# What does this PR do?
Today, external providers are installed via the `external_providers_dir`
in the config. This necessitates users to understand the `ProviderSpec`
and set up their directories accordingly. This process splits up the
config for the stack across multiple files, directories, and formats.
Most (if not all) external providers today have a
[get_provider_spec](559cb18fbb/src/ramalama_stack/provider.py (L9))
method that sits unused. Utilizing this method rather than the
providers.d route allows for a much easier installation process for
external providers and limits the amount of extra configuration a
regular user has to do to get their stack off the ground.
To accomplish this and wire it throughout the build process, Introduce
the concept of a `module` for users to specify for an external provider
upon build time. In order to facilitate this, align the build and run
spec to use `Provider` class rather than the stringified provider_type
that build currently uses.
For example, say this is in your build config:
```
- provider_id: ramalama
provider_type: remote::ramalama
module: ramalama_stack
```
during build (in the various `build_...` scripts), additionally to
installing any pip dependencies we will also install this module and use
the `get_provider_spec` method to retrieve the ProviderSpec that is
currently specified using `providers.d`.
In production so far, providing instructions for installing external
providers for users has been difficult: they need to install the module
as a pre-req, create the providers.d directory, copy in the provider
spec, and also copy in the necessary build/run yaml files. Accessing an
external provider should be as easy as possible, and pointing to its
installable module aligns more with the rest of our build and dependency
management process.
For now, `external_providers_dir` still exists as an alternate more
declarative method of using external providers.
## Test Plan
added an integration test installing an external provider from module
and more unit test coverage for `get_provider_registry`
( the warning in yellow is expected, the module is installed inside of
the build env, not where we are running the command)
<img width="1119" height="400" alt="Screenshot 2025-07-24 at 11 30
48 AM"
src="https://github.com/user-attachments/assets/1efbaf45-b9e8-451a-bd63-264ed664706d"
/>
<img width="1154" height="618" alt="Screenshot 2025-07-24 at 11 31
14 AM"
src="https://github.com/user-attachments/assets/feb2b3ea-c5dd-418e-9662-9a3bd5dd6bdc"
/>
---------
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
dropped python3.10, updated pyproject and dependencies, and also removed
some blocks of code with special handling for enum.StrEnum
Closes#2458
Signed-off-by: Charlie Doern <cdoern@redhat.com>
# What does this PR do?
[Provide a short summary of what this PR does and why. Link to relevant
issues if applicable.]
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
Signed-off-by: reidliu <reid201711@gmail.com>
Co-authored-by: reidliu <reid201711@gmail.com>
This fixes the following timeout issue when installing PyTorch via uv.
Also see reference: https://github.com/astral-sh/uv/pull/1694,
https://github.com/astral-sh/uv/issues/1549
```
Installing pip dependencies
Using Python 3.10.16 environment at: /home/yutang/.conda/envs/distribution-myenv
× Failed to download and build `antlr4-python3-runtime==4.9.3`
├─▶ Failed to extract archive
├─▶ failed to unpack
│ `/home/yutang/.cache/uv/sdists-v7/.tmpDWX4iK/antlr4-python3-runtime-4.9.3/src/antlr4/ListTokenSource.py`
├─▶ failed to unpack
│ `antlr4-python3-runtime-4.9.3/src/antlr4/ListTokenSource.py` into
│ `/home/yutang/.cache/uv/sdists-v7/.tmpDWX4iK/antlr4-python3-runtime-4.9.3/src/antlr4/ListTokenSource.py`
├─▶ error decoding response body
├─▶ request or response body error
╰─▶ operation timed out
help: `antlr4-python3-runtime` (v4.9.3) was included because `torchtune`
(v0.5.0) depends on `omegaconf` (v2.3.0) which depends on
`antlr4-python3-runtime>=4.9.dev0, <4.10.dev0`
Failed to build target distribution-myenv with return code 1
```
---------
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
## What does this PR do?
See issue: #747 -- `uv` is just plain better. This PR does the bare
minimum of replacing `pip install` by `uv pip install` and ensuring `uv`
exists in the environment.
## Test Plan
First: create new conda, `uv pip install -e .` on `llama-stack` -- all
is good.
Next: run `llama stack build --template together` followed by `llama
stack run together` -- all good
Next: run `llama stack build --template together --image-name yoyo`
followed by `llama stack run together --image-name yoyo` -- all good
Next: fresh conda and `uv pip install -e .` and `llama stack build
--template together --image-type venv` -- all good.
Docker: `llama stack build --template together --image-type container`
works!
## What does this PR do?
So far `llama stack build` has always created a separate conda
environment for packaging the dependencies of a distribution. The main
reason to do so is isolation -- distributions are composed of providers
which can have a variety of potentially conflicting dependencies. That
said, this has created significant annoyance for new users since it is
not at all transparent. The fact that `llama stack run` is actually
running the code in some other conda is very surprising.
This PR tries to make things better.
- Both `llama stack build` and `llama stack run` now accept an
`--image-name` argument which represents the (conda, docker, virtualenv)
image you want to operate upon.
- For the default (conda) mode, the script checks if a current conda
environment exists. If one exists, it uses it.
- If `--image-name` is provided, that option is used. In this case, an
environment is created if needed.
- There is no automatic `llamastack-` prefixing of the environment names
done anymore.
## Test Plan
Start in a conda environment, run `llama stack build --template
fireworks`; verify that it successfully built into the current
environment and stored the build file at
`$CONDA_PREFIX/llamastack-build.yaml`. Run `llama stack run fireworks`
which started correctly in the current environment.
Ran the same build command outside of conda. It failed asking for
`--image-name`. Ran it with `llama stack build --template fireworks
--image-name foo`. This successfully created a conda environment called
`foo` and installed deps. Ran `llama stack run fireworks` outside conda
which failed. Activated a different conda, ran again, it failed saying
it did not find the `llamastack-build.yaml` file. Then used
`--image-name foo` option and it ran successfully.
# What does this PR do?
To build a conda env for specific Llama Stack version, e.g.
`PYPI_VERSION=0.0.58 llama stack build --template together --image-type
conda`
will install these in the llamastack-together env:
```
llama_models 0.0.58
llama_stack 0.0.58
llama_stack_client 0.0.58
```
Without `PYPI_VERSION=`, `llama stack build --template together
--image-type conda` installs the latest all.
In short, provide a summary of what this PR does and why. Usually, the
relevant context should be present in a linked issue.
- [ ] Addresses issue (#issue)
## Test Plan
Please describe:
- tests you ran to verify your changes with result summaries.
- provide instructions so it can be reproduced.
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
* API Keys passed from Client instead of distro configuration
* delete distribution registry
* Rename the "package" word away
* Introduce a "Router" layer for providers
Some providers need to be factorized and considered as thin routing
layers on top of other providers. Consider two examples:
- The inference API should be a routing layer over inference providers,
routed using the "model" key
- The memory banks API is another instance where various memory bank
types will be provided by independent providers (e.g., a vector store
is served by Chroma while a keyvalue memory can be served by Redis or
PGVector)
This commit introduces a generalized routing layer for this purpose.
* update `apis_to_serve`
* llama_toolchain -> llama_stack
* Codemod from llama_toolchain -> llama_stack
- added providers/registry
- cleaned up api/ subdirectories and moved impls away
- restructured api/api.py
- from llama_stack.apis.<api> import foo should work now
- update imports to do llama_stack.apis.<api>
- update many other imports
- added __init__, fixed some registry imports
- updated registry imports
- create_agentic_system -> create_agent
- AgenticSystem -> Agent
* Moved some stuff out of common/; re-generated OpenAPI spec
* llama-toolchain -> llama-stack (hyphens)
* add control plane API
* add redis adapter + sqlite provider
* move core -> distribution
* Some more toolchain -> stack changes
* small naming shenanigans
* Removing custom tool and agent utilities and moving them client side
* Move control plane to distribution server for now
* Remove control plane from API list
* no codeshield dependency randomly plzzzzz
* Add "fire" as a dependency
* add back event loggers
* stack configure fixes
* use brave instead of bing in the example client
* add init file so it gets packaged
* add init files so it gets packaged
* Update MANIFEST
* bug fix
---------
Co-authored-by: Hardik Shah <hjshah@fb.com>
Co-authored-by: Xi Yan <xiyan@meta.com>
Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
2024-09-17 19:51:35 -07:00
Renamed from llama_toolchain/core/build_conda_env.sh (Browse further)