Commit graph

30 commits

Author SHA1 Message Date
Xi Yan
d5b1202c83
change schema -> dataset_schema (#442)
# What does this PR do?

- `schema` should not a field w/ pydantic warnings
- change `schema` to `dataset_schema`

<img width="855" alt="image"
src="https://github.com/user-attachments/assets/47cb6bb9-4be0-46a5-8701-24d24e2eaabd">


## Test Plan

```
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py
```


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-13 10:58:12 -05:00
Ashwin Bharambe
12947ac19e
Kill "remote" providers and fix testing with a remote stack properly (#435)
# What does this PR do?

This PR kills the notion of "pure passthrough" remote providers. You
cannot specify a single provider you must specify a whole distribution
(stack) as remote.

This PR also significantly fixes / upgrades testing infrastructure so
you can now test against a remotely hosted stack server by just doing

```bash
pytest -s -v -m remote  test_agents.py \
  --inference-model=Llama3.1-8B-Instruct --safety-shield=Llama-Guard-3-1B \
  --env REMOTE_STACK_URL=http://localhost:5001
```

Also fixed `test_agents_persistence.py` (which was broken) and killed
some deprecated testing functions.

## Test Plan

All the tests.
2024-11-12 21:51:29 -08:00
Dinesh Yeduguru
fdff24e77a
Inference to use provider resource id to register and validate (#428)
This PR changes the way model id gets translated to the final model name
that gets passed through the provider.
Major changes include:
1) Providers are responsible for registering an object and as part of
the registration returning the object with the correct provider specific
name of the model provider_resource_id
2) To help with the common look ups different names a new ModelLookup
class is created.



Tested all inference providers including together, fireworks, vllm,
ollama, meta reference and bedrock
2024-11-12 20:02:00 -08:00
Ashwin Bharambe
983d6ce2df
Remove the "ShieldType" concept (#430)
# What does this PR do?

This PR kills the notion of "ShieldType". The impetus for this is the
realization:

> Why is keyword llama-guard appearing so many times everywhere,
sometimes with hyphens, sometimes with underscores?

Now that we have a notion of "provider specific resource identifiers"
and "user specific aliases" for those and the fact that this works with
models ("Llama3.1-8B-Instruct" <> "fireworks/llama-3pv1-..."), we can
follow the same rules for Shields.

So each Safety provider can make up a notion of identifiers it has
registered. This already happens with Bedrock correctly. We just
generalize it for Llama Guard, Prompt Guard, etc.

For Llama Guard, we further simplify by just adopting the underlying
model name itself as the identifier! No confusion necessary.

While doing this, I noticed a bug in our DistributionRegistry where we
weren't scoping identifiers by type. Fixed.

## Feature/Issue validation/testing/test plan

Ran (inference, safety, memory, agents) tests with ollama and fireworks
providers.
2024-11-12 12:37:24 -08:00
Ashwin Bharambe
09269e2a44
Enable sane naming of registered objects with defaults (#429)
# What does this PR do? 

This is a follow-up to #425. That PR allows for specifying models in the
registry, but each entry needs to look like:

```yaml
- identifier: ...
  provider_id: ...
  provider_resource_identifier: ...
```

This is headache-inducing.

The current PR makes this situation better by adopting the shape of our
APIs. Namely, we need the user to only specify `model-id`. The rest
should be optional and figured out by the Stack. You can always override
it.

Here's what example `ollama` "full stack" registry looks like (we still
need to kill or simplify shield_type crap):
```yaml
models:
- model_id: Llama3.2-3B-Instruct
- model_id: Llama-Guard-3-1B
shields:
- shield_id: llama_guard
  shield_type: llama_guard
```

## Test Plan

See test plan for #425. Re-ran it.
2024-11-12 11:18:05 -08:00
Dinesh Yeduguru
0a3b3d5fb6
migrate scoring fns to resource (#422)
* fix after rebase

* remove print

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-11 17:28:48 -08:00
Dinesh Yeduguru
3802edfc50
migrate evals to resource (#421)
* migrate evals to resource

* remove listing of providers's evals

* change the order of params in register

* fix after rebase

* linter fix

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-11 17:24:03 -08:00
Dinesh Yeduguru
b95cb5308f
migrate dataset to resource (#420)
* migrate dataset to resource

* remove auto discovery

* remove listing of providers's datasets

* fix after rebase

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-11 17:14:41 -08:00
Dinesh Yeduguru
38cce97597
migrate memory banks to Resource and new registration (#411)
* migrate memory banks to Resource and new registration

* address feedback

* address feedback

* fix tests

* pgvector fix

* pgvector fix v2

* remove auto discovery

* change register signature to make params required

* update client

* client fix

* use annotated union to parse

* remove base MemoryBank inheritence

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-11 17:10:44 -08:00
Dinesh Yeduguru
ec644d3418
migrate model to Resource and new registration signature (#410)
* resource oriented object design for models

* add back llama_model field

* working tests

* register singature fix

* address feedback

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-08 16:12:57 -08:00
Dinesh Yeduguru
d800a16acd
Resource oriented design for shields (#399)
* init

* working bedrock tests

* bedrock test for inference fixes

* use env vars for bedrock guardrail vars

* add register in meta reference

* use correct shield impl in meta ref

* dont add together fixture

* right naming

* minor updates

* improved registration flow

* address feedback

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-08 12:16:11 -08:00
Xi Yan
6192bf43a4
[Evals API][10/n] API updates for EvalTaskDef + new test migration (#379)
* wip

* scoring fn api

* eval api

* eval task

* evaluate api update

* pre commit

* unwrap context -> config

* config field doc

* typo

* naming fix

* separate benchmark / app eval

* api name

* rename

* wip tests

* wip

* datasetio test

* delete unused

* fixture

* scoring resolve

* fix scoring register

* scoring test pass

* score batch

* scoring fix

* fix eval

* test eval works

* remove type ignore

* api refactor

* add default task_eval_id for routing

* add eval_id for jobs

* remove type ignore

* only keep 1 run_eval

* fix optional

* register task required

* register task required

* delete old tests

* delete old tests

* fixture return impl
2024-11-07 21:24:12 -08:00
Dinesh Yeduguru
093c9f1987
add bedrock distribution code (#358)
* add bedrock distribution code

* fix linter error

* add bedrock shields support

* linter fixes

* working bedrock safety

* change to return only one violation

* remove env var reading

* refereshable boto credentials

* remove env vars

* address raghu's feedback

* fix session_ttl passing

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-06 14:39:11 -08:00
Dinesh Yeduguru
6ebd553da5
fix routing tables look up key for memory bank (#383)
Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-06 13:32:46 -08:00
Ashwin Bharambe
9a57a009ee Need to await for get_object_from_identifier() now 2024-11-04 20:33:12 -08:00
Ashwin Bharambe
0763a0b85f Fix for the fix! 2024-11-04 20:06:01 -08:00
Ashwin Bharambe
fb2678b134 Fix shield_type and routing table breakage 2024-11-04 19:57:15 -08:00
Ashwin Bharambe
ffedb81c11
Significantly simpler and malleable test setup (#360)
* Significantly simpler and malleable test setup

* convert memory tests

* refactor fixtures and add support for composable fixtures

* Fix memory to use the newer fixture organization

* Get agents tests working

* Safety tests work

* yet another refactor to make this more general

now it accepts --inference-model, --safety-model options also

* get multiple providers working for meta-reference (for inference + safety)

* Add README.md

---------

Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
2024-11-04 17:36:43 -08:00
Dinesh Yeduguru
663883cc29
persist registered objects with distribution (#354)
* persist registered objects with distribution

* linter fixes

* comment

* use annotate and field discriminator

* workign tests

* donot use global state

* precommit failures fixed

* add back Any

* fix imports

* remove unnecessary changes in ollama

* precommit failures fixed

* make kvstore configurable for dist and rename registry

* add comment about registry list return

* fix linter errors

* use registry to hydrate

* remove debug print

* linter fixes

* remove kvstore.db

* rename distribution_registry_store

---------

Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
2024-11-04 17:25:06 -08:00
Ashwin Bharambe
37b330b4ef
add dynamic clients for all APIs (#348)
* add dynamic clients for all APIs

* fix openapi generator

* inference + memory + agents tests now pass with "remote" providers

* Add docstring which fixes openapi generator :/
2024-10-31 14:46:25 -07:00
Xi Yan
abdf7cddf3
[Evals API][4/n] evals with generation meta-reference impl (#303)
* wip

* dataset validation

* test_scoring

* cleanup

* clean up test

* comments

* error checking

* dataset client

* test client:

* datasetio client

* clean up

* basic scoring function works

* scorer wip

* equality scorer

* score batch impl

* score batch

* update scoring test

* refactor

* validate scorer input

* address comments

* evals with generation

* add all rows scores to ScoringResult

* minor typing

* bugfix

* scoring function def rename

* rebase name

* refactor

* address comments

* Update iOS inference instructions for new quantization

* Small updates to quantization config

* Fix score threshold in faiss

* Bump version to 0.0.45

* Handle both ipv6 and ipv4 interfaces together

* update manifest for build templates

* Update getting_started.md

* chatcompletion & completion input type validation

* inclusion->subsetof

* error checking

* scoring_function -> scoring_fn rename, scorer -> scoring_fn rename

* address comments

* [Evals API][5/n] fixes to generate openapi spec (#323)

* generate openapi

* typing comment, dataset -> dataset_id

* remove custom type

* sample eval run.yaml

---------

Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2024-10-25 13:12:39 -07:00
Xi Yan
cb84034567
[Evals API][3/n] scoring_functions / scoring meta-reference implementations (#296)
* wip

* dataset validation

* test_scoring

* cleanup

* clean up test

* comments

* error checking

* dataset client

* test client:

* datasetio client

* clean up

* basic scoring function works

* scorer wip

* equality scorer

* score batch impl

* score batch

* update scoring test

* refactor

* validate scorer input

* address comments

* add all rows scores to ScoringResult

* bugfix

* scoring function def rename
2024-10-24 14:52:30 -07:00
Xi Yan
821810657f
[Evals API][2/n] datasets / datasetio meta-reference implementation (#288)
* skeleton dataset / datasetio

* dataset datasetio

* config

* address comments

* delete dataset_utils

* address comments

* naming fix
2024-10-22 16:12:16 -07:00
Ashwin Bharambe
8cfbb9d38b Improve an important error message 2024-10-19 17:19:54 -07:00
Xi Yan
be3c5c034d
[bugfix] fix case for agent when memory bank registered without specifying provider_id (#264)
* fix case where memory bank is registered without provider_id

* memory test

* agents unit test
2024-10-17 17:28:17 -07:00
Ashwin Bharambe
6bb57e72a7
Remove "routing_table" and "routing_key" concepts for the user (#201)
This PR makes several core changes to the developer experience surrounding Llama Stack.

Background: PR #92 introduced the notion of "routing" to the Llama Stack. It introduces three object types: (1) models, (2) shields and (3) memory banks. Each of these objects can be associated with a distinct provider. So you can get model A to be inferenced locally while model B, C can be inference remotely (e.g.)

However, this had a few drawbacks:

you could not address the provider instances -- i.e., if you configured "meta-reference" with a given model, you could not assign an identifier to this instance which you could re-use later.
the above meant that you could not register a "routing_key" (e.g. model) dynamically and say "please use this existing provider I have already configured" for a new model.
the terms "routing_table" and "routing_key" were exposed directly to the user. in my view, this is way too much overhead for a new user (which almost everyone is.) people come to the stack wanting to do ML and encounter a completely unexpected term.
What this PR does: This PR structures the run config with only a single prominent key:

- providers
Providers are instances of configured provider types. Here's an example which shows two instances of the remote::tgi provider which are serving two different models.

providers:
  inference:
  - provider_id: foo
    provider_type: remote::tgi
    config: { ... }
  - provider_id: bar
    provider_type: remote::tgi
    config: { ... }
Secondly, the PR adds dynamic registration of { models | shields | memory_banks } to the API surface. The distribution still acts like a "routing table" (as previously) except that it asks the backing providers for a listing of these objects. For example it asks a TGI or Ollama inference adapter what models it is serving. Only the models that are being actually served can be requested by the user for inference. Otherwise, the Stack server will throw an error.

When dynamically registering these objects, you can use the provider IDs shown above. Info about providers can be obtained using the Api.inspect set of endpoints (/providers, /routes, etc.)

The above examples shows the correspondence between inference providers and models registry items. Things work similarly for the safety <=> shields and memory <=> memory_banks pairs.

Registry: This PR also makes it so that Providers need to implement additional methods for registering and listing objects. For example, each Inference provider is now expected to implement the ModelsProtocolPrivate protocol (naming is not great!) which consists of two methods

register_model
list_models
The goal is to inform the provider that a certain model needs to be supported so the provider can make any relevant backend changes if needed (or throw an error if the model cannot be supported.)

There are many other cleanups included some of which are detailed in a follow-up comment.
2024-10-10 10:24:13 -07:00
Xi Yan
703ab9385f fix routing table key list 2024-10-02 18:23:31 -07:00
Ashwin Bharambe
eb2d8a31a5
Add a RoutableProvider protocol, support for multiple routing keys (#163)
* Update configure.py to use multiple routing keys for safety
* Refactor distribution/datatypes into a providers/datatypes
* Cleanup
2024-09-30 17:30:21 -07:00
Ashwin Bharambe
0d2eb3bd25 Use inference APIs for running llama guard
Test Plan:

First, start a TGI container with `meta-llama/Llama-Guard-3-8B` model
serving on port 5099. See https://github.com/meta-llama/llama-stack/pull/53 and its
description for how.

Then run llama-stack with the following run config:

```
image_name: safety
docker_image: null
conda_env: safety
apis_to_serve:
- models
- inference
- shields
- safety
api_providers:
  inference:
    providers:
    - remote::tgi
  safety:
    providers:
    - meta-reference
  telemetry:
    provider_id: meta-reference
    config: {}
routing_table:
  inference:
  - provider_id: remote::tgi
    config:
      url: http://localhost:5099
      api_token: null
      hf_endpoint_name: null
    routing_key: Llama-Guard-3-8B
  safety:
  - provider_id: meta-reference
    config:
      llama_guard_shield:
        model: Llama-Guard-3-8B
        excluded_categories: []
        disable_input_check: false
        disable_output_check: false
      prompt_guard_shield: null
    routing_key: llama_guard
```

Now simply run `python -m llama_stack.apis.safety.client localhost
<port>` and check that the llama_guard shield calls run correctly. (The
injection_shield calls fail as expected since we have not set up a
router for them.)
2024-09-24 17:02:57 -07:00
Ashwin Bharambe
ec4fc800cc
[API Updates] Model / shield / memory-bank routing + agent persistence + support for private headers (#92)
This is yet another of those large PRs (hopefully we will have less and less of them as things mature fast). This one introduces substantial improvements and some simplifications to the stack.

Most important bits:

* Agents reference implementation now has support for session / turn persistence. The default implementation uses sqlite but there's also support for using Redis.

* We have re-architected the structure of the Stack APIs to allow for more flexible routing. The motivating use cases are:
  - routing model A to ollama and model B to a remote provider like Together
  - routing shield A to local impl while shield B to a remote provider like Bedrock
  - routing a vector memory bank to Weaviate while routing a keyvalue memory bank to Redis

* Support for provider specific parameters to be passed from the clients. A client can pass data using `x_llamastack_provider_data` parameter which can be type-checked and provided to the Adapter implementations.
2024-09-23 14:22:22 -07:00