Commit graph

11 commits

Author SHA1 Message Date
Matthew Farrellee
e21c8b6d80
add image support to NVIDIA inference provider (#907)
# What does this PR do?

add support to the NVIDIA Inference provider for image inputs


## Test Plan

1. Run local [Llama 3.2 11b vision
instruct](https://build.nvidia.com/meta/llama-3.2-11b-vision-instruct?snippet_tab=Docker)
NIM
2. Start a stack, e.g. `llama stack run
llama_stack/templates/nvidia/run.yaml --env
NVIDIA_BASE_URL=http://localhost:8000`
3. Run image tests, e.g. `LLAMA_STACK_BASE_URL=http://localhost:8321
pytest -v tests/client-sdk/inference/test_inference.py
--vision-inference-model meta-llama/Llama-3.2-11B-Vision-Instruct -k
image`


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [x] Wrote necessary unit or integration tests.
2025-02-01 09:02:27 -08:00
Matthew Farrellee
1a5c17a92f
align with CompletionResponseStreamChunk.delta as str (instead of TextDelta) (#900)
# What does this PR do?

fix type mismatch in /v1/inference/completion

## Test Plan

`llama stack run ./llama_stack/templates/nvidia/run.yaml`

`LLAMA_STACK_BASE_URL="http://localhost:8321" pytest -v
tests/client-sdk/inference/test_inference.py`

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-29 09:25:50 -08:00
Ashwin Bharambe
07b87365ab
[inference api] modify content types so they follow a more standard structure (#841)
Some small updates to the inference types to make them more standard

Specifically:
- image data is now located in a "image" subkey
- similarly tool call data is located in a "tool_call" subkey

The pattern followed is `dict(type="foo", foo=<...>)`
2025-01-22 12:16:18 -08:00
Xi Yan
b76bef169c
fix nvidia inference provider (#781)
# What does this PR do?

- fixes to nvidia inference provider to account for strategy update
- update nvidia templates

## Test Plan

```
llama stack run ./llama_stack/templates/nvidia/run.yaml --port 5000

LLAMA_STACK_BASE_URL="http://localhost:5000" pytest -v tests/client-sdk/inference/test_inference.py --html=report.html --self-contained-html
```
<img width="1288" alt="image"
src="https://github.com/user-attachments/assets/d20f9aea-525e-47de-a5be-586e022e0d55"
/>

**NOTE**
- vision inference broken
- tool calling broken
- /completion broken

cc @mattf @cdgamarose-nv  for improving NVIDIA inference adapter

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-15 18:49:36 -08:00
Hardik Shah
a51c8b4efc
Convert SamplingParams.strategy to a union (#767)
# What does this PR do?

Cleans up how we provide sampling params. Earlier, strategy was an enum
and all params (top_p, temperature, top_k) across all strategies were
grouped. We now have a strategy union object with each strategy (greedy,
top_p, top_k) having its corresponding params.
Earlier, 
```
class SamplingParams: 
    strategy: enum ()
    top_p, temperature, top_k and other params
```
However, the `strategy` field was not being used in any providers making
it confusing to know the exact sampling behavior purely based on the
params since you could pass temperature, top_p, top_k and how the
provider would interpret those would not be clear.

Hence we introduced -- a union where the strategy and relevant params
are all clubbed together to avoid this confusion.

Have updated all providers, tests, notebooks, readme and otehr places
where sampling params was being used to use the new format.
   

## Test Plan
`pytest llama_stack/providers/tests/inference/groq/test_groq_utils.py`
// inference on ollama, fireworks and together 
`with-proxy pytest -v -s -k "ollama"
--inference-model="meta-llama/Llama-3.1-8B-Instruct"
llama_stack/providers/tests/inference/test_text_inference.py `
// agents on fireworks 
`pytest -v -s -k 'fireworks and create_agent'
--inference-model="meta-llama/Llama-3.1-8B-Instruct"
llama_stack/providers/tests/agents/test_agents.py
--safety-shield="meta-llama/Llama-Guard-3-8B"`

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [X] Ran pre-commit to handle lint / formatting issues.
- [X] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [X] Updated relevant documentation.
- [X] Wrote necessary unit or integration tests.

---------

Co-authored-by: Hardik Shah <hjshah@fb.com>
2025-01-15 05:38:51 -08:00
Ashwin Bharambe
d9d34433fc Update spec 2025-01-13 23:16:53 -08:00
Ashwin Bharambe
9a5803a429 move all implementations to use updated type 2025-01-13 23:16:53 -08:00
Ashwin Bharambe
ee4e04804f
Rename ipython to tool (#756)
See https://github.com/meta-llama/llama-models/pull/261 for the
corresponding PR in llama-models.

Once these PRs land, you need to work `main` from llama-models (vs. from
pypi)
2025-01-13 19:11:51 -08:00
cdgamarose-nv
ddf37ea467
Fixed imports for inference (#661)
# What does this PR do?

In short, provide a summary of what this PR does and why. Usually, the
relevant context should be present in a linked issue.

- [x] Addresses issue (#issue)
```
    from .nvidia import NVIDIAInferenceAdapter
  File "/localhome/local-cdgamarose/llama-stack/llama_stack/providers/remote/inference/nvidia/nvidia.py", line 37, in <module>
    from .openai_utils import (
  File "/localhome/local-cdgamarose/llama-stack/llama_stack/providers/remote/inference/nvidia/openai_utils.py", line 11, in <module>
    from llama_models.llama3.api.datatypes import (
ImportError: cannot import name 'CompletionMessage' from 'llama_models.llama3.api.datatypes' (/localhome/local-cdgamarose/.local/lib/python3.10/site-packages/llama_models/llama3/api/datatypes.py)
++ error_handler 62
```

## Test Plan
Deploy NIM using docker from
https://build.nvidia.com/meta/llama-3_1-8b-instruct?snippet_tab=Docker
```
(lsmyenv) local-cdgamarose@a4u8g-0006:~/llama-stack$ python3 -m pytest -s -v --providers inference=nvidia llama_stack/providers/tests/inference/ --env NVIDIA_BASE_URL=http://localhost:8000 -k test_completion --inference-model Llama3.1-8B-Instruct
======================================================================================== test session starts =========================================================================================
platform linux -- Python 3.10.16, pytest-8.3.4, pluggy-1.5.0 -- /localhome/local-cdgamarose/anaconda3/envs/lsmyenv/bin/python3
cachedir: .pytest_cache
rootdir: /localhome/local-cdgamarose/llama-stack
configfile: pyproject.toml
plugins: anyio-4.7.0, asyncio-0.25.0
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 24 items / 21 deselected / 3 selected

llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[-nvidia] Initializing NVIDIAInferenceAdapter(http://localhost:8000)...
Checking NVIDIA NIM health...
Checking NVIDIA NIM health...
PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_logprobs[-nvidia] SKIPPED (Other inference providers don't support completion() yet)
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[-nvidia] SKIPPED (This test is not quite robust)

====================================================================== 1 passed, 2 skipped, 21 deselected, 2 warnings in 1.57s =======================================================================
```

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [x] Wrote necessary unit or integration tests.
2024-12-19 14:19:36 -08:00
Matthew Farrellee
b52df5fe5b
add completion api support to nvidia inference provider (#533)
# What does this PR do?

add the completion api to the nvidia inference provider


## Test Plan

while running the meta/llama-3.1-8b-instruct NIM from
https://build.nvidia.com/meta/llama-3_1-8b-instruct?snippet_tab=Docker

```
➜ pytest -s -v --providers inference=nvidia llama_stack/providers/tests/inference/ --env NVIDIA_BASE_URL=http://localhost:8000 -k test_completion --inference-model Llama3.1-8B-Instruct
=============================================== test session starts ===============================================
platform linux -- Python 3.10.15, pytest-8.3.3, pluggy-1.5.0 -- /home/matt/.conda/envs/stack/bin/python
cachedir: .pytest_cache
rootdir: /home/matt/Documents/Repositories/meta-llama/llama-stack
configfile: pyproject.toml
plugins: anyio-4.6.2.post1, asyncio-0.24.0, httpx-0.34.0
asyncio: mode=strict, default_loop_scope=None
collected 20 items / 18 deselected / 2 selected                                                                             

llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[-nvidia] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[-nvidia] SKIPPED

============================= 1 passed, 1 skipped, 18 deselected, 6 warnings in 5.40s =============================
```

the structured output functionality works but the accuracy fails

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [x] Wrote necessary unit or integration tests.
2024-12-11 10:08:38 -08:00
Matthew Farrellee
4e6c984c26
add NVIDIA NIM inference adapter (#355)
# What does this PR do?

this PR adds a basic inference adapter to NVIDIA NIMs

what it does -
 - chat completion api
   - tool calls
   - streaming
   - structured output
   - logprobs
 - support hosted NIM on integrate.api.nvidia.com
 - support downloaded NIM containers

what it does not do -
 - completion api
 - embedding api
 - vision models
 - builtin tools
 - have certainty that sampling strategies are correct

## Feature/Issue validation/testing/test plan

`pytest -s -v --providers inference=nvidia
llama_stack/providers/tests/inference/ --env NVIDIA_API_KEY=...`

all tests should pass. there are pydantic v1 warnings.


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
- [x] Did you write any new necessary tests?

Thanks for contributing 🎉!
2024-11-23 15:59:00 -08:00