# What does this PR do?
inference providers each have a static list of supported / known models.
some also have access to a dynamic list of currently available models.
this change gives prodivers using the ModelRegistryHelper the ability to
combine their static and dynamic lists.
for instance, OpenAIInferenceAdapter can implement
```
def query_available_models(self) -> list[str]:
return [entry.model for entry in self.openai_client.models.list()]
```
to augment its static list w/ a current list from openai.
## Test Plan
scripts/unit-test.sh
Remove both the metadata and content from the kvstore when a file is
being removed from the vector store.
Closes: #2685
Also add faiss provider to openai_vector_stores test suite
---------
Signed-off-by: Derek Higgins <derekh@redhat.com>
Co-authored-by: raghotham <rsm@meta.com>
# What does this PR do?
this blocks network access for all `tests/unit/` tests.
`tests/integration/` are untouched.
it also introduces an `allow_network` marker to explicitly allow network
access.
## Test Plan
`./scripts/unit-tests.sh`
# What does this PR do?
Some of our inference providers support passthrough authentication via
`x-llamastack-provider-data` header values. This fixes the providers
that support passthrough auth to not cache their clients to the backend
providers (mostly OpenAI client instances) so that the client connecting
to Llama Stack has to provide those auth values on each and every
request.
## Test Plan
I added some unit tests to ensure we're not caching clients across
requests for all the fixed providers in this PR.
```
uv run pytest -sv tests/unit/providers/inference/test_inference_client_caching.py
```
I also ran some of our OpenAI compatible API integration tests for each
of the changed providers, just to ensure they still work. Note that
these providers don't actually pass all these tests (for unrelated
reasons due to quirks of the Groq and Together SaaS services), but
enough of the tests passed to confirm the clients are still working as
intended.
### Together
```
ENABLE_TOGETHER="together" \
uv run llama stack run llama_stack/templates/starter/run.yaml
LLAMA_STACK_CONFIG=http://localhost:8321 \
uv run pytest -sv \
tests/integration/inference/test_openai_completion.py \
--text-model "together/meta-llama/Llama-3.1-8B-Instruct"
```
### OpenAI
```
ENABLE_OPENAI="openai" \
uv run llama stack run llama_stack/templates/starter/run.yaml
LLAMA_STACK_CONFIG=http://localhost:8321 \
uv run pytest -sv \
tests/integration/inference/test_openai_completion.py \
--text-model "openai/gpt-4o-mini"
```
### Groq
```
ENABLE_GROQ="groq" \
uv run llama stack run llama_stack/templates/starter/run.yaml
LLAMA_STACK_CONFIG=http://localhost:8321 \
uv run pytest -sv \
tests/integration/inference/test_openai_completion.py \
--text-model "groq/meta-llama/Llama-3.1-8B-Instruct"
```
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
previously, developers who ran `./scripts/unit-tests.sh` would get
`asyncio-mode=auto`, which meant `@pytest.mark.asyncio` and
`@pytest_asyncio.fixture` were redundent. developers who ran `pytest`
directly would get pytest's default (strict mode), would run into errors
leading them to add `@pytest.mark.asyncio` / `@pytest_asyncio.fixture`
to their code.
with this change -
- `asyncio_mode=auto` is included in `pyproject.toml` making behavior
consistent for all invocations of pytest
- removes all redundant `@pytest_asyncio.fixture` and
`@pytest.mark.asyncio`
- for good measure, requires `pytest>=8.4` and `pytest-asyncio>=1.0`
## Test Plan
- `./scripts/unit-tests.sh`
- `uv run pytest tests/unit`
# What does this PR do?
This PR refactors and the VectorIO backend logic for `sqlite-vec` and
adds unit tests and fixtures to make it easy to test both `sqlite-vec`
and `milvus`.
Key changes:
- `sqlite-vec` migrated to `kvstore` registry
- added in-memory cache for sqlite-vec to be consistent with `milvus`
- default fixtures moved to `conftest.py`
- removed redundant tests from sqlite`-vec`
- made `test_vector_io_openai_vector_stores.py` more easily extensible
## Test Plan
Unit tests added testing inline providers.
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
inference providers each have a static list of supported / known models. some also
have access to a dynamic list of currently available models. this change gives
prodivers using the ModelRegistryHelper the ability to combine their static and
dynamic lists.
for instance, OpenAIInferenceAdapter can implement
```
def query_available_models(self) -> list[str]:
return [entry.model for entry in self.openai_client.models.list()]
```
to augment its static list w/ a current list from openai.
# What does this PR do?
- Enabling Unit tests for Milvus to start to test OpenAI compatibility
and fixing a few bugs.
- Also fixed an inconsistency in the Milvus config between remote and
inline.
- Added pymilvus to extras for testing in CI
I'm going to refactor this later to include the other inline providers
so that we can catch issues sooner.
I have another PR where I've been testing to find other bugs in the
implementation (and required changes drafted here:
https://github.com/meta-llama/llama-stack/pull/2617).
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
This handles an edge case for `generate_chunk_id` if the concatenation
of the `document_id` and `chunk_text` combination are not unique. Adding
the window location ensures uniqueness.
## Test Plan
Added unit test
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
Resolves access control error visibility issues where 500 errors were
returned instead of proper 403 responses with actionable error messages.
• Enhance AccessDeniedError with detailed context and improve exception
handling
• Enhanced AccessDeniedError class to include user, action, and resource
context
- Added constructor parameters for action, resource, and user
- Generate detailed error messages showing user principal, attributes,
and attempted resource
- Backward compatible with existing usage (falls back to generic
message)
• Updated exception handling in server.py
- Import AccessDeniedError from access_control module
- Return proper 403 status codes with detailed error messages
- Separate handling for PermissionError (generic) vs AccessDeniedError
(detailed)
• Enhanced error context at raise sites
- Updated routing_tables/common.py to pass action, resource, and user
context
- Updated agents persistence to include context in access denied errors
- Provides better debugging information for access control issues
• Added comprehensive unit tests
- Created tests/unit/server/test_server.py with 13 test cases
- Covers AccessDeniedError with and without context
- Tests all exception types (ValidationError, BadRequestError,
AuthenticationRequiredError, etc.)
- Validates proper HTTP status codes and error message formats
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
```
server:
port: 8321
access_policy:
- permit:
principal: admin
actions: [create, read, delete]
when: user with admin in groups
- permit:
actions: [read]
when: user with system:authenticated in roles
```
then:
```
curl --request POST --url http://localhost:8321/v1/vector-dbs \
--header "Authorization: Bearer your-bearer" \
--data '{
"vector_db_id": "my_demo_vector_db",
"embedding_model": "ibm-granite/granite-embedding-125m-english",
"embedding_dimension": 768,
"provider_id": "milvus"
}'
```
depending if user is in group admin or not, you should get the
`AccessDeniedError`. Before this PR, this was leading to an error 500
and `Traceback` displayed in the logs.
After the PR, logs display a simpler error (unless DEBUG logging is set)
and a 403 Forbidden error is returned on the HTTP side.
---------
Signed-off-by: Akram Ben Aissi <<akram.benaissi@gmail.com>>
# What does this PR do?
* Given that our API packages use "import *" in `__init.py__` we don't
need to do `from llama_stack.apis.models.models` but simply from
llama_stack.apis.models. The decision to use `import *` is debatable and
should probably be revisited at one point.
* Remove unneeded Ruff F401 rule
* Consolidate Ruff F403 rule in the pyprojectfrom
llama_stack.apis.models.models
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
These are a couple of fixes to get an example LangChain app working with
our OpenAI Responses API implementation.
The Responses API spec requires an annotations array in
`output[*].content[*].annotations` and we were not providing one. So,
this adds that as an empty list, even though we don't do anything to
populate it yet. This prevents an error from client libraries like
Langchain that expect this field to always exist, even if an empty list.
The other fix is `web_search_preview` is a valid name for the web search
tool in the Responses API, but we only responded to `web_search` or
`web_search_preview_2025_03_11`.
## Test Plan
The existing Responses unit tests were expanded to test these cases,
via:
```
pytest -sv tests/unit/providers/agents/meta_reference/test_openai_responses.py
```
The existing test_openai_responses.py integration tests still pass with
this change, tested as below with Fireworks:
```
uv run llama stack run llama_stack/templates/starter/run.yaml
LLAMA_STACK_CONFIG=http://localhost:8321 \
uv run pytest -sv tests/integration/agents/test_openai_responses.py \
--text-model accounts/fireworks/models/llama4-scout-instruct-basic
```
Lastly, this example LangChain app now works with Llama stack (tested
with Ollama in the starter template in this case). This LangChain code
is using the example snippets for using Responses API at
https://python.langchain.com/docs/integrations/chat/openai/#responses-api
```python
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
base_url="http://localhost:8321/v1/openai/v1",
api_key="fake",
model="ollama/meta-llama/Llama-3.2-3B-Instruct",
)
tool = {"type": "web_search_preview"}
llm_with_tools = llm.bind_tools([tool])
response = llm_with_tools.invoke("What was a positive news story from today?")
print(response.content)
```
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
Adding `ChunkMetadata` so we can properly delete embeddings later.
More specifically, this PR refactors and extends the chunk metadata
handling in the vector database and introduces a distinction between
metadata used for model context and backend-only metadata required for
chunk management, storage, and retrieval. It also improves chunk ID
generation and propagation throughout the stack, enhances test coverage,
and adds new utility modules.
```python
class ChunkMetadata(BaseModel):
"""
`ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional information about the chunk that
will NOT be inserted into the context during inference, but is required for backend functionality.
Use `metadata` in `Chunk` for metadata that will be used during inference.
"""
document_id: str | None = None
chunk_id: str | None = None
source: str | None = None
created_timestamp: int | None = None
updated_timestamp: int | None = None
chunk_window: str | None = None
chunk_tokenizer: str | None = None
chunk_embedding_model: str | None = None
chunk_embedding_dimension: int | None = None
content_token_count: int | None = None
metadata_token_count: int | None = None
```
Eventually we can migrate the document_id out of the `metadata` field.
I've introduced the changes so that `ChunkMetadata` is backwards
compatible with `metadata`.
<!-- If resolving an issue, uncomment and update the line below -->
Closes https://github.com/meta-llama/llama-stack/issues/2501
## Test Plan
Added unit tests
---------
Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
# What does this PR do?
Inference/Response stores now store user attributes when inserting, and
respects them when fetching.
## Test Plan
pytest tests/unit/utils/test_sqlstore.py
# What does this PR do?
Move to use vector_stores.search for file search tool in Responses,
which supports filters.
closes#2435
## Test Plan
Added e2e test with fitlers.
myenv ❯ llama stack run llama_stack/templates/fireworks/run.yaml
pytest -sv tests/verifications/openai_api/test_responses.py \
-k 'file_search and filters' \
--base-url=http://localhost:8321/v1/openai/v1 \
--model=meta-llama/Llama-3.3-70B-Instruct
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
To add health check for faiss inline vector_io provider.
I tried adding `async def health(self) -> HealthResponse:` like in
inference provider, but it didn't worked for `inline->vector_io->faiss`
provider. And via debug logs, I understood the critical issue, that the
health responses are being stored with the API name as the key, not as a
nested dictionary with provider IDs. This means that all providers of
the same API type (e.g., "vector_io") will share the same health
response, and only the last one processed will be visible in the API
response.
I've created a patch file that fixes this issue by:
- Storing the original get_providers_health method
- Creating a patched version that correctly maps health responses to
providers
- Applying the patch to the `ProviderImpl` class
Not an expert, so please let me know, if there can be any other
workaround using which I can get the health status updated directly from
`faiss.py`.
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
Added unit tests to test the provider patch implementation in the PR.
Adding a screenshot with the FAISS inline vector_io health status as
"OK"

# What does this PR do?
Add support for hybrid search mode in SQLite-vec provider, which
combines
keyword and vector search for better results. The implementation:
- Adds hybrid search mode as a new option alongside vector and keyword
search
- Implements query_hybrid method in SQLiteVecIndex that:
- First performs keyword search to get candidate matches
- Then applies vector similarity search on those candidates
- Updates documentation to reflect the new search mode
This change improves search quality by leveraging both semantic
similarity
and keyword matching, while maintaining backward compatibility with
existing
vector and keyword search modes.
## Test Plan
```
pytest tests/unit/providers/vector_io/test_sqlite_vec.py -v -s --tb=short
/Users/vnarsing/miniconda3/envs/stack-client/lib/python3.10/site-packages/pytest_asyncio/plugin.py:217: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"
warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
=============================================================================================== test session starts ===============================================================================================
platform darwin -- Python 3.10.16, pytest-8.3.5, pluggy-1.5.0 -- /Users/vnarsing/miniconda3/envs/stack-client/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.16', 'Platform': 'macOS-14.7.6-arm64-arm-64bit', 'Packages': {'pytest': '8.3.5', 'pluggy': '1.5.0'}, 'Plugins': {'html': '4.1.1', 'json-report': '1.5.0', 'timeout': '2.4.0', 'metadata': '3.1.1', 'anyio': '4.8.0', 'asyncio': '0.26.0', 'nbval': '0.11.0', 'cov': '6.1.1'}}
rootdir: /Users/vnarsing/go/src/github/meta-llama/llama-stack
configfile: pyproject.toml
plugins: html-4.1.1, json-report-1.5.0, timeout-2.4.0, metadata-3.1.1, anyio-4.8.0, asyncio-0.26.0, nbval-0.11.0, cov-6.1.1
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function
collected 10 items
tests/unit/providers/vector_io/test_sqlite_vec.py::test_add_chunks PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_vector PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_full_text_search PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_full_text_search_k_greater_than_results PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_chunk_id_conflict PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_generate_chunk_id PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid_no_keyword_matches PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid_score_threshold PASSED
tests/unit/providers/vector_io/test_sqlite_vec.py::test_query_chunks_hybrid_different_embedding PASSED
```
---------
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
# What does this PR do?
Adds try-catch to faiss `query_vector` function for when the distance
between the query embedding and an embedding within the vector db is 0
(identical vectors). Catches `ZeroDivisionError` and then appends `(1.0
/ sys.float_info.min)` to `scores` to represent maximum similarity.
<!-- If resolving an issue, uncomment and update the line below -->
Closes [#2381]
## Test Plan
Checkout this PR
Execute this code and there will no longer be a `ZeroDivisionError`
exception
```
from llama_stack_client import LlamaStackClient
base_url = "http://localhost:8321"
client = LlamaStackClient(base_url=base_url)
models = client.models.list()
embedding_model = (
em := next(m for m in models if m.model_type == "embedding")
).identifier
embedding_dimension = 384
_ = client.vector_dbs.register(
vector_db_id="foo_db",
embedding_model=embedding_model,
embedding_dimension=embedding_dimension,
provider_id="faiss",
)
chunk = {
"content": "foo",
"mime_type": "text/plain",
"metadata": {
"document_id": "foo-id"
}
}
client.vector_io.insert(vector_db_id="foo_db", chunks=[chunk])
client.vector_io.query(vector_db_id="foo_db", query="foo")
```
### Running unit tests
`uv run pytest tests/unit/rag/test_rag_query.py -v`
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
Co-authored-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
To add health status check for remote VLLM
<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
PR includes the unit test to test the added health check implementation
feature.
The non-streaming version is just a small layer on top of the streaming
version - just pluck off the final `response.completed` event and return
that as the response!
This PR also includes a couple other changes which I ended up making
while working on it on a flight:
- changes to `ollama` so it does not pull embedding models
unconditionally
- a small fix to library client to make the stream and non-stream cases
a bit more symmetric
This allows a set of rules to be defined for determining access to
resources. The rules are (loosely) based on the cedar policy format.
A rule defines a list of action either to permit or to forbid. It may
specify a principal or a resource that must match for the rule to take
effect. It may also specify a condition, either a 'when' or an 'unless',
with additional constraints as to where the rule applies.
A list of rules is held for each type to be protected and tried in order
to find a match. If a match is found, the request is permitted or
forbidden depening on the type of rule. If no match is found, the
request is denied. If no rules are specified for a given type, a rule
that allows any action as long as the resource attributes match the user
attributes is added (i.e. the previous behaviour is the default.
Some examples in yaml:
```
model:
- permit:
principal: user-1
actions: [create, read, delete]
comment: user-1 has full access to all models
- permit:
principal: user-2
actions: [read]
resource: model-1
comment: user-2 has read access to model-1 only
- permit:
actions: [read]
when:
user_in: resource.namespaces
comment: any user has read access to models with matching attributes
vector_db:
- forbid:
actions: [create, read, delete]
unless:
user_in: role::admin
comment: only user with admin role can use vector_db resources
```
---------
Signed-off-by: Gordon Sim <gsim@redhat.com>
# What does this PR do?
This adds the missing `text` parameter to the Responses API that is how
users control structured outputs. All we do with that parameter is map
it to the corresponding chat completion response_format.
## Test Plan
The new unit tests exercise the various permutations allowed for this
property, while a couple of new verification tests actually use it for
real to verify the model outputs are following the format as expected.
Unit tests:
`python -m pytest -s -v
tests/unit/providers/agents/meta_reference/test_openai_responses.py`
Verification tests:
```
llama stack run llama_stack/templates/together/run.yaml
pytest -s -vv 'tests/verifications/openai_api/test_responses.py' \
--base-url=http://localhost:8321/v1/openai/v1 \
--model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
Note that the verification tests can only be run with a real Llama Stack
server (as opposed to using the library client via
`--provider=stack:together`) because the Llama Stack python client is
not yet updated to accept this text field.
Signed-off-by: Ben Browning <bbrownin@redhat.com>
I think the implementation needs more simplification. Spent way too much
time trying to get the tests pass with models not co-operating :(
Finally had to switch claude-sonnet to get things to pass reliably.
### Test Plan
```
export TAVILY_SEARCH_API_KEY=...
export OPENAI_API_KEY=...
uv run pytest -p no:warnings \
-s -v tests/verifications/openai_api/test_responses.py \
--provider=stack:starter \
--model openai/gpt-4o
```
# What does this PR do?
The remote-vllm `test_chat_completion_doesnt_block_event_loop` unit test
was often failing for me on a Mac with a `httpx.ReadError`. I traced
this back to the swap to the `AsyncOpenAI` client in the remote-vllm
provider as where this started, and it looks like the async client needs
a bit more accurate HTTP request handling from our mock server.
So, this fixes that unit test to send proper Content-Type and
Content-Length headers which makes the `AsyncOpenAI` client happier on
Macs.
## Test Plan
All the test_remote_vllm.py unit tests consistently pass for me on a Mac
now, without any flaking in the event loop one.
`pytest -s -v tests/unit/providers/inference/test_remote_vllm.py`
Signed-off-by: Ben Browning <bbrownin@redhat.com>
We must store the full (re-hydrated) input not just the original input
in the Response object. Of course, this is not very space efficient and
we should likely find a better storage scheme so that we can only store
unique entries in the database and then re-hydrate them efficiently
later. But that can be done safely later.
Closes https://github.com/meta-llama/llama-stack/issues/2299
## Test Plan
Unit test
This adds initial streaming support to the Responses API.
This PR makes sure that the _first_ inference call made to chat
completions streams out.
There's more to be done:
- tool call output tokens need to stream out when possible
- we need to loop through multiple rounds of inference and they all need
to stream out.
## Test Plan
Added a test. Executed as:
```
FIREWORKS_API_KEY=... \
pytest -s -v 'tests/verifications/openai_api/test_responses.py' \
--provider=stack:fireworks --model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
Then, started a llama stack fireworks distro and tested against it like
this:
```
OPENAI_API_KEY=blah \
pytest -s -v 'tests/verifications/openai_api/test_responses.py' \
--base-url http://localhost:8321/v1/openai/v1 \
--model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
# What does this PR do?
This is not part of the official OpenAI API, but we'll use this for the
logs UI.
In order to support more filtering options, I'm adopting the newly
introduced sql store in in place of the kv store.
## Test Plan
Added integration/unit tests.
# What does this PR do?
This PR introduces support for keyword based FTS5 search with BM25
relevance scoring. It makes changes to the existing EmbeddingIndex base
class in order to support a search_mode and query_str parameter, that
can be used for keyword based search implementations.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
run
```
pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py -v -s --tb=short --disable-warnings --asyncio-mode=auto
```
Output:
```
pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py -v -s --tb=short --disable-warnings --asyncio-mode=auto
/Users/vnarsing/miniconda3/envs/stack-client/lib/python3.10/site-packages/pytest_asyncio/plugin.py:207: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"
warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
====================================================== test session starts =======================================================
platform darwin -- Python 3.10.16, pytest-8.3.4, pluggy-1.5.0 -- /Users/vnarsing/miniconda3/envs/stack-client/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.16', 'Platform': 'macOS-14.7.4-arm64-arm-64bit', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'html': '4.1.1', 'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0'}}
rootdir: /Users/vnarsing/go/src/github/meta-llama/llama-stack
configfile: pyproject.toml
plugins: html-4.1.1, metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0
asyncio: mode=auto, asyncio_default_fixture_loop_scope=None
collected 7 items
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_add_chunks PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_query_chunks_vector PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_query_chunks_fts PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_chunk_id_conflict PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_register_vector_db PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_unregister_vector_db PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_generate_chunk_id PASSED
```
For reference, with the implementation, the fts table looks like below:
```
Chunk ID: 9fbc39ce-c729-64a2-260f-c5ec9bb2a33e, Content: Sentence 0 from document 0
Chunk ID: 94062914-3e23-44cf-1e50-9e25821ba882, Content: Sentence 1 from document 0
Chunk ID: e6cfd559-4641-33ba-6ce1-7038226495eb, Content: Sentence 2 from document 0
Chunk ID: 1383af9b-f1f0-f417-4de5-65fe9456cc20, Content: Sentence 3 from document 0
Chunk ID: 2db19b1a-de14-353b-f4e1-085e8463361c, Content: Sentence 4 from document 0
Chunk ID: 9faf986a-f028-7714-068a-1c795e8f2598, Content: Sentence 5 from document 0
Chunk ID: ef593ead-5a4a-392f-7ad8-471a50f033e8, Content: Sentence 6 from document 0
Chunk ID: e161950f-021f-7300-4d05-3166738b94cf, Content: Sentence 7 from document 0
Chunk ID: 90610fc4-67c1-e740-f043-709c5978867a, Content: Sentence 8 from document 0
Chunk ID: 97712879-6fff-98ad-0558-e9f42e6b81d3, Content: Sentence 9 from document 0
Chunk ID: aea70411-51df-61ba-d2f0-cb2b5972c210, Content: Sentence 0 from document 1
Chunk ID: b678a463-7b84-92b8-abb2-27e9a1977e3c, Content: Sentence 1 from document 1
Chunk ID: 27bd63da-909c-1606-a109-75bdb9479882, Content: Sentence 2 from document 1
Chunk ID: a2ad49ad-f9be-5372-e0c7-7b0221d0b53e, Content: Sentence 3 from document 1
Chunk ID: cac53bcd-1965-082a-c0f4-ceee7323fc70, Content: Sentence 4 from document 1
```
Query results:
Result 1: Sentence 5 from document 0
Result 2: Sentence 5 from document 1
Result 3: Sentence 5 from document 2
[//]: # (## Documentation)
---------
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
# What does this PR do?
Add support for "instructions" to the responses API. Instructions
provide a way to swap out system (or developer) messages in new
responses.
## Test Plan
unit tests added
Signed-off-by: Derek Higgins <derekh@redhat.com>
# What does this PR do?
When launching a fine-tuning job, an upcoming version of NeMo Customizer
will expect the `config` name to be formatted as
`namespace/name@version`. Here, `config` is a reference to a model +
additional metadata. There could be multiple `config`s that reference
the same base model.
This PR updates NVIDIA's `supervised_fine_tune` to simply pass the
`model` param as-is to NeMo Customizer. Currently, it expects a
specific, allowlisted llama model (i.e. `meta/Llama3.1-8B-Instruct`) and
converts it to the provider format (`meta/llama-3.1-8b-instruct`).
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
From a notebook, I built an image with my changes:
```
!llama stack build --template nvidia --image-type venv
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
client = LlamaStackAsLibraryClient("nvidia")
client.initialize()
```
And could successfully launch a job:
```
response = client.post_training.supervised_fine_tune(
job_uuid="",
model="meta/llama-3.2-1b-instruct@v1.0.0+A100", # Model passed as-is to Customimzer
...
)
job_id = response.job_uuid
print(f"Created job with ID: {job_id}")
Output:
Created job with ID: cust-Jm4oGmbwcvoufaLU4XkrRU
```
[//]: # (## Documentation)
---------
Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
# What does this PR do?
This fixes an issue in how we used the tool_call_buf from streaming tool
calls in the remote-vllm provider where it would end up concatenating
parameters from multiple different tool call results instead of
aggregating the results from each tool call separately.
It also fixes an issue found while digging into that where we were
accidentally mixing the json string form of tool call parameters with
the string representation of the python form, which mean we'd end up
with single quotes in what should be double-quoted json strings.
Closes#1120
## Test Plan
The following tests are now passing 100% for the remote-vllm provider,
where some of the test_text_inference were failing before this change:
```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic" LLAMA_STACK_CONFIG=remote-vllm python -m pytest -v tests/integration/inference/test_text_inference.py --text-model "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic"
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic" LLAMA_STACK_CONFIG=remote-vllm python -m pytest -v tests/integration/inference/test_vision_inference.py --vision-model "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic"
```
All but one of the agent tests are passing (including the multi-tool
one). See the PR at https://github.com/vllm-project/vllm/pull/17917 and
a gist at
https://gist.github.com/bbrowning/4734240ce96b4264340caa9584e47c9e for
changes needed there, which will have to get made upstream in vLLM.
Agent tests:
```
VLLM_URL="http://localhost:8000/v1" INFERENCE_MODEL="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic" LLAMA_STACK_CONFIG=remote-vllm python -m pytest -v tests/integration/agents/test_agents.py --text-model "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic"
````
---------
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
In the Responses API, we convert incoming response requests to chat
completion requests. When streaming the resulting chunks of those chat
completion requests, inference providers that use OpenAI clients will
often return a `type=None` value in the tool call parts of the response.
This causes issues when we try to dump and load that response into our
pydantic model, because type cannot be None in the Responses API model
we're loading these into.
So, strip the "type" field, if present, off those chat completion tool
call results before dumping and loading them as our typed pydantic
models, which will apply our default value for that type field.
## Test Plan
This was found via manual testing of the Responses API with codex, where
I was getting errors in some tool call situations. I added a unit test
to simulate this scenario and verify the fix, as well as manual codex
testing to verify the fix.
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
Closes#2113.
Closes#1783.
Fixes a bug in handling the end of tool execution request stream where
no `finish_reason` is provided by the model.
## Test Plan
1. Ran existing unit tests
2. Added a dedicated test verifying correct behavior in this edge case
3. Ran the code snapshot from #2113
[//]: # (## Documentation)
# What does this PR do?
Closes#2111.
Fixes an error causing Llama Stack to just return `<tool_call>` and
complete the turn without actually executing the tool. See the issue
description for more detail.
## Test Plan
1) Ran existing unit tests
2) Added a dedicated test verifying correct behavior in this edge case
3) Ran the code snapshot from #2111
# What does this PR do?
This is a combination of what was previously 3 separate PRs - #2069,
#2075, and #2083. It turns out all 3 of those are needed to land a
working function calling Responses implementation. The web search
builtin tool was already working, but this wires in support for custom
function calling.
I ended up combining all three into one PR because they all had lots of
merge conflicts, both with each other but also with #1806 that just
landed. And, because landing any of them individually would have only
left a partially working implementation merged.
The new things added here are:
* Storing of input items from previous responses and restoring of those
input items when adding previous responses to the conversation state
* Handling of multiple input item messages roles, not just "user"
messages.
* Support for custom tools passed into the Responses API to enable
function calling outside of just the builtin websearch tool.
Closes#2074Closes#2080
## Test Plan
### Unit Tests
Several new unit tests were added, and they all pass. Ran via:
```
python -m pytest -s -v tests/unit/providers/agents/meta_reference/test_openai_responses.py
```
### Responses API Verification Tests
I ran our verification run.yaml against multiple providers to ensure we
were getting a decent pass rate. Specifically, I ensured the new custom
tool verification test passed across multiple providers and that the
multi-turn examples passed across at least some of the providers (some
providers struggle with the multi-turn workflows still).
Running the stack setup for verification testing:
```
llama stack run --image-type venv tests/verifications/openai-api-verification-run.yaml
```
Together, passing 100% as an example:
```
pytest -s -v 'tests/verifications/openai_api/test_responses.py' --provider=together-llama-stack
```
## Documentation
We will need to start documenting the OpenAI APIs, but for now the
Responses stuff is still rapidly evolving so delaying that.
---------
Signed-off-by: Derek Higgins <derekh@redhat.com>
Signed-off-by: Ben Browning <bbrownin@redhat.com>
Co-authored-by: Derek Higgins <derekh@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
# What does this PR do?
Checks for RAGDocument of type InterleavedContent
I noticed when stepping through the code that the supported types for
`RAGDocument` included `InterleavedContent` as a content type. This type
is not checked against before putting the `doc.content` is regex matched
against. This would cause a runtime error. This change adds an explicit
check for type.
The only other part that I'm unclear on is how to handle the
`ImageContent` type since this would always just return `<image>` which
seems like an undesired behavior. Should the `InterleavedContent` type
be removed from `RAGDocument` and replaced with `URI | str`?
## Test Plan
[//]: # (## Documentation)
---------
Signed-off-by: Kevin <kpostlet@redhat.com>
Add fixtures for SqliteKVStore, DiskDistributionRegistry and
CachedDiskDistributionRegistry. And use them in tests that had all been
duplicating similar setups.
## Test Plan
unit tests continue to run
Signed-off-by: Derek Higgins <derekh@redhat.com>
# What does this PR do?
When converting OpenAI message content for the "system" and "assistant"
roles to Llama Stack inference APIs (used for some providers when
dealing with Llama models via OpenAI API requests to get proper prompt /
tool handling), we were not properly converting any non-string content.
I discovered this while running the new Responses AI verification suite
against the Fireworks provider, but instead of fixing it as part of some
ongoing work there split this out into a separate PR.
This fixes that, by using the `openai_content_to_content` helper we used
elsewhere to ensure content parts were mapped properly.
## Test Plan
I added a couple of new tests to `test_openai_compat` to reproduce this
issue and validate its fix. I ran those as below:
```
python -m pytest -s -v tests/unit/providers/utils/inference/test_openai_compat.py
```
Signed-off-by: Ben Browning <bbrownin@redhat.com>
# What does this PR do?
The goal of this PR is code base modernization.
Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)
Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.
Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
# What does this PR do?
Add support for the temperature to the responses API
## Test Plan
Manually tested simple case
unit tests added for simple case and tool calls
Signed-off-by: Derek Higgins <derekh@redhat.com>
# What does this PR do?
When the result of a ToolCall gets passed back into vLLM for the model
to handle the tool call result (as is often the case in agentic
tool-calling workflows), we forgot to handle the case where BuiltinTool
calls are not string values but instead instances of the BuiltinTool
enum. This fixes that, properly converting those enums to string values
before trying to serialize them into an OpenAI chat completion request
to vLLM.
PR #1931 fixed a bug where we weren't passing these tool calling results
back into vLLM, but as a side-effect it created this serialization bug
when using BuiltinTools.
Closes#2070
## Test Plan
I added a new unit test to the openai_compat unit tests to cover this
scenario, ensured the new test failed before this fix, and all the
existing tests there plus the new one passed with this fix.
```
python -m pytest -s -v tests/unit/providers/utils/inference/test_openai_compat.py
```
Signed-off-by: Ben Browning <bbrownin@redhat.com>