mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 18:00:36 +00:00
21 commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
98a5047f9d
|
feat(prompts): attach prompts to storage stores in run configs (#3893)
# What does this PR do? <!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. --> This PR is responsible for attaching prompts to storage stores in run configs. It allows to specify prompts as stores in different distributions. The need of this functionality was initiated in #3514 > Note, #3514 is divided on three separate PRs. Current PR is the first of three. <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> ## Test Plan <!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* --> Manual testing and updated CI unit tests Prerequisites: 1. `uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install` 2. `llama stack run starter ` ``` INFO 2025-10-23 15:36:17,387 llama_stack.cli.stack.run:100 cli: Using run configuration: /Users/ianmiller/llama-stack/llama_stack/distributions/starter/run.yaml INFO 2025-10-23 15:36:17,423 llama_stack.cli.stack.run:157 cli: HTTPS enabled with certificates: Key: None Cert: None INFO 2025-10-23 15:36:17,424 llama_stack.cli.stack.run:159 cli: Listening on ['::', '0.0.0.0']:8321 INFO 2025-10-23 15:36:17,749 llama_stack.core.server.server:521 core::server: Run configuration: INFO 2025-10-23 15:36:17,756 llama_stack.core.server.server:524 core::server: apis: - agents - batches - datasetio - eval - files - inference - post_training - safety - scoring - tool_runtime - vector_io image_name: starter providers: agents: - config: persistence: agent_state: backend: kv_default namespace: agents responses: backend: sql_default max_write_queue_size: 10000 num_writers: 4 table_name: responses provider_id: meta-reference provider_type: inline::meta-reference batches: - config: kvstore: backend: kv_default namespace: batches provider_id: reference provider_type: inline::reference datasetio: - config: kvstore: backend: kv_default namespace: datasetio::huggingface provider_id: huggingface provider_type: remote::huggingface - config: kvstore: backend: kv_default namespace: datasetio::localfs provider_id: localfs provider_type: inline::localfs eval: - config: kvstore: backend: kv_default namespace: eval provider_id: meta-reference provider_type: inline::meta-reference files: - config: metadata_store: backend: sql_default table_name: files_metadata storage_dir: /Users/ianmiller/.llama/distributions/starter/files provider_id: meta-reference-files provider_type: inline::localfs inference: - config: api_key: '********' url: https://api.fireworks.ai/inference/v1 provider_id: fireworks provider_type: remote::fireworks - config: api_key: '********' url: https://api.together.xyz/v1 provider_id: together provider_type: remote::together - config: {} provider_id: bedrock provider_type: remote::bedrock - config: api_key: '********' base_url: https://api.openai.com/v1 provider_id: openai provider_type: remote::openai - config: api_key: '********' provider_id: anthropic provider_type: remote::anthropic - config: api_key: '********' provider_id: gemini provider_type: remote::gemini - config: api_key: '********' url: https://api.groq.com provider_id: groq provider_type: remote::groq - config: api_key: '********' url: https://api.sambanova.ai/v1 provider_id: sambanova provider_type: remote::sambanova - config: {} provider_id: sentence-transformers provider_type: inline::sentence-transformers post_training: - config: checkpoint_format: meta provider_id: torchtune-cpu provider_type: inline::torchtune-cpu safety: - config: excluded_categories: [] provider_id: llama-guard provider_type: inline::llama-guard - config: {} provider_id: code-scanner provider_type: inline::code-scanner scoring: - config: {} provider_id: basic provider_type: inline::basic - config: {} provider_id: llm-as-judge provider_type: inline::llm-as-judge - config: openai_api_key: '********' provider_id: braintrust provider_type: inline::braintrust tool_runtime: - config: api_key: '********' max_results: 3 provider_id: brave-search provider_type: remote::brave-search - config: api_key: '********' max_results: 3 provider_id: tavily-search provider_type: remote::tavily-search - config: {} provider_id: rag-runtime provider_type: inline::rag-runtime - config: {} provider_id: model-context-protocol provider_type: remote::model-context-protocol vector_io: - config: persistence: backend: kv_default namespace: vector_io::faiss provider_id: faiss provider_type: inline::faiss - config: db_path: /Users/ianmiller/.llama/distributions/starter/sqlite_vec.db persistence: backend: kv_default namespace: vector_io::sqlite_vec provider_id: sqlite-vec provider_type: inline::sqlite-vec registered_resources: benchmarks: [] datasets: [] models: [] scoring_fns: [] shields: [] tool_groups: - provider_id: tavily-search toolgroup_id: builtin::websearch - provider_id: rag-runtime toolgroup_id: builtin::rag vector_stores: [] server: port: 8321 storage: backends: kv_default: db_path: /Users/ianmiller/.llama/distributions/starter/kvstore.db type: kv_sqlite sql_default: db_path: /Users/ianmiller/.llama/distributions/starter/sql_store.db type: sql_sqlite stores: conversations: backend: sql_default table_name: openai_conversations inference: backend: sql_default max_write_queue_size: 10000 num_writers: 4 table_name: inference_store metadata: backend: kv_default namespace: registry prompts: backend: kv_default namespace: prompts telemetry: enabled: true vector_stores: default_embedding_model: model_id: nomic-ai/nomic-embed-text-v1.5 provider_id: sentence-transformers default_provider_id: faiss version: 2 INFO 2025-10-23 15:36:20,032 llama_stack.providers.utils.inference.inference_store:74 inference: Write queue disabled for SQLite to avoid concurrency issues WARNING 2025-10-23 15:36:20,422 llama_stack.providers.inline.telemetry.meta_reference.telemetry:84 telemetry: OTEL_EXPORTER_OTLP_ENDPOINT is not set, skipping telemetry INFO 2025-10-23 15:36:22,379 llama_stack.providers.utils.inference.openai_mixin:436 providers::utils: OpenAIInferenceAdapter.list_provider_model_ids() returned 105 models INFO 2025-10-23 15:36:22,703 uvicorn.error:84 uncategorized: Started server process [17328] INFO 2025-10-23 15:36:22,704 uvicorn.error:48 uncategorized: Waiting for application startup. INFO 2025-10-23 15:36:22,706 llama_stack.core.server.server:179 core::server: Starting up Llama Stack server (version: 0.3.0) INFO 2025-10-23 15:36:22,707 llama_stack.core.stack:470 core: starting registry refresh task INFO 2025-10-23 15:36:22,708 uvicorn.error:62 uncategorized: Application startup complete. INFO 2025-10-23 15:36:22,708 uvicorn.error:216 uncategorized: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit) ``` As you can see, prompts are attached to stores in config Testing: 1. Create prompt: ``` curl -X POST http://localhost:8321/v1/prompts \ -H "Content-Type: application/json" \ -d '{ "prompt": "Hello {{name}}! You are working at {{company}}. Your role is {{role}} at {{company}}. Remember, {{name}}, to be {{tone}}.", "variables": ["name", "company", "role", "tone"] }' ``` `{"prompt":"Hello {{name}}! You are working at {{company}}. Your role is {{role}} at {{company}}. Remember, {{name}}, to be {{tone}}.","version":1,"prompt_id":"pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e163f","variables":["name","company","role","tone"],"is_default":false}% ` 2. Get prompt: `curl -X GET http://localhost:8321/v1/prompts/pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e163f` `{"prompt":"Hello {{name}}! You are working at {{company}}. Your role is {{role}} at {{company}}. Remember, {{name}}, to be {{tone}}.","version":1,"prompt_id":"pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e163f","variables":["name","company","role","tone"],"is_default":false}% ` 3. Query sqlite KV storage to check created prompt: ``` sqlite> .mode column sqlite> .headers on sqlite> SELECT * FROM kvstore WHERE key LIKE 'prompts:v1:%'; key value expiration ------------------------------------------------------------ ------------------------------------------------------------ ---------- prompts:v1:pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e {"prompt_id": "pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab 163f:1 5f6e163f", "prompt": "Hello {{name}}! You are working at {{c ompany}}. Your role is {{role}} at {{company}}. Remember, {{ name}}, to be {{tone}}.", "version": 1, "variables": ["name" , "company", "role", "tone"], "is_default": false} prompts:v1:pmpt_a90e09e67acfe23776f2778c603eb6c17e139dab5f6e 1 163f:default sqlite> ``` |
||
|
|
9916cb3b17
|
chore: support default model in moderations API (#3890)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Vector IO Integration Tests / test-matrix (push) Failing after 5s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 5s
Python Package Build Test / build (3.12) (push) Failing after 1s
Python Package Build Test / build (3.13) (push) Failing after 2s
Test Llama Stack Build / build-single-provider (push) Failing after 3s
Test Llama Stack Build / generate-matrix (push) Successful in 5s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 4s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 7s
Test External API and Providers / test-external (venv) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 12s
Unit Tests / unit-tests (3.13) (push) Failing after 4s
Test Llama Stack Build / build (push) Failing after 3s
Unit Tests / unit-tests (3.12) (push) Failing after 5s
UI Tests / ui-tests (22) (push) Successful in 41s
Pre-commit / pre-commit (push) Successful in 1m33s
# What does this PR do? https://platform.openai.com/docs/api-reference/moderations supports optional model parameter. This PR adds support for using moderations API with model=None if a default shield id is provided via safety config. ## Test Plan added tests manual test: ``` > SAFETY_MODEL='together/meta-llama/Llama-Guard-4-12B' uv run llama stack run starter > curl http://localhost:8321/v1/moderations \ -H "Content-Type: application/json" \ -d '{ "input": [ "hello" ] }' ``` |
||
|
|
bd3c473208
|
revert: "chore(cleanup)!: remove tool_runtime.rag_tool" (#3877)
Reverts llamastack/llama-stack#3871 This PR broke RAG (even from Responses -- there _is_ a dependency) |
||
|
|
0e96279bee
|
chore(cleanup)!: remove tool_runtime.rag_tool (#3871)
Kill the `builtin::rag` tool group completely since it is no longer targeted. We use the Responses implementation for knowledge_search which uses the `openai_vector_stores` pathway. --------- Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> |
||
|
|
94faec7bc5
|
chore(yaml)!: move registered resources to a sub-key (#3861)
**NOTE: this is a backwards incompatible change to the run-configs.** A small QOL update, but this will prove useful when I do a rename for "vector_dbs" to "vector_stores" next. Moves all the `models, shields, ...` keys in run-config under a `registered_resources` sub-key. |
||
|
|
48581bf651
|
chore: Updating how default embedding model is set in stack (#3818)
# What does this PR do?
Refactor setting default vector store provider and embedding model to
use an optional `vector_stores` config in the `StackRunConfig` and clean
up code to do so (had to add back in some pieces of VectorDB). Also
added remote Qdrant and Weaviate to starter distro (based on other PR
where inference providers were added for UX).
New config is simply (default for Starter distro):
```yaml
vector_stores:
default_provider_id: faiss
default_embedding_model:
provider_id: sentence-transformers
model_id: nomic-ai/nomic-embed-text-v1.5
```
## Test Plan
CI and Unit tests.
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
|
||
|
|
2c43285e22
|
feat(stores)!: use backend storage references instead of configs (#3697)
**This PR changes configurations in a backward incompatible way.**
Run configs today repeat full SQLite/Postgres snippets everywhere a
store is needed, which means duplicated credentials, extra connection
pools, and lots of drift between files. This PR introduces named storage
backends so the stack and providers can share a single catalog and
reference those backends by name.
## Key Changes
- Add `storage.backends` to `StackRunConfig`, register each KV/SQL
backend once at startup, and validate that references point to the right
family.
- Move server stores under `storage.stores` with lightweight references
(backend + namespace/table) instead of full configs.
- Update every provider/config/doc to use the new reference style;
docs/codegen now surface the simplified YAML.
## Migration
Before:
```yaml
metadata_store:
type: sqlite
db_path: ~/.llama/distributions/foo/registry.db
inference_store:
type: postgres
host: ${env.POSTGRES_HOST}
port: ${env.POSTGRES_PORT}
db: ${env.POSTGRES_DB}
user: ${env.POSTGRES_USER}
password: ${env.POSTGRES_PASSWORD}
conversations_store:
type: postgres
host: ${env.POSTGRES_HOST}
port: ${env.POSTGRES_PORT}
db: ${env.POSTGRES_DB}
user: ${env.POSTGRES_USER}
password: ${env.POSTGRES_PASSWORD}
```
After:
```yaml
storage:
backends:
kv_default:
type: kv_sqlite
db_path: ~/.llama/distributions/foo/kvstore.db
sql_default:
type: sql_postgres
host: ${env.POSTGRES_HOST}
port: ${env.POSTGRES_PORT}
db: ${env.POSTGRES_DB}
user: ${env.POSTGRES_USER}
password: ${env.POSTGRES_PASSWORD}
stores:
metadata:
backend: kv_default
namespace: registry
inference:
backend: sql_default
table_name: inference_store
max_write_queue_size: 10000
num_writers: 4
conversations:
backend: sql_default
table_name: openai_conversations
```
Provider configs follow the same pattern—for example, a Chroma vector
adapter switches from:
```yaml
providers:
vector_io:
- provider_id: chromadb
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL}
kvstore:
type: sqlite
db_path: ~/.llama/distributions/foo/chroma.db
```
to:
```yaml
providers:
vector_io:
- provider_id: chromadb
provider_type: remote::chromadb
config:
url: ${env.CHROMADB_URL}
persistence:
backend: kv_default
namespace: vector_io::chroma_remote
```
Once the backends are declared, everything else just points at them, so
rotating credentials or swapping to Postgres happens in one place and
the stack reuses a single connection pool.
|
||
|
|
07ff15d917
|
chore: distrogen enables telemetry by default (#3828)
# What does this PR do? leftover from #3815 ## Test Plan CI --- [//]: # (BEGIN SAPLING FOOTER) Stack created with [Sapling](https://sapling-scm.com). Best reviewed with [ReviewStack](https://reviewstack.dev/llamastack/llama-stack/pull/3828). * #3830 * __->__ #3828 |
||
|
|
f22aaef42f
|
chore!: remove telemetry API usage (#3815)
# What does this PR do? remove telemetry as a providable API from the codebase. This includes removing it from generated distributions but also the provider registry, the router, etc since `setup_logger` is tied pretty strictly to `Api.telemetry` being in impls we still need an "instantiated provider" in our implementations. However it should not be auto-routed or provided. So in validate_and_prepare_providers (called from resolve_impls) I made it so that if run_config.telemetry.enabled, we set up the meta-reference "provider" internally to be used so that log_event will work when called. This is the neatest way I think we can remove telemetry from the provider configs but also not need to rip apart the whole "telemetry is a provider" logic just yet, but we can do it internally later without disrupting users. so telemetry is removed from the registry such that if a user puts `telemetry:` as an API in their build/run config it will err out, but can still be used by us internally as we go through this transition. relates to #3806 Signed-off-by: Charlie Doern <cdoern@redhat.com> |
||
|
|
6ba9db3929
|
chore!: BREAKING CHANGE: remove sqlite from telemetry config (#3808)
# What does this PR do? - Removed sqlite sink from telemetry config. - Removed related code - Updated doc related to telemetry ## Test Plan CI |
||
|
|
e7d21e1ee3
|
feat: Add support for Conversations in Responses API (#3743)
# What does this PR do? This PR adds support for Conversations in Responses. <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> ## Test Plan Unit tests Integration tests <Details> <Summary>Manual testing with this script: (click to expand)</Summary> ```python from openai import OpenAI client = OpenAI() client = OpenAI(base_url="http://localhost:8321/v1/", api_key="none") def test_conversation_create(): print("Testing conversation create...") conversation = client.conversations.create( metadata={"topic": "demo"}, items=[ {"type": "message", "role": "user", "content": "Hello!"} ] ) print(f"Created: {conversation}") return conversation def test_conversation_retrieve(conv_id): print(f"Testing conversation retrieve for {conv_id}...") retrieved = client.conversations.retrieve(conv_id) print(f"Retrieved: {retrieved}") return retrieved def test_conversation_update(conv_id): print(f"Testing conversation update for {conv_id}...") updated = client.conversations.update( conv_id, metadata={"topic": "project-x"} ) print(f"Updated: {updated}") return updated def test_conversation_delete(conv_id): print(f"Testing conversation delete for {conv_id}...") deleted = client.conversations.delete(conv_id) print(f"Deleted: {deleted}") return deleted def test_conversation_items_create(conv_id): print(f"Testing conversation items create for {conv_id}...") items = client.conversations.items.create( conv_id, items=[ { "type": "message", "role": "user", "content": [{"type": "input_text", "text": "Hello!"}] }, { "type": "message", "role": "user", "content": [{"type": "input_text", "text": "How are you?"}] } ] ) print(f"Items created: {items}") return items def test_conversation_items_list(conv_id): print(f"Testing conversation items list for {conv_id}...") items = client.conversations.items.list(conv_id, limit=10) print(f"Items list: {items}") return items def test_conversation_item_retrieve(conv_id, item_id): print(f"Testing conversation item retrieve for {conv_id}/{item_id}...") item = client.conversations.items.retrieve(conversation_id=conv_id, item_id=item_id) print(f"Item retrieved: {item}") return item def test_conversation_item_delete(conv_id, item_id): print(f"Testing conversation item delete for {conv_id}/{item_id}...") deleted = client.conversations.items.delete(conversation_id=conv_id, item_id=item_id) print(f"Item deleted: {deleted}") return deleted def test_conversation_responses_create(): print("\nTesting conversation create for a responses example...") conversation = client.conversations.create() print(f"Created: {conversation}") response = client.responses.create( model="gpt-4.1", input=[{"role": "user", "content": "What are the 5 Ds of dodgeball?"}], conversation=conversation.id, ) print(f"Created response: {response} for conversation {conversation.id}") return response, conversation def test_conversations_responses_create_followup( conversation, content="Repeat what you just said but add 'this is my second time saying this'", ): print(f"Using: {conversation.id}") response = client.responses.create( model="gpt-4.1", input=[{"role": "user", "content": content}], conversation=conversation.id, ) print(f"Created response: {response} for conversation {conversation.id}") conv_items = client.conversations.items.list(conversation.id) print(f"\nRetrieving list of items for conversation {conversation.id}:") print(conv_items.model_dump_json(indent=2)) def test_response_with_fake_conv_id(): fake_conv_id = "conv_zzzzzzzzz5dc81908289d62779d2ac510a2b0b602ef00a44" print(f"Using {fake_conv_id}") try: response = client.responses.create( model="gpt-4.1", input=[{"role": "user", "content": "say hello"}], conversation=fake_conv_id, ) print(f"Created response: {response} for conversation {fake_conv_id}") except Exception as e: print(f"failed to create response for conversation {fake_conv_id} with error {e}") def main(): print("Testing OpenAI Conversations API...") # Create conversation conversation = test_conversation_create() conv_id = conversation.id # Retrieve conversation test_conversation_retrieve(conv_id) # Update conversation test_conversation_update(conv_id) # Create items items = test_conversation_items_create(conv_id) # List items items_list = test_conversation_items_list(conv_id) # Retrieve specific item if items_list.data: item_id = items_list.data[0].id test_conversation_item_retrieve(conv_id, item_id) # Delete item test_conversation_item_delete(conv_id, item_id) # Delete conversation test_conversation_delete(conv_id) response, conversation2 = test_conversation_responses_create() print('\ntesting reseponse retrieval') test_conversation_retrieve(conversation2.id) print('\ntesting responses follow up') test_conversations_responses_create_followup(conversation2) print('\ntesting responses follow up x2!') test_conversations_responses_create_followup( conversation2, content="Repeat what you just said but add 'this is my third time saying this'", ) test_response_with_fake_conv_id() print("All tests completed!") if __name__ == "__main__": main() ``` </Details> --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com> Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com> |
||
|
|
42414a1a1b
|
fix(logging): disable console telemetry sink by default (#3623)
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Vector IO Integration Tests / test-matrix (push) Failing after 3s
Test Llama Stack Build / generate-matrix (push) Successful in 3s
Python Package Build Test / build (3.12) (push) Failing after 1s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 3s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 3s
Test External API and Providers / test-external (venv) (push) Failing after 4s
Unit Tests / unit-tests (3.13) (push) Failing after 3s
Test Llama Stack Build / build (push) Failing after 4s
Python Package Build Test / build (3.13) (push) Failing after 21s
Test Llama Stack Build / build-single-provider (push) Failing after 25s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 27s
Unit Tests / unit-tests (3.12) (push) Failing after 22s
API Conformance Tests / check-schema-compatibility (push) Successful in 33s
UI Tests / ui-tests (22) (push) Successful in 39s
Pre-commit / pre-commit (push) Successful in 1m12s
The current span processing dumps so much junk on the console that it makes actual understanding of what is going on in the server impossible. I am killing the console sink as a default. If you want, you are always free to change your run.yaml to add it. Before: <img width="1877" height="1107" alt="image" src="https://github.com/user-attachments/assets/3a7ad261-e2ba-4d40-9820-fcc282c8df37" /> After: <img width="1919" height="470" alt="image" src="https://github.com/user-attachments/assets/bc7cf763-fba9-4e95-a4b5-f65f6d1c5332" /> |
||
|
|
f31bcc11bc
|
feat: add Azure OpenAI inference provider support (#3396)
# What does this PR do? Llama-stack now supports a new OpenAI compatible endpoint with Azure OpenAI. The starter distro has been updated to add the new remote inference provider. A few tests have been modified and improved. ## Test Plan Deploy a model in the Aure portal then: ``` $ AZURE_API_KEY=... AZURE_API_BASE=... uv run llama stack build --image-type venv --providers inference=remote::azure --run ... $ LLAMA_STACK_CONFIG=http://localhost:8321 uv run --group test pytest -v -ra --text-model azure/gpt-4.1 tests/integration/inference/test_openai_completion.py ... Results: ``` ============================================= test session starts ============================================== platform darwin -- Python 3.12.8, pytest-8.4.1, pluggy-1.6.0 -- /Users/leseb/Documents/AI/llama-stack/.venv/bin/python3 cachedir: .pytest_cache metadata: {'Python': '3.12.8', 'Platform': 'macOS-15.6.1-arm64-arm-64bit', 'Packages': {'pytest': '8.4.1', 'pluggy': '1.6.0'}, 'Plugins': {'anyio': '4.9.0', 'html': '4.1.1', 'socket': '0.7.0', 'asyncio': '1.1.0', 'json-report': '1.5.0', 'timeout': '2.4.0', 'metadata': '3.1.1', 'cov': '6.2.1', 'nbval': '0.11.0', 'hydra-core': '1.3.2'}} rootdir: /Users/leseb/Documents/AI/llama-stack configfile: pyproject.toml plugins: anyio-4.9.0, html-4.1.1, socket-0.7.0, asyncio-1.1.0, json-report-1.5.0, timeout-2.4.0, metadata-3.1.1, cov-6.2.1, nbval-0.11.0, hydra-core-1.3.2 asyncio: mode=Mode.AUTO, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function collected 27 items tests/integration/inference/test_openai_completion.py::test_openai_completion_non_streaming[txt=azure/gpt-5-mini-inference:completion:sanity] SKIPPED [ 3%] tests/integration/inference/test_openai_completion.py::test_openai_completion_non_streaming_suffix[txt=azure/gpt-5-mini-inference:completion:suffix] SKIPPED [ 7%] tests/integration/inference/test_openai_completion.py::test_openai_completion_streaming[txt=azure/gpt-5-mini-inference:completion:sanity] SKIPPED [ 11%] tests/integration/inference/test_openai_completion.py::test_openai_completion_prompt_logprobs[txt=azure/gpt-5-mini-1] SKIPPED [ 14%] tests/integration/inference/test_openai_completion.py::test_openai_completion_guided_choice[txt=azure/gpt-5-mini] SKIPPED [ 18%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_non_streaming[openai_client-txt=azure/gpt-5-mini-inference:chat_completion:non_streaming_01] PASSED [ 22%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming[openai_client-txt=azure/gpt-5-mini-inference:chat_completion:streaming_01] PASSED [ 25%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming_with_n[openai_client-txt=azure/gpt-5-mini-inference:chat_completion:streaming_01] PASSED [ 29%] tests/integration/inference/test_openai_completion.py::test_inference_store[openai_client-txt=azure/gpt-5-mini-True] PASSED [ 33%] tests/integration/inference/test_openai_completion.py::test_inference_store_tool_calls[openai_client-txt=azure/gpt-5-mini-True] PASSED [ 37%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_non_streaming_with_file[txt=azure/gpt-5-mini] SKIPPEDed files.) [ 40%] tests/integration/inference/test_openai_completion.py::test_openai_completion_prompt_logprobs[txt=azure/gpt-5-mini-0] SKIPPED [ 44%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_non_streaming[openai_client-txt=azure/gpt-5-mini-inference:chat_completion:non_streaming_02] PASSED [ 48%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming[openai_client-txt=azure/gpt-5-mini-inference:chat_completion:streaming_02] PASSED [ 51%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming_with_n[openai_client-txt=azure/gpt-5-mini-inference:chat_completion:streaming_02] PASSED [ 55%] tests/integration/inference/test_openai_completion.py::test_inference_store[openai_client-txt=azure/gpt-5-mini-False] PASSED [ 59%] tests/integration/inference/test_openai_completion.py::test_inference_store_tool_calls[openai_client-txt=azure/gpt-5-mini-False] PASSED [ 62%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_non_streaming[client_with_models-txt=azure/gpt-5-mini-inference:chat_completion:non_streaming_01] PASSED [ 66%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming[client_with_models-txt=azure/gpt-5-mini-inference:chat_completion:streaming_01] PASSED [ 70%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming_with_n[client_with_models-txt=azure/gpt-5-mini-inference:chat_completion:streaming_01] PASSED [ 74%] tests/integration/inference/test_openai_completion.py::test_inference_store[client_with_models-txt=azure/gpt-5-mini-True] PASSED [ 77%] tests/integration/inference/test_openai_completion.py::test_inference_store_tool_calls[client_with_models-txt=azure/gpt-5-mini-True] PASSED [ 81%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_non_streaming[client_with_models-txt=azure/gpt-5-mini-inference:chat_completion:non_streaming_02] PASSED [ 85%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming[client_with_models-txt=azure/gpt-5-mini-inference:chat_completion:streaming_02] PASSED [ 88%] tests/integration/inference/test_openai_completion.py::test_openai_chat_completion_streaming_with_n[client_with_models-txt=azure/gpt-5-mini-inference:chat_completion:streaming_02] PASSED [ 92%] tests/integration/inference/test_openai_completion.py::test_inference_store[client_with_models-txt=azure/gpt-5-mini-False] PASSED [ 96%] tests/integration/inference/test_openai_completion.py::test_inference_store_tool_calls[client_with_models-txt=azure/gpt-5-mini-False] PASSED [100%] =========================================== short test summary info ============================================ SKIPPED [3] tests/integration/inference/test_openai_completion.py:63: Model azure/gpt-5-mini hosted by remote::azure doesn't support OpenAI completions. SKIPPED [3] tests/integration/inference/test_openai_completion.py:118: Model azure/gpt-5-mini hosted by remote::azure doesn't support vllm extra_body parameters. SKIPPED [1] tests/integration/inference/test_openai_completion.py:124: Model azure/gpt-5-mini hosted by remote::azure doesn't support chat completion calls with base64 encoded files. ================================== 20 passed, 7 skipped, 2 warnings in 51.77s ================================== ``` Signed-off-by: Sébastien Han <seb@redhat.com> |
||
|
|
64b2977162
|
fix: Fix locations of distrubution runtime directories (#3336)
The defaults were mixed up Signed-off-by: Derek Higgins <derekh@redhat.com> |
||
|
|
9fa69b0337
|
feat(distro): no huggingface provider for starter (#3258)
The `trl` dependency brings in `accelerate` which brings in nvidia dependencies for torch. We cannot have that in the starter distro. As such, no CPU-only post-training for the huggingface provider. |
||
|
|
7519b73fcc
|
feat(distro): fork off a starter-gpu distribution (#3240)
The starter distribution added post-training which added torch dependencies which pulls in all the nvidia CUDA libraries. This made our starter container very big. We have worked hard to keep the starter container small so it serves its purpose as a starter. This PR tries to get it back to its size by forking off duplicate "-gpu" providers for post-training. These forked providers are then used for a new `starter-gpu` distribution which can pull in all dependencies. |
||
|
|
7519ab4024
|
feat: Code scanner Provider impl for moderations api (#3100)
# What does this PR do? Add CodeScanner implementations ## Test Plan `SAFETY_MODEL=CodeScanner LLAMA_STACK_CONFIG=starter uv run pytest -v tests/integration/safety/test_safety.py --text-model=llama3.2:3b-instruct-fp16 --embedding-model=all-MiniLM-L6-v2 --safety-shield=ollama` This PR need to land after this https://github.com/meta-llama/llama-stack/pull/3098 |
||
|
|
914c7be288
|
feat: add batches API with OpenAI compatibility (with inference replay) (#3162)
Add complete batches API implementation with protocol, providers, and tests: Core Infrastructure: - Add batches API protocol using OpenAI Batch types directly - Add Api.batches enum value and protocol mapping in resolver - Add OpenAI "batch" file purpose support - Include proper error handling (ConflictError, ResourceNotFoundError) Reference Provider: - Add ReferenceBatchesImpl with full CRUD operations (create, retrieve, cancel, list) - Implement background batch processing with configurable concurrency - Add SQLite KVStore backend for persistence - Support /v1/chat/completions endpoint with request validation Comprehensive Test Suite: - Add unit tests for provider implementation with validation - Add integration tests for end-to-end batch processing workflows - Add error handling tests for validation, malformed inputs, and edge cases Configuration: - Add max_concurrent_batches and max_concurrent_requests_per_batch options - Add provider documentation with sample configurations Test with - ``` $ uv run llama stack build --image-type venv --providers inference=YOU_PICK,files=inline::localfs,batches=inline::reference --run & $ LLAMA_STACK_CONFIG=http://localhost:8321 uv run pytest tests/unit/providers/batches tests/integration/batches --text-model YOU_PICK ``` addresses #3066 --------- Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com> |
||
|
|
a4bad6c0b4
|
feat: Add Google Vertex AI inference provider support (#2841)
Some checks failed
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 10s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 12s
Python Package Build Test / build (3.13) (push) Failing after 4s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 10s
Test Llama Stack Build / generate-matrix (push) Successful in 8s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 13s
Test External API and Providers / test-external (venv) (push) Failing after 11s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 17s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 10s
Test Llama Stack Build / build-single-provider (push) Failing after 16s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 8s
Unit Tests / unit-tests (3.12) (push) Failing after 10s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 26s
Vector IO Integration Tests / test-matrix (3.12, remote::qdrant) (push) Failing after 15s
Update ReadTheDocs / update-readthedocs (push) Failing after 9s
Integration Tests (Replay) / Integration Tests (, , , client=, vision=) (push) Failing after 7s
Vector IO Integration Tests / test-matrix (3.13, remote::weaviate) (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 23s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 16s
Vector IO Integration Tests / test-matrix (3.12, remote::weaviate) (push) Failing after 18s
Test Llama Stack Build / build (push) Failing after 8s
Vector IO Integration Tests / test-matrix (3.13, remote::qdrant) (push) Failing after 17s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 16s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 8s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 21s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 47s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 49s
Unit Tests / unit-tests (3.13) (push) Failing after 39s
Pre-commit / pre-commit (push) Successful in 1m37s
# What does this PR do? - Add new Vertex AI remote inference provider with litellm integration - Support for Gemini models through Google Cloud Vertex AI platform - Uses Google Cloud Application Default Credentials (ADC) for authentication - Added VertexAI models: gemini-2.5-flash, gemini-2.5-pro, gemini-2.0-flash. - Updated provider registry to include vertexai provider - Updated starter template to support Vertex AI configuration - Added comprehensive documentation and sample configuration <!-- If resolving an issue, uncomment and update the line below --> relates to https://github.com/meta-llama/llama-stack/issues/2747 ## Test Plan <!-- Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.* --> Signed-off-by: Eran Cohen <eranco@redhat.com> Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com> |
||
|
|
7f834339ba
|
chore(misc): make tests and starter faster (#3042)
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 9s
Python Package Build Test / build (3.12) (push) Failing after 4s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 12s
Test Llama Stack Build / generate-matrix (push) Successful in 11s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 14s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 22s
Test External API and Providers / test-external (venv) (push) Failing after 14s
Integration Tests (Replay) / Integration Tests (, , , client=, vision=) (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 15s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 22s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 14s
Unit Tests / unit-tests (3.13) (push) Failing after 14s
Test Llama Stack Build / build-single-provider (push) Failing after 13s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 18s
Unit Tests / unit-tests (3.12) (push) Failing after 16s
Vector IO Integration Tests / test-matrix (3.12, remote::qdrant) (push) Failing after 18s
Vector IO Integration Tests / test-matrix (3.13, remote::weaviate) (push) Failing after 10s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.12, remote::weaviate) (push) Failing after 16s
Vector IO Integration Tests / test-matrix (3.13, remote::qdrant) (push) Failing after 18s
Test Llama Stack Build / build (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 18s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 20s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 16s
Python Package Build Test / build (3.13) (push) Failing after 53s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 59s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 1m1s
Update ReadTheDocs / update-readthedocs (push) Failing after 1m6s
Pre-commit / pre-commit (push) Successful in 1m53s
A bunch of miscellaneous cleanup focusing on tests, but ended up speeding up starter distro substantially. - Pulled llama stack client init for tests into `pytest_sessionstart` so it does not clobber output - Profiling of that told me where we were doing lots of heavy imports for starter, so lazied them - starter now starts 20seconds+ faster on my Mac - A few other smallish refactors for `compat_client` |
||
|
|
cc87995e2b
|
chore: rename templates to distributions (#3035)
As the title says. Distributions is in, Templates is out. `llama stack build --template` --> `llama stack build --distro`. For backward compatibility, the previous option is kept but results in a warning. Updated `server.py` to remove the "config_or_template" backward compatibility since it has been a couple releases since that change. |
Renamed from llama_stack/templates/ci-tests/run.yaml (Browse further)