# What does this PR do?
Adds a write worker queue for writes to inference store. This avoids
overwhelming request processing with slow inference writes.
## Test Plan
Benchmark:
```
cd /docs/source/distributions/k8s-benchmark
# start mock server
python openai-mock-server.py --port 8000
# start stack server
LLAMA_STACK_LOGGING="all=WARNING" uv run --with llama-stack python -m llama_stack.core.server.server docs/source/distributions/k8s-benchmark/stack_run_config.yaml
# run benchmark script
uv run python3 benchmark.py --duration 120 --concurrent 50 --base-url=http://localhost:8321/v1/openai/v1 --model=vllm-inference/meta-llama/Llama-3.2-3B-Instruct
```
## RPS from 21 -> 57
# What does this PR do?
Refactors the OpenAI responses implementation by extracting streaming and tool execution logic into separate modules. This improves code organization by:
1. Creating a new `StreamingResponseOrchestrator` class in `streaming.py` to handle the streaming response generation logic
2. Moving tool execution functionality to a dedicated `ToolExecutor` class in `tool_executor.py`
## Test Plan
Existing tests