Commit graph

10 commits

Author SHA1 Message Date
Sébastien Han
02e5e8a633
fix: only print routes that match the runtime config (#2226)
# What does this PR do?

We now only print the 'active' routes, not all the possible routes. This
is based on the distribution server config by looking at enabled APIs
and their respective providers.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-05-21 15:30:29 -07:00
Sébastien Han
69554158fa
feat: add health to all providers through providers endpoint (#1418)
The `/v1/providers` now reports the health status of each
provider when implemented.

```
curl -L http://127.0.0.1:8321/v1/providers|jq
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  4072  100  4072    0     0   246k      0 --:--:-- --:--:-- --:--:--  248k
{
  "data": [
    {
      "api": "inference",
      "provider_id": "ollama",
      "provider_type": "remote::ollama",
      "config": {
        "url": "http://localhost:11434"
      },
      "health": {
        "status": "OK"
      }
    },
    {
      "api": "vector_io",
      "provider_id": "faiss",
      "provider_type": "inline::faiss",
      "config": {
        "kvstore": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/faiss_store.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "safety",
      "provider_id": "llama-guard",
      "provider_type": "inline::llama-guard",
      "config": {
        "excluded_categories": []
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "agents",
      "provider_id": "meta-reference",
      "provider_type": "inline::meta-reference",
      "config": {
        "persistence_store": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/agents_store.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "telemetry",
      "provider_id": "meta-reference",
      "provider_type": "inline::meta-reference",
      "config": {
        "service_name": "llama-stack",
        "sinks": "console,sqlite",
        "sqlite_db_path": "/Users/leseb/.llama/distributions/ollama/trace_store.db"
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "eval",
      "provider_id": "meta-reference",
      "provider_type": "inline::meta-reference",
      "config": {
        "kvstore": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/meta_reference_eval.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "datasetio",
      "provider_id": "huggingface",
      "provider_type": "remote::huggingface",
      "config": {
        "kvstore": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/huggingface_datasetio.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "datasetio",
      "provider_id": "localfs",
      "provider_type": "inline::localfs",
      "config": {
        "kvstore": {
          "type": "sqlite",
          "namespace": null,
          "db_path": "/Users/leseb/.llama/distributions/ollama/localfs_datasetio.db"
        }
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "scoring",
      "provider_id": "basic",
      "provider_type": "inline::basic",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "scoring",
      "provider_id": "llm-as-judge",
      "provider_type": "inline::llm-as-judge",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "scoring",
      "provider_id": "braintrust",
      "provider_type": "inline::braintrust",
      "config": {
        "openai_api_key": "********"
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "brave-search",
      "provider_type": "remote::brave-search",
      "config": {
        "api_key": "********",
        "max_results": 3
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "tavily-search",
      "provider_type": "remote::tavily-search",
      "config": {
        "api_key": "********",
        "max_results": 3
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "code-interpreter",
      "provider_type": "inline::code-interpreter",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "rag-runtime",
      "provider_type": "inline::rag-runtime",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "model-context-protocol",
      "provider_type": "remote::model-context-protocol",
      "config": {},
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    },
    {
      "api": "tool_runtime",
      "provider_id": "wolfram-alpha",
      "provider_type": "remote::wolfram-alpha",
      "config": {
        "api_key": "********"
      },
      "health": {
        "status": "Not Implemented",
        "message": "Provider does not implement health check"
      }
    }
  ]
}
```

Per providers too:

```
curl -L http://127.0.0.1:8321/v1/providers/ollama
{"api":"inference","provider_id":"ollama","provider_type":"remote::ollama","config":{"url":"http://localhost:11434"},"health":{"status":"OK"}}
```

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-04-14 11:59:36 +02:00
Charlie Doern
a483a58c6e
chore: deprecate /v1/inspect/providers (#1678)
# What does this PR do?

with the new /v1/providers API, /v1/inspect/providers is duplicative,
deprecate it by removing the route, and add a test for the full
/v1/providers API

resolves #1623 

## Test Plan

`uv run pytest -v tests/integration/providers --stack-config=ollama
--text-model="meta-llama/Llama-3.2-3B-Instruct"
--embedding-model=all-MiniLM-L6-v2`

<img width="1512" alt="Screenshot 2025-03-18 at 9 18 38 AM"
src="https://github.com/user-attachments/assets/2db30f25-3ff6-4374-b39d-0047f093fe36"
/>

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-03-19 20:27:06 -07:00
Sébastien Han
418645696a
fix: improve signal handling and update dependencies (#1044)
# What does this PR do?
This commit enhances the signal handling mechanism in the server by
improving the `handle_signal` (previously handle_sigint) function. It
now properly retrieves the signal name, ensuring clearer logging when a
termination signal is received. Additionally, it cancels all running
tasks and waits for their completion before stopping the event loop,
allowing for a more graceful shutdown. Support for handling
SIGTERM has also been added alongside SIGINT.

Before the changes, handle_sigint used asyncio.run(run_shutdown()).
However, asyncio.run() is meant to start a new event loop, and calling
it inside an existing one (like when running Uvicorn) raises an error.
The fix replaces asyncio.run(run_shutdown()) with an async function
scheduled on the existing loop using loop.create_task(shutdown()). This
ensures that the shutdown coroutine runs within the current event loop
instead of trying to create a new one.

Furthermore, this commit updates the project dependencies. `fastapi` and
`uvicorn` have been added to the development dependencies in
`pyproject.toml` and `uv.lock`, ensuring that the necessary packages are
available for development and execution.

Closes: https://github.com/meta-llama/llama-stack/issues/1043
Signed-off-by: Sébastien Han <seb@redhat.com>

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

Run a server and send SIGINT:

```
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" python -m llama_stack.distribution.server.server --yaml-config ./llama_stack/templates/ollama/run.yaml
Using config file: llama_stack/templates/ollama/run.yaml
Run configuration:
apis:
- agents
- datasetio
- eval
- inference
- safety
- scoring
- telemetry
- tool_runtime
- vector_io
container_image: null
datasets: []
eval_tasks: []
image_name: ollama
metadata_store:
  db_path: /Users/leseb/.llama/distributions/ollama/registry.db
  namespace: null
  type: sqlite
models:
- metadata: {}
  model_id: meta-llama/Llama-3.2-3B-Instruct
  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType
  - llm
  provider_id: ollama
  provider_model_id: null
- metadata:
    embedding_dimension: 384
  model_id: all-MiniLM-L6-v2
  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType
  - embedding
  provider_id: sentence-transformers
  provider_model_id: null
providers:
  agents:
  - config:
      persistence_store:
        db_path: /Users/leseb/.llama/distributions/ollama/agents_store.db
        namespace: null
        type: sqlite
    provider_id: meta-reference
    provider_type: inline::meta-reference
  datasetio:
  - config: {}
    provider_id: huggingface
    provider_type: remote::huggingface
  - config: {}
    provider_id: localfs
    provider_type: inline::localfs
  eval:
  - config: {}
    provider_id: meta-reference
    provider_type: inline::meta-reference
  inference:
  - config:
      url: http://localhost:11434
    provider_id: ollama
    provider_type: remote::ollama
  - config: {}
    provider_id: sentence-transformers
    provider_type: inline::sentence-transformers
  safety:
  - config: {}
    provider_id: llama-guard
    provider_type: inline::llama-guard
  scoring:
  - config: {}
    provider_id: basic
    provider_type: inline::basic
  - config: {}
    provider_id: llm-as-judge
    provider_type: inline::llm-as-judge
  - config:
      openai_api_key: '********'
    provider_id: braintrust
    provider_type: inline::braintrust
  telemetry:
  - config:
      service_name: llama-stack
      sinks: console,sqlite
      sqlite_db_path: /Users/leseb/.llama/distributions/ollama/trace_store.db
    provider_id: meta-reference
    provider_type: inline::meta-reference
  tool_runtime:
  - config:
      api_key: '********'
      max_results: 3
    provider_id: brave-search
    provider_type: remote::brave-search
  - config:
      api_key: '********'
      max_results: 3
    provider_id: tavily-search
    provider_type: remote::tavily-search
  - config: {}
    provider_id: code-interpreter
    provider_type: inline::code-interpreter
  - config: {}
    provider_id: rag-runtime
    provider_type: inline::rag-runtime
  vector_io:
  - config:
      kvstore:
        db_path: /Users/leseb/.llama/distributions/ollama/faiss_store.db
        namespace: null
        type: sqlite
    provider_id: faiss
    provider_type: inline::faiss
scoring_fns: []
server:
  port: 8321
  tls_certfile: null
  tls_keyfile: null
shields: []
tool_groups:
- args: null
  mcp_endpoint: null
  provider_id: tavily-search
  toolgroup_id: builtin::websearch
- args: null
  mcp_endpoint: null
  provider_id: rag-runtime
  toolgroup_id: builtin::rag
- args: null
  mcp_endpoint: null
  provider_id: code-interpreter
  toolgroup_id: builtin::code_interpreter
vector_dbs: []
version: '2'

INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:213: Resolved 31 providers
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-inference => ollama
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-inference => sentence-transformers
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  models => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inference => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-vector_io => faiss
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-safety => llama-guard
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  shields => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  safety => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  vector_dbs => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  vector_io => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-tool_runtime => brave-search
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-tool_runtime => tavily-search
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-tool_runtime => code-interpreter
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-tool_runtime => rag-runtime
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  tool_groups => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  tool_runtime => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  agents => meta-reference
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-datasetio => huggingface
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-datasetio => localfs
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  datasets => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  datasetio => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  telemetry => meta-reference
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-scoring => basic
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-scoring => llm-as-judge
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-scoring => braintrust
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  scoring_functions => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  scoring => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inner-eval => meta-reference
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  eval_tasks => __routing_table__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  eval => __autorouted__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:215:  inspect => __builtin__
INFO 2025-02-12 10:21:03,540 llama_stack.distribution.resolver:216: 
INFO 2025-02-12 10:21:03,723 llama_stack.providers.remote.inference.ollama.ollama:148: checking connectivity to Ollama at `http://localhost:11434`...
INFO 2025-02-12 10:21:03,734 httpx:1740: HTTP Request: GET http://localhost:11434/api/ps "HTTP/1.1 200 OK"
INFO 2025-02-12 10:21:03,843 faiss.loader:148: Loading faiss.
INFO 2025-02-12 10:21:03,865 faiss.loader:150: Successfully loaded faiss.
INFO 2025-02-12 10:21:03,868 faiss:173: Failed to load GPU Faiss: name 'GpuIndexIVFFlat' is not defined. Will not load constructor refs for GPU indexes.
Warning: `bwrap` is not available. Code interpreter tool will not work correctly.
INFO 2025-02-12 10:21:04,315 datasets:54: PyTorch version 2.6.0 available.
INFO 2025-02-12 10:21:04,556 httpx:1740: HTTP Request: GET http://localhost:11434/api/ps "HTTP/1.1 200 OK"
INFO 2025-02-12 10:21:04,557 llama_stack.providers.utils.inference.embedding_mixin:42: Loading sentence transformer for all-MiniLM-L6-v2...
INFO 2025-02-12 10:21:07,202 sentence_transformers.SentenceTransformer:210: Use pytorch device_name: mps
INFO 2025-02-12 10:21:07,202 sentence_transformers.SentenceTransformer:218: Load pretrained SentenceTransformer: all-MiniLM-L6-v2
INFO 2025-02-12 10:21:09,500 llama_stack.distribution.stack:102: Models: all-MiniLM-L6-v2 served by sentence-transformers
INFO 2025-02-12 10:21:09,500 llama_stack.distribution.stack:102: Models: meta-llama/Llama-3.2-3B-Instruct served by ollama
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: basic::equality served by basic
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: basic::regex_parser_multiple_choice_answer served by basic
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: basic::subset_of served by basic
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::answer-correctness served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::answer-relevancy served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::answer-similarity served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-entity-recall served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-precision served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-recall served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::context-relevancy served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::factuality served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: braintrust::faithfulness served by braintrust
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: llm-as-judge::405b-simpleqa served by llm-as-judge
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Scoring_fns: llm-as-judge::base served by llm-as-judge
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Tool_groups: builtin::code_interpreter served by code-interpreter
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Tool_groups: builtin::rag served by rag-runtime
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:102: Tool_groups: builtin::websearch served by tavily-search
INFO 2025-02-12 10:21:09,501 llama_stack.distribution.stack:106: 
Serving API eval
 POST /v1/eval/tasks/{task_id}/evaluations
 DELETE /v1/eval/tasks/{task_id}/jobs/{job_id}
 GET /v1/eval/tasks/{task_id}/jobs/{job_id}/result
 GET /v1/eval/tasks/{task_id}/jobs/{job_id}
 POST /v1/eval/tasks/{task_id}/jobs
Serving API agents
 POST /v1/agents
 POST /v1/agents/{agent_id}/session
 POST /v1/agents/{agent_id}/session/{session_id}/turn
 DELETE /v1/agents/{agent_id}
 DELETE /v1/agents/{agent_id}/session/{session_id}
 GET /v1/agents/{agent_id}/session/{session_id}
 GET /v1/agents/{agent_id}/session/{session_id}/turn/{turn_id}/step/{step_id}
 GET /v1/agents/{agent_id}/session/{session_id}/turn/{turn_id}
Serving API scoring_functions
 GET /v1/scoring-functions/{scoring_fn_id}
 GET /v1/scoring-functions
 POST /v1/scoring-functions
Serving API safety
 POST /v1/safety/run-shield
Serving API inspect
 GET /v1/health
 GET /v1/inspect/providers
 GET /v1/inspect/routes
 GET /v1/version
Serving API tool_runtime
 POST /v1/tool-runtime/invoke
 GET /v1/tool-runtime/list-tools
 POST /v1/tool-runtime/rag-tool/insert
 POST /v1/tool-runtime/rag-tool/query
Serving API datasetio
 POST /v1/datasetio/rows
 GET /v1/datasetio/rows
Serving API shields
 GET /v1/shields/{identifier}
 GET /v1/shields
 POST /v1/shields
Serving API eval_tasks
 GET /v1/eval-tasks/{eval_task_id}
 GET /v1/eval-tasks
 POST /v1/eval-tasks
Serving API models
 GET /v1/models/{model_id}
 GET /v1/models
 POST /v1/models
 DELETE /v1/models/{model_id}
Serving API datasets
 GET /v1/datasets/{dataset_id}
 GET /v1/datasets
 POST /v1/datasets
 DELETE /v1/datasets/{dataset_id}
Serving API vector_io
 POST /v1/vector-io/insert
 POST /v1/vector-io/query
Serving API inference
 POST /v1/inference/chat-completion
 POST /v1/inference/completion
 POST /v1/inference/embeddings
Serving API tool_groups
 GET /v1/tools/{tool_name}
 GET /v1/toolgroups/{toolgroup_id}
 GET /v1/toolgroups
 GET /v1/tools
 POST /v1/toolgroups
 DELETE /v1/toolgroups/{toolgroup_id}
Serving API vector_dbs
 GET /v1/vector-dbs/{vector_db_id}
 GET /v1/vector-dbs
 POST /v1/vector-dbs
 DELETE /v1/vector-dbs/{vector_db_id}
Serving API scoring
 POST /v1/scoring/score
 POST /v1/scoring/score-batch
Serving API telemetry
 GET /v1/telemetry/traces/{trace_id}/spans/{span_id}
 GET /v1/telemetry/spans/{span_id}/tree
 GET /v1/telemetry/traces/{trace_id}
 POST /v1/telemetry/events
 GET /v1/telemetry/spans
 GET /v1/telemetry/traces
 POST /v1/telemetry/spans/export

Listening on ['::', '0.0.0.0']:5001
INFO:     Started server process [65372]
INFO:     Waiting for application startup.
INFO:     ASGI 'lifespan' protocol appears unsupported.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://['::', '0.0.0.0']:5001 (Press CTRL+C to quit)
^CINFO:     Shutting down
INFO:     Finished server process [65372]
Received signal SIGINT (2). Exiting gracefully...
INFO 2025-02-12 10:21:11,215 __main__:151: Shutting down ModelsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down InferenceRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ShieldsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down SafetyRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down VectorDBsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down VectorIORouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ToolGroupsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ToolRuntimeRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down MetaReferenceAgentsImpl
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down DatasetsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down DatasetIORouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down TelemetryAdapter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ScoringFunctionsRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down ScoringRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down EvalTasksRoutingTable
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down EvalRouter
INFO 2025-02-12 10:21:11,216 __main__:151: Shutting down DistributionInspectImpl
```

[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-02-13 08:07:59 -08:00
Dinesh Yeduguru
12c994b5b2
REST API fixes (#789)
# What does this PR do?

Client SDK fixes

## Test Plan


LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-fireworks/fireworks-run.yaml"
pytest -v tests/client-sdk/safety/test_safety.py


LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-fireworks/fireworks-run.yaml"
pytest -v tests/client-sdk/memory/test_memory.py
2025-01-16 13:47:08 -08:00
Dinesh Yeduguru
678ab29129
Idiomatic REST API: Inspect (#779)
# What does this PR do?

Since provider list returns a map grouping providers by API, we should
not be using data. This PR fixes the types to just be the plain dict,
basically reverting back to previous behavior



## Test Plan

llama-stack on  fix-provider-list [$] 🅒 stack❯
LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml"
pytest -v tests/client-sdk/safety/test_safety.py
2025-01-16 10:39:42 -08:00
Xi Yan
596afc6497
add --version to llama stack CLI & /version endpoint (#732)
# What does this PR do?

- add --version to llama stack CLI 
- add /version endpoint
- run OpenAPI generator for the new endpoint

## Test Plan

**CLI**
<img width="184" alt="image"
src="https://github.com/user-attachments/assets/3acb1d22-453e-4b79-baf6-e98e88d0671c"
/>



**endpoint**
<img width="430" alt="image"
src="https://github.com/user-attachments/assets/79cdd670-493b-40cf-8f9e-28a4ac0988ac"
/>


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-08 16:30:06 -08:00
Xi Yan
3c72c034e6
[remove import *] clean up import *'s (#689)
# What does this PR do?

- as title, cleaning up `import *`'s
- upgrade tests to make them more robust to bad model outputs
- remove import *'s in llama_stack/apis/* (skip __init__ modules)
<img width="465" alt="image"
src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2"
/>

- run `sh run_openapi_generator.sh`, no types gets affected

## Test Plan

### Providers Tests

**agents**
```
pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8
```

**inference**
```bash
# meta-reference
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

# together
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py 
```

**safety**
```
pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B
```

**memory**
```
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384
```

**scoring**
```
pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
```


**datasetio**
```
pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py
pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py
```


**eval**
```
pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py
```

### Client-SDK Tests
```
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk
```

### llama-stack-apps
```
PORT=5000
LOCALHOST=localhost

python -m examples.agents.hello $LOCALHOST $PORT
python -m examples.agents.inflation $LOCALHOST $PORT
python -m examples.agents.podcast_transcript $LOCALHOST $PORT
python -m examples.agents.rag_as_attachments $LOCALHOST $PORT
python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT
python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT
python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT

# Vision model
python -m examples.interior_design_assistant.app
python -m examples.agent_store.app $LOCALHOST $PORT
```

### CLI
```
which llama
llama model prompt-format -m Llama3.2-11B-Vision-Instruct
llama model list
llama stack list-apis
llama stack list-providers inference

llama stack build --template ollama --image-type conda
```

### Distributions Tests
**ollama**
```
llama stack build --template ollama --image-type conda
ollama run llama3.2:1b-instruct-fp16
llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct
```

**fireworks**
```
llama stack build --template fireworks --image-type conda
llama stack run ./llama_stack/templates/fireworks/run.yaml
```

**together**
```
llama stack build --template together --image-type conda
llama stack run ./llama_stack/templates/together/run.yaml
```

**tgi**
```
llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-27 15:45:44 -08:00
Ashwin Bharambe
6bb57e72a7
Remove "routing_table" and "routing_key" concepts for the user (#201)
This PR makes several core changes to the developer experience surrounding Llama Stack.

Background: PR #92 introduced the notion of "routing" to the Llama Stack. It introduces three object types: (1) models, (2) shields and (3) memory banks. Each of these objects can be associated with a distinct provider. So you can get model A to be inferenced locally while model B, C can be inference remotely (e.g.)

However, this had a few drawbacks:

you could not address the provider instances -- i.e., if you configured "meta-reference" with a given model, you could not assign an identifier to this instance which you could re-use later.
the above meant that you could not register a "routing_key" (e.g. model) dynamically and say "please use this existing provider I have already configured" for a new model.
the terms "routing_table" and "routing_key" were exposed directly to the user. in my view, this is way too much overhead for a new user (which almost everyone is.) people come to the stack wanting to do ML and encounter a completely unexpected term.
What this PR does: This PR structures the run config with only a single prominent key:

- providers
Providers are instances of configured provider types. Here's an example which shows two instances of the remote::tgi provider which are serving two different models.

providers:
  inference:
  - provider_id: foo
    provider_type: remote::tgi
    config: { ... }
  - provider_id: bar
    provider_type: remote::tgi
    config: { ... }
Secondly, the PR adds dynamic registration of { models | shields | memory_banks } to the API surface. The distribution still acts like a "routing table" (as previously) except that it asks the backing providers for a listing of these objects. For example it asks a TGI or Ollama inference adapter what models it is serving. Only the models that are being actually served can be requested by the user for inference. Otherwise, the Stack server will throw an error.

When dynamically registering these objects, you can use the provider IDs shown above. Info about providers can be obtained using the Api.inspect set of endpoints (/providers, /routes, etc.)

The above examples shows the correspondence between inference providers and models registry items. Things work similarly for the safety <=> shields and memory <=> memory_banks pairs.

Registry: This PR also makes it so that Providers need to implement additional methods for registering and listing objects. For example, each Inference provider is now expected to implement the ModelsProtocolPrivate protocol (naming is not great!) which consists of two methods

register_model
list_models
The goal is to inform the provider that a certain model needs to be supported so the provider can make any relevant backend changes if needed (or throw an error if the model cannot be supported.)

There are many other cleanups included some of which are detailed in a follow-up comment.
2024-10-10 10:24:13 -07:00
Ashwin Bharambe
8d049000e3 Add an introspection "Api.inspect" API 2024-10-02 15:41:14 -07:00