# What does this PR do?
The goal of this PR is code base modernization.
Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)
Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
Add several new pre-commit hooks to improve code quality and security:
- no-commit-to-branch: prevent direct commits to protected branches like
`main`
- check-yaml: validate YAML files
- detect-private-key: prevent accidental commit of private keys
- requirements-txt-fixer: maintain consistent requirements.txt format
and sorting
- mixed-line-ending: enforce LF line endings to avoid mixed line endings
- check-executables-have-shebangs: ensure executable scripts have
shebangs
- check-json: validate JSON files
- check-shebang-scripts-are-executable: verify shebang scripts are
executable
- check-symlinks: validate symlinks and report broken ones
- check-toml: validate TOML files mainly for pyproject.toml
The respective fixes have been included.
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
- Added new Ruff lint rules to detect ambiguous or non-ASCII characters:
- Added per-file ignores where Unicode usage is still required.
- Fixed whatever had to be fixed
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
This PR updates how the `AgentType` gets set using the radio button on
the tools page of the playground. This change is needed due to the fact
with its current implementation, the chat interface will resets after
every input, preventing users from having a multi-turn conversation with
the agent.
## Test Plan
Run the Playground without these changes:
```bash
streamlit run llama_stack/distribution/ui/app.py
```
Navigate to the tools page and attempt to have a multi-turn
conversation. You should see the conversation reset after asking a
second question.
Repeat the steps above with these changes and you will see that it works
as expected when asking the agent multiple questions.
Signed-off-by: Michael Clifford <mcliffor@redhat.com>
# What does this PR do?
This commit adds a new authentication system to the Llama Stack server
with support for Kubernetes and custom authentication providers. Key
changes include:
- Implemented KubernetesAuthProvider for validating Kubernetes service
account tokens
- Implemented CustomAuthProvider for validating tokens against external
endpoints - this is the same code that was already present.
- Added test for Kubernetes
- Updated server configuration to support authentication settings
- Added documentation for authentication configuration and usage
The authentication system supports:
- Bearer token validation
- Kubernetes service account token validation
- Custom authentication endpoints
## Test Plan
Setup a Kube cluster using Kind or Minikube.
Run a server with:
```
server:
port: 8321
auth:
provider_type: kubernetes
config:
api_server_url: http://url
ca_cert_path: path/to/cert (optional)
```
Run:
```
curl -s -L -H "Authorization: Bearer $(kubectl create token my-user)" http://127.0.0.1:8321/v1/providers
```
Or replace "my-user" with your service account.
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
Implemetation of NeMO Datastore register, unregister API.
Open Issues:
- provider_id gets set to `localfs` in client.datasets.register() as it
is specified in routing_tables.py: DatasetsRoutingTable
see: #1860
Currently I have passed `"provider_id":"nvidia"` in metadata and have
parsed that in `DatasetsRoutingTable`
(Not the best approach, but just a quick workaround to make it work for
now.)
## Test Plan
- Unit test cases: `pytest
tests/unit/providers/nvidia/test_datastore.py`
```bash
========================================================== test session starts ===========================================================
platform linux -- Python 3.10.0, pytest-8.3.5, pluggy-1.5.0
rootdir: /home/ubuntu/llama-stack
configfile: pyproject.toml
plugins: anyio-4.9.0, asyncio-0.26.0, nbval-0.11.0, metadata-3.1.1, html-4.1.1, cov-6.1.0
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function
collected 2 items
tests/unit/providers/nvidia/test_datastore.py .. [100%]
============================================================ warnings summary ============================================================
====================================================== 2 passed, 1 warning in 0.84s ======================================================
```
cc: @dglogo, @mattf, @yanxi0830
# What does this PR do?
This PR improves the Tools page in the LlamaStack Playground UI by
enhancing the readability of the active tool list shown in the sidebar.
- Previously, active tools were displayed in a flat JSON array with
verbose identifiers (e.g., builtin::code_interpreter:code_interpreter).
- This PR updates the logic to group tools by their toolgroup (e.g.,
builtin::websearch) and renders each tool name in a simplified,
human-readable format (e.g., web_search).
- This change improves usability when working with multiple toolgroups,
especially in configurations involving MCP tools or complex tool
identifiers.
Before and After Comparison:
**Before**

**After**

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
- Followed the [LlamaStack UI Developer Setup
instructions](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/distribution/ui)
- Ran the Streamlit UI via: `uv run --with "[.ui]" streamlit run
llama_stack/distribution/ui/app.py`
- Selected multiple built-in toolgroups (e.g., code_interpreter,
websearch, wolfram_alpha) from the sidebar.
[//]: # (## Documentation)
# What does this PR do?
This expands the `test_sse` test suite and fixes some edge cases with
bugs in our SSE error handling to ensure streaming clients always get a
proper error response.
First, we handle the case where a client disconnects before we actually
start streaming the response back. Previously we only handled the case
where a client disconnected as we were streaming the response, but there
was an edge case where a client disconnecting before we streamed any
response back did not trigger our logic to cleanly handle that
disconnect.
Second, we handle the case where an error is thrown from the server
before the actual async generator gets created from the provider. This
happens in scenarios like the newly merged OpenAI API input validation,
where we eagerly raise validation errors before returning the async
generator object that streams the responses back.
## Test Plan
Tested via:
```
python -m pytest -s -v tests/unit/server/test_sse.py
```
Both test cases failed before, and passed afterwards. The test cases
were written based on me experimenting with actual clients that would do
bad things like randomly disconnect or send invalid input in streaming
mode and I hit these two cases, where things were misbehaving in our
error handling.
Signed-off-by: Ben Browning <bbrownin@redhat.com>
As part of the build process, we now include the generated run.yaml
(based of the provided build configuration file) into the container. We
updated the entrypoint to use this run configuration as well.
Given this simple distribution configuration:
```
# build.yaml
version: '2'
distribution_spec:
description: Use (an external) Ollama server for running LLM inference
providers:
inference:
- remote::ollama
vector_io:
- inline::faiss
safety:
- inline::llama-guard
agents:
- inline::meta-reference
telemetry:
- inline::meta-reference
eval:
- inline::meta-reference
datasetio:
- remote::huggingface
- inline::localfs
scoring:
- inline::basic
- inline::llm-as-judge
- inline::braintrust
tool_runtime:
- remote::brave-search
- remote::tavily-search
- inline::code-interpreter
- inline::rag-runtime
- remote::model-context-protocol
- remote::wolfram-alpha
container_image: "registry.access.redhat.com/ubi9"
image_type: container
image_name: test
```
Build it:
```
llama stack build --config build.yaml
```
Run it:
```
podman run --rm \
-p 8321:8321 \
-e OLLAMA_URL=http://host.containers.internal:11434 \
--name llama-stack-server \
localhost/leseb-test:0.2.2
```
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
When clients called the Open AI API with invalid input that wasn't
caught by our own Pydantic API validation but instead only caught by the
backend inference provider, that backend inference provider was
returning a HTTP 400 error. However, we were wrapping that into a HTTP
500 error, obfuscating the actual issue from calling clients and
triggering OpenAI client retry logic.
This change adjusts our existing `translate_exception` method in
`server.py` to wrap `openai.BadRequestError` as HTTP 400 errors, passing
through the string representation of the error message to the calling
user so they can see the actual input validation error and correct it. I
tried changing this in a few other places, but ultimately
`translate_exception` was the only real place to handle this for both
streaming and non-streaming requests across all inference providers that
use the OpenAI server APIs.
This also tightens up our validation a bit for the OpenAI chat
completions API, to catch empty `messages` parameters, invalid
`tool_choice` parameters, invalid `tools` items, or passing
`tool_choice` when `tools` isn't given.
Lastly, this extends our OpenAI API chat completions verifications to
also check for consistent input validation across providers. Providers
behind Llama Stack should automatically pass all the new tests due to
the input validation added here, but some of the providers fail this
test when not run behind Llama Stack due to differences in how they
handle input validation and errors.
(Closes#1951)
## Test Plan
To test this, start an OpenAI API verification stack:
```
llama stack run --image-type venv tests/verifications/openai-api-verification-run.yaml
```
Then, run the new verification tests with your provider(s) of choice:
```
python -m pytest -s -v \
tests/verifications/openai_api/test_chat_completion.py \
--provider openai-llama-stack
python -m pytest -s -v \
tests/verifications/openai_api/test_chat_completion.py \
--provider together-llama-stack
```
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
This PR adds the name of the tool that is used by the agent on the
"tools" page of the playground. See image below for an example.

## Test Plan
Run the playground and navigate to the tools page. There users can see
that this additional text is present when tools are invoked and absent
when they are not.
```
streamlit run llama_stack/distribution/ui/app.py
```
Signed-off-by: Michael Clifford <mcliffor@redhat.com>
# What does this PR do?
Previously, when a streaming client would disconnect before we were
finished streaming the entire response, an error like the below would
get raised from the `sse_generator` function in
`llama_stack/distribution/server/server.py`:
```
AttributeError: 'coroutine' object has no attribute 'aclose'. Did you mean: 'close'?
```
This was because we were calling `aclose` on a coroutine instead of the
awaited value from that coroutine. This change fixes that, so that we
save off the awaited value and then can call `aclose` on it if we
encounter an `asyncio.CancelledError`, like we see when a client
disconnects before we're finished streaming.
The other changes in here are to add a simple set of tests for the happy
path of our SSE streaming and this client disconnect path.
That unfortunately requires adding one more dependency into our unit
test section of pyproject.toml since `server.py` requires loading some
of the telemetry code for me to test this functionality.
## Test Plan
I wrote the tests in `tests/unit/server/test_sse.py` first, verified the
client disconnected test failed before my change, and that it passed
afterwards.
```
python -m pytest -s -v tests/unit/server/test_sse.py
```
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
Now, tool outputs and retrieved chunks from the vector DB (i.e.,
everything except for the actual model reply) are hidden under an
expander form when presented to the user.
# Test Plan
Navigate to the RAG page in the Playground UI.
# What does this PR do?
This PR cleans up the sidebar on the tools page of the playground in the
following ways:
* created a clearer hierarchy of configuration options and tool
selections.
* Removed the `mcp::` or `builtin::` prefixes from the tool selection
buttons.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
Run the playground and see the updated sidebar does not cause any new
errors.
```
streamlit run llama_stack/distribution/ui/app.py
```
[//]: # (## Documentation)
Signed-off-by: Michael Clifford <mcliffor@redhat.com>
37da47ef8e (diff-4d7c51b1efe9043e44439a949dfd92e5827321b34082903477fd04876edb7552)
Pydantic was updated from v1 to v2 in this commit which caused this
breaking change
# What does this PR do?
Part of #1857
This won't fix the Validation error with the example, but it will
correctly supply user with a proper error rather than a 5xx code.
Signed-off-by: Kevin <kpostlet@redhat.com>
# What does this PR do?
Fixes the UBI 9 container build failure ( `error: command 'gcc' failed`
when installing `polyleven`, `faiss`, etc.) by installing the missing
compiler tool‑chain:
- `python3.11-devel gcc` make added to the UBI 9 `dnf install` line.
### Closes#1970
## Test Plan
- Build a distro with an UBI image
# What does this PR do?
This PR lets users select an existing vdb to use with their agent on the
tools page of the playground. The drop down menu that lets users select
a vdb only appears when the rag tool is selected. Without this change,
there is no way for a user to specify which vdb they want their rag tool
to use on the tools page. I have intentionally left the RAG options
sparse here since the full RAG options are exposed on the RAG page.
## Test Plan
Without these changes the RAG tool will throw the following error:
`name: knowledge_search) does not have any content `
With these changes the RAG tool works as expected.
Signed-off-by: Michael Clifford <mcliffor@redhat.com>
# What does this PR do?
This PR adds a `max_tokens` slider to playground tools page. I have
found that in some instances the llama stack server throws a 500 error
if the max_tokens value is not explicitly set in the agent's
`sampling_params`. This PR, uses the same implementation of the
`max_tokens` slider from the chat page, and includes it on the tools
page.
## Test Plan
1. Attempting to call a tool without these changes results in a `500:
Internal server error: An unexpected error occurred`.
2. Attempting to call a tool with these changes results in the expected
output.
Signed-off-by: Michael Clifford <mcliffor@redhat.com>
## What does this PR do?
This PR improves the server's request routing logic by ensuring built-in
FastAPI paths such as `/docs`, `/redoc`, `/openapi.json`,
`/favicon.ico`, and `/static` bypass the custom `TracingMiddleware`.
This prevents unnecessary tracing logic for documentation and static
file requests, ensuring better performance and cleaner logs.
Additionally, it adds proper metadata (`title`, `description`, and
`version`) to the FastAPI application initialization and updates the
requirements document accordingly.
[//]: # (Closes#1822 )
---
## Test Plan
- Ran the server locally with `uvicorn` using the provided `run.yaml`
config
- Verified that:
- FastAPI docs (`/docs`, `/redoc`) load correctly without triggering the
custom tracing middleware
- All other routes still go through the middleware and trace logic
- Application metadata appears as expected in the OpenAPI docs
To reproduce:
1. Start the server with `python server.py --template <template-name>`
2. Navigate to `/docs` and `/redoc`
3. Confirm that no extra trace headers are added for those routes
4. Confirm other API endpoints behave as expected and include
`x-trace-id` in the response headers
[//]: # (## Documentation)
---
Froze the requirements file to include many of the other libraries that
have been added in the past few releases to make install easier.
---------
Co-authored-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
TLDR: Changes needed to get 100% passing tests for OpenAI API
verification tests when run against Llama Stack with the `together`,
`fireworks`, and `openai` providers. And `groq` is better than before,
at 88% passing.
This cleans up the OpenAI API support for image message types
(specifically `image_url` types) and handling of the `response_format`
chat completion parameter. Both of these required a few more Pydantic
model definitions in our Inference API, just to move from the
not-quite-right stubs I had in place to something fleshed out to match
the actual OpenAI API specs.
As part of testing this, I also found and fixed a bug in the litellm
implementation of openai_completion and openai_chat_completion, so the
providers based on those should actually be working now.
The method `prepare_openai_completion_params` in
`llama_stack/providers/utils/inference/openai_compat.py` was improved to
actually recursively clean up input parameters, including handling of
lists, dicts, and dumping of Pydantic models to dicts. These changes
were required to get to 100% passing tests on the OpenAI API
verification against the `openai` provider.
With the above, the together.ai provider was passing as well as it is
without Llama Stack. But, since we have Llama Stack in the middle, I
took the opportunity to clean up the together.ai provider so that it now
also passes the OpenAI API spec tests we have at 100%. That means
together.ai is now passing our verification test better when using an
OpenAI client talking to Llama Stack than it is when hitting together.ai
directly, without Llama Stack in the middle.
And, another round of work for Fireworks to improve translation of
incoming OpenAI chat completion requests to Llama Stack chat completion
requests gets the fireworks provider passing at 100%. The server-side
fireworks.ai tool calling support with OpenAI chat completions and Llama
4 models isn't great yet, but by pointing the OpenAI clients at Llama
Stack's API we can clean things up and get everything working as
expected for Llama 4 models.
## Test Plan
### OpenAI API Verification Tests
I ran the OpenAI API verification tests as below and 100% of the tests
passed.
First, start a Llama Stack server that runs the `openai` provider with
the `gpt-4o` and `gpt-4o-mini` models deployed. There's not a template
setup to do this out of the box, so I added a
`tests/verifications/openai-api-verification-run.yaml` to do this.
First, ensure you have the necessary API key environment variables set:
```
export TOGETHER_API_KEY="..."
export FIREWORKS_API_KEY="..."
export OPENAI_API_KEY="..."
```
Then, run a Llama Stack server that serves up all these providers:
```
llama stack run \
--image-type venv \
tests/verifications/openai-api-verification-run.yaml
```
Finally, generate a new verification report against all these providers,
both with and without the Llama Stack server in the middle.
```
python tests/verifications/generate_report.py \
--run-tests \
--provider \
together \
fireworks \
groq \
openai \
together-llama-stack \
fireworks-llama-stack \
groq-llama-stack \
openai-llama-stack
```
You'll see that most of the configurations with Llama Stack in the
middle now pass at 100%, even though some of them do not pass at 100%
when hitting the backend provider's API directly with an OpenAI client.
### OpenAI Completion Integration Tests with vLLM:
I also ran the smaller `test_openai_completion.py` test suite (that's
not yet merged with the verification tests) on multiple of the
providers, since I had to adjust the method signature of
openai_chat_completion a bit and thus had to touch lots of these
providers to match. Here's the tests I ran there, all passing:
```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run
```
in another terminal
```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct"
```
### OpenAI Completion Integration Tests with ollama
```
INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run
```
in another terminal
```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0"
```
### OpenAI Completion Integration Tests with together.ai
```
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" llama stack build --template together --image-type venv --run
```
in another terminal
```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct-Turbo" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct-Turbo"
```
### OpenAI Completion Integration Tests with fireworks.ai
```
INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" llama stack build --template fireworks --image-type venv --run
```
in another terminal
```
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.1-8B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.1-8B-Instruct"
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
This PR adds two methods to the Inference API:
- `batch_completion`
- `batch_chat_completion`
The motivation is for evaluations targeting a local inference engine
(like meta-reference or vllm) where batch APIs provide for a substantial
amount of acceleration.
Why did I not add this to `Api.batch_inference` though? That just
resulted in a _lot_ more book-keeping given the structure of Llama
Stack. Had I done that, I would have needed to create a notion of a
"batch model" resource, setup routing based on that, etc. This does not
sound ideal.
So what's the future of the batch inference API? I am not sure. Maybe we
can keep it for true _asynchronous_ execution. So you can submit
requests, and it can return a Job instance, etc.
## Test Plan
Run meta-reference-gpu using:
```bash
export INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct
export INFERENCE_CHECKPOINT_DIR=../checkpoints/Llama-4-Scout-17B-16E-Instruct-20250331210000
export MODEL_PARALLEL_SIZE=4
export MAX_BATCH_SIZE=32
export MAX_SEQ_LEN=6144
LLAMA_MODELS_DEBUG=1 llama stack run meta-reference-gpu
```
Then run the batch inference test case.
Small docs update and an update for `start-stack.sh` with missing color
and if statment logic.
# What does this PR do?
1. Makes a small change to start-stack.sh to resolve this error:
```cmd
/home/aireilly/.local/lib/python3.13/site-packages/llama_stack/distribution/start_stack.sh: line 76: [: missing ]'
```
2. Adds a missing $GREEN colour to start-stack.sh
3. Updated `docs/source/getting_started/detailed_tutorial.md` with some
small changes and corrections.
## Test Plan
Procedures described in
`docs/source/getting_started/detailed_tutorial.md` were verified on
Linux Fedora 41.
# What does this PR do?
This stubs in some OpenAI server-side compatibility with three new
endpoints:
/v1/openai/v1/models
/v1/openai/v1/completions
/v1/openai/v1/chat/completions
This gives common inference apps using OpenAI clients the ability to
talk to Llama Stack using an endpoint like
http://localhost:8321/v1/openai/v1 .
The two "v1" instances in there isn't awesome, but the thinking is that
Llama Stack's API is v1 and then our OpenAI compatibility layer is
compatible with OpenAI V1. And, some OpenAI clients implicitly assume
the URL ends with "v1", so this gives maximum compatibility.
The openai models endpoint is implemented in the routing layer, and just
returns all the models Llama Stack knows about.
The following providers should be working with the new OpenAI
completions and chat/completions API:
* remote::anthropic (untested)
* remote::cerebras-openai-compat (untested)
* remote::fireworks (tested)
* remote::fireworks-openai-compat (untested)
* remote::gemini (untested)
* remote::groq-openai-compat (untested)
* remote::nvidia (tested)
* remote::ollama (tested)
* remote::openai (untested)
* remote::passthrough (untested)
* remote::sambanova-openai-compat (untested)
* remote::together (tested)
* remote::together-openai-compat (untested)
* remote::vllm (tested)
The goal to support this for every inference provider - proxying
directly to the provider's OpenAI endpoint for OpenAI-compatible
providers. For providers that don't have an OpenAI-compatible API, we'll
add a mixin to translate incoming OpenAI requests to Llama Stack
inference requests and translate the Llama Stack inference responses to
OpenAI responses.
This is related to #1817 but is a bit larger in scope than just chat
completions, as I have real use-cases that need the older completions
API as well.
## Test Plan
### vLLM
```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" llama stack build --template remote-vllm --image-type venv --run
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "meta-llama/Llama-3.2-3B-Instruct"
```
### ollama
```
INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" llama stack build --template ollama --image-type venv --run
LLAMA_STACK_CONFIG=http://localhost:8321 INFERENCE_MODEL="llama3.2:3b-instruct-q8_0" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-q8_0"
```
## Documentation
Run a Llama Stack distribution that uses one of the providers mentioned
in the list above. Then, use your favorite OpenAI client to send
completion or chat completion requests with the base_url set to
http://localhost:8321/v1/openai/v1 . Replace "localhost:8321" with the
host and port of your Llama Stack server, if different.
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
This PR makes it possible to switch between agentic and non-agentic RAG
when running the respective Playground page.
When non-agentic RAG is selected, user queries are answered by directly
querying the vector DB, augmenting the prompt, and sending the extended
prompt to the model via Inference API.
## Test Plan
- Launch the Playground and go to the RAG page;
- Select the vector DB ID;
- Adjust other configuration parameters if necessary;
- Set the radio button to Agent-based RAG;
- Send a message to the chat;
- The query will be answered by an agent using the knowledge search tool
as indicated by the output;
- Click the 'Clear Chat' button to make it possible to switch modes;
- Send a message to the chat again;
- This time, the query will be answered by the model directly as can be
deduced from the reply.
# What does this PR do?
closes https://github.com/meta-llama/llama-stack/issues/1586
this issue arises when loading an mcp_endpoint from run.yaml. the issue
does not manifest for mcp servers added via a running distro server. the
existing tests only cover the case of adding to a running server.
the code for loading run.yaml strips type information from mcp_endpoint,
passing `{"uri": ...}` instead of `URL(uri=...)` along to the resource
provider registration.
## Test Plan
1. run an mcp server
2. add an mcp tool config to the dev.py, e.g.
```
diff --git a/llama_stack/templates/dev/dev.py b/llama_stack/templates/dev/dev.py
index 69924acb..e0dc7189 100644
--- a/llama_stack/templates/dev/dev.py
+++ b/llama_stack/templates/dev/dev.py
@@ -6,6 +6,8 @@
from typing import List, Tuple
+from llama_stack.apis.common.content_types import URL
+
from llama_stack.apis.models.models import ModelType
from llama_stack.distribution.datatypes import (
ModelInput,
@@ -154,6 +156,11 @@ def get_distribution_template() -> DistributionTemplate:
toolgroup_id="builtin::code_interpreter",
provider_id="code-interpreter",
),
+ ToolGroupInput(
+ toolgroup_id="mcp::filesystem",
+ provider_id="model-context-protocol",
+ mcp_endpoint=URL(uri="http://localhost:8002/sse"),
+ ),
]
embedding_model = ModelInput(
model_id="all-MiniLM-L6-v2",
```
3. run distro_codegen.py
4. llama stack build --template dev --run
before this pr, the `llama stack run` would fail w/ `AttributeError:
'dict' object has no attribute 'uri'`, after it will succeed.
# What does this PR do?
This PR fixes two issues with the RAG page of the Playground UI:
1. When the user modifies a configurable setting via a widget (e.g.,
system prompt, temperature, etc.), the agent is not recreated. Thus, the
change has no effect and the user gets no indication of that.
2. After the first issue is fixed, it becomes possible to recreate the
agent mid-conversation or even mid-generation. To mitigate this, widgets
related to agent configuration are now disabled when a conversation is
in progress (i.e., when the chat is non-empty). They are automatically
enabled again when the user resets the chat history.
## Test Plan
- Launch the Playground and go to the RAG page;
- Select the vector DB ID;
- Send a message to the agent via the chat;
- The widgets in charge of the agent parameters will become disabled at
this point;
- Send a second message asking the model about the content of the first
message;
- The reply will indicate that the two messages were sent over the same
session, that is, the agent was not recreated;
- Click the 'Clear Chat' button;
- All widgets will be enabled and a new agent will be created (which can
be validated by sending another message).
# What does this PR do?
* Manage UI deps in pyproject
* Use a new "ui" dep group to pull the deps with "uv"
* Simplify the run command
* Bump versions in requirements.txt
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
This PR adds the "TAVILY_SEARCH_API_KEY" option to the playground to
enable the use of the websearch tool.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
```
export TAVILY_SEARCH_API_KEY=***
streamlit run llama_stack/distribution/ui/app.py
```
Without this change the builtin websearch tool will fail due to missing
API key.
[//]: # (## Documentation)
Related to #1902
Signed-off-by: Michael Clifford <mcliffor@redhat.com>
# What does this PR do?
This PR adds an additional page to the playground called "Tools". This
page connects to a llama-stack server and lists all the available LLM
models, builtin tools and MCP tools in the sidebar. Users can select
whatever combination of model and tools they want from the sidebar for
their agent. Once the selections are made, users can chat with their
agent similarly to the RAG page and test out agent tool use.
closes#1902
## Test Plan
Ran the following commands with a llama-stack server and the updated
playground worked as expected.
```
export LLAMA_STACK_ENDPOINT="http://localhost:8321"
streamlit run llama_stack/distribution/ui/app.py
```
[//]: # (## Documentation)
Signed-off-by: Michael Clifford <mcliffor@redhat.com>
**What does this PR do?**
This PR fixes a build issue with the Containerfile caused by missing
requirement `llama-stack`. It updates the Containerfile to include the
necessary requirements and upgrades the Python version to ensure
successful builds.
**Test Plan**
The updated Containerfile has been tested, and the build now completes
successfully with the required dependencies included.
# What does this PR do?
Fixes issue #1537 that causes "500 Internal Server Error" when
unregistering a toolgroup
# (Closes#1537 )
## Test Plan
```console
$ pytest -s -v tests/integration/tool_runtime/test_registration.py --stack-config=ollama --env INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
INFO 2025-03-14 21:15:03,999 tests.integration.conftest:41 tests: Setting DISABLE_CODE_SANDBOX=1 for macOS
/opt/homebrew/lib/python3.10/site-packages/pytest_asyncio/plugin.py:207: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"
warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
===================================================== test session starts =====================================================
platform darwin -- Python 3.10.16, pytest-8.3.5, pluggy-1.5.0 -- /opt/homebrew/opt/python@3.10/bin/python3.10
cachedir: .pytest_cache
rootdir: /Users/paolo/Projects/aiplatform/llama-stack
configfile: pyproject.toml
plugins: asyncio-0.25.3, anyio-4.8.0
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 1 item
tests/integration/tool_runtime/test_registration.py::test_register_and_unregister_toolgroup[None-None-None-None-None] INFO 2025-03-14 21:15:04,478 llama_stack.providers.remote.inference.ollama.ollama:75 inference: checking
connectivity to Ollama at `http://localhost:11434`...
INFO 2025-03-14 21:15:05,350 llama_stack.providers.remote.inference.ollama.ollama:294 inference: Pulling embedding
model `all-minilm:latest` if necessary...
INFO: Started server process [78391]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
INFO: 127.0.0.1:57424 - "GET /sse HTTP/1.1" 200 OK
INFO: 127.0.0.1:57434 - "GET /sse HTTP/1.1" 200 OK
INFO 2025-03-14 21:15:16,129 mcp.client.sse:51 uncategorized: Connecting to SSE endpoint: http://localhost:8000/sse
INFO: 127.0.0.1:57445 - "GET /sse HTTP/1.1" 200 OK
INFO 2025-03-14 21:15:16,146 mcp.client.sse:71 uncategorized: Received endpoint URL:
http://localhost:8000/messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b
INFO 2025-03-14 21:15:16,147 mcp.client.sse:140 uncategorized: Starting post writer with endpoint URL:
http://localhost:8000/messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b
INFO: 127.0.0.1:57447 - "POST /messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b HTTP/1.1" 202 Accepted
INFO: 127.0.0.1:57447 - "POST /messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b HTTP/1.1" 202 Accepted
INFO: 127.0.0.1:57447 - "POST /messages/?session_id=c5b6fc01f8dc4b5e80e38eb1c1b22a9b HTTP/1.1" 202 Accepted
INFO 2025-03-14 21:15:16,155 mcp.server.lowlevel.server:535 uncategorized: Processing request of type
ListToolsRequest
PASSED
=============================================== 1 passed, 4 warnings in 12.17s ================================================
```
---------
Signed-off-by: Paolo Dettori <dettori@us.ibm.com>
# What does this PR do?
Providers that live outside of the llama-stack codebase are now
supported.
A new property `external_providers_dir` has been added to the main
config and can be configured as follow:
```
external_providers_dir: /etc/llama-stack/providers.d/
```
Where the expected structure is:
```
providers.d/
inference/
custom_ollama.yaml
vllm.yaml
vector_io/
qdrant.yaml
```
Where `custom_ollama.yaml` is:
```
adapter:
adapter_type: custom_ollama
pip_packages: ["ollama", "aiohttp"]
config_class: llama_stack_ollama_provider.config.OllamaImplConfig
module: llama_stack_ollama_provider
api_dependencies: []
optional_api_dependencies: []
```
Obviously the package must be installed on the system, here is the
`llama_stack_ollama_provider` example:
```
$ uv pip show llama-stack-ollama-provider
Using Python 3.10.16 environment at: /Users/leseb/Documents/AI/llama-stack/.venv
Name: llama-stack-ollama-provider
Version: 0.1.0
Location: /Users/leseb/Documents/AI/llama-stack/.venv/lib/python3.10/site-packages
Editable project location: /private/var/folders/mq/rnm5w_7s2d3fxmtkx02knvhm0000gn/T/tmp.ZBHU5Ezxg4/ollama/llama-stack-ollama-provider
Requires:
Required-by:
```
Closes: https://github.com/meta-llama/llama-stack/issues/658
Signed-off-by: Sébastien Han <seb@redhat.com>
Move the test_context.py under the main tests directory, and fix the
code.
The problem was that the function captures the initial values of the
context variables and then restores those same initial values before
each iteration. This means that any modifications made to the context
variables during iteration are lost when the next iteration starts.
Error was:
```
====================================================== FAILURES =======================================================
______________________________________ test_preserve_contexts_across_event_loops ______________________________________
@pytest.mark.asyncio
async def test_preserve_contexts_across_event_loops():
"""
Test that context variables are preserved across event loop boundaries with nested generators.
This simulates the real-world scenario where:
1. A new event loop is created for each streaming request
2. The async generator runs inside that loop
3. There are multiple levels of nested generators
4. Context needs to be preserved across these boundaries
"""
# Create context variables
request_id = ContextVar("request_id", default=None)
user_id = ContextVar("user_id", default=None)
# Set initial values
# Results container to verify values across thread boundaries
results = []
# Inner-most generator (level 2)
async def inner_generator():
# Should have the context from the outer scope
yield (1, request_id.get(), user_id.get())
# Modify one context variable
user_id.set("user-modified")
# Should reflect the modification
yield (2, request_id.get(), user_id.get())
# Middle generator (level 1)
async def middle_generator():
inner_gen = inner_generator()
# Forward the first yield from inner
item = await inner_gen.__anext__()
yield item
# Forward the second yield from inner
item = await inner_gen.__anext__()
yield item
request_id.set("req-modified")
# Add our own yield with both modified variables
yield (3, request_id.get(), user_id.get())
# Function to run in a separate thread with a new event loop
def run_in_new_loop():
# Create a new event loop for this thread
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
# Outer generator (runs in the new loop)
async def outer_generator():
request_id.set("req-12345")
user_id.set("user-6789")
# Wrap the middle generator
wrapped_gen = preserve_contexts_async_generator(middle_generator(), [request_id, user_id])
# Process all items from the middle generator
async for item in wrapped_gen:
# Store results for verification
results.append(item)
# Run the outer generator in the new loop
loop.run_until_complete(outer_generator())
finally:
loop.close()
# Run the generator chain in a separate thread with a new event loop
with ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(run_in_new_loop)
future.result() # Wait for completion
# Verify the results
assert len(results) == 3
# First yield should have original values
assert results[0] == (1, "req-12345", "user-6789")
# Second yield should have modified user_id
assert results[1] == (2, "req-12345", "user-modified")
# Third yield should have both modified values
> assert results[2] == (3, "req-modified", "user-modified")
E AssertionError: assert (3, 'req-modified', 'user-6789') == (3, 'req-modified', 'user-modified')
E
E At index 2 diff: 'user-6789' != 'user-modified'
E
E Full diff:
E (
E 3,
E 'req-modified',
E - 'user-modified',
E + 'user-6789',
E )
tests/unit/distribution/test_context.py:155: AssertionError
-------------------------------------------------- Captured log call --------------------------------------------------
ERROR asyncio:base_events.py:1758 Task was destroyed but it is pending!
task: <Task pending name='Task-7' coro=<<async_generator_athrow without __name__>()>>
================================================== warnings summary ===================================================
.venv/lib/python3.10/site-packages/pydantic/fields.py:1042
/Users/leseb/Documents/AI/llama-stack/.venv/lib/python3.10/site-packages/pydantic/fields.py:1042: PydanticDeprecatedSince20: Using extra keyword arguments on `Field` is deprecated and will be removed. Use `json_schema_extra` instead. (Extra keys: 'contentEncoding'). Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.10/migration/
warn(
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
=============================================== short test summary info ===============================================
FAILED tests/unit/distribution/test_context.py::test_preserve_contexts_across_event_loops - AssertionError: assert (3, 'req-modified', 'user-6789') == (3, 'req-modified', 'user-modified')
At index 2 diff: 'user-6789' != 'user-modified'
Full diff:
(
3,
'req-modified',
- 'user-modified',
+ 'user-6789',
)
```
[//]: # (## Documentation)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
This PR updates the [playground RAG
example](llama_stack/distribution/ui/page/playground/rag.py) so that the
agent is able to use its builtin conversation history. Here we are using
streamlit's `cache_resource` functionality to prevent the agent from
re-initializing after every interaction as well as storing its
session_id in the `session_state`. This allows the agent in the RAG
example to behave more closely to how it works using the python-client
directly.
[//]: # (If resolving an issue, uncomment and update the line below)
Closes#1869
## Test Plan
Without these changes, if you ask it "What is 2 + 2"? followed by the
question "What did I just ask?" It will provide an obviously incorrect
answer.
With these changes, you can ask the same series of questions and it will
provide the correct answer.
[//]: # (## Documentation)
Signed-off-by: Michael Clifford <mcliffor@redhat.com>
# What does this PR do?
Don't return list for runtime tools. Instead return Response object for
pagination and consistency with other APIs.
---------
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
Move pagination logic from LocalFS and HuggingFace implementations into
a common helper function to ensure consistent pagination behavior across
providers. This reduces code duplication and centralizes pagination
logic in one place.
## Test Plan
Run this script:
```
from llama_stack_client import LlamaStackClient
# Initialize the client
client = LlamaStackClient(base_url="http://localhost:8321")
# Register a dataset
response = client.datasets.register(
purpose="eval/messages-answer", # or "eval/question-answer" or "post-training/messages"
source={"type": "uri", "uri": "huggingface://datasets/llamastack/simpleqa?split=train"},
dataset_id="my_dataset", # optional, will be auto-generated if not provided
metadata={"description": "My evaluation dataset"}, # optional
)
# Verify the dataset was registered by listing all datasets
datasets = client.datasets.list()
print(f"Registered datasets: {[d.identifier for d in datasets]}")
# You can then access the data using the datasetio API
# rows = client.datasets.iterrows(dataset_id="my_dataset", start_index=1, limit=2)
rows = client.datasets.iterrows(dataset_id="my_dataset")
print(f"Data: {rows.data}")
```
And play with `start_index` and `limit`.
[//]: # (## Documentation)
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
Adding chunk_size_in_tokens to playground rag_tool insert.
# Closes#1825
## Test Plan
Tested locally.
[//]: # (## Documentation)
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
This is the second attempt to switch to system packages by default. Now
with a hack to detect conda environment - in which case conda image-type
is used.
Note: Conda will only be used when --image-name is unset *and*
CONDA_DEFAULT_ENV is set. This means that users without conda will
correctly fall back to using system packages when no --image-* arguments
are passed at all.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
Uses virtualenv:
```
$ llama stack build --template ollama --image-type venv
$ llama stack run --image-type venv ~/.llama/distributions/ollama/ollama-run.yaml
[...]
Using virtual environment: /home/ec2-user/src/llama-stack/schedule/.local
[...]
```
Uses system packages (virtualenv already initialized):
```
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
INFO 2025-03-27 20:46:22,882 llama_stack.cli.stack.run:142 server: No image type or image name provided. Assuming environment packages.
[...]
```
Attempt to run from environment packages without necessary packages
installed:
```
$ python -m venv barebones
$ . ./barebones/bin/activate
$ pip install -e . # to install llama command
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
ModuleNotFoundError: No module named 'fastapi'
```
^ failed as expected because the environment doesn't have necessary
packages installed.
Now install some packages in the new environment:
```
$ pip install fastapi opentelemetry-api opentelemetry-sdk opentelemetry-exporter-otlp aiosqlite ollama openai datasets faiss-cpu mcp autoevals
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
```
Now see if setting CONDA_DEFAULT_ENV will change what happens by
default:
```
$ export CONDA_DEFAULT_ENV=base
$ llama stack run ~/.llama/distributions/ollama/ollama-run.yaml
[...]
Using conda environment: base
Conda environment base does not exist.
[...]
```
---------
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
Fixes multiple issues
1. llama stack build of dependencies was breaking with incompatible
numpy / pandas when importing datasets
Moved the notebook to start a local server instead of using library as a
client. This way the setup is cleaner since its all contained and by
using `uv run --with` we can test both the server setup process too in
CI and release time.
2. The change to [1] surfaced some other issues
- running `llama stack run` was defaulting to conda env name
- provider data was not being managed properly
- Some notebook cells (telemetry for evals) were not updated with latest
changes
Fixed all the issues and update the notebook.
### Test
1. Manually run it all in local env
2. `pytest -v -s --nbval-lax docs/getting_started.ipynb`
# What does this PR do?
This is to stay consistent with other APIs.
This change registers files in API, even though there are still no
providers. Removing tests that require a provider existing for a merged
API to enable it in API layer.
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
1) Uses otel compatible id generation for stack
2) Stack starts returning trace id info in the header of response
3) We inject the same trace id that we have into otel in order to force
it to use our trace ids.
## Test Plan
```
curl -i --request POST \
--url http://localhost:8321/v1/inference/chat-completion \
--header 'content-type: application/json' \
--data '{
"model_id": "meta-llama/Llama-3.1-70B-Instruct",
"messages": [
{
"role": "user",
"content": {
"type": "text",
"text": "where do humans live"
}
}
],
"stream": false
}'
HTTP/1.1 200 OK
date: Fri, 21 Mar 2025 21:51:19 GMT
server: uvicorn
content-length: 1712
content-type: application/json
x-trace-id: 595101ede31ece116ebe35b26d67e8cf
{"metrics":[{"metric":"prompt_tokens","value":10,"unit":null},{"metric":"completion_tokens","value":320,"unit":null},{"metric":"total_tokens","value":330,"unit":null}],"completion_message":{"role":"assistant","content":"Humans live on the planet Earth, specifically on its landmasses and in its oceans. Here's a breakdown of where humans live:\n\n1. **Continents:** Humans inhabit all seven continents:\n\t* Africa\n\t* Antarctica ( temporary residents, mostly scientists and researchers)\n\t* Asia\n\t* Australia\n\t* Europe\n\t* North America\n\t* South America\n2. **Countries:** There are 196 countries recognized by the United Nations, and humans live in almost all of them.\n3. **Cities and towns:** Many humans live in urban areas, such as cities and towns, which are often located near coastlines, rivers, or other bodies of water.\n4. **Rural areas:** Some humans live in rural areas, such as villages, farms, and countryside.\n5. **Islands:** Humans inhabit many islands around the world, including tropical islands, island nations, and islands in the Arctic and Antarctic regions.\n6. **Underwater habitats:** A few humans live in underwater habitats, such as research stations and submarines.\n7. **Space:** A small number of humans have lived in space, including astronauts on the International Space Station and those who have visited the Moon.\n\nIn terms of specific environments, humans live in a wide range of ecosystems, including:\n\n* Deserts\n* Forests\n* Grasslands\n* Mountains\n* Oceans\n* Rivers\n* Tundras\n* Wetlands\n\nOverall, humans are incredibly adaptable and can be found living in almost every corner of the globe.","stop_reason":"end_of_turn","tool_calls":[]},"logprobs":null}
```
Same trace id in Jaeger and sqlite:


# What does this PR do?
- We cannot directly return a literal type
> Note: this is not final jobs API change
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
<img width="837" alt="image"
src="https://github.com/user-attachments/assets/18a17561-35f9-443d-987d-54afdd6ff40c"
/>
[//]: # (## Documentation)