# What does this PR do?
Add explicit connection cleanup and shorter timeouts to OpenAI client
fixtures. Fixes CI deadlock after 25+ tests due to connection pool
exhaustion. Also adds 60s timeout to test_conversation_context_loading
as safety net.
## Test Plan
tests pass
Signed-off-by: Charlie Doern <cdoern@redhat.com>
Extract API definitions, models, and provider specifications into a
standalone llama-stack-api package that can be published to PyPI
independently of the main llama-stack server.
Motivation
External providers currently import from llama-stack, which overrides
the installed version and causes dependency conflicts. This separation
allows external providers to:
- Install only the type definitions they need without server dependencies
- Avoid version conflicts with the installed llama-stack package
- Be versioned and released independently
This enables us to re-enable external provider module tests that were
previously blocked by these import conflicts.
Changes
- Created llama-stack-api package with minimal dependencies (pydantic, jsonschema)
- Moved APIs, providers datatypes, strong_typing, and schema_utils
- Updated all imports from llama_stack.* to llama_stack_api.*
- Preserved git history using git mv for moved files
- Configured local editable install for development workflow
- Updated linting and type-checking configuration for both packages
- Rebased on top of upstream src/ layout changes
Testing
Package builds successfully and can be imported independently.
All pre-commit hooks pass with expected exclusions maintained.
Next Steps
- Publish llama-stack-api to PyPI
- Update external provider dependencies
- Re-enable external provider module tests
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
Resolves#4102
1. Added `web_search_2025_08_26` to the `WebSearchToolTypes` list and
the `OpenAIResponseInputToolWebSearch.type` Literal union
2. No changes needed to tool execution logic - all `web_search` types
map to the same underlying tool
3. Backward compatibility is maintained - existing `web_search`,
`web_search_preview`, and `web_search_preview_2025_03_11` types continue
to work
4. Added an integration test case using {"type":
"web_search_2025_08_26"} to verify it works correctly
5. Updated `docs/docs/providers/openai_responses_limitations.mdx` to
reflect that `web_search_2025_08_26` is now supported.
6. Removed incorrect references to `MOD1/MOD2/MOD3` (which don't exist
in the codebase)
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
---------
Signed-off-by: Aakanksha Duggal <aduggal@redhat.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This dependency has been bothering folks for a long time (cc @leseb). We
really needed it due to "library client" which is primarily used for our
tests and is not a part of the Stack server. Anyone who needs to use the
library client can certainly install `llama-stack-client` in their
environment to make that work.
Updated the notebook references to install `llama-stack-client`
additionally when setting things up.
Added a script to cleanup recordings. While doing this, moved the CI
matrix generation to a separate script so there is a single source of
truth for the matrix.
Ran the cleanup script as:
```
PYTHONPATH=. python scripts/cleanup_recordings.py
```
Also added this as part of the pre-commit workflow to ensure that the
recordings are always up to date and that no stale recordings are left
in the repo.
The llama-stack-client now uses /`v1/openai/v1/models` which returns
OpenAI-compatible model objects with 'id' and 'custom_metadata' fields
instead of the Resource-style 'identifier' field. Updated api_recorder
to handle the new endpoint and modified tests to access model metadata
appropriately. Deleted stale model recordings for re-recording.
**NOTE: CI will be red on this one since it is dependent on
https://github.com/llamastack/llama-stack-client-python/pull/291/files
landing. I verified locally that it is green.**
# What does this PR do?
chunk_id in the Chunk class executes actual logic to compute a chunk ID.
This sort of logic should not live in the API spec.
Instead, the providers should be in charge of calling generate_chunk_id,
and pass it to `Chunk`.
this removes the incorrect dependency between Provider impl and API impl
Signed-off-by: Charlie Doern <cdoern@redhat.com>
Let us enable responses suite in CI now.
Also a minor fix: MCP tool tests intentionally trigger authentication
failures to verify error handling, but the resulting error logs clutter
test output.
Wanted to re-enable Responses CI but it seems to hang for some reason
due to some interactions with conversations_store or responses_store.
## Test Plan
```
# library client
./scripts/integration-tests.sh --stack-config ci-tests --suite responses
# server
./scripts/integration-tests.sh --stack-config server:ci-tests --suite responses
```
# What does this PR do?
Have closed the previous PR due to merge conflicts with multiple PRs
Addressed all comments from
https://github.com/llamastack/llama-stack/pull/3768 (sorry for carrying
over to this one)
## Test Plan
Added UTs and integration tests
Handle a base case when no stored messages exist because no Response
call has been made.
## Test Plan
```
./scripts/integration-tests.sh --stack-config server:ci-tests \
--suite responses --inference-mode record-if-missing --pattern test_conversation_responses
```
This PR updates the Conversation item related types and improves a
couple critical parts of the implemenation:
- it creates a streaming output item for the final assistant message
output by
the model. until now we only added content parts and included that
message in the final response.
- rewrites the conversation update code completely to account for items
other than messages (tool calls, outputs, etc.)
## Test Plan
Used the test script from
https://github.com/llamastack/llama-stack-client-python/pull/281 for
this
```
TEST_API_BASE_URL=http://localhost:8321/v1 \
pytest tests/integration/test_agent_turn_step_events.py::test_client_side_function_tool -xvs
```
Implements missing streaming events from OpenAI Responses API spec:
- reasoning text/summary events for o1/o3 models,
- refusal events for safety moderation
- annotation events for citations,
- and file search streaming events.
Added optional reasoning_content field to chat completion chunks to
support non-standard provider extensions.
**NOTE:** OpenAI does _not_ fill reasoning_content when users use the
chat_completion APIs. This means there is no way for us to implement
Responses (with reasoning) by using OpenAI chat completions! We'd need
to transparently punt to OpenAI's responses endpoints if we wish to do
that. For others though (vLLM, etc.) we can use it.
## Test Plan
File search streaming test passes:
```
./scripts/integration-tests.sh --stack-config server:ci-tests \
--suite responses --setup gpt --inference-mode replay --pattern test_response_file_search_streaming_events
```
Need more complex setup and validation for reasoning tests (need a vLLM
powered OSS model maybe gpt-oss which can return reasoning_content). I
will do that in a followup PR.
Implementats usage accumulation to StreamingResponseOrchestrator.
The most important part was to pass `stream_options = { "include_usage":
true }` to the chat_completion call. This means I will have to record
all responses tests again because request hash will change :)
Test changes:
- Add usage assertions to streaming and non-streaming tests
- Update test recordings with actual usage data from OpenAI
Renames `inference_recorder.py` to `api_recorder.py` and extends it to
support recording/replaying tool invocations in addition to inference
calls.
This allows us to record web-search, etc. tool calls and thereafter
apply recordings for `tests/integration/responses`
## Test Plan
```
export OPENAI_API_KEY=...
export TAVILY_SEARCH_API_KEY=...
./scripts/integration-tests.sh --stack-config ci-tests \
--suite responses --inference-mode record-if-missing
```
## Summary
Introduce `ExtraBodyField` annotation to enable parameters that arrive
via extra_body in client SDKs but are accessible server-side with full
typing.
These parameters are documented in OpenAPI specs under
**`x-llama-stack-extra-body-params`** but excluded from generated SDK
signatures.
Add `shields` parameter to `create_openai_response` as the first
implementation using this pattern.
## Test Plan
- added an integration test which checks that shields parameter passed
via extra_body reaches server implementation
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
---------
Co-authored-by: Claude <noreply@anthropic.com>
# What does this PR do?
closes#3268closes#3498
When resuming from previous response ID, currently we attempt to convert
from the stored responses input to chat completion messages, which is
not always possible, e.g. for tool calls where some data is lost once
converted from chat completion message to repsonses input format.
This PR stores the chat completion messages that correspond to the
_last_ call to chat completion, which is sufficient to be resumed from
in the next responses API call, where we load these saved messages and
skip conversion entirely.
Separate issue to optimize storage:
https://github.com/llamastack/llama-stack/issues/3646
## Test Plan
existing CI tests
# What does this PR do?
This PR adds support for the require_approval on an mcp tool definition
passed to create response in the Responses API. This allows the caller
to indicate whether they want to approve calls to that server, or let
them be called without approval.
Closes#3443
## Test Plan
Tested both approval and denial.
Added automated integration test for both cases.
---------
Signed-off-by: Gordon Sim <gsim@redhat.com>
Co-authored-by: Matthew Farrellee <matt@cs.wisc.edu>
Our integration tests need to be 'grouped' because each group often
needs a specific set of models it works with. We separated vision tests
due to this, and we have a separate set of tests which test "Responses"
API.
This PR makes this system a bit more official so it is very easy to
target these groups and apply all testing infrastructure towards all the
groups (for example, record-replay) uniformly.
There are three suites declared:
- base
- vision
- responses
Note that our CI currently runs the "base" and "vision" suites.
You can use the `--suite` option when running pytest (or any of the
testing scripts or workflows.) For example:
```
OLLAMA_URL=http://localhost:11434 \
pytest -s -v tests/integration/ --stack-config starter --suite vision
```