_40e0_83c0_0997c64613da | table | | | public | vector_store_vs_545bac75_8950_4ff1_b084_e221192d4709 | table | | | public | vector_store_vs_688a37d8_35b2_4298_a035_bfedf5b21f86 | table | | | public | vector_store_vs_70624d9a_f6ac_4c42_b8ab_0649473c6600 | table | | | public | vector_store_vs_73fc1dd2_e942_4972_afb1_1e177b591ac2 | table | | | public | vector_store_vs_9d464949_d51f_49db_9f87_e033b8b84ac9 | table | | | public | vector_store_vs_a1e4d724_5162_4d6d_a6c0_bdafaf6b76ec | table | | | public | vector_store_vs_a328fb1b_1a21_480f_9624_ffaa60fb6672 | table | | | public | vector_store_vs_a8981bf0_2e66_4445_a267_a8fff442db53 | table | | | public | vector_store_vs_ccd4b6a4_1efd_4984_ad03_e7ff8eadb296 | table | | | public | vector_store_vs_cd6420a4_a1fc_4cec_948c_1413a26281c9 | table | | | public | vector_store_vs_cd709284_e5cf_4a88_aba5_dc76a35364bd | table | | | public | vector_store_vs_d7a4548e_fbc1_44d7_b2ec_b664417f2a46 | table | | | public | vector_store_vs_e7f73231_414c_4523_886c_d1174eee836e | table | | | public | vector_store_vs_ffd53588_819f_47e8_bb9d_954af6f7833d | table | | | (23 rows) llamastack=# ``` Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com> |
||
|
e3928e6a29
|
feat: Implement hybrid search in Milvus (#2644)
Some checks failed
Integration Tests (Replay) / discover-tests (push) Successful in 5s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 10s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.13) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 9s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 10s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 15s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 16s
Python Package Build Test / build (3.12) (push) Failing after 10s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 21s
Vector IO Integration Tests / test-matrix (3.13, remote::weaviate) (push) Failing after 7s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 15s
Unit Tests / unit-tests (3.13) (push) Failing after 10s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 15s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.13, remote::qdrant) (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 8s
Integration Tests (Replay) / Integration Tests (, , , client=, vision=) (push) Failing after 8s
Unit Tests / unit-tests (3.12) (push) Failing after 19s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.12, remote::weaviate) (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.12, remote::qdrant) (push) Failing after 11s
Test External API and Providers / test-external (venv) (push) Failing after 21s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 19s
Pre-commit / pre-commit (push) Successful in 57s
# What does this PR do? This PR implements hybrid search for Milvus DB based on the inbuilt milvus support. To test: ``` pytest tests/unit/providers/vector_io/remote/test_milvus.py -v -s --tb=long --disable-warnings --asyncio-mode=auto ``` Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com> |
||
|
d7cc38e934
|
fix: remove async test markers (fix pre-commit) (#2808)
# What does this PR do? some async test markers are in the codebase causing pre-commit to fail due to #2744 remove these pytest fixtures ## Test Plan pre-commit passes Signed-off-by: Charlie Doern <cdoern@redhat.com> |
||
|
4ae5656c2f
|
feat: Implement keyword search in milvus (#2231)
Some checks failed
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 7s
Integration Tests / discover-tests (push) Successful in 8s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 10s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 6s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 9s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 10s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 8s
Test Llama Stack Build / generate-matrix (push) Successful in 8s
Python Package Build Test / build (3.13) (push) Failing after 6s
Unit Tests / unit-tests (3.12) (push) Failing after 6s
Unit Tests / unit-tests (3.13) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 13s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 15s
Test External Providers / test-external-providers (venv) (push) Failing after 9s
Test Llama Stack Build / build-single-provider (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 14s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 19s
Integration Tests / test-matrix (push) Failing after 8s
Test Llama Stack Build / build (push) Failing after 5s
Python Package Build Test / build (3.12) (push) Failing after 51s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 55s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 57s
Update ReadTheDocs / update-readthedocs (push) Failing after 50s
Pre-commit / pre-commit (push) Successful in 2m9s
# What does this PR do? This PR adds the keyword search implementation for Milvus. Along with the implementation for remote Milvus, the tests require us to start a Milvus containers locally. In order to verify the implementation, run: ``` pytest tests/unit/providers/vector_io/remote/test_milvus.py -v -s --tb=short --disable-warnings --asyncio-mode=auto ``` You can also test the changes using the below script: ``` #!/usr/bin/env python3 import asyncio import os import uuid from typing import List from llama_stack_client import ( Agent, AgentEventLogger, LlamaStackClient, RAGDocument ) class MilvusRAGDemo: def __init__(self, base_url: str = "http://localhost:8321/"): self.client = LlamaStackClient(base_url=base_url) self.vector_db_id = f"milvus_rag_demo_{uuid.uuid4().hex[:8]}" self.model_id = None self.embedding_model_id = None self.embedding_dimension = None def setup_models(self): """Get available models and select appropriate ones for LLM and embeddings.""" models = self.client.models.list() # Select embedding model embedding_models = [m for m in models if m.model_type == "embedding"] if not embedding_models: raise ValueError("No embedding models found") self.embedding_model_id = embedding_models[0].identifier self.embedding_dimension = embedding_models[0].metadata["embedding_dimension"] def register_vector_db(self): print(f"Registering Milvus vector database: {self.vector_db_id}") response = self.client.vector_dbs.register( vector_db_id=self.vector_db_id, embedding_model=self.embedding_model_id, embedding_dimension=self.embedding_dimension, provider_id="milvus-remote", # Use remote Milvus ) print(f"Vector database registered successfully") return response def insert_documents(self): """Insert sample documents into the vector database.""" print("\nInserting sample documents...") # Sample documents about different topics documents = [ RAGDocument( document_id="ai_ml_basics", content=""" Artificial Intelligence (AI) and Machine Learning (ML) are transforming the world. AI refers to the simulation of human intelligence in machines, while ML is a subset of AI that enables computers to learn and improve from experience without being explicitly programmed. Deep learning, a subset of ML, uses neural networks with multiple layers to process complex patterns in data. Key concepts in AI/ML include: - Supervised Learning: Training with labeled data - Unsupervised Learning: Finding patterns in unlabeled data - Reinforcement Learning: Learning through trial and error - Neural Networks: Computing systems inspired by biological brains """, mime_type="text/plain", metadata={"topic": "technology", "category": "ai_ml"}, ), ] # Insert documents with chunking self.client.tool_runtime.rag_tool.insert( documents=documents, vector_db_id=self.vector_db_id, chunk_size_in_tokens=200, # Smaller chunks for better granularity ) print(f"Inserted {len(documents)} documents with chunking") def test_keyword_search(self): """Test keyword-based search using BM25.""" queries = [ "neural networks", "Python frameworks", "data cleaning", ] for query in queries: response = self.client.vector_io.query( vector_db_id=self.vector_db_id, query=query, params={ "mode": "keyword", # Keyword search "max_chunks": 3, "score_threshold": 0.0, } ) for i, (chunk, score) in enumerate(zip(response.chunks, response.scores)): print(f" {i+1}. Score: {score:.4f}") print(f" Content: {chunk.content[:100]}...") print(f" Metadata: {chunk.metadata}") def run_demo(self): try: self.setup_models() self.register_vector_db() self.insert_documents() self.test_keyword_search() except Exception as e: print(f"Error during demo: {e}") raise def main(): """Main function to run the demo.""" # Check if Llama Stack server is running demo = MilvusRAGDemo() try: demo.run_demo() except Exception as e: print(f"Demo failed: {e}") if __name__ == "__main__": main() ``` [//]: # (## Documentation) --------- Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com> |