# What does this PR do?
the LiteLLMOpenAIMixin provides support for reading key from provider
data (headers users send).
this adds the same functionality to the OpenAIMixin.
this is infrastructure for migrating providers.
## Test Plan
ci w/ new tests
# What does this PR do?
When a model decides to use an MCP tool call that requires no arguments,
it sets the `arguments` field to `None`. This causes the user to see a
`400 bad requst error` due to validation errors down the stack because
this field gets removed when being parsed by an openai compatible
inference provider like vLLM
This PR ensures that, as soon as the tool call args are accumulated
while streaming, we check to ensure no tool call function arguments are
set to None - if they are we replace them with "{}"
<!-- If resolving an issue, uncomment and update the line below -->
Closes#3456
## Test Plan
Added new unit test to verify that any tool calls with function
arguments set to `None` get handled correctly
---------
Signed-off-by: Jaideep Rao <jrao@redhat.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
Fireworks doesn't allow repsonse_format with tool use. The default
response format is 'text' anyway, so we can safely omit.
## Test Plan
Below script failed without the change, runs after.
```
#!/usr/bin/env python3
"""
Script to test Responses API with kubernetes-mcp-server.
This script:
1. Connects to the llama stack server
2. Uses the Responses API with MCP tools
3. Asks for the list of Kubernetes namespaces using the kubernetes-mcp-server
"""
import json
from openai import OpenAI
# Connect to the llama stack server
base_url = "http://localhost:8321/v1"
client = OpenAI(base_url=base_url, api_key="fake")
# Define the MCP tool pointing to the kubernetes-mcp-server
# The kubernetes-mcp-server is running on port 3000 with SSE endpoint at /sse
mcp_server_url = "http://localhost:3000/sse"
tools = [
{
"type": "mcp",
"server_label": "k8s",
"server_url": mcp_server_url,
}
]
# Create a response request asking for k8s namespaces
print("Sending request to list Kubernetes namespaces...")
print(f"Using MCP server at: {mcp_server_url}")
print("Available tools will be listed automatically by the MCP server.")
print()
response = client.responses.create(
# model="meta-llama/Llama-3.2-3B-Instruct", # Using the vllm model
model="fireworks/accounts/fireworks/models/llama4-scout-instruct-basic",
# model="openai/gpt-4o",
input="what are all the Kubernetes namespaces? Use tool call to `namespaces_list`. make sure to adhere to the tool calling format UNDER ALL CIRCUMSTANCES.",
tools=tools,
stream=False,
)
print("\n" + "=" * 80)
print("RESPONSE OUTPUT:")
print("=" * 80)
# Print the output
for i, output in enumerate(response.output):
print(f"\n[Output {i + 1}] Type: {output.type}")
if output.type == "mcp_list_tools":
print(f" Server: {output.server_label}")
print(f" Tools available: {[t.name for t in output.tools]}")
elif output.type == "mcp_call":
print(f" Tool called: {output.name}")
print(f" Arguments: {output.arguments}")
print(f" Result: {output.output}")
if output.error:
print(f" Error: {output.error}")
elif output.type == "message":
print(f" Role: {output.role}")
print(f" Content: {output.content}")
print("\n" + "=" * 80)
print("FINAL RESPONSE TEXT:")
print("=" * 80)
print(response.output_text)
```
https://github.com/llamastack/llama-stack/pull/3604 broke multipart form
data field parsing for the Files API since it changed its shape -- so as
to match the API exactly to the OpenAI spec even in the generated client
code.
The underlying reason is that multipart/form-data cannot transport
structured nested fields. Each field must be str-serialized. The client
(specifically the OpenAI client whose behavior we must match),
transports sub-fields as `expires_after[anchor]` and
`expires_after[seconds]`, etc. We must be able to handle these fields
somehow on the server without compromising the shape of the YAML spec.
This PR "fixes" this by adding a dependency to convert the data. The
main trade-off here is that we must add this `Depends()` annotation on
every provider implementation for Files. This is a headache, but a much
more reasonable one (in my opinion) given the alternatives.
## Test Plan
Tests as shown in
https://github.com/llamastack/llama-stack/pull/3604#issuecomment-3351090653
pass.
# What does this PR do?
Fixes error:
```
[ERROR] Error executing endpoint route='/v1/openai/v1/responses'
method='post': Error code: 400 - {'error': {'message': "Invalid schema for function 'pods_exec': In context=('properties', 'command'), array
schema missing items.", 'type': 'invalid_request_error', 'param': 'tools[7].function.parameters', 'code': 'invalid_function_parameters'}}
```
From script:
```
#!/usr/bin/env python3
"""
Script to test Responses API with kubernetes-mcp-server.
This script:
1. Connects to the llama stack server
2. Uses the Responses API with MCP tools
3. Asks for the list of Kubernetes namespaces using the kubernetes-mcp-server
"""
import json
from openai import OpenAI
# Connect to the llama stack server
base_url = "http://localhost:8321/v1/openai/v1"
client = OpenAI(base_url=base_url, api_key="fake")
# Define the MCP tool pointing to the kubernetes-mcp-server
# The kubernetes-mcp-server is running on port 3000 with SSE endpoint at /sse
mcp_server_url = "http://localhost:3000/sse"
tools = [
{
"type": "mcp",
"server_label": "k8s",
"server_url": mcp_server_url,
}
]
# Create a response request asking for k8s namespaces
print("Sending request to list Kubernetes namespaces...")
print(f"Using MCP server at: {mcp_server_url}")
print("Available tools will be listed automatically by the MCP server.")
print()
response = client.responses.create(
# model="meta-llama/Llama-3.2-3B-Instruct", # Using the vllm model
model="openai/gpt-4o",
input="what are all the Kubernetes namespaces? Use tool call to `namespaces_list`. make sure to adhere to the tool calling format.",
tools=tools,
stream=False,
)
print("\n" + "=" * 80)
print("RESPONSE OUTPUT:")
print("=" * 80)
# Print the output
for i, output in enumerate(response.output):
print(f"\n[Output {i + 1}] Type: {output.type}")
if output.type == "mcp_list_tools":
print(f" Server: {output.server_label}")
print(f" Tools available: {[t.name for t in output.tools]}")
elif output.type == "mcp_call":
print(f" Tool called: {output.name}")
print(f" Arguments: {output.arguments}")
print(f" Result: {output.output}")
if output.error:
print(f" Error: {output.error}")
elif output.type == "message":
print(f" Role: {output.role}")
print(f" Content: {output.content}")
print("\n" + "=" * 80)
print("FINAL RESPONSE TEXT:")
print("=" * 80)
print(response.output_text)
```
## Test Plan
new unit tests
script now runs successfully
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR fix#3300 by adding mime type of application/json support in
[agent_instance.py](4a59961a6c/llama_stack/providers/inline/agents/meta_reference/agent_instance.py (L923))
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[3300] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
all related pytest passed, see log:
```
./scripts/unit-tests.sh tests/unit/providers/agent/test_get_raw_document_text.py -vvv
/Users/kaiwu/work/kaiwu/llama-stack/.venv/bin/python3
Uninstalled 22 packages in 5.65s
Installed 47 packages in 1.24s
================= test session starts =================
platform darwin -- Python 3.12.9, pytest-8.4.2, pluggy-1.6.0 -- /Users/kaiwu/work/kaiwu/llama-stack/.venv/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.12.9', 'Platform': 'macOS-15.6.1-arm64-arm-64bit', 'Packages': {'pytest': '8.4.2', 'pluggy': '1.6.0'}, 'Plugins': {'anyio': '4.9.0', 'html': '4.1.1', 'socket': '0.7.0', 'asyncio': '1.1.0', 'json-report': '1.5.0', 'timeout': '2.4.0', 'metadata': '3.1.1', 'cov': '6.2.1', 'nbval': '0.11.0'}}
rootdir: /Users/kaiwu/work/kaiwu/llama-stack
configfile: pyproject.toml
plugins: anyio-4.9.0, html-4.1.1, socket-0.7.0, asyncio-1.1.0, json-report-1.5.0, timeout-2.4.0, metadata-3.1.1, cov-6.2.1, nbval-0.11.0
asyncio: mode=Mode.AUTO, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function
collected 14 items
tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_supports_text_mime_types PASSED
tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_supports_yaml_mime_type PASSED
tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_supports_deprecated_text_yaml_with_warning PASSED
tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_deprecated_text_yaml_with_url PASSED
tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_deprecated_text_yaml_with_text_content_item PASSED
tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_supports_json_mime_type PASSED
tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_with_json_url PASSED
tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_with_json_text_content_item PASSED
tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_rejects_unsupported_mime_types PASSED
tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_with_url_content PASSED
tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_with_yaml_url PASSED
tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_with_text_content_item PASSED
tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_with_yaml_text_content_item PASSED
tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_rejects_unexpected_content_type PASSED
================ slowest 10 durations =================
0.00s call tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_deprecated_text_yaml_with_url
0.00s call tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_rejects_unsupported_mime_types
0.00s call tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_rejects_unexpected_content_type
0.00s setup tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_supports_text_mime_types
0.00s teardown tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_supports_text_mime_types
0.00s call tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_with_yaml_url
0.00s call tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_with_url_content
0.00s teardown tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_rejects_unsupported_mime_types
0.00s call tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_with_json_url
0.00s call tests/unit/providers/agent/test_get_raw_document_text.py::test_get_raw_document_text_supports_text_mime_types
================= 14 passed in 0.14s ==================
Generating coverage report...
Wrote HTML report to htmlcov-3.12/index.html
```
# What does this PR do?
Mirroring the same changes that was used for inference_store:
https://github.com/llamastack/llama-stack/pull/3383
Will follow up with a shared internal API for managing these write
queues.
## Test Plan
existing tests
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
Add items and title to ToolParameter/ToolParamDefinition. Adding items
will resolve the issue that occurs with Gemini LLM when an MCP tool has
array-type properties.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Unite test cases will be added.
---------
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Kai Wu <kaiwu@meta.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
simplify Ollama inference adapter by -
- moving image_url download code to OpenAIMixin
- being a ModelRegistryHelper instead of having one (mypy blocks
check_model_availability method assignment)
## Test Plan
- add unit tests for new download feature
- add integration tests for openai_chat_completion w/ image_url (close
test gap)
# What does this PR do?
- remove auto-download of ollama embedding models
- add embedding model metadata to dynamic listing w/ unit test
- add support and tests for allowed_models
- removed inference provider models.py files where dynamic listing is
enabled
- store embedding metadata in embedding_model_metadata field on
inference providers
- make model_entries optional on ModelRegistryHelper and
LiteLLMOpenAIMixin
- make OpenAIMixin a ModelRegistryHelper
- skip base64 embedding test for remote::ollama, always returns floats
- only use OpenAI client for ollama model listing
- remove unused build_model_entry function
- remove unused get_huggingface_repo function
## Test Plan
ci w/ new tests
# What does this PR do?
this replaces the static model listing for any provider using
OpenAIMixin
currently -
- anthropic
- azure openai
- gemini
- groq
- llama-api
- nvidia
- openai
- sambanova
- tgi
- vertexai
- vllm
- not changed: together has its own impl
## Test Plan
- new unit tests
- manual for llama-api, openai, groq, gemini
```
for provider in llama-openai-compat openai groq gemini; do
uv run llama stack build --image-type venv --providers inference=remote::provider --run &
uv run --with llama-stack-client llama-stack-client models list | grep Total
```
results (17 sep 2025):
- llama-api: 4
- openai: 86
- groq: 21
- gemini: 66
closes#3467
# What does this PR do?
*Add dynamic authentication token forwarding support for vLLM provider*
This enables per-request authentication tokens for vLLM providers,
supporting use cases like RAG operations where different requests may
need different authentication tokens. The implementation follows the
same pattern as other providers like Together AI, Fireworks, and
Passthrough.
- Add LiteLLMOpenAIMixin that manages the vllm_api_token properly
Usage:
- Static: VLLM_API_TOKEN env var or config.api_token
- Dynamic: X-LlamaStack-Provider-Data header with vllm_api_token
All existing functionality is preserved while adding new dynamic
capabilities.
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
```
curl -X POST "http://localhost:8000/v1/chat/completions" -H "Authorization: Bearer my-dynamic-token" \
-H "X-LlamaStack-Provider-Data: {\"vllm_api_token\": \"Bearer my-dynamic-token\", \"vllm_url\": \"http://dynamic-server:8000\"}" \
-H "Content-Type: application/json" \
-d '{"model": "llama-3.1-8b", "messages": [{"role": "user", "content": "Hello!"}]}'
```
---------
Signed-off-by: Akram Ben Aissi <akram.benaissi@gmail.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
This PR provides functionality for users to unregister ScoringFn and
Benchmark resources for `scoring` and `eval` APIs.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
Closes#3051
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Updated integration and unit tests via CI workflow
# What does this PR do?
Migrates MD5 and SHA-1 hash algorithms to SHA-256.
In particular, replaces:
- MD5 in chunk ID generation.
- MD5 in file verification.
- SHA-1 in model identifier digests.
And updates all related test expectations.
Original discussion:
https://github.com/llamastack/llama-stack/discussions/3413
<!-- If resolving an issue, uncomment and update the line below -->
Closes#3424.
## Test Plan
Unit tests from scripts/unit-tests.sh were updated to match the new hash
output, and ran to verify the tests pass.
Signed-off-by: Doug Edgar <dedgar@redhat.com>
# What does this PR do?
update the async detection test for vllm
- remove a network access from unit tests
- remove direct logging use
the idea behind the test is to mock inference w/ a sleep, initiate
concurrent inference calls, verify the total execution time is close to
the sleep time. in a non-async env the total time would be closer to
sleep * num concurrent calls.
## Test Plan
ci
# What does this PR do?
update vLLM inference provider to use OpenAIMixin for openai-compat
functions
inference recordings from Qwen3-0.6B and vLLM 0.8.3 -
```
docker run --gpus all -v ~/.cache/huggingface:/root/.cache/huggingface -p 8000:8000 --ipc=host \
vllm/vllm-openai:latest \
--model Qwen/Qwen3-0.6B --enable-auto-tool-choice --tool-call-parser hermes
```
## Test Plan
```
./scripts/integration-tests.sh --stack-config server:ci-tests --setup vllm --subdirs inference
```
# What does this PR do?
- Updating documentation on migration from RAG Tool to Vector Stores and
Files APIs
- Adding exception handling for Vector Stores in RAG Tool
- Add more tests on migration from RAG Tool to Vector Stores
- Migrate off of inference_api for context_retriever for RAG
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
Integration and unit tests added
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Fixes#3370
AWS switched to requiring region-prefixed inference profile IDs instead
of foundation model IDs for on-demand throughput. This was causing
ValidationException errors.
Added auto-detection based on boto3 client region to convert model IDs
like meta.llama3-1-70b-instruct-v1:0 to
us.meta.llama3-1-70b-instruct-v1:0 depending on the detected region.
Also handles edge cases like ARNs, case insensitive regions, and None
regions.
Tested with this request.
```json
{
"model_id": "meta.llama3-1-8b-instruct-v1:0",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "tell me a riddle"
}
],
"sampling_params": {
"strategy": {
"type": "top_p",
"temperature": 0.7,
"top_p": 0.9
},
"max_tokens": 512
}
}
```
<img width="1488" height="878" alt="image"
src="https://github.com/user-attachments/assets/0d61beec-3869-4a31-8f37-9f554c280b88"
/>
# What does this PR do?
update Groq inference provider to use OpenAIMixin for openai-compat
endpoints
changes on api.groq.com -
- json_schema is now supported for specific models, see
https://console.groq.com/docs/structured-outputs#supported-models
- response_format with streaming is now supported for models that
support response_format
- groq no longer returns a 400 error if tools are provided and
tool_choice is not "required"
## Test Plan
```
$ GROQ_API_KEY=... uv run llama stack build --image-type venv --providers inference=remote::groq --run
...
$ LLAMA_STACK_CONFIG=http://localhost:8321 uv run --group test pytest -v -ra --text-model groq/llama-3.3-70b-versatile tests/integration/inference/test_openai_completion.py -k 'not store'
...
SKIPPED [3] tests/integration/inference/test_openai_completion.py:44: Model groq/llama-3.3-70b-versatile hosted by remote::groq doesn't support OpenAI completions.
SKIPPED [3] tests/integration/inference/test_openai_completion.py:94: Model groq/llama-3.3-70b-versatile hosted by remote::groq doesn't support vllm extra_body parameters.
SKIPPED [4] tests/integration/inference/test_openai_completion.py:73: Model groq/llama-3.3-70b-versatile hosted by remote::groq doesn't support n param.
SKIPPED [1] tests/integration/inference/test_openai_completion.py💯 Model groq/llama-3.3-70b-versatile hosted by remote::groq doesn't support chat completion calls with base64 encoded files.
======================= 8 passed, 11 skipped, 8 deselected, 2 warnings in 5.13s ========================
```
---------
Co-authored-by: raghotham <rsm@meta.com>
# What does this PR do?
Improved bedrock provider config to read from environment variables like
AWS_ACCESS_KEY_ID. Updated all
fields to use default_factory with lambda patterns like the nvidia
provider does.
Now the environment variables work as documented.
Closes#3305
## Test Plan
Ran the new bedrock config tests:
```bash
python -m pytest tests/unit/providers/inference/bedrock/test_config.py
-v
Verified existing provider tests still work:
python -m pytest tests/unit/providers/test_configs.py -v
# What does this PR do?
As described in #3134 a langchain example works against openai's
responses impl, but not against llama stack's. This turned out to be due
to the order of the inputs. The langchain example has the two function
call outputs first, followed by each call result in turn. This seems to
be valid as it is accepted by openai's impl. However in llama stack,
these inputs are converted to chat completion inputs and the resulting
order for that api is not accpeted by openai.
This PR fixes the issue by ensuring that the converted chat completions
inputs are in the expected order.
Closes#3134
## Test Plan
Added unit and integration tests. Verified this fixes original issue as
reported.
---------
Signed-off-by: Gordon Sim <gsim@redhat.com>
# What does this PR do?
Handles MCP tool calls in a previous response
Closes#3105
## Test Plan
Made call to create response with tool call, then made second call with
the first linked through previous_response_id. Did not get error.
Also added unit test.
Signed-off-by: Gordon Sim <gsim@redhat.com>
# What does this PR do?
This PR adds a step in pre-commit to enforce using `llama_stack` logger.
Currently, various parts of the code base uses different loggers. As a
custom `llama_stack` logger exist and used in the codebase, it is better
to standardize its utilization.
Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
Co-authored-by: Matthew Farrellee <matt@cs.wisc.edu>
# What does this PR do?
Refactors the OpenAI response conversion utilities by moving helper functions from `openai_responses.py` to `utils.py`. Adds unit tests.
# What does this PR do?
Refactors the OpenAI responses implementation by extracting streaming and tool execution logic into separate modules. This improves code organization by:
1. Creating a new `StreamingResponseOrchestrator` class in `streaming.py` to handle the streaming response generation logic
2. Moving tool execution functionality to a dedicated `ToolExecutor` class in `tool_executor.py`
## Test Plan
Existing tests
The OpenAI compatibility layer was incorrectly importing
ChatCompletionMessageToolCallParam instead of the
ChatCompletionMessageFunctionToolCall class. This caused "Cannot
instantiate typing.Union" errors when processing agent requests with
tool calls.
Closes: #3141
Signed-off-by: Derek Higgins <derekh@redhat.com>
# What does this PR do?
Adds content part streaming events to the OpenAI-compatible Responses API to support more granular streaming of response content. This introduces:
1. New schema types for content parts: `OpenAIResponseContentPart` with variants for text output and refusals
2. New streaming event types:
- `OpenAIResponseObjectStreamResponseContentPartAdded` for when content parts begin
- `OpenAIResponseObjectStreamResponseContentPartDone` for when content parts complete
3. Implementation in the reference provider to emit these events during streaming responses. Also emits MCP arguments just like function call ones.
## Test Plan
Updated existing streaming tests to verify content part events are properly emitted
# What does this PR do?
1. Updates `AgentPersistence.list_sessions()` to properly filter out
`Turn` keys from `Session` keys.
2. Adds a suite of unit tests to confirm the `list_sessions()` behavior
and tests the failed sample in
https://github.com/meta-llama/llama-stack/issues/3048
## Fixes https://github.com/meta-llama/llama-stack/issues/3048
## Test Plan
Unit tests added.
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
This PR implements hybrid search for Milvus DB based on the inbuilt
milvus support.
To test:
```
pytest tests/unit/providers/vector_io/remote/test_milvus.py -v -s
--tb=long --disable-warnings --asyncio-mode=auto
```
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
# What does this PR do?
Adds support to Vector store Open AI APIs in Qdrant.
<!-- If resolving an issue, uncomment and update the line below -->
Closes#2463
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
Co-authored-by: ehhuang <ehhuang@users.noreply.github.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
# What does this PR do?
This PR (1) enables the files API for Weaviate and (2) enables
integration tests for Weaviate, which adds a docker container to the
github action.
This PR also handles a couple of edge cases for in creating the
collection and ensuring the tests all pass.
## Test Plan
CI enabled
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
Improve user experience by providing specific guidance when no API key
is available, showing both provider data header and config options with
the correct field name for each provider.
Also adds comprehensive test coverage for API key resolution scenarios.
addresses #2990 for providers using litellm openai mixin
## Test Plan
`./scripts/unit-tests.sh
tests/unit/providers/inference/test_litellm_openai_mixin.py`