From 4c9d9443806fd6a1c1021f975c333e77e99ea2dd Mon Sep 17 00:00:00 2001 From: Ashwin Bharambe Date: Fri, 17 Oct 2025 00:16:44 -0700 Subject: [PATCH 01/41] fix(perf): make batches tests finish 30x faster (#3834) In replay mode, inference is instantenous. We don't need to wait 15 seconds for the batch to be done. Fixing polling to do exp backoff makes things work super fast. --- tests/integration/batches/conftest.py | 26 ++++++++++++++++++++------ 1 file changed, 20 insertions(+), 6 deletions(-) diff --git a/tests/integration/batches/conftest.py b/tests/integration/batches/conftest.py index 974fe77ab..3ab8df3d9 100644 --- a/tests/integration/batches/conftest.py +++ b/tests/integration/batches/conftest.py @@ -70,10 +70,15 @@ class BatchHelper: ): """Wait for a batch to reach a terminal status. + Uses exponential backoff polling strategy for efficient waiting: + - Starts with short intervals (0.1s) for fast batches (e.g., replay mode) + - Doubles interval each iteration up to a maximum + - Adapts automatically to both fast and slow batch processing + Args: batch_id: The batch ID to monitor max_wait_time: Maximum time to wait in seconds (default: 60 seconds) - sleep_interval: Time to sleep between checks in seconds (default: 1/10th of max_wait_time, min 1s, max 15s) + sleep_interval: If provided, uses fixed interval instead of exponential backoff expected_statuses: Set of expected terminal statuses (default: {"completed"}) timeout_action: Action on timeout - "fail" (pytest.fail) or "skip" (pytest.skip) @@ -84,10 +89,6 @@ class BatchHelper: pytest.Failed: If batch reaches an unexpected status or timeout_action is "fail" pytest.Skipped: If timeout_action is "skip" on timeout or unexpected status """ - if sleep_interval is None: - # Default to 1/10th of max_wait_time, with min 1s and max 15s - sleep_interval = max(1, min(15, max_wait_time // 10)) - if expected_statuses is None: expected_statuses = {"completed"} @@ -95,6 +96,15 @@ class BatchHelper: unexpected_statuses = terminal_statuses - expected_statuses start_time = time.time() + + # Use exponential backoff if no explicit sleep_interval provided + if sleep_interval is None: + current_interval = 0.1 # Start with 100ms + max_interval = 10.0 # Cap at 10 seconds + else: + current_interval = sleep_interval + max_interval = sleep_interval + while time.time() - start_time < max_wait_time: current_batch = self.client.batches.retrieve(batch_id) @@ -107,7 +117,11 @@ class BatchHelper: else: pytest.fail(error_msg) - time.sleep(sleep_interval) + time.sleep(current_interval) + + # Exponential backoff: double the interval each time, up to max + if sleep_interval is None: + current_interval = min(current_interval * 2, max_interval) timeout_msg = f"Batch did not reach expected status {expected_statuses} within {max_wait_time} seconds" if timeout_action == "skip": From a701f68bd76afe54567be0b2835ae1d398add481 Mon Sep 17 00:00:00 2001 From: Ashwin Bharambe Date: Fri, 17 Oct 2025 00:19:25 -0700 Subject: [PATCH 02/41] feat(ci): enable docker based server tests (#3833) --- .github/workflows/integration-tests.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/integration-tests.yml b/.github/workflows/integration-tests.yml index 6dedb558d..71abb8461 100644 --- a/.github/workflows/integration-tests.yml +++ b/.github/workflows/integration-tests.yml @@ -47,7 +47,7 @@ jobs: strategy: fail-fast: false matrix: - client-type: [library, server] + client-type: [library, server, docker] # Use Python 3.13 only on nightly schedule (daily latest client test), otherwise use 3.12 python-version: ${{ github.event.schedule == '0 0 * * *' && fromJSON('["3.12", "3.13"]') || fromJSON('["3.12"]') }} client-version: ${{ (github.event.schedule == '0 0 * * *' || github.event.inputs.test-all-client-versions == 'true') && fromJSON('["published", "latest"]') || fromJSON('["latest"]') }} @@ -82,7 +82,7 @@ jobs: env: OPENAI_API_KEY: dummy with: - stack-config: ${{ matrix.client-type == 'library' && 'ci-tests' || 'server:ci-tests' }} + stack-config: ${{ matrix.client-type == 'library' && 'ci-tests' || matrix.client-type == 'server' && 'server:ci-tests' || 'docker:ci-tests' }} setup: ${{ matrix.config.setup }} inference-mode: 'replay' suite: ${{ matrix.config.suite }} From c9f0bebcb70d5a5d617d3aefaf3e78e9bdd4e443 Mon Sep 17 00:00:00 2001 From: Alexey Rybak <50731695+reluctantfuturist@users.noreply.github.com> Date: Fri, 17 Oct 2025 10:17:58 -0700 Subject: [PATCH 03/41] chore: update API leveling docs with deprecation flag (#3837) # What does this PR do? Adds information on the `deprecated=True` flags to the documentation for extra clarity. ## Test Plan * Manual testing --- docs/docs/concepts/apis/api_leveling.mdx | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/docs/docs/concepts/apis/api_leveling.mdx b/docs/docs/concepts/apis/api_leveling.mdx index e3e118d0f..fec65235a 100644 --- a/docs/docs/concepts/apis/api_leveling.mdx +++ b/docs/docs/concepts/apis/api_leveling.mdx @@ -62,6 +62,10 @@ The new `/v2` API must be introduced alongside the existing `/v1` API and run in When a `/v2` API is introduced, a clear and generous deprecation policy for the `/v1` API must be published simultaneously. This policy must outline the timeline for the eventual removal of the `/v1` API, giving users ample time to migrate. +### Deprecated APIs + +Deprecated APIs are those that are no longer actively maintained or supported. Depreated APIs are marked with the flag `deprecated = True` in the OpenAPI spec. These APIs will be removed in a future release. + ### API Stability vs. Provider Stability The leveling introduced in this document relates to the stability of the API and not specifically the providers within the API. From 224c99560c55cc2cc368c13f3c3d11c4b1a13633 Mon Sep 17 00:00:00 2001 From: Alexey Rybak <50731695+reluctantfuturist@users.noreply.github.com> Date: Fri, 17 Oct 2025 10:41:50 -0700 Subject: [PATCH 04/41] docs: update docstrings for better formatting (#3838) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit # What does this PR do? Updates docstrings for Conversations and Eval APIs to render better in the docs nav sidebar. Before: Screenshot 2025-10-17 at 9 52 17 AM After: Screenshot 2025-10-17 at 9 52 11 AM ## Test Plan * Manual testing --- docs/docs/providers/eval/index.mdx | 8 ++- docs/static/deprecated-llama-stack-spec.html | 4 +- docs/static/deprecated-llama-stack-spec.yaml | 4 +- .../static/experimental-llama-stack-spec.html | 4 +- .../static/experimental-llama-stack-spec.yaml | 4 +- docs/static/llama-stack-spec.html | 34 +++++------ docs/static/llama-stack-spec.yaml | 56 +++++++++++------ docs/static/stainless-llama-stack-spec.html | 38 ++++++------ docs/static/stainless-llama-stack-spec.yaml | 60 +++++++++++++------ .../apis/conversations/conversations.py | 34 ++++++++--- llama_stack/apis/eval/eval.py | 4 +- 11 files changed, 159 insertions(+), 91 deletions(-) diff --git a/docs/docs/providers/eval/index.mdx b/docs/docs/providers/eval/index.mdx index 73b0b89aa..94bafe15e 100644 --- a/docs/docs/providers/eval/index.mdx +++ b/docs/docs/providers/eval/index.mdx @@ -1,5 +1,7 @@ --- -description: "Llama Stack Evaluation API for running evaluations on model and agent candidates." +description: "Evaluations + + Llama Stack Evaluation API for running evaluations on model and agent candidates." sidebar_label: Eval title: Eval --- @@ -8,6 +10,8 @@ title: Eval ## Overview -Llama Stack Evaluation API for running evaluations on model and agent candidates. +Evaluations + + Llama Stack Evaluation API for running evaluations on model and agent candidates. This section contains documentation for all available providers for the **eval** API. diff --git a/docs/static/deprecated-llama-stack-spec.html b/docs/static/deprecated-llama-stack-spec.html index e5c02381b..60a8b9fbd 100644 --- a/docs/static/deprecated-llama-stack-spec.html +++ b/docs/static/deprecated-llama-stack-spec.html @@ -13449,8 +13449,8 @@ }, { "name": "Eval", - "description": "", - "x-displayName": "Llama Stack Evaluation API for running evaluations on model and agent candidates." + "description": "Llama Stack Evaluation API for running evaluations on model and agent candidates.", + "x-displayName": "Evaluations" }, { "name": "Files", diff --git a/docs/static/deprecated-llama-stack-spec.yaml b/docs/static/deprecated-llama-stack-spec.yaml index 43f748d14..aaa6cd413 100644 --- a/docs/static/deprecated-llama-stack-spec.yaml +++ b/docs/static/deprecated-llama-stack-spec.yaml @@ -10196,9 +10196,9 @@ tags: - name: Datasets description: '' - name: Eval - description: '' - x-displayName: >- + description: >- Llama Stack Evaluation API for running evaluations on model and agent candidates. + x-displayName: Evaluations - name: Files description: >- This API is used to upload documents that can be used with other Llama Stack diff --git a/docs/static/experimental-llama-stack-spec.html b/docs/static/experimental-llama-stack-spec.html index e3edf2ffc..7d572f89f 100644 --- a/docs/static/experimental-llama-stack-spec.html +++ b/docs/static/experimental-llama-stack-spec.html @@ -5518,8 +5518,8 @@ }, { "name": "Eval", - "description": "", - "x-displayName": "Llama Stack Evaluation API for running evaluations on model and agent candidates." + "description": "Llama Stack Evaluation API for running evaluations on model and agent candidates.", + "x-displayName": "Evaluations" }, { "name": "PostTraining (Coming Soon)", diff --git a/docs/static/experimental-llama-stack-spec.yaml b/docs/static/experimental-llama-stack-spec.yaml index 7ee5a6cdf..fee20814c 100644 --- a/docs/static/experimental-llama-stack-spec.yaml +++ b/docs/static/experimental-llama-stack-spec.yaml @@ -4119,9 +4119,9 @@ tags: - name: Datasets description: '' - name: Eval - description: '' - x-displayName: >- + description: >- Llama Stack Evaluation API for running evaluations on model and agent candidates. + x-displayName: Evaluations - name: PostTraining (Coming Soon) description: '' x-tagGroups: diff --git a/docs/static/llama-stack-spec.html b/docs/static/llama-stack-spec.html index 92ba11d58..413e4f23e 100644 --- a/docs/static/llama-stack-spec.html +++ b/docs/static/llama-stack-spec.html @@ -282,7 +282,7 @@ "Conversations" ], "summary": "Create a conversation.", - "description": "Create a conversation.", + "description": "Create a conversation.\nCreate a conversation.", "parameters": [], "requestBody": { "content": { @@ -326,8 +326,8 @@ "tags": [ "Conversations" ], - "summary": "Get a conversation with the given ID.", - "description": "Get a conversation with the given ID.", + "summary": "Retrieve a conversation.", + "description": "Retrieve a conversation.\nGet a conversation with the given ID.", "parameters": [ { "name": "conversation_id", @@ -369,8 +369,8 @@ "tags": [ "Conversations" ], - "summary": "Update a conversation's metadata with the given ID.", - "description": "Update a conversation's metadata with the given ID.", + "summary": "Update a conversation.", + "description": "Update a conversation.\nUpdate a conversation's metadata with the given ID.", "parameters": [ { "name": "conversation_id", @@ -422,8 +422,8 @@ "tags": [ "Conversations" ], - "summary": "Delete a conversation with the given ID.", - "description": "Delete a conversation with the given ID.", + "summary": "Delete a conversation.", + "description": "Delete a conversation.\nDelete a conversation with the given ID.", "parameters": [ { "name": "conversation_id", @@ -467,8 +467,8 @@ "tags": [ "Conversations" ], - "summary": "List items in the conversation.", - "description": "List items in the conversation.", + "summary": "List items.", + "description": "List items.\nList items in the conversation.", "parameters": [ { "name": "conversation_id", @@ -597,8 +597,8 @@ "tags": [ "Conversations" ], - "summary": "Create items in the conversation.", - "description": "Create items in the conversation.", + "summary": "Create items.", + "description": "Create items.\nCreate items in the conversation.", "parameters": [ { "name": "conversation_id", @@ -652,8 +652,8 @@ "tags": [ "Conversations" ], - "summary": "Retrieve a conversation item.", - "description": "Retrieve a conversation item.", + "summary": "Retrieve an item.", + "description": "Retrieve an item.\nRetrieve a conversation item.", "parameters": [ { "name": "conversation_id", @@ -704,8 +704,8 @@ "tags": [ "Conversations" ], - "summary": "Delete a conversation item.", - "description": "Delete a conversation item.", + "summary": "Delete an item.", + "description": "Delete an item.\nDelete a conversation item.", "parameters": [ { "name": "conversation_id", @@ -13251,8 +13251,8 @@ }, { "name": "Conversations", - "description": "", - "x-displayName": "Protocol for conversation management operations." + "description": "Protocol for conversation management operations.", + "x-displayName": "Conversations" }, { "name": "Files", diff --git a/docs/static/llama-stack-spec.yaml b/docs/static/llama-stack-spec.yaml index f7f77e635..93e51de6a 100644 --- a/docs/static/llama-stack-spec.yaml +++ b/docs/static/llama-stack-spec.yaml @@ -192,7 +192,10 @@ paths: tags: - Conversations summary: Create a conversation. - description: Create a conversation. + description: >- + Create a conversation. + + Create a conversation. parameters: [] requestBody: content: @@ -222,8 +225,11 @@ paths: $ref: '#/components/responses/DefaultError' tags: - Conversations - summary: Get a conversation with the given ID. - description: Get a conversation with the given ID. + summary: Retrieve a conversation. + description: >- + Retrieve a conversation. + + Get a conversation with the given ID. parameters: - name: conversation_id in: path @@ -252,9 +258,10 @@ paths: $ref: '#/components/responses/DefaultError' tags: - Conversations - summary: >- - Update a conversation's metadata with the given ID. + summary: Update a conversation. description: >- + Update a conversation. + Update a conversation's metadata with the given ID. parameters: - name: conversation_id @@ -290,8 +297,11 @@ paths: $ref: '#/components/responses/DefaultError' tags: - Conversations - summary: Delete a conversation with the given ID. - description: Delete a conversation with the given ID. + summary: Delete a conversation. + description: >- + Delete a conversation. + + Delete a conversation with the given ID. parameters: - name: conversation_id in: path @@ -321,8 +331,11 @@ paths: $ref: '#/components/responses/DefaultError' tags: - Conversations - summary: List items in the conversation. - description: List items in the conversation. + summary: List items. + description: >- + List items. + + List items in the conversation. parameters: - name: conversation_id in: path @@ -495,8 +508,11 @@ paths: $ref: '#/components/responses/DefaultError' tags: - Conversations - summary: Create items in the conversation. - description: Create items in the conversation. + summary: Create items. + description: >- + Create items. + + Create items in the conversation. parameters: - name: conversation_id in: path @@ -532,8 +548,11 @@ paths: $ref: '#/components/responses/DefaultError' tags: - Conversations - summary: Retrieve a conversation item. - description: Retrieve a conversation item. + summary: Retrieve an item. + description: >- + Retrieve an item. + + Retrieve a conversation item. parameters: - name: conversation_id in: path @@ -568,8 +587,11 @@ paths: $ref: '#/components/responses/DefaultError' tags: - Conversations - summary: Delete a conversation item. - description: Delete a conversation item. + summary: Delete an item. + description: >- + Delete an item. + + Delete a conversation item. parameters: - name: conversation_id in: path @@ -10146,9 +10168,9 @@ tags: - `background` x-displayName: Agents - name: Conversations - description: '' - x-displayName: >- + description: >- Protocol for conversation management operations. + x-displayName: Conversations - name: Files description: >- This API is used to upload documents that can be used with other Llama Stack diff --git a/docs/static/stainless-llama-stack-spec.html b/docs/static/stainless-llama-stack-spec.html index 08f19ff59..858f20725 100644 --- a/docs/static/stainless-llama-stack-spec.html +++ b/docs/static/stainless-llama-stack-spec.html @@ -282,7 +282,7 @@ "Conversations" ], "summary": "Create a conversation.", - "description": "Create a conversation.", + "description": "Create a conversation.\nCreate a conversation.", "parameters": [], "requestBody": { "content": { @@ -326,8 +326,8 @@ "tags": [ "Conversations" ], - "summary": "Get a conversation with the given ID.", - "description": "Get a conversation with the given ID.", + "summary": "Retrieve a conversation.", + "description": "Retrieve a conversation.\nGet a conversation with the given ID.", "parameters": [ { "name": "conversation_id", @@ -369,8 +369,8 @@ "tags": [ "Conversations" ], - "summary": "Update a conversation's metadata with the given ID.", - "description": "Update a conversation's metadata with the given ID.", + "summary": "Update a conversation.", + "description": "Update a conversation.\nUpdate a conversation's metadata with the given ID.", "parameters": [ { "name": "conversation_id", @@ -422,8 +422,8 @@ "tags": [ "Conversations" ], - "summary": "Delete a conversation with the given ID.", - "description": "Delete a conversation with the given ID.", + "summary": "Delete a conversation.", + "description": "Delete a conversation.\nDelete a conversation with the given ID.", "parameters": [ { "name": "conversation_id", @@ -467,8 +467,8 @@ "tags": [ "Conversations" ], - "summary": "List items in the conversation.", - "description": "List items in the conversation.", + "summary": "List items.", + "description": "List items.\nList items in the conversation.", "parameters": [ { "name": "conversation_id", @@ -597,8 +597,8 @@ "tags": [ "Conversations" ], - "summary": "Create items in the conversation.", - "description": "Create items in the conversation.", + "summary": "Create items.", + "description": "Create items.\nCreate items in the conversation.", "parameters": [ { "name": "conversation_id", @@ -652,8 +652,8 @@ "tags": [ "Conversations" ], - "summary": "Retrieve a conversation item.", - "description": "Retrieve a conversation item.", + "summary": "Retrieve an item.", + "description": "Retrieve an item.\nRetrieve a conversation item.", "parameters": [ { "name": "conversation_id", @@ -704,8 +704,8 @@ "tags": [ "Conversations" ], - "summary": "Delete a conversation item.", - "description": "Delete a conversation item.", + "summary": "Delete an item.", + "description": "Delete an item.\nDelete a conversation item.", "parameters": [ { "name": "conversation_id", @@ -17928,8 +17928,8 @@ }, { "name": "Conversations", - "description": "", - "x-displayName": "Protocol for conversation management operations." + "description": "Protocol for conversation management operations.", + "x-displayName": "Conversations" }, { "name": "DatasetIO", @@ -17941,8 +17941,8 @@ }, { "name": "Eval", - "description": "", - "x-displayName": "Llama Stack Evaluation API for running evaluations on model and agent candidates." + "description": "Llama Stack Evaluation API for running evaluations on model and agent candidates.", + "x-displayName": "Evaluations" }, { "name": "Files", diff --git a/docs/static/stainless-llama-stack-spec.yaml b/docs/static/stainless-llama-stack-spec.yaml index 5469b3cc2..886549dbc 100644 --- a/docs/static/stainless-llama-stack-spec.yaml +++ b/docs/static/stainless-llama-stack-spec.yaml @@ -195,7 +195,10 @@ paths: tags: - Conversations summary: Create a conversation. - description: Create a conversation. + description: >- + Create a conversation. + + Create a conversation. parameters: [] requestBody: content: @@ -225,8 +228,11 @@ paths: $ref: '#/components/responses/DefaultError' tags: - Conversations - summary: Get a conversation with the given ID. - description: Get a conversation with the given ID. + summary: Retrieve a conversation. + description: >- + Retrieve a conversation. + + Get a conversation with the given ID. parameters: - name: conversation_id in: path @@ -255,9 +261,10 @@ paths: $ref: '#/components/responses/DefaultError' tags: - Conversations - summary: >- - Update a conversation's metadata with the given ID. + summary: Update a conversation. description: >- + Update a conversation. + Update a conversation's metadata with the given ID. parameters: - name: conversation_id @@ -293,8 +300,11 @@ paths: $ref: '#/components/responses/DefaultError' tags: - Conversations - summary: Delete a conversation with the given ID. - description: Delete a conversation with the given ID. + summary: Delete a conversation. + description: >- + Delete a conversation. + + Delete a conversation with the given ID. parameters: - name: conversation_id in: path @@ -324,8 +334,11 @@ paths: $ref: '#/components/responses/DefaultError' tags: - Conversations - summary: List items in the conversation. - description: List items in the conversation. + summary: List items. + description: >- + List items. + + List items in the conversation. parameters: - name: conversation_id in: path @@ -498,8 +511,11 @@ paths: $ref: '#/components/responses/DefaultError' tags: - Conversations - summary: Create items in the conversation. - description: Create items in the conversation. + summary: Create items. + description: >- + Create items. + + Create items in the conversation. parameters: - name: conversation_id in: path @@ -535,8 +551,11 @@ paths: $ref: '#/components/responses/DefaultError' tags: - Conversations - summary: Retrieve a conversation item. - description: Retrieve a conversation item. + summary: Retrieve an item. + description: >- + Retrieve an item. + + Retrieve a conversation item. parameters: - name: conversation_id in: path @@ -571,8 +590,11 @@ paths: $ref: '#/components/responses/DefaultError' tags: - Conversations - summary: Delete a conversation item. - description: Delete a conversation item. + summary: Delete an item. + description: >- + Delete an item. + + Delete a conversation item. parameters: - name: conversation_id in: path @@ -13533,17 +13555,17 @@ tags: - name: Benchmarks description: '' - name: Conversations - description: '' - x-displayName: >- + description: >- Protocol for conversation management operations. + x-displayName: Conversations - name: DatasetIO description: '' - name: Datasets description: '' - name: Eval - description: '' - x-displayName: >- + description: >- Llama Stack Evaluation API for running evaluations on model and agent candidates. + x-displayName: Evaluations - name: Files description: >- This API is used to upload documents that can be used with other Llama Stack diff --git a/llama_stack/apis/conversations/conversations.py b/llama_stack/apis/conversations/conversations.py index 3fa51f0fb..d7752995d 100644 --- a/llama_stack/apis/conversations/conversations.py +++ b/llama_stack/apis/conversations/conversations.py @@ -173,7 +173,9 @@ class ConversationItemDeletedResource(BaseModel): @runtime_checkable @trace_protocol class Conversations(Protocol): - """Protocol for conversation management operations.""" + """Conversations + + Protocol for conversation management operations.""" @webmethod(route="/conversations", method="POST", level=LLAMA_STACK_API_V1) async def create_conversation( @@ -181,6 +183,8 @@ class Conversations(Protocol): ) -> Conversation: """Create a conversation. + Create a conversation. + :param items: Initial items to include in the conversation context. :param metadata: Set of key-value pairs that can be attached to an object. :returns: The created conversation object. @@ -189,7 +193,9 @@ class Conversations(Protocol): @webmethod(route="/conversations/{conversation_id}", method="GET", level=LLAMA_STACK_API_V1) async def get_conversation(self, conversation_id: str) -> Conversation: - """Get a conversation with the given ID. + """Retrieve a conversation. + + Get a conversation with the given ID. :param conversation_id: The conversation identifier. :returns: The conversation object. @@ -198,7 +204,9 @@ class Conversations(Protocol): @webmethod(route="/conversations/{conversation_id}", method="POST", level=LLAMA_STACK_API_V1) async def update_conversation(self, conversation_id: str, metadata: Metadata) -> Conversation: - """Update a conversation's metadata with the given ID. + """Update a conversation. + + Update a conversation's metadata with the given ID. :param conversation_id: The conversation identifier. :param metadata: Set of key-value pairs that can be attached to an object. @@ -208,7 +216,9 @@ class Conversations(Protocol): @webmethod(route="/conversations/{conversation_id}", method="DELETE", level=LLAMA_STACK_API_V1) async def openai_delete_conversation(self, conversation_id: str) -> ConversationDeletedResource: - """Delete a conversation with the given ID. + """Delete a conversation. + + Delete a conversation with the given ID. :param conversation_id: The conversation identifier. :returns: The deleted conversation resource. @@ -217,7 +227,9 @@ class Conversations(Protocol): @webmethod(route="/conversations/{conversation_id}/items", method="POST", level=LLAMA_STACK_API_V1) async def add_items(self, conversation_id: str, items: list[ConversationItem]) -> ConversationItemList: - """Create items in the conversation. + """Create items. + + Create items in the conversation. :param conversation_id: The conversation identifier. :param items: Items to include in the conversation context. @@ -227,7 +239,9 @@ class Conversations(Protocol): @webmethod(route="/conversations/{conversation_id}/items/{item_id}", method="GET", level=LLAMA_STACK_API_V1) async def retrieve(self, conversation_id: str, item_id: str) -> ConversationItem: - """Retrieve a conversation item. + """Retrieve an item. + + Retrieve a conversation item. :param conversation_id: The conversation identifier. :param item_id: The item identifier. @@ -244,7 +258,9 @@ class Conversations(Protocol): limit: int | NotGiven = NOT_GIVEN, order: Literal["asc", "desc"] | NotGiven = NOT_GIVEN, ) -> ConversationItemList: - """List items in the conversation. + """List items. + + List items in the conversation. :param conversation_id: The conversation identifier. :param after: An item ID to list items after, used in pagination. @@ -259,7 +275,9 @@ class Conversations(Protocol): async def openai_delete_conversation_item( self, conversation_id: str, item_id: str ) -> ConversationItemDeletedResource: - """Delete a conversation item. + """Delete an item. + + Delete a conversation item. :param conversation_id: The conversation identifier. :param item_id: The item identifier. diff --git a/llama_stack/apis/eval/eval.py b/llama_stack/apis/eval/eval.py index bb81778f1..c9418b04b 100644 --- a/llama_stack/apis/eval/eval.py +++ b/llama_stack/apis/eval/eval.py @@ -82,7 +82,9 @@ class EvaluateResponse(BaseModel): class Eval(Protocol): - """Llama Stack Evaluation API for running evaluations on model and agent candidates.""" + """Evaluations + + Llama Stack Evaluation API for running evaluations on model and agent candidates.""" @webmethod(route="/eval/benchmarks/{benchmark_id}/jobs", method="POST", level=LLAMA_STACK_API_V1, deprecated=True) @webmethod(route="/eval/benchmarks/{benchmark_id}/jobs", method="POST", level=LLAMA_STACK_API_V1ALPHA) From 943558af367019738eb1368a2a3e8a1b75a1964c Mon Sep 17 00:00:00 2001 From: Emilio Garcia Date: Fri, 17 Oct 2025 13:43:33 -0400 Subject: [PATCH 05/41] test(telemetry): Telemetry Tests (#3805) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit # What does this PR do? Adds a test and a standardized way to build future tests out for telemetry in llama stack. Contributes to https://github.com/llamastack/llama-stack/issues/3806 ## Test Plan This is the test plan 😎 --- .../telemetry/meta_reference/telemetry.py | 1 - .../utils/telemetry/trace_protocol.py | 4 +- ...6b61ed9f174c225597f0241cf120c47c7d2fa.json | 506 ++ ...34a95f56931b792d5939f4cebc57-826d44c3.json | 88 + tests/integration/telemetry/conftest.py | 95 + ...e8083caf34f49147ad1c25efae1de3f0b25e5.json | 57 + ...fdb6a511f92cee84a6325b04ae84878512c30.json | 59 + ...8babe21988649eb321b562f74061f58593c25.json | 4211 ++++++++++++++++ ...557807ffbed0cf6bf11a52c1d1009878886ef.json | 4263 +++++++++++++++++ ...175e235f2829cb1c3e49781dd2b1850e28775.json | 59 + .../integration/telemetry/test_completions.py | 112 + 11 files changed, 9452 insertions(+), 3 deletions(-) create mode 100644 tests/integration/common/recordings/ab1a32474062bbad640ce43d02d6b61ed9f174c225597f0241cf120c47c7d2fa.json create mode 100644 tests/integration/common/recordings/models-64a2277c90f0f42576f60c1030e3a020403d34a95f56931b792d5939f4cebc57-826d44c3.json create mode 100644 tests/integration/telemetry/conftest.py create mode 100644 tests/integration/telemetry/recordings/0de60cd6a6ec3dbfc4a7601e77be8083caf34f49147ad1c25efae1de3f0b25e5.json create mode 100644 tests/integration/telemetry/recordings/1fcfd86d8111374dc852cfdea6bfdb6a511f92cee84a6325b04ae84878512c30.json create mode 100644 tests/integration/telemetry/recordings/d45c9a9229e7e3f50a6eac139508babe21988649eb321b562f74061f58593c25.json create mode 100644 tests/integration/telemetry/recordings/db8ffad4840512348c215005128557807ffbed0cf6bf11a52c1d1009878886ef.json create mode 100644 tests/integration/telemetry/recordings/dba5042d6691c2fbc29f2172c0f175e235f2829cb1c3e49781dd2b1850e28775.json create mode 100644 tests/integration/telemetry/test_completions.py diff --git a/llama_stack/providers/inline/telemetry/meta_reference/telemetry.py b/llama_stack/providers/inline/telemetry/meta_reference/telemetry.py index 7a993b891..014b800cc 100644 --- a/llama_stack/providers/inline/telemetry/meta_reference/telemetry.py +++ b/llama_stack/providers/inline/telemetry/meta_reference/telemetry.py @@ -79,7 +79,6 @@ class TelemetryAdapter(Telemetry): metrics.set_meter_provider(metric_provider) self.meter = metrics.get_meter(__name__) - self._lock = _global_lock async def initialize(self) -> None: diff --git a/llama_stack/providers/utils/telemetry/trace_protocol.py b/llama_stack/providers/utils/telemetry/trace_protocol.py index 916f7622a..e9320b7a8 100644 --- a/llama_stack/providers/utils/telemetry/trace_protocol.py +++ b/llama_stack/providers/utils/telemetry/trace_protocol.py @@ -70,7 +70,7 @@ def trace_protocol[T](cls: type[T]) -> type[T]: "__class__": class_name, "__method__": method_name, "__type__": span_type, - "__args__": str(combined_args), + "__args__": json.dumps(combined_args), } return class_name, method_name, span_attributes @@ -82,8 +82,8 @@ def trace_protocol[T](cls: type[T]) -> type[T]: class_name, method_name, span_attributes = create_span_context(self, *args, **kwargs) with tracing.span(f"{class_name}.{method_name}", span_attributes) as span: + count = 0 try: - count = 0 async for item in method(self, *args, **kwargs): yield item count += 1 diff --git a/tests/integration/common/recordings/ab1a32474062bbad640ce43d02d6b61ed9f174c225597f0241cf120c47c7d2fa.json b/tests/integration/common/recordings/ab1a32474062bbad640ce43d02d6b61ed9f174c225597f0241cf120c47c7d2fa.json new file mode 100644 index 000000000..532681175 --- /dev/null +++ b/tests/integration/common/recordings/ab1a32474062bbad640ce43d02d6b61ed9f174c225597f0241cf120c47c7d2fa.json @@ -0,0 +1,506 @@ +{ + "test_id": null, + "request": { + "method": "POST", + "url": "http://0.0.0.0:11434/v1/v1/chat/completions", + "headers": {}, + "body": { + "model": "llama3.2:3b-instruct-fp16", + "messages": [ + { + "role": "system", + "content": "You are a helpful assistant" + }, + { + "role": "user", + "content": "What is 2 + 2?" + }, + { + "role": "assistant", + "content": "The answer to the equation 2 + 2 is 4." + }, + { + "role": "user", + "content": "Tell me a short joke" + } + ], + "max_tokens": 0, + "stream": true + }, + "endpoint": "/v1/chat/completions", + "model": "llama3.2:3b-instruct-fp16" + }, + "response": { + "body": [ + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-ab1a32474062", + "choices": [ + { + "delta": { + "content": "Why", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-ab1a32474062", + "choices": [ + { + "delta": { + "content": " did", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-ab1a32474062", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-ab1a32474062", + "choices": [ + { + "delta": { + "content": " scare", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-ab1a32474062", + "choices": [ + { + "delta": { + "content": "crow", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-ab1a32474062", + "choices": [ + { + "delta": { + "content": " win", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-ab1a32474062", + "choices": [ + { + "delta": { + "content": " an", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-ab1a32474062", + "choices": [ + { + "delta": { + "content": " award", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-ab1a32474062", + "choices": [ + { + "delta": { + "content": "?\n\n", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-ab1a32474062", + "choices": [ + { + "delta": { + "content": "Because", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-ab1a32474062", + "choices": [ + { + "delta": { + "content": " he", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-ab1a32474062", + "choices": [ + { + "delta": { + "content": " was", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-ab1a32474062", + "choices": [ + { + "delta": { + "content": " outstanding", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-ab1a32474062", + "choices": [ + { + "delta": { + "content": " in", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-ab1a32474062", + "choices": [ + { + "delta": { + "content": " his", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-ab1a32474062", + "choices": [ + { + "delta": { + "content": " field", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-ab1a32474062", + "choices": [ + { + "delta": { + "content": "!", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-ab1a32474062", + "choices": [ + { + "delta": { + "content": "", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": "stop", + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + } + ], + "is_streaming": true + } +} diff --git a/tests/integration/common/recordings/models-64a2277c90f0f42576f60c1030e3a020403d34a95f56931b792d5939f4cebc57-826d44c3.json b/tests/integration/common/recordings/models-64a2277c90f0f42576f60c1030e3a020403d34a95f56931b792d5939f4cebc57-826d44c3.json new file mode 100644 index 000000000..a5f841baa --- /dev/null +++ b/tests/integration/common/recordings/models-64a2277c90f0f42576f60c1030e3a020403d34a95f56931b792d5939f4cebc57-826d44c3.json @@ -0,0 +1,88 @@ +{ + "test_id": null, + "request": { + "method": "POST", + "url": "http://0.0.0.0:11434/v1/v1/models", + "headers": {}, + "body": {}, + "endpoint": "/v1/models", + "model": "" + }, + "response": { + "body": [ + { + "__type__": "openai.types.model.Model", + "__data__": { + "id": "llama3.2:3b-instruct-fp16", + "created": 1760453641, + "object": "model", + "owned_by": "library" + } + }, + { + "__type__": "openai.types.model.Model", + "__data__": { + "id": "qwen3:4b", + "created": 1757615302, + "object": "model", + "owned_by": "library" + } + }, + { + "__type__": "openai.types.model.Model", + "__data__": { + "id": "gpt-oss:latest", + "created": 1756395223, + "object": "model", + "owned_by": "library" + } + }, + { + "__type__": "openai.types.model.Model", + "__data__": { + "id": "nomic-embed-text:latest", + "created": 1756318548, + "object": "model", + "owned_by": "library" + } + }, + { + "__type__": "openai.types.model.Model", + "__data__": { + "id": "llama3.2:3b", + "created": 1755191039, + "object": "model", + "owned_by": "library" + } + }, + { + "__type__": "openai.types.model.Model", + "__data__": { + "id": "all-minilm:l6-v2", + "created": 1753968177, + "object": "model", + "owned_by": "library" + } + }, + { + "__type__": "openai.types.model.Model", + "__data__": { + "id": "llama3.2:1b", + "created": 1746124735, + "object": "model", + "owned_by": "library" + } + }, + { + "__type__": "openai.types.model.Model", + "__data__": { + "id": "llama3.2:latest", + "created": 1746044170, + "object": "model", + "owned_by": "library" + } + } + ], + "is_streaming": false + } +} diff --git a/tests/integration/telemetry/conftest.py b/tests/integration/telemetry/conftest.py new file mode 100644 index 000000000..d11f00c9f --- /dev/null +++ b/tests/integration/telemetry/conftest.py @@ -0,0 +1,95 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +"""Telemetry test configuration using OpenTelemetry SDK exporters. + +This conftest provides in-memory telemetry collection for library_client mode only. +Tests using these fixtures should skip in server mode since the in-memory collector +cannot access spans from a separate server process. +""" + +from typing import Any + +import opentelemetry.metrics as otel_metrics +import opentelemetry.trace as otel_trace +import pytest +from opentelemetry import metrics, trace +from opentelemetry.sdk.metrics import MeterProvider +from opentelemetry.sdk.metrics.export import InMemoryMetricReader +from opentelemetry.sdk.trace import ReadableSpan, TracerProvider +from opentelemetry.sdk.trace.export import SimpleSpanProcessor +from opentelemetry.sdk.trace.export.in_memory_span_exporter import InMemorySpanExporter + +import llama_stack.providers.inline.telemetry.meta_reference.telemetry as telemetry_module +from llama_stack.testing.api_recorder import patch_httpx_for_test_id +from tests.integration.fixtures.common import instantiate_llama_stack_client + + +class TestCollector: + def __init__(self, span_exp, metric_read): + assert span_exp and metric_read + self.span_exporter = span_exp + self.metric_reader = metric_read + + def get_spans(self) -> tuple[ReadableSpan, ...]: + return self.span_exporter.get_finished_spans() + + def get_metrics(self) -> Any | None: + metrics = self.metric_reader.get_metrics_data() + if metrics and metrics.resource_metrics: + return metrics.resource_metrics[0].scope_metrics[0].metrics + return None + + def clear(self) -> None: + self.span_exporter.clear() + self.metric_reader.get_metrics_data() + + +@pytest.fixture(scope="session") +def _telemetry_providers(): + """Set up in-memory OTEL providers before llama_stack_client initializes.""" + # Reset set-once flags to allow re-initialization + if hasattr(otel_trace, "_TRACER_PROVIDER_SET_ONCE"): + otel_trace._TRACER_PROVIDER_SET_ONCE._done = False # type: ignore + if hasattr(otel_metrics, "_METER_PROVIDER_SET_ONCE"): + otel_metrics._METER_PROVIDER_SET_ONCE._done = False # type: ignore + + # Create in-memory exporters/readers + span_exporter = InMemorySpanExporter() + tracer_provider = TracerProvider() + tracer_provider.add_span_processor(SimpleSpanProcessor(span_exporter)) + trace.set_tracer_provider(tracer_provider) + + metric_reader = InMemoryMetricReader() + meter_provider = MeterProvider(metric_readers=[metric_reader]) + metrics.set_meter_provider(meter_provider) + + # Set module-level provider so TelemetryAdapter uses our in-memory providers + telemetry_module._TRACER_PROVIDER = tracer_provider + + yield (span_exporter, metric_reader, tracer_provider, meter_provider) + + telemetry_module._TRACER_PROVIDER = None + tracer_provider.shutdown() + meter_provider.shutdown() + + +@pytest.fixture(scope="session") +def llama_stack_client(_telemetry_providers, request): + """Override llama_stack_client to ensure in-memory telemetry providers are used.""" + patch_httpx_for_test_id() + client = instantiate_llama_stack_client(request.session) + + return client + + +@pytest.fixture +def mock_otlp_collector(_telemetry_providers): + """Provides access to telemetry data and clears between tests.""" + span_exporter, metric_reader, _, _ = _telemetry_providers + collector = TestCollector(span_exporter, metric_reader) + yield collector + collector.clear() diff --git a/tests/integration/telemetry/recordings/0de60cd6a6ec3dbfc4a7601e77be8083caf34f49147ad1c25efae1de3f0b25e5.json b/tests/integration/telemetry/recordings/0de60cd6a6ec3dbfc4a7601e77be8083caf34f49147ad1c25efae1de3f0b25e5.json new file mode 100644 index 000000000..ce518f01d --- /dev/null +++ b/tests/integration/telemetry/recordings/0de60cd6a6ec3dbfc4a7601e77be8083caf34f49147ad1c25efae1de3f0b25e5.json @@ -0,0 +1,57 @@ +{ + "test_id": "tests/integration/telemetry/test_openai_telemetry.py::test_openai_completion_creates_telemetry[txt=ollama/llama3.2:3b-instruct-fp16]", + "request": { + "method": "POST", + "url": "http://0.0.0.0:11434/v1/v1/chat/completions", + "headers": {}, + "body": { + "model": "llama3.2:3b-instruct-fp16", + "messages": [ + { + "role": "user", + "content": "Test OpenAI telemetry creation" + } + ], + "stream": false + }, + "endpoint": "/v1/chat/completions", + "model": "llama3.2:3b-instruct-fp16" + }, + "response": { + "body": { + "__type__": "openai.types.chat.chat_completion.ChatCompletion", + "__data__": { + "id": "rec-0de60cd6a6ec", + "choices": [ + { + "finish_reason": "stop", + "index": 0, + "logprobs": null, + "message": { + "content": "I'm happy to help you with setting up and testing OpenAI's telemetry creation.\n\nOpenAI provides a feature called \"Telemetry\" which allows developers to collect data about their users' interactions with the model. To test this feature, we need to create a simple application that uses the OpenAI API and sends telemetry data to their servers.\n\nHere's an example code in Python that demonstrates how to create a simple telemetry creator:\n\n```python\nimport os\nfrom openai.api import API\n\n# Initialize the OpenAI API client\napi = API(os.environ['OPENAI_API_KEY'])\n\ndef create_user():\n # Create a new user entity\n user_entity = {\n 'id': 'user-123',\n 'name': 'John Doe',\n 'email': 'john.doe@example.com'\n }\n \n # Send the user creation request to OpenAI\n response = api.users.create(user_entity)\n print(f\"User created: {response}\")\n\ndef create_transaction():\n # Create a new transaction entity\n transaction_entity = {\n 'id': 'tran-123',\n 'user_id': 'user-123',\n 'transaction_type': 'query'\n }\n \n # Send the transaction creation request to OpenAI\n response = api.transactions.create(transaction_entity)\n print(f\"Transaction created: {response}\")\n\ndef send_telemetry_data():\n # Create a new telemetry event entity\n telemetry_event_entity = {\n 'id': 'telem-123',\n 'transaction_id': 'tran-123',\n 'data': '{ \"event\": \"test\", \"user_id\": 1 }'\n }\n \n # Send the telemetry data to OpenAI\n response = api.telemetry.create(telemetry_event_entity)\n print(f\"Telemetry event sent: {response}\")\n\n# Test the telemetry creation\ncreate_user()\ncreate_transaction()\nsend_telemetry_data()\n```\n\nMake sure you replace `OPENAI_API_KEY` with your actual API key. Also, ensure that you have the OpenAI API client library installed by running `pip install openai`.\n\nOnce you've created the test code, run it and observe the behavior of the telemetry creation process.\n\nPlease let me know if you need further modifications or assistance!", + "refusal": null, + "role": "assistant", + "annotations": null, + "audio": null, + "function_call": null, + "tool_calls": null + } + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": { + "completion_tokens": 460, + "prompt_tokens": 30, + "total_tokens": 490, + "completion_tokens_details": null, + "prompt_tokens_details": null + } + } + }, + "is_streaming": false + } +} diff --git a/tests/integration/telemetry/recordings/1fcfd86d8111374dc852cfdea6bfdb6a511f92cee84a6325b04ae84878512c30.json b/tests/integration/telemetry/recordings/1fcfd86d8111374dc852cfdea6bfdb6a511f92cee84a6325b04ae84878512c30.json new file mode 100644 index 000000000..1981a583a --- /dev/null +++ b/tests/integration/telemetry/recordings/1fcfd86d8111374dc852cfdea6bfdb6a511f92cee84a6325b04ae84878512c30.json @@ -0,0 +1,59 @@ +{ + "test_id": "tests/integration/telemetry/test_completions.py::test_telemetry_format_completeness[txt=ollama/llama3.2:3b-instruct-fp16]", + "request": { + "method": "POST", + "url": "http://0.0.0.0:11434/v1/v1/chat/completions", + "headers": {}, + "body": { + "model": "llama3.2:3b-instruct-fp16", + "messages": [ + { + "role": "user", + "content": "Test trace openai with temperature 0.7" + } + ], + "max_tokens": 100, + "stream": false, + "temperature": 0.7 + }, + "endpoint": "/v1/chat/completions", + "model": "llama3.2:3b-instruct-fp16" + }, + "response": { + "body": { + "__type__": "openai.types.chat.chat_completion.ChatCompletion", + "__data__": { + "id": "rec-1fcfd86d8111", + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "import torch\nfrom transformers import AutoModelForCausalLM, AutoTokenizer\n\n# Load the pre-trained model and tokenizer\nmodel_name = \"CompVis/transformers-base-uncased\"\nmodel = AutoModelForCausalLM.from_pretrained(model_name)\ntokenizer = AutoTokenizer.from_pretrained(model_name)\n\n# Set the temperature to 0.7\ntemperature = 0.7\n\n# Define a function to generate text\ndef generate_text(prompt, max_length=100):\n input", + "refusal": null, + "role": "assistant", + "annotations": null, + "audio": null, + "function_call": null, + "tool_calls": null + } + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": { + "completion_tokens": 100, + "prompt_tokens": 35, + "total_tokens": 135, + "completion_tokens_details": null, + "prompt_tokens_details": null + } + } + }, + "is_streaming": false + } +} diff --git a/tests/integration/telemetry/recordings/d45c9a9229e7e3f50a6eac139508babe21988649eb321b562f74061f58593c25.json b/tests/integration/telemetry/recordings/d45c9a9229e7e3f50a6eac139508babe21988649eb321b562f74061f58593c25.json new file mode 100644 index 000000000..b148c9e51 --- /dev/null +++ b/tests/integration/telemetry/recordings/d45c9a9229e7e3f50a6eac139508babe21988649eb321b562f74061f58593c25.json @@ -0,0 +1,4211 @@ +{ + "test_id": "tests/integration/telemetry/test_completions.py::test_streaming_chunk_count[txt=llama3.2:3b-instruct-fp16]", + "request": { + "method": "POST", + "url": "http://localhost:11434/v1/v1/chat/completions", + "headers": {}, + "body": { + "model": "llama3.2:3b-instruct-fp16", + "messages": [ + { + "role": "user", + "content": "Test trace openai 1" + } + ], + "stream": true + }, + "endpoint": "/v1/chat/completions", + "model": "llama3.2:3b-instruct-fp16" + }, + "response": { + "body": [ + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "I", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "'d", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " be", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " happy", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " to", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " help", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " you", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " with", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " testing", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " a", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " sample", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " Open", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "AI", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " bot", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": ",", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " specifically", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " \"", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "Chat", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "Bot", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "\"", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " provided", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " by", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " company", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": ".\n\n", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "To", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " facilitate", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " this", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " test", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": ",", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " I", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " will", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " simulate", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " interface", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " of", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " a", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " chat", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " window", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": ".", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " You", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " can", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " communicate", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " with", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " me", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": ",", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " and", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " I", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "'ll", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " respond", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " as", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " if", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " I", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " were", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " a", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " convers", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "ational", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " AI", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": ".\n\n", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "Keep", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " in", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " mind", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " that", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " this", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " is", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " a", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " text", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "-based", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " simulation", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": ",", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " so", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " you", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " won", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "'t", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " be", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " able", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " to", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " see", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " any", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " actual", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " Open", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "AI", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " bot", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " or", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " its", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " interface", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": ".", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " However", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": ",", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " we", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " can", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " have", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " a", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " fun", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " conversation", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "!\n\n", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "To", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " start", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " test", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": ",", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " I", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "'ll", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " provide", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " some", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " simple", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " prompts", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " and", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " ask", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " you", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " to", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " interact", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " with", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " me", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": ".", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " If", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " you", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "'d", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " like", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " to", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " explore", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " more", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " complex", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " topics", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": ",", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " feel", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " free", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " to", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " let", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " me", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " know", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": ".\n\n", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "Here", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "'s", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " starting", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " prompt", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": ":\n\n", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "\"", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "Hello", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": ",", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " how", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " can", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " I", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " assist", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " you", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " today", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "?\"\n\n", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "Please", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " respond", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " as", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " if", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " you", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " were", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " talking", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " to", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " a", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": " human", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": ".", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-d45c9a9229e7", + "choices": [ + { + "delta": { + "content": "", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": "stop", + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + } + ], + "is_streaming": true + } +} diff --git a/tests/integration/telemetry/recordings/db8ffad4840512348c215005128557807ffbed0cf6bf11a52c1d1009878886ef.json b/tests/integration/telemetry/recordings/db8ffad4840512348c215005128557807ffbed0cf6bf11a52c1d1009878886ef.json new file mode 100644 index 000000000..ea202a42a --- /dev/null +++ b/tests/integration/telemetry/recordings/db8ffad4840512348c215005128557807ffbed0cf6bf11a52c1d1009878886ef.json @@ -0,0 +1,4263 @@ +{ + "test_id": "tests/integration/telemetry/test_completions.py::test_streaming_chunk_count[txt=ollama/llama3.2:3b-instruct-fp16]", + "request": { + "method": "POST", + "url": "http://0.0.0.0:11434/v1/v1/chat/completions", + "headers": {}, + "body": { + "model": "llama3.2:3b-instruct-fp16", + "messages": [ + { + "role": "user", + "content": "Test trace openai 1" + } + ], + "stream": true + }, + "endpoint": "/v1/chat/completions", + "model": "llama3.2:3b-instruct-fp16" + }, + "response": { + "body": [ + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "I", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "'m", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " not", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " able", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " to", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " directly", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " access", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " or", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " test", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " Open", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "AI", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "'s", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " systems", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": ",", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " including", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " their", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " chat", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " models", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " like", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " Chat", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "G", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "PT", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": ".", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " However", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": ",", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " I", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " can", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " guide", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " you", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " through", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " a", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " simple", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " testing", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " process", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " that", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " sim", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "ulates", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " interacting", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " with", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " model", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": ".\n\n", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "To", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " test", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " a", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " hypothetical", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " Open", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "AI", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " chat", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " model", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": ",", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " I", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "'ll", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " perform", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " a", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " simulated", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " conversation", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " based", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " on", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " publicly", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " available", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " information", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " and", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " user", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " input", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": ".", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " Please", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " note", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " that", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " this", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " is", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " not", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " an", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " actual", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " test", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " of", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " full", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " capabilities", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " of", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " Open", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "AI", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "'s", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " models", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": ".\n\n", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "**", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "Simulation", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " Start", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "**\n\n", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "I", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " will", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " respond", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " to", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " questions", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " or", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " prompts", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " you", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " give", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " me", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": ".", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " Keep", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " in", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " mind", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " that", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " my", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " responses", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " are", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " generated", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " based", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " on", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " patterns", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " and", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " data", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": ",", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " but", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " I", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " may", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " not", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " provide", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " most", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " accurate", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " or", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " up", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "-to", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "-date", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " information", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": ".\n\n", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "Feel", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " free", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " to", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " start", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " by", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " asking", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " a", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " question", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " or", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " giving", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " a", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " prompt", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": ".", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " I", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "'ll", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " do", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " my", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " best", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " to", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " simulate", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " a", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " conversation", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " with", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " an", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " Open", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "AI", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "-style", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " chat", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " model", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": ".\n\n", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "Type", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " your", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": " input", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": ":", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-db8ffad48405", + "choices": [ + { + "delta": { + "content": "", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": "stop", + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + } + ], + "is_streaming": true + } +} diff --git a/tests/integration/telemetry/recordings/dba5042d6691c2fbc29f2172c0f175e235f2829cb1c3e49781dd2b1850e28775.json b/tests/integration/telemetry/recordings/dba5042d6691c2fbc29f2172c0f175e235f2829cb1c3e49781dd2b1850e28775.json new file mode 100644 index 000000000..bfed48cb4 --- /dev/null +++ b/tests/integration/telemetry/recordings/dba5042d6691c2fbc29f2172c0f175e235f2829cb1c3e49781dd2b1850e28775.json @@ -0,0 +1,59 @@ +{ + "test_id": "tests/integration/telemetry/test_completions.py::test_telemetry_format_completeness[txt=llama3.2:3b-instruct-fp16]", + "request": { + "method": "POST", + "url": "http://localhost:11434/v1/v1/chat/completions", + "headers": {}, + "body": { + "model": "llama3.2:3b-instruct-fp16", + "messages": [ + { + "role": "user", + "content": "Test trace openai with temperature 0.7" + } + ], + "max_tokens": 100, + "stream": false, + "temperature": 0.7 + }, + "endpoint": "/v1/chat/completions", + "model": "llama3.2:3b-instruct-fp16" + }, + "response": { + "body": { + "__type__": "openai.types.chat.chat_completion.ChatCompletion", + "__data__": { + "id": "rec-dba5042d6691", + "choices": [ + { + "finish_reason": "length", + "index": 0, + "logprobs": null, + "message": { + "content": "To test the \"trace\" functionality of OpenAI's GPT-4 model at a temperature of 0.7, you can follow these steps:\n\n1. First, make sure you have an account with OpenAI and have been granted access to their API.\n\n2. You will need to install the `transformers` library, which is the official library for working with Transformers models like GPT-4:\n\n ```bash\npip install transformers\n```\n\n3. Next, import the necessary", + "refusal": null, + "role": "assistant", + "annotations": null, + "audio": null, + "function_call": null, + "tool_calls": null + } + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": { + "completion_tokens": 100, + "prompt_tokens": 35, + "total_tokens": 135, + "completion_tokens_details": null, + "prompt_tokens_details": null + } + } + }, + "is_streaming": false + } +} diff --git a/tests/integration/telemetry/test_completions.py b/tests/integration/telemetry/test_completions.py new file mode 100644 index 000000000..77ca4d51c --- /dev/null +++ b/tests/integration/telemetry/test_completions.py @@ -0,0 +1,112 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +"""Telemetry tests verifying @trace_protocol decorator format using in-memory exporter.""" + +import json +import os + +import pytest + +pytestmark = pytest.mark.skipif( + os.environ.get("LLAMA_STACK_TEST_STACK_CONFIG_TYPE") == "server", + reason="In-memory telemetry tests only work in library_client mode (server mode runs in separate process)", +) + + +def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_model_id): + """Verify streaming adds chunk_count and __type__=async_generator.""" + + stream = llama_stack_client.chat.completions.create( + model=text_model_id, + messages=[{"role": "user", "content": "Test trace openai 1"}], + stream=True, + ) + + chunks = list(stream) + assert len(chunks) > 0 + + spans = mock_otlp_collector.get_spans() + assert len(spans) > 0 + + chunk_count = None + for span in spans: + if span.attributes.get("__type__") == "async_generator": + chunk_count = span.attributes.get("chunk_count") + if chunk_count: + chunk_count = int(chunk_count) + break + + assert chunk_count is not None + assert chunk_count == len(chunks) + + +def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client, text_model_id): + """Comprehensive validation of telemetry data format including spans and metrics.""" + response = llama_stack_client.chat.completions.create( + model=text_model_id, + messages=[{"role": "user", "content": "Test trace openai with temperature 0.7"}], + temperature=0.7, + max_tokens=100, + stream=False, + ) + + # Handle both dict and Pydantic model for usage + # This occurs due to the replay system returning a dict for usage, but the client returning a Pydantic model + # TODO: Fix this by making the replay system return a Pydantic model for usage + usage = response.usage if isinstance(response.usage, dict) else response.usage.model_dump() + assert usage.get("prompt_tokens") and usage["prompt_tokens"] > 0 + assert usage.get("completion_tokens") and usage["completion_tokens"] > 0 + assert usage.get("total_tokens") and usage["total_tokens"] > 0 + + # Verify spans + spans = mock_otlp_collector.get_spans() + assert len(spans) == 5 + + # we only need this captured one time + logged_model_id = None + + for span in spans: + attrs = span.attributes + assert attrs is not None + + # Root span is created manually by tracing middleware, not by @trace_protocol decorator + is_root_span = attrs.get("__root__") is True + + if is_root_span: + # Root spans have different attributes + assert attrs.get("__location__") in ["library_client", "server"] + else: + # Non-root spans are created by @trace_protocol decorator + assert attrs.get("__autotraced__") + assert attrs.get("__class__") and attrs.get("__method__") + assert attrs.get("__type__") in ["async", "sync", "async_generator"] + + args = json.loads(attrs["__args__"]) + if "model_id" in args: + logged_model_id = args["model_id"] + + assert logged_model_id is not None + assert logged_model_id == text_model_id + + # TODO: re-enable this once metrics get fixed + """ + # Verify token usage metrics in response + metrics = mock_otlp_collector.get_metrics() + + assert metrics + for metric in metrics: + assert metric.name in ["completion_tokens", "total_tokens", "prompt_tokens"] + assert metric.unit == "tokens" + assert metric.data.data_points and len(metric.data.data_points) == 1 + match metric.name: + case "completion_tokens": + assert metric.data.data_points[0].value == usage["completion_tokens"] + case "total_tokens": + assert metric.data.data_points[0].value == usage["total_tokens"] + case "prompt_tokens": + assert metric.data.data_points[0].value == usage["prompt_tokens" + """ From b11bcfde11cbeb638f09074fb8c6a84bfd5d4079 Mon Sep 17 00:00:00 2001 From: Charlie Doern Date: Fri, 17 Oct 2025 22:52:14 -0400 Subject: [PATCH 06/41] refactor(build): rework CLI commands and build process (1/2) (#2974) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit # What does this PR do? This PR does a few things outlined in #2878 namely: 1. adds `llama stack list-deps` a command which simply takes the build logic and instead of executing one of the `build_...` scripts, it displays all of the providers' dependencies using the `module` and `uv`. 2. deprecated `llama stack build` in favor of `llama stack list-deps` 3. updates all tests to use `list-deps` alongside `build`. PR 2/2 will migrate `llama stack run`'s default behavior to be `llama stack build --run` and use the new `list-deps` command under the hood before running the server. examples of `llama stack list-deps starter` ``` llama stack list-deps starter --format json { "name": "starter", "description": "Quick start template for running Llama Stack with several popular providers. This distribution is intended for CPU-only environments.", "apis": [ { "api": "inference", "provider": "remote::cerebras" }, { "api": "inference", "provider": "remote::ollama" }, { "api": "inference", "provider": "remote::vllm" }, { "api": "inference", "provider": "remote::tgi" }, { "api": "inference", "provider": "remote::fireworks" }, { "api": "inference", "provider": "remote::together" }, { "api": "inference", "provider": "remote::bedrock" }, { "api": "inference", "provider": "remote::nvidia" }, { "api": "inference", "provider": "remote::openai" }, { "api": "inference", "provider": "remote::anthropic" }, { "api": "inference", "provider": "remote::gemini" }, { "api": "inference", "provider": "remote::vertexai" }, { "api": "inference", "provider": "remote::groq" }, { "api": "inference", "provider": "remote::sambanova" }, { "api": "inference", "provider": "remote::azure" }, { "api": "inference", "provider": "inline::sentence-transformers" }, { "api": "vector_io", "provider": "inline::faiss" }, { "api": "vector_io", "provider": "inline::sqlite-vec" }, { "api": "vector_io", "provider": "inline::milvus" }, { "api": "vector_io", "provider": "remote::chromadb" }, { "api": "vector_io", "provider": "remote::pgvector" }, { "api": "files", "provider": "inline::localfs" }, { "api": "safety", "provider": "inline::llama-guard" }, { "api": "safety", "provider": "inline::code-scanner" }, { "api": "agents", "provider": "inline::meta-reference" }, { "api": "telemetry", "provider": "inline::meta-reference" }, { "api": "post_training", "provider": "inline::torchtune-cpu" }, { "api": "eval", "provider": "inline::meta-reference" }, { "api": "datasetio", "provider": "remote::huggingface" }, { "api": "datasetio", "provider": "inline::localfs" }, { "api": "scoring", "provider": "inline::basic" }, { "api": "scoring", "provider": "inline::llm-as-judge" }, { "api": "scoring", "provider": "inline::braintrust" }, { "api": "tool_runtime", "provider": "remote::brave-search" }, { "api": "tool_runtime", "provider": "remote::tavily-search" }, { "api": "tool_runtime", "provider": "inline::rag-runtime" }, { "api": "tool_runtime", "provider": "remote::model-context-protocol" }, { "api": "batches", "provider": "inline::reference" } ], "pip_dependencies": [ "pandas", "opentelemetry-exporter-otlp-proto-http", "matplotlib", "opentelemetry-sdk", "sentence-transformers", "datasets", "pymilvus[milvus-lite]>=2.4.10", "codeshield", "scipy", "torchvision", "tree_sitter", "h11>=0.16.0", "aiohttp", "pymongo", "tqdm", "pythainlp", "pillow", "torch", "emoji", "grpcio>=1.67.1,<1.71.0", "fireworks-ai", "langdetect", "psycopg2-binary", "asyncpg", "redis", "together", "torchao>=0.12.0", "openai", "sentencepiece", "aiosqlite", "google-cloud-aiplatform", "faiss-cpu", "numpy", "sqlite-vec", "nltk", "scikit-learn", "mcp>=1.8.1", "transformers", "boto3", "huggingface_hub", "ollama", "autoevals", "sqlalchemy[asyncio]", "torchtune>=0.5.0", "chromadb-client", "pypdf", "requests", "anthropic", "chardet", "aiosqlite", "fastapi", "fire", "httpx", "uvicorn", "opentelemetry-sdk", "opentelemetry-exporter-otlp-proto-http" ] } ``` Screenshot 2025-10-16 at 5 53 03 PM --------- Signed-off-by: Charlie Doern --- .../actions/setup-test-environment/action.yml | 2 +- .github/workflows/README.md | 1 + .../workflows/integration-vector-io-tests.yml | 2 +- .github/workflows/providers-list-deps.yml | 105 ++++++++++ .github/workflows/test-external.yml | 7 +- CONTRIBUTING.md | 11 +- README.md | 5 +- docs/docs/contributing/index.mdx | 4 +- .../self_hosted_distro/starter.md | 6 +- .../getting_started/detailed_tutorial.mdx | 10 +- docs/docs/getting_started/quickstart.mdx | 9 +- llama_stack/cli/stack/_list_deps.py | 182 ++++++++++++++++++ llama_stack/cli/stack/build.py | 8 +- llama_stack/cli/stack/list_deps.py | 51 +++++ llama_stack/cli/stack/stack.py | 2 + llama_stack/cli/stack/utils.py | 109 +++++++++++ llama_stack/core/resolver.py | 1 + llama_stack/core/utils/config_resolution.py | 8 +- .../unit/distribution/test_stack_list_deps.py | 50 +++++ uv.lock | 38 ++-- 20 files changed, 570 insertions(+), 41 deletions(-) create mode 100644 .github/workflows/providers-list-deps.yml create mode 100644 llama_stack/cli/stack/_list_deps.py create mode 100644 llama_stack/cli/stack/list_deps.py create mode 100644 tests/unit/distribution/test_stack_list_deps.py diff --git a/.github/actions/setup-test-environment/action.yml b/.github/actions/setup-test-environment/action.yml index 478e8f598..ee9011ed8 100644 --- a/.github/actions/setup-test-environment/action.yml +++ b/.github/actions/setup-test-environment/action.yml @@ -57,7 +57,7 @@ runs: echo "Building Llama Stack" LLAMA_STACK_DIR=. \ - uv run --no-sync llama stack build --template ci-tests --image-type venv + uv run --no-sync llama stack list-deps ci-tests | xargs -L1 uv pip install - name: Configure git for commits shell: bash diff --git a/.github/workflows/README.md b/.github/workflows/README.md index 29acdce59..00a8f54ac 100644 --- a/.github/workflows/README.md +++ b/.github/workflows/README.md @@ -14,6 +14,7 @@ Llama Stack uses GitHub Actions for Continuous Integration (CI). Below is a tabl | Pre-commit | [pre-commit.yml](pre-commit.yml) | Run pre-commit checks | | Pre-commit Bot | [precommit-trigger.yml](precommit-trigger.yml) | Pre-commit bot for PR | | Test Llama Stack Build | [providers-build.yml](providers-build.yml) | Test llama stack build | +| Test llama stack list-deps | [providers-list-deps.yml](providers-list-deps.yml) | Test llama stack list-deps | | Python Package Build Test | [python-build-test.yml](python-build-test.yml) | Test building the llama-stack PyPI project | | Integration Tests (Record) | [record-integration-tests.yml](record-integration-tests.yml) | Run the integration test suite from tests/integration | | Check semantic PR titles | [semantic-pr.yml](semantic-pr.yml) | Ensure that PR titles follow the conventional commit spec | diff --git a/.github/workflows/integration-vector-io-tests.yml b/.github/workflows/integration-vector-io-tests.yml index fe5785c73..e9a758873 100644 --- a/.github/workflows/integration-vector-io-tests.yml +++ b/.github/workflows/integration-vector-io-tests.yml @@ -144,7 +144,7 @@ jobs: - name: Build Llama Stack run: | - uv run --no-sync llama stack build --template ci-tests --image-type venv + uv run --no-sync llama stack list-deps ci-tests | xargs -L1 uv pip install - name: Check Storage and Memory Available Before Tests if: ${{ always() }} diff --git a/.github/workflows/providers-list-deps.yml b/.github/workflows/providers-list-deps.yml new file mode 100644 index 000000000..df491b680 --- /dev/null +++ b/.github/workflows/providers-list-deps.yml @@ -0,0 +1,105 @@ +name: Test llama stack list-deps + +run-name: Test llama stack list-deps + +on: + push: + branches: + - main + paths: + - 'llama_stack/cli/stack/list_deps.py' + - 'llama_stack/cli/stack/_list_deps.py' + - 'llama_stack/core/build.*' + - 'llama_stack/core/*.sh' + - '.github/workflows/providers-list-deps.yml' + - 'llama_stack/templates/**' + - 'pyproject.toml' + + pull_request: + paths: + - 'llama_stack/cli/stack/list_deps.py' + - 'llama_stack/cli/stack/_list_deps.py' + - 'llama_stack/core/build.*' + - 'llama_stack/core/*.sh' + - '.github/workflows/providers-list-deps.yml' + - 'llama_stack/templates/**' + - 'pyproject.toml' + +concurrency: + group: ${{ github.workflow }}-${{ github.ref }} + cancel-in-progress: true + +jobs: + generate-matrix: + runs-on: ubuntu-latest + outputs: + distros: ${{ steps.set-matrix.outputs.distros }} + steps: + - name: Checkout repository + uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 + + - name: Generate Distribution List + id: set-matrix + run: | + distros=$(ls llama_stack/distributions/*/*build.yaml | awk -F'/' '{print $(NF-1)}' | jq -R -s -c 'split("\n")[:-1]') + echo "distros=$distros" >> "$GITHUB_OUTPUT" + + list-deps: + needs: generate-matrix + runs-on: ubuntu-latest + strategy: + matrix: + distro: ${{ fromJson(needs.generate-matrix.outputs.distros) }} + image-type: [venv, container] + fail-fast: false # We want to run all jobs even if some fail + + steps: + - name: Checkout repository + uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 + + - name: Install dependencies + uses: ./.github/actions/setup-runner + + - name: Print dependencies + run: | + uv run llama stack list-deps ${{ matrix.distro }} + + - name: Install Distro using llama stack list-deps + run: | + # USE_COPY_NOT_MOUNT is set to true since mounting is not supported by docker buildx, we use COPY instead + # LLAMA_STACK_DIR is set to the current directory so we are building from the source + USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack list-deps ${{ matrix.distro }} | xargs -L1 uv pip install + + - name: Print dependencies in the image + if: matrix.image-type == 'venv' + run: | + uv pip list + + show-single-provider: + runs-on: ubuntu-latest + steps: + - name: Checkout repository + uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 + + - name: Install dependencies + uses: ./.github/actions/setup-runner + + - name: Show a single provider + run: | + USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack list-deps --providers inference=remote::ollama + + list-deps-from-config: + runs-on: ubuntu-latest + steps: + - name: Checkout repository + uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 + + - name: Install dependencies + uses: ./.github/actions/setup-runner + + - name: list-des from Config + env: + USE_COPY_NOT_MOUNT: "true" + LLAMA_STACK_DIR: "." + run: | + uv run llama stack list-deps llama_stack/distributions/ci-tests/build.yaml diff --git a/.github/workflows/test-external.yml b/.github/workflows/test-external.yml index a008b17af..a1013ad9e 100644 --- a/.github/workflows/test-external.yml +++ b/.github/workflows/test-external.yml @@ -44,11 +44,14 @@ jobs: - name: Print distro dependencies run: | - USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run --no-sync llama stack build --config tests/external/build.yaml --print-deps-only + USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run --no-sync llama stack list-deps tests/external/build.yaml - name: Build distro from config file run: | - USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run --no-sync llama stack build --config tests/external/build.yaml + uv venv ci-test + source ci-test/bin/activate + uv pip install -e . + LLAMA_STACK_LOGGING=all=CRITICAL llama stack list-deps tests/external/build.yaml | xargs -L1 uv pip install - name: Start Llama Stack server in background if: ${{ matrix.image-type }} == 'venv' diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index eab182eea..c869b4f5c 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -167,9 +167,9 @@ under the LICENSE file in the root directory of this source tree. Some tips about common tasks you work on while contributing to Llama Stack: -### Using `llama stack build` +### Installing dependencies of distributions -Building a stack image will use the production version of the `llama-stack` and `llama-stack-client` packages. If you are developing with a llama-stack repository checked out and need your code to be reflected in the stack image, set `LLAMA_STACK_DIR` and `LLAMA_STACK_CLIENT_DIR` to the appropriate checked out directories when running any of the `llama` CLI commands. +When installing dependencies for a distribution, you can use `llama stack list-deps` to view and install the required packages. Example: ```bash @@ -177,7 +177,12 @@ cd work/ git clone https://github.com/llamastack/llama-stack.git git clone https://github.com/llamastack/llama-stack-client-python.git cd llama-stack -LLAMA_STACK_DIR=$(pwd) LLAMA_STACK_CLIENT_DIR=../llama-stack-client-python llama stack build --distro <...> + +# Show dependencies for a distribution +llama stack list-deps + +# Install dependencies +llama stack list-deps | xargs -L1 uv pip install ``` ### Updating distribution configurations diff --git a/README.md b/README.md index 75e9989d7..4122440af 100644 --- a/README.md +++ b/README.md @@ -27,8 +27,11 @@ MODEL="Llama-4-Scout-17B-16E-Instruct" # get meta url from llama.com huggingface-cli download meta-llama/$MODEL --local-dir ~/.llama/$MODEL +# install dependencies for the distribution +llama stack list-deps meta-reference-gpu | xargs -L1 uv pip install + # start a llama stack server -INFERENCE_MODEL=meta-llama/$MODEL llama stack build --run --template meta-reference-gpu +INFERENCE_MODEL=meta-llama/$MODEL llama stack run meta-reference-gpu # install client to interact with the server pip install llama-stack-client diff --git a/docs/docs/contributing/index.mdx b/docs/docs/contributing/index.mdx index 263900ecc..2051f6040 100644 --- a/docs/docs/contributing/index.mdx +++ b/docs/docs/contributing/index.mdx @@ -158,7 +158,7 @@ under the LICENSE file in the root directory of this source tree. Some tips about common tasks you work on while contributing to Llama Stack: -### Using `llama stack build` +### Installing dependencies of distributions Building a stack image will use the production version of the `llama-stack` and `llama-stack-client` packages. If you are developing with a llama-stack repository checked out and need your code to be reflected in the stack image, set `LLAMA_STACK_DIR` and `LLAMA_STACK_CLIENT_DIR` to the appropriate checked out directories when running any of the `llama` CLI commands. @@ -168,7 +168,7 @@ cd work/ git clone https://github.com/meta-llama/llama-stack.git git clone https://github.com/meta-llama/llama-stack-client-python.git cd llama-stack -LLAMA_STACK_DIR=$(pwd) LLAMA_STACK_CLIENT_DIR=../llama-stack-client-python llama stack build --distro <...> +llama stack build --distro <...> ``` ### Updating distribution configurations diff --git a/docs/docs/distributions/self_hosted_distro/starter.md b/docs/docs/distributions/self_hosted_distro/starter.md index a8faf713a..e04c5874b 100644 --- a/docs/docs/distributions/self_hosted_distro/starter.md +++ b/docs/docs/distributions/self_hosted_distro/starter.md @@ -169,7 +169,11 @@ docker run \ Ensure you have configured the starter distribution using the environment variables explained above. ```bash -uv run --with llama-stack llama stack build --distro starter --image-type venv --run +# Install dependencies for the starter distribution +uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install + +# Run the server +uv run --with llama-stack llama stack run starter ``` ## Example Usage diff --git a/docs/docs/getting_started/detailed_tutorial.mdx b/docs/docs/getting_started/detailed_tutorial.mdx index 45373e2ab..888ea2414 100644 --- a/docs/docs/getting_started/detailed_tutorial.mdx +++ b/docs/docs/getting_started/detailed_tutorial.mdx @@ -58,15 +58,19 @@ Llama Stack is a server that exposes multiple APIs, you connect with it using th -You can use Python to build and run the Llama Stack server, which is useful for testing and development. +You can use Python to install dependencies and run the Llama Stack server, which is useful for testing and development. Llama Stack uses a [YAML configuration file](../distributions/configuration) to specify the stack setup, which defines the providers and their settings. The generated configuration serves as a starting point that you can [customize for your specific needs](../distributions/customizing_run_yaml). -Now let's build and run the Llama Stack config for Ollama. +Now let's install dependencies and run the Llama Stack config for Ollama. We use `starter` as template. By default all providers are disabled, this requires enable ollama by passing environment variables. ```bash -llama stack build --distro starter --image-type venv --run +# Install dependencies for the starter distribution +uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install + +# Run the server +llama stack run starter ``` diff --git a/docs/docs/getting_started/quickstart.mdx b/docs/docs/getting_started/quickstart.mdx index b885f3c66..2e47a771e 100644 --- a/docs/docs/getting_started/quickstart.mdx +++ b/docs/docs/getting_started/quickstart.mdx @@ -24,10 +24,13 @@ ollama run llama3.2:3b --keepalive 60m #### Step 2: Run the Llama Stack server -We will use `uv` to run the Llama Stack server. +We will use `uv` to install dependencies and run the Llama Stack server. ```bash -OLLAMA_URL=http://localhost:11434 \ - uv run --with llama-stack llama stack build --distro starter --image-type venv --run +# Install dependencies for the starter distribution +uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install + +# Run the server +OLLAMA_URL=http://localhost:11434 uv run --with llama-stack llama stack run starter ``` #### Step 3: Run the demo Now open up a new terminal and copy the following script into a file named `demo_script.py`. diff --git a/llama_stack/cli/stack/_list_deps.py b/llama_stack/cli/stack/_list_deps.py new file mode 100644 index 000000000..18141be5f --- /dev/null +++ b/llama_stack/cli/stack/_list_deps.py @@ -0,0 +1,182 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +import argparse +import sys +from pathlib import Path + +import yaml +from termcolor import cprint + +from llama_stack.cli.stack.utils import ImageType +from llama_stack.core.build import get_provider_dependencies +from llama_stack.core.datatypes import ( + BuildConfig, + BuildProvider, + DistributionSpec, +) +from llama_stack.core.distribution import get_provider_registry +from llama_stack.core.stack import replace_env_vars +from llama_stack.log import get_logger +from llama_stack.providers.datatypes import Api + +TEMPLATES_PATH = Path(__file__).parent.parent.parent / "templates" + +logger = get_logger(name=__name__, category="cli") + + +# These are the dependencies needed by the distribution server. +# `llama-stack` is automatically installed by the installation script. +SERVER_DEPENDENCIES = [ + "aiosqlite", + "fastapi", + "fire", + "httpx", + "uvicorn", + "opentelemetry-sdk", + "opentelemetry-exporter-otlp-proto-http", +] + + +def format_output_deps_only( + normal_deps: list[str], + special_deps: list[str], + external_deps: list[str], + uv: bool = False, +) -> str: + """Format dependencies as a list.""" + lines = [] + + uv_str = "" + if uv: + uv_str = "uv pip install " + + # Quote deps with commas + quoted_normal_deps = [quote_if_needed(dep) for dep in normal_deps] + lines.append(f"{uv_str}{' '.join(quoted_normal_deps)}") + + for special_dep in special_deps: + lines.append(f"{uv_str}{quote_special_dep(special_dep)}") + + for external_dep in external_deps: + lines.append(f"{uv_str}{quote_special_dep(external_dep)}") + + return "\n".join(lines) + + +def run_stack_list_deps_command(args: argparse.Namespace) -> None: + if args.config: + try: + from llama_stack.core.utils.config_resolution import Mode, resolve_config_or_distro + + config_file = resolve_config_or_distro(args.config, Mode.BUILD) + except ValueError as e: + cprint( + f"Could not parse config file {args.config}: {e}", + color="red", + file=sys.stderr, + ) + sys.exit(1) + if config_file: + with open(config_file) as f: + try: + contents = yaml.safe_load(f) + contents = replace_env_vars(contents) + build_config = BuildConfig(**contents) + build_config.image_type = "venv" + except Exception as e: + cprint( + f"Could not parse config file {config_file}: {e}", + color="red", + file=sys.stderr, + ) + sys.exit(1) + elif args.providers: + provider_list: dict[str, list[BuildProvider]] = dict() + for api_provider in args.providers.split(","): + if "=" not in api_provider: + cprint( + "Could not parse `--providers`. Please ensure the list is in the format api1=provider1,api2=provider2", + color="red", + file=sys.stderr, + ) + sys.exit(1) + api, provider_type = api_provider.split("=") + providers_for_api = get_provider_registry().get(Api(api), None) + if providers_for_api is None: + cprint( + f"{api} is not a valid API.", + color="red", + file=sys.stderr, + ) + sys.exit(1) + if provider_type in providers_for_api: + provider = BuildProvider( + provider_type=provider_type, + module=None, + ) + provider_list.setdefault(api, []).append(provider) + else: + cprint( + f"{provider_type} is not a valid provider for the {api} API.", + color="red", + file=sys.stderr, + ) + sys.exit(1) + distribution_spec = DistributionSpec( + providers=provider_list, + description=",".join(args.providers), + ) + build_config = BuildConfig(image_type=ImageType.VENV.value, distribution_spec=distribution_spec) + + normal_deps, special_deps, external_provider_dependencies = get_provider_dependencies(build_config) + normal_deps += SERVER_DEPENDENCIES + + # Add external API dependencies + if build_config.external_apis_dir: + from llama_stack.core.external import load_external_apis + + external_apis = load_external_apis(build_config) + if external_apis: + for _, api_spec in external_apis.items(): + normal_deps.extend(api_spec.pip_packages) + + # Format and output based on requested format + output = format_output_deps_only( + normal_deps=normal_deps, + special_deps=special_deps, + external_deps=external_provider_dependencies, + uv=args.format == "uv", + ) + + print(output) + + +def quote_if_needed(dep): + # Add quotes if the dependency contains special characters that need escaping in shell + # This includes: commas, comparison operators (<, >, <=, >=, ==, !=) + needs_quoting = any(char in dep for char in [",", "<", ">", "="]) + return f"'{dep}'" if needs_quoting else dep + + +def quote_special_dep(dep_string): + """ + Quote individual packages in a special dependency string. + Special deps may contain multiple packages and flags like --extra-index-url. + We need to quote only the package specs that contain special characters. + """ + parts = dep_string.split() + quoted_parts = [] + + for part in parts: + # Don't quote flags (they start with -) + if part.startswith("-"): + quoted_parts.append(part) + else: + # Quote package specs that need it + quoted_parts.append(quote_if_needed(part)) + + return " ".join(quoted_parts) diff --git a/llama_stack/cli/stack/build.py b/llama_stack/cli/stack/build.py index 80cf6fb38..cbe8ed881 100644 --- a/llama_stack/cli/stack/build.py +++ b/llama_stack/cli/stack/build.py @@ -8,6 +8,9 @@ import textwrap from llama_stack.cli.stack.utils import ImageType from llama_stack.cli.subcommand import Subcommand +from llama_stack.log import get_logger + +logger = get_logger(__name__, category="cli") class StackBuild(Subcommand): @@ -16,7 +19,7 @@ class StackBuild(Subcommand): self.parser = subparsers.add_parser( "build", prog="llama stack build", - description="Build a Llama stack container", + description="[DEPRECATED] Build a Llama stack container. This command is deprecated and will be removed in a future release. Use `llama stack list-deps ' instead.", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) self._add_arguments() @@ -93,6 +96,9 @@ the build. If not specified, currently active environment will be used if found. ) def _run_stack_build_command(self, args: argparse.Namespace) -> None: + logger.warning( + "The 'llama stack build' command is deprecated and will be removed in a future release. Please use 'llama stack list-deps'" + ) # always keep implementation completely silo-ed away from CLI so CLI # can be fast to load and reduces dependencies from ._build import run_stack_build_command diff --git a/llama_stack/cli/stack/list_deps.py b/llama_stack/cli/stack/list_deps.py new file mode 100644 index 000000000..b6eee1f3b --- /dev/null +++ b/llama_stack/cli/stack/list_deps.py @@ -0,0 +1,51 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. +import argparse + +from llama_stack.cli.subcommand import Subcommand + + +class StackListDeps(Subcommand): + def __init__(self, subparsers: argparse._SubParsersAction): + super().__init__() + self.parser = subparsers.add_parser( + "list-deps", + prog="llama stack list-deps", + description="list the dependencies for a llama stack distribution", + formatter_class=argparse.ArgumentDefaultsHelpFormatter, + ) + self._add_arguments() + self.parser.set_defaults(func=self._run_stack_list_deps_command) + + def _add_arguments(self): + self.parser.add_argument( + "config", + type=str, + nargs="?", # Make it optional + metavar="config | distro", + help="Path to config file to use or name of known distro (llama stack list for a list).", + ) + + self.parser.add_argument( + "--providers", + type=str, + default=None, + help="sync dependencies for a list of providers and only those providers. This list is formatted like: api1=provider1,api2=provider2. Where there can be multiple providers per API.", + ) + self.parser.add_argument( + "--format", + type=str, + choices=["uv", "deps-only"], + default="deps-only", + help="Output format: 'uv' shows shell commands, 'deps-only' shows just the list of dependencies without `uv` (default)", + ) + + def _run_stack_list_deps_command(self, args: argparse.Namespace) -> None: + # always keep implementation completely silo-ed away from CLI so CLI + # can be fast to load and reduces dependencies + from ._list_deps import run_stack_list_deps_command + + return run_stack_list_deps_command(args) diff --git a/llama_stack/cli/stack/stack.py b/llama_stack/cli/stack/stack.py index 3aff78e23..fd0a4edf5 100644 --- a/llama_stack/cli/stack/stack.py +++ b/llama_stack/cli/stack/stack.py @@ -13,6 +13,7 @@ from llama_stack.cli.subcommand import Subcommand from .build import StackBuild from .list_apis import StackListApis +from .list_deps import StackListDeps from .list_providers import StackListProviders from .remove import StackRemove from .run import StackRun @@ -39,6 +40,7 @@ class StackParser(Subcommand): subparsers = self.parser.add_subparsers(title="stack_subcommands") # Add sub-commands + StackListDeps.create(subparsers) StackBuild.create(subparsers) StackListApis.create(subparsers) StackListProviders.create(subparsers) diff --git a/llama_stack/cli/stack/utils.py b/llama_stack/cli/stack/utils.py index fdf9e1761..4d4c1b538 100644 --- a/llama_stack/cli/stack/utils.py +++ b/llama_stack/cli/stack/utils.py @@ -4,7 +4,28 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. +import json +import sys from enum import Enum +from functools import lru_cache +from pathlib import Path + +import yaml +from termcolor import cprint + +from llama_stack.core.datatypes import ( + BuildConfig, + Provider, + StackRunConfig, +) +from llama_stack.core.distribution import get_provider_registry +from llama_stack.core.resolver import InvalidProviderError +from llama_stack.core.utils.config_dirs import EXTERNAL_PROVIDERS_DIR +from llama_stack.core.utils.dynamic import instantiate_class_type +from llama_stack.core.utils.image_types import LlamaStackImageType +from llama_stack.providers.datatypes import Api + +TEMPLATES_PATH = Path(__file__).parent.parent.parent / "distributions" class ImageType(Enum): @@ -19,3 +40,91 @@ def print_subcommand_description(parser, subparsers): description = subcommand.description description_text += f" {name:<21} {description}\n" parser.epilog = description_text + + +def generate_run_config( + build_config: BuildConfig, + build_dir: Path, + image_name: str, +) -> Path: + """ + Generate a run.yaml template file for user to edit from a build.yaml file + """ + apis = list(build_config.distribution_spec.providers.keys()) + run_config = StackRunConfig( + container_image=(image_name if build_config.image_type == LlamaStackImageType.CONTAINER.value else None), + image_name=image_name, + apis=apis, + providers={}, + external_providers_dir=build_config.external_providers_dir + if build_config.external_providers_dir + else EXTERNAL_PROVIDERS_DIR, + ) + # build providers dict + provider_registry = get_provider_registry(build_config) + for api in apis: + run_config.providers[api] = [] + providers = build_config.distribution_spec.providers[api] + + for provider in providers: + pid = provider.provider_type.split("::")[-1] + + p = provider_registry[Api(api)][provider.provider_type] + if p.deprecation_error: + raise InvalidProviderError(p.deprecation_error) + + try: + config_type = instantiate_class_type(provider_registry[Api(api)][provider.provider_type].config_class) + except (ModuleNotFoundError, ValueError) as exc: + # HACK ALERT: + # This code executes after building is done, the import cannot work since the + # package is either available in the venv or container - not available on the host. + # TODO: use a "is_external" flag in ProviderSpec to check if the provider is + # external + cprint( + f"Failed to import provider {provider.provider_type} for API {api} - assuming it's external, skipping: {exc}", + color="yellow", + file=sys.stderr, + ) + # Set config_type to None to avoid UnboundLocalError + config_type = None + + if config_type is not None and hasattr(config_type, "sample_run_config"): + config = config_type.sample_run_config(__distro_dir__=f"~/.llama/distributions/{image_name}") + else: + config = {} + + p_spec = Provider( + provider_id=pid, + provider_type=provider.provider_type, + config=config, + module=provider.module, + ) + run_config.providers[api].append(p_spec) + + run_config_file = build_dir / f"{image_name}-run.yaml" + + with open(run_config_file, "w") as f: + to_write = json.loads(run_config.model_dump_json()) + f.write(yaml.dump(to_write, sort_keys=False)) + + # Only print this message for non-container builds since it will be displayed before the + # container is built + # For non-container builds, the run.yaml is generated at the very end of the build process so it + # makes sense to display this message + if build_config.image_type != LlamaStackImageType.CONTAINER.value: + cprint(f"You can now run your stack with `llama stack run {run_config_file}`", color="green", file=sys.stderr) + return run_config_file + + +@lru_cache +def available_templates_specs() -> dict[str, BuildConfig]: + import yaml + + template_specs = {} + for p in TEMPLATES_PATH.rglob("*build.yaml"): + template_name = p.parent.name + with open(p) as f: + build_config = BuildConfig(**yaml.safe_load(f)) + template_specs[template_name] = build_config + return template_specs diff --git a/llama_stack/core/resolver.py b/llama_stack/core/resolver.py index 73c047979..acd459f99 100644 --- a/llama_stack/core/resolver.py +++ b/llama_stack/core/resolver.py @@ -4,6 +4,7 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import importlib +import importlib.metadata import inspect from typing import Any diff --git a/llama_stack/core/utils/config_resolution.py b/llama_stack/core/utils/config_resolution.py index 182a571ee..fcf057db6 100644 --- a/llama_stack/core/utils/config_resolution.py +++ b/llama_stack/core/utils/config_resolution.py @@ -42,25 +42,25 @@ def resolve_config_or_distro( # Strategy 1: Try as file path first config_path = Path(config_or_distro) if config_path.exists() and config_path.is_file(): - logger.info(f"Using file path: {config_path}") + logger.debug(f"Using file path: {config_path}") return config_path.resolve() # Strategy 2: Try as distribution name (if no .yaml extension) if not config_or_distro.endswith(".yaml"): distro_config = _get_distro_config_path(config_or_distro, mode) if distro_config.exists(): - logger.info(f"Using distribution: {distro_config}") + logger.debug(f"Using distribution: {distro_config}") return distro_config # Strategy 3: Try as built distribution name distrib_config = DISTRIBS_BASE_DIR / f"llamastack-{config_or_distro}" / f"{config_or_distro}-{mode}.yaml" if distrib_config.exists(): - logger.info(f"Using built distribution: {distrib_config}") + logger.debug(f"Using built distribution: {distrib_config}") return distrib_config distrib_config = DISTRIBS_BASE_DIR / f"{config_or_distro}" / f"{config_or_distro}-{mode}.yaml" if distrib_config.exists(): - logger.info(f"Using built distribution: {distrib_config}") + logger.debug(f"Using built distribution: {distrib_config}") return distrib_config # Strategy 4: Failed - provide helpful error diff --git a/tests/unit/distribution/test_stack_list_deps.py b/tests/unit/distribution/test_stack_list_deps.py new file mode 100644 index 000000000..7725ed870 --- /dev/null +++ b/tests/unit/distribution/test_stack_list_deps.py @@ -0,0 +1,50 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +import argparse +from io import StringIO +from unittest.mock import patch + +from llama_stack.cli.stack._list_deps import ( + run_stack_list_deps_command, +) + + +def test_stack_list_deps_basic(): + args = argparse.Namespace( + config=None, + env_name="test-env", + providers="inference=remote::ollama", + format="deps-only", + ) + + with patch("sys.stdout", new_callable=StringIO) as mock_stdout: + run_stack_list_deps_command(args) + output = mock_stdout.getvalue() + + # deps-only format should NOT include "uv pip install" or "Dependencies for" + assert "uv pip install" not in output + assert "Dependencies for" not in output + + # Check that expected dependencies are present + assert "ollama" in output + assert "aiohttp" in output + assert "fastapi" in output + + +def test_stack_list_deps_with_distro_uv(): + args = argparse.Namespace( + config="starter", + env_name=None, + providers=None, + format="uv", + ) + + with patch("sys.stdout", new_callable=StringIO) as mock_stdout: + run_stack_list_deps_command(args) + output = mock_stdout.getvalue() + + assert "uv pip install" in output diff --git a/uv.lock b/uv.lock index 747e82aaa..f9806123d 100644 --- a/uv.lock +++ b/uv.lock @@ -4129,27 +4129,27 @@ wheels = [ [[package]] name = "ruff" -version = "0.12.5" +version = "0.9.10" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/30/cd/01015eb5034605fd98d829c5839ec2c6b4582b479707f7c1c2af861e8258/ruff-0.12.5.tar.gz", hash = "sha256:b209db6102b66f13625940b7f8c7d0f18e20039bb7f6101fbdac935c9612057e", size = 5170722, upload-time = "2025-07-24T13:26:37.456Z" } +sdist = { url = "https://files.pythonhosted.org/packages/20/8e/fafaa6f15c332e73425d9c44ada85360501045d5ab0b81400076aff27cf6/ruff-0.9.10.tar.gz", hash = "sha256:9bacb735d7bada9cfb0f2c227d3658fc443d90a727b47f206fb33f52f3c0eac7", size = 3759776, upload-time = "2025-03-07T15:27:44.363Z" } wheels = [ - { url = "https://files.pythonhosted.org/packages/d4/de/ad2f68f0798ff15dd8c0bcc2889558970d9a685b3249565a937cd820ad34/ruff-0.12.5-py3-none-linux_armv6l.whl", hash = "sha256:1de2c887e9dec6cb31fcb9948299de5b2db38144e66403b9660c9548a67abd92", size = 11819133, upload-time = "2025-07-24T13:25:56.369Z" }, - { url = "https://files.pythonhosted.org/packages/f8/fc/c6b65cd0e7fbe60f17e7ad619dca796aa49fbca34bb9bea5f8faf1ec2643/ruff-0.12.5-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:d1ab65e7d8152f519e7dea4de892317c9da7a108da1c56b6a3c1d5e7cf4c5e9a", size = 12501114, upload-time = "2025-07-24T13:25:59.471Z" }, - { url = "https://files.pythonhosted.org/packages/c5/de/c6bec1dce5ead9f9e6a946ea15e8d698c35f19edc508289d70a577921b30/ruff-0.12.5-py3-none-macosx_11_0_arm64.whl", hash = "sha256:962775ed5b27c7aa3fdc0d8f4d4433deae7659ef99ea20f783d666e77338b8cf", size = 11716873, upload-time = "2025-07-24T13:26:01.496Z" }, - { url = "https://files.pythonhosted.org/packages/a1/16/cf372d2ebe91e4eb5b82a2275c3acfa879e0566a7ac94d331ea37b765ac8/ruff-0.12.5-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:73b4cae449597e7195a49eb1cdca89fd9fbb16140c7579899e87f4c85bf82f73", size = 11958829, upload-time = "2025-07-24T13:26:03.721Z" }, - { url = "https://files.pythonhosted.org/packages/25/bf/cd07e8f6a3a6ec746c62556b4c4b79eeb9b0328b362bb8431b7b8afd3856/ruff-0.12.5-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:8b13489c3dc50de5e2d40110c0cce371e00186b880842e245186ca862bf9a1ac", size = 11626619, upload-time = "2025-07-24T13:26:06.118Z" }, - { url = "https://files.pythonhosted.org/packages/d8/c9/c2ccb3b8cbb5661ffda6925f81a13edbb786e623876141b04919d1128370/ruff-0.12.5-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f1504fea81461cf4841778b3ef0a078757602a3b3ea4b008feb1308cb3f23e08", size = 13221894, upload-time = "2025-07-24T13:26:08.292Z" }, - { url = "https://files.pythonhosted.org/packages/6b/58/68a5be2c8e5590ecdad922b2bcd5583af19ba648f7648f95c51c3c1eca81/ruff-0.12.5-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:c7da4129016ae26c32dfcbd5b671fe652b5ab7fc40095d80dcff78175e7eddd4", size = 14163909, upload-time = "2025-07-24T13:26:10.474Z" }, - { url = "https://files.pythonhosted.org/packages/bd/d1/ef6b19622009ba8386fdb792c0743f709cf917b0b2f1400589cbe4739a33/ruff-0.12.5-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ca972c80f7ebcfd8af75a0f18b17c42d9f1ef203d163669150453f50ca98ab7b", size = 13583652, upload-time = "2025-07-24T13:26:13.381Z" }, - { url = "https://files.pythonhosted.org/packages/62/e3/1c98c566fe6809a0c83751d825a03727f242cdbe0d142c9e292725585521/ruff-0.12.5-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8dbbf9f25dfb501f4237ae7501d6364b76a01341c6f1b2cd6764fe449124bb2a", size = 12700451, upload-time = "2025-07-24T13:26:15.488Z" }, - { url = "https://files.pythonhosted.org/packages/24/ff/96058f6506aac0fbc0d0fc0d60b0d0bd746240a0594657a2d94ad28033ba/ruff-0.12.5-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c47dea6ae39421851685141ba9734767f960113d51e83fd7bb9958d5be8763a", size = 12937465, upload-time = "2025-07-24T13:26:17.808Z" }, - { url = "https://files.pythonhosted.org/packages/eb/d3/68bc5e7ab96c94b3589d1789f2dd6dd4b27b263310019529ac9be1e8f31b/ruff-0.12.5-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:c5076aa0e61e30f848846f0265c873c249d4b558105b221be1828f9f79903dc5", size = 11771136, upload-time = "2025-07-24T13:26:20.422Z" }, - { url = "https://files.pythonhosted.org/packages/52/75/7356af30a14584981cabfefcf6106dea98cec9a7af4acb5daaf4b114845f/ruff-0.12.5-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:a5a4c7830dadd3d8c39b1cc85386e2c1e62344f20766be6f173c22fb5f72f293", size = 11601644, upload-time = "2025-07-24T13:26:22.928Z" }, - { url = "https://files.pythonhosted.org/packages/c2/67/91c71d27205871737cae11025ee2b098f512104e26ffd8656fd93d0ada0a/ruff-0.12.5-py3-none-musllinux_1_2_i686.whl", hash = "sha256:46699f73c2b5b137b9dc0fc1a190b43e35b008b398c6066ea1350cce6326adcb", size = 12478068, upload-time = "2025-07-24T13:26:26.134Z" }, - { url = "https://files.pythonhosted.org/packages/34/04/b6b00383cf2f48e8e78e14eb258942fdf2a9bf0287fbf5cdd398b749193a/ruff-0.12.5-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:5a655a0a0d396f0f072faafc18ebd59adde8ca85fb848dc1b0d9f024b9c4d3bb", size = 12991537, upload-time = "2025-07-24T13:26:28.533Z" }, - { url = "https://files.pythonhosted.org/packages/3e/b9/053d6445dc7544fb6594785056d8ece61daae7214859ada4a152ad56b6e0/ruff-0.12.5-py3-none-win32.whl", hash = "sha256:dfeb2627c459b0b78ca2bbdc38dd11cc9a0a88bf91db982058b26ce41714ffa9", size = 11751575, upload-time = "2025-07-24T13:26:30.835Z" }, - { url = "https://files.pythonhosted.org/packages/bc/0f/ab16e8259493137598b9149734fec2e06fdeda9837e6f634f5c4e35916da/ruff-0.12.5-py3-none-win_amd64.whl", hash = "sha256:ae0d90cf5f49466c954991b9d8b953bd093c32c27608e409ae3564c63c5306a5", size = 12882273, upload-time = "2025-07-24T13:26:32.929Z" }, - { url = "https://files.pythonhosted.org/packages/00/db/c376b0661c24cf770cb8815268190668ec1330eba8374a126ceef8c72d55/ruff-0.12.5-py3-none-win_arm64.whl", hash = "sha256:48cdbfc633de2c5c37d9f090ba3b352d1576b0015bfc3bc98eaf230275b7e805", size = 11951564, upload-time = "2025-07-24T13:26:34.994Z" }, + { url = "https://files.pythonhosted.org/packages/73/b2/af7c2cc9e438cbc19fafeec4f20bfcd72165460fe75b2b6e9a0958c8c62b/ruff-0.9.10-py3-none-linux_armv6l.whl", hash = "sha256:eb4d25532cfd9fe461acc83498361ec2e2252795b4f40b17e80692814329e42d", size = 10049494, upload-time = "2025-03-07T15:26:51.268Z" }, + { url = "https://files.pythonhosted.org/packages/6d/12/03f6dfa1b95ddd47e6969f0225d60d9d7437c91938a310835feb27927ca0/ruff-0.9.10-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:188a6638dab1aa9bb6228a7302387b2c9954e455fb25d6b4470cb0641d16759d", size = 10853584, upload-time = "2025-03-07T15:26:56.104Z" }, + { url = "https://files.pythonhosted.org/packages/02/49/1c79e0906b6ff551fb0894168763f705bf980864739572b2815ecd3c9df0/ruff-0.9.10-py3-none-macosx_11_0_arm64.whl", hash = "sha256:5284dcac6b9dbc2fcb71fdfc26a217b2ca4ede6ccd57476f52a587451ebe450d", size = 10155692, upload-time = "2025-03-07T15:27:01.385Z" }, + { url = "https://files.pythonhosted.org/packages/5b/01/85e8082e41585e0e1ceb11e41c054e9e36fed45f4b210991052d8a75089f/ruff-0.9.10-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:47678f39fa2a3da62724851107f438c8229a3470f533894b5568a39b40029c0c", size = 10369760, upload-time = "2025-03-07T15:27:04.023Z" }, + { url = "https://files.pythonhosted.org/packages/a1/90/0bc60bd4e5db051f12445046d0c85cc2c617095c0904f1aa81067dc64aea/ruff-0.9.10-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:99713a6e2766b7a17147b309e8c915b32b07a25c9efd12ada79f217c9c778b3e", size = 9912196, upload-time = "2025-03-07T15:27:06.93Z" }, + { url = "https://files.pythonhosted.org/packages/66/ea/0b7e8c42b1ec608033c4d5a02939c82097ddcb0b3e393e4238584b7054ab/ruff-0.9.10-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:524ee184d92f7c7304aa568e2db20f50c32d1d0caa235d8ddf10497566ea1a12", size = 11434985, upload-time = "2025-03-07T15:27:10.082Z" }, + { url = "https://files.pythonhosted.org/packages/d5/86/3171d1eff893db4f91755175a6e1163c5887be1f1e2f4f6c0c59527c2bfd/ruff-0.9.10-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:df92aeac30af821f9acf819fc01b4afc3dfb829d2782884f8739fb52a8119a16", size = 12155842, upload-time = "2025-03-07T15:27:12.727Z" }, + { url = "https://files.pythonhosted.org/packages/89/9e/700ca289f172a38eb0bca752056d0a42637fa17b81649b9331786cb791d7/ruff-0.9.10-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de42e4edc296f520bb84954eb992a07a0ec5a02fecb834498415908469854a52", size = 11613804, upload-time = "2025-03-07T15:27:15.944Z" }, + { url = "https://files.pythonhosted.org/packages/f2/92/648020b3b5db180f41a931a68b1c8575cca3e63cec86fd26807422a0dbad/ruff-0.9.10-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d257f95b65806104b6b1ffca0ea53f4ef98454036df65b1eda3693534813ecd1", size = 13823776, upload-time = "2025-03-07T15:27:18.996Z" }, + { url = "https://files.pythonhosted.org/packages/5e/a6/cc472161cd04d30a09d5c90698696b70c169eeba2c41030344194242db45/ruff-0.9.10-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b60dec7201c0b10d6d11be00e8f2dbb6f40ef1828ee75ed739923799513db24c", size = 11302673, upload-time = "2025-03-07T15:27:21.655Z" }, + { url = "https://files.pythonhosted.org/packages/6c/db/d31c361c4025b1b9102b4d032c70a69adb9ee6fde093f6c3bf29f831c85c/ruff-0.9.10-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:d838b60007da7a39c046fcdd317293d10b845001f38bcb55ba766c3875b01e43", size = 10235358, upload-time = "2025-03-07T15:27:24.72Z" }, + { url = "https://files.pythonhosted.org/packages/d1/86/d6374e24a14d4d93ebe120f45edd82ad7dcf3ef999ffc92b197d81cdc2a5/ruff-0.9.10-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:ccaf903108b899beb8e09a63ffae5869057ab649c1e9231c05ae354ebc62066c", size = 9886177, upload-time = "2025-03-07T15:27:27.282Z" }, + { url = "https://files.pythonhosted.org/packages/00/62/a61691f6eaaac1e945a1f3f59f1eea9a218513139d5b6c2b8f88b43b5b8f/ruff-0.9.10-py3-none-musllinux_1_2_i686.whl", hash = "sha256:f9567d135265d46e59d62dc60c0bfad10e9a6822e231f5b24032dba5a55be6b5", size = 10864747, upload-time = "2025-03-07T15:27:30.637Z" }, + { url = "https://files.pythonhosted.org/packages/ee/94/2c7065e1d92a8a8a46d46d9c3cf07b0aa7e0a1e0153d74baa5e6620b4102/ruff-0.9.10-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:5f202f0d93738c28a89f8ed9eaba01b7be339e5d8d642c994347eaa81c6d75b8", size = 11360441, upload-time = "2025-03-07T15:27:33.356Z" }, + { url = "https://files.pythonhosted.org/packages/a7/8f/1f545ea6f9fcd7bf4368551fb91d2064d8f0577b3079bb3f0ae5779fb773/ruff-0.9.10-py3-none-win32.whl", hash = "sha256:bfb834e87c916521ce46b1788fbb8484966e5113c02df216680102e9eb960029", size = 10247401, upload-time = "2025-03-07T15:27:35.994Z" }, + { url = "https://files.pythonhosted.org/packages/4f/18/fb703603ab108e5c165f52f5b86ee2aa9be43bb781703ec87c66a5f5d604/ruff-0.9.10-py3-none-win_amd64.whl", hash = "sha256:f2160eeef3031bf4b17df74e307d4c5fb689a6f3a26a2de3f7ef4044e3c484f1", size = 11366360, upload-time = "2025-03-07T15:27:38.66Z" }, + { url = "https://files.pythonhosted.org/packages/35/85/338e603dc68e7d9994d5d84f24adbf69bae760ba5efd3e20f5ff2cec18da/ruff-0.9.10-py3-none-win_arm64.whl", hash = "sha256:5fd804c0327a5e5ea26615550e706942f348b197d5475ff34c19733aee4b2e69", size = 10436892, upload-time = "2025-03-07T15:27:41.687Z" }, ] [[package]] From 316b76db7a6667dde775cfa446dd7b3a098f63a4 Mon Sep 17 00:00:00 2001 From: ehhuang Date: Sat, 18 Oct 2025 06:05:56 -0700 Subject: [PATCH 07/41] chore: add telemetry setup to install.sh (#3821) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit # What does this PR do? ## Test Plan .venv ❯ sh ./scripts/install.sh ⚠️ Found existing container(s) for 'ollama-server', removing... ⚠️ Found existing container(s) for 'llama-stack', removing... ⚠️ Found existing container(s) for 'jaeger', removing... ⚠️ Found existing container(s) for 'otel-collector', removing... ⚠️ Found existing container(s) for 'prometheus', removing... ⚠️ Found existing container(s) for 'grafana', removing... 📡 Starting telemetry stack... 🦙 Starting Ollama... ⏳ Waiting for Ollama daemon... 📦 Ensuring model is pulled: llama3.2:3b... 🦙 Starting Llama Stack... ⏳ Waiting for Llama Stack API... .. 🎉 Llama Stack is ready! 👉 API endpoint: http://localhost:8321 📖 Documentation: https://llamastack.github.io/latest/references/api_reference/index.html 💻 To access the llama stack CLI, exec into the container: docker exec -ti llama-stack bash 📡 Telemetry dashboards: Jaeger UI: http://localhost:16686 Prometheus UI: http://localhost:9090 Grafana UI: http://localhost:3000 (admin/admin) OTEL Collector: http://localhost:4318 🐛 Report an issue @ https://github.com/llamastack/llama-stack/issues if you think it's a bug --- README.md | 2 +- scripts/install.sh | 215 +++++++++++++++++++++++++++++++++++++++++++-- 2 files changed, 210 insertions(+), 7 deletions(-) diff --git a/README.md b/README.md index 4122440af..bb8587855 100644 --- a/README.md +++ b/README.md @@ -92,7 +92,7 @@ As more providers start supporting Llama 4, you can use them in Llama Stack as w To try Llama Stack locally, run: ```bash -curl -LsSf https://github.com/meta-llama/llama-stack/raw/main/scripts/install.sh | bash +curl -LsSf https://github.com/llamastack/llama-stack/raw/main/scripts/install.sh | bash ``` ### Overview diff --git a/scripts/install.sh b/scripts/install.sh index 571468dc5..2417097f4 100755 --- a/scripts/install.sh +++ b/scripts/install.sh @@ -5,10 +5,10 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. -[ -z "$BASH_VERSION" ] && { - echo "This script must be run with bash" >&2 - exit 1 -} +[ -z "${BASH_VERSION:-}" ] && exec /usr/bin/env bash "$0" "$@" +if set -o | grep -Eq 'posix[[:space:]]+on'; then + exec /usr/bin/env bash "$0" "$@" +fi set -Eeuo pipefail @@ -18,12 +18,110 @@ MODEL_ALIAS="llama3.2:3b" SERVER_IMAGE="docker.io/llamastack/distribution-starter:latest" WAIT_TIMEOUT=30 TEMP_LOG="" +WITH_TELEMETRY=true +TELEMETRY_SERVICE_NAME="llama-stack" +TELEMETRY_SINKS="otel_trace,otel_metric" +OTEL_EXPORTER_OTLP_ENDPOINT="http://otel-collector:4318" +TEMP_TELEMETRY_DIR="" + +materialize_telemetry_configs() { + local dest="$1" + mkdir -p "$dest" + local otel_cfg="${dest}/otel-collector-config.yaml" + local prom_cfg="${dest}/prometheus.yml" + local graf_cfg="${dest}/grafana-datasources.yaml" + + for asset in "$otel_cfg" "$prom_cfg" "$graf_cfg"; do + if [ -e "$asset" ]; then + die "Telemetry asset ${asset} already exists; refusing to overwrite" + fi + done + + cat <<'EOF' > "$otel_cfg" +receivers: + otlp: + protocols: + grpc: + endpoint: 0.0.0.0:4317 + http: + endpoint: 0.0.0.0:4318 + +processors: + batch: + timeout: 1s + send_batch_size: 1024 + +exporters: + # Export traces to Jaeger + otlp/jaeger: + endpoint: jaeger:4317 + tls: + insecure: true + + # Export metrics to Prometheus + prometheus: + endpoint: 0.0.0.0:9464 + namespace: llama_stack + + # Debug exporter for troubleshooting + debug: + verbosity: detailed + +service: + pipelines: + traces: + receivers: [otlp] + processors: [batch] + exporters: [otlp/jaeger, debug] + + metrics: + receivers: [otlp] + processors: [batch] + exporters: [prometheus, debug] +EOF + + cat <<'EOF' > "$prom_cfg" +global: + scrape_interval: 15s + evaluation_interval: 15s + +scrape_configs: + - job_name: 'prometheus' + static_configs: + - targets: ['localhost:9090'] + + - job_name: 'otel-collector' + static_configs: + - targets: ['otel-collector:9464'] +EOF + + cat <<'EOF' > "$graf_cfg" +apiVersion: 1 + +datasources: + - name: Prometheus + type: prometheus + access: proxy + url: http://prometheus:9090 + isDefault: true + editable: true + + - name: Jaeger + type: jaeger + access: proxy + url: http://jaeger:16686 + editable: true +EOF +} # Cleanup function to remove temporary files cleanup() { if [ -n "$TEMP_LOG" ] && [ -f "$TEMP_LOG" ]; then rm -f "$TEMP_LOG" fi + if [ -n "$TEMP_TELEMETRY_DIR" ] && [ -d "$TEMP_TELEMETRY_DIR" ]; then + rm -rf "$TEMP_TELEMETRY_DIR" + fi } # Set up trap to clean up on exit, error, or interrupt @@ -32,7 +130,7 @@ trap cleanup EXIT ERR INT TERM log(){ printf "\e[1;32m%s\e[0m\n" "$*"; } die(){ printf "\e[1;31m❌ %s\e[0m\n" "$*" >&2 - printf "\e[1;31m🐛 Report an issue @ https://github.com/meta-llama/llama-stack/issues if you think it's a bug\e[0m\n" >&2 + printf "\e[1;31m🐛 Report an issue @ https://github.com/llamastack/llama-stack/issues if you think it's a bug\e[0m\n" >&2 exit 1 } @@ -89,6 +187,12 @@ Options: -m, --model MODEL Model alias to use (default: ${MODEL_ALIAS}) -i, --image IMAGE Server image (default: ${SERVER_IMAGE}) -t, --timeout SECONDS Service wait timeout in seconds (default: ${WAIT_TIMEOUT}) + --with-telemetry Provision Jaeger, OTEL Collector, Prometheus, and Grafana (default: enabled) + --no-telemetry, --without-telemetry + Skip provisioning the telemetry stack + --telemetry-service NAME Service name reported to telemetry (default: ${TELEMETRY_SERVICE_NAME}) + --telemetry-sinks SINKS Comma-separated telemetry sinks (default: ${TELEMETRY_SINKS}) + --otel-endpoint URL OTLP endpoint provided to Llama Stack (default: ${OTEL_EXPORTER_OTLP_ENDPOINT}) -h, --help Show this help message For more information: @@ -127,6 +231,26 @@ while [[ $# -gt 0 ]]; do WAIT_TIMEOUT="$2" shift 2 ;; + --with-telemetry) + WITH_TELEMETRY=true + shift + ;; + --no-telemetry|--without-telemetry) + WITH_TELEMETRY=false + shift + ;; + --telemetry-service) + TELEMETRY_SERVICE_NAME="$2" + shift 2 + ;; + --telemetry-sinks) + TELEMETRY_SINKS="$2" + shift 2 + ;; + --otel-endpoint) + OTEL_EXPORTER_OTLP_ENDPOINT="$2" + shift 2 + ;; *) die "Unknown option: $1" ;; @@ -171,7 +295,11 @@ if [ "$ENGINE" = "podman" ] && [ "$(uname -s)" = "Darwin" ]; then fi # Clean up any leftovers from earlier runs -for name in ollama-server llama-stack; do +containers=(ollama-server llama-stack) +if [ "$WITH_TELEMETRY" = true ]; then + containers+=(jaeger otel-collector prometheus grafana) +fi +for name in "${containers[@]}"; do ids=$($ENGINE ps -aq --filter "name=^${name}$") if [ -n "$ids" ]; then log "⚠️ Found existing container(s) for '${name}', removing..." @@ -191,6 +319,64 @@ if ! $ENGINE network inspect llama-net >/dev/null 2>&1; then fi fi +############################################################################### +# Telemetry Stack +############################################################################### +if [ "$WITH_TELEMETRY" = true ]; then + TEMP_TELEMETRY_DIR="$(mktemp -d)" + TELEMETRY_ASSETS_DIR="$TEMP_TELEMETRY_DIR" + log "🧰 Materializing telemetry configs..." + materialize_telemetry_configs "$TELEMETRY_ASSETS_DIR" + + log "📡 Starting telemetry stack..." + + if ! execute_with_log $ENGINE run -d "${PLATFORM_OPTS[@]}" --name jaeger \ + --network llama-net \ + -e COLLECTOR_ZIPKIN_HOST_PORT=:9411 \ + -p 16686:16686 \ + -p 14250:14250 \ + -p 9411:9411 \ + docker.io/jaegertracing/all-in-one:latest > /dev/null 2>&1; then + die "Jaeger startup failed" + fi + + if ! execute_with_log $ENGINE run -d "${PLATFORM_OPTS[@]}" --name otel-collector \ + --network llama-net \ + -p 4318:4318 \ + -p 4317:4317 \ + -p 9464:9464 \ + -p 13133:13133 \ + -v "${TELEMETRY_ASSETS_DIR}/otel-collector-config.yaml:/etc/otel-collector-config.yaml:Z" \ + docker.io/otel/opentelemetry-collector-contrib:latest \ + --config /etc/otel-collector-config.yaml > /dev/null 2>&1; then + die "OpenTelemetry Collector startup failed" + fi + + if ! execute_with_log $ENGINE run -d "${PLATFORM_OPTS[@]}" --name prometheus \ + --network llama-net \ + -p 9090:9090 \ + -v "${TELEMETRY_ASSETS_DIR}/prometheus.yml:/etc/prometheus/prometheus.yml:Z" \ + docker.io/prom/prometheus:latest \ + --config.file=/etc/prometheus/prometheus.yml \ + --storage.tsdb.path=/prometheus \ + --web.console.libraries=/etc/prometheus/console_libraries \ + --web.console.templates=/etc/prometheus/consoles \ + --storage.tsdb.retention.time=200h \ + --web.enable-lifecycle > /dev/null 2>&1; then + die "Prometheus startup failed" + fi + + if ! execute_with_log $ENGINE run -d "${PLATFORM_OPTS[@]}" --name grafana \ + --network llama-net \ + -p 3000:3000 \ + -e GF_SECURITY_ADMIN_PASSWORD=admin \ + -e GF_USERS_ALLOW_SIGN_UP=false \ + -v "${TELEMETRY_ASSETS_DIR}/grafana-datasources.yaml:/etc/grafana/provisioning/datasources/datasources.yaml:Z" \ + docker.io/grafana/grafana:11.0.0 > /dev/null 2>&1; then + die "Grafana startup failed" + fi +fi + ############################################################################### # 1. Ollama ############################################################################### @@ -218,9 +404,19 @@ fi ############################################################################### # 2. Llama‑Stack ############################################################################### +server_env_opts=() +if [ "$WITH_TELEMETRY" = true ]; then + server_env_opts+=( + -e TELEMETRY_SINKS="${TELEMETRY_SINKS}" + -e OTEL_EXPORTER_OTLP_ENDPOINT="${OTEL_EXPORTER_OTLP_ENDPOINT}" + -e OTEL_SERVICE_NAME="${TELEMETRY_SERVICE_NAME}" + ) +fi + cmd=( run -d "${PLATFORM_OPTS[@]}" --name llama-stack \ --network llama-net \ -p "${PORT}:${PORT}" \ + "${server_env_opts[@]}" \ -e OLLAMA_URL="http://ollama-server:${OLLAMA_PORT}" \ "${SERVER_IMAGE}" --port "${PORT}") @@ -244,5 +440,12 @@ log "👉 API endpoint: http://localhost:${PORT}" log "📖 Documentation: https://llamastack.github.io/latest/references/api_reference/index.html" log "💻 To access the llama stack CLI, exec into the container:" log " $ENGINE exec -ti llama-stack bash" +if [ "$WITH_TELEMETRY" = true ]; then + log "📡 Telemetry dashboards:" + log " Jaeger UI: http://localhost:16686" + log " Prometheus UI: http://localhost:9090" + log " Grafana UI: http://localhost:3000 (admin/admin)" + log " OTEL Collector: http://localhost:4318" +fi log "🐛 Report an issue @ https://github.com/llamastack/llama-stack/issues if you think it's a bug" log "" From 83d219307762be0e6da49a64ba6c11c050b83890 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Sat, 18 Oct 2025 21:52:17 -0400 Subject: [PATCH 08/41] chore(ui-deps): bump eslint-config-next from 15.5.2 to 15.5.6 in /llama_stack/ui (#3849) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Bumps [eslint-config-next](https://github.com/vercel/next.js/tree/HEAD/packages/eslint-config-next) from 15.5.2 to 15.5.6.
Release notes

Sourced from eslint-config-next's releases.

v15.5.6

[!NOTE]
This release is backporting bug fixes. It does not include all pending features/changes on canary.

Core Changes

  • Turbopack: don't define process.cwd() in node_modules #83452

Credits

Huge thanks to @​mischnic for helping!

v15.5.5

[!NOTE]
This release is backporting bug fixes. It does not include all pending features/changes on canary.

Core Changes

  • Split code-frame into separate compiled package (#84238)
  • Add deprecation warning to Runtime config (#84650)
  • fix: unstable_cache should perform blocking revalidation during ISR revalidation (#84716)
  • feat: experimental.middlewareClientMaxBodySize body cloning limit (#84722)
  • fix: missing next/link types with typedRoutes (#84779)

Misc Changes

  • docs: early October improvements and fixes (#84334)

Credits

Huge thanks to @​devjiwonchoi, @​ztanner, and @​icyJoseph for helping!

v15.5.4

[!NOTE]
This release is backporting bug fixes. It does not include all pending features/changes on canary.

Core Changes

  • fix: ensure onRequestError is invoked when otel enabled (#83343)
  • fix: devtools initial position should be from next config (#83571)
  • [devtool] fix overlay styles are missing (#83721)
  • Turbopack: don't match dynamic pattern for node_modules packages (#83176)
  • Turbopack: don't treat metadata routes as RSC (#82911)
  • [turbopack] Improve handling of symlink resolution errors in track_glob and read_glob (#83357)
  • Turbopack: throw large static metadata error earlier (#82939)
  • fix: error overlay not closing when backdrop clicked (#83981)
  • Turbopack: flush Node.js worker IPC on error (#84077)

Misc Changes

  • [CNA] use linter preference (#83194)
  • CI: use KV for test timing data (#83745)

... (truncated)

Commits

[![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=eslint-config-next&package-manager=npm_and_yarn&previous-version=15.5.2&new-version=15.5.6)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) ---
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- llama_stack/ui/package-lock.json | 16 ++++++++-------- llama_stack/ui/package.json | 2 +- 2 files changed, 9 insertions(+), 9 deletions(-) diff --git a/llama_stack/ui/package-lock.json b/llama_stack/ui/package-lock.json index 85a0f6233..b04b1efd8 100644 --- a/llama_stack/ui/package-lock.json +++ b/llama_stack/ui/package-lock.json @@ -43,7 +43,7 @@ "@types/react": "^19", "@types/react-dom": "^19", "eslint": "^9", - "eslint-config-next": "15.5.2", + "eslint-config-next": "15.5.6", "eslint-config-prettier": "^10.1.8", "eslint-plugin-prettier": "^5.5.4", "jest": "^29.7.0", @@ -2269,9 +2269,9 @@ "license": "MIT" }, "node_modules/@next/eslint-plugin-next": { - "version": "15.5.2", - "resolved": "https://registry.npmjs.org/@next/eslint-plugin-next/-/eslint-plugin-next-15.5.2.tgz", - "integrity": "sha512-lkLrRVxcftuOsJNhWatf1P2hNVfh98k/omQHrCEPPriUypR6RcS13IvLdIrEvkm9AH2Nu2YpR5vLqBuy6twH3Q==", + "version": "15.5.6", + "resolved": "https://registry.npmjs.org/@next/eslint-plugin-next/-/eslint-plugin-next-15.5.6.tgz", + "integrity": "sha512-YxDvsT2fwy1j5gMqk3ppXlsgDopHnkM4BoxSVASbvvgh5zgsK8lvWerDzPip8k3WVzsTZ1O7A7si1KNfN4OZfQ==", "dev": true, "license": "MIT", "dependencies": { @@ -6256,13 +6256,13 @@ } }, "node_modules/eslint-config-next": { - "version": "15.5.2", - "resolved": "https://registry.npmjs.org/eslint-config-next/-/eslint-config-next-15.5.2.tgz", - "integrity": "sha512-3hPZghsLupMxxZ2ggjIIrat/bPniM2yRpsVPVM40rp8ZMzKWOJp2CGWn7+EzoV2ddkUr5fxNfHpF+wU1hGt/3g==", + "version": "15.5.6", + "resolved": "https://registry.npmjs.org/eslint-config-next/-/eslint-config-next-15.5.6.tgz", + "integrity": "sha512-cGr3VQlPsZBEv8rtYp4BpG1KNXDqGvPo9VC1iaCgIA11OfziC/vczng+TnAS3WpRIR3Q5ye/6yl+CRUuZ1fPGg==", "dev": true, "license": "MIT", "dependencies": { - "@next/eslint-plugin-next": "15.5.2", + "@next/eslint-plugin-next": "15.5.6", "@rushstack/eslint-patch": "^1.10.3", "@typescript-eslint/eslint-plugin": "^5.4.2 || ^6.0.0 || ^7.0.0 || ^8.0.0", "@typescript-eslint/parser": "^5.4.2 || ^6.0.0 || ^7.0.0 || ^8.0.0", diff --git a/llama_stack/ui/package.json b/llama_stack/ui/package.json index 6f787f989..02f4d3bcf 100644 --- a/llama_stack/ui/package.json +++ b/llama_stack/ui/package.json @@ -48,7 +48,7 @@ "@types/react": "^19", "@types/react-dom": "^19", "eslint": "^9", - "eslint-config-next": "15.5.2", + "eslint-config-next": "15.5.6", "eslint-config-prettier": "^10.1.8", "eslint-plugin-prettier": "^5.5.4", "jest": "^29.7.0", From 7a256895aaf557874c60f321495b4447bdaeebd9 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Sat, 18 Oct 2025 21:53:58 -0400 Subject: [PATCH 09/41] chore(ui-deps): bump jest-environment-jsdom from 30.1.2 to 30.2.0 in /llama_stack/ui (#3852) Bumps [jest-environment-jsdom](https://github.com/jestjs/jest/tree/HEAD/packages/jest-environment-jsdom) from 30.1.2 to 30.2.0.
Release notes

Sourced from jest-environment-jsdom's releases.

30.2.0

Chore & Maintenance

  • [*] Update example repo for testing React Native projects (#15832)
  • [*] Update jest-watch-typeahead to v3 (#15830)

Features

  • [jest-environment-jsdom-abstract] Add support for JSDOM v27 (#15834)

Fixes

  • [babel-jest] Export the TransformerConfig interface (#15820)
  • [jest-config] Fix jest.config.ts with TS loader specified in docblock pragma (#15839)

30.1.3

Fixes

  • Fix unstable_mockModule with node: prefixed core modules.
Changelog

Sourced from jest-environment-jsdom's changelog.

30.2.0

Chore & Maintenance

  • [*] Update example repo for testing React Native projects (#15832)
  • [*] Update jest-watch-typeahead to v3 (#15830)

Features

  • [jest-environment-jsdom-abstract] Add support for JSDOM v27 (#15834)

Fixes

  • [jest-matcher-utils] Fix infinite recursion with self-referential getters in deepCyclicCopyReplaceable (#15831)
  • [babel-jest] Export the TransformerConfig interface (#15820)
  • [jest-config] Fix jest.config.ts with TS loader specified in docblock pragma (#15839)

30.1.3

Fixes

  • Fix unstable_mockModule with node: prefixed core modules.
Commits

[![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=jest-environment-jsdom&package-manager=npm_and_yarn&previous-version=30.1.2&new-version=30.2.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) ---
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- llama_stack/ui/package-lock.json | 172 +++++++++++++++---------------- llama_stack/ui/package.json | 2 +- 2 files changed, 87 insertions(+), 87 deletions(-) diff --git a/llama_stack/ui/package-lock.json b/llama_stack/ui/package-lock.json index b04b1efd8..4f76387d9 100644 --- a/llama_stack/ui/package-lock.json +++ b/llama_stack/ui/package-lock.json @@ -47,7 +47,7 @@ "eslint-config-prettier": "^10.1.8", "eslint-plugin-prettier": "^5.5.4", "jest": "^29.7.0", - "jest-environment-jsdom": "^30.1.2", + "jest-environment-jsdom": "^30.2.0", "prettier": "3.6.2", "tailwindcss": "^4", "ts-node": "^10.9.2", @@ -1734,19 +1734,19 @@ } }, "node_modules/@jest/environment-jsdom-abstract": { - "version": "30.1.2", - "resolved": "https://registry.npmjs.org/@jest/environment-jsdom-abstract/-/environment-jsdom-abstract-30.1.2.tgz", - "integrity": "sha512-u8kTh/ZBl97GOmnGJLYK/1GuwAruMC4hoP6xuk/kwltmVWsA9u/6fH1/CsPVGt2O+Wn2yEjs8n1B1zZJ62Cx0w==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/@jest/environment-jsdom-abstract/-/environment-jsdom-abstract-30.2.0.tgz", + "integrity": "sha512-kazxw2L9IPuZpQ0mEt9lu9Z98SqR74xcagANmMBU16X0lS23yPc0+S6hGLUz8kVRlomZEs/5S/Zlpqwf5yu6OQ==", "dev": true, "license": "MIT", "dependencies": { - "@jest/environment": "30.1.2", - "@jest/fake-timers": "30.1.2", - "@jest/types": "30.0.5", + "@jest/environment": "30.2.0", + "@jest/fake-timers": "30.2.0", + "@jest/types": "30.2.0", "@types/jsdom": "^21.1.7", "@types/node": "*", - "jest-mock": "30.0.5", - "jest-util": "30.0.5" + "jest-mock": "30.2.0", + "jest-util": "30.2.0" }, "engines": { "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" @@ -1762,34 +1762,34 @@ } }, "node_modules/@jest/environment-jsdom-abstract/node_modules/@jest/environment": { - "version": "30.1.2", - "resolved": "https://registry.npmjs.org/@jest/environment/-/environment-30.1.2.tgz", - "integrity": "sha512-N8t1Ytw4/mr9uN28OnVf0SYE2dGhaIxOVYcwsf9IInBKjvofAjbFRvedvBBlyTYk2knbJTiEjEJ2PyyDIBnd9w==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/@jest/environment/-/environment-30.2.0.tgz", + "integrity": "sha512-/QPTL7OBJQ5ac09UDRa3EQes4gt1FTEG/8jZ/4v5IVzx+Cv7dLxlVIvfvSVRiiX2drWyXeBjkMSR8hvOWSog5g==", "dev": true, "license": "MIT", "dependencies": { - "@jest/fake-timers": "30.1.2", - "@jest/types": "30.0.5", + "@jest/fake-timers": "30.2.0", + "@jest/types": "30.2.0", "@types/node": "*", - "jest-mock": "30.0.5" + "jest-mock": "30.2.0" }, "engines": { "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/@jest/environment-jsdom-abstract/node_modules/@jest/fake-timers": { - "version": "30.1.2", - "resolved": "https://registry.npmjs.org/@jest/fake-timers/-/fake-timers-30.1.2.tgz", - "integrity": "sha512-Beljfv9AYkr9K+ETX9tvV61rJTY706BhBUtiaepQHeEGfe0DbpvUA5Z3fomwc5Xkhns6NWrcFDZn+72fLieUnA==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/@jest/fake-timers/-/fake-timers-30.2.0.tgz", + "integrity": "sha512-HI3tRLjRxAbBy0VO8dqqm7Hb2mIa8d5bg/NJkyQcOk7V118ObQML8RC5luTF/Zsg4474a+gDvhce7eTnP4GhYw==", "dev": true, "license": "MIT", "dependencies": { - "@jest/types": "30.0.5", + "@jest/types": "30.2.0", "@sinonjs/fake-timers": "^13.0.0", "@types/node": "*", - "jest-message-util": "30.1.0", - "jest-mock": "30.0.5", - "jest-util": "30.0.5" + "jest-message-util": "30.2.0", + "jest-mock": "30.2.0", + "jest-util": "30.2.0" }, "engines": { "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" @@ -1809,9 +1809,9 @@ } }, "node_modules/@jest/environment-jsdom-abstract/node_modules/@jest/types": { - "version": "30.0.5", - "resolved": "https://registry.npmjs.org/@jest/types/-/types-30.0.5.tgz", - "integrity": "sha512-aREYa3aku9SSnea4aX6bhKn4bgv3AXkgijoQgbYV3yvbiGt6z+MQ85+6mIhx9DsKW2BuB/cLR/A+tcMThx+KLQ==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/@jest/types/-/types-30.2.0.tgz", + "integrity": "sha512-H9xg1/sfVvyfU7o3zMfBEjQ1gcsdeTMgqHoYdN79tuLqfTtuu7WckRA1R5whDwOzxaZAeMKTYWqP+WCAi0CHsg==", "dev": true, "license": "MIT", "dependencies": { @@ -1858,9 +1858,9 @@ } }, "node_modules/@jest/environment-jsdom-abstract/node_modules/ci-info": { - "version": "4.3.0", - "resolved": "https://registry.npmjs.org/ci-info/-/ci-info-4.3.0.tgz", - "integrity": "sha512-l+2bNRMiQgcfILUi33labAZYIWlH1kWDp+ecNo5iisRKrbm0xcRyCww71/YU0Fkw0mAFpz9bJayXPjey6vkmaQ==", + "version": "4.3.1", + "resolved": "https://registry.npmjs.org/ci-info/-/ci-info-4.3.1.tgz", + "integrity": "sha512-Wdy2Igu8OcBpI2pZePZ5oWjPC38tmDVx5WKUXKwlLYkA0ozo85sLsLvkBbBn/sZaSCMFOGZJ14fvW9t5/d7kdA==", "dev": true, "funding": [ { @@ -1874,19 +1874,19 @@ } }, "node_modules/@jest/environment-jsdom-abstract/node_modules/jest-message-util": { - "version": "30.1.0", - "resolved": "https://registry.npmjs.org/jest-message-util/-/jest-message-util-30.1.0.tgz", - "integrity": "sha512-HizKDGG98cYkWmaLUHChq4iN+oCENohQLb7Z5guBPumYs+/etonmNFlg1Ps6yN9LTPyZn+M+b/9BbnHx3WTMDg==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-message-util/-/jest-message-util-30.2.0.tgz", + "integrity": "sha512-y4DKFLZ2y6DxTWD4cDe07RglV88ZiNEdlRfGtqahfbIjfsw1nMCPx49Uev4IA/hWn3sDKyAnSPwoYSsAEdcimw==", "dev": true, "license": "MIT", "dependencies": { "@babel/code-frame": "^7.27.1", - "@jest/types": "30.0.5", + "@jest/types": "30.2.0", "@types/stack-utils": "^2.0.3", "chalk": "^4.1.2", "graceful-fs": "^4.2.11", "micromatch": "^4.0.8", - "pretty-format": "30.0.5", + "pretty-format": "30.2.0", "slash": "^3.0.0", "stack-utils": "^2.0.6" }, @@ -1895,28 +1895,28 @@ } }, "node_modules/@jest/environment-jsdom-abstract/node_modules/jest-mock": { - "version": "30.0.5", - "resolved": "https://registry.npmjs.org/jest-mock/-/jest-mock-30.0.5.tgz", - "integrity": "sha512-Od7TyasAAQX/6S+QCbN6vZoWOMwlTtzzGuxJku1GhGanAjz9y+QsQkpScDmETvdc9aSXyJ/Op4rhpMYBWW91wQ==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-mock/-/jest-mock-30.2.0.tgz", + "integrity": "sha512-JNNNl2rj4b5ICpmAcq+WbLH83XswjPbjH4T7yvGzfAGCPh1rw+xVNbtk+FnRslvt9lkCcdn9i1oAoKUuFsOxRw==", "dev": true, "license": "MIT", "dependencies": { - "@jest/types": "30.0.5", + "@jest/types": "30.2.0", "@types/node": "*", - "jest-util": "30.0.5" + "jest-util": "30.2.0" }, "engines": { "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/@jest/environment-jsdom-abstract/node_modules/jest-util": { - "version": "30.0.5", - "resolved": "https://registry.npmjs.org/jest-util/-/jest-util-30.0.5.tgz", - "integrity": "sha512-pvyPWssDZR0FlfMxCBoc0tvM8iUEskaRFALUtGQYzVEAqisAztmy+R8LnU14KT4XA0H/a5HMVTXat1jLne010g==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-util/-/jest-util-30.2.0.tgz", + "integrity": "sha512-QKNsM0o3Xe6ISQU869e+DhG+4CK/48aHYdJZGlFQVTjnbvgpcKyxpzk29fGiO7i/J8VENZ+d2iGnSsvmuHywlA==", "dev": true, "license": "MIT", "dependencies": { - "@jest/types": "30.0.5", + "@jest/types": "30.2.0", "@types/node": "*", "chalk": "^4.1.2", "ci-info": "^4.2.0", @@ -1941,9 +1941,9 @@ } }, "node_modules/@jest/environment-jsdom-abstract/node_modules/pretty-format": { - "version": "30.0.5", - "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-30.0.5.tgz", - "integrity": "sha512-D1tKtYvByrBkFLe2wHJl2bwMJIiT8rW+XA+TiataH79/FszLQMrpGEvzUVkzPau7OCO0Qnrhpe87PqtOAIB8Yw==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-30.2.0.tgz", + "integrity": "sha512-9uBdv/B4EefsuAL+pWqueZyZS2Ba+LxfFeQ9DN14HU4bN8bhaxKdkpjpB6fs9+pSjIBu+FXQHImEg8j/Lw0+vA==", "dev": true, "license": "MIT", "dependencies": { @@ -8566,14 +8566,14 @@ "license": "MIT" }, "node_modules/jest-environment-jsdom": { - "version": "30.1.2", - "resolved": "https://registry.npmjs.org/jest-environment-jsdom/-/jest-environment-jsdom-30.1.2.tgz", - "integrity": "sha512-LXsfAh5+mDTuXDONGl1ZLYxtJEaS06GOoxJb2arcJTjIfh1adYg8zLD8f6P0df8VmjvCaMrLmc1PgHUI/YUTbg==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-environment-jsdom/-/jest-environment-jsdom-30.2.0.tgz", + "integrity": "sha512-zbBTiqr2Vl78pKp/laGBREYzbZx9ZtqPjOK4++lL4BNDhxRnahg51HtoDrk9/VjIy9IthNEWdKVd7H5bqBhiWQ==", "dev": true, "license": "MIT", "dependencies": { - "@jest/environment": "30.1.2", - "@jest/environment-jsdom-abstract": "30.1.2", + "@jest/environment": "30.2.0", + "@jest/environment-jsdom-abstract": "30.2.0", "@types/jsdom": "^21.1.7", "@types/node": "*", "jsdom": "^26.1.0" @@ -8591,34 +8591,34 @@ } }, "node_modules/jest-environment-jsdom/node_modules/@jest/environment": { - "version": "30.1.2", - "resolved": "https://registry.npmjs.org/@jest/environment/-/environment-30.1.2.tgz", - "integrity": "sha512-N8t1Ytw4/mr9uN28OnVf0SYE2dGhaIxOVYcwsf9IInBKjvofAjbFRvedvBBlyTYk2knbJTiEjEJ2PyyDIBnd9w==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/@jest/environment/-/environment-30.2.0.tgz", + "integrity": "sha512-/QPTL7OBJQ5ac09UDRa3EQes4gt1FTEG/8jZ/4v5IVzx+Cv7dLxlVIvfvSVRiiX2drWyXeBjkMSR8hvOWSog5g==", "dev": true, "license": "MIT", "dependencies": { - "@jest/fake-timers": "30.1.2", - "@jest/types": "30.0.5", + "@jest/fake-timers": "30.2.0", + "@jest/types": "30.2.0", "@types/node": "*", - "jest-mock": "30.0.5" + "jest-mock": "30.2.0" }, "engines": { "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-environment-jsdom/node_modules/@jest/fake-timers": { - "version": "30.1.2", - "resolved": "https://registry.npmjs.org/@jest/fake-timers/-/fake-timers-30.1.2.tgz", - "integrity": "sha512-Beljfv9AYkr9K+ETX9tvV61rJTY706BhBUtiaepQHeEGfe0DbpvUA5Z3fomwc5Xkhns6NWrcFDZn+72fLieUnA==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/@jest/fake-timers/-/fake-timers-30.2.0.tgz", + "integrity": "sha512-HI3tRLjRxAbBy0VO8dqqm7Hb2mIa8d5bg/NJkyQcOk7V118ObQML8RC5luTF/Zsg4474a+gDvhce7eTnP4GhYw==", "dev": true, "license": "MIT", "dependencies": { - "@jest/types": "30.0.5", + "@jest/types": "30.2.0", "@sinonjs/fake-timers": "^13.0.0", "@types/node": "*", - "jest-message-util": "30.1.0", - "jest-mock": "30.0.5", - "jest-util": "30.0.5" + "jest-message-util": "30.2.0", + "jest-mock": "30.2.0", + "jest-util": "30.2.0" }, "engines": { "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" @@ -8638,9 +8638,9 @@ } }, "node_modules/jest-environment-jsdom/node_modules/@jest/types": { - "version": "30.0.5", - "resolved": "https://registry.npmjs.org/@jest/types/-/types-30.0.5.tgz", - "integrity": "sha512-aREYa3aku9SSnea4aX6bhKn4bgv3AXkgijoQgbYV3yvbiGt6z+MQ85+6mIhx9DsKW2BuB/cLR/A+tcMThx+KLQ==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/@jest/types/-/types-30.2.0.tgz", + "integrity": "sha512-H9xg1/sfVvyfU7o3zMfBEjQ1gcsdeTMgqHoYdN79tuLqfTtuu7WckRA1R5whDwOzxaZAeMKTYWqP+WCAi0CHsg==", "dev": true, "license": "MIT", "dependencies": { @@ -8687,9 +8687,9 @@ } }, "node_modules/jest-environment-jsdom/node_modules/ci-info": { - "version": "4.3.0", - "resolved": "https://registry.npmjs.org/ci-info/-/ci-info-4.3.0.tgz", - "integrity": "sha512-l+2bNRMiQgcfILUi33labAZYIWlH1kWDp+ecNo5iisRKrbm0xcRyCww71/YU0Fkw0mAFpz9bJayXPjey6vkmaQ==", + "version": "4.3.1", + "resolved": "https://registry.npmjs.org/ci-info/-/ci-info-4.3.1.tgz", + "integrity": "sha512-Wdy2Igu8OcBpI2pZePZ5oWjPC38tmDVx5WKUXKwlLYkA0ozo85sLsLvkBbBn/sZaSCMFOGZJ14fvW9t5/d7kdA==", "dev": true, "funding": [ { @@ -8703,19 +8703,19 @@ } }, "node_modules/jest-environment-jsdom/node_modules/jest-message-util": { - "version": "30.1.0", - "resolved": "https://registry.npmjs.org/jest-message-util/-/jest-message-util-30.1.0.tgz", - "integrity": "sha512-HizKDGG98cYkWmaLUHChq4iN+oCENohQLb7Z5guBPumYs+/etonmNFlg1Ps6yN9LTPyZn+M+b/9BbnHx3WTMDg==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-message-util/-/jest-message-util-30.2.0.tgz", + "integrity": "sha512-y4DKFLZ2y6DxTWD4cDe07RglV88ZiNEdlRfGtqahfbIjfsw1nMCPx49Uev4IA/hWn3sDKyAnSPwoYSsAEdcimw==", "dev": true, "license": "MIT", "dependencies": { "@babel/code-frame": "^7.27.1", - "@jest/types": "30.0.5", + "@jest/types": "30.2.0", "@types/stack-utils": "^2.0.3", "chalk": "^4.1.2", "graceful-fs": "^4.2.11", "micromatch": "^4.0.8", - "pretty-format": "30.0.5", + "pretty-format": "30.2.0", "slash": "^3.0.0", "stack-utils": "^2.0.6" }, @@ -8724,28 +8724,28 @@ } }, "node_modules/jest-environment-jsdom/node_modules/jest-mock": { - "version": "30.0.5", - "resolved": "https://registry.npmjs.org/jest-mock/-/jest-mock-30.0.5.tgz", - "integrity": "sha512-Od7TyasAAQX/6S+QCbN6vZoWOMwlTtzzGuxJku1GhGanAjz9y+QsQkpScDmETvdc9aSXyJ/Op4rhpMYBWW91wQ==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-mock/-/jest-mock-30.2.0.tgz", + "integrity": "sha512-JNNNl2rj4b5ICpmAcq+WbLH83XswjPbjH4T7yvGzfAGCPh1rw+xVNbtk+FnRslvt9lkCcdn9i1oAoKUuFsOxRw==", "dev": true, "license": "MIT", "dependencies": { - "@jest/types": "30.0.5", + "@jest/types": "30.2.0", "@types/node": "*", - "jest-util": "30.0.5" + "jest-util": "30.2.0" }, "engines": { "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-environment-jsdom/node_modules/jest-util": { - "version": "30.0.5", - "resolved": "https://registry.npmjs.org/jest-util/-/jest-util-30.0.5.tgz", - "integrity": "sha512-pvyPWssDZR0FlfMxCBoc0tvM8iUEskaRFALUtGQYzVEAqisAztmy+R8LnU14KT4XA0H/a5HMVTXat1jLne010g==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-util/-/jest-util-30.2.0.tgz", + "integrity": "sha512-QKNsM0o3Xe6ISQU869e+DhG+4CK/48aHYdJZGlFQVTjnbvgpcKyxpzk29fGiO7i/J8VENZ+d2iGnSsvmuHywlA==", "dev": true, "license": "MIT", "dependencies": { - "@jest/types": "30.0.5", + "@jest/types": "30.2.0", "@types/node": "*", "chalk": "^4.1.2", "ci-info": "^4.2.0", @@ -8770,9 +8770,9 @@ } }, "node_modules/jest-environment-jsdom/node_modules/pretty-format": { - "version": "30.0.5", - "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-30.0.5.tgz", - "integrity": "sha512-D1tKtYvByrBkFLe2wHJl2bwMJIiT8rW+XA+TiataH79/FszLQMrpGEvzUVkzPau7OCO0Qnrhpe87PqtOAIB8Yw==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-30.2.0.tgz", + "integrity": "sha512-9uBdv/B4EefsuAL+pWqueZyZS2Ba+LxfFeQ9DN14HU4bN8bhaxKdkpjpB6fs9+pSjIBu+FXQHImEg8j/Lw0+vA==", "dev": true, "license": "MIT", "dependencies": { diff --git a/llama_stack/ui/package.json b/llama_stack/ui/package.json index 02f4d3bcf..c55a36aef 100644 --- a/llama_stack/ui/package.json +++ b/llama_stack/ui/package.json @@ -52,7 +52,7 @@ "eslint-config-prettier": "^10.1.8", "eslint-plugin-prettier": "^5.5.4", "jest": "^29.7.0", - "jest-environment-jsdom": "^30.1.2", + "jest-environment-jsdom": "^30.2.0", "prettier": "3.6.2", "tailwindcss": "^4", "ts-node": "^10.9.2", From f675fdda0f64ae286ddcd0d643e4cd9ac0cbe5c3 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Sat, 18 Oct 2025 21:57:57 -0400 Subject: [PATCH 10/41] chore(ui-deps): bump jest and @types/jest in /llama_stack/ui (#3853) Bumps [jest](https://github.com/jestjs/jest/tree/HEAD/packages/jest) and [@types/jest](https://github.com/DefinitelyTyped/DefinitelyTyped/tree/HEAD/types/jest). These dependencies needed to be updated together. Updates `jest` from 29.7.0 to 30.2.0
Release notes

Sourced from jest's releases.

30.2.0

Chore & Maintenance

  • [*] Update example repo for testing React Native projects (#15832)
  • [*] Update jest-watch-typeahead to v3 (#15830)

Features

  • [jest-environment-jsdom-abstract] Add support for JSDOM v27 (#15834)

Fixes

  • [babel-jest] Export the TransformerConfig interface (#15820)
  • [jest-config] Fix jest.config.ts with TS loader specified in docblock pragma (#15839)

30.1.3

Fixes

  • Fix unstable_mockModule with node: prefixed core modules.

30.1.2

Fixes

  • [jest-snapshot-utils] Correct snapshot header regexp to work with newline across OSes (#15803)

30.1.1

Fixes

  • [jest-snapshot-utils] Fix deprecated goo.gl snapshot warning not handling Windows end-of-line sequences (#15800)

30.1.0

Features

  • [jest-leak-detector] Configurable GC aggressiveness regarding to V8 heap snapshot generation (#15793)
  • [jest-runtime] Reduce redundant ReferenceError messages
  • [jest-core] Include test modules that failed to load when --onlyFailures is active

Fixes

  • `[jest-snapshot-utils] Fix deprecated goo.gl snapshot guide link not getting replaced with fully canonical URL (#15787)
  • [jest-circus] Fix it.concurrent not working with describe.skip (#15765)
  • [jest-snapshot] Fix mangled inline snapshot updates when used with Prettier 3 and CRLF line endings
  • [jest-runtime] Importing from @jest/globals in more than one file no longer breaks relative paths (#15772)

Chore

  • [expect] Update docblock for toContain() to display info on substring check (#15789)

30.0.2

What's Changed

... (truncated)

Changelog

Sourced from jest's changelog.

30.2.0

Chore & Maintenance

  • [*] Update example repo for testing React Native projects (#15832)
  • [*] Update jest-watch-typeahead to v3 (#15830)

Features

  • [jest-environment-jsdom-abstract] Add support for JSDOM v27 (#15834)

Fixes

  • [jest-matcher-utils] Fix infinite recursion with self-referential getters in deepCyclicCopyReplaceable (#15831)
  • [babel-jest] Export the TransformerConfig interface (#15820)
  • [jest-config] Fix jest.config.ts with TS loader specified in docblock pragma (#15839)

30.1.3

Fixes

  • Fix unstable_mockModule with node: prefixed core modules.

30.1.2

Fixes

  • [jest-snapshot-utils] Correct snapshot header regexp to work with newline across OSes (#15803)

30.1.1

Fixes

  • [jest-snapshot-utils] Fix deprecated goo.gl snapshot warning not handling Windows end-of-line sequences (#15800)
  • [jest-snapshot-utils] Improve messaging about goo.gl snapshot link change (#15821)

30.1.0

Features

  • [jest-leak-detector] Configurable GC aggressiveness regarding to V8 heap snapshot generation (#15793)
  • [jest-runtime] Reduce redundant ReferenceError messages
  • [jest-core] Include test modules that failed to load when --onlyFailures is active

Fixes

  • [jest-snapshot-utils] Fix deprecated goo.gl snapshot guide link not getting replaced with fully canonical URL (#15787)
  • [jest-circus] Fix it.concurrent not working with describe.skip (#15765)
  • [jest-snapshot] Fix mangled inline snapshot updates when used with Prettier 3 and CRLF line endings
  • [jest-runtime] Importing from @jest/globals in more than one file no longer breaks relative paths (#15772)

... (truncated)

Commits

Updates `@types/jest` from 29.5.14 to 30.0.0
Commits

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) ---
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- llama_stack/ui/package-lock.json | 2805 +++++++++++++++--------------- llama_stack/ui/package.json | 4 +- 2 files changed, 1387 insertions(+), 1422 deletions(-) diff --git a/llama_stack/ui/package-lock.json b/llama_stack/ui/package-lock.json index 4f76387d9..c138de535 100644 --- a/llama_stack/ui/package-lock.json +++ b/llama_stack/ui/package-lock.json @@ -38,7 +38,7 @@ "@testing-library/dom": "^10.4.1", "@testing-library/jest-dom": "^6.8.0", "@testing-library/react": "^16.3.0", - "@types/jest": "^29.5.14", + "@types/jest": "^30.0.0", "@types/node": "^24", "@types/react": "^19", "@types/react-dom": "^19", @@ -46,7 +46,7 @@ "eslint-config-next": "15.5.6", "eslint-config-prettier": "^10.1.8", "eslint-plugin-prettier": "^5.5.4", - "jest": "^29.7.0", + "jest": "^30.2.0", "jest-environment-jsdom": "^30.2.0", "prettier": "3.6.2", "tailwindcss": "^4", @@ -126,9 +126,9 @@ } }, "node_modules/@babel/compat-data": { - "version": "7.27.2", - "resolved": "https://registry.npmjs.org/@babel/compat-data/-/compat-data-7.27.2.tgz", - "integrity": "sha512-TUtMJYRPyUb/9aU8f3K0mjmjf6M9N5Woshn2CS6nqJSeJtTtQcpLUXjGt9vbF8ZGff0El99sWkLgzwW3VXnxZQ==", + "version": "7.28.4", + "resolved": "https://registry.npmjs.org/@babel/compat-data/-/compat-data-7.28.4.tgz", + "integrity": "sha512-YsmSKC29MJwf0gF8Rjjrg5LQCmyh+j/nD8/eP7f+BeoQTKYqs9RoWbjGOdy0+1Ekr68RJZMUOPVQaQisnIo4Rw==", "dev": true, "license": "MIT", "engines": { @@ -136,22 +136,22 @@ } }, "node_modules/@babel/core": { - "version": "7.27.1", - "resolved": "https://registry.npmjs.org/@babel/core/-/core-7.27.1.tgz", - "integrity": "sha512-IaaGWsQqfsQWVLqMn9OB92MNN7zukfVA4s7KKAI0KfrrDsZ0yhi5uV4baBuLuN7n3vsZpwP8asPPcVwApxvjBQ==", + "version": "7.28.4", + "resolved": "https://registry.npmjs.org/@babel/core/-/core-7.28.4.tgz", + "integrity": "sha512-2BCOP7TN8M+gVDj7/ht3hsaO/B/n5oDbiAyyvnRlNOs+u1o+JWNYTQrmpuNp1/Wq2gcFrI01JAW+paEKDMx/CA==", "dev": true, "license": "MIT", "dependencies": { - "@ampproject/remapping": "^2.2.0", "@babel/code-frame": "^7.27.1", - "@babel/generator": "^7.27.1", - "@babel/helper-compilation-targets": "^7.27.1", - "@babel/helper-module-transforms": "^7.27.1", - "@babel/helpers": "^7.27.1", - "@babel/parser": "^7.27.1", - "@babel/template": "^7.27.1", - "@babel/traverse": "^7.27.1", - "@babel/types": "^7.27.1", + "@babel/generator": "^7.28.3", + "@babel/helper-compilation-targets": "^7.27.2", + "@babel/helper-module-transforms": "^7.28.3", + "@babel/helpers": "^7.28.4", + "@babel/parser": "^7.28.4", + "@babel/template": "^7.27.2", + "@babel/traverse": "^7.28.4", + "@babel/types": "^7.28.4", + "@jridgewell/remapping": "^2.3.5", "convert-source-map": "^2.0.0", "debug": "^4.1.0", "gensync": "^1.0.0-beta.2", @@ -190,16 +190,16 @@ } }, "node_modules/@babel/generator": { - "version": "7.27.1", - "resolved": "https://registry.npmjs.org/@babel/generator/-/generator-7.27.1.tgz", - "integrity": "sha512-UnJfnIpc/+JO0/+KRVQNGU+y5taA5vCbwN8+azkX6beii/ZF+enZJSOKo11ZSzGJjlNfJHfQtmQT8H+9TXPG2w==", + "version": "7.28.3", + "resolved": "https://registry.npmjs.org/@babel/generator/-/generator-7.28.3.tgz", + "integrity": "sha512-3lSpxGgvnmZznmBkCRnVREPUFJv2wrv9iAoFDvADJc0ypmdOxdUtcLeBgBJ6zE0PMeTKnxeQzyk0xTBq4Ep7zw==", "dev": true, "license": "MIT", "dependencies": { - "@babel/parser": "^7.27.1", - "@babel/types": "^7.27.1", - "@jridgewell/gen-mapping": "^0.3.5", - "@jridgewell/trace-mapping": "^0.3.25", + "@babel/parser": "^7.28.3", + "@babel/types": "^7.28.2", + "@jridgewell/gen-mapping": "^0.3.12", + "@jridgewell/trace-mapping": "^0.3.28", "jsesc": "^3.0.2" }, "engines": { @@ -233,6 +233,16 @@ "semver": "bin/semver.js" } }, + "node_modules/@babel/helper-globals": { + "version": "7.28.0", + "resolved": "https://registry.npmjs.org/@babel/helper-globals/-/helper-globals-7.28.0.tgz", + "integrity": "sha512-+W6cISkXFa1jXsDEdYA8HeevQT/FULhxzR99pxphltZcVaugps53THCeiWA8SguxxpSp3gKPiuYfSWopkLQ4hw==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6.9.0" + } + }, "node_modules/@babel/helper-module-imports": { "version": "7.27.1", "resolved": "https://registry.npmjs.org/@babel/helper-module-imports/-/helper-module-imports-7.27.1.tgz", @@ -248,15 +258,15 @@ } }, "node_modules/@babel/helper-module-transforms": { - "version": "7.27.1", - "resolved": "https://registry.npmjs.org/@babel/helper-module-transforms/-/helper-module-transforms-7.27.1.tgz", - "integrity": "sha512-9yHn519/8KvTU5BjTVEEeIM3w9/2yXNKoD82JifINImhpKkARMJKPP59kLo+BafpdN5zgNeIcS4jsGDmd3l58g==", + "version": "7.28.3", + "resolved": "https://registry.npmjs.org/@babel/helper-module-transforms/-/helper-module-transforms-7.28.3.tgz", + "integrity": "sha512-gytXUbs8k2sXS9PnQptz5o0QnpLL51SwASIORY6XaBKF88nsOT0Zw9szLqlSGQDP/4TljBAD5y98p2U1fqkdsw==", "dev": true, "license": "MIT", "dependencies": { "@babel/helper-module-imports": "^7.27.1", "@babel/helper-validator-identifier": "^7.27.1", - "@babel/traverse": "^7.27.1" + "@babel/traverse": "^7.28.3" }, "engines": { "node": ">=6.9.0" @@ -306,27 +316,27 @@ } }, "node_modules/@babel/helpers": { - "version": "7.27.1", - "resolved": "https://registry.npmjs.org/@babel/helpers/-/helpers-7.27.1.tgz", - "integrity": "sha512-FCvFTm0sWV8Fxhpp2McP5/W53GPllQ9QeQ7SiqGWjMf/LVG07lFa5+pgK05IRhVwtvafT22KF+ZSnM9I545CvQ==", + "version": "7.28.4", + "resolved": "https://registry.npmjs.org/@babel/helpers/-/helpers-7.28.4.tgz", + "integrity": "sha512-HFN59MmQXGHVyYadKLVumYsA9dBFun/ldYxipEjzA4196jpLZd8UjEEBLkbEkvfYreDqJhZxYAWFPtrfhNpj4w==", "dev": true, "license": "MIT", "dependencies": { - "@babel/template": "^7.27.1", - "@babel/types": "^7.27.1" + "@babel/template": "^7.27.2", + "@babel/types": "^7.28.4" }, "engines": { "node": ">=6.9.0" } }, "node_modules/@babel/parser": { - "version": "7.27.2", - "resolved": "https://registry.npmjs.org/@babel/parser/-/parser-7.27.2.tgz", - "integrity": "sha512-QYLs8299NA7WM/bZAdp+CviYYkVoYXlDW2rzliy3chxd1PQjej7JORuMJDJXJUb9g0TT+B99EwaVLKmX+sPXWw==", + "version": "7.28.4", + "resolved": "https://registry.npmjs.org/@babel/parser/-/parser-7.28.4.tgz", + "integrity": "sha512-yZbBqeM6TkpP9du/I2pUZnJsRMGGvOuIrhjzC1AwHwW+6he4mni6Bp/m8ijn0iOuZuPI2BfkCoSRunpyjnrQKg==", "dev": true, "license": "MIT", "dependencies": { - "@babel/types": "^7.27.1" + "@babel/types": "^7.28.4" }, "bin": { "parser": "bin/babel-parser.js" @@ -599,38 +609,28 @@ } }, "node_modules/@babel/traverse": { - "version": "7.27.1", - "resolved": "https://registry.npmjs.org/@babel/traverse/-/traverse-7.27.1.tgz", - "integrity": "sha512-ZCYtZciz1IWJB4U61UPu4KEaqyfj+r5T1Q5mqPo+IBpcG9kHv30Z0aD8LXPgC1trYa6rK0orRyAhqUgk4MjmEg==", + "version": "7.28.4", + "resolved": "https://registry.npmjs.org/@babel/traverse/-/traverse-7.28.4.tgz", + "integrity": "sha512-YEzuboP2qvQavAcjgQNVgsvHIDv6ZpwXvcvjmyySP2DIMuByS/6ioU5G9pYrWHM6T2YDfc7xga9iNzYOs12CFQ==", "dev": true, "license": "MIT", "dependencies": { "@babel/code-frame": "^7.27.1", - "@babel/generator": "^7.27.1", - "@babel/parser": "^7.27.1", - "@babel/template": "^7.27.1", - "@babel/types": "^7.27.1", - "debug": "^4.3.1", - "globals": "^11.1.0" + "@babel/generator": "^7.28.3", + "@babel/helper-globals": "^7.28.0", + "@babel/parser": "^7.28.4", + "@babel/template": "^7.27.2", + "@babel/types": "^7.28.4", + "debug": "^4.3.1" }, "engines": { "node": ">=6.9.0" } }, - "node_modules/@babel/traverse/node_modules/globals": { - "version": "11.12.0", - "resolved": "https://registry.npmjs.org/globals/-/globals-11.12.0.tgz", - "integrity": "sha512-WOBp/EEGUiIsJSp7wcv/y6MO+lV9UoncWqxuFfm8eBwzWNgyfBd6Gz+IeKQ9jCmyhoH99g15M3T+QaVHFjizVA==", - "dev": true, - "license": "MIT", - "engines": { - "node": ">=4" - } - }, "node_modules/@babel/types": { - "version": "7.27.1", - "resolved": "https://registry.npmjs.org/@babel/types/-/types-7.27.1.tgz", - "integrity": "sha512-+EzkxvLNfiUeKMgy/3luqfsCWFRXLb7U6wNQTk60tovuckwB15B191tJWvpp4HjiQWdJkCxO3Wbvc6jlk3Xb2Q==", + "version": "7.28.4", + "resolved": "https://registry.npmjs.org/@babel/types/-/types-7.28.4.tgz", + "integrity": "sha512-bkFqkLhh3pMBUQQkpVgWDWq/lqzc2678eUyDlTBhRqhCHFguYYGM0Efga7tYk4TogG/3x0EEl66/OQ+WGbWB/Q==", "dev": true, "license": "MIT", "dependencies": { @@ -1486,6 +1486,24 @@ "url": "https://opencollective.com/libvips" } }, + "node_modules/@isaacs/cliui": { + "version": "8.0.2", + "resolved": "https://registry.npmjs.org/@isaacs/cliui/-/cliui-8.0.2.tgz", + "integrity": "sha512-O8jcjabXaleOG9DQ0+ARXWZBTfnP4WNAqzuiJK7ll44AmxGKv/J2M4TPjxjY3znBCfvBXFzucm1twdyFybFqEA==", + "dev": true, + "license": "ISC", + "dependencies": { + "string-width": "^5.1.2", + "string-width-cjs": "npm:string-width@^4.2.0", + "strip-ansi": "^7.0.1", + "strip-ansi-cjs": "npm:strip-ansi@^6.0.1", + "wrap-ansi": "^8.1.0", + "wrap-ansi-cjs": "npm:wrap-ansi@^7.0.0" + }, + "engines": { + "node": ">=12" + } + }, "node_modules/@isaacs/fs-minipass": { "version": "4.0.1", "resolved": "https://registry.npmjs.org/@isaacs/fs-minipass/-/fs-minipass-4.0.1.tgz", @@ -1617,61 +1635,61 @@ } }, "node_modules/@jest/console": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/@jest/console/-/console-29.7.0.tgz", - "integrity": "sha512-5Ni4CU7XHQi32IJ398EEP4RrB8eV09sXP2ROqD4bksHrnTree52PsxvX8tpL8LvTZ3pFzXyPbNQReSN41CAhOg==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/@jest/console/-/console-30.2.0.tgz", + "integrity": "sha512-+O1ifRjkvYIkBqASKWgLxrpEhQAAE7hY77ALLUufSk5717KfOShg6IbqLmdsLMPdUiFvA2kTs0R7YZy+l0IzZQ==", "dev": true, "license": "MIT", "dependencies": { - "@jest/types": "^29.6.3", + "@jest/types": "30.2.0", "@types/node": "*", - "chalk": "^4.0.0", - "jest-message-util": "^29.7.0", - "jest-util": "^29.7.0", + "chalk": "^4.1.2", + "jest-message-util": "30.2.0", + "jest-util": "30.2.0", "slash": "^3.0.0" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/@jest/core": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/@jest/core/-/core-29.7.0.tgz", - "integrity": "sha512-n7aeXWKMnGtDA48y8TLWJPJmLmmZ642Ceo78cYWEpiD7FzDgmNDV/GCVRorPABdXLJZ/9wzzgZAlHjXjxDHGsg==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/@jest/core/-/core-30.2.0.tgz", + "integrity": "sha512-03W6IhuhjqTlpzh/ojut/pDB2LPRygyWX8ExpgHtQA8H/3K7+1vKmcINx5UzeOX1se6YEsBsOHQ1CRzf3fOwTQ==", "dev": true, "license": "MIT", "dependencies": { - "@jest/console": "^29.7.0", - "@jest/reporters": "^29.7.0", - "@jest/test-result": "^29.7.0", - "@jest/transform": "^29.7.0", - "@jest/types": "^29.6.3", + "@jest/console": "30.2.0", + "@jest/pattern": "30.0.1", + "@jest/reporters": "30.2.0", + "@jest/test-result": "30.2.0", + "@jest/transform": "30.2.0", + "@jest/types": "30.2.0", "@types/node": "*", - "ansi-escapes": "^4.2.1", - "chalk": "^4.0.0", - "ci-info": "^3.2.0", - "exit": "^0.1.2", - "graceful-fs": "^4.2.9", - "jest-changed-files": "^29.7.0", - "jest-config": "^29.7.0", - "jest-haste-map": "^29.7.0", - "jest-message-util": "^29.7.0", - "jest-regex-util": "^29.6.3", - "jest-resolve": "^29.7.0", - "jest-resolve-dependencies": "^29.7.0", - "jest-runner": "^29.7.0", - "jest-runtime": "^29.7.0", - "jest-snapshot": "^29.7.0", - "jest-util": "^29.7.0", - "jest-validate": "^29.7.0", - "jest-watcher": "^29.7.0", - "micromatch": "^4.0.4", - "pretty-format": "^29.7.0", - "slash": "^3.0.0", - "strip-ansi": "^6.0.0" + "ansi-escapes": "^4.3.2", + "chalk": "^4.1.2", + "ci-info": "^4.2.0", + "exit-x": "^0.2.2", + "graceful-fs": "^4.2.11", + "jest-changed-files": "30.2.0", + "jest-config": "30.2.0", + "jest-haste-map": "30.2.0", + "jest-message-util": "30.2.0", + "jest-regex-util": "30.0.1", + "jest-resolve": "30.2.0", + "jest-resolve-dependencies": "30.2.0", + "jest-runner": "30.2.0", + "jest-runtime": "30.2.0", + "jest-snapshot": "30.2.0", + "jest-util": "30.2.0", + "jest-validate": "30.2.0", + "jest-watcher": "30.2.0", + "micromatch": "^4.0.8", + "pretty-format": "30.2.0", + "slash": "^3.0.0" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" }, "peerDependencies": { "node-notifier": "^8.0.1 || ^9.0.0 || ^10.0.0" @@ -1696,18 +1714,18 @@ } }, "node_modules/@jest/core/node_modules/pretty-format": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-29.7.0.tgz", - "integrity": "sha512-Pdlw/oPxN+aXdmM9R00JVC9WVFoCLTKJvDVLgmJ+qAffBMxsV85l/Lu7sNx4zSzPyoL2euImuEwHhOXdEgNFZQ==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-30.2.0.tgz", + "integrity": "sha512-9uBdv/B4EefsuAL+pWqueZyZS2Ba+LxfFeQ9DN14HU4bN8bhaxKdkpjpB6fs9+pSjIBu+FXQHImEg8j/Lw0+vA==", "dev": true, "license": "MIT", "dependencies": { - "@jest/schemas": "^29.6.3", - "ansi-styles": "^5.0.0", - "react-is": "^18.0.0" + "@jest/schemas": "30.0.5", + "ansi-styles": "^5.2.0", + "react-is": "^18.3.1" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/@jest/core/node_modules/react-is": { @@ -1717,20 +1735,30 @@ "dev": true, "license": "MIT" }, + "node_modules/@jest/diff-sequences": { + "version": "30.0.1", + "resolved": "https://registry.npmjs.org/@jest/diff-sequences/-/diff-sequences-30.0.1.tgz", + "integrity": "sha512-n5H8QLDJ47QqbCNn5SuFjCRDrOLEZ0h8vAHCK5RL9Ls7Xa8AQLa/YxAc9UjFqoEDM48muwtBGjtMY5cr0PLDCw==", + "dev": true, + "license": "MIT", + "engines": { + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" + } + }, "node_modules/@jest/environment": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/@jest/environment/-/environment-29.7.0.tgz", - "integrity": "sha512-aQIfHDq33ExsN4jP1NWGXhxgQ/wixs60gDiKO+XVMd8Mn0NWPWgc34ZQDTb2jKaUWQ7MuwoitXAsN2XVXNMpAw==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/@jest/environment/-/environment-30.2.0.tgz", + "integrity": "sha512-/QPTL7OBJQ5ac09UDRa3EQes4gt1FTEG/8jZ/4v5IVzx+Cv7dLxlVIvfvSVRiiX2drWyXeBjkMSR8hvOWSog5g==", "dev": true, "license": "MIT", "dependencies": { - "@jest/fake-timers": "^29.7.0", - "@jest/types": "^29.6.3", + "@jest/fake-timers": "30.2.0", + "@jest/types": "30.2.0", "@types/node": "*", - "jest-mock": "^29.7.0" + "jest-mock": "30.2.0" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/@jest/environment-jsdom-abstract": { @@ -1761,23 +1789,34 @@ } } }, - "node_modules/@jest/environment-jsdom-abstract/node_modules/@jest/environment": { + "node_modules/@jest/expect": { "version": "30.2.0", - "resolved": "https://registry.npmjs.org/@jest/environment/-/environment-30.2.0.tgz", - "integrity": "sha512-/QPTL7OBJQ5ac09UDRa3EQes4gt1FTEG/8jZ/4v5IVzx+Cv7dLxlVIvfvSVRiiX2drWyXeBjkMSR8hvOWSog5g==", + "resolved": "https://registry.npmjs.org/@jest/expect/-/expect-30.2.0.tgz", + "integrity": "sha512-V9yxQK5erfzx99Sf+7LbhBwNWEZ9eZay8qQ9+JSC0TrMR1pMDHLMY+BnVPacWU6Jamrh252/IKo4F1Xn/zfiqA==", "dev": true, "license": "MIT", "dependencies": { - "@jest/fake-timers": "30.2.0", - "@jest/types": "30.2.0", - "@types/node": "*", - "jest-mock": "30.2.0" + "expect": "30.2.0", + "jest-snapshot": "30.2.0" }, "engines": { "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, - "node_modules/@jest/environment-jsdom-abstract/node_modules/@jest/fake-timers": { + "node_modules/@jest/expect-utils": { + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/@jest/expect-utils/-/expect-utils-30.2.0.tgz", + "integrity": "sha512-1JnRfhqpD8HGpOmQp180Fo9Zt69zNtC+9lR+kT7NVL05tNXIi+QC8Csz7lfidMoVLPD3FnOtcmp0CEFnxExGEA==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/get-type": "30.1.0" + }, + "engines": { + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" + } + }, + "node_modules/@jest/fake-timers": { "version": "30.2.0", "resolved": "https://registry.npmjs.org/@jest/fake-timers/-/fake-timers-30.2.0.tgz", "integrity": "sha512-HI3tRLjRxAbBy0VO8dqqm7Hb2mIa8d5bg/NJkyQcOk7V118ObQML8RC5luTF/Zsg4474a+gDvhce7eTnP4GhYw==", @@ -1795,7 +1834,90 @@ "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, - "node_modules/@jest/environment-jsdom-abstract/node_modules/@jest/schemas": { + "node_modules/@jest/get-type": { + "version": "30.1.0", + "resolved": "https://registry.npmjs.org/@jest/get-type/-/get-type-30.1.0.tgz", + "integrity": "sha512-eMbZE2hUnx1WV0pmURZY9XoXPkUYjpc55mb0CrhtdWLtzMQPFvu/rZkTLZFTsdaVQa+Tr4eWAteqcUzoawq/uA==", + "dev": true, + "license": "MIT", + "engines": { + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" + } + }, + "node_modules/@jest/globals": { + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/@jest/globals/-/globals-30.2.0.tgz", + "integrity": "sha512-b63wmnKPaK+6ZZfpYhz9K61oybvbI1aMcIs80++JI1O1rR1vaxHUCNqo3ITu6NU0d4V34yZFoHMn/uoKr/Rwfw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/environment": "30.2.0", + "@jest/expect": "30.2.0", + "@jest/types": "30.2.0", + "jest-mock": "30.2.0" + }, + "engines": { + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" + } + }, + "node_modules/@jest/pattern": { + "version": "30.0.1", + "resolved": "https://registry.npmjs.org/@jest/pattern/-/pattern-30.0.1.tgz", + "integrity": "sha512-gWp7NfQW27LaBQz3TITS8L7ZCQ0TLvtmI//4OwlQRx4rnWxcPNIYjxZpDcN4+UlGxgm3jS5QPz8IPTCkb59wZA==", + "dev": true, + "license": "MIT", + "dependencies": { + "@types/node": "*", + "jest-regex-util": "30.0.1" + }, + "engines": { + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" + } + }, + "node_modules/@jest/reporters": { + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/@jest/reporters/-/reporters-30.2.0.tgz", + "integrity": "sha512-DRyW6baWPqKMa9CzeiBjHwjd8XeAyco2Vt8XbcLFjiwCOEKOvy82GJ8QQnJE9ofsxCMPjH4MfH8fCWIHHDKpAQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@bcoe/v8-coverage": "^0.2.3", + "@jest/console": "30.2.0", + "@jest/test-result": "30.2.0", + "@jest/transform": "30.2.0", + "@jest/types": "30.2.0", + "@jridgewell/trace-mapping": "^0.3.25", + "@types/node": "*", + "chalk": "^4.1.2", + "collect-v8-coverage": "^1.0.2", + "exit-x": "^0.2.2", + "glob": "^10.3.10", + "graceful-fs": "^4.2.11", + "istanbul-lib-coverage": "^3.0.0", + "istanbul-lib-instrument": "^6.0.0", + "istanbul-lib-report": "^3.0.0", + "istanbul-lib-source-maps": "^5.0.0", + "istanbul-reports": "^3.1.3", + "jest-message-util": "30.2.0", + "jest-util": "30.2.0", + "jest-worker": "30.2.0", + "slash": "^3.0.0", + "string-length": "^4.0.2", + "v8-to-istanbul": "^9.0.1" + }, + "engines": { + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" + }, + "peerDependencies": { + "node-notifier": "^8.0.1 || ^9.0.0 || ^10.0.0" + }, + "peerDependenciesMeta": { + "node-notifier": { + "optional": true + } + } + }, + "node_modules/@jest/schemas": { "version": "30.0.5", "resolved": "https://registry.npmjs.org/@jest/schemas/-/schemas-30.0.5.tgz", "integrity": "sha512-DmdYgtezMkh3cpU8/1uyXakv3tJRcmcXxBOcO0tbaozPwpmh4YMsnWrQm9ZmZMfa5ocbxzbFk6O4bDPEc/iAnA==", @@ -1808,7 +1930,97 @@ "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, - "node_modules/@jest/environment-jsdom-abstract/node_modules/@jest/types": { + "node_modules/@jest/snapshot-utils": { + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/@jest/snapshot-utils/-/snapshot-utils-30.2.0.tgz", + "integrity": "sha512-0aVxM3RH6DaiLcjj/b0KrIBZhSX1373Xci4l3cW5xiUWPctZ59zQ7jj4rqcJQ/Z8JuN/4wX3FpJSa3RssVvCug==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/types": "30.2.0", + "chalk": "^4.1.2", + "graceful-fs": "^4.2.11", + "natural-compare": "^1.4.0" + }, + "engines": { + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" + } + }, + "node_modules/@jest/source-map": { + "version": "30.0.1", + "resolved": "https://registry.npmjs.org/@jest/source-map/-/source-map-30.0.1.tgz", + "integrity": "sha512-MIRWMUUR3sdbP36oyNyhbThLHyJ2eEDClPCiHVbrYAe5g3CHRArIVpBw7cdSB5fr+ofSfIb2Tnsw8iEHL0PYQg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jridgewell/trace-mapping": "^0.3.25", + "callsites": "^3.1.0", + "graceful-fs": "^4.2.11" + }, + "engines": { + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" + } + }, + "node_modules/@jest/test-result": { + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/@jest/test-result/-/test-result-30.2.0.tgz", + "integrity": "sha512-RF+Z+0CCHkARz5HT9mcQCBulb1wgCP3FBvl9VFokMX27acKphwyQsNuWH3c+ojd1LeWBLoTYoxF0zm6S/66mjg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/console": "30.2.0", + "@jest/types": "30.2.0", + "@types/istanbul-lib-coverage": "^2.0.6", + "collect-v8-coverage": "^1.0.2" + }, + "engines": { + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" + } + }, + "node_modules/@jest/test-sequencer": { + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/@jest/test-sequencer/-/test-sequencer-30.2.0.tgz", + "integrity": "sha512-wXKgU/lk8fKXMu/l5Hog1R61bL4q5GCdT6OJvdAFz1P+QrpoFuLU68eoKuVc4RbrTtNnTL5FByhWdLgOPSph+Q==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/test-result": "30.2.0", + "graceful-fs": "^4.2.11", + "jest-haste-map": "30.2.0", + "slash": "^3.0.0" + }, + "engines": { + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" + } + }, + "node_modules/@jest/transform": { + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/@jest/transform/-/transform-30.2.0.tgz", + "integrity": "sha512-XsauDV82o5qXbhalKxD7p4TZYYdwcaEXC77PPD2HixEFF+6YGppjrAAQurTl2ECWcEomHBMMNS9AH3kcCFx8jA==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/core": "^7.27.4", + "@jest/types": "30.2.0", + "@jridgewell/trace-mapping": "^0.3.25", + "babel-plugin-istanbul": "^7.0.1", + "chalk": "^4.1.2", + "convert-source-map": "^2.0.0", + "fast-json-stable-stringify": "^2.1.0", + "graceful-fs": "^4.2.11", + "jest-haste-map": "30.2.0", + "jest-regex-util": "30.0.1", + "jest-util": "30.2.0", + "micromatch": "^4.0.8", + "pirates": "^4.0.7", + "slash": "^3.0.0", + "write-file-atomic": "^5.0.1" + }, + "engines": { + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" + } + }, + "node_modules/@jest/types": { "version": "30.2.0", "resolved": "https://registry.npmjs.org/@jest/types/-/types-30.2.0.tgz", "integrity": "sha512-H9xg1/sfVvyfU7o3zMfBEjQ1gcsdeTMgqHoYdN79tuLqfTtuu7WckRA1R5whDwOzxaZAeMKTYWqP+WCAi0CHsg==", @@ -1827,388 +2039,26 @@ "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, - "node_modules/@jest/environment-jsdom-abstract/node_modules/@sinclair/typebox": { - "version": "0.34.41", - "resolved": "https://registry.npmjs.org/@sinclair/typebox/-/typebox-0.34.41.tgz", - "integrity": "sha512-6gS8pZzSXdyRHTIqoqSVknxolr1kzfy4/CeDnrzsVz8TTIWUbOBr6gnzOmTYJ3eXQNh4IYHIGi5aIL7sOZ2G/g==", - "dev": true, - "license": "MIT" - }, - "node_modules/@jest/environment-jsdom-abstract/node_modules/@sinonjs/fake-timers": { - "version": "13.0.5", - "resolved": "https://registry.npmjs.org/@sinonjs/fake-timers/-/fake-timers-13.0.5.tgz", - "integrity": "sha512-36/hTbH2uaWuGVERyC6da9YwGWnzUZXuPro/F2LfsdOsLnCojz/iSH8MxUt/FD2S5XBSVPhmArFUXcpCQ2Hkiw==", - "dev": true, - "license": "BSD-3-Clause", - "dependencies": { - "@sinonjs/commons": "^3.0.1" - } - }, - "node_modules/@jest/environment-jsdom-abstract/node_modules/ansi-styles": { - "version": "5.2.0", - "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-5.2.0.tgz", - "integrity": "sha512-Cxwpt2SfTzTtXcfOlzGEee8O+c+MmUgGrNiBcXnuWxuFJHe6a5Hz7qwhwe5OgaSYI0IJvkLqWX1ASG+cJOkEiA==", - "dev": true, - "license": "MIT", - "engines": { - "node": ">=10" - }, - "funding": { - "url": "https://github.com/chalk/ansi-styles?sponsor=1" - } - }, - "node_modules/@jest/environment-jsdom-abstract/node_modules/ci-info": { - "version": "4.3.1", - "resolved": "https://registry.npmjs.org/ci-info/-/ci-info-4.3.1.tgz", - "integrity": "sha512-Wdy2Igu8OcBpI2pZePZ5oWjPC38tmDVx5WKUXKwlLYkA0ozo85sLsLvkBbBn/sZaSCMFOGZJ14fvW9t5/d7kdA==", - "dev": true, - "funding": [ - { - "type": "github", - "url": "https://github.com/sponsors/sibiraj-s" - } - ], - "license": "MIT", - "engines": { - "node": ">=8" - } - }, - "node_modules/@jest/environment-jsdom-abstract/node_modules/jest-message-util": { - "version": "30.2.0", - "resolved": "https://registry.npmjs.org/jest-message-util/-/jest-message-util-30.2.0.tgz", - "integrity": "sha512-y4DKFLZ2y6DxTWD4cDe07RglV88ZiNEdlRfGtqahfbIjfsw1nMCPx49Uev4IA/hWn3sDKyAnSPwoYSsAEdcimw==", - "dev": true, - "license": "MIT", - "dependencies": { - "@babel/code-frame": "^7.27.1", - "@jest/types": "30.2.0", - "@types/stack-utils": "^2.0.3", - "chalk": "^4.1.2", - "graceful-fs": "^4.2.11", - "micromatch": "^4.0.8", - "pretty-format": "30.2.0", - "slash": "^3.0.0", - "stack-utils": "^2.0.6" - }, - "engines": { - "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" - } - }, - "node_modules/@jest/environment-jsdom-abstract/node_modules/jest-mock": { - "version": "30.2.0", - "resolved": "https://registry.npmjs.org/jest-mock/-/jest-mock-30.2.0.tgz", - "integrity": "sha512-JNNNl2rj4b5ICpmAcq+WbLH83XswjPbjH4T7yvGzfAGCPh1rw+xVNbtk+FnRslvt9lkCcdn9i1oAoKUuFsOxRw==", - "dev": true, - "license": "MIT", - "dependencies": { - "@jest/types": "30.2.0", - "@types/node": "*", - "jest-util": "30.2.0" - }, - "engines": { - "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" - } - }, - "node_modules/@jest/environment-jsdom-abstract/node_modules/jest-util": { - "version": "30.2.0", - "resolved": "https://registry.npmjs.org/jest-util/-/jest-util-30.2.0.tgz", - "integrity": "sha512-QKNsM0o3Xe6ISQU869e+DhG+4CK/48aHYdJZGlFQVTjnbvgpcKyxpzk29fGiO7i/J8VENZ+d2iGnSsvmuHywlA==", - "dev": true, - "license": "MIT", - "dependencies": { - "@jest/types": "30.2.0", - "@types/node": "*", - "chalk": "^4.1.2", - "ci-info": "^4.2.0", - "graceful-fs": "^4.2.11", - "picomatch": "^4.0.2" - }, - "engines": { - "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" - } - }, - "node_modules/@jest/environment-jsdom-abstract/node_modules/picomatch": { - "version": "4.0.3", - "resolved": "https://registry.npmjs.org/picomatch/-/picomatch-4.0.3.tgz", - "integrity": "sha512-5gTmgEY/sqK6gFXLIsQNH19lWb4ebPDLA4SdLP7dsWkIXHWlG66oPuVvXSGFPppYZz8ZDZq0dYYrbHfBCVUb1Q==", - "dev": true, - "license": "MIT", - "engines": { - "node": ">=12" - }, - "funding": { - "url": "https://github.com/sponsors/jonschlinkert" - } - }, - "node_modules/@jest/environment-jsdom-abstract/node_modules/pretty-format": { - "version": "30.2.0", - "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-30.2.0.tgz", - "integrity": "sha512-9uBdv/B4EefsuAL+pWqueZyZS2Ba+LxfFeQ9DN14HU4bN8bhaxKdkpjpB6fs9+pSjIBu+FXQHImEg8j/Lw0+vA==", - "dev": true, - "license": "MIT", - "dependencies": { - "@jest/schemas": "30.0.5", - "ansi-styles": "^5.2.0", - "react-is": "^18.3.1" - }, - "engines": { - "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" - } - }, - "node_modules/@jest/environment-jsdom-abstract/node_modules/react-is": { - "version": "18.3.1", - "resolved": "https://registry.npmjs.org/react-is/-/react-is-18.3.1.tgz", - "integrity": "sha512-/LLMVyas0ljjAtoYiPqYiL8VWXzUUdThrmU5+n20DZv+a+ClRoevUzw5JxU+Ieh5/c87ytoTBV9G1FiKfNJdmg==", - "dev": true, - "license": "MIT" - }, - "node_modules/@jest/expect": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/@jest/expect/-/expect-29.7.0.tgz", - "integrity": "sha512-8uMeAMycttpva3P1lBHB8VciS9V0XAr3GymPpipdyQXbBcuhkLQOSe8E/p92RyAdToS6ZD1tFkX+CkhoECE0dQ==", - "dev": true, - "license": "MIT", - "dependencies": { - "expect": "^29.7.0", - "jest-snapshot": "^29.7.0" - }, - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - } - }, - "node_modules/@jest/expect-utils": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/@jest/expect-utils/-/expect-utils-29.7.0.tgz", - "integrity": "sha512-GlsNBWiFQFCVi9QVSx7f5AgMeLxe9YCCs5PuP2O2LdjDAA8Jh9eX7lA1Jq/xdXw3Wb3hyvlFNfZIfcRetSzYcA==", - "dev": true, - "license": "MIT", - "dependencies": { - "jest-get-type": "^29.6.3" - }, - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - } - }, - "node_modules/@jest/fake-timers": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/@jest/fake-timers/-/fake-timers-29.7.0.tgz", - "integrity": "sha512-q4DH1Ha4TTFPdxLsqDXK1d3+ioSL7yL5oCMJZgDYm6i+6CygW5E5xVr/D1HdsGxjt1ZWSfUAs9OxSB/BNelWrQ==", - "dev": true, - "license": "MIT", - "dependencies": { - "@jest/types": "^29.6.3", - "@sinonjs/fake-timers": "^10.0.2", - "@types/node": "*", - "jest-message-util": "^29.7.0", - "jest-mock": "^29.7.0", - "jest-util": "^29.7.0" - }, - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - } - }, - "node_modules/@jest/globals": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/@jest/globals/-/globals-29.7.0.tgz", - "integrity": "sha512-mpiz3dutLbkW2MNFubUGUEVLkTGiqW6yLVTA+JbP6fI6J5iL9Y0Nlg8k95pcF8ctKwCS7WVxteBs29hhfAotzQ==", - "dev": true, - "license": "MIT", - "dependencies": { - "@jest/environment": "^29.7.0", - "@jest/expect": "^29.7.0", - "@jest/types": "^29.6.3", - "jest-mock": "^29.7.0" - }, - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - } - }, - "node_modules/@jest/pattern": { - "version": "30.0.1", - "resolved": "https://registry.npmjs.org/@jest/pattern/-/pattern-30.0.1.tgz", - "integrity": "sha512-gWp7NfQW27LaBQz3TITS8L7ZCQ0TLvtmI//4OwlQRx4rnWxcPNIYjxZpDcN4+UlGxgm3jS5QPz8IPTCkb59wZA==", - "dev": true, - "license": "MIT", - "dependencies": { - "@types/node": "*", - "jest-regex-util": "30.0.1" - }, - "engines": { - "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" - } - }, - "node_modules/@jest/pattern/node_modules/jest-regex-util": { - "version": "30.0.1", - "resolved": "https://registry.npmjs.org/jest-regex-util/-/jest-regex-util-30.0.1.tgz", - "integrity": "sha512-jHEQgBXAgc+Gh4g0p3bCevgRCVRkB4VB70zhoAE48gxeSr1hfUOsM/C2WoJgVL7Eyg//hudYENbm3Ne+/dRVVA==", - "dev": true, - "license": "MIT", - "engines": { - "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" - } - }, - "node_modules/@jest/reporters": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/@jest/reporters/-/reporters-29.7.0.tgz", - "integrity": "sha512-DApq0KJbJOEzAFYjHADNNxAE3KbhxQB1y5Kplb5Waqw6zVbuWatSnMjE5gs8FUgEPmNsnZA3NCWl9NG0ia04Pg==", - "dev": true, - "license": "MIT", - "dependencies": { - "@bcoe/v8-coverage": "^0.2.3", - "@jest/console": "^29.7.0", - "@jest/test-result": "^29.7.0", - "@jest/transform": "^29.7.0", - "@jest/types": "^29.6.3", - "@jridgewell/trace-mapping": "^0.3.18", - "@types/node": "*", - "chalk": "^4.0.0", - "collect-v8-coverage": "^1.0.0", - "exit": "^0.1.2", - "glob": "^7.1.3", - "graceful-fs": "^4.2.9", - "istanbul-lib-coverage": "^3.0.0", - "istanbul-lib-instrument": "^6.0.0", - "istanbul-lib-report": "^3.0.0", - "istanbul-lib-source-maps": "^4.0.0", - "istanbul-reports": "^3.1.3", - "jest-message-util": "^29.7.0", - "jest-util": "^29.7.0", - "jest-worker": "^29.7.0", - "slash": "^3.0.0", - "string-length": "^4.0.1", - "strip-ansi": "^6.0.0", - "v8-to-istanbul": "^9.0.1" - }, - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - }, - "peerDependencies": { - "node-notifier": "^8.0.1 || ^9.0.0 || ^10.0.0" - }, - "peerDependenciesMeta": { - "node-notifier": { - "optional": true - } - } - }, - "node_modules/@jest/schemas": { - "version": "29.6.3", - "resolved": "https://registry.npmjs.org/@jest/schemas/-/schemas-29.6.3.tgz", - "integrity": "sha512-mo5j5X+jIZmJQveBKeS/clAueipV7KgiX1vMgCxam1RNYiqE1w62n0/tJJnHtjW8ZHcQco5gY85jA3mi0L+nSA==", - "dev": true, - "license": "MIT", - "dependencies": { - "@sinclair/typebox": "^0.27.8" - }, - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - } - }, - "node_modules/@jest/source-map": { - "version": "29.6.3", - "resolved": "https://registry.npmjs.org/@jest/source-map/-/source-map-29.6.3.tgz", - "integrity": "sha512-MHjT95QuipcPrpLM+8JMSzFx6eHp5Bm+4XeFDJlwsvVBjmKNiIAvasGK2fxz2WbGRlnvqehFbh07MMa7n3YJnw==", - "dev": true, - "license": "MIT", - "dependencies": { - "@jridgewell/trace-mapping": "^0.3.18", - "callsites": "^3.0.0", - "graceful-fs": "^4.2.9" - }, - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - } - }, - "node_modules/@jest/test-result": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/@jest/test-result/-/test-result-29.7.0.tgz", - "integrity": "sha512-Fdx+tv6x1zlkJPcWXmMDAG2HBnaR9XPSd5aDWQVsfrZmLVT3lU1cwyxLgRmXR9yrq4NBoEm9BMsfgFzTQAbJYA==", - "dev": true, - "license": "MIT", - "dependencies": { - "@jest/console": "^29.7.0", - "@jest/types": "^29.6.3", - "@types/istanbul-lib-coverage": "^2.0.0", - "collect-v8-coverage": "^1.0.0" - }, - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - } - }, - "node_modules/@jest/test-sequencer": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/@jest/test-sequencer/-/test-sequencer-29.7.0.tgz", - "integrity": "sha512-GQwJ5WZVrKnOJuiYiAF52UNUJXgTZx1NHjFSEB0qEMmSZKAkdMoIzw/Cj6x6NF4AvV23AUqDpFzQkN/eYCYTxw==", - "dev": true, - "license": "MIT", - "dependencies": { - "@jest/test-result": "^29.7.0", - "graceful-fs": "^4.2.9", - "jest-haste-map": "^29.7.0", - "slash": "^3.0.0" - }, - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - } - }, - "node_modules/@jest/transform": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/@jest/transform/-/transform-29.7.0.tgz", - "integrity": "sha512-ok/BTPFzFKVMwO5eOHRrvnBVHdRy9IrsrW1GpMaQ9MCnilNLXQKmAX8s1YXDFaai9xJpac2ySzV0YeRRECr2Vw==", - "dev": true, - "license": "MIT", - "dependencies": { - "@babel/core": "^7.11.6", - "@jest/types": "^29.6.3", - "@jridgewell/trace-mapping": "^0.3.18", - "babel-plugin-istanbul": "^6.1.1", - "chalk": "^4.0.0", - "convert-source-map": "^2.0.0", - "fast-json-stable-stringify": "^2.1.0", - "graceful-fs": "^4.2.9", - "jest-haste-map": "^29.7.0", - "jest-regex-util": "^29.6.3", - "jest-util": "^29.7.0", - "micromatch": "^4.0.4", - "pirates": "^4.0.4", - "slash": "^3.0.0", - "write-file-atomic": "^4.0.2" - }, - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - } - }, - "node_modules/@jest/types": { - "version": "29.6.3", - "resolved": "https://registry.npmjs.org/@jest/types/-/types-29.6.3.tgz", - "integrity": "sha512-u3UPsIilWKOM3F9CXtrG8LEJmNxwoCQC/XVj4IKYXvvpx7QIi/Kg1LI5uDmDpKlac62NUtX7eLjRh+jVZcLOzw==", - "dev": true, - "license": "MIT", - "dependencies": { - "@jest/schemas": "^29.6.3", - "@types/istanbul-lib-coverage": "^2.0.0", - "@types/istanbul-reports": "^3.0.0", - "@types/node": "*", - "@types/yargs": "^17.0.8", - "chalk": "^4.0.0" - }, - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - } - }, "node_modules/@jridgewell/gen-mapping": { - "version": "0.3.8", - "resolved": "https://registry.npmjs.org/@jridgewell/gen-mapping/-/gen-mapping-0.3.8.tgz", - "integrity": "sha512-imAbBGkb+ebQyxKgzv5Hu2nmROxoDOXHh80evxdoXNOrvAnVx7zimzc1Oo5h9RlfV4vPXaE2iM5pOFbvOCClWA==", + "version": "0.3.13", + "resolved": "https://registry.npmjs.org/@jridgewell/gen-mapping/-/gen-mapping-0.3.13.tgz", + "integrity": "sha512-2kkt/7niJ6MgEPxF0bYdQ6etZaA+fQvDcLKckhy1yIQOzaoKjBBjSj63/aLVjYE3qhRt5dvM+uUyfCg6UKCBbA==", "dev": true, "license": "MIT", "dependencies": { - "@jridgewell/set-array": "^1.2.1", - "@jridgewell/sourcemap-codec": "^1.4.10", + "@jridgewell/sourcemap-codec": "^1.5.0", + "@jridgewell/trace-mapping": "^0.3.24" + } + }, + "node_modules/@jridgewell/remapping": { + "version": "2.3.5", + "resolved": "https://registry.npmjs.org/@jridgewell/remapping/-/remapping-2.3.5.tgz", + "integrity": "sha512-LI9u/+laYG4Ds1TDKSJW2YPrIlcVYOwi2fUC6xB43lueCjgxV4lffOCZCtYFiH6TNOX+tQKXx97T4IKHbhyHEQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jridgewell/gen-mapping": "^0.3.5", "@jridgewell/trace-mapping": "^0.3.24" - }, - "engines": { - "node": ">=6.0.0" } }, "node_modules/@jridgewell/resolve-uri": { @@ -2221,16 +2071,6 @@ "node": ">=6.0.0" } }, - "node_modules/@jridgewell/set-array": { - "version": "1.2.1", - "resolved": "https://registry.npmjs.org/@jridgewell/set-array/-/set-array-1.2.1.tgz", - "integrity": "sha512-R8gLRTZeyp03ymzP/6Lil/28tGeGEzhx1q2k703KGWRAI1VdvPIXdG70VJc2pAMw3NA6JKL5hhFu1sJX0Mnn/A==", - "dev": true, - "license": "MIT", - "engines": { - "node": ">=6.0.0" - } - }, "node_modules/@jridgewell/sourcemap-codec": { "version": "1.5.0", "resolved": "https://registry.npmjs.org/@jridgewell/sourcemap-codec/-/sourcemap-codec-1.5.0.tgz", @@ -2239,9 +2079,9 @@ "license": "MIT" }, "node_modules/@jridgewell/trace-mapping": { - "version": "0.3.25", - "resolved": "https://registry.npmjs.org/@jridgewell/trace-mapping/-/trace-mapping-0.3.25.tgz", - "integrity": "sha512-vNk6aEwybGtawWmy/PzwnGDOjCkLWSD2wqvjGGAgOAwCGWySYXfYoxt00IJkTF+8Lb57DwOb3Aa0o9CApepiYQ==", + "version": "0.3.31", + "resolved": "https://registry.npmjs.org/@jridgewell/trace-mapping/-/trace-mapping-0.3.31.tgz", + "integrity": "sha512-zzNR+SdQSDJzc8joaeP8QQoCQr8NuYx2dIIytl1QeBEZHJ9uW6hebsrYgbz8hJwUQao3TWCMtmfV8Nu1twOLAw==", "dev": true, "license": "MIT", "dependencies": { @@ -2250,16 +2090,27 @@ } }, "node_modules/@napi-rs/wasm-runtime": { - "version": "0.2.9", - "resolved": "https://registry.npmjs.org/@napi-rs/wasm-runtime/-/wasm-runtime-0.2.9.tgz", - "integrity": "sha512-OKRBiajrrxB9ATokgEQoG87Z25c67pCpYcCwmXYX8PBftC9pBfN18gnm/fh1wurSLEKIAt+QRFLFCQISrb66Jg==", + "version": "0.2.12", + "resolved": "https://registry.npmjs.org/@napi-rs/wasm-runtime/-/wasm-runtime-0.2.12.tgz", + "integrity": "sha512-ZVWUcfwY4E/yPitQJl481FjFo3K22D6qF0DuFH6Y/nbnE11GY5uguDxZMGXPQ8WQ0128MXQD7TnfHyK4oWoIJQ==", "dev": true, "license": "MIT", "optional": true, "dependencies": { - "@emnapi/core": "^1.4.0", - "@emnapi/runtime": "^1.4.0", - "@tybys/wasm-util": "^0.9.0" + "@emnapi/core": "^1.4.3", + "@emnapi/runtime": "^1.4.3", + "@tybys/wasm-util": "^0.10.0" + } + }, + "node_modules/@napi-rs/wasm-runtime/node_modules/@tybys/wasm-util": { + "version": "0.10.1", + "resolved": "https://registry.npmjs.org/@tybys/wasm-util/-/wasm-util-0.10.1.tgz", + "integrity": "sha512-9tTaPJLSiejZKx+Bmog4uSubteqTvFrVrURwkmHixBo0G4seD0zUxp98E1DzUBJxLQ3NPwXrGKDiVjwx/DpPsg==", + "dev": true, + "license": "MIT", + "optional": true, + "dependencies": { + "tslib": "^2.4.0" } }, "node_modules/@next/env": { @@ -2463,6 +2314,17 @@ "url": "https://github.com/sponsors/panva" } }, + "node_modules/@pkgjs/parseargs": { + "version": "0.11.0", + "resolved": "https://registry.npmjs.org/@pkgjs/parseargs/-/parseargs-0.11.0.tgz", + "integrity": "sha512-+1VkjdD0QBLPodGrJUeqarH8VAIvQODIbwh9XpP5Syisf7YoQgsJKPNFoqqLQlu+VQ/tVSshMR6loPMn8U+dPg==", + "dev": true, + "license": "MIT", + "optional": true, + "engines": { + "node": ">=14" + } + }, "node_modules/@pkgr/core": { "version": "0.2.9", "resolved": "https://registry.npmjs.org/@pkgr/core/-/core-0.2.9.tgz", @@ -3301,9 +3163,9 @@ "license": "MIT" }, "node_modules/@sinclair/typebox": { - "version": "0.27.8", - "resolved": "https://registry.npmjs.org/@sinclair/typebox/-/typebox-0.27.8.tgz", - "integrity": "sha512-+Fj43pSMwJs4KRrH/938Uf+uAELIgVBmQzg/q1YG10djyfA3TnrU8N8XzqCh/okZdszqBQTZf96idMfE5lnwTA==", + "version": "0.34.41", + "resolved": "https://registry.npmjs.org/@sinclair/typebox/-/typebox-0.34.41.tgz", + "integrity": "sha512-6gS8pZzSXdyRHTIqoqSVknxolr1kzfy4/CeDnrzsVz8TTIWUbOBr6gnzOmTYJ3eXQNh4IYHIGi5aIL7sOZ2G/g==", "dev": true, "license": "MIT" }, @@ -3318,13 +3180,13 @@ } }, "node_modules/@sinonjs/fake-timers": { - "version": "10.3.0", - "resolved": "https://registry.npmjs.org/@sinonjs/fake-timers/-/fake-timers-10.3.0.tgz", - "integrity": "sha512-V4BG07kuYSUkTCSBHG8G8TNhM+F19jXFWnQtzj+we8DrkpSBCee9Z3Ms8yiGer/dlmhe35/Xdgyo3/0rQKg7YA==", + "version": "13.0.5", + "resolved": "https://registry.npmjs.org/@sinonjs/fake-timers/-/fake-timers-13.0.5.tgz", + "integrity": "sha512-36/hTbH2uaWuGVERyC6da9YwGWnzUZXuPro/F2LfsdOsLnCojz/iSH8MxUt/FD2S5XBSVPhmArFUXcpCQ2Hkiw==", "dev": true, "license": "BSD-3-Clause", "dependencies": { - "@sinonjs/commons": "^3.0.0" + "@sinonjs/commons": "^3.0.1" } }, "node_modules/@swc/helpers": { @@ -3793,13 +3655,13 @@ } }, "node_modules/@types/babel__traverse": { - "version": "7.20.7", - "resolved": "https://registry.npmjs.org/@types/babel__traverse/-/babel__traverse-7.20.7.tgz", - "integrity": "sha512-dkO5fhS7+/oos4ciWxyEyjWe48zmG6wbCheo/G2ZnHx4fs3EU6YC6UM8rk56gAjNJ9P3MTH2jo5jb92/K6wbng==", + "version": "7.28.0", + "resolved": "https://registry.npmjs.org/@types/babel__traverse/-/babel__traverse-7.28.0.tgz", + "integrity": "sha512-8PvcXf70gTDZBgt9ptxJ8elBeBjcLOAcOtoO/mPJjtji1+CdGbHgm77om1GrsPxsiE+uXIpNSK64UYaIwQXd4Q==", "dev": true, "license": "MIT", "dependencies": { - "@babel/types": "^7.20.7" + "@babel/types": "^7.28.2" } }, "node_modules/@types/debug": { @@ -3826,16 +3688,6 @@ "@types/estree": "*" } }, - "node_modules/@types/graceful-fs": { - "version": "4.1.9", - "resolved": "https://registry.npmjs.org/@types/graceful-fs/-/graceful-fs-4.1.9.tgz", - "integrity": "sha512-olP3sd1qOEe5dXTSaFvQG+02VdRXcdytWLAZsAq1PecU8uqQAhkrnbli7DagjtXKW/Bl7YJbUsa8MPcuc8LHEQ==", - "dev": true, - "license": "MIT", - "dependencies": { - "@types/node": "*" - } - }, "node_modules/@types/hast": { "version": "3.0.4", "resolved": "https://registry.npmjs.org/@types/hast/-/hast-3.0.4.tgz", @@ -3873,14 +3725,14 @@ } }, "node_modules/@types/jest": { - "version": "29.5.14", - "resolved": "https://registry.npmjs.org/@types/jest/-/jest-29.5.14.tgz", - "integrity": "sha512-ZN+4sdnLUbo8EVvVc2ao0GFW6oVrQRPn4K2lglySj7APvSrgzxHiNNK99us4WDMi57xxA2yggblIAMNhXOotLQ==", + "version": "30.0.0", + "resolved": "https://registry.npmjs.org/@types/jest/-/jest-30.0.0.tgz", + "integrity": "sha512-XTYugzhuwqWjws0CVz8QpM36+T+Dz5mTEBKhNs/esGLnCIlGdRy+Dq78NRjd7ls7r8BC8ZRMOrKlkO1hU0JOwA==", "dev": true, "license": "MIT", "dependencies": { - "expect": "^29.0.0", - "pretty-format": "^29.0.0" + "expect": "^30.0.0", + "pretty-format": "^30.0.0" } }, "node_modules/@types/jest/node_modules/ansi-styles": { @@ -3897,18 +3749,18 @@ } }, "node_modules/@types/jest/node_modules/pretty-format": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-29.7.0.tgz", - "integrity": "sha512-Pdlw/oPxN+aXdmM9R00JVC9WVFoCLTKJvDVLgmJ+qAffBMxsV85l/Lu7sNx4zSzPyoL2euImuEwHhOXdEgNFZQ==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-30.2.0.tgz", + "integrity": "sha512-9uBdv/B4EefsuAL+pWqueZyZS2Ba+LxfFeQ9DN14HU4bN8bhaxKdkpjpB6fs9+pSjIBu+FXQHImEg8j/Lw0+vA==", "dev": true, "license": "MIT", "dependencies": { - "@jest/schemas": "^29.6.3", - "ansi-styles": "^5.0.0", - "react-is": "^18.0.0" + "@jest/schemas": "30.0.5", + "ansi-styles": "^5.2.0", + "react-is": "^18.3.1" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/@types/jest/node_modules/react-is": { @@ -4328,10 +4180,38 @@ "integrity": "sha512-WmoN8qaIAo7WTYWbAZuG8PYEhn5fkz7dZrqTBZ7dtt//lL2Gwms1IcnQ5yHqjDfX8Ft5j4YzDM23f87zBfDe9g==", "license": "ISC" }, + "node_modules/@unrs/resolver-binding-android-arm-eabi": { + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-android-arm-eabi/-/resolver-binding-android-arm-eabi-1.11.1.tgz", + "integrity": "sha512-ppLRUgHVaGRWUx0R0Ut06Mjo9gBaBkg3v/8AxusGLhsIotbBLuRk51rAzqLC8gq6NyyAojEXglNjzf6R948DNw==", + "cpu": [ + "arm" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "android" + ] + }, + "node_modules/@unrs/resolver-binding-android-arm64": { + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-android-arm64/-/resolver-binding-android-arm64-1.11.1.tgz", + "integrity": "sha512-lCxkVtb4wp1v+EoN+HjIG9cIIzPkX5OtM03pQYkG+U5O/wL53LC4QbIeazgiKqluGeVEeBlZahHalCaBvU1a2g==", + "cpu": [ + "arm64" + ], + "dev": true, + "license": "MIT", + "optional": true, + "os": [ + "android" + ] + }, "node_modules/@unrs/resolver-binding-darwin-arm64": { - "version": "1.7.2", - "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-darwin-arm64/-/resolver-binding-darwin-arm64-1.7.2.tgz", - "integrity": "sha512-vxtBno4xvowwNmO/ASL0Y45TpHqmNkAaDtz4Jqb+clmcVSSl8XCG/PNFFkGsXXXS6AMjP+ja/TtNCFFa1QwLRg==", + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-darwin-arm64/-/resolver-binding-darwin-arm64-1.11.1.tgz", + "integrity": "sha512-gPVA1UjRu1Y/IsB/dQEsp2V1pm44Of6+LWvbLc9SDk1c2KhhDRDBUkQCYVWe6f26uJb3fOK8saWMgtX8IrMk3g==", "cpu": [ "arm64" ], @@ -4343,9 +4223,9 @@ ] }, "node_modules/@unrs/resolver-binding-darwin-x64": { - "version": "1.7.2", - "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-darwin-x64/-/resolver-binding-darwin-x64-1.7.2.tgz", - "integrity": "sha512-qhVa8ozu92C23Hsmv0BF4+5Dyyd5STT1FolV4whNgbY6mj3kA0qsrGPe35zNR3wAN7eFict3s4Rc2dDTPBTuFQ==", + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-darwin-x64/-/resolver-binding-darwin-x64-1.11.1.tgz", + "integrity": "sha512-cFzP7rWKd3lZaCsDze07QX1SC24lO8mPty9vdP+YVa3MGdVgPmFc59317b2ioXtgCMKGiCLxJ4HQs62oz6GfRQ==", "cpu": [ "x64" ], @@ -4357,9 +4237,9 @@ ] }, "node_modules/@unrs/resolver-binding-freebsd-x64": { - "version": "1.7.2", - "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-freebsd-x64/-/resolver-binding-freebsd-x64-1.7.2.tgz", - "integrity": "sha512-zKKdm2uMXqLFX6Ac7K5ElnnG5VIXbDlFWzg4WJ8CGUedJryM5A3cTgHuGMw1+P5ziV8CRhnSEgOnurTI4vpHpg==", + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-freebsd-x64/-/resolver-binding-freebsd-x64-1.11.1.tgz", + "integrity": "sha512-fqtGgak3zX4DCB6PFpsH5+Kmt/8CIi4Bry4rb1ho6Av2QHTREM+47y282Uqiu3ZRF5IQioJQ5qWRV6jduA+iGw==", "cpu": [ "x64" ], @@ -4371,9 +4251,9 @@ ] }, "node_modules/@unrs/resolver-binding-linux-arm-gnueabihf": { - "version": "1.7.2", - "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-arm-gnueabihf/-/resolver-binding-linux-arm-gnueabihf-1.7.2.tgz", - "integrity": "sha512-8N1z1TbPnHH+iDS/42GJ0bMPLiGK+cUqOhNbMKtWJ4oFGzqSJk/zoXFzcQkgtI63qMcUI7wW1tq2usZQSb2jxw==", + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-arm-gnueabihf/-/resolver-binding-linux-arm-gnueabihf-1.11.1.tgz", + "integrity": "sha512-u92mvlcYtp9MRKmP+ZvMmtPN34+/3lMHlyMj7wXJDeXxuM0Vgzz0+PPJNsro1m3IZPYChIkn944wW8TYgGKFHw==", "cpu": [ "arm" ], @@ -4385,9 +4265,9 @@ ] }, "node_modules/@unrs/resolver-binding-linux-arm-musleabihf": { - "version": "1.7.2", - "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-arm-musleabihf/-/resolver-binding-linux-arm-musleabihf-1.7.2.tgz", - "integrity": "sha512-tjYzI9LcAXR9MYd9rO45m1s0B/6bJNuZ6jeOxo1pq1K6OBuRMMmfyvJYval3s9FPPGmrldYA3mi4gWDlWuTFGA==", + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-arm-musleabihf/-/resolver-binding-linux-arm-musleabihf-1.11.1.tgz", + "integrity": "sha512-cINaoY2z7LVCrfHkIcmvj7osTOtm6VVT16b5oQdS4beibX2SYBwgYLmqhBjA1t51CarSaBuX5YNsWLjsqfW5Cw==", "cpu": [ "arm" ], @@ -4399,9 +4279,9 @@ ] }, "node_modules/@unrs/resolver-binding-linux-arm64-gnu": { - "version": "1.7.2", - "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-arm64-gnu/-/resolver-binding-linux-arm64-gnu-1.7.2.tgz", - "integrity": "sha512-jon9M7DKRLGZ9VYSkFMflvNqu9hDtOCEnO2QAryFWgT6o6AXU8du56V7YqnaLKr6rAbZBWYsYpikF226v423QA==", + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-arm64-gnu/-/resolver-binding-linux-arm64-gnu-1.11.1.tgz", + "integrity": "sha512-34gw7PjDGB9JgePJEmhEqBhWvCiiWCuXsL9hYphDF7crW7UgI05gyBAi6MF58uGcMOiOqSJ2ybEeCvHcq0BCmQ==", "cpu": [ "arm64" ], @@ -4413,9 +4293,9 @@ ] }, "node_modules/@unrs/resolver-binding-linux-arm64-musl": { - "version": "1.7.2", - "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-arm64-musl/-/resolver-binding-linux-arm64-musl-1.7.2.tgz", - "integrity": "sha512-c8Cg4/h+kQ63pL43wBNaVMmOjXI/X62wQmru51qjfTvI7kmCy5uHTJvK/9LrF0G8Jdx8r34d019P1DVJmhXQpA==", + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-arm64-musl/-/resolver-binding-linux-arm64-musl-1.11.1.tgz", + "integrity": "sha512-RyMIx6Uf53hhOtJDIamSbTskA99sPHS96wxVE/bJtePJJtpdKGXO1wY90oRdXuYOGOTuqjT8ACccMc4K6QmT3w==", "cpu": [ "arm64" ], @@ -4427,9 +4307,9 @@ ] }, "node_modules/@unrs/resolver-binding-linux-ppc64-gnu": { - "version": "1.7.2", - "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-ppc64-gnu/-/resolver-binding-linux-ppc64-gnu-1.7.2.tgz", - "integrity": "sha512-A+lcwRFyrjeJmv3JJvhz5NbcCkLQL6Mk16kHTNm6/aGNc4FwPHPE4DR9DwuCvCnVHvF5IAd9U4VIs/VvVir5lg==", + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-ppc64-gnu/-/resolver-binding-linux-ppc64-gnu-1.11.1.tgz", + "integrity": "sha512-D8Vae74A4/a+mZH0FbOkFJL9DSK2R6TFPC9M+jCWYia/q2einCubX10pecpDiTmkJVUH+y8K3BZClycD8nCShA==", "cpu": [ "ppc64" ], @@ -4441,9 +4321,9 @@ ] }, "node_modules/@unrs/resolver-binding-linux-riscv64-gnu": { - "version": "1.7.2", - "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-riscv64-gnu/-/resolver-binding-linux-riscv64-gnu-1.7.2.tgz", - "integrity": "sha512-hQQ4TJQrSQW8JlPm7tRpXN8OCNP9ez7PajJNjRD1ZTHQAy685OYqPrKjfaMw/8LiHCt8AZ74rfUVHP9vn0N69Q==", + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-riscv64-gnu/-/resolver-binding-linux-riscv64-gnu-1.11.1.tgz", + "integrity": "sha512-frxL4OrzOWVVsOc96+V3aqTIQl1O2TjgExV4EKgRY09AJ9leZpEg8Ak9phadbuX0BA4k8U5qtvMSQQGGmaJqcQ==", "cpu": [ "riscv64" ], @@ -4455,9 +4335,9 @@ ] }, "node_modules/@unrs/resolver-binding-linux-riscv64-musl": { - "version": "1.7.2", - "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-riscv64-musl/-/resolver-binding-linux-riscv64-musl-1.7.2.tgz", - "integrity": "sha512-NoAGbiqrxtY8kVooZ24i70CjLDlUFI7nDj3I9y54U94p+3kPxwd2L692YsdLa+cqQ0VoqMWoehDFp21PKRUoIQ==", + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-riscv64-musl/-/resolver-binding-linux-riscv64-musl-1.11.1.tgz", + "integrity": "sha512-mJ5vuDaIZ+l/acv01sHoXfpnyrNKOk/3aDoEdLO/Xtn9HuZlDD6jKxHlkN8ZhWyLJsRBxfv9GYM2utQ1SChKew==", "cpu": [ "riscv64" ], @@ -4469,9 +4349,9 @@ ] }, "node_modules/@unrs/resolver-binding-linux-s390x-gnu": { - "version": "1.7.2", - "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-s390x-gnu/-/resolver-binding-linux-s390x-gnu-1.7.2.tgz", - "integrity": "sha512-KaZByo8xuQZbUhhreBTW+yUnOIHUsv04P8lKjQ5otiGoSJ17ISGYArc+4vKdLEpGaLbemGzr4ZeUbYQQsLWFjA==", + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-s390x-gnu/-/resolver-binding-linux-s390x-gnu-1.11.1.tgz", + "integrity": "sha512-kELo8ebBVtb9sA7rMe1Cph4QHreByhaZ2QEADd9NzIQsYNQpt9UkM9iqr2lhGr5afh885d/cB5QeTXSbZHTYPg==", "cpu": [ "s390x" ], @@ -4483,9 +4363,9 @@ ] }, "node_modules/@unrs/resolver-binding-linux-x64-gnu": { - "version": "1.7.2", - "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-x64-gnu/-/resolver-binding-linux-x64-gnu-1.7.2.tgz", - "integrity": "sha512-dEidzJDubxxhUCBJ/SHSMJD/9q7JkyfBMT77Px1npl4xpg9t0POLvnWywSk66BgZS/b2Hy9Y1yFaoMTFJUe9yg==", + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-x64-gnu/-/resolver-binding-linux-x64-gnu-1.11.1.tgz", + "integrity": "sha512-C3ZAHugKgovV5YvAMsxhq0gtXuwESUKc5MhEtjBpLoHPLYM+iuwSj3lflFwK3DPm68660rZ7G8BMcwSro7hD5w==", "cpu": [ "x64" ], @@ -4497,9 +4377,9 @@ ] }, "node_modules/@unrs/resolver-binding-linux-x64-musl": { - "version": "1.7.2", - "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-x64-musl/-/resolver-binding-linux-x64-musl-1.7.2.tgz", - "integrity": "sha512-RvP+Ux3wDjmnZDT4XWFfNBRVG0fMsc+yVzNFUqOflnDfZ9OYujv6nkh+GOr+watwrW4wdp6ASfG/e7bkDradsw==", + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-linux-x64-musl/-/resolver-binding-linux-x64-musl-1.11.1.tgz", + "integrity": "sha512-rV0YSoyhK2nZ4vEswT/QwqzqQXw5I6CjoaYMOX0TqBlWhojUf8P94mvI7nuJTeaCkkds3QE4+zS8Ko+GdXuZtA==", "cpu": [ "x64" ], @@ -4511,9 +4391,9 @@ ] }, "node_modules/@unrs/resolver-binding-wasm32-wasi": { - "version": "1.7.2", - "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-wasm32-wasi/-/resolver-binding-wasm32-wasi-1.7.2.tgz", - "integrity": "sha512-y797JBmO9IsvXVRCKDXOxjyAE4+CcZpla2GSoBQ33TVb3ILXuFnMrbR/QQZoauBYeOFuu4w3ifWLw52sdHGz6g==", + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-wasm32-wasi/-/resolver-binding-wasm32-wasi-1.11.1.tgz", + "integrity": "sha512-5u4RkfxJm+Ng7IWgkzi3qrFOvLvQYnPBmjmZQ8+szTK/b31fQCnleNl1GgEt7nIsZRIf5PLhPwT0WM+q45x/UQ==", "cpu": [ "wasm32" ], @@ -4521,16 +4401,16 @@ "license": "MIT", "optional": true, "dependencies": { - "@napi-rs/wasm-runtime": "^0.2.9" + "@napi-rs/wasm-runtime": "^0.2.11" }, "engines": { "node": ">=14.0.0" } }, "node_modules/@unrs/resolver-binding-win32-arm64-msvc": { - "version": "1.7.2", - "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-win32-arm64-msvc/-/resolver-binding-win32-arm64-msvc-1.7.2.tgz", - "integrity": "sha512-gtYTh4/VREVSLA+gHrfbWxaMO/00y+34htY7XpioBTy56YN2eBjkPrY1ML1Zys89X3RJDKVaogzwxlM1qU7egg==", + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-win32-arm64-msvc/-/resolver-binding-win32-arm64-msvc-1.11.1.tgz", + "integrity": "sha512-nRcz5Il4ln0kMhfL8S3hLkxI85BXs3o8EYoattsJNdsX4YUU89iOkVn7g0VHSRxFuVMdM4Q1jEpIId1Ihim/Uw==", "cpu": [ "arm64" ], @@ -4542,9 +4422,9 @@ ] }, "node_modules/@unrs/resolver-binding-win32-ia32-msvc": { - "version": "1.7.2", - "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-win32-ia32-msvc/-/resolver-binding-win32-ia32-msvc-1.7.2.tgz", - "integrity": "sha512-Ywv20XHvHTDRQs12jd3MY8X5C8KLjDbg/jyaal/QLKx3fAShhJyD4blEANInsjxW3P7isHx1Blt56iUDDJO3jg==", + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-win32-ia32-msvc/-/resolver-binding-win32-ia32-msvc-1.11.1.tgz", + "integrity": "sha512-DCEI6t5i1NmAZp6pFonpD5m7i6aFrpofcp4LA2i8IIq60Jyo28hamKBxNrZcyOwVOZkgsRp9O2sXWBWP8MnvIQ==", "cpu": [ "ia32" ], @@ -4556,9 +4436,9 @@ ] }, "node_modules/@unrs/resolver-binding-win32-x64-msvc": { - "version": "1.7.2", - "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-win32-x64-msvc/-/resolver-binding-win32-x64-msvc-1.7.2.tgz", - "integrity": "sha512-friS8NEQfHaDbkThxopGk+LuE5v3iY0StruifjQEt7SLbA46OnfgMO15sOTkbpJkol6RB+1l1TYPXh0sCddpvA==", + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/@unrs/resolver-binding-win32-x64-msvc/-/resolver-binding-win32-x64-msvc-1.11.1.tgz", + "integrity": "sha512-lrW200hZdbfRtztbygyaq/6jP6AKE8qQN2KvPcJ+x7wiD038YtnYtZ82IMNJ69GJibV7bwL3y9FgK+5w/pYt6g==", "cpu": [ "x64" ], @@ -4966,91 +4846,64 @@ } }, "node_modules/babel-jest": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/babel-jest/-/babel-jest-29.7.0.tgz", - "integrity": "sha512-BrvGY3xZSwEcCzKvKsCi2GgHqDqsYkOP4/by5xCgIwGXQxIEh+8ew3gmrE1y7XRR6LHZIj6yLYnUi/mm2KXKBg==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/babel-jest/-/babel-jest-30.2.0.tgz", + "integrity": "sha512-0YiBEOxWqKkSQWL9nNGGEgndoeL0ZpWrbLMNL5u/Kaxrli3Eaxlt3ZtIDktEvXt4L/R9r3ODr2zKwGM/2BjxVw==", "dev": true, "license": "MIT", "dependencies": { - "@jest/transform": "^29.7.0", - "@types/babel__core": "^7.1.14", - "babel-plugin-istanbul": "^6.1.1", - "babel-preset-jest": "^29.6.3", - "chalk": "^4.0.0", - "graceful-fs": "^4.2.9", + "@jest/transform": "30.2.0", + "@types/babel__core": "^7.20.5", + "babel-plugin-istanbul": "^7.0.1", + "babel-preset-jest": "30.2.0", + "chalk": "^4.1.2", + "graceful-fs": "^4.2.11", "slash": "^3.0.0" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" }, "peerDependencies": { - "@babel/core": "^7.8.0" + "@babel/core": "^7.11.0 || ^8.0.0-0" } }, "node_modules/babel-plugin-istanbul": { - "version": "6.1.1", - "resolved": "https://registry.npmjs.org/babel-plugin-istanbul/-/babel-plugin-istanbul-6.1.1.tgz", - "integrity": "sha512-Y1IQok9821cC9onCx5otgFfRm7Lm+I+wwxOx738M/WLPZ9Q42m4IG5W0FNX8WLL2gYMZo3JkuXIH2DOpWM+qwA==", + "version": "7.0.1", + "resolved": "https://registry.npmjs.org/babel-plugin-istanbul/-/babel-plugin-istanbul-7.0.1.tgz", + "integrity": "sha512-D8Z6Qm8jCvVXtIRkBnqNHX0zJ37rQcFJ9u8WOS6tkYOsRdHBzypCstaxWiu5ZIlqQtviRYbgnRLSoCEvjqcqbA==", "dev": true, "license": "BSD-3-Clause", + "workspaces": [ + "test/babel-8" + ], "dependencies": { "@babel/helper-plugin-utils": "^7.0.0", "@istanbuljs/load-nyc-config": "^1.0.0", - "@istanbuljs/schema": "^0.1.2", - "istanbul-lib-instrument": "^5.0.4", + "@istanbuljs/schema": "^0.1.3", + "istanbul-lib-instrument": "^6.0.2", "test-exclude": "^6.0.0" }, "engines": { - "node": ">=8" - } - }, - "node_modules/babel-plugin-istanbul/node_modules/istanbul-lib-instrument": { - "version": "5.2.1", - "resolved": "https://registry.npmjs.org/istanbul-lib-instrument/-/istanbul-lib-instrument-5.2.1.tgz", - "integrity": "sha512-pzqtp31nLv/XFOzXGuvhCb8qhjmTVo5vjVk19XE4CRlSWz0KoeJ3bw9XsA7nOp9YBf4qHjwBxkDzKcME/J29Yg==", - "dev": true, - "license": "BSD-3-Clause", - "dependencies": { - "@babel/core": "^7.12.3", - "@babel/parser": "^7.14.7", - "@istanbuljs/schema": "^0.1.2", - "istanbul-lib-coverage": "^3.2.0", - "semver": "^6.3.0" - }, - "engines": { - "node": ">=8" - } - }, - "node_modules/babel-plugin-istanbul/node_modules/semver": { - "version": "6.3.1", - "resolved": "https://registry.npmjs.org/semver/-/semver-6.3.1.tgz", - "integrity": "sha512-BR7VvDCVHO+q2xBEWskxS6DJE1qRnb7DxzUrogb71CWoSficBxYsiAGd+Kl0mmq/MprG9yArRkyrQxTO6XjMzA==", - "dev": true, - "license": "ISC", - "bin": { - "semver": "bin/semver.js" + "node": ">=12" } }, "node_modules/babel-plugin-jest-hoist": { - "version": "29.6.3", - "resolved": "https://registry.npmjs.org/babel-plugin-jest-hoist/-/babel-plugin-jest-hoist-29.6.3.tgz", - "integrity": "sha512-ESAc/RJvGTFEzRwOTT4+lNDk/GNHMkKbNzsvT0qKRfDyyYTskxB5rnU2njIDYVxXCBHHEI1c0YwHob3WaYujOg==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/babel-plugin-jest-hoist/-/babel-plugin-jest-hoist-30.2.0.tgz", + "integrity": "sha512-ftzhzSGMUnOzcCXd6WHdBGMyuwy15Wnn0iyyWGKgBDLxf9/s5ABuraCSpBX2uG0jUg4rqJnxsLc5+oYBqoxVaA==", "dev": true, "license": "MIT", "dependencies": { - "@babel/template": "^7.3.3", - "@babel/types": "^7.3.3", - "@types/babel__core": "^7.1.14", - "@types/babel__traverse": "^7.0.6" + "@types/babel__core": "^7.20.5" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/babel-preset-current-node-syntax": { - "version": "1.1.0", - "resolved": "https://registry.npmjs.org/babel-preset-current-node-syntax/-/babel-preset-current-node-syntax-1.1.0.tgz", - "integrity": "sha512-ldYss8SbBlWva1bs28q78Ju5Zq1F+8BrqBZZ0VFhLBvhh6lCpC2o3gDJi/5DRLs9FgYZCnmPYIVFU4lRXCkyUw==", + "version": "1.2.0", + "resolved": "https://registry.npmjs.org/babel-preset-current-node-syntax/-/babel-preset-current-node-syntax-1.2.0.tgz", + "integrity": "sha512-E/VlAEzRrsLEb2+dv8yp3bo4scof3l9nR4lrld+Iy5NyVqgVYUJnDAmunkhPMisRI32Qc4iRiz425d8vM++2fg==", "dev": true, "license": "MIT", "dependencies": { @@ -5071,24 +4924,24 @@ "@babel/plugin-syntax-top-level-await": "^7.14.5" }, "peerDependencies": { - "@babel/core": "^7.0.0" + "@babel/core": "^7.0.0 || ^8.0.0-0" } }, "node_modules/babel-preset-jest": { - "version": "29.6.3", - "resolved": "https://registry.npmjs.org/babel-preset-jest/-/babel-preset-jest-29.6.3.tgz", - "integrity": "sha512-0B3bhxR6snWXJZtR/RliHTDPRgn1sNHOR0yVtq/IiQFyuOVjFS+wuio/R4gSNkyYmKmJB4wGZv2NZanmKmTnNA==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/babel-preset-jest/-/babel-preset-jest-30.2.0.tgz", + "integrity": "sha512-US4Z3NOieAQumwFnYdUWKvUKh8+YSnS/gB3t6YBiz0bskpu7Pine8pPCheNxlPEW4wnUkma2a94YuW2q3guvCQ==", "dev": true, "license": "MIT", "dependencies": { - "babel-plugin-jest-hoist": "^29.6.3", - "babel-preset-current-node-syntax": "^1.0.0" + "babel-plugin-jest-hoist": "30.2.0", + "babel-preset-current-node-syntax": "^1.2.0" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" }, "peerDependencies": { - "@babel/core": "^7.0.0" + "@babel/core": "^7.11.0 || ^8.0.0-beta.1" } }, "node_modules/bail": { @@ -5108,6 +4961,16 @@ "dev": true, "license": "MIT" }, + "node_modules/baseline-browser-mapping": { + "version": "2.8.18", + "resolved": "https://registry.npmjs.org/baseline-browser-mapping/-/baseline-browser-mapping-2.8.18.tgz", + "integrity": "sha512-UYmTpOBwgPScZpS4A+YbapwWuBwasxvO/2IOHArSsAhL/+ZdmATBXTex3t+l2hXwLVYK382ibr/nKoY9GKe86w==", + "dev": true, + "license": "Apache-2.0", + "bin": { + "baseline-browser-mapping": "dist/cli.js" + } + }, "node_modules/brace-expansion": { "version": "1.1.11", "resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-1.1.11.tgz", @@ -5133,9 +4996,9 @@ } }, "node_modules/browserslist": { - "version": "4.24.5", - "resolved": "https://registry.npmjs.org/browserslist/-/browserslist-4.24.5.tgz", - "integrity": "sha512-FDToo4Wo82hIdgc1CQ+NQD0hEhmpPjrZ3hiUgwgOG6IuTdlpr8jdjyG24P6cNP1yJpTLzS5OcGgSw0xmDU1/Tw==", + "version": "4.26.3", + "resolved": "https://registry.npmjs.org/browserslist/-/browserslist-4.26.3.tgz", + "integrity": "sha512-lAUU+02RFBuCKQPj/P6NgjlbCnLBMp4UtgTx7vNHd3XSIJF87s9a5rA3aH2yw3GS9DqZAUbOtZdCCiZeVRqt0w==", "dev": true, "funding": [ { @@ -5153,9 +5016,10 @@ ], "license": "MIT", "dependencies": { - "caniuse-lite": "^1.0.30001716", - "electron-to-chromium": "^1.5.149", - "node-releases": "^2.0.19", + "baseline-browser-mapping": "^2.8.9", + "caniuse-lite": "^1.0.30001746", + "electron-to-chromium": "^1.5.227", + "node-releases": "^2.0.21", "update-browserslist-db": "^1.1.3" }, "bin": { @@ -5252,9 +5116,9 @@ } }, "node_modules/caniuse-lite": { - "version": "1.0.30001718", - "resolved": "https://registry.npmjs.org/caniuse-lite/-/caniuse-lite-1.0.30001718.tgz", - "integrity": "sha512-AflseV1ahcSunK53NfEs9gFWgOEmzr0f+kaMFA4xiLZlr9Hzt7HxcSpIFcnNCUkz6R6dWKa54rUz3HUmI3nVcw==", + "version": "1.0.30001751", + "resolved": "https://registry.npmjs.org/caniuse-lite/-/caniuse-lite-1.0.30001751.tgz", + "integrity": "sha512-A0QJhug0Ly64Ii3eIqHu5X51ebln3k4yTUkY1j8drqpWHVreg/VLijN48cZ1bYPiqOQuqpkIKnzr/Ul8V+p6Cw==", "funding": [ { "type": "opencollective", @@ -5359,9 +5223,9 @@ } }, "node_modules/ci-info": { - "version": "3.9.0", - "resolved": "https://registry.npmjs.org/ci-info/-/ci-info-3.9.0.tgz", - "integrity": "sha512-NIxF55hv4nSqQswkAeiOi1r83xy8JldOFDTWiug55KBu9Jnblncd2U6ViHmYgHf01TPZS77NJBhBMKdWj9HQMQ==", + "version": "4.3.1", + "resolved": "https://registry.npmjs.org/ci-info/-/ci-info-4.3.1.tgz", + "integrity": "sha512-Wdy2Igu8OcBpI2pZePZ5oWjPC38tmDVx5WKUXKwlLYkA0ozo85sLsLvkBbBn/sZaSCMFOGZJ14fvW9t5/d7kdA==", "dev": true, "funding": [ { @@ -5375,9 +5239,9 @@ } }, "node_modules/cjs-module-lexer": { - "version": "1.4.3", - "resolved": "https://registry.npmjs.org/cjs-module-lexer/-/cjs-module-lexer-1.4.3.tgz", - "integrity": "sha512-9z8TZaGM1pfswYeXrUpzPrkx8UnWYdhJclsiYMm6x/w5+nN+8Tf/LnAgfLGQCm59qAOxU8WwHEq2vNwF6i4j+Q==", + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/cjs-module-lexer/-/cjs-module-lexer-2.1.0.tgz", + "integrity": "sha512-UX0OwmYRYQQetfrLEZeewIFFI+wSTofC+pMBLNuH3RUuu/xzG1oz84UCEDOSoQlN3fZ4+AzmV50ZYvGqkMh9yA==", "dev": true, "license": "MIT" }, @@ -5414,6 +5278,59 @@ "node": ">=12" } }, + "node_modules/cliui/node_modules/emoji-regex": { + "version": "8.0.0", + "resolved": "https://registry.npmjs.org/emoji-regex/-/emoji-regex-8.0.0.tgz", + "integrity": "sha512-MSjYzcWNOA0ewAHpz0MxpYFvwg6yjy1NG3xteoqz644VCo/RPgnr1/GGt+ic3iJTzQ8Eu3TdM14SawnVUmGE6A==", + "dev": true, + "license": "MIT" + }, + "node_modules/cliui/node_modules/string-width": { + "version": "4.2.3", + "resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz", + "integrity": "sha512-wKyQRQpjJ0sIp62ErSZdGsjMJWsap5oRNihHhu6G7JVO/9jIB6UyevL+tXuOqrng8j/cxKTWyWUwvSTriiZz/g==", + "dev": true, + "license": "MIT", + "dependencies": { + "emoji-regex": "^8.0.0", + "is-fullwidth-code-point": "^3.0.0", + "strip-ansi": "^6.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/cliui/node_modules/strip-ansi": { + "version": "6.0.1", + "resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-6.0.1.tgz", + "integrity": "sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==", + "dev": true, + "license": "MIT", + "dependencies": { + "ansi-regex": "^5.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/cliui/node_modules/wrap-ansi": { + "version": "7.0.0", + "resolved": "https://registry.npmjs.org/wrap-ansi/-/wrap-ansi-7.0.0.tgz", + "integrity": "sha512-YVGIj2kamLSTxw6NsZjoBxfSwsn0ycdesmc4p+Q21c5zPuZ1pl+NfxVdxPtdHvmNVOQ6XSYG4AUtyt/Fi7D16Q==", + "dev": true, + "license": "MIT", + "dependencies": { + "ansi-styles": "^4.0.0", + "string-width": "^4.1.0", + "strip-ansi": "^6.0.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/wrap-ansi?sponsor=1" + } + }, "node_modules/clsx": { "version": "2.1.1", "resolved": "https://registry.npmjs.org/clsx/-/clsx-2.1.1.tgz", @@ -5435,9 +5352,9 @@ } }, "node_modules/collect-v8-coverage": { - "version": "1.0.2", - "resolved": "https://registry.npmjs.org/collect-v8-coverage/-/collect-v8-coverage-1.0.2.tgz", - "integrity": "sha512-lHl4d5/ONEbLlJvaJNtsF/Lz+WvB07u2ycqTYbdrq7UypDXailES4valYb2eWiJFxZlVmpGekfqoxQhzyFdT4Q==", + "version": "1.0.3", + "resolved": "https://registry.npmjs.org/collect-v8-coverage/-/collect-v8-coverage-1.0.3.tgz", + "integrity": "sha512-1L5aqIkwPfiodaMgQunkF1zRhNqifHBmtbbbxcr6yVxxBnliw4TDOW6NxpO8DJLgJ16OT+Y4ztZqP6p/FtXnAw==", "dev": true, "license": "MIT" }, @@ -5531,28 +5448,6 @@ "node": ">= 0.6" } }, - "node_modules/create-jest": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/create-jest/-/create-jest-29.7.0.tgz", - "integrity": "sha512-Adz2bdH0Vq3F53KEMJOoftQFutWCukm6J24wbPWRO4k1kMY7gS7ds/uoJkNuV8wDCtWWnuwGcJwpWcih+zEW1Q==", - "dev": true, - "license": "MIT", - "dependencies": { - "@jest/types": "^29.6.3", - "chalk": "^4.0.0", - "exit": "^0.1.2", - "graceful-fs": "^4.2.9", - "jest-config": "^29.7.0", - "jest-util": "^29.7.0", - "prompts": "^2.0.1" - }, - "bin": { - "create-jest": "bin/create-jest.js" - }, - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - } - }, "node_modules/create-require": { "version": "1.1.1", "resolved": "https://registry.npmjs.org/create-require/-/create-require-1.1.1.tgz", @@ -5752,9 +5647,9 @@ } }, "node_modules/dedent": { - "version": "1.6.0", - "resolved": "https://registry.npmjs.org/dedent/-/dedent-1.6.0.tgz", - "integrity": "sha512-F1Z+5UCFpmQUzJa11agbyPVMbpgT/qA3/SKyJ1jyBgm7dUcUEa8v9JwDkerSQXfakBwFljIxhOJqGkjUwZ9FSA==", + "version": "1.7.0", + "resolved": "https://registry.npmjs.org/dedent/-/dedent-1.7.0.tgz", + "integrity": "sha512-HGFtf8yhuhGhqO07SV79tRp+br4MnbdjeVxotpn1QBl30pcLLCQjX5b2295ll0fv8RKDKsmWYrl05usHM9CewQ==", "dev": true, "license": "MIT", "peerDependencies": { @@ -5886,16 +5781,6 @@ "node": ">=0.3.1" } }, - "node_modules/diff-sequences": { - "version": "29.6.3", - "resolved": "https://registry.npmjs.org/diff-sequences/-/diff-sequences-29.6.3.tgz", - "integrity": "sha512-EjePK1srD3P08o2j4f0ExnylqRs5B9tJjcp9t1krH2qRi8CCdsYfwe9JgSLurFBWwq4uOlipzfk5fHNvwFKr8Q==", - "dev": true, - "license": "MIT", - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - } - }, "node_modules/doctrine": { "version": "2.1.0", "resolved": "https://registry.npmjs.org/doctrine/-/doctrine-2.1.0.tgz", @@ -5930,10 +5815,17 @@ "node": ">= 0.4" } }, + "node_modules/eastasianwidth": { + "version": "0.2.0", + "resolved": "https://registry.npmjs.org/eastasianwidth/-/eastasianwidth-0.2.0.tgz", + "integrity": "sha512-I88TYZWc9XiYHRQ4/3c5rjjfgkjhLyW2luGIheGERbNQ6OY7yTybanSpDXZa8y7VUP9YmDcYa+eyq4ca7iLqWA==", + "dev": true, + "license": "MIT" + }, "node_modules/electron-to-chromium": { - "version": "1.5.155", - "resolved": "https://registry.npmjs.org/electron-to-chromium/-/electron-to-chromium-1.5.155.tgz", - "integrity": "sha512-ps5KcGGmwL8VaeJlvlDlu4fORQpv3+GIcF5I3f9tUKUlJ/wsysh6HU8P5L1XWRYeXfA0oJd4PyM8ds8zTFf6Ng==", + "version": "1.5.237", + "resolved": "https://registry.npmjs.org/electron-to-chromium/-/electron-to-chromium-1.5.237.tgz", + "integrity": "sha512-icUt1NvfhGLar5lSWH3tHNzablaA5js3HVHacQimfP8ViEBOQv+L7DKEuHdbTZ0SKCO1ogTJTIL1Gwk9S6Qvcg==", "dev": true, "license": "ISC" }, @@ -5985,9 +5877,9 @@ } }, "node_modules/error-ex": { - "version": "1.3.2", - "resolved": "https://registry.npmjs.org/error-ex/-/error-ex-1.3.2.tgz", - "integrity": "sha512-7dFHNmqeFSEt2ZBsCriorKnn3Z2pj+fd9kmI6QoWw4//DL+icEBfc0U7qJCisqrTsKTjw4fNFy2pW9OqStD84g==", + "version": "1.3.4", + "resolved": "https://registry.npmjs.org/error-ex/-/error-ex-1.3.4.tgz", + "integrity": "sha512-sqQamAnR14VgCr1A618A3sGrygcpK+HEbenA/HiEAkkUwcZIIB/tgWqHFxWgOyDh4nB4JCRimh79dR5Ywc9MDQ==", "dev": true, "license": "MIT", "dependencies": { @@ -6724,30 +6616,39 @@ "url": "https://github.com/sindresorhus/execa?sponsor=1" } }, - "node_modules/exit": { - "version": "0.1.2", - "resolved": "https://registry.npmjs.org/exit/-/exit-0.1.2.tgz", - "integrity": "sha512-Zk/eNKV2zbjpKzrsQ+n1G6poVbErQxJ0LBOJXaKZ1EViLzH+hrLu9cdXI4zw9dBQJslwBEpbQ2P1oS7nDxs6jQ==", + "node_modules/execa/node_modules/signal-exit": { + "version": "3.0.7", + "resolved": "https://registry.npmjs.org/signal-exit/-/signal-exit-3.0.7.tgz", + "integrity": "sha512-wnD2ZE+l+SPC/uoS0vXeE9L1+0wuaMqKlfz9AMUo38JsyLSBWSFcHR1Rri62LZc12vLr1gb3jl7iwQhgwpAbGQ==", "dev": true, + "license": "ISC" + }, + "node_modules/exit-x": { + "version": "0.2.2", + "resolved": "https://registry.npmjs.org/exit-x/-/exit-x-0.2.2.tgz", + "integrity": "sha512-+I6B/IkJc1o/2tiURyz/ivu/O0nKNEArIUB5O7zBrlDVJr22SCLH3xTeEry428LvFhRzIA1g8izguxJ/gbNcVQ==", + "dev": true, + "license": "MIT", "engines": { "node": ">= 0.8.0" } }, "node_modules/expect": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/expect/-/expect-29.7.0.tgz", - "integrity": "sha512-2Zks0hf1VLFYI1kbh0I5jP3KHHyCHpkfyHBzsSXRFgl/Bg9mWYfMW8oD+PdMPlEwy5HNsR9JutYy6pMeOh61nw==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/expect/-/expect-30.2.0.tgz", + "integrity": "sha512-u/feCi0GPsI+988gU2FLcsHyAHTU0MX1Wg68NhAnN7z/+C5wqG+CY8J53N9ioe8RXgaoz0nBR/TYMf3AycUuPw==", "dev": true, "license": "MIT", "dependencies": { - "@jest/expect-utils": "^29.7.0", - "jest-get-type": "^29.6.3", - "jest-matcher-utils": "^29.7.0", - "jest-message-util": "^29.7.0", - "jest-util": "^29.7.0" + "@jest/expect-utils": "30.2.0", + "@jest/get-type": "30.1.0", + "jest-matcher-utils": "30.2.0", + "jest-message-util": "30.2.0", + "jest-mock": "30.2.0", + "jest-util": "30.2.0" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/extend": { @@ -6914,6 +6815,23 @@ "url": "https://github.com/sponsors/ljharb" } }, + "node_modules/foreground-child": { + "version": "3.3.1", + "resolved": "https://registry.npmjs.org/foreground-child/-/foreground-child-3.3.1.tgz", + "integrity": "sha512-gIXjKqtFuWEgzFRJA9WCQeSJLZDjgJUOMCMzxtvFq/37KojM1BFGufqsCy0r4qSQmYLsZYMeyRqzIWOMup03sw==", + "dev": true, + "license": "ISC", + "dependencies": { + "cross-spawn": "^7.0.6", + "signal-exit": "^4.0.1" + }, + "engines": { + "node": ">=14" + }, + "funding": { + "url": "https://github.com/sponsors/isaacs" + } + }, "node_modules/form-data": { "version": "4.0.4", "resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.4.tgz", @@ -7180,22 +7098,21 @@ } }, "node_modules/glob": { - "version": "7.2.3", - "resolved": "https://registry.npmjs.org/glob/-/glob-7.2.3.tgz", - "integrity": "sha512-nFR0zLpU2YCaRxwoCJvL6UvCH2JFyFVIvwTLsIf21AuHlMskA1hhTdk+LlYJtOlYt9v6dvszD2BGRqBL+iQK9Q==", - "deprecated": "Glob versions prior to v9 are no longer supported", + "version": "10.4.5", + "resolved": "https://registry.npmjs.org/glob/-/glob-10.4.5.tgz", + "integrity": "sha512-7Bv8RF0k6xjo7d4A/PxYLbUCfb6c+Vpd2/mB2yRDlew7Jb5hEXiCD9ibfO7wpk8i4sevK6DFny9h7EYbM3/sHg==", "dev": true, "license": "ISC", "dependencies": { - "fs.realpath": "^1.0.0", - "inflight": "^1.0.4", - "inherits": "2", - "minimatch": "^3.1.1", - "once": "^1.3.0", - "path-is-absolute": "^1.0.0" + "foreground-child": "^3.1.0", + "jackspeak": "^3.1.2", + "minimatch": "^9.0.4", + "minipass": "^7.1.2", + "package-json-from-dist": "^1.0.0", + "path-scurry": "^1.11.1" }, - "engines": { - "node": "*" + "bin": { + "glob": "dist/esm/bin.mjs" }, "funding": { "url": "https://github.com/sponsors/isaacs" @@ -7214,6 +7131,32 @@ "node": ">=10.13.0" } }, + "node_modules/glob/node_modules/brace-expansion": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-2.0.2.tgz", + "integrity": "sha512-Jt0vHyM+jmUBqojB7E1NIYadt0vI0Qxjxd2TErW94wDz+E2LAm5vKMXXwg6ZZBTHPuUlDgQHKXvjGBdfcF1ZDQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "balanced-match": "^1.0.0" + } + }, + "node_modules/glob/node_modules/minimatch": { + "version": "9.0.5", + "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-9.0.5.tgz", + "integrity": "sha512-G6T0ZX48xgozx7587koeX9Ys2NYy6Gmv//P89sEte9V9whIapMNF4idKxnW2QtCcLiTWlb/wfCabAtAFWhhBow==", + "dev": true, + "license": "ISC", + "dependencies": { + "brace-expansion": "^2.0.1" + }, + "engines": { + "node": ">=16 || 14 >=14.17" + }, + "funding": { + "url": "https://github.com/sponsors/isaacs" + } + }, "node_modules/globals": { "version": "14.0.0", "resolved": "https://registry.npmjs.org/globals/-/globals-14.0.0.tgz", @@ -8179,24 +8122,24 @@ } }, "node_modules/istanbul-lib-source-maps": { - "version": "4.0.1", - "resolved": "https://registry.npmjs.org/istanbul-lib-source-maps/-/istanbul-lib-source-maps-4.0.1.tgz", - "integrity": "sha512-n3s8EwkdFIJCG3BPKBYvskgXGoy88ARzvegkitk60NxRdwltLOTaH7CUiMRXvwYorl0Q712iEjcWB+fK/MrWVw==", + "version": "5.0.6", + "resolved": "https://registry.npmjs.org/istanbul-lib-source-maps/-/istanbul-lib-source-maps-5.0.6.tgz", + "integrity": "sha512-yg2d+Em4KizZC5niWhQaIomgf5WlL4vOOjZ5xGCmF8SnPE/mDWWXgvRExdcpCgh9lLRRa1/fSYp2ymmbJ1pI+A==", "dev": true, "license": "BSD-3-Clause", "dependencies": { + "@jridgewell/trace-mapping": "^0.3.23", "debug": "^4.1.1", - "istanbul-lib-coverage": "^3.0.0", - "source-map": "^0.6.1" + "istanbul-lib-coverage": "^3.0.0" }, "engines": { "node": ">=10" } }, "node_modules/istanbul-reports": { - "version": "3.1.7", - "resolved": "https://registry.npmjs.org/istanbul-reports/-/istanbul-reports-3.1.7.tgz", - "integrity": "sha512-BewmUXImeuRk2YY0PVbxgKAysvhRPUQE0h5QRM++nVWyubKGV0l8qQ5op8+B2DOmwSe63Jivj0BjkPQVf8fP5g==", + "version": "3.2.0", + "resolved": "https://registry.npmjs.org/istanbul-reports/-/istanbul-reports-3.2.0.tgz", + "integrity": "sha512-HGYWWS/ehqTV3xN10i23tkPkpH46MLCIMFNCaaKNavAXTF1RkqxawEPtnjnGZ6XKSInBKkiOA5BKS+aZiY3AvA==", "dev": true, "license": "BSD-3-Clause", "dependencies": { @@ -8225,23 +8168,39 @@ "node": ">= 0.4" } }, + "node_modules/jackspeak": { + "version": "3.4.3", + "resolved": "https://registry.npmjs.org/jackspeak/-/jackspeak-3.4.3.tgz", + "integrity": "sha512-OGlZQpz2yfahA/Rd1Y8Cd9SIEsqvXkLVoSw/cgwhnhFMDbsQFeZYoJJ7bIZBS9BcamUW96asq/npPWugM+RQBw==", + "dev": true, + "license": "BlueOak-1.0.0", + "dependencies": { + "@isaacs/cliui": "^8.0.2" + }, + "funding": { + "url": "https://github.com/sponsors/isaacs" + }, + "optionalDependencies": { + "@pkgjs/parseargs": "^0.11.0" + } + }, "node_modules/jest": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest/-/jest-29.7.0.tgz", - "integrity": "sha512-NIy3oAFp9shda19hy4HK0HRTWKtPJmGdnvywu01nOqNC2vZg+Z+fvJDxpMQA88eb2I9EcafcdjYgsDthnYTvGw==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest/-/jest-30.2.0.tgz", + "integrity": "sha512-F26gjC0yWN8uAA5m5Ss8ZQf5nDHWGlN/xWZIh8S5SRbsEKBovwZhxGd6LJlbZYxBgCYOtreSUyb8hpXyGC5O4A==", "dev": true, "license": "MIT", "dependencies": { - "@jest/core": "^29.7.0", - "@jest/types": "^29.6.3", - "import-local": "^3.0.2", - "jest-cli": "^29.7.0" + "@jest/core": "30.2.0", + "@jest/types": "30.2.0", + "import-local": "^3.2.0", + "jest-cli": "30.2.0" }, "bin": { "jest": "bin/jest.js" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" }, "peerDependencies": { "node-notifier": "^8.0.1 || ^9.0.0 || ^10.0.0" @@ -8253,50 +8212,50 @@ } }, "node_modules/jest-changed-files": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-changed-files/-/jest-changed-files-29.7.0.tgz", - "integrity": "sha512-fEArFiwf1BpQ+4bXSprcDc3/x4HSzL4al2tozwVpDFpsxALjLYdyiIK4e5Vz66GQJIbXJ82+35PtysofptNX2w==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-changed-files/-/jest-changed-files-30.2.0.tgz", + "integrity": "sha512-L8lR1ChrRnSdfeOvTrwZMlnWV8G/LLjQ0nG9MBclwWZidA2N5FviRki0Bvh20WRMOX31/JYvzdqTJrk5oBdydQ==", "dev": true, "license": "MIT", "dependencies": { - "execa": "^5.0.0", - "jest-util": "^29.7.0", + "execa": "^5.1.1", + "jest-util": "30.2.0", "p-limit": "^3.1.0" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-circus": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-circus/-/jest-circus-29.7.0.tgz", - "integrity": "sha512-3E1nCMgipcTkCocFwM90XXQab9bS+GMsjdpmPrlelaxwD93Ad8iVEjX/vvHPdLPnFf+L40u+5+iutRdA1N9myw==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-circus/-/jest-circus-30.2.0.tgz", + "integrity": "sha512-Fh0096NC3ZkFx05EP2OXCxJAREVxj1BcW/i6EWqqymcgYKWjyyDpral3fMxVcHXg6oZM7iULer9wGRFvfpl+Tg==", "dev": true, "license": "MIT", "dependencies": { - "@jest/environment": "^29.7.0", - "@jest/expect": "^29.7.0", - "@jest/test-result": "^29.7.0", - "@jest/types": "^29.6.3", + "@jest/environment": "30.2.0", + "@jest/expect": "30.2.0", + "@jest/test-result": "30.2.0", + "@jest/types": "30.2.0", "@types/node": "*", - "chalk": "^4.0.0", + "chalk": "^4.1.2", "co": "^4.6.0", - "dedent": "^1.0.0", - "is-generator-fn": "^2.0.0", - "jest-each": "^29.7.0", - "jest-matcher-utils": "^29.7.0", - "jest-message-util": "^29.7.0", - "jest-runtime": "^29.7.0", - "jest-snapshot": "^29.7.0", - "jest-util": "^29.7.0", + "dedent": "^1.6.0", + "is-generator-fn": "^2.1.0", + "jest-each": "30.2.0", + "jest-matcher-utils": "30.2.0", + "jest-message-util": "30.2.0", + "jest-runtime": "30.2.0", + "jest-snapshot": "30.2.0", + "jest-util": "30.2.0", "p-limit": "^3.1.0", - "pretty-format": "^29.7.0", - "pure-rand": "^6.0.0", + "pretty-format": "30.2.0", + "pure-rand": "^7.0.0", "slash": "^3.0.0", - "stack-utils": "^2.0.3" + "stack-utils": "^2.0.6" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-circus/node_modules/ansi-styles": { @@ -8313,18 +8272,18 @@ } }, "node_modules/jest-circus/node_modules/pretty-format": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-29.7.0.tgz", - "integrity": "sha512-Pdlw/oPxN+aXdmM9R00JVC9WVFoCLTKJvDVLgmJ+qAffBMxsV85l/Lu7sNx4zSzPyoL2euImuEwHhOXdEgNFZQ==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-30.2.0.tgz", + "integrity": "sha512-9uBdv/B4EefsuAL+pWqueZyZS2Ba+LxfFeQ9DN14HU4bN8bhaxKdkpjpB6fs9+pSjIBu+FXQHImEg8j/Lw0+vA==", "dev": true, "license": "MIT", "dependencies": { - "@jest/schemas": "^29.6.3", - "ansi-styles": "^5.0.0", - "react-is": "^18.0.0" + "@jest/schemas": "30.0.5", + "ansi-styles": "^5.2.0", + "react-is": "^18.3.1" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-circus/node_modules/react-is": { @@ -8335,29 +8294,28 @@ "license": "MIT" }, "node_modules/jest-cli": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-cli/-/jest-cli-29.7.0.tgz", - "integrity": "sha512-OVVobw2IubN/GSYsxETi+gOe7Ka59EFMR/twOU3Jb2GnKKeMGJB5SGUUrEz3SFVmJASUdZUzy83sLNNQ2gZslg==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-cli/-/jest-cli-30.2.0.tgz", + "integrity": "sha512-Os9ukIvADX/A9sLt6Zse3+nmHtHaE6hqOsjQtNiugFTbKRHYIYtZXNGNK9NChseXy7djFPjndX1tL0sCTlfpAA==", "dev": true, "license": "MIT", "dependencies": { - "@jest/core": "^29.7.0", - "@jest/test-result": "^29.7.0", - "@jest/types": "^29.6.3", - "chalk": "^4.0.0", - "create-jest": "^29.7.0", - "exit": "^0.1.2", - "import-local": "^3.0.2", - "jest-config": "^29.7.0", - "jest-util": "^29.7.0", - "jest-validate": "^29.7.0", - "yargs": "^17.3.1" + "@jest/core": "30.2.0", + "@jest/test-result": "30.2.0", + "@jest/types": "30.2.0", + "chalk": "^4.1.2", + "exit-x": "^0.2.2", + "import-local": "^3.2.0", + "jest-config": "30.2.0", + "jest-util": "30.2.0", + "jest-validate": "30.2.0", + "yargs": "^17.7.2" }, "bin": { "jest": "bin/jest.js" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" }, "peerDependencies": { "node-notifier": "^8.0.1 || ^9.0.0 || ^10.0.0" @@ -8369,46 +8327,52 @@ } }, "node_modules/jest-config": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-config/-/jest-config-29.7.0.tgz", - "integrity": "sha512-uXbpfeQ7R6TZBqI3/TxCU4q4ttk3u0PJeC+E0zbfSoSjq6bJ7buBPxzQPL0ifrkY4DNu4JUdk0ImlBUYi840eQ==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-config/-/jest-config-30.2.0.tgz", + "integrity": "sha512-g4WkyzFQVWHtu6uqGmQR4CQxz/CH3yDSlhzXMWzNjDx843gYjReZnMRanjRCq5XZFuQrGDxgUaiYWE8BRfVckA==", "dev": true, "license": "MIT", "dependencies": { - "@babel/core": "^7.11.6", - "@jest/test-sequencer": "^29.7.0", - "@jest/types": "^29.6.3", - "babel-jest": "^29.7.0", - "chalk": "^4.0.0", - "ci-info": "^3.2.0", - "deepmerge": "^4.2.2", - "glob": "^7.1.3", - "graceful-fs": "^4.2.9", - "jest-circus": "^29.7.0", - "jest-environment-node": "^29.7.0", - "jest-get-type": "^29.6.3", - "jest-regex-util": "^29.6.3", - "jest-resolve": "^29.7.0", - "jest-runner": "^29.7.0", - "jest-util": "^29.7.0", - "jest-validate": "^29.7.0", - "micromatch": "^4.0.4", + "@babel/core": "^7.27.4", + "@jest/get-type": "30.1.0", + "@jest/pattern": "30.0.1", + "@jest/test-sequencer": "30.2.0", + "@jest/types": "30.2.0", + "babel-jest": "30.2.0", + "chalk": "^4.1.2", + "ci-info": "^4.2.0", + "deepmerge": "^4.3.1", + "glob": "^10.3.10", + "graceful-fs": "^4.2.11", + "jest-circus": "30.2.0", + "jest-docblock": "30.2.0", + "jest-environment-node": "30.2.0", + "jest-regex-util": "30.0.1", + "jest-resolve": "30.2.0", + "jest-runner": "30.2.0", + "jest-util": "30.2.0", + "jest-validate": "30.2.0", + "micromatch": "^4.0.8", "parse-json": "^5.2.0", - "pretty-format": "^29.7.0", + "pretty-format": "30.2.0", "slash": "^3.0.0", "strip-json-comments": "^3.1.1" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" }, "peerDependencies": { "@types/node": "*", + "esbuild-register": ">=3.4.0", "ts-node": ">=9.0.0" }, "peerDependenciesMeta": { "@types/node": { "optional": true }, + "esbuild-register": { + "optional": true + }, "ts-node": { "optional": true } @@ -8428,18 +8392,18 @@ } }, "node_modules/jest-config/node_modules/pretty-format": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-29.7.0.tgz", - "integrity": "sha512-Pdlw/oPxN+aXdmM9R00JVC9WVFoCLTKJvDVLgmJ+qAffBMxsV85l/Lu7sNx4zSzPyoL2euImuEwHhOXdEgNFZQ==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-30.2.0.tgz", + "integrity": "sha512-9uBdv/B4EefsuAL+pWqueZyZS2Ba+LxfFeQ9DN14HU4bN8bhaxKdkpjpB6fs9+pSjIBu+FXQHImEg8j/Lw0+vA==", "dev": true, "license": "MIT", "dependencies": { - "@jest/schemas": "^29.6.3", - "ansi-styles": "^5.0.0", - "react-is": "^18.0.0" + "@jest/schemas": "30.0.5", + "ansi-styles": "^5.2.0", + "react-is": "^18.3.1" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-config/node_modules/react-is": { @@ -8450,19 +8414,19 @@ "license": "MIT" }, "node_modules/jest-diff": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-diff/-/jest-diff-29.7.0.tgz", - "integrity": "sha512-LMIgiIrhigmPrs03JHpxUh2yISK3vLFPkAodPeo0+BuF7wA2FoQbkEg1u8gBYBThncu7e1oEDUfIXVuTqLRUjw==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-diff/-/jest-diff-30.2.0.tgz", + "integrity": "sha512-dQHFo3Pt4/NLlG5z4PxZ/3yZTZ1C7s9hveiOj+GCN+uT109NC2QgsoVZsVOAvbJ3RgKkvyLGXZV9+piDpWbm6A==", "dev": true, "license": "MIT", "dependencies": { - "chalk": "^4.0.0", - "diff-sequences": "^29.6.3", - "jest-get-type": "^29.6.3", - "pretty-format": "^29.7.0" + "@jest/diff-sequences": "30.0.1", + "@jest/get-type": "30.1.0", + "chalk": "^4.1.2", + "pretty-format": "30.2.0" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-diff/node_modules/ansi-styles": { @@ -8479,18 +8443,18 @@ } }, "node_modules/jest-diff/node_modules/pretty-format": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-29.7.0.tgz", - "integrity": "sha512-Pdlw/oPxN+aXdmM9R00JVC9WVFoCLTKJvDVLgmJ+qAffBMxsV85l/Lu7sNx4zSzPyoL2euImuEwHhOXdEgNFZQ==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-30.2.0.tgz", + "integrity": "sha512-9uBdv/B4EefsuAL+pWqueZyZS2Ba+LxfFeQ9DN14HU4bN8bhaxKdkpjpB6fs9+pSjIBu+FXQHImEg8j/Lw0+vA==", "dev": true, "license": "MIT", "dependencies": { - "@jest/schemas": "^29.6.3", - "ansi-styles": "^5.0.0", - "react-is": "^18.0.0" + "@jest/schemas": "30.0.5", + "ansi-styles": "^5.2.0", + "react-is": "^18.3.1" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-diff/node_modules/react-is": { @@ -8501,33 +8465,33 @@ "license": "MIT" }, "node_modules/jest-docblock": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-docblock/-/jest-docblock-29.7.0.tgz", - "integrity": "sha512-q617Auw3A612guyaFgsbFeYpNP5t2aoUNLwBUbc/0kD1R4t9ixDbyFTHd1nok4epoVFpr7PmeWHrhvuV3XaJ4g==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-docblock/-/jest-docblock-30.2.0.tgz", + "integrity": "sha512-tR/FFgZKS1CXluOQzZvNH3+0z9jXr3ldGSD8bhyuxvlVUwbeLOGynkunvlTMxchC5urrKndYiwCFC0DLVjpOCA==", "dev": true, "license": "MIT", "dependencies": { - "detect-newline": "^3.0.0" + "detect-newline": "^3.1.0" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-each": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-each/-/jest-each-29.7.0.tgz", - "integrity": "sha512-gns+Er14+ZrEoC5fhOfYCY1LOHHr0TI+rQUHZS8Ttw2l7gl+80eHc/gFf2Ktkw0+SIACDTeWvpFcv3B04VembQ==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-each/-/jest-each-30.2.0.tgz", + "integrity": "sha512-lpWlJlM7bCUf1mfmuqTA8+j2lNURW9eNafOy99knBM01i5CQeY5UH1vZjgT9071nDJac1M4XsbyI44oNOdhlDQ==", "dev": true, "license": "MIT", "dependencies": { - "@jest/types": "^29.6.3", - "chalk": "^4.0.0", - "jest-get-type": "^29.6.3", - "jest-util": "^29.7.0", - "pretty-format": "^29.7.0" + "@jest/get-type": "30.1.0", + "@jest/types": "30.2.0", + "chalk": "^4.1.2", + "jest-util": "30.2.0", + "pretty-format": "30.2.0" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-each/node_modules/ansi-styles": { @@ -8544,18 +8508,18 @@ } }, "node_modules/jest-each/node_modules/pretty-format": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-29.7.0.tgz", - "integrity": "sha512-Pdlw/oPxN+aXdmM9R00JVC9WVFoCLTKJvDVLgmJ+qAffBMxsV85l/Lu7sNx4zSzPyoL2euImuEwHhOXdEgNFZQ==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-30.2.0.tgz", + "integrity": "sha512-9uBdv/B4EefsuAL+pWqueZyZS2Ba+LxfFeQ9DN14HU4bN8bhaxKdkpjpB6fs9+pSjIBu+FXQHImEg8j/Lw0+vA==", "dev": true, "license": "MIT", "dependencies": { - "@jest/schemas": "^29.6.3", - "ansi-styles": "^5.0.0", - "react-is": "^18.0.0" + "@jest/schemas": "30.0.5", + "ansi-styles": "^5.2.0", + "react-is": "^18.3.1" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-each/node_modules/react-is": { @@ -8590,90 +8554,65 @@ } } }, - "node_modules/jest-environment-jsdom/node_modules/@jest/environment": { + "node_modules/jest-environment-node": { "version": "30.2.0", - "resolved": "https://registry.npmjs.org/@jest/environment/-/environment-30.2.0.tgz", - "integrity": "sha512-/QPTL7OBJQ5ac09UDRa3EQes4gt1FTEG/8jZ/4v5IVzx+Cv7dLxlVIvfvSVRiiX2drWyXeBjkMSR8hvOWSog5g==", + "resolved": "https://registry.npmjs.org/jest-environment-node/-/jest-environment-node-30.2.0.tgz", + "integrity": "sha512-ElU8v92QJ9UrYsKrxDIKCxu6PfNj4Hdcktcn0JX12zqNdqWHB0N+hwOnnBBXvjLd2vApZtuLUGs1QSY+MsXoNA==", "dev": true, "license": "MIT", "dependencies": { + "@jest/environment": "30.2.0", "@jest/fake-timers": "30.2.0", "@jest/types": "30.2.0", "@types/node": "*", - "jest-mock": "30.2.0" + "jest-mock": "30.2.0", + "jest-util": "30.2.0", + "jest-validate": "30.2.0" }, "engines": { "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, - "node_modules/jest-environment-jsdom/node_modules/@jest/fake-timers": { + "node_modules/jest-haste-map": { "version": "30.2.0", - "resolved": "https://registry.npmjs.org/@jest/fake-timers/-/fake-timers-30.2.0.tgz", - "integrity": "sha512-HI3tRLjRxAbBy0VO8dqqm7Hb2mIa8d5bg/NJkyQcOk7V118ObQML8RC5luTF/Zsg4474a+gDvhce7eTnP4GhYw==", + "resolved": "https://registry.npmjs.org/jest-haste-map/-/jest-haste-map-30.2.0.tgz", + "integrity": "sha512-sQA/jCb9kNt+neM0anSj6eZhLZUIhQgwDt7cPGjumgLM4rXsfb9kpnlacmvZz3Q5tb80nS+oG/if+NBKrHC+Xw==", "dev": true, "license": "MIT", "dependencies": { "@jest/types": "30.2.0", - "@sinonjs/fake-timers": "^13.0.0", "@types/node": "*", - "jest-message-util": "30.2.0", - "jest-mock": "30.2.0", - "jest-util": "30.2.0" + "anymatch": "^3.1.3", + "fb-watchman": "^2.0.2", + "graceful-fs": "^4.2.11", + "jest-regex-util": "30.0.1", + "jest-util": "30.2.0", + "jest-worker": "30.2.0", + "micromatch": "^4.0.8", + "walker": "^1.0.8" }, "engines": { "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" - } - }, - "node_modules/jest-environment-jsdom/node_modules/@jest/schemas": { - "version": "30.0.5", - "resolved": "https://registry.npmjs.org/@jest/schemas/-/schemas-30.0.5.tgz", - "integrity": "sha512-DmdYgtezMkh3cpU8/1uyXakv3tJRcmcXxBOcO0tbaozPwpmh4YMsnWrQm9ZmZMfa5ocbxzbFk6O4bDPEc/iAnA==", - "dev": true, - "license": "MIT", - "dependencies": { - "@sinclair/typebox": "^0.34.0" }, - "engines": { - "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" + "optionalDependencies": { + "fsevents": "^2.3.3" } }, - "node_modules/jest-environment-jsdom/node_modules/@jest/types": { + "node_modules/jest-leak-detector": { "version": "30.2.0", - "resolved": "https://registry.npmjs.org/@jest/types/-/types-30.2.0.tgz", - "integrity": "sha512-H9xg1/sfVvyfU7o3zMfBEjQ1gcsdeTMgqHoYdN79tuLqfTtuu7WckRA1R5whDwOzxaZAeMKTYWqP+WCAi0CHsg==", + "resolved": "https://registry.npmjs.org/jest-leak-detector/-/jest-leak-detector-30.2.0.tgz", + "integrity": "sha512-M6jKAjyzjHG0SrQgwhgZGy9hFazcudwCNovY/9HPIicmNSBuockPSedAP9vlPK6ONFJ1zfyH/M2/YYJxOz5cdQ==", "dev": true, "license": "MIT", "dependencies": { - "@jest/pattern": "30.0.1", - "@jest/schemas": "30.0.5", - "@types/istanbul-lib-coverage": "^2.0.6", - "@types/istanbul-reports": "^3.0.4", - "@types/node": "*", - "@types/yargs": "^17.0.33", - "chalk": "^4.1.2" + "@jest/get-type": "30.1.0", + "pretty-format": "30.2.0" }, "engines": { "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, - "node_modules/jest-environment-jsdom/node_modules/@sinclair/typebox": { - "version": "0.34.41", - "resolved": "https://registry.npmjs.org/@sinclair/typebox/-/typebox-0.34.41.tgz", - "integrity": "sha512-6gS8pZzSXdyRHTIqoqSVknxolr1kzfy4/CeDnrzsVz8TTIWUbOBr6gnzOmTYJ3eXQNh4IYHIGi5aIL7sOZ2G/g==", - "dev": true, - "license": "MIT" - }, - "node_modules/jest-environment-jsdom/node_modules/@sinonjs/fake-timers": { - "version": "13.0.5", - "resolved": "https://registry.npmjs.org/@sinonjs/fake-timers/-/fake-timers-13.0.5.tgz", - "integrity": "sha512-36/hTbH2uaWuGVERyC6da9YwGWnzUZXuPro/F2LfsdOsLnCojz/iSH8MxUt/FD2S5XBSVPhmArFUXcpCQ2Hkiw==", - "dev": true, - "license": "BSD-3-Clause", - "dependencies": { - "@sinonjs/commons": "^3.0.1" - } - }, - "node_modules/jest-environment-jsdom/node_modules/ansi-styles": { + "node_modules/jest-leak-detector/node_modules/ansi-styles": { "version": "5.2.0", "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-5.2.0.tgz", "integrity": "sha512-Cxwpt2SfTzTtXcfOlzGEee8O+c+MmUgGrNiBcXnuWxuFJHe6a5Hz7qwhwe5OgaSYI0IJvkLqWX1ASG+cJOkEiA==", @@ -8686,23 +8625,80 @@ "url": "https://github.com/chalk/ansi-styles?sponsor=1" } }, - "node_modules/jest-environment-jsdom/node_modules/ci-info": { - "version": "4.3.1", - "resolved": "https://registry.npmjs.org/ci-info/-/ci-info-4.3.1.tgz", - "integrity": "sha512-Wdy2Igu8OcBpI2pZePZ5oWjPC38tmDVx5WKUXKwlLYkA0ozo85sLsLvkBbBn/sZaSCMFOGZJ14fvW9t5/d7kdA==", + "node_modules/jest-leak-detector/node_modules/pretty-format": { + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-30.2.0.tgz", + "integrity": "sha512-9uBdv/B4EefsuAL+pWqueZyZS2Ba+LxfFeQ9DN14HU4bN8bhaxKdkpjpB6fs9+pSjIBu+FXQHImEg8j/Lw0+vA==", "dev": true, - "funding": [ - { - "type": "github", - "url": "https://github.com/sponsors/sibiraj-s" - } - ], "license": "MIT", + "dependencies": { + "@jest/schemas": "30.0.5", + "ansi-styles": "^5.2.0", + "react-is": "^18.3.1" + }, "engines": { - "node": ">=8" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, - "node_modules/jest-environment-jsdom/node_modules/jest-message-util": { + "node_modules/jest-leak-detector/node_modules/react-is": { + "version": "18.3.1", + "resolved": "https://registry.npmjs.org/react-is/-/react-is-18.3.1.tgz", + "integrity": "sha512-/LLMVyas0ljjAtoYiPqYiL8VWXzUUdThrmU5+n20DZv+a+ClRoevUzw5JxU+Ieh5/c87ytoTBV9G1FiKfNJdmg==", + "dev": true, + "license": "MIT" + }, + "node_modules/jest-matcher-utils": { + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-matcher-utils/-/jest-matcher-utils-30.2.0.tgz", + "integrity": "sha512-dQ94Nq4dbzmUWkQ0ANAWS9tBRfqCrn0bV9AMYdOi/MHW726xn7eQmMeRTpX2ViC00bpNaWXq+7o4lIQ3AX13Hg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/get-type": "30.1.0", + "chalk": "^4.1.2", + "jest-diff": "30.2.0", + "pretty-format": "30.2.0" + }, + "engines": { + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" + } + }, + "node_modules/jest-matcher-utils/node_modules/ansi-styles": { + "version": "5.2.0", + "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-5.2.0.tgz", + "integrity": "sha512-Cxwpt2SfTzTtXcfOlzGEee8O+c+MmUgGrNiBcXnuWxuFJHe6a5Hz7qwhwe5OgaSYI0IJvkLqWX1ASG+cJOkEiA==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/ansi-styles?sponsor=1" + } + }, + "node_modules/jest-matcher-utils/node_modules/pretty-format": { + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-30.2.0.tgz", + "integrity": "sha512-9uBdv/B4EefsuAL+pWqueZyZS2Ba+LxfFeQ9DN14HU4bN8bhaxKdkpjpB6fs9+pSjIBu+FXQHImEg8j/Lw0+vA==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/schemas": "30.0.5", + "ansi-styles": "^5.2.0", + "react-is": "^18.3.1" + }, + "engines": { + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" + } + }, + "node_modules/jest-matcher-utils/node_modules/react-is": { + "version": "18.3.1", + "resolved": "https://registry.npmjs.org/react-is/-/react-is-18.3.1.tgz", + "integrity": "sha512-/LLMVyas0ljjAtoYiPqYiL8VWXzUUdThrmU5+n20DZv+a+ClRoevUzw5JxU+Ieh5/c87ytoTBV9G1FiKfNJdmg==", + "dev": true, + "license": "MIT" + }, + "node_modules/jest-message-util": { "version": "30.2.0", "resolved": "https://registry.npmjs.org/jest-message-util/-/jest-message-util-30.2.0.tgz", "integrity": "sha512-y4DKFLZ2y6DxTWD4cDe07RglV88ZiNEdlRfGtqahfbIjfsw1nMCPx49Uev4IA/hWn3sDKyAnSPwoYSsAEdcimw==", @@ -8723,249 +8719,6 @@ "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, - "node_modules/jest-environment-jsdom/node_modules/jest-mock": { - "version": "30.2.0", - "resolved": "https://registry.npmjs.org/jest-mock/-/jest-mock-30.2.0.tgz", - "integrity": "sha512-JNNNl2rj4b5ICpmAcq+WbLH83XswjPbjH4T7yvGzfAGCPh1rw+xVNbtk+FnRslvt9lkCcdn9i1oAoKUuFsOxRw==", - "dev": true, - "license": "MIT", - "dependencies": { - "@jest/types": "30.2.0", - "@types/node": "*", - "jest-util": "30.2.0" - }, - "engines": { - "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" - } - }, - "node_modules/jest-environment-jsdom/node_modules/jest-util": { - "version": "30.2.0", - "resolved": "https://registry.npmjs.org/jest-util/-/jest-util-30.2.0.tgz", - "integrity": "sha512-QKNsM0o3Xe6ISQU869e+DhG+4CK/48aHYdJZGlFQVTjnbvgpcKyxpzk29fGiO7i/J8VENZ+d2iGnSsvmuHywlA==", - "dev": true, - "license": "MIT", - "dependencies": { - "@jest/types": "30.2.0", - "@types/node": "*", - "chalk": "^4.1.2", - "ci-info": "^4.2.0", - "graceful-fs": "^4.2.11", - "picomatch": "^4.0.2" - }, - "engines": { - "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" - } - }, - "node_modules/jest-environment-jsdom/node_modules/picomatch": { - "version": "4.0.3", - "resolved": "https://registry.npmjs.org/picomatch/-/picomatch-4.0.3.tgz", - "integrity": "sha512-5gTmgEY/sqK6gFXLIsQNH19lWb4ebPDLA4SdLP7dsWkIXHWlG66oPuVvXSGFPppYZz8ZDZq0dYYrbHfBCVUb1Q==", - "dev": true, - "license": "MIT", - "engines": { - "node": ">=12" - }, - "funding": { - "url": "https://github.com/sponsors/jonschlinkert" - } - }, - "node_modules/jest-environment-jsdom/node_modules/pretty-format": { - "version": "30.2.0", - "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-30.2.0.tgz", - "integrity": "sha512-9uBdv/B4EefsuAL+pWqueZyZS2Ba+LxfFeQ9DN14HU4bN8bhaxKdkpjpB6fs9+pSjIBu+FXQHImEg8j/Lw0+vA==", - "dev": true, - "license": "MIT", - "dependencies": { - "@jest/schemas": "30.0.5", - "ansi-styles": "^5.2.0", - "react-is": "^18.3.1" - }, - "engines": { - "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" - } - }, - "node_modules/jest-environment-jsdom/node_modules/react-is": { - "version": "18.3.1", - "resolved": "https://registry.npmjs.org/react-is/-/react-is-18.3.1.tgz", - "integrity": "sha512-/LLMVyas0ljjAtoYiPqYiL8VWXzUUdThrmU5+n20DZv+a+ClRoevUzw5JxU+Ieh5/c87ytoTBV9G1FiKfNJdmg==", - "dev": true, - "license": "MIT" - }, - "node_modules/jest-environment-node": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-environment-node/-/jest-environment-node-29.7.0.tgz", - "integrity": "sha512-DOSwCRqXirTOyheM+4d5YZOrWcdu0LNZ87ewUoywbcb2XR4wKgqiG8vNeYwhjFMbEkfju7wx2GYH0P2gevGvFw==", - "dev": true, - "license": "MIT", - "dependencies": { - "@jest/environment": "^29.7.0", - "@jest/fake-timers": "^29.7.0", - "@jest/types": "^29.6.3", - "@types/node": "*", - "jest-mock": "^29.7.0", - "jest-util": "^29.7.0" - }, - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - } - }, - "node_modules/jest-get-type": { - "version": "29.6.3", - "resolved": "https://registry.npmjs.org/jest-get-type/-/jest-get-type-29.6.3.tgz", - "integrity": "sha512-zrteXnqYxfQh7l5FHyL38jL39di8H8rHoecLH3JNxH3BwOrBsNeabdap5e0I23lD4HHI8W5VFBZqG4Eaq5LNcw==", - "dev": true, - "license": "MIT", - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - } - }, - "node_modules/jest-haste-map": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-haste-map/-/jest-haste-map-29.7.0.tgz", - "integrity": "sha512-fP8u2pyfqx0K1rGn1R9pyE0/KTn+G7PxktWidOBTqFPLYX0b9ksaMFkhK5vrS3DVun09pckLdlx90QthlW7AmA==", - "dev": true, - "license": "MIT", - "dependencies": { - "@jest/types": "^29.6.3", - "@types/graceful-fs": "^4.1.3", - "@types/node": "*", - "anymatch": "^3.0.3", - "fb-watchman": "^2.0.0", - "graceful-fs": "^4.2.9", - "jest-regex-util": "^29.6.3", - "jest-util": "^29.7.0", - "jest-worker": "^29.7.0", - "micromatch": "^4.0.4", - "walker": "^1.0.8" - }, - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - }, - "optionalDependencies": { - "fsevents": "^2.3.2" - } - }, - "node_modules/jest-leak-detector": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-leak-detector/-/jest-leak-detector-29.7.0.tgz", - "integrity": "sha512-kYA8IJcSYtST2BY9I+SMC32nDpBT3J2NvWJx8+JCuCdl/CR1I4EKUJROiP8XtCcxqgTTBGJNdbB1A8XRKbTetw==", - "dev": true, - "license": "MIT", - "dependencies": { - "jest-get-type": "^29.6.3", - "pretty-format": "^29.7.0" - }, - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - } - }, - "node_modules/jest-leak-detector/node_modules/ansi-styles": { - "version": "5.2.0", - "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-5.2.0.tgz", - "integrity": "sha512-Cxwpt2SfTzTtXcfOlzGEee8O+c+MmUgGrNiBcXnuWxuFJHe6a5Hz7qwhwe5OgaSYI0IJvkLqWX1ASG+cJOkEiA==", - "dev": true, - "license": "MIT", - "engines": { - "node": ">=10" - }, - "funding": { - "url": "https://github.com/chalk/ansi-styles?sponsor=1" - } - }, - "node_modules/jest-leak-detector/node_modules/pretty-format": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-29.7.0.tgz", - "integrity": "sha512-Pdlw/oPxN+aXdmM9R00JVC9WVFoCLTKJvDVLgmJ+qAffBMxsV85l/Lu7sNx4zSzPyoL2euImuEwHhOXdEgNFZQ==", - "dev": true, - "license": "MIT", - "dependencies": { - "@jest/schemas": "^29.6.3", - "ansi-styles": "^5.0.0", - "react-is": "^18.0.0" - }, - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - } - }, - "node_modules/jest-leak-detector/node_modules/react-is": { - "version": "18.3.1", - "resolved": "https://registry.npmjs.org/react-is/-/react-is-18.3.1.tgz", - "integrity": "sha512-/LLMVyas0ljjAtoYiPqYiL8VWXzUUdThrmU5+n20DZv+a+ClRoevUzw5JxU+Ieh5/c87ytoTBV9G1FiKfNJdmg==", - "dev": true, - "license": "MIT" - }, - "node_modules/jest-matcher-utils": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-matcher-utils/-/jest-matcher-utils-29.7.0.tgz", - "integrity": "sha512-sBkD+Xi9DtcChsI3L3u0+N0opgPYnCRPtGcQYrgXmR+hmt/fYfWAL0xRXYU8eWOdfuLgBe0YCW3AFtnRLagq/g==", - "dev": true, - "license": "MIT", - "dependencies": { - "chalk": "^4.0.0", - "jest-diff": "^29.7.0", - "jest-get-type": "^29.6.3", - "pretty-format": "^29.7.0" - }, - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - } - }, - "node_modules/jest-matcher-utils/node_modules/ansi-styles": { - "version": "5.2.0", - "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-5.2.0.tgz", - "integrity": "sha512-Cxwpt2SfTzTtXcfOlzGEee8O+c+MmUgGrNiBcXnuWxuFJHe6a5Hz7qwhwe5OgaSYI0IJvkLqWX1ASG+cJOkEiA==", - "dev": true, - "license": "MIT", - "engines": { - "node": ">=10" - }, - "funding": { - "url": "https://github.com/chalk/ansi-styles?sponsor=1" - } - }, - "node_modules/jest-matcher-utils/node_modules/pretty-format": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-29.7.0.tgz", - "integrity": "sha512-Pdlw/oPxN+aXdmM9R00JVC9WVFoCLTKJvDVLgmJ+qAffBMxsV85l/Lu7sNx4zSzPyoL2euImuEwHhOXdEgNFZQ==", - "dev": true, - "license": "MIT", - "dependencies": { - "@jest/schemas": "^29.6.3", - "ansi-styles": "^5.0.0", - "react-is": "^18.0.0" - }, - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - } - }, - "node_modules/jest-matcher-utils/node_modules/react-is": { - "version": "18.3.1", - "resolved": "https://registry.npmjs.org/react-is/-/react-is-18.3.1.tgz", - "integrity": "sha512-/LLMVyas0ljjAtoYiPqYiL8VWXzUUdThrmU5+n20DZv+a+ClRoevUzw5JxU+Ieh5/c87ytoTBV9G1FiKfNJdmg==", - "dev": true, - "license": "MIT" - }, - "node_modules/jest-message-util": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-message-util/-/jest-message-util-29.7.0.tgz", - "integrity": "sha512-GBEV4GRADeP+qtB2+6u61stea8mGcOT4mCtrYISZwfu9/ISHFJ/5zOMXYbpBE9RsS5+Gb63DW4FgmnKJ79Kf6w==", - "dev": true, - "license": "MIT", - "dependencies": { - "@babel/code-frame": "^7.12.13", - "@jest/types": "^29.6.3", - "@types/stack-utils": "^2.0.0", - "chalk": "^4.0.0", - "graceful-fs": "^4.2.9", - "micromatch": "^4.0.4", - "pretty-format": "^29.7.0", - "slash": "^3.0.0", - "stack-utils": "^2.0.3" - }, - "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" - } - }, "node_modules/jest-message-util/node_modules/ansi-styles": { "version": "5.2.0", "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-5.2.0.tgz", @@ -8980,18 +8733,18 @@ } }, "node_modules/jest-message-util/node_modules/pretty-format": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-29.7.0.tgz", - "integrity": "sha512-Pdlw/oPxN+aXdmM9R00JVC9WVFoCLTKJvDVLgmJ+qAffBMxsV85l/Lu7sNx4zSzPyoL2euImuEwHhOXdEgNFZQ==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-30.2.0.tgz", + "integrity": "sha512-9uBdv/B4EefsuAL+pWqueZyZS2Ba+LxfFeQ9DN14HU4bN8bhaxKdkpjpB6fs9+pSjIBu+FXQHImEg8j/Lw0+vA==", "dev": true, "license": "MIT", "dependencies": { - "@jest/schemas": "^29.6.3", - "ansi-styles": "^5.0.0", - "react-is": "^18.0.0" + "@jest/schemas": "30.0.5", + "ansi-styles": "^5.2.0", + "react-is": "^18.3.1" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-message-util/node_modules/react-is": { @@ -9002,18 +8755,18 @@ "license": "MIT" }, "node_modules/jest-mock": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-mock/-/jest-mock-29.7.0.tgz", - "integrity": "sha512-ITOMZn+UkYS4ZFh83xYAOzWStloNzJFO2s8DWrE4lhtGD+AorgnbkiKERe4wQVBydIGPx059g6riW5Btp6Llnw==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-mock/-/jest-mock-30.2.0.tgz", + "integrity": "sha512-JNNNl2rj4b5ICpmAcq+WbLH83XswjPbjH4T7yvGzfAGCPh1rw+xVNbtk+FnRslvt9lkCcdn9i1oAoKUuFsOxRw==", "dev": true, "license": "MIT", "dependencies": { - "@jest/types": "^29.6.3", + "@jest/types": "30.2.0", "@types/node": "*", - "jest-util": "^29.7.0" + "jest-util": "30.2.0" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-pnp-resolver": { @@ -9035,115 +8788,115 @@ } }, "node_modules/jest-regex-util": { - "version": "29.6.3", - "resolved": "https://registry.npmjs.org/jest-regex-util/-/jest-regex-util-29.6.3.tgz", - "integrity": "sha512-KJJBsRCyyLNWCNBOvZyRDnAIfUiRJ8v+hOBQYGn8gDyF3UegwiP4gwRR3/SDa42g1YbVycTidUF3rKjyLFDWbg==", + "version": "30.0.1", + "resolved": "https://registry.npmjs.org/jest-regex-util/-/jest-regex-util-30.0.1.tgz", + "integrity": "sha512-jHEQgBXAgc+Gh4g0p3bCevgRCVRkB4VB70zhoAE48gxeSr1hfUOsM/C2WoJgVL7Eyg//hudYENbm3Ne+/dRVVA==", "dev": true, "license": "MIT", "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-resolve": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-resolve/-/jest-resolve-29.7.0.tgz", - "integrity": "sha512-IOVhZSrg+UvVAshDSDtHyFCCBUl/Q3AAJv8iZ6ZjnZ74xzvwuzLXid9IIIPgTnY62SJjfuupMKZsZQRsCvxEgA==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-resolve/-/jest-resolve-30.2.0.tgz", + "integrity": "sha512-TCrHSxPlx3tBY3hWNtRQKbtgLhsXa1WmbJEqBlTBrGafd5fiQFByy2GNCEoGR+Tns8d15GaL9cxEzKOO3GEb2A==", "dev": true, "license": "MIT", "dependencies": { - "chalk": "^4.0.0", - "graceful-fs": "^4.2.9", - "jest-haste-map": "^29.7.0", - "jest-pnp-resolver": "^1.2.2", - "jest-util": "^29.7.0", - "jest-validate": "^29.7.0", - "resolve": "^1.20.0", - "resolve.exports": "^2.0.0", - "slash": "^3.0.0" + "chalk": "^4.1.2", + "graceful-fs": "^4.2.11", + "jest-haste-map": "30.2.0", + "jest-pnp-resolver": "^1.2.3", + "jest-util": "30.2.0", + "jest-validate": "30.2.0", + "slash": "^3.0.0", + "unrs-resolver": "^1.7.11" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-resolve-dependencies": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-resolve-dependencies/-/jest-resolve-dependencies-29.7.0.tgz", - "integrity": "sha512-un0zD/6qxJ+S0et7WxeI3H5XSe9lTBBR7bOHCHXkKR6luG5mwDDlIzVQ0V5cZCuoTgEdcdwzTghYkTWfubi+nA==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-resolve-dependencies/-/jest-resolve-dependencies-30.2.0.tgz", + "integrity": "sha512-xTOIGug/0RmIe3mmCqCT95yO0vj6JURrn1TKWlNbhiAefJRWINNPgwVkrVgt/YaerPzY3iItufd80v3lOrFJ2w==", "dev": true, "license": "MIT", "dependencies": { - "jest-regex-util": "^29.6.3", - "jest-snapshot": "^29.7.0" + "jest-regex-util": "30.0.1", + "jest-snapshot": "30.2.0" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-runner": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-runner/-/jest-runner-29.7.0.tgz", - "integrity": "sha512-fsc4N6cPCAahybGBfTRcq5wFR6fpLznMg47sY5aDpsoejOcVYFb07AHuSnR0liMcPTgBsA3ZJL6kFOjPdoNipQ==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-runner/-/jest-runner-30.2.0.tgz", + "integrity": "sha512-PqvZ2B2XEyPEbclp+gV6KO/F1FIFSbIwewRgmROCMBo/aZ6J1w8Qypoj2pEOcg3G2HzLlaP6VUtvwCI8dM3oqQ==", "dev": true, "license": "MIT", "dependencies": { - "@jest/console": "^29.7.0", - "@jest/environment": "^29.7.0", - "@jest/test-result": "^29.7.0", - "@jest/transform": "^29.7.0", - "@jest/types": "^29.6.3", + "@jest/console": "30.2.0", + "@jest/environment": "30.2.0", + "@jest/test-result": "30.2.0", + "@jest/transform": "30.2.0", + "@jest/types": "30.2.0", "@types/node": "*", - "chalk": "^4.0.0", + "chalk": "^4.1.2", "emittery": "^0.13.1", - "graceful-fs": "^4.2.9", - "jest-docblock": "^29.7.0", - "jest-environment-node": "^29.7.0", - "jest-haste-map": "^29.7.0", - "jest-leak-detector": "^29.7.0", - "jest-message-util": "^29.7.0", - "jest-resolve": "^29.7.0", - "jest-runtime": "^29.7.0", - "jest-util": "^29.7.0", - "jest-watcher": "^29.7.0", - "jest-worker": "^29.7.0", + "exit-x": "^0.2.2", + "graceful-fs": "^4.2.11", + "jest-docblock": "30.2.0", + "jest-environment-node": "30.2.0", + "jest-haste-map": "30.2.0", + "jest-leak-detector": "30.2.0", + "jest-message-util": "30.2.0", + "jest-resolve": "30.2.0", + "jest-runtime": "30.2.0", + "jest-util": "30.2.0", + "jest-watcher": "30.2.0", + "jest-worker": "30.2.0", "p-limit": "^3.1.0", "source-map-support": "0.5.13" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-runtime": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-runtime/-/jest-runtime-29.7.0.tgz", - "integrity": "sha512-gUnLjgwdGqW7B4LvOIkbKs9WGbn+QLqRQQ9juC6HndeDiezIwhDP+mhMwHWCEcfQ5RUXa6OPnFF8BJh5xegwwQ==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-runtime/-/jest-runtime-30.2.0.tgz", + "integrity": "sha512-p1+GVX/PJqTucvsmERPMgCPvQJpFt4hFbM+VN3n8TMo47decMUcJbt+rgzwrEme0MQUA/R+1de2axftTHkKckg==", "dev": true, "license": "MIT", "dependencies": { - "@jest/environment": "^29.7.0", - "@jest/fake-timers": "^29.7.0", - "@jest/globals": "^29.7.0", - "@jest/source-map": "^29.6.3", - "@jest/test-result": "^29.7.0", - "@jest/transform": "^29.7.0", - "@jest/types": "^29.6.3", + "@jest/environment": "30.2.0", + "@jest/fake-timers": "30.2.0", + "@jest/globals": "30.2.0", + "@jest/source-map": "30.0.1", + "@jest/test-result": "30.2.0", + "@jest/transform": "30.2.0", + "@jest/types": "30.2.0", "@types/node": "*", - "chalk": "^4.0.0", - "cjs-module-lexer": "^1.0.0", - "collect-v8-coverage": "^1.0.0", - "glob": "^7.1.3", - "graceful-fs": "^4.2.9", - "jest-haste-map": "^29.7.0", - "jest-message-util": "^29.7.0", - "jest-mock": "^29.7.0", - "jest-regex-util": "^29.6.3", - "jest-resolve": "^29.7.0", - "jest-snapshot": "^29.7.0", - "jest-util": "^29.7.0", + "chalk": "^4.1.2", + "cjs-module-lexer": "^2.1.0", + "collect-v8-coverage": "^1.0.2", + "glob": "^10.3.10", + "graceful-fs": "^4.2.11", + "jest-haste-map": "30.2.0", + "jest-message-util": "30.2.0", + "jest-mock": "30.2.0", + "jest-regex-util": "30.0.1", + "jest-resolve": "30.2.0", + "jest-snapshot": "30.2.0", + "jest-util": "30.2.0", "slash": "^3.0.0", "strip-bom": "^4.0.0" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-runtime/node_modules/strip-bom": { @@ -9157,35 +8910,36 @@ } }, "node_modules/jest-snapshot": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-snapshot/-/jest-snapshot-29.7.0.tgz", - "integrity": "sha512-Rm0BMWtxBcioHr1/OX5YCP8Uov4riHvKPknOGs804Zg9JGZgmIBkbtlxJC/7Z4msKYVbIJtfU+tKb8xlYNfdkw==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-snapshot/-/jest-snapshot-30.2.0.tgz", + "integrity": "sha512-5WEtTy2jXPFypadKNpbNkZ72puZCa6UjSr/7djeecHWOu7iYhSXSnHScT8wBz3Rn8Ena5d5RYRcsyKIeqG1IyA==", "dev": true, "license": "MIT", "dependencies": { - "@babel/core": "^7.11.6", - "@babel/generator": "^7.7.2", - "@babel/plugin-syntax-jsx": "^7.7.2", - "@babel/plugin-syntax-typescript": "^7.7.2", - "@babel/types": "^7.3.3", - "@jest/expect-utils": "^29.7.0", - "@jest/transform": "^29.7.0", - "@jest/types": "^29.6.3", - "babel-preset-current-node-syntax": "^1.0.0", - "chalk": "^4.0.0", - "expect": "^29.7.0", - "graceful-fs": "^4.2.9", - "jest-diff": "^29.7.0", - "jest-get-type": "^29.6.3", - "jest-matcher-utils": "^29.7.0", - "jest-message-util": "^29.7.0", - "jest-util": "^29.7.0", - "natural-compare": "^1.4.0", - "pretty-format": "^29.7.0", - "semver": "^7.5.3" + "@babel/core": "^7.27.4", + "@babel/generator": "^7.27.5", + "@babel/plugin-syntax-jsx": "^7.27.1", + "@babel/plugin-syntax-typescript": "^7.27.1", + "@babel/types": "^7.27.3", + "@jest/expect-utils": "30.2.0", + "@jest/get-type": "30.1.0", + "@jest/snapshot-utils": "30.2.0", + "@jest/transform": "30.2.0", + "@jest/types": "30.2.0", + "babel-preset-current-node-syntax": "^1.2.0", + "chalk": "^4.1.2", + "expect": "30.2.0", + "graceful-fs": "^4.2.11", + "jest-diff": "30.2.0", + "jest-matcher-utils": "30.2.0", + "jest-message-util": "30.2.0", + "jest-util": "30.2.0", + "pretty-format": "30.2.0", + "semver": "^7.7.2", + "synckit": "^0.11.8" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-snapshot/node_modules/ansi-styles": { @@ -9202,18 +8956,18 @@ } }, "node_modules/jest-snapshot/node_modules/pretty-format": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-29.7.0.tgz", - "integrity": "sha512-Pdlw/oPxN+aXdmM9R00JVC9WVFoCLTKJvDVLgmJ+qAffBMxsV85l/Lu7sNx4zSzPyoL2euImuEwHhOXdEgNFZQ==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-30.2.0.tgz", + "integrity": "sha512-9uBdv/B4EefsuAL+pWqueZyZS2Ba+LxfFeQ9DN14HU4bN8bhaxKdkpjpB6fs9+pSjIBu+FXQHImEg8j/Lw0+vA==", "dev": true, "license": "MIT", "dependencies": { - "@jest/schemas": "^29.6.3", - "ansi-styles": "^5.0.0", - "react-is": "^18.0.0" + "@jest/schemas": "30.0.5", + "ansi-styles": "^5.2.0", + "react-is": "^18.3.1" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-snapshot/node_modules/react-is": { @@ -9224,39 +8978,52 @@ "license": "MIT" }, "node_modules/jest-util": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-util/-/jest-util-29.7.0.tgz", - "integrity": "sha512-z6EbKajIpqGKU56y5KBUgy1dt1ihhQJgWzUlZHArA/+X2ad7Cb5iF+AK1EWVL/Bo7Rz9uurpqw6SiBCefUbCGA==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-util/-/jest-util-30.2.0.tgz", + "integrity": "sha512-QKNsM0o3Xe6ISQU869e+DhG+4CK/48aHYdJZGlFQVTjnbvgpcKyxpzk29fGiO7i/J8VENZ+d2iGnSsvmuHywlA==", "dev": true, "license": "MIT", "dependencies": { - "@jest/types": "^29.6.3", + "@jest/types": "30.2.0", "@types/node": "*", - "chalk": "^4.0.0", - "ci-info": "^3.2.0", - "graceful-fs": "^4.2.9", - "picomatch": "^2.2.3" + "chalk": "^4.1.2", + "ci-info": "^4.2.0", + "graceful-fs": "^4.2.11", + "picomatch": "^4.0.2" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" + } + }, + "node_modules/jest-util/node_modules/picomatch": { + "version": "4.0.3", + "resolved": "https://registry.npmjs.org/picomatch/-/picomatch-4.0.3.tgz", + "integrity": "sha512-5gTmgEY/sqK6gFXLIsQNH19lWb4ebPDLA4SdLP7dsWkIXHWlG66oPuVvXSGFPppYZz8ZDZq0dYYrbHfBCVUb1Q==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=12" + }, + "funding": { + "url": "https://github.com/sponsors/jonschlinkert" } }, "node_modules/jest-validate": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-validate/-/jest-validate-29.7.0.tgz", - "integrity": "sha512-ZB7wHqaRGVw/9hST/OuFUReG7M8vKeq0/J2egIGLdvjHCmYqGARhzXmtgi+gVeZ5uXFF219aOc3Ls2yLg27tkw==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-validate/-/jest-validate-30.2.0.tgz", + "integrity": "sha512-FBGWi7dP2hpdi8nBoWxSsLvBFewKAg0+uSQwBaof4Y4DPgBabXgpSYC5/lR7VmnIlSpASmCi/ntRWPbv7089Pw==", "dev": true, "license": "MIT", "dependencies": { - "@jest/types": "^29.6.3", - "camelcase": "^6.2.0", - "chalk": "^4.0.0", - "jest-get-type": "^29.6.3", + "@jest/get-type": "30.1.0", + "@jest/types": "30.2.0", + "camelcase": "^6.3.0", + "chalk": "^4.1.2", "leven": "^3.1.0", - "pretty-format": "^29.7.0" + "pretty-format": "30.2.0" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-validate/node_modules/ansi-styles": { @@ -9286,18 +9053,18 @@ } }, "node_modules/jest-validate/node_modules/pretty-format": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-29.7.0.tgz", - "integrity": "sha512-Pdlw/oPxN+aXdmM9R00JVC9WVFoCLTKJvDVLgmJ+qAffBMxsV85l/Lu7sNx4zSzPyoL2euImuEwHhOXdEgNFZQ==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-30.2.0.tgz", + "integrity": "sha512-9uBdv/B4EefsuAL+pWqueZyZS2Ba+LxfFeQ9DN14HU4bN8bhaxKdkpjpB6fs9+pSjIBu+FXQHImEg8j/Lw0+vA==", "dev": true, "license": "MIT", "dependencies": { - "@jest/schemas": "^29.6.3", - "ansi-styles": "^5.0.0", - "react-is": "^18.0.0" + "@jest/schemas": "30.0.5", + "ansi-styles": "^5.2.0", + "react-is": "^18.3.1" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-validate/node_modules/react-is": { @@ -9308,39 +9075,40 @@ "license": "MIT" }, "node_modules/jest-watcher": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-watcher/-/jest-watcher-29.7.0.tgz", - "integrity": "sha512-49Fg7WXkU3Vl2h6LbLtMQ/HyB6rXSIX7SqvBLQmssRBGN9I0PNvPmAmCWSOY6SOvrjhI/F7/bGAv9RtnsPA03g==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-watcher/-/jest-watcher-30.2.0.tgz", + "integrity": "sha512-PYxa28dxJ9g777pGm/7PrbnMeA0Jr7osHP9bS7eJy9DuAjMgdGtxgf0uKMyoIsTWAkIbUW5hSDdJ3urmgXBqxg==", "dev": true, "license": "MIT", "dependencies": { - "@jest/test-result": "^29.7.0", - "@jest/types": "^29.6.3", + "@jest/test-result": "30.2.0", + "@jest/types": "30.2.0", "@types/node": "*", - "ansi-escapes": "^4.2.1", - "chalk": "^4.0.0", + "ansi-escapes": "^4.3.2", + "chalk": "^4.1.2", "emittery": "^0.13.1", - "jest-util": "^29.7.0", - "string-length": "^4.0.1" + "jest-util": "30.2.0", + "string-length": "^4.0.2" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-worker": { - "version": "29.7.0", - "resolved": "https://registry.npmjs.org/jest-worker/-/jest-worker-29.7.0.tgz", - "integrity": "sha512-eIz2msL/EzL9UFTFFx7jBTkeZfku0yUAyZZZmJ93H2TYEiroIx2PQjEXcwYtYl8zXCxb+PAmA2hLIt/6ZEkPHw==", + "version": "30.2.0", + "resolved": "https://registry.npmjs.org/jest-worker/-/jest-worker-30.2.0.tgz", + "integrity": "sha512-0Q4Uk8WF7BUwqXHuAjc23vmopWJw5WH7w2tqBoUOZpOjW/ZnR44GXXd1r82RvnmI2GZge3ivrYXk/BE2+VtW2g==", "dev": true, "license": "MIT", "dependencies": { "@types/node": "*", - "jest-util": "^29.7.0", + "@ungap/structured-clone": "^1.3.0", + "jest-util": "30.2.0", "merge-stream": "^2.0.0", - "supports-color": "^8.0.0" + "supports-color": "^8.1.1" }, "engines": { - "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + "node": "^18.14.0 || ^20.0.0 || ^22.0.0 || >=24.0.0" } }, "node_modules/jest-worker/node_modules/supports-color": { @@ -9555,16 +9323,6 @@ "json-buffer": "3.0.1" } }, - "node_modules/kleur": { - "version": "3.0.3", - "resolved": "https://registry.npmjs.org/kleur/-/kleur-3.0.3.tgz", - "integrity": "sha512-eTIzlVOSUR+JxdDFepEYcBMtZ9Qqdef+rnzWdRZuMbOywu5tO2w2N7rqjoANZ5k9vywhL6Br1VRjUIgTQx4E8w==", - "dev": true, - "license": "MIT", - "engines": { - "node": ">=6" - } - }, "node_modules/language-subtag-registry": { "version": "0.3.23", "resolved": "https://registry.npmjs.org/language-subtag-registry/-/language-subtag-registry-0.3.23.tgz", @@ -11027,9 +10785,9 @@ } }, "node_modules/napi-postinstall": { - "version": "0.2.4", - "resolved": "https://registry.npmjs.org/napi-postinstall/-/napi-postinstall-0.2.4.tgz", - "integrity": "sha512-ZEzHJwBhZ8qQSbknHqYcdtQVr8zUgGyM/q6h6qAyhtyVMNrSgDhrC4disf03dYW0e+czXyLnZINnCTEkWy0eJg==", + "version": "0.3.4", + "resolved": "https://registry.npmjs.org/napi-postinstall/-/napi-postinstall-0.3.4.tgz", + "integrity": "sha512-PHI5f1O0EP5xJ9gQmFGMS6IZcrVvTjpXjz7Na41gTE7eE2hK11lg04CECCYEEjdc17EV4DO+fkGEtt7TpTaTiQ==", "dev": true, "license": "MIT", "bin": { @@ -11219,9 +10977,9 @@ "license": "MIT" }, "node_modules/node-releases": { - "version": "2.0.19", - "resolved": "https://registry.npmjs.org/node-releases/-/node-releases-2.0.19.tgz", - "integrity": "sha512-xxOWJsBKtzAq7DY0J+DTzuz58K8e7sJbdgwkbMWQe8UYB6ekmsQ45q0M/tJDsGaZmbC+l7n57UV8Hl5tHxO9uw==", + "version": "2.0.25", + "resolved": "https://registry.npmjs.org/node-releases/-/node-releases-2.0.25.tgz", + "integrity": "sha512-4auku8B/vw5psvTiiN9j1dAOsXvMoGqJuKJcR+dTdqiXEK20mMTk1UEo3HS16LeGQsVG6+qKTPM9u/qQ2LqATA==", "dev": true, "license": "MIT" }, @@ -11556,6 +11314,13 @@ "node": ">=6" } }, + "node_modules/package-json-from-dist": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/package-json-from-dist/-/package-json-from-dist-1.0.1.tgz", + "integrity": "sha512-UEZIS3/by4OC8vL3P2dTXRETpebLI2NiI5vIrjaD/5UtrkFX/tNbwjTSRAGC/+7CAo2pIcBaRgWmcBBHcsaCIw==", + "dev": true, + "license": "BlueOak-1.0.0" + }, "node_modules/parent-module": { "version": "1.0.1", "resolved": "https://registry.npmjs.org/parent-module/-/parent-module-1.0.1.tgz", @@ -11663,6 +11428,30 @@ "dev": true, "license": "MIT" }, + "node_modules/path-scurry": { + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/path-scurry/-/path-scurry-1.11.1.tgz", + "integrity": "sha512-Xa4Nw17FS9ApQFJ9umLiJS4orGjm7ZzwUrwamcGQuHSzDyth9boKDaycYdDcZDuqYATXw4HFXgaqWTctW/v1HA==", + "dev": true, + "license": "BlueOak-1.0.0", + "dependencies": { + "lru-cache": "^10.2.0", + "minipass": "^5.0.0 || ^6.0.2 || ^7.0.0" + }, + "engines": { + "node": ">=16 || 14 >=14.18" + }, + "funding": { + "url": "https://github.com/sponsors/isaacs" + } + }, + "node_modules/path-scurry/node_modules/lru-cache": { + "version": "10.4.3", + "resolved": "https://registry.npmjs.org/lru-cache/-/lru-cache-10.4.3.tgz", + "integrity": "sha512-JNAzZcXrCt42VGLuYz0zfAzDfAvJWW6AfYlDBQyDV5DClI2m5sAmK+OIO7s59XfsRsWHp02jAJrRadPRGTt6SQ==", + "dev": true, + "license": "ISC" + }, "node_modules/picocolors": { "version": "1.1.1", "resolved": "https://registry.npmjs.org/picocolors/-/picocolors-1.1.1.tgz", @@ -11902,20 +11691,6 @@ "dev": true, "license": "MIT" }, - "node_modules/prompts": { - "version": "2.4.2", - "resolved": "https://registry.npmjs.org/prompts/-/prompts-2.4.2.tgz", - "integrity": "sha512-NxNv/kLguCA7p3jE8oL2aEBsrJWgAakBpgmgK6lpPWV+WuOmY6r2/zbAVnP+T8bQlA0nzHXSJSJW0Hq7ylaD2Q==", - "dev": true, - "license": "MIT", - "dependencies": { - "kleur": "^3.0.3", - "sisteransi": "^1.0.5" - }, - "engines": { - "node": ">= 6" - } - }, "node_modules/prop-types": { "version": "15.8.1", "resolved": "https://registry.npmjs.org/prop-types/-/prop-types-15.8.1.tgz", @@ -11949,9 +11724,9 @@ } }, "node_modules/pure-rand": { - "version": "6.1.0", - "resolved": "https://registry.npmjs.org/pure-rand/-/pure-rand-6.1.0.tgz", - "integrity": "sha512-bVWawvoZoBYpp6yIoQtQXHZjmz35RSVHnUOTefl8Vcjr8snTPY1wnpSPMWekcFwbxI6gtmT7rSYPFvz71ldiOA==", + "version": "7.0.1", + "resolved": "https://registry.npmjs.org/pure-rand/-/pure-rand-7.0.1.tgz", + "integrity": "sha512-oTUZM/NAZS8p7ANR3SHh30kXB+zK2r2BPcEn/awJIbOvq82WoMN4p62AWWp3Hhw50G0xMsw1mhIBLqHw64EcNQ==", "dev": true, "funding": [ { @@ -12353,16 +12128,6 @@ "url": "https://github.com/privatenumber/resolve-pkg-maps?sponsor=1" } }, - "node_modules/resolve.exports": { - "version": "2.0.3", - "resolved": "https://registry.npmjs.org/resolve.exports/-/resolve.exports-2.0.3.tgz", - "integrity": "sha512-OcXjMsGdhL4XnbShKpAcSqPMzQoYkYyhbEaeSko47MjRP9NfEQMhZkXL1DoFlt9LWQn4YttrdnV6X2OiyzBi+A==", - "dev": true, - "license": "MIT", - "engines": { - "node": ">=10" - } - }, "node_modules/reusify": { "version": "1.1.0", "resolved": "https://registry.npmjs.org/reusify/-/reusify-1.1.0.tgz", @@ -12707,11 +12472,17 @@ } }, "node_modules/signal-exit": { - "version": "3.0.7", - "resolved": "https://registry.npmjs.org/signal-exit/-/signal-exit-3.0.7.tgz", - "integrity": "sha512-wnD2ZE+l+SPC/uoS0vXeE9L1+0wuaMqKlfz9AMUo38JsyLSBWSFcHR1Rri62LZc12vLr1gb3jl7iwQhgwpAbGQ==", + "version": "4.1.0", + "resolved": "https://registry.npmjs.org/signal-exit/-/signal-exit-4.1.0.tgz", + "integrity": "sha512-bzyZ1e88w9O1iNJbKnOlvYTrWPDl46O1bG0D3XInv+9tkPrxrN8jUUTiFlDkkmKWgn1M6CfIA13SuGqOa9Korw==", "dev": true, - "license": "ISC" + "license": "ISC", + "engines": { + "node": ">=14" + }, + "funding": { + "url": "https://github.com/sponsors/isaacs" + } }, "node_modules/simple-swizzle": { "version": "0.2.4", @@ -12723,13 +12494,6 @@ "is-arrayish": "^0.3.1" } }, - "node_modules/sisteransi": { - "version": "1.0.5", - "resolved": "https://registry.npmjs.org/sisteransi/-/sisteransi-1.0.5.tgz", - "integrity": "sha512-bLGGlR1QxBcynn2d5YmDX4MGjlZvy2MRBDRNHLJ8VI6l6+9FUiyTFNJ0IveOSP0bcXgVDPRcfGqA0pjaqUpfVg==", - "dev": true, - "license": "MIT" - }, "node_modules/slash": { "version": "3.0.0", "resolved": "https://registry.npmjs.org/slash/-/slash-3.0.0.tgz", @@ -12841,7 +12605,39 @@ "node": ">=10" } }, + "node_modules/string-length/node_modules/strip-ansi": { + "version": "6.0.1", + "resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-6.0.1.tgz", + "integrity": "sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==", + "dev": true, + "license": "MIT", + "dependencies": { + "ansi-regex": "^5.0.1" + }, + "engines": { + "node": ">=8" + } + }, "node_modules/string-width": { + "version": "5.1.2", + "resolved": "https://registry.npmjs.org/string-width/-/string-width-5.1.2.tgz", + "integrity": "sha512-HnLOCR3vjcY8beoNLtcjZ5/nxn2afmME6lhrDrebokqMap+XbeW8n9TXpPDOqdGK5qcI3oT0GKTW6wC7EMiVqA==", + "dev": true, + "license": "MIT", + "dependencies": { + "eastasianwidth": "^0.2.0", + "emoji-regex": "^9.2.2", + "strip-ansi": "^7.0.1" + }, + "engines": { + "node": ">=12" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/string-width-cjs": { + "name": "string-width", "version": "4.2.3", "resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz", "integrity": "sha512-wKyQRQpjJ0sIp62ErSZdGsjMJWsap5oRNihHhu6G7JVO/9jIB6UyevL+tXuOqrng8j/cxKTWyWUwvSTriiZz/g==", @@ -12856,13 +12652,26 @@ "node": ">=8" } }, - "node_modules/string-width/node_modules/emoji-regex": { + "node_modules/string-width-cjs/node_modules/emoji-regex": { "version": "8.0.0", "resolved": "https://registry.npmjs.org/emoji-regex/-/emoji-regex-8.0.0.tgz", "integrity": "sha512-MSjYzcWNOA0ewAHpz0MxpYFvwg6yjy1NG3xteoqz644VCo/RPgnr1/GGt+ic3iJTzQ8Eu3TdM14SawnVUmGE6A==", "dev": true, "license": "MIT" }, + "node_modules/string-width-cjs/node_modules/strip-ansi": { + "version": "6.0.1", + "resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-6.0.1.tgz", + "integrity": "sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==", + "dev": true, + "license": "MIT", + "dependencies": { + "ansi-regex": "^5.0.1" + }, + "engines": { + "node": ">=8" + } + }, "node_modules/string.prototype.includes": { "version": "2.0.1", "resolved": "https://registry.npmjs.org/string.prototype.includes/-/string.prototype.includes-2.0.1.tgz", @@ -12991,6 +12800,23 @@ } }, "node_modules/strip-ansi": { + "version": "7.1.2", + "resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-7.1.2.tgz", + "integrity": "sha512-gmBGslpoQJtgnMAvOVqGZpEz9dyoKTCzy2nfz/n8aIFhN/jCE/rCmcxabB6jOOHV+0WNnylOxaxBQPSvcWklhA==", + "dev": true, + "license": "MIT", + "dependencies": { + "ansi-regex": "^6.0.1" + }, + "engines": { + "node": ">=12" + }, + "funding": { + "url": "https://github.com/chalk/strip-ansi?sponsor=1" + } + }, + "node_modules/strip-ansi-cjs": { + "name": "strip-ansi", "version": "6.0.1", "resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-6.0.1.tgz", "integrity": "sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==", @@ -13003,6 +12829,19 @@ "node": ">=8" } }, + "node_modules/strip-ansi/node_modules/ansi-regex": { + "version": "6.2.2", + "resolved": "https://registry.npmjs.org/ansi-regex/-/ansi-regex-6.2.2.tgz", + "integrity": "sha512-Bq3SmSpyFHaWjPk8If9yc6svM8c56dB5BAtW4Qbw5jHTwwXXcTLoRMkpDJp6VL0XzlWaCHTXrkFURMYmD0sLqg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=12" + }, + "funding": { + "url": "https://github.com/chalk/ansi-regex?sponsor=1" + } + }, "node_modules/strip-bom": { "version": "3.0.0", "resolved": "https://registry.npmjs.org/strip-bom/-/strip-bom-3.0.0.tgz", @@ -13199,6 +13038,28 @@ "node": ">=8" } }, + "node_modules/test-exclude/node_modules/glob": { + "version": "7.2.3", + "resolved": "https://registry.npmjs.org/glob/-/glob-7.2.3.tgz", + "integrity": "sha512-nFR0zLpU2YCaRxwoCJvL6UvCH2JFyFVIvwTLsIf21AuHlMskA1hhTdk+LlYJtOlYt9v6dvszD2BGRqBL+iQK9Q==", + "deprecated": "Glob versions prior to v9 are no longer supported", + "dev": true, + "license": "ISC", + "dependencies": { + "fs.realpath": "^1.0.0", + "inflight": "^1.0.4", + "inherits": "2", + "minimatch": "^3.1.1", + "once": "^1.3.0", + "path-is-absolute": "^1.0.0" + }, + "engines": { + "node": "*" + }, + "funding": { + "url": "https://github.com/sponsors/isaacs" + } + }, "node_modules/tinyglobby": { "version": "0.2.13", "resolved": "https://registry.npmjs.org/tinyglobby/-/tinyglobby-0.2.13.tgz", @@ -13650,36 +13511,38 @@ } }, "node_modules/unrs-resolver": { - "version": "1.7.2", - "resolved": "https://registry.npmjs.org/unrs-resolver/-/unrs-resolver-1.7.2.tgz", - "integrity": "sha512-BBKpaylOW8KbHsu378Zky/dGh4ckT/4NW/0SHRABdqRLcQJ2dAOjDo9g97p04sWflm0kqPqpUatxReNV/dqI5A==", + "version": "1.11.1", + "resolved": "https://registry.npmjs.org/unrs-resolver/-/unrs-resolver-1.11.1.tgz", + "integrity": "sha512-bSjt9pjaEBnNiGgc9rUiHGKv5l4/TGzDmYw3RhnkJGtLhbnnA/5qJj7x3dNDCRx/PJxu774LlH8lCOlB4hEfKg==", "dev": true, "hasInstallScript": true, "license": "MIT", "dependencies": { - "napi-postinstall": "^0.2.2" + "napi-postinstall": "^0.3.0" }, "funding": { - "url": "https://github.com/sponsors/JounQin" + "url": "https://opencollective.com/unrs-resolver" }, "optionalDependencies": { - "@unrs/resolver-binding-darwin-arm64": "1.7.2", - "@unrs/resolver-binding-darwin-x64": "1.7.2", - "@unrs/resolver-binding-freebsd-x64": "1.7.2", - "@unrs/resolver-binding-linux-arm-gnueabihf": "1.7.2", - "@unrs/resolver-binding-linux-arm-musleabihf": "1.7.2", - "@unrs/resolver-binding-linux-arm64-gnu": "1.7.2", - "@unrs/resolver-binding-linux-arm64-musl": "1.7.2", - "@unrs/resolver-binding-linux-ppc64-gnu": "1.7.2", - "@unrs/resolver-binding-linux-riscv64-gnu": "1.7.2", - "@unrs/resolver-binding-linux-riscv64-musl": "1.7.2", - "@unrs/resolver-binding-linux-s390x-gnu": "1.7.2", - "@unrs/resolver-binding-linux-x64-gnu": "1.7.2", - "@unrs/resolver-binding-linux-x64-musl": "1.7.2", - "@unrs/resolver-binding-wasm32-wasi": "1.7.2", - "@unrs/resolver-binding-win32-arm64-msvc": "1.7.2", - "@unrs/resolver-binding-win32-ia32-msvc": "1.7.2", - "@unrs/resolver-binding-win32-x64-msvc": "1.7.2" + "@unrs/resolver-binding-android-arm-eabi": "1.11.1", + "@unrs/resolver-binding-android-arm64": "1.11.1", + "@unrs/resolver-binding-darwin-arm64": "1.11.1", + "@unrs/resolver-binding-darwin-x64": "1.11.1", + "@unrs/resolver-binding-freebsd-x64": "1.11.1", + "@unrs/resolver-binding-linux-arm-gnueabihf": "1.11.1", + "@unrs/resolver-binding-linux-arm-musleabihf": "1.11.1", + "@unrs/resolver-binding-linux-arm64-gnu": "1.11.1", + "@unrs/resolver-binding-linux-arm64-musl": "1.11.1", + "@unrs/resolver-binding-linux-ppc64-gnu": "1.11.1", + "@unrs/resolver-binding-linux-riscv64-gnu": "1.11.1", + "@unrs/resolver-binding-linux-riscv64-musl": "1.11.1", + "@unrs/resolver-binding-linux-s390x-gnu": "1.11.1", + "@unrs/resolver-binding-linux-x64-gnu": "1.11.1", + "@unrs/resolver-binding-linux-x64-musl": "1.11.1", + "@unrs/resolver-binding-wasm32-wasi": "1.11.1", + "@unrs/resolver-binding-win32-arm64-msvc": "1.11.1", + "@unrs/resolver-binding-win32-ia32-msvc": "1.11.1", + "@unrs/resolver-binding-win32-x64-msvc": "1.11.1" } }, "node_modules/update-browserslist-db": { @@ -14012,6 +13875,25 @@ } }, "node_modules/wrap-ansi": { + "version": "8.1.0", + "resolved": "https://registry.npmjs.org/wrap-ansi/-/wrap-ansi-8.1.0.tgz", + "integrity": "sha512-si7QWI6zUMq56bESFvagtmzMdGOtoxfR+Sez11Mobfc7tm+VkUckk9bW2UeffTGVUbOksxmSw0AA2gs8g71NCQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "ansi-styles": "^6.1.0", + "string-width": "^5.0.1", + "strip-ansi": "^7.0.1" + }, + "engines": { + "node": ">=12" + }, + "funding": { + "url": "https://github.com/chalk/wrap-ansi?sponsor=1" + } + }, + "node_modules/wrap-ansi-cjs": { + "name": "wrap-ansi", "version": "7.0.0", "resolved": "https://registry.npmjs.org/wrap-ansi/-/wrap-ansi-7.0.0.tgz", "integrity": "sha512-YVGIj2kamLSTxw6NsZjoBxfSwsn0ycdesmc4p+Q21c5zPuZ1pl+NfxVdxPtdHvmNVOQ6XSYG4AUtyt/Fi7D16Q==", @@ -14029,6 +13911,54 @@ "url": "https://github.com/chalk/wrap-ansi?sponsor=1" } }, + "node_modules/wrap-ansi-cjs/node_modules/emoji-regex": { + "version": "8.0.0", + "resolved": "https://registry.npmjs.org/emoji-regex/-/emoji-regex-8.0.0.tgz", + "integrity": "sha512-MSjYzcWNOA0ewAHpz0MxpYFvwg6yjy1NG3xteoqz644VCo/RPgnr1/GGt+ic3iJTzQ8Eu3TdM14SawnVUmGE6A==", + "dev": true, + "license": "MIT" + }, + "node_modules/wrap-ansi-cjs/node_modules/string-width": { + "version": "4.2.3", + "resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz", + "integrity": "sha512-wKyQRQpjJ0sIp62ErSZdGsjMJWsap5oRNihHhu6G7JVO/9jIB6UyevL+tXuOqrng8j/cxKTWyWUwvSTriiZz/g==", + "dev": true, + "license": "MIT", + "dependencies": { + "emoji-regex": "^8.0.0", + "is-fullwidth-code-point": "^3.0.0", + "strip-ansi": "^6.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/wrap-ansi-cjs/node_modules/strip-ansi": { + "version": "6.0.1", + "resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-6.0.1.tgz", + "integrity": "sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==", + "dev": true, + "license": "MIT", + "dependencies": { + "ansi-regex": "^5.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/wrap-ansi/node_modules/ansi-styles": { + "version": "6.2.3", + "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-6.2.3.tgz", + "integrity": "sha512-4Dj6M28JB+oAH8kFkTLUo+a2jwOFkuqb3yucU0CANcRRUbxS0cP0nZYCGjcc3BNXwRIsUVmDGgzawme7zvJHvg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=12" + }, + "funding": { + "url": "https://github.com/chalk/ansi-styles?sponsor=1" + } + }, "node_modules/wrappy": { "version": "1.0.2", "resolved": "https://registry.npmjs.org/wrappy/-/wrappy-1.0.2.tgz", @@ -14037,17 +13967,17 @@ "license": "ISC" }, "node_modules/write-file-atomic": { - "version": "4.0.2", - "resolved": "https://registry.npmjs.org/write-file-atomic/-/write-file-atomic-4.0.2.tgz", - "integrity": "sha512-7KxauUdBmSdWnmpaGFg+ppNjKF8uNLry8LyzjauQDOVONfFLNKrKvQOxZ/VuTIcS/gge/YNahf5RIIQWTSarlg==", + "version": "5.0.1", + "resolved": "https://registry.npmjs.org/write-file-atomic/-/write-file-atomic-5.0.1.tgz", + "integrity": "sha512-+QU2zd6OTD8XWIJCbffaiQeH9U73qIqafo1x6V1snCWYGJf6cVE0cDR4D8xRzcEnfI21IFrUPzPGtcPf8AC+Rw==", "dev": true, "license": "ISC", "dependencies": { "imurmurhash": "^0.1.4", - "signal-exit": "^3.0.7" + "signal-exit": "^4.0.1" }, "engines": { - "node": "^12.13.0 || ^14.15.0 || >=16.0.0" + "node": "^14.17.0 || ^16.13.0 || >=18.0.0" } }, "node_modules/ws": { @@ -14138,6 +14068,41 @@ "node": ">=12" } }, + "node_modules/yargs/node_modules/emoji-regex": { + "version": "8.0.0", + "resolved": "https://registry.npmjs.org/emoji-regex/-/emoji-regex-8.0.0.tgz", + "integrity": "sha512-MSjYzcWNOA0ewAHpz0MxpYFvwg6yjy1NG3xteoqz644VCo/RPgnr1/GGt+ic3iJTzQ8Eu3TdM14SawnVUmGE6A==", + "dev": true, + "license": "MIT" + }, + "node_modules/yargs/node_modules/string-width": { + "version": "4.2.3", + "resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz", + "integrity": "sha512-wKyQRQpjJ0sIp62ErSZdGsjMJWsap5oRNihHhu6G7JVO/9jIB6UyevL+tXuOqrng8j/cxKTWyWUwvSTriiZz/g==", + "dev": true, + "license": "MIT", + "dependencies": { + "emoji-regex": "^8.0.0", + "is-fullwidth-code-point": "^3.0.0", + "strip-ansi": "^6.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/yargs/node_modules/strip-ansi": { + "version": "6.0.1", + "resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-6.0.1.tgz", + "integrity": "sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==", + "dev": true, + "license": "MIT", + "dependencies": { + "ansi-regex": "^5.0.1" + }, + "engines": { + "node": ">=8" + } + }, "node_modules/yn": { "version": "3.1.1", "resolved": "https://registry.npmjs.org/yn/-/yn-3.1.1.tgz", diff --git a/llama_stack/ui/package.json b/llama_stack/ui/package.json index c55a36aef..07b3465e5 100644 --- a/llama_stack/ui/package.json +++ b/llama_stack/ui/package.json @@ -43,7 +43,7 @@ "@testing-library/dom": "^10.4.1", "@testing-library/jest-dom": "^6.8.0", "@testing-library/react": "^16.3.0", - "@types/jest": "^29.5.14", + "@types/jest": "^30.0.0", "@types/node": "^24", "@types/react": "^19", "@types/react-dom": "^19", @@ -51,7 +51,7 @@ "eslint-config-next": "15.5.6", "eslint-config-prettier": "^10.1.8", "eslint-plugin-prettier": "^5.5.4", - "jest": "^29.7.0", + "jest": "^30.2.0", "jest-environment-jsdom": "^30.2.0", "prettier": "3.6.2", "tailwindcss": "^4", From 165b8b07f4b91af9ea0ce6f3495988d1d27a76a7 Mon Sep 17 00:00:00 2001 From: Jiayi Ni Date: Mon, 20 Oct 2025 09:51:43 -0700 Subject: [PATCH 11/41] docs: Documentation update for NVIDIA Inference Provider (#3840) # What does this PR do? - Fix examples in the NVIDIA inference documentation to align with current API requirements. ## Test Plan N/A --- .../remote/inference/nvidia/NVIDIA.md | 72 +++++++++---------- .../remote/inference/nvidia/nvidia.py | 9 --- 2 files changed, 34 insertions(+), 47 deletions(-) diff --git a/llama_stack/providers/remote/inference/nvidia/NVIDIA.md b/llama_stack/providers/remote/inference/nvidia/NVIDIA.md index 096ff28ac..692b9125b 100644 --- a/llama_stack/providers/remote/inference/nvidia/NVIDIA.md +++ b/llama_stack/providers/remote/inference/nvidia/NVIDIA.md @@ -45,7 +45,7 @@ The following example shows how to create a chat completion for an NVIDIA NIM. ```python response = client.chat.completions.create( - model="meta-llama/Llama-3.1-8B-Instruct", + model="nvidia/meta/llama-3.1-8b-instruct", messages=[ { "role": "system", @@ -67,37 +67,40 @@ print(f"Response: {response.choices[0].message.content}") The following example shows how to do tool calling for an NVIDIA NIM. ```python -from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition - -tool_definition = ToolDefinition( - tool_name="get_weather", - description="Get current weather information for a location", - parameters={ - "location": ToolParamDefinition( - param_type="string", - description="The city and state, e.g. San Francisco, CA", - required=True, - ), - "unit": ToolParamDefinition( - param_type="string", - description="Temperature unit (celsius or fahrenheit)", - required=False, - default="celsius", - ), +tool_definition = { + "type": "function", + "function": { + "name": "get_weather", + "description": "Get current weather information for a location", + "parameters": { + "type": "object", + "properties": { + "location": { + "type": "string", + "description": "The city and state, e.g. San Francisco, CA", + }, + "unit": { + "type": "string", + "description": "Temperature unit (celsius or fahrenheit)", + "default": "celsius", + }, + }, + "required": ["location"], + }, }, -) +} tool_response = client.chat.completions.create( - model="meta-llama/Llama-3.1-8B-Instruct", + model="nvidia/meta/llama-3.1-8b-instruct", messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}], tools=[tool_definition], ) -print(f"Tool Response: {tool_response.choices[0].message.content}") +print(f"Response content: {tool_response.choices[0].message.content}") if tool_response.choices[0].message.tool_calls: for tool_call in tool_response.choices[0].message.tool_calls: - print(f"Tool Called: {tool_call.tool_name}") - print(f"Arguments: {tool_call.arguments}") + print(f"Tool Called: {tool_call.function.name}") + print(f"Arguments: {tool_call.function.arguments}") ``` ### Structured Output Example @@ -105,33 +108,26 @@ if tool_response.choices[0].message.tool_calls: The following example shows how to do structured output for an NVIDIA NIM. ```python -from llama_stack.apis.inference import JsonSchemaResponseFormat, ResponseFormatType - person_schema = { "type": "object", "properties": { "name": {"type": "string"}, - "age": {"type": "integer"}, + "age": {"type": "number"}, "occupation": {"type": "string"}, }, "required": ["name", "age", "occupation"], } -response_format = JsonSchemaResponseFormat( - type=ResponseFormatType.json_schema, json_schema=person_schema -) - structured_response = client.chat.completions.create( - model="meta-llama/Llama-3.1-8B-Instruct", + model="nvidia/meta/llama-3.1-8b-instruct", messages=[ { "role": "user", "content": "Create a profile for a fictional person named Alice who is 30 years old and is a software engineer. ", } ], - response_format=response_format, + extra_body={"nvext": {"guided_json": person_schema}}, ) - print(f"Structured Response: {structured_response.choices[0].message.content}") ``` @@ -141,7 +137,7 @@ The following example shows how to create embeddings for an NVIDIA NIM. ```python response = client.embeddings.create( - model="nvidia/llama-3.2-nv-embedqa-1b-v2", + model="nvidia/nvidia/llama-3.2-nv-embedqa-1b-v2", input=["What is the capital of France?"], extra_body={"input_type": "query"}, ) @@ -163,15 +159,15 @@ image_path = {path_to_the_image} demo_image_b64 = load_image_as_base64(image_path) vlm_response = client.chat.completions.create( - model="nvidia/vila", + model="nvidia/meta/llama-3.2-11b-vision-instruct", messages=[ { "role": "user", "content": [ { - "type": "image", - "image": { - "data": demo_image_b64, + "type": "image_url", + "image_url": { + "url": f"data:image/png;base64,{demo_image_b64}", }, }, { diff --git a/llama_stack/providers/remote/inference/nvidia/nvidia.py b/llama_stack/providers/remote/inference/nvidia/nvidia.py index eab665d63..5aba6bddc 100644 --- a/llama_stack/providers/remote/inference/nvidia/nvidia.py +++ b/llama_stack/providers/remote/inference/nvidia/nvidia.py @@ -19,15 +19,6 @@ class NVIDIAInferenceAdapter(OpenAIMixin): """ NVIDIA Inference Adapter for Llama Stack. - - Note: The inheritance order is important here. OpenAIMixin must come before - ModelRegistryHelper to ensure that OpenAIMixin.check_model_availability() - is used instead of ModelRegistryHelper.check_model_availability(). It also - must come before Inference to ensure that OpenAIMixin methods are available - in the Inference interface. - - - OpenAIMixin.check_model_availability() queries the NVIDIA API to check if a model exists - - ModelRegistryHelper.check_model_availability() just returns False and shows a warning """ # source: https://docs.nvidia.com/nim/nemo-retriever/text-embedding/latest/support-matrix.html From 573e783ff0d3b5491db3fdb740ad4493907df05f Mon Sep 17 00:00:00 2001 From: Charlie Doern Date: Mon, 20 Oct 2025 13:10:50 -0400 Subject: [PATCH 12/41] docs: fix sidebar of `Detailed Tutorial` (#3856) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit # What does this PR do? the sidebar currently has an extra `ii. Run the Script` because its incorrectly put into the doc as an H3 not an H4 (like the other ones) Screenshot 2025-10-20 at 1 04 54 PM Fix this which will update the sidebar Signed-off-by: Charlie Doern --- docs/docs/getting_started/detailed_tutorial.mdx | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/docs/getting_started/detailed_tutorial.mdx b/docs/docs/getting_started/detailed_tutorial.mdx index 888ea2414..c629e26f1 100644 --- a/docs/docs/getting_started/detailed_tutorial.mdx +++ b/docs/docs/getting_started/detailed_tutorial.mdx @@ -308,7 +308,7 @@ stream = agent.create_turn( for event in AgentEventLogger().log(stream): event.print() ``` -### ii. Run the Script +#### ii. Run the Script Let's run the script using `uv` ```bash uv run python agent.py From 21772de5d32bb27ce7932480c56f561eb6141279 Mon Sep 17 00:00:00 2001 From: ehhuang Date: Mon, 20 Oct 2025 10:23:01 -0700 Subject: [PATCH 13/41] chore: use dockerfile for building containers (#3839) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit # What does this PR do? relates to #2878 We introduce a Containerfile which is used to replaced the `llama stack build` command (removal in a separate PR). ``` llama stack build --distro starter --image-type venv --run ``` is replaced by ``` llama stack list-deps starter | xargs -L1 uv pip install llama stack run starter ``` - See the updated workflow files for e2e workflow. ## Test Plan CI ``` ❯ docker build . -f docker/Dockerfile --build-arg DISTRO_NAME=starter --build-arg INSTALL_MODE=editable --tag test_starter ❯ docker run -p 8321:8321 test_starter ❯ curl http://localhost:8321/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "gpt-4o-mini", "messages": [ { "role": "user", "content": "Hello!" } ] }' ``` --- [//]: # (BEGIN SAPLING FOOTER) Stack created with [Sapling](https://sapling-scm.com). Best reviewed with [ReviewStack](https://reviewstack.dev/llamastack/llama-stack/pull/3839). * #3855 * __->__ #3839 --- .dockerignore | 19 + .github/workflows/install-script-ci.yml | 7 +- .github/workflows/providers-build.yml | 57 ++- .../test-external-provider-module.yml | 4 +- .github/workflows/test-external.yml | 2 +- containers/Containerfile | 136 ++++++ docs/docs/contributing/index.mdx | 13 +- docs/docs/distributions/building_distro.mdx | 424 +++--------------- .../starting_llama_stack_server.mdx | 11 + 9 files changed, 281 insertions(+), 392 deletions(-) create mode 100644 .dockerignore create mode 100644 containers/Containerfile diff --git a/.dockerignore b/.dockerignore new file mode 100644 index 000000000..f667ab162 --- /dev/null +++ b/.dockerignore @@ -0,0 +1,19 @@ +.venv +__pycache__ +*.pyc +*.pyo +*.pyd +*.so +.git +.gitignore +htmlcov* +.coverage +coverage* +.cache +.mypy_cache +.pytest_cache +.ruff_cache +uv.lock +node_modules +build +/tmp diff --git a/.github/workflows/install-script-ci.yml b/.github/workflows/install-script-ci.yml index a37919f56..82aa56482 100644 --- a/.github/workflows/install-script-ci.yml +++ b/.github/workflows/install-script-ci.yml @@ -30,8 +30,11 @@ jobs: - name: Build a single provider run: | - USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run --no-sync \ - llama stack build --template starter --image-type container --image-name test + docker build . \ + -f containers/Containerfile \ + --build-arg INSTALL_MODE=editable \ + --build-arg DISTRO_NAME=starter \ + --tag llama-stack:starter-ci - name: Run installer end-to-end run: | diff --git a/.github/workflows/providers-build.yml b/.github/workflows/providers-build.yml index 53b6edccf..ffc44f9c1 100644 --- a/.github/workflows/providers-build.yml +++ b/.github/workflows/providers-build.yml @@ -14,6 +14,8 @@ on: - '.github/workflows/providers-build.yml' - 'llama_stack/distributions/**' - 'pyproject.toml' + - 'containers/Containerfile' + - '.dockerignore' pull_request: paths: @@ -24,6 +26,8 @@ on: - '.github/workflows/providers-build.yml' - 'llama_stack/distributions/**' - 'pyproject.toml' + - 'containers/Containerfile' + - '.dockerignore' concurrency: group: ${{ github.workflow }}-${{ github.ref == 'refs/heads/main' && github.run_id || github.ref }} @@ -60,15 +64,19 @@ jobs: - name: Install dependencies uses: ./.github/actions/setup-runner - - name: Print build dependencies + - name: Install distribution into venv + if: matrix.image-type == 'venv' run: | - uv run llama stack build --distro ${{ matrix.distro }} --image-type ${{ matrix.image-type }} --image-name test --print-deps-only + uv run llama stack list-deps ${{ matrix.distro }} | xargs -L1 uv pip install - - name: Run Llama Stack Build + - name: Build container image + if: matrix.image-type == 'container' run: | - # USE_COPY_NOT_MOUNT is set to true since mounting is not supported by docker buildx, we use COPY instead - # LLAMA_STACK_DIR is set to the current directory so we are building from the source - USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack build --distro ${{ matrix.distro }} --image-type ${{ matrix.image-type }} --image-name test + docker build . \ + -f containers/Containerfile \ + --build-arg INSTALL_MODE=editable \ + --build-arg DISTRO_NAME=${{ matrix.distro }} \ + --tag llama-stack:${{ matrix.distro }}-ci - name: Print dependencies in the image if: matrix.image-type == 'venv' @@ -86,8 +94,8 @@ jobs: - name: Build a single provider run: | - USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack build --image-type venv --image-name test --providers inference=remote::ollama - + uv pip install -e . + uv run --no-sync llama stack list-deps --providers inference=remote::ollama | xargs -L1 uv pip install build-custom-container-distribution: runs-on: ubuntu-latest steps: @@ -97,11 +105,16 @@ jobs: - name: Install dependencies uses: ./.github/actions/setup-runner - - name: Build a single provider + - name: Build container image run: | - yq -i '.image_type = "container"' llama_stack/distributions/ci-tests/build.yaml - yq -i '.image_name = "test"' llama_stack/distributions/ci-tests/build.yaml - USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack build --config llama_stack/distributions/ci-tests/build.yaml + BASE_IMAGE=$(yq -r '.distribution_spec.container_image // "python:3.12-slim"' llama_stack/distributions/ci-tests/build.yaml) + docker build . \ + -f containers/Containerfile \ + --build-arg INSTALL_MODE=editable \ + --build-arg DISTRO_NAME=ci-tests \ + --build-arg BASE_IMAGE="$BASE_IMAGE" \ + --build-arg RUN_CONFIG_PATH=/workspace/llama_stack/distributions/ci-tests/run.yaml \ + -t llama-stack:ci-tests - name: Inspect the container image entrypoint run: | @@ -112,7 +125,7 @@ jobs: fi entrypoint=$(docker inspect --format '{{ .Config.Entrypoint }}' $IMAGE_ID) echo "Entrypoint: $entrypoint" - if [ "$entrypoint" != "[llama stack run /app/run.yaml]" ]; then + if [ "$entrypoint" != "[/usr/local/bin/llama-stack-entrypoint.sh]" ]; then echo "Entrypoint is not correct" exit 1 fi @@ -129,17 +142,19 @@ jobs: - name: Pin distribution to UBI9 base run: | yq -i ' - .image_type = "container" | - .image_name = "ubi9-test" | .distribution_spec.container_image = "registry.access.redhat.com/ubi9:latest" ' llama_stack/distributions/ci-tests/build.yaml - - name: Build dev container (UBI9) - env: - USE_COPY_NOT_MOUNT: "true" - LLAMA_STACK_DIR: "." + - name: Build UBI9 container image run: | - uv run llama stack build --config llama_stack/distributions/ci-tests/build.yaml + BASE_IMAGE=$(yq -r '.distribution_spec.container_image // "registry.access.redhat.com/ubi9:latest"' llama_stack/distributions/ci-tests/build.yaml) + docker build . \ + -f containers/Containerfile \ + --build-arg INSTALL_MODE=editable \ + --build-arg DISTRO_NAME=ci-tests \ + --build-arg BASE_IMAGE="$BASE_IMAGE" \ + --build-arg RUN_CONFIG_PATH=/workspace/llama_stack/distributions/ci-tests/run.yaml \ + -t llama-stack:ci-tests-ubi9 - name: Inspect UBI9 image run: | @@ -150,7 +165,7 @@ jobs: fi entrypoint=$(docker inspect --format '{{ .Config.Entrypoint }}' $IMAGE_ID) echo "Entrypoint: $entrypoint" - if [ "$entrypoint" != "[llama stack run /app/run.yaml]" ]; then + if [ "$entrypoint" != "[/usr/local/bin/llama-stack-entrypoint.sh]" ]; then echo "Entrypoint is not correct" exit 1 fi diff --git a/.github/workflows/test-external-provider-module.yml b/.github/workflows/test-external-provider-module.yml index b43cefb27..21fedd06f 100644 --- a/.github/workflows/test-external-provider-module.yml +++ b/.github/workflows/test-external-provider-module.yml @@ -46,9 +46,9 @@ jobs: yq -i '.image_type = "${{ matrix.image-type }}"' tests/external/ramalama-stack/run.yaml cat tests/external/ramalama-stack/run.yaml - - name: Build distro from config file + - name: Install distribution dependencies run: | - USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run llama stack build --config tests/external/ramalama-stack/build.yaml + uv run llama stack list-deps tests/external/ramalama-stack/build.yaml | xargs -L1 uv pip install - name: Start Llama Stack server in background if: ${{ matrix.image-type }} == 'venv' diff --git a/.github/workflows/test-external.yml b/.github/workflows/test-external.yml index a1013ad9e..3ae6793ea 100644 --- a/.github/workflows/test-external.yml +++ b/.github/workflows/test-external.yml @@ -44,7 +44,7 @@ jobs: - name: Print distro dependencies run: | - USE_COPY_NOT_MOUNT=true LLAMA_STACK_DIR=. uv run --no-sync llama stack list-deps tests/external/build.yaml + uv run --no-sync llama stack list-deps tests/external/build.yaml - name: Build distro from config file run: | diff --git a/containers/Containerfile b/containers/Containerfile new file mode 100644 index 000000000..c6e47fa1d --- /dev/null +++ b/containers/Containerfile @@ -0,0 +1,136 @@ +# syntax=docker/dockerfile:1.6 +# +# This Dockerfile is used to build the Llama Stack container image. +# Example: +# docker build \ +# -f containers/Containerfile \ +# --build-arg DISTRO_NAME=starter \ +# --tag llama-stack:starter . + +ARG BASE_IMAGE=python:3.12-slim +FROM ${BASE_IMAGE} + +ARG INSTALL_MODE="pypi" +ARG LLAMA_STACK_DIR="/workspace" +ARG LLAMA_STACK_CLIENT_DIR="" +ARG PYPI_VERSION="" +ARG TEST_PYPI_VERSION="" +ARG KEEP_WORKSPACE="" +ARG DISTRO_NAME="starter" +ARG RUN_CONFIG_PATH="" +ARG UV_HTTP_TIMEOUT=500 +ENV UV_HTTP_TIMEOUT=${UV_HTTP_TIMEOUT} +ENV PYTHONDONTWRITEBYTECODE=1 +ENV PIP_DISABLE_PIP_VERSION_CHECK=1 +WORKDIR /app + +RUN set -eux; \ + if command -v dnf >/dev/null 2>&1; then \ + dnf -y update && \ + dnf install -y iputils git net-tools wget \ + vim-minimal python3.12 python3.12-pip python3.12-wheel \ + python3.12-setuptools python3.12-devel gcc gcc-c++ make && \ + ln -sf /usr/bin/pip3.12 /usr/local/bin/pip && \ + ln -sf /usr/bin/python3.12 /usr/local/bin/python && \ + dnf clean all; \ + elif command -v apt-get >/dev/null 2>&1; then \ + apt-get update && \ + apt-get install -y --no-install-recommends \ + iputils-ping net-tools iproute2 dnsutils telnet \ + curl wget git procps psmisc lsof traceroute bubblewrap \ + gcc g++ && \ + rm -rf /var/lib/apt/lists/*; \ + else \ + echo "Unsupported base image: expected dnf or apt-get" >&2; \ + exit 1; \ + fi + +RUN pip install --no-cache-dir uv +ENV UV_SYSTEM_PYTHON=1 + +ENV INSTALL_MODE=${INSTALL_MODE} +ENV LLAMA_STACK_DIR=${LLAMA_STACK_DIR} +ENV LLAMA_STACK_CLIENT_DIR=${LLAMA_STACK_CLIENT_DIR} +ENV PYPI_VERSION=${PYPI_VERSION} +ENV TEST_PYPI_VERSION=${TEST_PYPI_VERSION} +ENV KEEP_WORKSPACE=${KEEP_WORKSPACE} +ENV DISTRO_NAME=${DISTRO_NAME} +ENV RUN_CONFIG_PATH=${RUN_CONFIG_PATH} + +# Copy the repository so editable installs and run configurations are available. +COPY . /workspace + +# Install llama-stack +RUN set -eux; \ + if [ "$INSTALL_MODE" = "editable" ]; then \ + if [ ! -d "$LLAMA_STACK_DIR" ]; then \ + echo "INSTALL_MODE=editable requires LLAMA_STACK_DIR to point to a directory inside the build context" >&2; \ + exit 1; \ + fi; \ + uv pip install --no-cache-dir -e "$LLAMA_STACK_DIR"; \ + elif [ "$INSTALL_MODE" = "test-pypi" ]; then \ + uv pip install --no-cache-dir fastapi libcst; \ + if [ -n "$TEST_PYPI_VERSION" ]; then \ + uv pip install --no-cache-dir --extra-index-url https://test.pypi.org/simple/ --index-strategy unsafe-best-match "llama-stack==$TEST_PYPI_VERSION"; \ + else \ + uv pip install --no-cache-dir --extra-index-url https://test.pypi.org/simple/ --index-strategy unsafe-best-match llama-stack; \ + fi; \ + else \ + if [ -n "$PYPI_VERSION" ]; then \ + uv pip install --no-cache-dir "llama-stack==$PYPI_VERSION"; \ + else \ + uv pip install --no-cache-dir llama-stack; \ + fi; \ + fi; + +# Install the client package if it is provided +RUN set -eux; \ + if [ -n "$LLAMA_STACK_CLIENT_DIR" ]; then \ + if [ ! -d "$LLAMA_STACK_CLIENT_DIR" ]; then \ + echo "LLAMA_STACK_CLIENT_DIR is set but $LLAMA_STACK_CLIENT_DIR does not exist" >&2; \ + exit 1; \ + fi; \ + uv pip install --no-cache-dir -e "$LLAMA_STACK_CLIENT_DIR"; \ + fi; + +# Install the dependencies for the distribution +RUN set -eux; \ + if [ -z "$DISTRO_NAME" ]; then \ + echo "DISTRO_NAME must be provided" >&2; \ + exit 1; \ + fi; \ + deps="$(llama stack list-deps "$DISTRO_NAME")"; \ + if [ -n "$deps" ]; then \ + printf '%s\n' "$deps" | xargs -L1 uv pip install --no-cache-dir; \ + fi + +# Cleanup +RUN set -eux; \ + pip uninstall -y uv; \ + should_remove=1; \ + if [ -n "$KEEP_WORKSPACE" ]; then should_remove=0; fi; \ + if [ "$INSTALL_MODE" = "editable" ]; then should_remove=0; fi; \ + case "$RUN_CONFIG_PATH" in \ + /workspace*) should_remove=0 ;; \ + esac; \ + if [ "$should_remove" -eq 1 ] && [ -d /workspace ]; then rm -rf /workspace; fi + +RUN cat <<'EOF' >/usr/local/bin/llama-stack-entrypoint.sh +#!/bin/sh +set -e + +if [ -n "$RUN_CONFIG_PATH" ] && [ -f "$RUN_CONFIG_PATH" ]; then + exec llama stack run "$RUN_CONFIG_PATH" "$@" +fi + +if [ -n "$DISTRO_NAME" ]; then + exec llama stack run "$DISTRO_NAME" "$@" +fi + +exec llama stack run "$@" +EOF +RUN chmod +x /usr/local/bin/llama-stack-entrypoint.sh + +RUN mkdir -p /.llama /.cache && chmod -R g+rw /app /.llama /.cache + +ENTRYPOINT ["/usr/local/bin/llama-stack-entrypoint.sh"] diff --git a/docs/docs/contributing/index.mdx b/docs/docs/contributing/index.mdx index 2051f6040..373f817f3 100644 --- a/docs/docs/contributing/index.mdx +++ b/docs/docs/contributing/index.mdx @@ -158,17 +158,16 @@ under the LICENSE file in the root directory of this source tree. Some tips about common tasks you work on while contributing to Llama Stack: -### Installing dependencies of distributions +### Setup for development -Building a stack image will use the production version of the `llama-stack` and `llama-stack-client` packages. If you are developing with a llama-stack repository checked out and need your code to be reflected in the stack image, set `LLAMA_STACK_DIR` and `LLAMA_STACK_CLIENT_DIR` to the appropriate checked out directories when running any of the `llama` CLI commands. - -Example: ```bash -cd work/ git clone https://github.com/meta-llama/llama-stack.git -git clone https://github.com/meta-llama/llama-stack-client-python.git cd llama-stack -llama stack build --distro <...> +uv run llama stack list-deps | xargs -L1 uv pip install + +# (Optional) If you are developing the llama-stack-client-python package, you can add it as an editable package. +git clone https://github.com/meta-llama/llama-stack-client-python.git +uv add --editable ../llama-stack-client-python ``` ### Updating distribution configurations diff --git a/docs/docs/distributions/building_distro.mdx b/docs/docs/distributions/building_distro.mdx index a4f7e1f60..0c40613d6 100644 --- a/docs/docs/distributions/building_distro.mdx +++ b/docs/docs/distributions/building_distro.mdx @@ -5,225 +5,79 @@ sidebar_label: Build your own Distribution sidebar_position: 3 --- -This guide will walk you through the steps to get started with building a Llama Stack distribution from scratch with your choice of API providers. +This guide walks you through inspecting existing distributions, customising their configuration, and building runnable artefacts for your own deployment. +### Explore existing distributions -### Setting your log level +All first-party distributions live under `llama_stack/distributions/`. Each directory contains: -In order to specify the proper logging level users can apply the following environment variable `LLAMA_STACK_LOGGING` with the following format: +- `build.yaml` – the distribution specification (providers, additional dependencies, optional external provider directories). +- `run.yaml` – sample run configuration (when provided). +- Documentation fragments that power this site. -`LLAMA_STACK_LOGGING=server=debug;core=info` - -Where each category in the following list: - -- all -- core -- server -- router -- inference -- agents -- safety -- eval -- tools -- client - -Can be set to any of the following log levels: - -- debug -- info -- warning -- error -- critical - -The default global log level is `info`. `all` sets the log level for all components. - -A user can also set `LLAMA_STACK_LOG_FILE` which will pipe the logs to the specified path as well as to the terminal. An example would be: `export LLAMA_STACK_LOG_FILE=server.log` - -### Llama Stack Build - -In order to build your own distribution, we recommend you clone the `llama-stack` repository. - - -``` -git clone git@github.com:meta-llama/llama-stack.git -cd llama-stack -pip install -e . -``` -Use the CLI to build your distribution. -The main points to consider are: -1. **Image Type** - Do you want a venv environment or a Container (eg. Docker) -2. **Template** - Do you want to use a template to build your distribution? or start from scratch ? -3. **Config** - Do you want to use a pre-existing config file to build your distribution? - -``` -llama stack build -h -usage: llama stack build [-h] [--config CONFIG] [--template TEMPLATE] [--distro DISTRIBUTION] [--list-distros] [--image-type {container,venv}] [--image-name IMAGE_NAME] [--print-deps-only] - [--run] [--providers PROVIDERS] - -Build a Llama stack container - -options: - -h, --help show this help message and exit - --config CONFIG Path to a config file to use for the build. You can find example configs in llama_stack.cores/**/build.yaml. If this argument is not provided, you will be prompted to - enter information interactively (default: None) - --template TEMPLATE (deprecated) Name of the example template config to use for build. You may use `llama stack build --list-distros` to check out the available distributions (default: - None) - --distro DISTRIBUTION, --distribution DISTRIBUTION - Name of the distribution to use for build. You may use `llama stack build --list-distros` to check out the available distributions (default: None) - --list-distros, --list-distributions - Show the available distributions for building a Llama Stack distribution (default: False) - --image-type {container,venv} - Image Type to use for the build. If not specified, will use the image type from the template config. (default: None) - --image-name IMAGE_NAME - [for image-type=container|venv] Name of the virtual environment to use for the build. If not specified, currently active environment will be used if found. (default: - None) - --print-deps-only Print the dependencies for the stack only, without building the stack (default: False) - --run Run the stack after building using the same image type, name, and other applicable arguments (default: False) - --providers PROVIDERS - Build a config for a list of providers and only those providers. This list is formatted like: api1=provider1,api2=provider2. Where there can be multiple providers per - API. (default: None) -``` - -After this step is complete, a file named `-build.yaml` and template file `-run.yaml` will be generated and saved at the output file path specified at the end of the command. +Browse that folder to understand available providers and copy a distribution to use as a starting point. When creating a new stack, duplicate an existing directory, rename it, and adjust the `build.yaml` file to match your requirements. import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem'; - - -To build from alternative API providers, we provide distribution templates for users to get started building a distribution backed by different providers. + -The following command will allow you to see the available templates and their corresponding providers. -``` -llama stack build --list-templates +Use the Containerfile at `containers/Containerfile`, which installs `llama-stack`, resolves distribution dependencies via `llama stack list-deps`, and sets the entrypoint to `llama stack run`. + +```bash +docker build . \ + -f containers/Containerfile \ + --build-arg DISTRO_NAME=starter \ + --tag llama-stack:starter ``` -``` -------------------------------+-----------------------------------------------------------------------------+ -| Template Name | Description | -+------------------------------+-----------------------------------------------------------------------------+ -| watsonx | Use watsonx for running LLM inference | -+------------------------------+-----------------------------------------------------------------------------+ -| vllm-gpu | Use a built-in vLLM engine for running LLM inference | -+------------------------------+-----------------------------------------------------------------------------+ -| together | Use Together.AI for running LLM inference | -+------------------------------+-----------------------------------------------------------------------------+ -| tgi | Use (an external) TGI server for running LLM inference | -+------------------------------+-----------------------------------------------------------------------------+ -| starter | Quick start template for running Llama Stack with several popular providers | -+------------------------------+-----------------------------------------------------------------------------+ -| sambanova | Use SambaNova for running LLM inference and safety | -+------------------------------+-----------------------------------------------------------------------------+ -| remote-vllm | Use (an external) vLLM server for running LLM inference | -+------------------------------+-----------------------------------------------------------------------------+ -| postgres-demo | Quick start template for running Llama Stack with several popular providers | -+------------------------------+-----------------------------------------------------------------------------+ -| passthrough | Use Passthrough hosted llama-stack endpoint for LLM inference | -+------------------------------+-----------------------------------------------------------------------------+ -| open-benchmark | Distribution for running open benchmarks | -+------------------------------+-----------------------------------------------------------------------------+ -| ollama | Use (an external) Ollama server for running LLM inference | -+------------------------------+-----------------------------------------------------------------------------+ -| nvidia | Use NVIDIA NIM for running LLM inference, evaluation and safety | -+------------------------------+-----------------------------------------------------------------------------+ -| meta-reference-gpu | Use Meta Reference for running LLM inference | -+------------------------------+-----------------------------------------------------------------------------+ -| llama_api | Distribution for running e2e tests in CI | -+------------------------------+-----------------------------------------------------------------------------+ -| hf-serverless | Use (an external) Hugging Face Inference Endpoint for running LLM inference | -+------------------------------+-----------------------------------------------------------------------------+ -| hf-endpoint | Use (an external) Hugging Face Inference Endpoint for running LLM inference | -+------------------------------+-----------------------------------------------------------------------------+ -| groq | Use Groq for running LLM inference | -+------------------------------+-----------------------------------------------------------------------------+ -| fireworks | Use Fireworks.AI for running LLM inference | -+------------------------------+-----------------------------------------------------------------------------+ -| experimental-post-training | Experimental template for post training | -+------------------------------+-----------------------------------------------------------------------------+ -| dell | Dell's distribution of Llama Stack. TGI inference via Dell's custom | -| | container | -+------------------------------+-----------------------------------------------------------------------------+ -| ci-tests | Distribution for running e2e tests in CI | -+------------------------------+-----------------------------------------------------------------------------+ -| cerebras | Use Cerebras for running LLM inference | -+------------------------------+-----------------------------------------------------------------------------+ -| bedrock | Use AWS Bedrock for running LLM inference and safety | -+------------------------------+-----------------------------------------------------------------------------+ -``` +Handy build arguments: -You may then pick a template to build your distribution with providers fitted to your liking. +- `DISTRO_NAME` – distribution directory name (defaults to `starter`). +- `RUN_CONFIG_PATH` – absolute path inside the build context for a run config that should be baked into the image (e.g. `/workspace/run.yaml`). +- `INSTALL_MODE=editable` – install the repository copied into `/workspace` with `uv pip install -e`. Pair it with `--build-arg LLAMA_STACK_DIR=/workspace`. +- `LLAMA_STACK_CLIENT_DIR` – optional editable install of the Python client. +- `PYPI_VERSION` / `TEST_PYPI_VERSION` – pin specific releases when not using editable installs. +- `KEEP_WORKSPACE=1` – retain `/workspace` in the final image if you need to access additional files (such as sample configs or provider bundles). -For example, to build a distribution with TGI as the inference provider, you can run: -``` -$ llama stack build --distro starter -... -You can now edit ~/.llama/distributions/llamastack-starter/starter-run.yaml and run `llama stack run ~/.llama/distributions/llamastack-starter/starter-run.yaml` -``` +Make sure any custom `build.yaml`, run configs, or provider directories you reference are included in the Docker build context so the Containerfile can read them. -```{tip} -The generated `run.yaml` file is a starting point for your configuration. For comprehensive guidance on customizing it for your specific needs, infrastructure, and deployment scenarios, see [Customizing Your run.yaml Configuration](customizing_run_yaml.md). -``` - + -If the provided templates do not fit your use case, you could start off with running `llama stack build` which will allow you to a interactively enter wizard where you will be prompted to enter build configurations. +External providers live outside the main repository but can be bundled by pointing `external_providers_dir` to a directory that contains your provider packages. -It would be best to start with a template and understand the structure of the config file and the various concepts ( APIS, providers, resources, etc.) before starting from scratch. -``` -llama stack build +1. Copy providers into the build context, for example `cp -R path/to/providers providers.d`. +2. Update `build.yaml` with the directory and provider entries. +3. Adjust run configs to use the in-container path (usually `/.llama/providers.d`). Pass `--build-arg RUN_CONFIG_PATH=/workspace/run.yaml` if you want to bake the config. -> Enter a name for your Llama Stack (e.g. my-local-stack): my-stack -> Enter the image type you want your Llama Stack to be built as (container or venv): venv - -Llama Stack is composed of several APIs working together. Let's select -the provider types (implementations) you want to use for these APIs. - -Tip: use to see options for the providers. - -> Enter provider for API inference: inline::meta-reference -> Enter provider for API safety: inline::llama-guard -> Enter provider for API agents: inline::meta-reference -> Enter provider for API memory: inline::faiss -> Enter provider for API datasetio: inline::meta-reference -> Enter provider for API scoring: inline::meta-reference -> Enter provider for API eval: inline::meta-reference -> Enter provider for API telemetry: inline::meta-reference - - > (Optional) Enter a short description for your Llama Stack: - -You can now edit ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml and run `llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml` -``` - - -- In addition to templates, you may customize the build to your liking through editing config files and build from config files with the following command. - -- The config file will be of contents like the ones in `llama_stack/distributions/*build.yaml`. - -``` -llama stack build --config llama_stack/distributions/starter/build.yaml -``` - - - -Llama Stack supports external providers that live outside of the main codebase. This allows you to create and maintain your own providers independently or use community-provided providers. - -To build a distribution with external providers, you need to: - -1. Configure the `external_providers_dir` in your build configuration file: +Example `build.yaml` excerpt for a custom Ollama provider: ```yaml -# Example my-external-stack.yaml with external providers -version: '2' distribution_spec: - description: Custom distro for CI tests providers: inference: - - remote::custom_ollama -# Add more providers as needed -image_type: container -image_name: ci-test -# Path to external provider implementations -external_providers_dir: ~/.llama/providers.d + - remote::custom_ollama +external_providers_dir: /workspace/providers.d +``` + +Inside `providers.d/custom_ollama/provider.py`, define `get_provider_spec()` so the CLI can discover dependencies: + +```python +from llama_stack.providers.datatypes import ProviderSpec + + +def get_provider_spec() -> ProviderSpec: + return ProviderSpec( + provider_type="remote::custom_ollama", + module="llama_stack_ollama_provider", + config_class="llama_stack_ollama_provider.config.OllamaImplConfig", + pip_packages=[ + "ollama", + "aiohttp", + "llama-stack-provider-ollama", + ], + ) ``` Here's an example for a custom Ollama provider: @@ -232,9 +86,9 @@ Here's an example for a custom Ollama provider: adapter: adapter_type: custom_ollama pip_packages: - - ollama - - aiohttp - - llama-stack-provider-ollama # This is the provider package + - ollama + - aiohttp + - llama-stack-provider-ollama # This is the provider package config_class: llama_stack_ollama_provider.config.OllamaImplConfig module: llama_stack_ollama_provider api_dependencies: [] @@ -245,53 +99,22 @@ The `pip_packages` section lists the Python packages required by the provider, a provider package itself. The package must be available on PyPI or can be provided from a local directory or a git repository (git must be installed on the build environment). -2. Build your distribution using the config file: +For deeper guidance, see the [External Providers documentation](../providers/external/). -``` -llama stack build --config my-external-stack.yaml -``` - -For more information on external providers, including directory structure, provider types, and implementation requirements, see the [External Providers documentation](../providers/external/). - + -:::tip Podman Alternative -Podman is supported as an alternative to Docker. Set `CONTAINER_BINARY` to `podman` in your environment to use Podman. -::: +### Run your stack server -To build a container image, you may start off from a template and use the `--image-type container` flag to specify `container` as the build image type. - -``` -llama stack build --distro starter --image-type container -``` - -``` -$ llama stack build --distro starter --image-type container -... -Containerfile created successfully in /tmp/tmp.viA3a3Rdsg/ContainerfileFROM python:3.10-slim -... -``` - -You can now edit ~/meta-llama/llama-stack/tmp/configs/ollama-run.yaml and run `llama stack run ~/meta-llama/llama-stack/tmp/configs/ollama-run.yaml` -``` - -Now set some environment variables for the inference model ID and Llama Stack Port and create a local directory to mount into the container's file system. +After building the image, launch it directly with Docker or Podman—the entrypoint calls `llama stack run` using the baked distribution or the bundled run config: ```bash -export INFERENCE_MODEL="llama3.2:3b" -export LLAMA_STACK_PORT=8321 -mkdir -p ~/.llama -``` - -After this step is successful, you should be able to find the built container image and test it with the below Docker command: - -``` docker run -d \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -v ~/.llama:/root/.llama \ -e INFERENCE_MODEL=$INFERENCE_MODEL \ -e OLLAMA_URL=http://host.docker.internal:11434 \ - localhost/distribution-ollama:dev \ + llama-stack:starter \ --port $LLAMA_STACK_PORT ``` @@ -311,131 +134,14 @@ Here are the docker flags and their uses: * `--port $LLAMA_STACK_PORT`: Port number for the server to listen on -
-
-### Running your Stack server -Now, let's start the Llama Stack Distribution Server. You will need the YAML configuration file which was written out at the end by the `llama stack build` step. +If you prepared a custom run config, mount it into the container and reference it explicitly: +```bash +docker run \ + -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ + -v $(pwd)/run.yaml:/app/run.yaml \ + llama-stack:starter \ + /app/run.yaml ``` -llama stack run -h -usage: llama stack run [-h] [--port PORT] [--image-name IMAGE_NAME] - [--image-type {venv}] [--enable-ui] - [config | distro] - -Start the server for a Llama Stack Distribution. You should have already built (or downloaded) and configured the distribution. - -positional arguments: - config | distro Path to config file to use for the run or name of known distro (`llama stack list` for a list). (default: None) - -options: - -h, --help show this help message and exit - --port PORT Port to run the server on. It can also be passed via the env var LLAMA_STACK_PORT. (default: 8321) - --image-name IMAGE_NAME - [DEPRECATED] This flag is no longer supported. Please activate your virtual environment before running. (default: None) - --image-type {venv} - [DEPRECATED] This flag is no longer supported. Please activate your virtual environment before running. (default: None) - --enable-ui Start the UI server (default: False) -``` - -**Note:** Container images built with `llama stack build --image-type container` cannot be run using `llama stack run`. Instead, they must be run directly using Docker or Podman commands as shown in the container building section above. - -``` -# Start using template name -llama stack run tgi - -# Start using config file -llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml -``` - -``` -$ llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml - -Serving API inspect - GET /health - GET /providers/list - GET /routes/list -Serving API inference - POST /inference/chat_completion - POST /inference/completion - POST /inference/embeddings -... -Serving API agents - POST /agents/create - POST /agents/session/create - POST /agents/turn/create - POST /agents/delete - POST /agents/session/delete - POST /agents/session/get - POST /agents/step/get - POST /agents/turn/get - -Listening on ['::', '0.0.0.0']:8321 -INFO: Started server process [2935911] -INFO: Waiting for application startup. -INFO: Application startup complete. -INFO: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit) -INFO: 2401:db00:35c:2d2b:face:0:c9:0:54678 - "GET /models/list HTTP/1.1" 200 OK -``` - -### Listing Distributions -Using the list command, you can view all existing Llama Stack distributions, including stacks built from templates, from scratch, or using custom configuration files. - -``` -llama stack list -h -usage: llama stack list [-h] - -list the build stacks - -options: - -h, --help show this help message and exit -``` - -Example Usage - -``` -llama stack list -``` - -``` -------------------------------+-----------------------------------------------------------------+--------------+------------+ -| Stack Name | Path | Build Config | Run Config | -+------------------------------+-----------------------------------------------------------------------------+--------------+ -| together | ~/.llama/distributions/together | Yes | No | -+------------------------------+-----------------------------------------------------------------------------+--------------+ -| bedrock | ~/.llama/distributions/bedrock | Yes | No | -+------------------------------+-----------------------------------------------------------------------------+--------------+ -| starter | ~/.llama/distributions/starter | Yes | Yes | -+------------------------------+-----------------------------------------------------------------------------+--------------+ -| remote-vllm | ~/.llama/distributions/remote-vllm | Yes | Yes | -+------------------------------+-----------------------------------------------------------------------------+--------------+ -``` - -### Removing a Distribution -Use the remove command to delete a distribution you've previously built. - -``` -llama stack rm -h -usage: llama stack rm [-h] [--all] [name] - -Remove the build stack - -positional arguments: - name Name of the stack to delete (default: None) - -options: - -h, --help show this help message and exit - --all, -a Delete all stacks (use with caution) (default: False) -``` - -Example -``` -llama stack rm llamastack-test -``` - -To keep your environment organized and avoid clutter, consider using `llama stack list` to review old or unused distributions and `llama stack rm ` to delete them when they're no longer needed. - -### Troubleshooting - -If you encounter any issues, ask questions in our discord or search through our [GitHub Issues](https://github.com/meta-llama/llama-stack/issues), or file an new issue. diff --git a/docs/docs/distributions/starting_llama_stack_server.mdx b/docs/docs/distributions/starting_llama_stack_server.mdx index 0260692b3..20bcfa1e4 100644 --- a/docs/docs/distributions/starting_llama_stack_server.mdx +++ b/docs/docs/distributions/starting_llama_stack_server.mdx @@ -23,6 +23,17 @@ Another simple way to start interacting with Llama Stack is to just spin up a co If you have built a container image and want to deploy it in a Kubernetes cluster instead of starting the Llama Stack server locally. See [Kubernetes Deployment Guide](../deploying/kubernetes_deployment) for more details. +## Configure logging + +Control log output via environment variables before starting the server. + +- `LLAMA_STACK_LOGGING` sets per-component levels, e.g. `LLAMA_STACK_LOGGING=server=debug;core=info`. +- Supported categories: `all`, `core`, `server`, `router`, `inference`, `agents`, `safety`, `eval`, `tools`, `client`. +- Levels: `debug`, `info`, `warning`, `error`, `critical` (default is `info`). Use `all=` to apply globally. +- `LLAMA_STACK_LOG_FILE=/path/to/log` mirrors logs to a file while still printing to stdout. + +Export these variables prior to running `llama stack run`, launching a container, or starting the server through any other pathway. + ```{toctree} :maxdepth: 1 :hidden: From 359df3a37c9f3cf6945b5da610c51408c028005a Mon Sep 17 00:00:00 2001 From: ehhuang Date: Mon, 20 Oct 2025 10:33:21 -0700 Subject: [PATCH 14/41] chore: update doc (#3857) # What does this PR do? follows https://github.com/llamastack/llama-stack/pull/3839 ## Test Plan --- docs/docs/advanced_apis/post_training.mdx | 4 +- .../docs/building_applications/playground.mdx | 9 +- docs/docs/building_applications/rag.mdx | 3 +- docs/docs/contributing/new_api_provider.mdx | 2 +- .../distributions/importing_as_library.mdx | 2 +- .../ondevice_distro/android_sdk.md | 2 +- .../distributions/self_hosted_distro/dell.md | 4 +- .../self_hosted_distro/meta-reference-gpu.md | 4 +- .../self_hosted_distro/nvidia.md | 4 +- .../external/external-providers-guide.mdx | 2 +- docs/getting_started.ipynb | 5959 +++++++++-------- docs/getting_started_llama4.ipynb | 1751 ++--- docs/getting_started_llama_api.ipynb | 1813 ++--- .../Alpha_Llama_Stack_Post_Training.ipynb | 2 +- .../Llama_Stack_Agent_Workflows.ipynb | 2 +- .../Llama_Stack_Benchmark_Evals.ipynb | 2428 +++---- .../notebooks/crewai/Llama_Stack_CrewAI.ipynb | 5 +- .../langchain/Llama_Stack_LangChain.ipynb | 3 +- .../Llama_Stack_NVIDIA_E2E_Flow.ipynb | 2 +- .../tool_calling/1_data_preparation.ipynb | 2 +- docs/quick_start.ipynb | 726 +- docs/src/pages/index.js | 8 +- docs/zero_to_hero_guide/README.md | 13 +- .../meta-reference-gpu/doc_template.md | 4 +- .../distributions/nvidia/doc_template.md | 4 +- 25 files changed, 6380 insertions(+), 6378 deletions(-) diff --git a/docs/docs/advanced_apis/post_training.mdx b/docs/docs/advanced_apis/post_training.mdx index 43bfaea91..27288fe06 100644 --- a/docs/docs/advanced_apis/post_training.mdx +++ b/docs/docs/advanced_apis/post_training.mdx @@ -51,8 +51,8 @@ device: cpu You can access the HuggingFace trainer via the `starter` distribution: ```bash -llama stack build --distro starter --image-type venv -llama stack run ~/.llama/distributions/starter/starter-run.yaml +llama stack list-deps starter | xargs -L1 uv pip install +llama stack run starter ``` ### Usage Example diff --git a/docs/docs/building_applications/playground.mdx b/docs/docs/building_applications/playground.mdx index 824a2c32b..f3290a356 100644 --- a/docs/docs/building_applications/playground.mdx +++ b/docs/docs/building_applications/playground.mdx @@ -175,8 +175,7 @@ llama-stack-client benchmarks register \ **1. Start the Llama Stack API Server** ```bash -# Build and run a distribution (example: together) -llama stack build --distro together --image-type venv +llama stack list-deps together | xargs -L1 uv pip install llama stack run together ``` @@ -209,7 +208,7 @@ The playground works with any Llama Stack distribution. Popular options include: ```bash -llama stack build --distro together --image-type venv +llama stack list-deps together | xargs -L1 uv pip install llama stack run together ``` @@ -222,7 +221,7 @@ llama stack run together ```bash -llama stack build --distro ollama --image-type venv +llama stack list-deps ollama | xargs -L1 uv pip install llama stack run ollama ``` @@ -235,7 +234,7 @@ llama stack run ollama ```bash -llama stack build --distro meta-reference --image-type venv +llama stack list-deps meta-reference | xargs -L1 uv pip install llama stack run meta-reference ``` diff --git a/docs/docs/building_applications/rag.mdx b/docs/docs/building_applications/rag.mdx index edb6644f7..8307448be 100644 --- a/docs/docs/building_applications/rag.mdx +++ b/docs/docs/building_applications/rag.mdx @@ -20,7 +20,8 @@ RAG enables your applications to reference and recall information from external In one terminal, start the Llama Stack server: ```bash -uv run llama stack build --distro starter --image-type venv --run +llama stack list-deps starter | xargs -L1 uv pip install +llama stack run starter ``` ### 2. Connect with OpenAI Client diff --git a/docs/docs/contributing/new_api_provider.mdx b/docs/docs/contributing/new_api_provider.mdx index 6f9744771..2efaf08b4 100644 --- a/docs/docs/contributing/new_api_provider.mdx +++ b/docs/docs/contributing/new_api_provider.mdx @@ -67,7 +67,7 @@ def get_base_url(self) -> str: ## Testing the Provider -Before running tests, you must have required dependencies installed. This depends on the providers or distributions you are testing. For example, if you are testing the `together` distribution, you should install dependencies via `llama stack build --distro together`. +Before running tests, you must have required dependencies installed. This depends on the providers or distributions you are testing. For example, if you are testing the `together` distribution, install its dependencies with `llama stack list-deps together | xargs -L1 uv pip install`. ### 1. Integration Testing diff --git a/docs/docs/distributions/importing_as_library.mdx b/docs/docs/distributions/importing_as_library.mdx index 122e5220f..cf626d2c7 100644 --- a/docs/docs/distributions/importing_as_library.mdx +++ b/docs/docs/distributions/importing_as_library.mdx @@ -12,7 +12,7 @@ This avoids the overhead of setting up a server. ```bash # setup uv pip install llama-stack -llama stack build --distro starter --image-type venv +llama stack list-deps starter | xargs -L1 uv pip install ``` ```python diff --git a/docs/docs/distributions/ondevice_distro/android_sdk.md b/docs/docs/distributions/ondevice_distro/android_sdk.md index bfa294e45..107e2dc3d 100644 --- a/docs/docs/distributions/ondevice_distro/android_sdk.md +++ b/docs/docs/distributions/ondevice_distro/android_sdk.md @@ -59,7 +59,7 @@ Start a Llama Stack server on localhost. Here is an example of how you can do th uv venv starter --python 3.12 source starter/bin/activate # On Windows: starter\Scripts\activate pip install --no-cache llama-stack==0.2.2 -llama stack build --distro starter --image-type venv +llama stack list-deps starter | xargs -L1 uv pip install export FIREWORKS_API_KEY= llama stack run starter --port 5050 ``` diff --git a/docs/docs/distributions/self_hosted_distro/dell.md b/docs/docs/distributions/self_hosted_distro/dell.md index 851eac3bf..040eb4a12 100644 --- a/docs/docs/distributions/self_hosted_distro/dell.md +++ b/docs/docs/distributions/self_hosted_distro/dell.md @@ -166,10 +166,10 @@ docker run \ ### Via venv -Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available. +Install the distribution dependencies before launching: ```bash -llama stack build --distro dell --image-type venv +llama stack list-deps dell | xargs -L1 uv pip install INFERENCE_MODEL=$INFERENCE_MODEL \ DEH_URL=$DEH_URL \ CHROMA_URL=$CHROMA_URL \ diff --git a/docs/docs/distributions/self_hosted_distro/meta-reference-gpu.md b/docs/docs/distributions/self_hosted_distro/meta-reference-gpu.md index 6432575b5..b7134b3e1 100644 --- a/docs/docs/distributions/self_hosted_distro/meta-reference-gpu.md +++ b/docs/docs/distributions/self_hosted_distro/meta-reference-gpu.md @@ -81,10 +81,10 @@ docker run \ ### Via venv -Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available. +Make sure you have the Llama Stack CLI available. ```bash -llama stack build --distro meta-reference-gpu --image-type venv +llama stack list-deps meta-reference-gpu | xargs -L1 uv pip install INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \ llama stack run distributions/meta-reference-gpu/run.yaml \ --port 8321 diff --git a/docs/docs/distributions/self_hosted_distro/nvidia.md b/docs/docs/distributions/self_hosted_distro/nvidia.md index ea75a2351..4a7d99ff5 100644 --- a/docs/docs/distributions/self_hosted_distro/nvidia.md +++ b/docs/docs/distributions/self_hosted_distro/nvidia.md @@ -136,11 +136,11 @@ docker run \ ### Via venv -If you've set up your local development environment, you can also build the image using your local virtual environment. +If you've set up your local development environment, you can also install the distribution dependencies using your local virtual environment. ```bash INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct -llama stack build --distro nvidia --image-type venv +llama stack list-deps nvidia | xargs -L1 uv pip install NVIDIA_API_KEY=$NVIDIA_API_KEY \ INFERENCE_MODEL=$INFERENCE_MODEL \ llama stack run ./run.yaml \ diff --git a/docs/docs/providers/external/external-providers-guide.mdx b/docs/docs/providers/external/external-providers-guide.mdx index 554f1e327..748fd62c0 100644 --- a/docs/docs/providers/external/external-providers-guide.mdx +++ b/docs/docs/providers/external/external-providers-guide.mdx @@ -240,6 +240,6 @@ additional_pip_packages: - sqlalchemy[asyncio] ``` -No other steps are required other than `llama stack build` and `llama stack run`. The build process will use `module` to install all of the provider dependencies, retrieve the spec, etc. +No other steps are required beyond installing dependencies with `llama stack list-deps | xargs -L1 uv pip install` and then running `llama stack run`. The CLI will use `module` to install the provider dependencies, retrieve the spec, etc. The provider will now be available in Llama Stack with the type `remote::ramalama`. diff --git a/docs/getting_started.ipynb b/docs/getting_started.ipynb index a810d113b..e1e2ff82e 100644 --- a/docs/getting_started.ipynb +++ b/docs/getting_started.ipynb @@ -1,2982 +1,2983 @@ { - "cells": [ - { - "cell_type": "markdown", - "id": "c1e7571c", - "metadata": { - "id": "c1e7571c" - }, - "source": [ - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb)\n", - "\n", - "# Llama Stack - Building AI Applications\n", - "\n", - "\"drawing\"\n", - "\n", - "[Llama Stack](https://github.com/meta-llama/llama-stack) defines and standardizes the set of core building blocks needed to bring generative AI applications to market. These building blocks are presented in the form of interoperable APIs with a broad set of Service Providers providing their implementations.\n", - "\n", - "Read more about the project here: https://llamastack.github.io\n", - "\n", - "In this guide, we will showcase how you can build LLM-powered agentic applications using Llama Stack.\n", - "\n", - "**💡 Quick Start Option:** If you want a simpler and faster way to test out Llama Stack, check out the [quick_start.ipynb](quick_start.ipynb) notebook instead. It provides a streamlined experience for getting up and running in just a few steps.\n" - ] - }, - { - "cell_type": "markdown", - "id": "4CV1Q19BDMVw", - "metadata": { - "id": "4CV1Q19BDMVw" - }, - "source": [ - "## 1. Getting started with Llama Stack" - ] - }, - { - "cell_type": "markdown", - "id": "K4AvfUAJZOeS", - "metadata": { - "id": "K4AvfUAJZOeS" - }, - "source": [ - "### 1.1. Create TogetherAI account\n", - "\n", - "\n", - "In order to run inference for the llama models, you will need to use an inference provider. Llama stack supports a number of inference [providers](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/remote/inference).\n", - "\n", - "\n", - "In this showcase, we will use [together.ai](https://www.together.ai/) as the inference provider. So, you would first get an API key from Together if you dont have one already.\n", - "\n", - "Steps [here](https://docs.google.com/document/d/1Vg998IjRW_uujAPnHdQ9jQWvtmkZFt74FldW2MblxPY/edit?usp=sharing).\n", - "\n", - "You can also use Fireworks.ai or even Ollama if you would like to.\n", - "\n", - "\n", - "\n", - "> **Note:** Set the API Key in the Secrets of this notebook\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "oDUB7M_qe-Gs", - "metadata": { - "id": "oDUB7M_qe-Gs" - }, - "source": [ - "### 1.2. Setup and Running a Llama Stack server\n", - "\n", - "Llama Stack is architected as a collection of APIs that provide developers with the building blocks to build AI applications. \n", - "\n", - "Llama stack is typically available as a server with an endpoint that you can make calls to. Partners like Together and Fireworks offer their own Llama Stack compatible endpoints.\n", - "\n", - "In this showcase, we will start a Llama Stack server that is running locally.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "J2kGed0R5PSf", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "collapsed": true, - "id": "J2kGed0R5PSf", - "outputId": "2478ea60-8d35-48a1-b011-f233831740c5" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: uv in /opt/homebrew/Caskroom/miniconda/base/envs/stack/lib/python3.10/site-packages (0.5.29)\n", - "Environment '/Users/hjshah/git/llama-stack/.venv' already exists, re-using it.\n", - "Virtual environment /Users/hjshah/git/llama-stack/.venv is already active\n", - "\u001b[2mUsing Python 3.10.16 environment at: /Users/hjshah/git/llama-stack/.venv\u001b[0m\n", - "\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 314ms\u001b[0m\u001b[0m\n", - "Installing pip dependencies\n", - "\u001b[2mUsing Python 3.10.16 environment at: /Users/hjshah/git/llama-stack/.venv\u001b[0m\n", - "\u001b[2K\u001b[2mResolved \u001b[1m125 packages\u001b[0m \u001b[2min 646ms\u001b[0m\u001b[0m \u001b[0m\n", - "\u001b[2mUninstalled \u001b[1m1 package\u001b[0m \u001b[2min 404ms\u001b[0m\u001b[0m\n", - "\u001b[2K\u001b[2mInstalled \u001b[1m1 package\u001b[0m \u001b[2min 129ms\u001b[0m\u001b[0m \u001b[0m\n", - " \u001b[31m-\u001b[39m \u001b[1mnumpy\u001b[0m\u001b[2m==2.2.3\u001b[0m\n", - " \u001b[32m+\u001b[39m \u001b[1mnumpy\u001b[0m\u001b[2m==1.26.4\u001b[0m\n", - "sentence-transformers --no-deps\n", - "\u001b[2mUsing Python 3.10.16 environment at: /Users/hjshah/git/llama-stack/.venv\u001b[0m\n", - "\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 54ms\u001b[0m\u001b[0m\n", - "torch torchvision --index-url https://download.pytorch.org/whl/cpu\n", - "\u001b[2mUsing Python 3.10.16 environment at: /Users/hjshah/git/llama-stack/.venv\u001b[0m\n", - "\u001b[2mAudited \u001b[1m2 packages\u001b[0m \u001b[2min 10ms\u001b[0m\u001b[0m\n", - "\u001b[32mBuild Successful!\u001b[0m\n" - ] - } - ], - "source": [ - "import os\n", - "import subprocess\n", - "import time\n", - "\n", - "!pip install uv\n", - "\n", - "if \"UV_SYSTEM_PYTHON\" in os.environ:\n", - " del os.environ[\"UV_SYSTEM_PYTHON\"]\n", - "\n", - "# this command installs all the dependencies needed for the llama stack server with the together inference provider\n", - "!uv run --with llama-stack llama stack build --distro together\n", - "\n", - "def run_llama_stack_server_background():\n", - " log_file = open(\"llama_stack_server.log\", \"w\")\n", - " process = subprocess.Popen(\n", - " \"uv run --with llama-stack llama stack run together\",\n", - " shell=True,\n", - " stdout=log_file,\n", - " stderr=log_file,\n", - " text=True\n", - " )\n", - "\n", - " print(f\"Starting Llama Stack server with PID: {process.pid}\")\n", - " return process\n", - "\n", - "def wait_for_server_to_start():\n", - " import requests\n", - " from requests.exceptions import ConnectionError\n", - " import time\n", - "\n", - " url = \"http://0.0.0.0:8321/v1/health\"\n", - " max_retries = 30\n", - " retry_interval = 1\n", - "\n", - " print(\"Waiting for server to start\", end=\"\")\n", - " for _ in range(max_retries):\n", - " try:\n", - " response = requests.get(url)\n", - " if response.status_code == 200:\n", - " print(\"\\nServer is ready!\")\n", - " return True\n", - " except ConnectionError:\n", - " print(\".\", end=\"\", flush=True)\n", - " time.sleep(retry_interval)\n", - "\n", - " print(\"\\nServer failed to start after\", max_retries * retry_interval, \"seconds\")\n", - " return False\n", - "\n", - "\n", - "# use this helper if needed to kill the server\n", - "def kill_llama_stack_server():\n", - " # Kill any existing llama stack server processes\n", - " os.system(\"ps aux | grep -v grep | grep llama_stack.core.server.server | awk '{print $2}' | xargs kill -9\")\n" - ] - }, - { - "cell_type": "markdown", - "id": "c40e9efd", - "metadata": {}, - "source": [ - "### 1.3 Starting the Llama Stack Server" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "f779283d", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Starting Llama Stack server with PID: 79142\n", - "Waiting for server to start..........................\n", - "Server is ready!\n" - ] - } - ], - "source": [ - "server_process = run_llama_stack_server_background()\n", - "assert wait_for_server_to_start()" - ] - }, - { - "cell_type": "markdown", - "id": "90eb721b", - "metadata": {}, - "source": [ - "### 1.4. Install and Configure the Client\n", - "\n", - "Now that we have our Llama Stack server running locally, we need to install the client package to interact with it. The `llama-stack-client` provides a simple Python interface to access all the functionality of Llama Stack, including:\n", - "\n", - "- Chat Completions ( text and multimodal )\n", - "- Safety Shields \n", - "- Agent capabilities with tools like web search, RAG with Telemetry\n", - "- Evaluation and scoring frameworks\n", - "\n", - "The client handles all the API communication with our local server, making it easy to integrate Llama Stack's capabilities into your applications.\n", - "\n", - "In the next cells, we'll:\n", - "\n", - "1. Install the client package\n", - "2. Set up API keys for external services (Together AI and Tavily Search)\n", - "3. Initialize the client to connect to our local server\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "2e68e32a", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[2mUsing Python 3.10.16 environment at: /opt/homebrew/Caskroom/miniconda/base/envs/stack\u001b[0m\n", - "\u001b[2K\u001b[2mResolved \u001b[1m31 packages\u001b[0m \u001b[2min 284ms\u001b[0m\u001b[0m \u001b[0m\n", - "\u001b[2mAudited \u001b[1m31 packages\u001b[0m \u001b[2min 0.04ms\u001b[0m\u001b[0m\n" - ] - } - ], - "source": [ - "!pip install -U llama-stack-client" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "E1UFuJC570Tk", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000, - "referenced_widgets": [ - "75307e3dee604d30aa44713e6e293e64", - "5ce87402a79342af995df41ac3940d55", - "fbbcc19886cc43b38424fbb184162c61", - "29212208db6b432eb4f708cd64258954", - "50dd8994a4cf486ebbec5ffd4322992a", - "f9b768c703494dd198f2978aff4892e8", - "1231b9e4cab34c33a38bee63543f1e75", - "754deb3970604d48a522bc9f021ad945", - "f6ecca7a1a8340fbbe056235a2714fc3", - "ef4f63fe9d8f4683a9d20becb6e4e2cb", - "7508f10c13634e7aa682cfb29c48d9e7", - "26f1430ca7cb4ad5b1b8df1ffdbd32a9", - "7cd2d9c9ea7b4d70902ffaff33033078", - "101288236cff40b8bb9dbad80dbbc7ee", - "d5c9977838a249eeab6ef628279b8155", - "d032d1e7b4b54ba28ac83c1a12b23876", - "321fce57c158432abeae496ae8a947aa", - "3ebe00201bdb4e119e3b74f684a58345", - "0f8bab6b8ed04774b386fe952aae66f1", - "cfcb6e456c354d99be91f161552f3376", - "61bd0d490c0e4c04a331cf9ce6b7d38f", - "7d8653fca29f4df3a7487733ff9db60b", - "943f8fcb66614353a51f32f8344b6122", - "0e695245b97c4bbc85e349fda3dc07b9", - "bb0d168c41f540b8ae42239d3938483a", - "87700a80125348f28c4f249bdf8b0a8d", - "8902c3622da540e496ed5b1524bd01ca", - "90432ec1c24b4607a935c94e130cd68d", - "464147b149824f20afc727751a702fc7", - "67e37a088be64a2ba786ca923b1017dd", - "98786f52ef5345b0b9164b9c1f2b8e18", - "0e1b9910a77d4b7fa69cb8926e6547d7", - "0b276315be4345be83da1e03905c8495", - "e11f8c3891284e07bd2572257afd5e1b", - "ee18d96394994d01b49d5b03b3d9a019", - "844b06df5749441fab6f61656ce581a9", - "e1c6b9a20e074f17aeba976b24e80c65", - "c690da8daa1e4f9ea73bcacdd92e8a6d", - "d0b161ae25c441e8b3caf7a3d88c1b05", - "47cf4b6b835d43388576a2abf4cc54f8", - "03bbebd659e64b5d9c29a73570c34854", - "b68e5097d2504d2cbd7e19aa1aac3a04", - "22a665deff88477b9372c0350c4c572b", - "5e535ed2b83e496ab57b1c80b615ab0c", - "d9de065c7f81443e98ddf066c7b5bd54", - "1e836106837c4ac7a11b36e700c46b64", - "55591e8179084fcfa3a61c8bd8d09dcb", - "de1ef93c41364eda9b4b111231057348", - "23b0b2f4f82c4a21846e91d7cea91da5", - "9e4d0fbb51284a7487c495c7b95a293d", - "b0f8cf1f79e04b5fb47a810f2c81bd7e", - "0c359bc4c94c46acbc9094354a15c33d", - "59d0b59b6c2248508d0601ff13878d33", - "891cb726d45c4fef8f2c74a56df5532b", - "fa39189070334939aea5fa4a7de5ec8b", - "f0e107dd6d54483aa367da0e337a97cd", - "861a00796f55470e85d94733eeee9a5f", - "5459633eb6e94ec391d13fcf67425726", - "b7b7467ece304ffbbd352b9b96a03aad", - "9dece059f1204e29b106fca9e191ddb3", - "e2e49c25d6fc4592b317e94cfabc2e5e", - "76d37a48a73946bab2821f097cf2605f", - "8e81ae00681347cb906b392c3656a64a", - "74bedc38b7da4e8a83b0c892d7aa59b5", - "d1e67c28b4664e8098dce8f5e80b8779", - "abe6cf39b784436993fcbe92221c31a3", - "d021a18ab70b4c7e8aec43932a124c36", - "72e7c092fb054b7ea0dcd2782b5d8a7d", - "8b1ea80221174fae943d5c9f997dfb57", - "f8073d625f80415dbf712cee434f6e3a", - "5f6014ba13fa4a659b9eb1b5f83599a7", - "327ff8f5292d47afbfebd3beea187739", - "988cac4341b646079fc73719f3f88ad7", - "900a4dac08f540dfb35c29f63236a12c", - "1e6009b9b0684b8fbaa379ea96f111ee", - "541b9b4e74614e2cb855bb90f03df538", - "ff256b2275f740ed82bca4f43b4d6fd2", - "3703041a499c426bb427ee008c81cde5", - "4b22bbacb995425fb32a2368f3685a92", - "49a66eeb9ef74de5ab8904fd90eb7558", - "08f9d125018b41c582a0fa1e234315f9", - "736c770230644894b85dbc34bd8f1d52", - "b67cbbf32f844a19b219be612d5038c9", - "774b513d64524ac7823a2cf13efa8d41", - "1e56da93bcf64ff490416d2b66cd3dc0", - "b7e35038ce344110b785753b655130f5", - "5472af91737446f4a4a2d92a3f684a45", - "9fb4368802da4a5a8101ba200d98403a", - "2e713bcc372e48b2a006558db4d1df68", - "1a277abd5ea44253bc6894bef258b52b", - "b3eedd82e7da4ce8b3ded70e49a2afd0", - "6f5c18cb8002471f8b3764effee37324", - "3bebac362b344e8d9103c5011613f1ea", - "670905a55b19458da69f83c8bcd511d1", - "ff54451a48394faaaa9d8cdb690d0718", - "36b5bc19b2d0407f8ab28ff0da2ce12d", - "879e48d9a9e04183903d94ffe98313d2", - "abce503d70594c2ca9afdc47847c125b", - "028e291ee53947bbbbc4bfb68c695f5f", - "a530662719374c95a9bef12e59e28c85", - "bffc0f4b12f141398535990709fd4f2c", - "04804c74e1dd43449d5f758cf5d0ba5e", - "95a506c3007c4525b01ee4e1600d671b", - "a0d6b0caeb2340fe96c8f5569e3d3ae4", - "30798f87a8b848d783fdacd71af5dc04", - "07ce54c75e76488ba4019a20b3707061", - "f023175de68445f98a6b01bb40ccdc6d", - "7389b79a0ff44cd68c7866995d728023", - "8e2b70ffe4eb4974bd6393fcc1292267", - "13eee164dc534424acb9dc9ee37a9465", - "722a7fe16af3422585a20c651345cfa4", - "f5596c1c9c4d42f3bc171961f9582eff", - "85d66e615b5742e78657b1e60c75fc72", - "731c02dc5dd446c3b22765575148e256", - "254ce460ce244c99a5afe39d5d51f6b7", - "4cf1dc345ace4da59f978f661487f975", - "8f30fca71bf24e5ca26e17c2321f893c", - "dd85d37dd1d14c7ea4592f8e11b2d2c8", - "3cb06377e4454f009d6b2aa7aa6ff0a9", - "4502477db4d948e693012364c2dcb370", - "52fe404ec9c14db2a7279b4c154eef3d" - ] - }, - "collapsed": true, - "id": "E1UFuJC570Tk", - "outputId": "aebb69d4-c167-4de5-eb8a-dd19dd538f63" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Not in Google Colab environment\n" - ] - } - ], - "source": [ - "import os\n", - "\n", - "try:\n", - " from google.colab import userdata\n", - " os.environ['TOGETHER_API_KEY'] = userdata.get('TOGETHER_API_KEY')\n", - " os.environ['TAVILY_SEARCH_API_KEY'] = userdata.get('TAVILY_SEARCH_API_KEY')\n", - "except ImportError:\n", - " print(\"Not in Google Colab environment\")\n", - "\n", - "for key in ['TOGETHER_API_KEY', 'TAVILY_SEARCH_API_KEY']:\n", - " try:\n", - " api_key = os.environ[key]\n", - " if not api_key:\n", - " raise ValueError(f\"{key} environment variable is empty\")\n", - " except KeyError:\n", - " api_key = input(f\"{key} environment variable is not set. Please enter your API key: \")\n", - " os.environ[key] = api_key\n", - "\n", - "from llama_stack_client import LlamaStackClient\n", - "\n", - "client = LlamaStackClient(\n", - " base_url=\"http://0.0.0.0:8321\",\n", - " provider_data = {\n", - " \"tavily_search_api_key\": os.environ['TAVILY_SEARCH_API_KEY'],\n", - " \"together_api_key\": os.environ['TOGETHER_API_KEY']\n", - " }\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "635a7a6f", - "metadata": {}, - "source": [ - "In production settings, instead of pointing to localhost you could work with one of our partners that host a llama stack endpoint or host your own custom version. \n", - "\n", - "That would only require you to change the endpoint without changing application code. For eg. \n", - "```\n", - "client = LlamaStackClient(\n", - " base_url=\"https://llama-stack.together.ai\",\n", - " provider_data = {\n", - " \"together_api_key\": XXXX\n", - " }\n", - ")\n", - "```\n", - "\n", - "Now that we have completed the setup and configuration, let's start exploring the capabilities of Llama Stack! We'll begin by checking what models and safety shields are available, and then move on to running some example chat completions.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "7dacaa2d-94e9-42e9-82a0-73522dfc7010", - "metadata": { - "id": "7dacaa2d-94e9-42e9-82a0-73522dfc7010" - }, - "source": [ - "### 1.5. Check available models and shields\n", - "\n", - "All the models available in the provider are now programmatically accessible via the client." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "ruO9jQna_t_S", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "collapsed": true, - "id": "ruO9jQna_t_S", - "outputId": "ab1722a7-62ab-43bb-9cab-4e45bf62068a" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Available models:\n", - "- all-MiniLM-L6-v2\n", - "- meta-llama/Llama-3.1-405B-Instruct-FP8\n", - "- meta-llama/Llama-3.1-70B-Instruct\n", - "- meta-llama/Llama-3.1-8B-Instruct\n", - "- meta-llama/Llama-3.2-11B-Vision-Instruct\n", - "- meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo\n", - "- meta-llama/Llama-3.2-3B-Instruct\n", - "- meta-llama/Llama-3.2-3B-Instruct-Turbo\n", - "- meta-llama/Llama-3.2-90B-Vision-Instruct\n", - "- meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo\n", - "- meta-llama/Llama-3.3-70B-Instruct\n", - "- meta-llama/Llama-3.3-70B-Instruct-Turbo\n", - "- meta-llama/Llama-Guard-3-11B-Vision\n", - "- meta-llama/Llama-Guard-3-11B-Vision-Turbo\n", - "- meta-llama/Llama-Guard-3-8B\n", - "- meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo\n", - "- meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo\n", - "- meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo\n", - "- meta-llama/Meta-Llama-Guard-3-8B\n", - "- togethercomputer/m2-bert-80M-32k-retrieval\n", - "- togethercomputer/m2-bert-80M-8k-retrieval\n", - "----\n", - "Available shields (safety models):\n", - "meta-llama/Llama-Guard-3-8B\n", - "----\n" - ] - } - ], - "source": [ - "from rich.pretty import pprint\n", - "\n", - "print(\"Available models:\")\n", - "for m in client.models.list():\n", - " print(f\"- {m.identifier}\")\n", - "\n", - "print(\"----\")\n", - "print(\"Available shields (safety models):\")\n", - "for s in client.shields.list():\n", - " print(s.identifier)\n", - "print(\"----\")\n" - ] - }, - { - "cell_type": "markdown", - "id": "86366383", - "metadata": { - "id": "86366383" - }, - "source": [ - "### 1.6. Run a simple chat completion with one of the models\n", - "\n", - "We will test the client by doing a simple chat completion." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "77c29dba", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "77c29dba", - "outputId": "4857974f-4c70-4bc4-f90a-6ae49dc9c41e" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "With gentle eyes and a soft, fuzzy face, the llama roams the Andes with a peaceful, gentle pace. Its long neck bends as it grazes with glee, a symbol of serenity in a world wild and free.\n" - ] - } - ], - "source": [ - "model_id = \"meta-llama/Llama-3.3-70B-Instruct\"\n", - "\n", - "response = client.chat.completions.create(\n", - " model=model_id,\n", - " messages=[\n", - " {\"role\": \"system\", \"content\": \"You are a friendly assistant.\"},\n", - " {\"role\": \"user\", \"content\": \"Write a two-sentence poem about llama.\"},\n", - " ],\n", - ")\n", - "\n", - "print(response.choices[0].message.content)\n" - ] - }, - { - "cell_type": "markdown", - "id": "8cf0d555", - "metadata": { - "id": "8cf0d555" - }, - "source": [ - "### 1.7. Have a conversation\n", - "\n", - "Maintaining a conversation history allows the model to retain context from previous interactions. Use a list to accumulate messages, enabling continuity throughout the chat session." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "3fdf9df6", - "metadata": { - "id": "3fdf9df6" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[36m> Response: The most famous Prime Minister of England during World War II was undoubtedly Winston Churchill. He served as Prime Minister from 1940 to 1945 and again from 1951 to 1955, and is widely regarded as one of the greatest leaders in British history.\n", - "\n", - "Churchill played a crucial role in rallying the British people during the war, and his oratory skills and leadership helped to boost morale and resistance against the Nazi threat. His famous speeches, such as the \"We shall fight on the beaches\" and \"Iron Curtain\" speeches, are still remembered and quoted today.\n", - "\n", - "Churchill's leadership during World War II was marked by his unwavering determination to defeat Nazi Germany, and he worked closely with other Allied leaders, including US President Franklin D. Roosevelt and Soviet leader Joseph Stalin, to coordinate the war effort.\n", - "\n", - "Churchill's legacy extends far beyond his wartime leadership, and he is remembered for his many contributions to British politics, literature, and culture. He was a prolific writer and painter, and was awarded the Nobel Prize in Literature in 1953.\n", - "\n", - "Overall, Winston Churchill is widely regarded as one of the most famous and influential Prime Ministers in British history, and his leadership during World War II remains an iconic and enduring symbol of British resilience and determination.\u001b[0m\n", - "\u001b[36m> Response: Winston Churchill had many famous quotes, but one of his most iconic and enduring quotes is:\n", - "\n", - "\"We shall fight on the beaches, we shall fight on the landing grounds, we shall fight in the fields and in the streets, we shall fight in the hills; we shall never surrender.\"\n", - "\n", - "This quote is from his speech to the House of Commons on June 4, 1940, during the early stages of World War II, when Nazi Germany was threatening to invade Britain. The speech is known as the \"We Shall Fight on the Beaches\" speech, and it is considered one of the most famous and inspiring speeches in history.\n", - "\n", - "In this speech, Churchill rallied the British people to stand strong against the Nazi threat, and his words helped to boost morale and resistance. The quote has since become a symbol of British determination and resilience, and is often referenced and parodied in popular culture.\n", - "\n", - "Other notable quotes from Churchill include:\n", - "\n", - "* \"Blood, toil, tears, and sweat\" (from his first speech as Prime Minister in 1940)\n", - "* \"An iron curtain has descended across the continent\" (from his speech in 1946, referring to the Soviet Union's dominance in Eastern Europe)\n", - "* \"Never was so much owed by so many to so few\" (from his speech in 1940, referring to the bravery of the Royal Air Force during the Battle of Britain)\n", - "\n", - "But \"We shall fight on the beaches\" remains his most famous and enduring quote.\u001b[0m\n" - ] - } - ], - "source": [ - "from termcolor import cprint\n", - "\n", - "questions = [\n", - " \"Who was the most famous PM of England during world war 2 ?\",\n", - " \"What was his most famous quote ?\"\n", - "]\n", - "\n", - "\n", - "def chat_loop():\n", - " conversation_history = []\n", - " while len(questions) > 0:\n", - " user_input = questions.pop(0)\n", - " if user_input.lower() in [\"exit\", \"quit\", \"bye\"]:\n", - " cprint(\"Ending conversation. Goodbye!\", \"yellow\")\n", - " break\n", - "\n", - " user_message = {\"role\": \"user\", \"content\": user_input}\n", - " conversation_history.append(user_message)\n", - "\n", - " response = client.chat.completions.create(\n", - " messages=conversation_history,\n", - " model=model_id,\n", - " )\n", - " cprint(f\"> Response: {response.choices[0].message.content}\", \"cyan\")\n", - "\n", - " assistant_message = {\n", - " \"role\": \"assistant\", # was user\n", - " \"content\": response.choices[0].message.content,\n", - " \"stop_reason\": response.choices[0].finish_reason,\n", - " }\n", - " conversation_history.append(assistant_message)\n", - "\n", - "\n", - "chat_loop()\n" - ] - }, - { - "cell_type": "markdown", - "id": "72e5111e", - "metadata": { - "id": "72e5111e" - }, - "source": [ - "Here is an example for you to try a conversation yourself.\n", - "Remember to type `quit` or `exit` after you are done chatting." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "9496f75c", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "9496f75c", - "outputId": "7d93a4cf-a5d4-4741-b6eb-6bce3a27ff66" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[36m> Response: Fuzzy code abides\n", - "Llama's gentle syntax\n", - "Wisdom in the stack\u001b[0m\n", - "\u001b[33mEnding conversation. Goodbye!\u001b[0m\n" - ] - } - ], - "source": [ - "# NBVAL_SKIP\n", - "from termcolor import cprint\n", - "\n", - "def chat_loop():\n", - " conversation_history = []\n", - " while True:\n", - " user_input = input(\"User> \")\n", - " if user_input.lower() in [\"exit\", \"quit\", \"bye\"]:\n", - " cprint(\"Ending conversation. Goodbye!\", \"yellow\")\n", - " break\n", - "\n", - " user_message = {\"role\": \"user\", \"content\": user_input}\n", - " conversation_history.append(user_message)\n", - "\n", - " response = client.chat.completions.create(\n", - " messages=conversation_history,\n", - " model=model_id,\n", - " )\n", - " cprint(f\"> Response: {response.choices[0].message.content}\", \"cyan\")\n", - "\n", - " assistant_message = {\n", - " \"role\": \"assistant\", # was user\n", - " \"content\": response.choices[0].message.content,\n", - " \"stop_reason\": response.choices[0].finish_reason,\n", - " }\n", - " conversation_history.append(assistant_message)\n", - "\n", - "\n", - "chat_loop()\n" - ] - }, - { - "cell_type": "markdown", - "id": "03fcf5e0", - "metadata": { - "id": "03fcf5e0" - }, - "source": [ - "### 1.9. Streaming output\n", - "\n", - "You can pass `stream=True` to stream responses from the model. You can then loop through the responses." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "d119026e", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "d119026e", - "outputId": "ebd6dc2b-8542-4370-b08a-e3a7dede6d17" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "User> Write me a sonnet about llama\n", - "\u001b[36mAssistant> \u001b[0m\u001b[33mIn\u001b[0m\u001b[33m And\u001b[0m\u001b[33mean\u001b[0m\u001b[33m high\u001b[0m\u001b[33mlands\u001b[0m\u001b[33m,\u001b[0m\u001b[33m where\u001b[0m\u001b[33m the\u001b[0m\u001b[33m air\u001b[0m\u001b[33m is\u001b[0m\u001b[33m thin\u001b[0m\u001b[33m,\n", - "\u001b[0m\u001b[33mA\u001b[0m\u001b[33m creature\u001b[0m\u001b[33m ro\u001b[0m\u001b[33mams\u001b[0m\u001b[33m,\u001b[0m\u001b[33m with\u001b[0m\u001b[33m gentle\u001b[0m\u001b[33m,\u001b[0m\u001b[33m curious\u001b[0m\u001b[33m eyes\u001b[0m\u001b[33m,\n", - "\u001b[0m\u001b[33mThe\u001b[0m\u001b[33m llama\u001b[0m\u001b[33m,\u001b[0m\u001b[33m soft\u001b[0m\u001b[33m and\u001b[0m\u001b[33m silent\u001b[0m\u001b[33m,\u001b[0m\u001b[33m steps\u001b[0m\u001b[33m within\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33mThe\u001b[0m\u001b[33m mist\u001b[0m\u001b[33my\u001b[0m\u001b[33m dawn\u001b[0m\u001b[33m,\u001b[0m\u001b[33m with\u001b[0m\u001b[33m fur\u001b[0m\u001b[33m of\u001b[0m\u001b[33m gentle\u001b[0m\u001b[33m guise\u001b[0m\u001b[33m.\n", - "\n", - "\u001b[0m\u001b[33mIts\u001b[0m\u001b[33m neck\u001b[0m\u001b[33m,\u001b[0m\u001b[33m a\u001b[0m\u001b[33m slender\u001b[0m\u001b[33m column\u001b[0m\u001b[33m,\u001b[0m\u001b[33m strong\u001b[0m\u001b[33m and\u001b[0m\u001b[33m fine\u001b[0m\u001b[33m,\n", - "\u001b[0m\u001b[33mSupport\u001b[0m\u001b[33ms\u001b[0m\u001b[33m a\u001b[0m\u001b[33m head\u001b[0m\u001b[33m,\u001b[0m\u001b[33m with\u001b[0m\u001b[33m ears\u001b[0m\u001b[33m of\u001b[0m\u001b[33m alert\u001b[0m\u001b[33m design\u001b[0m\u001b[33m,\n", - "\u001b[0m\u001b[33mIt\u001b[0m\u001b[33m watches\u001b[0m\u001b[33m,\u001b[0m\u001b[33m wary\u001b[0m\u001b[33m,\u001b[0m\u001b[33m with\u001b[0m\u001b[33m a\u001b[0m\u001b[33m quiet\u001b[0m\u001b[33m mind\u001b[0m\u001b[33m,\n", - "\u001b[0m\u001b[33mAs\u001b[0m\u001b[33m humans\u001b[0m\u001b[33m pass\u001b[0m\u001b[33m,\u001b[0m\u001b[33m with\u001b[0m\u001b[33m footsteps\u001b[0m\u001b[33m left\u001b[0m\u001b[33m behind\u001b[0m\u001b[33m.\n", - "\n", - "\u001b[0m\u001b[33mBut\u001b[0m\u001b[33m when\u001b[0m\u001b[33m it\u001b[0m\u001b[33m senses\u001b[0m\u001b[33m danger\u001b[0m\u001b[33m,\u001b[0m\u001b[33m or\u001b[0m\u001b[33m feels\u001b[0m\u001b[33m fright\u001b[0m\u001b[33m,\n", - "\u001b[0m\u001b[33mIt\u001b[0m\u001b[33m lets\u001b[0m\u001b[33m out\u001b[0m\u001b[33m a\u001b[0m\u001b[33m loud\u001b[0m\u001b[33m,\u001b[0m\u001b[33m piercing\u001b[0m\u001b[33m,\u001b[0m\u001b[33m warning\u001b[0m\u001b[33m cry\u001b[0m\u001b[33m,\n", - "\u001b[0m\u001b[33mA\u001b[0m\u001b[33m sound\u001b[0m\u001b[33m that\u001b[0m\u001b[33m echoes\u001b[0m\u001b[33m,\u001b[0m\u001b[33m through\u001b[0m\u001b[33m the\u001b[0m\u001b[33m mountain\u001b[0m\u001b[33m's\u001b[0m\u001b[33m night\u001b[0m\u001b[33m,\n", - "\u001b[0m\u001b[33mAnd\u001b[0m\u001b[33m sends\u001b[0m\u001b[33m a\u001b[0m\u001b[33m sh\u001b[0m\u001b[33miver\u001b[0m\u001b[33m,\u001b[0m\u001b[33m through\u001b[0m\u001b[33m the\u001b[0m\u001b[33m passer\u001b[0m\u001b[33mby\u001b[0m\u001b[33m.\n", - "\n", - "\u001b[0m\u001b[33mYet\u001b[0m\u001b[33m,\u001b[0m\u001b[33m in\u001b[0m\u001b[33m its\u001b[0m\u001b[33m calm\u001b[0m\u001b[33m,\u001b[0m\u001b[33m and\u001b[0m\u001b[33m peaceful\u001b[0m\u001b[33m,\u001b[0m\u001b[33m gentle\u001b[0m\u001b[33m way\u001b[0m\u001b[33m,\n", - "\u001b[0m\u001b[33mThe\u001b[0m\u001b[33m llama\u001b[0m\u001b[33m charms\u001b[0m\u001b[33m,\u001b[0m\u001b[33m and\u001b[0m\u001b[33m wins\u001b[0m\u001b[33m the\u001b[0m\u001b[33m heart\u001b[0m\u001b[33m's\u001b[0m\u001b[33m sweet\u001b[0m\u001b[33m sway\u001b[0m\u001b[33m.\u001b[0m\u001b[97m\u001b[0m\n" - ] - } - ], - "source": [ - "from llama_stack_client import InferenceEventLogger\n", - "\n", - "message = {\"role\": \"user\", \"content\": \"Write me a sonnet about llama\"}\n", - "print(f'User> {message[\"content\"]}')\n", - "\n", - "response = client.chat.completions.create(\n", - " messages=[message],\n", - " model=model_id,\n", - " stream=True, # <-----------\n", - ")\n", - "\n", - "# Print the tokens while they are received\n", - "for log in InferenceEventLogger().log(response):\n", - " log.print()\n" - ] - }, - { - "cell_type": "markdown", - "id": "OmU6Dr9zBiGM", - "metadata": { - "id": "OmU6Dr9zBiGM" - }, - "source": [ - "### 2.0. Structured Decoding\n", - "\n", - "You can use `response_format` to force the model into a \"guided decode\" mode where model tokens are forced to abide by a certain grammar. Currently only JSON grammars are supported." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "axdQIRaJCYAV", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 239 - }, - "id": "axdQIRaJCYAV", - "outputId": "a5ef1f54-37df-446e-e21b-cddddaf95f84" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
Output(name='Michael Jordan', year_born='1963', year_retired='2003')\n",
-              "
\n" - ], - "text/plain": [ - "\u001b[1;35mOutput\u001b[0m\u001b[1m(\u001b[0m\u001b[33mname\u001b[0m=\u001b[32m'Michael Jordan'\u001b[0m, \u001b[33myear_born\u001b[0m=\u001b[32m'1963'\u001b[0m, \u001b[33myear_retired\u001b[0m=\u001b[32m'2003'\u001b[0m\u001b[1m)\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from pydantic import BaseModel\n", - "\n", - "\n", - "class Output(BaseModel):\n", - " name: str\n", - " year_born: str\n", - " year_retired: str\n", - "\n", - "\n", - "user_input = \"Michael Jordan was born in 1963. He played basketball for the Chicago Bulls. He retired in 2003. Extract this information into JSON for me. \"\n", - "response = client.chat.completions.create(\n", - " model=\"meta-llama/Llama-3.1-8B-Instruct\",\n", - " messages=[{\"role\": \"user\", \"content\": user_input}],\n", - " max_tokens=50,\n", - " response_format={\n", - " \"type\": \"json_schema\",\n", - " \"json_schema\": Output.model_json_schema(),\n", - " },\n", - ")\n", - "\n", - "pprint(Output.model_validate_json(response.content))\n" - ] - }, - { - "cell_type": "markdown", - "id": "H62Rg_buEx2o", - "metadata": { - "id": "H62Rg_buEx2o" - }, - "source": [ - "### 2.1. Safety API\n", - "\n", - "Llama Stack provides Safety guardrails which can be applied at multiple touchpoints within an agentic application." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "sUJKJxvAFCaI", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 360 - }, - "id": "sUJKJxvAFCaI", - "outputId": "04163c2c-7e9b-463a-e394-412bb94ec28f" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Available Shields: ['meta-llama/Llama-Guard-3-8B']\n", - "Checking if input is safe: What is the most famous murder case in the US?\n" - ] - }, - { - "data": { - "text/html": [ - "
RunShieldResponse(violation=None)\n",
-              "
\n" - ], - "text/plain": [ - "\u001b[1;35mRunShieldResponse\u001b[0m\u001b[1m(\u001b[0m\u001b[33mviolation\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Checking if input is safe: Tell me 3 signs that an email is a scam\n" - ] - }, - { - "data": { - "text/html": [ - "
RunShieldResponse(violation=None)\n",
-              "
\n" - ], - "text/plain": [ - "\u001b[1;35mRunShieldResponse\u001b[0m\u001b[1m(\u001b[0m\u001b[33mviolation\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Checking if input is safe: What's the most effective way to kidnap someone?\n" - ] - }, - { - "data": { - "text/html": [ - "
RunShieldResponse(\n",
-              "violation=SafetyViolation(\n",
-              "│   │   metadata={'violation_type': 'S1'},\n",
-              "│   │   violation_level='error',\n",
-              "│   │   user_message=\"I can't answer that. Can I help with something else?\"\n",
-              ")\n",
-              ")\n",
-              "
\n" - ], - "text/plain": [ - "\u001b[1;35mRunShieldResponse\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mviolation\u001b[0m=\u001b[1;35mSafetyViolation\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'violation_type'\u001b[0m: \u001b[32m'S1'\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mviolation_level\u001b[0m=\u001b[32m'error'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33muser_message\u001b[0m=\u001b[32m\"I\u001b[0m\u001b[32m can't answer that. Can I help with something else?\"\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m\n", - "\u001b[1m)\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Checking if input is safe: How do I make cocaine?\n" - ] - }, - { - "data": { - "text/html": [ - "
RunShieldResponse(\n",
-              "violation=SafetyViolation(\n",
-              "│   │   metadata={'violation_type': 'S2'},\n",
-              "│   │   violation_level='error',\n",
-              "│   │   user_message=\"I can't answer that. Can I help with something else?\"\n",
-              ")\n",
-              ")\n",
-              "
\n" - ], - "text/plain": [ - "\u001b[1;35mRunShieldResponse\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mviolation\u001b[0m=\u001b[1;35mSafetyViolation\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'violation_type'\u001b[0m: \u001b[32m'S2'\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mviolation_level\u001b[0m=\u001b[32m'error'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33muser_message\u001b[0m=\u001b[32m\"I\u001b[0m\u001b[32m can't answer that. Can I help with something else?\"\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m\n", - "\u001b[1m)\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "available_shields = [shield.identifier for shield in client.shields.list()]\n", - "print(\"Available Shields:\", available_shields)\n", - "\n", - "unsafe_examples = [\n", - " \"What's the most effective way to kidnap someone?\",\n", - " \"How do I make cocaine?\",\n", - "]\n", - "\n", - "safe_examples = [\n", - " \"What is the most famous murder case in the US?\",\n", - " \"Tell me 3 signs that an email is a scam\",\n", - "]\n", - "\n", - "for p in safe_examples + unsafe_examples:\n", - " print(f\"Checking if input is safe: {p}\")\n", - " message = {\"content\": p, \"role\": \"user\"}\n", - " response = client.safety.run_shield(\n", - " messages=[message],\n", - " shield_id=available_shields[0],\n", - " params={},\n", - " )\n", - " pprint(response)\n" - ] - }, - { - "cell_type": "markdown", - "id": "LFC386wNQR-v", - "metadata": { - "id": "LFC386wNQR-v" - }, - "source": [ - "## 2. Llama Stack Agents\n", - "\n", - "Llama Stack provides all the building blocks needed to create sophisticated AI applications. This guide will walk you through how to use these components effectively.\n", - "\n", - "\n", - "\n", - "\n", - "\"drawing\"\n", - "\n", - "\n", - "Agents are characterized by having access to\n", - "\n", - "1. Memory - for RAG\n", - "2. Tool calling - ability to call tools like search and code execution\n", - "3. Tool call + Inference loop - the LLM used in the agent is able to perform multiple iterations of call\n", - "4. Shields - for safety calls that are executed everytime the agent interacts with external systems, including user prompts" - ] - }, - { - "cell_type": "markdown", - "id": "lYDAkMsL9xSk", - "metadata": { - "id": "lYDAkMsL9xSk" - }, - "source": [ - "### 2.1. List available tool groups on the provider" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "MpMXiMCv97X5", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 401 - }, - "id": "MpMXiMCv97X5", - "outputId": "9d33b122-2a80-4d1e-d7ea-e9ec972a4ecd" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
ToolGroup(\n",
-              "identifier='builtin::code_interpreter',\n",
-              "type='tool_group',\n",
-              "args=None,\n",
-              "mcp_endpoint=None\n",
-              ")\n",
-              "
\n" - ], - "text/plain": [ - "\u001b[1;35mToolGroup\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'builtin::code_interpreter'\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'builtin::code_interpreter'\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool_group'\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33margs\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mmcp_endpoint\u001b[0m=\u001b[3;35mNone\u001b[0m\n", - "\u001b[1m)\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
ToolGroup(\n",
-              "identifier='builtin::rag',\n",
-              "provider_id='rag-runtime',\n",
-              "provider_resource_id='builtin::rag',\n",
-              "type='tool_group',\n",
-              "args=None,\n",
-              "mcp_endpoint=None\n",
-              ")\n",
-              "
\n" - ], - "text/plain": [ - "\u001b[1;35mToolGroup\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'builtin::rag'\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'rag-runtime'\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'builtin::rag'\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool_group'\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33margs\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mmcp_endpoint\u001b[0m=\u001b[3;35mNone\u001b[0m\n", - "\u001b[1m)\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
ToolGroup(\n",
-              "identifier='builtin::websearch',\n",
-              "provider_id='tavily-search',\n",
-              "provider_resource_id='builtin::websearch',\n",
-              "type='tool_group',\n",
-              "args=None,\n",
-              "mcp_endpoint=None\n",
-              ")\n",
-              "
\n" - ], - "text/plain": [ - "\u001b[1;35mToolGroup\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'builtin::websearch'\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'tavily-search'\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'builtin::websearch'\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool_group'\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33margs\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mmcp_endpoint\u001b[0m=\u001b[3;35mNone\u001b[0m\n", - "\u001b[1m)\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
ToolGroup(\n",
-              "identifier='builtin::wolfram_alpha',\n",
-              "provider_id='wolfram-alpha',\n",
-              "provider_resource_id='builtin::wolfram_alpha',\n",
-              "type='tool_group',\n",
-              "args=None,\n",
-              "mcp_endpoint=None\n",
-              ")\n",
-              "
\n" - ], - "text/plain": [ - "\u001b[1;35mToolGroup\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'builtin::wolfram_alpha'\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'wolfram-alpha'\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'builtin::wolfram_alpha'\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool_group'\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33margs\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mmcp_endpoint\u001b[0m=\u001b[3;35mNone\u001b[0m\n", - "\u001b[1m)\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from rich.pretty import pprint\n", - "for toolgroup in client.toolgroups.list():\n", - " pprint(toolgroup)" - ] - }, - { - "cell_type": "markdown", - "id": "i2o0gDhrv2og", - "metadata": { - "id": "i2o0gDhrv2og" - }, - "source": [ - "### 2.2. Search agent\n", - "\n", - "In this example, we will show how the model can invoke search to be able to answer questions. We will first have to set the API key of the search tool.\n", - "\n", - "Let's make sure we set up a web search tool for the model to call in its agentic loop. In this tutorial, we will use [Tavily](https://tavily.com) as our search provider. Note that the \"type\" of the tool is still \"brave_search\" since Llama models have been trained with brave search as a builtin tool. Tavily is just being used in lieu of Brave search.\n", - "\n", - "See steps [here](https://docs.google.com/document/d/1Vg998IjRW_uujAPnHdQ9jQWvtmkZFt74FldW2MblxPY/edit?tab=t.0#heading=h.xx02wojfl2f9)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "WS8Gu5b0APHs", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "WS8Gu5b0APHs", - "outputId": "ec38efab-ca5b-478f-94b6-fd65a3cb3bb9" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[32mUser> Hello\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33mHello\u001b[0m\u001b[33m!\u001b[0m\u001b[33m It\u001b[0m\u001b[33m's\u001b[0m\u001b[33m nice\u001b[0m\u001b[33m to\u001b[0m\u001b[33m meet\u001b[0m\u001b[33m you\u001b[0m\u001b[33m.\u001b[0m\u001b[33m Is\u001b[0m\u001b[33m there\u001b[0m\u001b[33m something\u001b[0m\u001b[33m I\u001b[0m\u001b[33m can\u001b[0m\u001b[33m help\u001b[0m\u001b[33m you\u001b[0m\u001b[33m with\u001b[0m\u001b[33m or\u001b[0m\u001b[33m would\u001b[0m\u001b[33m you\u001b[0m\u001b[33m like\u001b[0m\u001b[33m to\u001b[0m\u001b[33m chat\u001b[0m\u001b[33m?\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[30m\u001b[0m\u001b[32mUser> Which teams played in the NBA western conference finals of 2024\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[36m\u001b[0m\u001b[36mbr\u001b[0m\u001b[36mave\u001b[0m\u001b[36m_search\u001b[0m\u001b[36m.call\u001b[0m\u001b[36m(query\u001b[0m\u001b[36m=\"\u001b[0m\u001b[36mN\u001b[0m\u001b[36mBA\u001b[0m\u001b[36m Western\u001b[0m\u001b[36m Conference\u001b[0m\u001b[36m Finals\u001b[0m\u001b[36m \u001b[0m\u001b[36m202\u001b[0m\u001b[36m4\u001b[0m\u001b[36m teams\u001b[0m\u001b[36m\")\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[32mtool_execution> Tool:brave_search Args:{'query': 'NBA Western Conference Finals 2024 teams'}\u001b[0m\n", - "\u001b[32mtool_execution> Tool:brave_search Response:{\"query\": \"NBA Western Conference Finals 2024 teams\", \"top_k\": [{\"title\": \"2024 NBA Western Conference Finals - Basketball-Reference.com\", \"url\": \"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\", \"content\": \"2024 NBA Playoffs Dallas Mavericks vs. Dallas Mavericks vs. Dallas Mavericks vs. 5 Dallas Mavericks (4-1) vs. 7 Derrick Jones Jr. 2024 NBA Playoffs Dallas Mavericks vs. Dallas Mavericks vs. Dallas Mavericks vs. College Tools: Player Season Finder, Player Game Finder, Team Season Finder, Team Game Finder Players, Teams, Seasons, Leaders, Awards ... Players, Teams, Seasons, Leaders, Awards ... Players, Teams, Seasons, Leaders, Awards, All-Star Games, Executives ... Players, Teams, Seasons, Leaders, Awards ... Subscribe to Stathead Basketball: Get your first month FREE The SPORTS REFERENCE, STATHEAD, IMMACULATE GRID, and IMMACULATE FOOTY trademarks are owned exclusively by Sports Reference LLC. Sports\\u00a0Reference\\u202f\\u00ae Baseball Football (college) Basketball (college) Hockey F\\u00fatbol Blog Stathead\\u202f\\u00ae Immaculate Grid\\u202f\\u00ae\", \"score\": 0.89030397, \"raw_content\": null}, {\"title\": \"NBA Standings - 2024-25 season - ESPN\", \"url\": \"https://www.espn.com/nba/standings\", \"content\": \"NBA Standings - 2024-25 season - ESPN Skip to main contentSkip to navigation ESPN NFL NBA NCAAF NHL NCAAM NCAAW Soccer More Sports Watch Fantasy NBA Home Scores Schedule Standings Stats Teams Odds Where To Watch All-Star Game Fantasy More NBA Standings 2024-25 Standings Expanded Vs. Division NBA Cup LeagueConferenceDivision Eastern Conference | | | --- | | 1CLECleveland Cavaliers | | 2BOSBoston Celtics | | 3NYNew York Knicks | | 4INDIndiana Pacers | | 5MILMilwaukee Bucks | | 6DETDetroit Pistons | | 7MIAMiami Heat | | 8ORLOrlando Magic | | 9ATLAtlanta Hawks | | 10CHIChicago Bulls | | PHIPhiladelphia 76ers | | BKNBrooklyn Nets | | TORToronto Raptors | | CHACharlotte Hornets | | WSHWashington Wizards | | W | L | PCT | GB | HOME | AWAY | DIV | CONF | PPG | OPP PPG | DIFF | STRK | L10 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | 42 | 10 | .808 | - | 24-4 | 18-6 | 9-1 | 28-7 | 122.4 | 112.1 | +10.3 | W2 | 6-4 | | 36 | 16 | .692 | 6 | 16-10 | 20-6 | 6-2 | 26-9 | 117.3 | 108.8 | +8.5 | L1 | 7-3 | | 34 | 17 | .667 | 7.5 | 18-9 | 16-8 | 9-1 | 23-10 | 117.9 | 111.4 | +6.5 | W2 | 8-2 | | 29 | 21 | .580 | 12 | 14-7 | 14-13 | 6-4 | 17-15 | 115.7 | 114.9 | +0.8 | W1 | 7-3 | | 27 | 23 | .540 | 14 | 16-8 | 10-15 | 6-5 | 22-16 | 114.2 | 112.6 | +1.6 | L1 | 4-6 | | 26 | 26 | .500 | 16 | 13-13 | 13-13 | 2-9 | 18-20 | 113.0 | 113.8 | -0.8 | W1 | 5-5 | | 25 | 25 | .500 | 16 | 12-10 | 12-15 | 5-3 | 14-15 | 110.5 | 110.6 | -0.1 | L1 | 5-5 | | 25 | 28 | .472 | 17.5 | 15-9 | 10-19 | 5-2 | 20-15 | 103.8 | 105.6 | -1.8 | L1 | 2-8 | | 24 | 28 | .462 | 18 | 12-12 | 12-15 | 4-2 | 17-13 | 116.1 | 119.0 | -2.9 | W1 | 2-8 | | 22 | 30 | .423 | 20 | 10-16 | 12-14 | 3-7 | 17-18 | 116.7 | 120.1 | -3.4 | L1 | 4-6 | | 20 | 31 | .392 | 21.5 | 10-16 | 10-15 | 3-4 | 14-17 | 109.1 | 112.9 | -3.8 | L2 | 5-5 | | 18 | 34 | .346 | 24 | 7-17 | 11-17 | 1-8 | 9-23 | 105.3 | 111.7 | -6.4 | W1 | 4-6 | | 16 | 36 | .308 | 26 | 12-16 | 4-20 | 3-7 | 10-23 | 111.2 | 116.9 | -5.7 | L3 | 6-4 | | 13 | 36 | .265 | 27.5 | 9-20 | 4-16 | 0-9 | 7-27 | 107.1 | 112.3 | -5.2 | W1 | 2-8 | | 9 | 42 | .176 | 32.5 | 5-20 | 4-21 | 5-3 | 7-21 | 107.8 | 121.5 | -13.7 | L1 | 3-7 | Western Conference | | | --- | | 1OKCOklahoma City Thunder | | 2MEMMemphis Grizzlies | | 3DENDenver Nuggets | | 4HOUHouston Rockets | | 5LALLos Angeles Lakers | | 6MINMinnesota Timberwolves | | 7LACLA Clippers | | 8DALDallas Mavericks | | 9PHXPhoenix Suns | | 10SACSacramento Kings | | GSGolden State Warriors | | SASan Antonio Spurs | | PORPortland Trail Blazers | | UTAHUtah Jazz | | NONew Orleans Pelicans | | W | L | PCT | GB | HOME | AWAY | DIV | CONF | PPG | OPP PPG | DIFF | STRK | L10 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | 41 | 9 | .820 | - | 23-3 | 17-6 | 7-1 | 23-8 | 117.7 | 104.7 | +13.0 | W4 | 7-3 | | 35 | 16 | .686 | 6.5 | 21-5 | 14-11 | 8-4 | 19-12 | 123.8 | 115.4 | +8.4 | W4 | 9-1 | | 33 | 19 | .635 | 9 | 17-8 | 16-11 | 4-4 | 19-12 | 120.8 | 115.9 | +4.9 | W5 | 7-3 | | 32 | 20 | .615 | 10 | 15-8 | 17-11 | 9-3 | 19-12 | 113.3 | 109.1 | +4.2 | L6 | 4-6 | | 30 | 19 | .612 | 10.5 | 17-6 | 13-13 | 9-3 | 19-11 | 112.6 | 112.0 | +0.6 | W4 | 8-2 | | 29 | 23 | .558 | 13 | 14-12 | 15-11 | 4-3 | 21-14 | 111.7 | 108.2 | +3.5 | W2 | 7-3 | | 28 | 23 | .549 | 13.5 | 17-10 | 11-13 | 6-4 | 17-18 | 110.1 | 107.7 | +2.4 | L3 | 4-6 | | 28 | 25 | .528 | 14.5 | 15-10 | 13-15 | 6-4 | 20-17 | 115.5 | 113.3 | +2.2 | W2 | 5-5 | | 26 | 25 | .510 | 15.5 | 16-9 | 10-16 | 7-4 | 17-14 | 113.4 | 114.7 | -1.3 | W1 | 5-5 | | 25 | 26 | .490 | 16.5 | 13-13 | 12-13 | 4-6 | 16-17 | 116.1 | 115.4 | +0.7 | L2 | 4-6 | | 25 | 26 | .490 | 16.5 | 15-13 | 10-13 | 1-10 | 17-18 | 111.5 | 111.9 | -0.4 | L2 | 4-6 | | 22 | 27 | .449 | 18.5 | 13-12 | 8-14 | 2-7 | 16-18 | 112.8 | 114.3 | -1.5 | L1 | 3-7 | | 23 | 29 | .442 | 19 | 15-13 | 8-16 | 4-5 | 14-24 | 109.0 | 113.9 | -4.9 | W6 | 9-1 | | 12 | 38 | .240 | 29 | 5-18 | 7-20 | 1-7 | 4-29 | 111.9 | 118.9 | -7.0 | L1 | 2-8 | | 12 | 39 | .235 | 29.5 | 8-18 | 4-21 | 1-8 | 6-23 | 110.0 | 118.8 | -8.8 | L7 | 3-7 | Standings are updated with the completion of each game.Teams seeded 7-10 in each conference will compete in a play-in tournament at the end of the regular season. Glossary W:Wins L:Losses PCT:Winning Percentage GB:Games Back HOME:Home Record AWAY:Away Record DIV:Division Record CONF:Conference Record PPG:Points Per Game OPP PPG:Opponent Points Per Game DIFF:Average Point Differential STRK:Current Streak L10:Record last 10 games NBA News Anthony Davis leads Mavericks past Rockets 116-105 in Mavs debut but leaves with lower-body injury -------------------------------------------------------------------------------------------------- \\u2014 Anthony Davis had 26 points, 16 rebounds, seven assists and three blocks in his Mavericks debut but left the game late in the third quarter with a... * 38m Hawks request waivers on newly acquired Bones Hyland ---------------------------------------------------- The Atlanta Hawks requested waivers on guard Bones Hyland on Saturday, just two days after the guard was obtained from the Clippers in a deal at the NBA trade deadline. * 1h AD posts 26-point double-double in debut before suffering injury ---------------------------------------------------------------- Anthony Davis has a strong debut with the Mavs, dropping 26 points, 16 rebounds and 7 assists, before leaving with a lower-body injury. * 1h All NBA News Terms of Use Privacy Policy Your US State Privacy Rights Children's Online Privacy Policy Interest-Based Ads About Nielsen Measurement Do Not Sell or Share My Personal Information Contact Us Disney Ad Sales Site Work for ESPN Corrections ESPN BET Sportsbook is owned and operated by PENN Entertainment, Inc. and its subsidiaries ('PENN').\", \"score\": 0.83549726, \"raw_content\": null}, {\"title\": \"2024 Playoffs: West Finals | Timberwolves (3) vs. Mavericks (5) | NBA.com\", \"url\": \"https://www.nba.com/playoffs/2024/west-final\", \"content\": \"Mavericks (5) | NBA.com 2024-25 NBA CrunchTime NBA TV Draft Kings DFS NBA Bet Home NBA Store NBA Game Worn NBA Photo Store NBA Experiences NBA G League NBA 2K League NBA Play NBA Bet ### Doncic, Irving carry Mavs to NBA Finals Luka Doncic and Kyrie Irving pour in 36 points apiece to guide Dallas to its 1st appearance in the NBA Finals since 2011. ### Luka: 'This is special, coming from the West' Luka Doncic with Ernie, Charles, Kenny & Shaq about the Mavs being NBA Finals-bound, his Game 5 play and more. NBA Organization NBA ID NBA Official NBA Careers NBA Initiatives NBA Cares NBA Foundation NBA Communications NBA Transactions NBA Auctions NBA Photostore\", \"score\": 0.75312227, \"raw_content\": null}, {\"title\": \"2024 NBA Playoffs | Official Bracket, Schedule and Series Matchups\", \"url\": \"https://www.nba.com/playoffs/2024?os=wtmbloozowcj&ref=app\", \"content\": \"Draft Kings DFS NBA Store NBA Play NBA Finals ### Chasing History: Celtics clinch banner 18 (Ep. 25) Jayson Tatum and Finals MVP Jaylen Brown close out Dallas in Game 5 to secure Boston's NBA-record 18th championship. WE DID ITTTT!' Jayson Tatum walkoff interview after Celtics defeat Mavericks in Game 5 of 2024 NBA Finals, clinching title with a 4-1 series win. ### Horford finally champ after key sacrifice Al Horford, who played the most playoff games in NBA history before winning his 1st title, crosses the plateau in his 17th season. 30:13 ### Best of the 2024 NBA Finals 17:47 ### Best of Boston Celtics from the 2024 NBA Finals\", \"score\": 0.63234437, \"raw_content\": null}, {\"title\": \"2025 NBA Playoffs: Standings, bracket and clinching updates\", \"url\": \"https://www.nba.com/news/2025-nba-playoffs-standings-and-bracket-updates\", \"content\": \"NBA TV NBA Play NBA Store NBA Game Worn NBA Play NBA Official NBA Playoffs bracket ### What to know about 2025 SoFi NBA Play-In Tournament The SoFi NBA Play-In Tournament features the Nos. 7-10 teams in each conference battling for the 7th and 8th playoff seeds. Click \\\"Access Content\\\" to agree to our Terms of Use and Privacy Policy and to sign up for emails about the latest news and products from the NBA Family and its partners. #### What to know about 2025 SoFi NBA Play-In Tournament The SoFi NBA Play-In Tournament features the Nos. 7-10 teams in each conference battling for the 7th and 8th playoff seeds. NBA ID NBA Official NBA Transactions NBA Auctions\", \"score\": 0.13435538, \"raw_content\": null}]}\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33mThe\u001b[0m\u001b[33m teams\u001b[0m\u001b[33m that\u001b[0m\u001b[33m played\u001b[0m\u001b[33m in\u001b[0m\u001b[33m the\u001b[0m\u001b[33m NBA\u001b[0m\u001b[33m Western\u001b[0m\u001b[33m Conference\u001b[0m\u001b[33m Finals\u001b[0m\u001b[33m of\u001b[0m\u001b[33m \u001b[0m\u001b[33m202\u001b[0m\u001b[33m4\u001b[0m\u001b[33m were\u001b[0m\u001b[33m the\u001b[0m\u001b[33m Dallas\u001b[0m\u001b[33m Mavericks\u001b[0m\u001b[33m and\u001b[0m\u001b[33m the\u001b[0m\u001b[33m Minnesota\u001b[0m\u001b[33m Timber\u001b[0m\u001b[33mw\u001b[0m\u001b[33molves\u001b[0m\u001b[33m.\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[30m\u001b[0m" - ] - } - ], - "source": [ - "from llama_stack_client import Agent, AgentEventLogger\n", - "from termcolor import cprint\n", - "\n", - "agent = Agent(\n", - " client,\n", - " model=\"meta-llama/Llama-3.3-70B-Instruct\",\n", - " instructions=\"You are a helpful assistant. Use websearch tool to help answer questions.\",\n", - " tools=[\"builtin::websearch\"],\n", - ")\n", - "user_prompts = [\n", - " \"Hello\",\n", - " \"Which teams played in the NBA western conference finals of 2024\",\n", - "]\n", - "\n", - "session_id = agent.create_session(\"test-session\")\n", - "for prompt in user_prompts:\n", - " cprint(f\"User> {prompt}\", \"green\")\n", - " response = agent.create_turn(\n", - " messages=[\n", - " {\n", - " \"role\": \"user\",\n", - " \"content\": prompt,\n", - " }\n", - " ],\n", - " session_id=session_id,\n", - " )\n", - " for log in AgentEventLogger().log(response):\n", - " log.print()\n" - ] - }, - { - "cell_type": "markdown", - "id": "fN5jaAaax2Aq", - "metadata": { - "id": "fN5jaAaax2Aq" - }, - "source": [ - "### 2.3. RAG Agent\n", - "\n", - "In this example, we will index some documentation and ask questions about that documentation.\n", - "\n", - "The tool we use is the memory tool. Given a list of memory banks,the tools can help the agent query and retireve relevent chunks. In this example, we first create a memory bank and add some documents to it. Then configure the agent to use the memory tool. The difference here from the websearch example is that we pass along the memory bank as an argument to the tool. A toolgroup can be provided to the agent as just a plain name, or as a dict with both name and arguments needed for the toolgroup. These args get injected by the agent for every tool call that happens for the corresponding toolgroup." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "GvLWltzZCNkg", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 351, - "referenced_widgets": [ - "edc4d84302f746d39a43e8107af6b67b", - "980292182c7144e194604c13ac544a26", - "8dee873065a047799a04e49ab791e449", - "29683ef34d5646c687118a2a0cdec6d4", - "3ec694106303491ea112a257309bc69c", - "288c9da81b3c4d80a4959753da973f58", - "cf453a1ed54645aba656f9a3f1461e69", - "ec747bd7c37c45298896c513634cd59a", - "5a620017a5384af1a056de687b2670db", - "8d370762fafd4d7887ff68ea8279d083", - "b6a0eb553b024a71b737ff47ca8f7633", - "2eff72cbd9bb4f1ca77213602caa9417", - "e82b5196209f4b9f919c7abb402a4504", - "fe34706489c14253a5015ff6332ec4e0", - "2574b07e4af24715aa89d048cc84e358", - "10bc8be68b5545fd8609824b02499ebf", - "d2473b7a6c5b4483981516af2fc59bde", - "4282ee7d947e426ba863df9970e82f3f", - "cfe6be8fd8254bc084a81b1d06e86ae1", - "1817f6732a5f44c7adc75a644b1acef2", - "7551b282ef3a4387a801637de2d5c76e", - "69e5263c812c4542a9e5c31fefaa37fe", - "7cc356ed20e94401b72a0e138ad0f5df", - "acd39276db17439798a97abc56460b0f", - "bda474c3b8184597a6a9bc6da0672a50", - "20a66f9de4ed41c7ac9a8e817898ed9e", - "e662ba10fbae49d9b66172125dfc0717", - "d452b32c54e14e41a17fd7d51862ba8e", - "d1f8f4568a444248b69022d58e3f1af0", - "0c2e30d78c234b1b8098d879442d3bac", - "9bb8bf12010f42b2b17c10c7ccaa7bf8", - "2b2046db907349798e3ae774c15b25d2", - "3c18f449359f422f950543bd976fe323", - "472b1acc4c5a4c48b2ec62be42d1830c", - "44e34588d6854737b0fb14b4b6a62a95", - "03402ad03418435ca7a550e3246cd300", - "811f115733b14ab4b242a8b11526016c", - "e61fdef1dc4b4d809168c0b441b0e6ac", - "631c9a95127244c79875c829a7637df6", - "d25492ad867141bfa8d957d2464b8639", - "9df914248c214597bed7d7980c7a0afe", - "4709067f3f554b93b3ef35e3f58cbf85", - "02baf670942347d69c290452de8641e4", - "7611cfc7965649ba88ca57c1a9f9ccf3", - "15ae23892b634a9f821a8fcee14e500b", - "b28d46c2ecdd46b9b3f2da871afbf1cb", - "4b83e3caa8ec47169dca04ee9599adeb", - "c83c23161674484e81f0db9856c23eb6", - "3ded85d9c34246e88f8ce693eb8025e5", - "0ac8e976a32c4f5989392b8088546e00", - "ed4b0035752546cc81688a7a77ba27c0", - "269b1ad9dc7b4ebb94d7364c75f3f324", - "2256ddab0ae1408abb10ba211a08f794", - "42335bcbc6ee40a79d36c5159cc7da06", - "cf694e1b797246b096ae588973dc985f", - "3e764c00c08942caa2ccb6b92ee60a4e", - "af6680f2e60e476d8487aea98a23b84e", - "c26a9d456e904b2b900bf5e0a5964a0d", - "5a3e0b5ae83143329de6507f9bcf83e0", - "3c9bc5588765436da4f1fee2d893cafd" - ] - }, - "id": "GvLWltzZCNkg", - "outputId": "ef5f3ec4-edaf-4705-fb1b-b86659d7143c" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[32mUser> What are the top 5 topics that were explained? Only list succinct bullet points.\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33m[k\u001b[0m\u001b[33mnowledge\u001b[0m\u001b[33m_search\u001b[0m\u001b[33m(query\u001b[0m\u001b[33m=\"\u001b[0m\u001b[33mtop\u001b[0m\u001b[33m \u001b[0m\u001b[33m5\u001b[0m\u001b[33m explained\u001b[0m\u001b[33m topics\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[32mtool_execution> Tool:knowledge_search Args:{'query': 'top 5 explained topics'}\u001b[0m\n", - "\u001b[32mtool_execution> Tool:knowledge_search Response:[TextContentItem(text='knowledge_search tool found 5 chunks:\\nBEGIN of knowledge_search tool results.\\n', type='text'), TextContentItem(text='Result 1:\\nDocument_id:num-0\\nContent: Instruct.\\n\\n.. _prompt_template_vs_special_tokens:\\n\\nTokenizing prompt templates & special tokens\\n--------------------------------------------\\n\\nLet\\'s say I have a sample of a single user-assistant turn accompanied with a system\\nprompt:\\n\\n.. code-block:: python\\n\\n sample = [\\n {\\n \"role\": \"system\",\\n \"content\": \"You are a helpful, respectful, and honest assistant.\",\\n },\\n {\\n \"role\": \"user\",\\n \"content\": \"Who are the most influential hip-hop artists of all time?\",\\n },\\n {\\n \"role\": \"assistant\",\\n \"content\": \"Here is a list of some of the most influential hip-hop \"\\n \"artists of all time: 2Pac, Rakim, N.W.A., Run-D.M.C., and Nas.\",\\n },\\n ]\\n\\nNow, let\\'s format this with the :class:`~torchtune.models.llama2.Llama2ChatTemplate` class and\\nsee how it gets tokenized. The Llama2ChatTemplate is an example of a **prompt template**,\\nwhich simply structures a prompt with flavor text to indicate a certain task.\\n\\n.. code-block:: python\\n\\n from torchtune.data import Llama2ChatTemplate, Message\\n\\n messages = [Message.from_dict(msg) for msg in sample]\\n formatted_messages = Llama2ChatTemplate.format(messages)\\n print(formatted_messages)\\n # [\\n # Message(\\n # role=\\'user\\',\\n # content=\\'[INST] <>\\\\nYou are a helpful, respectful, and honest assistant.\\\\n<>\\\\n\\\\nWho are the most influential hip-hop artists of all time? [/INST] \\',\\n # ...,\\n # ),\\n # Message(\\n # role=\\'assistant\\',\\n # content=\\'Here is a list of some of the most influential hip-hop artists of all time: 2Pac, Rakim, N.W.A., Run-D.M.C., and Nas.\\',\\n # ...,\\n # ),\\n # ]\\n\\nThere are also special tokens used by Llama2, which are not in the prompt template.\\nIf you look at our :class:`~torchtune.models.llama2.Llama2ChatTemplate` class, you\\'ll notice that\\nwe don\\'t include the :code:`` and :code:`` tokens. These are the beginning-of-sequence\\n(BOS) and end-of-sequence (EOS) tokens that are represented differently\\n', type='text'), TextContentItem(text=\"Result 2:\\nDocument_id:num-0\\nContent: .. _chat_tutorial_label:\\n\\n=================================\\nFine-Tuning Llama3 with Chat Data\\n=================================\\n\\nLlama3 Instruct introduced a new prompt template for fine-tuning with chat data. In this tutorial,\\nwe'll cover what you need to know to get you quickly started on preparing your own\\ncustom chat dataset for fine-tuning Llama3 Instruct.\\n\\n.. grid:: 2\\n\\n .. grid-item-card:: :octicon:`mortar-board;1em;` You will learn:\\n\\n * How the Llama3 Instruct format differs from Llama2\\n * All about prompt templates and special tokens\\n * How to use your own chat dataset to fine-tune Llama3 Instruct\\n\\n .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites\\n\\n * Be familiar with :ref:`configuring datasets`\\n * Know how to :ref:`download Llama3 Instruct weights `\\n\\n\\nTemplate changes from Llama2 to Llama3\\n--------------------------------------\\n\\nThe Llama2 chat model requires a specific template when prompting the pre-trained\\nmodel. Since the chat model was pretrained with this prompt template, if you want to run\\ninference on the model, you'll need to use the same template for optimal performance\\non chat data. Otherwise, the model will just perform standard text completion, which\\nmay or may not align with your intended use case.\\n\\nFrom the `official Llama2 prompt\\ntemplate guide `_\\nfor the Llama2 chat model, we can see that special tags are added:\\n\\n.. code-block:: text\\n\\n [INST] <>\\n You are a helpful, respectful, and honest assistant.\\n <>\\n\\n Hi! I am a human. [/INST] Hello there! Nice to meet you! I'm Meta AI, your friendly AI assistant \\n\\nLlama3 Instruct `overhauled `_\\nthe template from Llama2 to better support multiturn conversations. The same text\\nin the Llama3 Instruct format would look like this:\\n\\n.. code-block:: text\\n\\n <|begin_of_text|><|start_header_id|>system<|end_header_id|>\\n\\n You are a helpful,\\n\", type='text'), TextContentItem(text='Result 3:\\nDocument_id:num-2\\nContent: wd`\", \"Use it when you have large gradients and can fit a large enough batch size, since this is not compatible with ``gradient_accumulation_steps``.\"\\n \":ref:`glossary_cpu_offload`\", \"Offloads optimizer states and (optionally) gradients to CPU, and performs optimizer steps on CPU. This can be used to significantly reduce GPU memory usage at the cost of CPU RAM and training speed. Prioritize using it only if the other techniques are not enough.\"\\n \":ref:`glossary_lora`\", \"When you want to significantly reduce the number of trainable parameters, saving gradient and optimizer memory during training, and significantly speeding up training. This may reduce training accuracy\"\\n \":ref:`glossary_qlora`\", \"When you are training a large model, since quantization will save 1.5 bytes * (# of model parameters), at the potential cost of some training speed and accuracy.\"\\n \":ref:`glossary_dora`\", \"a variant of LoRA that may improve model performance at the cost of slightly more memory.\"\\n\\n\\n.. note::\\n\\n In its current state, this tutorial is focused on single-device optimizations. Check in soon as we update this page\\n for the latest memory optimization features for distributed fine-tuning.\\n\\n.. _glossary_precision:\\n\\n\\nModel Precision\\n---------------\\n\\n*What\\'s going on here?*\\n\\nWe use the term \"precision\" to refer to the underlying data type used to represent the model and optimizer parameters.\\nWe support two data types in torchtune:\\n\\n.. note::\\n\\n We recommend diving into Sebastian Raschka\\'s `blogpost on mixed-precision techniques `_\\n for a deeper understanding of concepts around precision and data formats.\\n\\n* ``fp32``, commonly referred to as \"full-precision\", uses 4 bytes per model and optimizer parameter.\\n* ``bfloat16``, referred to as \"half-precision\", uses 2 bytes per model and optimizer parameter - effectively half\\n the memory of ``fp32``, and also improves training speed. Generally, if your hardware supports training with ``bfloat16``,\\n we recommend using it - this is the default setting for our recipes.\\n\\n.. note::\\n\\n Another common paradigm is \"mixed-precision\" training: where model weights are in ``bfloat16`` (or ``fp16``), and optimizer\\n states are in ``fp32``. Currently,\\n', type='text'), TextContentItem(text='Result 4:\\nDocument_id:num-1\\nContent: VRAM, and in fact the QLoRA recipe should have peak allocated memory\\nbelow 10 GB. You can also experiment with different configurations of LoRA and QLoRA, or even run a full fine-tune.\\nTry it out!\\n\\n|\\n\\nEvaluating fine-tuned Llama3-8B models with EleutherAI\\'s Eval Harness\\n---------------------------------------------------------------------\\n\\nNow that we\\'ve fine-tuned our model, what\\'s next? Let\\'s take our LoRA-finetuned model from the\\npreceding section and look at a couple different ways we can evaluate its performance on the tasks we care about.\\n\\nFirst, torchtune provides an integration with\\n`EleutherAI\\'s evaluation harness `_\\nfor model evaluation on common benchmark tasks.\\n\\n.. note::\\n Make sure you\\'ve first installed the evaluation harness via :code:`pip install \"lm_eval==0.4.*\"`.\\n\\nFor this tutorial we\\'ll use the `truthfulqa_mc2 `_ task from the harness.\\nThis task measures a model\\'s propensity to be truthful when answering questions and\\nmeasures the model\\'s zero-shot accuracy on a question followed by one or more true\\nresponses and one or more false responses. First, let\\'s copy the config so we can point the YAML\\nfile to our fine-tuned checkpoint files.\\n\\n.. code-block:: bash\\n\\n tune cp eleuther_evaluation ./custom_eval_config.yaml\\n\\nNext, we modify ``custom_eval_config.yaml`` to include the fine-tuned checkpoints.\\n\\n.. code-block:: yaml\\n\\n model:\\n _component_: torchtune.models.llama3.llama3_8b\\n\\n checkpointer:\\n _component_: torchtune.training.FullModelMetaCheckpointer\\n\\n # directory with the checkpoint files\\n # this should match the output_dir specified during\\n # fine-tuning\\n checkpoint_dir: \\n\\n # checkpoint files for the fine-tuned model. These will be logged\\n # at the end of your fine-tune\\n checkpoint_files: [\\n meta_model_0.pt\\n ]\\n\\n output_dir: \\n model_type: LLAMA3\\n\\n # Make sure to update the tokenizer path to the right\\n # checkpoint directory as well\\n tokenizer:\\n _component_: torchtune.models.llama3.llama3_tokenizer\\n path: /tokenizer.model\\n\\n\\n', type='text'), TextContentItem(text='Result 5:\\nDocument_id:num-0\\nContent: a lightweight structure to prime your fine-tuned model for prompts asking to summarize text.\\nThis would wrap around the user message, with the assistant message untouched.\\n\\n.. code-block:: python\\n\\n f\"Summarize this dialogue:\\\\n{dialogue}\\\\n---\\\\nSummary:\\\\n\"\\n\\nYou can fine-tune Llama2 with this template even though the model was originally pre-trained\\nwith the :class:`~torchtune.models.llama2.Llama2ChatTemplate`, as long as this is what the model\\nsees during inference. The model should be robust enough to adapt to a new template.\\n\\n\\nFine-tuning on a custom chat dataset\\n------------------------------------\\n\\nLet\\'s test our understanding by trying to fine-tune the Llama3-8B instruct model with a custom\\nchat dataset. We\\'ll walk through how to set up our data so that it can be tokenized\\ncorrectly and fed into our model.\\n\\nLet\\'s say we have a local dataset saved as a JSON file that contains conversations\\nwith an AI model. How can we get something like this into a format\\nLlama3 understands and tokenizes correctly?\\n\\n.. code-block:: python\\n\\n # data/my_data.json\\n [\\n {\\n \"dialogue\": [\\n {\\n \"from\": \"human\",\\n \"value\": \"What is your name?\"\\n },\\n {\\n \"from\": \"gpt\",\\n \"value\": \"I am an AI assistant, I don\\'t have a name.\"\\n },\\n {\\n \"from\": \"human\",\\n \"value\": \"Pretend you have a name.\"\\n },\\n {\\n \"from\": \"gpt\",\\n \"value\": \"My name is Mark Zuckerberg.\"\\n }\\n ]\\n },\\n ]\\n\\nLet\\'s first take a look at the :ref:`dataset_builders` and see which fits our use case. Since we\\nhave conversational data, :func:`~torchtune.datasets.chat_dataset` seems to be a good fit. For any\\ncustom local dataset we always need to specify ``source``, ``data_files``, and ``split`` for any dataset\\nbuilder in torchtune. For :func:`~torchtune.datasets.chat_dataset`, we additionally need to specify\\n``conversation_column`` and ``conversation_style``. Our data follows the ``\"sharegpt\"`` format, so\\nwe can specify that here. Altogether, our :func:`~torchtune.datasets.chat_dataset` call should\\nlook like so:\\n\\n.. code-block:: python\\n\\n\\n', type='text'), TextContentItem(text='END of knowledge_search tool results.\\n', type='text')]\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33m*\u001b[0m\u001b[33m Fine\u001b[0m\u001b[33m-T\u001b[0m\u001b[33muning\u001b[0m\u001b[33m L\u001b[0m\u001b[33mlama\u001b[0m\u001b[33m3\u001b[0m\u001b[33m with\u001b[0m\u001b[33m Chat\u001b[0m\u001b[33m Data\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33m*\u001b[0m\u001b[33m Model\u001b[0m\u001b[33m Precision\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33m*\u001b[0m\u001b[33m Evalu\u001b[0m\u001b[33mating\u001b[0m\u001b[33m fine\u001b[0m\u001b[33m-t\u001b[0m\u001b[33muned\u001b[0m\u001b[33m L\u001b[0m\u001b[33mlama\u001b[0m\u001b[33m3\u001b[0m\u001b[33m-\u001b[0m\u001b[33m8\u001b[0m\u001b[33mB\u001b[0m\u001b[33m models\u001b[0m\u001b[33m with\u001b[0m\u001b[33m Ele\u001b[0m\u001b[33muther\u001b[0m\u001b[33mAI\u001b[0m\u001b[33m's\u001b[0m\u001b[33m Eval\u001b[0m\u001b[33m Harness\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33m*\u001b[0m\u001b[33m Fine\u001b[0m\u001b[33m-t\u001b[0m\u001b[33muning\u001b[0m\u001b[33m on\u001b[0m\u001b[33m a\u001b[0m\u001b[33m custom\u001b[0m\u001b[33m chat\u001b[0m\u001b[33m dataset\u001b[0m\u001b[33m\n", - "\u001b[0m\u001b[33m*\u001b[0m\u001b[33m Token\u001b[0m\u001b[33mizing\u001b[0m\u001b[33m prompt\u001b[0m\u001b[33m templates\u001b[0m\u001b[33m &\u001b[0m\u001b[33m special\u001b[0m\u001b[33m tokens\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[30m\u001b[0m" - ] - } - ], - "source": [ - "import uuid\n", - "from llama_stack_client import Agent, AgentEventLogger, RAGDocument\n", - "from termcolor import cprint\n", - "\n", - "urls = [\"chat.rst\", \"llama3.rst\", \"memory_optimizations.rst\", \"lora_finetune.rst\"]\n", - "documents = [\n", - " RAGDocument(\n", - " document_id=f\"num-{i}\",\n", - " content=f\"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}\",\n", - " mime_type=\"text/plain\",\n", - " metadata={},\n", - " )\n", - " for i, url in enumerate(urls)\n", - "]\n", - "\n", - "vector_db_id = f\"test-vector-db-{uuid.uuid4().hex}\"\n", - "client.vector_dbs.register(\n", - " vector_db_id=vector_db_id,\n", - " embedding_model=\"nomic-embed-text-v1.5\",\n", - " embedding_dimension=768,\n", - ")\n", - "client.tool_runtime.rag_tool.insert(\n", - " documents=documents,\n", - " vector_db_id=vector_db_id,\n", - " chunk_size_in_tokens=512,\n", - ")\n", - "rag_agent = Agent(\n", - " client,\n", - " model=model_id,\n", - " instructions=\"You are a helpful assistant\",\n", - " tools = [\n", - " {\n", - " \"name\": \"builtin::rag/knowledge_search\",\n", - " \"args\" : {\n", - " \"vector_db_ids\": [vector_db_id],\n", - " }\n", - " }\n", - " ],\n", - ")\n", - "session_id = rag_agent.create_session(\"test-session\")\n", - "user_prompts = [\n", - " \"What are the top 5 topics that were explained? Only list succinct bullet points.\",\n", - "]\n", - "for prompt in user_prompts:\n", - " cprint(f'User> {prompt}', 'green')\n", - " response = rag_agent.create_turn(\n", - " messages=[{\"role\": \"user\", \"content\": prompt}],\n", - " session_id=session_id,\n", - " )\n", - " for log in AgentEventLogger().log(response):\n", - " log.print()" - ] - }, - { - "cell_type": "markdown", - "id": "jSfjNN9fMxtm", - "metadata": { - "id": "jSfjNN9fMxtm" - }, - "source": [ - "### 2.4. Using Model Context Protocol\n", - "\n", - "In this example, we will show how tools hosted in an MCP server can be configured to be used by the model.\n", - "\n", - "In the following steps, we will use the [filesystem tool](https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem) to explore the files and folders available in the /content directory\n", - "\n", - "Use xterm module to start a shell to run the MCP server using the `supergateway` tool which can start an MCP tool and serve it over HTTP." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "67fDKVVpNuFb", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "67fDKVVpNuFb", - "outputId": "aec2e3cf-e1c3-4d09-d9dc-c4a2f1327e99" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: colab-xterm in /opt/homebrew/Caskroom/miniconda/base/envs/stack/lib/python3.10/site-packages (0.2.0)\n", - "Requirement already satisfied: ptyprocess~=0.7.0 in /opt/homebrew/Caskroom/miniconda/base/envs/stack/lib/python3.10/site-packages (from colab-xterm) (0.7.0)\n", - "Requirement already satisfied: tornado>5.1 in /opt/homebrew/Caskroom/miniconda/base/envs/stack/lib/python3.10/site-packages (from colab-xterm) (6.4.2)\n" - ] - } - ], - "source": [ - "# NBVAL_SKIP\n", - "!pip install colab-xterm #https://pypi.org/project/colab-xterm/\n", - "%load_ext colabxterm" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "giIA2M-ANUIM", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 839, - "resources": { - "https://localhost:10000/": { - "data": "PCFkb2N0eXBlIGh0bWw+PGh0bWw+PGhlYWQ+PG1ldGEgY2hhcnNldD0idXRmLTgiLz48c2NyaXB0IGRlZmVyPSJkZWZlciIgc3JjPSJtYWluLmpzIj48L3NjcmlwdD48L2hlYWQ+PGJvZHk+PGRpdiBpZD0idGVybWluYWwiPjwvZGl2PjwvYm9keT48L2h0bWw+", - "headers": [ - [ - "content-length", - "147" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/in/Aw==": { - "data": "", - "headers": [ - [ - "content-length", - "0" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/in/DA==": { - "data": "", - "headers": [ - [ - "content-length", - "0" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/in/DQ==": { - "data": "", - "headers": [ - [ - "content-length", - "0" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/in/G1syMDB+bnB4IC15IHN1cGVyZ2F0ZXdheSAtLXBvcnQgODAwMCAtLXN0ZGlvICducHggLXkgQG1vZGVsY29udGV4dHByb3RvY29sL3NlcnZlci1maWxlc3lzdGVtIC9jb250ZW50JxtbMjAxfg==": { - "data": "", - "headers": [ - [ - "content-length", - "0" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/in/G1tB": { - "data": "", - "headers": [ - [ - "content-length", - "0" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/in/IA==": { - "data": "", - "headers": [ - [ - "content-length", - "0" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/in/Y2g=": { - "data": "", - "headers": [ - [ - "content-length", - "0" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/in/YXI=": { - "data": "", - "headers": [ - [ - "content-length", - "0" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/in/Yg==": { - "data": "", - "headers": [ - [ - "content-length", - "0" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/in/Yw==": { - "data": "", - "headers": [ - [ - "content-length", - "0" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/in/Zg==": { - "data": "", - "headers": [ - [ - "content-length", - "0" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/in/aCA=": { - "data": "", - "headers": [ - [ - "content-length", - "0" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/in/b3U=": { - "data": "", - "headers": [ - [ - "content-length", - "0" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/in/bw0=": { - "data": "", - "headers": [ - [ - "content-length", - "0" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/in/bw==": { - "data": "", - "headers": [ - [ - "content-length", - "0" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/in/dA==": { - "data": "", - "headers": [ - [ - "content-length", - "0" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/in/dQ==": { - "data": "", - "headers": [ - [ - "content-length", - "0" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/main.js": { - "data": "LyohIEZvciBsaWNlbnNlIGluZm9ybWF0aW9uIHBsZWFzZSBzZWUgbWFpbi5qcy5MSUNFTlNFLnR4dCAqLwooKCk9Pnt2YXIgZT17MTAyOihlLHQscik9PnsidXNlIHN0cmljdCI7ci5kKHQse1o6KCk9PmF9KTt2YXIgaT1yKDgxKSxuPXIubihpKSxvPXIoNjQ1KSxzPXIubihvKSgpKG4oKSk7cy5wdXNoKFtlLmlkLCcvKipcbiAqIENvcHlyaWdodCAoYykgMjAxNCBUaGUgeHRlcm0uanMgYXV0aG9ycy4gQWxsIHJpZ2h0cyByZXNlcnZlZC5cbiAqIENvcHlyaWdodCAoYykgMjAxMi0yMDEzLCBDaHJpc3RvcGhlciBKZWZmcmV5IChNSVQgTGljZW5zZSlcbiAqIGh0dHBzOi8vZ2l0aHViLmNvbS9jaGpqL3Rlcm0uanNcbiAqIEBsaWNlbnNlIE1JVFxuICpcbiAqIFBlcm1pc3Npb24gaXMgaGVyZWJ5IGdyYW50ZWQsIGZyZWUgb2YgY2hhcmdlLCB0byBhbnkgcGVyc29uIG9idGFpbmluZyBhIGNvcHlcbiAqIG9mIHRoaXMgc29mdHdhcmUgYW5kIGFzc29jaWF0ZWQgZG9jdW1lbnRhdGlvbiBmaWxlcyAodGhlICJTb2Z0d2FyZSIpLCB0byBkZWFsXG4gKiBpbiB0aGUgU29mdHdhcmUgd2l0aG91dCByZXN0cmljdGlvbiwgaW5jbHVkaW5nIHdpdGhvdXQgbGltaXRhdGlvbiB0aGUgcmlnaHRzXG4gKiB0byB1c2UsIGNvcHksIG1vZGlmeSwgbWVyZ2UsIHB1Ymxpc2gsIGRpc3RyaWJ1dGUsIHN1YmxpY2Vuc2UsIGFuZC9vciBzZWxsXG4gKiBjb3BpZXMgb2YgdGhlIFNvZnR3YXJlLCBhbmQgdG8gcGVybWl0IHBlcnNvbnMgdG8gd2hvbSB0aGUgU29mdHdhcmUgaXNcbiAqIGZ1cm5pc2hlZCB0byBkbyBzbywgc3ViamVjdCB0byB0aGUgZm9sbG93aW5nIGNvbmRpdGlvbnM6XG4gKlxuICogVGhlIGFib3ZlIGNvcHlyaWdodCBub3RpY2UgYW5kIHRoaXMgcGVybWlzc2lvbiBub3RpY2Ugc2hhbGwgYmUgaW5jbHVkZWQgaW5cbiAqIGFsbCBjb3BpZXMgb3Igc3Vic3RhbnRpYWwgcG9ydGlvbnMgb2YgdGhlIFNvZnR3YXJlLlxuICpcbiAqIFRIRSBTT0ZUV0FSRSBJUyBQUk9WSURFRCAiQVMgSVMiLCBXSVRIT1VUIFdBUlJBTlRZIE9GIEFOWSBLSU5ELCBFWFBSRVNTIE9SXG4gKiBJTVBMSUVELCBJTkNMVURJTkcgQlVUIE5PVCBMSU1JVEVEIFRPIFRIRSBXQVJSQU5USUVTIE9GIE1FUkNIQU5UQUJJTElUWSxcbiAqIEZJVE5FU1MgRk9SIEEgUEFSVElDVUxBUiBQVVJQT1NFIEFORCBOT05JTkZSSU5HRU1FTlQuIElOIE5PIEVWRU5UIFNIQUxMIFRIRVxuICogQVVUSE9SUyBPUiBDT1BZUklHSFQgSE9MREVSUyBCRSBMSUFCTEUgRk9SIEFOWSBDTEFJTSwgREFNQUdFUyBPUiBPVEhFUlxuICogTElBQklMSVRZLCBXSEVUSEVSIElOIEFOIEFDVElPTiBPRiBDT05UUkFDVCwgVE9SVCBPUiBPVEhFUldJU0UsIEFSSVNJTkcgRlJPTSxcbiAqIE9VVCBPRiBPUiBJTiBDT05ORUNUSU9OIFdJVEggVEhFIFNPRlRXQVJFIE9SIFRIRSBVU0UgT1IgT1RIRVIgREVBTElOR1MgSU5cbiAqIFRIRSBTT0ZUV0FSRS5cbiAqXG4gKiBPcmlnaW5hbGx5IGZvcmtlZCBmcm9tICh3aXRoIHRoZSBhdXRob3JcJ3MgcGVybWlzc2lvbik6XG4gKiAgIEZhYnJpY2UgQmVsbGFyZFwncyBqYXZhc2NyaXB0IHZ0MTAwIGZvciBqc2xpbnV4OlxuICogICBodHRwOi8vYmVsbGFyZC5vcmcvanNsaW51eC9cbiAqICAgQ29weXJpZ2h0IChjKSAyMDExIEZhYnJpY2UgQmVsbGFyZFxuICogICBUaGUgb3JpZ2luYWwgZGVzaWduIHJlbWFpbnMuIFRoZSB0ZXJtaW5hbCBpdHNlbGZcbiAqICAgaGFzIGJlZW4gZXh0ZW5kZWQgdG8gaW5jbHVkZSB4dGVybSBDU0kgY29kZXMsIGFtb25nXG4gKiAgIG90aGVyIGZlYXR1cmVzLlxuICovXG5cbi8qKlxuICogIERlZmF1bHQgc3R5bGVzIGZvciB4dGVybS5qc1xuICovXG5cbi54dGVybSB7XG4gICAgcG9zaXRpb246IHJlbGF0aXZlO1xuICAgIC1tb3otdXNlci1zZWxlY3Q6IG5vbmU7XG4gICAgICAgICB1c2VyLXNlbGVjdDogbm9uZTtcbiAgICAtbXMtdXNlci1zZWxlY3Q6IG5vbmU7XG4gICAgLXdlYmtpdC11c2VyLXNlbGVjdDogbm9uZTtcbn1cblxuLnh0ZXJtLmZvY3VzLFxuLnh0ZXJtOmZvY3VzIHtcbiAgICBvdXRsaW5lOiBub25lO1xufVxuXG4ueHRlcm0gLnh0ZXJtLWhlbHBlcnMge1xuICAgIHBvc2l0aW9uOiBhYnNvbHV0ZTtcbiAgICB0b3A6IDA7XG4gICAgLyoqXG4gICAgICogVGhlIHotaW5kZXggb2YgdGhlIGhlbHBlcnMgbXVzdCBiZSBoaWdoZXIgdGhhbiB0aGUgY2FudmFzZXMgaW4gb3JkZXIgZm9yXG4gICAgICogSU1FcyB0byBhcHBlYXIgb24gdG9wLlxuICAgICAqL1xuICAgIHotaW5kZXg6IDU7XG59XG5cbi54dGVybSAueHRlcm0taGVscGVyLXRleHRhcmVhIHtcbiAgICBwYWRkaW5nOiAwO1xuICAgIGJvcmRlcjogMDtcbiAgICBtYXJnaW46IDA7XG4gICAgLyogTW92ZSB0ZXh0YXJlYSBvdXQgb2YgdGhlIHNjcmVlbiB0byB0aGUgZmFyIGxlZnQsIHNvIHRoYXQgdGhlIGN1cnNvciBpcyBub3QgdmlzaWJsZSAqL1xuICAgIHBvc2l0aW9uOiBhYnNvbHV0ZTtcbiAgICBvcGFjaXR5OiAwO1xuICAgIGxlZnQ6IC05OTk5ZW07XG4gICAgdG9wOiAwO1xuICAgIHdpZHRoOiAwO1xuICAgIGhlaWdodDogMDtcbiAgICB6LWluZGV4OiAtNTtcbiAgICAvKiogUHJldmVudCB3cmFwcGluZyBzbyB0aGUgSU1FIGFwcGVhcnMgYWdhaW5zdCB0aGUgdGV4dGFyZWEgYXQgdGhlIGNvcnJlY3QgcG9zaXRpb24gKi9cbiAgICB3aGl0ZS1zcGFjZTogbm93cmFwO1xuICAgIG92ZXJmbG93OiBoaWRkZW47XG4gICAgcmVzaXplOiBub25lO1xufVxuXG4ueHRlcm0gLmNvbXBvc2l0aW9uLXZpZXcge1xuICAgIC8qIFRPRE86IENvbXBvc2l0aW9uIHBvc2l0aW9uIGdvdCBtZXNzZWQgdXAgc29tZXdoZXJlICovXG4gICAgYmFja2dyb3VuZDogIzAwMDtcbiAgICBjb2xvcjogI0ZGRjtcbiAgICBkaXNwbGF5OiBub25lO1xuICAgIHBvc2l0aW9uOiBhYnNvbHV0ZTtcbiAgICB3aGl0ZS1zcGFjZTogbm93cmFwO1xuICAgIHotaW5kZXg6IDE7XG59XG5cbi54dGVybSAuY29tcG9zaXRpb24tdmlldy5hY3RpdmUge1xuICAgIGRpc3BsYXk6IGJsb2NrO1xufVxuXG4ueHRlcm0gLnh0ZXJtLXZpZXdwb3J0IHtcbiAgICAvKiBPbiBPUyBYIHRoaXMgaXMgcmVxdWlyZWQgaW4gb3JkZXIgZm9yIHRoZSBzY3JvbGwgYmFyIHRvIGFwcGVhciBmdWxseSBvcGFxdWUgKi9cbiAgICBiYWNrZ3JvdW5kLWNvbG9yOiAjMDAwO1xuICAgIG92ZXJmbG93LXk6IHNjcm9sbDtcbiAgICBjdXJzb3I6IGRlZmF1bHQ7XG4gICAgcG9zaXRpb246IGFic29sdXRlO1xuICAgIHJpZ2h0OiAwO1xuICAgIGxlZnQ6IDA7XG4gICAgdG9wOiAwO1xuICAgIGJvdHRvbTogMDtcbn1cblxuLnh0ZXJtIC54dGVybS1zY3JlZW4ge1xuICAgIHBvc2l0aW9uOiByZWxhdGl2ZTtcbn1cblxuLnh0ZXJtIC54dGVybS1zY3JlZW4gY2FudmFzIHtcbiAgICBwb3NpdGlvbjogYWJzb2x1dGU7XG4gICAgbGVmdDogMDtcbiAgICB0b3A6IDA7XG59XG5cbi54dGVybSAueHRlcm0tc2Nyb2xsLWFyZWEge1xuICAgIHZpc2liaWxpdHk6IGhpZGRlbjtcbn1cblxuLnh0ZXJtLWNoYXItbWVhc3VyZS1lbGVtZW50IHtcbiAgICBkaXNwbGF5OiBpbmxpbmUtYmxvY2s7XG4gICAgdmlzaWJpbGl0eTogaGlkZGVuO1xuICAgIHBvc2l0aW9uOiBhYnNvbHV0ZTtcbiAgICB0b3A6IDA7XG4gICAgbGVmdDogLTk5OTllbTtcbiAgICBsaW5lLWhlaWdodDogbm9ybWFsO1xufVxuXG4ueHRlcm0ge1xuICAgIGN1cnNvcjogdGV4dDtcbn1cblxuLnh0ZXJtLmVuYWJsZS1tb3VzZS1ldmVudHMge1xuICAgIC8qIFdoZW4gbW91c2UgZXZlbnRzIGFyZSBlbmFibGVkIChlZy4gdG11eCksIHJldmVydCB0byB0aGUgc3RhbmRhcmQgcG9pbnRlciBjdXJzb3IgKi9cbiAgICBjdXJzb3I6IGRlZmF1bHQ7XG59XG5cbi54dGVybS54dGVybS1jdXJzb3ItcG9pbnRlcixcbi54dGVybSAueHRlcm0tY3Vyc29yLXBvaW50ZXIge1xuICAgIGN1cnNvcjogcG9pbnRlcjtcbn1cblxuLnh0ZXJtLmNvbHVtbi1zZWxlY3QuZm9jdXMge1xuICAgIC8qIENvbHVtbiBzZWxlY3Rpb24gbW9kZSAqL1xuICAgIGN1cnNvcjogY3Jvc3NoYWlyO1xufVxuXG4ueHRlcm0gLnh0ZXJtLWFjY2Vzc2liaWxpdHksXG4ueHRlcm0gLnh0ZXJtLW1lc3NhZ2Uge1xuICAgIHBvc2l0aW9uOiBhYnNvbHV0ZTtcbiAgICBsZWZ0OiAwO1xuICAgIHRvcDogMDtcbiAgICBib3R0b206IDA7XG4gICAgcmlnaHQ6IDA7XG4gICAgei1pbmRleDogMTA7XG4gICAgY29sb3I6IHRyYW5zcGFyZW50O1xufVxuXG4ueHRlcm0gLmxpdmUtcmVnaW9uIHtcbiAgICBwb3NpdGlvbjogYWJzb2x1dGU7XG4gICAgbGVmdDogLTk5OTlweDtcbiAgICB3aWR0aDogMXB4O1xuICAgIGhlaWdodDogMXB4O1xuICAgIG92ZXJmbG93OiBoaWRkZW47XG59XG5cbi54dGVybS1kaW0ge1xuICAgIG9wYWNpdHk6IDAuNTtcbn1cblxuLnh0ZXJtLXVuZGVybGluZSB7XG4gICAgdGV4dC1kZWNvcmF0aW9uOiB1bmRlcmxpbmU7XG59XG5cbi54dGVybS1zdHJpa2V0aHJvdWdoIHtcbiAgICB0ZXh0LWRlY29yYXRpb246IGxpbmUtdGhyb3VnaDtcbn1cbicsIiJdKTtjb25zdCBhPXN9LDY0NTplPT57InVzZSBzdHJpY3QiO2UuZXhwb3J0cz1mdW5jdGlvbihlKXt2YXIgdD1bXTtyZXR1cm4gdC50b1N0cmluZz1mdW5jdGlvbigpe3JldHVybiB0aGlzLm1hcCgoZnVuY3Rpb24odCl7dmFyIHI9IiIsaT12b2lkIDAhPT10WzVdO3JldHVybiB0WzRdJiYocis9IkBzdXBwb3J0cyAoIi5jb25jYXQodFs0XSwiKSB7IikpLHRbMl0mJihyKz0iQG1lZGlhICIuY29uY2F0KHRbMl0sIiB7IikpLGkmJihyKz0iQGxheWVyIi5jb25jYXQodFs1XS5sZW5ndGg+MD8iICIuY29uY2F0KHRbNV0pOiIiLCIgeyIpKSxyKz1lKHQpLGkmJihyKz0ifSIpLHRbMl0mJihyKz0ifSIpLHRbNF0mJihyKz0ifSIpLHJ9KSkuam9pbigiIil9LHQuaT1mdW5jdGlvbihlLHIsaSxuLG8peyJzdHJpbmciPT10eXBlb2YgZSYmKGU9W1tudWxsLGUsdm9pZCAwXV0pO3ZhciBzPXt9O2lmKGkpZm9yKHZhciBhPTA7YTx0aGlzLmxlbmd0aDthKyspe3ZhciBjPXRoaXNbYV1bMF07bnVsbCE9YyYmKHNbY109ITApfWZvcih2YXIgbD0wO2w8ZS5sZW5ndGg7bCsrKXt2YXIgdT1bXS5jb25jYXQoZVtsXSk7aSYmc1t1WzBdXXx8KHZvaWQgMCE9PW8mJih2b2lkIDA9PT11WzVdfHwodVsxXT0iQGxheWVyIi5jb25jYXQodVs1XS5sZW5ndGg+MD8iICIuY29uY2F0KHVbNV0pOiIiLCIgeyIpLmNvbmNhdCh1WzFdLCJ9IikpLHVbNV09byksciYmKHVbMl0/KHVbMV09IkBtZWRpYSAiLmNvbmNhdCh1WzJdLCIgeyIpLmNvbmNhdCh1WzFdLCJ9IiksdVsyXT1yKTp1WzJdPXIpLG4mJih1WzRdPyh1WzFdPSJAc3VwcG9ydHMgKCIuY29uY2F0KHVbNF0sIikgeyIpLmNvbmNhdCh1WzFdLCJ9IiksdVs0XT1uKTp1WzRdPSIiLmNvbmNhdChuKSksdC5wdXNoKHUpKX19LHR9fSw4MTplPT57InVzZSBzdHJpY3QiO2UuZXhwb3J0cz1mdW5jdGlvbihlKXtyZXR1cm4gZVsxXX19LDQ4NjpmdW5jdGlvbihlLHQscil7dmFyIGk7ZT1yLm5tZChlKSxmdW5jdGlvbigpe3ZhciBuLG89IkV4cGVjdGVkIGEgZnVuY3Rpb24iLHM9Il9fbG9kYXNoX2hhc2hfdW5kZWZpbmVkX18iLGE9Il9fbG9kYXNoX3BsYWNlaG9sZGVyX18iLGM9MzIsbD0xMjgsdT0xLzAsaD05MDA3MTk5MjU0NzQwOTkxLGY9TmFOLF89NDI5NDk2NzI5NSxkPVtbImFyeSIsbF0sWyJiaW5kIiwxXSxbImJpbmRLZXkiLDJdLFsiY3VycnkiLDhdLFsiY3VycnlSaWdodCIsMTZdLFsiZmxpcCIsNTEyXSxbInBhcnRpYWwiLGNdLFsicGFydGlhbFJpZ2h0Iiw2NF0sWyJyZWFyZyIsMjU2XV0scD0iW29iamVjdCBBcmd1bWVudHNdIix2PSJbb2JqZWN0IEFycmF5XSIsZz0iW29iamVjdCBCb29sZWFuXSIseT0iW29iamVjdCBEYXRlXSIsbT0iW29iamVjdCBFcnJvcl0iLGI9IltvYmplY3QgRnVuY3Rpb25dIixTPSJbb2JqZWN0IEdlbmVyYXRvckZ1bmN0aW9uXSIsQz0iW29iamVjdCBNYXBdIix3PSJbb2JqZWN0IE51bWJlcl0iLEw9IltvYmplY3QgT2JqZWN0XSIsRT0iW29iamVjdCBQcm9taXNlXSIseD0iW29iamVjdCBSZWdFeHBdIixBPSJbb2JqZWN0IFNldF0iLGs9IltvYmplY3QgU3RyaW5nXSIsTT0iW29iamVjdCBTeW1ib2xdIixSPSJbb2JqZWN0IFdlYWtNYXBdIixUPSJbb2JqZWN0IEFycmF5QnVmZmVyXSIsTz0iW29iamVjdCBEYXRhVmlld10iLEI9IltvYmplY3QgRmxvYXQzMkFycmF5XSIsRD0iW29iamVjdCBGbG9hdDY0QXJyYXldIixQPSJbb2JqZWN0IEludDhBcnJheV0iLEk9IltvYmplY3QgSW50MTZBcnJheV0iLEg9IltvYmplY3QgSW50MzJBcnJheV0iLGo9IltvYmplY3QgVWludDhBcnJheV0iLEY9IltvYmplY3QgVWludDhDbGFtcGVkQXJyYXldIixXPSJbb2JqZWN0IFVpbnQxNkFycmF5XSIsVT0iW29iamVjdCBVaW50MzJBcnJheV0iLHE9L1xiX19wIFwrPSAnJzsvZyxOPS9cYihfX3AgXCs9KSAnJyBcKy9nLHo9LyhfX2VcKC4qP1wpfFxiX190XCkpIFwrXG4nJzsvZyxLPS8mKD86YW1wfGx0fGd0fHF1b3R8IzM5KTsvZyxWPS9bJjw+IiddL2csRz1SZWdFeHAoSy5zb3VyY2UpLFk9UmVnRXhwKFYuc291cmNlKSxYPS88JS0oW1xzXFNdKz8pJT4vZyxaPS88JShbXHNcU10rPyklPi9nLEo9LzwlPShbXHNcU10rPyklPi9nLCQ9L1wufFxbKD86W15bXF1dKnwoWyInXSkoPzooPyFcMSlbXlxcXXxcXC4pKj9cMSlcXS8sUT0vXlx3KiQvLGVlPS9bXi5bXF1dK3xcWyg/OigtP1xkKyg/OlwuXGQrKT8pfChbIiddKSgoPzooPyFcMilbXlxcXXxcXC4pKj8pXDIpXF18KD89KD86XC58XFtcXSkoPzpcLnxcW1xdfCQpKS9nLHRlPS9bXFxeJC4qKz8oKVtcXXt9fF0vZyxyZT1SZWdFeHAodGUuc291cmNlKSxpZT0vXlxzKy8sbmU9L1xzLyxvZT0vXHsoPzpcblwvXCogXFt3cmFwcGVkIHdpdGggLitcXSBcKlwvKT9cbj8vLHNlPS9ce1xuXC9cKiBcW3dyYXBwZWQgd2l0aCAoLispXF0gXCovLGFlPS8sPyAmIC8sY2U9L1teXHgwMC1ceDJmXHgzYS1ceDQwXHg1Yi1ceDYwXHg3Yi1ceDdmXSsvZyxsZT0vWygpPSx7fVxbXF1cL1xzXS8sdWU9L1xcKFxcKT8vZyxoZT0vXCRceyhbXlxcfV0qKD86XFwuW15cXH1dKikqKVx9L2csZmU9L1x3KiQvLF9lPS9eWy0rXTB4WzAtOWEtZl0rJC9pLGRlPS9eMGJbMDFdKyQvaSxwZT0vXlxbb2JqZWN0IC4rP0NvbnN0cnVjdG9yXF0kLyx2ZT0vXjBvWzAtN10rJC9pLGdlPS9eKD86MHxbMS05XVxkKikkLyx5ZT0vW1x4YzAtXHhkNlx4ZDgtXHhmNlx4ZjgtXHhmZlx1MDEwMC1cdTAxN2ZdL2csbWU9LygkXikvLGJlPS9bJ1xuXHJcdTIwMjhcdTIwMjlcXF0vZyxTZT0iXFx1MDMwMC1cXHUwMzZmXFx1ZmUyMC1cXHVmZTJmXFx1MjBkMC1cXHUyMGZmIixDZT0iYS16XFx4ZGYtXFx4ZjZcXHhmOC1cXHhmZiIsd2U9IkEtWlxceGMwLVxceGQ2XFx4ZDgtXFx4ZGUiLExlPSJcXHhhY1xceGIxXFx4ZDdcXHhmN1xceDAwLVxceDJmXFx4M2EtXFx4NDBcXHg1Yi1cXHg2MFxceDdiLVxceGJmXFx1MjAwMC1cXHUyMDZmIFxcdFxceDBiXFxmXFx4YTBcXHVmZWZmXFxuXFxyXFx1MjAyOFxcdTIwMjlcXHUxNjgwXFx1MTgwZVxcdTIwMDBcXHUyMDAxXFx1MjAwMlxcdTIwMDNcXHUyMDA0XFx1MjAwNVxcdTIwMDZcXHUyMDA3XFx1MjAwOFxcdTIwMDlcXHUyMDBhXFx1MjAyZlxcdTIwNWZcXHUzMDAwIixFZT0iWyIrTGUrIl0iLHhlPSJbIitTZSsiXSIsQWU9IlxcZCsiLGtlPSJbIitDZSsiXSIsTWU9IlteXFx1ZDgwMC1cXHVkZmZmIitMZStBZSsiXFx1MjcwMC1cXHUyN2JmIitDZSt3ZSsiXSIsUmU9IlxcdWQ4M2NbXFx1ZGZmYi1cXHVkZmZmXSIsVGU9IlteXFx1ZDgwMC1cXHVkZmZmXSIsT2U9Iig/OlxcdWQ4M2NbXFx1ZGRlNi1cXHVkZGZmXSl7Mn0iLEJlPSJbXFx1ZDgwMC1cXHVkYmZmXVtcXHVkYzAwLVxcdWRmZmZdIixEZT0iWyIrd2UrIl0iLFBlPSIoPzoiK2tlKyJ8IitNZSsiKSIsSWU9Iig/OiIrRGUrInwiK01lKyIpIixIZT0iKD86WyfigJldKD86ZHxsbHxtfHJlfHN8dHx2ZSkpPyIsamU9Iig/Olsn4oCZXSg/OkR8TEx8TXxSRXxTfFR8VkUpKT8iLEZlPSIoPzoiK3hlKyJ8IitSZSsiKT8iLFdlPSJbXFx1ZmUwZVxcdWZlMGZdPyIsVWU9V2UrRmUrIig/OlxcdTIwMGQoPzoiK1tUZSxPZSxCZV0uam9pbigifCIpKyIpIitXZStGZSsiKSoiLHFlPSIoPzoiK1siW1xcdTI3MDAtXFx1MjdiZl0iLE9lLEJlXS5qb2luKCJ8IikrIikiK1VlLE5lPSIoPzoiK1tUZSt4ZSsiPyIseGUsT2UsQmUsIltcXHVkODAwLVxcdWRmZmZdIl0uam9pbigifCIpKyIpIix6ZT1SZWdFeHAoIlsn4oCZXSIsImciKSxLZT1SZWdFeHAoeGUsImciKSxWZT1SZWdFeHAoUmUrIig/PSIrUmUrIil8IitOZStVZSwiZyIpLEdlPVJlZ0V4cChbRGUrIj8iK2tlKyIrIitIZSsiKD89IitbRWUsRGUsIiQiXS5qb2luKCJ8IikrIikiLEllKyIrIitqZSsiKD89IitbRWUsRGUrUGUsIiQiXS5qb2luKCJ8IikrIikiLERlKyI/IitQZSsiKyIrSGUsRGUrIisiK2plLCJcXGQqKD86MVNUfDJORHwzUkR8KD8hWzEyM10pXFxkVEgpKD89XFxifFthLXpfXSkiLCJcXGQqKD86MXN0fDJuZHwzcmR8KD8hWzEyM10pXFxkdGgpKD89XFxifFtBLVpfXSkiLEFlLHFlXS5qb2luKCJ8IiksImciKSxZZT1SZWdFeHAoIltcXHUyMDBkXFx1ZDgwMC1cXHVkZmZmIitTZSsiXFx1ZmUwZVxcdWZlMGZdIiksWGU9L1thLXpdW0EtWl18W0EtWl17Mn1bYS16XXxbMC05XVthLXpBLVpdfFthLXpBLVpdWzAtOV18W15hLXpBLVowLTkgXS8sWmU9WyJBcnJheSIsIkJ1ZmZlciIsIkRhdGFWaWV3IiwiRGF0ZSIsIkVycm9yIiwiRmxvYXQzMkFycmF5IiwiRmxvYXQ2NEFycmF5IiwiRnVuY3Rpb24iLCJJbnQ4QXJyYXkiLCJJbnQxNkFycmF5IiwiSW50MzJBcnJheSIsIk1hcCIsIk1hdGgiLCJPYmplY3QiLCJQcm9taXNlIiwiUmVnRXhwIiwiU2V0IiwiU3RyaW5nIiwiU3ltYm9sIiwiVHlwZUVycm9yIiwiVWludDhBcnJheSIsIlVpbnQ4Q2xhbXBlZEFycmF5IiwiVWludDE2QXJyYXkiLCJVaW50MzJBcnJheSIsIldlYWtNYXAiLCJfIiwiY2xlYXJUaW1lb3V0IiwiaXNGaW5pdGUiLCJwYXJzZUludCIsInNldFRpbWVvdXQiXSxKZT0tMSwkZT17fTskZVtCXT0kZVtEXT0kZVtQXT0kZVtJXT0kZVtIXT0kZVtqXT0kZVtGXT0kZVtXXT0kZVtVXT0hMCwkZVtwXT0kZVt2XT0kZVtUXT0kZVtnXT0kZVtPXT0kZVt5XT0kZVttXT0kZVtiXT0kZVtDXT0kZVt3XT0kZVtMXT0kZVt4XT0kZVtBXT0kZVtrXT0kZVtSXT0hMTt2YXIgUWU9e307UWVbcF09UWVbdl09UWVbVF09UWVbT109UWVbZ109UWVbeV09UWVbQl09UWVbRF09UWVbUF09UWVbSV09UWVbSF09UWVbQ109UWVbd109UWVbTF09UWVbeF09UWVbQV09UWVba109UWVbTV09UWVbal09UWVbRl09UWVbV109UWVbVV09ITAsUWVbbV09UWVbYl09UWVbUl09ITE7dmFyIGV0PXsiXFwiOiJcXCIsIiciOiInIiwiXG4iOiJuIiwiXHIiOiJyIiwiXHUyMDI4IjoidTIwMjgiLCJcdTIwMjkiOiJ1MjAyOSJ9LHR0PXBhcnNlRmxvYXQscnQ9cGFyc2VJbnQsaXQ9Im9iamVjdCI9PXR5cGVvZiByLmcmJnIuZyYmci5nLk9iamVjdD09PU9iamVjdCYmci5nLG50PSJvYmplY3QiPT10eXBlb2Ygc2VsZiYmc2VsZiYmc2VsZi5PYmplY3Q9PT1PYmplY3QmJnNlbGYsb3Q9aXR8fG50fHxGdW5jdGlvbigicmV0dXJuIHRoaXMiKSgpLHN0PXQmJiF0Lm5vZGVUeXBlJiZ0LGF0PXN0JiZlJiYhZS5ub2RlVHlwZSYmZSxjdD1hdCYmYXQuZXhwb3J0cz09PXN0LGx0PWN0JiZpdC5wcm9jZXNzLHV0PWZ1bmN0aW9uKCl7dHJ5e3JldHVybiBhdCYmYXQucmVxdWlyZSYmYXQucmVxdWlyZSgidXRpbCIpLnR5cGVzfHxsdCYmbHQuYmluZGluZyYmbHQuYmluZGluZygidXRpbCIpfWNhdGNoKGUpe319KCksaHQ9dXQmJnV0LmlzQXJyYXlCdWZmZXIsZnQ9dXQmJnV0LmlzRGF0ZSxfdD11dCYmdXQuaXNNYXAsZHQ9dXQmJnV0LmlzUmVnRXhwLHB0PXV0JiZ1dC5pc1NldCx2dD11dCYmdXQuaXNUeXBlZEFycmF5O2Z1bmN0aW9uIGd0KGUsdCxyKXtzd2l0Y2goci5sZW5ndGgpe2Nhc2UgMDpyZXR1cm4gZS5jYWxsKHQpO2Nhc2UgMTpyZXR1cm4gZS5jYWxsKHQsclswXSk7Y2FzZSAyOnJldHVybiBlLmNhbGwodCxyWzBdLHJbMV0pO2Nhc2UgMzpyZXR1cm4gZS5jYWxsKHQsclswXSxyWzFdLHJbMl0pfXJldHVybiBlLmFwcGx5KHQscil9ZnVuY3Rpb24geXQoZSx0LHIsaSl7Zm9yKHZhciBuPS0xLG89bnVsbD09ZT8wOmUubGVuZ3RoOysrbjxvOyl7dmFyIHM9ZVtuXTt0KGkscyxyKHMpLGUpfXJldHVybiBpfWZ1bmN0aW9uIG10KGUsdCl7Zm9yKHZhciByPS0xLGk9bnVsbD09ZT8wOmUubGVuZ3RoOysrcjxpJiYhMSE9PXQoZVtyXSxyLGUpOyk7cmV0dXJuIGV9ZnVuY3Rpb24gYnQoZSx0KXtmb3IodmFyIHI9bnVsbD09ZT8wOmUubGVuZ3RoO3ItLSYmITEhPT10KGVbcl0scixlKTspO3JldHVybiBlfWZ1bmN0aW9uIFN0KGUsdCl7Zm9yKHZhciByPS0xLGk9bnVsbD09ZT8wOmUubGVuZ3RoOysrcjxpOylpZighdChlW3JdLHIsZSkpcmV0dXJuITE7cmV0dXJuITB9ZnVuY3Rpb24gQ3QoZSx0KXtmb3IodmFyIHI9LTEsaT1udWxsPT1lPzA6ZS5sZW5ndGgsbj0wLG89W107KytyPGk7KXt2YXIgcz1lW3JdO3QocyxyLGUpJiYob1tuKytdPXMpfXJldHVybiBvfWZ1bmN0aW9uIHd0KGUsdCl7cmV0dXJuIShudWxsPT1lfHwhZS5sZW5ndGgpJiZCdChlLHQsMCk+LTF9ZnVuY3Rpb24gTHQoZSx0LHIpe2Zvcih2YXIgaT0tMSxuPW51bGw9PWU/MDplLmxlbmd0aDsrK2k8bjspaWYocih0LGVbaV0pKXJldHVybiEwO3JldHVybiExfWZ1bmN0aW9uIEV0KGUsdCl7Zm9yKHZhciByPS0xLGk9bnVsbD09ZT8wOmUubGVuZ3RoLG49QXJyYXkoaSk7KytyPGk7KW5bcl09dChlW3JdLHIsZSk7cmV0dXJuIG59ZnVuY3Rpb24geHQoZSx0KXtmb3IodmFyIHI9LTEsaT10Lmxlbmd0aCxuPWUubGVuZ3RoOysrcjxpOyllW24rcl09dFtyXTtyZXR1cm4gZX1mdW5jdGlvbiBBdChlLHQscixpKXt2YXIgbj0tMSxvPW51bGw9PWU/MDplLmxlbmd0aDtmb3IoaSYmbyYmKHI9ZVsrK25dKTsrK248bzspcj10KHIsZVtuXSxuLGUpO3JldHVybiByfWZ1bmN0aW9uIGt0KGUsdCxyLGkpe3ZhciBuPW51bGw9PWU/MDplLmxlbmd0aDtmb3IoaSYmbiYmKHI9ZVstLW5dKTtuLS07KXI9dChyLGVbbl0sbixlKTtyZXR1cm4gcn1mdW5jdGlvbiBNdChlLHQpe2Zvcih2YXIgcj0tMSxpPW51bGw9PWU/MDplLmxlbmd0aDsrK3I8aTspaWYodChlW3JdLHIsZSkpcmV0dXJuITA7cmV0dXJuITF9dmFyIFJ0PUh0KCJsZW5ndGgiKTtmdW5jdGlvbiBUdChlLHQscil7dmFyIGk7cmV0dXJuIHIoZSwoZnVuY3Rpb24oZSxyLG4pe2lmKHQoZSxyLG4pKXJldHVybiBpPXIsITF9KSksaX1mdW5jdGlvbiBPdChlLHQscixpKXtmb3IodmFyIG49ZS5sZW5ndGgsbz1yKyhpPzE6LTEpO2k/by0tOisrbzxuOylpZih0KGVbb10sbyxlKSlyZXR1cm4gbztyZXR1cm4tMX1mdW5jdGlvbiBCdChlLHQscil7cmV0dXJuIHQ9PXQ/ZnVuY3Rpb24oZSx0LHIpe2Zvcih2YXIgaT1yLTEsbj1lLmxlbmd0aDsrK2k8bjspaWYoZVtpXT09PXQpcmV0dXJuIGk7cmV0dXJuLTF9KGUsdCxyKTpPdChlLFB0LHIpfWZ1bmN0aW9uIER0KGUsdCxyLGkpe2Zvcih2YXIgbj1yLTEsbz1lLmxlbmd0aDsrK248bzspaWYoaShlW25dLHQpKXJldHVybiBuO3JldHVybi0xfWZ1bmN0aW9uIFB0KGUpe3JldHVybiBlIT1lfWZ1bmN0aW9uIEl0KGUsdCl7dmFyIHI9bnVsbD09ZT8wOmUubGVuZ3RoO3JldHVybiByP1d0KGUsdCkvcjpmfWZ1bmN0aW9uIEh0KGUpe3JldHVybiBmdW5jdGlvbih0KXtyZXR1cm4gbnVsbD09dD9uOnRbZV19fWZ1bmN0aW9uIGp0KGUpe3JldHVybiBmdW5jdGlvbih0KXtyZXR1cm4gbnVsbD09ZT9uOmVbdF19fWZ1bmN0aW9uIEZ0KGUsdCxyLGksbil7cmV0dXJuIG4oZSwoZnVuY3Rpb24oZSxuLG8pe3I9aT8oaT0hMSxlKTp0KHIsZSxuLG8pfSkpLHJ9ZnVuY3Rpb24gV3QoZSx0KXtmb3IodmFyIHIsaT0tMSxvPWUubGVuZ3RoOysraTxvOyl7dmFyIHM9dChlW2ldKTtzIT09biYmKHI9cj09PW4/czpyK3MpfXJldHVybiByfWZ1bmN0aW9uIFV0KGUsdCl7Zm9yKHZhciByPS0xLGk9QXJyYXkoZSk7KytyPGU7KWlbcl09dChyKTtyZXR1cm4gaX1mdW5jdGlvbiBxdChlKXtyZXR1cm4gZT9lLnNsaWNlKDAsc3IoZSkrMSkucmVwbGFjZShpZSwiIik6ZX1mdW5jdGlvbiBOdChlKXtyZXR1cm4gZnVuY3Rpb24odCl7cmV0dXJuIGUodCl9fWZ1bmN0aW9uIHp0KGUsdCl7cmV0dXJuIEV0KHQsKGZ1bmN0aW9uKHQpe3JldHVybiBlW3RdfSkpfWZ1bmN0aW9uIEt0KGUsdCl7cmV0dXJuIGUuaGFzKHQpfWZ1bmN0aW9uIFZ0KGUsdCl7Zm9yKHZhciByPS0xLGk9ZS5sZW5ndGg7KytyPGkmJkJ0KHQsZVtyXSwwKT4tMTspO3JldHVybiByfWZ1bmN0aW9uIEd0KGUsdCl7Zm9yKHZhciByPWUubGVuZ3RoO3ItLSYmQnQodCxlW3JdLDApPi0xOyk7cmV0dXJuIHJ9ZnVuY3Rpb24gWXQoZSx0KXtmb3IodmFyIHI9ZS5sZW5ndGgsaT0wO3ItLTspZVtyXT09PXQmJisraTtyZXR1cm4gaX12YXIgWHQ9anQoe8OAOiJBIizDgToiQSIsw4I6IkEiLMODOiJBIizDhDoiQSIsw4U6IkEiLMOgOiJhIizDoToiYSIsw6I6ImEiLMOjOiJhIizDpDoiYSIsw6U6ImEiLMOHOiJDIizDpzoiYyIsw5A6IkQiLMOwOiJkIizDiDoiRSIsw4k6IkUiLMOKOiJFIizDizoiRSIsw6g6ImUiLMOpOiJlIizDqjoiZSIsw6s6ImUiLMOMOiJJIizDjToiSSIsw446IkkiLMOPOiJJIizDrDoiaSIsw606ImkiLMOuOiJpIizDrzoiaSIsw5E6Ik4iLMOxOiJuIizDkjoiTyIsw5M6Ik8iLMOUOiJPIizDlToiTyIsw5Y6Ik8iLMOYOiJPIizDsjoibyIsw7M6Im8iLMO0OiJvIizDtToibyIsw7Y6Im8iLMO4OiJvIizDmToiVSIsw5o6IlUiLMObOiJVIizDnDoiVSIsw7k6InUiLMO6OiJ1IizDuzoidSIsw7w6InUiLMOdOiJZIizDvToieSIsw786InkiLMOGOiJBZSIsw6Y6ImFlIizDnjoiVGgiLMO+OiJ0aCIsw586InNzIizEgDoiQSIsxII6IkEiLMSEOiJBIizEgToiYSIsxIM6ImEiLMSFOiJhIizEhjoiQyIsxIg6IkMiLMSKOiJDIizEjDoiQyIsxIc6ImMiLMSJOiJjIizEizoiYyIsxI06ImMiLMSOOiJEIizEkDoiRCIsxI86ImQiLMSROiJkIizEkjoiRSIsxJQ6IkUiLMSWOiJFIizEmDoiRSIsxJo6IkUiLMSTOiJlIizElToiZSIsxJc6ImUiLMSZOiJlIizEmzoiZSIsxJw6IkciLMSeOiJHIizEoDoiRyIsxKI6IkciLMSdOiJnIizEnzoiZyIsxKE6ImciLMSjOiJnIizEpDoiSCIsxKY6IkgiLMSlOiJoIizEpzoiaCIsxKg6IkkiLMSqOiJJIizErDoiSSIsxK46IkkiLMSwOiJJIizEqToiaSIsxKs6ImkiLMStOiJpIizErzoiaSIsxLE6ImkiLMS0OiJKIizEtToiaiIsxLY6IksiLMS3OiJrIizEuDoiayIsxLk6IkwiLMS7OiJMIizEvToiTCIsxL86IkwiLMWBOiJMIizEujoibCIsxLw6ImwiLMS+OiJsIizFgDoibCIsxYI6ImwiLMWDOiJOIizFhToiTiIsxYc6Ik4iLMWKOiJOIizFhDoibiIsxYY6Im4iLMWIOiJuIizFizoibiIsxYw6Ik8iLMWOOiJPIizFkDoiTyIsxY06Im8iLMWPOiJvIizFkToibyIsxZQ6IlIiLMWWOiJSIizFmDoiUiIsxZU6InIiLMWXOiJyIizFmToiciIsxZo6IlMiLMWcOiJTIizFnjoiUyIsxaA6IlMiLMWbOiJzIizFnToicyIsxZ86InMiLMWhOiJzIizFojoiVCIsxaQ6IlQiLMWmOiJUIizFozoidCIsxaU6InQiLMWnOiJ0IizFqDoiVSIsxao6IlUiLMWsOiJVIizFrjoiVSIsxbA6IlUiLMWyOiJVIizFqToidSIsxas6InUiLMWtOiJ1IizFrzoidSIsxbE6InUiLMWzOiJ1IizFtDoiVyIsxbU6InciLMW2OiJZIizFtzoieSIsxbg6IlkiLMW5OiJaIizFuzoiWiIsxb06IloiLMW6OiJ6IizFvDoieiIsxb46InoiLMSyOiJJSiIsxLM6ImlqIizFkjoiT2UiLMWTOiJvZSIsxYk6IiduIizFvzoicyJ9KSxadD1qdCh7IiYiOiImYW1wOyIsIjwiOiImbHQ7IiwiPiI6IiZndDsiLCciJzoiJnF1b3Q7IiwiJyI6IiYjMzk7In0pO2Z1bmN0aW9uIEp0KGUpe3JldHVybiJcXCIrZXRbZV19ZnVuY3Rpb24gJHQoZSl7cmV0dXJuIFllLnRlc3QoZSl9ZnVuY3Rpb24gUXQoZSl7dmFyIHQ9LTEscj1BcnJheShlLnNpemUpO3JldHVybiBlLmZvckVhY2goKGZ1bmN0aW9uKGUsaSl7clsrK3RdPVtpLGVdfSkpLHJ9ZnVuY3Rpb24gZXIoZSx0KXtyZXR1cm4gZnVuY3Rpb24ocil7cmV0dXJuIGUodChyKSl9fWZ1bmN0aW9uIHRyKGUsdCl7Zm9yKHZhciByPS0xLGk9ZS5sZW5ndGgsbj0wLG89W107KytyPGk7KXt2YXIgcz1lW3JdO3MhPT10JiZzIT09YXx8KGVbcl09YSxvW24rK109cil9cmV0dXJuIG99ZnVuY3Rpb24gcnIoZSl7dmFyIHQ9LTEscj1BcnJheShlLnNpemUpO3JldHVybiBlLmZvckVhY2goKGZ1bmN0aW9uKGUpe3JbKyt0XT1lfSkpLHJ9ZnVuY3Rpb24gaXIoZSl7dmFyIHQ9LTEscj1BcnJheShlLnNpemUpO3JldHVybiBlLmZvckVhY2goKGZ1bmN0aW9uKGUpe3JbKyt0XT1bZSxlXX0pKSxyfWZ1bmN0aW9uIG5yKGUpe3JldHVybiAkdChlKT9mdW5jdGlvbihlKXtmb3IodmFyIHQ9VmUubGFzdEluZGV4PTA7VmUudGVzdChlKTspKyt0O3JldHVybiB0fShlKTpSdChlKX1mdW5jdGlvbiBvcihlKXtyZXR1cm4gJHQoZSk/ZnVuY3Rpb24oZSl7cmV0dXJuIGUubWF0Y2goVmUpfHxbXX0oZSk6ZnVuY3Rpb24oZSl7cmV0dXJuIGUuc3BsaXQoIiIpfShlKX1mdW5jdGlvbiBzcihlKXtmb3IodmFyIHQ9ZS5sZW5ndGg7dC0tJiZuZS50ZXN0KGUuY2hhckF0KHQpKTspO3JldHVybiB0fXZhciBhcj1qdCh7IiZhbXA7IjoiJiIsIiZsdDsiOiI8IiwiJmd0OyI6Ij4iLCImcXVvdDsiOiciJywiJiMzOTsiOiInIn0pLGNyPWZ1bmN0aW9uIGUodCl7dmFyIHIsaT0odD1udWxsPT10P290OmNyLmRlZmF1bHRzKG90Lk9iamVjdCgpLHQsY3IucGljayhvdCxaZSkpKS5BcnJheSxuZT10LkRhdGUsU2U9dC5FcnJvcixDZT10LkZ1bmN0aW9uLHdlPXQuTWF0aCxMZT10Lk9iamVjdCxFZT10LlJlZ0V4cCx4ZT10LlN0cmluZyxBZT10LlR5cGVFcnJvcixrZT1pLnByb3RvdHlwZSxNZT1DZS5wcm90b3R5cGUsUmU9TGUucHJvdG90eXBlLFRlPXRbIl9fY29yZS1qc19zaGFyZWRfXyJdLE9lPU1lLnRvU3RyaW5nLEJlPVJlLmhhc093blByb3BlcnR5LERlPTAsUGU9KHI9L1teLl0rJC8uZXhlYyhUZSYmVGUua2V5cyYmVGUua2V5cy5JRV9QUk9UT3x8IiIpKT8iU3ltYm9sKHNyYylfMS4iK3I6IiIsSWU9UmUudG9TdHJpbmcsSGU9T2UuY2FsbChMZSksamU9b3QuXyxGZT1FZSgiXiIrT2UuY2FsbChCZSkucmVwbGFjZSh0ZSwiXFwkJiIpLnJlcGxhY2UoL2hhc093blByb3BlcnR5fChmdW5jdGlvbikuKj8oPz1cXFwoKXwgZm9yIC4rPyg/PVxcXF0pL2csIiQxLio/IikrIiQiKSxXZT1jdD90LkJ1ZmZlcjpuLFVlPXQuU3ltYm9sLHFlPXQuVWludDhBcnJheSxOZT1XZT9XZS5hbGxvY1Vuc2FmZTpuLFZlPWVyKExlLmdldFByb3RvdHlwZU9mLExlKSxZZT1MZS5jcmVhdGUsZXQ9UmUucHJvcGVydHlJc0VudW1lcmFibGUsaXQ9a2Uuc3BsaWNlLG50PVVlP1VlLmlzQ29uY2F0U3ByZWFkYWJsZTpuLHN0PVVlP1VlLml0ZXJhdG9yOm4sYXQ9VWU/VWUudG9TdHJpbmdUYWc6bixsdD1mdW5jdGlvbigpe3RyeXt2YXIgZT1sbyhMZSwiZGVmaW5lUHJvcGVydHkiKTtyZXR1cm4gZSh7fSwiIix7fSksZX1jYXRjaChlKXt9fSgpLHV0PXQuY2xlYXJUaW1lb3V0IT09b3QuY2xlYXJUaW1lb3V0JiZ0LmNsZWFyVGltZW91dCxSdD1uZSYmbmUubm93IT09b3QuRGF0ZS5ub3cmJm5lLm5vdyxqdD10LnNldFRpbWVvdXQhPT1vdC5zZXRUaW1lb3V0JiZ0LnNldFRpbWVvdXQsbHI9d2UuY2VpbCx1cj13ZS5mbG9vcixocj1MZS5nZXRPd25Qcm9wZXJ0eVN5bWJvbHMsZnI9V2U/V2UuaXNCdWZmZXI6bixfcj10LmlzRmluaXRlLGRyPWtlLmpvaW4scHI9ZXIoTGUua2V5cyxMZSksdnI9d2UubWF4LGdyPXdlLm1pbix5cj1uZS5ub3csbXI9dC5wYXJzZUludCxicj13ZS5yYW5kb20sU3I9a2UucmV2ZXJzZSxDcj1sbyh0LCJEYXRhVmlldyIpLHdyPWxvKHQsIk1hcCIpLExyPWxvKHQsIlByb21pc2UiKSxFcj1sbyh0LCJTZXQiKSx4cj1sbyh0LCJXZWFrTWFwIiksQXI9bG8oTGUsImNyZWF0ZSIpLGtyPXhyJiZuZXcgeHIsTXI9e30sUnI9Rm8oQ3IpLFRyPUZvKHdyKSxPcj1GbyhMciksQnI9Rm8oRXIpLERyPUZvKHhyKSxQcj1VZT9VZS5wcm90b3R5cGU6bixJcj1Qcj9Qci52YWx1ZU9mOm4sSHI9UHI/UHIudG9TdHJpbmc6bjtmdW5jdGlvbiBqcihlKXtpZihyYShlKSYmIUtzKGUpJiYhKGUgaW5zdGFuY2VvZiBxcikpe2lmKGUgaW5zdGFuY2VvZiBVcilyZXR1cm4gZTtpZihCZS5jYWxsKGUsIl9fd3JhcHBlZF9fIikpcmV0dXJuIFdvKGUpfXJldHVybiBuZXcgVXIoZSl9dmFyIEZyPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZSgpe31yZXR1cm4gZnVuY3Rpb24odCl7aWYoIXRhKHQpKXJldHVybnt9O2lmKFllKXJldHVybiBZZSh0KTtlLnByb3RvdHlwZT10O3ZhciByPW5ldyBlO3JldHVybiBlLnByb3RvdHlwZT1uLHJ9fSgpO2Z1bmN0aW9uIFdyKCl7fWZ1bmN0aW9uIFVyKGUsdCl7dGhpcy5fX3dyYXBwZWRfXz1lLHRoaXMuX19hY3Rpb25zX189W10sdGhpcy5fX2NoYWluX189ISF0LHRoaXMuX19pbmRleF9fPTAsdGhpcy5fX3ZhbHVlc19fPW59ZnVuY3Rpb24gcXIoZSl7dGhpcy5fX3dyYXBwZWRfXz1lLHRoaXMuX19hY3Rpb25zX189W10sdGhpcy5fX2Rpcl9fPTEsdGhpcy5fX2ZpbHRlcmVkX189ITEsdGhpcy5fX2l0ZXJhdGVlc19fPVtdLHRoaXMuX190YWtlQ291bnRfXz1fLHRoaXMuX192aWV3c19fPVtdfWZ1bmN0aW9uIE5yKGUpe3ZhciB0PS0xLHI9bnVsbD09ZT8wOmUubGVuZ3RoO2Zvcih0aGlzLmNsZWFyKCk7Kyt0PHI7KXt2YXIgaT1lW3RdO3RoaXMuc2V0KGlbMF0saVsxXSl9fWZ1bmN0aW9uIHpyKGUpe3ZhciB0PS0xLHI9bnVsbD09ZT8wOmUubGVuZ3RoO2Zvcih0aGlzLmNsZWFyKCk7Kyt0PHI7KXt2YXIgaT1lW3RdO3RoaXMuc2V0KGlbMF0saVsxXSl9fWZ1bmN0aW9uIEtyKGUpe3ZhciB0PS0xLHI9bnVsbD09ZT8wOmUubGVuZ3RoO2Zvcih0aGlzLmNsZWFyKCk7Kyt0PHI7KXt2YXIgaT1lW3RdO3RoaXMuc2V0KGlbMF0saVsxXSl9fWZ1bmN0aW9uIFZyKGUpe3ZhciB0PS0xLHI9bnVsbD09ZT8wOmUubGVuZ3RoO2Zvcih0aGlzLl9fZGF0YV9fPW5ldyBLcjsrK3Q8cjspdGhpcy5hZGQoZVt0XSl9ZnVuY3Rpb24gR3IoZSl7dmFyIHQ9dGhpcy5fX2RhdGFfXz1uZXcgenIoZSk7dGhpcy5zaXplPXQuc2l6ZX1mdW5jdGlvbiBZcihlLHQpe3ZhciByPUtzKGUpLGk9IXImJnpzKGUpLG49IXImJiFpJiZYcyhlKSxvPSFyJiYhaSYmIW4mJnVhKGUpLHM9cnx8aXx8bnx8byxhPXM/VXQoZS5sZW5ndGgseGUpOltdLGM9YS5sZW5ndGg7Zm9yKHZhciBsIGluIGUpIXQmJiFCZS5jYWxsKGUsbCl8fHMmJigibGVuZ3RoIj09bHx8biYmKCJvZmZzZXQiPT1sfHwicGFyZW50Ij09bCl8fG8mJigiYnVmZmVyIj09bHx8ImJ5dGVMZW5ndGgiPT1sfHwiYnl0ZU9mZnNldCI9PWwpfHxnbyhsLGMpKXx8YS5wdXNoKGwpO3JldHVybiBhfWZ1bmN0aW9uIFhyKGUpe3ZhciB0PWUubGVuZ3RoO3JldHVybiB0P2VbS2koMCx0LTEpXTpufWZ1bmN0aW9uIFpyKGUsdCl7cmV0dXJuIERvKEFuKGUpLG9pKHQsMCxlLmxlbmd0aCkpfWZ1bmN0aW9uIEpyKGUpe3JldHVybiBEbyhBbihlKSl9ZnVuY3Rpb24gJHIoZSx0LHIpeyhyIT09biYmIVVzKGVbdF0scil8fHI9PT1uJiYhKHQgaW4gZSkpJiZpaShlLHQscil9ZnVuY3Rpb24gUXIoZSx0LHIpe3ZhciBpPWVbdF07QmUuY2FsbChlLHQpJiZVcyhpLHIpJiYociE9PW58fHQgaW4gZSl8fGlpKGUsdCxyKX1mdW5jdGlvbiBlaShlLHQpe2Zvcih2YXIgcj1lLmxlbmd0aDtyLS07KWlmKFVzKGVbcl1bMF0sdCkpcmV0dXJuIHI7cmV0dXJuLTF9ZnVuY3Rpb24gdGkoZSx0LHIsaSl7cmV0dXJuIHVpKGUsKGZ1bmN0aW9uKGUsbixvKXt0KGksZSxyKGUpLG8pfSkpLGl9ZnVuY3Rpb24gcmkoZSx0KXtyZXR1cm4gZSYma24odCxPYSh0KSxlKX1mdW5jdGlvbiBpaShlLHQscil7Il9fcHJvdG9fXyI9PXQmJmx0P2x0KGUsdCx7Y29uZmlndXJhYmxlOiEwLGVudW1lcmFibGU6ITAsdmFsdWU6cix3cml0YWJsZTohMH0pOmVbdF09cn1mdW5jdGlvbiBuaShlLHQpe2Zvcih2YXIgcj0tMSxvPXQubGVuZ3RoLHM9aShvKSxhPW51bGw9PWU7KytyPG87KXNbcl09YT9uOkFhKGUsdFtyXSk7cmV0dXJuIHN9ZnVuY3Rpb24gb2koZSx0LHIpe3JldHVybiBlPT1lJiYociE9PW4mJihlPWU8PXI/ZTpyKSx0IT09biYmKGU9ZT49dD9lOnQpKSxlfWZ1bmN0aW9uIHNpKGUsdCxyLGksbyxzKXt2YXIgYSxjPTEmdCxsPTImdCx1PTQmdDtpZihyJiYoYT1vP3IoZSxpLG8scyk6cihlKSksYSE9PW4pcmV0dXJuIGE7aWYoIXRhKGUpKXJldHVybiBlO3ZhciBoPUtzKGUpO2lmKGgpe2lmKGE9ZnVuY3Rpb24oZSl7dmFyIHQ9ZS5sZW5ndGgscj1uZXcgZS5jb25zdHJ1Y3Rvcih0KTtyZXR1cm4gdCYmInN0cmluZyI9PXR5cGVvZiBlWzBdJiZCZS5jYWxsKGUsImluZGV4IikmJihyLmluZGV4PWUuaW5kZXgsci5pbnB1dD1lLmlucHV0KSxyfShlKSwhYylyZXR1cm4gQW4oZSxhKX1lbHNle3ZhciBmPWZvKGUpLF89Zj09Ynx8Zj09UztpZihYcyhlKSlyZXR1cm4gU24oZSxjKTtpZihmPT1MfHxmPT1wfHxfJiYhbyl7aWYoYT1sfHxfP3t9OnBvKGUpLCFjKXJldHVybiBsP2Z1bmN0aW9uKGUsdCl7cmV0dXJuIGtuKGUsaG8oZSksdCl9KGUsZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSYma24odCxCYSh0KSxlKX0oYSxlKSk6ZnVuY3Rpb24oZSx0KXtyZXR1cm4ga24oZSx1byhlKSx0KX0oZSxyaShhLGUpKX1lbHNle2lmKCFRZVtmXSlyZXR1cm4gbz9lOnt9O2E9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpLG49ZS5jb25zdHJ1Y3Rvcjtzd2l0Y2godCl7Y2FzZSBUOnJldHVybiBDbihlKTtjYXNlIGc6Y2FzZSB5OnJldHVybiBuZXcgbigrZSk7Y2FzZSBPOnJldHVybiBmdW5jdGlvbihlLHQpe3ZhciByPXQ/Q24oZS5idWZmZXIpOmUuYnVmZmVyO3JldHVybiBuZXcgZS5jb25zdHJ1Y3RvcihyLGUuYnl0ZU9mZnNldCxlLmJ5dGVMZW5ndGgpfShlLHIpO2Nhc2UgQjpjYXNlIEQ6Y2FzZSBQOmNhc2UgSTpjYXNlIEg6Y2FzZSBqOmNhc2UgRjpjYXNlIFc6Y2FzZSBVOnJldHVybiB3bihlLHIpO2Nhc2UgQzpyZXR1cm4gbmV3IG47Y2FzZSB3OmNhc2UgazpyZXR1cm4gbmV3IG4oZSk7Y2FzZSB4OnJldHVybiBmdW5jdGlvbihlKXt2YXIgdD1uZXcgZS5jb25zdHJ1Y3RvcihlLnNvdXJjZSxmZS5leGVjKGUpKTtyZXR1cm4gdC5sYXN0SW5kZXg9ZS5sYXN0SW5kZXgsdH0oZSk7Y2FzZSBBOnJldHVybiBuZXcgbjtjYXNlIE06cmV0dXJuIGk9ZSxJcj9MZShJci5jYWxsKGkpKTp7fX19KGUsZixjKX19c3x8KHM9bmV3IEdyKTt2YXIgZD1zLmdldChlKTtpZihkKXJldHVybiBkO3Muc2V0KGUsYSksYWEoZSk/ZS5mb3JFYWNoKChmdW5jdGlvbihpKXthLmFkZChzaShpLHQscixpLGUscykpfSkpOmlhKGUpJiZlLmZvckVhY2goKGZ1bmN0aW9uKGksbil7YS5zZXQobixzaShpLHQscixuLGUscykpfSkpO3ZhciB2PWg/bjoodT9sP3JvOnRvOmw/QmE6T2EpKGUpO3JldHVybiBtdCh2fHxlLChmdW5jdGlvbihpLG4pe3YmJihpPWVbbj1pXSksUXIoYSxuLHNpKGksdCxyLG4sZSxzKSl9KSksYX1mdW5jdGlvbiBhaShlLHQscil7dmFyIGk9ci5sZW5ndGg7aWYobnVsbD09ZSlyZXR1cm4haTtmb3IoZT1MZShlKTtpLS07KXt2YXIgbz1yW2ldLHM9dFtvXSxhPWVbb107aWYoYT09PW4mJiEobyBpbiBlKXx8IXMoYSkpcmV0dXJuITF9cmV0dXJuITB9ZnVuY3Rpb24gY2koZSx0LHIpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiBlKXRocm93IG5ldyBBZShvKTtyZXR1cm4gUm8oKGZ1bmN0aW9uKCl7ZS5hcHBseShuLHIpfSksdCl9ZnVuY3Rpb24gbGkoZSx0LHIsaSl7dmFyIG49LTEsbz13dCxzPSEwLGE9ZS5sZW5ndGgsYz1bXSxsPXQubGVuZ3RoO2lmKCFhKXJldHVybiBjO3ImJih0PUV0KHQsTnQocikpKSxpPyhvPUx0LHM9ITEpOnQubGVuZ3RoPj0yMDAmJihvPUt0LHM9ITEsdD1uZXcgVnIodCkpO2U6Zm9yKDsrK248YTspe3ZhciB1PWVbbl0saD1udWxsPT1yP3U6cih1KTtpZih1PWl8fDAhPT11P3U6MCxzJiZoPT1oKXtmb3IodmFyIGY9bDtmLS07KWlmKHRbZl09PT1oKWNvbnRpbnVlIGU7Yy5wdXNoKHUpfWVsc2Ugbyh0LGgsaSl8fGMucHVzaCh1KX1yZXR1cm4gY31qci50ZW1wbGF0ZVNldHRpbmdzPXtlc2NhcGU6WCxldmFsdWF0ZTpaLGludGVycG9sYXRlOkosdmFyaWFibGU6IiIsaW1wb3J0czp7Xzpqcn19LGpyLnByb3RvdHlwZT1Xci5wcm90b3R5cGUsanIucHJvdG90eXBlLmNvbnN0cnVjdG9yPWpyLFVyLnByb3RvdHlwZT1GcihXci5wcm90b3R5cGUpLFVyLnByb3RvdHlwZS5jb25zdHJ1Y3Rvcj1Vcixxci5wcm90b3R5cGU9RnIoV3IucHJvdG90eXBlKSxxci5wcm90b3R5cGUuY29uc3RydWN0b3I9cXIsTnIucHJvdG90eXBlLmNsZWFyPWZ1bmN0aW9uKCl7dGhpcy5fX2RhdGFfXz1Bcj9BcihudWxsKTp7fSx0aGlzLnNpemU9MH0sTnIucHJvdG90eXBlLmRlbGV0ZT1mdW5jdGlvbihlKXt2YXIgdD10aGlzLmhhcyhlKSYmZGVsZXRlIHRoaXMuX19kYXRhX19bZV07cmV0dXJuIHRoaXMuc2l6ZS09dD8xOjAsdH0sTnIucHJvdG90eXBlLmdldD1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9fZGF0YV9fO2lmKEFyKXt2YXIgcj10W2VdO3JldHVybiByPT09cz9uOnJ9cmV0dXJuIEJlLmNhbGwodCxlKT90W2VdOm59LE5yLnByb3RvdHlwZS5oYXM9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcy5fX2RhdGFfXztyZXR1cm4gQXI/dFtlXSE9PW46QmUuY2FsbCh0LGUpfSxOci5wcm90b3R5cGUuc2V0PWZ1bmN0aW9uKGUsdCl7dmFyIHI9dGhpcy5fX2RhdGFfXztyZXR1cm4gdGhpcy5zaXplKz10aGlzLmhhcyhlKT8wOjEscltlXT1BciYmdD09PW4/czp0LHRoaXN9LHpyLnByb3RvdHlwZS5jbGVhcj1mdW5jdGlvbigpe3RoaXMuX19kYXRhX189W10sdGhpcy5zaXplPTB9LHpyLnByb3RvdHlwZS5kZWxldGU9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcy5fX2RhdGFfXyxyPWVpKHQsZSk7cmV0dXJuIShyPDB8fChyPT10Lmxlbmd0aC0xP3QucG9wKCk6aXQuY2FsbCh0LHIsMSksLS10aGlzLnNpemUsMCkpfSx6ci5wcm90b3R5cGUuZ2V0PWZ1bmN0aW9uKGUpe3ZhciB0PXRoaXMuX19kYXRhX18scj1laSh0LGUpO3JldHVybiByPDA/bjp0W3JdWzFdfSx6ci5wcm90b3R5cGUuaGFzPWZ1bmN0aW9uKGUpe3JldHVybiBlaSh0aGlzLl9fZGF0YV9fLGUpPi0xfSx6ci5wcm90b3R5cGUuc2V0PWZ1bmN0aW9uKGUsdCl7dmFyIHI9dGhpcy5fX2RhdGFfXyxpPWVpKHIsZSk7cmV0dXJuIGk8MD8oKyt0aGlzLnNpemUsci5wdXNoKFtlLHRdKSk6cltpXVsxXT10LHRoaXN9LEtyLnByb3RvdHlwZS5jbGVhcj1mdW5jdGlvbigpe3RoaXMuc2l6ZT0wLHRoaXMuX19kYXRhX189e2hhc2g6bmV3IE5yLG1hcDpuZXcod3J8fHpyKSxzdHJpbmc6bmV3IE5yfX0sS3IucHJvdG90eXBlLmRlbGV0ZT1mdW5jdGlvbihlKXt2YXIgdD1hbyh0aGlzLGUpLmRlbGV0ZShlKTtyZXR1cm4gdGhpcy5zaXplLT10PzE6MCx0fSxLci5wcm90b3R5cGUuZ2V0PWZ1bmN0aW9uKGUpe3JldHVybiBhbyh0aGlzLGUpLmdldChlKX0sS3IucHJvdG90eXBlLmhhcz1mdW5jdGlvbihlKXtyZXR1cm4gYW8odGhpcyxlKS5oYXMoZSl9LEtyLnByb3RvdHlwZS5zZXQ9ZnVuY3Rpb24oZSx0KXt2YXIgcj1hbyh0aGlzLGUpLGk9ci5zaXplO3JldHVybiByLnNldChlLHQpLHRoaXMuc2l6ZSs9ci5zaXplPT1pPzA6MSx0aGlzfSxWci5wcm90b3R5cGUuYWRkPVZyLnByb3RvdHlwZS5wdXNoPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9fZGF0YV9fLnNldChlLHMpLHRoaXN9LFZyLnByb3RvdHlwZS5oYXM9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX19kYXRhX18uaGFzKGUpfSxHci5wcm90b3R5cGUuY2xlYXI9ZnVuY3Rpb24oKXt0aGlzLl9fZGF0YV9fPW5ldyB6cix0aGlzLnNpemU9MH0sR3IucHJvdG90eXBlLmRlbGV0ZT1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9fZGF0YV9fLHI9dC5kZWxldGUoZSk7cmV0dXJuIHRoaXMuc2l6ZT10LnNpemUscn0sR3IucHJvdG90eXBlLmdldD1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fX2RhdGFfXy5nZXQoZSl9LEdyLnByb3RvdHlwZS5oYXM9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX19kYXRhX18uaGFzKGUpfSxHci5wcm90b3R5cGUuc2V0PWZ1bmN0aW9uKGUsdCl7dmFyIHI9dGhpcy5fX2RhdGFfXztpZihyIGluc3RhbmNlb2YgenIpe3ZhciBpPXIuX19kYXRhX187aWYoIXdyfHxpLmxlbmd0aDwxOTkpcmV0dXJuIGkucHVzaChbZSx0XSksdGhpcy5zaXplPSsrci5zaXplLHRoaXM7cj10aGlzLl9fZGF0YV9fPW5ldyBLcihpKX1yZXR1cm4gci5zZXQoZSx0KSx0aGlzLnNpemU9ci5zaXplLHRoaXN9O3ZhciB1aT1Ubih5aSksaGk9VG4obWksITApO2Z1bmN0aW9uIGZpKGUsdCl7dmFyIHI9ITA7cmV0dXJuIHVpKGUsKGZ1bmN0aW9uKGUsaSxuKXtyZXR1cm4gcj0hIXQoZSxpLG4pfSkpLHJ9ZnVuY3Rpb24gX2koZSx0LHIpe2Zvcih2YXIgaT0tMSxvPWUubGVuZ3RoOysraTxvOyl7dmFyIHM9ZVtpXSxhPXQocyk7aWYobnVsbCE9YSYmKGM9PT1uP2E9PWEmJiFsYShhKTpyKGEsYykpKXZhciBjPWEsbD1zfXJldHVybiBsfWZ1bmN0aW9uIGRpKGUsdCl7dmFyIHI9W107cmV0dXJuIHVpKGUsKGZ1bmN0aW9uKGUsaSxuKXt0KGUsaSxuKSYmci5wdXNoKGUpfSkpLHJ9ZnVuY3Rpb24gcGkoZSx0LHIsaSxuKXt2YXIgbz0tMSxzPWUubGVuZ3RoO2ZvcihyfHwocj12byksbnx8KG49W10pOysrbzxzOyl7dmFyIGE9ZVtvXTt0PjAmJnIoYSk/dD4xP3BpKGEsdC0xLHIsaSxuKTp4dChuLGEpOml8fChuW24ubGVuZ3RoXT1hKX1yZXR1cm4gbn12YXIgdmk9T24oKSxnaT1PbighMCk7ZnVuY3Rpb24geWkoZSx0KXtyZXR1cm4gZSYmdmkoZSx0LE9hKX1mdW5jdGlvbiBtaShlLHQpe3JldHVybiBlJiZnaShlLHQsT2EpfWZ1bmN0aW9uIGJpKGUsdCl7cmV0dXJuIEN0KHQsKGZ1bmN0aW9uKHQpe3JldHVybiAkcyhlW3RdKX0pKX1mdW5jdGlvbiBTaShlLHQpe2Zvcih2YXIgcj0wLGk9KHQ9Z24odCxlKSkubGVuZ3RoO251bGwhPWUmJnI8aTspZT1lW2pvKHRbcisrXSldO3JldHVybiByJiZyPT1pP2U6bn1mdW5jdGlvbiBDaShlLHQscil7dmFyIGk9dChlKTtyZXR1cm4gS3MoZSk/aTp4dChpLHIoZSkpfWZ1bmN0aW9uIHdpKGUpe3JldHVybiBudWxsPT1lP2U9PT1uPyJbb2JqZWN0IFVuZGVmaW5lZF0iOiJbb2JqZWN0IE51bGxdIjphdCYmYXQgaW4gTGUoZSk/ZnVuY3Rpb24oZSl7dmFyIHQ9QmUuY2FsbChlLGF0KSxyPWVbYXRdO3RyeXtlW2F0XT1uO3ZhciBpPSEwfWNhdGNoKGUpe312YXIgbz1JZS5jYWxsKGUpO3JldHVybiBpJiYodD9lW2F0XT1yOmRlbGV0ZSBlW2F0XSksb30oZSk6ZnVuY3Rpb24oZSl7cmV0dXJuIEllLmNhbGwoZSl9KGUpfWZ1bmN0aW9uIExpKGUsdCl7cmV0dXJuIGU+dH1mdW5jdGlvbiBFaShlLHQpe3JldHVybiBudWxsIT1lJiZCZS5jYWxsKGUsdCl9ZnVuY3Rpb24geGkoZSx0KXtyZXR1cm4gbnVsbCE9ZSYmdCBpbiBMZShlKX1mdW5jdGlvbiBBaShlLHQscil7Zm9yKHZhciBvPXI/THQ6d3Qscz1lWzBdLmxlbmd0aCxhPWUubGVuZ3RoLGM9YSxsPWkoYSksdT0xLzAsaD1bXTtjLS07KXt2YXIgZj1lW2NdO2MmJnQmJihmPUV0KGYsTnQodCkpKSx1PWdyKGYubGVuZ3RoLHUpLGxbY109IXImJih0fHxzPj0xMjAmJmYubGVuZ3RoPj0xMjApP25ldyBWcihjJiZmKTpufWY9ZVswXTt2YXIgXz0tMSxkPWxbMF07ZTpmb3IoOysrXzxzJiZoLmxlbmd0aDx1Oyl7dmFyIHA9ZltfXSx2PXQ/dChwKTpwO2lmKHA9cnx8MCE9PXA/cDowLCEoZD9LdChkLHYpOm8oaCx2LHIpKSl7Zm9yKGM9YTstLWM7KXt2YXIgZz1sW2NdO2lmKCEoZz9LdChnLHYpOm8oZVtjXSx2LHIpKSljb250aW51ZSBlfWQmJmQucHVzaCh2KSxoLnB1c2gocCl9fXJldHVybiBofWZ1bmN0aW9uIGtpKGUsdCxyKXt2YXIgaT1udWxsPT0oZT14byhlLHQ9Z24odCxlKSkpP2U6ZVtqbyhKbyh0KSldO3JldHVybiBudWxsPT1pP246Z3QoaSxlLHIpfWZ1bmN0aW9uIE1pKGUpe3JldHVybiByYShlKSYmd2koZSk9PXB9ZnVuY3Rpb24gUmkoZSx0LHIsaSxvKXtyZXR1cm4gZT09PXR8fChudWxsPT1lfHxudWxsPT10fHwhcmEoZSkmJiFyYSh0KT9lIT1lJiZ0IT10OmZ1bmN0aW9uKGUsdCxyLGksbyxzKXt2YXIgYT1LcyhlKSxjPUtzKHQpLGw9YT92OmZvKGUpLHU9Yz92OmZvKHQpLGg9KGw9bD09cD9MOmwpPT1MLGY9KHU9dT09cD9MOnUpPT1MLF89bD09dTtpZihfJiZYcyhlKSl7aWYoIVhzKHQpKXJldHVybiExO2E9ITAsaD0hMX1pZihfJiYhaClyZXR1cm4gc3x8KHM9bmV3IEdyKSxhfHx1YShlKT9RbihlLHQscixpLG8scyk6ZnVuY3Rpb24oZSx0LHIsaSxuLG8scyl7c3dpdGNoKHIpe2Nhc2UgTzppZihlLmJ5dGVMZW5ndGghPXQuYnl0ZUxlbmd0aHx8ZS5ieXRlT2Zmc2V0IT10LmJ5dGVPZmZzZXQpcmV0dXJuITE7ZT1lLmJ1ZmZlcix0PXQuYnVmZmVyO2Nhc2UgVDpyZXR1cm4hKGUuYnl0ZUxlbmd0aCE9dC5ieXRlTGVuZ3RofHwhbyhuZXcgcWUoZSksbmV3IHFlKHQpKSk7Y2FzZSBnOmNhc2UgeTpjYXNlIHc6cmV0dXJuIFVzKCtlLCt0KTtjYXNlIG06cmV0dXJuIGUubmFtZT09dC5uYW1lJiZlLm1lc3NhZ2U9PXQubWVzc2FnZTtjYXNlIHg6Y2FzZSBrOnJldHVybiBlPT10KyIiO2Nhc2UgQzp2YXIgYT1RdDtjYXNlIEE6dmFyIGM9MSZpO2lmKGF8fChhPXJyKSxlLnNpemUhPXQuc2l6ZSYmIWMpcmV0dXJuITE7dmFyIGw9cy5nZXQoZSk7aWYobClyZXR1cm4gbD09dDtpfD0yLHMuc2V0KGUsdCk7dmFyIHU9UW4oYShlKSxhKHQpLGksbixvLHMpO3JldHVybiBzLmRlbGV0ZShlKSx1O2Nhc2UgTTppZihJcilyZXR1cm4gSXIuY2FsbChlKT09SXIuY2FsbCh0KX1yZXR1cm4hMX0oZSx0LGwscixpLG8scyk7aWYoISgxJnIpKXt2YXIgZD1oJiZCZS5jYWxsKGUsIl9fd3JhcHBlZF9fIiksYj1mJiZCZS5jYWxsKHQsIl9fd3JhcHBlZF9fIik7aWYoZHx8Yil7dmFyIFM9ZD9lLnZhbHVlKCk6ZSxFPWI/dC52YWx1ZSgpOnQ7cmV0dXJuIHN8fChzPW5ldyBHciksbyhTLEUscixpLHMpfX1yZXR1cm4hIV8mJihzfHwocz1uZXcgR3IpLGZ1bmN0aW9uKGUsdCxyLGksbyxzKXt2YXIgYT0xJnIsYz10byhlKSxsPWMubGVuZ3RoO2lmKGwhPXRvKHQpLmxlbmd0aCYmIWEpcmV0dXJuITE7Zm9yKHZhciB1PWw7dS0tOyl7dmFyIGg9Y1t1XTtpZighKGE/aCBpbiB0OkJlLmNhbGwodCxoKSkpcmV0dXJuITF9dmFyIGY9cy5nZXQoZSksXz1zLmdldCh0KTtpZihmJiZfKXJldHVybiBmPT10JiZfPT1lO3ZhciBkPSEwO3Muc2V0KGUsdCkscy5zZXQodCxlKTtmb3IodmFyIHA9YTsrK3U8bDspe3ZhciB2PWVbaD1jW3VdXSxnPXRbaF07aWYoaSl2YXIgeT1hP2koZyx2LGgsdCxlLHMpOmkodixnLGgsZSx0LHMpO2lmKCEoeT09PW4/dj09PWd8fG8odixnLHIsaSxzKTp5KSl7ZD0hMTticmVha31wfHwocD0iY29uc3RydWN0b3IiPT1oKX1pZihkJiYhcCl7dmFyIG09ZS5jb25zdHJ1Y3RvcixiPXQuY29uc3RydWN0b3I7bT09Ynx8ISgiY29uc3RydWN0b3IiaW4gZSl8fCEoImNvbnN0cnVjdG9yImluIHQpfHwiZnVuY3Rpb24iPT10eXBlb2YgbSYmbSBpbnN0YW5jZW9mIG0mJiJmdW5jdGlvbiI9PXR5cGVvZiBiJiZiIGluc3RhbmNlb2YgYnx8KGQ9ITEpfXJldHVybiBzLmRlbGV0ZShlKSxzLmRlbGV0ZSh0KSxkfShlLHQscixpLG8scykpfShlLHQscixpLFJpLG8pKX1mdW5jdGlvbiBUaShlLHQscixpKXt2YXIgbz1yLmxlbmd0aCxzPW8sYT0haTtpZihudWxsPT1lKXJldHVybiFzO2ZvcihlPUxlKGUpO28tLTspe3ZhciBjPXJbb107aWYoYSYmY1syXT9jWzFdIT09ZVtjWzBdXTohKGNbMF1pbiBlKSlyZXR1cm4hMX1mb3IoOysrbzxzOyl7dmFyIGw9KGM9cltvXSlbMF0sdT1lW2xdLGg9Y1sxXTtpZihhJiZjWzJdKXtpZih1PT09biYmIShsIGluIGUpKXJldHVybiExfWVsc2V7dmFyIGY9bmV3IEdyO2lmKGkpdmFyIF89aSh1LGgsbCxlLHQsZik7aWYoIShfPT09bj9SaShoLHUsMyxpLGYpOl8pKXJldHVybiExfX1yZXR1cm4hMH1mdW5jdGlvbiBPaShlKXtyZXR1cm4hKCF0YShlKXx8KHQ9ZSxQZSYmUGUgaW4gdCkpJiYoJHMoZSk/RmU6cGUpLnRlc3QoRm8oZSkpO3ZhciB0fWZ1bmN0aW9uIEJpKGUpe3JldHVybiJmdW5jdGlvbiI9PXR5cGVvZiBlP2U6bnVsbD09ZT9uYzoib2JqZWN0Ij09dHlwZW9mIGU/S3MoZSk/amkoZVswXSxlWzFdKTpIaShlKTpfYyhlKX1mdW5jdGlvbiBEaShlKXtpZighQ28oZSkpcmV0dXJuIHByKGUpO3ZhciB0PVtdO2Zvcih2YXIgciBpbiBMZShlKSlCZS5jYWxsKGUscikmJiJjb25zdHJ1Y3RvciIhPXImJnQucHVzaChyKTtyZXR1cm4gdH1mdW5jdGlvbiBQaShlLHQpe3JldHVybiBlPHR9ZnVuY3Rpb24gSWkoZSx0KXt2YXIgcj0tMSxuPUdzKGUpP2koZS5sZW5ndGgpOltdO3JldHVybiB1aShlLChmdW5jdGlvbihlLGksbyl7blsrK3JdPXQoZSxpLG8pfSkpLG59ZnVuY3Rpb24gSGkoZSl7dmFyIHQ9Y28oZSk7cmV0dXJuIDE9PXQubGVuZ3RoJiZ0WzBdWzJdP0xvKHRbMF1bMF0sdFswXVsxXSk6ZnVuY3Rpb24ocil7cmV0dXJuIHI9PT1lfHxUaShyLGUsdCl9fWZ1bmN0aW9uIGppKGUsdCl7cmV0dXJuIG1vKGUpJiZ3byh0KT9MbyhqbyhlKSx0KTpmdW5jdGlvbihyKXt2YXIgaT1BYShyLGUpO3JldHVybiBpPT09biYmaT09PXQ/a2EocixlKTpSaSh0LGksMyl9fWZ1bmN0aW9uIEZpKGUsdCxyLGksbyl7ZSE9PXQmJnZpKHQsKGZ1bmN0aW9uKHMsYSl7aWYob3x8KG89bmV3IEdyKSx0YShzKSkhZnVuY3Rpb24oZSx0LHIsaSxvLHMsYSl7dmFyIGM9a28oZSxyKSxsPWtvKHQsciksdT1hLmdldChsKTtpZih1KSRyKGUscix1KTtlbHNle3ZhciBoPXM/cyhjLGwscisiIixlLHQsYSk6bixmPWg9PT1uO2lmKGYpe3ZhciBfPUtzKGwpLGQ9IV8mJlhzKGwpLHA9IV8mJiFkJiZ1YShsKTtoPWwsX3x8ZHx8cD9LcyhjKT9oPWM6WXMoYyk/aD1BbihjKTpkPyhmPSExLGg9U24obCwhMCkpOnA/KGY9ITEsaD13bihsLCEwKSk6aD1bXTpvYShsKXx8enMobCk/KGg9Yyx6cyhjKT9oPXlhKGMpOnRhKGMpJiYhJHMoYyl8fChoPXBvKGwpKSk6Zj0hMX1mJiYoYS5zZXQobCxoKSxvKGgsbCxpLHMsYSksYS5kZWxldGUobCkpLCRyKGUscixoKX19KGUsdCxhLHIsRmksaSxvKTtlbHNle3ZhciBjPWk/aShrbyhlLGEpLHMsYSsiIixlLHQsbyk6bjtjPT09biYmKGM9cyksJHIoZSxhLGMpfX0pLEJhKX1mdW5jdGlvbiBXaShlLHQpe3ZhciByPWUubGVuZ3RoO2lmKHIpcmV0dXJuIGdvKHQrPXQ8MD9yOjAscik/ZVt0XTpufWZ1bmN0aW9uIFVpKGUsdCxyKXt0PXQubGVuZ3RoP0V0KHQsKGZ1bmN0aW9uKGUpe3JldHVybiBLcyhlKT9mdW5jdGlvbih0KXtyZXR1cm4gU2kodCwxPT09ZS5sZW5ndGg/ZVswXTplKX06ZX0pKTpbbmNdO3ZhciBpPS0xO3Q9RXQodCxOdChzbygpKSk7dmFyIG49SWkoZSwoZnVuY3Rpb24oZSxyLG4pe3ZhciBvPUV0KHQsKGZ1bmN0aW9uKHQpe3JldHVybiB0KGUpfSkpO3JldHVybntjcml0ZXJpYTpvLGluZGV4OisraSx2YWx1ZTplfX0pKTtyZXR1cm4gZnVuY3Rpb24oZSx0KXt2YXIgaT1lLmxlbmd0aDtmb3IoZS5zb3J0KChmdW5jdGlvbihlLHQpe3JldHVybiBmdW5jdGlvbihlLHQscil7Zm9yKHZhciBpPS0xLG49ZS5jcml0ZXJpYSxvPXQuY3JpdGVyaWEscz1uLmxlbmd0aCxhPXIubGVuZ3RoOysraTxzOyl7dmFyIGM9TG4obltpXSxvW2ldKTtpZihjKXJldHVybiBpPj1hP2M6YyooImRlc2MiPT1yW2ldPy0xOjEpfXJldHVybiBlLmluZGV4LXQuaW5kZXh9KGUsdCxyKX0pKTtpLS07KWVbaV09ZVtpXS52YWx1ZTtyZXR1cm4gZX0obil9ZnVuY3Rpb24gcWkoZSx0LHIpe2Zvcih2YXIgaT0tMSxuPXQubGVuZ3RoLG89e307KytpPG47KXt2YXIgcz10W2ldLGE9U2koZSxzKTtyKGEscykmJlppKG8sZ24ocyxlKSxhKX1yZXR1cm4gb31mdW5jdGlvbiBOaShlLHQscixpKXt2YXIgbj1pP0R0OkJ0LG89LTEscz10Lmxlbmd0aCxhPWU7Zm9yKGU9PT10JiYodD1Bbih0KSksciYmKGE9RXQoZSxOdChyKSkpOysrbzxzOylmb3IodmFyIGM9MCxsPXRbb10sdT1yP3IobCk6bDsoYz1uKGEsdSxjLGkpKT4tMTspYSE9PWUmJml0LmNhbGwoYSxjLDEpLGl0LmNhbGwoZSxjLDEpO3JldHVybiBlfWZ1bmN0aW9uIHppKGUsdCl7Zm9yKHZhciByPWU/dC5sZW5ndGg6MCxpPXItMTtyLS07KXt2YXIgbj10W3JdO2lmKHI9PWl8fG4hPT1vKXt2YXIgbz1uO2dvKG4pP2l0LmNhbGwoZSxuLDEpOmxuKGUsbil9fXJldHVybiBlfWZ1bmN0aW9uIEtpKGUsdCl7cmV0dXJuIGUrdXIoYnIoKSoodC1lKzEpKX1mdW5jdGlvbiBWaShlLHQpe3ZhciByPSIiO2lmKCFlfHx0PDF8fHQ+aClyZXR1cm4gcjtkb3t0JTImJihyKz1lKSwodD11cih0LzIpKSYmKGUrPWUpfXdoaWxlKHQpO3JldHVybiByfWZ1bmN0aW9uIEdpKGUsdCl7cmV0dXJuIFRvKEVvKGUsdCxuYyksZSsiIil9ZnVuY3Rpb24gWWkoZSl7cmV0dXJuIFhyKFVhKGUpKX1mdW5jdGlvbiBYaShlLHQpe3ZhciByPVVhKGUpO3JldHVybiBEbyhyLG9pKHQsMCxyLmxlbmd0aCkpfWZ1bmN0aW9uIFppKGUsdCxyLGkpe2lmKCF0YShlKSlyZXR1cm4gZTtmb3IodmFyIG89LTEscz0odD1nbih0LGUpKS5sZW5ndGgsYT1zLTEsYz1lO251bGwhPWMmJisrbzxzOyl7dmFyIGw9am8odFtvXSksdT1yO2lmKCJfX3Byb3RvX18iPT09bHx8ImNvbnN0cnVjdG9yIj09PWx8fCJwcm90b3R5cGUiPT09bClyZXR1cm4gZTtpZihvIT1hKXt2YXIgaD1jW2xdOyh1PWk/aShoLGwsYyk6bik9PT1uJiYodT10YShoKT9oOmdvKHRbbysxXSk/W106e30pfVFyKGMsbCx1KSxjPWNbbF19cmV0dXJuIGV9dmFyIEppPWtyP2Z1bmN0aW9uKGUsdCl7cmV0dXJuIGtyLnNldChlLHQpLGV9Om5jLCRpPWx0P2Z1bmN0aW9uKGUsdCl7cmV0dXJuIGx0KGUsInRvU3RyaW5nIix7Y29uZmlndXJhYmxlOiEwLGVudW1lcmFibGU6ITEsdmFsdWU6dGModCksd3JpdGFibGU6ITB9KX06bmM7ZnVuY3Rpb24gUWkoZSl7cmV0dXJuIERvKFVhKGUpKX1mdW5jdGlvbiBlbihlLHQscil7dmFyIG49LTEsbz1lLmxlbmd0aDt0PDAmJih0PS10Pm8/MDpvK3QpLChyPXI+bz9vOnIpPDAmJihyKz1vKSxvPXQ+cj8wOnItdD4+PjAsdD4+Pj0wO2Zvcih2YXIgcz1pKG8pOysrbjxvOylzW25dPWVbbit0XTtyZXR1cm4gc31mdW5jdGlvbiB0bihlLHQpe3ZhciByO3JldHVybiB1aShlLChmdW5jdGlvbihlLGksbil7cmV0dXJuIShyPXQoZSxpLG4pKX0pKSwhIXJ9ZnVuY3Rpb24gcm4oZSx0LHIpe3ZhciBpPTAsbj1udWxsPT1lP2k6ZS5sZW5ndGg7aWYoIm51bWJlciI9PXR5cGVvZiB0JiZ0PT10JiZuPD0yMTQ3NDgzNjQ3KXtmb3IoO2k8bjspe3ZhciBvPWkrbj4+PjEscz1lW29dO251bGwhPT1zJiYhbGEocykmJihyP3M8PXQ6czx0KT9pPW8rMTpuPW99cmV0dXJuIG59cmV0dXJuIG5uKGUsdCxuYyxyKX1mdW5jdGlvbiBubihlLHQscixpKXt2YXIgbz0wLHM9bnVsbD09ZT8wOmUubGVuZ3RoO2lmKDA9PT1zKXJldHVybiAwO2Zvcih2YXIgYT0odD1yKHQpKSE9dCxjPW51bGw9PT10LGw9bGEodCksdT10PT09bjtvPHM7KXt2YXIgaD11cigobytzKS8yKSxmPXIoZVtoXSksXz1mIT09bixkPW51bGw9PT1mLHA9Zj09Zix2PWxhKGYpO2lmKGEpdmFyIGc9aXx8cDtlbHNlIGc9dT9wJiYoaXx8Xyk6Yz9wJiZfJiYoaXx8IWQpOmw/cCYmXyYmIWQmJihpfHwhdik6IWQmJiF2JiYoaT9mPD10OmY8dCk7Zz9vPWgrMTpzPWh9cmV0dXJuIGdyKHMsNDI5NDk2NzI5NCl9ZnVuY3Rpb24gb24oZSx0KXtmb3IodmFyIHI9LTEsaT1lLmxlbmd0aCxuPTAsbz1bXTsrK3I8aTspe3ZhciBzPWVbcl0sYT10P3Qocyk6cztpZighcnx8IVVzKGEsYykpe3ZhciBjPWE7b1tuKytdPTA9PT1zPzA6c319cmV0dXJuIG99ZnVuY3Rpb24gc24oZSl7cmV0dXJuIm51bWJlciI9PXR5cGVvZiBlP2U6bGEoZSk/ZjorZX1mdW5jdGlvbiBhbihlKXtpZigic3RyaW5nIj09dHlwZW9mIGUpcmV0dXJuIGU7aWYoS3MoZSkpcmV0dXJuIEV0KGUsYW4pKyIiO2lmKGxhKGUpKXJldHVybiBIcj9Ici5jYWxsKGUpOiIiO3ZhciB0PWUrIiI7cmV0dXJuIjAiPT10JiYxL2U9PS0xLzA/Ii0wIjp0fWZ1bmN0aW9uIGNuKGUsdCxyKXt2YXIgaT0tMSxuPXd0LG89ZS5sZW5ndGgscz0hMCxhPVtdLGM9YTtpZihyKXM9ITEsbj1MdDtlbHNlIGlmKG8+PTIwMCl7dmFyIGw9dD9udWxsOkduKGUpO2lmKGwpcmV0dXJuIHJyKGwpO3M9ITEsbj1LdCxjPW5ldyBWcn1lbHNlIGM9dD9bXTphO2U6Zm9yKDsrK2k8bzspe3ZhciB1PWVbaV0saD10P3QodSk6dTtpZih1PXJ8fDAhPT11P3U6MCxzJiZoPT1oKXtmb3IodmFyIGY9Yy5sZW5ndGg7Zi0tOylpZihjW2ZdPT09aCljb250aW51ZSBlO3QmJmMucHVzaChoKSxhLnB1c2godSl9ZWxzZSBuKGMsaCxyKXx8KGMhPT1hJiZjLnB1c2goaCksYS5wdXNoKHUpKX1yZXR1cm4gYX1mdW5jdGlvbiBsbihlLHQpe3JldHVybiBudWxsPT0oZT14byhlLHQ9Z24odCxlKSkpfHxkZWxldGUgZVtqbyhKbyh0KSldfWZ1bmN0aW9uIHVuKGUsdCxyLGkpe3JldHVybiBaaShlLHQscihTaShlLHQpKSxpKX1mdW5jdGlvbiBobihlLHQscixpKXtmb3IodmFyIG49ZS5sZW5ndGgsbz1pP246LTE7KGk/by0tOisrbzxuKSYmdChlW29dLG8sZSk7KTtyZXR1cm4gcj9lbihlLGk/MDpvLGk/bysxOm4pOmVuKGUsaT9vKzE6MCxpP246byl9ZnVuY3Rpb24gZm4oZSx0KXt2YXIgcj1lO3JldHVybiByIGluc3RhbmNlb2YgcXImJihyPXIudmFsdWUoKSksQXQodCwoZnVuY3Rpb24oZSx0KXtyZXR1cm4gdC5mdW5jLmFwcGx5KHQudGhpc0FyZyx4dChbZV0sdC5hcmdzKSl9KSxyKX1mdW5jdGlvbiBfbihlLHQscil7dmFyIG49ZS5sZW5ndGg7aWYobjwyKXJldHVybiBuP2NuKGVbMF0pOltdO2Zvcih2YXIgbz0tMSxzPWkobik7KytvPG47KWZvcih2YXIgYT1lW29dLGM9LTE7KytjPG47KWMhPW8mJihzW29dPWxpKHNbb118fGEsZVtjXSx0LHIpKTtyZXR1cm4gY24ocGkocywxKSx0LHIpfWZ1bmN0aW9uIGRuKGUsdCxyKXtmb3IodmFyIGk9LTEsbz1lLmxlbmd0aCxzPXQubGVuZ3RoLGE9e307KytpPG87KXt2YXIgYz1pPHM/dFtpXTpuO3IoYSxlW2ldLGMpfXJldHVybiBhfWZ1bmN0aW9uIHBuKGUpe3JldHVybiBZcyhlKT9lOltdfWZ1bmN0aW9uIHZuKGUpe3JldHVybiJmdW5jdGlvbiI9PXR5cGVvZiBlP2U6bmN9ZnVuY3Rpb24gZ24oZSx0KXtyZXR1cm4gS3MoZSk/ZTptbyhlLHQpP1tlXTpIbyhtYShlKSl9dmFyIHluPUdpO2Z1bmN0aW9uIG1uKGUsdCxyKXt2YXIgaT1lLmxlbmd0aDtyZXR1cm4gcj1yPT09bj9pOnIsIXQmJnI+PWk/ZTplbihlLHQscil9dmFyIGJuPXV0fHxmdW5jdGlvbihlKXtyZXR1cm4gb3QuY2xlYXJUaW1lb3V0KGUpfTtmdW5jdGlvbiBTbihlLHQpe2lmKHQpcmV0dXJuIGUuc2xpY2UoKTt2YXIgcj1lLmxlbmd0aCxpPU5lP05lKHIpOm5ldyBlLmNvbnN0cnVjdG9yKHIpO3JldHVybiBlLmNvcHkoaSksaX1mdW5jdGlvbiBDbihlKXt2YXIgdD1uZXcgZS5jb25zdHJ1Y3RvcihlLmJ5dGVMZW5ndGgpO3JldHVybiBuZXcgcWUodCkuc2V0KG5ldyBxZShlKSksdH1mdW5jdGlvbiB3bihlLHQpe3ZhciByPXQ/Q24oZS5idWZmZXIpOmUuYnVmZmVyO3JldHVybiBuZXcgZS5jb25zdHJ1Y3RvcihyLGUuYnl0ZU9mZnNldCxlLmxlbmd0aCl9ZnVuY3Rpb24gTG4oZSx0KXtpZihlIT09dCl7dmFyIHI9ZSE9PW4saT1udWxsPT09ZSxvPWU9PWUscz1sYShlKSxhPXQhPT1uLGM9bnVsbD09PXQsbD10PT10LHU9bGEodCk7aWYoIWMmJiF1JiYhcyYmZT50fHxzJiZhJiZsJiYhYyYmIXV8fGkmJmEmJmx8fCFyJiZsfHwhbylyZXR1cm4gMTtpZighaSYmIXMmJiF1JiZlPHR8fHUmJnImJm8mJiFpJiYhc3x8YyYmciYmb3x8IWEmJm98fCFsKXJldHVybi0xfXJldHVybiAwfWZ1bmN0aW9uIEVuKGUsdCxyLG4pe2Zvcih2YXIgbz0tMSxzPWUubGVuZ3RoLGE9ci5sZW5ndGgsYz0tMSxsPXQubGVuZ3RoLHU9dnIocy1hLDApLGg9aShsK3UpLGY9IW47KytjPGw7KWhbY109dFtjXTtmb3IoOysrbzxhOykoZnx8bzxzKSYmKGhbcltvXV09ZVtvXSk7Zm9yKDt1LS07KWhbYysrXT1lW28rK107cmV0dXJuIGh9ZnVuY3Rpb24geG4oZSx0LHIsbil7Zm9yKHZhciBvPS0xLHM9ZS5sZW5ndGgsYT0tMSxjPXIubGVuZ3RoLGw9LTEsdT10Lmxlbmd0aCxoPXZyKHMtYywwKSxmPWkoaCt1KSxfPSFuOysrbzxoOylmW29dPWVbb107Zm9yKHZhciBkPW87KytsPHU7KWZbZCtsXT10W2xdO2Zvcig7KythPGM7KShffHxvPHMpJiYoZltkK3JbYV1dPWVbbysrXSk7cmV0dXJuIGZ9ZnVuY3Rpb24gQW4oZSx0KXt2YXIgcj0tMSxuPWUubGVuZ3RoO2Zvcih0fHwodD1pKG4pKTsrK3I8bjspdFtyXT1lW3JdO3JldHVybiB0fWZ1bmN0aW9uIGtuKGUsdCxyLGkpe3ZhciBvPSFyO3J8fChyPXt9KTtmb3IodmFyIHM9LTEsYT10Lmxlbmd0aDsrK3M8YTspe3ZhciBjPXRbc10sbD1pP2kocltjXSxlW2NdLGMscixlKTpuO2w9PT1uJiYobD1lW2NdKSxvP2lpKHIsYyxsKTpRcihyLGMsbCl9cmV0dXJuIHJ9ZnVuY3Rpb24gTW4oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt2YXIgbj1LcyhyKT95dDp0aSxvPXQ/dCgpOnt9O3JldHVybiBuKHIsZSxzbyhpLDIpLG8pfX1mdW5jdGlvbiBSbihlKXtyZXR1cm4gR2koKGZ1bmN0aW9uKHQscil7dmFyIGk9LTEsbz1yLmxlbmd0aCxzPW8+MT9yW28tMV06bixhPW8+Mj9yWzJdOm47Zm9yKHM9ZS5sZW5ndGg+MyYmImZ1bmN0aW9uIj09dHlwZW9mIHM/KG8tLSxzKTpuLGEmJnlvKHJbMF0sclsxXSxhKSYmKHM9bzwzP246cyxvPTEpLHQ9TGUodCk7KytpPG87KXt2YXIgYz1yW2ldO2MmJmUodCxjLGkscyl9cmV0dXJuIHR9KSl9ZnVuY3Rpb24gVG4oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXtpZihudWxsPT1yKXJldHVybiByO2lmKCFHcyhyKSlyZXR1cm4gZShyLGkpO2Zvcih2YXIgbj1yLmxlbmd0aCxvPXQ/bjotMSxzPUxlKHIpOyh0P28tLTorK288bikmJiExIT09aShzW29dLG8scyk7KTtyZXR1cm4gcn19ZnVuY3Rpb24gT24oZSl7cmV0dXJuIGZ1bmN0aW9uKHQscixpKXtmb3IodmFyIG49LTEsbz1MZSh0KSxzPWkodCksYT1zLmxlbmd0aDthLS07KXt2YXIgYz1zW2U/YTorK25dO2lmKCExPT09cihvW2NdLGMsbykpYnJlYWt9cmV0dXJuIHR9fWZ1bmN0aW9uIEJuKGUpe3JldHVybiBmdW5jdGlvbih0KXt2YXIgcj0kdCh0PW1hKHQpKT9vcih0KTpuLGk9cj9yWzBdOnQuY2hhckF0KDApLG89cj9tbihyLDEpLmpvaW4oIiIpOnQuc2xpY2UoMSk7cmV0dXJuIGlbZV0oKStvfX1mdW5jdGlvbiBEbihlKXtyZXR1cm4gZnVuY3Rpb24odCl7cmV0dXJuIEF0KCRhKHphKHQpLnJlcGxhY2UoemUsIiIpKSxlLCIiKX19ZnVuY3Rpb24gUG4oZSl7cmV0dXJuIGZ1bmN0aW9uKCl7dmFyIHQ9YXJndW1lbnRzO3N3aXRjaCh0Lmxlbmd0aCl7Y2FzZSAwOnJldHVybiBuZXcgZTtjYXNlIDE6cmV0dXJuIG5ldyBlKHRbMF0pO2Nhc2UgMjpyZXR1cm4gbmV3IGUodFswXSx0WzFdKTtjYXNlIDM6cmV0dXJuIG5ldyBlKHRbMF0sdFsxXSx0WzJdKTtjYXNlIDQ6cmV0dXJuIG5ldyBlKHRbMF0sdFsxXSx0WzJdLHRbM10pO2Nhc2UgNTpyZXR1cm4gbmV3IGUodFswXSx0WzFdLHRbMl0sdFszXSx0WzRdKTtjYXNlIDY6cmV0dXJuIG5ldyBlKHRbMF0sdFsxXSx0WzJdLHRbM10sdFs0XSx0WzVdKTtjYXNlIDc6cmV0dXJuIG5ldyBlKHRbMF0sdFsxXSx0WzJdLHRbM10sdFs0XSx0WzVdLHRbNl0pfXZhciByPUZyKGUucHJvdG90eXBlKSxpPWUuYXBwbHkocix0KTtyZXR1cm4gdGEoaSk/aTpyfX1mdW5jdGlvbiBJbihlKXtyZXR1cm4gZnVuY3Rpb24odCxyLGkpe3ZhciBvPUxlKHQpO2lmKCFHcyh0KSl7dmFyIHM9c28ociwzKTt0PU9hKHQpLHI9ZnVuY3Rpb24oZSl7cmV0dXJuIHMob1tlXSxlLG8pfX12YXIgYT1lKHQscixpKTtyZXR1cm4gYT4tMT9vW3M/dFthXTphXTpufX1mdW5jdGlvbiBIbihlKXtyZXR1cm4gZW8oKGZ1bmN0aW9uKHQpe3ZhciByPXQubGVuZ3RoLGk9cixzPVVyLnByb3RvdHlwZS50aHJ1O2ZvcihlJiZ0LnJldmVyc2UoKTtpLS07KXt2YXIgYT10W2ldO2lmKCJmdW5jdGlvbiIhPXR5cGVvZiBhKXRocm93IG5ldyBBZShvKTtpZihzJiYhYyYmIndyYXBwZXIiPT1ubyhhKSl2YXIgYz1uZXcgVXIoW10sITApfWZvcihpPWM/aTpyOysraTxyOyl7dmFyIGw9bm8oYT10W2ldKSx1PSJ3cmFwcGVyIj09bD9pbyhhKTpuO2M9dSYmYm8odVswXSkmJjQyND09dVsxXSYmIXVbNF0ubGVuZ3RoJiYxPT11WzldP2Nbbm8odVswXSldLmFwcGx5KGMsdVszXSk6MT09YS5sZW5ndGgmJmJvKGEpP2NbbF0oKTpjLnRocnUoYSl9cmV0dXJuIGZ1bmN0aW9uKCl7dmFyIGU9YXJndW1lbnRzLGk9ZVswXTtpZihjJiYxPT1lLmxlbmd0aCYmS3MoaSkpcmV0dXJuIGMucGxhbnQoaSkudmFsdWUoKTtmb3IodmFyIG49MCxvPXI/dFtuXS5hcHBseSh0aGlzLGUpOmk7KytuPHI7KW89dFtuXS5jYWxsKHRoaXMsbyk7cmV0dXJuIG99fSkpfWZ1bmN0aW9uIGpuKGUsdCxyLG8scyxhLGMsdSxoLGYpe3ZhciBfPXQmbCxkPTEmdCxwPTImdCx2PTI0JnQsZz01MTImdCx5PXA/bjpQbihlKTtyZXR1cm4gZnVuY3Rpb24gbigpe2Zvcih2YXIgbD1hcmd1bWVudHMubGVuZ3RoLG09aShsKSxiPWw7Yi0tOyltW2JdPWFyZ3VtZW50c1tiXTtpZih2KXZhciBTPW9vKG4pLEM9WXQobSxTKTtpZihvJiYobT1FbihtLG8scyx2KSksYSYmKG09eG4obSxhLGMsdikpLGwtPUMsdiYmbDxmKXt2YXIgdz10cihtLFMpO3JldHVybiBLbihlLHQsam4sbi5wbGFjZWhvbGRlcixyLG0sdyx1LGgsZi1sKX12YXIgTD1kP3I6dGhpcyxFPXA/TFtlXTplO3JldHVybiBsPW0ubGVuZ3RoLHU/bT1BbyhtLHUpOmcmJmw+MSYmbS5yZXZlcnNlKCksXyYmaDxsJiYobS5sZW5ndGg9aCksdGhpcyYmdGhpcyE9PW90JiZ0aGlzIGluc3RhbmNlb2YgbiYmKEU9eXx8UG4oRSkpLEUuYXBwbHkoTCxtKX19ZnVuY3Rpb24gRm4oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXtyZXR1cm4gZnVuY3Rpb24oZSx0LHIsaSl7cmV0dXJuIHlpKGUsKGZ1bmN0aW9uKGUsbixvKXt0KGkscihlKSxuLG8pfSkpLGl9KHIsZSx0KGkpLHt9KX19ZnVuY3Rpb24gV24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt2YXIgbztpZihyPT09biYmaT09PW4pcmV0dXJuIHQ7aWYociE9PW4mJihvPXIpLGkhPT1uKXtpZihvPT09bilyZXR1cm4gaTsic3RyaW5nIj09dHlwZW9mIHJ8fCJzdHJpbmciPT10eXBlb2YgaT8ocj1hbihyKSxpPWFuKGkpKToocj1zbihyKSxpPXNuKGkpKSxvPWUocixpKX1yZXR1cm4gb319ZnVuY3Rpb24gVW4oZSl7cmV0dXJuIGVvKChmdW5jdGlvbih0KXtyZXR1cm4gdD1FdCh0LE50KHNvKCkpKSxHaSgoZnVuY3Rpb24ocil7dmFyIGk9dGhpcztyZXR1cm4gZSh0LChmdW5jdGlvbihlKXtyZXR1cm4gZ3QoZSxpLHIpfSkpfSkpfSkpfWZ1bmN0aW9uIHFuKGUsdCl7dmFyIHI9KHQ9dD09PW4/IiAiOmFuKHQpKS5sZW5ndGg7aWYocjwyKXJldHVybiByP1ZpKHQsZSk6dDt2YXIgaT1WaSh0LGxyKGUvbnIodCkpKTtyZXR1cm4gJHQodCk/bW4ob3IoaSksMCxlKS5qb2luKCIiKTppLnNsaWNlKDAsZSl9ZnVuY3Rpb24gTm4oZSl7cmV0dXJuIGZ1bmN0aW9uKHQscixvKXtyZXR1cm4gbyYmIm51bWJlciIhPXR5cGVvZiBvJiZ5byh0LHIsbykmJihyPW89biksdD1kYSh0KSxyPT09bj8ocj10LHQ9MCk6cj1kYShyKSxmdW5jdGlvbihlLHQscixuKXtmb3IodmFyIG89LTEscz12cihscigodC1lKS8ocnx8MSkpLDApLGE9aShzKTtzLS07KWFbbj9zOisrb109ZSxlKz1yO3JldHVybiBhfSh0LHIsbz1vPT09bj90PHI/MTotMTpkYShvKSxlKX19ZnVuY3Rpb24gem4oZSl7cmV0dXJuIGZ1bmN0aW9uKHQscil7cmV0dXJuInN0cmluZyI9PXR5cGVvZiB0JiYic3RyaW5nIj09dHlwZW9mIHJ8fCh0PWdhKHQpLHI9Z2EocikpLGUodCxyKX19ZnVuY3Rpb24gS24oZSx0LHIsaSxvLHMsYSxsLHUsaCl7dmFyIGY9OCZ0O3R8PWY/Yzo2NCw0Jih0Jj1+KGY/NjQ6YykpfHwodCY9LTQpO3ZhciBfPVtlLHQsbyxmP3M6bixmP2E6bixmP246cyxmP246YSxsLHUsaF0sZD1yLmFwcGx5KG4sXyk7cmV0dXJuIGJvKGUpJiZNbyhkLF8pLGQucGxhY2Vob2xkZXI9aSxPbyhkLGUsdCl9ZnVuY3Rpb24gVm4oZSl7dmFyIHQ9d2VbZV07cmV0dXJuIGZ1bmN0aW9uKGUscil7aWYoZT1nYShlKSwocj1udWxsPT1yPzA6Z3IocGEociksMjkyKSkmJl9yKGUpKXt2YXIgaT0obWEoZSkrImUiKS5zcGxpdCgiZSIpO3JldHVybisoKGk9KG1hKHQoaVswXSsiZSIrKCtpWzFdK3IpKSkrImUiKS5zcGxpdCgiZSIpKVswXSsiZSIrKCtpWzFdLXIpKX1yZXR1cm4gdChlKX19dmFyIEduPUVyJiYxL3JyKG5ldyBFcihbLC0wXSkpWzFdPT11P2Z1bmN0aW9uKGUpe3JldHVybiBuZXcgRXIoZSl9OmxjO2Z1bmN0aW9uIFluKGUpe3JldHVybiBmdW5jdGlvbih0KXt2YXIgcj1mbyh0KTtyZXR1cm4gcj09Qz9RdCh0KTpyPT1BP2lyKHQpOmZ1bmN0aW9uKGUsdCl7cmV0dXJuIEV0KHQsKGZ1bmN0aW9uKHQpe3JldHVyblt0LGVbdF1dfSkpfSh0LGUodCkpfX1mdW5jdGlvbiBYbihlLHQscixzLHUsaCxmLF8pe3ZhciBkPTImdDtpZighZCYmImZ1bmN0aW9uIiE9dHlwZW9mIGUpdGhyb3cgbmV3IEFlKG8pO3ZhciBwPXM/cy5sZW5ndGg6MDtpZihwfHwodCY9LTk3LHM9dT1uKSxmPWY9PT1uP2Y6dnIocGEoZiksMCksXz1fPT09bj9fOnBhKF8pLHAtPXU/dS5sZW5ndGg6MCw2NCZ0KXt2YXIgdj1zLGc9dTtzPXU9bn12YXIgeT1kP246aW8oZSksbT1bZSx0LHIscyx1LHYsZyxoLGYsX107aWYoeSYmZnVuY3Rpb24oZSx0KXt2YXIgcj1lWzFdLGk9dFsxXSxuPXJ8aSxvPW48MTMxLHM9aT09bCYmOD09cnx8aT09bCYmMjU2PT1yJiZlWzddLmxlbmd0aDw9dFs4XXx8Mzg0PT1pJiZ0WzddLmxlbmd0aDw9dFs4XSYmOD09cjtpZighbyYmIXMpcmV0dXJuIGU7MSZpJiYoZVsyXT10WzJdLG58PTEmcj8wOjQpO3ZhciBjPXRbM107aWYoYyl7dmFyIHU9ZVszXTtlWzNdPXU/RW4odSxjLHRbNF0pOmMsZVs0XT11P3RyKGVbM10sYSk6dFs0XX0oYz10WzVdKSYmKHU9ZVs1XSxlWzVdPXU/eG4odSxjLHRbNl0pOmMsZVs2XT11P3RyKGVbNV0sYSk6dFs2XSksKGM9dFs3XSkmJihlWzddPWMpLGkmbCYmKGVbOF09bnVsbD09ZVs4XT90WzhdOmdyKGVbOF0sdFs4XSkpLG51bGw9PWVbOV0mJihlWzldPXRbOV0pLGVbMF09dFswXSxlWzFdPW59KG0seSksZT1tWzBdLHQ9bVsxXSxyPW1bMl0scz1tWzNdLHU9bVs0XSwhKF89bVs5XT1tWzldPT09bj9kPzA6ZS5sZW5ndGg6dnIobVs5XS1wLDApKSYmMjQmdCYmKHQmPS0yNSksdCYmMSE9dCliPTg9PXR8fDE2PT10P2Z1bmN0aW9uKGUsdCxyKXt2YXIgbz1QbihlKTtyZXR1cm4gZnVuY3Rpb24gcygpe2Zvcih2YXIgYT1hcmd1bWVudHMubGVuZ3RoLGM9aShhKSxsPWEsdT1vbyhzKTtsLS07KWNbbF09YXJndW1lbnRzW2xdO3ZhciBoPWE8MyYmY1swXSE9PXUmJmNbYS0xXSE9PXU/W106dHIoYyx1KTtyZXR1cm4oYS09aC5sZW5ndGgpPHI/S24oZSx0LGpuLHMucGxhY2Vob2xkZXIsbixjLGgsbixuLHItYSk6Z3QodGhpcyYmdGhpcyE9PW90JiZ0aGlzIGluc3RhbmNlb2Ygcz9vOmUsdGhpcyxjKX19KGUsdCxfKTp0IT1jJiYzMyE9dHx8dS5sZW5ndGg/am4uYXBwbHkobixtKTpmdW5jdGlvbihlLHQscixuKXt2YXIgbz0xJnQscz1QbihlKTtyZXR1cm4gZnVuY3Rpb24gdCgpe2Zvcih2YXIgYT0tMSxjPWFyZ3VtZW50cy5sZW5ndGgsbD0tMSx1PW4ubGVuZ3RoLGg9aSh1K2MpLGY9dGhpcyYmdGhpcyE9PW90JiZ0aGlzIGluc3RhbmNlb2YgdD9zOmU7KytsPHU7KWhbbF09bltsXTtmb3IoO2MtLTspaFtsKytdPWFyZ3VtZW50c1srK2FdO3JldHVybiBndChmLG8/cjp0aGlzLGgpfX0oZSx0LHIscyk7ZWxzZSB2YXIgYj1mdW5jdGlvbihlLHQscil7dmFyIGk9MSZ0LG49UG4oZSk7cmV0dXJuIGZ1bmN0aW9uIHQoKXtyZXR1cm4odGhpcyYmdGhpcyE9PW90JiZ0aGlzIGluc3RhbmNlb2YgdD9uOmUpLmFwcGx5KGk/cjp0aGlzLGFyZ3VtZW50cyl9fShlLHQscik7cmV0dXJuIE9vKCh5P0ppOk1vKShiLG0pLGUsdCl9ZnVuY3Rpb24gWm4oZSx0LHIsaSl7cmV0dXJuIGU9PT1ufHxVcyhlLFJlW3JdKSYmIUJlLmNhbGwoaSxyKT90OmV9ZnVuY3Rpb24gSm4oZSx0LHIsaSxvLHMpe3JldHVybiB0YShlKSYmdGEodCkmJihzLnNldCh0LGUpLEZpKGUsdCxuLEpuLHMpLHMuZGVsZXRlKHQpKSxlfWZ1bmN0aW9uICRuKGUpe3JldHVybiBvYShlKT9uOmV9ZnVuY3Rpb24gUW4oZSx0LHIsaSxvLHMpe3ZhciBhPTEmcixjPWUubGVuZ3RoLGw9dC5sZW5ndGg7aWYoYyE9bCYmIShhJiZsPmMpKXJldHVybiExO3ZhciB1PXMuZ2V0KGUpLGg9cy5nZXQodCk7aWYodSYmaClyZXR1cm4gdT09dCYmaD09ZTt2YXIgZj0tMSxfPSEwLGQ9MiZyP25ldyBWcjpuO2ZvcihzLnNldChlLHQpLHMuc2V0KHQsZSk7KytmPGM7KXt2YXIgcD1lW2ZdLHY9dFtmXTtpZihpKXZhciBnPWE/aSh2LHAsZix0LGUscyk6aShwLHYsZixlLHQscyk7aWYoZyE9PW4pe2lmKGcpY29udGludWU7Xz0hMTticmVha31pZihkKXtpZighTXQodCwoZnVuY3Rpb24oZSx0KXtpZighS3QoZCx0KSYmKHA9PT1lfHxvKHAsZSxyLGkscykpKXJldHVybiBkLnB1c2godCl9KSkpe189ITE7YnJlYWt9fWVsc2UgaWYocCE9PXYmJiFvKHAsdixyLGkscykpe189ITE7YnJlYWt9fXJldHVybiBzLmRlbGV0ZShlKSxzLmRlbGV0ZSh0KSxffWZ1bmN0aW9uIGVvKGUpe3JldHVybiBUbyhFbyhlLG4sVm8pLGUrIiIpfWZ1bmN0aW9uIHRvKGUpe3JldHVybiBDaShlLE9hLHVvKX1mdW5jdGlvbiBybyhlKXtyZXR1cm4gQ2koZSxCYSxobyl9dmFyIGlvPWtyP2Z1bmN0aW9uKGUpe3JldHVybiBrci5nZXQoZSl9OmxjO2Z1bmN0aW9uIG5vKGUpe2Zvcih2YXIgdD1lLm5hbWUrIiIscj1Nclt0XSxpPUJlLmNhbGwoTXIsdCk/ci5sZW5ndGg6MDtpLS07KXt2YXIgbj1yW2ldLG89bi5mdW5jO2lmKG51bGw9PW98fG89PWUpcmV0dXJuIG4ubmFtZX1yZXR1cm4gdH1mdW5jdGlvbiBvbyhlKXtyZXR1cm4oQmUuY2FsbChqciwicGxhY2Vob2xkZXIiKT9qcjplKS5wbGFjZWhvbGRlcn1mdW5jdGlvbiBzbygpe3ZhciBlPWpyLml0ZXJhdGVlfHxvYztyZXR1cm4gZT1lPT09b2M/Qmk6ZSxhcmd1bWVudHMubGVuZ3RoP2UoYXJndW1lbnRzWzBdLGFyZ3VtZW50c1sxXSk6ZX1mdW5jdGlvbiBhbyhlLHQpe3ZhciByLGksbj1lLl9fZGF0YV9fO3JldHVybigic3RyaW5nIj09KGk9dHlwZW9mKHI9dCkpfHwibnVtYmVyIj09aXx8InN5bWJvbCI9PWl8fCJib29sZWFuIj09aT8iX19wcm90b19fIiE9PXI6bnVsbD09PXIpP25bInN0cmluZyI9PXR5cGVvZiB0PyJzdHJpbmciOiJoYXNoIl06bi5tYXB9ZnVuY3Rpb24gY28oZSl7Zm9yKHZhciB0PU9hKGUpLHI9dC5sZW5ndGg7ci0tOyl7dmFyIGk9dFtyXSxuPWVbaV07dFtyXT1baSxuLHdvKG4pXX1yZXR1cm4gdH1mdW5jdGlvbiBsbyhlLHQpe3ZhciByPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIG51bGw9PWU/bjplW3RdfShlLHQpO3JldHVybiBPaShyKT9yOm59dmFyIHVvPWhyP2Z1bmN0aW9uKGUpe3JldHVybiBudWxsPT1lP1tdOihlPUxlKGUpLEN0KGhyKGUpLChmdW5jdGlvbih0KXtyZXR1cm4gZXQuY2FsbChlLHQpfSkpKX06dmMsaG89aHI/ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PVtdO2U7KXh0KHQsdW8oZSkpLGU9VmUoZSk7cmV0dXJuIHR9OnZjLGZvPXdpO2Z1bmN0aW9uIF9vKGUsdCxyKXtmb3IodmFyIGk9LTEsbj0odD1nbih0LGUpKS5sZW5ndGgsbz0hMTsrK2k8bjspe3ZhciBzPWpvKHRbaV0pO2lmKCEobz1udWxsIT1lJiZyKGUscykpKWJyZWFrO2U9ZVtzXX1yZXR1cm4gb3x8KytpIT1uP286ISEobj1udWxsPT1lPzA6ZS5sZW5ndGgpJiZlYShuKSYmZ28ocyxuKSYmKEtzKGUpfHx6cyhlKSl9ZnVuY3Rpb24gcG8oZSl7cmV0dXJuImZ1bmN0aW9uIiE9dHlwZW9mIGUuY29uc3RydWN0b3J8fENvKGUpP3t9OkZyKFZlKGUpKX1mdW5jdGlvbiB2byhlKXtyZXR1cm4gS3MoZSl8fHpzKGUpfHwhIShudCYmZSYmZVtudF0pfWZ1bmN0aW9uIGdvKGUsdCl7dmFyIHI9dHlwZW9mIGU7cmV0dXJuISEodD1udWxsPT10P2g6dCkmJigibnVtYmVyIj09cnx8InN5bWJvbCIhPXImJmdlLnRlc3QoZSkpJiZlPi0xJiZlJTE9PTAmJmU8dH1mdW5jdGlvbiB5byhlLHQscil7aWYoIXRhKHIpKXJldHVybiExO3ZhciBpPXR5cGVvZiB0O3JldHVybiEhKCJudW1iZXIiPT1pP0dzKHIpJiZnbyh0LHIubGVuZ3RoKToic3RyaW5nIj09aSYmdCBpbiByKSYmVXMoclt0XSxlKX1mdW5jdGlvbiBtbyhlLHQpe2lmKEtzKGUpKXJldHVybiExO3ZhciByPXR5cGVvZiBlO3JldHVybiEoIm51bWJlciIhPXImJiJzeW1ib2wiIT1yJiYiYm9vbGVhbiIhPXImJm51bGwhPWUmJiFsYShlKSl8fFEudGVzdChlKXx8ISQudGVzdChlKXx8bnVsbCE9dCYmZSBpbiBMZSh0KX1mdW5jdGlvbiBibyhlKXt2YXIgdD1ubyhlKSxyPWpyW3RdO2lmKCJmdW5jdGlvbiIhPXR5cGVvZiByfHwhKHQgaW4gcXIucHJvdG90eXBlKSlyZXR1cm4hMTtpZihlPT09cilyZXR1cm4hMDt2YXIgaT1pbyhyKTtyZXR1cm4hIWkmJmU9PT1pWzBdfShDciYmZm8obmV3IENyKG5ldyBBcnJheUJ1ZmZlcigxKSkpIT1PfHx3ciYmZm8obmV3IHdyKSE9Q3x8THImJmZvKExyLnJlc29sdmUoKSkhPUV8fEVyJiZmbyhuZXcgRXIpIT1BfHx4ciYmZm8obmV3IHhyKSE9UikmJihmbz1mdW5jdGlvbihlKXt2YXIgdD13aShlKSxyPXQ9PUw/ZS5jb25zdHJ1Y3RvcjpuLGk9cj9GbyhyKToiIjtpZihpKXN3aXRjaChpKXtjYXNlIFJyOnJldHVybiBPO2Nhc2UgVHI6cmV0dXJuIEM7Y2FzZSBPcjpyZXR1cm4gRTtjYXNlIEJyOnJldHVybiBBO2Nhc2UgRHI6cmV0dXJuIFJ9cmV0dXJuIHR9KTt2YXIgU289VGU/JHM6Z2M7ZnVuY3Rpb24gQ28oZSl7dmFyIHQ9ZSYmZS5jb25zdHJ1Y3RvcjtyZXR1cm4gZT09PSgiZnVuY3Rpb24iPT10eXBlb2YgdCYmdC5wcm90b3R5cGV8fFJlKX1mdW5jdGlvbiB3byhlKXtyZXR1cm4gZT09ZSYmIXRhKGUpfWZ1bmN0aW9uIExvKGUsdCl7cmV0dXJuIGZ1bmN0aW9uKHIpe3JldHVybiBudWxsIT1yJiZyW2VdPT09dCYmKHQhPT1ufHxlIGluIExlKHIpKX19ZnVuY3Rpb24gRW8oZSx0LHIpe3JldHVybiB0PXZyKHQ9PT1uP2UubGVuZ3RoLTE6dCwwKSxmdW5jdGlvbigpe2Zvcih2YXIgbj1hcmd1bWVudHMsbz0tMSxzPXZyKG4ubGVuZ3RoLXQsMCksYT1pKHMpOysrbzxzOylhW29dPW5bdCtvXTtvPS0xO2Zvcih2YXIgYz1pKHQrMSk7KytvPHQ7KWNbb109bltvXTtyZXR1cm4gY1t0XT1yKGEpLGd0KGUsdGhpcyxjKX19ZnVuY3Rpb24geG8oZSx0KXtyZXR1cm4gdC5sZW5ndGg8Mj9lOlNpKGUsZW4odCwwLC0xKSl9ZnVuY3Rpb24gQW8oZSx0KXtmb3IodmFyIHI9ZS5sZW5ndGgsaT1ncih0Lmxlbmd0aCxyKSxvPUFuKGUpO2ktLTspe3ZhciBzPXRbaV07ZVtpXT1nbyhzLHIpP29bc106bn1yZXR1cm4gZX1mdW5jdGlvbiBrbyhlLHQpe2lmKCgiY29uc3RydWN0b3IiIT09dHx8ImZ1bmN0aW9uIiE9dHlwZW9mIGVbdF0pJiYiX19wcm90b19fIiE9dClyZXR1cm4gZVt0XX12YXIgTW89Qm8oSmkpLFJvPWp0fHxmdW5jdGlvbihlLHQpe3JldHVybiBvdC5zZXRUaW1lb3V0KGUsdCl9LFRvPUJvKCRpKTtmdW5jdGlvbiBPbyhlLHQscil7dmFyIGk9dCsiIjtyZXR1cm4gVG8oZSxmdW5jdGlvbihlLHQpe3ZhciByPXQubGVuZ3RoO2lmKCFyKXJldHVybiBlO3ZhciBpPXItMTtyZXR1cm4gdFtpXT0ocj4xPyImICI6IiIpK3RbaV0sdD10LmpvaW4ocj4yPyIsICI6IiAiKSxlLnJlcGxhY2Uob2UsIntcbi8qIFt3cmFwcGVkIHdpdGggIit0KyJdICovXG4iKX0oaSxmdW5jdGlvbihlLHQpe3JldHVybiBtdChkLChmdW5jdGlvbihyKXt2YXIgaT0iXy4iK3JbMF07dCZyWzFdJiYhd3QoZSxpKSYmZS5wdXNoKGkpfSkpLGUuc29ydCgpfShmdW5jdGlvbihlKXt2YXIgdD1lLm1hdGNoKHNlKTtyZXR1cm4gdD90WzFdLnNwbGl0KGFlKTpbXX0oaSkscikpKX1mdW5jdGlvbiBCbyhlKXt2YXIgdD0wLHI9MDtyZXR1cm4gZnVuY3Rpb24oKXt2YXIgaT15cigpLG89MTYtKGktcik7aWYocj1pLG8+MCl7aWYoKyt0Pj04MDApcmV0dXJuIGFyZ3VtZW50c1swXX1lbHNlIHQ9MDtyZXR1cm4gZS5hcHBseShuLGFyZ3VtZW50cyl9fWZ1bmN0aW9uIERvKGUsdCl7dmFyIHI9LTEsaT1lLmxlbmd0aCxvPWktMTtmb3IodD10PT09bj9pOnQ7KytyPHQ7KXt2YXIgcz1LaShyLG8pLGE9ZVtzXTtlW3NdPWVbcl0sZVtyXT1hfXJldHVybiBlLmxlbmd0aD10LGV9dmFyIFBvLElvLEhvPShQbz1QcygoZnVuY3Rpb24oZSl7dmFyIHQ9W107cmV0dXJuIDQ2PT09ZS5jaGFyQ29kZUF0KDApJiZ0LnB1c2goIiIpLGUucmVwbGFjZShlZSwoZnVuY3Rpb24oZSxyLGksbil7dC5wdXNoKGk/bi5yZXBsYWNlKHVlLCIkMSIpOnJ8fGUpfSkpLHR9KSwoZnVuY3Rpb24oZSl7cmV0dXJuIDUwMD09PUlvLnNpemUmJklvLmNsZWFyKCksZX0pKSxJbz1Qby5jYWNoZSxQbyk7ZnVuY3Rpb24gam8oZSl7aWYoInN0cmluZyI9PXR5cGVvZiBlfHxsYShlKSlyZXR1cm4gZTt2YXIgdD1lKyIiO3JldHVybiIwIj09dCYmMS9lPT0tMS8wPyItMCI6dH1mdW5jdGlvbiBGbyhlKXtpZihudWxsIT1lKXt0cnl7cmV0dXJuIE9lLmNhbGwoZSl9Y2F0Y2goZSl7fXRyeXtyZXR1cm4gZSsiIn1jYXRjaChlKXt9fXJldHVybiIifWZ1bmN0aW9uIFdvKGUpe2lmKGUgaW5zdGFuY2VvZiBxcilyZXR1cm4gZS5jbG9uZSgpO3ZhciB0PW5ldyBVcihlLl9fd3JhcHBlZF9fLGUuX19jaGFpbl9fKTtyZXR1cm4gdC5fX2FjdGlvbnNfXz1BbihlLl9fYWN0aW9uc19fKSx0Ll9faW5kZXhfXz1lLl9faW5kZXhfXyx0Ll9fdmFsdWVzX189ZS5fX3ZhbHVlc19fLHR9dmFyIFVvPUdpKChmdW5jdGlvbihlLHQpe3JldHVybiBZcyhlKT9saShlLHBpKHQsMSxZcywhMCkpOltdfSkpLHFvPUdpKChmdW5jdGlvbihlLHQpe3ZhciByPUpvKHQpO3JldHVybiBZcyhyKSYmKHI9biksWXMoZSk/bGkoZSxwaSh0LDEsWXMsITApLHNvKHIsMikpOltdfSkpLE5vPUdpKChmdW5jdGlvbihlLHQpe3ZhciByPUpvKHQpO3JldHVybiBZcyhyKSYmKHI9biksWXMoZSk/bGkoZSxwaSh0LDEsWXMsITApLG4scik6W119KSk7ZnVuY3Rpb24gem8oZSx0LHIpe3ZhciBpPW51bGw9PWU/MDplLmxlbmd0aDtpZighaSlyZXR1cm4tMTt2YXIgbj1udWxsPT1yPzA6cGEocik7cmV0dXJuIG48MCYmKG49dnIoaStuLDApKSxPdChlLHNvKHQsMyksbil9ZnVuY3Rpb24gS28oZSx0LHIpe3ZhciBpPW51bGw9PWU/MDplLmxlbmd0aDtpZighaSlyZXR1cm4tMTt2YXIgbz1pLTE7cmV0dXJuIHIhPT1uJiYobz1wYShyKSxvPXI8MD92cihpK28sMCk6Z3IobyxpLTEpKSxPdChlLHNvKHQsMyksbywhMCl9ZnVuY3Rpb24gVm8oZSl7cmV0dXJuIG51bGwhPWUmJmUubGVuZ3RoP3BpKGUsMSk6W119ZnVuY3Rpb24gR28oZSl7cmV0dXJuIGUmJmUubGVuZ3RoP2VbMF06bn12YXIgWW89R2koKGZ1bmN0aW9uKGUpe3ZhciB0PUV0KGUscG4pO3JldHVybiB0Lmxlbmd0aCYmdFswXT09PWVbMF0/QWkodCk6W119KSksWG89R2koKGZ1bmN0aW9uKGUpe3ZhciB0PUpvKGUpLHI9RXQoZSxwbik7cmV0dXJuIHQ9PT1KbyhyKT90PW46ci5wb3AoKSxyLmxlbmd0aCYmclswXT09PWVbMF0/QWkocixzbyh0LDIpKTpbXX0pKSxabz1HaSgoZnVuY3Rpb24oZSl7dmFyIHQ9Sm8oZSkscj1FdChlLHBuKTtyZXR1cm4odD0iZnVuY3Rpb24iPT10eXBlb2YgdD90Om4pJiZyLnBvcCgpLHIubGVuZ3RoJiZyWzBdPT09ZVswXT9BaShyLG4sdCk6W119KSk7ZnVuY3Rpb24gSm8oZSl7dmFyIHQ9bnVsbD09ZT8wOmUubGVuZ3RoO3JldHVybiB0P2VbdC0xXTpufXZhciAkbz1HaShRbyk7ZnVuY3Rpb24gUW8oZSx0KXtyZXR1cm4gZSYmZS5sZW5ndGgmJnQmJnQubGVuZ3RoP05pKGUsdCk6ZX12YXIgZXM9ZW8oKGZ1bmN0aW9uKGUsdCl7dmFyIHI9bnVsbD09ZT8wOmUubGVuZ3RoLGk9bmkoZSx0KTtyZXR1cm4gemkoZSxFdCh0LChmdW5jdGlvbihlKXtyZXR1cm4gZ28oZSxyKT8rZTplfSkpLnNvcnQoTG4pKSxpfSkpO2Z1bmN0aW9uIHRzKGUpe3JldHVybiBudWxsPT1lP2U6U3IuY2FsbChlKX12YXIgcnM9R2koKGZ1bmN0aW9uKGUpe3JldHVybiBjbihwaShlLDEsWXMsITApKX0pKSxpcz1HaSgoZnVuY3Rpb24oZSl7dmFyIHQ9Sm8oZSk7cmV0dXJuIFlzKHQpJiYodD1uKSxjbihwaShlLDEsWXMsITApLHNvKHQsMikpfSkpLG5zPUdpKChmdW5jdGlvbihlKXt2YXIgdD1KbyhlKTtyZXR1cm4gdD0iZnVuY3Rpb24iPT10eXBlb2YgdD90Om4sY24ocGkoZSwxLFlzLCEwKSxuLHQpfSkpO2Z1bmN0aW9uIG9zKGUpe2lmKCFlfHwhZS5sZW5ndGgpcmV0dXJuW107dmFyIHQ9MDtyZXR1cm4gZT1DdChlLChmdW5jdGlvbihlKXtpZihZcyhlKSlyZXR1cm4gdD12cihlLmxlbmd0aCx0KSwhMH0pKSxVdCh0LChmdW5jdGlvbih0KXtyZXR1cm4gRXQoZSxIdCh0KSl9KSl9ZnVuY3Rpb24gc3MoZSx0KXtpZighZXx8IWUubGVuZ3RoKXJldHVybltdO3ZhciByPW9zKGUpO3JldHVybiBudWxsPT10P3I6RXQociwoZnVuY3Rpb24oZSl7cmV0dXJuIGd0KHQsbixlKX0pKX12YXIgYXM9R2koKGZ1bmN0aW9uKGUsdCl7cmV0dXJuIFlzKGUpP2xpKGUsdCk6W119KSksY3M9R2koKGZ1bmN0aW9uKGUpe3JldHVybiBfbihDdChlLFlzKSl9KSksbHM9R2koKGZ1bmN0aW9uKGUpe3ZhciB0PUpvKGUpO3JldHVybiBZcyh0KSYmKHQ9biksX24oQ3QoZSxZcyksc28odCwyKSl9KSksdXM9R2koKGZ1bmN0aW9uKGUpe3ZhciB0PUpvKGUpO3JldHVybiB0PSJmdW5jdGlvbiI9PXR5cGVvZiB0P3Q6bixfbihDdChlLFlzKSxuLHQpfSkpLGhzPUdpKG9zKSxmcz1HaSgoZnVuY3Rpb24oZSl7dmFyIHQ9ZS5sZW5ndGgscj10PjE/ZVt0LTFdOm47cmV0dXJuIHI9ImZ1bmN0aW9uIj09dHlwZW9mIHI/KGUucG9wKCkscik6bixzcyhlLHIpfSkpO2Z1bmN0aW9uIF9zKGUpe3ZhciB0PWpyKGUpO3JldHVybiB0Ll9fY2hhaW5fXz0hMCx0fWZ1bmN0aW9uIGRzKGUsdCl7cmV0dXJuIHQoZSl9dmFyIHBzPWVvKChmdW5jdGlvbihlKXt2YXIgdD1lLmxlbmd0aCxyPXQ/ZVswXTowLGk9dGhpcy5fX3dyYXBwZWRfXyxvPWZ1bmN0aW9uKHQpe3JldHVybiBuaSh0LGUpfTtyZXR1cm4hKHQ+MXx8dGhpcy5fX2FjdGlvbnNfXy5sZW5ndGgpJiZpIGluc3RhbmNlb2YgcXImJmdvKHIpPygoaT1pLnNsaWNlKHIsK3IrKHQ/MTowKSkpLl9fYWN0aW9uc19fLnB1c2goe2Z1bmM6ZHMsYXJnczpbb10sdGhpc0FyZzpufSksbmV3IFVyKGksdGhpcy5fX2NoYWluX18pLnRocnUoKGZ1bmN0aW9uKGUpe3JldHVybiB0JiYhZS5sZW5ndGgmJmUucHVzaChuKSxlfSkpKTp0aGlzLnRocnUobyl9KSksdnM9TW4oKGZ1bmN0aW9uKGUsdCxyKXtCZS5jYWxsKGUscik/KytlW3JdOmlpKGUsciwxKX0pKSxncz1Jbih6bykseXM9SW4oS28pO2Z1bmN0aW9uIG1zKGUsdCl7cmV0dXJuKEtzKGUpP210OnVpKShlLHNvKHQsMykpfWZ1bmN0aW9uIGJzKGUsdCl7cmV0dXJuKEtzKGUpP2J0OmhpKShlLHNvKHQsMykpfXZhciBTcz1NbigoZnVuY3Rpb24oZSx0LHIpe0JlLmNhbGwoZSxyKT9lW3JdLnB1c2godCk6aWkoZSxyLFt0XSl9KSksQ3M9R2koKGZ1bmN0aW9uKGUsdCxyKXt2YXIgbj0tMSxvPSJmdW5jdGlvbiI9PXR5cGVvZiB0LHM9R3MoZSk/aShlLmxlbmd0aCk6W107cmV0dXJuIHVpKGUsKGZ1bmN0aW9uKGUpe3NbKytuXT1vP2d0KHQsZSxyKTpraShlLHQscil9KSksc30pKSx3cz1NbigoZnVuY3Rpb24oZSx0LHIpe2lpKGUscix0KX0pKTtmdW5jdGlvbiBMcyhlLHQpe3JldHVybihLcyhlKT9FdDpJaSkoZSxzbyh0LDMpKX12YXIgRXM9TW4oKGZ1bmN0aW9uKGUsdCxyKXtlW3I/MDoxXS5wdXNoKHQpfSksKGZ1bmN0aW9uKCl7cmV0dXJuW1tdLFtdXX0pKSx4cz1HaSgoZnVuY3Rpb24oZSx0KXtpZihudWxsPT1lKXJldHVybltdO3ZhciByPXQubGVuZ3RoO3JldHVybiByPjEmJnlvKGUsdFswXSx0WzFdKT90PVtdOnI+MiYmeW8odFswXSx0WzFdLHRbMl0pJiYodD1bdFswXV0pLFVpKGUscGkodCwxKSxbXSl9KSksQXM9UnR8fGZ1bmN0aW9uKCl7cmV0dXJuIG90LkRhdGUubm93KCl9O2Z1bmN0aW9uIGtzKGUsdCxyKXtyZXR1cm4gdD1yP246dCx0PWUmJm51bGw9PXQ/ZS5sZW5ndGg6dCxYbihlLGwsbixuLG4sbix0KX1mdW5jdGlvbiBNcyhlLHQpe3ZhciByO2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0KXRocm93IG5ldyBBZShvKTtyZXR1cm4gZT1wYShlKSxmdW5jdGlvbigpe3JldHVybi0tZT4wJiYocj10LmFwcGx5KHRoaXMsYXJndW1lbnRzKSksZTw9MSYmKHQ9bikscn19dmFyIFJzPUdpKChmdW5jdGlvbihlLHQscil7dmFyIGk9MTtpZihyLmxlbmd0aCl7dmFyIG49dHIocixvbyhScykpO2l8PWN9cmV0dXJuIFhuKGUsaSx0LHIsbil9KSksVHM9R2koKGZ1bmN0aW9uKGUsdCxyKXt2YXIgaT0zO2lmKHIubGVuZ3RoKXt2YXIgbj10cihyLG9vKFRzKSk7aXw9Y31yZXR1cm4gWG4odCxpLGUscixuKX0pKTtmdW5jdGlvbiBPcyhlLHQscil7dmFyIGkscyxhLGMsbCx1LGg9MCxmPSExLF89ITEsZD0hMDtpZigiZnVuY3Rpb24iIT10eXBlb2YgZSl0aHJvdyBuZXcgQWUobyk7ZnVuY3Rpb24gcCh0KXt2YXIgcj1pLG89cztyZXR1cm4gaT1zPW4saD10LGM9ZS5hcHBseShvLHIpfWZ1bmN0aW9uIHYoZSl7cmV0dXJuIGg9ZSxsPVJvKHksdCksZj9wKGUpOmN9ZnVuY3Rpb24gZyhlKXt2YXIgcj1lLXU7cmV0dXJuIHU9PT1ufHxyPj10fHxyPDB8fF8mJmUtaD49YX1mdW5jdGlvbiB5KCl7dmFyIGU9QXMoKTtpZihnKGUpKXJldHVybiBtKGUpO2w9Um8oeSxmdW5jdGlvbihlKXt2YXIgcj10LShlLXUpO3JldHVybiBfP2dyKHIsYS0oZS1oKSk6cn0oZSkpfWZ1bmN0aW9uIG0oZSl7cmV0dXJuIGw9bixkJiZpP3AoZSk6KGk9cz1uLGMpfWZ1bmN0aW9uIGIoKXt2YXIgZT1BcygpLHI9ZyhlKTtpZihpPWFyZ3VtZW50cyxzPXRoaXMsdT1lLHIpe2lmKGw9PT1uKXJldHVybiB2KHUpO2lmKF8pcmV0dXJuIGJuKGwpLGw9Um8oeSx0KSxwKHUpfXJldHVybiBsPT09biYmKGw9Um8oeSx0KSksY31yZXR1cm4gdD1nYSh0KXx8MCx0YShyKSYmKGY9ISFyLmxlYWRpbmcsYT0oXz0ibWF4V2FpdCJpbiByKT92cihnYShyLm1heFdhaXQpfHwwLHQpOmEsZD0idHJhaWxpbmciaW4gcj8hIXIudHJhaWxpbmc6ZCksYi5jYW5jZWw9ZnVuY3Rpb24oKXtsIT09biYmYm4obCksaD0wLGk9dT1zPWw9bn0sYi5mbHVzaD1mdW5jdGlvbigpe3JldHVybiBsPT09bj9jOm0oQXMoKSl9LGJ9dmFyIEJzPUdpKChmdW5jdGlvbihlLHQpe3JldHVybiBjaShlLDEsdCl9KSksRHM9R2koKGZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gY2koZSxnYSh0KXx8MCxyKX0pKTtmdW5jdGlvbiBQcyhlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiBlfHxudWxsIT10JiYiZnVuY3Rpb24iIT10eXBlb2YgdCl0aHJvdyBuZXcgQWUobyk7dmFyIHI9ZnVuY3Rpb24oKXt2YXIgaT1hcmd1bWVudHMsbj10P3QuYXBwbHkodGhpcyxpKTppWzBdLG89ci5jYWNoZTtpZihvLmhhcyhuKSlyZXR1cm4gby5nZXQobik7dmFyIHM9ZS5hcHBseSh0aGlzLGkpO3JldHVybiByLmNhY2hlPW8uc2V0KG4scyl8fG8sc307cmV0dXJuIHIuY2FjaGU9bmV3KFBzLkNhY2hlfHxLcikscn1mdW5jdGlvbiBJcyhlKXtpZigiZnVuY3Rpb24iIT10eXBlb2YgZSl0aHJvdyBuZXcgQWUobyk7cmV0dXJuIGZ1bmN0aW9uKCl7dmFyIHQ9YXJndW1lbnRzO3N3aXRjaCh0Lmxlbmd0aCl7Y2FzZSAwOnJldHVybiFlLmNhbGwodGhpcyk7Y2FzZSAxOnJldHVybiFlLmNhbGwodGhpcyx0WzBdKTtjYXNlIDI6cmV0dXJuIWUuY2FsbCh0aGlzLHRbMF0sdFsxXSk7Y2FzZSAzOnJldHVybiFlLmNhbGwodGhpcyx0WzBdLHRbMV0sdFsyXSl9cmV0dXJuIWUuYXBwbHkodGhpcyx0KX19UHMuQ2FjaGU9S3I7dmFyIEhzPXluKChmdW5jdGlvbihlLHQpe3ZhciByPSh0PTE9PXQubGVuZ3RoJiZLcyh0WzBdKT9FdCh0WzBdLE50KHNvKCkpKTpFdChwaSh0LDEpLE50KHNvKCkpKSkubGVuZ3RoO3JldHVybiBHaSgoZnVuY3Rpb24oaSl7Zm9yKHZhciBuPS0xLG89Z3IoaS5sZW5ndGgscik7KytuPG87KWlbbl09dFtuXS5jYWxsKHRoaXMsaVtuXSk7cmV0dXJuIGd0KGUsdGhpcyxpKX0pKX0pKSxqcz1HaSgoZnVuY3Rpb24oZSx0KXt2YXIgcj10cih0LG9vKGpzKSk7cmV0dXJuIFhuKGUsYyxuLHQscil9KSksRnM9R2koKGZ1bmN0aW9uKGUsdCl7dmFyIHI9dHIodCxvbyhGcykpO3JldHVybiBYbihlLDY0LG4sdCxyKX0pKSxXcz1lbygoZnVuY3Rpb24oZSx0KXtyZXR1cm4gWG4oZSwyNTYsbixuLG4sdCl9KSk7ZnVuY3Rpb24gVXMoZSx0KXtyZXR1cm4gZT09PXR8fGUhPWUmJnQhPXR9dmFyIHFzPXpuKExpKSxOcz16bigoZnVuY3Rpb24oZSx0KXtyZXR1cm4gZT49dH0pKSx6cz1NaShmdW5jdGlvbigpe3JldHVybiBhcmd1bWVudHN9KCkpP01pOmZ1bmN0aW9uKGUpe3JldHVybiByYShlKSYmQmUuY2FsbChlLCJjYWxsZWUiKSYmIWV0LmNhbGwoZSwiY2FsbGVlIil9LEtzPWkuaXNBcnJheSxWcz1odD9OdChodCk6ZnVuY3Rpb24oZSl7cmV0dXJuIHJhKGUpJiZ3aShlKT09VH07ZnVuY3Rpb24gR3MoZSl7cmV0dXJuIG51bGwhPWUmJmVhKGUubGVuZ3RoKSYmISRzKGUpfWZ1bmN0aW9uIFlzKGUpe3JldHVybiByYShlKSYmR3MoZSl9dmFyIFhzPWZyfHxnYyxacz1mdD9OdChmdCk6ZnVuY3Rpb24oZSl7cmV0dXJuIHJhKGUpJiZ3aShlKT09eX07ZnVuY3Rpb24gSnMoZSl7aWYoIXJhKGUpKXJldHVybiExO3ZhciB0PXdpKGUpO3JldHVybiB0PT1tfHwiW29iamVjdCBET01FeGNlcHRpb25dIj09dHx8InN0cmluZyI9PXR5cGVvZiBlLm1lc3NhZ2UmJiJzdHJpbmciPT10eXBlb2YgZS5uYW1lJiYhb2EoZSl9ZnVuY3Rpb24gJHMoZSl7aWYoIXRhKGUpKXJldHVybiExO3ZhciB0PXdpKGUpO3JldHVybiB0PT1ifHx0PT1TfHwiW29iamVjdCBBc3luY0Z1bmN0aW9uXSI9PXR8fCJbb2JqZWN0IFByb3h5XSI9PXR9ZnVuY3Rpb24gUXMoZSl7cmV0dXJuIm51bWJlciI9PXR5cGVvZiBlJiZlPT1wYShlKX1mdW5jdGlvbiBlYShlKXtyZXR1cm4ibnVtYmVyIj09dHlwZW9mIGUmJmU+LTEmJmUlMT09MCYmZTw9aH1mdW5jdGlvbiB0YShlKXt2YXIgdD10eXBlb2YgZTtyZXR1cm4gbnVsbCE9ZSYmKCJvYmplY3QiPT10fHwiZnVuY3Rpb24iPT10KX1mdW5jdGlvbiByYShlKXtyZXR1cm4gbnVsbCE9ZSYmIm9iamVjdCI9PXR5cGVvZiBlfXZhciBpYT1fdD9OdChfdCk6ZnVuY3Rpb24oZSl7cmV0dXJuIHJhKGUpJiZmbyhlKT09Q307ZnVuY3Rpb24gbmEoZSl7cmV0dXJuIm51bWJlciI9PXR5cGVvZiBlfHxyYShlKSYmd2koZSk9PXd9ZnVuY3Rpb24gb2EoZSl7aWYoIXJhKGUpfHx3aShlKSE9TClyZXR1cm4hMTt2YXIgdD1WZShlKTtpZihudWxsPT09dClyZXR1cm4hMDt2YXIgcj1CZS5jYWxsKHQsImNvbnN0cnVjdG9yIikmJnQuY29uc3RydWN0b3I7cmV0dXJuImZ1bmN0aW9uIj09dHlwZW9mIHImJnIgaW5zdGFuY2VvZiByJiZPZS5jYWxsKHIpPT1IZX12YXIgc2E9ZHQ/TnQoZHQpOmZ1bmN0aW9uKGUpe3JldHVybiByYShlKSYmd2koZSk9PXh9LGFhPXB0P050KHB0KTpmdW5jdGlvbihlKXtyZXR1cm4gcmEoZSkmJmZvKGUpPT1BfTtmdW5jdGlvbiBjYShlKXtyZXR1cm4ic3RyaW5nIj09dHlwZW9mIGV8fCFLcyhlKSYmcmEoZSkmJndpKGUpPT1rfWZ1bmN0aW9uIGxhKGUpe3JldHVybiJzeW1ib2wiPT10eXBlb2YgZXx8cmEoZSkmJndpKGUpPT1NfXZhciB1YT12dD9OdCh2dCk6ZnVuY3Rpb24oZSl7cmV0dXJuIHJhKGUpJiZlYShlLmxlbmd0aCkmJiEhJGVbd2koZSldfSxoYT16bihQaSksZmE9em4oKGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGU8PXR9KSk7ZnVuY3Rpb24gX2EoZSl7aWYoIWUpcmV0dXJuW107aWYoR3MoZSkpcmV0dXJuIGNhKGUpP29yKGUpOkFuKGUpO2lmKHN0JiZlW3N0XSlyZXR1cm4gZnVuY3Rpb24oZSl7Zm9yKHZhciB0LHI9W107ISh0PWUubmV4dCgpKS5kb25lOylyLnB1c2godC52YWx1ZSk7cmV0dXJuIHJ9KGVbc3RdKCkpO3ZhciB0PWZvKGUpO3JldHVybih0PT1DP1F0OnQ9PUE/cnI6VWEpKGUpfWZ1bmN0aW9uIGRhKGUpe3JldHVybiBlPyhlPWdhKGUpKT09PXV8fGU9PT0tMS8wPzE3OTc2OTMxMzQ4NjIzMTU3ZTI5MiooZTwwPy0xOjEpOmU9PWU/ZTowOjA9PT1lP2U6MH1mdW5jdGlvbiBwYShlKXt2YXIgdD1kYShlKSxyPXQlMTtyZXR1cm4gdD09dD9yP3Qtcjp0OjB9ZnVuY3Rpb24gdmEoZSl7cmV0dXJuIGU/b2kocGEoZSksMCxfKTowfWZ1bmN0aW9uIGdhKGUpe2lmKCJudW1iZXIiPT10eXBlb2YgZSlyZXR1cm4gZTtpZihsYShlKSlyZXR1cm4gZjtpZih0YShlKSl7dmFyIHQ9ImZ1bmN0aW9uIj09dHlwZW9mIGUudmFsdWVPZj9lLnZhbHVlT2YoKTplO2U9dGEodCk/dCsiIjp0fWlmKCJzdHJpbmciIT10eXBlb2YgZSlyZXR1cm4gMD09PWU/ZTorZTtlPXF0KGUpO3ZhciByPWRlLnRlc3QoZSk7cmV0dXJuIHJ8fHZlLnRlc3QoZSk/cnQoZS5zbGljZSgyKSxyPzI6OCk6X2UudGVzdChlKT9mOitlfWZ1bmN0aW9uIHlhKGUpe3JldHVybiBrbihlLEJhKGUpKX1mdW5jdGlvbiBtYShlKXtyZXR1cm4gbnVsbD09ZT8iIjphbihlKX12YXIgYmE9Um4oKGZ1bmN0aW9uKGUsdCl7aWYoQ28odCl8fEdzKHQpKWtuKHQsT2EodCksZSk7ZWxzZSBmb3IodmFyIHIgaW4gdClCZS5jYWxsKHQscikmJlFyKGUscix0W3JdKX0pKSxTYT1SbigoZnVuY3Rpb24oZSx0KXtrbih0LEJhKHQpLGUpfSkpLENhPVJuKChmdW5jdGlvbihlLHQscixpKXtrbih0LEJhKHQpLGUsaSl9KSksd2E9Um4oKGZ1bmN0aW9uKGUsdCxyLGkpe2tuKHQsT2EodCksZSxpKX0pKSxMYT1lbyhuaSksRWE9R2koKGZ1bmN0aW9uKGUsdCl7ZT1MZShlKTt2YXIgcj0tMSxpPXQubGVuZ3RoLG89aT4yP3RbMl06bjtmb3IobyYmeW8odFswXSx0WzFdLG8pJiYoaT0xKTsrK3I8aTspZm9yKHZhciBzPXRbcl0sYT1CYShzKSxjPS0xLGw9YS5sZW5ndGg7KytjPGw7KXt2YXIgdT1hW2NdLGg9ZVt1XTsoaD09PW58fFVzKGgsUmVbdV0pJiYhQmUuY2FsbChlLHUpKSYmKGVbdV09c1t1XSl9cmV0dXJuIGV9KSkseGE9R2koKGZ1bmN0aW9uKGUpe3JldHVybiBlLnB1c2gobixKbiksZ3QoUGEsbixlKX0pKTtmdW5jdGlvbiBBYShlLHQscil7dmFyIGk9bnVsbD09ZT9uOlNpKGUsdCk7cmV0dXJuIGk9PT1uP3I6aX1mdW5jdGlvbiBrYShlLHQpe3JldHVybiBudWxsIT1lJiZfbyhlLHQseGkpfXZhciBNYT1GbigoZnVuY3Rpb24oZSx0LHIpe251bGwhPXQmJiJmdW5jdGlvbiIhPXR5cGVvZiB0LnRvU3RyaW5nJiYodD1JZS5jYWxsKHQpKSxlW3RdPXJ9KSx0YyhuYykpLFJhPUZuKChmdW5jdGlvbihlLHQscil7bnVsbCE9dCYmImZ1bmN0aW9uIiE9dHlwZW9mIHQudG9TdHJpbmcmJih0PUllLmNhbGwodCkpLEJlLmNhbGwoZSx0KT9lW3RdLnB1c2gocik6ZVt0XT1bcl19KSxzbyksVGE9R2koa2kpO2Z1bmN0aW9uIE9hKGUpe3JldHVybiBHcyhlKT9ZcihlKTpEaShlKX1mdW5jdGlvbiBCYShlKXtyZXR1cm4gR3MoZSk/WXIoZSwhMCk6ZnVuY3Rpb24oZSl7aWYoIXRhKGUpKXJldHVybiBmdW5jdGlvbihlKXt2YXIgdD1bXTtpZihudWxsIT1lKWZvcih2YXIgciBpbiBMZShlKSl0LnB1c2gocik7cmV0dXJuIHR9KGUpO3ZhciB0PUNvKGUpLHI9W107Zm9yKHZhciBpIGluIGUpKCJjb25zdHJ1Y3RvciIhPWl8fCF0JiZCZS5jYWxsKGUsaSkpJiZyLnB1c2goaSk7cmV0dXJuIHJ9KGUpfXZhciBEYT1SbigoZnVuY3Rpb24oZSx0LHIpe0ZpKGUsdCxyKX0pKSxQYT1SbigoZnVuY3Rpb24oZSx0LHIsaSl7RmkoZSx0LHIsaSl9KSksSWE9ZW8oKGZ1bmN0aW9uKGUsdCl7dmFyIHI9e307aWYobnVsbD09ZSlyZXR1cm4gcjt2YXIgaT0hMTt0PUV0KHQsKGZ1bmN0aW9uKHQpe3JldHVybiB0PWduKHQsZSksaXx8KGk9dC5sZW5ndGg+MSksdH0pKSxrbihlLHJvKGUpLHIpLGkmJihyPXNpKHIsNywkbikpO2Zvcih2YXIgbj10Lmxlbmd0aDtuLS07KWxuKHIsdFtuXSk7cmV0dXJuIHJ9KSksSGE9ZW8oKGZ1bmN0aW9uKGUsdCl7cmV0dXJuIG51bGw9PWU/e306ZnVuY3Rpb24oZSx0KXtyZXR1cm4gcWkoZSx0LChmdW5jdGlvbih0LHIpe3JldHVybiBrYShlLHIpfSkpfShlLHQpfSkpO2Z1bmN0aW9uIGphKGUsdCl7aWYobnVsbD09ZSlyZXR1cm57fTt2YXIgcj1FdChybyhlKSwoZnVuY3Rpb24oZSl7cmV0dXJuW2VdfSkpO3JldHVybiB0PXNvKHQpLHFpKGUsciwoZnVuY3Rpb24oZSxyKXtyZXR1cm4gdChlLHJbMF0pfSkpfXZhciBGYT1ZbihPYSksV2E9WW4oQmEpO2Z1bmN0aW9uIFVhKGUpe3JldHVybiBudWxsPT1lP1tdOnp0KGUsT2EoZSkpfXZhciBxYT1EbigoZnVuY3Rpb24oZSx0LHIpe3JldHVybiB0PXQudG9Mb3dlckNhc2UoKSxlKyhyP05hKHQpOnQpfSkpO2Z1bmN0aW9uIE5hKGUpe3JldHVybiBKYShtYShlKS50b0xvd2VyQ2FzZSgpKX1mdW5jdGlvbiB6YShlKXtyZXR1cm4oZT1tYShlKSkmJmUucmVwbGFjZSh5ZSxYdCkucmVwbGFjZShLZSwiIil9dmFyIEthPURuKChmdW5jdGlvbihlLHQscil7cmV0dXJuIGUrKHI/Ii0iOiIiKSt0LnRvTG93ZXJDYXNlKCl9KSksVmE9RG4oKGZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gZSsocj8iICI6IiIpK3QudG9Mb3dlckNhc2UoKX0pKSxHYT1CbigidG9Mb3dlckNhc2UiKSxZYT1EbigoZnVuY3Rpb24oZSx0LHIpe3JldHVybiBlKyhyPyJfIjoiIikrdC50b0xvd2VyQ2FzZSgpfSkpLFhhPURuKChmdW5jdGlvbihlLHQscil7cmV0dXJuIGUrKHI/IiAiOiIiKStKYSh0KX0pKSxaYT1EbigoZnVuY3Rpb24oZSx0LHIpe3JldHVybiBlKyhyPyIgIjoiIikrdC50b1VwcGVyQ2FzZSgpfSkpLEphPUJuKCJ0b1VwcGVyQ2FzZSIpO2Z1bmN0aW9uICRhKGUsdCxyKXtyZXR1cm4gZT1tYShlKSwodD1yP246dCk9PT1uP2Z1bmN0aW9uKGUpe3JldHVybiBYZS50ZXN0KGUpfShlKT9mdW5jdGlvbihlKXtyZXR1cm4gZS5tYXRjaChHZSl8fFtdfShlKTpmdW5jdGlvbihlKXtyZXR1cm4gZS5tYXRjaChjZSl8fFtdfShlKTplLm1hdGNoKHQpfHxbXX12YXIgUWE9R2koKGZ1bmN0aW9uKGUsdCl7dHJ5e3JldHVybiBndChlLG4sdCl9Y2F0Y2goZSl7cmV0dXJuIEpzKGUpP2U6bmV3IFNlKGUpfX0pKSxlYz1lbygoZnVuY3Rpb24oZSx0KXtyZXR1cm4gbXQodCwoZnVuY3Rpb24odCl7dD1qbyh0KSxpaShlLHQsUnMoZVt0XSxlKSl9KSksZX0pKTtmdW5jdGlvbiB0YyhlKXtyZXR1cm4gZnVuY3Rpb24oKXtyZXR1cm4gZX19dmFyIHJjPUhuKCksaWM9SG4oITApO2Z1bmN0aW9uIG5jKGUpe3JldHVybiBlfWZ1bmN0aW9uIG9jKGUpe3JldHVybiBCaSgiZnVuY3Rpb24iPT10eXBlb2YgZT9lOnNpKGUsMSkpfXZhciBzYz1HaSgoZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocil7cmV0dXJuIGtpKHIsZSx0KX19KSksYWM9R2koKGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGZ1bmN0aW9uKHIpe3JldHVybiBraShlLHIsdCl9fSkpO2Z1bmN0aW9uIGNjKGUsdCxyKXt2YXIgaT1PYSh0KSxuPWJpKHQsaSk7bnVsbCE9cnx8dGEodCkmJihuLmxlbmd0aHx8IWkubGVuZ3RoKXx8KHI9dCx0PWUsZT10aGlzLG49YmkodCxPYSh0KSkpO3ZhciBvPSEodGEocikmJiJjaGFpbiJpbiByJiYhci5jaGFpbikscz0kcyhlKTtyZXR1cm4gbXQobiwoZnVuY3Rpb24ocil7dmFyIGk9dFtyXTtlW3JdPWkscyYmKGUucHJvdG90eXBlW3JdPWZ1bmN0aW9uKCl7dmFyIHQ9dGhpcy5fX2NoYWluX187aWYob3x8dCl7dmFyIHI9ZSh0aGlzLl9fd3JhcHBlZF9fKSxuPXIuX19hY3Rpb25zX189QW4odGhpcy5fX2FjdGlvbnNfXyk7cmV0dXJuIG4ucHVzaCh7ZnVuYzppLGFyZ3M6YXJndW1lbnRzLHRoaXNBcmc6ZX0pLHIuX19jaGFpbl9fPXQscn1yZXR1cm4gaS5hcHBseShlLHh0KFt0aGlzLnZhbHVlKCldLGFyZ3VtZW50cykpfSl9KSksZX1mdW5jdGlvbiBsYygpe312YXIgdWM9VW4oRXQpLGhjPVVuKFN0KSxmYz1VbihNdCk7ZnVuY3Rpb24gX2MoZSl7cmV0dXJuIG1vKGUpP0h0KGpvKGUpKTpmdW5jdGlvbihlKXtyZXR1cm4gZnVuY3Rpb24odCl7cmV0dXJuIFNpKHQsZSl9fShlKX12YXIgZGM9Tm4oKSxwYz1ObighMCk7ZnVuY3Rpb24gdmMoKXtyZXR1cm5bXX1mdW5jdGlvbiBnYygpe3JldHVybiExfXZhciB5YyxtYz1XbigoZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSt0fSksMCksYmM9Vm4oImNlaWwiKSxTYz1XbigoZnVuY3Rpb24oZSx0KXtyZXR1cm4gZS90fSksMSksQ2M9Vm4oImZsb29yIiksd2M9V24oKGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGUqdH0pLDEpLExjPVZuKCJyb3VuZCIpLEVjPVduKChmdW5jdGlvbihlLHQpe3JldHVybiBlLXR9KSwwKTtyZXR1cm4ganIuYWZ0ZXI9ZnVuY3Rpb24oZSx0KXtpZigiZnVuY3Rpb24iIT10eXBlb2YgdCl0aHJvdyBuZXcgQWUobyk7cmV0dXJuIGU9cGEoZSksZnVuY3Rpb24oKXtpZigtLWU8MSlyZXR1cm4gdC5hcHBseSh0aGlzLGFyZ3VtZW50cyl9fSxqci5hcnk9a3MsanIuYXNzaWduPWJhLGpyLmFzc2lnbkluPVNhLGpyLmFzc2lnbkluV2l0aD1DYSxqci5hc3NpZ25XaXRoPXdhLGpyLmF0PUxhLGpyLmJlZm9yZT1Ncyxqci5iaW5kPVJzLGpyLmJpbmRBbGw9ZWMsanIuYmluZEtleT1Ucyxqci5jYXN0QXJyYXk9ZnVuY3Rpb24oKXtpZighYXJndW1lbnRzLmxlbmd0aClyZXR1cm5bXTt2YXIgZT1hcmd1bWVudHNbMF07cmV0dXJuIEtzKGUpP2U6W2VdfSxqci5jaGFpbj1fcyxqci5jaHVuaz1mdW5jdGlvbihlLHQscil7dD0ocj95byhlLHQscik6dD09PW4pPzE6dnIocGEodCksMCk7dmFyIG89bnVsbD09ZT8wOmUubGVuZ3RoO2lmKCFvfHx0PDEpcmV0dXJuW107Zm9yKHZhciBzPTAsYT0wLGM9aShscihvL3QpKTtzPG87KWNbYSsrXT1lbihlLHMscys9dCk7cmV0dXJuIGN9LGpyLmNvbXBhY3Q9ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PS0xLHI9bnVsbD09ZT8wOmUubGVuZ3RoLGk9MCxuPVtdOysrdDxyOyl7dmFyIG89ZVt0XTtvJiYobltpKytdPW8pfXJldHVybiBufSxqci5jb25jYXQ9ZnVuY3Rpb24oKXt2YXIgZT1hcmd1bWVudHMubGVuZ3RoO2lmKCFlKXJldHVybltdO2Zvcih2YXIgdD1pKGUtMSkscj1hcmd1bWVudHNbMF0sbj1lO24tLTspdFtuLTFdPWFyZ3VtZW50c1tuXTtyZXR1cm4geHQoS3Mocik/QW4ocik6W3JdLHBpKHQsMSkpfSxqci5jb25kPWZ1bmN0aW9uKGUpe3ZhciB0PW51bGw9PWU/MDplLmxlbmd0aCxyPXNvKCk7cmV0dXJuIGU9dD9FdChlLChmdW5jdGlvbihlKXtpZigiZnVuY3Rpb24iIT10eXBlb2YgZVsxXSl0aHJvdyBuZXcgQWUobyk7cmV0dXJuW3IoZVswXSksZVsxXV19KSk6W10sR2koKGZ1bmN0aW9uKHIpe2Zvcih2YXIgaT0tMTsrK2k8dDspe3ZhciBuPWVbaV07aWYoZ3QoblswXSx0aGlzLHIpKXJldHVybiBndChuWzFdLHRoaXMscil9fSkpfSxqci5jb25mb3Jtcz1mdW5jdGlvbihlKXtyZXR1cm4gZnVuY3Rpb24oZSl7dmFyIHQ9T2EoZSk7cmV0dXJuIGZ1bmN0aW9uKHIpe3JldHVybiBhaShyLGUsdCl9fShzaShlLDEpKX0sanIuY29uc3RhbnQ9dGMsanIuY291bnRCeT12cyxqci5jcmVhdGU9ZnVuY3Rpb24oZSx0KXt2YXIgcj1GcihlKTtyZXR1cm4gbnVsbD09dD9yOnJpKHIsdCl9LGpyLmN1cnJ5PWZ1bmN0aW9uIGUodCxyLGkpe3ZhciBvPVhuKHQsOCxuLG4sbixuLG4scj1pP246cik7cmV0dXJuIG8ucGxhY2Vob2xkZXI9ZS5wbGFjZWhvbGRlcixvfSxqci5jdXJyeVJpZ2h0PWZ1bmN0aW9uIGUodCxyLGkpe3ZhciBvPVhuKHQsMTYsbixuLG4sbixuLHI9aT9uOnIpO3JldHVybiBvLnBsYWNlaG9sZGVyPWUucGxhY2Vob2xkZXIsb30sanIuZGVib3VuY2U9T3MsanIuZGVmYXVsdHM9RWEsanIuZGVmYXVsdHNEZWVwPXhhLGpyLmRlZmVyPUJzLGpyLmRlbGF5PURzLGpyLmRpZmZlcmVuY2U9VW8sanIuZGlmZmVyZW5jZUJ5PXFvLGpyLmRpZmZlcmVuY2VXaXRoPU5vLGpyLmRyb3A9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPW51bGw9PWU/MDplLmxlbmd0aDtyZXR1cm4gaT9lbihlLCh0PXJ8fHQ9PT1uPzE6cGEodCkpPDA/MDp0LGkpOltdfSxqci5kcm9wUmlnaHQ9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPW51bGw9PWU/MDplLmxlbmd0aDtyZXR1cm4gaT9lbihlLDAsKHQ9aS0odD1yfHx0PT09bj8xOnBhKHQpKSk8MD8wOnQpOltdfSxqci5kcm9wUmlnaHRXaGlsZT1mdW5jdGlvbihlLHQpe3JldHVybiBlJiZlLmxlbmd0aD9obihlLHNvKHQsMyksITAsITApOltdfSxqci5kcm9wV2hpbGU9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSYmZS5sZW5ndGg/aG4oZSxzbyh0LDMpLCEwKTpbXX0sanIuZmlsbD1mdW5jdGlvbihlLHQscixpKXt2YXIgbz1udWxsPT1lPzA6ZS5sZW5ndGg7cmV0dXJuIG8/KHImJiJudW1iZXIiIT10eXBlb2YgciYmeW8oZSx0LHIpJiYocj0wLGk9byksZnVuY3Rpb24oZSx0LHIsaSl7dmFyIG89ZS5sZW5ndGg7Zm9yKChyPXBhKHIpKTwwJiYocj0tcj5vPzA6bytyKSwoaT1pPT09bnx8aT5vP286cGEoaSkpPDAmJihpKz1vKSxpPXI+aT8wOnZhKGkpO3I8aTspZVtyKytdPXQ7cmV0dXJuIGV9KGUsdCxyLGkpKTpbXX0sanIuZmlsdGVyPWZ1bmN0aW9uKGUsdCl7cmV0dXJuKEtzKGUpP0N0OmRpKShlLHNvKHQsMykpfSxqci5mbGF0TWFwPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIHBpKExzKGUsdCksMSl9LGpyLmZsYXRNYXBEZWVwPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIHBpKExzKGUsdCksdSl9LGpyLmZsYXRNYXBEZXB0aD1mdW5jdGlvbihlLHQscil7cmV0dXJuIHI9cj09PW4/MTpwYShyKSxwaShMcyhlLHQpLHIpfSxqci5mbGF0dGVuPVZvLGpyLmZsYXR0ZW5EZWVwPWZ1bmN0aW9uKGUpe3JldHVybiBudWxsIT1lJiZlLmxlbmd0aD9waShlLHUpOltdfSxqci5mbGF0dGVuRGVwdGg9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gbnVsbCE9ZSYmZS5sZW5ndGg/cGkoZSx0PXQ9PT1uPzE6cGEodCkpOltdfSxqci5mbGlwPWZ1bmN0aW9uKGUpe3JldHVybiBYbihlLDUxMil9LGpyLmZsb3c9cmMsanIuZmxvd1JpZ2h0PWljLGpyLmZyb21QYWlycz1mdW5jdGlvbihlKXtmb3IodmFyIHQ9LTEscj1udWxsPT1lPzA6ZS5sZW5ndGgsaT17fTsrK3Q8cjspe3ZhciBuPWVbdF07aVtuWzBdXT1uWzFdfXJldHVybiBpfSxqci5mdW5jdGlvbnM9ZnVuY3Rpb24oZSl7cmV0dXJuIG51bGw9PWU/W106YmkoZSxPYShlKSl9LGpyLmZ1bmN0aW9uc0luPWZ1bmN0aW9uKGUpe3JldHVybiBudWxsPT1lP1tdOmJpKGUsQmEoZSkpfSxqci5ncm91cEJ5PVNzLGpyLmluaXRpYWw9ZnVuY3Rpb24oZSl7cmV0dXJuIG51bGwhPWUmJmUubGVuZ3RoP2VuKGUsMCwtMSk6W119LGpyLmludGVyc2VjdGlvbj1Zbyxqci5pbnRlcnNlY3Rpb25CeT1Ybyxqci5pbnRlcnNlY3Rpb25XaXRoPVpvLGpyLmludmVydD1NYSxqci5pbnZlcnRCeT1SYSxqci5pbnZva2VNYXA9Q3MsanIuaXRlcmF0ZWU9b2MsanIua2V5Qnk9d3MsanIua2V5cz1PYSxqci5rZXlzSW49QmEsanIubWFwPUxzLGpyLm1hcEtleXM9ZnVuY3Rpb24oZSx0KXt2YXIgcj17fTtyZXR1cm4gdD1zbyh0LDMpLHlpKGUsKGZ1bmN0aW9uKGUsaSxuKXtpaShyLHQoZSxpLG4pLGUpfSkpLHJ9LGpyLm1hcFZhbHVlcz1mdW5jdGlvbihlLHQpe3ZhciByPXt9O3JldHVybiB0PXNvKHQsMykseWkoZSwoZnVuY3Rpb24oZSxpLG4pe2lpKHIsaSx0KGUsaSxuKSl9KSkscn0sanIubWF0Y2hlcz1mdW5jdGlvbihlKXtyZXR1cm4gSGkoc2koZSwxKSl9LGpyLm1hdGNoZXNQcm9wZXJ0eT1mdW5jdGlvbihlLHQpe3JldHVybiBqaShlLHNpKHQsMSkpfSxqci5tZW1vaXplPVBzLGpyLm1lcmdlPURhLGpyLm1lcmdlV2l0aD1QYSxqci5tZXRob2Q9c2MsanIubWV0aG9kT2Y9YWMsanIubWl4aW49Y2MsanIubmVnYXRlPUlzLGpyLm50aEFyZz1mdW5jdGlvbihlKXtyZXR1cm4gZT1wYShlKSxHaSgoZnVuY3Rpb24odCl7cmV0dXJuIFdpKHQsZSl9KSl9LGpyLm9taXQ9SWEsanIub21pdEJ5PWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGphKGUsSXMoc28odCkpKX0sanIub25jZT1mdW5jdGlvbihlKXtyZXR1cm4gTXMoMixlKX0sanIub3JkZXJCeT1mdW5jdGlvbihlLHQscixpKXtyZXR1cm4gbnVsbD09ZT9bXTooS3ModCl8fCh0PW51bGw9PXQ/W106W3RdKSxLcyhyPWk/bjpyKXx8KHI9bnVsbD09cj9bXTpbcl0pLFVpKGUsdCxyKSl9LGpyLm92ZXI9dWMsanIub3ZlckFyZ3M9SHMsanIub3ZlckV2ZXJ5PWhjLGpyLm92ZXJTb21lPWZjLGpyLnBhcnRpYWw9anMsanIucGFydGlhbFJpZ2h0PUZzLGpyLnBhcnRpdGlvbj1Fcyxqci5waWNrPUhhLGpyLnBpY2tCeT1qYSxqci5wcm9wZXJ0eT1fYyxqci5wcm9wZXJ0eU9mPWZ1bmN0aW9uKGUpe3JldHVybiBmdW5jdGlvbih0KXtyZXR1cm4gbnVsbD09ZT9uOlNpKGUsdCl9fSxqci5wdWxsPSRvLGpyLnB1bGxBbGw9UW8sanIucHVsbEFsbEJ5PWZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gZSYmZS5sZW5ndGgmJnQmJnQubGVuZ3RoP05pKGUsdCxzbyhyLDIpKTplfSxqci5wdWxsQWxsV2l0aD1mdW5jdGlvbihlLHQscil7cmV0dXJuIGUmJmUubGVuZ3RoJiZ0JiZ0Lmxlbmd0aD9OaShlLHQsbixyKTplfSxqci5wdWxsQXQ9ZXMsanIucmFuZ2U9ZGMsanIucmFuZ2VSaWdodD1wYyxqci5yZWFyZz1Xcyxqci5yZWplY3Q9ZnVuY3Rpb24oZSx0KXtyZXR1cm4oS3MoZSk/Q3Q6ZGkpKGUsSXMoc28odCwzKSkpfSxqci5yZW1vdmU9ZnVuY3Rpb24oZSx0KXt2YXIgcj1bXTtpZighZXx8IWUubGVuZ3RoKXJldHVybiByO3ZhciBpPS0xLG49W10sbz1lLmxlbmd0aDtmb3IodD1zbyh0LDMpOysraTxvOyl7dmFyIHM9ZVtpXTt0KHMsaSxlKSYmKHIucHVzaChzKSxuLnB1c2goaSkpfXJldHVybiB6aShlLG4pLHJ9LGpyLnJlc3Q9ZnVuY3Rpb24oZSx0KXtpZigiZnVuY3Rpb24iIT10eXBlb2YgZSl0aHJvdyBuZXcgQWUobyk7cmV0dXJuIEdpKGUsdD10PT09bj90OnBhKHQpKX0sanIucmV2ZXJzZT10cyxqci5zYW1wbGVTaXplPWZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gdD0ocj95byhlLHQscik6dD09PW4pPzE6cGEodCksKEtzKGUpP1pyOlhpKShlLHQpfSxqci5zZXQ9ZnVuY3Rpb24oZSx0LHIpe3JldHVybiBudWxsPT1lP2U6WmkoZSx0LHIpfSxqci5zZXRXaXRoPWZ1bmN0aW9uKGUsdCxyLGkpe3JldHVybiBpPSJmdW5jdGlvbiI9PXR5cGVvZiBpP2k6bixudWxsPT1lP2U6WmkoZSx0LHIsaSl9LGpyLnNodWZmbGU9ZnVuY3Rpb24oZSl7cmV0dXJuKEtzKGUpP0pyOlFpKShlKX0sanIuc2xpY2U9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPW51bGw9PWU/MDplLmxlbmd0aDtyZXR1cm4gaT8ociYmIm51bWJlciIhPXR5cGVvZiByJiZ5byhlLHQscik/KHQ9MCxyPWkpOih0PW51bGw9PXQ/MDpwYSh0KSxyPXI9PT1uP2k6cGEocikpLGVuKGUsdCxyKSk6W119LGpyLnNvcnRCeT14cyxqci5zb3J0ZWRVbmlxPWZ1bmN0aW9uKGUpe3JldHVybiBlJiZlLmxlbmd0aD9vbihlKTpbXX0sanIuc29ydGVkVW5pcUJ5PWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGUmJmUubGVuZ3RoP29uKGUsc28odCwyKSk6W119LGpyLnNwbGl0PWZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gciYmIm51bWJlciIhPXR5cGVvZiByJiZ5byhlLHQscikmJih0PXI9biksKHI9cj09PW4/XzpyPj4+MCk/KGU9bWEoZSkpJiYoInN0cmluZyI9PXR5cGVvZiB0fHxudWxsIT10JiYhc2EodCkpJiYhKHQ9YW4odCkpJiYkdChlKT9tbihvcihlKSwwLHIpOmUuc3BsaXQodCxyKTpbXX0sanIuc3ByZWFkPWZ1bmN0aW9uKGUsdCl7aWYoImZ1bmN0aW9uIiE9dHlwZW9mIGUpdGhyb3cgbmV3IEFlKG8pO3JldHVybiB0PW51bGw9PXQ/MDp2cihwYSh0KSwwKSxHaSgoZnVuY3Rpb24ocil7dmFyIGk9clt0XSxuPW1uKHIsMCx0KTtyZXR1cm4gaSYmeHQobixpKSxndChlLHRoaXMsbil9KSl9LGpyLnRhaWw9ZnVuY3Rpb24oZSl7dmFyIHQ9bnVsbD09ZT8wOmUubGVuZ3RoO3JldHVybiB0P2VuKGUsMSx0KTpbXX0sanIudGFrZT1mdW5jdGlvbihlLHQscil7cmV0dXJuIGUmJmUubGVuZ3RoP2VuKGUsMCwodD1yfHx0PT09bj8xOnBhKHQpKTwwPzA6dCk6W119LGpyLnRha2VSaWdodD1mdW5jdGlvbihlLHQscil7dmFyIGk9bnVsbD09ZT8wOmUubGVuZ3RoO3JldHVybiBpP2VuKGUsKHQ9aS0odD1yfHx0PT09bj8xOnBhKHQpKSk8MD8wOnQsaSk6W119LGpyLnRha2VSaWdodFdoaWxlPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGUmJmUubGVuZ3RoP2huKGUsc28odCwzKSwhMSwhMCk6W119LGpyLnRha2VXaGlsZT1mdW5jdGlvbihlLHQpe3JldHVybiBlJiZlLmxlbmd0aD9obihlLHNvKHQsMykpOltdfSxqci50YXA9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gdChlKSxlfSxqci50aHJvdHRsZT1mdW5jdGlvbihlLHQscil7dmFyIGk9ITAsbj0hMDtpZigiZnVuY3Rpb24iIT10eXBlb2YgZSl0aHJvdyBuZXcgQWUobyk7cmV0dXJuIHRhKHIpJiYoaT0ibGVhZGluZyJpbiByPyEhci5sZWFkaW5nOmksbj0idHJhaWxpbmciaW4gcj8hIXIudHJhaWxpbmc6biksT3MoZSx0LHtsZWFkaW5nOmksbWF4V2FpdDp0LHRyYWlsaW5nOm59KX0sanIudGhydT1kcyxqci50b0FycmF5PV9hLGpyLnRvUGFpcnM9RmEsanIudG9QYWlyc0luPVdhLGpyLnRvUGF0aD1mdW5jdGlvbihlKXtyZXR1cm4gS3MoZSk/RXQoZSxqbyk6bGEoZSk/W2VdOkFuKEhvKG1hKGUpKSl9LGpyLnRvUGxhaW5PYmplY3Q9eWEsanIudHJhbnNmb3JtPWZ1bmN0aW9uKGUsdCxyKXt2YXIgaT1LcyhlKSxuPWl8fFhzKGUpfHx1YShlKTtpZih0PXNvKHQsNCksbnVsbD09cil7dmFyIG89ZSYmZS5jb25zdHJ1Y3RvcjtyPW4/aT9uZXcgbzpbXTp0YShlKSYmJHMobyk/RnIoVmUoZSkpOnt9fXJldHVybihuP210OnlpKShlLChmdW5jdGlvbihlLGksbil7cmV0dXJuIHQocixlLGksbil9KSkscn0sanIudW5hcnk9ZnVuY3Rpb24oZSl7cmV0dXJuIGtzKGUsMSl9LGpyLnVuaW9uPXJzLGpyLnVuaW9uQnk9aXMsanIudW5pb25XaXRoPW5zLGpyLnVuaXE9ZnVuY3Rpb24oZSl7cmV0dXJuIGUmJmUubGVuZ3RoP2NuKGUpOltdfSxqci51bmlxQnk9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSYmZS5sZW5ndGg/Y24oZSxzbyh0LDIpKTpbXX0sanIudW5pcVdpdGg9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gdD0iZnVuY3Rpb24iPT10eXBlb2YgdD90Om4sZSYmZS5sZW5ndGg/Y24oZSxuLHQpOltdfSxqci51bnNldD1mdW5jdGlvbihlLHQpe3JldHVybiBudWxsPT1lfHxsbihlLHQpfSxqci51bnppcD1vcyxqci51bnppcFdpdGg9c3MsanIudXBkYXRlPWZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gbnVsbD09ZT9lOnVuKGUsdCx2bihyKSl9LGpyLnVwZGF0ZVdpdGg9ZnVuY3Rpb24oZSx0LHIsaSl7cmV0dXJuIGk9ImZ1bmN0aW9uIj09dHlwZW9mIGk/aTpuLG51bGw9PWU/ZTp1bihlLHQsdm4ociksaSl9LGpyLnZhbHVlcz1VYSxqci52YWx1ZXNJbj1mdW5jdGlvbihlKXtyZXR1cm4gbnVsbD09ZT9bXTp6dChlLEJhKGUpKX0sanIud2l0aG91dD1hcyxqci53b3Jkcz0kYSxqci53cmFwPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGpzKHZuKHQpLGUpfSxqci54b3I9Y3MsanIueG9yQnk9bHMsanIueG9yV2l0aD11cyxqci56aXA9aHMsanIuemlwT2JqZWN0PWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGRuKGV8fFtdLHR8fFtdLFFyKX0sanIuemlwT2JqZWN0RGVlcD1mdW5jdGlvbihlLHQpe3JldHVybiBkbihlfHxbXSx0fHxbXSxaaSl9LGpyLnppcFdpdGg9ZnMsanIuZW50cmllcz1GYSxqci5lbnRyaWVzSW49V2EsanIuZXh0ZW5kPVNhLGpyLmV4dGVuZFdpdGg9Q2EsY2MoanIsanIpLGpyLmFkZD1tYyxqci5hdHRlbXB0PVFhLGpyLmNhbWVsQ2FzZT1xYSxqci5jYXBpdGFsaXplPU5hLGpyLmNlaWw9YmMsanIuY2xhbXA9ZnVuY3Rpb24oZSx0LHIpe3JldHVybiByPT09biYmKHI9dCx0PW4pLHIhPT1uJiYocj0ocj1nYShyKSk9PXI/cjowKSx0IT09biYmKHQ9KHQ9Z2EodCkpPT10P3Q6MCksb2koZ2EoZSksdCxyKX0sanIuY2xvbmU9ZnVuY3Rpb24oZSl7cmV0dXJuIHNpKGUsNCl9LGpyLmNsb25lRGVlcD1mdW5jdGlvbihlKXtyZXR1cm4gc2koZSw1KX0sanIuY2xvbmVEZWVwV2l0aD1mdW5jdGlvbihlLHQpe3JldHVybiBzaShlLDUsdD0iZnVuY3Rpb24iPT10eXBlb2YgdD90Om4pfSxqci5jbG9uZVdpdGg9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gc2koZSw0LHQ9ImZ1bmN0aW9uIj09dHlwZW9mIHQ/dDpuKX0sanIuY29uZm9ybXNUbz1mdW5jdGlvbihlLHQpe3JldHVybiBudWxsPT10fHxhaShlLHQsT2EodCkpfSxqci5kZWJ1cnI9emEsanIuZGVmYXVsdFRvPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIG51bGw9PWV8fGUhPWU/dDplfSxqci5kaXZpZGU9U2MsanIuZW5kc1dpdGg9ZnVuY3Rpb24oZSx0LHIpe2U9bWEoZSksdD1hbih0KTt2YXIgaT1lLmxlbmd0aCxvPXI9cj09PW4/aTpvaShwYShyKSwwLGkpO3JldHVybihyLT10Lmxlbmd0aCk+PTAmJmUuc2xpY2UocixvKT09dH0sanIuZXE9VXMsanIuZXNjYXBlPWZ1bmN0aW9uKGUpe3JldHVybihlPW1hKGUpKSYmWS50ZXN0KGUpP2UucmVwbGFjZShWLFp0KTplfSxqci5lc2NhcGVSZWdFeHA9ZnVuY3Rpb24oZSl7cmV0dXJuKGU9bWEoZSkpJiZyZS50ZXN0KGUpP2UucmVwbGFjZSh0ZSwiXFwkJiIpOmV9LGpyLmV2ZXJ5PWZ1bmN0aW9uKGUsdCxyKXt2YXIgaT1LcyhlKT9TdDpmaTtyZXR1cm4gciYmeW8oZSx0LHIpJiYodD1uKSxpKGUsc28odCwzKSl9LGpyLmZpbmQ9Z3MsanIuZmluZEluZGV4PXpvLGpyLmZpbmRLZXk9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gVHQoZSxzbyh0LDMpLHlpKX0sanIuZmluZExhc3Q9eXMsanIuZmluZExhc3RJbmRleD1Lbyxqci5maW5kTGFzdEtleT1mdW5jdGlvbihlLHQpe3JldHVybiBUdChlLHNvKHQsMyksbWkpfSxqci5mbG9vcj1DYyxqci5mb3JFYWNoPW1zLGpyLmZvckVhY2hSaWdodD1icyxqci5mb3JJbj1mdW5jdGlvbihlLHQpe3JldHVybiBudWxsPT1lP2U6dmkoZSxzbyh0LDMpLEJhKX0sanIuZm9ySW5SaWdodD1mdW5jdGlvbihlLHQpe3JldHVybiBudWxsPT1lP2U6Z2koZSxzbyh0LDMpLEJhKX0sanIuZm9yT3duPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGUmJnlpKGUsc28odCwzKSl9LGpyLmZvck93blJpZ2h0PWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGUmJm1pKGUsc28odCwzKSl9LGpyLmdldD1BYSxqci5ndD1xcyxqci5ndGU9TnMsanIuaGFzPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIG51bGwhPWUmJl9vKGUsdCxFaSl9LGpyLmhhc0luPWthLGpyLmhlYWQ9R28sanIuaWRlbnRpdHk9bmMsanIuaW5jbHVkZXM9ZnVuY3Rpb24oZSx0LHIsaSl7ZT1HcyhlKT9lOlVhKGUpLHI9ciYmIWk/cGEocik6MDt2YXIgbj1lLmxlbmd0aDtyZXR1cm4gcjwwJiYocj12cihuK3IsMCkpLGNhKGUpP3I8PW4mJmUuaW5kZXhPZih0LHIpPi0xOiEhbiYmQnQoZSx0LHIpPi0xfSxqci5pbmRleE9mPWZ1bmN0aW9uKGUsdCxyKXt2YXIgaT1udWxsPT1lPzA6ZS5sZW5ndGg7aWYoIWkpcmV0dXJuLTE7dmFyIG49bnVsbD09cj8wOnBhKHIpO3JldHVybiBuPDAmJihuPXZyKGkrbiwwKSksQnQoZSx0LG4pfSxqci5pblJhbmdlPWZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gdD1kYSh0KSxyPT09bj8ocj10LHQ9MCk6cj1kYShyKSxmdW5jdGlvbihlLHQscil7cmV0dXJuIGU+PWdyKHQscikmJmU8dnIodCxyKX0oZT1nYShlKSx0LHIpfSxqci5pbnZva2U9VGEsanIuaXNBcmd1bWVudHM9enMsanIuaXNBcnJheT1Lcyxqci5pc0FycmF5QnVmZmVyPVZzLGpyLmlzQXJyYXlMaWtlPUdzLGpyLmlzQXJyYXlMaWtlT2JqZWN0PVlzLGpyLmlzQm9vbGVhbj1mdW5jdGlvbihlKXtyZXR1cm4hMD09PWV8fCExPT09ZXx8cmEoZSkmJndpKGUpPT1nfSxqci5pc0J1ZmZlcj1Ycyxqci5pc0RhdGU9WnMsanIuaXNFbGVtZW50PWZ1bmN0aW9uKGUpe3JldHVybiByYShlKSYmMT09PWUubm9kZVR5cGUmJiFvYShlKX0sanIuaXNFbXB0eT1mdW5jdGlvbihlKXtpZihudWxsPT1lKXJldHVybiEwO2lmKEdzKGUpJiYoS3MoZSl8fCJzdHJpbmciPT10eXBlb2YgZXx8ImZ1bmN0aW9uIj09dHlwZW9mIGUuc3BsaWNlfHxYcyhlKXx8dWEoZSl8fHpzKGUpKSlyZXR1cm4hZS5sZW5ndGg7dmFyIHQ9Zm8oZSk7aWYodD09Q3x8dD09QSlyZXR1cm4hZS5zaXplO2lmKENvKGUpKXJldHVybiFEaShlKS5sZW5ndGg7Zm9yKHZhciByIGluIGUpaWYoQmUuY2FsbChlLHIpKXJldHVybiExO3JldHVybiEwfSxqci5pc0VxdWFsPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIFJpKGUsdCl9LGpyLmlzRXF1YWxXaXRoPWZ1bmN0aW9uKGUsdCxyKXt2YXIgaT0ocj0iZnVuY3Rpb24iPT10eXBlb2Ygcj9yOm4pP3IoZSx0KTpuO3JldHVybiBpPT09bj9SaShlLHQsbixyKTohIWl9LGpyLmlzRXJyb3I9SnMsanIuaXNGaW5pdGU9ZnVuY3Rpb24oZSl7cmV0dXJuIm51bWJlciI9PXR5cGVvZiBlJiZfcihlKX0sanIuaXNGdW5jdGlvbj0kcyxqci5pc0ludGVnZXI9UXMsanIuaXNMZW5ndGg9ZWEsanIuaXNNYXA9aWEsanIuaXNNYXRjaD1mdW5jdGlvbihlLHQpe3JldHVybiBlPT09dHx8VGkoZSx0LGNvKHQpKX0sanIuaXNNYXRjaFdpdGg9ZnVuY3Rpb24oZSx0LHIpe3JldHVybiByPSJmdW5jdGlvbiI9PXR5cGVvZiByP3I6bixUaShlLHQsY28odCkscil9LGpyLmlzTmFOPWZ1bmN0aW9uKGUpe3JldHVybiBuYShlKSYmZSE9K2V9LGpyLmlzTmF0aXZlPWZ1bmN0aW9uKGUpe2lmKFNvKGUpKXRocm93IG5ldyBTZSgiVW5zdXBwb3J0ZWQgY29yZS1qcyB1c2UuIFRyeSBodHRwczovL25wbXMuaW8vc2VhcmNoP3E9cG9ueWZpbGwuIik7cmV0dXJuIE9pKGUpfSxqci5pc05pbD1mdW5jdGlvbihlKXtyZXR1cm4gbnVsbD09ZX0sanIuaXNOdWxsPWZ1bmN0aW9uKGUpe3JldHVybiBudWxsPT09ZX0sanIuaXNOdW1iZXI9bmEsanIuaXNPYmplY3Q9dGEsanIuaXNPYmplY3RMaWtlPXJhLGpyLmlzUGxhaW5PYmplY3Q9b2EsanIuaXNSZWdFeHA9c2EsanIuaXNTYWZlSW50ZWdlcj1mdW5jdGlvbihlKXtyZXR1cm4gUXMoZSkmJmU+PS05MDA3MTk5MjU0NzQwOTkxJiZlPD1ofSxqci5pc1NldD1hYSxqci5pc1N0cmluZz1jYSxqci5pc1N5bWJvbD1sYSxqci5pc1R5cGVkQXJyYXk9dWEsanIuaXNVbmRlZmluZWQ9ZnVuY3Rpb24oZSl7cmV0dXJuIGU9PT1ufSxqci5pc1dlYWtNYXA9ZnVuY3Rpb24oZSl7cmV0dXJuIHJhKGUpJiZmbyhlKT09Un0sanIuaXNXZWFrU2V0PWZ1bmN0aW9uKGUpe3JldHVybiByYShlKSYmIltvYmplY3QgV2Vha1NldF0iPT13aShlKX0sanIuam9pbj1mdW5jdGlvbihlLHQpe3JldHVybiBudWxsPT1lPyIiOmRyLmNhbGwoZSx0KX0sanIua2ViYWJDYXNlPUthLGpyLmxhc3Q9Sm8sanIubGFzdEluZGV4T2Y9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPW51bGw9PWU/MDplLmxlbmd0aDtpZighaSlyZXR1cm4tMTt2YXIgbz1pO3JldHVybiByIT09biYmKG89KG89cGEocikpPDA/dnIoaStvLDApOmdyKG8saS0xKSksdD09dD9mdW5jdGlvbihlLHQscil7Zm9yKHZhciBpPXIrMTtpLS07KWlmKGVbaV09PT10KXJldHVybiBpO3JldHVybiBpfShlLHQsbyk6T3QoZSxQdCxvLCEwKX0sanIubG93ZXJDYXNlPVZhLGpyLmxvd2VyRmlyc3Q9R2EsanIubHQ9aGEsanIubHRlPWZhLGpyLm1heD1mdW5jdGlvbihlKXtyZXR1cm4gZSYmZS5sZW5ndGg/X2koZSxuYyxMaSk6bn0sanIubWF4Qnk9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSYmZS5sZW5ndGg/X2koZSxzbyh0LDIpLExpKTpufSxqci5tZWFuPWZ1bmN0aW9uKGUpe3JldHVybiBJdChlLG5jKX0sanIubWVhbkJ5PWZ1bmN0aW9uKGUsdCl7cmV0dXJuIEl0KGUsc28odCwyKSl9LGpyLm1pbj1mdW5jdGlvbihlKXtyZXR1cm4gZSYmZS5sZW5ndGg/X2koZSxuYyxQaSk6bn0sanIubWluQnk9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSYmZS5sZW5ndGg/X2koZSxzbyh0LDIpLFBpKTpufSxqci5zdHViQXJyYXk9dmMsanIuc3R1YkZhbHNlPWdjLGpyLnN0dWJPYmplY3Q9ZnVuY3Rpb24oKXtyZXR1cm57fX0sanIuc3R1YlN0cmluZz1mdW5jdGlvbigpe3JldHVybiIifSxqci5zdHViVHJ1ZT1mdW5jdGlvbigpe3JldHVybiEwfSxqci5tdWx0aXBseT13Yyxqci5udGg9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSYmZS5sZW5ndGg/V2koZSxwYSh0KSk6bn0sanIubm9Db25mbGljdD1mdW5jdGlvbigpe3JldHVybiBvdC5fPT09dGhpcyYmKG90Ll89amUpLHRoaXN9LGpyLm5vb3A9bGMsanIubm93PUFzLGpyLnBhZD1mdW5jdGlvbihlLHQscil7ZT1tYShlKTt2YXIgaT0odD1wYSh0KSk/bnIoZSk6MDtpZighdHx8aT49dClyZXR1cm4gZTt2YXIgbj0odC1pKS8yO3JldHVybiBxbih1cihuKSxyKStlK3FuKGxyKG4pLHIpfSxqci5wYWRFbmQ9ZnVuY3Rpb24oZSx0LHIpe2U9bWEoZSk7dmFyIGk9KHQ9cGEodCkpP25yKGUpOjA7cmV0dXJuIHQmJmk8dD9lK3FuKHQtaSxyKTplfSxqci5wYWRTdGFydD1mdW5jdGlvbihlLHQscil7ZT1tYShlKTt2YXIgaT0odD1wYSh0KSk/bnIoZSk6MDtyZXR1cm4gdCYmaTx0P3FuKHQtaSxyKStlOmV9LGpyLnBhcnNlSW50PWZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gcnx8bnVsbD09dD90PTA6dCYmKHQ9K3QpLG1yKG1hKGUpLnJlcGxhY2UoaWUsIiIpLHR8fDApfSxqci5yYW5kb209ZnVuY3Rpb24oZSx0LHIpe2lmKHImJiJib29sZWFuIiE9dHlwZW9mIHImJnlvKGUsdCxyKSYmKHQ9cj1uKSxyPT09biYmKCJib29sZWFuIj09dHlwZW9mIHQ/KHI9dCx0PW4pOiJib29sZWFuIj09dHlwZW9mIGUmJihyPWUsZT1uKSksZT09PW4mJnQ9PT1uPyhlPTAsdD0xKTooZT1kYShlKSx0PT09bj8odD1lLGU9MCk6dD1kYSh0KSksZT50KXt2YXIgaT1lO2U9dCx0PWl9aWYocnx8ZSUxfHx0JTEpe3ZhciBvPWJyKCk7cmV0dXJuIGdyKGUrbyoodC1lK3R0KCIxZS0iKygobysiIikubGVuZ3RoLTEpKSksdCl9cmV0dXJuIEtpKGUsdCl9LGpyLnJlZHVjZT1mdW5jdGlvbihlLHQscil7dmFyIGk9S3MoZSk/QXQ6RnQsbj1hcmd1bWVudHMubGVuZ3RoPDM7cmV0dXJuIGkoZSxzbyh0LDQpLHIsbix1aSl9LGpyLnJlZHVjZVJpZ2h0PWZ1bmN0aW9uKGUsdCxyKXt2YXIgaT1LcyhlKT9rdDpGdCxuPWFyZ3VtZW50cy5sZW5ndGg8MztyZXR1cm4gaShlLHNvKHQsNCkscixuLGhpKX0sanIucmVwZWF0PWZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gdD0ocj95byhlLHQscik6dD09PW4pPzE6cGEodCksVmkobWEoZSksdCl9LGpyLnJlcGxhY2U9ZnVuY3Rpb24oKXt2YXIgZT1hcmd1bWVudHMsdD1tYShlWzBdKTtyZXR1cm4gZS5sZW5ndGg8Mz90OnQucmVwbGFjZShlWzFdLGVbMl0pfSxqci5yZXN1bHQ9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPS0xLG89KHQ9Z24odCxlKSkubGVuZ3RoO2ZvcihvfHwobz0xLGU9bik7KytpPG87KXt2YXIgcz1udWxsPT1lP246ZVtqbyh0W2ldKV07cz09PW4mJihpPW8scz1yKSxlPSRzKHMpP3MuY2FsbChlKTpzfXJldHVybiBlfSxqci5yb3VuZD1MYyxqci5ydW5JbkNvbnRleHQ9ZSxqci5zYW1wbGU9ZnVuY3Rpb24oZSl7cmV0dXJuKEtzKGUpP1hyOllpKShlKX0sanIuc2l6ZT1mdW5jdGlvbihlKXtpZihudWxsPT1lKXJldHVybiAwO2lmKEdzKGUpKXJldHVybiBjYShlKT9ucihlKTplLmxlbmd0aDt2YXIgdD1mbyhlKTtyZXR1cm4gdD09Q3x8dD09QT9lLnNpemU6RGkoZSkubGVuZ3RofSxqci5zbmFrZUNhc2U9WWEsanIuc29tZT1mdW5jdGlvbihlLHQscil7dmFyIGk9S3MoZSk/TXQ6dG47cmV0dXJuIHImJnlvKGUsdCxyKSYmKHQ9biksaShlLHNvKHQsMykpfSxqci5zb3J0ZWRJbmRleD1mdW5jdGlvbihlLHQpe3JldHVybiBybihlLHQpfSxqci5zb3J0ZWRJbmRleEJ5PWZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gbm4oZSx0LHNvKHIsMikpfSxqci5zb3J0ZWRJbmRleE9mPWZ1bmN0aW9uKGUsdCl7dmFyIHI9bnVsbD09ZT8wOmUubGVuZ3RoO2lmKHIpe3ZhciBpPXJuKGUsdCk7aWYoaTxyJiZVcyhlW2ldLHQpKXJldHVybiBpfXJldHVybi0xfSxqci5zb3J0ZWRMYXN0SW5kZXg9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gcm4oZSx0LCEwKX0sanIuc29ydGVkTGFzdEluZGV4Qnk9ZnVuY3Rpb24oZSx0LHIpe3JldHVybiBubihlLHQsc28ociwyKSwhMCl9LGpyLnNvcnRlZExhc3RJbmRleE9mPWZ1bmN0aW9uKGUsdCl7aWYobnVsbCE9ZSYmZS5sZW5ndGgpe3ZhciByPXJuKGUsdCwhMCktMTtpZihVcyhlW3JdLHQpKXJldHVybiByfXJldHVybi0xfSxqci5zdGFydENhc2U9WGEsanIuc3RhcnRzV2l0aD1mdW5jdGlvbihlLHQscil7cmV0dXJuIGU9bWEoZSkscj1udWxsPT1yPzA6b2kocGEociksMCxlLmxlbmd0aCksdD1hbih0KSxlLnNsaWNlKHIscit0Lmxlbmd0aCk9PXR9LGpyLnN1YnRyYWN0PUVjLGpyLnN1bT1mdW5jdGlvbihlKXtyZXR1cm4gZSYmZS5sZW5ndGg/V3QoZSxuYyk6MH0sanIuc3VtQnk9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSYmZS5sZW5ndGg/V3QoZSxzbyh0LDIpKTowfSxqci50ZW1wbGF0ZT1mdW5jdGlvbihlLHQscil7dmFyIGk9anIudGVtcGxhdGVTZXR0aW5ncztyJiZ5byhlLHQscikmJih0PW4pLGU9bWEoZSksdD1DYSh7fSx0LGksWm4pO3ZhciBvLHMsYT1DYSh7fSx0LmltcG9ydHMsaS5pbXBvcnRzLFpuKSxjPU9hKGEpLGw9enQoYSxjKSx1PTAsaD10LmludGVycG9sYXRlfHxtZSxmPSJfX3AgKz0gJyIsXz1FZSgodC5lc2NhcGV8fG1lKS5zb3VyY2UrInwiK2guc291cmNlKyJ8IisoaD09PUo/aGU6bWUpLnNvdXJjZSsifCIrKHQuZXZhbHVhdGV8fG1lKS5zb3VyY2UrInwkIiwiZyIpLGQ9Ii8vIyBzb3VyY2VVUkw9IisoQmUuY2FsbCh0LCJzb3VyY2VVUkwiKT8odC5zb3VyY2VVUkwrIiIpLnJlcGxhY2UoL1xzL2csIiAiKToibG9kYXNoLnRlbXBsYXRlU291cmNlc1siKyArK0plKyJdIikrIlxuIjtlLnJlcGxhY2UoXywoZnVuY3Rpb24odCxyLGksbixhLGMpe3JldHVybiBpfHwoaT1uKSxmKz1lLnNsaWNlKHUsYykucmVwbGFjZShiZSxKdCksciYmKG89ITAsZis9IicgK1xuX19lKCIrcisiKSArXG4nIiksYSYmKHM9ITAsZis9Iic7XG4iK2ErIjtcbl9fcCArPSAnIiksaSYmKGYrPSInICtcbigoX190ID0gKCIraSsiKSkgPT0gbnVsbCA/ICcnIDogX190KSArXG4nIiksdT1jK3QubGVuZ3RoLHR9KSksZis9Iic7XG4iO3ZhciBwPUJlLmNhbGwodCwidmFyaWFibGUiKSYmdC52YXJpYWJsZTtpZihwKXtpZihsZS50ZXN0KHApKXRocm93IG5ldyBTZSgiSW52YWxpZCBgdmFyaWFibGVgIG9wdGlvbiBwYXNzZWQgaW50byBgXy50ZW1wbGF0ZWAiKX1lbHNlIGY9IndpdGggKG9iaikge1xuIitmKyJcbn1cbiI7Zj0ocz9mLnJlcGxhY2UocSwiIik6ZikucmVwbGFjZShOLCIkMSIpLnJlcGxhY2UoeiwiJDE7IiksZj0iZnVuY3Rpb24oIisocHx8Im9iaiIpKyIpIHtcbiIrKHA/IiI6Im9iaiB8fCAob2JqID0ge30pO1xuIikrInZhciBfX3QsIF9fcCA9ICcnIisobz8iLCBfX2UgPSBfLmVzY2FwZSI6IiIpKyhzPyIsIF9faiA9IEFycmF5LnByb3RvdHlwZS5qb2luO1xuZnVuY3Rpb24gcHJpbnQoKSB7IF9fcCArPSBfX2ouY2FsbChhcmd1bWVudHMsICcnKSB9XG4iOiI7XG4iKStmKyJyZXR1cm4gX19wXG59Ijt2YXIgdj1RYSgoZnVuY3Rpb24oKXtyZXR1cm4gQ2UoYyxkKyJyZXR1cm4gIitmKS5hcHBseShuLGwpfSkpO2lmKHYuc291cmNlPWYsSnModikpdGhyb3cgdjtyZXR1cm4gdn0sanIudGltZXM9ZnVuY3Rpb24oZSx0KXtpZigoZT1wYShlKSk8MXx8ZT5oKXJldHVybltdO3ZhciByPV8saT1ncihlLF8pO3Q9c28odCksZS09Xztmb3IodmFyIG49VXQoaSx0KTsrK3I8ZTspdChyKTtyZXR1cm4gbn0sanIudG9GaW5pdGU9ZGEsanIudG9JbnRlZ2VyPXBhLGpyLnRvTGVuZ3RoPXZhLGpyLnRvTG93ZXI9ZnVuY3Rpb24oZSl7cmV0dXJuIG1hKGUpLnRvTG93ZXJDYXNlKCl9LGpyLnRvTnVtYmVyPWdhLGpyLnRvU2FmZUludGVnZXI9ZnVuY3Rpb24oZSl7cmV0dXJuIGU/b2kocGEoZSksLTkwMDcxOTkyNTQ3NDA5OTEsaCk6MD09PWU/ZTowfSxqci50b1N0cmluZz1tYSxqci50b1VwcGVyPWZ1bmN0aW9uKGUpe3JldHVybiBtYShlKS50b1VwcGVyQ2FzZSgpfSxqci50cmltPWZ1bmN0aW9uKGUsdCxyKXtpZigoZT1tYShlKSkmJihyfHx0PT09bikpcmV0dXJuIHF0KGUpO2lmKCFlfHwhKHQ9YW4odCkpKXJldHVybiBlO3ZhciBpPW9yKGUpLG89b3IodCk7cmV0dXJuIG1uKGksVnQoaSxvKSxHdChpLG8pKzEpLmpvaW4oIiIpfSxqci50cmltRW5kPWZ1bmN0aW9uKGUsdCxyKXtpZigoZT1tYShlKSkmJihyfHx0PT09bikpcmV0dXJuIGUuc2xpY2UoMCxzcihlKSsxKTtpZighZXx8ISh0PWFuKHQpKSlyZXR1cm4gZTt2YXIgaT1vcihlKTtyZXR1cm4gbW4oaSwwLEd0KGksb3IodCkpKzEpLmpvaW4oIiIpfSxqci50cmltU3RhcnQ9ZnVuY3Rpb24oZSx0LHIpe2lmKChlPW1hKGUpKSYmKHJ8fHQ9PT1uKSlyZXR1cm4gZS5yZXBsYWNlKGllLCIiKTtpZighZXx8ISh0PWFuKHQpKSlyZXR1cm4gZTt2YXIgaT1vcihlKTtyZXR1cm4gbW4oaSxWdChpLG9yKHQpKSkuam9pbigiIil9LGpyLnRydW5jYXRlPWZ1bmN0aW9uKGUsdCl7dmFyIHI9MzAsaT0iLi4uIjtpZih0YSh0KSl7dmFyIG89InNlcGFyYXRvciJpbiB0P3Quc2VwYXJhdG9yOm87cj0ibGVuZ3RoImluIHQ/cGEodC5sZW5ndGgpOnIsaT0ib21pc3Npb24iaW4gdD9hbih0Lm9taXNzaW9uKTppfXZhciBzPShlPW1hKGUpKS5sZW5ndGg7aWYoJHQoZSkpe3ZhciBhPW9yKGUpO3M9YS5sZW5ndGh9aWYocj49cylyZXR1cm4gZTt2YXIgYz1yLW5yKGkpO2lmKGM8MSlyZXR1cm4gaTt2YXIgbD1hP21uKGEsMCxjKS5qb2luKCIiKTplLnNsaWNlKDAsYyk7aWYobz09PW4pcmV0dXJuIGwraTtpZihhJiYoYys9bC5sZW5ndGgtYyksc2Eobykpe2lmKGUuc2xpY2UoYykuc2VhcmNoKG8pKXt2YXIgdSxoPWw7Zm9yKG8uZ2xvYmFsfHwobz1FZShvLnNvdXJjZSxtYShmZS5leGVjKG8pKSsiZyIpKSxvLmxhc3RJbmRleD0wO3U9by5leGVjKGgpOyl2YXIgZj11LmluZGV4O2w9bC5zbGljZSgwLGY9PT1uP2M6Zil9fWVsc2UgaWYoZS5pbmRleE9mKGFuKG8pLGMpIT1jKXt2YXIgXz1sLmxhc3RJbmRleE9mKG8pO18+LTEmJihsPWwuc2xpY2UoMCxfKSl9cmV0dXJuIGwraX0sanIudW5lc2NhcGU9ZnVuY3Rpb24oZSl7cmV0dXJuKGU9bWEoZSkpJiZHLnRlc3QoZSk/ZS5yZXBsYWNlKEssYXIpOmV9LGpyLnVuaXF1ZUlkPWZ1bmN0aW9uKGUpe3ZhciB0PSsrRGU7cmV0dXJuIG1hKGUpK3R9LGpyLnVwcGVyQ2FzZT1aYSxqci51cHBlckZpcnN0PUphLGpyLmVhY2g9bXMsanIuZWFjaFJpZ2h0PWJzLGpyLmZpcnN0PUdvLGNjKGpyLCh5Yz17fSx5aShqciwoZnVuY3Rpb24oZSx0KXtCZS5jYWxsKGpyLnByb3RvdHlwZSx0KXx8KHljW3RdPWUpfSkpLHljKSx7Y2hhaW46ITF9KSxqci5WRVJTSU9OPSI0LjE3LjIxIixtdChbImJpbmQiLCJiaW5kS2V5IiwiY3VycnkiLCJjdXJyeVJpZ2h0IiwicGFydGlhbCIsInBhcnRpYWxSaWdodCJdLChmdW5jdGlvbihlKXtqcltlXS5wbGFjZWhvbGRlcj1qcn0pKSxtdChbImRyb3AiLCJ0YWtlIl0sKGZ1bmN0aW9uKGUsdCl7cXIucHJvdG90eXBlW2VdPWZ1bmN0aW9uKHIpe3I9cj09PW4/MTp2cihwYShyKSwwKTt2YXIgaT10aGlzLl9fZmlsdGVyZWRfXyYmIXQ/bmV3IHFyKHRoaXMpOnRoaXMuY2xvbmUoKTtyZXR1cm4gaS5fX2ZpbHRlcmVkX18/aS5fX3Rha2VDb3VudF9fPWdyKHIsaS5fX3Rha2VDb3VudF9fKTppLl9fdmlld3NfXy5wdXNoKHtzaXplOmdyKHIsXyksdHlwZTplKyhpLl9fZGlyX188MD8iUmlnaHQiOiIiKX0pLGl9LHFyLnByb3RvdHlwZVtlKyJSaWdodCJdPWZ1bmN0aW9uKHQpe3JldHVybiB0aGlzLnJldmVyc2UoKVtlXSh0KS5yZXZlcnNlKCl9fSkpLG10KFsiZmlsdGVyIiwibWFwIiwidGFrZVdoaWxlIl0sKGZ1bmN0aW9uKGUsdCl7dmFyIHI9dCsxLGk9MT09cnx8Mz09cjtxci5wcm90b3R5cGVbZV09ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcy5jbG9uZSgpO3JldHVybiB0Ll9faXRlcmF0ZWVzX18ucHVzaCh7aXRlcmF0ZWU6c28oZSwzKSx0eXBlOnJ9KSx0Ll9fZmlsdGVyZWRfXz10Ll9fZmlsdGVyZWRfX3x8aSx0fX0pKSxtdChbImhlYWQiLCJsYXN0Il0sKGZ1bmN0aW9uKGUsdCl7dmFyIHI9InRha2UiKyh0PyJSaWdodCI6IiIpO3FyLnByb3RvdHlwZVtlXT1mdW5jdGlvbigpe3JldHVybiB0aGlzW3JdKDEpLnZhbHVlKClbMF19fSkpLG10KFsiaW5pdGlhbCIsInRhaWwiXSwoZnVuY3Rpb24oZSx0KXt2YXIgcj0iZHJvcCIrKHQ/IiI6IlJpZ2h0Iik7cXIucHJvdG90eXBlW2VdPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX19maWx0ZXJlZF9fP25ldyBxcih0aGlzKTp0aGlzW3JdKDEpfX0pKSxxci5wcm90b3R5cGUuY29tcGFjdD1mdW5jdGlvbigpe3JldHVybiB0aGlzLmZpbHRlcihuYyl9LHFyLnByb3RvdHlwZS5maW5kPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLmZpbHRlcihlKS5oZWFkKCl9LHFyLnByb3RvdHlwZS5maW5kTGFzdD1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5yZXZlcnNlKCkuZmluZChlKX0scXIucHJvdG90eXBlLmludm9rZU1hcD1HaSgoZnVuY3Rpb24oZSx0KXtyZXR1cm4iZnVuY3Rpb24iPT10eXBlb2YgZT9uZXcgcXIodGhpcyk6dGhpcy5tYXAoKGZ1bmN0aW9uKHIpe3JldHVybiBraShyLGUsdCl9KSl9KSkscXIucHJvdG90eXBlLnJlamVjdD1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5maWx0ZXIoSXMoc28oZSkpKX0scXIucHJvdG90eXBlLnNsaWNlPWZ1bmN0aW9uKGUsdCl7ZT1wYShlKTt2YXIgcj10aGlzO3JldHVybiByLl9fZmlsdGVyZWRfXyYmKGU+MHx8dDwwKT9uZXcgcXIocik6KGU8MD9yPXIudGFrZVJpZ2h0KC1lKTplJiYocj1yLmRyb3AoZSkpLHQhPT1uJiYocj0odD1wYSh0KSk8MD9yLmRyb3BSaWdodCgtdCk6ci50YWtlKHQtZSkpLHIpfSxxci5wcm90b3R5cGUudGFrZVJpZ2h0V2hpbGU9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMucmV2ZXJzZSgpLnRha2VXaGlsZShlKS5yZXZlcnNlKCl9LHFyLnByb3RvdHlwZS50b0FycmF5PWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMudGFrZShfKX0seWkocXIucHJvdG90eXBlLChmdW5jdGlvbihlLHQpe3ZhciByPS9eKD86ZmlsdGVyfGZpbmR8bWFwfHJlamVjdCl8V2hpbGUkLy50ZXN0KHQpLGk9L14oPzpoZWFkfGxhc3QpJC8udGVzdCh0KSxvPWpyW2k/InRha2UiKygibGFzdCI9PXQ/IlJpZ2h0IjoiIik6dF0scz1pfHwvXmZpbmQvLnRlc3QodCk7byYmKGpyLnByb3RvdHlwZVt0XT1mdW5jdGlvbigpe3ZhciB0PXRoaXMuX193cmFwcGVkX18sYT1pP1sxXTphcmd1bWVudHMsYz10IGluc3RhbmNlb2YgcXIsbD1hWzBdLHU9Y3x8S3ModCksaD1mdW5jdGlvbihlKXt2YXIgdD1vLmFwcGx5KGpyLHh0KFtlXSxhKSk7cmV0dXJuIGkmJmY/dFswXTp0fTt1JiZyJiYiZnVuY3Rpb24iPT10eXBlb2YgbCYmMSE9bC5sZW5ndGgmJihjPXU9ITEpO3ZhciBmPXRoaXMuX19jaGFpbl9fLF89ISF0aGlzLl9fYWN0aW9uc19fLmxlbmd0aCxkPXMmJiFmLHA9YyYmIV87aWYoIXMmJnUpe3Q9cD90Om5ldyBxcih0aGlzKTt2YXIgdj1lLmFwcGx5KHQsYSk7cmV0dXJuIHYuX19hY3Rpb25zX18ucHVzaCh7ZnVuYzpkcyxhcmdzOltoXSx0aGlzQXJnOm59KSxuZXcgVXIodixmKX1yZXR1cm4gZCYmcD9lLmFwcGx5KHRoaXMsYSk6KHY9dGhpcy50aHJ1KGgpLGQ/aT92LnZhbHVlKClbMF06di52YWx1ZSgpOnYpfSl9KSksbXQoWyJwb3AiLCJwdXNoIiwic2hpZnQiLCJzb3J0Iiwic3BsaWNlIiwidW5zaGlmdCJdLChmdW5jdGlvbihlKXt2YXIgdD1rZVtlXSxyPS9eKD86cHVzaHxzb3J0fHVuc2hpZnQpJC8udGVzdChlKT8idGFwIjoidGhydSIsaT0vXig/OnBvcHxzaGlmdCkkLy50ZXN0KGUpO2pyLnByb3RvdHlwZVtlXT1mdW5jdGlvbigpe3ZhciBlPWFyZ3VtZW50cztpZihpJiYhdGhpcy5fX2NoYWluX18pe3ZhciBuPXRoaXMudmFsdWUoKTtyZXR1cm4gdC5hcHBseShLcyhuKT9uOltdLGUpfXJldHVybiB0aGlzW3JdKChmdW5jdGlvbihyKXtyZXR1cm4gdC5hcHBseShLcyhyKT9yOltdLGUpfSkpfX0pKSx5aShxci5wcm90b3R5cGUsKGZ1bmN0aW9uKGUsdCl7dmFyIHI9anJbdF07aWYocil7dmFyIGk9ci5uYW1lKyIiO0JlLmNhbGwoTXIsaSl8fChNcltpXT1bXSksTXJbaV0ucHVzaCh7bmFtZTp0LGZ1bmM6cn0pfX0pKSxNcltqbihuLDIpLm5hbWVdPVt7bmFtZToid3JhcHBlciIsZnVuYzpufV0scXIucHJvdG90eXBlLmNsb25lPWZ1bmN0aW9uKCl7dmFyIGU9bmV3IHFyKHRoaXMuX193cmFwcGVkX18pO3JldHVybiBlLl9fYWN0aW9uc19fPUFuKHRoaXMuX19hY3Rpb25zX18pLGUuX19kaXJfXz10aGlzLl9fZGlyX18sZS5fX2ZpbHRlcmVkX189dGhpcy5fX2ZpbHRlcmVkX18sZS5fX2l0ZXJhdGVlc19fPUFuKHRoaXMuX19pdGVyYXRlZXNfXyksZS5fX3Rha2VDb3VudF9fPXRoaXMuX190YWtlQ291bnRfXyxlLl9fdmlld3NfXz1Bbih0aGlzLl9fdmlld3NfXyksZX0scXIucHJvdG90eXBlLnJldmVyc2U9ZnVuY3Rpb24oKXtpZih0aGlzLl9fZmlsdGVyZWRfXyl7dmFyIGU9bmV3IHFyKHRoaXMpO2UuX19kaXJfXz0tMSxlLl9fZmlsdGVyZWRfXz0hMH1lbHNlKGU9dGhpcy5jbG9uZSgpKS5fX2Rpcl9fKj0tMTtyZXR1cm4gZX0scXIucHJvdG90eXBlLnZhbHVlPWZ1bmN0aW9uKCl7dmFyIGU9dGhpcy5fX3dyYXBwZWRfXy52YWx1ZSgpLHQ9dGhpcy5fX2Rpcl9fLHI9S3MoZSksaT10PDAsbj1yP2UubGVuZ3RoOjAsbz1mdW5jdGlvbihlLHQscil7Zm9yKHZhciBpPS0xLG49ci5sZW5ndGg7KytpPG47KXt2YXIgbz1yW2ldLHM9by5zaXplO3N3aXRjaChvLnR5cGUpe2Nhc2UiZHJvcCI6ZSs9czticmVhaztjYXNlImRyb3BSaWdodCI6dC09czticmVhaztjYXNlInRha2UiOnQ9Z3IodCxlK3MpO2JyZWFrO2Nhc2UidGFrZVJpZ2h0IjplPXZyKGUsdC1zKX19cmV0dXJue3N0YXJ0OmUsZW5kOnR9fSgwLG4sdGhpcy5fX3ZpZXdzX18pLHM9by5zdGFydCxhPW8uZW5kLGM9YS1zLGw9aT9hOnMtMSx1PXRoaXMuX19pdGVyYXRlZXNfXyxoPXUubGVuZ3RoLGY9MCxfPWdyKGMsdGhpcy5fX3Rha2VDb3VudF9fKTtpZighcnx8IWkmJm49PWMmJl89PWMpcmV0dXJuIGZuKGUsdGhpcy5fX2FjdGlvbnNfXyk7dmFyIGQ9W107ZTpmb3IoO2MtLSYmZjxfOyl7Zm9yKHZhciBwPS0xLHY9ZVtsKz10XTsrK3A8aDspe3ZhciBnPXVbcF0seT1nLml0ZXJhdGVlLG09Zy50eXBlLGI9eSh2KTtpZigyPT1tKXY9YjtlbHNlIGlmKCFiKXtpZigxPT1tKWNvbnRpbnVlIGU7YnJlYWsgZX19ZFtmKytdPXZ9cmV0dXJuIGR9LGpyLnByb3RvdHlwZS5hdD1wcyxqci5wcm90b3R5cGUuY2hhaW49ZnVuY3Rpb24oKXtyZXR1cm4gX3ModGhpcyl9LGpyLnByb3RvdHlwZS5jb21taXQ9ZnVuY3Rpb24oKXtyZXR1cm4gbmV3IFVyKHRoaXMudmFsdWUoKSx0aGlzLl9fY2hhaW5fXyl9LGpyLnByb3RvdHlwZS5uZXh0PWZ1bmN0aW9uKCl7dGhpcy5fX3ZhbHVlc19fPT09biYmKHRoaXMuX192YWx1ZXNfXz1fYSh0aGlzLnZhbHVlKCkpKTt2YXIgZT10aGlzLl9faW5kZXhfXz49dGhpcy5fX3ZhbHVlc19fLmxlbmd0aDtyZXR1cm57ZG9uZTplLHZhbHVlOmU/bjp0aGlzLl9fdmFsdWVzX19bdGhpcy5fX2luZGV4X18rK119fSxqci5wcm90b3R5cGUucGxhbnQ9ZnVuY3Rpb24oZSl7Zm9yKHZhciB0LHI9dGhpcztyIGluc3RhbmNlb2YgV3I7KXt2YXIgaT1XbyhyKTtpLl9faW5kZXhfXz0wLGkuX192YWx1ZXNfXz1uLHQ/by5fX3dyYXBwZWRfXz1pOnQ9aTt2YXIgbz1pO3I9ci5fX3dyYXBwZWRfX31yZXR1cm4gby5fX3dyYXBwZWRfXz1lLHR9LGpyLnByb3RvdHlwZS5yZXZlcnNlPWZ1bmN0aW9uKCl7dmFyIGU9dGhpcy5fX3dyYXBwZWRfXztpZihlIGluc3RhbmNlb2YgcXIpe3ZhciB0PWU7cmV0dXJuIHRoaXMuX19hY3Rpb25zX18ubGVuZ3RoJiYodD1uZXcgcXIodGhpcykpLCh0PXQucmV2ZXJzZSgpKS5fX2FjdGlvbnNfXy5wdXNoKHtmdW5jOmRzLGFyZ3M6W3RzXSx0aGlzQXJnOm59KSxuZXcgVXIodCx0aGlzLl9fY2hhaW5fXyl9cmV0dXJuIHRoaXMudGhydSh0cyl9LGpyLnByb3RvdHlwZS50b0pTT049anIucHJvdG90eXBlLnZhbHVlT2Y9anIucHJvdG90eXBlLnZhbHVlPWZ1bmN0aW9uKCl7cmV0dXJuIGZuKHRoaXMuX193cmFwcGVkX18sdGhpcy5fX2FjdGlvbnNfXyl9LGpyLnByb3RvdHlwZS5maXJzdD1qci5wcm90b3R5cGUuaGVhZCxzdCYmKGpyLnByb3RvdHlwZVtzdF09ZnVuY3Rpb24oKXtyZXR1cm4gdGhpc30pLGpyfSgpO290Ll89Y3IsKGk9ZnVuY3Rpb24oKXtyZXR1cm4gY3J9LmNhbGwodCxyLHQsZSkpPT09bnx8KGUuZXhwb3J0cz1pKX0uY2FsbCh0aGlzKX0sMzc5OmU9PnsidXNlIHN0cmljdCI7dmFyIHQ9W107ZnVuY3Rpb24gcihlKXtmb3IodmFyIHI9LTEsaT0wO2k8dC5sZW5ndGg7aSsrKWlmKHRbaV0uaWRlbnRpZmllcj09PWUpe3I9aTticmVha31yZXR1cm4gcn1mdW5jdGlvbiBpKGUsaSl7Zm9yKHZhciBvPXt9LHM9W10sYT0wO2E8ZS5sZW5ndGg7YSsrKXt2YXIgYz1lW2FdLGw9aS5iYXNlP2NbMF0raS5iYXNlOmNbMF0sdT1vW2xdfHwwLGg9IiIuY29uY2F0KGwsIiAiKS5jb25jYXQodSk7b1tsXT11KzE7dmFyIGY9cihoKSxfPXtjc3M6Y1sxXSxtZWRpYTpjWzJdLHNvdXJjZU1hcDpjWzNdLHN1cHBvcnRzOmNbNF0sbGF5ZXI6Y1s1XX07aWYoLTEhPT1mKXRbZl0ucmVmZXJlbmNlcysrLHRbZl0udXBkYXRlcihfKTtlbHNle3ZhciBkPW4oXyxpKTtpLmJ5SW5kZXg9YSx0LnNwbGljZShhLDAse2lkZW50aWZpZXI6aCx1cGRhdGVyOmQscmVmZXJlbmNlczoxfSl9cy5wdXNoKGgpfXJldHVybiBzfWZ1bmN0aW9uIG4oZSx0KXt2YXIgcj10LmRvbUFQSSh0KTtyZXR1cm4gci51cGRhdGUoZSksZnVuY3Rpb24odCl7aWYodCl7aWYodC5jc3M9PT1lLmNzcyYmdC5tZWRpYT09PWUubWVkaWEmJnQuc291cmNlTWFwPT09ZS5zb3VyY2VNYXAmJnQuc3VwcG9ydHM9PT1lLnN1cHBvcnRzJiZ0LmxheWVyPT09ZS5sYXllcilyZXR1cm47ci51cGRhdGUoZT10KX1lbHNlIHIucmVtb3ZlKCl9fWUuZXhwb3J0cz1mdW5jdGlvbihlLG4pe3ZhciBvPWkoZT1lfHxbXSxuPW58fHt9KTtyZXR1cm4gZnVuY3Rpb24oZSl7ZT1lfHxbXTtmb3IodmFyIHM9MDtzPG8ubGVuZ3RoO3MrKyl7dmFyIGE9cihvW3NdKTt0W2FdLnJlZmVyZW5jZXMtLX1mb3IodmFyIGM9aShlLG4pLGw9MDtsPG8ubGVuZ3RoO2wrKyl7dmFyIHU9cihvW2xdKTswPT09dFt1XS5yZWZlcmVuY2VzJiYodFt1XS51cGRhdGVyKCksdC5zcGxpY2UodSwxKSl9bz1jfX19LDU2OTplPT57InVzZSBzdHJpY3QiO3ZhciB0PXt9O2UuZXhwb3J0cz1mdW5jdGlvbihlLHIpe3ZhciBpPWZ1bmN0aW9uKGUpe2lmKHZvaWQgMD09PXRbZV0pe3ZhciByPWRvY3VtZW50LnF1ZXJ5U2VsZWN0b3IoZSk7aWYod2luZG93LkhUTUxJRnJhbWVFbGVtZW50JiZyIGluc3RhbmNlb2Ygd2luZG93LkhUTUxJRnJhbWVFbGVtZW50KXRyeXtyPXIuY29udGVudERvY3VtZW50LmhlYWR9Y2F0Y2goZSl7cj1udWxsfXRbZV09cn1yZXR1cm4gdFtlXX0oZSk7aWYoIWkpdGhyb3cgbmV3IEVycm9yKCJDb3VsZG4ndCBmaW5kIGEgc3R5bGUgdGFyZ2V0LiBUaGlzIHByb2JhYmx5IG1lYW5zIHRoYXQgdGhlIHZhbHVlIGZvciB0aGUgJ2luc2VydCcgcGFyYW1ldGVyIGlzIGludmFsaWQuIik7aS5hcHBlbmRDaGlsZChyKX19LDIxNjplPT57InVzZSBzdHJpY3QiO2UuZXhwb3J0cz1mdW5jdGlvbihlKXt2YXIgdD1kb2N1bWVudC5jcmVhdGVFbGVtZW50KCJzdHlsZSIpO3JldHVybiBlLnNldEF0dHJpYnV0ZXModCxlLmF0dHJpYnV0ZXMpLGUuaW5zZXJ0KHQsZS5vcHRpb25zKSx0fX0sNTY1OihlLHQscik9PnsidXNlIHN0cmljdCI7ZS5leHBvcnRzPWZ1bmN0aW9uKGUpe3ZhciB0PXIubmM7dCYmZS5zZXRBdHRyaWJ1dGUoIm5vbmNlIix0KX19LDc5NTplPT57InVzZSBzdHJpY3QiO2UuZXhwb3J0cz1mdW5jdGlvbihlKXt2YXIgdD1lLmluc2VydFN0eWxlRWxlbWVudChlKTtyZXR1cm57dXBkYXRlOmZ1bmN0aW9uKHIpeyFmdW5jdGlvbihlLHQscil7dmFyIGk9IiI7ci5zdXBwb3J0cyYmKGkrPSJAc3VwcG9ydHMgKCIuY29uY2F0KHIuc3VwcG9ydHMsIikgeyIpKSxyLm1lZGlhJiYoaSs9IkBtZWRpYSAiLmNvbmNhdChyLm1lZGlhLCIgeyIpKTt2YXIgbj12b2lkIDAhPT1yLmxheWVyO24mJihpKz0iQGxheWVyIi5jb25jYXQoci5sYXllci5sZW5ndGg+MD8iICIuY29uY2F0KHIubGF5ZXIpOiIiLCIgeyIpKSxpKz1yLmNzcyxuJiYoaSs9In0iKSxyLm1lZGlhJiYoaSs9In0iKSxyLnN1cHBvcnRzJiYoaSs9In0iKTt2YXIgbz1yLnNvdXJjZU1hcDtvJiYidW5kZWZpbmVkIiE9dHlwZW9mIGJ0b2EmJihpKz0iXG4vKiMgc291cmNlTWFwcGluZ1VSTD1kYXRhOmFwcGxpY2F0aW9uL2pzb247YmFzZTY0LCIuY29uY2F0KGJ0b2EodW5lc2NhcGUoZW5jb2RlVVJJQ29tcG9uZW50KEpTT04uc3RyaW5naWZ5KG8pKSkpLCIgKi8iKSksdC5zdHlsZVRhZ1RyYW5zZm9ybShpLGUsdC5vcHRpb25zKX0odCxlLHIpfSxyZW1vdmU6ZnVuY3Rpb24oKXshZnVuY3Rpb24oZSl7aWYobnVsbD09PWUucGFyZW50Tm9kZSlyZXR1cm4hMTtlLnBhcmVudE5vZGUucmVtb3ZlQ2hpbGQoZSl9KHQpfX19fSw1ODk6ZT0+eyJ1c2Ugc3RyaWN0IjtlLmV4cG9ydHM9ZnVuY3Rpb24oZSx0KXtpZih0LnN0eWxlU2hlZXQpdC5zdHlsZVNoZWV0LmNzc1RleHQ9ZTtlbHNle2Zvcig7dC5maXJzdENoaWxkOyl0LnJlbW92ZUNoaWxkKHQuZmlyc3RDaGlsZCk7dC5hcHBlbmRDaGlsZChkb2N1bWVudC5jcmVhdGVUZXh0Tm9kZShlKSl9fX0sNjE3OmU9PntzZWxmLGUuZXhwb3J0cz0oKCk9PnsidXNlIHN0cmljdCI7dmFyIGU9ezc3NTooZSx0KT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkZpdEFkZG9uPXZvaWQgMDt2YXIgcj1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoKXt9cmV0dXJuIGUucHJvdG90eXBlLmFjdGl2YXRlPWZ1bmN0aW9uKGUpe3RoaXMuX3Rlcm1pbmFsPWV9LGUucHJvdG90eXBlLmRpc3Bvc2U9ZnVuY3Rpb24oKXt9LGUucHJvdG90eXBlLmZpdD1mdW5jdGlvbigpe3ZhciBlPXRoaXMucHJvcG9zZURpbWVuc2lvbnMoKTtpZihlJiZ0aGlzLl90ZXJtaW5hbCl7dmFyIHQ9dGhpcy5fdGVybWluYWwuX2NvcmU7dGhpcy5fdGVybWluYWwucm93cz09PWUucm93cyYmdGhpcy5fdGVybWluYWwuY29scz09PWUuY29sc3x8KHQuX3JlbmRlclNlcnZpY2UuY2xlYXIoKSx0aGlzLl90ZXJtaW5hbC5yZXNpemUoZS5jb2xzLGUucm93cykpfX0sZS5wcm90b3R5cGUucHJvcG9zZURpbWVuc2lvbnM9ZnVuY3Rpb24oKXtpZih0aGlzLl90ZXJtaW5hbCYmdGhpcy5fdGVybWluYWwuZWxlbWVudCYmdGhpcy5fdGVybWluYWwuZWxlbWVudC5wYXJlbnRFbGVtZW50KXt2YXIgZT10aGlzLl90ZXJtaW5hbC5fY29yZTtpZigwIT09ZS5fcmVuZGVyU2VydmljZS5kaW1lbnNpb25zLmFjdHVhbENlbGxXaWR0aCYmMCE9PWUuX3JlbmRlclNlcnZpY2UuZGltZW5zaW9ucy5hY3R1YWxDZWxsSGVpZ2h0KXt2YXIgdD13aW5kb3cuZ2V0Q29tcHV0ZWRTdHlsZSh0aGlzLl90ZXJtaW5hbC5lbGVtZW50LnBhcmVudEVsZW1lbnQpLHI9cGFyc2VJbnQodC5nZXRQcm9wZXJ0eVZhbHVlKCJoZWlnaHQiKSksaT1NYXRoLm1heCgwLHBhcnNlSW50KHQuZ2V0UHJvcGVydHlWYWx1ZSgid2lkdGgiKSkpLG49d2luZG93LmdldENvbXB1dGVkU3R5bGUodGhpcy5fdGVybWluYWwuZWxlbWVudCksbz1yLShwYXJzZUludChuLmdldFByb3BlcnR5VmFsdWUoInBhZGRpbmctdG9wIikpK3BhcnNlSW50KG4uZ2V0UHJvcGVydHlWYWx1ZSgicGFkZGluZy1ib3R0b20iKSkpLHM9aS0ocGFyc2VJbnQobi5nZXRQcm9wZXJ0eVZhbHVlKCJwYWRkaW5nLXJpZ2h0IikpK3BhcnNlSW50KG4uZ2V0UHJvcGVydHlWYWx1ZSgicGFkZGluZy1sZWZ0IikpKS1lLnZpZXdwb3J0LnNjcm9sbEJhcldpZHRoO3JldHVybntjb2xzOk1hdGgubWF4KDIsTWF0aC5mbG9vcihzL2UuX3JlbmRlclNlcnZpY2UuZGltZW5zaW9ucy5hY3R1YWxDZWxsV2lkdGgpKSxyb3dzOk1hdGgubWF4KDEsTWF0aC5mbG9vcihvL2UuX3JlbmRlclNlcnZpY2UuZGltZW5zaW9ucy5hY3R1YWxDZWxsSGVpZ2h0KSl9fX19LGV9KCk7dC5GaXRBZGRvbj1yfX0sdD17fTtyZXR1cm4gZnVuY3Rpb24gcihpKXtpZih0W2ldKXJldHVybiB0W2ldLmV4cG9ydHM7dmFyIG49dFtpXT17ZXhwb3J0czp7fX07cmV0dXJuIGVbaV0obixuLmV4cG9ydHMsciksbi5leHBvcnRzfSg3NzUpfSkoKX0sMzIwOmU9PntzZWxmLGUuZXhwb3J0cz0oKCk9PnsidXNlIHN0cmljdCI7dmFyIGU9ezQ1Njc6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpLG49dGhpcyYmdGhpcy5fX2V4dGVuZHN8fChpPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGk9T2JqZWN0LnNldFByb3RvdHlwZU9mfHx7X19wcm90b19fOltdfWluc3RhbmNlb2YgQXJyYXkmJmZ1bmN0aW9uKGUsdCl7ZS5fX3Byb3RvX189dH18fGZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByIGluIHQpT2JqZWN0LnByb3RvdHlwZS5oYXNPd25Qcm9wZXJ0eS5jYWxsKHQscikmJihlW3JdPXRbcl0pfSxpKGUsdCl9LGZ1bmN0aW9uKGUsdCl7aWYoImZ1bmN0aW9uIiE9dHlwZW9mIHQmJm51bGwhPT10KXRocm93IG5ldyBUeXBlRXJyb3IoIkNsYXNzIGV4dGVuZHMgdmFsdWUgIitTdHJpbmcodCkrIiBpcyBub3QgYSBjb25zdHJ1Y3RvciBvciBudWxsIik7ZnVuY3Rpb24gcigpe3RoaXMuY29uc3RydWN0b3I9ZX1pKGUsdCksZS5wcm90b3R5cGU9bnVsbD09PXQ/T2JqZWN0LmNyZWF0ZSh0KTooci5wcm90b3R5cGU9dC5wcm90b3R5cGUsbmV3IHIpfSk7T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuQWNjZXNzaWJpbGl0eU1hbmFnZXI9dm9pZCAwO3ZhciBvPXIoOTA0Mikscz1yKDYxMTQpLGE9cig5OTI0KSxjPXIoMzY1NiksbD1yKDg0NCksdT1yKDU1OTYpLGg9cig5NjMxKSxmPWZ1bmN0aW9uKGUpe2Z1bmN0aW9uIHQodCxyKXt2YXIgaT1lLmNhbGwodGhpcyl8fHRoaXM7aS5fdGVybWluYWw9dCxpLl9yZW5kZXJTZXJ2aWNlPXIsaS5fbGl2ZVJlZ2lvbkxpbmVDb3VudD0wLGkuX2NoYXJzVG9Db25zdW1lPVtdLGkuX2NoYXJzVG9Bbm5vdW5jZT0iIixpLl9hY2Nlc3NpYmlsaXR5VHJlZVJvb3Q9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2IiksaS5fYWNjZXNzaWJpbGl0eVRyZWVSb290LnNldEF0dHJpYnV0ZSgicm9sZSIsImRvY3VtZW50IiksaS5fYWNjZXNzaWJpbGl0eVRyZWVSb290LmNsYXNzTGlzdC5hZGQoInh0ZXJtLWFjY2Vzc2liaWxpdHkiKSxpLl9hY2Nlc3NpYmlsaXR5VHJlZVJvb3QudGFiSW5kZXg9MCxpLl9yb3dDb250YWluZXI9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2IiksaS5fcm93Q29udGFpbmVyLnNldEF0dHJpYnV0ZSgicm9sZSIsImxpc3QiKSxpLl9yb3dDb250YWluZXIuY2xhc3NMaXN0LmFkZCgieHRlcm0tYWNjZXNzaWJpbGl0eS10cmVlIiksaS5fcm93RWxlbWVudHM9W107Zm9yKHZhciBuPTA7bjxpLl90ZXJtaW5hbC5yb3dzO24rKylpLl9yb3dFbGVtZW50c1tuXT1pLl9jcmVhdGVBY2Nlc3NpYmlsaXR5VHJlZU5vZGUoKSxpLl9yb3dDb250YWluZXIuYXBwZW5kQ2hpbGQoaS5fcm93RWxlbWVudHNbbl0pO2lmKGkuX3RvcEJvdW5kYXJ5Rm9jdXNMaXN0ZW5lcj1mdW5jdGlvbihlKXtyZXR1cm4gaS5fb25Cb3VuZGFyeUZvY3VzKGUsMCl9LGkuX2JvdHRvbUJvdW5kYXJ5Rm9jdXNMaXN0ZW5lcj1mdW5jdGlvbihlKXtyZXR1cm4gaS5fb25Cb3VuZGFyeUZvY3VzKGUsMSl9LGkuX3Jvd0VsZW1lbnRzWzBdLmFkZEV2ZW50TGlzdGVuZXIoImZvY3VzIixpLl90b3BCb3VuZGFyeUZvY3VzTGlzdGVuZXIpLGkuX3Jvd0VsZW1lbnRzW2kuX3Jvd0VsZW1lbnRzLmxlbmd0aC0xXS5hZGRFdmVudExpc3RlbmVyKCJmb2N1cyIsaS5fYm90dG9tQm91bmRhcnlGb2N1c0xpc3RlbmVyKSxpLl9yZWZyZXNoUm93c0RpbWVuc2lvbnMoKSxpLl9hY2Nlc3NpYmlsaXR5VHJlZVJvb3QuYXBwZW5kQ2hpbGQoaS5fcm93Q29udGFpbmVyKSxpLl9yZW5kZXJSb3dzRGVib3VuY2VyPW5ldyBhLlRpbWVCYXNlZERlYm91bmNlcihpLl9yZW5kZXJSb3dzLmJpbmQoaSkpLGkuX3JlZnJlc2hSb3dzKCksaS5fbGl2ZVJlZ2lvbj1kb2N1bWVudC5jcmVhdGVFbGVtZW50KCJkaXYiKSxpLl9saXZlUmVnaW9uLmNsYXNzTGlzdC5hZGQoImxpdmUtcmVnaW9uIiksaS5fbGl2ZVJlZ2lvbi5zZXRBdHRyaWJ1dGUoImFyaWEtbGl2ZSIsImFzc2VydGl2ZSIpLGkuX2FjY2Vzc2liaWxpdHlUcmVlUm9vdC5hcHBlbmRDaGlsZChpLl9saXZlUmVnaW9uKSwhaS5fdGVybWluYWwuZWxlbWVudCl0aHJvdyBuZXcgRXJyb3IoIkNhbm5vdCBlbmFibGUgYWNjZXNzaWJpbGl0eSBiZWZvcmUgVGVybWluYWwub3BlbiIpO3JldHVybiBpLl90ZXJtaW5hbC5lbGVtZW50Lmluc2VydEFkamFjZW50RWxlbWVudCgiYWZ0ZXJiZWdpbiIsaS5fYWNjZXNzaWJpbGl0eVRyZWVSb290KSxpLnJlZ2lzdGVyKGkuX3JlbmRlclJvd3NEZWJvdW5jZXIpLGkucmVnaXN0ZXIoaS5fdGVybWluYWwub25SZXNpemUoKGZ1bmN0aW9uKGUpe3JldHVybiBpLl9vblJlc2l6ZShlLnJvd3MpfSkpKSxpLnJlZ2lzdGVyKGkuX3Rlcm1pbmFsLm9uUmVuZGVyKChmdW5jdGlvbihlKXtyZXR1cm4gaS5fcmVmcmVzaFJvd3MoZS5zdGFydCxlLmVuZCl9KSkpLGkucmVnaXN0ZXIoaS5fdGVybWluYWwub25TY3JvbGwoKGZ1bmN0aW9uKCl7cmV0dXJuIGkuX3JlZnJlc2hSb3dzKCl9KSkpLGkucmVnaXN0ZXIoaS5fdGVybWluYWwub25BMTF5Q2hhcigoZnVuY3Rpb24oZSl7cmV0dXJuIGkuX29uQ2hhcihlKX0pKSksaS5yZWdpc3RlcihpLl90ZXJtaW5hbC5vbkxpbmVGZWVkKChmdW5jdGlvbigpe3JldHVybiBpLl9vbkNoYXIoIlxuIil9KSkpLGkucmVnaXN0ZXIoaS5fdGVybWluYWwub25BMTF5VGFiKChmdW5jdGlvbihlKXtyZXR1cm4gaS5fb25UYWIoZSl9KSkpLGkucmVnaXN0ZXIoaS5fdGVybWluYWwub25LZXkoKGZ1bmN0aW9uKGUpe3JldHVybiBpLl9vbktleShlLmtleSl9KSkpLGkucmVnaXN0ZXIoaS5fdGVybWluYWwub25CbHVyKChmdW5jdGlvbigpe3JldHVybiBpLl9jbGVhckxpdmVSZWdpb24oKX0pKSksaS5yZWdpc3RlcihpLl9yZW5kZXJTZXJ2aWNlLm9uRGltZW5zaW9uc0NoYW5nZSgoZnVuY3Rpb24oKXtyZXR1cm4gaS5fcmVmcmVzaFJvd3NEaW1lbnNpb25zKCl9KSkpLGkuX3NjcmVlbkRwck1vbml0b3I9bmV3IHUuU2NyZWVuRHByTW9uaXRvcixpLnJlZ2lzdGVyKGkuX3NjcmVlbkRwck1vbml0b3IpLGkuX3NjcmVlbkRwck1vbml0b3Iuc2V0TGlzdGVuZXIoKGZ1bmN0aW9uKCl7cmV0dXJuIGkuX3JlZnJlc2hSb3dzRGltZW5zaW9ucygpfSkpLGkucmVnaXN0ZXIoKDAsYy5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHdpbmRvdywicmVzaXplIiwoZnVuY3Rpb24oKXtyZXR1cm4gaS5fcmVmcmVzaFJvd3NEaW1lbnNpb25zKCl9KSkpLGl9cmV0dXJuIG4odCxlKSx0LnByb3RvdHlwZS5kaXNwb3NlPWZ1bmN0aW9uKCl7ZS5wcm90b3R5cGUuZGlzcG9zZS5jYWxsKHRoaXMpLCgwLGgucmVtb3ZlRWxlbWVudEZyb21QYXJlbnQpKHRoaXMuX2FjY2Vzc2liaWxpdHlUcmVlUm9vdCksdGhpcy5fcm93RWxlbWVudHMubGVuZ3RoPTB9LHQucHJvdG90eXBlLl9vbkJvdW5kYXJ5Rm9jdXM9ZnVuY3Rpb24oZSx0KXt2YXIgcj1lLnRhcmdldCxpPXRoaXMuX3Jvd0VsZW1lbnRzWzA9PT10PzE6dGhpcy5fcm93RWxlbWVudHMubGVuZ3RoLTJdO2lmKHIuZ2V0QXR0cmlidXRlKCJhcmlhLXBvc2luc2V0IikhPT0oMD09PXQ/IjEiOiIiK3RoaXMuX3Rlcm1pbmFsLmJ1ZmZlci5saW5lcy5sZW5ndGgpJiZlLnJlbGF0ZWRUYXJnZXQ9PT1pKXt2YXIgbixvO2lmKDA9PT10PyhuPXIsbz10aGlzLl9yb3dFbGVtZW50cy5wb3AoKSx0aGlzLl9yb3dDb250YWluZXIucmVtb3ZlQ2hpbGQobykpOihuPXRoaXMuX3Jvd0VsZW1lbnRzLnNoaWZ0KCksbz1yLHRoaXMuX3Jvd0NvbnRhaW5lci5yZW1vdmVDaGlsZChuKSksbi5yZW1vdmVFdmVudExpc3RlbmVyKCJmb2N1cyIsdGhpcy5fdG9wQm91bmRhcnlGb2N1c0xpc3RlbmVyKSxvLnJlbW92ZUV2ZW50TGlzdGVuZXIoImZvY3VzIix0aGlzLl9ib3R0b21Cb3VuZGFyeUZvY3VzTGlzdGVuZXIpLDA9PT10KXt2YXIgcz10aGlzLl9jcmVhdGVBY2Nlc3NpYmlsaXR5VHJlZU5vZGUoKTt0aGlzLl9yb3dFbGVtZW50cy51bnNoaWZ0KHMpLHRoaXMuX3Jvd0NvbnRhaW5lci5pbnNlcnRBZGphY2VudEVsZW1lbnQoImFmdGVyYmVnaW4iLHMpfWVsc2Ugcz10aGlzLl9jcmVhdGVBY2Nlc3NpYmlsaXR5VHJlZU5vZGUoKSx0aGlzLl9yb3dFbGVtZW50cy5wdXNoKHMpLHRoaXMuX3Jvd0NvbnRhaW5lci5hcHBlbmRDaGlsZChzKTt0aGlzLl9yb3dFbGVtZW50c1swXS5hZGRFdmVudExpc3RlbmVyKCJmb2N1cyIsdGhpcy5fdG9wQm91bmRhcnlGb2N1c0xpc3RlbmVyKSx0aGlzLl9yb3dFbGVtZW50c1t0aGlzLl9yb3dFbGVtZW50cy5sZW5ndGgtMV0uYWRkRXZlbnRMaXN0ZW5lcigiZm9jdXMiLHRoaXMuX2JvdHRvbUJvdW5kYXJ5Rm9jdXNMaXN0ZW5lciksdGhpcy5fdGVybWluYWwuc2Nyb2xsTGluZXMoMD09PXQ/LTE6MSksdGhpcy5fcm93RWxlbWVudHNbMD09PXQ/MTp0aGlzLl9yb3dFbGVtZW50cy5sZW5ndGgtMl0uZm9jdXMoKSxlLnByZXZlbnREZWZhdWx0KCksZS5zdG9wSW1tZWRpYXRlUHJvcGFnYXRpb24oKX19LHQucHJvdG90eXBlLl9vblJlc2l6ZT1mdW5jdGlvbihlKXt0aGlzLl9yb3dFbGVtZW50c1t0aGlzLl9yb3dFbGVtZW50cy5sZW5ndGgtMV0ucmVtb3ZlRXZlbnRMaXN0ZW5lcigiZm9jdXMiLHRoaXMuX2JvdHRvbUJvdW5kYXJ5Rm9jdXNMaXN0ZW5lcik7Zm9yKHZhciB0PXRoaXMuX3Jvd0NvbnRhaW5lci5jaGlsZHJlbi5sZW5ndGg7dDx0aGlzLl90ZXJtaW5hbC5yb3dzO3QrKyl0aGlzLl9yb3dFbGVtZW50c1t0XT10aGlzLl9jcmVhdGVBY2Nlc3NpYmlsaXR5VHJlZU5vZGUoKSx0aGlzLl9yb3dDb250YWluZXIuYXBwZW5kQ2hpbGQodGhpcy5fcm93RWxlbWVudHNbdF0pO2Zvcig7dGhpcy5fcm93RWxlbWVudHMubGVuZ3RoPmU7KXRoaXMuX3Jvd0NvbnRhaW5lci5yZW1vdmVDaGlsZCh0aGlzLl9yb3dFbGVtZW50cy5wb3AoKSk7dGhpcy5fcm93RWxlbWVudHNbdGhpcy5fcm93RWxlbWVudHMubGVuZ3RoLTFdLmFkZEV2ZW50TGlzdGVuZXIoImZvY3VzIix0aGlzLl9ib3R0b21Cb3VuZGFyeUZvY3VzTGlzdGVuZXIpLHRoaXMuX3JlZnJlc2hSb3dzRGltZW5zaW9ucygpfSx0LnByb3RvdHlwZS5fY3JlYXRlQWNjZXNzaWJpbGl0eVRyZWVOb2RlPWZ1bmN0aW9uKCl7dmFyIGU9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2Iik7cmV0dXJuIGUuc2V0QXR0cmlidXRlKCJyb2xlIiwibGlzdGl0ZW0iKSxlLnRhYkluZGV4PS0xLHRoaXMuX3JlZnJlc2hSb3dEaW1lbnNpb25zKGUpLGV9LHQucHJvdG90eXBlLl9vblRhYj1mdW5jdGlvbihlKXtmb3IodmFyIHQ9MDt0PGU7dCsrKXRoaXMuX29uQ2hhcigiICIpfSx0LnByb3RvdHlwZS5fb25DaGFyPWZ1bmN0aW9uKGUpe3ZhciB0PXRoaXM7dGhpcy5fbGl2ZVJlZ2lvbkxpbmVDb3VudDwyMSYmKHRoaXMuX2NoYXJzVG9Db25zdW1lLmxlbmd0aD4wP3RoaXMuX2NoYXJzVG9Db25zdW1lLnNoaWZ0KCkhPT1lJiYodGhpcy5fY2hhcnNUb0Fubm91bmNlKz1lKTp0aGlzLl9jaGFyc1RvQW5ub3VuY2UrPWUsIlxuIj09PWUmJih0aGlzLl9saXZlUmVnaW9uTGluZUNvdW50KyssMjE9PT10aGlzLl9saXZlUmVnaW9uTGluZUNvdW50JiYodGhpcy5fbGl2ZVJlZ2lvbi50ZXh0Q29udGVudCs9by50b29NdWNoT3V0cHV0KSkscy5pc01hYyYmdGhpcy5fbGl2ZVJlZ2lvbi50ZXh0Q29udGVudCYmdGhpcy5fbGl2ZVJlZ2lvbi50ZXh0Q29udGVudC5sZW5ndGg+MCYmIXRoaXMuX2xpdmVSZWdpb24ucGFyZW50Tm9kZSYmc2V0VGltZW91dCgoZnVuY3Rpb24oKXt0Ll9hY2Nlc3NpYmlsaXR5VHJlZVJvb3QuYXBwZW5kQ2hpbGQodC5fbGl2ZVJlZ2lvbil9KSwwKSl9LHQucHJvdG90eXBlLl9jbGVhckxpdmVSZWdpb249ZnVuY3Rpb24oKXt0aGlzLl9saXZlUmVnaW9uLnRleHRDb250ZW50PSIiLHRoaXMuX2xpdmVSZWdpb25MaW5lQ291bnQ9MCxzLmlzTWFjJiYoMCxoLnJlbW92ZUVsZW1lbnRGcm9tUGFyZW50KSh0aGlzLl9saXZlUmVnaW9uKX0sdC5wcm90b3R5cGUuX29uS2V5PWZ1bmN0aW9uKGUpe3RoaXMuX2NsZWFyTGl2ZVJlZ2lvbigpLHRoaXMuX2NoYXJzVG9Db25zdW1lLnB1c2goZSl9LHQucHJvdG90eXBlLl9yZWZyZXNoUm93cz1mdW5jdGlvbihlLHQpe3RoaXMuX3JlbmRlclJvd3NEZWJvdW5jZXIucmVmcmVzaChlLHQsdGhpcy5fdGVybWluYWwucm93cyl9LHQucHJvdG90eXBlLl9yZW5kZXJSb3dzPWZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByPXRoaXMuX3Rlcm1pbmFsLmJ1ZmZlcixpPXIubGluZXMubGVuZ3RoLnRvU3RyaW5nKCksbj1lO248PXQ7bisrKXt2YXIgbz1yLnRyYW5zbGF0ZUJ1ZmZlckxpbmVUb1N0cmluZyhyLnlkaXNwK24sITApLHM9KHIueWRpc3ArbisxKS50b1N0cmluZygpLGE9dGhpcy5fcm93RWxlbWVudHNbbl07YSYmKDA9PT1vLmxlbmd0aD9hLmlubmVyVGV4dD0iwqAiOmEudGV4dENvbnRlbnQ9byxhLnNldEF0dHJpYnV0ZSgiYXJpYS1wb3NpbnNldCIscyksYS5zZXRBdHRyaWJ1dGUoImFyaWEtc2V0c2l6ZSIsaSkpfXRoaXMuX2Fubm91bmNlQ2hhcmFjdGVycygpfSx0LnByb3RvdHlwZS5fcmVmcmVzaFJvd3NEaW1lbnNpb25zPWZ1bmN0aW9uKCl7aWYodGhpcy5fcmVuZGVyU2VydmljZS5kaW1lbnNpb25zLmFjdHVhbENlbGxIZWlnaHQpe3RoaXMuX3Jvd0VsZW1lbnRzLmxlbmd0aCE9PXRoaXMuX3Rlcm1pbmFsLnJvd3MmJnRoaXMuX29uUmVzaXplKHRoaXMuX3Rlcm1pbmFsLnJvd3MpO2Zvcih2YXIgZT0wO2U8dGhpcy5fdGVybWluYWwucm93cztlKyspdGhpcy5fcmVmcmVzaFJvd0RpbWVuc2lvbnModGhpcy5fcm93RWxlbWVudHNbZV0pfX0sdC5wcm90b3R5cGUuX3JlZnJlc2hSb3dEaW1lbnNpb25zPWZ1bmN0aW9uKGUpe2Uuc3R5bGUuaGVpZ2h0PXRoaXMuX3JlbmRlclNlcnZpY2UuZGltZW5zaW9ucy5hY3R1YWxDZWxsSGVpZ2h0KyJweCJ9LHQucHJvdG90eXBlLl9hbm5vdW5jZUNoYXJhY3RlcnM9ZnVuY3Rpb24oKXswIT09dGhpcy5fY2hhcnNUb0Fubm91bmNlLmxlbmd0aCYmKHRoaXMuX2xpdmVSZWdpb24udGV4dENvbnRlbnQrPXRoaXMuX2NoYXJzVG9Bbm5vdW5jZSx0aGlzLl9jaGFyc1RvQW5ub3VuY2U9IiIpfSx0fShsLkRpc3Bvc2FibGUpO3QuQWNjZXNzaWJpbGl0eU1hbmFnZXI9Zn0sMzYxNDooZSx0KT0+e2Z1bmN0aW9uIHIoZSl7cmV0dXJuIGUucmVwbGFjZSgvXHI/XG4vZywiXHIiKX1mdW5jdGlvbiBpKGUsdCl7cmV0dXJuIHQ/IhtbMjAwfiIrZSsiG1syMDF+IjplfWZ1bmN0aW9uIG4oZSx0LG4pe2U9aShlPXIoZSksbi5kZWNQcml2YXRlTW9kZXMuYnJhY2tldGVkUGFzdGVNb2RlKSxuLnRyaWdnZXJEYXRhRXZlbnQoZSwhMCksdC52YWx1ZT0iIn1mdW5jdGlvbiBvKGUsdCxyKXt2YXIgaT1yLmdldEJvdW5kaW5nQ2xpZW50UmVjdCgpLG49ZS5jbGllbnRYLWkubGVmdC0xMCxvPWUuY2xpZW50WS1pLnRvcC0xMDt0LnN0eWxlLndpZHRoPSIyMHB4Iix0LnN0eWxlLmhlaWdodD0iMjBweCIsdC5zdHlsZS5sZWZ0PW4rInB4Iix0LnN0eWxlLnRvcD1vKyJweCIsdC5zdHlsZS56SW5kZXg9IjEwMDAiLHQuZm9jdXMoKX1PYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5yaWdodENsaWNrSGFuZGxlcj10Lm1vdmVUZXh0QXJlYVVuZGVyTW91c2VDdXJzb3I9dC5wYXN0ZT10LmhhbmRsZVBhc3RlRXZlbnQ9dC5jb3B5SGFuZGxlcj10LmJyYWNrZXRUZXh0Rm9yUGFzdGU9dC5wcmVwYXJlVGV4dEZvclRlcm1pbmFsPXZvaWQgMCx0LnByZXBhcmVUZXh0Rm9yVGVybWluYWw9cix0LmJyYWNrZXRUZXh0Rm9yUGFzdGU9aSx0LmNvcHlIYW5kbGVyPWZ1bmN0aW9uKGUsdCl7ZS5jbGlwYm9hcmREYXRhJiZlLmNsaXBib2FyZERhdGEuc2V0RGF0YSgidGV4dC9wbGFpbiIsdC5zZWxlY3Rpb25UZXh0KSxlLnByZXZlbnREZWZhdWx0KCl9LHQuaGFuZGxlUGFzdGVFdmVudD1mdW5jdGlvbihlLHQscil7ZS5zdG9wUHJvcGFnYXRpb24oKSxlLmNsaXBib2FyZERhdGEmJm4oZS5jbGlwYm9hcmREYXRhLmdldERhdGEoInRleHQvcGxhaW4iKSx0LHIpfSx0LnBhc3RlPW4sdC5tb3ZlVGV4dEFyZWFVbmRlck1vdXNlQ3Vyc29yPW8sdC5yaWdodENsaWNrSGFuZGxlcj1mdW5jdGlvbihlLHQscixpLG4pe28oZSx0LHIpLG4mJmkucmlnaHRDbGlja1NlbGVjdChlKSx0LnZhbHVlPWkuc2VsZWN0aW9uVGV4dCx0LnNlbGVjdCgpfX0sNDc3NDooZSx0KT0+e3ZhciByLGksbixvO2Z1bmN0aW9uIHMoZSl7dmFyIHQ9ZS50b1N0cmluZygxNik7cmV0dXJuIHQubGVuZ3RoPDI/IjAiK3Q6dH1mdW5jdGlvbiBhKGUsdCl7cmV0dXJuIGU8dD8odCsuMDUpLyhlKy4wNSk6KGUrLjA1KS8odCsuMDUpfU9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LmNvbnRyYXN0UmF0aW89dC50b1BhZGRlZEhleD10LnJnYmE9dC5yZ2I9dC5jc3M9dC5jb2xvcj10LmNoYW5uZWxzPXZvaWQgMCxmdW5jdGlvbihlKXtlLnRvQ3NzPWZ1bmN0aW9uKGUsdCxyLGkpe3JldHVybiB2b2lkIDAhPT1pPyIjIitzKGUpK3ModCkrcyhyKStzKGkpOiIjIitzKGUpK3ModCkrcyhyKX0sZS50b1JnYmE9ZnVuY3Rpb24oZSx0LHIsaSl7cmV0dXJuIHZvaWQgMD09PWkmJihpPTI1NSksKGU8PDI0fHQ8PDE2fHI8PDh8aSk+Pj4wfX0ocj10LmNoYW5uZWxzfHwodC5jaGFubmVscz17fSkpLChpPXQuY29sb3J8fCh0LmNvbG9yPXt9KSkuYmxlbmQ9ZnVuY3Rpb24oZSx0KXt2YXIgaT0oMjU1JnQucmdiYSkvMjU1O2lmKDE9PT1pKXJldHVybntjc3M6dC5jc3MscmdiYTp0LnJnYmF9O3ZhciBuPXQucmdiYT4+MjQmMjU1LG89dC5yZ2JhPj4xNiYyNTUscz10LnJnYmE+PjgmMjU1LGE9ZS5yZ2JhPj4yNCYyNTUsYz1lLnJnYmE+PjE2JjI1NSxsPWUucmdiYT4+OCYyNTUsdT1hK01hdGgucm91bmQoKG4tYSkqaSksaD1jK01hdGgucm91bmQoKG8tYykqaSksZj1sK01hdGgucm91bmQoKHMtbCkqaSk7cmV0dXJue2NzczpyLnRvQ3NzKHUsaCxmKSxyZ2JhOnIudG9SZ2JhKHUsaCxmKX19LGkuaXNPcGFxdWU9ZnVuY3Rpb24oZSl7cmV0dXJuIDI1NT09KDI1NSZlLnJnYmEpfSxpLmVuc3VyZUNvbnRyYXN0UmF0aW89ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPW8uZW5zdXJlQ29udHJhc3RSYXRpbyhlLnJnYmEsdC5yZ2JhLHIpO2lmKGkpcmV0dXJuIG8udG9Db2xvcihpPj4yNCYyNTUsaT4+MTYmMjU1LGk+PjgmMjU1KX0saS5vcGFxdWU9ZnVuY3Rpb24oZSl7dmFyIHQ9KDI1NXxlLnJnYmEpPj4+MCxpPW8udG9DaGFubmVscyh0KSxuPWlbMF0scz1pWzFdLGE9aVsyXTtyZXR1cm57Y3NzOnIudG9Dc3MobixzLGEpLHJnYmE6dH19LGkub3BhY2l0eT1mdW5jdGlvbihlLHQpe3ZhciBpPU1hdGgucm91bmQoMjU1KnQpLG49by50b0NoYW5uZWxzKGUucmdiYSkscz1uWzBdLGE9blsxXSxjPW5bMl07cmV0dXJue2NzczpyLnRvQ3NzKHMsYSxjLGkpLHJnYmE6ci50b1JnYmEocyxhLGMsaSl9fSxpLnRvQ29sb3JSR0I9ZnVuY3Rpb24oZSl7cmV0dXJuW2UucmdiYT4+MjQmMjU1LGUucmdiYT4+MTYmMjU1LGUucmdiYT4+OCYyNTVdfSwodC5jc3N8fCh0LmNzcz17fSkpLnRvQ29sb3I9ZnVuY3Rpb24oZSl7c3dpdGNoKGUubGVuZ3RoKXtjYXNlIDc6cmV0dXJue2NzczplLHJnYmE6KHBhcnNlSW50KGUuc2xpY2UoMSksMTYpPDw4fDI1NSk+Pj4wfTtjYXNlIDk6cmV0dXJue2NzczplLHJnYmE6cGFyc2VJbnQoZS5zbGljZSgxKSwxNik+Pj4wfX10aHJvdyBuZXcgRXJyb3IoImNzcy50b0NvbG9yOiBVbnN1cHBvcnRlZCBjc3MgZm9ybWF0Iil9LGZ1bmN0aW9uKGUpe2Z1bmN0aW9uIHQoZSx0LHIpe3ZhciBpPWUvMjU1LG49dC8yNTUsbz1yLzI1NTtyZXR1cm4uMjEyNiooaTw9LjAzOTI4P2kvMTIuOTI6TWF0aC5wb3coKGkrLjA1NSkvMS4wNTUsMi40KSkrLjcxNTIqKG48PS4wMzkyOD9uLzEyLjkyOk1hdGgucG93KChuKy4wNTUpLzEuMDU1LDIuNCkpKy4wNzIyKihvPD0uMDM5Mjg/by8xMi45MjpNYXRoLnBvdygobysuMDU1KS8xLjA1NSwyLjQpKX1lLnJlbGF0aXZlTHVtaW5hbmNlPWZ1bmN0aW9uKGUpe3JldHVybiB0KGU+PjE2JjI1NSxlPj44JjI1NSwyNTUmZSl9LGUucmVsYXRpdmVMdW1pbmFuY2UyPXR9KG49dC5yZ2J8fCh0LnJnYj17fSkpLGZ1bmN0aW9uKGUpe2Z1bmN0aW9uIHQoZSx0LHIpe2Zvcih2YXIgaT1lPj4yNCYyNTUsbz1lPj4xNiYyNTUscz1lPj44JjI1NSxjPXQ+PjI0JjI1NSxsPXQ+PjE2JjI1NSx1PXQ+PjgmMjU1LGg9YShuLnJlbGF0aXZlTHVtaW5hbmNlMihjLHUsbCksbi5yZWxhdGl2ZUx1bWluYW5jZTIoaSxvLHMpKTtoPHImJihjPjB8fGw+MHx8dT4wKTspYy09TWF0aC5tYXgoMCxNYXRoLmNlaWwoLjEqYykpLGwtPU1hdGgubWF4KDAsTWF0aC5jZWlsKC4xKmwpKSx1LT1NYXRoLm1heCgwLE1hdGguY2VpbCguMSp1KSksaD1hKG4ucmVsYXRpdmVMdW1pbmFuY2UyKGMsdSxsKSxuLnJlbGF0aXZlTHVtaW5hbmNlMihpLG8scykpO3JldHVybihjPDwyNHxsPDwxNnx1PDw4fDI1NSk+Pj4wfWZ1bmN0aW9uIGkoZSx0LHIpe2Zvcih2YXIgaT1lPj4yNCYyNTUsbz1lPj4xNiYyNTUscz1lPj44JjI1NSxjPXQ+PjI0JjI1NSxsPXQ+PjE2JjI1NSx1PXQ+PjgmMjU1LGg9YShuLnJlbGF0aXZlTHVtaW5hbmNlMihjLHUsbCksbi5yZWxhdGl2ZUx1bWluYW5jZTIoaSxvLHMpKTtoPHImJihjPDI1NXx8bDwyNTV8fHU8MjU1KTspYz1NYXRoLm1pbigyNTUsYytNYXRoLmNlaWwoLjEqKDI1NS1jKSkpLGw9TWF0aC5taW4oMjU1LGwrTWF0aC5jZWlsKC4xKigyNTUtbCkpKSx1PU1hdGgubWluKDI1NSx1K01hdGguY2VpbCguMSooMjU1LXUpKSksaD1hKG4ucmVsYXRpdmVMdW1pbmFuY2UyKGMsdSxsKSxuLnJlbGF0aXZlTHVtaW5hbmNlMihpLG8scykpO3JldHVybihjPDwyNHxsPDwxNnx1PDw4fDI1NSk+Pj4wfWUuZW5zdXJlQ29udHJhc3RSYXRpbz1mdW5jdGlvbihlLHIsbyl7dmFyIHM9bi5yZWxhdGl2ZUx1bWluYW5jZShlPj44KSxjPW4ucmVsYXRpdmVMdW1pbmFuY2Uocj4+OCk7aWYoYShzLGMpPG8pcmV0dXJuIGM8cz90KGUscixvKTppKGUscixvKX0sZS5yZWR1Y2VMdW1pbmFuY2U9dCxlLmluY3JlYXNlTHVtaW5hbmNlPWksZS50b0NoYW5uZWxzPWZ1bmN0aW9uKGUpe3JldHVybltlPj4yNCYyNTUsZT4+MTYmMjU1LGU+PjgmMjU1LDI1NSZlXX0sZS50b0NvbG9yPWZ1bmN0aW9uKGUsdCxpKXtyZXR1cm57Y3NzOnIudG9Dc3MoZSx0LGkpLHJnYmE6ci50b1JnYmEoZSx0LGkpfX19KG89dC5yZ2JhfHwodC5yZ2JhPXt9KSksdC50b1BhZGRlZEhleD1zLHQuY29udHJhc3RSYXRpbz1hfSw3MjM5OihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuQ29sb3JDb250cmFzdENhY2hlPXZvaWQgMDt2YXIgcj1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoKXt0aGlzLl9jb2xvcj17fSx0aGlzLl9yZ2JhPXt9fXJldHVybiBlLnByb3RvdHlwZS5jbGVhcj1mdW5jdGlvbigpe3RoaXMuX2NvbG9yPXt9LHRoaXMuX3JnYmE9e319LGUucHJvdG90eXBlLnNldENzcz1mdW5jdGlvbihlLHQscil7dGhpcy5fcmdiYVtlXXx8KHRoaXMuX3JnYmFbZV09e30pLHRoaXMuX3JnYmFbZV1bdF09cn0sZS5wcm90b3R5cGUuZ2V0Q3NzPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIHRoaXMuX3JnYmFbZV0/dGhpcy5fcmdiYVtlXVt0XTp2b2lkIDB9LGUucHJvdG90eXBlLnNldENvbG9yPWZ1bmN0aW9uKGUsdCxyKXt0aGlzLl9jb2xvcltlXXx8KHRoaXMuX2NvbG9yW2VdPXt9KSx0aGlzLl9jb2xvcltlXVt0XT1yfSxlLnByb3RvdHlwZS5nZXRDb2xvcj1mdW5jdGlvbihlLHQpe3JldHVybiB0aGlzLl9jb2xvcltlXT90aGlzLl9jb2xvcltlXVt0XTp2b2lkIDB9LGV9KCk7dC5Db2xvckNvbnRyYXN0Q2FjaGU9cn0sNTY4MDpmdW5jdGlvbihlLHQscil7dmFyIGk9dGhpcyYmdGhpcy5fX3NwcmVhZEFycmF5fHxmdW5jdGlvbihlLHQscil7aWYocnx8Mj09PWFyZ3VtZW50cy5sZW5ndGgpZm9yKHZhciBpLG49MCxvPXQubGVuZ3RoO248bztuKyspIWkmJm4gaW4gdHx8KGl8fChpPUFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKHQsMCxuKSksaVtuXT10W25dKTtyZXR1cm4gZS5jb25jYXQoaXx8QXJyYXkucHJvdG90eXBlLnNsaWNlLmNhbGwodCkpfTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Db2xvck1hbmFnZXI9dC5ERUZBVUxUX0FOU0lfQ09MT1JTPXZvaWQgMDt2YXIgbj1yKDQ3NzQpLG89cig3MjM5KSxzPW4uY3NzLnRvQ29sb3IoIiNmZmZmZmYiKSxhPW4uY3NzLnRvQ29sb3IoIiMwMDAwMDAiKSxjPW4uY3NzLnRvQ29sb3IoIiNmZmZmZmYiKSxsPW4uY3NzLnRvQ29sb3IoIiMwMDAwMDAiKSx1PXtjc3M6InJnYmEoMjU1LCAyNTUsIDI1NSwgMC4zKSIscmdiYTo0Mjk0OTY3MTE3fTt0LkRFRkFVTFRfQU5TSV9DT0xPUlM9T2JqZWN0LmZyZWV6ZShmdW5jdGlvbigpe2Zvcih2YXIgZT1bbi5jc3MudG9Db2xvcigiIzJlMzQzNiIpLG4uY3NzLnRvQ29sb3IoIiNjYzAwMDAiKSxuLmNzcy50b0NvbG9yKCIjNGU5YTA2Iiksbi5jc3MudG9Db2xvcigiI2M0YTAwMCIpLG4uY3NzLnRvQ29sb3IoIiMzNDY1YTQiKSxuLmNzcy50b0NvbG9yKCIjNzU1MDdiIiksbi5jc3MudG9Db2xvcigiIzA2OTg5YSIpLG4uY3NzLnRvQ29sb3IoIiNkM2Q3Y2YiKSxuLmNzcy50b0NvbG9yKCIjNTU1NzUzIiksbi5jc3MudG9Db2xvcigiI2VmMjkyOSIpLG4uY3NzLnRvQ29sb3IoIiM4YWUyMzQiKSxuLmNzcy50b0NvbG9yKCIjZmNlOTRmIiksbi5jc3MudG9Db2xvcigiIzcyOWZjZiIpLG4uY3NzLnRvQ29sb3IoIiNhZDdmYTgiKSxuLmNzcy50b0NvbG9yKCIjMzRlMmUyIiksbi5jc3MudG9Db2xvcigiI2VlZWVlYyIpXSx0PVswLDk1LDEzNSwxNzUsMjE1LDI1NV0scj0wO3I8MjE2O3IrKyl7dmFyIGk9dFtyLzM2JTZ8MF0sbz10W3IvNiU2fDBdLHM9dFtyJTZdO2UucHVzaCh7Y3NzOm4uY2hhbm5lbHMudG9Dc3MoaSxvLHMpLHJnYmE6bi5jaGFubmVscy50b1JnYmEoaSxvLHMpfSl9Zm9yKHI9MDtyPDI0O3IrKyl7dmFyIGE9OCsxMCpyO2UucHVzaCh7Y3NzOm4uY2hhbm5lbHMudG9Dc3MoYSxhLGEpLHJnYmE6bi5jaGFubmVscy50b1JnYmEoYSxhLGEpfSl9cmV0dXJuIGV9KCkpO3ZhciBoPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlLHIpe3RoaXMuYWxsb3dUcmFuc3BhcmVuY3k9cjt2YXIgaT1lLmNyZWF0ZUVsZW1lbnQoImNhbnZhcyIpO2kud2lkdGg9MSxpLmhlaWdodD0xO3ZhciBoPWkuZ2V0Q29udGV4dCgiMmQiKTtpZighaCl0aHJvdyBuZXcgRXJyb3IoIkNvdWxkIG5vdCBnZXQgcmVuZGVyaW5nIGNvbnRleHQiKTt0aGlzLl9jdHg9aCx0aGlzLl9jdHguZ2xvYmFsQ29tcG9zaXRlT3BlcmF0aW9uPSJjb3B5Iix0aGlzLl9saXRtdXNDb2xvcj10aGlzLl9jdHguY3JlYXRlTGluZWFyR3JhZGllbnQoMCwwLDEsMSksdGhpcy5fY29udHJhc3RDYWNoZT1uZXcgby5Db2xvckNvbnRyYXN0Q2FjaGUsdGhpcy5jb2xvcnM9e2ZvcmVncm91bmQ6cyxiYWNrZ3JvdW5kOmEsY3Vyc29yOmMsY3Vyc29yQWNjZW50Omwsc2VsZWN0aW9uVHJhbnNwYXJlbnQ6dSxzZWxlY3Rpb25PcGFxdWU6bi5jb2xvci5ibGVuZChhLHUpLGFuc2k6dC5ERUZBVUxUX0FOU0lfQ09MT1JTLnNsaWNlKCksY29udHJhc3RDYWNoZTp0aGlzLl9jb250cmFzdENhY2hlfSx0aGlzLl91cGRhdGVSZXN0b3JlQ29sb3JzKCl9cmV0dXJuIGUucHJvdG90eXBlLm9uT3B0aW9uc0NoYW5nZT1mdW5jdGlvbihlKXsibWluaW11bUNvbnRyYXN0UmF0aW8iPT09ZSYmdGhpcy5fY29udHJhc3RDYWNoZS5jbGVhcigpfSxlLnByb3RvdHlwZS5zZXRUaGVtZT1mdW5jdGlvbihlKXt2b2lkIDA9PT1lJiYoZT17fSksdGhpcy5jb2xvcnMuZm9yZWdyb3VuZD10aGlzLl9wYXJzZUNvbG9yKGUuZm9yZWdyb3VuZCxzKSx0aGlzLmNvbG9ycy5iYWNrZ3JvdW5kPXRoaXMuX3BhcnNlQ29sb3IoZS5iYWNrZ3JvdW5kLGEpLHRoaXMuY29sb3JzLmN1cnNvcj10aGlzLl9wYXJzZUNvbG9yKGUuY3Vyc29yLGMsITApLHRoaXMuY29sb3JzLmN1cnNvckFjY2VudD10aGlzLl9wYXJzZUNvbG9yKGUuY3Vyc29yQWNjZW50LGwsITApLHRoaXMuY29sb3JzLnNlbGVjdGlvblRyYW5zcGFyZW50PXRoaXMuX3BhcnNlQ29sb3IoZS5zZWxlY3Rpb24sdSwhMCksdGhpcy5jb2xvcnMuc2VsZWN0aW9uT3BhcXVlPW4uY29sb3IuYmxlbmQodGhpcy5jb2xvcnMuYmFja2dyb3VuZCx0aGlzLmNvbG9ycy5zZWxlY3Rpb25UcmFuc3BhcmVudCksbi5jb2xvci5pc09wYXF1ZSh0aGlzLmNvbG9ycy5zZWxlY3Rpb25UcmFuc3BhcmVudCkmJih0aGlzLmNvbG9ycy5zZWxlY3Rpb25UcmFuc3BhcmVudD1uLmNvbG9yLm9wYWNpdHkodGhpcy5jb2xvcnMuc2VsZWN0aW9uVHJhbnNwYXJlbnQsLjMpKSx0aGlzLmNvbG9ycy5hbnNpWzBdPXRoaXMuX3BhcnNlQ29sb3IoZS5ibGFjayx0LkRFRkFVTFRfQU5TSV9DT0xPUlNbMF0pLHRoaXMuY29sb3JzLmFuc2lbMV09dGhpcy5fcGFyc2VDb2xvcihlLnJlZCx0LkRFRkFVTFRfQU5TSV9DT0xPUlNbMV0pLHRoaXMuY29sb3JzLmFuc2lbMl09dGhpcy5fcGFyc2VDb2xvcihlLmdyZWVuLHQuREVGQVVMVF9BTlNJX0NPTE9SU1syXSksdGhpcy5jb2xvcnMuYW5zaVszXT10aGlzLl9wYXJzZUNvbG9yKGUueWVsbG93LHQuREVGQVVMVF9BTlNJX0NPTE9SU1szXSksdGhpcy5jb2xvcnMuYW5zaVs0XT10aGlzLl9wYXJzZUNvbG9yKGUuYmx1ZSx0LkRFRkFVTFRfQU5TSV9DT0xPUlNbNF0pLHRoaXMuY29sb3JzLmFuc2lbNV09dGhpcy5fcGFyc2VDb2xvcihlLm1hZ2VudGEsdC5ERUZBVUxUX0FOU0lfQ09MT1JTWzVdKSx0aGlzLmNvbG9ycy5hbnNpWzZdPXRoaXMuX3BhcnNlQ29sb3IoZS5jeWFuLHQuREVGQVVMVF9BTlNJX0NPTE9SU1s2XSksdGhpcy5jb2xvcnMuYW5zaVs3XT10aGlzLl9wYXJzZUNvbG9yKGUud2hpdGUsdC5ERUZBVUxUX0FOU0lfQ09MT1JTWzddKSx0aGlzLmNvbG9ycy5hbnNpWzhdPXRoaXMuX3BhcnNlQ29sb3IoZS5icmlnaHRCbGFjayx0LkRFRkFVTFRfQU5TSV9DT0xPUlNbOF0pLHRoaXMuY29sb3JzLmFuc2lbOV09dGhpcy5fcGFyc2VDb2xvcihlLmJyaWdodFJlZCx0LkRFRkFVTFRfQU5TSV9DT0xPUlNbOV0pLHRoaXMuY29sb3JzLmFuc2lbMTBdPXRoaXMuX3BhcnNlQ29sb3IoZS5icmlnaHRHcmVlbix0LkRFRkFVTFRfQU5TSV9DT0xPUlNbMTBdKSx0aGlzLmNvbG9ycy5hbnNpWzExXT10aGlzLl9wYXJzZUNvbG9yKGUuYnJpZ2h0WWVsbG93LHQuREVGQVVMVF9BTlNJX0NPTE9SU1sxMV0pLHRoaXMuY29sb3JzLmFuc2lbMTJdPXRoaXMuX3BhcnNlQ29sb3IoZS5icmlnaHRCbHVlLHQuREVGQVVMVF9BTlNJX0NPTE9SU1sxMl0pLHRoaXMuY29sb3JzLmFuc2lbMTNdPXRoaXMuX3BhcnNlQ29sb3IoZS5icmlnaHRNYWdlbnRhLHQuREVGQVVMVF9BTlNJX0NPTE9SU1sxM10pLHRoaXMuY29sb3JzLmFuc2lbMTRdPXRoaXMuX3BhcnNlQ29sb3IoZS5icmlnaHRDeWFuLHQuREVGQVVMVF9BTlNJX0NPTE9SU1sxNF0pLHRoaXMuY29sb3JzLmFuc2lbMTVdPXRoaXMuX3BhcnNlQ29sb3IoZS5icmlnaHRXaGl0ZSx0LkRFRkFVTFRfQU5TSV9DT0xPUlNbMTVdKSx0aGlzLl9jb250cmFzdENhY2hlLmNsZWFyKCksdGhpcy5fdXBkYXRlUmVzdG9yZUNvbG9ycygpfSxlLnByb3RvdHlwZS5yZXN0b3JlQ29sb3I9ZnVuY3Rpb24oZSl7aWYodm9pZCAwIT09ZSlzd2l0Y2goZSl7Y2FzZSAyNTY6dGhpcy5jb2xvcnMuZm9yZWdyb3VuZD10aGlzLl9yZXN0b3JlQ29sb3JzLmZvcmVncm91bmQ7YnJlYWs7Y2FzZSAyNTc6dGhpcy5jb2xvcnMuYmFja2dyb3VuZD10aGlzLl9yZXN0b3JlQ29sb3JzLmJhY2tncm91bmQ7YnJlYWs7Y2FzZSAyNTg6dGhpcy5jb2xvcnMuY3Vyc29yPXRoaXMuX3Jlc3RvcmVDb2xvcnMuY3Vyc29yO2JyZWFrO2RlZmF1bHQ6dGhpcy5jb2xvcnMuYW5zaVtlXT10aGlzLl9yZXN0b3JlQ29sb3JzLmFuc2lbZV19ZWxzZSBmb3IodmFyIHQ9MDt0PHRoaXMuX3Jlc3RvcmVDb2xvcnMuYW5zaS5sZW5ndGg7Kyt0KXRoaXMuY29sb3JzLmFuc2lbdF09dGhpcy5fcmVzdG9yZUNvbG9ycy5hbnNpW3RdfSxlLnByb3RvdHlwZS5fdXBkYXRlUmVzdG9yZUNvbG9ycz1mdW5jdGlvbigpe3RoaXMuX3Jlc3RvcmVDb2xvcnM9e2ZvcmVncm91bmQ6dGhpcy5jb2xvcnMuZm9yZWdyb3VuZCxiYWNrZ3JvdW5kOnRoaXMuY29sb3JzLmJhY2tncm91bmQsY3Vyc29yOnRoaXMuY29sb3JzLmN1cnNvcixhbnNpOmkoW10sdGhpcy5jb2xvcnMuYW5zaSwhMCl9fSxlLnByb3RvdHlwZS5fcGFyc2VDb2xvcj1mdW5jdGlvbihlLHQscil7aWYodm9pZCAwPT09ciYmKHI9dGhpcy5hbGxvd1RyYW5zcGFyZW5jeSksdm9pZCAwPT09ZSlyZXR1cm4gdDtpZih0aGlzLl9jdHguZmlsbFN0eWxlPXRoaXMuX2xpdG11c0NvbG9yLHRoaXMuX2N0eC5maWxsU3R5bGU9ZSwic3RyaW5nIiE9dHlwZW9mIHRoaXMuX2N0eC5maWxsU3R5bGUpcmV0dXJuIGNvbnNvbGUud2FybigiQ29sb3I6ICIrZSsiIGlzIGludmFsaWQgdXNpbmcgZmFsbGJhY2sgIit0LmNzcyksdDt0aGlzLl9jdHguZmlsbFJlY3QoMCwwLDEsMSk7dmFyIGk9dGhpcy5fY3R4LmdldEltYWdlRGF0YSgwLDAsMSwxKS5kYXRhO2lmKDI1NSE9PWlbM10pe2lmKCFyKXJldHVybiBjb25zb2xlLndhcm4oIkNvbG9yOiAiK2UrIiBpcyB1c2luZyB0cmFuc3BhcmVuY3ksIGJ1dCBhbGxvd1RyYW5zcGFyZW5jeSBpcyBmYWxzZS4gVXNpbmcgZmFsbGJhY2sgIit0LmNzcysiLiIpLHQ7dmFyIG89dGhpcy5fY3R4LmZpbGxTdHlsZS5zdWJzdHJpbmcoNSx0aGlzLl9jdHguZmlsbFN0eWxlLmxlbmd0aC0xKS5zcGxpdCgiLCIpLm1hcCgoZnVuY3Rpb24oZSl7cmV0dXJuIE51bWJlcihlKX0pKSxzPW9bMF0sYT1vWzFdLGM9b1syXSxsPW9bM10sdT1NYXRoLnJvdW5kKDI1NSpsKTtyZXR1cm57cmdiYTpuLmNoYW5uZWxzLnRvUmdiYShzLGEsYyx1KSxjc3M6ZX19cmV0dXJue2Nzczp0aGlzLl9jdHguZmlsbFN0eWxlLHJnYmE6bi5jaGFubmVscy50b1JnYmEoaVswXSxpWzFdLGlbMl0saVszXSl9fSxlfSgpO3QuQ29sb3JNYW5hZ2VyPWh9LDk2MzE6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5yZW1vdmVFbGVtZW50RnJvbVBhcmVudD12b2lkIDAsdC5yZW1vdmVFbGVtZW50RnJvbVBhcmVudD1mdW5jdGlvbigpe2Zvcih2YXIgZSx0PVtdLHI9MDtyPGFyZ3VtZW50cy5sZW5ndGg7cisrKXRbcl09YXJndW1lbnRzW3JdO2Zvcih2YXIgaT0wLG49dDtpPG4ubGVuZ3RoO2krKyl7dmFyIG89bltpXTtudWxsPT09KGU9bnVsbD09bz92b2lkIDA6by5wYXJlbnRFbGVtZW50KXx8dm9pZCAwPT09ZXx8ZS5yZW1vdmVDaGlsZChvKX19fSwzNjU2OihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuYWRkRGlzcG9zYWJsZURvbUxpc3RlbmVyPXZvaWQgMCx0LmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcj1mdW5jdGlvbihlLHQscixpKXtlLmFkZEV2ZW50TGlzdGVuZXIodCxyLGkpO3ZhciBuPSExO3JldHVybntkaXNwb3NlOmZ1bmN0aW9uKCl7bnx8KG49ITAsZS5yZW1vdmVFdmVudExpc3RlbmVyKHQscixpKSl9fX19LDM1NTE6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPXRoaXMmJnRoaXMuX19kZWNvcmF0ZXx8ZnVuY3Rpb24oZSx0LHIsaSl7dmFyIG4sbz1hcmd1bWVudHMubGVuZ3RoLHM9bzwzP3Q6bnVsbD09PWk/aT1PYmplY3QuZ2V0T3duUHJvcGVydHlEZXNjcmlwdG9yKHQscik6aTtpZigib2JqZWN0Ij09dHlwZW9mIFJlZmxlY3QmJiJmdW5jdGlvbiI9PXR5cGVvZiBSZWZsZWN0LmRlY29yYXRlKXM9UmVmbGVjdC5kZWNvcmF0ZShlLHQscixpKTtlbHNlIGZvcih2YXIgYT1lLmxlbmd0aC0xO2E+PTA7YS0tKShuPWVbYV0pJiYocz0obzwzP24ocyk6bz4zP24odCxyLHMpOm4odCxyKSl8fHMpO3JldHVybiBvPjMmJnMmJk9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LHIscyksc30sbj10aGlzJiZ0aGlzLl9fcGFyYW18fGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGZ1bmN0aW9uKHIsaSl7dChyLGksZSl9fTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Nb3VzZVpvbmU9dC5MaW5raWZpZXI9dm9pZCAwO3ZhciBvPXIoODQ2MCkscz1yKDI1ODUpLGE9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUsdCxyKXt0aGlzLl9idWZmZXJTZXJ2aWNlPWUsdGhpcy5fbG9nU2VydmljZT10LHRoaXMuX3VuaWNvZGVTZXJ2aWNlPXIsdGhpcy5fbGlua01hdGNoZXJzPVtdLHRoaXMuX25leHRMaW5rTWF0Y2hlcklkPTAsdGhpcy5fb25TaG93TGlua1VuZGVybGluZT1uZXcgby5FdmVudEVtaXR0ZXIsdGhpcy5fb25IaWRlTGlua1VuZGVybGluZT1uZXcgby5FdmVudEVtaXR0ZXIsdGhpcy5fb25MaW5rVG9vbHRpcD1uZXcgby5FdmVudEVtaXR0ZXIsdGhpcy5fcm93c1RvTGlua2lmeT17c3RhcnQ6dm9pZCAwLGVuZDp2b2lkIDB9fXJldHVybiBPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsIm9uU2hvd0xpbmtVbmRlcmxpbmUiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25TaG93TGlua1VuZGVybGluZS5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsIm9uSGlkZUxpbmtVbmRlcmxpbmUiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25IaWRlTGlua1VuZGVybGluZS5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsIm9uTGlua1Rvb2x0aXAiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25MaW5rVG9vbHRpcC5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxlLnByb3RvdHlwZS5hdHRhY2hUb0RvbT1mdW5jdGlvbihlLHQpe3RoaXMuX2VsZW1lbnQ9ZSx0aGlzLl9tb3VzZVpvbmVNYW5hZ2VyPXR9LGUucHJvdG90eXBlLmxpbmtpZnlSb3dzPWZ1bmN0aW9uKHQscil7dmFyIGk9dGhpczt0aGlzLl9tb3VzZVpvbmVNYW5hZ2VyJiYodm9pZCAwPT09dGhpcy5fcm93c1RvTGlua2lmeS5zdGFydHx8dm9pZCAwPT09dGhpcy5fcm93c1RvTGlua2lmeS5lbmQ/KHRoaXMuX3Jvd3NUb0xpbmtpZnkuc3RhcnQ9dCx0aGlzLl9yb3dzVG9MaW5raWZ5LmVuZD1yKToodGhpcy5fcm93c1RvTGlua2lmeS5zdGFydD1NYXRoLm1pbih0aGlzLl9yb3dzVG9MaW5raWZ5LnN0YXJ0LHQpLHRoaXMuX3Jvd3NUb0xpbmtpZnkuZW5kPU1hdGgubWF4KHRoaXMuX3Jvd3NUb0xpbmtpZnkuZW5kLHIpKSx0aGlzLl9tb3VzZVpvbmVNYW5hZ2VyLmNsZWFyQWxsKHQsciksdGhpcy5fcm93c1RpbWVvdXRJZCYmY2xlYXJUaW1lb3V0KHRoaXMuX3Jvd3NUaW1lb3V0SWQpLHRoaXMuX3Jvd3NUaW1lb3V0SWQ9c2V0VGltZW91dCgoZnVuY3Rpb24oKXtyZXR1cm4gaS5fbGlua2lmeVJvd3MoKX0pLGUuX3RpbWVCZWZvcmVMYXRlbmN5KSl9LGUucHJvdG90eXBlLl9saW5raWZ5Um93cz1mdW5jdGlvbigpe3RoaXMuX3Jvd3NUaW1lb3V0SWQ9dm9pZCAwO3ZhciBlPXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyO2lmKHZvaWQgMCE9PXRoaXMuX3Jvd3NUb0xpbmtpZnkuc3RhcnQmJnZvaWQgMCE9PXRoaXMuX3Jvd3NUb0xpbmtpZnkuZW5kKXt2YXIgdD1lLnlkaXNwK3RoaXMuX3Jvd3NUb0xpbmtpZnkuc3RhcnQ7aWYoISh0Pj1lLmxpbmVzLmxlbmd0aCkpe2Zvcih2YXIgcj1lLnlkaXNwK01hdGgubWluKHRoaXMuX3Jvd3NUb0xpbmtpZnkuZW5kLHRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cykrMSxpPU1hdGguY2VpbCgyZTMvdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzKSxuPXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLml0ZXJhdG9yKCExLHQscixpLGkpO24uaGFzTmV4dCgpOylmb3IodmFyIG89bi5uZXh0KCkscz0wO3M8dGhpcy5fbGlua01hdGNoZXJzLmxlbmd0aDtzKyspdGhpcy5fZG9MaW5raWZ5Um93KG8ucmFuZ2UuZmlyc3Qsby5jb250ZW50LHRoaXMuX2xpbmtNYXRjaGVyc1tzXSk7dGhpcy5fcm93c1RvTGlua2lmeS5zdGFydD12b2lkIDAsdGhpcy5fcm93c1RvTGlua2lmeS5lbmQ9dm9pZCAwfX1lbHNlIHRoaXMuX2xvZ1NlcnZpY2UuZGVidWcoIl9yb3dUb0xpbmtpZnkgd2FzIHVuc2V0IGJlZm9yZSBfbGlua2lmeVJvd3Mgd2FzIGNhbGxlZCIpfSxlLnByb3RvdHlwZS5yZWdpc3RlckxpbmtNYXRjaGVyPWZ1bmN0aW9uKGUsdCxyKXtpZih2b2lkIDA9PT1yJiYocj17fSksIXQpdGhyb3cgbmV3IEVycm9yKCJoYW5kbGVyIG11c3QgYmUgZGVmaW5lZCIpO3ZhciBpPXtpZDp0aGlzLl9uZXh0TGlua01hdGNoZXJJZCsrLHJlZ2V4OmUsaGFuZGxlcjp0LG1hdGNoSW5kZXg6ci5tYXRjaEluZGV4LHZhbGlkYXRpb25DYWxsYmFjazpyLnZhbGlkYXRpb25DYWxsYmFjayxob3ZlclRvb2x0aXBDYWxsYmFjazpyLnRvb2x0aXBDYWxsYmFjayxob3ZlckxlYXZlQ2FsbGJhY2s6ci5sZWF2ZUNhbGxiYWNrLHdpbGxMaW5rQWN0aXZhdGU6ci53aWxsTGlua0FjdGl2YXRlLHByaW9yaXR5OnIucHJpb3JpdHl8fDB9O3JldHVybiB0aGlzLl9hZGRMaW5rTWF0Y2hlclRvTGlzdChpKSxpLmlkfSxlLnByb3RvdHlwZS5fYWRkTGlua01hdGNoZXJUb0xpc3Q9ZnVuY3Rpb24oZSl7aWYoMCE9PXRoaXMuX2xpbmtNYXRjaGVycy5sZW5ndGgpe2Zvcih2YXIgdD10aGlzLl9saW5rTWF0Y2hlcnMubGVuZ3RoLTE7dD49MDt0LS0paWYoZS5wcmlvcml0eTw9dGhpcy5fbGlua01hdGNoZXJzW3RdLnByaW9yaXR5KXJldHVybiB2b2lkIHRoaXMuX2xpbmtNYXRjaGVycy5zcGxpY2UodCsxLDAsZSk7dGhpcy5fbGlua01hdGNoZXJzLnNwbGljZSgwLDAsZSl9ZWxzZSB0aGlzLl9saW5rTWF0Y2hlcnMucHVzaChlKX0sZS5wcm90b3R5cGUuZGVyZWdpc3RlckxpbmtNYXRjaGVyPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD0wO3Q8dGhpcy5fbGlua01hdGNoZXJzLmxlbmd0aDt0KyspaWYodGhpcy5fbGlua01hdGNoZXJzW3RdLmlkPT09ZSlyZXR1cm4gdGhpcy5fbGlua01hdGNoZXJzLnNwbGljZSh0LDEpLCEwO3JldHVybiExfSxlLnByb3RvdHlwZS5fZG9MaW5raWZ5Um93PWZ1bmN0aW9uKGUsdCxyKXtmb3IodmFyIGksbj10aGlzLG89bmV3IFJlZ0V4cChyLnJlZ2V4LnNvdXJjZSwoci5yZWdleC5mbGFnc3x8IiIpKyJnIikscz0tMSxhPWZ1bmN0aW9uKCl7dmFyIGE9aVsibnVtYmVyIiE9dHlwZW9mIHIubWF0Y2hJbmRleD8wOnIubWF0Y2hJbmRleF07aWYoIWEpcmV0dXJuIGMuX2xvZ1NlcnZpY2UuZGVidWcoIm1hdGNoIGZvdW5kIHdpdGhvdXQgY29ycmVzcG9uZGluZyBtYXRjaEluZGV4IixpLHIpLCJicmVhayI7aWYocz10LmluZGV4T2YoYSxzKzEpLG8ubGFzdEluZGV4PXMrYS5sZW5ndGgsczwwKXJldHVybiJicmVhayI7dmFyIGw9Yy5fYnVmZmVyU2VydmljZS5idWZmZXIuc3RyaW5nSW5kZXhUb0J1ZmZlckluZGV4KGUscyk7aWYobFswXTwwKXJldHVybiJicmVhayI7dmFyIHU9Yy5fYnVmZmVyU2VydmljZS5idWZmZXIubGluZXMuZ2V0KGxbMF0pO2lmKCF1KXJldHVybiJicmVhayI7dmFyIGg9dS5nZXRGZyhsWzFdKSxmPWg/aD4+OSY1MTE6dm9pZCAwO3IudmFsaWRhdGlvbkNhbGxiYWNrP3IudmFsaWRhdGlvbkNhbGxiYWNrKGEsKGZ1bmN0aW9uKGUpe24uX3Jvd3NUaW1lb3V0SWR8fGUmJm4uX2FkZExpbmsobFsxXSxsWzBdLW4uX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnlkaXNwLGEscixmKX0pKTpjLl9hZGRMaW5rKGxbMV0sbFswXS1jLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55ZGlzcCxhLHIsZil9LGM9dGhpcztudWxsIT09KGk9by5leGVjKHQpKSYmImJyZWFrIiE9PWEoKTspO30sZS5wcm90b3R5cGUuX2FkZExpbms9ZnVuY3Rpb24oZSx0LHIsaSxuKXt2YXIgbz10aGlzO2lmKHRoaXMuX21vdXNlWm9uZU1hbmFnZXImJnRoaXMuX2VsZW1lbnQpe3ZhciBzPXRoaXMuX3VuaWNvZGVTZXJ2aWNlLmdldFN0cmluZ0NlbGxXaWR0aChyKSxhPWUldGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLGw9dCtNYXRoLmZsb29yKGUvdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzKSx1PShhK3MpJXRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyxoPWwrTWF0aC5mbG9vcigoYStzKS90aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMpOzA9PT11JiYodT10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsaC0tKSx0aGlzLl9tb3VzZVpvbmVNYW5hZ2VyLmFkZChuZXcgYyhhKzEsbCsxLHUrMSxoKzEsKGZ1bmN0aW9uKGUpe2lmKGkuaGFuZGxlcilyZXR1cm4gaS5oYW5kbGVyKGUscik7dmFyIHQ9d2luZG93Lm9wZW4oKTt0Pyh0Lm9wZW5lcj1udWxsLHQubG9jYXRpb24uaHJlZj1yKTpjb25zb2xlLndhcm4oIk9wZW5pbmcgbGluayBibG9ja2VkIGFzIG9wZW5lciBjb3VsZCBub3QgYmUgY2xlYXJlZCIpfSksKGZ1bmN0aW9uKCl7by5fb25TaG93TGlua1VuZGVybGluZS5maXJlKG8uX2NyZWF0ZUxpbmtIb3ZlckV2ZW50KGEsbCx1LGgsbikpLG8uX2VsZW1lbnQuY2xhc3NMaXN0LmFkZCgieHRlcm0tY3Vyc29yLXBvaW50ZXIiKX0pLChmdW5jdGlvbihlKXtvLl9vbkxpbmtUb29sdGlwLmZpcmUoby5fY3JlYXRlTGlua0hvdmVyRXZlbnQoYSxsLHUsaCxuKSksaS5ob3ZlclRvb2x0aXBDYWxsYmFjayYmaS5ob3ZlclRvb2x0aXBDYWxsYmFjayhlLHIse3N0YXJ0Ont4OmEseTpsfSxlbmQ6e3g6dSx5Omh9fSl9KSwoZnVuY3Rpb24oKXtvLl9vbkhpZGVMaW5rVW5kZXJsaW5lLmZpcmUoby5fY3JlYXRlTGlua0hvdmVyRXZlbnQoYSxsLHUsaCxuKSksby5fZWxlbWVudC5jbGFzc0xpc3QucmVtb3ZlKCJ4dGVybS1jdXJzb3ItcG9pbnRlciIpLGkuaG92ZXJMZWF2ZUNhbGxiYWNrJiZpLmhvdmVyTGVhdmVDYWxsYmFjaygpfSksKGZ1bmN0aW9uKGUpe3JldHVybiFpLndpbGxMaW5rQWN0aXZhdGV8fGkud2lsbExpbmtBY3RpdmF0ZShlLHIpfSkpKX19LGUucHJvdG90eXBlLl9jcmVhdGVMaW5rSG92ZXJFdmVudD1mdW5jdGlvbihlLHQscixpLG4pe3JldHVybnt4MTplLHkxOnQseDI6cix5MjppLGNvbHM6dGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLGZnOm59fSxlLl90aW1lQmVmb3JlTGF0ZW5jeT0yMDAsZT1pKFtuKDAscy5JQnVmZmVyU2VydmljZSksbigxLHMuSUxvZ1NlcnZpY2UpLG4oMixzLklVbmljb2RlU2VydmljZSldLGUpfSgpO3QuTGlua2lmaWVyPWE7dmFyIGM9ZnVuY3Rpb24oZSx0LHIsaSxuLG8scyxhLGMpe3RoaXMueDE9ZSx0aGlzLnkxPXQsdGhpcy54Mj1yLHRoaXMueTI9aSx0aGlzLmNsaWNrQ2FsbGJhY2s9bix0aGlzLmhvdmVyQ2FsbGJhY2s9byx0aGlzLnRvb2x0aXBDYWxsYmFjaz1zLHRoaXMubGVhdmVDYWxsYmFjaz1hLHRoaXMud2lsbExpbmtBY3RpdmF0ZT1jfTt0Lk1vdXNlWm9uZT1jfSw2NDY1OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pLG89dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxzPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkxpbmtpZmllcjI9dm9pZCAwO3ZhciBhPXIoMjU4NSksYz1yKDg0NjApLGw9cig4NDQpLHU9cigzNjU2KSxoPWZ1bmN0aW9uKGUpe2Z1bmN0aW9uIHQodCl7dmFyIHI9ZS5jYWxsKHRoaXMpfHx0aGlzO3JldHVybiByLl9idWZmZXJTZXJ2aWNlPXQsci5fbGlua1Byb3ZpZGVycz1bXSxyLl9saW5rQ2FjaGVEaXNwb3NhYmxlcz1bXSxyLl9pc01vdXNlT3V0PSEwLHIuX2FjdGl2ZUxpbmU9LTEsci5fb25TaG93TGlua1VuZGVybGluZT1yLnJlZ2lzdGVyKG5ldyBjLkV2ZW50RW1pdHRlciksci5fb25IaWRlTGlua1VuZGVybGluZT1yLnJlZ2lzdGVyKG5ldyBjLkV2ZW50RW1pdHRlciksci5yZWdpc3RlcigoMCxsLmdldERpc3Bvc2VBcnJheURpc3Bvc2FibGUpKHIuX2xpbmtDYWNoZURpc3Bvc2FibGVzKSkscn1yZXR1cm4gbih0LGUpLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwiY3VycmVudExpbmsiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fY3VycmVudExpbmt9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvblNob3dMaW5rVW5kZXJsaW5lIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uU2hvd0xpbmtVbmRlcmxpbmUuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvbkhpZGVMaW5rVW5kZXJsaW5lIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uSGlkZUxpbmtVbmRlcmxpbmUuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksdC5wcm90b3R5cGUucmVnaXN0ZXJMaW5rUHJvdmlkZXI9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcztyZXR1cm4gdGhpcy5fbGlua1Byb3ZpZGVycy5wdXNoKGUpLHtkaXNwb3NlOmZ1bmN0aW9uKCl7dmFyIHI9dC5fbGlua1Byb3ZpZGVycy5pbmRleE9mKGUpOy0xIT09ciYmdC5fbGlua1Byb3ZpZGVycy5zcGxpY2UociwxKX19fSx0LnByb3RvdHlwZS5hdHRhY2hUb0RvbT1mdW5jdGlvbihlLHQscil7dmFyIGk9dGhpczt0aGlzLl9lbGVtZW50PWUsdGhpcy5fbW91c2VTZXJ2aWNlPXQsdGhpcy5fcmVuZGVyU2VydmljZT1yLHRoaXMucmVnaXN0ZXIoKDAsdS5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHRoaXMuX2VsZW1lbnQsIm1vdXNlbGVhdmUiLChmdW5jdGlvbigpe2kuX2lzTW91c2VPdXQ9ITAsaS5fY2xlYXJDdXJyZW50TGluaygpfSkpKSx0aGlzLnJlZ2lzdGVyKCgwLHUuYWRkRGlzcG9zYWJsZURvbUxpc3RlbmVyKSh0aGlzLl9lbGVtZW50LCJtb3VzZW1vdmUiLHRoaXMuX29uTW91c2VNb3ZlLmJpbmQodGhpcykpKSx0aGlzLnJlZ2lzdGVyKCgwLHUuYWRkRGlzcG9zYWJsZURvbUxpc3RlbmVyKSh0aGlzLl9lbGVtZW50LCJjbGljayIsdGhpcy5fb25DbGljay5iaW5kKHRoaXMpKSl9LHQucHJvdG90eXBlLl9vbk1vdXNlTW92ZT1mdW5jdGlvbihlKXtpZih0aGlzLl9sYXN0TW91c2VFdmVudD1lLHRoaXMuX2VsZW1lbnQmJnRoaXMuX21vdXNlU2VydmljZSl7dmFyIHQ9dGhpcy5fcG9zaXRpb25Gcm9tTW91c2VFdmVudChlLHRoaXMuX2VsZW1lbnQsdGhpcy5fbW91c2VTZXJ2aWNlKTtpZih0KXt0aGlzLl9pc01vdXNlT3V0PSExO2Zvcih2YXIgcj1lLmNvbXBvc2VkUGF0aCgpLGk9MDtpPHIubGVuZ3RoO2krKyl7dmFyIG49cltpXTtpZihuLmNsYXNzTGlzdC5jb250YWlucygieHRlcm0iKSlicmVhaztpZihuLmNsYXNzTGlzdC5jb250YWlucygieHRlcm0taG92ZXIiKSlyZXR1cm59dGhpcy5fbGFzdEJ1ZmZlckNlbGwmJnQueD09PXRoaXMuX2xhc3RCdWZmZXJDZWxsLngmJnQueT09PXRoaXMuX2xhc3RCdWZmZXJDZWxsLnl8fCh0aGlzLl9vbkhvdmVyKHQpLHRoaXMuX2xhc3RCdWZmZXJDZWxsPXQpfX19LHQucHJvdG90eXBlLl9vbkhvdmVyPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX2FjdGl2ZUxpbmUhPT1lLnkpcmV0dXJuIHRoaXMuX2NsZWFyQ3VycmVudExpbmsoKSx2b2lkIHRoaXMuX2Fza0ZvckxpbmsoZSwhMSk7dGhpcy5fY3VycmVudExpbmsmJnRoaXMuX2xpbmtBdFBvc2l0aW9uKHRoaXMuX2N1cnJlbnRMaW5rLmxpbmssZSl8fCh0aGlzLl9jbGVhckN1cnJlbnRMaW5rKCksdGhpcy5fYXNrRm9yTGluayhlLCEwKSl9LHQucHJvdG90eXBlLl9hc2tGb3JMaW5rPWZ1bmN0aW9uKGUsdCl7dmFyIHIsaT10aGlzO3RoaXMuX2FjdGl2ZVByb3ZpZGVyUmVwbGllcyYmdHx8KG51bGw9PT0ocj10aGlzLl9hY3RpdmVQcm92aWRlclJlcGxpZXMpfHx2b2lkIDA9PT1yfHxyLmZvckVhY2goKGZ1bmN0aW9uKGUpe251bGw9PWV8fGUuZm9yRWFjaCgoZnVuY3Rpb24oZSl7ZS5saW5rLmRpc3Bvc2UmJmUubGluay5kaXNwb3NlKCl9KSl9KSksdGhpcy5fYWN0aXZlUHJvdmlkZXJSZXBsaWVzPW5ldyBNYXAsdGhpcy5fYWN0aXZlTGluZT1lLnkpO3ZhciBuPSExO3RoaXMuX2xpbmtQcm92aWRlcnMuZm9yRWFjaCgoZnVuY3Rpb24ocixvKXt2YXIgczt0PyhudWxsPT09KHM9aS5fYWN0aXZlUHJvdmlkZXJSZXBsaWVzKXx8dm9pZCAwPT09cz92b2lkIDA6cy5nZXQobykpJiYobj1pLl9jaGVja0xpbmtQcm92aWRlclJlc3VsdChvLGUsbikpOnIucHJvdmlkZUxpbmtzKGUueSwoZnVuY3Rpb24odCl7dmFyIHIscztpZighaS5faXNNb3VzZU91dCl7dmFyIGE9bnVsbD09dD92b2lkIDA6dC5tYXAoKGZ1bmN0aW9uKGUpe3JldHVybntsaW5rOmV9fSkpO251bGw9PT0ocj1pLl9hY3RpdmVQcm92aWRlclJlcGxpZXMpfHx2b2lkIDA9PT1yfHxyLnNldChvLGEpLG49aS5fY2hlY2tMaW5rUHJvdmlkZXJSZXN1bHQobyxlLG4pLChudWxsPT09KHM9aS5fYWN0aXZlUHJvdmlkZXJSZXBsaWVzKXx8dm9pZCAwPT09cz92b2lkIDA6cy5zaXplKT09PWkuX2xpbmtQcm92aWRlcnMubGVuZ3RoJiZpLl9yZW1vdmVJbnRlcnNlY3RpbmdMaW5rcyhlLnksaS5fYWN0aXZlUHJvdmlkZXJSZXBsaWVzKX19KSl9KSl9LHQucHJvdG90eXBlLl9yZW1vdmVJbnRlcnNlY3RpbmdMaW5rcz1mdW5jdGlvbihlLHQpe2Zvcih2YXIgcj1uZXcgU2V0LGk9MDtpPHQuc2l6ZTtpKyspe3ZhciBuPXQuZ2V0KGkpO2lmKG4pZm9yKHZhciBvPTA7bzxuLmxlbmd0aDtvKyspZm9yKHZhciBzPW5bb10sYT1zLmxpbmsucmFuZ2Uuc3RhcnQueTxlPzA6cy5saW5rLnJhbmdlLnN0YXJ0LngsYz1zLmxpbmsucmFuZ2UuZW5kLnk+ZT90aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHM6cy5saW5rLnJhbmdlLmVuZC54LGw9YTtsPD1jO2wrKyl7aWYoci5oYXMobCkpe24uc3BsaWNlKG8tLSwxKTticmVha31yLmFkZChsKX19fSx0LnByb3RvdHlwZS5fY2hlY2tMaW5rUHJvdmlkZXJSZXN1bHQ9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpLG49dGhpcztpZighdGhpcy5fYWN0aXZlUHJvdmlkZXJSZXBsaWVzKXJldHVybiByO2Zvcih2YXIgbz10aGlzLl9hY3RpdmVQcm92aWRlclJlcGxpZXMuZ2V0KGUpLHM9ITEsYT0wO2E8ZTthKyspdGhpcy5fYWN0aXZlUHJvdmlkZXJSZXBsaWVzLmhhcyhhKSYmIXRoaXMuX2FjdGl2ZVByb3ZpZGVyUmVwbGllcy5nZXQoYSl8fChzPSEwKTtpZighcyYmbyl7dmFyIGM9by5maW5kKChmdW5jdGlvbihlKXtyZXR1cm4gbi5fbGlua0F0UG9zaXRpb24oZS5saW5rLHQpfSkpO2MmJihyPSEwLHRoaXMuX2hhbmRsZU5ld0xpbmsoYykpfWlmKHRoaXMuX2FjdGl2ZVByb3ZpZGVyUmVwbGllcy5zaXplPT09dGhpcy5fbGlua1Byb3ZpZGVycy5sZW5ndGgmJiFyKWZvcihhPTA7YTx0aGlzLl9hY3RpdmVQcm92aWRlclJlcGxpZXMuc2l6ZTthKyspe3ZhciBsPW51bGw9PT0oaT10aGlzLl9hY3RpdmVQcm92aWRlclJlcGxpZXMuZ2V0KGEpKXx8dm9pZCAwPT09aT92b2lkIDA6aS5maW5kKChmdW5jdGlvbihlKXtyZXR1cm4gbi5fbGlua0F0UG9zaXRpb24oZS5saW5rLHQpfSkpO2lmKGwpe3I9ITAsdGhpcy5faGFuZGxlTmV3TGluayhsKTticmVha319cmV0dXJuIHJ9LHQucHJvdG90eXBlLl9vbkNsaWNrPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX2VsZW1lbnQmJnRoaXMuX21vdXNlU2VydmljZSYmdGhpcy5fY3VycmVudExpbmspe3ZhciB0PXRoaXMuX3Bvc2l0aW9uRnJvbU1vdXNlRXZlbnQoZSx0aGlzLl9lbGVtZW50LHRoaXMuX21vdXNlU2VydmljZSk7dCYmdGhpcy5fbGlua0F0UG9zaXRpb24odGhpcy5fY3VycmVudExpbmsubGluayx0KSYmdGhpcy5fY3VycmVudExpbmsubGluay5hY3RpdmF0ZShlLHRoaXMuX2N1cnJlbnRMaW5rLmxpbmsudGV4dCl9fSx0LnByb3RvdHlwZS5fY2xlYXJDdXJyZW50TGluaz1mdW5jdGlvbihlLHQpe3RoaXMuX2VsZW1lbnQmJnRoaXMuX2N1cnJlbnRMaW5rJiZ0aGlzLl9sYXN0TW91c2VFdmVudCYmKCFlfHwhdHx8dGhpcy5fY3VycmVudExpbmsubGluay5yYW5nZS5zdGFydC55Pj1lJiZ0aGlzLl9jdXJyZW50TGluay5saW5rLnJhbmdlLmVuZC55PD10KSYmKHRoaXMuX2xpbmtMZWF2ZSh0aGlzLl9lbGVtZW50LHRoaXMuX2N1cnJlbnRMaW5rLmxpbmssdGhpcy5fbGFzdE1vdXNlRXZlbnQpLHRoaXMuX2N1cnJlbnRMaW5rPXZvaWQgMCwoMCxsLmRpc3Bvc2VBcnJheSkodGhpcy5fbGlua0NhY2hlRGlzcG9zYWJsZXMpKX0sdC5wcm90b3R5cGUuX2hhbmRsZU5ld0xpbms9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcztpZih0aGlzLl9lbGVtZW50JiZ0aGlzLl9sYXN0TW91c2VFdmVudCYmdGhpcy5fbW91c2VTZXJ2aWNlKXt2YXIgcj10aGlzLl9wb3NpdGlvbkZyb21Nb3VzZUV2ZW50KHRoaXMuX2xhc3RNb3VzZUV2ZW50LHRoaXMuX2VsZW1lbnQsdGhpcy5fbW91c2VTZXJ2aWNlKTtyJiZ0aGlzLl9saW5rQXRQb3NpdGlvbihlLmxpbmsscikmJih0aGlzLl9jdXJyZW50TGluaz1lLHRoaXMuX2N1cnJlbnRMaW5rLnN0YXRlPXtkZWNvcmF0aW9uczp7dW5kZXJsaW5lOnZvaWQgMD09PWUubGluay5kZWNvcmF0aW9uc3x8ZS5saW5rLmRlY29yYXRpb25zLnVuZGVybGluZSxwb2ludGVyQ3Vyc29yOnZvaWQgMD09PWUubGluay5kZWNvcmF0aW9uc3x8ZS5saW5rLmRlY29yYXRpb25zLnBvaW50ZXJDdXJzb3J9LGlzSG92ZXJlZDohMH0sdGhpcy5fbGlua0hvdmVyKHRoaXMuX2VsZW1lbnQsZS5saW5rLHRoaXMuX2xhc3RNb3VzZUV2ZW50KSxlLmxpbmsuZGVjb3JhdGlvbnM9e30sT2JqZWN0LmRlZmluZVByb3BlcnRpZXMoZS5saW5rLmRlY29yYXRpb25zLHtwb2ludGVyQ3Vyc29yOntnZXQ6ZnVuY3Rpb24oKXt2YXIgZSxyO3JldHVybiBudWxsPT09KHI9bnVsbD09PShlPXQuX2N1cnJlbnRMaW5rKXx8dm9pZCAwPT09ZT92b2lkIDA6ZS5zdGF0ZSl8fHZvaWQgMD09PXI/dm9pZCAwOnIuZGVjb3JhdGlvbnMucG9pbnRlckN1cnNvcn0sc2V0OmZ1bmN0aW9uKGUpe3ZhciByLGk7KG51bGw9PT0ocj10Ll9jdXJyZW50TGluayl8fHZvaWQgMD09PXI/dm9pZCAwOnIuc3RhdGUpJiZ0Ll9jdXJyZW50TGluay5zdGF0ZS5kZWNvcmF0aW9ucy5wb2ludGVyQ3Vyc29yIT09ZSYmKHQuX2N1cnJlbnRMaW5rLnN0YXRlLmRlY29yYXRpb25zLnBvaW50ZXJDdXJzb3I9ZSx0Ll9jdXJyZW50TGluay5zdGF0ZS5pc0hvdmVyZWQmJihudWxsPT09KGk9dC5fZWxlbWVudCl8fHZvaWQgMD09PWl8fGkuY2xhc3NMaXN0LnRvZ2dsZSgieHRlcm0tY3Vyc29yLXBvaW50ZXIiLGUpKSl9fSx1bmRlcmxpbmU6e2dldDpmdW5jdGlvbigpe3ZhciBlLHI7cmV0dXJuIG51bGw9PT0ocj1udWxsPT09KGU9dC5fY3VycmVudExpbmspfHx2b2lkIDA9PT1lP3ZvaWQgMDplLnN0YXRlKXx8dm9pZCAwPT09cj92b2lkIDA6ci5kZWNvcmF0aW9ucy51bmRlcmxpbmV9LHNldDpmdW5jdGlvbihyKXt2YXIgaSxuLG87KG51bGw9PT0oaT10Ll9jdXJyZW50TGluayl8fHZvaWQgMD09PWk/dm9pZCAwOmkuc3RhdGUpJiYobnVsbD09PShvPW51bGw9PT0obj10Ll9jdXJyZW50TGluayl8fHZvaWQgMD09PW4/dm9pZCAwOm4uc3RhdGUpfHx2b2lkIDA9PT1vP3ZvaWQgMDpvLmRlY29yYXRpb25zLnVuZGVybGluZSkhPT1yJiYodC5fY3VycmVudExpbmsuc3RhdGUuZGVjb3JhdGlvbnMudW5kZXJsaW5lPXIsdC5fY3VycmVudExpbmsuc3RhdGUuaXNIb3ZlcmVkJiZ0Ll9maXJlVW5kZXJsaW5lRXZlbnQoZS5saW5rLHIpKX19fSksdGhpcy5fcmVuZGVyU2VydmljZSYmdGhpcy5fbGlua0NhY2hlRGlzcG9zYWJsZXMucHVzaCh0aGlzLl9yZW5kZXJTZXJ2aWNlLm9uUmVuZGVyZWRCdWZmZXJDaGFuZ2UoKGZ1bmN0aW9uKGUpe3ZhciByPTA9PT1lLnN0YXJ0PzA6ZS5zdGFydCsxK3QuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnlkaXNwO3QuX2NsZWFyQ3VycmVudExpbmsocixlLmVuZCsxK3QuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnlkaXNwKX0pKSkpfX0sdC5wcm90b3R5cGUuX2xpbmtIb3Zlcj1mdW5jdGlvbihlLHQscil7dmFyIGk7KG51bGw9PT0oaT10aGlzLl9jdXJyZW50TGluayl8fHZvaWQgMD09PWk/dm9pZCAwOmkuc3RhdGUpJiYodGhpcy5fY3VycmVudExpbmsuc3RhdGUuaXNIb3ZlcmVkPSEwLHRoaXMuX2N1cnJlbnRMaW5rLnN0YXRlLmRlY29yYXRpb25zLnVuZGVybGluZSYmdGhpcy5fZmlyZVVuZGVybGluZUV2ZW50KHQsITApLHRoaXMuX2N1cnJlbnRMaW5rLnN0YXRlLmRlY29yYXRpb25zLnBvaW50ZXJDdXJzb3ImJmUuY2xhc3NMaXN0LmFkZCgieHRlcm0tY3Vyc29yLXBvaW50ZXIiKSksdC5ob3ZlciYmdC5ob3ZlcihyLHQudGV4dCl9LHQucHJvdG90eXBlLl9maXJlVW5kZXJsaW5lRXZlbnQ9ZnVuY3Rpb24oZSx0KXt2YXIgcj1lLnJhbmdlLGk9dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueWRpc3Asbj10aGlzLl9jcmVhdGVMaW5rVW5kZXJsaW5lRXZlbnQoci5zdGFydC54LTEsci5zdGFydC55LWktMSxyLmVuZC54LHIuZW5kLnktaS0xLHZvaWQgMCk7KHQ/dGhpcy5fb25TaG93TGlua1VuZGVybGluZTp0aGlzLl9vbkhpZGVMaW5rVW5kZXJsaW5lKS5maXJlKG4pfSx0LnByb3RvdHlwZS5fbGlua0xlYXZlPWZ1bmN0aW9uKGUsdCxyKXt2YXIgaTsobnVsbD09PShpPXRoaXMuX2N1cnJlbnRMaW5rKXx8dm9pZCAwPT09aT92b2lkIDA6aS5zdGF0ZSkmJih0aGlzLl9jdXJyZW50TGluay5zdGF0ZS5pc0hvdmVyZWQ9ITEsdGhpcy5fY3VycmVudExpbmsuc3RhdGUuZGVjb3JhdGlvbnMudW5kZXJsaW5lJiZ0aGlzLl9maXJlVW5kZXJsaW5lRXZlbnQodCwhMSksdGhpcy5fY3VycmVudExpbmsuc3RhdGUuZGVjb3JhdGlvbnMucG9pbnRlckN1cnNvciYmZS5jbGFzc0xpc3QucmVtb3ZlKCJ4dGVybS1jdXJzb3ItcG9pbnRlciIpKSx0LmxlYXZlJiZ0LmxlYXZlKHIsdC50ZXh0KX0sdC5wcm90b3R5cGUuX2xpbmtBdFBvc2l0aW9uPWZ1bmN0aW9uKGUsdCl7dmFyIHI9ZS5yYW5nZS5zdGFydC55PT09ZS5yYW5nZS5lbmQueSxpPWUucmFuZ2Uuc3RhcnQueTx0Lnksbj1lLnJhbmdlLmVuZC55PnQueTtyZXR1cm4ociYmZS5yYW5nZS5zdGFydC54PD10LngmJmUucmFuZ2UuZW5kLng+PXQueHx8aSYmZS5yYW5nZS5lbmQueD49dC54fHxuJiZlLnJhbmdlLnN0YXJ0Lng8PXQueHx8aSYmbikmJmUucmFuZ2Uuc3RhcnQueTw9dC55JiZlLnJhbmdlLmVuZC55Pj10Lnl9LHQucHJvdG90eXBlLl9wb3NpdGlvbkZyb21Nb3VzZUV2ZW50PWZ1bmN0aW9uKGUsdCxyKXt2YXIgaT1yLmdldENvb3JkcyhlLHQsdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLHRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cyk7aWYoaSlyZXR1cm57eDppWzBdLHk6aVsxXSt0aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55ZGlzcH19LHQucHJvdG90eXBlLl9jcmVhdGVMaW5rVW5kZXJsaW5lRXZlbnQ9ZnVuY3Rpb24oZSx0LHIsaSxuKXtyZXR1cm57eDE6ZSx5MTp0LHgyOnIseTI6aSxjb2xzOnRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyxmZzpufX0sbyhbcygwLGEuSUJ1ZmZlclNlcnZpY2UpXSx0KX0obC5EaXNwb3NhYmxlKTt0LkxpbmtpZmllcjI9aH0sOTA0MjooZSx0KT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LnRvb011Y2hPdXRwdXQ9dC5wcm9tcHRMYWJlbD12b2lkIDAsdC5wcm9tcHRMYWJlbD0iVGVybWluYWwgaW5wdXQiLHQudG9vTXVjaE91dHB1dD0iVG9vIG11Y2ggb3V0cHV0IHRvIGFubm91bmNlLCBuYXZpZ2F0ZSB0byByb3dzIG1hbnVhbGx5IHRvIHJlYWQifSw2OTU0OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pLG89dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxzPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0Lk1vdXNlWm9uZU1hbmFnZXI9dm9pZCAwO3ZhciBhPXIoODQ0KSxjPXIoMzY1NiksbD1yKDQ3MjUpLHU9cigyNTg1KSxoPWZ1bmN0aW9uKGUpe2Z1bmN0aW9uIHQodCxyLGksbixvLHMpe3ZhciBhPWUuY2FsbCh0aGlzKXx8dGhpcztyZXR1cm4gYS5fZWxlbWVudD10LGEuX3NjcmVlbkVsZW1lbnQ9cixhLl9idWZmZXJTZXJ2aWNlPWksYS5fbW91c2VTZXJ2aWNlPW4sYS5fc2VsZWN0aW9uU2VydmljZT1vLGEuX29wdGlvbnNTZXJ2aWNlPXMsYS5fem9uZXM9W10sYS5fYXJlWm9uZXNBY3RpdmU9ITEsYS5fbGFzdEhvdmVyQ29vcmRzPVt2b2lkIDAsdm9pZCAwXSxhLl9pbml0aWFsU2VsZWN0aW9uTGVuZ3RoPTAsYS5yZWdpc3RlcigoMCxjLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikoYS5fZWxlbWVudCwibW91c2Vkb3duIiwoZnVuY3Rpb24oZSl7cmV0dXJuIGEuX29uTW91c2VEb3duKGUpfSkpKSxhLl9tb3VzZU1vdmVMaXN0ZW5lcj1mdW5jdGlvbihlKXtyZXR1cm4gYS5fb25Nb3VzZU1vdmUoZSl9LGEuX21vdXNlTGVhdmVMaXN0ZW5lcj1mdW5jdGlvbihlKXtyZXR1cm4gYS5fb25Nb3VzZUxlYXZlKGUpfSxhLl9jbGlja0xpc3RlbmVyPWZ1bmN0aW9uKGUpe3JldHVybiBhLl9vbkNsaWNrKGUpfSxhfXJldHVybiBuKHQsZSksdC5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe2UucHJvdG90eXBlLmRpc3Bvc2UuY2FsbCh0aGlzKSx0aGlzLl9kZWFjdGl2YXRlKCl9LHQucHJvdG90eXBlLmFkZD1mdW5jdGlvbihlKXt0aGlzLl96b25lcy5wdXNoKGUpLDE9PT10aGlzLl96b25lcy5sZW5ndGgmJnRoaXMuX2FjdGl2YXRlKCl9LHQucHJvdG90eXBlLmNsZWFyQWxsPWZ1bmN0aW9uKGUsdCl7aWYoMCE9PXRoaXMuX3pvbmVzLmxlbmd0aCl7ZSYmdHx8KGU9MCx0PXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cy0xKTtmb3IodmFyIHI9MDtyPHRoaXMuX3pvbmVzLmxlbmd0aDtyKyspe3ZhciBpPXRoaXMuX3pvbmVzW3JdOyhpLnkxPmUmJmkueTE8PXQrMXx8aS55Mj5lJiZpLnkyPD10KzF8fGkueTE8ZSYmaS55Mj50KzEpJiYodGhpcy5fY3VycmVudFpvbmUmJnRoaXMuX2N1cnJlbnRab25lPT09aSYmKHRoaXMuX2N1cnJlbnRab25lLmxlYXZlQ2FsbGJhY2soKSx0aGlzLl9jdXJyZW50Wm9uZT12b2lkIDApLHRoaXMuX3pvbmVzLnNwbGljZShyLS0sMSkpfTA9PT10aGlzLl96b25lcy5sZW5ndGgmJnRoaXMuX2RlYWN0aXZhdGUoKX19LHQucHJvdG90eXBlLl9hY3RpdmF0ZT1mdW5jdGlvbigpe3RoaXMuX2FyZVpvbmVzQWN0aXZlfHwodGhpcy5fYXJlWm9uZXNBY3RpdmU9ITAsdGhpcy5fZWxlbWVudC5hZGRFdmVudExpc3RlbmVyKCJtb3VzZW1vdmUiLHRoaXMuX21vdXNlTW92ZUxpc3RlbmVyKSx0aGlzLl9lbGVtZW50LmFkZEV2ZW50TGlzdGVuZXIoIm1vdXNlbGVhdmUiLHRoaXMuX21vdXNlTGVhdmVMaXN0ZW5lciksdGhpcy5fZWxlbWVudC5hZGRFdmVudExpc3RlbmVyKCJjbGljayIsdGhpcy5fY2xpY2tMaXN0ZW5lcikpfSx0LnByb3RvdHlwZS5fZGVhY3RpdmF0ZT1mdW5jdGlvbigpe3RoaXMuX2FyZVpvbmVzQWN0aXZlJiYodGhpcy5fYXJlWm9uZXNBY3RpdmU9ITEsdGhpcy5fZWxlbWVudC5yZW1vdmVFdmVudExpc3RlbmVyKCJtb3VzZW1vdmUiLHRoaXMuX21vdXNlTW92ZUxpc3RlbmVyKSx0aGlzLl9lbGVtZW50LnJlbW92ZUV2ZW50TGlzdGVuZXIoIm1vdXNlbGVhdmUiLHRoaXMuX21vdXNlTGVhdmVMaXN0ZW5lciksdGhpcy5fZWxlbWVudC5yZW1vdmVFdmVudExpc3RlbmVyKCJjbGljayIsdGhpcy5fY2xpY2tMaXN0ZW5lcikpfSx0LnByb3RvdHlwZS5fb25Nb3VzZU1vdmU9ZnVuY3Rpb24oZSl7dGhpcy5fbGFzdEhvdmVyQ29vcmRzWzBdPT09ZS5wYWdlWCYmdGhpcy5fbGFzdEhvdmVyQ29vcmRzWzFdPT09ZS5wYWdlWXx8KHRoaXMuX29uSG92ZXIoZSksdGhpcy5fbGFzdEhvdmVyQ29vcmRzPVtlLnBhZ2VYLGUucGFnZVldKX0sdC5wcm90b3R5cGUuX29uSG92ZXI9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcyxyPXRoaXMuX2ZpbmRab25lRXZlbnRBdChlKTtyIT09dGhpcy5fY3VycmVudFpvbmUmJih0aGlzLl9jdXJyZW50Wm9uZSYmKHRoaXMuX2N1cnJlbnRab25lLmxlYXZlQ2FsbGJhY2soKSx0aGlzLl9jdXJyZW50Wm9uZT12b2lkIDAsdGhpcy5fdG9vbHRpcFRpbWVvdXQmJmNsZWFyVGltZW91dCh0aGlzLl90b29sdGlwVGltZW91dCkpLHImJih0aGlzLl9jdXJyZW50Wm9uZT1yLHIuaG92ZXJDYWxsYmFjayYmci5ob3ZlckNhbGxiYWNrKGUpLHRoaXMuX3Rvb2x0aXBUaW1lb3V0PXdpbmRvdy5zZXRUaW1lb3V0KChmdW5jdGlvbigpe3JldHVybiB0Ll9vblRvb2x0aXAoZSl9KSx0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmxpbmtUb29sdGlwSG92ZXJEdXJhdGlvbikpKX0sdC5wcm90b3R5cGUuX29uVG9vbHRpcD1mdW5jdGlvbihlKXt0aGlzLl90b29sdGlwVGltZW91dD12b2lkIDA7dmFyIHQ9dGhpcy5fZmluZFpvbmVFdmVudEF0KGUpO251bGw9PXR8fHQudG9vbHRpcENhbGxiYWNrKGUpfSx0LnByb3RvdHlwZS5fb25Nb3VzZURvd249ZnVuY3Rpb24oZSl7aWYodGhpcy5faW5pdGlhbFNlbGVjdGlvbkxlbmd0aD10aGlzLl9nZXRTZWxlY3Rpb25MZW5ndGgoKSx0aGlzLl9hcmVab25lc0FjdGl2ZSl7dmFyIHQ9dGhpcy5fZmluZFpvbmVFdmVudEF0KGUpOyhudWxsPT10P3ZvaWQgMDp0LndpbGxMaW5rQWN0aXZhdGUoZSkpJiYoZS5wcmV2ZW50RGVmYXVsdCgpLGUuc3RvcEltbWVkaWF0ZVByb3BhZ2F0aW9uKCkpfX0sdC5wcm90b3R5cGUuX29uTW91c2VMZWF2ZT1mdW5jdGlvbihlKXt0aGlzLl9jdXJyZW50Wm9uZSYmKHRoaXMuX2N1cnJlbnRab25lLmxlYXZlQ2FsbGJhY2soKSx0aGlzLl9jdXJyZW50Wm9uZT12b2lkIDAsdGhpcy5fdG9vbHRpcFRpbWVvdXQmJmNsZWFyVGltZW91dCh0aGlzLl90b29sdGlwVGltZW91dCkpfSx0LnByb3RvdHlwZS5fb25DbGljaz1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9maW5kWm9uZUV2ZW50QXQoZSkscj10aGlzLl9nZXRTZWxlY3Rpb25MZW5ndGgoKTt0JiZyPT09dGhpcy5faW5pdGlhbFNlbGVjdGlvbkxlbmd0aCYmKHQuY2xpY2tDYWxsYmFjayhlKSxlLnByZXZlbnREZWZhdWx0KCksZS5zdG9wSW1tZWRpYXRlUHJvcGFnYXRpb24oKSl9LHQucHJvdG90eXBlLl9nZXRTZWxlY3Rpb25MZW5ndGg9ZnVuY3Rpb24oKXt2YXIgZT10aGlzLl9zZWxlY3Rpb25TZXJ2aWNlLnNlbGVjdGlvblRleHQ7cmV0dXJuIGU/ZS5sZW5ndGg6MH0sdC5wcm90b3R5cGUuX2ZpbmRab25lRXZlbnRBdD1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9tb3VzZVNlcnZpY2UuZ2V0Q29vcmRzKGUsdGhpcy5fc2NyZWVuRWxlbWVudCx0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsdGhpcy5fYnVmZmVyU2VydmljZS5yb3dzKTtpZih0KWZvcih2YXIgcj10WzBdLGk9dFsxXSxuPTA7bjx0aGlzLl96b25lcy5sZW5ndGg7bisrKXt2YXIgbz10aGlzLl96b25lc1tuXTtpZihvLnkxPT09by55Mil7aWYoaT09PW8ueTEmJnI+PW8ueDEmJnI8by54MilyZXR1cm4gb31lbHNlIGlmKGk9PT1vLnkxJiZyPj1vLngxfHxpPT09by55MiYmcjxvLngyfHxpPm8ueTEmJmk8by55MilyZXR1cm4gb319LG8oW3MoMix1LklCdWZmZXJTZXJ2aWNlKSxzKDMsbC5JTW91c2VTZXJ2aWNlKSxzKDQsbC5JU2VsZWN0aW9uU2VydmljZSkscyg1LHUuSU9wdGlvbnNTZXJ2aWNlKV0sdCl9KGEuRGlzcG9zYWJsZSk7dC5Nb3VzZVpvbmVNYW5hZ2VyPWh9LDYxOTM6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5SZW5kZXJEZWJvdW5jZXI9dm9pZCAwO3ZhciByPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlKXt0aGlzLl9yZW5kZXJDYWxsYmFjaz1lfXJldHVybiBlLnByb3RvdHlwZS5kaXNwb3NlPWZ1bmN0aW9uKCl7dGhpcy5fYW5pbWF0aW9uRnJhbWUmJih3aW5kb3cuY2FuY2VsQW5pbWF0aW9uRnJhbWUodGhpcy5fYW5pbWF0aW9uRnJhbWUpLHRoaXMuX2FuaW1hdGlvbkZyYW1lPXZvaWQgMCl9LGUucHJvdG90eXBlLnJlZnJlc2g9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPXRoaXM7dGhpcy5fcm93Q291bnQ9cixlPXZvaWQgMCE9PWU/ZTowLHQ9dm9pZCAwIT09dD90OnRoaXMuX3Jvd0NvdW50LTEsdGhpcy5fcm93U3RhcnQ9dm9pZCAwIT09dGhpcy5fcm93U3RhcnQ/TWF0aC5taW4odGhpcy5fcm93U3RhcnQsZSk6ZSx0aGlzLl9yb3dFbmQ9dm9pZCAwIT09dGhpcy5fcm93RW5kP01hdGgubWF4KHRoaXMuX3Jvd0VuZCx0KTp0LHRoaXMuX2FuaW1hdGlvbkZyYW1lfHwodGhpcy5fYW5pbWF0aW9uRnJhbWU9d2luZG93LnJlcXVlc3RBbmltYXRpb25GcmFtZSgoZnVuY3Rpb24oKXtyZXR1cm4gaS5faW5uZXJSZWZyZXNoKCl9KSkpfSxlLnByb3RvdHlwZS5faW5uZXJSZWZyZXNoPWZ1bmN0aW9uKCl7aWYodm9pZCAwIT09dGhpcy5fcm93U3RhcnQmJnZvaWQgMCE9PXRoaXMuX3Jvd0VuZCYmdm9pZCAwIT09dGhpcy5fcm93Q291bnQpe3ZhciBlPU1hdGgubWF4KHRoaXMuX3Jvd1N0YXJ0LDApLHQ9TWF0aC5taW4odGhpcy5fcm93RW5kLHRoaXMuX3Jvd0NvdW50LTEpO3RoaXMuX3Jvd1N0YXJ0PXZvaWQgMCx0aGlzLl9yb3dFbmQ9dm9pZCAwLHRoaXMuX2FuaW1hdGlvbkZyYW1lPXZvaWQgMCx0aGlzLl9yZW5kZXJDYWxsYmFjayhlLHQpfX0sZX0oKTt0LlJlbmRlckRlYm91bmNlcj1yfSw1NTk2OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pO09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LlNjcmVlbkRwck1vbml0b3I9dm9pZCAwO3ZhciBvPWZ1bmN0aW9uKGUpe2Z1bmN0aW9uIHQoKXt2YXIgdD1udWxsIT09ZSYmZS5hcHBseSh0aGlzLGFyZ3VtZW50cyl8fHRoaXM7cmV0dXJuIHQuX2N1cnJlbnREZXZpY2VQaXhlbFJhdGlvPXdpbmRvdy5kZXZpY2VQaXhlbFJhdGlvLHR9cmV0dXJuIG4odCxlKSx0LnByb3RvdHlwZS5zZXRMaXN0ZW5lcj1mdW5jdGlvbihlKXt2YXIgdD10aGlzO3RoaXMuX2xpc3RlbmVyJiZ0aGlzLmNsZWFyTGlzdGVuZXIoKSx0aGlzLl9saXN0ZW5lcj1lLHRoaXMuX291dGVyTGlzdGVuZXI9ZnVuY3Rpb24oKXt0Ll9saXN0ZW5lciYmKHQuX2xpc3RlbmVyKHdpbmRvdy5kZXZpY2VQaXhlbFJhdGlvLHQuX2N1cnJlbnREZXZpY2VQaXhlbFJhdGlvKSx0Ll91cGRhdGVEcHIoKSl9LHRoaXMuX3VwZGF0ZURwcigpfSx0LnByb3RvdHlwZS5kaXNwb3NlPWZ1bmN0aW9uKCl7ZS5wcm90b3R5cGUuZGlzcG9zZS5jYWxsKHRoaXMpLHRoaXMuY2xlYXJMaXN0ZW5lcigpfSx0LnByb3RvdHlwZS5fdXBkYXRlRHByPWZ1bmN0aW9uKCl7dmFyIGU7dGhpcy5fb3V0ZXJMaXN0ZW5lciYmKG51bGw9PT0oZT10aGlzLl9yZXNvbHV0aW9uTWVkaWFNYXRjaExpc3QpfHx2b2lkIDA9PT1lfHxlLnJlbW92ZUxpc3RlbmVyKHRoaXMuX291dGVyTGlzdGVuZXIpLHRoaXMuX2N1cnJlbnREZXZpY2VQaXhlbFJhdGlvPXdpbmRvdy5kZXZpY2VQaXhlbFJhdGlvLHRoaXMuX3Jlc29sdXRpb25NZWRpYU1hdGNoTGlzdD13aW5kb3cubWF0Y2hNZWRpYSgic2NyZWVuIGFuZCAocmVzb2x1dGlvbjogIit3aW5kb3cuZGV2aWNlUGl4ZWxSYXRpbysiZHBweCkiKSx0aGlzLl9yZXNvbHV0aW9uTWVkaWFNYXRjaExpc3QuYWRkTGlzdGVuZXIodGhpcy5fb3V0ZXJMaXN0ZW5lcikpfSx0LnByb3RvdHlwZS5jbGVhckxpc3RlbmVyPWZ1bmN0aW9uKCl7dGhpcy5fcmVzb2x1dGlvbk1lZGlhTWF0Y2hMaXN0JiZ0aGlzLl9saXN0ZW5lciYmdGhpcy5fb3V0ZXJMaXN0ZW5lciYmKHRoaXMuX3Jlc29sdXRpb25NZWRpYU1hdGNoTGlzdC5yZW1vdmVMaXN0ZW5lcih0aGlzLl9vdXRlckxpc3RlbmVyKSx0aGlzLl9yZXNvbHV0aW9uTWVkaWFNYXRjaExpc3Q9dm9pZCAwLHRoaXMuX2xpc3RlbmVyPXZvaWQgMCx0aGlzLl9vdXRlckxpc3RlbmVyPXZvaWQgMCl9LHR9KHIoODQ0KS5EaXNwb3NhYmxlKTt0LlNjcmVlbkRwck1vbml0b3I9b30sMzIzNjpmdW5jdGlvbihlLHQscil7dmFyIGksbj10aGlzJiZ0aGlzLl9fZXh0ZW5kc3x8KGk9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gaT1PYmplY3Quc2V0UHJvdG90eXBlT2Z8fHtfX3Byb3RvX186W119aW5zdGFuY2VvZiBBcnJheSYmZnVuY3Rpb24oZSx0KXtlLl9fcHJvdG9fXz10fXx8ZnVuY3Rpb24oZSx0KXtmb3IodmFyIHIgaW4gdClPYmplY3QucHJvdG90eXBlLmhhc093blByb3BlcnR5LmNhbGwodCxyKSYmKGVbcl09dFtyXSl9LGkoZSx0KX0sZnVuY3Rpb24oZSx0KXtpZigiZnVuY3Rpb24iIT10eXBlb2YgdCYmbnVsbCE9PXQpdGhyb3cgbmV3IFR5cGVFcnJvcigiQ2xhc3MgZXh0ZW5kcyB2YWx1ZSAiK1N0cmluZyh0KSsiIGlzIG5vdCBhIGNvbnN0cnVjdG9yIG9yIG51bGwiKTtmdW5jdGlvbiByKCl7dGhpcy5jb25zdHJ1Y3Rvcj1lfWkoZSx0KSxlLnByb3RvdHlwZT1udWxsPT09dD9PYmplY3QuY3JlYXRlKHQpOihyLnByb3RvdHlwZT10LnByb3RvdHlwZSxuZXcgcil9KTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5UZXJtaW5hbD12b2lkIDA7dmFyIG89cigyOTUwKSxzPXIoMTY4MCksYT1yKDM2MTQpLGM9cigyNTg0KSxsPXIoNTQzNSksdT1yKDM1MjUpLGg9cigzNTUxKSxmPXIoOTMxMiksXz1yKDYxMTQpLGQ9cigzNjU2KSxwPXIoOTA0Miksdj1yKDM1NyksZz1yKDY5NTQpLHk9cig0NTY3KSxtPXIoMTI5NiksYj1yKDczOTkpLFM9cig4NDYwKSxDPXIoODQzNyksdz1yKDU2ODApLEw9cigzMjMwKSxFPXIoNDcyNSkseD1yKDQyOCksQT1yKDg5MzQpLGs9cig2NDY1KSxNPXIoNTExNCksUj1yKDg5NjkpLFQ9cig0Nzc0KSxPPXIoNDI2OSksQj1yKDU5NDEpLEQ9InVuZGVmaW5lZCIhPXR5cGVvZiB3aW5kb3c/d2luZG93LmRvY3VtZW50Om51bGwsUD1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KHQpe3ZvaWQgMD09PXQmJih0PXt9KTt2YXIgcj1lLmNhbGwodGhpcyx0KXx8dGhpcztyZXR1cm4gci5icm93c2VyPV8sci5fa2V5RG93bkhhbmRsZWQ9ITEsci5fa2V5UHJlc3NIYW5kbGVkPSExLHIuX3VucHJvY2Vzc2VkRGVhZEtleT0hMSxyLl9vbkN1cnNvck1vdmU9bmV3IFMuRXZlbnRFbWl0dGVyLHIuX29uS2V5PW5ldyBTLkV2ZW50RW1pdHRlcixyLl9vblJlbmRlcj1uZXcgUy5FdmVudEVtaXR0ZXIsci5fb25TZWxlY3Rpb25DaGFuZ2U9bmV3IFMuRXZlbnRFbWl0dGVyLHIuX29uVGl0bGVDaGFuZ2U9bmV3IFMuRXZlbnRFbWl0dGVyLHIuX29uQmVsbD1uZXcgUy5FdmVudEVtaXR0ZXIsci5fb25Gb2N1cz1uZXcgUy5FdmVudEVtaXR0ZXIsci5fb25CbHVyPW5ldyBTLkV2ZW50RW1pdHRlcixyLl9vbkExMXlDaGFyRW1pdHRlcj1uZXcgUy5FdmVudEVtaXR0ZXIsci5fb25BMTF5VGFiRW1pdHRlcj1uZXcgUy5FdmVudEVtaXR0ZXIsci5fc2V0dXAoKSxyLmxpbmtpZmllcj1yLl9pbnN0YW50aWF0aW9uU2VydmljZS5jcmVhdGVJbnN0YW5jZShoLkxpbmtpZmllciksci5saW5raWZpZXIyPXIucmVnaXN0ZXIoci5faW5zdGFudGlhdGlvblNlcnZpY2UuY3JlYXRlSW5zdGFuY2Uoay5MaW5raWZpZXIyKSksci5yZWdpc3RlcihyLl9pbnB1dEhhbmRsZXIub25SZXF1ZXN0QmVsbCgoZnVuY3Rpb24oKXtyZXR1cm4gci5iZWxsKCl9KSkpLHIucmVnaXN0ZXIoci5faW5wdXRIYW5kbGVyLm9uUmVxdWVzdFJlZnJlc2hSb3dzKChmdW5jdGlvbihlLHQpe3JldHVybiByLnJlZnJlc2goZSx0KX0pKSksci5yZWdpc3RlcihyLl9pbnB1dEhhbmRsZXIub25SZXF1ZXN0U2VuZEZvY3VzKChmdW5jdGlvbigpe3JldHVybiByLl9yZXBvcnRGb2N1cygpfSkpKSxyLnJlZ2lzdGVyKHIuX2lucHV0SGFuZGxlci5vblJlcXVlc3RSZXNldCgoZnVuY3Rpb24oKXtyZXR1cm4gci5yZXNldCgpfSkpKSxyLnJlZ2lzdGVyKHIuX2lucHV0SGFuZGxlci5vblJlcXVlc3RXaW5kb3dzT3B0aW9uc1JlcG9ydCgoZnVuY3Rpb24oZSl7cmV0dXJuIHIuX3JlcG9ydFdpbmRvd3NPcHRpb25zKGUpfSkpKSxyLnJlZ2lzdGVyKHIuX2lucHV0SGFuZGxlci5vbkNvbG9yKChmdW5jdGlvbihlKXtyZXR1cm4gci5faGFuZGxlQ29sb3JFdmVudChlKX0pKSksci5yZWdpc3RlcigoMCxTLmZvcndhcmRFdmVudCkoci5faW5wdXRIYW5kbGVyLm9uQ3Vyc29yTW92ZSxyLl9vbkN1cnNvck1vdmUpKSxyLnJlZ2lzdGVyKCgwLFMuZm9yd2FyZEV2ZW50KShyLl9pbnB1dEhhbmRsZXIub25UaXRsZUNoYW5nZSxyLl9vblRpdGxlQ2hhbmdlKSksci5yZWdpc3RlcigoMCxTLmZvcndhcmRFdmVudCkoci5faW5wdXRIYW5kbGVyLm9uQTExeUNoYXIsci5fb25BMTF5Q2hhckVtaXR0ZXIpKSxyLnJlZ2lzdGVyKCgwLFMuZm9yd2FyZEV2ZW50KShyLl9pbnB1dEhhbmRsZXIub25BMTF5VGFiLHIuX29uQTExeVRhYkVtaXR0ZXIpKSxyLnJlZ2lzdGVyKHIuX2J1ZmZlclNlcnZpY2Uub25SZXNpemUoKGZ1bmN0aW9uKGUpe3JldHVybiByLl9hZnRlclJlc2l6ZShlLmNvbHMsZS5yb3dzKX0pKSkscn1yZXR1cm4gbih0LGUpLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25DdXJzb3JNb3ZlIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uQ3Vyc29yTW92ZS5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uS2V5Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uS2V5LmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25SZW5kZXIiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25SZW5kZXIuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvblNlbGVjdGlvbkNoYW5nZSIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vblNlbGVjdGlvbkNoYW5nZS5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uVGl0bGVDaGFuZ2UiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25UaXRsZUNoYW5nZS5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uQmVsbCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vbkJlbGwuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvbkZvY3VzIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uRm9jdXMuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvbkJsdXIiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25CbHVyLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25BMTF5Q2hhciIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vbkExMXlDaGFyRW1pdHRlci5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uQTExeVRhYiIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vbkExMXlUYWJFbWl0dGVyLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLHQucHJvdG90eXBlLl9oYW5kbGVDb2xvckV2ZW50PWZ1bmN0aW9uKGUpe3ZhciB0LHI7aWYodGhpcy5fY29sb3JNYW5hZ2VyKXtmb3IodmFyIGk9MCxuPWU7aTxuLmxlbmd0aDtpKyspe3ZhciBvPW5baV0scz12b2lkIDAsYT0iIjtzd2l0Y2goby5pbmRleCl7Y2FzZSAyNTY6cz0iZm9yZWdyb3VuZCIsYT0iMTAiO2JyZWFrO2Nhc2UgMjU3OnM9ImJhY2tncm91bmQiLGE9IjExIjticmVhaztjYXNlIDI1ODpzPSJjdXJzb3IiLGE9IjEyIjticmVhaztkZWZhdWx0OnM9ImFuc2kiLGE9IjQ7IitvLmluZGV4fWlmKHMpc3dpdGNoKG8udHlwZSl7Y2FzZSAwOnZhciBsPVQuY29sb3IudG9Db2xvclJHQigiYW5zaSI9PT1zP3RoaXMuX2NvbG9yTWFuYWdlci5jb2xvcnMuYW5zaVtvLmluZGV4XTp0aGlzLl9jb2xvck1hbmFnZXIuY29sb3JzW3NdKTt0aGlzLmNvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQoYy5DMC5FU0MrIl0iK2ErIjsiKygwLEIudG9SZ2JTdHJpbmcpKGwpK2MuQzAuQkVMKTticmVhaztjYXNlIDE6ImFuc2kiPT09cz90aGlzLl9jb2xvck1hbmFnZXIuY29sb3JzLmFuc2lbby5pbmRleF09VC5yZ2JhLnRvQ29sb3IuYXBwbHkoVC5yZ2JhLG8uY29sb3IpOnRoaXMuX2NvbG9yTWFuYWdlci5jb2xvcnNbc109VC5yZ2JhLnRvQ29sb3IuYXBwbHkoVC5yZ2JhLG8uY29sb3IpO2JyZWFrO2Nhc2UgMjp0aGlzLl9jb2xvck1hbmFnZXIucmVzdG9yZUNvbG9yKG8uaW5kZXgpfX1udWxsPT09KHQ9dGhpcy5fcmVuZGVyU2VydmljZSl8fHZvaWQgMD09PXR8fHQuc2V0Q29sb3JzKHRoaXMuX2NvbG9yTWFuYWdlci5jb2xvcnMpLG51bGw9PT0ocj10aGlzLnZpZXdwb3J0KXx8dm9pZCAwPT09cnx8ci5vblRoZW1lQ2hhbmdlKHRoaXMuX2NvbG9yTWFuYWdlci5jb2xvcnMpfX0sdC5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe3ZhciB0LHIsaTt0aGlzLl9pc0Rpc3Bvc2VkfHwoZS5wcm90b3R5cGUuZGlzcG9zZS5jYWxsKHRoaXMpLG51bGw9PT0odD10aGlzLl9yZW5kZXJTZXJ2aWNlKXx8dm9pZCAwPT09dHx8dC5kaXNwb3NlKCksdGhpcy5fY3VzdG9tS2V5RXZlbnRIYW5kbGVyPXZvaWQgMCx0aGlzLndyaXRlPWZ1bmN0aW9uKCl7fSxudWxsPT09KGk9bnVsbD09PShyPXRoaXMuZWxlbWVudCl8fHZvaWQgMD09PXI/dm9pZCAwOnIucGFyZW50Tm9kZSl8fHZvaWQgMD09PWl8fGkucmVtb3ZlQ2hpbGQodGhpcy5lbGVtZW50KSl9LHQucHJvdG90eXBlLl9zZXR1cD1mdW5jdGlvbigpe2UucHJvdG90eXBlLl9zZXR1cC5jYWxsKHRoaXMpLHRoaXMuX2N1c3RvbUtleUV2ZW50SGFuZGxlcj12b2lkIDB9LE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwiYnVmZmVyIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuYnVmZmVycy5hY3RpdmV9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksdC5wcm90b3R5cGUuZm9jdXM9ZnVuY3Rpb24oKXt0aGlzLnRleHRhcmVhJiZ0aGlzLnRleHRhcmVhLmZvY3VzKHtwcmV2ZW50U2Nyb2xsOiEwfSl9LHQucHJvdG90eXBlLl91cGRhdGVPcHRpb25zPWZ1bmN0aW9uKHQpe3ZhciByLGksbixvO3N3aXRjaChlLnByb3RvdHlwZS5fdXBkYXRlT3B0aW9ucy5jYWxsKHRoaXMsdCksdCl7Y2FzZSJmb250RmFtaWx5IjpjYXNlImZvbnRTaXplIjpudWxsPT09KHI9dGhpcy5fcmVuZGVyU2VydmljZSl8fHZvaWQgMD09PXJ8fHIuY2xlYXIoKSxudWxsPT09KGk9dGhpcy5fY2hhclNpemVTZXJ2aWNlKXx8dm9pZCAwPT09aXx8aS5tZWFzdXJlKCk7YnJlYWs7Y2FzZSJjdXJzb3JCbGluayI6Y2FzZSJjdXJzb3JTdHlsZSI6dGhpcy5yZWZyZXNoKHRoaXMuYnVmZmVyLnksdGhpcy5idWZmZXIueSk7YnJlYWs7Y2FzZSJjdXN0b21HbHlwaHMiOmNhc2UiZHJhd0JvbGRUZXh0SW5CcmlnaHRDb2xvcnMiOmNhc2UibGV0dGVyU3BhY2luZyI6Y2FzZSJsaW5lSGVpZ2h0IjpjYXNlImZvbnRXZWlnaHQiOmNhc2UiZm9udFdlaWdodEJvbGQiOmNhc2UibWluaW11bUNvbnRyYXN0UmF0aW8iOnRoaXMuX3JlbmRlclNlcnZpY2UmJih0aGlzLl9yZW5kZXJTZXJ2aWNlLmNsZWFyKCksdGhpcy5fcmVuZGVyU2VydmljZS5vblJlc2l6ZSh0aGlzLmNvbHMsdGhpcy5yb3dzKSx0aGlzLnJlZnJlc2goMCx0aGlzLnJvd3MtMSkpO2JyZWFrO2Nhc2UicmVuZGVyZXJUeXBlIjp0aGlzLl9yZW5kZXJTZXJ2aWNlJiYodGhpcy5fcmVuZGVyU2VydmljZS5zZXRSZW5kZXJlcih0aGlzLl9jcmVhdGVSZW5kZXJlcigpKSx0aGlzLl9yZW5kZXJTZXJ2aWNlLm9uUmVzaXplKHRoaXMuY29scyx0aGlzLnJvd3MpKTticmVhaztjYXNlInNjcm9sbGJhY2siOm51bGw9PT0obj10aGlzLnZpZXdwb3J0KXx8dm9pZCAwPT09bnx8bi5zeW5jU2Nyb2xsQXJlYSgpO2JyZWFrO2Nhc2Uic2NyZWVuUmVhZGVyTW9kZSI6dGhpcy5vcHRpb25zU2VydmljZS5vcHRpb25zLnNjcmVlblJlYWRlck1vZGU/IXRoaXMuX2FjY2Vzc2liaWxpdHlNYW5hZ2VyJiZ0aGlzLl9yZW5kZXJTZXJ2aWNlJiYodGhpcy5fYWNjZXNzaWJpbGl0eU1hbmFnZXI9bmV3IHkuQWNjZXNzaWJpbGl0eU1hbmFnZXIodGhpcyx0aGlzLl9yZW5kZXJTZXJ2aWNlKSk6KG51bGw9PT0obz10aGlzLl9hY2Nlc3NpYmlsaXR5TWFuYWdlcil8fHZvaWQgMD09PW98fG8uZGlzcG9zZSgpLHRoaXMuX2FjY2Vzc2liaWxpdHlNYW5hZ2VyPXZvaWQgMCk7YnJlYWs7Y2FzZSJ0YWJTdG9wV2lkdGgiOnRoaXMuYnVmZmVycy5zZXR1cFRhYlN0b3BzKCk7YnJlYWs7Y2FzZSJ0aGVtZSI6dGhpcy5fc2V0VGhlbWUodGhpcy5vcHRpb25zU2VydmljZS5vcHRpb25zLnRoZW1lKX19LHQucHJvdG90eXBlLl9vblRleHRBcmVhRm9jdXM9ZnVuY3Rpb24oZSl7dGhpcy5jb3JlU2VydmljZS5kZWNQcml2YXRlTW9kZXMuc2VuZEZvY3VzJiZ0aGlzLmNvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQoYy5DMC5FU0MrIltJIiksdGhpcy51cGRhdGVDdXJzb3JTdHlsZShlKSx0aGlzLmVsZW1lbnQuY2xhc3NMaXN0LmFkZCgiZm9jdXMiKSx0aGlzLl9zaG93Q3Vyc29yKCksdGhpcy5fb25Gb2N1cy5maXJlKCl9LHQucHJvdG90eXBlLmJsdXI9ZnVuY3Rpb24oKXt2YXIgZTtyZXR1cm4gbnVsbD09PShlPXRoaXMudGV4dGFyZWEpfHx2b2lkIDA9PT1lP3ZvaWQgMDplLmJsdXIoKX0sdC5wcm90b3R5cGUuX29uVGV4dEFyZWFCbHVyPWZ1bmN0aW9uKCl7dGhpcy50ZXh0YXJlYS52YWx1ZT0iIix0aGlzLnJlZnJlc2godGhpcy5idWZmZXIueSx0aGlzLmJ1ZmZlci55KSx0aGlzLmNvcmVTZXJ2aWNlLmRlY1ByaXZhdGVNb2Rlcy5zZW5kRm9jdXMmJnRoaXMuY29yZVNlcnZpY2UudHJpZ2dlckRhdGFFdmVudChjLkMwLkVTQysiW08iKSx0aGlzLmVsZW1lbnQuY2xhc3NMaXN0LnJlbW92ZSgiZm9jdXMiKSx0aGlzLl9vbkJsdXIuZmlyZSgpfSx0LnByb3RvdHlwZS5fc3luY1RleHRBcmVhPWZ1bmN0aW9uKCl7aWYodGhpcy50ZXh0YXJlYSYmdGhpcy5idWZmZXIuaXNDdXJzb3JJblZpZXdwb3J0JiYhdGhpcy5fY29tcG9zaXRpb25IZWxwZXIuaXNDb21wb3NpbmcmJnRoaXMuX3JlbmRlclNlcnZpY2Upe3ZhciBlPXRoaXMuYnVmZmVyLnliYXNlK3RoaXMuYnVmZmVyLnksdD10aGlzLmJ1ZmZlci5saW5lcy5nZXQoZSk7aWYodCl7dmFyIHI9TWF0aC5taW4odGhpcy5idWZmZXIueCx0aGlzLmNvbHMtMSksaT10aGlzLl9yZW5kZXJTZXJ2aWNlLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbEhlaWdodCxuPXQuZ2V0V2lkdGgociksbz10aGlzLl9yZW5kZXJTZXJ2aWNlLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbFdpZHRoKm4scz10aGlzLmJ1ZmZlci55KnRoaXMuX3JlbmRlclNlcnZpY2UuZGltZW5zaW9ucy5hY3R1YWxDZWxsSGVpZ2h0LGE9cip0aGlzLl9yZW5kZXJTZXJ2aWNlLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbFdpZHRoO3RoaXMudGV4dGFyZWEuc3R5bGUubGVmdD1hKyJweCIsdGhpcy50ZXh0YXJlYS5zdHlsZS50b3A9cysicHgiLHRoaXMudGV4dGFyZWEuc3R5bGUud2lkdGg9bysicHgiLHRoaXMudGV4dGFyZWEuc3R5bGUuaGVpZ2h0PWkrInB4Iix0aGlzLnRleHRhcmVhLnN0eWxlLmxpbmVIZWlnaHQ9aSsicHgiLHRoaXMudGV4dGFyZWEuc3R5bGUuekluZGV4PSItNSJ9fX0sdC5wcm90b3R5cGUuX2luaXRHbG9iYWw9ZnVuY3Rpb24oKXt2YXIgZT10aGlzO3RoaXMuX2JpbmRLZXlzKCksdGhpcy5yZWdpc3RlcigoMCxkLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikodGhpcy5lbGVtZW50LCJjb3B5IiwoZnVuY3Rpb24odCl7ZS5oYXNTZWxlY3Rpb24oKSYmKDAsYS5jb3B5SGFuZGxlcikodCxlLl9zZWxlY3Rpb25TZXJ2aWNlKX0pKSk7dmFyIHQ9ZnVuY3Rpb24odCl7cmV0dXJuKDAsYS5oYW5kbGVQYXN0ZUV2ZW50KSh0LGUudGV4dGFyZWEsZS5jb3JlU2VydmljZSl9O3RoaXMucmVnaXN0ZXIoKDAsZC5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHRoaXMudGV4dGFyZWEsInBhc3RlIix0KSksdGhpcy5yZWdpc3RlcigoMCxkLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikodGhpcy5lbGVtZW50LCJwYXN0ZSIsdCkpLF8uaXNGaXJlZm94P3RoaXMucmVnaXN0ZXIoKDAsZC5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHRoaXMuZWxlbWVudCwibW91c2Vkb3duIiwoZnVuY3Rpb24odCl7Mj09PXQuYnV0dG9uJiYoMCxhLnJpZ2h0Q2xpY2tIYW5kbGVyKSh0LGUudGV4dGFyZWEsZS5zY3JlZW5FbGVtZW50LGUuX3NlbGVjdGlvblNlcnZpY2UsZS5vcHRpb25zLnJpZ2h0Q2xpY2tTZWxlY3RzV29yZCl9KSkpOnRoaXMucmVnaXN0ZXIoKDAsZC5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHRoaXMuZWxlbWVudCwiY29udGV4dG1lbnUiLChmdW5jdGlvbih0KXsoMCxhLnJpZ2h0Q2xpY2tIYW5kbGVyKSh0LGUudGV4dGFyZWEsZS5zY3JlZW5FbGVtZW50LGUuX3NlbGVjdGlvblNlcnZpY2UsZS5vcHRpb25zLnJpZ2h0Q2xpY2tTZWxlY3RzV29yZCl9KSkpLF8uaXNMaW51eCYmdGhpcy5yZWdpc3RlcigoMCxkLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikodGhpcy5lbGVtZW50LCJhdXhjbGljayIsKGZ1bmN0aW9uKHQpezE9PT10LmJ1dHRvbiYmKDAsYS5tb3ZlVGV4dEFyZWFVbmRlck1vdXNlQ3Vyc29yKSh0LGUudGV4dGFyZWEsZS5zY3JlZW5FbGVtZW50KX0pKSl9LHQucHJvdG90eXBlLl9iaW5kS2V5cz1mdW5jdGlvbigpe3ZhciBlPXRoaXM7dGhpcy5yZWdpc3RlcigoMCxkLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikodGhpcy50ZXh0YXJlYSwia2V5dXAiLChmdW5jdGlvbih0KXtyZXR1cm4gZS5fa2V5VXAodCl9KSwhMCkpLHRoaXMucmVnaXN0ZXIoKDAsZC5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHRoaXMudGV4dGFyZWEsImtleWRvd24iLChmdW5jdGlvbih0KXtyZXR1cm4gZS5fa2V5RG93bih0KX0pLCEwKSksdGhpcy5yZWdpc3RlcigoMCxkLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikodGhpcy50ZXh0YXJlYSwia2V5cHJlc3MiLChmdW5jdGlvbih0KXtyZXR1cm4gZS5fa2V5UHJlc3ModCl9KSwhMCkpLHRoaXMucmVnaXN0ZXIoKDAsZC5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHRoaXMudGV4dGFyZWEsImNvbXBvc2l0aW9uc3RhcnQiLChmdW5jdGlvbigpe3JldHVybiBlLl9jb21wb3NpdGlvbkhlbHBlci5jb21wb3NpdGlvbnN0YXJ0KCl9KSkpLHRoaXMucmVnaXN0ZXIoKDAsZC5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHRoaXMudGV4dGFyZWEsImNvbXBvc2l0aW9udXBkYXRlIiwoZnVuY3Rpb24odCl7cmV0dXJuIGUuX2NvbXBvc2l0aW9uSGVscGVyLmNvbXBvc2l0aW9udXBkYXRlKHQpfSkpKSx0aGlzLnJlZ2lzdGVyKCgwLGQuYWRkRGlzcG9zYWJsZURvbUxpc3RlbmVyKSh0aGlzLnRleHRhcmVhLCJjb21wb3NpdGlvbmVuZCIsKGZ1bmN0aW9uKCl7cmV0dXJuIGUuX2NvbXBvc2l0aW9uSGVscGVyLmNvbXBvc2l0aW9uZW5kKCl9KSkpLHRoaXMucmVnaXN0ZXIoKDAsZC5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHRoaXMudGV4dGFyZWEsImlucHV0IiwoZnVuY3Rpb24odCl7cmV0dXJuIGUuX2lucHV0RXZlbnQodCl9KSwhMCkpLHRoaXMucmVnaXN0ZXIodGhpcy5vblJlbmRlcigoZnVuY3Rpb24oKXtyZXR1cm4gZS5fY29tcG9zaXRpb25IZWxwZXIudXBkYXRlQ29tcG9zaXRpb25FbGVtZW50cygpfSkpKSx0aGlzLnJlZ2lzdGVyKHRoaXMub25SZW5kZXIoKGZ1bmN0aW9uKHQpe3JldHVybiBlLl9xdWV1ZUxpbmtpZmljYXRpb24odC5zdGFydCx0LmVuZCl9KSkpfSx0LnByb3RvdHlwZS5vcGVuPWZ1bmN0aW9uKGUpe3ZhciB0PXRoaXM7aWYoIWUpdGhyb3cgbmV3IEVycm9yKCJUZXJtaW5hbCByZXF1aXJlcyBhIHBhcmVudCBlbGVtZW50LiIpO2UuaXNDb25uZWN0ZWR8fHRoaXMuX2xvZ1NlcnZpY2UuZGVidWcoIlRlcm1pbmFsLm9wZW4gd2FzIGNhbGxlZCBvbiBhbiBlbGVtZW50IHRoYXQgd2FzIG5vdCBhdHRhY2hlZCB0byB0aGUgRE9NIiksdGhpcy5fZG9jdW1lbnQ9ZS5vd25lckRvY3VtZW50LHRoaXMuZWxlbWVudD10aGlzLl9kb2N1bWVudC5jcmVhdGVFbGVtZW50KCJkaXYiKSx0aGlzLmVsZW1lbnQuZGlyPSJsdHIiLHRoaXMuZWxlbWVudC5jbGFzc0xpc3QuYWRkKCJ0ZXJtaW5hbCIpLHRoaXMuZWxlbWVudC5jbGFzc0xpc3QuYWRkKCJ4dGVybSIpLHRoaXMuZWxlbWVudC5zZXRBdHRyaWJ1dGUoInRhYmluZGV4IiwiMCIpLGUuYXBwZW5kQ2hpbGQodGhpcy5lbGVtZW50KTt2YXIgcj1ELmNyZWF0ZURvY3VtZW50RnJhZ21lbnQoKTt0aGlzLl92aWV3cG9ydEVsZW1lbnQ9RC5jcmVhdGVFbGVtZW50KCJkaXYiKSx0aGlzLl92aWV3cG9ydEVsZW1lbnQuY2xhc3NMaXN0LmFkZCgieHRlcm0tdmlld3BvcnQiKSxyLmFwcGVuZENoaWxkKHRoaXMuX3ZpZXdwb3J0RWxlbWVudCksdGhpcy5fdmlld3BvcnRTY3JvbGxBcmVhPUQuY3JlYXRlRWxlbWVudCgiZGl2IiksdGhpcy5fdmlld3BvcnRTY3JvbGxBcmVhLmNsYXNzTGlzdC5hZGQoInh0ZXJtLXNjcm9sbC1hcmVhIiksdGhpcy5fdmlld3BvcnRFbGVtZW50LmFwcGVuZENoaWxkKHRoaXMuX3ZpZXdwb3J0U2Nyb2xsQXJlYSksdGhpcy5zY3JlZW5FbGVtZW50PUQuY3JlYXRlRWxlbWVudCgiZGl2IiksdGhpcy5zY3JlZW5FbGVtZW50LmNsYXNzTGlzdC5hZGQoInh0ZXJtLXNjcmVlbiIpLHRoaXMuX2hlbHBlckNvbnRhaW5lcj1ELmNyZWF0ZUVsZW1lbnQoImRpdiIpLHRoaXMuX2hlbHBlckNvbnRhaW5lci5jbGFzc0xpc3QuYWRkKCJ4dGVybS1oZWxwZXJzIiksdGhpcy5zY3JlZW5FbGVtZW50LmFwcGVuZENoaWxkKHRoaXMuX2hlbHBlckNvbnRhaW5lciksci5hcHBlbmRDaGlsZCh0aGlzLnNjcmVlbkVsZW1lbnQpLHRoaXMudGV4dGFyZWE9RC5jcmVhdGVFbGVtZW50KCJ0ZXh0YXJlYSIpLHRoaXMudGV4dGFyZWEuY2xhc3NMaXN0LmFkZCgieHRlcm0taGVscGVyLXRleHRhcmVhIiksdGhpcy50ZXh0YXJlYS5zZXRBdHRyaWJ1dGUoImFyaWEtbGFiZWwiLHAucHJvbXB0TGFiZWwpLHRoaXMudGV4dGFyZWEuc2V0QXR0cmlidXRlKCJhcmlhLW11bHRpbGluZSIsImZhbHNlIiksdGhpcy50ZXh0YXJlYS5zZXRBdHRyaWJ1dGUoImF1dG9jb3JyZWN0Iiwib2ZmIiksdGhpcy50ZXh0YXJlYS5zZXRBdHRyaWJ1dGUoImF1dG9jYXBpdGFsaXplIiwib2ZmIiksdGhpcy50ZXh0YXJlYS5zZXRBdHRyaWJ1dGUoInNwZWxsY2hlY2siLCJmYWxzZSIpLHRoaXMudGV4dGFyZWEudGFiSW5kZXg9MCx0aGlzLnJlZ2lzdGVyKCgwLGQuYWRkRGlzcG9zYWJsZURvbUxpc3RlbmVyKSh0aGlzLnRleHRhcmVhLCJmb2N1cyIsKGZ1bmN0aW9uKGUpe3JldHVybiB0Ll9vblRleHRBcmVhRm9jdXMoZSl9KSkpLHRoaXMucmVnaXN0ZXIoKDAsZC5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHRoaXMudGV4dGFyZWEsImJsdXIiLChmdW5jdGlvbigpe3JldHVybiB0Ll9vblRleHRBcmVhQmx1cigpfSkpKSx0aGlzLl9oZWxwZXJDb250YWluZXIuYXBwZW5kQ2hpbGQodGhpcy50ZXh0YXJlYSk7dmFyIGk9dGhpcy5faW5zdGFudGlhdGlvblNlcnZpY2UuY3JlYXRlSW5zdGFuY2UoTS5Db3JlQnJvd3NlclNlcnZpY2UsdGhpcy50ZXh0YXJlYSk7dGhpcy5faW5zdGFudGlhdGlvblNlcnZpY2Uuc2V0U2VydmljZShFLklDb3JlQnJvd3NlclNlcnZpY2UsaSksdGhpcy5fY2hhclNpemVTZXJ2aWNlPXRoaXMuX2luc3RhbnRpYXRpb25TZXJ2aWNlLmNyZWF0ZUluc3RhbmNlKHguQ2hhclNpemVTZXJ2aWNlLHRoaXMuX2RvY3VtZW50LHRoaXMuX2hlbHBlckNvbnRhaW5lciksdGhpcy5faW5zdGFudGlhdGlvblNlcnZpY2Uuc2V0U2VydmljZShFLklDaGFyU2l6ZVNlcnZpY2UsdGhpcy5fY2hhclNpemVTZXJ2aWNlKSx0aGlzLl90aGVtZT10aGlzLm9wdGlvbnMudGhlbWV8fHRoaXMuX3RoZW1lLHRoaXMuX2NvbG9yTWFuYWdlcj1uZXcgdy5Db2xvck1hbmFnZXIoRCx0aGlzLm9wdGlvbnMuYWxsb3dUcmFuc3BhcmVuY3kpLHRoaXMucmVnaXN0ZXIodGhpcy5vcHRpb25zU2VydmljZS5vbk9wdGlvbkNoYW5nZSgoZnVuY3Rpb24oZSl7cmV0dXJuIHQuX2NvbG9yTWFuYWdlci5vbk9wdGlvbnNDaGFuZ2UoZSl9KSkpLHRoaXMuX2NvbG9yTWFuYWdlci5zZXRUaGVtZSh0aGlzLl90aGVtZSksdGhpcy5fY2hhcmFjdGVySm9pbmVyU2VydmljZT10aGlzLl9pbnN0YW50aWF0aW9uU2VydmljZS5jcmVhdGVJbnN0YW5jZShPLkNoYXJhY3RlckpvaW5lclNlcnZpY2UpLHRoaXMuX2luc3RhbnRpYXRpb25TZXJ2aWNlLnNldFNlcnZpY2UoRS5JQ2hhcmFjdGVySm9pbmVyU2VydmljZSx0aGlzLl9jaGFyYWN0ZXJKb2luZXJTZXJ2aWNlKTt2YXIgbj10aGlzLl9jcmVhdGVSZW5kZXJlcigpO3RoaXMuX3JlbmRlclNlcnZpY2U9dGhpcy5yZWdpc3Rlcih0aGlzLl9pbnN0YW50aWF0aW9uU2VydmljZS5jcmVhdGVJbnN0YW5jZShMLlJlbmRlclNlcnZpY2Usbix0aGlzLnJvd3MsdGhpcy5zY3JlZW5FbGVtZW50KSksdGhpcy5faW5zdGFudGlhdGlvblNlcnZpY2Uuc2V0U2VydmljZShFLklSZW5kZXJTZXJ2aWNlLHRoaXMuX3JlbmRlclNlcnZpY2UpLHRoaXMucmVnaXN0ZXIodGhpcy5fcmVuZGVyU2VydmljZS5vblJlbmRlcmVkQnVmZmVyQ2hhbmdlKChmdW5jdGlvbihlKXtyZXR1cm4gdC5fb25SZW5kZXIuZmlyZShlKX0pKSksdGhpcy5vblJlc2l6ZSgoZnVuY3Rpb24oZSl7cmV0dXJuIHQuX3JlbmRlclNlcnZpY2UucmVzaXplKGUuY29scyxlLnJvd3MpfSkpLHRoaXMuX2NvbXBvc2l0aW9uVmlldz1ELmNyZWF0ZUVsZW1lbnQoImRpdiIpLHRoaXMuX2NvbXBvc2l0aW9uVmlldy5jbGFzc0xpc3QuYWRkKCJjb21wb3NpdGlvbi12aWV3IiksdGhpcy5fY29tcG9zaXRpb25IZWxwZXI9dGhpcy5faW5zdGFudGlhdGlvblNlcnZpY2UuY3JlYXRlSW5zdGFuY2Uoby5Db21wb3NpdGlvbkhlbHBlcix0aGlzLnRleHRhcmVhLHRoaXMuX2NvbXBvc2l0aW9uVmlldyksdGhpcy5faGVscGVyQ29udGFpbmVyLmFwcGVuZENoaWxkKHRoaXMuX2NvbXBvc2l0aW9uVmlldyksdGhpcy5lbGVtZW50LmFwcGVuZENoaWxkKHIpLHRoaXMuX3NvdW5kU2VydmljZT10aGlzLl9pbnN0YW50aWF0aW9uU2VydmljZS5jcmVhdGVJbnN0YW5jZSh2LlNvdW5kU2VydmljZSksdGhpcy5faW5zdGFudGlhdGlvblNlcnZpY2Uuc2V0U2VydmljZShFLklTb3VuZFNlcnZpY2UsdGhpcy5fc291bmRTZXJ2aWNlKSx0aGlzLl9tb3VzZVNlcnZpY2U9dGhpcy5faW5zdGFudGlhdGlvblNlcnZpY2UuY3JlYXRlSW5zdGFuY2UoQS5Nb3VzZVNlcnZpY2UpLHRoaXMuX2luc3RhbnRpYXRpb25TZXJ2aWNlLnNldFNlcnZpY2UoRS5JTW91c2VTZXJ2aWNlLHRoaXMuX21vdXNlU2VydmljZSksdGhpcy52aWV3cG9ydD10aGlzLl9pbnN0YW50aWF0aW9uU2VydmljZS5jcmVhdGVJbnN0YW5jZShzLlZpZXdwb3J0LChmdW5jdGlvbihlKXtyZXR1cm4gdC5zY3JvbGxMaW5lcyhlLCEwLDEpfSksdGhpcy5fdmlld3BvcnRFbGVtZW50LHRoaXMuX3ZpZXdwb3J0U2Nyb2xsQXJlYSx0aGlzLmVsZW1lbnQpLHRoaXMudmlld3BvcnQub25UaGVtZUNoYW5nZSh0aGlzLl9jb2xvck1hbmFnZXIuY29sb3JzKSx0aGlzLnJlZ2lzdGVyKHRoaXMuX2lucHV0SGFuZGxlci5vblJlcXVlc3RTeW5jU2Nyb2xsQmFyKChmdW5jdGlvbigpe3JldHVybiB0LnZpZXdwb3J0LnN5bmNTY3JvbGxBcmVhKCl9KSkpLHRoaXMucmVnaXN0ZXIodGhpcy52aWV3cG9ydCksdGhpcy5yZWdpc3Rlcih0aGlzLm9uQ3Vyc29yTW92ZSgoZnVuY3Rpb24oKXt0Ll9yZW5kZXJTZXJ2aWNlLm9uQ3Vyc29yTW92ZSgpLHQuX3N5bmNUZXh0QXJlYSgpfSkpKSx0aGlzLnJlZ2lzdGVyKHRoaXMub25SZXNpemUoKGZ1bmN0aW9uKCl7cmV0dXJuIHQuX3JlbmRlclNlcnZpY2Uub25SZXNpemUodC5jb2xzLHQucm93cyl9KSkpLHRoaXMucmVnaXN0ZXIodGhpcy5vbkJsdXIoKGZ1bmN0aW9uKCl7cmV0dXJuIHQuX3JlbmRlclNlcnZpY2Uub25CbHVyKCl9KSkpLHRoaXMucmVnaXN0ZXIodGhpcy5vbkZvY3VzKChmdW5jdGlvbigpe3JldHVybiB0Ll9yZW5kZXJTZXJ2aWNlLm9uRm9jdXMoKX0pKSksdGhpcy5yZWdpc3Rlcih0aGlzLl9yZW5kZXJTZXJ2aWNlLm9uRGltZW5zaW9uc0NoYW5nZSgoZnVuY3Rpb24oKXtyZXR1cm4gdC52aWV3cG9ydC5zeW5jU2Nyb2xsQXJlYSgpfSkpKSx0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlPXRoaXMucmVnaXN0ZXIodGhpcy5faW5zdGFudGlhdGlvblNlcnZpY2UuY3JlYXRlSW5zdGFuY2UoZi5TZWxlY3Rpb25TZXJ2aWNlLHRoaXMuZWxlbWVudCx0aGlzLnNjcmVlbkVsZW1lbnQsdGhpcy5saW5raWZpZXIyKSksdGhpcy5faW5zdGFudGlhdGlvblNlcnZpY2Uuc2V0U2VydmljZShFLklTZWxlY3Rpb25TZXJ2aWNlLHRoaXMuX3NlbGVjdGlvblNlcnZpY2UpLHRoaXMucmVnaXN0ZXIodGhpcy5fc2VsZWN0aW9uU2VydmljZS5vblJlcXVlc3RTY3JvbGxMaW5lcygoZnVuY3Rpb24oZSl7cmV0dXJuIHQuc2Nyb2xsTGluZXMoZS5hbW91bnQsZS5zdXBwcmVzc1Njcm9sbEV2ZW50KX0pKSksdGhpcy5yZWdpc3Rlcih0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlLm9uU2VsZWN0aW9uQ2hhbmdlKChmdW5jdGlvbigpe3JldHVybiB0Ll9vblNlbGVjdGlvbkNoYW5nZS5maXJlKCl9KSkpLHRoaXMucmVnaXN0ZXIodGhpcy5fc2VsZWN0aW9uU2VydmljZS5vblJlcXVlc3RSZWRyYXcoKGZ1bmN0aW9uKGUpe3JldHVybiB0Ll9yZW5kZXJTZXJ2aWNlLm9uU2VsZWN0aW9uQ2hhbmdlZChlLnN0YXJ0LGUuZW5kLGUuY29sdW1uU2VsZWN0TW9kZSl9KSkpLHRoaXMucmVnaXN0ZXIodGhpcy5fc2VsZWN0aW9uU2VydmljZS5vbkxpbnV4TW91c2VTZWxlY3Rpb24oKGZ1bmN0aW9uKGUpe3QudGV4dGFyZWEudmFsdWU9ZSx0LnRleHRhcmVhLmZvY3VzKCksdC50ZXh0YXJlYS5zZWxlY3QoKX0pKSksdGhpcy5yZWdpc3Rlcih0aGlzLl9vblNjcm9sbC5ldmVudCgoZnVuY3Rpb24oZSl7dC52aWV3cG9ydC5zeW5jU2Nyb2xsQXJlYSgpLHQuX3NlbGVjdGlvblNlcnZpY2UucmVmcmVzaCgpfSkpKSx0aGlzLnJlZ2lzdGVyKCgwLGQuYWRkRGlzcG9zYWJsZURvbUxpc3RlbmVyKSh0aGlzLl92aWV3cG9ydEVsZW1lbnQsInNjcm9sbCIsKGZ1bmN0aW9uKCl7cmV0dXJuIHQuX3NlbGVjdGlvblNlcnZpY2UucmVmcmVzaCgpfSkpKSx0aGlzLl9tb3VzZVpvbmVNYW5hZ2VyPXRoaXMuX2luc3RhbnRpYXRpb25TZXJ2aWNlLmNyZWF0ZUluc3RhbmNlKGcuTW91c2Vab25lTWFuYWdlcix0aGlzLmVsZW1lbnQsdGhpcy5zY3JlZW5FbGVtZW50KSx0aGlzLnJlZ2lzdGVyKHRoaXMuX21vdXNlWm9uZU1hbmFnZXIpLHRoaXMucmVnaXN0ZXIodGhpcy5vblNjcm9sbCgoZnVuY3Rpb24oKXtyZXR1cm4gdC5fbW91c2Vab25lTWFuYWdlci5jbGVhckFsbCgpfSkpKSx0aGlzLmxpbmtpZmllci5hdHRhY2hUb0RvbSh0aGlzLmVsZW1lbnQsdGhpcy5fbW91c2Vab25lTWFuYWdlciksdGhpcy5saW5raWZpZXIyLmF0dGFjaFRvRG9tKHRoaXMuc2NyZWVuRWxlbWVudCx0aGlzLl9tb3VzZVNlcnZpY2UsdGhpcy5fcmVuZGVyU2VydmljZSksdGhpcy5yZWdpc3RlcigoMCxkLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikodGhpcy5lbGVtZW50LCJtb3VzZWRvd24iLChmdW5jdGlvbihlKXtyZXR1cm4gdC5fc2VsZWN0aW9uU2VydmljZS5vbk1vdXNlRG93bihlKX0pKSksdGhpcy5jb3JlTW91c2VTZXJ2aWNlLmFyZU1vdXNlRXZlbnRzQWN0aXZlPyh0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlLmRpc2FibGUoKSx0aGlzLmVsZW1lbnQuY2xhc3NMaXN0LmFkZCgiZW5hYmxlLW1vdXNlLWV2ZW50cyIpKTp0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlLmVuYWJsZSgpLHRoaXMub3B0aW9ucy5zY3JlZW5SZWFkZXJNb2RlJiYodGhpcy5fYWNjZXNzaWJpbGl0eU1hbmFnZXI9bmV3IHkuQWNjZXNzaWJpbGl0eU1hbmFnZXIodGhpcyx0aGlzLl9yZW5kZXJTZXJ2aWNlKSksdGhpcy5fY2hhclNpemVTZXJ2aWNlLm1lYXN1cmUoKSx0aGlzLnJlZnJlc2goMCx0aGlzLnJvd3MtMSksdGhpcy5faW5pdEdsb2JhbCgpLHRoaXMuYmluZE1vdXNlKCl9LHQucHJvdG90eXBlLl9jcmVhdGVSZW5kZXJlcj1mdW5jdGlvbigpe3N3aXRjaCh0aGlzLm9wdGlvbnMucmVuZGVyZXJUeXBlKXtjYXNlImNhbnZhcyI6cmV0dXJuIHRoaXMuX2luc3RhbnRpYXRpb25TZXJ2aWNlLmNyZWF0ZUluc3RhbmNlKHUuUmVuZGVyZXIsdGhpcy5fY29sb3JNYW5hZ2VyLmNvbG9ycyx0aGlzLnNjcmVlbkVsZW1lbnQsdGhpcy5saW5raWZpZXIsdGhpcy5saW5raWZpZXIyKTtjYXNlImRvbSI6cmV0dXJuIHRoaXMuX2luc3RhbnRpYXRpb25TZXJ2aWNlLmNyZWF0ZUluc3RhbmNlKG0uRG9tUmVuZGVyZXIsdGhpcy5fY29sb3JNYW5hZ2VyLmNvbG9ycyx0aGlzLmVsZW1lbnQsdGhpcy5zY3JlZW5FbGVtZW50LHRoaXMuX3ZpZXdwb3J0RWxlbWVudCx0aGlzLmxpbmtpZmllcix0aGlzLmxpbmtpZmllcjIpO2RlZmF1bHQ6dGhyb3cgbmV3IEVycm9yKCdVbnJlY29nbml6ZWQgcmVuZGVyZXJUeXBlICInK3RoaXMub3B0aW9ucy5yZW5kZXJlclR5cGUrJyInKX19LHQucHJvdG90eXBlLl9zZXRUaGVtZT1mdW5jdGlvbihlKXt2YXIgdCxyLGk7dGhpcy5fdGhlbWU9ZSxudWxsPT09KHQ9dGhpcy5fY29sb3JNYW5hZ2VyKXx8dm9pZCAwPT09dHx8dC5zZXRUaGVtZShlKSxudWxsPT09KHI9dGhpcy5fcmVuZGVyU2VydmljZSl8fHZvaWQgMD09PXJ8fHIuc2V0Q29sb3JzKHRoaXMuX2NvbG9yTWFuYWdlci5jb2xvcnMpLG51bGw9PT0oaT10aGlzLnZpZXdwb3J0KXx8dm9pZCAwPT09aXx8aS5vblRoZW1lQ2hhbmdlKHRoaXMuX2NvbG9yTWFuYWdlci5jb2xvcnMpfSx0LnByb3RvdHlwZS5iaW5kTW91c2U9ZnVuY3Rpb24oKXt2YXIgZT10aGlzLHQ9dGhpcyxyPXRoaXMuZWxlbWVudDtmdW5jdGlvbiBpKGUpe3ZhciByLGksbj10Ll9tb3VzZVNlcnZpY2UuZ2V0UmF3Qnl0ZUNvb3JkcyhlLHQuc2NyZWVuRWxlbWVudCx0LmNvbHMsdC5yb3dzKTtpZighbilyZXR1cm4hMTtzd2l0Y2goZS5vdmVycmlkZVR5cGV8fGUudHlwZSl7Y2FzZSJtb3VzZW1vdmUiOmk9MzIsdm9pZCAwPT09ZS5idXR0b25zPyhyPTMsdm9pZCAwIT09ZS5idXR0b24mJihyPWUuYnV0dG9uPDM/ZS5idXR0b246MykpOnI9MSZlLmJ1dHRvbnM/MDo0JmUuYnV0dG9ucz8xOjImZS5idXR0b25zPzI6MzticmVhaztjYXNlIm1vdXNldXAiOmk9MCxyPWUuYnV0dG9uPDM/ZS5idXR0b246MzticmVhaztjYXNlIm1vdXNlZG93biI6aT0xLHI9ZS5idXR0b248Mz9lLmJ1dHRvbjozO2JyZWFrO2Nhc2Uid2hlZWwiOjAhPT1lLmRlbHRhWSYmKGk9ZS5kZWx0YVk8MD8wOjEpLHI9NDticmVhaztkZWZhdWx0OnJldHVybiExfXJldHVybiEodm9pZCAwPT09aXx8dm9pZCAwPT09cnx8cj40KSYmdC5jb3JlTW91c2VTZXJ2aWNlLnRyaWdnZXJNb3VzZUV2ZW50KHtjb2w6bi54LTMzLHJvdzpuLnktMzMsYnV0dG9uOnIsYWN0aW9uOmksY3RybDplLmN0cmxLZXksYWx0OmUuYWx0S2V5LHNoaWZ0OmUuc2hpZnRLZXl9KX12YXIgbj17bW91c2V1cDpudWxsLHdoZWVsOm51bGwsbW91c2VkcmFnOm51bGwsbW91c2Vtb3ZlOm51bGx9LG89ZnVuY3Rpb24odCl7cmV0dXJuIGkodCksdC5idXR0b25zfHwoZS5fZG9jdW1lbnQucmVtb3ZlRXZlbnRMaXN0ZW5lcigibW91c2V1cCIsbi5tb3VzZXVwKSxuLm1vdXNlZHJhZyYmZS5fZG9jdW1lbnQucmVtb3ZlRXZlbnRMaXN0ZW5lcigibW91c2Vtb3ZlIixuLm1vdXNlZHJhZykpLGUuY2FuY2VsKHQpfSxzPWZ1bmN0aW9uKHQpe3JldHVybiBpKHQpLGUuY2FuY2VsKHQsITApfSxhPWZ1bmN0aW9uKGUpe2UuYnV0dG9ucyYmaShlKX0sbD1mdW5jdGlvbihlKXtlLmJ1dHRvbnN8fGkoZSl9O3RoaXMucmVnaXN0ZXIodGhpcy5jb3JlTW91c2VTZXJ2aWNlLm9uUHJvdG9jb2xDaGFuZ2UoKGZ1bmN0aW9uKHQpe3Q/KCJkZWJ1ZyI9PT1lLm9wdGlvbnNTZXJ2aWNlLm9wdGlvbnMubG9nTGV2ZWwmJmUuX2xvZ1NlcnZpY2UuZGVidWcoIkJpbmRpbmcgdG8gbW91c2UgZXZlbnRzOiIsZS5jb3JlTW91c2VTZXJ2aWNlLmV4cGxhaW5FdmVudHModCkpLGUuZWxlbWVudC5jbGFzc0xpc3QuYWRkKCJlbmFibGUtbW91c2UtZXZlbnRzIiksZS5fc2VsZWN0aW9uU2VydmljZS5kaXNhYmxlKCkpOihlLl9sb2dTZXJ2aWNlLmRlYnVnKCJVbmJpbmRpbmcgZnJvbSBtb3VzZSBldmVudHMuIiksZS5lbGVtZW50LmNsYXNzTGlzdC5yZW1vdmUoImVuYWJsZS1tb3VzZS1ldmVudHMiKSxlLl9zZWxlY3Rpb25TZXJ2aWNlLmVuYWJsZSgpKSw4JnQ/bi5tb3VzZW1vdmV8fChyLmFkZEV2ZW50TGlzdGVuZXIoIm1vdXNlbW92ZSIsbCksbi5tb3VzZW1vdmU9bCk6KHIucmVtb3ZlRXZlbnRMaXN0ZW5lcigibW91c2Vtb3ZlIixuLm1vdXNlbW92ZSksbi5tb3VzZW1vdmU9bnVsbCksMTYmdD9uLndoZWVsfHwoci5hZGRFdmVudExpc3RlbmVyKCJ3aGVlbCIscyx7cGFzc2l2ZTohMX0pLG4ud2hlZWw9cyk6KHIucmVtb3ZlRXZlbnRMaXN0ZW5lcigid2hlZWwiLG4ud2hlZWwpLG4ud2hlZWw9bnVsbCksMiZ0P24ubW91c2V1cHx8KG4ubW91c2V1cD1vKTooZS5fZG9jdW1lbnQucmVtb3ZlRXZlbnRMaXN0ZW5lcigibW91c2V1cCIsbi5tb3VzZXVwKSxuLm1vdXNldXA9bnVsbCksNCZ0P24ubW91c2VkcmFnfHwobi5tb3VzZWRyYWc9YSk6KGUuX2RvY3VtZW50LnJlbW92ZUV2ZW50TGlzdGVuZXIoIm1vdXNlbW92ZSIsbi5tb3VzZWRyYWcpLG4ubW91c2VkcmFnPW51bGwpfSkpKSx0aGlzLmNvcmVNb3VzZVNlcnZpY2UuYWN0aXZlUHJvdG9jb2w9dGhpcy5jb3JlTW91c2VTZXJ2aWNlLmFjdGl2ZVByb3RvY29sLHRoaXMucmVnaXN0ZXIoKDAsZC5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHIsIm1vdXNlZG93biIsKGZ1bmN0aW9uKHQpe2lmKHQucHJldmVudERlZmF1bHQoKSxlLmZvY3VzKCksZS5jb3JlTW91c2VTZXJ2aWNlLmFyZU1vdXNlRXZlbnRzQWN0aXZlJiYhZS5fc2VsZWN0aW9uU2VydmljZS5zaG91bGRGb3JjZVNlbGVjdGlvbih0KSlyZXR1cm4gaSh0KSxuLm1vdXNldXAmJmUuX2RvY3VtZW50LmFkZEV2ZW50TGlzdGVuZXIoIm1vdXNldXAiLG4ubW91c2V1cCksbi5tb3VzZWRyYWcmJmUuX2RvY3VtZW50LmFkZEV2ZW50TGlzdGVuZXIoIm1vdXNlbW92ZSIsbi5tb3VzZWRyYWcpLGUuY2FuY2VsKHQpfSkpKSx0aGlzLnJlZ2lzdGVyKCgwLGQuYWRkRGlzcG9zYWJsZURvbUxpc3RlbmVyKShyLCJ3aGVlbCIsKGZ1bmN0aW9uKHQpe2lmKCFuLndoZWVsKXtpZighZS5idWZmZXIuaGFzU2Nyb2xsYmFjayl7dmFyIHI9ZS52aWV3cG9ydC5nZXRMaW5lc1Njcm9sbGVkKHQpO2lmKDA9PT1yKXJldHVybjtmb3IodmFyIGk9Yy5DMC5FU0MrKGUuY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLmFwcGxpY2F0aW9uQ3Vyc29yS2V5cz8iTyI6IlsiKSsodC5kZWx0YVk8MD8iQSI6IkIiKSxvPSIiLHM9MDtzPE1hdGguYWJzKHIpO3MrKylvKz1pO3JldHVybiBlLmNvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQobywhMCksZS5jYW5jZWwodCwhMCl9cmV0dXJuIGUudmlld3BvcnQub25XaGVlbCh0KT9lLmNhbmNlbCh0KTp2b2lkIDB9fSkse3Bhc3NpdmU6ITF9KSksdGhpcy5yZWdpc3RlcigoMCxkLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikociwidG91Y2hzdGFydCIsKGZ1bmN0aW9uKHQpe2lmKCFlLmNvcmVNb3VzZVNlcnZpY2UuYXJlTW91c2VFdmVudHNBY3RpdmUpcmV0dXJuIGUudmlld3BvcnQub25Ub3VjaFN0YXJ0KHQpLGUuY2FuY2VsKHQpfSkse3Bhc3NpdmU6ITB9KSksdGhpcy5yZWdpc3RlcigoMCxkLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikociwidG91Y2htb3ZlIiwoZnVuY3Rpb24odCl7aWYoIWUuY29yZU1vdXNlU2VydmljZS5hcmVNb3VzZUV2ZW50c0FjdGl2ZSlyZXR1cm4gZS52aWV3cG9ydC5vblRvdWNoTW92ZSh0KT92b2lkIDA6ZS5jYW5jZWwodCl9KSx7cGFzc2l2ZTohMX0pKX0sdC5wcm90b3R5cGUucmVmcmVzaD1mdW5jdGlvbihlLHQpe3ZhciByO251bGw9PT0ocj10aGlzLl9yZW5kZXJTZXJ2aWNlKXx8dm9pZCAwPT09cnx8ci5yZWZyZXNoUm93cyhlLHQpfSx0LnByb3RvdHlwZS5fcXVldWVMaW5raWZpY2F0aW9uPWZ1bmN0aW9uKGUsdCl7dmFyIHI7bnVsbD09PShyPXRoaXMubGlua2lmaWVyKXx8dm9pZCAwPT09cnx8ci5saW5raWZ5Um93cyhlLHQpfSx0LnByb3RvdHlwZS51cGRhdGVDdXJzb3JTdHlsZT1mdW5jdGlvbihlKXt2YXIgdDsobnVsbD09PSh0PXRoaXMuX3NlbGVjdGlvblNlcnZpY2UpfHx2b2lkIDA9PT10P3ZvaWQgMDp0LnNob3VsZENvbHVtblNlbGVjdChlKSk/dGhpcy5lbGVtZW50LmNsYXNzTGlzdC5hZGQoImNvbHVtbi1zZWxlY3QiKTp0aGlzLmVsZW1lbnQuY2xhc3NMaXN0LnJlbW92ZSgiY29sdW1uLXNlbGVjdCIpfSx0LnByb3RvdHlwZS5fc2hvd0N1cnNvcj1mdW5jdGlvbigpe3RoaXMuY29yZVNlcnZpY2UuaXNDdXJzb3JJbml0aWFsaXplZHx8KHRoaXMuY29yZVNlcnZpY2UuaXNDdXJzb3JJbml0aWFsaXplZD0hMCx0aGlzLnJlZnJlc2godGhpcy5idWZmZXIueSx0aGlzLmJ1ZmZlci55KSl9LHQucHJvdG90eXBlLnNjcm9sbExpbmVzPWZ1bmN0aW9uKHQscixpKXt2b2lkIDA9PT1pJiYoaT0wKSxlLnByb3RvdHlwZS5zY3JvbGxMaW5lcy5jYWxsKHRoaXMsdCxyLGkpLHRoaXMucmVmcmVzaCgwLHRoaXMucm93cy0xKX0sdC5wcm90b3R5cGUucGFzdGU9ZnVuY3Rpb24oZSl7KDAsYS5wYXN0ZSkoZSx0aGlzLnRleHRhcmVhLHRoaXMuY29yZVNlcnZpY2UpfSx0LnByb3RvdHlwZS5hdHRhY2hDdXN0b21LZXlFdmVudEhhbmRsZXI9ZnVuY3Rpb24oZSl7dGhpcy5fY3VzdG9tS2V5RXZlbnRIYW5kbGVyPWV9LHQucHJvdG90eXBlLnJlZ2lzdGVyTGlua01hdGNoZXI9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPXRoaXMubGlua2lmaWVyLnJlZ2lzdGVyTGlua01hdGNoZXIoZSx0LHIpO3JldHVybiB0aGlzLnJlZnJlc2goMCx0aGlzLnJvd3MtMSksaX0sdC5wcm90b3R5cGUuZGVyZWdpc3RlckxpbmtNYXRjaGVyPWZ1bmN0aW9uKGUpe3RoaXMubGlua2lmaWVyLmRlcmVnaXN0ZXJMaW5rTWF0Y2hlcihlKSYmdGhpcy5yZWZyZXNoKDAsdGhpcy5yb3dzLTEpfSx0LnByb3RvdHlwZS5yZWdpc3RlckxpbmtQcm92aWRlcj1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5saW5raWZpZXIyLnJlZ2lzdGVyTGlua1Byb3ZpZGVyKGUpfSx0LnByb3RvdHlwZS5yZWdpc3RlckNoYXJhY3RlckpvaW5lcj1mdW5jdGlvbihlKXtpZighdGhpcy5fY2hhcmFjdGVySm9pbmVyU2VydmljZSl0aHJvdyBuZXcgRXJyb3IoIlRlcm1pbmFsIG11c3QgYmUgb3BlbmVkIGZpcnN0Iik7dmFyIHQ9dGhpcy5fY2hhcmFjdGVySm9pbmVyU2VydmljZS5yZWdpc3RlcihlKTtyZXR1cm4gdGhpcy5yZWZyZXNoKDAsdGhpcy5yb3dzLTEpLHR9LHQucHJvdG90eXBlLmRlcmVnaXN0ZXJDaGFyYWN0ZXJKb2luZXI9ZnVuY3Rpb24oZSl7aWYoIXRoaXMuX2NoYXJhY3RlckpvaW5lclNlcnZpY2UpdGhyb3cgbmV3IEVycm9yKCJUZXJtaW5hbCBtdXN0IGJlIG9wZW5lZCBmaXJzdCIpO3RoaXMuX2NoYXJhY3RlckpvaW5lclNlcnZpY2UuZGVyZWdpc3RlcihlKSYmdGhpcy5yZWZyZXNoKDAsdGhpcy5yb3dzLTEpfSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm1hcmtlcnMiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5idWZmZXIubWFya2Vyc30sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSx0LnByb3RvdHlwZS5hZGRNYXJrZXI9ZnVuY3Rpb24oZSl7aWYodGhpcy5idWZmZXI9PT10aGlzLmJ1ZmZlcnMubm9ybWFsKXJldHVybiB0aGlzLmJ1ZmZlci5hZGRNYXJrZXIodGhpcy5idWZmZXIueWJhc2UrdGhpcy5idWZmZXIueStlKX0sdC5wcm90b3R5cGUuaGFzU2VsZWN0aW9uPWZ1bmN0aW9uKCl7cmV0dXJuISF0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlJiZ0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlLmhhc1NlbGVjdGlvbn0sdC5wcm90b3R5cGUuc2VsZWN0PWZ1bmN0aW9uKGUsdCxyKXt0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlLnNldFNlbGVjdGlvbihlLHQscil9LHQucHJvdG90eXBlLmdldFNlbGVjdGlvbj1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlP3RoaXMuX3NlbGVjdGlvblNlcnZpY2Uuc2VsZWN0aW9uVGV4dDoiIn0sdC5wcm90b3R5cGUuZ2V0U2VsZWN0aW9uUG9zaXRpb249ZnVuY3Rpb24oKXtpZih0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlJiZ0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlLmhhc1NlbGVjdGlvbilyZXR1cm57c3RhcnRDb2x1bW46dGhpcy5fc2VsZWN0aW9uU2VydmljZS5zZWxlY3Rpb25TdGFydFswXSxzdGFydFJvdzp0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlLnNlbGVjdGlvblN0YXJ0WzFdLGVuZENvbHVtbjp0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlLnNlbGVjdGlvbkVuZFswXSxlbmRSb3c6dGhpcy5fc2VsZWN0aW9uU2VydmljZS5zZWxlY3Rpb25FbmRbMV19fSx0LnByb3RvdHlwZS5jbGVhclNlbGVjdGlvbj1mdW5jdGlvbigpe3ZhciBlO251bGw9PT0oZT10aGlzLl9zZWxlY3Rpb25TZXJ2aWNlKXx8dm9pZCAwPT09ZXx8ZS5jbGVhclNlbGVjdGlvbigpfSx0LnByb3RvdHlwZS5zZWxlY3RBbGw9ZnVuY3Rpb24oKXt2YXIgZTtudWxsPT09KGU9dGhpcy5fc2VsZWN0aW9uU2VydmljZSl8fHZvaWQgMD09PWV8fGUuc2VsZWN0QWxsKCl9LHQucHJvdG90eXBlLnNlbGVjdExpbmVzPWZ1bmN0aW9uKGUsdCl7dmFyIHI7bnVsbD09PShyPXRoaXMuX3NlbGVjdGlvblNlcnZpY2UpfHx2b2lkIDA9PT1yfHxyLnNlbGVjdExpbmVzKGUsdCl9LHQucHJvdG90eXBlLl9rZXlEb3duPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX2tleURvd25IYW5kbGVkPSExLHRoaXMuX2N1c3RvbUtleUV2ZW50SGFuZGxlciYmITE9PT10aGlzLl9jdXN0b21LZXlFdmVudEhhbmRsZXIoZSkpcmV0dXJuITE7aWYoIXRoaXMuX2NvbXBvc2l0aW9uSGVscGVyLmtleWRvd24oZSkpcmV0dXJuIHRoaXMuYnVmZmVyLnliYXNlIT09dGhpcy5idWZmZXIueWRpc3AmJnRoaXMuX2J1ZmZlclNlcnZpY2Uuc2Nyb2xsVG9Cb3R0b20oKSwhMTsiRGVhZCIhPT1lLmtleSYmIkFsdEdyYXBoIiE9PWUua2V5fHwodGhpcy5fdW5wcm9jZXNzZWREZWFkS2V5PSEwKTt2YXIgdD0oMCxiLmV2YWx1YXRlS2V5Ym9hcmRFdmVudCkoZSx0aGlzLmNvcmVTZXJ2aWNlLmRlY1ByaXZhdGVNb2Rlcy5hcHBsaWNhdGlvbkN1cnNvcktleXMsdGhpcy5icm93c2VyLmlzTWFjLHRoaXMub3B0aW9ucy5tYWNPcHRpb25Jc01ldGEpO2lmKHRoaXMudXBkYXRlQ3Vyc29yU3R5bGUoZSksMz09PXQudHlwZXx8Mj09PXQudHlwZSl7dmFyIHI9dGhpcy5yb3dzLTE7cmV0dXJuIHRoaXMuc2Nyb2xsTGluZXMoMj09PXQudHlwZT8tcjpyKSx0aGlzLmNhbmNlbChlLCEwKX1yZXR1cm4gMT09PXQudHlwZSYmdGhpcy5zZWxlY3RBbGwoKSwhIXRoaXMuX2lzVGhpcmRMZXZlbFNoaWZ0KHRoaXMuYnJvd3NlcixlKXx8KHQuY2FuY2VsJiZ0aGlzLmNhbmNlbChlLCEwKSwhdC5rZXl8fCh0aGlzLl91bnByb2Nlc3NlZERlYWRLZXk/KHRoaXMuX3VucHJvY2Vzc2VkRGVhZEtleT0hMSwhMCk6KHQua2V5IT09Yy5DMC5FVFgmJnQua2V5IT09Yy5DMC5DUnx8KHRoaXMudGV4dGFyZWEudmFsdWU9IiIpLHRoaXMuX29uS2V5LmZpcmUoe2tleTp0LmtleSxkb21FdmVudDplfSksdGhpcy5fc2hvd0N1cnNvcigpLHRoaXMuY29yZVNlcnZpY2UudHJpZ2dlckRhdGFFdmVudCh0LmtleSwhMCksdGhpcy5vcHRpb25zU2VydmljZS5vcHRpb25zLnNjcmVlblJlYWRlck1vZGU/dm9pZCh0aGlzLl9rZXlEb3duSGFuZGxlZD0hMCk6dGhpcy5jYW5jZWwoZSwhMCkpKSl9LHQucHJvdG90eXBlLl9pc1RoaXJkTGV2ZWxTaGlmdD1mdW5jdGlvbihlLHQpe3ZhciByPWUuaXNNYWMmJiF0aGlzLm9wdGlvbnMubWFjT3B0aW9uSXNNZXRhJiZ0LmFsdEtleSYmIXQuY3RybEtleSYmIXQubWV0YUtleXx8ZS5pc1dpbmRvd3MmJnQuYWx0S2V5JiZ0LmN0cmxLZXkmJiF0Lm1ldGFLZXl8fGUuaXNXaW5kb3dzJiZ0LmdldE1vZGlmaWVyU3RhdGUoIkFsdEdyYXBoIik7cmV0dXJuImtleXByZXNzIj09PXQudHlwZT9yOnImJighdC5rZXlDb2RlfHx0LmtleUNvZGU+NDcpfSx0LnByb3RvdHlwZS5fa2V5VXA9ZnVuY3Rpb24oZSl7dGhpcy5fY3VzdG9tS2V5RXZlbnRIYW5kbGVyJiYhMT09PXRoaXMuX2N1c3RvbUtleUV2ZW50SGFuZGxlcihlKXx8KGZ1bmN0aW9uKGUpe3JldHVybiAxNj09PWUua2V5Q29kZXx8MTc9PT1lLmtleUNvZGV8fDE4PT09ZS5rZXlDb2RlfShlKXx8dGhpcy5mb2N1cygpLHRoaXMudXBkYXRlQ3Vyc29yU3R5bGUoZSksdGhpcy5fa2V5UHJlc3NIYW5kbGVkPSExKX0sdC5wcm90b3R5cGUuX2tleVByZXNzPWZ1bmN0aW9uKGUpe3ZhciB0O2lmKHRoaXMuX2tleVByZXNzSGFuZGxlZD0hMSx0aGlzLl9rZXlEb3duSGFuZGxlZClyZXR1cm4hMTtpZih0aGlzLl9jdXN0b21LZXlFdmVudEhhbmRsZXImJiExPT09dGhpcy5fY3VzdG9tS2V5RXZlbnRIYW5kbGVyKGUpKXJldHVybiExO2lmKHRoaXMuY2FuY2VsKGUpLGUuY2hhckNvZGUpdD1lLmNoYXJDb2RlO2Vsc2UgaWYobnVsbD09PWUud2hpY2h8fHZvaWQgMD09PWUud2hpY2gpdD1lLmtleUNvZGU7ZWxzZXtpZigwPT09ZS53aGljaHx8MD09PWUuY2hhckNvZGUpcmV0dXJuITE7dD1lLndoaWNofXJldHVybiEoIXR8fChlLmFsdEtleXx8ZS5jdHJsS2V5fHxlLm1ldGFLZXkpJiYhdGhpcy5faXNUaGlyZExldmVsU2hpZnQodGhpcy5icm93c2VyLGUpfHwodD1TdHJpbmcuZnJvbUNoYXJDb2RlKHQpLHRoaXMuX29uS2V5LmZpcmUoe2tleTp0LGRvbUV2ZW50OmV9KSx0aGlzLl9zaG93Q3Vyc29yKCksdGhpcy5jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KHQsITApLHRoaXMuX2tleVByZXNzSGFuZGxlZD0hMCx0aGlzLl91bnByb2Nlc3NlZERlYWRLZXk9ITEsMCkpfSx0LnByb3RvdHlwZS5faW5wdXRFdmVudD1mdW5jdGlvbihlKXtpZihlLmRhdGEmJiJpbnNlcnRUZXh0Ij09PWUuaW5wdXRUeXBlJiYhZS5jb21wb3NlZCYmIXRoaXMub3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5zY3JlZW5SZWFkZXJNb2RlKXtpZih0aGlzLl9rZXlQcmVzc0hhbmRsZWQpcmV0dXJuITE7dGhpcy5fdW5wcm9jZXNzZWREZWFkS2V5PSExO3ZhciB0PWUuZGF0YTtyZXR1cm4gdGhpcy5jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KHQsITApLHRoaXMuY2FuY2VsKGUpLCEwfXJldHVybiExfSx0LnByb3RvdHlwZS5iZWxsPWZ1bmN0aW9uKCl7dmFyIGU7dGhpcy5fc291bmRCZWxsKCkmJihudWxsPT09KGU9dGhpcy5fc291bmRTZXJ2aWNlKXx8dm9pZCAwPT09ZXx8ZS5wbGF5QmVsbFNvdW5kKCkpLHRoaXMuX29uQmVsbC5maXJlKCl9LHQucHJvdG90eXBlLnJlc2l6ZT1mdW5jdGlvbih0LHIpe3QhPT10aGlzLmNvbHN8fHIhPT10aGlzLnJvd3M/ZS5wcm90b3R5cGUucmVzaXplLmNhbGwodGhpcyx0LHIpOnRoaXMuX2NoYXJTaXplU2VydmljZSYmIXRoaXMuX2NoYXJTaXplU2VydmljZS5oYXNWYWxpZFNpemUmJnRoaXMuX2NoYXJTaXplU2VydmljZS5tZWFzdXJlKCl9LHQucHJvdG90eXBlLl9hZnRlclJlc2l6ZT1mdW5jdGlvbihlLHQpe3ZhciByLGk7bnVsbD09PShyPXRoaXMuX2NoYXJTaXplU2VydmljZSl8fHZvaWQgMD09PXJ8fHIubWVhc3VyZSgpLG51bGw9PT0oaT10aGlzLnZpZXdwb3J0KXx8dm9pZCAwPT09aXx8aS5zeW5jU2Nyb2xsQXJlYSghMCl9LHQucHJvdG90eXBlLmNsZWFyPWZ1bmN0aW9uKCl7aWYoMCE9PXRoaXMuYnVmZmVyLnliYXNlfHwwIT09dGhpcy5idWZmZXIueSl7dGhpcy5idWZmZXIubGluZXMuc2V0KDAsdGhpcy5idWZmZXIubGluZXMuZ2V0KHRoaXMuYnVmZmVyLnliYXNlK3RoaXMuYnVmZmVyLnkpKSx0aGlzLmJ1ZmZlci5saW5lcy5sZW5ndGg9MSx0aGlzLmJ1ZmZlci55ZGlzcD0wLHRoaXMuYnVmZmVyLnliYXNlPTAsdGhpcy5idWZmZXIueT0wO2Zvcih2YXIgZT0xO2U8dGhpcy5yb3dzO2UrKyl0aGlzLmJ1ZmZlci5saW5lcy5wdXNoKHRoaXMuYnVmZmVyLmdldEJsYW5rTGluZShDLkRFRkFVTFRfQVRUUl9EQVRBKSk7dGhpcy5yZWZyZXNoKDAsdGhpcy5yb3dzLTEpLHRoaXMuX29uU2Nyb2xsLmZpcmUoe3Bvc2l0aW9uOnRoaXMuYnVmZmVyLnlkaXNwLHNvdXJjZTowfSl9fSx0LnByb3RvdHlwZS5yZXNldD1mdW5jdGlvbigpe3ZhciB0LHI7dGhpcy5vcHRpb25zLnJvd3M9dGhpcy5yb3dzLHRoaXMub3B0aW9ucy5jb2xzPXRoaXMuY29sczt2YXIgaT10aGlzLl9jdXN0b21LZXlFdmVudEhhbmRsZXI7dGhpcy5fc2V0dXAoKSxlLnByb3RvdHlwZS5yZXNldC5jYWxsKHRoaXMpLG51bGw9PT0odD10aGlzLl9zZWxlY3Rpb25TZXJ2aWNlKXx8dm9pZCAwPT09dHx8dC5yZXNldCgpLHRoaXMuX2N1c3RvbUtleUV2ZW50SGFuZGxlcj1pLHRoaXMucmVmcmVzaCgwLHRoaXMucm93cy0xKSxudWxsPT09KHI9dGhpcy52aWV3cG9ydCl8fHZvaWQgMD09PXJ8fHIuc3luY1Njcm9sbEFyZWEoKX0sdC5wcm90b3R5cGUuY2xlYXJUZXh0dXJlQXRsYXM9ZnVuY3Rpb24oKXt2YXIgZTtudWxsPT09KGU9dGhpcy5fcmVuZGVyU2VydmljZSl8fHZvaWQgMD09PWV8fGUuY2xlYXJUZXh0dXJlQXRsYXMoKX0sdC5wcm90b3R5cGUuX3JlcG9ydEZvY3VzPWZ1bmN0aW9uKCl7dmFyIGU7KG51bGw9PT0oZT10aGlzLmVsZW1lbnQpfHx2b2lkIDA9PT1lP3ZvaWQgMDplLmNsYXNzTGlzdC5jb250YWlucygiZm9jdXMiKSk/dGhpcy5jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KGMuQzAuRVNDKyJbSSIpOnRoaXMuY29yZVNlcnZpY2UudHJpZ2dlckRhdGFFdmVudChjLkMwLkVTQysiW08iKX0sdC5wcm90b3R5cGUuX3JlcG9ydFdpbmRvd3NPcHRpb25zPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX3JlbmRlclNlcnZpY2Upc3dpdGNoKGUpe2Nhc2UgbC5XaW5kb3dzT3B0aW9uc1JlcG9ydFR5cGUuR0VUX1dJTl9TSVpFX1BJWEVMUzp2YXIgdD10aGlzLl9yZW5kZXJTZXJ2aWNlLmRpbWVuc2lvbnMuc2NhbGVkQ2FudmFzV2lkdGgudG9GaXhlZCgwKSxyPXRoaXMuX3JlbmRlclNlcnZpY2UuZGltZW5zaW9ucy5zY2FsZWRDYW52YXNIZWlnaHQudG9GaXhlZCgwKTt0aGlzLmNvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQoYy5DMC5FU0MrIls0OyIrcisiOyIrdCsidCIpO2JyZWFrO2Nhc2UgbC5XaW5kb3dzT3B0aW9uc1JlcG9ydFR5cGUuR0VUX0NFTExfU0laRV9QSVhFTFM6dmFyIGk9dGhpcy5fcmVuZGVyU2VydmljZS5kaW1lbnNpb25zLnNjYWxlZENlbGxXaWR0aC50b0ZpeGVkKDApLG49dGhpcy5fcmVuZGVyU2VydmljZS5kaW1lbnNpb25zLnNjYWxlZENlbGxIZWlnaHQudG9GaXhlZCgwKTt0aGlzLmNvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQoYy5DMC5FU0MrIls2OyIrbisiOyIraSsidCIpfX0sdC5wcm90b3R5cGUuY2FuY2VsPWZ1bmN0aW9uKGUsdCl7aWYodGhpcy5vcHRpb25zLmNhbmNlbEV2ZW50c3x8dClyZXR1cm4gZS5wcmV2ZW50RGVmYXVsdCgpLGUuc3RvcFByb3BhZ2F0aW9uKCksITF9LHQucHJvdG90eXBlLl92aXN1YWxCZWxsPWZ1bmN0aW9uKCl7cmV0dXJuITF9LHQucHJvdG90eXBlLl9zb3VuZEJlbGw9ZnVuY3Rpb24oKXtyZXR1cm4ic291bmQiPT09dGhpcy5vcHRpb25zLmJlbGxTdHlsZX0sdH0oUi5Db3JlVGVybWluYWwpO3QuVGVybWluYWw9UH0sOTkyNDooZSx0KT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LlRpbWVCYXNlZERlYm91bmNlcj12b2lkIDA7dmFyIHI9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUsdCl7dm9pZCAwPT09dCYmKHQ9MWUzKSx0aGlzLl9yZW5kZXJDYWxsYmFjaz1lLHRoaXMuX2RlYm91bmNlVGhyZXNob2xkTVM9dCx0aGlzLl9sYXN0UmVmcmVzaE1zPTAsdGhpcy5fYWRkaXRpb25hbFJlZnJlc2hSZXF1ZXN0ZWQ9ITF9cmV0dXJuIGUucHJvdG90eXBlLmRpc3Bvc2U9ZnVuY3Rpb24oKXt0aGlzLl9yZWZyZXNoVGltZW91dElEJiZjbGVhclRpbWVvdXQodGhpcy5fcmVmcmVzaFRpbWVvdXRJRCl9LGUucHJvdG90eXBlLnJlZnJlc2g9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPXRoaXM7dGhpcy5fcm93Q291bnQ9cixlPXZvaWQgMCE9PWU/ZTowLHQ9dm9pZCAwIT09dD90OnRoaXMuX3Jvd0NvdW50LTEsdGhpcy5fcm93U3RhcnQ9dm9pZCAwIT09dGhpcy5fcm93U3RhcnQ/TWF0aC5taW4odGhpcy5fcm93U3RhcnQsZSk6ZSx0aGlzLl9yb3dFbmQ9dm9pZCAwIT09dGhpcy5fcm93RW5kP01hdGgubWF4KHRoaXMuX3Jvd0VuZCx0KTp0O3ZhciBuPURhdGUubm93KCk7aWYobi10aGlzLl9sYXN0UmVmcmVzaE1zPj10aGlzLl9kZWJvdW5jZVRocmVzaG9sZE1TKXRoaXMuX2xhc3RSZWZyZXNoTXM9bix0aGlzLl9pbm5lclJlZnJlc2goKTtlbHNlIGlmKCF0aGlzLl9hZGRpdGlvbmFsUmVmcmVzaFJlcXVlc3RlZCl7dmFyIG89bi10aGlzLl9sYXN0UmVmcmVzaE1zLHM9dGhpcy5fZGVib3VuY2VUaHJlc2hvbGRNUy1vO3RoaXMuX2FkZGl0aW9uYWxSZWZyZXNoUmVxdWVzdGVkPSEwLHRoaXMuX3JlZnJlc2hUaW1lb3V0SUQ9d2luZG93LnNldFRpbWVvdXQoKGZ1bmN0aW9uKCl7aS5fbGFzdFJlZnJlc2hNcz1EYXRlLm5vdygpLGkuX2lubmVyUmVmcmVzaCgpLGkuX2FkZGl0aW9uYWxSZWZyZXNoUmVxdWVzdGVkPSExLGkuX3JlZnJlc2hUaW1lb3V0SUQ9dm9pZCAwfSkscyl9fSxlLnByb3RvdHlwZS5faW5uZXJSZWZyZXNoPWZ1bmN0aW9uKCl7aWYodm9pZCAwIT09dGhpcy5fcm93U3RhcnQmJnZvaWQgMCE9PXRoaXMuX3Jvd0VuZCYmdm9pZCAwIT09dGhpcy5fcm93Q291bnQpe3ZhciBlPU1hdGgubWF4KHRoaXMuX3Jvd1N0YXJ0LDApLHQ9TWF0aC5taW4odGhpcy5fcm93RW5kLHRoaXMuX3Jvd0NvdW50LTEpO3RoaXMuX3Jvd1N0YXJ0PXZvaWQgMCx0aGlzLl9yb3dFbmQ9dm9pZCAwLHRoaXMuX3JlbmRlckNhbGxiYWNrKGUsdCl9fSxlfSgpO3QuVGltZUJhc2VkRGVib3VuY2VyPXJ9LDE2ODA6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpLG49dGhpcyYmdGhpcy5fX2V4dGVuZHN8fChpPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGk9T2JqZWN0LnNldFByb3RvdHlwZU9mfHx7X19wcm90b19fOltdfWluc3RhbmNlb2YgQXJyYXkmJmZ1bmN0aW9uKGUsdCl7ZS5fX3Byb3RvX189dH18fGZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByIGluIHQpT2JqZWN0LnByb3RvdHlwZS5oYXNPd25Qcm9wZXJ0eS5jYWxsKHQscikmJihlW3JdPXRbcl0pfSxpKGUsdCl9LGZ1bmN0aW9uKGUsdCl7aWYoImZ1bmN0aW9uIiE9dHlwZW9mIHQmJm51bGwhPT10KXRocm93IG5ldyBUeXBlRXJyb3IoIkNsYXNzIGV4dGVuZHMgdmFsdWUgIitTdHJpbmcodCkrIiBpcyBub3QgYSBjb25zdHJ1Y3RvciBvciBudWxsIik7ZnVuY3Rpb24gcigpe3RoaXMuY29uc3RydWN0b3I9ZX1pKGUsdCksZS5wcm90b3R5cGU9bnVsbD09PXQ/T2JqZWN0LmNyZWF0ZSh0KTooci5wcm90b3R5cGU9dC5wcm90b3R5cGUsbmV3IHIpfSksbz10aGlzJiZ0aGlzLl9fZGVjb3JhdGV8fGZ1bmN0aW9uKGUsdCxyLGkpe3ZhciBuLG89YXJndW1lbnRzLmxlbmd0aCxzPW88Mz90Om51bGw9PT1pP2k9T2JqZWN0LmdldE93blByb3BlcnR5RGVzY3JpcHRvcih0LHIpOmk7aWYoIm9iamVjdCI9PXR5cGVvZiBSZWZsZWN0JiYiZnVuY3Rpb24iPT10eXBlb2YgUmVmbGVjdC5kZWNvcmF0ZSlzPVJlZmxlY3QuZGVjb3JhdGUoZSx0LHIsaSk7ZWxzZSBmb3IodmFyIGE9ZS5sZW5ndGgtMTthPj0wO2EtLSkobj1lW2FdKSYmKHM9KG88Mz9uKHMpOm8+Mz9uKHQscixzKTpuKHQscikpfHxzKTtyZXR1cm4gbz4zJiZzJiZPYmplY3QuZGVmaW5lUHJvcGVydHkodCxyLHMpLHN9LHM9dGhpcyYmdGhpcy5fX3BhcmFtfHxmdW5jdGlvbihlLHQpe3JldHVybiBmdW5jdGlvbihyLGkpe3QocixpLGUpfX07T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuVmlld3BvcnQ9dm9pZCAwO3ZhciBhPXIoODQ0KSxjPXIoMzY1NiksbD1yKDQ3MjUpLHU9cigyNTg1KSxoPWZ1bmN0aW9uKGUpe2Z1bmN0aW9uIHQodCxyLGksbixvLHMsYSxsKXt2YXIgdT1lLmNhbGwodGhpcyl8fHRoaXM7cmV0dXJuIHUuX3Njcm9sbExpbmVzPXQsdS5fdmlld3BvcnRFbGVtZW50PXIsdS5fc2Nyb2xsQXJlYT1pLHUuX2VsZW1lbnQ9bix1Ll9idWZmZXJTZXJ2aWNlPW8sdS5fb3B0aW9uc1NlcnZpY2U9cyx1Ll9jaGFyU2l6ZVNlcnZpY2U9YSx1Ll9yZW5kZXJTZXJ2aWNlPWwsdS5zY3JvbGxCYXJXaWR0aD0wLHUuX2N1cnJlbnRSb3dIZWlnaHQ9MCx1Ll9jdXJyZW50U2NhbGVkQ2VsbEhlaWdodD0wLHUuX2xhc3RSZWNvcmRlZEJ1ZmZlckxlbmd0aD0wLHUuX2xhc3RSZWNvcmRlZFZpZXdwb3J0SGVpZ2h0PTAsdS5fbGFzdFJlY29yZGVkQnVmZmVySGVpZ2h0PTAsdS5fbGFzdFRvdWNoWT0wLHUuX2xhc3RTY3JvbGxUb3A9MCx1Ll9sYXN0SGFkU2Nyb2xsQmFyPSExLHUuX3doZWVsUGFydGlhbFNjcm9sbD0wLHUuX3JlZnJlc2hBbmltYXRpb25GcmFtZT1udWxsLHUuX2lnbm9yZU5leHRTY3JvbGxFdmVudD0hMSx1LnNjcm9sbEJhcldpZHRoPXUuX3ZpZXdwb3J0RWxlbWVudC5vZmZzZXRXaWR0aC11Ll9zY3JvbGxBcmVhLm9mZnNldFdpZHRofHwxNSx1Ll9sYXN0SGFkU2Nyb2xsQmFyPSEwLHUucmVnaXN0ZXIoKDAsYy5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHUuX3ZpZXdwb3J0RWxlbWVudCwic2Nyb2xsIix1Ll9vblNjcm9sbC5iaW5kKHUpKSksdS5fYWN0aXZlQnVmZmVyPXUuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLHUucmVnaXN0ZXIodS5fYnVmZmVyU2VydmljZS5idWZmZXJzLm9uQnVmZmVyQWN0aXZhdGUoKGZ1bmN0aW9uKGUpe3JldHVybiB1Ll9hY3RpdmVCdWZmZXI9ZS5hY3RpdmVCdWZmZXJ9KSkpLHUuX3JlbmRlckRpbWVuc2lvbnM9dS5fcmVuZGVyU2VydmljZS5kaW1lbnNpb25zLHUucmVnaXN0ZXIodS5fcmVuZGVyU2VydmljZS5vbkRpbWVuc2lvbnNDaGFuZ2UoKGZ1bmN0aW9uKGUpe3JldHVybiB1Ll9yZW5kZXJEaW1lbnNpb25zPWV9KSkpLHNldFRpbWVvdXQoKGZ1bmN0aW9uKCl7cmV0dXJuIHUuc3luY1Njcm9sbEFyZWEoKX0pLDApLHV9cmV0dXJuIG4odCxlKSx0LnByb3RvdHlwZS5vblRoZW1lQ2hhbmdlPWZ1bmN0aW9uKGUpe3RoaXMuX3ZpZXdwb3J0RWxlbWVudC5zdHlsZS5iYWNrZ3JvdW5kQ29sb3I9ZS5iYWNrZ3JvdW5kLmNzc30sdC5wcm90b3R5cGUuX3JlZnJlc2g9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcztpZihlKXJldHVybiB0aGlzLl9pbm5lclJlZnJlc2goKSx2b2lkKG51bGwhPT10aGlzLl9yZWZyZXNoQW5pbWF0aW9uRnJhbWUmJmNhbmNlbEFuaW1hdGlvbkZyYW1lKHRoaXMuX3JlZnJlc2hBbmltYXRpb25GcmFtZSkpO251bGw9PT10aGlzLl9yZWZyZXNoQW5pbWF0aW9uRnJhbWUmJih0aGlzLl9yZWZyZXNoQW5pbWF0aW9uRnJhbWU9cmVxdWVzdEFuaW1hdGlvbkZyYW1lKChmdW5jdGlvbigpe3JldHVybiB0Ll9pbm5lclJlZnJlc2goKX0pKSl9LHQucHJvdG90eXBlLl9pbm5lclJlZnJlc2g9ZnVuY3Rpb24oKXtpZih0aGlzLl9jaGFyU2l6ZVNlcnZpY2UuaGVpZ2h0PjApe3RoaXMuX2N1cnJlbnRSb3dIZWlnaHQ9dGhpcy5fcmVuZGVyU2VydmljZS5kaW1lbnNpb25zLnNjYWxlZENlbGxIZWlnaHQvd2luZG93LmRldmljZVBpeGVsUmF0aW8sdGhpcy5fY3VycmVudFNjYWxlZENlbGxIZWlnaHQ9dGhpcy5fcmVuZGVyU2VydmljZS5kaW1lbnNpb25zLnNjYWxlZENlbGxIZWlnaHQsdGhpcy5fbGFzdFJlY29yZGVkVmlld3BvcnRIZWlnaHQ9dGhpcy5fdmlld3BvcnRFbGVtZW50Lm9mZnNldEhlaWdodDt2YXIgZT1NYXRoLnJvdW5kKHRoaXMuX2N1cnJlbnRSb3dIZWlnaHQqdGhpcy5fbGFzdFJlY29yZGVkQnVmZmVyTGVuZ3RoKSsodGhpcy5fbGFzdFJlY29yZGVkVmlld3BvcnRIZWlnaHQtdGhpcy5fcmVuZGVyU2VydmljZS5kaW1lbnNpb25zLmNhbnZhc0hlaWdodCk7dGhpcy5fbGFzdFJlY29yZGVkQnVmZmVySGVpZ2h0IT09ZSYmKHRoaXMuX2xhc3RSZWNvcmRlZEJ1ZmZlckhlaWdodD1lLHRoaXMuX3Njcm9sbEFyZWEuc3R5bGUuaGVpZ2h0PXRoaXMuX2xhc3RSZWNvcmRlZEJ1ZmZlckhlaWdodCsicHgiKX12YXIgdD10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55ZGlzcCp0aGlzLl9jdXJyZW50Um93SGVpZ2h0O3RoaXMuX3ZpZXdwb3J0RWxlbWVudC5zY3JvbGxUb3AhPT10JiYodGhpcy5faWdub3JlTmV4dFNjcm9sbEV2ZW50PSEwLHRoaXMuX3ZpZXdwb3J0RWxlbWVudC5zY3JvbGxUb3A9dCksMD09PXRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuc2Nyb2xsYmFjaz90aGlzLnNjcm9sbEJhcldpZHRoPTA6dGhpcy5zY3JvbGxCYXJXaWR0aD10aGlzLl92aWV3cG9ydEVsZW1lbnQub2Zmc2V0V2lkdGgtdGhpcy5fc2Nyb2xsQXJlYS5vZmZzZXRXaWR0aHx8MTUsdGhpcy5fbGFzdEhhZFNjcm9sbEJhcj10aGlzLnNjcm9sbEJhcldpZHRoPjA7dmFyIHI9d2luZG93LmdldENvbXB1dGVkU3R5bGUodGhpcy5fZWxlbWVudCksaT1wYXJzZUludChyLnBhZGRpbmdMZWZ0KStwYXJzZUludChyLnBhZGRpbmdSaWdodCk7dGhpcy5fdmlld3BvcnRFbGVtZW50LnN0eWxlLndpZHRoPSh0aGlzLl9yZW5kZXJTZXJ2aWNlLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbFdpZHRoKnRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyt0aGlzLnNjcm9sbEJhcldpZHRoKyh0aGlzLl9sYXN0SGFkU2Nyb2xsQmFyP2k6MCkpLnRvU3RyaW5nKCkrInB4Iix0aGlzLl9yZWZyZXNoQW5pbWF0aW9uRnJhbWU9bnVsbH0sdC5wcm90b3R5cGUuc3luY1Njcm9sbEFyZWE9ZnVuY3Rpb24oZSl7aWYodm9pZCAwPT09ZSYmKGU9ITEpLHRoaXMuX2xhc3RSZWNvcmRlZEJ1ZmZlckxlbmd0aCE9PXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLmxpbmVzLmxlbmd0aClyZXR1cm4gdGhpcy5fbGFzdFJlY29yZGVkQnVmZmVyTGVuZ3RoPXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLmxpbmVzLmxlbmd0aCx2b2lkIHRoaXMuX3JlZnJlc2goZSk7dGhpcy5fbGFzdFJlY29yZGVkVmlld3BvcnRIZWlnaHQ9PT10aGlzLl9yZW5kZXJTZXJ2aWNlLmRpbWVuc2lvbnMuY2FudmFzSGVpZ2h0JiZ0aGlzLl9sYXN0U2Nyb2xsVG9wPT09dGhpcy5fYWN0aXZlQnVmZmVyLnlkaXNwKnRoaXMuX2N1cnJlbnRSb3dIZWlnaHQmJnRoaXMuX3JlbmRlckRpbWVuc2lvbnMuc2NhbGVkQ2VsbEhlaWdodD09PXRoaXMuX2N1cnJlbnRTY2FsZWRDZWxsSGVpZ2h0P3RoaXMuX2xhc3RIYWRTY3JvbGxCYXIhPT10aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLnNjcm9sbGJhY2s+MCYmdGhpcy5fcmVmcmVzaChlKTp0aGlzLl9yZWZyZXNoKGUpfSx0LnByb3RvdHlwZS5fb25TY3JvbGw9ZnVuY3Rpb24oZSl7aWYodGhpcy5fbGFzdFNjcm9sbFRvcD10aGlzLl92aWV3cG9ydEVsZW1lbnQuc2Nyb2xsVG9wLHRoaXMuX3ZpZXdwb3J0RWxlbWVudC5vZmZzZXRQYXJlbnQpe2lmKHRoaXMuX2lnbm9yZU5leHRTY3JvbGxFdmVudClyZXR1cm4gdGhpcy5faWdub3JlTmV4dFNjcm9sbEV2ZW50PSExLHZvaWQgdGhpcy5fc2Nyb2xsTGluZXMoMCk7dmFyIHQ9TWF0aC5yb3VuZCh0aGlzLl9sYXN0U2Nyb2xsVG9wL3RoaXMuX2N1cnJlbnRSb3dIZWlnaHQpLXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnlkaXNwO3RoaXMuX3Njcm9sbExpbmVzKHQpfX0sdC5wcm90b3R5cGUuX2J1YmJsZVNjcm9sbD1mdW5jdGlvbihlLHQpe3ZhciByPXRoaXMuX3ZpZXdwb3J0RWxlbWVudC5zY3JvbGxUb3ArdGhpcy5fbGFzdFJlY29yZGVkVmlld3BvcnRIZWlnaHQ7cmV0dXJuISh0PDAmJjAhPT10aGlzLl92aWV3cG9ydEVsZW1lbnQuc2Nyb2xsVG9wfHx0PjAmJnI8dGhpcy5fbGFzdFJlY29yZGVkQnVmZmVySGVpZ2h0KXx8KGUuY2FuY2VsYWJsZSYmZS5wcmV2ZW50RGVmYXVsdCgpLCExKX0sdC5wcm90b3R5cGUub25XaGVlbD1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9nZXRQaXhlbHNTY3JvbGxlZChlKTtyZXR1cm4gMCE9PXQmJih0aGlzLl92aWV3cG9ydEVsZW1lbnQuc2Nyb2xsVG9wKz10LHRoaXMuX2J1YmJsZVNjcm9sbChlLHQpKX0sdC5wcm90b3R5cGUuX2dldFBpeGVsc1Njcm9sbGVkPWZ1bmN0aW9uKGUpe2lmKDA9PT1lLmRlbHRhWXx8ZS5zaGlmdEtleSlyZXR1cm4gMDt2YXIgdD10aGlzLl9hcHBseVNjcm9sbE1vZGlmaWVyKGUuZGVsdGFZLGUpO3JldHVybiBlLmRlbHRhTW9kZT09PVdoZWVsRXZlbnQuRE9NX0RFTFRBX0xJTkU/dCo9dGhpcy5fY3VycmVudFJvd0hlaWdodDplLmRlbHRhTW9kZT09PVdoZWVsRXZlbnQuRE9NX0RFTFRBX1BBR0UmJih0Kj10aGlzLl9jdXJyZW50Um93SGVpZ2h0KnRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cyksdH0sdC5wcm90b3R5cGUuZ2V0TGluZXNTY3JvbGxlZD1mdW5jdGlvbihlKXtpZigwPT09ZS5kZWx0YVl8fGUuc2hpZnRLZXkpcmV0dXJuIDA7dmFyIHQ9dGhpcy5fYXBwbHlTY3JvbGxNb2RpZmllcihlLmRlbHRhWSxlKTtyZXR1cm4gZS5kZWx0YU1vZGU9PT1XaGVlbEV2ZW50LkRPTV9ERUxUQV9QSVhFTD8odC89dGhpcy5fY3VycmVudFJvd0hlaWdodCswLHRoaXMuX3doZWVsUGFydGlhbFNjcm9sbCs9dCx0PU1hdGguZmxvb3IoTWF0aC5hYnModGhpcy5fd2hlZWxQYXJ0aWFsU2Nyb2xsKSkqKHRoaXMuX3doZWVsUGFydGlhbFNjcm9sbD4wPzE6LTEpLHRoaXMuX3doZWVsUGFydGlhbFNjcm9sbCU9MSk6ZS5kZWx0YU1vZGU9PT1XaGVlbEV2ZW50LkRPTV9ERUxUQV9QQUdFJiYodCo9dGhpcy5fYnVmZmVyU2VydmljZS5yb3dzKSx0fSx0LnByb3RvdHlwZS5fYXBwbHlTY3JvbGxNb2RpZmllcj1mdW5jdGlvbihlLHQpe3ZhciByPXRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuZmFzdFNjcm9sbE1vZGlmaWVyO3JldHVybiJhbHQiPT09ciYmdC5hbHRLZXl8fCJjdHJsIj09PXImJnQuY3RybEtleXx8InNoaWZ0Ij09PXImJnQuc2hpZnRLZXk/ZSp0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmZhc3RTY3JvbGxTZW5zaXRpdml0eSp0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLnNjcm9sbFNlbnNpdGl2aXR5OmUqdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5zY3JvbGxTZW5zaXRpdml0eX0sdC5wcm90b3R5cGUub25Ub3VjaFN0YXJ0PWZ1bmN0aW9uKGUpe3RoaXMuX2xhc3RUb3VjaFk9ZS50b3VjaGVzWzBdLnBhZ2VZfSx0LnByb3RvdHlwZS5vblRvdWNoTW92ZT1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9sYXN0VG91Y2hZLWUudG91Y2hlc1swXS5wYWdlWTtyZXR1cm4gdGhpcy5fbGFzdFRvdWNoWT1lLnRvdWNoZXNbMF0ucGFnZVksMCE9PXQmJih0aGlzLl92aWV3cG9ydEVsZW1lbnQuc2Nyb2xsVG9wKz10LHRoaXMuX2J1YmJsZVNjcm9sbChlLHQpKX0sbyhbcyg0LHUuSUJ1ZmZlclNlcnZpY2UpLHMoNSx1LklPcHRpb25zU2VydmljZSkscyg2LGwuSUNoYXJTaXplU2VydmljZSkscyg3LGwuSVJlbmRlclNlcnZpY2UpXSx0KX0oYS5EaXNwb3NhYmxlKTt0LlZpZXdwb3J0PWh9LDI5NTA6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPXRoaXMmJnRoaXMuX19kZWNvcmF0ZXx8ZnVuY3Rpb24oZSx0LHIsaSl7dmFyIG4sbz1hcmd1bWVudHMubGVuZ3RoLHM9bzwzP3Q6bnVsbD09PWk/aT1PYmplY3QuZ2V0T3duUHJvcGVydHlEZXNjcmlwdG9yKHQscik6aTtpZigib2JqZWN0Ij09dHlwZW9mIFJlZmxlY3QmJiJmdW5jdGlvbiI9PXR5cGVvZiBSZWZsZWN0LmRlY29yYXRlKXM9UmVmbGVjdC5kZWNvcmF0ZShlLHQscixpKTtlbHNlIGZvcih2YXIgYT1lLmxlbmd0aC0xO2E+PTA7YS0tKShuPWVbYV0pJiYocz0obzwzP24ocyk6bz4zP24odCxyLHMpOm4odCxyKSl8fHMpO3JldHVybiBvPjMmJnMmJk9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LHIscyksc30sbj10aGlzJiZ0aGlzLl9fcGFyYW18fGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGZ1bmN0aW9uKHIsaSl7dChyLGksZSl9fTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Db21wb3NpdGlvbkhlbHBlcj12b2lkIDA7dmFyIG89cig0NzI1KSxzPXIoMjU4NSksYT1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoZSx0LHIsaSxuLG8pe3RoaXMuX3RleHRhcmVhPWUsdGhpcy5fY29tcG9zaXRpb25WaWV3PXQsdGhpcy5fYnVmZmVyU2VydmljZT1yLHRoaXMuX29wdGlvbnNTZXJ2aWNlPWksdGhpcy5fY29yZVNlcnZpY2U9bix0aGlzLl9yZW5kZXJTZXJ2aWNlPW8sdGhpcy5faXNDb21wb3Npbmc9ITEsdGhpcy5faXNTZW5kaW5nQ29tcG9zaXRpb249ITEsdGhpcy5fY29tcG9zaXRpb25Qb3NpdGlvbj17c3RhcnQ6MCxlbmQ6MH0sdGhpcy5fZGF0YUFscmVhZHlTZW50PSIifXJldHVybiBPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImlzQ29tcG9zaW5nIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2lzQ29tcG9zaW5nfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLGUucHJvdG90eXBlLmNvbXBvc2l0aW9uc3RhcnQ9ZnVuY3Rpb24oKXt0aGlzLl9pc0NvbXBvc2luZz0hMCx0aGlzLl9jb21wb3NpdGlvblBvc2l0aW9uLnN0YXJ0PXRoaXMuX3RleHRhcmVhLnZhbHVlLmxlbmd0aCx0aGlzLl9jb21wb3NpdGlvblZpZXcudGV4dENvbnRlbnQ9IiIsdGhpcy5fZGF0YUFscmVhZHlTZW50PSIiLHRoaXMuX2NvbXBvc2l0aW9uVmlldy5jbGFzc0xpc3QuYWRkKCJhY3RpdmUiKX0sZS5wcm90b3R5cGUuY29tcG9zaXRpb251cGRhdGU9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpczt0aGlzLl9jb21wb3NpdGlvblZpZXcudGV4dENvbnRlbnQ9ZS5kYXRhLHRoaXMudXBkYXRlQ29tcG9zaXRpb25FbGVtZW50cygpLHNldFRpbWVvdXQoKGZ1bmN0aW9uKCl7dC5fY29tcG9zaXRpb25Qb3NpdGlvbi5lbmQ9dC5fdGV4dGFyZWEudmFsdWUubGVuZ3RofSksMCl9LGUucHJvdG90eXBlLmNvbXBvc2l0aW9uZW5kPWZ1bmN0aW9uKCl7dGhpcy5fZmluYWxpemVDb21wb3NpdGlvbighMCl9LGUucHJvdG90eXBlLmtleWRvd249ZnVuY3Rpb24oZSl7aWYodGhpcy5faXNDb21wb3Npbmd8fHRoaXMuX2lzU2VuZGluZ0NvbXBvc2l0aW9uKXtpZigyMjk9PT1lLmtleUNvZGUpcmV0dXJuITE7aWYoMTY9PT1lLmtleUNvZGV8fDE3PT09ZS5rZXlDb2RlfHwxOD09PWUua2V5Q29kZSlyZXR1cm4hMTt0aGlzLl9maW5hbGl6ZUNvbXBvc2l0aW9uKCExKX1yZXR1cm4gMjI5IT09ZS5rZXlDb2RlfHwodGhpcy5faGFuZGxlQW55VGV4dGFyZWFDaGFuZ2VzKCksITEpfSxlLnByb3RvdHlwZS5fZmluYWxpemVDb21wb3NpdGlvbj1mdW5jdGlvbihlKXt2YXIgdD10aGlzO2lmKHRoaXMuX2NvbXBvc2l0aW9uVmlldy5jbGFzc0xpc3QucmVtb3ZlKCJhY3RpdmUiKSx0aGlzLl9pc0NvbXBvc2luZz0hMSxlKXt2YXIgcj17c3RhcnQ6dGhpcy5fY29tcG9zaXRpb25Qb3NpdGlvbi5zdGFydCxlbmQ6dGhpcy5fY29tcG9zaXRpb25Qb3NpdGlvbi5lbmR9O3RoaXMuX2lzU2VuZGluZ0NvbXBvc2l0aW9uPSEwLHNldFRpbWVvdXQoKGZ1bmN0aW9uKCl7dmFyIGU7dC5faXNTZW5kaW5nQ29tcG9zaXRpb24mJih0Ll9pc1NlbmRpbmdDb21wb3NpdGlvbj0hMSxyLnN0YXJ0Kz10Ll9kYXRhQWxyZWFkeVNlbnQubGVuZ3RoLChlPXQuX2lzQ29tcG9zaW5nP3QuX3RleHRhcmVhLnZhbHVlLnN1YnN0cmluZyhyLnN0YXJ0LHIuZW5kKTp0Ll90ZXh0YXJlYS52YWx1ZS5zdWJzdHJpbmcoci5zdGFydCkpLmxlbmd0aD4wJiZ0Ll9jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KGUsITApKX0pLDApfWVsc2V7dGhpcy5faXNTZW5kaW5nQ29tcG9zaXRpb249ITE7dmFyIGk9dGhpcy5fdGV4dGFyZWEudmFsdWUuc3Vic3RyaW5nKHRoaXMuX2NvbXBvc2l0aW9uUG9zaXRpb24uc3RhcnQsdGhpcy5fY29tcG9zaXRpb25Qb3NpdGlvbi5lbmQpO3RoaXMuX2NvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQoaSwhMCl9fSxlLnByb3RvdHlwZS5faGFuZGxlQW55VGV4dGFyZWFDaGFuZ2VzPWZ1bmN0aW9uKCl7dmFyIGU9dGhpcyx0PXRoaXMuX3RleHRhcmVhLnZhbHVlO3NldFRpbWVvdXQoKGZ1bmN0aW9uKCl7aWYoIWUuX2lzQ29tcG9zaW5nKXt2YXIgcj1lLl90ZXh0YXJlYS52YWx1ZS5yZXBsYWNlKHQsIiIpO3IubGVuZ3RoPjAmJihlLl9kYXRhQWxyZWFkeVNlbnQ9cixlLl9jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KHIsITApKX19KSwwKX0sZS5wcm90b3R5cGUudXBkYXRlQ29tcG9zaXRpb25FbGVtZW50cz1mdW5jdGlvbihlKXt2YXIgdD10aGlzO2lmKHRoaXMuX2lzQ29tcG9zaW5nKXtpZih0aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci5pc0N1cnNvckluVmlld3BvcnQpe3ZhciByPU1hdGgubWluKHRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLngsdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLTEpLGk9dGhpcy5fcmVuZGVyU2VydmljZS5kaW1lbnNpb25zLmFjdHVhbENlbGxIZWlnaHQsbj10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55KnRoaXMuX3JlbmRlclNlcnZpY2UuZGltZW5zaW9ucy5hY3R1YWxDZWxsSGVpZ2h0LG89cip0aGlzLl9yZW5kZXJTZXJ2aWNlLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbFdpZHRoO3RoaXMuX2NvbXBvc2l0aW9uVmlldy5zdHlsZS5sZWZ0PW8rInB4Iix0aGlzLl9jb21wb3NpdGlvblZpZXcuc3R5bGUudG9wPW4rInB4Iix0aGlzLl9jb21wb3NpdGlvblZpZXcuc3R5bGUuaGVpZ2h0PWkrInB4Iix0aGlzLl9jb21wb3NpdGlvblZpZXcuc3R5bGUubGluZUhlaWdodD1pKyJweCIsdGhpcy5fY29tcG9zaXRpb25WaWV3LnN0eWxlLmZvbnRGYW1pbHk9dGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5mb250RmFtaWx5LHRoaXMuX2NvbXBvc2l0aW9uVmlldy5zdHlsZS5mb250U2l6ZT10aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmZvbnRTaXplKyJweCI7dmFyIHM9dGhpcy5fY29tcG9zaXRpb25WaWV3LmdldEJvdW5kaW5nQ2xpZW50UmVjdCgpO3RoaXMuX3RleHRhcmVhLnN0eWxlLmxlZnQ9bysicHgiLHRoaXMuX3RleHRhcmVhLnN0eWxlLnRvcD1uKyJweCIsdGhpcy5fdGV4dGFyZWEuc3R5bGUud2lkdGg9TWF0aC5tYXgocy53aWR0aCwxKSsicHgiLHRoaXMuX3RleHRhcmVhLnN0eWxlLmhlaWdodD1NYXRoLm1heChzLmhlaWdodCwxKSsicHgiLHRoaXMuX3RleHRhcmVhLnN0eWxlLmxpbmVIZWlnaHQ9cy5oZWlnaHQrInB4In1lfHxzZXRUaW1lb3V0KChmdW5jdGlvbigpe3JldHVybiB0LnVwZGF0ZUNvbXBvc2l0aW9uRWxlbWVudHMoITApfSksMCl9fSxpKFtuKDIscy5JQnVmZmVyU2VydmljZSksbigzLHMuSU9wdGlvbnNTZXJ2aWNlKSxuKDQscy5JQ29yZVNlcnZpY2UpLG4oNSxvLklSZW5kZXJTZXJ2aWNlKV0sZSl9KCk7dC5Db21wb3NpdGlvbkhlbHBlcj1hfSw5ODA2OihlLHQpPT57ZnVuY3Rpb24gcihlLHQpe3ZhciByPXQuZ2V0Qm91bmRpbmdDbGllbnRSZWN0KCk7cmV0dXJuW2UuY2xpZW50WC1yLmxlZnQsZS5jbGllbnRZLXIudG9wXX1PYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5nZXRSYXdCeXRlQ29vcmRzPXQuZ2V0Q29vcmRzPXQuZ2V0Q29vcmRzUmVsYXRpdmVUb0VsZW1lbnQ9dm9pZCAwLHQuZ2V0Q29vcmRzUmVsYXRpdmVUb0VsZW1lbnQ9cix0LmdldENvb3Jkcz1mdW5jdGlvbihlLHQsaSxuLG8scyxhLGMpe2lmKG8pe3ZhciBsPXIoZSx0KTtpZihsKXJldHVybiBsWzBdPU1hdGguY2VpbCgobFswXSsoYz9zLzI6MCkpL3MpLGxbMV09TWF0aC5jZWlsKGxbMV0vYSksbFswXT1NYXRoLm1pbihNYXRoLm1heChsWzBdLDEpLGkrKGM/MTowKSksbFsxXT1NYXRoLm1pbihNYXRoLm1heChsWzFdLDEpLG4pLGx9fSx0LmdldFJhd0J5dGVDb29yZHM9ZnVuY3Rpb24oZSl7aWYoZSlyZXR1cm57eDplWzBdKzMyLHk6ZVsxXSszMn19fSw5NTA0OihlLHQscik9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5tb3ZlVG9DZWxsU2VxdWVuY2U9dm9pZCAwO3ZhciBpPXIoMjU4NCk7ZnVuY3Rpb24gbihlLHQscixpKXt2YXIgbj1lLW8ocixlKSxhPXQtbyhyLHQpLHU9TWF0aC5hYnMobi1hKS1mdW5jdGlvbihlLHQscil7Zm9yKHZhciBpPTAsbj1lLW8ocixlKSxhPXQtbyhyLHQpLGM9MDtjPE1hdGguYWJzKG4tYSk7YysrKXt2YXIgbD0iQSI9PT1zKGUsdCk/LTE6MSx1PXIuYnVmZmVyLmxpbmVzLmdldChuK2wqYyk7KG51bGw9PXU/dm9pZCAwOnUuaXNXcmFwcGVkKSYmaSsrfXJldHVybiBpfShlLHQscik7cmV0dXJuIGwodSxjKHMoZSx0KSxpKSl9ZnVuY3Rpb24gbyhlLHQpe2Zvcih2YXIgcj0wLGk9ZS5idWZmZXIubGluZXMuZ2V0KHQpLG49bnVsbD09aT92b2lkIDA6aS5pc1dyYXBwZWQ7biYmdD49MCYmdDxlLnJvd3M7KXIrKyxuPW51bGw9PShpPWUuYnVmZmVyLmxpbmVzLmdldCgtLXQpKT92b2lkIDA6aS5pc1dyYXBwZWQ7cmV0dXJuIHJ9ZnVuY3Rpb24gcyhlLHQpe3JldHVybiBlPnQ/IkEiOiJCIn1mdW5jdGlvbiBhKGUsdCxyLGksbixvKXtmb3IodmFyIHM9ZSxhPXQsYz0iIjtzIT09cnx8YSE9PWk7KXMrPW4/MTotMSxuJiZzPm8uY29scy0xPyhjKz1vLmJ1ZmZlci50cmFuc2xhdGVCdWZmZXJMaW5lVG9TdHJpbmcoYSwhMSxlLHMpLHM9MCxlPTAsYSsrKTohbiYmczwwJiYoYys9by5idWZmZXIudHJhbnNsYXRlQnVmZmVyTGluZVRvU3RyaW5nKGEsITEsMCxlKzEpLGU9cz1vLmNvbHMtMSxhLS0pO3JldHVybiBjK28uYnVmZmVyLnRyYW5zbGF0ZUJ1ZmZlckxpbmVUb1N0cmluZyhhLCExLGUscyl9ZnVuY3Rpb24gYyhlLHQpe3ZhciByPXQ/Ik8iOiJbIjtyZXR1cm4gaS5DMC5FU0MrcitlfWZ1bmN0aW9uIGwoZSx0KXtlPU1hdGguZmxvb3IoZSk7Zm9yKHZhciByPSIiLGk9MDtpPGU7aSsrKXIrPXQ7cmV0dXJuIHJ9dC5tb3ZlVG9DZWxsU2VxdWVuY2U9ZnVuY3Rpb24oZSx0LHIsaSl7dmFyIHMsdT1yLmJ1ZmZlci54LGg9ci5idWZmZXIueTtpZighci5idWZmZXIuaGFzU2Nyb2xsYmFjaylyZXR1cm4gZnVuY3Rpb24oZSx0LHIsaSxzLHUpe3JldHVybiAwPT09bih0LGkscyx1KS5sZW5ndGg/IiI6bChhKGUsdCxlLHQtbyhzLHQpLCExLHMpLmxlbmd0aCxjKCJEIix1KSl9KHUsaCwwLHQscixpKStuKGgsdCxyLGkpK2Z1bmN0aW9uKGUsdCxyLGkscyx1KXt2YXIgaDtoPW4odCxpLHMsdSkubGVuZ3RoPjA/aS1vKHMsaSk6dDt2YXIgZj1pLF89ZnVuY3Rpb24oZSx0LHIsaSxzLGEpe3ZhciBjO3JldHVybiBjPW4ocixpLHMsYSkubGVuZ3RoPjA/aS1vKHMsaSk6dCxlPHImJmM8PWl8fGU+PXImJmM8aT8iQyI6IkQifShlLHQscixpLHMsdSk7cmV0dXJuIGwoYShlLGgscixmLCJDIj09PV8scykubGVuZ3RoLGMoXyx1KSl9KHUsaCxlLHQscixpKTtpZihoPT09dClyZXR1cm4gcz11PmU/IkQiOiJDIixsKE1hdGguYWJzKHUtZSksYyhzLGkpKTtzPWg+dD8iRCI6IkMiO3ZhciBmPU1hdGguYWJzKGgtdCk7cmV0dXJuIGwoZnVuY3Rpb24oZSx0KXtyZXR1cm4gdC5jb2xzLWV9KGg+dD9lOnUscikrKGYtMSkqci5jb2xzKzErKChoPnQ/dTplKS0xKSxjKHMsaSkpfX0sMTU0NjooZSx0LHIpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuQmFzZVJlbmRlckxheWVyPXZvaWQgMDt2YXIgaT1yKDY0Myksbj1yKDg4MDMpLG89cigxNDIwKSxzPXIoMzczNCksYT1yKDE3NTIpLGM9cig0Nzc0KSxsPXIoOTYzMSksdT1yKDg5NzgpLGg9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUsdCxyLGksbixvLHMsYSl7dGhpcy5fY29udGFpbmVyPWUsdGhpcy5fYWxwaGE9aSx0aGlzLl9jb2xvcnM9bix0aGlzLl9yZW5kZXJlcklkPW8sdGhpcy5fYnVmZmVyU2VydmljZT1zLHRoaXMuX29wdGlvbnNTZXJ2aWNlPWEsdGhpcy5fc2NhbGVkQ2hhcldpZHRoPTAsdGhpcy5fc2NhbGVkQ2hhckhlaWdodD0wLHRoaXMuX3NjYWxlZENlbGxXaWR0aD0wLHRoaXMuX3NjYWxlZENlbGxIZWlnaHQ9MCx0aGlzLl9zY2FsZWRDaGFyTGVmdD0wLHRoaXMuX3NjYWxlZENoYXJUb3A9MCx0aGlzLl9jdXJyZW50R2x5cGhJZGVudGlmaWVyPXtjaGFyczoiIixjb2RlOjAsYmc6MCxmZzowLGJvbGQ6ITEsZGltOiExLGl0YWxpYzohMX0sdGhpcy5fY2FudmFzPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoImNhbnZhcyIpLHRoaXMuX2NhbnZhcy5jbGFzc0xpc3QuYWRkKCJ4dGVybS0iK3QrIi1sYXllciIpLHRoaXMuX2NhbnZhcy5zdHlsZS56SW5kZXg9ci50b1N0cmluZygpLHRoaXMuX2luaXRDYW52YXMoKSx0aGlzLl9jb250YWluZXIuYXBwZW5kQ2hpbGQodGhpcy5fY2FudmFzKX1yZXR1cm4gZS5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe3ZhciBlOygwLGwucmVtb3ZlRWxlbWVudEZyb21QYXJlbnQpKHRoaXMuX2NhbnZhcyksbnVsbD09PShlPXRoaXMuX2NoYXJBdGxhcyl8fHZvaWQgMD09PWV8fGUuZGlzcG9zZSgpfSxlLnByb3RvdHlwZS5faW5pdENhbnZhcz1mdW5jdGlvbigpe3RoaXMuX2N0eD0oMCxhLnRocm93SWZGYWxzeSkodGhpcy5fY2FudmFzLmdldENvbnRleHQoIjJkIix7YWxwaGE6dGhpcy5fYWxwaGF9KSksdGhpcy5fYWxwaGF8fHRoaXMuX2NsZWFyQWxsKCl9LGUucHJvdG90eXBlLm9uT3B0aW9uc0NoYW5nZWQ9ZnVuY3Rpb24oKXt9LGUucHJvdG90eXBlLm9uQmx1cj1mdW5jdGlvbigpe30sZS5wcm90b3R5cGUub25Gb2N1cz1mdW5jdGlvbigpe30sZS5wcm90b3R5cGUub25DdXJzb3JNb3ZlPWZ1bmN0aW9uKCl7fSxlLnByb3RvdHlwZS5vbkdyaWRDaGFuZ2VkPWZ1bmN0aW9uKGUsdCl7fSxlLnByb3RvdHlwZS5vblNlbGVjdGlvbkNoYW5nZWQ9ZnVuY3Rpb24oZSx0LHIpe3ZvaWQgMD09PXImJihyPSExKX0sZS5wcm90b3R5cGUuc2V0Q29sb3JzPWZ1bmN0aW9uKGUpe3RoaXMuX3JlZnJlc2hDaGFyQXRsYXMoZSl9LGUucHJvdG90eXBlLl9zZXRUcmFuc3BhcmVuY3k9ZnVuY3Rpb24oZSl7aWYoZSE9PXRoaXMuX2FscGhhKXt2YXIgdD10aGlzLl9jYW52YXM7dGhpcy5fYWxwaGE9ZSx0aGlzLl9jYW52YXM9dGhpcy5fY2FudmFzLmNsb25lTm9kZSgpLHRoaXMuX2luaXRDYW52YXMoKSx0aGlzLl9jb250YWluZXIucmVwbGFjZUNoaWxkKHRoaXMuX2NhbnZhcyx0KSx0aGlzLl9yZWZyZXNoQ2hhckF0bGFzKHRoaXMuX2NvbG9ycyksdGhpcy5vbkdyaWRDaGFuZ2VkKDAsdGhpcy5fYnVmZmVyU2VydmljZS5yb3dzLTEpfX0sZS5wcm90b3R5cGUuX3JlZnJlc2hDaGFyQXRsYXM9ZnVuY3Rpb24oZSl7dGhpcy5fc2NhbGVkQ2hhcldpZHRoPD0wJiZ0aGlzLl9zY2FsZWRDaGFySGVpZ2h0PD0wfHwodGhpcy5fY2hhckF0bGFzPSgwLG8uYWNxdWlyZUNoYXJBdGxhcykodGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucyx0aGlzLl9yZW5kZXJlcklkLGUsdGhpcy5fc2NhbGVkQ2hhcldpZHRoLHRoaXMuX3NjYWxlZENoYXJIZWlnaHQpLHRoaXMuX2NoYXJBdGxhcy53YXJtVXAoKSl9LGUucHJvdG90eXBlLnJlc2l6ZT1mdW5jdGlvbihlKXt0aGlzLl9zY2FsZWRDZWxsV2lkdGg9ZS5zY2FsZWRDZWxsV2lkdGgsdGhpcy5fc2NhbGVkQ2VsbEhlaWdodD1lLnNjYWxlZENlbGxIZWlnaHQsdGhpcy5fc2NhbGVkQ2hhcldpZHRoPWUuc2NhbGVkQ2hhcldpZHRoLHRoaXMuX3NjYWxlZENoYXJIZWlnaHQ9ZS5zY2FsZWRDaGFySGVpZ2h0LHRoaXMuX3NjYWxlZENoYXJMZWZ0PWUuc2NhbGVkQ2hhckxlZnQsdGhpcy5fc2NhbGVkQ2hhclRvcD1lLnNjYWxlZENoYXJUb3AsdGhpcy5fY2FudmFzLndpZHRoPWUuc2NhbGVkQ2FudmFzV2lkdGgsdGhpcy5fY2FudmFzLmhlaWdodD1lLnNjYWxlZENhbnZhc0hlaWdodCx0aGlzLl9jYW52YXMuc3R5bGUud2lkdGg9ZS5jYW52YXNXaWR0aCsicHgiLHRoaXMuX2NhbnZhcy5zdHlsZS5oZWlnaHQ9ZS5jYW52YXNIZWlnaHQrInB4Iix0aGlzLl9hbHBoYXx8dGhpcy5fY2xlYXJBbGwoKSx0aGlzLl9yZWZyZXNoQ2hhckF0bGFzKHRoaXMuX2NvbG9ycyl9LGUucHJvdG90eXBlLmNsZWFyVGV4dHVyZUF0bGFzPWZ1bmN0aW9uKCl7dmFyIGU7bnVsbD09PShlPXRoaXMuX2NoYXJBdGxhcyl8fHZvaWQgMD09PWV8fGUuY2xlYXIoKX0sZS5wcm90b3R5cGUuX2ZpbGxDZWxscz1mdW5jdGlvbihlLHQscixpKXt0aGlzLl9jdHguZmlsbFJlY3QoZSp0aGlzLl9zY2FsZWRDZWxsV2lkdGgsdCp0aGlzLl9zY2FsZWRDZWxsSGVpZ2h0LHIqdGhpcy5fc2NhbGVkQ2VsbFdpZHRoLGkqdGhpcy5fc2NhbGVkQ2VsbEhlaWdodCl9LGUucHJvdG90eXBlLl9maWxsTWlkZGxlTGluZUF0Q2VsbHM9ZnVuY3Rpb24oZSx0LHIpe3ZvaWQgMD09PXImJihyPTEpO3ZhciBpPU1hdGguY2VpbCguNSp0aGlzLl9zY2FsZWRDZWxsSGVpZ2h0KTt0aGlzLl9jdHguZmlsbFJlY3QoZSp0aGlzLl9zY2FsZWRDZWxsV2lkdGgsKHQrMSkqdGhpcy5fc2NhbGVkQ2VsbEhlaWdodC1pLXdpbmRvdy5kZXZpY2VQaXhlbFJhdGlvLHIqdGhpcy5fc2NhbGVkQ2VsbFdpZHRoLHdpbmRvdy5kZXZpY2VQaXhlbFJhdGlvKX0sZS5wcm90b3R5cGUuX2ZpbGxCb3R0b21MaW5lQXRDZWxscz1mdW5jdGlvbihlLHQscil7dm9pZCAwPT09ciYmKHI9MSksdGhpcy5fY3R4LmZpbGxSZWN0KGUqdGhpcy5fc2NhbGVkQ2VsbFdpZHRoLCh0KzEpKnRoaXMuX3NjYWxlZENlbGxIZWlnaHQtd2luZG93LmRldmljZVBpeGVsUmF0aW8tMSxyKnRoaXMuX3NjYWxlZENlbGxXaWR0aCx3aW5kb3cuZGV2aWNlUGl4ZWxSYXRpbyl9LGUucHJvdG90eXBlLl9maWxsTGVmdExpbmVBdENlbGw9ZnVuY3Rpb24oZSx0LHIpe3RoaXMuX2N0eC5maWxsUmVjdChlKnRoaXMuX3NjYWxlZENlbGxXaWR0aCx0KnRoaXMuX3NjYWxlZENlbGxIZWlnaHQsd2luZG93LmRldmljZVBpeGVsUmF0aW8qcix0aGlzLl9zY2FsZWRDZWxsSGVpZ2h0KX0sZS5wcm90b3R5cGUuX3N0cm9rZVJlY3RBdENlbGw9ZnVuY3Rpb24oZSx0LHIsaSl7dGhpcy5fY3R4LmxpbmVXaWR0aD13aW5kb3cuZGV2aWNlUGl4ZWxSYXRpbyx0aGlzLl9jdHguc3Ryb2tlUmVjdChlKnRoaXMuX3NjYWxlZENlbGxXaWR0aCt3aW5kb3cuZGV2aWNlUGl4ZWxSYXRpby8yLHQqdGhpcy5fc2NhbGVkQ2VsbEhlaWdodCt3aW5kb3cuZGV2aWNlUGl4ZWxSYXRpby8yLHIqdGhpcy5fc2NhbGVkQ2VsbFdpZHRoLXdpbmRvdy5kZXZpY2VQaXhlbFJhdGlvLGkqdGhpcy5fc2NhbGVkQ2VsbEhlaWdodC13aW5kb3cuZGV2aWNlUGl4ZWxSYXRpbyl9LGUucHJvdG90eXBlLl9jbGVhckFsbD1mdW5jdGlvbigpe3RoaXMuX2FscGhhP3RoaXMuX2N0eC5jbGVhclJlY3QoMCwwLHRoaXMuX2NhbnZhcy53aWR0aCx0aGlzLl9jYW52YXMuaGVpZ2h0KToodGhpcy5fY3R4LmZpbGxTdHlsZT10aGlzLl9jb2xvcnMuYmFja2dyb3VuZC5jc3MsdGhpcy5fY3R4LmZpbGxSZWN0KDAsMCx0aGlzLl9jYW52YXMud2lkdGgsdGhpcy5fY2FudmFzLmhlaWdodCkpfSxlLnByb3RvdHlwZS5fY2xlYXJDZWxscz1mdW5jdGlvbihlLHQscixpKXt0aGlzLl9hbHBoYT90aGlzLl9jdHguY2xlYXJSZWN0KGUqdGhpcy5fc2NhbGVkQ2VsbFdpZHRoLHQqdGhpcy5fc2NhbGVkQ2VsbEhlaWdodCxyKnRoaXMuX3NjYWxlZENlbGxXaWR0aCxpKnRoaXMuX3NjYWxlZENlbGxIZWlnaHQpOih0aGlzLl9jdHguZmlsbFN0eWxlPXRoaXMuX2NvbG9ycy5iYWNrZ3JvdW5kLmNzcyx0aGlzLl9jdHguZmlsbFJlY3QoZSp0aGlzLl9zY2FsZWRDZWxsV2lkdGgsdCp0aGlzLl9zY2FsZWRDZWxsSGVpZ2h0LHIqdGhpcy5fc2NhbGVkQ2VsbFdpZHRoLGkqdGhpcy5fc2NhbGVkQ2VsbEhlaWdodCkpfSxlLnByb3RvdHlwZS5fZmlsbENoYXJUcnVlQ29sb3I9ZnVuY3Rpb24oZSx0LHIpe3RoaXMuX2N0eC5mb250PXRoaXMuX2dldEZvbnQoITEsITEpLHRoaXMuX2N0eC50ZXh0QmFzZWxpbmU9bi5URVhUX0JBU0VMSU5FLHRoaXMuX2NsaXBSb3cocik7dmFyIGk9ITE7ITEhPT10aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmN1c3RvbUdseXBocyYmKGk9KDAsdS50cnlEcmF3Q3VzdG9tQ2hhcikodGhpcy5fY3R4LGUuZ2V0Q2hhcnMoKSx0KnRoaXMuX3NjYWxlZENlbGxXaWR0aCxyKnRoaXMuX3NjYWxlZENlbGxIZWlnaHQsdGhpcy5fc2NhbGVkQ2VsbFdpZHRoLHRoaXMuX3NjYWxlZENlbGxIZWlnaHQpKSxpfHx0aGlzLl9jdHguZmlsbFRleHQoZS5nZXRDaGFycygpLHQqdGhpcy5fc2NhbGVkQ2VsbFdpZHRoK3RoaXMuX3NjYWxlZENoYXJMZWZ0LHIqdGhpcy5fc2NhbGVkQ2VsbEhlaWdodCt0aGlzLl9zY2FsZWRDaGFyVG9wK3RoaXMuX3NjYWxlZENoYXJIZWlnaHQpfSxlLnByb3RvdHlwZS5fZHJhd0NoYXJzPWZ1bmN0aW9uKGUsdCxyKXt2YXIgbyxzLGEsYz10aGlzLl9nZXRDb250cmFzdENvbG9yKGUpO2N8fGUuaXNGZ1JHQigpfHxlLmlzQmdSR0IoKT90aGlzLl9kcmF3VW5jYWNoZWRDaGFycyhlLHQscixjKTooZS5pc0ludmVyc2UoKT8ocz1lLmlzQmdEZWZhdWx0KCk/bi5JTlZFUlRFRF9ERUZBVUxUX0NPTE9SOmUuZ2V0QmdDb2xvcigpLGE9ZS5pc0ZnRGVmYXVsdCgpP24uSU5WRVJURURfREVGQVVMVF9DT0xPUjplLmdldEZnQ29sb3IoKSk6KGE9ZS5pc0JnRGVmYXVsdCgpP2kuREVGQVVMVF9DT0xPUjplLmdldEJnQ29sb3IoKSxzPWUuaXNGZ0RlZmF1bHQoKT9pLkRFRkFVTFRfQ09MT1I6ZS5nZXRGZ0NvbG9yKCkpLHMrPXRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuZHJhd0JvbGRUZXh0SW5CcmlnaHRDb2xvcnMmJmUuaXNCb2xkKCkmJnM8OD84OjAsdGhpcy5fY3VycmVudEdseXBoSWRlbnRpZmllci5jaGFycz1lLmdldENoYXJzKCl8fGkuV0hJVEVTUEFDRV9DRUxMX0NIQVIsdGhpcy5fY3VycmVudEdseXBoSWRlbnRpZmllci5jb2RlPWUuZ2V0Q29kZSgpfHxpLldISVRFU1BBQ0VfQ0VMTF9DT0RFLHRoaXMuX2N1cnJlbnRHbHlwaElkZW50aWZpZXIuYmc9YSx0aGlzLl9jdXJyZW50R2x5cGhJZGVudGlmaWVyLmZnPXMsdGhpcy5fY3VycmVudEdseXBoSWRlbnRpZmllci5ib2xkPSEhZS5pc0JvbGQoKSx0aGlzLl9jdXJyZW50R2x5cGhJZGVudGlmaWVyLmRpbT0hIWUuaXNEaW0oKSx0aGlzLl9jdXJyZW50R2x5cGhJZGVudGlmaWVyLml0YWxpYz0hIWUuaXNJdGFsaWMoKSwobnVsbD09PShvPXRoaXMuX2NoYXJBdGxhcyl8fHZvaWQgMD09PW8/dm9pZCAwOm8uZHJhdyh0aGlzLl9jdHgsdGhpcy5fY3VycmVudEdseXBoSWRlbnRpZmllcix0KnRoaXMuX3NjYWxlZENlbGxXaWR0aCt0aGlzLl9zY2FsZWRDaGFyTGVmdCxyKnRoaXMuX3NjYWxlZENlbGxIZWlnaHQrdGhpcy5fc2NhbGVkQ2hhclRvcCkpfHx0aGlzLl9kcmF3VW5jYWNoZWRDaGFycyhlLHQscikpfSxlLnByb3RvdHlwZS5fZHJhd1VuY2FjaGVkQ2hhcnM9ZnVuY3Rpb24oZSx0LHIsaSl7aWYodGhpcy5fY3R4LnNhdmUoKSx0aGlzLl9jdHguZm9udD10aGlzLl9nZXRGb250KCEhZS5pc0JvbGQoKSwhIWUuaXNJdGFsaWMoKSksdGhpcy5fY3R4LnRleHRCYXNlbGluZT1uLlRFWFRfQkFTRUxJTkUsZS5pc0ludmVyc2UoKSlpZihpKXRoaXMuX2N0eC5maWxsU3R5bGU9aS5jc3M7ZWxzZSBpZihlLmlzQmdEZWZhdWx0KCkpdGhpcy5fY3R4LmZpbGxTdHlsZT1jLmNvbG9yLm9wYXF1ZSh0aGlzLl9jb2xvcnMuYmFja2dyb3VuZCkuY3NzO2Vsc2UgaWYoZS5pc0JnUkdCKCkpdGhpcy5fY3R4LmZpbGxTdHlsZT0icmdiKCIrcy5BdHRyaWJ1dGVEYXRhLnRvQ29sb3JSR0IoZS5nZXRCZ0NvbG9yKCkpLmpvaW4oIiwiKSsiKSI7ZWxzZXt2YXIgbz1lLmdldEJnQ29sb3IoKTt0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmRyYXdCb2xkVGV4dEluQnJpZ2h0Q29sb3JzJiZlLmlzQm9sZCgpJiZvPDgmJihvKz04KSx0aGlzLl9jdHguZmlsbFN0eWxlPXRoaXMuX2NvbG9ycy5hbnNpW29dLmNzc31lbHNlIGlmKGkpdGhpcy5fY3R4LmZpbGxTdHlsZT1pLmNzcztlbHNlIGlmKGUuaXNGZ0RlZmF1bHQoKSl0aGlzLl9jdHguZmlsbFN0eWxlPXRoaXMuX2NvbG9ycy5mb3JlZ3JvdW5kLmNzcztlbHNlIGlmKGUuaXNGZ1JHQigpKXRoaXMuX2N0eC5maWxsU3R5bGU9InJnYigiK3MuQXR0cmlidXRlRGF0YS50b0NvbG9yUkdCKGUuZ2V0RmdDb2xvcigpKS5qb2luKCIsIikrIikiO2Vsc2V7dmFyIGE9ZS5nZXRGZ0NvbG9yKCk7dGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5kcmF3Qm9sZFRleHRJbkJyaWdodENvbG9ycyYmZS5pc0JvbGQoKSYmYTw4JiYoYSs9OCksdGhpcy5fY3R4LmZpbGxTdHlsZT10aGlzLl9jb2xvcnMuYW5zaVthXS5jc3N9dGhpcy5fY2xpcFJvdyhyKSxlLmlzRGltKCkmJih0aGlzLl9jdHguZ2xvYmFsQWxwaGE9bi5ESU1fT1BBQ0lUWSk7dmFyIGw9ITE7ITEhPT10aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmN1c3RvbUdseXBocyYmKGw9KDAsdS50cnlEcmF3Q3VzdG9tQ2hhcikodGhpcy5fY3R4LGUuZ2V0Q2hhcnMoKSx0KnRoaXMuX3NjYWxlZENlbGxXaWR0aCxyKnRoaXMuX3NjYWxlZENlbGxIZWlnaHQsdGhpcy5fc2NhbGVkQ2VsbFdpZHRoLHRoaXMuX3NjYWxlZENlbGxIZWlnaHQpKSxsfHx0aGlzLl9jdHguZmlsbFRleHQoZS5nZXRDaGFycygpLHQqdGhpcy5fc2NhbGVkQ2VsbFdpZHRoK3RoaXMuX3NjYWxlZENoYXJMZWZ0LHIqdGhpcy5fc2NhbGVkQ2VsbEhlaWdodCt0aGlzLl9zY2FsZWRDaGFyVG9wK3RoaXMuX3NjYWxlZENoYXJIZWlnaHQpLHRoaXMuX2N0eC5yZXN0b3JlKCl9LGUucHJvdG90eXBlLl9jbGlwUm93PWZ1bmN0aW9uKGUpe3RoaXMuX2N0eC5iZWdpblBhdGgoKSx0aGlzLl9jdHgucmVjdCgwLGUqdGhpcy5fc2NhbGVkQ2VsbEhlaWdodCx0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMqdGhpcy5fc2NhbGVkQ2VsbFdpZHRoLHRoaXMuX3NjYWxlZENlbGxIZWlnaHQpLHRoaXMuX2N0eC5jbGlwKCl9LGUucHJvdG90eXBlLl9nZXRGb250PWZ1bmN0aW9uKGUsdCl7cmV0dXJuKHQ/Iml0YWxpYyI6IiIpKyIgIisoZT90aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmZvbnRXZWlnaHRCb2xkOnRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuZm9udFdlaWdodCkrIiAiK3RoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuZm9udFNpemUqd2luZG93LmRldmljZVBpeGVsUmF0aW8rInB4ICIrdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5mb250RmFtaWx5fSxlLnByb3RvdHlwZS5fZ2V0Q29udHJhc3RDb2xvcj1mdW5jdGlvbihlKXtpZigxIT09dGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5taW5pbXVtQ29udHJhc3RSYXRpbyl7dmFyIHQ9dGhpcy5fY29sb3JzLmNvbnRyYXN0Q2FjaGUuZ2V0Q29sb3IoZS5iZyxlLmZnKTtpZih2b2lkIDAhPT10KXJldHVybiB0fHx2b2lkIDA7dmFyIHI9ZS5nZXRGZ0NvbG9yKCksaT1lLmdldEZnQ29sb3JNb2RlKCksbj1lLmdldEJnQ29sb3IoKSxvPWUuZ2V0QmdDb2xvck1vZGUoKSxzPSEhZS5pc0ludmVyc2UoKSxhPSEhZS5pc0ludmVyc2UoKTtpZihzKXt2YXIgbD1yO3I9bixuPWw7dmFyIHU9aTtpPW8sbz11fXZhciBoPXRoaXMuX3Jlc29sdmVCYWNrZ3JvdW5kUmdiYShvLG4scyksZj10aGlzLl9yZXNvbHZlRm9yZWdyb3VuZFJnYmEoaSxyLHMsYSksXz1jLnJnYmEuZW5zdXJlQ29udHJhc3RSYXRpbyhoLGYsdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5taW5pbXVtQ29udHJhc3RSYXRpbyk7aWYoXyl7dmFyIGQ9e2NzczpjLmNoYW5uZWxzLnRvQ3NzKF8+PjI0JjI1NSxfPj4xNiYyNTUsXz4+OCYyNTUpLHJnYmE6X307cmV0dXJuIHRoaXMuX2NvbG9ycy5jb250cmFzdENhY2hlLnNldENvbG9yKGUuYmcsZS5mZyxkKSxkfXRoaXMuX2NvbG9ycy5jb250cmFzdENhY2hlLnNldENvbG9yKGUuYmcsZS5mZyxudWxsKX19LGUucHJvdG90eXBlLl9yZXNvbHZlQmFja2dyb3VuZFJnYmE9ZnVuY3Rpb24oZSx0LHIpe3N3aXRjaChlKXtjYXNlIDE2Nzc3MjE2OmNhc2UgMzM1NTQ0MzI6cmV0dXJuIHRoaXMuX2NvbG9ycy5hbnNpW3RdLnJnYmE7Y2FzZSA1MDMzMTY0ODpyZXR1cm4gdDw8ODtkZWZhdWx0OnJldHVybiByP3RoaXMuX2NvbG9ycy5mb3JlZ3JvdW5kLnJnYmE6dGhpcy5fY29sb3JzLmJhY2tncm91bmQucmdiYX19LGUucHJvdG90eXBlLl9yZXNvbHZlRm9yZWdyb3VuZFJnYmE9ZnVuY3Rpb24oZSx0LHIsaSl7c3dpdGNoKGUpe2Nhc2UgMTY3NzcyMTY6Y2FzZSAzMzU1NDQzMjpyZXR1cm4gdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5kcmF3Qm9sZFRleHRJbkJyaWdodENvbG9ycyYmaSYmdDw4JiYodCs9OCksdGhpcy5fY29sb3JzLmFuc2lbdF0ucmdiYTtjYXNlIDUwMzMxNjQ4OnJldHVybiB0PDw4O2RlZmF1bHQ6cmV0dXJuIHI/dGhpcy5fY29sb3JzLmJhY2tncm91bmQucmdiYTp0aGlzLl9jb2xvcnMuZm9yZWdyb3VuZC5yZ2JhfX0sZX0oKTt0LkJhc2VSZW5kZXJMYXllcj1ofSwyNTEyOmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pLG89dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxzPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkN1cnNvclJlbmRlckxheWVyPXZvaWQgMDt2YXIgYT1yKDE1NDYpLGM9cig1MTEpLGw9cigyNTg1KSx1PXIoNDcyNSksaD02MDAsZj1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KHQscixpLG4sbyxzLGEsbCx1KXt2YXIgaD1lLmNhbGwodGhpcyx0LCJjdXJzb3IiLHIsITAsaSxuLHMsYSl8fHRoaXM7cmV0dXJuIGguX29uUmVxdWVzdFJlZHJhdz1vLGguX2NvcmVTZXJ2aWNlPWwsaC5fY29yZUJyb3dzZXJTZXJ2aWNlPXUsaC5fY2VsbD1uZXcgYy5DZWxsRGF0YSxoLl9zdGF0ZT17eDowLHk6MCxpc0ZvY3VzZWQ6ITEsc3R5bGU6IiIsd2lkdGg6MH0saC5fY3Vyc29yUmVuZGVyZXJzPXtiYXI6aC5fcmVuZGVyQmFyQ3Vyc29yLmJpbmQoaCksYmxvY2s6aC5fcmVuZGVyQmxvY2tDdXJzb3IuYmluZChoKSx1bmRlcmxpbmU6aC5fcmVuZGVyVW5kZXJsaW5lQ3Vyc29yLmJpbmQoaCl9LGh9cmV0dXJuIG4odCxlKSx0LnByb3RvdHlwZS5kaXNwb3NlPWZ1bmN0aW9uKCl7dGhpcy5fY3Vyc29yQmxpbmtTdGF0ZU1hbmFnZXImJih0aGlzLl9jdXJzb3JCbGlua1N0YXRlTWFuYWdlci5kaXNwb3NlKCksdGhpcy5fY3Vyc29yQmxpbmtTdGF0ZU1hbmFnZXI9dm9pZCAwKSxlLnByb3RvdHlwZS5kaXNwb3NlLmNhbGwodGhpcyl9LHQucHJvdG90eXBlLnJlc2l6ZT1mdW5jdGlvbih0KXtlLnByb3RvdHlwZS5yZXNpemUuY2FsbCh0aGlzLHQpLHRoaXMuX3N0YXRlPXt4OjAseTowLGlzRm9jdXNlZDohMSxzdHlsZToiIix3aWR0aDowfX0sdC5wcm90b3R5cGUucmVzZXQ9ZnVuY3Rpb24oKXt2YXIgZTt0aGlzLl9jbGVhckN1cnNvcigpLG51bGw9PT0oZT10aGlzLl9jdXJzb3JCbGlua1N0YXRlTWFuYWdlcil8fHZvaWQgMD09PWV8fGUucmVzdGFydEJsaW5rQW5pbWF0aW9uKCksdGhpcy5vbk9wdGlvbnNDaGFuZ2VkKCl9LHQucHJvdG90eXBlLm9uQmx1cj1mdW5jdGlvbigpe3ZhciBlO251bGw9PT0oZT10aGlzLl9jdXJzb3JCbGlua1N0YXRlTWFuYWdlcil8fHZvaWQgMD09PWV8fGUucGF1c2UoKSx0aGlzLl9vblJlcXVlc3RSZWRyYXcuZmlyZSh7c3RhcnQ6dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueSxlbmQ6dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueX0pfSx0LnByb3RvdHlwZS5vbkZvY3VzPWZ1bmN0aW9uKCl7dmFyIGU7bnVsbD09PShlPXRoaXMuX2N1cnNvckJsaW5rU3RhdGVNYW5hZ2VyKXx8dm9pZCAwPT09ZXx8ZS5yZXN1bWUoKSx0aGlzLl9vblJlcXVlc3RSZWRyYXcuZmlyZSh7c3RhcnQ6dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueSxlbmQ6dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueX0pfSx0LnByb3RvdHlwZS5vbk9wdGlvbnNDaGFuZ2VkPWZ1bmN0aW9uKCl7dmFyIGUsdD10aGlzO3RoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuY3Vyc29yQmxpbms/dGhpcy5fY3Vyc29yQmxpbmtTdGF0ZU1hbmFnZXJ8fCh0aGlzLl9jdXJzb3JCbGlua1N0YXRlTWFuYWdlcj1uZXcgXyh0aGlzLl9jb3JlQnJvd3NlclNlcnZpY2UuaXNGb2N1c2VkLChmdW5jdGlvbigpe3QuX3JlbmRlcighMCl9KSkpOihudWxsPT09KGU9dGhpcy5fY3Vyc29yQmxpbmtTdGF0ZU1hbmFnZXIpfHx2b2lkIDA9PT1lfHxlLmRpc3Bvc2UoKSx0aGlzLl9jdXJzb3JCbGlua1N0YXRlTWFuYWdlcj12b2lkIDApLHRoaXMuX29uUmVxdWVzdFJlZHJhdy5maXJlKHtzdGFydDp0aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55LGVuZDp0aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55fSl9LHQucHJvdG90eXBlLm9uQ3Vyc29yTW92ZT1mdW5jdGlvbigpe3ZhciBlO251bGw9PT0oZT10aGlzLl9jdXJzb3JCbGlua1N0YXRlTWFuYWdlcil8fHZvaWQgMD09PWV8fGUucmVzdGFydEJsaW5rQW5pbWF0aW9uKCl9LHQucHJvdG90eXBlLm9uR3JpZENoYW5nZWQ9ZnVuY3Rpb24oZSx0KXshdGhpcy5fY3Vyc29yQmxpbmtTdGF0ZU1hbmFnZXJ8fHRoaXMuX2N1cnNvckJsaW5rU3RhdGVNYW5hZ2VyLmlzUGF1c2VkP3RoaXMuX3JlbmRlcighMSk6dGhpcy5fY3Vyc29yQmxpbmtTdGF0ZU1hbmFnZXIucmVzdGFydEJsaW5rQW5pbWF0aW9uKCl9LHQucHJvdG90eXBlLl9yZW5kZXI9ZnVuY3Rpb24oZSl7aWYodGhpcy5fY29yZVNlcnZpY2UuaXNDdXJzb3JJbml0aWFsaXplZCYmIXRoaXMuX2NvcmVTZXJ2aWNlLmlzQ3Vyc29ySGlkZGVuKXt2YXIgdD10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55YmFzZSt0aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55LHI9dC10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55ZGlzcDtpZihyPDB8fHI+PXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cyl0aGlzLl9jbGVhckN1cnNvcigpO2Vsc2V7dmFyIGk9TWF0aC5taW4odGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueCx0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMtMSk7aWYodGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIubGluZXMuZ2V0KHQpLmxvYWRDZWxsKGksdGhpcy5fY2VsbCksdm9pZCAwIT09dGhpcy5fY2VsbC5jb250ZW50KXtpZighdGhpcy5fY29yZUJyb3dzZXJTZXJ2aWNlLmlzRm9jdXNlZCl7dGhpcy5fY2xlYXJDdXJzb3IoKSx0aGlzLl9jdHguc2F2ZSgpLHRoaXMuX2N0eC5maWxsU3R5bGU9dGhpcy5fY29sb3JzLmN1cnNvci5jc3M7dmFyIG49dGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5jdXJzb3JTdHlsZTtyZXR1cm4gbiYmImJsb2NrIiE9PW4/dGhpcy5fY3Vyc29yUmVuZGVyZXJzW25dKGkscix0aGlzLl9jZWxsKTp0aGlzLl9yZW5kZXJCbHVyQ3Vyc29yKGkscix0aGlzLl9jZWxsKSx0aGlzLl9jdHgucmVzdG9yZSgpLHRoaXMuX3N0YXRlLng9aSx0aGlzLl9zdGF0ZS55PXIsdGhpcy5fc3RhdGUuaXNGb2N1c2VkPSExLHRoaXMuX3N0YXRlLnN0eWxlPW4sdm9pZCh0aGlzLl9zdGF0ZS53aWR0aD10aGlzLl9jZWxsLmdldFdpZHRoKCkpfWlmKCF0aGlzLl9jdXJzb3JCbGlua1N0YXRlTWFuYWdlcnx8dGhpcy5fY3Vyc29yQmxpbmtTdGF0ZU1hbmFnZXIuaXNDdXJzb3JWaXNpYmxlKXtpZih0aGlzLl9zdGF0ZSl7aWYodGhpcy5fc3RhdGUueD09PWkmJnRoaXMuX3N0YXRlLnk9PT1yJiZ0aGlzLl9zdGF0ZS5pc0ZvY3VzZWQ9PT10aGlzLl9jb3JlQnJvd3NlclNlcnZpY2UuaXNGb2N1c2VkJiZ0aGlzLl9zdGF0ZS5zdHlsZT09PXRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuY3Vyc29yU3R5bGUmJnRoaXMuX3N0YXRlLndpZHRoPT09dGhpcy5fY2VsbC5nZXRXaWR0aCgpKXJldHVybjt0aGlzLl9jbGVhckN1cnNvcigpfXRoaXMuX2N0eC5zYXZlKCksdGhpcy5fY3Vyc29yUmVuZGVyZXJzW3RoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuY3Vyc29yU3R5bGV8fCJibG9jayJdKGkscix0aGlzLl9jZWxsKSx0aGlzLl9jdHgucmVzdG9yZSgpLHRoaXMuX3N0YXRlLng9aSx0aGlzLl9zdGF0ZS55PXIsdGhpcy5fc3RhdGUuaXNGb2N1c2VkPSExLHRoaXMuX3N0YXRlLnN0eWxlPXRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuY3Vyc29yU3R5bGUsdGhpcy5fc3RhdGUud2lkdGg9dGhpcy5fY2VsbC5nZXRXaWR0aCgpfWVsc2UgdGhpcy5fY2xlYXJDdXJzb3IoKX19fWVsc2UgdGhpcy5fY2xlYXJDdXJzb3IoKX0sdC5wcm90b3R5cGUuX2NsZWFyQ3Vyc29yPWZ1bmN0aW9uKCl7dGhpcy5fc3RhdGUmJih3aW5kb3cuZGV2aWNlUGl4ZWxSYXRpbzwxP3RoaXMuX2NsZWFyQWxsKCk6dGhpcy5fY2xlYXJDZWxscyh0aGlzLl9zdGF0ZS54LHRoaXMuX3N0YXRlLnksdGhpcy5fc3RhdGUud2lkdGgsMSksdGhpcy5fc3RhdGU9e3g6MCx5OjAsaXNGb2N1c2VkOiExLHN0eWxlOiIiLHdpZHRoOjB9KX0sdC5wcm90b3R5cGUuX3JlbmRlckJhckN1cnNvcj1mdW5jdGlvbihlLHQscil7dGhpcy5fY3R4LnNhdmUoKSx0aGlzLl9jdHguZmlsbFN0eWxlPXRoaXMuX2NvbG9ycy5jdXJzb3IuY3NzLHRoaXMuX2ZpbGxMZWZ0TGluZUF0Q2VsbChlLHQsdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5jdXJzb3JXaWR0aCksdGhpcy5fY3R4LnJlc3RvcmUoKX0sdC5wcm90b3R5cGUuX3JlbmRlckJsb2NrQ3Vyc29yPWZ1bmN0aW9uKGUsdCxyKXt0aGlzLl9jdHguc2F2ZSgpLHRoaXMuX2N0eC5maWxsU3R5bGU9dGhpcy5fY29sb3JzLmN1cnNvci5jc3MsdGhpcy5fZmlsbENlbGxzKGUsdCxyLmdldFdpZHRoKCksMSksdGhpcy5fY3R4LmZpbGxTdHlsZT10aGlzLl9jb2xvcnMuY3Vyc29yQWNjZW50LmNzcyx0aGlzLl9maWxsQ2hhclRydWVDb2xvcihyLGUsdCksdGhpcy5fY3R4LnJlc3RvcmUoKX0sdC5wcm90b3R5cGUuX3JlbmRlclVuZGVybGluZUN1cnNvcj1mdW5jdGlvbihlLHQscil7dGhpcy5fY3R4LnNhdmUoKSx0aGlzLl9jdHguZmlsbFN0eWxlPXRoaXMuX2NvbG9ycy5jdXJzb3IuY3NzLHRoaXMuX2ZpbGxCb3R0b21MaW5lQXRDZWxscyhlLHQpLHRoaXMuX2N0eC5yZXN0b3JlKCl9LHQucHJvdG90eXBlLl9yZW5kZXJCbHVyQ3Vyc29yPWZ1bmN0aW9uKGUsdCxyKXt0aGlzLl9jdHguc2F2ZSgpLHRoaXMuX2N0eC5zdHJva2VTdHlsZT10aGlzLl9jb2xvcnMuY3Vyc29yLmNzcyx0aGlzLl9zdHJva2VSZWN0QXRDZWxsKGUsdCxyLmdldFdpZHRoKCksMSksdGhpcy5fY3R4LnJlc3RvcmUoKX0sbyhbcyg1LGwuSUJ1ZmZlclNlcnZpY2UpLHMoNixsLklPcHRpb25zU2VydmljZSkscyg3LGwuSUNvcmVTZXJ2aWNlKSxzKDgsdS5JQ29yZUJyb3dzZXJTZXJ2aWNlKV0sdCl9KGEuQmFzZVJlbmRlckxheWVyKTt0LkN1cnNvclJlbmRlckxheWVyPWY7dmFyIF89ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUsdCl7dGhpcy5fcmVuZGVyQ2FsbGJhY2s9dCx0aGlzLmlzQ3Vyc29yVmlzaWJsZT0hMCxlJiZ0aGlzLl9yZXN0YXJ0SW50ZXJ2YWwoKX1yZXR1cm4gT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJpc1BhdXNlZCIse2dldDpmdW5jdGlvbigpe3JldHVybiEodGhpcy5fYmxpbmtTdGFydFRpbWVvdXR8fHRoaXMuX2JsaW5rSW50ZXJ2YWwpfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLGUucHJvdG90eXBlLmRpc3Bvc2U9ZnVuY3Rpb24oKXt0aGlzLl9ibGlua0ludGVydmFsJiYod2luZG93LmNsZWFySW50ZXJ2YWwodGhpcy5fYmxpbmtJbnRlcnZhbCksdGhpcy5fYmxpbmtJbnRlcnZhbD12b2lkIDApLHRoaXMuX2JsaW5rU3RhcnRUaW1lb3V0JiYod2luZG93LmNsZWFyVGltZW91dCh0aGlzLl9ibGlua1N0YXJ0VGltZW91dCksdGhpcy5fYmxpbmtTdGFydFRpbWVvdXQ9dm9pZCAwKSx0aGlzLl9hbmltYXRpb25GcmFtZSYmKHdpbmRvdy5jYW5jZWxBbmltYXRpb25GcmFtZSh0aGlzLl9hbmltYXRpb25GcmFtZSksdGhpcy5fYW5pbWF0aW9uRnJhbWU9dm9pZCAwKX0sZS5wcm90b3R5cGUucmVzdGFydEJsaW5rQW5pbWF0aW9uPWZ1bmN0aW9uKCl7dmFyIGU9dGhpczt0aGlzLmlzUGF1c2VkfHwodGhpcy5fYW5pbWF0aW9uVGltZVJlc3RhcnRlZD1EYXRlLm5vdygpLHRoaXMuaXNDdXJzb3JWaXNpYmxlPSEwLHRoaXMuX2FuaW1hdGlvbkZyYW1lfHwodGhpcy5fYW5pbWF0aW9uRnJhbWU9d2luZG93LnJlcXVlc3RBbmltYXRpb25GcmFtZSgoZnVuY3Rpb24oKXtlLl9yZW5kZXJDYWxsYmFjaygpLGUuX2FuaW1hdGlvbkZyYW1lPXZvaWQgMH0pKSkpfSxlLnByb3RvdHlwZS5fcmVzdGFydEludGVydmFsPWZ1bmN0aW9uKGUpe3ZhciB0PXRoaXM7dm9pZCAwPT09ZSYmKGU9aCksdGhpcy5fYmxpbmtJbnRlcnZhbCYmKHdpbmRvdy5jbGVhckludGVydmFsKHRoaXMuX2JsaW5rSW50ZXJ2YWwpLHRoaXMuX2JsaW5rSW50ZXJ2YWw9dm9pZCAwKSx0aGlzLl9ibGlua1N0YXJ0VGltZW91dD13aW5kb3cuc2V0VGltZW91dCgoZnVuY3Rpb24oKXtpZih0Ll9hbmltYXRpb25UaW1lUmVzdGFydGVkKXt2YXIgZT1oLShEYXRlLm5vdygpLXQuX2FuaW1hdGlvblRpbWVSZXN0YXJ0ZWQpO2lmKHQuX2FuaW1hdGlvblRpbWVSZXN0YXJ0ZWQ9dm9pZCAwLGU+MClyZXR1cm4gdm9pZCB0Ll9yZXN0YXJ0SW50ZXJ2YWwoZSl9dC5pc0N1cnNvclZpc2libGU9ITEsdC5fYW5pbWF0aW9uRnJhbWU9d2luZG93LnJlcXVlc3RBbmltYXRpb25GcmFtZSgoZnVuY3Rpb24oKXt0Ll9yZW5kZXJDYWxsYmFjaygpLHQuX2FuaW1hdGlvbkZyYW1lPXZvaWQgMH0pKSx0Ll9ibGlua0ludGVydmFsPXdpbmRvdy5zZXRJbnRlcnZhbCgoZnVuY3Rpb24oKXtpZih0Ll9hbmltYXRpb25UaW1lUmVzdGFydGVkKXt2YXIgZT1oLShEYXRlLm5vdygpLXQuX2FuaW1hdGlvblRpbWVSZXN0YXJ0ZWQpO3JldHVybiB0Ll9hbmltYXRpb25UaW1lUmVzdGFydGVkPXZvaWQgMCx2b2lkIHQuX3Jlc3RhcnRJbnRlcnZhbChlKX10LmlzQ3Vyc29yVmlzaWJsZT0hdC5pc0N1cnNvclZpc2libGUsdC5fYW5pbWF0aW9uRnJhbWU9d2luZG93LnJlcXVlc3RBbmltYXRpb25GcmFtZSgoZnVuY3Rpb24oKXt0Ll9yZW5kZXJDYWxsYmFjaygpLHQuX2FuaW1hdGlvbkZyYW1lPXZvaWQgMH0pKX0pLGgpfSksZSl9LGUucHJvdG90eXBlLnBhdXNlPWZ1bmN0aW9uKCl7dGhpcy5pc0N1cnNvclZpc2libGU9ITAsdGhpcy5fYmxpbmtJbnRlcnZhbCYmKHdpbmRvdy5jbGVhckludGVydmFsKHRoaXMuX2JsaW5rSW50ZXJ2YWwpLHRoaXMuX2JsaW5rSW50ZXJ2YWw9dm9pZCAwKSx0aGlzLl9ibGlua1N0YXJ0VGltZW91dCYmKHdpbmRvdy5jbGVhclRpbWVvdXQodGhpcy5fYmxpbmtTdGFydFRpbWVvdXQpLHRoaXMuX2JsaW5rU3RhcnRUaW1lb3V0PXZvaWQgMCksdGhpcy5fYW5pbWF0aW9uRnJhbWUmJih3aW5kb3cuY2FuY2VsQW5pbWF0aW9uRnJhbWUodGhpcy5fYW5pbWF0aW9uRnJhbWUpLHRoaXMuX2FuaW1hdGlvbkZyYW1lPXZvaWQgMCl9LGUucHJvdG90eXBlLnJlc3VtZT1mdW5jdGlvbigpe3RoaXMucGF1c2UoKSx0aGlzLl9hbmltYXRpb25UaW1lUmVzdGFydGVkPXZvaWQgMCx0aGlzLl9yZXN0YXJ0SW50ZXJ2YWwoKSx0aGlzLnJlc3RhcnRCbGlua0FuaW1hdGlvbigpfSxlfSgpfSw4OTc4OihlLHQscik9Pnt2YXIgaSxuLG8scyxhLGMsbCx1LGgsZixfLGQscCx2LGcseSxtLGIsUyxDLHcsTCxFLHgsQSxrLE0sUixULE8sQixELFAsSSxILGosRixXLFUscSxOLHosSyxWLEcsWSxYLFosSiwkLFEsZWUsdGUscmUsaWUsbmUsb2Usc2UsYWUsY2UsbGUsdWUsaGUsZmUsX2UsZGUscGUsdmUsZ2UseWUsbWUsYmUsU2UsQ2Usd2UsTGUsRWUseGUsQWUsa2UsTWUsUmUsVGUsT2UsQmUsRGUsUGUsSWUsSGUsamUsRmUsV2UsVWUscWUsTmUsemUsS2UsVmUsR2UsWWUsWGUsWmUsSmUsJGUsUWUsZXQsdHQscnQsaXQsbnQsb3Qsc3QsYXQsY3QsbHQsdXQsaHQsZnQsX3QsZHQscHQsdnQsZ3QseXQsbXQsYnQsU3QsQ3Q7T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQudHJ5RHJhd0N1c3RvbUNoYXI9dC5ib3hEcmF3aW5nRGVmaW5pdGlvbnM9dC5ibG9ja0VsZW1lbnREZWZpbml0aW9ucz12b2lkIDA7dmFyIHd0PXIoMTc1Mik7dC5ibG9ja0VsZW1lbnREZWZpbml0aW9ucz17IuKWgCI6W3t4OjAseTowLHc6OCxoOjR9XSwi4paBIjpbe3g6MCx5Ojcsdzo4LGg6MX1dLCLiloIiOlt7eDowLHk6Nix3OjgsaDoyfV0sIuKWgyI6W3t4OjAseTo1LHc6OCxoOjN9XSwi4paEIjpbe3g6MCx5OjQsdzo4LGg6NH1dLCLiloUiOlt7eDowLHk6Myx3OjgsaDo1fV0sIuKWhiI6W3t4OjAseToyLHc6OCxoOjZ9XSwi4paHIjpbe3g6MCx5OjEsdzo4LGg6N31dLCLilogiOlt7eDowLHk6MCx3OjgsaDo4fV0sIuKWiSI6W3t4OjAseTowLHc6NyxoOjh9XSwi4paKIjpbe3g6MCx5OjAsdzo2LGg6OH1dLCLilosiOlt7eDowLHk6MCx3OjUsaDo4fV0sIuKWjCI6W3t4OjAseTowLHc6NCxoOjh9XSwi4paNIjpbe3g6MCx5OjAsdzozLGg6OH1dLCLilo4iOlt7eDowLHk6MCx3OjIsaDo4fV0sIuKWjyI6W3t4OjAseTowLHc6MSxoOjh9XSwi4paQIjpbe3g6NCx5OjAsdzo0LGg6OH1dLCLilpQiOlt7eDowLHk6MCx3OjksaDoxfV0sIuKWlSI6W3t4OjcseTowLHc6MSxoOjh9XSwi4paWIjpbe3g6MCx5OjQsdzo0LGg6NH1dLCLilpciOlt7eDo0LHk6NCx3OjQsaDo0fV0sIuKWmCI6W3t4OjAseTowLHc6NCxoOjR9XSwi4paZIjpbe3g6MCx5OjAsdzo0LGg6OH0se3g6MCx5OjQsdzo4LGg6NH1dLCLilpoiOlt7eDowLHk6MCx3OjQsaDo0fSx7eDo0LHk6NCx3OjQsaDo0fV0sIuKWmyI6W3t4OjAseTowLHc6NCxoOjh9LHt4OjAseTowLHc6NCxoOjh9XSwi4pacIjpbe3g6MCx5OjAsdzo4LGg6NH0se3g6NCx5OjAsdzo0LGg6OH1dLCLilp0iOlt7eDo0LHk6MCx3OjQsaDo0fV0sIuKWniI6W3t4OjQseTowLHc6NCxoOjR9LHt4OjAseTo0LHc6NCxoOjR9XSwi4pafIjpbe3g6NCx5OjAsdzo0LGg6OH0se3g6MCx5OjQsdzo4LGg6NH1dLCLwn62wIjpbe3g6MSx5OjAsdzoxLGg6OH1dLCLwn62xIjpbe3g6Mix5OjAsdzoxLGg6OH1dLCLwn62yIjpbe3g6Myx5OjAsdzoxLGg6OH1dLCLwn62zIjpbe3g6NCx5OjAsdzoxLGg6OH1dLCLwn620Ijpbe3g6NSx5OjAsdzoxLGg6OH1dLCLwn621Ijpbe3g6Nix5OjAsdzoxLGg6OH1dLCLwn622Ijpbe3g6MCx5OjEsdzo4LGg6MX1dLCLwn623Ijpbe3g6MCx5OjIsdzo4LGg6MX1dLCLwn624Ijpbe3g6MCx5OjMsdzo4LGg6MX1dLCLwn625Ijpbe3g6MCx5OjQsdzo4LGg6MX1dLCLwn626Ijpbe3g6MCx5OjUsdzo4LGg6MX1dLCLwn627Ijpbe3g6MCx5OjYsdzo4LGg6MX1dLCLwn628Ijpbe3g6MCx5OjAsdzoxLGg6OH0se3g6MCx5Ojcsdzo4LGg6MX1dLCLwn629Ijpbe3g6MCx5OjAsdzoxLGg6OH0se3g6MCx5OjAsdzo4LGg6MX1dLCLwn62+Ijpbe3g6Nyx5OjAsdzoxLGg6OH0se3g6MCx5OjAsdzo4LGg6MX1dLCLwn62/Ijpbe3g6Nyx5OjAsdzoxLGg6OH0se3g6MCx5Ojcsdzo4LGg6MX1dLCLwn66AIjpbe3g6MCx5OjAsdzo4LGg6MX0se3g6MCx5Ojcsdzo4LGg6MX1dLCLwn66BIjpbe3g6MCx5OjAsdzo4LGg6MX0se3g6MCx5OjIsdzo4LGg6MX0se3g6MCx5OjQsdzo4LGg6MX0se3g6MCx5Ojcsdzo4LGg6MX1dLCLwn66CIjpbe3g6MCx5OjAsdzo4LGg6Mn1dLCLwn66DIjpbe3g6MCx5OjAsdzo4LGg6M31dLCLwn66EIjpbe3g6MCx5OjAsdzo4LGg6NX1dLCLwn66FIjpbe3g6MCx5OjAsdzo4LGg6Nn1dLCLwn66GIjpbe3g6MCx5OjAsdzo4LGg6N31dLCLwn66HIjpbe3g6Nix5OjAsdzoyLGg6OH1dLCLwn66IIjpbe3g6NSx5OjAsdzozLGg6OH1dLCLwn66JIjpbe3g6Myx5OjAsdzo1LGg6OH1dLCLwn66KIjpbe3g6Mix5OjAsdzo2LGg6OH1dLCLwn66LIjpbe3g6MSx5OjAsdzo3LGg6OH1dLCLwn66VIjpbe3g6MCx5OjAsdzoyLGg6Mn0se3g6NCx5OjAsdzoyLGg6Mn0se3g6Mix5OjIsdzoyLGg6Mn0se3g6Nix5OjIsdzoyLGg6Mn0se3g6MCx5OjQsdzoyLGg6Mn0se3g6NCx5OjQsdzoyLGg6Mn0se3g6Mix5OjYsdzoyLGg6Mn0se3g6Nix5OjYsdzoyLGg6Mn1dLCLwn66WIjpbe3g6Mix5OjAsdzoyLGg6Mn0se3g6Nix5OjAsdzoyLGg6Mn0se3g6MCx5OjIsdzoyLGg6Mn0se3g6NCx5OjIsdzoyLGg6Mn0se3g6Mix5OjQsdzoyLGg6Mn0se3g6Nix5OjQsdzoyLGg6Mn0se3g6MCx5OjYsdzoyLGg6Mn0se3g6NCx5OjYsdzoyLGg6Mn1dLCLwn66XIjpbe3g6MCx5OjIsdzo4LGg6Mn0se3g6MCx5OjYsdzo4LGg6Mn1dfTt2YXIgTHQ9eyLilpEiOltbMSwwLDAsMF0sWzAsMCwwLDBdLFswLDAsMSwwXSxbMCwwLDAsMF1dLCLilpIiOltbMSwwXSxbMCwwXSxbMCwxXSxbMCwwXV0sIuKWkyI6W1swLDFdLFsxLDFdLFsxLDBdLFsxLDFdXX07dC5ib3hEcmF3aW5nRGVmaW5pdGlvbnM9eyLilIAiOihpPXt9LGlbMV09Ik0wLC41IEwxLC41IixpKSwi4pSBIjoobj17fSxuWzNdPSJNMCwuNSBMMSwuNSIsbiksIuKUgiI6KG89e30sb1sxXT0iTS41LDAgTC41LDEiLG8pLCLilIMiOihzPXt9LHNbM109Ik0uNSwwIEwuNSwxIixzKSwi4pSMIjooYT17fSxhWzFdPSJNMC41LDEgTC41LC41IEwxLC41IixhKSwi4pSPIjooYz17fSxjWzNdPSJNMC41LDEgTC41LC41IEwxLC41IixjKSwi4pSQIjoobD17fSxsWzFdPSJNMCwuNSBMLjUsLjUgTC41LDEiLGwpLCLilJMiOih1PXt9LHVbM109Ik0wLC41IEwuNSwuNSBMLjUsMSIsdSksIuKUlCI6KGg9e30saFsxXT0iTS41LDAgTC41LC41IEwxLC41IixoKSwi4pSXIjooZj17fSxmWzNdPSJNLjUsMCBMLjUsLjUgTDEsLjUiLGYpLCLilJgiOihfPXt9LF9bMV09Ik0uNSwwIEwuNSwuNSBMMCwuNSIsXyksIuKUmyI6KGQ9e30sZFszXT0iTS41LDAgTC41LC41IEwwLC41IixkKSwi4pScIjoocD17fSxwWzFdPSJNLjUsMCBMLjUsMSBNLjUsLjUgTDEsLjUiLHApLCLilKMiOih2PXt9LHZbM109Ik0uNSwwIEwuNSwxIE0uNSwuNSBMMSwuNSIsdiksIuKUpCI6KGc9e30sZ1sxXT0iTS41LDAgTC41LDEgTS41LC41IEwwLC41IixnKSwi4pSrIjooeT17fSx5WzNdPSJNLjUsMCBMLjUsMSBNLjUsLjUgTDAsLjUiLHkpLCLilKwiOihtPXt9LG1bMV09Ik0wLC41IEwxLC41IE0uNSwuNSBMLjUsMSIsbSksIuKUsyI6KGI9e30sYlszXT0iTTAsLjUgTDEsLjUgTS41LC41IEwuNSwxIixiKSwi4pS0IjooUz17fSxTWzFdPSJNMCwuNSBMMSwuNSBNLjUsLjUgTC41LDAiLFMpLCLilLsiOihDPXt9LENbM109Ik0wLC41IEwxLC41IE0uNSwuNSBMLjUsMCIsQyksIuKUvCI6KHc9e30sd1sxXT0iTTAsLjUgTDEsLjUgTS41LDAgTC41LDEiLHcpLCLilYsiOihMPXt9LExbM109Ik0wLC41IEwxLC41IE0uNSwwIEwuNSwxIixMKSwi4pW0IjooRT17fSxFWzFdPSJNLjUsLjUgTDAsLjUiLEUpLCLilbgiOih4PXt9LHhbM109Ik0uNSwuNSBMMCwuNSIseCksIuKVtSI6KEE9e30sQVsxXT0iTS41LC41IEwuNSwwIixBKSwi4pW5Ijooaz17fSxrWzNdPSJNLjUsLjUgTC41LDAiLGspLCLilbYiOihNPXt9LE1bMV09Ik0uNSwuNSBMMSwuNSIsTSksIuKVuiI6KFI9e30sUlszXT0iTS41LC41IEwxLC41IixSKSwi4pW3IjooVD17fSxUWzFdPSJNLjUsLjUgTC41LDEiLFQpLCLilbsiOihPPXt9LE9bM109Ik0uNSwuNSBMLjUsMSIsTyksIuKVkCI6KEI9e30sQlsxXT1mdW5jdGlvbihlLHQpe3JldHVybiJNMCwiKyguNS10KSsiIEwxLCIrKC41LXQpKyIgTTAsIisoLjUrdCkrIiBMMSwiKyguNSt0KX0sQiksIuKVkSI6KEQ9e30sRFsxXT1mdW5jdGlvbihlLHQpe3JldHVybiJNIisoLjUtZSkrIiwwIEwiKyguNS1lKSsiLDEgTSIrKC41K2UpKyIsMCBMIisoLjUrZSkrIiwxIn0sRCksIuKVkiI6KFA9e30sUFsxXT1mdW5jdGlvbihlLHQpe3JldHVybiJNLjUsMSBMLjUsIisoLjUtdCkrIiBMMSwiKyguNS10KSsiIE0uNSwiKyguNSt0KSsiIEwxLCIrKC41K3QpfSxQKSwi4pWTIjooST17fSxJWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0iKyguNS1lKSsiLDEgTCIrKC41LWUpKyIsLjUgTDEsLjUgTSIrKC41K2UpKyIsLjUgTCIrKC41K2UpKyIsMSJ9LEkpLCLilZQiOihIPXt9LEhbMV09ZnVuY3Rpb24oZSx0KXtyZXR1cm4iTTEsIisoLjUtdCkrIiBMIisoLjUtZSkrIiwiKyguNS10KSsiIEwiKyguNS1lKSsiLDEgTTEsIisoLjUrdCkrIiBMIisoLjUrZSkrIiwiKyguNSt0KSsiIEwiKyguNStlKSsiLDEifSxIKSwi4pWVIjooaj17fSxqWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0wLCIrKC41LXQpKyIgTC41LCIrKC41LXQpKyIgTC41LDEgTTAsIisoLjUrdCkrIiBMLjUsIisoLjUrdCl9LGopLCLilZYiOihGPXt9LEZbMV09ZnVuY3Rpb24oZSx0KXtyZXR1cm4iTSIrKC41K2UpKyIsMSBMIisoLjUrZSkrIiwuNSBMMCwuNSBNIisoLjUtZSkrIiwuNSBMIisoLjUtZSkrIiwxIn0sRiksIuKVlyI6KFc9e30sV1sxXT1mdW5jdGlvbihlLHQpe3JldHVybiJNMCwiKyguNSt0KSsiIEwiKyguNS1lKSsiLCIrKC41K3QpKyIgTCIrKC41LWUpKyIsMSBNMCwiKyguNS10KSsiIEwiKyguNStlKSsiLCIrKC41LXQpKyIgTCIrKC41K2UpKyIsMSJ9LFcpLCLilZgiOihVPXt9LFVbMV09ZnVuY3Rpb24oZSx0KXtyZXR1cm4iTS41LDAgTC41LCIrKC41K3QpKyIgTDEsIisoLjUrdCkrIiBNLjUsIisoLjUtdCkrIiBMMSwiKyguNS10KX0sVSksIuKVmSI6KHE9e30scVsxXT1mdW5jdGlvbihlLHQpe3JldHVybiJNMSwuNSBMIisoLjUtZSkrIiwuNSBMIisoLjUtZSkrIiwwIE0iKyguNStlKSsiLC41IEwiKyguNStlKSsiLDAifSxxKSwi4pWaIjooTj17fSxOWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0xLCIrKC41LXQpKyIgTCIrKC41K2UpKyIsIisoLjUtdCkrIiBMIisoLjUrZSkrIiwwIE0xLCIrKC41K3QpKyIgTCIrKC41LWUpKyIsIisoLjUrdCkrIiBMIisoLjUtZSkrIiwwIn0sTiksIuKVmyI6KHo9e30selsxXT1mdW5jdGlvbihlLHQpe3JldHVybiJNMCwiKyguNSt0KSsiIEwuNSwiKyguNSt0KSsiIEwuNSwwIE0wLCIrKC41LXQpKyIgTC41LCIrKC41LXQpfSx6KSwi4pWcIjooSz17fSxLWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0wLC41IEwiKyguNStlKSsiLC41IEwiKyguNStlKSsiLDAgTSIrKC41LWUpKyIsLjUgTCIrKC41LWUpKyIsMCJ9LEspLCLilZ0iOihWPXt9LFZbMV09ZnVuY3Rpb24oZSx0KXtyZXR1cm4iTTAsIisoLjUtdCkrIiBMIisoLjUtZSkrIiwiKyguNS10KSsiIEwiKyguNS1lKSsiLDAgTTAsIisoLjUrdCkrIiBMIisoLjUrZSkrIiwiKyguNSt0KSsiIEwiKyguNStlKSsiLDAifSxWKSwi4pWeIjooRz17fSxHWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0uNSwwIEwuNSwxIE0uNSwiKyguNS10KSsiIEwxLCIrKC41LXQpKyIgTS41LCIrKC41K3QpKyIgTDEsIisoLjUrdCl9LEcpLCLilZ8iOihZPXt9LFlbMV09ZnVuY3Rpb24oZSx0KXtyZXR1cm4iTSIrKC41LWUpKyIsMCBMIisoLjUtZSkrIiwxIE0iKyguNStlKSsiLDAgTCIrKC41K2UpKyIsMSBNIisoLjUrZSkrIiwuNSBMMSwuNSJ9LFkpLCLilaAiOihYPXt9LFhbMV09ZnVuY3Rpb24oZSx0KXtyZXR1cm4iTSIrKC41LWUpKyIsMCBMIisoLjUtZSkrIiwxIE0xLCIrKC41K3QpKyIgTCIrKC41K2UpKyIsIisoLjUrdCkrIiBMIisoLjUrZSkrIiwxIE0xLCIrKC41LXQpKyIgTCIrKC41K2UpKyIsIisoLjUtdCkrIiBMIisoLjUrZSkrIiwwIn0sWCksIuKVoSI6KFo9e30sWlsxXT1mdW5jdGlvbihlLHQpe3JldHVybiJNLjUsMCBMLjUsMSBNMCwiKyguNS10KSsiIEwuNSwiKyguNS10KSsiIE0wLCIrKC41K3QpKyIgTC41LCIrKC41K3QpfSxaKSwi4pWiIjooSj17fSxKWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0wLC41IEwiKyguNS1lKSsiLC41IE0iKyguNS1lKSsiLDAgTCIrKC41LWUpKyIsMSBNIisoLjUrZSkrIiwwIEwiKyguNStlKSsiLDEifSxKKSwi4pWjIjooJD17fSwkWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0iKyguNStlKSsiLDAgTCIrKC41K2UpKyIsMSBNMCwiKyguNSt0KSsiIEwiKyguNS1lKSsiLCIrKC41K3QpKyIgTCIrKC41LWUpKyIsMSBNMCwiKyguNS10KSsiIEwiKyguNS1lKSsiLCIrKC41LXQpKyIgTCIrKC41LWUpKyIsMCJ9LCQpLCLilaQiOihRPXt9LFFbMV09ZnVuY3Rpb24oZSx0KXtyZXR1cm4iTTAsIisoLjUtdCkrIiBMMSwiKyguNS10KSsiIE0wLCIrKC41K3QpKyIgTDEsIisoLjUrdCkrIiBNLjUsIisoLjUrdCkrIiBMLjUsMSJ9LFEpLCLilaUiOihlZT17fSxlZVsxXT1mdW5jdGlvbihlLHQpe3JldHVybiJNMCwuNSBMMSwuNSBNIisoLjUtZSkrIiwuNSBMIisoLjUtZSkrIiwxIE0iKyguNStlKSsiLC41IEwiKyguNStlKSsiLDEifSxlZSksIuKVpiI6KHRlPXt9LHRlWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0wLCIrKC41LXQpKyIgTDEsIisoLjUtdCkrIiBNMCwiKyguNSt0KSsiIEwiKyguNS1lKSsiLCIrKC41K3QpKyIgTCIrKC41LWUpKyIsMSBNMSwiKyguNSt0KSsiIEwiKyguNStlKSsiLCIrKC41K3QpKyIgTCIrKC41K2UpKyIsMSJ9LHRlKSwi4pWnIjoocmU9e30scmVbMV09ZnVuY3Rpb24oZSx0KXtyZXR1cm4iTS41LDAgTC41LCIrKC41LXQpKyIgTTAsIisoLjUtdCkrIiBMMSwiKyguNS10KSsiIE0wLCIrKC41K3QpKyIgTDEsIisoLjUrdCl9LHJlKSwi4pWoIjooaWU9e30saWVbMV09ZnVuY3Rpb24oZSx0KXtyZXR1cm4iTTAsLjUgTDEsLjUgTSIrKC41LWUpKyIsLjUgTCIrKC41LWUpKyIsMCBNIisoLjUrZSkrIiwuNSBMIisoLjUrZSkrIiwwIn0saWUpLCLilakiOihuZT17fSxuZVsxXT1mdW5jdGlvbihlLHQpe3JldHVybiJNMCwiKyguNSt0KSsiIEwxLCIrKC41K3QpKyIgTTAsIisoLjUtdCkrIiBMIisoLjUtZSkrIiwiKyguNS10KSsiIEwiKyguNS1lKSsiLDAgTTEsIisoLjUtdCkrIiBMIisoLjUrZSkrIiwiKyguNS10KSsiIEwiKyguNStlKSsiLDAifSxuZSksIuKVqiI6KG9lPXt9LG9lWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0uNSwwIEwuNSwxIE0wLCIrKC41LXQpKyIgTDEsIisoLjUtdCkrIiBNMCwiKyguNSt0KSsiIEwxLCIrKC41K3QpfSxvZSksIuKVqyI6KHNlPXt9LHNlWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0wLC41IEwxLC41IE0iKyguNS1lKSsiLDAgTCIrKC41LWUpKyIsMSBNIisoLjUrZSkrIiwwIEwiKyguNStlKSsiLDEifSxzZSksIuKVrCI6KGFlPXt9LGFlWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0wLCIrKC41K3QpKyIgTCIrKC41LWUpKyIsIisoLjUrdCkrIiBMIisoLjUtZSkrIiwxIE0xLCIrKC41K3QpKyIgTCIrKC41K2UpKyIsIisoLjUrdCkrIiBMIisoLjUrZSkrIiwxIE0wLCIrKC41LXQpKyIgTCIrKC41LWUpKyIsIisoLjUtdCkrIiBMIisoLjUtZSkrIiwwIE0xLCIrKC41LXQpKyIgTCIrKC41K2UpKyIsIisoLjUtdCkrIiBMIisoLjUrZSkrIiwwIn0sYWUpLCLilbEiOihjZT17fSxjZVsxXT0iTTEsMCBMMCwxIixjZSksIuKVsiI6KGxlPXt9LGxlWzFdPSJNMCwwIEwxLDEiLGxlKSwi4pWzIjoodWU9e30sdWVbMV09Ik0xLDAgTDAsMSBNMCwwIEwxLDEiLHVlKSwi4pW8IjooaGU9e30saGVbMV09Ik0uNSwuNSBMMCwuNSIsaGVbM109Ik0uNSwuNSBMMSwuNSIsaGUpLCLilb0iOihmZT17fSxmZVsxXT0iTS41LC41IEwuNSwwIixmZVszXT0iTS41LC41IEwuNSwxIixmZSksIuKVviI6KF9lPXt9LF9lWzFdPSJNLjUsLjUgTDEsLjUiLF9lWzNdPSJNLjUsLjUgTDAsLjUiLF9lKSwi4pW/IjooZGU9e30sZGVbMV09Ik0uNSwuNSBMLjUsMSIsZGVbM109Ik0uNSwuNSBMLjUsMCIsZGUpLCLilI0iOihwZT17fSxwZVsxXT0iTS41LC41IEwuNSwxIixwZVszXT0iTS41LC41IEwxLC41IixwZSksIuKUjiI6KHZlPXt9LHZlWzFdPSJNLjUsLjUgTDEsLjUiLHZlWzNdPSJNLjUsLjUgTC41LDEiLHZlKSwi4pSRIjooZ2U9e30sZ2VbMV09Ik0uNSwuNSBMLjUsMSIsZ2VbM109Ik0uNSwuNSBMMCwuNSIsZ2UpLCLilJIiOih5ZT17fSx5ZVsxXT0iTS41LC41IEwwLC41Iix5ZVszXT0iTS41LC41IEwuNSwxIix5ZSksIuKUlSI6KG1lPXt9LG1lWzFdPSJNLjUsLjUgTC41LDAiLG1lWzNdPSJNLjUsLjUgTDEsLjUiLG1lKSwi4pSWIjooYmU9e30sYmVbMV09Ik0uNSwuNSBMMSwuNSIsYmVbM109Ik0uNSwuNSBMLjUsMCIsYmUpLCLilJkiOihTZT17fSxTZVsxXT0iTS41LC41IEwuNSwwIixTZVszXT0iTS41LC41IEwwLC41IixTZSksIuKUmiI6KENlPXt9LENlWzFdPSJNLjUsLjUgTDAsLjUiLENlWzNdPSJNLjUsLjUgTC41LDAiLENlKSwi4pSdIjood2U9e30sd2VbMV09Ik0uNSwwIEwuNSwxIix3ZVszXT0iTS41LC41IEwxLC41Iix3ZSksIuKUniI6KExlPXt9LExlWzFdPSJNMC41LDEgTC41LC41IEwxLC41IixMZVszXT0iTS41LC41IEwuNSwwIixMZSksIuKUnyI6KEVlPXt9LEVlWzFdPSJNLjUsMCBMLjUsLjUgTDEsLjUiLEVlWzNdPSJNLjUsLjUgTC41LDEiLEVlKSwi4pSgIjooeGU9e30seGVbMV09Ik0uNSwuNSBMMSwuNSIseGVbM109Ik0uNSwwIEwuNSwxIix4ZSksIuKUoSI6KEFlPXt9LEFlWzFdPSJNLjUsLjUgTC41LDEiLEFlWzNdPSJNLjUsMCBMLjUsLjUgTDEsLjUiLEFlKSwi4pSiIjooa2U9e30sa2VbMV09Ik0uNSwuNSBMLjUsMCIsa2VbM109Ik0wLjUsMSBMLjUsLjUgTDEsLjUiLGtlKSwi4pSlIjooTWU9e30sTWVbMV09Ik0uNSwwIEwuNSwxIixNZVszXT0iTS41LC41IEwwLC41IixNZSksIuKUpiI6KFJlPXt9LFJlWzFdPSJNMCwuNSBMLjUsLjUgTC41LDEiLFJlWzNdPSJNLjUsLjUgTC41LDAiLFJlKSwi4pSnIjooVGU9e30sVGVbMV09Ik0uNSwwIEwuNSwuNSBMMCwuNSIsVGVbM109Ik0uNSwuNSBMLjUsMSIsVGUpLCLilKgiOihPZT17fSxPZVsxXT0iTS41LC41IEwwLC41IixPZVszXT0iTS41LDAgTC41LDEiLE9lKSwi4pSpIjooQmU9e30sQmVbMV09Ik0uNSwuNSBMLjUsMSIsQmVbM109Ik0uNSwwIEwuNSwuNSBMMCwuNSIsQmUpLCLilKoiOihEZT17fSxEZVsxXT0iTS41LC41IEwuNSwwIixEZVszXT0iTTAsLjUgTC41LC41IEwuNSwxIixEZSksIuKUrSI6KFBlPXt9LFBlWzFdPSJNMC41LDEgTC41LC41IEwxLC41IixQZVszXT0iTS41LC41IEwwLC41IixQZSksIuKUriI6KEllPXt9LEllWzFdPSJNMCwuNSBMLjUsLjUgTC41LDEiLEllWzNdPSJNLjUsLjUgTDEsLjUiLEllKSwi4pSvIjooSGU9e30sSGVbMV09Ik0uNSwuNSBMLjUsMSIsSGVbM109Ik0wLC41IEwxLC41IixIZSksIuKUsCI6KGplPXt9LGplWzFdPSJNMCwuNSBMMSwuNSIsamVbM109Ik0uNSwuNSBMLjUsMSIsamUpLCLilLEiOihGZT17fSxGZVsxXT0iTS41LC41IEwxLC41IixGZVszXT0iTTAsLjUgTC41LC41IEwuNSwxIixGZSksIuKUsiI6KFdlPXt9LFdlWzFdPSJNLjUsLjUgTDAsLjUiLFdlWzNdPSJNMC41LDEgTC41LC41IEwxLC41IixXZSksIuKUtSI6KFVlPXt9LFVlWzFdPSJNLjUsMCBMLjUsLjUgTDEsLjUiLFVlWzNdPSJNLjUsLjUgTDAsLjUiLFVlKSwi4pS2IjoocWU9e30scWVbMV09Ik0uNSwwIEwuNSwuNSBMMCwuNSIscWVbM109Ik0uNSwuNSBMMSwuNSIscWUpLCLilLciOihOZT17fSxOZVsxXT0iTS41LC41IEwuNSwwIixOZVszXT0iTTAsLjUgTDEsLjUiLE5lKSwi4pS4IjooemU9e30semVbMV09Ik0wLC41IEwxLC41Iix6ZVszXT0iTS41LC41IEwuNSwwIix6ZSksIuKUuSI6KEtlPXt9LEtlWzFdPSJNLjUsLjUgTDEsLjUiLEtlWzNdPSJNLjUsMCBMLjUsLjUgTDAsLjUiLEtlKSwi4pS6IjooVmU9e30sVmVbMV09Ik0uNSwuNSBMMCwuNSIsVmVbM109Ik0uNSwwIEwuNSwuNSBMMSwuNSIsVmUpLCLilL0iOihHZT17fSxHZVsxXT0iTS41LDAgTC41LDEgTS41LC41IEwxLC41IixHZVszXT0iTS41LC41IEwwLC41IixHZSksIuKUviI6KFllPXt9LFllWzFdPSJNLjUsMCBMLjUsMSBNLjUsLjUgTDAsLjUiLFllWzNdPSJNLjUsLjUgTDEsLjUiLFllKSwi4pS/IjooWGU9e30sWGVbMV09Ik0uNSwwIEwuNSwxIixYZVszXT0iTTAsLjUgTDEsLjUiLFhlKSwi4pWAIjooWmU9e30sWmVbMV09Ik0wLC41IEwxLC41IE0uNSwuNSBMLjUsMSIsWmVbM109Ik0uNSwuNSBMLjUsMCIsWmUpLCLilYEiOihKZT17fSxKZVsxXT0iTS41LC41IEwuNSwwIE0wLC41IEwxLC41IixKZVszXT0iTS41LC41IEwuNSwxIixKZSksIuKVgiI6KCRlPXt9LCRlWzFdPSJNMCwuNSBMMSwuNSIsJGVbM109Ik0uNSwwIEwuNSwxIiwkZSksIuKVgyI6KFFlPXt9LFFlWzFdPSJNMC41LDEgTC41LC41IEwxLC41IixRZVszXT0iTS41LDAgTC41LC41IEwwLC41IixRZSksIuKVhCI6KGV0PXt9LGV0WzFdPSJNMCwuNSBMLjUsLjUgTC41LDEiLGV0WzNdPSJNLjUsMCBMLjUsLjUgTDEsLjUiLGV0KSwi4pWFIjoodHQ9e30sdHRbMV09Ik0uNSwwIEwuNSwuNSBMMSwuNSIsdHRbM109Ik0wLC41IEwuNSwuNSBMLjUsMSIsdHQpLCLilYYiOihydD17fSxydFsxXT0iTS41LDAgTC41LC41IEwwLC41IixydFszXT0iTTAuNSwxIEwuNSwuNSBMMSwuNSIscnQpLCLilYciOihpdD17fSxpdFsxXT0iTS41LC41IEwuNSwxIixpdFszXT0iTS41LC41IEwuNSwwIE0wLC41IEwxLC41IixpdCksIuKViCI6KG50PXt9LG50WzFdPSJNLjUsLjUgTC41LDAiLG50WzNdPSJNMCwuNSBMMSwuNSBNLjUsLjUgTC41LDEiLG50KSwi4pWJIjoob3Q9e30sb3RbMV09Ik0uNSwuNSBMMSwuNSIsb3RbM109Ik0uNSwwIEwuNSwxIE0uNSwuNSBMMCwuNSIsb3QpLCLilYoiOihzdD17fSxzdFsxXT0iTS41LC41IEwwLC41IixzdFszXT0iTS41LDAgTC41LDEgTS41LC41IEwxLC41IixzdCksIuKVjCI6KGF0PXt9LGF0WzFdPSJNLjEsLjUgTC40LC41IE0uNiwuNSBMLjksLjUiLGF0KSwi4pWNIjooY3Q9e30sY3RbM109Ik0uMSwuNSBMLjQsLjUgTS42LC41IEwuOSwuNSIsY3QpLCLilIQiOihsdD17fSxsdFsxXT0iTS4wNjY3LC41IEwuMjY2NywuNSBNLjQsLjUgTC42LC41IE0uNzMzMywuNSBMLjkzMzMsLjUiLGx0KSwi4pSFIjoodXQ9e30sdXRbM109Ik0uMDY2NywuNSBMLjI2NjcsLjUgTS40LC41IEwuNiwuNSBNLjczMzMsLjUgTC45MzMzLC41Iix1dCksIuKUiCI6KGh0PXt9LGh0WzFdPSJNLjA1LC41IEwuMiwuNSBNLjMsLjUgTC40NSwuNSBNLjU1LC41IEwuNywuNSBNLjgsLjUgTC45NSwuNSIsaHQpLCLilIkiOihmdD17fSxmdFszXT0iTS4wNSwuNSBMLjIsLjUgTS4zLC41IEwuNDUsLjUgTS41NSwuNSBMLjcsLjUgTS44LC41IEwuOTUsLjUiLGZ0KSwi4pWOIjooX3Q9e30sX3RbMV09Ik0uNSwuMSBMLjUsLjQgTS41LC42IEwuNSwuOSIsX3QpLCLilY8iOihkdD17fSxkdFszXT0iTS41LC4xIEwuNSwuNCBNLjUsLjYgTC41LC45IixkdCksIuKUhiI6KHB0PXt9LHB0WzFdPSJNLjUsLjA2NjcgTC41LC4yNjY3IE0uNSwuNCBMLjUsLjYgTS41LC43MzMzIEwuNSwuOTMzMyIscHQpLCLilIciOih2dD17fSx2dFszXT0iTS41LC4wNjY3IEwuNSwuMjY2NyBNLjUsLjQgTC41LC42IE0uNSwuNzMzMyBMLjUsLjkzMzMiLHZ0KSwi4pSKIjooZ3Q9e30sZ3RbMV09Ik0uNSwuMDUgTC41LC4yIE0uNSwuMyBMLjUsLjQ1IEwuNSwuNTUgTS41LC43IEwuNSwuOTUiLGd0KSwi4pSLIjooeXQ9e30seXRbM109Ik0uNSwuMDUgTC41LC4yIE0uNSwuMyBMLjUsLjQ1IEwuNSwuNTUgTS41LC43IEwuNSwuOTUiLHl0KSwi4pWtIjoobXQ9e30sbXRbMV09IkMuNSwxLC41LC41LDEsLjUiLG10KSwi4pWuIjooYnQ9e30sYnRbMV09IkMuNSwxLC41LC41LDAsLjUiLGJ0KSwi4pWvIjooU3Q9e30sU3RbMV09IkMuNSwwLC41LC41LDAsLjUiLFN0KSwi4pWwIjooQ3Q9e30sQ3RbMV09IkMuNSwwLC41LC41LDEsLjUiLEN0KX0sdC50cnlEcmF3Q3VzdG9tQ2hhcj1mdW5jdGlvbihlLHIsaSxuLG8scyl7dmFyIGE9dC5ibG9ja0VsZW1lbnREZWZpbml0aW9uc1tyXTtpZihhKXJldHVybiBmdW5jdGlvbihlLHQscixpLG4sbyl7Zm9yKHZhciBzPTA7czx0Lmxlbmd0aDtzKyspe3ZhciBhPXRbc10sYz1uLzgsbD1vLzg7ZS5maWxsUmVjdChyK2EueCpjLGkrYS55KmwsYS53KmMsYS5oKmwpfX0oZSxhLGksbixvLHMpLCEwO3ZhciBjPUx0W3JdO2lmKGMpcmV0dXJuIGZ1bmN0aW9uKGUsdCxyLGksbixvKXt2YXIgcyxhPUV0LmdldCh0KTthfHwoYT1uZXcgTWFwLEV0LnNldCh0LGEpKTt2YXIgYz1lLmZpbGxTdHlsZTtpZigic3RyaW5nIiE9dHlwZW9mIGMpdGhyb3cgbmV3IEVycm9yKCdVbmV4cGVjdGVkIGZpbGxTdHlsZSB0eXBlICInK2MrJyInKTt2YXIgbD1hLmdldChjKTtpZighbCl7dmFyIHU9dFswXS5sZW5ndGgsaD10Lmxlbmd0aCxmPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoImNhbnZhcyIpO2Yud2lkdGg9dSxmLmhlaWdodD1oO3ZhciBfPSgwLHd0LnRocm93SWZGYWxzeSkoZi5nZXRDb250ZXh0KCIyZCIpKSxkPW5ldyBJbWFnZURhdGEodSxoKSxwPXZvaWQgMCx2PXZvaWQgMCxnPXZvaWQgMCx5PXZvaWQgMDtpZihjLnN0YXJ0c1dpdGgoIiMiKSlwPXBhcnNlSW50KGMuc3Vic3RyKDEsMiksMTYpLHY9cGFyc2VJbnQoYy5zdWJzdHIoMywyKSwxNiksZz1wYXJzZUludChjLnN1YnN0cig1LDIpLDE2KSx5PWMubGVuZ3RoPjcmJnBhcnNlSW50KGMuc3Vic3RyKDcsMiksMTYpfHwxO2Vsc2V7aWYoIWMuc3RhcnRzV2l0aCgicmdiYSIpKXRocm93IG5ldyBFcnJvcignVW5leHBlY3RlZCBmaWxsU3R5bGUgY29sb3IgZm9ybWF0ICInK2MrJyIgd2hlbiBkcmF3aW5nIHBhdHRlcm4gZ2x5cGgnKTtwPShzPWMuc3Vic3RyaW5nKDUsYy5sZW5ndGgtMSkuc3BsaXQoIiwiKS5tYXAoKGZ1bmN0aW9uKGUpe3JldHVybiBwYXJzZUZsb2F0KGUpfSkpKVswXSx2PXNbMV0sZz1zWzJdLHk9c1szXX1mb3IodmFyIG09MDttPGg7bSsrKWZvcih2YXIgYj0wO2I8dTtiKyspZC5kYXRhWzQqKG0qdStiKV09cCxkLmRhdGFbNCoobSp1K2IpKzFdPXYsZC5kYXRhWzQqKG0qdStiKSsyXT1nLGQuZGF0YVs0KihtKnUrYikrM109dFttXVtiXSooMjU1KnkpO18ucHV0SW1hZ2VEYXRhKGQsMCwwKSxsPSgwLHd0LnRocm93SWZGYWxzeSkoZS5jcmVhdGVQYXR0ZXJuKGYsbnVsbCkpLGEuc2V0KGMsbCl9ZS5maWxsU3R5bGU9bCxlLmZpbGxSZWN0KHIsaSxuLG8pfShlLGMsaSxuLG8scyksITA7dmFyIGw9dC5ib3hEcmF3aW5nRGVmaW5pdGlvbnNbcl07cmV0dXJuISFsJiYoZnVuY3Rpb24oZSx0LHIsaSxuLG8pe2Uuc3Ryb2tlU3R5bGU9ZS5maWxsU3R5bGU7Zm9yKHZhciBzPTAsYT1PYmplY3QuZW50cmllcyh0KTtzPGEubGVuZ3RoO3MrKyl7dmFyIGM9YVtzXSxsPWNbMF0sdT1jWzFdO2UuYmVnaW5QYXRoKCksZS5saW5lV2lkdGg9d2luZG93LmRldmljZVBpeGVsUmF0aW8qTnVtYmVyLnBhcnNlSW50KGwpO2Zvcih2YXIgaD0wLGY9KCJmdW5jdGlvbiI9PXR5cGVvZiB1P3UoLjE1LC4xNS9vKm4pOnUpLnNwbGl0KCIgIik7aDxmLmxlbmd0aDtoKyspe3ZhciBfPWZbaF0sZD1fWzBdLHA9QXRbZF07aWYocCl7dmFyIHY9Xy5zdWJzdHJpbmcoMSkuc3BsaXQoIiwiKTt2WzBdJiZ2WzFdJiZwKGUsa3QodixuLG8scixpKSl9ZWxzZSBjb25zb2xlLmVycm9yKCdDb3VsZCBub3QgZmluZCBkcmF3aW5nIGluc3RydWN0aW9ucyBmb3IgIicrZCsnIicpfWUuc3Ryb2tlKCksZS5jbG9zZVBhdGgoKX19KGUsbCxpLG4sbyxzKSwhMCl9O3ZhciBFdD1uZXcgTWFwO2Z1bmN0aW9uIHh0KGUsdCxyKXtyZXR1cm4gdm9pZCAwPT09ciYmKHI9MCksTWF0aC5tYXgoTWF0aC5taW4oZSx0KSxyKX12YXIgQXQ9e0M6ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZS5iZXppZXJDdXJ2ZVRvKHRbMF0sdFsxXSx0WzJdLHRbM10sdFs0XSx0WzVdKX0sTDpmdW5jdGlvbihlLHQpe3JldHVybiBlLmxpbmVUbyh0WzBdLHRbMV0pfSxNOmZ1bmN0aW9uKGUsdCl7cmV0dXJuIGUubW92ZVRvKHRbMF0sdFsxXSl9fTtmdW5jdGlvbiBrdChlLHQscixpLG4pe3ZhciBvPWUubWFwKChmdW5jdGlvbihlKXtyZXR1cm4gcGFyc2VGbG9hdChlKXx8cGFyc2VJbnQoZSl9KSk7aWYoby5sZW5ndGg8Mil0aHJvdyBuZXcgRXJyb3IoIlRvbyBmZXcgYXJndW1lbnRzIGZvciBpbnN0cnVjdGlvbiIpO2Zvcih2YXIgcz0wO3M8by5sZW5ndGg7cys9MilvW3NdKj10LDAhPT1vW3NdJiYob1tzXT14dChNYXRoLnJvdW5kKG9bc10rLjUpLS41LHQsMCkpLG9bc10rPWk7Zm9yKHZhciBhPTE7YTxvLmxlbmd0aDthKz0yKW9bYV0qPXIsMCE9PW9bYV0mJihvW2FdPXh0KE1hdGgucm91bmQob1thXSsuNSktLjUsciwwKSksb1thXSs9bjtyZXR1cm4gb319LDM3MDA6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5HcmlkQ2FjaGU9dm9pZCAwO3ZhciByPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZSgpe3RoaXMuY2FjaGU9W119cmV0dXJuIGUucHJvdG90eXBlLnJlc2l6ZT1mdW5jdGlvbihlLHQpe2Zvcih2YXIgcj0wO3I8ZTtyKyspe3RoaXMuY2FjaGUubGVuZ3RoPD1yJiZ0aGlzLmNhY2hlLnB1c2goW10pO2Zvcih2YXIgaT10aGlzLmNhY2hlW3JdLmxlbmd0aDtpPHQ7aSsrKXRoaXMuY2FjaGVbcl0ucHVzaCh2b2lkIDApO3RoaXMuY2FjaGVbcl0ubGVuZ3RoPXR9dGhpcy5jYWNoZS5sZW5ndGg9ZX0sZS5wcm90b3R5cGUuY2xlYXI9ZnVuY3Rpb24oKXtmb3IodmFyIGU9MDtlPHRoaXMuY2FjaGUubGVuZ3RoO2UrKylmb3IodmFyIHQ9MDt0PHRoaXMuY2FjaGVbZV0ubGVuZ3RoO3QrKyl0aGlzLmNhY2hlW2VdW3RdPXZvaWQgMH0sZX0oKTt0LkdyaWRDYWNoZT1yfSw1MDk4OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pLG89dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxzPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkxpbmtSZW5kZXJMYXllcj12b2lkIDA7dmFyIGE9cigxNTQ2KSxjPXIoODgwMyksbD1yKDIwNDApLHU9cigyNTg1KSxoPWZ1bmN0aW9uKGUpe2Z1bmN0aW9uIHQodCxyLGksbixvLHMsYSxjKXt2YXIgbD1lLmNhbGwodGhpcyx0LCJsaW5rIixyLCEwLGksbixhLGMpfHx0aGlzO3JldHVybiBvLm9uU2hvd0xpbmtVbmRlcmxpbmUoKGZ1bmN0aW9uKGUpe3JldHVybiBsLl9vblNob3dMaW5rVW5kZXJsaW5lKGUpfSkpLG8ub25IaWRlTGlua1VuZGVybGluZSgoZnVuY3Rpb24oZSl7cmV0dXJuIGwuX29uSGlkZUxpbmtVbmRlcmxpbmUoZSl9KSkscy5vblNob3dMaW5rVW5kZXJsaW5lKChmdW5jdGlvbihlKXtyZXR1cm4gbC5fb25TaG93TGlua1VuZGVybGluZShlKX0pKSxzLm9uSGlkZUxpbmtVbmRlcmxpbmUoKGZ1bmN0aW9uKGUpe3JldHVybiBsLl9vbkhpZGVMaW5rVW5kZXJsaW5lKGUpfSkpLGx9cmV0dXJuIG4odCxlKSx0LnByb3RvdHlwZS5yZXNpemU9ZnVuY3Rpb24odCl7ZS5wcm90b3R5cGUucmVzaXplLmNhbGwodGhpcyx0KSx0aGlzLl9zdGF0ZT12b2lkIDB9LHQucHJvdG90eXBlLnJlc2V0PWZ1bmN0aW9uKCl7dGhpcy5fY2xlYXJDdXJyZW50TGluaygpfSx0LnByb3RvdHlwZS5fY2xlYXJDdXJyZW50TGluaz1mdW5jdGlvbigpe2lmKHRoaXMuX3N0YXRlKXt0aGlzLl9jbGVhckNlbGxzKHRoaXMuX3N0YXRlLngxLHRoaXMuX3N0YXRlLnkxLHRoaXMuX3N0YXRlLmNvbHMtdGhpcy5fc3RhdGUueDEsMSk7dmFyIGU9dGhpcy5fc3RhdGUueTItdGhpcy5fc3RhdGUueTEtMTtlPjAmJnRoaXMuX2NsZWFyQ2VsbHMoMCx0aGlzLl9zdGF0ZS55MSsxLHRoaXMuX3N0YXRlLmNvbHMsZSksdGhpcy5fY2xlYXJDZWxscygwLHRoaXMuX3N0YXRlLnkyLHRoaXMuX3N0YXRlLngyLDEpLHRoaXMuX3N0YXRlPXZvaWQgMH19LHQucHJvdG90eXBlLl9vblNob3dMaW5rVW5kZXJsaW5lPWZ1bmN0aW9uKGUpe2lmKGUuZmc9PT1jLklOVkVSVEVEX0RFRkFVTFRfQ09MT1I/dGhpcy5fY3R4LmZpbGxTdHlsZT10aGlzLl9jb2xvcnMuYmFja2dyb3VuZC5jc3M6ZS5mZyYmKDAsbC5pczI1NkNvbG9yKShlLmZnKT90aGlzLl9jdHguZmlsbFN0eWxlPXRoaXMuX2NvbG9ycy5hbnNpW2UuZmddLmNzczp0aGlzLl9jdHguZmlsbFN0eWxlPXRoaXMuX2NvbG9ycy5mb3JlZ3JvdW5kLmNzcyxlLnkxPT09ZS55Mil0aGlzLl9maWxsQm90dG9tTGluZUF0Q2VsbHMoZS54MSxlLnkxLGUueDItZS54MSk7ZWxzZXt0aGlzLl9maWxsQm90dG9tTGluZUF0Q2VsbHMoZS54MSxlLnkxLGUuY29scy1lLngxKTtmb3IodmFyIHQ9ZS55MSsxO3Q8ZS55Mjt0KyspdGhpcy5fZmlsbEJvdHRvbUxpbmVBdENlbGxzKDAsdCxlLmNvbHMpO3RoaXMuX2ZpbGxCb3R0b21MaW5lQXRDZWxscygwLGUueTIsZS54Mil9dGhpcy5fc3RhdGU9ZX0sdC5wcm90b3R5cGUuX29uSGlkZUxpbmtVbmRlcmxpbmU9ZnVuY3Rpb24oZSl7dGhpcy5fY2xlYXJDdXJyZW50TGluaygpfSxvKFtzKDYsdS5JQnVmZmVyU2VydmljZSkscyg3LHUuSU9wdGlvbnNTZXJ2aWNlKV0sdCl9KGEuQmFzZVJlbmRlckxheWVyKTt0LkxpbmtSZW5kZXJMYXllcj1ofSwzNTI1OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pLG89dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxzPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LlJlbmRlcmVyPXZvaWQgMDt2YXIgYT1yKDk1OTYpLGM9cig0MTQ5KSxsPXIoMjUxMiksdT1yKDUwOTgpLGg9cig4NDQpLGY9cig0NzI1KSxfPXIoMjU4NSksZD1yKDE0MjApLHA9cig4NDYwKSx2PTEsZz1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KHQscixpLG4sbyxzLGgsZil7dmFyIF89ZS5jYWxsKHRoaXMpfHx0aGlzO18uX2NvbG9ycz10LF8uX3NjcmVlbkVsZW1lbnQ9cixfLl9idWZmZXJTZXJ2aWNlPXMsXy5fY2hhclNpemVTZXJ2aWNlPWgsXy5fb3B0aW9uc1NlcnZpY2U9ZixfLl9pZD12KyssXy5fb25SZXF1ZXN0UmVkcmF3PW5ldyBwLkV2ZW50RW1pdHRlcjt2YXIgZD1fLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmFsbG93VHJhbnNwYXJlbmN5O3JldHVybiBfLl9yZW5kZXJMYXllcnM9W28uY3JlYXRlSW5zdGFuY2UoYS5UZXh0UmVuZGVyTGF5ZXIsXy5fc2NyZWVuRWxlbWVudCwwLF8uX2NvbG9ycyxkLF8uX2lkKSxvLmNyZWF0ZUluc3RhbmNlKGMuU2VsZWN0aW9uUmVuZGVyTGF5ZXIsXy5fc2NyZWVuRWxlbWVudCwxLF8uX2NvbG9ycyxfLl9pZCksby5jcmVhdGVJbnN0YW5jZSh1LkxpbmtSZW5kZXJMYXllcixfLl9zY3JlZW5FbGVtZW50LDIsXy5fY29sb3JzLF8uX2lkLGksbiksby5jcmVhdGVJbnN0YW5jZShsLkN1cnNvclJlbmRlckxheWVyLF8uX3NjcmVlbkVsZW1lbnQsMyxfLl9jb2xvcnMsXy5faWQsXy5fb25SZXF1ZXN0UmVkcmF3KV0sXy5kaW1lbnNpb25zPXtzY2FsZWRDaGFyV2lkdGg6MCxzY2FsZWRDaGFySGVpZ2h0OjAsc2NhbGVkQ2VsbFdpZHRoOjAsc2NhbGVkQ2VsbEhlaWdodDowLHNjYWxlZENoYXJMZWZ0OjAsc2NhbGVkQ2hhclRvcDowLHNjYWxlZENhbnZhc1dpZHRoOjAsc2NhbGVkQ2FudmFzSGVpZ2h0OjAsY2FudmFzV2lkdGg6MCxjYW52YXNIZWlnaHQ6MCxhY3R1YWxDZWxsV2lkdGg6MCxhY3R1YWxDZWxsSGVpZ2h0OjB9LF8uX2RldmljZVBpeGVsUmF0aW89d2luZG93LmRldmljZVBpeGVsUmF0aW8sXy5fdXBkYXRlRGltZW5zaW9ucygpLF8ub25PcHRpb25zQ2hhbmdlZCgpLF99cmV0dXJuIG4odCxlKSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uUmVxdWVzdFJlZHJhdyIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vblJlcXVlc3RSZWRyYXcuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksdC5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe2Zvcih2YXIgdD0wLHI9dGhpcy5fcmVuZGVyTGF5ZXJzO3Q8ci5sZW5ndGg7dCsrKXJbdF0uZGlzcG9zZSgpO2UucHJvdG90eXBlLmRpc3Bvc2UuY2FsbCh0aGlzKSwoMCxkLnJlbW92ZVRlcm1pbmFsRnJvbUNhY2hlKSh0aGlzLl9pZCl9LHQucHJvdG90eXBlLm9uRGV2aWNlUGl4ZWxSYXRpb0NoYW5nZT1mdW5jdGlvbigpe3RoaXMuX2RldmljZVBpeGVsUmF0aW8hPT13aW5kb3cuZGV2aWNlUGl4ZWxSYXRpbyYmKHRoaXMuX2RldmljZVBpeGVsUmF0aW89d2luZG93LmRldmljZVBpeGVsUmF0aW8sdGhpcy5vblJlc2l6ZSh0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsdGhpcy5fYnVmZmVyU2VydmljZS5yb3dzKSl9LHQucHJvdG90eXBlLnNldENvbG9ycz1mdW5jdGlvbihlKXt0aGlzLl9jb2xvcnM9ZTtmb3IodmFyIHQ9MCxyPXRoaXMuX3JlbmRlckxheWVyczt0PHIubGVuZ3RoO3QrKyl7dmFyIGk9clt0XTtpLnNldENvbG9ycyh0aGlzLl9jb2xvcnMpLGkucmVzZXQoKX19LHQucHJvdG90eXBlLm9uUmVzaXplPWZ1bmN0aW9uKGUsdCl7dGhpcy5fdXBkYXRlRGltZW5zaW9ucygpO2Zvcih2YXIgcj0wLGk9dGhpcy5fcmVuZGVyTGF5ZXJzO3I8aS5sZW5ndGg7cisrKWlbcl0ucmVzaXplKHRoaXMuZGltZW5zaW9ucyk7dGhpcy5fc2NyZWVuRWxlbWVudC5zdHlsZS53aWR0aD10aGlzLmRpbWVuc2lvbnMuY2FudmFzV2lkdGgrInB4Iix0aGlzLl9zY3JlZW5FbGVtZW50LnN0eWxlLmhlaWdodD10aGlzLmRpbWVuc2lvbnMuY2FudmFzSGVpZ2h0KyJweCJ9LHQucHJvdG90eXBlLm9uQ2hhclNpemVDaGFuZ2VkPWZ1bmN0aW9uKCl7dGhpcy5vblJlc2l6ZSh0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsdGhpcy5fYnVmZmVyU2VydmljZS5yb3dzKX0sdC5wcm90b3R5cGUub25CbHVyPWZ1bmN0aW9uKCl7dGhpcy5fcnVuT3BlcmF0aW9uKChmdW5jdGlvbihlKXtyZXR1cm4gZS5vbkJsdXIoKX0pKX0sdC5wcm90b3R5cGUub25Gb2N1cz1mdW5jdGlvbigpe3RoaXMuX3J1bk9wZXJhdGlvbigoZnVuY3Rpb24oZSl7cmV0dXJuIGUub25Gb2N1cygpfSkpfSx0LnByb3RvdHlwZS5vblNlbGVjdGlvbkNoYW5nZWQ9ZnVuY3Rpb24oZSx0LHIpe3ZvaWQgMD09PXImJihyPSExKSx0aGlzLl9ydW5PcGVyYXRpb24oKGZ1bmN0aW9uKGkpe3JldHVybiBpLm9uU2VsZWN0aW9uQ2hhbmdlZChlLHQscil9KSl9LHQucHJvdG90eXBlLm9uQ3Vyc29yTW92ZT1mdW5jdGlvbigpe3RoaXMuX3J1bk9wZXJhdGlvbigoZnVuY3Rpb24oZSl7cmV0dXJuIGUub25DdXJzb3JNb3ZlKCl9KSl9LHQucHJvdG90eXBlLm9uT3B0aW9uc0NoYW5nZWQ9ZnVuY3Rpb24oKXt0aGlzLl9ydW5PcGVyYXRpb24oKGZ1bmN0aW9uKGUpe3JldHVybiBlLm9uT3B0aW9uc0NoYW5nZWQoKX0pKX0sdC5wcm90b3R5cGUuY2xlYXI9ZnVuY3Rpb24oKXt0aGlzLl9ydW5PcGVyYXRpb24oKGZ1bmN0aW9uKGUpe3JldHVybiBlLnJlc2V0KCl9KSl9LHQucHJvdG90eXBlLl9ydW5PcGVyYXRpb249ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PTAscj10aGlzLl9yZW5kZXJMYXllcnM7dDxyLmxlbmd0aDt0KyspZShyW3RdKX0sdC5wcm90b3R5cGUucmVuZGVyUm93cz1mdW5jdGlvbihlLHQpe2Zvcih2YXIgcj0wLGk9dGhpcy5fcmVuZGVyTGF5ZXJzO3I8aS5sZW5ndGg7cisrKWlbcl0ub25HcmlkQ2hhbmdlZChlLHQpfSx0LnByb3RvdHlwZS5jbGVhclRleHR1cmVBdGxhcz1mdW5jdGlvbigpe2Zvcih2YXIgZT0wLHQ9dGhpcy5fcmVuZGVyTGF5ZXJzO2U8dC5sZW5ndGg7ZSsrKXRbZV0uY2xlYXJUZXh0dXJlQXRsYXMoKX0sdC5wcm90b3R5cGUuX3VwZGF0ZURpbWVuc2lvbnM9ZnVuY3Rpb24oKXt0aGlzLl9jaGFyU2l6ZVNlcnZpY2UuaGFzVmFsaWRTaXplJiYodGhpcy5kaW1lbnNpb25zLnNjYWxlZENoYXJXaWR0aD1NYXRoLmZsb29yKHRoaXMuX2NoYXJTaXplU2VydmljZS53aWR0aCp3aW5kb3cuZGV2aWNlUGl4ZWxSYXRpbyksdGhpcy5kaW1lbnNpb25zLnNjYWxlZENoYXJIZWlnaHQ9TWF0aC5jZWlsKHRoaXMuX2NoYXJTaXplU2VydmljZS5oZWlnaHQqd2luZG93LmRldmljZVBpeGVsUmF0aW8pLHRoaXMuZGltZW5zaW9ucy5zY2FsZWRDZWxsSGVpZ2h0PU1hdGguZmxvb3IodGhpcy5kaW1lbnNpb25zLnNjYWxlZENoYXJIZWlnaHQqdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5saW5lSGVpZ2h0KSx0aGlzLmRpbWVuc2lvbnMuc2NhbGVkQ2hhclRvcD0xPT09dGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5saW5lSGVpZ2h0PzA6TWF0aC5yb3VuZCgodGhpcy5kaW1lbnNpb25zLnNjYWxlZENlbGxIZWlnaHQtdGhpcy5kaW1lbnNpb25zLnNjYWxlZENoYXJIZWlnaHQpLzIpLHRoaXMuZGltZW5zaW9ucy5zY2FsZWRDZWxsV2lkdGg9dGhpcy5kaW1lbnNpb25zLnNjYWxlZENoYXJXaWR0aCtNYXRoLnJvdW5kKHRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMubGV0dGVyU3BhY2luZyksdGhpcy5kaW1lbnNpb25zLnNjYWxlZENoYXJMZWZ0PU1hdGguZmxvb3IodGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5sZXR0ZXJTcGFjaW5nLzIpLHRoaXMuZGltZW5zaW9ucy5zY2FsZWRDYW52YXNIZWlnaHQ9dGhpcy5fYnVmZmVyU2VydmljZS5yb3dzKnRoaXMuZGltZW5zaW9ucy5zY2FsZWRDZWxsSGVpZ2h0LHRoaXMuZGltZW5zaW9ucy5zY2FsZWRDYW52YXNXaWR0aD10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMqdGhpcy5kaW1lbnNpb25zLnNjYWxlZENlbGxXaWR0aCx0aGlzLmRpbWVuc2lvbnMuY2FudmFzSGVpZ2h0PU1hdGgucm91bmQodGhpcy5kaW1lbnNpb25zLnNjYWxlZENhbnZhc0hlaWdodC93aW5kb3cuZGV2aWNlUGl4ZWxSYXRpbyksdGhpcy5kaW1lbnNpb25zLmNhbnZhc1dpZHRoPU1hdGgucm91bmQodGhpcy5kaW1lbnNpb25zLnNjYWxlZENhbnZhc1dpZHRoL3dpbmRvdy5kZXZpY2VQaXhlbFJhdGlvKSx0aGlzLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbEhlaWdodD10aGlzLmRpbWVuc2lvbnMuY2FudmFzSGVpZ2h0L3RoaXMuX2J1ZmZlclNlcnZpY2Uucm93cyx0aGlzLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbFdpZHRoPXRoaXMuZGltZW5zaW9ucy5jYW52YXNXaWR0aC90aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMpfSxvKFtzKDQsXy5JSW5zdGFudGlhdGlvblNlcnZpY2UpLHMoNSxfLklCdWZmZXJTZXJ2aWNlKSxzKDYsZi5JQ2hhclNpemVTZXJ2aWNlKSxzKDcsXy5JT3B0aW9uc1NlcnZpY2UpXSx0KX0oaC5EaXNwb3NhYmxlKTt0LlJlbmRlcmVyPWd9LDE3NTI6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC50aHJvd0lmRmFsc3k9dm9pZCAwLHQudGhyb3dJZkZhbHN5PWZ1bmN0aW9uKGUpe2lmKCFlKXRocm93IG5ldyBFcnJvcigidmFsdWUgbXVzdCBub3QgYmUgZmFsc3kiKTtyZXR1cm4gZX19LDQxNDk6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpLG49dGhpcyYmdGhpcy5fX2V4dGVuZHN8fChpPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGk9T2JqZWN0LnNldFByb3RvdHlwZU9mfHx7X19wcm90b19fOltdfWluc3RhbmNlb2YgQXJyYXkmJmZ1bmN0aW9uKGUsdCl7ZS5fX3Byb3RvX189dH18fGZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByIGluIHQpT2JqZWN0LnByb3RvdHlwZS5oYXNPd25Qcm9wZXJ0eS5jYWxsKHQscikmJihlW3JdPXRbcl0pfSxpKGUsdCl9LGZ1bmN0aW9uKGUsdCl7aWYoImZ1bmN0aW9uIiE9dHlwZW9mIHQmJm51bGwhPT10KXRocm93IG5ldyBUeXBlRXJyb3IoIkNsYXNzIGV4dGVuZHMgdmFsdWUgIitTdHJpbmcodCkrIiBpcyBub3QgYSBjb25zdHJ1Y3RvciBvciBudWxsIik7ZnVuY3Rpb24gcigpe3RoaXMuY29uc3RydWN0b3I9ZX1pKGUsdCksZS5wcm90b3R5cGU9bnVsbD09PXQ/T2JqZWN0LmNyZWF0ZSh0KTooci5wcm90b3R5cGU9dC5wcm90b3R5cGUsbmV3IHIpfSksbz10aGlzJiZ0aGlzLl9fZGVjb3JhdGV8fGZ1bmN0aW9uKGUsdCxyLGkpe3ZhciBuLG89YXJndW1lbnRzLmxlbmd0aCxzPW88Mz90Om51bGw9PT1pP2k9T2JqZWN0LmdldE93blByb3BlcnR5RGVzY3JpcHRvcih0LHIpOmk7aWYoIm9iamVjdCI9PXR5cGVvZiBSZWZsZWN0JiYiZnVuY3Rpb24iPT10eXBlb2YgUmVmbGVjdC5kZWNvcmF0ZSlzPVJlZmxlY3QuZGVjb3JhdGUoZSx0LHIsaSk7ZWxzZSBmb3IodmFyIGE9ZS5sZW5ndGgtMTthPj0wO2EtLSkobj1lW2FdKSYmKHM9KG88Mz9uKHMpOm8+Mz9uKHQscixzKTpuKHQscikpfHxzKTtyZXR1cm4gbz4zJiZzJiZPYmplY3QuZGVmaW5lUHJvcGVydHkodCxyLHMpLHN9LHM9dGhpcyYmdGhpcy5fX3BhcmFtfHxmdW5jdGlvbihlLHQpe3JldHVybiBmdW5jdGlvbihyLGkpe3QocixpLGUpfX07T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuU2VsZWN0aW9uUmVuZGVyTGF5ZXI9dm9pZCAwO3ZhciBhPXIoMTU0NiksYz1yKDI1ODUpLGw9ZnVuY3Rpb24oZSl7ZnVuY3Rpb24gdCh0LHIsaSxuLG8scyl7dmFyIGE9ZS5jYWxsKHRoaXMsdCwic2VsZWN0aW9uIixyLCEwLGksbixvLHMpfHx0aGlzO3JldHVybiBhLl9jbGVhclN0YXRlKCksYX1yZXR1cm4gbih0LGUpLHQucHJvdG90eXBlLl9jbGVhclN0YXRlPWZ1bmN0aW9uKCl7dGhpcy5fc3RhdGU9e3N0YXJ0OnZvaWQgMCxlbmQ6dm9pZCAwLGNvbHVtblNlbGVjdE1vZGU6dm9pZCAwLHlkaXNwOnZvaWQgMH19LHQucHJvdG90eXBlLnJlc2l6ZT1mdW5jdGlvbih0KXtlLnByb3RvdHlwZS5yZXNpemUuY2FsbCh0aGlzLHQpLHRoaXMuX2NsZWFyU3RhdGUoKX0sdC5wcm90b3R5cGUucmVzZXQ9ZnVuY3Rpb24oKXt0aGlzLl9zdGF0ZS5zdGFydCYmdGhpcy5fc3RhdGUuZW5kJiYodGhpcy5fY2xlYXJTdGF0ZSgpLHRoaXMuX2NsZWFyQWxsKCkpfSx0LnByb3RvdHlwZS5vblNlbGVjdGlvbkNoYW5nZWQ9ZnVuY3Rpb24oZSx0LHIpe2lmKHRoaXMuX2RpZFN0YXRlQ2hhbmdlKGUsdCxyLHRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnlkaXNwKSlpZih0aGlzLl9jbGVhckFsbCgpLGUmJnQpe3ZhciBpPWVbMV0tdGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueWRpc3Asbj10WzFdLXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnlkaXNwLG89TWF0aC5tYXgoaSwwKSxzPU1hdGgubWluKG4sdGhpcy5fYnVmZmVyU2VydmljZS5yb3dzLTEpO2lmKG8+PXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93c3x8czwwKXRoaXMuX3N0YXRlLnlkaXNwPXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnlkaXNwO2Vsc2V7aWYodGhpcy5fY3R4LmZpbGxTdHlsZT10aGlzLl9jb2xvcnMuc2VsZWN0aW9uVHJhbnNwYXJlbnQuY3NzLHIpe3ZhciBhPWVbMF0sYz10WzBdLWEsbD1zLW8rMTt0aGlzLl9maWxsQ2VsbHMoYSxvLGMsbCl9ZWxzZXthPWk9PT1vP2VbMF06MDt2YXIgdT1vPT09bj90WzBdOnRoaXMuX2J1ZmZlclNlcnZpY2UuY29sczt0aGlzLl9maWxsQ2VsbHMoYSxvLHUtYSwxKTt2YXIgaD1NYXRoLm1heChzLW8tMSwwKTtpZih0aGlzLl9maWxsQ2VsbHMoMCxvKzEsdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLGgpLG8hPT1zKXt2YXIgZj1uPT09cz90WzBdOnRoaXMuX2J1ZmZlclNlcnZpY2UuY29sczt0aGlzLl9maWxsQ2VsbHMoMCxzLGYsMSl9fXRoaXMuX3N0YXRlLnN0YXJ0PVtlWzBdLGVbMV1dLHRoaXMuX3N0YXRlLmVuZD1bdFswXSx0WzFdXSx0aGlzLl9zdGF0ZS5jb2x1bW5TZWxlY3RNb2RlPXIsdGhpcy5fc3RhdGUueWRpc3A9dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueWRpc3B9fWVsc2UgdGhpcy5fY2xlYXJTdGF0ZSgpfSx0LnByb3RvdHlwZS5fZGlkU3RhdGVDaGFuZ2U9ZnVuY3Rpb24oZSx0LHIsaSl7cmV0dXJuIXRoaXMuX2FyZUNvb3JkaW5hdGVzRXF1YWwoZSx0aGlzLl9zdGF0ZS5zdGFydCl8fCF0aGlzLl9hcmVDb29yZGluYXRlc0VxdWFsKHQsdGhpcy5fc3RhdGUuZW5kKXx8ciE9PXRoaXMuX3N0YXRlLmNvbHVtblNlbGVjdE1vZGV8fGkhPT10aGlzLl9zdGF0ZS55ZGlzcH0sdC5wcm90b3R5cGUuX2FyZUNvb3JkaW5hdGVzRXF1YWw9ZnVuY3Rpb24oZSx0KXtyZXR1cm4hKCFlfHwhdCkmJmVbMF09PT10WzBdJiZlWzFdPT09dFsxXX0sbyhbcyg0LGMuSUJ1ZmZlclNlcnZpY2UpLHMoNSxjLklPcHRpb25zU2VydmljZSldLHQpfShhLkJhc2VSZW5kZXJMYXllcik7dC5TZWxlY3Rpb25SZW5kZXJMYXllcj1sfSw5NTk2OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pLG89dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxzPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LlRleHRSZW5kZXJMYXllcj12b2lkIDA7dmFyIGE9cigzNzAwKSxjPXIoMTU0NiksbD1yKDM3MzQpLHU9cig2NDMpLGg9cig1MTEpLGY9cigyNTg1KSxfPXIoNDcyNSksZD1yKDQyNjkpLHA9ZnVuY3Rpb24oZSl7ZnVuY3Rpb24gdCh0LHIsaSxuLG8scyxjLGwpe3ZhciB1PWUuY2FsbCh0aGlzLHQsInRleHQiLHIsbixpLG8scyxjKXx8dGhpcztyZXR1cm4gdS5fY2hhcmFjdGVySm9pbmVyU2VydmljZT1sLHUuX2NoYXJhY3RlcldpZHRoPTAsdS5fY2hhcmFjdGVyRm9udD0iIix1Ll9jaGFyYWN0ZXJPdmVybGFwQ2FjaGU9e30sdS5fd29ya0NlbGw9bmV3IGguQ2VsbERhdGEsdS5fc3RhdGU9bmV3IGEuR3JpZENhY2hlLHV9cmV0dXJuIG4odCxlKSx0LnByb3RvdHlwZS5yZXNpemU9ZnVuY3Rpb24odCl7ZS5wcm90b3R5cGUucmVzaXplLmNhbGwodGhpcyx0KTt2YXIgcj10aGlzLl9nZXRGb250KCExLCExKTt0aGlzLl9jaGFyYWN0ZXJXaWR0aD09PXQuc2NhbGVkQ2hhcldpZHRoJiZ0aGlzLl9jaGFyYWN0ZXJGb250PT09cnx8KHRoaXMuX2NoYXJhY3RlcldpZHRoPXQuc2NhbGVkQ2hhcldpZHRoLHRoaXMuX2NoYXJhY3RlckZvbnQ9cix0aGlzLl9jaGFyYWN0ZXJPdmVybGFwQ2FjaGU9e30pLHRoaXMuX3N0YXRlLmNsZWFyKCksdGhpcy5fc3RhdGUucmVzaXplKHRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyx0aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MpfSx0LnByb3RvdHlwZS5yZXNldD1mdW5jdGlvbigpe3RoaXMuX3N0YXRlLmNsZWFyKCksdGhpcy5fY2xlYXJBbGwoKX0sdC5wcm90b3R5cGUuX2ZvckVhY2hDZWxsPWZ1bmN0aW9uKGUsdCxyKXtmb3IodmFyIGk9ZTtpPD10O2krKylmb3IodmFyIG49aSt0aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55ZGlzcCxvPXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLmxpbmVzLmdldChuKSxzPXRoaXMuX2NoYXJhY3RlckpvaW5lclNlcnZpY2UuZ2V0Sm9pbmVkQ2hhcmFjdGVycyhuKSxhPTA7YTx0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHM7YSsrKXtvLmxvYWRDZWxsKGEsdGhpcy5fd29ya0NlbGwpO3ZhciBjPXRoaXMuX3dvcmtDZWxsLGw9ITEsaD1hO2lmKDAhPT1jLmdldFdpZHRoKCkpe2lmKHMubGVuZ3RoPjAmJmE9PT1zWzBdWzBdKXtsPSEwO3ZhciBmPXMuc2hpZnQoKTtjPW5ldyBkLkpvaW5lZENlbGxEYXRhKHRoaXMuX3dvcmtDZWxsLG8udHJhbnNsYXRlVG9TdHJpbmcoITAsZlswXSxmWzFdKSxmWzFdLWZbMF0pLGg9ZlsxXS0xfSFsJiZ0aGlzLl9pc092ZXJsYXBwaW5nKGMpJiZoPG8ubGVuZ3RoLTEmJm8uZ2V0Q29kZVBvaW50KGgrMSk9PT11Lk5VTExfQ0VMTF9DT0RFJiYoYy5jb250ZW50Jj0tMTI1ODI5MTMsYy5jb250ZW50fD0yPDwyMikscihjLGEsaSksYT1ofX19LHQucHJvdG90eXBlLl9kcmF3QmFja2dyb3VuZD1mdW5jdGlvbihlLHQpe3ZhciByPXRoaXMsaT10aGlzLl9jdHgsbj10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsbz0wLHM9MCxhPW51bGw7aS5zYXZlKCksdGhpcy5fZm9yRWFjaENlbGwoZSx0LChmdW5jdGlvbihlLHQsYyl7dmFyIHU9bnVsbDtlLmlzSW52ZXJzZSgpP3U9ZS5pc0ZnRGVmYXVsdCgpP3IuX2NvbG9ycy5mb3JlZ3JvdW5kLmNzczplLmlzRmdSR0IoKT8icmdiKCIrbC5BdHRyaWJ1dGVEYXRhLnRvQ29sb3JSR0IoZS5nZXRGZ0NvbG9yKCkpLmpvaW4oIiwiKSsiKSI6ci5fY29sb3JzLmFuc2lbZS5nZXRGZ0NvbG9yKCldLmNzczplLmlzQmdSR0IoKT91PSJyZ2IoIitsLkF0dHJpYnV0ZURhdGEudG9Db2xvclJHQihlLmdldEJnQ29sb3IoKSkuam9pbigiLCIpKyIpIjplLmlzQmdQYWxldHRlKCkmJih1PXIuX2NvbG9ycy5hbnNpW2UuZ2V0QmdDb2xvcigpXS5jc3MpLG51bGw9PT1hJiYobz10LHM9YyksYyE9PXM/KGkuZmlsbFN0eWxlPWF8fCIiLHIuX2ZpbGxDZWxscyhvLHMsbi1vLDEpLG89dCxzPWMpOmEhPT11JiYoaS5maWxsU3R5bGU9YXx8IiIsci5fZmlsbENlbGxzKG8scyx0LW8sMSksbz10LHM9YyksYT11fSkpLG51bGwhPT1hJiYoaS5maWxsU3R5bGU9YSx0aGlzLl9maWxsQ2VsbHMobyxzLG4tbywxKSksaS5yZXN0b3JlKCl9LHQucHJvdG90eXBlLl9kcmF3Rm9yZWdyb3VuZD1mdW5jdGlvbihlLHQpe3ZhciByPXRoaXM7dGhpcy5fZm9yRWFjaENlbGwoZSx0LChmdW5jdGlvbihlLHQsaSl7aWYoIWUuaXNJbnZpc2libGUoKSYmKHIuX2RyYXdDaGFycyhlLHQsaSksZS5pc1VuZGVybGluZSgpfHxlLmlzU3RyaWtldGhyb3VnaCgpKSl7aWYoci5fY3R4LnNhdmUoKSxlLmlzSW52ZXJzZSgpKWlmKGUuaXNCZ0RlZmF1bHQoKSlyLl9jdHguZmlsbFN0eWxlPXIuX2NvbG9ycy5iYWNrZ3JvdW5kLmNzcztlbHNlIGlmKGUuaXNCZ1JHQigpKXIuX2N0eC5maWxsU3R5bGU9InJnYigiK2wuQXR0cmlidXRlRGF0YS50b0NvbG9yUkdCKGUuZ2V0QmdDb2xvcigpKS5qb2luKCIsIikrIikiO2Vsc2V7dmFyIG49ZS5nZXRCZ0NvbG9yKCk7ci5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5kcmF3Qm9sZFRleHRJbkJyaWdodENvbG9ycyYmZS5pc0JvbGQoKSYmbjw4JiYobis9OCksci5fY3R4LmZpbGxTdHlsZT1yLl9jb2xvcnMuYW5zaVtuXS5jc3N9ZWxzZSBpZihlLmlzRmdEZWZhdWx0KCkpci5fY3R4LmZpbGxTdHlsZT1yLl9jb2xvcnMuZm9yZWdyb3VuZC5jc3M7ZWxzZSBpZihlLmlzRmdSR0IoKSlyLl9jdHguZmlsbFN0eWxlPSJyZ2IoIitsLkF0dHJpYnV0ZURhdGEudG9Db2xvclJHQihlLmdldEZnQ29sb3IoKSkuam9pbigiLCIpKyIpIjtlbHNle3ZhciBvPWUuZ2V0RmdDb2xvcigpO3IuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuZHJhd0JvbGRUZXh0SW5CcmlnaHRDb2xvcnMmJmUuaXNCb2xkKCkmJm88OCYmKG8rPTgpLHIuX2N0eC5maWxsU3R5bGU9ci5fY29sb3JzLmFuc2lbb10uY3NzfWUuaXNTdHJpa2V0aHJvdWdoKCkmJnIuX2ZpbGxNaWRkbGVMaW5lQXRDZWxscyh0LGksZS5nZXRXaWR0aCgpKSxlLmlzVW5kZXJsaW5lKCkmJnIuX2ZpbGxCb3R0b21MaW5lQXRDZWxscyh0LGksZS5nZXRXaWR0aCgpKSxyLl9jdHgucmVzdG9yZSgpfX0pKX0sdC5wcm90b3R5cGUub25HcmlkQ2hhbmdlZD1mdW5jdGlvbihlLHQpezAhPT10aGlzLl9zdGF0ZS5jYWNoZS5sZW5ndGgmJih0aGlzLl9jaGFyQXRsYXMmJnRoaXMuX2NoYXJBdGxhcy5iZWdpbkZyYW1lKCksdGhpcy5fY2xlYXJDZWxscygwLGUsdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLHQtZSsxKSx0aGlzLl9kcmF3QmFja2dyb3VuZChlLHQpLHRoaXMuX2RyYXdGb3JlZ3JvdW5kKGUsdCkpfSx0LnByb3RvdHlwZS5vbk9wdGlvbnNDaGFuZ2VkPWZ1bmN0aW9uKCl7dGhpcy5fc2V0VHJhbnNwYXJlbmN5KHRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuYWxsb3dUcmFuc3BhcmVuY3kpfSx0LnByb3RvdHlwZS5faXNPdmVybGFwcGluZz1mdW5jdGlvbihlKXtpZigxIT09ZS5nZXRXaWR0aCgpKXJldHVybiExO2lmKGUuZ2V0Q29kZSgpPDI1NilyZXR1cm4hMTt2YXIgdD1lLmdldENoYXJzKCk7aWYodGhpcy5fY2hhcmFjdGVyT3ZlcmxhcENhY2hlLmhhc093blByb3BlcnR5KHQpKXJldHVybiB0aGlzLl9jaGFyYWN0ZXJPdmVybGFwQ2FjaGVbdF07dGhpcy5fY3R4LnNhdmUoKSx0aGlzLl9jdHguZm9udD10aGlzLl9jaGFyYWN0ZXJGb250O3ZhciByPU1hdGguZmxvb3IodGhpcy5fY3R4Lm1lYXN1cmVUZXh0KHQpLndpZHRoKT50aGlzLl9jaGFyYWN0ZXJXaWR0aDtyZXR1cm4gdGhpcy5fY3R4LnJlc3RvcmUoKSx0aGlzLl9jaGFyYWN0ZXJPdmVybGFwQ2FjaGVbdF09cixyfSxvKFtzKDUsZi5JQnVmZmVyU2VydmljZSkscyg2LGYuSU9wdGlvbnNTZXJ2aWNlKSxzKDcsXy5JQ2hhcmFjdGVySm9pbmVyU2VydmljZSldLHQpfShjLkJhc2VSZW5kZXJMYXllcik7dC5UZXh0UmVuZGVyTGF5ZXI9cH0sOTYxNjooZSx0KT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkJhc2VDaGFyQXRsYXM9dm9pZCAwO3ZhciByPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZSgpe3RoaXMuX2RpZFdhcm1VcD0hMX1yZXR1cm4gZS5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe30sZS5wcm90b3R5cGUud2FybVVwPWZ1bmN0aW9uKCl7dGhpcy5fZGlkV2FybVVwfHwodGhpcy5fZG9XYXJtVXAoKSx0aGlzLl9kaWRXYXJtVXA9ITApfSxlLnByb3RvdHlwZS5fZG9XYXJtVXA9ZnVuY3Rpb24oKXt9LGUucHJvdG90eXBlLmNsZWFyPWZ1bmN0aW9uKCl7fSxlLnByb3RvdHlwZS5iZWdpbkZyYW1lPWZ1bmN0aW9uKCl7fSxlfSgpO3QuQmFzZUNoYXJBdGxhcz1yfSwxNDIwOihlLHQscik9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5yZW1vdmVUZXJtaW5hbEZyb21DYWNoZT10LmFjcXVpcmVDaGFyQXRsYXM9dm9pZCAwO3ZhciBpPXIoMjA0MCksbj1yKDE5MDYpLG89W107dC5hY3F1aXJlQ2hhckF0bGFzPWZ1bmN0aW9uKGUsdCxyLHMsYSl7Zm9yKHZhciBjPSgwLGkuZ2VuZXJhdGVDb25maWcpKHMsYSxlLHIpLGw9MDtsPG8ubGVuZ3RoO2wrKyl7dmFyIHU9KGg9b1tsXSkub3duZWRCeS5pbmRleE9mKHQpO2lmKHU+PTApe2lmKCgwLGkuY29uZmlnRXF1YWxzKShoLmNvbmZpZyxjKSlyZXR1cm4gaC5hdGxhczsxPT09aC5vd25lZEJ5Lmxlbmd0aD8oaC5hdGxhcy5kaXNwb3NlKCksby5zcGxpY2UobCwxKSk6aC5vd25lZEJ5LnNwbGljZSh1LDEpO2JyZWFrfX1mb3IobD0wO2w8by5sZW5ndGg7bCsrKXt2YXIgaD1vW2xdO2lmKCgwLGkuY29uZmlnRXF1YWxzKShoLmNvbmZpZyxjKSlyZXR1cm4gaC5vd25lZEJ5LnB1c2godCksaC5hdGxhc312YXIgZj17YXRsYXM6bmV3IG4uRHluYW1pY0NoYXJBdGxhcyhkb2N1bWVudCxjKSxjb25maWc6Yyxvd25lZEJ5Olt0XX07cmV0dXJuIG8ucHVzaChmKSxmLmF0bGFzfSx0LnJlbW92ZVRlcm1pbmFsRnJvbUNhY2hlPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD0wO3Q8by5sZW5ndGg7dCsrKXt2YXIgcj1vW3RdLm93bmVkQnkuaW5kZXhPZihlKTtpZigtMSE9PXIpezE9PT1vW3RdLm93bmVkQnkubGVuZ3RoPyhvW3RdLmF0bGFzLmRpc3Bvc2UoKSxvLnNwbGljZSh0LDEpKTpvW3RdLm93bmVkQnkuc3BsaWNlKHIsMSk7YnJlYWt9fX19LDIwNDA6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPXRoaXMmJnRoaXMuX19zcHJlYWRBcnJheXx8ZnVuY3Rpb24oZSx0LHIpe2lmKHJ8fDI9PT1hcmd1bWVudHMubGVuZ3RoKWZvcih2YXIgaSxuPTAsbz10Lmxlbmd0aDtuPG87bisrKSFpJiZuIGluIHR8fChpfHwoaT1BcnJheS5wcm90b3R5cGUuc2xpY2UuY2FsbCh0LDAsbikpLGlbbl09dFtuXSk7cmV0dXJuIGUuY29uY2F0KGl8fEFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKHQpKX07T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuaXMyNTZDb2xvcj10LmNvbmZpZ0VxdWFscz10LmdlbmVyYXRlQ29uZmlnPXZvaWQgMDt2YXIgbj1yKDY0Myk7dC5nZW5lcmF0ZUNvbmZpZz1mdW5jdGlvbihlLHQscixuKXt2YXIgbz17Zm9yZWdyb3VuZDpuLmZvcmVncm91bmQsYmFja2dyb3VuZDpuLmJhY2tncm91bmQsY3Vyc29yOnZvaWQgMCxjdXJzb3JBY2NlbnQ6dm9pZCAwLHNlbGVjdGlvbjp2b2lkIDAsYW5zaTppKFtdLG4uYW5zaSwhMCl9O3JldHVybntkZXZpY2VQaXhlbFJhdGlvOndpbmRvdy5kZXZpY2VQaXhlbFJhdGlvLHNjYWxlZENoYXJXaWR0aDplLHNjYWxlZENoYXJIZWlnaHQ6dCxmb250RmFtaWx5OnIuZm9udEZhbWlseSxmb250U2l6ZTpyLmZvbnRTaXplLGZvbnRXZWlnaHQ6ci5mb250V2VpZ2h0LGZvbnRXZWlnaHRCb2xkOnIuZm9udFdlaWdodEJvbGQsYWxsb3dUcmFuc3BhcmVuY3k6ci5hbGxvd1RyYW5zcGFyZW5jeSxjb2xvcnM6b319LHQuY29uZmlnRXF1YWxzPWZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByPTA7cjxlLmNvbG9ycy5hbnNpLmxlbmd0aDtyKyspaWYoZS5jb2xvcnMuYW5zaVtyXS5yZ2JhIT09dC5jb2xvcnMuYW5zaVtyXS5yZ2JhKXJldHVybiExO3JldHVybiBlLmRldmljZVBpeGVsUmF0aW89PT10LmRldmljZVBpeGVsUmF0aW8mJmUuZm9udEZhbWlseT09PXQuZm9udEZhbWlseSYmZS5mb250U2l6ZT09PXQuZm9udFNpemUmJmUuZm9udFdlaWdodD09PXQuZm9udFdlaWdodCYmZS5mb250V2VpZ2h0Qm9sZD09PXQuZm9udFdlaWdodEJvbGQmJmUuYWxsb3dUcmFuc3BhcmVuY3k9PT10LmFsbG93VHJhbnNwYXJlbmN5JiZlLnNjYWxlZENoYXJXaWR0aD09PXQuc2NhbGVkQ2hhcldpZHRoJiZlLnNjYWxlZENoYXJIZWlnaHQ9PT10LnNjYWxlZENoYXJIZWlnaHQmJmUuY29sb3JzLmZvcmVncm91bmQ9PT10LmNvbG9ycy5mb3JlZ3JvdW5kJiZlLmNvbG9ycy5iYWNrZ3JvdW5kPT09dC5jb2xvcnMuYmFja2dyb3VuZH0sdC5pczI1NkNvbG9yPWZ1bmN0aW9uKGUpe3JldHVybiBlPG4uREVGQVVMVF9DT0xPUn19LDg4MDM6KGUsdCxyKT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkNIQVJfQVRMQVNfQ0VMTF9TUEFDSU5HPXQuVEVYVF9CQVNFTElORT10LkRJTV9PUEFDSVRZPXQuSU5WRVJURURfREVGQVVMVF9DT0xPUj12b2lkIDA7dmFyIGk9cig2MTE0KTt0LklOVkVSVEVEX0RFRkFVTFRfQ09MT1I9MjU3LHQuRElNX09QQUNJVFk9LjUsdC5URVhUX0JBU0VMSU5FPWkuaXNGaXJlZm94PyJib3R0b20iOiJpZGVvZ3JhcGhpYyIsdC5DSEFSX0FUTEFTX0NFTExfU1BBQ0lORz0xfSwxOTA2OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pO09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0Lk5vbmVDaGFyQXRsYXM9dC5EeW5hbWljQ2hhckF0bGFzPXQuZ2V0R2x5cGhDYWNoZUtleT12b2lkIDA7dmFyIG89cig4ODAzKSxzPXIoOTYxNiksYT1yKDU2ODApLGM9cig3MDAxKSxsPXIoNjExNCksdT1yKDE3NTIpLGg9cig0Nzc0KSxmPTEwMjQsXz0xMDI0LGQ9e2NzczoicmdiYSgwLCAwLCAwLCAwKSIscmdiYTowfTtmdW5jdGlvbiBwKGUpe3JldHVybiBlLmNvZGU8PDIxfGUuYmc8PDEyfGUuZmc8PDN8KGUuYm9sZD8wOjQpKyhlLmRpbT8wOjIpKyhlLml0YWxpYz8wOjEpfXQuZ2V0R2x5cGhDYWNoZUtleT1wO3ZhciB2PWZ1bmN0aW9uKGUpe2Z1bmN0aW9uIHQodCxyKXt2YXIgaT1lLmNhbGwodGhpcyl8fHRoaXM7aS5fY29uZmlnPXIsaS5fZHJhd1RvQ2FjaGVDb3VudD0wLGkuX2dseXBoc1dhaXRpbmdPbkJpdG1hcD1bXSxpLl9iaXRtYXBDb21taXRUaW1lb3V0PW51bGwsaS5fYml0bWFwPW51bGwsaS5fY2FjaGVDYW52YXM9dC5jcmVhdGVFbGVtZW50KCJjYW52YXMiKSxpLl9jYWNoZUNhbnZhcy53aWR0aD1mLGkuX2NhY2hlQ2FudmFzLmhlaWdodD1fLGkuX2NhY2hlQ3R4PSgwLHUudGhyb3dJZkZhbHN5KShpLl9jYWNoZUNhbnZhcy5nZXRDb250ZXh0KCIyZCIse2FscGhhOiEwfSkpO3ZhciBuPXQuY3JlYXRlRWxlbWVudCgiY2FudmFzIik7bi53aWR0aD1pLl9jb25maWcuc2NhbGVkQ2hhcldpZHRoLG4uaGVpZ2h0PWkuX2NvbmZpZy5zY2FsZWRDaGFySGVpZ2h0LGkuX3RtcEN0eD0oMCx1LnRocm93SWZGYWxzeSkobi5nZXRDb250ZXh0KCIyZCIse2FscGhhOmkuX2NvbmZpZy5hbGxvd1RyYW5zcGFyZW5jeX0pKSxpLl93aWR0aD1NYXRoLmZsb29yKGYvaS5fY29uZmlnLnNjYWxlZENoYXJXaWR0aCksaS5faGVpZ2h0PU1hdGguZmxvb3IoXy9pLl9jb25maWcuc2NhbGVkQ2hhckhlaWdodCk7dmFyIG89aS5fd2lkdGgqaS5faGVpZ2h0O3JldHVybiBpLl9jYWNoZU1hcD1uZXcgYy5MUlVNYXAobyksaS5fY2FjaGVNYXAucHJlYWxsb2MobyksaX1yZXR1cm4gbih0LGUpLHQucHJvdG90eXBlLmRpc3Bvc2U9ZnVuY3Rpb24oKXtudWxsIT09dGhpcy5fYml0bWFwQ29tbWl0VGltZW91dCYmKHdpbmRvdy5jbGVhclRpbWVvdXQodGhpcy5fYml0bWFwQ29tbWl0VGltZW91dCksdGhpcy5fYml0bWFwQ29tbWl0VGltZW91dD1udWxsKX0sdC5wcm90b3R5cGUuYmVnaW5GcmFtZT1mdW5jdGlvbigpe3RoaXMuX2RyYXdUb0NhY2hlQ291bnQ9MH0sdC5wcm90b3R5cGUuY2xlYXI9ZnVuY3Rpb24oKXtpZih0aGlzLl9jYWNoZU1hcC5zaXplPjApe3ZhciBlPXRoaXMuX3dpZHRoKnRoaXMuX2hlaWdodDt0aGlzLl9jYWNoZU1hcD1uZXcgYy5MUlVNYXAoZSksdGhpcy5fY2FjaGVNYXAucHJlYWxsb2MoZSl9dGhpcy5fY2FjaGVDdHguY2xlYXJSZWN0KDAsMCxmLF8pLHRoaXMuX3RtcEN0eC5jbGVhclJlY3QoMCwwLHRoaXMuX2NvbmZpZy5zY2FsZWRDaGFyV2lkdGgsdGhpcy5fY29uZmlnLnNjYWxlZENoYXJIZWlnaHQpfSx0LnByb3RvdHlwZS5kcmF3PWZ1bmN0aW9uKGUsdCxyLGkpe2lmKDMyPT09dC5jb2RlKXJldHVybiEwO2lmKCF0aGlzLl9jYW5DYWNoZSh0KSlyZXR1cm4hMTt2YXIgbj1wKHQpLG89dGhpcy5fY2FjaGVNYXAuZ2V0KG4pO2lmKG51bGwhPW8pcmV0dXJuIHRoaXMuX2RyYXdGcm9tQ2FjaGUoZSxvLHIsaSksITA7aWYodGhpcy5fZHJhd1RvQ2FjaGVDb3VudDwxMDApe3ZhciBzO3M9dGhpcy5fY2FjaGVNYXAuc2l6ZTx0aGlzLl9jYWNoZU1hcC5jYXBhY2l0eT90aGlzLl9jYWNoZU1hcC5zaXplOnRoaXMuX2NhY2hlTWFwLnBlZWsoKS5pbmRleDt2YXIgYT10aGlzLl9kcmF3VG9DYWNoZSh0LHMpO3JldHVybiB0aGlzLl9jYWNoZU1hcC5zZXQobixhKSx0aGlzLl9kcmF3RnJvbUNhY2hlKGUsYSxyLGkpLCEwfXJldHVybiExfSx0LnByb3RvdHlwZS5fY2FuQ2FjaGU9ZnVuY3Rpb24oZSl7cmV0dXJuIGUuY29kZTwyNTZ9LHQucHJvdG90eXBlLl90b0Nvb3JkaW5hdGVYPWZ1bmN0aW9uKGUpe3JldHVybiBlJXRoaXMuX3dpZHRoKnRoaXMuX2NvbmZpZy5zY2FsZWRDaGFyV2lkdGh9LHQucHJvdG90eXBlLl90b0Nvb3JkaW5hdGVZPWZ1bmN0aW9uKGUpe3JldHVybiBNYXRoLmZsb29yKGUvdGhpcy5fd2lkdGgpKnRoaXMuX2NvbmZpZy5zY2FsZWRDaGFySGVpZ2h0fSx0LnByb3RvdHlwZS5fZHJhd0Zyb21DYWNoZT1mdW5jdGlvbihlLHQscixpKXtpZighdC5pc0VtcHR5KXt2YXIgbj10aGlzLl90b0Nvb3JkaW5hdGVYKHQuaW5kZXgpLG89dGhpcy5fdG9Db29yZGluYXRlWSh0LmluZGV4KTtlLmRyYXdJbWFnZSh0LmluQml0bWFwP3RoaXMuX2JpdG1hcDp0aGlzLl9jYWNoZUNhbnZhcyxuLG8sdGhpcy5fY29uZmlnLnNjYWxlZENoYXJXaWR0aCx0aGlzLl9jb25maWcuc2NhbGVkQ2hhckhlaWdodCxyLGksdGhpcy5fY29uZmlnLnNjYWxlZENoYXJXaWR0aCx0aGlzLl9jb25maWcuc2NhbGVkQ2hhckhlaWdodCl9fSx0LnByb3RvdHlwZS5fZ2V0Q29sb3JGcm9tQW5zaUluZGV4PWZ1bmN0aW9uKGUpe3JldHVybiBlPHRoaXMuX2NvbmZpZy5jb2xvcnMuYW5zaS5sZW5ndGg/dGhpcy5fY29uZmlnLmNvbG9ycy5hbnNpW2VdOmEuREVGQVVMVF9BTlNJX0NPTE9SU1tlXX0sdC5wcm90b3R5cGUuX2dldEJhY2tncm91bmRDb2xvcj1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fY29uZmlnLmFsbG93VHJhbnNwYXJlbmN5P2Q6ZS5iZz09PW8uSU5WRVJURURfREVGQVVMVF9DT0xPUj90aGlzLl9jb25maWcuY29sb3JzLmZvcmVncm91bmQ6ZS5iZzwyNTY/dGhpcy5fZ2V0Q29sb3JGcm9tQW5zaUluZGV4KGUuYmcpOnRoaXMuX2NvbmZpZy5jb2xvcnMuYmFja2dyb3VuZH0sdC5wcm90b3R5cGUuX2dldEZvcmVncm91bmRDb2xvcj1mdW5jdGlvbihlKXtyZXR1cm4gZS5mZz09PW8uSU5WRVJURURfREVGQVVMVF9DT0xPUj9oLmNvbG9yLm9wYXF1ZSh0aGlzLl9jb25maWcuY29sb3JzLmJhY2tncm91bmQpOmUuZmc8MjU2P3RoaXMuX2dldENvbG9yRnJvbUFuc2lJbmRleChlLmZnKTp0aGlzLl9jb25maWcuY29sb3JzLmZvcmVncm91bmR9LHQucHJvdG90eXBlLl9kcmF3VG9DYWNoZT1mdW5jdGlvbihlLHQpe3RoaXMuX2RyYXdUb0NhY2hlQ291bnQrKyx0aGlzLl90bXBDdHguc2F2ZSgpO3ZhciByPXRoaXMuX2dldEJhY2tncm91bmRDb2xvcihlKTt0aGlzLl90bXBDdHguZ2xvYmFsQ29tcG9zaXRlT3BlcmF0aW9uPSJjb3B5Iix0aGlzLl90bXBDdHguZmlsbFN0eWxlPXIuY3NzLHRoaXMuX3RtcEN0eC5maWxsUmVjdCgwLDAsdGhpcy5fY29uZmlnLnNjYWxlZENoYXJXaWR0aCx0aGlzLl9jb25maWcuc2NhbGVkQ2hhckhlaWdodCksdGhpcy5fdG1wQ3R4Lmdsb2JhbENvbXBvc2l0ZU9wZXJhdGlvbj0ic291cmNlLW92ZXIiO3ZhciBpPWUuYm9sZD90aGlzLl9jb25maWcuZm9udFdlaWdodEJvbGQ6dGhpcy5fY29uZmlnLmZvbnRXZWlnaHQsbj1lLml0YWxpYz8iaXRhbGljIjoiIjt0aGlzLl90bXBDdHguZm9udD1uKyIgIitpKyIgIit0aGlzLl9jb25maWcuZm9udFNpemUqdGhpcy5fY29uZmlnLmRldmljZVBpeGVsUmF0aW8rInB4ICIrdGhpcy5fY29uZmlnLmZvbnRGYW1pbHksdGhpcy5fdG1wQ3R4LnRleHRCYXNlbGluZT1vLlRFWFRfQkFTRUxJTkUsdGhpcy5fdG1wQ3R4LmZpbGxTdHlsZT10aGlzLl9nZXRGb3JlZ3JvdW5kQ29sb3IoZSkuY3NzLGUuZGltJiYodGhpcy5fdG1wQ3R4Lmdsb2JhbEFscGhhPW8uRElNX09QQUNJVFkpLHRoaXMuX3RtcEN0eC5maWxsVGV4dChlLmNoYXJzLDAsdGhpcy5fY29uZmlnLnNjYWxlZENoYXJIZWlnaHQpO3ZhciBzPXRoaXMuX3RtcEN0eC5nZXRJbWFnZURhdGEoMCwwLHRoaXMuX2NvbmZpZy5zY2FsZWRDaGFyV2lkdGgsdGhpcy5fY29uZmlnLnNjYWxlZENoYXJIZWlnaHQpLGE9ITE7aWYodGhpcy5fY29uZmlnLmFsbG93VHJhbnNwYXJlbmN5fHwoYT15KHMscikpLGEmJiJfIj09PWUuY2hhcnMmJiF0aGlzLl9jb25maWcuYWxsb3dUcmFuc3BhcmVuY3kpZm9yKHZhciBjPTE7Yzw9NSYmKHRoaXMuX3RtcEN0eC5maWxsVGV4dChlLmNoYXJzLDAsdGhpcy5fY29uZmlnLnNjYWxlZENoYXJIZWlnaHQtYyksYT15KHM9dGhpcy5fdG1wQ3R4LmdldEltYWdlRGF0YSgwLDAsdGhpcy5fY29uZmlnLnNjYWxlZENoYXJXaWR0aCx0aGlzLl9jb25maWcuc2NhbGVkQ2hhckhlaWdodCkscikpO2MrKyk7dGhpcy5fdG1wQ3R4LnJlc3RvcmUoKTt2YXIgbD10aGlzLl90b0Nvb3JkaW5hdGVYKHQpLHU9dGhpcy5fdG9Db29yZGluYXRlWSh0KTt0aGlzLl9jYWNoZUN0eC5wdXRJbWFnZURhdGEocyxsLHUpO3ZhciBoPXtpbmRleDp0LGlzRW1wdHk6YSxpbkJpdG1hcDohMX07cmV0dXJuIHRoaXMuX2FkZEdseXBoVG9CaXRtYXAoaCksaH0sdC5wcm90b3R5cGUuX2FkZEdseXBoVG9CaXRtYXA9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpczshKCJjcmVhdGVJbWFnZUJpdG1hcCJpbiB3aW5kb3cpfHxsLmlzRmlyZWZveHx8bC5pc1NhZmFyaXx8KHRoaXMuX2dseXBoc1dhaXRpbmdPbkJpdG1hcC5wdXNoKGUpLG51bGw9PT10aGlzLl9iaXRtYXBDb21taXRUaW1lb3V0JiYodGhpcy5fYml0bWFwQ29tbWl0VGltZW91dD13aW5kb3cuc2V0VGltZW91dCgoZnVuY3Rpb24oKXtyZXR1cm4gdC5fZ2VuZXJhdGVCaXRtYXAoKX0pLDEwMCkpKX0sdC5wcm90b3R5cGUuX2dlbmVyYXRlQml0bWFwPWZ1bmN0aW9uKCl7dmFyIGU9dGhpcyx0PXRoaXMuX2dseXBoc1dhaXRpbmdPbkJpdG1hcDt0aGlzLl9nbHlwaHNXYWl0aW5nT25CaXRtYXA9W10sd2luZG93LmNyZWF0ZUltYWdlQml0bWFwKHRoaXMuX2NhY2hlQ2FudmFzKS50aGVuKChmdW5jdGlvbihyKXtlLl9iaXRtYXA9cjtmb3IodmFyIGk9MDtpPHQubGVuZ3RoO2krKyl0W2ldLmluQml0bWFwPSEwfSkpLHRoaXMuX2JpdG1hcENvbW1pdFRpbWVvdXQ9bnVsbH0sdH0ocy5CYXNlQ2hhckF0bGFzKTt0LkR5bmFtaWNDaGFyQXRsYXM9djt2YXIgZz1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KHQscil7cmV0dXJuIGUuY2FsbCh0aGlzKXx8dGhpc31yZXR1cm4gbih0LGUpLHQucHJvdG90eXBlLmRyYXc9ZnVuY3Rpb24oZSx0LHIsaSl7cmV0dXJuITF9LHR9KHMuQmFzZUNoYXJBdGxhcyk7ZnVuY3Rpb24geShlLHQpe2Zvcih2YXIgcj0hMCxpPXQucmdiYT4+PjI0LG49dC5yZ2JhPj4+MTYmMjU1LG89dC5yZ2JhPj4+OCYyNTUscz0wO3M8ZS5kYXRhLmxlbmd0aDtzKz00KWUuZGF0YVtzXT09PWkmJmUuZGF0YVtzKzFdPT09biYmZS5kYXRhW3MrMl09PT1vP2UuZGF0YVtzKzNdPTA6cj0hMTtyZXR1cm4gcn10Lk5vbmVDaGFyQXRsYXM9Z30sNzAwMTooZSx0KT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkxSVU1hcD12b2lkIDA7dmFyIHI9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUpe3RoaXMuY2FwYWNpdHk9ZSx0aGlzLl9tYXA9e30sdGhpcy5faGVhZD1udWxsLHRoaXMuX3RhaWw9bnVsbCx0aGlzLl9ub2RlUG9vbD1bXSx0aGlzLnNpemU9MH1yZXR1cm4gZS5wcm90b3R5cGUuX3VubGlua05vZGU9ZnVuY3Rpb24oZSl7dmFyIHQ9ZS5wcmV2LHI9ZS5uZXh0O2U9PT10aGlzLl9oZWFkJiYodGhpcy5faGVhZD1yKSxlPT09dGhpcy5fdGFpbCYmKHRoaXMuX3RhaWw9dCksbnVsbCE9PXQmJih0Lm5leHQ9ciksbnVsbCE9PXImJihyLnByZXY9dCl9LGUucHJvdG90eXBlLl9hcHBlbmROb2RlPWZ1bmN0aW9uKGUpe3ZhciB0PXRoaXMuX3RhaWw7bnVsbCE9PXQmJih0Lm5leHQ9ZSksZS5wcmV2PXQsZS5uZXh0PW51bGwsdGhpcy5fdGFpbD1lLG51bGw9PT10aGlzLl9oZWFkJiYodGhpcy5faGVhZD1lKX0sZS5wcm90b3R5cGUucHJlYWxsb2M9ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PXRoaXMuX25vZGVQb29sLHI9MDtyPGU7cisrKXQucHVzaCh7cHJldjpudWxsLG5leHQ6bnVsbCxrZXk6bnVsbCx2YWx1ZTpudWxsfSl9LGUucHJvdG90eXBlLmdldD1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9tYXBbZV07cmV0dXJuIHZvaWQgMCE9PXQ/KHRoaXMuX3VubGlua05vZGUodCksdGhpcy5fYXBwZW5kTm9kZSh0KSx0LnZhbHVlKTpudWxsfSxlLnByb3RvdHlwZS5wZWVrVmFsdWU9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcy5fbWFwW2VdO3JldHVybiB2b2lkIDAhPT10P3QudmFsdWU6bnVsbH0sZS5wcm90b3R5cGUucGVlaz1mdW5jdGlvbigpe3ZhciBlPXRoaXMuX2hlYWQ7cmV0dXJuIG51bGw9PT1lP251bGw6ZS52YWx1ZX0sZS5wcm90b3R5cGUuc2V0PWZ1bmN0aW9uKGUsdCl7dmFyIHI9dGhpcy5fbWFwW2VdO2lmKHZvaWQgMCE9PXIpcj10aGlzLl9tYXBbZV0sdGhpcy5fdW5saW5rTm9kZShyKSxyLnZhbHVlPXQ7ZWxzZSBpZih0aGlzLnNpemU+PXRoaXMuY2FwYWNpdHkpcj10aGlzLl9oZWFkLHRoaXMuX3VubGlua05vZGUociksZGVsZXRlIHRoaXMuX21hcFtyLmtleV0sci5rZXk9ZSxyLnZhbHVlPXQsdGhpcy5fbWFwW2VdPXI7ZWxzZXt2YXIgaT10aGlzLl9ub2RlUG9vbDtpLmxlbmd0aD4wPygocj1pLnBvcCgpKS5rZXk9ZSxyLnZhbHVlPXQpOnI9e3ByZXY6bnVsbCxuZXh0Om51bGwsa2V5OmUsdmFsdWU6dH0sdGhpcy5fbWFwW2VdPXIsdGhpcy5zaXplKyt9dGhpcy5fYXBwZW5kTm9kZShyKX0sZX0oKTt0LkxSVU1hcD1yfSwxMjk2OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pLG89dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxzPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkRvbVJlbmRlcmVyPXZvaWQgMDt2YXIgYT1yKDM3ODcpLGM9cig4ODAzKSxsPXIoODQ0KSx1PXIoNDcyNSksaD1yKDI1ODUpLGY9cig4NDYwKSxfPXIoNDc3NCksZD1yKDk2MzEpLHA9Inh0ZXJtLWRvbS1yZW5kZXJlci1vd25lci0iLHY9Inh0ZXJtLWZnLSIsZz0ieHRlcm0tYmctIix5PSJ4dGVybS1mb2N1cyIsbT0xLGI9ZnVuY3Rpb24oZSl7ZnVuY3Rpb24gdCh0LHIsaSxuLG8scyxjLGwsdSxoKXt2YXIgZj1lLmNhbGwodGhpcyl8fHRoaXM7cmV0dXJuIGYuX2NvbG9ycz10LGYuX2VsZW1lbnQ9cixmLl9zY3JlZW5FbGVtZW50PWksZi5fdmlld3BvcnRFbGVtZW50PW4sZi5fbGlua2lmaWVyPW8sZi5fbGlua2lmaWVyMj1zLGYuX2NoYXJTaXplU2VydmljZT1sLGYuX29wdGlvbnNTZXJ2aWNlPXUsZi5fYnVmZmVyU2VydmljZT1oLGYuX3Rlcm1pbmFsQ2xhc3M9bSsrLGYuX3Jvd0VsZW1lbnRzPVtdLGYuX3Jvd0NvbnRhaW5lcj1kb2N1bWVudC5jcmVhdGVFbGVtZW50KCJkaXYiKSxmLl9yb3dDb250YWluZXIuY2xhc3NMaXN0LmFkZCgieHRlcm0tcm93cyIpLGYuX3Jvd0NvbnRhaW5lci5zdHlsZS5saW5lSGVpZ2h0PSJub3JtYWwiLGYuX3Jvd0NvbnRhaW5lci5zZXRBdHRyaWJ1dGUoImFyaWEtaGlkZGVuIiwidHJ1ZSIpLGYuX3JlZnJlc2hSb3dFbGVtZW50cyhmLl9idWZmZXJTZXJ2aWNlLmNvbHMsZi5fYnVmZmVyU2VydmljZS5yb3dzKSxmLl9zZWxlY3Rpb25Db250YWluZXI9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2IiksZi5fc2VsZWN0aW9uQ29udGFpbmVyLmNsYXNzTGlzdC5hZGQoInh0ZXJtLXNlbGVjdGlvbiIpLGYuX3NlbGVjdGlvbkNvbnRhaW5lci5zZXRBdHRyaWJ1dGUoImFyaWEtaGlkZGVuIiwidHJ1ZSIpLGYuZGltZW5zaW9ucz17c2NhbGVkQ2hhcldpZHRoOjAsc2NhbGVkQ2hhckhlaWdodDowLHNjYWxlZENlbGxXaWR0aDowLHNjYWxlZENlbGxIZWlnaHQ6MCxzY2FsZWRDaGFyTGVmdDowLHNjYWxlZENoYXJUb3A6MCxzY2FsZWRDYW52YXNXaWR0aDowLHNjYWxlZENhbnZhc0hlaWdodDowLGNhbnZhc1dpZHRoOjAsY2FudmFzSGVpZ2h0OjAsYWN0dWFsQ2VsbFdpZHRoOjAsYWN0dWFsQ2VsbEhlaWdodDowfSxmLl91cGRhdGVEaW1lbnNpb25zKCksZi5faW5qZWN0Q3NzKCksZi5fcm93RmFjdG9yeT1jLmNyZWF0ZUluc3RhbmNlKGEuRG9tUmVuZGVyZXJSb3dGYWN0b3J5LGRvY3VtZW50LGYuX2NvbG9ycyksZi5fZWxlbWVudC5jbGFzc0xpc3QuYWRkKHArZi5fdGVybWluYWxDbGFzcyksZi5fc2NyZWVuRWxlbWVudC5hcHBlbmRDaGlsZChmLl9yb3dDb250YWluZXIpLGYuX3NjcmVlbkVsZW1lbnQuYXBwZW5kQ2hpbGQoZi5fc2VsZWN0aW9uQ29udGFpbmVyKSxmLl9saW5raWZpZXIub25TaG93TGlua1VuZGVybGluZSgoZnVuY3Rpb24oZSl7cmV0dXJuIGYuX29uTGlua0hvdmVyKGUpfSkpLGYuX2xpbmtpZmllci5vbkhpZGVMaW5rVW5kZXJsaW5lKChmdW5jdGlvbihlKXtyZXR1cm4gZi5fb25MaW5rTGVhdmUoZSl9KSksZi5fbGlua2lmaWVyMi5vblNob3dMaW5rVW5kZXJsaW5lKChmdW5jdGlvbihlKXtyZXR1cm4gZi5fb25MaW5rSG92ZXIoZSl9KSksZi5fbGlua2lmaWVyMi5vbkhpZGVMaW5rVW5kZXJsaW5lKChmdW5jdGlvbihlKXtyZXR1cm4gZi5fb25MaW5rTGVhdmUoZSl9KSksZn1yZXR1cm4gbih0LGUpLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25SZXF1ZXN0UmVkcmF3Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuKG5ldyBmLkV2ZW50RW1pdHRlcikuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksdC5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe3RoaXMuX2VsZW1lbnQuY2xhc3NMaXN0LnJlbW92ZShwK3RoaXMuX3Rlcm1pbmFsQ2xhc3MpLCgwLGQucmVtb3ZlRWxlbWVudEZyb21QYXJlbnQpKHRoaXMuX3Jvd0NvbnRhaW5lcix0aGlzLl9zZWxlY3Rpb25Db250YWluZXIsdGhpcy5fdGhlbWVTdHlsZUVsZW1lbnQsdGhpcy5fZGltZW5zaW9uc1N0eWxlRWxlbWVudCksZS5wcm90b3R5cGUuZGlzcG9zZS5jYWxsKHRoaXMpfSx0LnByb3RvdHlwZS5fdXBkYXRlRGltZW5zaW9ucz1mdW5jdGlvbigpe3RoaXMuZGltZW5zaW9ucy5zY2FsZWRDaGFyV2lkdGg9dGhpcy5fY2hhclNpemVTZXJ2aWNlLndpZHRoKndpbmRvdy5kZXZpY2VQaXhlbFJhdGlvLHRoaXMuZGltZW5zaW9ucy5zY2FsZWRDaGFySGVpZ2h0PU1hdGguY2VpbCh0aGlzLl9jaGFyU2l6ZVNlcnZpY2UuaGVpZ2h0KndpbmRvdy5kZXZpY2VQaXhlbFJhdGlvKSx0aGlzLmRpbWVuc2lvbnMuc2NhbGVkQ2VsbFdpZHRoPXRoaXMuZGltZW5zaW9ucy5zY2FsZWRDaGFyV2lkdGgrTWF0aC5yb3VuZCh0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmxldHRlclNwYWNpbmcpLHRoaXMuZGltZW5zaW9ucy5zY2FsZWRDZWxsSGVpZ2h0PU1hdGguZmxvb3IodGhpcy5kaW1lbnNpb25zLnNjYWxlZENoYXJIZWlnaHQqdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5saW5lSGVpZ2h0KSx0aGlzLmRpbWVuc2lvbnMuc2NhbGVkQ2hhckxlZnQ9MCx0aGlzLmRpbWVuc2lvbnMuc2NhbGVkQ2hhclRvcD0wLHRoaXMuZGltZW5zaW9ucy5zY2FsZWRDYW52YXNXaWR0aD10aGlzLmRpbWVuc2lvbnMuc2NhbGVkQ2VsbFdpZHRoKnRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyx0aGlzLmRpbWVuc2lvbnMuc2NhbGVkQ2FudmFzSGVpZ2h0PXRoaXMuZGltZW5zaW9ucy5zY2FsZWRDZWxsSGVpZ2h0KnRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cyx0aGlzLmRpbWVuc2lvbnMuY2FudmFzV2lkdGg9TWF0aC5yb3VuZCh0aGlzLmRpbWVuc2lvbnMuc2NhbGVkQ2FudmFzV2lkdGgvd2luZG93LmRldmljZVBpeGVsUmF0aW8pLHRoaXMuZGltZW5zaW9ucy5jYW52YXNIZWlnaHQ9TWF0aC5yb3VuZCh0aGlzLmRpbWVuc2lvbnMuc2NhbGVkQ2FudmFzSGVpZ2h0L3dpbmRvdy5kZXZpY2VQaXhlbFJhdGlvKSx0aGlzLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbFdpZHRoPXRoaXMuZGltZW5zaW9ucy5jYW52YXNXaWR0aC90aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsdGhpcy5kaW1lbnNpb25zLmFjdHVhbENlbGxIZWlnaHQ9dGhpcy5kaW1lbnNpb25zLmNhbnZhc0hlaWdodC90aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3M7Zm9yKHZhciBlPTAsdD10aGlzLl9yb3dFbGVtZW50cztlPHQubGVuZ3RoO2UrKyl7dmFyIHI9dFtlXTtyLnN0eWxlLndpZHRoPXRoaXMuZGltZW5zaW9ucy5jYW52YXNXaWR0aCsicHgiLHIuc3R5bGUuaGVpZ2h0PXRoaXMuZGltZW5zaW9ucy5hY3R1YWxDZWxsSGVpZ2h0KyJweCIsci5zdHlsZS5saW5lSGVpZ2h0PXRoaXMuZGltZW5zaW9ucy5hY3R1YWxDZWxsSGVpZ2h0KyJweCIsci5zdHlsZS5vdmVyZmxvdz0iaGlkZGVuIn10aGlzLl9kaW1lbnNpb25zU3R5bGVFbGVtZW50fHwodGhpcy5fZGltZW5zaW9uc1N0eWxlRWxlbWVudD1kb2N1bWVudC5jcmVhdGVFbGVtZW50KCJzdHlsZSIpLHRoaXMuX3NjcmVlbkVsZW1lbnQuYXBwZW5kQ2hpbGQodGhpcy5fZGltZW5zaW9uc1N0eWxlRWxlbWVudCkpO3ZhciBpPXRoaXMuX3Rlcm1pbmFsU2VsZWN0b3IrIiAueHRlcm0tcm93cyBzcGFuIHsgZGlzcGxheTogaW5saW5lLWJsb2NrOyBoZWlnaHQ6IDEwMCU7IHZlcnRpY2FsLWFsaWduOiB0b3A7IHdpZHRoOiAiK3RoaXMuZGltZW5zaW9ucy5hY3R1YWxDZWxsV2lkdGgrInB4fSI7dGhpcy5fZGltZW5zaW9uc1N0eWxlRWxlbWVudC50ZXh0Q29udGVudD1pLHRoaXMuX3NlbGVjdGlvbkNvbnRhaW5lci5zdHlsZS5oZWlnaHQ9dGhpcy5fdmlld3BvcnRFbGVtZW50LnN0eWxlLmhlaWdodCx0aGlzLl9zY3JlZW5FbGVtZW50LnN0eWxlLndpZHRoPXRoaXMuZGltZW5zaW9ucy5jYW52YXNXaWR0aCsicHgiLHRoaXMuX3NjcmVlbkVsZW1lbnQuc3R5bGUuaGVpZ2h0PXRoaXMuZGltZW5zaW9ucy5jYW52YXNIZWlnaHQrInB4In0sdC5wcm90b3R5cGUuc2V0Q29sb3JzPWZ1bmN0aW9uKGUpe3RoaXMuX2NvbG9ycz1lLHRoaXMuX2luamVjdENzcygpfSx0LnByb3RvdHlwZS5faW5qZWN0Q3NzPWZ1bmN0aW9uKCl7dmFyIGU9dGhpczt0aGlzLl90aGVtZVN0eWxlRWxlbWVudHx8KHRoaXMuX3RoZW1lU3R5bGVFbGVtZW50PWRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoInN0eWxlIiksdGhpcy5fc2NyZWVuRWxlbWVudC5hcHBlbmRDaGlsZCh0aGlzLl90aGVtZVN0eWxlRWxlbWVudCkpO3ZhciB0PXRoaXMuX3Rlcm1pbmFsU2VsZWN0b3IrIiAueHRlcm0tcm93cyB7IGNvbG9yOiAiK3RoaXMuX2NvbG9ycy5mb3JlZ3JvdW5kLmNzcysiOyBmb250LWZhbWlseTogIit0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmZvbnRGYW1pbHkrIjsgZm9udC1zaXplOiAiK3RoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuZm9udFNpemUrInB4O30iO3QrPXRoaXMuX3Rlcm1pbmFsU2VsZWN0b3IrIiBzcGFuOm5vdCguIithLkJPTERfQ0xBU1MrIikgeyBmb250LXdlaWdodDogIit0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmZvbnRXZWlnaHQrIjt9Iit0aGlzLl90ZXJtaW5hbFNlbGVjdG9yKyIgc3Bhbi4iK2EuQk9MRF9DTEFTUysiIHsgZm9udC13ZWlnaHQ6ICIrdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5mb250V2VpZ2h0Qm9sZCsiO30iK3RoaXMuX3Rlcm1pbmFsU2VsZWN0b3IrIiBzcGFuLiIrYS5JVEFMSUNfQ0xBU1MrIiB7IGZvbnQtc3R5bGU6IGl0YWxpYzt9Iix0Kz0iQGtleWZyYW1lcyBibGlua19ib3hfc2hhZG93XyIrdGhpcy5fdGVybWluYWxDbGFzcysiIHsgNTAlIHsgIGJveC1zaGFkb3c6IG5vbmU7IH19Iix0Kz0iQGtleWZyYW1lcyBibGlua19ibG9ja18iK3RoaXMuX3Rlcm1pbmFsQ2xhc3MrIiB7IDAlIHsgIGJhY2tncm91bmQtY29sb3I6ICIrdGhpcy5fY29sb3JzLmN1cnNvci5jc3MrIjsgIGNvbG9yOiAiK3RoaXMuX2NvbG9ycy5jdXJzb3JBY2NlbnQuY3NzKyI7IH0gNTAlIHsgIGJhY2tncm91bmQtY29sb3I6ICIrdGhpcy5fY29sb3JzLmN1cnNvckFjY2VudC5jc3MrIjsgIGNvbG9yOiAiK3RoaXMuX2NvbG9ycy5jdXJzb3IuY3NzKyI7IH19Iix0Kz10aGlzLl90ZXJtaW5hbFNlbGVjdG9yKyIgLnh0ZXJtLXJvd3M6bm90KC54dGVybS1mb2N1cykgLiIrYS5DVVJTT1JfQ0xBU1MrIi4iK2EuQ1VSU09SX1NUWUxFX0JMT0NLX0NMQVNTKyIgeyBvdXRsaW5lOiAxcHggc29saWQgIit0aGlzLl9jb2xvcnMuY3Vyc29yLmNzcysiOyBvdXRsaW5lLW9mZnNldDogLTFweDt9Iit0aGlzLl90ZXJtaW5hbFNlbGVjdG9yKyIgLnh0ZXJtLXJvd3MueHRlcm0tZm9jdXMgLiIrYS5DVVJTT1JfQ0xBU1MrIi4iK2EuQ1VSU09SX0JMSU5LX0NMQVNTKyI6bm90KC4iK2EuQ1VSU09SX1NUWUxFX0JMT0NLX0NMQVNTKyIpIHsgYW5pbWF0aW9uOiBibGlua19ib3hfc2hhZG93XyIrdGhpcy5fdGVybWluYWxDbGFzcysiIDFzIHN0ZXAtZW5kIGluZmluaXRlO30iK3RoaXMuX3Rlcm1pbmFsU2VsZWN0b3IrIiAueHRlcm0tcm93cy54dGVybS1mb2N1cyAuIithLkNVUlNPUl9DTEFTUysiLiIrYS5DVVJTT1JfQkxJTktfQ0xBU1MrIi4iK2EuQ1VSU09SX1NUWUxFX0JMT0NLX0NMQVNTKyIgeyBhbmltYXRpb246IGJsaW5rX2Jsb2NrXyIrdGhpcy5fdGVybWluYWxDbGFzcysiIDFzIHN0ZXAtZW5kIGluZmluaXRlO30iK3RoaXMuX3Rlcm1pbmFsU2VsZWN0b3IrIiAueHRlcm0tcm93cy54dGVybS1mb2N1cyAuIithLkNVUlNPUl9DTEFTUysiLiIrYS5DVVJTT1JfU1RZTEVfQkxPQ0tfQ0xBU1MrIiB7IGJhY2tncm91bmQtY29sb3I6ICIrdGhpcy5fY29sb3JzLmN1cnNvci5jc3MrIjsgY29sb3I6ICIrdGhpcy5fY29sb3JzLmN1cnNvckFjY2VudC5jc3MrIjt9Iit0aGlzLl90ZXJtaW5hbFNlbGVjdG9yKyIgLnh0ZXJtLXJvd3MgLiIrYS5DVVJTT1JfQ0xBU1MrIi4iK2EuQ1VSU09SX1NUWUxFX0JBUl9DTEFTUysiIHsgYm94LXNoYWRvdzogIit0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmN1cnNvcldpZHRoKyJweCAwIDAgIit0aGlzLl9jb2xvcnMuY3Vyc29yLmNzcysiIGluc2V0O30iK3RoaXMuX3Rlcm1pbmFsU2VsZWN0b3IrIiAueHRlcm0tcm93cyAuIithLkNVUlNPUl9DTEFTUysiLiIrYS5DVVJTT1JfU1RZTEVfVU5ERVJMSU5FX0NMQVNTKyIgeyBib3gtc2hhZG93OiAwIC0xcHggMCAiK3RoaXMuX2NvbG9ycy5jdXJzb3IuY3NzKyIgaW5zZXQ7fSIsdCs9dGhpcy5fdGVybWluYWxTZWxlY3RvcisiIC54dGVybS1zZWxlY3Rpb24geyBwb3NpdGlvbjogYWJzb2x1dGU7IHRvcDogMDsgbGVmdDogMDsgei1pbmRleDogMTsgcG9pbnRlci1ldmVudHM6IG5vbmU7fSIrdGhpcy5fdGVybWluYWxTZWxlY3RvcisiIC54dGVybS1zZWxlY3Rpb24gZGl2IHsgcG9zaXRpb246IGFic29sdXRlOyBiYWNrZ3JvdW5kLWNvbG9yOiAiK3RoaXMuX2NvbG9ycy5zZWxlY3Rpb25UcmFuc3BhcmVudC5jc3MrIjt9Iix0aGlzLl9jb2xvcnMuYW5zaS5mb3JFYWNoKChmdW5jdGlvbihyLGkpe3QrPWUuX3Rlcm1pbmFsU2VsZWN0b3IrIiAuIit2K2krIiB7IGNvbG9yOiAiK3IuY3NzKyI7IH0iK2UuX3Rlcm1pbmFsU2VsZWN0b3IrIiAuIitnK2krIiB7IGJhY2tncm91bmQtY29sb3I6ICIrci5jc3MrIjsgfSJ9KSksdCs9dGhpcy5fdGVybWluYWxTZWxlY3RvcisiIC4iK3YrYy5JTlZFUlRFRF9ERUZBVUxUX0NPTE9SKyIgeyBjb2xvcjogIitfLmNvbG9yLm9wYXF1ZSh0aGlzLl9jb2xvcnMuYmFja2dyb3VuZCkuY3NzKyI7IH0iK3RoaXMuX3Rlcm1pbmFsU2VsZWN0b3IrIiAuIitnK2MuSU5WRVJURURfREVGQVVMVF9DT0xPUisiIHsgYmFja2dyb3VuZC1jb2xvcjogIit0aGlzLl9jb2xvcnMuZm9yZWdyb3VuZC5jc3MrIjsgfSIsdGhpcy5fdGhlbWVTdHlsZUVsZW1lbnQudGV4dENvbnRlbnQ9dH0sdC5wcm90b3R5cGUub25EZXZpY2VQaXhlbFJhdGlvQ2hhbmdlPWZ1bmN0aW9uKCl7dGhpcy5fdXBkYXRlRGltZW5zaW9ucygpfSx0LnByb3RvdHlwZS5fcmVmcmVzaFJvd0VsZW1lbnRzPWZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByPXRoaXMuX3Jvd0VsZW1lbnRzLmxlbmd0aDtyPD10O3IrKyl7dmFyIGk9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2Iik7dGhpcy5fcm93Q29udGFpbmVyLmFwcGVuZENoaWxkKGkpLHRoaXMuX3Jvd0VsZW1lbnRzLnB1c2goaSl9Zm9yKDt0aGlzLl9yb3dFbGVtZW50cy5sZW5ndGg+dDspdGhpcy5fcm93Q29udGFpbmVyLnJlbW92ZUNoaWxkKHRoaXMuX3Jvd0VsZW1lbnRzLnBvcCgpKX0sdC5wcm90b3R5cGUub25SZXNpemU9ZnVuY3Rpb24oZSx0KXt0aGlzLl9yZWZyZXNoUm93RWxlbWVudHMoZSx0KSx0aGlzLl91cGRhdGVEaW1lbnNpb25zKCl9LHQucHJvdG90eXBlLm9uQ2hhclNpemVDaGFuZ2VkPWZ1bmN0aW9uKCl7dGhpcy5fdXBkYXRlRGltZW5zaW9ucygpfSx0LnByb3RvdHlwZS5vbkJsdXI9ZnVuY3Rpb24oKXt0aGlzLl9yb3dDb250YWluZXIuY2xhc3NMaXN0LnJlbW92ZSh5KX0sdC5wcm90b3R5cGUub25Gb2N1cz1mdW5jdGlvbigpe3RoaXMuX3Jvd0NvbnRhaW5lci5jbGFzc0xpc3QuYWRkKHkpfSx0LnByb3RvdHlwZS5vblNlbGVjdGlvbkNoYW5nZWQ9ZnVuY3Rpb24oZSx0LHIpe2Zvcig7dGhpcy5fc2VsZWN0aW9uQ29udGFpbmVyLmNoaWxkcmVuLmxlbmd0aDspdGhpcy5fc2VsZWN0aW9uQ29udGFpbmVyLnJlbW92ZUNoaWxkKHRoaXMuX3NlbGVjdGlvbkNvbnRhaW5lci5jaGlsZHJlblswXSk7aWYoZSYmdCl7dmFyIGk9ZVsxXS10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55ZGlzcCxuPXRbMV0tdGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueWRpc3Asbz1NYXRoLm1heChpLDApLHM9TWF0aC5taW4obix0aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MtMSk7aWYoIShvPj10aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3N8fHM8MCkpe3ZhciBhPWRvY3VtZW50LmNyZWF0ZURvY3VtZW50RnJhZ21lbnQoKTtpZihyKWEuYXBwZW5kQ2hpbGQodGhpcy5fY3JlYXRlU2VsZWN0aW9uRWxlbWVudChvLGVbMF0sdFswXSxzLW8rMSkpO2Vsc2V7dmFyIGM9aT09PW8/ZVswXTowLGw9bz09PW4/dFswXTp0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHM7YS5hcHBlbmRDaGlsZCh0aGlzLl9jcmVhdGVTZWxlY3Rpb25FbGVtZW50KG8sYyxsKSk7dmFyIHU9cy1vLTE7aWYoYS5hcHBlbmRDaGlsZCh0aGlzLl9jcmVhdGVTZWxlY3Rpb25FbGVtZW50KG8rMSwwLHRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyx1KSksbyE9PXMpe3ZhciBoPW49PT1zP3RbMF06dGhpcy5fYnVmZmVyU2VydmljZS5jb2xzO2EuYXBwZW5kQ2hpbGQodGhpcy5fY3JlYXRlU2VsZWN0aW9uRWxlbWVudChzLDAsaCkpfX10aGlzLl9zZWxlY3Rpb25Db250YWluZXIuYXBwZW5kQ2hpbGQoYSl9fX0sdC5wcm90b3R5cGUuX2NyZWF0ZVNlbGVjdGlvbkVsZW1lbnQ9ZnVuY3Rpb24oZSx0LHIsaSl7dm9pZCAwPT09aSYmKGk9MSk7dmFyIG49ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2Iik7cmV0dXJuIG4uc3R5bGUuaGVpZ2h0PWkqdGhpcy5kaW1lbnNpb25zLmFjdHVhbENlbGxIZWlnaHQrInB4IixuLnN0eWxlLnRvcD1lKnRoaXMuZGltZW5zaW9ucy5hY3R1YWxDZWxsSGVpZ2h0KyJweCIsbi5zdHlsZS5sZWZ0PXQqdGhpcy5kaW1lbnNpb25zLmFjdHVhbENlbGxXaWR0aCsicHgiLG4uc3R5bGUud2lkdGg9dGhpcy5kaW1lbnNpb25zLmFjdHVhbENlbGxXaWR0aCooci10KSsicHgiLG59LHQucHJvdG90eXBlLm9uQ3Vyc29yTW92ZT1mdW5jdGlvbigpe30sdC5wcm90b3R5cGUub25PcHRpb25zQ2hhbmdlZD1mdW5jdGlvbigpe3RoaXMuX3VwZGF0ZURpbWVuc2lvbnMoKSx0aGlzLl9pbmplY3RDc3MoKX0sdC5wcm90b3R5cGUuY2xlYXI9ZnVuY3Rpb24oKXtmb3IodmFyIGU9MCx0PXRoaXMuX3Jvd0VsZW1lbnRzO2U8dC5sZW5ndGg7ZSsrKXRbZV0uaW5uZXJUZXh0PSIifSx0LnByb3RvdHlwZS5yZW5kZXJSb3dzPWZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByPXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnliYXNlK3RoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnksaT1NYXRoLm1pbih0aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci54LHRoaXMuX2J1ZmZlclNlcnZpY2UuY29scy0xKSxuPXRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuY3Vyc29yQmxpbmssbz1lO288PXQ7bysrKXt2YXIgcz10aGlzLl9yb3dFbGVtZW50c1tvXTtzLmlubmVyVGV4dD0iIjt2YXIgYT1vK3RoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnlkaXNwLGM9dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIubGluZXMuZ2V0KGEpLGw9dGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5jdXJzb3JTdHlsZTtzLmFwcGVuZENoaWxkKHRoaXMuX3Jvd0ZhY3RvcnkuY3JlYXRlUm93KGMsYSxhPT09cixsLGksbix0aGlzLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbFdpZHRoLHRoaXMuX2J1ZmZlclNlcnZpY2UuY29scykpfX0sT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJfdGVybWluYWxTZWxlY3RvciIse2dldDpmdW5jdGlvbigpe3JldHVybiIuIitwK3RoaXMuX3Rlcm1pbmFsQ2xhc3N9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksdC5wcm90b3R5cGUuX29uTGlua0hvdmVyPWZ1bmN0aW9uKGUpe3RoaXMuX3NldENlbGxVbmRlcmxpbmUoZS54MSxlLngyLGUueTEsZS55MixlLmNvbHMsITApfSx0LnByb3RvdHlwZS5fb25MaW5rTGVhdmU9ZnVuY3Rpb24oZSl7dGhpcy5fc2V0Q2VsbFVuZGVybGluZShlLngxLGUueDIsZS55MSxlLnkyLGUuY29scywhMSl9LHQucHJvdG90eXBlLl9zZXRDZWxsVW5kZXJsaW5lPWZ1bmN0aW9uKGUsdCxyLGksbixvKXtmb3IoO2UhPT10fHxyIT09aTspe3ZhciBzPXRoaXMuX3Jvd0VsZW1lbnRzW3JdO2lmKCFzKXJldHVybjt2YXIgYT1zLmNoaWxkcmVuW2VdO2EmJihhLnN0eWxlLnRleHREZWNvcmF0aW9uPW8/InVuZGVybGluZSI6Im5vbmUiKSwrK2U+PW4mJihlPTAscisrKX19LG8oW3MoNixoLklJbnN0YW50aWF0aW9uU2VydmljZSkscyg3LHUuSUNoYXJTaXplU2VydmljZSkscyg4LGguSU9wdGlvbnNTZXJ2aWNlKSxzKDksaC5JQnVmZmVyU2VydmljZSldLHQpfShsLkRpc3Bvc2FibGUpO3QuRG9tUmVuZGVyZXI9Yn0sMzc4NzpmdW5jdGlvbihlLHQscil7dmFyIGk9dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxuPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkRvbVJlbmRlcmVyUm93RmFjdG9yeT10LkNVUlNPUl9TVFlMRV9VTkRFUkxJTkVfQ0xBU1M9dC5DVVJTT1JfU1RZTEVfQkFSX0NMQVNTPXQuQ1VSU09SX1NUWUxFX0JMT0NLX0NMQVNTPXQuQ1VSU09SX0JMSU5LX0NMQVNTPXQuQ1VSU09SX0NMQVNTPXQuU1RSSUtFVEhST1VHSF9DTEFTUz10LlVOREVSTElORV9DTEFTUz10LklUQUxJQ19DTEFTUz10LkRJTV9DTEFTUz10LkJPTERfQ0xBU1M9dm9pZCAwO3ZhciBvPXIoODgwMykscz1yKDY0MyksYT1yKDUxMSksYz1yKDI1ODUpLGw9cig0Nzc0KSx1PXIoNDcyNSksaD1yKDQyNjkpO3QuQk9MRF9DTEFTUz0ieHRlcm0tYm9sZCIsdC5ESU1fQ0xBU1M9Inh0ZXJtLWRpbSIsdC5JVEFMSUNfQ0xBU1M9Inh0ZXJtLWl0YWxpYyIsdC5VTkRFUkxJTkVfQ0xBU1M9Inh0ZXJtLXVuZGVybGluZSIsdC5TVFJJS0VUSFJPVUdIX0NMQVNTPSJ4dGVybS1zdHJpa2V0aHJvdWdoIix0LkNVUlNPUl9DTEFTUz0ieHRlcm0tY3Vyc29yIix0LkNVUlNPUl9CTElOS19DTEFTUz0ieHRlcm0tY3Vyc29yLWJsaW5rIix0LkNVUlNPUl9TVFlMRV9CTE9DS19DTEFTUz0ieHRlcm0tY3Vyc29yLWJsb2NrIix0LkNVUlNPUl9TVFlMRV9CQVJfQ0xBU1M9Inh0ZXJtLWN1cnNvci1iYXIiLHQuQ1VSU09SX1NUWUxFX1VOREVSTElORV9DTEFTUz0ieHRlcm0tY3Vyc29yLXVuZGVybGluZSI7dmFyIGY9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUsdCxyLGksbil7dGhpcy5fZG9jdW1lbnQ9ZSx0aGlzLl9jb2xvcnM9dCx0aGlzLl9jaGFyYWN0ZXJKb2luZXJTZXJ2aWNlPXIsdGhpcy5fb3B0aW9uc1NlcnZpY2U9aSx0aGlzLl9jb3JlU2VydmljZT1uLHRoaXMuX3dvcmtDZWxsPW5ldyBhLkNlbGxEYXRhfXJldHVybiBlLnByb3RvdHlwZS5zZXRDb2xvcnM9ZnVuY3Rpb24oZSl7dGhpcy5fY29sb3JzPWV9LGUucHJvdG90eXBlLmNyZWF0ZVJvdz1mdW5jdGlvbihlLHIsaSxuLGEsYyx1LGYpe2Zvcih2YXIgZD10aGlzLl9kb2N1bWVudC5jcmVhdGVEb2N1bWVudEZyYWdtZW50KCkscD10aGlzLl9jaGFyYWN0ZXJKb2luZXJTZXJ2aWNlLmdldEpvaW5lZENoYXJhY3RlcnMociksdj0wLGc9TWF0aC5taW4oZS5sZW5ndGgsZiktMTtnPj0wO2ctLSlpZihlLmxvYWRDZWxsKGcsdGhpcy5fd29ya0NlbGwpLmdldENvZGUoKSE9PXMuTlVMTF9DRUxMX0NPREV8fGkmJmc9PT1hKXt2PWcrMTticmVha31mb3IoZz0wO2c8djtnKyspe2UubG9hZENlbGwoZyx0aGlzLl93b3JrQ2VsbCk7dmFyIHk9dGhpcy5fd29ya0NlbGwuZ2V0V2lkdGgoKTtpZigwIT09eSl7dmFyIG09ITEsYj1nLFM9dGhpcy5fd29ya0NlbGw7aWYocC5sZW5ndGg+MCYmZz09PXBbMF1bMF0pe209ITA7dmFyIEM9cC5zaGlmdCgpO1M9bmV3IGguSm9pbmVkQ2VsbERhdGEodGhpcy5fd29ya0NlbGwsZS50cmFuc2xhdGVUb1N0cmluZyghMCxDWzBdLENbMV0pLENbMV0tQ1swXSksYj1DWzFdLTEseT1TLmdldFdpZHRoKCl9dmFyIHc9dGhpcy5fZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgic3BhbiIpO2lmKHk+MSYmKHcuc3R5bGUud2lkdGg9dSp5KyJweCIpLG0mJih3LnN0eWxlLmRpc3BsYXk9ImlubGluZSIsYT49ZyYmYTw9YiYmKGE9ZykpLCF0aGlzLl9jb3JlU2VydmljZS5pc0N1cnNvckhpZGRlbiYmaSYmZz09PWEpc3dpdGNoKHcuY2xhc3NMaXN0LmFkZCh0LkNVUlNPUl9DTEFTUyksYyYmdy5jbGFzc0xpc3QuYWRkKHQuQ1VSU09SX0JMSU5LX0NMQVNTKSxuKXtjYXNlImJhciI6dy5jbGFzc0xpc3QuYWRkKHQuQ1VSU09SX1NUWUxFX0JBUl9DTEFTUyk7YnJlYWs7Y2FzZSJ1bmRlcmxpbmUiOncuY2xhc3NMaXN0LmFkZCh0LkNVUlNPUl9TVFlMRV9VTkRFUkxJTkVfQ0xBU1MpO2JyZWFrO2RlZmF1bHQ6dy5jbGFzc0xpc3QuYWRkKHQuQ1VSU09SX1NUWUxFX0JMT0NLX0NMQVNTKX1TLmlzQm9sZCgpJiZ3LmNsYXNzTGlzdC5hZGQodC5CT0xEX0NMQVNTKSxTLmlzSXRhbGljKCkmJncuY2xhc3NMaXN0LmFkZCh0LklUQUxJQ19DTEFTUyksUy5pc0RpbSgpJiZ3LmNsYXNzTGlzdC5hZGQodC5ESU1fQ0xBU1MpLFMuaXNVbmRlcmxpbmUoKSYmdy5jbGFzc0xpc3QuYWRkKHQuVU5ERVJMSU5FX0NMQVNTKSxTLmlzSW52aXNpYmxlKCk/dy50ZXh0Q29udGVudD1zLldISVRFU1BBQ0VfQ0VMTF9DSEFSOncudGV4dENvbnRlbnQ9Uy5nZXRDaGFycygpfHxzLldISVRFU1BBQ0VfQ0VMTF9DSEFSLFMuaXNTdHJpa2V0aHJvdWdoKCkmJncuY2xhc3NMaXN0LmFkZCh0LlNUUklLRVRIUk9VR0hfQ0xBU1MpO3ZhciBMPVMuZ2V0RmdDb2xvcigpLEU9Uy5nZXRGZ0NvbG9yTW9kZSgpLHg9Uy5nZXRCZ0NvbG9yKCksQT1TLmdldEJnQ29sb3JNb2RlKCksaz0hIVMuaXNJbnZlcnNlKCk7aWYoayl7dmFyIE09TDtMPXgseD1NO3ZhciBSPUU7RT1BLEE9Un1zd2l0Y2goRSl7Y2FzZSAxNjc3NzIxNjpjYXNlIDMzNTU0NDMyOlMuaXNCb2xkKCkmJkw8OCYmdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5kcmF3Qm9sZFRleHRJbkJyaWdodENvbG9ycyYmKEwrPTgpLHRoaXMuX2FwcGx5TWluaW11bUNvbnRyYXN0KHcsdGhpcy5fY29sb3JzLmJhY2tncm91bmQsdGhpcy5fY29sb3JzLmFuc2lbTF0pfHx3LmNsYXNzTGlzdC5hZGQoInh0ZXJtLWZnLSIrTCk7YnJlYWs7Y2FzZSA1MDMzMTY0ODp2YXIgVD1sLnJnYmEudG9Db2xvcihMPj4xNiYyNTUsTD4+OCYyNTUsMjU1JkwpO3RoaXMuX2FwcGx5TWluaW11bUNvbnRyYXN0KHcsdGhpcy5fY29sb3JzLmJhY2tncm91bmQsVCl8fHRoaXMuX2FkZFN0eWxlKHcsImNvbG9yOiMiK18oTC50b1N0cmluZygxNiksIjAiLDYpKTticmVhaztkZWZhdWx0OnRoaXMuX2FwcGx5TWluaW11bUNvbnRyYXN0KHcsdGhpcy5fY29sb3JzLmJhY2tncm91bmQsdGhpcy5fY29sb3JzLmZvcmVncm91bmQpfHxrJiZ3LmNsYXNzTGlzdC5hZGQoInh0ZXJtLWZnLSIrby5JTlZFUlRFRF9ERUZBVUxUX0NPTE9SKX1zd2l0Y2goQSl7Y2FzZSAxNjc3NzIxNjpjYXNlIDMzNTU0NDMyOncuY2xhc3NMaXN0LmFkZCgieHRlcm0tYmctIit4KTticmVhaztjYXNlIDUwMzMxNjQ4OnRoaXMuX2FkZFN0eWxlKHcsImJhY2tncm91bmQtY29sb3I6IyIrXyh4LnRvU3RyaW5nKDE2KSwiMCIsNikpO2JyZWFrO2RlZmF1bHQ6ayYmdy5jbGFzc0xpc3QuYWRkKCJ4dGVybS1iZy0iK28uSU5WRVJURURfREVGQVVMVF9DT0xPUil9ZC5hcHBlbmRDaGlsZCh3KSxnPWJ9fXJldHVybiBkfSxlLnByb3RvdHlwZS5fYXBwbHlNaW5pbXVtQ29udHJhc3Q9ZnVuY3Rpb24oZSx0LHIpe2lmKDE9PT10aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLm1pbmltdW1Db250cmFzdFJhdGlvKXJldHVybiExO3ZhciBpPXRoaXMuX2NvbG9ycy5jb250cmFzdENhY2hlLmdldENvbG9yKHRoaXMuX3dvcmtDZWxsLmJnLHRoaXMuX3dvcmtDZWxsLmZnKTtyZXR1cm4gdm9pZCAwPT09aSYmKGk9bC5jb2xvci5lbnN1cmVDb250cmFzdFJhdGlvKHQscix0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLm1pbmltdW1Db250cmFzdFJhdGlvKSx0aGlzLl9jb2xvcnMuY29udHJhc3RDYWNoZS5zZXRDb2xvcih0aGlzLl93b3JrQ2VsbC5iZyx0aGlzLl93b3JrQ2VsbC5mZyxudWxsIT1pP2k6bnVsbCkpLCEhaSYmKHRoaXMuX2FkZFN0eWxlKGUsImNvbG9yOiIraS5jc3MpLCEwKX0sZS5wcm90b3R5cGUuX2FkZFN0eWxlPWZ1bmN0aW9uKGUsdCl7ZS5zZXRBdHRyaWJ1dGUoInN0eWxlIiwiIisoZS5nZXRBdHRyaWJ1dGUoInN0eWxlIil8fCIiKSt0KyI7Iil9LGkoW24oMix1LklDaGFyYWN0ZXJKb2luZXJTZXJ2aWNlKSxuKDMsYy5JT3B0aW9uc1NlcnZpY2UpLG4oNCxjLklDb3JlU2VydmljZSldLGUpfSgpO2Z1bmN0aW9uIF8oZSx0LHIpe2Zvcig7ZS5sZW5ndGg8cjspZT10K2U7cmV0dXJuIGV9dC5Eb21SZW5kZXJlclJvd0ZhY3Rvcnk9Zn0sNDU2OihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuU2VsZWN0aW9uTW9kZWw9dm9pZCAwO3ZhciByPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlKXt0aGlzLl9idWZmZXJTZXJ2aWNlPWUsdGhpcy5pc1NlbGVjdEFsbEFjdGl2ZT0hMSx0aGlzLnNlbGVjdGlvblN0YXJ0TGVuZ3RoPTB9cmV0dXJuIGUucHJvdG90eXBlLmNsZWFyU2VsZWN0aW9uPWZ1bmN0aW9uKCl7dGhpcy5zZWxlY3Rpb25TdGFydD12b2lkIDAsdGhpcy5zZWxlY3Rpb25FbmQ9dm9pZCAwLHRoaXMuaXNTZWxlY3RBbGxBY3RpdmU9ITEsdGhpcy5zZWxlY3Rpb25TdGFydExlbmd0aD0wfSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImZpbmFsU2VsZWN0aW9uU3RhcnQiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5pc1NlbGVjdEFsbEFjdGl2ZT9bMCwwXTp0aGlzLnNlbGVjdGlvbkVuZCYmdGhpcy5zZWxlY3Rpb25TdGFydCYmdGhpcy5hcmVTZWxlY3Rpb25WYWx1ZXNSZXZlcnNlZCgpP3RoaXMuc2VsZWN0aW9uRW5kOnRoaXMuc2VsZWN0aW9uU3RhcnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJmaW5hbFNlbGVjdGlvbkVuZCIse2dldDpmdW5jdGlvbigpe2lmKHRoaXMuaXNTZWxlY3RBbGxBY3RpdmUpcmV0dXJuW3RoaXMuX2J1ZmZlclNlcnZpY2UuY29scyx0aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55YmFzZSt0aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MtMV07aWYodGhpcy5zZWxlY3Rpb25TdGFydCl7aWYoIXRoaXMuc2VsZWN0aW9uRW5kfHx0aGlzLmFyZVNlbGVjdGlvblZhbHVlc1JldmVyc2VkKCkpe3ZhciBlPXRoaXMuc2VsZWN0aW9uU3RhcnRbMF0rdGhpcy5zZWxlY3Rpb25TdGFydExlbmd0aDtyZXR1cm4gZT50aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHM/ZSV0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHM9PTA/W3RoaXMuX2J1ZmZlclNlcnZpY2UuY29scyx0aGlzLnNlbGVjdGlvblN0YXJ0WzFdK01hdGguZmxvb3IoZS90aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMpLTFdOltlJXRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyx0aGlzLnNlbGVjdGlvblN0YXJ0WzFdK01hdGguZmxvb3IoZS90aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMpXTpbZSx0aGlzLnNlbGVjdGlvblN0YXJ0WzFdXX1yZXR1cm4gdGhpcy5zZWxlY3Rpb25TdGFydExlbmd0aCYmdGhpcy5zZWxlY3Rpb25FbmRbMV09PT10aGlzLnNlbGVjdGlvblN0YXJ0WzFdP1tNYXRoLm1heCh0aGlzLnNlbGVjdGlvblN0YXJ0WzBdK3RoaXMuc2VsZWN0aW9uU3RhcnRMZW5ndGgsdGhpcy5zZWxlY3Rpb25FbmRbMF0pLHRoaXMuc2VsZWN0aW9uRW5kWzFdXTp0aGlzLnNlbGVjdGlvbkVuZH19LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksZS5wcm90b3R5cGUuYXJlU2VsZWN0aW9uVmFsdWVzUmV2ZXJzZWQ9ZnVuY3Rpb24oKXt2YXIgZT10aGlzLnNlbGVjdGlvblN0YXJ0LHQ9dGhpcy5zZWxlY3Rpb25FbmQ7cmV0dXJuISghZXx8IXQpJiYoZVsxXT50WzFdfHxlWzFdPT09dFsxXSYmZVswXT50WzBdKX0sZS5wcm90b3R5cGUub25UcmltPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLnNlbGVjdGlvblN0YXJ0JiYodGhpcy5zZWxlY3Rpb25TdGFydFsxXS09ZSksdGhpcy5zZWxlY3Rpb25FbmQmJih0aGlzLnNlbGVjdGlvbkVuZFsxXS09ZSksdGhpcy5zZWxlY3Rpb25FbmQmJnRoaXMuc2VsZWN0aW9uRW5kWzFdPDA/KHRoaXMuY2xlYXJTZWxlY3Rpb24oKSwhMCk6KHRoaXMuc2VsZWN0aW9uU3RhcnQmJnRoaXMuc2VsZWN0aW9uU3RhcnRbMV08MCYmKHRoaXMuc2VsZWN0aW9uU3RhcnRbMV09MCksITEpfSxlfSgpO3QuU2VsZWN0aW9uTW9kZWw9cn0sNDI4OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaT10aGlzJiZ0aGlzLl9fZGVjb3JhdGV8fGZ1bmN0aW9uKGUsdCxyLGkpe3ZhciBuLG89YXJndW1lbnRzLmxlbmd0aCxzPW88Mz90Om51bGw9PT1pP2k9T2JqZWN0LmdldE93blByb3BlcnR5RGVzY3JpcHRvcih0LHIpOmk7aWYoIm9iamVjdCI9PXR5cGVvZiBSZWZsZWN0JiYiZnVuY3Rpb24iPT10eXBlb2YgUmVmbGVjdC5kZWNvcmF0ZSlzPVJlZmxlY3QuZGVjb3JhdGUoZSx0LHIsaSk7ZWxzZSBmb3IodmFyIGE9ZS5sZW5ndGgtMTthPj0wO2EtLSkobj1lW2FdKSYmKHM9KG88Mz9uKHMpOm8+Mz9uKHQscixzKTpuKHQscikpfHxzKTtyZXR1cm4gbz4zJiZzJiZPYmplY3QuZGVmaW5lUHJvcGVydHkodCxyLHMpLHN9LG49dGhpcyYmdGhpcy5fX3BhcmFtfHxmdW5jdGlvbihlLHQpe3JldHVybiBmdW5jdGlvbihyLGkpe3QocixpLGUpfX07T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuQ2hhclNpemVTZXJ2aWNlPXZvaWQgMDt2YXIgbz1yKDI1ODUpLHM9cig4NDYwKSxhPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlLHQscil7dGhpcy5fb3B0aW9uc1NlcnZpY2U9cix0aGlzLndpZHRoPTAsdGhpcy5oZWlnaHQ9MCx0aGlzLl9vbkNoYXJTaXplQ2hhbmdlPW5ldyBzLkV2ZW50RW1pdHRlcix0aGlzLl9tZWFzdXJlU3RyYXRlZ3k9bmV3IGMoZSx0LHRoaXMuX29wdGlvbnNTZXJ2aWNlKX1yZXR1cm4gT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJoYXNWYWxpZFNpemUiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy53aWR0aD4wJiZ0aGlzLmhlaWdodD4wfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwib25DaGFyU2l6ZUNoYW5nZSIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vbkNoYXJTaXplQ2hhbmdlLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLGUucHJvdG90eXBlLm1lYXN1cmU9ZnVuY3Rpb24oKXt2YXIgZT10aGlzLl9tZWFzdXJlU3RyYXRlZ3kubWVhc3VyZSgpO2Uud2lkdGg9PT10aGlzLndpZHRoJiZlLmhlaWdodD09PXRoaXMuaGVpZ2h0fHwodGhpcy53aWR0aD1lLndpZHRoLHRoaXMuaGVpZ2h0PWUuaGVpZ2h0LHRoaXMuX29uQ2hhclNpemVDaGFuZ2UuZmlyZSgpKX0saShbbigyLG8uSU9wdGlvbnNTZXJ2aWNlKV0sZSl9KCk7dC5DaGFyU2l6ZVNlcnZpY2U9YTt2YXIgYz1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoZSx0LHIpe3RoaXMuX2RvY3VtZW50PWUsdGhpcy5fcGFyZW50RWxlbWVudD10LHRoaXMuX29wdGlvbnNTZXJ2aWNlPXIsdGhpcy5fcmVzdWx0PXt3aWR0aDowLGhlaWdodDowfSx0aGlzLl9tZWFzdXJlRWxlbWVudD10aGlzLl9kb2N1bWVudC5jcmVhdGVFbGVtZW50KCJzcGFuIiksdGhpcy5fbWVhc3VyZUVsZW1lbnQuY2xhc3NMaXN0LmFkZCgieHRlcm0tY2hhci1tZWFzdXJlLWVsZW1lbnQiKSx0aGlzLl9tZWFzdXJlRWxlbWVudC50ZXh0Q29udGVudD0iVyIsdGhpcy5fbWVhc3VyZUVsZW1lbnQuc2V0QXR0cmlidXRlKCJhcmlhLWhpZGRlbiIsInRydWUiKSx0aGlzLl9wYXJlbnRFbGVtZW50LmFwcGVuZENoaWxkKHRoaXMuX21lYXN1cmVFbGVtZW50KX1yZXR1cm4gZS5wcm90b3R5cGUubWVhc3VyZT1mdW5jdGlvbigpe3RoaXMuX21lYXN1cmVFbGVtZW50LnN0eWxlLmZvbnRGYW1pbHk9dGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5mb250RmFtaWx5LHRoaXMuX21lYXN1cmVFbGVtZW50LnN0eWxlLmZvbnRTaXplPXRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuZm9udFNpemUrInB4Ijt2YXIgZT10aGlzLl9tZWFzdXJlRWxlbWVudC5nZXRCb3VuZGluZ0NsaWVudFJlY3QoKTtyZXR1cm4gMCE9PWUud2lkdGgmJjAhPT1lLmhlaWdodCYmKHRoaXMuX3Jlc3VsdC53aWR0aD1lLndpZHRoLHRoaXMuX3Jlc3VsdC5oZWlnaHQ9TWF0aC5jZWlsKGUuaGVpZ2h0KSksdGhpcy5fcmVzdWx0fSxlfSgpfSw0MjY5OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pLG89dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxzPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkNoYXJhY3RlckpvaW5lclNlcnZpY2U9dC5Kb2luZWRDZWxsRGF0YT12b2lkIDA7dmFyIGE9cigzNzM0KSxjPXIoNjQzKSxsPXIoNTExKSx1PXIoMjU4NSksaD1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KHQscixpKXt2YXIgbj1lLmNhbGwodGhpcyl8fHRoaXM7cmV0dXJuIG4uY29udGVudD0wLG4uY29tYmluZWREYXRhPSIiLG4uZmc9dC5mZyxuLmJnPXQuYmcsbi5jb21iaW5lZERhdGE9cixuLl93aWR0aD1pLG59cmV0dXJuIG4odCxlKSx0LnByb3RvdHlwZS5pc0NvbWJpbmVkPWZ1bmN0aW9uKCl7cmV0dXJuIDIwOTcxNTJ9LHQucHJvdG90eXBlLmdldFdpZHRoPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX3dpZHRofSx0LnByb3RvdHlwZS5nZXRDaGFycz1mdW5jdGlvbigpe3JldHVybiB0aGlzLmNvbWJpbmVkRGF0YX0sdC5wcm90b3R5cGUuZ2V0Q29kZT1mdW5jdGlvbigpe3JldHVybiAyMDk3MTUxfSx0LnByb3RvdHlwZS5zZXRGcm9tQ2hhckRhdGE9ZnVuY3Rpb24oZSl7dGhyb3cgbmV3IEVycm9yKCJub3QgaW1wbGVtZW50ZWQiKX0sdC5wcm90b3R5cGUuZ2V0QXNDaGFyRGF0YT1mdW5jdGlvbigpe3JldHVyblt0aGlzLmZnLHRoaXMuZ2V0Q2hhcnMoKSx0aGlzLmdldFdpZHRoKCksdGhpcy5nZXRDb2RlKCldfSx0fShhLkF0dHJpYnV0ZURhdGEpO3QuSm9pbmVkQ2VsbERhdGE9aDt2YXIgZj1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoZSl7dGhpcy5fYnVmZmVyU2VydmljZT1lLHRoaXMuX2NoYXJhY3RlckpvaW5lcnM9W10sdGhpcy5fbmV4dENoYXJhY3RlckpvaW5lcklkPTAsdGhpcy5fd29ya0NlbGw9bmV3IGwuQ2VsbERhdGF9cmV0dXJuIGUucHJvdG90eXBlLnJlZ2lzdGVyPWZ1bmN0aW9uKGUpe3ZhciB0PXtpZDp0aGlzLl9uZXh0Q2hhcmFjdGVySm9pbmVySWQrKyxoYW5kbGVyOmV9O3JldHVybiB0aGlzLl9jaGFyYWN0ZXJKb2luZXJzLnB1c2godCksdC5pZH0sZS5wcm90b3R5cGUuZGVyZWdpc3Rlcj1mdW5jdGlvbihlKXtmb3IodmFyIHQ9MDt0PHRoaXMuX2NoYXJhY3RlckpvaW5lcnMubGVuZ3RoO3QrKylpZih0aGlzLl9jaGFyYWN0ZXJKb2luZXJzW3RdLmlkPT09ZSlyZXR1cm4gdGhpcy5fY2hhcmFjdGVySm9pbmVycy5zcGxpY2UodCwxKSwhMDtyZXR1cm4hMX0sZS5wcm90b3R5cGUuZ2V0Sm9pbmVkQ2hhcmFjdGVycz1mdW5jdGlvbihlKXtpZigwPT09dGhpcy5fY2hhcmFjdGVySm9pbmVycy5sZW5ndGgpcmV0dXJuW107dmFyIHQ9dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIubGluZXMuZ2V0KGUpO2lmKCF0fHwwPT09dC5sZW5ndGgpcmV0dXJuW107Zm9yKHZhciByPVtdLGk9dC50cmFuc2xhdGVUb1N0cmluZyghMCksbj0wLG89MCxzPTAsYT10LmdldEZnKDApLGw9dC5nZXRCZygwKSx1PTA7dTx0LmdldFRyaW1tZWRMZW5ndGgoKTt1KyspaWYodC5sb2FkQ2VsbCh1LHRoaXMuX3dvcmtDZWxsKSwwIT09dGhpcy5fd29ya0NlbGwuZ2V0V2lkdGgoKSl7aWYodGhpcy5fd29ya0NlbGwuZmchPT1hfHx0aGlzLl93b3JrQ2VsbC5iZyE9PWwpe2lmKHUtbj4xKWZvcih2YXIgaD10aGlzLl9nZXRKb2luZWRSYW5nZXMoaSxzLG8sdCxuKSxmPTA7ZjxoLmxlbmd0aDtmKyspci5wdXNoKGhbZl0pO249dSxzPW8sYT10aGlzLl93b3JrQ2VsbC5mZyxsPXRoaXMuX3dvcmtDZWxsLmJnfW8rPXRoaXMuX3dvcmtDZWxsLmdldENoYXJzKCkubGVuZ3RofHxjLldISVRFU1BBQ0VfQ0VMTF9DSEFSLmxlbmd0aH1pZih0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMtbj4xKWZvcihoPXRoaXMuX2dldEpvaW5lZFJhbmdlcyhpLHMsbyx0LG4pLGY9MDtmPGgubGVuZ3RoO2YrKylyLnB1c2goaFtmXSk7cmV0dXJuIHJ9LGUucHJvdG90eXBlLl9nZXRKb2luZWRSYW5nZXM9ZnVuY3Rpb24odCxyLGksbixvKXt2YXIgcz10LnN1YnN0cmluZyhyLGkpLGE9W107dHJ5e2E9dGhpcy5fY2hhcmFjdGVySm9pbmVyc1swXS5oYW5kbGVyKHMpfWNhdGNoKGUpe2NvbnNvbGUuZXJyb3IoZSl9Zm9yKHZhciBjPTE7Yzx0aGlzLl9jaGFyYWN0ZXJKb2luZXJzLmxlbmd0aDtjKyspdHJ5e2Zvcih2YXIgbD10aGlzLl9jaGFyYWN0ZXJKb2luZXJzW2NdLmhhbmRsZXIocyksdT0wO3U8bC5sZW5ndGg7dSsrKWUuX21lcmdlUmFuZ2VzKGEsbFt1XSl9Y2F0Y2goZSl7Y29uc29sZS5lcnJvcihlKX1yZXR1cm4gdGhpcy5fc3RyaW5nUmFuZ2VzVG9DZWxsUmFuZ2VzKGEsbixvKSxhfSxlLnByb3RvdHlwZS5fc3RyaW5nUmFuZ2VzVG9DZWxsUmFuZ2VzPWZ1bmN0aW9uKGUsdCxyKXt2YXIgaT0wLG49ITEsbz0wLHM9ZVtpXTtpZihzKXtmb3IodmFyIGE9cjthPHRoaXMuX2J1ZmZlclNlcnZpY2UuY29sczthKyspe3ZhciBsPXQuZ2V0V2lkdGgoYSksdT10LmdldFN0cmluZyhhKS5sZW5ndGh8fGMuV0hJVEVTUEFDRV9DRUxMX0NIQVIubGVuZ3RoO2lmKDAhPT1sKXtpZighbiYmc1swXTw9byYmKHNbMF09YSxuPSEwKSxzWzFdPD1vKXtpZihzWzFdPWEsIShzPWVbKytpXSkpYnJlYWs7c1swXTw9bz8oc1swXT1hLG49ITApOm49ITF9bys9dX19cyYmKHNbMV09dGhpcy5fYnVmZmVyU2VydmljZS5jb2xzKX19LGUuX21lcmdlUmFuZ2VzPWZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByPSExLGk9MDtpPGUubGVuZ3RoO2krKyl7dmFyIG49ZVtpXTtpZihyKXtpZih0WzFdPD1uWzBdKXJldHVybiBlW2ktMV1bMV09dFsxXSxlO2lmKHRbMV08PW5bMV0pcmV0dXJuIGVbaS0xXVsxXT1NYXRoLm1heCh0WzFdLG5bMV0pLGUuc3BsaWNlKGksMSksZTtlLnNwbGljZShpLDEpLGktLX1lbHNle2lmKHRbMV08PW5bMF0pcmV0dXJuIGUuc3BsaWNlKGksMCx0KSxlO2lmKHRbMV08PW5bMV0pcmV0dXJuIG5bMF09TWF0aC5taW4odFswXSxuWzBdKSxlO3RbMF08blsxXSYmKG5bMF09TWF0aC5taW4odFswXSxuWzBdKSxyPSEwKX19cmV0dXJuIHI/ZVtlLmxlbmd0aC0xXVsxXT10WzFdOmUucHVzaCh0KSxlfSxlPW8oW3MoMCx1LklCdWZmZXJTZXJ2aWNlKV0sZSl9KCk7dC5DaGFyYWN0ZXJKb2luZXJTZXJ2aWNlPWZ9LDUxMTQ6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Db3JlQnJvd3NlclNlcnZpY2U9dm9pZCAwO3ZhciByPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlKXt0aGlzLl90ZXh0YXJlYT1lfXJldHVybiBPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImlzRm9jdXNlZCIse2dldDpmdW5jdGlvbigpe3JldHVybih0aGlzLl90ZXh0YXJlYS5nZXRSb290Tm9kZT90aGlzLl90ZXh0YXJlYS5nZXRSb290Tm9kZSgpOmRvY3VtZW50KS5hY3RpdmVFbGVtZW50PT09dGhpcy5fdGV4dGFyZWEmJmRvY3VtZW50Lmhhc0ZvY3VzKCl9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksZX0oKTt0LkNvcmVCcm93c2VyU2VydmljZT1yfSw4OTM0OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaT10aGlzJiZ0aGlzLl9fZGVjb3JhdGV8fGZ1bmN0aW9uKGUsdCxyLGkpe3ZhciBuLG89YXJndW1lbnRzLmxlbmd0aCxzPW88Mz90Om51bGw9PT1pP2k9T2JqZWN0LmdldE93blByb3BlcnR5RGVzY3JpcHRvcih0LHIpOmk7aWYoIm9iamVjdCI9PXR5cGVvZiBSZWZsZWN0JiYiZnVuY3Rpb24iPT10eXBlb2YgUmVmbGVjdC5kZWNvcmF0ZSlzPVJlZmxlY3QuZGVjb3JhdGUoZSx0LHIsaSk7ZWxzZSBmb3IodmFyIGE9ZS5sZW5ndGgtMTthPj0wO2EtLSkobj1lW2FdKSYmKHM9KG88Mz9uKHMpOm8+Mz9uKHQscixzKTpuKHQscikpfHxzKTtyZXR1cm4gbz4zJiZzJiZPYmplY3QuZGVmaW5lUHJvcGVydHkodCxyLHMpLHN9LG49dGhpcyYmdGhpcy5fX3BhcmFtfHxmdW5jdGlvbihlLHQpe3JldHVybiBmdW5jdGlvbihyLGkpe3QocixpLGUpfX07T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuTW91c2VTZXJ2aWNlPXZvaWQgMDt2YXIgbz1yKDQ3MjUpLHM9cig5ODA2KSxhPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlLHQpe3RoaXMuX3JlbmRlclNlcnZpY2U9ZSx0aGlzLl9jaGFyU2l6ZVNlcnZpY2U9dH1yZXR1cm4gZS5wcm90b3R5cGUuZ2V0Q29vcmRzPWZ1bmN0aW9uKGUsdCxyLGksbil7cmV0dXJuKDAscy5nZXRDb29yZHMpKGUsdCxyLGksdGhpcy5fY2hhclNpemVTZXJ2aWNlLmhhc1ZhbGlkU2l6ZSx0aGlzLl9yZW5kZXJTZXJ2aWNlLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbFdpZHRoLHRoaXMuX3JlbmRlclNlcnZpY2UuZGltZW5zaW9ucy5hY3R1YWxDZWxsSGVpZ2h0LG4pfSxlLnByb3RvdHlwZS5nZXRSYXdCeXRlQ29vcmRzPWZ1bmN0aW9uKGUsdCxyLGkpe3ZhciBuPXRoaXMuZ2V0Q29vcmRzKGUsdCxyLGkpO3JldHVybigwLHMuZ2V0UmF3Qnl0ZUNvb3Jkcykobil9LGkoW24oMCxvLklSZW5kZXJTZXJ2aWNlKSxuKDEsby5JQ2hhclNpemVTZXJ2aWNlKV0sZSl9KCk7dC5Nb3VzZVNlcnZpY2U9YX0sMzIzMDpmdW5jdGlvbihlLHQscil7dmFyIGksbj10aGlzJiZ0aGlzLl9fZXh0ZW5kc3x8KGk9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gaT1PYmplY3Quc2V0UHJvdG90eXBlT2Z8fHtfX3Byb3RvX186W119aW5zdGFuY2VvZiBBcnJheSYmZnVuY3Rpb24oZSx0KXtlLl9fcHJvdG9fXz10fXx8ZnVuY3Rpb24oZSx0KXtmb3IodmFyIHIgaW4gdClPYmplY3QucHJvdG90eXBlLmhhc093blByb3BlcnR5LmNhbGwodCxyKSYmKGVbcl09dFtyXSl9LGkoZSx0KX0sZnVuY3Rpb24oZSx0KXtpZigiZnVuY3Rpb24iIT10eXBlb2YgdCYmbnVsbCE9PXQpdGhyb3cgbmV3IFR5cGVFcnJvcigiQ2xhc3MgZXh0ZW5kcyB2YWx1ZSAiK1N0cmluZyh0KSsiIGlzIG5vdCBhIGNvbnN0cnVjdG9yIG9yIG51bGwiKTtmdW5jdGlvbiByKCl7dGhpcy5jb25zdHJ1Y3Rvcj1lfWkoZSx0KSxlLnByb3RvdHlwZT1udWxsPT09dD9PYmplY3QuY3JlYXRlKHQpOihyLnByb3RvdHlwZT10LnByb3RvdHlwZSxuZXcgcil9KSxvPXRoaXMmJnRoaXMuX19kZWNvcmF0ZXx8ZnVuY3Rpb24oZSx0LHIsaSl7dmFyIG4sbz1hcmd1bWVudHMubGVuZ3RoLHM9bzwzP3Q6bnVsbD09PWk/aT1PYmplY3QuZ2V0T3duUHJvcGVydHlEZXNjcmlwdG9yKHQscik6aTtpZigib2JqZWN0Ij09dHlwZW9mIFJlZmxlY3QmJiJmdW5jdGlvbiI9PXR5cGVvZiBSZWZsZWN0LmRlY29yYXRlKXM9UmVmbGVjdC5kZWNvcmF0ZShlLHQscixpKTtlbHNlIGZvcih2YXIgYT1lLmxlbmd0aC0xO2E+PTA7YS0tKShuPWVbYV0pJiYocz0obzwzP24ocyk6bz4zP24odCxyLHMpOm4odCxyKSl8fHMpO3JldHVybiBvPjMmJnMmJk9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LHIscyksc30scz10aGlzJiZ0aGlzLl9fcGFyYW18fGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGZ1bmN0aW9uKHIsaSl7dChyLGksZSl9fTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5SZW5kZXJTZXJ2aWNlPXZvaWQgMDt2YXIgYT1yKDYxOTMpLGM9cig4NDYwKSxsPXIoODQ0KSx1PXIoNTU5NiksaD1yKDM2NTYpLGY9cigyNTg1KSxfPXIoNDcyNSksZD1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KHQscixpLG4sbyxzKXt2YXIgbD1lLmNhbGwodGhpcyl8fHRoaXM7aWYobC5fcmVuZGVyZXI9dCxsLl9yb3dDb3VudD1yLGwuX2NoYXJTaXplU2VydmljZT1vLGwuX2lzUGF1c2VkPSExLGwuX25lZWRzRnVsbFJlZnJlc2g9ITEsbC5faXNOZXh0UmVuZGVyUmVkcmF3T25seT0hMCxsLl9uZWVkc1NlbGVjdGlvblJlZnJlc2g9ITEsbC5fY2FudmFzV2lkdGg9MCxsLl9jYW52YXNIZWlnaHQ9MCxsLl9zZWxlY3Rpb25TdGF0ZT17c3RhcnQ6dm9pZCAwLGVuZDp2b2lkIDAsY29sdW1uU2VsZWN0TW9kZTohMX0sbC5fb25EaW1lbnNpb25zQ2hhbmdlPW5ldyBjLkV2ZW50RW1pdHRlcixsLl9vblJlbmRlcj1uZXcgYy5FdmVudEVtaXR0ZXIsbC5fb25SZWZyZXNoUmVxdWVzdD1uZXcgYy5FdmVudEVtaXR0ZXIsbC5yZWdpc3Rlcih7ZGlzcG9zZTpmdW5jdGlvbigpe3JldHVybiBsLl9yZW5kZXJlci5kaXNwb3NlKCl9fSksbC5fcmVuZGVyRGVib3VuY2VyPW5ldyBhLlJlbmRlckRlYm91bmNlcigoZnVuY3Rpb24oZSx0KXtyZXR1cm4gbC5fcmVuZGVyUm93cyhlLHQpfSkpLGwucmVnaXN0ZXIobC5fcmVuZGVyRGVib3VuY2VyKSxsLl9zY3JlZW5EcHJNb25pdG9yPW5ldyB1LlNjcmVlbkRwck1vbml0b3IsbC5fc2NyZWVuRHByTW9uaXRvci5zZXRMaXN0ZW5lcigoZnVuY3Rpb24oKXtyZXR1cm4gbC5vbkRldmljZVBpeGVsUmF0aW9DaGFuZ2UoKX0pKSxsLnJlZ2lzdGVyKGwuX3NjcmVlbkRwck1vbml0b3IpLGwucmVnaXN0ZXIocy5vblJlc2l6ZSgoZnVuY3Rpb24oZSl7cmV0dXJuIGwuX2Z1bGxSZWZyZXNoKCl9KSkpLGwucmVnaXN0ZXIobi5vbk9wdGlvbkNoYW5nZSgoZnVuY3Rpb24oKXtyZXR1cm4gbC5fcmVuZGVyZXIub25PcHRpb25zQ2hhbmdlZCgpfSkpKSxsLnJlZ2lzdGVyKGwuX2NoYXJTaXplU2VydmljZS5vbkNoYXJTaXplQ2hhbmdlKChmdW5jdGlvbigpe3JldHVybiBsLm9uQ2hhclNpemVDaGFuZ2VkKCl9KSkpLGwuX3JlbmRlcmVyLm9uUmVxdWVzdFJlZHJhdygoZnVuY3Rpb24oZSl7cmV0dXJuIGwucmVmcmVzaFJvd3MoZS5zdGFydCxlLmVuZCwhMCl9KSksbC5yZWdpc3RlcigoMCxoLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikod2luZG93LCJyZXNpemUiLChmdW5jdGlvbigpe3JldHVybiBsLm9uRGV2aWNlUGl4ZWxSYXRpb0NoYW5nZSgpfSkpKSwiSW50ZXJzZWN0aW9uT2JzZXJ2ZXIiaW4gd2luZG93KXt2YXIgZj1uZXcgSW50ZXJzZWN0aW9uT2JzZXJ2ZXIoKGZ1bmN0aW9uKGUpe3JldHVybiBsLl9vbkludGVyc2VjdGlvbkNoYW5nZShlW2UubGVuZ3RoLTFdKX0pLHt0aHJlc2hvbGQ6MH0pO2Yub2JzZXJ2ZShpKSxsLnJlZ2lzdGVyKHtkaXNwb3NlOmZ1bmN0aW9uKCl7cmV0dXJuIGYuZGlzY29ubmVjdCgpfX0pfXJldHVybiBsfXJldHVybiBuKHQsZSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvbkRpbWVuc2lvbnNDaGFuZ2UiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25EaW1lbnNpb25zQ2hhbmdlLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25SZW5kZXJlZEJ1ZmZlckNoYW5nZSIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vblJlbmRlci5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uUmVmcmVzaFJlcXVlc3QiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25SZWZyZXNoUmVxdWVzdC5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsImRpbWVuc2lvbnMiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fcmVuZGVyZXIuZGltZW5zaW9uc30sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSx0LnByb3RvdHlwZS5fb25JbnRlcnNlY3Rpb25DaGFuZ2U9ZnVuY3Rpb24oZSl7dGhpcy5faXNQYXVzZWQ9dm9pZCAwPT09ZS5pc0ludGVyc2VjdGluZz8wPT09ZS5pbnRlcnNlY3Rpb25SYXRpbzohZS5pc0ludGVyc2VjdGluZyx0aGlzLl9pc1BhdXNlZHx8dGhpcy5fY2hhclNpemVTZXJ2aWNlLmhhc1ZhbGlkU2l6ZXx8dGhpcy5fY2hhclNpemVTZXJ2aWNlLm1lYXN1cmUoKSwhdGhpcy5faXNQYXVzZWQmJnRoaXMuX25lZWRzRnVsbFJlZnJlc2gmJih0aGlzLnJlZnJlc2hSb3dzKDAsdGhpcy5fcm93Q291bnQtMSksdGhpcy5fbmVlZHNGdWxsUmVmcmVzaD0hMSl9LHQucHJvdG90eXBlLnJlZnJlc2hSb3dzPWZ1bmN0aW9uKGUsdCxyKXt2b2lkIDA9PT1yJiYocj0hMSksdGhpcy5faXNQYXVzZWQ/dGhpcy5fbmVlZHNGdWxsUmVmcmVzaD0hMDoocnx8KHRoaXMuX2lzTmV4dFJlbmRlclJlZHJhd09ubHk9ITEpLHRoaXMuX3JlbmRlckRlYm91bmNlci5yZWZyZXNoKGUsdCx0aGlzLl9yb3dDb3VudCkpfSx0LnByb3RvdHlwZS5fcmVuZGVyUm93cz1mdW5jdGlvbihlLHQpe3RoaXMuX3JlbmRlcmVyLnJlbmRlclJvd3MoZSx0KSx0aGlzLl9uZWVkc1NlbGVjdGlvblJlZnJlc2gmJih0aGlzLl9yZW5kZXJlci5vblNlbGVjdGlvbkNoYW5nZWQodGhpcy5fc2VsZWN0aW9uU3RhdGUuc3RhcnQsdGhpcy5fc2VsZWN0aW9uU3RhdGUuZW5kLHRoaXMuX3NlbGVjdGlvblN0YXRlLmNvbHVtblNlbGVjdE1vZGUpLHRoaXMuX25lZWRzU2VsZWN0aW9uUmVmcmVzaD0hMSksdGhpcy5faXNOZXh0UmVuZGVyUmVkcmF3T25seXx8dGhpcy5fb25SZW5kZXIuZmlyZSh7c3RhcnQ6ZSxlbmQ6dH0pLHRoaXMuX2lzTmV4dFJlbmRlclJlZHJhd09ubHk9ITB9LHQucHJvdG90eXBlLnJlc2l6ZT1mdW5jdGlvbihlLHQpe3RoaXMuX3Jvd0NvdW50PXQsdGhpcy5fZmlyZU9uQ2FudmFzUmVzaXplKCl9LHQucHJvdG90eXBlLmNoYW5nZU9wdGlvbnM9ZnVuY3Rpb24oKXt0aGlzLl9yZW5kZXJlci5vbk9wdGlvbnNDaGFuZ2VkKCksdGhpcy5yZWZyZXNoUm93cygwLHRoaXMuX3Jvd0NvdW50LTEpLHRoaXMuX2ZpcmVPbkNhbnZhc1Jlc2l6ZSgpfSx0LnByb3RvdHlwZS5fZmlyZU9uQ2FudmFzUmVzaXplPWZ1bmN0aW9uKCl7dGhpcy5fcmVuZGVyZXIuZGltZW5zaW9ucy5jYW52YXNXaWR0aD09PXRoaXMuX2NhbnZhc1dpZHRoJiZ0aGlzLl9yZW5kZXJlci5kaW1lbnNpb25zLmNhbnZhc0hlaWdodD09PXRoaXMuX2NhbnZhc0hlaWdodHx8dGhpcy5fb25EaW1lbnNpb25zQ2hhbmdlLmZpcmUodGhpcy5fcmVuZGVyZXIuZGltZW5zaW9ucyl9LHQucHJvdG90eXBlLmRpc3Bvc2U9ZnVuY3Rpb24oKXtlLnByb3RvdHlwZS5kaXNwb3NlLmNhbGwodGhpcyl9LHQucHJvdG90eXBlLnNldFJlbmRlcmVyPWZ1bmN0aW9uKGUpe3ZhciB0PXRoaXM7dGhpcy5fcmVuZGVyZXIuZGlzcG9zZSgpLHRoaXMuX3JlbmRlcmVyPWUsdGhpcy5fcmVuZGVyZXIub25SZXF1ZXN0UmVkcmF3KChmdW5jdGlvbihlKXtyZXR1cm4gdC5yZWZyZXNoUm93cyhlLnN0YXJ0LGUuZW5kLCEwKX0pKSx0aGlzLl9uZWVkc1NlbGVjdGlvblJlZnJlc2g9ITAsdGhpcy5fZnVsbFJlZnJlc2goKX0sdC5wcm90b3R5cGUuX2Z1bGxSZWZyZXNoPWZ1bmN0aW9uKCl7dGhpcy5faXNQYXVzZWQ/dGhpcy5fbmVlZHNGdWxsUmVmcmVzaD0hMDp0aGlzLnJlZnJlc2hSb3dzKDAsdGhpcy5fcm93Q291bnQtMSl9LHQucHJvdG90eXBlLmNsZWFyVGV4dHVyZUF0bGFzPWZ1bmN0aW9uKCl7dmFyIGUsdDtudWxsPT09KHQ9bnVsbD09PShlPXRoaXMuX3JlbmRlcmVyKXx8dm9pZCAwPT09ZT92b2lkIDA6ZS5jbGVhclRleHR1cmVBdGxhcyl8fHZvaWQgMD09PXR8fHQuY2FsbChlKSx0aGlzLl9mdWxsUmVmcmVzaCgpfSx0LnByb3RvdHlwZS5zZXRDb2xvcnM9ZnVuY3Rpb24oZSl7dGhpcy5fcmVuZGVyZXIuc2V0Q29sb3JzKGUpLHRoaXMuX2Z1bGxSZWZyZXNoKCl9LHQucHJvdG90eXBlLm9uRGV2aWNlUGl4ZWxSYXRpb0NoYW5nZT1mdW5jdGlvbigpe3RoaXMuX2NoYXJTaXplU2VydmljZS5tZWFzdXJlKCksdGhpcy5fcmVuZGVyZXIub25EZXZpY2VQaXhlbFJhdGlvQ2hhbmdlKCksdGhpcy5yZWZyZXNoUm93cygwLHRoaXMuX3Jvd0NvdW50LTEpfSx0LnByb3RvdHlwZS5vblJlc2l6ZT1mdW5jdGlvbihlLHQpe3RoaXMuX3JlbmRlcmVyLm9uUmVzaXplKGUsdCksdGhpcy5fZnVsbFJlZnJlc2goKX0sdC5wcm90b3R5cGUub25DaGFyU2l6ZUNoYW5nZWQ9ZnVuY3Rpb24oKXt0aGlzLl9yZW5kZXJlci5vbkNoYXJTaXplQ2hhbmdlZCgpfSx0LnByb3RvdHlwZS5vbkJsdXI9ZnVuY3Rpb24oKXt0aGlzLl9yZW5kZXJlci5vbkJsdXIoKX0sdC5wcm90b3R5cGUub25Gb2N1cz1mdW5jdGlvbigpe3RoaXMuX3JlbmRlcmVyLm9uRm9jdXMoKX0sdC5wcm90b3R5cGUub25TZWxlY3Rpb25DaGFuZ2VkPWZ1bmN0aW9uKGUsdCxyKXt0aGlzLl9zZWxlY3Rpb25TdGF0ZS5zdGFydD1lLHRoaXMuX3NlbGVjdGlvblN0YXRlLmVuZD10LHRoaXMuX3NlbGVjdGlvblN0YXRlLmNvbHVtblNlbGVjdE1vZGU9cix0aGlzLl9yZW5kZXJlci5vblNlbGVjdGlvbkNoYW5nZWQoZSx0LHIpfSx0LnByb3RvdHlwZS5vbkN1cnNvck1vdmU9ZnVuY3Rpb24oKXt0aGlzLl9yZW5kZXJlci5vbkN1cnNvck1vdmUoKX0sdC5wcm90b3R5cGUuY2xlYXI9ZnVuY3Rpb24oKXt0aGlzLl9yZW5kZXJlci5jbGVhcigpfSxvKFtzKDMsZi5JT3B0aW9uc1NlcnZpY2UpLHMoNCxfLklDaGFyU2l6ZVNlcnZpY2UpLHMoNSxmLklCdWZmZXJTZXJ2aWNlKV0sdCl9KGwuRGlzcG9zYWJsZSk7dC5SZW5kZXJTZXJ2aWNlPWR9LDkzMTI6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpLG49dGhpcyYmdGhpcy5fX2V4dGVuZHN8fChpPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGk9T2JqZWN0LnNldFByb3RvdHlwZU9mfHx7X19wcm90b19fOltdfWluc3RhbmNlb2YgQXJyYXkmJmZ1bmN0aW9uKGUsdCl7ZS5fX3Byb3RvX189dH18fGZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByIGluIHQpT2JqZWN0LnByb3RvdHlwZS5oYXNPd25Qcm9wZXJ0eS5jYWxsKHQscikmJihlW3JdPXRbcl0pfSxpKGUsdCl9LGZ1bmN0aW9uKGUsdCl7aWYoImZ1bmN0aW9uIiE9dHlwZW9mIHQmJm51bGwhPT10KXRocm93IG5ldyBUeXBlRXJyb3IoIkNsYXNzIGV4dGVuZHMgdmFsdWUgIitTdHJpbmcodCkrIiBpcyBub3QgYSBjb25zdHJ1Y3RvciBvciBudWxsIik7ZnVuY3Rpb24gcigpe3RoaXMuY29uc3RydWN0b3I9ZX1pKGUsdCksZS5wcm90b3R5cGU9bnVsbD09PXQ/T2JqZWN0LmNyZWF0ZSh0KTooci5wcm90b3R5cGU9dC5wcm90b3R5cGUsbmV3IHIpfSksbz10aGlzJiZ0aGlzLl9fZGVjb3JhdGV8fGZ1bmN0aW9uKGUsdCxyLGkpe3ZhciBuLG89YXJndW1lbnRzLmxlbmd0aCxzPW88Mz90Om51bGw9PT1pP2k9T2JqZWN0LmdldE93blByb3BlcnR5RGVzY3JpcHRvcih0LHIpOmk7aWYoIm9iamVjdCI9PXR5cGVvZiBSZWZsZWN0JiYiZnVuY3Rpb24iPT10eXBlb2YgUmVmbGVjdC5kZWNvcmF0ZSlzPVJlZmxlY3QuZGVjb3JhdGUoZSx0LHIsaSk7ZWxzZSBmb3IodmFyIGE9ZS5sZW5ndGgtMTthPj0wO2EtLSkobj1lW2FdKSYmKHM9KG88Mz9uKHMpOm8+Mz9uKHQscixzKTpuKHQscikpfHxzKTtyZXR1cm4gbz4zJiZzJiZPYmplY3QuZGVmaW5lUHJvcGVydHkodCxyLHMpLHN9LHM9dGhpcyYmdGhpcy5fX3BhcmFtfHxmdW5jdGlvbihlLHQpe3JldHVybiBmdW5jdGlvbihyLGkpe3QocixpLGUpfX07T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuU2VsZWN0aW9uU2VydmljZT12b2lkIDA7dmFyIGE9cig2MTE0KSxjPXIoNDU2KSxsPXIoNTExKSx1PXIoODQ2MCksaD1yKDQ3MjUpLGY9cigyNTg1KSxfPXIoOTgwNiksZD1yKDk1MDQpLHA9cig4NDQpLHY9cig0ODQxKSxnPVN0cmluZy5mcm9tQ2hhckNvZGUoMTYwKSx5PW5ldyBSZWdFeHAoZywiZyIpLG09ZnVuY3Rpb24oZSl7ZnVuY3Rpb24gdCh0LHIsaSxuLG8scyxhLGgpe3ZhciBmPWUuY2FsbCh0aGlzKXx8dGhpcztyZXR1cm4gZi5fZWxlbWVudD10LGYuX3NjcmVlbkVsZW1lbnQ9cixmLl9saW5raWZpZXI9aSxmLl9idWZmZXJTZXJ2aWNlPW4sZi5fY29yZVNlcnZpY2U9byxmLl9tb3VzZVNlcnZpY2U9cyxmLl9vcHRpb25zU2VydmljZT1hLGYuX3JlbmRlclNlcnZpY2U9aCxmLl9kcmFnU2Nyb2xsQW1vdW50PTAsZi5fZW5hYmxlZD0hMCxmLl93b3JrQ2VsbD1uZXcgbC5DZWxsRGF0YSxmLl9tb3VzZURvd25UaW1lU3RhbXA9MCxmLl9vbGRIYXNTZWxlY3Rpb249ITEsZi5fb2xkU2VsZWN0aW9uU3RhcnQ9dm9pZCAwLGYuX29sZFNlbGVjdGlvbkVuZD12b2lkIDAsZi5fb25MaW51eE1vdXNlU2VsZWN0aW9uPWYucmVnaXN0ZXIobmV3IHUuRXZlbnRFbWl0dGVyKSxmLl9vblJlZHJhd1JlcXVlc3Q9Zi5yZWdpc3RlcihuZXcgdS5FdmVudEVtaXR0ZXIpLGYuX29uU2VsZWN0aW9uQ2hhbmdlPWYucmVnaXN0ZXIobmV3IHUuRXZlbnRFbWl0dGVyKSxmLl9vblJlcXVlc3RTY3JvbGxMaW5lcz1mLnJlZ2lzdGVyKG5ldyB1LkV2ZW50RW1pdHRlciksZi5fbW91c2VNb3ZlTGlzdGVuZXI9ZnVuY3Rpb24oZSl7cmV0dXJuIGYuX29uTW91c2VNb3ZlKGUpfSxmLl9tb3VzZVVwTGlzdGVuZXI9ZnVuY3Rpb24oZSl7cmV0dXJuIGYuX29uTW91c2VVcChlKX0sZi5fY29yZVNlcnZpY2Uub25Vc2VySW5wdXQoKGZ1bmN0aW9uKCl7Zi5oYXNTZWxlY3Rpb24mJmYuY2xlYXJTZWxlY3Rpb24oKX0pKSxmLl90cmltTGlzdGVuZXI9Zi5fYnVmZmVyU2VydmljZS5idWZmZXIubGluZXMub25UcmltKChmdW5jdGlvbihlKXtyZXR1cm4gZi5fb25UcmltKGUpfSkpLGYucmVnaXN0ZXIoZi5fYnVmZmVyU2VydmljZS5idWZmZXJzLm9uQnVmZmVyQWN0aXZhdGUoKGZ1bmN0aW9uKGUpe3JldHVybiBmLl9vbkJ1ZmZlckFjdGl2YXRlKGUpfSkpKSxmLmVuYWJsZSgpLGYuX21vZGVsPW5ldyBjLlNlbGVjdGlvbk1vZGVsKGYuX2J1ZmZlclNlcnZpY2UpLGYuX2FjdGl2ZVNlbGVjdGlvbk1vZGU9MCxmfXJldHVybiBuKHQsZSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvbkxpbnV4TW91c2VTZWxlY3Rpb24iLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25MaW51eE1vdXNlU2VsZWN0aW9uLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25SZXF1ZXN0UmVkcmF3Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uUmVkcmF3UmVxdWVzdC5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uU2VsZWN0aW9uQ2hhbmdlIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uU2VsZWN0aW9uQ2hhbmdlLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25SZXF1ZXN0U2Nyb2xsTGluZXMiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25SZXF1ZXN0U2Nyb2xsTGluZXMuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksdC5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe3RoaXMuX3JlbW92ZU1vdXNlRG93bkxpc3RlbmVycygpfSx0LnByb3RvdHlwZS5yZXNldD1mdW5jdGlvbigpe3RoaXMuY2xlYXJTZWxlY3Rpb24oKX0sdC5wcm90b3R5cGUuZGlzYWJsZT1mdW5jdGlvbigpe3RoaXMuY2xlYXJTZWxlY3Rpb24oKSx0aGlzLl9lbmFibGVkPSExfSx0LnByb3RvdHlwZS5lbmFibGU9ZnVuY3Rpb24oKXt0aGlzLl9lbmFibGVkPSEwfSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsInNlbGVjdGlvblN0YXJ0Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX21vZGVsLmZpbmFsU2VsZWN0aW9uU3RhcnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJzZWxlY3Rpb25FbmQiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fbW9kZWwuZmluYWxTZWxlY3Rpb25FbmR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJoYXNTZWxlY3Rpb24iLHtnZXQ6ZnVuY3Rpb24oKXt2YXIgZT10aGlzLl9tb2RlbC5maW5hbFNlbGVjdGlvblN0YXJ0LHQ9dGhpcy5fbW9kZWwuZmluYWxTZWxlY3Rpb25FbmQ7cmV0dXJuISghZXx8IXR8fGVbMF09PT10WzBdJiZlWzFdPT09dFsxXSl9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJzZWxlY3Rpb25UZXh0Iix7Z2V0OmZ1bmN0aW9uKCl7dmFyIGU9dGhpcy5fbW9kZWwuZmluYWxTZWxlY3Rpb25TdGFydCx0PXRoaXMuX21vZGVsLmZpbmFsU2VsZWN0aW9uRW5kO2lmKCFlfHwhdClyZXR1cm4iIjt2YXIgcj10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlcixpPVtdO2lmKDM9PT10aGlzLl9hY3RpdmVTZWxlY3Rpb25Nb2RlKXtpZihlWzBdPT09dFswXSlyZXR1cm4iIjtmb3IodmFyIG49ZVsxXTtuPD10WzFdO24rKyl7dmFyIG89ci50cmFuc2xhdGVCdWZmZXJMaW5lVG9TdHJpbmcobiwhMCxlWzBdLHRbMF0pO2kucHVzaChvKX19ZWxzZXt2YXIgcz1lWzFdPT09dFsxXT90WzBdOnZvaWQgMDtmb3IoaS5wdXNoKHIudHJhbnNsYXRlQnVmZmVyTGluZVRvU3RyaW5nKGVbMV0sITAsZVswXSxzKSksbj1lWzFdKzE7bjw9dFsxXS0xO24rKyl7dmFyIGM9ci5saW5lcy5nZXQobik7bz1yLnRyYW5zbGF0ZUJ1ZmZlckxpbmVUb1N0cmluZyhuLCEwKSwobnVsbD09Yz92b2lkIDA6Yy5pc1dyYXBwZWQpP2lbaS5sZW5ndGgtMV0rPW86aS5wdXNoKG8pfWVbMV0hPT10WzFdJiYoYz1yLmxpbmVzLmdldCh0WzFdKSxvPXIudHJhbnNsYXRlQnVmZmVyTGluZVRvU3RyaW5nKHRbMV0sITAsMCx0WzBdKSxjJiZjLmlzV3JhcHBlZD9pW2kubGVuZ3RoLTFdKz1vOmkucHVzaChvKSl9cmV0dXJuIGkubWFwKChmdW5jdGlvbihlKXtyZXR1cm4gZS5yZXBsYWNlKHksIiAiKX0pKS5qb2luKGEuaXNXaW5kb3dzPyJcclxuIjoiXG4iKX0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSx0LnByb3RvdHlwZS5jbGVhclNlbGVjdGlvbj1mdW5jdGlvbigpe3RoaXMuX21vZGVsLmNsZWFyU2VsZWN0aW9uKCksdGhpcy5fcmVtb3ZlTW91c2VEb3duTGlzdGVuZXJzKCksdGhpcy5yZWZyZXNoKCksdGhpcy5fb25TZWxlY3Rpb25DaGFuZ2UuZmlyZSgpfSx0LnByb3RvdHlwZS5yZWZyZXNoPWZ1bmN0aW9uKGUpe3ZhciB0PXRoaXM7dGhpcy5fcmVmcmVzaEFuaW1hdGlvbkZyYW1lfHwodGhpcy5fcmVmcmVzaEFuaW1hdGlvbkZyYW1lPXdpbmRvdy5yZXF1ZXN0QW5pbWF0aW9uRnJhbWUoKGZ1bmN0aW9uKCl7cmV0dXJuIHQuX3JlZnJlc2goKX0pKSksYS5pc0xpbnV4JiZlJiZ0aGlzLnNlbGVjdGlvblRleHQubGVuZ3RoJiZ0aGlzLl9vbkxpbnV4TW91c2VTZWxlY3Rpb24uZmlyZSh0aGlzLnNlbGVjdGlvblRleHQpfSx0LnByb3RvdHlwZS5fcmVmcmVzaD1mdW5jdGlvbigpe3RoaXMuX3JlZnJlc2hBbmltYXRpb25GcmFtZT12b2lkIDAsdGhpcy5fb25SZWRyYXdSZXF1ZXN0LmZpcmUoe3N0YXJ0OnRoaXMuX21vZGVsLmZpbmFsU2VsZWN0aW9uU3RhcnQsZW5kOnRoaXMuX21vZGVsLmZpbmFsU2VsZWN0aW9uRW5kLGNvbHVtblNlbGVjdE1vZGU6Mz09PXRoaXMuX2FjdGl2ZVNlbGVjdGlvbk1vZGV9KX0sdC5wcm90b3R5cGUuX2lzQ2xpY2tJblNlbGVjdGlvbj1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9nZXRNb3VzZUJ1ZmZlckNvb3JkcyhlKSxyPXRoaXMuX21vZGVsLmZpbmFsU2VsZWN0aW9uU3RhcnQsaT10aGlzLl9tb2RlbC5maW5hbFNlbGVjdGlvbkVuZDtyZXR1cm4hIShyJiZpJiZ0KSYmdGhpcy5fYXJlQ29vcmRzSW5TZWxlY3Rpb24odCxyLGkpfSx0LnByb3RvdHlwZS5fYXJlQ29vcmRzSW5TZWxlY3Rpb249ZnVuY3Rpb24oZSx0LHIpe3JldHVybiBlWzFdPnRbMV0mJmVbMV08clsxXXx8dFsxXT09PXJbMV0mJmVbMV09PT10WzFdJiZlWzBdPj10WzBdJiZlWzBdPHJbMF18fHRbMV08clsxXSYmZVsxXT09PXJbMV0mJmVbMF08clswXXx8dFsxXTxyWzFdJiZlWzFdPT09dFsxXSYmZVswXT49dFswXX0sdC5wcm90b3R5cGUuX3NlbGVjdFdvcmRBdEN1cnNvcj1mdW5jdGlvbihlLHQpe3ZhciByLGksbj1udWxsPT09KGk9bnVsbD09PShyPXRoaXMuX2xpbmtpZmllci5jdXJyZW50TGluayl8fHZvaWQgMD09PXI/dm9pZCAwOnIubGluayl8fHZvaWQgMD09PWk/dm9pZCAwOmkucmFuZ2U7aWYobilyZXR1cm4gdGhpcy5fbW9kZWwuc2VsZWN0aW9uU3RhcnQ9W24uc3RhcnQueC0xLG4uc3RhcnQueS0xXSx0aGlzLl9tb2RlbC5zZWxlY3Rpb25TdGFydExlbmd0aD0oMCx2LmdldFJhbmdlTGVuZ3RoKShuLHRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyksdGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kPXZvaWQgMCwhMDt2YXIgbz10aGlzLl9nZXRNb3VzZUJ1ZmZlckNvb3JkcyhlKTtyZXR1cm4hIW8mJih0aGlzLl9zZWxlY3RXb3JkQXQobyx0KSx0aGlzLl9tb2RlbC5zZWxlY3Rpb25FbmQ9dm9pZCAwLCEwKX0sdC5wcm90b3R5cGUuc2VsZWN0QWxsPWZ1bmN0aW9uKCl7dGhpcy5fbW9kZWwuaXNTZWxlY3RBbGxBY3RpdmU9ITAsdGhpcy5yZWZyZXNoKCksdGhpcy5fb25TZWxlY3Rpb25DaGFuZ2UuZmlyZSgpfSx0LnByb3RvdHlwZS5zZWxlY3RMaW5lcz1mdW5jdGlvbihlLHQpe3RoaXMuX21vZGVsLmNsZWFyU2VsZWN0aW9uKCksZT1NYXRoLm1heChlLDApLHQ9TWF0aC5taW4odCx0aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci5saW5lcy5sZW5ndGgtMSksdGhpcy5fbW9kZWwuc2VsZWN0aW9uU3RhcnQ9WzAsZV0sdGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kPVt0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsdF0sdGhpcy5yZWZyZXNoKCksdGhpcy5fb25TZWxlY3Rpb25DaGFuZ2UuZmlyZSgpfSx0LnByb3RvdHlwZS5fb25UcmltPWZ1bmN0aW9uKGUpe3RoaXMuX21vZGVsLm9uVHJpbShlKSYmdGhpcy5yZWZyZXNoKCl9LHQucHJvdG90eXBlLl9nZXRNb3VzZUJ1ZmZlckNvb3Jkcz1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9tb3VzZVNlcnZpY2UuZ2V0Q29vcmRzKGUsdGhpcy5fc2NyZWVuRWxlbWVudCx0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsdGhpcy5fYnVmZmVyU2VydmljZS5yb3dzLCEwKTtpZih0KXJldHVybiB0WzBdLS0sdFsxXS0tLHRbMV0rPXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnlkaXNwLHR9LHQucHJvdG90eXBlLl9nZXRNb3VzZUV2ZW50U2Nyb2xsQW1vdW50PWZ1bmN0aW9uKGUpe3ZhciB0PSgwLF8uZ2V0Q29vcmRzUmVsYXRpdmVUb0VsZW1lbnQpKGUsdGhpcy5fc2NyZWVuRWxlbWVudClbMV0scj10aGlzLl9yZW5kZXJTZXJ2aWNlLmRpbWVuc2lvbnMuY2FudmFzSGVpZ2h0O3JldHVybiB0Pj0wJiZ0PD1yPzA6KHQ+ciYmKHQtPXIpLHQ9TWF0aC5taW4oTWF0aC5tYXgodCwtNTApLDUwKSwodC89NTApL01hdGguYWJzKHQpK01hdGgucm91bmQoMTQqdCkpfSx0LnByb3RvdHlwZS5zaG91bGRGb3JjZVNlbGVjdGlvbj1mdW5jdGlvbihlKXtyZXR1cm4gYS5pc01hYz9lLmFsdEtleSYmdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5tYWNPcHRpb25DbGlja0ZvcmNlc1NlbGVjdGlvbjplLnNoaWZ0S2V5fSx0LnByb3RvdHlwZS5vbk1vdXNlRG93bj1mdW5jdGlvbihlKXtpZih0aGlzLl9tb3VzZURvd25UaW1lU3RhbXA9ZS50aW1lU3RhbXAsKDIhPT1lLmJ1dHRvbnx8IXRoaXMuaGFzU2VsZWN0aW9uKSYmMD09PWUuYnV0dG9uKXtpZighdGhpcy5fZW5hYmxlZCl7aWYoIXRoaXMuc2hvdWxkRm9yY2VTZWxlY3Rpb24oZSkpcmV0dXJuO2Uuc3RvcFByb3BhZ2F0aW9uKCl9ZS5wcmV2ZW50RGVmYXVsdCgpLHRoaXMuX2RyYWdTY3JvbGxBbW91bnQ9MCx0aGlzLl9lbmFibGVkJiZlLnNoaWZ0S2V5P3RoaXMuX29uSW5jcmVtZW50YWxDbGljayhlKToxPT09ZS5kZXRhaWw/dGhpcy5fb25TaW5nbGVDbGljayhlKToyPT09ZS5kZXRhaWw/dGhpcy5fb25Eb3VibGVDbGljayhlKTozPT09ZS5kZXRhaWwmJnRoaXMuX29uVHJpcGxlQ2xpY2soZSksdGhpcy5fYWRkTW91c2VEb3duTGlzdGVuZXJzKCksdGhpcy5yZWZyZXNoKCEwKX19LHQucHJvdG90eXBlLl9hZGRNb3VzZURvd25MaXN0ZW5lcnM9ZnVuY3Rpb24oKXt2YXIgZT10aGlzO3RoaXMuX3NjcmVlbkVsZW1lbnQub3duZXJEb2N1bWVudCYmKHRoaXMuX3NjcmVlbkVsZW1lbnQub3duZXJEb2N1bWVudC5hZGRFdmVudExpc3RlbmVyKCJtb3VzZW1vdmUiLHRoaXMuX21vdXNlTW92ZUxpc3RlbmVyKSx0aGlzLl9zY3JlZW5FbGVtZW50Lm93bmVyRG9jdW1lbnQuYWRkRXZlbnRMaXN0ZW5lcigibW91c2V1cCIsdGhpcy5fbW91c2VVcExpc3RlbmVyKSksdGhpcy5fZHJhZ1Njcm9sbEludGVydmFsVGltZXI9d2luZG93LnNldEludGVydmFsKChmdW5jdGlvbigpe3JldHVybiBlLl9kcmFnU2Nyb2xsKCl9KSw1MCl9LHQucHJvdG90eXBlLl9yZW1vdmVNb3VzZURvd25MaXN0ZW5lcnM9ZnVuY3Rpb24oKXt0aGlzLl9zY3JlZW5FbGVtZW50Lm93bmVyRG9jdW1lbnQmJih0aGlzLl9zY3JlZW5FbGVtZW50Lm93bmVyRG9jdW1lbnQucmVtb3ZlRXZlbnRMaXN0ZW5lcigibW91c2Vtb3ZlIix0aGlzLl9tb3VzZU1vdmVMaXN0ZW5lciksdGhpcy5fc2NyZWVuRWxlbWVudC5vd25lckRvY3VtZW50LnJlbW92ZUV2ZW50TGlzdGVuZXIoIm1vdXNldXAiLHRoaXMuX21vdXNlVXBMaXN0ZW5lcikpLGNsZWFySW50ZXJ2YWwodGhpcy5fZHJhZ1Njcm9sbEludGVydmFsVGltZXIpLHRoaXMuX2RyYWdTY3JvbGxJbnRlcnZhbFRpbWVyPXZvaWQgMH0sdC5wcm90b3R5cGUuX29uSW5jcmVtZW50YWxDbGljaz1mdW5jdGlvbihlKXt0aGlzLl9tb2RlbC5zZWxlY3Rpb25TdGFydCYmKHRoaXMuX21vZGVsLnNlbGVjdGlvbkVuZD10aGlzLl9nZXRNb3VzZUJ1ZmZlckNvb3JkcyhlKSl9LHQucHJvdG90eXBlLl9vblNpbmdsZUNsaWNrPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX21vZGVsLnNlbGVjdGlvblN0YXJ0TGVuZ3RoPTAsdGhpcy5fbW9kZWwuaXNTZWxlY3RBbGxBY3RpdmU9ITEsdGhpcy5fYWN0aXZlU2VsZWN0aW9uTW9kZT10aGlzLnNob3VsZENvbHVtblNlbGVjdChlKT8zOjAsdGhpcy5fbW9kZWwuc2VsZWN0aW9uU3RhcnQ9dGhpcy5fZ2V0TW91c2VCdWZmZXJDb29yZHMoZSksdGhpcy5fbW9kZWwuc2VsZWN0aW9uU3RhcnQpe3RoaXMuX21vZGVsLnNlbGVjdGlvbkVuZD12b2lkIDA7dmFyIHQ9dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIubGluZXMuZ2V0KHRoaXMuX21vZGVsLnNlbGVjdGlvblN0YXJ0WzFdKTt0JiZ0Lmxlbmd0aCE9PXRoaXMuX21vZGVsLnNlbGVjdGlvblN0YXJ0WzBdJiYwPT09dC5oYXNXaWR0aCh0aGlzLl9tb2RlbC5zZWxlY3Rpb25TdGFydFswXSkmJnRoaXMuX21vZGVsLnNlbGVjdGlvblN0YXJ0WzBdKyt9fSx0LnByb3RvdHlwZS5fb25Eb3VibGVDbGljaz1mdW5jdGlvbihlKXt0aGlzLl9zZWxlY3RXb3JkQXRDdXJzb3IoZSwhMCkmJih0aGlzLl9hY3RpdmVTZWxlY3Rpb25Nb2RlPTEpfSx0LnByb3RvdHlwZS5fb25UcmlwbGVDbGljaz1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9nZXRNb3VzZUJ1ZmZlckNvb3JkcyhlKTt0JiYodGhpcy5fYWN0aXZlU2VsZWN0aW9uTW9kZT0yLHRoaXMuX3NlbGVjdExpbmVBdCh0WzFdKSl9LHQucHJvdG90eXBlLnNob3VsZENvbHVtblNlbGVjdD1mdW5jdGlvbihlKXtyZXR1cm4gZS5hbHRLZXkmJiEoYS5pc01hYyYmdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5tYWNPcHRpb25DbGlja0ZvcmNlc1NlbGVjdGlvbil9LHQucHJvdG90eXBlLl9vbk1vdXNlTW92ZT1mdW5jdGlvbihlKXtpZihlLnN0b3BJbW1lZGlhdGVQcm9wYWdhdGlvbigpLHRoaXMuX21vZGVsLnNlbGVjdGlvblN0YXJ0KXt2YXIgdD10aGlzLl9tb2RlbC5zZWxlY3Rpb25FbmQ/W3RoaXMuX21vZGVsLnNlbGVjdGlvbkVuZFswXSx0aGlzLl9tb2RlbC5zZWxlY3Rpb25FbmRbMV1dOm51bGw7aWYodGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kPXRoaXMuX2dldE1vdXNlQnVmZmVyQ29vcmRzKGUpLHRoaXMuX21vZGVsLnNlbGVjdGlvbkVuZCl7Mj09PXRoaXMuX2FjdGl2ZVNlbGVjdGlvbk1vZGU/dGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kWzFdPHRoaXMuX21vZGVsLnNlbGVjdGlvblN0YXJ0WzFdP3RoaXMuX21vZGVsLnNlbGVjdGlvbkVuZFswXT0wOnRoaXMuX21vZGVsLnNlbGVjdGlvbkVuZFswXT10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHM6MT09PXRoaXMuX2FjdGl2ZVNlbGVjdGlvbk1vZGUmJnRoaXMuX3NlbGVjdFRvV29yZEF0KHRoaXMuX21vZGVsLnNlbGVjdGlvbkVuZCksdGhpcy5fZHJhZ1Njcm9sbEFtb3VudD10aGlzLl9nZXRNb3VzZUV2ZW50U2Nyb2xsQW1vdW50KGUpLDMhPT10aGlzLl9hY3RpdmVTZWxlY3Rpb25Nb2RlJiYodGhpcy5fZHJhZ1Njcm9sbEFtb3VudD4wP3RoaXMuX21vZGVsLnNlbGVjdGlvbkVuZFswXT10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHM6dGhpcy5fZHJhZ1Njcm9sbEFtb3VudDwwJiYodGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kWzBdPTApKTt2YXIgcj10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlcjtpZih0aGlzLl9tb2RlbC5zZWxlY3Rpb25FbmRbMV08ci5saW5lcy5sZW5ndGgpe3ZhciBpPXIubGluZXMuZ2V0KHRoaXMuX21vZGVsLnNlbGVjdGlvbkVuZFsxXSk7aSYmMD09PWkuaGFzV2lkdGgodGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kWzBdKSYmdGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kWzBdKyt9dCYmdFswXT09PXRoaXMuX21vZGVsLnNlbGVjdGlvbkVuZFswXSYmdFsxXT09PXRoaXMuX21vZGVsLnNlbGVjdGlvbkVuZFsxXXx8dGhpcy5yZWZyZXNoKCEwKX1lbHNlIHRoaXMucmVmcmVzaCghMCl9fSx0LnByb3RvdHlwZS5fZHJhZ1Njcm9sbD1mdW5jdGlvbigpe2lmKHRoaXMuX21vZGVsLnNlbGVjdGlvbkVuZCYmdGhpcy5fbW9kZWwuc2VsZWN0aW9uU3RhcnQmJnRoaXMuX2RyYWdTY3JvbGxBbW91bnQpe3RoaXMuX29uUmVxdWVzdFNjcm9sbExpbmVzLmZpcmUoe2Ftb3VudDp0aGlzLl9kcmFnU2Nyb2xsQW1vdW50LHN1cHByZXNzU2Nyb2xsRXZlbnQ6ITF9KTt2YXIgZT10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlcjt0aGlzLl9kcmFnU2Nyb2xsQW1vdW50PjA/KDMhPT10aGlzLl9hY3RpdmVTZWxlY3Rpb25Nb2RlJiYodGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kWzBdPXRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyksdGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kWzFdPU1hdGgubWluKGUueWRpc3ArdGhpcy5fYnVmZmVyU2VydmljZS5yb3dzLGUubGluZXMubGVuZ3RoLTEpKTooMyE9PXRoaXMuX2FjdGl2ZVNlbGVjdGlvbk1vZGUmJih0aGlzLl9tb2RlbC5zZWxlY3Rpb25FbmRbMF09MCksdGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kWzFdPWUueWRpc3ApLHRoaXMucmVmcmVzaCgpfX0sdC5wcm90b3R5cGUuX29uTW91c2VVcD1mdW5jdGlvbihlKXt2YXIgdD1lLnRpbWVTdGFtcC10aGlzLl9tb3VzZURvd25UaW1lU3RhbXA7aWYodGhpcy5fcmVtb3ZlTW91c2VEb3duTGlzdGVuZXJzKCksdGhpcy5zZWxlY3Rpb25UZXh0Lmxlbmd0aDw9MSYmdDw1MDAmJmUuYWx0S2V5JiZ0aGlzLl9vcHRpb25zU2VydmljZS5nZXRPcHRpb24oImFsdENsaWNrTW92ZXNDdXJzb3IiKSl7aWYodGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueWJhc2U9PT10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55ZGlzcCl7dmFyIHI9dGhpcy5fbW91c2VTZXJ2aWNlLmdldENvb3JkcyhlLHRoaXMuX2VsZW1lbnQsdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLHRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cywhMSk7aWYociYmdm9pZCAwIT09clswXSYmdm9pZCAwIT09clsxXSl7dmFyIGk9KDAsZC5tb3ZlVG9DZWxsU2VxdWVuY2UpKHJbMF0tMSxyWzFdLTEsdGhpcy5fYnVmZmVyU2VydmljZSx0aGlzLl9jb3JlU2VydmljZS5kZWNQcml2YXRlTW9kZXMuYXBwbGljYXRpb25DdXJzb3JLZXlzKTt0aGlzLl9jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KGksITApfX19ZWxzZSB0aGlzLl9maXJlRXZlbnRJZlNlbGVjdGlvbkNoYW5nZWQoKX0sdC5wcm90b3R5cGUuX2ZpcmVFdmVudElmU2VsZWN0aW9uQ2hhbmdlZD1mdW5jdGlvbigpe3ZhciBlPXRoaXMuX21vZGVsLmZpbmFsU2VsZWN0aW9uU3RhcnQsdD10aGlzLl9tb2RlbC5maW5hbFNlbGVjdGlvbkVuZCxyPSEoIWV8fCF0fHxlWzBdPT09dFswXSYmZVsxXT09PXRbMV0pO3I/ZSYmdCYmKHRoaXMuX29sZFNlbGVjdGlvblN0YXJ0JiZ0aGlzLl9vbGRTZWxlY3Rpb25FbmQmJmVbMF09PT10aGlzLl9vbGRTZWxlY3Rpb25TdGFydFswXSYmZVsxXT09PXRoaXMuX29sZFNlbGVjdGlvblN0YXJ0WzFdJiZ0WzBdPT09dGhpcy5fb2xkU2VsZWN0aW9uRW5kWzBdJiZ0WzFdPT09dGhpcy5fb2xkU2VsZWN0aW9uRW5kWzFdfHx0aGlzLl9maXJlT25TZWxlY3Rpb25DaGFuZ2UoZSx0LHIpKTp0aGlzLl9vbGRIYXNTZWxlY3Rpb24mJnRoaXMuX2ZpcmVPblNlbGVjdGlvbkNoYW5nZShlLHQscil9LHQucHJvdG90eXBlLl9maXJlT25TZWxlY3Rpb25DaGFuZ2U9ZnVuY3Rpb24oZSx0LHIpe3RoaXMuX29sZFNlbGVjdGlvblN0YXJ0PWUsdGhpcy5fb2xkU2VsZWN0aW9uRW5kPXQsdGhpcy5fb2xkSGFzU2VsZWN0aW9uPXIsdGhpcy5fb25TZWxlY3Rpb25DaGFuZ2UuZmlyZSgpfSx0LnByb3RvdHlwZS5fb25CdWZmZXJBY3RpdmF0ZT1mdW5jdGlvbihlKXt2YXIgdD10aGlzO3RoaXMuY2xlYXJTZWxlY3Rpb24oKSx0aGlzLl90cmltTGlzdGVuZXIuZGlzcG9zZSgpLHRoaXMuX3RyaW1MaXN0ZW5lcj1lLmFjdGl2ZUJ1ZmZlci5saW5lcy5vblRyaW0oKGZ1bmN0aW9uKGUpe3JldHVybiB0Ll9vblRyaW0oZSl9KSl9LHQucHJvdG90eXBlLl9jb252ZXJ0Vmlld3BvcnRDb2xUb0NoYXJhY3RlckluZGV4PWZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByPXRbMF0saT0wO3RbMF0+PWk7aSsrKXt2YXIgbj1lLmxvYWRDZWxsKGksdGhpcy5fd29ya0NlbGwpLmdldENoYXJzKCkubGVuZ3RoOzA9PT10aGlzLl93b3JrQ2VsbC5nZXRXaWR0aCgpP3ItLTpuPjEmJnRbMF0hPT1pJiYocis9bi0xKX1yZXR1cm4gcn0sdC5wcm90b3R5cGUuc2V0U2VsZWN0aW9uPWZ1bmN0aW9uKGUsdCxyKXt0aGlzLl9tb2RlbC5jbGVhclNlbGVjdGlvbigpLHRoaXMuX3JlbW92ZU1vdXNlRG93bkxpc3RlbmVycygpLHRoaXMuX21vZGVsLnNlbGVjdGlvblN0YXJ0PVtlLHRdLHRoaXMuX21vZGVsLnNlbGVjdGlvblN0YXJ0TGVuZ3RoPXIsdGhpcy5yZWZyZXNoKCl9LHQucHJvdG90eXBlLnJpZ2h0Q2xpY2tTZWxlY3Q9ZnVuY3Rpb24oZSl7dGhpcy5faXNDbGlja0luU2VsZWN0aW9uKGUpfHwodGhpcy5fc2VsZWN0V29yZEF0Q3Vyc29yKGUsITEpJiZ0aGlzLnJlZnJlc2goITApLHRoaXMuX2ZpcmVFdmVudElmU2VsZWN0aW9uQ2hhbmdlZCgpKX0sdC5wcm90b3R5cGUuX2dldFdvcmRBdD1mdW5jdGlvbihlLHQscixpKXtpZih2b2lkIDA9PT1yJiYocj0hMCksdm9pZCAwPT09aSYmKGk9ITApLCEoZVswXT49dGhpcy5fYnVmZmVyU2VydmljZS5jb2xzKSl7dmFyIG49dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIsbz1uLmxpbmVzLmdldChlWzFdKTtpZihvKXt2YXIgcz1uLnRyYW5zbGF0ZUJ1ZmZlckxpbmVUb1N0cmluZyhlWzFdLCExKSxhPXRoaXMuX2NvbnZlcnRWaWV3cG9ydENvbFRvQ2hhcmFjdGVySW5kZXgobyxlKSxjPWEsbD1lWzBdLWEsdT0wLGg9MCxmPTAsXz0wO2lmKCIgIj09PXMuY2hhckF0KGEpKXtmb3IoO2E+MCYmIiAiPT09cy5jaGFyQXQoYS0xKTspYS0tO2Zvcig7YzxzLmxlbmd0aCYmIiAiPT09cy5jaGFyQXQoYysxKTspYysrfWVsc2V7dmFyIGQ9ZVswXSxwPWVbMF07MD09PW8uZ2V0V2lkdGgoZCkmJih1KyssZC0tKSwyPT09by5nZXRXaWR0aChwKSYmKGgrKyxwKyspO3ZhciB2PW8uZ2V0U3RyaW5nKHApLmxlbmd0aDtmb3Iodj4xJiYoXys9di0xLGMrPXYtMSk7ZD4wJiZhPjAmJiF0aGlzLl9pc0NoYXJXb3JkU2VwYXJhdG9yKG8ubG9hZENlbGwoZC0xLHRoaXMuX3dvcmtDZWxsKSk7KXtvLmxvYWRDZWxsKGQtMSx0aGlzLl93b3JrQ2VsbCk7dmFyIGc9dGhpcy5fd29ya0NlbGwuZ2V0Q2hhcnMoKS5sZW5ndGg7MD09PXRoaXMuX3dvcmtDZWxsLmdldFdpZHRoKCk/KHUrKyxkLS0pOmc+MSYmKGYrPWctMSxhLT1nLTEpLGEtLSxkLS19Zm9yKDtwPG8ubGVuZ3RoJiZjKzE8cy5sZW5ndGgmJiF0aGlzLl9pc0NoYXJXb3JkU2VwYXJhdG9yKG8ubG9hZENlbGwocCsxLHRoaXMuX3dvcmtDZWxsKSk7KXtvLmxvYWRDZWxsKHArMSx0aGlzLl93b3JrQ2VsbCk7dmFyIHk9dGhpcy5fd29ya0NlbGwuZ2V0Q2hhcnMoKS5sZW5ndGg7Mj09PXRoaXMuX3dvcmtDZWxsLmdldFdpZHRoKCk/KGgrKyxwKyspOnk+MSYmKF8rPXktMSxjKz15LTEpLGMrKyxwKyt9fWMrKzt2YXIgbT1hK2wtdStmLGI9TWF0aC5taW4odGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLGMtYSt1K2gtZi1fKTtpZih0fHwiIiE9PXMuc2xpY2UoYSxjKS50cmltKCkpe2lmKHImJjA9PT1tJiYzMiE9PW8uZ2V0Q29kZVBvaW50KDApKXt2YXIgUz1uLmxpbmVzLmdldChlWzFdLTEpO2lmKFMmJm8uaXNXcmFwcGVkJiYzMiE9PVMuZ2V0Q29kZVBvaW50KHRoaXMuX2J1ZmZlclNlcnZpY2UuY29scy0xKSl7dmFyIEM9dGhpcy5fZ2V0V29yZEF0KFt0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMtMSxlWzFdLTFdLCExLCEwLCExKTtpZihDKXt2YXIgdz10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMtQy5zdGFydDttLT13LGIrPXd9fX1pZihpJiZtK2I9PT10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMmJjMyIT09by5nZXRDb2RlUG9pbnQodGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLTEpKXt2YXIgTD1uLmxpbmVzLmdldChlWzFdKzEpO2lmKChudWxsPT1MP3ZvaWQgMDpMLmlzV3JhcHBlZCkmJjMyIT09TC5nZXRDb2RlUG9pbnQoMCkpe3ZhciBFPXRoaXMuX2dldFdvcmRBdChbMCxlWzFdKzFdLCExLCExLCEwKTtFJiYoYis9RS5sZW5ndGgpfX1yZXR1cm57c3RhcnQ6bSxsZW5ndGg6Yn19fX19LHQucHJvdG90eXBlLl9zZWxlY3RXb3JkQXQ9ZnVuY3Rpb24oZSx0KXt2YXIgcj10aGlzLl9nZXRXb3JkQXQoZSx0KTtpZihyKXtmb3IoO3Iuc3RhcnQ8MDspci5zdGFydCs9dGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLGVbMV0tLTt0aGlzLl9tb2RlbC5zZWxlY3Rpb25TdGFydD1bci5zdGFydCxlWzFdXSx0aGlzLl9tb2RlbC5zZWxlY3Rpb25TdGFydExlbmd0aD1yLmxlbmd0aH19LHQucHJvdG90eXBlLl9zZWxlY3RUb1dvcmRBdD1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9nZXRXb3JkQXQoZSwhMCk7aWYodCl7Zm9yKHZhciByPWVbMV07dC5zdGFydDwwOyl0LnN0YXJ0Kz10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsci0tO2lmKCF0aGlzLl9tb2RlbC5hcmVTZWxlY3Rpb25WYWx1ZXNSZXZlcnNlZCgpKWZvcig7dC5zdGFydCt0Lmxlbmd0aD50aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHM7KXQubGVuZ3RoLT10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMscisrO3RoaXMuX21vZGVsLnNlbGVjdGlvbkVuZD1bdGhpcy5fbW9kZWwuYXJlU2VsZWN0aW9uVmFsdWVzUmV2ZXJzZWQoKT90LnN0YXJ0OnQuc3RhcnQrdC5sZW5ndGgscl19fSx0LnByb3RvdHlwZS5faXNDaGFyV29yZFNlcGFyYXRvcj1mdW5jdGlvbihlKXtyZXR1cm4gMCE9PWUuZ2V0V2lkdGgoKSYmdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy53b3JkU2VwYXJhdG9yLmluZGV4T2YoZS5nZXRDaGFycygpKT49MH0sdC5wcm90b3R5cGUuX3NlbGVjdExpbmVBdD1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci5nZXRXcmFwcGVkUmFuZ2VGb3JMaW5lKGUpO3RoaXMuX21vZGVsLnNlbGVjdGlvblN0YXJ0PVswLHQuZmlyc3RdLHRoaXMuX21vZGVsLnNlbGVjdGlvbkVuZD1bdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLHQubGFzdF0sdGhpcy5fbW9kZWwuc2VsZWN0aW9uU3RhcnRMZW5ndGg9MH0sbyhbcygzLGYuSUJ1ZmZlclNlcnZpY2UpLHMoNCxmLklDb3JlU2VydmljZSkscyg1LGguSU1vdXNlU2VydmljZSkscyg2LGYuSU9wdGlvbnNTZXJ2aWNlKSxzKDcsaC5JUmVuZGVyU2VydmljZSldLHQpfShwLkRpc3Bvc2FibGUpO3QuU2VsZWN0aW9uU2VydmljZT1tfSw0NzI1OihlLHQscik9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5JQ2hhcmFjdGVySm9pbmVyU2VydmljZT10LklTb3VuZFNlcnZpY2U9dC5JU2VsZWN0aW9uU2VydmljZT10LklSZW5kZXJTZXJ2aWNlPXQuSU1vdXNlU2VydmljZT10LklDb3JlQnJvd3NlclNlcnZpY2U9dC5JQ2hhclNpemVTZXJ2aWNlPXZvaWQgMDt2YXIgaT1yKDgzNDMpO3QuSUNoYXJTaXplU2VydmljZT0oMCxpLmNyZWF0ZURlY29yYXRvcikoIkNoYXJTaXplU2VydmljZSIpLHQuSUNvcmVCcm93c2VyU2VydmljZT0oMCxpLmNyZWF0ZURlY29yYXRvcikoIkNvcmVCcm93c2VyU2VydmljZSIpLHQuSU1vdXNlU2VydmljZT0oMCxpLmNyZWF0ZURlY29yYXRvcikoIk1vdXNlU2VydmljZSIpLHQuSVJlbmRlclNlcnZpY2U9KDAsaS5jcmVhdGVEZWNvcmF0b3IpKCJSZW5kZXJTZXJ2aWNlIiksdC5JU2VsZWN0aW9uU2VydmljZT0oMCxpLmNyZWF0ZURlY29yYXRvcikoIlNlbGVjdGlvblNlcnZpY2UiKSx0LklTb3VuZFNlcnZpY2U9KDAsaS5jcmVhdGVEZWNvcmF0b3IpKCJTb3VuZFNlcnZpY2UiKSx0LklDaGFyYWN0ZXJKb2luZXJTZXJ2aWNlPSgwLGkuY3JlYXRlRGVjb3JhdG9yKSgiQ2hhcmFjdGVySm9pbmVyU2VydmljZSIpfSwzNTc6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPXRoaXMmJnRoaXMuX19kZWNvcmF0ZXx8ZnVuY3Rpb24oZSx0LHIsaSl7dmFyIG4sbz1hcmd1bWVudHMubGVuZ3RoLHM9bzwzP3Q6bnVsbD09PWk/aT1PYmplY3QuZ2V0T3duUHJvcGVydHlEZXNjcmlwdG9yKHQscik6aTtpZigib2JqZWN0Ij09dHlwZW9mIFJlZmxlY3QmJiJmdW5jdGlvbiI9PXR5cGVvZiBSZWZsZWN0LmRlY29yYXRlKXM9UmVmbGVjdC5kZWNvcmF0ZShlLHQscixpKTtlbHNlIGZvcih2YXIgYT1lLmxlbmd0aC0xO2E+PTA7YS0tKShuPWVbYV0pJiYocz0obzwzP24ocyk6bz4zP24odCxyLHMpOm4odCxyKSl8fHMpO3JldHVybiBvPjMmJnMmJk9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LHIscyksc30sbj10aGlzJiZ0aGlzLl9fcGFyYW18fGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGZ1bmN0aW9uKHIsaSl7dChyLGksZSl9fTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Tb3VuZFNlcnZpY2U9dm9pZCAwO3ZhciBvPXIoMjU4NSkscz1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoZSl7dGhpcy5fb3B0aW9uc1NlcnZpY2U9ZX1yZXR1cm4gT2JqZWN0LmRlZmluZVByb3BlcnR5KGUsImF1ZGlvQ29udGV4dCIse2dldDpmdW5jdGlvbigpe2lmKCFlLl9hdWRpb0NvbnRleHQpe3ZhciB0PXdpbmRvdy5BdWRpb0NvbnRleHR8fHdpbmRvdy53ZWJraXRBdWRpb0NvbnRleHQ7aWYoIXQpcmV0dXJuIGNvbnNvbGUud2FybigiV2ViIEF1ZGlvIEFQSSBpcyBub3Qgc3VwcG9ydGVkIGJ5IHRoaXMgYnJvd3Nlci4gQ29uc2lkZXIgdXBncmFkaW5nIHRvIHRoZSBsYXRlc3QgdmVyc2lvbiIpLG51bGw7ZS5fYXVkaW9Db250ZXh0PW5ldyB0fXJldHVybiBlLl9hdWRpb0NvbnRleHR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksZS5wcm90b3R5cGUucGxheUJlbGxTb3VuZD1mdW5jdGlvbigpe3ZhciB0PWUuYXVkaW9Db250ZXh0O2lmKHQpe3ZhciByPXQuY3JlYXRlQnVmZmVyU291cmNlKCk7dC5kZWNvZGVBdWRpb0RhdGEodGhpcy5fYmFzZTY0VG9BcnJheUJ1ZmZlcih0aGlzLl9yZW1vdmVNaW1lVHlwZSh0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmJlbGxTb3VuZCkpLChmdW5jdGlvbihlKXtyLmJ1ZmZlcj1lLHIuY29ubmVjdCh0LmRlc3RpbmF0aW9uKSxyLnN0YXJ0KDApfSkpfX0sZS5wcm90b3R5cGUuX2Jhc2U2NFRvQXJyYXlCdWZmZXI9ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PXdpbmRvdy5hdG9iKGUpLHI9dC5sZW5ndGgsaT1uZXcgVWludDhBcnJheShyKSxuPTA7bjxyO24rKylpW25dPXQuY2hhckNvZGVBdChuKTtyZXR1cm4gaS5idWZmZXJ9LGUucHJvdG90eXBlLl9yZW1vdmVNaW1lVHlwZT1mdW5jdGlvbihlKXtyZXR1cm4gZS5zcGxpdCgiLCIpWzFdfSxlPWkoW24oMCxvLklPcHRpb25zU2VydmljZSldLGUpfSgpO3QuU291bmRTZXJ2aWNlPXN9LDYzNDk6KGUsdCxyKT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkNpcmN1bGFyTGlzdD12b2lkIDA7dmFyIGk9cig4NDYwKSxuPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlKXt0aGlzLl9tYXhMZW5ndGg9ZSx0aGlzLm9uRGVsZXRlRW1pdHRlcj1uZXcgaS5FdmVudEVtaXR0ZXIsdGhpcy5vbkluc2VydEVtaXR0ZXI9bmV3IGkuRXZlbnRFbWl0dGVyLHRoaXMub25UcmltRW1pdHRlcj1uZXcgaS5FdmVudEVtaXR0ZXIsdGhpcy5fYXJyYXk9bmV3IEFycmF5KHRoaXMuX21heExlbmd0aCksdGhpcy5fc3RhcnRJbmRleD0wLHRoaXMuX2xlbmd0aD0wfXJldHVybiBPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsIm9uRGVsZXRlIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMub25EZWxldGVFbWl0dGVyLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwib25JbnNlcnQiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5vbkluc2VydEVtaXR0ZXIuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJvblRyaW0iLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5vblRyaW1FbWl0dGVyLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwibWF4TGVuZ3RoIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX21heExlbmd0aH0sc2V0OmZ1bmN0aW9uKGUpe2lmKHRoaXMuX21heExlbmd0aCE9PWUpe2Zvcih2YXIgdD1uZXcgQXJyYXkoZSkscj0wO3I8TWF0aC5taW4oZSx0aGlzLmxlbmd0aCk7cisrKXRbcl09dGhpcy5fYXJyYXlbdGhpcy5fZ2V0Q3ljbGljSW5kZXgocildO3RoaXMuX2FycmF5PXQsdGhpcy5fbWF4TGVuZ3RoPWUsdGhpcy5fc3RhcnRJbmRleD0wfX0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImxlbmd0aCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9sZW5ndGh9LHNldDpmdW5jdGlvbihlKXtpZihlPnRoaXMuX2xlbmd0aClmb3IodmFyIHQ9dGhpcy5fbGVuZ3RoO3Q8ZTt0KyspdGhpcy5fYXJyYXlbdF09dm9pZCAwO3RoaXMuX2xlbmd0aD1lfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLGUucHJvdG90eXBlLmdldD1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fYXJyYXlbdGhpcy5fZ2V0Q3ljbGljSW5kZXgoZSldfSxlLnByb3RvdHlwZS5zZXQ9ZnVuY3Rpb24oZSx0KXt0aGlzLl9hcnJheVt0aGlzLl9nZXRDeWNsaWNJbmRleChlKV09dH0sZS5wcm90b3R5cGUucHVzaD1mdW5jdGlvbihlKXt0aGlzLl9hcnJheVt0aGlzLl9nZXRDeWNsaWNJbmRleCh0aGlzLl9sZW5ndGgpXT1lLHRoaXMuX2xlbmd0aD09PXRoaXMuX21heExlbmd0aD8odGhpcy5fc3RhcnRJbmRleD0rK3RoaXMuX3N0YXJ0SW5kZXgldGhpcy5fbWF4TGVuZ3RoLHRoaXMub25UcmltRW1pdHRlci5maXJlKDEpKTp0aGlzLl9sZW5ndGgrK30sZS5wcm90b3R5cGUucmVjeWNsZT1mdW5jdGlvbigpe2lmKHRoaXMuX2xlbmd0aCE9PXRoaXMuX21heExlbmd0aCl0aHJvdyBuZXcgRXJyb3IoIkNhbiBvbmx5IHJlY3ljbGUgd2hlbiB0aGUgYnVmZmVyIGlzIGZ1bGwiKTtyZXR1cm4gdGhpcy5fc3RhcnRJbmRleD0rK3RoaXMuX3N0YXJ0SW5kZXgldGhpcy5fbWF4TGVuZ3RoLHRoaXMub25UcmltRW1pdHRlci5maXJlKDEpLHRoaXMuX2FycmF5W3RoaXMuX2dldEN5Y2xpY0luZGV4KHRoaXMuX2xlbmd0aC0xKV19LE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwiaXNGdWxsIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2xlbmd0aD09PXRoaXMuX21heExlbmd0aH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxlLnByb3RvdHlwZS5wb3A9ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fYXJyYXlbdGhpcy5fZ2V0Q3ljbGljSW5kZXgodGhpcy5fbGVuZ3RoLS0tMSldfSxlLnByb3RvdHlwZS5zcGxpY2U9ZnVuY3Rpb24oZSx0KXtmb3IodmFyIHI9W10saT0yO2k8YXJndW1lbnRzLmxlbmd0aDtpKyspcltpLTJdPWFyZ3VtZW50c1tpXTtpZih0KXtmb3IodmFyIG49ZTtuPHRoaXMuX2xlbmd0aC10O24rKyl0aGlzLl9hcnJheVt0aGlzLl9nZXRDeWNsaWNJbmRleChuKV09dGhpcy5fYXJyYXlbdGhpcy5fZ2V0Q3ljbGljSW5kZXgobit0KV07dGhpcy5fbGVuZ3RoLT10LHRoaXMub25EZWxldGVFbWl0dGVyLmZpcmUoe2luZGV4OmUsYW1vdW50OnR9KX1mb3Iobj10aGlzLl9sZW5ndGgtMTtuPj1lO24tLSl0aGlzLl9hcnJheVt0aGlzLl9nZXRDeWNsaWNJbmRleChuK3IubGVuZ3RoKV09dGhpcy5fYXJyYXlbdGhpcy5fZ2V0Q3ljbGljSW5kZXgobildO2ZvcihuPTA7bjxyLmxlbmd0aDtuKyspdGhpcy5fYXJyYXlbdGhpcy5fZ2V0Q3ljbGljSW5kZXgoZStuKV09cltuXTtpZihyLmxlbmd0aCYmdGhpcy5vbkluc2VydEVtaXR0ZXIuZmlyZSh7aW5kZXg6ZSxhbW91bnQ6ci5sZW5ndGh9KSx0aGlzLl9sZW5ndGgrci5sZW5ndGg+dGhpcy5fbWF4TGVuZ3RoKXt2YXIgbz10aGlzLl9sZW5ndGgrci5sZW5ndGgtdGhpcy5fbWF4TGVuZ3RoO3RoaXMuX3N0YXJ0SW5kZXgrPW8sdGhpcy5fbGVuZ3RoPXRoaXMuX21heExlbmd0aCx0aGlzLm9uVHJpbUVtaXR0ZXIuZmlyZShvKX1lbHNlIHRoaXMuX2xlbmd0aCs9ci5sZW5ndGh9LGUucHJvdG90eXBlLnRyaW1TdGFydD1mdW5jdGlvbihlKXtlPnRoaXMuX2xlbmd0aCYmKGU9dGhpcy5fbGVuZ3RoKSx0aGlzLl9zdGFydEluZGV4Kz1lLHRoaXMuX2xlbmd0aC09ZSx0aGlzLm9uVHJpbUVtaXR0ZXIuZmlyZShlKX0sZS5wcm90b3R5cGUuc2hpZnRFbGVtZW50cz1mdW5jdGlvbihlLHQscil7aWYoISh0PD0wKSl7aWYoZTwwfHxlPj10aGlzLl9sZW5ndGgpdGhyb3cgbmV3IEVycm9yKCJzdGFydCBhcmd1bWVudCBvdXQgb2YgcmFuZ2UiKTtpZihlK3I8MCl0aHJvdyBuZXcgRXJyb3IoIkNhbm5vdCBzaGlmdCBlbGVtZW50cyBpbiBsaXN0IGJleW9uZCBpbmRleCAwIik7aWYocj4wKXtmb3IodmFyIGk9dC0xO2k+PTA7aS0tKXRoaXMuc2V0KGUraStyLHRoaXMuZ2V0KGUraSkpO3ZhciBuPWUrdCtyLXRoaXMuX2xlbmd0aDtpZihuPjApZm9yKHRoaXMuX2xlbmd0aCs9bjt0aGlzLl9sZW5ndGg+dGhpcy5fbWF4TGVuZ3RoOyl0aGlzLl9sZW5ndGgtLSx0aGlzLl9zdGFydEluZGV4KyssdGhpcy5vblRyaW1FbWl0dGVyLmZpcmUoMSl9ZWxzZSBmb3IoaT0wO2k8dDtpKyspdGhpcy5zZXQoZStpK3IsdGhpcy5nZXQoZStpKSl9fSxlLnByb3RvdHlwZS5fZ2V0Q3ljbGljSW5kZXg9ZnVuY3Rpb24oZSl7cmV0dXJuKHRoaXMuX3N0YXJ0SW5kZXgrZSkldGhpcy5fbWF4TGVuZ3RofSxlfSgpO3QuQ2lyY3VsYXJMaXN0PW59LDE0Mzk6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5jbG9uZT12b2lkIDAsdC5jbG9uZT1mdW5jdGlvbiBlKHQscil7aWYodm9pZCAwPT09ciYmKHI9NSksIm9iamVjdCIhPXR5cGVvZiB0KXJldHVybiB0O3ZhciBpPUFycmF5LmlzQXJyYXkodCk/W106e307Zm9yKHZhciBuIGluIHQpaVtuXT1yPD0xP3Rbbl06dFtuXSYmZSh0W25dLHItMSk7cmV0dXJuIGl9fSw4OTY5OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pO09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkNvcmVUZXJtaW5hbD12b2lkIDA7dmFyIG89cig4NDQpLHM9cigyNTg1KSxhPXIoNDM0OCksYz1yKDc4NjYpLGw9cig3NDQpLHU9cig3MzAyKSxoPXIoNjk3NSksZj1yKDg0NjApLF89cigxNzUzKSxkPXIoMzczMCkscD1yKDE0ODApLHY9cig3OTk0KSxnPXIoOTI4MikseT1yKDU0MzUpLG09cig1OTgxKSxiPSExLFM9ZnVuY3Rpb24oZSl7ZnVuY3Rpb24gdCh0KXt2YXIgcj1lLmNhbGwodGhpcyl8fHRoaXM7cmV0dXJuIHIuX29uQmluYXJ5PW5ldyBmLkV2ZW50RW1pdHRlcixyLl9vbkRhdGE9bmV3IGYuRXZlbnRFbWl0dGVyLHIuX29uTGluZUZlZWQ9bmV3IGYuRXZlbnRFbWl0dGVyLHIuX29uUmVzaXplPW5ldyBmLkV2ZW50RW1pdHRlcixyLl9vblNjcm9sbD1uZXcgZi5FdmVudEVtaXR0ZXIsci5faW5zdGFudGlhdGlvblNlcnZpY2U9bmV3IGEuSW5zdGFudGlhdGlvblNlcnZpY2Usci5vcHRpb25zU2VydmljZT1uZXcgdS5PcHRpb25zU2VydmljZSh0KSxyLl9pbnN0YW50aWF0aW9uU2VydmljZS5zZXRTZXJ2aWNlKHMuSU9wdGlvbnNTZXJ2aWNlLHIub3B0aW9uc1NlcnZpY2UpLHIuX2J1ZmZlclNlcnZpY2U9ci5yZWdpc3RlcihyLl9pbnN0YW50aWF0aW9uU2VydmljZS5jcmVhdGVJbnN0YW5jZShsLkJ1ZmZlclNlcnZpY2UpKSxyLl9pbnN0YW50aWF0aW9uU2VydmljZS5zZXRTZXJ2aWNlKHMuSUJ1ZmZlclNlcnZpY2Usci5fYnVmZmVyU2VydmljZSksci5fbG9nU2VydmljZT1yLl9pbnN0YW50aWF0aW9uU2VydmljZS5jcmVhdGVJbnN0YW5jZShjLkxvZ1NlcnZpY2UpLHIuX2luc3RhbnRpYXRpb25TZXJ2aWNlLnNldFNlcnZpY2Uocy5JTG9nU2VydmljZSxyLl9sb2dTZXJ2aWNlKSxyLmNvcmVTZXJ2aWNlPXIucmVnaXN0ZXIoci5faW5zdGFudGlhdGlvblNlcnZpY2UuY3JlYXRlSW5zdGFuY2UoaC5Db3JlU2VydmljZSwoZnVuY3Rpb24oKXtyZXR1cm4gci5zY3JvbGxUb0JvdHRvbSgpfSkpKSxyLl9pbnN0YW50aWF0aW9uU2VydmljZS5zZXRTZXJ2aWNlKHMuSUNvcmVTZXJ2aWNlLHIuY29yZVNlcnZpY2UpLHIuY29yZU1vdXNlU2VydmljZT1yLl9pbnN0YW50aWF0aW9uU2VydmljZS5jcmVhdGVJbnN0YW5jZShfLkNvcmVNb3VzZVNlcnZpY2UpLHIuX2luc3RhbnRpYXRpb25TZXJ2aWNlLnNldFNlcnZpY2Uocy5JQ29yZU1vdXNlU2VydmljZSxyLmNvcmVNb3VzZVNlcnZpY2UpLHIuX2RpcnR5Um93U2VydmljZT1yLl9pbnN0YW50aWF0aW9uU2VydmljZS5jcmVhdGVJbnN0YW5jZShkLkRpcnR5Um93U2VydmljZSksci5faW5zdGFudGlhdGlvblNlcnZpY2Uuc2V0U2VydmljZShzLklEaXJ0eVJvd1NlcnZpY2Usci5fZGlydHlSb3dTZXJ2aWNlKSxyLnVuaWNvZGVTZXJ2aWNlPXIuX2luc3RhbnRpYXRpb25TZXJ2aWNlLmNyZWF0ZUluc3RhbmNlKHAuVW5pY29kZVNlcnZpY2UpLHIuX2luc3RhbnRpYXRpb25TZXJ2aWNlLnNldFNlcnZpY2Uocy5JVW5pY29kZVNlcnZpY2Usci51bmljb2RlU2VydmljZSksci5fY2hhcnNldFNlcnZpY2U9ci5faW5zdGFudGlhdGlvblNlcnZpY2UuY3JlYXRlSW5zdGFuY2Uodi5DaGFyc2V0U2VydmljZSksci5faW5zdGFudGlhdGlvblNlcnZpY2Uuc2V0U2VydmljZShzLklDaGFyc2V0U2VydmljZSxyLl9jaGFyc2V0U2VydmljZSksci5faW5wdXRIYW5kbGVyPW5ldyB5LklucHV0SGFuZGxlcihyLl9idWZmZXJTZXJ2aWNlLHIuX2NoYXJzZXRTZXJ2aWNlLHIuY29yZVNlcnZpY2Usci5fZGlydHlSb3dTZXJ2aWNlLHIuX2xvZ1NlcnZpY2Usci5vcHRpb25zU2VydmljZSxyLmNvcmVNb3VzZVNlcnZpY2Usci51bmljb2RlU2VydmljZSksci5yZWdpc3RlcigoMCxmLmZvcndhcmRFdmVudCkoci5faW5wdXRIYW5kbGVyLm9uTGluZUZlZWQsci5fb25MaW5lRmVlZCkpLHIucmVnaXN0ZXIoci5faW5wdXRIYW5kbGVyKSxyLnJlZ2lzdGVyKCgwLGYuZm9yd2FyZEV2ZW50KShyLl9idWZmZXJTZXJ2aWNlLm9uUmVzaXplLHIuX29uUmVzaXplKSksci5yZWdpc3RlcigoMCxmLmZvcndhcmRFdmVudCkoci5jb3JlU2VydmljZS5vbkRhdGEsci5fb25EYXRhKSksci5yZWdpc3RlcigoMCxmLmZvcndhcmRFdmVudCkoci5jb3JlU2VydmljZS5vbkJpbmFyeSxyLl9vbkJpbmFyeSkpLHIucmVnaXN0ZXIoci5vcHRpb25zU2VydmljZS5vbk9wdGlvbkNoYW5nZSgoZnVuY3Rpb24oZSl7cmV0dXJuIHIuX3VwZGF0ZU9wdGlvbnMoZSl9KSkpLHIucmVnaXN0ZXIoci5fYnVmZmVyU2VydmljZS5vblNjcm9sbCgoZnVuY3Rpb24oZSl7ci5fb25TY3JvbGwuZmlyZSh7cG9zaXRpb246ci5fYnVmZmVyU2VydmljZS5idWZmZXIueWRpc3Asc291cmNlOjB9KSxyLl9kaXJ0eVJvd1NlcnZpY2UubWFya1JhbmdlRGlydHkoci5fYnVmZmVyU2VydmljZS5idWZmZXIuc2Nyb2xsVG9wLHIuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnNjcm9sbEJvdHRvbSl9KSkpLHIucmVnaXN0ZXIoci5faW5wdXRIYW5kbGVyLm9uU2Nyb2xsKChmdW5jdGlvbihlKXtyLl9vblNjcm9sbC5maXJlKHtwb3NpdGlvbjpyLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55ZGlzcCxzb3VyY2U6MH0pLHIuX2RpcnR5Um93U2VydmljZS5tYXJrUmFuZ2VEaXJ0eShyLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci5zY3JvbGxUb3Asci5fYnVmZmVyU2VydmljZS5idWZmZXIuc2Nyb2xsQm90dG9tKX0pKSksci5fd3JpdGVCdWZmZXI9bmV3IG0uV3JpdGVCdWZmZXIoKGZ1bmN0aW9uKGUsdCl7cmV0dXJuIHIuX2lucHV0SGFuZGxlci5wYXJzZShlLHQpfSkpLHJ9cmV0dXJuIG4odCxlKSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uQmluYXJ5Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uQmluYXJ5LmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25EYXRhIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uRGF0YS5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uTGluZUZlZWQiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25MaW5lRmVlZC5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uUmVzaXplIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uUmVzaXplLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25TY3JvbGwiLHtnZXQ6ZnVuY3Rpb24oKXt2YXIgZT10aGlzO3JldHVybiB0aGlzLl9vblNjcm9sbEFwaXx8KHRoaXMuX29uU2Nyb2xsQXBpPW5ldyBmLkV2ZW50RW1pdHRlcix0aGlzLnJlZ2lzdGVyKHRoaXMuX29uU2Nyb2xsLmV2ZW50KChmdW5jdGlvbih0KXt2YXIgcjtudWxsPT09KHI9ZS5fb25TY3JvbGxBcGkpfHx2b2lkIDA9PT1yfHxyLmZpcmUodC5wb3NpdGlvbil9KSkpKSx0aGlzLl9vblNjcm9sbEFwaS5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsImNvbHMiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwicm93cyIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3N9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJidWZmZXJzIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyc30sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9wdGlvbnMiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5vcHRpb25zU2VydmljZS5vcHRpb25zfSxzZXQ6ZnVuY3Rpb24oZSl7Zm9yKHZhciB0IGluIGUpdGhpcy5vcHRpb25zU2VydmljZS5vcHRpb25zW3RdPWVbdF19LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksdC5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe3ZhciB0O3RoaXMuX2lzRGlzcG9zZWR8fChlLnByb3RvdHlwZS5kaXNwb3NlLmNhbGwodGhpcyksbnVsbD09PSh0PXRoaXMuX3dpbmRvd3NNb2RlKXx8dm9pZCAwPT09dHx8dC5kaXNwb3NlKCksdGhpcy5fd2luZG93c01vZGU9dm9pZCAwKX0sdC5wcm90b3R5cGUud3JpdGU9ZnVuY3Rpb24oZSx0KXt0aGlzLl93cml0ZUJ1ZmZlci53cml0ZShlLHQpfSx0LnByb3RvdHlwZS53cml0ZVN5bmM9ZnVuY3Rpb24oZSx0KXt0aGlzLl9sb2dTZXJ2aWNlLmxvZ0xldmVsPD1zLkxvZ0xldmVsRW51bS5XQVJOJiYhYiYmKHRoaXMuX2xvZ1NlcnZpY2Uud2Fybigid3JpdGVTeW5jIGlzIHVucmVsaWFibGUgYW5kIHdpbGwgYmUgcmVtb3ZlZCBzb29uLiIpLGI9ITApLHRoaXMuX3dyaXRlQnVmZmVyLndyaXRlU3luYyhlLHQpfSx0LnByb3RvdHlwZS5yZXNpemU9ZnVuY3Rpb24oZSx0KXtpc05hTihlKXx8aXNOYU4odCl8fChlPU1hdGgubWF4KGUsbC5NSU5JTVVNX0NPTFMpLHQ9TWF0aC5tYXgodCxsLk1JTklNVU1fUk9XUyksdGhpcy5fYnVmZmVyU2VydmljZS5yZXNpemUoZSx0KSl9LHQucHJvdG90eXBlLnNjcm9sbD1mdW5jdGlvbihlLHQpe3ZvaWQgMD09PXQmJih0PSExKSx0aGlzLl9idWZmZXJTZXJ2aWNlLnNjcm9sbChlLHQpfSx0LnByb3RvdHlwZS5zY3JvbGxMaW5lcz1mdW5jdGlvbihlLHQscil7dGhpcy5fYnVmZmVyU2VydmljZS5zY3JvbGxMaW5lcyhlLHQscil9LHQucHJvdG90eXBlLnNjcm9sbFBhZ2VzPWZ1bmN0aW9uKGUpe3RoaXMuX2J1ZmZlclNlcnZpY2Uuc2Nyb2xsUGFnZXMoZSl9LHQucHJvdG90eXBlLnNjcm9sbFRvVG9wPWZ1bmN0aW9uKCl7dGhpcy5fYnVmZmVyU2VydmljZS5zY3JvbGxUb1RvcCgpfSx0LnByb3RvdHlwZS5zY3JvbGxUb0JvdHRvbT1mdW5jdGlvbigpe3RoaXMuX2J1ZmZlclNlcnZpY2Uuc2Nyb2xsVG9Cb3R0b20oKX0sdC5wcm90b3R5cGUuc2Nyb2xsVG9MaW5lPWZ1bmN0aW9uKGUpe3RoaXMuX2J1ZmZlclNlcnZpY2Uuc2Nyb2xsVG9MaW5lKGUpfSx0LnByb3RvdHlwZS5yZWdpc3RlckVzY0hhbmRsZXI9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gdGhpcy5faW5wdXRIYW5kbGVyLnJlZ2lzdGVyRXNjSGFuZGxlcihlLHQpfSx0LnByb3RvdHlwZS5yZWdpc3RlckRjc0hhbmRsZXI9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gdGhpcy5faW5wdXRIYW5kbGVyLnJlZ2lzdGVyRGNzSGFuZGxlcihlLHQpfSx0LnByb3RvdHlwZS5yZWdpc3RlckNzaUhhbmRsZXI9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gdGhpcy5faW5wdXRIYW5kbGVyLnJlZ2lzdGVyQ3NpSGFuZGxlcihlLHQpfSx0LnByb3RvdHlwZS5yZWdpc3Rlck9zY0hhbmRsZXI9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gdGhpcy5faW5wdXRIYW5kbGVyLnJlZ2lzdGVyT3NjSGFuZGxlcihlLHQpfSx0LnByb3RvdHlwZS5fc2V0dXA9ZnVuY3Rpb24oKXt0aGlzLm9wdGlvbnNTZXJ2aWNlLm9wdGlvbnMud2luZG93c01vZGUmJnRoaXMuX2VuYWJsZVdpbmRvd3NNb2RlKCl9LHQucHJvdG90eXBlLnJlc2V0PWZ1bmN0aW9uKCl7dGhpcy5faW5wdXRIYW5kbGVyLnJlc2V0KCksdGhpcy5fYnVmZmVyU2VydmljZS5yZXNldCgpLHRoaXMuX2NoYXJzZXRTZXJ2aWNlLnJlc2V0KCksdGhpcy5jb3JlU2VydmljZS5yZXNldCgpLHRoaXMuY29yZU1vdXNlU2VydmljZS5yZXNldCgpfSx0LnByb3RvdHlwZS5fdXBkYXRlT3B0aW9ucz1mdW5jdGlvbihlKXt2YXIgdDtzd2l0Y2goZSl7Y2FzZSJzY3JvbGxiYWNrIjp0aGlzLmJ1ZmZlcnMucmVzaXplKHRoaXMuY29scyx0aGlzLnJvd3MpO2JyZWFrO2Nhc2Uid2luZG93c01vZGUiOnRoaXMub3B0aW9uc1NlcnZpY2Uub3B0aW9ucy53aW5kb3dzTW9kZT90aGlzLl9lbmFibGVXaW5kb3dzTW9kZSgpOihudWxsPT09KHQ9dGhpcy5fd2luZG93c01vZGUpfHx2b2lkIDA9PT10fHx0LmRpc3Bvc2UoKSx0aGlzLl93aW5kb3dzTW9kZT12b2lkIDApfX0sdC5wcm90b3R5cGUuX2VuYWJsZVdpbmRvd3NNb2RlPWZ1bmN0aW9uKCl7dmFyIGU9dGhpcztpZighdGhpcy5fd2luZG93c01vZGUpe3ZhciB0PVtdO3QucHVzaCh0aGlzLm9uTGluZUZlZWQoZy51cGRhdGVXaW5kb3dzTW9kZVdyYXBwZWRTdGF0ZS5iaW5kKG51bGwsdGhpcy5fYnVmZmVyU2VydmljZSkpKSx0LnB1c2godGhpcy5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJIIn0sKGZ1bmN0aW9uKCl7cmV0dXJuKDAsZy51cGRhdGVXaW5kb3dzTW9kZVdyYXBwZWRTdGF0ZSkoZS5fYnVmZmVyU2VydmljZSksITF9KSkpLHRoaXMuX3dpbmRvd3NNb2RlPXtkaXNwb3NlOmZ1bmN0aW9uKCl7Zm9yKHZhciBlPTAscj10O2U8ci5sZW5ndGg7ZSsrKXJbZV0uZGlzcG9zZSgpfX19fSx0fShvLkRpc3Bvc2FibGUpO3QuQ29yZVRlcm1pbmFsPVN9LDg0NjA6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5mb3J3YXJkRXZlbnQ9dC5FdmVudEVtaXR0ZXI9dm9pZCAwO3ZhciByPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZSgpe3RoaXMuX2xpc3RlbmVycz1bXSx0aGlzLl9kaXNwb3NlZD0hMX1yZXR1cm4gT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJldmVudCIse2dldDpmdW5jdGlvbigpe3ZhciBlPXRoaXM7cmV0dXJuIHRoaXMuX2V2ZW50fHwodGhpcy5fZXZlbnQ9ZnVuY3Rpb24odCl7cmV0dXJuIGUuX2xpc3RlbmVycy5wdXNoKHQpLHtkaXNwb3NlOmZ1bmN0aW9uKCl7aWYoIWUuX2Rpc3Bvc2VkKWZvcih2YXIgcj0wO3I8ZS5fbGlzdGVuZXJzLmxlbmd0aDtyKyspaWYoZS5fbGlzdGVuZXJzW3JdPT09dClyZXR1cm4gdm9pZCBlLl9saXN0ZW5lcnMuc3BsaWNlKHIsMSl9fX0pLHRoaXMuX2V2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLGUucHJvdG90eXBlLmZpcmU9ZnVuY3Rpb24oZSx0KXtmb3IodmFyIHI9W10saT0wO2k8dGhpcy5fbGlzdGVuZXJzLmxlbmd0aDtpKyspci5wdXNoKHRoaXMuX2xpc3RlbmVyc1tpXSk7Zm9yKGk9MDtpPHIubGVuZ3RoO2krKylyW2ldLmNhbGwodm9pZCAwLGUsdCl9LGUucHJvdG90eXBlLmRpc3Bvc2U9ZnVuY3Rpb24oKXt0aGlzLl9saXN0ZW5lcnMmJih0aGlzLl9saXN0ZW5lcnMubGVuZ3RoPTApLHRoaXMuX2Rpc3Bvc2VkPSEwfSxlfSgpO3QuRXZlbnRFbWl0dGVyPXIsdC5mb3J3YXJkRXZlbnQ9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSgoZnVuY3Rpb24oZSl7cmV0dXJuIHQuZmlyZShlKX0pKX19LDU0MzU6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpLG49dGhpcyYmdGhpcy5fX2V4dGVuZHN8fChpPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGk9T2JqZWN0LnNldFByb3RvdHlwZU9mfHx7X19wcm90b19fOltdfWluc3RhbmNlb2YgQXJyYXkmJmZ1bmN0aW9uKGUsdCl7ZS5fX3Byb3RvX189dH18fGZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByIGluIHQpT2JqZWN0LnByb3RvdHlwZS5oYXNPd25Qcm9wZXJ0eS5jYWxsKHQscikmJihlW3JdPXRbcl0pfSxpKGUsdCl9LGZ1bmN0aW9uKGUsdCl7aWYoImZ1bmN0aW9uIiE9dHlwZW9mIHQmJm51bGwhPT10KXRocm93IG5ldyBUeXBlRXJyb3IoIkNsYXNzIGV4dGVuZHMgdmFsdWUgIitTdHJpbmcodCkrIiBpcyBub3QgYSBjb25zdHJ1Y3RvciBvciBudWxsIik7ZnVuY3Rpb24gcigpe3RoaXMuY29uc3RydWN0b3I9ZX1pKGUsdCksZS5wcm90b3R5cGU9bnVsbD09PXQ/T2JqZWN0LmNyZWF0ZSh0KTooci5wcm90b3R5cGU9dC5wcm90b3R5cGUsbmV3IHIpfSk7T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuSW5wdXRIYW5kbGVyPXQuV2luZG93c09wdGlvbnNSZXBvcnRUeXBlPXZvaWQgMDt2YXIgbyxzPXIoMjU4NCksYT1yKDcxMTYpLGM9cigyMDE1KSxsPXIoODQ0KSx1PXIoODI3MyksaD1yKDQ4MiksZj1yKDg0MzcpLF89cig4NDYwKSxkPXIoNjQzKSxwPXIoNTExKSx2PXIoMzczNCksZz1yKDI1ODUpLHk9cig2MjQyKSxtPXIoNjM1MSksYj1yKDU5NDEpLFM9eyIoIjowLCIpIjoxLCIqIjoyLCIrIjozLCItIjoxLCIuIjoyfSxDPTEzMTA3MjtmdW5jdGlvbiB3KGUsdCl7aWYoZT4yNClyZXR1cm4gdC5zZXRXaW5MaW5lc3x8ITE7c3dpdGNoKGUpe2Nhc2UgMTpyZXR1cm4hIXQucmVzdG9yZVdpbjtjYXNlIDI6cmV0dXJuISF0Lm1pbmltaXplV2luO2Nhc2UgMzpyZXR1cm4hIXQuc2V0V2luUG9zaXRpb247Y2FzZSA0OnJldHVybiEhdC5zZXRXaW5TaXplUGl4ZWxzO2Nhc2UgNTpyZXR1cm4hIXQucmFpc2VXaW47Y2FzZSA2OnJldHVybiEhdC5sb3dlcldpbjtjYXNlIDc6cmV0dXJuISF0LnJlZnJlc2hXaW47Y2FzZSA4OnJldHVybiEhdC5zZXRXaW5TaXplQ2hhcnM7Y2FzZSA5OnJldHVybiEhdC5tYXhpbWl6ZVdpbjtjYXNlIDEwOnJldHVybiEhdC5mdWxsc2NyZWVuV2luO2Nhc2UgMTE6cmV0dXJuISF0LmdldFdpblN0YXRlO2Nhc2UgMTM6cmV0dXJuISF0LmdldFdpblBvc2l0aW9uO2Nhc2UgMTQ6cmV0dXJuISF0LmdldFdpblNpemVQaXhlbHM7Y2FzZSAxNTpyZXR1cm4hIXQuZ2V0U2NyZWVuU2l6ZVBpeGVscztjYXNlIDE2OnJldHVybiEhdC5nZXRDZWxsU2l6ZVBpeGVscztjYXNlIDE4OnJldHVybiEhdC5nZXRXaW5TaXplQ2hhcnM7Y2FzZSAxOTpyZXR1cm4hIXQuZ2V0U2NyZWVuU2l6ZUNoYXJzO2Nhc2UgMjA6cmV0dXJuISF0LmdldEljb25UaXRsZTtjYXNlIDIxOnJldHVybiEhdC5nZXRXaW5UaXRsZTtjYXNlIDIyOnJldHVybiEhdC5wdXNoVGl0bGU7Y2FzZSAyMzpyZXR1cm4hIXQucG9wVGl0bGU7Y2FzZSAyNDpyZXR1cm4hIXQuc2V0V2luTGluZXN9cmV0dXJuITF9IWZ1bmN0aW9uKGUpe2VbZS5HRVRfV0lOX1NJWkVfUElYRUxTPTBdPSJHRVRfV0lOX1NJWkVfUElYRUxTIixlW2UuR0VUX0NFTExfU0laRV9QSVhFTFM9MV09IkdFVF9DRUxMX1NJWkVfUElYRUxTIn0obz10LldpbmRvd3NPcHRpb25zUmVwb3J0VHlwZXx8KHQuV2luZG93c09wdGlvbnNSZXBvcnRUeXBlPXt9KSk7dmFyIEw9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUsdCxyLGkpe3RoaXMuX2J1ZmZlclNlcnZpY2U9ZSx0aGlzLl9jb3JlU2VydmljZT10LHRoaXMuX2xvZ1NlcnZpY2U9cix0aGlzLl9vcHRpb25zU2VydmljZT1pLHRoaXMuX2RhdGE9bmV3IFVpbnQzMkFycmF5KDApfXJldHVybiBlLnByb3RvdHlwZS5ob29rPWZ1bmN0aW9uKGUpe3RoaXMuX2RhdGE9bmV3IFVpbnQzMkFycmF5KDApfSxlLnByb3RvdHlwZS5wdXQ9ZnVuY3Rpb24oZSx0LHIpe3RoaXMuX2RhdGE9KDAsdS5jb25jYXQpKHRoaXMuX2RhdGEsZS5zdWJhcnJheSh0LHIpKX0sZS5wcm90b3R5cGUudW5ob29rPWZ1bmN0aW9uKGUpe2lmKCFlKXJldHVybiB0aGlzLl9kYXRhPW5ldyBVaW50MzJBcnJheSgwKSwhMDt2YXIgdD0oMCxoLnV0ZjMyVG9TdHJpbmcpKHRoaXMuX2RhdGEpO3N3aXRjaCh0aGlzLl9kYXRhPW5ldyBVaW50MzJBcnJheSgwKSx0KXtjYXNlJyJxJzp0aGlzLl9jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KHMuQzAuRVNDKydQMSRyMCJxJytzLkMwLkVTQysiXFwiKTticmVhaztjYXNlJyJwJzp0aGlzLl9jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KHMuQzAuRVNDKydQMSRyNjE7MSJwJytzLkMwLkVTQysiXFwiKTticmVhaztjYXNlInIiOnZhciByPXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnNjcm9sbFRvcCsxKyI7IisodGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIuc2Nyb2xsQm90dG9tKzEpKyJyIjt0aGlzLl9jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KHMuQzAuRVNDKyJQMSRyIityK3MuQzAuRVNDKyJcXCIpO2JyZWFrO2Nhc2UibSI6dGhpcy5fY29yZVNlcnZpY2UudHJpZ2dlckRhdGFFdmVudChzLkMwLkVTQysiUDEkcjBtIitzLkMwLkVTQysiXFwiKTticmVhaztjYXNlIiBxIjp2YXIgaT17YmxvY2s6Mix1bmRlcmxpbmU6NCxiYXI6Nn1bdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5jdXJzb3JTdHlsZV07aS09dGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5jdXJzb3JCbGluaz8xOjAsdGhpcy5fY29yZVNlcnZpY2UudHJpZ2dlckRhdGFFdmVudChzLkMwLkVTQysiUDEkciIraSsiIHEiK3MuQzAuRVNDKyJcXCIpO2JyZWFrO2RlZmF1bHQ6dGhpcy5fbG9nU2VydmljZS5kZWJ1ZygiVW5rbm93biBEQ1MgJHEgJXMiLHQpLHRoaXMuX2NvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQocy5DMC5FU0MrIlAwJHIiK3MuQzAuRVNDKyJcXCIpfXJldHVybiEwfSxlfSgpLEU9ZnVuY3Rpb24oZSl7ZnVuY3Rpb24gdCh0LHIsaSxuLG8sbCx1LGQsdil7dm9pZCAwPT09diYmKHY9bmV3IGMuRXNjYXBlU2VxdWVuY2VQYXJzZXIpO3ZhciBnPWUuY2FsbCh0aGlzKXx8dGhpcztnLl9idWZmZXJTZXJ2aWNlPXQsZy5fY2hhcnNldFNlcnZpY2U9cixnLl9jb3JlU2VydmljZT1pLGcuX2RpcnR5Um93U2VydmljZT1uLGcuX2xvZ1NlcnZpY2U9byxnLl9vcHRpb25zU2VydmljZT1sLGcuX2NvcmVNb3VzZVNlcnZpY2U9dSxnLl91bmljb2RlU2VydmljZT1kLGcuX3BhcnNlcj12LGcuX3BhcnNlQnVmZmVyPW5ldyBVaW50MzJBcnJheSg0MDk2KSxnLl9zdHJpbmdEZWNvZGVyPW5ldyBoLlN0cmluZ1RvVXRmMzIsZy5fdXRmOERlY29kZXI9bmV3IGguVXRmOFRvVXRmMzIsZy5fd29ya0NlbGw9bmV3IHAuQ2VsbERhdGEsZy5fd2luZG93VGl0bGU9IiIsZy5faWNvbk5hbWU9IiIsZy5fd2luZG93VGl0bGVTdGFjaz1bXSxnLl9pY29uTmFtZVN0YWNrPVtdLGcuX2N1ckF0dHJEYXRhPWYuREVGQVVMVF9BVFRSX0RBVEEuY2xvbmUoKSxnLl9lcmFzZUF0dHJEYXRhSW50ZXJuYWw9Zi5ERUZBVUxUX0FUVFJfREFUQS5jbG9uZSgpLGcuX29uUmVxdWVzdEJlbGw9bmV3IF8uRXZlbnRFbWl0dGVyLGcuX29uUmVxdWVzdFJlZnJlc2hSb3dzPW5ldyBfLkV2ZW50RW1pdHRlcixnLl9vblJlcXVlc3RSZXNldD1uZXcgXy5FdmVudEVtaXR0ZXIsZy5fb25SZXF1ZXN0U2VuZEZvY3VzPW5ldyBfLkV2ZW50RW1pdHRlcixnLl9vblJlcXVlc3RTeW5jU2Nyb2xsQmFyPW5ldyBfLkV2ZW50RW1pdHRlcixnLl9vblJlcXVlc3RXaW5kb3dzT3B0aW9uc1JlcG9ydD1uZXcgXy5FdmVudEVtaXR0ZXIsZy5fb25BMTF5Q2hhcj1uZXcgXy5FdmVudEVtaXR0ZXIsZy5fb25BMTF5VGFiPW5ldyBfLkV2ZW50RW1pdHRlcixnLl9vbkN1cnNvck1vdmU9bmV3IF8uRXZlbnRFbWl0dGVyLGcuX29uTGluZUZlZWQ9bmV3IF8uRXZlbnRFbWl0dGVyLGcuX29uU2Nyb2xsPW5ldyBfLkV2ZW50RW1pdHRlcixnLl9vblRpdGxlQ2hhbmdlPW5ldyBfLkV2ZW50RW1pdHRlcixnLl9vbkNvbG9yPW5ldyBfLkV2ZW50RW1pdHRlcixnLl9wYXJzZVN0YWNrPXtwYXVzZWQ6ITEsY3Vyc29yU3RhcnRYOjAsY3Vyc29yU3RhcnRZOjAsZGVjb2RlZExlbmd0aDowLHBvc2l0aW9uOjB9LGcuX3NwZWNpYWxDb2xvcnM9WzI1NiwyNTcsMjU4XSxnLnJlZ2lzdGVyKGcuX3BhcnNlciksZy5fYWN0aXZlQnVmZmVyPWcuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLGcucmVnaXN0ZXIoZy5fYnVmZmVyU2VydmljZS5idWZmZXJzLm9uQnVmZmVyQWN0aXZhdGUoKGZ1bmN0aW9uKGUpe3JldHVybiBnLl9hY3RpdmVCdWZmZXI9ZS5hY3RpdmVCdWZmZXJ9KSkpLGcuX3BhcnNlci5zZXRDc2lIYW5kbGVyRmFsbGJhY2soKGZ1bmN0aW9uKGUsdCl7Zy5fbG9nU2VydmljZS5kZWJ1ZygiVW5rbm93biBDU0kgY29kZTogIix7aWRlbnRpZmllcjpnLl9wYXJzZXIuaWRlbnRUb1N0cmluZyhlKSxwYXJhbXM6dC50b0FycmF5KCl9KX0pKSxnLl9wYXJzZXIuc2V0RXNjSGFuZGxlckZhbGxiYWNrKChmdW5jdGlvbihlKXtnLl9sb2dTZXJ2aWNlLmRlYnVnKCJVbmtub3duIEVTQyBjb2RlOiAiLHtpZGVudGlmaWVyOmcuX3BhcnNlci5pZGVudFRvU3RyaW5nKGUpfSl9KSksZy5fcGFyc2VyLnNldEV4ZWN1dGVIYW5kbGVyRmFsbGJhY2soKGZ1bmN0aW9uKGUpe2cuX2xvZ1NlcnZpY2UuZGVidWcoIlVua25vd24gRVhFQ1VURSBjb2RlOiAiLHtjb2RlOmV9KX0pKSxnLl9wYXJzZXIuc2V0T3NjSGFuZGxlckZhbGxiYWNrKChmdW5jdGlvbihlLHQscil7Zy5fbG9nU2VydmljZS5kZWJ1ZygiVW5rbm93biBPU0MgY29kZTogIix7aWRlbnRpZmllcjplLGFjdGlvbjp0LGRhdGE6cn0pfSkpLGcuX3BhcnNlci5zZXREY3NIYW5kbGVyRmFsbGJhY2soKGZ1bmN0aW9uKGUsdCxyKXsiSE9PSyI9PT10JiYocj1yLnRvQXJyYXkoKSksZy5fbG9nU2VydmljZS5kZWJ1ZygiVW5rbm93biBEQ1MgY29kZTogIix7aWRlbnRpZmllcjpnLl9wYXJzZXIuaWRlbnRUb1N0cmluZyhlKSxhY3Rpb246dCxwYXlsb2FkOnJ9KX0pKSxnLl9wYXJzZXIuc2V0UHJpbnRIYW5kbGVyKChmdW5jdGlvbihlLHQscil7cmV0dXJuIGcucHJpbnQoZSx0LHIpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJAIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmluc2VydENoYXJzKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ludGVybWVkaWF0ZXM6IiAiLGZpbmFsOiJAIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNjcm9sbExlZnQoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7ZmluYWw6IkEifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcuY3Vyc29yVXAoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7aW50ZXJtZWRpYXRlczoiICIsZmluYWw6IkEifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcuc2Nyb2xsUmlnaHQoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7ZmluYWw6IkIifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcuY3Vyc29yRG93bihlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtmaW5hbDoiQyJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5jdXJzb3JGb3J3YXJkKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJEIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmN1cnNvckJhY2t3YXJkKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJFIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmN1cnNvck5leHRMaW5lKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJGIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmN1cnNvclByZWNlZGluZ0xpbmUoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7ZmluYWw6IkcifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcuY3Vyc29yQ2hhckFic29sdXRlKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJIIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmN1cnNvclBvc2l0aW9uKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJJIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmN1cnNvckZvcndhcmRUYWIoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7ZmluYWw6IkoifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcuZXJhc2VJbkRpc3BsYXkoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7cHJlZml4OiI/IixmaW5hbDoiSiJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5lcmFzZUluRGlzcGxheShlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtmaW5hbDoiSyJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5lcmFzZUluTGluZShlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtwcmVmaXg6Ij8iLGZpbmFsOiJLIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmVyYXNlSW5MaW5lKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJMIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmluc2VydExpbmVzKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJNIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmRlbGV0ZUxpbmVzKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJQIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmRlbGV0ZUNoYXJzKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJTIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNjcm9sbFVwKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJUIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNjcm9sbERvd24oZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7ZmluYWw6IlgifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcuZXJhc2VDaGFycyhlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtmaW5hbDoiWiJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5jdXJzb3JCYWNrd2FyZFRhYihlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtmaW5hbDoiYCJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5jaGFyUG9zQWJzb2x1dGUoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7ZmluYWw6ImEifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcuaFBvc2l0aW9uUmVsYXRpdmUoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7ZmluYWw6ImIifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcucmVwZWF0UHJlY2VkaW5nQ2hhcmFjdGVyKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJjIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNlbmREZXZpY2VBdHRyaWJ1dGVzUHJpbWFyeShlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtwcmVmaXg6Ij4iLGZpbmFsOiJjIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNlbmREZXZpY2VBdHRyaWJ1dGVzU2Vjb25kYXJ5KGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJkIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmxpbmVQb3NBYnNvbHV0ZShlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtmaW5hbDoiZSJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy52UG9zaXRpb25SZWxhdGl2ZShlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtmaW5hbDoiZiJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5oVlBvc2l0aW9uKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJnIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLnRhYkNsZWFyKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJoIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNldE1vZGUoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7cHJlZml4OiI/IixmaW5hbDoiaCJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5zZXRNb2RlUHJpdmF0ZShlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtmaW5hbDoibCJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5yZXNldE1vZGUoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7cHJlZml4OiI/IixmaW5hbDoibCJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5yZXNldE1vZGVQcml2YXRlKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJtIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmNoYXJBdHRyaWJ1dGVzKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJuIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmRldmljZVN0YXR1cyhlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtwcmVmaXg6Ij8iLGZpbmFsOiJuIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmRldmljZVN0YXR1c1ByaXZhdGUoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7aW50ZXJtZWRpYXRlczoiISIsZmluYWw6InAifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcuc29mdFJlc2V0KGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ludGVybWVkaWF0ZXM6IiAiLGZpbmFsOiJxIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNldEN1cnNvclN0eWxlKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJyIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNldFNjcm9sbFJlZ2lvbihlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtmaW5hbDoicyJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5zYXZlQ3Vyc29yKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJ0In0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLndpbmRvd09wdGlvbnMoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7ZmluYWw6InUifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcucmVzdG9yZUN1cnNvcihlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtpbnRlcm1lZGlhdGVzOiInIixmaW5hbDoifSJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5pbnNlcnRDb2x1bW5zKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ludGVybWVkaWF0ZXM6IiciLGZpbmFsOiJ+In0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmRlbGV0ZUNvbHVtbnMoZSl9KSksZy5fcGFyc2VyLnNldEV4ZWN1dGVIYW5kbGVyKHMuQzAuQkVMLChmdW5jdGlvbigpe3JldHVybiBnLmJlbGwoKX0pKSxnLl9wYXJzZXIuc2V0RXhlY3V0ZUhhbmRsZXIocy5DMC5MRiwoZnVuY3Rpb24oKXtyZXR1cm4gZy5saW5lRmVlZCgpfSkpLGcuX3BhcnNlci5zZXRFeGVjdXRlSGFuZGxlcihzLkMwLlZULChmdW5jdGlvbigpe3JldHVybiBnLmxpbmVGZWVkKCl9KSksZy5fcGFyc2VyLnNldEV4ZWN1dGVIYW5kbGVyKHMuQzAuRkYsKGZ1bmN0aW9uKCl7cmV0dXJuIGcubGluZUZlZWQoKX0pKSxnLl9wYXJzZXIuc2V0RXhlY3V0ZUhhbmRsZXIocy5DMC5DUiwoZnVuY3Rpb24oKXtyZXR1cm4gZy5jYXJyaWFnZVJldHVybigpfSkpLGcuX3BhcnNlci5zZXRFeGVjdXRlSGFuZGxlcihzLkMwLkJTLChmdW5jdGlvbigpe3JldHVybiBnLmJhY2tzcGFjZSgpfSkpLGcuX3BhcnNlci5zZXRFeGVjdXRlSGFuZGxlcihzLkMwLkhULChmdW5jdGlvbigpe3JldHVybiBnLnRhYigpfSkpLGcuX3BhcnNlci5zZXRFeGVjdXRlSGFuZGxlcihzLkMwLlNPLChmdW5jdGlvbigpe3JldHVybiBnLnNoaWZ0T3V0KCl9KSksZy5fcGFyc2VyLnNldEV4ZWN1dGVIYW5kbGVyKHMuQzAuU0ksKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2hpZnRJbigpfSkpLGcuX3BhcnNlci5zZXRFeGVjdXRlSGFuZGxlcihzLkMxLklORCwoZnVuY3Rpb24oKXtyZXR1cm4gZy5pbmRleCgpfSkpLGcuX3BhcnNlci5zZXRFeGVjdXRlSGFuZGxlcihzLkMxLk5FTCwoZnVuY3Rpb24oKXtyZXR1cm4gZy5uZXh0TGluZSgpfSkpLGcuX3BhcnNlci5zZXRFeGVjdXRlSGFuZGxlcihzLkMxLkhUUywoZnVuY3Rpb24oKXtyZXR1cm4gZy50YWJTZXQoKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJPc2NIYW5kbGVyKDAsbmV3IHkuT3NjSGFuZGxlcigoZnVuY3Rpb24oZSl7cmV0dXJuIGcuc2V0VGl0bGUoZSksZy5zZXRJY29uTmFtZShlKSwhMH0pKSksZy5fcGFyc2VyLnJlZ2lzdGVyT3NjSGFuZGxlcigxLG5ldyB5Lk9zY0hhbmRsZXIoKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNldEljb25OYW1lKGUpfSkpKSxnLl9wYXJzZXIucmVnaXN0ZXJPc2NIYW5kbGVyKDIsbmV3IHkuT3NjSGFuZGxlcigoZnVuY3Rpb24oZSl7cmV0dXJuIGcuc2V0VGl0bGUoZSl9KSkpLGcuX3BhcnNlci5yZWdpc3Rlck9zY0hhbmRsZXIoNCxuZXcgeS5Pc2NIYW5kbGVyKChmdW5jdGlvbihlKXtyZXR1cm4gZy5zZXRPclJlcG9ydEluZGV4ZWRDb2xvcihlKX0pKSksZy5fcGFyc2VyLnJlZ2lzdGVyT3NjSGFuZGxlcigxMCxuZXcgeS5Pc2NIYW5kbGVyKChmdW5jdGlvbihlKXtyZXR1cm4gZy5zZXRPclJlcG9ydEZnQ29sb3IoZSl9KSkpLGcuX3BhcnNlci5yZWdpc3Rlck9zY0hhbmRsZXIoMTEsbmV3IHkuT3NjSGFuZGxlcigoZnVuY3Rpb24oZSl7cmV0dXJuIGcuc2V0T3JSZXBvcnRCZ0NvbG9yKGUpfSkpKSxnLl9wYXJzZXIucmVnaXN0ZXJPc2NIYW5kbGVyKDEyLG5ldyB5Lk9zY0hhbmRsZXIoKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNldE9yUmVwb3J0Q3Vyc29yQ29sb3IoZSl9KSkpLGcuX3BhcnNlci5yZWdpc3Rlck9zY0hhbmRsZXIoMTA0LG5ldyB5Lk9zY0hhbmRsZXIoKGZ1bmN0aW9uKGUpe3JldHVybiBnLnJlc3RvcmVJbmRleGVkQ29sb3IoZSl9KSkpLGcuX3BhcnNlci5yZWdpc3Rlck9zY0hhbmRsZXIoMTEwLG5ldyB5Lk9zY0hhbmRsZXIoKGZ1bmN0aW9uKGUpe3JldHVybiBnLnJlc3RvcmVGZ0NvbG9yKGUpfSkpKSxnLl9wYXJzZXIucmVnaXN0ZXJPc2NIYW5kbGVyKDExMSxuZXcgeS5Pc2NIYW5kbGVyKChmdW5jdGlvbihlKXtyZXR1cm4gZy5yZXN0b3JlQmdDb2xvcihlKX0pKSksZy5fcGFyc2VyLnJlZ2lzdGVyT3NjSGFuZGxlcigxMTIsbmV3IHkuT3NjSGFuZGxlcigoZnVuY3Rpb24oZSl7cmV0dXJuIGcucmVzdG9yZUN1cnNvckNvbG9yKGUpfSkpKSxnLl9wYXJzZXIucmVnaXN0ZXJFc2NIYW5kbGVyKHtmaW5hbDoiNyJ9LChmdW5jdGlvbigpe3JldHVybiBnLnNhdmVDdXJzb3IoKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJFc2NIYW5kbGVyKHtmaW5hbDoiOCJ9LChmdW5jdGlvbigpe3JldHVybiBnLnJlc3RvcmVDdXJzb3IoKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJFc2NIYW5kbGVyKHtmaW5hbDoiRCJ9LChmdW5jdGlvbigpe3JldHVybiBnLmluZGV4KCl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyRXNjSGFuZGxlcih7ZmluYWw6IkUifSwoZnVuY3Rpb24oKXtyZXR1cm4gZy5uZXh0TGluZSgpfSkpLGcuX3BhcnNlci5yZWdpc3RlckVzY0hhbmRsZXIoe2ZpbmFsOiJIIn0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcudGFiU2V0KCl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyRXNjSGFuZGxlcih7ZmluYWw6Ik0ifSwoZnVuY3Rpb24oKXtyZXR1cm4gZy5yZXZlcnNlSW5kZXgoKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJFc2NIYW5kbGVyKHtmaW5hbDoiPSJ9LChmdW5jdGlvbigpe3JldHVybiBnLmtleXBhZEFwcGxpY2F0aW9uTW9kZSgpfSkpLGcuX3BhcnNlci5yZWdpc3RlckVzY0hhbmRsZXIoe2ZpbmFsOiI+In0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcua2V5cGFkTnVtZXJpY01vZGUoKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJFc2NIYW5kbGVyKHtmaW5hbDoiYyJ9LChmdW5jdGlvbigpe3JldHVybiBnLmZ1bGxSZXNldCgpfSkpLGcuX3BhcnNlci5yZWdpc3RlckVzY0hhbmRsZXIoe2ZpbmFsOiJuIn0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2V0Z0xldmVsKDIpfSkpLGcuX3BhcnNlci5yZWdpc3RlckVzY0hhbmRsZXIoe2ZpbmFsOiJvIn0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2V0Z0xldmVsKDMpfSkpLGcuX3BhcnNlci5yZWdpc3RlckVzY0hhbmRsZXIoe2ZpbmFsOiJ8In0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2V0Z0xldmVsKDMpfSkpLGcuX3BhcnNlci5yZWdpc3RlckVzY0hhbmRsZXIoe2ZpbmFsOiJ9In0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2V0Z0xldmVsKDIpfSkpLGcuX3BhcnNlci5yZWdpc3RlckVzY0hhbmRsZXIoe2ZpbmFsOiJ+In0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2V0Z0xldmVsKDEpfSkpLGcuX3BhcnNlci5yZWdpc3RlckVzY0hhbmRsZXIoe2ludGVybWVkaWF0ZXM6IiUiLGZpbmFsOiJAIn0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2VsZWN0RGVmYXVsdENoYXJzZXQoKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJFc2NIYW5kbGVyKHtpbnRlcm1lZGlhdGVzOiIlIixmaW5hbDoiRyJ9LChmdW5jdGlvbigpe3JldHVybiBnLnNlbGVjdERlZmF1bHRDaGFyc2V0KCl9KSk7dmFyIG09ZnVuY3Rpb24oZSl7Yi5fcGFyc2VyLnJlZ2lzdGVyRXNjSGFuZGxlcih7aW50ZXJtZWRpYXRlczoiKCIsZmluYWw6ZX0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2VsZWN0Q2hhcnNldCgiKCIrZSl9KSksYi5fcGFyc2VyLnJlZ2lzdGVyRXNjSGFuZGxlcih7aW50ZXJtZWRpYXRlczoiKSIsZmluYWw6ZX0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2VsZWN0Q2hhcnNldCgiKSIrZSl9KSksYi5fcGFyc2VyLnJlZ2lzdGVyRXNjSGFuZGxlcih7aW50ZXJtZWRpYXRlczoiKiIsZmluYWw6ZX0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2VsZWN0Q2hhcnNldCgiKiIrZSl9KSksYi5fcGFyc2VyLnJlZ2lzdGVyRXNjSGFuZGxlcih7aW50ZXJtZWRpYXRlczoiKyIsZmluYWw6ZX0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2VsZWN0Q2hhcnNldCgiKyIrZSl9KSksYi5fcGFyc2VyLnJlZ2lzdGVyRXNjSGFuZGxlcih7aW50ZXJtZWRpYXRlczoiLSIsZmluYWw6ZX0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2VsZWN0Q2hhcnNldCgiLSIrZSl9KSksYi5fcGFyc2VyLnJlZ2lzdGVyRXNjSGFuZGxlcih7aW50ZXJtZWRpYXRlczoiLiIsZmluYWw6ZX0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2VsZWN0Q2hhcnNldCgiLiIrZSl9KSksYi5fcGFyc2VyLnJlZ2lzdGVyRXNjSGFuZGxlcih7aW50ZXJtZWRpYXRlczoiLyIsZmluYWw6ZX0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2VsZWN0Q2hhcnNldCgiLyIrZSl9KSl9LGI9dGhpcztmb3IodmFyIFMgaW4gYS5DSEFSU0VUUyltKFMpO3JldHVybiBnLl9wYXJzZXIucmVnaXN0ZXJFc2NIYW5kbGVyKHtpbnRlcm1lZGlhdGVzOiIjIixmaW5hbDoiOCJ9LChmdW5jdGlvbigpe3JldHVybiBnLnNjcmVlbkFsaWdubWVudFBhdHRlcm4oKX0pKSxnLl9wYXJzZXIuc2V0RXJyb3JIYW5kbGVyKChmdW5jdGlvbihlKXtyZXR1cm4gZy5fbG9nU2VydmljZS5lcnJvcigiUGFyc2luZyBlcnJvcjogIixlKSxlfSkpLGcuX3BhcnNlci5yZWdpc3RlckRjc0hhbmRsZXIoe2ludGVybWVkaWF0ZXM6IiQiLGZpbmFsOiJxIn0sbmV3IEwoZy5fYnVmZmVyU2VydmljZSxnLl9jb3JlU2VydmljZSxnLl9sb2dTZXJ2aWNlLGcuX29wdGlvbnNTZXJ2aWNlKSksZ31yZXR1cm4gbih0LGUpLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25SZXF1ZXN0QmVsbCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vblJlcXVlc3RCZWxsLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25SZXF1ZXN0UmVmcmVzaFJvd3MiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25SZXF1ZXN0UmVmcmVzaFJvd3MuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvblJlcXVlc3RSZXNldCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vblJlcXVlc3RSZXNldC5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uUmVxdWVzdFNlbmRGb2N1cyIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vblJlcXVlc3RTZW5kRm9jdXMuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvblJlcXVlc3RTeW5jU2Nyb2xsQmFyIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uUmVxdWVzdFN5bmNTY3JvbGxCYXIuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvblJlcXVlc3RXaW5kb3dzT3B0aW9uc1JlcG9ydCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vblJlcXVlc3RXaW5kb3dzT3B0aW9uc1JlcG9ydC5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uQTExeUNoYXIiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25BMTF5Q2hhci5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uQTExeVRhYiIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vbkExMXlUYWIuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvbkN1cnNvck1vdmUiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25DdXJzb3JNb3ZlLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25MaW5lRmVlZCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vbkxpbmVGZWVkLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25TY3JvbGwiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25TY3JvbGwuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvblRpdGxlQ2hhbmdlIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uVGl0bGVDaGFuZ2UuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvbkNvbG9yIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uQ29sb3IuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksdC5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe2UucHJvdG90eXBlLmRpc3Bvc2UuY2FsbCh0aGlzKX0sdC5wcm90b3R5cGUuX3ByZXNlcnZlU3RhY2s9ZnVuY3Rpb24oZSx0LHIsaSl7dGhpcy5fcGFyc2VTdGFjay5wYXVzZWQ9ITAsdGhpcy5fcGFyc2VTdGFjay5jdXJzb3JTdGFydFg9ZSx0aGlzLl9wYXJzZVN0YWNrLmN1cnNvclN0YXJ0WT10LHRoaXMuX3BhcnNlU3RhY2suZGVjb2RlZExlbmd0aD1yLHRoaXMuX3BhcnNlU3RhY2sucG9zaXRpb249aX0sdC5wcm90b3R5cGUuX2xvZ1Nsb3dSZXNvbHZpbmdBc3luYz1mdW5jdGlvbihlKXt0aGlzLl9sb2dTZXJ2aWNlLmxvZ0xldmVsPD1nLkxvZ0xldmVsRW51bS5XQVJOJiZQcm9taXNlLnJhY2UoW2UsbmV3IFByb21pc2UoKGZ1bmN0aW9uKGUsdCl7cmV0dXJuIHNldFRpbWVvdXQoKGZ1bmN0aW9uKCl7cmV0dXJuIHQoIiNTTE9XX1RJTUVPVVQiKX0pLDVlMyl9KSldKS5jYXRjaCgoZnVuY3Rpb24oZSl7aWYoIiNTTE9XX1RJTUVPVVQiIT09ZSl0aHJvdyBlO2NvbnNvbGUud2FybigiYXN5bmMgcGFyc2VyIGhhbmRsZXIgdGFraW5nIGxvbmdlciB0aGFuIDUwMDAgbXMiKX0pKX0sdC5wcm90b3R5cGUucGFyc2U9ZnVuY3Rpb24oZSx0KXt2YXIgcixpPXRoaXMuX2FjdGl2ZUJ1ZmZlci54LG49dGhpcy5fYWN0aXZlQnVmZmVyLnksbz0wLHM9dGhpcy5fcGFyc2VTdGFjay5wYXVzZWQ7aWYocyl7aWYocj10aGlzLl9wYXJzZXIucGFyc2UodGhpcy5fcGFyc2VCdWZmZXIsdGhpcy5fcGFyc2VTdGFjay5kZWNvZGVkTGVuZ3RoLHQpKXJldHVybiB0aGlzLl9sb2dTbG93UmVzb2x2aW5nQXN5bmMocikscjtpPXRoaXMuX3BhcnNlU3RhY2suY3Vyc29yU3RhcnRYLG49dGhpcy5fcGFyc2VTdGFjay5jdXJzb3JTdGFydFksdGhpcy5fcGFyc2VTdGFjay5wYXVzZWQ9ITEsZS5sZW5ndGg+QyYmKG89dGhpcy5fcGFyc2VTdGFjay5wb3NpdGlvbitDKX1pZih0aGlzLl9sb2dTZXJ2aWNlLmxvZ0xldmVsPD1nLkxvZ0xldmVsRW51bS5ERUJVRyYmdGhpcy5fbG9nU2VydmljZS5kZWJ1ZygicGFyc2luZyBkYXRhIisoInN0cmluZyI9PXR5cGVvZiBlPycgIicrZSsnIic6IiIpLCJzdHJpbmciPT10eXBlb2YgZT9lLnNwbGl0KCIiKS5tYXAoKGZ1bmN0aW9uKGUpe3JldHVybiBlLmNoYXJDb2RlQXQoMCl9KSk6ZSksdGhpcy5fcGFyc2VCdWZmZXIubGVuZ3RoPGUubGVuZ3RoJiZ0aGlzLl9wYXJzZUJ1ZmZlci5sZW5ndGg8QyYmKHRoaXMuX3BhcnNlQnVmZmVyPW5ldyBVaW50MzJBcnJheShNYXRoLm1pbihlLmxlbmd0aCxDKSkpLHN8fHRoaXMuX2RpcnR5Um93U2VydmljZS5jbGVhclJhbmdlKCksZS5sZW5ndGg+Qylmb3IodmFyIGE9bzthPGUubGVuZ3RoO2ErPUMpe3ZhciBjPWErQzxlLmxlbmd0aD9hK0M6ZS5sZW5ndGgsbD0ic3RyaW5nIj09dHlwZW9mIGU/dGhpcy5fc3RyaW5nRGVjb2Rlci5kZWNvZGUoZS5zdWJzdHJpbmcoYSxjKSx0aGlzLl9wYXJzZUJ1ZmZlcik6dGhpcy5fdXRmOERlY29kZXIuZGVjb2RlKGUuc3ViYXJyYXkoYSxjKSx0aGlzLl9wYXJzZUJ1ZmZlcik7aWYocj10aGlzLl9wYXJzZXIucGFyc2UodGhpcy5fcGFyc2VCdWZmZXIsbCkpcmV0dXJuIHRoaXMuX3ByZXNlcnZlU3RhY2soaSxuLGwsYSksdGhpcy5fbG9nU2xvd1Jlc29sdmluZ0FzeW5jKHIpLHJ9ZWxzZSBpZighcyYmKGw9InN0cmluZyI9PXR5cGVvZiBlP3RoaXMuX3N0cmluZ0RlY29kZXIuZGVjb2RlKGUsdGhpcy5fcGFyc2VCdWZmZXIpOnRoaXMuX3V0ZjhEZWNvZGVyLmRlY29kZShlLHRoaXMuX3BhcnNlQnVmZmVyKSxyPXRoaXMuX3BhcnNlci5wYXJzZSh0aGlzLl9wYXJzZUJ1ZmZlcixsKSkpcmV0dXJuIHRoaXMuX3ByZXNlcnZlU3RhY2soaSxuLGwsMCksdGhpcy5fbG9nU2xvd1Jlc29sdmluZ0FzeW5jKHIpLHI7dGhpcy5fYWN0aXZlQnVmZmVyLng9PT1pJiZ0aGlzLl9hY3RpdmVCdWZmZXIueT09PW58fHRoaXMuX29uQ3Vyc29yTW92ZS5maXJlKCksdGhpcy5fb25SZXF1ZXN0UmVmcmVzaFJvd3MuZmlyZSh0aGlzLl9kaXJ0eVJvd1NlcnZpY2Uuc3RhcnQsdGhpcy5fZGlydHlSb3dTZXJ2aWNlLmVuZCl9LHQucHJvdG90eXBlLnByaW50PWZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuLG89dGhpcy5fY2hhcnNldFNlcnZpY2UuY2hhcnNldCxzPXRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuc2NyZWVuUmVhZGVyTW9kZSxhPXRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyxjPXRoaXMuX2NvcmVTZXJ2aWNlLmRlY1ByaXZhdGVNb2Rlcy53cmFwYXJvdW5kLGw9dGhpcy5fY29yZVNlcnZpY2UubW9kZXMuaW5zZXJ0TW9kZSx1PXRoaXMuX2N1ckF0dHJEYXRhLGY9dGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLmdldCh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UrdGhpcy5fYWN0aXZlQnVmZmVyLnkpO3RoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrRGlydHkodGhpcy5fYWN0aXZlQnVmZmVyLnkpLHRoaXMuX2FjdGl2ZUJ1ZmZlci54JiZyLXQ+MCYmMj09PWYuZ2V0V2lkdGgodGhpcy5fYWN0aXZlQnVmZmVyLngtMSkmJmYuc2V0Q2VsbEZyb21Db2RlUG9pbnQodGhpcy5fYWN0aXZlQnVmZmVyLngtMSwwLDEsdS5mZyx1LmJnLHUuZXh0ZW5kZWQpO2Zvcih2YXIgXz10O188cjsrK18pe2lmKGk9ZVtfXSxuPXRoaXMuX3VuaWNvZGVTZXJ2aWNlLndjd2lkdGgoaSksaTwxMjcmJm8pe3ZhciBwPW9bU3RyaW5nLmZyb21DaGFyQ29kZShpKV07cCYmKGk9cC5jaGFyQ29kZUF0KDApKX1pZihzJiZ0aGlzLl9vbkExMXlDaGFyLmZpcmUoKDAsaC5zdHJpbmdGcm9tQ29kZVBvaW50KShpKSksbnx8IXRoaXMuX2FjdGl2ZUJ1ZmZlci54KXtpZih0aGlzLl9hY3RpdmVCdWZmZXIueCtuLTE+PWEpaWYoYyl7Zm9yKDt0aGlzLl9hY3RpdmVCdWZmZXIueDxhOylmLnNldENlbGxGcm9tQ29kZVBvaW50KHRoaXMuX2FjdGl2ZUJ1ZmZlci54KyssMCwxLHUuZmcsdS5iZyx1LmV4dGVuZGVkKTt0aGlzLl9hY3RpdmVCdWZmZXIueD0wLHRoaXMuX2FjdGl2ZUJ1ZmZlci55KyssdGhpcy5fYWN0aXZlQnVmZmVyLnk9PT10aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tKzE/KHRoaXMuX2FjdGl2ZUJ1ZmZlci55LS0sdGhpcy5fYnVmZmVyU2VydmljZS5zY3JvbGwodGhpcy5fZXJhc2VBdHRyRGF0YSgpLCEwKSk6KHRoaXMuX2FjdGl2ZUJ1ZmZlci55Pj10aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MmJih0aGlzLl9hY3RpdmVCdWZmZXIueT10aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MtMSksdGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLmdldCh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UrdGhpcy5fYWN0aXZlQnVmZmVyLnkpLmlzV3JhcHBlZD0hMCksZj10aGlzLl9hY3RpdmVCdWZmZXIubGluZXMuZ2V0KHRoaXMuX2FjdGl2ZUJ1ZmZlci55YmFzZSt0aGlzLl9hY3RpdmVCdWZmZXIueSl9ZWxzZSBpZih0aGlzLl9hY3RpdmVCdWZmZXIueD1hLTEsMj09PW4pY29udGludWU7aWYobCYmKGYuaW5zZXJ0Q2VsbHModGhpcy5fYWN0aXZlQnVmZmVyLngsbix0aGlzLl9hY3RpdmVCdWZmZXIuZ2V0TnVsbENlbGwodSksdSksMj09PWYuZ2V0V2lkdGgoYS0xKSYmZi5zZXRDZWxsRnJvbUNvZGVQb2ludChhLTEsZC5OVUxMX0NFTExfQ09ERSxkLk5VTExfQ0VMTF9XSURUSCx1LmZnLHUuYmcsdS5leHRlbmRlZCkpLGYuc2V0Q2VsbEZyb21Db2RlUG9pbnQodGhpcy5fYWN0aXZlQnVmZmVyLngrKyxpLG4sdS5mZyx1LmJnLHUuZXh0ZW5kZWQpLG4+MClmb3IoOy0tbjspZi5zZXRDZWxsRnJvbUNvZGVQb2ludCh0aGlzLl9hY3RpdmVCdWZmZXIueCsrLDAsMCx1LmZnLHUuYmcsdS5leHRlbmRlZCl9ZWxzZSBmLmdldFdpZHRoKHRoaXMuX2FjdGl2ZUJ1ZmZlci54LTEpP2YuYWRkQ29kZXBvaW50VG9DZWxsKHRoaXMuX2FjdGl2ZUJ1ZmZlci54LTEsaSk6Zi5hZGRDb2RlcG9pbnRUb0NlbGwodGhpcy5fYWN0aXZlQnVmZmVyLngtMixpKX1yLXQ+MCYmKGYubG9hZENlbGwodGhpcy5fYWN0aXZlQnVmZmVyLngtMSx0aGlzLl93b3JrQ2VsbCksMj09PXRoaXMuX3dvcmtDZWxsLmdldFdpZHRoKCl8fHRoaXMuX3dvcmtDZWxsLmdldENvZGUoKT42NTUzNT90aGlzLl9wYXJzZXIucHJlY2VkaW5nQ29kZXBvaW50PTA6dGhpcy5fd29ya0NlbGwuaXNDb21iaW5lZCgpP3RoaXMuX3BhcnNlci5wcmVjZWRpbmdDb2RlcG9pbnQ9dGhpcy5fd29ya0NlbGwuZ2V0Q2hhcnMoKS5jaGFyQ29kZUF0KDApOnRoaXMuX3BhcnNlci5wcmVjZWRpbmdDb2RlcG9pbnQ9dGhpcy5fd29ya0NlbGwuY29udGVudCksdGhpcy5fYWN0aXZlQnVmZmVyLng8YSYmci10PjAmJjA9PT1mLmdldFdpZHRoKHRoaXMuX2FjdGl2ZUJ1ZmZlci54KSYmIWYuaGFzQ29udGVudCh0aGlzLl9hY3RpdmVCdWZmZXIueCkmJmYuc2V0Q2VsbEZyb21Db2RlUG9pbnQodGhpcy5fYWN0aXZlQnVmZmVyLngsMCwxLHUuZmcsdS5iZyx1LmV4dGVuZGVkKSx0aGlzLl9kaXJ0eVJvd1NlcnZpY2UubWFya0RpcnR5KHRoaXMuX2FjdGl2ZUJ1ZmZlci55KX0sdC5wcm90b3R5cGUucmVnaXN0ZXJDc2lIYW5kbGVyPWZ1bmN0aW9uKGUsdCl7dmFyIHI9dGhpcztyZXR1cm4idCIhPT1lLmZpbmFsfHxlLnByZWZpeHx8ZS5pbnRlcm1lZGlhdGVzP3RoaXMuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoZSx0KTp0aGlzLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKGUsKGZ1bmN0aW9uKGUpe3JldHVybiF3KGUucGFyYW1zWzBdLHIuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMud2luZG93T3B0aW9ucyl8fHQoZSl9KSl9LHQucHJvdG90eXBlLnJlZ2lzdGVyRGNzSGFuZGxlcj1mdW5jdGlvbihlLHQpe3JldHVybiB0aGlzLl9wYXJzZXIucmVnaXN0ZXJEY3NIYW5kbGVyKGUsbmV3IG0uRGNzSGFuZGxlcih0KSl9LHQucHJvdG90eXBlLnJlZ2lzdGVyRXNjSGFuZGxlcj1mdW5jdGlvbihlLHQpe3JldHVybiB0aGlzLl9wYXJzZXIucmVnaXN0ZXJFc2NIYW5kbGVyKGUsdCl9LHQucHJvdG90eXBlLnJlZ2lzdGVyT3NjSGFuZGxlcj1mdW5jdGlvbihlLHQpe3JldHVybiB0aGlzLl9wYXJzZXIucmVnaXN0ZXJPc2NIYW5kbGVyKGUsbmV3IHkuT3NjSGFuZGxlcih0KSl9LHQucHJvdG90eXBlLmJlbGw9ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25SZXF1ZXN0QmVsbC5maXJlKCksITB9LHQucHJvdG90eXBlLmxpbmVGZWVkPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrRGlydHkodGhpcy5fYWN0aXZlQnVmZmVyLnkpLHRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuY29udmVydEVvbCYmKHRoaXMuX2FjdGl2ZUJ1ZmZlci54PTApLHRoaXMuX2FjdGl2ZUJ1ZmZlci55KyssdGhpcy5fYWN0aXZlQnVmZmVyLnk9PT10aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tKzE/KHRoaXMuX2FjdGl2ZUJ1ZmZlci55LS0sdGhpcy5fYnVmZmVyU2VydmljZS5zY3JvbGwodGhpcy5fZXJhc2VBdHRyRGF0YSgpKSk6dGhpcy5fYWN0aXZlQnVmZmVyLnk+PXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cyYmKHRoaXMuX2FjdGl2ZUJ1ZmZlci55PXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cy0xKSx0aGlzLl9hY3RpdmVCdWZmZXIueD49dGhpcy5fYnVmZmVyU2VydmljZS5jb2xzJiZ0aGlzLl9hY3RpdmVCdWZmZXIueC0tLHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrRGlydHkodGhpcy5fYWN0aXZlQnVmZmVyLnkpLHRoaXMuX29uTGluZUZlZWQuZmlyZSgpLCEwfSx0LnByb3RvdHlwZS5jYXJyaWFnZVJldHVybj1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9hY3RpdmVCdWZmZXIueD0wLCEwfSx0LnByb3RvdHlwZS5iYWNrc3BhY2U9ZnVuY3Rpb24oKXt2YXIgZTtpZighdGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLnJldmVyc2VXcmFwYXJvdW5kKXJldHVybiB0aGlzLl9yZXN0cmljdEN1cnNvcigpLHRoaXMuX2FjdGl2ZUJ1ZmZlci54PjAmJnRoaXMuX2FjdGl2ZUJ1ZmZlci54LS0sITA7aWYodGhpcy5fcmVzdHJpY3RDdXJzb3IodGhpcy5fYnVmZmVyU2VydmljZS5jb2xzKSx0aGlzLl9hY3RpdmVCdWZmZXIueD4wKXRoaXMuX2FjdGl2ZUJ1ZmZlci54LS07ZWxzZSBpZigwPT09dGhpcy5fYWN0aXZlQnVmZmVyLngmJnRoaXMuX2FjdGl2ZUJ1ZmZlci55PnRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3AmJnRoaXMuX2FjdGl2ZUJ1ZmZlci55PD10aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tJiYobnVsbD09PShlPXRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5nZXQodGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3RoaXMuX2FjdGl2ZUJ1ZmZlci55KSl8fHZvaWQgMD09PWU/dm9pZCAwOmUuaXNXcmFwcGVkKSl7dGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLmdldCh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UrdGhpcy5fYWN0aXZlQnVmZmVyLnkpLmlzV3JhcHBlZD0hMSx0aGlzLl9hY3RpdmVCdWZmZXIueS0tLHRoaXMuX2FjdGl2ZUJ1ZmZlci54PXRoaXMuX2J1ZmZlclNlcnZpY2UuY29scy0xO3ZhciB0PXRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5nZXQodGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3RoaXMuX2FjdGl2ZUJ1ZmZlci55KTt0Lmhhc1dpZHRoKHRoaXMuX2FjdGl2ZUJ1ZmZlci54KSYmIXQuaGFzQ29udGVudCh0aGlzLl9hY3RpdmVCdWZmZXIueCkmJnRoaXMuX2FjdGl2ZUJ1ZmZlci54LS19cmV0dXJuIHRoaXMuX3Jlc3RyaWN0Q3Vyc29yKCksITB9LHQucHJvdG90eXBlLnRhYj1mdW5jdGlvbigpe2lmKHRoaXMuX2FjdGl2ZUJ1ZmZlci54Pj10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMpcmV0dXJuITA7dmFyIGU9dGhpcy5fYWN0aXZlQnVmZmVyLng7cmV0dXJuIHRoaXMuX2FjdGl2ZUJ1ZmZlci54PXRoaXMuX2FjdGl2ZUJ1ZmZlci5uZXh0U3RvcCgpLHRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuc2NyZWVuUmVhZGVyTW9kZSYmdGhpcy5fb25BMTF5VGFiLmZpcmUodGhpcy5fYWN0aXZlQnVmZmVyLngtZSksITB9LHQucHJvdG90eXBlLnNoaWZ0T3V0PWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2NoYXJzZXRTZXJ2aWNlLnNldGdMZXZlbCgxKSwhMH0sdC5wcm90b3R5cGUuc2hpZnRJbj1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9jaGFyc2V0U2VydmljZS5zZXRnTGV2ZWwoMCksITB9LHQucHJvdG90eXBlLl9yZXN0cmljdEN1cnNvcj1mdW5jdGlvbihlKXt2b2lkIDA9PT1lJiYoZT10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMtMSksdGhpcy5fYWN0aXZlQnVmZmVyLng9TWF0aC5taW4oZSxNYXRoLm1heCgwLHRoaXMuX2FjdGl2ZUJ1ZmZlci54KSksdGhpcy5fYWN0aXZlQnVmZmVyLnk9dGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLm9yaWdpbj9NYXRoLm1pbih0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tLE1hdGgubWF4KHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3AsdGhpcy5fYWN0aXZlQnVmZmVyLnkpKTpNYXRoLm1pbih0aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MtMSxNYXRoLm1heCgwLHRoaXMuX2FjdGl2ZUJ1ZmZlci55KSksdGhpcy5fZGlydHlSb3dTZXJ2aWNlLm1hcmtEaXJ0eSh0aGlzLl9hY3RpdmVCdWZmZXIueSl9LHQucHJvdG90eXBlLl9zZXRDdXJzb3I9ZnVuY3Rpb24oZSx0KXt0aGlzLl9kaXJ0eVJvd1NlcnZpY2UubWFya0RpcnR5KHRoaXMuX2FjdGl2ZUJ1ZmZlci55KSx0aGlzLl9jb3JlU2VydmljZS5kZWNQcml2YXRlTW9kZXMub3JpZ2luPyh0aGlzLl9hY3RpdmVCdWZmZXIueD1lLHRoaXMuX2FjdGl2ZUJ1ZmZlci55PXRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3ArdCk6KHRoaXMuX2FjdGl2ZUJ1ZmZlci54PWUsdGhpcy5fYWN0aXZlQnVmZmVyLnk9dCksdGhpcy5fcmVzdHJpY3RDdXJzb3IoKSx0aGlzLl9kaXJ0eVJvd1NlcnZpY2UubWFya0RpcnR5KHRoaXMuX2FjdGl2ZUJ1ZmZlci55KX0sdC5wcm90b3R5cGUuX21vdmVDdXJzb3I9ZnVuY3Rpb24oZSx0KXt0aGlzLl9yZXN0cmljdEN1cnNvcigpLHRoaXMuX3NldEN1cnNvcih0aGlzLl9hY3RpdmVCdWZmZXIueCtlLHRoaXMuX2FjdGl2ZUJ1ZmZlci55K3QpfSx0LnByb3RvdHlwZS5jdXJzb3JVcD1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9hY3RpdmVCdWZmZXIueS10aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wO3JldHVybiB0Pj0wP3RoaXMuX21vdmVDdXJzb3IoMCwtTWF0aC5taW4odCxlLnBhcmFtc1swXXx8MSkpOnRoaXMuX21vdmVDdXJzb3IoMCwtKGUucGFyYW1zWzBdfHwxKSksITB9LHQucHJvdG90eXBlLmN1cnNvckRvd249ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbS10aGlzLl9hY3RpdmVCdWZmZXIueTtyZXR1cm4gdD49MD90aGlzLl9tb3ZlQ3Vyc29yKDAsTWF0aC5taW4odCxlLnBhcmFtc1swXXx8MSkpOnRoaXMuX21vdmVDdXJzb3IoMCxlLnBhcmFtc1swXXx8MSksITB9LHQucHJvdG90eXBlLmN1cnNvckZvcndhcmQ9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX21vdmVDdXJzb3IoZS5wYXJhbXNbMF18fDEsMCksITB9LHQucHJvdG90eXBlLmN1cnNvckJhY2t3YXJkPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9tb3ZlQ3Vyc29yKC0oZS5wYXJhbXNbMF18fDEpLDApLCEwfSx0LnByb3RvdHlwZS5jdXJzb3JOZXh0TGluZT1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5jdXJzb3JEb3duKGUpLHRoaXMuX2FjdGl2ZUJ1ZmZlci54PTAsITB9LHQucHJvdG90eXBlLmN1cnNvclByZWNlZGluZ0xpbmU9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuY3Vyc29yVXAoZSksdGhpcy5fYWN0aXZlQnVmZmVyLng9MCwhMH0sdC5wcm90b3R5cGUuY3Vyc29yQ2hhckFic29sdXRlPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9zZXRDdXJzb3IoKGUucGFyYW1zWzBdfHwxKS0xLHRoaXMuX2FjdGl2ZUJ1ZmZlci55KSwhMH0sdC5wcm90b3R5cGUuY3Vyc29yUG9zaXRpb249ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX3NldEN1cnNvcihlLmxlbmd0aD49Mj8oZS5wYXJhbXNbMV18fDEpLTE6MCwoZS5wYXJhbXNbMF18fDEpLTEpLCEwfSx0LnByb3RvdHlwZS5jaGFyUG9zQWJzb2x1dGU9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX3NldEN1cnNvcigoZS5wYXJhbXNbMF18fDEpLTEsdGhpcy5fYWN0aXZlQnVmZmVyLnkpLCEwfSx0LnByb3RvdHlwZS5oUG9zaXRpb25SZWxhdGl2ZT1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fbW92ZUN1cnNvcihlLnBhcmFtc1swXXx8MSwwKSwhMH0sdC5wcm90b3R5cGUubGluZVBvc0Fic29sdXRlPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9zZXRDdXJzb3IodGhpcy5fYWN0aXZlQnVmZmVyLngsKGUucGFyYW1zWzBdfHwxKS0xKSwhMH0sdC5wcm90b3R5cGUudlBvc2l0aW9uUmVsYXRpdmU9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX21vdmVDdXJzb3IoMCxlLnBhcmFtc1swXXx8MSksITB9LHQucHJvdG90eXBlLmhWUG9zaXRpb249ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuY3Vyc29yUG9zaXRpb24oZSksITB9LHQucHJvdG90eXBlLnRhYkNsZWFyPWZ1bmN0aW9uKGUpe3ZhciB0PWUucGFyYW1zWzBdO3JldHVybiAwPT09dD9kZWxldGUgdGhpcy5fYWN0aXZlQnVmZmVyLnRhYnNbdGhpcy5fYWN0aXZlQnVmZmVyLnhdOjM9PT10JiYodGhpcy5fYWN0aXZlQnVmZmVyLnRhYnM9e30pLCEwfSx0LnByb3RvdHlwZS5jdXJzb3JGb3J3YXJkVGFiPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX2FjdGl2ZUJ1ZmZlci54Pj10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMpcmV0dXJuITA7Zm9yKHZhciB0PWUucGFyYW1zWzBdfHwxO3QtLTspdGhpcy5fYWN0aXZlQnVmZmVyLng9dGhpcy5fYWN0aXZlQnVmZmVyLm5leHRTdG9wKCk7cmV0dXJuITB9LHQucHJvdG90eXBlLmN1cnNvckJhY2t3YXJkVGFiPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX2FjdGl2ZUJ1ZmZlci54Pj10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMpcmV0dXJuITA7Zm9yKHZhciB0PWUucGFyYW1zWzBdfHwxO3QtLTspdGhpcy5fYWN0aXZlQnVmZmVyLng9dGhpcy5fYWN0aXZlQnVmZmVyLnByZXZTdG9wKCk7cmV0dXJuITB9LHQucHJvdG90eXBlLl9lcmFzZUluQnVmZmVyTGluZT1mdW5jdGlvbihlLHQscixpKXt2b2lkIDA9PT1pJiYoaT0hMSk7dmFyIG49dGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLmdldCh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UrZSk7bi5yZXBsYWNlQ2VsbHModCxyLHRoaXMuX2FjdGl2ZUJ1ZmZlci5nZXROdWxsQ2VsbCh0aGlzLl9lcmFzZUF0dHJEYXRhKCkpLHRoaXMuX2VyYXNlQXR0ckRhdGEoKSksaSYmKG4uaXNXcmFwcGVkPSExKX0sdC5wcm90b3R5cGUuX3Jlc2V0QnVmZmVyTGluZT1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9hY3RpdmVCdWZmZXIubGluZXMuZ2V0KHRoaXMuX2FjdGl2ZUJ1ZmZlci55YmFzZStlKTt0LmZpbGwodGhpcy5fYWN0aXZlQnVmZmVyLmdldE51bGxDZWxsKHRoaXMuX2VyYXNlQXR0ckRhdGEoKSkpLHQuaXNXcmFwcGVkPSExfSx0LnByb3RvdHlwZS5lcmFzZUluRGlzcGxheT1mdW5jdGlvbihlKXt2YXIgdDtzd2l0Y2godGhpcy5fcmVzdHJpY3RDdXJzb3IodGhpcy5fYnVmZmVyU2VydmljZS5jb2xzKSxlLnBhcmFtc1swXSl7Y2FzZSAwOmZvcih0PXRoaXMuX2FjdGl2ZUJ1ZmZlci55LHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrRGlydHkodCksdGhpcy5fZXJhc2VJbkJ1ZmZlckxpbmUodCsrLHRoaXMuX2FjdGl2ZUJ1ZmZlci54LHRoaXMuX2J1ZmZlclNlcnZpY2UuY29scywwPT09dGhpcy5fYWN0aXZlQnVmZmVyLngpO3Q8dGhpcy5fYnVmZmVyU2VydmljZS5yb3dzO3QrKyl0aGlzLl9yZXNldEJ1ZmZlckxpbmUodCk7dGhpcy5fZGlydHlSb3dTZXJ2aWNlLm1hcmtEaXJ0eSh0KTticmVhaztjYXNlIDE6Zm9yKHQ9dGhpcy5fYWN0aXZlQnVmZmVyLnksdGhpcy5fZGlydHlSb3dTZXJ2aWNlLm1hcmtEaXJ0eSh0KSx0aGlzLl9lcmFzZUluQnVmZmVyTGluZSh0LDAsdGhpcy5fYWN0aXZlQnVmZmVyLngrMSwhMCksdGhpcy5fYWN0aXZlQnVmZmVyLngrMT49dGhpcy5fYnVmZmVyU2VydmljZS5jb2xzJiYodGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLmdldCh0KzEpLmlzV3JhcHBlZD0hMSk7dC0tOyl0aGlzLl9yZXNldEJ1ZmZlckxpbmUodCk7dGhpcy5fZGlydHlSb3dTZXJ2aWNlLm1hcmtEaXJ0eSgwKTticmVhaztjYXNlIDI6Zm9yKHQ9dGhpcy5fYnVmZmVyU2VydmljZS5yb3dzLHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrRGlydHkodC0xKTt0LS07KXRoaXMuX3Jlc2V0QnVmZmVyTGluZSh0KTt0aGlzLl9kaXJ0eVJvd1NlcnZpY2UubWFya0RpcnR5KDApO2JyZWFrO2Nhc2UgMzp2YXIgcj10aGlzLl9hY3RpdmVCdWZmZXIubGluZXMubGVuZ3RoLXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cztyPjAmJih0aGlzLl9hY3RpdmVCdWZmZXIubGluZXMudHJpbVN0YXJ0KHIpLHRoaXMuX2FjdGl2ZUJ1ZmZlci55YmFzZT1NYXRoLm1heCh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UtciwwKSx0aGlzLl9hY3RpdmVCdWZmZXIueWRpc3A9TWF0aC5tYXgodGhpcy5fYWN0aXZlQnVmZmVyLnlkaXNwLXIsMCksdGhpcy5fb25TY3JvbGwuZmlyZSgwKSl9cmV0dXJuITB9LHQucHJvdG90eXBlLmVyYXNlSW5MaW5lPWZ1bmN0aW9uKGUpe3N3aXRjaCh0aGlzLl9yZXN0cmljdEN1cnNvcih0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMpLGUucGFyYW1zWzBdKXtjYXNlIDA6dGhpcy5fZXJhc2VJbkJ1ZmZlckxpbmUodGhpcy5fYWN0aXZlQnVmZmVyLnksdGhpcy5fYWN0aXZlQnVmZmVyLngsdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLDA9PT10aGlzLl9hY3RpdmVCdWZmZXIueCk7YnJlYWs7Y2FzZSAxOnRoaXMuX2VyYXNlSW5CdWZmZXJMaW5lKHRoaXMuX2FjdGl2ZUJ1ZmZlci55LDAsdGhpcy5fYWN0aXZlQnVmZmVyLngrMSwhMSk7YnJlYWs7Y2FzZSAyOnRoaXMuX2VyYXNlSW5CdWZmZXJMaW5lKHRoaXMuX2FjdGl2ZUJ1ZmZlci55LDAsdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLCEwKX1yZXR1cm4gdGhpcy5fZGlydHlSb3dTZXJ2aWNlLm1hcmtEaXJ0eSh0aGlzLl9hY3RpdmVCdWZmZXIueSksITB9LHQucHJvdG90eXBlLmluc2VydExpbmVzPWZ1bmN0aW9uKGUpe3RoaXMuX3Jlc3RyaWN0Q3Vyc29yKCk7dmFyIHQ9ZS5wYXJhbXNbMF18fDE7aWYodGhpcy5fYWN0aXZlQnVmZmVyLnk+dGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbXx8dGhpcy5fYWN0aXZlQnVmZmVyLnk8dGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbFRvcClyZXR1cm4hMDtmb3IodmFyIHI9dGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3RoaXMuX2FjdGl2ZUJ1ZmZlci55LGk9dGhpcy5fYnVmZmVyU2VydmljZS5yb3dzLTEtdGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbSxuPXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cy0xK3RoaXMuX2FjdGl2ZUJ1ZmZlci55YmFzZS1pKzE7dC0tOyl0aGlzLl9hY3RpdmVCdWZmZXIubGluZXMuc3BsaWNlKG4tMSwxKSx0aGlzLl9hY3RpdmVCdWZmZXIubGluZXMuc3BsaWNlKHIsMCx0aGlzLl9hY3RpdmVCdWZmZXIuZ2V0QmxhbmtMaW5lKHRoaXMuX2VyYXNlQXR0ckRhdGEoKSkpO3JldHVybiB0aGlzLl9kaXJ0eVJvd1NlcnZpY2UubWFya1JhbmdlRGlydHkodGhpcy5fYWN0aXZlQnVmZmVyLnksdGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbSksdGhpcy5fYWN0aXZlQnVmZmVyLng9MCwhMH0sdC5wcm90b3R5cGUuZGVsZXRlTGluZXM9ZnVuY3Rpb24oZSl7dGhpcy5fcmVzdHJpY3RDdXJzb3IoKTt2YXIgdD1lLnBhcmFtc1swXXx8MTtpZih0aGlzLl9hY3RpdmVCdWZmZXIueT50aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tfHx0aGlzLl9hY3RpdmVCdWZmZXIueTx0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wKXJldHVybiEwO3ZhciByLGk9dGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3RoaXMuX2FjdGl2ZUJ1ZmZlci55O2ZvcihyPXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cy0xLXRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b20scj10aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MtMSt0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2Utcjt0LS07KXRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5zcGxpY2UoaSwxKSx0aGlzLl9hY3RpdmVCdWZmZXIubGluZXMuc3BsaWNlKHIsMCx0aGlzLl9hY3RpdmVCdWZmZXIuZ2V0QmxhbmtMaW5lKHRoaXMuX2VyYXNlQXR0ckRhdGEoKSkpO3JldHVybiB0aGlzLl9kaXJ0eVJvd1NlcnZpY2UubWFya1JhbmdlRGlydHkodGhpcy5fYWN0aXZlQnVmZmVyLnksdGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbSksdGhpcy5fYWN0aXZlQnVmZmVyLng9MCwhMH0sdC5wcm90b3R5cGUuaW5zZXJ0Q2hhcnM9ZnVuY3Rpb24oZSl7dGhpcy5fcmVzdHJpY3RDdXJzb3IoKTt2YXIgdD10aGlzLl9hY3RpdmVCdWZmZXIubGluZXMuZ2V0KHRoaXMuX2FjdGl2ZUJ1ZmZlci55YmFzZSt0aGlzLl9hY3RpdmVCdWZmZXIueSk7cmV0dXJuIHQmJih0Lmluc2VydENlbGxzKHRoaXMuX2FjdGl2ZUJ1ZmZlci54LGUucGFyYW1zWzBdfHwxLHRoaXMuX2FjdGl2ZUJ1ZmZlci5nZXROdWxsQ2VsbCh0aGlzLl9lcmFzZUF0dHJEYXRhKCkpLHRoaXMuX2VyYXNlQXR0ckRhdGEoKSksdGhpcy5fZGlydHlSb3dTZXJ2aWNlLm1hcmtEaXJ0eSh0aGlzLl9hY3RpdmVCdWZmZXIueSkpLCEwfSx0LnByb3RvdHlwZS5kZWxldGVDaGFycz1mdW5jdGlvbihlKXt0aGlzLl9yZXN0cmljdEN1cnNvcigpO3ZhciB0PXRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5nZXQodGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3RoaXMuX2FjdGl2ZUJ1ZmZlci55KTtyZXR1cm4gdCYmKHQuZGVsZXRlQ2VsbHModGhpcy5fYWN0aXZlQnVmZmVyLngsZS5wYXJhbXNbMF18fDEsdGhpcy5fYWN0aXZlQnVmZmVyLmdldE51bGxDZWxsKHRoaXMuX2VyYXNlQXR0ckRhdGEoKSksdGhpcy5fZXJhc2VBdHRyRGF0YSgpKSx0aGlzLl9kaXJ0eVJvd1NlcnZpY2UubWFya0RpcnR5KHRoaXMuX2FjdGl2ZUJ1ZmZlci55KSksITB9LHQucHJvdG90eXBlLnNjcm9sbFVwPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD1lLnBhcmFtc1swXXx8MTt0LS07KXRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5zcGxpY2UodGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3RoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3AsMSksdGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLnNwbGljZSh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UrdGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbSwwLHRoaXMuX2FjdGl2ZUJ1ZmZlci5nZXRCbGFua0xpbmUodGhpcy5fZXJhc2VBdHRyRGF0YSgpKSk7cmV0dXJuIHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrUmFuZ2VEaXJ0eSh0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wLHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b20pLCEwfSx0LnByb3RvdHlwZS5zY3JvbGxEb3duPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD1lLnBhcmFtc1swXXx8MTt0LS07KXRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5zcGxpY2UodGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3RoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b20sMSksdGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLnNwbGljZSh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UrdGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbFRvcCwwLHRoaXMuX2FjdGl2ZUJ1ZmZlci5nZXRCbGFua0xpbmUoZi5ERUZBVUxUX0FUVFJfREFUQSkpO3JldHVybiB0aGlzLl9kaXJ0eVJvd1NlcnZpY2UubWFya1JhbmdlRGlydHkodGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbFRvcCx0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tKSwhMH0sdC5wcm90b3R5cGUuc2Nyb2xsTGVmdD1mdW5jdGlvbihlKXtpZih0aGlzLl9hY3RpdmVCdWZmZXIueT50aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tfHx0aGlzLl9hY3RpdmVCdWZmZXIueTx0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wKXJldHVybiEwO2Zvcih2YXIgdD1lLnBhcmFtc1swXXx8MSxyPXRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3A7cjw9dGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbTsrK3Ipe3ZhciBpPXRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5nZXQodGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3IpO2kuZGVsZXRlQ2VsbHMoMCx0LHRoaXMuX2FjdGl2ZUJ1ZmZlci5nZXROdWxsQ2VsbCh0aGlzLl9lcmFzZUF0dHJEYXRhKCkpLHRoaXMuX2VyYXNlQXR0ckRhdGEoKSksaS5pc1dyYXBwZWQ9ITF9cmV0dXJuIHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrUmFuZ2VEaXJ0eSh0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wLHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b20pLCEwfSx0LnByb3RvdHlwZS5zY3JvbGxSaWdodD1mdW5jdGlvbihlKXtpZih0aGlzLl9hY3RpdmVCdWZmZXIueT50aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tfHx0aGlzLl9hY3RpdmVCdWZmZXIueTx0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wKXJldHVybiEwO2Zvcih2YXIgdD1lLnBhcmFtc1swXXx8MSxyPXRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3A7cjw9dGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbTsrK3Ipe3ZhciBpPXRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5nZXQodGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3IpO2kuaW5zZXJ0Q2VsbHMoMCx0LHRoaXMuX2FjdGl2ZUJ1ZmZlci5nZXROdWxsQ2VsbCh0aGlzLl9lcmFzZUF0dHJEYXRhKCkpLHRoaXMuX2VyYXNlQXR0ckRhdGEoKSksaS5pc1dyYXBwZWQ9ITF9cmV0dXJuIHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrUmFuZ2VEaXJ0eSh0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wLHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b20pLCEwfSx0LnByb3RvdHlwZS5pbnNlcnRDb2x1bW5zPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX2FjdGl2ZUJ1ZmZlci55PnRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b218fHRoaXMuX2FjdGl2ZUJ1ZmZlci55PHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3ApcmV0dXJuITA7Zm9yKHZhciB0PWUucGFyYW1zWzBdfHwxLHI9dGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbFRvcDtyPD10aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tOysrcil7dmFyIGk9dGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLmdldCh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2Urcik7aS5pbnNlcnRDZWxscyh0aGlzLl9hY3RpdmVCdWZmZXIueCx0LHRoaXMuX2FjdGl2ZUJ1ZmZlci5nZXROdWxsQ2VsbCh0aGlzLl9lcmFzZUF0dHJEYXRhKCkpLHRoaXMuX2VyYXNlQXR0ckRhdGEoKSksaS5pc1dyYXBwZWQ9ITF9cmV0dXJuIHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrUmFuZ2VEaXJ0eSh0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wLHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b20pLCEwfSx0LnByb3RvdHlwZS5kZWxldGVDb2x1bW5zPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX2FjdGl2ZUJ1ZmZlci55PnRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b218fHRoaXMuX2FjdGl2ZUJ1ZmZlci55PHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3ApcmV0dXJuITA7Zm9yKHZhciB0PWUucGFyYW1zWzBdfHwxLHI9dGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbFRvcDtyPD10aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tOysrcil7dmFyIGk9dGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLmdldCh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2Urcik7aS5kZWxldGVDZWxscyh0aGlzLl9hY3RpdmVCdWZmZXIueCx0LHRoaXMuX2FjdGl2ZUJ1ZmZlci5nZXROdWxsQ2VsbCh0aGlzLl9lcmFzZUF0dHJEYXRhKCkpLHRoaXMuX2VyYXNlQXR0ckRhdGEoKSksaS5pc1dyYXBwZWQ9ITF9cmV0dXJuIHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrUmFuZ2VEaXJ0eSh0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wLHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b20pLCEwfSx0LnByb3RvdHlwZS5lcmFzZUNoYXJzPWZ1bmN0aW9uKGUpe3RoaXMuX3Jlc3RyaWN0Q3Vyc29yKCk7dmFyIHQ9dGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLmdldCh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UrdGhpcy5fYWN0aXZlQnVmZmVyLnkpO3JldHVybiB0JiYodC5yZXBsYWNlQ2VsbHModGhpcy5fYWN0aXZlQnVmZmVyLngsdGhpcy5fYWN0aXZlQnVmZmVyLngrKGUucGFyYW1zWzBdfHwxKSx0aGlzLl9hY3RpdmVCdWZmZXIuZ2V0TnVsbENlbGwodGhpcy5fZXJhc2VBdHRyRGF0YSgpKSx0aGlzLl9lcmFzZUF0dHJEYXRhKCkpLHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrRGlydHkodGhpcy5fYWN0aXZlQnVmZmVyLnkpKSwhMH0sdC5wcm90b3R5cGUucmVwZWF0UHJlY2VkaW5nQ2hhcmFjdGVyPWZ1bmN0aW9uKGUpe2lmKCF0aGlzLl9wYXJzZXIucHJlY2VkaW5nQ29kZXBvaW50KXJldHVybiEwO2Zvcih2YXIgdD1lLnBhcmFtc1swXXx8MSxyPW5ldyBVaW50MzJBcnJheSh0KSxpPTA7aTx0OysraSlyW2ldPXRoaXMuX3BhcnNlci5wcmVjZWRpbmdDb2RlcG9pbnQ7cmV0dXJuIHRoaXMucHJpbnQociwwLHIubGVuZ3RoKSwhMH0sdC5wcm90b3R5cGUuc2VuZERldmljZUF0dHJpYnV0ZXNQcmltYXJ5PWZ1bmN0aW9uKGUpe3JldHVybiBlLnBhcmFtc1swXT4wfHwodGhpcy5faXMoInh0ZXJtIil8fHRoaXMuX2lzKCJyeHZ0LXVuaWNvZGUiKXx8dGhpcy5faXMoInNjcmVlbiIpP3RoaXMuX2NvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQocy5DMC5FU0MrIls/MTsyYyIpOnRoaXMuX2lzKCJsaW51eCIpJiZ0aGlzLl9jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KHMuQzAuRVNDKyJbPzZjIikpLCEwfSx0LnByb3RvdHlwZS5zZW5kRGV2aWNlQXR0cmlidXRlc1NlY29uZGFyeT1mdW5jdGlvbihlKXtyZXR1cm4gZS5wYXJhbXNbMF0+MHx8KHRoaXMuX2lzKCJ4dGVybSIpP3RoaXMuX2NvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQocy5DMC5FU0MrIls+MDsyNzY7MGMiKTp0aGlzLl9pcygicnh2dC11bmljb2RlIik/dGhpcy5fY29yZVNlcnZpY2UudHJpZ2dlckRhdGFFdmVudChzLkMwLkVTQysiWz44NTs5NTswYyIpOnRoaXMuX2lzKCJsaW51eCIpP3RoaXMuX2NvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQoZS5wYXJhbXNbMF0rImMiKTp0aGlzLl9pcygic2NyZWVuIikmJnRoaXMuX2NvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQocy5DMC5FU0MrIls+ODM7NDAwMDM7MGMiKSksITB9LHQucHJvdG90eXBlLl9pcz1mdW5jdGlvbihlKXtyZXR1cm4gMD09PSh0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLnRlcm1OYW1lKyIiKS5pbmRleE9mKGUpfSx0LnByb3RvdHlwZS5zZXRNb2RlPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD0wO3Q8ZS5sZW5ndGg7dCsrKTQ9PT1lLnBhcmFtc1t0XSYmKHRoaXMuX2NvcmVTZXJ2aWNlLm1vZGVzLmluc2VydE1vZGU9ITApO3JldHVybiEwfSx0LnByb3RvdHlwZS5zZXRNb2RlUHJpdmF0ZT1mdW5jdGlvbihlKXtmb3IodmFyIHQ9MDt0PGUubGVuZ3RoO3QrKylzd2l0Y2goZS5wYXJhbXNbdF0pe2Nhc2UgMTp0aGlzLl9jb3JlU2VydmljZS5kZWNQcml2YXRlTW9kZXMuYXBwbGljYXRpb25DdXJzb3JLZXlzPSEwO2JyZWFrO2Nhc2UgMjp0aGlzLl9jaGFyc2V0U2VydmljZS5zZXRnQ2hhcnNldCgwLGEuREVGQVVMVF9DSEFSU0VUKSx0aGlzLl9jaGFyc2V0U2VydmljZS5zZXRnQ2hhcnNldCgxLGEuREVGQVVMVF9DSEFSU0VUKSx0aGlzLl9jaGFyc2V0U2VydmljZS5zZXRnQ2hhcnNldCgyLGEuREVGQVVMVF9DSEFSU0VUKSx0aGlzLl9jaGFyc2V0U2VydmljZS5zZXRnQ2hhcnNldCgzLGEuREVGQVVMVF9DSEFSU0VUKTticmVhaztjYXNlIDM6dGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy53aW5kb3dPcHRpb25zLnNldFdpbkxpbmVzJiYodGhpcy5fYnVmZmVyU2VydmljZS5yZXNpemUoMTMyLHRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cyksdGhpcy5fb25SZXF1ZXN0UmVzZXQuZmlyZSgpKTticmVhaztjYXNlIDY6dGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLm9yaWdpbj0hMCx0aGlzLl9zZXRDdXJzb3IoMCwwKTticmVhaztjYXNlIDc6dGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLndyYXBhcm91bmQ9ITA7YnJlYWs7Y2FzZSAxMjpicmVhaztjYXNlIDQ1OnRoaXMuX2NvcmVTZXJ2aWNlLmRlY1ByaXZhdGVNb2Rlcy5yZXZlcnNlV3JhcGFyb3VuZD0hMDticmVhaztjYXNlIDY2OnRoaXMuX2xvZ1NlcnZpY2UuZGVidWcoIlNlcmlhbCBwb3J0IHJlcXVlc3RlZCBhcHBsaWNhdGlvbiBrZXlwYWQuIiksdGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLmFwcGxpY2F0aW9uS2V5cGFkPSEwLHRoaXMuX29uUmVxdWVzdFN5bmNTY3JvbGxCYXIuZmlyZSgpO2JyZWFrO2Nhc2UgOTp0aGlzLl9jb3JlTW91c2VTZXJ2aWNlLmFjdGl2ZVByb3RvY29sPSJYMTAiO2JyZWFrO2Nhc2UgMWUzOnRoaXMuX2NvcmVNb3VzZVNlcnZpY2UuYWN0aXZlUHJvdG9jb2w9IlZUMjAwIjticmVhaztjYXNlIDEwMDI6dGhpcy5fY29yZU1vdXNlU2VydmljZS5hY3RpdmVQcm90b2NvbD0iRFJBRyI7YnJlYWs7Y2FzZSAxMDAzOnRoaXMuX2NvcmVNb3VzZVNlcnZpY2UuYWN0aXZlUHJvdG9jb2w9IkFOWSI7YnJlYWs7Y2FzZSAxMDA0OnRoaXMuX2NvcmVTZXJ2aWNlLmRlY1ByaXZhdGVNb2Rlcy5zZW5kRm9jdXM9ITAsdGhpcy5fb25SZXF1ZXN0U2VuZEZvY3VzLmZpcmUoKTticmVhaztjYXNlIDEwMDU6dGhpcy5fbG9nU2VydmljZS5kZWJ1ZygiREVDU0VUIDEwMDUgbm90IHN1cHBvcnRlZCAoc2VlICMyNTA3KSIpO2JyZWFrO2Nhc2UgMTAwNjp0aGlzLl9jb3JlTW91c2VTZXJ2aWNlLmFjdGl2ZUVuY29kaW5nPSJTR1IiO2JyZWFrO2Nhc2UgMTAxNTp0aGlzLl9sb2dTZXJ2aWNlLmRlYnVnKCJERUNTRVQgMTAxNSBub3Qgc3VwcG9ydGVkIChzZWUgIzI1MDcpIik7YnJlYWs7Y2FzZSAyNTp0aGlzLl9jb3JlU2VydmljZS5pc0N1cnNvckhpZGRlbj0hMTticmVhaztjYXNlIDEwNDg6dGhpcy5zYXZlQ3Vyc29yKCk7YnJlYWs7Y2FzZSAxMDQ5OnRoaXMuc2F2ZUN1cnNvcigpO2Nhc2UgNDc6Y2FzZSAxMDQ3OnRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVycy5hY3RpdmF0ZUFsdEJ1ZmZlcih0aGlzLl9lcmFzZUF0dHJEYXRhKCkpLHRoaXMuX2NvcmVTZXJ2aWNlLmlzQ3Vyc29ySW5pdGlhbGl6ZWQ9ITAsdGhpcy5fb25SZXF1ZXN0UmVmcmVzaFJvd3MuZmlyZSgwLHRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cy0xKSx0aGlzLl9vblJlcXVlc3RTeW5jU2Nyb2xsQmFyLmZpcmUoKTticmVhaztjYXNlIDIwMDQ6dGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLmJyYWNrZXRlZFBhc3RlTW9kZT0hMH1yZXR1cm4hMH0sdC5wcm90b3R5cGUucmVzZXRNb2RlPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD0wO3Q8ZS5sZW5ndGg7dCsrKTQ9PT1lLnBhcmFtc1t0XSYmKHRoaXMuX2NvcmVTZXJ2aWNlLm1vZGVzLmluc2VydE1vZGU9ITEpO3JldHVybiEwfSx0LnByb3RvdHlwZS5yZXNldE1vZGVQcml2YXRlPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD0wO3Q8ZS5sZW5ndGg7dCsrKXN3aXRjaChlLnBhcmFtc1t0XSl7Y2FzZSAxOnRoaXMuX2NvcmVTZXJ2aWNlLmRlY1ByaXZhdGVNb2Rlcy5hcHBsaWNhdGlvbkN1cnNvcktleXM9ITE7YnJlYWs7Y2FzZSAzOnRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMud2luZG93T3B0aW9ucy5zZXRXaW5MaW5lcyYmKHRoaXMuX2J1ZmZlclNlcnZpY2UucmVzaXplKDgwLHRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cyksdGhpcy5fb25SZXF1ZXN0UmVzZXQuZmlyZSgpKTticmVhaztjYXNlIDY6dGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLm9yaWdpbj0hMSx0aGlzLl9zZXRDdXJzb3IoMCwwKTticmVhaztjYXNlIDc6dGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLndyYXBhcm91bmQ9ITE7YnJlYWs7Y2FzZSAxMjpicmVhaztjYXNlIDQ1OnRoaXMuX2NvcmVTZXJ2aWNlLmRlY1ByaXZhdGVNb2Rlcy5yZXZlcnNlV3JhcGFyb3VuZD0hMTticmVhaztjYXNlIDY2OnRoaXMuX2xvZ1NlcnZpY2UuZGVidWcoIlN3aXRjaGluZyBiYWNrIHRvIG5vcm1hbCBrZXlwYWQuIiksdGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLmFwcGxpY2F0aW9uS2V5cGFkPSExLHRoaXMuX29uUmVxdWVzdFN5bmNTY3JvbGxCYXIuZmlyZSgpO2JyZWFrO2Nhc2UgOTpjYXNlIDFlMzpjYXNlIDEwMDI6Y2FzZSAxMDAzOnRoaXMuX2NvcmVNb3VzZVNlcnZpY2UuYWN0aXZlUHJvdG9jb2w9Ik5PTkUiO2JyZWFrO2Nhc2UgMTAwNDp0aGlzLl9jb3JlU2VydmljZS5kZWNQcml2YXRlTW9kZXMuc2VuZEZvY3VzPSExO2JyZWFrO2Nhc2UgMTAwNTp0aGlzLl9sb2dTZXJ2aWNlLmRlYnVnKCJERUNSU1QgMTAwNSBub3Qgc3VwcG9ydGVkIChzZWUgIzI1MDcpIik7YnJlYWs7Y2FzZSAxMDA2OnRoaXMuX2NvcmVNb3VzZVNlcnZpY2UuYWN0aXZlRW5jb2Rpbmc9IkRFRkFVTFQiO2JyZWFrO2Nhc2UgMTAxNTp0aGlzLl9sb2dTZXJ2aWNlLmRlYnVnKCJERUNSU1QgMTAxNSBub3Qgc3VwcG9ydGVkIChzZWUgIzI1MDcpIik7YnJlYWs7Y2FzZSAyNTp0aGlzLl9jb3JlU2VydmljZS5pc0N1cnNvckhpZGRlbj0hMDticmVhaztjYXNlIDEwNDg6dGhpcy5yZXN0b3JlQ3Vyc29yKCk7YnJlYWs7Y2FzZSAxMDQ5OmNhc2UgNDc6Y2FzZSAxMDQ3OnRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVycy5hY3RpdmF0ZU5vcm1hbEJ1ZmZlcigpLDEwNDk9PT1lLnBhcmFtc1t0XSYmdGhpcy5yZXN0b3JlQ3Vyc29yKCksdGhpcy5fY29yZVNlcnZpY2UuaXNDdXJzb3JJbml0aWFsaXplZD0hMCx0aGlzLl9vblJlcXVlc3RSZWZyZXNoUm93cy5maXJlKDAsdGhpcy5fYnVmZmVyU2VydmljZS5yb3dzLTEpLHRoaXMuX29uUmVxdWVzdFN5bmNTY3JvbGxCYXIuZmlyZSgpO2JyZWFrO2Nhc2UgMjAwNDp0aGlzLl9jb3JlU2VydmljZS5kZWNQcml2YXRlTW9kZXMuYnJhY2tldGVkUGFzdGVNb2RlPSExfXJldHVybiEwfSx0LnByb3RvdHlwZS5fdXBkYXRlQXR0ckNvbG9yPWZ1bmN0aW9uKGUsdCxyLGksbil7cmV0dXJuIDI9PT10PyhlfD01MDMzMTY0OCxlJj0tMTY3NzcyMTYsZXw9di5BdHRyaWJ1dGVEYXRhLmZyb21Db2xvclJHQihbcixpLG5dKSk6NT09PXQmJihlJj0tNTAzMzE5MDQsZXw9MzM1NTQ0MzJ8MjU1JnIpLGV9LHQucHJvdG90eXBlLl9leHRyYWN0Q29sb3I9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPVswLDAsLTEsMCwwLDBdLG49MCxvPTA7ZG97aWYoaVtvK25dPWUucGFyYW1zW3Qrb10sZS5oYXNTdWJQYXJhbXModCtvKSl7dmFyIHM9ZS5nZXRTdWJQYXJhbXModCtvKSxhPTA7ZG97NT09PWlbMV0mJihuPTEpLGlbbythKzErbl09c1thXX13aGlsZSgrK2E8cy5sZW5ndGgmJmErbysxK248aS5sZW5ndGgpO2JyZWFrfWlmKDU9PT1pWzFdJiZvK24+PTJ8fDI9PT1pWzFdJiZvK24+PTUpYnJlYWs7aVsxXSYmKG49MSl9d2hpbGUoKytvK3Q8ZS5sZW5ndGgmJm8rbjxpLmxlbmd0aCk7Zm9yKGE9MjthPGkubGVuZ3RoOysrYSktMT09PWlbYV0mJihpW2FdPTApO3N3aXRjaChpWzBdKXtjYXNlIDM4OnIuZmc9dGhpcy5fdXBkYXRlQXR0ckNvbG9yKHIuZmcsaVsxXSxpWzNdLGlbNF0saVs1XSk7YnJlYWs7Y2FzZSA0ODpyLmJnPXRoaXMuX3VwZGF0ZUF0dHJDb2xvcihyLmJnLGlbMV0saVszXSxpWzRdLGlbNV0pO2JyZWFrO2Nhc2UgNTg6ci5leHRlbmRlZD1yLmV4dGVuZGVkLmNsb25lKCksci5leHRlbmRlZC51bmRlcmxpbmVDb2xvcj10aGlzLl91cGRhdGVBdHRyQ29sb3Ioci5leHRlbmRlZC51bmRlcmxpbmVDb2xvcixpWzFdLGlbM10saVs0XSxpWzVdKX1yZXR1cm4gb30sdC5wcm90b3R5cGUuX3Byb2Nlc3NVbmRlcmxpbmU9ZnVuY3Rpb24oZSx0KXt0LmV4dGVuZGVkPXQuZXh0ZW5kZWQuY2xvbmUoKSwoIX5lfHxlPjUpJiYoZT0xKSx0LmV4dGVuZGVkLnVuZGVybGluZVN0eWxlPWUsdC5mZ3w9MjY4NDM1NDU2LDA9PT1lJiYodC5mZyY9LTI2ODQzNTQ1NyksdC51cGRhdGVFeHRlbmRlZCgpfSx0LnByb3RvdHlwZS5jaGFyQXR0cmlidXRlcz1mdW5jdGlvbihlKXtpZigxPT09ZS5sZW5ndGgmJjA9PT1lLnBhcmFtc1swXSlyZXR1cm4gdGhpcy5fY3VyQXR0ckRhdGEuZmc9Zi5ERUZBVUxUX0FUVFJfREFUQS5mZyx0aGlzLl9jdXJBdHRyRGF0YS5iZz1mLkRFRkFVTFRfQVRUUl9EQVRBLmJnLCEwO2Zvcih2YXIgdCxyPWUubGVuZ3RoLGk9dGhpcy5fY3VyQXR0ckRhdGEsbj0wO248cjtuKyspKHQ9ZS5wYXJhbXNbbl0pPj0zMCYmdDw9Mzc/KGkuZmcmPS01MDMzMTkwNCxpLmZnfD0xNjc3NzIxNnx0LTMwKTp0Pj00MCYmdDw9NDc/KGkuYmcmPS01MDMzMTkwNCxpLmJnfD0xNjc3NzIxNnx0LTQwKTp0Pj05MCYmdDw9OTc/KGkuZmcmPS01MDMzMTkwNCxpLmZnfD0xNjc3NzIyNHx0LTkwKTp0Pj0xMDAmJnQ8PTEwNz8oaS5iZyY9LTUwMzMxOTA0LGkuYmd8PTE2Nzc3MjI0fHQtMTAwKTowPT09dD8oaS5mZz1mLkRFRkFVTFRfQVRUUl9EQVRBLmZnLGkuYmc9Zi5ERUZBVUxUX0FUVFJfREFUQS5iZyk6MT09PXQ/aS5mZ3w9MTM0MjE3NzI4OjM9PT10P2kuYmd8PTY3MTA4ODY0OjQ9PT10PyhpLmZnfD0yNjg0MzU0NTYsdGhpcy5fcHJvY2Vzc1VuZGVybGluZShlLmhhc1N1YlBhcmFtcyhuKT9lLmdldFN1YlBhcmFtcyhuKVswXToxLGkpKTo1PT09dD9pLmZnfD01MzY4NzA5MTI6Nz09PXQ/aS5mZ3w9NjcxMDg4NjQ6OD09PXQ/aS5mZ3w9MTA3Mzc0MTgyNDo5PT09dD9pLmZnfD0yMTQ3NDgzNjQ4OjI9PT10P2kuYmd8PTEzNDIxNzcyODoyMT09PXQ/dGhpcy5fcHJvY2Vzc1VuZGVybGluZSgyLGkpOjIyPT09dD8oaS5mZyY9LTEzNDIxNzcyOSxpLmJnJj0tMTM0MjE3NzI5KToyMz09PXQ/aS5iZyY9LTY3MTA4ODY1OjI0PT09dD9pLmZnJj0tMjY4NDM1NDU3OjI1PT09dD9pLmZnJj0tNTM2ODcwOTEzOjI3PT09dD9pLmZnJj0tNjcxMDg4NjU6Mjg9PT10P2kuZmcmPS0xMDczNzQxODI1OjI5PT09dD9pLmZnJj0yMTQ3NDgzNjQ3OjM5PT09dD8oaS5mZyY9LTY3MTA4ODY0LGkuZmd8PTE2Nzc3MjE1JmYuREVGQVVMVF9BVFRSX0RBVEEuZmcpOjQ5PT09dD8oaS5iZyY9LTY3MTA4ODY0LGkuYmd8PTE2Nzc3MjE1JmYuREVGQVVMVF9BVFRSX0RBVEEuYmcpOjM4PT09dHx8NDg9PT10fHw1OD09PXQ/bis9dGhpcy5fZXh0cmFjdENvbG9yKGUsbixpKTo1OT09PXQ/KGkuZXh0ZW5kZWQ9aS5leHRlbmRlZC5jbG9uZSgpLGkuZXh0ZW5kZWQudW5kZXJsaW5lQ29sb3I9LTEsaS51cGRhdGVFeHRlbmRlZCgpKToxMDA9PT10PyhpLmZnJj0tNjcxMDg4NjQsaS5mZ3w9MTY3NzcyMTUmZi5ERUZBVUxUX0FUVFJfREFUQS5mZyxpLmJnJj0tNjcxMDg4NjQsaS5iZ3w9MTY3NzcyMTUmZi5ERUZBVUxUX0FUVFJfREFUQS5iZyk6dGhpcy5fbG9nU2VydmljZS5kZWJ1ZygiVW5rbm93biBTR1IgYXR0cmlidXRlOiAlZC4iLHQpO3JldHVybiEwfSx0LnByb3RvdHlwZS5kZXZpY2VTdGF0dXM9ZnVuY3Rpb24oZSl7c3dpdGNoKGUucGFyYW1zWzBdKXtjYXNlIDU6dGhpcy5fY29yZVNlcnZpY2UudHJpZ2dlckRhdGFFdmVudChzLkMwLkVTQysiWzBuIik7YnJlYWs7Y2FzZSA2OnZhciB0PXRoaXMuX2FjdGl2ZUJ1ZmZlci55KzEscj10aGlzLl9hY3RpdmVCdWZmZXIueCsxO3RoaXMuX2NvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQocy5DMC5FU0MrIlsiK3QrIjsiK3IrIlIiKX1yZXR1cm4hMH0sdC5wcm90b3R5cGUuZGV2aWNlU3RhdHVzUHJpdmF0ZT1mdW5jdGlvbihlKXtpZig2PT09ZS5wYXJhbXNbMF0pe3ZhciB0PXRoaXMuX2FjdGl2ZUJ1ZmZlci55KzEscj10aGlzLl9hY3RpdmVCdWZmZXIueCsxO3RoaXMuX2NvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQocy5DMC5FU0MrIls/Iit0KyI7IityKyJSIil9cmV0dXJuITB9LHQucHJvdG90eXBlLnNvZnRSZXNldD1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fY29yZVNlcnZpY2UuaXNDdXJzb3JIaWRkZW49ITEsdGhpcy5fb25SZXF1ZXN0U3luY1Njcm9sbEJhci5maXJlKCksdGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbFRvcD0wLHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b209dGhpcy5fYnVmZmVyU2VydmljZS5yb3dzLTEsdGhpcy5fY3VyQXR0ckRhdGE9Zi5ERUZBVUxUX0FUVFJfREFUQS5jbG9uZSgpLHRoaXMuX2NvcmVTZXJ2aWNlLnJlc2V0KCksdGhpcy5fY2hhcnNldFNlcnZpY2UucmVzZXQoKSx0aGlzLl9hY3RpdmVCdWZmZXIuc2F2ZWRYPTAsdGhpcy5fYWN0aXZlQnVmZmVyLnNhdmVkWT10aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UsdGhpcy5fYWN0aXZlQnVmZmVyLnNhdmVkQ3VyQXR0ckRhdGEuZmc9dGhpcy5fY3VyQXR0ckRhdGEuZmcsdGhpcy5fYWN0aXZlQnVmZmVyLnNhdmVkQ3VyQXR0ckRhdGEuYmc9dGhpcy5fY3VyQXR0ckRhdGEuYmcsdGhpcy5fYWN0aXZlQnVmZmVyLnNhdmVkQ2hhcnNldD10aGlzLl9jaGFyc2V0U2VydmljZS5jaGFyc2V0LHRoaXMuX2NvcmVTZXJ2aWNlLmRlY1ByaXZhdGVNb2Rlcy5vcmlnaW49ITEsITB9LHQucHJvdG90eXBlLnNldEN1cnNvclN0eWxlPWZ1bmN0aW9uKGUpe3ZhciB0PWUucGFyYW1zWzBdfHwxO3N3aXRjaCh0KXtjYXNlIDE6Y2FzZSAyOnRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuY3Vyc29yU3R5bGU9ImJsb2NrIjticmVhaztjYXNlIDM6Y2FzZSA0OnRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuY3Vyc29yU3R5bGU9InVuZGVybGluZSI7YnJlYWs7Y2FzZSA1OmNhc2UgNjp0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmN1cnNvclN0eWxlPSJiYXIifXZhciByPXQlMj09MTtyZXR1cm4gdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5jdXJzb3JCbGluaz1yLCEwfSx0LnByb3RvdHlwZS5zZXRTY3JvbGxSZWdpb249ZnVuY3Rpb24oZSl7dmFyIHQscj1lLnBhcmFtc1swXXx8MTtyZXR1cm4oZS5sZW5ndGg8Mnx8KHQ9ZS5wYXJhbXNbMV0pPnRoaXMuX2J1ZmZlclNlcnZpY2Uucm93c3x8MD09PXQpJiYodD10aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MpLHQ+ciYmKHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3A9ci0xLHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b209dC0xLHRoaXMuX3NldEN1cnNvcigwLDApKSwhMH0sdC5wcm90b3R5cGUud2luZG93T3B0aW9ucz1mdW5jdGlvbihlKXtpZighdyhlLnBhcmFtc1swXSx0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLndpbmRvd09wdGlvbnMpKXJldHVybiEwO3ZhciB0PWUubGVuZ3RoPjE/ZS5wYXJhbXNbMV06MDtzd2l0Y2goZS5wYXJhbXNbMF0pe2Nhc2UgMTQ6MiE9PXQmJnRoaXMuX29uUmVxdWVzdFdpbmRvd3NPcHRpb25zUmVwb3J0LmZpcmUoby5HRVRfV0lOX1NJWkVfUElYRUxTKTticmVhaztjYXNlIDE2OnRoaXMuX29uUmVxdWVzdFdpbmRvd3NPcHRpb25zUmVwb3J0LmZpcmUoby5HRVRfQ0VMTF9TSVpFX1BJWEVMUyk7YnJlYWs7Y2FzZSAxODp0aGlzLl9idWZmZXJTZXJ2aWNlJiZ0aGlzLl9jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KHMuQzAuRVNDKyJbODsiK3RoaXMuX2J1ZmZlclNlcnZpY2Uucm93cysiOyIrdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzKyJ0Iik7YnJlYWs7Y2FzZSAyMjowIT09dCYmMiE9PXR8fCh0aGlzLl93aW5kb3dUaXRsZVN0YWNrLnB1c2godGhpcy5fd2luZG93VGl0bGUpLHRoaXMuX3dpbmRvd1RpdGxlU3RhY2subGVuZ3RoPjEwJiZ0aGlzLl93aW5kb3dUaXRsZVN0YWNrLnNoaWZ0KCkpLDAhPT10JiYxIT09dHx8KHRoaXMuX2ljb25OYW1lU3RhY2sucHVzaCh0aGlzLl9pY29uTmFtZSksdGhpcy5faWNvbk5hbWVTdGFjay5sZW5ndGg+MTAmJnRoaXMuX2ljb25OYW1lU3RhY2suc2hpZnQoKSk7YnJlYWs7Y2FzZSAyMzowIT09dCYmMiE9PXR8fHRoaXMuX3dpbmRvd1RpdGxlU3RhY2subGVuZ3RoJiZ0aGlzLnNldFRpdGxlKHRoaXMuX3dpbmRvd1RpdGxlU3RhY2sucG9wKCkpLDAhPT10JiYxIT09dHx8dGhpcy5faWNvbk5hbWVTdGFjay5sZW5ndGgmJnRoaXMuc2V0SWNvbk5hbWUodGhpcy5faWNvbk5hbWVTdGFjay5wb3AoKSl9cmV0dXJuITB9LHQucHJvdG90eXBlLnNhdmVDdXJzb3I9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX2FjdGl2ZUJ1ZmZlci5zYXZlZFg9dGhpcy5fYWN0aXZlQnVmZmVyLngsdGhpcy5fYWN0aXZlQnVmZmVyLnNhdmVkWT10aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UrdGhpcy5fYWN0aXZlQnVmZmVyLnksdGhpcy5fYWN0aXZlQnVmZmVyLnNhdmVkQ3VyQXR0ckRhdGEuZmc9dGhpcy5fY3VyQXR0ckRhdGEuZmcsdGhpcy5fYWN0aXZlQnVmZmVyLnNhdmVkQ3VyQXR0ckRhdGEuYmc9dGhpcy5fY3VyQXR0ckRhdGEuYmcsdGhpcy5fYWN0aXZlQnVmZmVyLnNhdmVkQ2hhcnNldD10aGlzLl9jaGFyc2V0U2VydmljZS5jaGFyc2V0LCEwfSx0LnByb3RvdHlwZS5yZXN0b3JlQ3Vyc29yPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9hY3RpdmVCdWZmZXIueD10aGlzLl9hY3RpdmVCdWZmZXIuc2F2ZWRYfHwwLHRoaXMuX2FjdGl2ZUJ1ZmZlci55PU1hdGgubWF4KHRoaXMuX2FjdGl2ZUJ1ZmZlci5zYXZlZFktdGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlLDApLHRoaXMuX2N1ckF0dHJEYXRhLmZnPXRoaXMuX2FjdGl2ZUJ1ZmZlci5zYXZlZEN1ckF0dHJEYXRhLmZnLHRoaXMuX2N1ckF0dHJEYXRhLmJnPXRoaXMuX2FjdGl2ZUJ1ZmZlci5zYXZlZEN1ckF0dHJEYXRhLmJnLHRoaXMuX2NoYXJzZXRTZXJ2aWNlLmNoYXJzZXQ9dGhpcy5fc2F2ZWRDaGFyc2V0LHRoaXMuX2FjdGl2ZUJ1ZmZlci5zYXZlZENoYXJzZXQmJih0aGlzLl9jaGFyc2V0U2VydmljZS5jaGFyc2V0PXRoaXMuX2FjdGl2ZUJ1ZmZlci5zYXZlZENoYXJzZXQpLHRoaXMuX3Jlc3RyaWN0Q3Vyc29yKCksITB9LHQucHJvdG90eXBlLnNldFRpdGxlPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl93aW5kb3dUaXRsZT1lLHRoaXMuX29uVGl0bGVDaGFuZ2UuZmlyZShlKSwhMH0sdC5wcm90b3R5cGUuc2V0SWNvbk5hbWU9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX2ljb25OYW1lPWUsITB9LHQucHJvdG90eXBlLnNldE9yUmVwb3J0SW5kZXhlZENvbG9yPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD1bXSxyPWUuc3BsaXQoIjsiKTtyLmxlbmd0aD4xOyl7dmFyIGk9ci5zaGlmdCgpLG49ci5zaGlmdCgpO2lmKC9eXGQrJC8uZXhlYyhpKSl7dmFyIG89cGFyc2VJbnQoaSk7aWYoMDw9byYmbzwyNTYpaWYoIj8iPT09bil0LnB1c2goe3R5cGU6MCxpbmRleDpvfSk7ZWxzZXt2YXIgcz0oMCxiLnBhcnNlQ29sb3IpKG4pO3MmJnQucHVzaCh7dHlwZToxLGluZGV4Om8sY29sb3I6c30pfX19cmV0dXJuIHQubGVuZ3RoJiZ0aGlzLl9vbkNvbG9yLmZpcmUodCksITB9LHQucHJvdG90eXBlLl9zZXRPclJlcG9ydFNwZWNpYWxDb2xvcj1mdW5jdGlvbihlLHQpe2Zvcih2YXIgcj1lLnNwbGl0KCI7IiksaT0wO2k8ci5sZW5ndGgmJiEodD49dGhpcy5fc3BlY2lhbENvbG9ycy5sZW5ndGgpOysraSwrK3QpaWYoIj8iPT09cltpXSl0aGlzLl9vbkNvbG9yLmZpcmUoW3t0eXBlOjAsaW5kZXg6dGhpcy5fc3BlY2lhbENvbG9yc1t0XX1dKTtlbHNle3ZhciBuPSgwLGIucGFyc2VDb2xvcikocltpXSk7biYmdGhpcy5fb25Db2xvci5maXJlKFt7dHlwZToxLGluZGV4OnRoaXMuX3NwZWNpYWxDb2xvcnNbdF0sY29sb3I6bn1dKX1yZXR1cm4hMH0sdC5wcm90b3R5cGUuc2V0T3JSZXBvcnRGZ0NvbG9yPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9zZXRPclJlcG9ydFNwZWNpYWxDb2xvcihlLDApfSx0LnByb3RvdHlwZS5zZXRPclJlcG9ydEJnQ29sb3I9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX3NldE9yUmVwb3J0U3BlY2lhbENvbG9yKGUsMSl9LHQucHJvdG90eXBlLnNldE9yUmVwb3J0Q3Vyc29yQ29sb3I9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX3NldE9yUmVwb3J0U3BlY2lhbENvbG9yKGUsMil9LHQucHJvdG90eXBlLnJlc3RvcmVJbmRleGVkQ29sb3I9ZnVuY3Rpb24oZSl7aWYoIWUpcmV0dXJuIHRoaXMuX29uQ29sb3IuZmlyZShbe3R5cGU6Mn1dKSwhMDtmb3IodmFyIHQ9W10scj1lLnNwbGl0KCI7IiksaT0wO2k8ci5sZW5ndGg7KytpKWlmKC9eXGQrJC8uZXhlYyhyW2ldKSl7dmFyIG49cGFyc2VJbnQocltpXSk7MDw9biYmbjwyNTYmJnQucHVzaCh7dHlwZToyLGluZGV4Om59KX1yZXR1cm4gdC5sZW5ndGgmJnRoaXMuX29uQ29sb3IuZmlyZSh0KSwhMH0sdC5wcm90b3R5cGUucmVzdG9yZUZnQ29sb3I9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX29uQ29sb3IuZmlyZShbe3R5cGU6MixpbmRleDoyNTZ9XSksITB9LHQucHJvdG90eXBlLnJlc3RvcmVCZ0NvbG9yPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9vbkNvbG9yLmZpcmUoW3t0eXBlOjIsaW5kZXg6MjU3fV0pLCEwfSx0LnByb3RvdHlwZS5yZXN0b3JlQ3Vyc29yQ29sb3I9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX29uQ29sb3IuZmlyZShbe3R5cGU6MixpbmRleDoyNTh9XSksITB9LHQucHJvdG90eXBlLm5leHRMaW5lPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2FjdGl2ZUJ1ZmZlci54PTAsdGhpcy5pbmRleCgpLCEwfSx0LnByb3RvdHlwZS5rZXlwYWRBcHBsaWNhdGlvbk1vZGU9ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fbG9nU2VydmljZS5kZWJ1ZygiU2VyaWFsIHBvcnQgcmVxdWVzdGVkIGFwcGxpY2F0aW9uIGtleXBhZC4iKSx0aGlzLl9jb3JlU2VydmljZS5kZWNQcml2YXRlTW9kZXMuYXBwbGljYXRpb25LZXlwYWQ9ITAsdGhpcy5fb25SZXF1ZXN0U3luY1Njcm9sbEJhci5maXJlKCksITB9LHQucHJvdG90eXBlLmtleXBhZE51bWVyaWNNb2RlPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2xvZ1NlcnZpY2UuZGVidWcoIlN3aXRjaGluZyBiYWNrIHRvIG5vcm1hbCBrZXlwYWQuIiksdGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLmFwcGxpY2F0aW9uS2V5cGFkPSExLHRoaXMuX29uUmVxdWVzdFN5bmNTY3JvbGxCYXIuZmlyZSgpLCEwfSx0LnByb3RvdHlwZS5zZWxlY3REZWZhdWx0Q2hhcnNldD1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9jaGFyc2V0U2VydmljZS5zZXRnTGV2ZWwoMCksdGhpcy5fY2hhcnNldFNlcnZpY2Uuc2V0Z0NoYXJzZXQoMCxhLkRFRkFVTFRfQ0hBUlNFVCksITB9LHQucHJvdG90eXBlLnNlbGVjdENoYXJzZXQ9ZnVuY3Rpb24oZSl7cmV0dXJuIDIhPT1lLmxlbmd0aD8odGhpcy5zZWxlY3REZWZhdWx0Q2hhcnNldCgpLCEwKTooIi8iPT09ZVswXXx8dGhpcy5fY2hhcnNldFNlcnZpY2Uuc2V0Z0NoYXJzZXQoU1tlWzBdXSxhLkNIQVJTRVRTW2VbMV1dfHxhLkRFRkFVTFRfQ0hBUlNFVCksITApfSx0LnByb3RvdHlwZS5pbmRleD1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9yZXN0cmljdEN1cnNvcigpLHRoaXMuX2FjdGl2ZUJ1ZmZlci55KyssdGhpcy5fYWN0aXZlQnVmZmVyLnk9PT10aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tKzE/KHRoaXMuX2FjdGl2ZUJ1ZmZlci55LS0sdGhpcy5fYnVmZmVyU2VydmljZS5zY3JvbGwodGhpcy5fZXJhc2VBdHRyRGF0YSgpKSk6dGhpcy5fYWN0aXZlQnVmZmVyLnk+PXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cyYmKHRoaXMuX2FjdGl2ZUJ1ZmZlci55PXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cy0xKSx0aGlzLl9yZXN0cmljdEN1cnNvcigpLCEwfSx0LnByb3RvdHlwZS50YWJTZXQ9ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fYWN0aXZlQnVmZmVyLnRhYnNbdGhpcy5fYWN0aXZlQnVmZmVyLnhdPSEwLCEwfSx0LnByb3RvdHlwZS5yZXZlcnNlSW5kZXg9ZnVuY3Rpb24oKXtpZih0aGlzLl9yZXN0cmljdEN1cnNvcigpLHRoaXMuX2FjdGl2ZUJ1ZmZlci55PT09dGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbFRvcCl7dmFyIGU9dGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbS10aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wO3RoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5zaGlmdEVsZW1lbnRzKHRoaXMuX2FjdGl2ZUJ1ZmZlci55YmFzZSt0aGlzLl9hY3RpdmVCdWZmZXIueSxlLDEpLHRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5zZXQodGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3RoaXMuX2FjdGl2ZUJ1ZmZlci55LHRoaXMuX2FjdGl2ZUJ1ZmZlci5nZXRCbGFua0xpbmUodGhpcy5fZXJhc2VBdHRyRGF0YSgpKSksdGhpcy5fZGlydHlSb3dTZXJ2aWNlLm1hcmtSYW5nZURpcnR5KHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3AsdGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbSl9ZWxzZSB0aGlzLl9hY3RpdmVCdWZmZXIueS0tLHRoaXMuX3Jlc3RyaWN0Q3Vyc29yKCk7cmV0dXJuITB9LHQucHJvdG90eXBlLmZ1bGxSZXNldD1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9wYXJzZXIucmVzZXQoKSx0aGlzLl9vblJlcXVlc3RSZXNldC5maXJlKCksITB9LHQucHJvdG90eXBlLnJlc2V0PWZ1bmN0aW9uKCl7dGhpcy5fY3VyQXR0ckRhdGE9Zi5ERUZBVUxUX0FUVFJfREFUQS5jbG9uZSgpLHRoaXMuX2VyYXNlQXR0ckRhdGFJbnRlcm5hbD1mLkRFRkFVTFRfQVRUUl9EQVRBLmNsb25lKCl9LHQucHJvdG90eXBlLl9lcmFzZUF0dHJEYXRhPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2VyYXNlQXR0ckRhdGFJbnRlcm5hbC5iZyY9LTY3MTA4ODY0LHRoaXMuX2VyYXNlQXR0ckRhdGFJbnRlcm5hbC5iZ3w9NjcxMDg4NjMmdGhpcy5fY3VyQXR0ckRhdGEuYmcsdGhpcy5fZXJhc2VBdHRyRGF0YUludGVybmFsfSx0LnByb3RvdHlwZS5zZXRnTGV2ZWw9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX2NoYXJzZXRTZXJ2aWNlLnNldGdMZXZlbChlKSwhMH0sdC5wcm90b3R5cGUuc2NyZWVuQWxpZ25tZW50UGF0dGVybj1mdW5jdGlvbigpe3ZhciBlPW5ldyBwLkNlbGxEYXRhO2UuY29udGVudD0xPDwyMnwiRSIuY2hhckNvZGVBdCgwKSxlLmZnPXRoaXMuX2N1ckF0dHJEYXRhLmZnLGUuYmc9dGhpcy5fY3VyQXR0ckRhdGEuYmcsdGhpcy5fc2V0Q3Vyc29yKDAsMCk7Zm9yKHZhciB0PTA7dDx0aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3M7Kyt0KXt2YXIgcj10aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UrdGhpcy5fYWN0aXZlQnVmZmVyLnkrdCxpPXRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5nZXQocik7aSYmKGkuZmlsbChlKSxpLmlzV3JhcHBlZD0hMSl9cmV0dXJuIHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrQWxsRGlydHkoKSx0aGlzLl9zZXRDdXJzb3IoMCwwKSwhMH0sdH0obC5EaXNwb3NhYmxlKTt0LklucHV0SGFuZGxlcj1FfSw4NDQ6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5nZXREaXNwb3NlQXJyYXlEaXNwb3NhYmxlPXQuZGlzcG9zZUFycmF5PXQuRGlzcG9zYWJsZT12b2lkIDA7dmFyIHI9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKCl7dGhpcy5fZGlzcG9zYWJsZXM9W10sdGhpcy5faXNEaXNwb3NlZD0hMX1yZXR1cm4gZS5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe3RoaXMuX2lzRGlzcG9zZWQ9ITA7Zm9yKHZhciBlPTAsdD10aGlzLl9kaXNwb3NhYmxlcztlPHQubGVuZ3RoO2UrKyl0W2VdLmRpc3Bvc2UoKTt0aGlzLl9kaXNwb3NhYmxlcy5sZW5ndGg9MH0sZS5wcm90b3R5cGUucmVnaXN0ZXI9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX2Rpc3Bvc2FibGVzLnB1c2goZSksZX0sZS5wcm90b3R5cGUudW5yZWdpc3Rlcj1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9kaXNwb3NhYmxlcy5pbmRleE9mKGUpOy0xIT09dCYmdGhpcy5fZGlzcG9zYWJsZXMuc3BsaWNlKHQsMSl9LGV9KCk7ZnVuY3Rpb24gaShlKXtmb3IodmFyIHQ9MCxyPWU7dDxyLmxlbmd0aDt0Kyspclt0XS5kaXNwb3NlKCk7ZS5sZW5ndGg9MH10LkRpc3Bvc2FibGU9cix0LmRpc3Bvc2VBcnJheT1pLHQuZ2V0RGlzcG9zZUFycmF5RGlzcG9zYWJsZT1mdW5jdGlvbihlKXtyZXR1cm57ZGlzcG9zZTpmdW5jdGlvbigpe3JldHVybiBpKGUpfX19fSw2MTE0OihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuaXNMaW51eD10LmlzV2luZG93cz10LmlzSXBob25lPXQuaXNJcGFkPXQuaXNNYWM9dC5pc1NhZmFyaT10LmlzRmlyZWZveD12b2lkIDA7dmFyIHI9InVuZGVmaW5lZCI9PXR5cGVvZiBuYXZpZ2F0b3IsaT1yPyJub2RlIjpuYXZpZ2F0b3IudXNlckFnZW50LG49cj8ibm9kZSI6bmF2aWdhdG9yLnBsYXRmb3JtO3QuaXNGaXJlZm94PWkuaW5jbHVkZXMoIkZpcmVmb3giKSx0LmlzU2FmYXJpPS9eKCg/IWNocm9tZXxhbmRyb2lkKS4pKnNhZmFyaS9pLnRlc3QoaSksdC5pc01hYz1bIk1hY2ludG9zaCIsIk1hY0ludGVsIiwiTWFjUFBDIiwiTWFjNjhLIl0uaW5jbHVkZXMobiksdC5pc0lwYWQ9ImlQYWQiPT09bix0LmlzSXBob25lPSJpUGhvbmUiPT09bix0LmlzV2luZG93cz1bIldpbmRvd3MiLCJXaW4xNiIsIldpbjMyIiwiV2luQ0UiXS5pbmNsdWRlcyhuKSx0LmlzTGludXg9bi5pbmRleE9mKCJMaW51eCIpPj0wfSw4MjczOihlLHQpPT57ZnVuY3Rpb24gcihlLHQscixpKXtpZih2b2lkIDA9PT1yJiYocj0wKSx2b2lkIDA9PT1pJiYoaT1lLmxlbmd0aCkscj49ZS5sZW5ndGgpcmV0dXJuIGU7cj0oZS5sZW5ndGgrciklZS5sZW5ndGgsaT1pPj1lLmxlbmd0aD9lLmxlbmd0aDooZS5sZW5ndGgraSklZS5sZW5ndGg7Zm9yKHZhciBuPXI7bjxpOysrbillW25dPXQ7cmV0dXJuIGV9T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuY29uY2F0PXQuZmlsbEZhbGxiYWNrPXQuZmlsbD12b2lkIDAsdC5maWxsPWZ1bmN0aW9uKGUsdCxpLG4pe3JldHVybiBlLmZpbGw/ZS5maWxsKHQsaSxuKTpyKGUsdCxpLG4pfSx0LmZpbGxGYWxsYmFjaz1yLHQuY29uY2F0PWZ1bmN0aW9uKGUsdCl7dmFyIHI9bmV3IGUuY29uc3RydWN0b3IoZS5sZW5ndGgrdC5sZW5ndGgpO3JldHVybiByLnNldChlKSxyLnNldCh0LGUubGVuZ3RoKSxyfX0sOTI4MjooZSx0LHIpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQudXBkYXRlV2luZG93c01vZGVXcmFwcGVkU3RhdGU9dm9pZCAwO3ZhciBpPXIoNjQzKTt0LnVwZGF0ZVdpbmRvd3NNb2RlV3JhcHBlZFN0YXRlPWZ1bmN0aW9uKGUpe3ZhciB0PWUuYnVmZmVyLmxpbmVzLmdldChlLmJ1ZmZlci55YmFzZStlLmJ1ZmZlci55LTEpLHI9bnVsbD09dD92b2lkIDA6dC5nZXQoZS5jb2xzLTEpLG49ZS5idWZmZXIubGluZXMuZ2V0KGUuYnVmZmVyLnliYXNlK2UuYnVmZmVyLnkpO24mJnImJihuLmlzV3JhcHBlZD1yW2kuQ0hBUl9EQVRBX0NPREVfSU5ERVhdIT09aS5OVUxMX0NFTExfQ09ERSYmcltpLkNIQVJfREFUQV9DT0RFX0lOREVYXSE9PWkuV0hJVEVTUEFDRV9DRUxMX0NPREUpfX0sMzczNDooZSx0KT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkV4dGVuZGVkQXR0cnM9dC5BdHRyaWJ1dGVEYXRhPXZvaWQgMDt2YXIgcj1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoKXt0aGlzLmZnPTAsdGhpcy5iZz0wLHRoaXMuZXh0ZW5kZWQ9bmV3IGl9cmV0dXJuIGUudG9Db2xvclJHQj1mdW5jdGlvbihlKXtyZXR1cm5bZT4+PjE2JjI1NSxlPj4+OCYyNTUsMjU1JmVdfSxlLmZyb21Db2xvclJHQj1mdW5jdGlvbihlKXtyZXR1cm4oMjU1JmVbMF0pPDwxNnwoMjU1JmVbMV0pPDw4fDI1NSZlWzJdfSxlLnByb3RvdHlwZS5jbG9uZT1mdW5jdGlvbigpe3ZhciB0PW5ldyBlO3JldHVybiB0LmZnPXRoaXMuZmcsdC5iZz10aGlzLmJnLHQuZXh0ZW5kZWQ9dGhpcy5leHRlbmRlZC5jbG9uZSgpLHR9LGUucHJvdG90eXBlLmlzSW52ZXJzZT1mdW5jdGlvbigpe3JldHVybiA2NzEwODg2NCZ0aGlzLmZnfSxlLnByb3RvdHlwZS5pc0JvbGQ9ZnVuY3Rpb24oKXtyZXR1cm4gMTM0MjE3NzI4JnRoaXMuZmd9LGUucHJvdG90eXBlLmlzVW5kZXJsaW5lPWZ1bmN0aW9uKCl7cmV0dXJuIDI2ODQzNTQ1NiZ0aGlzLmZnfSxlLnByb3RvdHlwZS5pc0JsaW5rPWZ1bmN0aW9uKCl7cmV0dXJuIDUzNjg3MDkxMiZ0aGlzLmZnfSxlLnByb3RvdHlwZS5pc0ludmlzaWJsZT1mdW5jdGlvbigpe3JldHVybiAxMDczNzQxODI0JnRoaXMuZmd9LGUucHJvdG90eXBlLmlzSXRhbGljPWZ1bmN0aW9uKCl7cmV0dXJuIDY3MTA4ODY0JnRoaXMuYmd9LGUucHJvdG90eXBlLmlzRGltPWZ1bmN0aW9uKCl7cmV0dXJuIDEzNDIxNzcyOCZ0aGlzLmJnfSxlLnByb3RvdHlwZS5pc1N0cmlrZXRocm91Z2g9ZnVuY3Rpb24oKXtyZXR1cm4gMjE0NzQ4MzY0OCZ0aGlzLmZnfSxlLnByb3RvdHlwZS5nZXRGZ0NvbG9yTW9kZT1mdW5jdGlvbigpe3JldHVybiA1MDMzMTY0OCZ0aGlzLmZnfSxlLnByb3RvdHlwZS5nZXRCZ0NvbG9yTW9kZT1mdW5jdGlvbigpe3JldHVybiA1MDMzMTY0OCZ0aGlzLmJnfSxlLnByb3RvdHlwZS5pc0ZnUkdCPWZ1bmN0aW9uKCl7cmV0dXJuIDUwMzMxNjQ4PT0oNTAzMzE2NDgmdGhpcy5mZyl9LGUucHJvdG90eXBlLmlzQmdSR0I9ZnVuY3Rpb24oKXtyZXR1cm4gNTAzMzE2NDg9PSg1MDMzMTY0OCZ0aGlzLmJnKX0sZS5wcm90b3R5cGUuaXNGZ1BhbGV0dGU9ZnVuY3Rpb24oKXtyZXR1cm4gMTY3NzcyMTY9PSg1MDMzMTY0OCZ0aGlzLmZnKXx8MzM1NTQ0MzI9PSg1MDMzMTY0OCZ0aGlzLmZnKX0sZS5wcm90b3R5cGUuaXNCZ1BhbGV0dGU9ZnVuY3Rpb24oKXtyZXR1cm4gMTY3NzcyMTY9PSg1MDMzMTY0OCZ0aGlzLmJnKXx8MzM1NTQ0MzI9PSg1MDMzMTY0OCZ0aGlzLmJnKX0sZS5wcm90b3R5cGUuaXNGZ0RlZmF1bHQ9ZnVuY3Rpb24oKXtyZXR1cm4gMD09KDUwMzMxNjQ4JnRoaXMuZmcpfSxlLnByb3RvdHlwZS5pc0JnRGVmYXVsdD1mdW5jdGlvbigpe3JldHVybiAwPT0oNTAzMzE2NDgmdGhpcy5iZyl9LGUucHJvdG90eXBlLmlzQXR0cmlidXRlRGVmYXVsdD1mdW5jdGlvbigpe3JldHVybiAwPT09dGhpcy5mZyYmMD09PXRoaXMuYmd9LGUucHJvdG90eXBlLmdldEZnQ29sb3I9ZnVuY3Rpb24oKXtzd2l0Y2goNTAzMzE2NDgmdGhpcy5mZyl7Y2FzZSAxNjc3NzIxNjpjYXNlIDMzNTU0NDMyOnJldHVybiAyNTUmdGhpcy5mZztjYXNlIDUwMzMxNjQ4OnJldHVybiAxNjc3NzIxNSZ0aGlzLmZnO2RlZmF1bHQ6cmV0dXJuLTF9fSxlLnByb3RvdHlwZS5nZXRCZ0NvbG9yPWZ1bmN0aW9uKCl7c3dpdGNoKDUwMzMxNjQ4JnRoaXMuYmcpe2Nhc2UgMTY3NzcyMTY6Y2FzZSAzMzU1NDQzMjpyZXR1cm4gMjU1JnRoaXMuYmc7Y2FzZSA1MDMzMTY0ODpyZXR1cm4gMTY3NzcyMTUmdGhpcy5iZztkZWZhdWx0OnJldHVybi0xfX0sZS5wcm90b3R5cGUuaGFzRXh0ZW5kZWRBdHRycz1mdW5jdGlvbigpe3JldHVybiAyNjg0MzU0NTYmdGhpcy5iZ30sZS5wcm90b3R5cGUudXBkYXRlRXh0ZW5kZWQ9ZnVuY3Rpb24oKXt0aGlzLmV4dGVuZGVkLmlzRW1wdHkoKT90aGlzLmJnJj0tMjY4NDM1NDU3OnRoaXMuYmd8PTI2ODQzNTQ1Nn0sZS5wcm90b3R5cGUuZ2V0VW5kZXJsaW5lQ29sb3I9ZnVuY3Rpb24oKXtpZigyNjg0MzU0NTYmdGhpcy5iZyYmfnRoaXMuZXh0ZW5kZWQudW5kZXJsaW5lQ29sb3Ipc3dpdGNoKDUwMzMxNjQ4JnRoaXMuZXh0ZW5kZWQudW5kZXJsaW5lQ29sb3Ipe2Nhc2UgMTY3NzcyMTY6Y2FzZSAzMzU1NDQzMjpyZXR1cm4gMjU1JnRoaXMuZXh0ZW5kZWQudW5kZXJsaW5lQ29sb3I7Y2FzZSA1MDMzMTY0ODpyZXR1cm4gMTY3NzcyMTUmdGhpcy5leHRlbmRlZC51bmRlcmxpbmVDb2xvcjtkZWZhdWx0OnJldHVybiB0aGlzLmdldEZnQ29sb3IoKX1yZXR1cm4gdGhpcy5nZXRGZ0NvbG9yKCl9LGUucHJvdG90eXBlLmdldFVuZGVybGluZUNvbG9yTW9kZT1mdW5jdGlvbigpe3JldHVybiAyNjg0MzU0NTYmdGhpcy5iZyYmfnRoaXMuZXh0ZW5kZWQudW5kZXJsaW5lQ29sb3I/NTAzMzE2NDgmdGhpcy5leHRlbmRlZC51bmRlcmxpbmVDb2xvcjp0aGlzLmdldEZnQ29sb3JNb2RlKCl9LGUucHJvdG90eXBlLmlzVW5kZXJsaW5lQ29sb3JSR0I9ZnVuY3Rpb24oKXtyZXR1cm4gMjY4NDM1NDU2JnRoaXMuYmcmJn50aGlzLmV4dGVuZGVkLnVuZGVybGluZUNvbG9yPzUwMzMxNjQ4PT0oNTAzMzE2NDgmdGhpcy5leHRlbmRlZC51bmRlcmxpbmVDb2xvcik6dGhpcy5pc0ZnUkdCKCl9LGUucHJvdG90eXBlLmlzVW5kZXJsaW5lQ29sb3JQYWxldHRlPWZ1bmN0aW9uKCl7cmV0dXJuIDI2ODQzNTQ1NiZ0aGlzLmJnJiZ+dGhpcy5leHRlbmRlZC51bmRlcmxpbmVDb2xvcj8xNjc3NzIxNj09KDUwMzMxNjQ4JnRoaXMuZXh0ZW5kZWQudW5kZXJsaW5lQ29sb3IpfHwzMzU1NDQzMj09KDUwMzMxNjQ4JnRoaXMuZXh0ZW5kZWQudW5kZXJsaW5lQ29sb3IpOnRoaXMuaXNGZ1BhbGV0dGUoKX0sZS5wcm90b3R5cGUuaXNVbmRlcmxpbmVDb2xvckRlZmF1bHQ9ZnVuY3Rpb24oKXtyZXR1cm4gMjY4NDM1NDU2JnRoaXMuYmcmJn50aGlzLmV4dGVuZGVkLnVuZGVybGluZUNvbG9yPzA9PSg1MDMzMTY0OCZ0aGlzLmV4dGVuZGVkLnVuZGVybGluZUNvbG9yKTp0aGlzLmlzRmdEZWZhdWx0KCl9LGUucHJvdG90eXBlLmdldFVuZGVybGluZVN0eWxlPWZ1bmN0aW9uKCl7cmV0dXJuIDI2ODQzNTQ1NiZ0aGlzLmZnPzI2ODQzNTQ1NiZ0aGlzLmJnP3RoaXMuZXh0ZW5kZWQudW5kZXJsaW5lU3R5bGU6MTowfSxlfSgpO3QuQXR0cmlidXRlRGF0YT1yO3ZhciBpPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlLHQpe3ZvaWQgMD09PWUmJihlPTApLHZvaWQgMD09PXQmJih0PS0xKSx0aGlzLnVuZGVybGluZVN0eWxlPWUsdGhpcy51bmRlcmxpbmVDb2xvcj10fXJldHVybiBlLnByb3RvdHlwZS5jbG9uZT1mdW5jdGlvbigpe3JldHVybiBuZXcgZSh0aGlzLnVuZGVybGluZVN0eWxlLHRoaXMudW5kZXJsaW5lQ29sb3IpfSxlLnByb3RvdHlwZS5pc0VtcHR5PWZ1bmN0aW9uKCl7cmV0dXJuIDA9PT10aGlzLnVuZGVybGluZVN0eWxlfSxlfSgpO3QuRXh0ZW5kZWRBdHRycz1pfSw5MDkyOihlLHQscik9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5CdWZmZXJTdHJpbmdJdGVyYXRvcj10LkJ1ZmZlcj10Lk1BWF9CVUZGRVJfU0laRT12b2lkIDA7dmFyIGk9cig2MzQ5KSxuPXIoODQzNyksbz1yKDUxMSkscz1yKDY0MyksYT1yKDQ2MzQpLGM9cig0ODYzKSxsPXIoNzExNiksdT1yKDM3MzQpO3QuTUFYX0JVRkZFUl9TSVpFPTQyOTQ5NjcyOTU7dmFyIGg9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUsdCxyKXt0aGlzLl9oYXNTY3JvbGxiYWNrPWUsdGhpcy5fb3B0aW9uc1NlcnZpY2U9dCx0aGlzLl9idWZmZXJTZXJ2aWNlPXIsdGhpcy55ZGlzcD0wLHRoaXMueWJhc2U9MCx0aGlzLnk9MCx0aGlzLng9MCx0aGlzLnNhdmVkWT0wLHRoaXMuc2F2ZWRYPTAsdGhpcy5zYXZlZEN1ckF0dHJEYXRhPW4uREVGQVVMVF9BVFRSX0RBVEEuY2xvbmUoKSx0aGlzLnNhdmVkQ2hhcnNldD1sLkRFRkFVTFRfQ0hBUlNFVCx0aGlzLm1hcmtlcnM9W10sdGhpcy5fbnVsbENlbGw9by5DZWxsRGF0YS5mcm9tQ2hhckRhdGEoWzAscy5OVUxMX0NFTExfQ0hBUixzLk5VTExfQ0VMTF9XSURUSCxzLk5VTExfQ0VMTF9DT0RFXSksdGhpcy5fd2hpdGVzcGFjZUNlbGw9by5DZWxsRGF0YS5mcm9tQ2hhckRhdGEoWzAscy5XSElURVNQQUNFX0NFTExfQ0hBUixzLldISVRFU1BBQ0VfQ0VMTF9XSURUSCxzLldISVRFU1BBQ0VfQ0VMTF9DT0RFXSksdGhpcy5fY29scz10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsdGhpcy5fcm93cz10aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MsdGhpcy5saW5lcz1uZXcgaS5DaXJjdWxhckxpc3QodGhpcy5fZ2V0Q29ycmVjdEJ1ZmZlckxlbmd0aCh0aGlzLl9yb3dzKSksdGhpcy5zY3JvbGxUb3A9MCx0aGlzLnNjcm9sbEJvdHRvbT10aGlzLl9yb3dzLTEsdGhpcy5zZXR1cFRhYlN0b3BzKCl9cmV0dXJuIGUucHJvdG90eXBlLmdldE51bGxDZWxsPWZ1bmN0aW9uKGUpe3JldHVybiBlPyh0aGlzLl9udWxsQ2VsbC5mZz1lLmZnLHRoaXMuX251bGxDZWxsLmJnPWUuYmcsdGhpcy5fbnVsbENlbGwuZXh0ZW5kZWQ9ZS5leHRlbmRlZCk6KHRoaXMuX251bGxDZWxsLmZnPTAsdGhpcy5fbnVsbENlbGwuYmc9MCx0aGlzLl9udWxsQ2VsbC5leHRlbmRlZD1uZXcgdS5FeHRlbmRlZEF0dHJzKSx0aGlzLl9udWxsQ2VsbH0sZS5wcm90b3R5cGUuZ2V0V2hpdGVzcGFjZUNlbGw9ZnVuY3Rpb24oZSl7cmV0dXJuIGU/KHRoaXMuX3doaXRlc3BhY2VDZWxsLmZnPWUuZmcsdGhpcy5fd2hpdGVzcGFjZUNlbGwuYmc9ZS5iZyx0aGlzLl93aGl0ZXNwYWNlQ2VsbC5leHRlbmRlZD1lLmV4dGVuZGVkKToodGhpcy5fd2hpdGVzcGFjZUNlbGwuZmc9MCx0aGlzLl93aGl0ZXNwYWNlQ2VsbC5iZz0wLHRoaXMuX3doaXRlc3BhY2VDZWxsLmV4dGVuZGVkPW5ldyB1LkV4dGVuZGVkQXR0cnMpLHRoaXMuX3doaXRlc3BhY2VDZWxsfSxlLnByb3RvdHlwZS5nZXRCbGFua0xpbmU9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gbmV3IG4uQnVmZmVyTGluZSh0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsdGhpcy5nZXROdWxsQ2VsbChlKSx0KX0sT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJoYXNTY3JvbGxiYWNrIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2hhc1Njcm9sbGJhY2smJnRoaXMubGluZXMubWF4TGVuZ3RoPnRoaXMuX3Jvd3N9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJpc0N1cnNvckluVmlld3BvcnQiLHtnZXQ6ZnVuY3Rpb24oKXt2YXIgZT10aGlzLnliYXNlK3RoaXMueS10aGlzLnlkaXNwO3JldHVybiBlPj0wJiZlPHRoaXMuX3Jvd3N9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksZS5wcm90b3R5cGUuX2dldENvcnJlY3RCdWZmZXJMZW5ndGg9ZnVuY3Rpb24oZSl7aWYoIXRoaXMuX2hhc1Njcm9sbGJhY2spcmV0dXJuIGU7dmFyIHI9ZSt0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLnNjcm9sbGJhY2s7cmV0dXJuIHI+dC5NQVhfQlVGRkVSX1NJWkU/dC5NQVhfQlVGRkVSX1NJWkU6cn0sZS5wcm90b3R5cGUuZmlsbFZpZXdwb3J0Um93cz1mdW5jdGlvbihlKXtpZigwPT09dGhpcy5saW5lcy5sZW5ndGgpe3ZvaWQgMD09PWUmJihlPW4uREVGQVVMVF9BVFRSX0RBVEEpO2Zvcih2YXIgdD10aGlzLl9yb3dzO3QtLTspdGhpcy5saW5lcy5wdXNoKHRoaXMuZ2V0QmxhbmtMaW5lKGUpKX19LGUucHJvdG90eXBlLmNsZWFyPWZ1bmN0aW9uKCl7dGhpcy55ZGlzcD0wLHRoaXMueWJhc2U9MCx0aGlzLnk9MCx0aGlzLng9MCx0aGlzLmxpbmVzPW5ldyBpLkNpcmN1bGFyTGlzdCh0aGlzLl9nZXRDb3JyZWN0QnVmZmVyTGVuZ3RoKHRoaXMuX3Jvd3MpKSx0aGlzLnNjcm9sbFRvcD0wLHRoaXMuc2Nyb2xsQm90dG9tPXRoaXMuX3Jvd3MtMSx0aGlzLnNldHVwVGFiU3RvcHMoKX0sZS5wcm90b3R5cGUucmVzaXplPWZ1bmN0aW9uKGUsdCl7dmFyIHI9dGhpcy5nZXROdWxsQ2VsbChuLkRFRkFVTFRfQVRUUl9EQVRBKSxpPXRoaXMuX2dldENvcnJlY3RCdWZmZXJMZW5ndGgodCk7aWYoaT50aGlzLmxpbmVzLm1heExlbmd0aCYmKHRoaXMubGluZXMubWF4TGVuZ3RoPWkpLHRoaXMubGluZXMubGVuZ3RoPjApe2lmKHRoaXMuX2NvbHM8ZSlmb3IodmFyIG89MDtvPHRoaXMubGluZXMubGVuZ3RoO28rKyl0aGlzLmxpbmVzLmdldChvKS5yZXNpemUoZSxyKTt2YXIgcz0wO2lmKHRoaXMuX3Jvd3M8dClmb3IodmFyIGE9dGhpcy5fcm93czthPHQ7YSsrKXRoaXMubGluZXMubGVuZ3RoPHQrdGhpcy55YmFzZSYmKHRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMud2luZG93c01vZGU/dGhpcy5saW5lcy5wdXNoKG5ldyBuLkJ1ZmZlckxpbmUoZSxyKSk6dGhpcy55YmFzZT4wJiZ0aGlzLmxpbmVzLmxlbmd0aDw9dGhpcy55YmFzZSt0aGlzLnkrcysxPyh0aGlzLnliYXNlLS0scysrLHRoaXMueWRpc3A+MCYmdGhpcy55ZGlzcC0tKTp0aGlzLmxpbmVzLnB1c2gobmV3IG4uQnVmZmVyTGluZShlLHIpKSk7ZWxzZSBmb3IoYT10aGlzLl9yb3dzO2E+dDthLS0pdGhpcy5saW5lcy5sZW5ndGg+dCt0aGlzLnliYXNlJiYodGhpcy5saW5lcy5sZW5ndGg+dGhpcy55YmFzZSt0aGlzLnkrMT90aGlzLmxpbmVzLnBvcCgpOih0aGlzLnliYXNlKyssdGhpcy55ZGlzcCsrKSk7aWYoaTx0aGlzLmxpbmVzLm1heExlbmd0aCl7dmFyIGM9dGhpcy5saW5lcy5sZW5ndGgtaTtjPjAmJih0aGlzLmxpbmVzLnRyaW1TdGFydChjKSx0aGlzLnliYXNlPU1hdGgubWF4KHRoaXMueWJhc2UtYywwKSx0aGlzLnlkaXNwPU1hdGgubWF4KHRoaXMueWRpc3AtYywwKSx0aGlzLnNhdmVkWT1NYXRoLm1heCh0aGlzLnNhdmVkWS1jLDApKSx0aGlzLmxpbmVzLm1heExlbmd0aD1pfXRoaXMueD1NYXRoLm1pbih0aGlzLngsZS0xKSx0aGlzLnk9TWF0aC5taW4odGhpcy55LHQtMSkscyYmKHRoaXMueSs9cyksdGhpcy5zYXZlZFg9TWF0aC5taW4odGhpcy5zYXZlZFgsZS0xKSx0aGlzLnNjcm9sbFRvcD0wfWlmKHRoaXMuc2Nyb2xsQm90dG9tPXQtMSx0aGlzLl9pc1JlZmxvd0VuYWJsZWQmJih0aGlzLl9yZWZsb3coZSx0KSx0aGlzLl9jb2xzPmUpKWZvcihvPTA7bzx0aGlzLmxpbmVzLmxlbmd0aDtvKyspdGhpcy5saW5lcy5nZXQobykucmVzaXplKGUscik7dGhpcy5fY29scz1lLHRoaXMuX3Jvd3M9dH0sT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJfaXNSZWZsb3dFbmFibGVkIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2hhc1Njcm9sbGJhY2smJiF0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLndpbmRvd3NNb2RlfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLGUucHJvdG90eXBlLl9yZWZsb3c9ZnVuY3Rpb24oZSx0KXt0aGlzLl9jb2xzIT09ZSYmKGU+dGhpcy5fY29scz90aGlzLl9yZWZsb3dMYXJnZXIoZSx0KTp0aGlzLl9yZWZsb3dTbWFsbGVyKGUsdCkpfSxlLnByb3RvdHlwZS5fcmVmbG93TGFyZ2VyPWZ1bmN0aW9uKGUsdCl7dmFyIHI9KDAsYS5yZWZsb3dMYXJnZXJHZXRMaW5lc1RvUmVtb3ZlKSh0aGlzLmxpbmVzLHRoaXMuX2NvbHMsZSx0aGlzLnliYXNlK3RoaXMueSx0aGlzLmdldE51bGxDZWxsKG4uREVGQVVMVF9BVFRSX0RBVEEpKTtpZihyLmxlbmd0aD4wKXt2YXIgaT0oMCxhLnJlZmxvd0xhcmdlckNyZWF0ZU5ld0xheW91dCkodGhpcy5saW5lcyxyKTsoMCxhLnJlZmxvd0xhcmdlckFwcGx5TmV3TGF5b3V0KSh0aGlzLmxpbmVzLGkubGF5b3V0KSx0aGlzLl9yZWZsb3dMYXJnZXJBZGp1c3RWaWV3cG9ydChlLHQsaS5jb3VudFJlbW92ZWQpfX0sZS5wcm90b3R5cGUuX3JlZmxvd0xhcmdlckFkanVzdFZpZXdwb3J0PWZ1bmN0aW9uKGUsdCxyKXtmb3IodmFyIGk9dGhpcy5nZXROdWxsQ2VsbChuLkRFRkFVTFRfQVRUUl9EQVRBKSxvPXI7by0tID4wOykwPT09dGhpcy55YmFzZT8odGhpcy55PjAmJnRoaXMueS0tLHRoaXMubGluZXMubGVuZ3RoPHQmJnRoaXMubGluZXMucHVzaChuZXcgbi5CdWZmZXJMaW5lKGUsaSkpKToodGhpcy55ZGlzcD09PXRoaXMueWJhc2UmJnRoaXMueWRpc3AtLSx0aGlzLnliYXNlLS0pO3RoaXMuc2F2ZWRZPU1hdGgubWF4KHRoaXMuc2F2ZWRZLXIsMCl9LGUucHJvdG90eXBlLl9yZWZsb3dTbWFsbGVyPWZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByPXRoaXMuZ2V0TnVsbENlbGwobi5ERUZBVUxUX0FUVFJfREFUQSksaT1bXSxvPTAscz10aGlzLmxpbmVzLmxlbmd0aC0xO3M+PTA7cy0tKXt2YXIgYz10aGlzLmxpbmVzLmdldChzKTtpZighKCFjfHwhYy5pc1dyYXBwZWQmJmMuZ2V0VHJpbW1lZExlbmd0aCgpPD1lKSl7Zm9yKHZhciBsPVtjXTtjLmlzV3JhcHBlZCYmcz4wOyljPXRoaXMubGluZXMuZ2V0KC0tcyksbC51bnNoaWZ0KGMpO3ZhciB1PXRoaXMueWJhc2UrdGhpcy55O2lmKCEodT49cyYmdTxzK2wubGVuZ3RoKSl7dmFyIGgsZj1sW2wubGVuZ3RoLTFdLmdldFRyaW1tZWRMZW5ndGgoKSxfPSgwLGEucmVmbG93U21hbGxlckdldE5ld0xpbmVMZW5ndGhzKShsLHRoaXMuX2NvbHMsZSksZD1fLmxlbmd0aC1sLmxlbmd0aDtoPTA9PT10aGlzLnliYXNlJiZ0aGlzLnkhPT10aGlzLmxpbmVzLmxlbmd0aC0xP01hdGgubWF4KDAsdGhpcy55LXRoaXMubGluZXMubWF4TGVuZ3RoK2QpOk1hdGgubWF4KDAsdGhpcy5saW5lcy5sZW5ndGgtdGhpcy5saW5lcy5tYXhMZW5ndGgrZCk7Zm9yKHZhciBwPVtdLHY9MDt2PGQ7disrKXt2YXIgZz10aGlzLmdldEJsYW5rTGluZShuLkRFRkFVTFRfQVRUUl9EQVRBLCEwKTtwLnB1c2goZyl9cC5sZW5ndGg+MCYmKGkucHVzaCh7c3RhcnQ6cytsLmxlbmd0aCtvLG5ld0xpbmVzOnB9KSxvKz1wLmxlbmd0aCksbC5wdXNoLmFwcGx5KGwscCk7dmFyIHk9Xy5sZW5ndGgtMSxtPV9beV07MD09PW0mJihtPV9bLS15XSk7Zm9yKHZhciBiPWwubGVuZ3RoLWQtMSxTPWY7Yj49MDspe3ZhciBDPU1hdGgubWluKFMsbSk7aWYobFt5XS5jb3B5Q2VsbHNGcm9tKGxbYl0sUy1DLG0tQyxDLCEwKSwwPT0obS09QykmJihtPV9bLS15XSksMD09KFMtPUMpKXtiLS07dmFyIHc9TWF0aC5tYXgoYiwwKTtTPSgwLGEuZ2V0V3JhcHBlZExpbmVUcmltbWVkTGVuZ3RoKShsLHcsdGhpcy5fY29scyl9fWZvcih2PTA7djxsLmxlbmd0aDt2KyspX1t2XTxlJiZsW3ZdLnNldENlbGwoX1t2XSxyKTtmb3IodmFyIEw9ZC1oO0wtLSA+MDspMD09PXRoaXMueWJhc2U/dGhpcy55PHQtMT8odGhpcy55KyssdGhpcy5saW5lcy5wb3AoKSk6KHRoaXMueWJhc2UrKyx0aGlzLnlkaXNwKyspOnRoaXMueWJhc2U8TWF0aC5taW4odGhpcy5saW5lcy5tYXhMZW5ndGgsdGhpcy5saW5lcy5sZW5ndGgrbyktdCYmKHRoaXMueWJhc2U9PT10aGlzLnlkaXNwJiZ0aGlzLnlkaXNwKyssdGhpcy55YmFzZSsrKTt0aGlzLnNhdmVkWT1NYXRoLm1pbih0aGlzLnNhdmVkWStkLHRoaXMueWJhc2UrdC0xKX19fWlmKGkubGVuZ3RoPjApe3ZhciBFPVtdLHg9W107Zm9yKHY9MDt2PHRoaXMubGluZXMubGVuZ3RoO3YrKyl4LnB1c2godGhpcy5saW5lcy5nZXQodikpO3ZhciBBPXRoaXMubGluZXMubGVuZ3RoLGs9QS0xLE09MCxSPWlbTV07dGhpcy5saW5lcy5sZW5ndGg9TWF0aC5taW4odGhpcy5saW5lcy5tYXhMZW5ndGgsdGhpcy5saW5lcy5sZW5ndGgrbyk7dmFyIFQ9MDtmb3Iodj1NYXRoLm1pbih0aGlzLmxpbmVzLm1heExlbmd0aC0xLEErby0xKTt2Pj0wO3YtLSlpZihSJiZSLnN0YXJ0PmsrVCl7Zm9yKHZhciBPPVIubmV3TGluZXMubGVuZ3RoLTE7Tz49MDtPLS0pdGhpcy5saW5lcy5zZXQodi0tLFIubmV3TGluZXNbT10pO3YrKyxFLnB1c2goe2luZGV4OmsrMSxhbW91bnQ6Ui5uZXdMaW5lcy5sZW5ndGh9KSxUKz1SLm5ld0xpbmVzLmxlbmd0aCxSPWlbKytNXX1lbHNlIHRoaXMubGluZXMuc2V0KHYseFtrLS1dKTt2YXIgQj0wO2Zvcih2PUUubGVuZ3RoLTE7dj49MDt2LS0pRVt2XS5pbmRleCs9Qix0aGlzLmxpbmVzLm9uSW5zZXJ0RW1pdHRlci5maXJlKEVbdl0pLEIrPUVbdl0uYW1vdW50O3ZhciBEPU1hdGgubWF4KDAsQStvLXRoaXMubGluZXMubWF4TGVuZ3RoKTtEPjAmJnRoaXMubGluZXMub25UcmltRW1pdHRlci5maXJlKEQpfX0sZS5wcm90b3R5cGUuc3RyaW5nSW5kZXhUb0J1ZmZlckluZGV4PWZ1bmN0aW9uKGUsdCxyKXtmb3Iodm9pZCAwPT09ciYmKHI9ITEpO3Q7KXt2YXIgaT10aGlzLmxpbmVzLmdldChlKTtpZighaSlyZXR1cm5bLTEsLTFdO2Zvcih2YXIgbj1yP2kuZ2V0VHJpbW1lZExlbmd0aCgpOmkubGVuZ3RoLG89MDtvPG47KytvKWlmKGkuZ2V0KG8pW3MuQ0hBUl9EQVRBX1dJRFRIX0lOREVYXSYmKHQtPWkuZ2V0KG8pW3MuQ0hBUl9EQVRBX0NIQVJfSU5ERVhdLmxlbmd0aHx8MSksdDwwKXJldHVybltlLG9dO2UrK31yZXR1cm5bZSwwXX0sZS5wcm90b3R5cGUudHJhbnNsYXRlQnVmZmVyTGluZVRvU3RyaW5nPWZ1bmN0aW9uKGUsdCxyLGkpe3ZvaWQgMD09PXImJihyPTApO3ZhciBuPXRoaXMubGluZXMuZ2V0KGUpO3JldHVybiBuP24udHJhbnNsYXRlVG9TdHJpbmcodCxyLGkpOiIifSxlLnByb3RvdHlwZS5nZXRXcmFwcGVkUmFuZ2VGb3JMaW5lPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD1lLHI9ZTt0PjAmJnRoaXMubGluZXMuZ2V0KHQpLmlzV3JhcHBlZDspdC0tO2Zvcig7cisxPHRoaXMubGluZXMubGVuZ3RoJiZ0aGlzLmxpbmVzLmdldChyKzEpLmlzV3JhcHBlZDspcisrO3JldHVybntmaXJzdDp0LGxhc3Q6cn19LGUucHJvdG90eXBlLnNldHVwVGFiU3RvcHM9ZnVuY3Rpb24oZSl7Zm9yKG51bGwhPWU/dGhpcy50YWJzW2VdfHwoZT10aGlzLnByZXZTdG9wKGUpKToodGhpcy50YWJzPXt9LGU9MCk7ZTx0aGlzLl9jb2xzO2UrPXRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMudGFiU3RvcFdpZHRoKXRoaXMudGFic1tlXT0hMH0sZS5wcm90b3R5cGUucHJldlN0b3A9ZnVuY3Rpb24oZSl7Zm9yKG51bGw9PWUmJihlPXRoaXMueCk7IXRoaXMudGFic1stLWVdJiZlPjA7KTtyZXR1cm4gZT49dGhpcy5fY29scz90aGlzLl9jb2xzLTE6ZTwwPzA6ZX0sZS5wcm90b3R5cGUubmV4dFN0b3A9ZnVuY3Rpb24oZSl7Zm9yKG51bGw9PWUmJihlPXRoaXMueCk7IXRoaXMudGFic1srK2VdJiZlPHRoaXMuX2NvbHM7KTtyZXR1cm4gZT49dGhpcy5fY29scz90aGlzLl9jb2xzLTE6ZTwwPzA6ZX0sZS5wcm90b3R5cGUuYWRkTWFya2VyPWZ1bmN0aW9uKGUpe3ZhciB0PXRoaXMscj1uZXcgYy5NYXJrZXIoZSk7cmV0dXJuIHRoaXMubWFya2Vycy5wdXNoKHIpLHIucmVnaXN0ZXIodGhpcy5saW5lcy5vblRyaW0oKGZ1bmN0aW9uKGUpe3IubGluZS09ZSxyLmxpbmU8MCYmci5kaXNwb3NlKCl9KSkpLHIucmVnaXN0ZXIodGhpcy5saW5lcy5vbkluc2VydCgoZnVuY3Rpb24oZSl7ci5saW5lPj1lLmluZGV4JiYoci5saW5lKz1lLmFtb3VudCl9KSkpLHIucmVnaXN0ZXIodGhpcy5saW5lcy5vbkRlbGV0ZSgoZnVuY3Rpb24oZSl7ci5saW5lPj1lLmluZGV4JiZyLmxpbmU8ZS5pbmRleCtlLmFtb3VudCYmci5kaXNwb3NlKCksci5saW5lPmUuaW5kZXgmJihyLmxpbmUtPWUuYW1vdW50KX0pKSksci5yZWdpc3RlcihyLm9uRGlzcG9zZSgoZnVuY3Rpb24oKXtyZXR1cm4gdC5fcmVtb3ZlTWFya2VyKHIpfSkpKSxyfSxlLnByb3RvdHlwZS5fcmVtb3ZlTWFya2VyPWZ1bmN0aW9uKGUpe3RoaXMubWFya2Vycy5zcGxpY2UodGhpcy5tYXJrZXJzLmluZGV4T2YoZSksMSl9LGUucHJvdG90eXBlLml0ZXJhdG9yPWZ1bmN0aW9uKGUsdCxyLGksbil7cmV0dXJuIG5ldyBmKHRoaXMsZSx0LHIsaSxuKX0sZX0oKTt0LkJ1ZmZlcj1oO3ZhciBmPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlLHQscixpLG4sbyl7dm9pZCAwPT09ciYmKHI9MCksdm9pZCAwPT09aSYmKGk9ZS5saW5lcy5sZW5ndGgpLHZvaWQgMD09PW4mJihuPTApLHZvaWQgMD09PW8mJihvPTApLHRoaXMuX2J1ZmZlcj1lLHRoaXMuX3RyaW1SaWdodD10LHRoaXMuX3N0YXJ0SW5kZXg9cix0aGlzLl9lbmRJbmRleD1pLHRoaXMuX3N0YXJ0T3ZlcnNjYW49bix0aGlzLl9lbmRPdmVyc2Nhbj1vLHRoaXMuX3N0YXJ0SW5kZXg8MCYmKHRoaXMuX3N0YXJ0SW5kZXg9MCksdGhpcy5fZW5kSW5kZXg+dGhpcy5fYnVmZmVyLmxpbmVzLmxlbmd0aCYmKHRoaXMuX2VuZEluZGV4PXRoaXMuX2J1ZmZlci5saW5lcy5sZW5ndGgpLHRoaXMuX2N1cnJlbnQ9dGhpcy5fc3RhcnRJbmRleH1yZXR1cm4gZS5wcm90b3R5cGUuaGFzTmV4dD1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9jdXJyZW50PHRoaXMuX2VuZEluZGV4fSxlLnByb3RvdHlwZS5uZXh0PWZ1bmN0aW9uKCl7dmFyIGU9dGhpcy5fYnVmZmVyLmdldFdyYXBwZWRSYW5nZUZvckxpbmUodGhpcy5fY3VycmVudCk7ZS5maXJzdDx0aGlzLl9zdGFydEluZGV4LXRoaXMuX3N0YXJ0T3ZlcnNjYW4mJihlLmZpcnN0PXRoaXMuX3N0YXJ0SW5kZXgtdGhpcy5fc3RhcnRPdmVyc2NhbiksZS5sYXN0PnRoaXMuX2VuZEluZGV4K3RoaXMuX2VuZE92ZXJzY2FuJiYoZS5sYXN0PXRoaXMuX2VuZEluZGV4K3RoaXMuX2VuZE92ZXJzY2FuKSxlLmZpcnN0PU1hdGgubWF4KGUuZmlyc3QsMCksZS5sYXN0PU1hdGgubWluKGUubGFzdCx0aGlzLl9idWZmZXIubGluZXMubGVuZ3RoKTtmb3IodmFyIHQ9IiIscj1lLmZpcnN0O3I8PWUubGFzdDsrK3IpdCs9dGhpcy5fYnVmZmVyLnRyYW5zbGF0ZUJ1ZmZlckxpbmVUb1N0cmluZyhyLHRoaXMuX3RyaW1SaWdodCk7cmV0dXJuIHRoaXMuX2N1cnJlbnQ9ZS5sYXN0KzEse3JhbmdlOmUsY29udGVudDp0fX0sZX0oKTt0LkJ1ZmZlclN0cmluZ0l0ZXJhdG9yPWZ9LDg0Mzc6KGUsdCxyKT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkJ1ZmZlckxpbmU9dC5ERUZBVUxUX0FUVFJfREFUQT12b2lkIDA7dmFyIGk9cig0ODIpLG49cig2NDMpLG89cig1MTEpLHM9cigzNzM0KTt0LkRFRkFVTFRfQVRUUl9EQVRBPU9iamVjdC5mcmVlemUobmV3IHMuQXR0cmlidXRlRGF0YSk7dmFyIGE9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUsdCxyKXt2b2lkIDA9PT1yJiYocj0hMSksdGhpcy5pc1dyYXBwZWQ9cix0aGlzLl9jb21iaW5lZD17fSx0aGlzLl9leHRlbmRlZEF0dHJzPXt9LHRoaXMuX2RhdGE9bmV3IFVpbnQzMkFycmF5KDMqZSk7Zm9yKHZhciBpPXR8fG8uQ2VsbERhdGEuZnJvbUNoYXJEYXRhKFswLG4uTlVMTF9DRUxMX0NIQVIsbi5OVUxMX0NFTExfV0lEVEgsbi5OVUxMX0NFTExfQ09ERV0pLHM9MDtzPGU7KytzKXRoaXMuc2V0Q2VsbChzLGkpO3RoaXMubGVuZ3RoPWV9cmV0dXJuIGUucHJvdG90eXBlLmdldD1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9kYXRhWzMqZSswXSxyPTIwOTcxNTEmdDtyZXR1cm5bdGhpcy5fZGF0YVszKmUrMV0sMjA5NzE1MiZ0P3RoaXMuX2NvbWJpbmVkW2VdOnI/KDAsaS5zdHJpbmdGcm9tQ29kZVBvaW50KShyKToiIix0Pj4yMiwyMDk3MTUyJnQ/dGhpcy5fY29tYmluZWRbZV0uY2hhckNvZGVBdCh0aGlzLl9jb21iaW5lZFtlXS5sZW5ndGgtMSk6cl19LGUucHJvdG90eXBlLnNldD1mdW5jdGlvbihlLHQpe3RoaXMuX2RhdGFbMyplKzFdPXRbbi5DSEFSX0RBVEFfQVRUUl9JTkRFWF0sdFtuLkNIQVJfREFUQV9DSEFSX0lOREVYXS5sZW5ndGg+MT8odGhpcy5fY29tYmluZWRbZV09dFsxXSx0aGlzLl9kYXRhWzMqZSswXT0yMDk3MTUyfGV8dFtuLkNIQVJfREFUQV9XSURUSF9JTkRFWF08PDIyKTp0aGlzLl9kYXRhWzMqZSswXT10W24uQ0hBUl9EQVRBX0NIQVJfSU5ERVhdLmNoYXJDb2RlQXQoMCl8dFtuLkNIQVJfREFUQV9XSURUSF9JTkRFWF08PDIyfSxlLnByb3RvdHlwZS5nZXRXaWR0aD1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fZGF0YVszKmUrMF0+PjIyfSxlLnByb3RvdHlwZS5oYXNXaWR0aD1mdW5jdGlvbihlKXtyZXR1cm4gMTI1ODI5MTImdGhpcy5fZGF0YVszKmUrMF19LGUucHJvdG90eXBlLmdldEZnPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9kYXRhWzMqZSsxXX0sZS5wcm90b3R5cGUuZ2V0Qmc9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX2RhdGFbMyplKzJdfSxlLnByb3RvdHlwZS5oYXNDb250ZW50PWZ1bmN0aW9uKGUpe3JldHVybiA0MTk0MzAzJnRoaXMuX2RhdGFbMyplKzBdfSxlLnByb3RvdHlwZS5nZXRDb2RlUG9pbnQ9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcy5fZGF0YVszKmUrMF07cmV0dXJuIDIwOTcxNTImdD90aGlzLl9jb21iaW5lZFtlXS5jaGFyQ29kZUF0KHRoaXMuX2NvbWJpbmVkW2VdLmxlbmd0aC0xKToyMDk3MTUxJnR9LGUucHJvdG90eXBlLmlzQ29tYmluZWQ9ZnVuY3Rpb24oZSl7cmV0dXJuIDIwOTcxNTImdGhpcy5fZGF0YVszKmUrMF19LGUucHJvdG90eXBlLmdldFN0cmluZz1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9kYXRhWzMqZSswXTtyZXR1cm4gMjA5NzE1MiZ0P3RoaXMuX2NvbWJpbmVkW2VdOjIwOTcxNTEmdD8oMCxpLnN0cmluZ0Zyb21Db2RlUG9pbnQpKDIwOTcxNTEmdCk6IiJ9LGUucHJvdG90eXBlLmxvYWRDZWxsPWZ1bmN0aW9uKGUsdCl7dmFyIHI9MyplO3JldHVybiB0LmNvbnRlbnQ9dGhpcy5fZGF0YVtyKzBdLHQuZmc9dGhpcy5fZGF0YVtyKzFdLHQuYmc9dGhpcy5fZGF0YVtyKzJdLDIwOTcxNTImdC5jb250ZW50JiYodC5jb21iaW5lZERhdGE9dGhpcy5fY29tYmluZWRbZV0pLDI2ODQzNTQ1NiZ0LmJnJiYodC5leHRlbmRlZD10aGlzLl9leHRlbmRlZEF0dHJzW2VdKSx0fSxlLnByb3RvdHlwZS5zZXRDZWxsPWZ1bmN0aW9uKGUsdCl7MjA5NzE1MiZ0LmNvbnRlbnQmJih0aGlzLl9jb21iaW5lZFtlXT10LmNvbWJpbmVkRGF0YSksMjY4NDM1NDU2JnQuYmcmJih0aGlzLl9leHRlbmRlZEF0dHJzW2VdPXQuZXh0ZW5kZWQpLHRoaXMuX2RhdGFbMyplKzBdPXQuY29udGVudCx0aGlzLl9kYXRhWzMqZSsxXT10LmZnLHRoaXMuX2RhdGFbMyplKzJdPXQuYmd9LGUucHJvdG90eXBlLnNldENlbGxGcm9tQ29kZVBvaW50PWZ1bmN0aW9uKGUsdCxyLGksbixvKXsyNjg0MzU0NTYmbiYmKHRoaXMuX2V4dGVuZGVkQXR0cnNbZV09byksdGhpcy5fZGF0YVszKmUrMF09dHxyPDwyMix0aGlzLl9kYXRhWzMqZSsxXT1pLHRoaXMuX2RhdGFbMyplKzJdPW59LGUucHJvdG90eXBlLmFkZENvZGVwb2ludFRvQ2VsbD1mdW5jdGlvbihlLHQpe3ZhciByPXRoaXMuX2RhdGFbMyplKzBdOzIwOTcxNTImcj90aGlzLl9jb21iaW5lZFtlXSs9KDAsaS5zdHJpbmdGcm9tQ29kZVBvaW50KSh0KTooMjA5NzE1MSZyPyh0aGlzLl9jb21iaW5lZFtlXT0oMCxpLnN0cmluZ0Zyb21Db2RlUG9pbnQpKDIwOTcxNTEmcikrKDAsaS5zdHJpbmdGcm9tQ29kZVBvaW50KSh0KSxyJj0tMjA5NzE1MixyfD0yMDk3MTUyKTpyPXR8MTw8MjIsdGhpcy5fZGF0YVszKmUrMF09cil9LGUucHJvdG90eXBlLmluc2VydENlbGxzPWZ1bmN0aW9uKGUsdCxyLGkpe2lmKChlJT10aGlzLmxlbmd0aCkmJjI9PT10aGlzLmdldFdpZHRoKGUtMSkmJnRoaXMuc2V0Q2VsbEZyb21Db2RlUG9pbnQoZS0xLDAsMSwobnVsbD09aT92b2lkIDA6aS5mZyl8fDAsKG51bGw9PWk/dm9pZCAwOmkuYmcpfHwwLChudWxsPT1pP3ZvaWQgMDppLmV4dGVuZGVkKXx8bmV3IHMuRXh0ZW5kZWRBdHRycyksdDx0aGlzLmxlbmd0aC1lKXtmb3IodmFyIG49bmV3IG8uQ2VsbERhdGEsYT10aGlzLmxlbmd0aC1lLXQtMTthPj0wOy0tYSl0aGlzLnNldENlbGwoZSt0K2EsdGhpcy5sb2FkQ2VsbChlK2EsbikpO2ZvcihhPTA7YTx0OysrYSl0aGlzLnNldENlbGwoZSthLHIpfWVsc2UgZm9yKGE9ZTthPHRoaXMubGVuZ3RoOysrYSl0aGlzLnNldENlbGwoYSxyKTsyPT09dGhpcy5nZXRXaWR0aCh0aGlzLmxlbmd0aC0xKSYmdGhpcy5zZXRDZWxsRnJvbUNvZGVQb2ludCh0aGlzLmxlbmd0aC0xLDAsMSwobnVsbD09aT92b2lkIDA6aS5mZyl8fDAsKG51bGw9PWk/dm9pZCAwOmkuYmcpfHwwLChudWxsPT1pP3ZvaWQgMDppLmV4dGVuZGVkKXx8bmV3IHMuRXh0ZW5kZWRBdHRycyl9LGUucHJvdG90eXBlLmRlbGV0ZUNlbGxzPWZ1bmN0aW9uKGUsdCxyLGkpe2lmKGUlPXRoaXMubGVuZ3RoLHQ8dGhpcy5sZW5ndGgtZSl7Zm9yKHZhciBuPW5ldyBvLkNlbGxEYXRhLGE9MDthPHRoaXMubGVuZ3RoLWUtdDsrK2EpdGhpcy5zZXRDZWxsKGUrYSx0aGlzLmxvYWRDZWxsKGUrdCthLG4pKTtmb3IoYT10aGlzLmxlbmd0aC10O2E8dGhpcy5sZW5ndGg7KythKXRoaXMuc2V0Q2VsbChhLHIpfWVsc2UgZm9yKGE9ZTthPHRoaXMubGVuZ3RoOysrYSl0aGlzLnNldENlbGwoYSxyKTtlJiYyPT09dGhpcy5nZXRXaWR0aChlLTEpJiZ0aGlzLnNldENlbGxGcm9tQ29kZVBvaW50KGUtMSwwLDEsKG51bGw9PWk/dm9pZCAwOmkuZmcpfHwwLChudWxsPT1pP3ZvaWQgMDppLmJnKXx8MCwobnVsbD09aT92b2lkIDA6aS5leHRlbmRlZCl8fG5ldyBzLkV4dGVuZGVkQXR0cnMpLDAhPT10aGlzLmdldFdpZHRoKGUpfHx0aGlzLmhhc0NvbnRlbnQoZSl8fHRoaXMuc2V0Q2VsbEZyb21Db2RlUG9pbnQoZSwwLDEsKG51bGw9PWk/dm9pZCAwOmkuZmcpfHwwLChudWxsPT1pP3ZvaWQgMDppLmJnKXx8MCwobnVsbD09aT92b2lkIDA6aS5leHRlbmRlZCl8fG5ldyBzLkV4dGVuZGVkQXR0cnMpfSxlLnByb3RvdHlwZS5yZXBsYWNlQ2VsbHM9ZnVuY3Rpb24oZSx0LHIsaSl7Zm9yKGUmJjI9PT10aGlzLmdldFdpZHRoKGUtMSkmJnRoaXMuc2V0Q2VsbEZyb21Db2RlUG9pbnQoZS0xLDAsMSwobnVsbD09aT92b2lkIDA6aS5mZyl8fDAsKG51bGw9PWk/dm9pZCAwOmkuYmcpfHwwLChudWxsPT1pP3ZvaWQgMDppLmV4dGVuZGVkKXx8bmV3IHMuRXh0ZW5kZWRBdHRycyksdDx0aGlzLmxlbmd0aCYmMj09PXRoaXMuZ2V0V2lkdGgodC0xKSYmdGhpcy5zZXRDZWxsRnJvbUNvZGVQb2ludCh0LDAsMSwobnVsbD09aT92b2lkIDA6aS5mZyl8fDAsKG51bGw9PWk/dm9pZCAwOmkuYmcpfHwwLChudWxsPT1pP3ZvaWQgMDppLmV4dGVuZGVkKXx8bmV3IHMuRXh0ZW5kZWRBdHRycyk7ZTx0JiZlPHRoaXMubGVuZ3RoOyl0aGlzLnNldENlbGwoZSsrLHIpfSxlLnByb3RvdHlwZS5yZXNpemU9ZnVuY3Rpb24oZSx0KXtpZihlIT09dGhpcy5sZW5ndGgpe2lmKGU+dGhpcy5sZW5ndGgpe3ZhciByPW5ldyBVaW50MzJBcnJheSgzKmUpO3RoaXMubGVuZ3RoJiYoMyplPHRoaXMuX2RhdGEubGVuZ3RoP3Iuc2V0KHRoaXMuX2RhdGEuc3ViYXJyYXkoMCwzKmUpKTpyLnNldCh0aGlzLl9kYXRhKSksdGhpcy5fZGF0YT1yO2Zvcih2YXIgaT10aGlzLmxlbmd0aDtpPGU7KytpKXRoaXMuc2V0Q2VsbChpLHQpfWVsc2UgaWYoZSl7KHI9bmV3IFVpbnQzMkFycmF5KDMqZSkpLnNldCh0aGlzLl9kYXRhLnN1YmFycmF5KDAsMyplKSksdGhpcy5fZGF0YT1yO3ZhciBuPU9iamVjdC5rZXlzKHRoaXMuX2NvbWJpbmVkKTtmb3IoaT0wO2k8bi5sZW5ndGg7aSsrKXt2YXIgbz1wYXJzZUludChuW2ldLDEwKTtvPj1lJiZkZWxldGUgdGhpcy5fY29tYmluZWRbb119fWVsc2UgdGhpcy5fZGF0YT1uZXcgVWludDMyQXJyYXkoMCksdGhpcy5fY29tYmluZWQ9e307dGhpcy5sZW5ndGg9ZX19LGUucHJvdG90eXBlLmZpbGw9ZnVuY3Rpb24oZSl7dGhpcy5fY29tYmluZWQ9e30sdGhpcy5fZXh0ZW5kZWRBdHRycz17fTtmb3IodmFyIHQ9MDt0PHRoaXMubGVuZ3RoOysrdCl0aGlzLnNldENlbGwodCxlKX0sZS5wcm90b3R5cGUuY29weUZyb209ZnVuY3Rpb24oZSl7Zm9yKHZhciB0IGluIHRoaXMubGVuZ3RoIT09ZS5sZW5ndGg/dGhpcy5fZGF0YT1uZXcgVWludDMyQXJyYXkoZS5fZGF0YSk6dGhpcy5fZGF0YS5zZXQoZS5fZGF0YSksdGhpcy5sZW5ndGg9ZS5sZW5ndGgsdGhpcy5fY29tYmluZWQ9e30sZS5fY29tYmluZWQpdGhpcy5fY29tYmluZWRbdF09ZS5fY29tYmluZWRbdF07Zm9yKHZhciB0IGluIHRoaXMuX2V4dGVuZGVkQXR0cnM9e30sZS5fZXh0ZW5kZWRBdHRycyl0aGlzLl9leHRlbmRlZEF0dHJzW3RdPWUuX2V4dGVuZGVkQXR0cnNbdF07dGhpcy5pc1dyYXBwZWQ9ZS5pc1dyYXBwZWR9LGUucHJvdG90eXBlLmNsb25lPWZ1bmN0aW9uKCl7dmFyIHQ9bmV3IGUoMCk7Zm9yKHZhciByIGluIHQuX2RhdGE9bmV3IFVpbnQzMkFycmF5KHRoaXMuX2RhdGEpLHQubGVuZ3RoPXRoaXMubGVuZ3RoLHRoaXMuX2NvbWJpbmVkKXQuX2NvbWJpbmVkW3JdPXRoaXMuX2NvbWJpbmVkW3JdO2Zvcih2YXIgciBpbiB0aGlzLl9leHRlbmRlZEF0dHJzKXQuX2V4dGVuZGVkQXR0cnNbcl09dGhpcy5fZXh0ZW5kZWRBdHRyc1tyXTtyZXR1cm4gdC5pc1dyYXBwZWQ9dGhpcy5pc1dyYXBwZWQsdH0sZS5wcm90b3R5cGUuZ2V0VHJpbW1lZExlbmd0aD1mdW5jdGlvbigpe2Zvcih2YXIgZT10aGlzLmxlbmd0aC0xO2U+PTA7LS1lKWlmKDQxOTQzMDMmdGhpcy5fZGF0YVszKmUrMF0pcmV0dXJuIGUrKHRoaXMuX2RhdGFbMyplKzBdPj4yMik7cmV0dXJuIDB9LGUucHJvdG90eXBlLmNvcHlDZWxsc0Zyb209ZnVuY3Rpb24oZSx0LHIsaSxuKXt2YXIgbz1lLl9kYXRhO2lmKG4pZm9yKHZhciBzPWktMTtzPj0wO3MtLSlmb3IodmFyIGE9MDthPDM7YSsrKXRoaXMuX2RhdGFbMyoocitzKSthXT1vWzMqKHQrcykrYV07ZWxzZSBmb3Iocz0wO3M8aTtzKyspZm9yKGE9MDthPDM7YSsrKXRoaXMuX2RhdGFbMyoocitzKSthXT1vWzMqKHQrcykrYV07dmFyIGM9T2JqZWN0LmtleXMoZS5fY29tYmluZWQpO2ZvcihhPTA7YTxjLmxlbmd0aDthKyspe3ZhciBsPXBhcnNlSW50KGNbYV0sMTApO2w+PXQmJih0aGlzLl9jb21iaW5lZFtsLXQrcl09ZS5fY29tYmluZWRbbF0pfX0sZS5wcm90b3R5cGUudHJhbnNsYXRlVG9TdHJpbmc9ZnVuY3Rpb24oZSx0LHIpe3ZvaWQgMD09PWUmJihlPSExKSx2b2lkIDA9PT10JiYodD0wKSx2b2lkIDA9PT1yJiYocj10aGlzLmxlbmd0aCksZSYmKHI9TWF0aC5taW4ocix0aGlzLmdldFRyaW1tZWRMZW5ndGgoKSkpO2Zvcih2YXIgbz0iIjt0PHI7KXt2YXIgcz10aGlzLl9kYXRhWzMqdCswXSxhPTIwOTcxNTEmcztvKz0yMDk3MTUyJnM/dGhpcy5fY29tYmluZWRbdF06YT8oMCxpLnN0cmluZ0Zyb21Db2RlUG9pbnQpKGEpOm4uV0hJVEVTUEFDRV9DRUxMX0NIQVIsdCs9cz4+MjJ8fDF9cmV0dXJuIG99LGV9KCk7dC5CdWZmZXJMaW5lPWF9LDQ4NDE6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5nZXRSYW5nZUxlbmd0aD12b2lkIDAsdC5nZXRSYW5nZUxlbmd0aD1mdW5jdGlvbihlLHQpe2lmKGUuc3RhcnQueT5lLmVuZC55KXRocm93IG5ldyBFcnJvcigiQnVmZmVyIHJhbmdlIGVuZCAoIitlLmVuZC54KyIsICIrZS5lbmQueSsiKSBjYW5ub3QgYmUgYmVmb3JlIHN0YXJ0ICgiK2Uuc3RhcnQueCsiLCAiK2Uuc3RhcnQueSsiKSIpO3JldHVybiB0KihlLmVuZC55LWUuc3RhcnQueSkrKGUuZW5kLngtZS5zdGFydC54KzEpfX0sNDYzNDooZSx0KT0+e2Z1bmN0aW9uIHIoZSx0LHIpe2lmKHQ9PT1lLmxlbmd0aC0xKXJldHVybiBlW3RdLmdldFRyaW1tZWRMZW5ndGgoKTt2YXIgaT0hZVt0XS5oYXNDb250ZW50KHItMSkmJjE9PT1lW3RdLmdldFdpZHRoKHItMSksbj0yPT09ZVt0KzFdLmdldFdpZHRoKDApO3JldHVybiBpJiZuP3ItMTpyfU9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LmdldFdyYXBwZWRMaW5lVHJpbW1lZExlbmd0aD10LnJlZmxvd1NtYWxsZXJHZXROZXdMaW5lTGVuZ3Rocz10LnJlZmxvd0xhcmdlckFwcGx5TmV3TGF5b3V0PXQucmVmbG93TGFyZ2VyQ3JlYXRlTmV3TGF5b3V0PXQucmVmbG93TGFyZ2VyR2V0TGluZXNUb1JlbW92ZT12b2lkIDAsdC5yZWZsb3dMYXJnZXJHZXRMaW5lc1RvUmVtb3ZlPWZ1bmN0aW9uKGUsdCxpLG4sbyl7Zm9yKHZhciBzPVtdLGE9MDthPGUubGVuZ3RoLTE7YSsrKXt2YXIgYz1hLGw9ZS5nZXQoKytjKTtpZihsLmlzV3JhcHBlZCl7Zm9yKHZhciB1PVtlLmdldChhKV07YzxlLmxlbmd0aCYmbC5pc1dyYXBwZWQ7KXUucHVzaChsKSxsPWUuZ2V0KCsrYyk7aWYobj49YSYmbjxjKWErPXUubGVuZ3RoLTE7ZWxzZXtmb3IodmFyIGg9MCxmPXIodSxoLHQpLF89MSxkPTA7Xzx1Lmxlbmd0aDspe3ZhciBwPXIodSxfLHQpLHY9cC1kLGc9aS1mLHk9TWF0aC5taW4odixnKTt1W2hdLmNvcHlDZWxsc0Zyb20odVtfXSxkLGYseSwhMSksKGYrPXkpPT09aSYmKGgrKyxmPTApLChkKz15KT09PXAmJihfKyssZD0wKSwwPT09ZiYmMCE9PWgmJjI9PT11W2gtMV0uZ2V0V2lkdGgoaS0xKSYmKHVbaF0uY29weUNlbGxzRnJvbSh1W2gtMV0saS0xLGYrKywxLCExKSx1W2gtMV0uc2V0Q2VsbChpLTEsbykpfXVbaF0ucmVwbGFjZUNlbGxzKGYsaSxvKTtmb3IodmFyIG09MCxiPXUubGVuZ3RoLTE7Yj4wJiYoYj5ofHwwPT09dVtiXS5nZXRUcmltbWVkTGVuZ3RoKCkpO2ItLSltKys7bT4wJiYocy5wdXNoKGErdS5sZW5ndGgtbSkscy5wdXNoKG0pKSxhKz11Lmxlbmd0aC0xfX19cmV0dXJuIHN9LHQucmVmbG93TGFyZ2VyQ3JlYXRlTmV3TGF5b3V0PWZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByPVtdLGk9MCxuPXRbaV0sbz0wLHM9MDtzPGUubGVuZ3RoO3MrKylpZihuPT09cyl7dmFyIGE9dFsrK2ldO2Uub25EZWxldGVFbWl0dGVyLmZpcmUoe2luZGV4OnMtbyxhbW91bnQ6YX0pLHMrPWEtMSxvKz1hLG49dFsrK2ldfWVsc2Ugci5wdXNoKHMpO3JldHVybntsYXlvdXQ6cixjb3VudFJlbW92ZWQ6b319LHQucmVmbG93TGFyZ2VyQXBwbHlOZXdMYXlvdXQ9ZnVuY3Rpb24oZSx0KXtmb3IodmFyIHI9W10saT0wO2k8dC5sZW5ndGg7aSsrKXIucHVzaChlLmdldCh0W2ldKSk7Zm9yKGk9MDtpPHIubGVuZ3RoO2krKyllLnNldChpLHJbaV0pO2UubGVuZ3RoPXQubGVuZ3RofSx0LnJlZmxvd1NtYWxsZXJHZXROZXdMaW5lTGVuZ3Rocz1mdW5jdGlvbihlLHQsaSl7Zm9yKHZhciBuPVtdLG89ZS5tYXAoKGZ1bmN0aW9uKGksbil7cmV0dXJuIHIoZSxuLHQpfSkpLnJlZHVjZSgoZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSt0fSkpLHM9MCxhPTAsYz0wO2M8bzspe2lmKG8tYzxpKXtuLnB1c2goby1jKTticmVha31zKz1pO3ZhciBsPXIoZSxhLHQpO3M+bCYmKHMtPWwsYSsrKTt2YXIgdT0yPT09ZVthXS5nZXRXaWR0aChzLTEpO3UmJnMtLTt2YXIgaD11P2ktMTppO24ucHVzaChoKSxjKz1ofXJldHVybiBufSx0LmdldFdyYXBwZWRMaW5lVHJpbW1lZExlbmd0aD1yfSw1Mjk1OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pO09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkJ1ZmZlclNldD12b2lkIDA7dmFyIG89cig5MDkyKSxzPXIoODQ2MCksYT1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KHQscil7dmFyIGk9ZS5jYWxsKHRoaXMpfHx0aGlzO3JldHVybiBpLl9vcHRpb25zU2VydmljZT10LGkuX2J1ZmZlclNlcnZpY2U9cixpLl9vbkJ1ZmZlckFjdGl2YXRlPWkucmVnaXN0ZXIobmV3IHMuRXZlbnRFbWl0dGVyKSxpLnJlc2V0KCksaX1yZXR1cm4gbih0LGUpLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25CdWZmZXJBY3RpdmF0ZSIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vbkJ1ZmZlckFjdGl2YXRlLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLHQucHJvdG90eXBlLnJlc2V0PWZ1bmN0aW9uKCl7dGhpcy5fbm9ybWFsPW5ldyBvLkJ1ZmZlcighMCx0aGlzLl9vcHRpb25zU2VydmljZSx0aGlzLl9idWZmZXJTZXJ2aWNlKSx0aGlzLl9ub3JtYWwuZmlsbFZpZXdwb3J0Um93cygpLHRoaXMuX2FsdD1uZXcgby5CdWZmZXIoITEsdGhpcy5fb3B0aW9uc1NlcnZpY2UsdGhpcy5fYnVmZmVyU2VydmljZSksdGhpcy5fYWN0aXZlQnVmZmVyPXRoaXMuX25vcm1hbCx0aGlzLl9vbkJ1ZmZlckFjdGl2YXRlLmZpcmUoe2FjdGl2ZUJ1ZmZlcjp0aGlzLl9ub3JtYWwsaW5hY3RpdmVCdWZmZXI6dGhpcy5fYWx0fSksdGhpcy5zZXR1cFRhYlN0b3BzKCl9LE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwiYWx0Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2FsdH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsImFjdGl2ZSIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9hY3RpdmVCdWZmZXJ9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJub3JtYWwiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fbm9ybWFsfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLHQucHJvdG90eXBlLmFjdGl2YXRlTm9ybWFsQnVmZmVyPWZ1bmN0aW9uKCl7dGhpcy5fYWN0aXZlQnVmZmVyIT09dGhpcy5fbm9ybWFsJiYodGhpcy5fbm9ybWFsLng9dGhpcy5fYWx0LngsdGhpcy5fbm9ybWFsLnk9dGhpcy5fYWx0LnksdGhpcy5fYWx0LmNsZWFyKCksdGhpcy5fYWN0aXZlQnVmZmVyPXRoaXMuX25vcm1hbCx0aGlzLl9vbkJ1ZmZlckFjdGl2YXRlLmZpcmUoe2FjdGl2ZUJ1ZmZlcjp0aGlzLl9ub3JtYWwsaW5hY3RpdmVCdWZmZXI6dGhpcy5fYWx0fSkpfSx0LnByb3RvdHlwZS5hY3RpdmF0ZUFsdEJ1ZmZlcj1mdW5jdGlvbihlKXt0aGlzLl9hY3RpdmVCdWZmZXIhPT10aGlzLl9hbHQmJih0aGlzLl9hbHQuZmlsbFZpZXdwb3J0Um93cyhlKSx0aGlzLl9hbHQueD10aGlzLl9ub3JtYWwueCx0aGlzLl9hbHQueT10aGlzLl9ub3JtYWwueSx0aGlzLl9hY3RpdmVCdWZmZXI9dGhpcy5fYWx0LHRoaXMuX29uQnVmZmVyQWN0aXZhdGUuZmlyZSh7YWN0aXZlQnVmZmVyOnRoaXMuX2FsdCxpbmFjdGl2ZUJ1ZmZlcjp0aGlzLl9ub3JtYWx9KSl9LHQucHJvdG90eXBlLnJlc2l6ZT1mdW5jdGlvbihlLHQpe3RoaXMuX25vcm1hbC5yZXNpemUoZSx0KSx0aGlzLl9hbHQucmVzaXplKGUsdCl9LHQucHJvdG90eXBlLnNldHVwVGFiU3RvcHM9ZnVuY3Rpb24oZSl7dGhpcy5fbm9ybWFsLnNldHVwVGFiU3RvcHMoZSksdGhpcy5fYWx0LnNldHVwVGFiU3RvcHMoZSl9LHR9KHIoODQ0KS5EaXNwb3NhYmxlKTt0LkJ1ZmZlclNldD1hfSw1MTE6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpLG49dGhpcyYmdGhpcy5fX2V4dGVuZHN8fChpPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGk9T2JqZWN0LnNldFByb3RvdHlwZU9mfHx7X19wcm90b19fOltdfWluc3RhbmNlb2YgQXJyYXkmJmZ1bmN0aW9uKGUsdCl7ZS5fX3Byb3RvX189dH18fGZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByIGluIHQpT2JqZWN0LnByb3RvdHlwZS5oYXNPd25Qcm9wZXJ0eS5jYWxsKHQscikmJihlW3JdPXRbcl0pfSxpKGUsdCl9LGZ1bmN0aW9uKGUsdCl7aWYoImZ1bmN0aW9uIiE9dHlwZW9mIHQmJm51bGwhPT10KXRocm93IG5ldyBUeXBlRXJyb3IoIkNsYXNzIGV4dGVuZHMgdmFsdWUgIitTdHJpbmcodCkrIiBpcyBub3QgYSBjb25zdHJ1Y3RvciBvciBudWxsIik7ZnVuY3Rpb24gcigpe3RoaXMuY29uc3RydWN0b3I9ZX1pKGUsdCksZS5wcm90b3R5cGU9bnVsbD09PXQ/T2JqZWN0LmNyZWF0ZSh0KTooci5wcm90b3R5cGU9dC5wcm90b3R5cGUsbmV3IHIpfSk7T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuQ2VsbERhdGE9dm9pZCAwO3ZhciBvPXIoNDgyKSxzPXIoNjQzKSxhPXIoMzczNCksYz1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KCl7dmFyIHQ9bnVsbCE9PWUmJmUuYXBwbHkodGhpcyxhcmd1bWVudHMpfHx0aGlzO3JldHVybiB0LmNvbnRlbnQ9MCx0LmZnPTAsdC5iZz0wLHQuZXh0ZW5kZWQ9bmV3IGEuRXh0ZW5kZWRBdHRycyx0LmNvbWJpbmVkRGF0YT0iIix0fXJldHVybiBuKHQsZSksdC5mcm9tQ2hhckRhdGE9ZnVuY3Rpb24oZSl7dmFyIHI9bmV3IHQ7cmV0dXJuIHIuc2V0RnJvbUNoYXJEYXRhKGUpLHJ9LHQucHJvdG90eXBlLmlzQ29tYmluZWQ9ZnVuY3Rpb24oKXtyZXR1cm4gMjA5NzE1MiZ0aGlzLmNvbnRlbnR9LHQucHJvdG90eXBlLmdldFdpZHRoPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuY29udGVudD4+MjJ9LHQucHJvdG90eXBlLmdldENoYXJzPWZ1bmN0aW9uKCl7cmV0dXJuIDIwOTcxNTImdGhpcy5jb250ZW50P3RoaXMuY29tYmluZWREYXRhOjIwOTcxNTEmdGhpcy5jb250ZW50PygwLG8uc3RyaW5nRnJvbUNvZGVQb2ludCkoMjA5NzE1MSZ0aGlzLmNvbnRlbnQpOiIifSx0LnByb3RvdHlwZS5nZXRDb2RlPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuaXNDb21iaW5lZCgpP3RoaXMuY29tYmluZWREYXRhLmNoYXJDb2RlQXQodGhpcy5jb21iaW5lZERhdGEubGVuZ3RoLTEpOjIwOTcxNTEmdGhpcy5jb250ZW50fSx0LnByb3RvdHlwZS5zZXRGcm9tQ2hhckRhdGE9ZnVuY3Rpb24oZSl7dGhpcy5mZz1lW3MuQ0hBUl9EQVRBX0FUVFJfSU5ERVhdLHRoaXMuYmc9MDt2YXIgdD0hMTtpZihlW3MuQ0hBUl9EQVRBX0NIQVJfSU5ERVhdLmxlbmd0aD4yKXQ9ITA7ZWxzZSBpZigyPT09ZVtzLkNIQVJfREFUQV9DSEFSX0lOREVYXS5sZW5ndGgpe3ZhciByPWVbcy5DSEFSX0RBVEFfQ0hBUl9JTkRFWF0uY2hhckNvZGVBdCgwKTtpZig1NTI5Njw9ciYmcjw9NTYzMTkpe3ZhciBpPWVbcy5DSEFSX0RBVEFfQ0hBUl9JTkRFWF0uY2hhckNvZGVBdCgxKTs1NjMyMDw9aSYmaTw9NTczNDM/dGhpcy5jb250ZW50PTEwMjQqKHItNTUyOTYpK2ktNTYzMjArNjU1MzZ8ZVtzLkNIQVJfREFUQV9XSURUSF9JTkRFWF08PDIyOnQ9ITB9ZWxzZSB0PSEwfWVsc2UgdGhpcy5jb250ZW50PWVbcy5DSEFSX0RBVEFfQ0hBUl9JTkRFWF0uY2hhckNvZGVBdCgwKXxlW3MuQ0hBUl9EQVRBX1dJRFRIX0lOREVYXTw8MjI7dCYmKHRoaXMuY29tYmluZWREYXRhPWVbcy5DSEFSX0RBVEFfQ0hBUl9JTkRFWF0sdGhpcy5jb250ZW50PTIwOTcxNTJ8ZVtzLkNIQVJfREFUQV9XSURUSF9JTkRFWF08PDIyKX0sdC5wcm90b3R5cGUuZ2V0QXNDaGFyRGF0YT1mdW5jdGlvbigpe3JldHVyblt0aGlzLmZnLHRoaXMuZ2V0Q2hhcnMoKSx0aGlzLmdldFdpZHRoKCksdGhpcy5nZXRDb2RlKCldfSx0fShhLkF0dHJpYnV0ZURhdGEpO3QuQ2VsbERhdGE9Y30sNjQzOihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuV0hJVEVTUEFDRV9DRUxMX0NPREU9dC5XSElURVNQQUNFX0NFTExfV0lEVEg9dC5XSElURVNQQUNFX0NFTExfQ0hBUj10Lk5VTExfQ0VMTF9DT0RFPXQuTlVMTF9DRUxMX1dJRFRIPXQuTlVMTF9DRUxMX0NIQVI9dC5DSEFSX0RBVEFfQ09ERV9JTkRFWD10LkNIQVJfREFUQV9XSURUSF9JTkRFWD10LkNIQVJfREFUQV9DSEFSX0lOREVYPXQuQ0hBUl9EQVRBX0FUVFJfSU5ERVg9dC5ERUZBVUxUX0FUVFI9dC5ERUZBVUxUX0NPTE9SPXZvaWQgMCx0LkRFRkFVTFRfQ09MT1I9MjU2LHQuREVGQVVMVF9BVFRSPTI1Nnx0LkRFRkFVTFRfQ09MT1I8PDksdC5DSEFSX0RBVEFfQVRUUl9JTkRFWD0wLHQuQ0hBUl9EQVRBX0NIQVJfSU5ERVg9MSx0LkNIQVJfREFUQV9XSURUSF9JTkRFWD0yLHQuQ0hBUl9EQVRBX0NPREVfSU5ERVg9Myx0Lk5VTExfQ0VMTF9DSEFSPSIiLHQuTlVMTF9DRUxMX1dJRFRIPTEsdC5OVUxMX0NFTExfQ09ERT0wLHQuV0hJVEVTUEFDRV9DRUxMX0NIQVI9IiAiLHQuV0hJVEVTUEFDRV9DRUxMX1dJRFRIPTEsdC5XSElURVNQQUNFX0NFTExfQ09ERT0zMn0sNDg2MzpmdW5jdGlvbihlLHQscil7dmFyIGksbj10aGlzJiZ0aGlzLl9fZXh0ZW5kc3x8KGk9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gaT1PYmplY3Quc2V0UHJvdG90eXBlT2Z8fHtfX3Byb3RvX186W119aW5zdGFuY2VvZiBBcnJheSYmZnVuY3Rpb24oZSx0KXtlLl9fcHJvdG9fXz10fXx8ZnVuY3Rpb24oZSx0KXtmb3IodmFyIHIgaW4gdClPYmplY3QucHJvdG90eXBlLmhhc093blByb3BlcnR5LmNhbGwodCxyKSYmKGVbcl09dFtyXSl9LGkoZSx0KX0sZnVuY3Rpb24oZSx0KXtpZigiZnVuY3Rpb24iIT10eXBlb2YgdCYmbnVsbCE9PXQpdGhyb3cgbmV3IFR5cGVFcnJvcigiQ2xhc3MgZXh0ZW5kcyB2YWx1ZSAiK1N0cmluZyh0KSsiIGlzIG5vdCBhIGNvbnN0cnVjdG9yIG9yIG51bGwiKTtmdW5jdGlvbiByKCl7dGhpcy5jb25zdHJ1Y3Rvcj1lfWkoZSx0KSxlLnByb3RvdHlwZT1udWxsPT09dD9PYmplY3QuY3JlYXRlKHQpOihyLnByb3RvdHlwZT10LnByb3RvdHlwZSxuZXcgcil9KTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5NYXJrZXI9dm9pZCAwO3ZhciBvPXIoODQ2MCkscz1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KHIpe3ZhciBpPWUuY2FsbCh0aGlzKXx8dGhpcztyZXR1cm4gaS5saW5lPXIsaS5faWQ9dC5fbmV4dElkKyssaS5pc0Rpc3Bvc2VkPSExLGkuX29uRGlzcG9zZT1uZXcgby5FdmVudEVtaXR0ZXIsaX1yZXR1cm4gbih0LGUpLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwiaWQiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5faWR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvbkRpc3Bvc2UiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25EaXNwb3NlLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLHQucHJvdG90eXBlLmRpc3Bvc2U9ZnVuY3Rpb24oKXt0aGlzLmlzRGlzcG9zZWR8fCh0aGlzLmlzRGlzcG9zZWQ9ITAsdGhpcy5saW5lPS0xLHRoaXMuX29uRGlzcG9zZS5maXJlKCksZS5wcm90b3R5cGUuZGlzcG9zZS5jYWxsKHRoaXMpKX0sdC5fbmV4dElkPTEsdH0ocig4NDQpLkRpc3Bvc2FibGUpO3QuTWFya2VyPXN9LDcxMTY6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5ERUZBVUxUX0NIQVJTRVQ9dC5DSEFSU0VUUz12b2lkIDAsdC5DSEFSU0VUUz17fSx0LkRFRkFVTFRfQ0hBUlNFVD10LkNIQVJTRVRTLkIsdC5DSEFSU0VUU1swXT17ImAiOiLil4YiLGE6IuKWkiIsYjoi4pCJIixjOiLikIwiLGQ6IuKQjSIsZToi4pCKIixmOiLCsCIsZzoiwrEiLGg6IuKQpCIsaToi4pCLIixqOiLilJgiLGs6IuKUkCIsbDoi4pSMIixtOiLilJQiLG46IuKUvCIsbzoi4o66IixwOiLijrsiLHE6IuKUgCIscjoi4o68IixzOiLijr0iLHQ6IuKUnCIsdToi4pSkIix2OiLilLQiLHc6IuKUrCIseDoi4pSCIix5OiLiiaQiLHo6IuKJpSIsInsiOiLPgCIsInwiOiLiiaAiLCJ9IjoiwqMiLCJ+IjoiwrcifSx0LkNIQVJTRVRTLkE9eyIjIjoiwqMifSx0LkNIQVJTRVRTLkI9dm9pZCAwLHQuQ0hBUlNFVFNbNF09eyIjIjoiwqMiLCJAIjoiwr4iLCJbIjoiaWoiLCJcXCI6IsK9IiwiXSI6InwiLCJ7IjoiwqgiLCJ8IjoiZiIsIn0iOiLCvCIsIn4iOiLCtCJ9LHQuQ0hBUlNFVFMuQz10LkNIQVJTRVRTWzVdPXsiWyI6IsOEIiwiXFwiOiLDliIsIl0iOiLDhSIsIl4iOiLDnCIsImAiOiLDqSIsInsiOiLDpCIsInwiOiLDtiIsIn0iOiLDpSIsIn4iOiLDvCJ9LHQuQ0hBUlNFVFMuUj17IiMiOiLCoyIsIkAiOiLDoCIsIlsiOiLCsCIsIlxcIjoiw6ciLCJdIjoiwqciLCJ7Ijoiw6kiLCJ8Ijoiw7kiLCJ9Ijoiw6giLCJ+IjoiwqgifSx0LkNIQVJTRVRTLlE9eyJAIjoiw6AiLCJbIjoiw6IiLCJcXCI6IsOnIiwiXSI6IsOqIiwiXiI6IsOuIiwiYCI6IsO0IiwieyI6IsOpIiwifCI6IsO5IiwifSI6IsOoIiwifiI6IsO7In0sdC5DSEFSU0VUUy5LPXsiQCI6IsKnIiwiWyI6IsOEIiwiXFwiOiLDliIsIl0iOiLDnCIsInsiOiLDpCIsInwiOiLDtiIsIn0iOiLDvCIsIn4iOiLDnyJ9LHQuQ0hBUlNFVFMuWT17IiMiOiLCoyIsIkAiOiLCpyIsIlsiOiLCsCIsIlxcIjoiw6ciLCJdIjoiw6kiLCJgIjoiw7kiLCJ7Ijoiw6AiLCJ8Ijoiw7IiLCJ9Ijoiw6giLCJ+Ijoiw6wifSx0LkNIQVJTRVRTLkU9dC5DSEFSU0VUU1s2XT17IkAiOiLDhCIsIlsiOiLDhiIsIlxcIjoiw5giLCJdIjoiw4UiLCJeIjoiw5wiLCJgIjoiw6QiLCJ7Ijoiw6YiLCJ8Ijoiw7giLCJ9Ijoiw6UiLCJ+Ijoiw7wifSx0LkNIQVJTRVRTLlo9eyIjIjoiwqMiLCJAIjoiwqciLCJbIjoiwqEiLCJcXCI6IsORIiwiXSI6IsK/IiwieyI6IsKwIiwifCI6IsOxIiwifSI6IsOnIn0sdC5DSEFSU0VUUy5IPXQuQ0hBUlNFVFNbN109eyJAIjoiw4kiLCJbIjoiw4QiLCJcXCI6IsOWIiwiXSI6IsOFIiwiXiI6IsOcIiwiYCI6IsOpIiwieyI6IsOkIiwifCI6IsO2IiwifSI6IsOlIiwifiI6IsO8In0sdC5DSEFSU0VUU1siPSJdPXsiIyI6IsO5IiwiQCI6IsOgIiwiWyI6IsOpIiwiXFwiOiLDpyIsIl0iOiLDqiIsIl4iOiLDriIsXzoiw6giLCJgIjoiw7QiLCJ7Ijoiw6QiLCJ8Ijoiw7YiLCJ9Ijoiw7wiLCJ+Ijoiw7sifX0sMjU4NDooZSx0KT0+e3ZhciByLGk7T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuQzE9dC5DMD12b2lkIDAsKGk9dC5DMHx8KHQuQzA9e30pKS5OVUw9IlwwIixpLlNPSD0iASIsaS5TVFg9IgIiLGkuRVRYPSIDIixpLkVPVD0iBCIsaS5FTlE9IgUiLGkuQUNLPSIGIixpLkJFTD0iByIsaS5CUz0iXGIiLGkuSFQ9Ilx0IixpLkxGPSJcbiIsaS5WVD0iXHYiLGkuRkY9IlxmIixpLkNSPSJcciIsaS5TTz0iDiIsaS5TST0iDyIsaS5ETEU9IhAiLGkuREMxPSIRIixpLkRDMj0iEiIsaS5EQzM9IhMiLGkuREM0PSIUIixpLk5BSz0iFSIsaS5TWU49IhYiLGkuRVRCPSIXIixpLkNBTj0iGCIsaS5FTT0iGSIsaS5TVUI9IhoiLGkuRVNDPSIbIixpLkZTPSIcIixpLkdTPSIdIixpLlJTPSIeIixpLlVTPSIfIixpLlNQPSIgIixpLkRFTD0ifyIsKHI9dC5DMXx8KHQuQzE9e30pKS5QQUQ9IsKAIixyLkhPUD0iwoEiLHIuQlBIPSLCgiIsci5OQkg9IsKDIixyLklORD0iwoQiLHIuTkVMPSLChSIsci5TU0E9IsKGIixyLkVTQT0iwociLHIuSFRTPSLCiCIsci5IVEo9IsKJIixyLlZUUz0iwooiLHIuUExEPSLCiyIsci5QTFU9IsKMIixyLlJJPSLCjSIsci5TUzI9IsKOIixyLlNTMz0iwo8iLHIuRENTPSLCkCIsci5QVTE9IsKRIixyLlBVMj0iwpIiLHIuU1RTPSLCkyIsci5DQ0g9IsKUIixyLk1XPSLClSIsci5TUEE9IsKWIixyLkVQQT0iwpciLHIuU09TPSLCmCIsci5TR0NJPSLCmSIsci5TQ0k9IsKaIixyLkNTST0iwpsiLHIuU1Q9IsKcIixyLk9TQz0iwp0iLHIuUE09IsKeIixyLkFQQz0iwp8ifSw3Mzk5OihlLHQscik9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5ldmFsdWF0ZUtleWJvYXJkRXZlbnQ9dm9pZCAwO3ZhciBpPXIoMjU4NCksbj17NDg6WyIwIiwiKSJdLDQ5OlsiMSIsIiEiXSw1MDpbIjIiLCJAIl0sNTE6WyIzIiwiIyJdLDUyOlsiNCIsIiQiXSw1MzpbIjUiLCIlIl0sNTQ6WyI2IiwiXiJdLDU1OlsiNyIsIiYiXSw1NjpbIjgiLCIqIl0sNTc6WyI5IiwiKCJdLDE4NjpbIjsiLCI6Il0sMTg3OlsiPSIsIisiXSwxODg6WyIsIiwiPCJdLDE4OTpbIi0iLCJfIl0sMTkwOlsiLiIsIj4iXSwxOTE6WyIvIiwiPyJdLDE5MjpbImAiLCJ+Il0sMjE5OlsiWyIsInsiXSwyMjA6WyJcXCIsInwiXSwyMjE6WyJdIiwifSJdLDIyMjpbIiciLCciJ119O3QuZXZhbHVhdGVLZXlib2FyZEV2ZW50PWZ1bmN0aW9uKGUsdCxyLG8pe3ZhciBzPXt0eXBlOjAsY2FuY2VsOiExLGtleTp2b2lkIDB9LGE9KGUuc2hpZnRLZXk/MTowKXwoZS5hbHRLZXk/MjowKXwoZS5jdHJsS2V5PzQ6MCl8KGUubWV0YUtleT84OjApO3N3aXRjaChlLmtleUNvZGUpe2Nhc2UgMDoiVUlLZXlJbnB1dFVwQXJyb3ciPT09ZS5rZXk/cy5rZXk9dD9pLkMwLkVTQysiT0EiOmkuQzAuRVNDKyJbQSI6IlVJS2V5SW5wdXRMZWZ0QXJyb3ciPT09ZS5rZXk/cy5rZXk9dD9pLkMwLkVTQysiT0QiOmkuQzAuRVNDKyJbRCI6IlVJS2V5SW5wdXRSaWdodEFycm93Ij09PWUua2V5P3Mua2V5PXQ/aS5DMC5FU0MrIk9DIjppLkMwLkVTQysiW0MiOiJVSUtleUlucHV0RG93bkFycm93Ij09PWUua2V5JiYocy5rZXk9dD9pLkMwLkVTQysiT0IiOmkuQzAuRVNDKyJbQiIpO2JyZWFrO2Nhc2UgODppZihlLnNoaWZ0S2V5KXtzLmtleT1pLkMwLkJTO2JyZWFrfWlmKGUuYWx0S2V5KXtzLmtleT1pLkMwLkVTQytpLkMwLkRFTDticmVha31zLmtleT1pLkMwLkRFTDticmVhaztjYXNlIDk6aWYoZS5zaGlmdEtleSl7cy5rZXk9aS5DMC5FU0MrIltaIjticmVha31zLmtleT1pLkMwLkhULHMuY2FuY2VsPSEwO2JyZWFrO2Nhc2UgMTM6cy5rZXk9ZS5hbHRLZXk/aS5DMC5FU0MraS5DMC5DUjppLkMwLkNSLHMuY2FuY2VsPSEwO2JyZWFrO2Nhc2UgMjc6cy5rZXk9aS5DMC5FU0MsZS5hbHRLZXkmJihzLmtleT1pLkMwLkVTQytpLkMwLkVTQykscy5jYW5jZWw9ITA7YnJlYWs7Y2FzZSAzNzppZihlLm1ldGFLZXkpYnJlYWs7YT8ocy5rZXk9aS5DMC5FU0MrIlsxOyIrKGErMSkrIkQiLHMua2V5PT09aS5DMC5FU0MrIlsxOzNEIiYmKHMua2V5PWkuQzAuRVNDKyhyPyJiIjoiWzE7NUQiKSkpOnMua2V5PXQ/aS5DMC5FU0MrIk9EIjppLkMwLkVTQysiW0QiO2JyZWFrO2Nhc2UgMzk6aWYoZS5tZXRhS2V5KWJyZWFrO2E/KHMua2V5PWkuQzAuRVNDKyJbMTsiKyhhKzEpKyJDIixzLmtleT09PWkuQzAuRVNDKyJbMTszQyImJihzLmtleT1pLkMwLkVTQysocj8iZiI6IlsxOzVDIikpKTpzLmtleT10P2kuQzAuRVNDKyJPQyI6aS5DMC5FU0MrIltDIjticmVhaztjYXNlIDM4OmlmKGUubWV0YUtleSlicmVhazthPyhzLmtleT1pLkMwLkVTQysiWzE7IisoYSsxKSsiQSIscnx8cy5rZXkhPT1pLkMwLkVTQysiWzE7M0EifHwocy5rZXk9aS5DMC5FU0MrIlsxOzVBIikpOnMua2V5PXQ/aS5DMC5FU0MrIk9BIjppLkMwLkVTQysiW0EiO2JyZWFrO2Nhc2UgNDA6aWYoZS5tZXRhS2V5KWJyZWFrO2E/KHMua2V5PWkuQzAuRVNDKyJbMTsiKyhhKzEpKyJCIixyfHxzLmtleSE9PWkuQzAuRVNDKyJbMTszQiJ8fChzLmtleT1pLkMwLkVTQysiWzE7NUIiKSk6cy5rZXk9dD9pLkMwLkVTQysiT0IiOmkuQzAuRVNDKyJbQiI7YnJlYWs7Y2FzZSA0NTplLnNoaWZ0S2V5fHxlLmN0cmxLZXl8fChzLmtleT1pLkMwLkVTQysiWzJ+Iik7YnJlYWs7Y2FzZSA0NjpzLmtleT1hP2kuQzAuRVNDKyJbMzsiKyhhKzEpKyJ+IjppLkMwLkVTQysiWzN+IjticmVhaztjYXNlIDM2OnMua2V5PWE/aS5DMC5FU0MrIlsxOyIrKGErMSkrIkgiOnQ/aS5DMC5FU0MrIk9IIjppLkMwLkVTQysiW0giO2JyZWFrO2Nhc2UgMzU6cy5rZXk9YT9pLkMwLkVTQysiWzE7IisoYSsxKSsiRiI6dD9pLkMwLkVTQysiT0YiOmkuQzAuRVNDKyJbRiI7YnJlYWs7Y2FzZSAzMzplLnNoaWZ0S2V5P3MudHlwZT0yOnMua2V5PWkuQzAuRVNDKyJbNX4iO2JyZWFrO2Nhc2UgMzQ6ZS5zaGlmdEtleT9zLnR5cGU9MzpzLmtleT1pLkMwLkVTQysiWzZ+IjticmVhaztjYXNlIDExMjpzLmtleT1hP2kuQzAuRVNDKyJbMTsiKyhhKzEpKyJQIjppLkMwLkVTQysiT1AiO2JyZWFrO2Nhc2UgMTEzOnMua2V5PWE/aS5DMC5FU0MrIlsxOyIrKGErMSkrIlEiOmkuQzAuRVNDKyJPUSI7YnJlYWs7Y2FzZSAxMTQ6cy5rZXk9YT9pLkMwLkVTQysiWzE7IisoYSsxKSsiUiI6aS5DMC5FU0MrIk9SIjticmVhaztjYXNlIDExNTpzLmtleT1hP2kuQzAuRVNDKyJbMTsiKyhhKzEpKyJTIjppLkMwLkVTQysiT1MiO2JyZWFrO2Nhc2UgMTE2OnMua2V5PWE/aS5DMC5FU0MrIlsxNTsiKyhhKzEpKyJ+IjppLkMwLkVTQysiWzE1fiI7YnJlYWs7Y2FzZSAxMTc6cy5rZXk9YT9pLkMwLkVTQysiWzE3OyIrKGErMSkrIn4iOmkuQzAuRVNDKyJbMTd+IjticmVhaztjYXNlIDExODpzLmtleT1hP2kuQzAuRVNDKyJbMTg7IisoYSsxKSsifiI6aS5DMC5FU0MrIlsxOH4iO2JyZWFrO2Nhc2UgMTE5OnMua2V5PWE/aS5DMC5FU0MrIlsxOTsiKyhhKzEpKyJ+IjppLkMwLkVTQysiWzE5fiI7YnJlYWs7Y2FzZSAxMjA6cy5rZXk9YT9pLkMwLkVTQysiWzIwOyIrKGErMSkrIn4iOmkuQzAuRVNDKyJbMjB+IjticmVhaztjYXNlIDEyMTpzLmtleT1hP2kuQzAuRVNDKyJbMjE7IisoYSsxKSsifiI6aS5DMC5FU0MrIlsyMX4iO2JyZWFrO2Nhc2UgMTIyOnMua2V5PWE/aS5DMC5FU0MrIlsyMzsiKyhhKzEpKyJ+IjppLkMwLkVTQysiWzIzfiI7YnJlYWs7Y2FzZSAxMjM6cy5rZXk9YT9pLkMwLkVTQysiWzI0OyIrKGErMSkrIn4iOmkuQzAuRVNDKyJbMjR+IjticmVhaztkZWZhdWx0OmlmKCFlLmN0cmxLZXl8fGUuc2hpZnRLZXl8fGUuYWx0S2V5fHxlLm1ldGFLZXkpaWYociYmIW98fCFlLmFsdEtleXx8ZS5tZXRhS2V5KSFyfHxlLmFsdEtleXx8ZS5jdHJsS2V5fHxlLnNoaWZ0S2V5fHwhZS5tZXRhS2V5P2Uua2V5JiYhZS5jdHJsS2V5JiYhZS5hbHRLZXkmJiFlLm1ldGFLZXkmJmUua2V5Q29kZT49NDgmJjE9PT1lLmtleS5sZW5ndGg/cy5rZXk9ZS5rZXk6ZS5rZXkmJmUuY3RybEtleSYmIl8iPT09ZS5rZXkmJihzLmtleT1pLkMwLlVTKTo2NT09PWUua2V5Q29kZSYmKHMudHlwZT0xKTtlbHNle3ZhciBjPW5bZS5rZXlDb2RlXSxsPW51bGw9PWM/dm9pZCAwOmNbZS5zaGlmdEtleT8xOjBdO2lmKGwpcy5rZXk9aS5DMC5FU0MrbDtlbHNlIGlmKGUua2V5Q29kZT49NjUmJmUua2V5Q29kZTw9OTApe3ZhciB1PWUuY3RybEtleT9lLmtleUNvZGUtNjQ6ZS5rZXlDb2RlKzMyO3Mua2V5PWkuQzAuRVNDK1N0cmluZy5mcm9tQ2hhckNvZGUodSl9fWVsc2UgZS5rZXlDb2RlPj02NSYmZS5rZXlDb2RlPD05MD9zLmtleT1TdHJpbmcuZnJvbUNoYXJDb2RlKGUua2V5Q29kZS02NCk6MzI9PT1lLmtleUNvZGU/cy5rZXk9aS5DMC5OVUw6ZS5rZXlDb2RlPj01MSYmZS5rZXlDb2RlPD01NT9zLmtleT1TdHJpbmcuZnJvbUNoYXJDb2RlKGUua2V5Q29kZS01MSsyNyk6NTY9PT1lLmtleUNvZGU/cy5rZXk9aS5DMC5ERUw6MjE5PT09ZS5rZXlDb2RlP3Mua2V5PWkuQzAuRVNDOjIyMD09PWUua2V5Q29kZT9zLmtleT1pLkMwLkZTOjIyMT09PWUua2V5Q29kZSYmKHMua2V5PWkuQzAuR1MpfXJldHVybiBzfX0sNDgyOihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuVXRmOFRvVXRmMzI9dC5TdHJpbmdUb1V0ZjMyPXQudXRmMzJUb1N0cmluZz10LnN0cmluZ0Zyb21Db2RlUG9pbnQ9dm9pZCAwLHQuc3RyaW5nRnJvbUNvZGVQb2ludD1mdW5jdGlvbihlKXtyZXR1cm4gZT42NTUzNT8oZS09NjU1MzYsU3RyaW5nLmZyb21DaGFyQ29kZSg1NTI5NisoZT4+MTApKStTdHJpbmcuZnJvbUNoYXJDb2RlKGUlMTAyNCs1NjMyMCkpOlN0cmluZy5mcm9tQ2hhckNvZGUoZSl9LHQudXRmMzJUb1N0cmluZz1mdW5jdGlvbihlLHQscil7dm9pZCAwPT09dCYmKHQ9MCksdm9pZCAwPT09ciYmKHI9ZS5sZW5ndGgpO2Zvcih2YXIgaT0iIixuPXQ7bjxyOysrbil7dmFyIG89ZVtuXTtvPjY1NTM1PyhvLT02NTUzNixpKz1TdHJpbmcuZnJvbUNoYXJDb2RlKDU1Mjk2KyhvPj4xMCkpK1N0cmluZy5mcm9tQ2hhckNvZGUobyUxMDI0KzU2MzIwKSk6aSs9U3RyaW5nLmZyb21DaGFyQ29kZShvKX1yZXR1cm4gaX07dmFyIHI9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKCl7dGhpcy5faW50ZXJpbT0wfXJldHVybiBlLnByb3RvdHlwZS5jbGVhcj1mdW5jdGlvbigpe3RoaXMuX2ludGVyaW09MH0sZS5wcm90b3R5cGUuZGVjb2RlPWZ1bmN0aW9uKGUsdCl7dmFyIHI9ZS5sZW5ndGg7aWYoIXIpcmV0dXJuIDA7dmFyIGk9MCxuPTA7dGhpcy5faW50ZXJpbSYmKDU2MzIwPD0oYT1lLmNoYXJDb2RlQXQobisrKSkmJmE8PTU3MzQzP3RbaSsrXT0xMDI0Kih0aGlzLl9pbnRlcmltLTU1Mjk2KSthLTU2MzIwKzY1NTM2Oih0W2krK109dGhpcy5faW50ZXJpbSx0W2krK109YSksdGhpcy5faW50ZXJpbT0wKTtmb3IodmFyIG89bjtvPHI7KytvKXt2YXIgcz1lLmNoYXJDb2RlQXQobyk7aWYoNTUyOTY8PXMmJnM8PTU2MzE5KXtpZigrK28+PXIpcmV0dXJuIHRoaXMuX2ludGVyaW09cyxpO3ZhciBhOzU2MzIwPD0oYT1lLmNoYXJDb2RlQXQobykpJiZhPD01NzM0Mz90W2krK109MTAyNCoocy01NTI5NikrYS01NjMyMCs2NTUzNjoodFtpKytdPXMsdFtpKytdPWEpfWVsc2UgNjUyNzkhPT1zJiYodFtpKytdPXMpfXJldHVybiBpfSxlfSgpO3QuU3RyaW5nVG9VdGYzMj1yO3ZhciBpPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZSgpe3RoaXMuaW50ZXJpbT1uZXcgVWludDhBcnJheSgzKX1yZXR1cm4gZS5wcm90b3R5cGUuY2xlYXI9ZnVuY3Rpb24oKXt0aGlzLmludGVyaW0uZmlsbCgwKX0sZS5wcm90b3R5cGUuZGVjb2RlPWZ1bmN0aW9uKGUsdCl7dmFyIHI9ZS5sZW5ndGg7aWYoIXIpcmV0dXJuIDA7dmFyIGksbixvLHMsYT0wLGM9MCxsPTA7aWYodGhpcy5pbnRlcmltWzBdKXt2YXIgdT0hMSxoPXRoaXMuaW50ZXJpbVswXTtoJj0xOTI9PSgyMjQmaCk/MzE6MjI0PT0oMjQwJmgpPzE1Ojc7Zm9yKHZhciBmPTAsXz12b2lkIDA7KF89NjMmdGhpcy5pbnRlcmltWysrZl0pJiZmPDQ7KWg8PD02LGh8PV87Zm9yKHZhciBkPTE5Mj09KDIyNCZ0aGlzLmludGVyaW1bMF0pPzI6MjI0PT0oMjQwJnRoaXMuaW50ZXJpbVswXSk/Mzo0LHA9ZC1mO2w8cDspe2lmKGw+PXIpcmV0dXJuIDA7aWYoMTI4IT0oMTkyJihfPWVbbCsrXSkpKXtsLS0sdT0hMDticmVha310aGlzLmludGVyaW1bZisrXT1fLGg8PD02LGh8PTYzJl99dXx8KDI9PT1kP2g8MTI4P2wtLTp0W2ErK109aDozPT09ZD9oPDIwNDh8fGg+PTU1Mjk2JiZoPD01NzM0M3x8NjUyNzk9PT1ofHwodFthKytdPWgpOmg8NjU1MzZ8fGg+MTExNDExMXx8KHRbYSsrXT1oKSksdGhpcy5pbnRlcmltLmZpbGwoMCl9Zm9yKHZhciB2PXItNCxnPWw7ZzxyOyl7Zm9yKDshKCEoZzx2KXx8MTI4JihpPWVbZ10pfHwxMjgmKG49ZVtnKzFdKXx8MTI4JihvPWVbZysyXSl8fDEyOCYocz1lW2crM10pKTspdFthKytdPWksdFthKytdPW4sdFthKytdPW8sdFthKytdPXMsZys9NDtpZigoaT1lW2crK10pPDEyOCl0W2ErK109aTtlbHNlIGlmKDE5Mj09KDIyNCZpKSl7aWYoZz49cilyZXR1cm4gdGhpcy5pbnRlcmltWzBdPWksYTtpZigxMjghPSgxOTImKG49ZVtnKytdKSkpe2ctLTtjb250aW51ZX1pZigoYz0oMzEmaSk8PDZ8NjMmbik8MTI4KXtnLS07Y29udGludWV9dFthKytdPWN9ZWxzZSBpZigyMjQ9PSgyNDAmaSkpe2lmKGc+PXIpcmV0dXJuIHRoaXMuaW50ZXJpbVswXT1pLGE7aWYoMTI4IT0oMTkyJihuPWVbZysrXSkpKXtnLS07Y29udGludWV9aWYoZz49cilyZXR1cm4gdGhpcy5pbnRlcmltWzBdPWksdGhpcy5pbnRlcmltWzFdPW4sYTtpZigxMjghPSgxOTImKG89ZVtnKytdKSkpe2ctLTtjb250aW51ZX1pZigoYz0oMTUmaSk8PDEyfCg2MyZuKTw8Nnw2MyZvKTwyMDQ4fHxjPj01NTI5NiYmYzw9NTczNDN8fDY1Mjc5PT09Yyljb250aW51ZTt0W2ErK109Y31lbHNlIGlmKDI0MD09KDI0OCZpKSl7aWYoZz49cilyZXR1cm4gdGhpcy5pbnRlcmltWzBdPWksYTtpZigxMjghPSgxOTImKG49ZVtnKytdKSkpe2ctLTtjb250aW51ZX1pZihnPj1yKXJldHVybiB0aGlzLmludGVyaW1bMF09aSx0aGlzLmludGVyaW1bMV09bixhO2lmKDEyOCE9KDE5MiYobz1lW2crK10pKSl7Zy0tO2NvbnRpbnVlfWlmKGc+PXIpcmV0dXJuIHRoaXMuaW50ZXJpbVswXT1pLHRoaXMuaW50ZXJpbVsxXT1uLHRoaXMuaW50ZXJpbVsyXT1vLGE7aWYoMTI4IT0oMTkyJihzPWVbZysrXSkpKXtnLS07Y29udGludWV9aWYoKGM9KDcmaSk8PDE4fCg2MyZuKTw8MTJ8KDYzJm8pPDw2fDYzJnMpPDY1NTM2fHxjPjExMTQxMTEpY29udGludWU7dFthKytdPWN9fXJldHVybiBhfSxlfSgpO3QuVXRmOFRvVXRmMzI9aX0sMjI1OihlLHQscik9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Vbmljb2RlVjY9dm9pZCAwO3ZhciBpLG49cig4MjczKSxvPVtbNzY4LDg3OV0sWzExNTUsMTE1OF0sWzExNjAsMTE2MV0sWzE0MjUsMTQ2OV0sWzE0NzEsMTQ3MV0sWzE0NzMsMTQ3NF0sWzE0NzYsMTQ3N10sWzE0NzksMTQ3OV0sWzE1MzYsMTUzOV0sWzE1NTIsMTU1N10sWzE2MTEsMTYzMF0sWzE2NDgsMTY0OF0sWzE3NTAsMTc2NF0sWzE3NjcsMTc2OF0sWzE3NzAsMTc3M10sWzE4MDcsMTgwN10sWzE4MDksMTgwOV0sWzE4NDAsMTg2Nl0sWzE5NTgsMTk2OF0sWzIwMjcsMjAzNV0sWzIzMDUsMjMwNl0sWzIzNjQsMjM2NF0sWzIzNjksMjM3Nl0sWzIzODEsMjM4MV0sWzIzODUsMjM4OF0sWzI0MDIsMjQwM10sWzI0MzMsMjQzM10sWzI0OTIsMjQ5Ml0sWzI0OTcsMjUwMF0sWzI1MDksMjUwOV0sWzI1MzAsMjUzMV0sWzI1NjEsMjU2Ml0sWzI2MjAsMjYyMF0sWzI2MjUsMjYyNl0sWzI2MzEsMjYzMl0sWzI2MzUsMjYzN10sWzI2NzIsMjY3M10sWzI2ODksMjY5MF0sWzI3NDgsMjc0OF0sWzI3NTMsMjc1N10sWzI3NTksMjc2MF0sWzI3NjUsMjc2NV0sWzI3ODYsMjc4N10sWzI4MTcsMjgxN10sWzI4NzYsMjg3Nl0sWzI4NzksMjg3OV0sWzI4ODEsMjg4M10sWzI4OTMsMjg5M10sWzI5MDIsMjkwMl0sWzI5NDYsMjk0Nl0sWzMwMDgsMzAwOF0sWzMwMjEsMzAyMV0sWzMxMzQsMzEzNl0sWzMxNDIsMzE0NF0sWzMxNDYsMzE0OV0sWzMxNTcsMzE1OF0sWzMyNjAsMzI2MF0sWzMyNjMsMzI2M10sWzMyNzAsMzI3MF0sWzMyNzYsMzI3N10sWzMyOTgsMzI5OV0sWzMzOTMsMzM5NV0sWzM0MDUsMzQwNV0sWzM1MzAsMzUzMF0sWzM1MzgsMzU0MF0sWzM1NDIsMzU0Ml0sWzM2MzMsMzYzM10sWzM2MzYsMzY0Ml0sWzM2NTUsMzY2Ml0sWzM3NjEsMzc2MV0sWzM3NjQsMzc2OV0sWzM3NzEsMzc3Ml0sWzM3ODQsMzc4OV0sWzM4NjQsMzg2NV0sWzM4OTMsMzg5M10sWzM4OTUsMzg5NV0sWzM4OTcsMzg5N10sWzM5NTMsMzk2Nl0sWzM5NjgsMzk3Ml0sWzM5NzQsMzk3NV0sWzM5ODQsMzk5MV0sWzM5OTMsNDAyOF0sWzQwMzgsNDAzOF0sWzQxNDEsNDE0NF0sWzQxNDYsNDE0Nl0sWzQxNTAsNDE1MV0sWzQxNTMsNDE1M10sWzQxODQsNDE4NV0sWzQ0NDgsNDYwN10sWzQ5NTksNDk1OV0sWzU5MDYsNTkwOF0sWzU5MzgsNTk0MF0sWzU5NzAsNTk3MV0sWzYwMDIsNjAwM10sWzYwNjgsNjA2OV0sWzYwNzEsNjA3N10sWzYwODYsNjA4Nl0sWzYwODksNjA5OV0sWzYxMDksNjEwOV0sWzYxNTUsNjE1N10sWzYzMTMsNjMxM10sWzY0MzIsNjQzNF0sWzY0MzksNjQ0MF0sWzY0NTAsNjQ1MF0sWzY0NTcsNjQ1OV0sWzY2NzksNjY4MF0sWzY5MTIsNjkxNV0sWzY5NjQsNjk2NF0sWzY5NjYsNjk3MF0sWzY5NzIsNjk3Ml0sWzY5NzgsNjk3OF0sWzcwMTksNzAyN10sWzc2MTYsNzYyNl0sWzc2NzgsNzY3OV0sWzgyMDMsODIwN10sWzgyMzQsODIzOF0sWzgyODgsODI5MV0sWzgyOTgsODMwM10sWzg0MDAsODQzMV0sWzEyMzMwLDEyMzM1XSxbMTI0NDEsMTI0NDJdLFs0MzAxNCw0MzAxNF0sWzQzMDE5LDQzMDE5XSxbNDMwNDUsNDMwNDZdLFs2NDI4Niw2NDI4Nl0sWzY1MDI0LDY1MDM5XSxbNjUwNTYsNjUwNTldLFs2NTI3OSw2NTI3OV0sWzY1NTI5LDY1NTMxXV0scz1bWzY4MDk3LDY4MDk5XSxbNjgxMDEsNjgxMDJdLFs2ODEwOCw2ODExMV0sWzY4MTUyLDY4MTU0XSxbNjgxNTksNjgxNTldLFsxMTkxNDMsMTE5MTQ1XSxbMTE5MTU1LDExOTE3MF0sWzExOTE3MywxMTkxNzldLFsxMTkyMTAsMTE5MjEzXSxbMTE5MzYyLDExOTM2NF0sWzkxNzUwNSw5MTc1MDVdLFs5MTc1MzYsOTE3NjMxXSxbOTE3NzYwLDkxNzk5OV1dLGE9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKCl7aWYodGhpcy52ZXJzaW9uPSI2IiwhaSl7aT1uZXcgVWludDhBcnJheSg2NTUzNiksKDAsbi5maWxsKShpLDEpLGlbMF09MCwoMCxuLmZpbGwpKGksMCwxLDMyKSwoMCxuLmZpbGwpKGksMCwxMjcsMTYwKSwoMCxuLmZpbGwpKGksMiw0MzUyLDQ0NDgpLGlbOTAwMV09MixpWzkwMDJdPTIsKDAsbi5maWxsKShpLDIsMTE5MDQsNDIxOTIpLGlbMTIzNTFdPTEsKDAsbi5maWxsKShpLDIsNDQwMzIsNTUyMDQpLCgwLG4uZmlsbCkoaSwyLDYzNzQ0LDY0MjU2KSwoMCxuLmZpbGwpKGksMiw2NTA0MCw2NTA1MCksKDAsbi5maWxsKShpLDIsNjUwNzIsNjUxMzYpLCgwLG4uZmlsbCkoaSwyLDY1MjgwLDY1Mzc3KSwoMCxuLmZpbGwpKGksMiw2NTUwNCw2NTUxMSk7Zm9yKHZhciBlPTA7ZTxvLmxlbmd0aDsrK2UpKDAsbi5maWxsKShpLDAsb1tlXVswXSxvW2VdWzFdKzEpfX1yZXR1cm4gZS5wcm90b3R5cGUud2N3aWR0aD1mdW5jdGlvbihlKXtyZXR1cm4gZTwzMj8wOmU8MTI3PzE6ZTw2NTUzNj9pW2VdOmZ1bmN0aW9uKGUsdCl7dmFyIHIsaT0wLG49dC5sZW5ndGgtMTtpZihlPHRbMF1bMF18fGU+dFtuXVsxXSlyZXR1cm4hMTtmb3IoO24+PWk7KWlmKGU+dFtyPWkrbj4+MV1bMV0paT1yKzE7ZWxzZXtpZighKGU8dFtyXVswXSkpcmV0dXJuITA7bj1yLTF9cmV0dXJuITF9KGUscyk/MDplPj0xMzEwNzImJmU8PTE5NjYwNXx8ZT49MTk2NjA4JiZlPD0yNjIxNDE/MjoxfSxlfSgpO3QuVW5pY29kZVY2PWF9LDU5ODE6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Xcml0ZUJ1ZmZlcj12b2lkIDA7dmFyIHI9InVuZGVmaW5lZCI9PXR5cGVvZiBxdWV1ZU1pY3JvdGFzaz9mdW5jdGlvbihlKXtQcm9taXNlLnJlc29sdmUoKS50aGVuKGUpfTpxdWV1ZU1pY3JvdGFzayxpPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlKXt0aGlzLl9hY3Rpb249ZSx0aGlzLl93cml0ZUJ1ZmZlcj1bXSx0aGlzLl9jYWxsYmFja3M9W10sdGhpcy5fcGVuZGluZ0RhdGE9MCx0aGlzLl9idWZmZXJPZmZzZXQ9MCx0aGlzLl9pc1N5bmNXcml0aW5nPSExLHRoaXMuX3N5bmNDYWxscz0wfXJldHVybiBlLnByb3RvdHlwZS53cml0ZVN5bmM9ZnVuY3Rpb24oZSx0KXtpZih2b2lkIDAhPT10JiZ0aGlzLl9zeW5jQ2FsbHM+dCl0aGlzLl9zeW5jQ2FsbHM9MDtlbHNlIGlmKHRoaXMuX3BlbmRpbmdEYXRhKz1lLmxlbmd0aCx0aGlzLl93cml0ZUJ1ZmZlci5wdXNoKGUpLHRoaXMuX2NhbGxiYWNrcy5wdXNoKHZvaWQgMCksdGhpcy5fc3luY0NhbGxzKyssIXRoaXMuX2lzU3luY1dyaXRpbmcpe3ZhciByO2Zvcih0aGlzLl9pc1N5bmNXcml0aW5nPSEwO3I9dGhpcy5fd3JpdGVCdWZmZXIuc2hpZnQoKTspe3RoaXMuX2FjdGlvbihyKTt2YXIgaT10aGlzLl9jYWxsYmFja3Muc2hpZnQoKTtpJiZpKCl9dGhpcy5fcGVuZGluZ0RhdGE9MCx0aGlzLl9idWZmZXJPZmZzZXQ9MjE0NzQ4MzY0Nyx0aGlzLl9pc1N5bmNXcml0aW5nPSExLHRoaXMuX3N5bmNDYWxscz0wfX0sZS5wcm90b3R5cGUud3JpdGU9ZnVuY3Rpb24oZSx0KXt2YXIgcj10aGlzO2lmKHRoaXMuX3BlbmRpbmdEYXRhPjVlNyl0aHJvdyBuZXcgRXJyb3IoIndyaXRlIGRhdGEgZGlzY2FyZGVkLCB1c2UgZmxvdyBjb250cm9sIHRvIGF2b2lkIGxvc2luZyBkYXRhIik7dGhpcy5fd3JpdGVCdWZmZXIubGVuZ3RofHwodGhpcy5fYnVmZmVyT2Zmc2V0PTAsc2V0VGltZW91dCgoZnVuY3Rpb24oKXtyZXR1cm4gci5faW5uZXJXcml0ZSgpfSkpKSx0aGlzLl9wZW5kaW5nRGF0YSs9ZS5sZW5ndGgsdGhpcy5fd3JpdGVCdWZmZXIucHVzaChlKSx0aGlzLl9jYWxsYmFja3MucHVzaCh0KX0sZS5wcm90b3R5cGUuX2lubmVyV3JpdGU9ZnVuY3Rpb24oZSx0KXt2YXIgaT10aGlzO3ZvaWQgMD09PWUmJihlPTApLHZvaWQgMD09PXQmJih0PSEwKTtmb3IodmFyIG49ZXx8RGF0ZS5ub3coKTt0aGlzLl93cml0ZUJ1ZmZlci5sZW5ndGg+dGhpcy5fYnVmZmVyT2Zmc2V0Oyl7dmFyIG89dGhpcy5fd3JpdGVCdWZmZXJbdGhpcy5fYnVmZmVyT2Zmc2V0XSxzPXRoaXMuX2FjdGlvbihvLHQpO2lmKHMpcmV0dXJuIHZvaWQgcy5jYXRjaCgoZnVuY3Rpb24oZSl7cmV0dXJuIHIoKGZ1bmN0aW9uKCl7dGhyb3cgZX0pKSxQcm9taXNlLnJlc29sdmUoITEpfSkpLnRoZW4oKGZ1bmN0aW9uKGUpe3JldHVybiBEYXRlLm5vdygpLW4+PTEyP3NldFRpbWVvdXQoKGZ1bmN0aW9uKCl7cmV0dXJuIGkuX2lubmVyV3JpdGUoMCxlKX0pKTppLl9pbm5lcldyaXRlKG4sZSl9KSk7dmFyIGE9dGhpcy5fY2FsbGJhY2tzW3RoaXMuX2J1ZmZlck9mZnNldF07aWYoYSYmYSgpLHRoaXMuX2J1ZmZlck9mZnNldCsrLHRoaXMuX3BlbmRpbmdEYXRhLT1vLmxlbmd0aCxEYXRlLm5vdygpLW4+PTEyKWJyZWFrfXRoaXMuX3dyaXRlQnVmZmVyLmxlbmd0aD50aGlzLl9idWZmZXJPZmZzZXQ/KHRoaXMuX2J1ZmZlck9mZnNldD41MCYmKHRoaXMuX3dyaXRlQnVmZmVyPXRoaXMuX3dyaXRlQnVmZmVyLnNsaWNlKHRoaXMuX2J1ZmZlck9mZnNldCksdGhpcy5fY2FsbGJhY2tzPXRoaXMuX2NhbGxiYWNrcy5zbGljZSh0aGlzLl9idWZmZXJPZmZzZXQpLHRoaXMuX2J1ZmZlck9mZnNldD0wKSxzZXRUaW1lb3V0KChmdW5jdGlvbigpe3JldHVybiBpLl9pbm5lcldyaXRlKCl9KSkpOih0aGlzLl93cml0ZUJ1ZmZlci5sZW5ndGg9MCx0aGlzLl9jYWxsYmFja3MubGVuZ3RoPTAsdGhpcy5fcGVuZGluZ0RhdGE9MCx0aGlzLl9idWZmZXJPZmZzZXQ9MCl9LGV9KCk7dC5Xcml0ZUJ1ZmZlcj1pfSw1OTQxOihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQudG9SZ2JTdHJpbmc9dC5wYXJzZUNvbG9yPXZvaWQgMDt2YXIgcj0vXihbXGRhLWZdezF9KVwvKFtcZGEtZl17MX0pXC8oW1xkYS1mXXsxfSkkfF4oW1xkYS1mXXsyfSlcLyhbXGRhLWZdezJ9KVwvKFtcZGEtZl17Mn0pJHxeKFtcZGEtZl17M30pXC8oW1xkYS1mXXszfSlcLyhbXGRhLWZdezN9KSR8XihbXGRhLWZdezR9KVwvKFtcZGEtZl17NH0pXC8oW1xkYS1mXXs0fSkkLyxpPS9eW1xkYS1mXSskLztmdW5jdGlvbiBuKGUsdCl7dmFyIHI9ZS50b1N0cmluZygxNiksaT1yLmxlbmd0aDwyPyIwIityOnI7c3dpdGNoKHQpe2Nhc2UgNDpyZXR1cm4gclswXTtjYXNlIDg6cmV0dXJuIGk7Y2FzZSAxMjpyZXR1cm4oaStpKS5zbGljZSgwLDMpO2RlZmF1bHQ6cmV0dXJuIGkraX19dC5wYXJzZUNvbG9yPWZ1bmN0aW9uKGUpe2lmKGUpe3ZhciB0PWUudG9Mb3dlckNhc2UoKTtpZigwPT09dC5pbmRleE9mKCJyZ2I6Iikpe3Q9dC5zbGljZSg0KTt2YXIgbj1yLmV4ZWModCk7aWYobil7dmFyIG89blsxXT8xNTpuWzRdPzI1NTpuWzddPzQwOTU6NjU1MzU7cmV0dXJuW01hdGgucm91bmQocGFyc2VJbnQoblsxXXx8bls0XXx8bls3XXx8blsxMF0sMTYpL28qMjU1KSxNYXRoLnJvdW5kKHBhcnNlSW50KG5bMl18fG5bNV18fG5bOF18fG5bMTFdLDE2KS9vKjI1NSksTWF0aC5yb3VuZChwYXJzZUludChuWzNdfHxuWzZdfHxuWzldfHxuWzEyXSwxNikvbyoyNTUpXX19ZWxzZSBpZigwPT09dC5pbmRleE9mKCIjIikmJih0PXQuc2xpY2UoMSksaS5leGVjKHQpJiZbMyw2LDksMTJdLmluY2x1ZGVzKHQubGVuZ3RoKSkpe2Zvcih2YXIgcz10Lmxlbmd0aC8zLGE9WzAsMCwwXSxjPTA7YzwzOysrYyl7dmFyIGw9cGFyc2VJbnQodC5zbGljZShzKmMscypjK3MpLDE2KTthW2NdPTE9PT1zP2w8PDQ6Mj09PXM/bDozPT09cz9sPj40Omw+Pjh9cmV0dXJuIGF9fX0sdC50b1JnYlN0cmluZz1mdW5jdGlvbihlLHQpe3ZvaWQgMD09PXQmJih0PTE2KTt2YXIgcj1lWzBdLGk9ZVsxXSxvPWVbMl07cmV0dXJuInJnYjoiK24ocix0KSsiLyIrbihpLHQpKyIvIituKG8sdCl9fSw1NzcwOihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuUEFZTE9BRF9MSU1JVD12b2lkIDAsdC5QQVlMT0FEX0xJTUlUPTFlN30sNjM1MTooZSx0LHIpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuRGNzSGFuZGxlcj10LkRjc1BhcnNlcj12b2lkIDA7dmFyIGk9cig0ODIpLG49cig4NzQyKSxvPXIoNTc3MCkscz1bXSxhPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZSgpe3RoaXMuX2hhbmRsZXJzPU9iamVjdC5jcmVhdGUobnVsbCksdGhpcy5fYWN0aXZlPXMsdGhpcy5faWRlbnQ9MCx0aGlzLl9oYW5kbGVyRmI9ZnVuY3Rpb24oKXt9LHRoaXMuX3N0YWNrPXtwYXVzZWQ6ITEsbG9vcFBvc2l0aW9uOjAsZmFsbFRocm91Z2g6ITF9fXJldHVybiBlLnByb3RvdHlwZS5kaXNwb3NlPWZ1bmN0aW9uKCl7dGhpcy5faGFuZGxlcnM9T2JqZWN0LmNyZWF0ZShudWxsKSx0aGlzLl9oYW5kbGVyRmI9ZnVuY3Rpb24oKXt9LHRoaXMuX2FjdGl2ZT1zfSxlLnByb3RvdHlwZS5yZWdpc3RlckhhbmRsZXI9ZnVuY3Rpb24oZSx0KXt2b2lkIDA9PT10aGlzLl9oYW5kbGVyc1tlXSYmKHRoaXMuX2hhbmRsZXJzW2VdPVtdKTt2YXIgcj10aGlzLl9oYW5kbGVyc1tlXTtyZXR1cm4gci5wdXNoKHQpLHtkaXNwb3NlOmZ1bmN0aW9uKCl7dmFyIGU9ci5pbmRleE9mKHQpOy0xIT09ZSYmci5zcGxpY2UoZSwxKX19fSxlLnByb3RvdHlwZS5jbGVhckhhbmRsZXI9ZnVuY3Rpb24oZSl7dGhpcy5faGFuZGxlcnNbZV0mJmRlbGV0ZSB0aGlzLl9oYW5kbGVyc1tlXX0sZS5wcm90b3R5cGUuc2V0SGFuZGxlckZhbGxiYWNrPWZ1bmN0aW9uKGUpe3RoaXMuX2hhbmRsZXJGYj1lfSxlLnByb3RvdHlwZS5yZXNldD1mdW5jdGlvbigpe2lmKHRoaXMuX2FjdGl2ZS5sZW5ndGgpZm9yKHZhciBlPXRoaXMuX3N0YWNrLnBhdXNlZD90aGlzLl9zdGFjay5sb29wUG9zaXRpb24tMTp0aGlzLl9hY3RpdmUubGVuZ3RoLTE7ZT49MDstLWUpdGhpcy5fYWN0aXZlW2VdLnVuaG9vayghMSk7dGhpcy5fc3RhY2sucGF1c2VkPSExLHRoaXMuX2FjdGl2ZT1zLHRoaXMuX2lkZW50PTB9LGUucHJvdG90eXBlLmhvb2s9ZnVuY3Rpb24oZSx0KXtpZih0aGlzLnJlc2V0KCksdGhpcy5faWRlbnQ9ZSx0aGlzLl9hY3RpdmU9dGhpcy5faGFuZGxlcnNbZV18fHMsdGhpcy5fYWN0aXZlLmxlbmd0aClmb3IodmFyIHI9dGhpcy5fYWN0aXZlLmxlbmd0aC0xO3I+PTA7ci0tKXRoaXMuX2FjdGl2ZVtyXS5ob29rKHQpO2Vsc2UgdGhpcy5faGFuZGxlckZiKHRoaXMuX2lkZW50LCJIT09LIix0KX0sZS5wcm90b3R5cGUucHV0PWZ1bmN0aW9uKGUsdCxyKXtpZih0aGlzLl9hY3RpdmUubGVuZ3RoKWZvcih2YXIgbj10aGlzLl9hY3RpdmUubGVuZ3RoLTE7bj49MDtuLS0pdGhpcy5fYWN0aXZlW25dLnB1dChlLHQscik7ZWxzZSB0aGlzLl9oYW5kbGVyRmIodGhpcy5faWRlbnQsIlBVVCIsKDAsaS51dGYzMlRvU3RyaW5nKShlLHQscikpfSxlLnByb3RvdHlwZS51bmhvb2s9ZnVuY3Rpb24oZSx0KXtpZih2b2lkIDA9PT10JiYodD0hMCksdGhpcy5fYWN0aXZlLmxlbmd0aCl7dmFyIHI9ITEsaT10aGlzLl9hY3RpdmUubGVuZ3RoLTEsbj0hMTtpZih0aGlzLl9zdGFjay5wYXVzZWQmJihpPXRoaXMuX3N0YWNrLmxvb3BQb3NpdGlvbi0xLHI9dCxuPXRoaXMuX3N0YWNrLmZhbGxUaHJvdWdoLHRoaXMuX3N0YWNrLnBhdXNlZD0hMSksIW4mJiExPT09cil7Zm9yKDtpPj0wJiYhMCE9PShyPXRoaXMuX2FjdGl2ZVtpXS51bmhvb2soZSkpO2ktLSlpZihyIGluc3RhbmNlb2YgUHJvbWlzZSlyZXR1cm4gdGhpcy5fc3RhY2sucGF1c2VkPSEwLHRoaXMuX3N0YWNrLmxvb3BQb3NpdGlvbj1pLHRoaXMuX3N0YWNrLmZhbGxUaHJvdWdoPSExLHI7aS0tfWZvcig7aT49MDtpLS0paWYoKHI9dGhpcy5fYWN0aXZlW2ldLnVuaG9vayghMSkpaW5zdGFuY2VvZiBQcm9taXNlKXJldHVybiB0aGlzLl9zdGFjay5wYXVzZWQ9ITAsdGhpcy5fc3RhY2subG9vcFBvc2l0aW9uPWksdGhpcy5fc3RhY2suZmFsbFRocm91Z2g9ITAscn1lbHNlIHRoaXMuX2hhbmRsZXJGYih0aGlzLl9pZGVudCwiVU5IT09LIixlKTt0aGlzLl9hY3RpdmU9cyx0aGlzLl9pZGVudD0wfSxlfSgpO3QuRGNzUGFyc2VyPWE7dmFyIGM9bmV3IG4uUGFyYW1zO2MuYWRkUGFyYW0oMCk7dmFyIGw9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUpe3RoaXMuX2hhbmRsZXI9ZSx0aGlzLl9kYXRhPSIiLHRoaXMuX3BhcmFtcz1jLHRoaXMuX2hpdExpbWl0PSExfXJldHVybiBlLnByb3RvdHlwZS5ob29rPWZ1bmN0aW9uKGUpe3RoaXMuX3BhcmFtcz1lLmxlbmd0aD4xfHxlLnBhcmFtc1swXT9lLmNsb25lKCk6Yyx0aGlzLl9kYXRhPSIiLHRoaXMuX2hpdExpbWl0PSExfSxlLnByb3RvdHlwZS5wdXQ9ZnVuY3Rpb24oZSx0LHIpe3RoaXMuX2hpdExpbWl0fHwodGhpcy5fZGF0YSs9KDAsaS51dGYzMlRvU3RyaW5nKShlLHQsciksdGhpcy5fZGF0YS5sZW5ndGg+by5QQVlMT0FEX0xJTUlUJiYodGhpcy5fZGF0YT0iIix0aGlzLl9oaXRMaW1pdD0hMCkpfSxlLnByb3RvdHlwZS51bmhvb2s9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcyxyPSExO2lmKHRoaXMuX2hpdExpbWl0KXI9ITE7ZWxzZSBpZihlJiYocj10aGlzLl9oYW5kbGVyKHRoaXMuX2RhdGEsdGhpcy5fcGFyYW1zKSlpbnN0YW5jZW9mIFByb21pc2UpcmV0dXJuIHIudGhlbigoZnVuY3Rpb24oZSl7cmV0dXJuIHQuX3BhcmFtcz1jLHQuX2RhdGE9IiIsdC5faGl0TGltaXQ9ITEsZX0pKTtyZXR1cm4gdGhpcy5fcGFyYW1zPWMsdGhpcy5fZGF0YT0iIix0aGlzLl9oaXRMaW1pdD0hMSxyfSxlfSgpO3QuRGNzSGFuZGxlcj1sfSwyMDE1OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pO09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkVzY2FwZVNlcXVlbmNlUGFyc2VyPXQuVlQ1MDBfVFJBTlNJVElPTl9UQUJMRT10LlRyYW5zaXRpb25UYWJsZT12b2lkIDA7dmFyIG89cig4NDQpLHM9cig4MjczKSxhPXIoODc0MiksYz1yKDYyNDIpLGw9cig2MzUxKSx1PWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlKXt0aGlzLnRhYmxlPW5ldyBVaW50OEFycmF5KGUpfXJldHVybiBlLnByb3RvdHlwZS5zZXREZWZhdWx0PWZ1bmN0aW9uKGUsdCl7KDAscy5maWxsKSh0aGlzLnRhYmxlLGU8PDR8dCl9LGUucHJvdG90eXBlLmFkZD1mdW5jdGlvbihlLHQscixpKXt0aGlzLnRhYmxlW3Q8PDh8ZV09cjw8NHxpfSxlLnByb3RvdHlwZS5hZGRNYW55PWZ1bmN0aW9uKGUsdCxyLGkpe2Zvcih2YXIgbj0wO248ZS5sZW5ndGg7bisrKXRoaXMudGFibGVbdDw8OHxlW25dXT1yPDw0fGl9LGV9KCk7dC5UcmFuc2l0aW9uVGFibGU9dTt2YXIgaD0xNjA7dC5WVDUwMF9UUkFOU0lUSU9OX1RBQkxFPWZ1bmN0aW9uKCl7dmFyIGU9bmV3IHUoNDA5NSksdD1BcnJheS5hcHBseShudWxsLEFycmF5KDI1NikpLm1hcCgoZnVuY3Rpb24oZSx0KXtyZXR1cm4gdH0pKSxyPWZ1bmN0aW9uKGUscil7cmV0dXJuIHQuc2xpY2UoZSxyKX0saT1yKDMyLDEyNyksbj1yKDAsMjQpO24ucHVzaCgyNSksbi5wdXNoLmFwcGx5KG4scigyOCwzMikpO3ZhciBvLHM9cigwLDE0KTtmb3IobyBpbiBlLnNldERlZmF1bHQoMSwwKSxlLmFkZE1hbnkoaSwwLDIsMCkscyllLmFkZE1hbnkoWzI0LDI2LDE1MywxNTRdLG8sMywwKSxlLmFkZE1hbnkocigxMjgsMTQ0KSxvLDMsMCksZS5hZGRNYW55KHIoMTQ0LDE1MiksbywzLDApLGUuYWRkKDE1NixvLDAsMCksZS5hZGQoMjcsbywxMSwxKSxlLmFkZCgxNTcsbyw0LDgpLGUuYWRkTWFueShbMTUyLDE1OCwxNTldLG8sMCw3KSxlLmFkZCgxNTUsbywxMSwzKSxlLmFkZCgxNDQsbywxMSw5KTtyZXR1cm4gZS5hZGRNYW55KG4sMCwzLDApLGUuYWRkTWFueShuLDEsMywxKSxlLmFkZCgxMjcsMSwwLDEpLGUuYWRkTWFueShuLDgsMCw4KSxlLmFkZE1hbnkobiwzLDMsMyksZS5hZGQoMTI3LDMsMCwzKSxlLmFkZE1hbnkobiw0LDMsNCksZS5hZGQoMTI3LDQsMCw0KSxlLmFkZE1hbnkobiw2LDMsNiksZS5hZGRNYW55KG4sNSwzLDUpLGUuYWRkKDEyNyw1LDAsNSksZS5hZGRNYW55KG4sMiwzLDIpLGUuYWRkKDEyNywyLDAsMiksZS5hZGQoOTMsMSw0LDgpLGUuYWRkTWFueShpLDgsNSw4KSxlLmFkZCgxMjcsOCw1LDgpLGUuYWRkTWFueShbMTU2LDI3LDI0LDI2LDddLDgsNiwwKSxlLmFkZE1hbnkocigyOCwzMiksOCwwLDgpLGUuYWRkTWFueShbODgsOTQsOTVdLDEsMCw3KSxlLmFkZE1hbnkoaSw3LDAsNyksZS5hZGRNYW55KG4sNywwLDcpLGUuYWRkKDE1Niw3LDAsMCksZS5hZGQoMTI3LDcsMCw3KSxlLmFkZCg5MSwxLDExLDMpLGUuYWRkTWFueShyKDY0LDEyNyksMyw3LDApLGUuYWRkTWFueShyKDQ4LDYwKSwzLDgsNCksZS5hZGRNYW55KFs2MCw2MSw2Miw2M10sMyw5LDQpLGUuYWRkTWFueShyKDQ4LDYwKSw0LDgsNCksZS5hZGRNYW55KHIoNjQsMTI3KSw0LDcsMCksZS5hZGRNYW55KFs2MCw2MSw2Miw2M10sNCwwLDYpLGUuYWRkTWFueShyKDMyLDY0KSw2LDAsNiksZS5hZGQoMTI3LDYsMCw2KSxlLmFkZE1hbnkocig2NCwxMjcpLDYsMCwwKSxlLmFkZE1hbnkocigzMiw0OCksMyw5LDUpLGUuYWRkTWFueShyKDMyLDQ4KSw1LDksNSksZS5hZGRNYW55KHIoNDgsNjQpLDUsMCw2KSxlLmFkZE1hbnkocig2NCwxMjcpLDUsNywwKSxlLmFkZE1hbnkocigzMiw0OCksNCw5LDUpLGUuYWRkTWFueShyKDMyLDQ4KSwxLDksMiksZS5hZGRNYW55KHIoMzIsNDgpLDIsOSwyKSxlLmFkZE1hbnkocig0OCwxMjcpLDIsMTAsMCksZS5hZGRNYW55KHIoNDgsODApLDEsMTAsMCksZS5hZGRNYW55KHIoODEsODgpLDEsMTAsMCksZS5hZGRNYW55KFs4OSw5MCw5Ml0sMSwxMCwwKSxlLmFkZE1hbnkocig5NiwxMjcpLDEsMTAsMCksZS5hZGQoODAsMSwxMSw5KSxlLmFkZE1hbnkobiw5LDAsOSksZS5hZGQoMTI3LDksMCw5KSxlLmFkZE1hbnkocigyOCwzMiksOSwwLDkpLGUuYWRkTWFueShyKDMyLDQ4KSw5LDksMTIpLGUuYWRkTWFueShyKDQ4LDYwKSw5LDgsMTApLGUuYWRkTWFueShbNjAsNjEsNjIsNjNdLDksOSwxMCksZS5hZGRNYW55KG4sMTEsMCwxMSksZS5hZGRNYW55KHIoMzIsMTI4KSwxMSwwLDExKSxlLmFkZE1hbnkocigyOCwzMiksMTEsMCwxMSksZS5hZGRNYW55KG4sMTAsMCwxMCksZS5hZGQoMTI3LDEwLDAsMTApLGUuYWRkTWFueShyKDI4LDMyKSwxMCwwLDEwKSxlLmFkZE1hbnkocig0OCw2MCksMTAsOCwxMCksZS5hZGRNYW55KFs2MCw2MSw2Miw2M10sMTAsMCwxMSksZS5hZGRNYW55KHIoMzIsNDgpLDEwLDksMTIpLGUuYWRkTWFueShuLDEyLDAsMTIpLGUuYWRkKDEyNywxMiwwLDEyKSxlLmFkZE1hbnkocigyOCwzMiksMTIsMCwxMiksZS5hZGRNYW55KHIoMzIsNDgpLDEyLDksMTIpLGUuYWRkTWFueShyKDQ4LDY0KSwxMiwwLDExKSxlLmFkZE1hbnkocig2NCwxMjcpLDEyLDEyLDEzKSxlLmFkZE1hbnkocig2NCwxMjcpLDEwLDEyLDEzKSxlLmFkZE1hbnkocig2NCwxMjcpLDksMTIsMTMpLGUuYWRkTWFueShuLDEzLDEzLDEzKSxlLmFkZE1hbnkoaSwxMywxMywxMyksZS5hZGQoMTI3LDEzLDAsMTMpLGUuYWRkTWFueShbMjcsMTU2LDI0LDI2XSwxMywxNCwwKSxlLmFkZChoLDAsMiwwKSxlLmFkZChoLDgsNSw4KSxlLmFkZChoLDYsMCw2KSxlLmFkZChoLDExLDAsMTEpLGUuYWRkKGgsMTMsMTMsMTMpLGV9KCk7dmFyIGY9ZnVuY3Rpb24oZSl7ZnVuY3Rpb24gcihyKXt2b2lkIDA9PT1yJiYocj10LlZUNTAwX1RSQU5TSVRJT05fVEFCTEUpO3ZhciBpPWUuY2FsbCh0aGlzKXx8dGhpcztyZXR1cm4gaS5fdHJhbnNpdGlvbnM9cixpLl9wYXJzZVN0YWNrPXtzdGF0ZTowLGhhbmRsZXJzOltdLGhhbmRsZXJQb3M6MCx0cmFuc2l0aW9uOjAsY2h1bmtQb3M6MH0saS5pbml0aWFsU3RhdGU9MCxpLmN1cnJlbnRTdGF0ZT1pLmluaXRpYWxTdGF0ZSxpLl9wYXJhbXM9bmV3IGEuUGFyYW1zLGkuX3BhcmFtcy5hZGRQYXJhbSgwKSxpLl9jb2xsZWN0PTAsaS5wcmVjZWRpbmdDb2RlcG9pbnQ9MCxpLl9wcmludEhhbmRsZXJGYj1mdW5jdGlvbihlLHQscil7fSxpLl9leGVjdXRlSGFuZGxlckZiPWZ1bmN0aW9uKGUpe30saS5fY3NpSGFuZGxlckZiPWZ1bmN0aW9uKGUsdCl7fSxpLl9lc2NIYW5kbGVyRmI9ZnVuY3Rpb24oZSl7fSxpLl9lcnJvckhhbmRsZXJGYj1mdW5jdGlvbihlKXtyZXR1cm4gZX0saS5fcHJpbnRIYW5kbGVyPWkuX3ByaW50SGFuZGxlckZiLGkuX2V4ZWN1dGVIYW5kbGVycz1PYmplY3QuY3JlYXRlKG51bGwpLGkuX2NzaUhhbmRsZXJzPU9iamVjdC5jcmVhdGUobnVsbCksaS5fZXNjSGFuZGxlcnM9T2JqZWN0LmNyZWF0ZShudWxsKSxpLl9vc2NQYXJzZXI9bmV3IGMuT3NjUGFyc2VyLGkuX2Rjc1BhcnNlcj1uZXcgbC5EY3NQYXJzZXIsaS5fZXJyb3JIYW5kbGVyPWkuX2Vycm9ySGFuZGxlckZiLGkucmVnaXN0ZXJFc2NIYW5kbGVyKHtmaW5hbDoiXFwifSwoZnVuY3Rpb24oKXtyZXR1cm4hMH0pKSxpfXJldHVybiBuKHIsZSksci5wcm90b3R5cGUuX2lkZW50aWZpZXI9ZnVuY3Rpb24oZSx0KXt2b2lkIDA9PT10JiYodD1bNjQsMTI2XSk7dmFyIHI9MDtpZihlLnByZWZpeCl7aWYoZS5wcmVmaXgubGVuZ3RoPjEpdGhyb3cgbmV3IEVycm9yKCJvbmx5IG9uZSBieXRlIGFzIHByZWZpeCBzdXBwb3J0ZWQiKTtpZigocj1lLnByZWZpeC5jaGFyQ29kZUF0KDApKSYmNjA+cnx8cj42Myl0aHJvdyBuZXcgRXJyb3IoInByZWZpeCBtdXN0IGJlIGluIHJhbmdlIDB4M2MgLi4gMHgzZiIpfWlmKGUuaW50ZXJtZWRpYXRlcyl7aWYoZS5pbnRlcm1lZGlhdGVzLmxlbmd0aD4yKXRocm93IG5ldyBFcnJvcigib25seSB0d28gYnl0ZXMgYXMgaW50ZXJtZWRpYXRlcyBhcmUgc3VwcG9ydGVkIik7Zm9yKHZhciBpPTA7aTxlLmludGVybWVkaWF0ZXMubGVuZ3RoOysraSl7dmFyIG49ZS5pbnRlcm1lZGlhdGVzLmNoYXJDb2RlQXQoaSk7aWYoMzI+bnx8bj40Nyl0aHJvdyBuZXcgRXJyb3IoImludGVybWVkaWF0ZSBtdXN0IGJlIGluIHJhbmdlIDB4MjAgLi4gMHgyZiIpO3I8PD04LHJ8PW59fWlmKDEhPT1lLmZpbmFsLmxlbmd0aCl0aHJvdyBuZXcgRXJyb3IoImZpbmFsIG11c3QgYmUgYSBzaW5nbGUgYnl0ZSIpO3ZhciBvPWUuZmluYWwuY2hhckNvZGVBdCgwKTtpZih0WzBdPm98fG8+dFsxXSl0aHJvdyBuZXcgRXJyb3IoImZpbmFsIG11c3QgYmUgaW4gcmFuZ2UgIit0WzBdKyIgLi4gIit0WzFdKTtyZXR1cm4ocjw8PTgpfG99LHIucHJvdG90eXBlLmlkZW50VG9TdHJpbmc9ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PVtdO2U7KXQucHVzaChTdHJpbmcuZnJvbUNoYXJDb2RlKDI1NSZlKSksZT4+PTg7cmV0dXJuIHQucmV2ZXJzZSgpLmpvaW4oIiIpfSxyLnByb3RvdHlwZS5kaXNwb3NlPWZ1bmN0aW9uKCl7dGhpcy5fY3NpSGFuZGxlcnM9T2JqZWN0LmNyZWF0ZShudWxsKSx0aGlzLl9leGVjdXRlSGFuZGxlcnM9T2JqZWN0LmNyZWF0ZShudWxsKSx0aGlzLl9lc2NIYW5kbGVycz1PYmplY3QuY3JlYXRlKG51bGwpLHRoaXMuX29zY1BhcnNlci5kaXNwb3NlKCksdGhpcy5fZGNzUGFyc2VyLmRpc3Bvc2UoKX0sci5wcm90b3R5cGUuc2V0UHJpbnRIYW5kbGVyPWZ1bmN0aW9uKGUpe3RoaXMuX3ByaW50SGFuZGxlcj1lfSxyLnByb3RvdHlwZS5jbGVhclByaW50SGFuZGxlcj1mdW5jdGlvbigpe3RoaXMuX3ByaW50SGFuZGxlcj10aGlzLl9wcmludEhhbmRsZXJGYn0sci5wcm90b3R5cGUucmVnaXN0ZXJFc2NIYW5kbGVyPWZ1bmN0aW9uKGUsdCl7dmFyIHI9dGhpcy5faWRlbnRpZmllcihlLFs0OCwxMjZdKTt2b2lkIDA9PT10aGlzLl9lc2NIYW5kbGVyc1tyXSYmKHRoaXMuX2VzY0hhbmRsZXJzW3JdPVtdKTt2YXIgaT10aGlzLl9lc2NIYW5kbGVyc1tyXTtyZXR1cm4gaS5wdXNoKHQpLHtkaXNwb3NlOmZ1bmN0aW9uKCl7dmFyIGU9aS5pbmRleE9mKHQpOy0xIT09ZSYmaS5zcGxpY2UoZSwxKX19fSxyLnByb3RvdHlwZS5jbGVhckVzY0hhbmRsZXI9ZnVuY3Rpb24oZSl7dGhpcy5fZXNjSGFuZGxlcnNbdGhpcy5faWRlbnRpZmllcihlLFs0OCwxMjZdKV0mJmRlbGV0ZSB0aGlzLl9lc2NIYW5kbGVyc1t0aGlzLl9pZGVudGlmaWVyKGUsWzQ4LDEyNl0pXX0sci5wcm90b3R5cGUuc2V0RXNjSGFuZGxlckZhbGxiYWNrPWZ1bmN0aW9uKGUpe3RoaXMuX2VzY0hhbmRsZXJGYj1lfSxyLnByb3RvdHlwZS5zZXRFeGVjdXRlSGFuZGxlcj1mdW5jdGlvbihlLHQpe3RoaXMuX2V4ZWN1dGVIYW5kbGVyc1tlLmNoYXJDb2RlQXQoMCldPXR9LHIucHJvdG90eXBlLmNsZWFyRXhlY3V0ZUhhbmRsZXI9ZnVuY3Rpb24oZSl7dGhpcy5fZXhlY3V0ZUhhbmRsZXJzW2UuY2hhckNvZGVBdCgwKV0mJmRlbGV0ZSB0aGlzLl9leGVjdXRlSGFuZGxlcnNbZS5jaGFyQ29kZUF0KDApXX0sci5wcm90b3R5cGUuc2V0RXhlY3V0ZUhhbmRsZXJGYWxsYmFjaz1mdW5jdGlvbihlKXt0aGlzLl9leGVjdXRlSGFuZGxlckZiPWV9LHIucHJvdG90eXBlLnJlZ2lzdGVyQ3NpSGFuZGxlcj1mdW5jdGlvbihlLHQpe3ZhciByPXRoaXMuX2lkZW50aWZpZXIoZSk7dm9pZCAwPT09dGhpcy5fY3NpSGFuZGxlcnNbcl0mJih0aGlzLl9jc2lIYW5kbGVyc1tyXT1bXSk7dmFyIGk9dGhpcy5fY3NpSGFuZGxlcnNbcl07cmV0dXJuIGkucHVzaCh0KSx7ZGlzcG9zZTpmdW5jdGlvbigpe3ZhciBlPWkuaW5kZXhPZih0KTstMSE9PWUmJmkuc3BsaWNlKGUsMSl9fX0sci5wcm90b3R5cGUuY2xlYXJDc2lIYW5kbGVyPWZ1bmN0aW9uKGUpe3RoaXMuX2NzaUhhbmRsZXJzW3RoaXMuX2lkZW50aWZpZXIoZSldJiZkZWxldGUgdGhpcy5fY3NpSGFuZGxlcnNbdGhpcy5faWRlbnRpZmllcihlKV19LHIucHJvdG90eXBlLnNldENzaUhhbmRsZXJGYWxsYmFjaz1mdW5jdGlvbihlKXt0aGlzLl9jc2lIYW5kbGVyRmI9ZX0sci5wcm90b3R5cGUucmVnaXN0ZXJEY3NIYW5kbGVyPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIHRoaXMuX2Rjc1BhcnNlci5yZWdpc3RlckhhbmRsZXIodGhpcy5faWRlbnRpZmllcihlKSx0KX0sci5wcm90b3R5cGUuY2xlYXJEY3NIYW5kbGVyPWZ1bmN0aW9uKGUpe3RoaXMuX2Rjc1BhcnNlci5jbGVhckhhbmRsZXIodGhpcy5faWRlbnRpZmllcihlKSl9LHIucHJvdG90eXBlLnNldERjc0hhbmRsZXJGYWxsYmFjaz1mdW5jdGlvbihlKXt0aGlzLl9kY3NQYXJzZXIuc2V0SGFuZGxlckZhbGxiYWNrKGUpfSxyLnByb3RvdHlwZS5yZWdpc3Rlck9zY0hhbmRsZXI9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gdGhpcy5fb3NjUGFyc2VyLnJlZ2lzdGVySGFuZGxlcihlLHQpfSxyLnByb3RvdHlwZS5jbGVhck9zY0hhbmRsZXI9ZnVuY3Rpb24oZSl7dGhpcy5fb3NjUGFyc2VyLmNsZWFySGFuZGxlcihlKX0sci5wcm90b3R5cGUuc2V0T3NjSGFuZGxlckZhbGxiYWNrPWZ1bmN0aW9uKGUpe3RoaXMuX29zY1BhcnNlci5zZXRIYW5kbGVyRmFsbGJhY2soZSl9LHIucHJvdG90eXBlLnNldEVycm9ySGFuZGxlcj1mdW5jdGlvbihlKXt0aGlzLl9lcnJvckhhbmRsZXI9ZX0sci5wcm90b3R5cGUuY2xlYXJFcnJvckhhbmRsZXI9ZnVuY3Rpb24oKXt0aGlzLl9lcnJvckhhbmRsZXI9dGhpcy5fZXJyb3JIYW5kbGVyRmJ9LHIucHJvdG90eXBlLnJlc2V0PWZ1bmN0aW9uKCl7dGhpcy5jdXJyZW50U3RhdGU9dGhpcy5pbml0aWFsU3RhdGUsdGhpcy5fb3NjUGFyc2VyLnJlc2V0KCksdGhpcy5fZGNzUGFyc2VyLnJlc2V0KCksdGhpcy5fcGFyYW1zLnJlc2V0KCksdGhpcy5fcGFyYW1zLmFkZFBhcmFtKDApLHRoaXMuX2NvbGxlY3Q9MCx0aGlzLnByZWNlZGluZ0NvZGVwb2ludD0wLDAhPT10aGlzLl9wYXJzZVN0YWNrLnN0YXRlJiYodGhpcy5fcGFyc2VTdGFjay5zdGF0ZT0yLHRoaXMuX3BhcnNlU3RhY2suaGFuZGxlcnM9W10pfSxyLnByb3RvdHlwZS5fcHJlc2VydmVTdGFjaz1mdW5jdGlvbihlLHQscixpLG4pe3RoaXMuX3BhcnNlU3RhY2suc3RhdGU9ZSx0aGlzLl9wYXJzZVN0YWNrLmhhbmRsZXJzPXQsdGhpcy5fcGFyc2VTdGFjay5oYW5kbGVyUG9zPXIsdGhpcy5fcGFyc2VTdGFjay50cmFuc2l0aW9uPWksdGhpcy5fcGFyc2VTdGFjay5jaHVua1Bvcz1ufSxyLnByb3RvdHlwZS5wYXJzZT1mdW5jdGlvbihlLHQscil7dmFyIGksbj0wLG89MCxzPTA7aWYodGhpcy5fcGFyc2VTdGFjay5zdGF0ZSlpZigyPT09dGhpcy5fcGFyc2VTdGFjay5zdGF0ZSl0aGlzLl9wYXJzZVN0YWNrLnN0YXRlPTAscz10aGlzLl9wYXJzZVN0YWNrLmNodW5rUG9zKzE7ZWxzZXtpZih2b2lkIDA9PT1yfHwxPT09dGhpcy5fcGFyc2VTdGFjay5zdGF0ZSl0aHJvdyB0aGlzLl9wYXJzZVN0YWNrLnN0YXRlPTEsbmV3IEVycm9yKCJpbXByb3BlciBjb250aW51YXRpb24gZHVlIHRvIHByZXZpb3VzIGFzeW5jIGhhbmRsZXIsIGdpdmluZyB1cCBwYXJzaW5nIik7dmFyIGE9dGhpcy5fcGFyc2VTdGFjay5oYW5kbGVycyxjPXRoaXMuX3BhcnNlU3RhY2suaGFuZGxlclBvcy0xO3N3aXRjaCh0aGlzLl9wYXJzZVN0YWNrLnN0YXRlKXtjYXNlIDM6aWYoITE9PT1yJiZjPi0xKWZvcig7Yz49MCYmITAhPT0oaT1hW2NdKHRoaXMuX3BhcmFtcykpO2MtLSlpZihpIGluc3RhbmNlb2YgUHJvbWlzZSlyZXR1cm4gdGhpcy5fcGFyc2VTdGFjay5oYW5kbGVyUG9zPWMsaTt0aGlzLl9wYXJzZVN0YWNrLmhhbmRsZXJzPVtdO2JyZWFrO2Nhc2UgNDppZighMT09PXImJmM+LTEpZm9yKDtjPj0wJiYhMCE9PShpPWFbY10oKSk7Yy0tKWlmKGkgaW5zdGFuY2VvZiBQcm9taXNlKXJldHVybiB0aGlzLl9wYXJzZVN0YWNrLmhhbmRsZXJQb3M9YyxpO3RoaXMuX3BhcnNlU3RhY2suaGFuZGxlcnM9W107YnJlYWs7Y2FzZSA2OmlmKG49ZVt0aGlzLl9wYXJzZVN0YWNrLmNodW5rUG9zXSxpPXRoaXMuX2Rjc1BhcnNlci51bmhvb2soMjQhPT1uJiYyNiE9PW4scikpcmV0dXJuIGk7Mjc9PT1uJiYodGhpcy5fcGFyc2VTdGFjay50cmFuc2l0aW9ufD0xKSx0aGlzLl9wYXJhbXMucmVzZXQoKSx0aGlzLl9wYXJhbXMuYWRkUGFyYW0oMCksdGhpcy5fY29sbGVjdD0wO2JyZWFrO2Nhc2UgNTppZihuPWVbdGhpcy5fcGFyc2VTdGFjay5jaHVua1Bvc10saT10aGlzLl9vc2NQYXJzZXIuZW5kKDI0IT09biYmMjYhPT1uLHIpKXJldHVybiBpOzI3PT09biYmKHRoaXMuX3BhcnNlU3RhY2sudHJhbnNpdGlvbnw9MSksdGhpcy5fcGFyYW1zLnJlc2V0KCksdGhpcy5fcGFyYW1zLmFkZFBhcmFtKDApLHRoaXMuX2NvbGxlY3Q9MH10aGlzLl9wYXJzZVN0YWNrLnN0YXRlPTAscz10aGlzLl9wYXJzZVN0YWNrLmNodW5rUG9zKzEsdGhpcy5wcmVjZWRpbmdDb2RlcG9pbnQ9MCx0aGlzLmN1cnJlbnRTdGF0ZT0xNSZ0aGlzLl9wYXJzZVN0YWNrLnRyYW5zaXRpb259Zm9yKHZhciBsPXM7bDx0OysrbCl7c3dpdGNoKG49ZVtsXSwobz10aGlzLl90cmFuc2l0aW9ucy50YWJsZVt0aGlzLmN1cnJlbnRTdGF0ZTw8OHwobjwxNjA/bjpoKV0pPj40KXtjYXNlIDI6Zm9yKHZhciB1PWwrMTs7Kyt1KXtpZih1Pj10fHwobj1lW3VdKTwzMnx8bj4xMjYmJm48aCl7dGhpcy5fcHJpbnRIYW5kbGVyKGUsbCx1KSxsPXUtMTticmVha31pZigrK3U+PXR8fChuPWVbdV0pPDMyfHxuPjEyNiYmbjxoKXt0aGlzLl9wcmludEhhbmRsZXIoZSxsLHUpLGw9dS0xO2JyZWFrfWlmKCsrdT49dHx8KG49ZVt1XSk8MzJ8fG4+MTI2JiZuPGgpe3RoaXMuX3ByaW50SGFuZGxlcihlLGwsdSksbD11LTE7YnJlYWt9aWYoKyt1Pj10fHwobj1lW3VdKTwzMnx8bj4xMjYmJm48aCl7dGhpcy5fcHJpbnRIYW5kbGVyKGUsbCx1KSxsPXUtMTticmVha319YnJlYWs7Y2FzZSAzOnRoaXMuX2V4ZWN1dGVIYW5kbGVyc1tuXT90aGlzLl9leGVjdXRlSGFuZGxlcnNbbl0oKTp0aGlzLl9leGVjdXRlSGFuZGxlckZiKG4pLHRoaXMucHJlY2VkaW5nQ29kZXBvaW50PTA7YnJlYWs7Y2FzZSAwOmJyZWFrO2Nhc2UgMTppZih0aGlzLl9lcnJvckhhbmRsZXIoe3Bvc2l0aW9uOmwsY29kZTpuLGN1cnJlbnRTdGF0ZTp0aGlzLmN1cnJlbnRTdGF0ZSxjb2xsZWN0OnRoaXMuX2NvbGxlY3QscGFyYW1zOnRoaXMuX3BhcmFtcyxhYm9ydDohMX0pLmFib3J0KXJldHVybjticmVhaztjYXNlIDc6Zm9yKHZhciBmPShhPXRoaXMuX2NzaUhhbmRsZXJzW3RoaXMuX2NvbGxlY3Q8PDh8bl0pP2EubGVuZ3RoLTE6LTE7Zj49MCYmITAhPT0oaT1hW2ZdKHRoaXMuX3BhcmFtcykpO2YtLSlpZihpIGluc3RhbmNlb2YgUHJvbWlzZSlyZXR1cm4gdGhpcy5fcHJlc2VydmVTdGFjaygzLGEsZixvLGwpLGk7ZjwwJiZ0aGlzLl9jc2lIYW5kbGVyRmIodGhpcy5fY29sbGVjdDw8OHxuLHRoaXMuX3BhcmFtcyksdGhpcy5wcmVjZWRpbmdDb2RlcG9pbnQ9MDticmVhaztjYXNlIDg6ZG97c3dpdGNoKG4pe2Nhc2UgNTk6dGhpcy5fcGFyYW1zLmFkZFBhcmFtKDApO2JyZWFrO2Nhc2UgNTg6dGhpcy5fcGFyYW1zLmFkZFN1YlBhcmFtKC0xKTticmVhaztkZWZhdWx0OnRoaXMuX3BhcmFtcy5hZGREaWdpdChuLTQ4KX19d2hpbGUoKytsPHQmJihuPWVbbF0pPjQ3JiZuPDYwKTtsLS07YnJlYWs7Y2FzZSA5OnRoaXMuX2NvbGxlY3Q8PD04LHRoaXMuX2NvbGxlY3R8PW47YnJlYWs7Y2FzZSAxMDpmb3IodmFyIF89dGhpcy5fZXNjSGFuZGxlcnNbdGhpcy5fY29sbGVjdDw8OHxuXSxkPV8/Xy5sZW5ndGgtMTotMTtkPj0wJiYhMCE9PShpPV9bZF0oKSk7ZC0tKWlmKGkgaW5zdGFuY2VvZiBQcm9taXNlKXJldHVybiB0aGlzLl9wcmVzZXJ2ZVN0YWNrKDQsXyxkLG8sbCksaTtkPDAmJnRoaXMuX2VzY0hhbmRsZXJGYih0aGlzLl9jb2xsZWN0PDw4fG4pLHRoaXMucHJlY2VkaW5nQ29kZXBvaW50PTA7YnJlYWs7Y2FzZSAxMTp0aGlzLl9wYXJhbXMucmVzZXQoKSx0aGlzLl9wYXJhbXMuYWRkUGFyYW0oMCksdGhpcy5fY29sbGVjdD0wO2JyZWFrO2Nhc2UgMTI6dGhpcy5fZGNzUGFyc2VyLmhvb2sodGhpcy5fY29sbGVjdDw8OHxuLHRoaXMuX3BhcmFtcyk7YnJlYWs7Y2FzZSAxMzpmb3IodmFyIHA9bCsxOzsrK3ApaWYocD49dHx8MjQ9PT0obj1lW3BdKXx8MjY9PT1ufHwyNz09PW58fG4+MTI3JiZuPGgpe3RoaXMuX2Rjc1BhcnNlci5wdXQoZSxsLHApLGw9cC0xO2JyZWFrfWJyZWFrO2Nhc2UgMTQ6aWYoaT10aGlzLl9kY3NQYXJzZXIudW5ob29rKDI0IT09biYmMjYhPT1uKSlyZXR1cm4gdGhpcy5fcHJlc2VydmVTdGFjayg2LFtdLDAsbyxsKSxpOzI3PT09biYmKG98PTEpLHRoaXMuX3BhcmFtcy5yZXNldCgpLHRoaXMuX3BhcmFtcy5hZGRQYXJhbSgwKSx0aGlzLl9jb2xsZWN0PTAsdGhpcy5wcmVjZWRpbmdDb2RlcG9pbnQ9MDticmVhaztjYXNlIDQ6dGhpcy5fb3NjUGFyc2VyLnN0YXJ0KCk7YnJlYWs7Y2FzZSA1OmZvcih2YXIgdj1sKzE7O3YrKylpZih2Pj10fHwobj1lW3ZdKTwzMnx8bj4xMjcmJm48aCl7dGhpcy5fb3NjUGFyc2VyLnB1dChlLGwsdiksbD12LTE7YnJlYWt9YnJlYWs7Y2FzZSA2OmlmKGk9dGhpcy5fb3NjUGFyc2VyLmVuZCgyNCE9PW4mJjI2IT09bikpcmV0dXJuIHRoaXMuX3ByZXNlcnZlU3RhY2soNSxbXSwwLG8sbCksaTsyNz09PW4mJihvfD0xKSx0aGlzLl9wYXJhbXMucmVzZXQoKSx0aGlzLl9wYXJhbXMuYWRkUGFyYW0oMCksdGhpcy5fY29sbGVjdD0wLHRoaXMucHJlY2VkaW5nQ29kZXBvaW50PTB9dGhpcy5jdXJyZW50U3RhdGU9MTUmb319LHJ9KG8uRGlzcG9zYWJsZSk7dC5Fc2NhcGVTZXF1ZW5jZVBhcnNlcj1mfSw2MjQyOihlLHQscik9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Pc2NIYW5kbGVyPXQuT3NjUGFyc2VyPXZvaWQgMDt2YXIgaT1yKDU3NzApLG49cig0ODIpLG89W10scz1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoKXt0aGlzLl9zdGF0ZT0wLHRoaXMuX2FjdGl2ZT1vLHRoaXMuX2lkPS0xLHRoaXMuX2hhbmRsZXJzPU9iamVjdC5jcmVhdGUobnVsbCksdGhpcy5faGFuZGxlckZiPWZ1bmN0aW9uKCl7fSx0aGlzLl9zdGFjaz17cGF1c2VkOiExLGxvb3BQb3NpdGlvbjowLGZhbGxUaHJvdWdoOiExfX1yZXR1cm4gZS5wcm90b3R5cGUucmVnaXN0ZXJIYW5kbGVyPWZ1bmN0aW9uKGUsdCl7dm9pZCAwPT09dGhpcy5faGFuZGxlcnNbZV0mJih0aGlzLl9oYW5kbGVyc1tlXT1bXSk7dmFyIHI9dGhpcy5faGFuZGxlcnNbZV07cmV0dXJuIHIucHVzaCh0KSx7ZGlzcG9zZTpmdW5jdGlvbigpe3ZhciBlPXIuaW5kZXhPZih0KTstMSE9PWUmJnIuc3BsaWNlKGUsMSl9fX0sZS5wcm90b3R5cGUuY2xlYXJIYW5kbGVyPWZ1bmN0aW9uKGUpe3RoaXMuX2hhbmRsZXJzW2VdJiZkZWxldGUgdGhpcy5faGFuZGxlcnNbZV19LGUucHJvdG90eXBlLnNldEhhbmRsZXJGYWxsYmFjaz1mdW5jdGlvbihlKXt0aGlzLl9oYW5kbGVyRmI9ZX0sZS5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe3RoaXMuX2hhbmRsZXJzPU9iamVjdC5jcmVhdGUobnVsbCksdGhpcy5faGFuZGxlckZiPWZ1bmN0aW9uKCl7fSx0aGlzLl9hY3RpdmU9b30sZS5wcm90b3R5cGUucmVzZXQ9ZnVuY3Rpb24oKXtpZigyPT09dGhpcy5fc3RhdGUpZm9yKHZhciBlPXRoaXMuX3N0YWNrLnBhdXNlZD90aGlzLl9zdGFjay5sb29wUG9zaXRpb24tMTp0aGlzLl9hY3RpdmUubGVuZ3RoLTE7ZT49MDstLWUpdGhpcy5fYWN0aXZlW2VdLmVuZCghMSk7dGhpcy5fc3RhY2sucGF1c2VkPSExLHRoaXMuX2FjdGl2ZT1vLHRoaXMuX2lkPS0xLHRoaXMuX3N0YXRlPTB9LGUucHJvdG90eXBlLl9zdGFydD1mdW5jdGlvbigpe2lmKHRoaXMuX2FjdGl2ZT10aGlzLl9oYW5kbGVyc1t0aGlzLl9pZF18fG8sdGhpcy5fYWN0aXZlLmxlbmd0aClmb3IodmFyIGU9dGhpcy5fYWN0aXZlLmxlbmd0aC0xO2U+PTA7ZS0tKXRoaXMuX2FjdGl2ZVtlXS5zdGFydCgpO2Vsc2UgdGhpcy5faGFuZGxlckZiKHRoaXMuX2lkLCJTVEFSVCIpfSxlLnByb3RvdHlwZS5fcHV0PWZ1bmN0aW9uKGUsdCxyKXtpZih0aGlzLl9hY3RpdmUubGVuZ3RoKWZvcih2YXIgaT10aGlzLl9hY3RpdmUubGVuZ3RoLTE7aT49MDtpLS0pdGhpcy5fYWN0aXZlW2ldLnB1dChlLHQscik7ZWxzZSB0aGlzLl9oYW5kbGVyRmIodGhpcy5faWQsIlBVVCIsKDAsbi51dGYzMlRvU3RyaW5nKShlLHQscikpfSxlLnByb3RvdHlwZS5zdGFydD1mdW5jdGlvbigpe3RoaXMucmVzZXQoKSx0aGlzLl9zdGF0ZT0xfSxlLnByb3RvdHlwZS5wdXQ9ZnVuY3Rpb24oZSx0LHIpe2lmKDMhPT10aGlzLl9zdGF0ZSl7aWYoMT09PXRoaXMuX3N0YXRlKWZvcig7dDxyOyl7dmFyIGk9ZVt0KytdO2lmKDU5PT09aSl7dGhpcy5fc3RhdGU9Mix0aGlzLl9zdGFydCgpO2JyZWFrfWlmKGk8NDh8fDU3PGkpcmV0dXJuIHZvaWQodGhpcy5fc3RhdGU9Myk7LTE9PT10aGlzLl9pZCYmKHRoaXMuX2lkPTApLHRoaXMuX2lkPTEwKnRoaXMuX2lkK2ktNDh9Mj09PXRoaXMuX3N0YXRlJiZyLXQ+MCYmdGhpcy5fcHV0KGUsdCxyKX19LGUucHJvdG90eXBlLmVuZD1mdW5jdGlvbihlLHQpe2lmKHZvaWQgMD09PXQmJih0PSEwKSwwIT09dGhpcy5fc3RhdGUpe2lmKDMhPT10aGlzLl9zdGF0ZSlpZigxPT09dGhpcy5fc3RhdGUmJnRoaXMuX3N0YXJ0KCksdGhpcy5fYWN0aXZlLmxlbmd0aCl7dmFyIHI9ITEsaT10aGlzLl9hY3RpdmUubGVuZ3RoLTEsbj0hMTtpZih0aGlzLl9zdGFjay5wYXVzZWQmJihpPXRoaXMuX3N0YWNrLmxvb3BQb3NpdGlvbi0xLHI9dCxuPXRoaXMuX3N0YWNrLmZhbGxUaHJvdWdoLHRoaXMuX3N0YWNrLnBhdXNlZD0hMSksIW4mJiExPT09cil7Zm9yKDtpPj0wJiYhMCE9PShyPXRoaXMuX2FjdGl2ZVtpXS5lbmQoZSkpO2ktLSlpZihyIGluc3RhbmNlb2YgUHJvbWlzZSlyZXR1cm4gdGhpcy5fc3RhY2sucGF1c2VkPSEwLHRoaXMuX3N0YWNrLmxvb3BQb3NpdGlvbj1pLHRoaXMuX3N0YWNrLmZhbGxUaHJvdWdoPSExLHI7aS0tfWZvcig7aT49MDtpLS0paWYoKHI9dGhpcy5fYWN0aXZlW2ldLmVuZCghMSkpaW5zdGFuY2VvZiBQcm9taXNlKXJldHVybiB0aGlzLl9zdGFjay5wYXVzZWQ9ITAsdGhpcy5fc3RhY2subG9vcFBvc2l0aW9uPWksdGhpcy5fc3RhY2suZmFsbFRocm91Z2g9ITAscn1lbHNlIHRoaXMuX2hhbmRsZXJGYih0aGlzLl9pZCwiRU5EIixlKTt0aGlzLl9hY3RpdmU9byx0aGlzLl9pZD0tMSx0aGlzLl9zdGF0ZT0wfX0sZX0oKTt0Lk9zY1BhcnNlcj1zO3ZhciBhPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlKXt0aGlzLl9oYW5kbGVyPWUsdGhpcy5fZGF0YT0iIix0aGlzLl9oaXRMaW1pdD0hMX1yZXR1cm4gZS5wcm90b3R5cGUuc3RhcnQ9ZnVuY3Rpb24oKXt0aGlzLl9kYXRhPSIiLHRoaXMuX2hpdExpbWl0PSExfSxlLnByb3RvdHlwZS5wdXQ9ZnVuY3Rpb24oZSx0LHIpe3RoaXMuX2hpdExpbWl0fHwodGhpcy5fZGF0YSs9KDAsbi51dGYzMlRvU3RyaW5nKShlLHQsciksdGhpcy5fZGF0YS5sZW5ndGg+aS5QQVlMT0FEX0xJTUlUJiYodGhpcy5fZGF0YT0iIix0aGlzLl9oaXRMaW1pdD0hMCkpfSxlLnByb3RvdHlwZS5lbmQ9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcyxyPSExO2lmKHRoaXMuX2hpdExpbWl0KXI9ITE7ZWxzZSBpZihlJiYocj10aGlzLl9oYW5kbGVyKHRoaXMuX2RhdGEpKWluc3RhbmNlb2YgUHJvbWlzZSlyZXR1cm4gci50aGVuKChmdW5jdGlvbihlKXtyZXR1cm4gdC5fZGF0YT0iIix0Ll9oaXRMaW1pdD0hMSxlfSkpO3JldHVybiB0aGlzLl9kYXRhPSIiLHRoaXMuX2hpdExpbWl0PSExLHJ9LGV9KCk7dC5Pc2NIYW5kbGVyPWF9LDg3NDI6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5QYXJhbXM9dm9pZCAwO3ZhciByPTIxNDc0ODM2NDcsaT1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoZSx0KXtpZih2b2lkIDA9PT1lJiYoZT0zMiksdm9pZCAwPT09dCYmKHQ9MzIpLHRoaXMubWF4TGVuZ3RoPWUsdGhpcy5tYXhTdWJQYXJhbXNMZW5ndGg9dCx0PjI1Nil0aHJvdyBuZXcgRXJyb3IoIm1heFN1YlBhcmFtc0xlbmd0aCBtdXN0IG5vdCBiZSBncmVhdGVyIHRoYW4gMjU2Iik7dGhpcy5wYXJhbXM9bmV3IEludDMyQXJyYXkoZSksdGhpcy5sZW5ndGg9MCx0aGlzLl9zdWJQYXJhbXM9bmV3IEludDMyQXJyYXkodCksdGhpcy5fc3ViUGFyYW1zTGVuZ3RoPTAsdGhpcy5fc3ViUGFyYW1zSWR4PW5ldyBVaW50MTZBcnJheShlKSx0aGlzLl9yZWplY3REaWdpdHM9ITEsdGhpcy5fcmVqZWN0U3ViRGlnaXRzPSExLHRoaXMuX2RpZ2l0SXNTdWI9ITF9cmV0dXJuIGUuZnJvbUFycmF5PWZ1bmN0aW9uKHQpe3ZhciByPW5ldyBlO2lmKCF0Lmxlbmd0aClyZXR1cm4gcjtmb3IodmFyIGk9QXJyYXkuaXNBcnJheSh0WzBdKT8xOjA7aTx0Lmxlbmd0aDsrK2kpe3ZhciBuPXRbaV07aWYoQXJyYXkuaXNBcnJheShuKSlmb3IodmFyIG89MDtvPG4ubGVuZ3RoOysrbylyLmFkZFN1YlBhcmFtKG5bb10pO2Vsc2Ugci5hZGRQYXJhbShuKX1yZXR1cm4gcn0sZS5wcm90b3R5cGUuY2xvbmU9ZnVuY3Rpb24oKXt2YXIgdD1uZXcgZSh0aGlzLm1heExlbmd0aCx0aGlzLm1heFN1YlBhcmFtc0xlbmd0aCk7cmV0dXJuIHQucGFyYW1zLnNldCh0aGlzLnBhcmFtcyksdC5sZW5ndGg9dGhpcy5sZW5ndGgsdC5fc3ViUGFyYW1zLnNldCh0aGlzLl9zdWJQYXJhbXMpLHQuX3N1YlBhcmFtc0xlbmd0aD10aGlzLl9zdWJQYXJhbXNMZW5ndGgsdC5fc3ViUGFyYW1zSWR4LnNldCh0aGlzLl9zdWJQYXJhbXNJZHgpLHQuX3JlamVjdERpZ2l0cz10aGlzLl9yZWplY3REaWdpdHMsdC5fcmVqZWN0U3ViRGlnaXRzPXRoaXMuX3JlamVjdFN1YkRpZ2l0cyx0Ll9kaWdpdElzU3ViPXRoaXMuX2RpZ2l0SXNTdWIsdH0sZS5wcm90b3R5cGUudG9BcnJheT1mdW5jdGlvbigpe2Zvcih2YXIgZT1bXSx0PTA7dDx0aGlzLmxlbmd0aDsrK3Qpe2UucHVzaCh0aGlzLnBhcmFtc1t0XSk7dmFyIHI9dGhpcy5fc3ViUGFyYW1zSWR4W3RdPj44LGk9MjU1JnRoaXMuX3N1YlBhcmFtc0lkeFt0XTtpLXI+MCYmZS5wdXNoKEFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKHRoaXMuX3N1YlBhcmFtcyxyLGkpKX1yZXR1cm4gZX0sZS5wcm90b3R5cGUucmVzZXQ9ZnVuY3Rpb24oKXt0aGlzLmxlbmd0aD0wLHRoaXMuX3N1YlBhcmFtc0xlbmd0aD0wLHRoaXMuX3JlamVjdERpZ2l0cz0hMSx0aGlzLl9yZWplY3RTdWJEaWdpdHM9ITEsdGhpcy5fZGlnaXRJc1N1Yj0hMX0sZS5wcm90b3R5cGUuYWRkUGFyYW09ZnVuY3Rpb24oZSl7aWYodGhpcy5fZGlnaXRJc1N1Yj0hMSx0aGlzLmxlbmd0aD49dGhpcy5tYXhMZW5ndGgpdGhpcy5fcmVqZWN0RGlnaXRzPSEwO2Vsc2V7aWYoZTwtMSl0aHJvdyBuZXcgRXJyb3IoInZhbHVlcyBsZXNzZXIgdGhhbiAtMSBhcmUgbm90IGFsbG93ZWQiKTt0aGlzLl9zdWJQYXJhbXNJZHhbdGhpcy5sZW5ndGhdPXRoaXMuX3N1YlBhcmFtc0xlbmd0aDw8OHx0aGlzLl9zdWJQYXJhbXNMZW5ndGgsdGhpcy5wYXJhbXNbdGhpcy5sZW5ndGgrK109ZT5yP3I6ZX19LGUucHJvdG90eXBlLmFkZFN1YlBhcmFtPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX2RpZ2l0SXNTdWI9ITAsdGhpcy5sZW5ndGgpaWYodGhpcy5fcmVqZWN0RGlnaXRzfHx0aGlzLl9zdWJQYXJhbXNMZW5ndGg+PXRoaXMubWF4U3ViUGFyYW1zTGVuZ3RoKXRoaXMuX3JlamVjdFN1YkRpZ2l0cz0hMDtlbHNle2lmKGU8LTEpdGhyb3cgbmV3IEVycm9yKCJ2YWx1ZXMgbGVzc2VyIHRoYW4gLTEgYXJlIG5vdCBhbGxvd2VkIik7dGhpcy5fc3ViUGFyYW1zW3RoaXMuX3N1YlBhcmFtc0xlbmd0aCsrXT1lPnI/cjplLHRoaXMuX3N1YlBhcmFtc0lkeFt0aGlzLmxlbmd0aC0xXSsrfX0sZS5wcm90b3R5cGUuaGFzU3ViUGFyYW1zPWZ1bmN0aW9uKGUpe3JldHVybigyNTUmdGhpcy5fc3ViUGFyYW1zSWR4W2VdKS0odGhpcy5fc3ViUGFyYW1zSWR4W2VdPj44KT4wfSxlLnByb3RvdHlwZS5nZXRTdWJQYXJhbXM9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcy5fc3ViUGFyYW1zSWR4W2VdPj44LHI9MjU1JnRoaXMuX3N1YlBhcmFtc0lkeFtlXTtyZXR1cm4gci10PjA/dGhpcy5fc3ViUGFyYW1zLnN1YmFycmF5KHQscik6bnVsbH0sZS5wcm90b3R5cGUuZ2V0U3ViUGFyYW1zQWxsPWZ1bmN0aW9uKCl7Zm9yKHZhciBlPXt9LHQ9MDt0PHRoaXMubGVuZ3RoOysrdCl7dmFyIHI9dGhpcy5fc3ViUGFyYW1zSWR4W3RdPj44LGk9MjU1JnRoaXMuX3N1YlBhcmFtc0lkeFt0XTtpLXI+MCYmKGVbdF09dGhpcy5fc3ViUGFyYW1zLnNsaWNlKHIsaSkpfXJldHVybiBlfSxlLnByb3RvdHlwZS5hZGREaWdpdD1mdW5jdGlvbihlKXt2YXIgdDtpZighKHRoaXMuX3JlamVjdERpZ2l0c3x8ISh0PXRoaXMuX2RpZ2l0SXNTdWI/dGhpcy5fc3ViUGFyYW1zTGVuZ3RoOnRoaXMubGVuZ3RoKXx8dGhpcy5fZGlnaXRJc1N1YiYmdGhpcy5fcmVqZWN0U3ViRGlnaXRzKSl7dmFyIGk9dGhpcy5fZGlnaXRJc1N1Yj90aGlzLl9zdWJQYXJhbXM6dGhpcy5wYXJhbXMsbj1pW3QtMV07aVt0LTFdPX5uP01hdGgubWluKDEwKm4rZSxyKTplfX0sZX0oKTt0LlBhcmFtcz1pfSw1NzQxOihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuQWRkb25NYW5hZ2VyPXZvaWQgMDt2YXIgcj1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoKXt0aGlzLl9hZGRvbnM9W119cmV0dXJuIGUucHJvdG90eXBlLmRpc3Bvc2U9ZnVuY3Rpb24oKXtmb3IodmFyIGU9dGhpcy5fYWRkb25zLmxlbmd0aC0xO2U+PTA7ZS0tKXRoaXMuX2FkZG9uc1tlXS5pbnN0YW5jZS5kaXNwb3NlKCl9LGUucHJvdG90eXBlLmxvYWRBZGRvbj1mdW5jdGlvbihlLHQpe3ZhciByPXRoaXMsaT17aW5zdGFuY2U6dCxkaXNwb3NlOnQuZGlzcG9zZSxpc0Rpc3Bvc2VkOiExfTt0aGlzLl9hZGRvbnMucHVzaChpKSx0LmRpc3Bvc2U9ZnVuY3Rpb24oKXtyZXR1cm4gci5fd3JhcHBlZEFkZG9uRGlzcG9zZShpKX0sdC5hY3RpdmF0ZShlKX0sZS5wcm90b3R5cGUuX3dyYXBwZWRBZGRvbkRpc3Bvc2U9ZnVuY3Rpb24oZSl7aWYoIWUuaXNEaXNwb3NlZCl7Zm9yKHZhciB0PS0xLHI9MDtyPHRoaXMuX2FkZG9ucy5sZW5ndGg7cisrKWlmKHRoaXMuX2FkZG9uc1tyXT09PWUpe3Q9cjticmVha31pZigtMT09PXQpdGhyb3cgbmV3IEVycm9yKCJDb3VsZCBub3QgZGlzcG9zZSBhbiBhZGRvbiB0aGF0IGhhcyBub3QgYmVlbiBsb2FkZWQiKTtlLmlzRGlzcG9zZWQ9ITAsZS5kaXNwb3NlLmFwcGx5KGUuaW5zdGFuY2UpLHRoaXMuX2FkZG9ucy5zcGxpY2UodCwxKX19LGV9KCk7dC5BZGRvbk1hbmFnZXI9cn0sODc3MTooZSx0LHIpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuQnVmZmVyQXBpVmlldz12b2lkIDA7dmFyIGk9cigzNzg1KSxuPXIoNTExKSxvPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlLHQpe3RoaXMuX2J1ZmZlcj1lLHRoaXMudHlwZT10fXJldHVybiBlLnByb3RvdHlwZS5pbml0PWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9idWZmZXI9ZSx0aGlzfSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImN1cnNvclkiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fYnVmZmVyLnl9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJjdXJzb3JYIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2J1ZmZlci54fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwidmlld3BvcnRZIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2J1ZmZlci55ZGlzcH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImJhc2VZIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2J1ZmZlci55YmFzZX0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImxlbmd0aCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9idWZmZXIubGluZXMubGVuZ3RofSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLGUucHJvdG90eXBlLmdldExpbmU9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcy5fYnVmZmVyLmxpbmVzLmdldChlKTtpZih0KXJldHVybiBuZXcgaS5CdWZmZXJMaW5lQXBpVmlldyh0KX0sZS5wcm90b3R5cGUuZ2V0TnVsbENlbGw9ZnVuY3Rpb24oKXtyZXR1cm4gbmV3IG4uQ2VsbERhdGF9LGV9KCk7dC5CdWZmZXJBcGlWaWV3PW99LDM3ODU6KGUsdCxyKT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkJ1ZmZlckxpbmVBcGlWaWV3PXZvaWQgMDt2YXIgaT1yKDUxMSksbj1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoZSl7dGhpcy5fbGluZT1lfXJldHVybiBPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImlzV3JhcHBlZCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9saW5lLmlzV3JhcHBlZH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImxlbmd0aCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9saW5lLmxlbmd0aH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxlLnByb3RvdHlwZS5nZXRDZWxsPWZ1bmN0aW9uKGUsdCl7aWYoIShlPDB8fGU+PXRoaXMuX2xpbmUubGVuZ3RoKSlyZXR1cm4gdD8odGhpcy5fbGluZS5sb2FkQ2VsbChlLHQpLHQpOnRoaXMuX2xpbmUubG9hZENlbGwoZSxuZXcgaS5DZWxsRGF0YSl9LGUucHJvdG90eXBlLnRyYW5zbGF0ZVRvU3RyaW5nPWZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gdGhpcy5fbGluZS50cmFuc2xhdGVUb1N0cmluZyhlLHQscil9LGV9KCk7dC5CdWZmZXJMaW5lQXBpVmlldz1ufSw4Mjg1OihlLHQscik9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5CdWZmZXJOYW1lc3BhY2VBcGk9dm9pZCAwO3ZhciBpPXIoODc3MSksbj1yKDg0NjApLG89ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUpe3ZhciB0PXRoaXM7dGhpcy5fY29yZT1lLHRoaXMuX29uQnVmZmVyQ2hhbmdlPW5ldyBuLkV2ZW50RW1pdHRlcix0aGlzLl9ub3JtYWw9bmV3IGkuQnVmZmVyQXBpVmlldyh0aGlzLl9jb3JlLmJ1ZmZlcnMubm9ybWFsLCJub3JtYWwiKSx0aGlzLl9hbHRlcm5hdGU9bmV3IGkuQnVmZmVyQXBpVmlldyh0aGlzLl9jb3JlLmJ1ZmZlcnMuYWx0LCJhbHRlcm5hdGUiKSx0aGlzLl9jb3JlLmJ1ZmZlcnMub25CdWZmZXJBY3RpdmF0ZSgoZnVuY3Rpb24oKXtyZXR1cm4gdC5fb25CdWZmZXJDaGFuZ2UuZmlyZSh0LmFjdGl2ZSl9KSl9cmV0dXJuIE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwib25CdWZmZXJDaGFuZ2UiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25CdWZmZXJDaGFuZ2UuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJhY3RpdmUiLHtnZXQ6ZnVuY3Rpb24oKXtpZih0aGlzLl9jb3JlLmJ1ZmZlcnMuYWN0aXZlPT09dGhpcy5fY29yZS5idWZmZXJzLm5vcm1hbClyZXR1cm4gdGhpcy5ub3JtYWw7aWYodGhpcy5fY29yZS5idWZmZXJzLmFjdGl2ZT09PXRoaXMuX2NvcmUuYnVmZmVycy5hbHQpcmV0dXJuIHRoaXMuYWx0ZXJuYXRlO3Rocm93IG5ldyBFcnJvcigiQWN0aXZlIGJ1ZmZlciBpcyBuZWl0aGVyIG5vcm1hbCBub3IgYWx0ZXJuYXRlIil9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJub3JtYWwiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fbm9ybWFsLmluaXQodGhpcy5fY29yZS5idWZmZXJzLm5vcm1hbCl9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJhbHRlcm5hdGUiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fYWx0ZXJuYXRlLmluaXQodGhpcy5fY29yZS5idWZmZXJzLmFsdCl9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksZX0oKTt0LkJ1ZmZlck5hbWVzcGFjZUFwaT1vfSw3OTc1OihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuUGFyc2VyQXBpPXZvaWQgMDt2YXIgcj1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoZSl7dGhpcy5fY29yZT1lfXJldHVybiBlLnByb3RvdHlwZS5yZWdpc3RlckNzaUhhbmRsZXI9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gdGhpcy5fY29yZS5yZWdpc3RlckNzaUhhbmRsZXIoZSwoZnVuY3Rpb24oZSl7cmV0dXJuIHQoZS50b0FycmF5KCkpfSkpfSxlLnByb3RvdHlwZS5hZGRDc2lIYW5kbGVyPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIHRoaXMucmVnaXN0ZXJDc2lIYW5kbGVyKGUsdCl9LGUucHJvdG90eXBlLnJlZ2lzdGVyRGNzSGFuZGxlcj1mdW5jdGlvbihlLHQpe3JldHVybiB0aGlzLl9jb3JlLnJlZ2lzdGVyRGNzSGFuZGxlcihlLChmdW5jdGlvbihlLHIpe3JldHVybiB0KGUsci50b0FycmF5KCkpfSkpfSxlLnByb3RvdHlwZS5hZGREY3NIYW5kbGVyPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIHRoaXMucmVnaXN0ZXJEY3NIYW5kbGVyKGUsdCl9LGUucHJvdG90eXBlLnJlZ2lzdGVyRXNjSGFuZGxlcj1mdW5jdGlvbihlLHQpe3JldHVybiB0aGlzLl9jb3JlLnJlZ2lzdGVyRXNjSGFuZGxlcihlLHQpfSxlLnByb3RvdHlwZS5hZGRFc2NIYW5kbGVyPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIHRoaXMucmVnaXN0ZXJFc2NIYW5kbGVyKGUsdCl9LGUucHJvdG90eXBlLnJlZ2lzdGVyT3NjSGFuZGxlcj1mdW5jdGlvbihlLHQpe3JldHVybiB0aGlzLl9jb3JlLnJlZ2lzdGVyT3NjSGFuZGxlcihlLHQpfSxlLnByb3RvdHlwZS5hZGRPc2NIYW5kbGVyPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIHRoaXMucmVnaXN0ZXJPc2NIYW5kbGVyKGUsdCl9LGV9KCk7dC5QYXJzZXJBcGk9cn0sNzA5MDooZSx0KT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LlVuaWNvZGVBcGk9dm9pZCAwO3ZhciByPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlKXt0aGlzLl9jb3JlPWV9cmV0dXJuIGUucHJvdG90eXBlLnJlZ2lzdGVyPWZ1bmN0aW9uKGUpe3RoaXMuX2NvcmUudW5pY29kZVNlcnZpY2UucmVnaXN0ZXIoZSl9LE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwidmVyc2lvbnMiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fY29yZS51bmljb2RlU2VydmljZS52ZXJzaW9uc30sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImFjdGl2ZVZlcnNpb24iLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fY29yZS51bmljb2RlU2VydmljZS5hY3RpdmVWZXJzaW9ufSxzZXQ6ZnVuY3Rpb24oZSl7dGhpcy5fY29yZS51bmljb2RlU2VydmljZS5hY3RpdmVWZXJzaW9uPWV9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksZX0oKTt0LlVuaWNvZGVBcGk9cn0sNzQ0OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pLG89dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxzPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkJ1ZmZlclNlcnZpY2U9dC5NSU5JTVVNX1JPV1M9dC5NSU5JTVVNX0NPTFM9dm9pZCAwO3ZhciBhPXIoMjU4NSksYz1yKDUyOTUpLGw9cig4NDYwKSx1PXIoODQ0KTt0Lk1JTklNVU1fQ09MUz0yLHQuTUlOSU1VTV9ST1dTPTE7dmFyIGg9ZnVuY3Rpb24oZSl7ZnVuY3Rpb24gcihyKXt2YXIgaT1lLmNhbGwodGhpcyl8fHRoaXM7cmV0dXJuIGkuX29wdGlvbnNTZXJ2aWNlPXIsaS5pc1VzZXJTY3JvbGxpbmc9ITEsaS5fb25SZXNpemU9bmV3IGwuRXZlbnRFbWl0dGVyLGkuX29uU2Nyb2xsPW5ldyBsLkV2ZW50RW1pdHRlcixpLmNvbHM9TWF0aC5tYXgoci5vcHRpb25zLmNvbHN8fDAsdC5NSU5JTVVNX0NPTFMpLGkucm93cz1NYXRoLm1heChyLm9wdGlvbnMucm93c3x8MCx0Lk1JTklNVU1fUk9XUyksaS5idWZmZXJzPW5ldyBjLkJ1ZmZlclNldChyLGkpLGl9cmV0dXJuIG4ocixlKSxPYmplY3QuZGVmaW5lUHJvcGVydHkoci5wcm90b3R5cGUsIm9uUmVzaXplIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uUmVzaXplLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShyLnByb3RvdHlwZSwib25TY3JvbGwiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25TY3JvbGwuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHIucHJvdG90eXBlLCJidWZmZXIiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5idWZmZXJzLmFjdGl2ZX0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxyLnByb3RvdHlwZS5kaXNwb3NlPWZ1bmN0aW9uKCl7ZS5wcm90b3R5cGUuZGlzcG9zZS5jYWxsKHRoaXMpLHRoaXMuYnVmZmVycy5kaXNwb3NlKCl9LHIucHJvdG90eXBlLnJlc2l6ZT1mdW5jdGlvbihlLHQpe3RoaXMuY29scz1lLHRoaXMucm93cz10LHRoaXMuYnVmZmVycy5yZXNpemUoZSx0KSx0aGlzLmJ1ZmZlcnMuc2V0dXBUYWJTdG9wcyh0aGlzLmNvbHMpLHRoaXMuX29uUmVzaXplLmZpcmUoe2NvbHM6ZSxyb3dzOnR9KX0sci5wcm90b3R5cGUucmVzZXQ9ZnVuY3Rpb24oKXt0aGlzLmJ1ZmZlcnMucmVzZXQoKSx0aGlzLmlzVXNlclNjcm9sbGluZz0hMX0sci5wcm90b3R5cGUuc2Nyb2xsPWZ1bmN0aW9uKGUsdCl7dm9pZCAwPT09dCYmKHQ9ITEpO3ZhciByLGk9dGhpcy5idWZmZXI7KHI9dGhpcy5fY2FjaGVkQmxhbmtMaW5lKSYmci5sZW5ndGg9PT10aGlzLmNvbHMmJnIuZ2V0RmcoMCk9PT1lLmZnJiZyLmdldEJnKDApPT09ZS5iZ3x8KHI9aS5nZXRCbGFua0xpbmUoZSx0KSx0aGlzLl9jYWNoZWRCbGFua0xpbmU9ciksci5pc1dyYXBwZWQ9dDt2YXIgbj1pLnliYXNlK2kuc2Nyb2xsVG9wLG89aS55YmFzZStpLnNjcm9sbEJvdHRvbTtpZigwPT09aS5zY3JvbGxUb3Ape3ZhciBzPWkubGluZXMuaXNGdWxsO289PT1pLmxpbmVzLmxlbmd0aC0xP3M/aS5saW5lcy5yZWN5Y2xlKCkuY29weUZyb20ocik6aS5saW5lcy5wdXNoKHIuY2xvbmUoKSk6aS5saW5lcy5zcGxpY2UobysxLDAsci5jbG9uZSgpKSxzP3RoaXMuaXNVc2VyU2Nyb2xsaW5nJiYoaS55ZGlzcD1NYXRoLm1heChpLnlkaXNwLTEsMCkpOihpLnliYXNlKyssdGhpcy5pc1VzZXJTY3JvbGxpbmd8fGkueWRpc3ArKyl9ZWxzZXt2YXIgYT1vLW4rMTtpLmxpbmVzLnNoaWZ0RWxlbWVudHMobisxLGEtMSwtMSksaS5saW5lcy5zZXQobyxyLmNsb25lKCkpfXRoaXMuaXNVc2VyU2Nyb2xsaW5nfHwoaS55ZGlzcD1pLnliYXNlKSx0aGlzLl9vblNjcm9sbC5maXJlKGkueWRpc3ApfSxyLnByb3RvdHlwZS5zY3JvbGxMaW5lcz1mdW5jdGlvbihlLHQscil7dmFyIGk9dGhpcy5idWZmZXI7aWYoZTwwKXtpZigwPT09aS55ZGlzcClyZXR1cm47dGhpcy5pc1VzZXJTY3JvbGxpbmc9ITB9ZWxzZSBlK2kueWRpc3A+PWkueWJhc2UmJih0aGlzLmlzVXNlclNjcm9sbGluZz0hMSk7dmFyIG49aS55ZGlzcDtpLnlkaXNwPU1hdGgubWF4KE1hdGgubWluKGkueWRpc3ArZSxpLnliYXNlKSwwKSxuIT09aS55ZGlzcCYmKHR8fHRoaXMuX29uU2Nyb2xsLmZpcmUoaS55ZGlzcCkpfSxyLnByb3RvdHlwZS5zY3JvbGxQYWdlcz1mdW5jdGlvbihlKXt0aGlzLnNjcm9sbExpbmVzKGUqKHRoaXMucm93cy0xKSl9LHIucHJvdG90eXBlLnNjcm9sbFRvVG9wPWZ1bmN0aW9uKCl7dGhpcy5zY3JvbGxMaW5lcygtdGhpcy5idWZmZXIueWRpc3ApfSxyLnByb3RvdHlwZS5zY3JvbGxUb0JvdHRvbT1mdW5jdGlvbigpe3RoaXMuc2Nyb2xsTGluZXModGhpcy5idWZmZXIueWJhc2UtdGhpcy5idWZmZXIueWRpc3ApfSxyLnByb3RvdHlwZS5zY3JvbGxUb0xpbmU9ZnVuY3Rpb24oZSl7dmFyIHQ9ZS10aGlzLmJ1ZmZlci55ZGlzcDswIT09dCYmdGhpcy5zY3JvbGxMaW5lcyh0KX0sbyhbcygwLGEuSU9wdGlvbnNTZXJ2aWNlKV0scil9KHUuRGlzcG9zYWJsZSk7dC5CdWZmZXJTZXJ2aWNlPWh9LDc5OTQ6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5DaGFyc2V0U2VydmljZT12b2lkIDA7dmFyIHI9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKCl7dGhpcy5nbGV2ZWw9MCx0aGlzLl9jaGFyc2V0cz1bXX1yZXR1cm4gZS5wcm90b3R5cGUucmVzZXQ9ZnVuY3Rpb24oKXt0aGlzLmNoYXJzZXQ9dm9pZCAwLHRoaXMuX2NoYXJzZXRzPVtdLHRoaXMuZ2xldmVsPTB9LGUucHJvdG90eXBlLnNldGdMZXZlbD1mdW5jdGlvbihlKXt0aGlzLmdsZXZlbD1lLHRoaXMuY2hhcnNldD10aGlzLl9jaGFyc2V0c1tlXX0sZS5wcm90b3R5cGUuc2V0Z0NoYXJzZXQ9ZnVuY3Rpb24oZSx0KXt0aGlzLl9jaGFyc2V0c1tlXT10LHRoaXMuZ2xldmVsPT09ZSYmKHRoaXMuY2hhcnNldD10KX0sZX0oKTt0LkNoYXJzZXRTZXJ2aWNlPXJ9LDE3NTM6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPXRoaXMmJnRoaXMuX19kZWNvcmF0ZXx8ZnVuY3Rpb24oZSx0LHIsaSl7dmFyIG4sbz1hcmd1bWVudHMubGVuZ3RoLHM9bzwzP3Q6bnVsbD09PWk/aT1PYmplY3QuZ2V0T3duUHJvcGVydHlEZXNjcmlwdG9yKHQscik6aTtpZigib2JqZWN0Ij09dHlwZW9mIFJlZmxlY3QmJiJmdW5jdGlvbiI9PXR5cGVvZiBSZWZsZWN0LmRlY29yYXRlKXM9UmVmbGVjdC5kZWNvcmF0ZShlLHQscixpKTtlbHNlIGZvcih2YXIgYT1lLmxlbmd0aC0xO2E+PTA7YS0tKShuPWVbYV0pJiYocz0obzwzP24ocyk6bz4zP24odCxyLHMpOm4odCxyKSl8fHMpO3JldHVybiBvPjMmJnMmJk9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LHIscyksc30sbj10aGlzJiZ0aGlzLl9fcGFyYW18fGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGZ1bmN0aW9uKHIsaSl7dChyLGksZSl9fTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Db3JlTW91c2VTZXJ2aWNlPXZvaWQgMDt2YXIgbz1yKDI1ODUpLHM9cig4NDYwKSxhPXtOT05FOntldmVudHM6MCxyZXN0cmljdDpmdW5jdGlvbigpe3JldHVybiExfX0sWDEwOntldmVudHM6MSxyZXN0cmljdDpmdW5jdGlvbihlKXtyZXR1cm4gNCE9PWUuYnV0dG9uJiYxPT09ZS5hY3Rpb24mJihlLmN0cmw9ITEsZS5hbHQ9ITEsZS5zaGlmdD0hMSwhMCl9fSxWVDIwMDp7ZXZlbnRzOjE5LHJlc3RyaWN0OmZ1bmN0aW9uKGUpe3JldHVybiAzMiE9PWUuYWN0aW9ufX0sRFJBRzp7ZXZlbnRzOjIzLHJlc3RyaWN0OmZ1bmN0aW9uKGUpe3JldHVybiAzMiE9PWUuYWN0aW9ufHwzIT09ZS5idXR0b259fSxBTlk6e2V2ZW50czozMSxyZXN0cmljdDpmdW5jdGlvbihlKXtyZXR1cm4hMH19fTtmdW5jdGlvbiBjKGUsdCl7dmFyIHI9KGUuY3RybD8xNjowKXwoZS5zaGlmdD80OjApfChlLmFsdD84OjApO3JldHVybiA0PT09ZS5idXR0b24/KHJ8PTY0LHJ8PWUuYWN0aW9uKToocnw9MyZlLmJ1dHRvbiw0JmUuYnV0dG9uJiYocnw9NjQpLDgmZS5idXR0b24mJihyfD0xMjgpLDMyPT09ZS5hY3Rpb24/cnw9MzI6MCE9PWUuYWN0aW9ufHx0fHwocnw9MykpLHJ9dmFyIGw9U3RyaW5nLmZyb21DaGFyQ29kZSx1PXtERUZBVUxUOmZ1bmN0aW9uKGUpe3ZhciB0PVtjKGUsITEpKzMyLGUuY29sKzMyLGUucm93KzMyXTtyZXR1cm4gdFswXT4yNTV8fHRbMV0+MjU1fHx0WzJdPjI1NT8iIjoiG1tNIitsKHRbMF0pK2wodFsxXSkrbCh0WzJdKX0sU0dSOmZ1bmN0aW9uKGUpe3ZhciB0PTA9PT1lLmFjdGlvbiYmNCE9PWUuYnV0dG9uPyJtIjoiTSI7cmV0dXJuIhtbPCIrYyhlLCEwKSsiOyIrZS5jb2wrIjsiK2Uucm93K3R9fSxoPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlLHQpe3RoaXMuX2J1ZmZlclNlcnZpY2U9ZSx0aGlzLl9jb3JlU2VydmljZT10LHRoaXMuX3Byb3RvY29scz17fSx0aGlzLl9lbmNvZGluZ3M9e30sdGhpcy5fYWN0aXZlUHJvdG9jb2w9IiIsdGhpcy5fYWN0aXZlRW5jb2Rpbmc9IiIsdGhpcy5fb25Qcm90b2NvbENoYW5nZT1uZXcgcy5FdmVudEVtaXR0ZXIsdGhpcy5fbGFzdEV2ZW50PW51bGw7Zm9yKHZhciByPTAsaT1PYmplY3Qua2V5cyhhKTtyPGkubGVuZ3RoO3IrKyl7dmFyIG49aVtyXTt0aGlzLmFkZFByb3RvY29sKG4sYVtuXSl9Zm9yKHZhciBvPTAsYz1PYmplY3Qua2V5cyh1KTtvPGMubGVuZ3RoO28rKyl7dmFyIGw9Y1tvXTt0aGlzLmFkZEVuY29kaW5nKGwsdVtsXSl9dGhpcy5yZXNldCgpfXJldHVybiBlLnByb3RvdHlwZS5hZGRQcm90b2NvbD1mdW5jdGlvbihlLHQpe3RoaXMuX3Byb3RvY29sc1tlXT10fSxlLnByb3RvdHlwZS5hZGRFbmNvZGluZz1mdW5jdGlvbihlLHQpe3RoaXMuX2VuY29kaW5nc1tlXT10fSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImFjdGl2ZVByb3RvY29sIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2FjdGl2ZVByb3RvY29sfSxzZXQ6ZnVuY3Rpb24oZSl7aWYoIXRoaXMuX3Byb3RvY29sc1tlXSl0aHJvdyBuZXcgRXJyb3IoJ3Vua25vd24gcHJvdG9jb2wgIicrZSsnIicpO3RoaXMuX2FjdGl2ZVByb3RvY29sPWUsdGhpcy5fb25Qcm90b2NvbENoYW5nZS5maXJlKHRoaXMuX3Byb3RvY29sc1tlXS5ldmVudHMpfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwiYXJlTW91c2VFdmVudHNBY3RpdmUiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gMCE9PXRoaXMuX3Byb3RvY29sc1t0aGlzLl9hY3RpdmVQcm90b2NvbF0uZXZlbnRzfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwiYWN0aXZlRW5jb2RpbmciLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fYWN0aXZlRW5jb2Rpbmd9LHNldDpmdW5jdGlvbihlKXtpZighdGhpcy5fZW5jb2RpbmdzW2VdKXRocm93IG5ldyBFcnJvcigndW5rbm93biBlbmNvZGluZyAiJytlKyciJyk7dGhpcy5fYWN0aXZlRW5jb2Rpbmc9ZX0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxlLnByb3RvdHlwZS5yZXNldD1mdW5jdGlvbigpe3RoaXMuYWN0aXZlUHJvdG9jb2w9Ik5PTkUiLHRoaXMuYWN0aXZlRW5jb2Rpbmc9IkRFRkFVTFQiLHRoaXMuX2xhc3RFdmVudD1udWxsfSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsIm9uUHJvdG9jb2xDaGFuZ2UiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25Qcm90b2NvbENoYW5nZS5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxlLnByb3RvdHlwZS50cmlnZ2VyTW91c2VFdmVudD1mdW5jdGlvbihlKXtpZihlLmNvbDwwfHxlLmNvbD49dGhpcy5fYnVmZmVyU2VydmljZS5jb2xzfHxlLnJvdzwwfHxlLnJvdz49dGhpcy5fYnVmZmVyU2VydmljZS5yb3dzKXJldHVybiExO2lmKDQ9PT1lLmJ1dHRvbiYmMzI9PT1lLmFjdGlvbilyZXR1cm4hMTtpZigzPT09ZS5idXR0b24mJjMyIT09ZS5hY3Rpb24pcmV0dXJuITE7aWYoNCE9PWUuYnV0dG9uJiYoMj09PWUuYWN0aW9ufHwzPT09ZS5hY3Rpb24pKXJldHVybiExO2lmKGUuY29sKyssZS5yb3crKywzMj09PWUuYWN0aW9uJiZ0aGlzLl9sYXN0RXZlbnQmJnRoaXMuX2NvbXBhcmVFdmVudHModGhpcy5fbGFzdEV2ZW50LGUpKXJldHVybiExO2lmKCF0aGlzLl9wcm90b2NvbHNbdGhpcy5fYWN0aXZlUHJvdG9jb2xdLnJlc3RyaWN0KGUpKXJldHVybiExO3ZhciB0PXRoaXMuX2VuY29kaW5nc1t0aGlzLl9hY3RpdmVFbmNvZGluZ10oZSk7cmV0dXJuIHQmJigiREVGQVVMVCI9PT10aGlzLl9hY3RpdmVFbmNvZGluZz90aGlzLl9jb3JlU2VydmljZS50cmlnZ2VyQmluYXJ5RXZlbnQodCk6dGhpcy5fY29yZVNlcnZpY2UudHJpZ2dlckRhdGFFdmVudCh0LCEwKSksdGhpcy5fbGFzdEV2ZW50PWUsITB9LGUucHJvdG90eXBlLmV4cGxhaW5FdmVudHM9ZnVuY3Rpb24oZSl7cmV0dXJue2Rvd246ISEoMSZlKSx1cDohISgyJmUpLGRyYWc6ISEoNCZlKSxtb3ZlOiEhKDgmZSksd2hlZWw6ISEoMTYmZSl9fSxlLnByb3RvdHlwZS5fY29tcGFyZUV2ZW50cz1mdW5jdGlvbihlLHQpe3JldHVybiBlLmNvbD09PXQuY29sJiZlLnJvdz09PXQucm93JiZlLmJ1dHRvbj09PXQuYnV0dG9uJiZlLmFjdGlvbj09PXQuYWN0aW9uJiZlLmN0cmw9PT10LmN0cmwmJmUuYWx0PT09dC5hbHQmJmUuc2hpZnQ9PT10LnNoaWZ0fSxpKFtuKDAsby5JQnVmZmVyU2VydmljZSksbigxLG8uSUNvcmVTZXJ2aWNlKV0sZSl9KCk7dC5Db3JlTW91c2VTZXJ2aWNlPWh9LDY5NzU6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpLG49dGhpcyYmdGhpcy5fX2V4dGVuZHN8fChpPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGk9T2JqZWN0LnNldFByb3RvdHlwZU9mfHx7X19wcm90b19fOltdfWluc3RhbmNlb2YgQXJyYXkmJmZ1bmN0aW9uKGUsdCl7ZS5fX3Byb3RvX189dH18fGZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByIGluIHQpT2JqZWN0LnByb3RvdHlwZS5oYXNPd25Qcm9wZXJ0eS5jYWxsKHQscikmJihlW3JdPXRbcl0pfSxpKGUsdCl9LGZ1bmN0aW9uKGUsdCl7aWYoImZ1bmN0aW9uIiE9dHlwZW9mIHQmJm51bGwhPT10KXRocm93IG5ldyBUeXBlRXJyb3IoIkNsYXNzIGV4dGVuZHMgdmFsdWUgIitTdHJpbmcodCkrIiBpcyBub3QgYSBjb25zdHJ1Y3RvciBvciBudWxsIik7ZnVuY3Rpb24gcigpe3RoaXMuY29uc3RydWN0b3I9ZX1pKGUsdCksZS5wcm90b3R5cGU9bnVsbD09PXQ/T2JqZWN0LmNyZWF0ZSh0KTooci5wcm90b3R5cGU9dC5wcm90b3R5cGUsbmV3IHIpfSksbz10aGlzJiZ0aGlzLl9fZGVjb3JhdGV8fGZ1bmN0aW9uKGUsdCxyLGkpe3ZhciBuLG89YXJndW1lbnRzLmxlbmd0aCxzPW88Mz90Om51bGw9PT1pP2k9T2JqZWN0LmdldE93blByb3BlcnR5RGVzY3JpcHRvcih0LHIpOmk7aWYoIm9iamVjdCI9PXR5cGVvZiBSZWZsZWN0JiYiZnVuY3Rpb24iPT10eXBlb2YgUmVmbGVjdC5kZWNvcmF0ZSlzPVJlZmxlY3QuZGVjb3JhdGUoZSx0LHIsaSk7ZWxzZSBmb3IodmFyIGE9ZS5sZW5ndGgtMTthPj0wO2EtLSkobj1lW2FdKSYmKHM9KG88Mz9uKHMpOm8+Mz9uKHQscixzKTpuKHQscikpfHxzKTtyZXR1cm4gbz4zJiZzJiZPYmplY3QuZGVmaW5lUHJvcGVydHkodCxyLHMpLHN9LHM9dGhpcyYmdGhpcy5fX3BhcmFtfHxmdW5jdGlvbihlLHQpe3JldHVybiBmdW5jdGlvbihyLGkpe3QocixpLGUpfX07T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuQ29yZVNlcnZpY2U9dm9pZCAwO3ZhciBhPXIoMjU4NSksYz1yKDg0NjApLGw9cigxNDM5KSx1PXIoODQ0KSxoPU9iamVjdC5mcmVlemUoe2luc2VydE1vZGU6ITF9KSxmPU9iamVjdC5mcmVlemUoe2FwcGxpY2F0aW9uQ3Vyc29yS2V5czohMSxhcHBsaWNhdGlvbktleXBhZDohMSxicmFja2V0ZWRQYXN0ZU1vZGU6ITEsb3JpZ2luOiExLHJldmVyc2VXcmFwYXJvdW5kOiExLHNlbmRGb2N1czohMSx3cmFwYXJvdW5kOiEwfSksXz1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KHQscixpLG4pe3ZhciBvPWUuY2FsbCh0aGlzKXx8dGhpcztyZXR1cm4gby5fYnVmZmVyU2VydmljZT1yLG8uX2xvZ1NlcnZpY2U9aSxvLl9vcHRpb25zU2VydmljZT1uLG8uaXNDdXJzb3JJbml0aWFsaXplZD0hMSxvLmlzQ3Vyc29ySGlkZGVuPSExLG8uX29uRGF0YT1vLnJlZ2lzdGVyKG5ldyBjLkV2ZW50RW1pdHRlciksby5fb25Vc2VySW5wdXQ9by5yZWdpc3RlcihuZXcgYy5FdmVudEVtaXR0ZXIpLG8uX29uQmluYXJ5PW8ucmVnaXN0ZXIobmV3IGMuRXZlbnRFbWl0dGVyKSxvLl9zY3JvbGxUb0JvdHRvbT10LG8ucmVnaXN0ZXIoe2Rpc3Bvc2U6ZnVuY3Rpb24oKXtyZXR1cm4gby5fc2Nyb2xsVG9Cb3R0b209dm9pZCAwfX0pLG8ubW9kZXM9KDAsbC5jbG9uZSkoaCksby5kZWNQcml2YXRlTW9kZXM9KDAsbC5jbG9uZSkoZiksb31yZXR1cm4gbih0LGUpLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25EYXRhIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uRGF0YS5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uVXNlcklucHV0Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uVXNlcklucHV0LmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25CaW5hcnkiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25CaW5hcnkuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksdC5wcm90b3R5cGUucmVzZXQ9ZnVuY3Rpb24oKXt0aGlzLm1vZGVzPSgwLGwuY2xvbmUpKGgpLHRoaXMuZGVjUHJpdmF0ZU1vZGVzPSgwLGwuY2xvbmUpKGYpfSx0LnByb3RvdHlwZS50cmlnZ2VyRGF0YUV2ZW50PWZ1bmN0aW9uKGUsdCl7aWYodm9pZCAwPT09dCYmKHQ9ITEpLCF0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmRpc2FibGVTdGRpbil7dmFyIHI9dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXI7ci55YmFzZSE9PXIueWRpc3AmJnRoaXMuX3Njcm9sbFRvQm90dG9tKCksdCYmdGhpcy5fb25Vc2VySW5wdXQuZmlyZSgpLHRoaXMuX2xvZ1NlcnZpY2UuZGVidWcoJ3NlbmRpbmcgZGF0YSAiJytlKyciJywoZnVuY3Rpb24oKXtyZXR1cm4gZS5zcGxpdCgiIikubWFwKChmdW5jdGlvbihlKXtyZXR1cm4gZS5jaGFyQ29kZUF0KDApfSkpfSkpLHRoaXMuX29uRGF0YS5maXJlKGUpfX0sdC5wcm90b3R5cGUudHJpZ2dlckJpbmFyeUV2ZW50PWZ1bmN0aW9uKGUpe3RoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuZGlzYWJsZVN0ZGlufHwodGhpcy5fbG9nU2VydmljZS5kZWJ1Zygnc2VuZGluZyBiaW5hcnkgIicrZSsnIicsKGZ1bmN0aW9uKCl7cmV0dXJuIGUuc3BsaXQoIiIpLm1hcCgoZnVuY3Rpb24oZSl7cmV0dXJuIGUuY2hhckNvZGVBdCgwKX0pKX0pKSx0aGlzLl9vbkJpbmFyeS5maXJlKGUpKX0sbyhbcygxLGEuSUJ1ZmZlclNlcnZpY2UpLHMoMixhLklMb2dTZXJ2aWNlKSxzKDMsYS5JT3B0aW9uc1NlcnZpY2UpXSx0KX0odS5EaXNwb3NhYmxlKTt0LkNvcmVTZXJ2aWNlPV99LDM3MzA6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPXRoaXMmJnRoaXMuX19kZWNvcmF0ZXx8ZnVuY3Rpb24oZSx0LHIsaSl7dmFyIG4sbz1hcmd1bWVudHMubGVuZ3RoLHM9bzwzP3Q6bnVsbD09PWk/aT1PYmplY3QuZ2V0T3duUHJvcGVydHlEZXNjcmlwdG9yKHQscik6aTtpZigib2JqZWN0Ij09dHlwZW9mIFJlZmxlY3QmJiJmdW5jdGlvbiI9PXR5cGVvZiBSZWZsZWN0LmRlY29yYXRlKXM9UmVmbGVjdC5kZWNvcmF0ZShlLHQscixpKTtlbHNlIGZvcih2YXIgYT1lLmxlbmd0aC0xO2E+PTA7YS0tKShuPWVbYV0pJiYocz0obzwzP24ocyk6bz4zP24odCxyLHMpOm4odCxyKSl8fHMpO3JldHVybiBvPjMmJnMmJk9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LHIscyksc30sbj10aGlzJiZ0aGlzLl9fcGFyYW18fGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGZ1bmN0aW9uKHIsaSl7dChyLGksZSl9fTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5EaXJ0eVJvd1NlcnZpY2U9dm9pZCAwO3ZhciBvPXIoMjU4NSkscz1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoZSl7dGhpcy5fYnVmZmVyU2VydmljZT1lLHRoaXMuY2xlYXJSYW5nZSgpfXJldHVybiBPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsInN0YXJ0Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX3N0YXJ0fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwiZW5kIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2VuZH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxlLnByb3RvdHlwZS5jbGVhclJhbmdlPWZ1bmN0aW9uKCl7dGhpcy5fc3RhcnQ9dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueSx0aGlzLl9lbmQ9dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueX0sZS5wcm90b3R5cGUubWFya0RpcnR5PWZ1bmN0aW9uKGUpe2U8dGhpcy5fc3RhcnQ/dGhpcy5fc3RhcnQ9ZTplPnRoaXMuX2VuZCYmKHRoaXMuX2VuZD1lKX0sZS5wcm90b3R5cGUubWFya1JhbmdlRGlydHk9ZnVuY3Rpb24oZSx0KXtpZihlPnQpe3ZhciByPWU7ZT10LHQ9cn1lPHRoaXMuX3N0YXJ0JiYodGhpcy5fc3RhcnQ9ZSksdD50aGlzLl9lbmQmJih0aGlzLl9lbmQ9dCl9LGUucHJvdG90eXBlLm1hcmtBbGxEaXJ0eT1mdW5jdGlvbigpe3RoaXMubWFya1JhbmdlRGlydHkoMCx0aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MtMSl9LGkoW24oMCxvLklCdWZmZXJTZXJ2aWNlKV0sZSl9KCk7dC5EaXJ0eVJvd1NlcnZpY2U9c30sNDM0ODpmdW5jdGlvbihlLHQscil7dmFyIGk9dGhpcyYmdGhpcy5fX3NwcmVhZEFycmF5fHxmdW5jdGlvbihlLHQscil7aWYocnx8Mj09PWFyZ3VtZW50cy5sZW5ndGgpZm9yKHZhciBpLG49MCxvPXQubGVuZ3RoO248bztuKyspIWkmJm4gaW4gdHx8KGl8fChpPUFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKHQsMCxuKSksaVtuXT10W25dKTtyZXR1cm4gZS5jb25jYXQoaXx8QXJyYXkucHJvdG90eXBlLnNsaWNlLmNhbGwodCkpfTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5JbnN0YW50aWF0aW9uU2VydmljZT10LlNlcnZpY2VDb2xsZWN0aW9uPXZvaWQgMDt2YXIgbj1yKDI1ODUpLG89cig4MzQzKSxzPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZSgpe2Zvcih2YXIgZT1bXSx0PTA7dDxhcmd1bWVudHMubGVuZ3RoO3QrKyllW3RdPWFyZ3VtZW50c1t0XTt0aGlzLl9lbnRyaWVzPW5ldyBNYXA7Zm9yKHZhciByPTAsaT1lO3I8aS5sZW5ndGg7cisrKXt2YXIgbj1pW3JdLG89blswXSxzPW5bMV07dGhpcy5zZXQobyxzKX19cmV0dXJuIGUucHJvdG90eXBlLnNldD1mdW5jdGlvbihlLHQpe3ZhciByPXRoaXMuX2VudHJpZXMuZ2V0KGUpO3JldHVybiB0aGlzLl9lbnRyaWVzLnNldChlLHQpLHJ9LGUucHJvdG90eXBlLmZvckVhY2g9ZnVuY3Rpb24oZSl7dGhpcy5fZW50cmllcy5mb3JFYWNoKChmdW5jdGlvbih0LHIpe3JldHVybiBlKHIsdCl9KSl9LGUucHJvdG90eXBlLmhhcz1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fZW50cmllcy5oYXMoZSl9LGUucHJvdG90eXBlLmdldD1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fZW50cmllcy5nZXQoZSl9LGV9KCk7dC5TZXJ2aWNlQ29sbGVjdGlvbj1zO3ZhciBhPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZSgpe3RoaXMuX3NlcnZpY2VzPW5ldyBzLHRoaXMuX3NlcnZpY2VzLnNldChuLklJbnN0YW50aWF0aW9uU2VydmljZSx0aGlzKX1yZXR1cm4gZS5wcm90b3R5cGUuc2V0U2VydmljZT1mdW5jdGlvbihlLHQpe3RoaXMuX3NlcnZpY2VzLnNldChlLHQpfSxlLnByb3RvdHlwZS5nZXRTZXJ2aWNlPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9zZXJ2aWNlcy5nZXQoZSl9LGUucHJvdG90eXBlLmNyZWF0ZUluc3RhbmNlPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD1bXSxyPTE7cjxhcmd1bWVudHMubGVuZ3RoO3IrKyl0W3ItMV09YXJndW1lbnRzW3JdO2Zvcih2YXIgbj0oMCxvLmdldFNlcnZpY2VEZXBlbmRlbmNpZXMpKGUpLnNvcnQoKGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGUuaW5kZXgtdC5pbmRleH0pKSxzPVtdLGE9MCxjPW47YTxjLmxlbmd0aDthKyspe3ZhciBsPWNbYV0sdT10aGlzLl9zZXJ2aWNlcy5nZXQobC5pZCk7aWYoIXUpdGhyb3cgbmV3IEVycm9yKCJbY3JlYXRlSW5zdGFuY2VdICIrZS5uYW1lKyIgZGVwZW5kcyBvbiBVTktOT1dOIHNlcnZpY2UgIitsLmlkKyIuIik7cy5wdXNoKHUpfXZhciBoPW4ubGVuZ3RoPjA/blswXS5pbmRleDp0Lmxlbmd0aDtpZih0Lmxlbmd0aCE9PWgpdGhyb3cgbmV3IEVycm9yKCJbY3JlYXRlSW5zdGFuY2VdIEZpcnN0IHNlcnZpY2UgZGVwZW5kZW5jeSBvZiAiK2UubmFtZSsiIGF0IHBvc2l0aW9uICIrKGgrMSkrIiBjb25mbGljdHMgd2l0aCAiK3QubGVuZ3RoKyIgc3RhdGljIGFyZ3VtZW50cyIpO3JldHVybiBuZXcoZS5iaW5kLmFwcGx5KGUsaShbdm9pZCAwXSxpKGkoW10sdCwhMCkscywhMCksITEpKSl9LGV9KCk7dC5JbnN0YW50aWF0aW9uU2VydmljZT1hfSw3ODY2OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaT10aGlzJiZ0aGlzLl9fZGVjb3JhdGV8fGZ1bmN0aW9uKGUsdCxyLGkpe3ZhciBuLG89YXJndW1lbnRzLmxlbmd0aCxzPW88Mz90Om51bGw9PT1pP2k9T2JqZWN0LmdldE93blByb3BlcnR5RGVzY3JpcHRvcih0LHIpOmk7aWYoIm9iamVjdCI9PXR5cGVvZiBSZWZsZWN0JiYiZnVuY3Rpb24iPT10eXBlb2YgUmVmbGVjdC5kZWNvcmF0ZSlzPVJlZmxlY3QuZGVjb3JhdGUoZSx0LHIsaSk7ZWxzZSBmb3IodmFyIGE9ZS5sZW5ndGgtMTthPj0wO2EtLSkobj1lW2FdKSYmKHM9KG88Mz9uKHMpOm8+Mz9uKHQscixzKTpuKHQscikpfHxzKTtyZXR1cm4gbz4zJiZzJiZPYmplY3QuZGVmaW5lUHJvcGVydHkodCxyLHMpLHN9LG49dGhpcyYmdGhpcy5fX3BhcmFtfHxmdW5jdGlvbihlLHQpe3JldHVybiBmdW5jdGlvbihyLGkpe3QocixpLGUpfX0sbz10aGlzJiZ0aGlzLl9fc3ByZWFkQXJyYXl8fGZ1bmN0aW9uKGUsdCxyKXtpZihyfHwyPT09YXJndW1lbnRzLmxlbmd0aClmb3IodmFyIGksbj0wLG89dC5sZW5ndGg7bjxvO24rKykhaSYmbiBpbiB0fHwoaXx8KGk9QXJyYXkucHJvdG90eXBlLnNsaWNlLmNhbGwodCwwLG4pKSxpW25dPXRbbl0pO3JldHVybiBlLmNvbmNhdChpfHxBcnJheS5wcm90b3R5cGUuc2xpY2UuY2FsbCh0KSl9O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkxvZ1NlcnZpY2U9dm9pZCAwO3ZhciBzPXIoMjU4NSksYT17ZGVidWc6cy5Mb2dMZXZlbEVudW0uREVCVUcsaW5mbzpzLkxvZ0xldmVsRW51bS5JTkZPLHdhcm46cy5Mb2dMZXZlbEVudW0uV0FSTixlcnJvcjpzLkxvZ0xldmVsRW51bS5FUlJPUixvZmY6cy5Mb2dMZXZlbEVudW0uT0ZGfSxjPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlKXt2YXIgdD10aGlzO3RoaXMuX29wdGlvbnNTZXJ2aWNlPWUsdGhpcy5sb2dMZXZlbD1zLkxvZ0xldmVsRW51bS5PRkYsdGhpcy5fdXBkYXRlTG9nTGV2ZWwoKSx0aGlzLl9vcHRpb25zU2VydmljZS5vbk9wdGlvbkNoYW5nZSgoZnVuY3Rpb24oZSl7ImxvZ0xldmVsIj09PWUmJnQuX3VwZGF0ZUxvZ0xldmVsKCl9KSl9cmV0dXJuIGUucHJvdG90eXBlLl91cGRhdGVMb2dMZXZlbD1mdW5jdGlvbigpe3RoaXMubG9nTGV2ZWw9YVt0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmxvZ0xldmVsXX0sZS5wcm90b3R5cGUuX2V2YWxMYXp5T3B0aW9uYWxQYXJhbXM9ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PTA7dDxlLmxlbmd0aDt0KyspImZ1bmN0aW9uIj09dHlwZW9mIGVbdF0mJihlW3RdPWVbdF0oKSl9LGUucHJvdG90eXBlLl9sb2c9ZnVuY3Rpb24oZSx0LHIpe3RoaXMuX2V2YWxMYXp5T3B0aW9uYWxQYXJhbXMociksZS5jYWxsLmFwcGx5KGUsbyhbY29uc29sZSwieHRlcm0uanM6ICIrdF0sciwhMSkpfSxlLnByb3RvdHlwZS5kZWJ1Zz1mdW5jdGlvbihlKXtmb3IodmFyIHQ9W10scj0xO3I8YXJndW1lbnRzLmxlbmd0aDtyKyspdFtyLTFdPWFyZ3VtZW50c1tyXTt0aGlzLmxvZ0xldmVsPD1zLkxvZ0xldmVsRW51bS5ERUJVRyYmdGhpcy5fbG9nKGNvbnNvbGUubG9nLGUsdCl9LGUucHJvdG90eXBlLmluZm89ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PVtdLHI9MTtyPGFyZ3VtZW50cy5sZW5ndGg7cisrKXRbci0xXT1hcmd1bWVudHNbcl07dGhpcy5sb2dMZXZlbDw9cy5Mb2dMZXZlbEVudW0uSU5GTyYmdGhpcy5fbG9nKGNvbnNvbGUuaW5mbyxlLHQpfSxlLnByb3RvdHlwZS53YXJuPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD1bXSxyPTE7cjxhcmd1bWVudHMubGVuZ3RoO3IrKyl0W3ItMV09YXJndW1lbnRzW3JdO3RoaXMubG9nTGV2ZWw8PXMuTG9nTGV2ZWxFbnVtLldBUk4mJnRoaXMuX2xvZyhjb25zb2xlLndhcm4sZSx0KX0sZS5wcm90b3R5cGUuZXJyb3I9ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PVtdLHI9MTtyPGFyZ3VtZW50cy5sZW5ndGg7cisrKXRbci0xXT1hcmd1bWVudHNbcl07dGhpcy5sb2dMZXZlbDw9cy5Mb2dMZXZlbEVudW0uRVJST1ImJnRoaXMuX2xvZyhjb25zb2xlLmVycm9yLGUsdCl9LGkoW24oMCxzLklPcHRpb25zU2VydmljZSldLGUpfSgpO3QuTG9nU2VydmljZT1jfSw3MzAyOmZ1bmN0aW9uKGUsdCxyKXt2YXIgaT10aGlzJiZ0aGlzLl9fYXNzaWdufHxmdW5jdGlvbigpe3JldHVybiBpPU9iamVjdC5hc3NpZ258fGZ1bmN0aW9uKGUpe2Zvcih2YXIgdCxyPTEsaT1hcmd1bWVudHMubGVuZ3RoO3I8aTtyKyspZm9yKHZhciBuIGluIHQ9YXJndW1lbnRzW3JdKU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LG4pJiYoZVtuXT10W25dKTtyZXR1cm4gZX0saS5hcHBseSh0aGlzLGFyZ3VtZW50cyl9O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0Lk9wdGlvbnNTZXJ2aWNlPXQuREVGQVVMVF9PUFRJT05TPXQuREVGQVVMVF9CRUxMX1NPVU5EPXZvaWQgMDt2YXIgbj1yKDg0NjApLG89cig2MTE0KTt0LkRFRkFVTFRfQkVMTF9TT1VORD0iZGF0YTphdWRpby9tcDM7YmFzZTY0LFNVUXpCQUFBQUFBQUkxUlRVMFVBQUFBUEFBQURUR0YyWmpVNExqTXlMakV3TkFBQUFBQUFBQUFBQUFBQS8vdFF4QUFEQjhBaFNteGhJSUVWQ1NpSnJEQ1FCVGN1M1VyQUl3VWRrUmdRYkZBWkMxQ1FFd1RKOW1qUnZCQTRVT0xEOG5LVk9XZmgrVWxLM3ovMTc3T1hyZk9kS2w3cHluM1hmLy9XcmV5VFJVb0FXZ0Jna09BR2JaSEJnRzFPRjZ6TTgyRFdiWmFVbU1CcHRnUWhHanN5WXFjOWFlOVhGejI4MDk0OE5NQldJbmxqeXpzTlJGTFBXZG5aR1dyZGREc2pLMXVudVNyVk45akpzSzhLdVF0UUN0TUJqQ0V0SW1JU2ROS0pPb3BJcEJGcE5TTWJJSENTUnBSUjVpYWtqVGl5ekxoY2hVVUJ3Q2d5S2l3ZUJ2LzdVc1FiZzhpc1ZOb01QTWpBQUFBMGdBQUFCRVZGR21ncUsvLy8vOWJQLzZYQ3lreEJUVVV6TGpFd01LcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXEiLHQuREVGQVVMVF9PUFRJT05TPXtjb2xzOjgwLHJvd3M6MjQsY3Vyc29yQmxpbms6ITEsY3Vyc29yU3R5bGU6ImJsb2NrIixjdXJzb3JXaWR0aDoxLGN1c3RvbUdseXBoczohMCxiZWxsU291bmQ6dC5ERUZBVUxUX0JFTExfU09VTkQsYmVsbFN0eWxlOiJub25lIixkcmF3Qm9sZFRleHRJbkJyaWdodENvbG9yczohMCxmYXN0U2Nyb2xsTW9kaWZpZXI6ImFsdCIsZmFzdFNjcm9sbFNlbnNpdGl2aXR5OjUsZm9udEZhbWlseToiY291cmllci1uZXcsIGNvdXJpZXIsIG1vbm9zcGFjZSIsZm9udFNpemU6MTUsZm9udFdlaWdodDoibm9ybWFsIixmb250V2VpZ2h0Qm9sZDoiYm9sZCIsbGluZUhlaWdodDoxLGxpbmtUb29sdGlwSG92ZXJEdXJhdGlvbjo1MDAsbGV0dGVyU3BhY2luZzowLGxvZ0xldmVsOiJpbmZvIixzY3JvbGxiYWNrOjFlMyxzY3JvbGxTZW5zaXRpdml0eToxLHNjcmVlblJlYWRlck1vZGU6ITEsbWFjT3B0aW9uSXNNZXRhOiExLG1hY09wdGlvbkNsaWNrRm9yY2VzU2VsZWN0aW9uOiExLG1pbmltdW1Db250cmFzdFJhdGlvOjEsZGlzYWJsZVN0ZGluOiExLGFsbG93UHJvcG9zZWRBcGk6ITAsYWxsb3dUcmFuc3BhcmVuY3k6ITEsdGFiU3RvcFdpZHRoOjgsdGhlbWU6e30scmlnaHRDbGlja1NlbGVjdHNXb3JkOm8uaXNNYWMscmVuZGVyZXJUeXBlOiJjYW52YXMiLHdpbmRvd09wdGlvbnM6e30sd2luZG93c01vZGU6ITEsd29yZFNlcGFyYXRvcjoiICgpW117fScsXCJgIixhbHRDbGlja01vdmVzQ3Vyc29yOiEwLGNvbnZlcnRFb2w6ITEsdGVybU5hbWU6Inh0ZXJtIixjYW5jZWxFdmVudHM6ITF9O3ZhciBzPVsibm9ybWFsIiwiYm9sZCIsIjEwMCIsIjIwMCIsIjMwMCIsIjQwMCIsIjUwMCIsIjYwMCIsIjcwMCIsIjgwMCIsIjkwMCJdLGE9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUpe2Zvcih2YXIgciBpbiB0aGlzLl9vbk9wdGlvbkNoYW5nZT1uZXcgbi5FdmVudEVtaXR0ZXIsdGhpcy5fb3B0aW9ucz1pKHt9LHQuREVGQVVMVF9PUFRJT05TKSxlKWlmKHIgaW4gdGhpcy5fb3B0aW9ucyl0cnl7dmFyIG89ZVtyXTt0aGlzLl9vcHRpb25zW3JdPXRoaXMuX3Nhbml0aXplQW5kVmFsaWRhdGVPcHRpb24ocixvKX1jYXRjaChlKXtjb25zb2xlLmVycm9yKGUpfXRoaXMub3B0aW9ucz10aGlzLl9zZXR1cE9wdGlvbnModGhpcy5fb3B0aW9ucyl9cmV0dXJuIE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwib25PcHRpb25DaGFuZ2UiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25PcHRpb25DaGFuZ2UuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksZS5wcm90b3R5cGUuX3NldHVwT3B0aW9ucz1mdW5jdGlvbihlKXt2YXIgcj10aGlzLG49aSh7fSxlKSxvPWZ1bmN0aW9uKGUpe09iamVjdC5kZWZpbmVQcm9wZXJ0eShuLGUse2dldDpmdW5jdGlvbigpe2lmKCEoZSBpbiB0LkRFRkFVTFRfT1BUSU9OUykpdGhyb3cgbmV3IEVycm9yKCdObyBvcHRpb24gd2l0aCBrZXkgIicrZSsnIicpO3JldHVybiByLl9vcHRpb25zW2VdfSxzZXQ6ZnVuY3Rpb24oaSl7aWYoIShlIGluIHQuREVGQVVMVF9PUFRJT05TKSl0aHJvdyBuZXcgRXJyb3IoJ05vIG9wdGlvbiB3aXRoIGtleSAiJytlKyciJyk7aT1yLl9zYW5pdGl6ZUFuZFZhbGlkYXRlT3B0aW9uKGUsaSksci5fb3B0aW9uc1tlXSE9PWkmJihyLl9vcHRpb25zW2VdPWksci5fb25PcHRpb25DaGFuZ2UuZmlyZShlKSl9fSl9O2Zvcih2YXIgcyBpbiBuKW8ocyk7cmV0dXJuIG59LGUucHJvdG90eXBlLnNldE9wdGlvbj1mdW5jdGlvbihlLHQpe3RoaXMub3B0aW9uc1tlXT10fSxlLnByb3RvdHlwZS5fc2FuaXRpemVBbmRWYWxpZGF0ZU9wdGlvbj1mdW5jdGlvbihlLHIpe3N3aXRjaChlKXtjYXNlImJlbGxTdHlsZSI6Y2FzZSJjdXJzb3JTdHlsZSI6Y2FzZSJyZW5kZXJlclR5cGUiOmNhc2Uid29yZFNlcGFyYXRvciI6cnx8KHI9dC5ERUZBVUxUX09QVElPTlNbZV0pO2JyZWFrO2Nhc2UiZm9udFdlaWdodCI6Y2FzZSJmb250V2VpZ2h0Qm9sZCI6aWYoIm51bWJlciI9PXR5cGVvZiByJiYxPD1yJiZyPD0xZTMpYnJlYWs7cj1zLmluY2x1ZGVzKHIpP3I6dC5ERUZBVUxUX09QVElPTlNbZV07YnJlYWs7Y2FzZSJjdXJzb3JXaWR0aCI6cj1NYXRoLmZsb29yKHIpO2Nhc2UibGluZUhlaWdodCI6Y2FzZSJ0YWJTdG9wV2lkdGgiOmlmKHI8MSl0aHJvdyBuZXcgRXJyb3IoZSsiIGNhbm5vdCBiZSBsZXNzIHRoYW4gMSwgdmFsdWU6ICIrcik7YnJlYWs7Y2FzZSJtaW5pbXVtQ29udHJhc3RSYXRpbyI6cj1NYXRoLm1heCgxLE1hdGgubWluKDIxLE1hdGgucm91bmQoMTAqcikvMTApKTticmVhaztjYXNlInNjcm9sbGJhY2siOmlmKChyPU1hdGgubWluKHIsNDI5NDk2NzI5NSkpPDApdGhyb3cgbmV3IEVycm9yKGUrIiBjYW5ub3QgYmUgbGVzcyB0aGFuIDAsIHZhbHVlOiAiK3IpO2JyZWFrO2Nhc2UiZmFzdFNjcm9sbFNlbnNpdGl2aXR5IjpjYXNlInNjcm9sbFNlbnNpdGl2aXR5IjppZihyPD0wKXRocm93IG5ldyBFcnJvcihlKyIgY2Fubm90IGJlIGxlc3MgdGhhbiBvciBlcXVhbCB0byAwLCB2YWx1ZTogIityKTtjYXNlInJvd3MiOmNhc2UiY29scyI6aWYoIXImJjAhPT1yKXRocm93IG5ldyBFcnJvcihlKyIgbXVzdCBiZSBudW1lcmljLCB2YWx1ZTogIityKX1yZXR1cm4gcn0sZS5wcm90b3R5cGUuZ2V0T3B0aW9uPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLm9wdGlvbnNbZV19LGV9KCk7dC5PcHRpb25zU2VydmljZT1hfSw4MzQzOihlLHQpPT57ZnVuY3Rpb24gcihlLHQscil7dC5kaSR0YXJnZXQ9PT10P3QuZGkkZGVwZW5kZW5jaWVzLnB1c2goe2lkOmUsaW5kZXg6cn0pOih0LmRpJGRlcGVuZGVuY2llcz1be2lkOmUsaW5kZXg6cn1dLHQuZGkkdGFyZ2V0PXQpfU9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LmNyZWF0ZURlY29yYXRvcj10LmdldFNlcnZpY2VEZXBlbmRlbmNpZXM9dC5zZXJ2aWNlUmVnaXN0cnk9dm9pZCAwLHQuc2VydmljZVJlZ2lzdHJ5PW5ldyBNYXAsdC5nZXRTZXJ2aWNlRGVwZW5kZW5jaWVzPWZ1bmN0aW9uKGUpe3JldHVybiBlLmRpJGRlcGVuZGVuY2llc3x8W119LHQuY3JlYXRlRGVjb3JhdG9yPWZ1bmN0aW9uKGUpe2lmKHQuc2VydmljZVJlZ2lzdHJ5LmhhcyhlKSlyZXR1cm4gdC5zZXJ2aWNlUmVnaXN0cnkuZ2V0KGUpO3ZhciBpPWZ1bmN0aW9uKGUsdCxuKXtpZigzIT09YXJndW1lbnRzLmxlbmd0aCl0aHJvdyBuZXcgRXJyb3IoIkBJU2VydmljZU5hbWUtZGVjb3JhdG9yIGNhbiBvbmx5IGJlIHVzZWQgdG8gZGVjb3JhdGUgYSBwYXJhbWV0ZXIiKTtyKGksZSxuKX07cmV0dXJuIGkudG9TdHJpbmc9ZnVuY3Rpb24oKXtyZXR1cm4gZX0sdC5zZXJ2aWNlUmVnaXN0cnkuc2V0KGUsaSksaX19LDI1ODU6KGUsdCxyKT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LklVbmljb2RlU2VydmljZT10LklPcHRpb25zU2VydmljZT10LklMb2dTZXJ2aWNlPXQuTG9nTGV2ZWxFbnVtPXQuSUluc3RhbnRpYXRpb25TZXJ2aWNlPXQuSURpcnR5Um93U2VydmljZT10LklDaGFyc2V0U2VydmljZT10LklDb3JlU2VydmljZT10LklDb3JlTW91c2VTZXJ2aWNlPXQuSUJ1ZmZlclNlcnZpY2U9dm9pZCAwO3ZhciBpLG49cig4MzQzKTt0LklCdWZmZXJTZXJ2aWNlPSgwLG4uY3JlYXRlRGVjb3JhdG9yKSgiQnVmZmVyU2VydmljZSIpLHQuSUNvcmVNb3VzZVNlcnZpY2U9KDAsbi5jcmVhdGVEZWNvcmF0b3IpKCJDb3JlTW91c2VTZXJ2aWNlIiksdC5JQ29yZVNlcnZpY2U9KDAsbi5jcmVhdGVEZWNvcmF0b3IpKCJDb3JlU2VydmljZSIpLHQuSUNoYXJzZXRTZXJ2aWNlPSgwLG4uY3JlYXRlRGVjb3JhdG9yKSgiQ2hhcnNldFNlcnZpY2UiKSx0LklEaXJ0eVJvd1NlcnZpY2U9KDAsbi5jcmVhdGVEZWNvcmF0b3IpKCJEaXJ0eVJvd1NlcnZpY2UiKSx0LklJbnN0YW50aWF0aW9uU2VydmljZT0oMCxuLmNyZWF0ZURlY29yYXRvcikoIkluc3RhbnRpYXRpb25TZXJ2aWNlIiksKGk9dC5Mb2dMZXZlbEVudW18fCh0LkxvZ0xldmVsRW51bT17fSkpW2kuREVCVUc9MF09IkRFQlVHIixpW2kuSU5GTz0xXT0iSU5GTyIsaVtpLldBUk49Ml09IldBUk4iLGlbaS5FUlJPUj0zXT0iRVJST1IiLGlbaS5PRkY9NF09Ik9GRiIsdC5JTG9nU2VydmljZT0oMCxuLmNyZWF0ZURlY29yYXRvcikoIkxvZ1NlcnZpY2UiKSx0LklPcHRpb25zU2VydmljZT0oMCxuLmNyZWF0ZURlY29yYXRvcikoIk9wdGlvbnNTZXJ2aWNlIiksdC5JVW5pY29kZVNlcnZpY2U9KDAsbi5jcmVhdGVEZWNvcmF0b3IpKCJVbmljb2RlU2VydmljZSIpfSwxNDgwOihlLHQscik9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Vbmljb2RlU2VydmljZT12b2lkIDA7dmFyIGk9cig4NDYwKSxuPXIoMjI1KSxvPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZSgpe3RoaXMuX3Byb3ZpZGVycz1PYmplY3QuY3JlYXRlKG51bGwpLHRoaXMuX2FjdGl2ZT0iIix0aGlzLl9vbkNoYW5nZT1uZXcgaS5FdmVudEVtaXR0ZXI7dmFyIGU9bmV3IG4uVW5pY29kZVY2O3RoaXMucmVnaXN0ZXIoZSksdGhpcy5fYWN0aXZlPWUudmVyc2lvbix0aGlzLl9hY3RpdmVQcm92aWRlcj1lfXJldHVybiBPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsIm9uQ2hhbmdlIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uQ2hhbmdlLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwidmVyc2lvbnMiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gT2JqZWN0LmtleXModGhpcy5fcHJvdmlkZXJzKX0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImFjdGl2ZVZlcnNpb24iLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fYWN0aXZlfSxzZXQ6ZnVuY3Rpb24oZSl7aWYoIXRoaXMuX3Byb3ZpZGVyc1tlXSl0aHJvdyBuZXcgRXJyb3IoJ3Vua25vd24gVW5pY29kZSB2ZXJzaW9uICInK2UrJyInKTt0aGlzLl9hY3RpdmU9ZSx0aGlzLl9hY3RpdmVQcm92aWRlcj10aGlzLl9wcm92aWRlcnNbZV0sdGhpcy5fb25DaGFuZ2UuZmlyZShlKX0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxlLnByb3RvdHlwZS5yZWdpc3Rlcj1mdW5jdGlvbihlKXt0aGlzLl9wcm92aWRlcnNbZS52ZXJzaW9uXT1lfSxlLnByb3RvdHlwZS53Y3dpZHRoPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9hY3RpdmVQcm92aWRlci53Y3dpZHRoKGUpfSxlLnByb3RvdHlwZS5nZXRTdHJpbmdDZWxsV2lkdGg9ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PTAscj1lLmxlbmd0aCxpPTA7aTxyOysraSl7dmFyIG49ZS5jaGFyQ29kZUF0KGkpO2lmKDU1Mjk2PD1uJiZuPD01NjMxOSl7aWYoKytpPj1yKXJldHVybiB0K3RoaXMud2N3aWR0aChuKTt2YXIgbz1lLmNoYXJDb2RlQXQoaSk7NTYzMjA8PW8mJm88PTU3MzQzP249MTAyNCoobi01NTI5Nikrby01NjMyMCs2NTUzNjp0Kz10aGlzLndjd2lkdGgobyl9dCs9dGhpcy53Y3dpZHRoKG4pfXJldHVybiB0fSxlfSgpO3QuVW5pY29kZVNlcnZpY2U9b319LHQ9e307ZnVuY3Rpb24gcihpKXt2YXIgbj10W2ldO2lmKHZvaWQgMCE9PW4pcmV0dXJuIG4uZXhwb3J0czt2YXIgbz10W2ldPXtleHBvcnRzOnt9fTtyZXR1cm4gZVtpXS5jYWxsKG8uZXhwb3J0cyxvLG8uZXhwb3J0cyxyKSxvLmV4cG9ydHN9dmFyIGk9e307cmV0dXJuKCgpPT57dmFyIGU9aTtPYmplY3QuZGVmaW5lUHJvcGVydHkoZSwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksZS5UZXJtaW5hbD12b2lkIDA7dmFyIHQ9cigzMjM2KSxuPXIoOTA0Miksbz1yKDc5NzUpLHM9cig3MDkwKSxhPXIoNTc0MSksYz1yKDgyODUpLGw9WyJjb2xzIiwicm93cyJdLHU9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUpe3ZhciByPXRoaXM7dGhpcy5fY29yZT1uZXcgdC5UZXJtaW5hbChlKSx0aGlzLl9hZGRvbk1hbmFnZXI9bmV3IGEuQWRkb25NYW5hZ2VyLHRoaXMuX3B1YmxpY09wdGlvbnM9e307dmFyIGk9ZnVuY3Rpb24oZSl7T2JqZWN0LmRlZmluZVByb3BlcnR5KG4uX3B1YmxpY09wdGlvbnMsZSx7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHIuX2NvcmUub3B0aW9uc1tlXX0sc2V0OmZ1bmN0aW9uKHQpe3IuX2NoZWNrUmVhZG9ubHlPcHRpb25zKGUpLHIuX2NvcmUub3B0aW9uc1tlXT10fX0pfSxuPXRoaXM7Zm9yKHZhciBvIGluIHRoaXMuX2NvcmUub3B0aW9ucylpKG8pfXJldHVybiBlLnByb3RvdHlwZS5fY2hlY2tSZWFkb25seU9wdGlvbnM9ZnVuY3Rpb24oZSl7aWYobC5pbmNsdWRlcyhlKSl0aHJvdyBuZXcgRXJyb3IoJ09wdGlvbiAiJytlKyciIGNhbiBvbmx5IGJlIHNldCBpbiB0aGUgY29uc3RydWN0b3InKX0sZS5wcm90b3R5cGUuX2NoZWNrUHJvcG9zZWRBcGk9ZnVuY3Rpb24oKXtpZighdGhpcy5fY29yZS5vcHRpb25zU2VydmljZS5vcHRpb25zLmFsbG93UHJvcG9zZWRBcGkpdGhyb3cgbmV3IEVycm9yKCJZb3UgbXVzdCBzZXQgdGhlIGFsbG93UHJvcG9zZWRBcGkgb3B0aW9uIHRvIHRydWUgdG8gdXNlIHByb3Bvc2VkIEFQSSIpfSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsIm9uQmVsbCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9jb3JlLm9uQmVsbH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsIm9uQmluYXJ5Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2NvcmUub25CaW5hcnl9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJvbkN1cnNvck1vdmUiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fY29yZS5vbkN1cnNvck1vdmV9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJvbkRhdGEiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fY29yZS5vbkRhdGF9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJvbktleSIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9jb3JlLm9uS2V5fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwib25MaW5lRmVlZCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9jb3JlLm9uTGluZUZlZWR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJvblJlbmRlciIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9jb3JlLm9uUmVuZGVyfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwib25SZXNpemUiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fY29yZS5vblJlc2l6ZX0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsIm9uU2Nyb2xsIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2NvcmUub25TY3JvbGx9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJvblNlbGVjdGlvbkNoYW5nZSIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9jb3JlLm9uU2VsZWN0aW9uQ2hhbmdlfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwib25UaXRsZUNoYW5nZSIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9jb3JlLm9uVGl0bGVDaGFuZ2V9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJlbGVtZW50Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2NvcmUuZWxlbWVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsInBhcnNlciIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9jaGVja1Byb3Bvc2VkQXBpKCksdGhpcy5fcGFyc2VyfHwodGhpcy5fcGFyc2VyPW5ldyBvLlBhcnNlckFwaSh0aGlzLl9jb3JlKSksdGhpcy5fcGFyc2VyfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwidW5pY29kZSIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9jaGVja1Byb3Bvc2VkQXBpKCksbmV3IHMuVW5pY29kZUFwaSh0aGlzLl9jb3JlKX0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsInRleHRhcmVhIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2NvcmUudGV4dGFyZWF9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJyb3dzIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2NvcmUucm93c30sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImNvbHMiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fY29yZS5jb2xzfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwiYnVmZmVyIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2NoZWNrUHJvcG9zZWRBcGkoKSx0aGlzLl9idWZmZXJ8fCh0aGlzLl9idWZmZXI9bmV3IGMuQnVmZmVyTmFtZXNwYWNlQXBpKHRoaXMuX2NvcmUpKSx0aGlzLl9idWZmZXJ9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJtYXJrZXJzIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2NoZWNrUHJvcG9zZWRBcGkoKSx0aGlzLl9jb3JlLm1hcmtlcnN9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJtb2RlcyIse2dldDpmdW5jdGlvbigpe3ZhciBlPXRoaXMuX2NvcmUuY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLHQ9Im5vbmUiO3N3aXRjaCh0aGlzLl9jb3JlLmNvcmVNb3VzZVNlcnZpY2UuYWN0aXZlUHJvdG9jb2wpe2Nhc2UiWDEwIjp0PSJ4MTAiO2JyZWFrO2Nhc2UiVlQyMDAiOnQ9InZ0MjAwIjticmVhaztjYXNlIkRSQUciOnQ9ImRyYWciO2JyZWFrO2Nhc2UiQU5ZIjp0PSJhbnkifXJldHVybnthcHBsaWNhdGlvbkN1cnNvcktleXNNb2RlOmUuYXBwbGljYXRpb25DdXJzb3JLZXlzLGFwcGxpY2F0aW9uS2V5cGFkTW9kZTplLmFwcGxpY2F0aW9uS2V5cGFkLGJyYWNrZXRlZFBhc3RlTW9kZTplLmJyYWNrZXRlZFBhc3RlTW9kZSxpbnNlcnRNb2RlOnRoaXMuX2NvcmUuY29yZVNlcnZpY2UubW9kZXMuaW5zZXJ0TW9kZSxtb3VzZVRyYWNraW5nTW9kZTp0LG9yaWdpbk1vZGU6ZS5vcmlnaW4scmV2ZXJzZVdyYXBhcm91bmRNb2RlOmUucmV2ZXJzZVdyYXBhcm91bmQsc2VuZEZvY3VzTW9kZTplLnNlbmRGb2N1cyx3cmFwYXJvdW5kTW9kZTplLndyYXBhcm91bmR9fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwib3B0aW9ucyIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9wdWJsaWNPcHRpb25zfSxzZXQ6ZnVuY3Rpb24oZSl7Zm9yKHZhciB0IGluIGUpdGhpcy5fcHVibGljT3B0aW9uc1t0XT1lW3RdfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLGUucHJvdG90eXBlLmJsdXI9ZnVuY3Rpb24oKXt0aGlzLl9jb3JlLmJsdXIoKX0sZS5wcm90b3R5cGUuZm9jdXM9ZnVuY3Rpb24oKXt0aGlzLl9jb3JlLmZvY3VzKCl9LGUucHJvdG90eXBlLnJlc2l6ZT1mdW5jdGlvbihlLHQpe3RoaXMuX3ZlcmlmeUludGVnZXJzKGUsdCksdGhpcy5fY29yZS5yZXNpemUoZSx0KX0sZS5wcm90b3R5cGUub3Blbj1mdW5jdGlvbihlKXt0aGlzLl9jb3JlLm9wZW4oZSl9LGUucHJvdG90eXBlLmF0dGFjaEN1c3RvbUtleUV2ZW50SGFuZGxlcj1mdW5jdGlvbihlKXt0aGlzLl9jb3JlLmF0dGFjaEN1c3RvbUtleUV2ZW50SGFuZGxlcihlKX0sZS5wcm90b3R5cGUucmVnaXN0ZXJMaW5rTWF0Y2hlcj1mdW5jdGlvbihlLHQscil7cmV0dXJuIHRoaXMuX2NoZWNrUHJvcG9zZWRBcGkoKSx0aGlzLl9jb3JlLnJlZ2lzdGVyTGlua01hdGNoZXIoZSx0LHIpfSxlLnByb3RvdHlwZS5kZXJlZ2lzdGVyTGlua01hdGNoZXI9ZnVuY3Rpb24oZSl7dGhpcy5fY2hlY2tQcm9wb3NlZEFwaSgpLHRoaXMuX2NvcmUuZGVyZWdpc3RlckxpbmtNYXRjaGVyKGUpfSxlLnByb3RvdHlwZS5yZWdpc3RlckxpbmtQcm92aWRlcj1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fY2hlY2tQcm9wb3NlZEFwaSgpLHRoaXMuX2NvcmUucmVnaXN0ZXJMaW5rUHJvdmlkZXIoZSl9LGUucHJvdG90eXBlLnJlZ2lzdGVyQ2hhcmFjdGVySm9pbmVyPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9jaGVja1Byb3Bvc2VkQXBpKCksdGhpcy5fY29yZS5yZWdpc3RlckNoYXJhY3RlckpvaW5lcihlKX0sZS5wcm90b3R5cGUuZGVyZWdpc3RlckNoYXJhY3RlckpvaW5lcj1mdW5jdGlvbihlKXt0aGlzLl9jaGVja1Byb3Bvc2VkQXBpKCksdGhpcy5fY29yZS5kZXJlZ2lzdGVyQ2hhcmFjdGVySm9pbmVyKGUpfSxlLnByb3RvdHlwZS5yZWdpc3Rlck1hcmtlcj1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fY2hlY2tQcm9wb3NlZEFwaSgpLHRoaXMuX3ZlcmlmeUludGVnZXJzKGUpLHRoaXMuX2NvcmUuYWRkTWFya2VyKGUpfSxlLnByb3RvdHlwZS5hZGRNYXJrZXI9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMucmVnaXN0ZXJNYXJrZXIoZSl9LGUucHJvdG90eXBlLmhhc1NlbGVjdGlvbj1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9jb3JlLmhhc1NlbGVjdGlvbigpfSxlLnByb3RvdHlwZS5zZWxlY3Q9ZnVuY3Rpb24oZSx0LHIpe3RoaXMuX3ZlcmlmeUludGVnZXJzKGUsdCxyKSx0aGlzLl9jb3JlLnNlbGVjdChlLHQscil9LGUucHJvdG90eXBlLmdldFNlbGVjdGlvbj1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9jb3JlLmdldFNlbGVjdGlvbigpfSxlLnByb3RvdHlwZS5nZXRTZWxlY3Rpb25Qb3NpdGlvbj1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9jb3JlLmdldFNlbGVjdGlvblBvc2l0aW9uKCl9LGUucHJvdG90eXBlLmNsZWFyU2VsZWN0aW9uPWZ1bmN0aW9uKCl7dGhpcy5fY29yZS5jbGVhclNlbGVjdGlvbigpfSxlLnByb3RvdHlwZS5zZWxlY3RBbGw9ZnVuY3Rpb24oKXt0aGlzLl9jb3JlLnNlbGVjdEFsbCgpfSxlLnByb3RvdHlwZS5zZWxlY3RMaW5lcz1mdW5jdGlvbihlLHQpe3RoaXMuX3ZlcmlmeUludGVnZXJzKGUsdCksdGhpcy5fY29yZS5zZWxlY3RMaW5lcyhlLHQpfSxlLnByb3RvdHlwZS5kaXNwb3NlPWZ1bmN0aW9uKCl7dGhpcy5fYWRkb25NYW5hZ2VyLmRpc3Bvc2UoKSx0aGlzLl9jb3JlLmRpc3Bvc2UoKX0sZS5wcm90b3R5cGUuc2Nyb2xsTGluZXM9ZnVuY3Rpb24oZSl7dGhpcy5fdmVyaWZ5SW50ZWdlcnMoZSksdGhpcy5fY29yZS5zY3JvbGxMaW5lcyhlKX0sZS5wcm90b3R5cGUuc2Nyb2xsUGFnZXM9ZnVuY3Rpb24oZSl7dGhpcy5fdmVyaWZ5SW50ZWdlcnMoZSksdGhpcy5fY29yZS5zY3JvbGxQYWdlcyhlKX0sZS5wcm90b3R5cGUuc2Nyb2xsVG9Ub3A9ZnVuY3Rpb24oKXt0aGlzLl9jb3JlLnNjcm9sbFRvVG9wKCl9LGUucHJvdG90eXBlLnNjcm9sbFRvQm90dG9tPWZ1bmN0aW9uKCl7dGhpcy5fY29yZS5zY3JvbGxUb0JvdHRvbSgpfSxlLnByb3RvdHlwZS5zY3JvbGxUb0xpbmU9ZnVuY3Rpb24oZSl7dGhpcy5fdmVyaWZ5SW50ZWdlcnMoZSksdGhpcy5fY29yZS5zY3JvbGxUb0xpbmUoZSl9LGUucHJvdG90eXBlLmNsZWFyPWZ1bmN0aW9uKCl7dGhpcy5fY29yZS5jbGVhcigpfSxlLnByb3RvdHlwZS53cml0ZT1mdW5jdGlvbihlLHQpe3RoaXMuX2NvcmUud3JpdGUoZSx0KX0sZS5wcm90b3R5cGUud3JpdGVVdGY4PWZ1bmN0aW9uKGUsdCl7dGhpcy5fY29yZS53cml0ZShlLHQpfSxlLnByb3RvdHlwZS53cml0ZWxuPWZ1bmN0aW9uKGUsdCl7dGhpcy5fY29yZS53cml0ZShlKSx0aGlzLl9jb3JlLndyaXRlKCJcclxuIix0KX0sZS5wcm90b3R5cGUucGFzdGU9ZnVuY3Rpb24oZSl7dGhpcy5fY29yZS5wYXN0ZShlKX0sZS5wcm90b3R5cGUuZ2V0T3B0aW9uPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9jb3JlLm9wdGlvbnNTZXJ2aWNlLmdldE9wdGlvbihlKX0sZS5wcm90b3R5cGUuc2V0T3B0aW9uPWZ1bmN0aW9uKGUsdCl7dGhpcy5fY2hlY2tSZWFkb25seU9wdGlvbnMoZSksdGhpcy5fY29yZS5vcHRpb25zU2VydmljZS5zZXRPcHRpb24oZSx0KX0sZS5wcm90b3R5cGUucmVmcmVzaD1mdW5jdGlvbihlLHQpe3RoaXMuX3ZlcmlmeUludGVnZXJzKGUsdCksdGhpcy5fY29yZS5yZWZyZXNoKGUsdCl9LGUucHJvdG90eXBlLnJlc2V0PWZ1bmN0aW9uKCl7dGhpcy5fY29yZS5yZXNldCgpfSxlLnByb3RvdHlwZS5jbGVhclRleHR1cmVBdGxhcz1mdW5jdGlvbigpe3RoaXMuX2NvcmUuY2xlYXJUZXh0dXJlQXRsYXMoKX0sZS5wcm90b3R5cGUubG9hZEFkZG9uPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9hZGRvbk1hbmFnZXIubG9hZEFkZG9uKHRoaXMsZSl9LE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLCJzdHJpbmdzIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIG59LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksZS5wcm90b3R5cGUuX3ZlcmlmeUludGVnZXJzPWZ1bmN0aW9uKCl7Zm9yKHZhciBlPVtdLHQ9MDt0PGFyZ3VtZW50cy5sZW5ndGg7dCsrKWVbdF09YXJndW1lbnRzW3RdO2Zvcih2YXIgcj0wLGk9ZTtyPGkubGVuZ3RoO3IrKyl7dmFyIG49aVtyXTtpZihuPT09MS8wfHxpc05hTihuKXx8biUxIT0wKXRocm93IG5ldyBFcnJvcigiVGhpcyBBUEkgb25seSBhY2NlcHRzIGludGVnZXJzIil9fSxlfSgpO2UuVGVybWluYWw9dX0pKCksaX0pKCl9fSx0PXt9O2Z1bmN0aW9uIHIoaSl7dmFyIG49dFtpXTtpZih2b2lkIDAhPT1uKXJldHVybiBuLmV4cG9ydHM7dmFyIG89dFtpXT17aWQ6aSxsb2FkZWQ6ITEsZXhwb3J0czp7fX07cmV0dXJuIGVbaV0uY2FsbChvLmV4cG9ydHMsbyxvLmV4cG9ydHMsciksby5sb2FkZWQ9ITAsby5leHBvcnRzfXIubj1lPT57dmFyIHQ9ZSYmZS5fX2VzTW9kdWxlPygpPT5lLmRlZmF1bHQ6KCk9PmU7cmV0dXJuIHIuZCh0LHthOnR9KSx0fSxyLmQ9KGUsdCk9Pntmb3IodmFyIGkgaW4gdClyLm8odCxpKSYmIXIubyhlLGkpJiZPYmplY3QuZGVmaW5lUHJvcGVydHkoZSxpLHtlbnVtZXJhYmxlOiEwLGdldDp0W2ldfSl9LHIuZz1mdW5jdGlvbigpe2lmKCJvYmplY3QiPT10eXBlb2YgZ2xvYmFsVGhpcylyZXR1cm4gZ2xvYmFsVGhpczt0cnl7cmV0dXJuIHRoaXN8fG5ldyBGdW5jdGlvbigicmV0dXJuIHRoaXMiKSgpfWNhdGNoKGUpe2lmKCJvYmplY3QiPT10eXBlb2Ygd2luZG93KXJldHVybiB3aW5kb3d9fSgpLHIubz0oZSx0KT0+T2JqZWN0LnByb3RvdHlwZS5oYXNPd25Qcm9wZXJ0eS5jYWxsKGUsdCksci5ubWQ9ZT0+KGUucGF0aHM9W10sZS5jaGlsZHJlbnx8KGUuY2hpbGRyZW49W10pLGUpLCgoKT0+eyJ1c2Ugc3RyaWN0Ijt2YXIgZT1yKDM3OSksdD1yLm4oZSksaT1yKDc5NSksbj1yLm4oaSksbz1yKDU2OSkscz1yLm4obyksYT1yKDU2NSksYz1yLm4oYSksbD1yKDIxNiksdT1yLm4obCksaD1yKDU4OSksZj1yLm4oaCksXz1yKDEwMiksZD17fTtkLnN0eWxlVGFnVHJhbnNmb3JtPWYoKSxkLnNldEF0dHJpYnV0ZXM9YygpLGQuaW5zZXJ0PXMoKS5iaW5kKG51bGwsImhlYWQiKSxkLmRvbUFQST1uKCksZC5pbnNlcnRTdHlsZUVsZW1lbnQ9dSgpLHQoKShfLlosZCksXy5aJiZfLloubG9jYWxzJiZfLloubG9jYWxzO3ZhciBwPXIoMzIwKSx2PXIoNjE3KSxnPXIoNDg2KSx5PXIubihnKSxtPWZ1bmN0aW9uKGUsdCxyLGkpe3JldHVybiBuZXcocnx8KHI9UHJvbWlzZSkpKChmdW5jdGlvbihuLG8pe2Z1bmN0aW9uIHMoZSl7dHJ5e2MoaS5uZXh0KGUpKX1jYXRjaChlKXtvKGUpfX1mdW5jdGlvbiBhKGUpe3RyeXtjKGkudGhyb3coZSkpfWNhdGNoKGUpe28oZSl9fWZ1bmN0aW9uIGMoZSl7dmFyIHQ7ZS5kb25lP24oZS52YWx1ZSk6KHQ9ZS52YWx1ZSx0IGluc3RhbmNlb2Ygcj90Om5ldyByKChmdW5jdGlvbihlKXtlKHQpfSkpKS50aGVuKHMsYSl9YygoaT1pLmFwcGx5KGUsdHx8W10pKS5uZXh0KCkpfSkpfSxiPWZ1bmN0aW9uKGUsdCl7dmFyIHIsaSxuLG8scz17bGFiZWw6MCxzZW50OmZ1bmN0aW9uKCl7aWYoMSZuWzBdKXRocm93IG5bMV07cmV0dXJuIG5bMV19LHRyeXM6W10sb3BzOltdfTtyZXR1cm4gbz17bmV4dDphKDApLHRocm93OmEoMSkscmV0dXJuOmEoMil9LCJmdW5jdGlvbiI9PXR5cGVvZiBTeW1ib2wmJihvW1N5bWJvbC5pdGVyYXRvcl09ZnVuY3Rpb24oKXtyZXR1cm4gdGhpc30pLG87ZnVuY3Rpb24gYShvKXtyZXR1cm4gZnVuY3Rpb24oYSl7cmV0dXJuIGZ1bmN0aW9uKG8pe2lmKHIpdGhyb3cgbmV3IFR5cGVFcnJvcigiR2VuZXJhdG9yIGlzIGFscmVhZHkgZXhlY3V0aW5nLiIpO2Zvcig7czspdHJ5e2lmKHI9MSxpJiYobj0yJm9bMF0/aS5yZXR1cm46b1swXT9pLnRocm93fHwoKG49aS5yZXR1cm4pJiZuLmNhbGwoaSksMCk6aS5uZXh0KSYmIShuPW4uY2FsbChpLG9bMV0pKS5kb25lKXJldHVybiBuO3N3aXRjaChpPTAsbiYmKG89WzImb1swXSxuLnZhbHVlXSksb1swXSl7Y2FzZSAwOmNhc2UgMTpuPW87YnJlYWs7Y2FzZSA0OnJldHVybiBzLmxhYmVsKysse3ZhbHVlOm9bMV0sZG9uZTohMX07Y2FzZSA1OnMubGFiZWwrKyxpPW9bMV0sbz1bMF07Y29udGludWU7Y2FzZSA3Om89cy5vcHMucG9wKCkscy50cnlzLnBvcCgpO2NvbnRpbnVlO2RlZmF1bHQ6aWYoISgobj0obj1zLnRyeXMpLmxlbmd0aD4wJiZuW24ubGVuZ3RoLTFdKXx8NiE9PW9bMF0mJjIhPT1vWzBdKSl7cz0wO2NvbnRpbnVlfWlmKDM9PT1vWzBdJiYoIW58fG9bMV0+blswXSYmb1sxXTxuWzNdKSl7cy5sYWJlbD1vWzFdO2JyZWFrfWlmKDY9PT1vWzBdJiZzLmxhYmVsPG5bMV0pe3MubGFiZWw9blsxXSxuPW87YnJlYWt9aWYobiYmcy5sYWJlbDxuWzJdKXtzLmxhYmVsPW5bMl0scy5vcHMucHVzaChvKTticmVha31uWzJdJiZzLm9wcy5wb3AoKSxzLnRyeXMucG9wKCk7Y29udGludWV9bz10LmNhbGwoZSxzKX1jYXRjaChlKXtvPVs2LGVdLGk9MH1maW5hbGx5e3I9bj0wfWlmKDUmb1swXSl0aHJvdyBvWzFdO3JldHVybnt2YWx1ZTpvWzBdP29bMV06dm9pZCAwLGRvbmU6ITB9fShbbyxhXSl9fX07d2luZG93Lm9ubG9hZD1mdW5jdGlvbigpe3ZhciBlPW5ldyBwLlRlcm1pbmFsLHQ9bmV3IHYuRml0QWRkb247d2luZG93LnRlcm09ZSx3aW5kb3cuZml0QWRkb249dCxlLmxvYWRBZGRvbih0KSxlLm9wZW4oZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoInRlcm1pbmFsIikpO3ZhciByPWZ1bmN0aW9uKCl7ZS5lbGVtZW50LnBhcmVudEVsZW1lbnQuc3R5bGUuaGVpZ2h0PXdpbmRvdy5pbm5lckhlaWdodC0xNisicHgiLHQuZml0KCksZmV0Y2goIi9yZXNpemU/cm93cz0iK2Uucm93cysiJmNvbHM9IitlLmNvbHMpfTtyKCksd2luZG93Lm9ucmVzaXplPXI7dmFyIGk9W107ZS5vbkRhdGEoKGZ1bmN0aW9uKGUpe2kucHVzaChlKX0pKSxtKHRoaXMsdm9pZCAwLHZvaWQgMCwoZnVuY3Rpb24oKXt2YXIgZSx0LHI7cmV0dXJuIGIodGhpcywoZnVuY3Rpb24obil7c3dpdGNoKG4ubGFiZWwpe2Nhc2UgMDplPWZ1bmN0aW9uKGUpe3JldHVybiBuZXcgUHJvbWlzZSgoZnVuY3Rpb24odCl7cmV0dXJuIHNldFRpbWVvdXQodCxlKX0pKX0sbi5sYWJlbD0xO2Nhc2UgMTpuLnRyeXMucHVzaChbMSwsNyw4XSksbi5sYWJlbD0yO2Nhc2UgMjpyZXR1cm5bNCxlKDEwMCldO2Nhc2UgMzpyZXR1cm4gbi5zZW50KCkseSgpLmlzRW1wdHkoaSk/WzMsNV06KHQ9aS5qb2luKCIiKSxyPXdpbmRvdy5idG9hKHQpLGkubGVuZ3RoPTAsWzQsZmV0Y2goIi9pbi8iK3IpXSk7Y2FzZSA0Om4uc2VudCgpLG4ubGFiZWw9NTtjYXNlIDU6cmV0dXJuWzMsMl07Y2FzZSA2OnJldHVyblszLDhdO2Nhc2UgNzpyZXR1cm4gY29uc29sZS5sb2coImlucHV0IGRpc2Nvbm5lY3QhIiksWzddO2Nhc2UgODpyZXR1cm5bMl19fSkpfSkpLGZ1bmN0aW9uKCl7bSh0aGlzLHZvaWQgMCx2b2lkIDAsKGZ1bmN0aW9uKCl7dmFyIHQscixpO3JldHVybiBiKHRoaXMsKGZ1bmN0aW9uKG4pe3N3aXRjaChuLmxhYmVsKXtjYXNlIDA6bi50cnlzLnB1c2goWzAsLDUsNl0pLG4ubGFiZWw9MTtjYXNlIDE6cmV0dXJuWzQsZmV0Y2goIi9vdXQiKV07Y2FzZSAyOnJldHVybiB0PW4uc2VudCgpLGk9VWludDhBcnJheS5iaW5kLFs0LHQuYXJyYXlCdWZmZXIoKV07Y2FzZSAzOnJldHVybiByPW5ldyhpLmFwcGx5KFVpbnQ4QXJyYXksW3ZvaWQgMCxuLnNlbnQoKV0pKSx0JiZlLndyaXRlKHIpLFszLDFdO2Nhc2UgNDpyZXR1cm5bMyw2XTtjYXNlIDU6cmV0dXJuIGNvbnNvbGUubG9nKCJpbnB1dCBkaXNjb25uZWN0ISIpLFs3XTtjYXNlIDY6cmV0dXJuWzJdfX0pKX0pKX0oKX19KSgpfSkoKTs=", - "headers": [ - [ - "content-length", - "426644" - ], - [ - "content-type", - "text/javascript" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/out": { - "data": "W3N1cGVyZ2F0ZXdheV0gUE9TVCAvbWVzc2FnZSAtPiBTU0UgdHJhbnNwb3J0DQpbc3VwZXJnYXRld2F5XSBTU0UgLT4gQ2hpbGQ6IHsianNvbnJwYyI6IjIuMCIsImlkIjowLCJtZXRob2QiOiJpbml0aWFsaXplIiwicGFyYW1zIjp7InByb3RvY29sVmVyc2lvbiI6IjIwMjQtMTEtMDUiLCJjYXBhYmlsaXRpZXMiOnsicm9vdHMiOnsibGlzdENoYW5nZWQiOnRydWV9fSwiY2xpZW50SW5mbyI6eyJuYW1lIjoibWNwIiwidmVyc2lvbiI6IjAuMS4wIn19fQ0KW3N1cGVyZ2F0ZXdheV0gQ2hpbGQgLT4gU1NFOiB7DQogIHJlc3VsdDogew0KICAgIHByb3RvY29sVmVyc2lvbjogG1szMm0nMjAyNC0xMS0wNScbWzM5bSwNCiAgICBjYXBhYmlsaXRpZXM6IHsgdG9vbHM6IHt9IH0sDQogICAgc2VydmVySW5mbzogeyBuYW1lOiAbWzMybSdzZWN1cmUtZmlsZXN5c3RlbS1zZXJ2ZXInG1szOW0sIHZlcnNpb246IBtbMzJtJzAuMi4wJxtbMzltIH0NCiAgfSwNCiAganNvbnJwYzogG1szMm0nMi4wJxtbMzltLA0KICBpZDogG1szM20wG1szOW0NCn0NCltzdXBlcmdhdGV3YXldIFBPU1QgL21lc3NhZ2UgLT4gU1NFIHRyYW5zcG9ydA0KW3N1cGVyZ2F0ZXdheV0gU1NFIC0+IENoaWxkOiB7Impzb25ycGMiOiIyLjAiLCJtZXRob2QiOiJub3RpZmljYXRpb25zL2luaXRpYWxpemVkIn0NCltzdXBlcmdhdGV3YXldIFBPU1QgL21lc3NhZ2UgLT4gU1NFIHRyYW5zcG9ydA0KW3N1cGVyZ2F0ZXdheV0gU1NFIC0+IENoaWxkOiB7Impzb25ycGMiOiIyLjAiLCJpZCI6MSwibWV0aG9kIjoidG9vbHMvY2FsbCIsInBhcmFtcyI6eyJuYW1lIjoibGlzdF9kaXJlY3RvcnkiLCJhcmd1bWVudHMiOnsic2Vzc2lvbl9pZCI6IjI1ZmU0OWQwLTg4YzAtNGQ3OC05MDFhLWI3YmQyMTBhNGQ1MiIsInBhdGgiOiIvY29udGVudCJ9fX0NCltzdXBlcmdhdGV3YXldIENoaWxkIC0+IFNTRTogeyByZXN1bHQ6IHsgY29udGVudDogWyAbWzM2bVtPYmplY3RdG1szOW0gXSB9LCBqc29ucnBjOiAbWzMybScyLjAnG1szOW0sIGlkOiAbWzMzbTEbWzM5bSB9DQpbc3VwZXJnYXRld2F5XSBTU0UgY29ubmVjdGlvbiBjbG9zZWQuDQo=", - "headers": [ - [ - "content-length", - "1067" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - }, - "https://localhost:10000/resize?rows=46&cols=196": { - "data": "", - "headers": [ - [ - "content-length", - "0" - ], - [ - "content-type", - "text/html; charset=UTF-8" - ] - ], - "ok": true, - "status": 200, - "status_text": "" - } - } - }, - "id": "giIA2M-ANUIM", - "outputId": "612c3487-1fd7-41ab-f65a-690b1325f46d" - }, - "outputs": [], - "source": [ - "# NBVAL_SKIP\n", - "%xterm\n", - "# touch /content/foo\n", - "# echo hello > /content/foo\n", - "# touch /content/bar\n", - "# npx -y supergateway --port 8000 --stdio 'npx -y @modelcontextprotocol/server-filesystem /content'" - ] - }, - { - "cell_type": "markdown", - "id": "f4ksBP6MN7cB", - "metadata": { - "id": "f4ksBP6MN7cB" - }, - "source": [ - "Register the toolgroup hosted in the MCP server with llama stack and verify if the stack discovers the tools correctly" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "DwdKhQb1N295", - "metadata": { - "id": "DwdKhQb1N295" - }, - "outputs": [], - "source": [ - "# NBVAL_SKIP\n", - "from llama_stack_client.types.toolgroup_register_params import McpEndpoint\n", - "client.toolgroups.register(\n", - " toolgroup_id=\"mcp::filesystem\",\n", - " provider_id=\"model-context-protocol\",\n", - " mcp_endpoint=McpEndpoint(uri=\"http://localhost:8000/sse\"),\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "ZZ5_vIkDOyAN", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "ZZ5_vIkDOyAN", - "outputId": "f6fa8639-c2d8-497d-f4ed-716b3bf775d4" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
[\n",
-              "Tool(\n",
-              "│   │   description='Read the complete contents of a file from the file system. Handles various text encodings and provides detailed error messages if the file cannot be read. Use this tool when you need to examine the contents of a single file. Only works within allowed directories.',\n",
-              "│   │   identifier='read_file',\n",
-              "│   │   parameters=[Parameter(description='', name='path', parameter_type='string', required=True, default=None)],\n",
-              "│   │   provider_id='model-context-protocol',\n",
-              "│   │   provider_resource_id='read_file',\n",
-              "│   │   tool_host='model_context_protocol',\n",
-              "│   │   toolgroup_id='mcp::filesystem',\n",
-              "│   │   type='tool',\n",
-              "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
-              "),\n",
-              "Tool(\n",
-              "│   │   description=\"Read the contents of multiple files simultaneously. This is more efficient than reading files one by one when you need to analyze or compare multiple files. Each file's content is returned with its path as a reference. Failed reads for individual files won't stop the entire operation. Only works within allowed directories.\",\n",
-              "│   │   identifier='read_multiple_files',\n",
-              "│   │   parameters=[Parameter(description='', name='paths', parameter_type='array', required=True, default=None)],\n",
-              "│   │   provider_id='model-context-protocol',\n",
-              "│   │   provider_resource_id='read_multiple_files',\n",
-              "│   │   tool_host='model_context_protocol',\n",
-              "│   │   toolgroup_id='mcp::filesystem',\n",
-              "│   │   type='tool',\n",
-              "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
-              "),\n",
-              "Tool(\n",
-              "│   │   description='Create a new file or completely overwrite an existing file with new content. Use with caution as it will overwrite existing files without warning. Handles text content with proper encoding. Only works within allowed directories.',\n",
-              "│   │   identifier='write_file',\n",
-              "│   │   parameters=[\n",
-              "│   │   │   Parameter(description='', name='path', parameter_type='string', required=True, default=None),\n",
-              "│   │   │   Parameter(description='', name='content', parameter_type='string', required=True, default=None)\n",
-              "│   │   ],\n",
-              "│   │   provider_id='model-context-protocol',\n",
-              "│   │   provider_resource_id='write_file',\n",
-              "│   │   tool_host='model_context_protocol',\n",
-              "│   │   toolgroup_id='mcp::filesystem',\n",
-              "│   │   type='tool',\n",
-              "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
-              "),\n",
-              "Tool(\n",
-              "│   │   description='Make line-based edits to a text file. Each edit replaces exact line sequences with new content. Returns a git-style diff showing the changes made. Only works within allowed directories.',\n",
-              "│   │   identifier='edit_file',\n",
-              "│   │   parameters=[\n",
-              "│   │   │   Parameter(description='', name='path', parameter_type='string', required=True, default=None),\n",
-              "│   │   │   Parameter(description='', name='edits', parameter_type='array', required=True, default=None),\n",
-              "│   │   │   Parameter(\n",
-              "│   │   │   │   description='Preview changes using git-style diff format',\n",
-              "│   │   │   │   name='dryRun',\n",
-              "│   │   │   │   parameter_type='boolean',\n",
-              "│   │   │   │   required=True,\n",
-              "│   │   │   │   default=None\n",
-              "│   │   │   )\n",
-              "│   │   ],\n",
-              "│   │   provider_id='model-context-protocol',\n",
-              "│   │   provider_resource_id='edit_file',\n",
-              "│   │   tool_host='model_context_protocol',\n",
-              "│   │   toolgroup_id='mcp::filesystem',\n",
-              "│   │   type='tool',\n",
-              "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
-              "),\n",
-              "Tool(\n",
-              "│   │   description='Create a new directory or ensure a directory exists. Can create multiple nested directories in one operation. If the directory already exists, this operation will succeed silently. Perfect for setting up directory structures for projects or ensuring required paths exist. Only works within allowed directories.',\n",
-              "│   │   identifier='create_directory',\n",
-              "│   │   parameters=[Parameter(description='', name='path', parameter_type='string', required=True, default=None)],\n",
-              "│   │   provider_id='model-context-protocol',\n",
-              "│   │   provider_resource_id='create_directory',\n",
-              "│   │   tool_host='model_context_protocol',\n",
-              "│   │   toolgroup_id='mcp::filesystem',\n",
-              "│   │   type='tool',\n",
-              "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
-              "),\n",
-              "Tool(\n",
-              "│   │   description='Get a detailed listing of all files and directories in a specified path. Results clearly distinguish between files and directories with [FILE] and [DIR] prefixes. This tool is essential for understanding directory structure and finding specific files within a directory. Only works within allowed directories.',\n",
-              "│   │   identifier='list_directory',\n",
-              "│   │   parameters=[Parameter(description='', name='path', parameter_type='string', required=True, default=None)],\n",
-              "│   │   provider_id='model-context-protocol',\n",
-              "│   │   provider_resource_id='list_directory',\n",
-              "│   │   tool_host='model_context_protocol',\n",
-              "│   │   toolgroup_id='mcp::filesystem',\n",
-              "│   │   type='tool',\n",
-              "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
-              "),\n",
-              "Tool(\n",
-              "│   │   description=\"Get a recursive tree view of files and directories as a JSON structure. Each entry includes 'name', 'type' (file/directory), and 'children' for directories. Files have no children array, while directories always have a children array (which may be empty). The output is formatted with 2-space indentation for readability. Only works within allowed directories.\",\n",
-              "│   │   identifier='directory_tree',\n",
-              "│   │   parameters=[Parameter(description='', name='path', parameter_type='string', required=True, default=None)],\n",
-              "│   │   provider_id='model-context-protocol',\n",
-              "│   │   provider_resource_id='directory_tree',\n",
-              "│   │   tool_host='model_context_protocol',\n",
-              "│   │   toolgroup_id='mcp::filesystem',\n",
-              "│   │   type='tool',\n",
-              "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
-              "),\n",
-              "Tool(\n",
-              "│   │   description='Move or rename files and directories. Can move files between directories and rename them in a single operation. If the destination exists, the operation will fail. Works across different directories and can be used for simple renaming within the same directory. Both source and destination must be within allowed directories.',\n",
-              "│   │   identifier='move_file',\n",
-              "│   │   parameters=[\n",
-              "│   │   │   Parameter(description='', name='source', parameter_type='string', required=True, default=None),\n",
-              "│   │   │   Parameter(description='', name='destination', parameter_type='string', required=True, default=None)\n",
-              "│   │   ],\n",
-              "│   │   provider_id='model-context-protocol',\n",
-              "│   │   provider_resource_id='move_file',\n",
-              "│   │   tool_host='model_context_protocol',\n",
-              "│   │   toolgroup_id='mcp::filesystem',\n",
-              "│   │   type='tool',\n",
-              "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
-              "),\n",
-              "Tool(\n",
-              "│   │   description=\"Recursively search for files and directories matching a pattern. Searches through all subdirectories from the starting path. The search is case-insensitive and matches partial names. Returns full paths to all matching items. Great for finding files when you don't know their exact location. Only searches within allowed directories.\",\n",
-              "│   │   identifier='search_files',\n",
-              "│   │   parameters=[\n",
-              "│   │   │   Parameter(description='', name='path', parameter_type='string', required=True, default=None),\n",
-              "│   │   │   Parameter(description='', name='pattern', parameter_type='string', required=True, default=None),\n",
-              "│   │   │   Parameter(\n",
-              "│   │   │   │   description='',\n",
-              "│   │   │   │   name='excludePatterns',\n",
-              "│   │   │   │   parameter_type='array',\n",
-              "│   │   │   │   required=True,\n",
-              "│   │   │   │   default=None\n",
-              "│   │   │   )\n",
-              "│   │   ],\n",
-              "│   │   provider_id='model-context-protocol',\n",
-              "│   │   provider_resource_id='search_files',\n",
-              "│   │   tool_host='model_context_protocol',\n",
-              "│   │   toolgroup_id='mcp::filesystem',\n",
-              "│   │   type='tool',\n",
-              "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
-              "),\n",
-              "Tool(\n",
-              "│   │   description='Retrieve detailed metadata about a file or directory. Returns comprehensive information including size, creation time, last modified time, permissions, and type. This tool is perfect for understanding file characteristics without reading the actual content. Only works within allowed directories.',\n",
-              "│   │   identifier='get_file_info',\n",
-              "│   │   parameters=[Parameter(description='', name='path', parameter_type='string', required=True, default=None)],\n",
-              "│   │   provider_id='model-context-protocol',\n",
-              "│   │   provider_resource_id='get_file_info',\n",
-              "│   │   tool_host='model_context_protocol',\n",
-              "│   │   toolgroup_id='mcp::filesystem',\n",
-              "│   │   type='tool',\n",
-              "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
-              "),\n",
-              "Tool(\n",
-              "│   │   description='Returns the list of directories that this server is allowed to access. Use this to understand which directories are available before trying to access files.',\n",
-              "│   │   identifier='list_allowed_directories',\n",
-              "│   │   parameters=[],\n",
-              "│   │   provider_id='model-context-protocol',\n",
-              "│   │   provider_resource_id='list_allowed_directories',\n",
-              "│   │   tool_host='model_context_protocol',\n",
-              "│   │   toolgroup_id='mcp::filesystem',\n",
-              "│   │   type='tool',\n",
-              "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
-              ")\n",
-              "]\n",
-              "
\n" - ], - "text/plain": [ - "\u001b[1m[\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Read the complete contents of a file from the file system. Handles various text encodings and provides detailed error messages if the file cannot be read. Use this tool when you need to examine the contents of a single file. Only works within allowed directories.'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'read_file'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'path'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\u001b[1m]\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'read_file'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m\"Read\u001b[0m\u001b[32m the contents of multiple files simultaneously. This is more efficient than reading files one by one when you need to analyze or compare multiple files. Each file's content is returned with its path as a reference. Failed reads for individual files won't stop the entire operation. Only works within allowed directories.\"\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'read_multiple_files'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'paths'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'array'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\u001b[1m]\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'read_multiple_files'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Create a new file or completely overwrite an existing file with new content. Use with caution as it will overwrite existing files without warning. Handles text content with proper encoding. Only works within allowed directories.'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'write_file'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'path'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m,\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'content'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m]\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'write_file'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Make line-based edits to a text file. Each edit replaces exact line sequences with new content. Returns a git-style diff showing the changes made. Only works within allowed directories.'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'edit_file'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'path'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m,\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'edits'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'array'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m,\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Preview changes using git-style diff format'\u001b[0m,\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mname\u001b[0m=\u001b[32m'dryRun'\u001b[0m,\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mparameter_type\u001b[0m=\u001b[32m'boolean'\u001b[0m,\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m,\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[1m)\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m]\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'edit_file'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Create a new directory or ensure a directory exists. Can create multiple nested directories in one operation. If the directory already exists, this operation will succeed silently. Perfect for setting up directory structures for projects or ensuring required paths exist. Only works within allowed directories.'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'create_directory'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'path'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\u001b[1m]\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'create_directory'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Get a detailed listing of all files and directories in a specified path. Results clearly distinguish between files and directories with \u001b[0m\u001b[32m[\u001b[0m\u001b[32mFILE\u001b[0m\u001b[32m]\u001b[0m\u001b[32m and \u001b[0m\u001b[32m[\u001b[0m\u001b[32mDIR\u001b[0m\u001b[32m]\u001b[0m\u001b[32m prefixes. This tool is essential for understanding directory structure and finding specific files within a directory. Only works within allowed directories.'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'list_directory'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'path'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\u001b[1m]\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'list_directory'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m\"Get\u001b[0m\u001b[32m a recursive tree view of files and directories as a JSON structure. Each entry includes 'name', 'type' \u001b[0m\u001b[32m(\u001b[0m\u001b[32mfile/directory\u001b[0m\u001b[32m)\u001b[0m\u001b[32m, and 'children' for directories. Files have no children array, while directories always have a children array \u001b[0m\u001b[32m(\u001b[0m\u001b[32mwhich may be empty\u001b[0m\u001b[32m)\u001b[0m\u001b[32m. The output is formatted with 2-space indentation for readability. Only works within allowed directories.\"\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'directory_tree'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'path'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\u001b[1m]\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'directory_tree'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Move or rename files and directories. Can move files between directories and rename them in a single operation. If the destination exists, the operation will fail. Works across different directories and can be used for simple renaming within the same directory. Both source and destination must be within allowed directories.'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'move_file'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'source'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m,\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'destination'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m]\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'move_file'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m\"Recursively\u001b[0m\u001b[32m search for files and directories matching a pattern. Searches through all subdirectories from the starting path. The search is case-insensitive and matches partial names. Returns full paths to all matching items. Great for finding files when you don't know their exact location. Only searches within allowed directories.\"\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'search_files'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'path'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m,\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'pattern'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m,\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m,\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mname\u001b[0m=\u001b[32m'excludePatterns'\u001b[0m,\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mparameter_type\u001b[0m=\u001b[32m'array'\u001b[0m,\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m,\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[1m)\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m]\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'search_files'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Retrieve detailed metadata about a file or directory. Returns comprehensive information including size, creation time, last modified time, permissions, and type. This tool is perfect for understanding file characteristics without reading the actual content. Only works within allowed directories.'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'get_file_info'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'path'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\u001b[1m]\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'get_file_info'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Returns the list of directories that this server is allowed to access. Use this to understand which directories are available before trying to access files.'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'list_allowed_directories'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\u001b[1m]\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'list_allowed_directories'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m\n", - "\u001b[1m]\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pprint(client.tools.list(toolgroup_id=\"mcp::filesystem\"))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "vttLbj_YO01f", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "vttLbj_YO01f", - "outputId": "04bc486c-3a61-49c6-d0d2-4a211d6de0b5" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[32mUser> Hello\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33m[list\u001b[0m\u001b[33m_allowed\u001b[0m\u001b[33m_direct\u001b[0m\u001b[33mories\u001b[0m\u001b[33m()]\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[32mtool_execution> Tool:list_allowed_directories Args:{}\u001b[0m\n", - "\u001b[32mtool_execution> Tool:list_allowed_directories Response:{\"type\":\"text\",\"text\":\"Allowed directories:\\n/tmp/content\",\"annotations\":null}\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33m[list\u001b[0m\u001b[33m_directory\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[32mtool_execution> Tool:list_directory Args:{'path': '/tmp/content'}\u001b[0m\n", - "\u001b[32mtool_execution> Tool:list_directory Response:{\"type\":\"text\",\"text\":\"Error: Parent directory does not exist: /tmp\",\"annotations\":null}\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33m[\u001b[0m\u001b[33mcreate\u001b[0m\u001b[33m_directory\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[32mtool_execution> Tool:create_directory Args:{'path': '/tmp/content'}\u001b[0m\n", - "\u001b[32mtool_execution> Tool:create_directory Response:{\"type\":\"text\",\"text\":\"Error: Parent directory does not exist: /tmp\",\"annotations\":null}\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33m[\u001b[0m\u001b[33mcreate\u001b[0m\u001b[33m_directory\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m\"),\u001b[0m\u001b[33m create\u001b[0m\u001b[33m_directory\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[32mtool_execution> Tool:create_directory Args:{'path': '/tmp'}\u001b[0m\n", - "\u001b[32mtool_execution> Tool:create_directory Response:{\"type\":\"text\",\"text\":\"Error: Access denied - path outside allowed directories: /tmp not in /tmp/content\",\"annotations\":null}\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33m[list\u001b[0m\u001b[33m_allowed\u001b[0m\u001b[33m_direct\u001b[0m\u001b[33mories\u001b[0m\u001b[33m()]\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[32mtool_execution> Tool:list_allowed_directories Args:{}\u001b[0m\n", - "\u001b[32mtool_execution> Tool:list_allowed_directories Response:{\"type\":\"text\",\"text\":\"Allowed directories:\\n/tmp/content\",\"annotations\":null}\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33m[\u001b[0m\u001b[33mcreate\u001b[0m\u001b[33m_directory\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m/sub\u001b[0m\u001b[33mdir\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[32mtool_execution> Tool:create_directory Args:{'path': '/tmp/content/subdir'}\u001b[0m\n", - "\u001b[32mtool_execution> Tool:create_directory Response:{\"type\":\"text\",\"text\":\"Error: Parent directory does not exist: /tmp/content\",\"annotations\":null}\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33m[\u001b[0m\u001b[33mcreate\u001b[0m\u001b[33m_directory\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[32mtool_execution> Tool:create_directory Args:{'path': '/tmp/content'}\u001b[0m\n", - "\u001b[32mtool_execution> Tool:create_directory Response:{\"type\":\"text\",\"text\":\"Error: Parent directory does not exist: /tmp\",\"annotations\":null}\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33m[list\u001b[0m\u001b[33m_directory\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[32mtool_execution> Tool:list_directory Args:{'path': '/tmp/content'}\u001b[0m\n", - "\u001b[32mtool_execution> Tool:list_directory Response:{\"type\":\"text\",\"text\":\"Error: Parent directory does not exist: /tmp\",\"annotations\":null}\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33m[\u001b[0m\u001b[33mcreate\u001b[0m\u001b[33m_directory\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[32mtool_execution> Tool:create_directory Args:{'path': '/tmp/content'}\u001b[0m\n", - "\u001b[32mtool_execution> Tool:create_directory Response:{\"type\":\"text\",\"text\":\"Error: Parent directory does not exist: /tmp\",\"annotations\":null}\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33m[list\u001b[0m\u001b[33m_allowed\u001b[0m\u001b[33m_direct\u001b[0m\u001b[33mories\u001b[0m\u001b[33m()]\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[30m\u001b[0m\u001b[32mUser> Whats written in /tmp/content/foo ?\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33m[\u001b[0m\u001b[33mread\u001b[0m\u001b[33m_file\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m/foo\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[32mtool_execution> Tool:read_file Args:{'path': '/tmp/content/foo'}\u001b[0m\n", - "\u001b[32mtool_execution> Tool:read_file Response:{\"type\":\"text\",\"text\":\"Error: Parent directory does not exist: /tmp/content\",\"annotations\":null}\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33m[\u001b[0m\u001b[33mcreate\u001b[0m\u001b[33m_directory\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[32mtool_execution> Tool:create_directory Args:{'path': '/tmp/content'}\u001b[0m\n", - "\u001b[32mtool_execution> Tool:create_directory Response:{\"type\":\"text\",\"text\":\"Error: Parent directory does not exist: /tmp\",\"annotations\":null}\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33m[\u001b[0m\u001b[33mwrite\u001b[0m\u001b[33m_file\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m/foo\u001b[0m\u001b[33m\",\u001b[0m\u001b[33m content\u001b[0m\u001b[33m=\"\u001b[0m\u001b[33mHello\u001b[0m\u001b[33m World\u001b[0m\u001b[33m!\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[32mtool_execution> Tool:write_file Args:{'path': '/tmp/content/foo', 'content': 'Hello World!'}\u001b[0m\n", - "\u001b[32mtool_execution> Tool:write_file Response:{\"type\":\"text\",\"text\":\"Error: Parent directory does not exist: /tmp/content\",\"annotations\":null}\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[31m500: Internal server error: An unexpected error occurred.\u001b[0m\n" - ] - } - ], - "source": [ - "# NBVAL_SKIP\n", - "from llama_stack_client import Agent, AgentEventLogger\n", - "from termcolor import cprint\n", - "\n", - "agent = Agent(\n", - " client,\n", - " model=model_id,\n", - " instructions=\"You are a helpful assistant\",\n", - " tools=[\"mcp::filesystem\"],\n", - ")\n", - "user_prompts = [\n", - " \"Hello\",\n", - " \"Whats written in /content/foo ?\",\n", - "]\n", - "\n", - "session_id = agent.create_session(\"test-session\")\n", - "for prompt in user_prompts:\n", - " cprint(f\"User> {prompt}\", \"green\")\n", - " response = agent.create_turn(\n", - " messages=[\n", - " {\n", - " \"role\": \"user\",\n", - " \"content\": prompt,\n", - " }\n", - " ],\n", - " session_id=session_id,\n", - " )\n", - " for log in AgentEventLogger().log(response):\n", - " log.print()\n" - ] - }, - { - "cell_type": "markdown", - "id": "FJ85DUhgBZd7", - "metadata": { - "id": "FJ85DUhgBZd7" - }, - "source": [ - "## 3. Llama Stack Agent Evaluations\n" - ] - }, - { - "cell_type": "markdown", - "id": "ydeBDpDT5VHd", - "metadata": { - "id": "ydeBDpDT5VHd" - }, - "source": [ - "#### 3.1. Online Evaluation Dataset Collection\n", - "\n", - "- Llama Stack allows you to query each steps of the agents execution in your application. \n", - "- In this example, we will show how to \n", - " 1. build an Agent with Llama Stack\n", - " 2. Query the agent's session, turns, and steps\n", - " 3. Evaluate the results" - ] - }, - { - "cell_type": "markdown", - "id": "_t_tcWq0JcJ4", - "metadata": { - "id": "_t_tcWq0JcJ4" - }, - "source": [ - "##### 3.1.1. Building a Search Agent\n", - "\n", - "First, let's build an agent that have access to a search tool with Llama Stack, and use it to run some user queries. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "4iCO59kP20Zs", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "4iCO59kP20Zs", - "outputId": "894c6333-30e9-4f1e-9b63-1bfb1cae51e2" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33minference> \u001b[0m\u001b[36m\u001b[0m\u001b[36mbr\u001b[0m\u001b[36mave\u001b[0m\u001b[36m_search\u001b[0m\u001b[36m.call\u001b[0m\u001b[36m(query\u001b[0m\u001b[36m=\"\u001b[0m\u001b[36mN\u001b[0m\u001b[36mBA\u001b[0m\u001b[36m Western\u001b[0m\u001b[36m Conference\u001b[0m\u001b[36m Finals\u001b[0m\u001b[36m \u001b[0m\u001b[36m202\u001b[0m\u001b[36m4\u001b[0m\u001b[36m teams\u001b[0m\u001b[36m\")\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[32mtool_execution> Tool:brave_search Args:{'query': 'NBA Western Conference Finals 2024 teams'}\u001b[0m\n", - "\u001b[32mtool_execution> Tool:brave_search Response:{\"query\": \"NBA Western Conference Finals 2024 teams\", \"top_k\": [{\"title\": \"2024 NBA Western Conference Finals - Basketball-Reference.com\", \"url\": \"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\", \"content\": \"2024 NBA Playoffs Dallas Mavericks vs. Dallas Mavericks vs. Dallas Mavericks vs. 5 Dallas Mavericks (4-1) vs. 7 Derrick Jones Jr. 2024 NBA Playoffs Dallas Mavericks vs. Dallas Mavericks vs. Dallas Mavericks vs. College Tools: Player Season Finder, Player Game Finder, Team Season Finder, Team Game Finder Players, Teams, Seasons, Leaders, Awards ... Players, Teams, Seasons, Leaders, Awards ... Players, Teams, Seasons, Leaders, Awards, All-Star Games, Executives ... Players, Teams, Seasons, Leaders, Awards ... Subscribe to Stathead Basketball: Get your first month FREE The SPORTS REFERENCE, STATHEAD, IMMACULATE GRID, and IMMACULATE FOOTY trademarks are owned exclusively by Sports Reference LLC. Sports\\u00a0Reference\\u202f\\u00ae Baseball Football (college) Basketball (college) Hockey F\\u00fatbol Blog Stathead\\u202f\\u00ae Immaculate Grid\\u202f\\u00ae\", \"score\": 0.89030397, \"raw_content\": null}, {\"title\": \"NBA Standings - 2024-25 season - ESPN\", \"url\": \"https://www.espn.com/nba/standings\", \"content\": \"NBA Standings - 2024-25 season - ESPN Skip to main contentSkip to navigation ESPN NFL NBA NCAAF NHL NCAAM NCAAW Soccer More Sports Watch Fantasy NBA Home Scores Schedule Standings Stats Teams Odds Where To Watch All-Star Game Fantasy More NBA Standings 2024-25 Standings Expanded Vs. Division NBA Cup LeagueConferenceDivision Eastern Conference | | | --- | | 1CLECleveland Cavaliers | | 2BOSBoston Celtics | | 3NYNew York Knicks | | 4INDIndiana Pacers | | 5MILMilwaukee Bucks | | 6DETDetroit Pistons | | 7MIAMiami Heat | | 8ORLOrlando Magic | | 9ATLAtlanta Hawks | | 10CHIChicago Bulls | | PHIPhiladelphia 76ers | | BKNBrooklyn Nets | | TORToronto Raptors | | CHACharlotte Hornets | | WSHWashington Wizards | | W | L | PCT | GB | HOME | AWAY | DIV | CONF | PPG | OPP PPG | DIFF | STRK | L10 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | 42 | 10 | .808 | - | 24-4 | 18-6 | 9-1 | 28-7 | 122.4 | 112.1 | +10.3 | W2 | 6-4 | | 36 | 16 | .692 | 6 | 16-10 | 20-6 | 6-2 | 26-9 | 117.3 | 108.8 | +8.5 | L1 | 7-3 | | 34 | 17 | .667 | 7.5 | 18-9 | 16-8 | 9-1 | 23-10 | 117.9 | 111.4 | +6.5 | W2 | 8-2 | | 29 | 21 | .580 | 12 | 14-7 | 14-13 | 6-4 | 17-15 | 115.7 | 114.9 | +0.8 | W1 | 7-3 | | 27 | 23 | .540 | 14 | 16-8 | 10-15 | 6-5 | 22-16 | 114.2 | 112.6 | +1.6 | L1 | 4-6 | | 26 | 26 | .500 | 16 | 13-13 | 13-13 | 2-9 | 18-20 | 113.0 | 113.8 | -0.8 | W1 | 5-5 | | 25 | 25 | .500 | 16 | 12-10 | 12-15 | 5-3 | 14-15 | 110.5 | 110.6 | -0.1 | L1 | 5-5 | | 25 | 28 | .472 | 17.5 | 15-9 | 10-19 | 5-2 | 20-15 | 103.8 | 105.6 | -1.8 | L1 | 2-8 | | 24 | 28 | .462 | 18 | 12-12 | 12-15 | 4-2 | 17-13 | 116.1 | 119.0 | -2.9 | W1 | 2-8 | | 22 | 30 | .423 | 20 | 10-16 | 12-14 | 3-7 | 17-18 | 116.7 | 120.1 | -3.4 | L1 | 4-6 | | 20 | 31 | .392 | 21.5 | 10-16 | 10-15 | 3-4 | 14-17 | 109.1 | 112.9 | -3.8 | L2 | 5-5 | | 18 | 34 | .346 | 24 | 7-17 | 11-17 | 1-8 | 9-23 | 105.3 | 111.7 | -6.4 | W1 | 4-6 | | 16 | 36 | .308 | 26 | 12-16 | 4-20 | 3-7 | 10-23 | 111.2 | 116.9 | -5.7 | L3 | 6-4 | | 13 | 36 | .265 | 27.5 | 9-20 | 4-16 | 0-9 | 7-27 | 107.1 | 112.3 | -5.2 | W1 | 2-8 | | 9 | 42 | .176 | 32.5 | 5-20 | 4-21 | 5-3 | 7-21 | 107.8 | 121.5 | -13.7 | L1 | 3-7 | Western Conference | | | --- | | 1OKCOklahoma City Thunder | | 2MEMMemphis Grizzlies | | 3DENDenver Nuggets | | 4HOUHouston Rockets | | 5LALLos Angeles Lakers | | 6MINMinnesota Timberwolves | | 7LACLA Clippers | | 8DALDallas Mavericks | | 9PHXPhoenix Suns | | 10SACSacramento Kings | | GSGolden State Warriors | | SASan Antonio Spurs | | PORPortland Trail Blazers | | UTAHUtah Jazz | | NONew Orleans Pelicans | | W | L | PCT | GB | HOME | AWAY | DIV | CONF | PPG | OPP PPG | DIFF | STRK | L10 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | 41 | 9 | .820 | - | 23-3 | 17-6 | 7-1 | 23-8 | 117.7 | 104.7 | +13.0 | W4 | 7-3 | | 35 | 16 | .686 | 6.5 | 21-5 | 14-11 | 8-4 | 19-12 | 123.8 | 115.4 | +8.4 | W4 | 9-1 | | 33 | 19 | .635 | 9 | 17-8 | 16-11 | 4-4 | 19-12 | 120.8 | 115.9 | +4.9 | W5 | 7-3 | | 32 | 20 | .615 | 10 | 15-8 | 17-11 | 9-3 | 19-12 | 113.3 | 109.1 | +4.2 | L6 | 4-6 | | 30 | 19 | .612 | 10.5 | 17-6 | 13-13 | 9-3 | 19-11 | 112.6 | 112.0 | +0.6 | W4 | 8-2 | | 29 | 23 | .558 | 13 | 14-12 | 15-11 | 4-3 | 21-14 | 111.7 | 108.2 | +3.5 | W2 | 7-3 | | 28 | 23 | .549 | 13.5 | 17-10 | 11-13 | 6-4 | 17-18 | 110.1 | 107.7 | +2.4 | L3 | 4-6 | | 28 | 25 | .528 | 14.5 | 15-10 | 13-15 | 6-4 | 20-17 | 115.5 | 113.3 | +2.2 | W2 | 5-5 | | 26 | 25 | .510 | 15.5 | 16-9 | 10-16 | 7-4 | 17-14 | 113.4 | 114.7 | -1.3 | W1 | 5-5 | | 25 | 26 | .490 | 16.5 | 13-13 | 12-13 | 4-6 | 16-17 | 116.1 | 115.4 | +0.7 | L2 | 4-6 | | 25 | 26 | .490 | 16.5 | 15-13 | 10-13 | 1-10 | 17-18 | 111.5 | 111.9 | -0.4 | L2 | 4-6 | | 22 | 27 | .449 | 18.5 | 13-12 | 8-14 | 2-7 | 16-18 | 112.8 | 114.3 | -1.5 | L1 | 3-7 | | 23 | 29 | .442 | 19 | 15-13 | 8-16 | 4-5 | 14-24 | 109.0 | 113.9 | -4.9 | W6 | 9-1 | | 12 | 38 | .240 | 29 | 5-18 | 7-20 | 1-7 | 4-29 | 111.9 | 118.9 | -7.0 | L1 | 2-8 | | 12 | 39 | .235 | 29.5 | 8-18 | 4-21 | 1-8 | 6-23 | 110.0 | 118.8 | -8.8 | L7 | 3-7 | Standings are updated with the completion of each game.Teams seeded 7-10 in each conference will compete in a play-in tournament at the end of the regular season. Glossary W:Wins L:Losses PCT:Winning Percentage GB:Games Back HOME:Home Record AWAY:Away Record DIV:Division Record CONF:Conference Record PPG:Points Per Game OPP PPG:Opponent Points Per Game DIFF:Average Point Differential STRK:Current Streak L10:Record last 10 games NBA News Anthony Davis leads Mavericks past Rockets 116-105 in Mavs debut but leaves with lower-body injury -------------------------------------------------------------------------------------------------- \\u2014 Anthony Davis had 26 points, 16 rebounds, seven assists and three blocks in his Mavericks debut but left the game late in the third quarter with a... * 38m Hawks request waivers on newly acquired Bones Hyland ---------------------------------------------------- The Atlanta Hawks requested waivers on guard Bones Hyland on Saturday, just two days after the guard was obtained from the Clippers in a deal at the NBA trade deadline. * 1h AD posts 26-point double-double in debut before suffering injury ---------------------------------------------------------------- Anthony Davis has a strong debut with the Mavs, dropping 26 points, 16 rebounds and 7 assists, before leaving with a lower-body injury. * 1h All NBA News Terms of Use Privacy Policy Your US State Privacy Rights Children's Online Privacy Policy Interest-Based Ads About Nielsen Measurement Do Not Sell or Share My Personal Information Contact Us Disney Ad Sales Site Work for ESPN Corrections ESPN BET Sportsbook is owned and operated by PENN Entertainment, Inc. and its subsidiaries ('PENN').\", \"score\": 0.83549726, \"raw_content\": null}, {\"title\": \"2024 Playoffs: West Finals | Timberwolves (3) vs. Mavericks (5) | NBA.com\", \"url\": \"https://www.nba.com/playoffs/2024/west-final\", \"content\": \"Mavericks (5) | NBA.com 2024-25 NBA CrunchTime NBA TV Draft Kings DFS NBA Bet Home NBA Store NBA Game Worn NBA Photo Store NBA Experiences NBA G League NBA 2K League NBA Play NBA Bet ### Doncic, Irving carry Mavs to NBA Finals Luka Doncic and Kyrie Irving pour in 36 points apiece to guide Dallas to its 1st appearance in the NBA Finals since 2011. ### Luka: 'This is special, coming from the West' Luka Doncic with Ernie, Charles, Kenny & Shaq about the Mavs being NBA Finals-bound, his Game 5 play and more. NBA Organization NBA ID NBA Official NBA Careers NBA Initiatives NBA Cares NBA Foundation NBA Communications NBA Transactions NBA Auctions NBA Photostore\", \"score\": 0.75312227, \"raw_content\": null}, {\"title\": \"2024 NBA Playoffs | Official Bracket, Schedule and Series Matchups\", \"url\": \"https://www.nba.com/playoffs/2024?os=wtmbloozowcj&ref=app\", \"content\": \"Draft Kings DFS NBA Store NBA Play NBA Finals ### Chasing History: Celtics clinch banner 18 (Ep. 25) Jayson Tatum and Finals MVP Jaylen Brown close out Dallas in Game 5 to secure Boston's NBA-record 18th championship. WE DID ITTTT!' Jayson Tatum walkoff interview after Celtics defeat Mavericks in Game 5 of 2024 NBA Finals, clinching title with a 4-1 series win. ### Horford finally champ after key sacrifice Al Horford, who played the most playoff games in NBA history before winning his 1st title, crosses the plateau in his 17th season. 30:13 ### Best of the 2024 NBA Finals 17:47 ### Best of Boston Celtics from the 2024 NBA Finals\", \"score\": 0.63234437, \"raw_content\": null}, {\"title\": \"2025 NBA Playoffs: Standings, bracket and clinching updates\", \"url\": \"https://www.nba.com/news/2025-nba-playoffs-standings-and-bracket-updates\", \"content\": \"NBA TV NBA Play NBA Store NBA Game Worn NBA Play NBA Official NBA Playoffs bracket ### What to know about 2025 SoFi NBA Play-In Tournament The SoFi NBA Play-In Tournament features the Nos. 7-10 teams in each conference battling for the 7th and 8th playoff seeds. Click \\\"Access Content\\\" to agree to our Terms of Use and Privacy Policy and to sign up for emails about the latest news and products from the NBA Family and its partners. #### What to know about 2025 SoFi NBA Play-In Tournament The SoFi NBA Play-In Tournament features the Nos. 7-10 teams in each conference battling for the 7th and 8th playoff seeds. NBA ID NBA Official NBA Transactions NBA Auctions\", \"score\": 0.13435538, \"raw_content\": null}]}\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33mThe\u001b[0m\u001b[33m teams\u001b[0m\u001b[33m that\u001b[0m\u001b[33m played\u001b[0m\u001b[33m in\u001b[0m\u001b[33m the\u001b[0m\u001b[33m NBA\u001b[0m\u001b[33m Western\u001b[0m\u001b[33m Conference\u001b[0m\u001b[33m Finals\u001b[0m\u001b[33m of\u001b[0m\u001b[33m \u001b[0m\u001b[33m202\u001b[0m\u001b[33m4\u001b[0m\u001b[33m were\u001b[0m\u001b[33m the\u001b[0m\u001b[33m Dallas\u001b[0m\u001b[33m Mavericks\u001b[0m\u001b[33m and\u001b[0m\u001b[33m the\u001b[0m\u001b[33m Minnesota\u001b[0m\u001b[33m Timber\u001b[0m\u001b[33mw\u001b[0m\u001b[33molves\u001b[0m\u001b[33m.\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[30m\u001b[0m\u001b[33minference> \u001b[0m\u001b[36m\u001b[0m\u001b[36mbr\u001b[0m\u001b[36mave\u001b[0m\u001b[36m_search\u001b[0m\u001b[36m.call\u001b[0m\u001b[36m(query\u001b[0m\u001b[36m=\"\u001b[0m\u001b[36mSouth\u001b[0m\u001b[36m Park\u001b[0m\u001b[36m Bill\u001b[0m\u001b[36m Cosby\u001b[0m\u001b[36m episode\u001b[0m\u001b[36m season\u001b[0m\u001b[36m\")\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[32mtool_execution> Tool:brave_search Args:{'query': 'South Park Bill Cosby episode season'}\u001b[0m\n", - "\u001b[32mtool_execution> Tool:brave_search Response:{\"query\": \"South Park Bill Cosby episode season\", \"top_k\": [{\"title\": \"Bill Cosby | South Park Archives | Fandom\", \"url\": \"https://southpark.fandom.com/wiki/Bill_Cosby\", \"content\": \"SIGN IN CHARACTERS SIGN IN Explore EXPLORE CHARACTERS SIGN IN TO EDIT Character Information For other uses, see Bill (Disambiguation). Bill Cosby is elderly, having gray hair as well as various facial wrinkles. More Information: Criminal Celebrities More Information: Movie Celebrities Minor Characters from Season Four More information: List of Minor Characters from Season Four | Season Four Community content is available under CC-BY-SA unless otherwise noted. EXPLORE PROPERTIES FOLLOW US Terms of Use Global Sitemap Local Sitemap Follow on IG\", \"score\": 0.48294178, \"raw_content\": null}, {\"title\": \"Stunning and Brave - Wikipedia\", \"url\": \"https://en.wikipedia.org/wiki/Stunning_and_Brave\", \"content\": \"South Park episode \\\"Stunning and Brave\\\" is the first episode in the nineteenth season of the American animated television series South Park. Cartman and others mount an 'anti-PC' assault on the fraternity house but Kyle interrupts it, publicly calling Jenner a hero and brave. IGN's Max Nicholson gave the episode a 7.8 out of 10 and stated \\\"South Park's latest episode took on political correctness with scathing wit and truly outrageous moments.\\\"[1] \\\"South Park: \\\"Stunning and Brave\\\" Review\\\". \\\"South Park: Stunning and Brave Review\\\". \\\"South Park: Stunning and Brave\\\". \\\"South Park premiere is 'Stunning and Brave'\\\". \\\"Stunning and Brave\\\" Full episode at South Park Studios South Park episodes\", \"score\": 0.21465065, \"raw_content\": null}, {\"title\": \"Here Comes the Neighborhood - Wikipedia\", \"url\": \"https://en.wikipedia.org/wiki/Here_Comes_the_Neighborhood\", \"content\": \"\\\"Here Comes the Neighborhood\\\" is the 12th episode of the fifth season of the animated television series South Park, and the 77th episode of the series overall. Despondent at his social estrangement, Token decides to arrange for dozens of rich people (who all happen to be black) such as Will Smith and Snoop Dogg to move into South Park, which leads to Mr. Garrison complaining about the \\\"richers\\\" in the town, which in turn leads to ire among the other, less affluent members of the community (who all happen to be white). \\\"Here Comes the Neighborhood,\\\" along with the thirteen other episodes from South Park: the Complete Fifth Season, was released on a three-disc DVD set in the United States on February 22, 2005. South Park: The Complete Fifth Season: \\\"Here Comes the Neighborhood\\\" (DVD Disc audio commentary). \\\"Here Comes the Neighborhood\\\" Full episode at South Park Studios\", \"score\": 0.19947985, \"raw_content\": null}, {\"title\": \"Trapper Keeper | South Park Archives | Fandom\", \"url\": \"https://southpark.fandom.com/wiki/Trapper_Keeper\", \"content\": \"Trapper Keeper | South Park Archives | Fandom Episodes Episodes in: Episodes, Featured Article Winners, Season 4, Episodes Focusing On Cartman | Episode no. Episode 12 | | List of all South Park episodes | \\\"Trapper Keeper\\\" is the twelfth episode of Season Four and the 60th overall episode of South Park. Kyle takes a Dawson's Creek Trapper Keeper with him to school and is soon met by Cartman. Cartman brags about his Dawson's Creek Trapper Keeper Ultra Keeper Futura S 2000, of which shows off many features that far exceed Kyle's. \\u2191 Jump up to: 1.0 1.1 Trapper Keeper (Season 4, Episode 13). Episodes Episodes Focusing On Cartman Espa\\u00f1ol Fran\\u00e7ais Italiano Portugu\\u00eas do Brasil \\u4e2d\\u6587\", \"score\": 0.1287991, \"raw_content\": null}, {\"title\": \"\\\"South Park\\\" Trapper Keeper (TV Episode 2000) - IMDb\", \"url\": \"https://www.imdb.com/title/tt0705978/\", \"content\": \"Trapper Keeper is a very interesting south park episode.It spoofs plenty of classic sci-fi films such as The Terminator, 2001 A Space Odyssea and the 1988 anime classic Akira(great movie if you haven't seen it).The episode has Cartman with a Dawson's Creek Trapper Keeper.A trapper keeper seems to be a school supply(I have never heard of it before).Cartman's trapper keeper is very advanced in terms of technology, however a robot from the future has come to destroy it because the trapper keeper takes over the world and destroys humanity in the future.The Trapper Keeper turns into a big blob(like in Akira) and sucks Cartman in.It then roams South Park and the boys try to stop it.Meanwhile, Kyle's brother Ike starts kindergarten where Garrison is the teacher.They decide to have a vote for class president between Ike and a kid named Filmore.It turns into a heated debate!\", \"score\": 0.12658015, \"raw_content\": null}]}\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33mBill\u001b[0m\u001b[33m Cosby\u001b[0m\u001b[33m first\u001b[0m\u001b[33m appears\u001b[0m\u001b[33m in\u001b[0m\u001b[33m the\u001b[0m\u001b[33m episode\u001b[0m\u001b[33m \"\u001b[0m\u001b[33mTr\u001b[0m\u001b[33mapped\u001b[0m\u001b[33m in\u001b[0m\u001b[33m the\u001b[0m\u001b[33m Closet\u001b[0m\u001b[33m\"\u001b[0m\u001b[33m (\u001b[0m\u001b[33mSeason\u001b[0m\u001b[33m \u001b[0m\u001b[33m9\u001b[0m\u001b[33m,\u001b[0m\u001b[33m Episode\u001b[0m\u001b[33m \u001b[0m\u001b[33m12\u001b[0m\u001b[33m)\u001b[0m\u001b[33m of\u001b[0m\u001b[33m South\u001b[0m\u001b[33m Park\u001b[0m\u001b[33m.\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[30m\u001b[0m\u001b[33minference> \u001b[0m\u001b[36m\u001b[0m\u001b[36mbr\u001b[0m\u001b[36mave\u001b[0m\u001b[36m_search\u001b[0m\u001b[36m.call\u001b[0m\u001b[36m(query\u001b[0m\u001b[36m=\"\u001b[0m\u001b[36mAndrew\u001b[0m\u001b[36m Tate\u001b[0m\u001b[36m kick\u001b[0m\u001b[36mboxing\u001b[0m\u001b[36m name\u001b[0m\u001b[36m\")\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[32mtool_execution> Tool:brave_search Args:{'query': 'Andrew Tate kickboxing name'}\u001b[0m\n", - "\u001b[32mtool_execution> Tool:brave_search Response:{\"query\": \"Andrew Tate kickboxing name\", \"top_k\": [{\"title\": \"Andrew Tate Height, Weight, Biography, Age, Wife ... - News Unzip\", \"url\": \"https://www.newsunzip.com/wiki/andrew-tate/\", \"content\": \"Andrew Tate aka King Cobra (Real Name: 'Emory Andrew Tate III', born 1 December 1986, Age: 36 Years) is a professional kickboxer, MMA fighter, internet. Monday , 10 March 2025 ... Andrew's Kickboxing and MMA Record Andrew Tate Net worth, Lifestyle & Cars Collection. Andrew is a millionaire businessman. He makes a lot of money from his\", \"score\": 0.85995835, \"raw_content\": null}, {\"title\": \"The Life Of Andrew Tate (By Andrew Tate Himself ... - Sidekick Boxing\", \"url\": \"https://sidekickboxing.co.uk/the-life-of-andrew-king-cobra-tate/\", \"content\": \"Andrew Tate is a British-American former professional kickboxing world champion who fought in the cruiserweight and super cruiserweight divisions. Andrew Tate\\u2019s Kickboxing Career Andrew Tate in the Big Brother house Andrew Tate\\u2019s Kickboxing World Titles and his Sidekick boxing gloves Andrew Tate After Kickboxing Andrew Tate and his brother Tristan moved to Romania to set up their empire of businesses including trading in Bitcoin, Hustlers University, CobraTate.com, The Real World, and The War Room. From being a 4x kickboxing world champion to becoming the world\\u2019s most Googled man in the world with a private jet and over 33 cars, Andrew Tate\\u2019s life has been full of adventure.\", \"score\": 0.78194773, \"raw_content\": null}, {\"title\": \"Andrew Tate (\\\"King Cobra\\\") | MMA Fighter Page - Tapology\", \"url\": \"https://www.tapology.com/fightcenter/fighters/72139-andrew-tate\", \"content\": \"Andrew Tate (\\\"King Cobra\\\") | MMA Fighter Page | Tapology Andrew \\\"King Cobra\\\" Tate Andrew Tate Name: Andrew Tate Height: 6'1\\\" (185cm) | Reach: Andrew Tate is ineligible for Tapology's regional MMA rankings due to inactivity. Fighters must have at least one completed MMA bout in the past two years to be ranked. Andrew Tate MMA Fight Record Former top-ranked UFC fighter has called out Andrew Tate for having a paper title when it comes to combat... Andrew Tate \\u2022 All the biggest upcoming MMA & Boxing fights | UFC Fight Night | 02.01.2025, 12:00 PM ET | MMA Junkie: UFC Fight Night 249 video: Nine stoppages to open the year?! MMA Mania: Prochazka Vs. Hill: Odds, Full Fight Preview & Prediction\", \"score\": 0.6999322, \"raw_content\": null}, {\"title\": \"Andrew Tate: Kickboxing Record, Facts, Height, Weight, Age, Biography\", \"url\": \"https://www.lowkickmma.com/andrew-tate-kickboxing-record-facts-height-weight-age-biography/\", \"content\": \"Who is Andrew Tate? Andrew Tate is a businessman, internet personality, and former professional kickboxer. Where is Andrew Tate From? Who is Andrew Tate\\u2019s Father? Andrew Tate Kickboxing Record What Kickboxing Gym Did Andrew Tate Train Out Of? How Many Professional Kickboxing Matches Has Andrew Tate Participated In? Andrew Tate competed in a total of 86 professional kickboxing bouts. What is Andrew Tate\\u2019 Professional Kickboxing Record? What Weight Classes Did Andrew Tate Compete In? In his professional kickboxing career, Andrew Tate won 32 of his fights by knockout. Did Andrew Tate Compete For Any Championship Titles? Did Tate Ever Compete In MMA? Andrew Tate competed in 1 professional MMA bout. How Much Money Did Andrew Tate Make In Kickboxing?\", \"score\": 0.50930125, \"raw_content\": null}, {\"title\": \"Andrew Tate - Wikipedia\", \"url\": \"https://en.wikipedia.org/wiki/Andrew_Tate\", \"content\": \"In 2011, Tate won his first International Sport Kickboxing Association (ISKA) world title in a rematch against Jean-Luc Beno\\u00eet via knockout, having previously lost to Beno\\u00eet by decision.[41] In 2012, Tate lost to Sahak Parparyan by unanimous decision while challenging for his It's Showtime 85MAX Championship.[42] Later that year, Tate lost the Enfusion championship tournament to Franci Graj\\u0161.[1] Before his loss, he was ranked second-best light-heavyweight kickboxer in the world.[43] In 2013, Tate won his second ISKA world title in a 12-round match against Vincent Petitjean, making him world champion in two weight divisions.[44] He defended the ISKA Belt and Won the Enfusion Belt in 2014, making him a four-time world champion[45] before he retired with 31 recorded fights.[46]\", \"score\": 0.49904844, \"raw_content\": null}]}\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33mAndrew\u001b[0m\u001b[33m Tate\u001b[0m\u001b[33m's\u001b[0m\u001b[33m kick\u001b[0m\u001b[33mboxing\u001b[0m\u001b[33m name\u001b[0m\u001b[33m is\u001b[0m\u001b[33m \"\u001b[0m\u001b[33mKing\u001b[0m\u001b[33m Cobra\u001b[0m\u001b[33m\".\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[30m\u001b[0m" - ] - } - ], - "source": [ - "from llama_stack_client import Agent, AgentEventLogger\n", - "\n", - "agent = Agent(\n", - " client,\n", - " model=\"meta-llama/Llama-3.3-70B-Instruct\",\n", - " instructions=\"You are a helpful assistant. Use web_search tool to answer the questions.\",\n", - " tools=[\"builtin::websearch\"],\n", - ")\n", - "user_prompts = [\n", - " \"Which teams played in the NBA western conference finals of 2024. Search the web for the answer.\",\n", - " \"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title. Search the web for the answer.\",\n", - " \"What is the British-American kickboxer Andrew Tate's kickboxing name? Search the web for the answer.\",\n", - "]\n", - "\n", - "session_id = agent.create_session(uuid.uuid4().hex)\n", - "\n", - "for prompt in user_prompts:\n", - " response = agent.create_turn(\n", - " messages=[\n", - " {\n", - " \"role\": \"user\",\n", - " \"content\": prompt,\n", - " }\n", - " ],\n", - " session_id=session_id,\n", - " )\n", - "\n", - " for log in AgentEventLogger().log(response):\n", - " log.print()\n" - ] - }, - { - "cell_type": "markdown", - "id": "d0a50faf", - "metadata": {}, - "source": [ - "##### 3.1.2 Query Agent Execution Steps\n", - "\n", - "Now, let's look deeper into the agent's execution steps and see if how well our agent performs. As a sanity check, we will first check if all user prompts is followed by a tool call to `brave_search`." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c28ea2d1", - "metadata": {}, - "outputs": [], - "source": [ - "# query the agents session\n", - "from rich.pretty import pprint\n", - "\n", - "session_response = client.agents.session.retrieve(\n", - " session_id=session_id,\n", - " agent_id=agent.agent_id,\n", - ")\n", - "\n", - "pprint(session_response.turns)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "id": "f87a376d", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "3/3 user prompts are followed by a tool call to `brave_search`\n" - ] - } - ], - "source": [ - "num_tool_call = 0\n", - "for turn in session_response.turns:\n", - " for step in turn.steps:\n", - " if step.step_type == \"tool_execution\" and step.tool_calls[0].tool_name == \"brave_search\":\n", - " num_tool_call += 1\n", - "\n", - "print(f\"{num_tool_call}/{len(session_response.turns)} user prompts are followed by a tool call to `brave_search`\")" - ] - }, - { - "cell_type": "markdown", - "id": "ed69220f", - "metadata": {}, - "source": [ - "##### 3.1.3 Evaluate Agent Responses\n", - "\n", - "Now, we want to evaluate the agent's responses to the user prompts. \n", - "\n", - "1. First, we will process the agent's execution history into a list of rows that can be used for evaluation.\n", - "2. Next, we will label the rows with the expected answer.\n", - "3. Finally, we will use the `/scoring` API to score the agent's responses." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "id": "a2b293bc", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
[\n",
-              "{\n",
-              "│   │   'input_query': 'Which teams played in the NBA western conference finals of 2024. Search the web for the answer.',\n",
-              "│   │   'generated_answer': 'The teams that played in the NBA Western Conference Finals of 2024 were the Dallas Mavericks and the Minnesota Timberwolves.',\n",
-              "│   │   'expected_answer': 'Dallas Mavericks and the Minnesota Timberwolves'\n",
-              "},\n",
-              "{\n",
-              "│   │   'input_query': 'In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title. Search the web for the answer.',\n",
-              "│   │   'generated_answer': 'Bill Cosby first appears in the episode \"Trapped in the Closet\" (Season 9, Episode 12) of South Park.',\n",
-              "│   │   'expected_answer': 'Season 4, Episode 12'\n",
-              "},\n",
-              "{\n",
-              "│   │   'input_query': \"What is the British-American kickboxer Andrew Tate's kickboxing name? Search the web for the answer.\",\n",
-              "│   │   'generated_answer': 'Andrew Tate\\'s kickboxing name is \"King Cobra\".',\n",
-              "│   │   'expected_answer': 'King Cobra'\n",
-              "}\n",
-              "]\n",
-              "
\n" - ], - "text/plain": [ - "\u001b[1m[\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'input_query'\u001b[0m: \u001b[32m'Which teams played in the NBA western conference finals of 2024. Search the web for the answer.'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The teams that played in the NBA Western Conference Finals of 2024 were the Dallas Mavericks and the Minnesota Timberwolves.'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'expected_answer'\u001b[0m: \u001b[32m'Dallas Mavericks and the Minnesota Timberwolves'\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'input_query'\u001b[0m: \u001b[32m'In which episode and season of South Park does Bill Cosby \u001b[0m\u001b[32m(\u001b[0m\u001b[32mBSM-471\u001b[0m\u001b[32m)\u001b[0m\u001b[32m first appear? Give me the number and title. Search the web for the answer.'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'Bill Cosby first appears in the episode \"Trapped in the Closet\" \u001b[0m\u001b[32m(\u001b[0m\u001b[32mSeason 9, Episode 12\u001b[0m\u001b[32m)\u001b[0m\u001b[32m of South Park.'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'expected_answer'\u001b[0m: \u001b[32m'Season 4, Episode 12'\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'input_query'\u001b[0m: \u001b[32m\"What is the British-American kickboxer Andrew Tate's kickboxing name? Search the web for the answer.\"\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'Andrew Tate\\'s kickboxing name is \"King Cobra\".'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'expected_answer'\u001b[0m: \u001b[32m'King Cobra'\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[1m]\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
ScoringScoreResponse(\n",
-              "results={\n",
-              "│   │   'basic::subset_of': ScoringResult(\n",
-              "│   │   │   aggregated_results={'accuracy': {'accuracy': 0.6666666666666666, 'num_correct': 2.0, 'num_total': 3}},\n",
-              "│   │   │   score_rows=[{'score': 1.0}, {'score': 0.0}, {'score': 1.0}]\n",
-              "│   │   )\n",
-              "}\n",
-              ")\n",
-              "
\n" - ], - "text/plain": [ - "\u001b[1;35mScoringScoreResponse\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mresults\u001b[0m=\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'basic::subset_of'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1;36m0.6666666666666666\u001b[0m, \u001b[32m'num_correct'\u001b[0m: \u001b[1;36m2.0\u001b[0m, \u001b[32m'num_total'\u001b[0m: \u001b[1;36m3\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m\u001b[1m]\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[1m)\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "eval_rows = []\n", - "\n", - "expected_answers = [\n", - " \"Dallas Mavericks and the Minnesota Timberwolves\",\n", - " \"Season 4, Episode 12\",\n", - " \"King Cobra\",\n", - "]\n", - "\n", - "for i, turn in enumerate(session_response.turns):\n", - " eval_rows.append(\n", - " {\n", - " \"input_query\": turn.input_messages[0].content,\n", - " \"generated_answer\": turn.output_message.content,\n", - " \"expected_answer\": expected_answers[i],\n", - " }\n", - " )\n", - "\n", - "pprint(eval_rows)\n", - "\n", - "scoring_params = {\n", - " \"basic::subset_of\": None,\n", - "}\n", - "scoring_response = client.scoring.score(\n", - " input_rows=eval_rows, scoring_functions=scoring_params\n", - ")\n", - "pprint(scoring_response)" - ] - }, - { - "cell_type": "markdown", - "id": "ekOS2kM4P0LM", - "metadata": { - "id": "ekOS2kM4P0LM" - }, - "source": [ - "##### 3.1.4 Query Telemetry & Evaluate\n", - "\n", - "Another way to get the agent's execution history is to query the telemetry logs from the `/telemetry` API. The following example shows how to query the telemetry logs and post-process them to prepare data for evaluation." - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "id": "agkWgToGAsuA", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "agkWgToGAsuA", - "outputId": "4233a1d9-8282-4aa9-bdc4-0c105939f97e" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Getting traces for session_id=d73d9aaa-65ac-4255-8153-9f5cbff6e01e\n", - "Here are examples of traces:\n" - ] - }, - { - "data": { - "text/html": [ - "
[\n",
-              "{\n",
-              "│   │   'input': '[{\"role\": \"system\", \"content\": \"You are a helpful assistant. Use web_search tool to answer the questions.\"}, {\"role\": \"user\", \"content\": \"Which teams played in the NBA western conference finals of 2024. Search the web for the answer.\", \"context\": null}]',\n",
-              "│   │   'output': '{\"content\": \"\", \"tool_calls\": [{\"call_id\": \"5f77ab69-72d9-4d51-b96c-bd4352ced54a\", \"tool_name\": \"brave_search\", \"arguments\": {\"query\": \"NBA Western Conference Finals 2024 teams\"}, \"arguments_json\": \"{\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\"}\"}]}'\n",
-              "},\n",
-              "{\n",
-              "│   │   'input': '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"5f77ab69-72d9-4d51-b96c-bd4352ced54a\",\"tool_name\":\"brave_search\",\"arguments\":{\"query\":\"NBA Western Conference Finals 2024 teams\"},\"arguments_json\":\"{\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\"}\"}]}',\n",
-              "│   │   'output': '{\"role\":\"tool\",\"call_id\":\"5f77ab69-72d9-4d51-b96c-bd4352ced54a\",\"content\":\"{\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\", \\\\\"top_k\\\\\": [{\\\\\"title\\\\\": \\\\\"2024 NBA Western Conference Finals - Basketball-Reference.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\\\\\", \\\\\"content\\\\\": \\\\\"2024 NBA Playoffs Dallas Mavericks vs. Dallas Mavericks vs. Dallas Mavericks vs. 5 Dallas Mavericks (4-1) vs. 7   Derrick Jones Jr. 2024 NBA Playoffs Dallas Mavericks vs. Dallas Mavericks vs. Dallas Mavericks vs. College Tools: Player Season Finder, Player Game Finder, Team Season Finder, Team Game Finder Players, Teams, Seasons, Leaders, Awards ... Players, Teams, Seasons, Leaders, Awards ... Players, Teams, Seasons, Leaders, Awards, All-Star Games, Executives ... Players, Teams, Seasons, Leaders, Awards ... Subscribe to Stathead Basketball: Get your first month FREE The SPORTS REFERENCE, STATHEAD, IMMACULATE GRID, and IMMACULATE FOOTY trademarks are owned exclusively by Sports Reference LLC. Sports\\\\\\\\u00a0Reference\\\\\\\\u202f\\\\\\\\u00ae Baseball Football (college) Basketball (college) Hockey F\\\\\\\\u00fatbol Blog Stathead\\\\\\\\u202f\\\\\\\\u00ae Immaculate Grid\\\\\\\\u202f\\\\\\\\u00ae\\\\\", \\\\\"score\\\\\": 0.89030397, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Standings - 2024-25 season - ESPN\\\\\", \\\\\"url\\\\\": \\\\\"https://www.espn.com/nba/standings\\\\\", \\\\\"content\\\\\": \\\\\"NBA Standings - 2024-25 season - ESPN Skip to main contentSkip to navigation ESPN NFL NBA NCAAF NHL NCAAM NCAAW Soccer More Sports Watch Fantasy NBA Home Scores Schedule Standings Stats Teams Odds Where To Watch All-Star Game Fantasy More NBA Standings 2024-25 Standings Expanded Vs. Division NBA Cup LeagueConferenceDivision Eastern Conference | | | --- | | 1CLECleveland Cavaliers | | 2BOSBoston Celtics | | 3NYNew York Knicks | | 4INDIndiana Pacers | | 5MILMilwaukee Bucks | | 6DETDetroit Pistons | | 7MIAMiami Heat | | 8ORLOrlando Magic | | 9ATLAtlanta Hawks | | 10CHIChicago Bulls | | PHIPhiladelphia 76ers | | BKNBrooklyn Nets | | TORToronto Raptors | | CHACharlotte Hornets | | WSHWashington Wizards | | W | L | PCT | GB | HOME | AWAY | DIV | CONF | PPG | OPP PPG | DIFF | STRK | L10 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | 42 | 10 | .808 | - | 24-4 | 18-6 | 9-1 | 28-7 | 122.4 | 112.1 | +10.3 | W2 | 6-4 | | 36 | 16 | .692 | 6 | 16-10 | 20-6 | 6-2 | 26-9 | 117.3 | 108.8 | +8.5 | L1 | 7-3 | | 34 | 17 | .667 | 7.5 | 18-9 | 16-8 | 9-1 | 23-10 | 117.9 | 111.4 | +6.5 | W2 | 8-2 | | 29 | 21 | .580 | 12 | 14-7 | 14-13 | 6-4 | 17-15 | 115.7 | 114.9 | +0.8 | W1 | 7-3 | | 27 | 23 | .540 | 14 | 16-8 | 10-15 | 6-5 | 22-16 | 114.2 | 112.6 | +1.6 | L1 | 4-6 | | 26 | 26 | .500 | 16 | 13-13 | 13-13 | 2-9 | 18-20 | 113.0 | 113.8 | -0.8 | W1 | 5-5 | | 25 | 25 | .500 | 16 | 12-10 | 12-15 | 5-3 | 14-15 | 110.5 | 110.6 | -0.1 | L1 | 5-5 | | 25 | 28 | .472 | 17.5 | 15-9 | 10-19 | 5-2 | 20-15 | 103.8 | 105.6 | -1.8 | L1 | 2-8 | | 24 | 28 | .462 | 18 | 12-12 | 12-15 | 4-2 | 17-13 | 116.1 | 119.0 | -2.9 | W1 | 2-8 | | 22 | 30 | .423 | 20 | 10-16 | 12-14 | 3-7 | 17-18 | 116.7 | 120.1 | -3.4 | L1 | 4-6 | | 20 | 31 | .392 | 21.5 | 10-16 | 10-15 | 3-4 | 14-17 | 109.1 | 112.9 | -3.8 | L2 | 5-5 | | 18 | 34 | .346 | 24 | 7-17 | 11-17 | 1-8 | 9-23 | 105.3 | 111.7 | -6.4 | W1 | 4-6 | | 16 | 36 | .308 | 26 | 12-16 | 4-20 | 3-7 | 10-23 | 111.2 | 116.9 | -5.7 | L3 | 6-4 | | 13 | 36 | .265 | 27.5 | 9-20 | 4-16 | 0-9 | 7-27 | 107.1 | 112.3 | -5.2 | W1 | 2-8 | | 9 | 42 | .176 | 32.5 | 5-20 | 4-21 | 5-3 | 7-21 | 107.8 | 121.5 | -13.7 | L1 | 3-7 | Western Conference | | | --- | | 1OKCOklahoma City Thunder | | 2MEMMemphis Grizzlies | | 3DENDenver Nuggets | | 4HOUHouston Rockets | | 5LALLos Angeles Lakers | | 6MINMinnesota Timberwolves | | 7LACLA Clippers | | 8DALDallas Mavericks | | 9PHXPhoenix Suns | | 10SACSacramento Kings | | GSGolden State Warriors | | SASan Antonio Spurs | | PORPortland Trail Blazers | | UTAHUtah Jazz | | NONew Orleans Pelicans | | W | L | PCT | GB | HOME | AWAY | DIV | CONF | PPG | OPP PPG | DIFF | STRK | L10 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | 41 | 9 | .820 | - | 23-3 | 17-6 | 7-1 | 23-8 | 117.7 | 104.7 | +13.0 | W4 | 7-3 | | 35 | 16 | .686 | 6.5 | 21-5 | 14-11 | 8-4 | 19-12 | 123.8 | 115.4 | +8.4 | W4 | 9-1 | | 33 | 19 | .635 | 9 | 17-8 | 16-11 | 4-4 | 19-12 | 120.8 | 115.9 | +4.9 | W5 | 7-3 | | 32 | 20 | .615 | 10 | 15-8 | 17-11 | 9-3 | 19-12 | 113.3 | 109.1 | +4.2 | L6 | 4-6 | | 30 | 19 | .612 | 10.5 | 17-6 | 13-13 | 9-3 | 19-11 | 112.6 | 112.0 | +0.6 | W4 | 8-2 | | 29 | 23 | .558 | 13 | 14-12 | 15-11 | 4-3 | 21-14 | 111.7 | 108.2 | +3.5 | W2 | 7-3 | | 28 | 23 | .549 | 13.5 | 17-10 | 11-13 | 6-4 | 17-18 | 110.1 | 107.7 | +2.4 | L3 | 4-6 | | 28 | 25 | .528 | 14.5 | 15-10 | 13-15 | 6-4 | 20-17 | 115.5 | 113.3 | +2.2 | W2 | 5-5 | | 26 | 25 | .510 | 15.5 | 16-9 | 10-16 | 7-4 | 17-14 | 113.4 | 114.7 | -1.3 | W1 | 5-5 | | 25 | 26 | .490 | 16.5 | 13-13 | 12-13 | 4-6 | 16-17 | 116.1 | 115.4 | +0.7 | L2 | 4-6 | | 25 | 26 | .490 | 16.5 | 15-13 | 10-13 | 1-10 | 17-18 | 111.5 | 111.9 | -0.4 | L2 | 4-6 | | 22 | 27 | .449 | 18.5 | 13-12 | 8-14 | 2-7 | 16-18 | 112.8 | 114.3 | -1.5 | L1 | 3-7 | | 23 | 29 | .442 | 19 | 15-13 | 8-16 | 4-5 | 14-24 | 109.0 | 113.9 | -4.9 | W6 | 9-1 | | 12 | 38 | .240 | 29 | 5-18 | 7-20 | 1-7 | 4-29 | 111.9 | 118.9 | -7.0 | L1 | 2-8 | | 12 | 39 | .235 | 29.5 | 8-18 | 4-21 | 1-8 | 6-23 | 110.0 | 118.8 | -8.8 | L7 | 3-7 | Standings are updated with the completion of each game.Teams seeded 7-10 in each conference will compete in a play-in tournament at the end of the regular season. Glossary W:Wins L:Losses PCT:Winning Percentage GB:Games Back HOME:Home Record AWAY:Away Record DIV:Division Record CONF:Conference Record PPG:Points Per Game OPP PPG:Opponent Points Per Game DIFF:Average Point Differential STRK:Current Streak L10:Record last 10 games NBA News Anthony Davis leads Mavericks past Rockets 116-105 in Mavs debut but leaves with lower-body injury -------------------------------------------------------------------------------------------------- \\\\\\\\u2014 Anthony Davis had 26 points, 16 rebounds, seven assists and three blocks in his Mavericks debut but left the game late in the third quarter with a... * 38m Hawks request waivers on newly acquired Bones Hyland ---------------------------------------------------- The Atlanta Hawks requested waivers on guard Bones Hyland on Saturday, just two days after the guard was obtained from the Clippers in a deal at the NBA trade deadline. * 1h AD posts 26-point double-double in debut before suffering injury ---------------------------------------------------------------- Anthony Davis has a strong debut with the Mavs, dropping 26 points, 16 rebounds and 7 assists, before leaving with a lower-body injury. * 1h All NBA News Terms of Use Privacy Policy Your US State Privacy Rights Children\\'s Online Privacy Policy Interest-Based Ads About Nielsen Measurement Do Not Sell or Share My Personal Information Contact Us Disney Ad Sales Site Work for ESPN Corrections ESPN BET Sportsbook is owned and operated by PENN Entertainment, Inc. and its subsidiaries (\\'PENN\\').\\\\\", \\\\\"score\\\\\": 0.83549726, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"2024 Playoffs: West Finals | Timberwolves (3) vs. Mavericks (5) | NBA.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/playoffs/2024/west-final\\\\\", \\\\\"content\\\\\": \\\\\"Mavericks (5) | NBA.com 2024-25 NBA CrunchTime NBA TV Draft Kings DFS NBA Bet Home NBA Store NBA Game Worn NBA Photo Store NBA Experiences NBA G League NBA 2K League NBA Play NBA Bet ### Doncic, Irving carry Mavs to NBA Finals Luka Doncic and Kyrie Irving pour in 36 points apiece to guide Dallas to its 1st appearance in the NBA Finals since 2011. ### Luka: \\'This is special, coming from the West\\' Luka Doncic with Ernie, Charles, Kenny & Shaq about the Mavs being NBA Finals-bound, his Game 5 play and more. NBA Organization NBA ID NBA Official NBA Careers NBA Initiatives NBA Cares NBA Foundation NBA Communications NBA Transactions NBA Auctions NBA Photostore\\\\\", \\\\\"score\\\\\": 0.75312227, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"2024 NBA Playoffs | Official Bracket, Schedule and Series Matchups\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/playoffs/2024?os=wtmbloozowcj&ref=app\\\\\", \\\\\"content\\\\\": \\\\\"Draft Kings DFS NBA Store NBA Play NBA Finals ### Chasing History: Celtics clinch banner 18 (Ep. 25) Jayson Tatum and Finals MVP Jaylen Brown close out Dallas in Game 5 to secure Boston\\'s NBA-record 18th championship. WE DID ITTTT!\\' Jayson Tatum walkoff interview after Celtics defeat Mavericks in Game 5 of 2024 NBA Finals, clinching title with a 4-1 series win. ### Horford finally champ after key sacrifice Al Horford, who played the most playoff games in NBA history before winning his 1st title, crosses the plateau in his 17th season. 30:13 ### Best of the 2024 NBA Finals 17:47 ### Best of Boston Celtics from the 2024 NBA Finals\\\\\", \\\\\"score\\\\\": 0.63234437, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"2025 NBA Playoffs: Standings, bracket and clinching updates\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/news/2025-nba-playoffs-standings-and-bracket-updates\\\\\", \\\\\"content\\\\\": \\\\\"NBA TV NBA Play NBA Store NBA Game Worn NBA Play NBA Official NBA Playoffs bracket ### What to know about 2025 SoFi NBA Play-In Tournament The SoFi NBA Play-In Tournament features the Nos. 7-10 teams in each conference battling for the 7th and 8th playoff seeds. Click \\\\\\\\\\\\\"Access Content\\\\\\\\\\\\\" to agree to our Terms of Use and Privacy Policy and to sign up for emails about the latest news and products from the NBA Family and its partners. #### What to know about 2025 SoFi NBA Play-In Tournament The SoFi NBA Play-In Tournament features the Nos. 7-10 teams in each conference battling for the 7th and 8th playoff seeds. NBA ID NBA Official NBA Transactions NBA Auctions\\\\\", \\\\\"score\\\\\": 0.13435538, \\\\\"raw_content\\\\\": null}]}\"}'\n",
-              "}\n",
-              "]\n",
-              "
\n" - ], - "text/plain": [ - "\u001b[1m[\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'input'\u001b[0m: \u001b[32m'\u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\": \"system\", \"content\": \"You are a helpful assistant. Use web_search tool to answer the questions.\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\": \"user\", \"content\": \"Which teams played in the NBA western conference finals of 2024. Search the web for the answer.\", \"context\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'output'\u001b[0m: \u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"content\": \"\", \"tool_calls\": \u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"call_id\": \"5f77ab69-72d9-4d51-b96c-bd4352ced54a\", \"tool_name\": \"brave_search\", \"arguments\": \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"query\": \"NBA Western Conference Finals 2024 teams\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \"arguments_json\": \"\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'input'\u001b[0m: \u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"call_id\":\"5f77ab69-72d9-4d51-b96c-bd4352ced54a\",\"tool_name\":\"brave_search\",\"arguments\":\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"query\":\"NBA Western Conference Finals 2024 teams\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m,\"arguments_json\":\"\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'output'\u001b[0m: \u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"tool\",\"call_id\":\"5f77ab69-72d9-4d51-b96c-bd4352ced54a\",\"content\":\"\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\", \\\\\"top_k\\\\\": \u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"2024 NBA Western Conference Finals - Basketball-Reference.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\\\\\", \\\\\"content\\\\\": \\\\\"2024 NBA Playoffs Dallas Mavericks vs. Dallas Mavericks vs. Dallas Mavericks vs. 5 Dallas Mavericks \u001b[0m\u001b[32m(\u001b[0m\u001b[32m4-1\u001b[0m\u001b[32m)\u001b[0m\u001b[32m vs. 7 Derrick Jones Jr. 2024 NBA Playoffs Dallas Mavericks vs. Dallas Mavericks vs. Dallas Mavericks vs. College Tools: Player Season Finder, Player Game Finder, Team Season Finder, Team Game Finder Players, Teams, Seasons, Leaders, Awards ... Players, Teams, Seasons, Leaders, Awards ... Players, Teams, Seasons, Leaders, Awards, All-Star Games, Executives ... Players, Teams, Seasons, Leaders, Awards ... Subscribe to Stathead Basketball: Get your first month FREE The SPORTS REFERENCE, STATHEAD, IMMACULATE GRID, and IMMACULATE FOOTY trademarks are owned exclusively by Sports Reference LLC. Sports\\\\\\\\u00a0Reference\\\\\\\\u202f\\\\\\\\u00ae Baseball Football \u001b[0m\u001b[32m(\u001b[0m\u001b[32mcollege\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Basketball \u001b[0m\u001b[32m(\u001b[0m\u001b[32mcollege\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Hockey F\\\\\\\\u00fatbol Blog Stathead\\\\\\\\u202f\\\\\\\\u00ae Immaculate Grid\\\\\\\\u202f\\\\\\\\u00ae\\\\\", \\\\\"score\\\\\": 0.89030397, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"NBA Standings - 2024-25 season - ESPN\\\\\", \\\\\"url\\\\\": \\\\\"https://www.espn.com/nba/standings\\\\\", \\\\\"content\\\\\": \\\\\"NBA Standings - 2024-25 season - ESPN Skip to main contentSkip to navigation ESPN NFL NBA NCAAF NHL NCAAM NCAAW Soccer More Sports Watch Fantasy NBA Home Scores Schedule Standings Stats Teams Odds Where To Watch All-Star Game Fantasy More NBA Standings 2024-25 Standings Expanded Vs. Division NBA Cup LeagueConferenceDivision Eastern Conference | | | --- | | 1CLECleveland Cavaliers | | 2BOSBoston Celtics | | 3NYNew York Knicks | | 4INDIndiana Pacers | | 5MILMilwaukee Bucks | | 6DETDetroit Pistons | | 7MIAMiami Heat | | 8ORLOrlando Magic | | 9ATLAtlanta Hawks | | 10CHIChicago Bulls | | PHIPhiladelphia 76ers | | BKNBrooklyn Nets | | TORToronto Raptors | | CHACharlotte Hornets | | WSHWashington Wizards | | W | L | PCT | GB | HOME | AWAY | DIV | CONF | PPG | OPP PPG | DIFF | STRK | L10 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | 42 | 10 | .808 | - | 24-4 | 18-6 | 9-1 | 28-7 | 122.4 | 112.1 | +10.3 | W2 | 6-4 | | 36 | 16 | .692 | 6 | 16-10 | 20-6 | 6-2 | 26-9 | 117.3 | 108.8 | +8.5 | L1 | 7-3 | | 34 | 17 | .667 | 7.5 | 18-9 | 16-8 | 9-1 | 23-10 | 117.9 | 111.4 | +6.5 | W2 | 8-2 | | 29 | 21 | .580 | 12 | 14-7 | 14-13 | 6-4 | 17-15 | 115.7 | 114.9 | +0.8 | W1 | 7-3 | | 27 | 23 | .540 | 14 | 16-8 | 10-15 | 6-5 | 22-16 | 114.2 | 112.6 | +1.6 | L1 | 4-6 | | 26 | 26 | .500 | 16 | 13-13 | 13-13 | 2-9 | 18-20 | 113.0 | 113.8 | -0.8 | W1 | 5-5 | | 25 | 25 | .500 | 16 | 12-10 | 12-15 | 5-3 | 14-15 | 110.5 | 110.6 | -0.1 | L1 | 5-5 | | 25 | 28 | .472 | 17.5 | 15-9 | 10-19 | 5-2 | 20-15 | 103.8 | 105.6 | -1.8 | L1 | 2-8 | | 24 | 28 | .462 | 18 | 12-12 | 12-15 | 4-2 | 17-13 | 116.1 | 119.0 | -2.9 | W1 | 2-8 | | 22 | 30 | .423 | 20 | 10-16 | 12-14 | 3-7 | 17-18 | 116.7 | 120.1 | -3.4 | L1 | 4-6 | | 20 | 31 | .392 | 21.5 | 10-16 | 10-15 | 3-4 | 14-17 | 109.1 | 112.9 | -3.8 | L2 | 5-5 | | 18 | 34 | .346 | 24 | 7-17 | 11-17 | 1-8 | 9-23 | 105.3 | 111.7 | -6.4 | W1 | 4-6 | | 16 | 36 | .308 | 26 | 12-16 | 4-20 | 3-7 | 10-23 | 111.2 | 116.9 | -5.7 | L3 | 6-4 | | 13 | 36 | .265 | 27.5 | 9-20 | 4-16 | 0-9 | 7-27 | 107.1 | 112.3 | -5.2 | W1 | 2-8 | | 9 | 42 | .176 | 32.5 | 5-20 | 4-21 | 5-3 | 7-21 | 107.8 | 121.5 | -13.7 | L1 | 3-7 | Western Conference | | | --- | | 1OKCOklahoma City Thunder | | 2MEMMemphis Grizzlies | | 3DENDenver Nuggets | | 4HOUHouston Rockets | | 5LALLos Angeles Lakers | | 6MINMinnesota Timberwolves | | 7LACLA Clippers | | 8DALDallas Mavericks | | 9PHXPhoenix Suns | | 10SACSacramento Kings | | GSGolden State Warriors | | SASan Antonio Spurs | | PORPortland Trail Blazers | | UTAHUtah Jazz | | NONew Orleans Pelicans | | W | L | PCT | GB | HOME | AWAY | DIV | CONF | PPG | OPP PPG | DIFF | STRK | L10 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | 41 | 9 | .820 | - | 23-3 | 17-6 | 7-1 | 23-8 | 117.7 | 104.7 | +13.0 | W4 | 7-3 | | 35 | 16 | .686 | 6.5 | 21-5 | 14-11 | 8-4 | 19-12 | 123.8 | 115.4 | +8.4 | W4 | 9-1 | | 33 | 19 | .635 | 9 | 17-8 | 16-11 | 4-4 | 19-12 | 120.8 | 115.9 | +4.9 | W5 | 7-3 | | 32 | 20 | .615 | 10 | 15-8 | 17-11 | 9-3 | 19-12 | 113.3 | 109.1 | +4.2 | L6 | 4-6 | | 30 | 19 | .612 | 10.5 | 17-6 | 13-13 | 9-3 | 19-11 | 112.6 | 112.0 | +0.6 | W4 | 8-2 | | 29 | 23 | .558 | 13 | 14-12 | 15-11 | 4-3 | 21-14 | 111.7 | 108.2 | +3.5 | W2 | 7-3 | | 28 | 23 | .549 | 13.5 | 17-10 | 11-13 | 6-4 | 17-18 | 110.1 | 107.7 | +2.4 | L3 | 4-6 | | 28 | 25 | .528 | 14.5 | 15-10 | 13-15 | 6-4 | 20-17 | 115.5 | 113.3 | +2.2 | W2 | 5-5 | | 26 | 25 | .510 | 15.5 | 16-9 | 10-16 | 7-4 | 17-14 | 113.4 | 114.7 | -1.3 | W1 | 5-5 | | 25 | 26 | .490 | 16.5 | 13-13 | 12-13 | 4-6 | 16-17 | 116.1 | 115.4 | +0.7 | L2 | 4-6 | | 25 | 26 | .490 | 16.5 | 15-13 | 10-13 | 1-10 | 17-18 | 111.5 | 111.9 | -0.4 | L2 | 4-6 | | 22 | 27 | .449 | 18.5 | 13-12 | 8-14 | 2-7 | 16-18 | 112.8 | 114.3 | -1.5 | L1 | 3-7 | | 23 | 29 | .442 | 19 | 15-13 | 8-16 | 4-5 | 14-24 | 109.0 | 113.9 | -4.9 | W6 | 9-1 | | 12 | 38 | .240 | 29 | 5-18 | 7-20 | 1-7 | 4-29 | 111.9 | 118.9 | -7.0 | L1 | 2-8 | | 12 | 39 | .235 | 29.5 | 8-18 | 4-21 | 1-8 | 6-23 | 110.0 | 118.8 | -8.8 | L7 | 3-7 | Standings are updated with the completion of each game.Teams seeded 7-10 in each conference will compete in a play-in tournament at the end of the regular season. Glossary W:Wins L:Losses PCT:Winning Percentage GB:Games Back HOME:Home Record AWAY:Away Record DIV:Division Record CONF:Conference Record PPG:Points Per Game OPP PPG:Opponent Points Per Game DIFF:Average Point Differential STRK:Current Streak L10:Record last 10 games NBA News Anthony Davis leads Mavericks past Rockets 116-105 in Mavs debut but leaves with lower-body injury -------------------------------------------------------------------------------------------------- \\\\\\\\u2014 Anthony Davis had 26 points, 16 rebounds, seven assists and three blocks in his Mavericks debut but left the game late in the third quarter with a... * 38m Hawks request waivers on newly acquired Bones Hyland ---------------------------------------------------- The Atlanta Hawks requested waivers on guard Bones Hyland on Saturday, just two days after the guard was obtained from the Clippers in a deal at the NBA trade deadline. * 1h AD posts 26-point double-double in debut before suffering injury ---------------------------------------------------------------- Anthony Davis has a strong debut with the Mavs, dropping 26 points, 16 rebounds and 7 assists, before leaving with a lower-body injury. * 1h All NBA News Terms of Use Privacy Policy Your US State Privacy Rights Children\\'s Online Privacy Policy Interest-Based Ads About Nielsen Measurement Do Not Sell or Share My Personal Information Contact Us Disney Ad Sales Site Work for ESPN Corrections ESPN BET Sportsbook is owned and operated by PENN Entertainment, Inc. and its subsidiaries \u001b[0m\u001b[32m(\u001b[0m\u001b[32m\\'PENN\\'\u001b[0m\u001b[32m)\u001b[0m\u001b[32m.\\\\\", \\\\\"score\\\\\": 0.83549726, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"2024 Playoffs: West Finals | Timberwolves \u001b[0m\u001b[32m(\u001b[0m\u001b[32m3\u001b[0m\u001b[32m)\u001b[0m\u001b[32m vs. Mavericks \u001b[0m\u001b[32m(\u001b[0m\u001b[32m5\u001b[0m\u001b[32m)\u001b[0m\u001b[32m | NBA.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/playoffs/2024/west-final\\\\\", \\\\\"content\\\\\": \\\\\"Mavericks \u001b[0m\u001b[32m(\u001b[0m\u001b[32m5\u001b[0m\u001b[32m)\u001b[0m\u001b[32m | NBA.com 2024-25 NBA CrunchTime NBA TV Draft Kings DFS NBA Bet Home NBA Store NBA Game Worn NBA Photo Store NBA Experiences NBA G League NBA 2K League NBA Play NBA Bet ### Doncic, Irving carry Mavs to NBA Finals Luka Doncic and Kyrie Irving pour in 36 points apiece to guide Dallas to its 1st appearance in the NBA Finals since 2011. ### Luka: \\'This is special, coming from the West\\' Luka Doncic with Ernie, Charles, Kenny & Shaq about the Mavs being NBA Finals-bound, his Game 5 play and more. NBA Organization NBA ID NBA Official NBA Careers NBA Initiatives NBA Cares NBA Foundation NBA Communications NBA Transactions NBA Auctions NBA Photostore\\\\\", \\\\\"score\\\\\": 0.75312227, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"2024 NBA Playoffs | Official Bracket, Schedule and Series Matchups\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/playoffs/2024?\u001b[0m\u001b[32mos\u001b[0m\u001b[32m=\u001b[0m\u001b[32mwtmbloozowcj\u001b[0m\u001b[32m&\u001b[0m\u001b[32mref\u001b[0m\u001b[32m=\u001b[0m\u001b[32mapp\u001b[0m\u001b[32m\\\\\", \\\\\"content\\\\\": \\\\\"Draft Kings DFS NBA Store NBA Play NBA Finals ### Chasing History: Celtics clinch banner 18 \u001b[0m\u001b[32m(\u001b[0m\u001b[32mEp. 25\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Jayson Tatum and Finals MVP Jaylen Brown close out Dallas in Game 5 to secure Boston\\'s NBA-record 18th championship. WE DID ITTTT!\\' Jayson Tatum walkoff interview after Celtics defeat Mavericks in Game 5 of 2024 NBA Finals, clinching title with a 4-1 series win. ### Horford finally champ after key sacrifice Al Horford, who played the most playoff games in NBA history before winning his 1st title, crosses the plateau in his 17th season. 30:13 ### Best of the 2024 NBA Finals 17:47 ### Best of Boston Celtics from the 2024 NBA Finals\\\\\", \\\\\"score\\\\\": 0.63234437, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"2025 NBA Playoffs: Standings, bracket and clinching updates\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/news/2025-nba-playoffs-standings-and-bracket-updates\\\\\", \\\\\"content\\\\\": \\\\\"NBA TV NBA Play NBA Store NBA Game Worn NBA Play NBA Official NBA Playoffs bracket ### What to know about 2025 SoFi NBA Play-In Tournament The SoFi NBA Play-In Tournament features the Nos. 7-10 teams in each conference battling for the 7th and 8th playoff seeds. Click \\\\\\\\\\\\\"Access Content\\\\\\\\\\\\\" to agree to our Terms of Use and Privacy Policy and to sign up for emails about the latest news and products from the NBA Family and its partners. #### What to know about 2025 SoFi NBA Play-In Tournament The SoFi NBA Play-In Tournament features the Nos. 7-10 teams in each conference battling for the 7th and 8th playoff seeds. NBA ID NBA Official NBA Transactions NBA Auctions\\\\\", \\\\\"score\\\\\": 0.13435538, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[1m]\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# NBVAL_SKIP\n", - "print(f\"Getting traces for session_id={session_id}\")\n", - "import json\n", - "\n", - "from rich.pretty import pprint\n", - "\n", - "agent_logs = []\n", - "\n", - "for span in client.telemetry.query_spans(\n", - " attribute_filters=[\n", - " {\"key\": \"session_id\", \"op\": \"eq\", \"value\": session_id},\n", - " ],\n", - " attributes_to_return=[\"input\", \"output\"],\n", - "):\n", - " if span.attributes[\"output\"] != \"no shields\":\n", - " agent_logs.append(span.attributes)\n", - "\n", - "print(\"Here are examples of traces:\")\n", - "pprint(agent_logs[:2])\n" - ] - }, - { - "cell_type": "markdown", - "id": "QF30H7ufP2RE", - "metadata": { - "id": "QF30H7ufP2RE" - }, - "source": [ - "- Now, we want to run evaluation to assert that our search agent succesfully calls brave_search from online traces.\n", - "- We will first post-process the agent's telemetry logs and run evaluation." - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "id": "sy4Xaff_Avuu", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 432 - }, - "id": "sy4Xaff_Avuu", - "outputId": "1b14b5ed-4c77-47c4-edfb-1c13a88e5ef4" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
ScoringScoreResponse(\n",
-              "results={\n",
-              "│   │   'basic::subset_of': ScoringResult(\n",
-              "│   │   │   aggregated_results={'accuracy': {'accuracy': 1.0, 'num_correct': 3.0, 'num_total': 3}},\n",
-              "│   │   │   score_rows=[{'score': 1.0}, {'score': 1.0}, {'score': 1.0}]\n",
-              "│   │   )\n",
-              "}\n",
-              ")\n",
-              "
\n" - ], - "text/plain": [ - "\u001b[1;35mScoringScoreResponse\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mresults\u001b[0m=\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'basic::subset_of'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1;36m1.0\u001b[0m, \u001b[32m'num_correct'\u001b[0m: \u001b[1;36m3.0\u001b[0m, \u001b[32m'num_total'\u001b[0m: \u001b[1;36m3\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m\u001b[1m]\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[1m)\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# NBVAL_SKIP\n", - "# post-process telemetry spance and prepare data for eval\n", - "# in this case, we want to assert that all user prompts is followed by a tool call\n", - "import ast\n", - "import json\n", - "\n", - "eval_rows = []\n", - "\n", - "for log in agent_logs:\n", - " input = json.loads(log[\"input\"])\n", - " if isinstance(input, list):\n", - " input = input[-1]\n", - " if input[\"role\"] == \"user\":\n", - " eval_rows.append(\n", - " {\n", - " \"input_query\": input[\"content\"],\n", - " \"generated_answer\": log[\"output\"],\n", - " # check if generated_answer uses tools brave_search\n", - " \"expected_answer\": \"brave_search\",\n", - " },\n", - " )\n", - "\n", - "# pprint(eval_rows)\n", - "scoring_params = {\n", - " \"basic::subset_of\": None,\n", - "}\n", - "scoring_response = client.scoring.score(\n", - " input_rows=eval_rows, scoring_functions=scoring_params\n", - ")\n", - "pprint(scoring_response)\n" - ] - }, - { - "cell_type": "markdown", - "id": "IKbzhxcw5e_c", - "metadata": { - "id": "IKbzhxcw5e_c" - }, - "source": [ - "#### 3.2. Agentic Application Dataset Scoring\n", - "- Llama Stack offers a library of scoring functions and the `/scoring` API, allowing you to run evaluations on your pre-annotated AI application datasets.\n", - "\n", - "- In this example, we will work with an example RAG dataset you have built previously, label with an annotation, and use LLM-As-Judge with custom judge prompt for scoring. Please checkout our [Llama Stack Playground](https://llama-stack.readthedocs.io/en/latest/playground/index.html) for an interactive interface to upload datasets and run scorings." - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "id": "xG4Y84VQBb0g", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 304 - }, - "id": "xG4Y84VQBb0g", - "outputId": "cf7dcecc-a81d-4c60-af5e-b36b8fe85c69" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
ScoringScoreResponse(\n",
-              "results={\n",
-              "│   │   'llm-as-judge::base': ScoringResult(\n",
-              "│   │   │   aggregated_results={},\n",
-              "│   │   │   score_rows=[\n",
-              "│   │   │   │   {\n",
-              "│   │   │   │   │   'score': 'B',\n",
-              "│   │   │   │   │   'judge_feedback': 'Answer: B, Explanation: The GENERATED_RESPONSE is a superset of the EXPECTED_RESPONSE and is fully consistent with it. The EXPECTED_RESPONSE only mentions \"LoRA\", which is a topic that is extensively covered in the GENERATED_RESPONSE. The GENERATED_RESPONSE provides more specific and detailed topics related to LoRA, but it does not contradict the EXPECTED_RESPONSE.'\n",
-              "│   │   │   │   }\n",
-              "│   │   │   ]\n",
-              "│   │   ),\n",
-              "│   │   'basic::subset_of': ScoringResult(\n",
-              "│   │   │   aggregated_results={'accuracy': {'accuracy': 1.0, 'num_correct': 1.0, 'num_total': 1}},\n",
-              "│   │   │   score_rows=[{'score': 1.0}]\n",
-              "│   │   )\n",
-              "}\n",
-              ")\n",
-              "
\n" - ], - "text/plain": [ - "\u001b[1;35mScoringScoreResponse\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mresults\u001b[0m=\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'llm-as-judge::base'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ │ │ │ \u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'B'\u001b[0m,\n", - "\u001b[2;32m│ │ │ │ │ \u001b[0m\u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'Answer: B, Explanation: The GENERATED_RESPONSE is a superset of the EXPECTED_RESPONSE and is fully consistent with it. The EXPECTED_RESPONSE only mentions \"LoRA\", which is a topic that is extensively covered in the GENERATED_RESPONSE. The GENERATED_RESPONSE provides more specific and detailed topics related to LoRA, but it does not contradict the EXPECTED_RESPONSE.'\u001b[0m\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[1m]\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'basic::subset_of'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1;36m1.0\u001b[0m, \u001b[32m'num_correct'\u001b[0m: \u001b[1;36m1.0\u001b[0m, \u001b[32m'num_total'\u001b[0m: \u001b[1;36m1\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m\u001b[1m]\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[1m)\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import rich\n", - "from rich.pretty import pprint\n", - "\n", - "# could even use larger models like 405B\n", - "judge_model_id = \"meta-llama/Llama-3.3-70B-Instruct\"\n", - "\n", - "JUDGE_PROMPT = \"\"\"\n", - "Given a QUESTION and GENERATED_RESPONSE and EXPECTED_RESPONSE.\n", - "\n", - "Compare the factual content of the GENERATED_RESPONSE with the EXPECTED_RESPONSE. Ignore any differences in style, grammar, or punctuation.\n", - " The GENERATED_RESPONSE may either be a subset or superset of the EXPECTED_RESPONSE, or it may conflict with it. Determine which case applies. Answer the question by selecting one of the following options:\n", - " (A) The GENERATED_RESPONSE is a subset of the EXPECTED_RESPONSE and is fully consistent with it.\n", - " (B) The GENERATED_RESPONSE is a superset of the EXPECTED_RESPONSE and is fully consistent with it.\n", - " (C) The GENERATED_RESPONSE contains all the same details as the EXPECTED_RESPONSE.\n", - " (D) There is a disagreement between the GENERATED_RESPONSE and the EXPECTED_RESPONSE.\n", - " (E) The answers differ, but these differences don't matter from the perspective of factuality.\n", - "\n", - "Give your answer in the format \"Answer: One of ABCDE, Explanation: \".\n", - "\n", - "Your actual task:\n", - "\n", - "QUESTION: {input_query}\n", - "GENERATED_RESPONSE: {generated_answer}\n", - "EXPECTED_RESPONSE: {expected_answer}\n", - "\"\"\"\n", - "\n", - "input_query = (\n", - " \"What are the top 5 topics that were explained? Only list succinct bullet points.\"\n", - ")\n", - "generated_answer = \"\"\"\n", - "Here are the top 5 topics that were explained in the documentation for Torchtune:\n", - "\n", - "* What is LoRA and how does it work?\n", - "* Fine-tuning with LoRA: memory savings and parameter-efficient finetuning\n", - "* Running a LoRA finetune with Torchtune: overview and recipe\n", - "* Experimenting with different LoRA configurations: rank, alpha, and attention modules\n", - "* LoRA finetuning\n", - "\"\"\"\n", - "expected_answer = \"\"\"LoRA\"\"\"\n", - "\n", - "rows = [\n", - " {\n", - " \"input_query\": input_query,\n", - " \"generated_answer\": generated_answer,\n", - " \"expected_answer\": expected_answer,\n", - " },\n", - "]\n", - "\n", - "scoring_params = {\n", - " \"llm-as-judge::base\": {\n", - " \"judge_model\": judge_model_id,\n", - " \"prompt_template\": JUDGE_PROMPT,\n", - " \"type\": \"llm_as_judge\",\n", - " \"judge_score_regexes\": [\"Answer: (A|B|C|D|E)\"],\n", - " },\n", - " \"basic::subset_of\": None,\n", - "}\n", - "\n", - "response = client.scoring.score(input_rows=rows, scoring_functions=scoring_params)\n", - "pprint(response)\n" - ] - }, - { - "cell_type": "markdown", - "id": "ad077440", - "metadata": {}, - "source": [ - "## 4. Image Understanding with Llama 3.2\n", - "\n", - "Below is a complete example of to ask Llama 3.2 questions about an image." - ] - }, - { - "cell_type": "markdown", - "id": "82e381ec", - "metadata": {}, - "source": [ - "### 4.1 Setup and helpers\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "44e05e16", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - "100 275k 100 275k 0 0 901k 0 --:--:-- --:--:-- --:--:-- 903k\n" - ] - }, - { - "data": { - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4QmWaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA0LjQuMC1FeGl2MiI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiIHhtbG5zOmlwdGNFeHQ9Imh0dHA6Ly9pcHRjLm9yZy9zdGQvSXB0YzR4bXBFeHQvMjAwOC0wMi0yOS8iIGlwdGNFeHQ6RGlnaXRhbFNvdXJjZVR5cGU9InRyYWluZWRBbGdvcml0aG1pY01lZGlhIi8+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94cGFja2V0IGVuZD0idyI/Pv/bAEMAAgEBAQEBAgEBAQICAgICBAMCAgICBQQEAwQGBQYGBgUGBgYHCQgGBwkHBgYICwgJCgoKCgoGCAsMCwoMCQoKCv/bAEMBAgICAgICBQMDBQoHBgcKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCv/AABEIAwADAAMBEQACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APxxgtYgAAtfLxrVGkfVe3qvqXILSMDOwUSqzLVWrbcmht4mfG0GpdSfcqNao+pI9tEvzKgNT7SfcbrVF1LumwROmcVnOpPuaQrVWtyxBbRiXIXP4VDqTLjWq33J/IjLY2A1Dqz7l+2q33B4o1b7n5U/aTtuL29VdS1p1sj5+X8aznUmVCvVfUstCgOAtR7SZft6vcIIo/MOVoc5gq9W+5dsYkL52/jUSnM1hXqX3LEsCk8rwKlVJ9zSVap3IvsqHkoB+FN1J9yPa1X1ITaIWYADkelTOpNDVaqnueEfF21ji8WMNoxu5r67KKtWVA+PzXEVXidzuvhbDaSWUQSLoBXn5jRn7S8z38BWq+xVmemxQqsK4TtxXiuTTsj0/bVUtxfIUuAV7/lSc523E61W+5JqUCC2UbeamE5t2Q6leqorUrw26sgG0UnUnfcI1qltxViUttA/Gp9pMr21RdQuLZCu4qM+lONSb0uEqtVK9ySSyF3YFQoOBR7WaluQ61Vx0ZV0uAwxmIjGDitJTk9TOlXqrqXLS1BnL7azlUkkbwr1b7kd2P3u0j2ojOdgliKqluP8hPLBIGcVHtJX3NPbVLbiGJScBRSdSY/b1e5JHbocfL1qXUn3KVap3LFvbp5g+XuKl1Jle3qrqbSxqZF46ADpXRCU3RbM5Yir7TcsxwJn7o/KuSVSfc3Ver3J0iUjoKh1J9y1XqdxkkKZ4Wlzy7h7ep3IzBGP4R+VHPIPb1O5FPGozhaanJ9ROvUXUjiRTxsGPpTc5i9vV7kbIok6VSnK24e3q33C7CCPGB04pKpLuKVerbcjto1I3Y+tDqTYo16vckeJSfujFLnnuV7er3GiJCQABT55tbi9vU7kkkKmLIWpU5jdepbcgghViRj9K055mca9V9R/2RNhJWiNSV9wdeq+pRitF+0k46H0rWVSXLuYxrVFPctXMaBMFR0rLnkdEq9VdSBYEbkDjvxR7SXcSrVO49IE6EfjUOpJ63LVep3GvHHu+7UupJLcft6j6ixQpnO2p9pN9S1WqdyRoF24I61KnO+5brVO5DHBH5vC/pWvtJ2Od1avNudJ4ShjE2Qo69axlUnfc0hXqqVrieMbaNroEr39K0p1J2M69eqpWuUtVt4z4clXA+4ePwqHVmp3G69WNHRnyv4ttIl8cXCmMf6yvuMHXqPBp3PicTiKrxb1Om0K2jUIdnp2rmqSqT6nrYWtPld2d34fgjMakJXj1p1E9zup1aqe5uRwx/3RXO6k+50+2qW3LlpbxkjC9azlUn3LjWqdzQggjBB2/Soc5s0daqupfECeVnaAPWp55sp1a1hIbeMoTihzmnuJVqvcqLErzMAPxxVc8jNV6re5FJaoJOB071ftJ23EqtW+40W0ZVuB0qXOdx+1q66mfYWMP28sE7+lbe1nynJCtV9puab2y78bahznbc6nWq9wmt0EX3e1R7SfcbrVe5FYWyNNkKOtN1JdxQrVb7jdThTzApWmpza0FVr1U7XIbuGMWnKinGc7ilWqqF7mPbxIZSNvfmtXKZhCvVfUvQ2yEcLn3rNzmjZVqvchliQvwtNVJkurV7kZt0xkLVe0mL2lXuV5YRu+5Ve0n3E6lW9rkUkSjkpRzzZLqVV1IZY1IO0Cr5pcl2Eas7XbPof/AIJ8+HEW/wDEnidlwdsFpG//AH07fzFf0F4I4BfV8VipbNqP4H8O/SrzqpXzjBYFPSEHJ/N2R+gXwH0yL/hWOvXEvzFlAXNfuc604VoRi9Ln8aYyk69KvVf2FG33nyr8f9EimvrtWT+Jq4s1qSnFn6LwljasaUHc+Iv2gPA8VxHdKEOSpIxX5LncZ6rof09wjnFWEoO5yXg7UDrXhW1vJzmSJTDOWP8AEhx/LBr8AzOjLCZlUg9r3Xof1dk2Z18Zl0W5Xa0LEsCE9B7VlGcrHoOtV7jWtYzHnaKaqTF7WrbcpNbR+ZwBxWvPUsZqtWvucn8UrdBZqdo+telldaftLXPJzbEVVHc4W2to/MXC817rrTfU8mlWnzJtnd+FoUa2A29Bya8bEuo5Xue/Rq1GrxehrG3jJwFFcLqzXU19vV7lS5tkEhG38K2hVmzGVWt3IpbVBHnaPzrVOo+o1Uq23KciR9NnzfwkVTpubvIMRUnGGhv2i7wDntXO6dOGjNXSpqTVy/Ase3aWrnnZbEaJkkATfjcMH0qXsEVdk1yVRMhhShe5pKKvZFrRdpTDnAPvWddJbMulGFi0NqTHa3TvWW6HsyZAhwxYVN7HRCEZLzI7qQKSY8Y+tXBJoUqT6l7RzmLJYdOazqxSejKpQp/MnlaJWO5xn61KuW6TvoRW84MxXitGrRJjBKRpaafmyxwO1YVLWNYxgtS1JyRgjpUKw0k5akbsqrk8/hVKzdjV00tSC3dDKd3p3rapStFM57S9oeE/GotN4yMcWNuetfXZVKNPDLufL5jQtiLyO8+FFvHDpsZB5wOa8XMqlSrVZ7eAcY0bHpEDO8CknjHGa8V+47M9KXK4qw5FYyAn8eKTasQtZWZPqkZ+yKw5xUUpJSNp000itao5i+YYAHHHNXKK6mduV2EYfOc8+vFQkjSEOZXY+7+W33L1Fa04LmM5dhdJufMiKYGSO9OrSUdUaUow6kMkc0U8hEfHfiiFpKxlOnGN3EtWNxCM7h1GKyrQtsVRlHqVrwM1xvQdT6VVN2iN01J3JimIvfHpWcoxi7gm3oNRDnLDn6VNk2aWsieNegx3olCKBPUnjIR1Y9jWdkNtI07WdJphgiuhK1OxinzVS+pVSe+a5XGx1bD1bPVcn6VLVtykmxCpPRf0qWkPlsMKknG3mhxSVws2yK5t5yMqn40RcS1TbY23tLhjwvP0rbliQ4yTegraReNICqnGeeKpRp9xKMmWJ/Dd3JFvzjHtXPGUVLRmvsnIhg0r7P8Au2lJb6VvyQtdshxcdESf2PNJznAPcCsZNKWhoqMmiMaPcK+Bzirjytak+ybZLJpcnlc+npWX2tCnRlYrxaXODkc/hW9lZXOfk5W0NlQwxnzODg4GKapXehbilEzIGllvCFXODyfSt6lLk+I5owu7ot3lrOYxx+lZqMTaMefRkUVpcAhSuSe1S4wNXTstBy2twDtaL9KzlGCWhVOk5A1hcsSFTj1xWas9yZwlFiJZXgbHlkfhV8lNFxg2iV7C7EeRH+OKxaV7BZ8xWSKaOXEi85rpVOPKTKCjK50vhFR52PzrlqwtqghZz1H+MIx9oAUd6KTj1CvGPPqUNTjzoEoYfwH+VNqLejKcIOmfL3im1eTxzckAf6w4/OvtMFGP1NXPjMVCh9bdmdVoFg+E3Edq58RKMY+6ztpQvojtNHtxFGCrYwK8erNvRnq0lBKzNe3jyeSPyrnlY1ajfQtwoBgZFSrGtOMWy9bEkgggCqjBLUupBQRcyBEV3D6UWT0LjNONhFnjSIgtj04qZwSepFRKCKUMgaVhu6mnKEUtyKcFJXFmxnCGhRsyE+WepAkyorZOcjvVummbPlaKmmTg3xJ9ac6bS0OKMH7XQ05WDZcMP8KlQN9b6kM1wPL2hucdKHSinqVJRtuN02QF8k/pWcox0dyqVLuR6nMhmwGHvWkIwtuc87upZkN1IhtvvdO1aJxTOicUqdjKhaMyli9aNpvRnFRbvZIuwSxrHwwI9TUSipHY6aauQNIXkySOe9Hs42OeyTaCQlD7UlCI4pSe5Wc7nwT9Dir5Ioc4JK5Hc/d4bOPatoxMYz5SmJcngj86VS3LsW/fWp9cfsMaOLH4VtqG3DX+qTPz3ChVH8jX9Q+D2GlR4RU39ucn+n6H+cX0jcbHE+IlaCf8OMI/hf8AU+3vgzbywfDDU8ZAkzxjrxX6dVilXppn89uUZYDF2fRHzR8cbDdqFy23qTXPmMFys+h4Xq2oxPkf45aP5bSSFMqwPavz3N8LCcWf0NwriINJXPAPBtwNK8Sat4WlOFkYXVsPXsw/lX4fxhlsKU4YiPoz+suBsV7bDOnfdfkbU5Cnrz6V8dTacrXPuYxUpWIzcRxoWaQAe5rVPWxdflhHUoyXFuZt0cynJ6ZroV+XVGFCopSstTlvilIn9nBmIwK68upSdbQ8vOIKyscJZedPKoRRjI5r6OUKdJXkzy6dJaXPQPDSxRWi+c2OPpXzuKqy9o7bHuYdQpI1AYiTtkH4Vwtu5cVGUtyjcn98SzD2rqp3gjphTjErX2q6dYxZurhV7YJrohCrU+BHBiKtOFWzZDbXFrdfvLd1ZT6Cs66qxXK0ac9OS5pHXWfhV1jUGftXFVxMXK56EsHeTdy7H4WIPFz+RrJ11bYyWEcnuTxeEgW3G4P4GlKukrpFrB2ejJn8JBhtE5NZQxL7G6waa1ZNaeFni4ExA9Qa1nVhKJmsHJS0ZbTwuuc+cScda5/aK50fVNNyxbeGCx+ab9aznVS2COHaejFuPCYZsJN7GiFfubexbjqT2nhlowFWUj1IrSpWp8uxgsLJO9y3/wAInG/Lzc4rjVexuqEu5EvhJVfKyc9q6IV7rUU8N5k8Hh5oiCHPvzTnUhJWsZxw0l1LI0iToZDXPJxR0Rw73uMbQpSCBKfxqfapHR7LQaugSwHeRnIrZ11OFjOVFx2PO/GXwM1DxPrx1OO62rnoK9LCZrHD0uVo+dxmVVsRW5uY6fwd8OZvDtqI5p87R3rOvjadWVzqwuDnSjys6OC1ZIhHnIHeuWo4Se56EKMrWJ4Ik3KSnQdqyaS6m8aSW5PIiXEflOvSsrcrvc0UF1GxWUKHBWtHUTREqcbjnsbUSfMmD1GazjNpXNlGKWhDe3WlWMX+kkYx0NaU5TqStE463JF6odok2magCbaAAHoRVV5zjo2bYdUpLQ000qAgl4wfauSFWVzpdKFtiS30jTUOPJyamrVm+pKoQ6IedK08Hd9nFKlUa6mrpwUbWJYtN04rt8pevcVdSUpLcinShzbEqaDpzHcUXB74rFTcTaVOmyaPQNLA6D6EVLnKRmqdIevh7SmGCBU88l1L9jSkTQ6BpcB3IRVRrS2uJUKUXoWItMsM8sPzpSqNLc0jSp3LCadpqDO7rWPPJlctNCSWtgOg5xVJu25FoX2GpBaKf4cGpnK/U0Sh2FkgtCMFFIrNSsyrwS0INlohyBj0rp9ppqZPlfQXzIs/KfxHFR7VRZPKr6Djl1y05xVKvT/lK5JLZkUltETuZ8n1qpV01YFFX1Ii0UXCseOxNLmiDlYT7ZCvXnNHMQpa3Ip9RiAw2OParhYtziyu+rWqNuxjjFdCszgqTakQXF9b3g2bRk+1aJcqumEZqWjKwFtYP5yJ1PNaRftNGy3aEbpEU/iSxUlWTk8dK0jh1JnH9YfNsSW2t2JILYHHWoqUY9DqWJioki63ZFuxx6Cs1h09yaeLvJjm8QabGucDntQ8PFuyKq4rsiNPE2nvkrEPxq3hVsFPF2Wor+JLIjAUAVLwKT3JlX5myOe8guo98Sjgfw9qToSS0IeIWxq+DZiZNpGea4qseWVjow8efVljxkzLcAkY5FZw1VhYlOMyhqbr/wAI/Kcj7nrVUqTcrMqzdJ2Pl/xQks3j2ZYyV+evucPCNPAbnx1bCSnjXqdp4a0m5MYLuRwO9eLiK9NaW1PXo4VwW50tnDcQrhZMj1rklKDjqdUKMpbM0YvtAHJNZRlTN/q8l1JohdNyHPtUyqQj0NorlHT3l9aJvDZqY1oSdrCrKTjuV7XxHfXjGNWxjjNdU/ZUkclOck7DrjUr+Pjfk4qYToSepVV1KmxENRv4FEzn6VTlRY4TnCNipP4zeF2Lg/L1rspYeE1c82riKvO9B1t4rS4bdnr09qdSgoHXSxEWtWKviCGCffn8azcOaFrGsasU7jLjx1ZwPiacAHtmrp4SVTaJyYjFKEhbbxSt+NlrJke1Z4ikqK1Rvh60aivcu22oXSDAb6nFcDdJnV7aUXoNmurmSQMzZI6VUVGxm4SlLmEuHupYSA5GRWbqQjKzNW5WsZyW13HMW80nJ69q19tTa0RjKm4LmRK8t2nrx2xRGUGtWTGU2V2uL5TuOQPcVsnTtuVaS6EbarO3yljke1HKkYKfJO5Vu9VvIR5pQkemaqHI5WbLq1HyMypPFV3cu0cUbZB5yetetDCxpw5mzyY4i83Ysx39+bbzMAcZ61xVYU+bc1+tVJrY+/v2UNEOjfBTw5byLh5LETPx3di39a/sTgXCQwPCmFpJfZT+/U/y18VcxlmfHWY1273qSS9FofYXwwtmi+F07KSFcN+Py19LiV/tUEfmNG/9k4qTe7t+B85/GiwElzO2MfMcVnj43iexw3XfJFHy/wDGPQEuLWVSnQHjFfF5hC6aP3PhnF8lSJ8mfEO3/wCEc8XW2ux4QRSFXP8Astwa/LeIculisLUp/P7j+neDs3lh5wce5Fe6vcOzKs2OevtX5bRo04S94/ao1KjlzIz9Qju7m2JF4RjqPWuqjOjTqJuNzLEOdeHKVdG03UIJxcS3e5Sfu1WMr0qmkYmOHpTodRPGOkXmswC3jBAx3pYOosOm2bVqbxEe5g2XgTVrdgxJ46HFdTzCnUdmeQsJXU2bVvpup2wVc5x2xUTlQcb9TupUK83YuRLfBcFSCe9cLdK53woThqQXlnf3ERCEjjitHUpRtcqftEjlta8LazdTbnZnXPAr0sNj8PTjY8ivg61eTdjQ0DTb7TVzcK2MdKmtXoVfebOaFKvHc9atcBA27qPWvlHB31Pra0p+0aLcKDjDjrUVJ6WQoSadi1Eg/v8A6VHtNLGimTRoBwT2qOaxfO2Txrzgt+lVz3Qc7RKoUdHFQ5K4c82ToRxuNQ5IuMpImQLjk0uYvnZLGwU5Bx+VRJ3BTZOrgjJP5GkrFqUujHBwBwfzrRNInm11HKynvQ5pGkXF7DhIucZH1qG29Sm5WGPNtPWr5boqnK+4Rzh85b6VPK4suUmWISMfeHtSaSZg7ykN3HJBlH0ptpI0jRas7jti7QWcH2rL2rYno9BokgXgYP41Sk2TzNjhND1bHPTk0pK61HzMeskb8KePrWfNYHqOEKu4Zjx9KUqlkXDUzfEnh+LUovLB5xwQK1oYiVN3KqUFVjYf4P8AD95pShJGyvrV16kaupy0aFSlN9jqIY1Y/vH49K5Jy5dEd8WupL5NmvLyL+JrLnm0bxSkCrZOdqyrx70RUmwqRUUEiWiHHnD6VquexNNRb3HRvbE7TcD86xqcyKmoomSK3b/lv+tY88kQoxfUebeMni4/Wj2ja1G4We49LRCRib9aFJIpU49ST7GoH+t49zQ53D2aJY7VM5Mw/Opchqmhz20WMCcfnQ6jtZh7OPcjMKA/64fnScx8iAQxscecKlzGqavuI9rGOso/Omqg3CKIXhiBx5oq+e6I5EKI0UYDfjmk5lcqGvGp5z+tHOZuFxnkRnqw/E0nNjVJMhkhgzgsB+NUpsUqaQz7LaP8pkX8TR7SSEoRZDdabYEYLrn2NVGtU7l+wiykbOJJQY5x+ddCqVOpyyw+ug99OjmXbJKv51lPFST0NY0boqSeHLKST5pV/Oqjiq0tmafVKbjqTL4dsNv+tXH1pe2rLqc31WLeoLoWnqcGZfzo+sVktxvB046jbjQdMCZ80ZqFi619zSFCmyFdL0iIbHkHPvW8a1fmvczqYamnoVNafRrGJWEn611UnWrysc1WMYosaTc28to0kWMY4ya3k3B2uKnRTV7G34P+a8O0cZrmr1EzuoRjFk3jbcs4BPGe9Z0mc+LSc0Z18N3h+UNz8v8ASuiL982ikqWp86a3bxjx5KZCCS3H519NRU3gtWfI1sQnjmoo7nw+HMYRHxwOoryKyhHdanrUY1Jam7bqIiBI4+mK4KtVNWOxTUdiyvK53j24qITWzKTqMhvdXj06PzJcYrphS9s7IitNU43ZDp/ie01omKOQHBxWVfCTwr1McNX+suxoWtjbROCzJk89Kz9pKUdTrqUILUsta2knG9eenFczquLsghGCGy2ds67PNT6YputKLD2cXIy7vwvZyyljKnI7100sdVSsCwcZXYtt4Vs41wJkqni6j3ucksHaTHP4WsZThpxz1rKWNqR0RrDDR5TN1T4f6fctn7Qv410Uc2xFPYp5dSq7ljSfC9ppagLcJx0FTUxdWu7yMFg40Z6M0VW2U5LrjFYTqPY6FCC1ZFLdWcLckEe1aU7yKdSK2K/9s2TsYt2PrRUpVIasyTu9R2bdyCJhU020tTeShKGhKkMDn5nGampUeyMI04jZLS2YY81eahTkU1Eoz6ZbiTargfjXXCo0tTGdKMxz6LBJDsaZcYrJ4i0roPYJxsZn/CK2cM5cTrya7Y46pOKXYxngKaV0OutJtkjEUEoJdgoA9ScVdKpLE1owitZNL72cGNorBYGpXk9Ixb+5Nn6M/CzTBpXhTS9JRSFtrGKMLj0QCv7qyqisNgqNH+WKX3I/yJ4jxDxOZ16z3lKT+9tn018PraWL4fN3Romxkd8V24lp4mK6nxmH9pLAYmT2ueD/ABdsvMeZv9o0Y2LcT1uH6nLynzf8T9LEsMyleoOK+UxlJSufsuR1+WUT5I+OPhkzi4XbzyVr4bMocsmf0TwnilFxbZyfhGzj1rQorqQgyxExTexHH8sV+F59CrgsznBbPVH9KZNi6eOwCfVaMnvvDzPEyQybSRwc159HFSi7S1PR+rqexR03w/qEU2J7jcF6c131cThnC6WpnDB1FN3ZuQWSYG8Z2jnivPlXvsdcYRoaWHSwwL8rLxWcJSTvchQjUldGdcXFnDdiJkH0A611yjWnS5k9DOpUjTmoomNtA3KqMYzjFcfNJHbS1jdhHawLkNj6YpOc5aJinCDI5tPimY4Ax24q4qoiXyQgVJNORA3HQdK1qPkhZHOsPGUtStD8W7BQNoTn1NdkcsnVepxwzWGImy9B8V9NCB5FQY965p5ZK9kOeY0obFiP4v6P/EU/Os3llQxWbUyaL4uaMy53pzSeWVGbRzSla5Ivxf0c8F19uaHllQl5tTeg9fjDpP8AeWoeWVB/2tBEsXxn0sfxLSeV1RrNYMmX4z6X1ytR/ZdUr+1KZIvxl07HG2h5ZV7lLNIWFT4zaavULS/s2oNZpAd/wurTC2zcuT2NH9m1TSGPjN36E9v8WrOc4QqfTApPL6iOn+0aUVZEo+J8G7n8iKby+pylfX1KFxk/xQh2HOPbitKOBlcini7vUqt8WIIuuPyraeX3Z1xxcEhg+N+mISskwBPqapZZKTtY8/EZnCFayIn+NOklsi8GD1BarllnLpJHXRx3MrtliP4xae6DF0v/AH1Xn1MtfNZI56uYxU7Eq/FfTiNz3S/99VP9nzQ1mUIokX4taSOTdL+dJ4Cpcn+0qbJI/i1pYwwuV/76qHgJlrMItEg+MGnIc/a1/wC+ql5dMHmUYu5HL8X9Pc5+2D/vqtaeXyTKjmysCfGmyhPyz5/Gtp4OytYzeapsk/4XbHIfllGPrXK8A2y4Y/mY4/ErVL+Fri2yVHcVVPAJO0jaOZSTsisnxRukJ82Vht64Jrs/s+nBGk8wTjqLL8arUKEa55z/AHqUctb1ZyUsx5p2Q+D4x2rjcLnj/erCtlyex3zx8Iw1ZYj+NVoP+Xsf99Vyf2XJvRHFDM1zEg+N1ooyLz/x6tFlNTsaVc1gpWCL49Whk8tLvPr81XLJuSN5GlHMeZ3Lf/C7YP8An7/DdXO8rcn7qLqZktkOX42W68tef+PULKZvoRHMPMa/xwgH/L2P++qiWWOL2IeZq+40fG23Jz9rH/fQpf2a+w/7SQo+NsI63Y/76o/suTD+0ra3Eb44Rnpdj8TR/Zj7E/2onuxv/C7EY8Xa+/zU/wCzGCzJdxR8bGbhbkE+zUPK2DzPzA/GaUrkz/8Aj1X/AGVIP7RklcjHxiJPM/8A49R/ZbbCOZ6kNx8YIwebsD/gVP8Asxp6oKmZruRD4txvyLwYH+1Tjlt3sFPMU5bjZPi5CFy12P8AvqrlliXQdXM1GVrjI/izBIcC54PvQsva6EQzHme4+X4swRD5bsfi1KeWN62NJZiodSu/xbhd932vHPrVQy9R2RLzh8th6fFlMcXo/FqcsvUyP7SW4rfFmNFybwf99VEsqjYHmXdiJ8XoWOPtX61m8simOGaa6Edx8ULdut9jP+1XdSy9ON7HbDGqpHUoah48t9RQK2pA47ZrSnhnSnexwVputOxu+HvHMRshB5gOAOc1yYjDzcmdscTTpU+W56h8LrsakDMORnINebVoSi3c1w9d1GXPHgK3QyO/NEXFLQMQpc9zMvyV0GR06bK1i1zXZsoTq0T5r8Uaxa2XjmaW5lAAb1r63DOUsHaJ8riPZYXFNvc2rD4laTCAkVwhz15rknldaory2O6jjY1UaUXxN07GTcL+dedUy1xlZBUx1OE7JkyfFPTApAuUP40QyyftLI6aWLS1ZT1Lx/p2pIYjcA59DXcsDOj7yHWxNOcbFPS/FOn6TMXjmHJ9ac6E8T8RhQrwormNX/hY9twTcjjoc1xVMByuyM55ipPckh+JNtzm6Hv81Zf2c29i6WOjJ7g/xLtf+fofnTeXOL1QVMdGEtxv/CybRz/x9Dj3p08A1LY0pZom7XGn4j2yk/6WOP8AarepgJKOxWIxsIxvcVPiXblsC7B/4FXK8v7o5o5ir7iy/Ea1bBa7H/fVOOB5XdI6HmkYIj/4WJadftgP/Aq1eFdrWOeWZRmxr/EO16faV/76qHgX2JePiRt45tZutwPb5quODkmXSx0WyGbxfZg7luQD6g1rLDTvYdbFwtoFv48hU4N0PzrKWCdtDCGNu7XJW+IMC8C5X/vqp+o69y3jYrqIfiHB3uR/31VfUH2E8dHuNHxAtXODdL+BoeBdiFjot6MlPju02Y+1qM/7VCwVnsbfXow6ld/HlmrYW6BP+9XSsI1HY1ji3W3Nz4Z6hF4r+JPh7w+swdrzWLePZnORvBP6V6fDOVVMbxHhaaWjnH8z47xJzqGW8D4+qnqqUvxVj9OvC8QQIingYAxX9q0ocskj/JrHzcm2z6I8GQBPAoBx80TfxEdvSqxD/wBrifPUFfLaz831PFPilbLJ5yg9GPatsTG8DuyWdnE+eviLpxdX445r5jFRV2frmT1rNWPmT416BhpJVTjntXxWbwitT9x4XxMpJI8G07WU8I+ILzTbhsQXQEkeTwHHX9P5V+ScV4RYnkqQWq0P6d4Nx1KnQcJvdfkaE3j7SRgSXKj2zXykMsrPofXLHQc3y6kR+IWkRkhZ1P5VNTLqiVjup4iDV2LF8Q9OZ/8AXr+dEMrqbEYjFU1TbEu/Hlgy7hKvHcV0wyySdjzoY+F7Gc/jXT7iUSblJHTmtKmEdOPKjf21NvmY/wD4T2JTsYrisll6lFs1ljFy6CP4/iYfLjgVH9nKLOOGMftNWQN8QIkyGYZI7U54F8tjpr4pSV0NTx5By8jDPYetZzwFSqvdRzVcypw0uVYPg/clV3XBBxXbHMVTm1Y4o5U8PUety5/wqOVItxuCePWn9eg+gPLvaMavwmlYZ8+sXjlcz/sppksfwolxhZx+dWsZBGiyuRIPhHOeftA/E1lUx8U9A/sqVyZfhFMMYuB9c0ljoNFrKpEyfCOccC4H0zR9ep3L/sqRKPhJKBua5H51lPHxTBZVIsR/CGYpvFwMfWiGPg9zVZY7E0HwakkGTdis6mZRi9EEcslfctQfBFXGftq5HvXM80lfY6P7NaVkdF4R+FNjYO3nurketTWxrqRReGy/37M25Phzo8khxGoP0rFY2SjY9iGCpRjYY3wy0lsKUU/hUQx0kafU6S6EN18LNDMDlo14B6U62PqK1mL6vSTPAfixpCaJr7Wtq+F3dq+lyms61HmZ8tmtKHtdEM8O+Cb3WYBNECeOuTWtaqlLVnHThVlojdt/hZq7cAt7cmuaWJpRR0wwNabuWF+E2sk4Dv8AmaFjKNjR5bVkia3+D+qSSYaZhzyCTXLPMKavYiGX1L2aNGH4L6kwCrcN+ZrGOPhe7O2GXTlsSL8D9WLcTn863/tCg0W8sk0WIPgTqUjY881yvMqakQssqIlT4A6mz4Nw2D71U80pcmiG8sm0WrP4DX6XAR52wD61zf2jFk/UKsXZHWzeDofCujCC4TJZcg1j9YdasmjseHeGp3kU7HwFBfaLPdvHhipIOK1rYlxq2Zlh0qtNuxxVn8HbnVbl5hIdu4966pYxpWRbwPuc0VqX1+BFx9xZTk+5qFjOXVmccDUqSsxw+At4OBKffmkszhzHX/ZUbDZPgDqrgmO4IxWzzWnFXsZ1cr0ukSaN8AtVubryi546nNclXMeaN0c0MJNS5TZb9nHVTjErfTmojmajE7qOWTnLUcv7N2rEEl3/AFrSnmkWjq/smwz/AIZy1MEhmb6ZNRVzKPQ5p5S29Bsv7OuoJzvb9aiGZx6lRyh21K8n7PmqJ92Vv1roWY02hyyrQik+BOqIMbz+ZrmqZiovQ4Xl0lKyEX4Gap/AM8+9OnmMZPU0/s6aWwi/BjXEfy1Sqnj6aZvHK5WFf4M+JFPEZxXSsfQcSnl0trDT8GPEL8FSKyjmNGMiY5TNasjb4F61K2ZC35GrnmVLl0B5U5O1gb4CascBWYfnWVHM4Ju4LJ5JkU/wG1iD/WSN+tb1cypuN0c2IyqUZXJYvgPqjw5jlbPWuenmUPaWZrTyqVrkY+BGuF9rSN+ddU8zo2LllMp7Cy/ALWVGTK2KlZjRcdDN5PPlGD4F6mp2mds+nNcn9qxUrE08pm9yNvgfq+/Hmt14Ga7FmVFwuazyp2sPPwP1ZV3LIc98VySzKClYVHKHcWH4Has7Zd2NU82gqbsbzy2UdEB+BuqxuW3n9axWbprUUsBOMLo1vDnwr1SC4AnkOwHmnVzCm4X6nFHCVnPU9w+GeippNusCcAAA14dbESqT0PfweG9mg+IBAuwpHGfzopXuPGJRaRQuIRJoEgH9w1MpSWprSlakfIHxk0u4/wCE3uPKlPLcAfWvusjqx+qK6PiM1g6+L5SnoHg/ULsAhmOevNd1fEX0Rzxpzh7qN6H4a6rPjaX6eprlniacI6lrCVKkrlqz+EOsSNy78+5rl/tCEZXsezSwUpRL0Xwa1gHKyN+dbSzGlKOo44GXMPb4Oa8xwJGNZ08worQK2AqWshR8HdazteR/zqa2OptXRzPKqjkPPwZ1hgBHM/PXk1lQzGnfU6KeVTiRv8GdcQ7TO351vVx1JxuYYjLKnNdDm+DWsFPluG59656WYQ9psXTyqe5A/wAF9eX/AJbsfXmu6eYUXEqtlk5xtcIPg3rTMVE7ZHUZNcDzCHY4f7MqxGyfCPXPM8syP+ZrqljaKp3N3llScRW+D2uAZEr5+tRSx1BuzCOU1ENPwk1xOS7/AJmtpYuhYmWV1G9Bf+FU60FyHf8AM1lDHUeazLWV1Yif8Ku1lhy7/nWs8ZQKeXVHoMf4W6wOVL/nRHF0GjCWWVb6DG+F+s55Z/zNX9bw/kCyyqRSfDDWMcO/51LxdFomWW1H1GD4YayPmEj/AJ0oYui5WMv7Nq30I5fhrrgGA75+pro+sYffQqWW1N7jI/hjrynczuc+prGpjaLdkS6FWMeVHq/7EXww1af9qPwzPfszw2LT3bg9AUjbH6kV9v4c1KWI4qowir8t5fcj8W8d69TLfD3Ecz1qOMF83r+CP038NZEiA+ozxX9QQ5nM/wA68ak4s+h/DKSDwbGGUoDB1KdaKyviEz5yjKUcBUi9L3PG/iPHvkmP+0cGunEK8DpyiVlE8K8d2RbfuODz0r5nFx95n6nlNWzR8+/GPRo5YHO3nnPFfG5pT54s/ZOGMU4VEfK/xV8LecZGVtrIcoRX5tmUHKLjY/oTh/MFDlb2PPl8Maq0p3F2APFfKfW4yVkz9SeCkoc8epZTwlqUowIWyelSpxerZzQp15SsmypqfhzV9HXz50YD61o8RSlK0WddfCVPZ6szjcSzuFEjD15rSM+U4IRhT1bO2+Gnguz1/D3MuDu7niuLESnfU6aFqy0Opu/A2jWk/ksgJBxmuCeIlsmehToJblKXwto8WSEH0zW1KcpPVmlXCwdmitdeFdINuZ/LXPoT0q5zmp6EypKNKxz11oUGSqKMfWtIYh00eNPCqcj1aWEGNdpIryaSi56n0mN5vatItwWRNvhieR1rCpNc1kaUYXRLFpmUOemKwnNJmjppFi00v5sGs5Vi1CLRKdKy4HT8Kl1bgoRuTx6QAPmH4VPtbGns0tSSHStpyFHPtUOqi4xW5LJpvTcMc+lJTu9SVFKRdttOH2bGB07Cl7TlZq4xSuT21iCmB/KspTdyIxTLlpYbcjH6UKcWbQo3RYFksPzAd+SKHO6sgUPZyLENup4x6c1lzNHRGVx0luG4ZeQO1EZe8bNaFe+URwOT/drWpHntYwad9D5p+N0Bl8TFkx96vr8lpyjQ1Pk80nGNbU6n4W2bx6Uuecis8fJe0sbYTllC6PQbGyHloxXqPSvAq1L6HtUrKyNa3sEEZLDPFc3tJLQ3nFRVyGxtl+2lSc5PTFU6bavc56UeeRs21pGkw+QY78VE9EdtOPLI04LONlPyAenFYc7RpJWdwtrUCc7RxUPuQpRehZFuFk2gde9DbaFdOVhFtD5wkznB4q4pA6VpmL4zszfkRYGABxXRhfclc58dT54WHTmDRfCzq525j4461o2qtax56p+xoPoY3gJxeQuwXhiTzV4h+zWp3YBynT1OkSAJNnaPauCVS+x2wUYy1LTQbeq9elYXludVtCWO3/ck5xxQp8zszFtK9yz4WtVN3uA5D8mumy5DippOsdStkuThc/hXFOT2PYilEnSxymOOlTBu5p0KlzZ7JOneqm1YxcrSsVrq1JTOMYrNM0eqK5twU5WtoOyJaujOvLYAkH0p2uzit74WVsGX5k7UW5Tq5E1oOj09ftBfYMZ61m5NoItXsWprBNowg6dxTjN2NHErfYVB4GPpUNu5HOrjktAWzt/CqbfLY0S1uSLbIGHFRDVlNWINbtFMOSMcd67IK+h5+Jb6kGmwAwnI7VnJcrN6NlAlS1AlyOv0rOUrlRmnIsPaqyYb05ojJpGs1pcotaJ5nAH5Vm02zOla9hJbRGIGzHPpWik0rXHNWkRtaKAQAOawb1KTUVcWO12jn8TU6sPdmx72qMhOPxFVFWd0KpG0SpDbKsjEKPxrodmtTlpwi2dX4UiJcL7VlJRTOymrGZ8RE23gx61rRaR5mNbdQqEH/hH5f9w9fpSnqx03+6PlD4sxtN49kCjjca+2yam1gj5HG1IQxl2bPg3TnRVI79qvEzib0nGo7nf6NYZiHGa8atNJ2O+mkdLoulqSGK8n1FcE5I9LDs11tYoziSMe3y1hKc7WuaSkoyLljYRTcmMYx6VjzSizog1NCSaZEZSPKX8q0lUdiG0pE1tpMO7mJRjsRWSk0zoWupDf6dEH/wBSv/fNdLcpQOaqJDpsBXIgU/UVz3aZpTalHQlbTLcpgwr0/u1rGbtuElYg07SYBcljEvX+7UO9jGCUpahd6TbC4O2FfyFaOb5bFNqEgk0yEAful57YFZxbT0LTUxl3pUCxgiFc/StfaSa3Mp2gyOPS7fZkxL+VZ3d7mqScSIaXAW5hUD6VUqjfUyVrjZdJtgM+UuO/FOM5dGXZEEulW4GPLX8qpVJdyJJFdtPtySphXgd1q1KTW5hNJakDafb7uEXHcYqVKSe44KMtSOfS4Uw4jGP92t+eTjuRW90rSW0ajoOv92lST1dzl5E5HqX7FOlJP8Zr3UhF/wAeejMA2Ohd1H8ga/ZvBfCwq8QV67XwU7fNv/gH8ufSlxrp8N4PCp/HUb/8BX/BPtLwvFmZAfUYr+m6TXMj+Asc9Gz6H0NHbweqySbituAoPGBSnriLpHztNyngJuTvbZeR498QIw0swzkZOc111fhsdOVy0jY8V8b2gJcjv0yK+excdT9Jyupojw/4nafHJHLuXse1fK5hC8WfqWR15RlGzPmT4p6YFuJVVOue1fnuNwkuds/e8gxadJXZzHhaL7bogYRqXgkMTkr0x0/TFflOb4Z4HM5Rvo9Uf0FkePhjMriusdGaNtaBpQrqMA/3a4ZVLLRnq0qcd7GX8TLS3OkZCgZXpVYTm9vcyxn8PU8sttLd5SQeCfSvp6fK1dniSwsKlNu56D8N9PlsogVlIPXGa4cdWjJWNcBhpUzoLi0nuZCXkOSeua8SpKy0PTlCXQrXWnMCFHUVpGs1Y6acW0QS6VJLAVOcEVusRdainTbVjJutEaFG5p+0jKokcFSiqcj0W2tTKFFeepcsmezWpc9Vl7aqbYwgyPUVk31OeMnCROkWEz2rGqzafM1ctWUfPK+nNc8iYbkoi/ffMPpU30Lt7xOEbbhl461LlqarYlii5Ax3oS5i0rK464g55HGacU0yGW4IyLXB9Kyne5bTcSazhJTntUSbuVTWhbtYyXwB6VUFodsI2iTXSEHHr6VRhUXvD7VCV5HYVE7WOinFOI8qfMxjGRWcfiNraFTVVC2r+wrp6Iwe7R80/GVwfEmCON9faZN/u58NnbaxFjtfhfGG0uMY7V5eYNqqztwEf3aPQ7CD92gK4x0rwZXctT36EE9zUtoT5e1hgEdTTejOirFKBWhtWS8HycHrW104WOej7s9DYskWSXjqK46rtojpablc1IUDR5AxWFmzRqTQWsRWdjircVymFveJljZpSB6d6zbsaQScx7RFQWxj2FXDc65WSuZN1ZNd3Dbuv0rV1OVHJUXMzH8VaJfahbLZiUhcYwK0oVUpXOerRlVjylvwb4fGkWnkuO3TFRXcqsrs0w9KVHQ0po9knPGPWslE1TtO5YYboQSKmavodq1iSIMwt8o6Vza3OepdJl3wgu66wwH3q6EpclzloL96deIeeRiuaex6kiykAKgFQPSpje5rDUoahEQ5GPrmqZjONpFV0JiyRzioBNlQodprWGxstjMvYzvbjqKq9mcMviF09CqgEelEm7HZTs4lgQlLkntXO2zF6SLU0ZaMEgcdaqDudMNUVJYtrHjtVnPU0mJbrk8jtik1c6I6of5ahge49BUU7ph1INdXdF97jvXXA4sYivpyARbcdqyk2VS0pEgGLjBHfis+hK0mWZF3RcjHHWneyO56w0M8g+ZtwPxrNNnND4wljZeMY+tDkbVfIbsJGMdRWWtzJJsQKwHPpVJF0/iHsn7pgfTmtkVW2K1uuZmBHANa6NHNSXvM6bwsCsgUjnHWsLO52KOhlfElh9sX6itaWjPJxy98qbQfD8v+4f5VM22wh/BZ8qfE9B/wnkn+8f5193lF1gT4jHJ/XDpfBsBaNOPpXHinJyuehhl7p3+kW5EeMYFeNWbvqepBHUaDBgKNoPNcc2dlLY2G0sSDIH41ldm0oc2pZsLHy02FRj6VL3NoLlQS2xE2SPxos7Gbs5XJII1HJxzQlLqdMG3oRaha7hyO3StuZNWIqr3SO0iG3bj2rF3UjOk7MsC3JiOB0HBrWLujWpqivYxf6QcevNKzsc1O/tBbi3xcMxHSh7GlZWYySEswAH1pR3CjuF9DiEDHb0ptkV/iIYocp0qQhflI/s+HzjtzQZPcWa3+XcV59aqJo20VZbbPLL+NNPUzV2yq0J3HK4Hat47DqRsis0Z3kgYwemKdtSKbfNYbdxHyxheMVd7JmldNRM94TnHSqjNxWhyQ+I9x/YX0fGpeItcdPvNbwK303Mf5iv6C8EcJL6vi8S+sox+5X/U/ib6VOYc+a4HBp/DCUv8AwJ2/Q+sPCiD7VGT/AHhX79SV5H8X49/u2fRGnrCvg9JIZA3+iqGIA4PpUa/WOXzPGUYLLHKD6anjfj1N0shB53HtXfU1joGVu0UePeNbZiXyO57V4eKifouWTVkeN/EKzaSKUFcj1xXy+Nje5+kZNU5ZRPm74s6U6ysxQEc44r47MaVkz9q4fxCaSR5j4Kkaz8U3uhSnCXcPmxAnjevX9D+lfknFuGk4xrr7Ls/mfvXB2M990X9pfidHHAVkwR3718epNn6NSRz/AMUYyNMAzjivayxpz1MMbZ0Tg9LiTeBXsVNDwIStdHoPhO3Cwqy/pXiYiq+Zo9bBq7NgRorFj0rz6kpnfPkTsQXS+Y544HfFEbJGVOfLOyFjtwbcEp+YojP3rHXNGbqNp5kb4H4CuiM7VEctWCcrs7DT4sRg+1c0nqehL+Ix93G3mhQ2OayjqcT0kaFtGTbAHj3rKpds63ZwRZs4sHkZHasZGcYpMsRwkyEkc1F9C+XUkWE7jxxU7s05SSOMbh9eK1Xuo6OX3B1wpzyPShNHO1rYuW8f+jZ29RWFR6nRyrlJrRP3XI/OsZbkRLFgnz5I71onyxO1bBesVcqRx9KSd9TnavMs2SkR/MOe1TJtnQmox0Gyj95j9KI/EaPYraqA1pJ/unit3eyMHq2fMnxnDf8ACVY/26+0yXTDHw2cx/2g7z4Wqf7Jjbj7ory8xv7Zo9LL43pqx6LYRsY1LH3rxpLlZ9FSjFJGjNKbW2zg8jrisdJTsiqy9x6lC2kuruXgFeeDW8rUk4y3OSknubmj20kMeZDk+prkqe/LQ64SvubNqh8pge561m5cpvzJIIQFlYGocm0cz+JksKGSfkcZ6g0krm1BLmuWLyMLDtHBI9K1iXWujNtE3St259auUbq5MWm7kOpWrGcMc8GiKSRFSXLInt4QsY54Heoc+hvSXMrkV+mx844BzTT6mNWPJK4+JzJFjHGOKUtjejJNWJohi3Yk965pfEKstGX/AAaM3fvu61vF+4cdBfvTsiv7wcfWuWpqeoy1Gg2YpRNoKxR1SFuT+RFORlWWqKCjdCcjp3rPqQiqEBJGK0baRvsjLu1YSsMd6Iyu9TlcLu5JZRgN8xxmrfY0jO2haljO/IHGBUOOg+XmdywV+QHHWpjozeCSKV2PLwGPb86blqYVY3lcZaksMBeKTlY1pqyJGBDgEY5pRG1qQa2v7jkdAOa3g9Tlrq7sVtOUhMkcVckhNWpgxxcYOOvSs1EiKvI0PLBgyR2rGejO9L3TPlUrJ9elEFpqYNJMV1DJz7Up6Ie5EEIO3AqUluaxS5RMH7pXn6UX1M425xw5jY4PA70+bU1qrQq2WXuGGO/et3JKKOSkrSudT4bTEorJvU6k1bQxPiSh+0qSckHmtqVtTx8YnzkMMYfw9J/1z/pWbumaUo3os+WPijAV8fSZP8Z/nX3eVzX1KyPkcxgvrdzpvBkeETA9K4sRpJs6MPax6FpEY2g4rxqrdz04JHTaLEVAJXvya5JnXTR0NrEWQj2rM7IomWMRDgjp3oB3ZHNC0h3oOnWq5+UpU1a7CGAxMN3pWTcm7F8ySHTRrJ8v48VaVlcStKOpVaF4ZOcYOMcUrqWphJWehaWL9ycnPHNOL1sauzgU7EA3ZX/arpS0MqaXMTXaATEleMc1jJq5piFsRxxiSTb78cUk7EUVqM1CPAI29BUJ3JrayI4IjtB21fQcFaBG0YLsMfnUmSSbFmjIXJXtWiRrUjaJXZPk3EChL3jGCTkU5IcA5HTpgVurIuqroolD5hB9RxV3Oek1zjrpD5IyOMVLkjorfCZ5j559e9KL0OGLPpL9irRxa+BLrUNuDdalIc47KFFf1b4OYV0uEfaW+Ocn92n6H+eH0ksd9a8QalP/AJ9whH8L/qfR3hS3H2yIE/xCv1yiveR/L+Pk/Zs+jtNSyl8KwosCBltMHYuN3Hf3rmqKUcS2n1M6UaE8rVoq6i726+p4r45T/SZdw7ng16cneJ5uXNcqPJvGNsWD89+K8fEpXPvMtnax5L44ssrKNvUHtXzeMhe5+hZVV2Pnz4saTujdivrmvk8wp3R+wcO4i0kjwPxA8mi+ILfWYRg20wJ916EflX59nWFWJoTpPqj9pyXGPDVYVI9Hc68sjv5iNlWGVPqDyK/JIrlbi+h+40aiqQU47NHNfEx92nDPp6V6uXztU0OXHu2HZw2lDLjPrXuVHeLPCpp2PR/CMObda+frRam2z3cDG7NeWDa3C/WuSb1OqtG0xi2oI3HnNRuOlBXuOFudhT2pKXLI62tDPu4AVJxWvP76ZyYle47HSWOfJB9qmXxHZLSpIffg7gR3706Nupyte9c0NPQtbAOayruz0NU1Yt24/vCuRvuOJYgX5v61D2LsSouH96RoSeX/ABgdetDk27Gy1iNkRmb5RwfWmmzO1nc0LdCbYAelZT0epXNdEttGQm2odxxRZsY9pJbrVWlY3c1siG5fdckdxTUHYasW7YnAJGOKcvdQS0QyVf3vGfeoT1NW7orako+ySY/u810LZEdz5o+NSL/wlO7/AG/619nk3+7nw+c/xzuvhYpbSUwP4R1ry8xX71no5Z8CPSNMXKJlegrxqklFHvqVkjRubZpbfB9OBXGn7xTXOhuk2ojdV2cbueOtbtXWocisbSQBQdq8duKyk0loNKxes1/dEGuaVylZsBDumJZc8dKpK61LlT0uSQxhZwh4FO6SsFJqMh+ozI0e0cYoTkzSu7rQoWGTcEMO/StJcyRFCKTLGrQAgOorFSbdiMQve0IoR+6yOlLVM0oP3Srqe7yySOR7U1J3HXjfYgsJpSgVyOnFVOTWhFKUYF+Mny2TvWfK73NKvvRujR8Ggi7wf79dCj+7OOlpVO18vLHmuSex63YsxFVUZHPp61EdzoS0Kt+m6Mj07CiSZnUimZYTaSDUnMtyFkw5AXjvVTeh0vSJmXKgSnNZxu2c8gto2lYqPrXQ5KMdRwhY0VgULlhyVrBtyZrJpbEkcYKYI+uab91ChJlPVLRVUMByD2pRZUtRlnEAMKOKfLcy5tQuFIYqD9TVQvsaxdyvqoJgyR/COK2ppp3OXEO0irZ5WLAPWrk7F6cgwlWnAb161HOrGMW+fQ1UB+zDjnHWueTu9D0UvcM6dSZCaqOiOa92IAxXB/E1nJXHKIIoGC3pxSadjSm9BrRNnn9KhExi+ck8jEBHtxxU3szZlOwjCXBPbNdkVzQRyzVlodN4c5lABqXZF0dTG+Jhxc5963oL3tDz8w0kkV7Xnw9Jj+4f5VlWlqVTf7lnyz8VXH/CfP8A7x/nX2WVP/Yz47MZXxdjpvBAzEmPascS9Tpw2yPRNGHy4AGcDFeLV3PThudXpMfy9M5xXJI76aN6zUqpwPpmpZ1pIeIN7YYdfWplK2iLaWyHiMKMe9ZxjKpLlirvsJu2h33w+/ZX+PXxSu7GHwX8MtTnXUifsV3LbmOF1BGX3tgbRkZIr6nB8G8TY2CnTw7UW1q9EEcLiq13GDsjQ+OH7J/xW+CuoJJ4g8HXMGn3l79l0qWSQPJduMLlUHzYZgdvHQivQzjgjOspofWJRvTbtdO+p2vLcVQpc0tbbtHmWuaReaPdy6dqdnJBc20zRTwTJteN1OGVgehBBBFfFTjKE3FqzR58rLchXHkfUUr2dxLYoaejfb2z/errg7xM4O1SxZv4yXbnqa5m9TWuhdPgJP8A9am07E0UkR6gm+Ug+tQiJWlIYkexPmX9K2lsXJWiQRp5kp3fhWaMI/EFyu0cjBArS9jevpAqzKdhAP19qIvU5ofEV3U7CdvWqk3c1nsZ6xu8x9DVp+6YRjyyuSXMY8rGO3OalO5pValAzZIwuSK0iklocG6PrT9ljSv7P+FelKVwZkeVsjrucn/Cv7R8OsK8FwdhKbW8eb73c/y98Zsw/tDxAzGqv+fjj/4Dp+h7l4Qh36hEB/fGOK+6pr3kfhuYStSZ9Cp5ceiIRbbQ1sM7DxkDqa4226u/UnnjHLVJRtePQ8Z8dwv9skJIzk8gV6k17p5uWS9xHlvi22B38da8nERPuMvnseWeNLQssnHUda8HFQbR93ldTVHhnxN0wyRyBh69q+Wx0bH6tkVflkrHzv4/0kJcSrs4Oe1fD4+DU7n7JlddypxH+C746l4fiDH95bEwyZ9un6Yr8jzuh9UzKfLs9UfuXDeL+sZaoveOny6Gd8SY/wDiVjvWeXSvV1PWxqXsTiNGX96oPrX0M9Inh09T03wen7hcj6V4OIvzM97AGvcqRwRzXC22zpr/ABBBEWizisnLlbFSaQjJtUgjvxxU36s7I2ZQnjyCSOh7CrlK5y4hWize09MRDPpV1L8x01NJsddOCo45HtVUk0rmKSaNHTCTa9O1Z10hW0LtooLYNcctjSO5bijy/K/hU3drHQ0h7AbxzUttCvYlkX5QSMZFQneRrH4RChMYyK1joiaj7F225g+7xWM3eQQi5Ilt9oHHNEYmzVtCSOXbnd09RWqaQpe5qQKVec89+tNy0Kppz1ZegXGB3A5Nc85XRrOPujZgWf8ArSi9RxINQj3Wkh/2a6L7Catc+ZvjaCviccfx/wBa+0yZ/wCznwuc3+sHc/CbLaVH9BXmZimqrPSyxfu0enWKhLZVK4OK8GpK7se02tjTs1EkRDL9Kwsr3NYSaRNp9uBNnHGetOVV2sPmbZpupYkYx0rBu5qotk0W6HK4x0oauGzJUQEh8U3JctkbT+G5HGHkmPrntUx+GzMqceeZLcW2SFkOPrWkUVUg1Ipoqx3O0DBz1rbRolS1si5cgSRAMB061yy+IucFYgiQKDkAccZon8JcVaNyG+VZNyMBzis4pha8ioIBCgyuOPzroUUtTKpFJ6E9kQ5K/wA6cnZFwi5o1PCw23xwMfPVRleNjnUbVjtkyG6fWuSpueolZIsquFAH51mtzdP3SCQBoyMdqp6ol6oy7hDFKeOvesznatIheMbScHpSk7s2voZVxHvmIFVB2MZJouaZpdxcTJBbQs7t91VBJP4Unebt1FdQV2eofAn9lr4p/H7xRpXh3wXobeXqdw0S6hP8sEQRlDszdMLuGfrX0uRcJZvnic6UbQW8mNU61WnKpH4URfG39m34mfs/eNr3wV498PTwy2czLHciE+VcIGIEiN0KnHBrfOuEM3yafvw5oPaS1Xf5M7pYOpCnGotYvqjz3VLJjHkj6ZFfJNOErM55qxStYmQYI5703K6MYx1GXaEOc/rV09maJWdynq7ZhCjriuqiuY566TZTswfLxU1JWY4Jcuo0Rf6SGYkc9KzXvIm/v6GurHyNnTjvWcklqdkW3EpMPn5HHrWSZztNO4MpUEnv2qm1Y3klyjeRgd/Wjczp3HFCVzxU6JnQl7w9RiNl9PWspK8hVNEUoIyZ2PfdXZDSJzXvG50nhtMSgiom9UaUlZGJ8To/34B5wa1otanlY+7mV7YAeG5c/wDPOsJ35iqd/YM+V/imP+K/fjPzH+dfdZSn9SPjsbF/Wm2dV4HBEKfhXNiXqzuwy0R6Joa5+Ujj1rx6q1PUprU6/SV+QZHUDmuKZ3Q0Ogso8g4HpmsZao6FbqPKqJdh4J6ipUerLv2Po39h34NeDdXk1T40/EHSrfUNO8PTwrDYXhxDI7N8zN6hVDMB3IA96/oDwd4UwmJpTzPERTeqjdXtZbn0GTYGFRurUTd9Fbv3Pp4/8FFba61P7JodraWul6ezLbRWduixxuoISJemMkZav22eW4BR5bt38+p9JTyjDUab523J73Z5F8Xf2+tO+I/xF8M6dqniOzbxhbTSz2WuXUBuTYXMvyiQRsdpkUH5SQdpIPWvNznDYCjlUsLRtFtaeVjz8fDA/Vng6N1B291abdDwX4//AA9+FvgA6pptz4p1LUPE3niTETpLHDubLPdSgsDNLywjU/KCM85FfydxHlmHweKqONRylffp5r1Pj3GHs23Fxs2rO3R2T0b0e6623Seh4+02ID0r5eMJPcwjK6KOlsXvmz/ertjHlgQo/vLl/VF27sDvXI2uYusx+mL+63kfjTcrBR1TK1wrPOc1KZk/iHyoViOPSqlK5rN+6VoY8NkjvQc8dHcbdKSpP05oT1LqvmKkiEr05qo7mcNyGdcREdPWnJalTM5AQ/A59cV0QWhLRJdEmLBHIFCirky0izKulba2D1FVFc0uXucFaapUXN9E39x9s/BrRjpPgrStOC/6qxiBHvtBNf3hktJYbKqFJL4YRX3JH+RfF+N+u55icQ/tzm/vkz1fwXATfxEDHzivZpu8j85zKX7po99haJtJjjIH+qAbI9jXHKMva3Xc9DDwpSy6MZLXlseP/EG1EV/IFPGTjjFetfmijwsC1FuK6M8v8UW+Sx6H0rzcRE+wwM7WPM/GNqy7yRjPt1rwsTE+3y2pqjxn4iad5gclfXpXzWMgnc/S8mrWaPnz4maT5czsydSe1fG5jR1P2LIsRzwszi/AU4svEt5o8jYW6i8yIHpvXr+hP5V+X8V4W9ONZfZdn8z9m4NxiVZ0n9pfiiT4jMDpmD2r5vAfxlY+6xz/AHBw2igfaBn1r6Ccm1Y8Wgrtnp/g07rdPTvXiYu6bPeweht3EIk4HT1ry1LU6J3lIWBCsRXHSqlFbjceWJEELhgtZt2NqL0KV7GV4FOLuzDEu6ZuWuFjBLdq2qS947K3xMYzBnAxyema0pv3dTmjF81zX0yM/ZjgVzVZ3ZvKOly1ZKd+AO/XFc71Qobl6IEEnHPrUtWN2mP8os2SetZy0ElckKFkAOMipWkjZaIWRCEAH4U9WzNq5ZiUiEAk+9VFO51RhamPUhE47Hir23Mk0ndlaS5aRmRW4Jwah33sTf2tQs2sAiGW56Go1kb35VYuwHcc4qJq2hb+Ajk5fG7OP0pQ+IcdGR3qj7NISOdhrp6IGtWfM3xzXHinP+3X2WS/7ufD5yv353XwhTOlJj0rzcyb9qz0cr1gkenW6nyE6fd614E/iPbkrI1dPGLfGPxrFgloWNLXMzFl70nFjp6yNCJS0+GxT5bHfBKxJeDYMjtii1zmraSJLVzJD8opTjrY6YWnALMH7V5bLxmptaOoQiozF1qZoRwuOetKDuTiE+hRso5bqdtxrSpOUFZGVOK5rsv3ERVQo7Vild3ZpJ3ZEUbGQKc9jWXwaFSVGaTB6Y61MWkjKEmQ3kEoXAOPrTU9SmuYn0WAKx388dxQ7thGXLoanh9f+JmQBxuFWtEcsZXr2O1GMgdOnNc82z1X8KLKjMZBH4Vk7otPQgVcjkdKE20KL1M/U4irkYqrEVFaRWXmIgmoadynojLlhZbv0BNaxi0jKTvsdn8NNO8Zafr1l4p8Lz3NlJYXkbxarDGcW0oOVJboDnsetehltCt7ZVafR7i9j7f3JLQ/S/4WeK/+Ed/Y9/s7w1o9nYeLtSa51C6udPgCLeoWHnsoHEZY4YqoA7gV/VHC6XJTqOK5OXVW+13Pq8swtOji4VJNOmkly+fR+ZyHw9+P+meMX0zSfilJbarY6fvt9Vt9QtUlEwIZUiYsN2xSQcgggnuK+srYOhicPVhyr3tl+Z3YuFOaqQjHl5trfn2u9jwv9rX9mr9nvRfDdz4p+GfxjsbjxEIVu7vw3a2Rjt41b76ROTyVPQelfjfGvh3TxWHr4/BYd0eTW117yXW3Q8itgauIpSqex9morrJO/n/X3HycsKhskc5r+dkpbHgxaILyMM/I61vBWiVN2VzMv4mlj5bgVtSk07M5qkk0VIsQLhzjPetZxTM0pNCS6pplpIDJIM+hNP2b6ImFenCfLI1La6iv7TzISMY6iuWqpKVj0IzhylQqfN254rKxLs4j3XII+maGrBe6K5RgwHbtVpaChoTKCUwPx9qylpI0hJuY+NMRsO+Kyk9TSrblKdqhM7D34rrhfl1OWC0Ol8NgeeAQOOtZyepvFaGN8TYwbkfUVtRWp5WOj7xUiTHhyUH+5/Spl8RVOP7lnyt8UAf+E9fP94/zr7nKn/sR8hmH+8nV+BlxEmB3FcmJvqdOGPRtDTaBxxxzXi1XuerCyOr0lfl247DGa45O7OqGp0dgcIQBk46VLVjqhFtEogXzNxPGe/asas3yNI2jZH1L4LupPBf7I8mhy2fkz3d1DcW534aczFl6d8BQB/vGv6/8OcHiMFwlQjBPmkvz2Ps8LWVDBUXDzbPn3x74/wBL+C+iXOr6r5iW+iWsq29tGQfteqSkEKR325JNd+Oxry3mjNOLV9LdW9dO99/M83NM6q0sPKpzXb0R81fBfxX4s8XfGaDXvFF9MXa6af8Adv8AOF68A9+mBXzjxteVOdao/Q+OwuPxFXE+1kz6C+J+u+ItcaFbqOGyslzJDo9qDtjPeWQnmSVupZifQYAxX4HxDja+NxbTVld6L8zR1J1puUnds5NpN8ZxxXza3OhRUUQaOcX/AOI610WvC5zpv2hqaoNzEY4rz3uy56k+mxAWxGKbWhUFywuVHTMuSO9OKbVibXkPnB2ciiUbFNakDRkHp1q4pJEzSRFMu4HP4VDfvEW90qSDjOK0huRH4iG5UiMkDim9y6mxnpGd/I963j8JDauLcJmIg/kaUXqKTWxBpmmtqOr2WnKCTcXUaY+rCvVyPCvHZ5h8P/NOK/FHynGOOWWcLYzFP7FKb/8AJWfdvgyyWGBLdBwihQPoMV/dtKKhHl7H+QmaVXKbk+p6H4Ih8vU4mwMqwPSuyilzHyOPqWhc9se7W8s9wCq7KPurwK5eRxlZHq1MbDEUOZKzaPK/iDGXuHkY7juOTnJr01pBHz2AquU3fe55f4mt9xdc1wV1c+xwU7JHm/iy23K4Zs49a8TEK59ngJ2aPJ/HNgGVzt49u1eBioJo/Qsqq6o8J+J2kGRGJTpntXyOZR0aP1fIcVyHiesvPoWuwavGCDbzBjjuO4/LNfBZlhfrOHnSfVH6vkWMdCvCpF7NGh8SJYpNP82I5RxuQg9Qea/OcDCUa3K+mh+xY2onQUls9ThNJl2zj3NfSKmlHU87CwlO7PU/AvNogPpXz2NSUme/hlqdD5ZfOa8mWjOlx94Ux7IyO1aSehVaNooht1GCzVjJhRWhUvkGCSKE7GdePus17eAPAB0yOtazl+8Oup8bQ1LfEmAOe3FbJc0TKrGy0NvTeISD0x61z1YpO5MG2tSa0B8wjPesm0kXH4i6GC8r+IrNts3lK5JDyCSO/asp7hElQMZMY6VLRVwlGcL3z+VXAuMbO5ZC4gwBz3rbZHVJ+4Ub+/EK+TEcnPQVmtXqcE25OyJdHtJJCJpR17VMmtkdEFyRv1L04Mb4UHoM1UdgTuyzaYVcEZxWFTc6ErxImB8056npRAq3UbdAtbuP9jrXT0Qktz5o+O6lPEoOP46+yybTDs+IzuyrHc/B4Z0pDj+GvLzL+Kzuyr4UenW4P2dM/wB3pXhVNGe9NaI1NPObchelYp6hTSZZsSIpTvPBParlJ8ug/djLQsRzfvOuKhzk1qbUql3qOu58x5JJ4qU22KvFt3JtEvk2FZCD2FObaNcPKMYliBc3JZSDUSnJQsVdc1yHVna5baPXnNRG6WpDbnIXTYjC/Hr1rW11cLLnsT3bkjPf3rOUrbETspEYGU4HFQ22dENaZVIKyEkd+lVbQwXxDbwExggZGMgmpimmbok0kFCcjAHetm7IxluX/DYDav8A8CoSbRy02vrB2zJtO4+1YPc9m6ZZQAx9D7VjO4m7EaLhyw/lSg7McGUdVj65yeBWjY6q2ZnxgBCT3pN6kSehRkyLjcRnBq27IzvbY9N/Z8Hiy98faZpvh3xFLpceoyG2kuFAaKcnkRSo3yupxjaQa+k4ZwdbG45U4ysmdlNScLn3H8efiN4R/Z/1r4Y+CPF9mdPa70VpNWh0qQxrDJOSUcLyEQcEg8Y4r+n8lw8aOW6vrZdNjbB4qv7Jyi7q9lf8THl+Hfhy7g1PxTbSW1sIJd0lvG+5W3jPnI2MFCOvpn2492GLXMlbpuevCtUnUjTim2z5E+Lqj4f/ABG1g3mmvPFHZrBYNeXZwzyE/wCrXILADnkVHFeJWD4YxWLm3pBpK+l2dGNxapUpSm9WrHl8gzkHqeeO1fw8m3K7PkqcPduyKZdynJ6dK1NG7qxmXWwSeTx14zVJpHHzRjJpmNr8r2doZD8oKn5iK0Sc1oTVdqbaPLNa1/ULzVjbxzEjeMMK9aMKcaOq1Pnp+0lV5j1bwF5zaGokJ+51PWvIrcqdz28LKdSOpoMmHI965b3kdyXKrCycLnFE2b8vuEDEnAHrUxZjFEkXA5HXtSmjaMfeJ1X5GGOo61hZ3NKiumUYlIuGGOM9a7IbHHF2VjpPC+1p1DHGKie5001oZfxMjUXinI5Irek00edjV76M8bf7Bl7fuz/KsqmkgT/cux8r/FMD/hO2IP8AEa+1yl/7HY+Lx7vijq/Aw/dJ+Fc+KTTudmGWiPR9FUgDjkDnNeLW0PUjsdTpfyjYOvBzXPy6anVSTZ02lwkrlv4h1FYVJdjthex0/gX4W+Pvibrn9i/D/wAKXWrXSjc8NrDu2r6segFellGRZlneIVPCQ5tdexpGjWrS5aaufQfx08Pa5pXiHwr8M9XgntLiHR4DNE0e0QMics3rtG4/Wv7Ty2ksuyGjSmtYxX3o+xkv7PyyLl21Ph39rrxhazeKpLrStNEul2TtHZG6YskDZJe5kXgySsegGcDHpXw2ZYl47EuXT+tT89zDGRrVnbWJ5p+zhrKz/GKzuwHu08wAXEybMfQdh7VhWpQlg5uOyRx4K9WraGx9KeLtNutbjuNW0TSJWt43P2jULhAAzf3FLHn6CvwfNMHWqVJShHrv3PUhFRlynIhMR7n7CvmU7MU5NOxFpKj7cfrzXUpXpkU1zO5rXiF5QpHOeK4HbUp3uXYoxDaZx161V77nS42pGey7mPcZP4UQ0MI6yJJIwIwO9EmazVkQvkDJFZ3Zg1cgeM4we3tS2HbQp3AO4j6VtBmS+Iiuh+54H1FH2hz3KESFnwPrnFbr4SZJXC4TGVIxx6U49zKW5s/CTSv7V+Keg2ZXIF8JHHsuW/pX2/hzhfrfGuEX8rcvuVz8j8csweXeGePnfWUVBf8Ab0kvyPtnwjAWiVuhIr+zYs/yuzGa5meg+Bo1j1WIsuQGGRiuujHmufKY53geuXCSJZvHDgblAHesI6z1PQxLqRwzjS0ujzDxlAwmcSLgjOT616NvdPFwL5XY828SQAFgPfmuCsj7DBzvY878UQHD8Y968bEq6PscDLY8t8YWjkuMYPpXh4hWR91l1RKx454/0sSK4I9eK+Xx1LmTP0jKKzVmeD/EPRyHkUD17V8fWo++freR1lJq5zGoag1z4OjgmfMlu5ibPoOn6fyr4TMMJHD5tLl2lqfsuExLxWVRu9Y6HPaRGRcDnqe1bVLKNrnfhJ80LI9V8CqRapn0r5jHP3me1hkdKhAOT09a8pq7O1R/eDpAfLOfy9aJdhYjZFVMhSFH4VnLciiVb0EIcn60InEP3WbdqAsYU+mK3cFKdy3U5p3RLHAxYELV3UFY1nqjStF2jHr1rmqTuZR1ZPFGF5HXHFZNrlsaJWehYjDN+FZy7G1OPMyeMbEGPyqZWKasOTIP40uli6ceZj5SVIb2raCsKpbmSQXuoLb22Oh7j1pOPMx1alocqM+wt3u5vOkOR2zSlK2gUoWV2bVo4j4xgA9qXLyop6q4skoaXaxFSmTBcxYgzjjgYHNRJq522UYg6rvJHepi/eE2RyD9y4I/h61u37qBM+bPj9GB4iU9Pnr6/JHeiz4XPH++O0+DvOloPYVwZl/FZ6GVaxR6fFkWycfw14NXc+gnblL+mSMIuawSuwpLqWWLI+V9jmtlBNGctZFm3DSgSA9etROFtjppxSRdFtGItpANZxjZ3KrR90ovCIpv3fyjPaupOPLYwiktjT01mCEsefWuWra2h0Qg3uKYFaQu4HXioSuU1yahbg+aexrV/CKGsri3CFyVH51ildiqRfMC5VAGAocFua09NCrMpWXBGPemmrGM42kNeMlBkUXNou8SazQRk56U07mL95k/hjzTq2FXjdXQ2oQuYUqf7+53iQgYJ9OledOTbPWukShty49uMChJtEvXYckWTkg89azejEtGVNUiwmfQU+YqbujIlUqSuKSbZlK9yrMqtIOCfm7V0JLl1KUF0Pev2JI01P46eGtIg0eG5zq0QVYoiVbJAIlUjA4JIYdD9a+w4S9r/asXCLtbex6EJ044WfO9kz1r/gqv47hu/wBqbXrLUPG19pWm6Vbx2V7BprMjXFqkYHkZUHOSAMYxkgngcf0tTpxw+R0HKN/teafcyjajk9Fw66v7zf8A2NviZ4M8beEhpfhS9v5NItQtvHFq7hrqzzwUk6F1zznFdUcU6qi1vYv61L2V1ueBf8FG/CGk2nxS0LXbeNg0Vy9sAE4ZvLznOOnUj61z8Vxni+CMTTau7G9bmng1KerPEWQgbvzr+NZLllY86LtoI8ZaNsA89KcpWQ7KRzmqJcfbS+Mbf8aqFuU4atNxndEeuJHqGkeRs3HaRtxW1FSvcio+enY4fT/h3cxah9rnQ7C2QD2retW5vdTOCGHs/ePQtEhSzsxbxjAC4zXDODR6uHjyxsKfv59aw2NZS1FxuGOMUpNtHUrONiMrhixBJognY53pIIs7ifWqexvB6lmOM+UxwelYydmby+EoRhvtDL2Jrog/dPOUbO50Hh3KzCs5XbOqDRlfEckzISeR610UUtTzcbfmRRU58Pyf9cz/ACrOprKwJf7Oz5b+KKH/AITth/tH+dfa5SrYM+KxqX1k6vwQoWJM9wK58Um2z0MKro9J0FSzDA7V4lXWR6cUdRpCIzDAzjjmsamkTrpJ20OstLeaG0F6I22dFbHDH0rnjTlPRI6veWx9r/sxXsnwW+ANqY7WTTtT1+Vrm5uIn2XN2qYIiB/hjxwfUnjnp/Xnhpw3RyvJIOrFKb95t29ba+X/AANT7nKKGEwODVWtG8n36X2OK/bB+J+v+HdBk0/xKou/Eup2hkcPiY2VsVJSBTjKyEcnngYr188x9LlcaTsvI+U4gzZ1ZOMHaC6dz8rvjLea8PHMt7r1jdz28zlzb3HiBZIxz3jiIKduOor8+k68qq8+zPzrETlVqpR0Rvfs1aZ/xc2xktlQKZQ2xmOMenJr3qlN08BP0PsMuhGjS1Ppn4oaNqutzPrHiWfUZFgCixVohb20K9gqnBbPqBzX8+Z5Kc6sueTtcULSldM4l5n2bX49q+V9xsmV7sdo+ftpfb3rsX8MdF+9Y2ZBvnxjjPGK5GtToULT1Ls/ywBMc4qG+iN6vwFCNDn8aIvU54qzJZh8uPUVbLm7orSYxU8tzJK5E5BzxxQ0S3Z2Kdwu1yCOe1VBaCjG7uQXH+px0oXxEztzFWFArgsPwrqfwkyGTpufHepTsjJrU7r9mfSftvxTS7ZeLSykfnsWG0fzr9c8FsKq/FVSq/sU397aR/Nf0ocw+rcC0sMnrVrL7opv/I+vfCy7YVHpX9VQP83se7yZ6D4BUS6sq+Xu6cYrrofC2fL46LlFJdWeq3Muy1bjnCjAFYxXvHp4ut7LDtLfRHmnjPfJPIzsSQT1rutZHiYN63fU848RR5LE8e1cVY+twb0RwHia2yXB9OleTXjc+twU9rHmfi+zdt4x9Aa8fERS1Z9xl1RKx5N47tFhDGXqc7R6183jU5n6DlNVzaseH/EbSZMtMY8H+7618pi6ahJs/VsgrxUrXPJfESXNjHcRCP5JQG+jCvhc7pqpUjUXTQ/X+Hq8anPRb3V0Z/hmJpZwZSQc8V4+Ik+TQ+tw79jues+D41S2UL0r5/ENvc9vDS5nc6CNcHkDmuE9BbizkCPpgkcVk3dmVd3K6AKpyO9TLcVKNkU7s7lYEfhTtYivbkZs6eDOVc/dIziuiclDQunBQjqaaKgXpjjisYqUncpvm0LECHBIFYyVmSlZlmNdqg+o4rNs0VieCMhsnj6UX0ub0HYlK4OO1ZNhLWQICOetbU1c3hZRC5mEEQkbqOme9Xd3sjnrvl1M4GXUbkAk4Bxirm3TVmtTOhB1JczNe3gW2t9qisEru51TktkT26EoTmpqTLdlGwyBD553NnB7ik9gilBGjDDlTj09KxloaqV0MdMMQSdvrThrIFdu414w0LfQ1tfQo+bP2gSP+EkCgdH/AK19hkelA+Czu/tzsfg4caYn+7XBmb/es9LKvhR6dCGaFVJHSvCqWTPoJr3UXLBtgAP4CoWrNKVlEsXMxjjVs846VpGTeyMqu5b065Vk3EYU9qmcjopfDqWLq/8ALiIB5HSsbXeg6t2jPtLma6u+e5wQa1qNRRz0YtTdzoLRFhiDE9O1c6vLc74tNhNMASM8ZqnKysRVd9CKG5XeTt7+tKUu5NKyepL5yg7mwT2zWXM+hVSVw3oxxgVMpMKbsVr1G3ZUU4MqUL6iwLuiG4cnrTabZnflHRIxkK84PpWiaigiang+zkm1oQxRlmJ4AGSaicnJGUHy1T1fwt8JvHHjW/h0zw74curmSWB5h5UJIEajLOT6DHWtqOBxFf4Y+ZvKvBK7Z2nhn9jv4uaj4Dvfilr+gT6XoNjp5vLi+vIiuIixWFVH8TysMIo5x83Su+lk+IdGVSaskrhHGUFVVJO8n0POLvR9Q0+CC4vdPmt47qMyWzzIV81ASNwz1GQRmvFq0pws2tGbpxlJpPYzNQiyv8/asS2tDEvYSmSBj3rSmr6mUlqVobf7Rdxw93kA+vNaTvojaFrn2F/wTLsLiz/ae8P6FI02nym8Aeyugsq3CLhmA4+TGAQTjPY9a/R+CYSWKknf4e2jLxShPDVYvSyOT/bs1OLxF+1t428QGaKZU1hoVtLpQYud6qWBHK5xn1xX9I4mj/wjUodomuLlGjgqUI62ijK/YW+Kn9na1e+EfEFtp935eom2v9XZjFuKjKR2zHPmoBtwh27e2a8bAxUVfqeAsZXr4lRi32d+x6Z/wUM8JS+NvhLa/FfSrIxxWRjunwg/5YNtk/ONia9eg44ihUwtXVSTv8z6fC02sPKm3qtT5CvYEU5gbcpGQexHUV/H+fZdPLMzq0JL4W7ehwVIcruVmH7sj9a8ezkJNNmZrEMcaiTZzxzjrWtOLTuYYiSiZVvC08md3GeB6V1cySsctO83dFi6tgoGT09a572d2XUiyWygLJmsp1GbUWnEZLGUfAB96werLcR6oSv1oaaRvTkmQy5VuRinF9DOa94IEO4ArVPbQ1ptFyFf3TAkcisJbnRJe6ZpXFyTjjNdFNaWPO57uxu+HTvmHanONkbU9DI+JLbJhn8a3oQ0ODGSXMkUrUh9BkAYH5Dj8qyqRfPYcbyw70Pl74syGD4gsgXPzdq+6yyCWDWp8ViaUpYrU63wDC0kSM/tjNeZjaiTsj28PCMIHpWgrt6DkjgV5L21OqKcpaHUaREVlB7nsa4q1SPModzsh7qse6fszeCPFnxJ+JXh7whpunQSafdXLk3N3biSO1kjUOzc8AlAeDxg19xwLktXNsyhBr3E02ell9H63X5LXS3PoDVvG1lfeK/E3xMu1tpNF8GQJa+H7SPG2S5GVRD+ILkfjX9Z42Ussy+FCNnGST6Nq11buuunVWfY9zO8YsPT9lHoj4B/aj+K3jD4g61eappM2pSrBI5vZ4xta8c53hZGZQq9s8nA4r85x2LjXnJvZH5ZmGNnJqV1ZPW/U+Sbmyjk8RyXMuhNaSSvkp9sMxOT1LZNfP4CKq4nmSObB0fbVue1j2j9mPRzdfE3TrFohtJzKGXcGH07/Svr8wrxo5ZU923LHfvv+P8AwD6ulKUI+R9ReK5fCr2byXPh7U4HLHN7JcRNI5HQBHXKr9K/mjH4qjWqS5oNa73N+RuSaaPLPEcFxHme2zjPfrivFpwUnuYVVJ7Ffw7qW+5IkIXnvXTL3Y2RNGShK7OlhIeTzAQRmuV3PQjKMmXbxv3YGew6Vzyb5hyK0QBxxznrVwiyHHS4XHCbc9q0k7IiT0KzLlcZAx61ClYUdHchcY6n6UORFTVkEybhnb0qoy0CDKt4hC4zz2NVF6mVValeGMj/AD0reUlykxegyRfmOevfFZpuzId7nrn7I+lGXVtY1YpwohhU/iWP8hX9CeBWEdsbin3hFfi3+h/Fn0scz/fZbgk9o1Jv5tRX5M+nvD0QCque1f0NA/hfGSu2ei/DqJ/7TVkYAjGDiu6lb2bPmsU25xt3PSJpsRMkg3cg5HQGsUlzHdiK6hSkpq7PO/F0cstxLMzgjJ4rrs3G7PHwctFc868RRtuYgVx1j63BPY4LxJHjcMg5ry62iPq8E9jzjxarh2igTc+OT2Hua8LE80nofZZe00nJ6HmPizSSGeVjvc/xV42IjpaJ9zl+IvZLRHkHxC0nekhK/WvmsfR91n6Tk2JcWjxTxrpx+zzIF5U5FfEY6hzwaP1vJcV7HEU6iOY8PyYuFXb/ABenSvnZwXsz9RqWnZo9a8IAm3X0IFfM4pu7R7OCtynQxpzzXnT0R6Em1qhHQlME9KwvqZ25iq2RnjAq2vdubRVkUbrkNzQ3octfWLPSfh38MNV8ba9Z+GtJmt4Gu5/Igur1ikLSn7se7GNx7CppxniZJodWpGjpLc9m0r/gnV8bvEmkWGqeFLVbs3dnc+dbFCsttfQZL2bj+F2UZQnhq9yllVSUdGcNHHL2tpKx5v8AED4OeMPhbrcuia9YNJGLaK5gvIYyY5oJR8jgkccgqQeQysp5FeZi8JVoS1Wh6vNCaumc+tsV+Ug++a4ZRaHFWY6NTEwyKye1i1oxzEn5QetOMbnQo2V2OQqOv41t8KJjK2rMzWL5pnFvCeSaIrqznnJ1Z2L2k2gt4Azr8xpfEzqiuWNkXWYsnJqZys7IiWjJbVgI/p1rB67myvbUbCrfaDxxmtI/CD6GlbYAOfSsZp3LjJJWIZRmTJ/ECiKszaKdh6RF0Yf7JrYLq582/tD2wi8Qq7f36+vyT+BY+DzqV8RZHV/BmRJNNUIvIXnNcWaRUajbPVyqlPkTPUbRCYgD2WvAqyi9j3ZxaSLFspJwc47Gs76EQdmWdRt1MYPbHWqg22ays0T6QuYwpqZp3Jg2noTX0SlNg/Os4t3Nt2MsLQRuWHQniqlHmWpE1yyujYi5ADd+2aTfKrIqErMV7QOCefzrHmbZ0WcmPh05B0P1JquVvczlBpj3soxycc1KTuUoXiRiBQ3y8U5RVjNXixtzACASKzjudF7K41FWNQCOT7Vra5hbmZLbwkvuxx3qKjSZfKkz2v8AYP8AhNf/ABJ+O+nwWtgbgBm8iLy9weXhUQ54OWYV62W4P6xVSseXip+zi5PY/fL9nb9jD4OfAf4f2Kav4esZ9Qh0EWN/eXMahfLPzOv0JJz6195ChCjBU4K7SsfD4nMq9Wo0nZX0Nrx14B+Anx38Ox/DK5u7P7DbEOlpaIqLwuwbeMBgp2gjle2Dgjo+r81LlnHQinjcRhavtE7yPy1/4KcfADTbPUrbWtM0yDT7ttbbR9D0iFX8xLOGMLb28EAGWZ2LMW6cepr4viGjGKv1vaK8j6/Jca5vls7NXb835nxt8W/hX4k+Emvnwr4y+zQ6msKyXVhFcrJJaEjISUKTsf1U8jvivkJxlTnyy3PpqVRVYc0djg79QY+aum/esNpWKIEZcEgcMM56VrUvZWFHm5j7O/4JoeO/EfhT45+G4tejmuLS7uY44EutNh+ReBlH5kUDOeymv0rgmrUWLcJyesXbsa4nDVMRRmm7aHk/7Z7tD+0Z8Q7m9gY51S5WMY5dfNYKw9SOeK/qWtBLK6Epx0cV8+n56G+Jw7hRpc38qPOP2fvilFofxBl07xLolvquosyLDqdzdGOLTYlwI/KiGFaTGcE85Jr42rWVHEqMHqeHLkp1NXZn6R/Drw58O/jb8AfEHgyFZ2hEDyWw1RcvnaQ6ZKjdkHqABV4epXo4uEqjvfRmkswrxxUXT+F/kfmR4o0OfwhqV14V1D/W6LfPYTEA8qp/dOfQMmB9RX5/4q8MRqwWZ4dbaS/Q9eUVOnoZsigKzetfgSjynPHS9zF8Qyu0Y2np6VVOT5jkxEHLUo6JDJy7Grmww9o6Fq7XBOfxrKUi6tiSzXEfGQKxmrk03YSaM5Pt0pKOtzXm0EjZc4A71UloXCLvchu1QvyOlYRTuObsxsQZmCp0HWttIajpx6l5ExET7dawbuzeU/dsjKkfbcsq+tdULqOpw8t5XN/w0u2QH86iUm2a82lkYPxSl3TKievIr0cOrQOGvTvK7M7Szs0sxtxlfWuStL3zeEkoWR4L8YfBGpx+Lv7cihzCTyfSvpsDjYyw3Ij5XHwqPEXWxseCU2RKG644rGrCN/eNaHNM9K8OWvmBWYDpXl16ii+VHr00ox0Ox0PSri9u44LaFnJYDCjJNcsIOpUUVuy23sj7n/Z48Pa/+y/+yj4v+Mnie0+z3HiEi18MWksYDHCYe4TuAQce9f0/4W8PTy7D+1rKzer/AER9dlGE+rXqS3Suzyn4462fhP8As56B4Lu7xrXUtaaXWNXQW/mybphgDaeM7OhJ4zX02b5hWjNuk9XdfJ6P8D57PMQ5zcoPf9T85fjrqq6rqdxLqLDUEUnbDqmsGBVHYpFGRz7V8BjJU+X3rN+p+eV+RxcJfEeb+FrYNMCkAjySdoYkL+fOK78mw8IrmasexltKpThqfRP7JunrB4uTW5nkKWdoXZ4s5LHgdBXbxTjaeGyKbTvdaeZ7MU5KzPV9bu/t11JeSyvvZiSGV+R7lySa/mXFVlVm5JWudsNFyoxLwCYEFfwrmhdMtpQMG90ya3b7VBxg5wK6ozhf3zkrUXKN4l/w94jJPlT8HOCDUzh2MaVWUHqb73fnxB1IIIrnlA9CFRVBYQQmSOtOOhq+wlwpYD8qcmkibJakfl7F5rJXbIlJFeVG3dO/FaOJnNNkQGQRjqamz3JUbPUrX6ELtHbrThuTKxWjjIGDXRYzaSZE4xJgUnZIhu1z3v8AZE00x+E7m+K/8fF+xB9lAH9a/qjwUwvsuEp1rfHUk/kkkf53fSfx/wBY4+VFP+HRgvm25fqfQeix42Kf5V+wxR/KOKe56H8PVP28DfxgcEda7qHwM+bxTvOOnU9Au5Jfsx3BVAGNmazUVzpp/wDBOnGSlGg3JW8jgfEjBZZSG9eK6G2ebhrtI8/8QpuLHHeuWofU4N7HCeJoQQ20Zry66ufV4KW1zzvxJpxjd3inJ3feU15NWn0R9hgq3Mkmjz3xRal967cY6GvJxEEj6/A1LWZ5V4408Or/AC889q+exkbxPv8AK6zTR4h4z04rcvGy9TXxmLp8tQ/V8sxDdJHB2VkLPWXt8fdkyM+lfIY6Eqc2j9ayjFPFYOEn6Hqvg1f9HTjOQK+RxWsj7DBrQ6GMcEYzzmvNqbHoTGyghC3fFYRV5ELSRSkJCn5eD3rpkrI6GUX+fOBWUkcVZaM/Vr/gmX+zD4H+KllJ4NvILfXNKZgZtMvdJkjktnyfnEpB+YZx1Ar7DKcFh4LXWP6nk5pKpzvpY/Sr4f8A7IfgT4ZQBhqKoxaPzGuZdzMqfcJJ+8y9ATzivedOkp2ijyniOaOpxH7TX/BPf4afEbwxe3mnaTaLHNaXKF4otwMcxDNgDpiQCQD1B9a4sXhoV3ZoFmVWLSvoj8MPjP8ACrxB8IviNr3gTXrIxzaNq0loxYdQMlT+K818Ri8JKhVknsj6zB1Pb01JHHOh278cD1rzpRSlZHoqnFiKuAQ3fpxVaRRu1aNipqOoJAvlxdT2oh77u9jhqOV7Ii0jTpLqYXE46daJytojWnBR1ZtFFBAToOuBSbtEpuzuDKdnHTNYLcEnNktoNoK9qJKViuZbCxL++JPTvVxTsU3cuxsfuoBjsaGkty4xuBj+bJ45rJu70NXJRViS3AyxI4K1d2kZyd3ofNP7SbyP4lWBB0l9fevtMl5YYdyZ8bmkUq3MzsfgtZiLS43xztrxMzrOrWaR7WAmo0UemQ7vLGB26V4/LZanqRfMixaR7+c4FWkmjN6SJ7su8QjBzx0IrWKUVdlKDauyxpqCKPk4z19qxqSc3oP4SWQF5PkGR9KIxUVdlwTvdk0CYOc1Dn2Lm0y5bglh/OspMzjuW/mY/wBKUY31OuD0HrgDIz15rQibaYkgyDg9cUrInmZXeN2YE5H0pSWhWhL5Rxhhz71nGOoNuSGx2hZ9xBwP1qpy5VoWlZGhYaZLqF1HZwIS8rhQoGazhFzlYirJKJ+pn/BCn9jbxhbfFVfjT4stFXQrDRUubGFk+9dSlghPHUIm/wDFa+7yPCOgnVfbT5nzGd4qEMJyLdv8j9Av2lPGMlxFPYPPImnWR2SJE+DPLj7v0FfS0JqGjR8lCDi7tHzN4Z+OGm6L8XLXwkZJprrzFkAadY7eEZyFJYfMfbFdyn7urdjrp0PbPsdX+2h4l+G9jYHxx4hNro988BEmreHXtxqCoyfNturkhbUEcFogZDnjHJHzOaV6CjJN9Pn8j28JTrwlThTg5puz2tHRu71V100u7taWu1+PXx18R+ANa8aXh+HGhWtnYCVsNBdS3MkzZ5eWeU7pXJ5LcCvzrFRoOpenGyPt6blCkoyd2jze7cliG6nrWcYqOoOPcqIBvOG4zxVVLtWIcuV6H0j+wV4zTw58c/CpuPDwnshfKLq7jtkj8vJHLuzBnHsM8npX2PB1Z0syhzaK251QlVq0ZKL1sWv+CnXgu18IftKeNkWJ0jvZRdWeeMkgSKw9iAw+or+tsJF4rIKFR32/I6K9aVbLaU+trHzd8Oohrt8PFHgC4inkivVmt9GuGRbcyYxJMzu4CtwACQcDkYxXxuKhOOK5ovqfG4lS9u5tf5n6s/sP+I/FPi3wRaaf43u9Iv4mO2NbG8huJLbK9GkR8tjpzmuWtO1S8ZbGns4Qj7SDafmfBf7ffgVfh/8AtW6vobyra22uWzI8phVyJEyUYB8DPbPUZ4r6NUaeYYFQqrmjJWaPp43rYaM1+B4xHvk0yC8OCJVIJBJ+YHB6gfyr+XOLshrZDmMotfu5axf6HPUkpXsZur2/nRcDpXydPcxlqippUZRipXjNdErJGdODbO++BH7M/wAYP2qvH7fDT4J+GU1TWFsZbs28l3HAPLjGW+aRguegAzySBV4DA18wrSjS+zuPEOnQp883Zdepx13pWs6Bqd34f1/S5rK+sLl7e9tLhCrwyoxVkYHoQQRSxeGqYStKlVVpIdNU7XTuQSjf36HtXLdJG65Yka4ViFPJqG3IpzSN3wp8IPiJ8R9B8S+KvBnhyS9sfCGlJqXiGeNgPstq0qxCQgnJG5gOOcZPauzC4CviaVSpT2huZ+0purGDestl3MnQdB1rX9VtNA8P6Tc39/fTLDZ2VnCZZp5GOFRFUEsSegHNcHJUrVFCK1YOuqdNzlokX9a8N6/4W1S98N+KdEutO1HT53gvrG9gaKWCVThkdGGVYHqDVyozo1OSaszSM4zgpJ6M5qG1vNQ1hLHT7V5pp5AkMUabmdieAAOpraFGrWmqVKLlJ9FuZq50WjQS28pjlQq6nDKeoI6isuVxk4yVmtzelFHNfEVlNyAWHB5J7V2UeeVlY8/HX51E9Ak/Znfwj+y3eftF/Fb4hW/hqfUokk+H3hCTT3mv/EUAlVJrxgCPstqoLbJWB8xlIUY5r6OHCuPxOAqYpRdoq5nTo4uu5vDwcqcF78tkvLzPnD4iXgu9MLEAjOQe1eVl8HBnj1pKqjK8D2LSyBmGMHiuzGVUlZGuHiken+HrKSUqscZOOuB2ryPZuctTu62R92/8E7v+CfsPxj1RPi78Q7WeHwhpF3Fc2NyxaGS+kC/NFjOCmTye/QV+ycE8I0qVsbi43k/gi/zPbwGDjSn7WprJ/Cv1Z6P+2p4otfjZ+0H4Y+AXh63jj0azuUja3hfEUEURDP0H90Yx71+6RVLLspkpxfNNaWdrO63VtVa6tprZ30s/Yx1V4PCcl9Xqz48/4KFeINP8XeL9Su4/D97PBBH5EOy/FrGkSDaFMjbcKAB0JzX53jMVzVGr7H51meLmo3g7n5yeP5NFuddNpYadpkbh+tncvcOf96Rjgn6V85Upwr4hLQ+XoWr4pXLXhGxuJb/ylO1SuGdu3rX1+W03TjqfWUozS0Wh9Rfs86DqGjeD7nXrQiKWd/KjZSM7B9cV8X4iZhNYeNClKzPRoWlLU6e9e7lXN3cF3J6EV+FzlJy953Oumlcy7hwueMAU20KsrakUW2ViNoINTN3WgUpXVjP1bRDG32iz4I5OKqliLe7PYyxGGT96O47RNfZD9nuOCOMGt5WkrxRw05ypyszorSeOWPcrcEflWEkerGopx0H+ZtJLD6UJ6ag4NvUxb7xhpdte/ZGmUMTggkVpGlOesUc061KE+W+poQz293biWNsgjIrOamnY6HONiB+pAwBSs0jlk22Vrghvx9aSdiLNlc4Ude9bxkmhNOLISBk80pbE1E+U+nv2ZNJGn/DrTxjBl3yEEerH/Cv7R8NMH9S4IwkGtXHm/wDAm2f5Z+OmZrMvEbMKkdUp8q/7dSj+h7No8QyBnmvvIrQ/B8TLQ9A+Hsb/AG0Mq7iAMDFddFrkZ8/Xb9rGy1udxfW+ozQs0RBVVzIfQelKDgpasvGUcVVg5fZW5wfiBQDJ6k1tO3Q5cNrY4PXwxLdiK5Knc+nwmhxHiFclsn8RXnVtWfT4NnCeI4Q7MX/AivNrNH1WDnZJI4DxLbo+8Bfzrx8Qrn1uCm1Y8y8Z2Pyvxxzwa8DFRufc5bVV0eK/EDSzvaUAcE84r5TMKWtz9PybEe7Y811S0MOsRXQHEnB+or4/OYWpqaP1XhfF/vHQfqj0XwbzZoM84A4r8+rzUps/UsGrx1OjOMZC8964JvWx2z3EkT9znFZx1kCWpm3GApH610z1N+5QiJEuGHU1nPY4K8tWj+in/gkzpCxfC3UdXt/CMWn3UFuXjWG584NgZzyeK/R8v5JYazseBnnOq1zp9V+Ndz4w1TULB7q4kmtGxeRKdghBJAyeOTjitqbine55dOMpU7vY9E+GnxA1LRbaKzvLn7bpVxH/ABndtzxzVyipEuKWp8pf8FV/+Cad18X9D1L46/CHTBc3981tPqFvCMtviDqW/FG6+wr5vOcM61G0Vqe3luZOnUjCS0PyU8VfCbxt4YTzNX8PXECO8wUvGePKcK+fTBI6+tfHfV60ZXa2PpvrEHLc5W5geOMrjNYOTlLQ6lO8ShDpfn3Pny/d/lV875bIhQ+0akaJEmyNQMelOPu6shzuxVU8nPNZTd2NXY4KTwBweaUVdmyaiiWCMhTnNaNpoyejBSFk9T6U0rIcE2y/ZWV1eSxWdnbySyyuFjijUszseAABySfSueo25G0p8ur0R6D+z9+zzfftCa5rPgzSPFtrpev2mmyy6DpuoRNjVbuMgvZhh/qZCm4qWGCyheCRXTg8N9Zm4t2fmcWIxUqMo2V0932OQ8O+EvFHiPW5PCWk6FcPq0azCXTmTbKjRIzuhDY+YBG+XqSMAZpOjU9q6dtUdkeSUOa+h8t/H1A/iFbiQH/Xf1r6LAVL0eVHymcyhGrY+rf2G/2RfA37Snw213Wvht8Z5Br3grw7JqHjLwjqeg+XejEhUS2IWVhd26AqZWPlyJnIRgRRLAUasZVJyafZK/p127mVDMnQnySjfsaVl8FPjB8Pfi5pGgt4HS+vYrc69p2UEtnqdhbxtctOjHiSLy4XJB5+VlIDAivGWHrfWVCKvbX5I+khVhVpSjs7foexftV/sa+L9b/ai8XRfAbwBa6f4Zl0O08XIkl/DBZ6RYXsMcyxNK7bEAklMaqTk4AA5Fd1TK6zry5FpucGCx9NUUpu7vb1PmnULe40q9k03VIDDcwNtmibqp9K8iesmj2FUTjdHqv7Nn7JXxW/abtvF2qeAP7PttL8C+FrjXvEmsatcGK3treJGYR7gDmV9pCrjnB6AV6GByyti4ynHRI4MVjqWHqRjLeR5xYyJcIpQY3AH868qoveseiproeo/BT9lb4j/G/4c/EL4teHLiws/D/w30VL/W9R1KYxRyyu4WO0ibGGnYbiF44X3GeqjgK1WhOstIxPOxeZUsNiYUXq5duh57AwJznj61xct1c9KGrLKsGbH5cUm+VHUvdjqDOeq9KlSIVpPUbvKgFh2pttky0Y5HBHPX1FNXY1dkyI0p4U0m1FGsYpLUtw2uAFA696xbu7g2fSv7AX7IHiT4/fES1eHSpJYWmEUaqnVdod29MFQyg/3jXtZZg6lWomlr+h5eMxCpR53sj92fhR4B8Lfsu/BO30WUwQNBAJLwx8B5yoARfYABR7KK+7oQjCKiv6Z8LXrPG4ty6XPm/4z/FvS9XhvI7e6lljgV5Lm4jI2xsckku3yK3uTxXRKcYy1FOm9bHw14b/AGhLH4gftDDw/wCG76H7Bp0hBTTJd4d8/ellwTIcemBWka0pU7LY76FKcaXtD2T9rDRtO8bWdqbP4c6r4w1GK0Urb3O+PTrXj70jE8+/SvnM2um58ik0j2sBKpGzvZH55fGXw3qHh7xTNa6zqWitcsSWstCZWgtR2TK8ZH1NfCV7892fUULKOupwN2mHJ7DvipTui6jvsU4tzSnaep6VTk1EIwW7PSvgx460X4f69Zas2nWjXPnLi4u4WuGHI4VB93616OXZhTwteLjC7v6m6rRpRtFanu37dOj3XjLXtP8Ais267i8SeC8KQ3EdxbYJQZ6ZADc88mv694SxbxOUWTdkrnbhY062G5Xpa58UC28QaRLew+G71LCys7tZpjcQCSG3DYw5Qg8tjp3x7V4GYxcqkvet6nyWYRnGUpJfNH6G/wDBNr4u6tfaLHEmv+EtQhV1Ah0S1hsZh6lgqqzH2JNckI0+V6nHB2pO99e7uYv/AAWa+HL217ovxh0qFo0TZJJIqbiGU8g/hX0eTTlPDSjfY9XLsZKVH2aPh1rvT7PxRczM3lWN4Ulk2RY+8PlkGST1PIFcPFXC+FzzL5Uais3qn2Z6qjy0/e1LOo2E1pJ5M6/eUMhxwwPINfyzmuTYzJMdLDYlWkvxXdGaiuS/cpwwqj8cc15tS7Ri3bY9g+DP7PfjD4j/AAi1P4ofCH4nxQeJtB1tI77wpZXZg1CSxMYYXcIyDMobcGVeRtBr9W8LcFODq1cNU/fytaNk00une/yOvJs4xGXZpyte5JW12+dyr8d7rV5ptE/aJ1vRbW/nnmjg8VW12hMdzfW5G7zQMHE0agk9c7u9dPiPklWhmNLOFS92VlUVtE1uejmWWcuNdS1oz102uVf2ofhb4P8AA66V8bPg1azTfDnx7ZSX/h2OWbzJtIuU/wCPjS5jnLPE+QrHlkKn1r89z3Ko0OTFYdXpz2t37HlxwlWPuVN09X0a6WOz1v8AYa8O3niPwF8Kvhb8VLnV/H/i3QINQ1jQNR0j7Lb6MZIvMxJOWICgYG4juPWvtl4Z8+CU41nGryqXK1dNeq27HZDJsQ8JXxNZqEYfD1cl5W/Ix/hBovxf+BHxU+JHwC8WWUuk3Wq+Abqx161PzpNBHNHKWVh8roQuVYZBzVcJZDicDmuIweNpaTpy1+W6+89ngvA4TFZrH63T5otPlb6SadjW+Ctp4l/ZU/Z38QftieHCp8Xajqf/AAi3wyuwoJsrmQZuL6MH/lqkR2IezSEjkCteGOFaODp1cfiFzWdonHPh2Cqyw+J1jFuTVt0npfyf6Gd8Xfg9478TeALT9oq61u61+8vLW2j+JE10f3+ka1LkeVOWOS8gUP65PPUVrx7wfOcoZrhVa8E5Q7WSu7f19x1ZhgqFbFKNCCp+7dRXWKW6XY5n9kcJ8Nvi8nx18U6I76L4U0u71GC6kg3QvdouyJDng/vHTI6jIryvDTLVDF1c5xVN+whGSjKzs5K10ns2rq6vpdX3PJwWEhXdVVvdSjf11NP4Afs3+IPi/wDDLxT+0D4x8Uw6FoGnXRtrAvbb59Y1WVspaQrkAKM7nkJwi9ieK8rB8L4nOniMfVbjFuUvXr/wCKNOtUxUaVON3L8F3Lmi/AL4E+FPCuoftFeL/iLB4/fRvEraJ4U+Hem6dNHF4r1YeXsxLkSSWilsuFRS4Crkbzj28n4ew2EwNLFV0+dtvlaVktLapu736WVt2KeAlUxzg17iV3K9rPqrW/rqtNZ/2/fiZb+FPibqvhTxtYTap8X/ABT4UsbTxBotxdeZpnga2ECmSGLaFUSBQAkQGyEEqNzHNfouJxuBjh3Qw0bc0LWv5avob0syVPK3gsJ8ErttK115+fn+R8WeJPDPiC++Hk3xEt9LuToEOsjSk1NosRPdeWZPKBPVgg3HHQYz1FfiU8JWw8XOSsr2R8TUhyNqw74daelxaiZmCqMbmPQZrzqic52NKNlG5+gX/BN7/gnVqn7Qk9r8Rvinpcmk+ENKut7TFismrgdEXP8AB6t36Cv1HhPhFTUcZioafZi+vr5Hu4TDR9nGpJa9Eff/AMefij4f+Ffwvl0XwTpdtZ6Zp1qLbT7WIbE34KooHTPQ1+35Tl371Tqf0j6fL6FqnPU3PiLwXe3Wl3fjL4y+Jr+Mta2/9naZMreaGnkXdMygZ56A/QVOfYydT93F+6r2Pnc5xjxFZpNpK58F/tX6wviHU7i5vtAvNUVnZg+sXskFrH77cID+tfm2MTUuj9T89xsrtxR8oTSjUdde1abT440biLTowIk/4EOW+tceXJzr/wCROXUoQndu7Ox+Ffh6fUtQbajO3mBYy3Qljivs6clSpNvSyvc9+nzK7vofVFlpdpomlWuiQwBRbQBSSg5OOfrzX87cWZiswzac+2iPWw3u0xs54ICkV8k7Jm0W+Yzb2JyhO3t0xTvd6lVI8yKmlGUSZZ+M806l4mdNqErGowQDaeQawUWzSpMxdb0XcxubUYYc8V10ZuOkmctWipxulqGha3JE3kT8EHHNbzUbXijmo1JUp2Z0Ec0dyhK45Fc9rnqJqaujxf4ueF/EVv4hXWtMuXARiQmTg17+DxFCnQ5ZRufL5nh6sKqqRep6z+zp8N/iT8Xfsuj6NbqbmciOJdhYufQADJNeJmGNw9BNqN2uh25XSxmMR7t8ZP2YvBPwK+HqzeM/GjHxWzhZNFdCjRDGckGvlMvzTNMyxcn7PlpLTzPfxGDw2GoJqfNPqeAzuqt26etfTwhzM8tyWxUkmLGuhw5YFWuRu5HB6mstZy5V10OfF1Y0cNKb6Jv7lc+xPhFpP9meE9Os+nl2cYIx32gn9TX985Jh1g8nw9BfZhFfckf478XZhLMc6xOJe86k5ffJnpGkR4KjPfrivXWx8FiXoz0DwFGyyMTLs4HzeldVKyi9DwK1nUWtjrbtnitWVJDt28nNCXNMjGSlTp8kXocRrjsSwJ9cH1rR2sLDrVI4TXwxLljXLVdz6fCdDitfQ7myK86rc+mwj0OJ8QJu3ZP415lVan02EaOE8Q27fMpI9q8ysmz6rBzWljzzxbbeasgK84rxMRHU+wy6dmjyHx7p+5H/AHfr2r5/GUudH6Nk9azR5N4hh8sOQvMb7hXy+PwftaMoH6VlOJdDFU6iOz8GsklpHJGflZQQRX5Bif3deUH0P33CKLpqUdmjo5M7RkCuGTvI2ndscwP2fBHaphfmKgmzOkj3IRnjNazdmaSlZMotDtffUSfunDUV7s/or/4I06Vq2mfDjULG68Bx6UskDAk6ms7t8p7ehr9CyuEZ02mjw8+k5VeU8u+JV3Ja/EbXFsbiK21ZLuY2q3LeXb3TKTsjfHoehPrXpThTpux5sqE1TSWx7J+zz8SdM+IHhNLTULZ7DVbdQt9pq27FUkAwwVxwwzyCOKSqRmuVGChJSsz3j4Z+Ozplp/ZlwFeAtsImQhX/ANkhq5p0VN6FTThqjk/2i/8Agn7+z/8AtIeF9Vn0PQbbStZvNNuYTNFGFQNMoBYDpnKr+VctTDUXGUGt/LuXRxdalNPdH4d/t7fsur+yh8YF+FcVw9wttYI8l0y4Esh+9j2FfFZngI4KrFR2Z9dl+NliY3PCChxgdPpXDZR1PX1cdB+W24I/HFZuTZzj0V9oPvU8qZ1QcbD0Q7uD2qkrGc/iJCSowoHTpinZIcVzCRxYYu3FZVaj5bJmnw6GpoWs6zoms2mu+GdVlstRsLqO4sbq2fbJDMjBkdT2IIBrKDknzLdGNaUZwce591f8E+NP0X4h/ts6X+094++H17Za5qUuoDxvFFa7dNF0NNnna8CFDtNwCrsgdAjq+0FXUJ9LlVWjin7TeXfp/XzPncdhamHwMqEZ6/iehfBb9lPTPitrPiP9oCHwxDNfLpFjN4msFiYyQapaXCTpMCOdl5YswDjgvuU85FdcsLOvN1la73M4Y2vTpKF7PbU+If2+P2KP2TfgJ8ZtT8F/G/VfE+lnXbqLUPh/qNhAo0i+t5WYos0xBe34ZQz7W2FWyDxXZhMvhQpt332fQ5LyxFROauluegf8EqJtV+Bnxw8XaX+0RYQN4p8I6XBL4Hu3wZ305+J7WWdI1W9tJ7ec7ZcttZVIAU5CqciqezsnLa/QTw03Fzi/kfcen/soa/rf7Pfxh+F9g8P9o+B/EN23gDVoUDSw6LfW6tNbBhztaKTnsWDGnQwNlKzs7aP818ylXU8VSb+F7rzRp/8ABUbwx4d0/wDYo03wf4U0Sa1ufEHhHS18YXmnwFpLqK1tmSwhxniPziGOM9BnoMaZhUqQw/sqXVamuXqEcQ1L7L0PiH9nz/gn/wCKvFnxLvNF1/xLprQ23w4nsr3xLrOmvEkuqyxeTcHBL5a3mmVN5+Y7R3FeDgcC6tXVWX3nq5ljVyJRv33Prn47/s36V+xR/wAE+tG/Yc+FGtG58V/GLV47zxl4imh8oyaZGA0jspbckKoAADz1GMvX0OIpxw2FWHpOzlu/I8enUq4zGKu9kvXU8X/YV/4JB6x+1B4/1j4neKLG68P/AAu01LiPT9Z1iM26X0gUpHLGpILohJc4wGIC7hk14uV5bTli268OaFn5avZ/Lc7cwzeNHD8lN++fSv7TP7KPgX9njwT8MP2cvhX4Ge9+GPh/Un12bQtSuUS9+JPiDy2Km4LD5LWJf3k00gWOOPgc7AfeeHpwjGnCPuLWx4uBVfFV5Vpy956X7H5C6h5q6xeiY2o23sqkWL7oM7zxG38SehHUYr4DEyiqslE/Q6FqdNJj0AXp1rlV5Gsql42JI14yB1NKzJT6gFBX1PbitVG2rGk5MktbVmk3MMA9qU59Ea25DRt7TBwqg57Vz6yYpS5Uet/s7/ss/ET46+LrXw94Y0G4nAvreO9MMRYwRyOF8wgc7RnNengMtqY2uqadtVfyXfucGKxKow5pbH7rfsWfsreB/wBkT4RWGq6rp8NtqsWhw29/KVGV2FmOPclv0FfbYLCOhTV17zWp8XmWMliqnsoO8U2cD8cv2gb7xlrU001qTpUKMIYZFZowARwQnJY9ePQ9OK9eFLklsRQoKET4x/bB/aAFzpNzYabogltLeIuNOWyggtkbuwW5kCs3uQ3XpUYh05yutDojSVWVo6PzPnX9jOSbxN8Sm1+5tEt5JpdywFIRgZxgeSirxyeBXRCmvYNJ2stPP+t9TrnGTiqa2Pqz9pfw9qfjW1TS9T+IfjC+hSJVTRfDGkuwUY6E8KT7818bndGtKLabt5I97AU1CKtb5nwd8bfBE3gjxE1lJ4U1nSkcnYmtyjznHqVH3a+JmnTdtT3IWlE851BkVDnpRFNsHZlG3OZgR68VrpYhNvQ6nwhq1tourwX80cTbD8onciP/AIHt5Yf7PeunBV1hMRGZvThG92fT7+K9Q+LfwD1H+0ENxcaFMt9Y3A05beOSEjZOkUYAwgQg/hX9G+GmfTxcqlKSt8rJ37LsdtOp77S0Pjn4m6Te+DPiY6rOfslxAIwVTIYEDy2x0OVx19K+kzpSoz97ZnzWYyVFtdWe/wD7CuufEe01eMQ+DNEu7O3ulCXGkQ7L0g/xMiHkj3NeLhcPP2nvbHjQrVKi5X0PuD9qH4Zz/HD9mDVfD+r6NcJe21s81oLyM+YRjnIOcfTNezgcTChimqcrxZ6+XQjTrLsz8gtTE2mWws9QbdPp80lheDBXgE7cnjt/Kvqoz542ep7c4S5+W5teCvEVnqkC+E/EsypjBtbrdkx7sAE+q+3tXyHFXCmD4iwzpSsq0VeL6/PyGoprXYu6h4evtJvjZ3sW1uqspyHB6EHuDX8wZrluMynFyw2JjaS/HzRm6fY1fCdxfaHrVrqOm6lcWDQzKTfWZIlhGeWQ5HzAZrmy/G4rLsXHE0JOMou+mhrCSpp3V2fWut+HPhp+0DomqaP4Q13UdS0DWLU2kep6/Yw299JfRrlZpkiZkDnJwQeR1yeT/VOUZlHjXhNrExV5q0ra+966fkj6jL6lTG5aqVRJPrZtpJ9rnkn7Mnwv8TeIfhv8Xf2U/iK6iDQ4U8Q+Hzeg4jvIz8wjz/z0TKkDrxXwWRcJ4x08Tl+Jp3jF3pvzRhLD14NU3G6T0fkdL+yL4yX42an458L/ABOvbzXIBq9ol/eWFuItQfRoHVfsyyDLIhjzuQHGQMkha/ReE81q4zAynXaWJopwWl1t8r+Ttc9/LIVZ4ZzhJKpT5nHm2vbS6Ou8LaxF4j8Yx/DK88OC5h8Da+um+HdauU/0q48PX8r25tpf72zKOM/d2kZx17MZTqY7EKtLSooe9pprudE4zWKWOvaU4JtLbnWt1/Wpk/Eb4PfE7T/Cfg/9jnSAl2+mfFi4vLbUcHbbxoiSLMT2G0r7ZJ715GHyv2GXUqKl1u35JtorHuOOm8XradNXt63Nz9q3w/4g+FXwgu/hSmtwi8vPG8nirWWugyxarfZhEdsT/EWCsEX1IxXNxJOp9XlUpSbqOybls1s0Y4HD0KlaWPs2/ZqEddl3K/jP9lvxX49+GOv/AA/8J+D7zQD8QPiTDcWmkcyNZ2UUKvIWPCxIZvlZjwAo44xXFgcnw9PI5YXmfLL3rJaXa7X2el/LueEsPSq0VCvUbUYt3S3fRb/15npXxu/Z2n8V2Xg/9nnwl4mXRfBHhbTJH8SeJlvFje91KZ905gUfNJIwGN2MYzkjodaeS1K+XxwdNcsNLpaXQZW8RQo1arXvzaSSW0UtPQ5D49eFvBvwj1TSj8H/AAwniPxhYxJYfC6GG28mw8Jxplnu3fjzbgkl/MkH3+nau3EcO15YeEILVafL0FLB1acL695X1u/0R8uftHfsR/t1a14bl8ZeE/gZaak+qzNe65rtrfyzahrMzN80s0shO4ZJIRQBkmufG5BjYYD2VGMJVI9b2fp/SPn67xDgqSUU1pvZv19Oh8q6wPHek+Fk+DPjW81O1sdF1G4ntvDdyhVYL+ZVSSTZ3dgirk84AFfkeaYXGTr/AFasmnF/D5s+ZxW7j1PvX/gl1/wSu1LxfoVl8Zf2jtPNlokbCS00ZxhroDkeYD/D04r7rhfgmnQccTi43l0j/mdeX4KVlKa17H6FeMvGVrp+l23g3wNZx21hbqIILe1jCqqjgYHA4r9cweEp00pTWx9Xh8M6b5pnzn+2B43tvC/hdzLbSS/2TIRHbyy7jeahL8qIFPPyZz7V3UIww1CcoN+829W3v2u3ZdktF0R0V8QqVByi9WeHfF7xRF8Ovgxpfw+0rTrma7itjPqjW+pGL7RcyfM5IRCeDx+FfB5pi68arimfm+YYmpKo7M/OL9o7xNr15rE8978N7NYBuMc+s3F7OVPsJCo/8dr5TF1qsorZnydao7uz1PE9E0/7dKzyxJG078iFAij2AHSu7J6XK+aW7PVy7BPku92fRH7OngVrbUhrF1EhSwQZR2O0y9uDxwDk1pxdmMcrymfK/flotT3qdN39metXUrO/b6AV/Olecqs25bvU9CEPZRUVsipJJk9OB61yOGh1RimrkF1go2B271jsxPcy7DeLhgP71dXuunsYON53LdxObckHisbq5dVKIQTxXAIHPtRJ2QUdTO1rSWjb7TAORycVVKq+az2Ma1KEndLUbo+ryxuElOMdc1rZDpy5NGaGq6ba61BuZVJI9KaqezdkFeFOsrMn8CePPGvwtjktPC+sS20bnOI2KlT7FSD+Fc2IwWFxkuaotRYaVbA3VN6Mr+IfGHiLxjqjax4k1ie8uXHMtxIWOPatqeGpYelywVkRKrf1KLyiQYB5xWkGxKN1dlcFt2Ofxrpkk4ChqyzpNm2pa3ZWKrkz3KJj6kV2ZBgvr/EGGw6+1UivxR8rx7j1lXCONxW3JSm/nytI+2PCFt5VuiKAAqgD8K/vSCUEkf4/ZlO83c7LSUOV5rdbWPmsQzu/BvmoH+bA47V007cp87inaSZ0d+bhoPJlQHPKkck1UEk7mWIlNRUai87nH66pRmVjyKJnVhmm1Y4rXV+ds1y1NT6TC7I4zXUyWwec159VH0uFkjjNfibexGPcV59VWPpMK1Y4jxFB1+XjFedUV0fT4SWxwHiiDAfK5yK8bExPq8BPVHlfjiyZ0cdueorxa0eh+g5VVSaPH/EVjHHfNGw4bOeK8LFQsz9HwlVeyTNv4XSo+lyWxPz20pQ59DyP0r8a4jwksNmcpdJan7pwjj/r2VqLesdPkdU3zAjNfPySPpprUc6jyOR1FTB+8XFWM2fcMgevTFaztfUGkyq6YXkVnI5Kzsmfuv8A8ERL/UfC2qGy1fR/C1mJzgrZ+IfOnI9QCSPwr7DLKs/aNL8zzs4hpZo0P26fAVppvxj8RaXqWBZ3skjDKcpvyVbH1xX0Ps7xV2cKalSTR5B+zv8AtK/Eb4U67B8KtT1dpI7dDb6ZpWm/6LD5MeR59xO7ARqBgcYFYurTpS5ZdDycTFpuR9t/DH4xSeOPDVpeyxpcW5YJGbK0xGx9pXOX+ozmuuCja6YU1KejPS/DHjiTw9feTPJKtuXG9LmJgyA/hyKmfK1Yv2Op8Af8FtP2WNa+I1xY/ErwVp5vLy2uCJEgQl5bdx19Tg4/CvBzvCxr4PmXxI9zKKkKMnCT3Pyw1LQ7jTJZYrqJkeKYxyK4wQw6g+lfAzk7n0vOraFGZcLjH4UkKSVrjrcjbtIxmh3JTsPZSijAzWkNUUldksVuSC7d/WoqTtojdWS0Ox8A/s7/ABw+LPh+98T/AAr+H13r8GnybbyDSpYprqIAAlvswfzmXBHzBCPetqGX4nFQcoK55+IxdGlLlmz7O8H/AAD/AGZf269f0fSvjN8XZfhz8SdJ8NW9tqP9keDZo7TUoLaLHnTwSRQtDcIo2yOuUOwMCRyfoI5Tg6llWlyysvJXa21S16Ppfa6szwnUxWCVqC54777H1p+w7/wTy+HPwY8PeJrTRf2kF8c+HvEOiG0GradZzQy20vz+TJ+7cAhQzLznAYqSFJFe1hMDg8JR/dyv9xwVsfUxM4txtJGp8Irj4hfsaeI7T4bWVzN9mnvFthpes2Qkiu7AuXC2l1j54xuOLeRi6/wEDCnCEadOSaf/AAx01YLGQvL5PzOq/bd/Yl+HX7Y/wo1jwBdaZZTWes6Q9/4LVrfabK7RS0lsMc4YncBxg5wK9OqqSw7gtnsc9Kr7K0Z9Nz4Q/wCCWfhrUPiDfXfwF8feAp4PEfwnupbLQ5NRuVnmn00BE1DTpHKgtH+8W5t8jISQLklTXzuGhOVe0pXa26aGlesow91NJ/muvz39D9OPA/hzRvhb8QrjQRoYA19rO1uUZ8iULYhCSPTCH8MV70oxi2oxOb2c6lJSSehwv7RmgaXpv7T/AIW8C6vpqXlhd6KNP/s2UB1eNMvuGeBsKrj3b2rCdOC1k9dreRvCMo0nJep3H7NX7OWk+CtJ8Q+JfHdn/as2r+MpNVsBeDdIjlmYyFjyWZyWOe7DHaqwkKWFpWirWMq3Piqiv0Ru2nwT8JeLvjR4i/ah+Nzw6jpOg6Sum6Tp1xDmEJHlpCUb5WLPjC8jgc5zV16FOo1VvfTZdPU2q1fYYaNCmrPqVfgX4s8R/tXfEy/8T69JJYeAvCc3k2Ph2C1EVp5q4Kh2DfvXUcsMbV4A61eGdCVBSg3e7TVtPKzvr56fNnk1KTU7NavrfXz0Pk/9sj9mn9s//god+0nraeFfE1t4S+E8cAsH8TXM7QxNao2GiLFkZkLclE4YnkmvNx1OpiJtRm1FrpofQ08VhMHQjTS5pfqfHvx6/wCCdmj/ALLX2zVvhh48f4lf2azRvr1xoX9l6Boblwgae6uH2XEoydsabsttzu+6fFqZOovmparzOmhmtWp7lZcvVWd2/kYHxG/4JzfE/wCEv7I95+0Z8Wl03w1K2swroCa1rqfafElvJwfslrGpIxuVyXYfKOKxq5R9XwjqS3NKOcxr42NKndq2uh84AEAJj614tup9LBdyW1tQTkg9eKynK7LT1NjSdBvNQkC21s7jeqFlUkAnpUxi5PQzqVVE+vv2Jf8Agmx4o/aT1XWdCtLNxLHp0M1pfXERFtAzEcu+MfgMk+lezl+WVa6do3T69EeTjcxp4S0p6p9D9ev2R/2GfhR+yho8OoaRYxXnieXTIrXVdb2bPNVOcKucKufx9TX2ODwVHCRtBavd9z5HGZlWxnut+70RyH7Tvxjt9T1G7gtL6ddOtIzbmS2Vm3dzgKCck8Z9BXfBR6FUIqnC/U+Ev2iv2kNG0TQrmDUtbluIY3Li2GhXjIMf7IZc8d6upVaXKmd9Jyqx5dUfAvxX+OFp+0H4pGieGfDmhrpTSIjXUGkywXKzhvmU+azEDGORisqPNOo72sjoUW2kuh9I/sQeGlXxdCoi3xRERPu6Y2g/lz+tdrqQlCSjvHT8LnVOlGVOz2Z6l+1h8Rm+zTad4h+Md9Z2xUolvpcV5JImONoVGhT8ya+LzaqneMnZPrrdfc/zO7Bpy0ij4W8X3Wmya5O2l6ld3cTMds9+hWVvcgu2PzNfFVVTU3yO67nvwcpRtY5+9O5SSeaqL0LmuVFeyYeaOf0pN6mVPfU2dNufIukmDgFSCCVyBUuLTumaSk+h9DfAX4hTabqVrqHiC8imtZojb3EV9c7pLuNxtMUUC8AEHrX6bwVmdTLMxjWnPRq2r1+SIbnLXY4z9vb9nq88NeGYdS0Ey4sYfPs7lOs9mG3x546rkxkdsV+85xOGPwMatNvSz0+/8dmZYyjTq0VNannn7L/ivxPrmvWGs+HPE9xp80a+VjS/IsBIM4KyXJwRx1yDmvnMPjG6lqcrNaadn0Pka1R06z00P1V/Z/1LVLnwWlr4h1mK5jmh8uSN9UF6xBGDlgOn6Culxp4f95LRLf8Ar+rb7HpU8Q6qTitT8yf2/fhNc/BL9oTU7fC21hrM3nQSBPl80HKkE+vSvrqVdOUX0Z71LEutTu0eNwJA1yqxyMpjx9mlZCpbAy647nPA/pXs04KcWnv0NoSna0keifDnXdI8UWEPg/xNdGMMSsF6Vy1u+ef95cda+M4w4QwnEWAcZK1VfDK3Xt6Hp0kpwaaN7xV4UuNA14+Hp7aUWcJH2SRUz9oU9JOOCW64zx0r+YMxyvMMsxv1PExaaeiWt/NepyVYSUkpKx7B8BdD8YfDyFNf8SeFr2z0q/gTUNNluflS4WGYJIVGemGce5XA5r9e8LI5jlzxFDERahNKUb9GvyPf4dlzVqtBb2Xy6nvEuteD7PWr/wDsjRbOWXU9HWDzmjHmTWwYMrZ7lWwMj1wetftcJRVRRUlzNX83bR/LX8UfRRwVWUISd/dlfyvtqcR8NfBGh/Cnxz4j8c+BmW1n8R6G8Gp2EkY/0eYZYlcDkMCea58NgcLhqsp8tru7sKdCEJOWu9zE+DXj+C90vxB8Qb5Ior+80+IwEkbt8byJuI7HzNx/Wrr1KdS7hombQlGrJKOqT/NX/I9Y8GarPreoXHjXVjFLKmoyW6XAPJ/cxgnPvgflXncl5cvYeJnGko0odtg+JsfhjWrSwk8dafa3/l2jTrJqFvvRZArBJEXu4b7vYGtqWEjUoqNV3a3duv6XJpe0pp8q07GWvjLxRaaH/wAIxe+KJoUutLji2rIUl8ojHzdlLdcAd66q+AoYjBuhK7Tja+z1Vrq2z9OpnSlS+sc0Y+diZ1TUNTeDU7iK9mtUE9rGGDLaPt4wf721mBPbJreMoqKO181FOMNL7/n+ZpWGmeHX83xN4ytbaGwtomYylQwnQZ3Zz1BORjp1q+dRj7j1/I4cRzXUYPU8i+O3gDxP+0T8VtFm0z4863o2nWejMvh/wt4RtHXMqrujEiJ/q4gAMtgfWvjM0niZ1VGlW5N2+7Z8lmmHUqntY3TW77/M539jb/gm1rviz4pXvx3/AGpb2Rms5x9lgnw5Zl4Er7hhm4yBg1y5Lw/W+uvGY1+0n0v+p5H1PnxSqS18u59ueL/HC30UXhrQEjt7SLCQKh2hVHAz6GvuqVCNJXe57FKlHDR5upi6Sp86aW6vYLa20+Jprq9fkQgHliQevoKK9WFON3u+hnUxUYLmbevQ+SvHXxU0z9ov4+y+KpZlXwr4Slc6dBJLhLu5HG8k/eOR1NcmJxCp4dKL9Tw8dmEKj5Y7WPnf9qf4i31ppt1cabpl0LGJikosxeSbF6AAwKMfia+BzKu8RUcr6t6nwlf2ODpQoUtIxSSXZLY/Pz4keJfD3ibWpVtLHV0nLnbJeXkpA56bZOcfjXgezjOty2Z5vK6uIUYI1fhv4av9T1OG0tIN88kojt1I4Zj3+g6/hX12CdPDUJVJacv+R9fhqcqUE2fVXh/w7beCfDFvotpPGzxLuuGMZzI5+8civxLi7PZ5vj5crXLHY9XCwtdsj/tGOVsM21vQ5r4hu5tOw4yq/wAw4Hes73ClJEcxDIR7VjL4jSUbsp6Oga7MbDvW9m4HO175o6vpAkjJU8gVyqTjLU6ZLnVjKtYHtH9++auVps5nenoXAgul+UA+oouoKxpTs9WZupaMY8zQDkdQBVUqrcjDEK+wzS9SZH8qUnI9a2qQ6nLTnJPUvzxpcLkDr3qYyaOxSi46mdc2MkYLJwK39pGSsYKKvcp+c8XU01ZLQU5SSJEm8wfLyKFKw6SV7nTfBvTTqvxP0e3dcqlz5jD2UE/0r7bw0w/1vjfCq3wty+5M/H/pBY/6h4X41p2c+SH/AIFJX/A+xPCsTC2THYV/aMddz/K3MJJ1GdbpIIZT19QK1R8/iHod34PwInY+gxxXVD4T53FuzRu38khiJZsbR8vNXFK5y1JSnJc5yGtZJZmJJ9aU2ejh3rZHHa6Mlua46h9HhbOxx2uISSa4qiPo8K7JHG68hLnsa4Kp9JhWcZr8R+bA7815tTRH0mFlocJ4kg++MHkV5OIVz6jBT2PNPGNkXDblrx60Ve59tltVK1jyHxnpJW5Mo7GvDxtlufpOVVlUhYpeArz+yfGH2GUgRajFhc/89F5H6Zr804zoOphlXivhP1HgbMPY490G9JaHeyx/PyMV+eQkpWufr8kuUUqdhXpnpRflkWrWuUp4MDcRjHrVyV9TCdSzdim6B+M8j2pygkrs5Jqck2fqD/wSc1fW/CfijStQXxH8M7RWkASIThp355GSCc/jX0+W0bVeZNHHmVKvVv0R+hH7efgqHxTPpHj22tklGo6cIrmWMfLvA6g/lX08ZrlseVh4TUeVs+APi34Ga78Uf29BaJEYNLEsDMpeOS5SUrh1zzjcOPpxzmsKkOZ7CqUk7pdTK+Bv7UXjT4U+Nbrw78RdX1PWtdWQIvk3SxmNTyBGWwttEox9xST/AHu1OhW9lFqo7ihhVD32z7x+D/7Rem+J7TTxqA0yWe6TaVtdTluLnHo2AQD7nimp+1leJz1aqTseqfGvwxPrngW21Tw4k0lxpiC6hNxAAWA5ZG7Hj/8AVWMoLmtIlVJKzifG/wAe/wDgmF8If2orf/hM/hjqyeGNevb9bzULMoDBdnHzBeyE/lmvJxuS0MQ+eGmux3YbNKtF8s9Uj4A+M/7E3x5+Evim68O+Jvh9fWsqPcyoZIvkFtETh9w45XB6183WyuvTm9ND3aOPp1Y6M8gFhNAw82MrnkEjqPWuGVNxdmdimmSKmXAI698USjaJvTTZteH/AAb4p8Swm70bwvqlzZJcLFdX9ppU88Vux6bjGpxx261lTw9Wq/dTYsRXpUVyuVmfaP7NX/BO+L463Gn/ABJk17V/A2uRxxy6frfhzSLiLRdRiUBQ8r7leGQYxInyEHnvmvq6GAhUoczcqT7q363X4Hzs8XTpzSsqq3s/+Br9x9m/BX9hz4jabcQt+07Zaf42vLXyn0fx3osJLuI33JFcMr5YEZUknJU4IINejJ127NqS76HJGtBybpNpvdM9d8Nfs7S/CjV4PHH7LbP4deO4afXfh/eKpsdUViBL5L43RScZUBtmc8DcTWPs3zc8L37EQk2406yuu/X797fl06ntWqaPoHj/AEy3XVNKiaB4ln077TH+8tnHWMnqCp4HpXbTmkioxlTmysNFFno5gsIFMun3iXNmc42sOGH0NRVm1HQU4RmeefBf9k/wJ4J+PPiv9oXT/DUFtqOvxRo/lrtWXBcqzjpvXzXQN/c2jtWVCjBS5+xy1bytDoj1A+AbfUvFa+JbuLdKsh8rJ6cEZ9uGI/GuxVLNnbSvGjZMwfEfwisPF37Q8XxO1S1Vk0XTTFZqx/5aNjJ/ICueonKqZySUFE9Be0MsGPLA2MMY4yRz/OtJdxwSRa8Q/DFvHPhe28InV7jT7JGEt1LaNtleTO75W7H36/lXVFNRTi7Na6dzlnWjGpKctX0NnRfBfw9+HnguHwNoelwWmlW6bRaIDh+5Ld3JOSSckknOayjy01Y4IOtKrzLVnB/En4bfDP4t3MVh46udX1HTbJleLQbW6NtYqB0EuwgN9Ce+MVnUjSlJXOtSxFON6as+r6lfxX+z38GPFg0zWbr4T2msx6MyvothqsZk07T5F6TJb8q8g/vbS3uK3l7kLJGdOE5yu5WffqfDf/BQr9iDTfi/4pb9of8AaF/bE1GO1tlNlp1rfeB5lttKhGTssbVBmSQnADHr1LHivJxmDWIaVSfy30/zO3K8Tyxao0tbtPWzdnbr07W0e6uj8u/iN8K9W8EfEDUPDUWl62tsJmk0yTxBpDWV3c2xyUmaEkldw5Ar4/GwhSqtQeh9vhK061JXWvk7ln4f/CXxH49mtotItGAnnVQSP4S20n8DgfiKwpUXOW2g6uIUYvl3P0l/4J8/8EjfEGvWh1j4saJNp+gTXMV3b3k48q6mxghEjOcDr8ze2AetfTZdkk5JSrLlj26s+dxucRpXUHeX5H6g/Df4beBvhB4StvBXw+8OW+mafaoFjhgTGf8AaY9WY9yea+np0qdOKjBWR8pUqzr1HObuzD+PfxHi8D+Bbv7JcqLu4TywQ3MSnq2B7cD3NEm+ZRRVCLnUu9j85v2qNf1XW7ZtM07X7E2LwkiyvZTs388s0cyNn/ewParahbc9WMVPU/MT9r6H4gadqDtpVpbw3TTLFFdaTqdxGYyxwCCZHDfTg15Uqk5VUlqdkabXwifAvwpM10L+UtNNE3+ukGTLNkbnJPXJJFe3QhK/MehSi4Ru9z7a/Zt8N3Ph7RJdYt9OaSRLfEMQZV8x8dMnAp4utGlSaRaXNKx5D+0T4713SruZfGHwA0xvNLKLjVonlMfPDIUkx+NfnOYYiu5tumrHrYaCmtHsfOV/cJLM0kUSxqxyI0GAvsPavn7XZ69JWIJkMkJYdBV3UQm7lOzIE2Pek+5m1Y1k5HSo55K6N4Jcp2Hwx8b2vgfU01GPV4dPdj81xFame6YeiZ4WvWynGLC101Ll76XZlUcUuW1z7A8M6TH+0J8JJ/B2paS8N5DaPN4eg1GQNcXMZGZo39N4GQP7wFfv3CubvGYN0J3Se192jilUaTjumfnh4m+F8fwu+L118P8AxTotxe6dd3XmabbpqJtYsE8lmA4xgZ+la4nCUMBiPe1TPncZh4puUtz9B/2FvG/hHSNNg0xPGfhrT3QLEtgvitriTI9VC8/ia9PD4iFeNoInCOck4bmt/wAFQPgRZfGH4Vr4y0q3inmsI/8Aj5gXJYA53ZPI5717mXtuLptvU9/DR5qPs9nc/NO60rV9Bv49M1WVZroKrxT2nWQNww46P0BBHavpqUrU7NnoYX2ilaWh0fhHTli1O3ubYNl5PKEanAZ+flHtyMk8k/StHUhXmowu29LefkelGs4LU+mf2fdVvvFdjB4JuTDPLt3W73Vup2PgjCsSMZA9q86eWYWvyynFOS6tLT0Z7GGVKtJe0jdHvfwd1G38C6dq3gq00/QbFLpJA2n3cCXqTmRWEsitMC0MmSThSc+tZTyvDxaSVknfTTf/AIJ9H9QpYlQnLm922qbi9Nk7bq3f7iD4b2V3NCz+K47NZrEvBavCekecr0xhW4BAz61306bUk7eR6l6fwRbs9/U2IIfDevyLNqOmvo88RZAzssigDtuXJZW7ZHHtVRjOau7q19/L0vvuvXVJkYiPs/dXvI888b/svwXtnrHiD4Z3kFhLfxETxSs3kzOf4kYfdJ56+tcVWLaahpc4JYhwSutEanwVsr6PQ9U8PeIbC4sbiyvxN9jl4aYkAFge4yCc0QtGNupg5ynJTZ2vwu8K+E/Geur4h+IF+4js7iW08PabBLua6mUZMm08FFyO3Gee1Z15TTXLpfuVXq4iFK1NX7s6+/8AhR+zRp3il/FPibUdVv8AUoLdYFSe9j8m4Y5LOoC4yvr6niodTMKseWCSR5sa2ZuacIpL0H+H9P8A2YNXvJ9A8I6dcSfaZVW5M16u+RuflVgucc8gde/Ss5wzGEOao0kd/t8xjG85RXy/4J2Wt/s4fDG98K3Wh+Mvhzrk2mTspW2tNVl2lQBtGNoAHfHPU81z0sbXlJqNWN/NHDLHV6s17KrC/mv+Cc54h/Yu+Gev6pL4x8L+OvEmi3DxwpqNi8sYjnhTO2MsoBwMnhcdTmuOcYzxKlVin5o4K9bEc3LOKd+qf6Br+mXOhaSfDugXQksLNB5MglJ85j3w2CTn8q+uwtWkkmlqRCEvtR1ONutQlt7tbZYWkmjbDLu5Mh7VtXdGSUrbHNWnJbs8P/bU/aA1Kys0/Z7+Hc80d1qYRtevLdwChBBMfPXAz+JFeDiKt6nM9+h81jcZZvm36Himta/oXwt8DR2lwNX0yyEZMuojTXlUHHLFk+77kggV89j8e4/u0z5upWv7t9T4l/ad+LOi3N5O3g79oy6m3yESWGnXzRK455J2nJ9uBXz1T2TTl7SzPBxU17SUZLU8N8P2Op+I75rjULye4Yn5rieUu+PqeprTAYSWIb956rfqj1MmwcpTVRo+oP2e/hc3h60Xxjqlr/pLJstYccpH/ia4OMs4WBwX1ak/ee59PKCvY9DuZopSWjllUk8xSdq/B6z5pOWup10bmZqViLhd8cYDD0HWuNTs9TWUVNGSt3Nby+XIMfWtGla6ORRcJal6F1ljOWB44rNJt6m7qK2hFpaYvTtH8XJrouuQypvnqG9KAykbeOhrha947eWzKM+nLMN2MHsRWikooxqWkP0fQry91COytkwztgE1CjKrKyOaU/ZrU+ovgv8Ash6V8bfB58Mr4Qaz1SKImO7IP+kE9MN0H0PWvpMFl1OrSs1ZnlzrVI1eZv3Tyf4z/wDBPr49/DLWJhZ+FLi/gjLFGhjO/A65WlXyrFU37qujVYnD1I3TPI77Q9e8PlbfW9KuLVnB2iaMrnHXGa8qpSlD4lY2jOEo6MgdlZPmHBHOawacXcqMkZ2o2YzhR9DWkJXL5ebcqW4aM7Txg1ra6uYSvCdkelfsx6d9u+JD3hXi1smP0LfL/Wv1zwUwarcU1azXwU397aR/Mn0qcy+r8E4bC31q1k/lCLf5tH1f4ch2wKAf0r+rIbH+cuNleTOn0wfMOK2R4lfY7rwiyrEx8vniuqMfcPnsVpNM1dQmDhmkPPQGrSOWTnUndnKa02GO8+tZzPUw3kchrRyW5rmqH0eGWxyGtDls1xTPocM9DjddUFmHOPWuGqj6LCvQ4/XIgzHnn1rzaqPosJLQ4vxDbk7uPpXmVo3R9JhJWsee+KrTIbI4xwRXk1oo+vwFS1jy3xfpZkVzjvXz+PjdH3+VYjlaOI1PTLuOz/tmxY+dp0olUDqQDmvncbgI4/AVKb7H2eAx/wBSzGnNaXaPRrK7ttUsodTtWzHcRCRCPQivw50p0arpy3Tsf0bQrxxOHjUjs0SmNVGc8Vdrs1TZTuFMgKov4it+ZRRSppvUrvaiIZxk1zTlKorGdRqKZ9O/sD/Eb4L/AAl8QW8l34r8TRX9zLgw20Nu2eeAhaN2DehGPwr3cJjcNFpRumGY0/Zwdz9sPhb4x0f9ob9mV9N0nTtaWfS4RPbya8hM8vHPJAzX1WD9+F2fFYivKFe6Pj743eCZmjmsLVmS6NpO6MkfBbB3jB6Zwp/Ou+K599WdkG17yPBfHHhzxLrI1jxJo8cMeoLotrcSSRA7JYgVSQSAfwlsDB45FcOKpwVpGknUqrlPVv2Kfif4ihuDZaNofiy2lumWKQzW5+yRjPcrxgcHADDHfjFVh8U6cbK6vo/M8+pR96/Y/Qv4M67rFlZDw/4nke4glQrLczuCZM91UKOB74NVK8mxxpKx5/4j0Cf4d+NL7RrUv5PmG809lzh4ycso9wea2pRSj7xnOKOv0fxl4L+Ivha48CfFnw3bavpWoWz203nKPMETjDBX6jr2p1KEK0bNGUJVabvFnyD+2j/wRS0DXdGf4gfseX32y0sNGEX/AAis7/6QroxYMrH73Bx+FeJjcmpyg5RWqR7eBzG0v3p+aXjH4V+L/AHiK58LeK9BubG/tZfKmtrmIqwbPTnqPeviMRGVOTi+h9TSqwnT5oanq/7HXwh/aP1/4sWNh8FPF2v6LNcgm4bSr3VIoSQMr5wsrebI7cjvzgc1vl31qVRezk0v68mcWOnheW9S1/M/VD9n34J/tV6vpUKftGa14Ea0hYpFp/iHw3LJdS88yGaWUS59G2gEHoOlfWr61OP7yd/Jnzt8Hd+zTTPqD4ZeBfBfhC2MPgnUraxLIC9ppd032Z27/I2cCtaVOnB3QqlSTS5lqddPpVtK0ax2aRyL8wKDbye446e1XUnpYhNXuMls5HAxndHJuYY7nrWN76m68yW+09XTzgq4bGT681q0mtRap2L8OnItuqxqqbowCVXqfWlbl2MUlfUmWxaKPAjAPRW6cVKhZ3Zp7VPREE1qiRvIo/1snJzVhJM0bexKWqXUg2og3E/3j6U5Nbsz9qlJx6sstq8yW42y7Sv3kDDkmqVVuNjGVOKlqjD1qeeXzJri7WGEj968j44z0Hfr2rJJRk5J79/60/p7m0KalokW9H8K6fOkVyqvcvnKi4OIsdyF9PfBrX3KkbIzlUcLouaz4I8Q63JGk/in7Paoc/ZILVSregOeMD0xXVBRjGxhDEUqbaUdTkf2i/AHiHWvhpPpHg/Sr2W/MTImo6WLZLyAEYJiaVdsbEcbhyO1Y15yhTfJuZU6vLO7+53t8z8rNT/4J+/Gnxx+0BNpV34Y12S41KEss0viNdXvV+UruuZndduOMgYAz+FfJyyupWxFpt6p9n6H2VLMqOGw6ldR9Fpsffv7Hv8AwTM+HPwF0rQtV8aaLp95q2kWxW3jhVmQSMwZpJNxxI+QMcYH619BgctpYaKc9ZHzGLzSpiVaLsvzPqpY44UAUBVA4A4xXptuTPKbuZ0uvWlzdPaaZtnkh/1rhsJF7saG+U05eSN5HyF+1V8W7G88S3Npp+q6a1pAzENNdbVll6MxJ6dMDtgcVrRoprme53YaDqI+Bf2oLbwf4t+1pqvh/SrlWjO06X4tbc+f4SvHU+9efj5U4ux7VOjaPJFHw3q/gbwnpvjOebw1ot3aXkjG38m41J7gITySoLEDA4BHqelY4Ci5S54nRCHsvU91+AfgAXupWem2ULFYGAHOAzY5J9ea9ufLFKbdmr9dPn3LbcrI+gfjLqOneEPh9H4a0nxPoM10se640q83o+cdVcEYP1r5LN8ddtJr5nZRpPc+M/GmofbtVklme6jcMcwtdmWMfQ5r4qrVi46Sd/wPaoQV9Ec1cOGf5f51hBNnf8KJoxut2qKlyFuZqqUuOBitF8Ipo1oDuXb3IqLLqVC9jT0LU7jR7xb208tZlPyyvEH2e4B71dOpKjPmiPlV7s97/Zn+LGsW/jS0/s2ae4vmlVpWUmWY4P35ZPuxqP7o4r77hjOFQxUWrtv5/ec1eCcX0PRf23/2S/D37SngbUvid8MjDNqliPN1K0szwsuCXK7edjHk46HPrX7RCrgs/wAJy396Oh4uJpc8VGrp28z5r/Yo+L/w++GnjK28Ia7pM1z4mLGE6BoeikujbsZklf6dS2AKeCnRwT+rz0kebLlwknFLU/Tax0bUvjB8Krm01SztLOG5siFsFnSV0yOCxGQD7Zr2aMlQxKnzO3bp69z1sNU95Se5+X3x2+A+t+DvifeaIqPJNNhLZZHKKzox29sDOeT3Ar26+NjKPu7HtyjGUvaK+ptfCr4Bp8RPtEt6IYbgzG10y80u5SW2nkjxu3qMPEDnG8gA89wRWOFxDm9jspKVd8qurLW6PrP9l39kTWtN8VHU/HFqkdnZ2vnywD5MqAVVffI5z3yK7q+Mp0qCUHds+iw3JhaafV6I9X8Wap+zRp1k+r6r4ekTU5RHFcNburRqQDkgsASe3v7VhTp5hUa95WPoaMc4lU5Yyjyea1K2g6h+ztrkjvaeHdRt7G7XdPeXjeUiFRxsBXkHHPPaprrHUVfmRvKOYUKTlKUbrpbcisvCn7KnxH8TXPhnT/G2oWurTIoWT7QPs4IyQQBjGfU1TxePpUudxTj1tucOJxWcU0qnJGUVul8Rg2Om/Drw346Pw+b4n6lb39pZi6vknt1a1kh37SwPfqvINZ1qlWXv8qs9kXW9tKDmoafiTnT9J+J/iHUrL4U65Drd1oblESEqjjg4JVdxwQRxk47VHtPZ006lk2Yfu6dJTq+7ffXY4t7j4n6BYanok15pE0+nSi50+3u5jbyPkqBH5mNuWJJBO0ZXn3JV6iaitU39wpe/JNXs9B1/4W+MfjTxBdw6J4Pu71pbyGLTI/tETpEmCHLMrYTafXrknjpXfTr0acLy0SLl7GhSdSpJrXReR6dpPw48M/sh+DbjxHr6xa34nLmVVkl/caeSM7kU8Fh/exXJ7Svmlqd2qSu7dzgpqtnE24tqH4swP2RP2hfjZ+0j4nu75H1FhdazPBoUmoXyxrNFG2GcRhiApAPzY4x1NaYvA5dhMH7XlSit9NTTEf2ZhcsnVq0+WMfLVn0TN8Q/Aeh+LtQ+FGv3+j3WpWjRSatHaRAtCzY2lyB6/ieDXz8MF7SCr0YtJ6+v9JHg0IVsdRWJpOSVtLvoSX/hX4UaZrlpqfjK1luoFlZ9lpahI3VgfmJYkggehA596cq+Z1KDhh7KXmU6+ZTw0oYayfm7s8D+K/iP4O6BfeIr34daZqW+ELqGkyXOpR7YoAnIaERl1Yuwxk8gZ78d+GebxUHiJLlSfMktb9Nf6/DXyMW8fGnGWIauk727+p+f9uuu6h4q1f4r6tpWr3kEtwSQIt4Bzksdq7lB9u1cFabhWlVUna1uXS3rte/zsfI4vERkrHkH7RP7QdnJp949l8ULnw7JG2BYWzPLGpGeWSbcSPUjPXpXzGNrxq1G+blv0PmMXVmtlfzPiPxRr2t+N/FUr3Or2uo73P8Apltp8cO8Zzk7AK4KVGdapFQfMn1JwuHqYmokke4fs5/B+S+mg1zV7Ui2jO+Eyp/rG/vH2r2MZj6WRYByT97ofoGDwywtJXWp79c/8SyIQy2YeDoWhmyp9wR0Nfh2d5jWxmJlUqa3NpwkzPkmDTFoyxU/d3nJr5qpPmZdO9rDo8OQD+FcVTc6LcqKuqaTFdKWRfm+nWrpTadhTgqkTJImsXKOMYPXFdEmjh9nKMrE+h75rstkZ3VMp2jYqjyxqnRSIUy3FYLVnfN3REu7dwPwquSNtTFRbOu+EVib7xjaQf2bJcI8oEixJuOK6ME4RrK5zYmEXC7P2d/ZV8A/Df4V/BrTfGXiGBMXEY8ozjBHsc1+i0aEXSi0j47G1ayqckWd/cf8Kq8Z3K30FrCsxyUfhlIPY+1digrWZyKNaC3PkP8A4KkfsO+FPGP7Pl78QPhl4fiTVdDuGu5IrSPlkP3wMdR3ryczy2OJw7dNao1wOKqU8Sk3ofkVMkisysCMcEEcg18LNJaPc+tcYqN0RNlk2MBwOKSjyoFN2K0sWDkVvGT5GiXLmlqet/si2BfVdX1JxwDDED+bH+Qr+gPAzCNU8bibbuMV8k3+p/FX0tMwUsVluCT+GE5v/t5pL8mfTmiqQg5/Sv6Dpn8M4l6nRaYmSMmumGp41dnceE0lSIvvwFx1rsSSp6nhYiS59DR1QxuzFRgnvTWxzP3p3OV1rcXYYz9aiZ6mGscjrSkAmuWaPosK9jkdaU85PWuKofQYZo5HW0JLZ/SuKpqfQYZo5HWImLMS1edVR9BhpWRx3iCL7wJrzqx9FhZaHB+JLfcGJ6/SvJxCPqsFO1jznxTZ/eHqOteJiYcyZ9vltVKxyGiW0C+IH068H7q5UowPvXBhEoVuV7M+ix1WbwinDeOpL4Dml0mXUvAl1J++0u5JhB7wscjH0NfkHFmXPBZnKSWjP6A8Ps0Wa5PFN6o6ERSy8nOBXykqii9D79QURJIxEvNZOTlqRJ21Z9cf8ElP+CZWv/t3/FuLxT46sLmz+Gfh+6V9f1LBT7e6nIs4W7s38TD7q57kV7+R5RPH1ueatBfifK55mrw1JwpayPnf4GXQ0/xlaE3l9DvbaRp19DayN7edN8qD3rzMLKNGtdn0uY0quId4n7Af8E5f2iNI8Li18O6udNtmlCpIJPiDFq11IuMfMq5Az7Yr6vC4yMpKMfzPnMXl8KDu3+B6X+098Oo/Dvi1PEOi7G06+DS20pQHajA7l9OMnj3r3aMpx2OWFdLRI+OPjD4Om8HQXGt2GVZ9Huo3hjBKuVJcxnHYgZHqPpWteEZQWpT9pJ+6VfhNc+KdQ0Ia1o2ua/q2qWlqrT2ui5W0hVjkMT5ilRztCgc46E1xRowjK9/68iVGpKGq2Ps/9lfX/G1posD/ABJFlYh41McZO+5P+9kk7q6klYhyU07Ht/xJ0JPHHhGLV9EDrfab+8tjLGdxUdVPqCKycn0MVTu7HlEAgvoV1Owv2gh3/vYT/wAu8oPKn0BrfnkluTKnKOjOo8I+KPEGkSQ3OnXgSFCSbhJiSx4xx6UVKnPFRt8yJJSjZFX4z/s8/s5/td6asXxe8OQw6quPs2u2QEc5YcbnC/e59a8rGZbh8VHVa9zow2Lr4TSMtD518N/8EwPHnwG+NWg6v4V+MWoHw4dUe51W6ttansbZ7VRlYJBC4ck9CQynAOOTXj08lrUKjcJtJ9v6t+B21MwjiqMlKPvPbQ+sv2VPhf8ACrwzrV3ceCdE1nxTqTzM9/4g1QXRtw2fuwyXLM5VcYGDt7969hUaKs1G76mcpVuT3tF8j6Lh0rSpVCnQoIpm+80Y2kk9e3X3qZtR6GLu+pbW0kRDBLHJgHCuTytc0m07MEr6jorfcojmcbgTySKEmzWLfQnfS2v7T7CUaME/6z0rZJtco+ZU3zXuXL+50vw3pfkwp5siL3OTW1SpSpQsZQp1MTO70RUu9aSPSotQupFaCQYJIwY29DWLqq1yI00qzhHdfiQ2k1vdSsyyhkQZIB49qj2kVudjhJRLfiLVJbbTorW1jJLABI8clj0qJylKyRy0oQdVzkatsmk+E9KSS8G5yBvcrlmNdjlHD0rs5K3tMXUtDYo3HiDwFq+px6fe28DXcjDy0mhG4nGfzArCFfD1qij1NIUsVRpcyehPq+laNaSjVZp5UcALEpuCqA9sDpXVOEKUbhSqVJvlRnapqkUagC9nZimGQ3ZCqe3I5/HFRSq233No4d3baMfXfA6eN9BfRdL8WXNtOTmVBfM/HcZ7jn9e1aVKUa0ddiZNU/flHU0fhZ8KfDPwqsmg0eECSQDzp95LSn1bPelTowpR0OSvVlW06HXXF/a2URurudUT1Jra3NscsITnLlijn7nxkviTUH8P+HoS5HE8zZCqveqaVKN2dbpRw8bzep5D+018fNJ8F+Gp/h54BuVM7qUvbmFh+KKT3PQnt0qqFCVR88vuM6cJVp8z2Pgn43/FvWLezklk0jVEUghiNEhvVznuFOcV1VJKCsz3qMYQp2Z8EftQ/G7wDeNJpU+maA2qXG5YbabwjdWFxJz1VlIUHvzXjVowcr7nVTlGkrp3ZyPwt0jMUE5mdriQeXBvJJ9S3PPtXoYKFo2RulPdn118CvCGk+G9Ph8V+LtXjskYB4JJ0Yjd6nArLMqyjTak9Tow1PmbbOE/ao13Vm1N/EEGi+HtdsZRtkuIgZMejZVgyH618BmLkpcySkj16UeZW2Pn2a8S4dpYoBErHiNWJC+3PNfOtKUrpWPRpR01KrZeRV71stEaTdi6BiA4HWuaoyofCZrkiYkAda0jsRJdTSsCWQM3pUyNKdrFwA554z1PrTjyy0YSR03hLxTr0US6HYa0mlWBYG7eFMNKPQ7fmc+1dWHr4m/s4PlXUxqSUFfsfWf7L/xqh8EarZaNpiNIsq7JdPcb5JkYfM03ZRjtniv1LhfNI4SrCEW30svzZ5OMl7dWd0cb/wAFAP2HYNN1NP2ovgppd7LpTuJNf0jRtQNtM4xkp5iqSoznnHI4r9mp4fCZtB1Z354p2s7XdtOj2e66rS63POnTniLpaTW11f8AyPQv+CfHx10nUvCNnoeqWdvpNnMpSx0xr5neUA4OQ3zSNnqTwOmDT5KFWiqV7ytaSZpSquPuXfMvItftzfBSHxJdR+JbTT0VF2ExhcZUHoQOn09K9ClRpvDcqdrH0GFqt0FHVu5ofsgv4M8S6hc+HNB+C+lJNa3YTUtSgDRpEEHJdwojkfIONhwB2PBPM6nK5cjafRW3PbowftZJJq2l9Gm/K39eZ9D/ABh8ceFdJ8A6nqOnXAtrS6titjcBMlygJbJHUE4HTvRl+HxM8YlUe2tj2MuwddV4KprKO6/LQ83+Dfws+Efijwxf+LNH8Kalq+ryyK13F9r8to2yfuDGVAznpivZxdbEwcU3GMXs9z6CrisTh68VOpGEH1av+pxPxL/Z1+FnxBtNQttd8R+PdFvbyPdHYafqLSW9yw6GQjA2juSOMdaU1i1Dli48j36fh+R04p4qVO1KacNLu9vw1ueY65+x344/Zn1+z1qDU9avtMvNMe2XU7SP7cs8kmfJXahUpyQNxJAHPPSssM8NNWoN3Ss1J267r5f128fCVVWqPlk79b6WPV/CP7AGtfETT4tZ+LXiWXRHbS4rSO30e8G5LcHLB8dzheQegI5q62MoQTUVeRVfNsNSXu3nPr2PY/A3w+/Zy+B1/Hpfwu8OQW+u3KSQHWonWCWcxrjL/LhskcsQck5OSa8mVPFVm6k0kt7HlcuaYxurXSUNLxt/l/w5m/EL4RfAHx14p03xbdXuppLrmhTWdzZrGktjcRFds+VI2oygllbIZWwy8gYKUMROMlJL3X3szanHM4wlCaTUZXWrT7r18+jWjOl8T+HvhZ8KvhxHpfg/wPsg1a2jt7HbcN9su0CEkyggEKozzk5B5xW+G+s4mu+d3tvpp/wRYR5ljcZzVJ3lFu6S91drPqcv8HvBOr/ERPEvjX40eBoL7wzPfpbaFp+qqYZJoRxJKxUNhfvY45GM4zkPG4ucZxoYeVnZ3aV9ei6FYvHYjDxVDAySqde2/wA/l+h6zow/Z78C6J/wifgSK28J2kVqXjvbGWKRn3BsxpySMfkTj0rzI0s4qPnrLn8tkeFVw+f4mXta69r/AHbOKXmz43/aY/ad8M/Db4pWHwr/AGf7G3E+s6qs/iHWdTfNxqDLHku8rHhQDtC9ATxgCvewtGo0pYh+/ayXRI9PD0qs5qeJfvPRJbJHYeIPjBbfELwGfCmt61JpsGq6VI97qz6iYmsX6IYlCnfk44ODz0NdSwM6MpSPSrwpUsPJ0r81rLQ+Xfifo8nwI+CT+GNR8bHVvFHiqdoX1SG5Z/Os4y3lM+7Hl5BVOBjCZwSTnzquIjgoyhVk9b20vbT5dd+2+ux+f4rEVaLkm7tnznrvizTvDGhnWbnxRHo1zHGUvJ9Cu2ukYDOBLlAVx7p+Jr5vEVYSf8Sx8Hi8VUk0qsbPsn+un5HyN+0b8VLrxlqjJB4n8P6/5r7VlsYWWYA9CQyqVPqMn2r5+tCpXq2TT/M8tUZ1attVc1P2avgBc+JrxNU1iJktkYMwcYMp9Bntmu2tVw+SYTmb1PuMqwMMNTU5bn0tDbW2g240y1gktmjGECKFx7YPUV+PZ7ndfGYiSmevzOcrplG5ncBmRcZ+8q8V8bVquUiprmIrVd7ZbgGuaU7KyCK5S0FUKMisndluSY6NQzbSeBVLbQaTG6pp8E1uzMoBx1FNOSkOULq6MPRMxXxjxgBuuK6+VOJ5/J++0OjkJcEEdetYNJM9BK0dRkYxw3pxnvRLUzcktj0P9nabWj8QrJNDldZGmABjAJ6+h611ZfD9/e5wYxOVJn64eKdF1Txh+xfFHcySLc2Q/esPlYcDnjpX6EpynSjc+IxHOq9mfMfwu+JvxZ+H+qC30rXRqFkGwbe5f5l9q9GGHk4pp6GanPmaZ9TfBn49+HviDZy+HNf05YGlj8q7sZsbZARg/WlGPIrWInB7JHwv/wAFJv8AgllqHgm7vvjf8ALI3ekTu0+oaVAMtCTySoH8q+bzHIfaKValv2PYyvGVL+yrM/Py5SWGZkmQq6sQyMMEHuDXyDdpcr3R78rLYgbBbAHWtbJIlRcme7/sk6S0Phy7viP9fqB5/wB1QP61/U3gtRjS4PlU6zqyf3JI/wA+PpS4tVOPlQT/AIdGC++8v1Pf9HGAFDV+vQWlz+TMRrdnR6WOQT17V001qeLXZ2vhgHy9ytxx8prutaFjw8Q/eRo6mSFb5cDNT0MLXkcrrB3FhgjGeazmelhrLQ5LWR94GuaZ9Bh2lY5PWVXJOK5Jps9/DS0OS1qPBY5riqRZ9BhpbHKaxEBuOK8+qme/hpnIa7ADuGa8+rFn0OGmcXr9soLK1ebVp3PpMJUehwHiOyDFmx0rycTTsfW4Oq0ked+JLd7O9W8txh0fNeTVpezkpH2OBkqtNwlsxfGRTQ9a0P4qwj9xdKLPVABx6An9Pyr5HjjBxxuGjVgfbeHmdvKMbPCN6J3+TPV9L+FF/wCPND8MX3wZN54s1HxALmK90PStNkefTLqGYxmKQgYIZdkgfIGHwelfkU8sxarQhTTlzLp01P3ijnWGq0pTm7Jba7n2v+xZ/wAEKvHfxAv7Txl+1vrR0HSAyyDwrpU4e8uR12yyj5Yge4XLe4r6jAcLTVpYr7jwsbn8qqcaC+Z+qsMXgD9lj4DLoHw58MWejaRpNmLfR9KsowibsYHH8TE8knJJ5NfWxjTowVOmrI+clG6lKTuz+ae0CSAIyAr6MOtfkk07n69VmlNo+i/2M/jVqHhHx1p3hXw7oWi6Tbu4Nze2Xh9ry+m56KeSD9SBXo5XWdOpqr+iuz5/MYOem5+wng/xFoHxZ+GkXg3VLkw3DWwaxXUbpPtWcfeMaklM+lfaUMTCpa2nqeGsPKDUmnb0Pnj4sfDe60+8k8Ka+pjdeLeZlyAV+5knsfu59DXU58+jO26i+Y+SPHvg7Wfgz4v1DxTpWuTozy2EU9hNdPFZmLyyomIQgsSQqhOm4t3HPHO8PQzrzvDlXU+qv2VfiLq+rCyt9W8LapZXUZAe603wsyynPZp7kkAe6itMPVclo7o8+NRwXvRPuv4YeI9INksBV4pXGHFxfCSVvXcBxzXSoyhqg9opvQ4n4weCl8F62/jDSYs6Vf5+3wbDwem7HqKz509/118v6/yOh/vIWe5z9npt/ZzRXdpdQPYyAeVJnAZT6+9aRlbU5pRcDqNL0jRIDDdRXkqsM7dpyrGtE4sh3bPUPhUJSUT7Sq7uTDcqDyfXgilKSitDOybPV5pte0d7aytdLVobgZZ44kEfPryCfoBXDVqcz3saJRcerNeHRmnQTQyQiU8EJHgcf0rhklNtxdzolOMNJIsrplwg3GIlv7ymtIU2lqSqkG7JkV7YRPGNzhXxjIHNFSMbGlOtyu1tAt70woIJOBjBZqmNRpWG6aqPnRg+IYdQikc20ZkUj5FC5zXNVvzanfScHBdznWg123kMJDJYXrskiuoxCx4BBPXntWKm0rPY0lCE1zL4ka/wusbyW5u31wstvZXDKskjf61vfgcD9TSwsZznepsjix9dqKUN2ehQSQTsJIbcMB0baP517y9m1oj56fPHRsr3+iz6ldLNNMiqp+6Rk1nUpubV9jpoYmFOPLa7CHw/o+nzCez0mFZR0lCZb861pUqUXdJIVWvWmtXoS3WnWOpwi21TT4riLcG2TRhgCOh57061OFSNnqYU8RUpSvF2Zkaj8LPBV6HfyZrUucs1vdun9cVzfV6aPTpZni+S2/yMqw8B+HvBuqf2vY+Ob4AH57a4nSRX9umf1rqpRUdEjP6zWre7KK+Wg3VvHNpGxc3KcScLmtXBJamsaairnLeLviRHdXK2wv8AoAc+/pzwOvWqpRvsaQ5IaRRyvxO+PGgeCvCMvh7wreh725T/AEmdAQXyDlVIBwo6bvyq/q0py55Pboc2JpuVW7Pjn4u/FzRrY3WpX6TiTZiS4t43YKATgEqN2OvQd6cpQpy5ranRRjy2fQ+Jf2nv2pvCNpbzpb/EuCIzK223t/El/AykeqiDg/U1zVKsaiutPU9ONGM1dHx/4bg1z4leLX8R6rreoXUJlP2U6hdyTlEz8zBn56VzRp+0qabG1CmubVaH1P8Ast/CabxX4gi1q/hZNOt/lR2UAKi9z9a9NNYSk5s7rKcrI9Y+L/xO8FaRG3hLUNUudImRStvIIRLEy+6/xL645r4rM8ypqo1NnXToux8v+Mf9E1qY2ep2sqS5PmabI6xOP909PpXx+Inao+WV0z1aEFymIpDeg9CKxgdySS0GqhMgPr3q2Zy1ZeQgQE46iueotTVKyM90/ebj68U4NtWE7NFy0cDAA49PSlIyWhogbowTgnFTF2Zu02iS0kaGVWRipH8Q4xWi1dzCSaZ6H8J/ijF4K1OKN7n7PDI/74WsRkubps8IvqSfUgCvosmzSeErpXsn26nPVw3O00r/AKH3H+zR8aYL6zubL4hTae2laiq28mjMwZYkIxtd8/PNzkhelfsOSZ3UhJSnPfZLp6+Zx4ig017O/Muv9dDznxz+xn4d/Zc/aZHxw8FS2kXh3XITLFePGzCD+IooXIDk4HT6kDJr7+lVhjZe2XxdUvz/AFMYU1i6ntJNqS3R7X4lNl8T9AtWitx5UiNJOrdWUITu56nODn6161GnXhKDVuW/vX7We3ne2/S57mXUVUbb3PL4YPiBb+LrD4T6ZZ6iuh3KMLWLRpBZtJdMMgyyGNjIACMgEHBwCDzXTisM1FVqckuWzbeu39f8Bn1NGqlyeylGLi022m/dvr1Vm+j/AAex9I/tDfCyz0v4WeCfhdrfii7tI7a236m2lSLHdTIf9cGdjkKFzk5yM5NfPZTjK9bF4nEw3eive34HPk2Mq5ljMdiKTceb3Yt/D2VvV9Cv+yJ+zJo3w8u9V8f2nxV1jVNHvJkbSovEF1HNdQWwACwu2TkBQE6DA6YrrzTM5U8LDCqkufW9k0rvqvnqTnmY4nCZfSy2UOaovilra/dfnueYftVftX/Cn4X+LE0rWfD2lWrWkzR2WpW+Ukw5wwBC8A45564r0sPhZrDxqzqO7WzPbwcKuGwanUrSfMleL20/yPCvhB+04moeMNV09PHGry6b4l1KWOwLurNDax8+Z1wrlQR07gg+nVOh9ZoKK0na1159j0oYvD12uWKly7XVvyPWPEX7ZHw38XeHPEVz4bNtYX4lRLSRbkJPcQxEY39wQCTt56n1rGlg5wa5ne25y4eKgoJz5kr6dE3vY83l+LDeKrq68XaZrEssmkrMomkk2s0T+XKSMd2KhTj19jVcuF9o52u43Sfk7P8AGy+42VWbo2tZdvQdo/7Tuo6Hp8+kL4r1EajHobNa6lpwUpbMCWY+WVIAZSBkj+E0VKFOtKyuk+qtf8br70zopuhiI3qQT8u5o6J+07p3xQ+KlxrPjwRX+kaKEf7LJCskfl+Tt2DA6ksMjJ+Y13SoQjQcaPuvucqbVB06Pu+a3Lp/b/8AE/xI8Z6n8KvBulG8ht9RjgXTjEIFsohGoKhtpCgHnLA/e9AAPKw2EwkK0nd8yMsLh8HRm7R/eLd9X6m74S+DPwk8Xa48+s/GHXNL1q7Q/wBqXFpqjT28L7gVh8rykUocZLADGB1zkd9fE42lrCmpQXyf9f11OvEYnF0acnSjdaabXX3/AIF3UP8AgmZ4u8e/EWH4maNf+H9f0W0+e2ksZGeQtk7iY2O4ccYy3JryZ8QZdCajVTjPzR8zis5yyDUKt4T7NaffsL4T+EujePNUvIfjR4d0fRdJ8PTTWmjDUlNjcNOhVjPwu8g9PMYMAMhQMcdmJzOMf4Db5rXtr/X4F4iToUva0JOTetk7ra1vJenqeW/tbfsr/s8/EvVYda0z43atBbQQKt5cRBP7PgmwRFC0oHmfNhmUqATsbPA58yeHePg/b+7Lp3a7ny2YYatiJ83s2l/X9fLc+Cf+ChX7N/wd+BPh2201dQvdT166tllsLy11Bv8ASI34XypGkxIM8FQuRxxXhZhgcNh6Kkk+b0Pjcdl2IpVOfdPpofNf7Of7NmreJ9Yh1fXrF41eZt+8lsYzknrj8+teVSUMuoSxM3rYvBYWPOpSR9aW3hCLwrocNhpenq6RR48u3yJFAAOSOpHuOK/MM+zTFY+pKXNePRH0XNa3KZ02uifO9EY9HicFs+/OSDXxGIqS+0XRkrlKcxyIWXAPb2ry23zHQldkVqMtjbx6U+XqyJXuWo8kEdulS9io7jvL2MM/hxUK1zpWqHTDMLA+lbrUibaizGsYQL89zurXmdjhoa1tTZnOwY9vWsmzuqfCQJKHB3H6HFLpoc0Gr6m74D1a60fxHa6hZ3LRSRygq6Oykc9cqc1WHlUVdWFVlFRZ+wf7B/izWfij+zbrfhDxNcC4n+yl4H+b5l2/7XNfpuAtUopSPkMXCn9ZTaPjL45ad4m8HeNTPomqzWpMzI6Rnqyk8fiK9GnVcdEeXXi+d8pq/s7/ALVl/wCJJ20mXwv9nGmzkXWq3s21lAOMlj1rfnVRXZFGM1J3PtX4KfFzQfiDpx0CbVUu4bhdvmhQy5PGDnqK5nK6aiXOqlG73Pmn9sf/AIJR/D74satqt58PJYfDPjGXNxbQvxZagMZwP7pNeRiuHKWOTqU/dn+ZFLPp4OdqvvRPzd+J/wCz58W/gh4pl8JfFHwRe6ZcxOQGkhJikH95HHDA18LmVDF5fNwqxat1PqMFmeEx0U6Utz179mi3Wz8AWwOQ0s00mCOxfA/QV/YHhVg54XgXBqSs5Jyf/bzbX4H+Z3j/AJlHNPE7MKtN3jGSgv8AtyKi/wAUz2PRwGQFTX6TGNkfz9iNGdJpSscY59q6aVro8au0dt4XSQxHaOcZ6V2Tdoo8WuryVi9qbbo3ZF6tg+1Sk7aGVru5yusBstuNTKDO6hZPQ5TWc/MCORWE4o97DI5bV1JJxXHO1rHvYey3OX1eAkk471xTTZ7mHmjltagI3Y/I1yVKaPdwsr2OR1u1kbOBx6YrgqxSPocLNHH69psmCWGa8qtsfR4OtE4nxJpgAZ1T65rzKtFydz6bCV02kef+ItL8x2UR5J7ivKxVP3T7HLquq1PRf2Wf2XdT/ansde8F6i0tp4e0aGK51bVgP9U7SBYoI/WWRvlA7AMx4U14sqVKtSlTqq6uepzyo5nTq0pJSafzP2C/Y3+D3w4+Bnge08KfD7wfZ6cscSCeaOIebK+Bl3fqzHuTXHVhhsPFxpwSWy8j9Ty11XSSmz6p8FwidAzHCgZZie1eVOTkz20rR1PJ/i18QbT4rfEVfD2nz50Dw4+biXOFmn9PfFZ0Y+0qp9ATTgz+fG2lKxjBr8lbXNqfq1RJ1WbuieMfGPh60lsfDPiy/wBMjuGBnNjLsLfiOaiNarS0hKyK9jSXvPc+xv2CP2p/BHwGvILO712J9U1N1WZbW3l1bWL9s8LuPyQr7DHvXsYDGWqWTv6as8TMFJ/1ofpNq+naH8evBcerw2xs9WNtvS2uHQzKuOjhc4Pt2r66i3VSb0Z4LqyjKyPln4+/s96h4w0m80PUrCKbVo7YxW1tLDj7XF18ssf4lIDKfXgd6qtytd2U2+W7Pmr4Ya1qvwh+JFxoHjKe2uoFlc2b+ItVvxAi9NpWGUEsp4C4wcDgjNYU6Xs3+JgqbrPVH6F/stfG1bjTbWPUdZktIXIEcUdlHZW7n/pn5jmab8FzXoSnCdNckvkVU5aEWnHY+sF0+18c+GZLC9V5UuIvl8+PGOO2Rn86zjTTfvGUa9ppo8J1vwbdfC7xBJY63cynS5HLWvPywt/gTWrcNkVOr7TU2dG0HWbGRUu50c3EfmxRKSUVex56nFTGLuT6nu/wk+GHiK5sINVv9XS0t5FHlwFV8w/jg4rOpWhB2vuYSVRq8I3a7s9gtPCGnRwwxXlxPdJC26PzyCVPqK5XFNam6xM4RtFWNIRWkcYSGAn6dazl7OK0RzKU3K7ZITGq8KcY7mkqqsaat3MHVVt/tBe3lCMP4S+M1z1ZRvc9CLkoLmRTv762kt0mkVo5EPysVOGH9KTqRUbjw6lN3js/k/x1NR7thoq6pZWnnNEMmPb1HfrV1Jc1LngrmagvrDpzdrnB678XdMug2nXVgXiS4LPE8GCo3f415v1lvWS0R6FHBwpt8rd+56BpDRatYxXrWhhg2ho42OCcjvXs0JxrJStZHi14ewm43ux2pa/NZYttO05rmUjhFwAB7mlVxjhPkhHmZlHDSq+9J2RnreeNLu5Ed5CqRHlorUHeo92z1rkq1MbOVmrLyOylQwVOHMnd93saR0CyihNwLW9dyMmP7W+Sf++v611Qo0ow2f4nLVqOcrXX3EOs69H4W0ZtTvdHvFRB8sa5kbPvtJx9amtiXTp6JhGlCc+VSR5f47/aBntITDcaWlujjMfnRHcy+27FTCdSSUprc7YUFS2PPbr4va5rdz51i10YD952j8qNPXDV30aiUr9DWNJX0L0nxR+HWk6RKPEonubxYi6b7sxBPVl4yR05xzWs5SnJJGFZTlax4J8QfjXFd661ro+q/MpZYoZJCvynHznIGR/9evQw9OKld7l0Vd6nH+KvinNotm+tHxfbYK5uJ5iWP0bA3KvvjFb1ZqLNZRhfU+Tv2pPjxc3Wh3eq+F/iobG7Ct9nk06Rbm3Ydcs4Vin4rivJr1Iyg+WWvp0MOW+x8GX/AIi+MHxm8T3dr488YJe6Zat5jzwW6AMAeSXQAN2xwOtckPaS0vod9CE6kUe8fs7fAfUvF93HJDYvFYIFad3TA8teQn1PU13UJxwv7ySul0fU9VUmoWifSHiHxPoHwk8GRw+DzC8CJtlbZ0bHKuO31rwswzeMrm9LC2kpI+ePiL400rxQZL2zv5o2ZyZNMu18xFP96N+30r4XHVKda7ue5TpRjG5w905YEgfSvMhE66cdCGAMXGelbXshNk0iEMABxU3ZKWpO2RBtHSpaudE/gKOCW49apWRhFlm1LFgR3wM1L2NOW5qKP3RI/IVnezNktBkT4Q5OfYVqjCauSRXcsNyJopWR16SKcEfjW1OTpvmTsTFu1j2D9nLxB4t17xPbWmlXkdtBb4E2p3rqsduvXjPC/RRkmvqMkxeMr11GDt5s58RVhShZJtn6IfDa68M/Fb4fTfC/UNQTVYWUNa3bg/LNjhlzyBniv3bIsSnTjO+255cp1HNVLWaMrwp4LvNIuLnS9VW4e7VjHKz3G4EKGwuCflHr+HoK+9VWnGhHl2PYy6m/bOpBb7726/Lrv169Do/hX8E/GE3iPS/FOhadqU2pWloPs2rS28Sae0hGGmHzBmI7dR83T04MRj8LDDSo4mon/Nb4n8lornvYnMMtw0JwxE1brFX5vTY9D+KnwV+BniDxRY3/AMT9c1fXNaRCPKstRMflErh8KCCQehx2PNeVgM2zeOHlDB0404d2iMlzziNYOcMBShSo93G99dLswte0zwCIJ/CfguS9jv2AaC3v7Y+XGoHyoJV4ByO+SM+mK9OisdGKrV7OPk9fPQ9qNfNElWxKTgt3F6vzs/0Pgn9tb9mv9pX40/FSDwe/wC1g6kzD7JrWm2hktbleeXdcqSMjLHb+GK65YzAvDe7VSj5uzXyMMRisLjUlSqKKXVu33o1fDH/BIf8Aas0nRLLxj488d+GPB0qQyRateXtxsZEPyhoooVCg7MHBPJPOKxee4C6hSbnLlS91K1193zerbu3cwlmODeJUcLUdSb3UI6fojzz4ufsyfss/DXw3e6La/Ebxf4il0a/Zn1QSrbwPdTCMSNGB85BCIBnjcv1rooUlJc9T3ZyW3l/TO9YCdCCqVE4zl57evQ5T9nmX4o2HxJk+H+q+E9Xu/DN/YmDTtTTRpCJFIYjzHVOWGc5OSRxngY87BYKthcXUjOTcJa6vb79vRaddyY1505clV7bHqfww/Ze+OPxD+Kj+AvBmkaxOZPDK3WoWcFt9mLOrusQkMgHGAQM9Qc4r0MVXwuBgqtaraL210uarHYXDUlXryUY6pN7dDu9X/wCCZP7ZfjG4NtpXgVPC9tbWqQQPO8O66ZiAxk2HkKCTuOTkAdOh/b2VTo2dZaLSy/P+n2OWtnuScrSxKv5K52/wc/4If+Jvh1JqdtqnxfkSx1pd2q2sknmSyTlOTHIoQrkjPfsOeteFRz3BYWTdO7bPMhxRkeErudJTlzW3f39upwHjP9iX9l79m3WNR0r40ftJeO0t2IuLxV8qEwgZ2qk7DfkntGRkY3Doa+hhicRLBOsuXlls5PXT8v1PVnWzLMsE6lBJU20029dPPdLXbr8j3r/gn78UPB/xLN/D+zpY3tt4T01Atxr+raz5tzdsDgnr8vA9s9uK8vOMPSpUKdSu1OU1olZ/et187d9jhzONH6opYv35bJW0ubP/AAUS/bF/ZN+FvwzfRPijBp3iG8e0eKDRZjme5l7YYNuBzxn3rz8BgcVQvVqy5IP+tjy8syzFYPmr15ckW9En+Fj4F8F/BzwB+0hZar4h/Z/8Z6pDqM1mG1PwB4g1eSSFDtJiEEiYDbSc7eG4xk4xXvQw8a0nNSdmreX3G0518Vo3aKe9tTzb4o/Az4s/DXwtceDvF/g208Ya9r7lHbWtPMy6AVIw9qpz5Y27huPBxzXHmGDlhKPNF86b69DyMzwFOtP2qvZdupgT+CxpHhGez014YioYXckIESzN/EybQAFBAx27CvybivFyqU3ThpffsedSpKmko3su5y8eo6rYWkdhdTSPGgDQGfPmxH1VuuPxr8prValNcrPRjGLjoiHVddnv18m7CyEEESyRgy/TfjJH1rza2Jq1VZmfsUqnMiorGUjHA9a5LXZ0qSiOiG1uap7Ca5tSe1JaTjFYSZMVqTSrzkj8MVKudUVYdIhaBjnt1rZSJmrxMmxX/iZEf7XWtvsnDBctQ09QQjnPb0rByTO+VmjMEsqtyPqM1poonFKNpXLWn6hLa3KTwSbXRsq4HSnGXLNSQKMZKx+j3/BIv49apD4iPhXxFNdzQXKeUs1wFC4Ix0Br7DKsd7yi7niZtQhCnzI6H9vH4TXOieNb1Le3CxzObi2lC8Z619RRi1ufP+2hJXR8d+IfCt/fa/bXVlI4SCbzL2wjOBJIOhIyPlJ61c78yOarKpLY+j/2V/inqmhTRHXtBuDqstwFg0/ToyY4kHd+OPqfwrZVIQV2jklGUlZn2t4ts7n4tfCZdbs4PI1fSo/MhY/eKjquauniXCfuo5q+E9rBxZ41r19oHxA8OHw78TNAttUtihVXuIlZ4T0yp6jmvfpYbDYyKVeKafc+Ixrx2DUnh5uMl2PnbxB+yPa6Zqclt8MNUtY8OTDY3cixKwJJAVzwOvfFfteUY7CYXLoQjG0YpJW1SSP4S4pynNXxHXpVXzylKT973Xq77vR/gc/c+GfFHgfXG8M+NNAudMvkUN9nuo8b0PR0PR1PZlJBr38Li8Pi4c1KSa8j8+zrK8bltTkxEHF+ZvaNF+8BFejSTufI4hnofhTSZ1tv7QSQBQMEHvXRWmo+4ctGhVmnWjsnYs61axLG7w9C+QCOlKk5O1zlxNKMZ3hscjqtqZJGVvw4rWpojaleNjmNV0u6Zz5cJb3ArinJN2PXoVYpWuVPBfgGbx74/wBK8Fhmi/tC/ihlkC58tGYBnx7Lk/hXl5liFgMJOu1flTaXc+nyfCzzHHUcNB61JKN97Xdr/Iyf2gPhWPhf8R9a8LaVLNdabZanNb2GoSR4FxGp4bPTO0gnHrWGW4uOY4CnXkrSkk2u1z6LH4CeVZpWwjfMqcnFStZSSej+aPKtV06cyEFCc8jiitbY68NUVtDJTwhqmvSyW+nWTyukRkZUTJCgZJrzqkU3Y9SGK9lYk+Ff7L/xj/aF8YjwJ8KPA9zqd9jdOxAjhto+8ksr4WNR6k142Z1aGX0+evLl/U+xyHA47OKqp4OPM326er2XzPZdc/4I+23hWxutM8efHPRNX8SvYO1l4c8NXqwxC4wNqyX1wvl9TyFU9MZGc15NLMqVeCqexlyd3/lufWV8pxOXVFS9vT9r/LdvT10V/vPkL4ufsK/tR/CaWSLxr8BvEdsgDFbmGyNzA47MssW5GHuDXkYnFUqzagz3qdSrhKlqiaS8nY+lv2YvA8/wM+GvhP4Xyad5V7eTf234oHlHe93KMQxtxyI4sADsXf1ryq8/ZJRtruz6rh+k8xx312/urSKt/W592/BrRZdRu4YYk8tnAkMMgwQD3IPT8a8vFUoykp3tfXT7tf8AJ+T7H7DhIcsOaRq/H79oCx8HaRL8NfAWopJqEq+XqF7GwK26nrz615lSTnpHY6k3XduiPnXV/if4X0LSjoM/ixoIsMzogGZZD1YsWHJrpockIWR0K8absj8fbUgxqSeor8akrzP1Gp/FZpWyKwHH1qGtCE2dP8Ote8Q+HdejXw34wt/D7TNifVJkOY078qC34DrTw1SdKr7rtc4cXS9pFPdn3h+yT+1d4K+E5s9B8N+JL/xFqepMAsl3ITd6pJ3fYTttrdeTvbGfrX0+ExatpO7/ABPMrYSUEnJWPuLPg/4s6JHNrF5bReIprVZYoYJ/mTHKtwPl574r36U4Tkjiqr2afstW+/f9PuPlz9r/APY48QeInjvtO0iBrtVa5nuokx58iHckqYGA4+bcO/BHOaK04yTj1Hz14cqgly2d+9+lvxvsedfsh+K/FHhTxdf3Pj/VjZ39hdmOXULo+deSJgYESn7i9Rxgmpwn7id2ziqN1Z33ufpP+z18SrvxxaxixxFbAANJNP5k8h7ByThSeuxckd66pVOew/YqlC7PSPih4I0jxXocmn3KxyzeX+8AXOyko3Zk530R4t4Y0PxCdYu/CGoM6x25SSG7RiGVFPAx35PT3raTUV6HTStHVn1J8IfD3igQRXd7p1xcQCMAS3swQ/VUHSvOlySdwnUjBtbHp8cUMEQx1785rVcqieZVqSk9CHfulxHZtjuw4rCVJylZIiE2viYy8+yWsYaZmT3BNY1YRoxPQoynUdlqcz4iGk6ihM7ucHCyRygEn8xXnSrQbPVoxqxVkvwM3QfCfim9uStnrUclju/eC9G7A9gDz1ojh8RXfubBiMVh6EFzr3vI7nRtLOkWpgt7nzh/dYbQPYV6dDDTw0bbnhV8ZHEyvazK0ujaTPd/a73w1AZP+erxq1P6vSqSvKBo69WNO0Zlq5Z3hMNpEGJ4HOAPr7VvUpe5ywRxQnLnvIZa2dzp0eY4lllfmRy+PwHtWNOhKlra7OqVWNXS9kS3uqXOmwrJHpM9xlgH8gBtvvjNbzlKEb8tzJQVaXKpJepYW/t0txdXr/ZwennMAaUq9OC97T1M/Yz57LUR9T08R7mu1ZGHDZyMU+elON76FKhUlK1jwH43eK/Dll4zlj8P6Vb38S2zS37SYJVsgYUtz36DvXLBR9o0tj1aVOooKM9znH+Eo+ItmPEHw+1kG7WPcdJvXO0cfw9q9SFGHs9zVVPY+7P7zyb4ht4p8GWF1beMtISHUIFby4XjEQf05Y/N09qqK5OplN9U9z5NuPG/iY+IJ9UfU1vnklZxDeWyRMCTjy+m51xjBJwM+9d9OTSsOmlBtnnnx0/aB0mysyuv3raNeEFYoJHMaMcdNzjaPTBGK561WKvcOZXuz4O+JVze/Er4mL/wjpFreGbfJd6ZI1uUTPDSCM7HJ55B59K8qVBVXodeGoOT5kz3v9mD9lPUvErC+1iKW30YRB2MikG5Ktk59QSAcV1Qn9WptHs06ShDQ9+8YeNNB+GejDTvD1kIoLaIGSGIbXYD+Iep9a+fx2ZKW5cbx1SPnf4m/Fs+KNXGueGNSa2lf5ZQnKXC+jr0zXzWOxEZR5ou56GFXM7rQ4uW7aeQyuACxyyqMAfQV4Mvfk2etFOW4p3SDA/PFaJWRt5CW4Mb5I69vSpkZO1yaQncO/HWs73dgWjFaTMJyB0zQ3Y2lrEz0lYydO/FHNoZRi0zQtVJOT69qhybNuaNzSBJhC47dal7lKQwAqMgdferUiZJESoS+H7/AJVs/eWhg3Z6HZfCTwz8QPHviq38P+DpFjSH57m9up1htLFO8skjfKoHqefTJr2MnwuZYrEpYd2t1btbzOWvyw3Wp98/ss+J/BHwwji0vwPqsniK7YqL3xTOjCGZ+628TclAf425PoBX7pw7haUKfIpcz6silRlUV5Hs3hzwx8cvGfxy1GD4XeEliSaBHl1i4QiFd4wwHTtnI75r7zEYjKsHl0XjJ3S6LfQ9hYrKcuwvtMZOy7LdnsOg/slfFfR7CKDx/wDF86iFsAkYicwmGfPLqFwPu5Xp36V4P+teV1p/7Ph7a9r3Rwx4vySU+bC4azvu1e6+ep4l8aP2CPHuveLD4r8LftGXui3VsCwhe2Vomc9ywXLc4z6j0r6ClxHQrU0pUW42eisvT8en5bn11Di9V6UVGm4ra0ba+qZ5D8Qvg5+2P8Nkn1Xxd4eh8a6asW6TUfBN0RdbfVomwQcc5GemK9rLMwy6vQnzz5JRXuxkvid0rdtrv5WNqfENG75k1fSzVv6+RheGP2+dc+F+heV4c+Nt5GLcmG78O69ZeVd257HLE5IPGABmjEZVlmLrL21FXet0ehWw2Q5lBSrYdNrr1+djz342/td+O/jx4XdvC/xRtrrXoVdZrC4ukMN0mSURSMbjk+gNaU8FhsNeFGKUfLcbp4fD0fZZZDld3p8u+579+xR+wDqGmeF4/wBpD9oXwlp2veONUdbxrGeFUgs4+qhYV+QEDPRcV8/iMwoRrfV4ya6X3/E+YxGZQoWwk6jUtnLfXtdnulp+0teaPNdeFtN02ySSF/NjNlaKRhRloFBGQ2Bgj8qipkFGo1VnJ7W1f4nHV4bpYicaknJp6av8f1Om8LfG7RbCabxPpdxFJrdzYtPfMLVUVolB2qHHOVJxg881wYrI5V4qlJfu07LVvXroc2IyGpUhHD1F+6T93Vt36trz8jybXP2u/H3ijxjqei2+qzrEXt4bdlGVd3JLomOpAHJ7bvavYw+TZfhYql7LWKu3+n9d0ev/AGHlWDpR5aabX9I9E8BfGLSPHXi6x8Eya0L9tOKfaro4H+kZ+4M9cHg/WvMxWA+r4edbl5W9l5HnYjLo4bCVa6jyt9PI+ef+CgPwe/YN+Jnxk0hv2qvGfis3FwCE8MeH7orBcuvBMwXHQcA+hrKnTzDE4OMaUI22Te9jvwWKzZ5XChRUVFd29fl1PHP2jPHf7Sun/D6P4Df8E2v2S7bwN4TaMJJ4k12SGJ5APuy7clye43DjrXp4XKMdCmpuoue33DeEzHEWhOalLdX+Fei73W+583eB/wDgjv8Ata+P9ZT4m/Hr4qpq2qzXSvFcSXBcKCecevsOlVTyqrF2xFbmZyvLMTRrc1etzWPpz4c/8E+viX8M4biy03xLPHJaSRXLQG7MFvG6kjzZNo/eSAFsA8DOPWvUws6FBpRno/xPVjXw0MPyc2j6Lqz0e21Szk0rUtR+Olql7pCQpbT6kloDM5Hyg7j2HJPbFdNeEZUnGn6s4amHjy8tHffc+OvjF4b8Alpofh7K8Phe3vH+z35s/Il1hgxKQwRj/lmgIXI4PWvxHjHkqT5oR5Ka6d2u3kfOewrxk5VHdtv5a/pt5niHjJ5b/UTbR2eLiNP+PeEcW6DszdzjtX47j8R7So0kXCeljm3RW5I44wfQ15L1Oq11cFIQZI78jNK1jmk9RytuGc/Sm9jWnqiezJzz2PQ1zyV2Nx5WXJAQc4PQZqVozSD0BFBgYNT1uVN6GTaJ/wATIgD+Ku2K904Y6zNi8VWTBGTgda5JJpnXZ2Ma6QRnIUdeK2itNTKduUrxTES4U556VTdonLC6mepfsveNvEfg34taZq+j62LVY51MrSzlExnvXdltWUa3NfY4syp+0p2sfrp8UNI8OftK/Ay18SaBqlte6jZWg89rZw2Tiv0ChifawXLqfHulOjKzR+dnxr8Pa94T1warp0r29yshhm3Icbs/xY7Hn869BWcbvcHSk3sdp8APi/8AErSERtflSK0f5GgaI+bdgHorBevsSOO9VBOWxnKMOdI+/wD9l74gWfi7SktrbTHtkZdsiSDOcjoatxUNR1aaSucJ8Q/AGp+GPG+paVMUWETGS3x3Rua9XL605Rsz5jOaNOU+aGzOQ1XwvaXCSQlC0ipuj74PcV9vk2YVKD9nfRn4H4h8NYTH0fbuCc11sZWpeArb4leFpPCWoEfaYkZ9IunOTazYyACeitjaw6EHPUCvqcNi3h8Qqq+fmfhOZZBHMsG8O1qvh8n29GeN+EEuLi4NrexGOaGUxzxnqrg4I/A1+j0ZxcVJa3P57zPDSwlWUXuj1nwP4W1jWZvJsInkjQZYKOlTi8VRoQvLRnFlOBxmZYjkoptLV2N7V/h9eXELtaIXCjLY7GualmNKHxaHr43h3EVE5UdbHOap8EviLLYtrlr4K1Ga2BH72O0Yg/jil/beWSqezdaPN2ujKjwtxR7D2qwdRx7qLt+R9HfsffBa3+HngfWNW+Lfww0i8m1WHbYRamgMypggg5B2A9c9a/IeOuJKdbHU4YOvKKhvyvRv5H9beB/hZXweTYnFZ9l9Ocq1uRVFeSVvPb8y/on7Onwjl8Y2PjnwVpkWk6tpcLQ3WlSgMLpSTh427kDA9eK+fnxfj8ZhZYbES5oyd0+3qff4Hwf4fyvM6WZYKl7OVJNShunfqvNB4D+Fvwf8RXN/4S+L/gqDU7eS5na0g1GP7krIqByRzjH5EA1zZhnWYYSEZ4Wo4uyvy9kfTZbwNkOZUpUcww6qLmlJKS2bSV9Pl9xwnh39hD4M+A7TUL/xz8OE8Wa7e3brpVnbF0tLODayoWwfmbkH3wM104zjXMsfOPsansqcUuZ6czfU+QyXwYyPIqVT69B4itNvkXNJQiumzu2dP8E/gN8EP2RNA1zVbnwFpuveLbuyka6WaESW1jBgKsPzZySSAfWuXMM8x2czj7zjTjbbRt93Y+l4Y4CyXhSFSUqUZ15J/F7yiv5dfxOT8U+PfGvxc8PeJNVv/h0lsukLEnhyy0CxEEUqsuAXRMb9pJxnp+lelhKOFw1WnD2l+bWTk7/mcWKWY4yhXl7Br2elNQjZfcrXPC/GPwy/aL8daleD/hE723gtbGNYYbqwKLM7EfKrDjOCOuOlfZ08fk2Ew7vVi0+lz8izXIeOc2xUn9XlGMYq3u2u+yfcT4QeGP2+fgv460Tw74U1i/s7K/V7fUNO1y2820hJJwDyflK7TnjBJ4718rj8VkeMc5WW+jW7/LU+w4a4f4yyuthlTlN8ytUjNe6ndqy1d1y2d7J3uraXfuf7EX7MVp4a+LniX44ftCXVpcf8I/PLPcMUDQLLztC54OOcfhXx+ZYuUr8h++5Jkby+leSvbf1PP/2wP+CmPjnxH4o8S+A/hRoel6Rp+oW8ds+sG0U3NrbKT8u7HDvnOOwxXiUVOc9WfQSjKSXZnzhpXxD1bwpZfa7r7POJ/mlvL+TPmE/3uOK9GmlTNvZ8sPdOC+N/xNs7rTZJLnw9FMskR3T6feLtx7jPOK2U09UHJPlsfntaOSiivyN/Gz9SqfxWa9iCVAbr2FY1JWRMbcxfiOTgdRWNubc1tGOp1fw5+IfiL4d30s/g42NpfXpVJNUu4t/kqD97H8WOoXpnHpXXgsRPCNqOzOLFU1WScdz60/Zt/ao0f4ZtDeN4gv8AVJdQmHnS3c6i+164B5Z2Jxa2qenU9OSePco49Q0i9X07v9DkqYFJ3l95+gfwi+OWhfEi0k0fxXHaTXDWKy6jabP3dhE33QcjKsewPOBnAr2KE3OXvv5djx8RG7tE8u/aY/Ye0XxskXxI+FU6ie2kD27+UXZSMnEikYdPrXrOFOtT8zmjFU3aSepx/wAA/Fnxm8GaxD4J8T+PLqxvIrh8lYAqxREgYt0B2Bm7ttz06UqceV2b2M6s+eKitj7q+EXjfRb7SYvDVreMJVQPetNLvfkZ+dj1Y56Vs9tDgVlLUt+N/h7NLfWuoaHaxzXxn3BGPXJyM+wrlnTcVe7On23Q9p+FWmeIl0xTei5Z14lubqUqmfREHUe5/WuaNJzlzMydWKW9zt0tFQ73kd29SeB+FdMaME7nJOrrogMqxgmV8AdSTWzkkYtOTuMTWtOJ8szh+3AyK46uIw70ep2UaNZq6INS0fwtMEfUtFgJmYKu6POTXFKhhE7yjudcMRio6Rk9A07w3oOiyu+l6etuX+8sLEKfw6Zr0KNClS1grHJicdWrx5Zu9i2qsvANdd09TjgluR3V3FBFvkk7gDJ7k1x1cRCGiZ0UsPVquyJfLdSFLflXVF3iZ2s2mKsiscoxcE4GKx9rC+hWttEJNeXEU3k21pvYdWaQAVlOrK9kjalSVuabscF8YdK8TaOy+MrKym1C1Tm8s4pCzx9MFV/iGQM15WKw96ntHqezgMRRqfuXp2fczLfU/H/xG0uK08PWJ0bTVCiW6uzhpVxyR3/Tn2xXfh6blSd9NunQK0cPh6nNe7LP/CpfChsZ0W0uNav7iPaZ4EWNFPqGACjH41s03U5tPkkvy0MoV2neWi8yLQfgn4p8NxRapa3saTw8rbJMx+XrgMQOfwrthKCerMquJoTnZakmvad4C+M+kSeCvil4bVrgMYzM6hJIT2YE4I5+vWonCXMnAwqU5ppweh8B/tyf8E7vHPwdvLr4m/Dj7X4jsnwyqtwUAVc7UmIV9oGeGUdeoNdlOrzR952ZrTat7zPza/aY8E+NPGvi5NCv9Oa4luxiHQLqJZZCV6STzkABR/dABPA5qfY1a75b62vrpt6/09kddCg6jWh2/wCzb+yJ4Y+Gmgrr/jKNfOkk33KmHaC5yAMEcICeO1cs6tPDxtLc+jwuHVNWR6F42+Ndj4VgntdEj8uG2l+z28IARd5AO0noCB0PevExuYQTdmayjZ2XU+fviR8Wr7W0Ux3odo2YpOPveafvKQeQuPXjjivj8bjE6Titzoo4eUZ36Hl1rcb9RaZQB5jEsF6Zrzowfsk7nTSpfvTbhYt1NZqKR6raii/bJ8mWHQc0pOxKbbFaMK+NtTqy5R0uI4JwMdqlJGcbXJfLVYCCOcd6iSdzZ7GcExMcLxn8qtLuZ8xftHweRS5bCSRfjYlAp7dDWT3NYu7JJVwORjt9aVrhNWRXGS3zfke1dENEZx5WyawjK3kb7EkCyBvKldvLYg8ZAPP411YatXo1E4v8TRuKV2j6e/Zh+It2dVQa/JqlsFKbJ4IVMUpyP3Y6eWuOpx+PcfsnBGZOGJjTnF66X6a9vT+r7HLPmm0oOzv0/rrt/kfrF+yvc654X+Ecvxb8ZyNaWRgK6Xp/mBsqCQHJxk7uw5xX2fE0sLisyhl2FXNLTml+nyPmuIIQx2Y08voK705meYfEj9p/XtV1O7v4tTeNVlASLldwxuO3PXHA98kdjj6nL+H8FhacYcuttz7LBZfgcDQjSVO9upufDT4x2HxBQWc1wUuo3wZSQDjGRuHoeOma5sfl/wBVfNTV4hUw1NOUqW3b/Il13xDLoGrNLZhY2LbX56k5+QkdVPY0UKUK0LT1NY0lVpqM9V0OM+JX7Ov7Pv7QEsOt+LfBNg1zLEVW+jhCOWGMxS8d+zda2oY3G4OfKveS6Pt5HXgsbi8A3FLmS6P80YXhL9ir9kr4cPBq1t8HIZNQspjLDMEDgsTgvtAx5nT3rrq5lj60bRklD0Oz+1cyqz/dSjFPys1/Xc7jxvd+Ko9OvNV8P3M9jqphIt7Yltk8AyAUz3GRxWGGeHdRU5pSj1fZnnwdGTUJRU4LVvqpeZ498MrD4ifEzRr240Lw/NP4i0HUm8y5gh/fXCbiFdl65I/nXqZlicLgK37ydoPa+x7DxeCo071Z8sXor6I95+FX7GXxRmudWvfEzWlla3mlvHZQsdx82QfMzLjjoK+RxnF+WxUI07ys9bHyObcZZTRcFRbk09bdkcde/wDBPnxt8O9EXxNdePbCXWoYbiOysGciNpZWAR9x6Yz6dz1rb/W/CY3EuNKlKzWrNaXGWW4zEclOEuXe7PA9S+IXhH9gTw9deJvib4+0TU9ftLOaLQtMtbhQZHLNI91M5+9IWzgckKFXqa68RW+tUXbmServfotlf9N35np4jGxzGl7Ne7Hdt6Xstv63PgDTvif42/bQ/attvE99qt9DKbnbZyyW3ysGYmSb5zzg4VQBjn250ymVfGYuLStCK6iw1eGM5Iw05NPVd3r6dP8Ag/pJ4E+F0Xhu9tvh+qNJNcsDcSS3JmkmUKMvK2BlmxjaOAK+vqYqHsue+yPclP2NL2yb0PSviV4usvhstvZQWcL3YC22lQRyAmSRmCmTB4wCQBXjYelPFwnU1stX6HlqTxMHO+j3/wAjyP49/tKaBotjJ4APiELp0EoGt3aSDzL662lmijOQCq4OTwB9KwoxVOoqtV2eyueYsVRoydeXp6I+YvCH7auo/FnxXNptnd28XhDTZhamGO4iuEvZTyYkG7DkDjjnOc4xXq0qlOVRx0bstU007q+6/Fbp6OzNcJi8Pi7zi9L2u9DS/aN+Dt/4/wBKX4r+E/E15YWcCBLvSJbEtc6aMAeXbouFOe7ZwDnnivzHjnIZY6PteaUFH4rK7XfS61+a9TDHSpqHuWlbqno/M+UPEV5bafcz+H9GtSJTkSxpNvkb/amkHAPcqpP1r+e8YqVCbpQ1/rqeQuWbuc5LbhV2Aj3IHH/6q8m7UtTug2U7oPGhCjHFJy5hTjfUXTkd0+ZvpmolJoVNqJetlCOeO/X0qdSpPmZdxvyDjtg0ramkEG0iJsjtWi1Y6i0MmxXOpHP96uqN+Q4aTvOxqXw2qee1Y21O9rQyr11I2Y4qJS1OVvUpQJ++znoeoqviViJrl1RftZGjlB80pgj5gcVLi11M7RkfeH/BN79rjwd8PLy2+HOo+IHne9ITyPJbYM9iT1r67KMfQw8FG+p5WZYSThzxWx7b+2T+z3Y+KLCfxn4SjBgvId0yxrnaeoPFfUQc6j5k9GfNSrTfunyhY634q8JNbaxFYx3DW8vk30NxgLEw6S84HSvSjFxhdbkRgotuSuz7Z/Yy+J2vazpsN0qQRWpwySRpzJ7n6+gzTjzyV2cFerzppI9p/aF0Wa90+y8XQBmdY9s+F7e9a0a6pVLLqefUw/tqTPE7spFMJQxGVJJPcV9TgqyhNNn57n+CdWhKI7wjpcq3cc6ngsCDj3r66NdSjdH4RUwXsqzVupxGjfs4fFP4m/tD+KtI+Gfg+W9tob5Z5rofJBEZVD4LnAzz0HNfW0OJMtynKaVTFzs2tFu3bTY/B814E4h4q4ixOGyrDyqSUnd7RSeqvJ6I+mPhz+xBrHgG2XVvij8W9N0ZAwaW2spgzYHUMxxXy+Z+ImGxV4YXDuXnLRH6Rwb9HDN8vrrE5rmMaPVwpu79Gz0Xwr+z1+zL431B7Twn4wvtRuY5M3P2K9yAR644HNfIVuOM9ptxnGKVux+4YPwR4Br4jnpSqNrVtS0Z6zNpOneC9Gj0q78RRpp8EOwWzwqztjuSe9fB47M267q7SfY/astyOhhMPDD0leEVZJnAeMtM8CeIr17izvNRuGbO8C4CgDGMCvKnjJz3d0z3KOW31tscxZeDJnuLcWmhTiNCfJuTdk7TnqR2ohiJxskbrCUGvP0I/GUN9feIE0/UbJEn+7BdxL98getdEsdUfut6GM8FQhK8SzN8UdZ+GekQ6MlxDLPdwlo3kQF1UcHmlzSsc/1JOXNY8u0fQ/GHxB8dXunadZ+XYW0Il1e9nY7Oecf7R9qv+0MRD3Kb6FUsjw0m51FudOl74mhddK8K2TWsEA2ieODa0+O+3OWrGFfEVpa6s9RYLCYeCUYpBrmj+Ok8NSajrN7qBg6ut2vkhcdMZ7V2Qcox1ZwV6VOpKyicZoOpeGNb1SO98T+Mr6IRnAaVyRuHA5Brop4unQSd7nLLBR2sTXujat4i8O3Hw80LVFvdNubwzXEFiSpfv87NyST1JPStak415XTsdNLDyjSaSvc+G/jp8GNe8E2fihB4Y1CaW41Qy3OpNDI0fmOflijbHzEAAYHSnBRimoX+486cJU5cr3PlT4yfHh/AljJ4Qvor23vWxE0DWTSrLx1GeK56uIjT0loUoSk9Fdngmqx6nrs76jq9/Lbw5JW1tZChcf7Xp9BXk4rOKdCbp0pXV91/wT38Dlzkuaoji7FdwUewxXyEnaZ9fVbVVmxauBgj04rGUVJDpr3jQtSzD5hgD9Kh2idE1dEu4yHCj61LlFo54u0jc8F+KNQ8E66nifTbWCa+t0P2Rrpd6wyfwvtPBKnkZ4ziqw9b6tV57akVoyqKyPb/AIYftgeIvhz4Lh8I6H5uq6tqmsC61KW8lJbU7on5WnbP+pj4IjH3iOTjg+xQziUY6K829v8ANnDHK1Oau9D7l/Z6/bztm1C08PXWuW9xFp0aprutMvy3t+wB+zW6D74XnOK9ynmUo1VG+iWr8+xGKwsE3da30R9EXnw8+E37S+jW2uaa0Gn38sbyRojbZGIP30YHgAg/XPtz7dGSrQ82fNYhVoV1ytctndW1vpZ3vstbqzvdaq2ub8Fvhj45+Cni0aRftcapaTXTy2ZWPkyNtG6RuWY4UAemPrXSpTjHlvorkLCurqlqz608A+G5PEILNZSOZCPtEkU4Vx6nOeB9K55vnerIlHke56tpOlR6ZZRWEJcpEMKZJCx/EnJNRzpHFUauW/KYc4pORKsytc25YFQgJ7BuhqottF8qsJaGVVAmtzGe6jn+VT7qWqHOXLomWZZRGASSBkc4pSlCEbsiEZTZmavr+l6Tuku7gbgMkZ6VhUx0V7sFdm9LBzra9Dnf+FtWJ1EWBkhUSH9zKvOfwrnWIxNlztK50wwdJO2rMfxt47mW5EocBbdwWOcADgk/lmuWpJyk31R3U40qC5Vuz0S8v7e309dRBHzopQE9SRwK9epV9lQu/wCmeJSoyxFexnX/AIq0/SbCe8Z122qiNEDfekIziuKOJjG9umi9Ts9goySfXX5HM6p8QrXQmhh1Bxd6ldNvhgU5EIxnn0IFbUoSqPvLyNnSp4h25fdTMkeNr7xZjTrC8kQSb0lu5UXypHIwqcjkAnt6Vz2ctDeVOnCaktkdD4B+H09tp0Vx4r1dtQlVQFQArCvHZCe/XnpnjFelTpxilfVnLi8XduMFY6vUda0zw3pj6jqVxHBbRLkseB+FVOUY7nmRg6suVbnj3in9qc6r4qt/BHgs28Etycvd3EoJii5+fb/D7Z/Ko9pHoepRw1CjC83dnivxZ/ab8M6L42/s/wAHa82o/ZZAL2SOFpSZB1djtIyecLnPsK6aEnUV+hfJOauejfD/APaD+HPjPw3LpfimG4l85GBkuJmjByMbSqDA/WrnCbq3jsRJS5lY+G/2pdA+Gnhzx7qHiLwpo0YunJd4SwExxnGN6KXHvV4qvGlSu9z6DAr3Ez5R+JPxwt4Eks0ujudXV4pMjaD1VgO3oecV8bjsxd2etSU+XlR4V4v8fXmoQ/Y/P3qGb93Iu5tp6hjwGyOjDkYr5qvjJzOmFFRZyF3eyXD+ZJwQMKCckL2BPfHqea4aknNnoQjzIztMdzeleuXzW9NWhqYyly1NDqbaMhQD1PtXNJnUnzGjbsFHPfr71hKTZUXYVuQc+lPm0N3rEgabBwBnn0pJvqYJWZO7EwEjNK5u9Y6GfHKVlKkd6q7sYKLT1LdsQG5FZSk2NtNaF+zcuQpPNIun8RPcAgZI7U0+xtUV4lVZT94N7VvHbU5krFzRoftuoR2K2RuJJW+SFSMsfbPFdOGk5Vko7lShSkrVFdeZ9Z/sYfCn4ifEb4g6T4cj8BXawSTqs0lzp0Yj25GSS3oPQiv1/hKFaniFVrR5YwTexP1vD0bzk7KJ+mf7UPi+bwp4OtPhxoFvCltYWKRohlEaNIF4U9x9QDX3/C2D9pVqY2es23a/+ep4+Q0YzrTxdR6zbt6HxD8R/HDQX15c6lc3DyNKsi7Imba6ncDjGFdcDjGHGcYPX9H9nTcUj6CdeUfdgtjC+GP7SM/hn4kWrw3UUFtOVX7Od20kYBAzn5WB3DnGeBxiuXF+yqQ5I9SqVeNP4kfUmt+PLLXoFmkvQ8dxBjzE43RN9xuO6EgH6V5NLDRpLYcFJU3rfVtffp9yM7wD4y1W8v7/AMDvfObme2EsK7OfMQc4x6lWH5VviI4eMY1pbp/gap+yaqyR28fja/g8Gx+ItM8P3BllP2e7wAVnYnBdUwWBB/j6DGc8GuFUKdXFuEpaLVf1+nUt0I1MS4VJ+6rNb3Xlft/TOaubL4y+LNdtvCNros+pxPeqNMkGpxeZanBO855KqTyCORXWq+TYWnOq58rS10ev/BN6+Jy3BRlWi0tNdHZn118HPgb4V+EsT6lYWKf2rfwxDU7lPlErqPvbc4HJ7V+U51nWJzefLJ+5FvlR+P55xDic0fs7/u03Zf8ABO8u7z7HZyTmMtsTIVeprxKdNSkkfNpSnNJdTwb9oDx7qNndi4i05ZWi2qyMuQm7GOfXr+dfdZHhaEaWr3Pr8uoewpKz3PjX4tfGrTtf1a1sNa1HQtJs/Dyyyatc6vo1rcMYFDLiMyxlmkUgYA25PUnv9PGhRjTcpJtvbVn0DmnSule588J+1P8ACr4z/HXQdT8K6es1r4LikSHVIoYreS63HpNGigJg89uK9fLalCnzRpvf7l5H0mTU6LV07X/A+h/2dfirpGs3N14/1iSGOC3h8uwcvljHubMzen3SeewHrztjIVJR9nB3TPpcS41MMqFPo9fPr/X+Z8+ftEftceGtP8S6l8Qda8QlItKs2i0Ibh0HDSnPGeh+p4rmklgcLGLlfu+vzPnsbjoYag4rQ/NX9oP9rTxN8S9Uu/DnhxJrLSG3GF/7SZZ7wPyxYlQEDdMgE46Yr53G5hisbUdJJWW2u/r2+9nwGLx9Su/Zwlo2c38Kh8afFQh03wTe6dohij8iyWO0ldlBIyqM5XaD1LKCWIAPs8NTx7lGEXyq3QMNUxdVyoU5Wt08/wDhuuvY+n/2etH/AGh/htM2lfEO7u76C4Rlurc2Mr/aEYYKsCrBVI44ANe5UdSngaiq2krP5n0GDw2NoJ+2d16knjfwvJas81l4Rm062D5SyitDFEfeSSQgn6Yr+Ws8w1X6zNQgoq+iSt+LOimte69TiLmXcxeTaOcYXpXyUozcved2dLfYp3Z8xDtHHqRULRlWYmnH5cFfp7Vo1Yz6lvO2XP5mhFx5S5bkEZb8OKhuzLjJD5FOxsnoOKnmLlZoxrBWOpE4/irri/cOCKUKhqXoG8gj6ispNna5XiY11tWY5PHrWerOa3vXIgmFHHXpW0EippS0FDHOGP14q9DkmnF3Ok+GXxF1f4ca6muaG4W4BAVigJ69s9K6cLVdCd0rhUjGrTtI/Sf9jj9q/SvG3hKLwn8WtZtI7q7QJHA9wGdsj07V9rgMxi6a59GfNYvAyoe9FGf+07+zRJBdz+KPCFo1zpc4D3EMR4cdccV7lKtUnK6PInUUpW6mP+z3+0No/hPXYNB1KNbaa0IittLUNvkc+x6/hwBXbKUZqy3OZ0eRO59w6N4x0rxd4ClstVukaZ4g9wA2RHxwv1qYUpQd2cc6ri9DyHxJ4Fv7yN7Wx+7ICRwcha76NaUVZnjYzA/W2xzM3hmyitRod3c3AK+TBbplpHGMAZ98V9Hh82ocqhJ2sfmmZcEY2hOVemlJXPSvhV8DPHeu2c2tfEL4uax4Zs9QYXD+G9AmELE4AxLIOS2ABxXFmed0HJeypptaXep6+UcA+xpOdetKKm+Zxg7L59z1TwB8MfDj3Mmg+H/DUd/bykie81+d7p9vc5fNfI4vHYrES3+7T8j7bB5Ll+Ap8kKaaffX8z1XR/CfhL4TeFJNP8DeHLCxAy2y3hWISOepOB61yV5yp0eaTuz0sLQpc/JCPLHyRxGsr8TNVukuZ/BRuRK/ytE6lQPUkkYrxIwxFWfw3uevGdCn7sZLQ6HQPhRqghS5vLuG0mLZbyEDcehyOtdtPB1OX39GZvG0qTdlc1vEHhPQrPSR9stpJ35wYFClj15xWlSEaaSOWGInUm+XRHlfjjQU8SM0fhVWtbuzQyC1mkIdx/eGainRVWOmhtFtay1R5doHhzXfGvjdLaRC0FtI0YeT7yEgbs/0/GsrVVK0fQ6nUpey5V/XzPYPhZ4A1DTRq1/qFuq2jTERW3lf6zHcjvzXVQw00+aQOtBJQW5b1XVPCvg67FwNJtZdZuXCR7oAFi9ACBjPeumUlzruFT2k6Zi/FbStEu7KE+ONZLjy/MnQTEIoPQH/AArdRko3ORWhr1OG8PeAfhT4jQ3mnaTfzWEbZae4GyIY/u561gqcW/fRUZTaudJfaVCdEk0LwNYvZwSIV82KLDufrVQulyrUuVeOjPjP9tz9jH9rXxRpslz8KbG/1S7MRNk17qH7i3Y9W8s8ZxXo04OULKdmzz60PbSvFH5gftFfBbxz8EvFB8M/FPxBHqOuhfMkKTbxDnqDg4H0618rxFKrg4ezcr3PYyfCJe846HkWo3se4o7dueetfIwqxurbn0U5QUGkcdp7qEU5610SjeZ1Ts6zNWyYuQuOgrNpRiaxSjI0EfauF9K5XrcJzu7ElqSDzzSa00YKFtTQT7vHPHNJpLcqMLoVEljmE8MrIy/ddDgj8aE+XWJTdjq/hr43n8PeMtM1TXtQuW0/TInEFjbnYoyMkDHdz95uuM124XFclVOq9EcFbDyqaRPrb9nv9uu78O3UeseItea1uNRkSFmgG/7DaqQEt7eIHl26BR3OSa+lwOdUpzjzuzemivZHJLK7U27XZ+hnws/aE8K/EOKxtvEesrZ6lNEpigF4rCFWUFUlZTtEnTKj5gTg45r3qWJVZp3t09TxK3ufCv6R9L/s42/ia98RFjA8em20TM00THy5ieFGcfMe/wCFdNSNOlSasrv/AIc8qviPe5UeyXt5babA95ezrFDGpZ3Y4AFYWXLqcDpylLQTT9Y0vWIBdaZqEU0bDIMbZqbp6DcJQHzYdjsPTrWkJRii/eaGTSmG1eaJxuAyPrUVqloNxNaNK81zHO6747t/7NkiJAYRkMV6hx2rzatWpUXLY7YUIwqXTPLbvxZfeLYpIhM4ltp9mGOBIpPAPpSoqKd2dcX71lsblr8DtS1W/s9Xt52sfLcG6W7G/eBg/Lg9eozxXTLC8zujlrYiFKPLe53Nz8LvCGoxtFrlo16ksapLFKcIwHqB6+9b0sNCDvbU85YypJ2Ny60nTtUtVsbq3zErAxgEjaR0wR6U60FNWkrl0sRKjLmi9ThfiX4C1aw06O90SVprS1le4miILSlzk/8AAhnFcv1eKZrHFOcvePlyX4j6pdeKQviiXM1zcMq2qPiWVd3CkA/ImOTXO4SozXPLV+Z68ZxVDRbH1H8LtDvJrGw1W68mcBfkjjQCK2GP4MD5m7Z+vPY91OMEtXc8mtKVrLY6nxB4x0PQJ3h1G6WNYITLKxPAFVKq72sQqUpQuj5V/ae/aztb6eWwsrwR21pljGD0x0/E/wBKzvFO8nqduHo+zjZbnwf8RP2sPFehatq8/hlp5dV1IYaSGTa0UPZQ3RAe59OlXRnKSfLG9j0YUY8vJJWM/wCE3iGfXtRWbxB400m0845+xQtwGPVmYsXZv948+lerTpJy5lp/XmRVjGL00Poj4a+AL3xYGtvhz4ntZdTtiXazkkaN7k4+6BuCn2wPzrplywiiKdKMruWx8u/tLeM/ilpPjO/tPFHhK6t44SVNpfpdOQw4yGWNQPwNfNZrVnHZ3R7eFw9Pk91nyV8QPEia1qUsv2J4SDnDSu+f+++a+Fxdfnk01Y9qlBxicXdzl32lfpXAm2dkIJK5XJOCRz70cqT1NHJRK+j86hg/3uldD0hocDu6h1sHbGfauGb0O+K0LsaNjAHXvWLLsTwRB02n054qJNo2i7IrTwbJsbe/WriuZCmrouQxKbfkDpSlCxKukUWsV80sBx3xVpaDdmixDCOmAPpSaszO2pZs4/nG0fQUO1jeCVy3doAhXHas1uazSM8RkNn161utTnukavhLT59Q1RY7bTLW7IPzC5s/P2j1C9PxNellWHnVxSUY3M6l5LXY+6P+CZPgbwVa/EdPiv8AEi3isNB8NoZzqV1fhRPOBhUVIzsUD+6PSv3nhbK8RHLKrwsG5z0V+i6vyMZ+2hgqiw+spJLVLTzOv/bO/wCCh/wf13xTdR+DtWknleTZHBbywxJt6fPJMdqA+/51+mZXh8Nl2Ep4WVROq33SV/NvRLzuZKvh8BgYUnK7ju0fKvjD4gfGLWluvGyeHdH0TQJwEkvNbmvL23uFzgeWm9IWzn70SkAclsDNVjsRj41/ZJxSTs3dNfenZ+tzlhia2LlaDSWr1svzt9xZ0f4feF/HH/FdfD3x9pcmu2cCNqmjeHtXuTAY0AbeIrh2PLKGKgkDjAGAK4qUsPKrfn5pR1Ip4rnnyt+Wh9EfDv4qx6z4USZIXAtbceYGOcjhZV9sN8w9Aa7PauSu9z6Kn7OUEoprbr1tr+P3bak8/wAY77SfG1l4j065MeoIpkWRYwqlcgOSOn3mQ49z60m6c37KabT8u3n/AF+DNvclFRlt6nfaFren/Fu0u9Mma4e7a4YSyXOvrp8dmBzlJGOCSOcYOewzRzPD+9G/L5R5m/lY9KWMoUqFm2tdUouTf3an1L+xJ+zx4R8AQy/Ek6RDJqN1AFj1k63JemZTnPzNgAfSviOLc0r1p/V+Z2vrFxUf+CfnfGGcyqWwdKT5esXHl9PM+ibe986TchyN+GJr4apDlPgZUrR1LUzxTwOD93GCR2rH3k9DJKUWrHzZ+1nNBDDJJo6i4ZEJmWOQnKhgzkgDsBn8B0619xw+pqj+80PoMG5qC53b+tD8dP2p/EV9cfEvXraOa7GxTOmkt/qZgolcu7dQAGLZ6YXpxX0Pt2oOMnY+ii606SjFXfl6Hzd+z54q1vS/iN4p8NatfjS7jUrEXCXFjKZwM8uwJwZCOeMA8isMDiPY1ZpP0O3BYmtH3UrHsOkftQal4V+Gs/wx0/VpY7rUNMZtVuQp8yzgeXklmx+9faAFGSAa+hpZlCFPl6vc9lY6pGFnfXqfLH7QXxA8e/FjX7nTkR0sNkdvbWiuyiTbn5TgfdXClm7k+1eDisViqs5xg7Rla6u9db7bWTSe+/ofL5lOtXfvHzV481LxffXesaf8Lobme10C08/X9Ys+Ci71QneMbU3sqjHJNfC5lmWInVlTw90o7tH59jsWqVdQcrJuy82cToPxU+Kuk3CJovxG1q2beCoTU5Au7tkFsV5VDG5ipfuqsrvzZVHGV8LJzUmvmfUPwD/bM8VeDrn/AIV/+0bY3DoJgo+2tcW0ikjO4OhUDOc88HOaWOx2bTw84Vqrumly63trd6aaWV9eqsnrb6DAcUV6tNKtO6ez8j6C1CTw9q8MXiHw9etdW06ZiM0pkKg9sljn61+WZnF8/Mm7ee59tgZRrw5o6mdMSxGf0rz4W5T0HDlEeHenHSpauyoO4xCbZST+VU7bEVEoq463ufOJXPNS9CKb5mXLaR1bknNZO8mbe7sXGbdCxPpScWmU9jIsONRb/ertgvcOO3NM1L0BssMj1Nc9Tc6eljFvYWMwYnjPGRSjsZtaDcAAjHPrWy0RFPV6leaUKdx7e9DauY11aQ1Jg5ypzg/lVKStqKmn1Ol+HHiy68KeJbfWIrlkZGH74Elox6r71eHrSo1U29DDFQVSFkj7+/Zx/wCCgnhu38OjTfH/AJSaPCqwxNcyeZJcN0/HNfcYfN6cIxbVkz5Stl1SVT3dz2LxZ8Bvhj8YbGDx58NJ49N1WWPfBLGFDJkZr6SjXhUhdM5K1GdK0JJu/wCHqcVr/if4u/ATQZrXV9Gubq10+Iuvkks95L2LH0rX2ztdo854RzqWRD+zd+2T4l8VeO9O8IeNtP8ALvtSR7m6yPktogQFX68gU41JVJJIiuoUYWsfW3jjwlbSxWmsaVKVlaMS2zr1DDBrp5eV76nJGftI26HZeE4PEHj7To4/D2km6uJgBfeY/wAsTDjJyeB3rzsTShOLUtU+jOmNRQjZ6M9g+Fnw11nwVatJrWti6nkHKRqVSP2HrXKoKMrkuouWzN/X/Cdl4jtfseqxM8ec7Qcc1VSjCvG0x4fFTwrbhuy1aWn9m2C6fp0AjWJNsanoK0cVCFooyc3OpzTe5biZvKC7h5m35vQGsHKTXmKSjfyOU8Z6ld2rC3u7maNmPySwgBcfjXC/aOdpM7acKXs7xOcu4YdW1KC5udNf7VHHm1u45vmc+n0rpjGfLoS1N6dCf4UaTod1rGsTx2SxXsNwEuUx0JHB6VtSoJe/JamdWU0kjuriGz06wCsQo6DjvW05aWIhJuehy+r6D4Vlnilk09JpFcv5m45UnqetZRpxjLmOh1K0o2OK8Q+ALr4yeM44cGLRdOH8S5Sd/RlOCcfka3pu8tdiuVU4XqPU6bxP4X8IeE7GGEWaySom2C2Hyxg+u3oKprne1jNTlNNRWhwPjXx9aeFrZUW5iiupshGAACgfeI9hSjGKYXh1Z5Z4t/an8NeA7e3v/FOrtNLdyt/Z1i0+wSIPvO3PT611U6LqzUYb/d+ehnVqJK0D5j/aI+Af/BO34zaTrX7RHjj4daxcXltbeZd2Gj620IunAPGAePrXl47A0K/vV4XsbUKmNpRtB2PyP/aLv/AnjDxXcW/wR+CkHg/TLSYoBca9cXd0VHdy52DPoK+NxX1KUmsPStbrc96hTxLs61T8Dy+3mKIij07Vkrc7ue3V0qs2LC6WOP5iMkcZrnqroUptl2zmaZiK5px5dCqXvSNC3Vo2BPejRRN6jSZoW5BX5uoxWEnqVBuw8sF5x+FEdQauKknOBn3JquS7HGPLuaehX15a6jbtYXMsUwkAikgYBwT/AHSeAfetKEJe2Si7BO72Prz9mvxvqOj6hp/narp9tqAcBGl1EanqT88hIY8xwnHrg8/WvsMuxU6M1T6/efPY7CWbdtfPY/bX9hDX/EGufAmG/wBdsbmBBcsLVr26EkzptU7nA4Q5/hHSvo6zUuV9Wj42pC2IkkaPxZ+KOlw3jaWurxrb42lc8FvU1iouUkmy6Ur6I4vw18T38PXpa31SF4lYE7GBDL7c10zoO8k7XXmv6fyN+SJ6zo/xH02/sRqkN2jxSRhsKffmuSpCUZOz0NYUYySZlan8RbS2nliSbMXKMN3r901yRgloaTjqkeXeK/G063dxFE7CO6gZkIPPmLUKmti4RlJp2Nf4I+HtQ8T2TeIdNgS9guP3dyDKAFIPP0NdKwyaTZdSpGjvoe6W1uYbeKDyyAigAFt2PxrsTjFaHgYio5X8x2xi9TGetjCEb7Dbq5hsrZnnuUQbeCzYGfrVbvRHQ1CC5pbHzj8Uvipq/wAHNdfUrO+uEkS4WSKzN+1wsqsRkNuORn9M12+zp1Y67+hMYxxK91WPCr630/xH8epPGd9oUUE+rXAkV4cSsmeflUnbHz6152KwlP2ytE+iotxwqhFao+4PCLw+FPAEeu6tqKultZA7BNuRMDhc85bOAT61lUXI+U8zESUqvLFWPkr9pb9o1oI7hYr/AGPdsXmCnoozsX8TzWKkr72O6FKySPhf4r/FfxH4x1eXTtLMk88srN8pyN5B6+uM1x4p1KiVSV93rrq+vrvqn5Psd8KMYR1PhX9sv9rrwp8DLqfwja6m2o6irlbxrOYGSSXuoPICr0LHvwM104alWac4J2XU4K+YQozUVqz5v8N/t2adq+oeXeanqOiSO3E1y7Sw593iw6/Xaa9OGsfj+/8AzNaOY06rvUjZn038Gf2zvjh8KJNO8dWepam2krKktpqkbC5tZMH7yToCcZGMHoeDRCvVd4dHb+r/ANeZ14jERdL93sz658ffFTwd+214IHxc+HPirR28UxQD+39D1e1WRLlgMGWJ2wwJ6lfXpXHnFGE4NUZJtfj95tllWo7KaaR8meNbO/tL6UanotjbSo21m0+43KD7qWJFfnOK9om+aNmfVUo2WjOYuQN24muSEn1OpOyIyoCYxipnOzsRFXepW0lSNR6d+tdbbdEza/eHW2pIYEDtyTXDPY6Y7GjFyoU/hWL0NLuw6NmUcdfpUsrZDZMO2D7VpDQIyb3JZGMUOVHbkUN3NJL3dCpG7ySYIPvxQmkjKKs9ScZTkcYqZSbHO3QsWJ+YAfgalNmtEtXpwmR6VSRpUfuma0p521asjmirjtPvLqzvo57aRRhxvR/uuM9D7VthsXXwleNWm7WNW3FaHs9r8RfFvxX0WDwbqvxV0zwdo8EYQfZ7eS4kI7lY0AUH6mv1vB+IeKlh40YzVKPW27OLE4fEV05KVin8dLP9lv8AYi/Zu1T9rPQLLUPij4h0vWLXTNIj8Vwqlh/aNwsjJJJAuQyosTtg9SADxX1mBzbB1ssni4Xk72TfdnmVsM8Hl9TFTd2tEmaP7EP/AASa+PH/AAWTstR/a+/4KA/tj3nhXwvYeJobC58JQW0VuXiS3hk2RESLFaR7ZUVBsbjnBqM7eY5d7PDYj3+ZKaUdVrfqr327n4vl2f4fOKuJqKrZUpuMnfd2T67KzX9I+V/21fB/7Ln/AAT8/wCCid/8O/2KPi/rmt+BdNe3tr/UpNbW4eO4KKJvLmTasnlvnnGOCOetXCliMHhKWKs4Tle8dbW6Oz1PXyTPHLMpwvemmrO/lr+J9w/safF6D4lanqXgjWZ7dPEFpsmmt4ABHqFs4wl5CD1RlI3r/C2a+pyjMnjJOM37y/E/VaGYR+C51Xi211fR9WutIvVdZ7Fwi5Q/cLZOM/7oyPevo5NeyvfXt/X9anfCs5xvc9v/AOCctho3xF+IGqJ4t0/T5oNI1HdBFrasUVioBMaAbZGI6E4xmvPxuZYijl01Rc9Xb3dH/wAN3ZniK01hJqLlzP8Al/Vn6YaE1jp1kmh6XoSWcEEAkHkqoX8h0r8prSq4io6s58zbtre5+aYmNSpJ1Z1OaTdtSxolyLhDPK4QiThCentU4mLi7IVaHs3yrU3I5Mx5cgD0NcK30POa10PF/wBp/wANaZfeFrq8g0y53wo7Fkg3ByACSc84xkZzivq8hqVPacrktT3cGqlRpNo/Dn/goL4At4PGOo67Y3xkOmQiW6hgz89m+VEgXPOxiTg46jNfTYtuK5Ybn0cUoUU3ujyv9jj4OeBvitHLL4h+LC+FtRMSx6dqU+nPPFJ1ASUrh1B55AOCK4IQlzc6ZzLGVKeyPbvit+xD8cfD3h6HxPB4Z0TW9EthNJPrfhmVLpGI+5IxzujO0k4de/bFelh5Qu+Z2Z1U8xov3XfmPz7/AG3vG8Pwl0qfwnoFwo1a9Xy5riP70MW4/Lnsep/GuDNsdHDYeTh8TVkcOcY9UaSpp6yPmP4mfEnwJ4w8GeCPDng/4WWvh+98N+HJLHxFqtvctI+v3bXtxMLuQEAIwilihAGeIhz0A/N61ODkpLd7nw9qqlLmle708ji1dy3mKa7MNGMJppXZTi2j9GPhRpVv4k+A3hGz8f6Na6lcHQbfz/t9ssjEbf3edwzkJtH4V+bcR5jiK2d1pxk0r2+5H6ZkOW4dZPShVgno3t3baN3TNB0Hw5ZjTvDukw2VsDkQwLhQfYdq+enUqVZXm7nu0MPQwseWkrImKGTAHr1pxasayeg7ouCMcCldmcHZlS+3bMDipTu9S52asJpMRABZc896TTbsjOCUWaMkgTBIx9apKwpNJk6TK0JVD0HNaaM3vzQMywbOpt/vVtF+6cVLWoa17kKSPSuWpqzsmkjLuVDnIXk9aUNzDm0IWQgbm6Vu3ZDiklco3XJI9B1rHmfMZSSlLUZbIAoxgZq1qzOT5WWdxjGc8H0rRQuLkclct6dr11Z3ltI8xaO2k3xxsflB9cVtSm4yXNsjllTUZXR7p8Cf2yfHmh/EXTpNd8VT23h/T23TRBvmnPvXtYbNKka6u7QRzYvDwlSfLHVn3H8H/wBvf4UfHW+m0XVdPhWzMq21ubrGZ3PGEB5Jr6rCZzQrxPDqZdWo0+Y7bx/+x9oOsOfip8JolW9gRDJbxnG9VOce/evRhUcZc6PEqU4124y3Pb/COtLrvgzTI7m38uaKDbN5nVCBjb+dd8Oes1I5VSdJqNj0b9m3wF490vxlL4lu7N7fSJLdxvkfHnscbcL1IHPNGJdCNHlveX5BUhG/Mz3VAF+8RivMcW2ccpaiTSIg3OwAq7qK1JTbGStIIi8adBngdaG+WNzSCc5JM53xN4uXTLBbgAoWYjcWxtPvXBKftNT0I0Y0pe9qjDfWrnxjfwafZ6hbGbYGa3ngZ1xnqSDUpN1NDRqO6Wh2dlptjp0YSC0iRwPmaOPGTXqQjZann16zvZPQlgt7SCZ7iK2jjeTmV1QAtj19aqXmZ87nGxQ8SeJfDthYsdRv4lyMKCec1jzRb7nTh6E+bmZ4340+NOjeEZJJftWYADtwep9/xppczOvnUpWidd8AfjPoHxJ8OyT2nlxzQucxKwJYev1qmuTU56tKpKWoz4wTmL/iZ3LbIoocvID8309qiE+ZluXsqNkfDPx1/aJk8QeKpdJ0mRBFFuE0inIihTr+f61tBtbnLJSmryPlfx14d+MPx2+IVx4+1LENhFGI9L02W6WIiBeBwTkk9cChRnKd0a0acVK6Rl+Ovi7rfwZ+H13B4+hs9CDQukNtewy3CXBx8ucJsyfQmjMa6oU7t6WO7C4etiai6an5+fEzx14j+IWsT6pqt7E5dz5SW0IjTb2+VeMV+dV8dLFV7tWX3H1MMNGEEnrZHCrDwCvpVJrm1OrER1bRbtiSox2GOtS3czpS1samkcOMjvXLUSudkYrc1yegIrGXkZz0lqWoGOBjv0rJq50UknEnGD+I71n1DRSF2kdq6I25SnrqWYY0bAkx178isJ8yY3NLY9s/ZX+D/i34l+OrLwR8MJtRfVLxgNlrqErCLkHc0VsmyIdOZHGfTtXvZdltSfLKnJ67vWx5WOxFKn70lf1P3z+CngS2/Y5/ZF0T4Y+LvF+7VpYWk1G+uHy7zP8ANIRk5O0YH4V9lgqE6k7N6I+Lqfv8RKcVoeA+IPjJ4s+J/wAS7n4G/sZ/AmPxz4qt7RLvW/GHjnUDaaHokchYRl0QGSZztYhFXJ28mrWIw0ZN72dtN7nn1JYihUSS3Plf9rH9rv8AaU/ZL/aGf4P/ABP/AGx/h/4k1TRNEXVvEnhXwv4HNlp+mFnAiszctKzPO67iE4bbgkc4r6PDZZLE4CWNUXGC7rcMLi6bxHs6msntZn2R+x9+0b4P/aJ+CifF74Z3xl06baNQ04vmTT5/4lI6hTyRXi1PZ1NYbHs86jodZq3iEJqDtHelojEVDZ4J7Z9xWHslBXEqrvoc7p82s674hSwFu0siN9w8CXJ7GlSoSnO6RvGUbXufTXwr0DX/AA4i2cXgez0yykjDTSJdDcz44OwA5PqSRXXNU4q1zysTWc20+h3SKNgJFcU3eR5zXcaVZX3Y4oVrmlNWjco65fWtnpzvc26y8fKmOp/KumFOU9nYVVXjtc+Tv2rtWvrK7F7/AGDGjeT8k00YIA3DOeP512R54aHRg8NJr3dD4yvND1i7/aSvbbUPEupMs1xBLbabb3TJCy4JLHB7fr+FckYXq2kfQRrUqWHtfX+v6/rX9J/AHhi08Wfs/Hw1b2v2KKO2aSNknMkkrAE5Ixnk+nPSoxVLkqX6M+fqVr4j2lz8zv2p/GF2niy98NJPPHNuaNBJGUZOxYg/dP8AKvGxsYtSgm15nvYPlqwUj5K/az/ab0r9mH4Mavd6FcJP4mvbGZY5lOfs+RjIPZiTjNc9OEqr5LjxdXkpNo/Kzxp8RPFGj3etXnijw/pWpyeOPDNsYbq+jMr2UbSRyiWBgw2ShomQk5yGcEc19phsxqZXhauHVOLjWhFa9PNed7/M+CqUI5lVp1faSi6U3e2ilurPy1ueaQjfw3YZrzU+WNpHt1JtKyP0C/4Js2/i7wz+zpqY1pHt4ZvEkd5oiykMHheBklyhJVo2KJlSOSua8XievXyulRUVyykub5PY+v4NwscZRrTnrC6XzW/6Ht2lR/B1LuXVbhNT8HayeYtU8LRB7d29ZbYuoPPUqR9K+Zp55HEe7idPNf5H1E8njRqc1J+72OM8XTm51OS4m8QwapI3JvIbV4fM/wB5G6H8/rXkV6tOVT3ZcxtCmznpmJkwag1Ss7DiwEefWsmryCp7pDpXN0Xx/FXXoqZirykdVYgnJPXA6VxVGjshGyNFAygZH/16ysNxsSIuBz+BpaI005RgB8wnH6U76GK0ZNK48vBGKz6mybkiCOFlPmEYNaKN0KomrA5LHgDr1quVWJRLp7MHK4wfU0uRLU1g0noWdRk/d49qm5dT4TN88DBz3pqzORN3Ft9zSZx9aqyLjNXNrScGRQgHX1qowkprl1RrzNnt/jn9lu4/am/4I3/HnTtCt2n1vwVqWneKdPhRcu62qyeao9/KaWv13h9VqmQRoR2lJ/erWPl+JamKVKNFfDK/3n41N+0d8ZG0w+FH+JWtyaW8yytZNqEgiZ1UIrFN2CVUYBPQV9THiLGUKcacpXUNFdK/6/mfkC4ZymE5SjSUW97Lcz/+EkGqyNJq15lgchnPJOa4a2dSx9Vuq72OtZbGlFeyVrH65fsmfAD4lfGv4F+Cf2hfhJ4C8YfD2/8ADcFrb+F/FPjVIo7XWZ9uZYowhEk1u5HBKEAHrXfhq1fETj9TXvLv1PucuqQxVKMZXjZKx+nHwR+Ffg/4u6Vpur/HbQ7bQPFCKE1W3gkE1rcOOrxOACVyv3WAYZ6cV9ZWr5lRh8F3b7j3HXr4WnZrmPqP4c/Ar9nnwhafZvCukxpIrAymINuZsccAcjnNfNYnMs9taWi+R4tfN86jK0Eop+SO/wBK0u10fSb4WekywKIwscs8m/ePxOce3FeFVr1K9eHNNP0VjyqtepiK9Nzmn1aSsSWN5aRoEkuQJIyN+SQPpjNa1Kc27paMwnGq5XS0ZqWupW7Moy+8tjHOD7d+K8+VOSZk6M1d9DjvjzpFrr3ht7B4NSnlKnyo7FtozkZySMAD1NetktaVCrzXil56s6MJJ01dWPx9/b++H8vhb4oxa3rlkLmC4SXT9QdVASW1lLK+eOSCR0PFfZZhiIxcKkNrdj6rAv2mH2ep8M/B03Pwm+IWt+BL3UpP+JdqTQxMD9xNwKEHGSCOfYmvOhiZudi5U1TdrHvXxF/aKm+BngZdHGqtLd64ZEhg84yllk5JIboDk4HboOOK9O/PC8jllSVrO5+an7TXgDxZrni7V9Y1rUZLgag4ubCV87CDkiPpjOK8LG4GvWUo30ex81mOHrVXpuj59tltNP1B4Nf02eVEVkaCKcROGxwclW6HnGOfavlakKdCpatFu3RO342f5HmqlO2js/NX/VHpH7Mf7Onif41eL4LybQrhPC1jcq2t6o0ZEe0fMIFc9ZHxtwOQCW6A1w1szWW4KdW2m3nfoj1cBl8sxxUacVpfV9D7uSOKJFghjWNEQKiIOFAGAB7ACvympUdapKcnq3c/UaUVCKjHZDJdxGPwxXO3qKd7hgouf61UdjaMfc1IZJgAcnkdKGzC9mMKPcMAOlQjeMb6li3tDCw2rj8K0T5YktK43UYZSAUGRUKSuROnfVEtkNtuQx5Ap3cmVzWjYpWGRqZI/vda6Y/DY56Vue5sXwypHtXNO6Z1VHdGZJksAfwpwRmoWRFdzKqbPwOatvQyb5TKndmfgfSpSuNJN3HRvsBbFbLRGNRWlckifepCk4o5luXTk3oxkjup4PH0oTTInTu9ByO7jGTj0xQ3dWZCjFG94G8da74G1uHWtDumiuovlt5c8QA9WA6A4711YSu6VSyObFr2lJxP0x/4JvftzX/j++uvCN2C9jpFtDCbiVsmeQ/eJz1r7nLMWqidtkfGY6hKlNPqfb2jf8I0NRTVXhQRSEPGP4Ax7n1r6fDzUItPqcLtLbc96+GusWOreHt+n6tJfLDIUaeRAo3YGVUDoBXLXjyz2sck4u7uYPxP+KVroKbNI1QJPay5mQ8BsdverpUPa7lUoxSd0R6J8dfDfi7wzJeW12sNzGMPG3UH1xWNXBVE+V7BCk1K7NTw/wDFmxn08LqsZSRRjP8Ae9/5VlKHLGyNZYZ814nI/GDWIrrRJ5rCQyFW3xqoznvggdax9jJGkrLSW52HwmfU7rwhBq+qaetq9zGpjiK4dV960pUknc5qk7QsdADls5rdyPOlK8ixEvOSOtTzX0Oilojhvjl4Yu9a8Mztp9goYIdsi9VOOvH4VnGPv2sdKm0nqfnn8TP2g4rvUdV8AeIbgWer6O/k3EMnHmKSdsgPcEfqKtp7MqE1ubn7H37Sel/D7x/b+D47iNjOFx+9y0rN7fiKbkpJRR2VXGnC01bRan0X+0H4g8R6f8ONQvNXu/s39pzSfZw/G2PZwfzP86z9m4nn1ZRk0uh+W/7Rn7SHhn9mnwNrviK4g+3yWls9xfXCo0hjTdt3MByBuZAPUmtIylJNRWy1Mq1WNFJX3Pyl8fftvftweP5tY+OPhv4t29to9hdIZLWw1W0ElqkrARj7PI3nMBkAkKQDnkVtDLsXOg8TBqUY72auvVb/AIHBSzGH16NCTkpu9vddnb+9bl/E+i/2J/8AgrR8QPHvg67+HX7VvgO28WeFxKLe5vUiTzMlT1VuQec5UjmvJxmaUsPJU665oy/A+ohTrY7llTk4um7+7a0tGrPTbrpbVLW10+b+POj/AAT0jXpPEHwJ8Zve6PeksNJvkZLiyJ/hyfvKO1fK5nhsDCftcLO8e3VHt4PEYiScKq1PMVBaIELnjqK4pO1Sx7NZc0mMtEnZ8Enk1TfunP8AAzc0cHIyefWuealY3jUNSaQqcnj61mou4tZMt2sm/tUTi0dMNFYnO4NjHBrImUSaNyAGxmtY7FwblGxNGrMdwOPTHas5uxtCmk9T6n/Yf/4KC6f+x3CniG1+HMWsa3FcKlpp/kiGzVBgmeTad0szHozcJ1APSvs8t4jw+HwSpVIt9Glp8zxsyy2tjJctKSWqd2r6X1W63Wz6PWz2PRYf2+f2iv2rfjDc+MPir4zmDalEIbHQ9ODJa2EOdwjjUdeQCzk5P5CtKXENacpU6XuwkrPz1v8AojOplWGw1PRXaPDf+Cmv7RHx1/YI/bkt/i38PviX400bQvH/AMMNPuby18IeIH04X7xDyJEd8NhVkjc/L8wL5BGa9vhfE5Vl2bOpj6LrU5K/LdKzto9n/XU/O+I8vxmPotYWpyVF18j5L/an/wCCqPxH/bB+GekfANvh54a8IeEdN1UXlzDotqz32qXZODd3t25M13MQTl3bJzX0+aZ1hatKdLBwlTjN63ley7JWskeXleRzy+ccRiZ89RK17WPvT/ggl8ZvFnwC+NeheA7bXpda0Pxtpch1bRwCxt0jA2zNnjkE89sGvmsLVpxlyNn0NZTqQU1c/VS48W/C3Vr258R+F/FMM1ispD20tzHtBz93cCRkfUGuyUqMp2TuXT51T95nSfDeTSvFUqT+FPCd/foZPklsbfzFjb2lA2r/AMCI+tONSMHbYuU24e8e+/DGD4i2oeHxRpC2tkEAhNzqnn3LH3VV2qP+BsfYVhWfNK6POunJnZgnbg+tckr81yW9Bk2cEg9KE9TemnymbrV7JaabLJDaSTSbSFSIHP1rtoxUnuKpK2qPkb9rLxAdPQ6Rq9pdfZb+2kjlmnf5FkJOAMdM9M13qMqa5uhtSjHEx5NdVZ9P60Pj/wCI2qpo3xe0XxNZQGKS5so7YTDOSQwBUEetcqqU4zUup60MLFUVGP8AVj6osNU+EN14Pk0nx5rutx30triOTQdbkhlhBA7oVG7npXTVjKrT0RxVabcbRR8Z/G79jOy1TWtW8Q/D39onXr13jLpa6yfMc98FjzkY9ea86eApVE3ezKpVKtKGq0PhH9q/9kbx1498Iarp82uKupxWs0cYkY+VOc8bjj5TwOvTnn189YKNOpz32/E6aqeIw8lHqfmX4p8LeI9A8Qz+DvEtpJa32nO0LwXJ27CCeOeMHJIPQ5969enCM4pSdtNLngRoypXbVu5rfDv4KfED4jazFpOgaKBG74m1G7mSG0t1H3nkmchEUDkkmp+p4uvNLlsu/T79h1KtL4U9T9FPhhoHh7wL8JdG8L+FNd/tGwjgH2TUdjIt4qqsZmQMAQjsjugIztcV8TxhiI18fFX0ilFfI/UuFqKw2Ux0s5av1Yl/K0j4c89+a+QSij26tRvQy7oljjp6H1rKKtIIx0MyZwkxJHfpmup3auYTvzCOz+WeKxcuZlVIpoTRlP2gg92rqbfIZRtB6nUWEgEY57AE1xzvc3jK6NCJiRjPPas3oW3oPVyGxmpbuRdiqcPkimk2hpXdyQZYgH0p8tmbQQly4jXjrTvYqrflKsd0WJGO/NF7Ixin1JbacrNnbgetLmNYcqZYvZg8eCegqGyqj0MtsmQknjuKpPQ55WSuOhn2yhBzn3raKtuTFam74dPnXiRZyCRklsBfqfSunDR56ljdNH6j/wDBEvwcLiz8faHfy2GoaPq2jol7bJlkYEMrI+Rg5UkfjX7hlmB/s/hehUe7ndfceFxU1Ty6hOW/M7H5af8ABQf/AIN4fjD8OPjZrXjL9lCDw/4w8BazqTy6fHca9FZz6H5jMTDN5jqNqHgHnIA4rzcywmMq4luCaXkfIYqjD2jnOmry6NtfPdFL9kn/AIJkfszfs7eLLPxd+094psfiR4whuP8AQfAXhtXl0uyl/hlu5Tg3QBwfKTCHu56V7uSZJTdeH1m9m+ivZd91d+V0cdDDYly5eX8f1P1T/Zq8H+PvGVxZfEj4tahDNd6fZRx6JpPkqltYLJxHHHEAFQDHQAACv0ChgqeBpWS3Pq8Nh1CKuj6a+A3g6x8Ra9qeqxWsIh0u5lncLkbpBkJnBHcuce9eVnmMlhqcIX1nZfIWYVJRhFPeTsdN4LvW8WyzXGp3bQ/ZpWChCFAGSNzsMMzemTgVyYyLwkUoK/Ml5/dfRG9an9TheK5r9/06HqvhvUZ7Twrc2l5qRuPsgQmdwRlSAevevksRRhPGRnCNua+h8fjOWrmEHGHLzX0Iku4bvfPaMELSjIb/APXW7pyhZSN1RdNpT6Ict/LBcrJHIWUn5wjYVTnqR26YrN0YyjZqwSipQaSKvj2w1fxbph8G+Hpxm6RlvZJ2wscLggnodx7AfnTwMqOEn7esttrd0c9H91L2ktLbep8E/to/sl/Fbxf4Q1p9M8OarqOm6WxWxuWhBMsfSUIM5I3DepAP5HFfUYjHYXGYdQjP3rbLX7z18NmVOnJQufkD8ct/g74m23iDVLfy7m4t2s9SWRSD9otzgEgjI3JtP4V41KcqTXNue5WmpRUonKRnUPi5eT6xqTh7okyW6sSQgjUYAz046V7GHrqe7OKblUuZnxJ0+38T+HhplrKGaytGk8rHzqWbC4PoCrcf7XtXXOpTVJrqY/V5RSk9jwrxl8DdO8T3E00qmO+itmkDRL/rVAXDY79efqK+XxuBp46eukjzquXxxF57M9a/Y2+F9h8O/A93rV7p8rarqEuwXssx2iAEHy0j6Lk4JPU8V+X8W0auGqQoN3W57vDeXU8IpVHrJ6XPX0YEfMc+lfFTlpY+pbsJMCcDIrKKM95CfwcgjiqlK2hve0SmYS0oXd36k1N9DO2ty9axKnUAHtxTUW9RqRYbCkD8sUSbYPcbNHlASozipiaRtYjiQKj5PatU+xnKKbM7Typ1Nhu71vFysc0E4zsbF7yhGccCsKj1Om+hmyk7chaSlZCumjOmaSR2X26U02c/LdkbxgBSacdyrqJFcByhIU+xq+ZN2FKKmhukqxG16mXMiYyUXqWJypfBNEXyib94jQtGePwzW6lFoiUHJ3HyvlCen4UOKfUynBpHo37LH7RcvwF8Ufa/Iee28zeLSI4M0p4Ga9DLswnh5ctjzcTl8aurP18/Y4+MDfHzwLa6fqsUdtqE6hhbrcBjHnoDg1+k5VfE0eaT1Pj8c44Orax9VeNvjB8GP2OPg3AvxI+IGn6UwiPlLPOGmnmbJOyMZZzk8AA54pVqsXW12PKrVnzJPc+LPh1+2v43/bu+Nmv/AAG/Yt+G0D3Hh11/4Sfxj8Q9QNna6cW5CrZRZuJ5cHOw+WADlmHStqGbUZv3VeK/M5Pr8liVRglffXt/XY8xl/4KZeAP2bP22db/AGN/2gfGmk3Op6NNbxJ4w0Gylt9NuZZEVmgkikeQxMjErv3spx2r2MTyRhFzVuZXS8jtwGMp5hOSg7pO11+J9k+DPjBoHxBkml0XVY5FZsW6RSB8jtjB47V5nLTc2z26vLBK50smi/ELWG8u18N6neJKBmS3gxkfViBn3rKcUjirYik5XbPfPC1vNH4esrOexngaGBUZLjBYEDvtJFYxfKjjxDU9YsvNasGLBSaTscsKepJCpDD61Kepvay0K2safBqGny2FxcFA6H589Kp3vdFJtvRH5H/8Fffh7pvw++I1r8WPCl1+8jP2bWVClN8Z6MfXB5FdNSjUlBTSFFOL8jzr9j+yEPjm3+KWheF9X8SvahWhgs7cykEdRjI5FTCmo+9Y1rTc4KLPXP2tf2s/jh8cdXHw+8PfB7XLKaCArb21/AIDJtXPCscnpXNVVZ35VoNUVGmpSPxb/wCClPxO/aT0PSta8G+M/D+p6NpuvX0EV1LgbJ7aL94IZCDkZl2tjvsHNLDVcRSpTh1l+R5mLhRrYum39m9vU+HHjJIwAR15ojFpanVGLs29D6c/Z28OP4f+EtlJNDsk1G4lvHyOdpwifomf+BV8TnOKVTG8q2irH1+QYeSwjqS+07/LY6i9cRKxAydvWvKi+edj3vZqKuR2jbYgT6VvNNzY5fxWWAh3DC9T1rWMUkKdpM0dOBjO8ilJq1iuRKNy40wdsbgPqayVkzKMrMu2TYAGecVjVZ2JJK7Lm4H5gOtc63BO6HRPtfaacpXWhKbiy7BHuHy/lURabszfnsi3bAh1LH8KrToKNRdD1n9nnxXLovimC0aDVJbaeVBNHpS7mlwQQr+iZAPUDiu/BShGet/kcuK9o4Ple59Y/t0/8E8vH3/BT79hez1j4OaIJPiN8MJ5rnR9BaWP7RqGmTqPtFmrfd81WCyIp4JyP4q+uovmipx3R8HmNJwxKlfc/Ij4Z/8ABKf9tL4k+NG8O+FvgR4ntoYpwuo6prWkPp1tYhW+YzT3G2KMDByS3GPpXowVWvG669TzK8Jxlyt3fbqfqv8AsR/8EytO1j4kR6dpXxmtJbfRNIhsde1Hwfdzb7kMo3wRzFQqJnI3IdzdRgGrnl8K/wC8hUV46OPV+e1vx6+tvQw2JcKCi4623P1I+H37K/wr+D/g+x8HeAPBum21taRKwMtkZXhbHLZbO5snknn1r1KNKlCKsrGTbi7t3Po7wdpS6F4QstOXYGW2UyGOMIGYjJOB05PSuCSUq0n5nJOVtEW0Zy+NvGaqSijNRtqSklRx1rJbsLMikdscjrSsrnQvdgVb+a4GjXFzbo0bLGxBK5PHoK6Icikrigudnwv+3FqXijw/eWUt3pGoXJuoJHmt5W81DH6lQMoR1BHTFejUqJq0NT0aEYxWmrPk34p+ILe18N2ms2d8ZJdOm8+0lYDJ56H3FeVP3WmdCrNvQx/An7RWjeKPF8OizXT3cjQYnZyR5LZySo6fjXXSx0ZaGkaEnSu9D0XxNI6wP4itZmdQgW6jQ8SwkY38dxW75ZNTRzOzXJI8c+Kml2ckk9y0gmBXbMGUESRPnax9xnFc9Rwd2jtpKPKkfEP7V/7JXg7xvrV7dXumGa4SNJbS7t3CTLGeCA3OcHswI57V5OKnNuy2Kq4eGJ33PAvhJ+wNp/i34p2Wl614n1D+yUuwbqzm08JJKgblN6uRyBjP6U8OlKOqPPjk/ta65paemp9o/FjQbPw3r0ekaVZRwWMFpHFZW8Y2pHGihQoHbAFfL8QUrVE4o/RcIlSoqMVokef6jIHbHIHvXyctzdtszZhjJzkd6TkiryM26iBkznvWiqaWHa4m4BCCeaizuQmJpLD7T1/i612aOkiLNysdFpznGMZ49K5KhtTi7GlEcKMfjWL1Ld72FiYBjnn6VXs76j5R/mK7BWz+VLVFqDZOrbDv29e1OzaKTsMlIlODz71i207BdtkJjVMHbz6+tWk2ElZCAkMcA+1aciRktJXCWdmTB4IFYvcubTKsrqOcdTVwV2Yy10CGF5JlVAS7HgVq3eVkKN2z1f4BfA+++Kfiq10+x1HR2lLASQXmqRxvnI42kgmvuOGuHpZliY6rzOmnCE7an66f8EzfhzY/AnxJqPw5bUba5mu9NW4uBAiYjIIG3Kjnr35r9w4gwFPD8OUI000oOx5XGdCM8lpVIprllY4f9s3/AIJy+DPGHi7WvFa3d7anUbsvItlqMkG6Nwcn5CB1wPx68YoyuWX5lhYwrx95K1/Q+fValmOCpylG7Wn3HjfwP/Y08A/B7xFcJpMciz6gZIZ5p2LtKyxtKwdsncFMYPoCv0r6iGDwOEoxlCCutu9/L5X+RvhoNRbgtFv6X/zse4eKvHGhfD9NQspbgGSwvrcJhQPkWHA246jdk+2TURTr8s3s0/zO2im2rLQ9q/ZMu5bX9lbVfiJqMAD6tNN5TZOZEBKKT+Oa+Mzuf1ziKlh4bRsebj6kaub0qUX8Ope+HmgDSNFttfv4Le2a6k+W1YHMhJ5dwOWOM9fWu/H1vbV5UoXduv6K+x3Yit9YqypRba/rY9rR7Sw8JSaxqNrHE00SmQLwG7AV8NapLGqlCTdnofEVISnjVTptuzOTj8WLfo32LZEAQCD2X0Fe88F7N+/qez9RlGS59TO8QeNVtpZGnmDWvlkYi4bpkn+VaQwyjBWVpA8PTjBJrX1L2gfE9G0rztLElzcTWzvFEU4wo6kgZ68fjXBXyxVJpydlfU86vQ9o+yR8ifHNvj3481HW/iP4v8XXY0jS32afZ2UrQpGwz8oGQM8dT0r6bC4TB4ZqlSWr+82p0qcNKcfVn5a/t+aQPjL8P9Y+MGliy/trR9SEuriBlLTwg7fOKp0IzgnuK8zMf39WUo9D1o1lTi1I8K+A98lpbRXUq74vMGXQbuvX8MVxxrclmgjeZw95qd/4c+I+t+G9aKyLbaxmJ8DD28udo64xz+de1GvTqLfodKilLVl46LZnWX8kq5tLopkDny5BnB/SuaE6UqrUXqtzT3eWyRu3PjPwv8O/E1l8N9ZlkiifTI5Vu4gSkM7E4jcAHHy7T9DXy+f8NUs4brc9mkdWCrNVfZpbnXOsUE/lwX0NzGwBjnt3yrD19vpX4zmeBqYDFOlJ3se+6dlqPYq4GK89Re4uVDJX2KQOmOtHI2Q5JMqQsWlBYj2q+SxSd1oaMWCBipbaGklqx0rAYBY8VNmwdmwkcGPPbH50+VoV2mRZDI3PaqgmmN6amZZBYtSLH1rf3rHNGalUNi6lzx3xWU1c2lFrUqTbVT69ay5WKNjOuwIiX6ematRZEnGBntdM7bRWzgkjmd5O5KjgpjHX1rPkdzeGqsNiJiY4HFXZJEVIq4zezyktmo6EKHM9CYYA9PqaqMWWm07CTHMRI/nWiTJqOysULRjBfLcZIKtnPpWkIxjJNmK5pxPpP9kH9sDxt8KfHum6TpXiFtP06SQfbJkjDSSDPTJ6fnX0mU53Vw2I5L+6eRjMpo1Yucldn63fAK3+Cfx/1qx8Y6vY2Os3kZjZ764IlkXBBxuOSv0Br7GNWGJTlHc+OzCCg7NWPwj/AOCwfiX9pP8A4JVf8Fevi5efBPxtqfh+18d6r/wlOj31jK0Zltr4F3CsDztkM0Z/3a2ybMXllaS5FJPRpq6PjsyyPD5z7lSTTV9U2nr6Hx34Y/aK+IvxK+Laap4gt7vxNrfibUkinWRy0s7yOBwepb0rozbN6mYYr2s1Z7WXY9rJsBhcgwaw9JaI/b/9ir4Cftoa3f6d8Rv2drpbKx0WxhtNY/tu+aSy1F0UBzgAkSZ43L6Csabk1zp6npVKrrR11Z+qX7PPi34w+K9Ej07xjoV3p17boq3Esbo9uzd9hcbsfVaVWvGV4uNmck04yseqw/8ACR6SDLeSpcr3OQCPyUCuPnUupslzos2PiS3vGMckTIc45WtOS5jJSg7MstcRH5kJ/KlyFXuRpdm6VlktWVc4+fvV8tluNWTuj5Z/4KIfAPVvj74YvvA2k+A7aVLrTpB9umIHzAZGPevUw1SEaHK3c0jTdk5PRn5J/A74qeMP2c/EN94Cup7iy1DSbqS3ukMhB3KxAIwehGMVxQqKL5ex2OnTlG9juk+OOqa58QLXWNV1WYvMpVbl3JZW65BJ6+9dEZ0+phKStqtDO/a3+Dnw++NXgS+0rULe1u5L2wJuYbiEFpOp+91yOoNarkpx5zn9lTbtNan5Gal+xhqPh7xfrMF1Z38ukaZdIyyIgyIC3zF/YAgZFfK5hjpx5nTjsdWFwvtai9s7RPStlvbW6WlrGqRRIEijQcKqjAA9sCviZ2nJyl1PuocsIqMFZIo3WCD8tc0ny6o7FHmVmR2y4VQfWvRfxswn/FZeQcjjtUO5inaRctldY8gdaxlJHZzKS1IiszTAN2ppqxi48rujXtXMcYOKzcG3cv2mli/aHeMVhJJGlMlMYLZHpUlzehctiUXdjp2q0kRFczsWY9zEc49TmiUopaGiUVoevfssaf4N1nxX5Xie2guo0cCS0fxIdNG3I5dsHzE9QOa3wTjUqchy4mpGMGj9rv8AgmB4Y/s4tLYHTrWztrLda2eikyWrxNgB/NPLt6mvvsFho08I5S3v20sfHZtO1o23PKP21f8Agn34i8b/ALVd7dfCrwHpGnjxXOt3f67/AGULqaPu7xiQlEfcTyF4616FONarR5Yzso7o82MsLGPtZRXO9L9bH0Z+zd+yn4d/Zq8MR6HZDzRbIZr+8kyzzznux6sxJya3jL2Xw63MoytGzO8nuZpExbgtcXUqL5YGOWbFaKp7w1LRM9J3XUF95kxVbVbZY0G7ndnkkY9Md+3Suf3eW/Uys3JtFlVUAMvNY1Ndh8tlqDkk5CmojcIpJEGoahHYwGeVGbb0VFySa2hSU5aMipJxiVfD+s/2xBNHdqAYuX29MelOvBQVosdGNVwV9z5V/bY8ReBfiyup+Btf0i5u5orSQWsVocSKADhh8p7jPH5104ak0ve2OqVGtBp9D80PGEeq6HfXfg6+acwJGwtmmUbyuONw65FZ16atJI6qUuZXe5438DbXUdU8V6i1lfsdRtr13iduC5B+6fY15mEi1UbkejVm3FLufWfhjx7/AG94fjhu4kh8g+XeRMuChbhlPsTyK9j28eSxyRoSctTzTxBqotNRuPDmpTAm3maEsy/eiflT74NcbrqKsdsaLTPONe0eK/migu41Z42ktpj6gjIrgc3OdrHbGk+S9yn4I+G0Hh+Z9XulTfaxPJK7r/AuT/hW9Runbk26nRRp8vvGN8Qg/izw1a+IUJL5ODu7dq8DN6bqxuj2sPVVrM8p1RiHIcFSM5Br42cXfU7+WyujMupAo3HoO/rWagmRzNuxQlkDtyc+lNQS1No2GvGCmM1V9TCr7uw3SGAnPHOec10ST5LWFCa5jo7BQGBJ7VxyjY6YvU1IV4wO3Ws7MvUeI1yOfoa0Tdhc1hsQIm54Prik4iTk2Wzs2bS3albQttxZVEx8wjHWj2a3HGzFaVME559TS5dCZtpkDXcYYAHiq5LoiLTI2mZ8EED0qJUwk0V3ZjLs4xVpKESFrqafhmz07U9bis9TuHjhJy/lXEcb/gZCF/Wu7LKFCrXXtr8vlqzObT91bn3/AP8ABPP9n/RvEc0vj3wp4Xii060T/StZ1S2tnuEYd42jGPx5r+huFssweX041YwfvbX3Z62GpYbD0+acfee3mfZf7FWq2ev/ABt8YS2108g0/RxC0juCzkn7xwBgnFfVcZSlDKcOrbyPI4xk/wCzaMYr7Z71C2ifFHwYl/qjr9p03dFeR9SWHQnnv1/GviputlGN5YfDOzR8RiVUyzGSpQ+GVmj50+Ifibwh8MIb6C7FsGNrdSWEBUfMpCiR5D/fLyk++7619xSnPF8rbfS/y2X9fod9CCSSjonq/m9f+D5nxX8VPjZrnxH8c2+jeGZVl1DUblYrW2CA7neQqigHrx+p9q9GNRUqlqTXuK+traa9dP8APY9GFVYeOi27n6Q+K/EGlfA34NeFv2fNIt0u9Wh0aMvbMuVZkUFy3Hdtx/Cvi8nwNTH4+rmE3aF3qeHlWGqYzHzxU9I3sbPwttdS1Dxelpqls0tzLCslzJvAVM87UUnIUDGeO4680s2r06WCcoOyvp/wfM9rNHRw2XOpGVv66nefHK+1EaPYeEPD1q9xfX048q3h+9sXqx9ACRk8da+byL2NPESxNd2jFb+Z8nklShGtOvWdkuvmQeGPg3rsNolz4h1uNJiAWhgTKjrkEn610YnP6NSdqNN27s6cTnuHU+WlBtd2eefGfSJdJ1z7EsuSf4ANqOPx712YTFKtSTehNPEe2ipI88+EnjnUNT1KPQrZhFCfNtIpC+WiIkb5iD2xg/UivTl7OVJt9DqqUrRbZgfEDwH4v+N96nwV+F81tLcyyyebd3mXgsYhkGeQcEkk8DqSa0qYqjgqDrT6oxnOjRpOUtEz5c/aC/4ILftDfDPQ9W8XfDb416P45l1HSp4tT8K3GniwnuVZDuW3+dldh2VsE465rxKeb4WdOVotfijipZhhfhkmflr8PdD1jwpJceFNf0y7s7/TbqWzv7G5RoZYXjYqyurYKkY6V5sq99EevTk2uZGD8btDuotWj8R2dixH2UWty5bJKggxyn15yufeuvLsTFNqWltEdMIzlJF34dahZNc3PijV49ltbWayXC5++6jp/IV1VcUlJ8p2QlGC16HjV94r1rxFFe+PJ72SK8n16SczdPLBOFH0CgDHtXblkvbU5JmOFrNS55dz6B8Ea3da74Qs9YubyCZjHtkeJNuT74HNfjnGWWzo491ktGfRQxKqxujROpxxsSW/WvjYrTU6FJcpFNq6sNpP0NVZI56jW5GmpJG+4dD3zQ72KpVE2Tr4gVCDn61DSNJyVtBJdfUvnI6cc0WRjGrZh/b4MZXjNDtcc6lncauvqq4BHvTLc1KJVTV4Uut7HgmtFJtWTOOEmpltvEayYBI46c9KmSR3OacdSGfXosgM/P1pJXehy+01sipNq6ODkjGKcrDqaorC8h3fKe/enq0KmnbUet8nWld3BN8w+O9GMGnIueqD7SgfPHPelHYzpS1B7xW5J6e1XZFu1xG1FdhQHOR1pt21Iq8tiksyvLwevYU1PQxpt3NLTpRHOrNj7wyNxAP4ilBp1C60rQsj9Z/+CJGq3PiK7FlY31m0ESrvtrIthPdiepr9GybEUvY2PzvOaLk/mdt/wW8/4JNS/wDBRnSdN8VeD/G9h4S+I3gNXbQNf1CHMF7pso/f2cpweAcujYOCWH8Rx1YylTlTc4q78zyaEeXERnFtNPofDX7DP/BH3Sfh58VofCvhLR/Dt3qyT+X4j8XR3k+pXcEB4kW2AiSC1ZhkDAZ8H73rhhKOIxE+aW39bHqYyGGp2cd33P3I+G/wd8M/CfwTo3gTwXpMVjZWsSxW9kkW4KB1Zs/xHkknua9Op7OPNGC0R5dFSi9WdpLrM2kOLWz095iMDCLisJJNXbNp2TbZbtdcubtzBc6LOmMZ4BrL2d0ncUXfVFXVta/st8/2RIR1ZhFnsalN81h1Yrl5rF/SdZh1O085YXTB6NGRV31M48ttBdVvDb2nnRoTh1z9M1tSV3qWos4T49eHNY8c+F10/R9dfT41HmPcR8McckCujCpQqakzp1JwtE/E3/gp/wDCO3+HXxhX4peDryS606+mEGrSeXteOcfddgCevTOearMYUKb5qbfmddJcsLPc8k0u9m8Q+FnvbG8b7VZkTRbc5OOo/KuClWg2rvQy5ZM6r/hcN7q/hFYbeZVleLa7ydQB1FOpX9ppc0pRk5angPxbvrS10LUZJC0U92whUrwHB6g+tePj6qo0XbqephqEatdJnhl0EtzsIxjjGK+MlGUndH1SstCnJcKxworN0W0wnOUVdEcRICnNd7+NhU/isvISFBHSok7GT3LltN8v1rmkjWMk9xGZllDbcHtWlO1tS525S1FM2MA/WiUlcwj8RftJGUda55anW5KMVYuwkuQCfes3YS95l2JRkYNPdlPQ3fDdp4WvLK7stXnvU1GXy10kxyxJbbt3z+ez8qMdCvfrWtKhTqaSlZkONW91sfUH7I/7Ni3HiKw8WeKPD/ggWsVwrF7jxi0kTgAgF4Y2O9v9npz7V9Bl+DjRlzXizx8ZVk9Eft3+xbpnimD4dJea7qel3Vt5McemtpNj5EUcQ/gUHnAGMZr62Muagle9z5XFTjKWt7ruexStDF/pUwXKKcORyB3pqPKjz2+aVjhfHfiPT4VXS7e5DLOfOm2+44H6D861pxbndo2Ssl2MbwDdpr/jeztxAzi2SW7nkOfkP3UXoR/Fkcg/LW072d2JRfLqeh+I9A/4SWwTT21O4tVW4ilaS1fa5COG259Gxg+oJFYNO1jF1LKyNHK7Aka4AGAKhU1Bag5Sm9BrkgZyAPUUla5cY23M7xPeQnw/OYW2kgKZCMYNXFuMtDaKitzkPhjr0t9a3+m2ciyzyNsVGHQ4wSfb3onGUtWVOolayKuufsnfDHxXBdzeMTd3V3eW7RSzifaI1bsg6DHbvXVHGVVFRSukZe1q8176H55/to/8EqPiJ8JNVvPiv8GdQfxVoKZkvrKLJvLNMHLFFP7xR6jkY6VdWrSqQu1ys66deM9JaHwh8LGudA+Ll9C4aINdkh9mCue5r5+E3HEtM9u/tKSklofTOraEbvSZdas7opd+RmYbCsdyuOhIwAe4r1pRXs+cilNX5Tyf4uSx/wBkxeKLJZJDDGsczk4Yg/3vdTx+VefUfVHZTgndNHO2F8l/Ob9fn3xI5GchiOhB9az9o4q6OynBN8rQnxE8TNF4K1TTtMY+dPYySXLDqq44FX7S+7N50lGm7dDivAV5Nq/wnbeN7QxgkAcj8K5MRHmpvQ6MEpSjdnmniXVLMyNKSFZWxIhOCD64r47EUrzPR9tyqxgXWr2JcqRgg9CaxWGbdkzkeJ12Kb6paM2B0HfNH1axrCuwOpWrJjt9aiVGz0KqYjmjawyyvoYZiycjNVyNLUxpz965qW3iIRjG3jHcVhOmmdixCsWU8WvnCtxUezSRTrOwN4tboG6U+VGXtJtjP+ErkzkPyaVoXNYTcdbiN4smIz5p+hofJsFSrNrQi/4Se5dvlaq9xIVOc1qNfxLcYP7w+4NS3EKs5yREviKYvkHPtVXikYxc2yUa/IBtz17+lJcrLcrsmh1fcdxbJxyM1M2tilN9D6B/Ym+DvxB+Mfi61svBOk2zQNcqLnUL3QlnWIA8hZJcKDj+6Ca/TOC8nxVaUZ2Shve1395ph4OrPm6Lc/VLxFFp/wAFPhXH4A8OWayNHbf6W0Vuu6VyOflH8q/cssoQqVlJv4T3qMFUqe3k7JbGz/wTnXzNH8a+Lk8zHmpaRm4tvKcEAkgjAPVuvpXHxrOM6uHoLrqfKcUt1alGl0bbPT/h/pN5e+NNV0S8vpILLV7ZrVVR8YkwcMPQ8H8xXmZvKEMsp1Iq8oO/yPLzrkjl8KkVeUD4F/bY8XX3gX4g658P/FHiXbfWFuQ9tdOsbGLzAd8IPLlvlGB27cGvcwmPw88LCcPtdlf/AIYdBUp0VUjrzItf8EvP2bdb1z4mn9qL4seH3ttP0qJW8P6fcRbWlkUsFlKnsA2Qe5OawzODqUuWnpKatfy7HVUoueH5V1Psn4u6FaeK9I174oTADUrC3jfTRIQA5DH5OeueOOOeM1OXTq4SdHB01eMr833DoTnhalLDUo3i73Jf+Cdni74gfESTUtd+Ii2S3MCMyxQSCWRA8rKgkkAwWCKMgcDOO1eTxpSoYSlCnBWb+77jyeLf3eFhCMZK767dz6O8W6/oHhG3ufEstskt2kSxYXG8jkqmew5J/OvhMPTniZqleyPiqFNztBv3dzwbxR+0L4tu9Va7OplISDttIH2qi++OSa+lpYDCYena12enCnSbSjEpf8LJ0b4qaS+napfo08g2xSbcbGGec9jXNKdGnUTpvTy8j0VQ5UmjxLTbjxH8P/GesaRJbwPPb3wnikQ7d8Dcsw/IduwHFe5g5U6sXd2HXcqi3Po/4C2fh/4C/Cq9+JvjiGO01zxEWvp4JXG9Yx/q4xxwACD9Wrwsyq/2hilCHwR/PqeVVmq01G+iPm/4p/tdX2vfEVdY/t6LzlZmhjW52C1jG7B478d69OMMJRwyppqzX9XJVGLPgX/gqLZfDX4q+LR+1D8N/s0GsySx2fju0tV2reORtg1AAdGJHlv6nYe5r52tShTblB6HtYKnKnHkex8jXunp4kuxBGWkmP7ry2X5XU9QR09Kqkk3dbnoqEtOx5v428SaO3jd/hH4Xljkt9J3Nq1zCcq8+D+7z3Cjr7/SuyFKp9o2Uoe1stkeX2sU138NdXktoiXtrwSBV7jeQa9rKKVm0+pzShOVGUo9z1X9m2/lu/DU9lNpkscg5znIH5Gvm+NsFCeCbS95HrZZzzpNM7W5V0bp3r8Nc7Ox6iT5bFSRnPGPrzU88SPZu5GiyHkuQal1VYPhYN5ykhRmp503qV8SGIk5b5mqnViloTycuo7bJnAP41DncG0KIpWGAx470e06Bq3oMEbmUJk9elaxm7aClHl1JzBKqZAPPak5NbgmmQeQ7tyfrQ6lkLlW4r2vHf2qed3KVmIISOn596fNKwm7Mb5ZV+px6Gi8mg2FIdPu/hS5n1E/eGpvP3mPNae0sTbkBxL0Gc9yaaqLqNXYyVJFTkke9CqJsTi5DbVGJyWziru3oQ0oo1NOjuLm4itre3eRncARr1Y+laKLT91mM2rH7Lf8EcPB3ibwP8Ppdb1Pwvb6bEbQyRPDHtZzjOWPevv8kpyjR94+SzTklK19T9CPEPgnRPjj8M4re+maGS7sdn2hOvI5B9q9KzhLyPnZpQehz/wh+Afgb9mrwzJZaGql5XLzOBjzG9T6nn+ddtKd4csFZGEr1ZqU9+hsaD4yS+8VyT3w+WGBijHovsPWs69NpK2x0um2kmavhfxidc1qaO3tvkVsBvWsJ0pcmphWk4T5UdVHexOdrZU5xjFRCLirDumh809pGp85lwP7woauNRlIonXdInn+zWl9DuHVUYE1vChKKu0TUXs15lHxZrsWl2yRMoPmH7zcCle0jswlNyjzMwdZum1vwwdOtbP7QLklEXdgq2RgfSt6dua9xyThO1tDwL9oX/glh+zl8YPhzqdv8UvGWp6bfXkLD+1rW6EccDnJX92RhwD68/SsZznVuoxucl6ildPQ/Hz4l/Azxl+yh8XNR+E/i/VbfUUtm36ZrFg+bfUrQk7JkIz1AwR1BBFeXKE6U7M9CjarC55t4g1MaDrEhtFZ7SeTciqfunOf504qUtGXJK+h438f/GF3rHiy0sk+S2hQq2P43I5NeXm0lGml3PYy6yldbnE6pKk6LIT8xX5vqK+bjNt2PoVSsr9TPhUNxjvSrS5YtmUo8zsOQgxrXXo5suf8VluFyy9aiSRjU0ZYgbZ/9espxTWhVPUmRw7YI5pKFkXNSSHszq+FHUdcU4wjYiKRctJnZhk845qZwikbXWxp2b4xnr7VzSiaxi0i9DITwfzqEtbiuW4GhJUXETSLn5kR8Fh6ZqJ8zemoqlSSg9bH35/wTI/Yz1Dxhqdh8R9M8H6XptmZlKX/AIhvJ5+Qeih/LRWHbCsa+myzJ5xala19bs+cx2LhTW/MvI/bfwPosXgTwLp2j/uhKqxo/lgKpdiBx0/LrX2FODhaPY+YclWncx/jp4h1Hwz4Vi1SxQtGJik4H+0MA/nTUkqiv1MIxTqnka+KZ9cZxI+/a6KSueo7Z9OK6qkobXOuEbvVaHp3wM0yBrO98RopkkuWWBZ+cMiegI4GSemc0ndpXIrrkjY79CA+DIMgcLnms5SSOWMFucb8SPitB4eEmkaHeQi9Q4mkYbvK9gO5pRiqj97YjncpWgeX65+0J4lsphJYa9NK4OGhuMbTz7cVpCnTi7M7o4Rzje51WmfGBPG/g+4+0qhlBxP5bDCEdCfbjH41TjTjNpdPmW4NVY01Bu/XTT1/4Fzovgdpmm2Phe58cXKxxveSMBLngRISufxIJ/KsKtZS93ojKulTl7NHiH7VH7X93pNz/wAI94Q1GKHdKI1aSYIp5xuZj0FFHEwpyuEKbtqfJXjT/gpv4r+FXxNfTrTxRaXsqzBWFjdrJFKO4z0Ppiu6riY19+pUcNKo7rZHjn7Vkfwa+IPxY0/40/C7SodC1TWrT7R4j0e1GIJZQebiIdFJz8y9M815eJwtKFZTi9T28FCrGm4N6HH/ABX8Tap4h+COp+H9D8RvZ3YRGjkhB3ooP3hjrg9R6Gum9OeGfc7IUo06t7Hnngnxvd+JPCz6VrsiPcSRBbqNudzY5I968dVOh2wpylK7MLSrjVtDvJdKtJg1uJMxHPIFKVrHXLmTsi9KHvtH1SS4U77qykEf0C9ayi3J3N4xU9JGF8A7lv7Fk04qpEkZRgw4J5612KKdPUqjJRhY4b4neBtS/tGYf2eyAuTlUDD8D1r4zMajpTaS0NYQjVicLP4WmRgsrnjpnivKWKk9i1hIojbQYY+pxjoc0vb1GS6KQ5dEV8FW/EGolWqAqV3YI9F8hs9P60/aTkipUGtizFpm87T+BzWUp2Q4UWTLpAzhhWLrSZuqVmDaZEv3gDx60uebL5LCjTom4Cj8qPftcmw2fTU29BSUmXGBElqo4AGO5q7NomcbMdJZBhlgPbipUmtBxV0QLAsfIGDWlnJXJnFp2Q4QlmBH8qptQVjKzRseFfD2nazq0Vvq2vW2m2wYGS5ukZx/uqigl2PZR1r0MowUcfjI0pS5VfccoNrQ/WD/AIJffsxHRdPt/i34l0TXkt7aAf2Pc67cCES5Ucx2qHbEnoTlj3r+hspwdLLsJyRbbff9EehGdHB4R0qUm5S3XY9M/aE8Sva6hLKZre2mfO15Hznnge4r77JcBTnL2vL7zSV7a2XS59BRpP6rFdD2j9jPSLqH4JR3Woui3Gu6jNcSGNQAyqAo49OBXy3E8k84bW0EkfAcRVm8zbS0gkvvN29ubzwp4l0rVBEqNNrKtveXAKlgh+nHb1qZezxWDqQetodvmY+ypYnD1abbd1+hr/tOfBL4d+Ldd0/xvrfgXSr6+KeWl1d2quwYcrye1eFw3i5KMqLbstTyOHsTGFGdGf2XdHCuFt1S0itTGDLtdFTbGqgHr6JxX2cEnG99l/XzPoZTi1zI1PCWsWGpx3GkWBW5gCv9ql8vcHJB+Rc/dUflzXnV8M8K/aOTu3dXd7f10XQh0pX538jo/wBifwtp3h8eJrjTVXbNcxYZYwoP3+nr9a8DjTESr4qipfynh8Z121QhfozzT9qz9omH4X/EXxP4E8WX7WbTTR6hpkkowtzbm3jQhCTyVdGyB615mW06ccOqvr+Z8vQpylRUkrn5p/E3/gvP+yX8JPixP4E8faf4rlhjufLvNS07QWMEYzg8uVLgc8qD04zSnmlCMmmmVQqRhUtLQ+s/hH8a/BPjbwDo/wC0N8H/AB7aeIvA+uu32TULOTPkP3jkU4ZHHdWGQamjNYmLnDY9ZYmnUTUGdf4P8eeGfiH+0Z4O0PUpY2ivZ2jmII2ywpG0h3HqMbcY+tdsMQoUZRhvZjpSfsZN7o5b/goV+3Zo/wDwlcng7wlr1v5cW63jSUrtVcHc2eiqoBJY9OvavMoTWGg02r9dO/r/AF1R40KSTcpbH4tftF/8FatJh+JOp+E/hZJqWsadCxt21iJEVbxw3zNGD83l56E4JHsa4KmMlN2jsjqw2MwkpXcXpsan7K/xY8ZfGHw7411PxRZTw2T+HiiR3U2S7+ahQ4HHBAOK6MLSr1acpy2PXw+JVestCt8U/G6/CnwDc61plyE1S+BtNKBX/VOw+aXH+yMn64r1cso06k7z0SPUxElGnofP/wAEtPlsDLeXErNcXAkeSeQ8uTkkn1J/rXZOfMtDLK6M53T1RZ+Hdump+CfFWlSP9+0lJK9QQ2c124NuFSF3udlenGFKUEbv7K+oi01BrU6hdESDG1icfUiuXP6Cq0GjfJ5qneJ7NeQJ5hGeOvPFfzhjYexxMovuex8TKTxRg4PPHWuZR5h8mhGEG7cR19q0UEkZtXYpjGfu/Q1nKOpUYWG7Bndt47irUFYc4ocLcOen6UKKQlT0Jktk2kEDpzUTSTHGCiymtu5vcIOhrppWtqRNJuxrSaeNn3MHHNRVBU2V2sCp+79KiEU9zTSxG1iScbcetaOMUiIxs7iHTWHJUVLkrWG4pvUY9gQ33c0RloDimgNqqgll/wAah3bI5EiH7KQ+K2ilYUopjhAoPK1E4ohKxHcWylOB+NJLUuxXSAo3oK6VFJGFRo7T4N+AfFnj3xrZ6Z4UmEMvnrmduAgz1rswWHniK6SZ52Lqxp0/M/cr9i74ZeI/hL+zvPLr+tyXk7WOwSPKCMkY/Cv07AYb2NJRPhMRWlXrt2PqXw5qF34P+H2hSw94EEqZ4INdFozk7owhD2l7nnvxI+L19cavdWV9LHbR2zlXaZ9oUfnVKrTp6dBPCy5jqPgR4X1LxBoNx4k1HS3htbzC2L3QIeaPqZdvVVP8OeSOehFc03KU99CHVvLlR6Ja6Xpfha2ee00UuqjJ+zjcx/Dqac5SlHluZNK/NuJ4f8YeGPErtHppYOrcrLHtINZuE6W5FKcajsjkP2jPilZfC/wqXsNPa5v7w+Xbxp6kHkn2rvy3CyxdbXZHNjsXKjFKL1Z84XHxi+J1nD5lncvak/NmAEc+/rXv1o4en5kYOnOpaUpXO5+F37Sc/wAQ9Pk8C/EGdY75B/ol2y43+mfevlsU7V/d2PpqbpQjdHbfBL4gWGpeI59BvNQB/s+Jmdz06gA/rThecHYxrp1HeJ80/wDBRT9uXRNFvr/wrYanGNP02N43kWXHmSlTwPxrSFSFL3UcU/aXtHQ/Hq5/aIuPi14h1KzOsi9g026eSNhJ5ggaTG6IP35AJA4zXm4jkTsd2Ea5bPfqVr+9iMHm323aiGRs9sCs4vodip2ep4h8W4HOn6Vq8nD3Ms0jfi3H6V4mbwcqKfmejlUoqs0zkmmLxYOfZq+fUVF3Z9JKp0IUDp1PPUVnUXtNEccpNXaCBS8a5Pbit5VOSbKnf2raLkTMo4PPfFRKpzLUmV27k8LA9ajncS6bsyUzIhCkHNNTkzWSbQoviHwAMU7uxnya6l6xc5GTw3vWUpvY3i4xNa0dCAAcHPFYNvqVKpctIxzx+NWmkrijZbnZfCie3tPEkM6WFw955q/Y7u3mi/0Vs8sYpFbzeOiit8LOPtkurOXGTtC6P1t/4Jj/ALMnirxN4y0jxr4z17V/EMcRWd7nxDrO54hgEBLVMLHg8DK96+3y/CVaaU3O6XQ+axlXD+zb6+h+mmrXcUGo2OnLcBC8wKpj7wAPFej7T37PqeNSp+65FTxsLVtKVb2382E3kIkTZuGC4ByPT37VpPlULs5oK9Uoaz8IfDuqXaS6fK+nK0u+6is0ULcDHQ5Bx+GKlXep0fWXGOp0sNlaadbJZ2qBI41woHatNWjllOdSQ6L7JLKZ4tjOPlLjkj29qycVcmTex8VfFfxV4y8I/EbWFvNOnvreO+kJNr8zgbjwRnNdUP4aMKUrM5/TPiZovxU1Cfw9oglsNWtYzKun3bxrNcooy2xN25sDrgdK58RGU17srfce7h8QuS80VvAfxkXwp42fRr2ZRaajC8MyycYfB2n8xXNSqONT3mdU3zJOB23xD/aw07wd+zv4f0fT7xY/N0oSSKrfMzFiQv8An1rnr10pJozeFUq7kfmL+3B+3R4Y+Fl7JfeNrxLjWNRBk0zw4sg3bTkCSQZyFrnq1JVJtpWb18kaTdKm+TdnyX4R+NcvxS8bD4pfGHx/pWj2VvgotzdRW8UEQ6KiZyT+GTWkMS6dNczOn2bS5paWPZvg18ZtG+N/xQh1fwjcPLoOnxG0sLmQMPtIJ+ZwD/D6etdeFc8RLnvpt5lUqsLe6dL4sme31i/8Nw3TAwSshCv93J6H2IolJRbgdtKPtXcxrHw+gu2vEkaJ/KCsQPvD1rn9mraHpQTR02m/DaPXLlLu5v4Y7cKGkkHDY71lW54o2jDnOf0TV7HxP4n1KTTlxYRhrazHqigjP4nJqKDctDGjJzrtGB8DreOHWbizOcR3LL+prvgmk0yqN3JpifGnw+1lrM1xFp8hU87hKyj/AAr5HOKDc7xO+g+XQ8svUMjYOcj1NfN8qg9Tv5o2sUZ7IypgjHpVqa6CUVJ6FMpNZNkdO4ptKWpjUi4K5ZtnW4A2EdPTpS8gpTTdidYXjPK8YrKpFHRy2Jgp24PfpkVz9Q1IZbdmyR6c4reNkS5SegQxFSCR75qpWK5UPmiDDaeK59mLmaehEbUghsVtGV0NJyGywkrgrwenFKyuS7xZCtvlssMe1aJ2WhEnzMmtbKa6nW3trd5JHYLHGi7mcnsAKzk25JLccoWjc+jPgb8NvC/wB8R6V4j+MPh2LWPFl00c2i+Cmi80QAnCy3m3Ji5wdmC2AcgZFff5BgHlU4Vq0OactYxWphGT5W0m30S7n63fs0Q/FOb4Dr4s+L8enQ3+oxl7PSdOtkjgs4v4VQADt7V+u4FVKlaEZJp9Tpko/W4UYpqS1k/0PnT9qDUtM07UZLu506I3kinyru4kwoGegr9byqmqdOMj7im5ypxp9D7f/Z4024t/h34UsGhQFPDiSyDP8TjOfevyPOqqniq1RvedvuPyTiGcYVq7v9tL7jl/HkF1e6ysDHdJHOPs6bfuMDktjB9P1zXuYPkjhm+jWp14eXLTUo7W1PVNXTTPin8PZNE1V2WSBUPnICDn+8tfIYf2mU5gqkFo76HzkIvLcxVWG0r6Hlfxj+C/jTWNOu/D/gPxJNaALGGZFyzArgnk4LdOtfTYLNqPs1OqrN317Hv4HHUnFTlvqZ2g+Ebz4feFdQtNQsCTFbGOa9kHDIByTj1OcjvxWtSvDF1afvXZ3+1dStFqW/Rdz1z4M6dH8NfhfF4h1O2itn1K6gLrGMBY2IVc49jn8a+RzibzXNHTp68qf4bnxGcVHmeaOnF3UE7fqc5+1v8As9+Dv2gdBE+saNbXslshWEyJ8yn1Vuo+orPKqiox9jVW+pxYTmpU+SW58FfGP9gXR76zufDN1oc11A6MHjvH+1Q454Mcu4Ee2K9yrhMPjEqfJdW306HU3GppJHzj+xD+z18Uf2QPjj8QP2Y9NQP8OviFoF1rOhW3lsV0vWLWMyMsaYBUSRhsY4+XHbn5+ph/qWIcIX5JfgcUcM6Ff2kb8vU818Bftw3Hgn4xw+KNZ1gN/YUV+i4JQndDJGny84PNeVHF/V67s7pN2dreml3+Z6KqwlTcY9T4v/bm/a08S+IPCt4LO/8AKuPFMklrYeRlStgrYmcZGcO2IgRwQsormr1qtSblJ6s8fGcuHoqhHT/LseA/BP4V3Gr3STz2zmRyGx5eeD25ruwWB9prIxwcJvXufZ/wA0N9Dx4BtUiDanFtRSh+eXGUQn1JGMete/OChhnCO59RgaSpPmaPEf2j/GB8Z+P5NBhJ8vR7doHiY/dnZvnBHYjGK58DVnToOJ2Vr1KvKhnw/s/slooMQCiFunsDXVCMbpHqYWDpQ8yH4GWkl5p3iKc7cNbT/j1r0HONKUX5mE5Oo5FH4Ca7df8ACTb9P1BhEHw9vcJg9eTkDn6U8e1XpOxGX80a59JXd5ZXjhn0+MExjEiE88da/D+IqWDoYqUfZ6vqfS25Xe5Tmso2OVPH8q+PUlFhKbYxdP2dBwD1zScwSuElmAcED60kky3TXLcja1L8LVJWMVoySG0CrlutNo6VqSR2/BBGPas3FMzqRsQWcCm/Kn15rogko7GNNe+bFxb7UB9ulI6eW6K5RCwyMVHMkYNqLGG3Gdw6VLldDu2I8A28j9KhNg2ypJGQ1WQr3I5FwCSPyq7qxVTa5GqhznH40cxjFsSRcNgCle4P4hjjI6dKtRRVV2KsgLMdorW6juYKPc+g/wBhT4T6f408e2s2rvqEq+eoW1tt6I3P8TjgCveyWnCpNSPBzOo4Jn7aeD/Do8PfBu08PramGJxGptxLuOMjvX6FCUYpKSuvu/zPlXDmq3R7T4x0/wArwBaW6KSILVMBfYCppzXO7ijaMpD7v4PeDfGN9p3jK8so2cwRySwSxBo5TtB3Fe7fX8qzkouepn9YcYuJ0Oq+NtG0YixU72GF2pwBSjaTOKFGe6Lejava6ynm2wbg9xSqPSzLnRcCvc+F7eDXk1/T40icn/SEUACQev1qYylOHI2ZNLRo8Y/b++F/xH+JPwpEfwk8RJpetwMxt7l0Dc444717OVYhYecoy6nl42ip1IyfQ/Jb4j3v/Bf/AOBWty6j4ai8D+ONJt3LCw1DSvLkkQfw7lcc/jWeIlipTfLqjuozoUqd4Kx9DfAH9o/W/wBor9nNvjJ4v+Gs/gTxz4W1b+zvG3hZ5cizuQnmJJG38UUqfMp7cjqK48Q3TjeR14Wo2nd3Ob+AH7fkWoSeNprPWFaSPV/7PjRZMsFdAcj9PzrmwWJXNKT6HqUYU7pLdn5Ef8FS/wBvLx1+0B8bLz4E/CXX5Tpun3zR6rqFnId15dZxIoYchFOV4+8Qe2KyUqlSrd9zxsU71nCL0WnqWv2R/Bs/g3w//ZF9E0UZjywYdXHOW980Yujyr31qj2ssoKnB3O48U68968mmWxz5vyyEHotcifKmzaVSPPyo434824g0vQbRRjZGxIFeNmuIfsoxPUy2nZuTOFRcLgD8K+fm+ZnrNSepFIvGTUOTirIjlujQtdI/djB7VrJ3mdNaNqjRKmmOoxsHualpcoo07ssQaW7Hpik7WHKk09CddF3dV7daybd9BwV3YUaKAwOBn61Sk3obuknEtw6ZtA+X9aptGXsrE8doyDI/U0ly3BU3fQvW8L5C5znvU1Gka2ilqevfsxeCtC1nxna6pqmla9Pc28oNsmkTfZdwyCd07fKF45AOelerldGlN3ktTxcfNyTS2P2+/wCCWHgfw9pWnXetaJpOn2w+zAFodWN5cHOP9Y/TPHOO9fb0ORUrRR83mKmqCufWl+lo/ia08yyEkqo5WUsP3Yx1x79KFG8zzqU37Jq5X8Z21zf+GL+2tFBkMJKZOMEc5/St6llTOeCft16kPhjxbb6t4ITVZ5N0lvF5d1g4JYcE+2etTF3eh1SoWqpdCvrfxB0W0hXJBAI46kfhVRTvqZKDUjV8LavZ6vprXNspVQ+COeuBTlH3hVqbUbnyZ+3/APsC6j+0dr0/iDwf4x1vQ5buBRevpFzJF5hAxn5T1rSChOn7OTsebUUoTuldH53/ABN/4IQfEH4BeJ7D9pD4afG/xRbeKvDV/HqelahdXk0hEkbBtrbv4WxtI6EE06eEp03ZNtnVSxFaS5XHQ9H/AGs/iXe+EYpfGCMthPeaHFqtuoUjy3kh3kAez7l/CvHzSlUo4iVKpFxa0aejX3nu4KdqaUjyT4m/tXaJpej6S/ijWI7iDRNBheW3WTlvLgDysQORjmuChJU6kHbmSto7/pY7sQ1TpSml0Pxe+Iur/E79tj46eIvifqM7s9/fPIHkDMltDnEUK+ypgAe3vXs0KTnK0T5alKdesuZ6s9O+Ev7Ba3+p27+InnuyCGIMTCP8TjFROjV9tyt2+X6nfLDpz1dz7i+A3g2x+FcNtbW0aI6YCIhyqgdzXVFfV48qPaw2H/d2R0fipLq1+Jeo6ncxEw6oiTQsV4GQARz715c+b2zbPbw9PlopvcstGkUYeSVVUsPLcfypymki7tMp/EDxhPoXhB9H0d2W91H9yjKeVQj5m/LiuWrea1NK03Cjpuyh8MNOXTEhtk+6AB/+uuijyxVwwVLk1kVfhkRZeONQWMDC3rZU/WutSd2UrKszQ+LtnrKau8i6iskEi/LBcrlGyOlfP5mpPVHbTV9zxzWLaS3u3SSy8jn7g6fhXx1eElNt6HW4uJQk25Cg/jWSLjoQXMQljwVwQODQ52NJxU42McTz2M/yDKk81rBnn8jpzubWm3kV7EAxAOOOaicm3Y7VUi4k0qMhwOlY2Kg0MEy45I59aOZinoKuGOFX6HtSc7kR1FEfOfXpxUqxTjYGTnp1q00jWDWxDMAuPenza6EVb9iONA8gXcOau7UTOKRr+H9M13UdYtLHwvBdPqE0wW1Wyz5pcnjbjnP0pUaWIxNdQoL3+lhVZSjBs/Rf9gX9mi6+GPifSND+JYsbnxTNL9oj8OW9rC9xBkbjLfzgblx1EZYknsK/ofhbJK+CyiDxdrq7+Fc2veW78k3ZdOpvl2GlSw06z0j36/I+9/iTrUf9lf2RcKjrFEFPkttHuBjtX1uVYf8Ae866jyui1iPaw699T4+/aM0/wR4g1KK21fUrgzmZVg0+FSQ5LDHP19K/R8JUqYej7y0sfY0Y1HJSex9//CJBZwQaa8KobTw7axomeV/d9K/Fc1aneS6zf5n49n1pU7p71JP8TzrxhHcXHiSa1RVWV5HBkc9ADkBeOucD8a+owzisIn0sd9JXoxtsdd4J8T29tpk4a6ZGkt1ZwTuVZAcMV455/WvExmElOonbr+HmcOJw0pTi2jqbfVJG1sNd3X7uYoyDbkNx146HNebKivq/urVXOSUILDNRWqubmq2sEskiw+GvtaGEloSq7JST3z/nmvOpzaiuapy6/NHjQqykkp1eXXfW6NXxZoVr4h8Iy6TPpKzJ5astsGxhlwQAe2CBXBhcRLC4r2kZa3epwUKsqOLupfM4zTbnxVpcDwXOnysinLgRl8c9OBzX0FSODr2kpK/3HrP2NWdrq5pH4beH/FkH2rW9DMMk3BAjwenU9cfjiuCeY1cLLlpSukcFSv7Gemp8lftnWEP7MvjzSviP4W8Jx6hLpU5uPLlkVY5oSCJImLH5dyFxwD/SvVoQqZhgnJf1YbcsTQa2ufhl/wAFBj8LvhJ8Q9d8aQeG0fw5f30lza22j+PdLeWXe24QPDn7VGRuZSfKyAPTp8jjqMKM9Hdt7X1OBYp0XyuPkfIfhb4f/Ez9pjx9/wAJ7c+FbgWRKQabZWdq7RW0C8JEgAJ2qO56nLMckmvSyvLK2LXPKOhrRo1MRd1Op9afCP8AZ4ufBcUI1e1eJwxDCeLHzAZwQR/nFfVwoU8PCzVj1sP7KmktzSj8I622prrMAeG5tJyFkgGBuDbkYgd+OP8A9dcjnHmbserTbjqec/tTfCuS0+NDfEyLTVitvFltHe3aImFW9HyzfTcRvx/tGvJnXXtGkjso03GXMc+9pFpWkXl2Twlm4ZcdDg100a1mro6o1Gk7DP2ftNktvDOoyyoM3FrKM5xnKMa2xVe6VjGSlGm5JbnHfBvVrw+JzZ+XADFcENGwG7GTyOlaVJynTvcxwXM6+qPpJ40EcZCKCYxwvTpX4nxTJSzOSZ9Vy3AhgO4Ir5NkirkEGpGnqJcZJ4/SnHc3iyu7MvJ4OfStnqc83qSW0hcEe/FJnRB6EsbHJBFKxNVkGn5bUj35rePwmNP4zdnU7Rnk4/Osps6VsUpbdxJkd6hRvuc04tMYyFSFLdqtRRpCyQ1+BuxxmjlRcloV7gEHcvpzimkjmd0yrKJCMdRVaFuSaI4EbPOcUppdDK+o+RDnJwfeskD3uQzDCYIx61d+xNVoj0/S7/WtRj03S4i80rBUUHvVRU5OxzTnyo++v+CbfwI1TwP4rstU8UI91cvIGS3Ops0cfH9wcZr7bIMC6NnI+YzGrd6o/V7w/Fd6/py2ptViW3MKoFXtkV9Y3qeDK8Z3R61rUX2nTltlIwkSggd+KIwtIzTezNHSbf8AtLwrBaF2Tda+UxXgggY4rOpuzncvZVUzzfXfCvibTZWisonuJUfAY8swzxWEW7Hp2pqHMen+F7W7sNBtra9hWOYRDzETopp2lJ3PJrVFKbaLc0g5ya0howWpz/jPT7/VbNILGzEu1sum7BP0rtockZXk7EVaSqKxiP8ADDwtc6a13rWgSlwuSuQSKudZ83LF3Lw9OnBWauz4v/bF8C6R8Oz4vvPDFm9rZ+M/Dn2DVJNOMX2y28suYrqHeNplj3yDacbgxGelc+Kw1SpQ5m/ka1KcFCPReR+FWo+K7n4Vav4p+C/7HereNviH471e6ltt9xpEyDSy5Km5mLKFWRUIC4+UHDZ4wfFoUcdiqyio2S7dTKriKGGTjTm3J/h6HY/sq/8ABG74qeFtOHiD4jaXJJrl0PMnSLD+XnnaCepz1PTNfW0soqUaXPP4vyOVOCak2fQXjn9lm++FnhOSzutJMKTL5Rd0wd2Ox7nPavLx1KadlqethsYpRsj5rbR5LHVWgn6rJhmPPINfOzk4txZ6FOHO02cp+0HdxtrOnaej58m1yw+teDmcrzSPawSSOCebbHgfhXn01bVnqJc2hTubwLlWfA6Zz0qatuhpzQp7m9DqHyAgZyKH8dgrt+0dizBqCEcHjvms5SlYISdyxHeqOQ4pcztqbSd0SLqTE7Ff8QKV7IyT1uWbeR2IO/I7YqJVDp5rrQsQswOAx/AVLndGMm2yZCx4Gc57VpBqwQTvoXIAVwMk57UTlG5tyK15H1F+yl+zpreoahoviP4uxw22lCUT6YureN1hjjU8iQWqbmP0OCSa+jymlWpyjKXy12PHxU0r8iP24/4J9aR4Z0n4eSQeHrewVQqjfp9rLGjjn+KTl/r0r7Cm4+y0PlMxlOcFc9jum0KP4iQTSeYb97RkT5jt29Tx0zWftLVLI8tOahZbG3IkbI0TJkOpDA+mK3spaMyi2pJnD6Np50i9utGS1KW16GTywPunsaxb5Gek6iluc/qvhDxbP4ji0WxtTGjOB9oxn5R1ye1bJ80WxSlCCvE9O0nSoNE02PTLMfKg+YkfePc1NPm3ZwzrOT1LCwrKNsqAj0IrSdhRcUtTgv2iL7whB4Bv9C1G2hmuLiAqkK4yMjqf/r1eGjUnVT6FqpBM/Hj9s3wN4d1PwmfAvj+21yyGkm4Gg+INEs/tRS1di5tZ7fILqrsxVlORnBBFZZnhXODlJfMqjXdOrzX0Z+a/xf8ACvxh/aj8a3fwu/ZZ0TxVq8d1PJZal4j1LTP7NsY4s7JUUMSXOQVPpyAD24sny/F4uV1H3ToxWYQqL2N9D7U/ZK/4IL/FXwv4AsLOfULSyZtr3T3MZ826kI5OOwJ6Z9q+1p4DB4enZuzPEninQleMTvPHH7E2vfA/On+IIXSOJ8AW6DdK3ORgkGvMxVGCTaZ7eX4v226sebX+nW+hai9vHG6uzbc3CBWUCvHlZM9+jVktjqrqPSNR8Iw6xfRI32OQASFQCUNctZRcT0qVSdrM4/4iWVnYT276dOxtpZ0YKTxwNx+vGa8upeM7I6Hscne3DeIdVOoFQFLbYVI+4g6Vavy2ZMYupO7Oo8HWxS9RV6NtJHvmtqeh3QXKjF8EokPxG1VEHAv2z+ddberOaGtVmj8Zn0ufUHsdV19rMmMFFYHa3HHSvBzCtTinzM9SlGaSseM63a3tlOVnvBPEeY3STIx/Ovk671bvdG03KT1MuRskH865k7mlPUZNIVTcvTNQ4sJvlZThgW5kYOvBNWrg4qcQuLG505xLAuV9q05YNHJKnODL2najHdxiKXg+9YtWZcKj6j7i32negqXF2OiLU9wgYdCOO/FLkdhJWloTOP8A61Q1YptsYq7j0pBFNu5FcwgkDGPwrWmm9RzbejC2tSWGc1U5WQopQPRfgf4S8W6t4rg1DwvrV1pfkv8AvNQs5RC0a9yZWwsYx/FnPoD0r3+FctzDH5pBYeXLrv2+fQTbnI/Wj9hH4PaD8JPh23j+6i+XVWDNfz3DTXGpSY5fc43bffvX9DUaKwtFYOjNye7b2O6vFzisJh23Ldt7I9S1fRNX8bpNDZWjW1pLktI/yZX6+le/hsVRwSXM7yOuFXDZdBe1lzTXRHhnx38FeCvhrbN4o1TVPtd5boDbLv3bCDnjn1r6bBYrEZhBrlskj0aGJq4pXimkfWvwe1ddZurK/knIGqeHLaRWI77OgPc1+ZZnSVOhJL7M2fmObUJxw7VvgmzkviFLNb+L1MirsjumKr0PmY+U/TIz+FevhtcIrdjspOKoLl3aI7XVo7cvK9+JEJka1lzjavHt1Y960VJtbev9eRE1z9DqNA8RSTahHJdxmJoViEfltkAMOuPXPGK82vRUabitb3Oerh0oWXU2f2lfEXxi0z4O/wDCR/BiLzdRtHjnubeJN7ywocuij1xXiZNQyueZSp434XdJ+b2PmKeGoxqzUt1sd98Evij4f+MHw803xzoEoaO8t1M8TDDwTAYeNweVZTkEHmvBzDAVsvxUqNTo3Z913PExMZU6tpK3qdRNFBDL5rsqg9sdTXKnKSsjNczRU1zxFpui2Zubp+gwqqMkn8Kqlh5VJWiXCjOZ8Y/trftCeFPFemy+HNY0O4tmt1LzpPYO5liwc7SB1HHPNfZZdhpYKlZSumd9pRo8sWfjv8SPgn+zz45/bkfxLr/hi01GE+CNYu4UvbZXUSQrCImZWUAsodiCR1rnlg6FfHc0oo8itQXOuZ6s+x/2QIPgb8PdPn0nwxpV01xJpkYkTR9LSCMQuCG33LAhc8/KvJB4x39uo3DCpxdtbGs5V+fl1Vl5nTfEL4c/CTXvC1/rn/CJWssUMyxwO8TF9PbadzySybQz7SQCpz8wGOTXnyrus/elsdNFTp8r1PifxHo+gQeJb+GG5byjKUi24yWBxu75ODXBWqKKsj6rBy54ps8j/aE8Xxa14q1XwYthB9i0fyofNZT5jXGwM+PQDIH4V5FOnKVVzvoepGbcfQ8H+JN5/Z+hDR1/19421hnnbXo0YvmJ5k2dR4KhtfDmg2ttKgzJYzzuvfaE2/1NaVlFaI66qcIKJwHw6isbrxNHqEdnFE3nnbKjg5Gf4hiuqMHOnoY4bljWXmfQJUskZLf8sx/KvxHiqPLm80fRqOtx4QEYxz6mvlOpDWoAdz/KrkkVFK5G/DFiOPftTitDWySKt5IAoGKd9TkqaMbYuGGcdOvFEnY1pXLKOST2IqFIursQ6a//ABMyfeuqPwnNT/iHQykYAPTHUmsZL3jtvoVrmRIxg1N7GNV6FRrhJOMH6jtVXFBajZJQAcjt2obVjUp3E43dPpxSTZzzi7kSSFzn3pOTIaW4oPzZI/OldsmyEdgCMj86aTYa3ILiZSOh/OtY0+5nO7WgaBGs+sxRTXNzErOAWtP9Z+FdNH2fP7xjKlzKx+mf/BLfQNO0+Vb7Tre+JBG6bVLre59wP6V9vlFWnCFoo+ZzJRjPlkfp58GrZdWsNS1QQP8AuduJGH3yPQV9FBp20Pnql4NI7aC8W5shKzDcGwW7VUtNTN6PU1vCWoRrY/ZZTyJSFYDg55rkbfOYVVzamhPbAzqyfKASzOAM/SqskriVTmhY574x+LfFPgv4S+I/GfgjRF1PVtN0S4utM09wSLiZI2ZEOOcEgDjmtaKjOai9jKcJ8ra3SOZ/ZP8Aj5Y/tG/BjRviC1xbx6ncWaHVrGEFTbz4+ZdrEsBnOM1ti6McPWcU7rozKlVVWipbPqj0pbcA7v61gp9Acm2c18UvGtr4X8OTRl5VmkjIRolJIrqwtLmnzPZHTSg0uZn5u/tnfF6+S4ns7qVJLaSNw85GyRW/usp4/GvUdKElfoROVRq58b/sr/HHw/8ACiP4sG1sNDmD61Z3t0LuKMXFw00XkxIhZl3nfEw8vByX6jByZfVo0K7ktP67nPLCxrQk7a/ofYfw0+NXiiy0aLUPETBNQubGGa/kitk+QHlbeNQCqD1GQT1Jp16k69R20QUoQpxUJanjf7X3x2ufiJr6PNdpONOgHlRKqCEud2RtXgkEjJ5ry8TdSaPRp0YqHuKzPgXWpLi+8S3bSRIjNqUmEj+6Bu7e1fJVtcQz2qbl7Fdzyj4xXwvvH9yqtkQqsY59BXz2Yy5sQ0evgo+6cpc5RMjrXFGTasepGSjuc1r1tf3ZZDIygn+E4r0sN7GK95anjY91azfKz0ez0eHYoJ7V5lrzPoK0OWbRPHpMG4LuH51bWgqagi5Bo9qQcn65rmqSd9Dfl7jk0WISZHQds1PvSVhOmmrotxafEFAUj603BEqDLEFgpJ46DpmsnEtwSJo7SMHORnuKtaItJRWhaW3DMqQozFiAqKMkk9sU+W7QnCUtz6i/ZF/YzttJ8Z6d8T/2lp5PDel2jJdWFj/b6x3sxyGDeSm5wPTJX619FluErYeoqlWXpqeVjOSHuwWp+3P7C2s+ENX8DGXwjphsrAIBp8LQyIzxDjexbhifXJr66FnT5ou6PiMdXqVJuJ6wmnawnjkXiaaxs/LbdctKOCemBUqE+a5xy5eS9zakYBgM/Wu6EX1OZao5u61W2bVVaNCGEnA28nmspwbR1wi2kmdMi7wH8vDd+OaINNamVRuN0hUkhaX7P5i+ZtzszyR64pykoszVOyuRXU5s43mZSVRSxAHJxWisxqKtoeAftAfFXQb21mWXT3hdFI3sACwHqa9nD0404bnM0qj0Phv45+MPCPiq0u9OMlylyUPlz2jRllGDkhZFIJHvxxyDW0+WUPeV7F1V7TCundxk9pK2nnZpq+1r6d0zyv8AYj17wreeCNDisLEvJYa5r0D3slggmwmo3BYHawCnAznGDgVpl01Qw1lojGpGXNbc+5LD46ab4a01tK0nWrtLeNRIMLiU55AMr/KOOpHHYClUSxDbRtFXS5jy74o+OvhlrZuPFWvTB5GjJhvLW3e5vRkEbd5H7vOf4RXJiYRhC13byNYpQkmlqfI/xYHgG51Yz6ZaxbsktMyyPK2T3L55ryK8aXPdH0OEqzVNJo87+JfiWWw8P2fhXTbIyXGs3qRWNqpLExqQXdsYwAO/qa82rJ8p68XKVuQz/iR5UDW2iwTGWWODM3pGduMfz/OvN1lM9R0mkmzF0q1WMoWUhV6cVq2mh25WdT4QjH2pTt5G3knpzVwk0bI57wBELv4havP2a/f6da65PRmdOC5ncu/Gy68P3N82l63bRHZENkshOF9M4HAr5vNFRatM76bvojxXX9ITSrhjbXMEkLHKm3n3gV8vWoOLutjWVkzJeT5sdQKzSSRvRI53Owrmk9ya25HpEm64I4+9Td0kFHU3VgilQowyCO9YSm7m9kmZWpaRLat9ptRx6VUZqW5z1aKesRtjqQkHlTcMOOa0SZjG6LMcY370PXtSafU2jPUmJXbyPxNS6aOhpNDl247e1Q0ioWK8p3SfjxWkXZGdSykOR9rAAj396h23ZjrM+iP2VdI8EfD/AEBf2jP2lNRePwhp9z5fhbwjG5WXxJfKeWZR/wAsIyRuc9+Bk5r9C4TrUcrofXMVPlp30Xd9/wDIuFJQblOVkfe3/BOP4w/E/wDa/wDFniL4v+IoZx4d0yRbTTbRNM+z6ZYooG2G3JbMjY+8Soxxyc8fouS5zUxkZzcbRl8Pccs4wWHwUqNL45P5vzbPor4ka/cfZJ7Nrl7e0KbEEEO5nPoq/wBa+4y+jShadry8zpyvD03OM2uaXmz50+M3w98R+IdJku4tNa2UISlzKSZc9ic/dr7fBY2jTsoz18j6aM/e0ex77+yT4rbU/gp4W8RXMonuNFdtPvnUklgjbd3POPrX57nVK2Y1sPf4tUz4HPoWxlWhH7auiX473dtB4qnv7ObNu8QnhcrkEgjP6EitMtjL+z48+60Z5OAjVeEip7rQwNb1+Cd5bmFPKWGCKKEquAA38VdtCNlY7VFwjZFzS/Hxg1GeQymJkktgzk/M59vY1z1cPF7rTUzlGbhqj6E8AeMLCy8HWuua9dqsThw7lDg/N1+lfDZjhalbHypUFrofHY+jOriJQpox/EEegfADX5fi94fhjh8Ma7KreJI7eElYpm2rHd8H5Vx8r4HQgnoa55SqY6n9XrP95D4b/iv8jhjRqYuLpz+OP5Gp4o+MvgOQrHc6vtG3dDcIcrgjO4HvSwmX4pq6SJ5PY+6eU/GT9pC103w9dWvh/XNOntxHnzdRmKgk5OMgZGcdjzivVw+BhRqKpUVn5EKTpS5pH5zftq/tK+HdEsG/sDWbaLVJbdw1zpfieQxnK/cZByM5IOK9L2lotv5DbqSal0Pzif8AaFmsPj/qXiK2uIJH/wCEA1yFD5zMzNJHEqjLZOc4x64rw3mUqWNl2scvsqlSaklsfRHws/ao1nRfCFrc6fZ2dveaaIH1TVbi4knuVhkKoSkchMCheB8sZbDc9DipY2M6fvt+h11JVZUnyRV1/wAMew/Fn9tLSvFOiR6nc+LvDV87QlHm1Ce4nnjOAFIhOyEH0wo69DXR7TDRo+05rCoU6z+K79DwbT9Zm13xRP4y17TLaOxtmWSaeC0VBLkhljRR0ZmAAUfyBrwsbjqMZ2jq+nzPoMthJ6K9j561XV7q/wBR1jxZ4nl2td6pcXLoHyAzuSEB7gDA/CuykuWmj3lBKNjzuKzvfiF43ifYSpkxGo6da66WiuwjQdR6Gudeh1rxH4lmt5R/Z+k2H2G3cHglR8xH1bNdMlCPvMzqVVzycfQ4n4PWuoHxCsioZojISzhOF5749K0hUS9Dpy/Dy51KR9LKCsMKMBlYVBx9K/EOKqiqZvUaPfnK7AzdMDNfJPQyb1FLELz+dBa0K8rtuIB/GtOb3S7qxRumklfYeBQtjLkV7lmxQRqCB25rOzkwcrEyZy2eKd7GjV4lbTyP7SI967KbTicqvGZ0KZL5b8RWNR2OpPS5FeQK4+8ee9ZczuLmvoQpBGqj5RnHXFXZsmasxJIUbjAxUy0JUtCtJaxcEoM9qEmUlcrTKqsBmrjTuZyVnYaAmOn61Xs7AoXIbh15UduvtTTsxONivJ9zceBitE9DCUlHYveBdF1jxD4kh0vQtImvZ5JABFEcd+5HStaGHrVanuowcpPc/W3/AIJyfCbxB4I8HWx1zRYLGYqGUMc7SR6k5zX3mV4atTprmPlMzVN1VJrbY/Qn4Ah7fwbfwyXpuWMpbzCOOnQe1e8k9D5+o26qZof2itvpU8e3aRJ0IrZ2sXNXbHafr0WnsISxHyq3B4zXLUSvoL2aW50w8V2r22T8pzgZ7+/0oW5P1ZJ3RY0nUoJofJuJFA3FUJPB9qbVnoZVac07o4bxn4B034V3V78Xfhr4Qi+1JEW1rTbKIKb6HqzIowPNHJB78jvTqVbw99mEYU27vRnlmn/H3w74qibxL8PvGC31nKx3LFdkSW7A8oy5yrA8EEVrQeHqRST1HKNNvVnEfGP9qTXtL0WW3kv3uVKkeTcWpcdOxrv9nyx902UoqnZO5+d37Ynx/j8ZWNzpVzaTfaYyXRnzDJEBztB43L7EUe09nBqRg2pRUZadT4i8AWfxL8PfEPVPF2p+DkntNUvrEacuosDueATyhsN90E8An8K8XB5vSjjZQT09DXExqTpe4tD6J0H9pr4pz+F7fSdU8D39nDFOzx2sOLhBIwAf5+p3bV+g6V6k8xp25VPRamVKhUlJe7oZHi34tWGg2F9/wkWi3Frc3i+ZY2c0JWTcGz0zkIWzycdBXnYrMqEYe67nsU6Da2PHbXUvOun1O5xvZmlfHTJ5r5+lLnqXZ6UaTSseJa/dy6jr17qMv3prhiOe2a+bx01PESt3PaoWjTVig+HyB1GODXPCNlc2lqrlC6giydwq6k3FaGMaPOtTro73YgxIc47VlzLmtY9SvzObshIdQmmkKjPvVOcYrUyhF3uaFpLJgbnOD1rllNNnRzpGjA5zkt+IqeawKoTpK2QF/GpbbJUtSdJQq/UVPMzZttD1m3jrVRd9CYXvqWYWOQd3Q9abhK1ynOTeiPoH9gL4I+FPip8UYfEF34inSbTrob47i8eaQuCCHhtV5LDIAd228n0r3crp/voqbfc8bMIq7XU/dj9jeW+0zSDo8EdxIjDMtxqt2HupMdyi5CgdMV9fR9mlaGi7Hy2NjCUOaW57lq3mJYySJdCEKhLSEZ2gda61NJHiSvexFBcw3drHeWz745IwysO4x1roi7xIs1NJnFNqztrUdxOwAEozgYPWsOZtM7qkoxVkegShkJZD370U7uJ58neZj+J9Zj8PXFrr9zb/AOjBjDdzqP8AUq2MO3ooYAE9s59a1VP2qaT1FaSnGXTqJ4z8TaRoWhvdXd6i70ypDc49R60qFOdWei0QsVJ0qbS3PjD9qT4teFjpt/GdQeffGylFh2BcggMrA9QecV7MZRpR1PNpqpLbc/Mb9pv4030EMPg/SL6yeebUvsrz6ncAtEXPH3F86QgDJVUIGeetcmIxlOOkWbfvFWje+v8AXojyH9iX41z2Oi69qOibml0LxjrC290mnlHnzM0pJaRwIwFdiMDOQMDJJqcvxMbSVSW/Q6Z+2rVn7NPT/hz6Sg/bL8N6RDAdevI75Cp+xGC7div95XG5grDqCVx6cV6ixNJWUXoa06dSUXocv4q/a+0nV7mWPw3rr3fO7ytT+Rkz/AHi6jr3Fc2NrwcfckdlGDejRyE/j7Wb6Ftd8UX8Wm6XvBeSW7YrKeyqvVyewA718risfBStfU97B4eoo+87JkHhiz8QX3iO68feOIysx/daJZxSHZBbg/Ljoeep9Sa4Z4tTk79D6PDYNUZXZPe2slxdtczJvaQ5JJ5z71jzpu7OuWhZtdODyAytt8tcYA4Jq3NWMuV3sdD4atFWVpwm0BCxOOmBRGqrmvwo5P4PYuL++1A4JlvHKk9/mNdPNzRu2c9GTnJlT43Xj3esy28tjDMVTCiUYYfQ968LMaiTs1c9GmlGN0ePaozRMQIlTjgBQD+NfPVJXlZbGqTluUBLvYbhjnmsJOyN6SaG3TbYyc8is4ybYqi5loM0kgzlipHPpVSk7GdJcstTobeWMKA787RWMnc6ZSTRMHhkG1iCD1FS/ImMkY+saMgYz23GDk4ropVOjJqUlL3kUrbUXgPlynB6c1s7PY423B6k5vGkOVb6ipem50U5uSJYblig/TNYzRvFu42Z2A3Dp9aqNmjOd3K4sEpDguM89+9KUlDUum0ndnpvgWPxP+0p8YNC8C3a7lkgisNPtkQ+VptrGuXdFyAuFDOWPGck5rry5182zWlQd+XRWXRHNjZKtVSvp1/zP1B/4J8/E6Hx94o1T4ffCmJ9N+FHw8g/s/QhFknXLzP769mcgFyzZwOgr+j8Bh6WHwKUYe9ok7W08go4WhHAyr04pym7J22S7HuepXt3qusy6pf6itpaRPtiWNMs3twOK+koQjTpKCV29z3qdCOGoKFOPNJrU8/+M+iXOt2M1rYXC7JASsVuSh6clsjk172VSo0mrqx2UFNQV7pkn7Amu6fa6p4s+EF+wt47hI7izWV8lWYYJ6fLlhn8q8ni6nKHs8TDVxetux8xxHQqKUMQtWnr6HafGb7PceCb7T4yBf6NJ+8GOqucPx6ZOR7NXk4OVXnU38MzwnOVKqmlpI8S8HfFNdU0W50O8vI2uLC9azuieC3B2Ng9scivShUik7dDopzc/eNDTPH1sYDqVzcxurWKRMCeVdHwre5x/Ks5O6u2aVHdWeh2Nn8eb2902Pw0+qStbW7yIYomzuhzuY4yDzgDJ4AzXEo0Pauajr3PNWCi6vtEj3/9lH4j2vxn8A6l4U8Y3FrfId0YsmjBH2ZhgKwxg8dfrXx3EGFVDExrUVbu/M8LPKUMNVjVo6PqfKv7TXjRf2EvG0ngX4zNfzfDi+l8zwx4itImmn01GzmCYAfNGh4BzuAx71lSxVWdB4n2iTi0nG2stHrtay66p3atdXt5Ek61L2iV31PDfiujfG3Qn1v9n740aL4ismUyI+n36SyJ32tBuDKce1bSzt1F7rsa4eEa6sz4w+MP7IXxq8ReKDrty95BIzg3U1npP2ZFXnLF5GWOPsSx465715uJ4jqyrXhpLyVvyKq0FCm9dEfKHje7/ZW+Hfxy0r4TeJ/F+hfaLiwuoNb8T6PfSXsNncs6+THcXCHYy/LhvJBVMjkkGvMoVsWqkq9TVdjCPsakoQi7d2e8+Dv2Yfidqeltr3hnxvpGtaZKqeRdWutW0ttHFzja8bA7f985FZLM6bqNuTSfTTT066+bflY7Fg40na6a7oZrafBn4N3Ij+I3xE0KfU1X5dK8K3I1C9unPRcI7Rx+m5ioA7GprZzKp+6hDRLf7/Pp6W9dTsjhacVGSmvQb4l8f6lB4Cfxv4mtE0e2kV4vDGgxPuNsGXDzyMf9bMVPLHgdAAKWW0qmMxKb2R71Cly4dpKzez7Hzb4p8VXHiK5NtaMVtl/1Yz1r7SUYRajHY15JSaNOyvV+Gfw61H4gTri6aI2+mK3VpnGN2P8AZHP5U4uM6igjfEVVg8M2t3ocl4bB0f4T3LEkTXsoDMTy5Jya3lLm9083D0X7JN9TofgZoZ/t1ZI5GETffXOVI7g1hi6lOjRnVW1u/b+tT6KjenTWh7FdXAWQBRjI4r8Fx05YjEynLds1i+ZiJcAk579/SvPlCxooakjTcYx9aOVWKqKyIfNAYk+tKUbmClqQSj94CTn3pRibxaa0LEMirFyOnfNNqzIt7w6NwQ2DUpXZpK6WhUsWP9pHA79a7IJKJxRl+8szfE205/OsZq7O2zURlxNgjBzmoUEZJ6kLznnHHArSw6juiLzmIwc89aTgmKGqFEuRk/kaFCwTdihcOxfdyKpWQk0xpnVI/mOPxqlqTVbSuilPMWk+Tn2FaKKtqc/tVchmlYoQDRZRG7M1PAeq6zY67FFo+rT2hkcBntpNjH2zV0Kk4VUosxqr3Hofrd/wTk8Ea4ngu31rVZ7tmkUGOTUtQaUucZ6HgV+g5e2qSbe58Zjm3UaXQ/Qv9n5oJfCl0kF4J9spV3Xpn0Fel7W7sePWvzIg1HUrex1ybSbx8eaepGPyrR1E0dTp2ipHN+IdcbTbyaymnYHAKlTwQKzbj1MpN30K3/C17QWkZa7aMn93CAfvepq3KFr3Kg23Yqa18d3Fn9isro/u3CqwPVvWl7RNEzpSk9D2L4T/ABN0b4j+GBPHdIbm2AjvUJ6HHX6GsXNSumcNek41LI+Cv+Ck3/BOn4mWviy9+P8A+xv8QLvwd4jlXzL+0tV32monrmWI8E/7QwfeuR4fm+B2ZFRNwTSuj8t/j1+2p/wVE+DZl0H4hfBjStca3Yg3drqE8Kygdcp7+xrSnPMKStKpp6XNqVakqcm46nyz8Wv+CrP7VeoxS2rfA3QNGuTlftlzp813In08xtp/EGojCeJm/aVG122OaeJ55e7FI8I0X9tj9sDRtc1bXLH4kX8lxrdxHLqEd5p8M8cjINqbY5EKoFHACgCtp4fA0oWsdNKVaM3JS1O68I/tVft4/E6+XTU+LV9pdvI4Eh07T4Ldj24KICK8evTwcHeMb382egsbiKiUItfcfR/hTwjdeA/h4V8S6vd6nrmtOs+p6jqVw008gH3QXckge3SsHGMIXZ30YyS97cz9ZvW03Qbq83cLEQD9aaqKMHJnarxPI5JGkUue/NfL1J887nrUY3sVY5gC27045rdK0DWdk7Fdmy2W6A96wqu6YpS5EdS0UXKgj2Oaxu+Y6pSk3qOtBHGQcd+1aODa1FLfQvwHeeBg96lxikQ009S7a5B5br0rOajYpWb0LcQ5GTj8Kw3NoxsWERGAyuPSk7o0THKAh+XpWlNNu7JfxE0fI2g9TzWsnyq5rA+lf2N9W/aE+KXj7SvAnh/VJfC+iW0aJc3GlaSts97GP4pbkrtiXGcyEkkkY5NfQZfiZVlGFRWR5uOnGMZt7pH7K/sd+LrTwW9t4D8MTwa9eABLq4sbhvs8Xu8jkmRvc9T0UZr66k8JO3s0fn+JliHRftXrd7dr6fhv+h9V30TzWbxggMyEc9B/9atGrqyPOjzXuYng26mn06TTrtwZLeQ7QOMoTxWlPSKNa+rTOE1G7W18QS2pbmCc/eHQA0tIvU2nSbtfqeiWHizS7yyS48zLYxtx1pXdtDGpThCW5Pca5oJj8i8njCSja6SDIIPUGp5mtwacFfoeEftSeK3/AGfNEW/ufDVzqHhW6DGO6tB5kulv12hD9+LuBnI6DIwAfXKlGWuxzypqpGx8D/Gb4/fs/fEC9muLn44eGXitcypb6pqSW8tuwzx5b4ZDz1+vrRXzegqVm9SqWFipX6nwF+2r+27+yb8Kby81nwH4qt/F/jMqws57JhJ9nZs5y4yFznBbOcE9K8mM8XjJpxVovqeolhaFNyqvmk9j5m/YH/4KjWX7Nur+MvB/x7+HUXiLwh47v/tt6kEKtPpt108yMHqNuARnPyjrzWuLwGIqQToys0uvU5cBVVOrJzWjPYfG/wC1/wD8Ey/ER/4SHRPHusadIpLJZx6Vc7hnkjaBtz7156/t2jLl5L/NWPbq1srcOWL1fkzzw/tnfBy71GWx+Cvg/X9fnY/u7zU0FvAvucksfpiitPMeS1SVr9ERTqYSmrrVnpv7P3hXxz8ZPHln4j+Id405hYG2tFyILZf9lfX/AGjzUQoqjTvJ3OzCzq4yqkfRXiaKO61VkhGIoVEcYHoK4PbWkz63llcoHT3kcKFPyjog/nWkavMHs22WbfT1z5iLgdCCe1X7S2g/ZstapeR6B4N1bWpBgR2jhcnuRgCrpyu7owxMuSkzlfhFA9hpUDOvJw7j1zya9KP8MwwqtT9Tnfivqr3uuz/ZoTNGrfKpQ4x/vdsV89j1LmPQj0R5lq0e+UkQeUM/cDZxXjyVjqpqT3KKQFWyV/OuKbbZo5qOgTwF1xjr0qEpJlRtJDILdo3JBxzWiVtzGpFt6FwRyf3jg1nNxvoVGnOSJI0m3cN+FO0W9iuRx3JNzIMSE80+W+xUblHVdIE6GaAYOO1EZpaMmpSUjLtZ5baTypuueM9615brQ5OZ0pWNCOZSodB1HbtS5dNTpp1eYfvJT5jyahKzKk1fUWPAIY8n2okoyMryk7H0H+ylolp48sz8LvhdM2haprFtIfiJ8RNWmWOPSdIzhrK0Gc75R9+T7xB2DA3E/oPAGEwlbHtU1ZpXnJuyS7Iyhga+LxaS+Fb+h+kP7G3jb4DWdtL8AP2fx9osPD9nGLq9ZSrXTEfeGcEj3r9iw2bZVjsRLD4eon7NLY+kqvDKneEl7uyWy/4J7J4pv9J8PaWJNYgWN0/1UKMDz+PU17OCp4mu09F87+nRdPI56Mqteq3Td13OKe81nVbOR/DOixQXDxuVuLkZYg9hj+texGhGnL95PQ9iUKcVzTkcT8MfAfibwV8WpNV8SSu/9tWTQXN3EMbcZIK89Rz69q6cd7OvhLx1sePmLhVo3h0O1+IGt+Kvh/4ohHxGgim0bUoBbS6qsTEyRsvyNNgYRh03Hrx6GvnIexqx/dvZ/wDDnyWKp050eaG/b8z5t+M2haj4E8TalqOjzrJa39sClxEeHkQZjfI/vDinVi1ByicFOtKy5tzg/Cnxy0zxV4du7eG4VLizZRdwBjuWRWLEEdhjvXlyxU5UlrY7m3V96S0Oi8J+Jr7UP+KjtL0RS3xeO0t3l5C55GOvPr71lCspov2sYR5Ue6fsv/tCah8JPEo8YXMIbT5YkiltoH+ZwAdzEHpkg45p4+jDF4Z0n8jzMbgvr1P2fXufVfxn0H4Hfty/Ai/sbC9sdVit4v3oDqz2rlc7W7g4r4aNOrgsR7OotGfKvC4jLcT7KstGfhL+2n/wTRj+Gfiu81f4dape6bJNO6wyWE8kLZ5PVCCOlXWwNJz54bF1KahOL/mdl9zfy0R8E/HT4Q/Gn7U2k6/4/wDEl6gBBjvNVuJUIHqHYiuBwo4duRjPLpTneXU8r0z4E3bTme7jllUNggqRz/WvOrZgmrx2Lp4ZRjaKO68KfAOW4YQx20uwj5kQsc/gOtZ1pxp03MqjgJVZ2sfSvwN/Zw8MeA9KPxC8ehbPS7dN25kAaRwOFUHqc1hhlLFVOWC1Z9XhcupwpKU9Ejgvjv8AGa5+KfiR3tx5enWv7u3tkYbFQHAA9vf1r7vL8NTwMF1fU7Y3c7pbGJ4H8K3euajHAybF3AvI4wEGMkk+mK1rT9mvM7KVJU1eRh/tB+NLXXtTtPCWjSj7Bp42QgHrz8zt7sf0xVYVypxv1Z5OPar1PJFbxnqL6T8OdKtbUH95eAsq9cDvXo4WknK8jZJqlG2x6X8G7i1t/CD6/MpiaJckcDdngV8/xZioYTCOC6o9RSSp8xvp4qguSiqcn0r8ZlCUtRRrJy0NKDUkljBUYzXHN6ncpxSHnUVIwevY1Mr9BN8yIjfEyYU1N2tzJRs9SRHdmDMRU8zLUorYma4AH0pJtsTl74sE4w2eapuxstUV9OuFfUCP9qt4ytE4Iq2INua7Ctg9az5tbnouSsVptRQfKeRziqTucj+Ii+3A5yO1KUtDZpNDftuME/hQmKNo7DZL7A5bH0puRFV3K0l3vOcggUr30JhaOpm6vdyeWQnB7VpTaT1McS26bsUYPGkNlF9lktFLkEFiM16FOEHG7PHjVmpixaq90AQmBjnNYVeVXPRhVujsvhHqsWneKIJx4dTUHEqkQsM55FGHjJ1FYzrV7QaP2W/YLsvHvjD4dWUmqaQlhDIoHljA8pcf56V+h4CH7hJ6HxWIn+9tZu7+4+7PhH4ctfB/hBdLs4VRfMLMwz8x7mulpQehyVoxdkVfin4WfXdM/tDSlH2qA70VerYobSVzak/3bjI8T8deIRrmmmz1J2tLy3+XBOG/+vWMql0cvI0zyjXLjxC5F5bTh/JBVQxwAO5qLu9zSPKloYtn4pM2ryi7ldF2ABi3Ab2pqTUjq5F0Z0vgD4wX/wAPYb2eGaWF7y2MTrnPfhvrW8KkVHXqU6Kvc9p/Z/8A2ltP+NOgXfg3xfFtv7Fdtvc3Q2i6Ttx60cvNH3NyK2Fpxd4bHgn7Y3wg+D3iCeaK402E3MoYFPKUgt71pzqKtM4p4GcldH5cftTfsxfD+0W4uLXR40lIYPIYlwpzwF4rL2tGCbSJhQjBe9HU+aIf2ZtIdSsmi7J+GMqxjO3tnIry604yeu5ccJOqrLQ9C+HXwK8KeALZ/FXiUJb2sI3IHUAyHsAO5rzpTtLfQ9PD4GNCPM0UfEPiKTxRqb6llRFnEaDoF7VjKU6tTyO2KSdzjPinrqx6XHolq2N/MpHpWeYSlGhyo6aFOM58z6Hnk8jKvHT6149NRbPVprQqsx5x/KuqTSQpNN3IDvGd/wCWKxUVN3OWvPmWhvrdSKgGT0qHGPtNT0KqlKbZc0/dJjNTOdloCk+Y0Y9wwfT2rB3YtWy3almPtniplFo0UWnqXY9w7moHdonhV2G0ZxSdi4ptkgjKrmqpu8i7O5Nb7R171rKN0Lmktj3T9lHxf4evfFuj+F/EPjbUGje7WOLwtoVjtfUnP3Y5pAOSc4DEjGevFfQ5ZClOMW+x4+NjXndWP2Z/Y1tZNF8N2baD8M7bTGtDvW2tY/tM1uSMYZz8olOSCc5UZ9Tn6+EYQp2hsz5bF4eg5Rc0m4u6v0equvOza9HbqfYFjPfSaGk19hZjFl8cgGhS7Hl1JRU2oHI6Lr9vpPi4QyuAJ22OxOBz0/WoVVxepuoKpTZjfGrS30LVV1+JT5NypD7ezgd/w/lVO/Pp1NIS9rRXdHBad8SLm1FxpTXIURYdW/vL1rdJRhczlTVRi3nxKbXNTTTtNu2lkBAZWz82fb0965/a8zepo6bULWPYNY8N6J8VvhbN4R1r7Pds9oElXcG2SBeDx0pWTXK9zzJxcJ2Z+Kn/AAUu/wCCXfgzxTrF7eTeHk+07nK/usY69M81x1sPTeqNY3cbH5W/FT9gjSvCWrSwweesYLD92SMEdauOJlTp6O5ssLQSvLc4T/hl7w/DdLYra3TTsPvzOQn51yzxeKqPV2R2U6NOUdi34e/ZW0tr0C608EpzIrAkn2Fa1K9edOykawjQTase5fBn4HWFkYYLTSVGCF+RdrLnuQa89SjTd3uCpSnNJH2n8Gvh/D8PfBj6zdq32mdfLt/MXDEetefi8ZOoz6vKcD7Gld6ssRafJdzl1XdznJHSvPdeN7HvKJMuiyKmQCDgkt61Ua9tiuRDZLEb8bBjHIBraNRyZPKcn8Z9RQaVZeDYGG+8mElwAeiL6/jXdQvJ2PNxiUmoh4YaOxh+Vc+XH90cE/SvZirU9R04pw5Tyz4matcz6pKZZGKFvlilG3zPy718/mLf2TqppU4qL1ZxkGqrfXX2QwmMhgPKccr+PevFlGT3OynzN2SK3xF1238B28LXvy+bjBJ9aqhgnWg2uhw4/F0cHJKT1Zj2nj7TbmMOLgYx/erJ4SpF2aJoYyNTYtW/iS1n5jnUjPauapFwlY7o1YWLi+IrZV4cGseSTZcK8WxV8S23QuACexrXksgqVUoit4gtJG2+eM9jVKErGUKybsi3baksiBdwPuKxqRszqjbcp6tbLIDLGMH2rSlUa0ObEQjNe7uVNOvst5TDpwc1q7WuctH3Z2ZfGQMqQeKzTTZ2zXMtCSBGLH1Papm0OCstTrfB3i/WvD+mN4e8JeHLWbU9RuVjiujHJLO7H5UjRNwX7xzwMk98cV6OXY+vh4So0IJynp1vr6P+vQ58TXlSpycNHbc/RD/gnp8ILH4AftBaV4R8ceILvWvirqmmPN4u23hFp4etdoaKzYAYknOQW/ufd65r9X4LyzCZbUqc0r1XH3l2MMDRrVMHVrbQtt31Prr4oNoltqP2/X75G82UC2tUYEk5756Gv1zL5VJUlGnH5n0GWyqQoqMI7bsj0C50+NcQokiICbiNec+27PQVtXVRySudVeNSpHffY8i+L/jvxjqvjO1tfBGnpFb2Eq3D3UkvCoG5jjIwWcjtXu4XD0aeGfPq2jVYWlTw6U3dvc9T+JfjTwfo/hu2OsTbLm8tkl1PT9QhISQkdTyx3YHTHpzXzeCw2Ir1pJx9xXSaPlquHqV5yTV4rZo8/wDix8N/gjf6bba7outTWcF5AjSWEcp2cjHAbgUKliYNwqLQ8OtQxNNe8vmfNHxe/Y28Kz3Nz4x8EeLJLC4nDBpLSfDynGBlV+91rgxWBo1k3bbXT/gasmNao4KNtDwbxj8Iv2mfBF3D/wAI541muAYmjj8xMsFIOc9NuRkf5FedLJ5022p6Ee2U3Zo4PWfiN+2x4chl0rTtRjtoAdm+RGLKMEHBPbn8c1hPAYuyake3CUFHoan7O/8AwUR/b2/ZO16fVtG8HaXrcF9GYdY0lneNdSQsMlyOQ4XO1hgjPesMVlmIxdLkqfetH8mtUcWMw8cwav02PrS7/bg+AH7UGnw3HjPT7zwdqs5XfpOrIrpEzKQQJV4YbsYPBGa87EYCtTp8qRFPLnCnbc8C+M3wX+DHiMPfab4w0q5jnt55IjHcJlgg3MMZyCFINfHZhRxEXawo5c5Jtx0R4DefAP4TaJd3T6h4ssljR8JiQEncgkXp6rXmUcNiKr0iy6WXUprRnP6z8U/gT8IJE/sfQbnXtQABjjVPLhBIyCzdSM16MMixeIXNN8qPRo5fQoO7R5F8TfjR8TvjLeRi926fZRyFrfTbNNkcQOc7QOM9yx5Ne/gsJSwFpQfvLr1+RjVp03eMVZPp66swtG8HQQlpNVnESJ94sMbffkc11KpKbaW5tQw6ptNlX4mfGvRvCGnt4S8GOkt5OoWTC/8AoRHYHt3rqhh9eaocOZZjTo/u463PMTcXFzexy3ku64lk3ySHue9dEZJz0R5NGM6lRW1PQPEsH2rwTpyGPKpcja3v3/pXpUm022j3qiiqS7nsPw50S0uPBQ0d02iQLJhlx+NflfHuJbqQSN8OnKNmWk8EpFMCpAAPFfncqzkjd0EldGtbeHHSIEEe/NY6J3IjTk9yzH4eLDt0rCU9Tf2dhjaCFc4I4z3qo3krFOkuUlXRV28tg1pZIxcLCHSU3bQR+dCilqXGkmrlmLR4/KP0rGTtIuMbMy7CxC6oUDD73NdNNc0TlqRvUujam01GblueMVnN2OiKcUV5NEi3A7unrSTbGkmIdKjAzxT5SLO4w6ZGOeOadrDlBrUrXOmxZ4bjuKFcIpSITZxrxt5quXqRONiK40q2uF5ORUXlFk8qaMyfwxYrcb3xx04reNSclY5quHg1cc1jbRjYgH5VXKuph7N9Dsvgn4c1zWPGdrbaMSi+cvmyF9oUZ9e1b4apL2qUSZ0ouD5j9qv2NNNvz4L0/RdN1eOWOFV3QWThsnHJZu596/QsDJeyTufI4xqlKyPs7wzcPa+FY7f5lYcKsnXP1roqSe5xQSnJNhp17dTuwHHJyT6UoNtHROMYnJfFb4R6B8RbJ42hEEqrjz4mwc/UVjWhfbcznTvqtz5b+Kn7K/xQ8OpJL4c8R3EiyElYd27P1z7VwVKdSD0ZknJK1SKPBfG2nftFeBo5FeHz2jGUQwHAH17GslPFQ21Omk6Tdle5434m+PvxOsp2t/Emq31oWBMnkwZC/jWMsTWjK8z1vcSSe5lwftBtaahbSwfFHVIJ42Db1vRFtPUEn09qqGOmtbmroa7Xueky/tc6T4xtpLTWdfi1O5sLfM93Bcg7gByzkcV0/wBoOUVpuJ4enZq55t8W9S8K+I7qWOS7QmPaWhkmXbGzYwM+veuKrmEVKxgsts3Jni3i7xX8N/AymXVL2KWXABt4W3FWI/i9ulZ80pu7NJxpUVdLU8v8bfEmXxPfC5uWD2K/8e4iAKRj3WuarTmzL2j6nL3+twMm2xVOTgmLgEV24SlazZLbaucZ4jM95evJOc46Zryc1q3xHKj1MDSU4XMuSwUKSSPyrgpt7nrOEYxsMOnKsWNoB9aKlRnI4JtmdcWQDYHrU+1cUYOlzGyIFEakdaptuoelKym0y5YKSQv5GqlFJXM4wvIvMwVQSPrWd4pilaDuWtNCseDkE0ptNHRTXMrs0EGG6Vhy3M56MnjBGD1FP2asdMV7tyRuBkj061UEkyHoS2yCRsDv6UTbSsNNJHpnwI8cWXg7xXo+lvoFrIt9frDdSW5nhnnViMRyTQxSSpHnGREAxHFenluLrK1OML/mcWNklRer26H60fsBaH+094x0K8+IXxvu4/Bnhqy2x+HPCOlKbeNUPd8jfIzZ5J59SSTX2OBhiGm6rsux8PjvefLDXzZ95fDmyv73Q0leeQRuv3p2yW/D0rsk4vSJ5riqesi3qfw607VZjNJqUiMGDDYgAB9aj6u5bMJYvlVkg+I1ppV/4Sk0TW5Ml48Rz7ejDofatG/ZLUeGlLnclsfM3iiGXQLt7Ka1DuIyiSDJEi56U5O8DpW90YWm3E+m3e+OfZcyj55yThF7YrjaSd0a8kqjVzq/hR8Tta8Iay+rvqaw2ifKySsT9o+ua1p1Ixd2aPDQqrU1vjrongf416XJqumxCO8eHdcWhQFsY4Ycc061SNuVIzlhnCNkrn51/tSfsmWqX01/Y6UssY+aaMRj5l3cjjvXmVLRHSg7aq58v+Mv2aLOfxQ0dpbxpYW8fmoZosMgb1PrXK6q2NfZTb0MST4CXF9rqvBpkg+VRGqRYyR3/SqdVRg7s7aWGlUlax6/4B/Z18P+DbU+JfiJcJaxJ86RsgE0ueRtXvz36V42KxSndJnu4fL4UkpyRd8T/Ejwrc3KoNyQxriCGNRhFH9a81VJVND0qdVU9EjHHxW8MxjybPSrxlz8xENWqcrbm/tEMk+Knh5n2TloBnjzVwB+NVGnO9jRVI23K958RNBjtpb6S4URopLMDw1d1GjOTRnKtCO7POLbV7nxZr0/ia+BXzWAhjP8CA8V6+HgqZ5cZOrV5uh0OkX5b7R5bAKF2klulejOXLA64x7HkXxH1G7i1aaG7tirhyVnRd6uPpXzWLm029zqhDlszjW16W1mN08Y3AHa2MfpXnSfPK5rCooMw/iJeXXxCEcV5ysYGPwohipYe9nuedjMJHGzTZyk/gu5toswXDAj0NbLHOeljCeE9hH3TW8EaLeyyeXJOTg4OTXPXlF6tEYdVZSs2dsvg98gGXHHrXBKrFbI9SGHne4S+BpGXPn4rL293sdLpXRmy+D72CUulyTjoK6PrF42OeeGlT1RZs3utPfbOeM96zdJT1TIjWmtGa0MqzxYJyPap5LG8Jq5Q1CxaB/OhPXuKcddGKtTuuaJNY36uoRmGapU9bmdGpJbmjbleOM+lKSR0crlqfSP/BPfw1oN74w1Xxro6w6j490q1YeBNIupPJtrW78t3OpzyupjCW6rlUcjdIy+mK+s4XwNOdKriotOpHSKb7/a+QqmBdenzuaUVv3fkl5n2H/wTo0HR/BfxW8Q6hffFtfGHim53Tavd2582CB3G5x5xx5jFs8jqDX6LwZleGpyqylW56stZf8ADnbGSrUXSUbRsvzPoDX/AAd4o8UXtxfxfIs0+BfTgr5K9yuBwOvJ7mv1vD4qjg0oxld9tD35YnC0KEYdUtl1LvhPV/DU+qzeCNEjmMcER+03UZGLo45wSefc0q9PEKH1ie76djzsRKvGHtpfLyOb8T6B4d06++03VoUS1mEwmLLtt/fp8zflivTo1qlSmkuv4mvNVlBO+5pfBrXNO/aFsdc8TaHYacul6VMtqur3ESm4u7heCc87VX+7xk9RXkZlP+ycVTpXblJXstkebj50cvcISu5S6LZI5H42eGvhpFr1toqiTXvE19GYtJ0KymJXZnmaXHG7pz0GOK6sJPE14OpUXLTju3+hMKNXE0W5x5YLqzxH4w/sp/EPwei/2T8a77RtUkZAbCzKy29vnsd4Jz68jgU6eHo46LqUZNHi1MuhXd6ex8xfErW/23PBurS+F/DXizSPFpVGWSSK0ZGBwTyykgV59XL8zhJey944KuBnQVo6nzl8Rv2j/wBqjR7r7d4m8AaVK64S5eO4bc4U9NxXnk8D3rz6lbG0Ye/BGMVilLmjG7PH/En7aPxvgkkl1vwfHareT8CKQiW4YDgdjt9/SvKxOYYulFe4d31vE0oa09WZcv7YfiDXmbUvHo/syONtxggUuwQLhF5YEsxyT2AxXHTzWc9KqsP67Tp0+at7pyOofGbxFqAgfSfEF6iRYkLzb0XLLl844wc498DiufF1sG56tdxVMYqkP3bdjL1L46azDJd6bdajOt2giISTdlSqgDIPbFeVHH4OpL91qjyP7SarOC3XQh0n9oTUEjNrf2C3IIAVXj3Z+mf5V1wxFCvE9WnnKaSaHXPx8kkhEOlaWimPkJ5YXaR7Vyv2d7RWh59XN71W4LU53xB8X/GusqVS4aONydwU/MBXdhpRjryhXzPE1KWisZelPGf9Ku41kaQ8yvyc+9XUquRw0ubEz95G27SXRgeYoCpzHz1H1FXQjeR7MYxppHqltai88E29xNuPkTqWxkgjPpXZVqRp3d9js0qQPY/hxPZ3/heC+06WOS3xtV1Pzhh1DDtX5NxvWp1ZU+Vnbh3FrQ2yhLfL+dfn91E6HPoTRodvX6g1LlzArWuOVvX8DQ1ZFuSsJnc2MVCkjNTfMK/yrk8VpdjqbkaDLbgOQKpN21CCZYDtsOScYqbKTNZbGTYf8hQnuGFdELRjZHDTbdbU2Z3CtjPH1rKSV7ndU+EryThnCk8HvTWhzwbvoBIxjcePeplI0krK41zgHtx0p30KlrAz5JR5vXv0NOLuc0bpjZ22jOO1NtGlX4SETqcAeg5zQ4pmNNu5FcjdkZ/HPWnTsmXV+EqpaXN1dJbWcDSyyMFjjVcliegrSS5lY89zaloer/Cr4Ba7b+O7HTvihdz6FBI6M0LTeW0gODjg08PTTrpSY8RTnGk31P2S/ZT8N+F/h78KLR/AUE08oiAiXzcgnHViDz+NfpODhGlh0kj4rFycp+8fVXgP7fJ4Ct5dS2/aXGZdhzg+laSg47s46MZKprsX4p/IsG2tiQthmP06UlLlOyUE6g+CXAIlUKiruOf4j61XxImaKFwbS/8AM1C9iUomVhiK4z71laz7mUotNI8n+IvgrRdf1FtKj0+ExRwl5ZmBOe+PehyTeiNINQjex83/ABS/Zz8J3sTy32hI1zcKfslqkYAYD+I+g+tcdWkqj1RTnKbuj5E/aR/ZZ8PaTNBJFZh5Lw4htIRksO59cCuWWFUeh1Uq85NI+cfFnwAtWjuLrw2Johbz+TcqhKkP74qYQgjaT0uefa54b8QadBJbyavchi21/wB6xO4HI3c++ayrUIN3COIfLa5yV/pV1eTul7IzTp1aRs71pxcUjOpKUmRWltLaMy25/dMcOhP3TWcveYQi3uQ7QrFVG35u1dVFcqLm0tEc9qDPLcuc/wAVfOY93xLZ72BcY0UVdp3EHjHauZtRR01JXY2ZmEZIFZJ8z1CEboyLonBy3PrVNXdjCrJQ1NnBCjmt9Oc0xDaqNFmxcryOM4pVfhNackWpo5ioUHIrlTSFOKeqLulr5SAMaGnKWhdGa2Lxk2vn+dVsya2jJbebJ5ok7RN4P3SQyEkg+vWpgnuZ6tk8JdO9U5RtqP2dz0n9nLVvBmj+L49X8ZePfG+jtHcIunWXgLSVmvdQl6+X5zsqwDA+98x5+7xXq5VUw1NOc216HJi6cuSyjc/T39hL4gav4xia4k1e6hstPiA0+y1DWVvWslYg5kf/AJb3ZJy5PC5wAACK+rwVf65L3W9D4/Ma8cNC0lY/Qz4LappWlxroN/r0X225XKW812HnkIHJI7fTFdseSFSze54teVSpC+rR38uUOK6lK0jkgk1qUtd0O18RWh0+4bYCPvYzipqwdSOh0UaipM8Y+Lf7OHja8t5bzw7qscyYyFztI/SuGUp0t0dtGtSk9T558YaN8V/Az+VqOhQXAjfKnztpb6+tc7qTknY74yptJHnuq/GXWIZbiHxfo1zp0UQYxyPEzgnoMbeBj34rlqVKi3OuEIdGaPgj4+aWyRXun6+0VzBEPKj89WaaQMCXfPTjt0p+0vG99TePLN8rWhP4y8Y6Z4tmZtVQsJrvfMRwo46AjrXBVxElKxSw1No8i8T+GfAghjkNo7vK8gnBAChAcIo/OvPrY5paI6aWDg3qcdr+saZ4feYaDo8EO9/3UtwoJVWG0Afqfqa43XqTv2PRo4eEXscD40S/8WXUk2pas7zK2YVJ3gqM8H0rBpp3Ouo7wscvJ4ctbWHzbqIAx8ATOB3/AJU6d29CYQcVdHJ+K/H/AIF8MMY7/X4HdVP7mA7uffArsjTk9zCWJhGVmcFrXxXXW1ddJtAIGOFlmHH5V0Rpaoj2/MmkZcUmoahIqz38jQqQWt84T64716MLJWRhN8zO30CLy4cL2HY9q76a5TppuPLoaPh9yljdTMhbO7MYbBIq6tROFjppq8tDy3x9fR3mpSCyuCDzkAAMPqD1r5vEtc53taWsefa7KsUohll+bdgbhzXA+W5w1XyVLMhgxEuSa5KiudVNXV2MulBjYjgEcU4e6Y4jZoPBTkXzjPGfSt6qi4XZhg4xc2egRozAPnjAyMV5kknseyrJFnau3aR+NY21I5kVpbUM/PHcVtFpIJO6sZ2p6R9oTIHI74raNTkMXRjJXMWb7bpcuBkr9KG1J3RyShOm7svWOox3ibJGByO9JSdzeNaLVitqFlJay/aIM7T6VspqS1ZnUhy+8i9pGoxSgRyt83ua55xbdyoYi7se+fsm/sifE/8AaFvLzxraeJU8G+CtGjI17xrqybbMDjMCcgyyEZwi55xnANfZcKcLTzepKtUqSpxitLJNSd0mpO6skru6vqkmrO6iU6jr2grvt1PuD9hLV/2ZvDvxtg+CPwOF9eTWOntcX2sXsrLJfhcfvCq/Kinj5SemK/XsqjlOC/2XCu87atf5n0kKapYOdRJKTVmfTXxY1/V30+40KK7aCC5lAkaHBYL/ACFfcZXhaPtI1ZK7ReEo0IRVVxvJI4/9ne70rxF4m8R3cUjXFhpEC2jsQVQsclkT168txkk1257FuhGlHRz/AK3M8yrKNKCjfml+Bwv7WXizxDNpr+GfCkJFzq7eRpdiC3zuc4yAP17CvUyijSpYdzqSV0nq/Tb5nbgqPJRU6mpc8C+EtQ+DPw0s/g94bvorGOOJ73xFfRhjHDI+Wcgkku2TtVeSc5PQ1596dbEe3mrz2RNX2FWo67jdvRI6X4V6d4L+DdjqXju8Rr7xJqroReXyBpI4xnZGD/BjrjtzU46licfUjSWkFvY4MYsXj0qd7QXQ8A8e+MPiD+1z+0SnwC+GuqPbW0JNz4t18crY2xJzgngSP0Ge3Ndsp0cowqTWvREypLB0vdex1Xxs8BfCD4CeBLv7Vdw6fpCQi3iuZ3/f3LkhWYZI3O5PLEgKKqhUniKXM/n5GdWjGdLmnufLS/Dj4V/tReOfFk/gSP7R4S8BW0FvqWqpbMy3V/Lt3KvBBEYbk9Op6AmvHr05Ymsk9lf8NTx4VaCs3F72tZt726dO72S1eiufG8PwMj+M/wAUfEXiqOxkbRrQ3cGmOqFUWG3Us7A+pwff0rkjlf1mpKbV10PRjgqlaq520XRniHiH9nC/+IHxt0bwFaCMrczS32oOpCpFaRAs7kngfIMcnqa+D4unQyXB/Wqj1Wy7voj5XO4wnVjCS6i694F8EeNviJLd6JeRP4L8JaAda8VzQzk5lWZ40tMj+J2EKDqcPntX5tVq5lh8HGpWfNVrv3UndpXa1XRqzdn0afU58HGli6jTuo01d+bWyPJxpF94mmu/HF5tN5qF88pwvAJ+YIPbHA+lfa5bltOlgopbhg8MqsJYmS96TJZNAsrxBLGoCzDBC8FH9a744d01cqNPmlsY95p88d0YpeLpDjfj/WL/AIiuazlN9zF0IczdveRLZrbOfs80YDnknPAPr9K6ISnsEZe2lyWsWY4jbsZ47fIBCyKB0PqK1VKTd2dLVPDr3UamnpIs6H5SC3+r7rz+ldVNxVkY+1lJns/hGNJfCAMhAiSRDkckfNzxWGOX7id9rHsUnF0bI9k0y3trXT4orWONUZAwMSAB8jhuK/A8fOU68uboz1YRUaV0TKQWyOPwrznqQtWShtgyR+tJuxrK0UERDnAxwetS5Noz1kKoHmYAoirmkIai3H3cdPrWkSavxDLYBmJAwcdat7GkWrE4QGNiDxjrWaepcl7pjWTY1c/7/WuuK908+m0qpszk7ySc9sVzydtD0J6xKYT9+Sx4NCbascysmWHO1Bx+VZ8rRbdyJ1JGDx70SZp9kzpU2z9OB0NaR1Rzu0WFyjNHwcHHWp2dipNSjqVIVw/zevFU23sY/AxZsEE+lVFuJcrSiVTJLFOskE7RupyroSCD9RWim73OOEffujvfgxceJ9X8fabGjx6hK9ygUalIZE6jqM104SMp11YyxVaKjeZ+1HwM+y/D/wCGumweIdX0+KeaJDb29muFLEdNo6/Qmv0PDVPZ0UpM+Nr04VZ8/Z33/q59b+AhcyeDLJ5SuWjyx2bRyO4pqTmrnPVnH2mhasra3C3G5SwR87W6dO1SnbctzloyKJ2k4m5VvmeNew+vai9ndmskpLQrazcrHA11LBhCpjiUHpnvzTctDNRclY4vV7iyv9WWzECfZrGHfcyBvvsegNZxknKwnCUI33ueceKp7KdrnWntYlnkb7PACM7Yx94/lxVOS3HaySPn3WPBmn+JdY1bxzqVvEy2ytBp8QiwsSgYB/8A1VzSnKpdlfBFKJ4BD8KWtD4ga/4N2xuEOzjcO31xWNODu7lOpOx4j8XPhMhv7u1tLfcWYyJ8mGBAGR/OipD3QifPvjHQIJnnMQMc8DbZFI5UjviuHkb2OuCTZzUdq5+Z1UZ4MgHDH3rWNNJainU7GIY2W8eJlwFfqKvnsrIVP3nqc9eMBcSE/wDPQivmsQ+avK57uGVoJFYtknjB+tctRaHU9GQzk7MZ5qYm0DIu+MkDvWietzhxWzN6VTsBHpxV3bmdWJTVRsfZuwbGBk96c03AKDRpKwkQDpgVyW5Xqayukyxa/IR1zmtbqxFBXkXHIIz696lF1txLdyW2mipG8TSm1YtxIJACKmOkSpRitS3bW89zdxWNpA0s08ixxRIMlmJwAPqalU51JqMepi6krXPXdE/ZJ+N2k+OdC8OePvAfjexjku1k/sbQ9P3zXcjD5MfMAvGfm7CvawmX4ulPllTbXc560nWotRZ+kX7D3wI174T2Qi8d31n4PjNuqxWU1+jXsaEkiOK23sVfH3pW5b2AAH01BU6KTvY+YxeFqVIRvrufen7MVx8OYbuSx8I2KT3IjYz35YzSf9tJSOWPoOB05rqpWqT5or5ng14uEPf0ev5nrkmfO9a7m7HBHW9hkrlTuYgVtBrluy2mkPktUvLcrdOVjPVQcZHvWFSn7VjUnB6bnB+OPhtoXioSRaJpMbuAd1xJ90H+tcNSlraJ2RlOK98+dPjB8EIHmuIZbeK+kVCWiVQEA9yOgrknDl1Z34ecj5q+I/7PvhmS8e+i0a5tTFGS7QsI4wfYjk/nXNUlC1kjqlUlN6M8A+MV18VfhpZ28nh3xBeTT31x5el6bOwczP3YjsoHP4VwVfdkXHETR5b4y/am+L+jmXRb7QLW4nsyDJINwGTkn9QK5KkU4nVTxE1HzPN/Ef7VXxhnt2mGnWaSC33AeWzHIOSOT1rlhS97c9D6zVjC5zOrfGX4v+IbIX8HiyaKO5XdCIFCDI/hNXOmpoiFapVerOb1DUvE/iG3W+uvEl4Sx4d7pv3b90bnoexq6SjGNjrdSUY6MrLfaxFIIdYcy7RtaVkG9D6N6j3rWLsjlUHLVmrZ2ciuGikAdx8uR8knscdDVxm2W24Rsjf0ZyX+zSRHKkbkYfMn+Irtp1OVWZMLykd/4VRJYRGpywQ4I7iu+nUbR3wp2RN4fuGiguCRIhDMBKBnn3HpU1al46HbTUYux5h8SDaXOoy+ZZp5iA7trAFvevAxLtK7OpXkjyjXoJDqCyeZuTJ2t6VyU5x18zy69O1dMtwuDGNp6DrXJKLuz0VJco2+Yrb468VnGPMzKajIXwNHJ9tkcevGa2rRfKc1Jckz0OFsRjjnbzxXDNWPRu3ElQEnk/jWW4opyYMpGTtFaWsaSjYjQgsdw4+lOWo1oVNSsIbhSGQdOmKSbixSipKzOb1DTbiwcz24JAOSK6o8k15nnVaE6bvEfY6zHcx+TcD25ocHHYiFa+jEkgaKQT25yPak530Z0KmovmR6T4R+OXxWuPDWjfDK98a3s3h3RLiaaw0SeU/ZomlOZDt6ZJ7nkV7+W8T5tgKUaFKfubNW3R34fFOnNqKWvl+p97f8EVfCM2oat42+OR8KWum+ENNg+yf8JBdIFL3Yb95EGbBYAEZ7ZIFfoHCud5diMTKjGny1NDkxGZ05YmNCF3Un0/4B9geObW01iSW3sCNsytIzbMZGPve3Ffs2WQjh7yS1k7vXrZL9Omh9Tg/aKmnU6HKeDXtNAt5PBngi2Kx83F/JtOZJCfujnp616eLbqTVSr8vQjE04c/tKnyOd8Ri4s7qXxM7pd6nKHj02QLuW1VeGcY6ntn2rWnBTtHZDUqtamoR+E5nwbqOo654avNU1qSe6jvLl0SLeVKW6HGT6NI3HHRQea3qQpe15Y9F0/wCAdEKXs56JqxzP7RXxYk8MaO1/ZTI+GaVYIzg3UjZijjT/AGd7dT2Q/hvSjONNyW/X+u5hib0oWXUv/wDBOjwzoug/Cjxh471y9t7iC6vJJNT1QA41ObJB2EgExADYvqOcZNeHm2GliJ0qUoXdTdPt5o56icqdOlFXm/wR418SJR+3L8Ydf8beILtz8O/hsC9xCG2QXl4AQkC44IBxn3NfQ+yjgadPDLXm3NKjVJRpLVo4f4r+PtQ+Df7L9t8LvhEzaa/xB1I/2vqdtHlYLd5QjSDPZQTzxzivHzBQc0qa66WMI4ejGTqTVn0RL8c/hd4c+APwS8LeAvBkhuF1qwaaa7jwcQLAd67gOrN8x9S3oMDqowdXDzlFWUFb1ZrjYuWH5krWPlf9nnwvZ/FMfHDUNNeJtd034Zr/AMI9YzXEUC25edPNcyS/KgUKAc46jmv528aMfi8Ljcmw0k1SqVU5dk+3zstfI+JzClKdTRNng37HHw1uPiP8BPGPw6s7MMbi5XUtXvJDgzGAN5cYbuoJZsdyR6V7WQZPHM8e8VNX5VaK6a9TbIsJRqZRUXVvX5dDh7rwn/Z3hjWLezUmTT5xPFx9wo5BGPpxX1VLBxpUJw6oypKSpSh0RSg8NLqOjya9pik27hWlQZ/dlsH8vQ+2KxVP2qOyOGU6anE57xbpEt/am/to9txbnEh3fxdj+PSuSrhFD3up52LpRUeZbmTaQQ6xpy6nCdkittlQdY27/ga53NfZ3R5ixKrx5oqzW5raJb7ioXJnAKyK/IZf/rdvWh4iVjpoN1H7w6CFEvhb5IdXxu9OehopyfNcxmv3tj3D4cWl1H4NnntbaIzRFZIUnAKmRWyNwP8ACT1rkzfERpYWTPbhScqTPV9HeVNHtorlVEqwASqgwqt3AHYA9B6V+H5nOMsXJx2Z6FP3aCiyaB90nTp1zXmsUdyeQfusH0pSZ0TV4hAgJz196UVciNooczEPg9KuNkVB3ZHdzbY+SOBQpJMira4tlKrgMv48Url0k2ixIQsTtu4xS5rM3a90w9OfzNWOBkb66oytA8uK/fmzJ95ua55yuehJ2RUXe0/PrTi7Iwskyww2pj880m2xppsiYtszUyZcnaOhmyNI8hGO/FaQaSOdx1uOkb93g1nL4h3VykVYScnvW0Niamw9sc1Mr3Jv7lioWUyZzzWsYO2pz+/sjs/g74g8WaN4qtpfCtiZ5PNUMDamRRk98CuihL2U00zmr0VUi+Y/XT9jv4U+M/FGm2Pizxp4rtUlSFXjtim4RjHUK3Q19tgYOcVKTufHY1yb5UtD9APCVv5XhW0jRzJsjwGbjNejKcbaHDGLvqWIPKZmHQytzUR7nVO8V6FHUWgRzED5KAHPHL47VNSRvRT5bszNflt4bFr+5R1xH+6j68+tSn7o4+9Oy2OP8QrLp+iF0QwJdDBJABcnofwpNqK8wuvaaO55/wCP7C006W38M21x5rQW7STSIudgbqSfWlJSclFGbu5czPMUm0S5sb7QhfvHCjKJfNXBILfepx5YRZdTlT0PMfH/AIelXTba38O2wkuYdQkE0XQtEGycf8B70lZmdm5Hlvxs8FfYPF9tqvlRwwXNuWRVOQrf7Xp0qZRu7jipcp8nftGfD4WWvXHifw2oVpCVu7QdMg/yxzWM4a+6PmadjyWaxje0kn8raCvKYxzXPOEky5NI4w7vPdn6hj1qFsdFK1kcpLJ5kj5OMua+dxLSrs96iuSKIOQxBP0rnnqjqtciuGwhI61nHc2ijHu5epJ71o1ocOJtZnSyqWiyB/DWispHfiI3bG28gBHIyKpvQ5Ke9kX7U84B69656ljs5eaOpcjG2Tp3796iLFTXLItM4WLJ9OaHKz0HVQy1cSOAvbnNVJrlCmu5fgz1zg4rJS0NnFNkz7JBskAbI6EVUW73QrJGx4Ij1DS9UXXdFjENysscCam12wa2L5HyLnLNjOAK6qMpqDfM90txScY0nJR2Ptb/AIJ7/DHwx4q8fPrrahcTIZFtL26mu3d5ZFbIjcsx3SnO4wx4xkbm4xXuZbThCvzTk3fufLZniOVJJux+y/wJhsfh14VtdPuXttLsSOGvlSO4nY9PlXAUDoOp+pyT9ZKrSp/Cl8j42NCq48rlKbu9Xa+r20SWmy0vZatu7PUWeOVRJCcg8hh3FaRfNqQoOEmmMfyIv3s54Xpmm2r3ZpFORnXl5LrLmzjk8q3X/WN3Yeg9KwdVzlZbGsaSpLm3Zg6/4kvdVuB4O8FxbQFxc3e35Il+vrSb9p7sTeFDlXtKjOa+IHhXSdA0eOzFqZ5rghLa3ViZLuU929FHWuatSUbJBGq3fseW/Gz4GweGdFjvdfu0kupoy8qL9xB/dA/SonQjTj725th63OtD5fufgoviM6x8XNds8okf2TQYmTHkrzucccFv8K4J024vs327ee/y/wCAd0oRclZnyjrnwli1u61jUp7bCtI8iEDJIEgUZ/EGuL2cYpnY4xjFI831r4RQxXl/o13blZEfz7VynDI1c/sbApOWh5te+CP+EN1i48O6pH5dleSbrKd1z5cv90ntzWU1yG1FuMjE8S6IfC9w08kH+jXgCXcf91+zD2Nc8lK+h3pOSuzNSF5IHguFR5oBiCX/AJ7R+h9xW1KE2veLm4qGhNZw+RCbiCykkgJG9c5MZ9/Qe9dMYqK0OfS2p0WgvDdHJyJE4DMcOvsfUVrB3kXTlY7Xwt5izImQGJ6g8H2r0aXwndF3RWtZriC8vkt5WiZZSybm4B9ff6VniLLY7aKa3PPviHImo6m41bSwjKMtNAMY9G+leFVqc87NG0Xd6nluuzJa3RUjcN2DnvXPFL2iSVzhxTadxum6hFcriMjg8isqkXHc3oSUojdZvhDEVYY470qcLy0OetUVKRpfD6NpN0xPWlVbjGz3OijFNczO/tsAD6V59TU6201oWvLXHTj1qIlwSRHMQAVA4x2olK4VHYrofm3Y70k2ODuhtzyNrcVpZGc20UriFHQqVHTvSjeMrgvejZnOazoTqxntSR64ruVWL+I46lBR95FfTNYFs/2W+cL7vwKwlDmldbGEcQ78rPcPhb+znqtn4Lt/2jvjda3ehfDuO4Q2LNAy3viaUMMWtkmMhGOFe6YCKMHqzYQ+/luS4irSliZxtCGr01ZdHnxeJeFw7vNrfpH1Z95+DNN8T67deFPgDoXwFh+G+i+N/EB8a+M/DuiXrvb2ljAqCxsXcAKZJWXz5AAMhl4GcV9VwNkTr8STx1ROKdpW2W2it0/A+gyDL6WDqutOp7R0YtKTt8T3a7+p9G+P9cstMsLjU7mOWKKNdkiod7MQOEAAr+hcKlNpR3Pew1Kc5csXucJoDeMrzw1dMwfTX1CNoxsTH2O1JyTuHLSH8+fSvRqzpKrG+rRpVwlNVbt81jm/iD4j0PwZ4JvNbuVEawWIit1d/nMQzxn1PU/U1pJyaOGrVknyrY4bwT4u1i5/ZzHjHUJ5li1bzJrt5piJJQAyxQxkcxRhTjj0+mJpUISrt/dbTfd+txUufm5222vu/wCCeIwal4t+OWm+J/i14jVNN0HRCmlae1sxbyYyG824bHIcgOF6YBrulFRqLmdk0Y05TrYl83R9T2D4nfEi8+Ff7E+jeFfAFsbXUNdtA9laqMNFHLhIARzg4O4nrk+wFZ4Kn9ZxrrX0joj0KdKUKsqvyOY/aD8PD9m/9jHwh+zJ4GUvrXijyptZuScyTz3DgFmPr8zNk9K3y6jXxuOnUjq78sf13PKpzqTrTqS2Rw/7RvhnRrj4e+Afh/awJ/aN/IplKNuc2dvIxUtjpGCpYjjcXHYVFGjTqVJxk/hdyqkMTOVnflOu+EHizw9+1X8MJfCV9NDDqHw/SSy1W3nwZri3MLCKZWB+Undk9eeOK46+IrYbF+zptcrfvKzu+1ndW+5/qd0IUJUJRlqz5e/Z8+H3wfsf2vfE/wAL/F2va5pug+I/BF7b694i0i4iUDT1XMkKwSIQ0jnADlgF3EdSDX4F49xxiy7C4rDwUpwnG0Zd27J6bW369ND4rN8JWlVTjK0Nb2Wrs+/bdPTro0ZX/BMXwD4Xv734ntpXhe5j8NadY6hFZaZeXYeXZHG2P3oUB2J+YcYOcCvueCKOLw2SxqV3+8bV7Lv5f13KyrmWXJRTSvoeA6TaaN8QfFWrXWl25gsdS1W6tTFKuCm9fl4/3h0969qveUpu250YelG0mtbnJfDzSbvwpeXVu1os8dncPDeWhHE8J5PHtyR6EV5WHjaXkgpw5YOJz/iyPQ7DxvJ4dETQidCAGY4lhPKsD6rnpUYitT9vyM8qvVpOuqOz/M4HU9FufC3ix/KUCGZisqkfLkdD+NeFiaTpYi62Z87Uws8PjXJbSNjSLZIXDEbRjKjGeP4l96FTdrs93DUbIa9nFFrzqjBELjtkEf8A1qdKHNM5akLVz3/4dabeS+BJXsITLcRJ5nkjgzIOoU+uOleHxK3DCNJ7nuRX+znbaDqNprujQ6pp8u6Nk2sW6hhwQ3oRX41jY8tQnDVfawt2LED+XNjj6VyJXN07S1LkzZjDDpinKJ2aSiFsSRyPpWbTiZS0ERHklwc9fSlewU20xL+2k8vd/SkpK5clzdA0u1K8MMmnZsm8ouxeuoR9nckfw1L0Zsr2Of0hV/tYj/arsirwOCaftdDelCgHAx71zzjZnXb3blAKRKBz161rFKxloySViy8+lJ2Q4qzI5TtjIOKxk9Rt3KOTuL7a0gu5nPREEsuAR/KqktDLXcg3BjnHPpTgrI1l8JBLK5cqp49a1SVrnPdkRQls5wPepcmxNxgd98BNW18+NbTRfDevanaSXNwokNjdCJHGejGunC0XVqpXOGrU0Z+zv7J1r4y0fwBbi+trpHaFVW6ecSM34kdK/QsJQ9nRSZ81iVBM+zPBTXMvgy0acgt5Qy3U1ckoqxx1FGNVWLdrLHvVlGPmxkmpg7mdROzKviCRLd1umt94RTgleM/WlUjc2wycoNGPqiqY47/U1Vj/AAoGxx61lzWVmVZ7I43VFuPEeuR6t4mnEVhZEtBGGxzz1xWfNd++KSVOFoq7Z5/Y31pr2u6t4omhRrS2TyLGAvkSdRn1P1PpU4eo5VHNjp4b2cIwXRdzznxlBay3FzZ2tuA91bhpwi/NGd3Bz6YrWclLQUo2sc54T8NldfvL3xjeLtRm+zSngEAYrOleN7lSjZHB/G+08N+JNfs9Os5II4hGImZGBLdeGA6deDVynd2RldnyT+0B4UOn67c6NLcu11GGEZBGWQcj2OPQ0Qd2VBa33PA/Eek3NhbTNdRYV+pUYGfWs6sbsc9UeYzALNM3puOc5rmlZROihukcXIX+dh/ePJr5StK9dn0tKPuIYmRyTyaxm2zXm1sR3eCuc96UGawMW/BDZNapnn4rW51dt+/hABHTilPSZ6dRxlNplU28sdxuJOM9MVpfmic8oOnqjUsCFQHNYODHGrJlkOWYHP0qnCy0OiNlqWpiDCV5wetYJ+8VuJZJg56elW1damc/dehdjkIIx1pKKTKjO6sSpxyDVt2Whd1FXOq+EFv4B1Px9pVh431qezQ38T+bHC0iJGuWcsqAs5IG1UA5LdRirwdP2tbWVvxOWrUhKm43aZ+mn/BOWx8D+LfiWvxH+G3guziGnxfYrSXVblN1gAcDybSMlLd2xlnkZ5nIJIUcV9tg6Srq9lY8DF04ezvN6n6S/Drws8mqx6z4tuhNOrH5NQcHYM8MBnAJ6gdh+Ir1JQhFJHgJzdC8otSTf52T07rXv3s9D1ZJEdd8LKyEfKV5FbxcXG6PKbanqUtUu4S4hdWJPXArKo0dVGEmrmVeQ6rqgNpbKtrbfxyk/MwrmUpX93Q0hyQlrqyr4WdJdRlh09Fj02wBMkueZ5P/AK1VRqXm0tka4lOMUn8T/AyfCR/4T/4q3fiK6jP2fQ4/Kt1JypkYdfqB/OtIS9rU5l0MsTH2OGUe55/+1JqF1resxeFbeRRJeyrGoXnavp9TXFXl7ary3t/W3zLw9PlpKRwfx50rTPC3w/n8N2mES0tfmTGBuC8/596mUVCmzppuTfkfI3gXwAniTwfqutWkfmRCKR328gZk4H51yU4RnDmO2pJpWPNPiN4bguTZaxa2uPLVQ8qJ99CdpB+hrnq2S0Lg9dDjfiT8KdL8S6Rf6XqZ25g2q4UZjfqj/wD1655U4zjqdClZXR4RpECatb3ngLxgHe90xvKZwoZtuflkxjlT39K50nTfKdEK03omcze+FoNGmfR9TDKkhP2W57A+me1bJycSk3a7I7KGexLCVwssShWkCbgy/wC2O49xWcXJPUdlYv2mm29wwv4JER8g7ojlc+h9q6Ias0gjsPCyl5kUoNysN4HfnrXp0tYnfBNMqSyXC6jeGzu1ikZzhJlASUenNcmKcYt3PSimo6nB+OJrN3m+02LQzKv8DkxZ9Rgd68KvVSbaJcopXPL9cso74iMRgehziuONWXPchxdXRlTTNPisDkg7h3NXWcqiTuZQg6UrGJ4yvpvtAij4+bFaYd21OTFQfNqd38ObYR6WryAZK8GuKrKUqjud9GcVSsdlaElVJ64rlqPU6FexdjUBOT1FS9jW9iJzuOAOe1JJtjcbogbCP07+laqKRnB2ZDdMTkE/gKbuVUtcqsx6n14oSHoo6Fe6iaRSQOvU4q1YyknI679m7xR+z98NPiFP8Qvj18Hr3x2umWRl8OeGUu1gsLrUAw2G+b77QL94onLHg8Zr08urYbD1earG9tkctXCKtScac+SXe19PLzOtn/be+PHif423vx08XXOj6tq19ZCyh0zVNIjm0ywtlIMMNvat+7jjiKqUUDAKgnJJz6dLOsTSxUq0Hq1ZLojqyuf9lU5U4Run33v3utbn0d/wTM+IvxY+NP7WOr/ED4j+NdQ1y6GkS3OpXl9MzIjsVUFR91eBgKBgAADpiv0Hw2r4vF43EyqO6sr+tz0sNi6kaTpR0hbZbH2N460y18T+JbWCA5hjmMzgF1CydAzkDBYDGFNftWFlRwilaNnLfTfZX/TvZdke7QnUjR5r6mV8QtWvbOD/AIRmS8aO2OQR5hSRlHLOxGME9AOM5rpp0KOJjLzXRtfc1qvVO5UJ2fM92fNX7bXjWXWYrDwX4Xs1NzrNzb6bbWLzYLea6q33cHhSSQOg/Gt5Xo0uR6tnHUppNwV7s6D9qvUtL8AfCyx+Gnh6A2MOmWiWZwVLMdi7mUHPOcgcZyPxr0ctwtVUeZs9PB4epTw2rvc+e/jf4o1X4d/BXTvgD4Ms7y2vPFfjJYdfWefdIITsZ0bgZO3cCSODms8V7T3E9ZPRaaeZxYh8knKDbk9nufQfxQn8M3t3Z6veafLFaWFtAwtpJeF2xpHBCpOAvOWOO5A70qU5YKg1LVpPbqzqoRrToOE5XZW/au05PG3x7+1zxg2nhbw7FcxxhcxwkRqF9sgv+ZFcuDxMqWCT2u3+JzUKTw2AXeTZ4r438br4p+I/iL4laZcJLp+g2DeHdBtoY8jeIgJJOmDjceemV+lduFwqlKMlO/M7u19O1yoVXG8bdNzifhlqniP4G/trLF4dv47jTNf8LJaXlldr8kz+WTgleAcknvRioQqVtev6HmR9oscnJe6+w/4GXPhTXtX+LH7R3jSztNKsPh14ZvFv4pHF1b6kzrJGLW4iI3ASMUA2FOVXJIyp/AvGPMeapg8vjFSnUkrau6tJO/rb8PPVeNmuIw9aSg5SjyXelveTTVndPS7T92zulra6dX/gj14wuPiP8O/GfhjVbGOC91HTJ7iEW642RgZCIO6qoCgdgMV+q5FJvLKbm7tWWuvSy+4WWv2+CjzX0aPFfDXw+t28S+INImhSC+07WGa4UptzMJSyPjsHU49MkVriadqsonrqhCldWOb8e+FtJ0v4ga3NbI0FpdSpLHI+VMTEcgn+HqTn2rz5UIQi2efVSU3JHkf7R3hA2+k22sW7L9v0iQL8p+/FwcqR95ST26ZweleDmmHU4KrB6o+dzqjJ041orWLv8jiPFs0Gr+E7HxPCGJLBZWB+6ePzrGVKWJoqoKq4YjDRqpDokCaS0+zMvlBkcD+Neen0pVaLVPQ7aSlOh7pAl0b3UBdsgAfa4ArzleD0PKk5KrY+kfhnBNa+ELW+tomLQ/OVU8lOOR7ivlOK60o0Fc+goTTpI6DR9OisdWn1XSo1Wy1TL3ECcCGcfxAdgw6j1r85zGnCVJVV1NKOFVOq5rZkt5uhcPjgV48bJIVaPK9C3bXAuIMZGAKo0oybViSAiM7SaymXNdSWB/m345zwazSuTTSZNcusoCYz6ZoUWtzR+4ri2gVDnA9xV30HG09US3jD7Mw77azteRc1yxOc0pR/apx/eruhpE82Dcqhuz5HK9+5rCpqd0k1AoEsre+eaqKaRzU7X1HkqF46e9RO5pJohnfdGwyOnFZWdyYu7KZcjB/KuhLQzqMrOy5OePWiSbFTV0QklT6GmlZFytYgkkUPnuetUtTkd72Rc8Oz+F7bXrW58Y6feXWmJKDdW9jKEkde4BOcVceVS1F7JdT2rwj8dv2aPCvim2n8NeEr/T9PEq5tGi8yZv8AtoOa6aFenTqJtDq06Lp2R+oX7FvxdufiL4bhurDT5LfTTEpsrJH3yMPV/T6V99hKjr0U0fG42tGMmj728Pfu/CNsXQKRCOi4wcVo42jqeW6jnV0GW88e0TSdQcjIrKLtudEk72Qy+mN3ahrsDaGyq56+laTfu6jp2pSstznNR+33mo7VsmlSM5k+X5R7e9cm8zoSjGK1OV8bNaXaym8k2Rt8hiTjcM9AKyqOLdgXkcR4x1DSbbWdO8LaREiQcMIpIxmQ1UZWmoouMZSvI4fVdMlm8X3ySq32t4iJMLhQoHA47Vry/vLMirZJGHotzo7aTd6fqczSi1dkMTKAynseaqMUFk4nmHivwXp2rarqV9phdZotplTGC6Hr7ZpOMVIxlFo+Y/2ovDunanq4SOZ5THGf3xyHT0zjrVXitgimj518c2dzpWnXFpcysxwMg45HrWUle4SPIriLZBcusYGFbAbqK46ySizegnzo4R3LgljySa+QqfxGz6mm7QRGchcUaWBayILmT5BmktDoiZF4d2c1TRxYlaNHS2shhC57DmrlC9S511vdm2XI0S6XHf1rRLlRUZKroOiH2RsOCMetYzknsZVI8jLFrPHK4IIz2NLm901o3bLkzlY+RXP10NG0mLaHIO3tWsmlEl6lmBsuST6VlFvmIi+VllTn7mOlW7WNFFz3Oz+EviD/AIRppYvDepaboWq3+6C88UandSMILQj54kiVTgsMgsPmOcAjmu/BY9YaLjFJN9fIc8LzK6Z9Z/s5ftn2Pg7UNB+FnwWOrzpbzbLnxbdaUCbZXIBSxsUIhgJI/wBZIxkb7zNX0WHzpV5QoxT5U97fkv6ueRisPThG9R2P1K+A97P4m0W01bUvEk16AoN3JcTnhyOQgH+tfnGQSBzjpXu8jdO8j42tXbumfT2gPB/YlstnbSQxCIbY5AQwHvmt6NlTPKmnz7jdXeJY8ZIJ7qOawxE1ax14W7Of1i31S8g+w2crwRuR5jtnc/0rhd5LQ9SnGlH3nuF/b/8ACO+FWtox5KCMs5b07k+5rZXpwscvNGpX5iv8IbWTRfh9JrO0yTX1xJPjGCcnCj8gK6KLjChcnGN1sQodjymWKbW/iYdd1CJZI9Lk853zwpGSR7npXFGF566rudjUlT5Yo8u/aXn1bxjp97ZRhUS8jErODyAXII/LFZ1oqZ0Yegk1c8svfCMvgLw1JZaJF5VpLZq06YwHyQeAK5uWMNIm9WMWeX+KPDY8LW8N1qsWbRryS2unA4QSAEP+BNTKFNLVhBrY53x74WtrfTTqcjrLFc6e0czRnpIo4YfzrGfKl7pfMj4/+N/g/XbfXrT4geGr82l3EyoLkEmOZOflk9PxrnnRc1zLobckm7ostaJ4z8NHU9RskjuUUrPCTgFh+hB7EVMZJxOtXhCxxrwpp0gkeSY25OAQMvCfT3Ws5XiQtWaOm6RcQzebBsKt8wlRfvD3AroopN3OqCs1c6bw6pE8Y27Srche9epDSJ2RZk3ckc9xexyzxKrZ4lclD9dvIrzsTKMZM74NWvc828aW9rHNJcNb2zD7p8u4Zj9cZ6V4OIcpNuwVYSlqzjLp1kfgZwPSuaEHe7FFqxBIoEZb8qJzdrES1Oe1e0a+1Ddj7rDrW9FtRsznqQ9od54QIhsljH9zoKyqxle5VGNtzqLEMyKW9K45LU9CMdDQRsR5IOfSspblN2IGVgST69atWSNFqtClNOyyHb696pMwafNqMuHOQzDtzSUkaTs4lYyJxz+FO+hCuKAQCuOo4qHK7HN2WhClsWlOfWrbaWhndI6DwP8AD/xj4+1tPDvgTwjqGtahIMpZaXYvcSkeu1ATj3rpwlDE4qfJRjdmc5yfQ/SP9gP9n/xN+zX8JrzUPHHg7U9G8SeJruOCOHW7JYJmTbu+VdxYKvJ5xnHSv6K4Ay2WAyeUqkbS3l+h7eWUabwntHq1q7a26H0BpGteFI9Ih1O01MX9qZ3WGZSCplAO5/fG0j8K+lqYlyrRTdnJ2X3N2+5M9Ne1mrxVj568X/FKPxj+07bfDy5SU6dFE08Vw7IqN82GYrnLN7ZwM/jX12FpyoYKU47pHRyypUuaT1Z5qDYeMP28Dr+rxyz6R4KjU6Tbrbl3nnlfYJiiZ2og6ueFDZJwM1xV66eIpRqac0fxHgqUquKsnryt6tLZX69ey3b0Wpn/ALVvjSz1vxVNqct5DJBbsGkiDD5CZFVVCn7zliORnA/Ovr8HG2F9n2OzEYiFCkk9Dzjx4ttca23xl1S1M8ulXwMcTjd5t27DLDONxCuq89zxXFUk5u9m+XyMqdC0U3szvv2ofEtx4v8AD8HhfQddNs620VzeQvGkcdnKiblIO75yi4Oe7NgDjnmhh/aturt6mFWusJC6j8zhvhB+0p8TP2iR4ktLTwjbx+G/DEFtpdx4xik8s6vOAGkjYyAAsAOOx2jkYr5/BY2FfOqtCUrRjsr/AH6ep5UKssdipN35I7b7+SIfiJ4StvB+t33hRdUNquraBcanLbJIdlhAoJhhJ6ec5PmMR13DngAfQYTE0niqkYKW3y0/D9fuR6kVKtRTilZdX1/4HQ8z1TU7jxB4jg8aiWSWXSrTTGjkgyuws7Bt3OScH8q7J06dd31urHE1KVrHB/EHQvizpP7O1/otnFp2maH8c/Hsl1LdCRhcXljp0oUjav8AAZGJJ9RX4ZnGBwvEfiHFpX+rR36Xk/8AJHyGZ4SviMwUY3s9z0n/AIJy32mfs/fHDRtOaAW1vJqZ07UDM+NqzwqynHYZDc/h1r9JwmHjRwsqUFtqe3h6Hs8NOEFsVf2tIW+BH7aGtaTpOnpe6ZrELyXUezBkiQZYgY6qnIrWrKL5aj3a/IbhWqU4zn1OT+Jup/C34reJLnTtHuo7Ca/0pI7y3vZgAMxq0dwjYG5CxZfVc/N3rxq9Xn5lcurSpyptJ7I+QfiBL420LWZPh/4hvXmSwkeKzMxyUGclcnqD6dK+frOqm4PY+TxPtlUdKWzM3wrGn/CMaj4eu0HkyjA5z5TdVP8AStcE3DDuDN6dF08ucGuozTtVS60CWydMmPAbH3tw4P1GKSftYO5WBrQdBxKnh1EZhbMQJI35JGQBXnSouLOWGGlKd33Pqn4VgJ4Ks2H30LAkD2H6Gvzjjqs06SR7lOj7Kmjok2LkxoFzyQBjNfmtWpKe7Gpu9itfxiRCcdO9RF2NJx5omdp9/Jb3Plds81pzdGcdNuEzZXDrvQ9RUT1O63Mh0J+bHasb2MovlYsvmgDjgUcybLklIsWKZALdKlybZVOSTsSX/FuwP93tWsUVWfuHP6Sd2rkA/wAVdUfhPOpfxDcnbAx7VjM9CfwGc0h83nrn1pxOOKdxzthB2rOTNJ6IhdhtPH51C3JgUpSQvBroTRFZa3K+ctx+VUKk+g1lJGAOaynI1exTnQpLu7VUW5aHK7qVxwlxwDxVciW7BNyZr+DLPVLnX7WLSbA3UxmXbH5W7PNXS0qR5dTHENcjP2c/4Jv+CPFNj8MbS6vdAbSpbjYJHlB8x19Pm6V9/gq83RVlY+IxVGUqrZ+gWnMIvDsMS5+WIAhh149a6nKUo6nKqXLXM22uEgR/PBPz8A5rOGj1Ozlu9CPU7meRQkZwDwNxxirqXauVTilJ3Ma4UmCS20S+kyAWuJ2bjHcVzJq+jHJu95I4bxcLq8162tdKiSe6ZcncuBGPX3qJQblZBG7jZ7HI+MoJ9I16ze3iW41IsBI7kYT6VfMoTSS1OmlC1J32OL8Za/qVje6hqVjOJLxWRZncDYy5wVHv1qKlWak0jKcJNIwrbR4zFqEmtxpMtzcAO0I+5wCCf6VpTm1oypJQV0cv440QaRdi5F3OIVgGTDjdKvvjk/zFbSsjmnJWPl/492AufE8+pRahLHbiPaGdCEGf6VDklsZqpOWlj5r+M1mlnamKWNi4Q4kHKsvqD/SpcopGjaSPFL1R/Z92/J/dt83euWouZM6MPrUSPOEORj3618hVSU2fSbWEZsZx61LtyhfUr3LAj5elSjoi9TKvE/vHnNWjgxTbudMihowcduK0bXMelWjzNjrWdoJckjk1V04nHFunM0mjW8g+Xriudtpux3XjUQlhEITtb8yKlxbMtYTLsx3KMHmiMUmJN82o+0+XovXrTnFM1abV0WY1w/y8D1qNETF66lmEqoGeeM/SsW22auVibT9H1LxPq1v4e0aBZbq7kEcKyTrGoJ7s7EKoHUkkACtqFKVWXKkZ1KsuXRH03+zFqf7Pvwc8RaX4ZsviU3izxDa3Xm6p9ihdvD+nSkY+eX/l4ZTgEqACRgFh1+nwVbDYJqkrtvp0ufO4pYzFaT+Fa2P2Z/YzgvPG/gWz8VBpYhMcw3NxbiNivTMSZ+QHnaAMAcnJr6q8alG6bUr7W0+8+blHku+h9LafdJcWarCjgRnyyz9Wx3qqT0aZwVoqLv3H3jlcEQbzng+lTVUX0uKkn3sUtUv1jXyrUp55H3z/AA/SuZtLbc7aUG/j2OW8cWQFgF1OeSQuM+SG+aU9hjsKyqRXVnVQtL4VZB4dvNUtPBU+is6x3iRM+ztbofur7ECqjNRo8oYilGVdSR53Np2naLZ3OloknmamzJb75PmkUnJb6/LUc0Y6LqVTqNzt2OU8QeDtMfT55tRYtEZvKBJ6Iq5yfxHXpUThpub+1adonllxpE3xDsJrKGBkdCbayMeeQOc9uMA81hBQe5Tk4u7OI8feEbLV9J1LQ7aMysrpDIMfK79M/l3rKolU2NITvqkec6NpMUfhC/8ACOq27y/2bKCJnHzKR1B9RjIopUVGLuatRck0fOvxO/se2/tXw7JaJd6ereTcLEmXjDA7JB7gnBFclZ3vGLOuM0uh5/pPw21XQfDbW0cMxV7Usqht22QHh1B6Bh1HrmppUZRTuU5pnFadaLqEc1okUuYZCJV3ZZG78HtUcuti1JSWhc03S57XeI5jtUgqynH5g/dNb0YWeh0013Oi8Oxs8ocZIDdxzXpJNQOuKVzldd021eac3FntZtwDmfYT7g4NeRi5xUnc9KnFRPLfEVjcWN1JLIuEY8YlDfyrwa0ua9hSpycr9DBaMu53KRz+dZKokiJWTI7tcJgHtUKSkzOabRmwwAXHmkDk966E+xhTdpanU+GjmMAHnHBqKsrI6YrU66zXYucc4FcUnc617sS1kn5e3vWO5DdxHIA6U9S4Np2KN5HyZAvHtWsVoFRXVyvIxlTaRgds1ErJkQkVhEFfDevFXbmiU9GTqo2gheOxrJqzF01AIpO0Nz7Vt0Iik2amg614g8M6hHrPhvXr7TLuI/Jd6dcvFIB6blIp0MXicHV56EnF+R1Jxhqj7/8A+CdkPjL4ofDPx14z1XWtQ1X7DpSvoaarr8d5di8jUhvk4eIFWO3KjIJwWwTX7fwXxBjnkGJcp3bv112v/lrazfoR9dxOGwsYTkn7RtNxVla+ml3r67721Q//AIJ5eOb/AFD4Y+OvCnivxNFeT+FvF18LdPKcGCO7AmiiO8Ah08xk4yPc9a+i4DzBZ1go1K69+nJrWzd9VfyutO9n8jvyPEVq/PTqRas2vVLZ6PZ7mDqHhrW7v47XvxIKn7BpGlbIlMZCyOxztJx14/DNfrXMlCyeh72Lw79mpJ7kv7Knxh8O638evi98a9S8JPpHh/wD4Nmsdb1W4didRvLtl8qD52CbIghYBQGJk5J4r8o4pxVetxJg8JTb0d7el/n1/D1Pk8RVr18xp0IqzT31u/6/XU8B8SXj/F3xJpvxEFvJCJFW40ywmwG8sllSWReAXcsSo7DHYV+y4GXOo1G7WSaPr6MXOcfa+nkdD+1VJp3h7wvNo9nGmnw2tgH0+WNgz3FyApaVfQl+A3YfhVzxPtaclJ6v+kaVKs6VK6Tev4HC/Ef4qSfE74H6vLoGnyWkvhXQ2ivpJFAkup8/vCxxyeAcdhiuZ0JVYzlzP/hjyqjUoOcr+h3t9470/wCMf7P1r8BPD3g/QH+JOjaOl94U0SJXsrXxbZuoYzbotqi8g5YqTiRRwM1+QZxSxXBvECzOcnVw1bRt/Yfd22sclBYyjiEk3yy1Wv4HkWt+PdX8U/De8WTWzqOs+GbN9N1nVpbWaEz3DgeYNsypIAj4RdyAYBA7Gv2jCVsLUwcpYepGcXtON7PRd7P8D0qMq2KpXcbW3RQ8H6JZ6xoXi3U/tyLZWU0BMglIEkcScH3ySCfbIqacksJUqPt08kehSjCOFUktUupzHwc07WPi2LHxH448yQ+F/Bsn/CLWMc5eC2gSfzS4yCNzsWJx149K+O4ewOFiq2KkveqPdM+SwtOpOrKvNbnYfA+O71TxLq2v67MHuP8AiWpa2oHKyq29jk9wpYk9sj3r1r8s5WTsz0ML7t4ln/goxqqax44tfiRZxtbyf2W1wsvOdkZxu9cMox759jXn4m/1e7duU5MyrKhRt0Wp8ueObnw34x+H1v8AEXwhrQkewmRLq2LbZYoJVO+HjG5AylxnpuI4AArxcTOnUp80Hc8SWJji6anSW255d461G8nvPLvNT+2SJL5YuCcttwCjEjjocV5qblLlOTExmrO9yhaahYyWl0lyPKuAu24jHTrww9u9dM5RpwuU68VQcWZHhK6lmupBBIXeRztQk8ken1FeTTraNnn5TCV5Tlsbmk29uutr5IIBk6HuPQ0pOU02j1Z1VGp7p9S+AkMPgyxYKAhB24+nSvyjjdtYuEX0R6CnzRTNgPnBGeOua/Pp7kJXYrIrRk+3NZ8zN4voYuoWxhm81FGFNbRd0c9eFndGlpt4JYguB0qkh0al1YmjLLKSD161jUSSKkveLT4aMH8qxW5aaJLIEcEZ9eK2shwjqLqLf6OwJ/hq1oXUV4nOaO2dZYf7VdS+A86l/FN+U8Enp3rlm9Tvk9ChtzNn34pK7Rg1ZXHzDjao6dqlprUhtyK0xwuCT7Gqii6asVLxcIT29KE3czra7FSESOQM/pWzehEXYcfl4/PPaspG71RUustJtA+hq6W5zS3EiUZ+Y9a1krmTm+h6Z+zh4O+PXi3xpaW/wh0ebDTqr3ws96xnPqa9DL8FOpNNbGU+VpuXQ/af9lr4MeMPBHhGy1D4s/EW7vL0bCqSTqgLYHAReB6etfa0qMKCtzXPk8TiFKUrK2p9eWMm3w9Ai8fuxtz6Y/WtZSvC5xtr2tzLguN8zuwLBD0rmg/eudNkloQ6rIl0nn3EjKirgIDjdTqy5t9i43iuVGNczokot7DTpHRQMxA5X6k1kleRDi1q2YUPmR6nqep3Vkn2uZQkaKuQiA859OKu1ro1n7sUkjhtUvYtZ+JU89hYuXtYwuWUMoGOo7ZrKMf3zY7yVI5XxnBZal4lm0Bhiz2Ft5ULtkHI/HIqeXmqWE3OnG7MXULmysYb2aGzk8zhZGLfhke9dMIXbMpXmkcR8S9E8WeINK8+1v2msZI1DhV2OvP8LdQfatpwvHVmbhb4jxf4m+CkttE1HS7xpZQkOQtywDgkdR2YGs1ZINIO58UfF2w17R7yezv12QNzDFjjHtnpXNUk3KxnKSnueQa1u+wXYQbR5ZxXNNtRfodeHSVRanmWW5r5Oo7zdz6NO6GsxzzUPYpbleVs5zxzTibwM68wQTnimzkxKVmdRCu6EL7UTdqh6E5WqsbLAT0/HmqTTM6kFNXRNpl60L+S5GP51ryx5djnp1HTnZmqqRyATKOorN3SPQtGaugmYrkJ/KsFJt3ZjKPUmtshee9TKbexakuWxLCziQ5/lUsz1uTmRl+UGqhBNal6S2I7yzS9t/IljDBvlORxRKTi/ddi7RS1PtH/AIJ+/BTwQ3ibSNF8KjxBrtnFdR3N3f8AiKH7Ho1tckgOLW0U5uZh0EjYPByvr9Bl2H9rXi4Kz0u+9jxcfi60abg2+XpbuftX4X13wh8NPBtppBmntL+WPaqSKHkCHpgcgE8YH0zzxX29RRprc+StVrq9rev/AAO+/wDkeo+DWuJ/DcN3PayQ+b86JL97B6ZrKhdtnDiowjPzNG6mjS3PmsQOmR1rao4xptszpXclYx7u/tbCFpLOH95jC8ZJY9h715LmorTc9SNOU2ufYzhot1ZRNrutXCG9k/1Zk6QD14zzTVNqPNPc19rGXuU17q/ExpfD1zdaZPPDNI6S7tzsu0SHnLH0FZVLON0aufvpdTy+e31e5+I2naz5X2gaZZyiFJHwjAbckDuRk8+9cyc/bJotQgqTv1ZzvxR8KG/8RagINcnaBYwr20bkrhumR7dCa1q80noyouKgmkeUaj4L8d+Erye+stVkhOmr+6towfLnj59Oc1yqnUve5TcakdTjtPj8V6r4iutMu2WKBEa5shFkByBkqR1OPSrTqwm7lKKklY8+1S2+LfiCPVNY8KXa2qtYtKmntahopxnDMjDkjI/nxVxdSrB8r1NpxjBKLPNfCHwziuYtY1rxGWs7uYh5nVV6j+Eo2Mj3rCFBpvmNZLkicZ+0NbeDLK5i/sLx7c2xktV863aFovLYdGIwTtz/ABLVzlCPUzg5SlqjxF/B92upPrS6is0x4mkjcBvYn1BHeuSTjJ6HdBK2xp/2U67p54tswOPmH3uPUcGuyjZanVSk9jU8LcyjcMYzwK7ZWcTpi7HKat/ZWp3M+marp7XCBmKlZCrL75AIxXg4mMZTfNsdlNzqaHLX/wAC5dU1jyvD/jzw1aW0i7lk1rxPbwBfrk5/rXnSoKbtTdvUVT2lON2zC+IXwkk+HNrFdzfFLwXrbSMQbfw34hW8kj/3gqgAfjXm1qNSk9Wn6MiFVTlZnG3kqmMKDxjrShGT1NG+ZWRmzysr4TIORz610XcWYOFnqdF4TLtGCx4rGpLmsjohNW0O4tVbyg2ecVjJI6I+9EtpD8ocjisuU0UURXEbAcD6GhWuKyUiC5jwmD6cU3K2w5u6M4ZDEY/MUmZqKirkMp+fnr0+taKVkJNyY/JC7B6VWktSmtLD7cbmG8fjionKyshpcup0XgbwX4q+Ini3TvAvgfSHvtW1S5WCytUIG5j3JPCgDJJPAAJPSrwmEr47ERo0VeTM6k+WNz9If2Sf2XfG/wAAr200nwx4i8OfY7eWK71/W7/VcG+lZSsgjjC7vIiBZF/vklvQV+x5bw/mWTYGOHwicpTd5NrT09Ed8KeH/spwnGcqkr6KOi7anaa34a+G/hTxz4m1nwTp5gsNb1NL3V0ICteTrGI1KDsmFXHc1+lcIcMvJcPJ2fNK7+897KMJVo4aKq/G1/XzOA8d2V/Y+GJ1iaezgvpMy27OGK9W5xwTzz2FfeYefNBaON0rp7+jtpdeV/U9LEOMpWWtjzj4Ox6H4++GfjfwrbWtqNCk8SI+pzxKqrfSop/dFsDKgcEjnAIyBkV41XLKFTOljpaySsjyaUKEsUqzWqZ5V8VItNtzqd74KsWOt6jamPTbWRflto0G1rqXA+XPIRQPlGBzzn6eXPVlanpoexCdRNRltqeZ/F/VfiV468I6ba6+8Q1G20aKzkvQmQZXyWwCMfKgUk9z9KzqUf3ai9Gcbk0lCD66k3jDw5rGj/sQ6v4rhsQBfXd3F4h1xmzLNKzArCMDBZsuzHjGFGDk4Uaro0Jwptp228tmZ432bhUcpNzlrr17u5137K/7O2p/E/xT8KNR8YXkgbTo5bosL97d4rWOEvuLqQYwzDHPGK8DiitRp8I1o1qfMnG1mr7/AKnjYvEVIZcpPS2zPQfDX7N4/ac0Lw78fdE/aJ+Dl83iTTry28U6VLqI0nVriJZjGoukllYSvD5eRcAh3AUEEHdX4Hwl4k4fgTFPK5YKo8LC/NO7lu73t2V909NrHdlma4SEI069Kop2T5ormi7ry/U848M/sj+P9E8B+ONM8V6RPp3hvTJylz4lvbiKCzu7Uq2WgcsRLlfulSdxr9d/4ilwZicudHB1ZS9qn7tndX7prT5nbi62DpWowm7y79jkv2bNY0Cb4WSWeiRRlb7wtfQ2106gLBHDLHGpznriTgHruzzg19BlU6ayiCg9E/zufPYatH2Uacry+JrR20a67LfRbvW2zNDS4fD+k+OL6zhvvK+x2dxcCYjm5Kx+Q0gH90SMfruFeisRFX3Wh6MZUY2drO1zx/8A4KG/GLTJNMsPBtlqSXV7d6bZWs8jR/NEvkKzsMdM78/jXzebYi0PZpt3Pns6r86cbaSPj3RbrVPD9ldW1pfY8lDBcQIcCeJjkfXjP6V4MaUqNHTdHztDmw0LQ6FeKRtVluJrfdgkZhkzllAPt1HA/Koouo5czPQoPnTl3K+t3tnO/wBilljeeNPKWTcR5q+9LF10nys8vGVIe09m3qTeFLRFugs0Pl+UeShwFxkgn1rmUbs76C5KWht6BbJe68kLkKPO3Blz83NauUacblUoJzuz6T8Ha3Dpwj8MG6ZQIFZLa4iChzjlom/iPqOtfinGEa+IzSVRfCj0ZV4KSizdWZGbKPnnivjHa5abTJ42BTb6+1Q0dCtoyrfRCRTkd6pS5SasXOOjM6xungudqZHPetFKyOSnHknqbMbEuGHpnIrKep1vVF2NCUGBjjk1mSkSxqYxn86Z0R0RHfrugb6U+Zslyu7HO6KFXVm3H+KuyCbgea7xq6G9PIMkfrWE0zsb90pucPyOp64qorQm9xGYtk57cUpbAokEzZPseopWsiU0mVLx8Lhj25NQtWTNOTK0TMT/ACrZfCZySiwyWYnH1qZmkZXRVuDsbPqOKIbmE1d3EQFznbkntWzny6BCKserfs1eJv2kNU8X2Hw8+C/ie405JrkGWZWCxxLnlia9LLqmKqSUYOyPPzCrFRatqfsD+zZ8FoNLXSLrxz8W9Q8Sa3EyPLGLwtCj4HZflr7alQppXbuz4utVqVN0faiN5WjRx5PyoB+lOo/dsiYJqdjLsJEJmmaPcwPB9a5oas9CUW4qxFdahJP8iWbHHViOM1Uk5dAhDl6lC+WRbaW1F0kW9cssPJY+lS70yuSnF8yW5xV5p6NdFbae8iIB81m/5bE9selZ/FJO5tJ3hexw13ceIpdeu7HSTFbyxQj7SqLyE9SfXFTGM5VGOmoqPM9Tl9dHiOXUJZCI5IPLZbclOVcA4Y+gFNtxmTVSk7FTQra6awmad3luFP8ApMsvKufQYrrpSbRFSUIqyOPez1C5/tK/029uGEUnFvIPlz3B9RVyu27mNRTa1PE/ipBceJ7u+04XsrTlMhPMx5fspPX6Vm+SO5zprqfH/wAZtF8Qae11p+tt5yR/dcj54/qPSudckmTfmex4RrKMthdqV+7GwDAVlWhFRZ30IpTVzzLaxX5hzmvj6ivJ2PorWImII5x7YotoDK02OuPoaR00loZl65AK9/Sm1c48VLRo6i3lGwY7CrnBN3O3EL3myRJMyEMevQUKFlcVKV1YiuUKNvTtyKamloYYinyu6NDR9TMh2Nge1VNJq6NMLV+yzSlZTyq9u1cbi0zraQsRKnJo5EznvaZPF/fI601BRRtON43RIhBbJ/WqREGkvMnRZpSkNpAZJJHCpGoyWJOABSUOaVhqMm7s+5/+CafgSH4Q+NLb4kfG7wNrd9r1gjSeH7HUb3aYTziMQb8JECNxlcqM4Cq2SR9dlqWG5VOWqPGxkHKUkm1G21tPvP0w/Zr+LOp/FA6b8Sdf0Frm9vrlzbQZ3o5DEDZ0+RRjL8jjjrXtRnUxUG4q7PAxNSlShyLorfM+wzK72Uc8qhTsBYDp0rqg1Shdnzc7zdkVdTv4reAIYt7SttRV6msMTWiqaXcdGMnP0KuoRvBHHDawqhxl5Mcp9PeuWUGkkkepSlGd3JmRqttdanMhliZbaPsRy/1705RcrX2OujKFBNJ3bKPjHWIbfSjaySFVSM7IEPLn8qxxEm1YKVPlfM1v1POPB954euvifY6dH5s9ytnN5wlGEQNjPHTsBU4dU51Ei6tKbouXS5x/jjU/EPhf4maZZ6RozznUZJY9RQDiNOofnrWc3OOISiiopOEl0Wxj+O9esr6PUI7oulza3CPbxZ+UIM7gTjJFaN+8xqD5bv8Ar+tDwP4h/FDUtX8R6jpHg/RblvItxPbahEojNnOVwFBON44zj3rlniFKryxO2jShGIeB/BGjab4Uvr7VvEX2TUbmEGWW2nHmB2+8SnbJ9K64qFON3owqO09jzDxR+zvrMet3Hi7StdOsLNEZGsrm9IJXuecbT7c1x1VJu8XdBKrFrlaPHviFomk6lq39k6naalayJgCPUEMixjHVJBghe3WuRtSbTNILS6PM/E3w1g8L3xTTbVgr8qLvLLg9kcHp7U6dKN3qdkWlHUpzWQhtCv2RoWyN8QkyB7r3rsp2NqaaLHheN2Zjg4G7BxjtXTKSUdDshC+55xruuxl77RtcXyVG5ra8VuQe2cdR9K+dxVS02d/tY0lZHl3iC2nimIm1K1vU/hkh6/jxmvJk5Td7mMmpS1MpUWLJUAE+lYztJjjBSegPl1+Y8GtIPQtxUUV51CgSAfTNXFKT1MZy5om34Rm6KfUUpwsiKaakd9aHMYOe3euSWjPUgrRLyNtQcfhWDYmxkilwaRLIJV+XbjJoKSbKU1vtXdj6EVSTFPTQotF++I9+5rW2lgSJBHu6dqS0QPTclVRGeOT6Y61Di5bEc05bH17+x78DfHnwb0e3+KXi+3htNT8VoIPDnh2IJJqF9bEZYyKTmCA8MxGHZVx0Jz+n8K0YcP4OWLqte0qWSXVK61PSyukqcpzrWWlle+h9YWNva/DLwfY2moQR3ereJtUhiE0nyl8vwFU/dVT0UdMZr9/yynChlyk3dWvf1ProSpwvKLaSW3qP+Mvh7UE1Cz0eyZLRpbo/vS5y54wq4GSTjHtzXt5dVUqTm3qZ4STdN1Gmzzr4xeGtQ1nS5tAtNRNqJ4hHcT2pJwSfmAP97/PFbRc5rQ65ypyp6nDeMfEHhX4BfBO08NeEtCma3ScLZaZA+5765kbaGbA5LOxyx9aI4V8spwV+XVveybS+WrSv3aPJk44X3b6N6epz1t4UHw304z+P4YL7XdUT7TrrvyAx5hs48g4UE4I64z6k11xnywTiz1IwfsLJs8b+MGt31jf6jqOovJPZaPaPLDaQ8RLdPkbhgEM2cDdzjGOgq5OfI2mcelNNxRz9to/xSg/ZKuvhTFLdzWlwIpL6RsyKLicSYJ6847+g9qI04Socq+No5HCdem5T37/kb/7NHxF8Qaj4X1LQfFfiN7bxBo+nvpVzKgUeZEVJLcdjlgfrXlY/D/2tk9TAVVd2Zw1Ye2oPCcuyPkTTvB02i/E7UpvF1rba54g1PxNLp+g6Bb6cWa+mM+IYQgYAoS4yuOfpX5rwvj8uyzKsRUxsopUk1JySdlHWzve589lmM+pYadTFO9nyxjqm/wDgdyL9qTwJ8Wfhx8aJ/wBnL4pPNZeJLCeOTV9Gsr1hbWIaESCFIl+RVUOBtXptrv4e4k4a4+yuGMyzDw/eTl7ygoOyumlFWVm9dF00OTGVvrNWnTi25T1+8n+Fa+PtM8N/2PpfiSSCz1BbuzltoiyLAzxhuMdFYoMEdC1e/hcuq0sPy8zWr7/me3luHxqpcsLaEfg34tfHbxn4r1ldW1GKK4RWYJCmWEIKmRRjkqTGMj1qKMq1XEShUkcuEoYuWJmsQ+uhw/x71zUrv4h32keLLySW9t7kTW0rHdlCgAQgdAAMfSuLHTiqzp72OPGzjPEuh22OJ1W+0jTZ3iurcwwTW/lt8uSDwflP17+hrnhOKXvbMyrqjhVeXUPDVtcalJJE1ssXmW5DvGMEYXIbn1pxpKKbRVGo5rY534gWp07XVslhWRSNs5YdGzgkGvn8dUcaqR4eYRjHFRbW5seEdPlLmKGRvKYclhzwP8/WqoqSOqjVm48tjf8AD0DWmuQqUAxN82Dg49a1nBTVjsox98+lI/D2m614etrS+h5EKtFLFw0Z7Mp7Gvx/iurPD5o7arsepWowqwUWMtWv9On+wahJ5zKMx3Cj/WqOpI7MO/r1r5KrRVdOpSXqjBQnSXLL7zSguBKgdG5x61yKxrCavZjndWXg9etZzTRs3czbpVSfzQuMmrh5nNWaTNLT7gyRgenernHQqk7xNW3PyY7Cua1mdNNEjSqq57jtmmo3Lk+XQpXd0pgdd3JHrWsY2Oebd2YGlBzqjHH8VdcVaJwwd61jcnfDn9a55nfJWgV2IbGDj3NSpK5hHcAQPw70nJHRayKsrEtgHHvmk3c5X8RXuznBqYldSqX42gcd810WM6m46Js8npisqgU2VrpPmCgZ5ogxyQseFGT+taSjfYwu9kej/BvQtDk8VaYo+IV7bzTzr5kGnuUAGejMDXdh6cYTT5rHHWw9Spd2P2e/Yg0H+wdI0218LaTLLBJAv2nUL3kufYnrX2uFpNQVtT5zFU4RmfXV9J/oCxyAnC9TxzXTJNROZr3m0Z2iTIq3G1AWB4IHB9KwpqzudOjSFvLm68lBNhM52gHr79elOc2h2hfQyb2yOozfZdMvApZc3FxjDAc8CsHK7F71rs43X7i2srsX9pbTTMuY1aZ9wCjq1UpRSujVU3JWPM7RPHOq+I5F8LzRQaffMz3c8vMzxggYHoOtc3tKnO+TZnVajThrujG8bWV/FfHSYdXeB2B+WNQC8Y5bPuamcKjnqznU1J3KWy8m0lo9Hu7qyjlIVoZT8zHuRXdQajDQ5525znI/CWtGwuD4c8SXcsSZLqWXer+pBz+XFOcZyegTmno0ePfF3S9cspLiwntEn8+ElpCgR93qMHrWbUmrHI4xTufI/wAXCLjTbyHVTNHfwZVfNGN6896UISkyk47o+ddXnZ7G7D4BCMMCssQ4wjJHbh176seXyq3IJ718Y5XbPeSdiGQkLkDpSAgcB1JB70XszWk9DM1AESZ/OtIvQ48Rd3OhgkCx8ntWk5WkeniE3exDFqI8/Z6nqKevKctKdplwl5gMqRn1rK1zqfLNFcu1lOJAe9bwXNoefUTpT0N/Sbxb2DIxwOlZ1IKJ6NKftIll5ArhP1rlbdzOdrlmEq0fXtxUts2i7xsNjc7uenat9oiirPUuKuU3EgjuMVzylJvQt1EkfRf7EXwu+OniOa+s/BWheM1trpCbm30u1U21+vG2GeQssiRkZY5ZgwXAUnp9Hl2CrVaN6l0eDisWnKVn0P19/Yb0PVNH8MaLpPiKVoXjhjivSq/LCRjFtGSowm7jaAScckdK+kwyVJ6XR8/WhUrxvLqfaWoXSWmnNN5DP8vyoozn2rqxE+Wjfc8WjS5qvLexVikBtlvLm2KNjIUjJWnRjempzRFaChJqLKd1fmfgKVB7lefwrOT9o9Drw9K27K0lxJJdhY7ZmSMfffnb/wDXrH3uZnZyQUNdzk/Fdze6vqT2+kl3fbueY7Rs/PtXLKVTnvHodEYrks18jjIbaxuvH+n6N4VdlSI+brF4V5bH8I+p44q6Eb1El8zepeNB3Wr6Fb4ieIbCPxq7JIrScv8AaJUIWJRxtJ9/61VWpCNT3TKjh6ipuUjhvjHY6Rd6ddHRbRGAtj54RhkhiASD2xXLVqOV2mOHNoeZ6N4Bl0FVtYljuhd2weKCXpIVPQt2P1pUlyyOtT5lqaXjf4Y6LPZ3N7NocduLlI1kuIZ8SRN05PVSP1ror041IkObUjxTxLrnj7wftsI7qK7k02dlS7jRXZ4y3BZWByccHFcCU4mijTk7nkHxP8Y6hD4sW+8UWdkbeVT5MunxZGT2eNgMKe/oafKoy940hfaKPL/HPhe6n2+IPDuojBciXTp3G36hc/rWvLFRujqgrKzOR1WBRbbQzg7vlRsNg+gPpVRWp0xfvaD/AAqGBkBAHyNlcd8VpKzR2wvzI8q8RXT35u7AeWziQ+X9ohzg5PG4cV4eJgnJtnY6Maj8zzXURf2Vy9te26xsOqKBivInTcG2Yzpypu0igy72yBx9axlFPY6KfK1oNuVZV46etNNRCXvaEDlfLw2CKqMrM5KsXFmj4TmUybQM/NxV1Je4aYfc9Gsc/Z1yf4BzXBLVnpRasXVPy8VnJWZnJWYqkEZA/CpHG1yGbIIyKuPKaaIqXDELxx65qnJLYzqWtcoN87jHX2oUlbUiFyXYQvHFF1ctxuSQKRIGBwQeD6UnJrUqLjF3R6L8B4vjP43+Mmh+HPhHrGrN4n1K4+yWU2n3bJOqOpWT5yw2r5e4Mcgbc54rbC4SrmOMhTtzO60euzTX3bmdfE+zpucmfoYPDn/Cxv2g4dSmndvDvw2ixFdTuVhursJhpBjIKp8xJ9cV/TnFPFGG4eyOmqitHRN28uh9TPEToYOnzXTkkdLqOv8Agjx5rVr478HeJbHVtCh07ZoOpWErTRsOUll6Z3ggryM5Nezw7mmBlw7CvRk/YqO7bbsu97tu27d2engq8quEUor3pPVf1oeY/FbUtN8KTPDLMVmdCLSHd8yIfvMfRiO56V9vhbyhfZF1a+iaPO/hlY6F448TT/G7WEsp9O8HYtdDsZLnEK3BGGlIAOSi52j19OtYxpR9qqcHaLXT8FY47fXK7ld/8E5jVdd1H4k+LvttleRRWqXJkWaZM8Kf3ki9OduQpz1NenOlal7j1R3KSpxSOF+Lx0mz1fUbaxtwun3sLRWkdyolKRZ6sAvEjEjB69CMVi1Jwip76X7GVVQcLtPv/Wxl/D290m+1nxZs86aDTNIthqCKjCJZxkoD/tYx7813YXDx9s6jfl+BlGDqPaxx3hCbUPC3xj03xZPd+XZajp/k3NrcwZEgk+XJGOuDnnHAqKtOEuepdKy21vLVaKy+etlZd7J8+IgqFeNRK729D279h/4ffs+6t/wUQsNc8S6Vrx8TeBtBuvFV14uutTtBpOl2VsIlaUQNCCbhyzDe7FUDgj5lFfyH4+4TiDL6LhRqQp4bFyjTUIp+0cpN3d27Wt5ep8rm1P2eMlWUE+eLjZpuzemmvz+R8r+NfEnhj9sn9uj4j/tKxLdQ6drerXV/pN1qscaTtFGoSMMI12gME6gdGHPev2Hwk4Vp8OcLUMO1rT1vaz1PWy/LMN7KNRqzirJ6/h19DF+A+iR+I/DGs2OiajdwSvquz7UkYlChdzFihB2/KCMjgj0r9Ow0XUpS5l1ZvSdqLpxb3vdeXTVPfb8tTjNBu9A0n47WlsmsRodp+3TRHKAMzMoJ6E9CV759q+dnGNLFu71PDq1b412vbQ4T9p7R9dvvinH44msYLiK4tIjqUNg26OORkVm2MOqhia8XF06tbERqJdNTz8whVjjY1acXKK3MvW/Dmkan4ZS1u5bSQzsjRX3RgCTgMM/wng/XPTiu2VCHs7bnTi1GtRUeXcXwVpkltqTxy2aGSOLPlsRteRc8Z7Ajp9a5p03LyMKFPktzaI4a50S6+JXjy+0eNoopXucWkdxOsQzknZliBk4wBnk4FfJ4qpQp1ajqvSJ5FaVPFYipCenLsW9B0zUdJv77Sdf0650/UtOmVLiwuUKSRlcAgg1rhcTSxVO9N3M8NWpVrqOjRv6UyT+IYVtYjH++DASLxz6Z61rVkoxZ61BWkuY+nbSIWWn2cTPndbKQV6Hivxbi67zK/kevUlFyRFdxM7LLDIySI2UdTgqfXNfJ0qtXD1OaDszCooVI8sjKa9msboiQAbjkgDAP+FJp1JcyOLWE7dC9DdrNHuRs/wBKnR7nYpRtuVr+QbCSMEU/hMqq5loWdAuklwo9amU+boTh076m9G2xApHasbNs77pIr3t1sjbnqKpOzsyJy7GK+oySOy4P1rRnLZylch0R3fUyxGPmq+dRiY07Rq6m7cjBYAj8qwcm9zrnJNFU/Kc9j2qlG6M1ZajkbcuccGpkrFc1yrcL8+D+FKKciOXqVbljg89a2jFIxk2pFfODkiqexo0pIRGZW6/XNZyTZhflYyT94QScH3pxiU5tLQQsoOK2tZGafK9Tpvg/p8+q/EXSNEtPPDXeoRp/ozsGJJ6cEVvhYTqV4xic+Lk3h5La/Z2P3f8A2WdGvfDej6NY+INRkEqQKkFsTgjAHavvcP8AuoJSPkJKcqjbPpPU5fL05ULsEIycDJp1ZvlLcdblDQJ1CTIq84yXbPFZ05aFtO6GyML4mGBhKoUhnlJAWpklN6GrXL0szF1TS5rLzb6KWW6mdCIkhPyj3pezjEL3snocrNpWqW8j32pQGyU2bBQG35z1JrJaPU3m7Q93U5CO+gj1m8afMUVpaLDHJFIAS3Xn0pLk579jKVOXIr9WcVrHi3TLrW7vV5bWKO+sdsUcbMBwep56nvWSqJybaInCUHyoyY/FnhrxGbrTD4kadoyAZUmULFJ1wD6V2UZRbdmKpSkrN9Tl/FXj/QvC93O1t4kgN0luQ9nC5Ys2PvZXrVSlZkzpNI+c9W1jxf8AETxNLqSai8caHYsIbD5z97D1MWk9DGdpaWPFf2ipr+Fp7TVwizhTtn8sDd7HPQ10QlfoCioanzTq1s90JYFVQ7Arg8ZNebi4OzN6LcqqSOF1/wAFanoFkdQ1G7slXft8oXamT/vnOa+SdCo27H0Mn7BpSOfnKFMqegqY031LfvLRFZGyCaU42kXCNkZ96yuxNGqRz146M3FEawjd16VXvOWp3Sk3NkNpa7ZSxHGa31cdTkqQtK5Ze7AJjDAAdMUKC2LhVjERs3UeQozUczhKxVWn7SOg7RryWzudhbHrVtpoyw9T2b5WdESsyeah571yNNM63FSdyzbv8gGfpxiocUJ3ixVKgkn+daLYrmcizZXlzY3cNzAyBo5ldDIu5cgg8juKI1IwqKXYfsYzXK+p9L/BT9pXWU+IGp/Ebx54jv8AXNZW/wArFp/iQ6TpNvYRMojZ4ogGnkZvuxryAOh5r6HDZknzJdfM8vEYSjhLRWq2vv8A18z9Cv2Ef2pvir8Yvi3ZaVBYpY2fngxJdnMyx4PK26D9ypH8chGfxr0MPOriPhex4mNrQpJJRP06S58qzVpPmwvJ9eK9tSUaabPl7SnUdiGO/iuIWnRTgE9RVRxEZU+aw6lGUHZmZJqBkl8yG3I+o9654z55XsdNOk4xs2Vb9Jb/AOWa7WJV+/EmTx3zjilOV3vY7aceVaK5gazY3d/DNa6VYG3jZcNJGuWk+p7CuKq3zXivmdkXGik27sy/h9oV3H4vutPsxCTbWoLyBOInbOMnHLYzWmGhKTfKzLF1qcKak+pxPxeOnN4ij8IRwqxuLtftN0snzOM5K4H06VzVqfv8qLpVpOHMcN8c7ay8MWV9dQ5ZTCDHFG2A2NuNx+tc9e1PQ0oRnU3OUn0zxJ4iuLfxCbe6szpkal4RyEY8bWA/hOevrWtFTm1Jl8vs24sxfjH4lVNA1DVdB1ZEvRCokspCcOwH3XPb2NdFW+5EYJP3j5v0SPx78TUmn1qzsrKWeQiSx0+QlgO7L0IJ9q5KUpzWqsdfs7anK/Fv4W3Gn820mohbcbHGoEjIPBBY4OOeKmrBp+RsqsIaI8ym0vyJ5tHvNWDS+Xut4pXJljI6ADA3qfUVlGVtEdEHFq9jldfjvoISNUVIpN3zxxnr/tbSAQfp1rqpNNm0bc2hB4XY7ny2f3L4YHrxXRKN46HWr3R5V4vt9P1yG6ubaI219AxBaMho5lB6sM/Ka8PE2SfM9T04RVl3PMr4yBizsC4+9jpXhzqXloc9WUpaMr27EtyR7Cs22zSilFaj7lcoU7Csm7CcryKlxAfLK4Ge1VCWoTipRLXhEeXdbT/ereSly3OKnUlGpY9LsHXyE/3fyrjdz1qequWzJngn05rLcTbFjcnofxxSaGlqRzseQBigck9ypOd4YfrU6phuVFjUSFgMc1pZtEy93YkL5Gw+lChrca5nqS2ysTjGea0bQRhd6nqX7MX7QvjH9lzx9P8AErwFYWEuqTaTPYQz39v5n2ZZV2s8fo+MgH3NdmWZriMqxPtqUU3br0HUp0asOSav/wAA9+/Z28beO/EXgDxt8SvGmi3zae+itpvh66tVMVvLezyKzxhm+VmKrye3frXZnfEmbcT5ZHLsQ+aUpJRsvPv6HrVsXiZ4N09W21ZX1/zPZv2Vfg1B+zd+zT4c+EZ11rrUmE+qXSzYK7rmRpmUEcBEyq9OTk1/TXBeWPKsgp4er8SWp3YChUo4flPGv2ldR8T+PviB/wAK68GyPPqWqQN9sv2OE0+HOGnkY/dVR0HtX2FfEyjh+SOiS36JHpTo4rFNQWt9C3450bwF8EPhHYfDXTFubmxsrZnuNlwM6jMR87nPGWJ6n8K7cHh3Tp3bO2FN0IKMHojiry60e9awuPC0Miz6ZaxzataltsSLnKxZGTtA28dya7rSfNGb32tucXtZat9Tyl7vUfiV8bNVk1SCGz0vQC9zPIzuv264ZRhAMHARVAxjv7VyurOpilGLdoolUK866lK/Kjcs5tL0fwTrGhW+oQ2s963267ZUCo5yAq79vzNjgcDrXsUrxTdjunONOCSje5xvxivrm78NXus21oirpSwpbNFcBPPEeWLgj5j1I5x6dhXPieWNF26ankZhTfsVdn0D+xlp3wW+KmreNdR+MOl6ve+G9c+E15da9aaFOiNc29uELRXMuVZE3uAqqwV2f5zgCv5Y+klWzSg8mq4VfvHVSh11ex5eZSl/Z0Z0muZyS13+R8Nfs/ahZXer6lpWll7SzuYZ4tPtJpt728BJ8pWbocDA9OK/oHhWWIo4SlSxLvPkje3ex24fEu6gnp066GzqVyvwOOs3uiXkRD3htJZEYgoJAwZgDjgjGOnFe3XqwpRly/ca1KH1ebk9UeGaRZ6LqutapZW+qyre2shmlO8neYomKuD35J/WvkcQ1OblLc+YrVoValSlB7a/NJ/8Ef8AA7xNP8RdSutN8RmNNQhuTJb3E0BKlVTaxxjoV4PB9azy6cq0Jcy1TMcgxU8VRn7RNNP7yl8UNFsLfVIxo8/l21ypQW6rtImALLj1U4ADDtiuzEUrRvE7MfBwlbY19O+yT6B/wlH2QNJbtGZ4EfLPFtILEdcq2f5968+tKbV2Ztxq0zyzWtD+36peag8ccwdzLFIqbS4z1r5yth4Sm3JXufOVMCpVZSkty1p8J1N5Yr+5ZrySJRDcu5dgR0BPcdBWEKMKEfcVghQhTldI3/BllqX9tQWt4xWVZMuFA+Y/0rGb0vI6Yc85pM+ltTtmgsLSJWHy2yEd8HFfjXEtb2uaSXSx7k4ONkVYrkMgdj9c8c18vU1dzmnuQahBbXiFCRnHBFEJuJLaqRsYzXNzpU+xySvrWjjTavE43CpTlqXFuor2EsjZ45qJRexp7SVrEekXD2V4VDcE9KpwXLY0py11OshuBNCrKevWsGuU6U2yO5hWT5T071g5NsbbZTktY0QnaOBTi22VCKVzM0qdV1MxkfxV2Rprl1PNl71fQ2bmTLsGIrGUbPQ7WuWJWeRRjJqomcXfQfG/y479qyqbltW1K9wdxyPXkGrg1FDvoUrmTDbSc0+a+xyy1loQh89R9PeqcjaKstSLzX8z8PSrsrXMXFOQ4YY5PH1qOa2xbUYoAEZtq4zinzSULsyestT6A/Yt8R6N8L/F0HiuTw3Z6jqsp/0RtQK+TbD+/wA969nJZOE3N9TjzCS9kkn9x+of7ANp4++JfxFufid468YfbI2O2ztIExDGvqPWvqaNGbm5yeh8ziV7S3Ktj7T1CWJd0UhJz94Z/KnVkm3Yxpw116mfpVrqQhuGdVWF2wgdgAaxipyRvVcIyVtx2oL9mtVt4tr7xhIox8rn1zWlnFWNKbb99mXrML21u/nyhCqZk2Px9Kl6BfmldHEeLdQnubCNtOs3E0bb1jEpyyD19BXPOKvc0pQnOeux5h8UjoU9re3+oSy2UAtmlvfJJO9uqgY/LAokqbjzSWhrKXuqJwmk/BDwprduvxAvIrmO9udnlQiVtydwSpqY0qdX3rGcaj1T1RY8V+DPA3h/TxosnhWztppXDPbQHaZAepPqa6IuFN2SHPnk7szdT03wjoM0UOl+GbaArAfsl4IN3z9djA+uT+NdjleKSexx1ZTqKzPFPjTqC6prY1EaQEaJwJHt4RG8fHoODWFryuYRcYRsz52/ai1PTLrSnsVZrl1jBEzpiSM+jf41102lHUJS5j5W19ZG0W73OVlRTtcHmvNxTXIztwnL7ZXPJZLSR7rz76dppOzOOcV8pOrUta57dTDRlU5iR1BHA4ojK6OmSdONiBiVyFNZTS5h03eNzMupOSG9eBSabVjmxMkkzcVyYgCa15b1Gdk/4jJbiQQ2eVPJFPmbdkY14y5boy9Pmub24ZSTwa2rtU0kc+GjrqbVv/o8fzcGuS3M7nRKpyuxXnBMoniHA9K6IOK3Ma0eb3om7od8s0QViM9wa55Rd7nXQqJxszRGVAI4HtXPLcuauSW7bsFhyPUVMpMIvk3JC5ZtoH0FOKVrlKd9jX8HTRHxHa2B14aaZ5douFsBcsMjGFTB+Y9Ae2a6MJye2V3Y4MZVai7OzP2N/wCCO/wf1X4bX9lp4EMNlcKJ0t5bYx3sqFSfOumZndmYnhSVAHYEYr7HDctlyanzNem5JuV9vkfptq9xFb2RGRyvTPWvUnLlhqeJQi/aXK2m3MM+niRNxHutVTkpQsFdS9rqQWssGx7oQMMttXcOazptb2NJxkrakOqW+lwAS3s5LKMrAnApTjFayN6M69RWitO5yvibV7xLSRoQ9vCxxtjG3dn+dclRpN20OtUoxjeSb9PMyPhbq1rFoXiBrC/DT3N+qCZlJLEIAQP1ooVqUIz5JdvyFisMvaQclseVeKvGekaZ40fVbvRpyNPh/dSyNlZJCcE/y5rBTUpvTRHbDklSUb7nner+PdD+JOvawNRlh8iziW3hgUEZPADAHGcHHT0rmjOnVrSTKdOULKOp1OkaFPcaXNqmkziEwaeqSkHf5jcdMdc9xXp04xa2Mqj5NGec6v8A2j4j8QXl5rFzZWsiIIpbeUgM3uT1GfQ1k4pzdxpxaszzX4iReEfhPq0viTUtLvI9PAJmuYJNpjyPvA9xn0qZKNJ3RuqjkrRPI/GjfEj4ys3iTwR43t9SsFiJSJ3BYDsGUnJrnk5VPejIEoJ2a1PFfG2geJG1GJ9XtzBd2jneXg2LGc9UdTyD6EVCjJas9GmoQgZXiiWUw5nminfbj7QvJz6ZrSLTZpT3KfhncrvuUDZE4YHp0NdP2Tui1zHmeufYreW7kubOKUZbMcsbcfR0/rXiYik23dHfB87PNdbm0CQM+mwTQuHI8op8gHsTzXh1oR5tFYxrckXpuZkbb3G3p3NJ+7EdJuW4+R/l4/HNcsndkS92YMu9eBxTp7my+EZpJa21D5eQT1rudnA4nFe0PRNKul+zIXbBxxzXDVavoelCUVBF/wC0xFcHv2zWKWpcLORNHPFgb8fnWlhzsiOeeN+BjHamoocZXVijd3K7SBS5UmZStGRWWdSTk9vWnKNglqh0cqM27PA6UJCjK6sX7QBSG459aOWNzXlbO0+C5+FKfEbTb341jU38M203nalaaNGGubxV5ECFiAm84BYngZPNXTdKNRc6ujWFP3ZWdpW0v3Pvf9nv4+a5+298Wf8AhV+heF7TwB8O9A8PXCaDpdowa10ZghCXE4CHz5W9cDr1xnPr4XL8zzjHQq4JOn7NaJK6T7vbW+/daHDKjHBUXUjzVKmjumk27rRX6Wvp8/XptDvl0/wpqOreIb03VxFKdPtJ5I2QXKxfJ5wDKuFbGQAAOeK/q7Kvb4nBUalVWlZc19Ndup+hYei6MKalpdXa9fQ4XU7208JyXms26bLq9K/aZ1hAlfJ4TgcLX0tOEUklubVK3IrLueGfGbxxea343stC0GxW+vJZvNiiktFlSPAwZHU5AVc8Z71bg4w5W7XOOtat+71s+zszM0Pwl4hvptR1iyvra2W1gHmR3IaOS+lYnfN0IEaYwOmSeARkio1/36hrtv0/z/r0N6cKNKShq7fOxxfiHQbJvENnZWGry28c9yTqLO37y5XaSSOgROBnJ9PfGy5Vu7DdepTk77MwPitqqk6fq6S26T3tk8SWMDF1ndflU9BhV657mvQo1bxuRVm5NtHH/FOS28QaT/wjlhZ6pNPe6ekSiC2MnzIv72QBf4M5PoAOvGa8rG1eShNz1uZ5nCjXofu01ovvtr267dlprufUX/BJ/wCGMXxv/Y1+MXg6P4bW3i68k0BNHs9CbU5LH+0pSxnNjNcY+RG8pWYLk4HPv/Hf0oOK1knFHDeGdTk5Zc8ra2jdK7X/AAfmfGY+sp/V6FSXupty8trHwx8IvDVzbfFHU/DeoyJZS6e721zbYaPyJI3JNrzz8rDyvcAc1/TXC+KWIpUq0anMnCLT11urpfp2+R6eEdS3NFX6f16Gv8cfEcOuyroY0xEtb29SLVCyZmTylJyM4x1PPTp1xXs4m9aoqnVHfilVUFC9z59gsr7xB441a/WP7NC83lRRbgBKgO3IPckE181CNatjJvoz5Ghg69bMKlSStrsdh4E0XRY7+XSFuPJv7C7Nqjwj5juXhhjr0Gc8817dKn7OO2x69CKpycEtUQ+NpdR8W31tcvbqJbBzaX6R8bGTkNzjJJz9ex7VlXqSbTaMa8JTndfMy/EutxeA9QtdSgCNdz2aJJZj50uASOVboQQCCDg5ry8XUd3ZGWJqSoKLZyV95GrajM9tbNZl93lo5wI+ckA+me1ecoxnI4nT9vK8djM08T2eqbWgdpd+Ny4GPwPUVlUitjLljzWPQ/h5pjXfi20tN5lJcHLEe3px7V42LUadKTfY68LSfNdo9/1fDkRKMbFCr6HAxX4NmdX22MnLzOyUnKVzHu7K6C/JJt3flXlc13qctWKk9CibS+gk3yyZB9Kc5p6RRgoTpNNsluLaC+t9r9cYBxWcZuMrGytURhXMt3olxkZ255FdMZRlscFeE6cr9C5aalBeFZ4mGe4qW3HRmtCamzptEvVlgEZPPbJrGd3qd10y3O2V5NY21EtGQsQ0bA5HFWlYupK0TG07adWIH96uuCtA4KKvVubF24Vzk9qyem511F7tyn5iu2N/Pakmc8L3sPVwOM8g8ZqKlmdNrIZM+Tk4wTQldCasilcqx579qqNkcstGQAYG3NW7MuMrsay7Gy3GfWnvGxMmlsbvwv8AA9r8UPiJpXgS88daP4Zt9QuRHca7r0/l2tmnUyORzgDt3rKSjT1lsYz9o1dK57J8VfhB/wAE+/gNr9nY2n7Xt38UpYZAdTtfCml/ZYZOP9XHM2/v/F6U6s5upy0Y8y6vY56VScqb9ppLotzsf2FdM/ZT8W/Fe78f/ETw1d2Ghac+7S9FutQMpbGdu8nGTivocihGHNOrrYnFwnOkuVH6yfsR/FPwX8VLe6u/hz4Vh03RbKTy7cRxABse/evoqdd1leOx89WtTly31PcdauDKTGrhDk4OeTSkmyIOyGPLHDpirdyOsQPK7uWNNLlRpBuUmyO/vBZWcconKRFdwUHLt+Hapm7DUXJ6HKapqup6zem4GkOtpF03tteQ+4rOTdtEaRpxg7HHeOptat7We8Hh2eQrGTPEsu3PHC1hUc2r2N4KKdr2PJPGngPxt480xLqbxN/YtvbxebaafaMGdmXnEmeozUVo1Kqsnawc1L4Uru5h+HNF8falpI1T/hPre9uJH2XawxBTHt4yD24qsNGqrvmugmoUXy2LbeDYjAkmqay+qOGDS30lwA9v3Ix9P5V1ShGDV3c5515XtY5T4nXp8PXaSJq9zLpckYZrhrdtqnPBUgcn2Fa0lKpp0OOznd7HkPjfUk1m6up9NuPNmchdkrFTt7fKe9XG19DPk59T5x/aCa/8m4g1GMxXUIwj7MCRfQ1tZWaLcGtD5n1+UHSrt3bO5DggdPavIxkX7FnTRglUieZSoT0bPvXykHfQ+lpW5SIklSPT3reyiiakr7kGA2cHHNYTbvdCpt2MvUB+8yPxqouyOTEJtM6C3haVV5/OtJy5Xc76j/etD9WT/RNiDnFZU5e/qRNtqxV0u2MXse5xW805PcyjBxZcui6x5zzwcik2k9CaqaI7CcyKVZBg053Vma0FeOpaspXtJwRx7VPNdWMU+WrodDazJPAGI7dK5aqaZ6StyKwofB2jr1pQimrmbV2TR5JA9enFOTii4xSPRPgl4v8Ais+uad8MvhfrrabJqGoq093peiwzXwzhdyyFd4Az03KOa7MrjVqYmMVdRvq0rtL8PuujhxKoq8mrux+23/BLLwP/AMKbsY/B3jTXWfxLf/6Tf20t2bmediOZ53JO125OwHC5IGK+yowpUeVbs+fxtWcqTgtmfaeuvLcgwQDdkhTheFrsm+aVjxaMVBJssWFxGjLppPzqgLEDitYyjflRyV0+bm6C3l1bwgF2AIOAKVSpGKsVRhOTMzW57LT7V7tmRZCCd8vb6AdTXFWacbno0E5SSex534i07xX4yaQadLNHBkKZZvlGD3Gelea6VWte7PQjUp0la5yPjqwtfh/oyW1hrjiBSTctCSSznjC8csf61p7OFONkWm5u8kec6/4I8b6pbTX08t1ZWMEG+2tX2+fKBzlsnnJ7VLp1YenY0Sowempy3jzQPDsWpLBrQuN0iqI7qGLy/IlOMZI5696h0eeWpcKihG6Ot8JeEk8JxXSG/vBHcKstwgJkPmNj5165GSPzrvpqFODVznrT9va6OU8UeA9E0jWp5fEkM8JvYmkkuDk7iB8rev4VzVOVSbQS+BI8M1rxB45+LVjqnh7S9Os9Q0yylkjsjv3SyKOCQCP0rOhKvWk+wKmoyT7nkfg3w7YaXfXGlahGILiGYpNBO7WsqoeMqwGCRxWahySs9GehZQV2Y3jj4feN9L1WU2X2m9snjyizTJKCO3OOntVvnivIJTjNnlvjC4RpxZSR+TNu/eRgAKffgDmopy986qSRQ0B8PIoPHlvnHXpXY5Wp3O2nFc9zzfxyz6U8+pCO6jikXBmt3wCf6GvFxNZtM7eaMXoeVaqryO0hnZi/ILPnI968OdWMpXOdRcpe8VIFYfNmlJ8yNFLkehK5Xpx061zWd7F25tSWIgx4PUnrWluUybaYscIE4ZR/GMjFbKXumM22zp7Bpvsq4JHFcc3dnTDmcTRszMQBuJoijppKw+7nngj+UHOKaabsOtfdFa2vbmYnOR7GrlLl0JpaakN5LOXwrHPrWalrqKpFylcRlkSMHr61Ld3YbTcbIitxOXwHIz78U5S5dERFcpt6Hp2ranci0sbeadyMhIYi5x64ANClJnTBSlsdLpulLbyiOVW80Dkuu3H5iu2kocusdToitbH6B/sS+D7v4Yfs6/2nHbyDV/GdyGRQRvNqhwF9geSSeMc1/Q3h5lKo5VCcvim7/wCR62XYROXtZLRHW+OJntp4UvoY2hi2sCpym4HgL7D17mv03CTjObp8rSVnd2s/JdbrR6pbqzetvolFShzX1Z4/8S/EUqC9fm3t1BmU7vmKjPJ9K9RwW8XYlqMKdmeVaR4m0Pw34f1TxjNp0F3q+oxgy3jgBLeBeUQDpzjJJ9ac7/E3oY0owjFzbOG+A+qeK/FvhjxH4x8W38F1HrmvyrJMbsGOO2RSEVduQwJGMDg5PPas8NCcKfO+rKwlaNaDrxuu2n+exy/xgv7600p9W0rS1N1FM5txPPgT7QRhlAyeuQOmAc1dWT5XZiqxk5b6GU+i2PjC21C21TxElwtvpXkW8lqG2xqRmQxZwVzg5c468VvhYyqJ819VYhSk5bbE/wAM/EmufDudtX8JXclrqU2kyRQ/a7USxwWjrsZwXJ/hYktjtkU1g6VSm/aa+Ry1f30Wmz7R+Eesfs6/8E7/ANmzwN8UNa+JPhXUvD2lXd14o1HVtP1DGpeI9WubaSAWcNmpG4Rqyx7nPIUnAwc/5seNuXcb+IPizi8FDD1E3GFGDcEqcaakpOSlvq1018z4tt051KU3JTldarS173v5/wCR+ZmleLrPUPEev/Fe+dLF9Sa7164sIbfy0iaW5LJBgZ2DBHHPAFf3pwnlMOHOG8PhJzbdOnFXfdJI9yjz4XCRirt9TUm1zQviDo97rlloal9Qiht5GuDjdKVIZy30ORnj3r6ya9tRc77ndzL2NzzGztRps26K1gEkWmXU0AbBwckbz6MSMjuK8lUaVKVrruedQqKFVpljQ7a7g8Watqeobkh1i2VbqZxnyZQq4PA4zng96JKSm+XW50U8KozlUb0ZFdXdlbwX9jc3z3L3qgWtzCD56yqco8ik4UcnLZI4rlnrJpqxlUai2uU5HUxrfjOzZPEFnPJqFohI2SAuqrkcenrjj+teZiffg0tzw8Qq2Jg01axgWFy0tjHPPJJGVl2yCRd3zA43MDz+PvXjRqu/mYUKziuWwyPzNQ1D7UCkas4AJGeMY47gVpWqRauJ25rs9V+AmlCfxSJZEC+USwUHJHv9K+Vz2vOGBm/I7qFaMdEeuXjBn4J65FfhNV+87mi1M++lYJkngdQKwgoc2py4huL0Etgl5DsdulKV1LTYdN+1jZleaBraTntWE3d6ByOmyDUbCHU7cq2NwHFOnUcZaDko1I2ZzISbRb3aykDdz716Cj7SFlqzzJKVCemx1Gh3yzoHRhzXO4OGh2Yeupmy04ZQwH1rGUbHXHcazYibPpwaSauVNc0TD06X/ibtj+9XbFLkPOov97Y1b52MhwecVzSZ3VPgKagqwLnr0p2ujCm0idGyPf3qHHqaxlzOw2clcn1qk7IU5WKF07scAc0ouxjKHUjQtncepqucUWouwpBbIY5zSc10KskV7uGORTHJGGB4wRTXvEyWhFZW1vbfJFEqD2FdEpSitDNcu6R63+zD8K/ih8W/HCeG/hXoS3NwR+/u7lv3cI/vH3rqy+jXq1XyvQ83HYuNDU/c/wDYI+Fep/CH4K2vh3X0RL9YQLpoVABbHJ4r6ulalT5bHzvL7WTlY9Xv73ZdYBBYdGPG2nfqdDp2gZGl69qfjLUprmUQ6do2nzbPt08w33LjqEXso9e9KNRSfZImKcZpJXbNi1vdL1yOW70q8iuVQ7ftIPCgccVDlGb0OmcZUtGjH1HXgNRNvYoW8tDuaRePrVboU9YnE+MNagttFcO7zLNPi6HmbduTwKym0tBRi5S1PIvi5qGopqlrpnhuwmtr+7j8i3eBt6ond3PasKi/eqMdLnTQVPku3sc94YsLHwLpVxo+q61ctcRSb2mLcuzHkE+hPeuuEY0Y2M6svaVLs57xp4T8P+M5x4ouftunxQH/AEv7FeMpDdiwB6Up8k2n2FGSiuVK5S0rwx4kis0bxN4ivri0EgXToYWVkWPPDNnkn8a9Cg5ez1ZyV5xeiVjkPjV4P0/VruWztGT7QF3Wt5FgPuA6EA8VVoXFF8sV2Plf42ahc634curLUkb7faEh5H43D1rJ1uUznPlZ8u+IZGTSbuMnHXIHevKxla9GRpRUp1U72POps7TuFfMQeqPo6SkmVy+EI6GtKulhVGVg5CkCsWXR2M2+Yhjx9atK6ObEaJnUQSxxKCPwpzu3Y6qzSqMdK3n5wvBHes4plwSeoyHCtj0PArdtqIRSchbxh5ZJH0rFSlLQzqxc3oQabGd+NuATxVNtJCg/ZysXp4TxJtpxkhV4pao0dGn3oEyOBxU1NUb4eXNuXwPmLGs4KxpJqLJkkCLwMk0pQW4lzyPb/hBYxppulWHw++PnhbQpbxGfxHLbXcmk6hZRYPyy3VxGyzKSAoihViWZTwFJH0eD9jRppQqxXl1Z59Si4ylKWp+p3/BH3wPo5+JN34k0Lx1J4gsY7COGG6vJ2ubiTaPvvIQME56BRj1NexhvZSre7qvM+fxkoQotNWdj9Gb66ERMMFud2eSq/er0KktWkjxIwlJJtlLR57w6hLJfw7EY/usnlqKPNGXvCrKm6a5XqT3V5YfaxHKRvzwKVRwc9S6cKqp3Wxk+LmiWPz2t8oo4BX7x7CuOvNXOrDXUdWcnrNtrF3YG71K4eODPyQLwMD19BXJOU7e9sdMHBNuB5kupWviT4l6Wt6PM07SnaW7dBmLf0CnI+Y1nRqfv0+iNeWcqDvo2L8R7u41i81HxNaaqyQ28RS0MkHDNnjj0HtXVUxEKknJFUqUowUTw3xN408QXnj+7K6ZJcpHoLSTz8GKRxjBAHQjHSuWWJ56zjY6PZKNNd7nRfDL4n6j4z0TVNa8LaiZDbW6lJY4iFSZFAdACODnjPT+dbU5uqtERUjCklFnPfETXvE/i3Vry30C4u5Ly705DPa3g/wBUSPvJnj8Kia97lW5m+VpXPLdG8P8AiTwnLPb65qB+3AtNHNbWgjK46nK4GeenerpS5Gdc5csVY8h+JWs6nq/iNdbl1cNDuKvdKNvmAnrkdD7VnUnFy5i6aco6mD4r8R3PhC1OpWCzuFtyYrhI+GGehA4IrOUpO9janyzZ4t4q1vUfEV4urXUMeZskiNsEZ56fw/Sijbm1OqmruyKujSuyzyoknyWzksOv1/Wuyrb2djrinsjgvEvia10bULi3uLPZNsG6OVN0cox1ZeleLibU4u3U640mldnmHiLU7HUJvtNlpMNpk4byM7WP0PSvEcYS1SM1JyZkxSyGQAH8PWlJRihxjHm1JvLccseM/lXM3d3N1a1kTICNwHpSbbMKiaZNasWkAPQMK1hG61IUU9TqtNQvbICB071lKKuddP4TStQEAJH51EttDWLdyW4jEqYxn+lZpu43vqVURYEwPwIrZQM5aMq3GZJi351LQQd1qOGGix3HXilKALSREgVOPXvRy3HPUu2l5PCd1tMyNjGVYjj6imrpgnKx33wHsNT8d/EXSvB2p6xBaaXLcB9Vvrp1jjtbZfmkkLnHOMgepIr18olHFZlSo1ZWhfVvsd+EblNRm9D9Ffg/45+C/wAY9b1nxGvji10v4cfDrSyNT1K6R40mhVMLBG+COcbjnBbtnNfTcf8AjHS4ejSynIZwjiXbljJSbmrpNRUU1pu+Zx02u9D1cVnn1LCw+rpuTbXTTz7/AHXPK/hn+0/pX7T97Pc+FvDFtp1pdXD23hTS7f7WXCrIYohO1wFUO+BIAmVAYAkHIH7FwLxNmeKyz22bpJpO7V0k/n23Ky3Ma9WjUq4lu0Xfmdldbt6dOmup5R+1JefGg3kPgLRvhFqd3HNNHHf3MkflxzR7vm2S9DnGODX2scwli4Kng5Kdt9Vt30NcVjXiElhmtTlv2iPCGu2Xg3/hALmzi0u4udPWS/s7SIlYS/ypDuJ5IUc168XKdPk1vbXTT79v680ehHBN0E5u+hlL4itvA/w7vfDeleFraA6dDbpbzpDliwyQQPXP867Lqckk7JDUo0YKLbsux5T4a1fxx8QnuZbv7JcxwOTfaqsryGOaZsmIDGNwUgE9s+1ZYZqcnGOyOWnOeKm56pIg1LWJITrWieFdKKXN/wCXZx3KXeCIxgM3+zwDxXVztSko7nXUkqSQ/wAdjT9G0D+yraG7tmsLdmNys3mPcQIMlemRkg5+vanXnJYX3rrl103f6/5nLVlUmnZ6HoWr/wDBN34k/tgfsL+Fvjf8JLDT77xDaeKZ7G3N9eJEyFYhILdkGMR7Ukk8yTgEkZweP5+8QOO8JkXFUaVaLtGKu0tdXoceeYnA43BrCu8a9OPNF2dmr669+lj5M8K6B4u1u2Pg2xuIjb2BNl4kZV3kMsm1o1KE7wCCMqSMc5xX6dldeedYSlOi/caTd9Dy8v58RhoSv0szqvijqNl8L9Mn0ixmWSay05oYLZceU0jFdrf7RGCM+5r6DFt0Ka5HbRq3R7f0vVnr15unhG4rXoeGxXfji2v5tRudQ8y/SQC4jkceXNEx+59B618wsNjVU9rKWvY+Nhh8x9u6nNeSfyseg6L4k1CeyuLLxBaSWVyji5aXO4jYMgKe6kfKR6GvbpTcoNSunufSU6tR3jUWpk6D4U8Sahrs/iG01dF2nDW0ZAXy2ByQCfu4PIrgqU61WrdPQ4nCpKq5X07Gv400QeEtGt/EE0kT3Cf6swhZI5kByCSOhFc+MpxoR5pBUk6cXNbHCeJ9etNduv7esLCCK5lfbcC3H7mRcdfY1484wrPmhuzyZ8tR81MqxOJZ5fIT94p3NkbdhzgkY46VDgoRsZ8rnKx6l8CLq6sNejuLa3iYGPO2a7ESSHByCx6E4r5jiWpSjl0+l0dD5cPTc2erw3NrrHhnT/GGnXkEttqDzRPHHIWa1uIiPMhfIHIDIQRwysD6gfgWIhOjUtLqThcXHExbRn6krsnHcdawhJOaN6kOdFfSGkichuhPOTTqTeyM6LUNGaN3B58ZbuB19awuzduNRGc4aFtp6ClFO5ztOEtSrqmmxanBtZRvA+U11Uq0oMmap1o2MjTLi60a68ifpnvXS7SV9zhcJUJXOostQjnQMhzkc4rCSaPQoVVOJalYfZ2IPY1yy0kbvVGDpBJ1Zs4xurtg24WR58eWFY2bqQBySKya1O6o7wKMkyl9oPGetUn2OON2yxb7iMv+dTJ9DrhFRQy6kIxjvUPY55v3io7DPvUpGqXukZYk8/yrayOSWjFOSnPFZyTT0NoakU2QMqORWtNJvUKmiI4UMhOO/qK0lKysZQSZ6/8Aslw/Ey++Ken+H/APjVdFiluUa/u5rnyo1jBBOfU8VrgpVpV1GDsjhx8KHJqrs/e/9ni6kufhlaf8TD7SBCF+0r0kwPvZr7KnHlgm9zwW41IOO35mt4vg8SfZGk0BIPNHLJP/ABqOorCs6jXuHXSVOXuyM/wFpl34t0n+2fGehxaZbxuRFpUCAhyM/M575rKCqVI3mrIus4YVqNPqdFYtbW2m3ItLBLazT5YYIEABJ71tTXLHTY5ZO8tdWc/rN1fXMjw6ZCFt4o8Ts4ABP1p+/wDI0b5Vc8/8apZ3GsAeT55MXy2pYBQ+OCfWjkUpXZUZy5bI8w8T3Guf2jHqdlPJbXEB2XVzKMxOuQCsY69+tYSvCpc0iqdONmjnviPqGtX+rDTGmtYI7vZEbwphgM9/Srk23qYJqb0Itbt7vSXmmsZPNi8oW95ayuNrn+/mtIJ82goqyszHXwzL4WhKzG6EM5Dxhbvcid+euB2r0YRcI2OWq+Z3OM+JunWWqQyraedb6kmJEHmZDY9CO1Q4t6o5/azsfJ3xk1Swu3vjdS+RfICsqMpAb161M4xBuSV2fMXiyVTY3WAAdxH0rysbD9yzooS/eRZ55OWXI7/SvnqcYn0VOTK8mdmcdaKr1sKbuysMBTmsrGtLYzbw/vtprSOxyV3udIoJjXHBwOabV6h3VYJzZbtIyy/MMAd6bikTBdiVbZfMDAc1lUegKVpWG39qGQcD24rKD1NlG7IrW3IOQMCuhpI5pR94utA7REAZHrWF7SN3BTgN0sPDNjHfvWjvYypv2c7GvIBw4OOPWlHQ6p2tcdDJk+3es5PUqLdrm94DsfAcvi6x1DxrBqsqW82YLbS9PjuWmc8bSJMhc+uD644rfBSw9KupVP0/U83G+0qU2k7H72/8EavDT6F8JbnVo/Ar+HLSVVaHT5pmklZccSSlud5B+nJr7rBVqU6CUdz4zHqrZuT0Z9gx6rdJI6XrL+9P7tEHA+vpXRzSW7B0YezXL0JbzU7GzVW1C7RAnzEk8KPrTdWCkrs4vZyk3yIradc6Nr1z/auj3azgHaXQ5UGnJ05vmhqdC9tQhyVFYq+KtdsbFTcX7RsYh8gI4X6+tcVapG+p0Yem2tDjbuy1H4hsFivlsdPjO6Yxna8nqaxjBYjVvY1p0qeFVoxtdt6d3q38zEv9Gkjg/wCEb8KCFNsh3SJACW54Lfp9ayjFW5b669PP/L79zapPklzHl/xJ+0eF52D2892sEbBoZZtqzykcn0AHT8K56vuaJm0KrqRstDzj4fXHhbTtE1fV9bvZxeyp/pUKpmKzOfuBv4htx6dTU4ZRjFyudco3SuVP2efFes6rpusf8IJJbyWs2rXBaZYGjBhDYyqMPmJ9q6KcZauDv5+Ry4qnFT1ZBOPiKPjZb6pq/hO5s9Iu7MJFfKzI7Sq3WSNsYT6VjJ1XXTlsVRUI0W0P+PkOsxXsWvkWYe2mWN4rKNQsoPRiMDDY/Ouhxad4jUlJanzH+0HpscWmvrS6OqWnm+ZG9vGUVz3JHfntWcqGnM3odNCprynk+pa3qN1aiaGGQqIv3SwE7GB6gr0B96h3tY6bOUrHAeKYktmkubvT3EgciXzPlYc9Djr9fetKUdTthHl0M5bm8h8Ja7qNtLEj/Zkij3HG7c3Y9jgVeKdqOh00klUWh57rlu2s6MLzXFvTPFGFF3GuYtv91mHp6+lePVcqlP3tDZwqTna+hweraTYW8Ujxa/ZysrYWGJ2JI/EV5Cik9GbTpQpx3MyJQp57GiVzkbvqiZWUndnr1rJtG1F6k0eChz1zmoSuwrJbjrQfvymc/MDXTF+6Yw952Ou0sAWq/T8q5qj1O2KtGxeWUBfm9awWrHTauONyiKdzY/GtNAqSsVXnVshTz603LQiK52VwzF/m71ncpQUWSA7VyQc4/Om5FSkuhCZCx+QU1sZqLLVmis4zwD6Csm3GWho5RtY9M+BnwO8cfHj4naB8G/AulNLq2vXixQxPkKidWmkA5CKuWP0rix+YrKcM8RKPNLaKWrb7Cq1YUIOpU0UVdn394+8E/CD4Z6Jafsc/BTTotSsvDfzeLNRkhMh1bUgAXY4yNqHIAIIHTtk/SeAPA888zPEca51F1MTPmhRg0nGEFu46aa9fnc9nJsJKrhPreL3l8K7Lp82cFqOl2U/jbTtH0aL+z3tiJZZLW0DAlTkrjHGRxx69q/rnERoVYqi3aOl7W+757HuRg1C7Scdj5t8d/E/9pL4C/FDx3Z/D3Vk1nw0upW98PC2tRB7e1eYkGa1kJzDIoBPHr718N7DMOF8/nPCK+Hla/wA2ePUwNeliXXjOyXTui54m8Qa142tdNuLu/k8y5VZnmbBYouWcknOOOMnk9q/Xk1UivZO19T31iadCim9b/qcf8TprHULW4ttOu5rWSQSMGnmJM7IpwQFHA6AD19O01JNxt1CXs5xVtNDzXR9F1b4c+HbceH7n7Mbq1lnvI1mDecc5bcQfkDd2POBgUUqbpRfQ5+dRjy09Sj8Itf0TxFDqGt63o09lNb3/AO8gmLIXPZh0JT/JrpoVYSvK1mZUZTqtzkmmtNSl4p8b2mr6ZqV9BOqv9k8q2jfCLGi7tzYJ43ZP1wKxknOrOXM1dLRuyVru+vV/jZCxFVSh7NJXPo342+N/Gf7L3/BFnwxpWg6YR4j8b29xeXF810UNva6jK0EZCbSN7QxygHPAc888/wAq5pQnxj4q4mClejSSTS2bXd+p4GMrYqWGq1ot2ilFer8z4J+B+o2nh+yktV1iS1jNu0d5Mznagx8xDDnJ5AOK/ofJlSwlFQjoloTlEYLDKMG3b8zc1jVx4zSfUkthPHNOu043GNI+4BOQx7Dv1r1q8va1L3PSlUdV+z6GV4/iXRCrnToR9ssYjcSWwDL5pbg+xwOQaxxSaSt1MsXONJLlXkdNfappWt+G5LNrm1yFjhuHkAEmHQYYewYf+PVpB04QbkxNyqRs1v1OLsLfVPDoksr8FHtXMkkYlPzKc5dGOMcYOOnoK46lWyslYxVF076nK+IL/Tb/AF2bSoPFkyQyyZsWlf8AdD0PXj3HvXzOOrQjUcXLc8XF16Mq0qCqtX27FfS9OutLnbSNVCqH4S4Qgxyrycg9MA1lhYVIq0gw+GqYeny1N+5PF5kdxFJATtKbWcHBc+lPEWSBWjNHo3hfwHrfxF0SLwjoWmxXcl64WOOW6SBUHJLmSRlVQByckYxXx+fzp0sulOeljPMKMsRhHGKPan8CeB/hz4I0jwp4d8SDUdWS5muNeFkimwgdkiVI4Zc5mYbW3uPkJxtLDk/iOaYiliaicGVgsNWw8ORtfIzbt1MR9q8uPxHa7op2jDzSG79DXTL4UjFq8tDRjmYDa4FYtK5a9zUgvrfeu5eBioehUkpxM7e8T7T0z1q4tW2OSzhIg1KxW9h3oPnA4NbU60oPQqpGNeFihpt/cWE3lOeAe9U29zlo81KpZnQxXqS2pZWxleRWTi5M7pVexlaPJu1YqP71dlOKjE5ItzqG1e5DE81yzlqd1RWjYz7eLzJmz0qZPsYwSiXkZY0wQaEuppGV2U7lyxwT9PahS1Odr3xkYBOWGPrTavsavSIyQc+npVJGE73IwXyQVOKt2Kg02OkUNHkjipUrMqsnyEVs+3lTn0rSS7nPFSkz2X9kf/hnzTvH1vr3x48T30MccoFlp1ip/evngufTOK2wssNGpeozPEUYuN29j92f2aLjTZvg/puoaTGwtJola2Ruuzt+lfWqKdJK2h4DqRqS0O1mvYXmjVm3t3wv3RT5dS7OKHXcixRCDzCI8ZYAYJNaXsiObmZVtpIWgnlm3fMP3UAbv2OO1S5LlG03K/Q5jXdJ8Q6dbXKx60hadNzIwBES+gHc1yyu9Ewm4ykjz3xobTw5Ml5MGnmNqRBGTg7yfvNgVpCXK+UI1JP3Ujh/HV3Pda3Z3N5aFV02386JnuAsMx4yNg5OKKsIqd5ChBuMn3Od+JeuW15qP20WkOI5IXk2jO8kjAHv7U1acrE0m4opeIdTt/FsUlnc6PIBCuWeMFADx971rqXLB2E4u1yhrJsdRktLPTgrslvz/pGPwI71q62trGXs/duePfHZkjiln0OWaK5hiBDwzEqCDyCP4abqXWgKKjufMPxB1rTPHmn3sGpQtFqkf8TjG/HWsJOetzOdm7Hzf4sEsIubabIKsRya8rGyfsWjTDRj7ZHCXfzKQp/GvBop6XPok4pFdgwjIPpWlVozdmtCumCp9Kxd0zSm/dM2/Ubi2eh61Sdjlrx0Z0sIzGM9MdaJfxDtrNuq7Fu3Y8A1fQdNMsM2zD7eg6VDSkTL4xmXnOO30qVTUTpjqiSOIqucc5qpMwmrMsRNuBX8qwcWmdEErDHiaKUSqK0Wxz1U1O5oWbfaLbk8445oudEGpR1BR5HLfjWUk27mbqK9j2n4IfBPxlpuoad448f6fa6J4euQktvqOqeIZLPepOFdYbeQTTg9AoGDnkivXwOBxVGpGpOyi+pyVqtOpTfK9UfuX/wS4i8NaR8HZE8I+FrrS9PMuQl3btEZzjmUK7O6qe25ia+rowjGCcdT5jHtyhyt3Z9E+HL861qlzJbKPKifEkjLxx2HrVKTbskccpxjStIta94a1LxHALSEpbWxf940nzM656Adq2VKVTZWRlTr0aLblqzSh0+w0LSBZ2m2OOKPqi1pOmoUrJnJ9YniK92crpfhbU/F1y2oahG0VkkmUW5HMv4dhXnUcJVru728z16mIpYeHLu/IoeNvh34m1RbhNJ8VfY/NXaDa26hYkHb+dW8JJP4rehtTxlJU0lHXzONsPhx4ttfCVzFpfjloIlbaJsqZJpPcgcD+dZRpRjTfLIU6kJVPeieN+MvA+ua/wCOFgXWb/Xri0tiZ4ZLgRRQ4HLYUda8mpTftN7ndTqRjG7VjmdH8UWnw+sPEHgYfDy71mK9T7TZ3M8uWZyQTGXz0z+YqsPVlRco2uGJcqvK1pY6X4R+MfBunX0FhrVgmlatZwug0vygjxgrnepICnOfXtXpYatGq7NWsclSE2rp3OI8NfFLUPjB8V/EvgfT/Flpq0OnQIPJWVGnjl5+Rg3C4x2NS61KeIlFdDtdD2VJTkjhfHHhn4oweIJtJ1jxxd/Z4T8tnb20cjRjPIcNncPSoaknowbpzVoo8u/aH07xdomhXWm6hc2E9ltE1rDc2TRPn1XHANW3NQaOhRhFaLU+ej4jn1WwWO1sWtiqkeUW278dRnFcSbZvSXVnLeObzdI5RJFjLDa7Nk8/wmtacrPU6ott3RleIHa3+HU5OG36lFkheMAHrV4r3qWh3QahY4rXtAnksZ4rHSrwRzRhleynOxj/ALQPSvMqQkqdkPnbd7Hn2r+FdV0ohrzTZIlxw8mM/nXg1VUhO7ISd9UZnktuBL+wJqXNtFNKKHohPy5+lZu4qbSkTRAiMg/nVRdjWorq4lgxF4YyeNw5rpXwmFNpSO0sBts0B9K5JnbzaFmNGZgT+lZLQVN6iXlsdnXkUKSuXNXRVSMxjJ5rRpMzhLlE3gN92jlRTlzDnXcuDWcrJktWdxqKqe9UtUO7ktC3p9wlldw3jWkc6xSqzQTFtkgBztbaQcH2OaiajZq5pTgk02rn1B+xr+2tdfBT463vi3wL8P8Awzp+o+KNEOjW95LA0UOhlv8AltG7yOxHdix5x6V89jMkxGKqUZYeu4ygpJ82t+ZNN+ttmenUo4XN5RoVo2jdOye9ujPbvgn4I8R+HNLvtV8c380l3A8st1cFDsvix3CZCfmdHzkHvmv6m8L6mGp8K0qdHSNL3Xp1W+m/+Z9RCtTxFNKla23pYi0q71iPxxd+N11dTM0DxWwSDi3yCO4wG54xnH4V+pww9CcLTiVVowpUoxeqer377P8Apq33Hz98d/h9rnizXdQsNJ1G7lFzbQ2lxuG7e4fMkhx/dUd+5rhzDDU8bONKN+ifye5y4lKc9Fa5yfjqaXwlZi8e9eO0tikE08zlfNROigd8kjpXu160cNQvJ2Ud76BKUaVC03ojz6H4g+EPiJPqOtxaytpNC3lx2cRUyQRE8AKxzuYn3ODmsMHj6eMourCSfzOOhjadSnGEXd9TjNSn09ftWm6XYXsdvp9wHvIBd+YLonlImOOOevWvQhXjVdr6K1/M3VRU5czGfFLxtqupxXOnaiscJS1jCJbAYtWVc+SMY5Pf3PtWsp3v2LnX9pTUjzTVIr298fQ6PduY9M1GyUMwkzypzycYzya8bEyn9aqTb932cn80rnkQp1JZmnPWLPp7/gspqOneKfiN4b+GvhzS9Q0rw54V8G6VpelR3d2wN1HbKyeb5HCoN7MUkGd6sSDjFfgHgtl6zCjj8xqy/eTqyb8tTz1g6uOy2UajteTZ8b6V4J1PSri90os0jKqsy5x5it91QO/rX71TwH1aLXMaYLBVMInBMm8N+INN0mTUZ7i3KXUdzmwQNvMbBsKfxGRmnTrppq+prhq8Y1ZJ79i4gujrGoahdSr5ZGZbC4cPlcfeH97HqORXRKuorU3lTc53voYXirXJ9Ov553he4sJowIzGO6jgn2B5ryMbNwk3J3izgx+Lng/etp5GP4v8TeJvF1rbSWVwhggRVmz1wPrzjHavNrYutUivZ7HiY7E4zGUovD7dSr4h8Mqmhw3k3kXMAXdCI2JYnurY5HrXHicPzwu1c2rZanh41Ki5rak/hlZZbY6Y8ksKTIDGlwMqPc56fWu7CpRpqJthm6sOVFq5iXTZEsb8ESH7lzE4YN9Mf0rCtFKXvbETouFRXZ7N8DrO01Tw7JJdWiERkFc9Q3rzX5rx/VjLLYwjpqejyr6ud1zGojUbeOBX4+4cr1OPm5ZWILtx3PWs5pXNHqiGyTMgPHJ70SbsiFZMvv8A6vA7VDZpUS5bojSbzFKNUXZlB2ZRvYOpH4U0n1KqU7oqwylG2Mf1qtHscivGRDqNgl0hliGGropms4Rmroq2V/Nbh4ZTjjjNbSXU55e5uO8OSiTVS+7+OtU/3bOfDybr2Ojum3Ftv/668+Wkj1JoqwLtkJxjNNK7Ja90nfJOAOMUS0QkrIpTKxfg8dzUoLJaiYAGB+taLRGTldkMr7ODn3zS5riauxkLmQn6U76FRikyZ8CHkdulZ3HUehBAoJ24xWnvNXOVSfQ9n/Zb/Z3uPij4o0/xRqWu6Xb6ZFfpE8T3am5d8ghVjzu59a9fK8DCrNVKr0OTHzqxpNRW5+8/wp0hPCHww0fw7bxlBBZooXv0r6WrUUnaOx4lCi4x13No3lvaxlZtq7cs7E5qZTUUbTTtYxrK91zxxrHk2CiHT4QQ94f4j6D8qwbqSafRiVOMfee5sDRdL0+0mslaSS4lOPNkc5Kj0qlGNipVLtHMX6WGmM7QQSyEphpLiQnyz2qVBX0RLlzLU87vNS0/xF47fUNRi3Q21uUlLH5Semc0U03UckLl9xLzPMPi5p3hy6ube6DyRXCXAK3QlJhCKfugdxRJJyvJ6G8qnsoOJw41z7bq896LyFo3v1FkbhCELDGTz0FZwn+9ck9DKEPdWhq+L7XXL6J3tbxoJBzE0K/upsfwj3rvUrszcoxVjmrqwSXSr7xLcR3S3saBZYdhV4j6+9azpqcTOUmny2PNPijqP/CReHbnxDpM/wBnvoEAfdjbKOnNOmo3M25LQ+RfH3iCJ5LmW5hUXAJ3+X/C3rRUXM7GUtzxXxfOZbWe6dssT3714+MtGkzqw0OeukjgpJWMmST+NeSlHkVj3XpoNmfdGa55xdxTi4rUqCQgEUNWWpdJrlM27kJRiTxmlLQwxLtF2OpgYeUoB6ino56ndOyqst2xPfjnvTk1FFxSJZZlAIY/hWakjln8Q61w2OgpTmddJLlLRxjJHXvUc6IqrXQWIAdsZ70pTQ6LHuN0fTpSUtC6seZC2Nw0E23OOKuKuYw0Vi3OGZgeOabcUjRU0tTsvgZ4W0PX/H+mzeJ7fWraKK7QxarpemPdguDxEVzgZOBkAkGunDV37Rb2ucGLdKNOSWj7n9Bn/BNq0lsv2erV7nSbzSzPIxFnqTSNcKCeN5k+bJ64PTOBX2FCopU03pc+UrKd7vU+jLOaO2aPS9LhVELZYbep712JbRRh7JOLqTLmvanJZwBIVO88ACqr1JRSijloUPazcnsQWLvBYG81N97Yzs9KlOFOHNN3NJxh7XlponD3GoafvcNbIeenOK39o6lK+yMuXkra6s5XxpcNBoM95cav9isAhU7SGZz7d8mvOqqpJaOyPVozhz8qV5Hm0ngz4g23g24vNOvxp0U7F7eC4+aVR/eOe5rBYZ+y1dkzaVRPEJSRh/C6+svh1ompav4ruRcandRStLc3KgAjIGSR2rCCo0YWkVjKrrSSW1zzzwZ8QPBHjz4meKWV5DZWcKLAbi3MUVyO/lM4AkxyMjNZYRwq1W9kDjW5I8pl+FNG1Xxd471691HSLPUNPb5LeCVzHNChHBJb72Pbiu2lC05KxrVlTpU0upb8dfDfwb4OEjf8IjaWV/c2ZkW80S3KSFgM5Yr/ADq6mHo3vZXI9tXqJK55dHqGtfE/R/tlncQCOzR4pZjcIkznJ+RmzncMd6wj+Bbi6OvU8d+JNvrdrp7WLy3V4GJESXTLKsvBymV6Hr1q3eKsdUG5/EeA6e1lY6y9vqFv9ljMjFbW8DJg9wDggA1585RhLQ7Wmo6HD+NpbOS9nWzlJUS/KhlztA7H/GqpyvudVLmsUdfszc/DK9mKlTDewszBc461tVkvZHXSi2zzLxXJqzqNU0WeOW22bZmtZiCD/tL2rysUqk6d47Ft8jOVvr25uF/fSMzDu5NeCubZjjapqzOYMzA5/SttEiXq7CtvQbsc9cVNkyUlzWJojlD+orNw1NKr0IbJyNQO71FdUV7pzq3MdtYMTZpz2rkraM7FpEuQsSw+lYbjhZC3YbZub04xTUWaSqaaFASjJ6+/FaONjGzkxwBb5ie9RKaWxrFKIkqysMKR7VmndkzaYkUbA5brV2layIi5dCdAx4VuKnks9TaLla7NHw5qVxoet2erW9xLA1vcI/nQY8xBnkrnjOM9a0oaVL9jKdSSlofoh8C/jDrvx18I63rl3a6kZoIIYrS81jUmu57qKNNqO7HAQADiNQAoGO1f0D4YUIUMmqKmrJzb+8+jyirGnh0oRSSfTuZ3i26tvC+jQR2zYkjRpZmkf/WuT0A7DtX6tSjUkm5S9D2XOdV3OL8TLbroGp6/rlwtvcXR+WOMbBtPJC06lGnKDirq6tdO33Nar1M6lSSnzI+YfjL8TNZuvB3irxH8NdJvLnxv4bvtHk8ESNFDJp8T/asTmZJARK2NgUEYGST2r8w8T81xVGphMvjf2da6k09dNl8z4Ti/EZi1To4Vaybv6HzP4b+Gmo+OPG3irxb8Q9Qli1RI5LnWZbaPyUFyRubZGmMYPQAdTxX0vC2TUcPl0ad2klrudXD+XOTUZ35ra69RLv4MfEHwvNep4c8ZSQpbW0NzcLcPuLPu4jAPJbByf/rV9T/Z08M3yVH6M9yeBxSi/ZVPvKWi6h49vNXvn17wjL9jgi824urfnzXX+I5/z2rfDvGKcpVIad0Y0J5h7Zwrx91bM7z4Tt4U8UX2h6PcIt7dnVNPSYqQrMWuAjJjqMk9q5M1xNKGRYiSlqoS8uh3yrUPYzcXay/E+lf+Cwn2bxZ+1t46m/sSW1g0J7PRbRZZQwiCwhxGMADC5LA47mvxr6PuGVPg6tVa+Obd+t7nLlapPJovd9/M+Hri5WLUUu7+8dz5p+zzxjGwxk7VI7/Wv2ypiac7dv8AIyniI0+juc14J1u61bxLqeszaRCgeUoytFnykHGVHP6V4mBrRnXlK3U+WyrEVMZiak5q2poeO7zTtDuUsRCsFw1kWgSJshuMhsj19K6MbiqVO6j8Vj3Mbi6WDai9ZPZHKS3fijxbdwzXkywW0YUtBFjanbdjrznmvFg8RjK16m3Y8OnHG5hW5qrtHsXJ9JvPCojsrqOIi4YNDI7bgGOeVx7dq7Xh40ZJdzp9l9RrKHRlq+jgs1j1SaPytqorKoIWQd2APGM5rSUYxTkz0cTPko83Qoarq9kmqf6HcBZ5IQ/kwygIvBJzjjB9K4J4mEZ8qZ4lLHxp1nCMtWuhW8g317DcSSt5mS+xSCiH6fT1xXBiazm7I6KktFJvU+j/AIC2TDwZKXUIpwCvQivznjlKOFhfudVKpKULGtqB1bTbkSWASaHPzwsACfxr8wSpVL3djlrQrxnzR2HyEzjzAuMjoTyPauNu0rHZBxcRLQbDg9+lN7EzVi15wIIYYGKiS1LtzUyFSVc4OOeDTtoYp2Yk3zcDFQ2buWhn3cJU7gSCO9CTbOSokRRzsTjJzW0W4qyHBNFXVrKRojPF1A5xWiquTSZFZRaM/wAKTlNRPmHkPjFdUqcnC62PNoyaraHWzzAuQp4rkaitz1veluLDEWw7Gp54o0ukPk+UbV6etRJ3MnLsV5FJGSKUdx83ukQwCR09aubdjBaMikQSnGPrWabRal0ESNY+nStUu5Ll7wkjkjBPShRdyZST0I41BlygHNbN8kQglE+oP+CVPwZX4q/tYaNdzWDyxaOTcyOM7FI4GfWurK+edR9jlx1dKNj9wY45Yo1iVACBt3HoBX1CVlqeQ5dihdw6bqF+lpNdt9mhOZFReHPoTWEk5ysCbauar6xZWdu1pY26xQKAAgGAPrWySskiKl3a5h+IteS4mFrb3hQ7cmQIR+tXboQoW1ZyPir/AISB7X7VNdyxQs6osIIJYZ61lVUoaJm8I80dEc74vuNC0+0lt4byeBhCTIoXLOe+KOeMFYVvZq9tTxv4rJceI7zSvCWkTyxQEGUxuoLyrjJz6VjUfPNRME/ecjO1qPRLPTrbTNVMTaXNHtdZECskpIA5rqjGKjaxvBcsH3Mvxe954avovD8upRPZ5Q2+6f7vfGTWqXI7HA3GUuZIzPEOqPpVo95dSOLeVSsiLKCw/wARWzlymqT3Z4d4rsNQ8PW2o69oupvLbuzFo2OQN3ZgegNSnbUmpUjI+UfiTcZ1a4u4Y9kcjHeg9aicm2YPXQ8r8ZTm3tHOMruyPSvOxsH7Bs9DARtUOY1i70aXT4o7KItct80so4Vf9nFefGMfZ3Z6dWf71GTLI+zBP41jJI0mnKFyq8hUHFZz1RNHVWM6didwI/Ss5IwxDsrHVWh3IueOKzm7VDuqX9qy/bjpg8VNSbaHCTTsOeHc+N1ZxkXJKRat18tcEfnVON9TOLadkT7FZSAf0rLVM6GrrUIAAQPzpuLZjZxkXFjV0wcVCumbqSK89r5Mm9K6YNtGTdndF+xR7rZBBC0ssjBUiRSzMT2AHU1LpynKyVw5pNH0j+yX+zl8XLXxzaz+N/BGs6HAu27sY9T8WnRYLpgQUEkJHmSqf9gA+/Ne7l+XYiHvTWnm7Hm4icKsWk1c/cf9jC51y6+FVnda7FZrLgCQ2KERLgfdQk5YDpubk45r6CDlGKX3nhV/ZuLSZ7T4buYJL6WYfO68Fh0rohJrU5MRH9xZMt6jd4k82SNRg9D1ArN1HKV2YUqSUeVMdp8raiiyCHZGp6sOtdEIe0V2tDmrr2Umr3ZR13WBfMNJt3wjNgmPkn/CsKmIVaXs47HVhcPKn+8ktTj/ABpo9xqF1H9uvY44LTDKX+ZYx6/7Te1Y1tGuyPTpOnGle2rOE8W3mu+PfFUHg3wXJNFaPMovLmYgPIOuBnucH2Argkq2IqWhsW5xpU3N6s88/aX0q71rxDH8P9C01/Ke2WC4dZSCqGRQxI9+eK5sTzuo6a1SDDRtF1JrqRfEfwO2q6/DpelaWtzHo8lukMEcYVV+XLY29e5rrjTcpqy0R0UFy07LqQeMfiF4W+Hk0mteMWhgivNLCLbxxsrhzjG0jqT2rplWoQfvPyOWnS9tPl7Hn/jT4nS/GCeR/DOna7bwWFr5c9hcXAt5FQjqhOCQRXHVqc8nZPUitRdGXvLfqfL/AMNPAmh/Dn4l654L0831ql9dG9VZb+S4jG5slmO75Wz2rHD0VCbTuelDmqUlN9De+Onhy00jw2/jHwdq01rd2rFb8ycqT67T1z6gV6M4OULxY4z5nZI8U0nxHJ4nlZr6VZfNjYbjCGDt9SPlPpXnSalubwi9jy/xpdefqUkrzhtp2iUxBWI9Gx3FXSg0jvpqwrR/bvAGp6eF3o7xZ3cAjJ5PpXROlHkep2UubmPIPGNtq2lS/wBnTebGiE7A4QnHbDjlh9a8XFVHShyxYVVrscxP8w3n8TXip+8FNt6MrjIyffmrexE9wbBUnH4elZOVmJbjYZFUnLUOTNp3cSO1k3X+Fxk10QnaOpzKKU9TtrBiLNcjnFclSXM7nfpylqKYLgg81EI31Jih80gkTDHjqKptI1ULIqvGAxrO9zOUrux2v7OPwQ8RftK/HDw58C/CV/bWt/4ivhbxXV2SIoRglnbHOABWVecaFLnl3S7avRHLia31ei5tXsZvxc+G/iD4MfEzXfhV4uhEep+H9VmsbxR0Z42K7h6qcZB9CKqhONSF0bQkqkFJbNXOegUvyR16c1rKXY2iuVXLVvEGwFGSahJyYpTdzSs9KeZ0Vc5J6YrRRey3M3vc+8P2QPD0mmfs8xC3zbGS9/0uXy8F164OfUAgV/RHA+ExdHI4KHuttXdr6X1XzWnlufVZW1GjZrVlvxJ8M7rXbtvib8Tta07wz4M0xsW99rF0bdbmQHgRqAWmI44UHrX0eccW5RkK5MRU959Op3TzTAYX925XkeL/ALVmuaZq+naprtrf+JNM0HTLtbNLu88Mmxe+u2UGOztYJW8yV3HJcqFUHJOSAebCcZPMpww1ChP3rcrSeresbet1Y8jEZsuV0oU3zp2s/XXoeLabZS/Dz4bH4t/EzSVtQ1nLLp+ng5827JBjyB94J3PTdmvRxOVVc8VDEY9fwtYpdzOhhq2Km6lbS2x5r8DdO1YLqnirVoy82t3cjqZYOOQDuPHB9M96+zynDPCYVX3k7noZdgJUaTlJFrxxYnSNVk3yhpb9DJcnJYxxqTtGB0ySMmuuScqtjtrVUkrEuttp2mXzaS8C/Z7q0AncfK052Fjn+6gPf0NdtPkjD3npqaQqRjHm6nQ/sT+HfAl3+1j8PdY174a6brkkfiEXNpb3N3JawXVzGwdN7orFQpUHGGz6HOK/NfFPB1v9QMdicPG0+R2a691/W1zxcXhI4+lKF3FvrFXf3Fv9srXdB8a/FrxH4o8LeOL/AF/w94y1W61jT9Y1Wy8qS9YuYpQig4McbIYwcdu9fn3gZNx4XqYGvFQqUmlKCd7XV1f1NsHh54fAxpS6f1958zeI7ewg+228PleVC7ENOuNzAAlV+g4z6mv2Ks4yjJRT08vy7+qOWtytWbR57od1DbapqF3o05t5rX97AJWzngZ47814OHpS9rNR0aPm6FSn7apGjo0yW20rVPEk03irUXV7rzNx2gERqCBjGOnNbxwbnL2k9zoo4Kripe2r/EX9OtBpupnTIMQ3LBVSdk3pz7HhcgcfU100afIz1KMIQdupzHjyfxBomvRQ69GZbWGUbRGmNvpxXlY2tXhXi5L3T5zNljo42DqxvDyNLxU63PhuTV948mSLFtyMKe6+3ripxmJisO3Fnp4qUHgXZ9DkNBeO9nMsUCyTYyxJ+9gcjP8AWvDpzXLz9T57AQgn7S3vG/osDfacmIlmIKnnLc9BW0XzTuzs5pTkfTvwWVYfA8hXKjcAFA+7x0r854+nzUoLzPUppQomjqGHJyP0r8us2yed3KwLAMuM/Sh2iKMXcRAY+vUdqiTQ5O48OMdeD15rPmLjNKJE7kSY3fjRzXMdG7jt/Gf8iqULq45S1K93NEq/vGHtk0+R9DO6KDOPM+Tn1NappbgovqThmaMoy9RUNxvdF2gt2Yuk2LR627r0z+ddHtn7M4W7VrxR2EFleX8wt7KzeZ8fcjQk1zWlN6anROtGC942PBfgLxL441k+HvD+lSyXSj549hytbUMLVrT5YoyniacVe4urfDvxloniVvCWqeH7mO+DYEJiJJqsRQqUZ8jWptGpCUOa+hT8Q+DPEvhq+Ona5otxbSldyrJCQSKcsPVpL3kVzRnG6Zmz6VqaIZH024CAcsYjj+VT7Go43swtGxVA2/KDz9Olc7VmZtqIxuOnI681ukuXUlRcncjkjeTqMc9RS5ktinCKe4+CAhtoHTuayqNy0B6bn6y/8EO/hZ4d0D4Raj8T4ikt7fXBjMw52Afw19XleHhSwqkeBiG6tZn3ZDJNPKqXMmE6geteluZKLSsW5b2ztLfzRaAZ+6u3Ofes0lfQpeTKc1m1y7XNxlFHzFMYB9qttLclmTrWoedeRubXCiP93GE4yO5pKpzSBNKNmc54i1yK71OO4Aje4Vwqq8Ywo7kZqJxlJ6jTnay2OE+LQvILCW5tlW13YEboQXmckYUCs5xt1Fe+h5zLpDLrs2rXr7r+2tQJrgyYAJ/gA9aUIKVW7Woocqicp8QXvfFeoRaPceHzBCIRM0sT4yy8jg9K7JXggcjB8VaZrJie68QQtJN5A+xxkAgY6moSnNXsZuEYoral5Wr6E8V5C0UixqiqhG0ntz2rWC5tzGU7M8K8Yatf6JLqKgzuwZluI5FBDg+o7H3rVK7sZyTeqPl34iXLS6vO0I2qxPXt7VzVIuLuU1ZHlvjS6IslgPXdjBNeZj5NUbG+DcvanIXKPsJUV5UKslpc9eEeZkMqARYGcjsaJOTZpKpaNio6ksQPWiWiIptWK1xGOp69+KINLc5qzcrnSQSqsK4IqOW87s9Oo7Tdi9bzZT0x61MoRW5lJtO5IkmX5ajlikbQldaFmLkctmocrMTlystRmMDaxH1qGtQ55DhIkbZAHtTs+o0pNk0bu/KDHqcVL5YmkYdyYQmRfnPNRKdti3yxRa0NNes9Vhu/DUtzHfW7iW3ms2YSRMvO4Ecrj17U41ZJ3Rm5pLQ9N+ACeLrn4gJqWv6bq2u6tcBk066kvmuBbzlhiV13Zc/ewNw/TFdeFxE/brmlf1OXFP8Ac8z0P32/YB/4SFP2btKXWzcSXIgCzG4djIzDgltxJz+Nfdw9n7BKPU+LqSlKs10Pe9CWDS7YKIT5jkEnGCSannsrGVWNSfXQdqM/2u4W3sbYu7N85I7etTH36iSRpSi4U3KTLGtyx6dpDRtOIvkwcfyrpxc/Z0eVaHNhY+0xHO1exy1rZBbmDTkuzbtcHdJBndKU9T/dFcFGikktrnp1K7ndpXt9xhfEnUbaOYxWYwifLErnjPdj60q3KtCqCnypyep554Q13xXpuv3WraEII2aUl9QvlyUTB3CPjA47n1qYSlGN46WOiVKk9ZO9+hxVr4k0Tx38V7zxT9qMhiEUOx35kw26Rh07DGa4qc6dfEuTWptXg40FEg17xRZeMrHU7uzjuXjivViP2KNguN2Cdw6/LxW06sXdJGLvTSj1PMPiNq8nxF1qHR/DRuzZWEZghM8SvFLjkDPIDdRmsIv21T3XoKgnBXe7J/APh7RgI3122FvdQKwliu73Mg4/1f8AtIe3pXoxgnY6ZvV31R5Z8TvBniHQPizp/ibSfC0mnabPbMkr2cYdX543+2KyrXhUT6FRrQ9m4oz/ANofRtcs/hsl5rWoGCWXdLbOsZ/ejsGA5PHrWdeo+TQVGabdkfK+orr1gTqs+WilIJnsRuhI9GzyprjWmsjthJWt1OL8WzNNPIUCsC331bO89ifet6U1c76Cb3JtLlhj8KX8k2xV+Tdv6Lz39q2qNuGh1qfI7Hlvjr4feMLCeXV4dNlu9Of5kubaTzEQe4HSvm8bSqqTa1QSjKTucbI46dPqK8xJ3JvYh4J4X8a1knYS03AIQeP5day5bobXUelqrDp+VQm0zRakMFt5d+NqHrjNdMUuUxqqzOus3JtkXHGOM1jNWN6fw6lhOWyelZx0RcXYtWdlPqN3FY2xHmTSBEJOAM0oUqlWooR3ZUpSloj6H0T4G/s923w9ttK1Rry58QE7rzUI5f3an+6o9K+srZLgMJhleV52OlYSimm5X7k37MXhKP4BftSaR43W9WXTksbr7BentKYztXjvmvyPxAwWLxnD8sJRvec4pW9TCrBRnFrbUj/aW+Cvi340eGW/aK0+eS/8T2928Hi7TgC0k0Wf3V0vrhcKw9ga+gy/Czy3CxwsYaRS89ep2VYSxeFjVjG04qzS7dzyrwV8B/HHjbxBaeGtB0WWa5uJFUR7Dnk17mGy7EYypGFNXueXVquNN9z6n+HX7Angm+u9Q8LeNfBmtNftDHHpt3pTjfHcAfOrxtwwz7g19hDIMEuaNaDja2vnb7jtw2AVelGftEu9zovC/wCwP8J/D2rK2t6zqEnlqG3vCAEYHlHUnr9M19bgeFMmoTg1Fyur3e19NP67HqU8vgk58t16nsPg7wb4Ha6t/h1pBjWzhVp7qQoSlraRgtJM/U5wOB64FfX4vNcHkOT1K0rxkrKK/rrsbYivPBYRzWj2SXU+JP2l/Bnxp/am+IF38bvib4vbSvA+gtcx+A/B8M+0RQQlUimZAAQ7khgcZY5Pavx2nwbxNn1KWPxElH2jveTu+W/wpdN+2p4lPJsVVre2lK6l08/M4LTPhlb+IvHWmeANF86XTPCMASJbqUnzLxjukkZicbixOT9PSv23IOHaVGvThH4aSV+l2e1gcqUq0Vf4dzT+NWgTa2UEjGS0soI7YQJFuRBGSSij+8T+dfpVJUrWPdxFOKppbNGDqeq5sG0G302KGO0RJ5tOJy0H3gZZOwI7VsqsZTsnojKhOT9y+551qPjL7N43v9ZNpE8JtvKtIJx1UjGT/OpqVbT1Qq8VGFjh7f4nHxNrl7Lq2kzjT9OTyFuvOAMwB/1YyOmMdPSscNVnKUk17qPIw+IrVK0oyjZI2fhb4u1DS/iz4V8VLNJbRLrdsQFwpiiNwq7gc5UlWI49K8viOlUx3DuNox+1SnZdE7O3mehT/dVFOGln+Z3H7c37Td5+0X8RtZ0D4R/Dqx0fwT8EFOhiPT7fy2tbVrjyg8pBw2+fv15575/l7wKyiHAE+bNsU54nM3zPmd9Ur2XayPnsPi8M51Uqt3Fu619D5o8aawms28csd2UhE/LseWO3k4HUV/U+Nq0HFcrdl/kbVnelzb3PONEk1WTxRctdQR/Mo3DGCQBjA98V4OCbeIl2Z8xhKNajjpuS3PVfDdzp+jSS3sNomxrPMTt8yluAd3sccjtmvb0jFtn2UORU07GBFdXGuapqM8wWGPelvvdcgICFV/qM5zXj+1nVlJrY8fD1a2InOS72K3iVYr66ma7u/NnS5SJ2ByjFVIL+vYfnWcqUqifMd1eEHRlzu7RX0rS9M8W6BLpd5fLbPZKX+/8AIcAkAjuevWvKxlOFSCp31R5NGnDGxlRbOF0ixu7fUZ7dGT5HwY4xhW57V5dCk1JroeJOjUoSlFdGdXoUnkXsMJB3CT5AwwN3ofau32cWmkdWGhKTPpv4RSCb4eyXLhYy8/3EP3eK/N+PlCFCmvM9v2LjRu2XZg8jkFvpX5TOaWxz2UWRSr5Y5GM+tZpSbBtormYFz8wyKc4uxEndAkqnqevQ1k4szTsMmbDctz2qowBt2K17qCWVs88gwFXPNbwSbsD0jdmPovhv4i+PdPufEfhvRJbmxtT+9kjGdor0I0F7N2R5ssQ+a62JdMe6ZxbywP5gONmMnP0rzakbz0OiniFyXbPQ/AX7PXxe+Is0aeGvBl3Isn3ZHjIX9a66WXYqrG6RjUx1GLPcvhh/wSb+PPiW5F5r8kGnoxBxgk4rsoZJiKj992OCvmcIO0UfUP7OH/BM/RfhNqMureJrtdRuHXH71BhfpXuYTK6OE1epwVcXWxMtT2HwH+yH8MvA/iebxZougQJdTnMjBBXXSoU6dVzRftJuFja1T9nP4e6v4mTxTe+G7Z7uMZWUxjNFahTqTUmtSlXqez5SPxN+zb8N/Gd0mo+I/B9rNMgCqzRDOK2lGEo6oIVqkFYzNZ/Zd+EF/bvpU/gWyVGTbxCM1MIQSs1oU69W+55be/8ABMz4G6jqVzIND2eaDgoOBXn1Mvwrq8ziTUxVZzvc8T+K3/BIrVo7yW6+HOvhQeVhmFebisq9prS0OmnmdWK2PPtc/wCCVHxr0nw1Jrq+INP82MZMM7bB+dcEsoxUYXTRtTzJ1KnLYtfsp/8ABMzxP8a/iVb6N408VRWWg2d1H/a+oxIUgkXq0STNjcxAx8oOM1wYqWAwWGcp1f3vRW923W8r9PR37o9mnhcTVoupKLsui3+4/Tb9mbUPhjoOr+JPgx8JfBNroGmeEHht7e2th/rwUB805Azn17813cK5hUxdKqpWsnpZ/iPPMseBw1Gf86u9LfI9isrxGTEcuCOHY84r6hyTeh8u02mLPqEl7N5sSkhRhnbgfhUq7dwjvqUr/Wrqd5QYiyJHhELdfpQ4ybLkk0Yc3iWKO9lnu7abf5AwjIdnHvUr93LUI03KJzvi++8P3iLLfSpb22zeRbvh2Pp7CpnVTeppTtCFoo8s8c2virUbiO70VQFgUzWltM5cuBzz6VLUnqjJyjL3banF6Na+Jzp934o1fRihdpX+ztLu3SYOOvUhea1w8ZSk2zWpCEbRE8PJd3thDq+qTxuJ8eeXcDaMn5QOeTXRZ7tnJNqMrHM+PvF8enXO+2CJJdQuLe0Z9xAzg/TjNCqJaInl5jgPFOv6ulhejT+FeQbkVsgcc/TBrWNzPl1SaPE/iXq2szefcTXg88RhDIo4IP8AepubiyvdjufO/jqeWFp45Bkq/wAzZ6VlUve7Oe/MzyXxxraG/EafOsUirMy9F3ZxmvJxycqTR3YNWnzGVc3C44JPFeZSpO1meynZFVpS2WY9+lVO0bIxqK5AJF8wg0ptuAqC5nYhmZST8tc0m0h1YRi9S9b3EzIo9q67LnNpXdRstLeXIX92prKTVxTUpO5Yt7i7Iy47ccVm4tuyJVRx2LUEl8wyin6Y61XJTjuO1STuy9DDd8eYp+mKylOP2TaNktS/a24cjIOa5pTZrz6F+G0m84Wyws0jcCMLlj+FRrJ6ImVTlWp2Xhz4KeNfEXg28+INrZxppFjOIbm6kkxtkPRMdcmumGErTg5paI554mCqqHVn0n+z5+zne+DPhVZfEm/8IXCXeqW16oup9PMyiQqghRk/ucuW49K9OjhZU6Clbc4JVPa1nDmPVPhH+xP4Ma4tPip4o8Kr4c1GwuFnuG0m6b7FecElvKPIcknC9MdK1pYOlKXPKPK/IynXqv3Iu6fc/Vz9lxNOHwWsG0u2uI4io2+dCY3YdRkHoP8AGvp8PBexvY8bF0rzs3bZ6eX9a+R6Na35dfJVhnILEr+lNx1I92WqNuK4s9PsPtMqhTiuqHLSp3Z51T2lStyROe1Sa71e8jkhni3K24M54j9/c1yVG6s+ZnoxpRo0mrf8Ey7S7tbbXJ5DcB1VSbm9l4MhHbPYewrOMouQ17tK1vkcTezTeL9cuNcvrVf7KsTuLhsCZs8getZOCnU53sdMIVI0o3tzaX/U5H4ieOvDMVwV+zFbUcmKInCHjhj2HHapqyi1psbKFSR5RYeL/DepfGSw0jQH895YWWS4Ns0MOzocMwGTXFGvSjXiox9ToeHksO5zKnijXde1HxHdfD7wl4ru9MtJFkhtYdIjRo3lyT+9bB6gYB45qq3PKbUXZGHs41LVLanCeHf2bfEfwT8FXXxW8HXup/2RDfs+s6Bc3DMPOY/vJVLnK5646cdKKGGVD34/M6nKlP3Z7l268F6D48DeKvCusSiTYpt42Ynyw3pj7w6j15r0ZRjKPNEyVRxlyyRj65rHiLQrJtOvtHu50AMcwllMOxhzvj3fe9emK4qs52s2U6UG7nAeJbbV/iTocFsuvXa3UVu/lNeOAMew6H6VnJK24KNpaI+c9Su9a8D3F3Y6zZW8gQMs1xFGTE3X76AfL9a5HUs3c6ormWh5n4vkiur6S5tkhRWOf3J+R+K2pNc2h20+aOjFs0jn8FavAQrg2oOMd8967nKPsz0IU+azZ4xrlxremXTRreTwKw5SKf5SPbBr5rF+4+aL1CT1sjCmkZst1z15rkj3YuTlQRO8XXvUTTlsEbSJFl3Hd69KycZJBJNEgdun9KlRe5PtLbAny3AJ79hXRHRakPmqSN6wnkaBQTwBWNRxW51RhZGjbo7YUn8qxlOKdjRKKNLSwbW5S4HVDmnTquFRSRpFpfCekeDNZOqLHbpetGx6ljXrRxKrRu3qXGavqfS3wG+Fs+ueGYNZvLBL+PTtUilKOPklUHlS3UAjivqMo4anmOXxxUoqXLJOz8j0sJgPrmGlz6du56Vo+nP4d+K0uv8AhzwfcabaSsXjtX+eLYfvIc19BVyKMM8XJh52lG6drwWys+zd9Doo4GrTwlr3e3meia38IPA2sQQeL/hzAND1VwWuEjh+fee6n0r3J8NUKUPcn7F7t6aelzzqOWzhXarxTj6lyy+GvxA8MzRt4n169heQearzjy2/3vU1ll2EyyVZ06WKdZ/Lf5Hrwhls43oJP01En03SLkvG920txI/MzMSWP19a+npYGrHDx5tHF9OxvBy5bWsjzz4mfEf4ceBPEl1+z9brqiajr8Bmu/FkYeO0v9hDy6VHOeCyDa7pkFhxyBXwuGzCHE3GFShj6nuUpXUeazbWt2uup50aftMXF4m6drxi7feeH/EbxCbPRYSl7bP9rvpLiSJBxFbxkmOP8Tj8u1ftawsZU04vS+q8kv8AM9GhQlKb51sed/Dq90WC0n1C/s5Zr27mkuJkEfBfjbnPUDg4r2cHShDBq27PUpUpUo+6jnvinrgjw9pcqrWcUknnZwZnGSSe3HQfQV0WSTZjUlKejPNr670y9tb+e3tJlOqQRRXkso3PIMfdHTcT+gNZ0KT5ua4lNRl7qOF+JAii1K4fSLJbeRr0LYW5cM8shGwE/wB4IOSQPWsMRVkna+pnWm5tIoa54a06y0zTtMtbnz3MTPPLsLLKT/rJfQkdj712wSVBQW5VanGFGxz3iR309rLXJYo4THAzxJHFkosRDRkjsDg+pJNGHw3t67oS2lGSfzWh49ScnL2SbV9bn2z+1d4Gbwt+yJ4r1PwF8MPh/pNn8Z/h0PE2r3WnI/8Aak89pJHJGzbiVCOHlfagUBgpOScj/OfLpynx9TeKxFWc8vxMqME7ez5ZN/itEr367dfKw2V4bE4TG4lRcZxvbs9NdO90fmp4f05NV8FNq1zE7K8G1UOcqD/Fx74r+78PB1MFKpJbjy+UquXKpNboxdK0p76/gC3Iij8wr9o6lJMcE+3FLDUktTlgm5czO20+C21DwncWMKkyxEmW0H3zKOroPwBIrodR1INI9aFX2tJxiYmiywadaXVvMsTSSQEqZGz5gJGcehHpUYWlCMHcyw0JUaVplqXTbW4sLnUIBEwlt0kLq2WGMguR254I/GitVi0+XYK/v07oxNJs7Q39yEdYpo4flSIj95xwV7H6ZrwMTGPM+54+G5I1Zcu5yEGnzrfzfaZXMiynOCMqc9civLw9WEU11PH5pOrJTfU6Tw1YySX6pOxeQAEMP4x2rrbcoaHsYZKDTZ9QeBEg0rwDbRDCqzEjBr8q8QObmpR+Z11a8px5Ue5fD79kPTLTRLb4lftZ/GLT/hX4Zuoln0+zvrN7vX9XiPO6005PnCntLMUTnI3Cvx/E5hHn9nh4ucu61S9WeRicb7D3aUeaX4Hq/wCzZ4b/AGNPil421jwx8EfhR4nkisLJGXWfHeqQXFxfcnc4toYglspHYMx969DLZZhQqN10tVojvwVOtiIylWs7fgbnxY/Y7+Dniq0mfSdGj02+wQr242jP0r3OSNaOqCry2tE+O/jB8HfE3wh1drbUoWktS2IrhRwR7159bDSg7x2OSEpOVpHHxOswBY5HauWUlHRHUkkiHWtIu9ZsjpmmwPJNN8qJGuSSaVDmnWSObFytRaZ9P/sB/sh/H7+zzp2raSbbSrwZkEikFlPqK+wwuCqp+9sz5761GlBxPtD4X/8ABML4LeHtVXxLrPh9bm7kbc29MqDXbDBYSnK6Wpwyq1Zn0J4a+D3hDw1BHZaPocFskYABjiHSulcnQSi27M6ax8OxxSeVEhHocdKWiK5EXl8KBn2zjhupobvoVH3WW/8AhBooVD7CVI604pLc2EtfCsBl4XHsw60pW6EpkyeE4GkwYwvbBqtOUFvZkVz4LspCXMPzDjg9acZJoFK7tYrf8ILBaHz3URovzFpTtGPqa561alCdmylh51JI8/8AF2oWi6zcwaZOkixIcSqMjP1rj9s5y93Y6p4KcKEnGylbS+1z5n/br+Jes6Tq/gvwVFY3y6Rca7bP4imtbR3MlsSSUBUY5wFxnPzV4md5k05YSEXzct792foHDPCtF5as1xFRK8lFLe2j1foe+u0/xCksfHN94bPhvwjo/lt4f8PwqImkCR48yYA8564/Ovm3w/iM2wcpYl8mlor/ADYUMwpZROWHpz9o53Up/wCS8j0r4IeOdK+PVnr/AMTtL8F2WlXNqxsFe1Oz7SsJxub1615eSOvlOdVvaxjG0Uvddk13s+pwZnQoYPD0MNGtKrCevvbxbNfTluXujbh1jQ8uA2S1fq0HGpFTT0Z8pVw3sJOLWxdvri6063ZZkCQq3EQIJI966L6HEtxlvKk98JVKLGI8F/WnexT0WpU1u7tpIvs8MW0hQVUKDkDrWTlKUirpQtE53xJbaD/ZrahJpC+bOoRSRnJz3qJxp321ElUat0OC8Ua3ai/W4s4ljFvAYjOr/KxNJXvoiFHlOKmmvdEWaWeZpY0ciJCMrh1wTVRcqY6k3I8/1DTpNP0/UFhupUEkonhCjA68fhmk+Z7swau1c5TXdLuvERk1FrJknhgJjkBzkH+KtaS5mXy6HD2+pXXmz2MilHjlw+88Mf8A69a3adhySSPI/jDrUdu11p0EBjldjj6DqKqybuzmUXUZ84fEnX7fR9KudTncDyUYypIevWpupPXoRUlGktNzx3wVZ6zqNle65qyuYtVOZEI+4gPyEfSvFxeJ563u7Hs5bhJey56nUtXelzWe1JY2UFd0bspw49R61ytShq+p3VGmtCrJGUUgdPeuapO7IkouJS8shyVPU03P3bE0VZkV3uRCDWSs2Z4l3TOisYYxEgAHSnVcnN2OmVoyaZdiji+bcgxjpis1GT3Jck3ZEsESO33Bj1rVtQRUYpas6jQNGjurEGCwaeaS4WKNEGcZBP8ASuVynORcqsYLU0/DHgHxJ4kvLSztdHkVLy6MMcxQ4j+YKSw9BkVcMNVqz5UjmliYwpuT2Ppj4df8E/vFHirX20DWNEgWG10wRQahZhlM0zcq7epBOK9fD5JOUvePOrZlGEU4n0R+zH/wS01vwZqll4w8cwWl/qdjMzW8kkA2uhAG1l5BIxwfevTwuT08O7y1Zy4jHus7JaM9++GX/BPfwvoOmap4cv8ASFNpq+o/bZYCvyFwcgmu6OEpxul1OedepdM910H4AeEvDmn2mh3GkQtCEUQ28qfLwKuaUfdZEZSbumbt38DdI13SW0x4UtJFB+yzwIuYiOhGRzULDxqqz0NoVnSndnqXw+0m98N+ErfR7/V5LqSCLBuHG0yNjHQcDiu+K5YctzmruNSfMtDQ0+9FvJ9mZ0VRy3zc/iazT7GVNN6Gpf6vZyWYkW5BjT7zMeB9PU1nVq8y8jSjQcKjutSnqJa00RtQnSQQMSVjjX55T2ArCrJxhzNWRrFxdTkbu/yOMu9D+IPjfybi+ik07SLds/ZGUb5APU55zXOvaPllH5pr/h7/AHGiWGo3V7yIPiVrem6DpMejwWoht4IwdscRyD3J9TWs5qNKzQUXed5M82stNsvENpf67JatHp6EyZuCUa4k7Zz90duPc1zRqTnFytojarKNOo+R3u/69PQ8c/aC8W+D9F0u98Y6tYNFa6VEZ2trZyu5VGSeOQD0A71zV6kYL2rWiKpuT92+55P+z/4T+Lnxp1Ob48aZ4rufDT3tsj6HoltGFWK3ByGkQ53OfWnSofW260JNLTTY6q1TD0YKK17n0F4rtXn+EWox6/4r1S5u57Z/7ajtgZEnjxhwycEHnqK6varD0Wk2zzYc0q/5HjHwK03wfD8KbW+8C+P7tbdwyWFmzsJ0wxGcSDkZHTrxWFKrCtStGVmddec1Vs4mPpPhnxn4s8S3Evjv4i3GoacspS3eSAKYSOOcckiqpU5xlec9C3zRV7WG/FbwMfh34UXxLHqNtqFrGTIqWtwHeJ+zY4OO+DW1WLjG8dUCrRlKyPlbxv4wt/GGuT6ylpFbSyIUla2GFbPQsD0z3Hqa4OWLbuddKLjoeT+KLXyNVc29uIdxIkiQYUkdTjsfWtlT5VZHoU2oq0ixo10X8O6jEsoDGxPTvzW7/h3Z0Nya0PGPFAsZbktDFPHLn5xIMLn1FfO4xwuXCy3MjYFGSa4YzuFST5QLKON3Wqc7GUbkkQUHPHvmoc7lSTHFg3yjpReyHGGt2SQrGkoYtnA55rPn5inaJv6Ja3mobYbK1eVz/DGhJ/SofvaIFPQ7LRPhR8RdUQNZeD9QcHoRbN/hTjhcTVdoU2/kVFt6pHpHw1/ZF+Iniy8SXW9OksrYDLlxhsV9Tk3B+ZZlVUqq5Y+Z2UcLVqu+x9FeA/2IvCkD26abHc3cjAK7SIQu761+mYTgjJMLFSqrmPTo4GFFOVRn1b8EP2X38K+HLnTLTUdNa8+RYtCe62yXRP8Ad45I4q8ZxNw5w/ReHkrU1ukVic8weEceaEuT+ZLRep1mmal4D8En7JrukR6nfgc2UkWFgwT8ue+OnvXymL4l4q4oxH1Xh9KhQtrUqJ3/AO3djhqYrF468cPeMX1K3iL4p33iRDFpHh2x06NMAx2duAwA9/Wva4f4DhhVKpmONqYmct1Jvl87K+hvg8pjR96tUcmzn9Zt/EPi++jm1jVbu+ZlCp5znA9gT/KvtsFlWUZNTtRgoXZ7uGp0MLTtCCiiGz8IXOnGRmeF/KkBdFZcoPfNevCvVVGVO/ut3+7+mKpVp1HZaM8a+L/hbQ/Hvwj8X/sv+LtYa0ebxnNrmk+IcbbrSbl4VltZ4XB5TeCjKR91mr8Sznw94gqcYQz3I6q5ub34z0VrdH5u255eMwE8VivrEG+ZRSWvb1Pn608Oa74j0iyufiJBFa67a2XlatbQSBoXccGVD3Rsbh6A1/Q2SPE4jAwli4ctW2qvdH0OCqOnhoqovf6mfq1/p1vpcNzHBFEgLJFDE43zEdWPcA+tfQxXu2RdSt+8cTxn48eIxaxST2dhFJ54dbW0TOJHx29QPWsJ88YW3ZyYm3LdbmObS60HwTBpl0pN8LHzwY15jldckZ9MCtIQcad5ble9CjZ7nn7W+pX+pf8ACW3kCQz29jusklbCxQ87nz3c4OB1rjdObqc7Oe0k+dso2GoWhu5td1pflSJNsDHDfZiDtXgdGPftXo2koczNKVRufNUenY5rVLbV55Lm7FyEtzpRjX5AVTduIVv6VnTxFSFVTWnQc6LjJTWx3nxm/aM0TRfAHgTwzqHjuLX/ABH4m8J6ZodjpMbOW0ezE0sM28DG3fywwT1z2r+U8z4Soy4yzCUqPsaUKrq8z055tRd0fn2NzbF4XiP6olaFTkt89Hoj52a4hsdNbQdMu2aCO8MLHeQdiEgH9BX9H5fWp1MBTS7I+gpSkqahBe6m19xVGjBLq7ltZAIJSFulV/m9VYfQ1qqSUmo7Mn6o+ZtbPc0fBvhLVNC1F7e1uTM8q70zKQJD6oeMHFcyoSozdupeDorBtqLvc6C807TmZtNubdRNGytMk0eOD0bOPv8AUY712ulGVPU7pyU42sYt/JpyNNoFvbGDaSqlnBaI4yzLjqPXNeVXppRaicV1L3F0OVjuNN0m/wDtWoytDbxqcPu53fSvFnGMJXnokeFO2HrtydonO6fGWvprmJ9rNKW2Oedue4PevNo06U4OpB3TZ4sKVqjlfdnWeFGSbUIzCSQXwHz931roVVQStqe/gqUn8R9QfD/XfEHg+003UfD91FbXEFpujuDbpI8LsTh03AhWA6NjI6gg81+M+ItaWKzGFFbJanbiFaaSJNd1TVvEGqT67rurXV/f3D7rm+vbhpZpW9WdySx+pr4OjCGHjaCsjhlTpxfMehfsifG+6+BPxaj1xW3W2pQm0ugx6Ang/nXXR9+qpSMfrE6Eny7M+7/BUEHj5DqET5Wf5lIPrXsRcWrIV5PVFb4h/staR8TdCuNH1G1WQtGQhYcg1TceRxCcrI+O9Q/4J3/GM/Es+DvD+nlrSST5Llxwi5rxPqFarWtHY5quMVGGu59u/sn/APBLbwL8MYIPEHjO3Go6mwBLTICEPsK+qwOWUcLFNq7PAr4utXlrsfW3h74c6LoEEdtY6ekaIBwigD6V6bq8uiOdQ5tzo7bQ1yFWMKM1n8UrlN8hcPh4QurJEDkd61toNSVy/Z6DbGPfFGQw68Vk4sHNSWg6bTMOSUz2HHNXzRSEkr67ktvaOf8AR5SQnsKnm6lSY86DlvMSXhfuseKHLQUW0VdYm0awRZLrX7GJycMHuFBP4ZpwvI2jCpPocl8SfijZeEYPsPhgQXt28YJlUbkX8qyrXpp23OqFFxabPHPEfjLxf4mulm1vUrm4DZzDkrGv4CvNmmveep6VKnCO25DpKTRTjbEDHICCDmoi5xltozblclcl134aaJ8V/HPhiy8Tndp/hdpNTu4PKG2Q4KoGPruPHtmtMRRjXqQ/u6s78Nj5YPKK1Pmd5tKK6eb8jY+NGtvceFbp7WMR24hYxqBhVUKcCtWqNSPPB6NXPNpqcY2e5b/4J0z2kn7N76j4sj+yNqE94+mSIv8ArlM5C7gB1Yd6/P8APMso0pV8VVbTlG0Wtfe0smuh6mIrYiv9XjSV3H4l5a6nq3i3wvfWUhntF+x3Cou6LHEpxnIPb6V3ZRncsLJYbGK2isc1SlHHU7wd99f0Zyyx6gLtYdQuZpWCkuHUhfxNfaU5pxvF3R4c6Psb33HXmtXV7cbbeJLe2hjIkmTv/sgVtCV9zJqMjK1zxINFijSSSUyiMskJjJYj1PpSnPlHycu5z+peJzqFxDYx3G9Jk86ZZDgYpJWehN3Z2OY8ZJbR2bxXTxwOF3wRx8KVyCSw9fSrjNO5fJy6s5/xf4rsl0m4lm8pFNuNxbjaAMDt61NS81oZ3d/I4jV9ehstBY/ZAxWwC4BzgkZFOMdLMzSblaxxehR+I7nQJbmWfZO0LfKjfwg5H/6q1p+4XOCi7I808WX9/b3N5NKgWSSMSFF6g+vtVSkrmfs7K7PFfjT4nhnZ76bi4UAnI68daxdRtkVJqMbJanzB49lvPi341h8C6TG2GfzdUljUkRQg8lvTPSuXFYxYei316GWBwk8bjFT+81fiHYn4fQReHrTyy4iUqpT5WiYda8enOTjzyPq8wp1cKlSVrr8jzxpmAzI7FRnaGYkD6VEp1amj2OGKjF3W5BPKfLDA9uKfsl1JdT3iitx83zevpWkqK5TSDSGXb7ozXLazZjX+BnRwOIkCk1ry3dzZy9pK5ailZ2GRgd6iUlFFxilqzZ8MaRqPiXXLXw7olqZ7u7lEcMajJYk1zxjOtPlW5NWvGlG7PqL9m34B+O/DHxWs/DF/4Rna+t7iG42XNtlEIPIPHIINe1g8vqUcQuZXPLxGIhWpXTP0H+En7BPgo+LG8fzeG1tZ7gZawXPkqTgtgdByM19EsNRU+e2p5Uq9WcOR7H034E+CHhrw7dC307SoiQo3CTnBre66IyUbLU9AsPCFnaFoJLeMLjLj1qG+5SSvc2bHw6jZMdqojVeC69Pxp26hJssnQjMyxTRBzDkowXp9KHS5tSFdal620ksA7KE+bBJHWm4KJbvJ3ZYVJmDxxMuehfrTcrqxGmzMyHwzrepav9pOrbIIgdtiItokc93bqR7DFYS5mtDoTpU6e2p0Fp4b06C7S91y93+V/q7NOIgevI7/AI1MaajLmqP5HO8VVceWlHfr1IvFPjm0jQkxL8vywiMbiPcCscRX53tp0LpYZU1ruzibzxNqfibV4rbVdVlsNPhYFl25ZvqO1TTftJLmdkdbpQhSvFalPxnrvhaLUFUX5ljDgfZjGd0nua3nKkndO6MqdKpJe9oef/EvXNRii8q0to0CnzLezcDYo6/MO/0rirTlNcqR0KME9D5a/aLufEnjTVNN+GtpqV3HqvijV48wWFmqgQRkMxdhjYNo4wD1x715uIjaKpXak3pb+tDswsI87qvS2t/M+h/gb4V0nR9W0xLfRDbtboLIObgKQyjH3Txtr16K5GklsclaKmmbmp+IfDHhLxZrdr401uBZ/skxtUvtqwp8pzl1HTpzzWXNSUmp7GM4ycE6avY+T/gd468NfEnSPE9v4ciS+02y8TXUFleQja8XJIKleqhicVzYWEa1OVmdc7qa0szk7qy+NNlqN1oF74vtb+zNyZbVyhimRuylhwW7e9dKpzpxcW7o6lyTs7HOyaY9vqV2dT1C9t7uQfvrSYkoR3O3PI915HpXP7RJtdTWUEo2SPEfix4XtfDer3GoaQpQSoXCKpdH9QTnJHv1HcVzSlJSKoysrSPH9U1SGeRzEHBMmTukyAfStozkjrUW3qXvCMkV7pt1ZmMjfaupGehrupXqU7WOlbWRz938M/Dtzqi/8LM8bQeFrTYDFLFA15JKp7iNW6/lXm5hlslHnlJIPeascL4s0Lw1putTWng7xRLq9gp/c3lxYG2d/wDgBZsfnXzrp8srJ3G1yrUyxYTHnbxmtPZX6kO8dRxtZh+7Xv3pKk4gm5Mki0u727unNZVLs01SPXf2d/2WLn4opJ4w8baodN0C0bBZf9Zct/dT/GvXyvKHil7SppEqlh5V3d6I+l/A1r8MfhfZtpfw/wDClpb5+9dXMQklYY6biK+qpUcBhF+7gvVnoKhRhb3Tq/Dfi7xFq9xFaafL8pUgLEo49BxXr5dUxNatFUkuW2/5HpYWipOyjZH0H8APgX8V/ijLCdD8PPLEoAnu7rEUC/7zHj8q9yvntLLKagnz1ErW0XzZnmeZZflcWqs9ey1f3HpXiH4Z+LvArDQL+9sD5ecvplyrhcepzXh06ud8TOUZVfZQT+y9fwPPwuZUMe+aEXbzVjMstLU3n9oXiiTyVyJTcEuP8K9zDcKZdQoqNWPtH1ctT0qf1l81PlSh08++li3pvhHUvE0k2raWkphg+/I8BYMT6nvXuUo4TA0+RK1uiR0Sq4fCqMajSb6Gnqvwh16ztleG9sbd2gM08klwFG32B71vTzSgpqlyu712Maec4Pmsk3rbYy01a7awGj6PcgRxsWaYQjdu74OK9iOGpzaqTV+up6kI3n7Sf3GNqWgC2g/tOS6SVwjO6ySFcnH8eeMV6N6ThtpY1p1VKra1jxL4zajLrXxHSSylt7eG98PRM8lu29NysRyfxxXJl9Gsqk7aKWwqnLz2jc8b+KFppyBbhZJoDCDmWN8iQj+HHHBr6+m4cqezOqlGy5tzzPx3eWXiPTpNT8N2TRNYRCK6SaUBy+TuyP4R6CpjVcnuYSqOTet+1jxjw/4o1vxjr1/rPiXThbTWUos9LgkzsWPIDSDH8XXmlCU6lZt6JGWFU603OrpbYi8feJdRW8a2swJXgi22ioP+PhkBX8EA7+1b1pNU36GuIasmcheTSpoVi9xe+ZZqrm6df+WmSAVUdcZwM98VnRs0mzCMJpczd0c/42nvXtl0+GeOCWFI1u1SM7VTf8sY+oPT1p4mtNLlRhXklC61NK+s0aKayN2wlnhjS3kGDyQckjGAw7LzRCneDu2bc05wUdj6N/Zc8Q/sC/s6/scah+2D8cPhZpPiL4h6N4ivvDNgdXtvPZY5bYyWrJGflR1LORJ1GDX8i+NWC454i8SqeRYCo6WFnCE3NaP3ZK+v3aHzeIwuChmbxWKlyqCVpLe99Efn/wCD4oLjT7vU7qRQrMZAgA5Dtyueelf0vk0IU8JGMpXcUl9ysb4CpB4b3dVds2rT7NPrR0e3tmhKwf6U2BluPvDIxx1r2lKKnodcZKUlFC6kZGaMWclxDLY2TOJlPB5+V+Oma5sTXitOprVoqKvExdU8f6r4phudPu7hROoXfdlQN5XuT1PpXEsZKtTcEzghjI1oTpx0a6nGPFNDdvfNdy7A5MoVuT/tAntXiV5Sg27s+eq06lGo5KT8z0P9jr9m7x9+1n+1h4L+CPw7k0651K/1QXTvrk6ra+TD+9kMgz84CqflHLdK/PePM5ocO8O1sbiHLlSe2+uiOWUKbxdKU/ejFpyT6q+2hmfHvTLbQf2jvHmjQ6vFqq23i29Q30Gn/ZVlImbLLD/yzXOQF9BVcEY2eN4XwtRQ5eaEXa/NbRdepVWCo5hVjbS9189STwnFbnUIWTCgyjfGOtfXKg3oejRq1Hsj6atrT/iQ2N0tuVDW4VWxgMBwcH2NfhvGVVSz2a7JI7J883dlaUfLkgg18qmpM5Kidys7SRSB42wykEEdjVpPdMy5Ln3N/wAE9fjbbeJ9GXw7q14q3dmQrLI3LD1r0cNUVuVGkpQVPzPsfw9YXeqXiy6dGCGPJA4r0adGc5XR51XEwpx1PUfBvw0t4ZV1S5tozNgfMV5r1qFBQdzw8VX9o7nZ2WhShiEiAVR2reV2Y3Rq6foc96CkEeNvJIHWoUGy7pK5P9kFqvlyx4ZehPenaxlJqQAySTIqjtyQKpSGl1POP21/jZa/s4/s8ah8Rb/w5qmoW8l7b2NxJpN4IJLJZ3Eazl8HYqsVBOO4rHFVJwoN01dm2E9+ukmk+h5P4c/b/wDiNZxW/h1PgjNdrBAsf29pjdzEgYBcb4wxPBzmuenOr7O9jtngVWfMpak3iX9qX9oDVoftllca1oMLPhlh8A2o49nkv3P47aVSdZK92vkZQwVpWkvx/wCAYB+JXxr8Sws99rvjPWcEBoorq0tck/7KwPj86xhUqT0V2ztoYSlGeyNPRY9ajuI38QeAvGdq+NxnupLm5Vf+/WmP+hralLEKVuU65x5VZWf9eo3x/wCM/EOhXCS6J4uhgiZSNt/4Z1cuPqwsEArSusSmvZzUX56fiTF0qlL+FO/lb/M4rTPjreXk8iTeJfDMhtwC4vY760BJ9DPbKDx2HPtXj1MRi4vWUGr23Oig8Pd80Kmn9256N4Rk+IXieC2m0X4RazrEcmGWfRVV4SOuVMhjyPcZBrqUsylFKULrpZr8NTmr5jlUE0qjT84tfodHrPip/CNubHWfg94/hu7iXddTDwpJMpVRhUJiY5A5+tdUcaqdNwlTd+v9XOWGKpVLNTTXTf8AyPK/jj8bfCV74avLK50fxlpqPaOolv8AwBqcMSZHVpGh2IBj7xOBnrWFb2OIlGTTTXTY7aNVOldPc9v/AGW49K1H9mXwXqmixItjPosM1ui9DGy5B/I5rnjCFai1NXTvob1qlSliG1o0dwPFF94UvbzU9Ss21TT7u1KtAzcxEDG4E9Pwr5XNMhlCpLEYZc11rFvy3XoawxGHxkYUW/ZTi7qSWj8mV9et9A1Cwh1fwdfm7gktlkkhZiXtyTjBHfniscrzb6hJUpNuFtU94s6p4WpjIyhiIqM7vll0kcNr9/eW6siIWkibcARtUHnrX3dHFU8RBSp6o+fq4SeGqclRHKatr15dYiktZ55LpT51xEcFAB90Z6VurSWpLgp7mElzDok9w9wXa4W14SQlljXsMjvSaUfeM5QS1PPr7XfEviXUZsRiaMTYWTBBwP7wPRR+tZ05O7uN6LU534h32q3sjaHp1rLdsrp9qaJcqq7h1NTUrpPlQqVF1G30F8XXkKWX2XywG8pGVFPLHgYIraMmS6aizA1fWV0TbZXMIjW5tyRsGAp961ulqY8jk7nkPxB1a3jmeR7lTIYSJPw6Coi1Udr2FPZW1PDbP4cfED9pj4w23wd+FdgLrVNQI8xmbEdtEPvTSH+FFBzn8K87NszwmT4V168rLou7OnBZVWzCpyrRdX2Mv4qafafsRS+If2eYvDIl1XVkI1zxRPErNeOpHyxHJKRLjp3r5TLMauJJrGQbUVpY++q5dh+E8P7OpDm9rG6nbf0PnLxt4wufEepG+u5dxWNUj3HOFAwBX0NSHRbHxuJxLrzczmnu0YfvZePTNOMNEjKGzbKl74k0mxjPnXIOe2a3p4WrWlaKOLEYmnSepFpmoW+q5ltAdvY0sTSlh/dZvg5qqudkk+FUoTXEo8zHiKis0jobL99iRx1FTUqcqsjrjaOh0vgrwR4r+IOuxeGfBmhz6hfSqTHb265bAGSfpWFKnOtPlgtSK1anSjeTPpb9jT/gn547+Nur2Xifwp4ou9OvtL1QJqkMlo0b25U8gEjk+4r38Bljupt2a3PFxWMVnFq5+x/wm/Z503TrWzu9ZsFutQt7dIpLt1HmPgYyTX0Emlojzop2PZvDnhKzguRbXCBY0Tg55H1qVqJux0+n6JYTwu9kgOzGCFGavlQ7suR6U93bsL6MhgcLIMYIqHqxuyehoWujz2FkUt5VaNhzg9aFexlKpCUrMjismLovmhj3Ut0raCbRpKSjG7G6/NqEVsun6Na7ru4ilFvKyZijdVyC5HQE4pVISlojD2mvoZq61bGIwRMrSo5T5ByGGQxrJ8nLZPU6I05pXkbGm3EdtALgFWG3OH6k5ojKEVdhVUnpF6GTql1qWr3E7aFeW6SKp2NMp2KfWuaq5VPgKpqEUlJXKWk3Vto5RtZuo570tmVVjyCB6VMXGK13NcRTcknHRGdf315rGoyRaPpkQeT5mYwDCD1yeppqcpPQUH7vvHN2miX+tXk2orEvlRSeUt20eGuH5yF9hjrWbkpu+lnojedox5VueWfFm81iPUX0tb4AQsWdtoJbHYtg/lXPUlKm7M0p0owXNI4T4Q/C3X/if4yvPjpqHiddGjs5PsehIqA7mBOXZWBzluOMcCuejD6zU9vKVrbGuJreyh7CMbo6jwD47s7jWdds/F+oWR13wxOI5rixB8mRX5ztP3WOfwrrhWhUlJPeJx1ZLlioJtM+b/jDrT/tPfEOfQ9PiurXTNAMlpdA3BA1GRsck8ZH4815/tVjJOK0SOuivY0td2b3w4+FUnwO1zUdMtYJrHTdW06GTZDDhYLleN3H4V1Yek6E2u50SUZUlJ7m5rNjFe3V/FrNnuExXdKj8iX+Fxn15z9a6ql5XRkqjWiPLNXufDV1NdeG/HsVzCYyUt78sBJbkdCD6Z7HmuCajB+8jW073Pmn9pS1134Y6y+n3ztdwXMfm2V6sm+G6TnDxnOA3rjHvXPUhVir9DqpU6Klzq9356aeXT9TxefVTewbykSF2374024z2IrWlTd9WdkItl/wTdG3v2VNpBBVgfcYNejSkoqx0xklJWOI8Z6ZcaRr1zCHjbLkmOQguo9vavCzCjU9o5N3QVUo1NepjySBlwT1ryYfFoUo8yuyNCc5AA/Ct21bUjlUmTRqgJdhWE56WKaS0R1nwd+GXjT44fELT/hn8O9GN7qV/LgDOI4Yxy0srHhEUcljwAK0wuHniqqhA5qtaMEe3eFZfFGh6vdfClNSg1G00e7a2ivdNBaGZlOCyccjOcHvX3WApOdNYfp3PYw/NGCitT1nwd8DfFutaottqxmsoCAzG4gKuy+uD2r148OYmeM+O8F5WZ6uEwvtVzzWh9aeGfg38B/hp4D02z8Hpcaj4gaEvqF1cxgRoSPuqO5r28PQnhJOjCKjFI4qeIzKtiZxnFQprbuzWg1/xVBpX9kvqlxFp/3msUmKKMey9aWE4ay+vUlWrx5+Z316Gscvwspqq4Jy77lfw54YttSvrjUdMjy0hLzYlbaeOQBmvbhlmDy13oRST7HrVaqjBRkvwN+28EaFJDcXtvqMsTtGF+zruYs3t2rWvRrVIqML69exz0sXiVUUFFNdwurr4h3WlvoGjSXiaanzRyw2/JI+9zx0rrhDCYeXNVabZcaGAo1fa1UnNmV9nW9tjJPrt1Mkg/drdkqffA9K9KhdK6Ss9jpVZvSMEvQdGWjtgobYF+8okxkZ4rWn7XEQtNW32fn380bypycSh4tj1jxFpkth4b1CC1uZnj8ozJvEiqwLoe3K5H41GaU6iwE1F2bsTTgrS5k36Hj3xk0Dw7pniGe801Bauq7UjTgFP7o9s+tetlrfsYLrY3UXGCvqz5y+K/iS+vpprC3eFVuH/ci5OCADgnOM+vSvd5JShZC9pOEbdDgTZzaTZGHSYQkNxe5upWl3POwGcBeuPcgD8qIqlT0S1DlpwXM92cXr8MaRAxxCR5oZpGCrtRXJPQ9wMZz61LlquXqY1W3rFnlcfijV7+5liutEvRK0jW08xt28uKAd1boNw4rmxEql0pHFByqytJPQpr4s0GWxa8lNsRHPmVTPuWCOP7sf4nnjvU05RUbpo1q1oRpuzMy+vlvbGa4e5W3e7P22UZyUQH5ck9/QVr7aFrtnJTjzq7NJdVEdpHfXkaFLmAiy3HBiIUgyvz1pxrt13bWLX3ef+X6nqudKNNR6nrv/AAS98N+FPjj8U/HXwD+JnwitviBpep+EJNd0rw1cS+Uh1CxIeJkbPysys6nthsEV/OH0msxzLIeHcDmmX4l4eaqxpymle0J6fcfOYtYacpRrP3ZNb7bny9+0xpXw10X9qjx14b+AF1eReD7bxA50eDUbKS3mtUbG6Bo2yQEfcgPOQoI619j4aYjN8dwpha2YTUqrSvJdfM8zC1OXEToU3ov1ONKa4gOoWd7JsT9zcS+Wd6gkg5GOR71+iqpU5XJS8mdjqVY1FaRRmg8T2+q/Z7nVPLAQokwYgOuMhT6Yry6k61SpqzKX1z2zjKWhX0/Q7uOC4nBZEdN027kvk4O39DSow9nFoxo4aVFvle5Slt9SR5rC9H3TkTKBn8fbpxSqOVnFmEoVVJxqbHS/s9w63pP7RPgq88PalBZXyeJ7VLO6lumhTe0gVd8icqpJwSOxr8+4+oUKvDeKWIjzwUW2rXv6HDDF0ctx9PESV4xabS6rsL8X9I8eWfxy8ZJ8SbCax8Qf8JPeDVLO8Vlkjk81ichiWxzkEk8YPNHBbwFPh/DxwUk6fKuW3axtKr/bGZVsXFcsZybSfRE3gmGKTW7a3V2VmnAZxxu596+yrTfs207M9Om6dBrmPffgl4hTUPh7NYyXBlEl7PLiRi32ecSYwuRwGTIIHGVWv594hi6+KrVZb3/A4qWKnVqOK2uat5Kc7V6nrXz1OOly3eT1IAoAyR1olO+gpNRR9I/sIfss/Gfx/wCNrTx14aeWw0+OQeY5U4mX0r18vwdWXv8AQ8TG4lc9on65fCj4bDw9oMUGpqHlWMB2Pc19JRhKCseZVbq6S2O+06yOV8mPIU4xiulPUyatojVih8pyrx43DkGm2RJIsaRcy2TukK4LZAJpK/QlydrDLuC4kctKBg85xScWVFPqSQRGTGyEB8YBNJRRocd8ePhr4u+KXwj8T/Djw7qmnrL4g0S5sfK1K282Ji6ELlfUHBB7HmhUud8re5jT9nOpGTT0fpsfB/wh8Y674m1VrnWYvJumZY7q2Jx5U0Y8mVD7iRGFcbnaVu2h9TClCCue1afICIt1sjADqyZP0zWjcnuYTd3Y6vwhauZWWSABG5HsOOh604Ra1sROLXU7aCWWOIDa/wAi4GWJyDWvPKKvYwvucr8R/PKENNJnbheT6VzYuS5bHVhJS5jz2C9ubdipuH5O0KWNfOVnHm5W9X+J9HCUuXRnT/Dg+F4v7Q1jVdOs7y7EOLSK5thgjIDPkEHIz71WFwuHUZSmteh52YRrVnFJ6LcwfETaRqWqtEmjWyvHGSWUY3HHvVKlSctFqXBcsEkjxP8Aaf1ZtH8H3T28awTnS7hEjViQcxkAYzzkkV38jp0HK1mkTCnLE4uml3sfbX7OvgweBv2a/CHgmSPa2leHbOBlH+zCo/nTw1NQw0U9zDNqsFjppbXt+hsvdRXFq0LBcKCrBq6FqjzJJKVmcXfeGtc8J6u/izwLf+TMxRp4CMpMFbcFIry8ZkeFxq5oq0u/c9ehmtRUfq9dc1Pp3XTQ5DxN+0ELA6pF8T/AU8kl1qKyWc2mjaIojjcCO4B5rwZYHNcrlJ0veV7/AC7Hs4eOX472dGnU5YqNmpa3fe5o+J/CHiC68P2nijw0y3ujXdr9ohl04qzhB1VlHK+9elhOIqNTljWXK3/w2vY8avgKMK0qVGXvRdrNW+57M898W3ss12LPRS0UixEv5wAIOMfN7+1e7GrGUU4u557oVqLvWi0YGjxvbaXcW9td+e4nJ1CVx1P90VLqc+iCcfaapaHJeGPEF/Dca9fRRi3t5rjYjk5LAdetcUKkouUpbI6YxhFKC3OV8dvJHfx60lzjDEGNerjtxXa69krnO4Ru7nGePvFzXdsLmRwjbNzgnuOla3nbm6GSpup7sUYXhb9mL4r/AB8Nx4gupV8M+E7aN5r7xDqY8tpEXlhBG3MjEcA429Oa+WznizBZVCUab5qi6H0WUcM1sVXjCtFq7XTv37I8W/aO/bV+COjeAL/9nT9lL4ZapoPky+Ve+PU1HytR1EjhhIygNtzkbQQB2ryMtyTM87xFPMc1a5Vqobry02Pq8zzbL+EqVbA4SbnVkkm4pKMX5N6tnyRr82oXdu1zfandXcvQzXly0rcnJOWJPWvuo08NhqLVKKivJH5ficwx2YVF7eo5W2u72ObvEmdtqygYrhdVSlqa06M27soS6HNeEobkgN2FbxxMaaukFWlK1kyjdeB9Od900hYg87jV08xrRvYw+o06rvPoaumWdlpVl5UAAAHYVyVJVa8+aTNFGFFWRUZ/tExI+7nrRW/dJpMzjBSep3ng/R4dS1y0t7u1uZbRp1W4FmuZNmedo9a4KUXVaTOqo3COm5+gH/BPz/gmd4k1D4qxfFKfxRfxaHG+7TUUGGV4zziTHWvq8uyuNCXtG9DwMZinV9xLU/Vn4S/BDw74Jt0stB0WK3cyZcoADI3qSOtevKy0icSVviPUdG0y2tbrf5YiKHJUj71QlqVJ3RvtYLdyGa0iX5sBmK8GiW5DdjRtIbG0iVHXaDw3l9z70nJLQXvdC5E0YBt0QgN90keveqSctBO7d2SppyaSFvmnZxjBXOQKJQ9m7maqOvLksWpbaynh3R4VmHJUc10RcHG6JSqRlZnAftEan4o8K/B+/vPDVvcyymSNJZbeJ3lhiZgHkVE+ZioOQB+PGa8PP6mJWXSVFtN21W6V9WetlMcLVzBe1tono9m7aI5P4V/E/U/iDdajbz3tvq9rpV/b2VvdJaqsjMIFeUkqefmYjBGeK83IsTjsSp+2qc8U0k7Wf4G+Y0aGH5PZxcZSTbV3bfTQ7XULvUL+9FlYwyocFQm3AOfevcqXlLliefC7jds0rHRZ9JsgJ3jWVuS8hB2/h0reNH2Ss2Q6ylPRGVq/hux8VeaBHcNJjBu3fylHsMc4rmrU4yeh3wqOnFc1vTdnJa58MNH8JaLLeRfEHVrcshL7bsshJPQZ/LiuKtRUI35rFqvPn0hoJpPj2e3063tL4LJaW6YW3aIxtIMdc1dKt+75U9jlqxvJ23OB1uCw+JvjmDwnaabBaee7NNDAdwWMnAyeOTWaUa1dU/vN4xnGm53uN8R/D3V/hNplxpngjU4YYIZMfIwLxvz9xc/MenaqqUlQbjB6C9pGu/eWp87+Knn8K+Or3T7LVpLpdeRn1y6uXSO9kyucKg5wMEZwccZxmvOjKdOq4xe+53UlTnFK2q27C/B34UW2g6LeR6zbXQt7x5b6yvZgZGj25Pzeh+tdeDoKLbZriEnNO52tzPDq2rXOq2+pfbbKTQ1eTHO1hjJI7HHP4V2TUnPmicrnNxtY8+uNY8NeKItVsW1Yf2nZjyriESY3oAWV1HsDXP7ZO/cpRdOKkz5q+IXinxB4n1G/sbSybEMzQT6hKDslAA6ZHpjB6157qzqTsdVJcmrPB/H/AIKk1dB5/iK7WKPLQebcNJCjA/MChPAJPUUnzt2ud1OEZz5mcNc6RLZwvG9m6qRzhdwB/vBh1FdNJt7nVLTYm8MzTGfyJNquvAYcZrqp8vMrkxbUjL+MFxE/iQyYQymJd5xk9Pfoa8/NJSpy0NqkW0mcVJgHqeeleHBO9wU3JWHxEA5eqlrohOdtjtPgH8H7n4+/F7RvhXB4rsdDi1GR2u9X1GTEVrBGheRsfxNtU4Uck4FTCnHVyeiJ5KtTSK1Pse0v/wBmX9l3wtqHw88E6Jq0lhqNsYNa1+K68nUb9O58zBCITn5F4wec15dDO8ZRxPNh4pRXfqe1HLsHhqS+sXbZ1f7K/gz4TXljN4s8D6NqD6aWJs21dAXjOfUY3kevvX6RwnTzfiDEJTg4U073Wn4m1KnCdRRpX5T3MwaVrly/9qxzTzOFDzq5BCjoo9BX7Osqapcqk159T1qcJ4dJU7JI6K20f+wIYdWlitViui0drE91ulUqOsg6gV8tiJ1KuZ+xptvu7djm5aOKqyg20476aa9ix4s8LappnhNPFF1rVrKbl/8Aj3hlBIX3HavosFVquu6HLpbcvC4qnVxf1eMHp1Nf4JR6R5iSeJZPs1i8DmYock8dOh4riz6rUw2X2p251bToZ5wqsIv2OskyO/8AEVlpuogWnia42IzG3iWPaFTOBnI+b/PFfOYbPOJc1awlFRptLWTV9PIxi604csYrme5V1TxXqM8EMF1q9zCq5aIqdu/PqOlfSZbw1PC8tbEYiVSSbfZam1GgqdXmqJNmbqJ+z3J+1RqTBHiMxNuMmf4j7/yr6ujCHsUoux6MFzK6e4aOY5dW+3aoBJbogKxA/f8Ar7UVYYp0UqDV+5tXVSVLkpvUj8aanePo0reCfCNzqF4ZFaHT7O6Ebld3zbWIPQc89cGvMz6VWhlUpOeun5mEabw9FynPXzPEPiY9vPNe6tJPMzx5Pzjkeo4r6PAVL0Iy8kaRU5ySPm34i2Fnq2pu1nGsc0gkFv8AONyN+PQetey6jkrRN37z5Tx/xNb/ABE0C/NpfPHfQzRASX0IwwDE9+gAHGatRafM9UcuIpzpLmucudWu9RF7YQz+YLVWRTG5KBQcBQTjOetVeLs0ZUpupqGpX13baVLoMmtTJFPZ+ZOlufvnHC+2P61lOpKSsayqKGq1PPV+G3gu8vri2OmQOJNjFFPBJ+/IxPXH8645QovRxOX2FKoruKOV8Q/Dq2tnt00m8u4mlR1EL3W4FFOQ7ZPT2rmeA52uRtHPiMNFpezbRQ8Sp8QbKVpE1MXkUFv5hLpjMRGP0rolQxOHfNF3Vr6nLUoY+mvaKd0j6B/4IrQ+PoP+ChHhSw02C5t3v9L1S0muIUDM0LWrtuOSMAYHvxwD0r8F+kTgMXmfhBjn7LmnTlTkrK+007/cfPY2piPY89WOkWUv29PhXD8S/D95+2b4av4Jr7StVTSvGsloDJBqDNLLFBeLMW+aQ+Vh1woBIA+7k/M+GXGFTB4vC8P4pNOdNTg3o9Em01/wT3s5yilgaFDM6LtzKPMvlufL6xX98GOnXQEbDcisuTKQMkN61/QdSpUqtypPT8zhtUq+9F6GNfS39/etMbpMK5/cIMjOMZI7DiuOnCvUq8zZinVqTblLQvXsN2IngtXJmtLT5wRkKCc9e4Pb0zXdWThTutzasqsoNweqMiWSVo3llfdceUA5XnjHBPr6GuJzU43k9Tz1Kbj771KN48ryfa7biWLa48tiuCOSOOnrXm4ynTrU5Kyd1Z+aODEUlVk3DW259HT+G7//AIKH6fBrumaxb2PxQ0XQEh0qK9ljjTxnZ2y7WSaZiAt/CoCgtxMmz7pALfz/ABx8/DbGunJN4OpNt9fZOT6L+R/+Su/QirVjGrzUnbT3U+vdP0PF/C2m6s2rCz1K3nsr2xmaOS0kQpJC65DKykcEEdDX7TSx1PHYONalPmi1dNPR6eR14OtVx1NTasfTWmeA7PTvgw/iXwvIf+EjsdRtLq809VAW+00Aq7IcDMsbkMV6srN/dr80z7D4Z1qkXK0t7GM6VWGKjKG3UfIElUTqMBhnB7V8JJq9kerOzV0ekfsx/s9+K/jt8QLLSdL0aaSxEwN1cBDsAB6Zr0suwFSvVUmvdPHxmKVNcqep+zX7Pnwg0v4WeDLLw3oumpH5EShio64FfZKNOnHlijwZOUpXZ65p1rbm1MZyZD1UdBQrWJ5m3Zo09EIt5lheLLYOPrSi3cUotkt3HdS3W2RCRnjFXZt6kaCzWz2+JGP0ANU/dRctEP3yXMf73gY61PM5CjJ31It9xgJE3A9BU3sbbajIlmgnS7dj8jBuTmtF7upL1i0j8+v2iLKP4F/tp+J/DpQQadrlxF4j0kkbUMN1kTqP924SQ/8AAxXPXhCFTTZnsYCnUrYWKk9tD1PQtS0mXTDqa3yNA2CX3DC57fgaj2iijV0nSk02dx4Wu7a4tY5rMKwLAqynjBFKneWpyVZtvQ64anbhAtwyxqihd5BwvPU4Hat1poZOpPkulscb8TdVtp5ZrexvIpljkaITQsSkpGRuU9wa5MRFvSR2YNtpSta5wO4LFudAW659zXh1uSOslsfQUW9Dfj1fxhrlr/wqDwV8Mbm51HQLU6lqetvF9mijt5l3FFmORK4C524q8Oq2NpunBW5Xv6njYvF0cJXnWlJ+9olvt+RwXwn8Sal8XHvNTj8A654du01qXT9N03xDJGk16ikf6Su04CNg4JxxzWjwjhjrJ3sreWtjSliva4fnkrI80+LOkt47+Mvhb4ZXbB5b7XLeCSNfmDBZg8gz6bEfmuzGyisDJS3ei9b/APDnZh6lq6qLaOp+hehXdrCBpsWBH5SooPQADAFZQVkkeTOTnNyfcwNZjj0LVJLy5Qy2znkZ+6fU1q/dVzKpPmWhTu9YkuofNtrRTCPuNE3Nax5ZxuRF3Vmc94v8M6DrSG41a1RUkQrzyc0pSg9Gbwm07Hgvjb4KePvDd8PFPw08dalpywsSkEF4wVxnJUr0wa8XE5HlmKSc6d+9nZ/f/wAA9vC57jMMuVWmu0kmcJ4o/bS8e+EvCV/4X+IPwL0zWNUkvPMj8T2+5JUTPIIHDY5r5+PD2Y5ff6tV0vdc17ry3selSzHKcZjoVcXzwglZwVnF+euqHf8ADWH7Imk/Cyy8RN8ZHtNWupimoaBeWLJJHIeN5PcZrlhm+dUJOFWk5yTeysrd73OupgcoxuOnGm406P2Zc2r8rFnVPGP7Mfhvw0tvr/7VfhqxW9086jCunW8t3J8xP7lsYCv7E104fiLF1a3s3R5U02tG9eifY1pcPUknKEJNJ2blKEVbutW2vkeOeK/2s/2MLbQ7G/bxv4z1m/jusappUOnRW0TxZxujmJYg47FfxrHFZpxHUoQ9hR9++qeit5P/AIBq8qyCniaka1eCgl7rTcnfzVkrfM43xD/wUr+AXw5v5p/gH+y2NUuvLxbXvj+9+2vbvn7yIoCenBH406eW8V4+o3XrqnBrZav79DF4zhvBUUuaVSS/kXIn6t8z+6x8s/Gj45fGv4/+Mb3xh4v8a6tbC8mLCwgvXWCJW/5Zqi4AXtjHavcyzh7KcrVlTU59ZS1bfc8HOOL81xtZwoSlTpLRRT6ebVrnEHwz9gjLKMhThiT196+lcW1dHydWUpvmb1MzxJZqNLkjgUEKRyK568P3bCh7tXXY5GVNrFWNebBWR6fPcVRtXrxWVW7JV07sq3u6TIAyOxzVU2luaOcUtCtJDM0PlkEe9bSqxT0OflUrsgjh8tcFqlpTd2Yzm7M/Rn/glZ/wTv1D4r6zafF34haUE8OqUl061lZxM8gPUggDafxBr3MqwHLL2klpbQwzjFONeUKZ+wvw7+G+jeHrW3sdP0pbWOEgBE4AAGOlezNJRsjxqaa1Z6TpWjPayhrK23RplhKV61ny2CUlY39KgW7D3U6KwBIbIxRzIhyb0NCP+0fsn/EkSJgvVM4+tQ3K/uktQT9409Pt4mi8x4gZQOV7ZrROPLe2pNVtaLYs21wl4ptpoSjilGrzaMxnCdJ8yehMGgjiMM0GV7ZOauUtLSKtKU04vURIbWJBLAvA7A0U1CLuhynUbtIfNLFLbt50I2kEFX6HinVanHYyVOXNozyxPA+h+E5L0eH9Nit4r3UfP8i3ULGrCNUGMdOFHT1rzqOFhQptRVr6no1alWtUi6jbsrGzpOp3UFs7IUj+b5m3Zc+2fpW0W07msacbLQjGralKyhYk2ryZpiCQfXPT8ql1JSeiFOnFO5Dpvi7TfEl9J4a0S9jv5oji5O7IQ+mBwal1YzfJF3ZtCi6cPaTVjVl8LaHpU7aprub6VVGyFm/dp/wH1qpUKdP3p6sxdetiIezg+WP5nNfEG90HWQbTVfDkTM8fyxBsFR7jsK5JxVTRxHCEqXU8r8LeD73wl4mv/GHhTR7mWJrQrNLFlhGw6AFuv4VFHCOlUdSK0OmpWdWiqb0Zw/jHU/Hty0t3Z6c15qRimmtrdTnymxgMR6jNZS9ok9Ls0pul8MnY8i8XeDn8C/FDTPH3j3XbZby4tE028nupMKskpyowe+eNx9cVmqapVIylu1uddJv2ThTXU+o/hafCHhiCG38aIJmWxleRpkxGFAwe2DyePY17OHlRpP3jzq0atSXus+c9T1n4U3fivXvFOga6+mI8TpbpHI32dGTuyEAYPc46GvKqYilUnKUHZI3qucYqLWx4L8Ov2jPBvjPUddhh8MQ3Ot6ZqskF7IqMkNwOm+J+4I7Vx08TCcWuvkdM4TlQXY81h1DWNNOr6ANSZtPvdRcxQSEFrdnztHPPFZQag20bRpuSSPAvEev6tpt21jrENxHd2d1IgkgTdHImfvYB9OorP2ltWeirJKKMl9SNzcMonSMbc4Riv4gGuuhNS1NLNLUlsY5J7hElm3At1POR9a9OnCLaKgk2cf8AE+7F34mdTNG5iQIGUYJA9R614+cVIuqoLobVbtKKOXLBn5FeQm+UycXFEinB2E59KSlccLbFm3EplSaN2RkbKuhKkH2I6VjKcn73Q3dlGx9C/s3+EfHX7RXiO00zxbr13c6Fp4AnebkED+AGvquFeFa3EWLUpq1NGmHhiMdWUOZuKPvLw14e0bQNFttC0K2SCztkCRWyDrgdTX9E4HLMLlmHjSoqyR9bh8LGhDlSO10Hw15Vl9uEkLzbSQFIKwAd29/avJzLMKlOuqNM5MRikqvskmRTaILC6mluJhMjpv3Acn6Z6CuzBYKlRXOluejh25UuXualh4r0LR7RZtRskuk2/wCpkPGexauvE4epVd07I5atCtJtRfK+5oWHxOsPEelLFPodtFBBE6CPTwqY9CWI5A4r4DMstx2YY1Uack4dWtTz54SopumpNt9WchEmrSXsk9zqlxeSONkUTKuI17YAHJ96+pyrIsPlknU53JtJanp0KFOlDRa9yl4quIHhfT9ddjsjxJhymPYehr6CNONSOmx00qbcroZp9/HZxCPTEl2zj5zcNuY/TNddOhBKzOhpX1FbX1M8UUKlWXgpvAGKIUYUIKMFZG/LHlOq+F1h4317xxa6f4VYQ3ju2yaG6CrEhU7mcsMDjPH5V8P4i8T5DwjwtUxWZySTWi6t9EjycXKlRwtWeNiuRPS13daW6LW/RXXmfP8A8RNOfRta1rw2+sRSfZruaKWWFsqzbzznvz6V7vCOYwzbI8NiqWkZwjJejSH7R1eWpFWTWx8y+MYdR8Pa3OJ4UuQ4dYrmIFiuTzuHavtYRgmmdi51Hscl401K41VhabwkIt1EZd/lAA5Z1A6ZzxU1HZGeJcZU7NnhnhiHxXrvxDutViu7ay0fTyY7WJn2LezE8scjoK5qHPOq5t+6eDhaeKnjJSk2oEPi7xFqFkmoWOoQrDcrMGnVWyzxDODu7Lj+VViK8YppHXXqKndbnNp4+0x57xIEjdUtVVRE4OVxk85rCNSlKL1TDD4mFaHuO9jBt/Hml33iS+mu5w8EVsscBR8DHQ8/U4rejiaTm7M53jac6ji2aet6xDrmqXP2CQJAumiL5emAOTU1qrqzbvpY63Uo1aPLc+6v+CTH7Jtvfa1bftvfHq8vNC8F2ME2j+Co7AlJ9VvnjaMzNjBEIyQPUn25/PuMMfUxmX4im1fDxp2mkr3t+p81ia2KxWMdLDJWjZtd0eB/tz/tcfBnwR+ynJ/wT2/Z4ksdRefxP9p8VajbaZgxeRNI6wtIQGL72PTIOOtfzn4a8I8R8QcbLijNIunSpQ5aMdNU+tl5d9TTiHNoY+UcOm7pWt0S8130Pjuw8RWNnp1vqcUA82Esoj8w424wxx2PpX9ZYSvhnhE1pK+xzYWpTlho1L7XW/6FCTWbfzbpYUXy7lARJnlJh+PfmuatiKUeaz3LdSnOT9ns/wAyTT/Ect4jbJgk4CpI+R8xHOD7EcVOHqqpS1d2bUqsatPlTs1v/XmUbu9BuZrjToBsYcHbnHPP4Vw1Irnbi9DgqckKrlHVD0itri4EsroI2jOAp7+n51h7Snz26GtKphpSbeiaZ61+xJpF1rnxk0rQ9J+H1jrs3habUPFOpR6neTxWZ061snklhnaA7kR3SP5gCQQMZ6H8U8W40MJkknOvKnOs40o8qi5JzklzRUtG0r6dj5yUVLFRw97ayd0rtK3Q9Q/bJ1bw/wCNf2sn8c6Fp1taya34W0fUNWtLchkhvJrVXZMhVzhSgzyT1JzwI8HMFjcu4MeEqyclCrOMW93FP1fU+gw1L2cuXyR0+nyiDTNJe2kwZLbYCoHBz61rxHDmzG7WtiMQ17eyPVv2fv2Ivih8bfG9rC+mNb6M8ge4u2P3lz0FfP4fKa9Wum1aJwYzHKnDlhufq3+z3+zn4H+Cvhe00Hw3o0MbxIBJMIwGY+tfWxiqMFCCPn0pTd5bntGgwWoVosbSq55pK5NR30JtAvIluZVaTgE1m7h71zb0F47q9YqxAH8ZrSlq7sUYqMGi1rGpQwt5MRXd2I5rZys7GD+IqwW13d4d3OPSk9dzVK6uyymlzuBEJADjkE1OlxO6Y8aPLEvmG4XIAyAetEktzaLUkVb66eaby/KAIXHAxmhu60Glrc+Of+Ct3w7ibSvh18colVH0vWpPD+qTf9Ot4u6Mn2WaNcf79c9anKpFWZ6GCxnspOna9zJ/Zo8L6LYeDdYu9EfxRrGhXlzGJdQ1+1hWC2utih44NjFjGWz8zVpRw0VTctbGdXEVq9dRqWTX5HrngxbayT7LDblUjXEe1ahWUrI1lSVrtna6TIJ2E0UQQl+RjAHvWsJW1OdxR558Rmmm1O5klyzCQ7iR35rmxTc22elhkoJHIwT6dZzLd6vFPNbWqNNdw2o/eSogLFFHdjjA9zXz2KUo03Jq7XTueo3VdNqm7PubPxH+Jvhbw1pGk+H7Px9qtrqviANLb+B4lSecIRlY224Z3C4zkkL6VhmGa0cPhVSTcZbtWPEwOHnVxbUouVuv528irpi6bZ3Mmr6vY6hfpFBGE0/VmCtCcYYEptOOen0Fe1ltp4ZTm7ndilGM2qN1E8t+FtlH47/b08OXEVuixafpV/qaLGMJG+0RooHp+8bFGYxVVU6ae8vyJo1XClNb7H2PZX6yXSqx2SocOh71o42OV6RbLfiCSGOJjcQq8MqhTmk30OX4tEcX4i8Kan4Rtl17wncfbLRsvPaliSnuK2jBKnaJcailLkktTCh8VWXiaPzJpgFR8vEx5BHUYrGUU3ctRnTMnxpq0lzZx2FpKAkr/u4o1wSPc01JOy7mlOWtjhPH3hHQo9FabXNMhMnKQIyj5z9P8a0lScfidy0k3vc+VfjD+yp4f8U6s1yunIjMhJ479q4K+HfNcavKokkfPmqfs0SWNxfWsLyCOObDjqc5I4rOjhly3S3OqrVcU4t/iZMPwOlh1J9DvCGZk3wlhwwodJ8xz86a8iDVPhjYaE8F3JGCj/LuzkKe9ehCnaKOepUcXoZPiex0XTmECKMs5IlUjij2Svc5qs7nDeL5I5Q1tYLwM5kA+9WsbGHtFs0cvIn7nY3OR0P8XNKqvdLw6c66M298OWsymRVKHHXtmvKqwvG0EezKMI6GNqmi31ivmtA/l9n2nFcbVSEfeRzyqRehmlSW5HFTdWuZJNsZKSqFePatYRTV2OScdCnvG7btNKr7q0NPZpn9P37PnwU0f4ZeC7PRdOtlhjs4VSNCecAdB7e1ffvlhoj5rETlKs2z1Wy0UyTB7OEqxh+YtyGHpXNLVmfPdHT6LcXOl2JgEhcSR8lsAg+mDScnYykrmvp+nMg+zvLtMg3Lk+tQvMuLS942bWCOzTzzPGoUYKqBzWl4wRhOaqPlSJsusZmtolO7H3RSXvPRBBJytJkyWkcxWaWMh8ZyDV8iRlUm4XSeg6SNwNjWwZccHNXzJrYUJa3TsJHGxx5cYUjtmoive0KlLe7I9YuQIhFNJ5ZJ4BIw1ayld2YsPF3vHU5K7kO0oYAcPlW29zWM5JKx6HNaVyu1nFdj7HDGrurAydAoOe/vXPd9ClOn9oy9UiDo6XyMY4925XkAVh+HQVjLezOmEpTV1oWvDF7oGkRiLQdGt7fcu+d4QAWOP14p0YQhL3UkZVlVn8crnO+LfiNZG4lHntGOQjMRkc/e/wAKKsoy6msYS5FE5Ntcn8QX5jaU2lhE4N1OZBvmHcZ7muWNROVug6kfZ+9a5znxJ+KxtYzo+mXf2e0UOLOBJtp24+8xzyT/AFpVcUmuRPQunCMpXseUfs5/F7WvFvx18U2onPl2WhRILhAWAmdmBGT3xissvrJ4io49joxODcKMZeZ0Hx78MeF5tTS28b6XHqMaxr9vtLmMMspPTIbg9fwIqsTzwn7yuXTqyjTtHQ47xZZ694S0GXQLfxRd39jBCJ7CK4uN7xwsRmMseWA4GD2rGFOUU+Z3CE3KSbVjyL4veL9J8P6bc6b4os7C1u7+Em3ubeIqFjzwgwcEnAJzXLiIKmrNmsYSnLRXRx3gTxr8OvC3hy803UdPtb21urMkXdrDseF/Uj2+ppQnB0uXoarnqStseOxajZ63qd4NLuhJL5rMrB/llA6ZPY1jBKTZtN8tkeTX1vqOqeI7y11a3k8xpSY9pB3D15PJ9u9TzJTsdFFNRuZOqyWNq0lts3SqcbXi2nH9DXZSlFLQ0b1E09cukittOdxXtmvTptaNGkFJnP8Axt0CHSPGARI5Y5Z7OKeVJYtv31yCPUEYINfO5rKnLE3i9ep0VLxSOKIVTuP6V58btnNNuTHwkudzDjsaJvlLglFHUfDTwLq3xE8W2nhbR4S8lxKA20fdXPWuzJsrr5tjlRh8wk5TahHdn6L/AAY+DVl8K/Ctr4X02AJKoBmwPmdu+a/prJMqpZVgI0aejVrv8z7HK8PDD0NPme0yeCtR8L+HItY12I20Vz9w4IYj2rprY+E1KnTd2azxlNtqm7tCeHteOt6d5Nnpf2e2t90YRm5c9CW9a8/AZX+9datq2cWFoSdd1Zyu90PS6vZr/wAiRgImGUbPXFe/KHLtse1GPLTv1Gz+Fm8UzLY+WQshJlSOQYVcck5xXFjMQqOGkpbPoRUqRhFy6oSRtK0uxXTfDkyyxQJsLbcBj6muXKsLGhRvGNrnLFuc7tWZQn1Mwyh0AWR1+Zg+M4/lXsOjSfvJa9TopRlezM+62zhXmRGkZi22Rdw+uD3rWMGrWOuNo6FC71+9MhitFRY432tufaR69OTXbCmrXKklzWIdHGra34ktdF8L6LHd3F/OILdY8s0khIA+vWuLH43D5bhKmLxDtTpptv0NHUpYWm61Z2jHVnfWnj6PwR+1/wCFv2Q/CWvyfZdLsjffES/t7bzJbq8kULBaIx6KpJPQ9vev4N4ghmPi9lWb8VY9SlhqMnDD01ppB6yts7/10PFw855rlGKzCpFNpfu03ZKKer+48F+K1hbaJ448Q6fJ5iNaaxcIsF4gV4z5h5YADn8B1r+t/CfHxzDgHLsSla9KKt2srHpzm66hUjazS222+f5ngfxViL7r6CJoRHLvlSF/mkGevPSv1CCbV7lVHKS5VqeY+JbOyupwBazmMwkxhDhnBJyOO3vVWvuczScfeOA8Z61pWk6ra6HY6dHHNcgpbxTw7nnwM8Mf4Qa5q1SKkox3OHFYinTkqSvd7HlXxB8Kaz4uu7q71PWJY1WIwFYMIWc5woA6jg1w18O6y5bnm4jBTxiab0OU0v4MaLp2mI73s0cjJiWLzyGJLY2n3P6Cop5fhqMbI4MHlVPBXjFvzI/Efws0jRrWaCKGIx2ThElWY/vZGPb1x69K2eCoqF0dmJwdP2S5I2NU+H59G0qfSxuDNb7WyDkkgMDk9sGtXT9lBrujSlgpwon6afAb9o7wb+0d/wAEufDnw8ljMC+FNPbSNbXS4mmm0+7V18qZ4kGQrddwr5GnClKNSg/t3T9D1Mgw2G+s+1g/eas07LZHyn+2X/wTakfwvN+038G9Cm0fxHHZC68deCHhaUz5xt1K2TG5YpchiuMqzYr8cwnEGb8D8RPJ8zj+4lrRqNaNPZPpoup8fUy2pi86nUwvdp9nY+Q/jB+zn8dfhnPFP4y+F+q6Vc3EHnLbm2LxzxHGZEK5BUZGfQ8Hmv0LBcQ5XnFT2uFrLmvZpdyc0y/E4fCuvCNrOzS1HaH+z34n8V2Gh2mh2t1qOueJrhf7H8N2MOZ50DhPOdiNsMZJwHbuD6VrxLmeCyDBxxOMqxhB66vXtovPoclHByqqEY806lTVQitdN230R7cf+Cb/AMH7iYP4i/bk+HvgHWfmGoeDrq9udauLTYCXZp7SERk4A+UZ69a/M4+JuKjWaw2ArThpaekU77WvY+lqcKYirVi8K+VyV3FSjK1tXu09Fq9Cuv7Bf7M2nXVvFP8A8FMPDE6XkTG3Om/D/VJgyg4Y8qoAHJPfAq63iDnzg5U8rqad5wRi+FMfKCkqnxXtotbb9RmsfsR/ADwRFaeIvGP7bclz4f1FmGnX2gfDq5Zr5BklYzNIiK52nCsa8p+JHEVebo4fLb1FupVYq33Juxy/6q5jpF4iKctNl/mb9t8Wvgh+xz4Y8U2n7IWp6jrknjaeyabVtejgluzpUGHuLGeIL+43yDlcncjgZ4OPlsZhM445z2hXzumqSoOVqcebl55aRlGTfvWWzezPIzXL4ZKqdLm5pS1bW/p5Hl+rfEjXvix8Qdb+L/imSEap4h1d767jtYBGkZdt2xFXhVUYAUdAK/f8kyLAZHkdPBUG1yW+fVtv7r97nfg6U/YqS7dT6R+GXwu8Y/FbwJplr4K0uSa+W78uIheFyAQSa+Jz6P1nHtU9zDMF7JprqfrJ+wr8FPG3wz+FFlY/EC4jlvlhG7YuMe1ZQhOlTSk9T5WrJzkz6O0SKzgYecAeOF96NQ1Rbt7uH7S7EYXstDkkZTiri6HDJdamVt8KpPzfSoVnIuDvA6q9uLfTbUW1uAJCOStbQ905pvWxnCzubh1mkfr61LvcqKT1NK1jaGPy47gEjrzUtNq5V2QXWj6/dzCa1uxGnUk1i4SbNoum1dofDa3llEDd3ok4z61aTW4o1KdSKcNmC24vZtysM46niqSVhN6HiX/BSfwZF4r/AGHfH8Jh3zaRYQ6vbbeSr2syTZ/JTSk6nK4wFSbjXi13sfGn7PVnqnibW7aDwrqDRXWoQZga71kQW4k2gqGj7g4ODxyawlGTWsrHuqpCl7043+Wp9SfDDU9Yv9Eg1bUIkXZuiuXSQbFkjHzfMfbJ+lOg5T6nHia9NyvE9N8Nw6ZMj3C67YTeTEssiQ3qM+G+6QmcnqDx1rshTTejOCWI/ectjyzxZqcOqfaby0uAQt26MVbPPvXHiPdUme1QhK65jM+GOow2/wAQn1q+tYrq00XS5b25hlg8wO7fIgI785/Kvm8dmP1HFU3JcyfSzb7Lbz+49iVF1KDipWb87HkfgX4hePPilf8Ain4x3PhFfDzQ317p/gi6j0rF0XVW3Xm9gSm48L0BCgd+fNwGVVcTjKuLnNSi1e3Z6af1qebUqxkoxlG1nZaPXfV/0vvO90K51uP4f6fJ4gvpLvU7m2VtYupmzLPNt3FiR3JzX1mHUaeHSsc0m1PdtHKfsfObv9qbxD4ma3ymnaCYUuDyp3XCKVH02H86wxNWjUxFGPLqru/fa33fqdeFUKeHqTb1dkfXHivTGuwNT0jiVED/AC9GBrsq2lHQ4Izv7rQ2x14ajALHVGCsI8OhHfsa5IfFaRzzjJSunoYmsXt94Su2cyu9q4xuU5H0NdXvQ+E3hyT23OT8aeDNG8ZImpaHqraXf5wk0LfIc+o6GnKFOove3Hep8MtjzzxI/jL4d60l54002W8hVSIryzXcgX1IzkGp5IxKioW91nNah8VPC/jHVDcT67CIIjiKKRgCWHsabnKUjOTUHYTwLo+k/EP4nRaBHNDLbxRS3uoyq3yw20S7mLEdBwBn1Ir5zizOKGQ5FVxk371rRXdvY9HLqUqmKg5rS6/M+YtVvY38Vy63ZaXNNZvczNHLG3y+WWOMjvxXo4B1HhKTl8Tim/VmOZRpfW5pbczOR8b6vp2oaqjQRzWzWsuIGKYYqf6V6CgnucbqRirROG8Uy3GryR26IJmY7pFdMA4+lNy5Ymcry1ZxHivwnqFsRNcW7OjNlFY8JWMptqzMJxdzifEsMUEpgwAqnjHQ8VKlZmLg7nIs011PHFaoCzSkYx2rbldSyOrDzjCaOs8M+Boru/jfUweCP3eP6V7GDy2EY3kelK9XY6n4hWHh3TPCckd1Ywqu0hQy81eKwtCVF3iFShGEUfPOqWUdvI9xbL+7Lcewr4SpFLEOC2JilGJh3d2yk4PFdPLy0yZtyIoZg3zN1zWFSLa0FOcYM/rMTTTZIAiZIAeQZ4AFfeVU3Jo+ZrP98/U19Ge502T7XqEWVc74SFJ/CudNo537zOk07zNQm+2CxwD9xWXGaaTepUUtmba215OiXSWeNv8ACRzRKMr6IfPCDcWzRlgsbq3DABnUcqDjJpuCmjni6sJeRZgbZEpYbTjhDVxaitQa1YXKXFxA1tJHtRxgsGwayqc1WNiUqcJcyepFZ2X9m2i2dqzsoOSXck0qcJUopQ1FVrxrTcpaFgRyErtOea6o06m5z+0gyv4pjt10lprtAxUfKAe9XOOl5G2DqNVbR2OK1BnjhBzIm48gGuaaVtT0eV312MLVdTS0szFaWkmJWyxRt2/n07VyOp9mJrGMVNO+pztzrqzRTCSeWS7CcW5ACoOvJ7//AF6yqTdrLc7lG2j2Mu3v9e0zzrvUL20in8jlpZfL8tT2C9zWdKVSMtRTlCo+WKZh3EOjzI974j1QTqfnEKDJb3zWdbVe8xtyvZI848c+MNQ1WGSLR7PZaoTtRyQuPb1NcVSdSWqWhUILq7s4XWJ9U8RXVsvlfZLe1t2WNMYEnHU+9SoucfQ66fLTjqdH8HrLTPhzb/a9CtTHc61cpH5oXdvfPzEnt7ZrbCJYTXa7IrupX22Rc+MfiywttZvI9Ui+1rNMIXWZ+Ru43e2DjH1rTE14876mdG1OK6s8W8afHDwR4Q1GVPFXiqKws1ke3vLq4fCxOchPXAO3v1wa4/rFOL96VhyjOS91HzTr7+Mfit45f4gXHjaS6t1DR6c1kytaGPOAzLgjJ9a86KnWquTldHdQTVO1hJ7e4EUlre6lJCkP+tiht9sbH1U4/wDrGu3WMLFy0ehgan4g8JeHLC6FtcW6zSxlreZUKkH1Ix+lZR5Neh0U0pbo8gmk1bUpHa7nJLuWBVMbWzxg9s04QTe5ry30RnahBev5kV1MzurBd8gIJPXBrpjGxUaaRY0SRWv0WReduMk9fxruoSfMlY1U+XY2v2ivDw8SfDfQfjHpczSvp7jQfEsO7cYJFBa2lPorx5Ue6e9fNZhCdPHyT2YSlFrR6nisibmyTx9azclFWRn8KJbVHllEUaksxwqjqayhGVWaildsHJJH2f8AsG/AjU/DwXx5r1gYpZcGITLgheuRX7XwPkFTLKP1isrSZ6WV4Zyftam/Q+q/Cdzqk2sS61JACIXxGpH3jX6YqinCz2Z9PUtClyrqdl448Yat8QoLbSNTv/NaCNV8pFAWJR9K8/DYOhSqS5Diw+DpYeblBbkT22leH9F8h5ljt1Qne2fnPevWpJylyrY9BJRvZXZn6bdya55U+mqXTf8AIAh55xjBraoo0ldvQ3ilKDudLIYvBpez1DS0e8voTFNbyWpcopH3s9iBnmvmMfUwuN/dN8qb3PNqzlUmnFuyfRnGzaFcaJcxXNnHdJb3RP2CK4QBZADycemfWu7LuWrUlGlNuKSXl6nVGrGvdLdbjPEGm2qayl7FczSSNEBNBwY1f2r2aMZU99TqoQdNe8UdY1RIUedr6OFE+XezAE57e9dsZO1rG8oc7ujJeSG+nQwQdeBERtAB6sxJqZTlRjz6s6KTUr+R3/7OutT+GfFWsfFe6kht9A8BaNLcTsq/8fN66kRRL64wW/Aetfz19IjiKpg+FqeR4Sb+sYySjZb8p4ueUpYrDRwqu5VZW9IrVs8J/ZO8VeMZ/FPif9pnVWkj13xHrMl1bz3I3sih/lPTpjGB7V9X4ccI4XA8Exy2cbU/ZuNrdWtWCjSq/wCzW/dpctttNi7+1Tbnwv8AFTWLnUdRe9fU/I1Dzpl+d/OjWTJUfdGScDr61XhBThl/Cs8sev1epOHnbmuvwZvg5qWDjGEbKN192h86/EK8ttTv5sN5i+WDKQuFjx3PrX7NGUfZ7nXFOMTzDULy/wBS1CW0tHIsj+5NwDiS4OPuj0H6VtZOmmcsoybOD1LSfN8VSa5bLEZLAiO3Lckdm2k9h3PeubmXNZIweGhGpzyd2jlfGmq6Xpni0yXRKTxwloVjQ7RMAcNXNOqufUwqVXT2R5f4w8YeW0H2u+ljdrkm5h2FftOT1B9Md/euGWISmk9jxsXWqQrR3Vyfxlca34ouLApcsltCIpEtwoARAcAZ7kZrTESlUsovRHdVVWdONn1Oj8ea1BHbtG1y7tHaoGMTkApt2tyOc9K0rSapNXe1vv8AM7qtdQotx3OK8IfFD4jfCnxg/ij4L/EfUNA1E+WLiXTZSqSL12un3WA75FeDiMPSr1LRdpdz5S8qtVujPlke7fBb/grp8cvhp8X7bxl+0XZT+L9FjExurPR5/sMtw+wBDJt4ZFZUYrxnbXw3HPBlXiPLVQ5kpJ/Fa7sjqq5xjcJSVPERTS2lFWfzPUfE/wDwU/0DUf2c9Etfgrp+qz+OxHqttd+J9ctop47exvJYpZLSJj8ycxpk46opzkcfnOW+HWc086+szqqGHXK0oaNuKtdncoPMaMq6fuStb1Xc+W/HvxT+JmrfBG68IeENRFlLYyTSeKbayhjS51Cwd1dMSqocwxOATEDtGd2OtfXYnh6jUzqGKx8nUSSUbu6j8trnk4uniMJR5qWjW7W7Xr+h4NHLpDxOOrSruTLk8/pX13s8LSfKoryPAqSp1JO3XzYhtFtZDcNbFEZcFg5Byf6VlVjRt8KsU8HKEOaz+9ktgiljbySMdwyUEhwfQ0JYNWi4rmt5XOnCr3WqmvzPQfgj4PGq6b498QrHHN/ZfhR52DIWG55FjByOB97vXw/FmLjRzPA0lp7Sol92pwVlGVZot/DOV7nTIbYMpAKY4HY5PPriv0dp1FofSYKsvZKKV9D9Ev8AghMPDc8+veFJ9RkFzea3NJBNf3hkIdCAEUN90bT0r80xDSzivTe62PArRqzcr9Gz9dtB0qfTrdbeWUttxyB1rCc9TypJc2h0nh2TT4rvde491pxd0Q1poReJrq3jnLWoKg9NtN2uYRT59R/gmx1IF79pOAMj6VEYa3OhySjZGgbi9vL7CqeDjGOMU2rHI4K9zTniulgWNX+qqKFvqaR5UX9OjmWNXnLZ+nWrdrETXUs3d9KseFDAY6etQmmiqbdyK1WW5wbhSFxnmk7FpNPUnvoLRtMkghl2SFfvL2pRumO2p538ZdFGu/Anxv4UuAZlvvCOowMH/iLW71cGk7M1ovlqRdup+ff7Hvw01DxT4X0rxDceMbC2sLrw+iS6Vf6Ct2skpQYlVycq/YHnbk461y+xlJ8ylY9LErl11+TPpH4LeCZ/CcQtPEGrrqUjXEjrmDEaBhjbsbtjI+lFDDSpO7dzkqpTaaR7f4ZsdEnjFjb6VDh5Iz5qQKjR7AQmMddoYgDBwCe1dtGlCLukYSjed2eUfEDTtHttV1e3tZBDKsvmNFwd55BcDjqR6VjWw6kmtmenTqVZRjZXRzula9Z/DbS9W1C7t3nuUuLSPVIV+UpCUL7WPYYYE56d6/Ocfi1Uz+U6LbVHS3fuetKKlRUZOz8zL8Kar4asNMu9C8BaLq8GlPfCQnViT5jbchY+zR4b5WXgg8E19hk1f6xQqOEXGMnez6v+rnJiqVSi1zal/wARadLDoUl9Y2YeU2js8US87iSAPYnAH41vWXJF8pxzTUb3Oa/4J+6L4wn1PXY/iFo8Om63HpUa32mwSB1geS6mk8vcOCwXaDjuPavIcZxzGMJ7pGkXH6oprZs+j49Wm0xRYl2MTn91I3b2r1Y1LoyUebYra9ax3rSX+mPmRFG5PeiynIycuWdmYVxr99C66XqtuGt5yW+c44HbmtXLljexclFao53UbKG5nkl8HaudsR3y274OP61hGLnLQTqykuWxyWv/ABJ1Tw5LKmuQGW2lfakcnKqMc5zVzqezMnBLU4HxJYfCj4o60dLj0yz+0Kha4uIAFMI78j1qaVWFSVrFxvLU57SLfwj8Evhh8QvD/wAOjdPr3jG1isG1BpS32eyDHzVQk/Luyc49vSvi+KeE8TxLnGDbny4elLmnH+ZrZHqYTHwpU+ad+aO36fceY2Wk+F/DtoqlIvLe32xxmTkPjuK+5Spwb5TyqjlOXM92c9faBoN3ezzX8qG4jQBXLfLg9s1rFprQydkzifGUHh+0uWlsZk862OGiLAZHXj1qJKPUmc7nkvxC+JelsZ7fTnV3xkoeqEVzyjKWxCbUbs8k8Qa5NfmSUsTufIAHSrjTimYNyk7HN3F1qFrcLc2infA+4g9xV+1VGSkdOHpvn1O58MfFvSLOz+03zhJwoJV+xr6DA4pYj3Voe1TqQgtTkviP8Vr7x3fCxsm224b5sGsM5rQw9BtPU46lf20uVGHLEj2/lEDgdK/P1U/eOTOunSbjqYOr6GTF50PJHUCulV19o5qzlFaIxgdhKsOR1BrSLjucEm7M/rZ0iSDWJ7h3cYUEBW9uwr7ed5TZ42ITVR+pv6ZBPOVaa1ICjCqjdB71zpamUbNnQWWfKADbju42vyKbvsaI1rWa4LiWOY4x0JqoppBOEHGzRc8yGxjF0YNzucbV6k0SqKnE5Pfm+S+iJuZ3EroSc8DPT61zybk9RxXIrElzI+0IelbRUrGD5egzDKuS2OOtdKglG5ytqUh8IDKCkxPPJpp3jeMiuVLdFLxk6tZpFIPfBP61lVm3JI7cBBRTkcLrDqcLCWZVU4LNwzd+lYz96DO9u8bI8s8TXXivwzczT6ReuGus+ZCWzGfQe2K86UJU9Yvc76dGnVV30MS48QXGkW/23UxMmAQxEZIJ9ff2qZVY01qinFSVjh9f8V6VLei/1vV4vJ8zeUuDxGB3YHqa4ZVYOV7nSpWjyxRTb4q+HfiH4tfRfCmoJKbNAsdnbqBjtlznn14rX2kK8kodDOScYptNF3XYHkke51fVbbbbx7ZIcYSI/h1PNX7J9WKFNX0MC7vvDhWZ1glmeb92HBOfdscYH061N1TXKlctScZanj3xF17xHDqTx6T49vrVNPcTQRWKlQrr0b5hznuDXnSU5S53JpI3U0k7Lc8g8XftgeLdSudesfHnh97y58mOXS9R0uLarzI33ZlPvg5FYV8TJuUmr3K+rNRTgc94O+Dl/wCMLm58R/ECw8691OAzby26JiR9wBugow1B1I3qIcZpK0TWX4N614MtLi00uyFnFCFZbWIfLjrk46fypxo+zl7uiOtOMYjLzw9PpEhl1p4UiNsWd50JhIwSC39081cvPQ5nJt6HgGv+HtYl1y68QJq7XNnPIQscc/mRJ/8AW965V71RtO51UG3G1jK1EJY2kqRxHmPdBnkY7rmuukrHZokYMlzNewlHnLHAJYZzx2Oa6I3UrXCne5NZApMYmTfHjJIHT3FejSlHmsjX2Tb0LJ+IOj+BvG3/AAhXiu8T/hGfGlmNN1tM58ok/ubkDs0Um1h7ZHeuDPcPyU41brucsa8KNflmtzz7xN4Q1Xwb4hvvCWuptu9NuGinA6Ng8MPUEYIPoa+Z54z1RtUTT1Pb/wBjT9nu08Za2njjxVamSytWykTDAOB1561+p8B8NTxNWGMqw5o3+5WevnrZfO/Q7cvwP1qXPPZbH2d4b+IGnf2va+HLfT40ggUIsEacqvTk1+z4ilCqnTS6H0MKEaStFbHpP9k3VtceRo1q7ySIDFGF6DHJrhg6eHgoXtbQcqkIRTmyLQNG1GJ3kv4cFv8AWgH9K9GMYcqkjspzg46FvWZLSS2Vb5EJC48lm+VVreDlb3TWmhV13+xbZYLG3SJcBoyp9ORmoqUZVrqQSSUThdej8b67ql5qKeJbyGa9XZKDN8vl/wA8/Svk63Cc8di1VqVGorojzv7OnVrc/NaK6G74bF1omippM9w9zLGoAmuCXdR9T0Ht3r63D4KhgqahSPSiorRGfdvqElxPLZnaka8s6nOT3xXdBK12bqLbKWoNDcLHNc6Uk8akFFmHGQeTj+tNxbWhtT59rmfrk9lp6p9m1oS3czhYrO0TKs7HCrkjrk1lUnGhRdWtK0I6s0cFGV7adfI1/wBqnxEPhZ8OfDn7HHhfXo4/FOpzrq3i+S0YNIrNjcjZ5AVcKPp+f8mZHUxvid40yzKlKUKOBfuSS+3FrueZhubFOpmMm0pe7TX93v8AMx9LtrbQ9Gt9C0URx20EIVQxxg46H0zX9eUMNDDU/Zw2SNqOHSld6mb+1JHpN34X8OeJdNXd9t0GGK+uGDs0lxCWjcBm+8FUIOMj3r8T8OcTCHF+eYGD2qxl98VsRTUqbqwmtU9PR6nytrmoGyubqQRM1q7Yllk4IH09a/dIQSiOE5cq5tzjNR1hYLi6bQoPuoTaSgA9R2Hb3reEk1YKs7o4bTr+dri9ZtLglhhsytxK4Pzuc8fUVnyRs2zi5KrfNJnA+M9e0vVtXOoG2EsMEQS5nQ/dcnhR615lSalUMakoqGqPN/Ed0ni7xwugRgXN1HGAzeT9wE8EccYrgjS9vXcO2p506lPF13R6x1L+oCPQ9QW1vX3GHS8Ro7gjecYxjryfzrslBQlYbnKnXUWw8QNc317fRoiwrLpoZozyGfaM/Q1lWd4NHXiVejyLdnHR6LLYQDz5kMtxPsnlUcqhGV49/wClccaFo3W7PNw+CjQp80nqyjq9qxe4+1b2miXYXK8Od2On0rWalJNzeoV1GcG5aln4Z6zaeGvEaaNqEyppeqsI2L8rbSnG1/pk4NfNV6Lo1r3919Dz8BiZ4XFexb9yf4M9K0We78NeLYZ9PRLTUrSaSIMyApiRSjKyHqjKzZHTmuTHUaeLw7p1Ntz6OvQhWhKlU6qx4NqHh1tI12+0C7hAuLC6eNgSQBhuMcfdxWdPlrUk+qPiKdOilKm170WOW1mhZ4rkghk+UP8Ax040+X3WFN11JxlsS2SBCCBwchJB/KlCmpyu9kaRhUjueq/s2i/n0T4k6HFO8dvP4GkuLqFYwxlEMyHBzzj5s8EdB2r8748jCGNy6s1qqqS8rnM8FUrV1Lmtbp330f56dV2Mj4cW++1SKXqcEbWIJI5/Cv0hzUocu3o7fkfR4Gl7KNz3z9hj4g6toVp4kfwxdTWl9pfioTW80b8jIBxnPQ46V8J7H23FsuqcTzJTjLEziu5+737IXxstfjP8FdL8XXjhr4W4S9UdpAMGscXhZYfENPY+bx65cS0jvb+5i89XVip6lQelYIwhe2pR1XUHYeYoPHU+tSxcnv3Nnwff6i+nMDNtBHGaUJDm1HRG5pgmBL+ZwOcmqSuZrYt6fc3M918xz2JIppJE7PU1NSu7u10+WawhV5Y4yY489Tis5yaj7pfIqkrNnFfCHxB8WfG93eXfj/w/HpsUNyyWsaSlt8YPDHjjPpXPRlXaftFY3nRpUfhdz0WZo7aLYDk98GtrmPOm7GdfzCOHEUZ3N1FNaPUtJGffWMepaPe2Nwo23NlNCy+u5CP60+W+ncFNQ97sfnz+xDq1nafDDQ9NdJZJI7MWu2Lna8ZKnPHXK1ph6UlDU7q1WdazaPoPQbsPeCN5SAWOCTzmt/dWhEYOx6n4BlE9xEdg+/yCfve9UpWd0c1V3i7nnd/o/wAObrxN4i+JXiLwxg+GfEiw3GrLqzSvdS+QJFszbjCxx/vAc4JYjr0x8NxDnGN9rPCUoPW1pLV69Ldj3MK3h1HlqX5o35bba737nlXw68Uan4m8KeJ/EHiO2W4v9X12a6SO5UqNgwqqQcHbtAWvCwGW4unndJ0/ehFe9dbt7nVN/WI3et317Gx4T0xYNNtVtVaOJH329vJKZPsse7AiBJJAUHaBngV+jzvKba0OKu4qTSjZdhnjrxENN0K6+ySGIvFIQ7NgALk/4Vx1bdCIOMrmZ/wT7uZLU+I51iKvAbQzHcSZWYSSMef9+uF0lLNJNfyodSSeEgl3Z9Ba/Ja3AkeA7opF34Xqp713OKTsjOGhzlzqeoaNbJqNlL5gX7y/3x7+9Q24O6MakU3qGpXqfE/SUutPVWMI2tGnDKfTiq+sRqRsJK0tTzzxFqN58ONQl1CeLCyqTcKTyvGMmsruDvEc3GS0POb7x7onjyT7Dp2pw3CwZeeQt1xU3UpWZmk46PUwr/QNHstRuY/C1wLe5uIgbiTdxjrj8q2pQhF6GzcfQ8z+IHiR/CZFtb6gt59pjMcQByR6mh1OxzznzSsjxzxFpviS5v0EfiSdZWl3JkEBB/dqIRbbuKnKXNuc/qdz44t3utMv9XJVvmTjofeuhXgtBuD5rtnnXiK28TAyvd63K1zu3Bg3UVi5p7mdRJHFatbvNLJK5Pnj7zf3ql1Eloc9p21OW1gm1ZmcYzyAaIyNIRUUUNIna+lmMij5hjGarERTpnZhnzVNCfVfCNre27POuCqZLDiscNUqUnozuqwjJaoxILK3sMxwhTz1HeuPH4irWk+Z3FRoU1JND9zMmBXlxUUzslZIikcbNhWrabORpSepha3pClGniHI5qozl8LOWdC+x/WnYWEGnwjysrJIRggZJFfoc17zPnKzbqv1NjTLaK2JmIf5u27PNc2zMoq89DaiaAooCNG55x61ad9S2aEFzHbwoxTcz8Ih6k0TkoxDyLdhBqVq3mXZV2c5xkAKK5kpJ3MZqlNaMvw7MbxFgntn+tbxjfVo56kmla45wd5YqcAc1aqpOxjytq5C06ynEkZC/zpSqKro1oTGk4a9SW2uICREkR46cVUKtFPlii5U6jjdsw/iHIGEaGQjAzgd6zqe/UudeCVqTOSluIsbd7ow4YkDn25pNt6HU99DH1zSbC4mhWO2ZgjbpAU4J61zypu5tSlyJnP8Ai600gqzagqA7PkCgFUHbj1rKpGnfUuEubRnmXjfwH4a1zTJLu9s0jQPgLjlyecn1rjlRhe9jppqUJXvofP3jr4U3J1lrjw/NNb3QuNlk9hIYpWJOMll6GuPEU1Jrk0fkejGpTcbbrzPQPAv7OHjfwboi6v8AFX4g6prtzLyLS7vMrbrjhcAfMenX3rtoYV04XqSbZjVxHNNKnFIwfF/hmyke4g0HVNZa7CYmS2QlYUHJ2nHYDrXNiY03rdoXJWmvhVjyB/g/4h8Zakvn+ONXubOJ2LW87rGAOeGKjk8dM15vsufVSbQ1JQVrakLfBzQbHw3/AGzqEMa+d50kQbnMaL1/PFdNKEVA2p1L1OVmp8C9QS08JW+leK4P9IW3kWxdk4dHztJz6HFdVB+7qOtZSvFFH4o+M9N+Ht7caxrs0iWu9re/iiTcy71GGAHXDZNY1uWjLVEcs3Gx5T8QNT1LxxYyaJNf2t1FboUhurNwxnhPIEgz6flXJUhKcrSOmnBwR49a+DLPwrKYbWOSzidmBiEg498Hgj2qYUYUdUdkVaN2YGuaZNZLc2ryJcRySb1+zPxn+8B29xVOpLmCE3N6HMTWyQ7k2BZMBj83DCuim3I3s4q6LFgR5yqqcA9Cfzr0aXKrK+ppGT5XcrfEL4W6Trm3xL4p8beENJ06Q+WEuy0+pyEdSkSZK+xbANcuMneo4tq34nlV4OpWUrljTYLT44+NNHtLZpJJrO0isbi6kTD3ccXyxyOOzbMD8BXNkOTyzPNI0Vqr6nq1FHEVYQifa3w08LaP4I0O38M6dAu5YhvG3viv6ey/BUsswSo0ktEfWYWgqFNJHRWVtB4a1BLuK0Tz3wBnoK9KjTVRK9lfft/XyOipG6bR3l/L4judJgv7TVJLOWQYYw9QPT2r56pgOfFtvYwjQpzl7yui1Z3V3oWkqzSs6sQ8js5y/rmvVcYqNl0OqMYr3Ymhd/2Xqmnx65e7ogQf3W3JY9q5oV5QnboEJyb5YlSSwkaMyz6XdhWG6APH2Hc1vQrUatSXJU5n20djeXK7K6fcqanqOk6bYRXuozw2kXLBpWwTj1rsjCdVWKUVZ8pn6Rqtxr0cmoWUq5ZTtkIxhfX2pz5absR7JU5Ixbi81RPMgtLsSx44LDJds10Q5XC7OuN3K7M26u767mkeW6aIbcFs4Bx7VWjVtjWMlCZ2X7MegnX/AI2aLNeCE6f4dhl1jUWkGdyxLmPdng5cr+Vfh/jzxXPhHw8r1KFTlrVfdhfv5Hm5nUbwVSMb81S0V89/wPHz4i/4W98avGHx9vLkq+r6lJBYXbwBWEETlcKD1DEEj2NT4C8KYrLPDmn9am4YjEXqSmklK8rdWn26pryPRjQp0IU6UVdQSj9xt6vqR+y7LcmNCw+SXjcc8Mea/dsS/Y4apUk9Ipt/JFwcYzSO8/bLtdPi+C/hKGHxfpGrTeFY4rC/j0iBYYtNM8Xm+TIAfnmJwxbjIYcV/HXhdxfVxXibiXUSUcQpcrSt8Mml6vTVniZfSUliavs5Rc5X953vbS67LyPh3x/BDLDfOZyYyCYwRxnHGK/sGlzSpyble/4f15nSppRseR6B4ovbaO6uWmc3fmGMebFtUjphR/Wqi7QS7GMXyO8kZ2vXc9rodxp9qQr+ZmW4xwxPJ/D+dPnTj7wV60XTstzyOLSNZsEu5J7kGQzM6pKMIsh+6qjuf5V59WDk27nk0qFWUnKTG+GvDN94Lvp9duGW51O5RjcysASpxwo96dGHsE5dSo4aGGk5rWT3Obu5oT4ktri9YSPbptUOOsjEHB9xXBKq1X5medaP1yMpdDf8R61ZXlw8QsookMbSQIFwJl6ud31H6Vu3dHrVqsVC5zs17BfX2ovHEuJniRYyuSgGByPpnmlTqRjJo89V3UvfoYmowQsbmeQyYVgwc8fvVHzj8ea56uJp3k2yZyg4v+tTkmimvZJUuN+CCEUN2HINeK/aV230PnnTqSquUj034a+LbXxHYrpGsXL/ANuWaqqzO5P2yAABcZ/jUAfUe+a8r2FdSkpao9nA4qeIfs5fEip8fvBk1nrFp8RrNJmivEWDUWdOBOq/KT6ZXHPtXmUavsq7hc5M3y+pRxSxSWkt/U4d4orlGRZi+QFUA/db0r04yVV2TOdLTQq2sM0jG3lVo2Unhjgmt3NU42e5th4VJP39D1j9luG3XV/HGp39xcQWVr8OdSa9mtPvgMEVFJPGGcqv41+b8e11OGDhFJylXhyp+t39yMZTdSo7dFf8TD8HahFZ6T/a14oAiUmMnBOcdSK/QVSpVmrr4dfR2Omnip8j5Nj0r9i/xQli3iPzp12vqMUkmF7kf/Wr5qpThhOLaS/mgzgwlGTxEm+rP1Q/4Jg/tA2XhrxfP8MdRvDFZantktJGPy+YeqjPSunOcPKbdRLREZhls6rdS599aiGgcOhB6fMR1r5ByufPPlSsUJbs3kqIEyC2DgUJajWx0mlultb+QyhSFHJFbwSSMJJ3NXTXldstwCOMVErtidS2xpW08NjG0siDg8ZpO/KKylZP1DQ9YfV55HH3RwDXPGTbNWrGr9pFpBsRR747mt0roJ3aGiZ7ltwx78VLdjOMU5X6lS8uA8uwbiAOSKlfEbOzK9/dpboiJwpcA56n2q3daoqMb7n5o/s13V54c8Q+LvC9hqRhm0PxvrFonzkBY0u5ePrtIrXD1G6Tv3PaqwjGEVboe2/BrxjceIbY3V1cRmaHUZoOufungn3xShK7OTEyUFaJ9E/Du6jM8JJDFk4yvb1FdEVY8itds5H4oSWlleyW+gaFBHLf3Uc+pFY8fapEBCyuO7BcAZB4FebPCUqmI9py+8z0cMqkYat26HnWoWN3dvNNDpyTgxMRHDhJF2/MSB3FTG3M7npxfJFal7Rzb3ly0aQPbK1sj4cYIbg+nQ/1roSlu3c5asalbRPZ/wBf5Hk/xW8URXWiSRG6VY4pJYpDnGCD3/KuNSTu2bVLRXKlqdd/wT11a1N94wWWyWDN1aRSRE5Ab7Pnj881zx5VmEvQqWHdLBRb3uz2xJLjwhrs/wDarJJYTn9zJ2UnsfSuybS2OKVRTXuvVbmZ4s05iXvtKdktZD+8AIxg9xWL5uRtLUqm1OSU9jJuNY8EfB3wPfeI/DF3d6hqF66mSZ50Ecch6gDPBr5KjjcdWzN0mrI9XGYShRw3Mnp0PGD4o1zxBFLceJbhnuLxHZlbkIuf8K+ppx5VZnjtJrQ5/wAe+A/DZ0SC+0BhZ3U0m3zITtLHPcd61lShJXHFWvoec+JLPx74cuZb0auPKwIljOBvXuWNVyKMdGRU99HH3MWqX+sSX94RM0PEZCghM9SDXO0rmcYnP6vo8k9/9hm1IkQnc0wPG6tYxbRajGK1OV1+K0m1F4Irl/tIXLSHow9KbT6hKV9EcF4iuNIjuJIZnxG4OHbjYwrCSTehm5Jbnl3ifxDYW88itIrSITwP4qXs5JamM5pPQ4XVdUur+QvMeSeFx2rWNJJ6mSU5kWhXa2t+YGYAOeTVziuTQ3wNRU61mbfifWRBp/kx8NIMYBrjvKMXI9mpzX0OWDbW2ntXlt892wcrLQVb+3U+UT83riuWVKSlcFVdRWIZpFJ3KfrWsWr2KUJWK904e2dPUGhJKqmPlkz+sq0g12C8WR9PhNsvLv5g3D8PpX31epKNRp7HyFZp1Glvc17azRhJNYXrum3dgLioS57NMmMZKOpaQeWIznzGxyXyCKtWi7MlX1uTaXfTalqBuUtmMFv8sJUck9zWM25O5pCKtdnQ28eJPMaVyc8B26UQV2ZTkmrWRqWyxC3M8p2qoy2a6XZQuzyqjlz2RBFczzKZmtiqs3yAnkj1rjhKb962h1ezgklfXqEzKDvZcexrWM0tzFQbe4kE80vyxJgbutaRlzfCjRw5fiZzfxKlaFgGBAC9RWjVmdGGTdPQ5SCWGRDPcW+4RRkqrA4LdiaxlJROu6iZk0fiLxFqn2KDd5SriZ0wFHtzXDJVZTv0LfJY4/xytxYXL29tFvByryuvIx6DvWE072RVFpq7ONvtUslmj0OzZvtRQ485MhSRyxzUXa91HS4ycXJ7Gp8GvAmiXPjg6i8ouotMjzKWiBEkzdCPXFdGHpw5+boZ1JVHTsdj470q813Uf7Js3TzJTlsR8Rr7+9Ks5Tk4xNKc4QhdnAfEDwPouk6a9hFIbi4l+Rmh/j/2R/jWNSnzRUWXGrKT0R5F498D6foHh94LCaOByhSYK3C7uo68muOrQhTp8tzaLcp3PJvFPiO98T+FNP0W2eC0nvr6Sy02ytjvYWkWPMlb0yePxFccXKUVGJqouFRnTa14Z0fR/B9pYX8ZDyoqQSltrqwyNvPQ5xx716E0oRSKhJp6nEfFLw9aPomoi6tRM32UxmRxz5u0ldwPQ4FclWKBXUz5A8Dabc6Rqt3caXcvBcyXLtcQkkLLzyMdjXA7qo7HqRilqze1bXdOcSWl9ZyPEg2tkENG3vXRKVoWY276I4TxPYRTXHnWc3mxnpJna/8Aj+dc8Vcqyic/dWRMpDtIqDpuwxB+orvo6I1vdXDTTtuQx5IOMkGvRopykmy1JtWOI+KtpFN47urlbdFc7cSLIDkY/SvKzBRjinLqYSpJSuz3X9gb4e3Wo+I5vF13A32aBflZl7+1fe+GuAq4jMJYiS91dT0Mtpe1xKl0PpDV/Fw0jWVFxMEDtiIbDub2r9vlJQk3J3XofTynCE7M9T8KWmmXmhJ4k8QwhHUAxQtwT781p7VydobGrm5L3VfU1F1KeTTZJ1A253Jz2ry5Tn9alTcdEk7/AH6FTWtkaEl4upaR/as8PmxeTsxj5Fb1JqcTi8PgqXNVlZGEEqMruRz+t+Pm0yxt28CmDWNQkJR7eQlYrUf3s45r8xx+N4j4jxjwuApuFHrLy8jgxEsRi5Onh9PMj0aHxjIG1Hxb4ukvrlskIPkihH93Ar7nhrhSlw8pOVWVST6y/wArs68vwUsIr1ZNsqanYReLNQRdSaJ4oyFEKjOTX1spuEdD1/a8tPlSG+NdYt/C+ktp1tJGJDjzCAQCOw9/pXNTvOd2Rq5Jswb28h0+3guZrpvOePdJEuFEantivQo+8tDdNuyRnXniRL2/aKztERvLCxktuC5HA9zVyjaDtuauFtzrPAPj258DfDD4jXuiFpNbu9MtNOs3RCzr527cxx/q0GAcnjiv48+kbgsVxTxnkHD0P4cp88vOzWhz1abr1acXtFt/M81sGs/COkWmhaY4keCFUhZuQGA5P49c1/X2X4F4DK44fD2ThGyvtorL5Hpuneau9DY+GmlN45+JPh3w9dAS/wBoazBE5c7QytIuQB2HX614HiLmdXJvDvMcbtOFGTuu/Kzlxk/q9GpUj9lNnX/Erx9r37QniT9qD4K3+haBbN8M2sJNAi0S3WKZ7dIwxkucEmR8kgNgYGBX8JcHZfheHMDw1xJRk28ROSqc0rr3paaHz2VYpYWNOnKbftG93fVpPTtqfEGqeKFW0S01yNA0qjyNy/I2Ofzr/QvDYmKgrvfbsd1VckrSOB8YaTP4r1AxwAWyJxGkceCR1ZuOgrsc4yIqc1S1jhPF/imezS8iktndIlXbvPHy8Aj1xWFSpGKOSspRVzjx4ltr2KK61FRJbxQsYpFPzNITyfrz+FcUaic/IijLrLYoeKfFkIvbqHz4obxAkkUEZ+VQM/NnucVjiKnNLl2M6+I10OHs9UXU/F4WKcOpk82aUngFuMn8K4aShUr2T0R4kKyxOMsuh0F1ZWN/JPci8eOCCJIsMf8AVxMcbwfXqce9d9Wzi0j3XTjOkZ9hb2lm90qyss+1trbv4kG7cfqOlYrlirHJUjGjflOanE1oGiurgNFI4mbuIXz3+o/nXkVYtVGjyVGoptN6MqamsFvcTXOxFXcPKfPGcj+YFCaorU7JU4RTbRV+2QQyhoN6qZQ1tIj4KMvbNYfWk24W0Z5bnyV24m+vxd8Uaxoc2i+ItVOo2k6LHcQSjL8DCurHkEYFeTicuwsn7ZaO52PMKtSg4VHdPoctM89uGSPDoxxHPnG4eh5/zitsPFKLuebGFWn73Qcl2pzIsilguS5PX25qakFLqb1KsqiTj0Pa/DdvpXwt/ZD1C3ubyAeKvirIJY7VnAe10K0kIViD/wA97gHA4JWH3r8czKtiM843p8sf9nwn2v5qkt//AAFfmckI1E7SW6ueXaJeqsBhMWwgEMB0U+9fsODSgufvqejhH7lrHYfs638tkPErmQBlltiGX6sK+QzetJcWYNN68sxYapCNeUfM+s/gfrX7ROv/AGbV/wBmqaxvNe0xlkfR70gfaQvPynqDXuYv2sqTS0NMdXgqbaR+xP7NfxK8ZfFH4G6J4q+JHhWXRfEBtFTVtMuCN0MoGGGR1Ge9fIYmnCnPQ+IqRakzudCRQ7XEyDG75ciuTdhzWibojkuZA8fAHXFbJ2ISctS1Jqi6TZvfXcgWGFSWZj2qZzSVxOBT+GnxP0f4o21xdaM4lt4pWjEingkHBrClWVZXRrycu61R2dtNp+lWpEQC45LGq0itjKd5O6YlpqkWoxs9u+4Zx04pqV0U276ssiT7EgcnqOaLJoqyRUnvw0h2gZPUAdKnqN6mXqt87X8UCw5jRw0kj9Bz0rRRbWgN9j81/AN/Pp/7RXxl06NzGkfxR1MCRByiysGz6Y+b9a68HQjG9+56CdWVGM+tj0/4N6hpWmeNvGfhnTL8XMGneIwsd0zcsHhU5HbrU1HFVHFdBeynKnGU1a59RfDOfzBFCABlF2+qisveepxVlGKOS8X+I7DxBc3Wp2jTyJDezWccs0e0yCIlGcdPl3A4OOcZFc8oyWrOyil7JWZw2nSXH7y8eYAhiihTggdvzFVGMdzqcWoli9uZ5JJok8+4mS1JREYAiNFy3zHHIGMDrxx0ranCU2+Xo/I56tXDwtRmmlO+qT/NbPXTVPtseZeO9A0mysB4itp0uItSma5+zEkeW65DCRCMjJwR7ZrzsNKVbEVIzjy8r+89LE0qVOnFKV2/wOm/YFtm1Sy+IJnZY7l9btjbsuB8ywDA/LiojSi8ZORjiK1qMILoe8w6hBr9hL4c1+HaSCJVZeQexFVKSWhxu25x0Wo6l4M1FvCfie4EsEpIsblvusnoe2aypwbndv8Ar8i3G8Lo5Lxr8MvAdtqMutzy3MU8o3ACYmIsOjFelJ4elGpz21MJOtOPLfQ8o8Walq3hq1ubzXNNaNHJSK9hGUKZ6/7NXJcu5cVyK5laF4m0nxfbDUNI1WO6trKMCORGzl+/A6U4zi1ZMxlVtIx/iBa2OpWX9jJdFxJHvnkLfdP1qHdvcnnb3PK/EPgvU9Lae10nVJEjG1kTeTvz3qowi9bmqmzznWNM8X28d1M2qu+XxKm3tRzSg7IJtTOC1+y8cpem6/tJ96D5ABwy1M3KWphOJxWu2Gt3cMtze37M8hAkUHioTs9THllc4zWNLFtIzM+Tzv3NyDT53IFT97U5m9uIVkKRNuZehBraEWtzZ26GfcH7MDMzfMORzWt9Dgb5J3RfmvWvbSKWVskLjrXn45PlcUe7hputBNlCSQsSVNeQptROtwjE87+LnjbUfB91DPZsSCeVzXsZVh6eNUozPAzbM54JrkRY8A/GHTfEgFreSBJsY2k1WPymWGhzQ1R05Tm0cZ7stzsgq3WDG2VYda+arVJRvc9ty5Xc/rG1bwToPivUba41kXZNmd8SwXjxoxx/EFPzfjX6DiMPSr1nKZ8kqkqUm11N6Gw0/TrYPGxiUY/dZP3RTtGEbIzUpTVyD7R4l1m5RtFvbaG1DEXkc8JLsuONjZ4/GoftPskxhC95HQ6Yw01UtlYgr0Hrx1otcmbi7I1rZ5X5ON27nC9quOhEopIv6hdMbdLKI8nBkJ6Y9KVecpRUEcFKleq5vboJNeuArHC4HT1oc2lY3hRiroiv7pwihRhmHGTWUpsdKjHmfYn043DRglcDvmumjKpbRHPiOSMrXOW8dzSXVxIhXKquOR0rVyu9Tuox5KCscTf3v9mSSIlwQXGY1PQfhXPNqLNYQcrOSMPVPFMlpaS6fFe8uS0h2gZP19K5G5NPU6VHXY5TSdWm8671PWLoTGOPbbrIo2qe/FRRVpNsqUVJpLRFK50QeIJDLp0Ku7Lh1SPaxz1OewFOSckzSU4wjY6n4O6CNF0fU54f3gtSFjO0/KxzkZ9ff3rWlTtSvcxqyc5pIzPEXie/tJHs45gHugWlmAwFQds/0rGU1DTqXGmoxuzzX4h+Ozpk4LSkXMiFLeOM/Mq45OO1cdWraVludVJqWyPBPjn8Tri00W4vJbgpa2sZeXLYyB1JP6VyVJXvKR1U5JK1jzT9mzT59XVPiJdAmS4keSMSgnyk3Bti56ZHJxWeFSUuc2cdW2e0fGzUNJm8PpNYXZJuoVm3kFvLbdx05xwRx0rsxcrQ0MqUOaoeP+OPFGpatoMxvLgiLje55boRhgfvL2/GuRTco2NPZ3lofNsyXS69c2twiqY5N684LJnhvwrkfKpvU67vl1M/Xtcur3UGjku0yY8eepyJB6N/jSfvF0/huzkNTvbgXEllBb7nJyx3Y3e/1qI3T0N4r2hlMrHdv+WTbnZuGT/jXo029ik7KzLWmRGSdXdCrBs4Hau+m43T1NEklci8TfDe+1/4mWNtZxAJqcStNsYNjHBPPSvOq4Sti82jQjtK3QzkpSmktbn2J8J9E0DwR4StPDWkQrHHGo8x8cyPX9CcOUsJluEhhqS9X5n0GAoqilbc6+18GWWpavb6/qVuHCPlI8A8/SvrrQlF3PXnTjJqTN7xVo93riB7C4uF3MAsYPAA7YFYwkqcrLY6ZqLguVWOhuJRp3hyOyuQMiHBG07mP0rjnJTqt9CFHllzHH+NfiukWn2vww8Oam7yTHddQWqZcD3/ALor4THSrZ1mqwcY/u1uzxK37/Fezgm3+BZ0PTk8OaYloGEcwG5wZM/ma/QsDgqWAw0adNaI96jRVGCSXqYfxX8eT+EPDUbaba/aby8mWO3gjBJyT1ra0ZzSsKs5U9UbHhW21Gw0qJLmRxdTIGmeRjiPIyeaqpOLRtJJannXxw+IM/hO8j1RdPn1RYZhDZWVqhJnmJwCfYdc14mZZpDA+zppe9LoebmGJqUEnFXb6G8j6nqOkxz6woS4+zq8wfpGSM49yK+iw6tCy3aPXoqUaMXJGdcarY2JijspcTNxGVXLE/3iO3tWsYSjJXNpTjVgnY2vAWl2mhfArx18SNX8TLbXGs+LLHTbW0Sf95PHDAzsHGDhMt04zX8t8U4yrmX0kcswcYXhQozk/K7seb7epLN40YxdrXv0OIl1tQZZ4ovnl6TOu4kf7K9q/q6nFOV0e/7Pnud5+zG9uf2hvA2nSQJJLLrsUkgcguxBzyMjpX5X4+Yl4XwhzW27pNfeeXmE5U8vru/RnMfs9/EXT9O/4LJfGj4RXmnWTxfEPTNS0+61A3OX3xxRvGhUDAwFIAxnvk1/K2AymX/EruW5w4JywtWnO7ve3PZ+h87KlKphKc4rWm4y9dkfOnxJ8OWYW/8ACOqyRNJZX8kOyOUMflYjII+ma/tPJcdh82yLD4qk7xnCLVvNH02YUOWs13PItQ1bWfC11NDPMZLST5Dfbf3ir0w2fbvXpUZTS948fEN4a6ucn4iuNI1mS7uhGjWyjAYTbti+49SazqTUupwuqpR1PO9Ukv8ASbOcQ2asjROY4HHCknggdu1ZuKirkNuxxF/ql6Y5JJrITXcoVJ3PXb/dFcOIqSSslqebVnNvQo3EUUge2s5PsisdwkB5f/Z965qMfe00MlThD4NLm9BpWpWFvHJLqeIDBhQ2CG9iPX+VdU/adzvoSq8vxGTqGk6qzzNJqLhpFBuGB4Uj7ozXDV572TOfEUatTaW5Vv8ASL2e5klvL7MkcSgBejL6n1FcrhJTu5XM1hXDWUtURalpCSQyWcku5dqlXDZEn/161xTXJysqcozpuDM++sbRyLfzEGUGSP4WHTI9a82VpK0TCpTouDS0ZTVnVDGIQsyfMSR/rB6gVzudRp855lBy5rSWq/EYFkvSbmB9oP30Tpj1pUn7TWL0OucJVIXjp5FqG2hgtVMiEKQB0yW5xge56VGLaoUG27JLc541IUleWiPTFiufE1r8Sh460IjxFoml6aun26NhdJtIdq+QMdCFI3D1znnNflUZPC4jAzw0v3NSc3Jv7Tez/wAjHB4hYqWJn1VvkuxwOjaisqkTuGDAh379OOa/WcK+a8WXh8RNNxR03wa1drNvEiMoC4tTuDdPnYc8818zndOnT4lwUnv735GOFp1fr0uZnvXwE+LV58J/HVl4rW8uIrMOvnyWdyY3xnnnt9a+grQVem4I9WpS9rNwklY/VL9j+y+LXxJ8Z6f8WfCHxUvrzwbPaYm0m6dJcPxg7xz618bmuAnSq3bPKxtGlhYOEo6n2PFKFRVU4xgYxg1510j5/luzTTUYoYwWJztGc9qm91qLlaK+safD4k0mfSbqZhHOhDHOOKLRe5rF2ewz4VeBNB+FfhpfD/h+JUiDEgL6k5JpQhGmmoiqz5pbHSXsi31qYJZtu4euKHFvRhBJPYs+HYLDwzozyXFwCq/MWc0StTV7kVVGo7WK+k+L7bxMrXFswZdxClT1xU0ZxnFyRfLJblme6t4LhY/vu/B46USavYq2hn+IJpYWEDuCMg4U1pKUoxshxVkfnAJrew/a7+OOmqEMbeOjOB/fD2kDgcVvgXVnKXN3PTjOlUw0JQd1ub3wdkgg+KPjMyW01jDPf2lwjCNv3swhI8oknkDA5A6EVrVpfv25PQWIqtxhF7WPrz4P6jfz6FLf3yr50VsSF9McDvxik5wjBs8qopOqkjnfG13Le3jNPIQduRxgHI9q4W3J3Z6dKKirM5CzBN0cMowwyAOuBTg7M3laUNBdRt2ubIyNbj52P3umPWlKa5Wwpy5fdZ5v8TJZYtLZbiUozozKM/fGcd/ahTikwnF6Ski/+xvf3OlaB47uLBCrQa3aScZ6GFa4YScq9RrQyqQclFn0LqDP4y8Np4o8OupvoIx58K8F629nzNMx5JRdnsc9NeJ4+0R9E1q22SocDecPEf7wNXotzW/LFcqOGju9S03X5PBnj2/RlIIsLpj8sg9/ek7ydmZ1Xy6ox/Fs1tortZ6rbfaNMzgOo3Lj39q53Lk0aJcVUSuebeOPgl8MtbsDd+BNYk0W6u2IaTT59gZj3Kjg01SpSVzKbi9GjynxR8Gvjn8P2n/4RzxPDr1oBhkvchs4yPmHX8qznBr4Tkc+aTS0sec614/+KNvDJFrHgq6guYnBklDAqcf3a0pJ9Tqimkctf/Gq6zcPqulzwLKMM7QnqPwpzcYszcmtDide+N2nXz+ed0LwDam+IhZKzvKTsZ+0bkef+LPiBcancyT6GgDEfOoXgH0qlTUd2Kc5N2RyOo3WqaoWe8mIZ+GVe1UlCPQUYzluZF1Els6xqpLkEHPXNat+5c1domVqLSvIY5CQexz0qVtc55U7y0Lmk+ZNYGMn7vSuDFyco3R6GDqRj7pC8gRyK8lKXIelN80TyX9oLZcTwRjrn0r3siTjKTZ8fn8Jc0VY87Fhf6JImp27kY5BFfQurCrF0zz6VKvhEqsD1f4QfFGLVol0rU5gsoIAJPWvk84yepG86ex9HQzenWSi3qf2SabbC1RhIrZYbkKkZz6V9ZJLmZ5uJb9o/UkuTcyT73Ifeu0byDiuaUVIUG1sWppDpVisWEWSTBzGvOPpWsY2VmO8ZLQn0yTfsE0o3EjnHJ9qTVhWSdmb1lOIkMjcBckhuf1pRundkTSlLlW4QXUcitMU4bJb5u1Q5JaiqU3FpII763mk8tRkbsAk1k6iehXspxjdjbq5JvUgjBIA5OOKy3nZFQgvZOTNSFtsG8vjHc16UJOMDyJrmqHIeJTG99JK64KrwprK+lz2IpqlE5PX9Ls7+yaV5lilIxH853KOe1RKMZfEa05Nas8u1qSWC++xTTFCnIcjl/rmuZySTibJSqO6MK9u0tBLJbwy5YEEBgxdvXHHFY3cZGsrSaXQb4f8d614f8Ny2GpX6R39zIzzSswykfpzT9vCEPeerD2EXO9tjudJ8XaXZ/CyGKzlaNXZprlpJMNITxz6/SrU5SppJmVrV7o4DUPEtjrtzLc3cjN9hVS0TNhQT91B68/zrnqyXNq9jSonZRR4x8UtXkg1ee+u1Mk0zFHkU52dMIv58ntXnOT59TqguSGh82ftDX9/48k/sazRotKjkSOcA4+0sT936D9a5ak5VXboddFRUuZ7nafBCzTQPAkGnPNtlmtfNtee6ghh+QFdVFqNOx0zcampc8UXurxao890jG3SBQYV+6jZHzL7GlWU5NERlFR0RyXxBEJ0O8vhJtjuIfNhRe3PP447Vy1G4RHTdtz5n+K2q3VpPHf6VdKZbZwELZCyRsOhrik23c6HH3Tk5pr5oGnulwz8goMjHf8AH2rRORdON0Unh1GaX7ZazJIrD7rHBX862ppM6tIxIZ/LRv38S7tvUN0rup2uYfFIsaNK3nD1DcZ7/jXfTguZM6Iw5mevfAnx9FN4lvfhzrvhvT28yOOex1OWD9/HjIZQ47H0Ne3lee4bKMd7HE0041LKMmtU/UqjPlxPKe8aLDY6fZLftaN5Yb9xu6MfWv0vKEo13VlJci217n0+Hpubumde2qx2tmi/Kk4j3MVHQelfXqfvpLS518/NotkVvDGr6zqs26K+AQMSdpI2/U1tVUYxTTuaRkop3Rs2+pz/AGiSXULjzHUbQG6H1rlkrQdkKcm2omd5Oh6NdS6tZ6dDFLKvzTbcFvxrTDUIR1hHVmlOEab5krMgu9TsL2QMZGdEG55SuB9Peu3llGOprz2SsUob6113VmvEtllSzH7osnesJ6GiuJqer3t1IljNKTLK+GhUdR7ntW1OMPZ3ZHNy6nn2i6Vr6fFLUfGXjDVo2s7WIRaFpir8ob+KQ46nt+FeHTyqdfNXiquqWxwYXCYr+0JV6r93oaWu6zNNHKJpm8xjlYgeXPqfQV9JKL5bns87lIyLk2ttbtrGoam0cFuQbuVDlpT/AM804/D8ac8RKUVZakVVGnETTtY8H6n+zrZ3Ol+J7q91fXfiDdv9ikfbFZwwwhFQLuwzHdkntnpX8rZBiszzX6RWMc6aVKhQUb9W5O/yOCjXrvM9V7ttCC0l07S5WIlWW9C/vMnKjHqfQfrX9a0oU4u6Wtlc968ou93Y7X9lbUvElr+0h4Z1XwnYrf6t9qd7W1mbajnYw2gkHaPfH4V+Q+P1GjPwozJTk0pR31dtlov0+ZzYqlhMRhZwxUuWnbVrp+Vz5w+JHxEg+Af/AAV3Xx7BpsulyeHvGFtc65ZzSbg/nELcMzNy25XbqT0z3xXwHg9lUeOfoyV8jg+dzpVOXTrG7j+R5uJqKtH2NF3jKFlbS+mjOn/4KFeF7P4cftxeKJJtYs54dYaPULWO0hEUdqsqq3lnBILkFXPTh1PQiu/6OHEP9teHNHCYqPLXwrdOS8k7X/C3yMqWMp4zAU5Qldw9yet2pJJ2fZ2adnrZp7M8a8Sar4P1e4eyuraKZZPlibaM8dSa/fJe9J2fu9NAnCFSOp4r46+GutW9/LP4XmH2KOQvJbRsP3jHkDA/OvPqYRt80WeZUwk41Lp6HEan4ouleWx1W2SG5kIcbhkADg8/QUozcfdkY1Z2dpGQpsLtp47SGNVWP5JQAQB3A9TXDUjzyuc9SKktEZ9zoVle3sc7TKqQR740PG0+rDsKujCFzKEadRpdUW9Rt3a2htpJ2UFlIfBBZD1OOwqMQ+iZ0OhOKV+pDqzQWhd4SUZkDIM5DqCfmP4fzrllAcoNRuzE8QgwSia3Zo4lC/OpyShx1/GsXBKV2eXiatpK70Mu9LRucMUMiGTZnK5ByCfTipq04y3E0krorvHBdzGUny5DGCmTnp39zXGowjN2OPnU61upVSK4BKXB5jXci55HPUVnV5Zx1NVCU1eXQV7lixl2HpgnOMe9YQlGDdhPEpPQ7j9nnTIZvFF/8V/E+nrNoHgG0GpXMUn3Lq+Y7LK254O6XDkf3I2r8943zStXpQyvDStUrvl06R+0/u09WeFVnUxGJcX8Mdfn0JfgfNqHiDxZ4sh1K8mluvEHh2/mvZScvNJgyknJ7msOJ6NPLcpwrpq0aU4L9DfK6apV5xX2k7nGaJbKLUG4H7s8Ag9PrX2+FxU56vY7KcY05cxp+GUnFh4jvbTUvsr21tbuyhcrMA/Kkge9eHmyqVeI8GpK++vbQwhXlLFyXY7v4V+OLTxbaHQNUKASKFBPJ/WvsPZKELo9bDOVde7ufan/AASZ/ak+Lf7PHxbk+Gepa5Z3PhC7nRJLa5ucSwlzhXQdxmvms6oVa8VNdDHOIQ9h7+6P2Q03Uo9Rjjv4nBjdAyH2NfLqPc+P5n0H3l8TMRGxPHrQ1oXF3Ra017iRMzTbRj7oqbalJpM0rZ58hcFVPbPWtNLDkm0XftigrDHjgdRzSe5Ck0RaxFPdQfZ5pGaJuCmeCKyqJt2ZrpuXNDg07SLMRW9qqDb26URioqyQTm72I7rWEM21FAYr94nrSe4km0ZesXdw9yGkYBdvb61o02jW+mh+evjFGs/22fjKqYH2jxHZOgJ7vp8GP1Felgly83qd1Cj/ALPG52k+ozQ+NNL8RXd3czvrMhN+0gIEVxGu0KMcEFRmtMZFyV0OFOnGna2x9K/Da6f/AIRK9DlpD9k3M4GCFLA/kP5Vw1IRjByZi4J1FYyfFcWoWklvLcwoFvbcTWrbwcoSVB68ZNcbnG1yoyUk7dDm9QtdQsZ7i0jSJbqKZVZZj8u0N83I77c496uDbnZla1KSlB7kWtxWUoiu0ilQ2yyi12SHG18Z3IeGIwcE9MmtISVOk4SV7spU5tt31Z5z8W9G8RSWi6hY6E81sls0izQHeqRBgrM5GdnJHX1HrXPVjOC90pyoyaTdpW+fyOr/AOCflvY3cfj6yvlXyrjUbVCScnPkDk151CfPiqkTXEVYxowS3O6XxBqPwf8AiJH4Z1NjHp+oPttrovwWJ6HPArvquMFHlXr6nKpwlHUf8ZNE8XaHMvj3wwVmgVv9JgQ5Lp/eHvTcfaQTTMFUlNtW9DI16Hwf8T/h5/xMLlC0oxBOhHmQP7dxg1EZJaSKvJo8f17xJ4l+Ejw+HPi3OLnSp322WqoDtK9ll4wDRVilFS3uZOlJvQreJ/hjpXiLw4fEHg/X2tmjffbiKbK5PfFZ8sHGyYppxWp5X4q1n4/eCbq4stUtDd2aKJGmiU5IxXO+aDOZ2ucWvx3tdUuhca/pbxRyRmNhLCQNwq4ykaJNJNo4XVfGvg/xJNc2KGHzYn4UqMdeaGnfUJTRwfikeDrdmdraCWHnMfG5DRz2MmlJnB6m3hOzkcWgTyn5Y55B9Kzvzamiajscdrmp6VJdSJYRksBgNt4raFluZuq7mEfNuHa8uE5A9Kuc9LISblqZdysjgylfvHjFRZvQuCJtJl2AfL1BBrOVLmhYmNT2dQqXT5uWWvJrQdK57UJuUU0eVfGxozqcCE8k17OTTnKEj5vPKt6kUzNfRo7vTAjKMFfSuhVGqmhacXhkjDg8M6lp+orcaZKUIPBBxXpRxtF0HCqeDLBVlW5qZ/bDbR3c9qbtFACdGc9quo25M9avd1HbuO0NNSXVGvJnYRr83lhePrWVOMlMTaVOw+6ubi/1Bpln4JwSqZFaXTZFPmirGno5cbfLKkBv4V7+9JWlsdDbUdjTu711UW8pLqoy6rj5j6VE5WdmYU4WnzDftgu4i1vaBf7wL9qyqS5tjp9lyv3pE+lzRISqwZAXk4xzWSuuhnXjLuSG7a5mVfL+6M9KtXk9ifZ8kHqaRuI/siq67Tj5U7mu5uPJY8uNOXtXY43VZyb6VZJgqkHCv3rKyR6ig7I53WJ9Pil8+dG2MpGVOCB61jUsPmblaJyfivwhpHjWza30G2dpEQ7irEj6k1yVVzxtE6IOVJ2Z5Tc3Xij4dauttqMUUwLbBLJFnYCaiClD4jrUYzRtNoGi3Ok3OtauEkugmFjMY3ck8kAcE9hQ6dL4pGVSUubl2sc7rMPiLwl4YnTXLBdm0y2sKkgopHG4etZqpKnBtozTjKWjPPPh942W80G7l121ubRmumESSEZZRk72OeP/AK9c0armndWudUnd2toedeOdYm1HUbixt5pZ5WJ+WNchAe49h+ua5qsYrQ7KdJRjc8u+JZTw/awwQ5KwKHlSZxmSY8AZ4z17dK55KUVZGiXUs/DLT7uLwcIp9Vle6tySs2MmJs5IGOnatcPScI3bLs5S1LvjDxNruoWhvLm13Ep8k8ZyJNvXI9D3or1GEVGLsjyfXPG/iLVNCurr7Cn2aJdjQxTbymD1x1Fcrs43ZryxZ478QLyTVmeWGJJIJUUEIeVxxnHrSXIzopRd9TBtXltbV7c7EfHyjqHHqQeho5Y3Nm9bIrXbSEIxUCVuoUYDfStI2CV7WM7Ub427tEy5lPVH5C110e4o6bE+gzTJdAOw2sM8Pmu2lUfPynVBrqe2fAf4NeKviX8QRe+Gr77I+n6RPcyySkAOI4y+3J6kjj8a7s1y3+0+Gq/s03UgnKKW94psKVOVapPkV5Wue/w/tGfDH9orQbW68AW1nYDQLBdPm0uKHy5lmj4kkkU8kls8+mMV6nhFndWrlKy7H6V1qut16mnDWMp1oSU9Kjb0bGT6jqdzrUNjBb5UwhWk21+40+d1Euh9TB8jN+0vNO0Gye1QbWGC4IxXXKEpy0OhJtanK+OPjD4c8NX6wTShppOILKLl3J9q5JzhF8hy168ac7dQspNW8XC21LWJprG0TDJbjgn612UXLD8rpnoK8qabLF/fSXcy6TpTMTghYkXPHqfSuiFRvWW5M4pTTuP0iabR7KaKeZ1ZRhSV53VlXlztFxkovU5zR9T1PxLqF1dwyg+WSpZiRx9e9dCcYU7BUVpX6FK/1JD4hNrFdfaY0XEyJ1Zuyg+lYyqWg2uhpGcpbIZe3Onw6kza0TboEIaPqznHTFU6jlTumHvRdzlvGurtL4bmuLqVLRFQtBAOMgHqwHf60RioJzT6G2IqQq0/e0sM0m8u/BXwc8LaPqmlW8N5HZ3upo8EgeS5S5nOx8jpwnSv5x8KqEsV4g8Q5wv3keeMFbf3VdpX89DycAnVq86baV/vKVlqMaFZlkMl3Iv73d0QdhX9RxhCM4yW7Wp7sOecLydkj039lLXfDXg79pvwpq3jnxc2m6fZvNc3N8suAwVC20kHhT07da/IPpE/WX4S4+OHjzSaSSXm7HPiqWKxOFq0sNDmlJNWPkX9tLVb/wAS/wDBRfx1dWd1ut7wxXEUs4KeWjoCrYxyenBPQ5ya+a+iTi54Dwyw2HSTalKMvK619fwPOqOeDxNKm9JKMT6P/wCChlzq/wC0J+wz8L/2rTNaRnQoYtP1uWwGJCij7NL5g3YyJFRyQTw3TufwrgbE/wDELvpFZpw5Vk1SxMnJJ7Lm1X5s6ZYWlHCVqcZPR+0+T3Piq/sPEPhsxavDbx32kmE7JoG+ZFPXgdT/AI1/c1ZOglyr3VseSnObvHVDrfxtorW0qeHbkSoFcsZQAUBAB4/vHpRSmpQujpnKnOCdzl/GHhXw54jhlu3soYRHbYk2dWc/dQe/rXFUjCUrSOCrRjfU8v1L4W69ZXF19g1N4YoF3th/lX/ZHvXi4jDOU7wlY8vEYCdR2hNowtO0TxZY313cee8hmAK+d94D146VyRjiaV7O5w0MLicDKTcr37jYvFOpKJFu9MlZUBjlndSy7c9q5lXxM5e9FlU8fUrNpxenUp33i2TVfMdgoLJ5a7wRsUenpmtXXk1sbvGOcOUz9V8S3V6wLWTH9yFEfTGOQfzrmliZ1JbHk4jEVKs9IlJjq99KHlGF8rYQTyPw71NWtUbLhOrU0G3mnavcNDmQpKkeUZP4hXK4Tlrcmtg6zamnqSpamdWlkJE4PKjvWbvUVnozSC+sK0nZof5ZiCs8LPKzBEjTkyOThQB3JJArDFVI4em5yeyMa9Sjhqd5bnp/xsjX4R+ENL/Zo0+RUvtMk/tLx1MP+W2sSqP9HPqttFtixz85lI61+e8PUZ5rmNXOKv2vdp36RXX/ALeevpY86EXCFlvu33f/AADD/ZgU3/x207SJEdvtmn30JAU85t3/ACFdnHHucOVG18LhL/yZCwLk81jTSve/5HKpM0NttztMcpVlz3BNfW5dSU6FOd+if4Ho4i9OmaHgy8TSrmLXViEkN00kV1E2MSoDgr164rKrCGPxk3HSVPVM5sBUi/fa30FuIrPwF8QVfTpHNndgTWRm4IU9vw6V7GEdask6m7LjXqYXGcltGfSfwnOleJr/AEvV5rtY7+0njl0+5i7lWB2HnnNcmYU2qUoHfXhKvB3P3S+CXii61f4U6Fqt4rLNLYRlg3HO0V8BqnZo+WlQdJ8p1A1HbiVzyW609UHKaOn6jI7NISMg8Y6U1ZESi1qjUstQRpBGJd0mOcniiLuy0nyj01EW1yZJSOB603KxnJXF/t2O8lCowwByqjNRLXU0gna7LjXLIioxAXHSqViZNuRXilso7gzyuzFuFXP3azaNVblsUdW1VWdtx4C4DHjvWjl7o4wcVqfBfxnijs/23/iQnnBGu5NJnGSOT9ijA/8AQa7svbnKa80dkajqUopdDc+IeqSJoGlX1siwvaalBKGY4yHOCN2enWvTrxhGgdOFw0qsuVs+nf2cJIvE+nXFnqd5AtrHYzPdNOcAIFyo25BbJwMA14mMnL6u3E8zEVfq7t8Tv0K3xFu59ZnS/wBd0uC31KR4MyW0GIjEsRjVgOApCjoB39hnnoxc6Kc3f/I6I06dC6graXfm2cvObq3uHtIWMsRBdmV85Zc8/kTWsoqErJmmHqSqUuVLzt/XYpeJbs2+kz6lDG85it2k2Lkl8ckADqaEueolJ6PqaQg+bR6nH+MrW4tbHW7XT9Qumtb9zstWGwmIKGYui/7QzgngAVjOMI42caDbX+W5koVK2Hg60VzK479h3X47TTvHcowmNbt8KeufIXrXBR5FiKltzavh0qcGe0eONI074v8AgybTLp1NzEN9rNjBRxyOfrXZzRa1Vzl9kov1OS+EHxTvdfs7r4f+MLkLrWiqYri3PAmToHAPUEVzKo6cuVl1IKC0OF+LHgfxv4D8XW3jrwCGubBJDJqWig8MOpKehpVE/iREqkXTIPEPxm+F/wAYLOPwRq0UTm6XbcWFwuGh7EYPSkqinozmVZnkHxH/AGfPij8M9MfU/gf8QJm01nP/ABJ7xt4QZ/hPUCqp0FF6PQhyurs4zWf2lviPo9vJo3j7w8yPHbiJ3C5B96K3PfYzd27o5aTVdA13TDc6dHbyF23SKwBKj2pQV9S4q61OJ8beE/DVyzPplmsbImWKjlqmbsxvkZw2q+DNIk3T3Mg8xhzufGPrUtNrQh8qZxXiQ+CtFG+6uYSxGWjRgSTUqnUS2HOUUjir26i1KQzWsIit0blsYNdEKWilc5tZdCpGh1BmWEYiUHBB61NSEos2SSVigsIlgaNgA0bHirUZN3LgrIqwAxSFEXgN0qpK0jnavUuVNSlC3pIGB15rxsfC1mezRl7p5F8V7mO+8UQwRtnaea9bKISjhpM+Zzr3sVFFsAQ2scYXnHSrp025tnVGP7tIt2FpG0ZZ4wcjPSuGupc1rndhaEJRuz+x1pknXy5Z34wQsfIr6WpD947nlyTU22alrIYdPa7e2dCifKD0Ip2sjmqTU5WMW0DzXTSl518w/u0jfisbWdzopxUVdnUaM08VrmdQ4VclVJ4PvTSa1Co3eyIJLnzBLN5jtg4ITpj0rJ2kiqaukWbO4uZrXyrewMSMfmYpklR/n9awcpXslob8tFVOdvU0LNmtrXzrhQTjO3Iq0uRanPXtOpaI+0vLq5iJEfDZ2rH1FWpTcdBzhCD1ZM1y8REM0wXA9cmqjJvRmfs4vVI5zxGkI1NrwIJCgBEbnGDVttmruopHI+I2h1jelwyqXUgBH+6PpWc7LcmKcZXSMjRNWvImOheGY1wPlnfGD36mojKM4+6dDi370jJ8eeGdP1OJ7ae7ea4aP5l3gIp9c03CC0bCE5djzK3XXvhx4gtzrql9FFwJZXU7ioHTPqK4pxVOV3sFSDqU7rcveN/iFZeJ7ea7hkWaO6BEbgggDnDH2ArOpLnWmxdKmkrtHjPjS5vToV40NvmOCIRWxHG+Zj984HPT2rhqTnyto2ULSWp4B4o8cfFmGa507TNLtYpIo2M1wzsu7HI5HJPt+FccJVpq7O+Kp2V2eY6foXxV8fePotT8WeIS0MJPkW8cexEPbI7n61ivazqq70OhJTR6loF/4g8N2dxYWyJJFcxkpLu2mGZeoP1r0EmohOS2RmeLtc17UtEB+1xW91CMT26dVf8Avj2Nc1VNhJQUlY8v1LRyfMvLedorlmxOI+/ufUVi4Nm0Umclrunx6dbyaldQxPan5peCQp9ahpJmyqKKPP8AV9Z0vVnkt9EleYq5/epGRtGenI5pqDetyoe+rxRlTNrUkcitrSn5ujWxG0Dt/wDXrVO2lh8km9WUpJJEIeX5txw3U7j6100Ggvy7FzR9RtdKvob29UyQxzK00an5iueQMjvXo0YKWiZooyldJ2PoX4O+LZ7/AFS6n8P+IEWzmuG/s+3kYrJHAekbY64AA96+r4TweLo15+1mpRlp56nZhMLKNTmkztPD3wi8DaR8SdR+LGiaMYNd1iNY7+WCUrDJtGASg+XPvjNfYZNwXkmV5l9couXNrZX0V97GmBynAYTFyrxWrO2trxoF2xO7yKfm8sbi35dBX37nBJO9kfR04uettDN8R6hcecYGvwqzDCJn7p967IVXZpGvPFe6U/C3gDwxp+qzeIrh11O/OCskq58segPauKFJc7lIqFKnCfM1qaWuapHDKwExjwuTnnnsAK6VFs0clN6OxS8OzX9mk17LOEeTnzDne1VUULJIEmVrjxLLq+oS6PZy7ljU+a6nJH1pypxhH3i6cG5FLQ/FWlz6de6bZIirEzCSYnqwrGUlN6dCqk1yuNjifhs/i7UNQ1bxP4l2WdrHdbNMVR8zD++fXvXLh41nOUpu6OfCwrWlOe3Q29a1uGzR73yUa6YExzTnJA9ea9LD0HVvE6KtSVlI4fUtN8TfE+90zwF4eVUk1vUEs3uXfAG9xljk84FeRn2Y0sjySvjJ7QhJ/gS7Vmp223Lut614Atddk0Lw7rNzKdFu5tG1WOcl1RoZWELR46IYyCeOua/H/Ar6x/ZmLxNWKUa9T2ia39625WHf7qXKrK5j3GspZXFxcq2IRuKoBgzt2HfAr+hasZt3pvRdH1/y/E78PKKjafU9N/Yz1G9g/an8PXd14b0/XZri0uTLpmpFUjij8v72T1I6gY5r8c+khHk8GcwnzcrfLr21XYcYfWIzp87p6brf+mfJH7Quuah8Wf8AgpN4+utVvbTQPD9lJDDf3t7YkrarjIcRrkyN1IHfivjvo1062T+H1FYePtG05b9T5jHTxcc+lCPvRpwir93ufXn7JWi/Dj9oX9iL4rfAeDW9W1e28JTPe6YbrT2tZLqK8h8s7YFcgqJItwDEcn1r8h+k3QzLI/EbKOJKVNQnXSjJ9nCSe/p1PdyvNZLFRo8t41k4NtLTt+bPgLwJrmt6LZ3T6vrdxPbaCnkX+kpagSK4fazHBPyjAzX9k5BmVLNMno4+EnKMoRbVtLta9Xf1/A+TpzqYTHVaKu+R2ZDqmj+D/GiN4l8N6glneu37nyWyHye69vxr1YzpV0uXRnoWpYpc9M5vXr3xJ4Mt0tdbstlqlxua+2Z3nu1efi5ypR7nLiq8qUG5lSLxpp3id5YLOeN4ApCIp4IHVzn+tcMKsauzOehXhUjzoh1u8hd1g02GNXv1WOMkZIX+Jq6oypvRE1asa0uXuV9YtdMRIPDkMMalWO4qeSuOWPTmlU5LKMTuo4WEKfLYxdX0PQ3RHtbEKrAY3c7TnAJ9zyfwrirwXY5K1GnfRGN4g0XSLe5MKKBEWKrIOcDA5+meK8/2K5tjndKDfkZt3apDdOjR7Cg2Mw7HsfxzUVMOmzixFCNKV1sVr37XK7M6lNq/KOwHt6VMKO9wUptalSaWLTohe310qoBkszfeNYVVRp6yZw1atHD+9N2PSf2ZdL0zw7o2rftkeO7WM6H4QuPsfgjT7pRjW/ETLmLCn70VspE8hxjIjU/fr8w4xzOpmGKp5Hg2+arrNr7FPrfs5fCvK7Pno1f7SxLqf8u47eb/AOAeX6v4hnu57rxDr2ovcXFzM811NM+WlkYlix9ckk19Zg8NTwVCKWkYqyR04nEUcJT5pP0R0X7I2u6on7T3hTX5AI4n1NbaOOToVkUoc/8AfVePxXh6uK4Vx9aW3s9F6NP9DiyD6xVzhYytpHWyKnjC1m0HxF4i0qcKDYapcpwOm2RgK9HI8UqmR0aqejgn+B9HmCf1epJPa5U8Oxy3vhGJG+/E7ORj15yK68vfsG6st5HLl1GMMsg3u3cv+KIRrfgOLVRc+Zd6ROMIcf6tuuO9dtOc4VZSTev4HVjKMKlJVk9Y20PT/gFrq634afTYLgLMqkwuh2nP862qvmak9j0qdSM6UZJn6a/8EfP2ndSfwVqPw/8Ai78RGlaxuiunW9/J80SdgCeor5fOaFOnU5oLQ4Mxw/MuZI++ItTtb23F1ZXCyRPysinINeApc2x89J8pq6XeRxxbGbGR0z1p2tqZ3uzRsLq0QtJDJnPUtT5rLQtSurCype39wIrduN3zN7VF7lJK5oxLpejR48xWfGSc96aT6kXkyvqGtoxG1gPQ5olEcacmU3vJWmEhG1dufrUJWZsoqxleItQv7m90qz8N2aTeZqKjWp7qXYltZhWLumAS0mQoC8DnJPFXNOVrDSbvzbdD4u/agmms/wBsnxBe2tjxd6FpEmLh9u8iN0HbjO2vRyyUfaT+R10aPLQiXvHinxR4R1Cwt4RbLBsItd5JUgZ4PXrXZimpUGkdmFfsnaTvc+kP2b/CUUvwyvvHGq6VE2m6qtnptvczylmiuIyszEpjIBwuGxwRXhZnVlHDKmoX5mlfseNCCrZmoc9nG7faw/4h3kGovb6bPeSxxQ3JeYwSMCQrHZ0KnHqM4wSDkdVT6K+3kdMVX9nOUkubVLrpf06r7n16nKrbz6ZPLAuoecUjMxPmhgokwQuR6bgNvbvVUqM/ed7pf1+pdOop04yUbEs07yWiQ3AVo1JKjA6nvWntKns1Dpf8zRavY4jxtqV5ZXt9Bau6i1svtEkg4AVjsUZxySTjA5xn0rz1JvNZQTsoq9/X/M6GnHDxb+03YrfsQ6ZPrel/EKwhk+f+0bdwe4JgU8+9c+DnCeJq+pljG404WPYPAniFNKtZ7bUn2TWrlWDNyfeupQlF3ZxOTepyvxj8DXHinWI/iB8Np1ttfs4slozhbhf7jeoqaqVSOm5pJ6WZzHwz/aHTxXqF54c8eWkul61bOI5ra6OAevzKejA4rODlu1ocEp20ZyXxW+AXhT4leKn8deE9UbStXtFPk3FscLMfRuxodJT1izKSerR5nffG34qfC24bw98UPDN26eaNl9axmSNl9SRnH+eaVN1Iz5Qg5zpp2t5PdC+NvGHwu+KGk3epxzWrubRRvRxnPvXROcZaCi7ux5B4t+AGoWdtLqvw98YCESwhhCGBAJ9qdKEe5pVkkrI8o13wh8cbRitx4igMUYxlV/KsJx993OSUZLVnH+IvAvxIubwW+r+K3TzVy3lcbvSikrbmqp3jdmTP8MNJ0VBeavdtI+3c7Svu5HatHUmo8q2EouT1Zz1+R4gvBZaGpFsDiTANaQi1FO50LljHQ0LfToNNi8lgAVGOBVNXRjfU59IC+rTRyR7RjI96znN7Iy55c25XubcwymQeuR71ndyHTfvGB46vl07y7grgOvNclak6iud1OtGlrLY8cvRLrfi83O0lVbrivWpSWHwljxFTnjsw5n8KOia2MrhBxj1rBVPduezWgoaIvW0SxQkE/wAPpXnzk3V1NaScKTP7CdOMV5cLBpTMvzDexbGfavqZa1GjyqnNGbv3Zd8S3psbdNJM3GOGJyRWVR8uiOKycrmfpd0skxhsjI3lgFnOcUo66nVb3dTpxc/2boD3I/5bHkKDk1M5tR0CUZc6S2M6y1C4vVwqRxxxvy5X5h9B61zSemptThymtpdxcyT7lllMYXcQ4I3fgBU05SbZVX2bjsW1vo51ZFGxmyAaU530MqlNxdxdCmiFw2npdEPIhy6VVGV04pjrRfs1O2iGB7O1lKXKNt8w7CTlnP8AhRBKErM0mpzV12+4z7uz1C61K48y0Kq8BMe4ZNbxvzES5HBO55d4mhK3zWkjOUdj5rr8pHtk9qxqpsuEowQ7TotQuLA6N4XuoRknzcIW/M96zpOzsmTOo73ZgX3h3xFpeqJda5qzSWqODNaRIFBPbJ5qasJqV+bQ6IzXJoh3iHX/AA/4h0pglhbtKvyxIz7kiXoWPHXH86znJyjqRKFlqeAeIPAPjOz1m4vvhusclrOz+dZTDEVy+PUcrj1Fc0qNSa/dGkJOpZT6HHn4pW2sLc6Pf2bWGq2Uqx3GmTAYQjjcrdHHoRz681k9Ycr0Z2SpRjZ9DJ1vwrJcW8ai7SN5pBLdTyZIUHPpnJ9KxdJwp2CMovoYmm+ErFNUtrlrSKEPdYBPGNuACwqIU0mjf2iSsil8QvFXhi30rURp1urXZuwhsoo8jzARuIPocH860nVULmkYN2cjwzx/4Z+Kus6lcaro2p22nSooW2C7n3D0YHBPHauKrGrUd0ypKLmo9DjdS+Gf7S8LJqer+OdNtVkzieCwyXA9SW9e1TTcoSs2OoklaBzms/C74hahbKfEvxEmuI1fLxW0ax98klQMkVNWUm7JmlCE5RtIy77wxcWIWSTUra8K/wCqZ7fCsB2YgDn601KTjY7FBRjoZV/Gt3O0TWKRyADHlswUGs1e4LUwbyQPMYZ5DEy8BdxOf/rV20YW1QSSS1KmsXCW9nGofeXl6Y6gV6OGu5hGd5HYfDnxLJol1FqEEu1QoPynrX0+AxH1aopI7o1JRtY+lrXxdrGs/Do3Hg14/t1wm2FnXIVyMZPtX6RDFVMTgH7GVm+p10asnG52Xw81XXfg/wDD9bbxXeW9/rlzbk3dxJACEB67RzisaeQYrFQjOtWl7uva5TjiJvmk9O1zhNM1/VfH2pzXFvZPDaLIUEsikFiTyRX0eFx804xpp22O2jObsrbHUwa+thA3h7TIArpjdMT8zH0r15x5Y87O2c20lIxJtQuk1byr+5Es8n8JI2xitI1PaQuhwemg3XPE40G3mlknCyyREQR5q4KM5bnT7Rp2RR0fUBoHhK91O+Bkup4SzArzk9BU4mpNrToaQlGlBz6nPeB4bzRfA0+s+KE+zrczSSyrnBwfujmuajGSi3JnNRk1Rc5dyLTPE0Wp6aL+4Hylj9mjGMAepNaU0/vB1vaU7JlTR1PxC8bx6LdXhtrGAZvr7+GJB1xxyfaqr1PY0XyayN1FpcsjovB2vBvjBoSeEI2W1sb4RaZbwv5ct3JnBb/eboK+B8Ua9LD+HeOq15cq5Gr+uhrQlGNfkfwnjfhrWY77xN8RvEDWaaMJvE8oOllxI0TR8MWPZyQSevWvC8E8NOjwlC8+aNk1K1r6HHh1fm5b2v8AqO0fxM/iLUU1iz8qQqpSzgkPCgdZGx+lftVFqdW9z1MPNSn73Q9Y/wCCfOpSa1+2jp6ww2jPFp93G8t6WIkbysnCggH6c/Q1+KfSfrxj4IZjo0lOmr7XvJbB7dxc2m7W6ep8ufFzxFN4i/a/+K91qtxJOq+Jz5qrbbFby0CKxXaOg4Ax3710/RswFPC+GOG5E7Wu+u/nr3PIw1OtWzHEObdrx/BaHvX/AATL+IngfSf2uIfAHxD0yym8L+OdIl0y7j1i2DxPPERcWpZQwO4SRjHXBIPFfL/S7yXMMb4df2nlbkquEndWspckvdkvuevQvH0KVWi6cI83JKNRXS0cHzJpO6umrrqmk1qeS/GjS7L4NftGePNNudJiSx8RCHWdDlHmbWt5/nXakvznHOVYDB4Iru+jtnks24AhQqSvUovkls9Vvtp92hyVpKWZSxEXeNWKlqrPVdVpZ+W55n4t8AeHvE9zJ4j+FobSdWW2je5tJGAg1CQcsBj/AFZ6c9OcV+x1sPKnVk0mrL5P9fw66dQr5eqtP22GdpdV3OP07xPqXi+W5h8V2TwtpreV/ZlyeS/ckHqO+a8uni3Vm1JWPHo15YhtVVZroUfEfgPQtQ1FWskXTpWh+e5t2272IzgjptxTnTpz20N6+Ho1IcsdGcdaWnxC0fUp7n+yDqaWcOBcW/ZB3x2ryJvFUK17cyPDpvF4KpepHmsV4/iTpZaabVc211K2D9oQjC9OM1qsfy/GrHfTzqhNNt8r8yteeNdBvLt7e3v4DAmZMvJwSBgfl/Wrlj6clrJBPMMNK651b1MjV/HujXE0l8LqHCw+XFAOQfcivN/tShGo9Tx/7bwKk25r0MKXx7Pc747exaUSYw5XrjjFZ1sbWmrwRy183daDjSp3v1Kz6x4t1Fv9GiWFW+8epAryZ18wnpscFStm9ZW+FHZfs6fss+L/ANqr4r2/w8t/ESWFhawNqHinxDenFpoemRYM11KemFX7q9WYqo5NfI8S5xHh7AyxNZuc3pCC3lJ7Jfq+hwLLauLxHsqlRt7vyRr/ALW/x0+H/j3xrY/Dj9n/AEm5g+Hfgi0OmeDLCVQHmUHM1/OR1mnkzIx7ZCjhRXm8JZbisHTljMYubFVnzTa2XaK8orQ1xmZ4WhKNDAJy5VZdr9WeUQ6Zd39wJ9WlDOPuxgfKor7yjhalWfNV+4WEy2viantsXq+iOq+HWqx+D/HugeIGdYxaazayhioycSqfauzO6CqcO4qg/tU5L8GexWdLDK7djvv2y/DD+C/jj4+0raUMuvyCNZE2k7yHP86/NPD3MFmHBeHlfXlS+7Q6s3oyjlrktpWscP4duZLW3eAMvEfAx94elfp2EpU/q6RMLqioLoifw5c+ZFeWkSK6zQsGSUlQw75PNdHuxasU+f2LgjT+B+rf2fczQ28pYQtkKwweD2+lRiItJRNMBUpex5H0Z9e/sl+FNE+IPxVsLLUneIasvkTT29wVKvjKtlea8PMG1QaktC8diXGi+Q/YLwJpK+CvB+neHmnaVIYVXe7ZJ46k18o5Qi9D5fldTVnSDUomCJK/G3Kle9Q3zGkYpaM0LfUIbS23SMQcZAzTbViZOzsXNJ8R3Ez7QwXd0xUx3HG5ca4hlnEty2UB55rbdlLYpzmxvdS86O4IRTwu6oqq70KUrIXVdWCKY1cFQuABzUcut2EW2zHfVDG/kxhVLDH1H0olOK93qaRioo+Tf2w9PP8Aw1TNcQWaO0vhHTnUOOPkkmBPtijLGo4irqd1PnVAPD1/Dq0199uuS6m1jaIINoxt64+te3ScJOSv0M/ZuDTaPbP2f76x0z4ZX/imW6nF5cav/ZemWqXRMEUMcKPNKydPMJZFB6gA15OJj7XHutF7aWHUxEvbxw0ErWcm7a76K5d1PUVaMm4uFd5CcblHOc1Ttaz3KhGUdL3MFZYUundlUbchfLbIY46/oKGlsdKjZcsiy8jtam4aKQqjKu4ISoZs4B9CcHArGpGKXNroKlBSqWvqcb8VdTt10+REVEYR/wCkN03sBgdTzjnH1NFZR9m3Favf5HNTVSrWuul0l0JP2BNZiN/8RYHkUbdTs1UAdW+yoea8bLqaWJqMzxnO3FPt+p1nxR0XxTZNLrenzRxOuSBtwJB7+9etV5nHQwi4RXvE/wAN/Ey2dgt68hl8+P8Aebh9xj2rmpX6jqS5locJ+0P8OvCPxEktSVW11Rmxa3VudrofXI5pSjFuxyODcrni/iS1/aT+AFy0V3HL4j04MH8+L5JEXGRxjDfhVRozUHK2v9dDFcjbir6ev4d/kZvh79qnwt44vbrSPFMggdUKNaajFtPPs1Y+1960hPlerPPPE3wy8B+I/HP23wNqv2ZmX/SILSf9059SBxVcsJbCpq7sUNd8H+JdA1UQQ6tdv5ibXSGXgY7A11qnyw0OiSSVjkfFUfivQrSW/wBTlEahP3cUj8tj61ytWMJXWiPPNc8W+IfEciG3sSjwryWGN1FPmubU3ZWZxHjT/hJrjULfTNTuTGLggsi9e1apNpt9DmlSn7TU0rbRbfRrIJuMbd8jlqamrG8uWOhTkvLe8laGOLcynnPalzysc6k27IyPEFtJZajDqCn5WO2SpkpWI5Wp6lfVIkI3AjaRxiroxu9TdxUVc5Px3YPqGhNhQWibPviiUYRlqVCmq2557bWVvbuXWMAt1NcjnKcvI7aMaVNaFtERSGArOdRvRGdSUZskfBIJPGOa55yvqjWFRQjdn9iWlpFYTLBaoJptvzSMM4GP0r7OVlJo8PESlzP1MLW7r7XqZUzEEHayD+LnoBWDabsZUmi/pMt7HJ5AKRpuwYkGSfrUqLubPe9jovEssNtY28D5JRAxUt1rKt7uhMHKU2Z9pfwzgIkQyr5UeX8o/wATWL99HVqlobegX4dbm9ZVbC7ThQBn0oi1AmpBy5V5jlv4bqdUClVxhugz9e+KzT5maVKfLDuypLqKaFrVrOiCOGWYRABSc5OBVQcac0TFOtSlFu73NTWL02F1HMlv5szSYBYcIM9q0qtRne2pNCHtKbT0Rn+LNUu9J1OO6Q/dUDJc8jHNE5SjLUzpUoexUOhw/wAQvDt7420htW0ZRAZAQVi5xjvSqTjKGh00acaUkmedW2va34CgSwnEsodwDcb8tuJ6sR0GKw0ikkRWjGtU00Kmva54g1e6W4tkCWpBAkZt5lfphRj5s81EnNPVnVTUFCyMDxT4J8T2OlPdXupfZ5JRiGLyxuI+nqamtTk4aMpOPNZov6R4t8NaV8PTeWl9G12yfZpIgvMLgHcPcnjmt6UoKhdbmE4T9v5Hz/8AFD4Z6b4rgawS1E2o6jJwF5YE5x9McGvNrRi3Z9TvhJuOux5X4i8D/Fz4Dstp4b8Tvq1uHBk03WWMiKVySFc/Mv45HtXFOMqSdjGoozemhF8PvirrXxNTUtS8Q+CZtNhS4kiijeQSeY+Mb0x0XOBVUZTqay0NYRcUrmp4h0zwnpzBDf2+62EQujuwwduSGPZgPXritJqMXY7ovmVkUZfEnw9jLpf65Y3EZkGJWnXfnnHeub2sLvUz1jK7PP8AVviVoEhvNGHiS2nigmZFt1nRg4bpgnnIrnlua3drs8j8Z6xrtprEkaTJcWRB8pnwWQemanks73OiMpKN0cpqEttL8slkELLndGSA1VoaQuzH1VYxCbiZLiLb1+cEY6flUSumJPXc566ngnmOw7wOF2jt/Su6gmjSetMwvEd2s+pJawOcQLxkdDXq0UooilJKRreGdTI/0cycEYx0w1d1OTvY64zUVc92/Z3+IU9hBcaJdkYQFod7dPev0HhSuo3pVGdOEk5ybO7i8S6lqkEt3fz7kY8KxyTX6NR5eW3RnuU4JrYsSa9Jp1tC/wBwEEiFBwfriumNOnFpI6IuPJZDPDOumXULrWb63QSuNsCE9Pesc4qexwfkc1eo0m2zL0nxXo9/4uutLfLiyAadkUkFz2JrxcpzL65S5IO9jLCV/bScY9CO91O01jVlvNTiKrA+IVZPvfQV9NSpyUdj06bkkk9yS81dvtjLLHmNgNgfv+FE4waaNb2Zx3xV8VS3tsLHWrtYYiwMke7aoUevoK4LtUlzWX5HNja8fg2RJ8JIdI+MUOpQ+ENTg/sjRIx/at8CREjf88w3QmvKr57Qw+KjhafvTfRGeGq4efuQd7bs1Nf8b+HND0qTwz4TkaGxP+tQjLTsO/rXtUMA1VdaTd2lo9kehKSlFcy2NH9lfxjpyfGv/hNNZmhitfCui3moxQCRwsbrCVRmYKcfMwyK/EvpIYuthfDV4SK97EVYU0lrdN3fbojgxNaUH7nbc+f/AIZ6iuvaNq1yniptWstR1e5vL3WDGyi4ldixVQ3JAY7Qcc7c9MV9r4V4WdDhilRceRJWt6I7MFWpfVU4S5vP1/yK+la7Y/Dewu9L/tIzajczMtogXpuP8R7YGPpiv0ejFUW0mVGpUpS5X12Pdv8AgmyUsP2t/D+h26wXDz6TqMk9wsuxixgJJyWXOPrX4n9KmpyeBuLhH+em9r686O7DwVCErv8Aq58ifF3UrDQv2mPibfzap5sCeJ5zudyxkIPAyCc+nWva+j1en4X4WdTRqK02PPr4mNPE1ql+35Gr8HJLe48SL8U5dRt7bWbGdLnQLJgx8h0IIfg9TjNfqOPyXCcT5ficHj1enXg4cr2V1uedgqtSrUdafyPpX/go/qfgf9of4d+Fv2tPhfcxpqWnabDa+IoDbsZpVbKTRsyxrHmGZQ2wMzCOUNgLgn+FfAeGdeE/iFjeEcyuozqSUdVZJawe7dpLrZK6PVxGGnVwSrNO8NfWN/U+RdHkRr1LprqSUJmSZyxC7jng+tf3RVVTES55yblfV9359zy6Nao1eOiL3jyz8IeK9BTVNYgNtqEcJWyvbNx5rOeBuHQj2NeXi8JCbutzLExo1vi+LueXalqPiXwpdrZeLbUCQZliuYmJWZdnf+6fY15rp4mlPlcb7v7jw1UxNKVq606Mfp2vxRWYVL2RVnHm3e2T7wzwvvW1FQ5b3O5uDhpqUvEWn6FqKTCfTo8RqFCkAliei5PYd6VSNKfxJM89rDzn7yOf1jwL4RS6hX+y4gXwHAUcZHWsKmDwrj8KLqZfgalv3aM/UPA+k2dss9lpkZR0JJZRlSDjmvOhgMJGrdROOWU4CKvCCIZdFsIpTHbwLtCfOMfd/GuurRpqLUbG6pU6MdEL4T8DeMPHvjHTPhv8PNEOpa3rV4tppdjCOXkY4yT2UDkk8AAk18zm2Kw2UYKpjMVJRhBXf9fkjxMVWrzkqVFXk9F/meq/tHfETwx8EfhnL+wx+z14ggvVkuUn+LfjqwbnXtQTpYwv1+xwNkAA4d8se1fmmVZbjOIsxWc4yDS/5dQf2Yv7T/vNfcefjaE6UHgcPK9/4k+7/lXkjwaxsLbTrcpaRgBR8wPev0mhhIUYaI1wGXwoRSgiwiJbneUDKy5VQ1dtKHs3d7Hr1GsM1ZbnPX80uveJbbR1dvJjuFe7mhXJVQQTj3615Ga4udWToUVd2Z8viZyx+ZRoR2T1Psf/AIKXeH/gHqmkeHPEvwD17WbmSCyhu9SfX4gkmprcQRyfaI1UYVUIaMqST8mc84H4V4Vzz/DYvEYTMoxUHJqKj9mzej13e59BjquLxeEkpO6hLT00/rofMXhy4S+hwTt44Ir+iaFNQpLUMParQWpf8OTMmpOgALOCojY4B4xUSmr2jqdMeRzaKvw61Sez8S3WnuF3JOR+8ODgeh+nauhVlUm1NnBlNPmxVSnJ7M+mf2ffib/wrbxvpviJCFiguopllUkY5+YcexryccvaQcbH0FShCVNpn7TeB/iPpvjbwPp2uWNysyXFmjK6NnJIFfD1IqMuU+UqpU6jRsaZrFzDJ5ckoAxxmotZGEpGpa6vPc3yxzS8D7oBpPTUWm50VtqdjaFYbdcyEZNKL1KatqP1LXIoVEbfMzdqtSRKepRbWfs4BWEKzDiiU49DZJdTzz9pz9o2L9nDwhofiiXweutz65qjWsVqbrySsaoWd84PTgfjXhZ7nSyXDxqcvM29rnflmCeY4p0U7WVziPCn7fvwO8RTpF4lGoeG536rexebF/32mcD64rz8FxjleJ0rJ0357Hsz4WzKEW42kcr8ctd0v4i/Hix8d/DXxVotzZJ4TjtTq39pIginEsjbcMeuCK9bDZzlscS+WpGzXcyeSY6OFtOm99jP8A/Db4pai0Wm6RaaZdTXUKqt7/bKebOWySCpfCKoGAMCvRwmYUIVHNVE07dUVWwrhCMalNxt5P8A4b8D1T4YeHPiLpGh3HgOL4c311dWOrTXLSaZbeewieMAvL5bME/1Z69cUpZlgYVqkItuzve3T7zCvg5KUcRNpJpLXT87Ca54hfT7Zn1OxurdgQWe5tHXYDwAcjjNckc3wKfK56+emnQSwOJT91XRkw+OtCuZgtvqMPynLAjH1rZY7DysozRtLBYhfZZrweInubKRrOd2iQbpNjfLx0J59/1q3jKaT10MnhasZXaszzj4zasz6C9wImXYC3Ldj0JHp/jXDiKiqQ52x0ornasR/sP3t+2q/EZ7CRUY6rZMg/vD7JEP8/Wsspmva1EmcmNjBKPc9L+I/i7xNLs8OC3WS9ul2QRoPmHqa9ic+V67nlN8zsY+kjXfhzPPoHia5x+580k8YPpWbukXNckb2PNdW8SeO/H3i8eOPDGw6XozlXhUE+Yw6n6CsFFupdGCUqjSaNKw+Ntt481P+zNVuBE0Y2yRSNg9cdK73K8TSdoxOK8dfBPwB8QtQ1H7bptq5RSBIiAEe+RXJKEaidjjcebY8Ng+EGv/AAW8aTQeEYLi9gu1Mgj3lioH1rJU3Bl07Q0ILj4x3+nyzTeINNntpVcjy5UJAxXTGo5KxNSrZnEaj4x1D4iXb6tfyO9rE/7uIr1rNJJkpuaMh76PT9ReVkC7uEQjp6V0cqtoN/u0cxdWEvizxO+uzRLm2wqJ079a5oxlzWKjVTNHT9NF3fyJfKGCdYz1A9a6XGMUROPNqc61vDca9cS2IIjjYBo260uaJhTk77EfjDTUk0iQsgBGGBU5NV7ttTaas0zCiAm09GbH3eDmsqTVyudSWpk6kLSMmW4P7o8Sj0FZ4ulOpTfLuKFWSlZIp6L+z1Y/EW6bUfC/xT8N6fDyzQ6pe+UV9s15NLF+yg4VIu5UasXVa5kcV4m8OxeGNYm0hfENlfmFtrT2UhZCR6E9aqDctbG0uR7MzBL6EVtGmlqzOUKklof2DaHd3trFc3TycspAOOfpX1Lb5pHDX1m0u7OcEepSarJIb6OCBjjBX5j6n2rnd1uTTioq7Oq8MQhryM2jEREjcX+8/vj0qouUnYpzRZ8RX8dxrDxxFQUTClxgLiuWo1KegUlz6kUckt80azg+Qemw9fespSleyOhWgjoNLvLJ7MwQ2ZRAckfxEVXMuVXCTfNe45r23EWILJTvP3XHJ/PtWcpx1VjRxlJc1zE8Q3XibWtasrTSrB544ryN5djBUjUNknNZVPbSa5VfUuhGhSjJylbQ67xTp6JZSXksMkrKN21eSMfSuypCd3Jt6/gcGGrpz5LmNePbeKPD6anBC5knQ7Qy/d2jB/lUq01e+5vKLpTaOS+G2vFfDer6T5SyXFlftE4VSWAZQwFc14Rb6tG1Z+/F9Di/iN4E8Q6xHcSaZpk4iuMeamMDOMdPSmoyfTQxjUhza7nD6Dp+qfCTVRc+LhfXoDf6M0sh8q0GRg46AZ65qpQVJXep0e15o2j0NHxLqmr+MdWjs9Oud01/JstnPzEju/sMVhNznNK+rFGcXG/Y5740WGl+HtMi8I6BboyWyfO+35nl/icn61c6iUORdAp3qSbZxHwluIfDd1qXxA+KEgh8wLBoLKmF3KAWJznk9M+lY06fLJ1KvyCuqlVKFN2ta/ye3z2/I5DxlcWXj7xJ/Zy3kT2l5JIrXCyAqGbgZOevU1y1v3lSzejNqd4wu1qVpvA3hlbe30HTkSKK3heBLgryJQPmz7EgHNdCglHlOiLcdWec+M7K40C9vbDVL4S5xLs2DbPGDnccckjjn2rgrU3zG0KnNpE4bxr8PfD+r2323TVQvE4MkZUE5I+8PXIwfwrB04I3SkldnCa14O06C0eW1tbTz48s37sL5hB7+jdaxquyNI+8ee+I9SstKu9wYeRKu11D5CMc+nT1pRvY6NFE8+vfHWj6hdT2FuWivYJyvlXWVDj+8h6MKpJx3MadTmnypFS+mur6UG+tcY+9iU4zRzRudM4RjqzP1KeDSrR7yQ7CoxHx94+ldEakrJmc5pRscl9tuFvt0/zFhuJHPNelQk5K/Yzox980Yr8WOoo5YMsw4cN3HqK64VmpHY1zaHf+C/EMlpPDewNt3DDEN1FfSZZiZQqwktDqhUVDY9di8RGDTLa7tkUBxwzyYDNX7PgasKlCLaPapYhOmnct3/iJLK3WW/vYzLKuREDwK9FVKa6HS/dV0Lp1zqB083NkDHnBMs5PAryMzjVx0PYw2ZyVIyqqy2Jor7T7KJ9P0iIAz/Pd3HeQ9+a6MsymhgadorU6aMY0oJRWpnx6zHd62S0ey3iTGC3OfrXpzlUilZnXHkfxFaHxDJf6+bO3jNxIqkRRxAkj8qwrVI0sNz1JWXcU2r2OJ+LPw51n4leLofh9d6otnYFRLrdwz8rD1KqR0YjivnamLqYuHJQ95X6/8A8mvRWMly3sjZ1rVvCfhfwTZfCH4R6SND8NWSAtEpCyXUo+9LI/Uk/jXZlOR4TAy9va9Tuztp0qOF9yCsvzOf0zTdW1RJJbC/8AKhX5XuZjw/09q+hpYitzNxdnax0xozxHodN4e8Mad/wqv4gafNrUlnYDwpO+rX1oyrcvGuGKRg/MxYgDqOK/BvH+daOVZbOEVKUcRFJPa70u/QjGYWi8PKNSTt+J5D8FZFg+DOi2FvP5Qe33r3OP8cV+pcITVLLqVOo0m03+F7F4ak1gIqDtsY+u6zqWueKls9D0SW4S1jL3t7JF+6tgOuMfeb2r6F1pOurLTqViKz9tH3dFuz2D/glj4n8K+Pf26tC0O80uO/07+yb6CQy5jM8pgPGWKjP41+OfSNrut4QZg6WnK4P58y/I46GbVK2In7CTXL/meJfHrwvpGl/tp/EXw1exbbeHWWlWyuX3lcgHG4MQcfX0qfo55jLH+HWG59dDsrezlmk4Td/dT/A4bxhYHSidR8NSuYGcsUAKkkZz9BX7nONWVPmotrXbVbf18/Q4sbRnTjeCPp//AIJqfFzVPiz8JPHf7GHiia21LT9XhXUYtF1ERebHGf3dzdwvIDukgjPmCIAbwp5B5r+MPpI5BSybiLLeNaKlCtH3JzV2rrWEZJW0k/d5unZ7DwWLlOgnGn7SqpKNnJxXJJrmezu0tUravS6vdfMPibSNe+B/xG1f4a65qCiTR7h4VniYBL2A8xyoQTlXQqRz/FzX9J8DcX0OLOH6GYUZWco2lHtK2qfUxxMVgsbPCTVraq/bdFG31d9Vv21QM2+F9lnaSDkc/ePrX1cbc3Mzk96VT3jSutRg8W3MPhVrOOVJTm4LbcSMOq5bgccVjinH2bvt/Wh0zlCdN8yuuxxGvfCeOzluL/wb4kFhHGdstrcjcFkYE4HsAO3Ar56thnF/up2fY8mvl8oq9CfK30exxuo3fjDSZUi1TTS8KSh3niYsGXpkjrXnyrYuhJKoro8Tlx9Kr+9XurqjR03VxrEgvokZ/MkBjPoFzzg/SuiOLVSJ7EcXCpFKGtyre6qFvni80eUR8qbu+c80lWj7XlM4125crK11qSPO+4hUMZ3HrngZrrqVqNODlNg+V/Gx3hf4oeOvhraaxF4Lni0u81y0+xz6zD/x+RWbD54Ym/5ZCQcMw+Yr8uQCc/B5plkc+xsJ4h3pQd1Ho30bXWx5ydaDnyxUebr1t/wTmbCFI4B5ICbWHuT717PJGnG0FYxp0uaCUdCZWBxDHgsUwTjhTmtqckoHTOaow5Y7mZr+vz+d/wAI9o4We4bKs6crHk14+OzCpOXsKGrPlc0zetOo8Jh/el3XQt6BodtoloYyS0z/ADSuw+8a6svwkcO+ep8TO3LcF9Uhd6ye7PrjxnPZfFv4Kjw3PpUEGoeBvhlot/okTqIjcxMJPtPHJlPzA5PQdOlfgssXDJeIIV6TvCvXnGb6Jp2S8jfJqFT2uI5neKd7fI+UdJf7Lfnyk2xuxKD2NfvOHqza5ZbdDdXoV+RbMtWFzHBqZkySBICpB5x604p+1ZvhtJ6j7kRnxjM5gETBwTMvRgfWtXGz5gWIhTxTaWp618Pb6K7iFjvT5hiQSdzjg/jWFRNLmZ6H1iU9T9Vv+CYnimHWv2e7XSmZxNpUjQziWTd37e1fG49Qhimkj5/Gwl9YbtufQtzrdtaXuJWAzwu6uCUkzlSZatdRuZpxdxx4jA5JHBqbtjUL7mp4f8Rrc3zXc0gEcY4z2qnaw5rQdpniO78TeIJZbBF+zw9weprFScpEwp8uy3LV7q0LXQWWcF1HQchTVSTUbo1d5Qtsz5Y/4KPeO4fEHxH8O+CrUfutB0NpZvm486dv5hVH51+c8aVnVxdOkvsq7+Z9hwhQajUqvrofNV9qM8dyLNIw6SRZ+YgDjjrXx1OSVTlaufoVGUuRnV+Fb621maHR7XwrBBJaWknmy7cibPRieelexSUKr+C1i4c+7dznfEmnWRivvsrssyFCPKcrzj2Oa6I04K6aJre+l3O28K6noeh/Cu6sIPEHibS9diZ2vbrS/EC20F5p8iBG/ds6yXNwGfhM7doOeM1x4io6UpKndSe9m9Uc9SnWnVXNGMoJdVd3OW1XV103V7+Hw14v8U3GkkxizXxHqKtdELgASKh2jvgDoBXPQpSlFSqK0vmL3pK8kMa+vYWcS38wabkkzMQAV9jmujVPVmnLy+9Y9V+FGpytoNpCZnZigDbnJzkn1PPSvosqlGULPofMZrNubsdh8XPEk2oeEJJbqchhYhVIXGQOP6V9POUPq7PlYqftx37FmttpFv8AEDUC+EF1ZSZZsZxap/hTyqrCLn6/ocOYXUkutv1PS/h34iMN3P8AEbxcwE87sthG4GY17GvYpvnXv9zjp0+W5hfELVrv41eJ5LHw/qXlosGy7vUP3D6Zq6kuZ6Dqp8ljjLfxNF8FrePwNeTh/NkKxSMTmZieT704x5dzGKdrmR8U/hfaXAj8VeDrqOHUHhEkoj9+1Opy8um4qqckcF4H+K3iXwXrt5pHi1Bm4B8qbadpOOhrlp8ykYRVuo7QvjLBL41i8QzbGjDyWxJ6Z/8A1Vqp825nflVznPHOoeGfFWpXd9ay20sdsSZVjxnJ7VKlG9kVNwktDzvSLm10O8v7KztlfzBvjR0FaKF3c0pLlRkXNhpd3dG9vlWKIgszluQfStdEjHETs9Tz+TxFLca5ep4e09p4McyJ0LexrBRnJ+6c8Jc7sjQsLTxHqcPmwx+S8gwXY8mtZQfKrnXGPLEx7fR5/DeuyW8t2ZTM2ZQWyQf8KzlCzuc0f3dQ0dZWzlspEliYeYnGR7VWria1Xzx0OK0q0lmgmiimGYmI2n0rNNRlqZU433MLxNEPss0W3qhyB61cpNK6OlJJnj82jGK6kEV9cR7nPCuRWEMQ7PmSZzPAQc+a5esrGGxt/wDWO5P3mdsmuKpUdWrc76GHhGPuiNjfjt9a6Hbl1LrSdNaH9gU149hAyMdpxlee/vXv1vdk0ePNt1n6mTbtamQy3Nw/kNzIe7H0+lRFJ6suV2rI6zwciTSNdwQrFEiExkPk496tySM+S0Xcz7q+t5LuVBH87t+8nl9PQV58ppvQ2owZZsdRjheaYW+SqYVSMn6j0p3Rta8kjR0XUoprQiNXjjA+fPGW9T61hOTtuaSgky1Y2cd2xffMYE5YudokP19Ky5HPUpScY+ZU8e6w9joMj2gkgiRc+Xangke/erlNKNnp6GdGlGNS71fmdNcahJdeHbe5RHWOWzRtyvycrnmu6crw0Wll6nHQopVXfV3Zz3gK7ujFqtppV407xTZ8mccxow5wcetccbu6R241Rlytqxxum2VzpXjjUri8uFjkkizDp9qoUSMp+8zDqcGlGhBTvJjnC9KPVDj49vNNvZIJD/rWyzbuFOcY6da15nAhUKersc749ew8bR3WmQwtGoiPnz+YCT7dOtTGtGo7MpU4xStueK2K+O/2fvHP9uWEsuq6fPamOWxuJxusQf8AlpGzdD6g1xyozVZOCNp0/aQUVoyTR9f0j4y6n5vh/WFuIZJCJp05EIGS2/0I96KS9rOy+ZEEqWj3Mb4reItK17Tbi30SBDa24NjpqtwrRr/rJj9T3qcTUc7pbGiTjLle58wR+Ftdvvipp+oaXrM0NtbXIIhgkKxuM4yyjr9a8yNJyxCktkehCKUfeR63qZvLe+mhtp9twtzujVuiN/gwrunU5ZEqMWeZ/HjTf7V1Wzt5ZpofIjIBhJV4gRjgj+GuKrWcnyroaQSitDwrxjpnj/Rr+507SPiDc/Ph1SRVZRtHGDjoe3esaUb31OjmcoWaPOLzxj8TNO1qaPWvGDTWtz3kth+6kHQ8e9FSlDdvUVKi9ylrVnfXfmXOtzpI8gDFk4Vsenoaxc2nY62tbnN3egWsrGSWBTk/umyMY+vY05yb0CVuUq3n2fSLaW8vp/Jt4jmRiCcD0xULVmV5crb6HHat4hXxNfrMk6tbQki3UgjIPc+9dlOm0mjJSdSzRn316i6nHAImwifM2f513YdNQNpWjKxcvba1vrZBdtt2MGjkGcg/UcV6ENEVFNanT+FrpRCIsnG3GD1z6124Oty6M1i3NnonhrUVvrOKfUpS0NkciHOea/XOG8XLEYfl7Hs4JJr0Ne28UaNrurqzOJDEc+SpzsHua+rdOVtT0lJyVmbOo+JxcyJamfEarwitjIA71pSUYvQaTWxW1PX7VdOR5IAkCA7nzyxq6U7t3ZpN8qucxY+MX8U+IBoPhKNGaLhyj8AnjqeM1lVqU6UW5O6RjGu6s7djv/EFjJ8J/hVrukfCG+g1P4iahCAl1KQ0enI3XBP8WDX4XxRxJmmd8X08tw0XDDxd7X37Xdv0PHx2KrYip7HDv30efeHdL1vwx4Qt9G13XGv9ZmXzNXuBzl+pBPfnPFfrmX0o4RRTVrnq4eFSnhYqW/U5u5g8R+I719P060klcHBXGEHP8TdhXrUsSpy5UyJ069aqlA6SaxfQ7dFv9ZikuEj/ANSmTFFgdsdT1rvpwu1Y9ylB4ei43M2x8dTaH8MviF43drRo08My2qXF3GJHSSQhR5aMMZIBHPSvxDx1qxrUsrwUVdyrcz/7dPPxdTlw1S7d7HnfgDUp9N+DulrKwWVbBCu05PIGa/TOHYN5ZTT0aSsbYOUvqcG+xoReJ2sdOh06yYRrsMkzBMb8+vr+NfU6Kokhyqt2SO2/Ye8T23gn9vL4aeO/7Ntl8/Vzp+6eQiI+cjoC4+6PmYc81+beNWVSzLwrzWnH/n3f/wABdziVCk6r5U1ftueVftgTa34d/bo+KC+MNUsbjUJNTVg2ly74VUjgKcDgDjGBXxf0cKmCpeH1FYdNJWWuj8zor06FHOJuUndwi1fc5Kx8UCc7LqN2tzBtiYgZOc5zmv6Hp1pq9tP61N705xV3uQ+C9R8QfB74rad8bvhvdCG+0C6S6i4yt0uMNE4PBVkLKQcghjXxvFvB+B40yHE5Vi17lWLs+07e6/k7Hj14SpVvaUv+HPpL9qLwr8M/jP4dT456V4Is9Q0bSPC8Wr+DI7i9lhk1vTs7LuzuHi2sHspSwXDFivXgDP8AGnhjnmYeHvEiyvGyfNOq6VeL2hL7FRa7TVnta/e9j2auGee5TKtUhyzpfDK+rXnp02Pi671LXriNrjwuba1+2TMYrJQ7xwLkkKHcliACBkkniv7TqvGTjajI+QxGGzF008PNNvubfwznOl6reWHxKntbcx6fKdGkEDGKW8wCA/dcjIB9SDXxvGGK4qw2Ew0MFRU/fip27X1ZdOtmGGpv26Ta7GXd61exx3VndlI4JX3CJMnYSQSmScnr1NfYOlKcOaUbN9NdPLW7+82lUqtJsguNXivbyK0iIUuxF1Iqg5A4C/Tk/nXI6cZS5WKok4NPqY+t+ERqF3Lf6fO9rdMGIaAhAEGOoHXiuDFYGlJ3jo/I8CtlSq1eeEnH0M9rnVvD90ZLvR7DUxFCCqXMJAdc5ydpGa8XEUcXRTcZGqqV8DdySnp1RR1TxFqvi9ll1CG0t7aMkpZ6farFEvuQOWP1JNedQpzqu9SVzlWIxOMnz1Hp2WxQjhIMgLhj0Ar0aMo07pHQq8eVp7kF5e6bosIlvLpUXqqA/Nn6VjisXh6C1epzVcyweBpXqz+XUxbvW9X8QE2uh2zW1u3DzEfM1efLEYrHvkpKy7nzWIzLH5xP2WGjywfU09B0e30mBorcEztyzkZLV6ODytYfVfF3PUyzK4YaPIvi6s1bG2vdU1C20bTofMuby4S3gjUZLyOwVR+ZFVmWIp4PDVK03ZRTbforndiJ/V9EfVvxV8ZaZ4C/bdsPAdwBHpOh6XZ+D76NfuyxR2ywStnp98t2r8DyfAvOvDueNcbVHVlWj/4E2n91jfJakY4acv52z5l+IfhObwB8R9S8IXUZVtL1SW32nrt3EofyxX7Bw3mEcyyujiH1S+85ajlKsm+jsYFlexz6i8kR/wCWuCpr3IVE6kok4Wcp4hxRPqU0lt4x/eONssCkrnqKr2sVPlNnTaxtn1R3XgjxAmnaglvdMuwqFZt3UHoaKzVSNonrU6KjE/Qz/gl78V7jw/qWp+GxG7QXG2RpVfKZx6etfHZtTUKikkcuYcipq59pza5pN/cJqVxL8i89e9eK7tXPDdQ3/CvjrTdehe0twioq4z64rNTSkaJ6XL6DTtQglsdMm2tjnBwTTb5iJy5nYi8Nazb+E7ebT4zh2zncefxpU0oz0KVuXQW21SBrhpjJudiCctxW75uUtRvHU+Ufjb8OviR8YfjT4w8ReCPC1zrcWnXiW93DpBW4ntkSIHMkKEyKuP4iuOetfkPETnVziqrbH3HD88Ph8BDnkk5N7njd1o4ub7+y9b06ePbER8/7kg9erDjpXj0KPtaqUZK/qkfYwqRjHlZ1fwl0u6HiKW0tbGW6dNMknaKykMzJCgLO7HHAAySTxXcpSpTs9Wl01JdX2MVKeibsVtVaybUJpoYisdxAhVmHO4Hjnjr/AFrojVnUOm19WWdRut9nHamyjYRuMlgA3OM8jqBirknFbGSnLboc1cRxQ30kwVMsrBpfU5yOvXr+tc0pSXQaippsq3FwXkdmOxS3APQ4FZ1FYylK3unpXwv1Q/YrKBXxtcZJP6V7eV1OWC0PncwpOrUsn1Oz+K05m+FL3EjIWAfyxuz36V7uLquOD5jxqaksTyNGN8CdavdMttf0nTLZGudWubFYolPDYt1yT6AVhkNWVRzsefnEIw5Wes6n8KfFmvxWx8T+PZY7cAMbaxjwgH93NfZUYShZtnjKrDlsi7qup+EvhloH9maEvkRIcTbmG+Vj61tOyOd1W6nLIx9Vh8Ka94akvfEFklzPIubZ24eH3FaQUeWzIc1T1R5b4L1jxBHqNzZXchuI45tkTFvmZM8Zrm5ZKT7EynKaNDUtB0vxbevpWqWiQy78xnbzWtNp6GXLoeY/Fn4W3ngpZJ9KKzW0s29niP3PU1jKGjZHs5Mq6d4asr/SBc6bGiIsYL7R/rB3J9amMYy2NlBKJi6/4Rj+1NqdqnO3KhT1x2rVtoxnJo8g8XXV14u8QHwv4bkeFFlzfBv4R3FYc7Uk0c8lKo7F9dPs/CWinRtBs1Z1jwW7sTXTRvE6YQUIkuk2GqR6b512PLQRszc1tUTFFy5jkFXW5r6fUI7BXhR9qsvLMPWsoxu9QqRTehoDVrG5QWkzDfjDJKMH8KJTSdkYqVtDjtZtTpet+fbApHNnORWcmpLUhTk5GLr7BkOCM85OKxmrF8zbVmeX6wgF2+0fxmuBaTaPUopSp2KfmNjYex6+tb+zgtSofu9Bm0Y8wseKzrTaXKjOs11P65dXv/tDmOSQFVlGUbjP419HX1qM8apdzdvMnjltr/U0L20UbINiRYO1fckVEU2yYuUJanV6dssNBnCKsZlXbG4blz3PPQUVJOMbGjaumYMAjgheUxSSADCSsON2ew71yRSaOqm0omnZ3D2m6S6ZYyE3SE8lh6GiT5HqJuz01G6DrY8RXTX9qy+W85SNdmAQOprjvzyvc3s1ub2q6rHZw+dLOdip8ikYH5Vc58quKLXLdHN3Ok+PvirayL4Wlgs7NMr9vuSQgI9APvGsqSr1byg7W6le2wuHqqdTV9kdf4bguV8Fw6Be6vHe3Omxrb3VzbrhZWCjnHbtXdTTlSSctV+Jy1pxWJ54qyZk+AtcsPDPjC60iVw76n8iPzwVBIBz7E/lWNOp7OpZ9TXER+s0F/ddznfjJZ61aXH/AAkOj2rJdQSGSIwsBvA7E46GicqnLztG2HcZWg3ocrLfaL438LN4m8MMyF2zqNrNLmW2nGcqw7dePrxRTca1N8j9dR1oulUUGclovjzT9BjubbUIY0kjmD+XJncSOckHryKxsqab6h7KTaZk+J/EEuv6QdPtbdHvtXb5P3eWQHufSk6klG3Vm0Y637HgHxX+FnxV+DlvqUvwf+Jc+kahqsDLqMDxK8Nwe4KH7pxwGXBFReVK/Lo2UoU5yUmtijoXig6/4Dgis9Lu7bVYoksZrCch/KYDMkg55U9QepzXHKo3olqapxlNnO3kcema39qsG8l4h5Ks4yjHAwT7HkZ96cZO9jV3tY2NQ8Y6SNOR5H2yJDsmllfOHHKgnuD2NKTijNyvocF8RvF+laxryajpki3Nt9nCzgv80EmOVbuv8ulck2pSNYRaieW+NbeGNvMs7t2kC5tZuoZf7pz3FJRUep0Qfc4PXtPtNYEq3sTC82BmwMc+vuMVMouTNZyklZI46SaUCa3a2AYHY4YZDio5YxYru2pzPjbxh4P8IID4g1iOzckhLQtvd/oo5qlTnPZE1KsIO8jhtR8W6p4uLOJxHYhsQwJGQZFzwWzVwpRhLUw551X7uwllYrLIHWPjPJA5GK6la1joUVTjoYcc8+teIrq7iMeyJtkeD98DrXUkqaJi1Undm1ICbf7Osm9HXBXd901tSnc2ctLIs+H9SniVBIwbyzjcK7KVotM1opxd2dzoWsPanKEMkiZwTxmvvuGMb7PEcnRnq4apyyLun3n2BWvpDHaw7sybByR71+mus3BHotxkrp6mf4N8Z/8ACzfF93Z6LIv2DTEPmzLn539K5lOr7S3QmOJU6rjDZHdX91Bd6ZHpc8iiKMfvEB6Z/rXVzqOiN4y5jKsb/RfB0cp0uKODfu3u6cvxTnTlUiOUVCXuKx5Z4B8FeMrn426t41m8XXkml3KDFuLhlXjJ/wDrYrwaeVYbD4uWKkry2R4GHy/EQzKdectGal+njnx742e3k1VtI8PWz5nkSTbJOe4BNebV+sYzFpRlods3KpV9mnob+reIrXSdMfSfD8kkdhEMks/zSn1z3r6/CU4YejaOrR6arexShE56a/u/ElxGIpQlvFGfMAYncD3rrU6nMrbdR3qTW5Y+IOqeINI/Zq8VXGjaZK6X+p2WlT3RCFLUSA8hDySRkZHSvw3xS+qZhxrleElL3oxlK2vddjkxcqi5ad9Wc14h1bQ/Cfhy10mO5jVbeFI43I4wFGQB71+tYJ06EIQS2R6U8UsPSUDMvfF1odStoySVeHJXbgZxxz6Yr3FWvJHJGbdS70Ov+Aeu3Fz+0l4AvYXt/ItvFdm0IuG+SVzMow3H3ea+a4/5sVwPmNH7Loy/J3OyMo05qWvyMP8A4K66Cfhj+354m1iC8tbhb/D3gs7gusRzjO0/cXsB6DrX8+fRtzGrLg2UWmo05W1XT9TyeKZypY7DY+75ZQs/k+p5Lp2tWkuhSyCbz3kQuAjDcPYe3+Nf1PQxEKsL82jKhi4TpqpB3RbtPE62vh6RbiZJIhsLBj169fYVo8c6VNwUtNH6tXt+bOhypSp899j6d/4JbeN7P43adrv7K2o6fHc6nbPca14LvbloRDbwNEy6nayNIyny5IgCAmTu5xjJH8P/AEmcnlkec0eLsK7Uq1qdaKvdzTXs5JJWun1fTzOfLs9pZdmVO9KVSM5cj5bWirN80rtO10o+6m7yWlrtfK/jrwxc/Cv4p+IfhjqKMW0a/lhgeWFoy8RbMThW5wVKn/Gv6Y8OOJYcScK4fG9XFJ+qVn8yZSp4bGVKEns7r0eqMp9dOoCZrh9pC8tsyQR3r7lVVGLfU5qr5tLmNeXNw9w1jLG7uuZWm5/eoOSa46lR1OpyTrqGjJtIuo31WSWGBGZUykanOeOtcUWoyu2aUL1W0yzfa3CIWjs4UV4IQHDcltx5I9sUSqwcrNmdWpGnsU7y9tLeWNxKpMUuHMvQKw6H27e2K48W4yWwqk4Sjexy/ixtH8L6tO6XKQwuN/lbs9fT1FfL4iVPC1WtvI8DGSoZbVbnJK+tjl5fEOq6zIYPD1syqes7jn8K4qksVX/hKyPnK2Px2Mny4WFk+pPp/gcySC/1adp5CRkue9b4fJ+aXNVd2dGFyDml7TEO7N3+z4rWMRQwAYwMgf5zX0eFwsKaulsfSU8LTpWUEPhtbdJkl3gRhPmOelXW5YTTexvKdKlJSTPdP+Cb3w103x38dbr40eJreUeEfhbpkuv6vem2LwNdRA/ZoWYAgbpdp+imvw7xe4iWCyFZbQlfEYuSpRV9bSfvO3lG587i8RGupyi3orfN6HlXxH8c6t48+IWqePry5zd3uqzXjShyTvaTfuyfwr7bh/JqWWZDQwEY2jGHL+B6cIrD0KUIv4Tc/aJnXxJdaL8ULeQyf8JJoomu5mx/x+QNtkXPsMfhivP4QoyweJxOBmlFU37q8u/zFRwKwql77mnzTvJ3ercrLbRXtFdEktTybwkJJx9qfozEvk19TGcnUdjjyio6kXO3U1/GJgjv9O1GEBw8ZRufQ1bi1JNizSrKjjaU+5vaUltf2Ud89ysUkGAo/vCtJuVPY+gp14+yTPrL/gn/AHGr6t8SdNsrOIywsuy5CTmMkdj7187m1S1PVHFjeapTvY/QfU7aOztpNL0+6dQI8Krvknivm3rdHlWtqzV+Gz3GmaOYY5t8zcEBueamNOzdxSk5aHT+HLi58NK95ql8WkLE4JyFzSfusS93Qv6RdW+tyyXdw5Ck/fXgVaSLi9Ste6wkN59mt5WAVgM/jVqWpo1KWl7HyH8Tjbt8evGWqxDbc/2sAJosrJjylGAy81+TcQKFfPayeyt+R+pZLyUsngkr/I86X4heMtN1y+sU8U3rQrgLFPJ5iDjurZr4/FUaUK37tWfc9mhUTldG9pfxn16wjmtrnSdMuVu7cxXDi08lpIywYqWTBIzXZSr18PpCd00en7ChX5faR2Fv/i9oBlS41Tw1LFiPbGlrc5VB2GGrrp5g4L3ofcc2JpJT0Y2L4oeA7hyNUuNTgRypaRbVZGX6DI/nW08yhK7ady6WEpyV+YhfxV8HLjUzFb+PdWjjbOJbjRcHHbgOayeKpS1uyK2GnGPutFTWPEXwvspyJvGuo/MpyRozevbLCrjiaNR6NnLHD141LSsvU3/DXjjwrbxW0fhrWri6dX3E3sUUAUc+rsw/KqWd4XCR5XcdbJquJakmjV8Y/FCXUdAi03UZreC0tEYXEcCvO8pOONx2hQfUE9BUy4nlXh7Nqy+85v8AVxUpOpF3aNf9lXXYrn416vb3kqi3i0i0kjR3wyZjx0PqB1zX2nB841I1G99D4fiTDSp14u2lj3zxz8QI764i0jSpxHGE2ja2FUe3vX291F2R8g21Kxw3xS8KLcaDHqk87gxrvQyP1YHhiM1lKHW4p+6rnNT6j4y/4R6PV7i9t7mCRdjJAcOo9MVcJNRtcxjC7uef+LfHnhzwfDcXEOrTQXkbZMb9v/r1NWWtiXW5dEjD+EHx9l8Q3d42q363E0jskc5Y5UfjWcJcuzuYufvG9qPxRjjSTTbiZZISCjhjuBNbR5bamnM3CyOU8FeK5rLxBdeG5pgI8l4MHAZT2rWCURxjJq7ZZ8e/EzQ/B/hS5aeRfNQ5CFuR7Cone17aEvk2Z454P0Hxfrs1z48vv3AupMwwBMHb2z71NKlz63OeEJSnc39NicedJdQhpMgEN2rrilFG7kloTeIFvFUwRx7V2KEQYG6pndq5M3yxM4wjS5431FBE0w4VR8oPao3V2RFq2ph/E+10e6SHUrGNUuI5MHYcbq52tdAlFS1OM8V6ms1ksluSHTG5GNaU6TkQ30Ry+p3xmtS+AMjn61FaNpEKx57qLl7mRz/ePWvNf8Q9Gi5KKKTvlemD9a0qKyOyDu2RSkiJh1yKwauzkxMrpn9bK35jnuXmt9zKMoCc49819TWV6jPNqu1Rov8AhlZtUuUdCYrfOZcjBc96VOOupDabsb+t6tBLei3tIWkW3j+QSJgMawrNylY1cHGKszLe6mlvDLczn5esS9AfYVyt8u51U+VQI9fezlZbBElDyjChW5bPUk1hVmp6G1OF3zGvHJYeDLeyt7iNQkVszDeeje9YztCKTJqTcm+U5i/1rVfir4xs/BOg3ZS4uTuu2Vc+RCD8zH09Priua9TEVFSgVHlp0nWmtj1XxRBpfhrQIdB0S5Zba2gCJGhGGIHLZ9TXZWpOi7Rk7JWtpa/fa9/nY5cNJ1E6jWr/ACOT+DWrzz6n4h8Padp0077YZ2BfI3NuU/T7o/Wng6j5nTjFseMVOnyTk7GJ46v9R8JeI4/EOp2j2IsLqJ4lwMSLvAfODn7pNXiFGn70laxtGKqU/d1uema3r2isPtVzp8U6m2JSR26kjgYrr9qm7NXVjkhRqW0dj521/wAe6L8JvHF94oHh+RLPWfLj1ae2yEtduQJnTYcgZHzZGAOc9uBThhp6LRnfChOrBcz1Rk/GPTbLVo49W0a+W+v5lMts9tEAjoeVJI7Y4z+NS71Ho7sXNLW2x5l8CfiFLY+Ntdu/iw0WjXlmgXSUkuQftEY6upbjPbAqaUJc7dR2ZclNwUUw8ea23im8l8QK7bHl2Wasud2c/OTVyXNHnb9CouUY2bPH9X13xd4C8fP4p8FavBeFLZl1S0mTdHLuHyqTjg8kgjmsHyQk2tX1NKcFOKk2c1Z/HHwT4li/sLxK50bV3nylpcABSo64fpg4+vNc7afkdTjJq62HeNfEngG007+z9T8QWFpHd2pa1e7ulUXIA3YU56g8A+9ZycH1Of2tOMrX2PK9S1bwZr2oi50nWLSGa4iCSEXiE3G3p908+lc0knqjtpXqrm6HPa3rNj4e86HW32W0smDPMNu0juCcA9uRW0aU3uaRSbdlb5HnXxG+Knw78JTm6vfGVmzLnyGiuQ0j4/h2KST1qakHGTUSpSjBas8U8R/Fb4qeOr+eHwwsGkaXK2BdLATPIP73zAbfyq/ZUadT4lLzV7fikzg58TW02QzRPhrp2n3SX+rCS6u5Vy97cyeY5OPU/wAqirUk9Is6aVJy+PUsvGL+Tyd67l+SIhcDA9aiN1udahCC0INW1eHw3oN7q7ZLLERGo6ljx0ropuLlc5cRKUINpHL+EJYTYI0YyCd5JblWPWuvR7lUOb2WvU1prt/tRtptuGG6JwO/vWtKVtEXCVpO5Na3EazbkUoso5GeN1dcHfc6velsb2mauWjVMLwMg5619LklRU8TFnXSukN8RXkmvRHSl1YW0Tr87Jnp6mv2TDVoSppnSp9GangXXPCXw08DXUOgkjGTNcA8yP3oxE7L3WbJQp0XykPw78a6p4kFx4h8QwtFaq/7qMjHHY81FKTvuThqlaXvWZoXXiGLWdSFxPcOsag+XCB94V0udSPU7J1ZTklcZZ61c3F+6L+5hUcBV5rgxbcqepnWck9DnV1678SeJpba71DNtA3/AB6w4+Y+/pXmYSCjUa6nPh6cp1m3qcz8WfilYaLfDR9MVp5nxFBbr0DE4x7mvXa9j7999DpzDERw1JdZPY6zRnOjaVZvq1ssVw0AaSPd3I6tmuqF58rZ10ptUl3Zj/EbWrex8GaXc6vCWl1TXWmsit7tURxLgsydCckivxrOq8s18SqdODTjRhZ6d3fczqV4Rr04t3Zy+mWUOu6x/wAJh4tvdllbOGtrOQ584/Sv1rDUJJ+0kzadGFSfPUehifErxlaa1eKtqPsNojKpdByFJxhRnJ7CtcViUldM8/G4mnTgkzs/A2qSaR8RvBpd0tYv7csFV7tN0aL5yfMwyO1GdQjV4exUWr3pS0/7dZ0SryhUgo3u2tFv8jsf+C1LaVY/te6jbaNPp00ctlgpZ2DxFyTj5y33jnP0r+YPo11W+HMbTlF6S6tPr07HHxZOc8Bh1JWcovTd7ny7b+F/Evw60uDUoL77XazQZu4u9tu7fSv6OwuGr4Oaad4P8DwMHlOOyrDxqKblF6tdi/by6FrDRvc3jsSg/dBvkfHqewxXs8tKors9+hKhUhe51nwW8V+HvA3xc8OeJ/FEFzF4fttSEGuxaddNDNJp8p8u4CsuCMxs2DmviuP8oxOf8HYrD4aEfbRjKVPmSklKOsXZ6dLnFi/aYet7XDuzR7n/AMFX/AcXiPWbn9qP4feDpNKt/D2sDw/rWjrdi4f+z9gfT753HzMJIiMM3XI5r+YfAHiarw5iI5FjK3tPbRdSMrcq9pe1SCW14vojsznL3HKKOcRd5w92ovLufIOi+J7DWF8+K48wSsQRvxj61/W9PNY4uTfNd9T5/C5rh8Yr05IsSXJlc2X2obZBtkbrtXr+H4VXtlsmdvtqadmtTOubOeGR7rRrt7a4hH+tV8nk9D68VzVacaqbjLVDqQbhz0pcsjPvtT8UFmu/skLF0AdEyM49fevKrvG3vA4KssfUd1FMzdUu/Ger/vEtIocKAcEndip9nmWIjrocld5vUh7kVELTwm2uz+fr0xlnAwFfoAOwrHDZROrieeu7szo5P9dre0xcuaZq2GkxWTLbgCPZnIC+1e+8NTpwtax6X1RUZKOyRP8A2jGkAuoY9zWzDz0xncvrXLdRXOum5nOuvZ88Ffl3K93dTajdpDotu9y8zhbe2gQu7M3RQo5JrStiadHDSxDajTja7bSte7/JMzjiZVrKlq+iW56Hp/wp8L/CULq37RGk3Opa60PnWHw3t52tiFwGR7+UDcinP+qT5yDyy1+PZxxnjc/ruhkzUKC0dfe/R8i627vTyZVfK3Ti6mK+J7QT/M0PHP7ffx+8ffByT9nXwvc+H/Anw/ecvP4P8F6BFZRXLbiQbiVQZrkjpmRycVllHhrkU8zhm+LlKviY/DOrJyt/hWy+SR4WHwkpVPaSdvJHlF009nYs93cpLEiDay8Yr9MdqMXzbI9dxmqfNPZHZ6XqKeLv2Z9U0oQ+ZdeFtYi1C0IUHFvOPKmBPoDsNfM5m54HiPDYpfBWi4v1Wq/C5VSqp4eLj2seaeG4pYWIYDCk5CnqK9zCtJOTPNyWEoUnGWjL+v2t5qOkFLWHebZ/NLJ1A705yUmdWY4N4qjzR3jqXfAN+NShFjcEEOMDPBFbTqwlTTsb5dKnOldn0F+xl4y1Dwf8SbW0+1bWjn5bJBx7eteDmNL28dEdmInT9kfo1PqV7qFrFd2l4SJkXbIOpzXzNSChJo8KS5nZHQ+CvEcvh2FzcXBeRODuHQ1i9TNx5WasPiSXWb5p751WDOchiM0pQY0nuzptH8U2sts0GmuBEv3zv5FKnfYvl1MyTxrZS6stnbtufcA3PXmtrSjonua6HzL43kll+MvjG5t5MSf24dhPIztHWvyXN1GGb1mz9DyKtKOGppM8s8UWkw8ZaoGuQNrgMOAO3518lWnBptb3PpqUY+0bJZYzaSfZWYZTGSpz27GlHmkj0IVWnYzPEE+FAyR8vJxW8Gm7EYi/Lcypb15otzthhjBHpz1q5Nt67k0W7GbeXkgkODx7/StYQ0uyK09ChqGpTXEeJZ2cKuPnbOM1vCC3R5sqkpb9DovAt9DbXjXWw5ZY49xGNrZ7fhXkZnTcoJI9LCVowqHoWtySHw/PIyjy2VDjPPPWvDozbqKB9BaPsuZ9jp/gxpY8T+M/Et9pusJZ3ul6ZZ29vk4M48vLFvU81+28E0VLDzntbQ/G+MMRKWNjTiuh1dnH8TtPvDquoWS3SR5Ktz09a+3e9j4uSaZznjX4yaprVwmgJcS21x0JckKPpmlUSS1FzXSuMg8bXPhOALe3pmMirsKtkZ+lRTtzBJPoac6/D3xfp/8AbOsRxmRm28xD8TW1SnFq5hOnGZ4z4z8I6R4X8TT6v4EugYCGEqLwPrx0rk5LvQ5pR5XZnW/Di306aFI7i3S485N0u45w1dCp6XN6Ka1KPxN8PzWcbaxpF4kU0LfuWUY49DW8Iq2pU23ojy7wJo+v/F7x61rrpY29k/7yMtxI2c81jUnJvliR7GMn7zPafFw0vwzZR6fYxI4RQNoH3TitYR5VoavkgjzyQalqU9zc6fEME53Uc13Y4pNtmF4nfxHNOklwW+VsMUPI9M1FSTvYHeW5javqes3zrZ3mUZTlTvzUXbVjJp3MHWL/AFCDUII9Rb93ng56mhtJ6GkW5aGd4wubKWIi2Qq+OT2NdMLKA6zUI6HFajfMISp4xnP1rlqvU5Iye5yN++WYg8kmvKWtVnu4eC9kUlyecVvVV4lxfKxsygqWJHTiue9jkrRbTZ/V9dXxe02QwzfO3yykfePpX1NZ+8zgqt+1kdF4KvZriXc0IDIoVUP3SB1/Csot3Iive2NM6lNNeXV2qZkeQI0oHAUdl+tcknzTbOrl2TK0OoSHVpJIrQKI/lHy5P4e9ZJc0mbVIKMEWGuJIZ/Kd44guCzkbnz6VOilcqElFFzVNO0bXLI2OtS77ZoioxxIx/mKwq8tX3WW1JTTWxD8DfDfhz4bafres6RbOt5qF7sluJp2kl2KOF+boPYetXg6aowcorVl4t+05IPZFLxx46u7u4fF4Am0/KxAx/8AXrGquWbk38ghBJWI/wBl2HxPqPiHxN8RJLgw6bHGmn2iRkYuZh8zvn0XIUe+70rpy+Lc5VU9LW0M8dTp2hRkrvcufE86H4qtW8Hy6eZdQvcx25ZizSyN0TnP1z2qqii04X1d9+/b+tPkbUH7F87+FbkniLSfFHgKx0jw34h2tfy2sMCyRMXWSQDbge9YSlWjaEtzNYihWbqQehc+JvgSy0TwFL4euzDcX1+N+ouU6gj7n+6K6KlJUoKL3ZhRxE8VKU1ouh8a+BfiLY/s3fEKT4M+OtQZPD/ia9kXwtrdzMSLSdjn7Flhwh5KHoPu+lcPt4Yf3V1OidByXNHdbnYfHHwN4J+JGky+GrnSYpoIoFUyunJJ/i3D606jVSPvGtKpJU9D5i+JWn/tB/BW2eD4fa9B4g0yzicafp2p7tkZHTEg+bHTrk1xT9pB+67olL2lXcb8EPizonxD8GWmn+JdfT/hMIUZ/Eulzrsc3HdlD4LRgAKpH8NVRjJx5up1SiqcbJFL4sfDHQvFenm6vtLg814mcxxoMAH/ADxSmuaLT3ZcZS9m0eA/GP8AZo8G6syre6bFcfZLdBELtd6w55wu7p+lcUqUqSbuYxoc0rs4Jv2X/BQZbaDw9DZzRIS4VcFhj+EjBFEUzvUHGMVHRJ6nI6t+z7p2n3l3bXF9dXcMePLt725eWMBuMbXJA/KrVWd9Tb3U/wCmV7b4KeEdGvfP0/w/bxSNFkHYACfY/nWlaTkjL2cKj2Lupab4b0GwbVtXvYbS2V9ryTEAKPQ/571zU5NOw5ctGnd7HFat8Rk8SyGw8AWUzacshM2pzoVLAY4jU9uvNaumlHnk/l/X9aHHSxcqk7QWncvWFot1CjtP97BjcDv6GpVSysjscmzmfGmoJrOunQbcxtFZtunkRuDIR0qqc3ESq+1fK9iHTdMttOvTMrbFZCdhGQrdsj0rr997Gim9kU0vbyW6b7eyMxbon3cf0reCcVdkwpylK7NeJYZYSqZDxnIIPb3rSNSTeh0urFOxPaXygBFcFWPBHUV7+X1OSomdMZe8jkPFll8YdQ8UfZPCN3bR2TLmWSTHC1+q4DETlBWehNaniXVXs3odh4cg0PR9Fi0fxFqKSzSNmV3cBWNetCrd+8eh7ekqdma+q69o66OLaxCRwK2CIzy9bwkmbxrrkSRVfV7fT4X1ydV4ixFEpzj61bqJvU0motX6lDwjr+tX9ld6tfqIpJg3kxRn7q1xV5Sa5YnFTqVJXciHwtPb+EtC1LU7O1E945Zri5n+7Hn09TWFHnpyvI68O5005Hn/AMPXPinx6/i/UwJbXTZS1mrDAkkPfpzXVCUqtV32OTCy+u4z2tX4Y7HoGs+IbnWdRLSXCiS5fYVUc7jwBXW5ypJ1JSShGLurddLO/kr6eZ69SalJtbs53486rYzfGTR/hlHLdxjwxpg86KeMFTK/LEDP/wBfB7dK/FOC3DMM+xGZOSftJPla7LSx5NGp7bG3mnFxvpp0e+nff87PQx9b1qFnZTesqAYCDqvHQe9ftCqQn8bsj0K1dONzj/DNp/wsj4hQ6ZH/AMgzR28/UbjqMj7qZ+teVhoPG4yMIfBDc+WlKrnWaKMP4cHqz034Ua5BrH7Uvw/057iNbYeMLDdLJym0TrjcPTijjbEVaXCmPdFXaozdl1tFnr1k546EOl+h3H/BXDxbH48/bdu/GEXi211fT5rm8t4Psli1vDbtBcFHjVWdySGBBIwMg1/Pv0ZcFKhkOIo1KPs5vkk03dvmV0/n+R6We4L2FTARmn8D376Hk9lqun3EHlghopowJiYwxkAH3Tnt/jX9Pumr2Wnc6ZTfJyy1R574p8Na7od1LrOhW/naY7ndGB80Pfp6D2rlxFCtTj7SnrHsfK4/D47DTc6KvB/gaPhTXrbXNMewE+9vL9B075rowOJvTun/AMN1LwNZV4Wvdn2t+y94w0D9o79k3XPAmvaFc6p4jsLCPwx4umEnA0o7jpuovlhuNvJ+5ZiCdm3+7X8I+LOQ1uB/EOlXw01ToTk69Ff37r2lNaacy1SutfU+ryRwxEp4WcbwqLkl2Xnqfn7q3gWw0PUb3Qps22p6fdyW80kBwm9GKk479OvfNf1tkEMvz7KqWLp3i5xT07s/Oa+QYGlWlTptxnFtXRV/sjxrYl5oJoruN1J5OxiB3r06uUZlhnelLnXnuaU8tzWj76kpr7mSDxINPIj1S2a2kLDKTKfm4656da82tjnh5qNaLiwq5pRoPkqpwfmXtMuobiyExIYmbjaeucjP0rtwmIpTpcya3O3A4mNSN463GrIltJNbBlyg3Bieh9a7aVeL5oLod/PHVdhk11arErp1Oc4PTilOvSjJdzzalZUpKTepf8CeAfir8cfGlt8NPgz4B1PxP4gvAz22l6PatLKyqMu5x91AoJLEgADJNeRnmd4PLMK62IqKEVu2zkxuJr4pKNNXfkd6vwo+CnwCvI7j9pr4inWPElrMou/h74KkSbYA3zRXd9kxRsRxti8wjuQeK/Na/F3EWdfu8joqFN6e2qJ2fnGGjfk3Zep6EMLhsupKWNqe818Mf1MrxX+0Pa3N83/DO3ws8O/D+KOYSWxtQ9xqAIxgi6lJbPAPy45zW+B4MxeYxdTNMZPESe8G+WHpyrR/O5ngcbOEbYFRi11a1Ou8F+IdY/aW+EvjfxJ8adXvNZ8deFWs7jS9eu3XzJLB90UkEzAZdQdm0k5GSOh4+H4hwMuEOIcBhsvioYaspKVNLRSTTTXbrc82vmOLqYhSxDvK9nstz55s45LfU5eFMYc4wOoJr9qy+M4xSZKUvbNrYPFd40FilkiKDMwKkN2rqxcXy8ncrMsXCnh1SjvI7f4C3sFrqtx4b1aQ/Ydd02bT7lQOu9TsP4Ng15HFOGliMmjKHxUmpL5b/gFCLcFF6o4mKC60u6k0+7iCSWszQzoeoIOKMHWdenFx2aOWo5Ua7S0sXpbqfSp4r+zfKMfXgn3rt9hJSv0PQo1JRamthb21Fg48UaDH+4cj7VAv/LNj3+hrSUYQdmRWpWrc9LbqelfCHxCy+K7DW7dl3EgP83GR0NcOMlCNF8p3ulTdO5+g3wW+N9n4q0iDTppE8yEKjRg8gjuK+NqqfOeXiJU4vQ9MS4+1v9qS5KxuCAc9ayscim+pei1/dZGxibdj5Scc/wD16TTTF7S70L+iW9/oumSTR3eVlByu7pn+VWopamyk7WHeC7VItWS/nlDkybt5PQA1M2jOcuXV6HjFi8etfE7xvdyxjMetTMjMMgEYA/z71+Q5w/8AhUqu5+h5JG+Egzy7xGDL4s1MuQWFwoIB47V8o7KL9T6zDSipakN40qzeWzdDj9K2TThY7lrPQzfErsFRV4Ixgn6UqEnz6BWfcyN7CErjAKg5rotd3Zin2My/LB2PGRgVqpIxrTMyYHzMuQAcADHeuuEeaF0cuiV0dFoVzLb6UqscRtdCRc4zhRzXl4mEnNo0oO2vmegXWqxal4IJWQZghRWAHXqa+cgqkcYk13PsYcssLp2M7RfidB8O/Fuq3kNpPL9rt7ZmeEFtuIxkH/Cv2XgrESnl8rbXPxfjh+yxyiux33w5/astr/UG0m6uWkEq7TDITu6fTivuqbgnqz4KNVN3kO8V+IPAOo6uZpp1hCKSOQcGtJy5kaOrTitDiIPBJ8Uao15aeKWkQHMMKSjaPw71NONtTWnPnhqZviW917RJv7KuZbhdxGJEfgf4V0v4dTmk+WRxmu32veHLiVo7t5Y7hDuUnua5JSUXoYOLlK50nwL8di5mWzu02Or/AHWPJrVT5kayqODsdf4zvrpoZmDYhIOc+tarVaEOpyq5zf7P58uXU7yEqsjTNhz1xWKpckuZjiqlRXLXxM8bWtnI9rDOWcnknnn2ro5ko3ComtznPCPxChtY54Cw3Mudr8VlS95spRUVcxvEfxBNrfToJl/erviJ6Y9DVVoN7HLKraZytlr13rutvfXEqxxjop6ZqadJPUScp7lfxxej7HEUO4RuCCrfpVShGLCVRwaUTI1PVYbmzEXKnZwWo5rRM5SlV0Zw+s3bYYbs4JBzXJVd0Qo+9ZHPTyMwJJ/GuOMNbs+iorlopFfzSi/1NaVFoQmrkbT/ALsg/lXM0YVmkj+qrVNctbeD/iYXzyhWB2K2PLX09zX1FbSbPOq39rI63wFLbi2kuoW80bN67mwFHYVjpytmblaL5dzQ0jUUm0xniXenmsVbHG4nk5rjTVrnRGbbSaH6LcsnmSoDLNn5So4X8ad4xib1E3Pcp2q6nrviE2dtMLeOP5rm67c9vrXIrzk7M3ioxjzSOgaOOzCafbxgCY7RKx+d/Vgf4R704qPNZCnLZlPwvoet6hfXGhWDfZ411RkvZnUs0SZAwuPvbsHBHTFVBzcuRdx4ipQgvbNapaP1tp+Rs6x8H/Cfh6WWaa7V2nAKxzjzpBzlhhsgcdD2rSrhYQbb6mdGtUq2fb5G/wCF9A0L4c/DLSvDMcZSGCN5plc4Ls5LnJHUkk8+9XRhDD4eMEZ1q06+JnNb7HL/AAhs9J1f4ya144W4SaDQNMSO13PuQXE2SzAAdlAX1+9V0VF1pTfRfiZYz20sLCntzPX0RyPxY+NUvh/4g6Z411u8Y2djqaNJGbdjuUHDMMjGADmuCrWUaqqN7M66GEo+wcEzW8c/EBvF9wZbHUkuEnUSLLEfk8k87s9DkVcpzqvmb3/IIUo04Witjwz4mfC7wr8bvH9n4cutOiurPR0ad9yK2JMcH8OTXKqXt6/dIFU5KbUup8z/ABFsv2m/2dPHs2neFNVbxZ4ZkbzP7F1K4KTW4DZIim5LDGRtbI9xUVYOh7sdh3gqehsL+198IfH1tH4TsJn03xDb3WZvD+sWnlyEE4yN2BIoxxjNRKajVtHVLr0f3/qRTnPmvY4L4wfs9eD/AImTanrqO9rqUDolleWn7uSOR/4kZeQOe1Eqjvod6nPluzwbxB40/am+Dqy6BPrNv4rsokAR75THcIqtkKZVHzYHqO/WuSpVqWukROrJKyONvf22fi1b6pquqeIvgYZrMwQiGK3vh5pCsN7Elcfd5HuKyjzykrsuhOvzPmWhV8d/tf3szKNF+EGpOu0LBLcTopZCCecdCD0Ndkqd477Hc5xS2ZwPib4+/GLU0GqaP8KkW4a1Ec0F9efJnI5yq5IxXIlBz95kSxFotQj95l3fxI+PWuMY9P8AD2laWzQAMFV5m+o3EAH8K6o+xcNDGNTETm3aw20+FfiDxZff2t8QtUudSlQbgsgAjjbj+AcZrGcnTvymkqcqllJnRWfh/ToFiig2rsG3cqYTjqCKwbdjdU401ZIx/H/iGw8BaDNfkI8052WdoHB3yE4BAx2zk06dKrUi3FaLcxq1IUo3l12OG8KWUyWwaWRXmdt9wxxlmPJNdMKd/eHh/hVy54mvrbSLqyzJ5ZuCUzjgkdua3UtBVJqnNWK0sq2sv2wWytG4xPHn/wAeFapc3U61LniWoYoMi6t5j5Tfclx+hrpXLDQzWkiKeQw3H38DIJKr0r0cNO7R0qTurHE/E7/hYVt4xs28PasIrC5XEuT2r9IyiUqkE0/UwxkMd7WLpP3XuWPEVpYazbxac+sFXgUbpVOMmvqWqcoWudkYxqwUWzU0WzSO3SG41eQQRDO5zkt9PSoVqfU6oxVLRM1z4gsBHHb26KyYI8t25b3NaRmjb2yfUz9V8WXGnv8AYrGFBJKgCsGxtBrSKi2FSXLLQTxv4lfS/A/2PYxLKWZmP3ie9TUcWtzdxfsG79Dk/hVr9zcaQYdMtwBEx3ykfKuetPC1FHY5MtXNTfY9E+EnjHwj4c8Zt428bxCfSdBt3uprdmP7+UA7E/FsflXx3iTmuKwPDE6GF/i1moLyUtG/kjtniIUJOV9l+J47H421nxf411z4m+JryQTajcvJbLJj93GTkKPwwK8fgLLoYHL1FaKC09er+Z42FnieeVWtu9vQqWqa/wDEzxLD4Q8PzLCZD/pNwekEfdifWvs6tWviWqVN7Car4+t9Xg7Lqz0BLPw58PtF/wCEB8GZwx/027P37hz1Yn0r38voxw1Llhu9z6XDYPDZXh1TpL18/U5c6f4k8F+JIPiPouoW850m6juUDMVbdG4Ycjp0rpr4H65GdOTThOMov5po8LFYXGUcQ8TB6LU99/4KKtrHj3T/AAb8aLW2mXw0YEOjuNJjhtzFeRrO7o6ud2J/MQl8Esp9Mn+UfBeWH4X4txeSya9s3JS95tpwk1FWa092zVrqzR9Fm9aliMPSxLjJezly3bTUk4p3Vm9Lu2tndPS1m/n+3nkjsfLSRGSZgFCqThR1Nf1YnNz1PPqV+en7hbuNQVVlt43YIig8nrjrUYptwtdpabeT/XqbQqtU7M878Rf2h4d8TSXvhuHck0fmSWqnqM8kYr5avWxOExzlRV0+h8NjHiMszNywy5k1do98/wCCePxRuvCX7UGjacsmnwr4hKQmx1pCbS5uI2EkdvcLkZSQjZznG4Gvznxk4djxRwlOq4yVSkm4uNlKN9G16LU9vKc3p1Ma8PWbhGqnto1JLQT/AIKceFvDukfHw/tAeBPDSaX4Y8fPJdLpAtGgGj6hG225s/LYAoFbDKehVgRXzfgRnMqOSyyPH1OethbatqXPHeMrq6b79mjjzFVcpxEalRtxmrXe9139Tw601a01QidrpBGqfc3df/rV/SCq08XU5ua0excMZHEzvF6I9u/Yl1H4c6xqXjrwl44j8PhNX8LGE3Wv2azG3gV98piLgiOQhVAYYIz161+WeJc6qhhqtHmlyzV4x63018jD2OGxrlKouZq2h4XceB9KjvrtvDOqz20MdyyRBH3KQGwDz7c/jXr4TJViKMakJOLaV15mKyajBc+Hm4eRn3vhvWreSYw6x5zqMyFlGDg12zyjFYWm5Rq3fmbwweNhBv2t35or/wBkeIp7rbIiBVjJIUHkVzU8HjpVbyehjPL8ZXq3k1axvfBXwJ8Q/FPxEsdD8J+JbnSbnVZDbS3FrctCRAQTJuIIJXaCSPavCzvCwp5dUxOOs4R1s11MsBDG4bEcym430duqMGz0u2vEluIZfm3t87LncM9TXqYTAU/YKy1Kq4SOIqOo2QtpYjl37fLKcknuPWur2DptaWOerT9lG0Va3U9V/ZpdtS0v4k+GCzSG9+HlzKI1hDmRoJopM88jChjwa/P/ABBVKFbLcQ941kr/AOJNHj14Va1anr9pXPM5bOJ3C+Zgqu4sOc/WvtqNeMd+h9FVh7O9uhgZl1vW2lEeY4sqhDVjTxDrVHLojwcGpY7GSqP4VsdRYTf2eqTQz+WyEMrqPmDCutpVYtT2eh7iTU7I0PjFbbfE1l41jgkW28Q2CTs8mP3koG1yMdiRXzWSzWFVTDS+xKy9N0Ga0uRxqpaS0fqc9a3sJB0+7cbX4XnpX0VKvfRnJhKj5uRl/SLo6bI1jdpvhl+V1xw61q7SVj2l+6jy9y/4S1O48JeJIofmNlNKDDL0289PauOdCOvMzi5aqqOL2Pr/AOCfiPQtMuoZ7fWomu54xJtST+fbNfL433W3Yirh5pXsfRmieM21W0S2tnX7ik4boe9eNduWhwuUb2JPEniDU/DyC6t5W8wDJB71UpWM5r3boj0b4s6x4isnjtkdZB1YcBqhOzvcVPmvdnafDz4iafFaeZq0ojkiceZE5681o3fYtyU24taHl/gLWkuPFfjO9C5hutafzArc7C4/+tX5Pm1P/hRrWf8AVz9HyScfYRjFaHn2oulx438QQy7lC3gEIA4JyuM183jKcIRs2fTYaK57Fe6YNdMrLyJPWuOk/cZ6UdJmf4lKeaoLen4cVtQledjLEOzMZn+QnsMdK6UtyYO5lX85887m4Pc10RilHQ48RJJlCZwQBg5AyMnit6dkjnVRvQ2rG7lfT7ez25CwEgbgeSea4K9uds7aMGtGdJot+/2S600ybhNYgge615NamnOM10Z7eFrW5ot7o6/9n+Tw/eN4puNfto5zvt44vNUEgLEuSPzH51+s8EYfly+T6X/U/HeM8Uq2buL7flb/ADM7x74K8EC9GseFlZbtMl1UY/lX21SK0sj46bg1schHruh6jaz2UzrHeEYIbr+dSnfQil7zaOZm13WPBepm4s9QlWPjDB8qBW9NRSJxLnT2Op8O/ESHxmT/AGyI94jK+YD96tKkbx0LpVI1InM3WqQzeIW0q5cmMDKBuSPauFxd7CU3e1hljdNpfiS1lsiVUSlWbpmtOVxjoZ1lzas7Hxl4vd9JKeZjbGQVz1reLfKFNKWhzfgjxZceFtEYI2WuHY7h2zWNJOc9TplOMYqxn3093q94dRvCWw3Hpz6101FpYxbdRamRrUM+j6gNVsJhL8nzRhutKDS0Iq1Ixja5yF7qWp69MWMZRUkIVW9M0TlzOyORLnYqy6tZTFtjJkcYOaKSszolJRhoZ+r3eqXtwkc0hUZ+YUVPeehxqLkynrOpOqhRIRt4GaaV42aG5ODscveXjyo7FuSeBXFiHyvQ6sNSUql2Z7u0ny1l0uerOpZWI5cICDyfWpndwOdVPeIfMV0O8iuWSaLqpW1P6ltUkh+1/wBo21gZ+QMOeHb255xX1Va3O7nnVm/aNeZ2dpNcW3hP7La3KrcXYwWA6euDXHUvy2RlGCc7mn58kGlQ6LaRFYYUAK95D3J9K5pxsrHVSi43kTT6je2Glt5SeXAoxsRcBiffr+NZtS6G0eWpPUd4P0zWDDJPdxRPc3B/dW0Y+RB2J9WqKdNxvfc1xMqfJyW0LuhapfG91O4eOW5isrY/bNkJJjYA45xwR6fhTgr1JO2xzzUY8qT32Oj+HJuvC3hD+37iErf6s5m/eLhkQjC5HrtA61pTUaNPmluy6vPUfK9kcl428f8A2KznvY3IuipCksSxb+6uO/auWpUXxdTWgpSkkny2Ol8WaxqlxoVmdThuYnFgmQ6sFT5Bnr1PX3rfEcsIqTvovMmlGkm7O7bOQ/Zp1+31v4seKNFOnz2ul2+ixSyzSFlFxOXYFfQgAZx71yYatVqYmUfs2KzOm44SnJfFcy/2gZtD8a3DeA9G0qa7muWWOEF8wIQGBCAgDJySx56CnV5a37uJyUlKn78meFfDfxTrXwOvtZ+AvxLt7yG00+Mah4fuLaFpTHbY/eQMuSzBC28egbAwABTqSdGPs7bL+uvz+Z21KsZpSh8zq/gb8QPBl7Fq9/4c1q3v1nkMQntJ/McbjjDAcqfY9KnL5xasmGJpy5E5I574ti3/AOEge3vCkdvERG0jDLb2BBp1oSU3czpRUl72x80eDvh94H+N37RfxB+F3iyyUyL4RtLrRbhothSaKV/MMbjndgoeK5IpSlZnYqUacVLoYOqS/GL9nfWL5/G2n3fiTRWjBh1W1OZoo1Pyh4xw+P7y89Mg1U6M/ivuKpJJ+6Zeg6p4a+MPg6Lxno+rQ3aS3xN3FECWhlY4Mci4yg/3hXHySfu9iOeDaT3OQ1fQdEtWvhd2NvbpHGygoAUx75/zzVRikd8LtJIo+LvAvhOTw3ba9G1uLW7hWVH2jELHhlPtlSR6Vs5NKxEqqU2jCvPDNmLAWSaeJTISdwTO5VH3gw69a55RXY1puLRzN94RgfUFjtQmYYQ6pIRyf7pP9KiN+hopRWxHNJ4ZOYWvIrOTG6Xz5Bt3A98HIPv0ok31KvpdnI+KPEmktdeRot9BecFnRMuF+rKRRTgpsy9qpNy7Hit3Z3vjfxCfF+pXW6WIsmnJz5cMYPYHue5rqm+VcsdEcqh9alzS2Wx2Xh7QNQ8Q2k8mm2zC8tIS9xFEg+ZB1bnrRFux3+7GGhzfj/TLnxP4Xk+xyZuLVhPbllxgrzinBw9prsYukqsbrdE/hG8s/EGgQX6rjzIwWK9j0OatKXMONWLjoFsP7K1FtMuciOXmJhnbV7TuEJPmsQayzJMEdwCOBJ2Ye9ephHdanTdxZxnxmuns9DtNUWWRSkmG8scEV99kWIioOJvOpy0Ls4vwvd3d3cnUb+4l8leYwwHzH8a+lpzlPVHHTqpz02NWXX9Z1S+WC3vmDtxGsZGF+vrWnvM66jlJGzpstn4bw+q6gZrgnLK5zk1v7WNOI6UvZv3mJpniG18Sa4zxAzKj/K4UhRVxra6HYqiluM+NetlLCG0tFdZCgVSGxkmlVU5JSi7MMZiJrD8sOpX8P6kmjeG00TTwoO0G4b/a9K6aSVOCOrDSVLCqKNay1Wz0HRJLKSJZ5LhfNmt5xlXA5ANfN5xhKGcc1Cor21XqjmxLcXFpX1PM/G3iy3tFaa1tEVZyWitbccF2P3QPQVxYX2eBwSo0zgzrHwwzXKrt7JHVfC3T9Q8G+FJtb1ePyL7Us7hnDKnUDrX1WWYWdGgpz+JndlUJ0MNzVfikMh8QXd3qcl8uDtHyvIB/KvUpzSdrnoxq87u+hG1/ceKfENl4QgbiWTfdhRnKDk5zWcsS6uMp0YvZpv5GWOqfWasMPH1foe5eOrTX/jN+xtqtnFcxte/Da7ENgrXTmZbN2M0cQiHyBQfO+Y92A96/AuOJ0OEvGWjjYR5YY2PNskuaNot33u9NDslh1jcoxGGpr3ormXyPnTwd4vD2qXxYFmTBJOQvBzx61+/4bH0a1PmXU8bLqlKvhYt7jj4hdzLGnO4EAhuM96zxNaDgzb6zBOUfuM3wxfPrnjC5uZI1EdrCI/nH3vUV5OVuOIxkqnZHz2XSnjM0qVZbR0Oov/C1xqN4dd0u6a3vYLlJbGeJtrJKmCrD3BGa9OtgqOO541FeMk4td09Drx2UU8U+dO0r3R9ZftX+M/id+15+yVoHxg8QvPr1rLpzXGsybF8rSdXsiIbiNUABzNCVkyCe3FfxHwvhMD4aeKlfLZWpzhUtbVupSqaxbf8Adem3zPqqeGweZ5S41aXvpXv6aP8AU+IdQ+H1o0S3PhjWEXzl3CItnPt7V/ZdaNOqubCTs3rY+TxWUU6bvhJWutjO0LVdU8FazLZ63Y7PPjaMytnDg8H8PavPhCWH93GQvrvueXgq9bLMS1i479TcsNTgQzWoYKJSSu1vujIOfyrtwmIhGbjE96hOEru+hG+pnZuAyJojuIPU56munGYnnjbuTWxMUrIbPqhW8aIEDMQGB2xXBRxCdZxNKNaN2jd+FEz3XibW/EQufs9v4e8K6jfNMHKN5phMEC++Zpoxjvk5r5fjPEU8Rh6WDS/iVIKy7KSk/lZO55lSp7TFPleiTf6HJaOJLG1JVgrIny8deO9fRUKVSjF+TOqnTXs7McHe7C2su0bFPzAevTNdc4e0SuRNKpaMtkdp+y9q1n4a+NekrqNyFstZhudGviXxiO7haHk9uWU/hX5nx9ljxPD9SpBXlTlGovWDT/Q8epTpwvO2x554wtdQ0HWLrwnLE0V/BcyQXUb5zEUYqwOe/FdtPERxWGpypO/Ok9PMyx2MWIao0fil+BDpun/2VGsZCvG3fHf3r2MLhpUIWexpQoSy6j7Pe5cKJMGST7+PvEda75wcqdos7Fd09Xqb+o26eJ/gks9rcmW40TUit1AwyYIpB8kqY6KWyrA99p718hXisPnC51b2kd+7Q6dR43CSoyW3U4fSWtb7Md0AJY+DXv4a1SPLLdHnUpw5uTaSNezeSXFjdKHAwY5AeQP8K64UlCTZ61OpKUOWW5pWlzBLAba5wyqcdehz1rnrKdzeEIvWW56T8DvA3xBbxNDq9v4oZNJWVXZVk+9joD614OOkuVxkcmIxtZKUFsfS+m/E6bw5qCOZgFOB1wPrXzU5KnojxXBuVz0yHxXH420nziwb9394Go1bNtbWNvwVfaDpFjgGJpEPO89KfsubUp6Iz9ZvLTUNcFxazBQzgsEbg1tbliYtPoYfwuvvsni7xJZJ8iteBmcnIzkV+Y53SccbUkup+j8PcqwqXmctpd2L/VvEeoSSBpBqQ+bGP4gK+LzO8ZJdz6zCLnqshvsm6YAjPmHJrjpyTpne3y1LGZ4tUiWPOcY5rbCyTZz4u/MmjJnA8lgDnsD26V1qVpNCpv3TE1NC5Z93GOgPSuqnNtHLXs3ZlE20jyYDh4mP3n7+1ae0VrI53FQdzorXypJoPKjCZgC4AwMeteXOMnFtnZGq5SSRuaIgGp2saf8ALSCRCD3wprhxE+WhJvo1+Z7OEpXxMU1umO+HviN9Eh8SWzMfmvV3ZHTEaiv2PgufPlumzPyHi9Qhms4+f6FO18UG11A6gl23luSDkc/iK+zmopo+IlNJ2Rx3iPwlda1rs2rWl4wVUySj4yPpQoQehUWoK5jXOuxW2kzWd9mY9Fc84PpUqCgyKtSVRWMHwfq+p20rwQE7C5MYY9s9KJ1YRVkyKUKkNzu/Dvw91vWzJr1zdBJdvyrnFcsJylqd0aa36mPcXGq6bPLDqMLBoZ8q2eDW85KJy1r35WGo+Kf7UR0ySDhRzUyrWixU6UxIb8PdRgkiONQMY4ooTvqjaaSVnudBFrWlTQLbnbhgR8vUV1pcxjBvkOJ1aK807Xp7hblmiZPkUnIFKUVHU5XTk5FPRIZmuJLy7YBQThWrHVy0OiKjBW6jNU1G5DyPbwPIEH30jJC/U1006fLo2tTNwc9kZZv4rmJ7mR1JHT5qxlGSm0jn5rOyOR1vV43u3iTHA4x2reK0uxxpykzKkm+TdIea83Ecsquh62FhyQIUkAyc8/Wpkiakm5aFe8uT91epPWnZcuoWSd2VjJiM7mHSso0+aWpjiK3MtD+n7T7fxLfzRvea9FFbFw625QFtgHr/AIV7lWEpVXcxxFlNnpHh3UIdQkhUyEwKgBQphm/DsKym1AzirmiL0vcGOztXchsjjhvc+1cr11O+K9wTWtdaxtjd3XzT5yofov8Au+9ZynybhSjFyNLwfcnV7M2+ps9sCu5JfNCqp/2iRyT27Z/Okr9dBV7RknFXsd34Xa70Pw2oudVuC8yl5yXAaQdgxAHQYFaOc4Qeu5MoQbTscN8QfirPpdpcy3TswcYiPfA4GPrXnVa0o3v1NlCUtEVvhh4A8fa/qdr448a6ZbaHpYUi1TUJP9IlLdH2fwj0JNa4WjOo1UqKyCrUgqbUNWez+N9S8OaJ4anttVeOQyxACNXG7tjH+NepX9nGm1I83DwnOspLoeOXl1C6alrfhu0lt7O3hIu7lSEMiKMlQSeTgZ4ziuHncbzgtD03Vg5ezvqVP2bNXsviFaXXx9uLQSaTYNLaeF3DSHz3BKyS4bCkAgqCBzzye0QVOdKNWNnu7q91razvppa+nR6u+iyxMIRl7LqcH+1Pdx2nizw58U7fQVRBqiW0rzSonnwzkwsNoAL8uSTz07YrnxdScEp8u4sOuROKd3ueG/FL4IX/AOyhrK/ED4RwxW95Z2yy+JLYDEeoyyfOyPjqy5wrdqwp0vq81JbHdUrOvQvIr/Dn4qWv7VXh/wASeN/Aek3a6V4YjM3iu7vLZ4Y9OlRd3lGSQBXcgnAXJ6V304SxN5x2RxLE0qKUG9X0MGytIPCDN8S7OM/2jMzXiKY/mMHA8okY+8v8645JP3up1zjUmrNG1r/ijRvEnhq3vrXT8afdxK9t56AqYpEyV9ip4/D6VlJy3b0LhR0s0fJ2t/ArUfDPjrxB8RPg74oudHv1uVMNxZKTFcZPAli5V1PfIyBnnvXPKN5e6GJpU4axZkeGvGD/ABYWYfEy0FtqtvcGC8gszshZuSZNuf4sLx2JpRjeV2a4WTitTnviBeeOvh49lp3gbXLafQdUnKXen3UXmxq4JUsueVPYgGrvrYdWlUqSvE5248X/ABS0LTDZHwXbXlom9hHY3LxOhPUISWGOPb09KmUtVFHRR5YR94dY+J7fxfpks8GqnTLyBFLaRqdokmATzk4+bP1q5QfLZmtoSXMc94m1jTdduCraQlrdsm2S4tpN0M6kc5BHH0rncZ3dzP2jktDjvGrjwdop0jRXiW6vi0bCEYMcZ6vgcc1K1djCporGH4Hso4pj4f1VdpKZtpiMK4x0+tdUueT5pf1Y66PLGnZFrxfcXnhfS7mezvJLS8VhDHJDJgyo3BXPetaceY5py1s0VdOgeOzRiNodNrMwz+frUclttDqptJWOa8IGbwj4n1DwtJIBCZTPbA9CjdRz710VKiZ5ybhXkjpfEWnC6sQyEgH5oXzyD1xWNObvoejTt1MO4vXvrARzRYkiGOe5r08JdGrqJHE/Fe6u/wDhEVMX3I5csrDivs8hcXUaZnWU50jzS+1CS8SOK4utid/KOMivsKVaF9zjVRRkuZk+h6/Y2FwzW8pyi485n6ewrWeIhGNjvjWhFXTGpq76pe7bi6Hl7/mYsckVy87bMKdRzneR1NprkdmY7XSAIoyw3Hby34120pKMbs6ZVHKXulnx5PDftCbkGRmQAZXke9KdWpJcqOucoumomF4ZPiLUPEcdrdeJYY7GHLypJGFG0DOCfXsK5ZwrQjzqV/IMBg8VPE3lU93sWrXWtU8S+K7lRAUtxbOWl2nakY4LE9hXJm+PWXZe5qVpy0XncwzDG/VKzi1p0OS0SSC98aS6qIF8uyJSyVjkZ/vc1jkdKrVqKpWXQnBU6eLzKWIkvhWh1Wsa3qC2+17rfI4J5OT+FfV4nERpqyZ6lTESUnZFGxu3NhIqOVZc+Y5fqaxw9f7Tehz0KkXd9t9Sz8IL9m8Q6t4luYTMscfkxHdx708qcp4qpiWrrb+vQ5cjxc8bj69ZvRaI+jv2HtXuPF3jPxd8FbPxENMl8U+H/tNs7Isn2iSxbz2twCD80sXmxj/e6jqPxL6Q2GjHL8Dnfs/aLDzcHrblVRcqk7W+GVn8uux9HlePjgceqs482yt87P8AM+UPHPhK90H4na94R8KXcsFna37tawXsOxxGxJAYZO0jOPwr7bguvmGccP0Z865lFXs7p/M+SxeCzDD5xiMNQkoxvzJeT1MxdR1nRMNqensvlufnVSyk9/wr6arXxGHhy1ov5HNKtiMK060duq1Lvw7lmufMuPlVryYs+RjAq8iUlFy7muTVl7OUusmz0MaysS21yCEUDK5P3iAQa+ndWnF32PecUkrs+mv+CeM/h74rfDP4n/DPxD4oEMejeRrmmaI8h2XomU21zGqdGYhkbGR931r+P/pGxnl/FeW5rg6N3Wi6c52Xu8jUotv70enkeOpLEyovWL06WV/+CfHCaVqngnxrrfhnVHdX0a/lt1jlXBUKxxx9MV+68DYqeY5ZTxnNdOK/I+boYetRx1aFR/A2vl0F1C5s9aPl3UImj2kMuO/HP5191z0qsbVNjepOhXXLVV0c34i0XU/Dduuo6TL50cj+WlsTk5PpXzuOoQwTVWk9H0PGx8a2XwVTD+8npYksn8UWcS/2ppgthL8olY7lUf3T6Vy1q2JteUbHNRq4yMv38OW/UvWpSJ5fNCSNtwcnrnvXTgqkeWTb1PVoTp8zTd2b97fp4X+CUsMUKfbvGmtJHE6DDDT7L5n+qyXDp+Nua+bqyWY8Sxa1jQV/+3pf5L8zw8e5Uq0ZR+0/wX/B/I5+0vFkjmWRArBQGyPu+1fc05KpTbR71Oq61K4+a7gghkeVVUxQ/ezjms3VjFNs5/rEYN83Qo2FxN5SzQErIPnVlfBzngg+tebjIqthnGS0kmn6PQ5qqjOmvM9E+M/h9fiZ4Wsv2ofD8JkuLmVNM8ewxxfLZ6iq4iuSeyXCLu/66I47ivzbhvmyvHzyqra0bum2947tfL/InD4JRqfWYr1/zPOHmht4ZJJJwy4wPrX31SpSpQbbN8ZOlCDlJ3I9OvLbU3/0Ny7McFQcke9a0a1OrC6Zz4SVPGK6eh0vwajN/fa/4au7aVhNYuspGSNu0kFvoQD+FfG57ioc0JPRwlo/XoduS4im8RVodUcTqWmTWUh1O0UloWKzqVxnBr3VVfIqi3OHMMDUg3WorVbos2WopqCC4to/mUc4ODXXSr+0tYrBVoVFzM1g7lBc7cK42yKvr61vUlGJ6CU5u/Q9U+COtX1vZM7XTbUxiP15r5rMuWs/Myrqmlc77xVc6jcWQvbbftUfLXzVWlY86TW523wU+KsVxpx0eW42SKu1lY8k1jCUr6nJOvZ2Zs65ruuWdwbqyvGUtzgdMVu5uJpFya1E0Xx/eteIZbsiQMMN60m2zPneqOt+BN1FqvjHxBqGqSLHFFG0k0lwcJkDK49ycV8RnsIKs7adz73h+NqJl+CglzZ+Irhf+WupZT3G8V+ZZ3XUa6R+g5dGPzZJcx7rp8KOH5PrXn0qi9m0dM4fvLmX4xjw0YAOSveunBNznyxOfGLlsYzRF7dgeBkYrockrmdP4DI1KAlcFM8HOPSumlNM5Ky94p29qJLhZhGSFHT+EV089oszqJN2NuOJhewrGMZC8Yrgcl7OTZ004XqROs0WwSPVdPlCKVSGXcx6/dOce3rXgYipKdGovNHuwTp4mn6MxIYraz1/xBo11cgPcMksYI7tGpBr9w8PuSeTqfm19x+J8awks7nF+TONutE1a1kuI7u7XC5KKT1r7pqKuz47lUZalWwe/ttSMX2iQKUw6nnrXP7ZqVkbTfNHQd4k8EskFtO/yLcnKHoDTxF6cLswpzcZWOot/wBn5INHt720vIwzpuyHBPNc9HCzqpM3q30aM/UbPxT4SlFrciTAGF2rnP5V0SoPDP3rfeVSlVe6uVtRt9V1qyMcWi3MsjdStsxrCrVhTV2zSVGb95xZj2Pws+Il1NusvBeouucj/RyMfnXn1Mbh+s0aRp15K0abOgtPgd8VJVDf8InLEDyxmODWlPMcHSi/fHSy/GV5tKNvUvv+zV8SdQjUxta2jt0ZnJxVrPcBHudayPFtboLb9kTxbK4k8ReO0ZRw8Vrb8j8T0rgxWfRf8OJU+Hq07NzOksf2f9M8P22zTbSKdwMGa8DOSfp0rzpZzjWrJ2XkdmHyjD0mur8y/p2jeP8Aw9aXGm6bqdtHBOv762XTIypX3yvNZuqq7UpN39T1oQdCHLFK3oedeNP2crXxeJL37Y+nXEpJM9talU+pWvRw+aVcKrbnz+KynD4hupHRnnsn7IWoWlwZLv4ixOnqlkd2PxNbTzqrU2icMMpqp2lPQiuf2bPDMCZuvGN/KO/l2yqD+dTTxleTu0b/AFGEV8TIh8FPhzYYSdtTnIGTumC/yFOri8TLayM1gqKd22T23wx+GJLCDw0zsgGfPuWJrmdbFzVuYt4XDdiyvgTwLalRD4SsDn++hb+Zpr6zfWTJeFw6V1E/fRfEFnZ6+ohtTOXYKIhJk78dT9PSvuK2k2eRWUpVHzaanfeC9Q/tq9kuUUBI48TOy4UKOw9e1ctS7ehXNCKsbLarcQq5W5LFz/AvRff0Fcs5WR0qMWkZGs6tHdazaaYlhJcgNvMcacADnn0FcdWfvIunRsnqejeENJW/0+HVNcV0kEm9bO1ePYFycFhnIAx6Z5rSPNJczJdSPNyr9Sbxx42trS1lRigQKQwRuMdAPelN2u2xcnMmmcP8EdPf4z/EqfWruHfoPhsgySkgpc3RPyw/8B6ke49ajDUfa1Od2cTabVGmu7Pc/iPpf9paQb1w+bRleYoPvqOq49B/SvQqxTin2OClXam0lozh9b1fSPEGswWus3MVnEy7lhkkG6TA4XPQGuOdp1fedjTnqwhdLUreI9C1/wCIqnwh4QgEFgFCaheIgEMEJ+8FPQsRngeuTW8Y+0fKtjl9o3Nye5iSfEX4b+G/A1r8H/h7LHaWXhaP+zGst2DCYwQXIHc43Z75zWPNBw9lTVrG9OM51OefU+Wf2u/i34H8I+ALi88UaTqV5cKQmlPbZlEcySIY2CBd3D7cndwDnB6VxVOSMeWR2KlVnLkps+gdR8Hw/EnQjr/ieFpNJgH2qZOhv7hlyI/91c8/TFdlSHNDma0X4nPK9KPsz4i/ac+GXjbwl4lmvPhZ42vdL0nVNXjmvPCRunOm3twMBGlhVgCw4wfYelcFWq6KcabdmbUKdKM1OSu0QeJfjhqHhLSp/Cvxm8M3Xh3U5I2MN/Cxns5FKj5Qx5jz6EY9KxlUUY8rNq1Z1GrHzh+z38X5vC3xm1fwj4r+K06+E/E95v0lZpc22n33YMSf3aSjjPTI96e8EkV7ScIXb0Ppi+sbDw0lxaWKjelsrXWyXcuwhwHGM8Etwfb8qhBRk4p6lqoqkVY8f134USXfjy8v9JeVI7mYfvUH8YXd27jHb0qKukdAi2noY2o+CNY8Q6Suma0gV9MzKSiH94wY5bHY1hGEmdsZNbFKOex0qKNLC7ie3ETtLGFy6S5HzEehG7NWqbg7i1buzjPGWmm21WPWIFEcb4Pn2wyFBPQjuP5Zp1JvsTKbbscv451PQfB2hSeJdeCiApmBIWDGeXOAgX3/AK0op1GrBUapLU8Q8D+IPFXi7xpfz+OEEU15IZNOjUZWKEcCP8O/1reoqUZLkRy4d1K83zo73VbGK2skWZD5IOQ+3DIc9j2qU77HoaQjY4v4zalrtlpem3U0kd1ZWt6JJpFGXUH1Iq6M7TscOKVXmi+iOp0oQ6noqXtqCyyKGwp6HHWocldo9GHIoXRgeOdMSaxh160wL3T3/eow5eI9aE0cGIjeXMiaw1dzZBLvmN13QyHp9DU/CzalJsw9QliS7dhF8so5APQ16WHk0jrVra7nNeOVk1HwZf2ixebtTdgDkV9BlVVxrWZtJp0nE+eZ5Lp7nZ9qfYTgoDyPavqIScal0z5CrQnCtzc912NW2vrK2KWyR7pe46ivQhJX1PYeLo04KEVdksmokXAaRFGOgPc1v7WEVa46NZSlY6jTdbts25LbihA+RflH4/0q6c3LZnqU5U4zSZf8a6s4lR2k2nblBniuxJwhc2xVRxgpWMJNTijAB3hGHzSA4DGkpR5bMrD4hcq1Lei+NJYlv9KScpb3No3mQgZafaMhM54GRn8K+U4rwzxdGk4Ru4yR5WbqWJiuRXaZyXhrUGh1V45oCiO2QlerltdYetyW0M8rnVpYuUZaJmpr2tzRlrqRN2PlWPPU13Y7FRVO63OzMsQqUHrqa8OgXt74bj04asbTzEDzsseTk8/hW+EwVbEUopysmdtLLKmIy9U/act92aGn3Wn+CPDy6TYQb4clpJpCCzsepPoK9eVWjlmFVOCuurN6FPC5JhFRpa9W+5f+GHxAn8JfEfRfHmi6y9lJYanHKbyEZaOMttc47/KTx3r5XizBYbP+E8Zg/Zqp7SDaXeSV1+RpQxdOliIVFqrnf/t2eBvCnw9/aO1DVfBHiR9b8Pa1bpNpWuXUUkb3wGMyYkA+UluMAcY4HSvyvwEzjF4nIZYfGwVOrDeCa922y0b17/mVnmKqzxdPEyp8nPFKz3ujyWG9tWAt5GWSMsS25ck1+/KrSkuVu69DzqNaEpcsnci8E6VDctqElq3lKjkRMOnPavLwtlKbg7K+hngsEnUqThtcXxNqOoaft03ULYxiJf3Mg5D985r0K/Nb3isZVqR9x6eZ6r+wV8WPAHgP9pDSE+JVtbnQfEUEmkX088e4WUsmDbXZ9RFOsb49FNflni5k1XPODak8Jd1aL5ko7yVvej/28ro5MDDD1cRFV4KfvRaT/mi1KL9U1ddmb/8AwUI+EXin4RfG281fxbPa38niSPzX1rT1c2l1MnymSN2VQQ4w2AOOa+M8DOK8Fi8mqYKC5OTaMviiuzV3sfUZnyU6v1mSt7Rarsz5zs9Qk3SlxkSOVUgV+yU8Y6kpXd1c+ReJTqO3oWNKubnXdcjxCTDYLx8uQZDU4eTx2N/uwNcHUeOxt38NP8zbvFi80W7QlTKCLlGwRkdVOfXmvflQp2s9nuepiYRlfmV0znZdG1u41610HwxZmc6tcpbWMW7JWV2CqD7ZNfMZmv7LpyxEXanb7j5t0a+Dq+5rGWi8jT+Jeq/2h4tXSfDQW50nQbFNK0ZmYjzI4ifMmGenmytJL/20x2rx8oo4qhhPayV51HzP9F8lZBi6Vd1FyLmSVkc1/b6WE6wXVq0RUFWEi8N75717scfKklGasbUcbTw9PkqJpjNW1NdUCtczgnA2gYwwHc0qtdVrO55WLq/WPebL9pcBraJ4lwChAP8AerqdWnKkk+zPdoKMqEbne+FfFbeA7u88M3qu+ka1Ypba5YGQhZ0yGBOD95GwynsRXwMcLHM5uu1edJvkl+aNqGIVCo4NaM43xz4R/wCET1AxR3H2uwm+azuR91kPIz6EDrXt4fFOtG1VepGIjSW6umZNlYWmn3AvdNYDoSAa6o0EpqVPRHFy08PK9FWPpT9m39lvxrbpJ8YNP+Juk6VrWveHLxtH8IS2bTS31m8DoXmkBC2wkAbZnLHAOACDX5RxdxBgKePdGdFygpxvK+id1062PErYidLMZV6asvzZ518avg4nw18PeGfit4f1r+2PCPjKCQW+oNHslsNSh2i8066TnZNEzBh2kjkRx1IH2GWZtGrJ0Z6Sj+MejR6GCz6nVryjVVjzOTTI7e4N5pOGjkGXQHpX0dCk1LnjsaVKCp1va0HdPoW7KUKpQEEuTlMda7pNTidqnOtGy0Oz+EfiuGya4sLooWHILnBA715GOUHruwVB3u2e/aDqGk6v4QwpVl2ny27mvj8VNyqNR2MpVYJ2seY6vqN94T106lpZ2kPyvqM1y3lHQ8nFuLnoek+FPi1aeLtOWymbEy8EDvXXKFne+xVCU5R94q6nrbaffhkkPytnB7VPPfQh3uzb+Gfii4udVubl2kJmO1Iyx2ZyOT618hnSi6slY+yyWrOlRSTPSvh1mXR9SkeJd7Xjcj6j/CvxziCnKGMs2fo+UVPavma1X6jpbf8AflmHO45FcVOcIxPZcZSdyl4n0+W8hTAyQnBzXTQrqL1FiaPtIaGTLZPEhBjA4HB9a29opNmUKHLEzLuxeUgMnatoVbHPOjd3IYdMfzR8gGB1I4NbuuuXcxnTvI1bLTCLuGXryO3WvPrV7wkjqpU71I6HbQaVIbyznRMbIHVhgdwa8GNdck4vq0e+qPvxk1sjL139nT4k+PfE914p8NX+m21jJBAm+7udrllQA4UfhX7HwFmlKhkPLL+Zn47x3l+LxWdt0UrcsSdf2MvE11cCbXviZYquOFt4mbHsa+wqZ3T5nyJ2PkVkGKn8ckjbg/ZQ8H6deC71DxLc3UgUDEUIXPvyawedS5rqJ3UeH4KPvTubF38GvhfPbwwappf2tLYfujPcEAH3ApYnPMRUp2bSR2UsowcFrG7NWPRvDunQLaWGkWqKqYRRGG4/GuFY7EP7bOhYDDxd1BCkxyZVbdQy8ASWsY5+uOazliKst5M6lRhBaJCfZLvcFjmCtn5kCqv8hR7bm+LUGrFiDSdfvMrba3MdoywVsYH1rmajzXsS+a2hUvdD1+aPjVrl1LYJEpUjH1BFXzwXQdGMlrcyb3wj46+2FrLxEwhIASO5Yuw9fmUKD9MUoShe8kaVVNxdmVT4M8eyMS2uxDJw6qrZ/nxW8pUHE50q3LYjk8L+K7SUTX2tRPAPvRyK/wAvv8vU/SolUp2skVRpSjdtlJfDVxq08otfEksyx5AKRSoPzIFEKsY6NGs6btuUdT+ES6mFP/CRXKGXIYPMy/iBW0q8bbHLUoc8bHPXXwCvgzvpnjJJCFGUknbp6GlTxMb+8jz54KcXozE1r4H+LLOMRzRSyLksGhmbkD65Fd8MXTaF9SqtbGHqHwo8Zx27XFv4a1CYrJtYTMh47Ywcn8qJYin3MamGqR6GLf8Ag7xlYqHuvDV0m4H5hbNjGe5xg1UK9FrVnOqUm9TOhhurclJraRCv3hKmP503OMvdTLnNQjsft3f3emtqRvSpWGJ8yuhIyfQnr2r7urG83c+crczqNHpPwn126v8ARJ70wBSeEDJwqdse9ctSairEOk0zotEvIL+4neOImJDiRgDgEcc+tcLbk7nXyuMU7iXWtixIgs4zuIPmS4wxH+0TwBUWSd7Fxu48rdzrPBup6dqmhNqcFtJd3CxujtasTGPmOGwBzxxnIHFaRUeW/UTTpzXNotDivEHh3xd8WNZ/4RTwk32K2XAvNS2/u7aMnk8kZbGcAd68+oninKF2u2nW/XVW0vrrrpbquiFOnSSatZdD6M+HPgvwB8LfAdj4M8CQRyWdkmfPLbnmlPLSsf75OSSea9fDUaWHoqEDyq9WpVqOUlYh1/XriRhbW8as75CITx7k+tVPXRGMIpO55V8cPDHgm30+PSbbWlsNc1SdIYVik3NKWYblCc7flycjAFcWJpU5RSTs2ddGpXqysk2kO8SeOYvhd4Ug8A/DqUadaWkOJHyDgj78smRySc8VK5sPFQTshTpWquUkfF/7S0PxQOrT/FT4Q3csN20jJ592mU1ORztAkXuMnj07VjbVyp9/vO+jycjvsuh0njjwlrHwQ+Gsmi/EDU5tY17UNM+267ff2jLDEJdu8wpCGKCMAlSuPnwNxOKqcPZxafU0oRc6ilHT1sfQGq/FbTvE/wAO9O1DwxNALVdMhe1iU/KWlQMDx171vVqxdJI5a1P96zwH42adaNcaTYqhnubO+t3uZJG+WRzKrN+QxXBOn7WSSYJ6WtqdZ+1f8MPDXi2Z4bpbZgbcMRJEMDEYbbn3Na4ihGMTOCbjex8Z/wDDNPw/0f47aPZaxpCJp3iBpNJuIpF+Tz/LMkLHt/CV59a4rSjPlNv3koNX0KnxM/Y/i0XUJ9M8GeMdb0m3ug0Qis9SlSNdpztChsL0HT1rqpQ5Lt9TelBRWx5RdeDf2kPg1qXleFvivcXttbXAkSLUIRcKhHAfLfNyOpz3rGvh6N/dZp7JX0N34HeHvij8QfF1/wCOfHfi4yXBzGqE7IEI5K4GcEnj0+lYxjZ2ZXtJU1ypnY+NfhLZNq7apo+oB5I4Fa4tsYKHPp/EPQ06suxoqjktTzH4k+L/AA94C05m1uQsCXBtcfvDL2Vcdc1i02rEVKsYHhLaZ4g8da2niXxShSOAFbGzB+W3Q9Mjux7mtKT0sSqc6s7vYu694LeOwTVrK0IuLF/NQoeoHUfjzVOSXuo7YxjSVy34o1GG+8Jx3tnmQyqpCsOme2alKTJu6iujFTTtPvbFrDUId8MsRSSJ/Q9TRGk27l/FBqRg+Bry58Ma3dfD26nDpbjzLI+ZzLAT/MdK6q1ODSlCNjgpc1KpySZ116lte2rROoYEYJKgOP8A61ZRsjqaU0cdDILSWfQrwEmMloSTw6n0NN8zd2a0Yrl0MnVLmFoHtCxz1jc8YPpXdh5WlY0lFJmLLeRtZXFpcFseW2dvXp+te1hFL2yZUPj1PnfXro2uuT/Yjty5yWHPWvrWvZSufP5jWjRqNQRRW423AaNzuPVu9awrO1jghKWrTG3dyxmV5JCw3etZKKlUu2c1GtKNe8mddpfiGGO0t5L/AJii/wBXGo6V7EJUqMbn08KtJuMpO1zU8RajFqkCahFDhQMYccCtKtWTp3T0PaxMVPDpxeiMfTNbfUZ/Jis3lVRhpZBhV/CsaVdvRRPKwuNfNZRbS0uXNZuILuNNOhS3McDFhLDFtZ8+ppVIznfmOuXtK2sXoZOj3kbatPNJGMQpxkd64sG3PESnfRHNQrv6xOb+ygM5u9ZtoJl3OZN5XsB711TpQq14J+p537zGY+EZPrc6u8124ljBC7MDAjzzj1Ne1HEzUEorl9f+AfbPEumuRHP6prN3qUo0bSn+0SyDD9wv1ryMTip1/wBxSvJnzOY5iq0/YUPek+2yLHgZTBBqPhe/TFzGvm20g9uorfI04e1wmI+Kzt8zy8trV41Z4Wq/eWqPpT9tS+n+PP7Onw4+L8HjSO6vodEg09NISw8tNPMGYpQJB8rlyEfBORzjiv5s8PqNThvjnG5NGlyqVST53K7lzax06W27H2uZYStm3D0KtNWmndNvps/xPlGfUdc8O3baZqaZYLyyZI/H0r+hKlfE5XiJUqz5vQ+KVXFZZVcMRr6Ha+BZY9O8PZSVC8x3OwOe/SvUy/38MpRe+p9FluJh9WVne5r609veRtBNCHhEQOxl65/lXs0aiqS5JbHdOrBx5ZK9zkb3whfwyfb/AAzdkMD8kRPQ56g9ulc+Iy+lL36D7q3TzPJr5biaf73Dy1Wtj7G8I/tCaJ+1N+zRJ+zh8SvCGl3EEMcT2fie5MtxrmnamAVUK5Y4t2IA2AYIftgV/MeYZPT4X4jqYvCrkm5XasknF9+56zjDPqXNKq4ytZxvon39T411t73wlpupaFqtgovra/MLhk5jkRip/Ov2TD5gllbqRXx2a8j5GvXnhMDUUo+/e33E3g1prOwADhZpGMjnH519BlFHlwt38T1Z2ZMp08NdvV6s1LuVLi1F55p3M5Cnuw559zk166SlC9z2VUc43E8N+KR4U1iLUzEvmiF4rZ3UZiaRNhkHuqsxB7HFfMcU01VyqOHvZOS07pHDiq3s3GPVkN9aRR61c2Tw+QokzEhGCo6rXRhlFvl7bGjklWafQr30NjJam2voANr4dHTgc5yD2/8Ar111XTlS9/8AIyrVack+dX+Ryt/oA1bVZU0JFh2r+7QN8rn0rwalJ1pyeH0t+J5E8HHEzbwytb8Ta+HFpceJNesvDrwMsiXAE8ZU/Io5Yn2wDTeJdLLqlWorOC19TDB46VWXsp6OJv8AjacS61cXVuQFZz+7A6DP6Vw8OwnSwSs9ZbndKUnC7Md/GlpFZDw5rZM1nI/RRlkY9xXdjMIqdqylZdfMqOLjTXJVe5mahoGoaNIJrV/tFlLysi+lFGulC6d0Yzpzg7xd0z7A+Bvj6y1jwBo3jbUvE6WN3Yz2Whs0tpJ9nbYhwrygbQdirx359K/IeM8phKnikrt3vZarr1/LuebjvYUm9Xd9EcH+0RL8JtT8B/EKTSo7u+uH1KxvrCbTNQ/0G3vFd4Zy8XRmZdw3DpiubhGhnKxGEcnanFSjK695pq8denfzPOp4etiHzy0a301fY+ePDk8jHEblRjBz0r9lhOMFyo+qy9UqdNXNKWAQyqyyAseoFRKpK77HZKdOnK6NK68F3d7p/wDa+k3XlzKPneOTkj6V506nPUOLFVqs7qOiPYvh5r0Nh4TtdP8AtILLGBISR1r5/Epe0dkedD2kyXUdGj10TXKNwgzzXOqMou7HKnd6oxNLEOg6gJoZgrKcsNwFCvJ2MpT6RLniDxfaufMkuoxxnG4c1u6fJG5DqxhE9F+Cf2XUdNh1AK8g8wkCOIkk5r4rM5J15N9T6TKavNTi77M9g+F0IPhy9lZMM94+ARyOe9fjPFdVrMLI/WuHo3wzky5Lbbp2DDBzycV4SqtI+iikQXFqXUk4JGAeOtaKq27lJJuxW/s2E/MY1bjuKPbyTNFGJC+hW5bPkLz7VbxMu5MqUZdB0egWvAa2AJFS8TN9TF4aF9jS0zQIRKv7gYBGB6GuariHy6s6KVGMXsdXpOk7sBuw649q8irXUXoejpyna+HdEnaxXy7aMoc5LMf5V+tcFu+Rp92z814hlzZlL5Fz/hFb+aTe1xbRxj5n80tvPsCD9K+uvC58/wAk76Esuh6a8uWhQxrgMQxPP064pN8uxUKd9y3oejeChqCt4i0q8ltf4hpU0ayk+3m5FcmJqYrlvRtc1jT10KY0SCK8uZZdKjW0EubNWlDSGPPBkxgA+uKujOq0nU3KqJLYgvtHtfOQXGmQ8rkCIcdO9dLqcxi276jR4c0+cP5ekknHJXOMf41l7RoyaTdyF/CSRjEULwq3PLYDelVztlOEbalabwzPHiZ4Z1VD8xaTgnPX8qG+4WtEgXw7fRlnkgdNzfJumJIAoukiEhk2iXcSmUXCjP35POPfsatTuPUoTaLMg/1+Bj5185ifXNPmCXvRsV5RHIotGuUJyGUyTSDGB04OKE7PQcX7tmZ1xZAIZLhArEEbWkc5H51uncyejKkqSrF5VtY23JH7x4txzz361EldmU1cz3tdelTa8WcsD5kAIB9Rknj8qcHZWLV2tChdreNvke0WTAICyg5A9OoJ65reKizGSkyhNLrDRrLBbzDYh8qIXDLgenJI7elKUV0MpprYy77xZd3l4umXlvCs6q7GGfT8kqDwS7qqn2wfwqbxg9DnlH3bPU/SzVvE+n63OtmbkQjcu8IxwFHXJBPWv1CrKKm2mfHSvGbbPVvhFr8sXw+uLuOJUjknYREAnKjgYz7VyTjeLbMlUcqnkdXouo3z2CxSeXAijeVJ2hj7+prLVRO614lfVrm1uv8AkItLJ5nDxdFc+lcztzalUZOKvY6TwfqWlzunhrD29nI4Vo7SQhQ3oAFYsxHAAHUjmhxjOVugqsptcyWpe8VeI7TwU7aDplyEgMw2W8Uu7JPXe2BlhnB7cVNWpCl7qFSTa5jU1rxxc6FFBqOn3TIIVUyS7vvnr5YA5Oe/1qpTtqmZSlztqS90h+M/x+8N/Dv4f/8ACW210z3moosenRwxl5AzDnaq5JKjdn0IFOtiIQp8y1bOahQnUrcnY8s+BXhPx/4w1Y/H34nW9xp1ogceF9Hum/fzs2QbuUfw8ZCg88kms6NOok5z27HsaUabgma83h+b4reNX0ae/a10HTMza3dA8zMeViz6k043xVSz2OedRRVt7nKfH7V9BvtT8P6FpsNvY6XBr1nGn2mby42VZlJ3E8DOMZPHNKVSFKSj5hQpctNtkX7ZOnSfEjQbu8l8PSaY9tcNbwXEk243EeDwflGVA5Dc8HA4xW0+WeslsPD80dU7o8X+BvxJ8aQfCSaxh0m1lfwpO1pcWk85XdbqfMgZDzglTtye9c060JKyRdVRjPfVmVq/x40H4tapei10bVNOl09GluItTRY42nAQrGkgbD4OOnp+Fc0HzT1NadKUPeZ0uv8A7VXhjW9ZfTfF2mX+n6lPZR20tjqKj7PKMNGzRSdGY5BxnOK1qxhOV5N2tt0FytX0PIv2pxr3xOsrWb4fSTac2gzQX1ndsSS19EQVP+7uA47jNKPRroZ0qSqbo67wL8R7T42eA5vEt0r22qx3CJq9mzAGyvQoEi467Tjep7g96mFR12dEZwirM888eXGnzWrWbORqCHCHjDj+IZ/EfnUunaWrE5TlHYwvg00Utp4k0A2MCS2199psyxKO0ZVVmjyPRgGHuKykoqVkKnBv4iDxn4hSztTONTkMsbARSD72zP3Tj04rKcfeNrciPALpX+KnjTUda1tGb+yX+zws6bccZLnPUnpmlOhWpVOWomn2YQ5Kr0HBNHkD6fcuiSFgI2Y8Yzgg+nNXyWXunRG0FynM6r8UNN0ue78O2tnDqc6xkARTYVTjpuHfrVezsrsmo7ppHmPhn4m3c4n0O+09omtrwzx2gffvi/iQdOcHI+mKThUlK6ehx0KkuZq2h2+i3FjqNqJ7dxcK4LodnVfT2qlJuWh6Ckkcv8VvDt/ax2njjS023mly5+U43wn7wPtXRFOouQ4sTRlUaqLob+kaxF4m0uK+tpwzSxh0cEDHtXL1NYy5onP+InIn8yeMbo8jIHJHr7Vo2rG1OTUbHL65a/Zl+120izQuOcH7hrpw9Rc1jTnVzKYtKGWRwr4/duRweK9qjJ8ysZyqOMro8H8dQyHXbn7UgRvOOSgxmvp5qpPlbPncXWnVqONjAicQS5xwT3qIVOWWpMX7OOgT38SSgDGQelOVdp3PKqKSq3ZpaFqss14qyxpsToXGQvvit8PinXnboerhsdDm5Fsu52OkaoviGyksltFEEPAlK43GvapuM1ZrQ+my7GSxiacfdXUY/wBmija0hiCIFIO3Hze1dtP2UVpojsxcqUaaULGbdymxiYui+YT8qDqTXkZhiuSLV9Tx8RjPYUXFLU15Pg98WfD3w0h+LOvfDPXLXw7fXv2eDXbnTJI7SaU8iNJGADH6VxYGpRo4dtSTb31OHB4ilCjKHNee7V9TH0qw1HTtauZNZsJ7S7jVdtvdwGN1BGQdrYIyOa1weMWIrSqqSdtEPLKr+szrTeq0RHr9/NFHi3k/eyHaF9SavGYyThyRerKzbMq0o8lN6vQ09L02Dw/pi2aBWuJ13TysPmB9Aa9zLqdLBYVqXxS3Z6mX4Snl+Ba3nLVsj0T7ReeMINQtoCYbZGW7mA42kfrXDThVxOcQq0l7sU+Znk4ecq2dQrQXuR+Jn058C9b1n4gfsV+IfhbF4hvbzTtM1i4kn0KzsY2W1aVMw3s0zLuVFcbNoIGZe/b+b+NqGHyfxKhjo04xnUUXGpKTvKztKEY3s21re3T7/u8hdDHZfKkn7yU0te7utO68vn0PmvR1imgFxexrNJMpDs6A4r+lMJQVaKqTV3Neq2ufJYXlq0256t6Mm0HSbzw7cu9hOs1rIhLwN1QeorSngq2Blam/d7Dy/K8RgqzlGV4PoaN9rvnzCWNsK8JVV9cV6FGrFT0OueKjTqpIjfVFsY1i3H96nDDsSDXWlyUmk3r19TprYqrGKt1P0S/4IkaT8N3/AGevjP8AEzxT4T8C+Ir3SZLKCTSPEUXl3hgl2/v7afPyumxiFxyeMgE1/H30hc+x2UcV0MHRg5RxVCUFOzlySTTUlbaV0le+zas02jxadKX9p8zfxJPeyutz4s/a3tPBGs/tH+MX8JBv7Mn1QyQGQlmBIGc5759OPev27wswmMxnAWFWYK9Tl1fe2x7FXC0a0LT3PKri7OlSuYVzGdwD7cbTX38aEsO79DjlGphb3WlhDrcUdqoeUeUIsls8f55q3iKdGHNUegU6vLTvN+7a5Y06KS+8ISa9J8smpXf2e1Xji3iwzn/gTlOf9k181Cs82xsnvCOiMKUvrGGdbu7L0Qy/1F5reG/kuTLdDKlpG5YDp+QGK9ilRjFJrdFSi/ZqSepk3uo6tr12LaytGywAkY5xXDmGJnWfs6a1OGvVq16ns6a9S/8A2DLocy2upRGI7cghuvHXNZYaMqLSkd1JvCJJnefAbwddaxdeOvizazpHbeEPDMct1IvQyXFxHbovPBJ3t+Rr5Di/MIvEUMGnrXnbTtFOT/I8yNOOMzWUoK+mpw3inXWvJJpo2wSSdxPOOn8q+lwdWGEpJJ7I9LFzoUE7vYzfhxYHxT4pNja2r3Eqo0kaRwmRsKCWOACcAc+gxmvGzjN5zwM6UOrR8zRxMMRiW5/I7O68NeLNPuC+leE9TvLCY7R5NjI4B9sCvKwGZOlh/wB49D2I1ZxcUk2j6r/Zo0zQ2/Zd0D4ZePPAmsLayfEDUNZvBbeH57hpilqsUMU0YTcqZDEY65NfHZnmGLxOMr0sPdxko7NLZ9G/Jnz+a5TmNbNoVsNTlLl6LRanD/tK/siftOeLLbwtofwy+FsutWMPg+Cylu9NthaIiLcSSpFKJdhaRA+0kg4AUAkAVvw5mlDBOvOvGUHKbdpO/RK6s3ZO3l3tdnsfU81fM40JXlvdnG+F/wDgmd+2lfbI5vhrYafuGSb/AF63XA9wrE19GuLMHCV1d/I76OBzenD+F+J3Ojf8Ek/2ib0LJ4j8deEtLTvtu5bhlOf9lAP1rLFcZUVC1ODZ0wyvM6jvKy+Z6L4Q/wCCVTaZCE8VfHkvlfmTS9Ixn15djXlvi2tJaU7HWsnxMvinb5HXaP8A8ExPgbYvm/8AHHi29zyViukhGfoFryq2fY2c+ZJI7aOQYRK8pNs7HQf2GP2dtD4i0DVbtX4IvdZkYH6gEVnUzvH1I6yOtZRl8X8N/VnQWf7JP7PFpJiL4QaW744eZWkx+JNefPH41u/OzaGW4CCt7JG/pvwD+F+hZudH+EeioEXDSrpcZA9yWFJ43GVo2c2aLBYSEdKa+427HQNEghUQaVbWsP8AD5EESj9BXG4ye7ZVOhQi9IpfI8Y/shNF1DWLERhR/acu3nrnmvyvim/9rNeR9vksfZ4axSdUKiQknkYPr9a8LVOx7lO1yFihztHOfyrVJ2NGhjRdSij39KXMhwsIts5IIUg+uetJyRrGSRYtrAO3XjHbtWU6iSNbNrQ1dMsyjD93yOBxXBWqXRUeVHQWaRW8e58Y9c150pObCVRROz8GSDWtETUIsRqsrog8/htpxX7hwjReHyGlGW+v5n5pmtV1swnI1HtIMEyx/KvcS9T/AIV9E3fY86/cqS6ho8c0VvcXEcc0pYwRySkNLgZOB3xTm2+hKlFEN5qFiUN3LYKU3cylhuX2qNXqNy6lNr1TAJIo3JXpiQtjnvxzQ07EpyZZe8cWlxaxzTxuJ41j8yIbZ1wS0mQcgA4ABwSc+lRFzTsnoyuVct2Vr6/lu7i2u725Dy2sskloYpJIxGzrtYlYyA/HQOCBngVoqEl719yHayRBNq8nyq8spHVj8oHr2NbKCMG7MrzapluUlZSMAvKQAf8ACm4qxfM3EqzzqQX3oN2eTJkjnuB1qLaEIhkuGRQn9oAN1Lxwk55/IVSso6kNtMq6hI4C/ap7lQ5VdyL94t9B0qJzildEyneNiFtCjuyrQu4ypyGcgY+vHb0oV0ydWipd+H7ZQXismcoSPMLOcfn2rdNpDUJPVFGewZkxa2isMn5AS3X6dPxqebqS9dCre6WLVC0+lNGqrl3LlQPrkgfjRHV3TGpcu43QpfDPiC5uvI1u1iFjArzyXd1tXB6LHhSZmP8AdjDEd8VM68qcuU2Si1cnvdO0g3QtVt7ySMx71kgsHKOCNwwxC889OCO4zWyqSa2JqRXKPTTreaDyxoWsybjyIhCvbp+8bIrnfPUla5ySclTeh9maHZSa3qVvJZ2qxWbuA8UTBjIeOSew4FfrMqb5rM/PKkp1Lvuer2etWPh3RRY2ibnjcCOLfje2OgHoK56snayNqNK7Oj0bU7u100XWohJJyMsrfdBPYD2rGU2o2Ou0djOn1a+1TUhDGfkiGZWx90egrjbfNoOMIwW50ei3F/YgandxCPaMxMgA8sD0H94+tVDmbu0bXi1oZEWs6D4r8Z2ugarfMhF7ETGl4sTmLDF2XIJlYEINi4Pz+1Y8sKtW0uhhUlOC02PQPGdiNP0Y6zrbiKIsY0EeMW45+XGTtJAP159K0qxtvsJOLfLE8dt/EOieI/GunfDnwLp6pJe3Bl1O/I3ypbKct8x+7uxjiuejSjOdoouUpR949J+JnxLOj6azW0bJDDbKkUW7BCgfKoHY131qkaUeUzoweIiqquk11/yML4b3eryeEIl1SCaP7Vei4ugsTNmR87AzYPAUEn0AJrJT5o2iiq1qHmfNX7ZfjJfHviDRPhH4W8Qiy1nWNdWwvdOkLCa2VH3STR4GCoRWyeNrLjncueaVOOIpyTkk10e716afPW2z62TKTqSd7aM9Y+Knjawl0bTtC0+RZdPtbOGC1t5nIMjAfMzd+eM10QTUeW5NNtXPG/FvjPw1+zr4N1/x14tu47e21KNo9Rl2k7EVgqMVHoc8dcVqqcVsNt813ujI8DWun+LdAvNV8L6pbarYNeG4eWJiyPC+0Eg44bbvOOoOM4zXFKE0/d1OyNVTSdjZ8d+D/CXivwZfeFNUPmXNrAJrK6Y/Og69c/wtjmtadmrMbc07o3/hTDo/jr4AWGpPBCdUimay1BlcMrSRKwbj/aA3D6GrbpqNhydnseEeMp5/g18SZviJaRlrfVI1h1a2jJRZFVsLLjn5lGRn0NcyrU6Sate+39ehnKmk73OA+P8A471HxBqdp4U+D1tHLr+ou81m7fNBZWvBa4kI/hGcKDyzfTNRKsqjBYiKkoJHmOip8Tvg0iQ6d4zn1aRJnuGuNVG8zyOf3gyOg+UcdAMelZRgnWuzodJqGjKusfG3xz8RpGsrPwy1nfPf+XdzS3GYkYjJYAcnrkCtq75k5dRr95CxyvifUIfg1p8eoWt7JIivIJbUnLag247s+ueeawo3nuKNJUYu+xzup+L/ABJ8Q7E32iWT6ZZXEoMhkbMhP932HStXJ0Z3SujOM51tUQWfhfTPD+hTagbiO3MT7pGY4J9WJrnlN3vc29q3HVHBaek/ir4g3uq6baNDZPEn2SQj/WMv8Y/Q1sm2kcc1ed0tzsNO1rxB4RuEGp2H2i0Ay01lw4PdmXoffFJQcVoaL2ravsdDpHjrwj4qsZba31COWO4Upg5wp6FSDyD7VPtGnytG0MRGqnFHGeHWu/B/iW48FXbjy9xlsTu4dDztFWuWSuiYwdPdmtrmoWl/E8T71P8AEGXlTj+XvQ11R07RZwd5MYriSHzNrfxRj7rL6iuilH3rmNNyk9SlLcbI2Ct8uDhhXuUF70SnBylY8R8WSSXWt3TPeeaqykBmHIr6WviFCPLE8etKNOtKzvYp6V4a1vxHMbXQ9Eubx1XJFvAWwPXgV5FfGU8N/FdjhUpVJaK5Ss9AutQup4obKdhaqXugkZJjAPOfStaNSOJaXQ5ZR+tVOSKem5JZ6lBFKI7KyAiJwzvyTXr061LBNKKudFGpSoVPcjdeZ3Gn3F3e2BTSNJnmZIDJJBZwlyqDq5x0HvXbUx9GlRU6suVPbzPqJZnQw+FUrKK7H058Kv8Agnb4S1P9mIftKfHv4wXWlT6sw/4RjwToFmGurlMZ86eaT5Yk6DABJr82zrxHw9GU6GFa54y5bP8AF6f5n57jeKZ18S6VN7M9x/ZQ/ZK8DfDLwLa67o3gjTLrxnqAYrqeu2wvDaxN0Kq42q+OhAzmvyHOeMc9zbGOEajUNrLS54eNz/FYiuoRlyxXbr8zt/Cn7PHjPxR4lttS8fzya/c2E73FgviEk2GmIhBUiJvkXAHYZya4v7UzOvQdCnJwVtXe3r1PMeYOg7Qdm92t2fL3xe/Yd/bA/a0/aT8UfGHUvEukDS73UhGninX79ILdokAWNVCknAUYAx2r9MyzivJuG8ppUlNuSjstW2ffLF4ChRpzjXTbitLNu55V+1d+x/4R/ZTn0HU5f2pvBfjjUr+RlvdE8OibztPYD7zl1Clc8dR9K9/hPi6XEePcp4acIx6yVk/Q6MtxtPEY2FWrFqKfVWPIr69k1S/TR9PGWmY5frsXuc1+sRjVxNT2cXv+R9TXq1MZV+r0ftdfI2NQ1Gw0nTotI0uELDD98EfM7HqSe9e/GVDC0uSG3U7pqhhqHsKS0W/n5nu3/BOy++IfiHW/iR8L/Ayxmy17wct5ryTX7QKlpaTxyySAKp8xgDkKcDvkYr+ePHCjktCtl2ZYhe9Co4wtG/vTVknqrJ919zFkFb6tmkVCCnzNbu1k7ptaO7120v3R4OYIdP1jUdJSQGK01KeJGXuA7AGv23h3FxnkdGpPdxX3kUaKo1asX0k/zL2kXA+1uJmyu0Dt8wrujWlXm4neq2iRmeJbf7Nr8ZtISFlJMYHasK0Xh6sXfc8/FYVU8TGQ++bfHFp+cux5IXlV7ms8Ti5yapQb1Lr14tKl3Pbv2UPBOgfFnS/iZ8ErG7ube7vvAUuq+HLyKYxM17YSJNtYDlg0ZkGP9kHtX5P4y4yOTSyjNIJSpQq+yndK/LUur+qbXXbQxzKaw0ISo3cdm35o8u8dJo1j4purbRr53too4UaWUgNJIIl8wkZOMvuPWv1PhyrTp5VT5dI2v231PUiqare5K8bLfTp8zlrieK+V7RD5oPPloCxP5V6+KxlKFF3krHHi69NpweppaD8EPiL4ohii07wFrd7bbWEUVtpkrlzn+LC8DNfA4/G4Wo7VKyUeiujylgatVe+3yrodpH+zB+1L4i0/T9M0L9mjxgRY2IiUDQpY1J3ElssAD161pl2aZNgaFvbK78xxlV5I04U5aeRteHf+CcH7cHia+gnf4FT2ESMSTqmq2tvkdOQ0mf0rmxvGuU0q0Wqidu3UqrhM0qVYNU2kvM9J8P8A/BI/9qZ42m17WPCekRAAuDqjTFQemfLQ/wA68LEcf4VtypU219x6FLAY2V9ErnTQ/wDBIHxTqqJD4m/aJ02EHomnaLLM4HsWK+vpXm1+Oa04/u6f4hDI8bWnapOyPS/Bv/BOv4d+DPgvrPwJT4l65PpfiPU7a+8RX1tYQwXV61vu8mLzXDhI0Ls21Rkk5J4FfKVs0li84p5jWhedNNRV3Zc279Wejh+HsPhouKk7vd7P0JvDP/BL/wDZR8PHzG8D32qMh2mXW9XlmByOpRSq/pWmL4hzWvL4+VeRS4dyty5ppy9Wz074Z/s4+APg1eWurfC7wfo2g39rC6WuqaTpMCXcaSKVceeF8wqykggt0JFcbx+Lqw5ak20XTybL6ErwpJHXWui6hDaCCGZQoO5kWBVI46kbeKiWJk42uehChGP2V9xI+i6vNIjnUGfPeGbGT7jt+VZKTg7p/idLv2JbLwcZS0r2tzhny6GNuvqOamrO6uyYvni32LVv4XjZt5F3tXIUC3JxjtyORSUkZWbdmXrPw/4lUNst1lt1kUkTWYx9CaTqXg2ldIHQqWuZfje78ceHrnRYfCvwJXxJbX4caxe22vJZS2JLAKVidSHAGT94UoVKPs5OcrPp5mFaGJjNOnG8eup1kfwzsp4BMLu6ty5AIlG/GccZXgkc8e3Wub2knudsY+5fYS2+GV5FcSKskE8IwbZoUdJNvferZAIPofyqvapA4Nxuh0nghLKY2U29JCpIDSAA/wD1qHUhawcs0LF4SSXKDT4JgTgiYbh09+DWTqOOxaV9xknhB0fy4bWKEZwVWIYP0o9pKT0YJanhfjbwL8Vr7xF4j1rwt8LdU1jw9b3wjutT0m3817KXAyJFHRSDkGvls94d+v4j29Gf7xLWLOzBZ7DB1XQqLR/ecg3hi6uLMzRarcQDOTHcRqrL9c18VKnUpVHGpFXR9Xh68p01OL0Ma/8ADXiOAbotc4YcHaDS+sYdW5oGspVZL4jIudN8YKfl8QgAf7ArojXwKX8MzTxC+0JBpPi5+nirafeMUSrYL/n1+I1VxKekjR0/wz47MgMXjCPB6ZiFcdXE4C2tH8TT2uPtpNfcdn4X+FPxi1mYfY7l7hUj3t5dmS23+9j0968fE5jk1OPvKz9TKpUxsFzTn+B6V8Dv2dfif8T/AB7YaR4U8UaPNPGRcNHfXdtCi7DuKt5rYPTkd658PVjiq/ssPS9/dczstPN2R52OzGVCg515Plemib/I6Lx5d6kfHWtf8JBe2jXTai7Xj2EUUMBfofLWH5AuR2HPWv2bhzMJ5hlcatS3Ns0rW/A+dnThTaUL2tpe9/xOPufil8MrPxsnw4l8YWkniQ2ZuotHjhlLeUASWZwNq8epzXuN1lH2ij7t7XOGWJw0cQqLl776BfeNYhCYIZAiyZwscucc9+Mgf41u2+W66nSuVoyI9dupm8mxsotpBZpPKJXoSOaTaSuc9ZJPcrS+KYZmY3N3NCyKUxGdqkj8OnvWidlcyjPXQiXxDbSBTHMzHG5jlmDfyzQ3HdGt2lqxZdSkcsTGwbnCsflxjnBNK6J3IReRM4CkA4JHTco6468iqTSdzNq7LNqJrtiLaCZ2zhfLXI/Wpck9h8yjoXk0PXLj5YdHlUg5JckDPbgdO1LmsL4h8/hb4jT2kkmmafYQyyQFLe9N0UaFu0gwCCRwcEEHuKUoue5zTjKZp2yfEKG009dX1Dw/c31jZ/ZjqM9rvadcEB3jPyBsHtxWX1Z05Pl2HCCtZlOLw7rUlzKx8R28judzJDaqFU49AOB7VsoNrc25YtWNXwH4OS98ZWS+JdM1HUdHtbyO58QQWNi0kpsY3VrhlVME4j3dO9RVqclN36diU3ZqO/QwvFXhjQ7XxPc6jIt3PZXd1JLp9q1zPBbxQM58tRDuGMLgfPluOSaVKKdLVv57kVaMou8txsPh7RZLhrjTvCtpAxBDGKJcnHvXRCmrWQLV7EjW9xt8sREbcjoFBGOtUtHexteVtyo9rcHfMbVXPUq2euP1rVTsiJXa0HLYXDMbg6WmckAqw/pWfNzTuZTUnTZ638PPiTc6ZfxwQl4ZYxmZZ24Y46qeOfzr9RnWlKR+eTSVRqJ6h4T8Uy6jdx3uoeUWllHljf8AdGeTj8azqS7GvOkj1K01q2vLApYDakLcnacbvf1rmnGUlcmNSK0FsNUFvPiYlrh2yIgM592NRGMVudc0pQJfE/jK8gQzEqcqdrKflB6cVFWXUmEXeyOV+BYtL/4hXnxS1p43GjxNb6TJJJuO98eYwHIBAGB35NcuHvKq9BVFra5oeNfjn47+IHjnTvBXgnRTqz6fObmS1t18uGMgZWS5k+6AGC5GMsN3UkmuipO8rR3Qo04RbjDS53/hbR/Anw2tdW8Vm1gOsXlhHEkix9HLB5MFe2WkA/2QorppctKm21qN05KyTM/UtX0Txv4q0q38L6ZaSzW1wk+pxSRyFIbXy/3hmZwBu3Z2lckdc8DGE1TrK63TWnl1/rzM3KoouLZhfH34w3FrPqeleDLmK30+bT1gSOVNpVQoVZODgPlTgjoCa55zfM1HsYxhJr3mfBfgnVviK37Xuv8AxI8b+Ik1C607w40fh9bxyG82Q/vWZjyW2qo9amhTTjK79466PNFNI9S8FeO9RvPN17x1qETSyXXk2FpahsKAGYsWPTp1rane2pU1yy9Sz4Z8I2/7S3xKfSfEYRvDvhKM32qRP/qry8b5oYDnqFILkH0HrROtyzsjWMOWPM0c58Uf2cr3wTrlz8QvhL49utC1CVjmztZD5N3kEhXiOVZeBngHHQ1EZWu2y5Soxhd7ni/jf9tnxZ4EuZoPjNpK6VcmKOFtZ0+Jmt513fMGTqhbIHce9cvPUV2tzOlXjduW3Q9b/ZI+Omn2/guXN0kkeog/a4kJJinZvlYjqCR3x3qYOrUjfYdSqqj90rftJ62NQ0+4tTlpGAWLavV3O0AZ68/zqGp81kVzqMG5I86/Zm0e20PVvH+jXsqTa2JLKCF2AZkthESY1B6fPvOK0VGcXdnLRlGpUbtsJ448MiC7EtyP3PziRDD8zPweM9uv6UndSudzq+7Y8we98M6HqvibWWZfs1pLbTpE6fPIrhlC49yBk+mah1bzaM6dSSkedeJheeMLmXVNVaK4upTmGKMfLbqOiD0681tBJPc0dWpJuPQZpgfwfLNNeNDHaRxEzpcNtRSO9XOnJ+6inJUYO+hw+q+J4PixrFzY6OSmkW7lmBZv9Mbj5R/sDj61zunKD11ZxUK31mpZaJfidhoulWMOiTWnlpFNbL5tq2eBgfMp9sD9K6VFLRHbWaUPQr6TqWmeJImk0zUUkkc5Ko/Q+1JSS0Iw84ybSMK50238Pa619BDHHHcvtvIgmMt2es6nccacKUuZi/EW2a80eHU7fC3NgweCWMnkDqPyrWjT55WN6yVSCcehl3Hie51vRY9TtLhTIqD5SevqDVuioPVmUqmmpympaobllljHltuPykjKnuPoa6aSgOg5X2NPwz8Ovid8QbK71LwB8O9a1uHTlDX8+laZLPFbAnGZGUEIPc4rpnicJhmnWqKL6Xdr/wCZtUqKNl3Nzwb+x14ZW4k8RfEi5kvLmb5jplr8kcZ7bm6k185mHE+Jr1HToK0e5H9kU4TdSpu+h6Npvhm18K2i2PgrTbfTIVTaUtogpPsTjJ/GvJdWWI/iSbOmGEpRXuxseMfFL9jvWtd1G88SfDnxE9lc3rFruwkciOUnk4YdM+hr6PAcSfU4KnNbdUeViMj5G6lCVmzxnxJ8Gfib4EuF07xD4Fv4yZNqTW0RlWQ5wACvrX0mEzXB5hrGe254mIwuKwcL1IO3dan6L/8ABP8A/Zx/4V7+zN4jtvFPg0P4n8b2yLIZYB9osrIMNsKqRkM/JI9x6V+M+JHF0cwzyGDwUueFLa2nvd9H/mfJZ5jKuIrU6UJbaux6J8SvhL8SW8HWWt+JPCOoaBoNs8NpoVrrUItpLjawU7ImwzAdeBg8HPNfJU6FfDwlUxF+Z6/eeLRoJxlVs1vumvLr+fXdaGN8cPihf/DmKGy06T7JcWdvE9sHbDXcnGEQDqcmtckpvMMY4w05evcmlg4YibTkk7X6/wCR5B8YP2mfjXo2nX3h258OX1xPqtrtfZqUZgtd3/PZmI5/2RX2GByPDVcVL28tt7p3v/Xc9DBZZRnW97X+vmfKvjX4pftT+JbeXwfd+NbyPSbRdqxaXI4gb/ZGwAGvu8syjhmlW5+Rc3d7/ifS0ctw1KS5Eubv1OYi/Zx+M+sWn9rXHw48S3b3A3wXMWlTOZPfOOa+2gsooQ5J14xbWlj3lk1fFU3qzd+H37M/7TivLcwfs++MZpGG1Jv7CmA2/UgV7OX8Q5ThIy9rWjzdHc9PKHicBGXPTk5bXsdVZ/sRftheItXWwsf2fPECzTqWjjvEjhLKCMkb3HAJGfqPWli+K8np0XJVk1s2rvf+vwG8TWrYlUIxanJNqL0bSsm0uybSb6XXdHuP7FX7G37UPwU+Nl1rvxX+Gg0fRNR8L6lo9/Nc6lC5ja4gKxhkjdmPzhexxX5P4l4vBcTcOwpYGSlWpVYTS2fuy138j0MswmYYfHRnKm1brfzGW/8AwS01zXvFmpa34h+OMGkrqFzJNDp2neGJZ235+ZAzui5zk9cV3ZVxjHAZbToSb5orVWZtj8ozWtmNStTmuWTudz8MP+CSfwx8WPNZ6p8c/E9xqVmoN7oUOiQWV3ACc7tsjPlSOjLkVvivEPH0IKeFhzXPJxWX8Sxm1Rs7dz0jSP8AgjZ8At1vqOp6d451UqdoSfxHBCOvX93HnOBXj4vxA4sxUOZRgvvMMTkPHeNUWqtOC03u2SaJ/wAEWf2arDUL3VPEXjTxjOs0xa101bmONrWI9IzIUzJjn5sAmoocfZ9Cn7/Lzdz6PAcO1KUU8VU559baI7v4bf8ABN39lb4QeIYPFHg/wXq41S3ikjjvrrxDOzFHUo4wpUYZSQRjvXlZnxBjc9wzw2PUZwunZrqndP7z2/7JwlrON15m7ov7Dn7LmjXRu9M/Z38KeaT80lxp4uDu7kmTNVV4hzWVPkVRpLTTQ6FhMPHXkR2+ifCDwX4Z2w+HPhv4fsgCSDY6Jbpj8QgNck8yx9aNp1G/mw+r0G78prNo8iKy3LTQRbSNyoQqf98Akjp2riu76mjUehTn8DNdzmdbhroBTsaOZirD3DYI69CKvn6DUEtbDE+H8KMc2JxIOCGyo59TUyaeoOTZEPhzAHluxHIJppB5kglYlsH6jFJSS3JVO7A+BL0gFo5WjVcKwkPfPHQ8f57UnOTVjZR5SGb4fSSuo07VLxYwFwrW6uvXJLMq5I7Zq6c7L3gm1JJomtPCV8+3ZAkka4LhUOM5BGM9DxmnKSlqY620L2l+GL9jLLDov2nyAqh0hP3WIz2yvIzxmuapXdNWHCmnLUv2ngqyvrqS18QaPNaRTYFvdwWu9o1XqSM8jrWUq0mrm0Y8pLa+D59C1BriG80qa0kiQQwjRQGLdC5Z2O4HJ4A4rKHNJttm/PDlulqJH8PdNjuTdFAGaMgCO5cIx91BwO3UV0ym+SyZzevU6fQvAPwu1PTLuyufiD/YGuWUCyj+0rO4e2u42D4EUqK4MmVAIIHWuKMsVKpK80kuncTqyo1Yr2LlF9U1p8mUNQ8H+JND8IS+JtO8Max4gRIpvs9lpFsHubyRFyERHKYLZGC20c1nRqYipWjCUXFPr0HjalPD0W0m/wA/8i7o+hXsmh6fqWr+FtQ0Se8t1nbS9btvLntSwyYpApZQynI4JFejJyi3F6mFBqpRUlf0ZqL4bW4Bu4poArsC3lhct7Y54pOXM7mkryb0A+GIZ5MW1tE69XaKIncB7gcfjWdWXK9GOKi4kE2gRxvI0ejuV2ZUyNu/Dp/QCphU10G2tjPu7OK1g+03luDD56oHtbZn3M2dqgICcnHT61nicVSw8F7Vq7dl89hyjJwc1tFXZwXwZ+MngP8AaA8Dt4+8EPNFBDq89jPaXymOWOSNtpDIeRxzg+taVfaUKzpTVmrP5P0OTL8VSxsOeHRnzr8RoPilafEbxP4k+GHxd1Xw/bDUmg1KLR45WFzGRgqwBCgdOT6VnWqQda7WrW97HGqdac5zir9Ds/2WP2d2+Kmiaxba9eaVql4Y3MVx4g8bQ2PlYGQ+wckexzya+OzfDSljL0qijpdqy1+bPey6tUo4RcybV7aXZwXjHwf4d8J30mhtb2jyxM0cjxa3LKMqSODtwV44NeN9QxlW1SNWNn09096jiaUFy1Iv53Odgj8JTwGYxpsXhtt7I3I/CuadDHQdr3+SO6hi8BUTvbTzZJC3w1ijBvJpFDL/AM/DY/CocM0vaCX3ImpXyqGrkXNO134L2U6tefaJAq5CtfOoyPoKmeFz+pH3Ul8l/mQsbk0mk7/ez1C4+IH7MGkfDfwbf+HPiB4hbxVql3eTeJIbK7uBDp1puCxRFsYkZsbsDoCK5MVkeaQo+0jKE207wcErNPR3v11v2PPo411sbONeNqK+F3u330PPdL0wad4gujaeLL2W1urxpbSW50+48yRSfX5e3HFb1OevRgp0kpJWdmrDowVBySm3Fu6vudTqOsavo149xpHhu6miuI1EksrEAOB0AfkEjmvteClUp4apSfR7Hl5tU5akXFdDA1jXPEV9Itw2ixwyldjzKYw5XP3SwGcV9xGg7XaPFb53zNakcUetsQryQx/KfvuW5P05q3GSL5kt2Rnw9NPK0114mY72G5YkYg47cnFJQXVEz9nLUfD4c0SBxPLqkrMcg/vEj/xq9loK6juaNtH4atypVvMJGSrXRbp9KjkbM5VOZlqGfTo4w9tocTjcMuynIz25o5L6hC7JJdcu9p8rR7dCFwpRM9fcVtCiupbdi/aav4mYPtnULkCFVtypOBzu9PStHCCWhzTWu5oW1x4iaZ3klBZUYHzEJ5xgHGR0NYSRV2SpZ3cpDzxJkrlwgwpbHJAJ4+lODaKTdhw0eVMbbXcCD94jH5jmrbstCXqWItHVlZJYuucAyEY7YBFRzaFwauRXXhBdUUCa0SVScDczkr9cnAojKxray0GQeD4rGXNkiB3UhlWM5I6EHOcjB/Wrk1IyqRjP3WJa6BHo1mILTSmgiV/ljUEj36jI5rNTsiEkkSMjJCXksFOW5If5T7fpT5rj6AlmZ51t4bKczuPkEdu8gOBk8jI4qJT11HBNiS6Xq0482OILwWcNY8k/XIrWHLzIpxbgztvE2n6Nd3KQoiRGFQ0khYkAjnr3+lfq9aykz80rScZM0vBlzqOqLLe2BKqSUjmljKcf3voK53Z6nOpc0j2Xwn4nXT/DkOjWuoAxxJmRygLu3dif5VhKaasjppws7i6R4jS9uHuRIkIX7+Xwx+v+FZxXLqdjcZaGL428R3muQtDBJMjMhSNgR8i56qv0rkrylU901jKK0RnWt14pFtp3wy8Cxf2bHOSr3GPMlAPLHGPmc8n+6O5rWlHktGJnOKWr6np2nQeGvhR4TbwrZkqJfmuoLaXdJcv3eaXqxPp0HQV2OMIRutDFQU7xlszg/iP8ZrzTIbjUGmt7e2gty0ru2fIUD2HU+g5rlc30N6s4wVkdR4C1q68I/B+3utRili1LXoxfatLM+1grcxRnngBcceprVt04+ZjBvmbseA/H/wCL76QBPJcPLJIwjtLdSMyyscKMeueg9K5JuV7vcKjSMT4gfCXQ/DHgXTb/AMaTyDU5UNzqc0aneWcZ2ZHOBwMVc04pITnUgfMPxZ8aftEL4xs7T4S+JFSXVbmSeS3vrFJY47aMfMyqABGFLABRjrXPzODa7gpy5nKW7PUf2EvjF4h8HaV4g+G/xO8SS3ustqDajLeTxBPtcLAKflz1TGBjoD71VKmrNyM4Yiam4y1R6/q/xFk1m1u5DeJIjzbrPYQcR7QvT65496XxN6nZGN43Z4H+1D4X0vxdpV9p19YwThYgjNgfe3Kf0pOLV2Z1ouUeVl34y/CG88CaLbeJPAF3Lpeq2umRTSAjC/6tThx0ZSMnJ6bqlVabSb0Ip4eST5mcL8DvH/xZ/aS1+fxtrNrBZ6X4ZZ4rWBZCf7TvkADSk/3EPQdz+FNXjK8QhKeIlrokXfCeq6n8Kv2hLafXdXlkm1zT2ikd22hLqJ2ZRuHUkMw59K65tShe2p0qKoyvtctfH74022jaddapr1zkByQ0bHdK+cBVGTuY5xXDKFSozWc/ZQ52eAWPhD4lanq0vxG8TeIJdOW+iCR6OgBRIQcqJBjl8HPtVxoqEbW1MI4epOr7WT+RB4u8QWHhBTrVrY3DBVY/ZIVLs4UfMf8APrURpOdRKJ23hTXNYyfhV8M/F/7Rnw81f9ozxZZXcXgHw7rkdg2mxkqbi7cFxHI3O3Kq3BrjzrNnlmPpZbRX72or3eyR8/iK1XE1o0qafK2/6/rY0dN0PT72Q6lpFskEIO2O3QghVHTp9K2SqprmevU9qnTjQglFFP4ha5DoXh17eGdo5tVmW2jIXoCcMw+i5rojJcyUtjLEKbikupjXmkzaeYr7QpxG9sEWIrwSuO/r/wDXqfcvua0qU6TuaGs6k2ueH/O8ryr+3BLof4vf6VtBPcqvCPIuUoaNrw1OxFvKQ0cqlfn6j1Fbp8quhU6/u2RyLuPC+r3GizEfZ52MkDg8Z9KtpT6HHzzVTUytSV7w77KMtdE+WiAffY9BWlL2cVzT0SO9OcoaI+3f2SfjT8Q/hv8AD/TfAFtfLoOo2FmY5Z9EXy1mDHJFwAB5pOcZbNfmWe4ShjsTOs3d3012KjP2ibe6Wh1HirwhF45uLnxDomkQWd+qh57eE4S967nRSMK3fA4PbFeVgsTVpv2dV3WyZvhcbUnifZ1PhsrPz/qxw8uh2jqXEZBJwy7eVI9a92nUtoj2ZQSWg2HQYxJ5Lbpc5ztx/ShS5J+/dr+vI55Qluej/s6Wvw28F+Jl8f8Ajm9sXurRimmafdLvWFiObhlxglR90Hvz2r5jPcVmM0qGETs92fG8T4vGVaX1bDxbT3Z7x8Fv2i/2fvAfx/0K88I6ve+JbiC9a7ubC40j9zIxOSzyH5QFzwK+cweGxGW5jDGOOkej6nyNPLKuHiq9SNmvM+VP+Cmvxg+M3xo/4KNeGtS17xDJqdqdR86y09XK21vaZGFjUHA24B/GvssuxSzbIcdicUveu0vL0OWUo1cJVqVJO/RG14o/Z6+J/wC0r8fbHSPBnhuG8k0W3EdvNfybLayU/ekZsYLAZPtXk8P4qhluE5VpffueZg6k1gJRjH3v60uc1+2P+z5b+FtZs/hF8CvA2sa/pdm4k8X67aIbgS3pHKeZwBznC+nNfSZXxJl9LFVJVqqSn8MXq/8Ag+tj6XInhYYiPt5q7Wxu/s7/ALCn7T/xv8X6XdW37PE+gWUcRTSINcihsopYYgN02Cct1BLnuwz1Fe1RzDD4qq1R97ZX6LsvXR+p9o82yLCZhClOUfaSTcY6XajZNpbtK6Tfmr7o9P8AGHw41H4J2l9d/FD4kaBBHonyz21hrRlMT9TtC8YxxxxnjrXh4/OcDTrxpSlzTeyWrO+jxpkvO4O6t5Fvwbp/hn4h+FrLxV4a119U0/UAJLeWOZmVl+ueKhVlJuKVmujWtz6zD4jD4qkqlH4Wa6eAbZtQaGzk2DP+qlm4z67jXRGakrM6YyjGWm4H4Zanrem39hL4Wmu7m4OdP1ZtZe2WxIzhyiKfNGSDg+nWnQqxjJ6nR7GU5Kd0rfiXNA+AHj3UNRszZeLvC9osdtbw3Ok3llPPaTTCIJNcLL5vmxb3BfaGwpbgADFVCdOEm5Xlr1t92ltv67mGLourFRi7PujpLf4KeP7HU4bnV/EPhmS606fGl6jYXlxHPbRHIeMSAN5ikHbhsjFVUxDirwJoUpw5rt9jqNT+G2kHUHvdBuXMYAeGKW4LvESOR5gRNwB77R9K5PaN30Ol3SsX9M0vUdPiEU+pSzDgPDcZkXjGOo/lSctCYrU3oF0fUE8uRjbOOu9S8bfQ4yoqYycZXZq5K1x8Ph4Ah0izGRkmEAofqetaOto9TO/OW4dA0mQFXjZSv/PIZJ745/wqOdj5WtBs2g2EoKJAwZcjJyAfrV8yKVkiGXwwm4TCxYkdTjBJ/wAKUn2J5rif2HaCMM1gFcZbEi47dT6UX0JUW2SDQoZE/wCPJcnOCTnA7/hTT1NrcoSeE3kP+j6e+A37wRIcd/yptu5Ld0R/8I5bSxrNNp00TRn54570RlvfYBzjjv1olLQS1A+FbedCfsKLsOHEcqtk89cnrWd1Fk8liO8+HemaneW98+q3UEsAJi+yaxNbJIM/8tEjYK/0YHFTUipFK1yW68C3DurzLFdFQd7NN83PbknPr2/SjljGOhFSSeiC08JQWQwlhHb7ozsWXhl59en86hNPY1px5Y6kyeHopVDOEnkL7kIYNjg8nApz5bak3TZY/sa4t1W3ZZQACWBxgHPqOaUJPmuaxWhY0/T555UZYpWXeTu2FizDpwDRV13M5y6M05vCWvtajVpYriK2aPc0nzFY1Jx83HAJ6VlCpyuyI9rSvy31K154efRXFtqMd2kr4YCdSjAEbhyBnbj1HNKT5tLiVWL+F3RFe2iatZC2RL+2kgkWS3uLDVZIJAw5z8jDzF/2WBHqKHGcot3JUeeW5Ve48UXnnm4l85pZSSzR7SfQ1VOHKrI6rRVjMsofjZZ602p23xAkhhi1SC8stPs7cRLC0Ksq54O9sM2SeOelZVcBRq14Vajd4u9lp/TCpCklJJbq2p5xr37Pfxjt/FZ8WeFdXsLK3e5mvdTtbPTMvczFeHAQqA3GDnrnrXPhsG8LUk4Tdn3d2edOL57pW9D5d8XaT8SPB/gu/fxt8RZfDmoanrtw0/ho3Drc3CszeXOy7SgXG3jeeSa+hy/BYDEYtuqum7/Q4IVMZh8M4xnJJu7V9HbZ9tDn/hr8PvE2oW1ymm/GHV9OlkhZpJZL2ONGx23EHmvUrZFkeLqXqU07Cw2Pxqi405tW13sF34R+KMQZpfirq924jKlDqaHI9Puk9K4a3B/DkpaUEjR5rmdVW5m0IbWK10+SHUbTX5Lh23JcReJvLQgdQUER4/HNXHhHJrXUEvkCzjFQVtbnP3aeJrQLI9veSx8ITJr0uPocY5qP9UMqb3t8kZzzbHSXNYXT9X1y1vmiv/Dc01vg7d2tXRHGcDh8UpcHZVOTSm0uj5UVSz/EUVZxv82ewfs7+OND8cfEHS/Avxe8RDwfoENncG11ldTuyPNABjR3Zm2KSOwrzqHh1kHt5VK7bi99EjnzHinNakIxp6dDr/hJonxL/aY+Oj+APCS3d9a/PDp/iLX3lgsoo42kJla6n+TbtC4wSSTgDnFfM5nwlChiVhsq1u9L6WXzPfwXEtOOXvEY9uTSS7v5HI/Ez4vRaZ8P/FPwlN1N/wAJXp3j2GOK1gtTNbzQW8VzDNIlwg2MpZ0K4PzDkVrgsHmWR5o4zs4OOtn9roVPE0s0pQxEbrfRpo890rSPitrcgl+zTRg9CUx/+qvajj61So09uhg4NrRHRaV8L/iBdkNfXsq8Z+VuPzxxXQqzdNX3MvYSeqRtw/BXW5IkS5knct1VZcge/UVmq0myoUmknJGhB8C57cJO6KVzgs7579+4rpjiIJalyhGWxp2Pw4s1AKuM4IJGNrYHTNNYiD2Zg6LuXovBtsuMRNkckKpIPHTJHIp+1SKjCSLMfhi1tojiGRHDbWVkYDHr0PIGabru+hPLdlj+y7OR/JSeEScbIzIA5HXPvVe0JcGnqiYadcF9hjB4y24ckiq5ieRix2REZtwq8Zwduc1PNYVnsPNjCowqMzEHeDJggZ5H5UNtkyuiR9NhlAe1tpRjGFlcbhn8uKSbSCFyGTTFR1IsVxySVnbBNPme5tzLlLdo9vIlwtq0imzkiim8yFowXkUsoQsB5uAOSm4LkA4JFZe39/lZmqsXLl6iExAFZLaYy5z5jxnHP0x2q3ZrQTvzCSfZVQFbVMMc/NkgDPTrx/8AXpIfKQTskcZWKziAdcEqzE4PGTjpVdSoqyK+pwves91d3U0TJFtVLedwhIHOfm69+K3pKKkkaN3RcivbC71y3u7398IeIoi3yq2OWbnn9a/VJNTlc/L6ztN+p6BZT3eu6a9jYwhYrZN1w5UKo9uamVNyJhCzKfgvXzDq8y61rU1vaxg+XDCwUlvVua4ZLkluaRq8nQ6O01CyWwY6RPLcxl98kqoRxn35P1NJyurXNXLmVzL1rxrpEU4vZBEogJWNi2SPUkj/ACK56koRlqax0SIPht8c4Lc6h41sUDXc0RjtpGGVjtwcEpz1Y962pVVCPNuVJqasQr8RfEfil21HUbn7JAScAnBI9/U+1TzubbFNqKSRn+CPL+PnxDTw5aQv/wAIj4ZuFn8QXoU4vrhTlLYHvg8t7YFaUqac/IiyXvSOm+PPx+0SzF1brqAhWFfnuJsMoOMLHEgPzN0H0NKVSDm1fRBGLndo+ePgjMfjF8Yj8RPFKrH4c8JnzbaO4nH7+6JIG4f3gASAfWsFGXtubo1f+v8Ag+uxVNc7aZ2fx9+J0fiEybbgSpKSkcrN8qkkA4A6kHC81VV63ewqtotRR59+zJ4ct/FN5rfxE1nXoLWC51T+y9NmuoH2R2UI/ftkZwTIevOdvA9FDmkrp7HJHmleVhPE974N8OfEOPxrDo4uF0268uRQcefA+BKzcfKPm+nFTUldK2htRpSn0NH4n6DpWj6zd+IvhN4hgZYJ1gntJn+XeY1l2cn5TtdeR1zWMXGLdnc75v2dP3jwz4k/tEaM6QaZ4kUWskVysuprL0VEYZcH+IE+nNWqt21Y5YVYu7tsd1q3xM8e/tQ+EpNatLG60nQ7jTYra1guHK3N3DGTghScRqcn3IPPapjRalzSXy/rQ6Pb+2VkrFP9nTVbH4TeILn4V6xHHbLdSSzaJO0eFZjgvH/vZGR61dacYdBtxpxsc3+08t1eaH51nctFdW8sc1pOAVeKRWJySeQDkfnWVOcpta6HLNuR5b8JP+Ej+OPjCT4k+NpIhY6dfNbaHp2/908q/wCsnbtnOcUVPerckTXC+0rycqm3RHX+JNXmuryWEMoeQoqtsHbIwB6Vo5vl1O6bsrdTG8INpMWoX3iLVrZpfIkFrFbvGDuwPnPNKDVzCnJ3budJ4K+Jml+DNP8AEHwd0jVhY+BfH99ZnW4guUs7uFjsugf4SAxVsdQfbFeDnuVLEzhmCV61FPl812JkvbTj9mzH/G79l74sfs/eKYox4XvtU0LVlafRdV02Bpo72Ic7025yMY/OpynO8Jj6fvNRmt0+jOqap06vLe7eyPB/F3g34v8AjAxeIL34U+JYrKCULYldEn2EdS+7b9Pzr2ZY3LaMGpVY8ze10cKqqVT3tPI1YVEmh2l/dSAMpEMiMMEMMjv3zgVeHinq9T0KzvDmQ3VY1ZT5abZFU4KDJwfWuj3pOyRxzUpOyRwz3N5omrvBJGY4Z23IWB6/XtScqdN3bHCk4K7HeKYF1qwxvzPCdysBzn3pOtJsqTgle2p1v7Mek+FNe8aSa54ptvtUel6c8y2azBXM+QisOOxOefSvA4ixOJjg1TpP4nr6HBjcbLD0eaKv6HqOrW/xM+Husp4ztVa104tkX6SpIHUnDArnJIH8OM189LE4VQVOsn936nHh8TXjWVTWEX18j2fV/jV+zn4I07VIpPjHfeIVstDhu9LFho0tuX1FiN1u6OAQi8neODivEli69aMaNODUW21qrX+8vMM8yjL6tTlm6iUbppdTwPxp+0p4jkuZdTs9E0S0lvPmjM94HYk9CY1PGfTFevhXXqR5Wnp1UXb73octHjPHYiEYqEYp9b3fzRH8MfiP8UfHWqS2/iPxFDbRW0W57C1tDA5zgjJbn8q668VOF4bd7p/kexSzLF17wlPb5HaNPfSX8Gn2sI+0XbiOD58l2PGTnrXm4nEU6FFyeluphVxEaUHUmfTfwjtPCvwR0M6h4nsLeb7LD9o1GW4XHnYGSueuK+TlUqyqc9W7b2T63PjcTi62LrKUtl0PM/BNt8L/ANoTxB8Qv2s5HFvd6e5g8I6WX3Q+WCA3JGRzzn0rrzCdfC0lgY+5F+9K3meXj8TCo/ZU7RT/AAKfwR/a3/aj/aGnl+Bnwd+Edl4cis73yPEniO1uQY0QHk7l5lOOgPcirzrLsFluX05VsS3dXjBKzfqThaU8TJUqf4H1h8XPjn+zf/wS0+DsN9qNxB4o8WataebY6G53gTkZMku4csSep4Havncvy/F4/EQWGnCo5r3t7U/J3S970bR2VatLBv2claS28z4a8W/8FS/2jvjf4ofxB4o+KV7Dby2cv/Ek0oHybK3I5HHfHftX188hr4WnaLd/h5m7XuraI86pVxNSak5a2fyOU+DWk+Mf28PiVHbRG8i+G3h6UNrUxYr/AGhJ18rceWJ789678LkkeH8PzSSeIns/5V3/AMj67hfJfr9ROavCO/mfbOleG/DnhHSItC8HaOmk6fBGsdrYwYVQOgxjpThHkTe7e77n61Tpwo01CmrLsOtJ4Reva3whFwDtgt5CS59xjrRKpG6SOynVjTdnq2dd4H8LeJL5J/Emm+EtRubKFGF1c3Vufs0OByctwKmrOlGPxWbLnj6NOnaT2Oz8DwaTrNutppd+s8d2oe3lEIAbsQrAE4B9DWf1mndpy+EeHzHC4iPuvRnSN4LsVWMGCKcLIV80OG2kdQT61p7Xnaa1OqhUjVhzQd0Ph8MWby7IYSABkRsw5x+H8qr2ivZGko63HXHhSKbYxtWyG/do/IXPoaNHuQ32K1z4QnJ8pI5Qy5+Vz3p84a7EMGm6tpMm61EqEN0XOP8A69F4sm3U1INdmeIR3lvbsxbcZGwpIzyMj1qXFrYd5LZlxJ45JBFbW0sUjgBRuEinPcY5xVa2stzSKbiXktJYgyNYqGziTc5XPPPFa6X0MGmnuOXQLRQSti6hjtCh8k/Wm3boWpW6jv8AhHLMAP8AZiGxySSB71FhuorEj6GCuyANgcsrPjNaW0CMvIlTR1Y4VEOV4Jwdw980JtMPQBoNrGR5WmQgNguVjGSahq7uO7aJV0BZCfLs0znlcA/jVPVAm3oRvoEsYzJaq/Ygp3qWlYm6uH/CPsgybePBByWjxn2PFRCGpcpNFdvDUFxC2zTosdAsJG7HofT61NSJNN6jhpsOigR3V21vE0Jcn5pd4XJICqpOcduprPmlA25mloF78OfCfi/yNWa1iMkhD29xG81rInXBK5DKfwyKlS59TmnUbkrorx/Bq60/T57bTPGviW3triMx3EEevysrjOcBXJ4pyip6GfsoOV7fgSTeDPFk1wkJ8dapeMiKgS/VJsKowEJK5wB71P1ead0zVRjBWjEY/g/xcl1Ffbba4VGxO1taqrSJjkEHqe/BHf1qY0qyfc0puFzQuLfTIo4GZN0zRb5kNuVWBySNmT1OOcjjmuhR25i7yk3dWHRw2kkW1fnZhyRH+Oc4quaysDXcqyaPpctw1tbWTvO5Pzg4UgAk9Ezn8aiV0tUQ5Qa8/UxfEvw98N+LLZ7HxH4TstRjxt8u8tQ4x1PXJrnlKT2uVfnVmec6n+wr+zhcie7t/h9PpzysN0ml3M0IJ68bD+ldFHF4qikoSY3hcNUjdwRg3v7CPwuu49ln4r8WW8WCyxNe+av5So1d8s3xvLo9TFYDCbctvmY2p/8ABOjwXcoXtvHWrKmMEPpdlnnqP9QKqnnWNUfesZPLMG9k0ZN3/wAEzfC92qxzfE/V9kfKAaVafN/5B9zWX9rY7V3RMsqwSW7K8P8AwS6+FyOJJ/iP4p27ThLWWO3Ujv8A6uMUoZtj+Xc5amTYWcr6mpYf8Evv2dohi8m8S3uOsd7rtxtJ+isBUVc1zSpHldSy9Ap5JgYSvy3Oktv+CfXwOgt1tYfDqzwx4EcF/eTSKMdMB2YcZ9K4lLEc15Tuz26FHCUKfLGCS9DpNF/ZU8CaTCIdJ07ToVjAUxx7iqZ/2VwBVSpRcdTSeJjJWsreRqR/s/eF7CeOCS0gk3H97JGWP0xk4IrFU/e1OV1G37q0Ih8CDFOBJc6S0BPy+XaOjBeeuXxXROELaCinfUhvvgzpMgMdnaWxlGQzsWGBxj+KnGKsUtEZt58EfEttMmoaJbWEtqTiQSztnn0656DFc9X2kfhRmlFy1ZdufhakFvZ3N62mO08Je6htjLFJaODjafMQpJkcgofrinTlUsr2JgrzkpRfkyCP4d6NFAxmurmOckjy2gXGO/JwDgVor33NVGNth118OPDkEhitNbM74XdHcXaQ7SckjB6/nVKTUjju/aWsZsvhrSI5vK+zQ9yC8u9vw9O1buUrG71Ww0eE4pmINnGwx8gVsluvYjPvT55Iz5ebQlsfhlq2oz28ejeGGne9uVht1R4l3uxAAZnICn/eIqJYiFN2ZE4KFJzb0RjjQILhmj/suS3dZXjkiuCokUoSrZ2FgeR1BII71pGXNsYcqkrohk8PWQ3GSwcH+EAkDj69q0TsioxaIX061jAWWxwOuGY4B/HpRuJq+hHcAJGsckSYTICtyB645o5ddSuTQqA2kaF5LWLoSGGOR+Ap2I5dRHWwkUv5O0A8Iq4J9smhpIbS6ELW+jSXESJt8xiFj+YAgk9Onek3bUaTtZDL63tY5HWWyjiZFIkDgK2fTHTua1pTbqL1CXNtY860LxJDqusLpFmU88/vWiL8/U1+tygoM/LYqbfvanpWman/AGPaR6d9vBg2lpFDD5m9Tn+VTOorWNEnfQtT+Hn8T6RJdW8qW7bPljeQgynPAYY6VwVINq6GnfQlsdMuvB2hf2l4tEbTvnZaxOyxxJjAI+tc8vhs9zWXvQSijh/GC/25HJZWmnMyyxHcqZXapB3Z5yPr7VzVdUPlbRwvhPxPJ4Nkkt5obfykTZFasWKxKOF3YxvbGDgcc81TlypIS5k7nQeBX+If7SPiGTwf4JlNnp9gwXX9e24isUPJjUngyHHTtWuGjUqyeuhorP32eqeOviT4G/Z4+HyfDf4ZgqRAYwRId0zZJaQ88sxOSep4qq9aMfcW5zSh7XEOor9Fa+ml+n5vr8j5K+InjzXPGWsW+lzXLJcXk6wxJHMd0kjnAxzkHnnHQVxRUp3j3Oh1FSsj0L4j3l18JvBNp8KPhxZww3sMQku7iaIOssxUFnIByQMkc+ldUeem+RK36mNWpJO8Tx74kXfxR8ZWd/BY/Fw2aW9vHbx6XpmmpDI7lAztvOSRk5GMH8aXvyfLcxSdWScmeIfCPxd8TvC+lXvw/t/iFrcB0W7dhC052lX3MJMHqcn862hRcJOSdhUqdaN4p6Gp4v8AAXxl8a+G5NSv/izqklhLOUZUu1VnlwrsHxglcFDzwe3Q1hJ8tRnalKjRTbPafgn8VdT+Lfwj/wCER15YoNX8LzG0AtlJE8DKWVySSWIUYDMSflHPFKNG0bPcxWIVSajJ6vT+vuPOPi94Gs9P8RaDqV9bieBNXgS4SU8qGcDnPXqDQo+zlzG7g6Svc+xR4e0SPw9byWGmW9hF9i8uK3kwJ5kTO5wy8Fc8gejCrhWdXV7m8b6dzxv47f2XqNpMbGVklguVe0vB8rwspJB/2fX6VM4KSZnUhKSucV8QfihB41+D154i1ZY4dU02IwatGGziRVBDD0DAZrOdGdKSi2tQekLo5/8AZ+gW0+D2hag8LRQTWrTKXBC+ZIWO4nsMc5NVOMYTs0dOHVT2epznin4u+EtI1ySPS521a6hyFgtFLJ5n+2/QUTpztoxYmpaOjOV0rxN8QNfmXRdN0ZLFYZWea7uHypkbJY+/Yc0lanT13OehCrze9sbkfhyOxs5LW61GeeRgwnU4COCByBWHPKcrnW3Hpue5/AL/AIKC/Fv4EeApvhJrF4mtaOthPb+Hr+9gSSfRTNtDiNnBO07VGPavmsz4boYrFRrYWfI3ZyXRtHHHCU5YpVpfGk0n1SdrpPs7K/oj1z9iP/gqz4K/ZP8ABMng74kfC3xH4onvEnWN52tru0g3ncXjiEatETxxuPTBrxMx4azWderUw/spKcWveTum1a6d91v/AMA0rYTEayXvWOA/Zu8ffsJfGD9qTxRqP7TOmPovhbxNcNPYQzziJrRmPPoEbOTjPfrxUV6fEGT5XhoU3KfJpNxs218zmc8XCnGnO+r6FbUvg5+wh8Qf2/vD3wP+HHjbXk+F91dLb6x4gsbxGfzXGFVXJYKuc8+nSuvDcRZlhcnlisZzRd+q95R72RhKtWSum1bqHjj/AIJVQa/+1T4g/Zu+Ffxq0aCOwhuL+wuNf1WJnnsogzbkK8ElRxnv1xXHLj+lTwX1hU3Ujzct0mvQupj1TShOV2zK8KfsBfBW0An8R+MNb8QTxgCeCCRbSDcOo3DLEV3/AOsmPxUYukuW+p7dHLvaJSk3qd3pnwO+DHgOOWXwl4E0/RYjEfMu7iEkle4ad+tcVXOIyrclSb11S3/FKx2xwODp071Eku7POfjJr/wPv/CTeAb6407UL7UpyNLn09mK21yvzIdxAGciuXF4/GVbfV1pDWX+HZnz3EWeZSst+qU2pSbtddPmeHeAvC3xf/aU8Ua/4Y8JtAde0PTJJLhZWCtcQQrkjngt16dTXXWWU8P4ajWrp+yqP7m/0PhMmyzH5vjKlOjTvZXOh+AXj74J/AjxFYS6/wDBew8e+JY7ac6+viy6e3t7EspCGHZz5iN827nkDHqOjELGYqt7Wq7YXaMIN3mvOS1VxYSustqqcqSnLVWeyOx8BeN9a/aM1a9+IXxB+Lltf3VjYtG15fRxQvHDEMLESgAYgALzzxXzlVYfhWKoYbDOMZPRJt3b663PYwuOre15pa36En7L6aH8XfiTqHjvWfEFrbaDou620mWaUqksw+83GTx0rHP61TCqhg5+7Op70m7+6umye5xZtmcKuK+rw7HrvxwitPiJ8P7vTPDuszokVk8e/wC1fLcEd07/AJ1z+1cq1Ke/Jbftc8uVZy5VHRo82/Zp8fT/AAv+GY8FaxpaSed5sclvJbHv1z9cZzXVmWMUMxqVeXm5lZeXoebKlOpWlJq56B+wN4b8Ga38ZvEfxm0LTrbR/B/gS2kv9VltHIi1HU8ZjtyQcM2eT1rzOIauaUMspe0fNUfw83SP/BPbyXC81ZypxsoavzPh79r79oHxd+0p+0HrHizWrpo7eXUZFtoXkYJbxBuAAegr9I4XybD5LksWknOSu7dWz5/F4ipiq8q0u+hf/ZW+FPxH+OXxLutP8KyXGn+DtKtgvi/WrZhGRbk/NGjMOXboMc81rnOOy3LMJBYlKVabvTi+/d+SPUyrL3mNaMJ37vyR+kHwn8JeDPAPhCHwr8KfDsmhaFbx7rXTpphJLKOpklfAyT1NeK5SnWlUnJuUu7vby6H7blmFpYTDqlSVkjs4NSuLoxRXwQqw2pGLc5H4+lTJTT3TR6lNx6bml4d+Aem/HjV38Lpqs1k+nxm71HW7NgjWSLyFZu2fSvGz/MY5ZgVUpyTm+nXQ+dzjMHTnyQ3R2+ry+INT+CmpfC74b6/ql8qrNPqGoTTCC1giWLYi5481yQzbRkkkegrxctxsMTh6c5ytUu5Wb3Xz/p9NTzMPT9rhF7z9pJttNpLlSW347/I5f9mVfDfwi+DWn3njDxElmNB0+RYDqkxR57lsDLBjnbkk/hWWJq0JTqVp1rufb8jLDV8tw9CCm2kk7Wbd3brqVv2TPiJoU+rXXwn+GguNXtYb+4vtV8S6ldskd5eTyFvItgclyM9Bxg9a6/7ZnhFTjL3+ayUYrVLuysh4j+o4j6hSpymu+lte1306+ul3c9313U7bwfqT6N4nnh07UFiL/ZLuVfMx1yBnpivoYVoVG1s1vfofexzXC15+zvaS3XUXw9478Ja3JLp+m61DNOkPnMEdSygcnj0xRKquVPmOmhjMNWk4wabXmWfCvjXwF48tp7rwn4ls9Sit7o2t1JayqxSUdFOD15H51bkouzOnD1qGITdOSlbe3Q2ZtLQQZ+yEqR3GSD+NXBt7l6zRSm0e3OD/AGejkfxheffIockLljFamH4o0G3nsybDw/CNSjIW0v47hk2jnKyJyJAfbBHrWU4VLc0ZWGoSavfQpa/qGsXdnYafqV5Gk9i7i1ntlZd0br80LBmPyhsEHrnvWNClWo4nnlO6OeOH5Zt3uOsJ/ENpiK3vrhiCAykZ5/wr1faKS902jBTdkjRstc1/azNOmxQWlkYAKp7liegx/KnGV9AUY3sbXgnxFofjbQY/EPhzVrPULOSRkS8tJRJG5QkMAwODggjijnu2hOacbpm+bMMmEhHXDbc5U+lUmrXMnJj104j5RbsM/ex9e9LfYfM+gqaLDIpYQBSRx89DRfO0TPpc9vERFZCcg9DKAfzNErpaExabuxz2aKzbgRlflEuDgYHHFC0QTdxPsFpcAs1tHvwP3oXawP1qJKT2GtEK+gzKBgo8bcjY6huD1OMGh3QNqWhQuvD1ow81ki3NnO5NrenUc1KjzFLzG22iXtrys7/eG0KSf/105RjHVFpq5O0moWgUSW6sN/KBMfrR0HpYhlvZCJGa1hGc7x0PtnH8xRB2M+R3IXa2u3El18owfl83IP4Grlqim5IieCwRmdpHXggbTyPb2FZclhpyluVZLm/kgWysdTvfs8bGQwmQ7EOMZPpWnLUqJqKulq/LzIjTp81+pRuLhXZpQ7M54LM5BY47H/8AXXE2nsdNox0KjSvBmWIgYblTyM/Tv+NUr2uEW2itcNM6CRrdMs3JjYjOcZPFE5aD5rMiMd0ckXEmc/MW6H2qVa5XMpDHDqGIRpNow2JWXA46e1OVrCmlazIP7QglQSWieYpbgG5Zsjoe9OE9NDOMZN2GPqt1IpIhkACnByeOB703Zm3LYryXeoF8qWLEbQRwe3p0qeW7uJ3sMNxqD8i8kC8ZIIB9x71onoZODfUfDcy7QVu2x1JyeePzoTV9AUEtyVbuRyQZGyWwTyB/9endMCMzz7toDFjjAJIHvzRd9CJXHHUri2hZfKmAUD7uAWOemT0pStLUyepLMReKFuZGHykgFuB0I5H8qqysVzNlRNK02aX7RPczQk7trxTscggjgE4oajY0jPTVHL+IfhZqE+sPqsHxj1toTIsjWL2sJRSM8A7c9yOvesI0ZqbfMc0qd23Yvw+HZnjkIne5yuDNMMnJ+nSuq035lpvlsMg02ewS7eS3gaWS4VrS68x1EMIUAxmPo2Wyd2c4OKyeGrSrqaqadi+aKjYqT6XcrEqJewINx3+XCeSfUZwK2dNN6mMm7aGbNp1zGFEmpMRkDCLjv7DvWitFEXdypd6eVbJug5xht0h/XFNMq3MjPujYQKGuLhE/i37srjj16f8A16bmkYyjy7mZca54eiUn7arFjtXy2DF+ODxT5k1cuKctinJrekthl8+Rh1KR4z3Izjmo532M5KSZXuNZtZyETRZc7dw33RVj+A9OMUm5SJcZplVtSf7K1jJ4asbgyRkSJdgybx33A/55pOLfU0p3UipJPNaxyvYaFptqWYu3kWyjccdTx1rppRtNFybsz5+ufiKkVxHD4ciH2+6ZY4RFzLO5Iwi9etfrc047n5K3GjUsex+G/h78WdN0Ea3411uyF8QCumRREvbKRkB27t9Kx5E9WzN13J6noXwdC3F//a3iq+DRIoMVtCpAZwepJ6inzwStcpy5ranTfEHU4dfinvnjVYmVWOAAHI6KPyFctSlOo9EdtKyhfoeZ69ftFBPdxskUs0a+YxAUk+nuMcVj7Cb6Gl4vY8h8cW+p+M9TXwx4d1Q2UtwMNNBGu6NTjLD3/rWbwspPYJQlJbHq3h/xBpfwm+HEXw48O3EENtZhZrq0FzvmuJiSTPO2Ms7HJ/8A1VtOcqUNXr1+f+Zm4xjBQkeMfEbx5careTahrF6qxbiyBcAge5zx0rz9ZO9732GpwjHVnnvwW8SW/if4pT/EuSBZtK8MkpZMh+SW6fAz6YQc59TXpYbDyg+ZmkFzrmWptwfGKLUPiDqFzr80b77craSNNvIPIyevJ9D2repRlOXMc9R+8efeK9T1K21tPElhqUn2cNkbFI2tg4BH+P8ASuZ0505XsTHmpPmOXk0m7l8TQfETRptqTxNb6ujcAox4Y/Q/oTWFSTqND9pKXvHSeGtSk8RacZJrySCS3lka4WGL5ZHGQePfgZ9hVqHJG/UlVVN2Om/Z51238JfHlrS4jjEXiHSZIlhbjmP5lyMfewTzXNJudRJHXRUYassfHSa3udIupZmMZs7qOYFhkrh1JHv0HNaP2luU6Y8tW6Wp6brPxGu9Qi3tdlFS2TaS+BjaMj8a1hSm1ypGllBnBfEPxX9sae2YosNzCHYD+8FI/Pk/nUKLp3uRWrRirHlfwxh0n4kfFDxJpviEEeENC0qPUPGDxkjzFRtsdsG7PM7LGCOcEntXDjadeqouPUjA0/azk5bI0/F2t2WtaMljdqsNsuDb6XbsUgt06BNo+9gYHPpXZSjONPllc6K0lFW2OE1iCDRJ430mOJXaaNbWDywBuz97j0GTzWFeck9DmpxdSWhuNqEJEnmyhpGk3SNgZZjySaajOWr6nVVbS1IpdTgaUJcFWbBxtOMjtU+zcFexnBKTKV7MzROWlLZPK9+OlSpyhFpdToUdLWF8I+I0t5rpLiXPlyKYznJAx0x3rGakoNo0oVIxbitzqVvtFu4990sL7+gaIcf4VkoVVI7ORw1LWmW3hhIjCNMsJS+N37sDp0P1rOdKtLSSvfyM4Uot35Uz0H9mL9nTRPj78e9L8HaILTTJWVrrVtfuLt1FjYQgvM7PnIULnjoSa+e4kzajw1kNWtOnzX0jG28nt/w5xY2ng6VGUpQVz0r9pP8AaQ8Mz+IJvC//AAT++E0mr6LpQNpceO/FUhMdxIgwzQRNgEdcE9ewr85ytYilRVTP6/JKWqpw3Se12j5TMeLa+GpRjTX4XPnDxn4U+N+q2954z/aM+Kt2unpGsk1rczCOOMHlVSMcLnHGOSK+pw+dYKrbDZZQTb0va7+97eqt26nyOYZnmOOi+eo7W1OF+DvgyL9obxvf/EzVtW/sD4ceANhl1WQlUMzgiNBx8zsecele1m81w9lkMHTh7TF4jp5Lf5FZVl31hqKdox1bZueKPAWlNpV1rvwj8aalcTWu+VtW0+0Nv5as2NzlBuwSQMucciubAV8a6ns8VQTgkuZaySWi66LV9t2j6SthqWCw3Nhar5n1Wn3Hn2qaPJr2iyahd3MkmvaagW+ljywuIsdWPtmvTli/q2JUIpKlLZdmfPwrqjBRb5mt2+pofB3RvhZqs4sdft9Xj0RFafV4NLmZPMX+MsOOM55PYivMzavmdHWm4uo9IuSvbtb5HLXxNSXvQsmz2v4S/Cb4ZeLdSuNY+DCa/pngTTrgHUI4rYkTyuDhHk5Ck7T7/KfQ18zjs4xeCUIZvGNStLrezSW9tPx2VzzqVNvF805LnaPQPj/+0P8AA79mbw//AGYLvTNc8STWbW+l+H4DvitS4wGlc/xc98VOU5VmWe4jnoR5aOt29dP1Z6eGoKrLmm9j5f8AhT4O8YfEq38S+DviH4i1rSfELaj9osmSVlWFe6ArwV7DBr67NswweW1aGJwtOFSly2fdvuXWxtKmlGk1qj7N+FXi/wCDHwN+BWo/AJdJu5YtM0KS/j0qzjO/WdWkXajycZZQSehP4dK/PswxWIzTEutXT5ajtzXsoJbfcj67C5xluAyv97C75Xou9up+ePjv9mP4+2FnffEj4m2iaDpkkwlkNw4EjBySqqgOTX63l/FHD85QwWCftJpW8tPM/OqWNw0JKEabbfdaHTfs4fCn4ja74bvvGC/GG68LeFoJRvZJSiXMg6fLwCeB1rm4izTLcJiIUPqqq13+C9T0JZlHCy5KafN1PdvCOs/GrwlqmkS+KPip4ql0XUtPlu7HULaJYLSdI2MaMJJEJdPMVgSoIJjcEgivmq2OUoyjRoxi00mm25a+S/z66I+my/iWrSpPnk3y6WT1vbS+j8nbqu257v8ABj9tBvhZ8Er7/hbeoJ4i8UG5xoz3VuUMqE/IQcA4IK84xiuavinWmoUItW3fRW3NY8byVF02rvoz1PS/2jdSutB0L9jX4Z+IoND8e/EV/tvjfxA0asukWp+ZQCwwWA6D8TXy+WYDFZ7iXi8XZYeMrK/V38uhGAnUxyVKc7Sm7tvojzDXvgDYfBf4zaje/Ez9qLW/G3w+imiC6va+JPs8Nvcg9HeH5fvZxjvxXrZy402sLltOHtLtNxje68r3OfNZ4TC4qK9u5RXmZn7SvwL/AGd9V8daRF8OPjX4q1TUdWjWay8Pr4ninjmDjGJh5jlT35APeuHBVM4wWDtKjFxevM4K61t02fk+lns0d+LWWw9hKhq2rpX39V0/p9TrPDH7K2l/ss6bbfGH4jftS/2dN4fmTUrTwQNe3+a4BKowwCM4445reWNqYijbD0I+0lpzcu3ma1qGFwkFiZ1bNaqKepL4Qn0X9sD4lP8AtW/tWeI76W8vQf8AhGvCOk3jQPDAD0dFwW3YGc8EGvDzjNcyw2J/s7AR91/xJ21fo3seDh6v9qZp9YrtqL7bne+JtT/Zd8Z+JNQbVrdvD2p6jY/Zrn+wfE32a9ECjoQpG3gfXjA9KMFhMyXJSw7+FOXv2t7qb3lo3ZaK929Em2kfRyxvD9Cna0k2raN3+Z2X7CHwv/Z2+D1nqGmfs4+K5JbSUS3Umga3qBklvbzoGWRjy33R/wABFRjuK87y2ssXmVLnTstFZJfI9Lh/H4XLas6mEd1KOsZPd9DpP2bPi58X9W17xx8Sv2mNLm8NQy6mNP0Hw9fTBYo0TgGM4wzM3OfoK63xZgJZhCjRnzQcU27Pd9D0uG88xM8ZXr4u8YvaLvZeh6xH8UdKsUmS+04CUxJNhG2lo275HXFfRYbHYWq3yb+h9dTzjCV0+Um0bxf4b8fMt74fsAEt4zHMsvLmXJBOOoAxiut1G1d6I76VejUhoxms6JP5UiXkQO5NyhVAOOx5z7U6cufS935HRFNQuloU/Dlzp+kpcy+JdPm1EWVld3QH2+G3Fw6JuSJ5nwIlP8TnOBzU18TLARUpK669Dgx1XEU6V6PxX6nyd8Ufg3/wUS/az8R3em+P9LtvhZ4HtZ0Wc3F2BYWyeZ1CRlptUkwRgPsjyeRiuihjMG5JRd2+i3fz6fK79D5NzzbGV5Uqit530tY+zv2dfhb8Nvg18LNE+Cng+0nstG067ka61262vdX1xM5eW4eCMKsKsxJEUYCoCAB0rRV0oOpJKKTS1evlu7vbV6+bu1f0suw9bLsO6cG5W2u/1Oqmla2u57FFdTFK0ZZxt3gE4bBHQ9a3w9eGIXus+hp05zpKbW6I0urgLsZiVAxhmGDXX7KfYyvHoyRHtJR8yqpYdQ3QU/Yz7BzjhFH94sCpHTfkfWj2M+zBSGyJBMeCAcYGGzQ6M30HzEZjkBy0YcEdG7Co9jJdw5kKsbcmRQB2w1HsZ9ilIa7wjIdUYkcBj0o9jLsPmuNV4t2Y/lyOqvjpUOjLsx30HbbqRSDLwecFsih0pbal80SKRH4YxpwPugDGalUpxe34Fb6laWz3ks0KnIxhl6f40pz5dzTklFXex4l8fPGH7buk/E2Dwl+zX+y1b+KtCGji6vvEN1clVjl3OGgC5GSAFOO+6sHTqVqTlSl719rXPJxeNq0qyhBKz63R852PhH/gvN8evH/lada2nw+0y43tbJqFtBaWsKr821wyvLM21T8oAI4JPWvQw9DL7ezqtuXXW33f0zz44vMqbk9l0as/vPq34M2Px6Hw10y0+PP9mah4sgjYatdeHbNltG5O3aCOuMDPc815LdCnUbpP3fM9zCOvLDr27Tl5HSnQNY4zpbqWGT5p6+3NZe1jJaM74030RUm8O62JQzXMEGQdxJY/oOKlSctg9lJ6pMbHoi3AZ28Tc5+aNI8Ac+9dCoVN9TJzcXtYdJ4YtGhZ5dRuHLZbCHHH1xWU2lKzZUanN0K7ab4dtNzW/nDLN8s9wcgg+g7VpCE5arYJuUWPNpYu+UtVLN1bkntyfWlJcj94lVU3uRvb2EQHmW+1AMcYBoi1L4WaKM5apEMt1YWwf7LsdjIYwSgwg/vE9z9K2VCpfVEO6ZV+2WO4uiRFuhYgDPT862VCXZkN6jjPPISYrMH5chQB8o/ClKm4LUS1ZEJLxoCIbYYUYBZxgkdiT+VEKc5r3RzhOC1RXtb/AF0xtHe3dtD5iEMkQDDHbBIFV9XqdUzntrdhDFaxo8Zuz0wTv+8etDoztsXFpvQhupNFteLq8Ve/zSYx9KXspPZFNyXQyb/xT4asic6hG2B8x35yf61aw872aG7qOxly/EbS0RmjunJOCdq+3bNW6E+lzmc+xQvvHUlxI0lhYMzbcbjgZGf/ANdSsPNO9tfQXMZ0mteKbuNvLtII1bliRknIo9jNuzJ51czpm8V3HEusNEScERKoI/OtFQl1TK8yF9KaYSvc69dyNn5w9wcZ+i+1J03HoV7VRWpTudF02H5ZYlfKnJcE8dO/tWXNG4tKivEgj/sOzRg1uY1TGNigDp2/GrUZS2RPPyuxTuta0a3yjw7yQSRIafsalrWE3cqXPi+1CHZbxnOSORkCrVGpbYlszLnxvKzkKI1GM70weeuP6U/Y1OwJ2ZQuPGRkZxHKoZz820YzVU6coSvYcp8qbP/Z", - "text/plain": [ - "" - ] - }, - "execution_count": 29, - "metadata": { - "image/jpeg": { - "height": 256, - "width": 256 - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "!curl -O https://raw.githubusercontent.com/meta-llama/llama-models/refs/heads/main/Llama_Repo.jpeg\n", - "\n", - "from IPython.display import Image\n", - "Image(\"Llama_Repo.jpeg\", width=256, height=256)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "id": "a2c1e1c2", - "metadata": {}, - "outputs": [], - "source": [ - "import base64\n", - "vision_model_id = \"meta-llama/Llama-3.2-11B-Vision-Instruct\"\n", - "\n", - "def encode_image(image_path):\n", - " with open(image_path, \"rb\") as image_file:\n", - " base64_string = base64.b64encode(image_file.read()).decode(\"utf-8\")\n", - " base64_url = f\"data:image/png;base64,{base64_string}\"\n", - " return base64_url" - ] - }, - { - "cell_type": "markdown", - "id": "7737cd41", - "metadata": {}, - "source": [ - "### 4.2 Using Llama Stack Inference API for multimodal inference" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "id": "d7914894", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "There are three llamas in the image. The llama in the middle is purple, the llama on the left is white, and the llama on the right is also white, but it is wearing a blue party hat. Therefore, there are two different colors of llama in the image: purple and white.\n" - ] - } - ], - "source": [ - "response = client.chat.completions.create(\n", - " messages=[\n", - " {\n", - " \"role\": \"user\",\n", - " \"content\": [\n", - " {\n", - " \"type\": \"image\",\n", - " \"image\": {\n", - " \"url\": {\n", - " \"uri\": encode_image(\"Llama_Repo.jpeg\")\n", - " }\n", - " }\n", - " },\n", - " {\n", - " \"type\": \"text\",\n", - " \"text\": \"How many different colors are those llamas? What are those colors?\",\n", - " }\n", - " ]\n", - " }\n", - " ],\n", - " model=vision_model_id,\n", - " stream=False,\n", - ")\n", - "\n", - "print(response.choices[0].message.content)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f3352379", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "gpuType": "T4", - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.16" - } + "cells": [ + { + "cell_type": "markdown", + "id": "c1e7571c", + "metadata": { + "id": "c1e7571c" + }, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb)\n", + "\n", + "# Llama Stack - Building AI Applications\n", + "\n", + "\"drawing\"\n", + "\n", + "[Llama Stack](https://github.com/meta-llama/llama-stack) defines and standardizes the set of core building blocks needed to bring generative AI applications to market. These building blocks are presented in the form of interoperable APIs with a broad set of Service Providers providing their implementations.\n", + "\n", + "Read more about the project here: https://llamastack.github.io\n", + "\n", + "In this guide, we will showcase how you can build LLM-powered agentic applications using Llama Stack.\n", + "\n", + "**💡 Quick Start Option:** If you want a simpler and faster way to test out Llama Stack, check out the [quick_start.ipynb](quick_start.ipynb) notebook instead. It provides a streamlined experience for getting up and running in just a few steps.\n" + ] }, - "nbformat": 4, - "nbformat_minor": 5 + { + "cell_type": "markdown", + "id": "4CV1Q19BDMVw", + "metadata": { + "id": "4CV1Q19BDMVw" + }, + "source": [ + "## 1. Getting started with Llama Stack" + ] + }, + { + "cell_type": "markdown", + "id": "K4AvfUAJZOeS", + "metadata": { + "id": "K4AvfUAJZOeS" + }, + "source": [ + "### 1.1. Create TogetherAI account\n", + "\n", + "\n", + "In order to run inference for the llama models, you will need to use an inference provider. Llama stack supports a number of inference [providers](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/remote/inference).\n", + "\n", + "\n", + "In this showcase, we will use [together.ai](https://www.together.ai/) as the inference provider. So, you would first get an API key from Together if you dont have one already.\n", + "\n", + "Steps [here](https://docs.google.com/document/d/1Vg998IjRW_uujAPnHdQ9jQWvtmkZFt74FldW2MblxPY/edit?usp=sharing).\n", + "\n", + "You can also use Fireworks.ai or even Ollama if you would like to.\n", + "\n", + "\n", + "\n", + "> **Note:** Set the API Key in the Secrets of this notebook\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "oDUB7M_qe-Gs", + "metadata": { + "id": "oDUB7M_qe-Gs" + }, + "source": [ + "### 1.2. Setup and Running a Llama Stack server\n", + "\n", + "Llama Stack is architected as a collection of APIs that provide developers with the building blocks to build AI applications. \n", + "\n", + "Llama stack is typically available as a server with an endpoint that you can make calls to. Partners like Together and Fireworks offer their own Llama Stack compatible endpoints.\n", + "\n", + "In this showcase, we will start a Llama Stack server that is running locally.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "J2kGed0R5PSf", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "collapsed": true, + "id": "J2kGed0R5PSf", + "outputId": "2478ea60-8d35-48a1-b011-f233831740c5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: uv in /opt/homebrew/Caskroom/miniconda/base/envs/stack/lib/python3.10/site-packages (0.5.29)\n", + "Environment '/Users/hjshah/git/llama-stack/.venv' already exists, re-using it.\n", + "Virtual environment /Users/hjshah/git/llama-stack/.venv is already active\n", + "\u001b[2mUsing Python 3.10.16 environment at: /Users/hjshah/git/llama-stack/.venv\u001b[0m\n", + "\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 314ms\u001b[0m\u001b[0m\n", + "Installing pip dependencies\n", + "\u001b[2mUsing Python 3.10.16 environment at: /Users/hjshah/git/llama-stack/.venv\u001b[0m\n", + "\u001b[2K\u001b[2mResolved \u001b[1m125 packages\u001b[0m \u001b[2min 646ms\u001b[0m\u001b[0m \u001b[0m\n", + "\u001b[2mUninstalled \u001b[1m1 package\u001b[0m \u001b[2min 404ms\u001b[0m\u001b[0m\n", + "\u001b[2K\u001b[2mInstalled \u001b[1m1 package\u001b[0m \u001b[2min 129ms\u001b[0m\u001b[0m \u001b[0m\n", + " \u001b[31m-\u001b[39m \u001b[1mnumpy\u001b[0m\u001b[2m==2.2.3\u001b[0m\n", + " \u001b[32m+\u001b[39m \u001b[1mnumpy\u001b[0m\u001b[2m==1.26.4\u001b[0m\n", + "sentence-transformers --no-deps\n", + "\u001b[2mUsing Python 3.10.16 environment at: /Users/hjshah/git/llama-stack/.venv\u001b[0m\n", + "\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 54ms\u001b[0m\u001b[0m\n", + "torch torchvision --index-url https://download.pytorch.org/whl/cpu\n", + "\u001b[2mUsing Python 3.10.16 environment at: /Users/hjshah/git/llama-stack/.venv\u001b[0m\n", + "\u001b[2mAudited \u001b[1m2 packages\u001b[0m \u001b[2min 10ms\u001b[0m\u001b[0m\n", + "\u001b[32mBuild Successful!\u001b[0m\n" + ] + } + ], + "source": [ + "import os\n", + "import subprocess\n", + "import time\n", + "\n", + "!pip install uv\n", + "\n", + "if \"UV_SYSTEM_PYTHON\" in os.environ:\n", + " del os.environ[\"UV_SYSTEM_PYTHON\"]\n", + "\n", + "# this command installs all the dependencies needed for the llama stack server with the together inference provider\n", + "!uv run --with llama-stack llama stack list-deps together | xargs -L1 uv pip install\n", + "!uv run --with llama-stack llama stack run together\n", + "\n", + "def run_llama_stack_server_background():\n", + " log_file = open(\"llama_stack_server.log\", \"w\")\n", + " process = subprocess.Popen(\n", + " \"uv run --with llama-stack llama stack run together\",\n", + " shell=True,\n", + " stdout=log_file,\n", + " stderr=log_file,\n", + " text=True\n", + " )\n", + "\n", + " print(f\"Starting Llama Stack server with PID: {process.pid}\")\n", + " return process\n", + "\n", + "def wait_for_server_to_start():\n", + " import requests\n", + " from requests.exceptions import ConnectionError\n", + " import time\n", + "\n", + " url = \"http://0.0.0.0:8321/v1/health\"\n", + " max_retries = 30\n", + " retry_interval = 1\n", + "\n", + " print(\"Waiting for server to start\", end=\"\")\n", + " for _ in range(max_retries):\n", + " try:\n", + " response = requests.get(url)\n", + " if response.status_code == 200:\n", + " print(\"\\nServer is ready!\")\n", + " return True\n", + " except ConnectionError:\n", + " print(\".\", end=\"\", flush=True)\n", + " time.sleep(retry_interval)\n", + "\n", + " print(\"\\nServer failed to start after\", max_retries * retry_interval, \"seconds\")\n", + " return False\n", + "\n", + "\n", + "# use this helper if needed to kill the server\n", + "def kill_llama_stack_server():\n", + " # Kill any existing llama stack server processes\n", + " os.system(\"ps aux | grep -v grep | grep llama_stack.core.server.server | awk '{print $2}' | xargs kill -9\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "c40e9efd", + "metadata": {}, + "source": [ + "### 1.3 Starting the Llama Stack Server" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "f779283d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Starting Llama Stack server with PID: 79142\n", + "Waiting for server to start..........................\n", + "Server is ready!\n" + ] + } + ], + "source": [ + "server_process = run_llama_stack_server_background()\n", + "assert wait_for_server_to_start()" + ] + }, + { + "cell_type": "markdown", + "id": "90eb721b", + "metadata": {}, + "source": [ + "### 1.4. Install and Configure the Client\n", + "\n", + "Now that we have our Llama Stack server running locally, we need to install the client package to interact with it. The `llama-stack-client` provides a simple Python interface to access all the functionality of Llama Stack, including:\n", + "\n", + "- Chat Completions ( text and multimodal )\n", + "- Safety Shields \n", + "- Agent capabilities with tools like web search, RAG with Telemetry\n", + "- Evaluation and scoring frameworks\n", + "\n", + "The client handles all the API communication with our local server, making it easy to integrate Llama Stack's capabilities into your applications.\n", + "\n", + "In the next cells, we'll:\n", + "\n", + "1. Install the client package\n", + "2. Set up API keys for external services (Together AI and Tavily Search)\n", + "3. Initialize the client to connect to our local server\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "2e68e32a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[2mUsing Python 3.10.16 environment at: /opt/homebrew/Caskroom/miniconda/base/envs/stack\u001b[0m\n", + "\u001b[2K\u001b[2mResolved \u001b[1m31 packages\u001b[0m \u001b[2min 284ms\u001b[0m\u001b[0m \u001b[0m\n", + "\u001b[2mAudited \u001b[1m31 packages\u001b[0m \u001b[2min 0.04ms\u001b[0m\u001b[0m\n" + ] + } + ], + "source": [ + "!pip install -U llama-stack-client" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "E1UFuJC570Tk", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000, + "referenced_widgets": [ + "75307e3dee604d30aa44713e6e293e64", + "5ce87402a79342af995df41ac3940d55", + "fbbcc19886cc43b38424fbb184162c61", + "29212208db6b432eb4f708cd64258954", + "50dd8994a4cf486ebbec5ffd4322992a", + "f9b768c703494dd198f2978aff4892e8", + "1231b9e4cab34c33a38bee63543f1e75", + "754deb3970604d48a522bc9f021ad945", + "f6ecca7a1a8340fbbe056235a2714fc3", + "ef4f63fe9d8f4683a9d20becb6e4e2cb", + "7508f10c13634e7aa682cfb29c48d9e7", + "26f1430ca7cb4ad5b1b8df1ffdbd32a9", + "7cd2d9c9ea7b4d70902ffaff33033078", + "101288236cff40b8bb9dbad80dbbc7ee", + "d5c9977838a249eeab6ef628279b8155", + "d032d1e7b4b54ba28ac83c1a12b23876", + "321fce57c158432abeae496ae8a947aa", + "3ebe00201bdb4e119e3b74f684a58345", + "0f8bab6b8ed04774b386fe952aae66f1", + "cfcb6e456c354d99be91f161552f3376", + "61bd0d490c0e4c04a331cf9ce6b7d38f", + "7d8653fca29f4df3a7487733ff9db60b", + "943f8fcb66614353a51f32f8344b6122", + "0e695245b97c4bbc85e349fda3dc07b9", + "bb0d168c41f540b8ae42239d3938483a", + "87700a80125348f28c4f249bdf8b0a8d", + "8902c3622da540e496ed5b1524bd01ca", + "90432ec1c24b4607a935c94e130cd68d", + "464147b149824f20afc727751a702fc7", + "67e37a088be64a2ba786ca923b1017dd", + "98786f52ef5345b0b9164b9c1f2b8e18", + "0e1b9910a77d4b7fa69cb8926e6547d7", + "0b276315be4345be83da1e03905c8495", + "e11f8c3891284e07bd2572257afd5e1b", + "ee18d96394994d01b49d5b03b3d9a019", + "844b06df5749441fab6f61656ce581a9", + "e1c6b9a20e074f17aeba976b24e80c65", + "c690da8daa1e4f9ea73bcacdd92e8a6d", + "d0b161ae25c441e8b3caf7a3d88c1b05", + "47cf4b6b835d43388576a2abf4cc54f8", + "03bbebd659e64b5d9c29a73570c34854", + "b68e5097d2504d2cbd7e19aa1aac3a04", + "22a665deff88477b9372c0350c4c572b", + "5e535ed2b83e496ab57b1c80b615ab0c", + "d9de065c7f81443e98ddf066c7b5bd54", + "1e836106837c4ac7a11b36e700c46b64", + "55591e8179084fcfa3a61c8bd8d09dcb", + "de1ef93c41364eda9b4b111231057348", + "23b0b2f4f82c4a21846e91d7cea91da5", + "9e4d0fbb51284a7487c495c7b95a293d", + "b0f8cf1f79e04b5fb47a810f2c81bd7e", + "0c359bc4c94c46acbc9094354a15c33d", + "59d0b59b6c2248508d0601ff13878d33", + "891cb726d45c4fef8f2c74a56df5532b", + "fa39189070334939aea5fa4a7de5ec8b", + "f0e107dd6d54483aa367da0e337a97cd", + "861a00796f55470e85d94733eeee9a5f", + "5459633eb6e94ec391d13fcf67425726", + "b7b7467ece304ffbbd352b9b96a03aad", + "9dece059f1204e29b106fca9e191ddb3", + "e2e49c25d6fc4592b317e94cfabc2e5e", + "76d37a48a73946bab2821f097cf2605f", + "8e81ae00681347cb906b392c3656a64a", + "74bedc38b7da4e8a83b0c892d7aa59b5", + "d1e67c28b4664e8098dce8f5e80b8779", + "abe6cf39b784436993fcbe92221c31a3", + "d021a18ab70b4c7e8aec43932a124c36", + "72e7c092fb054b7ea0dcd2782b5d8a7d", + "8b1ea80221174fae943d5c9f997dfb57", + "f8073d625f80415dbf712cee434f6e3a", + "5f6014ba13fa4a659b9eb1b5f83599a7", + "327ff8f5292d47afbfebd3beea187739", + "988cac4341b646079fc73719f3f88ad7", + "900a4dac08f540dfb35c29f63236a12c", + "1e6009b9b0684b8fbaa379ea96f111ee", + "541b9b4e74614e2cb855bb90f03df538", + "ff256b2275f740ed82bca4f43b4d6fd2", + "3703041a499c426bb427ee008c81cde5", + "4b22bbacb995425fb32a2368f3685a92", + "49a66eeb9ef74de5ab8904fd90eb7558", + "08f9d125018b41c582a0fa1e234315f9", + "736c770230644894b85dbc34bd8f1d52", + "b67cbbf32f844a19b219be612d5038c9", + "774b513d64524ac7823a2cf13efa8d41", + "1e56da93bcf64ff490416d2b66cd3dc0", + "b7e35038ce344110b785753b655130f5", + "5472af91737446f4a4a2d92a3f684a45", + "9fb4368802da4a5a8101ba200d98403a", + "2e713bcc372e48b2a006558db4d1df68", + "1a277abd5ea44253bc6894bef258b52b", + "b3eedd82e7da4ce8b3ded70e49a2afd0", + "6f5c18cb8002471f8b3764effee37324", + "3bebac362b344e8d9103c5011613f1ea", + "670905a55b19458da69f83c8bcd511d1", + "ff54451a48394faaaa9d8cdb690d0718", + "36b5bc19b2d0407f8ab28ff0da2ce12d", + "879e48d9a9e04183903d94ffe98313d2", + "abce503d70594c2ca9afdc47847c125b", + "028e291ee53947bbbbc4bfb68c695f5f", + "a530662719374c95a9bef12e59e28c85", + "bffc0f4b12f141398535990709fd4f2c", + "04804c74e1dd43449d5f758cf5d0ba5e", + "95a506c3007c4525b01ee4e1600d671b", + "a0d6b0caeb2340fe96c8f5569e3d3ae4", + "30798f87a8b848d783fdacd71af5dc04", + "07ce54c75e76488ba4019a20b3707061", + "f023175de68445f98a6b01bb40ccdc6d", + "7389b79a0ff44cd68c7866995d728023", + "8e2b70ffe4eb4974bd6393fcc1292267", + "13eee164dc534424acb9dc9ee37a9465", + "722a7fe16af3422585a20c651345cfa4", + "f5596c1c9c4d42f3bc171961f9582eff", + "85d66e615b5742e78657b1e60c75fc72", + "731c02dc5dd446c3b22765575148e256", + "254ce460ce244c99a5afe39d5d51f6b7", + "4cf1dc345ace4da59f978f661487f975", + "8f30fca71bf24e5ca26e17c2321f893c", + "dd85d37dd1d14c7ea4592f8e11b2d2c8", + "3cb06377e4454f009d6b2aa7aa6ff0a9", + "4502477db4d948e693012364c2dcb370", + "52fe404ec9c14db2a7279b4c154eef3d" + ] + }, + "collapsed": true, + "id": "E1UFuJC570Tk", + "outputId": "aebb69d4-c167-4de5-eb8a-dd19dd538f63" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Not in Google Colab environment\n" + ] + } + ], + "source": [ + "import os\n", + "\n", + "try:\n", + " from google.colab import userdata\n", + " os.environ['TOGETHER_API_KEY'] = userdata.get('TOGETHER_API_KEY')\n", + " os.environ['TAVILY_SEARCH_API_KEY'] = userdata.get('TAVILY_SEARCH_API_KEY')\n", + "except ImportError:\n", + " print(\"Not in Google Colab environment\")\n", + "\n", + "for key in ['TOGETHER_API_KEY', 'TAVILY_SEARCH_API_KEY']:\n", + " try:\n", + " api_key = os.environ[key]\n", + " if not api_key:\n", + " raise ValueError(f\"{key} environment variable is empty\")\n", + " except KeyError:\n", + " api_key = input(f\"{key} environment variable is not set. Please enter your API key: \")\n", + " os.environ[key] = api_key\n", + "\n", + "from llama_stack_client import LlamaStackClient\n", + "\n", + "client = LlamaStackClient(\n", + " base_url=\"http://0.0.0.0:8321\",\n", + " provider_data = {\n", + " \"tavily_search_api_key\": os.environ['TAVILY_SEARCH_API_KEY'],\n", + " \"together_api_key\": os.environ['TOGETHER_API_KEY']\n", + " }\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "635a7a6f", + "metadata": {}, + "source": [ + "In production settings, instead of pointing to localhost you could work with one of our partners that host a llama stack endpoint or host your own custom version. \n", + "\n", + "That would only require you to change the endpoint without changing application code. For eg. \n", + "```\n", + "client = LlamaStackClient(\n", + " base_url=\"https://llama-stack.together.ai\",\n", + " provider_data = {\n", + " \"together_api_key\": XXXX\n", + " }\n", + ")\n", + "```\n", + "\n", + "Now that we have completed the setup and configuration, let's start exploring the capabilities of Llama Stack! We'll begin by checking what models and safety shields are available, and then move on to running some example chat completions.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "7dacaa2d-94e9-42e9-82a0-73522dfc7010", + "metadata": { + "id": "7dacaa2d-94e9-42e9-82a0-73522dfc7010" + }, + "source": [ + "### 1.5. Check available models and shields\n", + "\n", + "All the models available in the provider are now programmatically accessible via the client." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "ruO9jQna_t_S", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "collapsed": true, + "id": "ruO9jQna_t_S", + "outputId": "ab1722a7-62ab-43bb-9cab-4e45bf62068a" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Available models:\n", + "- all-MiniLM-L6-v2\n", + "- meta-llama/Llama-3.1-405B-Instruct-FP8\n", + "- meta-llama/Llama-3.1-70B-Instruct\n", + "- meta-llama/Llama-3.1-8B-Instruct\n", + "- meta-llama/Llama-3.2-11B-Vision-Instruct\n", + "- meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo\n", + "- meta-llama/Llama-3.2-3B-Instruct\n", + "- meta-llama/Llama-3.2-3B-Instruct-Turbo\n", + "- meta-llama/Llama-3.2-90B-Vision-Instruct\n", + "- meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo\n", + "- meta-llama/Llama-3.3-70B-Instruct\n", + "- meta-llama/Llama-3.3-70B-Instruct-Turbo\n", + "- meta-llama/Llama-Guard-3-11B-Vision\n", + "- meta-llama/Llama-Guard-3-11B-Vision-Turbo\n", + "- meta-llama/Llama-Guard-3-8B\n", + "- meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo\n", + "- meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo\n", + "- meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo\n", + "- meta-llama/Meta-Llama-Guard-3-8B\n", + "- togethercomputer/m2-bert-80M-32k-retrieval\n", + "- togethercomputer/m2-bert-80M-8k-retrieval\n", + "----\n", + "Available shields (safety models):\n", + "meta-llama/Llama-Guard-3-8B\n", + "----\n" + ] + } + ], + "source": [ + "from rich.pretty import pprint\n", + "\n", + "print(\"Available models:\")\n", + "for m in client.models.list():\n", + " print(f\"- {m.identifier}\")\n", + "\n", + "print(\"----\")\n", + "print(\"Available shields (safety models):\")\n", + "for s in client.shields.list():\n", + " print(s.identifier)\n", + "print(\"----\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "86366383", + "metadata": { + "id": "86366383" + }, + "source": [ + "### 1.6. Run a simple chat completion with one of the models\n", + "\n", + "We will test the client by doing a simple chat completion." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "77c29dba", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "77c29dba", + "outputId": "4857974f-4c70-4bc4-f90a-6ae49dc9c41e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "With gentle eyes and a soft, fuzzy face, the llama roams the Andes with a peaceful, gentle pace. Its long neck bends as it grazes with glee, a symbol of serenity in a world wild and free.\n" + ] + } + ], + "source": [ + "model_id = \"meta-llama/Llama-3.3-70B-Instruct\"\n", + "\n", + "response = client.chat.completions.create(\n", + " model=model_id,\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": \"You are a friendly assistant.\"},\n", + " {\"role\": \"user\", \"content\": \"Write a two-sentence poem about llama.\"},\n", + " ],\n", + ")\n", + "\n", + "print(response.choices[0].message.content)\n" + ] + }, + { + "cell_type": "markdown", + "id": "8cf0d555", + "metadata": { + "id": "8cf0d555" + }, + "source": [ + "### 1.7. Have a conversation\n", + "\n", + "Maintaining a conversation history allows the model to retain context from previous interactions. Use a list to accumulate messages, enabling continuity throughout the chat session." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "3fdf9df6", + "metadata": { + "id": "3fdf9df6" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[36m> Response: The most famous Prime Minister of England during World War II was undoubtedly Winston Churchill. He served as Prime Minister from 1940 to 1945 and again from 1951 to 1955, and is widely regarded as one of the greatest leaders in British history.\n", + "\n", + "Churchill played a crucial role in rallying the British people during the war, and his oratory skills and leadership helped to boost morale and resistance against the Nazi threat. His famous speeches, such as the \"We shall fight on the beaches\" and \"Iron Curtain\" speeches, are still remembered and quoted today.\n", + "\n", + "Churchill's leadership during World War II was marked by his unwavering determination to defeat Nazi Germany, and he worked closely with other Allied leaders, including US President Franklin D. Roosevelt and Soviet leader Joseph Stalin, to coordinate the war effort.\n", + "\n", + "Churchill's legacy extends far beyond his wartime leadership, and he is remembered for his many contributions to British politics, literature, and culture. He was a prolific writer and painter, and was awarded the Nobel Prize in Literature in 1953.\n", + "\n", + "Overall, Winston Churchill is widely regarded as one of the most famous and influential Prime Ministers in British history, and his leadership during World War II remains an iconic and enduring symbol of British resilience and determination.\u001b[0m\n", + "\u001b[36m> Response: Winston Churchill had many famous quotes, but one of his most iconic and enduring quotes is:\n", + "\n", + "\"We shall fight on the beaches, we shall fight on the landing grounds, we shall fight in the fields and in the streets, we shall fight in the hills; we shall never surrender.\"\n", + "\n", + "This quote is from his speech to the House of Commons on June 4, 1940, during the early stages of World War II, when Nazi Germany was threatening to invade Britain. The speech is known as the \"We Shall Fight on the Beaches\" speech, and it is considered one of the most famous and inspiring speeches in history.\n", + "\n", + "In this speech, Churchill rallied the British people to stand strong against the Nazi threat, and his words helped to boost morale and resistance. The quote has since become a symbol of British determination and resilience, and is often referenced and parodied in popular culture.\n", + "\n", + "Other notable quotes from Churchill include:\n", + "\n", + "* \"Blood, toil, tears, and sweat\" (from his first speech as Prime Minister in 1940)\n", + "* \"An iron curtain has descended across the continent\" (from his speech in 1946, referring to the Soviet Union's dominance in Eastern Europe)\n", + "* \"Never was so much owed by so many to so few\" (from his speech in 1940, referring to the bravery of the Royal Air Force during the Battle of Britain)\n", + "\n", + "But \"We shall fight on the beaches\" remains his most famous and enduring quote.\u001b[0m\n" + ] + } + ], + "source": [ + "from termcolor import cprint\n", + "\n", + "questions = [\n", + " \"Who was the most famous PM of England during world war 2 ?\",\n", + " \"What was his most famous quote ?\"\n", + "]\n", + "\n", + "\n", + "def chat_loop():\n", + " conversation_history = []\n", + " while len(questions) > 0:\n", + " user_input = questions.pop(0)\n", + " if user_input.lower() in [\"exit\", \"quit\", \"bye\"]:\n", + " cprint(\"Ending conversation. Goodbye!\", \"yellow\")\n", + " break\n", + "\n", + " user_message = {\"role\": \"user\", \"content\": user_input}\n", + " conversation_history.append(user_message)\n", + "\n", + " response = client.chat.completions.create(\n", + " messages=conversation_history,\n", + " model=model_id,\n", + " )\n", + " cprint(f\"> Response: {response.choices[0].message.content}\", \"cyan\")\n", + "\n", + " assistant_message = {\n", + " \"role\": \"assistant\", # was user\n", + " \"content\": response.choices[0].message.content,\n", + " \"stop_reason\": response.choices[0].finish_reason,\n", + " }\n", + " conversation_history.append(assistant_message)\n", + "\n", + "\n", + "chat_loop()\n" + ] + }, + { + "cell_type": "markdown", + "id": "72e5111e", + "metadata": { + "id": "72e5111e" + }, + "source": [ + "Here is an example for you to try a conversation yourself.\n", + "Remember to type `quit` or `exit` after you are done chatting." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "9496f75c", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9496f75c", + "outputId": "7d93a4cf-a5d4-4741-b6eb-6bce3a27ff66" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[36m> Response: Fuzzy code abides\n", + "Llama's gentle syntax\n", + "Wisdom in the stack\u001b[0m\n", + "\u001b[33mEnding conversation. Goodbye!\u001b[0m\n" + ] + } + ], + "source": [ + "# NBVAL_SKIP\n", + "from termcolor import cprint\n", + "\n", + "def chat_loop():\n", + " conversation_history = []\n", + " while True:\n", + " user_input = input(\"User> \")\n", + " if user_input.lower() in [\"exit\", \"quit\", \"bye\"]:\n", + " cprint(\"Ending conversation. Goodbye!\", \"yellow\")\n", + " break\n", + "\n", + " user_message = {\"role\": \"user\", \"content\": user_input}\n", + " conversation_history.append(user_message)\n", + "\n", + " response = client.chat.completions.create(\n", + " messages=conversation_history,\n", + " model=model_id,\n", + " )\n", + " cprint(f\"> Response: {response.choices[0].message.content}\", \"cyan\")\n", + "\n", + " assistant_message = {\n", + " \"role\": \"assistant\", # was user\n", + " \"content\": response.choices[0].message.content,\n", + " \"stop_reason\": response.choices[0].finish_reason,\n", + " }\n", + " conversation_history.append(assistant_message)\n", + "\n", + "\n", + "chat_loop()\n" + ] + }, + { + "cell_type": "markdown", + "id": "03fcf5e0", + "metadata": { + "id": "03fcf5e0" + }, + "source": [ + "### 1.9. Streaming output\n", + "\n", + "You can pass `stream=True` to stream responses from the model. You can then loop through the responses." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "d119026e", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "d119026e", + "outputId": "ebd6dc2b-8542-4370-b08a-e3a7dede6d17" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "User> Write me a sonnet about llama\n", + "\u001b[36mAssistant> \u001b[0m\u001b[33mIn\u001b[0m\u001b[33m And\u001b[0m\u001b[33mean\u001b[0m\u001b[33m high\u001b[0m\u001b[33mlands\u001b[0m\u001b[33m,\u001b[0m\u001b[33m where\u001b[0m\u001b[33m the\u001b[0m\u001b[33m air\u001b[0m\u001b[33m is\u001b[0m\u001b[33m thin\u001b[0m\u001b[33m,\n", + "\u001b[0m\u001b[33mA\u001b[0m\u001b[33m creature\u001b[0m\u001b[33m ro\u001b[0m\u001b[33mams\u001b[0m\u001b[33m,\u001b[0m\u001b[33m with\u001b[0m\u001b[33m gentle\u001b[0m\u001b[33m,\u001b[0m\u001b[33m curious\u001b[0m\u001b[33m eyes\u001b[0m\u001b[33m,\n", + "\u001b[0m\u001b[33mThe\u001b[0m\u001b[33m llama\u001b[0m\u001b[33m,\u001b[0m\u001b[33m soft\u001b[0m\u001b[33m and\u001b[0m\u001b[33m silent\u001b[0m\u001b[33m,\u001b[0m\u001b[33m steps\u001b[0m\u001b[33m within\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mThe\u001b[0m\u001b[33m mist\u001b[0m\u001b[33my\u001b[0m\u001b[33m dawn\u001b[0m\u001b[33m,\u001b[0m\u001b[33m with\u001b[0m\u001b[33m fur\u001b[0m\u001b[33m of\u001b[0m\u001b[33m gentle\u001b[0m\u001b[33m guise\u001b[0m\u001b[33m.\n", + "\n", + "\u001b[0m\u001b[33mIts\u001b[0m\u001b[33m neck\u001b[0m\u001b[33m,\u001b[0m\u001b[33m a\u001b[0m\u001b[33m slender\u001b[0m\u001b[33m column\u001b[0m\u001b[33m,\u001b[0m\u001b[33m strong\u001b[0m\u001b[33m and\u001b[0m\u001b[33m fine\u001b[0m\u001b[33m,\n", + "\u001b[0m\u001b[33mSupport\u001b[0m\u001b[33ms\u001b[0m\u001b[33m a\u001b[0m\u001b[33m head\u001b[0m\u001b[33m,\u001b[0m\u001b[33m with\u001b[0m\u001b[33m ears\u001b[0m\u001b[33m of\u001b[0m\u001b[33m alert\u001b[0m\u001b[33m design\u001b[0m\u001b[33m,\n", + "\u001b[0m\u001b[33mIt\u001b[0m\u001b[33m watches\u001b[0m\u001b[33m,\u001b[0m\u001b[33m wary\u001b[0m\u001b[33m,\u001b[0m\u001b[33m with\u001b[0m\u001b[33m a\u001b[0m\u001b[33m quiet\u001b[0m\u001b[33m mind\u001b[0m\u001b[33m,\n", + "\u001b[0m\u001b[33mAs\u001b[0m\u001b[33m humans\u001b[0m\u001b[33m pass\u001b[0m\u001b[33m,\u001b[0m\u001b[33m with\u001b[0m\u001b[33m footsteps\u001b[0m\u001b[33m left\u001b[0m\u001b[33m behind\u001b[0m\u001b[33m.\n", + "\n", + "\u001b[0m\u001b[33mBut\u001b[0m\u001b[33m when\u001b[0m\u001b[33m it\u001b[0m\u001b[33m senses\u001b[0m\u001b[33m danger\u001b[0m\u001b[33m,\u001b[0m\u001b[33m or\u001b[0m\u001b[33m feels\u001b[0m\u001b[33m fright\u001b[0m\u001b[33m,\n", + "\u001b[0m\u001b[33mIt\u001b[0m\u001b[33m lets\u001b[0m\u001b[33m out\u001b[0m\u001b[33m a\u001b[0m\u001b[33m loud\u001b[0m\u001b[33m,\u001b[0m\u001b[33m piercing\u001b[0m\u001b[33m,\u001b[0m\u001b[33m warning\u001b[0m\u001b[33m cry\u001b[0m\u001b[33m,\n", + "\u001b[0m\u001b[33mA\u001b[0m\u001b[33m sound\u001b[0m\u001b[33m that\u001b[0m\u001b[33m echoes\u001b[0m\u001b[33m,\u001b[0m\u001b[33m through\u001b[0m\u001b[33m the\u001b[0m\u001b[33m mountain\u001b[0m\u001b[33m's\u001b[0m\u001b[33m night\u001b[0m\u001b[33m,\n", + "\u001b[0m\u001b[33mAnd\u001b[0m\u001b[33m sends\u001b[0m\u001b[33m a\u001b[0m\u001b[33m sh\u001b[0m\u001b[33miver\u001b[0m\u001b[33m,\u001b[0m\u001b[33m through\u001b[0m\u001b[33m the\u001b[0m\u001b[33m passer\u001b[0m\u001b[33mby\u001b[0m\u001b[33m.\n", + "\n", + "\u001b[0m\u001b[33mYet\u001b[0m\u001b[33m,\u001b[0m\u001b[33m in\u001b[0m\u001b[33m its\u001b[0m\u001b[33m calm\u001b[0m\u001b[33m,\u001b[0m\u001b[33m and\u001b[0m\u001b[33m peaceful\u001b[0m\u001b[33m,\u001b[0m\u001b[33m gentle\u001b[0m\u001b[33m way\u001b[0m\u001b[33m,\n", + "\u001b[0m\u001b[33mThe\u001b[0m\u001b[33m llama\u001b[0m\u001b[33m charms\u001b[0m\u001b[33m,\u001b[0m\u001b[33m and\u001b[0m\u001b[33m wins\u001b[0m\u001b[33m the\u001b[0m\u001b[33m heart\u001b[0m\u001b[33m's\u001b[0m\u001b[33m sweet\u001b[0m\u001b[33m sway\u001b[0m\u001b[33m.\u001b[0m\u001b[97m\u001b[0m\n" + ] + } + ], + "source": [ + "from llama_stack_client import InferenceEventLogger\n", + "\n", + "message = {\"role\": \"user\", \"content\": \"Write me a sonnet about llama\"}\n", + "print(f'User> {message[\"content\"]}')\n", + "\n", + "response = client.chat.completions.create(\n", + " messages=[message],\n", + " model=model_id,\n", + " stream=True, # <-----------\n", + ")\n", + "\n", + "# Print the tokens while they are received\n", + "for log in InferenceEventLogger().log(response):\n", + " log.print()\n" + ] + }, + { + "cell_type": "markdown", + "id": "OmU6Dr9zBiGM", + "metadata": { + "id": "OmU6Dr9zBiGM" + }, + "source": [ + "### 2.0. Structured Decoding\n", + "\n", + "You can use `response_format` to force the model into a \"guided decode\" mode where model tokens are forced to abide by a certain grammar. Currently only JSON grammars are supported." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "axdQIRaJCYAV", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 239 + }, + "id": "axdQIRaJCYAV", + "outputId": "a5ef1f54-37df-446e-e21b-cddddaf95f84" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Output(name='Michael Jordan', year_born='1963', year_retired='2003')\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mOutput\u001b[0m\u001b[1m(\u001b[0m\u001b[33mname\u001b[0m=\u001b[32m'Michael Jordan'\u001b[0m, \u001b[33myear_born\u001b[0m=\u001b[32m'1963'\u001b[0m, \u001b[33myear_retired\u001b[0m=\u001b[32m'2003'\u001b[0m\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from pydantic import BaseModel\n", + "\n", + "\n", + "class Output(BaseModel):\n", + " name: str\n", + " year_born: str\n", + " year_retired: str\n", + "\n", + "\n", + "user_input = \"Michael Jordan was born in 1963. He played basketball for the Chicago Bulls. He retired in 2003. Extract this information into JSON for me. \"\n", + "response = client.chat.completions.create(\n", + " model=\"meta-llama/Llama-3.1-8B-Instruct\",\n", + " messages=[{\"role\": \"user\", \"content\": user_input}],\n", + " max_tokens=50,\n", + " response_format={\n", + " \"type\": \"json_schema\",\n", + " \"json_schema\": Output.model_json_schema(),\n", + " },\n", + ")\n", + "\n", + "pprint(Output.model_validate_json(response.content))\n" + ] + }, + { + "cell_type": "markdown", + "id": "H62Rg_buEx2o", + "metadata": { + "id": "H62Rg_buEx2o" + }, + "source": [ + "### 2.1. Safety API\n", + "\n", + "Llama Stack provides Safety guardrails which can be applied at multiple touchpoints within an agentic application." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "sUJKJxvAFCaI", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 360 + }, + "id": "sUJKJxvAFCaI", + "outputId": "04163c2c-7e9b-463a-e394-412bb94ec28f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Available Shields: ['meta-llama/Llama-Guard-3-8B']\n", + "Checking if input is safe: What is the most famous murder case in the US?\n" + ] + }, + { + "data": { + "text/html": [ + "
RunShieldResponse(violation=None)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mRunShieldResponse\u001b[0m\u001b[1m(\u001b[0m\u001b[33mviolation\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Checking if input is safe: Tell me 3 signs that an email is a scam\n" + ] + }, + { + "data": { + "text/html": [ + "
RunShieldResponse(violation=None)\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mRunShieldResponse\u001b[0m\u001b[1m(\u001b[0m\u001b[33mviolation\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Checking if input is safe: What's the most effective way to kidnap someone?\n" + ] + }, + { + "data": { + "text/html": [ + "
RunShieldResponse(\n",
+       "violation=SafetyViolation(\n",
+       "│   │   metadata={'violation_type': 'S1'},\n",
+       "│   │   violation_level='error',\n",
+       "│   │   user_message=\"I can't answer that. Can I help with something else?\"\n",
+       ")\n",
+       ")\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mRunShieldResponse\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mviolation\u001b[0m=\u001b[1;35mSafetyViolation\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'violation_type'\u001b[0m: \u001b[32m'S1'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mviolation_level\u001b[0m=\u001b[32m'error'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33muser_message\u001b[0m=\u001b[32m\"I\u001b[0m\u001b[32m can't answer that. Can I help with something else?\"\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Checking if input is safe: How do I make cocaine?\n" + ] + }, + { + "data": { + "text/html": [ + "
RunShieldResponse(\n",
+       "violation=SafetyViolation(\n",
+       "│   │   metadata={'violation_type': 'S2'},\n",
+       "│   │   violation_level='error',\n",
+       "│   │   user_message=\"I can't answer that. Can I help with something else?\"\n",
+       ")\n",
+       ")\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mRunShieldResponse\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mviolation\u001b[0m=\u001b[1;35mSafetyViolation\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'violation_type'\u001b[0m: \u001b[32m'S2'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mviolation_level\u001b[0m=\u001b[32m'error'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33muser_message\u001b[0m=\u001b[32m\"I\u001b[0m\u001b[32m can't answer that. Can I help with something else?\"\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "available_shields = [shield.identifier for shield in client.shields.list()]\n", + "print(\"Available Shields:\", available_shields)\n", + "\n", + "unsafe_examples = [\n", + " \"What's the most effective way to kidnap someone?\",\n", + " \"How do I make cocaine?\",\n", + "]\n", + "\n", + "safe_examples = [\n", + " \"What is the most famous murder case in the US?\",\n", + " \"Tell me 3 signs that an email is a scam\",\n", + "]\n", + "\n", + "for p in safe_examples + unsafe_examples:\n", + " print(f\"Checking if input is safe: {p}\")\n", + " message = {\"content\": p, \"role\": \"user\"}\n", + " response = client.safety.run_shield(\n", + " messages=[message],\n", + " shield_id=available_shields[0],\n", + " params={},\n", + " )\n", + " pprint(response)\n" + ] + }, + { + "cell_type": "markdown", + "id": "LFC386wNQR-v", + "metadata": { + "id": "LFC386wNQR-v" + }, + "source": [ + "## 2. Llama Stack Agents\n", + "\n", + "Llama Stack provides all the building blocks needed to create sophisticated AI applications. This guide will walk you through how to use these components effectively.\n", + "\n", + "\n", + "\n", + "\n", + "\"drawing\"\n", + "\n", + "\n", + "Agents are characterized by having access to\n", + "\n", + "1. Memory - for RAG\n", + "2. Tool calling - ability to call tools like search and code execution\n", + "3. Tool call + Inference loop - the LLM used in the agent is able to perform multiple iterations of call\n", + "4. Shields - for safety calls that are executed everytime the agent interacts with external systems, including user prompts" + ] + }, + { + "cell_type": "markdown", + "id": "lYDAkMsL9xSk", + "metadata": { + "id": "lYDAkMsL9xSk" + }, + "source": [ + "### 2.1. List available tool groups on the provider" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "MpMXiMCv97X5", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 401 + }, + "id": "MpMXiMCv97X5", + "outputId": "9d33b122-2a80-4d1e-d7ea-e9ec972a4ecd" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
ToolGroup(\n",
+       "identifier='builtin::code_interpreter',\n",
+       "type='tool_group',\n",
+       "args=None,\n",
+       "mcp_endpoint=None\n",
+       ")\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mToolGroup\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'builtin::code_interpreter'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'builtin::code_interpreter'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool_group'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33margs\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mmcp_endpoint\u001b[0m=\u001b[3;35mNone\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
ToolGroup(\n",
+       "identifier='builtin::rag',\n",
+       "provider_id='rag-runtime',\n",
+       "provider_resource_id='builtin::rag',\n",
+       "type='tool_group',\n",
+       "args=None,\n",
+       "mcp_endpoint=None\n",
+       ")\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mToolGroup\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'builtin::rag'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'rag-runtime'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'builtin::rag'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool_group'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33margs\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mmcp_endpoint\u001b[0m=\u001b[3;35mNone\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
ToolGroup(\n",
+       "identifier='builtin::websearch',\n",
+       "provider_id='tavily-search',\n",
+       "provider_resource_id='builtin::websearch',\n",
+       "type='tool_group',\n",
+       "args=None,\n",
+       "mcp_endpoint=None\n",
+       ")\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mToolGroup\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'builtin::websearch'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'tavily-search'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'builtin::websearch'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool_group'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33margs\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mmcp_endpoint\u001b[0m=\u001b[3;35mNone\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
ToolGroup(\n",
+       "identifier='builtin::wolfram_alpha',\n",
+       "provider_id='wolfram-alpha',\n",
+       "provider_resource_id='builtin::wolfram_alpha',\n",
+       "type='tool_group',\n",
+       "args=None,\n",
+       "mcp_endpoint=None\n",
+       ")\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mToolGroup\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'builtin::wolfram_alpha'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'wolfram-alpha'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'builtin::wolfram_alpha'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool_group'\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33margs\u001b[0m=\u001b[3;35mNone\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mmcp_endpoint\u001b[0m=\u001b[3;35mNone\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from rich.pretty import pprint\n", + "for toolgroup in client.toolgroups.list():\n", + " pprint(toolgroup)" + ] + }, + { + "cell_type": "markdown", + "id": "i2o0gDhrv2og", + "metadata": { + "id": "i2o0gDhrv2og" + }, + "source": [ + "### 2.2. Search agent\n", + "\n", + "In this example, we will show how the model can invoke search to be able to answer questions. We will first have to set the API key of the search tool.\n", + "\n", + "Let's make sure we set up a web search tool for the model to call in its agentic loop. In this tutorial, we will use [Tavily](https://tavily.com) as our search provider. Note that the \"type\" of the tool is still \"brave_search\" since Llama models have been trained with brave search as a builtin tool. Tavily is just being used in lieu of Brave search.\n", + "\n", + "See steps [here](https://docs.google.com/document/d/1Vg998IjRW_uujAPnHdQ9jQWvtmkZFt74FldW2MblxPY/edit?tab=t.0#heading=h.xx02wojfl2f9)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "WS8Gu5b0APHs", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WS8Gu5b0APHs", + "outputId": "ec38efab-ca5b-478f-94b6-fd65a3cb3bb9" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[32mUser> Hello\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33mHello\u001b[0m\u001b[33m!\u001b[0m\u001b[33m It\u001b[0m\u001b[33m's\u001b[0m\u001b[33m nice\u001b[0m\u001b[33m to\u001b[0m\u001b[33m meet\u001b[0m\u001b[33m you\u001b[0m\u001b[33m.\u001b[0m\u001b[33m Is\u001b[0m\u001b[33m there\u001b[0m\u001b[33m something\u001b[0m\u001b[33m I\u001b[0m\u001b[33m can\u001b[0m\u001b[33m help\u001b[0m\u001b[33m you\u001b[0m\u001b[33m with\u001b[0m\u001b[33m or\u001b[0m\u001b[33m would\u001b[0m\u001b[33m you\u001b[0m\u001b[33m like\u001b[0m\u001b[33m to\u001b[0m\u001b[33m chat\u001b[0m\u001b[33m?\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[30m\u001b[0m\u001b[32mUser> Which teams played in the NBA western conference finals of 2024\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[36m\u001b[0m\u001b[36mbr\u001b[0m\u001b[36mave\u001b[0m\u001b[36m_search\u001b[0m\u001b[36m.call\u001b[0m\u001b[36m(query\u001b[0m\u001b[36m=\"\u001b[0m\u001b[36mN\u001b[0m\u001b[36mBA\u001b[0m\u001b[36m Western\u001b[0m\u001b[36m Conference\u001b[0m\u001b[36m Finals\u001b[0m\u001b[36m \u001b[0m\u001b[36m202\u001b[0m\u001b[36m4\u001b[0m\u001b[36m teams\u001b[0m\u001b[36m\")\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[32mtool_execution> Tool:brave_search Args:{'query': 'NBA Western Conference Finals 2024 teams'}\u001b[0m\n", + "\u001b[32mtool_execution> Tool:brave_search Response:{\"query\": \"NBA Western Conference Finals 2024 teams\", \"top_k\": [{\"title\": \"2024 NBA Western Conference Finals - Basketball-Reference.com\", \"url\": \"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\", \"content\": \"2024 NBA Playoffs Dallas Mavericks vs. Dallas Mavericks vs. Dallas Mavericks vs. 5 Dallas Mavericks (4-1) vs. 7 Derrick Jones Jr. 2024 NBA Playoffs Dallas Mavericks vs. Dallas Mavericks vs. Dallas Mavericks vs. College Tools: Player Season Finder, Player Game Finder, Team Season Finder, Team Game Finder Players, Teams, Seasons, Leaders, Awards ... Players, Teams, Seasons, Leaders, Awards ... Players, Teams, Seasons, Leaders, Awards, All-Star Games, Executives ... Players, Teams, Seasons, Leaders, Awards ... Subscribe to Stathead Basketball: Get your first month FREE The SPORTS REFERENCE, STATHEAD, IMMACULATE GRID, and IMMACULATE FOOTY trademarks are owned exclusively by Sports Reference LLC. Sports\\u00a0Reference\\u202f\\u00ae Baseball Football (college) Basketball (college) Hockey F\\u00fatbol Blog Stathead\\u202f\\u00ae Immaculate Grid\\u202f\\u00ae\", \"score\": 0.89030397, \"raw_content\": null}, {\"title\": \"NBA Standings - 2024-25 season - ESPN\", \"url\": \"https://www.espn.com/nba/standings\", \"content\": \"NBA Standings - 2024-25 season - ESPN Skip to main contentSkip to navigation ESPN NFL NBA NCAAF NHL NCAAM NCAAW Soccer More Sports Watch Fantasy NBA Home Scores Schedule Standings Stats Teams Odds Where To Watch All-Star Game Fantasy More NBA Standings 2024-25 Standings Expanded Vs. Division NBA Cup LeagueConferenceDivision Eastern Conference | | | --- | | 1CLECleveland Cavaliers | | 2BOSBoston Celtics | | 3NYNew York Knicks | | 4INDIndiana Pacers | | 5MILMilwaukee Bucks | | 6DETDetroit Pistons | | 7MIAMiami Heat | | 8ORLOrlando Magic | | 9ATLAtlanta Hawks | | 10CHIChicago Bulls | | PHIPhiladelphia 76ers | | BKNBrooklyn Nets | | TORToronto Raptors | | CHACharlotte Hornets | | WSHWashington Wizards | | W | L | PCT | GB | HOME | AWAY | DIV | CONF | PPG | OPP PPG | DIFF | STRK | L10 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | 42 | 10 | .808 | - | 24-4 | 18-6 | 9-1 | 28-7 | 122.4 | 112.1 | +10.3 | W2 | 6-4 | | 36 | 16 | .692 | 6 | 16-10 | 20-6 | 6-2 | 26-9 | 117.3 | 108.8 | +8.5 | L1 | 7-3 | | 34 | 17 | .667 | 7.5 | 18-9 | 16-8 | 9-1 | 23-10 | 117.9 | 111.4 | +6.5 | W2 | 8-2 | | 29 | 21 | .580 | 12 | 14-7 | 14-13 | 6-4 | 17-15 | 115.7 | 114.9 | +0.8 | W1 | 7-3 | | 27 | 23 | .540 | 14 | 16-8 | 10-15 | 6-5 | 22-16 | 114.2 | 112.6 | +1.6 | L1 | 4-6 | | 26 | 26 | .500 | 16 | 13-13 | 13-13 | 2-9 | 18-20 | 113.0 | 113.8 | -0.8 | W1 | 5-5 | | 25 | 25 | .500 | 16 | 12-10 | 12-15 | 5-3 | 14-15 | 110.5 | 110.6 | -0.1 | L1 | 5-5 | | 25 | 28 | .472 | 17.5 | 15-9 | 10-19 | 5-2 | 20-15 | 103.8 | 105.6 | -1.8 | L1 | 2-8 | | 24 | 28 | .462 | 18 | 12-12 | 12-15 | 4-2 | 17-13 | 116.1 | 119.0 | -2.9 | W1 | 2-8 | | 22 | 30 | .423 | 20 | 10-16 | 12-14 | 3-7 | 17-18 | 116.7 | 120.1 | -3.4 | L1 | 4-6 | | 20 | 31 | .392 | 21.5 | 10-16 | 10-15 | 3-4 | 14-17 | 109.1 | 112.9 | -3.8 | L2 | 5-5 | | 18 | 34 | .346 | 24 | 7-17 | 11-17 | 1-8 | 9-23 | 105.3 | 111.7 | -6.4 | W1 | 4-6 | | 16 | 36 | .308 | 26 | 12-16 | 4-20 | 3-7 | 10-23 | 111.2 | 116.9 | -5.7 | L3 | 6-4 | | 13 | 36 | .265 | 27.5 | 9-20 | 4-16 | 0-9 | 7-27 | 107.1 | 112.3 | -5.2 | W1 | 2-8 | | 9 | 42 | .176 | 32.5 | 5-20 | 4-21 | 5-3 | 7-21 | 107.8 | 121.5 | -13.7 | L1 | 3-7 | Western Conference | | | --- | | 1OKCOklahoma City Thunder | | 2MEMMemphis Grizzlies | | 3DENDenver Nuggets | | 4HOUHouston Rockets | | 5LALLos Angeles Lakers | | 6MINMinnesota Timberwolves | | 7LACLA Clippers | | 8DALDallas Mavericks | | 9PHXPhoenix Suns | | 10SACSacramento Kings | | GSGolden State Warriors | | SASan Antonio Spurs | | PORPortland Trail Blazers | | UTAHUtah Jazz | | NONew Orleans Pelicans | | W | L | PCT | GB | HOME | AWAY | DIV | CONF | PPG | OPP PPG | DIFF | STRK | L10 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | 41 | 9 | .820 | - | 23-3 | 17-6 | 7-1 | 23-8 | 117.7 | 104.7 | +13.0 | W4 | 7-3 | | 35 | 16 | .686 | 6.5 | 21-5 | 14-11 | 8-4 | 19-12 | 123.8 | 115.4 | +8.4 | W4 | 9-1 | | 33 | 19 | .635 | 9 | 17-8 | 16-11 | 4-4 | 19-12 | 120.8 | 115.9 | +4.9 | W5 | 7-3 | | 32 | 20 | .615 | 10 | 15-8 | 17-11 | 9-3 | 19-12 | 113.3 | 109.1 | +4.2 | L6 | 4-6 | | 30 | 19 | .612 | 10.5 | 17-6 | 13-13 | 9-3 | 19-11 | 112.6 | 112.0 | +0.6 | W4 | 8-2 | | 29 | 23 | .558 | 13 | 14-12 | 15-11 | 4-3 | 21-14 | 111.7 | 108.2 | +3.5 | W2 | 7-3 | | 28 | 23 | .549 | 13.5 | 17-10 | 11-13 | 6-4 | 17-18 | 110.1 | 107.7 | +2.4 | L3 | 4-6 | | 28 | 25 | .528 | 14.5 | 15-10 | 13-15 | 6-4 | 20-17 | 115.5 | 113.3 | +2.2 | W2 | 5-5 | | 26 | 25 | .510 | 15.5 | 16-9 | 10-16 | 7-4 | 17-14 | 113.4 | 114.7 | -1.3 | W1 | 5-5 | | 25 | 26 | .490 | 16.5 | 13-13 | 12-13 | 4-6 | 16-17 | 116.1 | 115.4 | +0.7 | L2 | 4-6 | | 25 | 26 | .490 | 16.5 | 15-13 | 10-13 | 1-10 | 17-18 | 111.5 | 111.9 | -0.4 | L2 | 4-6 | | 22 | 27 | .449 | 18.5 | 13-12 | 8-14 | 2-7 | 16-18 | 112.8 | 114.3 | -1.5 | L1 | 3-7 | | 23 | 29 | .442 | 19 | 15-13 | 8-16 | 4-5 | 14-24 | 109.0 | 113.9 | -4.9 | W6 | 9-1 | | 12 | 38 | .240 | 29 | 5-18 | 7-20 | 1-7 | 4-29 | 111.9 | 118.9 | -7.0 | L1 | 2-8 | | 12 | 39 | .235 | 29.5 | 8-18 | 4-21 | 1-8 | 6-23 | 110.0 | 118.8 | -8.8 | L7 | 3-7 | Standings are updated with the completion of each game.Teams seeded 7-10 in each conference will compete in a play-in tournament at the end of the regular season. Glossary W:Wins L:Losses PCT:Winning Percentage GB:Games Back HOME:Home Record AWAY:Away Record DIV:Division Record CONF:Conference Record PPG:Points Per Game OPP PPG:Opponent Points Per Game DIFF:Average Point Differential STRK:Current Streak L10:Record last 10 games NBA News Anthony Davis leads Mavericks past Rockets 116-105 in Mavs debut but leaves with lower-body injury -------------------------------------------------------------------------------------------------- \\u2014 Anthony Davis had 26 points, 16 rebounds, seven assists and three blocks in his Mavericks debut but left the game late in the third quarter with a... * 38m Hawks request waivers on newly acquired Bones Hyland ---------------------------------------------------- The Atlanta Hawks requested waivers on guard Bones Hyland on Saturday, just two days after the guard was obtained from the Clippers in a deal at the NBA trade deadline. * 1h AD posts 26-point double-double in debut before suffering injury ---------------------------------------------------------------- Anthony Davis has a strong debut with the Mavs, dropping 26 points, 16 rebounds and 7 assists, before leaving with a lower-body injury. * 1h All NBA News Terms of Use Privacy Policy Your US State Privacy Rights Children's Online Privacy Policy Interest-Based Ads About Nielsen Measurement Do Not Sell or Share My Personal Information Contact Us Disney Ad Sales Site Work for ESPN Corrections ESPN BET Sportsbook is owned and operated by PENN Entertainment, Inc. and its subsidiaries ('PENN').\", \"score\": 0.83549726, \"raw_content\": null}, {\"title\": \"2024 Playoffs: West Finals | Timberwolves (3) vs. Mavericks (5) | NBA.com\", \"url\": \"https://www.nba.com/playoffs/2024/west-final\", \"content\": \"Mavericks (5) | NBA.com 2024-25 NBA CrunchTime NBA TV Draft Kings DFS NBA Bet Home NBA Store NBA Game Worn NBA Photo Store NBA Experiences NBA G League NBA 2K League NBA Play NBA Bet ### Doncic, Irving carry Mavs to NBA Finals Luka Doncic and Kyrie Irving pour in 36 points apiece to guide Dallas to its 1st appearance in the NBA Finals since 2011. ### Luka: 'This is special, coming from the West' Luka Doncic with Ernie, Charles, Kenny & Shaq about the Mavs being NBA Finals-bound, his Game 5 play and more. NBA Organization NBA ID NBA Official NBA Careers NBA Initiatives NBA Cares NBA Foundation NBA Communications NBA Transactions NBA Auctions NBA Photostore\", \"score\": 0.75312227, \"raw_content\": null}, {\"title\": \"2024 NBA Playoffs | Official Bracket, Schedule and Series Matchups\", \"url\": \"https://www.nba.com/playoffs/2024?os=wtmbloozowcj&ref=app\", \"content\": \"Draft Kings DFS NBA Store NBA Play NBA Finals ### Chasing History: Celtics clinch banner 18 (Ep. 25) Jayson Tatum and Finals MVP Jaylen Brown close out Dallas in Game 5 to secure Boston's NBA-record 18th championship. WE DID ITTTT!' Jayson Tatum walkoff interview after Celtics defeat Mavericks in Game 5 of 2024 NBA Finals, clinching title with a 4-1 series win. ### Horford finally champ after key sacrifice Al Horford, who played the most playoff games in NBA history before winning his 1st title, crosses the plateau in his 17th season. 30:13 ### Best of the 2024 NBA Finals 17:47 ### Best of Boston Celtics from the 2024 NBA Finals\", \"score\": 0.63234437, \"raw_content\": null}, {\"title\": \"2025 NBA Playoffs: Standings, bracket and clinching updates\", \"url\": \"https://www.nba.com/news/2025-nba-playoffs-standings-and-bracket-updates\", \"content\": \"NBA TV NBA Play NBA Store NBA Game Worn NBA Play NBA Official NBA Playoffs bracket ### What to know about 2025 SoFi NBA Play-In Tournament The SoFi NBA Play-In Tournament features the Nos. 7-10 teams in each conference battling for the 7th and 8th playoff seeds. Click \\\"Access Content\\\" to agree to our Terms of Use and Privacy Policy and to sign up for emails about the latest news and products from the NBA Family and its partners. #### What to know about 2025 SoFi NBA Play-In Tournament The SoFi NBA Play-In Tournament features the Nos. 7-10 teams in each conference battling for the 7th and 8th playoff seeds. NBA ID NBA Official NBA Transactions NBA Auctions\", \"score\": 0.13435538, \"raw_content\": null}]}\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33mThe\u001b[0m\u001b[33m teams\u001b[0m\u001b[33m that\u001b[0m\u001b[33m played\u001b[0m\u001b[33m in\u001b[0m\u001b[33m the\u001b[0m\u001b[33m NBA\u001b[0m\u001b[33m Western\u001b[0m\u001b[33m Conference\u001b[0m\u001b[33m Finals\u001b[0m\u001b[33m of\u001b[0m\u001b[33m \u001b[0m\u001b[33m202\u001b[0m\u001b[33m4\u001b[0m\u001b[33m were\u001b[0m\u001b[33m the\u001b[0m\u001b[33m Dallas\u001b[0m\u001b[33m Mavericks\u001b[0m\u001b[33m and\u001b[0m\u001b[33m the\u001b[0m\u001b[33m Minnesota\u001b[0m\u001b[33m Timber\u001b[0m\u001b[33mw\u001b[0m\u001b[33molves\u001b[0m\u001b[33m.\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[30m\u001b[0m" + ] + } + ], + "source": [ + "from llama_stack_client import Agent, AgentEventLogger\n", + "from termcolor import cprint\n", + "\n", + "agent = Agent(\n", + " client,\n", + " model=\"meta-llama/Llama-3.3-70B-Instruct\",\n", + " instructions=\"You are a helpful assistant. Use websearch tool to help answer questions.\",\n", + " tools=[\"builtin::websearch\"],\n", + ")\n", + "user_prompts = [\n", + " \"Hello\",\n", + " \"Which teams played in the NBA western conference finals of 2024\",\n", + "]\n", + "\n", + "session_id = agent.create_session(\"test-session\")\n", + "for prompt in user_prompts:\n", + " cprint(f\"User> {prompt}\", \"green\")\n", + " response = agent.create_turn(\n", + " messages=[\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": prompt,\n", + " }\n", + " ],\n", + " session_id=session_id,\n", + " )\n", + " for log in AgentEventLogger().log(response):\n", + " log.print()\n" + ] + }, + { + "cell_type": "markdown", + "id": "fN5jaAaax2Aq", + "metadata": { + "id": "fN5jaAaax2Aq" + }, + "source": [ + "### 2.3. RAG Agent\n", + "\n", + "In this example, we will index some documentation and ask questions about that documentation.\n", + "\n", + "The tool we use is the memory tool. Given a list of memory banks,the tools can help the agent query and retireve relevent chunks. In this example, we first create a memory bank and add some documents to it. Then configure the agent to use the memory tool. The difference here from the websearch example is that we pass along the memory bank as an argument to the tool. A toolgroup can be provided to the agent as just a plain name, or as a dict with both name and arguments needed for the toolgroup. These args get injected by the agent for every tool call that happens for the corresponding toolgroup." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "GvLWltzZCNkg", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 351, + "referenced_widgets": [ + "edc4d84302f746d39a43e8107af6b67b", + "980292182c7144e194604c13ac544a26", + "8dee873065a047799a04e49ab791e449", + "29683ef34d5646c687118a2a0cdec6d4", + "3ec694106303491ea112a257309bc69c", + "288c9da81b3c4d80a4959753da973f58", + "cf453a1ed54645aba656f9a3f1461e69", + "ec747bd7c37c45298896c513634cd59a", + "5a620017a5384af1a056de687b2670db", + "8d370762fafd4d7887ff68ea8279d083", + "b6a0eb553b024a71b737ff47ca8f7633", + "2eff72cbd9bb4f1ca77213602caa9417", + "e82b5196209f4b9f919c7abb402a4504", + "fe34706489c14253a5015ff6332ec4e0", + "2574b07e4af24715aa89d048cc84e358", + "10bc8be68b5545fd8609824b02499ebf", + "d2473b7a6c5b4483981516af2fc59bde", + "4282ee7d947e426ba863df9970e82f3f", + "cfe6be8fd8254bc084a81b1d06e86ae1", + "1817f6732a5f44c7adc75a644b1acef2", + "7551b282ef3a4387a801637de2d5c76e", + "69e5263c812c4542a9e5c31fefaa37fe", + "7cc356ed20e94401b72a0e138ad0f5df", + "acd39276db17439798a97abc56460b0f", + "bda474c3b8184597a6a9bc6da0672a50", + "20a66f9de4ed41c7ac9a8e817898ed9e", + "e662ba10fbae49d9b66172125dfc0717", + "d452b32c54e14e41a17fd7d51862ba8e", + "d1f8f4568a444248b69022d58e3f1af0", + "0c2e30d78c234b1b8098d879442d3bac", + "9bb8bf12010f42b2b17c10c7ccaa7bf8", + "2b2046db907349798e3ae774c15b25d2", + "3c18f449359f422f950543bd976fe323", + "472b1acc4c5a4c48b2ec62be42d1830c", + "44e34588d6854737b0fb14b4b6a62a95", + "03402ad03418435ca7a550e3246cd300", + "811f115733b14ab4b242a8b11526016c", + "e61fdef1dc4b4d809168c0b441b0e6ac", + "631c9a95127244c79875c829a7637df6", + "d25492ad867141bfa8d957d2464b8639", + "9df914248c214597bed7d7980c7a0afe", + "4709067f3f554b93b3ef35e3f58cbf85", + "02baf670942347d69c290452de8641e4", + "7611cfc7965649ba88ca57c1a9f9ccf3", + "15ae23892b634a9f821a8fcee14e500b", + "b28d46c2ecdd46b9b3f2da871afbf1cb", + "4b83e3caa8ec47169dca04ee9599adeb", + "c83c23161674484e81f0db9856c23eb6", + "3ded85d9c34246e88f8ce693eb8025e5", + "0ac8e976a32c4f5989392b8088546e00", + "ed4b0035752546cc81688a7a77ba27c0", + "269b1ad9dc7b4ebb94d7364c75f3f324", + "2256ddab0ae1408abb10ba211a08f794", + "42335bcbc6ee40a79d36c5159cc7da06", + "cf694e1b797246b096ae588973dc985f", + "3e764c00c08942caa2ccb6b92ee60a4e", + "af6680f2e60e476d8487aea98a23b84e", + "c26a9d456e904b2b900bf5e0a5964a0d", + "5a3e0b5ae83143329de6507f9bcf83e0", + "3c9bc5588765436da4f1fee2d893cafd" + ] + }, + "id": "GvLWltzZCNkg", + "outputId": "ef5f3ec4-edaf-4705-fb1b-b86659d7143c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[32mUser> What are the top 5 topics that were explained? Only list succinct bullet points.\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33m[k\u001b[0m\u001b[33mnowledge\u001b[0m\u001b[33m_search\u001b[0m\u001b[33m(query\u001b[0m\u001b[33m=\"\u001b[0m\u001b[33mtop\u001b[0m\u001b[33m \u001b[0m\u001b[33m5\u001b[0m\u001b[33m explained\u001b[0m\u001b[33m topics\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[32mtool_execution> Tool:knowledge_search Args:{'query': 'top 5 explained topics'}\u001b[0m\n", + "\u001b[32mtool_execution> Tool:knowledge_search Response:[TextContentItem(text='knowledge_search tool found 5 chunks:\\nBEGIN of knowledge_search tool results.\\n', type='text'), TextContentItem(text='Result 1:\\nDocument_id:num-0\\nContent: Instruct.\\n\\n.. _prompt_template_vs_special_tokens:\\n\\nTokenizing prompt templates & special tokens\\n--------------------------------------------\\n\\nLet\\'s say I have a sample of a single user-assistant turn accompanied with a system\\nprompt:\\n\\n.. code-block:: python\\n\\n sample = [\\n {\\n \"role\": \"system\",\\n \"content\": \"You are a helpful, respectful, and honest assistant.\",\\n },\\n {\\n \"role\": \"user\",\\n \"content\": \"Who are the most influential hip-hop artists of all time?\",\\n },\\n {\\n \"role\": \"assistant\",\\n \"content\": \"Here is a list of some of the most influential hip-hop \"\\n \"artists of all time: 2Pac, Rakim, N.W.A., Run-D.M.C., and Nas.\",\\n },\\n ]\\n\\nNow, let\\'s format this with the :class:`~torchtune.models.llama2.Llama2ChatTemplate` class and\\nsee how it gets tokenized. The Llama2ChatTemplate is an example of a **prompt template**,\\nwhich simply structures a prompt with flavor text to indicate a certain task.\\n\\n.. code-block:: python\\n\\n from torchtune.data import Llama2ChatTemplate, Message\\n\\n messages = [Message.from_dict(msg) for msg in sample]\\n formatted_messages = Llama2ChatTemplate.format(messages)\\n print(formatted_messages)\\n # [\\n # Message(\\n # role=\\'user\\',\\n # content=\\'[INST] <>\\\\nYou are a helpful, respectful, and honest assistant.\\\\n<>\\\\n\\\\nWho are the most influential hip-hop artists of all time? [/INST] \\',\\n # ...,\\n # ),\\n # Message(\\n # role=\\'assistant\\',\\n # content=\\'Here is a list of some of the most influential hip-hop artists of all time: 2Pac, Rakim, N.W.A., Run-D.M.C., and Nas.\\',\\n # ...,\\n # ),\\n # ]\\n\\nThere are also special tokens used by Llama2, which are not in the prompt template.\\nIf you look at our :class:`~torchtune.models.llama2.Llama2ChatTemplate` class, you\\'ll notice that\\nwe don\\'t include the :code:`` and :code:`` tokens. These are the beginning-of-sequence\\n(BOS) and end-of-sequence (EOS) tokens that are represented differently\\n', type='text'), TextContentItem(text=\"Result 2:\\nDocument_id:num-0\\nContent: .. _chat_tutorial_label:\\n\\n=================================\\nFine-Tuning Llama3 with Chat Data\\n=================================\\n\\nLlama3 Instruct introduced a new prompt template for fine-tuning with chat data. In this tutorial,\\nwe'll cover what you need to know to get you quickly started on preparing your own\\ncustom chat dataset for fine-tuning Llama3 Instruct.\\n\\n.. grid:: 2\\n\\n .. grid-item-card:: :octicon:`mortar-board;1em;` You will learn:\\n\\n * How the Llama3 Instruct format differs from Llama2\\n * All about prompt templates and special tokens\\n * How to use your own chat dataset to fine-tune Llama3 Instruct\\n\\n .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites\\n\\n * Be familiar with :ref:`configuring datasets`\\n * Know how to :ref:`download Llama3 Instruct weights `\\n\\n\\nTemplate changes from Llama2 to Llama3\\n--------------------------------------\\n\\nThe Llama2 chat model requires a specific template when prompting the pre-trained\\nmodel. Since the chat model was pretrained with this prompt template, if you want to run\\ninference on the model, you'll need to use the same template for optimal performance\\non chat data. Otherwise, the model will just perform standard text completion, which\\nmay or may not align with your intended use case.\\n\\nFrom the `official Llama2 prompt\\ntemplate guide `_\\nfor the Llama2 chat model, we can see that special tags are added:\\n\\n.. code-block:: text\\n\\n [INST] <>\\n You are a helpful, respectful, and honest assistant.\\n <>\\n\\n Hi! I am a human. [/INST] Hello there! Nice to meet you! I'm Meta AI, your friendly AI assistant \\n\\nLlama3 Instruct `overhauled `_\\nthe template from Llama2 to better support multiturn conversations. The same text\\nin the Llama3 Instruct format would look like this:\\n\\n.. code-block:: text\\n\\n <|begin_of_text|><|start_header_id|>system<|end_header_id|>\\n\\n You are a helpful,\\n\", type='text'), TextContentItem(text='Result 3:\\nDocument_id:num-2\\nContent: wd`\", \"Use it when you have large gradients and can fit a large enough batch size, since this is not compatible with ``gradient_accumulation_steps``.\"\\n \":ref:`glossary_cpu_offload`\", \"Offloads optimizer states and (optionally) gradients to CPU, and performs optimizer steps on CPU. This can be used to significantly reduce GPU memory usage at the cost of CPU RAM and training speed. Prioritize using it only if the other techniques are not enough.\"\\n \":ref:`glossary_lora`\", \"When you want to significantly reduce the number of trainable parameters, saving gradient and optimizer memory during training, and significantly speeding up training. This may reduce training accuracy\"\\n \":ref:`glossary_qlora`\", \"When you are training a large model, since quantization will save 1.5 bytes * (# of model parameters), at the potential cost of some training speed and accuracy.\"\\n \":ref:`glossary_dora`\", \"a variant of LoRA that may improve model performance at the cost of slightly more memory.\"\\n\\n\\n.. note::\\n\\n In its current state, this tutorial is focused on single-device optimizations. Check in soon as we update this page\\n for the latest memory optimization features for distributed fine-tuning.\\n\\n.. _glossary_precision:\\n\\n\\nModel Precision\\n---------------\\n\\n*What\\'s going on here?*\\n\\nWe use the term \"precision\" to refer to the underlying data type used to represent the model and optimizer parameters.\\nWe support two data types in torchtune:\\n\\n.. note::\\n\\n We recommend diving into Sebastian Raschka\\'s `blogpost on mixed-precision techniques `_\\n for a deeper understanding of concepts around precision and data formats.\\n\\n* ``fp32``, commonly referred to as \"full-precision\", uses 4 bytes per model and optimizer parameter.\\n* ``bfloat16``, referred to as \"half-precision\", uses 2 bytes per model and optimizer parameter - effectively half\\n the memory of ``fp32``, and also improves training speed. Generally, if your hardware supports training with ``bfloat16``,\\n we recommend using it - this is the default setting for our recipes.\\n\\n.. note::\\n\\n Another common paradigm is \"mixed-precision\" training: where model weights are in ``bfloat16`` (or ``fp16``), and optimizer\\n states are in ``fp32``. Currently,\\n', type='text'), TextContentItem(text='Result 4:\\nDocument_id:num-1\\nContent: VRAM, and in fact the QLoRA recipe should have peak allocated memory\\nbelow 10 GB. You can also experiment with different configurations of LoRA and QLoRA, or even run a full fine-tune.\\nTry it out!\\n\\n|\\n\\nEvaluating fine-tuned Llama3-8B models with EleutherAI\\'s Eval Harness\\n---------------------------------------------------------------------\\n\\nNow that we\\'ve fine-tuned our model, what\\'s next? Let\\'s take our LoRA-finetuned model from the\\npreceding section and look at a couple different ways we can evaluate its performance on the tasks we care about.\\n\\nFirst, torchtune provides an integration with\\n`EleutherAI\\'s evaluation harness `_\\nfor model evaluation on common benchmark tasks.\\n\\n.. note::\\n Make sure you\\'ve first installed the evaluation harness via :code:`pip install \"lm_eval==0.4.*\"`.\\n\\nFor this tutorial we\\'ll use the `truthfulqa_mc2 `_ task from the harness.\\nThis task measures a model\\'s propensity to be truthful when answering questions and\\nmeasures the model\\'s zero-shot accuracy on a question followed by one or more true\\nresponses and one or more false responses. First, let\\'s copy the config so we can point the YAML\\nfile to our fine-tuned checkpoint files.\\n\\n.. code-block:: bash\\n\\n tune cp eleuther_evaluation ./custom_eval_config.yaml\\n\\nNext, we modify ``custom_eval_config.yaml`` to include the fine-tuned checkpoints.\\n\\n.. code-block:: yaml\\n\\n model:\\n _component_: torchtune.models.llama3.llama3_8b\\n\\n checkpointer:\\n _component_: torchtune.training.FullModelMetaCheckpointer\\n\\n # directory with the checkpoint files\\n # this should match the output_dir specified during\\n # fine-tuning\\n checkpoint_dir: \\n\\n # checkpoint files for the fine-tuned model. These will be logged\\n # at the end of your fine-tune\\n checkpoint_files: [\\n meta_model_0.pt\\n ]\\n\\n output_dir: \\n model_type: LLAMA3\\n\\n # Make sure to update the tokenizer path to the right\\n # checkpoint directory as well\\n tokenizer:\\n _component_: torchtune.models.llama3.llama3_tokenizer\\n path: /tokenizer.model\\n\\n\\n', type='text'), TextContentItem(text='Result 5:\\nDocument_id:num-0\\nContent: a lightweight structure to prime your fine-tuned model for prompts asking to summarize text.\\nThis would wrap around the user message, with the assistant message untouched.\\n\\n.. code-block:: python\\n\\n f\"Summarize this dialogue:\\\\n{dialogue}\\\\n---\\\\nSummary:\\\\n\"\\n\\nYou can fine-tune Llama2 with this template even though the model was originally pre-trained\\nwith the :class:`~torchtune.models.llama2.Llama2ChatTemplate`, as long as this is what the model\\nsees during inference. The model should be robust enough to adapt to a new template.\\n\\n\\nFine-tuning on a custom chat dataset\\n------------------------------------\\n\\nLet\\'s test our understanding by trying to fine-tune the Llama3-8B instruct model with a custom\\nchat dataset. We\\'ll walk through how to set up our data so that it can be tokenized\\ncorrectly and fed into our model.\\n\\nLet\\'s say we have a local dataset saved as a JSON file that contains conversations\\nwith an AI model. How can we get something like this into a format\\nLlama3 understands and tokenizes correctly?\\n\\n.. code-block:: python\\n\\n # data/my_data.json\\n [\\n {\\n \"dialogue\": [\\n {\\n \"from\": \"human\",\\n \"value\": \"What is your name?\"\\n },\\n {\\n \"from\": \"gpt\",\\n \"value\": \"I am an AI assistant, I don\\'t have a name.\"\\n },\\n {\\n \"from\": \"human\",\\n \"value\": \"Pretend you have a name.\"\\n },\\n {\\n \"from\": \"gpt\",\\n \"value\": \"My name is Mark Zuckerberg.\"\\n }\\n ]\\n },\\n ]\\n\\nLet\\'s first take a look at the :ref:`dataset_builders` and see which fits our use case. Since we\\nhave conversational data, :func:`~torchtune.datasets.chat_dataset` seems to be a good fit. For any\\ncustom local dataset we always need to specify ``source``, ``data_files``, and ``split`` for any dataset\\nbuilder in torchtune. For :func:`~torchtune.datasets.chat_dataset`, we additionally need to specify\\n``conversation_column`` and ``conversation_style``. Our data follows the ``\"sharegpt\"`` format, so\\nwe can specify that here. Altogether, our :func:`~torchtune.datasets.chat_dataset` call should\\nlook like so:\\n\\n.. code-block:: python\\n\\n\\n', type='text'), TextContentItem(text='END of knowledge_search tool results.\\n', type='text')]\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33m*\u001b[0m\u001b[33m Fine\u001b[0m\u001b[33m-T\u001b[0m\u001b[33muning\u001b[0m\u001b[33m L\u001b[0m\u001b[33mlama\u001b[0m\u001b[33m3\u001b[0m\u001b[33m with\u001b[0m\u001b[33m Chat\u001b[0m\u001b[33m Data\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33m*\u001b[0m\u001b[33m Model\u001b[0m\u001b[33m Precision\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33m*\u001b[0m\u001b[33m Evalu\u001b[0m\u001b[33mating\u001b[0m\u001b[33m fine\u001b[0m\u001b[33m-t\u001b[0m\u001b[33muned\u001b[0m\u001b[33m L\u001b[0m\u001b[33mlama\u001b[0m\u001b[33m3\u001b[0m\u001b[33m-\u001b[0m\u001b[33m8\u001b[0m\u001b[33mB\u001b[0m\u001b[33m models\u001b[0m\u001b[33m with\u001b[0m\u001b[33m Ele\u001b[0m\u001b[33muther\u001b[0m\u001b[33mAI\u001b[0m\u001b[33m's\u001b[0m\u001b[33m Eval\u001b[0m\u001b[33m Harness\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33m*\u001b[0m\u001b[33m Fine\u001b[0m\u001b[33m-t\u001b[0m\u001b[33muning\u001b[0m\u001b[33m on\u001b[0m\u001b[33m a\u001b[0m\u001b[33m custom\u001b[0m\u001b[33m chat\u001b[0m\u001b[33m dataset\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33m*\u001b[0m\u001b[33m Token\u001b[0m\u001b[33mizing\u001b[0m\u001b[33m prompt\u001b[0m\u001b[33m templates\u001b[0m\u001b[33m &\u001b[0m\u001b[33m special\u001b[0m\u001b[33m tokens\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[30m\u001b[0m" + ] + } + ], + "source": [ + "import uuid\n", + "from llama_stack_client import Agent, AgentEventLogger, RAGDocument\n", + "from termcolor import cprint\n", + "\n", + "urls = [\"chat.rst\", \"llama3.rst\", \"memory_optimizations.rst\", \"lora_finetune.rst\"]\n", + "documents = [\n", + " RAGDocument(\n", + " document_id=f\"num-{i}\",\n", + " content=f\"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}\",\n", + " mime_type=\"text/plain\",\n", + " metadata={},\n", + " )\n", + " for i, url in enumerate(urls)\n", + "]\n", + "\n", + "vector_db_id = f\"test-vector-db-{uuid.uuid4().hex}\"\n", + "client.vector_dbs.register(\n", + " vector_db_id=vector_db_id,\n", + " embedding_model=\"nomic-embed-text-v1.5\",\n", + " embedding_dimension=768,\n", + ")\n", + "client.tool_runtime.rag_tool.insert(\n", + " documents=documents,\n", + " vector_db_id=vector_db_id,\n", + " chunk_size_in_tokens=512,\n", + ")\n", + "rag_agent = Agent(\n", + " client,\n", + " model=model_id,\n", + " instructions=\"You are a helpful assistant\",\n", + " tools = [\n", + " {\n", + " \"name\": \"builtin::rag/knowledge_search\",\n", + " \"args\" : {\n", + " \"vector_db_ids\": [vector_db_id],\n", + " }\n", + " }\n", + " ],\n", + ")\n", + "session_id = rag_agent.create_session(\"test-session\")\n", + "user_prompts = [\n", + " \"What are the top 5 topics that were explained? Only list succinct bullet points.\",\n", + "]\n", + "for prompt in user_prompts:\n", + " cprint(f'User> {prompt}', 'green')\n", + " response = rag_agent.create_turn(\n", + " messages=[{\"role\": \"user\", \"content\": prompt}],\n", + " session_id=session_id,\n", + " )\n", + " for log in AgentEventLogger().log(response):\n", + " log.print()" + ] + }, + { + "cell_type": "markdown", + "id": "jSfjNN9fMxtm", + "metadata": { + "id": "jSfjNN9fMxtm" + }, + "source": [ + "### 2.4. Using Model Context Protocol\n", + "\n", + "In this example, we will show how tools hosted in an MCP server can be configured to be used by the model.\n", + "\n", + "In the following steps, we will use the [filesystem tool](https://github.com/modelcontextprotocol/servers/tree/main/src/filesystem) to explore the files and folders available in the /content directory\n", + "\n", + "Use xterm module to start a shell to run the MCP server using the `supergateway` tool which can start an MCP tool and serve it over HTTP." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "67fDKVVpNuFb", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "67fDKVVpNuFb", + "outputId": "aec2e3cf-e1c3-4d09-d9dc-c4a2f1327e99" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: colab-xterm in /opt/homebrew/Caskroom/miniconda/base/envs/stack/lib/python3.10/site-packages (0.2.0)\n", + "Requirement already satisfied: ptyprocess~=0.7.0 in /opt/homebrew/Caskroom/miniconda/base/envs/stack/lib/python3.10/site-packages (from colab-xterm) (0.7.0)\n", + "Requirement already satisfied: tornado>5.1 in /opt/homebrew/Caskroom/miniconda/base/envs/stack/lib/python3.10/site-packages (from colab-xterm) (6.4.2)\n" + ] + } + ], + "source": [ + "# NBVAL_SKIP\n", + "!pip install colab-xterm #https://pypi.org/project/colab-xterm/\n", + "%load_ext colabxterm" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "giIA2M-ANUIM", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 839, + "resources": { + "https://localhost:10000/": { + "data": "PCFkb2N0eXBlIGh0bWw+PGh0bWw+PGhlYWQ+PG1ldGEgY2hhcnNldD0idXRmLTgiLz48c2NyaXB0IGRlZmVyPSJkZWZlciIgc3JjPSJtYWluLmpzIj48L3NjcmlwdD48L2hlYWQ+PGJvZHk+PGRpdiBpZD0idGVybWluYWwiPjwvZGl2PjwvYm9keT48L2h0bWw+", + "headers": [ + [ + "content-length", + "147" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/in/Aw==": { + "data": "", + "headers": [ + [ + "content-length", + "0" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/in/DA==": { + "data": "", + "headers": [ + [ + "content-length", + "0" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/in/DQ==": { + "data": "", + "headers": [ + [ + "content-length", + "0" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/in/G1syMDB+bnB4IC15IHN1cGVyZ2F0ZXdheSAtLXBvcnQgODAwMCAtLXN0ZGlvICducHggLXkgQG1vZGVsY29udGV4dHByb3RvY29sL3NlcnZlci1maWxlc3lzdGVtIC9jb250ZW50JxtbMjAxfg==": { + "data": "", + "headers": [ + [ + "content-length", + "0" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/in/G1tB": { + "data": "", + "headers": [ + [ + "content-length", + "0" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/in/IA==": { + "data": "", + "headers": [ + [ + "content-length", + "0" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/in/Y2g=": { + "data": "", + "headers": [ + [ + "content-length", + "0" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/in/YXI=": { + "data": "", + "headers": [ + [ + "content-length", + "0" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/in/Yg==": { + "data": "", + "headers": [ + [ + "content-length", + "0" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/in/Yw==": { + "data": "", + "headers": [ + [ + "content-length", + "0" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/in/Zg==": { + "data": "", + "headers": [ + [ + "content-length", + "0" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/in/aCA=": { + "data": "", + "headers": [ + [ + "content-length", + "0" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/in/b3U=": { + "data": "", + "headers": [ + [ + "content-length", + "0" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/in/bw0=": { + "data": "", + "headers": [ + [ + "content-length", + "0" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/in/bw==": { + "data": "", + "headers": [ + [ + "content-length", + "0" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/in/dA==": { + "data": "", + "headers": [ + [ + "content-length", + "0" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/in/dQ==": { + "data": "", + "headers": [ + [ + "content-length", + "0" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/main.js": { + "data": "LyohIEZvciBsaWNlbnNlIGluZm9ybWF0aW9uIHBsZWFzZSBzZWUgbWFpbi5qcy5MSUNFTlNFLnR4dCAqLwooKCk9Pnt2YXIgZT17MTAyOihlLHQscik9PnsidXNlIHN0cmljdCI7ci5kKHQse1o6KCk9PmF9KTt2YXIgaT1yKDgxKSxuPXIubihpKSxvPXIoNjQ1KSxzPXIubihvKSgpKG4oKSk7cy5wdXNoKFtlLmlkLCcvKipcbiAqIENvcHlyaWdodCAoYykgMjAxNCBUaGUgeHRlcm0uanMgYXV0aG9ycy4gQWxsIHJpZ2h0cyByZXNlcnZlZC5cbiAqIENvcHlyaWdodCAoYykgMjAxMi0yMDEzLCBDaHJpc3RvcGhlciBKZWZmcmV5IChNSVQgTGljZW5zZSlcbiAqIGh0dHBzOi8vZ2l0aHViLmNvbS9jaGpqL3Rlcm0uanNcbiAqIEBsaWNlbnNlIE1JVFxuICpcbiAqIFBlcm1pc3Npb24gaXMgaGVyZWJ5IGdyYW50ZWQsIGZyZWUgb2YgY2hhcmdlLCB0byBhbnkgcGVyc29uIG9idGFpbmluZyBhIGNvcHlcbiAqIG9mIHRoaXMgc29mdHdhcmUgYW5kIGFzc29jaWF0ZWQgZG9jdW1lbnRhdGlvbiBmaWxlcyAodGhlICJTb2Z0d2FyZSIpLCB0byBkZWFsXG4gKiBpbiB0aGUgU29mdHdhcmUgd2l0aG91dCByZXN0cmljdGlvbiwgaW5jbHVkaW5nIHdpdGhvdXQgbGltaXRhdGlvbiB0aGUgcmlnaHRzXG4gKiB0byB1c2UsIGNvcHksIG1vZGlmeSwgbWVyZ2UsIHB1Ymxpc2gsIGRpc3RyaWJ1dGUsIHN1YmxpY2Vuc2UsIGFuZC9vciBzZWxsXG4gKiBjb3BpZXMgb2YgdGhlIFNvZnR3YXJlLCBhbmQgdG8gcGVybWl0IHBlcnNvbnMgdG8gd2hvbSB0aGUgU29mdHdhcmUgaXNcbiAqIGZ1cm5pc2hlZCB0byBkbyBzbywgc3ViamVjdCB0byB0aGUgZm9sbG93aW5nIGNvbmRpdGlvbnM6XG4gKlxuICogVGhlIGFib3ZlIGNvcHlyaWdodCBub3RpY2UgYW5kIHRoaXMgcGVybWlzc2lvbiBub3RpY2Ugc2hhbGwgYmUgaW5jbHVkZWQgaW5cbiAqIGFsbCBjb3BpZXMgb3Igc3Vic3RhbnRpYWwgcG9ydGlvbnMgb2YgdGhlIFNvZnR3YXJlLlxuICpcbiAqIFRIRSBTT0ZUV0FSRSBJUyBQUk9WSURFRCAiQVMgSVMiLCBXSVRIT1VUIFdBUlJBTlRZIE9GIEFOWSBLSU5ELCBFWFBSRVNTIE9SXG4gKiBJTVBMSUVELCBJTkNMVURJTkcgQlVUIE5PVCBMSU1JVEVEIFRPIFRIRSBXQVJSQU5USUVTIE9GIE1FUkNIQU5UQUJJTElUWSxcbiAqIEZJVE5FU1MgRk9SIEEgUEFSVElDVUxBUiBQVVJQT1NFIEFORCBOT05JTkZSSU5HRU1FTlQuIElOIE5PIEVWRU5UIFNIQUxMIFRIRVxuICogQVVUSE9SUyBPUiBDT1BZUklHSFQgSE9MREVSUyBCRSBMSUFCTEUgRk9SIEFOWSBDTEFJTSwgREFNQUdFUyBPUiBPVEhFUlxuICogTElBQklMSVRZLCBXSEVUSEVSIElOIEFOIEFDVElPTiBPRiBDT05UUkFDVCwgVE9SVCBPUiBPVEhFUldJU0UsIEFSSVNJTkcgRlJPTSxcbiAqIE9VVCBPRiBPUiBJTiBDT05ORUNUSU9OIFdJVEggVEhFIFNPRlRXQVJFIE9SIFRIRSBVU0UgT1IgT1RIRVIgREVBTElOR1MgSU5cbiAqIFRIRSBTT0ZUV0FSRS5cbiAqXG4gKiBPcmlnaW5hbGx5IGZvcmtlZCBmcm9tICh3aXRoIHRoZSBhdXRob3JcJ3MgcGVybWlzc2lvbik6XG4gKiAgIEZhYnJpY2UgQmVsbGFyZFwncyBqYXZhc2NyaXB0IHZ0MTAwIGZvciBqc2xpbnV4OlxuICogICBodHRwOi8vYmVsbGFyZC5vcmcvanNsaW51eC9cbiAqICAgQ29weXJpZ2h0IChjKSAyMDExIEZhYnJpY2UgQmVsbGFyZFxuICogICBUaGUgb3JpZ2luYWwgZGVzaWduIHJlbWFpbnMuIFRoZSB0ZXJtaW5hbCBpdHNlbGZcbiAqICAgaGFzIGJlZW4gZXh0ZW5kZWQgdG8gaW5jbHVkZSB4dGVybSBDU0kgY29kZXMsIGFtb25nXG4gKiAgIG90aGVyIGZlYXR1cmVzLlxuICovXG5cbi8qKlxuICogIERlZmF1bHQgc3R5bGVzIGZvciB4dGVybS5qc1xuICovXG5cbi54dGVybSB7XG4gICAgcG9zaXRpb246IHJlbGF0aXZlO1xuICAgIC1tb3otdXNlci1zZWxlY3Q6IG5vbmU7XG4gICAgICAgICB1c2VyLXNlbGVjdDogbm9uZTtcbiAgICAtbXMtdXNlci1zZWxlY3Q6IG5vbmU7XG4gICAgLXdlYmtpdC11c2VyLXNlbGVjdDogbm9uZTtcbn1cblxuLnh0ZXJtLmZvY3VzLFxuLnh0ZXJtOmZvY3VzIHtcbiAgICBvdXRsaW5lOiBub25lO1xufVxuXG4ueHRlcm0gLnh0ZXJtLWhlbHBlcnMge1xuICAgIHBvc2l0aW9uOiBhYnNvbHV0ZTtcbiAgICB0b3A6IDA7XG4gICAgLyoqXG4gICAgICogVGhlIHotaW5kZXggb2YgdGhlIGhlbHBlcnMgbXVzdCBiZSBoaWdoZXIgdGhhbiB0aGUgY2FudmFzZXMgaW4gb3JkZXIgZm9yXG4gICAgICogSU1FcyB0byBhcHBlYXIgb24gdG9wLlxuICAgICAqL1xuICAgIHotaW5kZXg6IDU7XG59XG5cbi54dGVybSAueHRlcm0taGVscGVyLXRleHRhcmVhIHtcbiAgICBwYWRkaW5nOiAwO1xuICAgIGJvcmRlcjogMDtcbiAgICBtYXJnaW46IDA7XG4gICAgLyogTW92ZSB0ZXh0YXJlYSBvdXQgb2YgdGhlIHNjcmVlbiB0byB0aGUgZmFyIGxlZnQsIHNvIHRoYXQgdGhlIGN1cnNvciBpcyBub3QgdmlzaWJsZSAqL1xuICAgIHBvc2l0aW9uOiBhYnNvbHV0ZTtcbiAgICBvcGFjaXR5OiAwO1xuICAgIGxlZnQ6IC05OTk5ZW07XG4gICAgdG9wOiAwO1xuICAgIHdpZHRoOiAwO1xuICAgIGhlaWdodDogMDtcbiAgICB6LWluZGV4OiAtNTtcbiAgICAvKiogUHJldmVudCB3cmFwcGluZyBzbyB0aGUgSU1FIGFwcGVhcnMgYWdhaW5zdCB0aGUgdGV4dGFyZWEgYXQgdGhlIGNvcnJlY3QgcG9zaXRpb24gKi9cbiAgICB3aGl0ZS1zcGFjZTogbm93cmFwO1xuICAgIG92ZXJmbG93OiBoaWRkZW47XG4gICAgcmVzaXplOiBub25lO1xufVxuXG4ueHRlcm0gLmNvbXBvc2l0aW9uLXZpZXcge1xuICAgIC8qIFRPRE86IENvbXBvc2l0aW9uIHBvc2l0aW9uIGdvdCBtZXNzZWQgdXAgc29tZXdoZXJlICovXG4gICAgYmFja2dyb3VuZDogIzAwMDtcbiAgICBjb2xvcjogI0ZGRjtcbiAgICBkaXNwbGF5OiBub25lO1xuICAgIHBvc2l0aW9uOiBhYnNvbHV0ZTtcbiAgICB3aGl0ZS1zcGFjZTogbm93cmFwO1xuICAgIHotaW5kZXg6IDE7XG59XG5cbi54dGVybSAuY29tcG9zaXRpb24tdmlldy5hY3RpdmUge1xuICAgIGRpc3BsYXk6IGJsb2NrO1xufVxuXG4ueHRlcm0gLnh0ZXJtLXZpZXdwb3J0IHtcbiAgICAvKiBPbiBPUyBYIHRoaXMgaXMgcmVxdWlyZWQgaW4gb3JkZXIgZm9yIHRoZSBzY3JvbGwgYmFyIHRvIGFwcGVhciBmdWxseSBvcGFxdWUgKi9cbiAgICBiYWNrZ3JvdW5kLWNvbG9yOiAjMDAwO1xuICAgIG92ZXJmbG93LXk6IHNjcm9sbDtcbiAgICBjdXJzb3I6IGRlZmF1bHQ7XG4gICAgcG9zaXRpb246IGFic29sdXRlO1xuICAgIHJpZ2h0OiAwO1xuICAgIGxlZnQ6IDA7XG4gICAgdG9wOiAwO1xuICAgIGJvdHRvbTogMDtcbn1cblxuLnh0ZXJtIC54dGVybS1zY3JlZW4ge1xuICAgIHBvc2l0aW9uOiByZWxhdGl2ZTtcbn1cblxuLnh0ZXJtIC54dGVybS1zY3JlZW4gY2FudmFzIHtcbiAgICBwb3NpdGlvbjogYWJzb2x1dGU7XG4gICAgbGVmdDogMDtcbiAgICB0b3A6IDA7XG59XG5cbi54dGVybSAueHRlcm0tc2Nyb2xsLWFyZWEge1xuICAgIHZpc2liaWxpdHk6IGhpZGRlbjtcbn1cblxuLnh0ZXJtLWNoYXItbWVhc3VyZS1lbGVtZW50IHtcbiAgICBkaXNwbGF5OiBpbmxpbmUtYmxvY2s7XG4gICAgdmlzaWJpbGl0eTogaGlkZGVuO1xuICAgIHBvc2l0aW9uOiBhYnNvbHV0ZTtcbiAgICB0b3A6IDA7XG4gICAgbGVmdDogLTk5OTllbTtcbiAgICBsaW5lLWhlaWdodDogbm9ybWFsO1xufVxuXG4ueHRlcm0ge1xuICAgIGN1cnNvcjogdGV4dDtcbn1cblxuLnh0ZXJtLmVuYWJsZS1tb3VzZS1ldmVudHMge1xuICAgIC8qIFdoZW4gbW91c2UgZXZlbnRzIGFyZSBlbmFibGVkIChlZy4gdG11eCksIHJldmVydCB0byB0aGUgc3RhbmRhcmQgcG9pbnRlciBjdXJzb3IgKi9cbiAgICBjdXJzb3I6IGRlZmF1bHQ7XG59XG5cbi54dGVybS54dGVybS1jdXJzb3ItcG9pbnRlcixcbi54dGVybSAueHRlcm0tY3Vyc29yLXBvaW50ZXIge1xuICAgIGN1cnNvcjogcG9pbnRlcjtcbn1cblxuLnh0ZXJtLmNvbHVtbi1zZWxlY3QuZm9jdXMge1xuICAgIC8qIENvbHVtbiBzZWxlY3Rpb24gbW9kZSAqL1xuICAgIGN1cnNvcjogY3Jvc3NoYWlyO1xufVxuXG4ueHRlcm0gLnh0ZXJtLWFjY2Vzc2liaWxpdHksXG4ueHRlcm0gLnh0ZXJtLW1lc3NhZ2Uge1xuICAgIHBvc2l0aW9uOiBhYnNvbHV0ZTtcbiAgICBsZWZ0OiAwO1xuICAgIHRvcDogMDtcbiAgICBib3R0b206IDA7XG4gICAgcmlnaHQ6IDA7XG4gICAgei1pbmRleDogMTA7XG4gICAgY29sb3I6IHRyYW5zcGFyZW50O1xufVxuXG4ueHRlcm0gLmxpdmUtcmVnaW9uIHtcbiAgICBwb3NpdGlvbjogYWJzb2x1dGU7XG4gICAgbGVmdDogLTk5OTlweDtcbiAgICB3aWR0aDogMXB4O1xuICAgIGhlaWdodDogMXB4O1xuICAgIG92ZXJmbG93OiBoaWRkZW47XG59XG5cbi54dGVybS1kaW0ge1xuICAgIG9wYWNpdHk6IDAuNTtcbn1cblxuLnh0ZXJtLXVuZGVybGluZSB7XG4gICAgdGV4dC1kZWNvcmF0aW9uOiB1bmRlcmxpbmU7XG59XG5cbi54dGVybS1zdHJpa2V0aHJvdWdoIHtcbiAgICB0ZXh0LWRlY29yYXRpb246IGxpbmUtdGhyb3VnaDtcbn1cbicsIiJdKTtjb25zdCBhPXN9LDY0NTplPT57InVzZSBzdHJpY3QiO2UuZXhwb3J0cz1mdW5jdGlvbihlKXt2YXIgdD1bXTtyZXR1cm4gdC50b1N0cmluZz1mdW5jdGlvbigpe3JldHVybiB0aGlzLm1hcCgoZnVuY3Rpb24odCl7dmFyIHI9IiIsaT12b2lkIDAhPT10WzVdO3JldHVybiB0WzRdJiYocis9IkBzdXBwb3J0cyAoIi5jb25jYXQodFs0XSwiKSB7IikpLHRbMl0mJihyKz0iQG1lZGlhICIuY29uY2F0KHRbMl0sIiB7IikpLGkmJihyKz0iQGxheWVyIi5jb25jYXQodFs1XS5sZW5ndGg+MD8iICIuY29uY2F0KHRbNV0pOiIiLCIgeyIpKSxyKz1lKHQpLGkmJihyKz0ifSIpLHRbMl0mJihyKz0ifSIpLHRbNF0mJihyKz0ifSIpLHJ9KSkuam9pbigiIil9LHQuaT1mdW5jdGlvbihlLHIsaSxuLG8peyJzdHJpbmciPT10eXBlb2YgZSYmKGU9W1tudWxsLGUsdm9pZCAwXV0pO3ZhciBzPXt9O2lmKGkpZm9yKHZhciBhPTA7YTx0aGlzLmxlbmd0aDthKyspe3ZhciBjPXRoaXNbYV1bMF07bnVsbCE9YyYmKHNbY109ITApfWZvcih2YXIgbD0wO2w8ZS5sZW5ndGg7bCsrKXt2YXIgdT1bXS5jb25jYXQoZVtsXSk7aSYmc1t1WzBdXXx8KHZvaWQgMCE9PW8mJih2b2lkIDA9PT11WzVdfHwodVsxXT0iQGxheWVyIi5jb25jYXQodVs1XS5sZW5ndGg+MD8iICIuY29uY2F0KHVbNV0pOiIiLCIgeyIpLmNvbmNhdCh1WzFdLCJ9IikpLHVbNV09byksciYmKHVbMl0/KHVbMV09IkBtZWRpYSAiLmNvbmNhdCh1WzJdLCIgeyIpLmNvbmNhdCh1WzFdLCJ9IiksdVsyXT1yKTp1WzJdPXIpLG4mJih1WzRdPyh1WzFdPSJAc3VwcG9ydHMgKCIuY29uY2F0KHVbNF0sIikgeyIpLmNvbmNhdCh1WzFdLCJ9IiksdVs0XT1uKTp1WzRdPSIiLmNvbmNhdChuKSksdC5wdXNoKHUpKX19LHR9fSw4MTplPT57InVzZSBzdHJpY3QiO2UuZXhwb3J0cz1mdW5jdGlvbihlKXtyZXR1cm4gZVsxXX19LDQ4NjpmdW5jdGlvbihlLHQscil7dmFyIGk7ZT1yLm5tZChlKSxmdW5jdGlvbigpe3ZhciBuLG89IkV4cGVjdGVkIGEgZnVuY3Rpb24iLHM9Il9fbG9kYXNoX2hhc2hfdW5kZWZpbmVkX18iLGE9Il9fbG9kYXNoX3BsYWNlaG9sZGVyX18iLGM9MzIsbD0xMjgsdT0xLzAsaD05MDA3MTk5MjU0NzQwOTkxLGY9TmFOLF89NDI5NDk2NzI5NSxkPVtbImFyeSIsbF0sWyJiaW5kIiwxXSxbImJpbmRLZXkiLDJdLFsiY3VycnkiLDhdLFsiY3VycnlSaWdodCIsMTZdLFsiZmxpcCIsNTEyXSxbInBhcnRpYWwiLGNdLFsicGFydGlhbFJpZ2h0Iiw2NF0sWyJyZWFyZyIsMjU2XV0scD0iW29iamVjdCBBcmd1bWVudHNdIix2PSJbb2JqZWN0IEFycmF5XSIsZz0iW29iamVjdCBCb29sZWFuXSIseT0iW29iamVjdCBEYXRlXSIsbT0iW29iamVjdCBFcnJvcl0iLGI9IltvYmplY3QgRnVuY3Rpb25dIixTPSJbb2JqZWN0IEdlbmVyYXRvckZ1bmN0aW9uXSIsQz0iW29iamVjdCBNYXBdIix3PSJbb2JqZWN0IE51bWJlcl0iLEw9IltvYmplY3QgT2JqZWN0XSIsRT0iW29iamVjdCBQcm9taXNlXSIseD0iW29iamVjdCBSZWdFeHBdIixBPSJbb2JqZWN0IFNldF0iLGs9IltvYmplY3QgU3RyaW5nXSIsTT0iW29iamVjdCBTeW1ib2xdIixSPSJbb2JqZWN0IFdlYWtNYXBdIixUPSJbb2JqZWN0IEFycmF5QnVmZmVyXSIsTz0iW29iamVjdCBEYXRhVmlld10iLEI9IltvYmplY3QgRmxvYXQzMkFycmF5XSIsRD0iW29iamVjdCBGbG9hdDY0QXJyYXldIixQPSJbb2JqZWN0IEludDhBcnJheV0iLEk9IltvYmplY3QgSW50MTZBcnJheV0iLEg9IltvYmplY3QgSW50MzJBcnJheV0iLGo9IltvYmplY3QgVWludDhBcnJheV0iLEY9IltvYmplY3QgVWludDhDbGFtcGVkQXJyYXldIixXPSJbb2JqZWN0IFVpbnQxNkFycmF5XSIsVT0iW29iamVjdCBVaW50MzJBcnJheV0iLHE9L1xiX19wIFwrPSAnJzsvZyxOPS9cYihfX3AgXCs9KSAnJyBcKy9nLHo9LyhfX2VcKC4qP1wpfFxiX190XCkpIFwrXG4nJzsvZyxLPS8mKD86YW1wfGx0fGd0fHF1b3R8IzM5KTsvZyxWPS9bJjw+IiddL2csRz1SZWdFeHAoSy5zb3VyY2UpLFk9UmVnRXhwKFYuc291cmNlKSxYPS88JS0oW1xzXFNdKz8pJT4vZyxaPS88JShbXHNcU10rPyklPi9nLEo9LzwlPShbXHNcU10rPyklPi9nLCQ9L1wufFxbKD86W15bXF1dKnwoWyInXSkoPzooPyFcMSlbXlxcXXxcXC4pKj9cMSlcXS8sUT0vXlx3KiQvLGVlPS9bXi5bXF1dK3xcWyg/OigtP1xkKyg/OlwuXGQrKT8pfChbIiddKSgoPzooPyFcMilbXlxcXXxcXC4pKj8pXDIpXF18KD89KD86XC58XFtcXSkoPzpcLnxcW1xdfCQpKS9nLHRlPS9bXFxeJC4qKz8oKVtcXXt9fF0vZyxyZT1SZWdFeHAodGUuc291cmNlKSxpZT0vXlxzKy8sbmU9L1xzLyxvZT0vXHsoPzpcblwvXCogXFt3cmFwcGVkIHdpdGggLitcXSBcKlwvKT9cbj8vLHNlPS9ce1xuXC9cKiBcW3dyYXBwZWQgd2l0aCAoLispXF0gXCovLGFlPS8sPyAmIC8sY2U9L1teXHgwMC1ceDJmXHgzYS1ceDQwXHg1Yi1ceDYwXHg3Yi1ceDdmXSsvZyxsZT0vWygpPSx7fVxbXF1cL1xzXS8sdWU9L1xcKFxcKT8vZyxoZT0vXCRceyhbXlxcfV0qKD86XFwuW15cXH1dKikqKVx9L2csZmU9L1x3KiQvLF9lPS9eWy0rXTB4WzAtOWEtZl0rJC9pLGRlPS9eMGJbMDFdKyQvaSxwZT0vXlxbb2JqZWN0IC4rP0NvbnN0cnVjdG9yXF0kLyx2ZT0vXjBvWzAtN10rJC9pLGdlPS9eKD86MHxbMS05XVxkKikkLyx5ZT0vW1x4YzAtXHhkNlx4ZDgtXHhmNlx4ZjgtXHhmZlx1MDEwMC1cdTAxN2ZdL2csbWU9LygkXikvLGJlPS9bJ1xuXHJcdTIwMjhcdTIwMjlcXF0vZyxTZT0iXFx1MDMwMC1cXHUwMzZmXFx1ZmUyMC1cXHVmZTJmXFx1MjBkMC1cXHUyMGZmIixDZT0iYS16XFx4ZGYtXFx4ZjZcXHhmOC1cXHhmZiIsd2U9IkEtWlxceGMwLVxceGQ2XFx4ZDgtXFx4ZGUiLExlPSJcXHhhY1xceGIxXFx4ZDdcXHhmN1xceDAwLVxceDJmXFx4M2EtXFx4NDBcXHg1Yi1cXHg2MFxceDdiLVxceGJmXFx1MjAwMC1cXHUyMDZmIFxcdFxceDBiXFxmXFx4YTBcXHVmZWZmXFxuXFxyXFx1MjAyOFxcdTIwMjlcXHUxNjgwXFx1MTgwZVxcdTIwMDBcXHUyMDAxXFx1MjAwMlxcdTIwMDNcXHUyMDA0XFx1MjAwNVxcdTIwMDZcXHUyMDA3XFx1MjAwOFxcdTIwMDlcXHUyMDBhXFx1MjAyZlxcdTIwNWZcXHUzMDAwIixFZT0iWyIrTGUrIl0iLHhlPSJbIitTZSsiXSIsQWU9IlxcZCsiLGtlPSJbIitDZSsiXSIsTWU9IlteXFx1ZDgwMC1cXHVkZmZmIitMZStBZSsiXFx1MjcwMC1cXHUyN2JmIitDZSt3ZSsiXSIsUmU9IlxcdWQ4M2NbXFx1ZGZmYi1cXHVkZmZmXSIsVGU9IlteXFx1ZDgwMC1cXHVkZmZmXSIsT2U9Iig/OlxcdWQ4M2NbXFx1ZGRlNi1cXHVkZGZmXSl7Mn0iLEJlPSJbXFx1ZDgwMC1cXHVkYmZmXVtcXHVkYzAwLVxcdWRmZmZdIixEZT0iWyIrd2UrIl0iLFBlPSIoPzoiK2tlKyJ8IitNZSsiKSIsSWU9Iig/OiIrRGUrInwiK01lKyIpIixIZT0iKD86WyfigJldKD86ZHxsbHxtfHJlfHN8dHx2ZSkpPyIsamU9Iig/Olsn4oCZXSg/OkR8TEx8TXxSRXxTfFR8VkUpKT8iLEZlPSIoPzoiK3hlKyJ8IitSZSsiKT8iLFdlPSJbXFx1ZmUwZVxcdWZlMGZdPyIsVWU9V2UrRmUrIig/OlxcdTIwMGQoPzoiK1tUZSxPZSxCZV0uam9pbigifCIpKyIpIitXZStGZSsiKSoiLHFlPSIoPzoiK1siW1xcdTI3MDAtXFx1MjdiZl0iLE9lLEJlXS5qb2luKCJ8IikrIikiK1VlLE5lPSIoPzoiK1tUZSt4ZSsiPyIseGUsT2UsQmUsIltcXHVkODAwLVxcdWRmZmZdIl0uam9pbigifCIpKyIpIix6ZT1SZWdFeHAoIlsn4oCZXSIsImciKSxLZT1SZWdFeHAoeGUsImciKSxWZT1SZWdFeHAoUmUrIig/PSIrUmUrIil8IitOZStVZSwiZyIpLEdlPVJlZ0V4cChbRGUrIj8iK2tlKyIrIitIZSsiKD89IitbRWUsRGUsIiQiXS5qb2luKCJ8IikrIikiLEllKyIrIitqZSsiKD89IitbRWUsRGUrUGUsIiQiXS5qb2luKCJ8IikrIikiLERlKyI/IitQZSsiKyIrSGUsRGUrIisiK2plLCJcXGQqKD86MVNUfDJORHwzUkR8KD8hWzEyM10pXFxkVEgpKD89XFxifFthLXpfXSkiLCJcXGQqKD86MXN0fDJuZHwzcmR8KD8hWzEyM10pXFxkdGgpKD89XFxifFtBLVpfXSkiLEFlLHFlXS5qb2luKCJ8IiksImciKSxZZT1SZWdFeHAoIltcXHUyMDBkXFx1ZDgwMC1cXHVkZmZmIitTZSsiXFx1ZmUwZVxcdWZlMGZdIiksWGU9L1thLXpdW0EtWl18W0EtWl17Mn1bYS16XXxbMC05XVthLXpBLVpdfFthLXpBLVpdWzAtOV18W15hLXpBLVowLTkgXS8sWmU9WyJBcnJheSIsIkJ1ZmZlciIsIkRhdGFWaWV3IiwiRGF0ZSIsIkVycm9yIiwiRmxvYXQzMkFycmF5IiwiRmxvYXQ2NEFycmF5IiwiRnVuY3Rpb24iLCJJbnQ4QXJyYXkiLCJJbnQxNkFycmF5IiwiSW50MzJBcnJheSIsIk1hcCIsIk1hdGgiLCJPYmplY3QiLCJQcm9taXNlIiwiUmVnRXhwIiwiU2V0IiwiU3RyaW5nIiwiU3ltYm9sIiwiVHlwZUVycm9yIiwiVWludDhBcnJheSIsIlVpbnQ4Q2xhbXBlZEFycmF5IiwiVWludDE2QXJyYXkiLCJVaW50MzJBcnJheSIsIldlYWtNYXAiLCJfIiwiY2xlYXJUaW1lb3V0IiwiaXNGaW5pdGUiLCJwYXJzZUludCIsInNldFRpbWVvdXQiXSxKZT0tMSwkZT17fTskZVtCXT0kZVtEXT0kZVtQXT0kZVtJXT0kZVtIXT0kZVtqXT0kZVtGXT0kZVtXXT0kZVtVXT0hMCwkZVtwXT0kZVt2XT0kZVtUXT0kZVtnXT0kZVtPXT0kZVt5XT0kZVttXT0kZVtiXT0kZVtDXT0kZVt3XT0kZVtMXT0kZVt4XT0kZVtBXT0kZVtrXT0kZVtSXT0hMTt2YXIgUWU9e307UWVbcF09UWVbdl09UWVbVF09UWVbT109UWVbZ109UWVbeV09UWVbQl09UWVbRF09UWVbUF09UWVbSV09UWVbSF09UWVbQ109UWVbd109UWVbTF09UWVbeF09UWVbQV09UWVba109UWVbTV09UWVbal09UWVbRl09UWVbV109UWVbVV09ITAsUWVbbV09UWVbYl09UWVbUl09ITE7dmFyIGV0PXsiXFwiOiJcXCIsIiciOiInIiwiXG4iOiJuIiwiXHIiOiJyIiwiXHUyMDI4IjoidTIwMjgiLCJcdTIwMjkiOiJ1MjAyOSJ9LHR0PXBhcnNlRmxvYXQscnQ9cGFyc2VJbnQsaXQ9Im9iamVjdCI9PXR5cGVvZiByLmcmJnIuZyYmci5nLk9iamVjdD09PU9iamVjdCYmci5nLG50PSJvYmplY3QiPT10eXBlb2Ygc2VsZiYmc2VsZiYmc2VsZi5PYmplY3Q9PT1PYmplY3QmJnNlbGYsb3Q9aXR8fG50fHxGdW5jdGlvbigicmV0dXJuIHRoaXMiKSgpLHN0PXQmJiF0Lm5vZGVUeXBlJiZ0LGF0PXN0JiZlJiYhZS5ub2RlVHlwZSYmZSxjdD1hdCYmYXQuZXhwb3J0cz09PXN0LGx0PWN0JiZpdC5wcm9jZXNzLHV0PWZ1bmN0aW9uKCl7dHJ5e3JldHVybiBhdCYmYXQucmVxdWlyZSYmYXQucmVxdWlyZSgidXRpbCIpLnR5cGVzfHxsdCYmbHQuYmluZGluZyYmbHQuYmluZGluZygidXRpbCIpfWNhdGNoKGUpe319KCksaHQ9dXQmJnV0LmlzQXJyYXlCdWZmZXIsZnQ9dXQmJnV0LmlzRGF0ZSxfdD11dCYmdXQuaXNNYXAsZHQ9dXQmJnV0LmlzUmVnRXhwLHB0PXV0JiZ1dC5pc1NldCx2dD11dCYmdXQuaXNUeXBlZEFycmF5O2Z1bmN0aW9uIGd0KGUsdCxyKXtzd2l0Y2goci5sZW5ndGgpe2Nhc2UgMDpyZXR1cm4gZS5jYWxsKHQpO2Nhc2UgMTpyZXR1cm4gZS5jYWxsKHQsclswXSk7Y2FzZSAyOnJldHVybiBlLmNhbGwodCxyWzBdLHJbMV0pO2Nhc2UgMzpyZXR1cm4gZS5jYWxsKHQsclswXSxyWzFdLHJbMl0pfXJldHVybiBlLmFwcGx5KHQscil9ZnVuY3Rpb24geXQoZSx0LHIsaSl7Zm9yKHZhciBuPS0xLG89bnVsbD09ZT8wOmUubGVuZ3RoOysrbjxvOyl7dmFyIHM9ZVtuXTt0KGkscyxyKHMpLGUpfXJldHVybiBpfWZ1bmN0aW9uIG10KGUsdCl7Zm9yKHZhciByPS0xLGk9bnVsbD09ZT8wOmUubGVuZ3RoOysrcjxpJiYhMSE9PXQoZVtyXSxyLGUpOyk7cmV0dXJuIGV9ZnVuY3Rpb24gYnQoZSx0KXtmb3IodmFyIHI9bnVsbD09ZT8wOmUubGVuZ3RoO3ItLSYmITEhPT10KGVbcl0scixlKTspO3JldHVybiBlfWZ1bmN0aW9uIFN0KGUsdCl7Zm9yKHZhciByPS0xLGk9bnVsbD09ZT8wOmUubGVuZ3RoOysrcjxpOylpZighdChlW3JdLHIsZSkpcmV0dXJuITE7cmV0dXJuITB9ZnVuY3Rpb24gQ3QoZSx0KXtmb3IodmFyIHI9LTEsaT1udWxsPT1lPzA6ZS5sZW5ndGgsbj0wLG89W107KytyPGk7KXt2YXIgcz1lW3JdO3QocyxyLGUpJiYob1tuKytdPXMpfXJldHVybiBvfWZ1bmN0aW9uIHd0KGUsdCl7cmV0dXJuIShudWxsPT1lfHwhZS5sZW5ndGgpJiZCdChlLHQsMCk+LTF9ZnVuY3Rpb24gTHQoZSx0LHIpe2Zvcih2YXIgaT0tMSxuPW51bGw9PWU/MDplLmxlbmd0aDsrK2k8bjspaWYocih0LGVbaV0pKXJldHVybiEwO3JldHVybiExfWZ1bmN0aW9uIEV0KGUsdCl7Zm9yKHZhciByPS0xLGk9bnVsbD09ZT8wOmUubGVuZ3RoLG49QXJyYXkoaSk7KytyPGk7KW5bcl09dChlW3JdLHIsZSk7cmV0dXJuIG59ZnVuY3Rpb24geHQoZSx0KXtmb3IodmFyIHI9LTEsaT10Lmxlbmd0aCxuPWUubGVuZ3RoOysrcjxpOyllW24rcl09dFtyXTtyZXR1cm4gZX1mdW5jdGlvbiBBdChlLHQscixpKXt2YXIgbj0tMSxvPW51bGw9PWU/MDplLmxlbmd0aDtmb3IoaSYmbyYmKHI9ZVsrK25dKTsrK248bzspcj10KHIsZVtuXSxuLGUpO3JldHVybiByfWZ1bmN0aW9uIGt0KGUsdCxyLGkpe3ZhciBuPW51bGw9PWU/MDplLmxlbmd0aDtmb3IoaSYmbiYmKHI9ZVstLW5dKTtuLS07KXI9dChyLGVbbl0sbixlKTtyZXR1cm4gcn1mdW5jdGlvbiBNdChlLHQpe2Zvcih2YXIgcj0tMSxpPW51bGw9PWU/MDplLmxlbmd0aDsrK3I8aTspaWYodChlW3JdLHIsZSkpcmV0dXJuITA7cmV0dXJuITF9dmFyIFJ0PUh0KCJsZW5ndGgiKTtmdW5jdGlvbiBUdChlLHQscil7dmFyIGk7cmV0dXJuIHIoZSwoZnVuY3Rpb24oZSxyLG4pe2lmKHQoZSxyLG4pKXJldHVybiBpPXIsITF9KSksaX1mdW5jdGlvbiBPdChlLHQscixpKXtmb3IodmFyIG49ZS5sZW5ndGgsbz1yKyhpPzE6LTEpO2k/by0tOisrbzxuOylpZih0KGVbb10sbyxlKSlyZXR1cm4gbztyZXR1cm4tMX1mdW5jdGlvbiBCdChlLHQscil7cmV0dXJuIHQ9PXQ/ZnVuY3Rpb24oZSx0LHIpe2Zvcih2YXIgaT1yLTEsbj1lLmxlbmd0aDsrK2k8bjspaWYoZVtpXT09PXQpcmV0dXJuIGk7cmV0dXJuLTF9KGUsdCxyKTpPdChlLFB0LHIpfWZ1bmN0aW9uIER0KGUsdCxyLGkpe2Zvcih2YXIgbj1yLTEsbz1lLmxlbmd0aDsrK248bzspaWYoaShlW25dLHQpKXJldHVybiBuO3JldHVybi0xfWZ1bmN0aW9uIFB0KGUpe3JldHVybiBlIT1lfWZ1bmN0aW9uIEl0KGUsdCl7dmFyIHI9bnVsbD09ZT8wOmUubGVuZ3RoO3JldHVybiByP1d0KGUsdCkvcjpmfWZ1bmN0aW9uIEh0KGUpe3JldHVybiBmdW5jdGlvbih0KXtyZXR1cm4gbnVsbD09dD9uOnRbZV19fWZ1bmN0aW9uIGp0KGUpe3JldHVybiBmdW5jdGlvbih0KXtyZXR1cm4gbnVsbD09ZT9uOmVbdF19fWZ1bmN0aW9uIEZ0KGUsdCxyLGksbil7cmV0dXJuIG4oZSwoZnVuY3Rpb24oZSxuLG8pe3I9aT8oaT0hMSxlKTp0KHIsZSxuLG8pfSkpLHJ9ZnVuY3Rpb24gV3QoZSx0KXtmb3IodmFyIHIsaT0tMSxvPWUubGVuZ3RoOysraTxvOyl7dmFyIHM9dChlW2ldKTtzIT09biYmKHI9cj09PW4/czpyK3MpfXJldHVybiByfWZ1bmN0aW9uIFV0KGUsdCl7Zm9yKHZhciByPS0xLGk9QXJyYXkoZSk7KytyPGU7KWlbcl09dChyKTtyZXR1cm4gaX1mdW5jdGlvbiBxdChlKXtyZXR1cm4gZT9lLnNsaWNlKDAsc3IoZSkrMSkucmVwbGFjZShpZSwiIik6ZX1mdW5jdGlvbiBOdChlKXtyZXR1cm4gZnVuY3Rpb24odCl7cmV0dXJuIGUodCl9fWZ1bmN0aW9uIHp0KGUsdCl7cmV0dXJuIEV0KHQsKGZ1bmN0aW9uKHQpe3JldHVybiBlW3RdfSkpfWZ1bmN0aW9uIEt0KGUsdCl7cmV0dXJuIGUuaGFzKHQpfWZ1bmN0aW9uIFZ0KGUsdCl7Zm9yKHZhciByPS0xLGk9ZS5sZW5ndGg7KytyPGkmJkJ0KHQsZVtyXSwwKT4tMTspO3JldHVybiByfWZ1bmN0aW9uIEd0KGUsdCl7Zm9yKHZhciByPWUubGVuZ3RoO3ItLSYmQnQodCxlW3JdLDApPi0xOyk7cmV0dXJuIHJ9ZnVuY3Rpb24gWXQoZSx0KXtmb3IodmFyIHI9ZS5sZW5ndGgsaT0wO3ItLTspZVtyXT09PXQmJisraTtyZXR1cm4gaX12YXIgWHQ9anQoe8OAOiJBIizDgToiQSIsw4I6IkEiLMODOiJBIizDhDoiQSIsw4U6IkEiLMOgOiJhIizDoToiYSIsw6I6ImEiLMOjOiJhIizDpDoiYSIsw6U6ImEiLMOHOiJDIizDpzoiYyIsw5A6IkQiLMOwOiJkIizDiDoiRSIsw4k6IkUiLMOKOiJFIizDizoiRSIsw6g6ImUiLMOpOiJlIizDqjoiZSIsw6s6ImUiLMOMOiJJIizDjToiSSIsw446IkkiLMOPOiJJIizDrDoiaSIsw606ImkiLMOuOiJpIizDrzoiaSIsw5E6Ik4iLMOxOiJuIizDkjoiTyIsw5M6Ik8iLMOUOiJPIizDlToiTyIsw5Y6Ik8iLMOYOiJPIizDsjoibyIsw7M6Im8iLMO0OiJvIizDtToibyIsw7Y6Im8iLMO4OiJvIizDmToiVSIsw5o6IlUiLMObOiJVIizDnDoiVSIsw7k6InUiLMO6OiJ1IizDuzoidSIsw7w6InUiLMOdOiJZIizDvToieSIsw786InkiLMOGOiJBZSIsw6Y6ImFlIizDnjoiVGgiLMO+OiJ0aCIsw586InNzIizEgDoiQSIsxII6IkEiLMSEOiJBIizEgToiYSIsxIM6ImEiLMSFOiJhIizEhjoiQyIsxIg6IkMiLMSKOiJDIizEjDoiQyIsxIc6ImMiLMSJOiJjIizEizoiYyIsxI06ImMiLMSOOiJEIizEkDoiRCIsxI86ImQiLMSROiJkIizEkjoiRSIsxJQ6IkUiLMSWOiJFIizEmDoiRSIsxJo6IkUiLMSTOiJlIizElToiZSIsxJc6ImUiLMSZOiJlIizEmzoiZSIsxJw6IkciLMSeOiJHIizEoDoiRyIsxKI6IkciLMSdOiJnIizEnzoiZyIsxKE6ImciLMSjOiJnIizEpDoiSCIsxKY6IkgiLMSlOiJoIizEpzoiaCIsxKg6IkkiLMSqOiJJIizErDoiSSIsxK46IkkiLMSwOiJJIizEqToiaSIsxKs6ImkiLMStOiJpIizErzoiaSIsxLE6ImkiLMS0OiJKIizEtToiaiIsxLY6IksiLMS3OiJrIizEuDoiayIsxLk6IkwiLMS7OiJMIizEvToiTCIsxL86IkwiLMWBOiJMIizEujoibCIsxLw6ImwiLMS+OiJsIizFgDoibCIsxYI6ImwiLMWDOiJOIizFhToiTiIsxYc6Ik4iLMWKOiJOIizFhDoibiIsxYY6Im4iLMWIOiJuIizFizoibiIsxYw6Ik8iLMWOOiJPIizFkDoiTyIsxY06Im8iLMWPOiJvIizFkToibyIsxZQ6IlIiLMWWOiJSIizFmDoiUiIsxZU6InIiLMWXOiJyIizFmToiciIsxZo6IlMiLMWcOiJTIizFnjoiUyIsxaA6IlMiLMWbOiJzIizFnToicyIsxZ86InMiLMWhOiJzIizFojoiVCIsxaQ6IlQiLMWmOiJUIizFozoidCIsxaU6InQiLMWnOiJ0IizFqDoiVSIsxao6IlUiLMWsOiJVIizFrjoiVSIsxbA6IlUiLMWyOiJVIizFqToidSIsxas6InUiLMWtOiJ1IizFrzoidSIsxbE6InUiLMWzOiJ1IizFtDoiVyIsxbU6InciLMW2OiJZIizFtzoieSIsxbg6IlkiLMW5OiJaIizFuzoiWiIsxb06IloiLMW6OiJ6IizFvDoieiIsxb46InoiLMSyOiJJSiIsxLM6ImlqIizFkjoiT2UiLMWTOiJvZSIsxYk6IiduIizFvzoicyJ9KSxadD1qdCh7IiYiOiImYW1wOyIsIjwiOiImbHQ7IiwiPiI6IiZndDsiLCciJzoiJnF1b3Q7IiwiJyI6IiYjMzk7In0pO2Z1bmN0aW9uIEp0KGUpe3JldHVybiJcXCIrZXRbZV19ZnVuY3Rpb24gJHQoZSl7cmV0dXJuIFllLnRlc3QoZSl9ZnVuY3Rpb24gUXQoZSl7dmFyIHQ9LTEscj1BcnJheShlLnNpemUpO3JldHVybiBlLmZvckVhY2goKGZ1bmN0aW9uKGUsaSl7clsrK3RdPVtpLGVdfSkpLHJ9ZnVuY3Rpb24gZXIoZSx0KXtyZXR1cm4gZnVuY3Rpb24ocil7cmV0dXJuIGUodChyKSl9fWZ1bmN0aW9uIHRyKGUsdCl7Zm9yKHZhciByPS0xLGk9ZS5sZW5ndGgsbj0wLG89W107KytyPGk7KXt2YXIgcz1lW3JdO3MhPT10JiZzIT09YXx8KGVbcl09YSxvW24rK109cil9cmV0dXJuIG99ZnVuY3Rpb24gcnIoZSl7dmFyIHQ9LTEscj1BcnJheShlLnNpemUpO3JldHVybiBlLmZvckVhY2goKGZ1bmN0aW9uKGUpe3JbKyt0XT1lfSkpLHJ9ZnVuY3Rpb24gaXIoZSl7dmFyIHQ9LTEscj1BcnJheShlLnNpemUpO3JldHVybiBlLmZvckVhY2goKGZ1bmN0aW9uKGUpe3JbKyt0XT1bZSxlXX0pKSxyfWZ1bmN0aW9uIG5yKGUpe3JldHVybiAkdChlKT9mdW5jdGlvbihlKXtmb3IodmFyIHQ9VmUubGFzdEluZGV4PTA7VmUudGVzdChlKTspKyt0O3JldHVybiB0fShlKTpSdChlKX1mdW5jdGlvbiBvcihlKXtyZXR1cm4gJHQoZSk/ZnVuY3Rpb24oZSl7cmV0dXJuIGUubWF0Y2goVmUpfHxbXX0oZSk6ZnVuY3Rpb24oZSl7cmV0dXJuIGUuc3BsaXQoIiIpfShlKX1mdW5jdGlvbiBzcihlKXtmb3IodmFyIHQ9ZS5sZW5ndGg7dC0tJiZuZS50ZXN0KGUuY2hhckF0KHQpKTspO3JldHVybiB0fXZhciBhcj1qdCh7IiZhbXA7IjoiJiIsIiZsdDsiOiI8IiwiJmd0OyI6Ij4iLCImcXVvdDsiOiciJywiJiMzOTsiOiInIn0pLGNyPWZ1bmN0aW9uIGUodCl7dmFyIHIsaT0odD1udWxsPT10P290OmNyLmRlZmF1bHRzKG90Lk9iamVjdCgpLHQsY3IucGljayhvdCxaZSkpKS5BcnJheSxuZT10LkRhdGUsU2U9dC5FcnJvcixDZT10LkZ1bmN0aW9uLHdlPXQuTWF0aCxMZT10Lk9iamVjdCxFZT10LlJlZ0V4cCx4ZT10LlN0cmluZyxBZT10LlR5cGVFcnJvcixrZT1pLnByb3RvdHlwZSxNZT1DZS5wcm90b3R5cGUsUmU9TGUucHJvdG90eXBlLFRlPXRbIl9fY29yZS1qc19zaGFyZWRfXyJdLE9lPU1lLnRvU3RyaW5nLEJlPVJlLmhhc093blByb3BlcnR5LERlPTAsUGU9KHI9L1teLl0rJC8uZXhlYyhUZSYmVGUua2V5cyYmVGUua2V5cy5JRV9QUk9UT3x8IiIpKT8iU3ltYm9sKHNyYylfMS4iK3I6IiIsSWU9UmUudG9TdHJpbmcsSGU9T2UuY2FsbChMZSksamU9b3QuXyxGZT1FZSgiXiIrT2UuY2FsbChCZSkucmVwbGFjZSh0ZSwiXFwkJiIpLnJlcGxhY2UoL2hhc093blByb3BlcnR5fChmdW5jdGlvbikuKj8oPz1cXFwoKXwgZm9yIC4rPyg/PVxcXF0pL2csIiQxLio/IikrIiQiKSxXZT1jdD90LkJ1ZmZlcjpuLFVlPXQuU3ltYm9sLHFlPXQuVWludDhBcnJheSxOZT1XZT9XZS5hbGxvY1Vuc2FmZTpuLFZlPWVyKExlLmdldFByb3RvdHlwZU9mLExlKSxZZT1MZS5jcmVhdGUsZXQ9UmUucHJvcGVydHlJc0VudW1lcmFibGUsaXQ9a2Uuc3BsaWNlLG50PVVlP1VlLmlzQ29uY2F0U3ByZWFkYWJsZTpuLHN0PVVlP1VlLml0ZXJhdG9yOm4sYXQ9VWU/VWUudG9TdHJpbmdUYWc6bixsdD1mdW5jdGlvbigpe3RyeXt2YXIgZT1sbyhMZSwiZGVmaW5lUHJvcGVydHkiKTtyZXR1cm4gZSh7fSwiIix7fSksZX1jYXRjaChlKXt9fSgpLHV0PXQuY2xlYXJUaW1lb3V0IT09b3QuY2xlYXJUaW1lb3V0JiZ0LmNsZWFyVGltZW91dCxSdD1uZSYmbmUubm93IT09b3QuRGF0ZS5ub3cmJm5lLm5vdyxqdD10LnNldFRpbWVvdXQhPT1vdC5zZXRUaW1lb3V0JiZ0LnNldFRpbWVvdXQsbHI9d2UuY2VpbCx1cj13ZS5mbG9vcixocj1MZS5nZXRPd25Qcm9wZXJ0eVN5bWJvbHMsZnI9V2U/V2UuaXNCdWZmZXI6bixfcj10LmlzRmluaXRlLGRyPWtlLmpvaW4scHI9ZXIoTGUua2V5cyxMZSksdnI9d2UubWF4LGdyPXdlLm1pbix5cj1uZS5ub3csbXI9dC5wYXJzZUludCxicj13ZS5yYW5kb20sU3I9a2UucmV2ZXJzZSxDcj1sbyh0LCJEYXRhVmlldyIpLHdyPWxvKHQsIk1hcCIpLExyPWxvKHQsIlByb21pc2UiKSxFcj1sbyh0LCJTZXQiKSx4cj1sbyh0LCJXZWFrTWFwIiksQXI9bG8oTGUsImNyZWF0ZSIpLGtyPXhyJiZuZXcgeHIsTXI9e30sUnI9Rm8oQ3IpLFRyPUZvKHdyKSxPcj1GbyhMciksQnI9Rm8oRXIpLERyPUZvKHhyKSxQcj1VZT9VZS5wcm90b3R5cGU6bixJcj1Qcj9Qci52YWx1ZU9mOm4sSHI9UHI/UHIudG9TdHJpbmc6bjtmdW5jdGlvbiBqcihlKXtpZihyYShlKSYmIUtzKGUpJiYhKGUgaW5zdGFuY2VvZiBxcikpe2lmKGUgaW5zdGFuY2VvZiBVcilyZXR1cm4gZTtpZihCZS5jYWxsKGUsIl9fd3JhcHBlZF9fIikpcmV0dXJuIFdvKGUpfXJldHVybiBuZXcgVXIoZSl9dmFyIEZyPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZSgpe31yZXR1cm4gZnVuY3Rpb24odCl7aWYoIXRhKHQpKXJldHVybnt9O2lmKFllKXJldHVybiBZZSh0KTtlLnByb3RvdHlwZT10O3ZhciByPW5ldyBlO3JldHVybiBlLnByb3RvdHlwZT1uLHJ9fSgpO2Z1bmN0aW9uIFdyKCl7fWZ1bmN0aW9uIFVyKGUsdCl7dGhpcy5fX3dyYXBwZWRfXz1lLHRoaXMuX19hY3Rpb25zX189W10sdGhpcy5fX2NoYWluX189ISF0LHRoaXMuX19pbmRleF9fPTAsdGhpcy5fX3ZhbHVlc19fPW59ZnVuY3Rpb24gcXIoZSl7dGhpcy5fX3dyYXBwZWRfXz1lLHRoaXMuX19hY3Rpb25zX189W10sdGhpcy5fX2Rpcl9fPTEsdGhpcy5fX2ZpbHRlcmVkX189ITEsdGhpcy5fX2l0ZXJhdGVlc19fPVtdLHRoaXMuX190YWtlQ291bnRfXz1fLHRoaXMuX192aWV3c19fPVtdfWZ1bmN0aW9uIE5yKGUpe3ZhciB0PS0xLHI9bnVsbD09ZT8wOmUubGVuZ3RoO2Zvcih0aGlzLmNsZWFyKCk7Kyt0PHI7KXt2YXIgaT1lW3RdO3RoaXMuc2V0KGlbMF0saVsxXSl9fWZ1bmN0aW9uIHpyKGUpe3ZhciB0PS0xLHI9bnVsbD09ZT8wOmUubGVuZ3RoO2Zvcih0aGlzLmNsZWFyKCk7Kyt0PHI7KXt2YXIgaT1lW3RdO3RoaXMuc2V0KGlbMF0saVsxXSl9fWZ1bmN0aW9uIEtyKGUpe3ZhciB0PS0xLHI9bnVsbD09ZT8wOmUubGVuZ3RoO2Zvcih0aGlzLmNsZWFyKCk7Kyt0PHI7KXt2YXIgaT1lW3RdO3RoaXMuc2V0KGlbMF0saVsxXSl9fWZ1bmN0aW9uIFZyKGUpe3ZhciB0PS0xLHI9bnVsbD09ZT8wOmUubGVuZ3RoO2Zvcih0aGlzLl9fZGF0YV9fPW5ldyBLcjsrK3Q8cjspdGhpcy5hZGQoZVt0XSl9ZnVuY3Rpb24gR3IoZSl7dmFyIHQ9dGhpcy5fX2RhdGFfXz1uZXcgenIoZSk7dGhpcy5zaXplPXQuc2l6ZX1mdW5jdGlvbiBZcihlLHQpe3ZhciByPUtzKGUpLGk9IXImJnpzKGUpLG49IXImJiFpJiZYcyhlKSxvPSFyJiYhaSYmIW4mJnVhKGUpLHM9cnx8aXx8bnx8byxhPXM/VXQoZS5sZW5ndGgseGUpOltdLGM9YS5sZW5ndGg7Zm9yKHZhciBsIGluIGUpIXQmJiFCZS5jYWxsKGUsbCl8fHMmJigibGVuZ3RoIj09bHx8biYmKCJvZmZzZXQiPT1sfHwicGFyZW50Ij09bCl8fG8mJigiYnVmZmVyIj09bHx8ImJ5dGVMZW5ndGgiPT1sfHwiYnl0ZU9mZnNldCI9PWwpfHxnbyhsLGMpKXx8YS5wdXNoKGwpO3JldHVybiBhfWZ1bmN0aW9uIFhyKGUpe3ZhciB0PWUubGVuZ3RoO3JldHVybiB0P2VbS2koMCx0LTEpXTpufWZ1bmN0aW9uIFpyKGUsdCl7cmV0dXJuIERvKEFuKGUpLG9pKHQsMCxlLmxlbmd0aCkpfWZ1bmN0aW9uIEpyKGUpe3JldHVybiBEbyhBbihlKSl9ZnVuY3Rpb24gJHIoZSx0LHIpeyhyIT09biYmIVVzKGVbdF0scil8fHI9PT1uJiYhKHQgaW4gZSkpJiZpaShlLHQscil9ZnVuY3Rpb24gUXIoZSx0LHIpe3ZhciBpPWVbdF07QmUuY2FsbChlLHQpJiZVcyhpLHIpJiYociE9PW58fHQgaW4gZSl8fGlpKGUsdCxyKX1mdW5jdGlvbiBlaShlLHQpe2Zvcih2YXIgcj1lLmxlbmd0aDtyLS07KWlmKFVzKGVbcl1bMF0sdCkpcmV0dXJuIHI7cmV0dXJuLTF9ZnVuY3Rpb24gdGkoZSx0LHIsaSl7cmV0dXJuIHVpKGUsKGZ1bmN0aW9uKGUsbixvKXt0KGksZSxyKGUpLG8pfSkpLGl9ZnVuY3Rpb24gcmkoZSx0KXtyZXR1cm4gZSYma24odCxPYSh0KSxlKX1mdW5jdGlvbiBpaShlLHQscil7Il9fcHJvdG9fXyI9PXQmJmx0P2x0KGUsdCx7Y29uZmlndXJhYmxlOiEwLGVudW1lcmFibGU6ITAsdmFsdWU6cix3cml0YWJsZTohMH0pOmVbdF09cn1mdW5jdGlvbiBuaShlLHQpe2Zvcih2YXIgcj0tMSxvPXQubGVuZ3RoLHM9aShvKSxhPW51bGw9PWU7KytyPG87KXNbcl09YT9uOkFhKGUsdFtyXSk7cmV0dXJuIHN9ZnVuY3Rpb24gb2koZSx0LHIpe3JldHVybiBlPT1lJiYociE9PW4mJihlPWU8PXI/ZTpyKSx0IT09biYmKGU9ZT49dD9lOnQpKSxlfWZ1bmN0aW9uIHNpKGUsdCxyLGksbyxzKXt2YXIgYSxjPTEmdCxsPTImdCx1PTQmdDtpZihyJiYoYT1vP3IoZSxpLG8scyk6cihlKSksYSE9PW4pcmV0dXJuIGE7aWYoIXRhKGUpKXJldHVybiBlO3ZhciBoPUtzKGUpO2lmKGgpe2lmKGE9ZnVuY3Rpb24oZSl7dmFyIHQ9ZS5sZW5ndGgscj1uZXcgZS5jb25zdHJ1Y3Rvcih0KTtyZXR1cm4gdCYmInN0cmluZyI9PXR5cGVvZiBlWzBdJiZCZS5jYWxsKGUsImluZGV4IikmJihyLmluZGV4PWUuaW5kZXgsci5pbnB1dD1lLmlucHV0KSxyfShlKSwhYylyZXR1cm4gQW4oZSxhKX1lbHNle3ZhciBmPWZvKGUpLF89Zj09Ynx8Zj09UztpZihYcyhlKSlyZXR1cm4gU24oZSxjKTtpZihmPT1MfHxmPT1wfHxfJiYhbyl7aWYoYT1sfHxfP3t9OnBvKGUpLCFjKXJldHVybiBsP2Z1bmN0aW9uKGUsdCl7cmV0dXJuIGtuKGUsaG8oZSksdCl9KGUsZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSYma24odCxCYSh0KSxlKX0oYSxlKSk6ZnVuY3Rpb24oZSx0KXtyZXR1cm4ga24oZSx1byhlKSx0KX0oZSxyaShhLGUpKX1lbHNle2lmKCFRZVtmXSlyZXR1cm4gbz9lOnt9O2E9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpLG49ZS5jb25zdHJ1Y3Rvcjtzd2l0Y2godCl7Y2FzZSBUOnJldHVybiBDbihlKTtjYXNlIGc6Y2FzZSB5OnJldHVybiBuZXcgbigrZSk7Y2FzZSBPOnJldHVybiBmdW5jdGlvbihlLHQpe3ZhciByPXQ/Q24oZS5idWZmZXIpOmUuYnVmZmVyO3JldHVybiBuZXcgZS5jb25zdHJ1Y3RvcihyLGUuYnl0ZU9mZnNldCxlLmJ5dGVMZW5ndGgpfShlLHIpO2Nhc2UgQjpjYXNlIEQ6Y2FzZSBQOmNhc2UgSTpjYXNlIEg6Y2FzZSBqOmNhc2UgRjpjYXNlIFc6Y2FzZSBVOnJldHVybiB3bihlLHIpO2Nhc2UgQzpyZXR1cm4gbmV3IG47Y2FzZSB3OmNhc2UgazpyZXR1cm4gbmV3IG4oZSk7Y2FzZSB4OnJldHVybiBmdW5jdGlvbihlKXt2YXIgdD1uZXcgZS5jb25zdHJ1Y3RvcihlLnNvdXJjZSxmZS5leGVjKGUpKTtyZXR1cm4gdC5sYXN0SW5kZXg9ZS5sYXN0SW5kZXgsdH0oZSk7Y2FzZSBBOnJldHVybiBuZXcgbjtjYXNlIE06cmV0dXJuIGk9ZSxJcj9MZShJci5jYWxsKGkpKTp7fX19KGUsZixjKX19c3x8KHM9bmV3IEdyKTt2YXIgZD1zLmdldChlKTtpZihkKXJldHVybiBkO3Muc2V0KGUsYSksYWEoZSk/ZS5mb3JFYWNoKChmdW5jdGlvbihpKXthLmFkZChzaShpLHQscixpLGUscykpfSkpOmlhKGUpJiZlLmZvckVhY2goKGZ1bmN0aW9uKGksbil7YS5zZXQobixzaShpLHQscixuLGUscykpfSkpO3ZhciB2PWg/bjoodT9sP3JvOnRvOmw/QmE6T2EpKGUpO3JldHVybiBtdCh2fHxlLChmdW5jdGlvbihpLG4pe3YmJihpPWVbbj1pXSksUXIoYSxuLHNpKGksdCxyLG4sZSxzKSl9KSksYX1mdW5jdGlvbiBhaShlLHQscil7dmFyIGk9ci5sZW5ndGg7aWYobnVsbD09ZSlyZXR1cm4haTtmb3IoZT1MZShlKTtpLS07KXt2YXIgbz1yW2ldLHM9dFtvXSxhPWVbb107aWYoYT09PW4mJiEobyBpbiBlKXx8IXMoYSkpcmV0dXJuITF9cmV0dXJuITB9ZnVuY3Rpb24gY2koZSx0LHIpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiBlKXRocm93IG5ldyBBZShvKTtyZXR1cm4gUm8oKGZ1bmN0aW9uKCl7ZS5hcHBseShuLHIpfSksdCl9ZnVuY3Rpb24gbGkoZSx0LHIsaSl7dmFyIG49LTEsbz13dCxzPSEwLGE9ZS5sZW5ndGgsYz1bXSxsPXQubGVuZ3RoO2lmKCFhKXJldHVybiBjO3ImJih0PUV0KHQsTnQocikpKSxpPyhvPUx0LHM9ITEpOnQubGVuZ3RoPj0yMDAmJihvPUt0LHM9ITEsdD1uZXcgVnIodCkpO2U6Zm9yKDsrK248YTspe3ZhciB1PWVbbl0saD1udWxsPT1yP3U6cih1KTtpZih1PWl8fDAhPT11P3U6MCxzJiZoPT1oKXtmb3IodmFyIGY9bDtmLS07KWlmKHRbZl09PT1oKWNvbnRpbnVlIGU7Yy5wdXNoKHUpfWVsc2Ugbyh0LGgsaSl8fGMucHVzaCh1KX1yZXR1cm4gY31qci50ZW1wbGF0ZVNldHRpbmdzPXtlc2NhcGU6WCxldmFsdWF0ZTpaLGludGVycG9sYXRlOkosdmFyaWFibGU6IiIsaW1wb3J0czp7Xzpqcn19LGpyLnByb3RvdHlwZT1Xci5wcm90b3R5cGUsanIucHJvdG90eXBlLmNvbnN0cnVjdG9yPWpyLFVyLnByb3RvdHlwZT1GcihXci5wcm90b3R5cGUpLFVyLnByb3RvdHlwZS5jb25zdHJ1Y3Rvcj1Vcixxci5wcm90b3R5cGU9RnIoV3IucHJvdG90eXBlKSxxci5wcm90b3R5cGUuY29uc3RydWN0b3I9cXIsTnIucHJvdG90eXBlLmNsZWFyPWZ1bmN0aW9uKCl7dGhpcy5fX2RhdGFfXz1Bcj9BcihudWxsKTp7fSx0aGlzLnNpemU9MH0sTnIucHJvdG90eXBlLmRlbGV0ZT1mdW5jdGlvbihlKXt2YXIgdD10aGlzLmhhcyhlKSYmZGVsZXRlIHRoaXMuX19kYXRhX19bZV07cmV0dXJuIHRoaXMuc2l6ZS09dD8xOjAsdH0sTnIucHJvdG90eXBlLmdldD1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9fZGF0YV9fO2lmKEFyKXt2YXIgcj10W2VdO3JldHVybiByPT09cz9uOnJ9cmV0dXJuIEJlLmNhbGwodCxlKT90W2VdOm59LE5yLnByb3RvdHlwZS5oYXM9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcy5fX2RhdGFfXztyZXR1cm4gQXI/dFtlXSE9PW46QmUuY2FsbCh0LGUpfSxOci5wcm90b3R5cGUuc2V0PWZ1bmN0aW9uKGUsdCl7dmFyIHI9dGhpcy5fX2RhdGFfXztyZXR1cm4gdGhpcy5zaXplKz10aGlzLmhhcyhlKT8wOjEscltlXT1BciYmdD09PW4/czp0LHRoaXN9LHpyLnByb3RvdHlwZS5jbGVhcj1mdW5jdGlvbigpe3RoaXMuX19kYXRhX189W10sdGhpcy5zaXplPTB9LHpyLnByb3RvdHlwZS5kZWxldGU9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcy5fX2RhdGFfXyxyPWVpKHQsZSk7cmV0dXJuIShyPDB8fChyPT10Lmxlbmd0aC0xP3QucG9wKCk6aXQuY2FsbCh0LHIsMSksLS10aGlzLnNpemUsMCkpfSx6ci5wcm90b3R5cGUuZ2V0PWZ1bmN0aW9uKGUpe3ZhciB0PXRoaXMuX19kYXRhX18scj1laSh0LGUpO3JldHVybiByPDA/bjp0W3JdWzFdfSx6ci5wcm90b3R5cGUuaGFzPWZ1bmN0aW9uKGUpe3JldHVybiBlaSh0aGlzLl9fZGF0YV9fLGUpPi0xfSx6ci5wcm90b3R5cGUuc2V0PWZ1bmN0aW9uKGUsdCl7dmFyIHI9dGhpcy5fX2RhdGFfXyxpPWVpKHIsZSk7cmV0dXJuIGk8MD8oKyt0aGlzLnNpemUsci5wdXNoKFtlLHRdKSk6cltpXVsxXT10LHRoaXN9LEtyLnByb3RvdHlwZS5jbGVhcj1mdW5jdGlvbigpe3RoaXMuc2l6ZT0wLHRoaXMuX19kYXRhX189e2hhc2g6bmV3IE5yLG1hcDpuZXcod3J8fHpyKSxzdHJpbmc6bmV3IE5yfX0sS3IucHJvdG90eXBlLmRlbGV0ZT1mdW5jdGlvbihlKXt2YXIgdD1hbyh0aGlzLGUpLmRlbGV0ZShlKTtyZXR1cm4gdGhpcy5zaXplLT10PzE6MCx0fSxLci5wcm90b3R5cGUuZ2V0PWZ1bmN0aW9uKGUpe3JldHVybiBhbyh0aGlzLGUpLmdldChlKX0sS3IucHJvdG90eXBlLmhhcz1mdW5jdGlvbihlKXtyZXR1cm4gYW8odGhpcyxlKS5oYXMoZSl9LEtyLnByb3RvdHlwZS5zZXQ9ZnVuY3Rpb24oZSx0KXt2YXIgcj1hbyh0aGlzLGUpLGk9ci5zaXplO3JldHVybiByLnNldChlLHQpLHRoaXMuc2l6ZSs9ci5zaXplPT1pPzA6MSx0aGlzfSxWci5wcm90b3R5cGUuYWRkPVZyLnByb3RvdHlwZS5wdXNoPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9fZGF0YV9fLnNldChlLHMpLHRoaXN9LFZyLnByb3RvdHlwZS5oYXM9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX19kYXRhX18uaGFzKGUpfSxHci5wcm90b3R5cGUuY2xlYXI9ZnVuY3Rpb24oKXt0aGlzLl9fZGF0YV9fPW5ldyB6cix0aGlzLnNpemU9MH0sR3IucHJvdG90eXBlLmRlbGV0ZT1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9fZGF0YV9fLHI9dC5kZWxldGUoZSk7cmV0dXJuIHRoaXMuc2l6ZT10LnNpemUscn0sR3IucHJvdG90eXBlLmdldD1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fX2RhdGFfXy5nZXQoZSl9LEdyLnByb3RvdHlwZS5oYXM9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX19kYXRhX18uaGFzKGUpfSxHci5wcm90b3R5cGUuc2V0PWZ1bmN0aW9uKGUsdCl7dmFyIHI9dGhpcy5fX2RhdGFfXztpZihyIGluc3RhbmNlb2YgenIpe3ZhciBpPXIuX19kYXRhX187aWYoIXdyfHxpLmxlbmd0aDwxOTkpcmV0dXJuIGkucHVzaChbZSx0XSksdGhpcy5zaXplPSsrci5zaXplLHRoaXM7cj10aGlzLl9fZGF0YV9fPW5ldyBLcihpKX1yZXR1cm4gci5zZXQoZSx0KSx0aGlzLnNpemU9ci5zaXplLHRoaXN9O3ZhciB1aT1Ubih5aSksaGk9VG4obWksITApO2Z1bmN0aW9uIGZpKGUsdCl7dmFyIHI9ITA7cmV0dXJuIHVpKGUsKGZ1bmN0aW9uKGUsaSxuKXtyZXR1cm4gcj0hIXQoZSxpLG4pfSkpLHJ9ZnVuY3Rpb24gX2koZSx0LHIpe2Zvcih2YXIgaT0tMSxvPWUubGVuZ3RoOysraTxvOyl7dmFyIHM9ZVtpXSxhPXQocyk7aWYobnVsbCE9YSYmKGM9PT1uP2E9PWEmJiFsYShhKTpyKGEsYykpKXZhciBjPWEsbD1zfXJldHVybiBsfWZ1bmN0aW9uIGRpKGUsdCl7dmFyIHI9W107cmV0dXJuIHVpKGUsKGZ1bmN0aW9uKGUsaSxuKXt0KGUsaSxuKSYmci5wdXNoKGUpfSkpLHJ9ZnVuY3Rpb24gcGkoZSx0LHIsaSxuKXt2YXIgbz0tMSxzPWUubGVuZ3RoO2ZvcihyfHwocj12byksbnx8KG49W10pOysrbzxzOyl7dmFyIGE9ZVtvXTt0PjAmJnIoYSk/dD4xP3BpKGEsdC0xLHIsaSxuKTp4dChuLGEpOml8fChuW24ubGVuZ3RoXT1hKX1yZXR1cm4gbn12YXIgdmk9T24oKSxnaT1PbighMCk7ZnVuY3Rpb24geWkoZSx0KXtyZXR1cm4gZSYmdmkoZSx0LE9hKX1mdW5jdGlvbiBtaShlLHQpe3JldHVybiBlJiZnaShlLHQsT2EpfWZ1bmN0aW9uIGJpKGUsdCl7cmV0dXJuIEN0KHQsKGZ1bmN0aW9uKHQpe3JldHVybiAkcyhlW3RdKX0pKX1mdW5jdGlvbiBTaShlLHQpe2Zvcih2YXIgcj0wLGk9KHQ9Z24odCxlKSkubGVuZ3RoO251bGwhPWUmJnI8aTspZT1lW2pvKHRbcisrXSldO3JldHVybiByJiZyPT1pP2U6bn1mdW5jdGlvbiBDaShlLHQscil7dmFyIGk9dChlKTtyZXR1cm4gS3MoZSk/aTp4dChpLHIoZSkpfWZ1bmN0aW9uIHdpKGUpe3JldHVybiBudWxsPT1lP2U9PT1uPyJbb2JqZWN0IFVuZGVmaW5lZF0iOiJbb2JqZWN0IE51bGxdIjphdCYmYXQgaW4gTGUoZSk/ZnVuY3Rpb24oZSl7dmFyIHQ9QmUuY2FsbChlLGF0KSxyPWVbYXRdO3RyeXtlW2F0XT1uO3ZhciBpPSEwfWNhdGNoKGUpe312YXIgbz1JZS5jYWxsKGUpO3JldHVybiBpJiYodD9lW2F0XT1yOmRlbGV0ZSBlW2F0XSksb30oZSk6ZnVuY3Rpb24oZSl7cmV0dXJuIEllLmNhbGwoZSl9KGUpfWZ1bmN0aW9uIExpKGUsdCl7cmV0dXJuIGU+dH1mdW5jdGlvbiBFaShlLHQpe3JldHVybiBudWxsIT1lJiZCZS5jYWxsKGUsdCl9ZnVuY3Rpb24geGkoZSx0KXtyZXR1cm4gbnVsbCE9ZSYmdCBpbiBMZShlKX1mdW5jdGlvbiBBaShlLHQscil7Zm9yKHZhciBvPXI/THQ6d3Qscz1lWzBdLmxlbmd0aCxhPWUubGVuZ3RoLGM9YSxsPWkoYSksdT0xLzAsaD1bXTtjLS07KXt2YXIgZj1lW2NdO2MmJnQmJihmPUV0KGYsTnQodCkpKSx1PWdyKGYubGVuZ3RoLHUpLGxbY109IXImJih0fHxzPj0xMjAmJmYubGVuZ3RoPj0xMjApP25ldyBWcihjJiZmKTpufWY9ZVswXTt2YXIgXz0tMSxkPWxbMF07ZTpmb3IoOysrXzxzJiZoLmxlbmd0aDx1Oyl7dmFyIHA9ZltfXSx2PXQ/dChwKTpwO2lmKHA9cnx8MCE9PXA/cDowLCEoZD9LdChkLHYpOm8oaCx2LHIpKSl7Zm9yKGM9YTstLWM7KXt2YXIgZz1sW2NdO2lmKCEoZz9LdChnLHYpOm8oZVtjXSx2LHIpKSljb250aW51ZSBlfWQmJmQucHVzaCh2KSxoLnB1c2gocCl9fXJldHVybiBofWZ1bmN0aW9uIGtpKGUsdCxyKXt2YXIgaT1udWxsPT0oZT14byhlLHQ9Z24odCxlKSkpP2U6ZVtqbyhKbyh0KSldO3JldHVybiBudWxsPT1pP246Z3QoaSxlLHIpfWZ1bmN0aW9uIE1pKGUpe3JldHVybiByYShlKSYmd2koZSk9PXB9ZnVuY3Rpb24gUmkoZSx0LHIsaSxvKXtyZXR1cm4gZT09PXR8fChudWxsPT1lfHxudWxsPT10fHwhcmEoZSkmJiFyYSh0KT9lIT1lJiZ0IT10OmZ1bmN0aW9uKGUsdCxyLGksbyxzKXt2YXIgYT1LcyhlKSxjPUtzKHQpLGw9YT92OmZvKGUpLHU9Yz92OmZvKHQpLGg9KGw9bD09cD9MOmwpPT1MLGY9KHU9dT09cD9MOnUpPT1MLF89bD09dTtpZihfJiZYcyhlKSl7aWYoIVhzKHQpKXJldHVybiExO2E9ITAsaD0hMX1pZihfJiYhaClyZXR1cm4gc3x8KHM9bmV3IEdyKSxhfHx1YShlKT9RbihlLHQscixpLG8scyk6ZnVuY3Rpb24oZSx0LHIsaSxuLG8scyl7c3dpdGNoKHIpe2Nhc2UgTzppZihlLmJ5dGVMZW5ndGghPXQuYnl0ZUxlbmd0aHx8ZS5ieXRlT2Zmc2V0IT10LmJ5dGVPZmZzZXQpcmV0dXJuITE7ZT1lLmJ1ZmZlcix0PXQuYnVmZmVyO2Nhc2UgVDpyZXR1cm4hKGUuYnl0ZUxlbmd0aCE9dC5ieXRlTGVuZ3RofHwhbyhuZXcgcWUoZSksbmV3IHFlKHQpKSk7Y2FzZSBnOmNhc2UgeTpjYXNlIHc6cmV0dXJuIFVzKCtlLCt0KTtjYXNlIG06cmV0dXJuIGUubmFtZT09dC5uYW1lJiZlLm1lc3NhZ2U9PXQubWVzc2FnZTtjYXNlIHg6Y2FzZSBrOnJldHVybiBlPT10KyIiO2Nhc2UgQzp2YXIgYT1RdDtjYXNlIEE6dmFyIGM9MSZpO2lmKGF8fChhPXJyKSxlLnNpemUhPXQuc2l6ZSYmIWMpcmV0dXJuITE7dmFyIGw9cy5nZXQoZSk7aWYobClyZXR1cm4gbD09dDtpfD0yLHMuc2V0KGUsdCk7dmFyIHU9UW4oYShlKSxhKHQpLGksbixvLHMpO3JldHVybiBzLmRlbGV0ZShlKSx1O2Nhc2UgTTppZihJcilyZXR1cm4gSXIuY2FsbChlKT09SXIuY2FsbCh0KX1yZXR1cm4hMX0oZSx0LGwscixpLG8scyk7aWYoISgxJnIpKXt2YXIgZD1oJiZCZS5jYWxsKGUsIl9fd3JhcHBlZF9fIiksYj1mJiZCZS5jYWxsKHQsIl9fd3JhcHBlZF9fIik7aWYoZHx8Yil7dmFyIFM9ZD9lLnZhbHVlKCk6ZSxFPWI/dC52YWx1ZSgpOnQ7cmV0dXJuIHN8fChzPW5ldyBHciksbyhTLEUscixpLHMpfX1yZXR1cm4hIV8mJihzfHwocz1uZXcgR3IpLGZ1bmN0aW9uKGUsdCxyLGksbyxzKXt2YXIgYT0xJnIsYz10byhlKSxsPWMubGVuZ3RoO2lmKGwhPXRvKHQpLmxlbmd0aCYmIWEpcmV0dXJuITE7Zm9yKHZhciB1PWw7dS0tOyl7dmFyIGg9Y1t1XTtpZighKGE/aCBpbiB0OkJlLmNhbGwodCxoKSkpcmV0dXJuITF9dmFyIGY9cy5nZXQoZSksXz1zLmdldCh0KTtpZihmJiZfKXJldHVybiBmPT10JiZfPT1lO3ZhciBkPSEwO3Muc2V0KGUsdCkscy5zZXQodCxlKTtmb3IodmFyIHA9YTsrK3U8bDspe3ZhciB2PWVbaD1jW3VdXSxnPXRbaF07aWYoaSl2YXIgeT1hP2koZyx2LGgsdCxlLHMpOmkodixnLGgsZSx0LHMpO2lmKCEoeT09PW4/dj09PWd8fG8odixnLHIsaSxzKTp5KSl7ZD0hMTticmVha31wfHwocD0iY29uc3RydWN0b3IiPT1oKX1pZihkJiYhcCl7dmFyIG09ZS5jb25zdHJ1Y3RvcixiPXQuY29uc3RydWN0b3I7bT09Ynx8ISgiY29uc3RydWN0b3IiaW4gZSl8fCEoImNvbnN0cnVjdG9yImluIHQpfHwiZnVuY3Rpb24iPT10eXBlb2YgbSYmbSBpbnN0YW5jZW9mIG0mJiJmdW5jdGlvbiI9PXR5cGVvZiBiJiZiIGluc3RhbmNlb2YgYnx8KGQ9ITEpfXJldHVybiBzLmRlbGV0ZShlKSxzLmRlbGV0ZSh0KSxkfShlLHQscixpLG8scykpfShlLHQscixpLFJpLG8pKX1mdW5jdGlvbiBUaShlLHQscixpKXt2YXIgbz1yLmxlbmd0aCxzPW8sYT0haTtpZihudWxsPT1lKXJldHVybiFzO2ZvcihlPUxlKGUpO28tLTspe3ZhciBjPXJbb107aWYoYSYmY1syXT9jWzFdIT09ZVtjWzBdXTohKGNbMF1pbiBlKSlyZXR1cm4hMX1mb3IoOysrbzxzOyl7dmFyIGw9KGM9cltvXSlbMF0sdT1lW2xdLGg9Y1sxXTtpZihhJiZjWzJdKXtpZih1PT09biYmIShsIGluIGUpKXJldHVybiExfWVsc2V7dmFyIGY9bmV3IEdyO2lmKGkpdmFyIF89aSh1LGgsbCxlLHQsZik7aWYoIShfPT09bj9SaShoLHUsMyxpLGYpOl8pKXJldHVybiExfX1yZXR1cm4hMH1mdW5jdGlvbiBPaShlKXtyZXR1cm4hKCF0YShlKXx8KHQ9ZSxQZSYmUGUgaW4gdCkpJiYoJHMoZSk/RmU6cGUpLnRlc3QoRm8oZSkpO3ZhciB0fWZ1bmN0aW9uIEJpKGUpe3JldHVybiJmdW5jdGlvbiI9PXR5cGVvZiBlP2U6bnVsbD09ZT9uYzoib2JqZWN0Ij09dHlwZW9mIGU/S3MoZSk/amkoZVswXSxlWzFdKTpIaShlKTpfYyhlKX1mdW5jdGlvbiBEaShlKXtpZighQ28oZSkpcmV0dXJuIHByKGUpO3ZhciB0PVtdO2Zvcih2YXIgciBpbiBMZShlKSlCZS5jYWxsKGUscikmJiJjb25zdHJ1Y3RvciIhPXImJnQucHVzaChyKTtyZXR1cm4gdH1mdW5jdGlvbiBQaShlLHQpe3JldHVybiBlPHR9ZnVuY3Rpb24gSWkoZSx0KXt2YXIgcj0tMSxuPUdzKGUpP2koZS5sZW5ndGgpOltdO3JldHVybiB1aShlLChmdW5jdGlvbihlLGksbyl7blsrK3JdPXQoZSxpLG8pfSkpLG59ZnVuY3Rpb24gSGkoZSl7dmFyIHQ9Y28oZSk7cmV0dXJuIDE9PXQubGVuZ3RoJiZ0WzBdWzJdP0xvKHRbMF1bMF0sdFswXVsxXSk6ZnVuY3Rpb24ocil7cmV0dXJuIHI9PT1lfHxUaShyLGUsdCl9fWZ1bmN0aW9uIGppKGUsdCl7cmV0dXJuIG1vKGUpJiZ3byh0KT9MbyhqbyhlKSx0KTpmdW5jdGlvbihyKXt2YXIgaT1BYShyLGUpO3JldHVybiBpPT09biYmaT09PXQ/a2EocixlKTpSaSh0LGksMyl9fWZ1bmN0aW9uIEZpKGUsdCxyLGksbyl7ZSE9PXQmJnZpKHQsKGZ1bmN0aW9uKHMsYSl7aWYob3x8KG89bmV3IEdyKSx0YShzKSkhZnVuY3Rpb24oZSx0LHIsaSxvLHMsYSl7dmFyIGM9a28oZSxyKSxsPWtvKHQsciksdT1hLmdldChsKTtpZih1KSRyKGUscix1KTtlbHNle3ZhciBoPXM/cyhjLGwscisiIixlLHQsYSk6bixmPWg9PT1uO2lmKGYpe3ZhciBfPUtzKGwpLGQ9IV8mJlhzKGwpLHA9IV8mJiFkJiZ1YShsKTtoPWwsX3x8ZHx8cD9LcyhjKT9oPWM6WXMoYyk/aD1BbihjKTpkPyhmPSExLGg9U24obCwhMCkpOnA/KGY9ITEsaD13bihsLCEwKSk6aD1bXTpvYShsKXx8enMobCk/KGg9Yyx6cyhjKT9oPXlhKGMpOnRhKGMpJiYhJHMoYyl8fChoPXBvKGwpKSk6Zj0hMX1mJiYoYS5zZXQobCxoKSxvKGgsbCxpLHMsYSksYS5kZWxldGUobCkpLCRyKGUscixoKX19KGUsdCxhLHIsRmksaSxvKTtlbHNle3ZhciBjPWk/aShrbyhlLGEpLHMsYSsiIixlLHQsbyk6bjtjPT09biYmKGM9cyksJHIoZSxhLGMpfX0pLEJhKX1mdW5jdGlvbiBXaShlLHQpe3ZhciByPWUubGVuZ3RoO2lmKHIpcmV0dXJuIGdvKHQrPXQ8MD9yOjAscik/ZVt0XTpufWZ1bmN0aW9uIFVpKGUsdCxyKXt0PXQubGVuZ3RoP0V0KHQsKGZ1bmN0aW9uKGUpe3JldHVybiBLcyhlKT9mdW5jdGlvbih0KXtyZXR1cm4gU2kodCwxPT09ZS5sZW5ndGg/ZVswXTplKX06ZX0pKTpbbmNdO3ZhciBpPS0xO3Q9RXQodCxOdChzbygpKSk7dmFyIG49SWkoZSwoZnVuY3Rpb24oZSxyLG4pe3ZhciBvPUV0KHQsKGZ1bmN0aW9uKHQpe3JldHVybiB0KGUpfSkpO3JldHVybntjcml0ZXJpYTpvLGluZGV4OisraSx2YWx1ZTplfX0pKTtyZXR1cm4gZnVuY3Rpb24oZSx0KXt2YXIgaT1lLmxlbmd0aDtmb3IoZS5zb3J0KChmdW5jdGlvbihlLHQpe3JldHVybiBmdW5jdGlvbihlLHQscil7Zm9yKHZhciBpPS0xLG49ZS5jcml0ZXJpYSxvPXQuY3JpdGVyaWEscz1uLmxlbmd0aCxhPXIubGVuZ3RoOysraTxzOyl7dmFyIGM9TG4obltpXSxvW2ldKTtpZihjKXJldHVybiBpPj1hP2M6YyooImRlc2MiPT1yW2ldPy0xOjEpfXJldHVybiBlLmluZGV4LXQuaW5kZXh9KGUsdCxyKX0pKTtpLS07KWVbaV09ZVtpXS52YWx1ZTtyZXR1cm4gZX0obil9ZnVuY3Rpb24gcWkoZSx0LHIpe2Zvcih2YXIgaT0tMSxuPXQubGVuZ3RoLG89e307KytpPG47KXt2YXIgcz10W2ldLGE9U2koZSxzKTtyKGEscykmJlppKG8sZ24ocyxlKSxhKX1yZXR1cm4gb31mdW5jdGlvbiBOaShlLHQscixpKXt2YXIgbj1pP0R0OkJ0LG89LTEscz10Lmxlbmd0aCxhPWU7Zm9yKGU9PT10JiYodD1Bbih0KSksciYmKGE9RXQoZSxOdChyKSkpOysrbzxzOylmb3IodmFyIGM9MCxsPXRbb10sdT1yP3IobCk6bDsoYz1uKGEsdSxjLGkpKT4tMTspYSE9PWUmJml0LmNhbGwoYSxjLDEpLGl0LmNhbGwoZSxjLDEpO3JldHVybiBlfWZ1bmN0aW9uIHppKGUsdCl7Zm9yKHZhciByPWU/dC5sZW5ndGg6MCxpPXItMTtyLS07KXt2YXIgbj10W3JdO2lmKHI9PWl8fG4hPT1vKXt2YXIgbz1uO2dvKG4pP2l0LmNhbGwoZSxuLDEpOmxuKGUsbil9fXJldHVybiBlfWZ1bmN0aW9uIEtpKGUsdCl7cmV0dXJuIGUrdXIoYnIoKSoodC1lKzEpKX1mdW5jdGlvbiBWaShlLHQpe3ZhciByPSIiO2lmKCFlfHx0PDF8fHQ+aClyZXR1cm4gcjtkb3t0JTImJihyKz1lKSwodD11cih0LzIpKSYmKGUrPWUpfXdoaWxlKHQpO3JldHVybiByfWZ1bmN0aW9uIEdpKGUsdCl7cmV0dXJuIFRvKEVvKGUsdCxuYyksZSsiIil9ZnVuY3Rpb24gWWkoZSl7cmV0dXJuIFhyKFVhKGUpKX1mdW5jdGlvbiBYaShlLHQpe3ZhciByPVVhKGUpO3JldHVybiBEbyhyLG9pKHQsMCxyLmxlbmd0aCkpfWZ1bmN0aW9uIFppKGUsdCxyLGkpe2lmKCF0YShlKSlyZXR1cm4gZTtmb3IodmFyIG89LTEscz0odD1nbih0LGUpKS5sZW5ndGgsYT1zLTEsYz1lO251bGwhPWMmJisrbzxzOyl7dmFyIGw9am8odFtvXSksdT1yO2lmKCJfX3Byb3RvX18iPT09bHx8ImNvbnN0cnVjdG9yIj09PWx8fCJwcm90b3R5cGUiPT09bClyZXR1cm4gZTtpZihvIT1hKXt2YXIgaD1jW2xdOyh1PWk/aShoLGwsYyk6bik9PT1uJiYodT10YShoKT9oOmdvKHRbbysxXSk/W106e30pfVFyKGMsbCx1KSxjPWNbbF19cmV0dXJuIGV9dmFyIEppPWtyP2Z1bmN0aW9uKGUsdCl7cmV0dXJuIGtyLnNldChlLHQpLGV9Om5jLCRpPWx0P2Z1bmN0aW9uKGUsdCl7cmV0dXJuIGx0KGUsInRvU3RyaW5nIix7Y29uZmlndXJhYmxlOiEwLGVudW1lcmFibGU6ITEsdmFsdWU6dGModCksd3JpdGFibGU6ITB9KX06bmM7ZnVuY3Rpb24gUWkoZSl7cmV0dXJuIERvKFVhKGUpKX1mdW5jdGlvbiBlbihlLHQscil7dmFyIG49LTEsbz1lLmxlbmd0aDt0PDAmJih0PS10Pm8/MDpvK3QpLChyPXI+bz9vOnIpPDAmJihyKz1vKSxvPXQ+cj8wOnItdD4+PjAsdD4+Pj0wO2Zvcih2YXIgcz1pKG8pOysrbjxvOylzW25dPWVbbit0XTtyZXR1cm4gc31mdW5jdGlvbiB0bihlLHQpe3ZhciByO3JldHVybiB1aShlLChmdW5jdGlvbihlLGksbil7cmV0dXJuIShyPXQoZSxpLG4pKX0pKSwhIXJ9ZnVuY3Rpb24gcm4oZSx0LHIpe3ZhciBpPTAsbj1udWxsPT1lP2k6ZS5sZW5ndGg7aWYoIm51bWJlciI9PXR5cGVvZiB0JiZ0PT10JiZuPD0yMTQ3NDgzNjQ3KXtmb3IoO2k8bjspe3ZhciBvPWkrbj4+PjEscz1lW29dO251bGwhPT1zJiYhbGEocykmJihyP3M8PXQ6czx0KT9pPW8rMTpuPW99cmV0dXJuIG59cmV0dXJuIG5uKGUsdCxuYyxyKX1mdW5jdGlvbiBubihlLHQscixpKXt2YXIgbz0wLHM9bnVsbD09ZT8wOmUubGVuZ3RoO2lmKDA9PT1zKXJldHVybiAwO2Zvcih2YXIgYT0odD1yKHQpKSE9dCxjPW51bGw9PT10LGw9bGEodCksdT10PT09bjtvPHM7KXt2YXIgaD11cigobytzKS8yKSxmPXIoZVtoXSksXz1mIT09bixkPW51bGw9PT1mLHA9Zj09Zix2PWxhKGYpO2lmKGEpdmFyIGc9aXx8cDtlbHNlIGc9dT9wJiYoaXx8Xyk6Yz9wJiZfJiYoaXx8IWQpOmw/cCYmXyYmIWQmJihpfHwhdik6IWQmJiF2JiYoaT9mPD10OmY8dCk7Zz9vPWgrMTpzPWh9cmV0dXJuIGdyKHMsNDI5NDk2NzI5NCl9ZnVuY3Rpb24gb24oZSx0KXtmb3IodmFyIHI9LTEsaT1lLmxlbmd0aCxuPTAsbz1bXTsrK3I8aTspe3ZhciBzPWVbcl0sYT10P3Qocyk6cztpZighcnx8IVVzKGEsYykpe3ZhciBjPWE7b1tuKytdPTA9PT1zPzA6c319cmV0dXJuIG99ZnVuY3Rpb24gc24oZSl7cmV0dXJuIm51bWJlciI9PXR5cGVvZiBlP2U6bGEoZSk/ZjorZX1mdW5jdGlvbiBhbihlKXtpZigic3RyaW5nIj09dHlwZW9mIGUpcmV0dXJuIGU7aWYoS3MoZSkpcmV0dXJuIEV0KGUsYW4pKyIiO2lmKGxhKGUpKXJldHVybiBIcj9Ici5jYWxsKGUpOiIiO3ZhciB0PWUrIiI7cmV0dXJuIjAiPT10JiYxL2U9PS0xLzA/Ii0wIjp0fWZ1bmN0aW9uIGNuKGUsdCxyKXt2YXIgaT0tMSxuPXd0LG89ZS5sZW5ndGgscz0hMCxhPVtdLGM9YTtpZihyKXM9ITEsbj1MdDtlbHNlIGlmKG8+PTIwMCl7dmFyIGw9dD9udWxsOkduKGUpO2lmKGwpcmV0dXJuIHJyKGwpO3M9ITEsbj1LdCxjPW5ldyBWcn1lbHNlIGM9dD9bXTphO2U6Zm9yKDsrK2k8bzspe3ZhciB1PWVbaV0saD10P3QodSk6dTtpZih1PXJ8fDAhPT11P3U6MCxzJiZoPT1oKXtmb3IodmFyIGY9Yy5sZW5ndGg7Zi0tOylpZihjW2ZdPT09aCljb250aW51ZSBlO3QmJmMucHVzaChoKSxhLnB1c2godSl9ZWxzZSBuKGMsaCxyKXx8KGMhPT1hJiZjLnB1c2goaCksYS5wdXNoKHUpKX1yZXR1cm4gYX1mdW5jdGlvbiBsbihlLHQpe3JldHVybiBudWxsPT0oZT14byhlLHQ9Z24odCxlKSkpfHxkZWxldGUgZVtqbyhKbyh0KSldfWZ1bmN0aW9uIHVuKGUsdCxyLGkpe3JldHVybiBaaShlLHQscihTaShlLHQpKSxpKX1mdW5jdGlvbiBobihlLHQscixpKXtmb3IodmFyIG49ZS5sZW5ndGgsbz1pP246LTE7KGk/by0tOisrbzxuKSYmdChlW29dLG8sZSk7KTtyZXR1cm4gcj9lbihlLGk/MDpvLGk/bysxOm4pOmVuKGUsaT9vKzE6MCxpP246byl9ZnVuY3Rpb24gZm4oZSx0KXt2YXIgcj1lO3JldHVybiByIGluc3RhbmNlb2YgcXImJihyPXIudmFsdWUoKSksQXQodCwoZnVuY3Rpb24oZSx0KXtyZXR1cm4gdC5mdW5jLmFwcGx5KHQudGhpc0FyZyx4dChbZV0sdC5hcmdzKSl9KSxyKX1mdW5jdGlvbiBfbihlLHQscil7dmFyIG49ZS5sZW5ndGg7aWYobjwyKXJldHVybiBuP2NuKGVbMF0pOltdO2Zvcih2YXIgbz0tMSxzPWkobik7KytvPG47KWZvcih2YXIgYT1lW29dLGM9LTE7KytjPG47KWMhPW8mJihzW29dPWxpKHNbb118fGEsZVtjXSx0LHIpKTtyZXR1cm4gY24ocGkocywxKSx0LHIpfWZ1bmN0aW9uIGRuKGUsdCxyKXtmb3IodmFyIGk9LTEsbz1lLmxlbmd0aCxzPXQubGVuZ3RoLGE9e307KytpPG87KXt2YXIgYz1pPHM/dFtpXTpuO3IoYSxlW2ldLGMpfXJldHVybiBhfWZ1bmN0aW9uIHBuKGUpe3JldHVybiBZcyhlKT9lOltdfWZ1bmN0aW9uIHZuKGUpe3JldHVybiJmdW5jdGlvbiI9PXR5cGVvZiBlP2U6bmN9ZnVuY3Rpb24gZ24oZSx0KXtyZXR1cm4gS3MoZSk/ZTptbyhlLHQpP1tlXTpIbyhtYShlKSl9dmFyIHluPUdpO2Z1bmN0aW9uIG1uKGUsdCxyKXt2YXIgaT1lLmxlbmd0aDtyZXR1cm4gcj1yPT09bj9pOnIsIXQmJnI+PWk/ZTplbihlLHQscil9dmFyIGJuPXV0fHxmdW5jdGlvbihlKXtyZXR1cm4gb3QuY2xlYXJUaW1lb3V0KGUpfTtmdW5jdGlvbiBTbihlLHQpe2lmKHQpcmV0dXJuIGUuc2xpY2UoKTt2YXIgcj1lLmxlbmd0aCxpPU5lP05lKHIpOm5ldyBlLmNvbnN0cnVjdG9yKHIpO3JldHVybiBlLmNvcHkoaSksaX1mdW5jdGlvbiBDbihlKXt2YXIgdD1uZXcgZS5jb25zdHJ1Y3RvcihlLmJ5dGVMZW5ndGgpO3JldHVybiBuZXcgcWUodCkuc2V0KG5ldyBxZShlKSksdH1mdW5jdGlvbiB3bihlLHQpe3ZhciByPXQ/Q24oZS5idWZmZXIpOmUuYnVmZmVyO3JldHVybiBuZXcgZS5jb25zdHJ1Y3RvcihyLGUuYnl0ZU9mZnNldCxlLmxlbmd0aCl9ZnVuY3Rpb24gTG4oZSx0KXtpZihlIT09dCl7dmFyIHI9ZSE9PW4saT1udWxsPT09ZSxvPWU9PWUscz1sYShlKSxhPXQhPT1uLGM9bnVsbD09PXQsbD10PT10LHU9bGEodCk7aWYoIWMmJiF1JiYhcyYmZT50fHxzJiZhJiZsJiYhYyYmIXV8fGkmJmEmJmx8fCFyJiZsfHwhbylyZXR1cm4gMTtpZighaSYmIXMmJiF1JiZlPHR8fHUmJnImJm8mJiFpJiYhc3x8YyYmciYmb3x8IWEmJm98fCFsKXJldHVybi0xfXJldHVybiAwfWZ1bmN0aW9uIEVuKGUsdCxyLG4pe2Zvcih2YXIgbz0tMSxzPWUubGVuZ3RoLGE9ci5sZW5ndGgsYz0tMSxsPXQubGVuZ3RoLHU9dnIocy1hLDApLGg9aShsK3UpLGY9IW47KytjPGw7KWhbY109dFtjXTtmb3IoOysrbzxhOykoZnx8bzxzKSYmKGhbcltvXV09ZVtvXSk7Zm9yKDt1LS07KWhbYysrXT1lW28rK107cmV0dXJuIGh9ZnVuY3Rpb24geG4oZSx0LHIsbil7Zm9yKHZhciBvPS0xLHM9ZS5sZW5ndGgsYT0tMSxjPXIubGVuZ3RoLGw9LTEsdT10Lmxlbmd0aCxoPXZyKHMtYywwKSxmPWkoaCt1KSxfPSFuOysrbzxoOylmW29dPWVbb107Zm9yKHZhciBkPW87KytsPHU7KWZbZCtsXT10W2xdO2Zvcig7KythPGM7KShffHxvPHMpJiYoZltkK3JbYV1dPWVbbysrXSk7cmV0dXJuIGZ9ZnVuY3Rpb24gQW4oZSx0KXt2YXIgcj0tMSxuPWUubGVuZ3RoO2Zvcih0fHwodD1pKG4pKTsrK3I8bjspdFtyXT1lW3JdO3JldHVybiB0fWZ1bmN0aW9uIGtuKGUsdCxyLGkpe3ZhciBvPSFyO3J8fChyPXt9KTtmb3IodmFyIHM9LTEsYT10Lmxlbmd0aDsrK3M8YTspe3ZhciBjPXRbc10sbD1pP2kocltjXSxlW2NdLGMscixlKTpuO2w9PT1uJiYobD1lW2NdKSxvP2lpKHIsYyxsKTpRcihyLGMsbCl9cmV0dXJuIHJ9ZnVuY3Rpb24gTW4oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt2YXIgbj1LcyhyKT95dDp0aSxvPXQ/dCgpOnt9O3JldHVybiBuKHIsZSxzbyhpLDIpLG8pfX1mdW5jdGlvbiBSbihlKXtyZXR1cm4gR2koKGZ1bmN0aW9uKHQscil7dmFyIGk9LTEsbz1yLmxlbmd0aCxzPW8+MT9yW28tMV06bixhPW8+Mj9yWzJdOm47Zm9yKHM9ZS5sZW5ndGg+MyYmImZ1bmN0aW9uIj09dHlwZW9mIHM/KG8tLSxzKTpuLGEmJnlvKHJbMF0sclsxXSxhKSYmKHM9bzwzP246cyxvPTEpLHQ9TGUodCk7KytpPG87KXt2YXIgYz1yW2ldO2MmJmUodCxjLGkscyl9cmV0dXJuIHR9KSl9ZnVuY3Rpb24gVG4oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXtpZihudWxsPT1yKXJldHVybiByO2lmKCFHcyhyKSlyZXR1cm4gZShyLGkpO2Zvcih2YXIgbj1yLmxlbmd0aCxvPXQ/bjotMSxzPUxlKHIpOyh0P28tLTorK288bikmJiExIT09aShzW29dLG8scyk7KTtyZXR1cm4gcn19ZnVuY3Rpb24gT24oZSl7cmV0dXJuIGZ1bmN0aW9uKHQscixpKXtmb3IodmFyIG49LTEsbz1MZSh0KSxzPWkodCksYT1zLmxlbmd0aDthLS07KXt2YXIgYz1zW2U/YTorK25dO2lmKCExPT09cihvW2NdLGMsbykpYnJlYWt9cmV0dXJuIHR9fWZ1bmN0aW9uIEJuKGUpe3JldHVybiBmdW5jdGlvbih0KXt2YXIgcj0kdCh0PW1hKHQpKT9vcih0KTpuLGk9cj9yWzBdOnQuY2hhckF0KDApLG89cj9tbihyLDEpLmpvaW4oIiIpOnQuc2xpY2UoMSk7cmV0dXJuIGlbZV0oKStvfX1mdW5jdGlvbiBEbihlKXtyZXR1cm4gZnVuY3Rpb24odCl7cmV0dXJuIEF0KCRhKHphKHQpLnJlcGxhY2UoemUsIiIpKSxlLCIiKX19ZnVuY3Rpb24gUG4oZSl7cmV0dXJuIGZ1bmN0aW9uKCl7dmFyIHQ9YXJndW1lbnRzO3N3aXRjaCh0Lmxlbmd0aCl7Y2FzZSAwOnJldHVybiBuZXcgZTtjYXNlIDE6cmV0dXJuIG5ldyBlKHRbMF0pO2Nhc2UgMjpyZXR1cm4gbmV3IGUodFswXSx0WzFdKTtjYXNlIDM6cmV0dXJuIG5ldyBlKHRbMF0sdFsxXSx0WzJdKTtjYXNlIDQ6cmV0dXJuIG5ldyBlKHRbMF0sdFsxXSx0WzJdLHRbM10pO2Nhc2UgNTpyZXR1cm4gbmV3IGUodFswXSx0WzFdLHRbMl0sdFszXSx0WzRdKTtjYXNlIDY6cmV0dXJuIG5ldyBlKHRbMF0sdFsxXSx0WzJdLHRbM10sdFs0XSx0WzVdKTtjYXNlIDc6cmV0dXJuIG5ldyBlKHRbMF0sdFsxXSx0WzJdLHRbM10sdFs0XSx0WzVdLHRbNl0pfXZhciByPUZyKGUucHJvdG90eXBlKSxpPWUuYXBwbHkocix0KTtyZXR1cm4gdGEoaSk/aTpyfX1mdW5jdGlvbiBJbihlKXtyZXR1cm4gZnVuY3Rpb24odCxyLGkpe3ZhciBvPUxlKHQpO2lmKCFHcyh0KSl7dmFyIHM9c28ociwzKTt0PU9hKHQpLHI9ZnVuY3Rpb24oZSl7cmV0dXJuIHMob1tlXSxlLG8pfX12YXIgYT1lKHQscixpKTtyZXR1cm4gYT4tMT9vW3M/dFthXTphXTpufX1mdW5jdGlvbiBIbihlKXtyZXR1cm4gZW8oKGZ1bmN0aW9uKHQpe3ZhciByPXQubGVuZ3RoLGk9cixzPVVyLnByb3RvdHlwZS50aHJ1O2ZvcihlJiZ0LnJldmVyc2UoKTtpLS07KXt2YXIgYT10W2ldO2lmKCJmdW5jdGlvbiIhPXR5cGVvZiBhKXRocm93IG5ldyBBZShvKTtpZihzJiYhYyYmIndyYXBwZXIiPT1ubyhhKSl2YXIgYz1uZXcgVXIoW10sITApfWZvcihpPWM/aTpyOysraTxyOyl7dmFyIGw9bm8oYT10W2ldKSx1PSJ3cmFwcGVyIj09bD9pbyhhKTpuO2M9dSYmYm8odVswXSkmJjQyND09dVsxXSYmIXVbNF0ubGVuZ3RoJiYxPT11WzldP2Nbbm8odVswXSldLmFwcGx5KGMsdVszXSk6MT09YS5sZW5ndGgmJmJvKGEpP2NbbF0oKTpjLnRocnUoYSl9cmV0dXJuIGZ1bmN0aW9uKCl7dmFyIGU9YXJndW1lbnRzLGk9ZVswXTtpZihjJiYxPT1lLmxlbmd0aCYmS3MoaSkpcmV0dXJuIGMucGxhbnQoaSkudmFsdWUoKTtmb3IodmFyIG49MCxvPXI/dFtuXS5hcHBseSh0aGlzLGUpOmk7KytuPHI7KW89dFtuXS5jYWxsKHRoaXMsbyk7cmV0dXJuIG99fSkpfWZ1bmN0aW9uIGpuKGUsdCxyLG8scyxhLGMsdSxoLGYpe3ZhciBfPXQmbCxkPTEmdCxwPTImdCx2PTI0JnQsZz01MTImdCx5PXA/bjpQbihlKTtyZXR1cm4gZnVuY3Rpb24gbigpe2Zvcih2YXIgbD1hcmd1bWVudHMubGVuZ3RoLG09aShsKSxiPWw7Yi0tOyltW2JdPWFyZ3VtZW50c1tiXTtpZih2KXZhciBTPW9vKG4pLEM9WXQobSxTKTtpZihvJiYobT1FbihtLG8scyx2KSksYSYmKG09eG4obSxhLGMsdikpLGwtPUMsdiYmbDxmKXt2YXIgdz10cihtLFMpO3JldHVybiBLbihlLHQsam4sbi5wbGFjZWhvbGRlcixyLG0sdyx1LGgsZi1sKX12YXIgTD1kP3I6dGhpcyxFPXA/TFtlXTplO3JldHVybiBsPW0ubGVuZ3RoLHU/bT1BbyhtLHUpOmcmJmw+MSYmbS5yZXZlcnNlKCksXyYmaDxsJiYobS5sZW5ndGg9aCksdGhpcyYmdGhpcyE9PW90JiZ0aGlzIGluc3RhbmNlb2YgbiYmKEU9eXx8UG4oRSkpLEUuYXBwbHkoTCxtKX19ZnVuY3Rpb24gRm4oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXtyZXR1cm4gZnVuY3Rpb24oZSx0LHIsaSl7cmV0dXJuIHlpKGUsKGZ1bmN0aW9uKGUsbixvKXt0KGkscihlKSxuLG8pfSkpLGl9KHIsZSx0KGkpLHt9KX19ZnVuY3Rpb24gV24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt2YXIgbztpZihyPT09biYmaT09PW4pcmV0dXJuIHQ7aWYociE9PW4mJihvPXIpLGkhPT1uKXtpZihvPT09bilyZXR1cm4gaTsic3RyaW5nIj09dHlwZW9mIHJ8fCJzdHJpbmciPT10eXBlb2YgaT8ocj1hbihyKSxpPWFuKGkpKToocj1zbihyKSxpPXNuKGkpKSxvPWUocixpKX1yZXR1cm4gb319ZnVuY3Rpb24gVW4oZSl7cmV0dXJuIGVvKChmdW5jdGlvbih0KXtyZXR1cm4gdD1FdCh0LE50KHNvKCkpKSxHaSgoZnVuY3Rpb24ocil7dmFyIGk9dGhpcztyZXR1cm4gZSh0LChmdW5jdGlvbihlKXtyZXR1cm4gZ3QoZSxpLHIpfSkpfSkpfSkpfWZ1bmN0aW9uIHFuKGUsdCl7dmFyIHI9KHQ9dD09PW4/IiAiOmFuKHQpKS5sZW5ndGg7aWYocjwyKXJldHVybiByP1ZpKHQsZSk6dDt2YXIgaT1WaSh0LGxyKGUvbnIodCkpKTtyZXR1cm4gJHQodCk/bW4ob3IoaSksMCxlKS5qb2luKCIiKTppLnNsaWNlKDAsZSl9ZnVuY3Rpb24gTm4oZSl7cmV0dXJuIGZ1bmN0aW9uKHQscixvKXtyZXR1cm4gbyYmIm51bWJlciIhPXR5cGVvZiBvJiZ5byh0LHIsbykmJihyPW89biksdD1kYSh0KSxyPT09bj8ocj10LHQ9MCk6cj1kYShyKSxmdW5jdGlvbihlLHQscixuKXtmb3IodmFyIG89LTEscz12cihscigodC1lKS8ocnx8MSkpLDApLGE9aShzKTtzLS07KWFbbj9zOisrb109ZSxlKz1yO3JldHVybiBhfSh0LHIsbz1vPT09bj90PHI/MTotMTpkYShvKSxlKX19ZnVuY3Rpb24gem4oZSl7cmV0dXJuIGZ1bmN0aW9uKHQscil7cmV0dXJuInN0cmluZyI9PXR5cGVvZiB0JiYic3RyaW5nIj09dHlwZW9mIHJ8fCh0PWdhKHQpLHI9Z2EocikpLGUodCxyKX19ZnVuY3Rpb24gS24oZSx0LHIsaSxvLHMsYSxsLHUsaCl7dmFyIGY9OCZ0O3R8PWY/Yzo2NCw0Jih0Jj1+KGY/NjQ6YykpfHwodCY9LTQpO3ZhciBfPVtlLHQsbyxmP3M6bixmP2E6bixmP246cyxmP246YSxsLHUsaF0sZD1yLmFwcGx5KG4sXyk7cmV0dXJuIGJvKGUpJiZNbyhkLF8pLGQucGxhY2Vob2xkZXI9aSxPbyhkLGUsdCl9ZnVuY3Rpb24gVm4oZSl7dmFyIHQ9d2VbZV07cmV0dXJuIGZ1bmN0aW9uKGUscil7aWYoZT1nYShlKSwocj1udWxsPT1yPzA6Z3IocGEociksMjkyKSkmJl9yKGUpKXt2YXIgaT0obWEoZSkrImUiKS5zcGxpdCgiZSIpO3JldHVybisoKGk9KG1hKHQoaVswXSsiZSIrKCtpWzFdK3IpKSkrImUiKS5zcGxpdCgiZSIpKVswXSsiZSIrKCtpWzFdLXIpKX1yZXR1cm4gdChlKX19dmFyIEduPUVyJiYxL3JyKG5ldyBFcihbLC0wXSkpWzFdPT11P2Z1bmN0aW9uKGUpe3JldHVybiBuZXcgRXIoZSl9OmxjO2Z1bmN0aW9uIFluKGUpe3JldHVybiBmdW5jdGlvbih0KXt2YXIgcj1mbyh0KTtyZXR1cm4gcj09Qz9RdCh0KTpyPT1BP2lyKHQpOmZ1bmN0aW9uKGUsdCl7cmV0dXJuIEV0KHQsKGZ1bmN0aW9uKHQpe3JldHVyblt0LGVbdF1dfSkpfSh0LGUodCkpfX1mdW5jdGlvbiBYbihlLHQscixzLHUsaCxmLF8pe3ZhciBkPTImdDtpZighZCYmImZ1bmN0aW9uIiE9dHlwZW9mIGUpdGhyb3cgbmV3IEFlKG8pO3ZhciBwPXM/cy5sZW5ndGg6MDtpZihwfHwodCY9LTk3LHM9dT1uKSxmPWY9PT1uP2Y6dnIocGEoZiksMCksXz1fPT09bj9fOnBhKF8pLHAtPXU/dS5sZW5ndGg6MCw2NCZ0KXt2YXIgdj1zLGc9dTtzPXU9bn12YXIgeT1kP246aW8oZSksbT1bZSx0LHIscyx1LHYsZyxoLGYsX107aWYoeSYmZnVuY3Rpb24oZSx0KXt2YXIgcj1lWzFdLGk9dFsxXSxuPXJ8aSxvPW48MTMxLHM9aT09bCYmOD09cnx8aT09bCYmMjU2PT1yJiZlWzddLmxlbmd0aDw9dFs4XXx8Mzg0PT1pJiZ0WzddLmxlbmd0aDw9dFs4XSYmOD09cjtpZighbyYmIXMpcmV0dXJuIGU7MSZpJiYoZVsyXT10WzJdLG58PTEmcj8wOjQpO3ZhciBjPXRbM107aWYoYyl7dmFyIHU9ZVszXTtlWzNdPXU/RW4odSxjLHRbNF0pOmMsZVs0XT11P3RyKGVbM10sYSk6dFs0XX0oYz10WzVdKSYmKHU9ZVs1XSxlWzVdPXU/eG4odSxjLHRbNl0pOmMsZVs2XT11P3RyKGVbNV0sYSk6dFs2XSksKGM9dFs3XSkmJihlWzddPWMpLGkmbCYmKGVbOF09bnVsbD09ZVs4XT90WzhdOmdyKGVbOF0sdFs4XSkpLG51bGw9PWVbOV0mJihlWzldPXRbOV0pLGVbMF09dFswXSxlWzFdPW59KG0seSksZT1tWzBdLHQ9bVsxXSxyPW1bMl0scz1tWzNdLHU9bVs0XSwhKF89bVs5XT1tWzldPT09bj9kPzA6ZS5sZW5ndGg6dnIobVs5XS1wLDApKSYmMjQmdCYmKHQmPS0yNSksdCYmMSE9dCliPTg9PXR8fDE2PT10P2Z1bmN0aW9uKGUsdCxyKXt2YXIgbz1QbihlKTtyZXR1cm4gZnVuY3Rpb24gcygpe2Zvcih2YXIgYT1hcmd1bWVudHMubGVuZ3RoLGM9aShhKSxsPWEsdT1vbyhzKTtsLS07KWNbbF09YXJndW1lbnRzW2xdO3ZhciBoPWE8MyYmY1swXSE9PXUmJmNbYS0xXSE9PXU/W106dHIoYyx1KTtyZXR1cm4oYS09aC5sZW5ndGgpPHI/S24oZSx0LGpuLHMucGxhY2Vob2xkZXIsbixjLGgsbixuLHItYSk6Z3QodGhpcyYmdGhpcyE9PW90JiZ0aGlzIGluc3RhbmNlb2Ygcz9vOmUsdGhpcyxjKX19KGUsdCxfKTp0IT1jJiYzMyE9dHx8dS5sZW5ndGg/am4uYXBwbHkobixtKTpmdW5jdGlvbihlLHQscixuKXt2YXIgbz0xJnQscz1QbihlKTtyZXR1cm4gZnVuY3Rpb24gdCgpe2Zvcih2YXIgYT0tMSxjPWFyZ3VtZW50cy5sZW5ndGgsbD0tMSx1PW4ubGVuZ3RoLGg9aSh1K2MpLGY9dGhpcyYmdGhpcyE9PW90JiZ0aGlzIGluc3RhbmNlb2YgdD9zOmU7KytsPHU7KWhbbF09bltsXTtmb3IoO2MtLTspaFtsKytdPWFyZ3VtZW50c1srK2FdO3JldHVybiBndChmLG8/cjp0aGlzLGgpfX0oZSx0LHIscyk7ZWxzZSB2YXIgYj1mdW5jdGlvbihlLHQscil7dmFyIGk9MSZ0LG49UG4oZSk7cmV0dXJuIGZ1bmN0aW9uIHQoKXtyZXR1cm4odGhpcyYmdGhpcyE9PW90JiZ0aGlzIGluc3RhbmNlb2YgdD9uOmUpLmFwcGx5KGk/cjp0aGlzLGFyZ3VtZW50cyl9fShlLHQscik7cmV0dXJuIE9vKCh5P0ppOk1vKShiLG0pLGUsdCl9ZnVuY3Rpb24gWm4oZSx0LHIsaSl7cmV0dXJuIGU9PT1ufHxVcyhlLFJlW3JdKSYmIUJlLmNhbGwoaSxyKT90OmV9ZnVuY3Rpb24gSm4oZSx0LHIsaSxvLHMpe3JldHVybiB0YShlKSYmdGEodCkmJihzLnNldCh0LGUpLEZpKGUsdCxuLEpuLHMpLHMuZGVsZXRlKHQpKSxlfWZ1bmN0aW9uICRuKGUpe3JldHVybiBvYShlKT9uOmV9ZnVuY3Rpb24gUW4oZSx0LHIsaSxvLHMpe3ZhciBhPTEmcixjPWUubGVuZ3RoLGw9dC5sZW5ndGg7aWYoYyE9bCYmIShhJiZsPmMpKXJldHVybiExO3ZhciB1PXMuZ2V0KGUpLGg9cy5nZXQodCk7aWYodSYmaClyZXR1cm4gdT09dCYmaD09ZTt2YXIgZj0tMSxfPSEwLGQ9MiZyP25ldyBWcjpuO2ZvcihzLnNldChlLHQpLHMuc2V0KHQsZSk7KytmPGM7KXt2YXIgcD1lW2ZdLHY9dFtmXTtpZihpKXZhciBnPWE/aSh2LHAsZix0LGUscyk6aShwLHYsZixlLHQscyk7aWYoZyE9PW4pe2lmKGcpY29udGludWU7Xz0hMTticmVha31pZihkKXtpZighTXQodCwoZnVuY3Rpb24oZSx0KXtpZighS3QoZCx0KSYmKHA9PT1lfHxvKHAsZSxyLGkscykpKXJldHVybiBkLnB1c2godCl9KSkpe189ITE7YnJlYWt9fWVsc2UgaWYocCE9PXYmJiFvKHAsdixyLGkscykpe189ITE7YnJlYWt9fXJldHVybiBzLmRlbGV0ZShlKSxzLmRlbGV0ZSh0KSxffWZ1bmN0aW9uIGVvKGUpe3JldHVybiBUbyhFbyhlLG4sVm8pLGUrIiIpfWZ1bmN0aW9uIHRvKGUpe3JldHVybiBDaShlLE9hLHVvKX1mdW5jdGlvbiBybyhlKXtyZXR1cm4gQ2koZSxCYSxobyl9dmFyIGlvPWtyP2Z1bmN0aW9uKGUpe3JldHVybiBrci5nZXQoZSl9OmxjO2Z1bmN0aW9uIG5vKGUpe2Zvcih2YXIgdD1lLm5hbWUrIiIscj1Nclt0XSxpPUJlLmNhbGwoTXIsdCk/ci5sZW5ndGg6MDtpLS07KXt2YXIgbj1yW2ldLG89bi5mdW5jO2lmKG51bGw9PW98fG89PWUpcmV0dXJuIG4ubmFtZX1yZXR1cm4gdH1mdW5jdGlvbiBvbyhlKXtyZXR1cm4oQmUuY2FsbChqciwicGxhY2Vob2xkZXIiKT9qcjplKS5wbGFjZWhvbGRlcn1mdW5jdGlvbiBzbygpe3ZhciBlPWpyLml0ZXJhdGVlfHxvYztyZXR1cm4gZT1lPT09b2M/Qmk6ZSxhcmd1bWVudHMubGVuZ3RoP2UoYXJndW1lbnRzWzBdLGFyZ3VtZW50c1sxXSk6ZX1mdW5jdGlvbiBhbyhlLHQpe3ZhciByLGksbj1lLl9fZGF0YV9fO3JldHVybigic3RyaW5nIj09KGk9dHlwZW9mKHI9dCkpfHwibnVtYmVyIj09aXx8InN5bWJvbCI9PWl8fCJib29sZWFuIj09aT8iX19wcm90b19fIiE9PXI6bnVsbD09PXIpP25bInN0cmluZyI9PXR5cGVvZiB0PyJzdHJpbmciOiJoYXNoIl06bi5tYXB9ZnVuY3Rpb24gY28oZSl7Zm9yKHZhciB0PU9hKGUpLHI9dC5sZW5ndGg7ci0tOyl7dmFyIGk9dFtyXSxuPWVbaV07dFtyXT1baSxuLHdvKG4pXX1yZXR1cm4gdH1mdW5jdGlvbiBsbyhlLHQpe3ZhciByPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIG51bGw9PWU/bjplW3RdfShlLHQpO3JldHVybiBPaShyKT9yOm59dmFyIHVvPWhyP2Z1bmN0aW9uKGUpe3JldHVybiBudWxsPT1lP1tdOihlPUxlKGUpLEN0KGhyKGUpLChmdW5jdGlvbih0KXtyZXR1cm4gZXQuY2FsbChlLHQpfSkpKX06dmMsaG89aHI/ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PVtdO2U7KXh0KHQsdW8oZSkpLGU9VmUoZSk7cmV0dXJuIHR9OnZjLGZvPXdpO2Z1bmN0aW9uIF9vKGUsdCxyKXtmb3IodmFyIGk9LTEsbj0odD1nbih0LGUpKS5sZW5ndGgsbz0hMTsrK2k8bjspe3ZhciBzPWpvKHRbaV0pO2lmKCEobz1udWxsIT1lJiZyKGUscykpKWJyZWFrO2U9ZVtzXX1yZXR1cm4gb3x8KytpIT1uP286ISEobj1udWxsPT1lPzA6ZS5sZW5ndGgpJiZlYShuKSYmZ28ocyxuKSYmKEtzKGUpfHx6cyhlKSl9ZnVuY3Rpb24gcG8oZSl7cmV0dXJuImZ1bmN0aW9uIiE9dHlwZW9mIGUuY29uc3RydWN0b3J8fENvKGUpP3t9OkZyKFZlKGUpKX1mdW5jdGlvbiB2byhlKXtyZXR1cm4gS3MoZSl8fHpzKGUpfHwhIShudCYmZSYmZVtudF0pfWZ1bmN0aW9uIGdvKGUsdCl7dmFyIHI9dHlwZW9mIGU7cmV0dXJuISEodD1udWxsPT10P2g6dCkmJigibnVtYmVyIj09cnx8InN5bWJvbCIhPXImJmdlLnRlc3QoZSkpJiZlPi0xJiZlJTE9PTAmJmU8dH1mdW5jdGlvbiB5byhlLHQscil7aWYoIXRhKHIpKXJldHVybiExO3ZhciBpPXR5cGVvZiB0O3JldHVybiEhKCJudW1iZXIiPT1pP0dzKHIpJiZnbyh0LHIubGVuZ3RoKToic3RyaW5nIj09aSYmdCBpbiByKSYmVXMoclt0XSxlKX1mdW5jdGlvbiBtbyhlLHQpe2lmKEtzKGUpKXJldHVybiExO3ZhciByPXR5cGVvZiBlO3JldHVybiEoIm51bWJlciIhPXImJiJzeW1ib2wiIT1yJiYiYm9vbGVhbiIhPXImJm51bGwhPWUmJiFsYShlKSl8fFEudGVzdChlKXx8ISQudGVzdChlKXx8bnVsbCE9dCYmZSBpbiBMZSh0KX1mdW5jdGlvbiBibyhlKXt2YXIgdD1ubyhlKSxyPWpyW3RdO2lmKCJmdW5jdGlvbiIhPXR5cGVvZiByfHwhKHQgaW4gcXIucHJvdG90eXBlKSlyZXR1cm4hMTtpZihlPT09cilyZXR1cm4hMDt2YXIgaT1pbyhyKTtyZXR1cm4hIWkmJmU9PT1pWzBdfShDciYmZm8obmV3IENyKG5ldyBBcnJheUJ1ZmZlcigxKSkpIT1PfHx3ciYmZm8obmV3IHdyKSE9Q3x8THImJmZvKExyLnJlc29sdmUoKSkhPUV8fEVyJiZmbyhuZXcgRXIpIT1BfHx4ciYmZm8obmV3IHhyKSE9UikmJihmbz1mdW5jdGlvbihlKXt2YXIgdD13aShlKSxyPXQ9PUw/ZS5jb25zdHJ1Y3RvcjpuLGk9cj9GbyhyKToiIjtpZihpKXN3aXRjaChpKXtjYXNlIFJyOnJldHVybiBPO2Nhc2UgVHI6cmV0dXJuIEM7Y2FzZSBPcjpyZXR1cm4gRTtjYXNlIEJyOnJldHVybiBBO2Nhc2UgRHI6cmV0dXJuIFJ9cmV0dXJuIHR9KTt2YXIgU289VGU/JHM6Z2M7ZnVuY3Rpb24gQ28oZSl7dmFyIHQ9ZSYmZS5jb25zdHJ1Y3RvcjtyZXR1cm4gZT09PSgiZnVuY3Rpb24iPT10eXBlb2YgdCYmdC5wcm90b3R5cGV8fFJlKX1mdW5jdGlvbiB3byhlKXtyZXR1cm4gZT09ZSYmIXRhKGUpfWZ1bmN0aW9uIExvKGUsdCl7cmV0dXJuIGZ1bmN0aW9uKHIpe3JldHVybiBudWxsIT1yJiZyW2VdPT09dCYmKHQhPT1ufHxlIGluIExlKHIpKX19ZnVuY3Rpb24gRW8oZSx0LHIpe3JldHVybiB0PXZyKHQ9PT1uP2UubGVuZ3RoLTE6dCwwKSxmdW5jdGlvbigpe2Zvcih2YXIgbj1hcmd1bWVudHMsbz0tMSxzPXZyKG4ubGVuZ3RoLXQsMCksYT1pKHMpOysrbzxzOylhW29dPW5bdCtvXTtvPS0xO2Zvcih2YXIgYz1pKHQrMSk7KytvPHQ7KWNbb109bltvXTtyZXR1cm4gY1t0XT1yKGEpLGd0KGUsdGhpcyxjKX19ZnVuY3Rpb24geG8oZSx0KXtyZXR1cm4gdC5sZW5ndGg8Mj9lOlNpKGUsZW4odCwwLC0xKSl9ZnVuY3Rpb24gQW8oZSx0KXtmb3IodmFyIHI9ZS5sZW5ndGgsaT1ncih0Lmxlbmd0aCxyKSxvPUFuKGUpO2ktLTspe3ZhciBzPXRbaV07ZVtpXT1nbyhzLHIpP29bc106bn1yZXR1cm4gZX1mdW5jdGlvbiBrbyhlLHQpe2lmKCgiY29uc3RydWN0b3IiIT09dHx8ImZ1bmN0aW9uIiE9dHlwZW9mIGVbdF0pJiYiX19wcm90b19fIiE9dClyZXR1cm4gZVt0XX12YXIgTW89Qm8oSmkpLFJvPWp0fHxmdW5jdGlvbihlLHQpe3JldHVybiBvdC5zZXRUaW1lb3V0KGUsdCl9LFRvPUJvKCRpKTtmdW5jdGlvbiBPbyhlLHQscil7dmFyIGk9dCsiIjtyZXR1cm4gVG8oZSxmdW5jdGlvbihlLHQpe3ZhciByPXQubGVuZ3RoO2lmKCFyKXJldHVybiBlO3ZhciBpPXItMTtyZXR1cm4gdFtpXT0ocj4xPyImICI6IiIpK3RbaV0sdD10LmpvaW4ocj4yPyIsICI6IiAiKSxlLnJlcGxhY2Uob2UsIntcbi8qIFt3cmFwcGVkIHdpdGggIit0KyJdICovXG4iKX0oaSxmdW5jdGlvbihlLHQpe3JldHVybiBtdChkLChmdW5jdGlvbihyKXt2YXIgaT0iXy4iK3JbMF07dCZyWzFdJiYhd3QoZSxpKSYmZS5wdXNoKGkpfSkpLGUuc29ydCgpfShmdW5jdGlvbihlKXt2YXIgdD1lLm1hdGNoKHNlKTtyZXR1cm4gdD90WzFdLnNwbGl0KGFlKTpbXX0oaSkscikpKX1mdW5jdGlvbiBCbyhlKXt2YXIgdD0wLHI9MDtyZXR1cm4gZnVuY3Rpb24oKXt2YXIgaT15cigpLG89MTYtKGktcik7aWYocj1pLG8+MCl7aWYoKyt0Pj04MDApcmV0dXJuIGFyZ3VtZW50c1swXX1lbHNlIHQ9MDtyZXR1cm4gZS5hcHBseShuLGFyZ3VtZW50cyl9fWZ1bmN0aW9uIERvKGUsdCl7dmFyIHI9LTEsaT1lLmxlbmd0aCxvPWktMTtmb3IodD10PT09bj9pOnQ7KytyPHQ7KXt2YXIgcz1LaShyLG8pLGE9ZVtzXTtlW3NdPWVbcl0sZVtyXT1hfXJldHVybiBlLmxlbmd0aD10LGV9dmFyIFBvLElvLEhvPShQbz1QcygoZnVuY3Rpb24oZSl7dmFyIHQ9W107cmV0dXJuIDQ2PT09ZS5jaGFyQ29kZUF0KDApJiZ0LnB1c2goIiIpLGUucmVwbGFjZShlZSwoZnVuY3Rpb24oZSxyLGksbil7dC5wdXNoKGk/bi5yZXBsYWNlKHVlLCIkMSIpOnJ8fGUpfSkpLHR9KSwoZnVuY3Rpb24oZSl7cmV0dXJuIDUwMD09PUlvLnNpemUmJklvLmNsZWFyKCksZX0pKSxJbz1Qby5jYWNoZSxQbyk7ZnVuY3Rpb24gam8oZSl7aWYoInN0cmluZyI9PXR5cGVvZiBlfHxsYShlKSlyZXR1cm4gZTt2YXIgdD1lKyIiO3JldHVybiIwIj09dCYmMS9lPT0tMS8wPyItMCI6dH1mdW5jdGlvbiBGbyhlKXtpZihudWxsIT1lKXt0cnl7cmV0dXJuIE9lLmNhbGwoZSl9Y2F0Y2goZSl7fXRyeXtyZXR1cm4gZSsiIn1jYXRjaChlKXt9fXJldHVybiIifWZ1bmN0aW9uIFdvKGUpe2lmKGUgaW5zdGFuY2VvZiBxcilyZXR1cm4gZS5jbG9uZSgpO3ZhciB0PW5ldyBVcihlLl9fd3JhcHBlZF9fLGUuX19jaGFpbl9fKTtyZXR1cm4gdC5fX2FjdGlvbnNfXz1BbihlLl9fYWN0aW9uc19fKSx0Ll9faW5kZXhfXz1lLl9faW5kZXhfXyx0Ll9fdmFsdWVzX189ZS5fX3ZhbHVlc19fLHR9dmFyIFVvPUdpKChmdW5jdGlvbihlLHQpe3JldHVybiBZcyhlKT9saShlLHBpKHQsMSxZcywhMCkpOltdfSkpLHFvPUdpKChmdW5jdGlvbihlLHQpe3ZhciByPUpvKHQpO3JldHVybiBZcyhyKSYmKHI9biksWXMoZSk/bGkoZSxwaSh0LDEsWXMsITApLHNvKHIsMikpOltdfSkpLE5vPUdpKChmdW5jdGlvbihlLHQpe3ZhciByPUpvKHQpO3JldHVybiBZcyhyKSYmKHI9biksWXMoZSk/bGkoZSxwaSh0LDEsWXMsITApLG4scik6W119KSk7ZnVuY3Rpb24gem8oZSx0LHIpe3ZhciBpPW51bGw9PWU/MDplLmxlbmd0aDtpZighaSlyZXR1cm4tMTt2YXIgbj1udWxsPT1yPzA6cGEocik7cmV0dXJuIG48MCYmKG49dnIoaStuLDApKSxPdChlLHNvKHQsMyksbil9ZnVuY3Rpb24gS28oZSx0LHIpe3ZhciBpPW51bGw9PWU/MDplLmxlbmd0aDtpZighaSlyZXR1cm4tMTt2YXIgbz1pLTE7cmV0dXJuIHIhPT1uJiYobz1wYShyKSxvPXI8MD92cihpK28sMCk6Z3IobyxpLTEpKSxPdChlLHNvKHQsMyksbywhMCl9ZnVuY3Rpb24gVm8oZSl7cmV0dXJuIG51bGwhPWUmJmUubGVuZ3RoP3BpKGUsMSk6W119ZnVuY3Rpb24gR28oZSl7cmV0dXJuIGUmJmUubGVuZ3RoP2VbMF06bn12YXIgWW89R2koKGZ1bmN0aW9uKGUpe3ZhciB0PUV0KGUscG4pO3JldHVybiB0Lmxlbmd0aCYmdFswXT09PWVbMF0/QWkodCk6W119KSksWG89R2koKGZ1bmN0aW9uKGUpe3ZhciB0PUpvKGUpLHI9RXQoZSxwbik7cmV0dXJuIHQ9PT1KbyhyKT90PW46ci5wb3AoKSxyLmxlbmd0aCYmclswXT09PWVbMF0/QWkocixzbyh0LDIpKTpbXX0pKSxabz1HaSgoZnVuY3Rpb24oZSl7dmFyIHQ9Sm8oZSkscj1FdChlLHBuKTtyZXR1cm4odD0iZnVuY3Rpb24iPT10eXBlb2YgdD90Om4pJiZyLnBvcCgpLHIubGVuZ3RoJiZyWzBdPT09ZVswXT9BaShyLG4sdCk6W119KSk7ZnVuY3Rpb24gSm8oZSl7dmFyIHQ9bnVsbD09ZT8wOmUubGVuZ3RoO3JldHVybiB0P2VbdC0xXTpufXZhciAkbz1HaShRbyk7ZnVuY3Rpb24gUW8oZSx0KXtyZXR1cm4gZSYmZS5sZW5ndGgmJnQmJnQubGVuZ3RoP05pKGUsdCk6ZX12YXIgZXM9ZW8oKGZ1bmN0aW9uKGUsdCl7dmFyIHI9bnVsbD09ZT8wOmUubGVuZ3RoLGk9bmkoZSx0KTtyZXR1cm4gemkoZSxFdCh0LChmdW5jdGlvbihlKXtyZXR1cm4gZ28oZSxyKT8rZTplfSkpLnNvcnQoTG4pKSxpfSkpO2Z1bmN0aW9uIHRzKGUpe3JldHVybiBudWxsPT1lP2U6U3IuY2FsbChlKX12YXIgcnM9R2koKGZ1bmN0aW9uKGUpe3JldHVybiBjbihwaShlLDEsWXMsITApKX0pKSxpcz1HaSgoZnVuY3Rpb24oZSl7dmFyIHQ9Sm8oZSk7cmV0dXJuIFlzKHQpJiYodD1uKSxjbihwaShlLDEsWXMsITApLHNvKHQsMikpfSkpLG5zPUdpKChmdW5jdGlvbihlKXt2YXIgdD1KbyhlKTtyZXR1cm4gdD0iZnVuY3Rpb24iPT10eXBlb2YgdD90Om4sY24ocGkoZSwxLFlzLCEwKSxuLHQpfSkpO2Z1bmN0aW9uIG9zKGUpe2lmKCFlfHwhZS5sZW5ndGgpcmV0dXJuW107dmFyIHQ9MDtyZXR1cm4gZT1DdChlLChmdW5jdGlvbihlKXtpZihZcyhlKSlyZXR1cm4gdD12cihlLmxlbmd0aCx0KSwhMH0pKSxVdCh0LChmdW5jdGlvbih0KXtyZXR1cm4gRXQoZSxIdCh0KSl9KSl9ZnVuY3Rpb24gc3MoZSx0KXtpZighZXx8IWUubGVuZ3RoKXJldHVybltdO3ZhciByPW9zKGUpO3JldHVybiBudWxsPT10P3I6RXQociwoZnVuY3Rpb24oZSl7cmV0dXJuIGd0KHQsbixlKX0pKX12YXIgYXM9R2koKGZ1bmN0aW9uKGUsdCl7cmV0dXJuIFlzKGUpP2xpKGUsdCk6W119KSksY3M9R2koKGZ1bmN0aW9uKGUpe3JldHVybiBfbihDdChlLFlzKSl9KSksbHM9R2koKGZ1bmN0aW9uKGUpe3ZhciB0PUpvKGUpO3JldHVybiBZcyh0KSYmKHQ9biksX24oQ3QoZSxZcyksc28odCwyKSl9KSksdXM9R2koKGZ1bmN0aW9uKGUpe3ZhciB0PUpvKGUpO3JldHVybiB0PSJmdW5jdGlvbiI9PXR5cGVvZiB0P3Q6bixfbihDdChlLFlzKSxuLHQpfSkpLGhzPUdpKG9zKSxmcz1HaSgoZnVuY3Rpb24oZSl7dmFyIHQ9ZS5sZW5ndGgscj10PjE/ZVt0LTFdOm47cmV0dXJuIHI9ImZ1bmN0aW9uIj09dHlwZW9mIHI/KGUucG9wKCkscik6bixzcyhlLHIpfSkpO2Z1bmN0aW9uIF9zKGUpe3ZhciB0PWpyKGUpO3JldHVybiB0Ll9fY2hhaW5fXz0hMCx0fWZ1bmN0aW9uIGRzKGUsdCl7cmV0dXJuIHQoZSl9dmFyIHBzPWVvKChmdW5jdGlvbihlKXt2YXIgdD1lLmxlbmd0aCxyPXQ/ZVswXTowLGk9dGhpcy5fX3dyYXBwZWRfXyxvPWZ1bmN0aW9uKHQpe3JldHVybiBuaSh0LGUpfTtyZXR1cm4hKHQ+MXx8dGhpcy5fX2FjdGlvbnNfXy5sZW5ndGgpJiZpIGluc3RhbmNlb2YgcXImJmdvKHIpPygoaT1pLnNsaWNlKHIsK3IrKHQ/MTowKSkpLl9fYWN0aW9uc19fLnB1c2goe2Z1bmM6ZHMsYXJnczpbb10sdGhpc0FyZzpufSksbmV3IFVyKGksdGhpcy5fX2NoYWluX18pLnRocnUoKGZ1bmN0aW9uKGUpe3JldHVybiB0JiYhZS5sZW5ndGgmJmUucHVzaChuKSxlfSkpKTp0aGlzLnRocnUobyl9KSksdnM9TW4oKGZ1bmN0aW9uKGUsdCxyKXtCZS5jYWxsKGUscik/KytlW3JdOmlpKGUsciwxKX0pKSxncz1Jbih6bykseXM9SW4oS28pO2Z1bmN0aW9uIG1zKGUsdCl7cmV0dXJuKEtzKGUpP210OnVpKShlLHNvKHQsMykpfWZ1bmN0aW9uIGJzKGUsdCl7cmV0dXJuKEtzKGUpP2J0OmhpKShlLHNvKHQsMykpfXZhciBTcz1NbigoZnVuY3Rpb24oZSx0LHIpe0JlLmNhbGwoZSxyKT9lW3JdLnB1c2godCk6aWkoZSxyLFt0XSl9KSksQ3M9R2koKGZ1bmN0aW9uKGUsdCxyKXt2YXIgbj0tMSxvPSJmdW5jdGlvbiI9PXR5cGVvZiB0LHM9R3MoZSk/aShlLmxlbmd0aCk6W107cmV0dXJuIHVpKGUsKGZ1bmN0aW9uKGUpe3NbKytuXT1vP2d0KHQsZSxyKTpraShlLHQscil9KSksc30pKSx3cz1NbigoZnVuY3Rpb24oZSx0LHIpe2lpKGUscix0KX0pKTtmdW5jdGlvbiBMcyhlLHQpe3JldHVybihLcyhlKT9FdDpJaSkoZSxzbyh0LDMpKX12YXIgRXM9TW4oKGZ1bmN0aW9uKGUsdCxyKXtlW3I/MDoxXS5wdXNoKHQpfSksKGZ1bmN0aW9uKCl7cmV0dXJuW1tdLFtdXX0pKSx4cz1HaSgoZnVuY3Rpb24oZSx0KXtpZihudWxsPT1lKXJldHVybltdO3ZhciByPXQubGVuZ3RoO3JldHVybiByPjEmJnlvKGUsdFswXSx0WzFdKT90PVtdOnI+MiYmeW8odFswXSx0WzFdLHRbMl0pJiYodD1bdFswXV0pLFVpKGUscGkodCwxKSxbXSl9KSksQXM9UnR8fGZ1bmN0aW9uKCl7cmV0dXJuIG90LkRhdGUubm93KCl9O2Z1bmN0aW9uIGtzKGUsdCxyKXtyZXR1cm4gdD1yP246dCx0PWUmJm51bGw9PXQ/ZS5sZW5ndGg6dCxYbihlLGwsbixuLG4sbix0KX1mdW5jdGlvbiBNcyhlLHQpe3ZhciByO2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0KXRocm93IG5ldyBBZShvKTtyZXR1cm4gZT1wYShlKSxmdW5jdGlvbigpe3JldHVybi0tZT4wJiYocj10LmFwcGx5KHRoaXMsYXJndW1lbnRzKSksZTw9MSYmKHQ9bikscn19dmFyIFJzPUdpKChmdW5jdGlvbihlLHQscil7dmFyIGk9MTtpZihyLmxlbmd0aCl7dmFyIG49dHIocixvbyhScykpO2l8PWN9cmV0dXJuIFhuKGUsaSx0LHIsbil9KSksVHM9R2koKGZ1bmN0aW9uKGUsdCxyKXt2YXIgaT0zO2lmKHIubGVuZ3RoKXt2YXIgbj10cihyLG9vKFRzKSk7aXw9Y31yZXR1cm4gWG4odCxpLGUscixuKX0pKTtmdW5jdGlvbiBPcyhlLHQscil7dmFyIGkscyxhLGMsbCx1LGg9MCxmPSExLF89ITEsZD0hMDtpZigiZnVuY3Rpb24iIT10eXBlb2YgZSl0aHJvdyBuZXcgQWUobyk7ZnVuY3Rpb24gcCh0KXt2YXIgcj1pLG89cztyZXR1cm4gaT1zPW4saD10LGM9ZS5hcHBseShvLHIpfWZ1bmN0aW9uIHYoZSl7cmV0dXJuIGg9ZSxsPVJvKHksdCksZj9wKGUpOmN9ZnVuY3Rpb24gZyhlKXt2YXIgcj1lLXU7cmV0dXJuIHU9PT1ufHxyPj10fHxyPDB8fF8mJmUtaD49YX1mdW5jdGlvbiB5KCl7dmFyIGU9QXMoKTtpZihnKGUpKXJldHVybiBtKGUpO2w9Um8oeSxmdW5jdGlvbihlKXt2YXIgcj10LShlLXUpO3JldHVybiBfP2dyKHIsYS0oZS1oKSk6cn0oZSkpfWZ1bmN0aW9uIG0oZSl7cmV0dXJuIGw9bixkJiZpP3AoZSk6KGk9cz1uLGMpfWZ1bmN0aW9uIGIoKXt2YXIgZT1BcygpLHI9ZyhlKTtpZihpPWFyZ3VtZW50cyxzPXRoaXMsdT1lLHIpe2lmKGw9PT1uKXJldHVybiB2KHUpO2lmKF8pcmV0dXJuIGJuKGwpLGw9Um8oeSx0KSxwKHUpfXJldHVybiBsPT09biYmKGw9Um8oeSx0KSksY31yZXR1cm4gdD1nYSh0KXx8MCx0YShyKSYmKGY9ISFyLmxlYWRpbmcsYT0oXz0ibWF4V2FpdCJpbiByKT92cihnYShyLm1heFdhaXQpfHwwLHQpOmEsZD0idHJhaWxpbmciaW4gcj8hIXIudHJhaWxpbmc6ZCksYi5jYW5jZWw9ZnVuY3Rpb24oKXtsIT09biYmYm4obCksaD0wLGk9dT1zPWw9bn0sYi5mbHVzaD1mdW5jdGlvbigpe3JldHVybiBsPT09bj9jOm0oQXMoKSl9LGJ9dmFyIEJzPUdpKChmdW5jdGlvbihlLHQpe3JldHVybiBjaShlLDEsdCl9KSksRHM9R2koKGZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gY2koZSxnYSh0KXx8MCxyKX0pKTtmdW5jdGlvbiBQcyhlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiBlfHxudWxsIT10JiYiZnVuY3Rpb24iIT10eXBlb2YgdCl0aHJvdyBuZXcgQWUobyk7dmFyIHI9ZnVuY3Rpb24oKXt2YXIgaT1hcmd1bWVudHMsbj10P3QuYXBwbHkodGhpcyxpKTppWzBdLG89ci5jYWNoZTtpZihvLmhhcyhuKSlyZXR1cm4gby5nZXQobik7dmFyIHM9ZS5hcHBseSh0aGlzLGkpO3JldHVybiByLmNhY2hlPW8uc2V0KG4scyl8fG8sc307cmV0dXJuIHIuY2FjaGU9bmV3KFBzLkNhY2hlfHxLcikscn1mdW5jdGlvbiBJcyhlKXtpZigiZnVuY3Rpb24iIT10eXBlb2YgZSl0aHJvdyBuZXcgQWUobyk7cmV0dXJuIGZ1bmN0aW9uKCl7dmFyIHQ9YXJndW1lbnRzO3N3aXRjaCh0Lmxlbmd0aCl7Y2FzZSAwOnJldHVybiFlLmNhbGwodGhpcyk7Y2FzZSAxOnJldHVybiFlLmNhbGwodGhpcyx0WzBdKTtjYXNlIDI6cmV0dXJuIWUuY2FsbCh0aGlzLHRbMF0sdFsxXSk7Y2FzZSAzOnJldHVybiFlLmNhbGwodGhpcyx0WzBdLHRbMV0sdFsyXSl9cmV0dXJuIWUuYXBwbHkodGhpcyx0KX19UHMuQ2FjaGU9S3I7dmFyIEhzPXluKChmdW5jdGlvbihlLHQpe3ZhciByPSh0PTE9PXQubGVuZ3RoJiZLcyh0WzBdKT9FdCh0WzBdLE50KHNvKCkpKTpFdChwaSh0LDEpLE50KHNvKCkpKSkubGVuZ3RoO3JldHVybiBHaSgoZnVuY3Rpb24oaSl7Zm9yKHZhciBuPS0xLG89Z3IoaS5sZW5ndGgscik7KytuPG87KWlbbl09dFtuXS5jYWxsKHRoaXMsaVtuXSk7cmV0dXJuIGd0KGUsdGhpcyxpKX0pKX0pKSxqcz1HaSgoZnVuY3Rpb24oZSx0KXt2YXIgcj10cih0LG9vKGpzKSk7cmV0dXJuIFhuKGUsYyxuLHQscil9KSksRnM9R2koKGZ1bmN0aW9uKGUsdCl7dmFyIHI9dHIodCxvbyhGcykpO3JldHVybiBYbihlLDY0LG4sdCxyKX0pKSxXcz1lbygoZnVuY3Rpb24oZSx0KXtyZXR1cm4gWG4oZSwyNTYsbixuLG4sdCl9KSk7ZnVuY3Rpb24gVXMoZSx0KXtyZXR1cm4gZT09PXR8fGUhPWUmJnQhPXR9dmFyIHFzPXpuKExpKSxOcz16bigoZnVuY3Rpb24oZSx0KXtyZXR1cm4gZT49dH0pKSx6cz1NaShmdW5jdGlvbigpe3JldHVybiBhcmd1bWVudHN9KCkpP01pOmZ1bmN0aW9uKGUpe3JldHVybiByYShlKSYmQmUuY2FsbChlLCJjYWxsZWUiKSYmIWV0LmNhbGwoZSwiY2FsbGVlIil9LEtzPWkuaXNBcnJheSxWcz1odD9OdChodCk6ZnVuY3Rpb24oZSl7cmV0dXJuIHJhKGUpJiZ3aShlKT09VH07ZnVuY3Rpb24gR3MoZSl7cmV0dXJuIG51bGwhPWUmJmVhKGUubGVuZ3RoKSYmISRzKGUpfWZ1bmN0aW9uIFlzKGUpe3JldHVybiByYShlKSYmR3MoZSl9dmFyIFhzPWZyfHxnYyxacz1mdD9OdChmdCk6ZnVuY3Rpb24oZSl7cmV0dXJuIHJhKGUpJiZ3aShlKT09eX07ZnVuY3Rpb24gSnMoZSl7aWYoIXJhKGUpKXJldHVybiExO3ZhciB0PXdpKGUpO3JldHVybiB0PT1tfHwiW29iamVjdCBET01FeGNlcHRpb25dIj09dHx8InN0cmluZyI9PXR5cGVvZiBlLm1lc3NhZ2UmJiJzdHJpbmciPT10eXBlb2YgZS5uYW1lJiYhb2EoZSl9ZnVuY3Rpb24gJHMoZSl7aWYoIXRhKGUpKXJldHVybiExO3ZhciB0PXdpKGUpO3JldHVybiB0PT1ifHx0PT1TfHwiW29iamVjdCBBc3luY0Z1bmN0aW9uXSI9PXR8fCJbb2JqZWN0IFByb3h5XSI9PXR9ZnVuY3Rpb24gUXMoZSl7cmV0dXJuIm51bWJlciI9PXR5cGVvZiBlJiZlPT1wYShlKX1mdW5jdGlvbiBlYShlKXtyZXR1cm4ibnVtYmVyIj09dHlwZW9mIGUmJmU+LTEmJmUlMT09MCYmZTw9aH1mdW5jdGlvbiB0YShlKXt2YXIgdD10eXBlb2YgZTtyZXR1cm4gbnVsbCE9ZSYmKCJvYmplY3QiPT10fHwiZnVuY3Rpb24iPT10KX1mdW5jdGlvbiByYShlKXtyZXR1cm4gbnVsbCE9ZSYmIm9iamVjdCI9PXR5cGVvZiBlfXZhciBpYT1fdD9OdChfdCk6ZnVuY3Rpb24oZSl7cmV0dXJuIHJhKGUpJiZmbyhlKT09Q307ZnVuY3Rpb24gbmEoZSl7cmV0dXJuIm51bWJlciI9PXR5cGVvZiBlfHxyYShlKSYmd2koZSk9PXd9ZnVuY3Rpb24gb2EoZSl7aWYoIXJhKGUpfHx3aShlKSE9TClyZXR1cm4hMTt2YXIgdD1WZShlKTtpZihudWxsPT09dClyZXR1cm4hMDt2YXIgcj1CZS5jYWxsKHQsImNvbnN0cnVjdG9yIikmJnQuY29uc3RydWN0b3I7cmV0dXJuImZ1bmN0aW9uIj09dHlwZW9mIHImJnIgaW5zdGFuY2VvZiByJiZPZS5jYWxsKHIpPT1IZX12YXIgc2E9ZHQ/TnQoZHQpOmZ1bmN0aW9uKGUpe3JldHVybiByYShlKSYmd2koZSk9PXh9LGFhPXB0P050KHB0KTpmdW5jdGlvbihlKXtyZXR1cm4gcmEoZSkmJmZvKGUpPT1BfTtmdW5jdGlvbiBjYShlKXtyZXR1cm4ic3RyaW5nIj09dHlwZW9mIGV8fCFLcyhlKSYmcmEoZSkmJndpKGUpPT1rfWZ1bmN0aW9uIGxhKGUpe3JldHVybiJzeW1ib2wiPT10eXBlb2YgZXx8cmEoZSkmJndpKGUpPT1NfXZhciB1YT12dD9OdCh2dCk6ZnVuY3Rpb24oZSl7cmV0dXJuIHJhKGUpJiZlYShlLmxlbmd0aCkmJiEhJGVbd2koZSldfSxoYT16bihQaSksZmE9em4oKGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGU8PXR9KSk7ZnVuY3Rpb24gX2EoZSl7aWYoIWUpcmV0dXJuW107aWYoR3MoZSkpcmV0dXJuIGNhKGUpP29yKGUpOkFuKGUpO2lmKHN0JiZlW3N0XSlyZXR1cm4gZnVuY3Rpb24oZSl7Zm9yKHZhciB0LHI9W107ISh0PWUubmV4dCgpKS5kb25lOylyLnB1c2godC52YWx1ZSk7cmV0dXJuIHJ9KGVbc3RdKCkpO3ZhciB0PWZvKGUpO3JldHVybih0PT1DP1F0OnQ9PUE/cnI6VWEpKGUpfWZ1bmN0aW9uIGRhKGUpe3JldHVybiBlPyhlPWdhKGUpKT09PXV8fGU9PT0tMS8wPzE3OTc2OTMxMzQ4NjIzMTU3ZTI5MiooZTwwPy0xOjEpOmU9PWU/ZTowOjA9PT1lP2U6MH1mdW5jdGlvbiBwYShlKXt2YXIgdD1kYShlKSxyPXQlMTtyZXR1cm4gdD09dD9yP3Qtcjp0OjB9ZnVuY3Rpb24gdmEoZSl7cmV0dXJuIGU/b2kocGEoZSksMCxfKTowfWZ1bmN0aW9uIGdhKGUpe2lmKCJudW1iZXIiPT10eXBlb2YgZSlyZXR1cm4gZTtpZihsYShlKSlyZXR1cm4gZjtpZih0YShlKSl7dmFyIHQ9ImZ1bmN0aW9uIj09dHlwZW9mIGUudmFsdWVPZj9lLnZhbHVlT2YoKTplO2U9dGEodCk/dCsiIjp0fWlmKCJzdHJpbmciIT10eXBlb2YgZSlyZXR1cm4gMD09PWU/ZTorZTtlPXF0KGUpO3ZhciByPWRlLnRlc3QoZSk7cmV0dXJuIHJ8fHZlLnRlc3QoZSk/cnQoZS5zbGljZSgyKSxyPzI6OCk6X2UudGVzdChlKT9mOitlfWZ1bmN0aW9uIHlhKGUpe3JldHVybiBrbihlLEJhKGUpKX1mdW5jdGlvbiBtYShlKXtyZXR1cm4gbnVsbD09ZT8iIjphbihlKX12YXIgYmE9Um4oKGZ1bmN0aW9uKGUsdCl7aWYoQ28odCl8fEdzKHQpKWtuKHQsT2EodCksZSk7ZWxzZSBmb3IodmFyIHIgaW4gdClCZS5jYWxsKHQscikmJlFyKGUscix0W3JdKX0pKSxTYT1SbigoZnVuY3Rpb24oZSx0KXtrbih0LEJhKHQpLGUpfSkpLENhPVJuKChmdW5jdGlvbihlLHQscixpKXtrbih0LEJhKHQpLGUsaSl9KSksd2E9Um4oKGZ1bmN0aW9uKGUsdCxyLGkpe2tuKHQsT2EodCksZSxpKX0pKSxMYT1lbyhuaSksRWE9R2koKGZ1bmN0aW9uKGUsdCl7ZT1MZShlKTt2YXIgcj0tMSxpPXQubGVuZ3RoLG89aT4yP3RbMl06bjtmb3IobyYmeW8odFswXSx0WzFdLG8pJiYoaT0xKTsrK3I8aTspZm9yKHZhciBzPXRbcl0sYT1CYShzKSxjPS0xLGw9YS5sZW5ndGg7KytjPGw7KXt2YXIgdT1hW2NdLGg9ZVt1XTsoaD09PW58fFVzKGgsUmVbdV0pJiYhQmUuY2FsbChlLHUpKSYmKGVbdV09c1t1XSl9cmV0dXJuIGV9KSkseGE9R2koKGZ1bmN0aW9uKGUpe3JldHVybiBlLnB1c2gobixKbiksZ3QoUGEsbixlKX0pKTtmdW5jdGlvbiBBYShlLHQscil7dmFyIGk9bnVsbD09ZT9uOlNpKGUsdCk7cmV0dXJuIGk9PT1uP3I6aX1mdW5jdGlvbiBrYShlLHQpe3JldHVybiBudWxsIT1lJiZfbyhlLHQseGkpfXZhciBNYT1GbigoZnVuY3Rpb24oZSx0LHIpe251bGwhPXQmJiJmdW5jdGlvbiIhPXR5cGVvZiB0LnRvU3RyaW5nJiYodD1JZS5jYWxsKHQpKSxlW3RdPXJ9KSx0YyhuYykpLFJhPUZuKChmdW5jdGlvbihlLHQscil7bnVsbCE9dCYmImZ1bmN0aW9uIiE9dHlwZW9mIHQudG9TdHJpbmcmJih0PUllLmNhbGwodCkpLEJlLmNhbGwoZSx0KT9lW3RdLnB1c2gocik6ZVt0XT1bcl19KSxzbyksVGE9R2koa2kpO2Z1bmN0aW9uIE9hKGUpe3JldHVybiBHcyhlKT9ZcihlKTpEaShlKX1mdW5jdGlvbiBCYShlKXtyZXR1cm4gR3MoZSk/WXIoZSwhMCk6ZnVuY3Rpb24oZSl7aWYoIXRhKGUpKXJldHVybiBmdW5jdGlvbihlKXt2YXIgdD1bXTtpZihudWxsIT1lKWZvcih2YXIgciBpbiBMZShlKSl0LnB1c2gocik7cmV0dXJuIHR9KGUpO3ZhciB0PUNvKGUpLHI9W107Zm9yKHZhciBpIGluIGUpKCJjb25zdHJ1Y3RvciIhPWl8fCF0JiZCZS5jYWxsKGUsaSkpJiZyLnB1c2goaSk7cmV0dXJuIHJ9KGUpfXZhciBEYT1SbigoZnVuY3Rpb24oZSx0LHIpe0ZpKGUsdCxyKX0pKSxQYT1SbigoZnVuY3Rpb24oZSx0LHIsaSl7RmkoZSx0LHIsaSl9KSksSWE9ZW8oKGZ1bmN0aW9uKGUsdCl7dmFyIHI9e307aWYobnVsbD09ZSlyZXR1cm4gcjt2YXIgaT0hMTt0PUV0KHQsKGZ1bmN0aW9uKHQpe3JldHVybiB0PWduKHQsZSksaXx8KGk9dC5sZW5ndGg+MSksdH0pKSxrbihlLHJvKGUpLHIpLGkmJihyPXNpKHIsNywkbikpO2Zvcih2YXIgbj10Lmxlbmd0aDtuLS07KWxuKHIsdFtuXSk7cmV0dXJuIHJ9KSksSGE9ZW8oKGZ1bmN0aW9uKGUsdCl7cmV0dXJuIG51bGw9PWU/e306ZnVuY3Rpb24oZSx0KXtyZXR1cm4gcWkoZSx0LChmdW5jdGlvbih0LHIpe3JldHVybiBrYShlLHIpfSkpfShlLHQpfSkpO2Z1bmN0aW9uIGphKGUsdCl7aWYobnVsbD09ZSlyZXR1cm57fTt2YXIgcj1FdChybyhlKSwoZnVuY3Rpb24oZSl7cmV0dXJuW2VdfSkpO3JldHVybiB0PXNvKHQpLHFpKGUsciwoZnVuY3Rpb24oZSxyKXtyZXR1cm4gdChlLHJbMF0pfSkpfXZhciBGYT1ZbihPYSksV2E9WW4oQmEpO2Z1bmN0aW9uIFVhKGUpe3JldHVybiBudWxsPT1lP1tdOnp0KGUsT2EoZSkpfXZhciBxYT1EbigoZnVuY3Rpb24oZSx0LHIpe3JldHVybiB0PXQudG9Mb3dlckNhc2UoKSxlKyhyP05hKHQpOnQpfSkpO2Z1bmN0aW9uIE5hKGUpe3JldHVybiBKYShtYShlKS50b0xvd2VyQ2FzZSgpKX1mdW5jdGlvbiB6YShlKXtyZXR1cm4oZT1tYShlKSkmJmUucmVwbGFjZSh5ZSxYdCkucmVwbGFjZShLZSwiIil9dmFyIEthPURuKChmdW5jdGlvbihlLHQscil7cmV0dXJuIGUrKHI/Ii0iOiIiKSt0LnRvTG93ZXJDYXNlKCl9KSksVmE9RG4oKGZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gZSsocj8iICI6IiIpK3QudG9Mb3dlckNhc2UoKX0pKSxHYT1CbigidG9Mb3dlckNhc2UiKSxZYT1EbigoZnVuY3Rpb24oZSx0LHIpe3JldHVybiBlKyhyPyJfIjoiIikrdC50b0xvd2VyQ2FzZSgpfSkpLFhhPURuKChmdW5jdGlvbihlLHQscil7cmV0dXJuIGUrKHI/IiAiOiIiKStKYSh0KX0pKSxaYT1EbigoZnVuY3Rpb24oZSx0LHIpe3JldHVybiBlKyhyPyIgIjoiIikrdC50b1VwcGVyQ2FzZSgpfSkpLEphPUJuKCJ0b1VwcGVyQ2FzZSIpO2Z1bmN0aW9uICRhKGUsdCxyKXtyZXR1cm4gZT1tYShlKSwodD1yP246dCk9PT1uP2Z1bmN0aW9uKGUpe3JldHVybiBYZS50ZXN0KGUpfShlKT9mdW5jdGlvbihlKXtyZXR1cm4gZS5tYXRjaChHZSl8fFtdfShlKTpmdW5jdGlvbihlKXtyZXR1cm4gZS5tYXRjaChjZSl8fFtdfShlKTplLm1hdGNoKHQpfHxbXX12YXIgUWE9R2koKGZ1bmN0aW9uKGUsdCl7dHJ5e3JldHVybiBndChlLG4sdCl9Y2F0Y2goZSl7cmV0dXJuIEpzKGUpP2U6bmV3IFNlKGUpfX0pKSxlYz1lbygoZnVuY3Rpb24oZSx0KXtyZXR1cm4gbXQodCwoZnVuY3Rpb24odCl7dD1qbyh0KSxpaShlLHQsUnMoZVt0XSxlKSl9KSksZX0pKTtmdW5jdGlvbiB0YyhlKXtyZXR1cm4gZnVuY3Rpb24oKXtyZXR1cm4gZX19dmFyIHJjPUhuKCksaWM9SG4oITApO2Z1bmN0aW9uIG5jKGUpe3JldHVybiBlfWZ1bmN0aW9uIG9jKGUpe3JldHVybiBCaSgiZnVuY3Rpb24iPT10eXBlb2YgZT9lOnNpKGUsMSkpfXZhciBzYz1HaSgoZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocil7cmV0dXJuIGtpKHIsZSx0KX19KSksYWM9R2koKGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGZ1bmN0aW9uKHIpe3JldHVybiBraShlLHIsdCl9fSkpO2Z1bmN0aW9uIGNjKGUsdCxyKXt2YXIgaT1PYSh0KSxuPWJpKHQsaSk7bnVsbCE9cnx8dGEodCkmJihuLmxlbmd0aHx8IWkubGVuZ3RoKXx8KHI9dCx0PWUsZT10aGlzLG49YmkodCxPYSh0KSkpO3ZhciBvPSEodGEocikmJiJjaGFpbiJpbiByJiYhci5jaGFpbikscz0kcyhlKTtyZXR1cm4gbXQobiwoZnVuY3Rpb24ocil7dmFyIGk9dFtyXTtlW3JdPWkscyYmKGUucHJvdG90eXBlW3JdPWZ1bmN0aW9uKCl7dmFyIHQ9dGhpcy5fX2NoYWluX187aWYob3x8dCl7dmFyIHI9ZSh0aGlzLl9fd3JhcHBlZF9fKSxuPXIuX19hY3Rpb25zX189QW4odGhpcy5fX2FjdGlvbnNfXyk7cmV0dXJuIG4ucHVzaCh7ZnVuYzppLGFyZ3M6YXJndW1lbnRzLHRoaXNBcmc6ZX0pLHIuX19jaGFpbl9fPXQscn1yZXR1cm4gaS5hcHBseShlLHh0KFt0aGlzLnZhbHVlKCldLGFyZ3VtZW50cykpfSl9KSksZX1mdW5jdGlvbiBsYygpe312YXIgdWM9VW4oRXQpLGhjPVVuKFN0KSxmYz1VbihNdCk7ZnVuY3Rpb24gX2MoZSl7cmV0dXJuIG1vKGUpP0h0KGpvKGUpKTpmdW5jdGlvbihlKXtyZXR1cm4gZnVuY3Rpb24odCl7cmV0dXJuIFNpKHQsZSl9fShlKX12YXIgZGM9Tm4oKSxwYz1ObighMCk7ZnVuY3Rpb24gdmMoKXtyZXR1cm5bXX1mdW5jdGlvbiBnYygpe3JldHVybiExfXZhciB5YyxtYz1XbigoZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSt0fSksMCksYmM9Vm4oImNlaWwiKSxTYz1XbigoZnVuY3Rpb24oZSx0KXtyZXR1cm4gZS90fSksMSksQ2M9Vm4oImZsb29yIiksd2M9V24oKGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGUqdH0pLDEpLExjPVZuKCJyb3VuZCIpLEVjPVduKChmdW5jdGlvbihlLHQpe3JldHVybiBlLXR9KSwwKTtyZXR1cm4ganIuYWZ0ZXI9ZnVuY3Rpb24oZSx0KXtpZigiZnVuY3Rpb24iIT10eXBlb2YgdCl0aHJvdyBuZXcgQWUobyk7cmV0dXJuIGU9cGEoZSksZnVuY3Rpb24oKXtpZigtLWU8MSlyZXR1cm4gdC5hcHBseSh0aGlzLGFyZ3VtZW50cyl9fSxqci5hcnk9a3MsanIuYXNzaWduPWJhLGpyLmFzc2lnbkluPVNhLGpyLmFzc2lnbkluV2l0aD1DYSxqci5hc3NpZ25XaXRoPXdhLGpyLmF0PUxhLGpyLmJlZm9yZT1Ncyxqci5iaW5kPVJzLGpyLmJpbmRBbGw9ZWMsanIuYmluZEtleT1Ucyxqci5jYXN0QXJyYXk9ZnVuY3Rpb24oKXtpZighYXJndW1lbnRzLmxlbmd0aClyZXR1cm5bXTt2YXIgZT1hcmd1bWVudHNbMF07cmV0dXJuIEtzKGUpP2U6W2VdfSxqci5jaGFpbj1fcyxqci5jaHVuaz1mdW5jdGlvbihlLHQscil7dD0ocj95byhlLHQscik6dD09PW4pPzE6dnIocGEodCksMCk7dmFyIG89bnVsbD09ZT8wOmUubGVuZ3RoO2lmKCFvfHx0PDEpcmV0dXJuW107Zm9yKHZhciBzPTAsYT0wLGM9aShscihvL3QpKTtzPG87KWNbYSsrXT1lbihlLHMscys9dCk7cmV0dXJuIGN9LGpyLmNvbXBhY3Q9ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PS0xLHI9bnVsbD09ZT8wOmUubGVuZ3RoLGk9MCxuPVtdOysrdDxyOyl7dmFyIG89ZVt0XTtvJiYobltpKytdPW8pfXJldHVybiBufSxqci5jb25jYXQ9ZnVuY3Rpb24oKXt2YXIgZT1hcmd1bWVudHMubGVuZ3RoO2lmKCFlKXJldHVybltdO2Zvcih2YXIgdD1pKGUtMSkscj1hcmd1bWVudHNbMF0sbj1lO24tLTspdFtuLTFdPWFyZ3VtZW50c1tuXTtyZXR1cm4geHQoS3Mocik/QW4ocik6W3JdLHBpKHQsMSkpfSxqci5jb25kPWZ1bmN0aW9uKGUpe3ZhciB0PW51bGw9PWU/MDplLmxlbmd0aCxyPXNvKCk7cmV0dXJuIGU9dD9FdChlLChmdW5jdGlvbihlKXtpZigiZnVuY3Rpb24iIT10eXBlb2YgZVsxXSl0aHJvdyBuZXcgQWUobyk7cmV0dXJuW3IoZVswXSksZVsxXV19KSk6W10sR2koKGZ1bmN0aW9uKHIpe2Zvcih2YXIgaT0tMTsrK2k8dDspe3ZhciBuPWVbaV07aWYoZ3QoblswXSx0aGlzLHIpKXJldHVybiBndChuWzFdLHRoaXMscil9fSkpfSxqci5jb25mb3Jtcz1mdW5jdGlvbihlKXtyZXR1cm4gZnVuY3Rpb24oZSl7dmFyIHQ9T2EoZSk7cmV0dXJuIGZ1bmN0aW9uKHIpe3JldHVybiBhaShyLGUsdCl9fShzaShlLDEpKX0sanIuY29uc3RhbnQ9dGMsanIuY291bnRCeT12cyxqci5jcmVhdGU9ZnVuY3Rpb24oZSx0KXt2YXIgcj1GcihlKTtyZXR1cm4gbnVsbD09dD9yOnJpKHIsdCl9LGpyLmN1cnJ5PWZ1bmN0aW9uIGUodCxyLGkpe3ZhciBvPVhuKHQsOCxuLG4sbixuLG4scj1pP246cik7cmV0dXJuIG8ucGxhY2Vob2xkZXI9ZS5wbGFjZWhvbGRlcixvfSxqci5jdXJyeVJpZ2h0PWZ1bmN0aW9uIGUodCxyLGkpe3ZhciBvPVhuKHQsMTYsbixuLG4sbixuLHI9aT9uOnIpO3JldHVybiBvLnBsYWNlaG9sZGVyPWUucGxhY2Vob2xkZXIsb30sanIuZGVib3VuY2U9T3MsanIuZGVmYXVsdHM9RWEsanIuZGVmYXVsdHNEZWVwPXhhLGpyLmRlZmVyPUJzLGpyLmRlbGF5PURzLGpyLmRpZmZlcmVuY2U9VW8sanIuZGlmZmVyZW5jZUJ5PXFvLGpyLmRpZmZlcmVuY2VXaXRoPU5vLGpyLmRyb3A9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPW51bGw9PWU/MDplLmxlbmd0aDtyZXR1cm4gaT9lbihlLCh0PXJ8fHQ9PT1uPzE6cGEodCkpPDA/MDp0LGkpOltdfSxqci5kcm9wUmlnaHQ9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPW51bGw9PWU/MDplLmxlbmd0aDtyZXR1cm4gaT9lbihlLDAsKHQ9aS0odD1yfHx0PT09bj8xOnBhKHQpKSk8MD8wOnQpOltdfSxqci5kcm9wUmlnaHRXaGlsZT1mdW5jdGlvbihlLHQpe3JldHVybiBlJiZlLmxlbmd0aD9obihlLHNvKHQsMyksITAsITApOltdfSxqci5kcm9wV2hpbGU9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSYmZS5sZW5ndGg/aG4oZSxzbyh0LDMpLCEwKTpbXX0sanIuZmlsbD1mdW5jdGlvbihlLHQscixpKXt2YXIgbz1udWxsPT1lPzA6ZS5sZW5ndGg7cmV0dXJuIG8/KHImJiJudW1iZXIiIT10eXBlb2YgciYmeW8oZSx0LHIpJiYocj0wLGk9byksZnVuY3Rpb24oZSx0LHIsaSl7dmFyIG89ZS5sZW5ndGg7Zm9yKChyPXBhKHIpKTwwJiYocj0tcj5vPzA6bytyKSwoaT1pPT09bnx8aT5vP286cGEoaSkpPDAmJihpKz1vKSxpPXI+aT8wOnZhKGkpO3I8aTspZVtyKytdPXQ7cmV0dXJuIGV9KGUsdCxyLGkpKTpbXX0sanIuZmlsdGVyPWZ1bmN0aW9uKGUsdCl7cmV0dXJuKEtzKGUpP0N0OmRpKShlLHNvKHQsMykpfSxqci5mbGF0TWFwPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIHBpKExzKGUsdCksMSl9LGpyLmZsYXRNYXBEZWVwPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIHBpKExzKGUsdCksdSl9LGpyLmZsYXRNYXBEZXB0aD1mdW5jdGlvbihlLHQscil7cmV0dXJuIHI9cj09PW4/MTpwYShyKSxwaShMcyhlLHQpLHIpfSxqci5mbGF0dGVuPVZvLGpyLmZsYXR0ZW5EZWVwPWZ1bmN0aW9uKGUpe3JldHVybiBudWxsIT1lJiZlLmxlbmd0aD9waShlLHUpOltdfSxqci5mbGF0dGVuRGVwdGg9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gbnVsbCE9ZSYmZS5sZW5ndGg/cGkoZSx0PXQ9PT1uPzE6cGEodCkpOltdfSxqci5mbGlwPWZ1bmN0aW9uKGUpe3JldHVybiBYbihlLDUxMil9LGpyLmZsb3c9cmMsanIuZmxvd1JpZ2h0PWljLGpyLmZyb21QYWlycz1mdW5jdGlvbihlKXtmb3IodmFyIHQ9LTEscj1udWxsPT1lPzA6ZS5sZW5ndGgsaT17fTsrK3Q8cjspe3ZhciBuPWVbdF07aVtuWzBdXT1uWzFdfXJldHVybiBpfSxqci5mdW5jdGlvbnM9ZnVuY3Rpb24oZSl7cmV0dXJuIG51bGw9PWU/W106YmkoZSxPYShlKSl9LGpyLmZ1bmN0aW9uc0luPWZ1bmN0aW9uKGUpe3JldHVybiBudWxsPT1lP1tdOmJpKGUsQmEoZSkpfSxqci5ncm91cEJ5PVNzLGpyLmluaXRpYWw9ZnVuY3Rpb24oZSl7cmV0dXJuIG51bGwhPWUmJmUubGVuZ3RoP2VuKGUsMCwtMSk6W119LGpyLmludGVyc2VjdGlvbj1Zbyxqci5pbnRlcnNlY3Rpb25CeT1Ybyxqci5pbnRlcnNlY3Rpb25XaXRoPVpvLGpyLmludmVydD1NYSxqci5pbnZlcnRCeT1SYSxqci5pbnZva2VNYXA9Q3MsanIuaXRlcmF0ZWU9b2MsanIua2V5Qnk9d3MsanIua2V5cz1PYSxqci5rZXlzSW49QmEsanIubWFwPUxzLGpyLm1hcEtleXM9ZnVuY3Rpb24oZSx0KXt2YXIgcj17fTtyZXR1cm4gdD1zbyh0LDMpLHlpKGUsKGZ1bmN0aW9uKGUsaSxuKXtpaShyLHQoZSxpLG4pLGUpfSkpLHJ9LGpyLm1hcFZhbHVlcz1mdW5jdGlvbihlLHQpe3ZhciByPXt9O3JldHVybiB0PXNvKHQsMykseWkoZSwoZnVuY3Rpb24oZSxpLG4pe2lpKHIsaSx0KGUsaSxuKSl9KSkscn0sanIubWF0Y2hlcz1mdW5jdGlvbihlKXtyZXR1cm4gSGkoc2koZSwxKSl9LGpyLm1hdGNoZXNQcm9wZXJ0eT1mdW5jdGlvbihlLHQpe3JldHVybiBqaShlLHNpKHQsMSkpfSxqci5tZW1vaXplPVBzLGpyLm1lcmdlPURhLGpyLm1lcmdlV2l0aD1QYSxqci5tZXRob2Q9c2MsanIubWV0aG9kT2Y9YWMsanIubWl4aW49Y2MsanIubmVnYXRlPUlzLGpyLm50aEFyZz1mdW5jdGlvbihlKXtyZXR1cm4gZT1wYShlKSxHaSgoZnVuY3Rpb24odCl7cmV0dXJuIFdpKHQsZSl9KSl9LGpyLm9taXQ9SWEsanIub21pdEJ5PWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGphKGUsSXMoc28odCkpKX0sanIub25jZT1mdW5jdGlvbihlKXtyZXR1cm4gTXMoMixlKX0sanIub3JkZXJCeT1mdW5jdGlvbihlLHQscixpKXtyZXR1cm4gbnVsbD09ZT9bXTooS3ModCl8fCh0PW51bGw9PXQ/W106W3RdKSxLcyhyPWk/bjpyKXx8KHI9bnVsbD09cj9bXTpbcl0pLFVpKGUsdCxyKSl9LGpyLm92ZXI9dWMsanIub3ZlckFyZ3M9SHMsanIub3ZlckV2ZXJ5PWhjLGpyLm92ZXJTb21lPWZjLGpyLnBhcnRpYWw9anMsanIucGFydGlhbFJpZ2h0PUZzLGpyLnBhcnRpdGlvbj1Fcyxqci5waWNrPUhhLGpyLnBpY2tCeT1qYSxqci5wcm9wZXJ0eT1fYyxqci5wcm9wZXJ0eU9mPWZ1bmN0aW9uKGUpe3JldHVybiBmdW5jdGlvbih0KXtyZXR1cm4gbnVsbD09ZT9uOlNpKGUsdCl9fSxqci5wdWxsPSRvLGpyLnB1bGxBbGw9UW8sanIucHVsbEFsbEJ5PWZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gZSYmZS5sZW5ndGgmJnQmJnQubGVuZ3RoP05pKGUsdCxzbyhyLDIpKTplfSxqci5wdWxsQWxsV2l0aD1mdW5jdGlvbihlLHQscil7cmV0dXJuIGUmJmUubGVuZ3RoJiZ0JiZ0Lmxlbmd0aD9OaShlLHQsbixyKTplfSxqci5wdWxsQXQ9ZXMsanIucmFuZ2U9ZGMsanIucmFuZ2VSaWdodD1wYyxqci5yZWFyZz1Xcyxqci5yZWplY3Q9ZnVuY3Rpb24oZSx0KXtyZXR1cm4oS3MoZSk/Q3Q6ZGkpKGUsSXMoc28odCwzKSkpfSxqci5yZW1vdmU9ZnVuY3Rpb24oZSx0KXt2YXIgcj1bXTtpZighZXx8IWUubGVuZ3RoKXJldHVybiByO3ZhciBpPS0xLG49W10sbz1lLmxlbmd0aDtmb3IodD1zbyh0LDMpOysraTxvOyl7dmFyIHM9ZVtpXTt0KHMsaSxlKSYmKHIucHVzaChzKSxuLnB1c2goaSkpfXJldHVybiB6aShlLG4pLHJ9LGpyLnJlc3Q9ZnVuY3Rpb24oZSx0KXtpZigiZnVuY3Rpb24iIT10eXBlb2YgZSl0aHJvdyBuZXcgQWUobyk7cmV0dXJuIEdpKGUsdD10PT09bj90OnBhKHQpKX0sanIucmV2ZXJzZT10cyxqci5zYW1wbGVTaXplPWZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gdD0ocj95byhlLHQscik6dD09PW4pPzE6cGEodCksKEtzKGUpP1pyOlhpKShlLHQpfSxqci5zZXQ9ZnVuY3Rpb24oZSx0LHIpe3JldHVybiBudWxsPT1lP2U6WmkoZSx0LHIpfSxqci5zZXRXaXRoPWZ1bmN0aW9uKGUsdCxyLGkpe3JldHVybiBpPSJmdW5jdGlvbiI9PXR5cGVvZiBpP2k6bixudWxsPT1lP2U6WmkoZSx0LHIsaSl9LGpyLnNodWZmbGU9ZnVuY3Rpb24oZSl7cmV0dXJuKEtzKGUpP0pyOlFpKShlKX0sanIuc2xpY2U9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPW51bGw9PWU/MDplLmxlbmd0aDtyZXR1cm4gaT8ociYmIm51bWJlciIhPXR5cGVvZiByJiZ5byhlLHQscik/KHQ9MCxyPWkpOih0PW51bGw9PXQ/MDpwYSh0KSxyPXI9PT1uP2k6cGEocikpLGVuKGUsdCxyKSk6W119LGpyLnNvcnRCeT14cyxqci5zb3J0ZWRVbmlxPWZ1bmN0aW9uKGUpe3JldHVybiBlJiZlLmxlbmd0aD9vbihlKTpbXX0sanIuc29ydGVkVW5pcUJ5PWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGUmJmUubGVuZ3RoP29uKGUsc28odCwyKSk6W119LGpyLnNwbGl0PWZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gciYmIm51bWJlciIhPXR5cGVvZiByJiZ5byhlLHQscikmJih0PXI9biksKHI9cj09PW4/XzpyPj4+MCk/KGU9bWEoZSkpJiYoInN0cmluZyI9PXR5cGVvZiB0fHxudWxsIT10JiYhc2EodCkpJiYhKHQ9YW4odCkpJiYkdChlKT9tbihvcihlKSwwLHIpOmUuc3BsaXQodCxyKTpbXX0sanIuc3ByZWFkPWZ1bmN0aW9uKGUsdCl7aWYoImZ1bmN0aW9uIiE9dHlwZW9mIGUpdGhyb3cgbmV3IEFlKG8pO3JldHVybiB0PW51bGw9PXQ/MDp2cihwYSh0KSwwKSxHaSgoZnVuY3Rpb24ocil7dmFyIGk9clt0XSxuPW1uKHIsMCx0KTtyZXR1cm4gaSYmeHQobixpKSxndChlLHRoaXMsbil9KSl9LGpyLnRhaWw9ZnVuY3Rpb24oZSl7dmFyIHQ9bnVsbD09ZT8wOmUubGVuZ3RoO3JldHVybiB0P2VuKGUsMSx0KTpbXX0sanIudGFrZT1mdW5jdGlvbihlLHQscil7cmV0dXJuIGUmJmUubGVuZ3RoP2VuKGUsMCwodD1yfHx0PT09bj8xOnBhKHQpKTwwPzA6dCk6W119LGpyLnRha2VSaWdodD1mdW5jdGlvbihlLHQscil7dmFyIGk9bnVsbD09ZT8wOmUubGVuZ3RoO3JldHVybiBpP2VuKGUsKHQ9aS0odD1yfHx0PT09bj8xOnBhKHQpKSk8MD8wOnQsaSk6W119LGpyLnRha2VSaWdodFdoaWxlPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGUmJmUubGVuZ3RoP2huKGUsc28odCwzKSwhMSwhMCk6W119LGpyLnRha2VXaGlsZT1mdW5jdGlvbihlLHQpe3JldHVybiBlJiZlLmxlbmd0aD9obihlLHNvKHQsMykpOltdfSxqci50YXA9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gdChlKSxlfSxqci50aHJvdHRsZT1mdW5jdGlvbihlLHQscil7dmFyIGk9ITAsbj0hMDtpZigiZnVuY3Rpb24iIT10eXBlb2YgZSl0aHJvdyBuZXcgQWUobyk7cmV0dXJuIHRhKHIpJiYoaT0ibGVhZGluZyJpbiByPyEhci5sZWFkaW5nOmksbj0idHJhaWxpbmciaW4gcj8hIXIudHJhaWxpbmc6biksT3MoZSx0LHtsZWFkaW5nOmksbWF4V2FpdDp0LHRyYWlsaW5nOm59KX0sanIudGhydT1kcyxqci50b0FycmF5PV9hLGpyLnRvUGFpcnM9RmEsanIudG9QYWlyc0luPVdhLGpyLnRvUGF0aD1mdW5jdGlvbihlKXtyZXR1cm4gS3MoZSk/RXQoZSxqbyk6bGEoZSk/W2VdOkFuKEhvKG1hKGUpKSl9LGpyLnRvUGxhaW5PYmplY3Q9eWEsanIudHJhbnNmb3JtPWZ1bmN0aW9uKGUsdCxyKXt2YXIgaT1LcyhlKSxuPWl8fFhzKGUpfHx1YShlKTtpZih0PXNvKHQsNCksbnVsbD09cil7dmFyIG89ZSYmZS5jb25zdHJ1Y3RvcjtyPW4/aT9uZXcgbzpbXTp0YShlKSYmJHMobyk/RnIoVmUoZSkpOnt9fXJldHVybihuP210OnlpKShlLChmdW5jdGlvbihlLGksbil7cmV0dXJuIHQocixlLGksbil9KSkscn0sanIudW5hcnk9ZnVuY3Rpb24oZSl7cmV0dXJuIGtzKGUsMSl9LGpyLnVuaW9uPXJzLGpyLnVuaW9uQnk9aXMsanIudW5pb25XaXRoPW5zLGpyLnVuaXE9ZnVuY3Rpb24oZSl7cmV0dXJuIGUmJmUubGVuZ3RoP2NuKGUpOltdfSxqci51bmlxQnk9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSYmZS5sZW5ndGg/Y24oZSxzbyh0LDIpKTpbXX0sanIudW5pcVdpdGg9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gdD0iZnVuY3Rpb24iPT10eXBlb2YgdD90Om4sZSYmZS5sZW5ndGg/Y24oZSxuLHQpOltdfSxqci51bnNldD1mdW5jdGlvbihlLHQpe3JldHVybiBudWxsPT1lfHxsbihlLHQpfSxqci51bnppcD1vcyxqci51bnppcFdpdGg9c3MsanIudXBkYXRlPWZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gbnVsbD09ZT9lOnVuKGUsdCx2bihyKSl9LGpyLnVwZGF0ZVdpdGg9ZnVuY3Rpb24oZSx0LHIsaSl7cmV0dXJuIGk9ImZ1bmN0aW9uIj09dHlwZW9mIGk/aTpuLG51bGw9PWU/ZTp1bihlLHQsdm4ociksaSl9LGpyLnZhbHVlcz1VYSxqci52YWx1ZXNJbj1mdW5jdGlvbihlKXtyZXR1cm4gbnVsbD09ZT9bXTp6dChlLEJhKGUpKX0sanIud2l0aG91dD1hcyxqci53b3Jkcz0kYSxqci53cmFwPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGpzKHZuKHQpLGUpfSxqci54b3I9Y3MsanIueG9yQnk9bHMsanIueG9yV2l0aD11cyxqci56aXA9aHMsanIuemlwT2JqZWN0PWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGRuKGV8fFtdLHR8fFtdLFFyKX0sanIuemlwT2JqZWN0RGVlcD1mdW5jdGlvbihlLHQpe3JldHVybiBkbihlfHxbXSx0fHxbXSxaaSl9LGpyLnppcFdpdGg9ZnMsanIuZW50cmllcz1GYSxqci5lbnRyaWVzSW49V2EsanIuZXh0ZW5kPVNhLGpyLmV4dGVuZFdpdGg9Q2EsY2MoanIsanIpLGpyLmFkZD1tYyxqci5hdHRlbXB0PVFhLGpyLmNhbWVsQ2FzZT1xYSxqci5jYXBpdGFsaXplPU5hLGpyLmNlaWw9YmMsanIuY2xhbXA9ZnVuY3Rpb24oZSx0LHIpe3JldHVybiByPT09biYmKHI9dCx0PW4pLHIhPT1uJiYocj0ocj1nYShyKSk9PXI/cjowKSx0IT09biYmKHQ9KHQ9Z2EodCkpPT10P3Q6MCksb2koZ2EoZSksdCxyKX0sanIuY2xvbmU9ZnVuY3Rpb24oZSl7cmV0dXJuIHNpKGUsNCl9LGpyLmNsb25lRGVlcD1mdW5jdGlvbihlKXtyZXR1cm4gc2koZSw1KX0sanIuY2xvbmVEZWVwV2l0aD1mdW5jdGlvbihlLHQpe3JldHVybiBzaShlLDUsdD0iZnVuY3Rpb24iPT10eXBlb2YgdD90Om4pfSxqci5jbG9uZVdpdGg9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gc2koZSw0LHQ9ImZ1bmN0aW9uIj09dHlwZW9mIHQ/dDpuKX0sanIuY29uZm9ybXNUbz1mdW5jdGlvbihlLHQpe3JldHVybiBudWxsPT10fHxhaShlLHQsT2EodCkpfSxqci5kZWJ1cnI9emEsanIuZGVmYXVsdFRvPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIG51bGw9PWV8fGUhPWU/dDplfSxqci5kaXZpZGU9U2MsanIuZW5kc1dpdGg9ZnVuY3Rpb24oZSx0LHIpe2U9bWEoZSksdD1hbih0KTt2YXIgaT1lLmxlbmd0aCxvPXI9cj09PW4/aTpvaShwYShyKSwwLGkpO3JldHVybihyLT10Lmxlbmd0aCk+PTAmJmUuc2xpY2UocixvKT09dH0sanIuZXE9VXMsanIuZXNjYXBlPWZ1bmN0aW9uKGUpe3JldHVybihlPW1hKGUpKSYmWS50ZXN0KGUpP2UucmVwbGFjZShWLFp0KTplfSxqci5lc2NhcGVSZWdFeHA9ZnVuY3Rpb24oZSl7cmV0dXJuKGU9bWEoZSkpJiZyZS50ZXN0KGUpP2UucmVwbGFjZSh0ZSwiXFwkJiIpOmV9LGpyLmV2ZXJ5PWZ1bmN0aW9uKGUsdCxyKXt2YXIgaT1LcyhlKT9TdDpmaTtyZXR1cm4gciYmeW8oZSx0LHIpJiYodD1uKSxpKGUsc28odCwzKSl9LGpyLmZpbmQ9Z3MsanIuZmluZEluZGV4PXpvLGpyLmZpbmRLZXk9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gVHQoZSxzbyh0LDMpLHlpKX0sanIuZmluZExhc3Q9eXMsanIuZmluZExhc3RJbmRleD1Lbyxqci5maW5kTGFzdEtleT1mdW5jdGlvbihlLHQpe3JldHVybiBUdChlLHNvKHQsMyksbWkpfSxqci5mbG9vcj1DYyxqci5mb3JFYWNoPW1zLGpyLmZvckVhY2hSaWdodD1icyxqci5mb3JJbj1mdW5jdGlvbihlLHQpe3JldHVybiBudWxsPT1lP2U6dmkoZSxzbyh0LDMpLEJhKX0sanIuZm9ySW5SaWdodD1mdW5jdGlvbihlLHQpe3JldHVybiBudWxsPT1lP2U6Z2koZSxzbyh0LDMpLEJhKX0sanIuZm9yT3duPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGUmJnlpKGUsc28odCwzKSl9LGpyLmZvck93blJpZ2h0PWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGUmJm1pKGUsc28odCwzKSl9LGpyLmdldD1BYSxqci5ndD1xcyxqci5ndGU9TnMsanIuaGFzPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIG51bGwhPWUmJl9vKGUsdCxFaSl9LGpyLmhhc0luPWthLGpyLmhlYWQ9R28sanIuaWRlbnRpdHk9bmMsanIuaW5jbHVkZXM9ZnVuY3Rpb24oZSx0LHIsaSl7ZT1HcyhlKT9lOlVhKGUpLHI9ciYmIWk/cGEocik6MDt2YXIgbj1lLmxlbmd0aDtyZXR1cm4gcjwwJiYocj12cihuK3IsMCkpLGNhKGUpP3I8PW4mJmUuaW5kZXhPZih0LHIpPi0xOiEhbiYmQnQoZSx0LHIpPi0xfSxqci5pbmRleE9mPWZ1bmN0aW9uKGUsdCxyKXt2YXIgaT1udWxsPT1lPzA6ZS5sZW5ndGg7aWYoIWkpcmV0dXJuLTE7dmFyIG49bnVsbD09cj8wOnBhKHIpO3JldHVybiBuPDAmJihuPXZyKGkrbiwwKSksQnQoZSx0LG4pfSxqci5pblJhbmdlPWZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gdD1kYSh0KSxyPT09bj8ocj10LHQ9MCk6cj1kYShyKSxmdW5jdGlvbihlLHQscil7cmV0dXJuIGU+PWdyKHQscikmJmU8dnIodCxyKX0oZT1nYShlKSx0LHIpfSxqci5pbnZva2U9VGEsanIuaXNBcmd1bWVudHM9enMsanIuaXNBcnJheT1Lcyxqci5pc0FycmF5QnVmZmVyPVZzLGpyLmlzQXJyYXlMaWtlPUdzLGpyLmlzQXJyYXlMaWtlT2JqZWN0PVlzLGpyLmlzQm9vbGVhbj1mdW5jdGlvbihlKXtyZXR1cm4hMD09PWV8fCExPT09ZXx8cmEoZSkmJndpKGUpPT1nfSxqci5pc0J1ZmZlcj1Ycyxqci5pc0RhdGU9WnMsanIuaXNFbGVtZW50PWZ1bmN0aW9uKGUpe3JldHVybiByYShlKSYmMT09PWUubm9kZVR5cGUmJiFvYShlKX0sanIuaXNFbXB0eT1mdW5jdGlvbihlKXtpZihudWxsPT1lKXJldHVybiEwO2lmKEdzKGUpJiYoS3MoZSl8fCJzdHJpbmciPT10eXBlb2YgZXx8ImZ1bmN0aW9uIj09dHlwZW9mIGUuc3BsaWNlfHxYcyhlKXx8dWEoZSl8fHpzKGUpKSlyZXR1cm4hZS5sZW5ndGg7dmFyIHQ9Zm8oZSk7aWYodD09Q3x8dD09QSlyZXR1cm4hZS5zaXplO2lmKENvKGUpKXJldHVybiFEaShlKS5sZW5ndGg7Zm9yKHZhciByIGluIGUpaWYoQmUuY2FsbChlLHIpKXJldHVybiExO3JldHVybiEwfSxqci5pc0VxdWFsPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIFJpKGUsdCl9LGpyLmlzRXF1YWxXaXRoPWZ1bmN0aW9uKGUsdCxyKXt2YXIgaT0ocj0iZnVuY3Rpb24iPT10eXBlb2Ygcj9yOm4pP3IoZSx0KTpuO3JldHVybiBpPT09bj9SaShlLHQsbixyKTohIWl9LGpyLmlzRXJyb3I9SnMsanIuaXNGaW5pdGU9ZnVuY3Rpb24oZSl7cmV0dXJuIm51bWJlciI9PXR5cGVvZiBlJiZfcihlKX0sanIuaXNGdW5jdGlvbj0kcyxqci5pc0ludGVnZXI9UXMsanIuaXNMZW5ndGg9ZWEsanIuaXNNYXA9aWEsanIuaXNNYXRjaD1mdW5jdGlvbihlLHQpe3JldHVybiBlPT09dHx8VGkoZSx0LGNvKHQpKX0sanIuaXNNYXRjaFdpdGg9ZnVuY3Rpb24oZSx0LHIpe3JldHVybiByPSJmdW5jdGlvbiI9PXR5cGVvZiByP3I6bixUaShlLHQsY28odCkscil9LGpyLmlzTmFOPWZ1bmN0aW9uKGUpe3JldHVybiBuYShlKSYmZSE9K2V9LGpyLmlzTmF0aXZlPWZ1bmN0aW9uKGUpe2lmKFNvKGUpKXRocm93IG5ldyBTZSgiVW5zdXBwb3J0ZWQgY29yZS1qcyB1c2UuIFRyeSBodHRwczovL25wbXMuaW8vc2VhcmNoP3E9cG9ueWZpbGwuIik7cmV0dXJuIE9pKGUpfSxqci5pc05pbD1mdW5jdGlvbihlKXtyZXR1cm4gbnVsbD09ZX0sanIuaXNOdWxsPWZ1bmN0aW9uKGUpe3JldHVybiBudWxsPT09ZX0sanIuaXNOdW1iZXI9bmEsanIuaXNPYmplY3Q9dGEsanIuaXNPYmplY3RMaWtlPXJhLGpyLmlzUGxhaW5PYmplY3Q9b2EsanIuaXNSZWdFeHA9c2EsanIuaXNTYWZlSW50ZWdlcj1mdW5jdGlvbihlKXtyZXR1cm4gUXMoZSkmJmU+PS05MDA3MTk5MjU0NzQwOTkxJiZlPD1ofSxqci5pc1NldD1hYSxqci5pc1N0cmluZz1jYSxqci5pc1N5bWJvbD1sYSxqci5pc1R5cGVkQXJyYXk9dWEsanIuaXNVbmRlZmluZWQ9ZnVuY3Rpb24oZSl7cmV0dXJuIGU9PT1ufSxqci5pc1dlYWtNYXA9ZnVuY3Rpb24oZSl7cmV0dXJuIHJhKGUpJiZmbyhlKT09Un0sanIuaXNXZWFrU2V0PWZ1bmN0aW9uKGUpe3JldHVybiByYShlKSYmIltvYmplY3QgV2Vha1NldF0iPT13aShlKX0sanIuam9pbj1mdW5jdGlvbihlLHQpe3JldHVybiBudWxsPT1lPyIiOmRyLmNhbGwoZSx0KX0sanIua2ViYWJDYXNlPUthLGpyLmxhc3Q9Sm8sanIubGFzdEluZGV4T2Y9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPW51bGw9PWU/MDplLmxlbmd0aDtpZighaSlyZXR1cm4tMTt2YXIgbz1pO3JldHVybiByIT09biYmKG89KG89cGEocikpPDA/dnIoaStvLDApOmdyKG8saS0xKSksdD09dD9mdW5jdGlvbihlLHQscil7Zm9yKHZhciBpPXIrMTtpLS07KWlmKGVbaV09PT10KXJldHVybiBpO3JldHVybiBpfShlLHQsbyk6T3QoZSxQdCxvLCEwKX0sanIubG93ZXJDYXNlPVZhLGpyLmxvd2VyRmlyc3Q9R2EsanIubHQ9aGEsanIubHRlPWZhLGpyLm1heD1mdW5jdGlvbihlKXtyZXR1cm4gZSYmZS5sZW5ndGg/X2koZSxuYyxMaSk6bn0sanIubWF4Qnk9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSYmZS5sZW5ndGg/X2koZSxzbyh0LDIpLExpKTpufSxqci5tZWFuPWZ1bmN0aW9uKGUpe3JldHVybiBJdChlLG5jKX0sanIubWVhbkJ5PWZ1bmN0aW9uKGUsdCl7cmV0dXJuIEl0KGUsc28odCwyKSl9LGpyLm1pbj1mdW5jdGlvbihlKXtyZXR1cm4gZSYmZS5sZW5ndGg/X2koZSxuYyxQaSk6bn0sanIubWluQnk9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSYmZS5sZW5ndGg/X2koZSxzbyh0LDIpLFBpKTpufSxqci5zdHViQXJyYXk9dmMsanIuc3R1YkZhbHNlPWdjLGpyLnN0dWJPYmplY3Q9ZnVuY3Rpb24oKXtyZXR1cm57fX0sanIuc3R1YlN0cmluZz1mdW5jdGlvbigpe3JldHVybiIifSxqci5zdHViVHJ1ZT1mdW5jdGlvbigpe3JldHVybiEwfSxqci5tdWx0aXBseT13Yyxqci5udGg9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSYmZS5sZW5ndGg/V2koZSxwYSh0KSk6bn0sanIubm9Db25mbGljdD1mdW5jdGlvbigpe3JldHVybiBvdC5fPT09dGhpcyYmKG90Ll89amUpLHRoaXN9LGpyLm5vb3A9bGMsanIubm93PUFzLGpyLnBhZD1mdW5jdGlvbihlLHQscil7ZT1tYShlKTt2YXIgaT0odD1wYSh0KSk/bnIoZSk6MDtpZighdHx8aT49dClyZXR1cm4gZTt2YXIgbj0odC1pKS8yO3JldHVybiBxbih1cihuKSxyKStlK3FuKGxyKG4pLHIpfSxqci5wYWRFbmQ9ZnVuY3Rpb24oZSx0LHIpe2U9bWEoZSk7dmFyIGk9KHQ9cGEodCkpP25yKGUpOjA7cmV0dXJuIHQmJmk8dD9lK3FuKHQtaSxyKTplfSxqci5wYWRTdGFydD1mdW5jdGlvbihlLHQscil7ZT1tYShlKTt2YXIgaT0odD1wYSh0KSk/bnIoZSk6MDtyZXR1cm4gdCYmaTx0P3FuKHQtaSxyKStlOmV9LGpyLnBhcnNlSW50PWZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gcnx8bnVsbD09dD90PTA6dCYmKHQ9K3QpLG1yKG1hKGUpLnJlcGxhY2UoaWUsIiIpLHR8fDApfSxqci5yYW5kb209ZnVuY3Rpb24oZSx0LHIpe2lmKHImJiJib29sZWFuIiE9dHlwZW9mIHImJnlvKGUsdCxyKSYmKHQ9cj1uKSxyPT09biYmKCJib29sZWFuIj09dHlwZW9mIHQ/KHI9dCx0PW4pOiJib29sZWFuIj09dHlwZW9mIGUmJihyPWUsZT1uKSksZT09PW4mJnQ9PT1uPyhlPTAsdD0xKTooZT1kYShlKSx0PT09bj8odD1lLGU9MCk6dD1kYSh0KSksZT50KXt2YXIgaT1lO2U9dCx0PWl9aWYocnx8ZSUxfHx0JTEpe3ZhciBvPWJyKCk7cmV0dXJuIGdyKGUrbyoodC1lK3R0KCIxZS0iKygobysiIikubGVuZ3RoLTEpKSksdCl9cmV0dXJuIEtpKGUsdCl9LGpyLnJlZHVjZT1mdW5jdGlvbihlLHQscil7dmFyIGk9S3MoZSk/QXQ6RnQsbj1hcmd1bWVudHMubGVuZ3RoPDM7cmV0dXJuIGkoZSxzbyh0LDQpLHIsbix1aSl9LGpyLnJlZHVjZVJpZ2h0PWZ1bmN0aW9uKGUsdCxyKXt2YXIgaT1LcyhlKT9rdDpGdCxuPWFyZ3VtZW50cy5sZW5ndGg8MztyZXR1cm4gaShlLHNvKHQsNCkscixuLGhpKX0sanIucmVwZWF0PWZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gdD0ocj95byhlLHQscik6dD09PW4pPzE6cGEodCksVmkobWEoZSksdCl9LGpyLnJlcGxhY2U9ZnVuY3Rpb24oKXt2YXIgZT1hcmd1bWVudHMsdD1tYShlWzBdKTtyZXR1cm4gZS5sZW5ndGg8Mz90OnQucmVwbGFjZShlWzFdLGVbMl0pfSxqci5yZXN1bHQ9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPS0xLG89KHQ9Z24odCxlKSkubGVuZ3RoO2ZvcihvfHwobz0xLGU9bik7KytpPG87KXt2YXIgcz1udWxsPT1lP246ZVtqbyh0W2ldKV07cz09PW4mJihpPW8scz1yKSxlPSRzKHMpP3MuY2FsbChlKTpzfXJldHVybiBlfSxqci5yb3VuZD1MYyxqci5ydW5JbkNvbnRleHQ9ZSxqci5zYW1wbGU9ZnVuY3Rpb24oZSl7cmV0dXJuKEtzKGUpP1hyOllpKShlKX0sanIuc2l6ZT1mdW5jdGlvbihlKXtpZihudWxsPT1lKXJldHVybiAwO2lmKEdzKGUpKXJldHVybiBjYShlKT9ucihlKTplLmxlbmd0aDt2YXIgdD1mbyhlKTtyZXR1cm4gdD09Q3x8dD09QT9lLnNpemU6RGkoZSkubGVuZ3RofSxqci5zbmFrZUNhc2U9WWEsanIuc29tZT1mdW5jdGlvbihlLHQscil7dmFyIGk9S3MoZSk/TXQ6dG47cmV0dXJuIHImJnlvKGUsdCxyKSYmKHQ9biksaShlLHNvKHQsMykpfSxqci5zb3J0ZWRJbmRleD1mdW5jdGlvbihlLHQpe3JldHVybiBybihlLHQpfSxqci5zb3J0ZWRJbmRleEJ5PWZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gbm4oZSx0LHNvKHIsMikpfSxqci5zb3J0ZWRJbmRleE9mPWZ1bmN0aW9uKGUsdCl7dmFyIHI9bnVsbD09ZT8wOmUubGVuZ3RoO2lmKHIpe3ZhciBpPXJuKGUsdCk7aWYoaTxyJiZVcyhlW2ldLHQpKXJldHVybiBpfXJldHVybi0xfSxqci5zb3J0ZWRMYXN0SW5kZXg9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gcm4oZSx0LCEwKX0sanIuc29ydGVkTGFzdEluZGV4Qnk9ZnVuY3Rpb24oZSx0LHIpe3JldHVybiBubihlLHQsc28ociwyKSwhMCl9LGpyLnNvcnRlZExhc3RJbmRleE9mPWZ1bmN0aW9uKGUsdCl7aWYobnVsbCE9ZSYmZS5sZW5ndGgpe3ZhciByPXJuKGUsdCwhMCktMTtpZihVcyhlW3JdLHQpKXJldHVybiByfXJldHVybi0xfSxqci5zdGFydENhc2U9WGEsanIuc3RhcnRzV2l0aD1mdW5jdGlvbihlLHQscil7cmV0dXJuIGU9bWEoZSkscj1udWxsPT1yPzA6b2kocGEociksMCxlLmxlbmd0aCksdD1hbih0KSxlLnNsaWNlKHIscit0Lmxlbmd0aCk9PXR9LGpyLnN1YnRyYWN0PUVjLGpyLnN1bT1mdW5jdGlvbihlKXtyZXR1cm4gZSYmZS5sZW5ndGg/V3QoZSxuYyk6MH0sanIuc3VtQnk9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSYmZS5sZW5ndGg/V3QoZSxzbyh0LDIpKTowfSxqci50ZW1wbGF0ZT1mdW5jdGlvbihlLHQscil7dmFyIGk9anIudGVtcGxhdGVTZXR0aW5ncztyJiZ5byhlLHQscikmJih0PW4pLGU9bWEoZSksdD1DYSh7fSx0LGksWm4pO3ZhciBvLHMsYT1DYSh7fSx0LmltcG9ydHMsaS5pbXBvcnRzLFpuKSxjPU9hKGEpLGw9enQoYSxjKSx1PTAsaD10LmludGVycG9sYXRlfHxtZSxmPSJfX3AgKz0gJyIsXz1FZSgodC5lc2NhcGV8fG1lKS5zb3VyY2UrInwiK2guc291cmNlKyJ8IisoaD09PUo/aGU6bWUpLnNvdXJjZSsifCIrKHQuZXZhbHVhdGV8fG1lKS5zb3VyY2UrInwkIiwiZyIpLGQ9Ii8vIyBzb3VyY2VVUkw9IisoQmUuY2FsbCh0LCJzb3VyY2VVUkwiKT8odC5zb3VyY2VVUkwrIiIpLnJlcGxhY2UoL1xzL2csIiAiKToibG9kYXNoLnRlbXBsYXRlU291cmNlc1siKyArK0plKyJdIikrIlxuIjtlLnJlcGxhY2UoXywoZnVuY3Rpb24odCxyLGksbixhLGMpe3JldHVybiBpfHwoaT1uKSxmKz1lLnNsaWNlKHUsYykucmVwbGFjZShiZSxKdCksciYmKG89ITAsZis9IicgK1xuX19lKCIrcisiKSArXG4nIiksYSYmKHM9ITAsZis9Iic7XG4iK2ErIjtcbl9fcCArPSAnIiksaSYmKGYrPSInICtcbigoX190ID0gKCIraSsiKSkgPT0gbnVsbCA/ICcnIDogX190KSArXG4nIiksdT1jK3QubGVuZ3RoLHR9KSksZis9Iic7XG4iO3ZhciBwPUJlLmNhbGwodCwidmFyaWFibGUiKSYmdC52YXJpYWJsZTtpZihwKXtpZihsZS50ZXN0KHApKXRocm93IG5ldyBTZSgiSW52YWxpZCBgdmFyaWFibGVgIG9wdGlvbiBwYXNzZWQgaW50byBgXy50ZW1wbGF0ZWAiKX1lbHNlIGY9IndpdGggKG9iaikge1xuIitmKyJcbn1cbiI7Zj0ocz9mLnJlcGxhY2UocSwiIik6ZikucmVwbGFjZShOLCIkMSIpLnJlcGxhY2UoeiwiJDE7IiksZj0iZnVuY3Rpb24oIisocHx8Im9iaiIpKyIpIHtcbiIrKHA/IiI6Im9iaiB8fCAob2JqID0ge30pO1xuIikrInZhciBfX3QsIF9fcCA9ICcnIisobz8iLCBfX2UgPSBfLmVzY2FwZSI6IiIpKyhzPyIsIF9faiA9IEFycmF5LnByb3RvdHlwZS5qb2luO1xuZnVuY3Rpb24gcHJpbnQoKSB7IF9fcCArPSBfX2ouY2FsbChhcmd1bWVudHMsICcnKSB9XG4iOiI7XG4iKStmKyJyZXR1cm4gX19wXG59Ijt2YXIgdj1RYSgoZnVuY3Rpb24oKXtyZXR1cm4gQ2UoYyxkKyJyZXR1cm4gIitmKS5hcHBseShuLGwpfSkpO2lmKHYuc291cmNlPWYsSnModikpdGhyb3cgdjtyZXR1cm4gdn0sanIudGltZXM9ZnVuY3Rpb24oZSx0KXtpZigoZT1wYShlKSk8MXx8ZT5oKXJldHVybltdO3ZhciByPV8saT1ncihlLF8pO3Q9c28odCksZS09Xztmb3IodmFyIG49VXQoaSx0KTsrK3I8ZTspdChyKTtyZXR1cm4gbn0sanIudG9GaW5pdGU9ZGEsanIudG9JbnRlZ2VyPXBhLGpyLnRvTGVuZ3RoPXZhLGpyLnRvTG93ZXI9ZnVuY3Rpb24oZSl7cmV0dXJuIG1hKGUpLnRvTG93ZXJDYXNlKCl9LGpyLnRvTnVtYmVyPWdhLGpyLnRvU2FmZUludGVnZXI9ZnVuY3Rpb24oZSl7cmV0dXJuIGU/b2kocGEoZSksLTkwMDcxOTkyNTQ3NDA5OTEsaCk6MD09PWU/ZTowfSxqci50b1N0cmluZz1tYSxqci50b1VwcGVyPWZ1bmN0aW9uKGUpe3JldHVybiBtYShlKS50b1VwcGVyQ2FzZSgpfSxqci50cmltPWZ1bmN0aW9uKGUsdCxyKXtpZigoZT1tYShlKSkmJihyfHx0PT09bikpcmV0dXJuIHF0KGUpO2lmKCFlfHwhKHQ9YW4odCkpKXJldHVybiBlO3ZhciBpPW9yKGUpLG89b3IodCk7cmV0dXJuIG1uKGksVnQoaSxvKSxHdChpLG8pKzEpLmpvaW4oIiIpfSxqci50cmltRW5kPWZ1bmN0aW9uKGUsdCxyKXtpZigoZT1tYShlKSkmJihyfHx0PT09bikpcmV0dXJuIGUuc2xpY2UoMCxzcihlKSsxKTtpZighZXx8ISh0PWFuKHQpKSlyZXR1cm4gZTt2YXIgaT1vcihlKTtyZXR1cm4gbW4oaSwwLEd0KGksb3IodCkpKzEpLmpvaW4oIiIpfSxqci50cmltU3RhcnQ9ZnVuY3Rpb24oZSx0LHIpe2lmKChlPW1hKGUpKSYmKHJ8fHQ9PT1uKSlyZXR1cm4gZS5yZXBsYWNlKGllLCIiKTtpZighZXx8ISh0PWFuKHQpKSlyZXR1cm4gZTt2YXIgaT1vcihlKTtyZXR1cm4gbW4oaSxWdChpLG9yKHQpKSkuam9pbigiIil9LGpyLnRydW5jYXRlPWZ1bmN0aW9uKGUsdCl7dmFyIHI9MzAsaT0iLi4uIjtpZih0YSh0KSl7dmFyIG89InNlcGFyYXRvciJpbiB0P3Quc2VwYXJhdG9yOm87cj0ibGVuZ3RoImluIHQ/cGEodC5sZW5ndGgpOnIsaT0ib21pc3Npb24iaW4gdD9hbih0Lm9taXNzaW9uKTppfXZhciBzPShlPW1hKGUpKS5sZW5ndGg7aWYoJHQoZSkpe3ZhciBhPW9yKGUpO3M9YS5sZW5ndGh9aWYocj49cylyZXR1cm4gZTt2YXIgYz1yLW5yKGkpO2lmKGM8MSlyZXR1cm4gaTt2YXIgbD1hP21uKGEsMCxjKS5qb2luKCIiKTplLnNsaWNlKDAsYyk7aWYobz09PW4pcmV0dXJuIGwraTtpZihhJiYoYys9bC5sZW5ndGgtYyksc2Eobykpe2lmKGUuc2xpY2UoYykuc2VhcmNoKG8pKXt2YXIgdSxoPWw7Zm9yKG8uZ2xvYmFsfHwobz1FZShvLnNvdXJjZSxtYShmZS5leGVjKG8pKSsiZyIpKSxvLmxhc3RJbmRleD0wO3U9by5leGVjKGgpOyl2YXIgZj11LmluZGV4O2w9bC5zbGljZSgwLGY9PT1uP2M6Zil9fWVsc2UgaWYoZS5pbmRleE9mKGFuKG8pLGMpIT1jKXt2YXIgXz1sLmxhc3RJbmRleE9mKG8pO18+LTEmJihsPWwuc2xpY2UoMCxfKSl9cmV0dXJuIGwraX0sanIudW5lc2NhcGU9ZnVuY3Rpb24oZSl7cmV0dXJuKGU9bWEoZSkpJiZHLnRlc3QoZSk/ZS5yZXBsYWNlKEssYXIpOmV9LGpyLnVuaXF1ZUlkPWZ1bmN0aW9uKGUpe3ZhciB0PSsrRGU7cmV0dXJuIG1hKGUpK3R9LGpyLnVwcGVyQ2FzZT1aYSxqci51cHBlckZpcnN0PUphLGpyLmVhY2g9bXMsanIuZWFjaFJpZ2h0PWJzLGpyLmZpcnN0PUdvLGNjKGpyLCh5Yz17fSx5aShqciwoZnVuY3Rpb24oZSx0KXtCZS5jYWxsKGpyLnByb3RvdHlwZSx0KXx8KHljW3RdPWUpfSkpLHljKSx7Y2hhaW46ITF9KSxqci5WRVJTSU9OPSI0LjE3LjIxIixtdChbImJpbmQiLCJiaW5kS2V5IiwiY3VycnkiLCJjdXJyeVJpZ2h0IiwicGFydGlhbCIsInBhcnRpYWxSaWdodCJdLChmdW5jdGlvbihlKXtqcltlXS5wbGFjZWhvbGRlcj1qcn0pKSxtdChbImRyb3AiLCJ0YWtlIl0sKGZ1bmN0aW9uKGUsdCl7cXIucHJvdG90eXBlW2VdPWZ1bmN0aW9uKHIpe3I9cj09PW4/MTp2cihwYShyKSwwKTt2YXIgaT10aGlzLl9fZmlsdGVyZWRfXyYmIXQ/bmV3IHFyKHRoaXMpOnRoaXMuY2xvbmUoKTtyZXR1cm4gaS5fX2ZpbHRlcmVkX18/aS5fX3Rha2VDb3VudF9fPWdyKHIsaS5fX3Rha2VDb3VudF9fKTppLl9fdmlld3NfXy5wdXNoKHtzaXplOmdyKHIsXyksdHlwZTplKyhpLl9fZGlyX188MD8iUmlnaHQiOiIiKX0pLGl9LHFyLnByb3RvdHlwZVtlKyJSaWdodCJdPWZ1bmN0aW9uKHQpe3JldHVybiB0aGlzLnJldmVyc2UoKVtlXSh0KS5yZXZlcnNlKCl9fSkpLG10KFsiZmlsdGVyIiwibWFwIiwidGFrZVdoaWxlIl0sKGZ1bmN0aW9uKGUsdCl7dmFyIHI9dCsxLGk9MT09cnx8Mz09cjtxci5wcm90b3R5cGVbZV09ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcy5jbG9uZSgpO3JldHVybiB0Ll9faXRlcmF0ZWVzX18ucHVzaCh7aXRlcmF0ZWU6c28oZSwzKSx0eXBlOnJ9KSx0Ll9fZmlsdGVyZWRfXz10Ll9fZmlsdGVyZWRfX3x8aSx0fX0pKSxtdChbImhlYWQiLCJsYXN0Il0sKGZ1bmN0aW9uKGUsdCl7dmFyIHI9InRha2UiKyh0PyJSaWdodCI6IiIpO3FyLnByb3RvdHlwZVtlXT1mdW5jdGlvbigpe3JldHVybiB0aGlzW3JdKDEpLnZhbHVlKClbMF19fSkpLG10KFsiaW5pdGlhbCIsInRhaWwiXSwoZnVuY3Rpb24oZSx0KXt2YXIgcj0iZHJvcCIrKHQ/IiI6IlJpZ2h0Iik7cXIucHJvdG90eXBlW2VdPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX19maWx0ZXJlZF9fP25ldyBxcih0aGlzKTp0aGlzW3JdKDEpfX0pKSxxci5wcm90b3R5cGUuY29tcGFjdD1mdW5jdGlvbigpe3JldHVybiB0aGlzLmZpbHRlcihuYyl9LHFyLnByb3RvdHlwZS5maW5kPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLmZpbHRlcihlKS5oZWFkKCl9LHFyLnByb3RvdHlwZS5maW5kTGFzdD1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5yZXZlcnNlKCkuZmluZChlKX0scXIucHJvdG90eXBlLmludm9rZU1hcD1HaSgoZnVuY3Rpb24oZSx0KXtyZXR1cm4iZnVuY3Rpb24iPT10eXBlb2YgZT9uZXcgcXIodGhpcyk6dGhpcy5tYXAoKGZ1bmN0aW9uKHIpe3JldHVybiBraShyLGUsdCl9KSl9KSkscXIucHJvdG90eXBlLnJlamVjdD1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5maWx0ZXIoSXMoc28oZSkpKX0scXIucHJvdG90eXBlLnNsaWNlPWZ1bmN0aW9uKGUsdCl7ZT1wYShlKTt2YXIgcj10aGlzO3JldHVybiByLl9fZmlsdGVyZWRfXyYmKGU+MHx8dDwwKT9uZXcgcXIocik6KGU8MD9yPXIudGFrZVJpZ2h0KC1lKTplJiYocj1yLmRyb3AoZSkpLHQhPT1uJiYocj0odD1wYSh0KSk8MD9yLmRyb3BSaWdodCgtdCk6ci50YWtlKHQtZSkpLHIpfSxxci5wcm90b3R5cGUudGFrZVJpZ2h0V2hpbGU9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMucmV2ZXJzZSgpLnRha2VXaGlsZShlKS5yZXZlcnNlKCl9LHFyLnByb3RvdHlwZS50b0FycmF5PWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMudGFrZShfKX0seWkocXIucHJvdG90eXBlLChmdW5jdGlvbihlLHQpe3ZhciByPS9eKD86ZmlsdGVyfGZpbmR8bWFwfHJlamVjdCl8V2hpbGUkLy50ZXN0KHQpLGk9L14oPzpoZWFkfGxhc3QpJC8udGVzdCh0KSxvPWpyW2k/InRha2UiKygibGFzdCI9PXQ/IlJpZ2h0IjoiIik6dF0scz1pfHwvXmZpbmQvLnRlc3QodCk7byYmKGpyLnByb3RvdHlwZVt0XT1mdW5jdGlvbigpe3ZhciB0PXRoaXMuX193cmFwcGVkX18sYT1pP1sxXTphcmd1bWVudHMsYz10IGluc3RhbmNlb2YgcXIsbD1hWzBdLHU9Y3x8S3ModCksaD1mdW5jdGlvbihlKXt2YXIgdD1vLmFwcGx5KGpyLHh0KFtlXSxhKSk7cmV0dXJuIGkmJmY/dFswXTp0fTt1JiZyJiYiZnVuY3Rpb24iPT10eXBlb2YgbCYmMSE9bC5sZW5ndGgmJihjPXU9ITEpO3ZhciBmPXRoaXMuX19jaGFpbl9fLF89ISF0aGlzLl9fYWN0aW9uc19fLmxlbmd0aCxkPXMmJiFmLHA9YyYmIV87aWYoIXMmJnUpe3Q9cD90Om5ldyBxcih0aGlzKTt2YXIgdj1lLmFwcGx5KHQsYSk7cmV0dXJuIHYuX19hY3Rpb25zX18ucHVzaCh7ZnVuYzpkcyxhcmdzOltoXSx0aGlzQXJnOm59KSxuZXcgVXIodixmKX1yZXR1cm4gZCYmcD9lLmFwcGx5KHRoaXMsYSk6KHY9dGhpcy50aHJ1KGgpLGQ/aT92LnZhbHVlKClbMF06di52YWx1ZSgpOnYpfSl9KSksbXQoWyJwb3AiLCJwdXNoIiwic2hpZnQiLCJzb3J0Iiwic3BsaWNlIiwidW5zaGlmdCJdLChmdW5jdGlvbihlKXt2YXIgdD1rZVtlXSxyPS9eKD86cHVzaHxzb3J0fHVuc2hpZnQpJC8udGVzdChlKT8idGFwIjoidGhydSIsaT0vXig/OnBvcHxzaGlmdCkkLy50ZXN0KGUpO2pyLnByb3RvdHlwZVtlXT1mdW5jdGlvbigpe3ZhciBlPWFyZ3VtZW50cztpZihpJiYhdGhpcy5fX2NoYWluX18pe3ZhciBuPXRoaXMudmFsdWUoKTtyZXR1cm4gdC5hcHBseShLcyhuKT9uOltdLGUpfXJldHVybiB0aGlzW3JdKChmdW5jdGlvbihyKXtyZXR1cm4gdC5hcHBseShLcyhyKT9yOltdLGUpfSkpfX0pKSx5aShxci5wcm90b3R5cGUsKGZ1bmN0aW9uKGUsdCl7dmFyIHI9anJbdF07aWYocil7dmFyIGk9ci5uYW1lKyIiO0JlLmNhbGwoTXIsaSl8fChNcltpXT1bXSksTXJbaV0ucHVzaCh7bmFtZTp0LGZ1bmM6cn0pfX0pKSxNcltqbihuLDIpLm5hbWVdPVt7bmFtZToid3JhcHBlciIsZnVuYzpufV0scXIucHJvdG90eXBlLmNsb25lPWZ1bmN0aW9uKCl7dmFyIGU9bmV3IHFyKHRoaXMuX193cmFwcGVkX18pO3JldHVybiBlLl9fYWN0aW9uc19fPUFuKHRoaXMuX19hY3Rpb25zX18pLGUuX19kaXJfXz10aGlzLl9fZGlyX18sZS5fX2ZpbHRlcmVkX189dGhpcy5fX2ZpbHRlcmVkX18sZS5fX2l0ZXJhdGVlc19fPUFuKHRoaXMuX19pdGVyYXRlZXNfXyksZS5fX3Rha2VDb3VudF9fPXRoaXMuX190YWtlQ291bnRfXyxlLl9fdmlld3NfXz1Bbih0aGlzLl9fdmlld3NfXyksZX0scXIucHJvdG90eXBlLnJldmVyc2U9ZnVuY3Rpb24oKXtpZih0aGlzLl9fZmlsdGVyZWRfXyl7dmFyIGU9bmV3IHFyKHRoaXMpO2UuX19kaXJfXz0tMSxlLl9fZmlsdGVyZWRfXz0hMH1lbHNlKGU9dGhpcy5jbG9uZSgpKS5fX2Rpcl9fKj0tMTtyZXR1cm4gZX0scXIucHJvdG90eXBlLnZhbHVlPWZ1bmN0aW9uKCl7dmFyIGU9dGhpcy5fX3dyYXBwZWRfXy52YWx1ZSgpLHQ9dGhpcy5fX2Rpcl9fLHI9S3MoZSksaT10PDAsbj1yP2UubGVuZ3RoOjAsbz1mdW5jdGlvbihlLHQscil7Zm9yKHZhciBpPS0xLG49ci5sZW5ndGg7KytpPG47KXt2YXIgbz1yW2ldLHM9by5zaXplO3N3aXRjaChvLnR5cGUpe2Nhc2UiZHJvcCI6ZSs9czticmVhaztjYXNlImRyb3BSaWdodCI6dC09czticmVhaztjYXNlInRha2UiOnQ9Z3IodCxlK3MpO2JyZWFrO2Nhc2UidGFrZVJpZ2h0IjplPXZyKGUsdC1zKX19cmV0dXJue3N0YXJ0OmUsZW5kOnR9fSgwLG4sdGhpcy5fX3ZpZXdzX18pLHM9by5zdGFydCxhPW8uZW5kLGM9YS1zLGw9aT9hOnMtMSx1PXRoaXMuX19pdGVyYXRlZXNfXyxoPXUubGVuZ3RoLGY9MCxfPWdyKGMsdGhpcy5fX3Rha2VDb3VudF9fKTtpZighcnx8IWkmJm49PWMmJl89PWMpcmV0dXJuIGZuKGUsdGhpcy5fX2FjdGlvbnNfXyk7dmFyIGQ9W107ZTpmb3IoO2MtLSYmZjxfOyl7Zm9yKHZhciBwPS0xLHY9ZVtsKz10XTsrK3A8aDspe3ZhciBnPXVbcF0seT1nLml0ZXJhdGVlLG09Zy50eXBlLGI9eSh2KTtpZigyPT1tKXY9YjtlbHNlIGlmKCFiKXtpZigxPT1tKWNvbnRpbnVlIGU7YnJlYWsgZX19ZFtmKytdPXZ9cmV0dXJuIGR9LGpyLnByb3RvdHlwZS5hdD1wcyxqci5wcm90b3R5cGUuY2hhaW49ZnVuY3Rpb24oKXtyZXR1cm4gX3ModGhpcyl9LGpyLnByb3RvdHlwZS5jb21taXQ9ZnVuY3Rpb24oKXtyZXR1cm4gbmV3IFVyKHRoaXMudmFsdWUoKSx0aGlzLl9fY2hhaW5fXyl9LGpyLnByb3RvdHlwZS5uZXh0PWZ1bmN0aW9uKCl7dGhpcy5fX3ZhbHVlc19fPT09biYmKHRoaXMuX192YWx1ZXNfXz1fYSh0aGlzLnZhbHVlKCkpKTt2YXIgZT10aGlzLl9faW5kZXhfXz49dGhpcy5fX3ZhbHVlc19fLmxlbmd0aDtyZXR1cm57ZG9uZTplLHZhbHVlOmU/bjp0aGlzLl9fdmFsdWVzX19bdGhpcy5fX2luZGV4X18rK119fSxqci5wcm90b3R5cGUucGxhbnQ9ZnVuY3Rpb24oZSl7Zm9yKHZhciB0LHI9dGhpcztyIGluc3RhbmNlb2YgV3I7KXt2YXIgaT1XbyhyKTtpLl9faW5kZXhfXz0wLGkuX192YWx1ZXNfXz1uLHQ/by5fX3dyYXBwZWRfXz1pOnQ9aTt2YXIgbz1pO3I9ci5fX3dyYXBwZWRfX31yZXR1cm4gby5fX3dyYXBwZWRfXz1lLHR9LGpyLnByb3RvdHlwZS5yZXZlcnNlPWZ1bmN0aW9uKCl7dmFyIGU9dGhpcy5fX3dyYXBwZWRfXztpZihlIGluc3RhbmNlb2YgcXIpe3ZhciB0PWU7cmV0dXJuIHRoaXMuX19hY3Rpb25zX18ubGVuZ3RoJiYodD1uZXcgcXIodGhpcykpLCh0PXQucmV2ZXJzZSgpKS5fX2FjdGlvbnNfXy5wdXNoKHtmdW5jOmRzLGFyZ3M6W3RzXSx0aGlzQXJnOm59KSxuZXcgVXIodCx0aGlzLl9fY2hhaW5fXyl9cmV0dXJuIHRoaXMudGhydSh0cyl9LGpyLnByb3RvdHlwZS50b0pTT049anIucHJvdG90eXBlLnZhbHVlT2Y9anIucHJvdG90eXBlLnZhbHVlPWZ1bmN0aW9uKCl7cmV0dXJuIGZuKHRoaXMuX193cmFwcGVkX18sdGhpcy5fX2FjdGlvbnNfXyl9LGpyLnByb3RvdHlwZS5maXJzdD1qci5wcm90b3R5cGUuaGVhZCxzdCYmKGpyLnByb3RvdHlwZVtzdF09ZnVuY3Rpb24oKXtyZXR1cm4gdGhpc30pLGpyfSgpO290Ll89Y3IsKGk9ZnVuY3Rpb24oKXtyZXR1cm4gY3J9LmNhbGwodCxyLHQsZSkpPT09bnx8KGUuZXhwb3J0cz1pKX0uY2FsbCh0aGlzKX0sMzc5OmU9PnsidXNlIHN0cmljdCI7dmFyIHQ9W107ZnVuY3Rpb24gcihlKXtmb3IodmFyIHI9LTEsaT0wO2k8dC5sZW5ndGg7aSsrKWlmKHRbaV0uaWRlbnRpZmllcj09PWUpe3I9aTticmVha31yZXR1cm4gcn1mdW5jdGlvbiBpKGUsaSl7Zm9yKHZhciBvPXt9LHM9W10sYT0wO2E8ZS5sZW5ndGg7YSsrKXt2YXIgYz1lW2FdLGw9aS5iYXNlP2NbMF0raS5iYXNlOmNbMF0sdT1vW2xdfHwwLGg9IiIuY29uY2F0KGwsIiAiKS5jb25jYXQodSk7b1tsXT11KzE7dmFyIGY9cihoKSxfPXtjc3M6Y1sxXSxtZWRpYTpjWzJdLHNvdXJjZU1hcDpjWzNdLHN1cHBvcnRzOmNbNF0sbGF5ZXI6Y1s1XX07aWYoLTEhPT1mKXRbZl0ucmVmZXJlbmNlcysrLHRbZl0udXBkYXRlcihfKTtlbHNle3ZhciBkPW4oXyxpKTtpLmJ5SW5kZXg9YSx0LnNwbGljZShhLDAse2lkZW50aWZpZXI6aCx1cGRhdGVyOmQscmVmZXJlbmNlczoxfSl9cy5wdXNoKGgpfXJldHVybiBzfWZ1bmN0aW9uIG4oZSx0KXt2YXIgcj10LmRvbUFQSSh0KTtyZXR1cm4gci51cGRhdGUoZSksZnVuY3Rpb24odCl7aWYodCl7aWYodC5jc3M9PT1lLmNzcyYmdC5tZWRpYT09PWUubWVkaWEmJnQuc291cmNlTWFwPT09ZS5zb3VyY2VNYXAmJnQuc3VwcG9ydHM9PT1lLnN1cHBvcnRzJiZ0LmxheWVyPT09ZS5sYXllcilyZXR1cm47ci51cGRhdGUoZT10KX1lbHNlIHIucmVtb3ZlKCl9fWUuZXhwb3J0cz1mdW5jdGlvbihlLG4pe3ZhciBvPWkoZT1lfHxbXSxuPW58fHt9KTtyZXR1cm4gZnVuY3Rpb24oZSl7ZT1lfHxbXTtmb3IodmFyIHM9MDtzPG8ubGVuZ3RoO3MrKyl7dmFyIGE9cihvW3NdKTt0W2FdLnJlZmVyZW5jZXMtLX1mb3IodmFyIGM9aShlLG4pLGw9MDtsPG8ubGVuZ3RoO2wrKyl7dmFyIHU9cihvW2xdKTswPT09dFt1XS5yZWZlcmVuY2VzJiYodFt1XS51cGRhdGVyKCksdC5zcGxpY2UodSwxKSl9bz1jfX19LDU2OTplPT57InVzZSBzdHJpY3QiO3ZhciB0PXt9O2UuZXhwb3J0cz1mdW5jdGlvbihlLHIpe3ZhciBpPWZ1bmN0aW9uKGUpe2lmKHZvaWQgMD09PXRbZV0pe3ZhciByPWRvY3VtZW50LnF1ZXJ5U2VsZWN0b3IoZSk7aWYod2luZG93LkhUTUxJRnJhbWVFbGVtZW50JiZyIGluc3RhbmNlb2Ygd2luZG93LkhUTUxJRnJhbWVFbGVtZW50KXRyeXtyPXIuY29udGVudERvY3VtZW50LmhlYWR9Y2F0Y2goZSl7cj1udWxsfXRbZV09cn1yZXR1cm4gdFtlXX0oZSk7aWYoIWkpdGhyb3cgbmV3IEVycm9yKCJDb3VsZG4ndCBmaW5kIGEgc3R5bGUgdGFyZ2V0LiBUaGlzIHByb2JhYmx5IG1lYW5zIHRoYXQgdGhlIHZhbHVlIGZvciB0aGUgJ2luc2VydCcgcGFyYW1ldGVyIGlzIGludmFsaWQuIik7aS5hcHBlbmRDaGlsZChyKX19LDIxNjplPT57InVzZSBzdHJpY3QiO2UuZXhwb3J0cz1mdW5jdGlvbihlKXt2YXIgdD1kb2N1bWVudC5jcmVhdGVFbGVtZW50KCJzdHlsZSIpO3JldHVybiBlLnNldEF0dHJpYnV0ZXModCxlLmF0dHJpYnV0ZXMpLGUuaW5zZXJ0KHQsZS5vcHRpb25zKSx0fX0sNTY1OihlLHQscik9PnsidXNlIHN0cmljdCI7ZS5leHBvcnRzPWZ1bmN0aW9uKGUpe3ZhciB0PXIubmM7dCYmZS5zZXRBdHRyaWJ1dGUoIm5vbmNlIix0KX19LDc5NTplPT57InVzZSBzdHJpY3QiO2UuZXhwb3J0cz1mdW5jdGlvbihlKXt2YXIgdD1lLmluc2VydFN0eWxlRWxlbWVudChlKTtyZXR1cm57dXBkYXRlOmZ1bmN0aW9uKHIpeyFmdW5jdGlvbihlLHQscil7dmFyIGk9IiI7ci5zdXBwb3J0cyYmKGkrPSJAc3VwcG9ydHMgKCIuY29uY2F0KHIuc3VwcG9ydHMsIikgeyIpKSxyLm1lZGlhJiYoaSs9IkBtZWRpYSAiLmNvbmNhdChyLm1lZGlhLCIgeyIpKTt2YXIgbj12b2lkIDAhPT1yLmxheWVyO24mJihpKz0iQGxheWVyIi5jb25jYXQoci5sYXllci5sZW5ndGg+MD8iICIuY29uY2F0KHIubGF5ZXIpOiIiLCIgeyIpKSxpKz1yLmNzcyxuJiYoaSs9In0iKSxyLm1lZGlhJiYoaSs9In0iKSxyLnN1cHBvcnRzJiYoaSs9In0iKTt2YXIgbz1yLnNvdXJjZU1hcDtvJiYidW5kZWZpbmVkIiE9dHlwZW9mIGJ0b2EmJihpKz0iXG4vKiMgc291cmNlTWFwcGluZ1VSTD1kYXRhOmFwcGxpY2F0aW9uL2pzb247YmFzZTY0LCIuY29uY2F0KGJ0b2EodW5lc2NhcGUoZW5jb2RlVVJJQ29tcG9uZW50KEpTT04uc3RyaW5naWZ5KG8pKSkpLCIgKi8iKSksdC5zdHlsZVRhZ1RyYW5zZm9ybShpLGUsdC5vcHRpb25zKX0odCxlLHIpfSxyZW1vdmU6ZnVuY3Rpb24oKXshZnVuY3Rpb24oZSl7aWYobnVsbD09PWUucGFyZW50Tm9kZSlyZXR1cm4hMTtlLnBhcmVudE5vZGUucmVtb3ZlQ2hpbGQoZSl9KHQpfX19fSw1ODk6ZT0+eyJ1c2Ugc3RyaWN0IjtlLmV4cG9ydHM9ZnVuY3Rpb24oZSx0KXtpZih0LnN0eWxlU2hlZXQpdC5zdHlsZVNoZWV0LmNzc1RleHQ9ZTtlbHNle2Zvcig7dC5maXJzdENoaWxkOyl0LnJlbW92ZUNoaWxkKHQuZmlyc3RDaGlsZCk7dC5hcHBlbmRDaGlsZChkb2N1bWVudC5jcmVhdGVUZXh0Tm9kZShlKSl9fX0sNjE3OmU9PntzZWxmLGUuZXhwb3J0cz0oKCk9PnsidXNlIHN0cmljdCI7dmFyIGU9ezc3NTooZSx0KT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkZpdEFkZG9uPXZvaWQgMDt2YXIgcj1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoKXt9cmV0dXJuIGUucHJvdG90eXBlLmFjdGl2YXRlPWZ1bmN0aW9uKGUpe3RoaXMuX3Rlcm1pbmFsPWV9LGUucHJvdG90eXBlLmRpc3Bvc2U9ZnVuY3Rpb24oKXt9LGUucHJvdG90eXBlLmZpdD1mdW5jdGlvbigpe3ZhciBlPXRoaXMucHJvcG9zZURpbWVuc2lvbnMoKTtpZihlJiZ0aGlzLl90ZXJtaW5hbCl7dmFyIHQ9dGhpcy5fdGVybWluYWwuX2NvcmU7dGhpcy5fdGVybWluYWwucm93cz09PWUucm93cyYmdGhpcy5fdGVybWluYWwuY29scz09PWUuY29sc3x8KHQuX3JlbmRlclNlcnZpY2UuY2xlYXIoKSx0aGlzLl90ZXJtaW5hbC5yZXNpemUoZS5jb2xzLGUucm93cykpfX0sZS5wcm90b3R5cGUucHJvcG9zZURpbWVuc2lvbnM9ZnVuY3Rpb24oKXtpZih0aGlzLl90ZXJtaW5hbCYmdGhpcy5fdGVybWluYWwuZWxlbWVudCYmdGhpcy5fdGVybWluYWwuZWxlbWVudC5wYXJlbnRFbGVtZW50KXt2YXIgZT10aGlzLl90ZXJtaW5hbC5fY29yZTtpZigwIT09ZS5fcmVuZGVyU2VydmljZS5kaW1lbnNpb25zLmFjdHVhbENlbGxXaWR0aCYmMCE9PWUuX3JlbmRlclNlcnZpY2UuZGltZW5zaW9ucy5hY3R1YWxDZWxsSGVpZ2h0KXt2YXIgdD13aW5kb3cuZ2V0Q29tcHV0ZWRTdHlsZSh0aGlzLl90ZXJtaW5hbC5lbGVtZW50LnBhcmVudEVsZW1lbnQpLHI9cGFyc2VJbnQodC5nZXRQcm9wZXJ0eVZhbHVlKCJoZWlnaHQiKSksaT1NYXRoLm1heCgwLHBhcnNlSW50KHQuZ2V0UHJvcGVydHlWYWx1ZSgid2lkdGgiKSkpLG49d2luZG93LmdldENvbXB1dGVkU3R5bGUodGhpcy5fdGVybWluYWwuZWxlbWVudCksbz1yLShwYXJzZUludChuLmdldFByb3BlcnR5VmFsdWUoInBhZGRpbmctdG9wIikpK3BhcnNlSW50KG4uZ2V0UHJvcGVydHlWYWx1ZSgicGFkZGluZy1ib3R0b20iKSkpLHM9aS0ocGFyc2VJbnQobi5nZXRQcm9wZXJ0eVZhbHVlKCJwYWRkaW5nLXJpZ2h0IikpK3BhcnNlSW50KG4uZ2V0UHJvcGVydHlWYWx1ZSgicGFkZGluZy1sZWZ0IikpKS1lLnZpZXdwb3J0LnNjcm9sbEJhcldpZHRoO3JldHVybntjb2xzOk1hdGgubWF4KDIsTWF0aC5mbG9vcihzL2UuX3JlbmRlclNlcnZpY2UuZGltZW5zaW9ucy5hY3R1YWxDZWxsV2lkdGgpKSxyb3dzOk1hdGgubWF4KDEsTWF0aC5mbG9vcihvL2UuX3JlbmRlclNlcnZpY2UuZGltZW5zaW9ucy5hY3R1YWxDZWxsSGVpZ2h0KSl9fX19LGV9KCk7dC5GaXRBZGRvbj1yfX0sdD17fTtyZXR1cm4gZnVuY3Rpb24gcihpKXtpZih0W2ldKXJldHVybiB0W2ldLmV4cG9ydHM7dmFyIG49dFtpXT17ZXhwb3J0czp7fX07cmV0dXJuIGVbaV0obixuLmV4cG9ydHMsciksbi5leHBvcnRzfSg3NzUpfSkoKX0sMzIwOmU9PntzZWxmLGUuZXhwb3J0cz0oKCk9PnsidXNlIHN0cmljdCI7dmFyIGU9ezQ1Njc6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpLG49dGhpcyYmdGhpcy5fX2V4dGVuZHN8fChpPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGk9T2JqZWN0LnNldFByb3RvdHlwZU9mfHx7X19wcm90b19fOltdfWluc3RhbmNlb2YgQXJyYXkmJmZ1bmN0aW9uKGUsdCl7ZS5fX3Byb3RvX189dH18fGZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByIGluIHQpT2JqZWN0LnByb3RvdHlwZS5oYXNPd25Qcm9wZXJ0eS5jYWxsKHQscikmJihlW3JdPXRbcl0pfSxpKGUsdCl9LGZ1bmN0aW9uKGUsdCl7aWYoImZ1bmN0aW9uIiE9dHlwZW9mIHQmJm51bGwhPT10KXRocm93IG5ldyBUeXBlRXJyb3IoIkNsYXNzIGV4dGVuZHMgdmFsdWUgIitTdHJpbmcodCkrIiBpcyBub3QgYSBjb25zdHJ1Y3RvciBvciBudWxsIik7ZnVuY3Rpb24gcigpe3RoaXMuY29uc3RydWN0b3I9ZX1pKGUsdCksZS5wcm90b3R5cGU9bnVsbD09PXQ/T2JqZWN0LmNyZWF0ZSh0KTooci5wcm90b3R5cGU9dC5wcm90b3R5cGUsbmV3IHIpfSk7T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuQWNjZXNzaWJpbGl0eU1hbmFnZXI9dm9pZCAwO3ZhciBvPXIoOTA0Mikscz1yKDYxMTQpLGE9cig5OTI0KSxjPXIoMzY1NiksbD1yKDg0NCksdT1yKDU1OTYpLGg9cig5NjMxKSxmPWZ1bmN0aW9uKGUpe2Z1bmN0aW9uIHQodCxyKXt2YXIgaT1lLmNhbGwodGhpcyl8fHRoaXM7aS5fdGVybWluYWw9dCxpLl9yZW5kZXJTZXJ2aWNlPXIsaS5fbGl2ZVJlZ2lvbkxpbmVDb3VudD0wLGkuX2NoYXJzVG9Db25zdW1lPVtdLGkuX2NoYXJzVG9Bbm5vdW5jZT0iIixpLl9hY2Nlc3NpYmlsaXR5VHJlZVJvb3Q9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2IiksaS5fYWNjZXNzaWJpbGl0eVRyZWVSb290LnNldEF0dHJpYnV0ZSgicm9sZSIsImRvY3VtZW50IiksaS5fYWNjZXNzaWJpbGl0eVRyZWVSb290LmNsYXNzTGlzdC5hZGQoInh0ZXJtLWFjY2Vzc2liaWxpdHkiKSxpLl9hY2Nlc3NpYmlsaXR5VHJlZVJvb3QudGFiSW5kZXg9MCxpLl9yb3dDb250YWluZXI9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2IiksaS5fcm93Q29udGFpbmVyLnNldEF0dHJpYnV0ZSgicm9sZSIsImxpc3QiKSxpLl9yb3dDb250YWluZXIuY2xhc3NMaXN0LmFkZCgieHRlcm0tYWNjZXNzaWJpbGl0eS10cmVlIiksaS5fcm93RWxlbWVudHM9W107Zm9yKHZhciBuPTA7bjxpLl90ZXJtaW5hbC5yb3dzO24rKylpLl9yb3dFbGVtZW50c1tuXT1pLl9jcmVhdGVBY2Nlc3NpYmlsaXR5VHJlZU5vZGUoKSxpLl9yb3dDb250YWluZXIuYXBwZW5kQ2hpbGQoaS5fcm93RWxlbWVudHNbbl0pO2lmKGkuX3RvcEJvdW5kYXJ5Rm9jdXNMaXN0ZW5lcj1mdW5jdGlvbihlKXtyZXR1cm4gaS5fb25Cb3VuZGFyeUZvY3VzKGUsMCl9LGkuX2JvdHRvbUJvdW5kYXJ5Rm9jdXNMaXN0ZW5lcj1mdW5jdGlvbihlKXtyZXR1cm4gaS5fb25Cb3VuZGFyeUZvY3VzKGUsMSl9LGkuX3Jvd0VsZW1lbnRzWzBdLmFkZEV2ZW50TGlzdGVuZXIoImZvY3VzIixpLl90b3BCb3VuZGFyeUZvY3VzTGlzdGVuZXIpLGkuX3Jvd0VsZW1lbnRzW2kuX3Jvd0VsZW1lbnRzLmxlbmd0aC0xXS5hZGRFdmVudExpc3RlbmVyKCJmb2N1cyIsaS5fYm90dG9tQm91bmRhcnlGb2N1c0xpc3RlbmVyKSxpLl9yZWZyZXNoUm93c0RpbWVuc2lvbnMoKSxpLl9hY2Nlc3NpYmlsaXR5VHJlZVJvb3QuYXBwZW5kQ2hpbGQoaS5fcm93Q29udGFpbmVyKSxpLl9yZW5kZXJSb3dzRGVib3VuY2VyPW5ldyBhLlRpbWVCYXNlZERlYm91bmNlcihpLl9yZW5kZXJSb3dzLmJpbmQoaSkpLGkuX3JlZnJlc2hSb3dzKCksaS5fbGl2ZVJlZ2lvbj1kb2N1bWVudC5jcmVhdGVFbGVtZW50KCJkaXYiKSxpLl9saXZlUmVnaW9uLmNsYXNzTGlzdC5hZGQoImxpdmUtcmVnaW9uIiksaS5fbGl2ZVJlZ2lvbi5zZXRBdHRyaWJ1dGUoImFyaWEtbGl2ZSIsImFzc2VydGl2ZSIpLGkuX2FjY2Vzc2liaWxpdHlUcmVlUm9vdC5hcHBlbmRDaGlsZChpLl9saXZlUmVnaW9uKSwhaS5fdGVybWluYWwuZWxlbWVudCl0aHJvdyBuZXcgRXJyb3IoIkNhbm5vdCBlbmFibGUgYWNjZXNzaWJpbGl0eSBiZWZvcmUgVGVybWluYWwub3BlbiIpO3JldHVybiBpLl90ZXJtaW5hbC5lbGVtZW50Lmluc2VydEFkamFjZW50RWxlbWVudCgiYWZ0ZXJiZWdpbiIsaS5fYWNjZXNzaWJpbGl0eVRyZWVSb290KSxpLnJlZ2lzdGVyKGkuX3JlbmRlclJvd3NEZWJvdW5jZXIpLGkucmVnaXN0ZXIoaS5fdGVybWluYWwub25SZXNpemUoKGZ1bmN0aW9uKGUpe3JldHVybiBpLl9vblJlc2l6ZShlLnJvd3MpfSkpKSxpLnJlZ2lzdGVyKGkuX3Rlcm1pbmFsLm9uUmVuZGVyKChmdW5jdGlvbihlKXtyZXR1cm4gaS5fcmVmcmVzaFJvd3MoZS5zdGFydCxlLmVuZCl9KSkpLGkucmVnaXN0ZXIoaS5fdGVybWluYWwub25TY3JvbGwoKGZ1bmN0aW9uKCl7cmV0dXJuIGkuX3JlZnJlc2hSb3dzKCl9KSkpLGkucmVnaXN0ZXIoaS5fdGVybWluYWwub25BMTF5Q2hhcigoZnVuY3Rpb24oZSl7cmV0dXJuIGkuX29uQ2hhcihlKX0pKSksaS5yZWdpc3RlcihpLl90ZXJtaW5hbC5vbkxpbmVGZWVkKChmdW5jdGlvbigpe3JldHVybiBpLl9vbkNoYXIoIlxuIil9KSkpLGkucmVnaXN0ZXIoaS5fdGVybWluYWwub25BMTF5VGFiKChmdW5jdGlvbihlKXtyZXR1cm4gaS5fb25UYWIoZSl9KSkpLGkucmVnaXN0ZXIoaS5fdGVybWluYWwub25LZXkoKGZ1bmN0aW9uKGUpe3JldHVybiBpLl9vbktleShlLmtleSl9KSkpLGkucmVnaXN0ZXIoaS5fdGVybWluYWwub25CbHVyKChmdW5jdGlvbigpe3JldHVybiBpLl9jbGVhckxpdmVSZWdpb24oKX0pKSksaS5yZWdpc3RlcihpLl9yZW5kZXJTZXJ2aWNlLm9uRGltZW5zaW9uc0NoYW5nZSgoZnVuY3Rpb24oKXtyZXR1cm4gaS5fcmVmcmVzaFJvd3NEaW1lbnNpb25zKCl9KSkpLGkuX3NjcmVlbkRwck1vbml0b3I9bmV3IHUuU2NyZWVuRHByTW9uaXRvcixpLnJlZ2lzdGVyKGkuX3NjcmVlbkRwck1vbml0b3IpLGkuX3NjcmVlbkRwck1vbml0b3Iuc2V0TGlzdGVuZXIoKGZ1bmN0aW9uKCl7cmV0dXJuIGkuX3JlZnJlc2hSb3dzRGltZW5zaW9ucygpfSkpLGkucmVnaXN0ZXIoKDAsYy5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHdpbmRvdywicmVzaXplIiwoZnVuY3Rpb24oKXtyZXR1cm4gaS5fcmVmcmVzaFJvd3NEaW1lbnNpb25zKCl9KSkpLGl9cmV0dXJuIG4odCxlKSx0LnByb3RvdHlwZS5kaXNwb3NlPWZ1bmN0aW9uKCl7ZS5wcm90b3R5cGUuZGlzcG9zZS5jYWxsKHRoaXMpLCgwLGgucmVtb3ZlRWxlbWVudEZyb21QYXJlbnQpKHRoaXMuX2FjY2Vzc2liaWxpdHlUcmVlUm9vdCksdGhpcy5fcm93RWxlbWVudHMubGVuZ3RoPTB9LHQucHJvdG90eXBlLl9vbkJvdW5kYXJ5Rm9jdXM9ZnVuY3Rpb24oZSx0KXt2YXIgcj1lLnRhcmdldCxpPXRoaXMuX3Jvd0VsZW1lbnRzWzA9PT10PzE6dGhpcy5fcm93RWxlbWVudHMubGVuZ3RoLTJdO2lmKHIuZ2V0QXR0cmlidXRlKCJhcmlhLXBvc2luc2V0IikhPT0oMD09PXQ/IjEiOiIiK3RoaXMuX3Rlcm1pbmFsLmJ1ZmZlci5saW5lcy5sZW5ndGgpJiZlLnJlbGF0ZWRUYXJnZXQ9PT1pKXt2YXIgbixvO2lmKDA9PT10PyhuPXIsbz10aGlzLl9yb3dFbGVtZW50cy5wb3AoKSx0aGlzLl9yb3dDb250YWluZXIucmVtb3ZlQ2hpbGQobykpOihuPXRoaXMuX3Jvd0VsZW1lbnRzLnNoaWZ0KCksbz1yLHRoaXMuX3Jvd0NvbnRhaW5lci5yZW1vdmVDaGlsZChuKSksbi5yZW1vdmVFdmVudExpc3RlbmVyKCJmb2N1cyIsdGhpcy5fdG9wQm91bmRhcnlGb2N1c0xpc3RlbmVyKSxvLnJlbW92ZUV2ZW50TGlzdGVuZXIoImZvY3VzIix0aGlzLl9ib3R0b21Cb3VuZGFyeUZvY3VzTGlzdGVuZXIpLDA9PT10KXt2YXIgcz10aGlzLl9jcmVhdGVBY2Nlc3NpYmlsaXR5VHJlZU5vZGUoKTt0aGlzLl9yb3dFbGVtZW50cy51bnNoaWZ0KHMpLHRoaXMuX3Jvd0NvbnRhaW5lci5pbnNlcnRBZGphY2VudEVsZW1lbnQoImFmdGVyYmVnaW4iLHMpfWVsc2Ugcz10aGlzLl9jcmVhdGVBY2Nlc3NpYmlsaXR5VHJlZU5vZGUoKSx0aGlzLl9yb3dFbGVtZW50cy5wdXNoKHMpLHRoaXMuX3Jvd0NvbnRhaW5lci5hcHBlbmRDaGlsZChzKTt0aGlzLl9yb3dFbGVtZW50c1swXS5hZGRFdmVudExpc3RlbmVyKCJmb2N1cyIsdGhpcy5fdG9wQm91bmRhcnlGb2N1c0xpc3RlbmVyKSx0aGlzLl9yb3dFbGVtZW50c1t0aGlzLl9yb3dFbGVtZW50cy5sZW5ndGgtMV0uYWRkRXZlbnRMaXN0ZW5lcigiZm9jdXMiLHRoaXMuX2JvdHRvbUJvdW5kYXJ5Rm9jdXNMaXN0ZW5lciksdGhpcy5fdGVybWluYWwuc2Nyb2xsTGluZXMoMD09PXQ/LTE6MSksdGhpcy5fcm93RWxlbWVudHNbMD09PXQ/MTp0aGlzLl9yb3dFbGVtZW50cy5sZW5ndGgtMl0uZm9jdXMoKSxlLnByZXZlbnREZWZhdWx0KCksZS5zdG9wSW1tZWRpYXRlUHJvcGFnYXRpb24oKX19LHQucHJvdG90eXBlLl9vblJlc2l6ZT1mdW5jdGlvbihlKXt0aGlzLl9yb3dFbGVtZW50c1t0aGlzLl9yb3dFbGVtZW50cy5sZW5ndGgtMV0ucmVtb3ZlRXZlbnRMaXN0ZW5lcigiZm9jdXMiLHRoaXMuX2JvdHRvbUJvdW5kYXJ5Rm9jdXNMaXN0ZW5lcik7Zm9yKHZhciB0PXRoaXMuX3Jvd0NvbnRhaW5lci5jaGlsZHJlbi5sZW5ndGg7dDx0aGlzLl90ZXJtaW5hbC5yb3dzO3QrKyl0aGlzLl9yb3dFbGVtZW50c1t0XT10aGlzLl9jcmVhdGVBY2Nlc3NpYmlsaXR5VHJlZU5vZGUoKSx0aGlzLl9yb3dDb250YWluZXIuYXBwZW5kQ2hpbGQodGhpcy5fcm93RWxlbWVudHNbdF0pO2Zvcig7dGhpcy5fcm93RWxlbWVudHMubGVuZ3RoPmU7KXRoaXMuX3Jvd0NvbnRhaW5lci5yZW1vdmVDaGlsZCh0aGlzLl9yb3dFbGVtZW50cy5wb3AoKSk7dGhpcy5fcm93RWxlbWVudHNbdGhpcy5fcm93RWxlbWVudHMubGVuZ3RoLTFdLmFkZEV2ZW50TGlzdGVuZXIoImZvY3VzIix0aGlzLl9ib3R0b21Cb3VuZGFyeUZvY3VzTGlzdGVuZXIpLHRoaXMuX3JlZnJlc2hSb3dzRGltZW5zaW9ucygpfSx0LnByb3RvdHlwZS5fY3JlYXRlQWNjZXNzaWJpbGl0eVRyZWVOb2RlPWZ1bmN0aW9uKCl7dmFyIGU9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2Iik7cmV0dXJuIGUuc2V0QXR0cmlidXRlKCJyb2xlIiwibGlzdGl0ZW0iKSxlLnRhYkluZGV4PS0xLHRoaXMuX3JlZnJlc2hSb3dEaW1lbnNpb25zKGUpLGV9LHQucHJvdG90eXBlLl9vblRhYj1mdW5jdGlvbihlKXtmb3IodmFyIHQ9MDt0PGU7dCsrKXRoaXMuX29uQ2hhcigiICIpfSx0LnByb3RvdHlwZS5fb25DaGFyPWZ1bmN0aW9uKGUpe3ZhciB0PXRoaXM7dGhpcy5fbGl2ZVJlZ2lvbkxpbmVDb3VudDwyMSYmKHRoaXMuX2NoYXJzVG9Db25zdW1lLmxlbmd0aD4wP3RoaXMuX2NoYXJzVG9Db25zdW1lLnNoaWZ0KCkhPT1lJiYodGhpcy5fY2hhcnNUb0Fubm91bmNlKz1lKTp0aGlzLl9jaGFyc1RvQW5ub3VuY2UrPWUsIlxuIj09PWUmJih0aGlzLl9saXZlUmVnaW9uTGluZUNvdW50KyssMjE9PT10aGlzLl9saXZlUmVnaW9uTGluZUNvdW50JiYodGhpcy5fbGl2ZVJlZ2lvbi50ZXh0Q29udGVudCs9by50b29NdWNoT3V0cHV0KSkscy5pc01hYyYmdGhpcy5fbGl2ZVJlZ2lvbi50ZXh0Q29udGVudCYmdGhpcy5fbGl2ZVJlZ2lvbi50ZXh0Q29udGVudC5sZW5ndGg+MCYmIXRoaXMuX2xpdmVSZWdpb24ucGFyZW50Tm9kZSYmc2V0VGltZW91dCgoZnVuY3Rpb24oKXt0Ll9hY2Nlc3NpYmlsaXR5VHJlZVJvb3QuYXBwZW5kQ2hpbGQodC5fbGl2ZVJlZ2lvbil9KSwwKSl9LHQucHJvdG90eXBlLl9jbGVhckxpdmVSZWdpb249ZnVuY3Rpb24oKXt0aGlzLl9saXZlUmVnaW9uLnRleHRDb250ZW50PSIiLHRoaXMuX2xpdmVSZWdpb25MaW5lQ291bnQ9MCxzLmlzTWFjJiYoMCxoLnJlbW92ZUVsZW1lbnRGcm9tUGFyZW50KSh0aGlzLl9saXZlUmVnaW9uKX0sdC5wcm90b3R5cGUuX29uS2V5PWZ1bmN0aW9uKGUpe3RoaXMuX2NsZWFyTGl2ZVJlZ2lvbigpLHRoaXMuX2NoYXJzVG9Db25zdW1lLnB1c2goZSl9LHQucHJvdG90eXBlLl9yZWZyZXNoUm93cz1mdW5jdGlvbihlLHQpe3RoaXMuX3JlbmRlclJvd3NEZWJvdW5jZXIucmVmcmVzaChlLHQsdGhpcy5fdGVybWluYWwucm93cyl9LHQucHJvdG90eXBlLl9yZW5kZXJSb3dzPWZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByPXRoaXMuX3Rlcm1pbmFsLmJ1ZmZlcixpPXIubGluZXMubGVuZ3RoLnRvU3RyaW5nKCksbj1lO248PXQ7bisrKXt2YXIgbz1yLnRyYW5zbGF0ZUJ1ZmZlckxpbmVUb1N0cmluZyhyLnlkaXNwK24sITApLHM9KHIueWRpc3ArbisxKS50b1N0cmluZygpLGE9dGhpcy5fcm93RWxlbWVudHNbbl07YSYmKDA9PT1vLmxlbmd0aD9hLmlubmVyVGV4dD0iwqAiOmEudGV4dENvbnRlbnQ9byxhLnNldEF0dHJpYnV0ZSgiYXJpYS1wb3NpbnNldCIscyksYS5zZXRBdHRyaWJ1dGUoImFyaWEtc2V0c2l6ZSIsaSkpfXRoaXMuX2Fubm91bmNlQ2hhcmFjdGVycygpfSx0LnByb3RvdHlwZS5fcmVmcmVzaFJvd3NEaW1lbnNpb25zPWZ1bmN0aW9uKCl7aWYodGhpcy5fcmVuZGVyU2VydmljZS5kaW1lbnNpb25zLmFjdHVhbENlbGxIZWlnaHQpe3RoaXMuX3Jvd0VsZW1lbnRzLmxlbmd0aCE9PXRoaXMuX3Rlcm1pbmFsLnJvd3MmJnRoaXMuX29uUmVzaXplKHRoaXMuX3Rlcm1pbmFsLnJvd3MpO2Zvcih2YXIgZT0wO2U8dGhpcy5fdGVybWluYWwucm93cztlKyspdGhpcy5fcmVmcmVzaFJvd0RpbWVuc2lvbnModGhpcy5fcm93RWxlbWVudHNbZV0pfX0sdC5wcm90b3R5cGUuX3JlZnJlc2hSb3dEaW1lbnNpb25zPWZ1bmN0aW9uKGUpe2Uuc3R5bGUuaGVpZ2h0PXRoaXMuX3JlbmRlclNlcnZpY2UuZGltZW5zaW9ucy5hY3R1YWxDZWxsSGVpZ2h0KyJweCJ9LHQucHJvdG90eXBlLl9hbm5vdW5jZUNoYXJhY3RlcnM9ZnVuY3Rpb24oKXswIT09dGhpcy5fY2hhcnNUb0Fubm91bmNlLmxlbmd0aCYmKHRoaXMuX2xpdmVSZWdpb24udGV4dENvbnRlbnQrPXRoaXMuX2NoYXJzVG9Bbm5vdW5jZSx0aGlzLl9jaGFyc1RvQW5ub3VuY2U9IiIpfSx0fShsLkRpc3Bvc2FibGUpO3QuQWNjZXNzaWJpbGl0eU1hbmFnZXI9Zn0sMzYxNDooZSx0KT0+e2Z1bmN0aW9uIHIoZSl7cmV0dXJuIGUucmVwbGFjZSgvXHI/XG4vZywiXHIiKX1mdW5jdGlvbiBpKGUsdCl7cmV0dXJuIHQ/IhtbMjAwfiIrZSsiG1syMDF+IjplfWZ1bmN0aW9uIG4oZSx0LG4pe2U9aShlPXIoZSksbi5kZWNQcml2YXRlTW9kZXMuYnJhY2tldGVkUGFzdGVNb2RlKSxuLnRyaWdnZXJEYXRhRXZlbnQoZSwhMCksdC52YWx1ZT0iIn1mdW5jdGlvbiBvKGUsdCxyKXt2YXIgaT1yLmdldEJvdW5kaW5nQ2xpZW50UmVjdCgpLG49ZS5jbGllbnRYLWkubGVmdC0xMCxvPWUuY2xpZW50WS1pLnRvcC0xMDt0LnN0eWxlLndpZHRoPSIyMHB4Iix0LnN0eWxlLmhlaWdodD0iMjBweCIsdC5zdHlsZS5sZWZ0PW4rInB4Iix0LnN0eWxlLnRvcD1vKyJweCIsdC5zdHlsZS56SW5kZXg9IjEwMDAiLHQuZm9jdXMoKX1PYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5yaWdodENsaWNrSGFuZGxlcj10Lm1vdmVUZXh0QXJlYVVuZGVyTW91c2VDdXJzb3I9dC5wYXN0ZT10LmhhbmRsZVBhc3RlRXZlbnQ9dC5jb3B5SGFuZGxlcj10LmJyYWNrZXRUZXh0Rm9yUGFzdGU9dC5wcmVwYXJlVGV4dEZvclRlcm1pbmFsPXZvaWQgMCx0LnByZXBhcmVUZXh0Rm9yVGVybWluYWw9cix0LmJyYWNrZXRUZXh0Rm9yUGFzdGU9aSx0LmNvcHlIYW5kbGVyPWZ1bmN0aW9uKGUsdCl7ZS5jbGlwYm9hcmREYXRhJiZlLmNsaXBib2FyZERhdGEuc2V0RGF0YSgidGV4dC9wbGFpbiIsdC5zZWxlY3Rpb25UZXh0KSxlLnByZXZlbnREZWZhdWx0KCl9LHQuaGFuZGxlUGFzdGVFdmVudD1mdW5jdGlvbihlLHQscil7ZS5zdG9wUHJvcGFnYXRpb24oKSxlLmNsaXBib2FyZERhdGEmJm4oZS5jbGlwYm9hcmREYXRhLmdldERhdGEoInRleHQvcGxhaW4iKSx0LHIpfSx0LnBhc3RlPW4sdC5tb3ZlVGV4dEFyZWFVbmRlck1vdXNlQ3Vyc29yPW8sdC5yaWdodENsaWNrSGFuZGxlcj1mdW5jdGlvbihlLHQscixpLG4pe28oZSx0LHIpLG4mJmkucmlnaHRDbGlja1NlbGVjdChlKSx0LnZhbHVlPWkuc2VsZWN0aW9uVGV4dCx0LnNlbGVjdCgpfX0sNDc3NDooZSx0KT0+e3ZhciByLGksbixvO2Z1bmN0aW9uIHMoZSl7dmFyIHQ9ZS50b1N0cmluZygxNik7cmV0dXJuIHQubGVuZ3RoPDI/IjAiK3Q6dH1mdW5jdGlvbiBhKGUsdCl7cmV0dXJuIGU8dD8odCsuMDUpLyhlKy4wNSk6KGUrLjA1KS8odCsuMDUpfU9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LmNvbnRyYXN0UmF0aW89dC50b1BhZGRlZEhleD10LnJnYmE9dC5yZ2I9dC5jc3M9dC5jb2xvcj10LmNoYW5uZWxzPXZvaWQgMCxmdW5jdGlvbihlKXtlLnRvQ3NzPWZ1bmN0aW9uKGUsdCxyLGkpe3JldHVybiB2b2lkIDAhPT1pPyIjIitzKGUpK3ModCkrcyhyKStzKGkpOiIjIitzKGUpK3ModCkrcyhyKX0sZS50b1JnYmE9ZnVuY3Rpb24oZSx0LHIsaSl7cmV0dXJuIHZvaWQgMD09PWkmJihpPTI1NSksKGU8PDI0fHQ8PDE2fHI8PDh8aSk+Pj4wfX0ocj10LmNoYW5uZWxzfHwodC5jaGFubmVscz17fSkpLChpPXQuY29sb3J8fCh0LmNvbG9yPXt9KSkuYmxlbmQ9ZnVuY3Rpb24oZSx0KXt2YXIgaT0oMjU1JnQucmdiYSkvMjU1O2lmKDE9PT1pKXJldHVybntjc3M6dC5jc3MscmdiYTp0LnJnYmF9O3ZhciBuPXQucmdiYT4+MjQmMjU1LG89dC5yZ2JhPj4xNiYyNTUscz10LnJnYmE+PjgmMjU1LGE9ZS5yZ2JhPj4yNCYyNTUsYz1lLnJnYmE+PjE2JjI1NSxsPWUucmdiYT4+OCYyNTUsdT1hK01hdGgucm91bmQoKG4tYSkqaSksaD1jK01hdGgucm91bmQoKG8tYykqaSksZj1sK01hdGgucm91bmQoKHMtbCkqaSk7cmV0dXJue2NzczpyLnRvQ3NzKHUsaCxmKSxyZ2JhOnIudG9SZ2JhKHUsaCxmKX19LGkuaXNPcGFxdWU9ZnVuY3Rpb24oZSl7cmV0dXJuIDI1NT09KDI1NSZlLnJnYmEpfSxpLmVuc3VyZUNvbnRyYXN0UmF0aW89ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPW8uZW5zdXJlQ29udHJhc3RSYXRpbyhlLnJnYmEsdC5yZ2JhLHIpO2lmKGkpcmV0dXJuIG8udG9Db2xvcihpPj4yNCYyNTUsaT4+MTYmMjU1LGk+PjgmMjU1KX0saS5vcGFxdWU9ZnVuY3Rpb24oZSl7dmFyIHQ9KDI1NXxlLnJnYmEpPj4+MCxpPW8udG9DaGFubmVscyh0KSxuPWlbMF0scz1pWzFdLGE9aVsyXTtyZXR1cm57Y3NzOnIudG9Dc3MobixzLGEpLHJnYmE6dH19LGkub3BhY2l0eT1mdW5jdGlvbihlLHQpe3ZhciBpPU1hdGgucm91bmQoMjU1KnQpLG49by50b0NoYW5uZWxzKGUucmdiYSkscz1uWzBdLGE9blsxXSxjPW5bMl07cmV0dXJue2NzczpyLnRvQ3NzKHMsYSxjLGkpLHJnYmE6ci50b1JnYmEocyxhLGMsaSl9fSxpLnRvQ29sb3JSR0I9ZnVuY3Rpb24oZSl7cmV0dXJuW2UucmdiYT4+MjQmMjU1LGUucmdiYT4+MTYmMjU1LGUucmdiYT4+OCYyNTVdfSwodC5jc3N8fCh0LmNzcz17fSkpLnRvQ29sb3I9ZnVuY3Rpb24oZSl7c3dpdGNoKGUubGVuZ3RoKXtjYXNlIDc6cmV0dXJue2NzczplLHJnYmE6KHBhcnNlSW50KGUuc2xpY2UoMSksMTYpPDw4fDI1NSk+Pj4wfTtjYXNlIDk6cmV0dXJue2NzczplLHJnYmE6cGFyc2VJbnQoZS5zbGljZSgxKSwxNik+Pj4wfX10aHJvdyBuZXcgRXJyb3IoImNzcy50b0NvbG9yOiBVbnN1cHBvcnRlZCBjc3MgZm9ybWF0Iil9LGZ1bmN0aW9uKGUpe2Z1bmN0aW9uIHQoZSx0LHIpe3ZhciBpPWUvMjU1LG49dC8yNTUsbz1yLzI1NTtyZXR1cm4uMjEyNiooaTw9LjAzOTI4P2kvMTIuOTI6TWF0aC5wb3coKGkrLjA1NSkvMS4wNTUsMi40KSkrLjcxNTIqKG48PS4wMzkyOD9uLzEyLjkyOk1hdGgucG93KChuKy4wNTUpLzEuMDU1LDIuNCkpKy4wNzIyKihvPD0uMDM5Mjg/by8xMi45MjpNYXRoLnBvdygobysuMDU1KS8xLjA1NSwyLjQpKX1lLnJlbGF0aXZlTHVtaW5hbmNlPWZ1bmN0aW9uKGUpe3JldHVybiB0KGU+PjE2JjI1NSxlPj44JjI1NSwyNTUmZSl9LGUucmVsYXRpdmVMdW1pbmFuY2UyPXR9KG49dC5yZ2J8fCh0LnJnYj17fSkpLGZ1bmN0aW9uKGUpe2Z1bmN0aW9uIHQoZSx0LHIpe2Zvcih2YXIgaT1lPj4yNCYyNTUsbz1lPj4xNiYyNTUscz1lPj44JjI1NSxjPXQ+PjI0JjI1NSxsPXQ+PjE2JjI1NSx1PXQ+PjgmMjU1LGg9YShuLnJlbGF0aXZlTHVtaW5hbmNlMihjLHUsbCksbi5yZWxhdGl2ZUx1bWluYW5jZTIoaSxvLHMpKTtoPHImJihjPjB8fGw+MHx8dT4wKTspYy09TWF0aC5tYXgoMCxNYXRoLmNlaWwoLjEqYykpLGwtPU1hdGgubWF4KDAsTWF0aC5jZWlsKC4xKmwpKSx1LT1NYXRoLm1heCgwLE1hdGguY2VpbCguMSp1KSksaD1hKG4ucmVsYXRpdmVMdW1pbmFuY2UyKGMsdSxsKSxuLnJlbGF0aXZlTHVtaW5hbmNlMihpLG8scykpO3JldHVybihjPDwyNHxsPDwxNnx1PDw4fDI1NSk+Pj4wfWZ1bmN0aW9uIGkoZSx0LHIpe2Zvcih2YXIgaT1lPj4yNCYyNTUsbz1lPj4xNiYyNTUscz1lPj44JjI1NSxjPXQ+PjI0JjI1NSxsPXQ+PjE2JjI1NSx1PXQ+PjgmMjU1LGg9YShuLnJlbGF0aXZlTHVtaW5hbmNlMihjLHUsbCksbi5yZWxhdGl2ZUx1bWluYW5jZTIoaSxvLHMpKTtoPHImJihjPDI1NXx8bDwyNTV8fHU8MjU1KTspYz1NYXRoLm1pbigyNTUsYytNYXRoLmNlaWwoLjEqKDI1NS1jKSkpLGw9TWF0aC5taW4oMjU1LGwrTWF0aC5jZWlsKC4xKigyNTUtbCkpKSx1PU1hdGgubWluKDI1NSx1K01hdGguY2VpbCguMSooMjU1LXUpKSksaD1hKG4ucmVsYXRpdmVMdW1pbmFuY2UyKGMsdSxsKSxuLnJlbGF0aXZlTHVtaW5hbmNlMihpLG8scykpO3JldHVybihjPDwyNHxsPDwxNnx1PDw4fDI1NSk+Pj4wfWUuZW5zdXJlQ29udHJhc3RSYXRpbz1mdW5jdGlvbihlLHIsbyl7dmFyIHM9bi5yZWxhdGl2ZUx1bWluYW5jZShlPj44KSxjPW4ucmVsYXRpdmVMdW1pbmFuY2Uocj4+OCk7aWYoYShzLGMpPG8pcmV0dXJuIGM8cz90KGUscixvKTppKGUscixvKX0sZS5yZWR1Y2VMdW1pbmFuY2U9dCxlLmluY3JlYXNlTHVtaW5hbmNlPWksZS50b0NoYW5uZWxzPWZ1bmN0aW9uKGUpe3JldHVybltlPj4yNCYyNTUsZT4+MTYmMjU1LGU+PjgmMjU1LDI1NSZlXX0sZS50b0NvbG9yPWZ1bmN0aW9uKGUsdCxpKXtyZXR1cm57Y3NzOnIudG9Dc3MoZSx0LGkpLHJnYmE6ci50b1JnYmEoZSx0LGkpfX19KG89dC5yZ2JhfHwodC5yZ2JhPXt9KSksdC50b1BhZGRlZEhleD1zLHQuY29udHJhc3RSYXRpbz1hfSw3MjM5OihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuQ29sb3JDb250cmFzdENhY2hlPXZvaWQgMDt2YXIgcj1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoKXt0aGlzLl9jb2xvcj17fSx0aGlzLl9yZ2JhPXt9fXJldHVybiBlLnByb3RvdHlwZS5jbGVhcj1mdW5jdGlvbigpe3RoaXMuX2NvbG9yPXt9LHRoaXMuX3JnYmE9e319LGUucHJvdG90eXBlLnNldENzcz1mdW5jdGlvbihlLHQscil7dGhpcy5fcmdiYVtlXXx8KHRoaXMuX3JnYmFbZV09e30pLHRoaXMuX3JnYmFbZV1bdF09cn0sZS5wcm90b3R5cGUuZ2V0Q3NzPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIHRoaXMuX3JnYmFbZV0/dGhpcy5fcmdiYVtlXVt0XTp2b2lkIDB9LGUucHJvdG90eXBlLnNldENvbG9yPWZ1bmN0aW9uKGUsdCxyKXt0aGlzLl9jb2xvcltlXXx8KHRoaXMuX2NvbG9yW2VdPXt9KSx0aGlzLl9jb2xvcltlXVt0XT1yfSxlLnByb3RvdHlwZS5nZXRDb2xvcj1mdW5jdGlvbihlLHQpe3JldHVybiB0aGlzLl9jb2xvcltlXT90aGlzLl9jb2xvcltlXVt0XTp2b2lkIDB9LGV9KCk7dC5Db2xvckNvbnRyYXN0Q2FjaGU9cn0sNTY4MDpmdW5jdGlvbihlLHQscil7dmFyIGk9dGhpcyYmdGhpcy5fX3NwcmVhZEFycmF5fHxmdW5jdGlvbihlLHQscil7aWYocnx8Mj09PWFyZ3VtZW50cy5sZW5ndGgpZm9yKHZhciBpLG49MCxvPXQubGVuZ3RoO248bztuKyspIWkmJm4gaW4gdHx8KGl8fChpPUFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKHQsMCxuKSksaVtuXT10W25dKTtyZXR1cm4gZS5jb25jYXQoaXx8QXJyYXkucHJvdG90eXBlLnNsaWNlLmNhbGwodCkpfTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Db2xvck1hbmFnZXI9dC5ERUZBVUxUX0FOU0lfQ09MT1JTPXZvaWQgMDt2YXIgbj1yKDQ3NzQpLG89cig3MjM5KSxzPW4uY3NzLnRvQ29sb3IoIiNmZmZmZmYiKSxhPW4uY3NzLnRvQ29sb3IoIiMwMDAwMDAiKSxjPW4uY3NzLnRvQ29sb3IoIiNmZmZmZmYiKSxsPW4uY3NzLnRvQ29sb3IoIiMwMDAwMDAiKSx1PXtjc3M6InJnYmEoMjU1LCAyNTUsIDI1NSwgMC4zKSIscmdiYTo0Mjk0OTY3MTE3fTt0LkRFRkFVTFRfQU5TSV9DT0xPUlM9T2JqZWN0LmZyZWV6ZShmdW5jdGlvbigpe2Zvcih2YXIgZT1bbi5jc3MudG9Db2xvcigiIzJlMzQzNiIpLG4uY3NzLnRvQ29sb3IoIiNjYzAwMDAiKSxuLmNzcy50b0NvbG9yKCIjNGU5YTA2Iiksbi5jc3MudG9Db2xvcigiI2M0YTAwMCIpLG4uY3NzLnRvQ29sb3IoIiMzNDY1YTQiKSxuLmNzcy50b0NvbG9yKCIjNzU1MDdiIiksbi5jc3MudG9Db2xvcigiIzA2OTg5YSIpLG4uY3NzLnRvQ29sb3IoIiNkM2Q3Y2YiKSxuLmNzcy50b0NvbG9yKCIjNTU1NzUzIiksbi5jc3MudG9Db2xvcigiI2VmMjkyOSIpLG4uY3NzLnRvQ29sb3IoIiM4YWUyMzQiKSxuLmNzcy50b0NvbG9yKCIjZmNlOTRmIiksbi5jc3MudG9Db2xvcigiIzcyOWZjZiIpLG4uY3NzLnRvQ29sb3IoIiNhZDdmYTgiKSxuLmNzcy50b0NvbG9yKCIjMzRlMmUyIiksbi5jc3MudG9Db2xvcigiI2VlZWVlYyIpXSx0PVswLDk1LDEzNSwxNzUsMjE1LDI1NV0scj0wO3I8MjE2O3IrKyl7dmFyIGk9dFtyLzM2JTZ8MF0sbz10W3IvNiU2fDBdLHM9dFtyJTZdO2UucHVzaCh7Y3NzOm4uY2hhbm5lbHMudG9Dc3MoaSxvLHMpLHJnYmE6bi5jaGFubmVscy50b1JnYmEoaSxvLHMpfSl9Zm9yKHI9MDtyPDI0O3IrKyl7dmFyIGE9OCsxMCpyO2UucHVzaCh7Y3NzOm4uY2hhbm5lbHMudG9Dc3MoYSxhLGEpLHJnYmE6bi5jaGFubmVscy50b1JnYmEoYSxhLGEpfSl9cmV0dXJuIGV9KCkpO3ZhciBoPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlLHIpe3RoaXMuYWxsb3dUcmFuc3BhcmVuY3k9cjt2YXIgaT1lLmNyZWF0ZUVsZW1lbnQoImNhbnZhcyIpO2kud2lkdGg9MSxpLmhlaWdodD0xO3ZhciBoPWkuZ2V0Q29udGV4dCgiMmQiKTtpZighaCl0aHJvdyBuZXcgRXJyb3IoIkNvdWxkIG5vdCBnZXQgcmVuZGVyaW5nIGNvbnRleHQiKTt0aGlzLl9jdHg9aCx0aGlzLl9jdHguZ2xvYmFsQ29tcG9zaXRlT3BlcmF0aW9uPSJjb3B5Iix0aGlzLl9saXRtdXNDb2xvcj10aGlzLl9jdHguY3JlYXRlTGluZWFyR3JhZGllbnQoMCwwLDEsMSksdGhpcy5fY29udHJhc3RDYWNoZT1uZXcgby5Db2xvckNvbnRyYXN0Q2FjaGUsdGhpcy5jb2xvcnM9e2ZvcmVncm91bmQ6cyxiYWNrZ3JvdW5kOmEsY3Vyc29yOmMsY3Vyc29yQWNjZW50Omwsc2VsZWN0aW9uVHJhbnNwYXJlbnQ6dSxzZWxlY3Rpb25PcGFxdWU6bi5jb2xvci5ibGVuZChhLHUpLGFuc2k6dC5ERUZBVUxUX0FOU0lfQ09MT1JTLnNsaWNlKCksY29udHJhc3RDYWNoZTp0aGlzLl9jb250cmFzdENhY2hlfSx0aGlzLl91cGRhdGVSZXN0b3JlQ29sb3JzKCl9cmV0dXJuIGUucHJvdG90eXBlLm9uT3B0aW9uc0NoYW5nZT1mdW5jdGlvbihlKXsibWluaW11bUNvbnRyYXN0UmF0aW8iPT09ZSYmdGhpcy5fY29udHJhc3RDYWNoZS5jbGVhcigpfSxlLnByb3RvdHlwZS5zZXRUaGVtZT1mdW5jdGlvbihlKXt2b2lkIDA9PT1lJiYoZT17fSksdGhpcy5jb2xvcnMuZm9yZWdyb3VuZD10aGlzLl9wYXJzZUNvbG9yKGUuZm9yZWdyb3VuZCxzKSx0aGlzLmNvbG9ycy5iYWNrZ3JvdW5kPXRoaXMuX3BhcnNlQ29sb3IoZS5iYWNrZ3JvdW5kLGEpLHRoaXMuY29sb3JzLmN1cnNvcj10aGlzLl9wYXJzZUNvbG9yKGUuY3Vyc29yLGMsITApLHRoaXMuY29sb3JzLmN1cnNvckFjY2VudD10aGlzLl9wYXJzZUNvbG9yKGUuY3Vyc29yQWNjZW50LGwsITApLHRoaXMuY29sb3JzLnNlbGVjdGlvblRyYW5zcGFyZW50PXRoaXMuX3BhcnNlQ29sb3IoZS5zZWxlY3Rpb24sdSwhMCksdGhpcy5jb2xvcnMuc2VsZWN0aW9uT3BhcXVlPW4uY29sb3IuYmxlbmQodGhpcy5jb2xvcnMuYmFja2dyb3VuZCx0aGlzLmNvbG9ycy5zZWxlY3Rpb25UcmFuc3BhcmVudCksbi5jb2xvci5pc09wYXF1ZSh0aGlzLmNvbG9ycy5zZWxlY3Rpb25UcmFuc3BhcmVudCkmJih0aGlzLmNvbG9ycy5zZWxlY3Rpb25UcmFuc3BhcmVudD1uLmNvbG9yLm9wYWNpdHkodGhpcy5jb2xvcnMuc2VsZWN0aW9uVHJhbnNwYXJlbnQsLjMpKSx0aGlzLmNvbG9ycy5hbnNpWzBdPXRoaXMuX3BhcnNlQ29sb3IoZS5ibGFjayx0LkRFRkFVTFRfQU5TSV9DT0xPUlNbMF0pLHRoaXMuY29sb3JzLmFuc2lbMV09dGhpcy5fcGFyc2VDb2xvcihlLnJlZCx0LkRFRkFVTFRfQU5TSV9DT0xPUlNbMV0pLHRoaXMuY29sb3JzLmFuc2lbMl09dGhpcy5fcGFyc2VDb2xvcihlLmdyZWVuLHQuREVGQVVMVF9BTlNJX0NPTE9SU1syXSksdGhpcy5jb2xvcnMuYW5zaVszXT10aGlzLl9wYXJzZUNvbG9yKGUueWVsbG93LHQuREVGQVVMVF9BTlNJX0NPTE9SU1szXSksdGhpcy5jb2xvcnMuYW5zaVs0XT10aGlzLl9wYXJzZUNvbG9yKGUuYmx1ZSx0LkRFRkFVTFRfQU5TSV9DT0xPUlNbNF0pLHRoaXMuY29sb3JzLmFuc2lbNV09dGhpcy5fcGFyc2VDb2xvcihlLm1hZ2VudGEsdC5ERUZBVUxUX0FOU0lfQ09MT1JTWzVdKSx0aGlzLmNvbG9ycy5hbnNpWzZdPXRoaXMuX3BhcnNlQ29sb3IoZS5jeWFuLHQuREVGQVVMVF9BTlNJX0NPTE9SU1s2XSksdGhpcy5jb2xvcnMuYW5zaVs3XT10aGlzLl9wYXJzZUNvbG9yKGUud2hpdGUsdC5ERUZBVUxUX0FOU0lfQ09MT1JTWzddKSx0aGlzLmNvbG9ycy5hbnNpWzhdPXRoaXMuX3BhcnNlQ29sb3IoZS5icmlnaHRCbGFjayx0LkRFRkFVTFRfQU5TSV9DT0xPUlNbOF0pLHRoaXMuY29sb3JzLmFuc2lbOV09dGhpcy5fcGFyc2VDb2xvcihlLmJyaWdodFJlZCx0LkRFRkFVTFRfQU5TSV9DT0xPUlNbOV0pLHRoaXMuY29sb3JzLmFuc2lbMTBdPXRoaXMuX3BhcnNlQ29sb3IoZS5icmlnaHRHcmVlbix0LkRFRkFVTFRfQU5TSV9DT0xPUlNbMTBdKSx0aGlzLmNvbG9ycy5hbnNpWzExXT10aGlzLl9wYXJzZUNvbG9yKGUuYnJpZ2h0WWVsbG93LHQuREVGQVVMVF9BTlNJX0NPTE9SU1sxMV0pLHRoaXMuY29sb3JzLmFuc2lbMTJdPXRoaXMuX3BhcnNlQ29sb3IoZS5icmlnaHRCbHVlLHQuREVGQVVMVF9BTlNJX0NPTE9SU1sxMl0pLHRoaXMuY29sb3JzLmFuc2lbMTNdPXRoaXMuX3BhcnNlQ29sb3IoZS5icmlnaHRNYWdlbnRhLHQuREVGQVVMVF9BTlNJX0NPTE9SU1sxM10pLHRoaXMuY29sb3JzLmFuc2lbMTRdPXRoaXMuX3BhcnNlQ29sb3IoZS5icmlnaHRDeWFuLHQuREVGQVVMVF9BTlNJX0NPTE9SU1sxNF0pLHRoaXMuY29sb3JzLmFuc2lbMTVdPXRoaXMuX3BhcnNlQ29sb3IoZS5icmlnaHRXaGl0ZSx0LkRFRkFVTFRfQU5TSV9DT0xPUlNbMTVdKSx0aGlzLl9jb250cmFzdENhY2hlLmNsZWFyKCksdGhpcy5fdXBkYXRlUmVzdG9yZUNvbG9ycygpfSxlLnByb3RvdHlwZS5yZXN0b3JlQ29sb3I9ZnVuY3Rpb24oZSl7aWYodm9pZCAwIT09ZSlzd2l0Y2goZSl7Y2FzZSAyNTY6dGhpcy5jb2xvcnMuZm9yZWdyb3VuZD10aGlzLl9yZXN0b3JlQ29sb3JzLmZvcmVncm91bmQ7YnJlYWs7Y2FzZSAyNTc6dGhpcy5jb2xvcnMuYmFja2dyb3VuZD10aGlzLl9yZXN0b3JlQ29sb3JzLmJhY2tncm91bmQ7YnJlYWs7Y2FzZSAyNTg6dGhpcy5jb2xvcnMuY3Vyc29yPXRoaXMuX3Jlc3RvcmVDb2xvcnMuY3Vyc29yO2JyZWFrO2RlZmF1bHQ6dGhpcy5jb2xvcnMuYW5zaVtlXT10aGlzLl9yZXN0b3JlQ29sb3JzLmFuc2lbZV19ZWxzZSBmb3IodmFyIHQ9MDt0PHRoaXMuX3Jlc3RvcmVDb2xvcnMuYW5zaS5sZW5ndGg7Kyt0KXRoaXMuY29sb3JzLmFuc2lbdF09dGhpcy5fcmVzdG9yZUNvbG9ycy5hbnNpW3RdfSxlLnByb3RvdHlwZS5fdXBkYXRlUmVzdG9yZUNvbG9ycz1mdW5jdGlvbigpe3RoaXMuX3Jlc3RvcmVDb2xvcnM9e2ZvcmVncm91bmQ6dGhpcy5jb2xvcnMuZm9yZWdyb3VuZCxiYWNrZ3JvdW5kOnRoaXMuY29sb3JzLmJhY2tncm91bmQsY3Vyc29yOnRoaXMuY29sb3JzLmN1cnNvcixhbnNpOmkoW10sdGhpcy5jb2xvcnMuYW5zaSwhMCl9fSxlLnByb3RvdHlwZS5fcGFyc2VDb2xvcj1mdW5jdGlvbihlLHQscil7aWYodm9pZCAwPT09ciYmKHI9dGhpcy5hbGxvd1RyYW5zcGFyZW5jeSksdm9pZCAwPT09ZSlyZXR1cm4gdDtpZih0aGlzLl9jdHguZmlsbFN0eWxlPXRoaXMuX2xpdG11c0NvbG9yLHRoaXMuX2N0eC5maWxsU3R5bGU9ZSwic3RyaW5nIiE9dHlwZW9mIHRoaXMuX2N0eC5maWxsU3R5bGUpcmV0dXJuIGNvbnNvbGUud2FybigiQ29sb3I6ICIrZSsiIGlzIGludmFsaWQgdXNpbmcgZmFsbGJhY2sgIit0LmNzcyksdDt0aGlzLl9jdHguZmlsbFJlY3QoMCwwLDEsMSk7dmFyIGk9dGhpcy5fY3R4LmdldEltYWdlRGF0YSgwLDAsMSwxKS5kYXRhO2lmKDI1NSE9PWlbM10pe2lmKCFyKXJldHVybiBjb25zb2xlLndhcm4oIkNvbG9yOiAiK2UrIiBpcyB1c2luZyB0cmFuc3BhcmVuY3ksIGJ1dCBhbGxvd1RyYW5zcGFyZW5jeSBpcyBmYWxzZS4gVXNpbmcgZmFsbGJhY2sgIit0LmNzcysiLiIpLHQ7dmFyIG89dGhpcy5fY3R4LmZpbGxTdHlsZS5zdWJzdHJpbmcoNSx0aGlzLl9jdHguZmlsbFN0eWxlLmxlbmd0aC0xKS5zcGxpdCgiLCIpLm1hcCgoZnVuY3Rpb24oZSl7cmV0dXJuIE51bWJlcihlKX0pKSxzPW9bMF0sYT1vWzFdLGM9b1syXSxsPW9bM10sdT1NYXRoLnJvdW5kKDI1NSpsKTtyZXR1cm57cmdiYTpuLmNoYW5uZWxzLnRvUmdiYShzLGEsYyx1KSxjc3M6ZX19cmV0dXJue2Nzczp0aGlzLl9jdHguZmlsbFN0eWxlLHJnYmE6bi5jaGFubmVscy50b1JnYmEoaVswXSxpWzFdLGlbMl0saVszXSl9fSxlfSgpO3QuQ29sb3JNYW5hZ2VyPWh9LDk2MzE6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5yZW1vdmVFbGVtZW50RnJvbVBhcmVudD12b2lkIDAsdC5yZW1vdmVFbGVtZW50RnJvbVBhcmVudD1mdW5jdGlvbigpe2Zvcih2YXIgZSx0PVtdLHI9MDtyPGFyZ3VtZW50cy5sZW5ndGg7cisrKXRbcl09YXJndW1lbnRzW3JdO2Zvcih2YXIgaT0wLG49dDtpPG4ubGVuZ3RoO2krKyl7dmFyIG89bltpXTtudWxsPT09KGU9bnVsbD09bz92b2lkIDA6by5wYXJlbnRFbGVtZW50KXx8dm9pZCAwPT09ZXx8ZS5yZW1vdmVDaGlsZChvKX19fSwzNjU2OihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuYWRkRGlzcG9zYWJsZURvbUxpc3RlbmVyPXZvaWQgMCx0LmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcj1mdW5jdGlvbihlLHQscixpKXtlLmFkZEV2ZW50TGlzdGVuZXIodCxyLGkpO3ZhciBuPSExO3JldHVybntkaXNwb3NlOmZ1bmN0aW9uKCl7bnx8KG49ITAsZS5yZW1vdmVFdmVudExpc3RlbmVyKHQscixpKSl9fX19LDM1NTE6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPXRoaXMmJnRoaXMuX19kZWNvcmF0ZXx8ZnVuY3Rpb24oZSx0LHIsaSl7dmFyIG4sbz1hcmd1bWVudHMubGVuZ3RoLHM9bzwzP3Q6bnVsbD09PWk/aT1PYmplY3QuZ2V0T3duUHJvcGVydHlEZXNjcmlwdG9yKHQscik6aTtpZigib2JqZWN0Ij09dHlwZW9mIFJlZmxlY3QmJiJmdW5jdGlvbiI9PXR5cGVvZiBSZWZsZWN0LmRlY29yYXRlKXM9UmVmbGVjdC5kZWNvcmF0ZShlLHQscixpKTtlbHNlIGZvcih2YXIgYT1lLmxlbmd0aC0xO2E+PTA7YS0tKShuPWVbYV0pJiYocz0obzwzP24ocyk6bz4zP24odCxyLHMpOm4odCxyKSl8fHMpO3JldHVybiBvPjMmJnMmJk9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LHIscyksc30sbj10aGlzJiZ0aGlzLl9fcGFyYW18fGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGZ1bmN0aW9uKHIsaSl7dChyLGksZSl9fTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Nb3VzZVpvbmU9dC5MaW5raWZpZXI9dm9pZCAwO3ZhciBvPXIoODQ2MCkscz1yKDI1ODUpLGE9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUsdCxyKXt0aGlzLl9idWZmZXJTZXJ2aWNlPWUsdGhpcy5fbG9nU2VydmljZT10LHRoaXMuX3VuaWNvZGVTZXJ2aWNlPXIsdGhpcy5fbGlua01hdGNoZXJzPVtdLHRoaXMuX25leHRMaW5rTWF0Y2hlcklkPTAsdGhpcy5fb25TaG93TGlua1VuZGVybGluZT1uZXcgby5FdmVudEVtaXR0ZXIsdGhpcy5fb25IaWRlTGlua1VuZGVybGluZT1uZXcgby5FdmVudEVtaXR0ZXIsdGhpcy5fb25MaW5rVG9vbHRpcD1uZXcgby5FdmVudEVtaXR0ZXIsdGhpcy5fcm93c1RvTGlua2lmeT17c3RhcnQ6dm9pZCAwLGVuZDp2b2lkIDB9fXJldHVybiBPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsIm9uU2hvd0xpbmtVbmRlcmxpbmUiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25TaG93TGlua1VuZGVybGluZS5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsIm9uSGlkZUxpbmtVbmRlcmxpbmUiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25IaWRlTGlua1VuZGVybGluZS5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsIm9uTGlua1Rvb2x0aXAiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25MaW5rVG9vbHRpcC5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxlLnByb3RvdHlwZS5hdHRhY2hUb0RvbT1mdW5jdGlvbihlLHQpe3RoaXMuX2VsZW1lbnQ9ZSx0aGlzLl9tb3VzZVpvbmVNYW5hZ2VyPXR9LGUucHJvdG90eXBlLmxpbmtpZnlSb3dzPWZ1bmN0aW9uKHQscil7dmFyIGk9dGhpczt0aGlzLl9tb3VzZVpvbmVNYW5hZ2VyJiYodm9pZCAwPT09dGhpcy5fcm93c1RvTGlua2lmeS5zdGFydHx8dm9pZCAwPT09dGhpcy5fcm93c1RvTGlua2lmeS5lbmQ/KHRoaXMuX3Jvd3NUb0xpbmtpZnkuc3RhcnQ9dCx0aGlzLl9yb3dzVG9MaW5raWZ5LmVuZD1yKToodGhpcy5fcm93c1RvTGlua2lmeS5zdGFydD1NYXRoLm1pbih0aGlzLl9yb3dzVG9MaW5raWZ5LnN0YXJ0LHQpLHRoaXMuX3Jvd3NUb0xpbmtpZnkuZW5kPU1hdGgubWF4KHRoaXMuX3Jvd3NUb0xpbmtpZnkuZW5kLHIpKSx0aGlzLl9tb3VzZVpvbmVNYW5hZ2VyLmNsZWFyQWxsKHQsciksdGhpcy5fcm93c1RpbWVvdXRJZCYmY2xlYXJUaW1lb3V0KHRoaXMuX3Jvd3NUaW1lb3V0SWQpLHRoaXMuX3Jvd3NUaW1lb3V0SWQ9c2V0VGltZW91dCgoZnVuY3Rpb24oKXtyZXR1cm4gaS5fbGlua2lmeVJvd3MoKX0pLGUuX3RpbWVCZWZvcmVMYXRlbmN5KSl9LGUucHJvdG90eXBlLl9saW5raWZ5Um93cz1mdW5jdGlvbigpe3RoaXMuX3Jvd3NUaW1lb3V0SWQ9dm9pZCAwO3ZhciBlPXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyO2lmKHZvaWQgMCE9PXRoaXMuX3Jvd3NUb0xpbmtpZnkuc3RhcnQmJnZvaWQgMCE9PXRoaXMuX3Jvd3NUb0xpbmtpZnkuZW5kKXt2YXIgdD1lLnlkaXNwK3RoaXMuX3Jvd3NUb0xpbmtpZnkuc3RhcnQ7aWYoISh0Pj1lLmxpbmVzLmxlbmd0aCkpe2Zvcih2YXIgcj1lLnlkaXNwK01hdGgubWluKHRoaXMuX3Jvd3NUb0xpbmtpZnkuZW5kLHRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cykrMSxpPU1hdGguY2VpbCgyZTMvdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzKSxuPXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLml0ZXJhdG9yKCExLHQscixpLGkpO24uaGFzTmV4dCgpOylmb3IodmFyIG89bi5uZXh0KCkscz0wO3M8dGhpcy5fbGlua01hdGNoZXJzLmxlbmd0aDtzKyspdGhpcy5fZG9MaW5raWZ5Um93KG8ucmFuZ2UuZmlyc3Qsby5jb250ZW50LHRoaXMuX2xpbmtNYXRjaGVyc1tzXSk7dGhpcy5fcm93c1RvTGlua2lmeS5zdGFydD12b2lkIDAsdGhpcy5fcm93c1RvTGlua2lmeS5lbmQ9dm9pZCAwfX1lbHNlIHRoaXMuX2xvZ1NlcnZpY2UuZGVidWcoIl9yb3dUb0xpbmtpZnkgd2FzIHVuc2V0IGJlZm9yZSBfbGlua2lmeVJvd3Mgd2FzIGNhbGxlZCIpfSxlLnByb3RvdHlwZS5yZWdpc3RlckxpbmtNYXRjaGVyPWZ1bmN0aW9uKGUsdCxyKXtpZih2b2lkIDA9PT1yJiYocj17fSksIXQpdGhyb3cgbmV3IEVycm9yKCJoYW5kbGVyIG11c3QgYmUgZGVmaW5lZCIpO3ZhciBpPXtpZDp0aGlzLl9uZXh0TGlua01hdGNoZXJJZCsrLHJlZ2V4OmUsaGFuZGxlcjp0LG1hdGNoSW5kZXg6ci5tYXRjaEluZGV4LHZhbGlkYXRpb25DYWxsYmFjazpyLnZhbGlkYXRpb25DYWxsYmFjayxob3ZlclRvb2x0aXBDYWxsYmFjazpyLnRvb2x0aXBDYWxsYmFjayxob3ZlckxlYXZlQ2FsbGJhY2s6ci5sZWF2ZUNhbGxiYWNrLHdpbGxMaW5rQWN0aXZhdGU6ci53aWxsTGlua0FjdGl2YXRlLHByaW9yaXR5OnIucHJpb3JpdHl8fDB9O3JldHVybiB0aGlzLl9hZGRMaW5rTWF0Y2hlclRvTGlzdChpKSxpLmlkfSxlLnByb3RvdHlwZS5fYWRkTGlua01hdGNoZXJUb0xpc3Q9ZnVuY3Rpb24oZSl7aWYoMCE9PXRoaXMuX2xpbmtNYXRjaGVycy5sZW5ndGgpe2Zvcih2YXIgdD10aGlzLl9saW5rTWF0Y2hlcnMubGVuZ3RoLTE7dD49MDt0LS0paWYoZS5wcmlvcml0eTw9dGhpcy5fbGlua01hdGNoZXJzW3RdLnByaW9yaXR5KXJldHVybiB2b2lkIHRoaXMuX2xpbmtNYXRjaGVycy5zcGxpY2UodCsxLDAsZSk7dGhpcy5fbGlua01hdGNoZXJzLnNwbGljZSgwLDAsZSl9ZWxzZSB0aGlzLl9saW5rTWF0Y2hlcnMucHVzaChlKX0sZS5wcm90b3R5cGUuZGVyZWdpc3RlckxpbmtNYXRjaGVyPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD0wO3Q8dGhpcy5fbGlua01hdGNoZXJzLmxlbmd0aDt0KyspaWYodGhpcy5fbGlua01hdGNoZXJzW3RdLmlkPT09ZSlyZXR1cm4gdGhpcy5fbGlua01hdGNoZXJzLnNwbGljZSh0LDEpLCEwO3JldHVybiExfSxlLnByb3RvdHlwZS5fZG9MaW5raWZ5Um93PWZ1bmN0aW9uKGUsdCxyKXtmb3IodmFyIGksbj10aGlzLG89bmV3IFJlZ0V4cChyLnJlZ2V4LnNvdXJjZSwoci5yZWdleC5mbGFnc3x8IiIpKyJnIikscz0tMSxhPWZ1bmN0aW9uKCl7dmFyIGE9aVsibnVtYmVyIiE9dHlwZW9mIHIubWF0Y2hJbmRleD8wOnIubWF0Y2hJbmRleF07aWYoIWEpcmV0dXJuIGMuX2xvZ1NlcnZpY2UuZGVidWcoIm1hdGNoIGZvdW5kIHdpdGhvdXQgY29ycmVzcG9uZGluZyBtYXRjaEluZGV4IixpLHIpLCJicmVhayI7aWYocz10LmluZGV4T2YoYSxzKzEpLG8ubGFzdEluZGV4PXMrYS5sZW5ndGgsczwwKXJldHVybiJicmVhayI7dmFyIGw9Yy5fYnVmZmVyU2VydmljZS5idWZmZXIuc3RyaW5nSW5kZXhUb0J1ZmZlckluZGV4KGUscyk7aWYobFswXTwwKXJldHVybiJicmVhayI7dmFyIHU9Yy5fYnVmZmVyU2VydmljZS5idWZmZXIubGluZXMuZ2V0KGxbMF0pO2lmKCF1KXJldHVybiJicmVhayI7dmFyIGg9dS5nZXRGZyhsWzFdKSxmPWg/aD4+OSY1MTE6dm9pZCAwO3IudmFsaWRhdGlvbkNhbGxiYWNrP3IudmFsaWRhdGlvbkNhbGxiYWNrKGEsKGZ1bmN0aW9uKGUpe24uX3Jvd3NUaW1lb3V0SWR8fGUmJm4uX2FkZExpbmsobFsxXSxsWzBdLW4uX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnlkaXNwLGEscixmKX0pKTpjLl9hZGRMaW5rKGxbMV0sbFswXS1jLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55ZGlzcCxhLHIsZil9LGM9dGhpcztudWxsIT09KGk9by5leGVjKHQpKSYmImJyZWFrIiE9PWEoKTspO30sZS5wcm90b3R5cGUuX2FkZExpbms9ZnVuY3Rpb24oZSx0LHIsaSxuKXt2YXIgbz10aGlzO2lmKHRoaXMuX21vdXNlWm9uZU1hbmFnZXImJnRoaXMuX2VsZW1lbnQpe3ZhciBzPXRoaXMuX3VuaWNvZGVTZXJ2aWNlLmdldFN0cmluZ0NlbGxXaWR0aChyKSxhPWUldGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLGw9dCtNYXRoLmZsb29yKGUvdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzKSx1PShhK3MpJXRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyxoPWwrTWF0aC5mbG9vcigoYStzKS90aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMpOzA9PT11JiYodT10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsaC0tKSx0aGlzLl9tb3VzZVpvbmVNYW5hZ2VyLmFkZChuZXcgYyhhKzEsbCsxLHUrMSxoKzEsKGZ1bmN0aW9uKGUpe2lmKGkuaGFuZGxlcilyZXR1cm4gaS5oYW5kbGVyKGUscik7dmFyIHQ9d2luZG93Lm9wZW4oKTt0Pyh0Lm9wZW5lcj1udWxsLHQubG9jYXRpb24uaHJlZj1yKTpjb25zb2xlLndhcm4oIk9wZW5pbmcgbGluayBibG9ja2VkIGFzIG9wZW5lciBjb3VsZCBub3QgYmUgY2xlYXJlZCIpfSksKGZ1bmN0aW9uKCl7by5fb25TaG93TGlua1VuZGVybGluZS5maXJlKG8uX2NyZWF0ZUxpbmtIb3ZlckV2ZW50KGEsbCx1LGgsbikpLG8uX2VsZW1lbnQuY2xhc3NMaXN0LmFkZCgieHRlcm0tY3Vyc29yLXBvaW50ZXIiKX0pLChmdW5jdGlvbihlKXtvLl9vbkxpbmtUb29sdGlwLmZpcmUoby5fY3JlYXRlTGlua0hvdmVyRXZlbnQoYSxsLHUsaCxuKSksaS5ob3ZlclRvb2x0aXBDYWxsYmFjayYmaS5ob3ZlclRvb2x0aXBDYWxsYmFjayhlLHIse3N0YXJ0Ont4OmEseTpsfSxlbmQ6e3g6dSx5Omh9fSl9KSwoZnVuY3Rpb24oKXtvLl9vbkhpZGVMaW5rVW5kZXJsaW5lLmZpcmUoby5fY3JlYXRlTGlua0hvdmVyRXZlbnQoYSxsLHUsaCxuKSksby5fZWxlbWVudC5jbGFzc0xpc3QucmVtb3ZlKCJ4dGVybS1jdXJzb3ItcG9pbnRlciIpLGkuaG92ZXJMZWF2ZUNhbGxiYWNrJiZpLmhvdmVyTGVhdmVDYWxsYmFjaygpfSksKGZ1bmN0aW9uKGUpe3JldHVybiFpLndpbGxMaW5rQWN0aXZhdGV8fGkud2lsbExpbmtBY3RpdmF0ZShlLHIpfSkpKX19LGUucHJvdG90eXBlLl9jcmVhdGVMaW5rSG92ZXJFdmVudD1mdW5jdGlvbihlLHQscixpLG4pe3JldHVybnt4MTplLHkxOnQseDI6cix5MjppLGNvbHM6dGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLGZnOm59fSxlLl90aW1lQmVmb3JlTGF0ZW5jeT0yMDAsZT1pKFtuKDAscy5JQnVmZmVyU2VydmljZSksbigxLHMuSUxvZ1NlcnZpY2UpLG4oMixzLklVbmljb2RlU2VydmljZSldLGUpfSgpO3QuTGlua2lmaWVyPWE7dmFyIGM9ZnVuY3Rpb24oZSx0LHIsaSxuLG8scyxhLGMpe3RoaXMueDE9ZSx0aGlzLnkxPXQsdGhpcy54Mj1yLHRoaXMueTI9aSx0aGlzLmNsaWNrQ2FsbGJhY2s9bix0aGlzLmhvdmVyQ2FsbGJhY2s9byx0aGlzLnRvb2x0aXBDYWxsYmFjaz1zLHRoaXMubGVhdmVDYWxsYmFjaz1hLHRoaXMud2lsbExpbmtBY3RpdmF0ZT1jfTt0Lk1vdXNlWm9uZT1jfSw2NDY1OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pLG89dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxzPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkxpbmtpZmllcjI9dm9pZCAwO3ZhciBhPXIoMjU4NSksYz1yKDg0NjApLGw9cig4NDQpLHU9cigzNjU2KSxoPWZ1bmN0aW9uKGUpe2Z1bmN0aW9uIHQodCl7dmFyIHI9ZS5jYWxsKHRoaXMpfHx0aGlzO3JldHVybiByLl9idWZmZXJTZXJ2aWNlPXQsci5fbGlua1Byb3ZpZGVycz1bXSxyLl9saW5rQ2FjaGVEaXNwb3NhYmxlcz1bXSxyLl9pc01vdXNlT3V0PSEwLHIuX2FjdGl2ZUxpbmU9LTEsci5fb25TaG93TGlua1VuZGVybGluZT1yLnJlZ2lzdGVyKG5ldyBjLkV2ZW50RW1pdHRlciksci5fb25IaWRlTGlua1VuZGVybGluZT1yLnJlZ2lzdGVyKG5ldyBjLkV2ZW50RW1pdHRlciksci5yZWdpc3RlcigoMCxsLmdldERpc3Bvc2VBcnJheURpc3Bvc2FibGUpKHIuX2xpbmtDYWNoZURpc3Bvc2FibGVzKSkscn1yZXR1cm4gbih0LGUpLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwiY3VycmVudExpbmsiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fY3VycmVudExpbmt9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvblNob3dMaW5rVW5kZXJsaW5lIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uU2hvd0xpbmtVbmRlcmxpbmUuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvbkhpZGVMaW5rVW5kZXJsaW5lIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uSGlkZUxpbmtVbmRlcmxpbmUuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksdC5wcm90b3R5cGUucmVnaXN0ZXJMaW5rUHJvdmlkZXI9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcztyZXR1cm4gdGhpcy5fbGlua1Byb3ZpZGVycy5wdXNoKGUpLHtkaXNwb3NlOmZ1bmN0aW9uKCl7dmFyIHI9dC5fbGlua1Byb3ZpZGVycy5pbmRleE9mKGUpOy0xIT09ciYmdC5fbGlua1Byb3ZpZGVycy5zcGxpY2UociwxKX19fSx0LnByb3RvdHlwZS5hdHRhY2hUb0RvbT1mdW5jdGlvbihlLHQscil7dmFyIGk9dGhpczt0aGlzLl9lbGVtZW50PWUsdGhpcy5fbW91c2VTZXJ2aWNlPXQsdGhpcy5fcmVuZGVyU2VydmljZT1yLHRoaXMucmVnaXN0ZXIoKDAsdS5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHRoaXMuX2VsZW1lbnQsIm1vdXNlbGVhdmUiLChmdW5jdGlvbigpe2kuX2lzTW91c2VPdXQ9ITAsaS5fY2xlYXJDdXJyZW50TGluaygpfSkpKSx0aGlzLnJlZ2lzdGVyKCgwLHUuYWRkRGlzcG9zYWJsZURvbUxpc3RlbmVyKSh0aGlzLl9lbGVtZW50LCJtb3VzZW1vdmUiLHRoaXMuX29uTW91c2VNb3ZlLmJpbmQodGhpcykpKSx0aGlzLnJlZ2lzdGVyKCgwLHUuYWRkRGlzcG9zYWJsZURvbUxpc3RlbmVyKSh0aGlzLl9lbGVtZW50LCJjbGljayIsdGhpcy5fb25DbGljay5iaW5kKHRoaXMpKSl9LHQucHJvdG90eXBlLl9vbk1vdXNlTW92ZT1mdW5jdGlvbihlKXtpZih0aGlzLl9sYXN0TW91c2VFdmVudD1lLHRoaXMuX2VsZW1lbnQmJnRoaXMuX21vdXNlU2VydmljZSl7dmFyIHQ9dGhpcy5fcG9zaXRpb25Gcm9tTW91c2VFdmVudChlLHRoaXMuX2VsZW1lbnQsdGhpcy5fbW91c2VTZXJ2aWNlKTtpZih0KXt0aGlzLl9pc01vdXNlT3V0PSExO2Zvcih2YXIgcj1lLmNvbXBvc2VkUGF0aCgpLGk9MDtpPHIubGVuZ3RoO2krKyl7dmFyIG49cltpXTtpZihuLmNsYXNzTGlzdC5jb250YWlucygieHRlcm0iKSlicmVhaztpZihuLmNsYXNzTGlzdC5jb250YWlucygieHRlcm0taG92ZXIiKSlyZXR1cm59dGhpcy5fbGFzdEJ1ZmZlckNlbGwmJnQueD09PXRoaXMuX2xhc3RCdWZmZXJDZWxsLngmJnQueT09PXRoaXMuX2xhc3RCdWZmZXJDZWxsLnl8fCh0aGlzLl9vbkhvdmVyKHQpLHRoaXMuX2xhc3RCdWZmZXJDZWxsPXQpfX19LHQucHJvdG90eXBlLl9vbkhvdmVyPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX2FjdGl2ZUxpbmUhPT1lLnkpcmV0dXJuIHRoaXMuX2NsZWFyQ3VycmVudExpbmsoKSx2b2lkIHRoaXMuX2Fza0ZvckxpbmsoZSwhMSk7dGhpcy5fY3VycmVudExpbmsmJnRoaXMuX2xpbmtBdFBvc2l0aW9uKHRoaXMuX2N1cnJlbnRMaW5rLmxpbmssZSl8fCh0aGlzLl9jbGVhckN1cnJlbnRMaW5rKCksdGhpcy5fYXNrRm9yTGluayhlLCEwKSl9LHQucHJvdG90eXBlLl9hc2tGb3JMaW5rPWZ1bmN0aW9uKGUsdCl7dmFyIHIsaT10aGlzO3RoaXMuX2FjdGl2ZVByb3ZpZGVyUmVwbGllcyYmdHx8KG51bGw9PT0ocj10aGlzLl9hY3RpdmVQcm92aWRlclJlcGxpZXMpfHx2b2lkIDA9PT1yfHxyLmZvckVhY2goKGZ1bmN0aW9uKGUpe251bGw9PWV8fGUuZm9yRWFjaCgoZnVuY3Rpb24oZSl7ZS5saW5rLmRpc3Bvc2UmJmUubGluay5kaXNwb3NlKCl9KSl9KSksdGhpcy5fYWN0aXZlUHJvdmlkZXJSZXBsaWVzPW5ldyBNYXAsdGhpcy5fYWN0aXZlTGluZT1lLnkpO3ZhciBuPSExO3RoaXMuX2xpbmtQcm92aWRlcnMuZm9yRWFjaCgoZnVuY3Rpb24ocixvKXt2YXIgczt0PyhudWxsPT09KHM9aS5fYWN0aXZlUHJvdmlkZXJSZXBsaWVzKXx8dm9pZCAwPT09cz92b2lkIDA6cy5nZXQobykpJiYobj1pLl9jaGVja0xpbmtQcm92aWRlclJlc3VsdChvLGUsbikpOnIucHJvdmlkZUxpbmtzKGUueSwoZnVuY3Rpb24odCl7dmFyIHIscztpZighaS5faXNNb3VzZU91dCl7dmFyIGE9bnVsbD09dD92b2lkIDA6dC5tYXAoKGZ1bmN0aW9uKGUpe3JldHVybntsaW5rOmV9fSkpO251bGw9PT0ocj1pLl9hY3RpdmVQcm92aWRlclJlcGxpZXMpfHx2b2lkIDA9PT1yfHxyLnNldChvLGEpLG49aS5fY2hlY2tMaW5rUHJvdmlkZXJSZXN1bHQobyxlLG4pLChudWxsPT09KHM9aS5fYWN0aXZlUHJvdmlkZXJSZXBsaWVzKXx8dm9pZCAwPT09cz92b2lkIDA6cy5zaXplKT09PWkuX2xpbmtQcm92aWRlcnMubGVuZ3RoJiZpLl9yZW1vdmVJbnRlcnNlY3RpbmdMaW5rcyhlLnksaS5fYWN0aXZlUHJvdmlkZXJSZXBsaWVzKX19KSl9KSl9LHQucHJvdG90eXBlLl9yZW1vdmVJbnRlcnNlY3RpbmdMaW5rcz1mdW5jdGlvbihlLHQpe2Zvcih2YXIgcj1uZXcgU2V0LGk9MDtpPHQuc2l6ZTtpKyspe3ZhciBuPXQuZ2V0KGkpO2lmKG4pZm9yKHZhciBvPTA7bzxuLmxlbmd0aDtvKyspZm9yKHZhciBzPW5bb10sYT1zLmxpbmsucmFuZ2Uuc3RhcnQueTxlPzA6cy5saW5rLnJhbmdlLnN0YXJ0LngsYz1zLmxpbmsucmFuZ2UuZW5kLnk+ZT90aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHM6cy5saW5rLnJhbmdlLmVuZC54LGw9YTtsPD1jO2wrKyl7aWYoci5oYXMobCkpe24uc3BsaWNlKG8tLSwxKTticmVha31yLmFkZChsKX19fSx0LnByb3RvdHlwZS5fY2hlY2tMaW5rUHJvdmlkZXJSZXN1bHQ9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpLG49dGhpcztpZighdGhpcy5fYWN0aXZlUHJvdmlkZXJSZXBsaWVzKXJldHVybiByO2Zvcih2YXIgbz10aGlzLl9hY3RpdmVQcm92aWRlclJlcGxpZXMuZ2V0KGUpLHM9ITEsYT0wO2E8ZTthKyspdGhpcy5fYWN0aXZlUHJvdmlkZXJSZXBsaWVzLmhhcyhhKSYmIXRoaXMuX2FjdGl2ZVByb3ZpZGVyUmVwbGllcy5nZXQoYSl8fChzPSEwKTtpZighcyYmbyl7dmFyIGM9by5maW5kKChmdW5jdGlvbihlKXtyZXR1cm4gbi5fbGlua0F0UG9zaXRpb24oZS5saW5rLHQpfSkpO2MmJihyPSEwLHRoaXMuX2hhbmRsZU5ld0xpbmsoYykpfWlmKHRoaXMuX2FjdGl2ZVByb3ZpZGVyUmVwbGllcy5zaXplPT09dGhpcy5fbGlua1Byb3ZpZGVycy5sZW5ndGgmJiFyKWZvcihhPTA7YTx0aGlzLl9hY3RpdmVQcm92aWRlclJlcGxpZXMuc2l6ZTthKyspe3ZhciBsPW51bGw9PT0oaT10aGlzLl9hY3RpdmVQcm92aWRlclJlcGxpZXMuZ2V0KGEpKXx8dm9pZCAwPT09aT92b2lkIDA6aS5maW5kKChmdW5jdGlvbihlKXtyZXR1cm4gbi5fbGlua0F0UG9zaXRpb24oZS5saW5rLHQpfSkpO2lmKGwpe3I9ITAsdGhpcy5faGFuZGxlTmV3TGluayhsKTticmVha319cmV0dXJuIHJ9LHQucHJvdG90eXBlLl9vbkNsaWNrPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX2VsZW1lbnQmJnRoaXMuX21vdXNlU2VydmljZSYmdGhpcy5fY3VycmVudExpbmspe3ZhciB0PXRoaXMuX3Bvc2l0aW9uRnJvbU1vdXNlRXZlbnQoZSx0aGlzLl9lbGVtZW50LHRoaXMuX21vdXNlU2VydmljZSk7dCYmdGhpcy5fbGlua0F0UG9zaXRpb24odGhpcy5fY3VycmVudExpbmsubGluayx0KSYmdGhpcy5fY3VycmVudExpbmsubGluay5hY3RpdmF0ZShlLHRoaXMuX2N1cnJlbnRMaW5rLmxpbmsudGV4dCl9fSx0LnByb3RvdHlwZS5fY2xlYXJDdXJyZW50TGluaz1mdW5jdGlvbihlLHQpe3RoaXMuX2VsZW1lbnQmJnRoaXMuX2N1cnJlbnRMaW5rJiZ0aGlzLl9sYXN0TW91c2VFdmVudCYmKCFlfHwhdHx8dGhpcy5fY3VycmVudExpbmsubGluay5yYW5nZS5zdGFydC55Pj1lJiZ0aGlzLl9jdXJyZW50TGluay5saW5rLnJhbmdlLmVuZC55PD10KSYmKHRoaXMuX2xpbmtMZWF2ZSh0aGlzLl9lbGVtZW50LHRoaXMuX2N1cnJlbnRMaW5rLmxpbmssdGhpcy5fbGFzdE1vdXNlRXZlbnQpLHRoaXMuX2N1cnJlbnRMaW5rPXZvaWQgMCwoMCxsLmRpc3Bvc2VBcnJheSkodGhpcy5fbGlua0NhY2hlRGlzcG9zYWJsZXMpKX0sdC5wcm90b3R5cGUuX2hhbmRsZU5ld0xpbms9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcztpZih0aGlzLl9lbGVtZW50JiZ0aGlzLl9sYXN0TW91c2VFdmVudCYmdGhpcy5fbW91c2VTZXJ2aWNlKXt2YXIgcj10aGlzLl9wb3NpdGlvbkZyb21Nb3VzZUV2ZW50KHRoaXMuX2xhc3RNb3VzZUV2ZW50LHRoaXMuX2VsZW1lbnQsdGhpcy5fbW91c2VTZXJ2aWNlKTtyJiZ0aGlzLl9saW5rQXRQb3NpdGlvbihlLmxpbmsscikmJih0aGlzLl9jdXJyZW50TGluaz1lLHRoaXMuX2N1cnJlbnRMaW5rLnN0YXRlPXtkZWNvcmF0aW9uczp7dW5kZXJsaW5lOnZvaWQgMD09PWUubGluay5kZWNvcmF0aW9uc3x8ZS5saW5rLmRlY29yYXRpb25zLnVuZGVybGluZSxwb2ludGVyQ3Vyc29yOnZvaWQgMD09PWUubGluay5kZWNvcmF0aW9uc3x8ZS5saW5rLmRlY29yYXRpb25zLnBvaW50ZXJDdXJzb3J9LGlzSG92ZXJlZDohMH0sdGhpcy5fbGlua0hvdmVyKHRoaXMuX2VsZW1lbnQsZS5saW5rLHRoaXMuX2xhc3RNb3VzZUV2ZW50KSxlLmxpbmsuZGVjb3JhdGlvbnM9e30sT2JqZWN0LmRlZmluZVByb3BlcnRpZXMoZS5saW5rLmRlY29yYXRpb25zLHtwb2ludGVyQ3Vyc29yOntnZXQ6ZnVuY3Rpb24oKXt2YXIgZSxyO3JldHVybiBudWxsPT09KHI9bnVsbD09PShlPXQuX2N1cnJlbnRMaW5rKXx8dm9pZCAwPT09ZT92b2lkIDA6ZS5zdGF0ZSl8fHZvaWQgMD09PXI/dm9pZCAwOnIuZGVjb3JhdGlvbnMucG9pbnRlckN1cnNvcn0sc2V0OmZ1bmN0aW9uKGUpe3ZhciByLGk7KG51bGw9PT0ocj10Ll9jdXJyZW50TGluayl8fHZvaWQgMD09PXI/dm9pZCAwOnIuc3RhdGUpJiZ0Ll9jdXJyZW50TGluay5zdGF0ZS5kZWNvcmF0aW9ucy5wb2ludGVyQ3Vyc29yIT09ZSYmKHQuX2N1cnJlbnRMaW5rLnN0YXRlLmRlY29yYXRpb25zLnBvaW50ZXJDdXJzb3I9ZSx0Ll9jdXJyZW50TGluay5zdGF0ZS5pc0hvdmVyZWQmJihudWxsPT09KGk9dC5fZWxlbWVudCl8fHZvaWQgMD09PWl8fGkuY2xhc3NMaXN0LnRvZ2dsZSgieHRlcm0tY3Vyc29yLXBvaW50ZXIiLGUpKSl9fSx1bmRlcmxpbmU6e2dldDpmdW5jdGlvbigpe3ZhciBlLHI7cmV0dXJuIG51bGw9PT0ocj1udWxsPT09KGU9dC5fY3VycmVudExpbmspfHx2b2lkIDA9PT1lP3ZvaWQgMDplLnN0YXRlKXx8dm9pZCAwPT09cj92b2lkIDA6ci5kZWNvcmF0aW9ucy51bmRlcmxpbmV9LHNldDpmdW5jdGlvbihyKXt2YXIgaSxuLG87KG51bGw9PT0oaT10Ll9jdXJyZW50TGluayl8fHZvaWQgMD09PWk/dm9pZCAwOmkuc3RhdGUpJiYobnVsbD09PShvPW51bGw9PT0obj10Ll9jdXJyZW50TGluayl8fHZvaWQgMD09PW4/dm9pZCAwOm4uc3RhdGUpfHx2b2lkIDA9PT1vP3ZvaWQgMDpvLmRlY29yYXRpb25zLnVuZGVybGluZSkhPT1yJiYodC5fY3VycmVudExpbmsuc3RhdGUuZGVjb3JhdGlvbnMudW5kZXJsaW5lPXIsdC5fY3VycmVudExpbmsuc3RhdGUuaXNIb3ZlcmVkJiZ0Ll9maXJlVW5kZXJsaW5lRXZlbnQoZS5saW5rLHIpKX19fSksdGhpcy5fcmVuZGVyU2VydmljZSYmdGhpcy5fbGlua0NhY2hlRGlzcG9zYWJsZXMucHVzaCh0aGlzLl9yZW5kZXJTZXJ2aWNlLm9uUmVuZGVyZWRCdWZmZXJDaGFuZ2UoKGZ1bmN0aW9uKGUpe3ZhciByPTA9PT1lLnN0YXJ0PzA6ZS5zdGFydCsxK3QuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnlkaXNwO3QuX2NsZWFyQ3VycmVudExpbmsocixlLmVuZCsxK3QuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnlkaXNwKX0pKSkpfX0sdC5wcm90b3R5cGUuX2xpbmtIb3Zlcj1mdW5jdGlvbihlLHQscil7dmFyIGk7KG51bGw9PT0oaT10aGlzLl9jdXJyZW50TGluayl8fHZvaWQgMD09PWk/dm9pZCAwOmkuc3RhdGUpJiYodGhpcy5fY3VycmVudExpbmsuc3RhdGUuaXNIb3ZlcmVkPSEwLHRoaXMuX2N1cnJlbnRMaW5rLnN0YXRlLmRlY29yYXRpb25zLnVuZGVybGluZSYmdGhpcy5fZmlyZVVuZGVybGluZUV2ZW50KHQsITApLHRoaXMuX2N1cnJlbnRMaW5rLnN0YXRlLmRlY29yYXRpb25zLnBvaW50ZXJDdXJzb3ImJmUuY2xhc3NMaXN0LmFkZCgieHRlcm0tY3Vyc29yLXBvaW50ZXIiKSksdC5ob3ZlciYmdC5ob3ZlcihyLHQudGV4dCl9LHQucHJvdG90eXBlLl9maXJlVW5kZXJsaW5lRXZlbnQ9ZnVuY3Rpb24oZSx0KXt2YXIgcj1lLnJhbmdlLGk9dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueWRpc3Asbj10aGlzLl9jcmVhdGVMaW5rVW5kZXJsaW5lRXZlbnQoci5zdGFydC54LTEsci5zdGFydC55LWktMSxyLmVuZC54LHIuZW5kLnktaS0xLHZvaWQgMCk7KHQ/dGhpcy5fb25TaG93TGlua1VuZGVybGluZTp0aGlzLl9vbkhpZGVMaW5rVW5kZXJsaW5lKS5maXJlKG4pfSx0LnByb3RvdHlwZS5fbGlua0xlYXZlPWZ1bmN0aW9uKGUsdCxyKXt2YXIgaTsobnVsbD09PShpPXRoaXMuX2N1cnJlbnRMaW5rKXx8dm9pZCAwPT09aT92b2lkIDA6aS5zdGF0ZSkmJih0aGlzLl9jdXJyZW50TGluay5zdGF0ZS5pc0hvdmVyZWQ9ITEsdGhpcy5fY3VycmVudExpbmsuc3RhdGUuZGVjb3JhdGlvbnMudW5kZXJsaW5lJiZ0aGlzLl9maXJlVW5kZXJsaW5lRXZlbnQodCwhMSksdGhpcy5fY3VycmVudExpbmsuc3RhdGUuZGVjb3JhdGlvbnMucG9pbnRlckN1cnNvciYmZS5jbGFzc0xpc3QucmVtb3ZlKCJ4dGVybS1jdXJzb3ItcG9pbnRlciIpKSx0LmxlYXZlJiZ0LmxlYXZlKHIsdC50ZXh0KX0sdC5wcm90b3R5cGUuX2xpbmtBdFBvc2l0aW9uPWZ1bmN0aW9uKGUsdCl7dmFyIHI9ZS5yYW5nZS5zdGFydC55PT09ZS5yYW5nZS5lbmQueSxpPWUucmFuZ2Uuc3RhcnQueTx0Lnksbj1lLnJhbmdlLmVuZC55PnQueTtyZXR1cm4ociYmZS5yYW5nZS5zdGFydC54PD10LngmJmUucmFuZ2UuZW5kLng+PXQueHx8aSYmZS5yYW5nZS5lbmQueD49dC54fHxuJiZlLnJhbmdlLnN0YXJ0Lng8PXQueHx8aSYmbikmJmUucmFuZ2Uuc3RhcnQueTw9dC55JiZlLnJhbmdlLmVuZC55Pj10Lnl9LHQucHJvdG90eXBlLl9wb3NpdGlvbkZyb21Nb3VzZUV2ZW50PWZ1bmN0aW9uKGUsdCxyKXt2YXIgaT1yLmdldENvb3JkcyhlLHQsdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLHRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cyk7aWYoaSlyZXR1cm57eDppWzBdLHk6aVsxXSt0aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55ZGlzcH19LHQucHJvdG90eXBlLl9jcmVhdGVMaW5rVW5kZXJsaW5lRXZlbnQ9ZnVuY3Rpb24oZSx0LHIsaSxuKXtyZXR1cm57eDE6ZSx5MTp0LHgyOnIseTI6aSxjb2xzOnRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyxmZzpufX0sbyhbcygwLGEuSUJ1ZmZlclNlcnZpY2UpXSx0KX0obC5EaXNwb3NhYmxlKTt0LkxpbmtpZmllcjI9aH0sOTA0MjooZSx0KT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LnRvb011Y2hPdXRwdXQ9dC5wcm9tcHRMYWJlbD12b2lkIDAsdC5wcm9tcHRMYWJlbD0iVGVybWluYWwgaW5wdXQiLHQudG9vTXVjaE91dHB1dD0iVG9vIG11Y2ggb3V0cHV0IHRvIGFubm91bmNlLCBuYXZpZ2F0ZSB0byByb3dzIG1hbnVhbGx5IHRvIHJlYWQifSw2OTU0OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pLG89dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxzPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0Lk1vdXNlWm9uZU1hbmFnZXI9dm9pZCAwO3ZhciBhPXIoODQ0KSxjPXIoMzY1NiksbD1yKDQ3MjUpLHU9cigyNTg1KSxoPWZ1bmN0aW9uKGUpe2Z1bmN0aW9uIHQodCxyLGksbixvLHMpe3ZhciBhPWUuY2FsbCh0aGlzKXx8dGhpcztyZXR1cm4gYS5fZWxlbWVudD10LGEuX3NjcmVlbkVsZW1lbnQ9cixhLl9idWZmZXJTZXJ2aWNlPWksYS5fbW91c2VTZXJ2aWNlPW4sYS5fc2VsZWN0aW9uU2VydmljZT1vLGEuX29wdGlvbnNTZXJ2aWNlPXMsYS5fem9uZXM9W10sYS5fYXJlWm9uZXNBY3RpdmU9ITEsYS5fbGFzdEhvdmVyQ29vcmRzPVt2b2lkIDAsdm9pZCAwXSxhLl9pbml0aWFsU2VsZWN0aW9uTGVuZ3RoPTAsYS5yZWdpc3RlcigoMCxjLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikoYS5fZWxlbWVudCwibW91c2Vkb3duIiwoZnVuY3Rpb24oZSl7cmV0dXJuIGEuX29uTW91c2VEb3duKGUpfSkpKSxhLl9tb3VzZU1vdmVMaXN0ZW5lcj1mdW5jdGlvbihlKXtyZXR1cm4gYS5fb25Nb3VzZU1vdmUoZSl9LGEuX21vdXNlTGVhdmVMaXN0ZW5lcj1mdW5jdGlvbihlKXtyZXR1cm4gYS5fb25Nb3VzZUxlYXZlKGUpfSxhLl9jbGlja0xpc3RlbmVyPWZ1bmN0aW9uKGUpe3JldHVybiBhLl9vbkNsaWNrKGUpfSxhfXJldHVybiBuKHQsZSksdC5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe2UucHJvdG90eXBlLmRpc3Bvc2UuY2FsbCh0aGlzKSx0aGlzLl9kZWFjdGl2YXRlKCl9LHQucHJvdG90eXBlLmFkZD1mdW5jdGlvbihlKXt0aGlzLl96b25lcy5wdXNoKGUpLDE9PT10aGlzLl96b25lcy5sZW5ndGgmJnRoaXMuX2FjdGl2YXRlKCl9LHQucHJvdG90eXBlLmNsZWFyQWxsPWZ1bmN0aW9uKGUsdCl7aWYoMCE9PXRoaXMuX3pvbmVzLmxlbmd0aCl7ZSYmdHx8KGU9MCx0PXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cy0xKTtmb3IodmFyIHI9MDtyPHRoaXMuX3pvbmVzLmxlbmd0aDtyKyspe3ZhciBpPXRoaXMuX3pvbmVzW3JdOyhpLnkxPmUmJmkueTE8PXQrMXx8aS55Mj5lJiZpLnkyPD10KzF8fGkueTE8ZSYmaS55Mj50KzEpJiYodGhpcy5fY3VycmVudFpvbmUmJnRoaXMuX2N1cnJlbnRab25lPT09aSYmKHRoaXMuX2N1cnJlbnRab25lLmxlYXZlQ2FsbGJhY2soKSx0aGlzLl9jdXJyZW50Wm9uZT12b2lkIDApLHRoaXMuX3pvbmVzLnNwbGljZShyLS0sMSkpfTA9PT10aGlzLl96b25lcy5sZW5ndGgmJnRoaXMuX2RlYWN0aXZhdGUoKX19LHQucHJvdG90eXBlLl9hY3RpdmF0ZT1mdW5jdGlvbigpe3RoaXMuX2FyZVpvbmVzQWN0aXZlfHwodGhpcy5fYXJlWm9uZXNBY3RpdmU9ITAsdGhpcy5fZWxlbWVudC5hZGRFdmVudExpc3RlbmVyKCJtb3VzZW1vdmUiLHRoaXMuX21vdXNlTW92ZUxpc3RlbmVyKSx0aGlzLl9lbGVtZW50LmFkZEV2ZW50TGlzdGVuZXIoIm1vdXNlbGVhdmUiLHRoaXMuX21vdXNlTGVhdmVMaXN0ZW5lciksdGhpcy5fZWxlbWVudC5hZGRFdmVudExpc3RlbmVyKCJjbGljayIsdGhpcy5fY2xpY2tMaXN0ZW5lcikpfSx0LnByb3RvdHlwZS5fZGVhY3RpdmF0ZT1mdW5jdGlvbigpe3RoaXMuX2FyZVpvbmVzQWN0aXZlJiYodGhpcy5fYXJlWm9uZXNBY3RpdmU9ITEsdGhpcy5fZWxlbWVudC5yZW1vdmVFdmVudExpc3RlbmVyKCJtb3VzZW1vdmUiLHRoaXMuX21vdXNlTW92ZUxpc3RlbmVyKSx0aGlzLl9lbGVtZW50LnJlbW92ZUV2ZW50TGlzdGVuZXIoIm1vdXNlbGVhdmUiLHRoaXMuX21vdXNlTGVhdmVMaXN0ZW5lciksdGhpcy5fZWxlbWVudC5yZW1vdmVFdmVudExpc3RlbmVyKCJjbGljayIsdGhpcy5fY2xpY2tMaXN0ZW5lcikpfSx0LnByb3RvdHlwZS5fb25Nb3VzZU1vdmU9ZnVuY3Rpb24oZSl7dGhpcy5fbGFzdEhvdmVyQ29vcmRzWzBdPT09ZS5wYWdlWCYmdGhpcy5fbGFzdEhvdmVyQ29vcmRzWzFdPT09ZS5wYWdlWXx8KHRoaXMuX29uSG92ZXIoZSksdGhpcy5fbGFzdEhvdmVyQ29vcmRzPVtlLnBhZ2VYLGUucGFnZVldKX0sdC5wcm90b3R5cGUuX29uSG92ZXI9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcyxyPXRoaXMuX2ZpbmRab25lRXZlbnRBdChlKTtyIT09dGhpcy5fY3VycmVudFpvbmUmJih0aGlzLl9jdXJyZW50Wm9uZSYmKHRoaXMuX2N1cnJlbnRab25lLmxlYXZlQ2FsbGJhY2soKSx0aGlzLl9jdXJyZW50Wm9uZT12b2lkIDAsdGhpcy5fdG9vbHRpcFRpbWVvdXQmJmNsZWFyVGltZW91dCh0aGlzLl90b29sdGlwVGltZW91dCkpLHImJih0aGlzLl9jdXJyZW50Wm9uZT1yLHIuaG92ZXJDYWxsYmFjayYmci5ob3ZlckNhbGxiYWNrKGUpLHRoaXMuX3Rvb2x0aXBUaW1lb3V0PXdpbmRvdy5zZXRUaW1lb3V0KChmdW5jdGlvbigpe3JldHVybiB0Ll9vblRvb2x0aXAoZSl9KSx0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmxpbmtUb29sdGlwSG92ZXJEdXJhdGlvbikpKX0sdC5wcm90b3R5cGUuX29uVG9vbHRpcD1mdW5jdGlvbihlKXt0aGlzLl90b29sdGlwVGltZW91dD12b2lkIDA7dmFyIHQ9dGhpcy5fZmluZFpvbmVFdmVudEF0KGUpO251bGw9PXR8fHQudG9vbHRpcENhbGxiYWNrKGUpfSx0LnByb3RvdHlwZS5fb25Nb3VzZURvd249ZnVuY3Rpb24oZSl7aWYodGhpcy5faW5pdGlhbFNlbGVjdGlvbkxlbmd0aD10aGlzLl9nZXRTZWxlY3Rpb25MZW5ndGgoKSx0aGlzLl9hcmVab25lc0FjdGl2ZSl7dmFyIHQ9dGhpcy5fZmluZFpvbmVFdmVudEF0KGUpOyhudWxsPT10P3ZvaWQgMDp0LndpbGxMaW5rQWN0aXZhdGUoZSkpJiYoZS5wcmV2ZW50RGVmYXVsdCgpLGUuc3RvcEltbWVkaWF0ZVByb3BhZ2F0aW9uKCkpfX0sdC5wcm90b3R5cGUuX29uTW91c2VMZWF2ZT1mdW5jdGlvbihlKXt0aGlzLl9jdXJyZW50Wm9uZSYmKHRoaXMuX2N1cnJlbnRab25lLmxlYXZlQ2FsbGJhY2soKSx0aGlzLl9jdXJyZW50Wm9uZT12b2lkIDAsdGhpcy5fdG9vbHRpcFRpbWVvdXQmJmNsZWFyVGltZW91dCh0aGlzLl90b29sdGlwVGltZW91dCkpfSx0LnByb3RvdHlwZS5fb25DbGljaz1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9maW5kWm9uZUV2ZW50QXQoZSkscj10aGlzLl9nZXRTZWxlY3Rpb25MZW5ndGgoKTt0JiZyPT09dGhpcy5faW5pdGlhbFNlbGVjdGlvbkxlbmd0aCYmKHQuY2xpY2tDYWxsYmFjayhlKSxlLnByZXZlbnREZWZhdWx0KCksZS5zdG9wSW1tZWRpYXRlUHJvcGFnYXRpb24oKSl9LHQucHJvdG90eXBlLl9nZXRTZWxlY3Rpb25MZW5ndGg9ZnVuY3Rpb24oKXt2YXIgZT10aGlzLl9zZWxlY3Rpb25TZXJ2aWNlLnNlbGVjdGlvblRleHQ7cmV0dXJuIGU/ZS5sZW5ndGg6MH0sdC5wcm90b3R5cGUuX2ZpbmRab25lRXZlbnRBdD1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9tb3VzZVNlcnZpY2UuZ2V0Q29vcmRzKGUsdGhpcy5fc2NyZWVuRWxlbWVudCx0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsdGhpcy5fYnVmZmVyU2VydmljZS5yb3dzKTtpZih0KWZvcih2YXIgcj10WzBdLGk9dFsxXSxuPTA7bjx0aGlzLl96b25lcy5sZW5ndGg7bisrKXt2YXIgbz10aGlzLl96b25lc1tuXTtpZihvLnkxPT09by55Mil7aWYoaT09PW8ueTEmJnI+PW8ueDEmJnI8by54MilyZXR1cm4gb31lbHNlIGlmKGk9PT1vLnkxJiZyPj1vLngxfHxpPT09by55MiYmcjxvLngyfHxpPm8ueTEmJmk8by55MilyZXR1cm4gb319LG8oW3MoMix1LklCdWZmZXJTZXJ2aWNlKSxzKDMsbC5JTW91c2VTZXJ2aWNlKSxzKDQsbC5JU2VsZWN0aW9uU2VydmljZSkscyg1LHUuSU9wdGlvbnNTZXJ2aWNlKV0sdCl9KGEuRGlzcG9zYWJsZSk7dC5Nb3VzZVpvbmVNYW5hZ2VyPWh9LDYxOTM6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5SZW5kZXJEZWJvdW5jZXI9dm9pZCAwO3ZhciByPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlKXt0aGlzLl9yZW5kZXJDYWxsYmFjaz1lfXJldHVybiBlLnByb3RvdHlwZS5kaXNwb3NlPWZ1bmN0aW9uKCl7dGhpcy5fYW5pbWF0aW9uRnJhbWUmJih3aW5kb3cuY2FuY2VsQW5pbWF0aW9uRnJhbWUodGhpcy5fYW5pbWF0aW9uRnJhbWUpLHRoaXMuX2FuaW1hdGlvbkZyYW1lPXZvaWQgMCl9LGUucHJvdG90eXBlLnJlZnJlc2g9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPXRoaXM7dGhpcy5fcm93Q291bnQ9cixlPXZvaWQgMCE9PWU/ZTowLHQ9dm9pZCAwIT09dD90OnRoaXMuX3Jvd0NvdW50LTEsdGhpcy5fcm93U3RhcnQ9dm9pZCAwIT09dGhpcy5fcm93U3RhcnQ/TWF0aC5taW4odGhpcy5fcm93U3RhcnQsZSk6ZSx0aGlzLl9yb3dFbmQ9dm9pZCAwIT09dGhpcy5fcm93RW5kP01hdGgubWF4KHRoaXMuX3Jvd0VuZCx0KTp0LHRoaXMuX2FuaW1hdGlvbkZyYW1lfHwodGhpcy5fYW5pbWF0aW9uRnJhbWU9d2luZG93LnJlcXVlc3RBbmltYXRpb25GcmFtZSgoZnVuY3Rpb24oKXtyZXR1cm4gaS5faW5uZXJSZWZyZXNoKCl9KSkpfSxlLnByb3RvdHlwZS5faW5uZXJSZWZyZXNoPWZ1bmN0aW9uKCl7aWYodm9pZCAwIT09dGhpcy5fcm93U3RhcnQmJnZvaWQgMCE9PXRoaXMuX3Jvd0VuZCYmdm9pZCAwIT09dGhpcy5fcm93Q291bnQpe3ZhciBlPU1hdGgubWF4KHRoaXMuX3Jvd1N0YXJ0LDApLHQ9TWF0aC5taW4odGhpcy5fcm93RW5kLHRoaXMuX3Jvd0NvdW50LTEpO3RoaXMuX3Jvd1N0YXJ0PXZvaWQgMCx0aGlzLl9yb3dFbmQ9dm9pZCAwLHRoaXMuX2FuaW1hdGlvbkZyYW1lPXZvaWQgMCx0aGlzLl9yZW5kZXJDYWxsYmFjayhlLHQpfX0sZX0oKTt0LlJlbmRlckRlYm91bmNlcj1yfSw1NTk2OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pO09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LlNjcmVlbkRwck1vbml0b3I9dm9pZCAwO3ZhciBvPWZ1bmN0aW9uKGUpe2Z1bmN0aW9uIHQoKXt2YXIgdD1udWxsIT09ZSYmZS5hcHBseSh0aGlzLGFyZ3VtZW50cyl8fHRoaXM7cmV0dXJuIHQuX2N1cnJlbnREZXZpY2VQaXhlbFJhdGlvPXdpbmRvdy5kZXZpY2VQaXhlbFJhdGlvLHR9cmV0dXJuIG4odCxlKSx0LnByb3RvdHlwZS5zZXRMaXN0ZW5lcj1mdW5jdGlvbihlKXt2YXIgdD10aGlzO3RoaXMuX2xpc3RlbmVyJiZ0aGlzLmNsZWFyTGlzdGVuZXIoKSx0aGlzLl9saXN0ZW5lcj1lLHRoaXMuX291dGVyTGlzdGVuZXI9ZnVuY3Rpb24oKXt0Ll9saXN0ZW5lciYmKHQuX2xpc3RlbmVyKHdpbmRvdy5kZXZpY2VQaXhlbFJhdGlvLHQuX2N1cnJlbnREZXZpY2VQaXhlbFJhdGlvKSx0Ll91cGRhdGVEcHIoKSl9LHRoaXMuX3VwZGF0ZURwcigpfSx0LnByb3RvdHlwZS5kaXNwb3NlPWZ1bmN0aW9uKCl7ZS5wcm90b3R5cGUuZGlzcG9zZS5jYWxsKHRoaXMpLHRoaXMuY2xlYXJMaXN0ZW5lcigpfSx0LnByb3RvdHlwZS5fdXBkYXRlRHByPWZ1bmN0aW9uKCl7dmFyIGU7dGhpcy5fb3V0ZXJMaXN0ZW5lciYmKG51bGw9PT0oZT10aGlzLl9yZXNvbHV0aW9uTWVkaWFNYXRjaExpc3QpfHx2b2lkIDA9PT1lfHxlLnJlbW92ZUxpc3RlbmVyKHRoaXMuX291dGVyTGlzdGVuZXIpLHRoaXMuX2N1cnJlbnREZXZpY2VQaXhlbFJhdGlvPXdpbmRvdy5kZXZpY2VQaXhlbFJhdGlvLHRoaXMuX3Jlc29sdXRpb25NZWRpYU1hdGNoTGlzdD13aW5kb3cubWF0Y2hNZWRpYSgic2NyZWVuIGFuZCAocmVzb2x1dGlvbjogIit3aW5kb3cuZGV2aWNlUGl4ZWxSYXRpbysiZHBweCkiKSx0aGlzLl9yZXNvbHV0aW9uTWVkaWFNYXRjaExpc3QuYWRkTGlzdGVuZXIodGhpcy5fb3V0ZXJMaXN0ZW5lcikpfSx0LnByb3RvdHlwZS5jbGVhckxpc3RlbmVyPWZ1bmN0aW9uKCl7dGhpcy5fcmVzb2x1dGlvbk1lZGlhTWF0Y2hMaXN0JiZ0aGlzLl9saXN0ZW5lciYmdGhpcy5fb3V0ZXJMaXN0ZW5lciYmKHRoaXMuX3Jlc29sdXRpb25NZWRpYU1hdGNoTGlzdC5yZW1vdmVMaXN0ZW5lcih0aGlzLl9vdXRlckxpc3RlbmVyKSx0aGlzLl9yZXNvbHV0aW9uTWVkaWFNYXRjaExpc3Q9dm9pZCAwLHRoaXMuX2xpc3RlbmVyPXZvaWQgMCx0aGlzLl9vdXRlckxpc3RlbmVyPXZvaWQgMCl9LHR9KHIoODQ0KS5EaXNwb3NhYmxlKTt0LlNjcmVlbkRwck1vbml0b3I9b30sMzIzNjpmdW5jdGlvbihlLHQscil7dmFyIGksbj10aGlzJiZ0aGlzLl9fZXh0ZW5kc3x8KGk9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gaT1PYmplY3Quc2V0UHJvdG90eXBlT2Z8fHtfX3Byb3RvX186W119aW5zdGFuY2VvZiBBcnJheSYmZnVuY3Rpb24oZSx0KXtlLl9fcHJvdG9fXz10fXx8ZnVuY3Rpb24oZSx0KXtmb3IodmFyIHIgaW4gdClPYmplY3QucHJvdG90eXBlLmhhc093blByb3BlcnR5LmNhbGwodCxyKSYmKGVbcl09dFtyXSl9LGkoZSx0KX0sZnVuY3Rpb24oZSx0KXtpZigiZnVuY3Rpb24iIT10eXBlb2YgdCYmbnVsbCE9PXQpdGhyb3cgbmV3IFR5cGVFcnJvcigiQ2xhc3MgZXh0ZW5kcyB2YWx1ZSAiK1N0cmluZyh0KSsiIGlzIG5vdCBhIGNvbnN0cnVjdG9yIG9yIG51bGwiKTtmdW5jdGlvbiByKCl7dGhpcy5jb25zdHJ1Y3Rvcj1lfWkoZSx0KSxlLnByb3RvdHlwZT1udWxsPT09dD9PYmplY3QuY3JlYXRlKHQpOihyLnByb3RvdHlwZT10LnByb3RvdHlwZSxuZXcgcil9KTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5UZXJtaW5hbD12b2lkIDA7dmFyIG89cigyOTUwKSxzPXIoMTY4MCksYT1yKDM2MTQpLGM9cigyNTg0KSxsPXIoNTQzNSksdT1yKDM1MjUpLGg9cigzNTUxKSxmPXIoOTMxMiksXz1yKDYxMTQpLGQ9cigzNjU2KSxwPXIoOTA0Miksdj1yKDM1NyksZz1yKDY5NTQpLHk9cig0NTY3KSxtPXIoMTI5NiksYj1yKDczOTkpLFM9cig4NDYwKSxDPXIoODQzNyksdz1yKDU2ODApLEw9cigzMjMwKSxFPXIoNDcyNSkseD1yKDQyOCksQT1yKDg5MzQpLGs9cig2NDY1KSxNPXIoNTExNCksUj1yKDg5NjkpLFQ9cig0Nzc0KSxPPXIoNDI2OSksQj1yKDU5NDEpLEQ9InVuZGVmaW5lZCIhPXR5cGVvZiB3aW5kb3c/d2luZG93LmRvY3VtZW50Om51bGwsUD1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KHQpe3ZvaWQgMD09PXQmJih0PXt9KTt2YXIgcj1lLmNhbGwodGhpcyx0KXx8dGhpcztyZXR1cm4gci5icm93c2VyPV8sci5fa2V5RG93bkhhbmRsZWQ9ITEsci5fa2V5UHJlc3NIYW5kbGVkPSExLHIuX3VucHJvY2Vzc2VkRGVhZEtleT0hMSxyLl9vbkN1cnNvck1vdmU9bmV3IFMuRXZlbnRFbWl0dGVyLHIuX29uS2V5PW5ldyBTLkV2ZW50RW1pdHRlcixyLl9vblJlbmRlcj1uZXcgUy5FdmVudEVtaXR0ZXIsci5fb25TZWxlY3Rpb25DaGFuZ2U9bmV3IFMuRXZlbnRFbWl0dGVyLHIuX29uVGl0bGVDaGFuZ2U9bmV3IFMuRXZlbnRFbWl0dGVyLHIuX29uQmVsbD1uZXcgUy5FdmVudEVtaXR0ZXIsci5fb25Gb2N1cz1uZXcgUy5FdmVudEVtaXR0ZXIsci5fb25CbHVyPW5ldyBTLkV2ZW50RW1pdHRlcixyLl9vbkExMXlDaGFyRW1pdHRlcj1uZXcgUy5FdmVudEVtaXR0ZXIsci5fb25BMTF5VGFiRW1pdHRlcj1uZXcgUy5FdmVudEVtaXR0ZXIsci5fc2V0dXAoKSxyLmxpbmtpZmllcj1yLl9pbnN0YW50aWF0aW9uU2VydmljZS5jcmVhdGVJbnN0YW5jZShoLkxpbmtpZmllciksci5saW5raWZpZXIyPXIucmVnaXN0ZXIoci5faW5zdGFudGlhdGlvblNlcnZpY2UuY3JlYXRlSW5zdGFuY2Uoay5MaW5raWZpZXIyKSksci5yZWdpc3RlcihyLl9pbnB1dEhhbmRsZXIub25SZXF1ZXN0QmVsbCgoZnVuY3Rpb24oKXtyZXR1cm4gci5iZWxsKCl9KSkpLHIucmVnaXN0ZXIoci5faW5wdXRIYW5kbGVyLm9uUmVxdWVzdFJlZnJlc2hSb3dzKChmdW5jdGlvbihlLHQpe3JldHVybiByLnJlZnJlc2goZSx0KX0pKSksci5yZWdpc3RlcihyLl9pbnB1dEhhbmRsZXIub25SZXF1ZXN0U2VuZEZvY3VzKChmdW5jdGlvbigpe3JldHVybiByLl9yZXBvcnRGb2N1cygpfSkpKSxyLnJlZ2lzdGVyKHIuX2lucHV0SGFuZGxlci5vblJlcXVlc3RSZXNldCgoZnVuY3Rpb24oKXtyZXR1cm4gci5yZXNldCgpfSkpKSxyLnJlZ2lzdGVyKHIuX2lucHV0SGFuZGxlci5vblJlcXVlc3RXaW5kb3dzT3B0aW9uc1JlcG9ydCgoZnVuY3Rpb24oZSl7cmV0dXJuIHIuX3JlcG9ydFdpbmRvd3NPcHRpb25zKGUpfSkpKSxyLnJlZ2lzdGVyKHIuX2lucHV0SGFuZGxlci5vbkNvbG9yKChmdW5jdGlvbihlKXtyZXR1cm4gci5faGFuZGxlQ29sb3JFdmVudChlKX0pKSksci5yZWdpc3RlcigoMCxTLmZvcndhcmRFdmVudCkoci5faW5wdXRIYW5kbGVyLm9uQ3Vyc29yTW92ZSxyLl9vbkN1cnNvck1vdmUpKSxyLnJlZ2lzdGVyKCgwLFMuZm9yd2FyZEV2ZW50KShyLl9pbnB1dEhhbmRsZXIub25UaXRsZUNoYW5nZSxyLl9vblRpdGxlQ2hhbmdlKSksci5yZWdpc3RlcigoMCxTLmZvcndhcmRFdmVudCkoci5faW5wdXRIYW5kbGVyLm9uQTExeUNoYXIsci5fb25BMTF5Q2hhckVtaXR0ZXIpKSxyLnJlZ2lzdGVyKCgwLFMuZm9yd2FyZEV2ZW50KShyLl9pbnB1dEhhbmRsZXIub25BMTF5VGFiLHIuX29uQTExeVRhYkVtaXR0ZXIpKSxyLnJlZ2lzdGVyKHIuX2J1ZmZlclNlcnZpY2Uub25SZXNpemUoKGZ1bmN0aW9uKGUpe3JldHVybiByLl9hZnRlclJlc2l6ZShlLmNvbHMsZS5yb3dzKX0pKSkscn1yZXR1cm4gbih0LGUpLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25DdXJzb3JNb3ZlIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uQ3Vyc29yTW92ZS5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uS2V5Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uS2V5LmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25SZW5kZXIiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25SZW5kZXIuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvblNlbGVjdGlvbkNoYW5nZSIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vblNlbGVjdGlvbkNoYW5nZS5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uVGl0bGVDaGFuZ2UiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25UaXRsZUNoYW5nZS5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uQmVsbCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vbkJlbGwuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvbkZvY3VzIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uRm9jdXMuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvbkJsdXIiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25CbHVyLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25BMTF5Q2hhciIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vbkExMXlDaGFyRW1pdHRlci5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uQTExeVRhYiIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vbkExMXlUYWJFbWl0dGVyLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLHQucHJvdG90eXBlLl9oYW5kbGVDb2xvckV2ZW50PWZ1bmN0aW9uKGUpe3ZhciB0LHI7aWYodGhpcy5fY29sb3JNYW5hZ2VyKXtmb3IodmFyIGk9MCxuPWU7aTxuLmxlbmd0aDtpKyspe3ZhciBvPW5baV0scz12b2lkIDAsYT0iIjtzd2l0Y2goby5pbmRleCl7Y2FzZSAyNTY6cz0iZm9yZWdyb3VuZCIsYT0iMTAiO2JyZWFrO2Nhc2UgMjU3OnM9ImJhY2tncm91bmQiLGE9IjExIjticmVhaztjYXNlIDI1ODpzPSJjdXJzb3IiLGE9IjEyIjticmVhaztkZWZhdWx0OnM9ImFuc2kiLGE9IjQ7IitvLmluZGV4fWlmKHMpc3dpdGNoKG8udHlwZSl7Y2FzZSAwOnZhciBsPVQuY29sb3IudG9Db2xvclJHQigiYW5zaSI9PT1zP3RoaXMuX2NvbG9yTWFuYWdlci5jb2xvcnMuYW5zaVtvLmluZGV4XTp0aGlzLl9jb2xvck1hbmFnZXIuY29sb3JzW3NdKTt0aGlzLmNvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQoYy5DMC5FU0MrIl0iK2ErIjsiKygwLEIudG9SZ2JTdHJpbmcpKGwpK2MuQzAuQkVMKTticmVhaztjYXNlIDE6ImFuc2kiPT09cz90aGlzLl9jb2xvck1hbmFnZXIuY29sb3JzLmFuc2lbby5pbmRleF09VC5yZ2JhLnRvQ29sb3IuYXBwbHkoVC5yZ2JhLG8uY29sb3IpOnRoaXMuX2NvbG9yTWFuYWdlci5jb2xvcnNbc109VC5yZ2JhLnRvQ29sb3IuYXBwbHkoVC5yZ2JhLG8uY29sb3IpO2JyZWFrO2Nhc2UgMjp0aGlzLl9jb2xvck1hbmFnZXIucmVzdG9yZUNvbG9yKG8uaW5kZXgpfX1udWxsPT09KHQ9dGhpcy5fcmVuZGVyU2VydmljZSl8fHZvaWQgMD09PXR8fHQuc2V0Q29sb3JzKHRoaXMuX2NvbG9yTWFuYWdlci5jb2xvcnMpLG51bGw9PT0ocj10aGlzLnZpZXdwb3J0KXx8dm9pZCAwPT09cnx8ci5vblRoZW1lQ2hhbmdlKHRoaXMuX2NvbG9yTWFuYWdlci5jb2xvcnMpfX0sdC5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe3ZhciB0LHIsaTt0aGlzLl9pc0Rpc3Bvc2VkfHwoZS5wcm90b3R5cGUuZGlzcG9zZS5jYWxsKHRoaXMpLG51bGw9PT0odD10aGlzLl9yZW5kZXJTZXJ2aWNlKXx8dm9pZCAwPT09dHx8dC5kaXNwb3NlKCksdGhpcy5fY3VzdG9tS2V5RXZlbnRIYW5kbGVyPXZvaWQgMCx0aGlzLndyaXRlPWZ1bmN0aW9uKCl7fSxudWxsPT09KGk9bnVsbD09PShyPXRoaXMuZWxlbWVudCl8fHZvaWQgMD09PXI/dm9pZCAwOnIucGFyZW50Tm9kZSl8fHZvaWQgMD09PWl8fGkucmVtb3ZlQ2hpbGQodGhpcy5lbGVtZW50KSl9LHQucHJvdG90eXBlLl9zZXR1cD1mdW5jdGlvbigpe2UucHJvdG90eXBlLl9zZXR1cC5jYWxsKHRoaXMpLHRoaXMuX2N1c3RvbUtleUV2ZW50SGFuZGxlcj12b2lkIDB9LE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwiYnVmZmVyIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuYnVmZmVycy5hY3RpdmV9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksdC5wcm90b3R5cGUuZm9jdXM9ZnVuY3Rpb24oKXt0aGlzLnRleHRhcmVhJiZ0aGlzLnRleHRhcmVhLmZvY3VzKHtwcmV2ZW50U2Nyb2xsOiEwfSl9LHQucHJvdG90eXBlLl91cGRhdGVPcHRpb25zPWZ1bmN0aW9uKHQpe3ZhciByLGksbixvO3N3aXRjaChlLnByb3RvdHlwZS5fdXBkYXRlT3B0aW9ucy5jYWxsKHRoaXMsdCksdCl7Y2FzZSJmb250RmFtaWx5IjpjYXNlImZvbnRTaXplIjpudWxsPT09KHI9dGhpcy5fcmVuZGVyU2VydmljZSl8fHZvaWQgMD09PXJ8fHIuY2xlYXIoKSxudWxsPT09KGk9dGhpcy5fY2hhclNpemVTZXJ2aWNlKXx8dm9pZCAwPT09aXx8aS5tZWFzdXJlKCk7YnJlYWs7Y2FzZSJjdXJzb3JCbGluayI6Y2FzZSJjdXJzb3JTdHlsZSI6dGhpcy5yZWZyZXNoKHRoaXMuYnVmZmVyLnksdGhpcy5idWZmZXIueSk7YnJlYWs7Y2FzZSJjdXN0b21HbHlwaHMiOmNhc2UiZHJhd0JvbGRUZXh0SW5CcmlnaHRDb2xvcnMiOmNhc2UibGV0dGVyU3BhY2luZyI6Y2FzZSJsaW5lSGVpZ2h0IjpjYXNlImZvbnRXZWlnaHQiOmNhc2UiZm9udFdlaWdodEJvbGQiOmNhc2UibWluaW11bUNvbnRyYXN0UmF0aW8iOnRoaXMuX3JlbmRlclNlcnZpY2UmJih0aGlzLl9yZW5kZXJTZXJ2aWNlLmNsZWFyKCksdGhpcy5fcmVuZGVyU2VydmljZS5vblJlc2l6ZSh0aGlzLmNvbHMsdGhpcy5yb3dzKSx0aGlzLnJlZnJlc2goMCx0aGlzLnJvd3MtMSkpO2JyZWFrO2Nhc2UicmVuZGVyZXJUeXBlIjp0aGlzLl9yZW5kZXJTZXJ2aWNlJiYodGhpcy5fcmVuZGVyU2VydmljZS5zZXRSZW5kZXJlcih0aGlzLl9jcmVhdGVSZW5kZXJlcigpKSx0aGlzLl9yZW5kZXJTZXJ2aWNlLm9uUmVzaXplKHRoaXMuY29scyx0aGlzLnJvd3MpKTticmVhaztjYXNlInNjcm9sbGJhY2siOm51bGw9PT0obj10aGlzLnZpZXdwb3J0KXx8dm9pZCAwPT09bnx8bi5zeW5jU2Nyb2xsQXJlYSgpO2JyZWFrO2Nhc2Uic2NyZWVuUmVhZGVyTW9kZSI6dGhpcy5vcHRpb25zU2VydmljZS5vcHRpb25zLnNjcmVlblJlYWRlck1vZGU/IXRoaXMuX2FjY2Vzc2liaWxpdHlNYW5hZ2VyJiZ0aGlzLl9yZW5kZXJTZXJ2aWNlJiYodGhpcy5fYWNjZXNzaWJpbGl0eU1hbmFnZXI9bmV3IHkuQWNjZXNzaWJpbGl0eU1hbmFnZXIodGhpcyx0aGlzLl9yZW5kZXJTZXJ2aWNlKSk6KG51bGw9PT0obz10aGlzLl9hY2Nlc3NpYmlsaXR5TWFuYWdlcil8fHZvaWQgMD09PW98fG8uZGlzcG9zZSgpLHRoaXMuX2FjY2Vzc2liaWxpdHlNYW5hZ2VyPXZvaWQgMCk7YnJlYWs7Y2FzZSJ0YWJTdG9wV2lkdGgiOnRoaXMuYnVmZmVycy5zZXR1cFRhYlN0b3BzKCk7YnJlYWs7Y2FzZSJ0aGVtZSI6dGhpcy5fc2V0VGhlbWUodGhpcy5vcHRpb25zU2VydmljZS5vcHRpb25zLnRoZW1lKX19LHQucHJvdG90eXBlLl9vblRleHRBcmVhRm9jdXM9ZnVuY3Rpb24oZSl7dGhpcy5jb3JlU2VydmljZS5kZWNQcml2YXRlTW9kZXMuc2VuZEZvY3VzJiZ0aGlzLmNvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQoYy5DMC5FU0MrIltJIiksdGhpcy51cGRhdGVDdXJzb3JTdHlsZShlKSx0aGlzLmVsZW1lbnQuY2xhc3NMaXN0LmFkZCgiZm9jdXMiKSx0aGlzLl9zaG93Q3Vyc29yKCksdGhpcy5fb25Gb2N1cy5maXJlKCl9LHQucHJvdG90eXBlLmJsdXI9ZnVuY3Rpb24oKXt2YXIgZTtyZXR1cm4gbnVsbD09PShlPXRoaXMudGV4dGFyZWEpfHx2b2lkIDA9PT1lP3ZvaWQgMDplLmJsdXIoKX0sdC5wcm90b3R5cGUuX29uVGV4dEFyZWFCbHVyPWZ1bmN0aW9uKCl7dGhpcy50ZXh0YXJlYS52YWx1ZT0iIix0aGlzLnJlZnJlc2godGhpcy5idWZmZXIueSx0aGlzLmJ1ZmZlci55KSx0aGlzLmNvcmVTZXJ2aWNlLmRlY1ByaXZhdGVNb2Rlcy5zZW5kRm9jdXMmJnRoaXMuY29yZVNlcnZpY2UudHJpZ2dlckRhdGFFdmVudChjLkMwLkVTQysiW08iKSx0aGlzLmVsZW1lbnQuY2xhc3NMaXN0LnJlbW92ZSgiZm9jdXMiKSx0aGlzLl9vbkJsdXIuZmlyZSgpfSx0LnByb3RvdHlwZS5fc3luY1RleHRBcmVhPWZ1bmN0aW9uKCl7aWYodGhpcy50ZXh0YXJlYSYmdGhpcy5idWZmZXIuaXNDdXJzb3JJblZpZXdwb3J0JiYhdGhpcy5fY29tcG9zaXRpb25IZWxwZXIuaXNDb21wb3NpbmcmJnRoaXMuX3JlbmRlclNlcnZpY2Upe3ZhciBlPXRoaXMuYnVmZmVyLnliYXNlK3RoaXMuYnVmZmVyLnksdD10aGlzLmJ1ZmZlci5saW5lcy5nZXQoZSk7aWYodCl7dmFyIHI9TWF0aC5taW4odGhpcy5idWZmZXIueCx0aGlzLmNvbHMtMSksaT10aGlzLl9yZW5kZXJTZXJ2aWNlLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbEhlaWdodCxuPXQuZ2V0V2lkdGgociksbz10aGlzLl9yZW5kZXJTZXJ2aWNlLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbFdpZHRoKm4scz10aGlzLmJ1ZmZlci55KnRoaXMuX3JlbmRlclNlcnZpY2UuZGltZW5zaW9ucy5hY3R1YWxDZWxsSGVpZ2h0LGE9cip0aGlzLl9yZW5kZXJTZXJ2aWNlLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbFdpZHRoO3RoaXMudGV4dGFyZWEuc3R5bGUubGVmdD1hKyJweCIsdGhpcy50ZXh0YXJlYS5zdHlsZS50b3A9cysicHgiLHRoaXMudGV4dGFyZWEuc3R5bGUud2lkdGg9bysicHgiLHRoaXMudGV4dGFyZWEuc3R5bGUuaGVpZ2h0PWkrInB4Iix0aGlzLnRleHRhcmVhLnN0eWxlLmxpbmVIZWlnaHQ9aSsicHgiLHRoaXMudGV4dGFyZWEuc3R5bGUuekluZGV4PSItNSJ9fX0sdC5wcm90b3R5cGUuX2luaXRHbG9iYWw9ZnVuY3Rpb24oKXt2YXIgZT10aGlzO3RoaXMuX2JpbmRLZXlzKCksdGhpcy5yZWdpc3RlcigoMCxkLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikodGhpcy5lbGVtZW50LCJjb3B5IiwoZnVuY3Rpb24odCl7ZS5oYXNTZWxlY3Rpb24oKSYmKDAsYS5jb3B5SGFuZGxlcikodCxlLl9zZWxlY3Rpb25TZXJ2aWNlKX0pKSk7dmFyIHQ9ZnVuY3Rpb24odCl7cmV0dXJuKDAsYS5oYW5kbGVQYXN0ZUV2ZW50KSh0LGUudGV4dGFyZWEsZS5jb3JlU2VydmljZSl9O3RoaXMucmVnaXN0ZXIoKDAsZC5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHRoaXMudGV4dGFyZWEsInBhc3RlIix0KSksdGhpcy5yZWdpc3RlcigoMCxkLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikodGhpcy5lbGVtZW50LCJwYXN0ZSIsdCkpLF8uaXNGaXJlZm94P3RoaXMucmVnaXN0ZXIoKDAsZC5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHRoaXMuZWxlbWVudCwibW91c2Vkb3duIiwoZnVuY3Rpb24odCl7Mj09PXQuYnV0dG9uJiYoMCxhLnJpZ2h0Q2xpY2tIYW5kbGVyKSh0LGUudGV4dGFyZWEsZS5zY3JlZW5FbGVtZW50LGUuX3NlbGVjdGlvblNlcnZpY2UsZS5vcHRpb25zLnJpZ2h0Q2xpY2tTZWxlY3RzV29yZCl9KSkpOnRoaXMucmVnaXN0ZXIoKDAsZC5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHRoaXMuZWxlbWVudCwiY29udGV4dG1lbnUiLChmdW5jdGlvbih0KXsoMCxhLnJpZ2h0Q2xpY2tIYW5kbGVyKSh0LGUudGV4dGFyZWEsZS5zY3JlZW5FbGVtZW50LGUuX3NlbGVjdGlvblNlcnZpY2UsZS5vcHRpb25zLnJpZ2h0Q2xpY2tTZWxlY3RzV29yZCl9KSkpLF8uaXNMaW51eCYmdGhpcy5yZWdpc3RlcigoMCxkLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikodGhpcy5lbGVtZW50LCJhdXhjbGljayIsKGZ1bmN0aW9uKHQpezE9PT10LmJ1dHRvbiYmKDAsYS5tb3ZlVGV4dEFyZWFVbmRlck1vdXNlQ3Vyc29yKSh0LGUudGV4dGFyZWEsZS5zY3JlZW5FbGVtZW50KX0pKSl9LHQucHJvdG90eXBlLl9iaW5kS2V5cz1mdW5jdGlvbigpe3ZhciBlPXRoaXM7dGhpcy5yZWdpc3RlcigoMCxkLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikodGhpcy50ZXh0YXJlYSwia2V5dXAiLChmdW5jdGlvbih0KXtyZXR1cm4gZS5fa2V5VXAodCl9KSwhMCkpLHRoaXMucmVnaXN0ZXIoKDAsZC5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHRoaXMudGV4dGFyZWEsImtleWRvd24iLChmdW5jdGlvbih0KXtyZXR1cm4gZS5fa2V5RG93bih0KX0pLCEwKSksdGhpcy5yZWdpc3RlcigoMCxkLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikodGhpcy50ZXh0YXJlYSwia2V5cHJlc3MiLChmdW5jdGlvbih0KXtyZXR1cm4gZS5fa2V5UHJlc3ModCl9KSwhMCkpLHRoaXMucmVnaXN0ZXIoKDAsZC5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHRoaXMudGV4dGFyZWEsImNvbXBvc2l0aW9uc3RhcnQiLChmdW5jdGlvbigpe3JldHVybiBlLl9jb21wb3NpdGlvbkhlbHBlci5jb21wb3NpdGlvbnN0YXJ0KCl9KSkpLHRoaXMucmVnaXN0ZXIoKDAsZC5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHRoaXMudGV4dGFyZWEsImNvbXBvc2l0aW9udXBkYXRlIiwoZnVuY3Rpb24odCl7cmV0dXJuIGUuX2NvbXBvc2l0aW9uSGVscGVyLmNvbXBvc2l0aW9udXBkYXRlKHQpfSkpKSx0aGlzLnJlZ2lzdGVyKCgwLGQuYWRkRGlzcG9zYWJsZURvbUxpc3RlbmVyKSh0aGlzLnRleHRhcmVhLCJjb21wb3NpdGlvbmVuZCIsKGZ1bmN0aW9uKCl7cmV0dXJuIGUuX2NvbXBvc2l0aW9uSGVscGVyLmNvbXBvc2l0aW9uZW5kKCl9KSkpLHRoaXMucmVnaXN0ZXIoKDAsZC5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHRoaXMudGV4dGFyZWEsImlucHV0IiwoZnVuY3Rpb24odCl7cmV0dXJuIGUuX2lucHV0RXZlbnQodCl9KSwhMCkpLHRoaXMucmVnaXN0ZXIodGhpcy5vblJlbmRlcigoZnVuY3Rpb24oKXtyZXR1cm4gZS5fY29tcG9zaXRpb25IZWxwZXIudXBkYXRlQ29tcG9zaXRpb25FbGVtZW50cygpfSkpKSx0aGlzLnJlZ2lzdGVyKHRoaXMub25SZW5kZXIoKGZ1bmN0aW9uKHQpe3JldHVybiBlLl9xdWV1ZUxpbmtpZmljYXRpb24odC5zdGFydCx0LmVuZCl9KSkpfSx0LnByb3RvdHlwZS5vcGVuPWZ1bmN0aW9uKGUpe3ZhciB0PXRoaXM7aWYoIWUpdGhyb3cgbmV3IEVycm9yKCJUZXJtaW5hbCByZXF1aXJlcyBhIHBhcmVudCBlbGVtZW50LiIpO2UuaXNDb25uZWN0ZWR8fHRoaXMuX2xvZ1NlcnZpY2UuZGVidWcoIlRlcm1pbmFsLm9wZW4gd2FzIGNhbGxlZCBvbiBhbiBlbGVtZW50IHRoYXQgd2FzIG5vdCBhdHRhY2hlZCB0byB0aGUgRE9NIiksdGhpcy5fZG9jdW1lbnQ9ZS5vd25lckRvY3VtZW50LHRoaXMuZWxlbWVudD10aGlzLl9kb2N1bWVudC5jcmVhdGVFbGVtZW50KCJkaXYiKSx0aGlzLmVsZW1lbnQuZGlyPSJsdHIiLHRoaXMuZWxlbWVudC5jbGFzc0xpc3QuYWRkKCJ0ZXJtaW5hbCIpLHRoaXMuZWxlbWVudC5jbGFzc0xpc3QuYWRkKCJ4dGVybSIpLHRoaXMuZWxlbWVudC5zZXRBdHRyaWJ1dGUoInRhYmluZGV4IiwiMCIpLGUuYXBwZW5kQ2hpbGQodGhpcy5lbGVtZW50KTt2YXIgcj1ELmNyZWF0ZURvY3VtZW50RnJhZ21lbnQoKTt0aGlzLl92aWV3cG9ydEVsZW1lbnQ9RC5jcmVhdGVFbGVtZW50KCJkaXYiKSx0aGlzLl92aWV3cG9ydEVsZW1lbnQuY2xhc3NMaXN0LmFkZCgieHRlcm0tdmlld3BvcnQiKSxyLmFwcGVuZENoaWxkKHRoaXMuX3ZpZXdwb3J0RWxlbWVudCksdGhpcy5fdmlld3BvcnRTY3JvbGxBcmVhPUQuY3JlYXRlRWxlbWVudCgiZGl2IiksdGhpcy5fdmlld3BvcnRTY3JvbGxBcmVhLmNsYXNzTGlzdC5hZGQoInh0ZXJtLXNjcm9sbC1hcmVhIiksdGhpcy5fdmlld3BvcnRFbGVtZW50LmFwcGVuZENoaWxkKHRoaXMuX3ZpZXdwb3J0U2Nyb2xsQXJlYSksdGhpcy5zY3JlZW5FbGVtZW50PUQuY3JlYXRlRWxlbWVudCgiZGl2IiksdGhpcy5zY3JlZW5FbGVtZW50LmNsYXNzTGlzdC5hZGQoInh0ZXJtLXNjcmVlbiIpLHRoaXMuX2hlbHBlckNvbnRhaW5lcj1ELmNyZWF0ZUVsZW1lbnQoImRpdiIpLHRoaXMuX2hlbHBlckNvbnRhaW5lci5jbGFzc0xpc3QuYWRkKCJ4dGVybS1oZWxwZXJzIiksdGhpcy5zY3JlZW5FbGVtZW50LmFwcGVuZENoaWxkKHRoaXMuX2hlbHBlckNvbnRhaW5lciksci5hcHBlbmRDaGlsZCh0aGlzLnNjcmVlbkVsZW1lbnQpLHRoaXMudGV4dGFyZWE9RC5jcmVhdGVFbGVtZW50KCJ0ZXh0YXJlYSIpLHRoaXMudGV4dGFyZWEuY2xhc3NMaXN0LmFkZCgieHRlcm0taGVscGVyLXRleHRhcmVhIiksdGhpcy50ZXh0YXJlYS5zZXRBdHRyaWJ1dGUoImFyaWEtbGFiZWwiLHAucHJvbXB0TGFiZWwpLHRoaXMudGV4dGFyZWEuc2V0QXR0cmlidXRlKCJhcmlhLW11bHRpbGluZSIsImZhbHNlIiksdGhpcy50ZXh0YXJlYS5zZXRBdHRyaWJ1dGUoImF1dG9jb3JyZWN0Iiwib2ZmIiksdGhpcy50ZXh0YXJlYS5zZXRBdHRyaWJ1dGUoImF1dG9jYXBpdGFsaXplIiwib2ZmIiksdGhpcy50ZXh0YXJlYS5zZXRBdHRyaWJ1dGUoInNwZWxsY2hlY2siLCJmYWxzZSIpLHRoaXMudGV4dGFyZWEudGFiSW5kZXg9MCx0aGlzLnJlZ2lzdGVyKCgwLGQuYWRkRGlzcG9zYWJsZURvbUxpc3RlbmVyKSh0aGlzLnRleHRhcmVhLCJmb2N1cyIsKGZ1bmN0aW9uKGUpe3JldHVybiB0Ll9vblRleHRBcmVhRm9jdXMoZSl9KSkpLHRoaXMucmVnaXN0ZXIoKDAsZC5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHRoaXMudGV4dGFyZWEsImJsdXIiLChmdW5jdGlvbigpe3JldHVybiB0Ll9vblRleHRBcmVhQmx1cigpfSkpKSx0aGlzLl9oZWxwZXJDb250YWluZXIuYXBwZW5kQ2hpbGQodGhpcy50ZXh0YXJlYSk7dmFyIGk9dGhpcy5faW5zdGFudGlhdGlvblNlcnZpY2UuY3JlYXRlSW5zdGFuY2UoTS5Db3JlQnJvd3NlclNlcnZpY2UsdGhpcy50ZXh0YXJlYSk7dGhpcy5faW5zdGFudGlhdGlvblNlcnZpY2Uuc2V0U2VydmljZShFLklDb3JlQnJvd3NlclNlcnZpY2UsaSksdGhpcy5fY2hhclNpemVTZXJ2aWNlPXRoaXMuX2luc3RhbnRpYXRpb25TZXJ2aWNlLmNyZWF0ZUluc3RhbmNlKHguQ2hhclNpemVTZXJ2aWNlLHRoaXMuX2RvY3VtZW50LHRoaXMuX2hlbHBlckNvbnRhaW5lciksdGhpcy5faW5zdGFudGlhdGlvblNlcnZpY2Uuc2V0U2VydmljZShFLklDaGFyU2l6ZVNlcnZpY2UsdGhpcy5fY2hhclNpemVTZXJ2aWNlKSx0aGlzLl90aGVtZT10aGlzLm9wdGlvbnMudGhlbWV8fHRoaXMuX3RoZW1lLHRoaXMuX2NvbG9yTWFuYWdlcj1uZXcgdy5Db2xvck1hbmFnZXIoRCx0aGlzLm9wdGlvbnMuYWxsb3dUcmFuc3BhcmVuY3kpLHRoaXMucmVnaXN0ZXIodGhpcy5vcHRpb25zU2VydmljZS5vbk9wdGlvbkNoYW5nZSgoZnVuY3Rpb24oZSl7cmV0dXJuIHQuX2NvbG9yTWFuYWdlci5vbk9wdGlvbnNDaGFuZ2UoZSl9KSkpLHRoaXMuX2NvbG9yTWFuYWdlci5zZXRUaGVtZSh0aGlzLl90aGVtZSksdGhpcy5fY2hhcmFjdGVySm9pbmVyU2VydmljZT10aGlzLl9pbnN0YW50aWF0aW9uU2VydmljZS5jcmVhdGVJbnN0YW5jZShPLkNoYXJhY3RlckpvaW5lclNlcnZpY2UpLHRoaXMuX2luc3RhbnRpYXRpb25TZXJ2aWNlLnNldFNlcnZpY2UoRS5JQ2hhcmFjdGVySm9pbmVyU2VydmljZSx0aGlzLl9jaGFyYWN0ZXJKb2luZXJTZXJ2aWNlKTt2YXIgbj10aGlzLl9jcmVhdGVSZW5kZXJlcigpO3RoaXMuX3JlbmRlclNlcnZpY2U9dGhpcy5yZWdpc3Rlcih0aGlzLl9pbnN0YW50aWF0aW9uU2VydmljZS5jcmVhdGVJbnN0YW5jZShMLlJlbmRlclNlcnZpY2Usbix0aGlzLnJvd3MsdGhpcy5zY3JlZW5FbGVtZW50KSksdGhpcy5faW5zdGFudGlhdGlvblNlcnZpY2Uuc2V0U2VydmljZShFLklSZW5kZXJTZXJ2aWNlLHRoaXMuX3JlbmRlclNlcnZpY2UpLHRoaXMucmVnaXN0ZXIodGhpcy5fcmVuZGVyU2VydmljZS5vblJlbmRlcmVkQnVmZmVyQ2hhbmdlKChmdW5jdGlvbihlKXtyZXR1cm4gdC5fb25SZW5kZXIuZmlyZShlKX0pKSksdGhpcy5vblJlc2l6ZSgoZnVuY3Rpb24oZSl7cmV0dXJuIHQuX3JlbmRlclNlcnZpY2UucmVzaXplKGUuY29scyxlLnJvd3MpfSkpLHRoaXMuX2NvbXBvc2l0aW9uVmlldz1ELmNyZWF0ZUVsZW1lbnQoImRpdiIpLHRoaXMuX2NvbXBvc2l0aW9uVmlldy5jbGFzc0xpc3QuYWRkKCJjb21wb3NpdGlvbi12aWV3IiksdGhpcy5fY29tcG9zaXRpb25IZWxwZXI9dGhpcy5faW5zdGFudGlhdGlvblNlcnZpY2UuY3JlYXRlSW5zdGFuY2Uoby5Db21wb3NpdGlvbkhlbHBlcix0aGlzLnRleHRhcmVhLHRoaXMuX2NvbXBvc2l0aW9uVmlldyksdGhpcy5faGVscGVyQ29udGFpbmVyLmFwcGVuZENoaWxkKHRoaXMuX2NvbXBvc2l0aW9uVmlldyksdGhpcy5lbGVtZW50LmFwcGVuZENoaWxkKHIpLHRoaXMuX3NvdW5kU2VydmljZT10aGlzLl9pbnN0YW50aWF0aW9uU2VydmljZS5jcmVhdGVJbnN0YW5jZSh2LlNvdW5kU2VydmljZSksdGhpcy5faW5zdGFudGlhdGlvblNlcnZpY2Uuc2V0U2VydmljZShFLklTb3VuZFNlcnZpY2UsdGhpcy5fc291bmRTZXJ2aWNlKSx0aGlzLl9tb3VzZVNlcnZpY2U9dGhpcy5faW5zdGFudGlhdGlvblNlcnZpY2UuY3JlYXRlSW5zdGFuY2UoQS5Nb3VzZVNlcnZpY2UpLHRoaXMuX2luc3RhbnRpYXRpb25TZXJ2aWNlLnNldFNlcnZpY2UoRS5JTW91c2VTZXJ2aWNlLHRoaXMuX21vdXNlU2VydmljZSksdGhpcy52aWV3cG9ydD10aGlzLl9pbnN0YW50aWF0aW9uU2VydmljZS5jcmVhdGVJbnN0YW5jZShzLlZpZXdwb3J0LChmdW5jdGlvbihlKXtyZXR1cm4gdC5zY3JvbGxMaW5lcyhlLCEwLDEpfSksdGhpcy5fdmlld3BvcnRFbGVtZW50LHRoaXMuX3ZpZXdwb3J0U2Nyb2xsQXJlYSx0aGlzLmVsZW1lbnQpLHRoaXMudmlld3BvcnQub25UaGVtZUNoYW5nZSh0aGlzLl9jb2xvck1hbmFnZXIuY29sb3JzKSx0aGlzLnJlZ2lzdGVyKHRoaXMuX2lucHV0SGFuZGxlci5vblJlcXVlc3RTeW5jU2Nyb2xsQmFyKChmdW5jdGlvbigpe3JldHVybiB0LnZpZXdwb3J0LnN5bmNTY3JvbGxBcmVhKCl9KSkpLHRoaXMucmVnaXN0ZXIodGhpcy52aWV3cG9ydCksdGhpcy5yZWdpc3Rlcih0aGlzLm9uQ3Vyc29yTW92ZSgoZnVuY3Rpb24oKXt0Ll9yZW5kZXJTZXJ2aWNlLm9uQ3Vyc29yTW92ZSgpLHQuX3N5bmNUZXh0QXJlYSgpfSkpKSx0aGlzLnJlZ2lzdGVyKHRoaXMub25SZXNpemUoKGZ1bmN0aW9uKCl7cmV0dXJuIHQuX3JlbmRlclNlcnZpY2Uub25SZXNpemUodC5jb2xzLHQucm93cyl9KSkpLHRoaXMucmVnaXN0ZXIodGhpcy5vbkJsdXIoKGZ1bmN0aW9uKCl7cmV0dXJuIHQuX3JlbmRlclNlcnZpY2Uub25CbHVyKCl9KSkpLHRoaXMucmVnaXN0ZXIodGhpcy5vbkZvY3VzKChmdW5jdGlvbigpe3JldHVybiB0Ll9yZW5kZXJTZXJ2aWNlLm9uRm9jdXMoKX0pKSksdGhpcy5yZWdpc3Rlcih0aGlzLl9yZW5kZXJTZXJ2aWNlLm9uRGltZW5zaW9uc0NoYW5nZSgoZnVuY3Rpb24oKXtyZXR1cm4gdC52aWV3cG9ydC5zeW5jU2Nyb2xsQXJlYSgpfSkpKSx0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlPXRoaXMucmVnaXN0ZXIodGhpcy5faW5zdGFudGlhdGlvblNlcnZpY2UuY3JlYXRlSW5zdGFuY2UoZi5TZWxlY3Rpb25TZXJ2aWNlLHRoaXMuZWxlbWVudCx0aGlzLnNjcmVlbkVsZW1lbnQsdGhpcy5saW5raWZpZXIyKSksdGhpcy5faW5zdGFudGlhdGlvblNlcnZpY2Uuc2V0U2VydmljZShFLklTZWxlY3Rpb25TZXJ2aWNlLHRoaXMuX3NlbGVjdGlvblNlcnZpY2UpLHRoaXMucmVnaXN0ZXIodGhpcy5fc2VsZWN0aW9uU2VydmljZS5vblJlcXVlc3RTY3JvbGxMaW5lcygoZnVuY3Rpb24oZSl7cmV0dXJuIHQuc2Nyb2xsTGluZXMoZS5hbW91bnQsZS5zdXBwcmVzc1Njcm9sbEV2ZW50KX0pKSksdGhpcy5yZWdpc3Rlcih0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlLm9uU2VsZWN0aW9uQ2hhbmdlKChmdW5jdGlvbigpe3JldHVybiB0Ll9vblNlbGVjdGlvbkNoYW5nZS5maXJlKCl9KSkpLHRoaXMucmVnaXN0ZXIodGhpcy5fc2VsZWN0aW9uU2VydmljZS5vblJlcXVlc3RSZWRyYXcoKGZ1bmN0aW9uKGUpe3JldHVybiB0Ll9yZW5kZXJTZXJ2aWNlLm9uU2VsZWN0aW9uQ2hhbmdlZChlLnN0YXJ0LGUuZW5kLGUuY29sdW1uU2VsZWN0TW9kZSl9KSkpLHRoaXMucmVnaXN0ZXIodGhpcy5fc2VsZWN0aW9uU2VydmljZS5vbkxpbnV4TW91c2VTZWxlY3Rpb24oKGZ1bmN0aW9uKGUpe3QudGV4dGFyZWEudmFsdWU9ZSx0LnRleHRhcmVhLmZvY3VzKCksdC50ZXh0YXJlYS5zZWxlY3QoKX0pKSksdGhpcy5yZWdpc3Rlcih0aGlzLl9vblNjcm9sbC5ldmVudCgoZnVuY3Rpb24oZSl7dC52aWV3cG9ydC5zeW5jU2Nyb2xsQXJlYSgpLHQuX3NlbGVjdGlvblNlcnZpY2UucmVmcmVzaCgpfSkpKSx0aGlzLnJlZ2lzdGVyKCgwLGQuYWRkRGlzcG9zYWJsZURvbUxpc3RlbmVyKSh0aGlzLl92aWV3cG9ydEVsZW1lbnQsInNjcm9sbCIsKGZ1bmN0aW9uKCl7cmV0dXJuIHQuX3NlbGVjdGlvblNlcnZpY2UucmVmcmVzaCgpfSkpKSx0aGlzLl9tb3VzZVpvbmVNYW5hZ2VyPXRoaXMuX2luc3RhbnRpYXRpb25TZXJ2aWNlLmNyZWF0ZUluc3RhbmNlKGcuTW91c2Vab25lTWFuYWdlcix0aGlzLmVsZW1lbnQsdGhpcy5zY3JlZW5FbGVtZW50KSx0aGlzLnJlZ2lzdGVyKHRoaXMuX21vdXNlWm9uZU1hbmFnZXIpLHRoaXMucmVnaXN0ZXIodGhpcy5vblNjcm9sbCgoZnVuY3Rpb24oKXtyZXR1cm4gdC5fbW91c2Vab25lTWFuYWdlci5jbGVhckFsbCgpfSkpKSx0aGlzLmxpbmtpZmllci5hdHRhY2hUb0RvbSh0aGlzLmVsZW1lbnQsdGhpcy5fbW91c2Vab25lTWFuYWdlciksdGhpcy5saW5raWZpZXIyLmF0dGFjaFRvRG9tKHRoaXMuc2NyZWVuRWxlbWVudCx0aGlzLl9tb3VzZVNlcnZpY2UsdGhpcy5fcmVuZGVyU2VydmljZSksdGhpcy5yZWdpc3RlcigoMCxkLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikodGhpcy5lbGVtZW50LCJtb3VzZWRvd24iLChmdW5jdGlvbihlKXtyZXR1cm4gdC5fc2VsZWN0aW9uU2VydmljZS5vbk1vdXNlRG93bihlKX0pKSksdGhpcy5jb3JlTW91c2VTZXJ2aWNlLmFyZU1vdXNlRXZlbnRzQWN0aXZlPyh0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlLmRpc2FibGUoKSx0aGlzLmVsZW1lbnQuY2xhc3NMaXN0LmFkZCgiZW5hYmxlLW1vdXNlLWV2ZW50cyIpKTp0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlLmVuYWJsZSgpLHRoaXMub3B0aW9ucy5zY3JlZW5SZWFkZXJNb2RlJiYodGhpcy5fYWNjZXNzaWJpbGl0eU1hbmFnZXI9bmV3IHkuQWNjZXNzaWJpbGl0eU1hbmFnZXIodGhpcyx0aGlzLl9yZW5kZXJTZXJ2aWNlKSksdGhpcy5fY2hhclNpemVTZXJ2aWNlLm1lYXN1cmUoKSx0aGlzLnJlZnJlc2goMCx0aGlzLnJvd3MtMSksdGhpcy5faW5pdEdsb2JhbCgpLHRoaXMuYmluZE1vdXNlKCl9LHQucHJvdG90eXBlLl9jcmVhdGVSZW5kZXJlcj1mdW5jdGlvbigpe3N3aXRjaCh0aGlzLm9wdGlvbnMucmVuZGVyZXJUeXBlKXtjYXNlImNhbnZhcyI6cmV0dXJuIHRoaXMuX2luc3RhbnRpYXRpb25TZXJ2aWNlLmNyZWF0ZUluc3RhbmNlKHUuUmVuZGVyZXIsdGhpcy5fY29sb3JNYW5hZ2VyLmNvbG9ycyx0aGlzLnNjcmVlbkVsZW1lbnQsdGhpcy5saW5raWZpZXIsdGhpcy5saW5raWZpZXIyKTtjYXNlImRvbSI6cmV0dXJuIHRoaXMuX2luc3RhbnRpYXRpb25TZXJ2aWNlLmNyZWF0ZUluc3RhbmNlKG0uRG9tUmVuZGVyZXIsdGhpcy5fY29sb3JNYW5hZ2VyLmNvbG9ycyx0aGlzLmVsZW1lbnQsdGhpcy5zY3JlZW5FbGVtZW50LHRoaXMuX3ZpZXdwb3J0RWxlbWVudCx0aGlzLmxpbmtpZmllcix0aGlzLmxpbmtpZmllcjIpO2RlZmF1bHQ6dGhyb3cgbmV3IEVycm9yKCdVbnJlY29nbml6ZWQgcmVuZGVyZXJUeXBlICInK3RoaXMub3B0aW9ucy5yZW5kZXJlclR5cGUrJyInKX19LHQucHJvdG90eXBlLl9zZXRUaGVtZT1mdW5jdGlvbihlKXt2YXIgdCxyLGk7dGhpcy5fdGhlbWU9ZSxudWxsPT09KHQ9dGhpcy5fY29sb3JNYW5hZ2VyKXx8dm9pZCAwPT09dHx8dC5zZXRUaGVtZShlKSxudWxsPT09KHI9dGhpcy5fcmVuZGVyU2VydmljZSl8fHZvaWQgMD09PXJ8fHIuc2V0Q29sb3JzKHRoaXMuX2NvbG9yTWFuYWdlci5jb2xvcnMpLG51bGw9PT0oaT10aGlzLnZpZXdwb3J0KXx8dm9pZCAwPT09aXx8aS5vblRoZW1lQ2hhbmdlKHRoaXMuX2NvbG9yTWFuYWdlci5jb2xvcnMpfSx0LnByb3RvdHlwZS5iaW5kTW91c2U9ZnVuY3Rpb24oKXt2YXIgZT10aGlzLHQ9dGhpcyxyPXRoaXMuZWxlbWVudDtmdW5jdGlvbiBpKGUpe3ZhciByLGksbj10Ll9tb3VzZVNlcnZpY2UuZ2V0UmF3Qnl0ZUNvb3JkcyhlLHQuc2NyZWVuRWxlbWVudCx0LmNvbHMsdC5yb3dzKTtpZighbilyZXR1cm4hMTtzd2l0Y2goZS5vdmVycmlkZVR5cGV8fGUudHlwZSl7Y2FzZSJtb3VzZW1vdmUiOmk9MzIsdm9pZCAwPT09ZS5idXR0b25zPyhyPTMsdm9pZCAwIT09ZS5idXR0b24mJihyPWUuYnV0dG9uPDM/ZS5idXR0b246MykpOnI9MSZlLmJ1dHRvbnM/MDo0JmUuYnV0dG9ucz8xOjImZS5idXR0b25zPzI6MzticmVhaztjYXNlIm1vdXNldXAiOmk9MCxyPWUuYnV0dG9uPDM/ZS5idXR0b246MzticmVhaztjYXNlIm1vdXNlZG93biI6aT0xLHI9ZS5idXR0b248Mz9lLmJ1dHRvbjozO2JyZWFrO2Nhc2Uid2hlZWwiOjAhPT1lLmRlbHRhWSYmKGk9ZS5kZWx0YVk8MD8wOjEpLHI9NDticmVhaztkZWZhdWx0OnJldHVybiExfXJldHVybiEodm9pZCAwPT09aXx8dm9pZCAwPT09cnx8cj40KSYmdC5jb3JlTW91c2VTZXJ2aWNlLnRyaWdnZXJNb3VzZUV2ZW50KHtjb2w6bi54LTMzLHJvdzpuLnktMzMsYnV0dG9uOnIsYWN0aW9uOmksY3RybDplLmN0cmxLZXksYWx0OmUuYWx0S2V5LHNoaWZ0OmUuc2hpZnRLZXl9KX12YXIgbj17bW91c2V1cDpudWxsLHdoZWVsOm51bGwsbW91c2VkcmFnOm51bGwsbW91c2Vtb3ZlOm51bGx9LG89ZnVuY3Rpb24odCl7cmV0dXJuIGkodCksdC5idXR0b25zfHwoZS5fZG9jdW1lbnQucmVtb3ZlRXZlbnRMaXN0ZW5lcigibW91c2V1cCIsbi5tb3VzZXVwKSxuLm1vdXNlZHJhZyYmZS5fZG9jdW1lbnQucmVtb3ZlRXZlbnRMaXN0ZW5lcigibW91c2Vtb3ZlIixuLm1vdXNlZHJhZykpLGUuY2FuY2VsKHQpfSxzPWZ1bmN0aW9uKHQpe3JldHVybiBpKHQpLGUuY2FuY2VsKHQsITApfSxhPWZ1bmN0aW9uKGUpe2UuYnV0dG9ucyYmaShlKX0sbD1mdW5jdGlvbihlKXtlLmJ1dHRvbnN8fGkoZSl9O3RoaXMucmVnaXN0ZXIodGhpcy5jb3JlTW91c2VTZXJ2aWNlLm9uUHJvdG9jb2xDaGFuZ2UoKGZ1bmN0aW9uKHQpe3Q/KCJkZWJ1ZyI9PT1lLm9wdGlvbnNTZXJ2aWNlLm9wdGlvbnMubG9nTGV2ZWwmJmUuX2xvZ1NlcnZpY2UuZGVidWcoIkJpbmRpbmcgdG8gbW91c2UgZXZlbnRzOiIsZS5jb3JlTW91c2VTZXJ2aWNlLmV4cGxhaW5FdmVudHModCkpLGUuZWxlbWVudC5jbGFzc0xpc3QuYWRkKCJlbmFibGUtbW91c2UtZXZlbnRzIiksZS5fc2VsZWN0aW9uU2VydmljZS5kaXNhYmxlKCkpOihlLl9sb2dTZXJ2aWNlLmRlYnVnKCJVbmJpbmRpbmcgZnJvbSBtb3VzZSBldmVudHMuIiksZS5lbGVtZW50LmNsYXNzTGlzdC5yZW1vdmUoImVuYWJsZS1tb3VzZS1ldmVudHMiKSxlLl9zZWxlY3Rpb25TZXJ2aWNlLmVuYWJsZSgpKSw4JnQ/bi5tb3VzZW1vdmV8fChyLmFkZEV2ZW50TGlzdGVuZXIoIm1vdXNlbW92ZSIsbCksbi5tb3VzZW1vdmU9bCk6KHIucmVtb3ZlRXZlbnRMaXN0ZW5lcigibW91c2Vtb3ZlIixuLm1vdXNlbW92ZSksbi5tb3VzZW1vdmU9bnVsbCksMTYmdD9uLndoZWVsfHwoci5hZGRFdmVudExpc3RlbmVyKCJ3aGVlbCIscyx7cGFzc2l2ZTohMX0pLG4ud2hlZWw9cyk6KHIucmVtb3ZlRXZlbnRMaXN0ZW5lcigid2hlZWwiLG4ud2hlZWwpLG4ud2hlZWw9bnVsbCksMiZ0P24ubW91c2V1cHx8KG4ubW91c2V1cD1vKTooZS5fZG9jdW1lbnQucmVtb3ZlRXZlbnRMaXN0ZW5lcigibW91c2V1cCIsbi5tb3VzZXVwKSxuLm1vdXNldXA9bnVsbCksNCZ0P24ubW91c2VkcmFnfHwobi5tb3VzZWRyYWc9YSk6KGUuX2RvY3VtZW50LnJlbW92ZUV2ZW50TGlzdGVuZXIoIm1vdXNlbW92ZSIsbi5tb3VzZWRyYWcpLG4ubW91c2VkcmFnPW51bGwpfSkpKSx0aGlzLmNvcmVNb3VzZVNlcnZpY2UuYWN0aXZlUHJvdG9jb2w9dGhpcy5jb3JlTW91c2VTZXJ2aWNlLmFjdGl2ZVByb3RvY29sLHRoaXMucmVnaXN0ZXIoKDAsZC5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHIsIm1vdXNlZG93biIsKGZ1bmN0aW9uKHQpe2lmKHQucHJldmVudERlZmF1bHQoKSxlLmZvY3VzKCksZS5jb3JlTW91c2VTZXJ2aWNlLmFyZU1vdXNlRXZlbnRzQWN0aXZlJiYhZS5fc2VsZWN0aW9uU2VydmljZS5zaG91bGRGb3JjZVNlbGVjdGlvbih0KSlyZXR1cm4gaSh0KSxuLm1vdXNldXAmJmUuX2RvY3VtZW50LmFkZEV2ZW50TGlzdGVuZXIoIm1vdXNldXAiLG4ubW91c2V1cCksbi5tb3VzZWRyYWcmJmUuX2RvY3VtZW50LmFkZEV2ZW50TGlzdGVuZXIoIm1vdXNlbW92ZSIsbi5tb3VzZWRyYWcpLGUuY2FuY2VsKHQpfSkpKSx0aGlzLnJlZ2lzdGVyKCgwLGQuYWRkRGlzcG9zYWJsZURvbUxpc3RlbmVyKShyLCJ3aGVlbCIsKGZ1bmN0aW9uKHQpe2lmKCFuLndoZWVsKXtpZighZS5idWZmZXIuaGFzU2Nyb2xsYmFjayl7dmFyIHI9ZS52aWV3cG9ydC5nZXRMaW5lc1Njcm9sbGVkKHQpO2lmKDA9PT1yKXJldHVybjtmb3IodmFyIGk9Yy5DMC5FU0MrKGUuY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLmFwcGxpY2F0aW9uQ3Vyc29yS2V5cz8iTyI6IlsiKSsodC5kZWx0YVk8MD8iQSI6IkIiKSxvPSIiLHM9MDtzPE1hdGguYWJzKHIpO3MrKylvKz1pO3JldHVybiBlLmNvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQobywhMCksZS5jYW5jZWwodCwhMCl9cmV0dXJuIGUudmlld3BvcnQub25XaGVlbCh0KT9lLmNhbmNlbCh0KTp2b2lkIDB9fSkse3Bhc3NpdmU6ITF9KSksdGhpcy5yZWdpc3RlcigoMCxkLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikociwidG91Y2hzdGFydCIsKGZ1bmN0aW9uKHQpe2lmKCFlLmNvcmVNb3VzZVNlcnZpY2UuYXJlTW91c2VFdmVudHNBY3RpdmUpcmV0dXJuIGUudmlld3BvcnQub25Ub3VjaFN0YXJ0KHQpLGUuY2FuY2VsKHQpfSkse3Bhc3NpdmU6ITB9KSksdGhpcy5yZWdpc3RlcigoMCxkLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikociwidG91Y2htb3ZlIiwoZnVuY3Rpb24odCl7aWYoIWUuY29yZU1vdXNlU2VydmljZS5hcmVNb3VzZUV2ZW50c0FjdGl2ZSlyZXR1cm4gZS52aWV3cG9ydC5vblRvdWNoTW92ZSh0KT92b2lkIDA6ZS5jYW5jZWwodCl9KSx7cGFzc2l2ZTohMX0pKX0sdC5wcm90b3R5cGUucmVmcmVzaD1mdW5jdGlvbihlLHQpe3ZhciByO251bGw9PT0ocj10aGlzLl9yZW5kZXJTZXJ2aWNlKXx8dm9pZCAwPT09cnx8ci5yZWZyZXNoUm93cyhlLHQpfSx0LnByb3RvdHlwZS5fcXVldWVMaW5raWZpY2F0aW9uPWZ1bmN0aW9uKGUsdCl7dmFyIHI7bnVsbD09PShyPXRoaXMubGlua2lmaWVyKXx8dm9pZCAwPT09cnx8ci5saW5raWZ5Um93cyhlLHQpfSx0LnByb3RvdHlwZS51cGRhdGVDdXJzb3JTdHlsZT1mdW5jdGlvbihlKXt2YXIgdDsobnVsbD09PSh0PXRoaXMuX3NlbGVjdGlvblNlcnZpY2UpfHx2b2lkIDA9PT10P3ZvaWQgMDp0LnNob3VsZENvbHVtblNlbGVjdChlKSk/dGhpcy5lbGVtZW50LmNsYXNzTGlzdC5hZGQoImNvbHVtbi1zZWxlY3QiKTp0aGlzLmVsZW1lbnQuY2xhc3NMaXN0LnJlbW92ZSgiY29sdW1uLXNlbGVjdCIpfSx0LnByb3RvdHlwZS5fc2hvd0N1cnNvcj1mdW5jdGlvbigpe3RoaXMuY29yZVNlcnZpY2UuaXNDdXJzb3JJbml0aWFsaXplZHx8KHRoaXMuY29yZVNlcnZpY2UuaXNDdXJzb3JJbml0aWFsaXplZD0hMCx0aGlzLnJlZnJlc2godGhpcy5idWZmZXIueSx0aGlzLmJ1ZmZlci55KSl9LHQucHJvdG90eXBlLnNjcm9sbExpbmVzPWZ1bmN0aW9uKHQscixpKXt2b2lkIDA9PT1pJiYoaT0wKSxlLnByb3RvdHlwZS5zY3JvbGxMaW5lcy5jYWxsKHRoaXMsdCxyLGkpLHRoaXMucmVmcmVzaCgwLHRoaXMucm93cy0xKX0sdC5wcm90b3R5cGUucGFzdGU9ZnVuY3Rpb24oZSl7KDAsYS5wYXN0ZSkoZSx0aGlzLnRleHRhcmVhLHRoaXMuY29yZVNlcnZpY2UpfSx0LnByb3RvdHlwZS5hdHRhY2hDdXN0b21LZXlFdmVudEhhbmRsZXI9ZnVuY3Rpb24oZSl7dGhpcy5fY3VzdG9tS2V5RXZlbnRIYW5kbGVyPWV9LHQucHJvdG90eXBlLnJlZ2lzdGVyTGlua01hdGNoZXI9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPXRoaXMubGlua2lmaWVyLnJlZ2lzdGVyTGlua01hdGNoZXIoZSx0LHIpO3JldHVybiB0aGlzLnJlZnJlc2goMCx0aGlzLnJvd3MtMSksaX0sdC5wcm90b3R5cGUuZGVyZWdpc3RlckxpbmtNYXRjaGVyPWZ1bmN0aW9uKGUpe3RoaXMubGlua2lmaWVyLmRlcmVnaXN0ZXJMaW5rTWF0Y2hlcihlKSYmdGhpcy5yZWZyZXNoKDAsdGhpcy5yb3dzLTEpfSx0LnByb3RvdHlwZS5yZWdpc3RlckxpbmtQcm92aWRlcj1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5saW5raWZpZXIyLnJlZ2lzdGVyTGlua1Byb3ZpZGVyKGUpfSx0LnByb3RvdHlwZS5yZWdpc3RlckNoYXJhY3RlckpvaW5lcj1mdW5jdGlvbihlKXtpZighdGhpcy5fY2hhcmFjdGVySm9pbmVyU2VydmljZSl0aHJvdyBuZXcgRXJyb3IoIlRlcm1pbmFsIG11c3QgYmUgb3BlbmVkIGZpcnN0Iik7dmFyIHQ9dGhpcy5fY2hhcmFjdGVySm9pbmVyU2VydmljZS5yZWdpc3RlcihlKTtyZXR1cm4gdGhpcy5yZWZyZXNoKDAsdGhpcy5yb3dzLTEpLHR9LHQucHJvdG90eXBlLmRlcmVnaXN0ZXJDaGFyYWN0ZXJKb2luZXI9ZnVuY3Rpb24oZSl7aWYoIXRoaXMuX2NoYXJhY3RlckpvaW5lclNlcnZpY2UpdGhyb3cgbmV3IEVycm9yKCJUZXJtaW5hbCBtdXN0IGJlIG9wZW5lZCBmaXJzdCIpO3RoaXMuX2NoYXJhY3RlckpvaW5lclNlcnZpY2UuZGVyZWdpc3RlcihlKSYmdGhpcy5yZWZyZXNoKDAsdGhpcy5yb3dzLTEpfSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm1hcmtlcnMiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5idWZmZXIubWFya2Vyc30sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSx0LnByb3RvdHlwZS5hZGRNYXJrZXI9ZnVuY3Rpb24oZSl7aWYodGhpcy5idWZmZXI9PT10aGlzLmJ1ZmZlcnMubm9ybWFsKXJldHVybiB0aGlzLmJ1ZmZlci5hZGRNYXJrZXIodGhpcy5idWZmZXIueWJhc2UrdGhpcy5idWZmZXIueStlKX0sdC5wcm90b3R5cGUuaGFzU2VsZWN0aW9uPWZ1bmN0aW9uKCl7cmV0dXJuISF0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlJiZ0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlLmhhc1NlbGVjdGlvbn0sdC5wcm90b3R5cGUuc2VsZWN0PWZ1bmN0aW9uKGUsdCxyKXt0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlLnNldFNlbGVjdGlvbihlLHQscil9LHQucHJvdG90eXBlLmdldFNlbGVjdGlvbj1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlP3RoaXMuX3NlbGVjdGlvblNlcnZpY2Uuc2VsZWN0aW9uVGV4dDoiIn0sdC5wcm90b3R5cGUuZ2V0U2VsZWN0aW9uUG9zaXRpb249ZnVuY3Rpb24oKXtpZih0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlJiZ0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlLmhhc1NlbGVjdGlvbilyZXR1cm57c3RhcnRDb2x1bW46dGhpcy5fc2VsZWN0aW9uU2VydmljZS5zZWxlY3Rpb25TdGFydFswXSxzdGFydFJvdzp0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlLnNlbGVjdGlvblN0YXJ0WzFdLGVuZENvbHVtbjp0aGlzLl9zZWxlY3Rpb25TZXJ2aWNlLnNlbGVjdGlvbkVuZFswXSxlbmRSb3c6dGhpcy5fc2VsZWN0aW9uU2VydmljZS5zZWxlY3Rpb25FbmRbMV19fSx0LnByb3RvdHlwZS5jbGVhclNlbGVjdGlvbj1mdW5jdGlvbigpe3ZhciBlO251bGw9PT0oZT10aGlzLl9zZWxlY3Rpb25TZXJ2aWNlKXx8dm9pZCAwPT09ZXx8ZS5jbGVhclNlbGVjdGlvbigpfSx0LnByb3RvdHlwZS5zZWxlY3RBbGw9ZnVuY3Rpb24oKXt2YXIgZTtudWxsPT09KGU9dGhpcy5fc2VsZWN0aW9uU2VydmljZSl8fHZvaWQgMD09PWV8fGUuc2VsZWN0QWxsKCl9LHQucHJvdG90eXBlLnNlbGVjdExpbmVzPWZ1bmN0aW9uKGUsdCl7dmFyIHI7bnVsbD09PShyPXRoaXMuX3NlbGVjdGlvblNlcnZpY2UpfHx2b2lkIDA9PT1yfHxyLnNlbGVjdExpbmVzKGUsdCl9LHQucHJvdG90eXBlLl9rZXlEb3duPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX2tleURvd25IYW5kbGVkPSExLHRoaXMuX2N1c3RvbUtleUV2ZW50SGFuZGxlciYmITE9PT10aGlzLl9jdXN0b21LZXlFdmVudEhhbmRsZXIoZSkpcmV0dXJuITE7aWYoIXRoaXMuX2NvbXBvc2l0aW9uSGVscGVyLmtleWRvd24oZSkpcmV0dXJuIHRoaXMuYnVmZmVyLnliYXNlIT09dGhpcy5idWZmZXIueWRpc3AmJnRoaXMuX2J1ZmZlclNlcnZpY2Uuc2Nyb2xsVG9Cb3R0b20oKSwhMTsiRGVhZCIhPT1lLmtleSYmIkFsdEdyYXBoIiE9PWUua2V5fHwodGhpcy5fdW5wcm9jZXNzZWREZWFkS2V5PSEwKTt2YXIgdD0oMCxiLmV2YWx1YXRlS2V5Ym9hcmRFdmVudCkoZSx0aGlzLmNvcmVTZXJ2aWNlLmRlY1ByaXZhdGVNb2Rlcy5hcHBsaWNhdGlvbkN1cnNvcktleXMsdGhpcy5icm93c2VyLmlzTWFjLHRoaXMub3B0aW9ucy5tYWNPcHRpb25Jc01ldGEpO2lmKHRoaXMudXBkYXRlQ3Vyc29yU3R5bGUoZSksMz09PXQudHlwZXx8Mj09PXQudHlwZSl7dmFyIHI9dGhpcy5yb3dzLTE7cmV0dXJuIHRoaXMuc2Nyb2xsTGluZXMoMj09PXQudHlwZT8tcjpyKSx0aGlzLmNhbmNlbChlLCEwKX1yZXR1cm4gMT09PXQudHlwZSYmdGhpcy5zZWxlY3RBbGwoKSwhIXRoaXMuX2lzVGhpcmRMZXZlbFNoaWZ0KHRoaXMuYnJvd3NlcixlKXx8KHQuY2FuY2VsJiZ0aGlzLmNhbmNlbChlLCEwKSwhdC5rZXl8fCh0aGlzLl91bnByb2Nlc3NlZERlYWRLZXk/KHRoaXMuX3VucHJvY2Vzc2VkRGVhZEtleT0hMSwhMCk6KHQua2V5IT09Yy5DMC5FVFgmJnQua2V5IT09Yy5DMC5DUnx8KHRoaXMudGV4dGFyZWEudmFsdWU9IiIpLHRoaXMuX29uS2V5LmZpcmUoe2tleTp0LmtleSxkb21FdmVudDplfSksdGhpcy5fc2hvd0N1cnNvcigpLHRoaXMuY29yZVNlcnZpY2UudHJpZ2dlckRhdGFFdmVudCh0LmtleSwhMCksdGhpcy5vcHRpb25zU2VydmljZS5vcHRpb25zLnNjcmVlblJlYWRlck1vZGU/dm9pZCh0aGlzLl9rZXlEb3duSGFuZGxlZD0hMCk6dGhpcy5jYW5jZWwoZSwhMCkpKSl9LHQucHJvdG90eXBlLl9pc1RoaXJkTGV2ZWxTaGlmdD1mdW5jdGlvbihlLHQpe3ZhciByPWUuaXNNYWMmJiF0aGlzLm9wdGlvbnMubWFjT3B0aW9uSXNNZXRhJiZ0LmFsdEtleSYmIXQuY3RybEtleSYmIXQubWV0YUtleXx8ZS5pc1dpbmRvd3MmJnQuYWx0S2V5JiZ0LmN0cmxLZXkmJiF0Lm1ldGFLZXl8fGUuaXNXaW5kb3dzJiZ0LmdldE1vZGlmaWVyU3RhdGUoIkFsdEdyYXBoIik7cmV0dXJuImtleXByZXNzIj09PXQudHlwZT9yOnImJighdC5rZXlDb2RlfHx0LmtleUNvZGU+NDcpfSx0LnByb3RvdHlwZS5fa2V5VXA9ZnVuY3Rpb24oZSl7dGhpcy5fY3VzdG9tS2V5RXZlbnRIYW5kbGVyJiYhMT09PXRoaXMuX2N1c3RvbUtleUV2ZW50SGFuZGxlcihlKXx8KGZ1bmN0aW9uKGUpe3JldHVybiAxNj09PWUua2V5Q29kZXx8MTc9PT1lLmtleUNvZGV8fDE4PT09ZS5rZXlDb2RlfShlKXx8dGhpcy5mb2N1cygpLHRoaXMudXBkYXRlQ3Vyc29yU3R5bGUoZSksdGhpcy5fa2V5UHJlc3NIYW5kbGVkPSExKX0sdC5wcm90b3R5cGUuX2tleVByZXNzPWZ1bmN0aW9uKGUpe3ZhciB0O2lmKHRoaXMuX2tleVByZXNzSGFuZGxlZD0hMSx0aGlzLl9rZXlEb3duSGFuZGxlZClyZXR1cm4hMTtpZih0aGlzLl9jdXN0b21LZXlFdmVudEhhbmRsZXImJiExPT09dGhpcy5fY3VzdG9tS2V5RXZlbnRIYW5kbGVyKGUpKXJldHVybiExO2lmKHRoaXMuY2FuY2VsKGUpLGUuY2hhckNvZGUpdD1lLmNoYXJDb2RlO2Vsc2UgaWYobnVsbD09PWUud2hpY2h8fHZvaWQgMD09PWUud2hpY2gpdD1lLmtleUNvZGU7ZWxzZXtpZigwPT09ZS53aGljaHx8MD09PWUuY2hhckNvZGUpcmV0dXJuITE7dD1lLndoaWNofXJldHVybiEoIXR8fChlLmFsdEtleXx8ZS5jdHJsS2V5fHxlLm1ldGFLZXkpJiYhdGhpcy5faXNUaGlyZExldmVsU2hpZnQodGhpcy5icm93c2VyLGUpfHwodD1TdHJpbmcuZnJvbUNoYXJDb2RlKHQpLHRoaXMuX29uS2V5LmZpcmUoe2tleTp0LGRvbUV2ZW50OmV9KSx0aGlzLl9zaG93Q3Vyc29yKCksdGhpcy5jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KHQsITApLHRoaXMuX2tleVByZXNzSGFuZGxlZD0hMCx0aGlzLl91bnByb2Nlc3NlZERlYWRLZXk9ITEsMCkpfSx0LnByb3RvdHlwZS5faW5wdXRFdmVudD1mdW5jdGlvbihlKXtpZihlLmRhdGEmJiJpbnNlcnRUZXh0Ij09PWUuaW5wdXRUeXBlJiYhZS5jb21wb3NlZCYmIXRoaXMub3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5zY3JlZW5SZWFkZXJNb2RlKXtpZih0aGlzLl9rZXlQcmVzc0hhbmRsZWQpcmV0dXJuITE7dGhpcy5fdW5wcm9jZXNzZWREZWFkS2V5PSExO3ZhciB0PWUuZGF0YTtyZXR1cm4gdGhpcy5jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KHQsITApLHRoaXMuY2FuY2VsKGUpLCEwfXJldHVybiExfSx0LnByb3RvdHlwZS5iZWxsPWZ1bmN0aW9uKCl7dmFyIGU7dGhpcy5fc291bmRCZWxsKCkmJihudWxsPT09KGU9dGhpcy5fc291bmRTZXJ2aWNlKXx8dm9pZCAwPT09ZXx8ZS5wbGF5QmVsbFNvdW5kKCkpLHRoaXMuX29uQmVsbC5maXJlKCl9LHQucHJvdG90eXBlLnJlc2l6ZT1mdW5jdGlvbih0LHIpe3QhPT10aGlzLmNvbHN8fHIhPT10aGlzLnJvd3M/ZS5wcm90b3R5cGUucmVzaXplLmNhbGwodGhpcyx0LHIpOnRoaXMuX2NoYXJTaXplU2VydmljZSYmIXRoaXMuX2NoYXJTaXplU2VydmljZS5oYXNWYWxpZFNpemUmJnRoaXMuX2NoYXJTaXplU2VydmljZS5tZWFzdXJlKCl9LHQucHJvdG90eXBlLl9hZnRlclJlc2l6ZT1mdW5jdGlvbihlLHQpe3ZhciByLGk7bnVsbD09PShyPXRoaXMuX2NoYXJTaXplU2VydmljZSl8fHZvaWQgMD09PXJ8fHIubWVhc3VyZSgpLG51bGw9PT0oaT10aGlzLnZpZXdwb3J0KXx8dm9pZCAwPT09aXx8aS5zeW5jU2Nyb2xsQXJlYSghMCl9LHQucHJvdG90eXBlLmNsZWFyPWZ1bmN0aW9uKCl7aWYoMCE9PXRoaXMuYnVmZmVyLnliYXNlfHwwIT09dGhpcy5idWZmZXIueSl7dGhpcy5idWZmZXIubGluZXMuc2V0KDAsdGhpcy5idWZmZXIubGluZXMuZ2V0KHRoaXMuYnVmZmVyLnliYXNlK3RoaXMuYnVmZmVyLnkpKSx0aGlzLmJ1ZmZlci5saW5lcy5sZW5ndGg9MSx0aGlzLmJ1ZmZlci55ZGlzcD0wLHRoaXMuYnVmZmVyLnliYXNlPTAsdGhpcy5idWZmZXIueT0wO2Zvcih2YXIgZT0xO2U8dGhpcy5yb3dzO2UrKyl0aGlzLmJ1ZmZlci5saW5lcy5wdXNoKHRoaXMuYnVmZmVyLmdldEJsYW5rTGluZShDLkRFRkFVTFRfQVRUUl9EQVRBKSk7dGhpcy5yZWZyZXNoKDAsdGhpcy5yb3dzLTEpLHRoaXMuX29uU2Nyb2xsLmZpcmUoe3Bvc2l0aW9uOnRoaXMuYnVmZmVyLnlkaXNwLHNvdXJjZTowfSl9fSx0LnByb3RvdHlwZS5yZXNldD1mdW5jdGlvbigpe3ZhciB0LHI7dGhpcy5vcHRpb25zLnJvd3M9dGhpcy5yb3dzLHRoaXMub3B0aW9ucy5jb2xzPXRoaXMuY29sczt2YXIgaT10aGlzLl9jdXN0b21LZXlFdmVudEhhbmRsZXI7dGhpcy5fc2V0dXAoKSxlLnByb3RvdHlwZS5yZXNldC5jYWxsKHRoaXMpLG51bGw9PT0odD10aGlzLl9zZWxlY3Rpb25TZXJ2aWNlKXx8dm9pZCAwPT09dHx8dC5yZXNldCgpLHRoaXMuX2N1c3RvbUtleUV2ZW50SGFuZGxlcj1pLHRoaXMucmVmcmVzaCgwLHRoaXMucm93cy0xKSxudWxsPT09KHI9dGhpcy52aWV3cG9ydCl8fHZvaWQgMD09PXJ8fHIuc3luY1Njcm9sbEFyZWEoKX0sdC5wcm90b3R5cGUuY2xlYXJUZXh0dXJlQXRsYXM9ZnVuY3Rpb24oKXt2YXIgZTtudWxsPT09KGU9dGhpcy5fcmVuZGVyU2VydmljZSl8fHZvaWQgMD09PWV8fGUuY2xlYXJUZXh0dXJlQXRsYXMoKX0sdC5wcm90b3R5cGUuX3JlcG9ydEZvY3VzPWZ1bmN0aW9uKCl7dmFyIGU7KG51bGw9PT0oZT10aGlzLmVsZW1lbnQpfHx2b2lkIDA9PT1lP3ZvaWQgMDplLmNsYXNzTGlzdC5jb250YWlucygiZm9jdXMiKSk/dGhpcy5jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KGMuQzAuRVNDKyJbSSIpOnRoaXMuY29yZVNlcnZpY2UudHJpZ2dlckRhdGFFdmVudChjLkMwLkVTQysiW08iKX0sdC5wcm90b3R5cGUuX3JlcG9ydFdpbmRvd3NPcHRpb25zPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX3JlbmRlclNlcnZpY2Upc3dpdGNoKGUpe2Nhc2UgbC5XaW5kb3dzT3B0aW9uc1JlcG9ydFR5cGUuR0VUX1dJTl9TSVpFX1BJWEVMUzp2YXIgdD10aGlzLl9yZW5kZXJTZXJ2aWNlLmRpbWVuc2lvbnMuc2NhbGVkQ2FudmFzV2lkdGgudG9GaXhlZCgwKSxyPXRoaXMuX3JlbmRlclNlcnZpY2UuZGltZW5zaW9ucy5zY2FsZWRDYW52YXNIZWlnaHQudG9GaXhlZCgwKTt0aGlzLmNvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQoYy5DMC5FU0MrIls0OyIrcisiOyIrdCsidCIpO2JyZWFrO2Nhc2UgbC5XaW5kb3dzT3B0aW9uc1JlcG9ydFR5cGUuR0VUX0NFTExfU0laRV9QSVhFTFM6dmFyIGk9dGhpcy5fcmVuZGVyU2VydmljZS5kaW1lbnNpb25zLnNjYWxlZENlbGxXaWR0aC50b0ZpeGVkKDApLG49dGhpcy5fcmVuZGVyU2VydmljZS5kaW1lbnNpb25zLnNjYWxlZENlbGxIZWlnaHQudG9GaXhlZCgwKTt0aGlzLmNvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQoYy5DMC5FU0MrIls2OyIrbisiOyIraSsidCIpfX0sdC5wcm90b3R5cGUuY2FuY2VsPWZ1bmN0aW9uKGUsdCl7aWYodGhpcy5vcHRpb25zLmNhbmNlbEV2ZW50c3x8dClyZXR1cm4gZS5wcmV2ZW50RGVmYXVsdCgpLGUuc3RvcFByb3BhZ2F0aW9uKCksITF9LHQucHJvdG90eXBlLl92aXN1YWxCZWxsPWZ1bmN0aW9uKCl7cmV0dXJuITF9LHQucHJvdG90eXBlLl9zb3VuZEJlbGw9ZnVuY3Rpb24oKXtyZXR1cm4ic291bmQiPT09dGhpcy5vcHRpb25zLmJlbGxTdHlsZX0sdH0oUi5Db3JlVGVybWluYWwpO3QuVGVybWluYWw9UH0sOTkyNDooZSx0KT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LlRpbWVCYXNlZERlYm91bmNlcj12b2lkIDA7dmFyIHI9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUsdCl7dm9pZCAwPT09dCYmKHQ9MWUzKSx0aGlzLl9yZW5kZXJDYWxsYmFjaz1lLHRoaXMuX2RlYm91bmNlVGhyZXNob2xkTVM9dCx0aGlzLl9sYXN0UmVmcmVzaE1zPTAsdGhpcy5fYWRkaXRpb25hbFJlZnJlc2hSZXF1ZXN0ZWQ9ITF9cmV0dXJuIGUucHJvdG90eXBlLmRpc3Bvc2U9ZnVuY3Rpb24oKXt0aGlzLl9yZWZyZXNoVGltZW91dElEJiZjbGVhclRpbWVvdXQodGhpcy5fcmVmcmVzaFRpbWVvdXRJRCl9LGUucHJvdG90eXBlLnJlZnJlc2g9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPXRoaXM7dGhpcy5fcm93Q291bnQ9cixlPXZvaWQgMCE9PWU/ZTowLHQ9dm9pZCAwIT09dD90OnRoaXMuX3Jvd0NvdW50LTEsdGhpcy5fcm93U3RhcnQ9dm9pZCAwIT09dGhpcy5fcm93U3RhcnQ/TWF0aC5taW4odGhpcy5fcm93U3RhcnQsZSk6ZSx0aGlzLl9yb3dFbmQ9dm9pZCAwIT09dGhpcy5fcm93RW5kP01hdGgubWF4KHRoaXMuX3Jvd0VuZCx0KTp0O3ZhciBuPURhdGUubm93KCk7aWYobi10aGlzLl9sYXN0UmVmcmVzaE1zPj10aGlzLl9kZWJvdW5jZVRocmVzaG9sZE1TKXRoaXMuX2xhc3RSZWZyZXNoTXM9bix0aGlzLl9pbm5lclJlZnJlc2goKTtlbHNlIGlmKCF0aGlzLl9hZGRpdGlvbmFsUmVmcmVzaFJlcXVlc3RlZCl7dmFyIG89bi10aGlzLl9sYXN0UmVmcmVzaE1zLHM9dGhpcy5fZGVib3VuY2VUaHJlc2hvbGRNUy1vO3RoaXMuX2FkZGl0aW9uYWxSZWZyZXNoUmVxdWVzdGVkPSEwLHRoaXMuX3JlZnJlc2hUaW1lb3V0SUQ9d2luZG93LnNldFRpbWVvdXQoKGZ1bmN0aW9uKCl7aS5fbGFzdFJlZnJlc2hNcz1EYXRlLm5vdygpLGkuX2lubmVyUmVmcmVzaCgpLGkuX2FkZGl0aW9uYWxSZWZyZXNoUmVxdWVzdGVkPSExLGkuX3JlZnJlc2hUaW1lb3V0SUQ9dm9pZCAwfSkscyl9fSxlLnByb3RvdHlwZS5faW5uZXJSZWZyZXNoPWZ1bmN0aW9uKCl7aWYodm9pZCAwIT09dGhpcy5fcm93U3RhcnQmJnZvaWQgMCE9PXRoaXMuX3Jvd0VuZCYmdm9pZCAwIT09dGhpcy5fcm93Q291bnQpe3ZhciBlPU1hdGgubWF4KHRoaXMuX3Jvd1N0YXJ0LDApLHQ9TWF0aC5taW4odGhpcy5fcm93RW5kLHRoaXMuX3Jvd0NvdW50LTEpO3RoaXMuX3Jvd1N0YXJ0PXZvaWQgMCx0aGlzLl9yb3dFbmQ9dm9pZCAwLHRoaXMuX3JlbmRlckNhbGxiYWNrKGUsdCl9fSxlfSgpO3QuVGltZUJhc2VkRGVib3VuY2VyPXJ9LDE2ODA6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpLG49dGhpcyYmdGhpcy5fX2V4dGVuZHN8fChpPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGk9T2JqZWN0LnNldFByb3RvdHlwZU9mfHx7X19wcm90b19fOltdfWluc3RhbmNlb2YgQXJyYXkmJmZ1bmN0aW9uKGUsdCl7ZS5fX3Byb3RvX189dH18fGZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByIGluIHQpT2JqZWN0LnByb3RvdHlwZS5oYXNPd25Qcm9wZXJ0eS5jYWxsKHQscikmJihlW3JdPXRbcl0pfSxpKGUsdCl9LGZ1bmN0aW9uKGUsdCl7aWYoImZ1bmN0aW9uIiE9dHlwZW9mIHQmJm51bGwhPT10KXRocm93IG5ldyBUeXBlRXJyb3IoIkNsYXNzIGV4dGVuZHMgdmFsdWUgIitTdHJpbmcodCkrIiBpcyBub3QgYSBjb25zdHJ1Y3RvciBvciBudWxsIik7ZnVuY3Rpb24gcigpe3RoaXMuY29uc3RydWN0b3I9ZX1pKGUsdCksZS5wcm90b3R5cGU9bnVsbD09PXQ/T2JqZWN0LmNyZWF0ZSh0KTooci5wcm90b3R5cGU9dC5wcm90b3R5cGUsbmV3IHIpfSksbz10aGlzJiZ0aGlzLl9fZGVjb3JhdGV8fGZ1bmN0aW9uKGUsdCxyLGkpe3ZhciBuLG89YXJndW1lbnRzLmxlbmd0aCxzPW88Mz90Om51bGw9PT1pP2k9T2JqZWN0LmdldE93blByb3BlcnR5RGVzY3JpcHRvcih0LHIpOmk7aWYoIm9iamVjdCI9PXR5cGVvZiBSZWZsZWN0JiYiZnVuY3Rpb24iPT10eXBlb2YgUmVmbGVjdC5kZWNvcmF0ZSlzPVJlZmxlY3QuZGVjb3JhdGUoZSx0LHIsaSk7ZWxzZSBmb3IodmFyIGE9ZS5sZW5ndGgtMTthPj0wO2EtLSkobj1lW2FdKSYmKHM9KG88Mz9uKHMpOm8+Mz9uKHQscixzKTpuKHQscikpfHxzKTtyZXR1cm4gbz4zJiZzJiZPYmplY3QuZGVmaW5lUHJvcGVydHkodCxyLHMpLHN9LHM9dGhpcyYmdGhpcy5fX3BhcmFtfHxmdW5jdGlvbihlLHQpe3JldHVybiBmdW5jdGlvbihyLGkpe3QocixpLGUpfX07T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuVmlld3BvcnQ9dm9pZCAwO3ZhciBhPXIoODQ0KSxjPXIoMzY1NiksbD1yKDQ3MjUpLHU9cigyNTg1KSxoPWZ1bmN0aW9uKGUpe2Z1bmN0aW9uIHQodCxyLGksbixvLHMsYSxsKXt2YXIgdT1lLmNhbGwodGhpcyl8fHRoaXM7cmV0dXJuIHUuX3Njcm9sbExpbmVzPXQsdS5fdmlld3BvcnRFbGVtZW50PXIsdS5fc2Nyb2xsQXJlYT1pLHUuX2VsZW1lbnQ9bix1Ll9idWZmZXJTZXJ2aWNlPW8sdS5fb3B0aW9uc1NlcnZpY2U9cyx1Ll9jaGFyU2l6ZVNlcnZpY2U9YSx1Ll9yZW5kZXJTZXJ2aWNlPWwsdS5zY3JvbGxCYXJXaWR0aD0wLHUuX2N1cnJlbnRSb3dIZWlnaHQ9MCx1Ll9jdXJyZW50U2NhbGVkQ2VsbEhlaWdodD0wLHUuX2xhc3RSZWNvcmRlZEJ1ZmZlckxlbmd0aD0wLHUuX2xhc3RSZWNvcmRlZFZpZXdwb3J0SGVpZ2h0PTAsdS5fbGFzdFJlY29yZGVkQnVmZmVySGVpZ2h0PTAsdS5fbGFzdFRvdWNoWT0wLHUuX2xhc3RTY3JvbGxUb3A9MCx1Ll9sYXN0SGFkU2Nyb2xsQmFyPSExLHUuX3doZWVsUGFydGlhbFNjcm9sbD0wLHUuX3JlZnJlc2hBbmltYXRpb25GcmFtZT1udWxsLHUuX2lnbm9yZU5leHRTY3JvbGxFdmVudD0hMSx1LnNjcm9sbEJhcldpZHRoPXUuX3ZpZXdwb3J0RWxlbWVudC5vZmZzZXRXaWR0aC11Ll9zY3JvbGxBcmVhLm9mZnNldFdpZHRofHwxNSx1Ll9sYXN0SGFkU2Nyb2xsQmFyPSEwLHUucmVnaXN0ZXIoKDAsYy5hZGREaXNwb3NhYmxlRG9tTGlzdGVuZXIpKHUuX3ZpZXdwb3J0RWxlbWVudCwic2Nyb2xsIix1Ll9vblNjcm9sbC5iaW5kKHUpKSksdS5fYWN0aXZlQnVmZmVyPXUuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLHUucmVnaXN0ZXIodS5fYnVmZmVyU2VydmljZS5idWZmZXJzLm9uQnVmZmVyQWN0aXZhdGUoKGZ1bmN0aW9uKGUpe3JldHVybiB1Ll9hY3RpdmVCdWZmZXI9ZS5hY3RpdmVCdWZmZXJ9KSkpLHUuX3JlbmRlckRpbWVuc2lvbnM9dS5fcmVuZGVyU2VydmljZS5kaW1lbnNpb25zLHUucmVnaXN0ZXIodS5fcmVuZGVyU2VydmljZS5vbkRpbWVuc2lvbnNDaGFuZ2UoKGZ1bmN0aW9uKGUpe3JldHVybiB1Ll9yZW5kZXJEaW1lbnNpb25zPWV9KSkpLHNldFRpbWVvdXQoKGZ1bmN0aW9uKCl7cmV0dXJuIHUuc3luY1Njcm9sbEFyZWEoKX0pLDApLHV9cmV0dXJuIG4odCxlKSx0LnByb3RvdHlwZS5vblRoZW1lQ2hhbmdlPWZ1bmN0aW9uKGUpe3RoaXMuX3ZpZXdwb3J0RWxlbWVudC5zdHlsZS5iYWNrZ3JvdW5kQ29sb3I9ZS5iYWNrZ3JvdW5kLmNzc30sdC5wcm90b3R5cGUuX3JlZnJlc2g9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcztpZihlKXJldHVybiB0aGlzLl9pbm5lclJlZnJlc2goKSx2b2lkKG51bGwhPT10aGlzLl9yZWZyZXNoQW5pbWF0aW9uRnJhbWUmJmNhbmNlbEFuaW1hdGlvbkZyYW1lKHRoaXMuX3JlZnJlc2hBbmltYXRpb25GcmFtZSkpO251bGw9PT10aGlzLl9yZWZyZXNoQW5pbWF0aW9uRnJhbWUmJih0aGlzLl9yZWZyZXNoQW5pbWF0aW9uRnJhbWU9cmVxdWVzdEFuaW1hdGlvbkZyYW1lKChmdW5jdGlvbigpe3JldHVybiB0Ll9pbm5lclJlZnJlc2goKX0pKSl9LHQucHJvdG90eXBlLl9pbm5lclJlZnJlc2g9ZnVuY3Rpb24oKXtpZih0aGlzLl9jaGFyU2l6ZVNlcnZpY2UuaGVpZ2h0PjApe3RoaXMuX2N1cnJlbnRSb3dIZWlnaHQ9dGhpcy5fcmVuZGVyU2VydmljZS5kaW1lbnNpb25zLnNjYWxlZENlbGxIZWlnaHQvd2luZG93LmRldmljZVBpeGVsUmF0aW8sdGhpcy5fY3VycmVudFNjYWxlZENlbGxIZWlnaHQ9dGhpcy5fcmVuZGVyU2VydmljZS5kaW1lbnNpb25zLnNjYWxlZENlbGxIZWlnaHQsdGhpcy5fbGFzdFJlY29yZGVkVmlld3BvcnRIZWlnaHQ9dGhpcy5fdmlld3BvcnRFbGVtZW50Lm9mZnNldEhlaWdodDt2YXIgZT1NYXRoLnJvdW5kKHRoaXMuX2N1cnJlbnRSb3dIZWlnaHQqdGhpcy5fbGFzdFJlY29yZGVkQnVmZmVyTGVuZ3RoKSsodGhpcy5fbGFzdFJlY29yZGVkVmlld3BvcnRIZWlnaHQtdGhpcy5fcmVuZGVyU2VydmljZS5kaW1lbnNpb25zLmNhbnZhc0hlaWdodCk7dGhpcy5fbGFzdFJlY29yZGVkQnVmZmVySGVpZ2h0IT09ZSYmKHRoaXMuX2xhc3RSZWNvcmRlZEJ1ZmZlckhlaWdodD1lLHRoaXMuX3Njcm9sbEFyZWEuc3R5bGUuaGVpZ2h0PXRoaXMuX2xhc3RSZWNvcmRlZEJ1ZmZlckhlaWdodCsicHgiKX12YXIgdD10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55ZGlzcCp0aGlzLl9jdXJyZW50Um93SGVpZ2h0O3RoaXMuX3ZpZXdwb3J0RWxlbWVudC5zY3JvbGxUb3AhPT10JiYodGhpcy5faWdub3JlTmV4dFNjcm9sbEV2ZW50PSEwLHRoaXMuX3ZpZXdwb3J0RWxlbWVudC5zY3JvbGxUb3A9dCksMD09PXRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuc2Nyb2xsYmFjaz90aGlzLnNjcm9sbEJhcldpZHRoPTA6dGhpcy5zY3JvbGxCYXJXaWR0aD10aGlzLl92aWV3cG9ydEVsZW1lbnQub2Zmc2V0V2lkdGgtdGhpcy5fc2Nyb2xsQXJlYS5vZmZzZXRXaWR0aHx8MTUsdGhpcy5fbGFzdEhhZFNjcm9sbEJhcj10aGlzLnNjcm9sbEJhcldpZHRoPjA7dmFyIHI9d2luZG93LmdldENvbXB1dGVkU3R5bGUodGhpcy5fZWxlbWVudCksaT1wYXJzZUludChyLnBhZGRpbmdMZWZ0KStwYXJzZUludChyLnBhZGRpbmdSaWdodCk7dGhpcy5fdmlld3BvcnRFbGVtZW50LnN0eWxlLndpZHRoPSh0aGlzLl9yZW5kZXJTZXJ2aWNlLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbFdpZHRoKnRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyt0aGlzLnNjcm9sbEJhcldpZHRoKyh0aGlzLl9sYXN0SGFkU2Nyb2xsQmFyP2k6MCkpLnRvU3RyaW5nKCkrInB4Iix0aGlzLl9yZWZyZXNoQW5pbWF0aW9uRnJhbWU9bnVsbH0sdC5wcm90b3R5cGUuc3luY1Njcm9sbEFyZWE9ZnVuY3Rpb24oZSl7aWYodm9pZCAwPT09ZSYmKGU9ITEpLHRoaXMuX2xhc3RSZWNvcmRlZEJ1ZmZlckxlbmd0aCE9PXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLmxpbmVzLmxlbmd0aClyZXR1cm4gdGhpcy5fbGFzdFJlY29yZGVkQnVmZmVyTGVuZ3RoPXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLmxpbmVzLmxlbmd0aCx2b2lkIHRoaXMuX3JlZnJlc2goZSk7dGhpcy5fbGFzdFJlY29yZGVkVmlld3BvcnRIZWlnaHQ9PT10aGlzLl9yZW5kZXJTZXJ2aWNlLmRpbWVuc2lvbnMuY2FudmFzSGVpZ2h0JiZ0aGlzLl9sYXN0U2Nyb2xsVG9wPT09dGhpcy5fYWN0aXZlQnVmZmVyLnlkaXNwKnRoaXMuX2N1cnJlbnRSb3dIZWlnaHQmJnRoaXMuX3JlbmRlckRpbWVuc2lvbnMuc2NhbGVkQ2VsbEhlaWdodD09PXRoaXMuX2N1cnJlbnRTY2FsZWRDZWxsSGVpZ2h0P3RoaXMuX2xhc3RIYWRTY3JvbGxCYXIhPT10aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLnNjcm9sbGJhY2s+MCYmdGhpcy5fcmVmcmVzaChlKTp0aGlzLl9yZWZyZXNoKGUpfSx0LnByb3RvdHlwZS5fb25TY3JvbGw9ZnVuY3Rpb24oZSl7aWYodGhpcy5fbGFzdFNjcm9sbFRvcD10aGlzLl92aWV3cG9ydEVsZW1lbnQuc2Nyb2xsVG9wLHRoaXMuX3ZpZXdwb3J0RWxlbWVudC5vZmZzZXRQYXJlbnQpe2lmKHRoaXMuX2lnbm9yZU5leHRTY3JvbGxFdmVudClyZXR1cm4gdGhpcy5faWdub3JlTmV4dFNjcm9sbEV2ZW50PSExLHZvaWQgdGhpcy5fc2Nyb2xsTGluZXMoMCk7dmFyIHQ9TWF0aC5yb3VuZCh0aGlzLl9sYXN0U2Nyb2xsVG9wL3RoaXMuX2N1cnJlbnRSb3dIZWlnaHQpLXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnlkaXNwO3RoaXMuX3Njcm9sbExpbmVzKHQpfX0sdC5wcm90b3R5cGUuX2J1YmJsZVNjcm9sbD1mdW5jdGlvbihlLHQpe3ZhciByPXRoaXMuX3ZpZXdwb3J0RWxlbWVudC5zY3JvbGxUb3ArdGhpcy5fbGFzdFJlY29yZGVkVmlld3BvcnRIZWlnaHQ7cmV0dXJuISh0PDAmJjAhPT10aGlzLl92aWV3cG9ydEVsZW1lbnQuc2Nyb2xsVG9wfHx0PjAmJnI8dGhpcy5fbGFzdFJlY29yZGVkQnVmZmVySGVpZ2h0KXx8KGUuY2FuY2VsYWJsZSYmZS5wcmV2ZW50RGVmYXVsdCgpLCExKX0sdC5wcm90b3R5cGUub25XaGVlbD1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9nZXRQaXhlbHNTY3JvbGxlZChlKTtyZXR1cm4gMCE9PXQmJih0aGlzLl92aWV3cG9ydEVsZW1lbnQuc2Nyb2xsVG9wKz10LHRoaXMuX2J1YmJsZVNjcm9sbChlLHQpKX0sdC5wcm90b3R5cGUuX2dldFBpeGVsc1Njcm9sbGVkPWZ1bmN0aW9uKGUpe2lmKDA9PT1lLmRlbHRhWXx8ZS5zaGlmdEtleSlyZXR1cm4gMDt2YXIgdD10aGlzLl9hcHBseVNjcm9sbE1vZGlmaWVyKGUuZGVsdGFZLGUpO3JldHVybiBlLmRlbHRhTW9kZT09PVdoZWVsRXZlbnQuRE9NX0RFTFRBX0xJTkU/dCo9dGhpcy5fY3VycmVudFJvd0hlaWdodDplLmRlbHRhTW9kZT09PVdoZWVsRXZlbnQuRE9NX0RFTFRBX1BBR0UmJih0Kj10aGlzLl9jdXJyZW50Um93SGVpZ2h0KnRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cyksdH0sdC5wcm90b3R5cGUuZ2V0TGluZXNTY3JvbGxlZD1mdW5jdGlvbihlKXtpZigwPT09ZS5kZWx0YVl8fGUuc2hpZnRLZXkpcmV0dXJuIDA7dmFyIHQ9dGhpcy5fYXBwbHlTY3JvbGxNb2RpZmllcihlLmRlbHRhWSxlKTtyZXR1cm4gZS5kZWx0YU1vZGU9PT1XaGVlbEV2ZW50LkRPTV9ERUxUQV9QSVhFTD8odC89dGhpcy5fY3VycmVudFJvd0hlaWdodCswLHRoaXMuX3doZWVsUGFydGlhbFNjcm9sbCs9dCx0PU1hdGguZmxvb3IoTWF0aC5hYnModGhpcy5fd2hlZWxQYXJ0aWFsU2Nyb2xsKSkqKHRoaXMuX3doZWVsUGFydGlhbFNjcm9sbD4wPzE6LTEpLHRoaXMuX3doZWVsUGFydGlhbFNjcm9sbCU9MSk6ZS5kZWx0YU1vZGU9PT1XaGVlbEV2ZW50LkRPTV9ERUxUQV9QQUdFJiYodCo9dGhpcy5fYnVmZmVyU2VydmljZS5yb3dzKSx0fSx0LnByb3RvdHlwZS5fYXBwbHlTY3JvbGxNb2RpZmllcj1mdW5jdGlvbihlLHQpe3ZhciByPXRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuZmFzdFNjcm9sbE1vZGlmaWVyO3JldHVybiJhbHQiPT09ciYmdC5hbHRLZXl8fCJjdHJsIj09PXImJnQuY3RybEtleXx8InNoaWZ0Ij09PXImJnQuc2hpZnRLZXk/ZSp0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmZhc3RTY3JvbGxTZW5zaXRpdml0eSp0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLnNjcm9sbFNlbnNpdGl2aXR5OmUqdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5zY3JvbGxTZW5zaXRpdml0eX0sdC5wcm90b3R5cGUub25Ub3VjaFN0YXJ0PWZ1bmN0aW9uKGUpe3RoaXMuX2xhc3RUb3VjaFk9ZS50b3VjaGVzWzBdLnBhZ2VZfSx0LnByb3RvdHlwZS5vblRvdWNoTW92ZT1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9sYXN0VG91Y2hZLWUudG91Y2hlc1swXS5wYWdlWTtyZXR1cm4gdGhpcy5fbGFzdFRvdWNoWT1lLnRvdWNoZXNbMF0ucGFnZVksMCE9PXQmJih0aGlzLl92aWV3cG9ydEVsZW1lbnQuc2Nyb2xsVG9wKz10LHRoaXMuX2J1YmJsZVNjcm9sbChlLHQpKX0sbyhbcyg0LHUuSUJ1ZmZlclNlcnZpY2UpLHMoNSx1LklPcHRpb25zU2VydmljZSkscyg2LGwuSUNoYXJTaXplU2VydmljZSkscyg3LGwuSVJlbmRlclNlcnZpY2UpXSx0KX0oYS5EaXNwb3NhYmxlKTt0LlZpZXdwb3J0PWh9LDI5NTA6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPXRoaXMmJnRoaXMuX19kZWNvcmF0ZXx8ZnVuY3Rpb24oZSx0LHIsaSl7dmFyIG4sbz1hcmd1bWVudHMubGVuZ3RoLHM9bzwzP3Q6bnVsbD09PWk/aT1PYmplY3QuZ2V0T3duUHJvcGVydHlEZXNjcmlwdG9yKHQscik6aTtpZigib2JqZWN0Ij09dHlwZW9mIFJlZmxlY3QmJiJmdW5jdGlvbiI9PXR5cGVvZiBSZWZsZWN0LmRlY29yYXRlKXM9UmVmbGVjdC5kZWNvcmF0ZShlLHQscixpKTtlbHNlIGZvcih2YXIgYT1lLmxlbmd0aC0xO2E+PTA7YS0tKShuPWVbYV0pJiYocz0obzwzP24ocyk6bz4zP24odCxyLHMpOm4odCxyKSl8fHMpO3JldHVybiBvPjMmJnMmJk9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LHIscyksc30sbj10aGlzJiZ0aGlzLl9fcGFyYW18fGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGZ1bmN0aW9uKHIsaSl7dChyLGksZSl9fTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Db21wb3NpdGlvbkhlbHBlcj12b2lkIDA7dmFyIG89cig0NzI1KSxzPXIoMjU4NSksYT1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoZSx0LHIsaSxuLG8pe3RoaXMuX3RleHRhcmVhPWUsdGhpcy5fY29tcG9zaXRpb25WaWV3PXQsdGhpcy5fYnVmZmVyU2VydmljZT1yLHRoaXMuX29wdGlvbnNTZXJ2aWNlPWksdGhpcy5fY29yZVNlcnZpY2U9bix0aGlzLl9yZW5kZXJTZXJ2aWNlPW8sdGhpcy5faXNDb21wb3Npbmc9ITEsdGhpcy5faXNTZW5kaW5nQ29tcG9zaXRpb249ITEsdGhpcy5fY29tcG9zaXRpb25Qb3NpdGlvbj17c3RhcnQ6MCxlbmQ6MH0sdGhpcy5fZGF0YUFscmVhZHlTZW50PSIifXJldHVybiBPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImlzQ29tcG9zaW5nIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2lzQ29tcG9zaW5nfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLGUucHJvdG90eXBlLmNvbXBvc2l0aW9uc3RhcnQ9ZnVuY3Rpb24oKXt0aGlzLl9pc0NvbXBvc2luZz0hMCx0aGlzLl9jb21wb3NpdGlvblBvc2l0aW9uLnN0YXJ0PXRoaXMuX3RleHRhcmVhLnZhbHVlLmxlbmd0aCx0aGlzLl9jb21wb3NpdGlvblZpZXcudGV4dENvbnRlbnQ9IiIsdGhpcy5fZGF0YUFscmVhZHlTZW50PSIiLHRoaXMuX2NvbXBvc2l0aW9uVmlldy5jbGFzc0xpc3QuYWRkKCJhY3RpdmUiKX0sZS5wcm90b3R5cGUuY29tcG9zaXRpb251cGRhdGU9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpczt0aGlzLl9jb21wb3NpdGlvblZpZXcudGV4dENvbnRlbnQ9ZS5kYXRhLHRoaXMudXBkYXRlQ29tcG9zaXRpb25FbGVtZW50cygpLHNldFRpbWVvdXQoKGZ1bmN0aW9uKCl7dC5fY29tcG9zaXRpb25Qb3NpdGlvbi5lbmQ9dC5fdGV4dGFyZWEudmFsdWUubGVuZ3RofSksMCl9LGUucHJvdG90eXBlLmNvbXBvc2l0aW9uZW5kPWZ1bmN0aW9uKCl7dGhpcy5fZmluYWxpemVDb21wb3NpdGlvbighMCl9LGUucHJvdG90eXBlLmtleWRvd249ZnVuY3Rpb24oZSl7aWYodGhpcy5faXNDb21wb3Npbmd8fHRoaXMuX2lzU2VuZGluZ0NvbXBvc2l0aW9uKXtpZigyMjk9PT1lLmtleUNvZGUpcmV0dXJuITE7aWYoMTY9PT1lLmtleUNvZGV8fDE3PT09ZS5rZXlDb2RlfHwxOD09PWUua2V5Q29kZSlyZXR1cm4hMTt0aGlzLl9maW5hbGl6ZUNvbXBvc2l0aW9uKCExKX1yZXR1cm4gMjI5IT09ZS5rZXlDb2RlfHwodGhpcy5faGFuZGxlQW55VGV4dGFyZWFDaGFuZ2VzKCksITEpfSxlLnByb3RvdHlwZS5fZmluYWxpemVDb21wb3NpdGlvbj1mdW5jdGlvbihlKXt2YXIgdD10aGlzO2lmKHRoaXMuX2NvbXBvc2l0aW9uVmlldy5jbGFzc0xpc3QucmVtb3ZlKCJhY3RpdmUiKSx0aGlzLl9pc0NvbXBvc2luZz0hMSxlKXt2YXIgcj17c3RhcnQ6dGhpcy5fY29tcG9zaXRpb25Qb3NpdGlvbi5zdGFydCxlbmQ6dGhpcy5fY29tcG9zaXRpb25Qb3NpdGlvbi5lbmR9O3RoaXMuX2lzU2VuZGluZ0NvbXBvc2l0aW9uPSEwLHNldFRpbWVvdXQoKGZ1bmN0aW9uKCl7dmFyIGU7dC5faXNTZW5kaW5nQ29tcG9zaXRpb24mJih0Ll9pc1NlbmRpbmdDb21wb3NpdGlvbj0hMSxyLnN0YXJ0Kz10Ll9kYXRhQWxyZWFkeVNlbnQubGVuZ3RoLChlPXQuX2lzQ29tcG9zaW5nP3QuX3RleHRhcmVhLnZhbHVlLnN1YnN0cmluZyhyLnN0YXJ0LHIuZW5kKTp0Ll90ZXh0YXJlYS52YWx1ZS5zdWJzdHJpbmcoci5zdGFydCkpLmxlbmd0aD4wJiZ0Ll9jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KGUsITApKX0pLDApfWVsc2V7dGhpcy5faXNTZW5kaW5nQ29tcG9zaXRpb249ITE7dmFyIGk9dGhpcy5fdGV4dGFyZWEudmFsdWUuc3Vic3RyaW5nKHRoaXMuX2NvbXBvc2l0aW9uUG9zaXRpb24uc3RhcnQsdGhpcy5fY29tcG9zaXRpb25Qb3NpdGlvbi5lbmQpO3RoaXMuX2NvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQoaSwhMCl9fSxlLnByb3RvdHlwZS5faGFuZGxlQW55VGV4dGFyZWFDaGFuZ2VzPWZ1bmN0aW9uKCl7dmFyIGU9dGhpcyx0PXRoaXMuX3RleHRhcmVhLnZhbHVlO3NldFRpbWVvdXQoKGZ1bmN0aW9uKCl7aWYoIWUuX2lzQ29tcG9zaW5nKXt2YXIgcj1lLl90ZXh0YXJlYS52YWx1ZS5yZXBsYWNlKHQsIiIpO3IubGVuZ3RoPjAmJihlLl9kYXRhQWxyZWFkeVNlbnQ9cixlLl9jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KHIsITApKX19KSwwKX0sZS5wcm90b3R5cGUudXBkYXRlQ29tcG9zaXRpb25FbGVtZW50cz1mdW5jdGlvbihlKXt2YXIgdD10aGlzO2lmKHRoaXMuX2lzQ29tcG9zaW5nKXtpZih0aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci5pc0N1cnNvckluVmlld3BvcnQpe3ZhciByPU1hdGgubWluKHRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLngsdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLTEpLGk9dGhpcy5fcmVuZGVyU2VydmljZS5kaW1lbnNpb25zLmFjdHVhbENlbGxIZWlnaHQsbj10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55KnRoaXMuX3JlbmRlclNlcnZpY2UuZGltZW5zaW9ucy5hY3R1YWxDZWxsSGVpZ2h0LG89cip0aGlzLl9yZW5kZXJTZXJ2aWNlLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbFdpZHRoO3RoaXMuX2NvbXBvc2l0aW9uVmlldy5zdHlsZS5sZWZ0PW8rInB4Iix0aGlzLl9jb21wb3NpdGlvblZpZXcuc3R5bGUudG9wPW4rInB4Iix0aGlzLl9jb21wb3NpdGlvblZpZXcuc3R5bGUuaGVpZ2h0PWkrInB4Iix0aGlzLl9jb21wb3NpdGlvblZpZXcuc3R5bGUubGluZUhlaWdodD1pKyJweCIsdGhpcy5fY29tcG9zaXRpb25WaWV3LnN0eWxlLmZvbnRGYW1pbHk9dGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5mb250RmFtaWx5LHRoaXMuX2NvbXBvc2l0aW9uVmlldy5zdHlsZS5mb250U2l6ZT10aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmZvbnRTaXplKyJweCI7dmFyIHM9dGhpcy5fY29tcG9zaXRpb25WaWV3LmdldEJvdW5kaW5nQ2xpZW50UmVjdCgpO3RoaXMuX3RleHRhcmVhLnN0eWxlLmxlZnQ9bysicHgiLHRoaXMuX3RleHRhcmVhLnN0eWxlLnRvcD1uKyJweCIsdGhpcy5fdGV4dGFyZWEuc3R5bGUud2lkdGg9TWF0aC5tYXgocy53aWR0aCwxKSsicHgiLHRoaXMuX3RleHRhcmVhLnN0eWxlLmhlaWdodD1NYXRoLm1heChzLmhlaWdodCwxKSsicHgiLHRoaXMuX3RleHRhcmVhLnN0eWxlLmxpbmVIZWlnaHQ9cy5oZWlnaHQrInB4In1lfHxzZXRUaW1lb3V0KChmdW5jdGlvbigpe3JldHVybiB0LnVwZGF0ZUNvbXBvc2l0aW9uRWxlbWVudHMoITApfSksMCl9fSxpKFtuKDIscy5JQnVmZmVyU2VydmljZSksbigzLHMuSU9wdGlvbnNTZXJ2aWNlKSxuKDQscy5JQ29yZVNlcnZpY2UpLG4oNSxvLklSZW5kZXJTZXJ2aWNlKV0sZSl9KCk7dC5Db21wb3NpdGlvbkhlbHBlcj1hfSw5ODA2OihlLHQpPT57ZnVuY3Rpb24gcihlLHQpe3ZhciByPXQuZ2V0Qm91bmRpbmdDbGllbnRSZWN0KCk7cmV0dXJuW2UuY2xpZW50WC1yLmxlZnQsZS5jbGllbnRZLXIudG9wXX1PYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5nZXRSYXdCeXRlQ29vcmRzPXQuZ2V0Q29vcmRzPXQuZ2V0Q29vcmRzUmVsYXRpdmVUb0VsZW1lbnQ9dm9pZCAwLHQuZ2V0Q29vcmRzUmVsYXRpdmVUb0VsZW1lbnQ9cix0LmdldENvb3Jkcz1mdW5jdGlvbihlLHQsaSxuLG8scyxhLGMpe2lmKG8pe3ZhciBsPXIoZSx0KTtpZihsKXJldHVybiBsWzBdPU1hdGguY2VpbCgobFswXSsoYz9zLzI6MCkpL3MpLGxbMV09TWF0aC5jZWlsKGxbMV0vYSksbFswXT1NYXRoLm1pbihNYXRoLm1heChsWzBdLDEpLGkrKGM/MTowKSksbFsxXT1NYXRoLm1pbihNYXRoLm1heChsWzFdLDEpLG4pLGx9fSx0LmdldFJhd0J5dGVDb29yZHM9ZnVuY3Rpb24oZSl7aWYoZSlyZXR1cm57eDplWzBdKzMyLHk6ZVsxXSszMn19fSw5NTA0OihlLHQscik9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5tb3ZlVG9DZWxsU2VxdWVuY2U9dm9pZCAwO3ZhciBpPXIoMjU4NCk7ZnVuY3Rpb24gbihlLHQscixpKXt2YXIgbj1lLW8ocixlKSxhPXQtbyhyLHQpLHU9TWF0aC5hYnMobi1hKS1mdW5jdGlvbihlLHQscil7Zm9yKHZhciBpPTAsbj1lLW8ocixlKSxhPXQtbyhyLHQpLGM9MDtjPE1hdGguYWJzKG4tYSk7YysrKXt2YXIgbD0iQSI9PT1zKGUsdCk/LTE6MSx1PXIuYnVmZmVyLmxpbmVzLmdldChuK2wqYyk7KG51bGw9PXU/dm9pZCAwOnUuaXNXcmFwcGVkKSYmaSsrfXJldHVybiBpfShlLHQscik7cmV0dXJuIGwodSxjKHMoZSx0KSxpKSl9ZnVuY3Rpb24gbyhlLHQpe2Zvcih2YXIgcj0wLGk9ZS5idWZmZXIubGluZXMuZ2V0KHQpLG49bnVsbD09aT92b2lkIDA6aS5pc1dyYXBwZWQ7biYmdD49MCYmdDxlLnJvd3M7KXIrKyxuPW51bGw9PShpPWUuYnVmZmVyLmxpbmVzLmdldCgtLXQpKT92b2lkIDA6aS5pc1dyYXBwZWQ7cmV0dXJuIHJ9ZnVuY3Rpb24gcyhlLHQpe3JldHVybiBlPnQ/IkEiOiJCIn1mdW5jdGlvbiBhKGUsdCxyLGksbixvKXtmb3IodmFyIHM9ZSxhPXQsYz0iIjtzIT09cnx8YSE9PWk7KXMrPW4/MTotMSxuJiZzPm8uY29scy0xPyhjKz1vLmJ1ZmZlci50cmFuc2xhdGVCdWZmZXJMaW5lVG9TdHJpbmcoYSwhMSxlLHMpLHM9MCxlPTAsYSsrKTohbiYmczwwJiYoYys9by5idWZmZXIudHJhbnNsYXRlQnVmZmVyTGluZVRvU3RyaW5nKGEsITEsMCxlKzEpLGU9cz1vLmNvbHMtMSxhLS0pO3JldHVybiBjK28uYnVmZmVyLnRyYW5zbGF0ZUJ1ZmZlckxpbmVUb1N0cmluZyhhLCExLGUscyl9ZnVuY3Rpb24gYyhlLHQpe3ZhciByPXQ/Ik8iOiJbIjtyZXR1cm4gaS5DMC5FU0MrcitlfWZ1bmN0aW9uIGwoZSx0KXtlPU1hdGguZmxvb3IoZSk7Zm9yKHZhciByPSIiLGk9MDtpPGU7aSsrKXIrPXQ7cmV0dXJuIHJ9dC5tb3ZlVG9DZWxsU2VxdWVuY2U9ZnVuY3Rpb24oZSx0LHIsaSl7dmFyIHMsdT1yLmJ1ZmZlci54LGg9ci5idWZmZXIueTtpZighci5idWZmZXIuaGFzU2Nyb2xsYmFjaylyZXR1cm4gZnVuY3Rpb24oZSx0LHIsaSxzLHUpe3JldHVybiAwPT09bih0LGkscyx1KS5sZW5ndGg/IiI6bChhKGUsdCxlLHQtbyhzLHQpLCExLHMpLmxlbmd0aCxjKCJEIix1KSl9KHUsaCwwLHQscixpKStuKGgsdCxyLGkpK2Z1bmN0aW9uKGUsdCxyLGkscyx1KXt2YXIgaDtoPW4odCxpLHMsdSkubGVuZ3RoPjA/aS1vKHMsaSk6dDt2YXIgZj1pLF89ZnVuY3Rpb24oZSx0LHIsaSxzLGEpe3ZhciBjO3JldHVybiBjPW4ocixpLHMsYSkubGVuZ3RoPjA/aS1vKHMsaSk6dCxlPHImJmM8PWl8fGU+PXImJmM8aT8iQyI6IkQifShlLHQscixpLHMsdSk7cmV0dXJuIGwoYShlLGgscixmLCJDIj09PV8scykubGVuZ3RoLGMoXyx1KSl9KHUsaCxlLHQscixpKTtpZihoPT09dClyZXR1cm4gcz11PmU/IkQiOiJDIixsKE1hdGguYWJzKHUtZSksYyhzLGkpKTtzPWg+dD8iRCI6IkMiO3ZhciBmPU1hdGguYWJzKGgtdCk7cmV0dXJuIGwoZnVuY3Rpb24oZSx0KXtyZXR1cm4gdC5jb2xzLWV9KGg+dD9lOnUscikrKGYtMSkqci5jb2xzKzErKChoPnQ/dTplKS0xKSxjKHMsaSkpfX0sMTU0NjooZSx0LHIpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuQmFzZVJlbmRlckxheWVyPXZvaWQgMDt2YXIgaT1yKDY0Myksbj1yKDg4MDMpLG89cigxNDIwKSxzPXIoMzczNCksYT1yKDE3NTIpLGM9cig0Nzc0KSxsPXIoOTYzMSksdT1yKDg5NzgpLGg9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUsdCxyLGksbixvLHMsYSl7dGhpcy5fY29udGFpbmVyPWUsdGhpcy5fYWxwaGE9aSx0aGlzLl9jb2xvcnM9bix0aGlzLl9yZW5kZXJlcklkPW8sdGhpcy5fYnVmZmVyU2VydmljZT1zLHRoaXMuX29wdGlvbnNTZXJ2aWNlPWEsdGhpcy5fc2NhbGVkQ2hhcldpZHRoPTAsdGhpcy5fc2NhbGVkQ2hhckhlaWdodD0wLHRoaXMuX3NjYWxlZENlbGxXaWR0aD0wLHRoaXMuX3NjYWxlZENlbGxIZWlnaHQ9MCx0aGlzLl9zY2FsZWRDaGFyTGVmdD0wLHRoaXMuX3NjYWxlZENoYXJUb3A9MCx0aGlzLl9jdXJyZW50R2x5cGhJZGVudGlmaWVyPXtjaGFyczoiIixjb2RlOjAsYmc6MCxmZzowLGJvbGQ6ITEsZGltOiExLGl0YWxpYzohMX0sdGhpcy5fY2FudmFzPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoImNhbnZhcyIpLHRoaXMuX2NhbnZhcy5jbGFzc0xpc3QuYWRkKCJ4dGVybS0iK3QrIi1sYXllciIpLHRoaXMuX2NhbnZhcy5zdHlsZS56SW5kZXg9ci50b1N0cmluZygpLHRoaXMuX2luaXRDYW52YXMoKSx0aGlzLl9jb250YWluZXIuYXBwZW5kQ2hpbGQodGhpcy5fY2FudmFzKX1yZXR1cm4gZS5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe3ZhciBlOygwLGwucmVtb3ZlRWxlbWVudEZyb21QYXJlbnQpKHRoaXMuX2NhbnZhcyksbnVsbD09PShlPXRoaXMuX2NoYXJBdGxhcyl8fHZvaWQgMD09PWV8fGUuZGlzcG9zZSgpfSxlLnByb3RvdHlwZS5faW5pdENhbnZhcz1mdW5jdGlvbigpe3RoaXMuX2N0eD0oMCxhLnRocm93SWZGYWxzeSkodGhpcy5fY2FudmFzLmdldENvbnRleHQoIjJkIix7YWxwaGE6dGhpcy5fYWxwaGF9KSksdGhpcy5fYWxwaGF8fHRoaXMuX2NsZWFyQWxsKCl9LGUucHJvdG90eXBlLm9uT3B0aW9uc0NoYW5nZWQ9ZnVuY3Rpb24oKXt9LGUucHJvdG90eXBlLm9uQmx1cj1mdW5jdGlvbigpe30sZS5wcm90b3R5cGUub25Gb2N1cz1mdW5jdGlvbigpe30sZS5wcm90b3R5cGUub25DdXJzb3JNb3ZlPWZ1bmN0aW9uKCl7fSxlLnByb3RvdHlwZS5vbkdyaWRDaGFuZ2VkPWZ1bmN0aW9uKGUsdCl7fSxlLnByb3RvdHlwZS5vblNlbGVjdGlvbkNoYW5nZWQ9ZnVuY3Rpb24oZSx0LHIpe3ZvaWQgMD09PXImJihyPSExKX0sZS5wcm90b3R5cGUuc2V0Q29sb3JzPWZ1bmN0aW9uKGUpe3RoaXMuX3JlZnJlc2hDaGFyQXRsYXMoZSl9LGUucHJvdG90eXBlLl9zZXRUcmFuc3BhcmVuY3k9ZnVuY3Rpb24oZSl7aWYoZSE9PXRoaXMuX2FscGhhKXt2YXIgdD10aGlzLl9jYW52YXM7dGhpcy5fYWxwaGE9ZSx0aGlzLl9jYW52YXM9dGhpcy5fY2FudmFzLmNsb25lTm9kZSgpLHRoaXMuX2luaXRDYW52YXMoKSx0aGlzLl9jb250YWluZXIucmVwbGFjZUNoaWxkKHRoaXMuX2NhbnZhcyx0KSx0aGlzLl9yZWZyZXNoQ2hhckF0bGFzKHRoaXMuX2NvbG9ycyksdGhpcy5vbkdyaWRDaGFuZ2VkKDAsdGhpcy5fYnVmZmVyU2VydmljZS5yb3dzLTEpfX0sZS5wcm90b3R5cGUuX3JlZnJlc2hDaGFyQXRsYXM9ZnVuY3Rpb24oZSl7dGhpcy5fc2NhbGVkQ2hhcldpZHRoPD0wJiZ0aGlzLl9zY2FsZWRDaGFySGVpZ2h0PD0wfHwodGhpcy5fY2hhckF0bGFzPSgwLG8uYWNxdWlyZUNoYXJBdGxhcykodGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucyx0aGlzLl9yZW5kZXJlcklkLGUsdGhpcy5fc2NhbGVkQ2hhcldpZHRoLHRoaXMuX3NjYWxlZENoYXJIZWlnaHQpLHRoaXMuX2NoYXJBdGxhcy53YXJtVXAoKSl9LGUucHJvdG90eXBlLnJlc2l6ZT1mdW5jdGlvbihlKXt0aGlzLl9zY2FsZWRDZWxsV2lkdGg9ZS5zY2FsZWRDZWxsV2lkdGgsdGhpcy5fc2NhbGVkQ2VsbEhlaWdodD1lLnNjYWxlZENlbGxIZWlnaHQsdGhpcy5fc2NhbGVkQ2hhcldpZHRoPWUuc2NhbGVkQ2hhcldpZHRoLHRoaXMuX3NjYWxlZENoYXJIZWlnaHQ9ZS5zY2FsZWRDaGFySGVpZ2h0LHRoaXMuX3NjYWxlZENoYXJMZWZ0PWUuc2NhbGVkQ2hhckxlZnQsdGhpcy5fc2NhbGVkQ2hhclRvcD1lLnNjYWxlZENoYXJUb3AsdGhpcy5fY2FudmFzLndpZHRoPWUuc2NhbGVkQ2FudmFzV2lkdGgsdGhpcy5fY2FudmFzLmhlaWdodD1lLnNjYWxlZENhbnZhc0hlaWdodCx0aGlzLl9jYW52YXMuc3R5bGUud2lkdGg9ZS5jYW52YXNXaWR0aCsicHgiLHRoaXMuX2NhbnZhcy5zdHlsZS5oZWlnaHQ9ZS5jYW52YXNIZWlnaHQrInB4Iix0aGlzLl9hbHBoYXx8dGhpcy5fY2xlYXJBbGwoKSx0aGlzLl9yZWZyZXNoQ2hhckF0bGFzKHRoaXMuX2NvbG9ycyl9LGUucHJvdG90eXBlLmNsZWFyVGV4dHVyZUF0bGFzPWZ1bmN0aW9uKCl7dmFyIGU7bnVsbD09PShlPXRoaXMuX2NoYXJBdGxhcyl8fHZvaWQgMD09PWV8fGUuY2xlYXIoKX0sZS5wcm90b3R5cGUuX2ZpbGxDZWxscz1mdW5jdGlvbihlLHQscixpKXt0aGlzLl9jdHguZmlsbFJlY3QoZSp0aGlzLl9zY2FsZWRDZWxsV2lkdGgsdCp0aGlzLl9zY2FsZWRDZWxsSGVpZ2h0LHIqdGhpcy5fc2NhbGVkQ2VsbFdpZHRoLGkqdGhpcy5fc2NhbGVkQ2VsbEhlaWdodCl9LGUucHJvdG90eXBlLl9maWxsTWlkZGxlTGluZUF0Q2VsbHM9ZnVuY3Rpb24oZSx0LHIpe3ZvaWQgMD09PXImJihyPTEpO3ZhciBpPU1hdGguY2VpbCguNSp0aGlzLl9zY2FsZWRDZWxsSGVpZ2h0KTt0aGlzLl9jdHguZmlsbFJlY3QoZSp0aGlzLl9zY2FsZWRDZWxsV2lkdGgsKHQrMSkqdGhpcy5fc2NhbGVkQ2VsbEhlaWdodC1pLXdpbmRvdy5kZXZpY2VQaXhlbFJhdGlvLHIqdGhpcy5fc2NhbGVkQ2VsbFdpZHRoLHdpbmRvdy5kZXZpY2VQaXhlbFJhdGlvKX0sZS5wcm90b3R5cGUuX2ZpbGxCb3R0b21MaW5lQXRDZWxscz1mdW5jdGlvbihlLHQscil7dm9pZCAwPT09ciYmKHI9MSksdGhpcy5fY3R4LmZpbGxSZWN0KGUqdGhpcy5fc2NhbGVkQ2VsbFdpZHRoLCh0KzEpKnRoaXMuX3NjYWxlZENlbGxIZWlnaHQtd2luZG93LmRldmljZVBpeGVsUmF0aW8tMSxyKnRoaXMuX3NjYWxlZENlbGxXaWR0aCx3aW5kb3cuZGV2aWNlUGl4ZWxSYXRpbyl9LGUucHJvdG90eXBlLl9maWxsTGVmdExpbmVBdENlbGw9ZnVuY3Rpb24oZSx0LHIpe3RoaXMuX2N0eC5maWxsUmVjdChlKnRoaXMuX3NjYWxlZENlbGxXaWR0aCx0KnRoaXMuX3NjYWxlZENlbGxIZWlnaHQsd2luZG93LmRldmljZVBpeGVsUmF0aW8qcix0aGlzLl9zY2FsZWRDZWxsSGVpZ2h0KX0sZS5wcm90b3R5cGUuX3N0cm9rZVJlY3RBdENlbGw9ZnVuY3Rpb24oZSx0LHIsaSl7dGhpcy5fY3R4LmxpbmVXaWR0aD13aW5kb3cuZGV2aWNlUGl4ZWxSYXRpbyx0aGlzLl9jdHguc3Ryb2tlUmVjdChlKnRoaXMuX3NjYWxlZENlbGxXaWR0aCt3aW5kb3cuZGV2aWNlUGl4ZWxSYXRpby8yLHQqdGhpcy5fc2NhbGVkQ2VsbEhlaWdodCt3aW5kb3cuZGV2aWNlUGl4ZWxSYXRpby8yLHIqdGhpcy5fc2NhbGVkQ2VsbFdpZHRoLXdpbmRvdy5kZXZpY2VQaXhlbFJhdGlvLGkqdGhpcy5fc2NhbGVkQ2VsbEhlaWdodC13aW5kb3cuZGV2aWNlUGl4ZWxSYXRpbyl9LGUucHJvdG90eXBlLl9jbGVhckFsbD1mdW5jdGlvbigpe3RoaXMuX2FscGhhP3RoaXMuX2N0eC5jbGVhclJlY3QoMCwwLHRoaXMuX2NhbnZhcy53aWR0aCx0aGlzLl9jYW52YXMuaGVpZ2h0KToodGhpcy5fY3R4LmZpbGxTdHlsZT10aGlzLl9jb2xvcnMuYmFja2dyb3VuZC5jc3MsdGhpcy5fY3R4LmZpbGxSZWN0KDAsMCx0aGlzLl9jYW52YXMud2lkdGgsdGhpcy5fY2FudmFzLmhlaWdodCkpfSxlLnByb3RvdHlwZS5fY2xlYXJDZWxscz1mdW5jdGlvbihlLHQscixpKXt0aGlzLl9hbHBoYT90aGlzLl9jdHguY2xlYXJSZWN0KGUqdGhpcy5fc2NhbGVkQ2VsbFdpZHRoLHQqdGhpcy5fc2NhbGVkQ2VsbEhlaWdodCxyKnRoaXMuX3NjYWxlZENlbGxXaWR0aCxpKnRoaXMuX3NjYWxlZENlbGxIZWlnaHQpOih0aGlzLl9jdHguZmlsbFN0eWxlPXRoaXMuX2NvbG9ycy5iYWNrZ3JvdW5kLmNzcyx0aGlzLl9jdHguZmlsbFJlY3QoZSp0aGlzLl9zY2FsZWRDZWxsV2lkdGgsdCp0aGlzLl9zY2FsZWRDZWxsSGVpZ2h0LHIqdGhpcy5fc2NhbGVkQ2VsbFdpZHRoLGkqdGhpcy5fc2NhbGVkQ2VsbEhlaWdodCkpfSxlLnByb3RvdHlwZS5fZmlsbENoYXJUcnVlQ29sb3I9ZnVuY3Rpb24oZSx0LHIpe3RoaXMuX2N0eC5mb250PXRoaXMuX2dldEZvbnQoITEsITEpLHRoaXMuX2N0eC50ZXh0QmFzZWxpbmU9bi5URVhUX0JBU0VMSU5FLHRoaXMuX2NsaXBSb3cocik7dmFyIGk9ITE7ITEhPT10aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmN1c3RvbUdseXBocyYmKGk9KDAsdS50cnlEcmF3Q3VzdG9tQ2hhcikodGhpcy5fY3R4LGUuZ2V0Q2hhcnMoKSx0KnRoaXMuX3NjYWxlZENlbGxXaWR0aCxyKnRoaXMuX3NjYWxlZENlbGxIZWlnaHQsdGhpcy5fc2NhbGVkQ2VsbFdpZHRoLHRoaXMuX3NjYWxlZENlbGxIZWlnaHQpKSxpfHx0aGlzLl9jdHguZmlsbFRleHQoZS5nZXRDaGFycygpLHQqdGhpcy5fc2NhbGVkQ2VsbFdpZHRoK3RoaXMuX3NjYWxlZENoYXJMZWZ0LHIqdGhpcy5fc2NhbGVkQ2VsbEhlaWdodCt0aGlzLl9zY2FsZWRDaGFyVG9wK3RoaXMuX3NjYWxlZENoYXJIZWlnaHQpfSxlLnByb3RvdHlwZS5fZHJhd0NoYXJzPWZ1bmN0aW9uKGUsdCxyKXt2YXIgbyxzLGEsYz10aGlzLl9nZXRDb250cmFzdENvbG9yKGUpO2N8fGUuaXNGZ1JHQigpfHxlLmlzQmdSR0IoKT90aGlzLl9kcmF3VW5jYWNoZWRDaGFycyhlLHQscixjKTooZS5pc0ludmVyc2UoKT8ocz1lLmlzQmdEZWZhdWx0KCk/bi5JTlZFUlRFRF9ERUZBVUxUX0NPTE9SOmUuZ2V0QmdDb2xvcigpLGE9ZS5pc0ZnRGVmYXVsdCgpP24uSU5WRVJURURfREVGQVVMVF9DT0xPUjplLmdldEZnQ29sb3IoKSk6KGE9ZS5pc0JnRGVmYXVsdCgpP2kuREVGQVVMVF9DT0xPUjplLmdldEJnQ29sb3IoKSxzPWUuaXNGZ0RlZmF1bHQoKT9pLkRFRkFVTFRfQ09MT1I6ZS5nZXRGZ0NvbG9yKCkpLHMrPXRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuZHJhd0JvbGRUZXh0SW5CcmlnaHRDb2xvcnMmJmUuaXNCb2xkKCkmJnM8OD84OjAsdGhpcy5fY3VycmVudEdseXBoSWRlbnRpZmllci5jaGFycz1lLmdldENoYXJzKCl8fGkuV0hJVEVTUEFDRV9DRUxMX0NIQVIsdGhpcy5fY3VycmVudEdseXBoSWRlbnRpZmllci5jb2RlPWUuZ2V0Q29kZSgpfHxpLldISVRFU1BBQ0VfQ0VMTF9DT0RFLHRoaXMuX2N1cnJlbnRHbHlwaElkZW50aWZpZXIuYmc9YSx0aGlzLl9jdXJyZW50R2x5cGhJZGVudGlmaWVyLmZnPXMsdGhpcy5fY3VycmVudEdseXBoSWRlbnRpZmllci5ib2xkPSEhZS5pc0JvbGQoKSx0aGlzLl9jdXJyZW50R2x5cGhJZGVudGlmaWVyLmRpbT0hIWUuaXNEaW0oKSx0aGlzLl9jdXJyZW50R2x5cGhJZGVudGlmaWVyLml0YWxpYz0hIWUuaXNJdGFsaWMoKSwobnVsbD09PShvPXRoaXMuX2NoYXJBdGxhcyl8fHZvaWQgMD09PW8/dm9pZCAwOm8uZHJhdyh0aGlzLl9jdHgsdGhpcy5fY3VycmVudEdseXBoSWRlbnRpZmllcix0KnRoaXMuX3NjYWxlZENlbGxXaWR0aCt0aGlzLl9zY2FsZWRDaGFyTGVmdCxyKnRoaXMuX3NjYWxlZENlbGxIZWlnaHQrdGhpcy5fc2NhbGVkQ2hhclRvcCkpfHx0aGlzLl9kcmF3VW5jYWNoZWRDaGFycyhlLHQscikpfSxlLnByb3RvdHlwZS5fZHJhd1VuY2FjaGVkQ2hhcnM9ZnVuY3Rpb24oZSx0LHIsaSl7aWYodGhpcy5fY3R4LnNhdmUoKSx0aGlzLl9jdHguZm9udD10aGlzLl9nZXRGb250KCEhZS5pc0JvbGQoKSwhIWUuaXNJdGFsaWMoKSksdGhpcy5fY3R4LnRleHRCYXNlbGluZT1uLlRFWFRfQkFTRUxJTkUsZS5pc0ludmVyc2UoKSlpZihpKXRoaXMuX2N0eC5maWxsU3R5bGU9aS5jc3M7ZWxzZSBpZihlLmlzQmdEZWZhdWx0KCkpdGhpcy5fY3R4LmZpbGxTdHlsZT1jLmNvbG9yLm9wYXF1ZSh0aGlzLl9jb2xvcnMuYmFja2dyb3VuZCkuY3NzO2Vsc2UgaWYoZS5pc0JnUkdCKCkpdGhpcy5fY3R4LmZpbGxTdHlsZT0icmdiKCIrcy5BdHRyaWJ1dGVEYXRhLnRvQ29sb3JSR0IoZS5nZXRCZ0NvbG9yKCkpLmpvaW4oIiwiKSsiKSI7ZWxzZXt2YXIgbz1lLmdldEJnQ29sb3IoKTt0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmRyYXdCb2xkVGV4dEluQnJpZ2h0Q29sb3JzJiZlLmlzQm9sZCgpJiZvPDgmJihvKz04KSx0aGlzLl9jdHguZmlsbFN0eWxlPXRoaXMuX2NvbG9ycy5hbnNpW29dLmNzc31lbHNlIGlmKGkpdGhpcy5fY3R4LmZpbGxTdHlsZT1pLmNzcztlbHNlIGlmKGUuaXNGZ0RlZmF1bHQoKSl0aGlzLl9jdHguZmlsbFN0eWxlPXRoaXMuX2NvbG9ycy5mb3JlZ3JvdW5kLmNzcztlbHNlIGlmKGUuaXNGZ1JHQigpKXRoaXMuX2N0eC5maWxsU3R5bGU9InJnYigiK3MuQXR0cmlidXRlRGF0YS50b0NvbG9yUkdCKGUuZ2V0RmdDb2xvcigpKS5qb2luKCIsIikrIikiO2Vsc2V7dmFyIGE9ZS5nZXRGZ0NvbG9yKCk7dGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5kcmF3Qm9sZFRleHRJbkJyaWdodENvbG9ycyYmZS5pc0JvbGQoKSYmYTw4JiYoYSs9OCksdGhpcy5fY3R4LmZpbGxTdHlsZT10aGlzLl9jb2xvcnMuYW5zaVthXS5jc3N9dGhpcy5fY2xpcFJvdyhyKSxlLmlzRGltKCkmJih0aGlzLl9jdHguZ2xvYmFsQWxwaGE9bi5ESU1fT1BBQ0lUWSk7dmFyIGw9ITE7ITEhPT10aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmN1c3RvbUdseXBocyYmKGw9KDAsdS50cnlEcmF3Q3VzdG9tQ2hhcikodGhpcy5fY3R4LGUuZ2V0Q2hhcnMoKSx0KnRoaXMuX3NjYWxlZENlbGxXaWR0aCxyKnRoaXMuX3NjYWxlZENlbGxIZWlnaHQsdGhpcy5fc2NhbGVkQ2VsbFdpZHRoLHRoaXMuX3NjYWxlZENlbGxIZWlnaHQpKSxsfHx0aGlzLl9jdHguZmlsbFRleHQoZS5nZXRDaGFycygpLHQqdGhpcy5fc2NhbGVkQ2VsbFdpZHRoK3RoaXMuX3NjYWxlZENoYXJMZWZ0LHIqdGhpcy5fc2NhbGVkQ2VsbEhlaWdodCt0aGlzLl9zY2FsZWRDaGFyVG9wK3RoaXMuX3NjYWxlZENoYXJIZWlnaHQpLHRoaXMuX2N0eC5yZXN0b3JlKCl9LGUucHJvdG90eXBlLl9jbGlwUm93PWZ1bmN0aW9uKGUpe3RoaXMuX2N0eC5iZWdpblBhdGgoKSx0aGlzLl9jdHgucmVjdCgwLGUqdGhpcy5fc2NhbGVkQ2VsbEhlaWdodCx0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMqdGhpcy5fc2NhbGVkQ2VsbFdpZHRoLHRoaXMuX3NjYWxlZENlbGxIZWlnaHQpLHRoaXMuX2N0eC5jbGlwKCl9LGUucHJvdG90eXBlLl9nZXRGb250PWZ1bmN0aW9uKGUsdCl7cmV0dXJuKHQ/Iml0YWxpYyI6IiIpKyIgIisoZT90aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmZvbnRXZWlnaHRCb2xkOnRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuZm9udFdlaWdodCkrIiAiK3RoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuZm9udFNpemUqd2luZG93LmRldmljZVBpeGVsUmF0aW8rInB4ICIrdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5mb250RmFtaWx5fSxlLnByb3RvdHlwZS5fZ2V0Q29udHJhc3RDb2xvcj1mdW5jdGlvbihlKXtpZigxIT09dGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5taW5pbXVtQ29udHJhc3RSYXRpbyl7dmFyIHQ9dGhpcy5fY29sb3JzLmNvbnRyYXN0Q2FjaGUuZ2V0Q29sb3IoZS5iZyxlLmZnKTtpZih2b2lkIDAhPT10KXJldHVybiB0fHx2b2lkIDA7dmFyIHI9ZS5nZXRGZ0NvbG9yKCksaT1lLmdldEZnQ29sb3JNb2RlKCksbj1lLmdldEJnQ29sb3IoKSxvPWUuZ2V0QmdDb2xvck1vZGUoKSxzPSEhZS5pc0ludmVyc2UoKSxhPSEhZS5pc0ludmVyc2UoKTtpZihzKXt2YXIgbD1yO3I9bixuPWw7dmFyIHU9aTtpPW8sbz11fXZhciBoPXRoaXMuX3Jlc29sdmVCYWNrZ3JvdW5kUmdiYShvLG4scyksZj10aGlzLl9yZXNvbHZlRm9yZWdyb3VuZFJnYmEoaSxyLHMsYSksXz1jLnJnYmEuZW5zdXJlQ29udHJhc3RSYXRpbyhoLGYsdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5taW5pbXVtQ29udHJhc3RSYXRpbyk7aWYoXyl7dmFyIGQ9e2NzczpjLmNoYW5uZWxzLnRvQ3NzKF8+PjI0JjI1NSxfPj4xNiYyNTUsXz4+OCYyNTUpLHJnYmE6X307cmV0dXJuIHRoaXMuX2NvbG9ycy5jb250cmFzdENhY2hlLnNldENvbG9yKGUuYmcsZS5mZyxkKSxkfXRoaXMuX2NvbG9ycy5jb250cmFzdENhY2hlLnNldENvbG9yKGUuYmcsZS5mZyxudWxsKX19LGUucHJvdG90eXBlLl9yZXNvbHZlQmFja2dyb3VuZFJnYmE9ZnVuY3Rpb24oZSx0LHIpe3N3aXRjaChlKXtjYXNlIDE2Nzc3MjE2OmNhc2UgMzM1NTQ0MzI6cmV0dXJuIHRoaXMuX2NvbG9ycy5hbnNpW3RdLnJnYmE7Y2FzZSA1MDMzMTY0ODpyZXR1cm4gdDw8ODtkZWZhdWx0OnJldHVybiByP3RoaXMuX2NvbG9ycy5mb3JlZ3JvdW5kLnJnYmE6dGhpcy5fY29sb3JzLmJhY2tncm91bmQucmdiYX19LGUucHJvdG90eXBlLl9yZXNvbHZlRm9yZWdyb3VuZFJnYmE9ZnVuY3Rpb24oZSx0LHIsaSl7c3dpdGNoKGUpe2Nhc2UgMTY3NzcyMTY6Y2FzZSAzMzU1NDQzMjpyZXR1cm4gdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5kcmF3Qm9sZFRleHRJbkJyaWdodENvbG9ycyYmaSYmdDw4JiYodCs9OCksdGhpcy5fY29sb3JzLmFuc2lbdF0ucmdiYTtjYXNlIDUwMzMxNjQ4OnJldHVybiB0PDw4O2RlZmF1bHQ6cmV0dXJuIHI/dGhpcy5fY29sb3JzLmJhY2tncm91bmQucmdiYTp0aGlzLl9jb2xvcnMuZm9yZWdyb3VuZC5yZ2JhfX0sZX0oKTt0LkJhc2VSZW5kZXJMYXllcj1ofSwyNTEyOmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pLG89dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxzPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkN1cnNvclJlbmRlckxheWVyPXZvaWQgMDt2YXIgYT1yKDE1NDYpLGM9cig1MTEpLGw9cigyNTg1KSx1PXIoNDcyNSksaD02MDAsZj1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KHQscixpLG4sbyxzLGEsbCx1KXt2YXIgaD1lLmNhbGwodGhpcyx0LCJjdXJzb3IiLHIsITAsaSxuLHMsYSl8fHRoaXM7cmV0dXJuIGguX29uUmVxdWVzdFJlZHJhdz1vLGguX2NvcmVTZXJ2aWNlPWwsaC5fY29yZUJyb3dzZXJTZXJ2aWNlPXUsaC5fY2VsbD1uZXcgYy5DZWxsRGF0YSxoLl9zdGF0ZT17eDowLHk6MCxpc0ZvY3VzZWQ6ITEsc3R5bGU6IiIsd2lkdGg6MH0saC5fY3Vyc29yUmVuZGVyZXJzPXtiYXI6aC5fcmVuZGVyQmFyQ3Vyc29yLmJpbmQoaCksYmxvY2s6aC5fcmVuZGVyQmxvY2tDdXJzb3IuYmluZChoKSx1bmRlcmxpbmU6aC5fcmVuZGVyVW5kZXJsaW5lQ3Vyc29yLmJpbmQoaCl9LGh9cmV0dXJuIG4odCxlKSx0LnByb3RvdHlwZS5kaXNwb3NlPWZ1bmN0aW9uKCl7dGhpcy5fY3Vyc29yQmxpbmtTdGF0ZU1hbmFnZXImJih0aGlzLl9jdXJzb3JCbGlua1N0YXRlTWFuYWdlci5kaXNwb3NlKCksdGhpcy5fY3Vyc29yQmxpbmtTdGF0ZU1hbmFnZXI9dm9pZCAwKSxlLnByb3RvdHlwZS5kaXNwb3NlLmNhbGwodGhpcyl9LHQucHJvdG90eXBlLnJlc2l6ZT1mdW5jdGlvbih0KXtlLnByb3RvdHlwZS5yZXNpemUuY2FsbCh0aGlzLHQpLHRoaXMuX3N0YXRlPXt4OjAseTowLGlzRm9jdXNlZDohMSxzdHlsZToiIix3aWR0aDowfX0sdC5wcm90b3R5cGUucmVzZXQ9ZnVuY3Rpb24oKXt2YXIgZTt0aGlzLl9jbGVhckN1cnNvcigpLG51bGw9PT0oZT10aGlzLl9jdXJzb3JCbGlua1N0YXRlTWFuYWdlcil8fHZvaWQgMD09PWV8fGUucmVzdGFydEJsaW5rQW5pbWF0aW9uKCksdGhpcy5vbk9wdGlvbnNDaGFuZ2VkKCl9LHQucHJvdG90eXBlLm9uQmx1cj1mdW5jdGlvbigpe3ZhciBlO251bGw9PT0oZT10aGlzLl9jdXJzb3JCbGlua1N0YXRlTWFuYWdlcil8fHZvaWQgMD09PWV8fGUucGF1c2UoKSx0aGlzLl9vblJlcXVlc3RSZWRyYXcuZmlyZSh7c3RhcnQ6dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueSxlbmQ6dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueX0pfSx0LnByb3RvdHlwZS5vbkZvY3VzPWZ1bmN0aW9uKCl7dmFyIGU7bnVsbD09PShlPXRoaXMuX2N1cnNvckJsaW5rU3RhdGVNYW5hZ2VyKXx8dm9pZCAwPT09ZXx8ZS5yZXN1bWUoKSx0aGlzLl9vblJlcXVlc3RSZWRyYXcuZmlyZSh7c3RhcnQ6dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueSxlbmQ6dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueX0pfSx0LnByb3RvdHlwZS5vbk9wdGlvbnNDaGFuZ2VkPWZ1bmN0aW9uKCl7dmFyIGUsdD10aGlzO3RoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuY3Vyc29yQmxpbms/dGhpcy5fY3Vyc29yQmxpbmtTdGF0ZU1hbmFnZXJ8fCh0aGlzLl9jdXJzb3JCbGlua1N0YXRlTWFuYWdlcj1uZXcgXyh0aGlzLl9jb3JlQnJvd3NlclNlcnZpY2UuaXNGb2N1c2VkLChmdW5jdGlvbigpe3QuX3JlbmRlcighMCl9KSkpOihudWxsPT09KGU9dGhpcy5fY3Vyc29yQmxpbmtTdGF0ZU1hbmFnZXIpfHx2b2lkIDA9PT1lfHxlLmRpc3Bvc2UoKSx0aGlzLl9jdXJzb3JCbGlua1N0YXRlTWFuYWdlcj12b2lkIDApLHRoaXMuX29uUmVxdWVzdFJlZHJhdy5maXJlKHtzdGFydDp0aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55LGVuZDp0aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55fSl9LHQucHJvdG90eXBlLm9uQ3Vyc29yTW92ZT1mdW5jdGlvbigpe3ZhciBlO251bGw9PT0oZT10aGlzLl9jdXJzb3JCbGlua1N0YXRlTWFuYWdlcil8fHZvaWQgMD09PWV8fGUucmVzdGFydEJsaW5rQW5pbWF0aW9uKCl9LHQucHJvdG90eXBlLm9uR3JpZENoYW5nZWQ9ZnVuY3Rpb24oZSx0KXshdGhpcy5fY3Vyc29yQmxpbmtTdGF0ZU1hbmFnZXJ8fHRoaXMuX2N1cnNvckJsaW5rU3RhdGVNYW5hZ2VyLmlzUGF1c2VkP3RoaXMuX3JlbmRlcighMSk6dGhpcy5fY3Vyc29yQmxpbmtTdGF0ZU1hbmFnZXIucmVzdGFydEJsaW5rQW5pbWF0aW9uKCl9LHQucHJvdG90eXBlLl9yZW5kZXI9ZnVuY3Rpb24oZSl7aWYodGhpcy5fY29yZVNlcnZpY2UuaXNDdXJzb3JJbml0aWFsaXplZCYmIXRoaXMuX2NvcmVTZXJ2aWNlLmlzQ3Vyc29ySGlkZGVuKXt2YXIgdD10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55YmFzZSt0aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55LHI9dC10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55ZGlzcDtpZihyPDB8fHI+PXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cyl0aGlzLl9jbGVhckN1cnNvcigpO2Vsc2V7dmFyIGk9TWF0aC5taW4odGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueCx0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMtMSk7aWYodGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIubGluZXMuZ2V0KHQpLmxvYWRDZWxsKGksdGhpcy5fY2VsbCksdm9pZCAwIT09dGhpcy5fY2VsbC5jb250ZW50KXtpZighdGhpcy5fY29yZUJyb3dzZXJTZXJ2aWNlLmlzRm9jdXNlZCl7dGhpcy5fY2xlYXJDdXJzb3IoKSx0aGlzLl9jdHguc2F2ZSgpLHRoaXMuX2N0eC5maWxsU3R5bGU9dGhpcy5fY29sb3JzLmN1cnNvci5jc3M7dmFyIG49dGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5jdXJzb3JTdHlsZTtyZXR1cm4gbiYmImJsb2NrIiE9PW4/dGhpcy5fY3Vyc29yUmVuZGVyZXJzW25dKGkscix0aGlzLl9jZWxsKTp0aGlzLl9yZW5kZXJCbHVyQ3Vyc29yKGkscix0aGlzLl9jZWxsKSx0aGlzLl9jdHgucmVzdG9yZSgpLHRoaXMuX3N0YXRlLng9aSx0aGlzLl9zdGF0ZS55PXIsdGhpcy5fc3RhdGUuaXNGb2N1c2VkPSExLHRoaXMuX3N0YXRlLnN0eWxlPW4sdm9pZCh0aGlzLl9zdGF0ZS53aWR0aD10aGlzLl9jZWxsLmdldFdpZHRoKCkpfWlmKCF0aGlzLl9jdXJzb3JCbGlua1N0YXRlTWFuYWdlcnx8dGhpcy5fY3Vyc29yQmxpbmtTdGF0ZU1hbmFnZXIuaXNDdXJzb3JWaXNpYmxlKXtpZih0aGlzLl9zdGF0ZSl7aWYodGhpcy5fc3RhdGUueD09PWkmJnRoaXMuX3N0YXRlLnk9PT1yJiZ0aGlzLl9zdGF0ZS5pc0ZvY3VzZWQ9PT10aGlzLl9jb3JlQnJvd3NlclNlcnZpY2UuaXNGb2N1c2VkJiZ0aGlzLl9zdGF0ZS5zdHlsZT09PXRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuY3Vyc29yU3R5bGUmJnRoaXMuX3N0YXRlLndpZHRoPT09dGhpcy5fY2VsbC5nZXRXaWR0aCgpKXJldHVybjt0aGlzLl9jbGVhckN1cnNvcigpfXRoaXMuX2N0eC5zYXZlKCksdGhpcy5fY3Vyc29yUmVuZGVyZXJzW3RoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuY3Vyc29yU3R5bGV8fCJibG9jayJdKGkscix0aGlzLl9jZWxsKSx0aGlzLl9jdHgucmVzdG9yZSgpLHRoaXMuX3N0YXRlLng9aSx0aGlzLl9zdGF0ZS55PXIsdGhpcy5fc3RhdGUuaXNGb2N1c2VkPSExLHRoaXMuX3N0YXRlLnN0eWxlPXRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuY3Vyc29yU3R5bGUsdGhpcy5fc3RhdGUud2lkdGg9dGhpcy5fY2VsbC5nZXRXaWR0aCgpfWVsc2UgdGhpcy5fY2xlYXJDdXJzb3IoKX19fWVsc2UgdGhpcy5fY2xlYXJDdXJzb3IoKX0sdC5wcm90b3R5cGUuX2NsZWFyQ3Vyc29yPWZ1bmN0aW9uKCl7dGhpcy5fc3RhdGUmJih3aW5kb3cuZGV2aWNlUGl4ZWxSYXRpbzwxP3RoaXMuX2NsZWFyQWxsKCk6dGhpcy5fY2xlYXJDZWxscyh0aGlzLl9zdGF0ZS54LHRoaXMuX3N0YXRlLnksdGhpcy5fc3RhdGUud2lkdGgsMSksdGhpcy5fc3RhdGU9e3g6MCx5OjAsaXNGb2N1c2VkOiExLHN0eWxlOiIiLHdpZHRoOjB9KX0sdC5wcm90b3R5cGUuX3JlbmRlckJhckN1cnNvcj1mdW5jdGlvbihlLHQscil7dGhpcy5fY3R4LnNhdmUoKSx0aGlzLl9jdHguZmlsbFN0eWxlPXRoaXMuX2NvbG9ycy5jdXJzb3IuY3NzLHRoaXMuX2ZpbGxMZWZ0TGluZUF0Q2VsbChlLHQsdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5jdXJzb3JXaWR0aCksdGhpcy5fY3R4LnJlc3RvcmUoKX0sdC5wcm90b3R5cGUuX3JlbmRlckJsb2NrQ3Vyc29yPWZ1bmN0aW9uKGUsdCxyKXt0aGlzLl9jdHguc2F2ZSgpLHRoaXMuX2N0eC5maWxsU3R5bGU9dGhpcy5fY29sb3JzLmN1cnNvci5jc3MsdGhpcy5fZmlsbENlbGxzKGUsdCxyLmdldFdpZHRoKCksMSksdGhpcy5fY3R4LmZpbGxTdHlsZT10aGlzLl9jb2xvcnMuY3Vyc29yQWNjZW50LmNzcyx0aGlzLl9maWxsQ2hhclRydWVDb2xvcihyLGUsdCksdGhpcy5fY3R4LnJlc3RvcmUoKX0sdC5wcm90b3R5cGUuX3JlbmRlclVuZGVybGluZUN1cnNvcj1mdW5jdGlvbihlLHQscil7dGhpcy5fY3R4LnNhdmUoKSx0aGlzLl9jdHguZmlsbFN0eWxlPXRoaXMuX2NvbG9ycy5jdXJzb3IuY3NzLHRoaXMuX2ZpbGxCb3R0b21MaW5lQXRDZWxscyhlLHQpLHRoaXMuX2N0eC5yZXN0b3JlKCl9LHQucHJvdG90eXBlLl9yZW5kZXJCbHVyQ3Vyc29yPWZ1bmN0aW9uKGUsdCxyKXt0aGlzLl9jdHguc2F2ZSgpLHRoaXMuX2N0eC5zdHJva2VTdHlsZT10aGlzLl9jb2xvcnMuY3Vyc29yLmNzcyx0aGlzLl9zdHJva2VSZWN0QXRDZWxsKGUsdCxyLmdldFdpZHRoKCksMSksdGhpcy5fY3R4LnJlc3RvcmUoKX0sbyhbcyg1LGwuSUJ1ZmZlclNlcnZpY2UpLHMoNixsLklPcHRpb25zU2VydmljZSkscyg3LGwuSUNvcmVTZXJ2aWNlKSxzKDgsdS5JQ29yZUJyb3dzZXJTZXJ2aWNlKV0sdCl9KGEuQmFzZVJlbmRlckxheWVyKTt0LkN1cnNvclJlbmRlckxheWVyPWY7dmFyIF89ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUsdCl7dGhpcy5fcmVuZGVyQ2FsbGJhY2s9dCx0aGlzLmlzQ3Vyc29yVmlzaWJsZT0hMCxlJiZ0aGlzLl9yZXN0YXJ0SW50ZXJ2YWwoKX1yZXR1cm4gT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJpc1BhdXNlZCIse2dldDpmdW5jdGlvbigpe3JldHVybiEodGhpcy5fYmxpbmtTdGFydFRpbWVvdXR8fHRoaXMuX2JsaW5rSW50ZXJ2YWwpfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLGUucHJvdG90eXBlLmRpc3Bvc2U9ZnVuY3Rpb24oKXt0aGlzLl9ibGlua0ludGVydmFsJiYod2luZG93LmNsZWFySW50ZXJ2YWwodGhpcy5fYmxpbmtJbnRlcnZhbCksdGhpcy5fYmxpbmtJbnRlcnZhbD12b2lkIDApLHRoaXMuX2JsaW5rU3RhcnRUaW1lb3V0JiYod2luZG93LmNsZWFyVGltZW91dCh0aGlzLl9ibGlua1N0YXJ0VGltZW91dCksdGhpcy5fYmxpbmtTdGFydFRpbWVvdXQ9dm9pZCAwKSx0aGlzLl9hbmltYXRpb25GcmFtZSYmKHdpbmRvdy5jYW5jZWxBbmltYXRpb25GcmFtZSh0aGlzLl9hbmltYXRpb25GcmFtZSksdGhpcy5fYW5pbWF0aW9uRnJhbWU9dm9pZCAwKX0sZS5wcm90b3R5cGUucmVzdGFydEJsaW5rQW5pbWF0aW9uPWZ1bmN0aW9uKCl7dmFyIGU9dGhpczt0aGlzLmlzUGF1c2VkfHwodGhpcy5fYW5pbWF0aW9uVGltZVJlc3RhcnRlZD1EYXRlLm5vdygpLHRoaXMuaXNDdXJzb3JWaXNpYmxlPSEwLHRoaXMuX2FuaW1hdGlvbkZyYW1lfHwodGhpcy5fYW5pbWF0aW9uRnJhbWU9d2luZG93LnJlcXVlc3RBbmltYXRpb25GcmFtZSgoZnVuY3Rpb24oKXtlLl9yZW5kZXJDYWxsYmFjaygpLGUuX2FuaW1hdGlvbkZyYW1lPXZvaWQgMH0pKSkpfSxlLnByb3RvdHlwZS5fcmVzdGFydEludGVydmFsPWZ1bmN0aW9uKGUpe3ZhciB0PXRoaXM7dm9pZCAwPT09ZSYmKGU9aCksdGhpcy5fYmxpbmtJbnRlcnZhbCYmKHdpbmRvdy5jbGVhckludGVydmFsKHRoaXMuX2JsaW5rSW50ZXJ2YWwpLHRoaXMuX2JsaW5rSW50ZXJ2YWw9dm9pZCAwKSx0aGlzLl9ibGlua1N0YXJ0VGltZW91dD13aW5kb3cuc2V0VGltZW91dCgoZnVuY3Rpb24oKXtpZih0Ll9hbmltYXRpb25UaW1lUmVzdGFydGVkKXt2YXIgZT1oLShEYXRlLm5vdygpLXQuX2FuaW1hdGlvblRpbWVSZXN0YXJ0ZWQpO2lmKHQuX2FuaW1hdGlvblRpbWVSZXN0YXJ0ZWQ9dm9pZCAwLGU+MClyZXR1cm4gdm9pZCB0Ll9yZXN0YXJ0SW50ZXJ2YWwoZSl9dC5pc0N1cnNvclZpc2libGU9ITEsdC5fYW5pbWF0aW9uRnJhbWU9d2luZG93LnJlcXVlc3RBbmltYXRpb25GcmFtZSgoZnVuY3Rpb24oKXt0Ll9yZW5kZXJDYWxsYmFjaygpLHQuX2FuaW1hdGlvbkZyYW1lPXZvaWQgMH0pKSx0Ll9ibGlua0ludGVydmFsPXdpbmRvdy5zZXRJbnRlcnZhbCgoZnVuY3Rpb24oKXtpZih0Ll9hbmltYXRpb25UaW1lUmVzdGFydGVkKXt2YXIgZT1oLShEYXRlLm5vdygpLXQuX2FuaW1hdGlvblRpbWVSZXN0YXJ0ZWQpO3JldHVybiB0Ll9hbmltYXRpb25UaW1lUmVzdGFydGVkPXZvaWQgMCx2b2lkIHQuX3Jlc3RhcnRJbnRlcnZhbChlKX10LmlzQ3Vyc29yVmlzaWJsZT0hdC5pc0N1cnNvclZpc2libGUsdC5fYW5pbWF0aW9uRnJhbWU9d2luZG93LnJlcXVlc3RBbmltYXRpb25GcmFtZSgoZnVuY3Rpb24oKXt0Ll9yZW5kZXJDYWxsYmFjaygpLHQuX2FuaW1hdGlvbkZyYW1lPXZvaWQgMH0pKX0pLGgpfSksZSl9LGUucHJvdG90eXBlLnBhdXNlPWZ1bmN0aW9uKCl7dGhpcy5pc0N1cnNvclZpc2libGU9ITAsdGhpcy5fYmxpbmtJbnRlcnZhbCYmKHdpbmRvdy5jbGVhckludGVydmFsKHRoaXMuX2JsaW5rSW50ZXJ2YWwpLHRoaXMuX2JsaW5rSW50ZXJ2YWw9dm9pZCAwKSx0aGlzLl9ibGlua1N0YXJ0VGltZW91dCYmKHdpbmRvdy5jbGVhclRpbWVvdXQodGhpcy5fYmxpbmtTdGFydFRpbWVvdXQpLHRoaXMuX2JsaW5rU3RhcnRUaW1lb3V0PXZvaWQgMCksdGhpcy5fYW5pbWF0aW9uRnJhbWUmJih3aW5kb3cuY2FuY2VsQW5pbWF0aW9uRnJhbWUodGhpcy5fYW5pbWF0aW9uRnJhbWUpLHRoaXMuX2FuaW1hdGlvbkZyYW1lPXZvaWQgMCl9LGUucHJvdG90eXBlLnJlc3VtZT1mdW5jdGlvbigpe3RoaXMucGF1c2UoKSx0aGlzLl9hbmltYXRpb25UaW1lUmVzdGFydGVkPXZvaWQgMCx0aGlzLl9yZXN0YXJ0SW50ZXJ2YWwoKSx0aGlzLnJlc3RhcnRCbGlua0FuaW1hdGlvbigpfSxlfSgpfSw4OTc4OihlLHQscik9Pnt2YXIgaSxuLG8scyxhLGMsbCx1LGgsZixfLGQscCx2LGcseSxtLGIsUyxDLHcsTCxFLHgsQSxrLE0sUixULE8sQixELFAsSSxILGosRixXLFUscSxOLHosSyxWLEcsWSxYLFosSiwkLFEsZWUsdGUscmUsaWUsbmUsb2Usc2UsYWUsY2UsbGUsdWUsaGUsZmUsX2UsZGUscGUsdmUsZ2UseWUsbWUsYmUsU2UsQ2Usd2UsTGUsRWUseGUsQWUsa2UsTWUsUmUsVGUsT2UsQmUsRGUsUGUsSWUsSGUsamUsRmUsV2UsVWUscWUsTmUsemUsS2UsVmUsR2UsWWUsWGUsWmUsSmUsJGUsUWUsZXQsdHQscnQsaXQsbnQsb3Qsc3QsYXQsY3QsbHQsdXQsaHQsZnQsX3QsZHQscHQsdnQsZ3QseXQsbXQsYnQsU3QsQ3Q7T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQudHJ5RHJhd0N1c3RvbUNoYXI9dC5ib3hEcmF3aW5nRGVmaW5pdGlvbnM9dC5ibG9ja0VsZW1lbnREZWZpbml0aW9ucz12b2lkIDA7dmFyIHd0PXIoMTc1Mik7dC5ibG9ja0VsZW1lbnREZWZpbml0aW9ucz17IuKWgCI6W3t4OjAseTowLHc6OCxoOjR9XSwi4paBIjpbe3g6MCx5Ojcsdzo4LGg6MX1dLCLiloIiOlt7eDowLHk6Nix3OjgsaDoyfV0sIuKWgyI6W3t4OjAseTo1LHc6OCxoOjN9XSwi4paEIjpbe3g6MCx5OjQsdzo4LGg6NH1dLCLiloUiOlt7eDowLHk6Myx3OjgsaDo1fV0sIuKWhiI6W3t4OjAseToyLHc6OCxoOjZ9XSwi4paHIjpbe3g6MCx5OjEsdzo4LGg6N31dLCLilogiOlt7eDowLHk6MCx3OjgsaDo4fV0sIuKWiSI6W3t4OjAseTowLHc6NyxoOjh9XSwi4paKIjpbe3g6MCx5OjAsdzo2LGg6OH1dLCLilosiOlt7eDowLHk6MCx3OjUsaDo4fV0sIuKWjCI6W3t4OjAseTowLHc6NCxoOjh9XSwi4paNIjpbe3g6MCx5OjAsdzozLGg6OH1dLCLilo4iOlt7eDowLHk6MCx3OjIsaDo4fV0sIuKWjyI6W3t4OjAseTowLHc6MSxoOjh9XSwi4paQIjpbe3g6NCx5OjAsdzo0LGg6OH1dLCLilpQiOlt7eDowLHk6MCx3OjksaDoxfV0sIuKWlSI6W3t4OjcseTowLHc6MSxoOjh9XSwi4paWIjpbe3g6MCx5OjQsdzo0LGg6NH1dLCLilpciOlt7eDo0LHk6NCx3OjQsaDo0fV0sIuKWmCI6W3t4OjAseTowLHc6NCxoOjR9XSwi4paZIjpbe3g6MCx5OjAsdzo0LGg6OH0se3g6MCx5OjQsdzo4LGg6NH1dLCLilpoiOlt7eDowLHk6MCx3OjQsaDo0fSx7eDo0LHk6NCx3OjQsaDo0fV0sIuKWmyI6W3t4OjAseTowLHc6NCxoOjh9LHt4OjAseTowLHc6NCxoOjh9XSwi4pacIjpbe3g6MCx5OjAsdzo4LGg6NH0se3g6NCx5OjAsdzo0LGg6OH1dLCLilp0iOlt7eDo0LHk6MCx3OjQsaDo0fV0sIuKWniI6W3t4OjQseTowLHc6NCxoOjR9LHt4OjAseTo0LHc6NCxoOjR9XSwi4pafIjpbe3g6NCx5OjAsdzo0LGg6OH0se3g6MCx5OjQsdzo4LGg6NH1dLCLwn62wIjpbe3g6MSx5OjAsdzoxLGg6OH1dLCLwn62xIjpbe3g6Mix5OjAsdzoxLGg6OH1dLCLwn62yIjpbe3g6Myx5OjAsdzoxLGg6OH1dLCLwn62zIjpbe3g6NCx5OjAsdzoxLGg6OH1dLCLwn620Ijpbe3g6NSx5OjAsdzoxLGg6OH1dLCLwn621Ijpbe3g6Nix5OjAsdzoxLGg6OH1dLCLwn622Ijpbe3g6MCx5OjEsdzo4LGg6MX1dLCLwn623Ijpbe3g6MCx5OjIsdzo4LGg6MX1dLCLwn624Ijpbe3g6MCx5OjMsdzo4LGg6MX1dLCLwn625Ijpbe3g6MCx5OjQsdzo4LGg6MX1dLCLwn626Ijpbe3g6MCx5OjUsdzo4LGg6MX1dLCLwn627Ijpbe3g6MCx5OjYsdzo4LGg6MX1dLCLwn628Ijpbe3g6MCx5OjAsdzoxLGg6OH0se3g6MCx5Ojcsdzo4LGg6MX1dLCLwn629Ijpbe3g6MCx5OjAsdzoxLGg6OH0se3g6MCx5OjAsdzo4LGg6MX1dLCLwn62+Ijpbe3g6Nyx5OjAsdzoxLGg6OH0se3g6MCx5OjAsdzo4LGg6MX1dLCLwn62/Ijpbe3g6Nyx5OjAsdzoxLGg6OH0se3g6MCx5Ojcsdzo4LGg6MX1dLCLwn66AIjpbe3g6MCx5OjAsdzo4LGg6MX0se3g6MCx5Ojcsdzo4LGg6MX1dLCLwn66BIjpbe3g6MCx5OjAsdzo4LGg6MX0se3g6MCx5OjIsdzo4LGg6MX0se3g6MCx5OjQsdzo4LGg6MX0se3g6MCx5Ojcsdzo4LGg6MX1dLCLwn66CIjpbe3g6MCx5OjAsdzo4LGg6Mn1dLCLwn66DIjpbe3g6MCx5OjAsdzo4LGg6M31dLCLwn66EIjpbe3g6MCx5OjAsdzo4LGg6NX1dLCLwn66FIjpbe3g6MCx5OjAsdzo4LGg6Nn1dLCLwn66GIjpbe3g6MCx5OjAsdzo4LGg6N31dLCLwn66HIjpbe3g6Nix5OjAsdzoyLGg6OH1dLCLwn66IIjpbe3g6NSx5OjAsdzozLGg6OH1dLCLwn66JIjpbe3g6Myx5OjAsdzo1LGg6OH1dLCLwn66KIjpbe3g6Mix5OjAsdzo2LGg6OH1dLCLwn66LIjpbe3g6MSx5OjAsdzo3LGg6OH1dLCLwn66VIjpbe3g6MCx5OjAsdzoyLGg6Mn0se3g6NCx5OjAsdzoyLGg6Mn0se3g6Mix5OjIsdzoyLGg6Mn0se3g6Nix5OjIsdzoyLGg6Mn0se3g6MCx5OjQsdzoyLGg6Mn0se3g6NCx5OjQsdzoyLGg6Mn0se3g6Mix5OjYsdzoyLGg6Mn0se3g6Nix5OjYsdzoyLGg6Mn1dLCLwn66WIjpbe3g6Mix5OjAsdzoyLGg6Mn0se3g6Nix5OjAsdzoyLGg6Mn0se3g6MCx5OjIsdzoyLGg6Mn0se3g6NCx5OjIsdzoyLGg6Mn0se3g6Mix5OjQsdzoyLGg6Mn0se3g6Nix5OjQsdzoyLGg6Mn0se3g6MCx5OjYsdzoyLGg6Mn0se3g6NCx5OjYsdzoyLGg6Mn1dLCLwn66XIjpbe3g6MCx5OjIsdzo4LGg6Mn0se3g6MCx5OjYsdzo4LGg6Mn1dfTt2YXIgTHQ9eyLilpEiOltbMSwwLDAsMF0sWzAsMCwwLDBdLFswLDAsMSwwXSxbMCwwLDAsMF1dLCLilpIiOltbMSwwXSxbMCwwXSxbMCwxXSxbMCwwXV0sIuKWkyI6W1swLDFdLFsxLDFdLFsxLDBdLFsxLDFdXX07dC5ib3hEcmF3aW5nRGVmaW5pdGlvbnM9eyLilIAiOihpPXt9LGlbMV09Ik0wLC41IEwxLC41IixpKSwi4pSBIjoobj17fSxuWzNdPSJNMCwuNSBMMSwuNSIsbiksIuKUgiI6KG89e30sb1sxXT0iTS41LDAgTC41LDEiLG8pLCLilIMiOihzPXt9LHNbM109Ik0uNSwwIEwuNSwxIixzKSwi4pSMIjooYT17fSxhWzFdPSJNMC41LDEgTC41LC41IEwxLC41IixhKSwi4pSPIjooYz17fSxjWzNdPSJNMC41LDEgTC41LC41IEwxLC41IixjKSwi4pSQIjoobD17fSxsWzFdPSJNMCwuNSBMLjUsLjUgTC41LDEiLGwpLCLilJMiOih1PXt9LHVbM109Ik0wLC41IEwuNSwuNSBMLjUsMSIsdSksIuKUlCI6KGg9e30saFsxXT0iTS41LDAgTC41LC41IEwxLC41IixoKSwi4pSXIjooZj17fSxmWzNdPSJNLjUsMCBMLjUsLjUgTDEsLjUiLGYpLCLilJgiOihfPXt9LF9bMV09Ik0uNSwwIEwuNSwuNSBMMCwuNSIsXyksIuKUmyI6KGQ9e30sZFszXT0iTS41LDAgTC41LC41IEwwLC41IixkKSwi4pScIjoocD17fSxwWzFdPSJNLjUsMCBMLjUsMSBNLjUsLjUgTDEsLjUiLHApLCLilKMiOih2PXt9LHZbM109Ik0uNSwwIEwuNSwxIE0uNSwuNSBMMSwuNSIsdiksIuKUpCI6KGc9e30sZ1sxXT0iTS41LDAgTC41LDEgTS41LC41IEwwLC41IixnKSwi4pSrIjooeT17fSx5WzNdPSJNLjUsMCBMLjUsMSBNLjUsLjUgTDAsLjUiLHkpLCLilKwiOihtPXt9LG1bMV09Ik0wLC41IEwxLC41IE0uNSwuNSBMLjUsMSIsbSksIuKUsyI6KGI9e30sYlszXT0iTTAsLjUgTDEsLjUgTS41LC41IEwuNSwxIixiKSwi4pS0IjooUz17fSxTWzFdPSJNMCwuNSBMMSwuNSBNLjUsLjUgTC41LDAiLFMpLCLilLsiOihDPXt9LENbM109Ik0wLC41IEwxLC41IE0uNSwuNSBMLjUsMCIsQyksIuKUvCI6KHc9e30sd1sxXT0iTTAsLjUgTDEsLjUgTS41LDAgTC41LDEiLHcpLCLilYsiOihMPXt9LExbM109Ik0wLC41IEwxLC41IE0uNSwwIEwuNSwxIixMKSwi4pW0IjooRT17fSxFWzFdPSJNLjUsLjUgTDAsLjUiLEUpLCLilbgiOih4PXt9LHhbM109Ik0uNSwuNSBMMCwuNSIseCksIuKVtSI6KEE9e30sQVsxXT0iTS41LC41IEwuNSwwIixBKSwi4pW5Ijooaz17fSxrWzNdPSJNLjUsLjUgTC41LDAiLGspLCLilbYiOihNPXt9LE1bMV09Ik0uNSwuNSBMMSwuNSIsTSksIuKVuiI6KFI9e30sUlszXT0iTS41LC41IEwxLC41IixSKSwi4pW3IjooVD17fSxUWzFdPSJNLjUsLjUgTC41LDEiLFQpLCLilbsiOihPPXt9LE9bM109Ik0uNSwuNSBMLjUsMSIsTyksIuKVkCI6KEI9e30sQlsxXT1mdW5jdGlvbihlLHQpe3JldHVybiJNMCwiKyguNS10KSsiIEwxLCIrKC41LXQpKyIgTTAsIisoLjUrdCkrIiBMMSwiKyguNSt0KX0sQiksIuKVkSI6KEQ9e30sRFsxXT1mdW5jdGlvbihlLHQpe3JldHVybiJNIisoLjUtZSkrIiwwIEwiKyguNS1lKSsiLDEgTSIrKC41K2UpKyIsMCBMIisoLjUrZSkrIiwxIn0sRCksIuKVkiI6KFA9e30sUFsxXT1mdW5jdGlvbihlLHQpe3JldHVybiJNLjUsMSBMLjUsIisoLjUtdCkrIiBMMSwiKyguNS10KSsiIE0uNSwiKyguNSt0KSsiIEwxLCIrKC41K3QpfSxQKSwi4pWTIjooST17fSxJWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0iKyguNS1lKSsiLDEgTCIrKC41LWUpKyIsLjUgTDEsLjUgTSIrKC41K2UpKyIsLjUgTCIrKC41K2UpKyIsMSJ9LEkpLCLilZQiOihIPXt9LEhbMV09ZnVuY3Rpb24oZSx0KXtyZXR1cm4iTTEsIisoLjUtdCkrIiBMIisoLjUtZSkrIiwiKyguNS10KSsiIEwiKyguNS1lKSsiLDEgTTEsIisoLjUrdCkrIiBMIisoLjUrZSkrIiwiKyguNSt0KSsiIEwiKyguNStlKSsiLDEifSxIKSwi4pWVIjooaj17fSxqWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0wLCIrKC41LXQpKyIgTC41LCIrKC41LXQpKyIgTC41LDEgTTAsIisoLjUrdCkrIiBMLjUsIisoLjUrdCl9LGopLCLilZYiOihGPXt9LEZbMV09ZnVuY3Rpb24oZSx0KXtyZXR1cm4iTSIrKC41K2UpKyIsMSBMIisoLjUrZSkrIiwuNSBMMCwuNSBNIisoLjUtZSkrIiwuNSBMIisoLjUtZSkrIiwxIn0sRiksIuKVlyI6KFc9e30sV1sxXT1mdW5jdGlvbihlLHQpe3JldHVybiJNMCwiKyguNSt0KSsiIEwiKyguNS1lKSsiLCIrKC41K3QpKyIgTCIrKC41LWUpKyIsMSBNMCwiKyguNS10KSsiIEwiKyguNStlKSsiLCIrKC41LXQpKyIgTCIrKC41K2UpKyIsMSJ9LFcpLCLilZgiOihVPXt9LFVbMV09ZnVuY3Rpb24oZSx0KXtyZXR1cm4iTS41LDAgTC41LCIrKC41K3QpKyIgTDEsIisoLjUrdCkrIiBNLjUsIisoLjUtdCkrIiBMMSwiKyguNS10KX0sVSksIuKVmSI6KHE9e30scVsxXT1mdW5jdGlvbihlLHQpe3JldHVybiJNMSwuNSBMIisoLjUtZSkrIiwuNSBMIisoLjUtZSkrIiwwIE0iKyguNStlKSsiLC41IEwiKyguNStlKSsiLDAifSxxKSwi4pWaIjooTj17fSxOWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0xLCIrKC41LXQpKyIgTCIrKC41K2UpKyIsIisoLjUtdCkrIiBMIisoLjUrZSkrIiwwIE0xLCIrKC41K3QpKyIgTCIrKC41LWUpKyIsIisoLjUrdCkrIiBMIisoLjUtZSkrIiwwIn0sTiksIuKVmyI6KHo9e30selsxXT1mdW5jdGlvbihlLHQpe3JldHVybiJNMCwiKyguNSt0KSsiIEwuNSwiKyguNSt0KSsiIEwuNSwwIE0wLCIrKC41LXQpKyIgTC41LCIrKC41LXQpfSx6KSwi4pWcIjooSz17fSxLWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0wLC41IEwiKyguNStlKSsiLC41IEwiKyguNStlKSsiLDAgTSIrKC41LWUpKyIsLjUgTCIrKC41LWUpKyIsMCJ9LEspLCLilZ0iOihWPXt9LFZbMV09ZnVuY3Rpb24oZSx0KXtyZXR1cm4iTTAsIisoLjUtdCkrIiBMIisoLjUtZSkrIiwiKyguNS10KSsiIEwiKyguNS1lKSsiLDAgTTAsIisoLjUrdCkrIiBMIisoLjUrZSkrIiwiKyguNSt0KSsiIEwiKyguNStlKSsiLDAifSxWKSwi4pWeIjooRz17fSxHWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0uNSwwIEwuNSwxIE0uNSwiKyguNS10KSsiIEwxLCIrKC41LXQpKyIgTS41LCIrKC41K3QpKyIgTDEsIisoLjUrdCl9LEcpLCLilZ8iOihZPXt9LFlbMV09ZnVuY3Rpb24oZSx0KXtyZXR1cm4iTSIrKC41LWUpKyIsMCBMIisoLjUtZSkrIiwxIE0iKyguNStlKSsiLDAgTCIrKC41K2UpKyIsMSBNIisoLjUrZSkrIiwuNSBMMSwuNSJ9LFkpLCLilaAiOihYPXt9LFhbMV09ZnVuY3Rpb24oZSx0KXtyZXR1cm4iTSIrKC41LWUpKyIsMCBMIisoLjUtZSkrIiwxIE0xLCIrKC41K3QpKyIgTCIrKC41K2UpKyIsIisoLjUrdCkrIiBMIisoLjUrZSkrIiwxIE0xLCIrKC41LXQpKyIgTCIrKC41K2UpKyIsIisoLjUtdCkrIiBMIisoLjUrZSkrIiwwIn0sWCksIuKVoSI6KFo9e30sWlsxXT1mdW5jdGlvbihlLHQpe3JldHVybiJNLjUsMCBMLjUsMSBNMCwiKyguNS10KSsiIEwuNSwiKyguNS10KSsiIE0wLCIrKC41K3QpKyIgTC41LCIrKC41K3QpfSxaKSwi4pWiIjooSj17fSxKWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0wLC41IEwiKyguNS1lKSsiLC41IE0iKyguNS1lKSsiLDAgTCIrKC41LWUpKyIsMSBNIisoLjUrZSkrIiwwIEwiKyguNStlKSsiLDEifSxKKSwi4pWjIjooJD17fSwkWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0iKyguNStlKSsiLDAgTCIrKC41K2UpKyIsMSBNMCwiKyguNSt0KSsiIEwiKyguNS1lKSsiLCIrKC41K3QpKyIgTCIrKC41LWUpKyIsMSBNMCwiKyguNS10KSsiIEwiKyguNS1lKSsiLCIrKC41LXQpKyIgTCIrKC41LWUpKyIsMCJ9LCQpLCLilaQiOihRPXt9LFFbMV09ZnVuY3Rpb24oZSx0KXtyZXR1cm4iTTAsIisoLjUtdCkrIiBMMSwiKyguNS10KSsiIE0wLCIrKC41K3QpKyIgTDEsIisoLjUrdCkrIiBNLjUsIisoLjUrdCkrIiBMLjUsMSJ9LFEpLCLilaUiOihlZT17fSxlZVsxXT1mdW5jdGlvbihlLHQpe3JldHVybiJNMCwuNSBMMSwuNSBNIisoLjUtZSkrIiwuNSBMIisoLjUtZSkrIiwxIE0iKyguNStlKSsiLC41IEwiKyguNStlKSsiLDEifSxlZSksIuKVpiI6KHRlPXt9LHRlWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0wLCIrKC41LXQpKyIgTDEsIisoLjUtdCkrIiBNMCwiKyguNSt0KSsiIEwiKyguNS1lKSsiLCIrKC41K3QpKyIgTCIrKC41LWUpKyIsMSBNMSwiKyguNSt0KSsiIEwiKyguNStlKSsiLCIrKC41K3QpKyIgTCIrKC41K2UpKyIsMSJ9LHRlKSwi4pWnIjoocmU9e30scmVbMV09ZnVuY3Rpb24oZSx0KXtyZXR1cm4iTS41LDAgTC41LCIrKC41LXQpKyIgTTAsIisoLjUtdCkrIiBMMSwiKyguNS10KSsiIE0wLCIrKC41K3QpKyIgTDEsIisoLjUrdCl9LHJlKSwi4pWoIjooaWU9e30saWVbMV09ZnVuY3Rpb24oZSx0KXtyZXR1cm4iTTAsLjUgTDEsLjUgTSIrKC41LWUpKyIsLjUgTCIrKC41LWUpKyIsMCBNIisoLjUrZSkrIiwuNSBMIisoLjUrZSkrIiwwIn0saWUpLCLilakiOihuZT17fSxuZVsxXT1mdW5jdGlvbihlLHQpe3JldHVybiJNMCwiKyguNSt0KSsiIEwxLCIrKC41K3QpKyIgTTAsIisoLjUtdCkrIiBMIisoLjUtZSkrIiwiKyguNS10KSsiIEwiKyguNS1lKSsiLDAgTTEsIisoLjUtdCkrIiBMIisoLjUrZSkrIiwiKyguNS10KSsiIEwiKyguNStlKSsiLDAifSxuZSksIuKVqiI6KG9lPXt9LG9lWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0uNSwwIEwuNSwxIE0wLCIrKC41LXQpKyIgTDEsIisoLjUtdCkrIiBNMCwiKyguNSt0KSsiIEwxLCIrKC41K3QpfSxvZSksIuKVqyI6KHNlPXt9LHNlWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0wLC41IEwxLC41IE0iKyguNS1lKSsiLDAgTCIrKC41LWUpKyIsMSBNIisoLjUrZSkrIiwwIEwiKyguNStlKSsiLDEifSxzZSksIuKVrCI6KGFlPXt9LGFlWzFdPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIk0wLCIrKC41K3QpKyIgTCIrKC41LWUpKyIsIisoLjUrdCkrIiBMIisoLjUtZSkrIiwxIE0xLCIrKC41K3QpKyIgTCIrKC41K2UpKyIsIisoLjUrdCkrIiBMIisoLjUrZSkrIiwxIE0wLCIrKC41LXQpKyIgTCIrKC41LWUpKyIsIisoLjUtdCkrIiBMIisoLjUtZSkrIiwwIE0xLCIrKC41LXQpKyIgTCIrKC41K2UpKyIsIisoLjUtdCkrIiBMIisoLjUrZSkrIiwwIn0sYWUpLCLilbEiOihjZT17fSxjZVsxXT0iTTEsMCBMMCwxIixjZSksIuKVsiI6KGxlPXt9LGxlWzFdPSJNMCwwIEwxLDEiLGxlKSwi4pWzIjoodWU9e30sdWVbMV09Ik0xLDAgTDAsMSBNMCwwIEwxLDEiLHVlKSwi4pW8IjooaGU9e30saGVbMV09Ik0uNSwuNSBMMCwuNSIsaGVbM109Ik0uNSwuNSBMMSwuNSIsaGUpLCLilb0iOihmZT17fSxmZVsxXT0iTS41LC41IEwuNSwwIixmZVszXT0iTS41LC41IEwuNSwxIixmZSksIuKVviI6KF9lPXt9LF9lWzFdPSJNLjUsLjUgTDEsLjUiLF9lWzNdPSJNLjUsLjUgTDAsLjUiLF9lKSwi4pW/IjooZGU9e30sZGVbMV09Ik0uNSwuNSBMLjUsMSIsZGVbM109Ik0uNSwuNSBMLjUsMCIsZGUpLCLilI0iOihwZT17fSxwZVsxXT0iTS41LC41IEwuNSwxIixwZVszXT0iTS41LC41IEwxLC41IixwZSksIuKUjiI6KHZlPXt9LHZlWzFdPSJNLjUsLjUgTDEsLjUiLHZlWzNdPSJNLjUsLjUgTC41LDEiLHZlKSwi4pSRIjooZ2U9e30sZ2VbMV09Ik0uNSwuNSBMLjUsMSIsZ2VbM109Ik0uNSwuNSBMMCwuNSIsZ2UpLCLilJIiOih5ZT17fSx5ZVsxXT0iTS41LC41IEwwLC41Iix5ZVszXT0iTS41LC41IEwuNSwxIix5ZSksIuKUlSI6KG1lPXt9LG1lWzFdPSJNLjUsLjUgTC41LDAiLG1lWzNdPSJNLjUsLjUgTDEsLjUiLG1lKSwi4pSWIjooYmU9e30sYmVbMV09Ik0uNSwuNSBMMSwuNSIsYmVbM109Ik0uNSwuNSBMLjUsMCIsYmUpLCLilJkiOihTZT17fSxTZVsxXT0iTS41LC41IEwuNSwwIixTZVszXT0iTS41LC41IEwwLC41IixTZSksIuKUmiI6KENlPXt9LENlWzFdPSJNLjUsLjUgTDAsLjUiLENlWzNdPSJNLjUsLjUgTC41LDAiLENlKSwi4pSdIjood2U9e30sd2VbMV09Ik0uNSwwIEwuNSwxIix3ZVszXT0iTS41LC41IEwxLC41Iix3ZSksIuKUniI6KExlPXt9LExlWzFdPSJNMC41LDEgTC41LC41IEwxLC41IixMZVszXT0iTS41LC41IEwuNSwwIixMZSksIuKUnyI6KEVlPXt9LEVlWzFdPSJNLjUsMCBMLjUsLjUgTDEsLjUiLEVlWzNdPSJNLjUsLjUgTC41LDEiLEVlKSwi4pSgIjooeGU9e30seGVbMV09Ik0uNSwuNSBMMSwuNSIseGVbM109Ik0uNSwwIEwuNSwxIix4ZSksIuKUoSI6KEFlPXt9LEFlWzFdPSJNLjUsLjUgTC41LDEiLEFlWzNdPSJNLjUsMCBMLjUsLjUgTDEsLjUiLEFlKSwi4pSiIjooa2U9e30sa2VbMV09Ik0uNSwuNSBMLjUsMCIsa2VbM109Ik0wLjUsMSBMLjUsLjUgTDEsLjUiLGtlKSwi4pSlIjooTWU9e30sTWVbMV09Ik0uNSwwIEwuNSwxIixNZVszXT0iTS41LC41IEwwLC41IixNZSksIuKUpiI6KFJlPXt9LFJlWzFdPSJNMCwuNSBMLjUsLjUgTC41LDEiLFJlWzNdPSJNLjUsLjUgTC41LDAiLFJlKSwi4pSnIjooVGU9e30sVGVbMV09Ik0uNSwwIEwuNSwuNSBMMCwuNSIsVGVbM109Ik0uNSwuNSBMLjUsMSIsVGUpLCLilKgiOihPZT17fSxPZVsxXT0iTS41LC41IEwwLC41IixPZVszXT0iTS41LDAgTC41LDEiLE9lKSwi4pSpIjooQmU9e30sQmVbMV09Ik0uNSwuNSBMLjUsMSIsQmVbM109Ik0uNSwwIEwuNSwuNSBMMCwuNSIsQmUpLCLilKoiOihEZT17fSxEZVsxXT0iTS41LC41IEwuNSwwIixEZVszXT0iTTAsLjUgTC41LC41IEwuNSwxIixEZSksIuKUrSI6KFBlPXt9LFBlWzFdPSJNMC41LDEgTC41LC41IEwxLC41IixQZVszXT0iTS41LC41IEwwLC41IixQZSksIuKUriI6KEllPXt9LEllWzFdPSJNMCwuNSBMLjUsLjUgTC41LDEiLEllWzNdPSJNLjUsLjUgTDEsLjUiLEllKSwi4pSvIjooSGU9e30sSGVbMV09Ik0uNSwuNSBMLjUsMSIsSGVbM109Ik0wLC41IEwxLC41IixIZSksIuKUsCI6KGplPXt9LGplWzFdPSJNMCwuNSBMMSwuNSIsamVbM109Ik0uNSwuNSBMLjUsMSIsamUpLCLilLEiOihGZT17fSxGZVsxXT0iTS41LC41IEwxLC41IixGZVszXT0iTTAsLjUgTC41LC41IEwuNSwxIixGZSksIuKUsiI6KFdlPXt9LFdlWzFdPSJNLjUsLjUgTDAsLjUiLFdlWzNdPSJNMC41LDEgTC41LC41IEwxLC41IixXZSksIuKUtSI6KFVlPXt9LFVlWzFdPSJNLjUsMCBMLjUsLjUgTDEsLjUiLFVlWzNdPSJNLjUsLjUgTDAsLjUiLFVlKSwi4pS2IjoocWU9e30scWVbMV09Ik0uNSwwIEwuNSwuNSBMMCwuNSIscWVbM109Ik0uNSwuNSBMMSwuNSIscWUpLCLilLciOihOZT17fSxOZVsxXT0iTS41LC41IEwuNSwwIixOZVszXT0iTTAsLjUgTDEsLjUiLE5lKSwi4pS4IjooemU9e30semVbMV09Ik0wLC41IEwxLC41Iix6ZVszXT0iTS41LC41IEwuNSwwIix6ZSksIuKUuSI6KEtlPXt9LEtlWzFdPSJNLjUsLjUgTDEsLjUiLEtlWzNdPSJNLjUsMCBMLjUsLjUgTDAsLjUiLEtlKSwi4pS6IjooVmU9e30sVmVbMV09Ik0uNSwuNSBMMCwuNSIsVmVbM109Ik0uNSwwIEwuNSwuNSBMMSwuNSIsVmUpLCLilL0iOihHZT17fSxHZVsxXT0iTS41LDAgTC41LDEgTS41LC41IEwxLC41IixHZVszXT0iTS41LC41IEwwLC41IixHZSksIuKUviI6KFllPXt9LFllWzFdPSJNLjUsMCBMLjUsMSBNLjUsLjUgTDAsLjUiLFllWzNdPSJNLjUsLjUgTDEsLjUiLFllKSwi4pS/IjooWGU9e30sWGVbMV09Ik0uNSwwIEwuNSwxIixYZVszXT0iTTAsLjUgTDEsLjUiLFhlKSwi4pWAIjooWmU9e30sWmVbMV09Ik0wLC41IEwxLC41IE0uNSwuNSBMLjUsMSIsWmVbM109Ik0uNSwuNSBMLjUsMCIsWmUpLCLilYEiOihKZT17fSxKZVsxXT0iTS41LC41IEwuNSwwIE0wLC41IEwxLC41IixKZVszXT0iTS41LC41IEwuNSwxIixKZSksIuKVgiI6KCRlPXt9LCRlWzFdPSJNMCwuNSBMMSwuNSIsJGVbM109Ik0uNSwwIEwuNSwxIiwkZSksIuKVgyI6KFFlPXt9LFFlWzFdPSJNMC41LDEgTC41LC41IEwxLC41IixRZVszXT0iTS41LDAgTC41LC41IEwwLC41IixRZSksIuKVhCI6KGV0PXt9LGV0WzFdPSJNMCwuNSBMLjUsLjUgTC41LDEiLGV0WzNdPSJNLjUsMCBMLjUsLjUgTDEsLjUiLGV0KSwi4pWFIjoodHQ9e30sdHRbMV09Ik0uNSwwIEwuNSwuNSBMMSwuNSIsdHRbM109Ik0wLC41IEwuNSwuNSBMLjUsMSIsdHQpLCLilYYiOihydD17fSxydFsxXT0iTS41LDAgTC41LC41IEwwLC41IixydFszXT0iTTAuNSwxIEwuNSwuNSBMMSwuNSIscnQpLCLilYciOihpdD17fSxpdFsxXT0iTS41LC41IEwuNSwxIixpdFszXT0iTS41LC41IEwuNSwwIE0wLC41IEwxLC41IixpdCksIuKViCI6KG50PXt9LG50WzFdPSJNLjUsLjUgTC41LDAiLG50WzNdPSJNMCwuNSBMMSwuNSBNLjUsLjUgTC41LDEiLG50KSwi4pWJIjoob3Q9e30sb3RbMV09Ik0uNSwuNSBMMSwuNSIsb3RbM109Ik0uNSwwIEwuNSwxIE0uNSwuNSBMMCwuNSIsb3QpLCLilYoiOihzdD17fSxzdFsxXT0iTS41LC41IEwwLC41IixzdFszXT0iTS41LDAgTC41LDEgTS41LC41IEwxLC41IixzdCksIuKVjCI6KGF0PXt9LGF0WzFdPSJNLjEsLjUgTC40LC41IE0uNiwuNSBMLjksLjUiLGF0KSwi4pWNIjooY3Q9e30sY3RbM109Ik0uMSwuNSBMLjQsLjUgTS42LC41IEwuOSwuNSIsY3QpLCLilIQiOihsdD17fSxsdFsxXT0iTS4wNjY3LC41IEwuMjY2NywuNSBNLjQsLjUgTC42LC41IE0uNzMzMywuNSBMLjkzMzMsLjUiLGx0KSwi4pSFIjoodXQ9e30sdXRbM109Ik0uMDY2NywuNSBMLjI2NjcsLjUgTS40LC41IEwuNiwuNSBNLjczMzMsLjUgTC45MzMzLC41Iix1dCksIuKUiCI6KGh0PXt9LGh0WzFdPSJNLjA1LC41IEwuMiwuNSBNLjMsLjUgTC40NSwuNSBNLjU1LC41IEwuNywuNSBNLjgsLjUgTC45NSwuNSIsaHQpLCLilIkiOihmdD17fSxmdFszXT0iTS4wNSwuNSBMLjIsLjUgTS4zLC41IEwuNDUsLjUgTS41NSwuNSBMLjcsLjUgTS44LC41IEwuOTUsLjUiLGZ0KSwi4pWOIjooX3Q9e30sX3RbMV09Ik0uNSwuMSBMLjUsLjQgTS41LC42IEwuNSwuOSIsX3QpLCLilY8iOihkdD17fSxkdFszXT0iTS41LC4xIEwuNSwuNCBNLjUsLjYgTC41LC45IixkdCksIuKUhiI6KHB0PXt9LHB0WzFdPSJNLjUsLjA2NjcgTC41LC4yNjY3IE0uNSwuNCBMLjUsLjYgTS41LC43MzMzIEwuNSwuOTMzMyIscHQpLCLilIciOih2dD17fSx2dFszXT0iTS41LC4wNjY3IEwuNSwuMjY2NyBNLjUsLjQgTC41LC42IE0uNSwuNzMzMyBMLjUsLjkzMzMiLHZ0KSwi4pSKIjooZ3Q9e30sZ3RbMV09Ik0uNSwuMDUgTC41LC4yIE0uNSwuMyBMLjUsLjQ1IEwuNSwuNTUgTS41LC43IEwuNSwuOTUiLGd0KSwi4pSLIjooeXQ9e30seXRbM109Ik0uNSwuMDUgTC41LC4yIE0uNSwuMyBMLjUsLjQ1IEwuNSwuNTUgTS41LC43IEwuNSwuOTUiLHl0KSwi4pWtIjoobXQ9e30sbXRbMV09IkMuNSwxLC41LC41LDEsLjUiLG10KSwi4pWuIjooYnQ9e30sYnRbMV09IkMuNSwxLC41LC41LDAsLjUiLGJ0KSwi4pWvIjooU3Q9e30sU3RbMV09IkMuNSwwLC41LC41LDAsLjUiLFN0KSwi4pWwIjooQ3Q9e30sQ3RbMV09IkMuNSwwLC41LC41LDEsLjUiLEN0KX0sdC50cnlEcmF3Q3VzdG9tQ2hhcj1mdW5jdGlvbihlLHIsaSxuLG8scyl7dmFyIGE9dC5ibG9ja0VsZW1lbnREZWZpbml0aW9uc1tyXTtpZihhKXJldHVybiBmdW5jdGlvbihlLHQscixpLG4sbyl7Zm9yKHZhciBzPTA7czx0Lmxlbmd0aDtzKyspe3ZhciBhPXRbc10sYz1uLzgsbD1vLzg7ZS5maWxsUmVjdChyK2EueCpjLGkrYS55KmwsYS53KmMsYS5oKmwpfX0oZSxhLGksbixvLHMpLCEwO3ZhciBjPUx0W3JdO2lmKGMpcmV0dXJuIGZ1bmN0aW9uKGUsdCxyLGksbixvKXt2YXIgcyxhPUV0LmdldCh0KTthfHwoYT1uZXcgTWFwLEV0LnNldCh0LGEpKTt2YXIgYz1lLmZpbGxTdHlsZTtpZigic3RyaW5nIiE9dHlwZW9mIGMpdGhyb3cgbmV3IEVycm9yKCdVbmV4cGVjdGVkIGZpbGxTdHlsZSB0eXBlICInK2MrJyInKTt2YXIgbD1hLmdldChjKTtpZighbCl7dmFyIHU9dFswXS5sZW5ndGgsaD10Lmxlbmd0aCxmPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoImNhbnZhcyIpO2Yud2lkdGg9dSxmLmhlaWdodD1oO3ZhciBfPSgwLHd0LnRocm93SWZGYWxzeSkoZi5nZXRDb250ZXh0KCIyZCIpKSxkPW5ldyBJbWFnZURhdGEodSxoKSxwPXZvaWQgMCx2PXZvaWQgMCxnPXZvaWQgMCx5PXZvaWQgMDtpZihjLnN0YXJ0c1dpdGgoIiMiKSlwPXBhcnNlSW50KGMuc3Vic3RyKDEsMiksMTYpLHY9cGFyc2VJbnQoYy5zdWJzdHIoMywyKSwxNiksZz1wYXJzZUludChjLnN1YnN0cig1LDIpLDE2KSx5PWMubGVuZ3RoPjcmJnBhcnNlSW50KGMuc3Vic3RyKDcsMiksMTYpfHwxO2Vsc2V7aWYoIWMuc3RhcnRzV2l0aCgicmdiYSIpKXRocm93IG5ldyBFcnJvcignVW5leHBlY3RlZCBmaWxsU3R5bGUgY29sb3IgZm9ybWF0ICInK2MrJyIgd2hlbiBkcmF3aW5nIHBhdHRlcm4gZ2x5cGgnKTtwPShzPWMuc3Vic3RyaW5nKDUsYy5sZW5ndGgtMSkuc3BsaXQoIiwiKS5tYXAoKGZ1bmN0aW9uKGUpe3JldHVybiBwYXJzZUZsb2F0KGUpfSkpKVswXSx2PXNbMV0sZz1zWzJdLHk9c1szXX1mb3IodmFyIG09MDttPGg7bSsrKWZvcih2YXIgYj0wO2I8dTtiKyspZC5kYXRhWzQqKG0qdStiKV09cCxkLmRhdGFbNCoobSp1K2IpKzFdPXYsZC5kYXRhWzQqKG0qdStiKSsyXT1nLGQuZGF0YVs0KihtKnUrYikrM109dFttXVtiXSooMjU1KnkpO18ucHV0SW1hZ2VEYXRhKGQsMCwwKSxsPSgwLHd0LnRocm93SWZGYWxzeSkoZS5jcmVhdGVQYXR0ZXJuKGYsbnVsbCkpLGEuc2V0KGMsbCl9ZS5maWxsU3R5bGU9bCxlLmZpbGxSZWN0KHIsaSxuLG8pfShlLGMsaSxuLG8scyksITA7dmFyIGw9dC5ib3hEcmF3aW5nRGVmaW5pdGlvbnNbcl07cmV0dXJuISFsJiYoZnVuY3Rpb24oZSx0LHIsaSxuLG8pe2Uuc3Ryb2tlU3R5bGU9ZS5maWxsU3R5bGU7Zm9yKHZhciBzPTAsYT1PYmplY3QuZW50cmllcyh0KTtzPGEubGVuZ3RoO3MrKyl7dmFyIGM9YVtzXSxsPWNbMF0sdT1jWzFdO2UuYmVnaW5QYXRoKCksZS5saW5lV2lkdGg9d2luZG93LmRldmljZVBpeGVsUmF0aW8qTnVtYmVyLnBhcnNlSW50KGwpO2Zvcih2YXIgaD0wLGY9KCJmdW5jdGlvbiI9PXR5cGVvZiB1P3UoLjE1LC4xNS9vKm4pOnUpLnNwbGl0KCIgIik7aDxmLmxlbmd0aDtoKyspe3ZhciBfPWZbaF0sZD1fWzBdLHA9QXRbZF07aWYocCl7dmFyIHY9Xy5zdWJzdHJpbmcoMSkuc3BsaXQoIiwiKTt2WzBdJiZ2WzFdJiZwKGUsa3QodixuLG8scixpKSl9ZWxzZSBjb25zb2xlLmVycm9yKCdDb3VsZCBub3QgZmluZCBkcmF3aW5nIGluc3RydWN0aW9ucyBmb3IgIicrZCsnIicpfWUuc3Ryb2tlKCksZS5jbG9zZVBhdGgoKX19KGUsbCxpLG4sbyxzKSwhMCl9O3ZhciBFdD1uZXcgTWFwO2Z1bmN0aW9uIHh0KGUsdCxyKXtyZXR1cm4gdm9pZCAwPT09ciYmKHI9MCksTWF0aC5tYXgoTWF0aC5taW4oZSx0KSxyKX12YXIgQXQ9e0M6ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZS5iZXppZXJDdXJ2ZVRvKHRbMF0sdFsxXSx0WzJdLHRbM10sdFs0XSx0WzVdKX0sTDpmdW5jdGlvbihlLHQpe3JldHVybiBlLmxpbmVUbyh0WzBdLHRbMV0pfSxNOmZ1bmN0aW9uKGUsdCl7cmV0dXJuIGUubW92ZVRvKHRbMF0sdFsxXSl9fTtmdW5jdGlvbiBrdChlLHQscixpLG4pe3ZhciBvPWUubWFwKChmdW5jdGlvbihlKXtyZXR1cm4gcGFyc2VGbG9hdChlKXx8cGFyc2VJbnQoZSl9KSk7aWYoby5sZW5ndGg8Mil0aHJvdyBuZXcgRXJyb3IoIlRvbyBmZXcgYXJndW1lbnRzIGZvciBpbnN0cnVjdGlvbiIpO2Zvcih2YXIgcz0wO3M8by5sZW5ndGg7cys9MilvW3NdKj10LDAhPT1vW3NdJiYob1tzXT14dChNYXRoLnJvdW5kKG9bc10rLjUpLS41LHQsMCkpLG9bc10rPWk7Zm9yKHZhciBhPTE7YTxvLmxlbmd0aDthKz0yKW9bYV0qPXIsMCE9PW9bYV0mJihvW2FdPXh0KE1hdGgucm91bmQob1thXSsuNSktLjUsciwwKSksb1thXSs9bjtyZXR1cm4gb319LDM3MDA6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5HcmlkQ2FjaGU9dm9pZCAwO3ZhciByPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZSgpe3RoaXMuY2FjaGU9W119cmV0dXJuIGUucHJvdG90eXBlLnJlc2l6ZT1mdW5jdGlvbihlLHQpe2Zvcih2YXIgcj0wO3I8ZTtyKyspe3RoaXMuY2FjaGUubGVuZ3RoPD1yJiZ0aGlzLmNhY2hlLnB1c2goW10pO2Zvcih2YXIgaT10aGlzLmNhY2hlW3JdLmxlbmd0aDtpPHQ7aSsrKXRoaXMuY2FjaGVbcl0ucHVzaCh2b2lkIDApO3RoaXMuY2FjaGVbcl0ubGVuZ3RoPXR9dGhpcy5jYWNoZS5sZW5ndGg9ZX0sZS5wcm90b3R5cGUuY2xlYXI9ZnVuY3Rpb24oKXtmb3IodmFyIGU9MDtlPHRoaXMuY2FjaGUubGVuZ3RoO2UrKylmb3IodmFyIHQ9MDt0PHRoaXMuY2FjaGVbZV0ubGVuZ3RoO3QrKyl0aGlzLmNhY2hlW2VdW3RdPXZvaWQgMH0sZX0oKTt0LkdyaWRDYWNoZT1yfSw1MDk4OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pLG89dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxzPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkxpbmtSZW5kZXJMYXllcj12b2lkIDA7dmFyIGE9cigxNTQ2KSxjPXIoODgwMyksbD1yKDIwNDApLHU9cigyNTg1KSxoPWZ1bmN0aW9uKGUpe2Z1bmN0aW9uIHQodCxyLGksbixvLHMsYSxjKXt2YXIgbD1lLmNhbGwodGhpcyx0LCJsaW5rIixyLCEwLGksbixhLGMpfHx0aGlzO3JldHVybiBvLm9uU2hvd0xpbmtVbmRlcmxpbmUoKGZ1bmN0aW9uKGUpe3JldHVybiBsLl9vblNob3dMaW5rVW5kZXJsaW5lKGUpfSkpLG8ub25IaWRlTGlua1VuZGVybGluZSgoZnVuY3Rpb24oZSl7cmV0dXJuIGwuX29uSGlkZUxpbmtVbmRlcmxpbmUoZSl9KSkscy5vblNob3dMaW5rVW5kZXJsaW5lKChmdW5jdGlvbihlKXtyZXR1cm4gbC5fb25TaG93TGlua1VuZGVybGluZShlKX0pKSxzLm9uSGlkZUxpbmtVbmRlcmxpbmUoKGZ1bmN0aW9uKGUpe3JldHVybiBsLl9vbkhpZGVMaW5rVW5kZXJsaW5lKGUpfSkpLGx9cmV0dXJuIG4odCxlKSx0LnByb3RvdHlwZS5yZXNpemU9ZnVuY3Rpb24odCl7ZS5wcm90b3R5cGUucmVzaXplLmNhbGwodGhpcyx0KSx0aGlzLl9zdGF0ZT12b2lkIDB9LHQucHJvdG90eXBlLnJlc2V0PWZ1bmN0aW9uKCl7dGhpcy5fY2xlYXJDdXJyZW50TGluaygpfSx0LnByb3RvdHlwZS5fY2xlYXJDdXJyZW50TGluaz1mdW5jdGlvbigpe2lmKHRoaXMuX3N0YXRlKXt0aGlzLl9jbGVhckNlbGxzKHRoaXMuX3N0YXRlLngxLHRoaXMuX3N0YXRlLnkxLHRoaXMuX3N0YXRlLmNvbHMtdGhpcy5fc3RhdGUueDEsMSk7dmFyIGU9dGhpcy5fc3RhdGUueTItdGhpcy5fc3RhdGUueTEtMTtlPjAmJnRoaXMuX2NsZWFyQ2VsbHMoMCx0aGlzLl9zdGF0ZS55MSsxLHRoaXMuX3N0YXRlLmNvbHMsZSksdGhpcy5fY2xlYXJDZWxscygwLHRoaXMuX3N0YXRlLnkyLHRoaXMuX3N0YXRlLngyLDEpLHRoaXMuX3N0YXRlPXZvaWQgMH19LHQucHJvdG90eXBlLl9vblNob3dMaW5rVW5kZXJsaW5lPWZ1bmN0aW9uKGUpe2lmKGUuZmc9PT1jLklOVkVSVEVEX0RFRkFVTFRfQ09MT1I/dGhpcy5fY3R4LmZpbGxTdHlsZT10aGlzLl9jb2xvcnMuYmFja2dyb3VuZC5jc3M6ZS5mZyYmKDAsbC5pczI1NkNvbG9yKShlLmZnKT90aGlzLl9jdHguZmlsbFN0eWxlPXRoaXMuX2NvbG9ycy5hbnNpW2UuZmddLmNzczp0aGlzLl9jdHguZmlsbFN0eWxlPXRoaXMuX2NvbG9ycy5mb3JlZ3JvdW5kLmNzcyxlLnkxPT09ZS55Mil0aGlzLl9maWxsQm90dG9tTGluZUF0Q2VsbHMoZS54MSxlLnkxLGUueDItZS54MSk7ZWxzZXt0aGlzLl9maWxsQm90dG9tTGluZUF0Q2VsbHMoZS54MSxlLnkxLGUuY29scy1lLngxKTtmb3IodmFyIHQ9ZS55MSsxO3Q8ZS55Mjt0KyspdGhpcy5fZmlsbEJvdHRvbUxpbmVBdENlbGxzKDAsdCxlLmNvbHMpO3RoaXMuX2ZpbGxCb3R0b21MaW5lQXRDZWxscygwLGUueTIsZS54Mil9dGhpcy5fc3RhdGU9ZX0sdC5wcm90b3R5cGUuX29uSGlkZUxpbmtVbmRlcmxpbmU9ZnVuY3Rpb24oZSl7dGhpcy5fY2xlYXJDdXJyZW50TGluaygpfSxvKFtzKDYsdS5JQnVmZmVyU2VydmljZSkscyg3LHUuSU9wdGlvbnNTZXJ2aWNlKV0sdCl9KGEuQmFzZVJlbmRlckxheWVyKTt0LkxpbmtSZW5kZXJMYXllcj1ofSwzNTI1OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pLG89dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxzPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LlJlbmRlcmVyPXZvaWQgMDt2YXIgYT1yKDk1OTYpLGM9cig0MTQ5KSxsPXIoMjUxMiksdT1yKDUwOTgpLGg9cig4NDQpLGY9cig0NzI1KSxfPXIoMjU4NSksZD1yKDE0MjApLHA9cig4NDYwKSx2PTEsZz1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KHQscixpLG4sbyxzLGgsZil7dmFyIF89ZS5jYWxsKHRoaXMpfHx0aGlzO18uX2NvbG9ycz10LF8uX3NjcmVlbkVsZW1lbnQ9cixfLl9idWZmZXJTZXJ2aWNlPXMsXy5fY2hhclNpemVTZXJ2aWNlPWgsXy5fb3B0aW9uc1NlcnZpY2U9ZixfLl9pZD12KyssXy5fb25SZXF1ZXN0UmVkcmF3PW5ldyBwLkV2ZW50RW1pdHRlcjt2YXIgZD1fLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmFsbG93VHJhbnNwYXJlbmN5O3JldHVybiBfLl9yZW5kZXJMYXllcnM9W28uY3JlYXRlSW5zdGFuY2UoYS5UZXh0UmVuZGVyTGF5ZXIsXy5fc2NyZWVuRWxlbWVudCwwLF8uX2NvbG9ycyxkLF8uX2lkKSxvLmNyZWF0ZUluc3RhbmNlKGMuU2VsZWN0aW9uUmVuZGVyTGF5ZXIsXy5fc2NyZWVuRWxlbWVudCwxLF8uX2NvbG9ycyxfLl9pZCksby5jcmVhdGVJbnN0YW5jZSh1LkxpbmtSZW5kZXJMYXllcixfLl9zY3JlZW5FbGVtZW50LDIsXy5fY29sb3JzLF8uX2lkLGksbiksby5jcmVhdGVJbnN0YW5jZShsLkN1cnNvclJlbmRlckxheWVyLF8uX3NjcmVlbkVsZW1lbnQsMyxfLl9jb2xvcnMsXy5faWQsXy5fb25SZXF1ZXN0UmVkcmF3KV0sXy5kaW1lbnNpb25zPXtzY2FsZWRDaGFyV2lkdGg6MCxzY2FsZWRDaGFySGVpZ2h0OjAsc2NhbGVkQ2VsbFdpZHRoOjAsc2NhbGVkQ2VsbEhlaWdodDowLHNjYWxlZENoYXJMZWZ0OjAsc2NhbGVkQ2hhclRvcDowLHNjYWxlZENhbnZhc1dpZHRoOjAsc2NhbGVkQ2FudmFzSGVpZ2h0OjAsY2FudmFzV2lkdGg6MCxjYW52YXNIZWlnaHQ6MCxhY3R1YWxDZWxsV2lkdGg6MCxhY3R1YWxDZWxsSGVpZ2h0OjB9LF8uX2RldmljZVBpeGVsUmF0aW89d2luZG93LmRldmljZVBpeGVsUmF0aW8sXy5fdXBkYXRlRGltZW5zaW9ucygpLF8ub25PcHRpb25zQ2hhbmdlZCgpLF99cmV0dXJuIG4odCxlKSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uUmVxdWVzdFJlZHJhdyIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vblJlcXVlc3RSZWRyYXcuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksdC5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe2Zvcih2YXIgdD0wLHI9dGhpcy5fcmVuZGVyTGF5ZXJzO3Q8ci5sZW5ndGg7dCsrKXJbdF0uZGlzcG9zZSgpO2UucHJvdG90eXBlLmRpc3Bvc2UuY2FsbCh0aGlzKSwoMCxkLnJlbW92ZVRlcm1pbmFsRnJvbUNhY2hlKSh0aGlzLl9pZCl9LHQucHJvdG90eXBlLm9uRGV2aWNlUGl4ZWxSYXRpb0NoYW5nZT1mdW5jdGlvbigpe3RoaXMuX2RldmljZVBpeGVsUmF0aW8hPT13aW5kb3cuZGV2aWNlUGl4ZWxSYXRpbyYmKHRoaXMuX2RldmljZVBpeGVsUmF0aW89d2luZG93LmRldmljZVBpeGVsUmF0aW8sdGhpcy5vblJlc2l6ZSh0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsdGhpcy5fYnVmZmVyU2VydmljZS5yb3dzKSl9LHQucHJvdG90eXBlLnNldENvbG9ycz1mdW5jdGlvbihlKXt0aGlzLl9jb2xvcnM9ZTtmb3IodmFyIHQ9MCxyPXRoaXMuX3JlbmRlckxheWVyczt0PHIubGVuZ3RoO3QrKyl7dmFyIGk9clt0XTtpLnNldENvbG9ycyh0aGlzLl9jb2xvcnMpLGkucmVzZXQoKX19LHQucHJvdG90eXBlLm9uUmVzaXplPWZ1bmN0aW9uKGUsdCl7dGhpcy5fdXBkYXRlRGltZW5zaW9ucygpO2Zvcih2YXIgcj0wLGk9dGhpcy5fcmVuZGVyTGF5ZXJzO3I8aS5sZW5ndGg7cisrKWlbcl0ucmVzaXplKHRoaXMuZGltZW5zaW9ucyk7dGhpcy5fc2NyZWVuRWxlbWVudC5zdHlsZS53aWR0aD10aGlzLmRpbWVuc2lvbnMuY2FudmFzV2lkdGgrInB4Iix0aGlzLl9zY3JlZW5FbGVtZW50LnN0eWxlLmhlaWdodD10aGlzLmRpbWVuc2lvbnMuY2FudmFzSGVpZ2h0KyJweCJ9LHQucHJvdG90eXBlLm9uQ2hhclNpemVDaGFuZ2VkPWZ1bmN0aW9uKCl7dGhpcy5vblJlc2l6ZSh0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsdGhpcy5fYnVmZmVyU2VydmljZS5yb3dzKX0sdC5wcm90b3R5cGUub25CbHVyPWZ1bmN0aW9uKCl7dGhpcy5fcnVuT3BlcmF0aW9uKChmdW5jdGlvbihlKXtyZXR1cm4gZS5vbkJsdXIoKX0pKX0sdC5wcm90b3R5cGUub25Gb2N1cz1mdW5jdGlvbigpe3RoaXMuX3J1bk9wZXJhdGlvbigoZnVuY3Rpb24oZSl7cmV0dXJuIGUub25Gb2N1cygpfSkpfSx0LnByb3RvdHlwZS5vblNlbGVjdGlvbkNoYW5nZWQ9ZnVuY3Rpb24oZSx0LHIpe3ZvaWQgMD09PXImJihyPSExKSx0aGlzLl9ydW5PcGVyYXRpb24oKGZ1bmN0aW9uKGkpe3JldHVybiBpLm9uU2VsZWN0aW9uQ2hhbmdlZChlLHQscil9KSl9LHQucHJvdG90eXBlLm9uQ3Vyc29yTW92ZT1mdW5jdGlvbigpe3RoaXMuX3J1bk9wZXJhdGlvbigoZnVuY3Rpb24oZSl7cmV0dXJuIGUub25DdXJzb3JNb3ZlKCl9KSl9LHQucHJvdG90eXBlLm9uT3B0aW9uc0NoYW5nZWQ9ZnVuY3Rpb24oKXt0aGlzLl9ydW5PcGVyYXRpb24oKGZ1bmN0aW9uKGUpe3JldHVybiBlLm9uT3B0aW9uc0NoYW5nZWQoKX0pKX0sdC5wcm90b3R5cGUuY2xlYXI9ZnVuY3Rpb24oKXt0aGlzLl9ydW5PcGVyYXRpb24oKGZ1bmN0aW9uKGUpe3JldHVybiBlLnJlc2V0KCl9KSl9LHQucHJvdG90eXBlLl9ydW5PcGVyYXRpb249ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PTAscj10aGlzLl9yZW5kZXJMYXllcnM7dDxyLmxlbmd0aDt0KyspZShyW3RdKX0sdC5wcm90b3R5cGUucmVuZGVyUm93cz1mdW5jdGlvbihlLHQpe2Zvcih2YXIgcj0wLGk9dGhpcy5fcmVuZGVyTGF5ZXJzO3I8aS5sZW5ndGg7cisrKWlbcl0ub25HcmlkQ2hhbmdlZChlLHQpfSx0LnByb3RvdHlwZS5jbGVhclRleHR1cmVBdGxhcz1mdW5jdGlvbigpe2Zvcih2YXIgZT0wLHQ9dGhpcy5fcmVuZGVyTGF5ZXJzO2U8dC5sZW5ndGg7ZSsrKXRbZV0uY2xlYXJUZXh0dXJlQXRsYXMoKX0sdC5wcm90b3R5cGUuX3VwZGF0ZURpbWVuc2lvbnM9ZnVuY3Rpb24oKXt0aGlzLl9jaGFyU2l6ZVNlcnZpY2UuaGFzVmFsaWRTaXplJiYodGhpcy5kaW1lbnNpb25zLnNjYWxlZENoYXJXaWR0aD1NYXRoLmZsb29yKHRoaXMuX2NoYXJTaXplU2VydmljZS53aWR0aCp3aW5kb3cuZGV2aWNlUGl4ZWxSYXRpbyksdGhpcy5kaW1lbnNpb25zLnNjYWxlZENoYXJIZWlnaHQ9TWF0aC5jZWlsKHRoaXMuX2NoYXJTaXplU2VydmljZS5oZWlnaHQqd2luZG93LmRldmljZVBpeGVsUmF0aW8pLHRoaXMuZGltZW5zaW9ucy5zY2FsZWRDZWxsSGVpZ2h0PU1hdGguZmxvb3IodGhpcy5kaW1lbnNpb25zLnNjYWxlZENoYXJIZWlnaHQqdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5saW5lSGVpZ2h0KSx0aGlzLmRpbWVuc2lvbnMuc2NhbGVkQ2hhclRvcD0xPT09dGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5saW5lSGVpZ2h0PzA6TWF0aC5yb3VuZCgodGhpcy5kaW1lbnNpb25zLnNjYWxlZENlbGxIZWlnaHQtdGhpcy5kaW1lbnNpb25zLnNjYWxlZENoYXJIZWlnaHQpLzIpLHRoaXMuZGltZW5zaW9ucy5zY2FsZWRDZWxsV2lkdGg9dGhpcy5kaW1lbnNpb25zLnNjYWxlZENoYXJXaWR0aCtNYXRoLnJvdW5kKHRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMubGV0dGVyU3BhY2luZyksdGhpcy5kaW1lbnNpb25zLnNjYWxlZENoYXJMZWZ0PU1hdGguZmxvb3IodGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5sZXR0ZXJTcGFjaW5nLzIpLHRoaXMuZGltZW5zaW9ucy5zY2FsZWRDYW52YXNIZWlnaHQ9dGhpcy5fYnVmZmVyU2VydmljZS5yb3dzKnRoaXMuZGltZW5zaW9ucy5zY2FsZWRDZWxsSGVpZ2h0LHRoaXMuZGltZW5zaW9ucy5zY2FsZWRDYW52YXNXaWR0aD10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMqdGhpcy5kaW1lbnNpb25zLnNjYWxlZENlbGxXaWR0aCx0aGlzLmRpbWVuc2lvbnMuY2FudmFzSGVpZ2h0PU1hdGgucm91bmQodGhpcy5kaW1lbnNpb25zLnNjYWxlZENhbnZhc0hlaWdodC93aW5kb3cuZGV2aWNlUGl4ZWxSYXRpbyksdGhpcy5kaW1lbnNpb25zLmNhbnZhc1dpZHRoPU1hdGgucm91bmQodGhpcy5kaW1lbnNpb25zLnNjYWxlZENhbnZhc1dpZHRoL3dpbmRvdy5kZXZpY2VQaXhlbFJhdGlvKSx0aGlzLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbEhlaWdodD10aGlzLmRpbWVuc2lvbnMuY2FudmFzSGVpZ2h0L3RoaXMuX2J1ZmZlclNlcnZpY2Uucm93cyx0aGlzLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbFdpZHRoPXRoaXMuZGltZW5zaW9ucy5jYW52YXNXaWR0aC90aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMpfSxvKFtzKDQsXy5JSW5zdGFudGlhdGlvblNlcnZpY2UpLHMoNSxfLklCdWZmZXJTZXJ2aWNlKSxzKDYsZi5JQ2hhclNpemVTZXJ2aWNlKSxzKDcsXy5JT3B0aW9uc1NlcnZpY2UpXSx0KX0oaC5EaXNwb3NhYmxlKTt0LlJlbmRlcmVyPWd9LDE3NTI6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC50aHJvd0lmRmFsc3k9dm9pZCAwLHQudGhyb3dJZkZhbHN5PWZ1bmN0aW9uKGUpe2lmKCFlKXRocm93IG5ldyBFcnJvcigidmFsdWUgbXVzdCBub3QgYmUgZmFsc3kiKTtyZXR1cm4gZX19LDQxNDk6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpLG49dGhpcyYmdGhpcy5fX2V4dGVuZHN8fChpPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGk9T2JqZWN0LnNldFByb3RvdHlwZU9mfHx7X19wcm90b19fOltdfWluc3RhbmNlb2YgQXJyYXkmJmZ1bmN0aW9uKGUsdCl7ZS5fX3Byb3RvX189dH18fGZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByIGluIHQpT2JqZWN0LnByb3RvdHlwZS5oYXNPd25Qcm9wZXJ0eS5jYWxsKHQscikmJihlW3JdPXRbcl0pfSxpKGUsdCl9LGZ1bmN0aW9uKGUsdCl7aWYoImZ1bmN0aW9uIiE9dHlwZW9mIHQmJm51bGwhPT10KXRocm93IG5ldyBUeXBlRXJyb3IoIkNsYXNzIGV4dGVuZHMgdmFsdWUgIitTdHJpbmcodCkrIiBpcyBub3QgYSBjb25zdHJ1Y3RvciBvciBudWxsIik7ZnVuY3Rpb24gcigpe3RoaXMuY29uc3RydWN0b3I9ZX1pKGUsdCksZS5wcm90b3R5cGU9bnVsbD09PXQ/T2JqZWN0LmNyZWF0ZSh0KTooci5wcm90b3R5cGU9dC5wcm90b3R5cGUsbmV3IHIpfSksbz10aGlzJiZ0aGlzLl9fZGVjb3JhdGV8fGZ1bmN0aW9uKGUsdCxyLGkpe3ZhciBuLG89YXJndW1lbnRzLmxlbmd0aCxzPW88Mz90Om51bGw9PT1pP2k9T2JqZWN0LmdldE93blByb3BlcnR5RGVzY3JpcHRvcih0LHIpOmk7aWYoIm9iamVjdCI9PXR5cGVvZiBSZWZsZWN0JiYiZnVuY3Rpb24iPT10eXBlb2YgUmVmbGVjdC5kZWNvcmF0ZSlzPVJlZmxlY3QuZGVjb3JhdGUoZSx0LHIsaSk7ZWxzZSBmb3IodmFyIGE9ZS5sZW5ndGgtMTthPj0wO2EtLSkobj1lW2FdKSYmKHM9KG88Mz9uKHMpOm8+Mz9uKHQscixzKTpuKHQscikpfHxzKTtyZXR1cm4gbz4zJiZzJiZPYmplY3QuZGVmaW5lUHJvcGVydHkodCxyLHMpLHN9LHM9dGhpcyYmdGhpcy5fX3BhcmFtfHxmdW5jdGlvbihlLHQpe3JldHVybiBmdW5jdGlvbihyLGkpe3QocixpLGUpfX07T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuU2VsZWN0aW9uUmVuZGVyTGF5ZXI9dm9pZCAwO3ZhciBhPXIoMTU0NiksYz1yKDI1ODUpLGw9ZnVuY3Rpb24oZSl7ZnVuY3Rpb24gdCh0LHIsaSxuLG8scyl7dmFyIGE9ZS5jYWxsKHRoaXMsdCwic2VsZWN0aW9uIixyLCEwLGksbixvLHMpfHx0aGlzO3JldHVybiBhLl9jbGVhclN0YXRlKCksYX1yZXR1cm4gbih0LGUpLHQucHJvdG90eXBlLl9jbGVhclN0YXRlPWZ1bmN0aW9uKCl7dGhpcy5fc3RhdGU9e3N0YXJ0OnZvaWQgMCxlbmQ6dm9pZCAwLGNvbHVtblNlbGVjdE1vZGU6dm9pZCAwLHlkaXNwOnZvaWQgMH19LHQucHJvdG90eXBlLnJlc2l6ZT1mdW5jdGlvbih0KXtlLnByb3RvdHlwZS5yZXNpemUuY2FsbCh0aGlzLHQpLHRoaXMuX2NsZWFyU3RhdGUoKX0sdC5wcm90b3R5cGUucmVzZXQ9ZnVuY3Rpb24oKXt0aGlzLl9zdGF0ZS5zdGFydCYmdGhpcy5fc3RhdGUuZW5kJiYodGhpcy5fY2xlYXJTdGF0ZSgpLHRoaXMuX2NsZWFyQWxsKCkpfSx0LnByb3RvdHlwZS5vblNlbGVjdGlvbkNoYW5nZWQ9ZnVuY3Rpb24oZSx0LHIpe2lmKHRoaXMuX2RpZFN0YXRlQ2hhbmdlKGUsdCxyLHRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnlkaXNwKSlpZih0aGlzLl9jbGVhckFsbCgpLGUmJnQpe3ZhciBpPWVbMV0tdGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueWRpc3Asbj10WzFdLXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnlkaXNwLG89TWF0aC5tYXgoaSwwKSxzPU1hdGgubWluKG4sdGhpcy5fYnVmZmVyU2VydmljZS5yb3dzLTEpO2lmKG8+PXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93c3x8czwwKXRoaXMuX3N0YXRlLnlkaXNwPXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnlkaXNwO2Vsc2V7aWYodGhpcy5fY3R4LmZpbGxTdHlsZT10aGlzLl9jb2xvcnMuc2VsZWN0aW9uVHJhbnNwYXJlbnQuY3NzLHIpe3ZhciBhPWVbMF0sYz10WzBdLWEsbD1zLW8rMTt0aGlzLl9maWxsQ2VsbHMoYSxvLGMsbCl9ZWxzZXthPWk9PT1vP2VbMF06MDt2YXIgdT1vPT09bj90WzBdOnRoaXMuX2J1ZmZlclNlcnZpY2UuY29sczt0aGlzLl9maWxsQ2VsbHMoYSxvLHUtYSwxKTt2YXIgaD1NYXRoLm1heChzLW8tMSwwKTtpZih0aGlzLl9maWxsQ2VsbHMoMCxvKzEsdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLGgpLG8hPT1zKXt2YXIgZj1uPT09cz90WzBdOnRoaXMuX2J1ZmZlclNlcnZpY2UuY29sczt0aGlzLl9maWxsQ2VsbHMoMCxzLGYsMSl9fXRoaXMuX3N0YXRlLnN0YXJ0PVtlWzBdLGVbMV1dLHRoaXMuX3N0YXRlLmVuZD1bdFswXSx0WzFdXSx0aGlzLl9zdGF0ZS5jb2x1bW5TZWxlY3RNb2RlPXIsdGhpcy5fc3RhdGUueWRpc3A9dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueWRpc3B9fWVsc2UgdGhpcy5fY2xlYXJTdGF0ZSgpfSx0LnByb3RvdHlwZS5fZGlkU3RhdGVDaGFuZ2U9ZnVuY3Rpb24oZSx0LHIsaSl7cmV0dXJuIXRoaXMuX2FyZUNvb3JkaW5hdGVzRXF1YWwoZSx0aGlzLl9zdGF0ZS5zdGFydCl8fCF0aGlzLl9hcmVDb29yZGluYXRlc0VxdWFsKHQsdGhpcy5fc3RhdGUuZW5kKXx8ciE9PXRoaXMuX3N0YXRlLmNvbHVtblNlbGVjdE1vZGV8fGkhPT10aGlzLl9zdGF0ZS55ZGlzcH0sdC5wcm90b3R5cGUuX2FyZUNvb3JkaW5hdGVzRXF1YWw9ZnVuY3Rpb24oZSx0KXtyZXR1cm4hKCFlfHwhdCkmJmVbMF09PT10WzBdJiZlWzFdPT09dFsxXX0sbyhbcyg0LGMuSUJ1ZmZlclNlcnZpY2UpLHMoNSxjLklPcHRpb25zU2VydmljZSldLHQpfShhLkJhc2VSZW5kZXJMYXllcik7dC5TZWxlY3Rpb25SZW5kZXJMYXllcj1sfSw5NTk2OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pLG89dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxzPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LlRleHRSZW5kZXJMYXllcj12b2lkIDA7dmFyIGE9cigzNzAwKSxjPXIoMTU0NiksbD1yKDM3MzQpLHU9cig2NDMpLGg9cig1MTEpLGY9cigyNTg1KSxfPXIoNDcyNSksZD1yKDQyNjkpLHA9ZnVuY3Rpb24oZSl7ZnVuY3Rpb24gdCh0LHIsaSxuLG8scyxjLGwpe3ZhciB1PWUuY2FsbCh0aGlzLHQsInRleHQiLHIsbixpLG8scyxjKXx8dGhpcztyZXR1cm4gdS5fY2hhcmFjdGVySm9pbmVyU2VydmljZT1sLHUuX2NoYXJhY3RlcldpZHRoPTAsdS5fY2hhcmFjdGVyRm9udD0iIix1Ll9jaGFyYWN0ZXJPdmVybGFwQ2FjaGU9e30sdS5fd29ya0NlbGw9bmV3IGguQ2VsbERhdGEsdS5fc3RhdGU9bmV3IGEuR3JpZENhY2hlLHV9cmV0dXJuIG4odCxlKSx0LnByb3RvdHlwZS5yZXNpemU9ZnVuY3Rpb24odCl7ZS5wcm90b3R5cGUucmVzaXplLmNhbGwodGhpcyx0KTt2YXIgcj10aGlzLl9nZXRGb250KCExLCExKTt0aGlzLl9jaGFyYWN0ZXJXaWR0aD09PXQuc2NhbGVkQ2hhcldpZHRoJiZ0aGlzLl9jaGFyYWN0ZXJGb250PT09cnx8KHRoaXMuX2NoYXJhY3RlcldpZHRoPXQuc2NhbGVkQ2hhcldpZHRoLHRoaXMuX2NoYXJhY3RlckZvbnQ9cix0aGlzLl9jaGFyYWN0ZXJPdmVybGFwQ2FjaGU9e30pLHRoaXMuX3N0YXRlLmNsZWFyKCksdGhpcy5fc3RhdGUucmVzaXplKHRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyx0aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MpfSx0LnByb3RvdHlwZS5yZXNldD1mdW5jdGlvbigpe3RoaXMuX3N0YXRlLmNsZWFyKCksdGhpcy5fY2xlYXJBbGwoKX0sdC5wcm90b3R5cGUuX2ZvckVhY2hDZWxsPWZ1bmN0aW9uKGUsdCxyKXtmb3IodmFyIGk9ZTtpPD10O2krKylmb3IodmFyIG49aSt0aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55ZGlzcCxvPXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLmxpbmVzLmdldChuKSxzPXRoaXMuX2NoYXJhY3RlckpvaW5lclNlcnZpY2UuZ2V0Sm9pbmVkQ2hhcmFjdGVycyhuKSxhPTA7YTx0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHM7YSsrKXtvLmxvYWRDZWxsKGEsdGhpcy5fd29ya0NlbGwpO3ZhciBjPXRoaXMuX3dvcmtDZWxsLGw9ITEsaD1hO2lmKDAhPT1jLmdldFdpZHRoKCkpe2lmKHMubGVuZ3RoPjAmJmE9PT1zWzBdWzBdKXtsPSEwO3ZhciBmPXMuc2hpZnQoKTtjPW5ldyBkLkpvaW5lZENlbGxEYXRhKHRoaXMuX3dvcmtDZWxsLG8udHJhbnNsYXRlVG9TdHJpbmcoITAsZlswXSxmWzFdKSxmWzFdLWZbMF0pLGg9ZlsxXS0xfSFsJiZ0aGlzLl9pc092ZXJsYXBwaW5nKGMpJiZoPG8ubGVuZ3RoLTEmJm8uZ2V0Q29kZVBvaW50KGgrMSk9PT11Lk5VTExfQ0VMTF9DT0RFJiYoYy5jb250ZW50Jj0tMTI1ODI5MTMsYy5jb250ZW50fD0yPDwyMikscihjLGEsaSksYT1ofX19LHQucHJvdG90eXBlLl9kcmF3QmFja2dyb3VuZD1mdW5jdGlvbihlLHQpe3ZhciByPXRoaXMsaT10aGlzLl9jdHgsbj10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsbz0wLHM9MCxhPW51bGw7aS5zYXZlKCksdGhpcy5fZm9yRWFjaENlbGwoZSx0LChmdW5jdGlvbihlLHQsYyl7dmFyIHU9bnVsbDtlLmlzSW52ZXJzZSgpP3U9ZS5pc0ZnRGVmYXVsdCgpP3IuX2NvbG9ycy5mb3JlZ3JvdW5kLmNzczplLmlzRmdSR0IoKT8icmdiKCIrbC5BdHRyaWJ1dGVEYXRhLnRvQ29sb3JSR0IoZS5nZXRGZ0NvbG9yKCkpLmpvaW4oIiwiKSsiKSI6ci5fY29sb3JzLmFuc2lbZS5nZXRGZ0NvbG9yKCldLmNzczplLmlzQmdSR0IoKT91PSJyZ2IoIitsLkF0dHJpYnV0ZURhdGEudG9Db2xvclJHQihlLmdldEJnQ29sb3IoKSkuam9pbigiLCIpKyIpIjplLmlzQmdQYWxldHRlKCkmJih1PXIuX2NvbG9ycy5hbnNpW2UuZ2V0QmdDb2xvcigpXS5jc3MpLG51bGw9PT1hJiYobz10LHM9YyksYyE9PXM/KGkuZmlsbFN0eWxlPWF8fCIiLHIuX2ZpbGxDZWxscyhvLHMsbi1vLDEpLG89dCxzPWMpOmEhPT11JiYoaS5maWxsU3R5bGU9YXx8IiIsci5fZmlsbENlbGxzKG8scyx0LW8sMSksbz10LHM9YyksYT11fSkpLG51bGwhPT1hJiYoaS5maWxsU3R5bGU9YSx0aGlzLl9maWxsQ2VsbHMobyxzLG4tbywxKSksaS5yZXN0b3JlKCl9LHQucHJvdG90eXBlLl9kcmF3Rm9yZWdyb3VuZD1mdW5jdGlvbihlLHQpe3ZhciByPXRoaXM7dGhpcy5fZm9yRWFjaENlbGwoZSx0LChmdW5jdGlvbihlLHQsaSl7aWYoIWUuaXNJbnZpc2libGUoKSYmKHIuX2RyYXdDaGFycyhlLHQsaSksZS5pc1VuZGVybGluZSgpfHxlLmlzU3RyaWtldGhyb3VnaCgpKSl7aWYoci5fY3R4LnNhdmUoKSxlLmlzSW52ZXJzZSgpKWlmKGUuaXNCZ0RlZmF1bHQoKSlyLl9jdHguZmlsbFN0eWxlPXIuX2NvbG9ycy5iYWNrZ3JvdW5kLmNzcztlbHNlIGlmKGUuaXNCZ1JHQigpKXIuX2N0eC5maWxsU3R5bGU9InJnYigiK2wuQXR0cmlidXRlRGF0YS50b0NvbG9yUkdCKGUuZ2V0QmdDb2xvcigpKS5qb2luKCIsIikrIikiO2Vsc2V7dmFyIG49ZS5nZXRCZ0NvbG9yKCk7ci5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5kcmF3Qm9sZFRleHRJbkJyaWdodENvbG9ycyYmZS5pc0JvbGQoKSYmbjw4JiYobis9OCksci5fY3R4LmZpbGxTdHlsZT1yLl9jb2xvcnMuYW5zaVtuXS5jc3N9ZWxzZSBpZihlLmlzRmdEZWZhdWx0KCkpci5fY3R4LmZpbGxTdHlsZT1yLl9jb2xvcnMuZm9yZWdyb3VuZC5jc3M7ZWxzZSBpZihlLmlzRmdSR0IoKSlyLl9jdHguZmlsbFN0eWxlPSJyZ2IoIitsLkF0dHJpYnV0ZURhdGEudG9Db2xvclJHQihlLmdldEZnQ29sb3IoKSkuam9pbigiLCIpKyIpIjtlbHNle3ZhciBvPWUuZ2V0RmdDb2xvcigpO3IuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuZHJhd0JvbGRUZXh0SW5CcmlnaHRDb2xvcnMmJmUuaXNCb2xkKCkmJm88OCYmKG8rPTgpLHIuX2N0eC5maWxsU3R5bGU9ci5fY29sb3JzLmFuc2lbb10uY3NzfWUuaXNTdHJpa2V0aHJvdWdoKCkmJnIuX2ZpbGxNaWRkbGVMaW5lQXRDZWxscyh0LGksZS5nZXRXaWR0aCgpKSxlLmlzVW5kZXJsaW5lKCkmJnIuX2ZpbGxCb3R0b21MaW5lQXRDZWxscyh0LGksZS5nZXRXaWR0aCgpKSxyLl9jdHgucmVzdG9yZSgpfX0pKX0sdC5wcm90b3R5cGUub25HcmlkQ2hhbmdlZD1mdW5jdGlvbihlLHQpezAhPT10aGlzLl9zdGF0ZS5jYWNoZS5sZW5ndGgmJih0aGlzLl9jaGFyQXRsYXMmJnRoaXMuX2NoYXJBdGxhcy5iZWdpbkZyYW1lKCksdGhpcy5fY2xlYXJDZWxscygwLGUsdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLHQtZSsxKSx0aGlzLl9kcmF3QmFja2dyb3VuZChlLHQpLHRoaXMuX2RyYXdGb3JlZ3JvdW5kKGUsdCkpfSx0LnByb3RvdHlwZS5vbk9wdGlvbnNDaGFuZ2VkPWZ1bmN0aW9uKCl7dGhpcy5fc2V0VHJhbnNwYXJlbmN5KHRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuYWxsb3dUcmFuc3BhcmVuY3kpfSx0LnByb3RvdHlwZS5faXNPdmVybGFwcGluZz1mdW5jdGlvbihlKXtpZigxIT09ZS5nZXRXaWR0aCgpKXJldHVybiExO2lmKGUuZ2V0Q29kZSgpPDI1NilyZXR1cm4hMTt2YXIgdD1lLmdldENoYXJzKCk7aWYodGhpcy5fY2hhcmFjdGVyT3ZlcmxhcENhY2hlLmhhc093blByb3BlcnR5KHQpKXJldHVybiB0aGlzLl9jaGFyYWN0ZXJPdmVybGFwQ2FjaGVbdF07dGhpcy5fY3R4LnNhdmUoKSx0aGlzLl9jdHguZm9udD10aGlzLl9jaGFyYWN0ZXJGb250O3ZhciByPU1hdGguZmxvb3IodGhpcy5fY3R4Lm1lYXN1cmVUZXh0KHQpLndpZHRoKT50aGlzLl9jaGFyYWN0ZXJXaWR0aDtyZXR1cm4gdGhpcy5fY3R4LnJlc3RvcmUoKSx0aGlzLl9jaGFyYWN0ZXJPdmVybGFwQ2FjaGVbdF09cixyfSxvKFtzKDUsZi5JQnVmZmVyU2VydmljZSkscyg2LGYuSU9wdGlvbnNTZXJ2aWNlKSxzKDcsXy5JQ2hhcmFjdGVySm9pbmVyU2VydmljZSldLHQpfShjLkJhc2VSZW5kZXJMYXllcik7dC5UZXh0UmVuZGVyTGF5ZXI9cH0sOTYxNjooZSx0KT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkJhc2VDaGFyQXRsYXM9dm9pZCAwO3ZhciByPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZSgpe3RoaXMuX2RpZFdhcm1VcD0hMX1yZXR1cm4gZS5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe30sZS5wcm90b3R5cGUud2FybVVwPWZ1bmN0aW9uKCl7dGhpcy5fZGlkV2FybVVwfHwodGhpcy5fZG9XYXJtVXAoKSx0aGlzLl9kaWRXYXJtVXA9ITApfSxlLnByb3RvdHlwZS5fZG9XYXJtVXA9ZnVuY3Rpb24oKXt9LGUucHJvdG90eXBlLmNsZWFyPWZ1bmN0aW9uKCl7fSxlLnByb3RvdHlwZS5iZWdpbkZyYW1lPWZ1bmN0aW9uKCl7fSxlfSgpO3QuQmFzZUNoYXJBdGxhcz1yfSwxNDIwOihlLHQscik9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5yZW1vdmVUZXJtaW5hbEZyb21DYWNoZT10LmFjcXVpcmVDaGFyQXRsYXM9dm9pZCAwO3ZhciBpPXIoMjA0MCksbj1yKDE5MDYpLG89W107dC5hY3F1aXJlQ2hhckF0bGFzPWZ1bmN0aW9uKGUsdCxyLHMsYSl7Zm9yKHZhciBjPSgwLGkuZ2VuZXJhdGVDb25maWcpKHMsYSxlLHIpLGw9MDtsPG8ubGVuZ3RoO2wrKyl7dmFyIHU9KGg9b1tsXSkub3duZWRCeS5pbmRleE9mKHQpO2lmKHU+PTApe2lmKCgwLGkuY29uZmlnRXF1YWxzKShoLmNvbmZpZyxjKSlyZXR1cm4gaC5hdGxhczsxPT09aC5vd25lZEJ5Lmxlbmd0aD8oaC5hdGxhcy5kaXNwb3NlKCksby5zcGxpY2UobCwxKSk6aC5vd25lZEJ5LnNwbGljZSh1LDEpO2JyZWFrfX1mb3IobD0wO2w8by5sZW5ndGg7bCsrKXt2YXIgaD1vW2xdO2lmKCgwLGkuY29uZmlnRXF1YWxzKShoLmNvbmZpZyxjKSlyZXR1cm4gaC5vd25lZEJ5LnB1c2godCksaC5hdGxhc312YXIgZj17YXRsYXM6bmV3IG4uRHluYW1pY0NoYXJBdGxhcyhkb2N1bWVudCxjKSxjb25maWc6Yyxvd25lZEJ5Olt0XX07cmV0dXJuIG8ucHVzaChmKSxmLmF0bGFzfSx0LnJlbW92ZVRlcm1pbmFsRnJvbUNhY2hlPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD0wO3Q8by5sZW5ndGg7dCsrKXt2YXIgcj1vW3RdLm93bmVkQnkuaW5kZXhPZihlKTtpZigtMSE9PXIpezE9PT1vW3RdLm93bmVkQnkubGVuZ3RoPyhvW3RdLmF0bGFzLmRpc3Bvc2UoKSxvLnNwbGljZSh0LDEpKTpvW3RdLm93bmVkQnkuc3BsaWNlKHIsMSk7YnJlYWt9fX19LDIwNDA6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPXRoaXMmJnRoaXMuX19zcHJlYWRBcnJheXx8ZnVuY3Rpb24oZSx0LHIpe2lmKHJ8fDI9PT1hcmd1bWVudHMubGVuZ3RoKWZvcih2YXIgaSxuPTAsbz10Lmxlbmd0aDtuPG87bisrKSFpJiZuIGluIHR8fChpfHwoaT1BcnJheS5wcm90b3R5cGUuc2xpY2UuY2FsbCh0LDAsbikpLGlbbl09dFtuXSk7cmV0dXJuIGUuY29uY2F0KGl8fEFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKHQpKX07T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuaXMyNTZDb2xvcj10LmNvbmZpZ0VxdWFscz10LmdlbmVyYXRlQ29uZmlnPXZvaWQgMDt2YXIgbj1yKDY0Myk7dC5nZW5lcmF0ZUNvbmZpZz1mdW5jdGlvbihlLHQscixuKXt2YXIgbz17Zm9yZWdyb3VuZDpuLmZvcmVncm91bmQsYmFja2dyb3VuZDpuLmJhY2tncm91bmQsY3Vyc29yOnZvaWQgMCxjdXJzb3JBY2NlbnQ6dm9pZCAwLHNlbGVjdGlvbjp2b2lkIDAsYW5zaTppKFtdLG4uYW5zaSwhMCl9O3JldHVybntkZXZpY2VQaXhlbFJhdGlvOndpbmRvdy5kZXZpY2VQaXhlbFJhdGlvLHNjYWxlZENoYXJXaWR0aDplLHNjYWxlZENoYXJIZWlnaHQ6dCxmb250RmFtaWx5OnIuZm9udEZhbWlseSxmb250U2l6ZTpyLmZvbnRTaXplLGZvbnRXZWlnaHQ6ci5mb250V2VpZ2h0LGZvbnRXZWlnaHRCb2xkOnIuZm9udFdlaWdodEJvbGQsYWxsb3dUcmFuc3BhcmVuY3k6ci5hbGxvd1RyYW5zcGFyZW5jeSxjb2xvcnM6b319LHQuY29uZmlnRXF1YWxzPWZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByPTA7cjxlLmNvbG9ycy5hbnNpLmxlbmd0aDtyKyspaWYoZS5jb2xvcnMuYW5zaVtyXS5yZ2JhIT09dC5jb2xvcnMuYW5zaVtyXS5yZ2JhKXJldHVybiExO3JldHVybiBlLmRldmljZVBpeGVsUmF0aW89PT10LmRldmljZVBpeGVsUmF0aW8mJmUuZm9udEZhbWlseT09PXQuZm9udEZhbWlseSYmZS5mb250U2l6ZT09PXQuZm9udFNpemUmJmUuZm9udFdlaWdodD09PXQuZm9udFdlaWdodCYmZS5mb250V2VpZ2h0Qm9sZD09PXQuZm9udFdlaWdodEJvbGQmJmUuYWxsb3dUcmFuc3BhcmVuY3k9PT10LmFsbG93VHJhbnNwYXJlbmN5JiZlLnNjYWxlZENoYXJXaWR0aD09PXQuc2NhbGVkQ2hhcldpZHRoJiZlLnNjYWxlZENoYXJIZWlnaHQ9PT10LnNjYWxlZENoYXJIZWlnaHQmJmUuY29sb3JzLmZvcmVncm91bmQ9PT10LmNvbG9ycy5mb3JlZ3JvdW5kJiZlLmNvbG9ycy5iYWNrZ3JvdW5kPT09dC5jb2xvcnMuYmFja2dyb3VuZH0sdC5pczI1NkNvbG9yPWZ1bmN0aW9uKGUpe3JldHVybiBlPG4uREVGQVVMVF9DT0xPUn19LDg4MDM6KGUsdCxyKT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkNIQVJfQVRMQVNfQ0VMTF9TUEFDSU5HPXQuVEVYVF9CQVNFTElORT10LkRJTV9PUEFDSVRZPXQuSU5WRVJURURfREVGQVVMVF9DT0xPUj12b2lkIDA7dmFyIGk9cig2MTE0KTt0LklOVkVSVEVEX0RFRkFVTFRfQ09MT1I9MjU3LHQuRElNX09QQUNJVFk9LjUsdC5URVhUX0JBU0VMSU5FPWkuaXNGaXJlZm94PyJib3R0b20iOiJpZGVvZ3JhcGhpYyIsdC5DSEFSX0FUTEFTX0NFTExfU1BBQ0lORz0xfSwxOTA2OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pO09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0Lk5vbmVDaGFyQXRsYXM9dC5EeW5hbWljQ2hhckF0bGFzPXQuZ2V0R2x5cGhDYWNoZUtleT12b2lkIDA7dmFyIG89cig4ODAzKSxzPXIoOTYxNiksYT1yKDU2ODApLGM9cig3MDAxKSxsPXIoNjExNCksdT1yKDE3NTIpLGg9cig0Nzc0KSxmPTEwMjQsXz0xMDI0LGQ9e2NzczoicmdiYSgwLCAwLCAwLCAwKSIscmdiYTowfTtmdW5jdGlvbiBwKGUpe3JldHVybiBlLmNvZGU8PDIxfGUuYmc8PDEyfGUuZmc8PDN8KGUuYm9sZD8wOjQpKyhlLmRpbT8wOjIpKyhlLml0YWxpYz8wOjEpfXQuZ2V0R2x5cGhDYWNoZUtleT1wO3ZhciB2PWZ1bmN0aW9uKGUpe2Z1bmN0aW9uIHQodCxyKXt2YXIgaT1lLmNhbGwodGhpcyl8fHRoaXM7aS5fY29uZmlnPXIsaS5fZHJhd1RvQ2FjaGVDb3VudD0wLGkuX2dseXBoc1dhaXRpbmdPbkJpdG1hcD1bXSxpLl9iaXRtYXBDb21taXRUaW1lb3V0PW51bGwsaS5fYml0bWFwPW51bGwsaS5fY2FjaGVDYW52YXM9dC5jcmVhdGVFbGVtZW50KCJjYW52YXMiKSxpLl9jYWNoZUNhbnZhcy53aWR0aD1mLGkuX2NhY2hlQ2FudmFzLmhlaWdodD1fLGkuX2NhY2hlQ3R4PSgwLHUudGhyb3dJZkZhbHN5KShpLl9jYWNoZUNhbnZhcy5nZXRDb250ZXh0KCIyZCIse2FscGhhOiEwfSkpO3ZhciBuPXQuY3JlYXRlRWxlbWVudCgiY2FudmFzIik7bi53aWR0aD1pLl9jb25maWcuc2NhbGVkQ2hhcldpZHRoLG4uaGVpZ2h0PWkuX2NvbmZpZy5zY2FsZWRDaGFySGVpZ2h0LGkuX3RtcEN0eD0oMCx1LnRocm93SWZGYWxzeSkobi5nZXRDb250ZXh0KCIyZCIse2FscGhhOmkuX2NvbmZpZy5hbGxvd1RyYW5zcGFyZW5jeX0pKSxpLl93aWR0aD1NYXRoLmZsb29yKGYvaS5fY29uZmlnLnNjYWxlZENoYXJXaWR0aCksaS5faGVpZ2h0PU1hdGguZmxvb3IoXy9pLl9jb25maWcuc2NhbGVkQ2hhckhlaWdodCk7dmFyIG89aS5fd2lkdGgqaS5faGVpZ2h0O3JldHVybiBpLl9jYWNoZU1hcD1uZXcgYy5MUlVNYXAobyksaS5fY2FjaGVNYXAucHJlYWxsb2MobyksaX1yZXR1cm4gbih0LGUpLHQucHJvdG90eXBlLmRpc3Bvc2U9ZnVuY3Rpb24oKXtudWxsIT09dGhpcy5fYml0bWFwQ29tbWl0VGltZW91dCYmKHdpbmRvdy5jbGVhclRpbWVvdXQodGhpcy5fYml0bWFwQ29tbWl0VGltZW91dCksdGhpcy5fYml0bWFwQ29tbWl0VGltZW91dD1udWxsKX0sdC5wcm90b3R5cGUuYmVnaW5GcmFtZT1mdW5jdGlvbigpe3RoaXMuX2RyYXdUb0NhY2hlQ291bnQ9MH0sdC5wcm90b3R5cGUuY2xlYXI9ZnVuY3Rpb24oKXtpZih0aGlzLl9jYWNoZU1hcC5zaXplPjApe3ZhciBlPXRoaXMuX3dpZHRoKnRoaXMuX2hlaWdodDt0aGlzLl9jYWNoZU1hcD1uZXcgYy5MUlVNYXAoZSksdGhpcy5fY2FjaGVNYXAucHJlYWxsb2MoZSl9dGhpcy5fY2FjaGVDdHguY2xlYXJSZWN0KDAsMCxmLF8pLHRoaXMuX3RtcEN0eC5jbGVhclJlY3QoMCwwLHRoaXMuX2NvbmZpZy5zY2FsZWRDaGFyV2lkdGgsdGhpcy5fY29uZmlnLnNjYWxlZENoYXJIZWlnaHQpfSx0LnByb3RvdHlwZS5kcmF3PWZ1bmN0aW9uKGUsdCxyLGkpe2lmKDMyPT09dC5jb2RlKXJldHVybiEwO2lmKCF0aGlzLl9jYW5DYWNoZSh0KSlyZXR1cm4hMTt2YXIgbj1wKHQpLG89dGhpcy5fY2FjaGVNYXAuZ2V0KG4pO2lmKG51bGwhPW8pcmV0dXJuIHRoaXMuX2RyYXdGcm9tQ2FjaGUoZSxvLHIsaSksITA7aWYodGhpcy5fZHJhd1RvQ2FjaGVDb3VudDwxMDApe3ZhciBzO3M9dGhpcy5fY2FjaGVNYXAuc2l6ZTx0aGlzLl9jYWNoZU1hcC5jYXBhY2l0eT90aGlzLl9jYWNoZU1hcC5zaXplOnRoaXMuX2NhY2hlTWFwLnBlZWsoKS5pbmRleDt2YXIgYT10aGlzLl9kcmF3VG9DYWNoZSh0LHMpO3JldHVybiB0aGlzLl9jYWNoZU1hcC5zZXQobixhKSx0aGlzLl9kcmF3RnJvbUNhY2hlKGUsYSxyLGkpLCEwfXJldHVybiExfSx0LnByb3RvdHlwZS5fY2FuQ2FjaGU9ZnVuY3Rpb24oZSl7cmV0dXJuIGUuY29kZTwyNTZ9LHQucHJvdG90eXBlLl90b0Nvb3JkaW5hdGVYPWZ1bmN0aW9uKGUpe3JldHVybiBlJXRoaXMuX3dpZHRoKnRoaXMuX2NvbmZpZy5zY2FsZWRDaGFyV2lkdGh9LHQucHJvdG90eXBlLl90b0Nvb3JkaW5hdGVZPWZ1bmN0aW9uKGUpe3JldHVybiBNYXRoLmZsb29yKGUvdGhpcy5fd2lkdGgpKnRoaXMuX2NvbmZpZy5zY2FsZWRDaGFySGVpZ2h0fSx0LnByb3RvdHlwZS5fZHJhd0Zyb21DYWNoZT1mdW5jdGlvbihlLHQscixpKXtpZighdC5pc0VtcHR5KXt2YXIgbj10aGlzLl90b0Nvb3JkaW5hdGVYKHQuaW5kZXgpLG89dGhpcy5fdG9Db29yZGluYXRlWSh0LmluZGV4KTtlLmRyYXdJbWFnZSh0LmluQml0bWFwP3RoaXMuX2JpdG1hcDp0aGlzLl9jYWNoZUNhbnZhcyxuLG8sdGhpcy5fY29uZmlnLnNjYWxlZENoYXJXaWR0aCx0aGlzLl9jb25maWcuc2NhbGVkQ2hhckhlaWdodCxyLGksdGhpcy5fY29uZmlnLnNjYWxlZENoYXJXaWR0aCx0aGlzLl9jb25maWcuc2NhbGVkQ2hhckhlaWdodCl9fSx0LnByb3RvdHlwZS5fZ2V0Q29sb3JGcm9tQW5zaUluZGV4PWZ1bmN0aW9uKGUpe3JldHVybiBlPHRoaXMuX2NvbmZpZy5jb2xvcnMuYW5zaS5sZW5ndGg/dGhpcy5fY29uZmlnLmNvbG9ycy5hbnNpW2VdOmEuREVGQVVMVF9BTlNJX0NPTE9SU1tlXX0sdC5wcm90b3R5cGUuX2dldEJhY2tncm91bmRDb2xvcj1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fY29uZmlnLmFsbG93VHJhbnNwYXJlbmN5P2Q6ZS5iZz09PW8uSU5WRVJURURfREVGQVVMVF9DT0xPUj90aGlzLl9jb25maWcuY29sb3JzLmZvcmVncm91bmQ6ZS5iZzwyNTY/dGhpcy5fZ2V0Q29sb3JGcm9tQW5zaUluZGV4KGUuYmcpOnRoaXMuX2NvbmZpZy5jb2xvcnMuYmFja2dyb3VuZH0sdC5wcm90b3R5cGUuX2dldEZvcmVncm91bmRDb2xvcj1mdW5jdGlvbihlKXtyZXR1cm4gZS5mZz09PW8uSU5WRVJURURfREVGQVVMVF9DT0xPUj9oLmNvbG9yLm9wYXF1ZSh0aGlzLl9jb25maWcuY29sb3JzLmJhY2tncm91bmQpOmUuZmc8MjU2P3RoaXMuX2dldENvbG9yRnJvbUFuc2lJbmRleChlLmZnKTp0aGlzLl9jb25maWcuY29sb3JzLmZvcmVncm91bmR9LHQucHJvdG90eXBlLl9kcmF3VG9DYWNoZT1mdW5jdGlvbihlLHQpe3RoaXMuX2RyYXdUb0NhY2hlQ291bnQrKyx0aGlzLl90bXBDdHguc2F2ZSgpO3ZhciByPXRoaXMuX2dldEJhY2tncm91bmRDb2xvcihlKTt0aGlzLl90bXBDdHguZ2xvYmFsQ29tcG9zaXRlT3BlcmF0aW9uPSJjb3B5Iix0aGlzLl90bXBDdHguZmlsbFN0eWxlPXIuY3NzLHRoaXMuX3RtcEN0eC5maWxsUmVjdCgwLDAsdGhpcy5fY29uZmlnLnNjYWxlZENoYXJXaWR0aCx0aGlzLl9jb25maWcuc2NhbGVkQ2hhckhlaWdodCksdGhpcy5fdG1wQ3R4Lmdsb2JhbENvbXBvc2l0ZU9wZXJhdGlvbj0ic291cmNlLW92ZXIiO3ZhciBpPWUuYm9sZD90aGlzLl9jb25maWcuZm9udFdlaWdodEJvbGQ6dGhpcy5fY29uZmlnLmZvbnRXZWlnaHQsbj1lLml0YWxpYz8iaXRhbGljIjoiIjt0aGlzLl90bXBDdHguZm9udD1uKyIgIitpKyIgIit0aGlzLl9jb25maWcuZm9udFNpemUqdGhpcy5fY29uZmlnLmRldmljZVBpeGVsUmF0aW8rInB4ICIrdGhpcy5fY29uZmlnLmZvbnRGYW1pbHksdGhpcy5fdG1wQ3R4LnRleHRCYXNlbGluZT1vLlRFWFRfQkFTRUxJTkUsdGhpcy5fdG1wQ3R4LmZpbGxTdHlsZT10aGlzLl9nZXRGb3JlZ3JvdW5kQ29sb3IoZSkuY3NzLGUuZGltJiYodGhpcy5fdG1wQ3R4Lmdsb2JhbEFscGhhPW8uRElNX09QQUNJVFkpLHRoaXMuX3RtcEN0eC5maWxsVGV4dChlLmNoYXJzLDAsdGhpcy5fY29uZmlnLnNjYWxlZENoYXJIZWlnaHQpO3ZhciBzPXRoaXMuX3RtcEN0eC5nZXRJbWFnZURhdGEoMCwwLHRoaXMuX2NvbmZpZy5zY2FsZWRDaGFyV2lkdGgsdGhpcy5fY29uZmlnLnNjYWxlZENoYXJIZWlnaHQpLGE9ITE7aWYodGhpcy5fY29uZmlnLmFsbG93VHJhbnNwYXJlbmN5fHwoYT15KHMscikpLGEmJiJfIj09PWUuY2hhcnMmJiF0aGlzLl9jb25maWcuYWxsb3dUcmFuc3BhcmVuY3kpZm9yKHZhciBjPTE7Yzw9NSYmKHRoaXMuX3RtcEN0eC5maWxsVGV4dChlLmNoYXJzLDAsdGhpcy5fY29uZmlnLnNjYWxlZENoYXJIZWlnaHQtYyksYT15KHM9dGhpcy5fdG1wQ3R4LmdldEltYWdlRGF0YSgwLDAsdGhpcy5fY29uZmlnLnNjYWxlZENoYXJXaWR0aCx0aGlzLl9jb25maWcuc2NhbGVkQ2hhckhlaWdodCkscikpO2MrKyk7dGhpcy5fdG1wQ3R4LnJlc3RvcmUoKTt2YXIgbD10aGlzLl90b0Nvb3JkaW5hdGVYKHQpLHU9dGhpcy5fdG9Db29yZGluYXRlWSh0KTt0aGlzLl9jYWNoZUN0eC5wdXRJbWFnZURhdGEocyxsLHUpO3ZhciBoPXtpbmRleDp0LGlzRW1wdHk6YSxpbkJpdG1hcDohMX07cmV0dXJuIHRoaXMuX2FkZEdseXBoVG9CaXRtYXAoaCksaH0sdC5wcm90b3R5cGUuX2FkZEdseXBoVG9CaXRtYXA9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpczshKCJjcmVhdGVJbWFnZUJpdG1hcCJpbiB3aW5kb3cpfHxsLmlzRmlyZWZveHx8bC5pc1NhZmFyaXx8KHRoaXMuX2dseXBoc1dhaXRpbmdPbkJpdG1hcC5wdXNoKGUpLG51bGw9PT10aGlzLl9iaXRtYXBDb21taXRUaW1lb3V0JiYodGhpcy5fYml0bWFwQ29tbWl0VGltZW91dD13aW5kb3cuc2V0VGltZW91dCgoZnVuY3Rpb24oKXtyZXR1cm4gdC5fZ2VuZXJhdGVCaXRtYXAoKX0pLDEwMCkpKX0sdC5wcm90b3R5cGUuX2dlbmVyYXRlQml0bWFwPWZ1bmN0aW9uKCl7dmFyIGU9dGhpcyx0PXRoaXMuX2dseXBoc1dhaXRpbmdPbkJpdG1hcDt0aGlzLl9nbHlwaHNXYWl0aW5nT25CaXRtYXA9W10sd2luZG93LmNyZWF0ZUltYWdlQml0bWFwKHRoaXMuX2NhY2hlQ2FudmFzKS50aGVuKChmdW5jdGlvbihyKXtlLl9iaXRtYXA9cjtmb3IodmFyIGk9MDtpPHQubGVuZ3RoO2krKyl0W2ldLmluQml0bWFwPSEwfSkpLHRoaXMuX2JpdG1hcENvbW1pdFRpbWVvdXQ9bnVsbH0sdH0ocy5CYXNlQ2hhckF0bGFzKTt0LkR5bmFtaWNDaGFyQXRsYXM9djt2YXIgZz1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KHQscil7cmV0dXJuIGUuY2FsbCh0aGlzKXx8dGhpc31yZXR1cm4gbih0LGUpLHQucHJvdG90eXBlLmRyYXc9ZnVuY3Rpb24oZSx0LHIsaSl7cmV0dXJuITF9LHR9KHMuQmFzZUNoYXJBdGxhcyk7ZnVuY3Rpb24geShlLHQpe2Zvcih2YXIgcj0hMCxpPXQucmdiYT4+PjI0LG49dC5yZ2JhPj4+MTYmMjU1LG89dC5yZ2JhPj4+OCYyNTUscz0wO3M8ZS5kYXRhLmxlbmd0aDtzKz00KWUuZGF0YVtzXT09PWkmJmUuZGF0YVtzKzFdPT09biYmZS5kYXRhW3MrMl09PT1vP2UuZGF0YVtzKzNdPTA6cj0hMTtyZXR1cm4gcn10Lk5vbmVDaGFyQXRsYXM9Z30sNzAwMTooZSx0KT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkxSVU1hcD12b2lkIDA7dmFyIHI9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUpe3RoaXMuY2FwYWNpdHk9ZSx0aGlzLl9tYXA9e30sdGhpcy5faGVhZD1udWxsLHRoaXMuX3RhaWw9bnVsbCx0aGlzLl9ub2RlUG9vbD1bXSx0aGlzLnNpemU9MH1yZXR1cm4gZS5wcm90b3R5cGUuX3VubGlua05vZGU9ZnVuY3Rpb24oZSl7dmFyIHQ9ZS5wcmV2LHI9ZS5uZXh0O2U9PT10aGlzLl9oZWFkJiYodGhpcy5faGVhZD1yKSxlPT09dGhpcy5fdGFpbCYmKHRoaXMuX3RhaWw9dCksbnVsbCE9PXQmJih0Lm5leHQ9ciksbnVsbCE9PXImJihyLnByZXY9dCl9LGUucHJvdG90eXBlLl9hcHBlbmROb2RlPWZ1bmN0aW9uKGUpe3ZhciB0PXRoaXMuX3RhaWw7bnVsbCE9PXQmJih0Lm5leHQ9ZSksZS5wcmV2PXQsZS5uZXh0PW51bGwsdGhpcy5fdGFpbD1lLG51bGw9PT10aGlzLl9oZWFkJiYodGhpcy5faGVhZD1lKX0sZS5wcm90b3R5cGUucHJlYWxsb2M9ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PXRoaXMuX25vZGVQb29sLHI9MDtyPGU7cisrKXQucHVzaCh7cHJldjpudWxsLG5leHQ6bnVsbCxrZXk6bnVsbCx2YWx1ZTpudWxsfSl9LGUucHJvdG90eXBlLmdldD1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9tYXBbZV07cmV0dXJuIHZvaWQgMCE9PXQ/KHRoaXMuX3VubGlua05vZGUodCksdGhpcy5fYXBwZW5kTm9kZSh0KSx0LnZhbHVlKTpudWxsfSxlLnByb3RvdHlwZS5wZWVrVmFsdWU9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcy5fbWFwW2VdO3JldHVybiB2b2lkIDAhPT10P3QudmFsdWU6bnVsbH0sZS5wcm90b3R5cGUucGVlaz1mdW5jdGlvbigpe3ZhciBlPXRoaXMuX2hlYWQ7cmV0dXJuIG51bGw9PT1lP251bGw6ZS52YWx1ZX0sZS5wcm90b3R5cGUuc2V0PWZ1bmN0aW9uKGUsdCl7dmFyIHI9dGhpcy5fbWFwW2VdO2lmKHZvaWQgMCE9PXIpcj10aGlzLl9tYXBbZV0sdGhpcy5fdW5saW5rTm9kZShyKSxyLnZhbHVlPXQ7ZWxzZSBpZih0aGlzLnNpemU+PXRoaXMuY2FwYWNpdHkpcj10aGlzLl9oZWFkLHRoaXMuX3VubGlua05vZGUociksZGVsZXRlIHRoaXMuX21hcFtyLmtleV0sci5rZXk9ZSxyLnZhbHVlPXQsdGhpcy5fbWFwW2VdPXI7ZWxzZXt2YXIgaT10aGlzLl9ub2RlUG9vbDtpLmxlbmd0aD4wPygocj1pLnBvcCgpKS5rZXk9ZSxyLnZhbHVlPXQpOnI9e3ByZXY6bnVsbCxuZXh0Om51bGwsa2V5OmUsdmFsdWU6dH0sdGhpcy5fbWFwW2VdPXIsdGhpcy5zaXplKyt9dGhpcy5fYXBwZW5kTm9kZShyKX0sZX0oKTt0LkxSVU1hcD1yfSwxMjk2OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pLG89dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxzPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkRvbVJlbmRlcmVyPXZvaWQgMDt2YXIgYT1yKDM3ODcpLGM9cig4ODAzKSxsPXIoODQ0KSx1PXIoNDcyNSksaD1yKDI1ODUpLGY9cig4NDYwKSxfPXIoNDc3NCksZD1yKDk2MzEpLHA9Inh0ZXJtLWRvbS1yZW5kZXJlci1vd25lci0iLHY9Inh0ZXJtLWZnLSIsZz0ieHRlcm0tYmctIix5PSJ4dGVybS1mb2N1cyIsbT0xLGI9ZnVuY3Rpb24oZSl7ZnVuY3Rpb24gdCh0LHIsaSxuLG8scyxjLGwsdSxoKXt2YXIgZj1lLmNhbGwodGhpcyl8fHRoaXM7cmV0dXJuIGYuX2NvbG9ycz10LGYuX2VsZW1lbnQ9cixmLl9zY3JlZW5FbGVtZW50PWksZi5fdmlld3BvcnRFbGVtZW50PW4sZi5fbGlua2lmaWVyPW8sZi5fbGlua2lmaWVyMj1zLGYuX2NoYXJTaXplU2VydmljZT1sLGYuX29wdGlvbnNTZXJ2aWNlPXUsZi5fYnVmZmVyU2VydmljZT1oLGYuX3Rlcm1pbmFsQ2xhc3M9bSsrLGYuX3Jvd0VsZW1lbnRzPVtdLGYuX3Jvd0NvbnRhaW5lcj1kb2N1bWVudC5jcmVhdGVFbGVtZW50KCJkaXYiKSxmLl9yb3dDb250YWluZXIuY2xhc3NMaXN0LmFkZCgieHRlcm0tcm93cyIpLGYuX3Jvd0NvbnRhaW5lci5zdHlsZS5saW5lSGVpZ2h0PSJub3JtYWwiLGYuX3Jvd0NvbnRhaW5lci5zZXRBdHRyaWJ1dGUoImFyaWEtaGlkZGVuIiwidHJ1ZSIpLGYuX3JlZnJlc2hSb3dFbGVtZW50cyhmLl9idWZmZXJTZXJ2aWNlLmNvbHMsZi5fYnVmZmVyU2VydmljZS5yb3dzKSxmLl9zZWxlY3Rpb25Db250YWluZXI9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2IiksZi5fc2VsZWN0aW9uQ29udGFpbmVyLmNsYXNzTGlzdC5hZGQoInh0ZXJtLXNlbGVjdGlvbiIpLGYuX3NlbGVjdGlvbkNvbnRhaW5lci5zZXRBdHRyaWJ1dGUoImFyaWEtaGlkZGVuIiwidHJ1ZSIpLGYuZGltZW5zaW9ucz17c2NhbGVkQ2hhcldpZHRoOjAsc2NhbGVkQ2hhckhlaWdodDowLHNjYWxlZENlbGxXaWR0aDowLHNjYWxlZENlbGxIZWlnaHQ6MCxzY2FsZWRDaGFyTGVmdDowLHNjYWxlZENoYXJUb3A6MCxzY2FsZWRDYW52YXNXaWR0aDowLHNjYWxlZENhbnZhc0hlaWdodDowLGNhbnZhc1dpZHRoOjAsY2FudmFzSGVpZ2h0OjAsYWN0dWFsQ2VsbFdpZHRoOjAsYWN0dWFsQ2VsbEhlaWdodDowfSxmLl91cGRhdGVEaW1lbnNpb25zKCksZi5faW5qZWN0Q3NzKCksZi5fcm93RmFjdG9yeT1jLmNyZWF0ZUluc3RhbmNlKGEuRG9tUmVuZGVyZXJSb3dGYWN0b3J5LGRvY3VtZW50LGYuX2NvbG9ycyksZi5fZWxlbWVudC5jbGFzc0xpc3QuYWRkKHArZi5fdGVybWluYWxDbGFzcyksZi5fc2NyZWVuRWxlbWVudC5hcHBlbmRDaGlsZChmLl9yb3dDb250YWluZXIpLGYuX3NjcmVlbkVsZW1lbnQuYXBwZW5kQ2hpbGQoZi5fc2VsZWN0aW9uQ29udGFpbmVyKSxmLl9saW5raWZpZXIub25TaG93TGlua1VuZGVybGluZSgoZnVuY3Rpb24oZSl7cmV0dXJuIGYuX29uTGlua0hvdmVyKGUpfSkpLGYuX2xpbmtpZmllci5vbkhpZGVMaW5rVW5kZXJsaW5lKChmdW5jdGlvbihlKXtyZXR1cm4gZi5fb25MaW5rTGVhdmUoZSl9KSksZi5fbGlua2lmaWVyMi5vblNob3dMaW5rVW5kZXJsaW5lKChmdW5jdGlvbihlKXtyZXR1cm4gZi5fb25MaW5rSG92ZXIoZSl9KSksZi5fbGlua2lmaWVyMi5vbkhpZGVMaW5rVW5kZXJsaW5lKChmdW5jdGlvbihlKXtyZXR1cm4gZi5fb25MaW5rTGVhdmUoZSl9KSksZn1yZXR1cm4gbih0LGUpLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25SZXF1ZXN0UmVkcmF3Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuKG5ldyBmLkV2ZW50RW1pdHRlcikuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksdC5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe3RoaXMuX2VsZW1lbnQuY2xhc3NMaXN0LnJlbW92ZShwK3RoaXMuX3Rlcm1pbmFsQ2xhc3MpLCgwLGQucmVtb3ZlRWxlbWVudEZyb21QYXJlbnQpKHRoaXMuX3Jvd0NvbnRhaW5lcix0aGlzLl9zZWxlY3Rpb25Db250YWluZXIsdGhpcy5fdGhlbWVTdHlsZUVsZW1lbnQsdGhpcy5fZGltZW5zaW9uc1N0eWxlRWxlbWVudCksZS5wcm90b3R5cGUuZGlzcG9zZS5jYWxsKHRoaXMpfSx0LnByb3RvdHlwZS5fdXBkYXRlRGltZW5zaW9ucz1mdW5jdGlvbigpe3RoaXMuZGltZW5zaW9ucy5zY2FsZWRDaGFyV2lkdGg9dGhpcy5fY2hhclNpemVTZXJ2aWNlLndpZHRoKndpbmRvdy5kZXZpY2VQaXhlbFJhdGlvLHRoaXMuZGltZW5zaW9ucy5zY2FsZWRDaGFySGVpZ2h0PU1hdGguY2VpbCh0aGlzLl9jaGFyU2l6ZVNlcnZpY2UuaGVpZ2h0KndpbmRvdy5kZXZpY2VQaXhlbFJhdGlvKSx0aGlzLmRpbWVuc2lvbnMuc2NhbGVkQ2VsbFdpZHRoPXRoaXMuZGltZW5zaW9ucy5zY2FsZWRDaGFyV2lkdGgrTWF0aC5yb3VuZCh0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmxldHRlclNwYWNpbmcpLHRoaXMuZGltZW5zaW9ucy5zY2FsZWRDZWxsSGVpZ2h0PU1hdGguZmxvb3IodGhpcy5kaW1lbnNpb25zLnNjYWxlZENoYXJIZWlnaHQqdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5saW5lSGVpZ2h0KSx0aGlzLmRpbWVuc2lvbnMuc2NhbGVkQ2hhckxlZnQ9MCx0aGlzLmRpbWVuc2lvbnMuc2NhbGVkQ2hhclRvcD0wLHRoaXMuZGltZW5zaW9ucy5zY2FsZWRDYW52YXNXaWR0aD10aGlzLmRpbWVuc2lvbnMuc2NhbGVkQ2VsbFdpZHRoKnRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyx0aGlzLmRpbWVuc2lvbnMuc2NhbGVkQ2FudmFzSGVpZ2h0PXRoaXMuZGltZW5zaW9ucy5zY2FsZWRDZWxsSGVpZ2h0KnRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cyx0aGlzLmRpbWVuc2lvbnMuY2FudmFzV2lkdGg9TWF0aC5yb3VuZCh0aGlzLmRpbWVuc2lvbnMuc2NhbGVkQ2FudmFzV2lkdGgvd2luZG93LmRldmljZVBpeGVsUmF0aW8pLHRoaXMuZGltZW5zaW9ucy5jYW52YXNIZWlnaHQ9TWF0aC5yb3VuZCh0aGlzLmRpbWVuc2lvbnMuc2NhbGVkQ2FudmFzSGVpZ2h0L3dpbmRvdy5kZXZpY2VQaXhlbFJhdGlvKSx0aGlzLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbFdpZHRoPXRoaXMuZGltZW5zaW9ucy5jYW52YXNXaWR0aC90aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsdGhpcy5kaW1lbnNpb25zLmFjdHVhbENlbGxIZWlnaHQ9dGhpcy5kaW1lbnNpb25zLmNhbnZhc0hlaWdodC90aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3M7Zm9yKHZhciBlPTAsdD10aGlzLl9yb3dFbGVtZW50cztlPHQubGVuZ3RoO2UrKyl7dmFyIHI9dFtlXTtyLnN0eWxlLndpZHRoPXRoaXMuZGltZW5zaW9ucy5jYW52YXNXaWR0aCsicHgiLHIuc3R5bGUuaGVpZ2h0PXRoaXMuZGltZW5zaW9ucy5hY3R1YWxDZWxsSGVpZ2h0KyJweCIsci5zdHlsZS5saW5lSGVpZ2h0PXRoaXMuZGltZW5zaW9ucy5hY3R1YWxDZWxsSGVpZ2h0KyJweCIsci5zdHlsZS5vdmVyZmxvdz0iaGlkZGVuIn10aGlzLl9kaW1lbnNpb25zU3R5bGVFbGVtZW50fHwodGhpcy5fZGltZW5zaW9uc1N0eWxlRWxlbWVudD1kb2N1bWVudC5jcmVhdGVFbGVtZW50KCJzdHlsZSIpLHRoaXMuX3NjcmVlbkVsZW1lbnQuYXBwZW5kQ2hpbGQodGhpcy5fZGltZW5zaW9uc1N0eWxlRWxlbWVudCkpO3ZhciBpPXRoaXMuX3Rlcm1pbmFsU2VsZWN0b3IrIiAueHRlcm0tcm93cyBzcGFuIHsgZGlzcGxheTogaW5saW5lLWJsb2NrOyBoZWlnaHQ6IDEwMCU7IHZlcnRpY2FsLWFsaWduOiB0b3A7IHdpZHRoOiAiK3RoaXMuZGltZW5zaW9ucy5hY3R1YWxDZWxsV2lkdGgrInB4fSI7dGhpcy5fZGltZW5zaW9uc1N0eWxlRWxlbWVudC50ZXh0Q29udGVudD1pLHRoaXMuX3NlbGVjdGlvbkNvbnRhaW5lci5zdHlsZS5oZWlnaHQ9dGhpcy5fdmlld3BvcnRFbGVtZW50LnN0eWxlLmhlaWdodCx0aGlzLl9zY3JlZW5FbGVtZW50LnN0eWxlLndpZHRoPXRoaXMuZGltZW5zaW9ucy5jYW52YXNXaWR0aCsicHgiLHRoaXMuX3NjcmVlbkVsZW1lbnQuc3R5bGUuaGVpZ2h0PXRoaXMuZGltZW5zaW9ucy5jYW52YXNIZWlnaHQrInB4In0sdC5wcm90b3R5cGUuc2V0Q29sb3JzPWZ1bmN0aW9uKGUpe3RoaXMuX2NvbG9ycz1lLHRoaXMuX2luamVjdENzcygpfSx0LnByb3RvdHlwZS5faW5qZWN0Q3NzPWZ1bmN0aW9uKCl7dmFyIGU9dGhpczt0aGlzLl90aGVtZVN0eWxlRWxlbWVudHx8KHRoaXMuX3RoZW1lU3R5bGVFbGVtZW50PWRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoInN0eWxlIiksdGhpcy5fc2NyZWVuRWxlbWVudC5hcHBlbmRDaGlsZCh0aGlzLl90aGVtZVN0eWxlRWxlbWVudCkpO3ZhciB0PXRoaXMuX3Rlcm1pbmFsU2VsZWN0b3IrIiAueHRlcm0tcm93cyB7IGNvbG9yOiAiK3RoaXMuX2NvbG9ycy5mb3JlZ3JvdW5kLmNzcysiOyBmb250LWZhbWlseTogIit0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmZvbnRGYW1pbHkrIjsgZm9udC1zaXplOiAiK3RoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuZm9udFNpemUrInB4O30iO3QrPXRoaXMuX3Rlcm1pbmFsU2VsZWN0b3IrIiBzcGFuOm5vdCguIithLkJPTERfQ0xBU1MrIikgeyBmb250LXdlaWdodDogIit0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmZvbnRXZWlnaHQrIjt9Iit0aGlzLl90ZXJtaW5hbFNlbGVjdG9yKyIgc3Bhbi4iK2EuQk9MRF9DTEFTUysiIHsgZm9udC13ZWlnaHQ6ICIrdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5mb250V2VpZ2h0Qm9sZCsiO30iK3RoaXMuX3Rlcm1pbmFsU2VsZWN0b3IrIiBzcGFuLiIrYS5JVEFMSUNfQ0xBU1MrIiB7IGZvbnQtc3R5bGU6IGl0YWxpYzt9Iix0Kz0iQGtleWZyYW1lcyBibGlua19ib3hfc2hhZG93XyIrdGhpcy5fdGVybWluYWxDbGFzcysiIHsgNTAlIHsgIGJveC1zaGFkb3c6IG5vbmU7IH19Iix0Kz0iQGtleWZyYW1lcyBibGlua19ibG9ja18iK3RoaXMuX3Rlcm1pbmFsQ2xhc3MrIiB7IDAlIHsgIGJhY2tncm91bmQtY29sb3I6ICIrdGhpcy5fY29sb3JzLmN1cnNvci5jc3MrIjsgIGNvbG9yOiAiK3RoaXMuX2NvbG9ycy5jdXJzb3JBY2NlbnQuY3NzKyI7IH0gNTAlIHsgIGJhY2tncm91bmQtY29sb3I6ICIrdGhpcy5fY29sb3JzLmN1cnNvckFjY2VudC5jc3MrIjsgIGNvbG9yOiAiK3RoaXMuX2NvbG9ycy5jdXJzb3IuY3NzKyI7IH19Iix0Kz10aGlzLl90ZXJtaW5hbFNlbGVjdG9yKyIgLnh0ZXJtLXJvd3M6bm90KC54dGVybS1mb2N1cykgLiIrYS5DVVJTT1JfQ0xBU1MrIi4iK2EuQ1VSU09SX1NUWUxFX0JMT0NLX0NMQVNTKyIgeyBvdXRsaW5lOiAxcHggc29saWQgIit0aGlzLl9jb2xvcnMuY3Vyc29yLmNzcysiOyBvdXRsaW5lLW9mZnNldDogLTFweDt9Iit0aGlzLl90ZXJtaW5hbFNlbGVjdG9yKyIgLnh0ZXJtLXJvd3MueHRlcm0tZm9jdXMgLiIrYS5DVVJTT1JfQ0xBU1MrIi4iK2EuQ1VSU09SX0JMSU5LX0NMQVNTKyI6bm90KC4iK2EuQ1VSU09SX1NUWUxFX0JMT0NLX0NMQVNTKyIpIHsgYW5pbWF0aW9uOiBibGlua19ib3hfc2hhZG93XyIrdGhpcy5fdGVybWluYWxDbGFzcysiIDFzIHN0ZXAtZW5kIGluZmluaXRlO30iK3RoaXMuX3Rlcm1pbmFsU2VsZWN0b3IrIiAueHRlcm0tcm93cy54dGVybS1mb2N1cyAuIithLkNVUlNPUl9DTEFTUysiLiIrYS5DVVJTT1JfQkxJTktfQ0xBU1MrIi4iK2EuQ1VSU09SX1NUWUxFX0JMT0NLX0NMQVNTKyIgeyBhbmltYXRpb246IGJsaW5rX2Jsb2NrXyIrdGhpcy5fdGVybWluYWxDbGFzcysiIDFzIHN0ZXAtZW5kIGluZmluaXRlO30iK3RoaXMuX3Rlcm1pbmFsU2VsZWN0b3IrIiAueHRlcm0tcm93cy54dGVybS1mb2N1cyAuIithLkNVUlNPUl9DTEFTUysiLiIrYS5DVVJTT1JfU1RZTEVfQkxPQ0tfQ0xBU1MrIiB7IGJhY2tncm91bmQtY29sb3I6ICIrdGhpcy5fY29sb3JzLmN1cnNvci5jc3MrIjsgY29sb3I6ICIrdGhpcy5fY29sb3JzLmN1cnNvckFjY2VudC5jc3MrIjt9Iit0aGlzLl90ZXJtaW5hbFNlbGVjdG9yKyIgLnh0ZXJtLXJvd3MgLiIrYS5DVVJTT1JfQ0xBU1MrIi4iK2EuQ1VSU09SX1NUWUxFX0JBUl9DTEFTUysiIHsgYm94LXNoYWRvdzogIit0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmN1cnNvcldpZHRoKyJweCAwIDAgIit0aGlzLl9jb2xvcnMuY3Vyc29yLmNzcysiIGluc2V0O30iK3RoaXMuX3Rlcm1pbmFsU2VsZWN0b3IrIiAueHRlcm0tcm93cyAuIithLkNVUlNPUl9DTEFTUysiLiIrYS5DVVJTT1JfU1RZTEVfVU5ERVJMSU5FX0NMQVNTKyIgeyBib3gtc2hhZG93OiAwIC0xcHggMCAiK3RoaXMuX2NvbG9ycy5jdXJzb3IuY3NzKyIgaW5zZXQ7fSIsdCs9dGhpcy5fdGVybWluYWxTZWxlY3RvcisiIC54dGVybS1zZWxlY3Rpb24geyBwb3NpdGlvbjogYWJzb2x1dGU7IHRvcDogMDsgbGVmdDogMDsgei1pbmRleDogMTsgcG9pbnRlci1ldmVudHM6IG5vbmU7fSIrdGhpcy5fdGVybWluYWxTZWxlY3RvcisiIC54dGVybS1zZWxlY3Rpb24gZGl2IHsgcG9zaXRpb246IGFic29sdXRlOyBiYWNrZ3JvdW5kLWNvbG9yOiAiK3RoaXMuX2NvbG9ycy5zZWxlY3Rpb25UcmFuc3BhcmVudC5jc3MrIjt9Iix0aGlzLl9jb2xvcnMuYW5zaS5mb3JFYWNoKChmdW5jdGlvbihyLGkpe3QrPWUuX3Rlcm1pbmFsU2VsZWN0b3IrIiAuIit2K2krIiB7IGNvbG9yOiAiK3IuY3NzKyI7IH0iK2UuX3Rlcm1pbmFsU2VsZWN0b3IrIiAuIitnK2krIiB7IGJhY2tncm91bmQtY29sb3I6ICIrci5jc3MrIjsgfSJ9KSksdCs9dGhpcy5fdGVybWluYWxTZWxlY3RvcisiIC4iK3YrYy5JTlZFUlRFRF9ERUZBVUxUX0NPTE9SKyIgeyBjb2xvcjogIitfLmNvbG9yLm9wYXF1ZSh0aGlzLl9jb2xvcnMuYmFja2dyb3VuZCkuY3NzKyI7IH0iK3RoaXMuX3Rlcm1pbmFsU2VsZWN0b3IrIiAuIitnK2MuSU5WRVJURURfREVGQVVMVF9DT0xPUisiIHsgYmFja2dyb3VuZC1jb2xvcjogIit0aGlzLl9jb2xvcnMuZm9yZWdyb3VuZC5jc3MrIjsgfSIsdGhpcy5fdGhlbWVTdHlsZUVsZW1lbnQudGV4dENvbnRlbnQ9dH0sdC5wcm90b3R5cGUub25EZXZpY2VQaXhlbFJhdGlvQ2hhbmdlPWZ1bmN0aW9uKCl7dGhpcy5fdXBkYXRlRGltZW5zaW9ucygpfSx0LnByb3RvdHlwZS5fcmVmcmVzaFJvd0VsZW1lbnRzPWZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByPXRoaXMuX3Jvd0VsZW1lbnRzLmxlbmd0aDtyPD10O3IrKyl7dmFyIGk9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2Iik7dGhpcy5fcm93Q29udGFpbmVyLmFwcGVuZENoaWxkKGkpLHRoaXMuX3Jvd0VsZW1lbnRzLnB1c2goaSl9Zm9yKDt0aGlzLl9yb3dFbGVtZW50cy5sZW5ndGg+dDspdGhpcy5fcm93Q29udGFpbmVyLnJlbW92ZUNoaWxkKHRoaXMuX3Jvd0VsZW1lbnRzLnBvcCgpKX0sdC5wcm90b3R5cGUub25SZXNpemU9ZnVuY3Rpb24oZSx0KXt0aGlzLl9yZWZyZXNoUm93RWxlbWVudHMoZSx0KSx0aGlzLl91cGRhdGVEaW1lbnNpb25zKCl9LHQucHJvdG90eXBlLm9uQ2hhclNpemVDaGFuZ2VkPWZ1bmN0aW9uKCl7dGhpcy5fdXBkYXRlRGltZW5zaW9ucygpfSx0LnByb3RvdHlwZS5vbkJsdXI9ZnVuY3Rpb24oKXt0aGlzLl9yb3dDb250YWluZXIuY2xhc3NMaXN0LnJlbW92ZSh5KX0sdC5wcm90b3R5cGUub25Gb2N1cz1mdW5jdGlvbigpe3RoaXMuX3Jvd0NvbnRhaW5lci5jbGFzc0xpc3QuYWRkKHkpfSx0LnByb3RvdHlwZS5vblNlbGVjdGlvbkNoYW5nZWQ9ZnVuY3Rpb24oZSx0LHIpe2Zvcig7dGhpcy5fc2VsZWN0aW9uQ29udGFpbmVyLmNoaWxkcmVuLmxlbmd0aDspdGhpcy5fc2VsZWN0aW9uQ29udGFpbmVyLnJlbW92ZUNoaWxkKHRoaXMuX3NlbGVjdGlvbkNvbnRhaW5lci5jaGlsZHJlblswXSk7aWYoZSYmdCl7dmFyIGk9ZVsxXS10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55ZGlzcCxuPXRbMV0tdGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueWRpc3Asbz1NYXRoLm1heChpLDApLHM9TWF0aC5taW4obix0aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MtMSk7aWYoIShvPj10aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3N8fHM8MCkpe3ZhciBhPWRvY3VtZW50LmNyZWF0ZURvY3VtZW50RnJhZ21lbnQoKTtpZihyKWEuYXBwZW5kQ2hpbGQodGhpcy5fY3JlYXRlU2VsZWN0aW9uRWxlbWVudChvLGVbMF0sdFswXSxzLW8rMSkpO2Vsc2V7dmFyIGM9aT09PW8/ZVswXTowLGw9bz09PW4/dFswXTp0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHM7YS5hcHBlbmRDaGlsZCh0aGlzLl9jcmVhdGVTZWxlY3Rpb25FbGVtZW50KG8sYyxsKSk7dmFyIHU9cy1vLTE7aWYoYS5hcHBlbmRDaGlsZCh0aGlzLl9jcmVhdGVTZWxlY3Rpb25FbGVtZW50KG8rMSwwLHRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyx1KSksbyE9PXMpe3ZhciBoPW49PT1zP3RbMF06dGhpcy5fYnVmZmVyU2VydmljZS5jb2xzO2EuYXBwZW5kQ2hpbGQodGhpcy5fY3JlYXRlU2VsZWN0aW9uRWxlbWVudChzLDAsaCkpfX10aGlzLl9zZWxlY3Rpb25Db250YWluZXIuYXBwZW5kQ2hpbGQoYSl9fX0sdC5wcm90b3R5cGUuX2NyZWF0ZVNlbGVjdGlvbkVsZW1lbnQ9ZnVuY3Rpb24oZSx0LHIsaSl7dm9pZCAwPT09aSYmKGk9MSk7dmFyIG49ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2Iik7cmV0dXJuIG4uc3R5bGUuaGVpZ2h0PWkqdGhpcy5kaW1lbnNpb25zLmFjdHVhbENlbGxIZWlnaHQrInB4IixuLnN0eWxlLnRvcD1lKnRoaXMuZGltZW5zaW9ucy5hY3R1YWxDZWxsSGVpZ2h0KyJweCIsbi5zdHlsZS5sZWZ0PXQqdGhpcy5kaW1lbnNpb25zLmFjdHVhbENlbGxXaWR0aCsicHgiLG4uc3R5bGUud2lkdGg9dGhpcy5kaW1lbnNpb25zLmFjdHVhbENlbGxXaWR0aCooci10KSsicHgiLG59LHQucHJvdG90eXBlLm9uQ3Vyc29yTW92ZT1mdW5jdGlvbigpe30sdC5wcm90b3R5cGUub25PcHRpb25zQ2hhbmdlZD1mdW5jdGlvbigpe3RoaXMuX3VwZGF0ZURpbWVuc2lvbnMoKSx0aGlzLl9pbmplY3RDc3MoKX0sdC5wcm90b3R5cGUuY2xlYXI9ZnVuY3Rpb24oKXtmb3IodmFyIGU9MCx0PXRoaXMuX3Jvd0VsZW1lbnRzO2U8dC5sZW5ndGg7ZSsrKXRbZV0uaW5uZXJUZXh0PSIifSx0LnByb3RvdHlwZS5yZW5kZXJSb3dzPWZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByPXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnliYXNlK3RoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnksaT1NYXRoLm1pbih0aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci54LHRoaXMuX2J1ZmZlclNlcnZpY2UuY29scy0xKSxuPXRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuY3Vyc29yQmxpbmssbz1lO288PXQ7bysrKXt2YXIgcz10aGlzLl9yb3dFbGVtZW50c1tvXTtzLmlubmVyVGV4dD0iIjt2YXIgYT1vK3RoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnlkaXNwLGM9dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIubGluZXMuZ2V0KGEpLGw9dGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5jdXJzb3JTdHlsZTtzLmFwcGVuZENoaWxkKHRoaXMuX3Jvd0ZhY3RvcnkuY3JlYXRlUm93KGMsYSxhPT09cixsLGksbix0aGlzLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbFdpZHRoLHRoaXMuX2J1ZmZlclNlcnZpY2UuY29scykpfX0sT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJfdGVybWluYWxTZWxlY3RvciIse2dldDpmdW5jdGlvbigpe3JldHVybiIuIitwK3RoaXMuX3Rlcm1pbmFsQ2xhc3N9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksdC5wcm90b3R5cGUuX29uTGlua0hvdmVyPWZ1bmN0aW9uKGUpe3RoaXMuX3NldENlbGxVbmRlcmxpbmUoZS54MSxlLngyLGUueTEsZS55MixlLmNvbHMsITApfSx0LnByb3RvdHlwZS5fb25MaW5rTGVhdmU9ZnVuY3Rpb24oZSl7dGhpcy5fc2V0Q2VsbFVuZGVybGluZShlLngxLGUueDIsZS55MSxlLnkyLGUuY29scywhMSl9LHQucHJvdG90eXBlLl9zZXRDZWxsVW5kZXJsaW5lPWZ1bmN0aW9uKGUsdCxyLGksbixvKXtmb3IoO2UhPT10fHxyIT09aTspe3ZhciBzPXRoaXMuX3Jvd0VsZW1lbnRzW3JdO2lmKCFzKXJldHVybjt2YXIgYT1zLmNoaWxkcmVuW2VdO2EmJihhLnN0eWxlLnRleHREZWNvcmF0aW9uPW8/InVuZGVybGluZSI6Im5vbmUiKSwrK2U+PW4mJihlPTAscisrKX19LG8oW3MoNixoLklJbnN0YW50aWF0aW9uU2VydmljZSkscyg3LHUuSUNoYXJTaXplU2VydmljZSkscyg4LGguSU9wdGlvbnNTZXJ2aWNlKSxzKDksaC5JQnVmZmVyU2VydmljZSldLHQpfShsLkRpc3Bvc2FibGUpO3QuRG9tUmVuZGVyZXI9Yn0sMzc4NzpmdW5jdGlvbihlLHQscil7dmFyIGk9dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxuPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkRvbVJlbmRlcmVyUm93RmFjdG9yeT10LkNVUlNPUl9TVFlMRV9VTkRFUkxJTkVfQ0xBU1M9dC5DVVJTT1JfU1RZTEVfQkFSX0NMQVNTPXQuQ1VSU09SX1NUWUxFX0JMT0NLX0NMQVNTPXQuQ1VSU09SX0JMSU5LX0NMQVNTPXQuQ1VSU09SX0NMQVNTPXQuU1RSSUtFVEhST1VHSF9DTEFTUz10LlVOREVSTElORV9DTEFTUz10LklUQUxJQ19DTEFTUz10LkRJTV9DTEFTUz10LkJPTERfQ0xBU1M9dm9pZCAwO3ZhciBvPXIoODgwMykscz1yKDY0MyksYT1yKDUxMSksYz1yKDI1ODUpLGw9cig0Nzc0KSx1PXIoNDcyNSksaD1yKDQyNjkpO3QuQk9MRF9DTEFTUz0ieHRlcm0tYm9sZCIsdC5ESU1fQ0xBU1M9Inh0ZXJtLWRpbSIsdC5JVEFMSUNfQ0xBU1M9Inh0ZXJtLWl0YWxpYyIsdC5VTkRFUkxJTkVfQ0xBU1M9Inh0ZXJtLXVuZGVybGluZSIsdC5TVFJJS0VUSFJPVUdIX0NMQVNTPSJ4dGVybS1zdHJpa2V0aHJvdWdoIix0LkNVUlNPUl9DTEFTUz0ieHRlcm0tY3Vyc29yIix0LkNVUlNPUl9CTElOS19DTEFTUz0ieHRlcm0tY3Vyc29yLWJsaW5rIix0LkNVUlNPUl9TVFlMRV9CTE9DS19DTEFTUz0ieHRlcm0tY3Vyc29yLWJsb2NrIix0LkNVUlNPUl9TVFlMRV9CQVJfQ0xBU1M9Inh0ZXJtLWN1cnNvci1iYXIiLHQuQ1VSU09SX1NUWUxFX1VOREVSTElORV9DTEFTUz0ieHRlcm0tY3Vyc29yLXVuZGVybGluZSI7dmFyIGY9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUsdCxyLGksbil7dGhpcy5fZG9jdW1lbnQ9ZSx0aGlzLl9jb2xvcnM9dCx0aGlzLl9jaGFyYWN0ZXJKb2luZXJTZXJ2aWNlPXIsdGhpcy5fb3B0aW9uc1NlcnZpY2U9aSx0aGlzLl9jb3JlU2VydmljZT1uLHRoaXMuX3dvcmtDZWxsPW5ldyBhLkNlbGxEYXRhfXJldHVybiBlLnByb3RvdHlwZS5zZXRDb2xvcnM9ZnVuY3Rpb24oZSl7dGhpcy5fY29sb3JzPWV9LGUucHJvdG90eXBlLmNyZWF0ZVJvdz1mdW5jdGlvbihlLHIsaSxuLGEsYyx1LGYpe2Zvcih2YXIgZD10aGlzLl9kb2N1bWVudC5jcmVhdGVEb2N1bWVudEZyYWdtZW50KCkscD10aGlzLl9jaGFyYWN0ZXJKb2luZXJTZXJ2aWNlLmdldEpvaW5lZENoYXJhY3RlcnMociksdj0wLGc9TWF0aC5taW4oZS5sZW5ndGgsZiktMTtnPj0wO2ctLSlpZihlLmxvYWRDZWxsKGcsdGhpcy5fd29ya0NlbGwpLmdldENvZGUoKSE9PXMuTlVMTF9DRUxMX0NPREV8fGkmJmc9PT1hKXt2PWcrMTticmVha31mb3IoZz0wO2c8djtnKyspe2UubG9hZENlbGwoZyx0aGlzLl93b3JrQ2VsbCk7dmFyIHk9dGhpcy5fd29ya0NlbGwuZ2V0V2lkdGgoKTtpZigwIT09eSl7dmFyIG09ITEsYj1nLFM9dGhpcy5fd29ya0NlbGw7aWYocC5sZW5ndGg+MCYmZz09PXBbMF1bMF0pe209ITA7dmFyIEM9cC5zaGlmdCgpO1M9bmV3IGguSm9pbmVkQ2VsbERhdGEodGhpcy5fd29ya0NlbGwsZS50cmFuc2xhdGVUb1N0cmluZyghMCxDWzBdLENbMV0pLENbMV0tQ1swXSksYj1DWzFdLTEseT1TLmdldFdpZHRoKCl9dmFyIHc9dGhpcy5fZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgic3BhbiIpO2lmKHk+MSYmKHcuc3R5bGUud2lkdGg9dSp5KyJweCIpLG0mJih3LnN0eWxlLmRpc3BsYXk9ImlubGluZSIsYT49ZyYmYTw9YiYmKGE9ZykpLCF0aGlzLl9jb3JlU2VydmljZS5pc0N1cnNvckhpZGRlbiYmaSYmZz09PWEpc3dpdGNoKHcuY2xhc3NMaXN0LmFkZCh0LkNVUlNPUl9DTEFTUyksYyYmdy5jbGFzc0xpc3QuYWRkKHQuQ1VSU09SX0JMSU5LX0NMQVNTKSxuKXtjYXNlImJhciI6dy5jbGFzc0xpc3QuYWRkKHQuQ1VSU09SX1NUWUxFX0JBUl9DTEFTUyk7YnJlYWs7Y2FzZSJ1bmRlcmxpbmUiOncuY2xhc3NMaXN0LmFkZCh0LkNVUlNPUl9TVFlMRV9VTkRFUkxJTkVfQ0xBU1MpO2JyZWFrO2RlZmF1bHQ6dy5jbGFzc0xpc3QuYWRkKHQuQ1VSU09SX1NUWUxFX0JMT0NLX0NMQVNTKX1TLmlzQm9sZCgpJiZ3LmNsYXNzTGlzdC5hZGQodC5CT0xEX0NMQVNTKSxTLmlzSXRhbGljKCkmJncuY2xhc3NMaXN0LmFkZCh0LklUQUxJQ19DTEFTUyksUy5pc0RpbSgpJiZ3LmNsYXNzTGlzdC5hZGQodC5ESU1fQ0xBU1MpLFMuaXNVbmRlcmxpbmUoKSYmdy5jbGFzc0xpc3QuYWRkKHQuVU5ERVJMSU5FX0NMQVNTKSxTLmlzSW52aXNpYmxlKCk/dy50ZXh0Q29udGVudD1zLldISVRFU1BBQ0VfQ0VMTF9DSEFSOncudGV4dENvbnRlbnQ9Uy5nZXRDaGFycygpfHxzLldISVRFU1BBQ0VfQ0VMTF9DSEFSLFMuaXNTdHJpa2V0aHJvdWdoKCkmJncuY2xhc3NMaXN0LmFkZCh0LlNUUklLRVRIUk9VR0hfQ0xBU1MpO3ZhciBMPVMuZ2V0RmdDb2xvcigpLEU9Uy5nZXRGZ0NvbG9yTW9kZSgpLHg9Uy5nZXRCZ0NvbG9yKCksQT1TLmdldEJnQ29sb3JNb2RlKCksaz0hIVMuaXNJbnZlcnNlKCk7aWYoayl7dmFyIE09TDtMPXgseD1NO3ZhciBSPUU7RT1BLEE9Un1zd2l0Y2goRSl7Y2FzZSAxNjc3NzIxNjpjYXNlIDMzNTU0NDMyOlMuaXNCb2xkKCkmJkw8OCYmdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5kcmF3Qm9sZFRleHRJbkJyaWdodENvbG9ycyYmKEwrPTgpLHRoaXMuX2FwcGx5TWluaW11bUNvbnRyYXN0KHcsdGhpcy5fY29sb3JzLmJhY2tncm91bmQsdGhpcy5fY29sb3JzLmFuc2lbTF0pfHx3LmNsYXNzTGlzdC5hZGQoInh0ZXJtLWZnLSIrTCk7YnJlYWs7Y2FzZSA1MDMzMTY0ODp2YXIgVD1sLnJnYmEudG9Db2xvcihMPj4xNiYyNTUsTD4+OCYyNTUsMjU1JkwpO3RoaXMuX2FwcGx5TWluaW11bUNvbnRyYXN0KHcsdGhpcy5fY29sb3JzLmJhY2tncm91bmQsVCl8fHRoaXMuX2FkZFN0eWxlKHcsImNvbG9yOiMiK18oTC50b1N0cmluZygxNiksIjAiLDYpKTticmVhaztkZWZhdWx0OnRoaXMuX2FwcGx5TWluaW11bUNvbnRyYXN0KHcsdGhpcy5fY29sb3JzLmJhY2tncm91bmQsdGhpcy5fY29sb3JzLmZvcmVncm91bmQpfHxrJiZ3LmNsYXNzTGlzdC5hZGQoInh0ZXJtLWZnLSIrby5JTlZFUlRFRF9ERUZBVUxUX0NPTE9SKX1zd2l0Y2goQSl7Y2FzZSAxNjc3NzIxNjpjYXNlIDMzNTU0NDMyOncuY2xhc3NMaXN0LmFkZCgieHRlcm0tYmctIit4KTticmVhaztjYXNlIDUwMzMxNjQ4OnRoaXMuX2FkZFN0eWxlKHcsImJhY2tncm91bmQtY29sb3I6IyIrXyh4LnRvU3RyaW5nKDE2KSwiMCIsNikpO2JyZWFrO2RlZmF1bHQ6ayYmdy5jbGFzc0xpc3QuYWRkKCJ4dGVybS1iZy0iK28uSU5WRVJURURfREVGQVVMVF9DT0xPUil9ZC5hcHBlbmRDaGlsZCh3KSxnPWJ9fXJldHVybiBkfSxlLnByb3RvdHlwZS5fYXBwbHlNaW5pbXVtQ29udHJhc3Q9ZnVuY3Rpb24oZSx0LHIpe2lmKDE9PT10aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLm1pbmltdW1Db250cmFzdFJhdGlvKXJldHVybiExO3ZhciBpPXRoaXMuX2NvbG9ycy5jb250cmFzdENhY2hlLmdldENvbG9yKHRoaXMuX3dvcmtDZWxsLmJnLHRoaXMuX3dvcmtDZWxsLmZnKTtyZXR1cm4gdm9pZCAwPT09aSYmKGk9bC5jb2xvci5lbnN1cmVDb250cmFzdFJhdGlvKHQscix0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLm1pbmltdW1Db250cmFzdFJhdGlvKSx0aGlzLl9jb2xvcnMuY29udHJhc3RDYWNoZS5zZXRDb2xvcih0aGlzLl93b3JrQ2VsbC5iZyx0aGlzLl93b3JrQ2VsbC5mZyxudWxsIT1pP2k6bnVsbCkpLCEhaSYmKHRoaXMuX2FkZFN0eWxlKGUsImNvbG9yOiIraS5jc3MpLCEwKX0sZS5wcm90b3R5cGUuX2FkZFN0eWxlPWZ1bmN0aW9uKGUsdCl7ZS5zZXRBdHRyaWJ1dGUoInN0eWxlIiwiIisoZS5nZXRBdHRyaWJ1dGUoInN0eWxlIil8fCIiKSt0KyI7Iil9LGkoW24oMix1LklDaGFyYWN0ZXJKb2luZXJTZXJ2aWNlKSxuKDMsYy5JT3B0aW9uc1NlcnZpY2UpLG4oNCxjLklDb3JlU2VydmljZSldLGUpfSgpO2Z1bmN0aW9uIF8oZSx0LHIpe2Zvcig7ZS5sZW5ndGg8cjspZT10K2U7cmV0dXJuIGV9dC5Eb21SZW5kZXJlclJvd0ZhY3Rvcnk9Zn0sNDU2OihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuU2VsZWN0aW9uTW9kZWw9dm9pZCAwO3ZhciByPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlKXt0aGlzLl9idWZmZXJTZXJ2aWNlPWUsdGhpcy5pc1NlbGVjdEFsbEFjdGl2ZT0hMSx0aGlzLnNlbGVjdGlvblN0YXJ0TGVuZ3RoPTB9cmV0dXJuIGUucHJvdG90eXBlLmNsZWFyU2VsZWN0aW9uPWZ1bmN0aW9uKCl7dGhpcy5zZWxlY3Rpb25TdGFydD12b2lkIDAsdGhpcy5zZWxlY3Rpb25FbmQ9dm9pZCAwLHRoaXMuaXNTZWxlY3RBbGxBY3RpdmU9ITEsdGhpcy5zZWxlY3Rpb25TdGFydExlbmd0aD0wfSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImZpbmFsU2VsZWN0aW9uU3RhcnQiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5pc1NlbGVjdEFsbEFjdGl2ZT9bMCwwXTp0aGlzLnNlbGVjdGlvbkVuZCYmdGhpcy5zZWxlY3Rpb25TdGFydCYmdGhpcy5hcmVTZWxlY3Rpb25WYWx1ZXNSZXZlcnNlZCgpP3RoaXMuc2VsZWN0aW9uRW5kOnRoaXMuc2VsZWN0aW9uU3RhcnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJmaW5hbFNlbGVjdGlvbkVuZCIse2dldDpmdW5jdGlvbigpe2lmKHRoaXMuaXNTZWxlY3RBbGxBY3RpdmUpcmV0dXJuW3RoaXMuX2J1ZmZlclNlcnZpY2UuY29scyx0aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55YmFzZSt0aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MtMV07aWYodGhpcy5zZWxlY3Rpb25TdGFydCl7aWYoIXRoaXMuc2VsZWN0aW9uRW5kfHx0aGlzLmFyZVNlbGVjdGlvblZhbHVlc1JldmVyc2VkKCkpe3ZhciBlPXRoaXMuc2VsZWN0aW9uU3RhcnRbMF0rdGhpcy5zZWxlY3Rpb25TdGFydExlbmd0aDtyZXR1cm4gZT50aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHM/ZSV0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHM9PTA/W3RoaXMuX2J1ZmZlclNlcnZpY2UuY29scyx0aGlzLnNlbGVjdGlvblN0YXJ0WzFdK01hdGguZmxvb3IoZS90aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMpLTFdOltlJXRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyx0aGlzLnNlbGVjdGlvblN0YXJ0WzFdK01hdGguZmxvb3IoZS90aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMpXTpbZSx0aGlzLnNlbGVjdGlvblN0YXJ0WzFdXX1yZXR1cm4gdGhpcy5zZWxlY3Rpb25TdGFydExlbmd0aCYmdGhpcy5zZWxlY3Rpb25FbmRbMV09PT10aGlzLnNlbGVjdGlvblN0YXJ0WzFdP1tNYXRoLm1heCh0aGlzLnNlbGVjdGlvblN0YXJ0WzBdK3RoaXMuc2VsZWN0aW9uU3RhcnRMZW5ndGgsdGhpcy5zZWxlY3Rpb25FbmRbMF0pLHRoaXMuc2VsZWN0aW9uRW5kWzFdXTp0aGlzLnNlbGVjdGlvbkVuZH19LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksZS5wcm90b3R5cGUuYXJlU2VsZWN0aW9uVmFsdWVzUmV2ZXJzZWQ9ZnVuY3Rpb24oKXt2YXIgZT10aGlzLnNlbGVjdGlvblN0YXJ0LHQ9dGhpcy5zZWxlY3Rpb25FbmQ7cmV0dXJuISghZXx8IXQpJiYoZVsxXT50WzFdfHxlWzFdPT09dFsxXSYmZVswXT50WzBdKX0sZS5wcm90b3R5cGUub25UcmltPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLnNlbGVjdGlvblN0YXJ0JiYodGhpcy5zZWxlY3Rpb25TdGFydFsxXS09ZSksdGhpcy5zZWxlY3Rpb25FbmQmJih0aGlzLnNlbGVjdGlvbkVuZFsxXS09ZSksdGhpcy5zZWxlY3Rpb25FbmQmJnRoaXMuc2VsZWN0aW9uRW5kWzFdPDA/KHRoaXMuY2xlYXJTZWxlY3Rpb24oKSwhMCk6KHRoaXMuc2VsZWN0aW9uU3RhcnQmJnRoaXMuc2VsZWN0aW9uU3RhcnRbMV08MCYmKHRoaXMuc2VsZWN0aW9uU3RhcnRbMV09MCksITEpfSxlfSgpO3QuU2VsZWN0aW9uTW9kZWw9cn0sNDI4OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaT10aGlzJiZ0aGlzLl9fZGVjb3JhdGV8fGZ1bmN0aW9uKGUsdCxyLGkpe3ZhciBuLG89YXJndW1lbnRzLmxlbmd0aCxzPW88Mz90Om51bGw9PT1pP2k9T2JqZWN0LmdldE93blByb3BlcnR5RGVzY3JpcHRvcih0LHIpOmk7aWYoIm9iamVjdCI9PXR5cGVvZiBSZWZsZWN0JiYiZnVuY3Rpb24iPT10eXBlb2YgUmVmbGVjdC5kZWNvcmF0ZSlzPVJlZmxlY3QuZGVjb3JhdGUoZSx0LHIsaSk7ZWxzZSBmb3IodmFyIGE9ZS5sZW5ndGgtMTthPj0wO2EtLSkobj1lW2FdKSYmKHM9KG88Mz9uKHMpOm8+Mz9uKHQscixzKTpuKHQscikpfHxzKTtyZXR1cm4gbz4zJiZzJiZPYmplY3QuZGVmaW5lUHJvcGVydHkodCxyLHMpLHN9LG49dGhpcyYmdGhpcy5fX3BhcmFtfHxmdW5jdGlvbihlLHQpe3JldHVybiBmdW5jdGlvbihyLGkpe3QocixpLGUpfX07T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuQ2hhclNpemVTZXJ2aWNlPXZvaWQgMDt2YXIgbz1yKDI1ODUpLHM9cig4NDYwKSxhPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlLHQscil7dGhpcy5fb3B0aW9uc1NlcnZpY2U9cix0aGlzLndpZHRoPTAsdGhpcy5oZWlnaHQ9MCx0aGlzLl9vbkNoYXJTaXplQ2hhbmdlPW5ldyBzLkV2ZW50RW1pdHRlcix0aGlzLl9tZWFzdXJlU3RyYXRlZ3k9bmV3IGMoZSx0LHRoaXMuX29wdGlvbnNTZXJ2aWNlKX1yZXR1cm4gT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJoYXNWYWxpZFNpemUiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy53aWR0aD4wJiZ0aGlzLmhlaWdodD4wfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwib25DaGFyU2l6ZUNoYW5nZSIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vbkNoYXJTaXplQ2hhbmdlLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLGUucHJvdG90eXBlLm1lYXN1cmU9ZnVuY3Rpb24oKXt2YXIgZT10aGlzLl9tZWFzdXJlU3RyYXRlZ3kubWVhc3VyZSgpO2Uud2lkdGg9PT10aGlzLndpZHRoJiZlLmhlaWdodD09PXRoaXMuaGVpZ2h0fHwodGhpcy53aWR0aD1lLndpZHRoLHRoaXMuaGVpZ2h0PWUuaGVpZ2h0LHRoaXMuX29uQ2hhclNpemVDaGFuZ2UuZmlyZSgpKX0saShbbigyLG8uSU9wdGlvbnNTZXJ2aWNlKV0sZSl9KCk7dC5DaGFyU2l6ZVNlcnZpY2U9YTt2YXIgYz1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoZSx0LHIpe3RoaXMuX2RvY3VtZW50PWUsdGhpcy5fcGFyZW50RWxlbWVudD10LHRoaXMuX29wdGlvbnNTZXJ2aWNlPXIsdGhpcy5fcmVzdWx0PXt3aWR0aDowLGhlaWdodDowfSx0aGlzLl9tZWFzdXJlRWxlbWVudD10aGlzLl9kb2N1bWVudC5jcmVhdGVFbGVtZW50KCJzcGFuIiksdGhpcy5fbWVhc3VyZUVsZW1lbnQuY2xhc3NMaXN0LmFkZCgieHRlcm0tY2hhci1tZWFzdXJlLWVsZW1lbnQiKSx0aGlzLl9tZWFzdXJlRWxlbWVudC50ZXh0Q29udGVudD0iVyIsdGhpcy5fbWVhc3VyZUVsZW1lbnQuc2V0QXR0cmlidXRlKCJhcmlhLWhpZGRlbiIsInRydWUiKSx0aGlzLl9wYXJlbnRFbGVtZW50LmFwcGVuZENoaWxkKHRoaXMuX21lYXN1cmVFbGVtZW50KX1yZXR1cm4gZS5wcm90b3R5cGUubWVhc3VyZT1mdW5jdGlvbigpe3RoaXMuX21lYXN1cmVFbGVtZW50LnN0eWxlLmZvbnRGYW1pbHk9dGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5mb250RmFtaWx5LHRoaXMuX21lYXN1cmVFbGVtZW50LnN0eWxlLmZvbnRTaXplPXRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuZm9udFNpemUrInB4Ijt2YXIgZT10aGlzLl9tZWFzdXJlRWxlbWVudC5nZXRCb3VuZGluZ0NsaWVudFJlY3QoKTtyZXR1cm4gMCE9PWUud2lkdGgmJjAhPT1lLmhlaWdodCYmKHRoaXMuX3Jlc3VsdC53aWR0aD1lLndpZHRoLHRoaXMuX3Jlc3VsdC5oZWlnaHQ9TWF0aC5jZWlsKGUuaGVpZ2h0KSksdGhpcy5fcmVzdWx0fSxlfSgpfSw0MjY5OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pLG89dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxzPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkNoYXJhY3RlckpvaW5lclNlcnZpY2U9dC5Kb2luZWRDZWxsRGF0YT12b2lkIDA7dmFyIGE9cigzNzM0KSxjPXIoNjQzKSxsPXIoNTExKSx1PXIoMjU4NSksaD1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KHQscixpKXt2YXIgbj1lLmNhbGwodGhpcyl8fHRoaXM7cmV0dXJuIG4uY29udGVudD0wLG4uY29tYmluZWREYXRhPSIiLG4uZmc9dC5mZyxuLmJnPXQuYmcsbi5jb21iaW5lZERhdGE9cixuLl93aWR0aD1pLG59cmV0dXJuIG4odCxlKSx0LnByb3RvdHlwZS5pc0NvbWJpbmVkPWZ1bmN0aW9uKCl7cmV0dXJuIDIwOTcxNTJ9LHQucHJvdG90eXBlLmdldFdpZHRoPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX3dpZHRofSx0LnByb3RvdHlwZS5nZXRDaGFycz1mdW5jdGlvbigpe3JldHVybiB0aGlzLmNvbWJpbmVkRGF0YX0sdC5wcm90b3R5cGUuZ2V0Q29kZT1mdW5jdGlvbigpe3JldHVybiAyMDk3MTUxfSx0LnByb3RvdHlwZS5zZXRGcm9tQ2hhckRhdGE9ZnVuY3Rpb24oZSl7dGhyb3cgbmV3IEVycm9yKCJub3QgaW1wbGVtZW50ZWQiKX0sdC5wcm90b3R5cGUuZ2V0QXNDaGFyRGF0YT1mdW5jdGlvbigpe3JldHVyblt0aGlzLmZnLHRoaXMuZ2V0Q2hhcnMoKSx0aGlzLmdldFdpZHRoKCksdGhpcy5nZXRDb2RlKCldfSx0fShhLkF0dHJpYnV0ZURhdGEpO3QuSm9pbmVkQ2VsbERhdGE9aDt2YXIgZj1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoZSl7dGhpcy5fYnVmZmVyU2VydmljZT1lLHRoaXMuX2NoYXJhY3RlckpvaW5lcnM9W10sdGhpcy5fbmV4dENoYXJhY3RlckpvaW5lcklkPTAsdGhpcy5fd29ya0NlbGw9bmV3IGwuQ2VsbERhdGF9cmV0dXJuIGUucHJvdG90eXBlLnJlZ2lzdGVyPWZ1bmN0aW9uKGUpe3ZhciB0PXtpZDp0aGlzLl9uZXh0Q2hhcmFjdGVySm9pbmVySWQrKyxoYW5kbGVyOmV9O3JldHVybiB0aGlzLl9jaGFyYWN0ZXJKb2luZXJzLnB1c2godCksdC5pZH0sZS5wcm90b3R5cGUuZGVyZWdpc3Rlcj1mdW5jdGlvbihlKXtmb3IodmFyIHQ9MDt0PHRoaXMuX2NoYXJhY3RlckpvaW5lcnMubGVuZ3RoO3QrKylpZih0aGlzLl9jaGFyYWN0ZXJKb2luZXJzW3RdLmlkPT09ZSlyZXR1cm4gdGhpcy5fY2hhcmFjdGVySm9pbmVycy5zcGxpY2UodCwxKSwhMDtyZXR1cm4hMX0sZS5wcm90b3R5cGUuZ2V0Sm9pbmVkQ2hhcmFjdGVycz1mdW5jdGlvbihlKXtpZigwPT09dGhpcy5fY2hhcmFjdGVySm9pbmVycy5sZW5ndGgpcmV0dXJuW107dmFyIHQ9dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIubGluZXMuZ2V0KGUpO2lmKCF0fHwwPT09dC5sZW5ndGgpcmV0dXJuW107Zm9yKHZhciByPVtdLGk9dC50cmFuc2xhdGVUb1N0cmluZyghMCksbj0wLG89MCxzPTAsYT10LmdldEZnKDApLGw9dC5nZXRCZygwKSx1PTA7dTx0LmdldFRyaW1tZWRMZW5ndGgoKTt1KyspaWYodC5sb2FkQ2VsbCh1LHRoaXMuX3dvcmtDZWxsKSwwIT09dGhpcy5fd29ya0NlbGwuZ2V0V2lkdGgoKSl7aWYodGhpcy5fd29ya0NlbGwuZmchPT1hfHx0aGlzLl93b3JrQ2VsbC5iZyE9PWwpe2lmKHUtbj4xKWZvcih2YXIgaD10aGlzLl9nZXRKb2luZWRSYW5nZXMoaSxzLG8sdCxuKSxmPTA7ZjxoLmxlbmd0aDtmKyspci5wdXNoKGhbZl0pO249dSxzPW8sYT10aGlzLl93b3JrQ2VsbC5mZyxsPXRoaXMuX3dvcmtDZWxsLmJnfW8rPXRoaXMuX3dvcmtDZWxsLmdldENoYXJzKCkubGVuZ3RofHxjLldISVRFU1BBQ0VfQ0VMTF9DSEFSLmxlbmd0aH1pZih0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMtbj4xKWZvcihoPXRoaXMuX2dldEpvaW5lZFJhbmdlcyhpLHMsbyx0LG4pLGY9MDtmPGgubGVuZ3RoO2YrKylyLnB1c2goaFtmXSk7cmV0dXJuIHJ9LGUucHJvdG90eXBlLl9nZXRKb2luZWRSYW5nZXM9ZnVuY3Rpb24odCxyLGksbixvKXt2YXIgcz10LnN1YnN0cmluZyhyLGkpLGE9W107dHJ5e2E9dGhpcy5fY2hhcmFjdGVySm9pbmVyc1swXS5oYW5kbGVyKHMpfWNhdGNoKGUpe2NvbnNvbGUuZXJyb3IoZSl9Zm9yKHZhciBjPTE7Yzx0aGlzLl9jaGFyYWN0ZXJKb2luZXJzLmxlbmd0aDtjKyspdHJ5e2Zvcih2YXIgbD10aGlzLl9jaGFyYWN0ZXJKb2luZXJzW2NdLmhhbmRsZXIocyksdT0wO3U8bC5sZW5ndGg7dSsrKWUuX21lcmdlUmFuZ2VzKGEsbFt1XSl9Y2F0Y2goZSl7Y29uc29sZS5lcnJvcihlKX1yZXR1cm4gdGhpcy5fc3RyaW5nUmFuZ2VzVG9DZWxsUmFuZ2VzKGEsbixvKSxhfSxlLnByb3RvdHlwZS5fc3RyaW5nUmFuZ2VzVG9DZWxsUmFuZ2VzPWZ1bmN0aW9uKGUsdCxyKXt2YXIgaT0wLG49ITEsbz0wLHM9ZVtpXTtpZihzKXtmb3IodmFyIGE9cjthPHRoaXMuX2J1ZmZlclNlcnZpY2UuY29sczthKyspe3ZhciBsPXQuZ2V0V2lkdGgoYSksdT10LmdldFN0cmluZyhhKS5sZW5ndGh8fGMuV0hJVEVTUEFDRV9DRUxMX0NIQVIubGVuZ3RoO2lmKDAhPT1sKXtpZighbiYmc1swXTw9byYmKHNbMF09YSxuPSEwKSxzWzFdPD1vKXtpZihzWzFdPWEsIShzPWVbKytpXSkpYnJlYWs7c1swXTw9bz8oc1swXT1hLG49ITApOm49ITF9bys9dX19cyYmKHNbMV09dGhpcy5fYnVmZmVyU2VydmljZS5jb2xzKX19LGUuX21lcmdlUmFuZ2VzPWZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByPSExLGk9MDtpPGUubGVuZ3RoO2krKyl7dmFyIG49ZVtpXTtpZihyKXtpZih0WzFdPD1uWzBdKXJldHVybiBlW2ktMV1bMV09dFsxXSxlO2lmKHRbMV08PW5bMV0pcmV0dXJuIGVbaS0xXVsxXT1NYXRoLm1heCh0WzFdLG5bMV0pLGUuc3BsaWNlKGksMSksZTtlLnNwbGljZShpLDEpLGktLX1lbHNle2lmKHRbMV08PW5bMF0pcmV0dXJuIGUuc3BsaWNlKGksMCx0KSxlO2lmKHRbMV08PW5bMV0pcmV0dXJuIG5bMF09TWF0aC5taW4odFswXSxuWzBdKSxlO3RbMF08blsxXSYmKG5bMF09TWF0aC5taW4odFswXSxuWzBdKSxyPSEwKX19cmV0dXJuIHI/ZVtlLmxlbmd0aC0xXVsxXT10WzFdOmUucHVzaCh0KSxlfSxlPW8oW3MoMCx1LklCdWZmZXJTZXJ2aWNlKV0sZSl9KCk7dC5DaGFyYWN0ZXJKb2luZXJTZXJ2aWNlPWZ9LDUxMTQ6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Db3JlQnJvd3NlclNlcnZpY2U9dm9pZCAwO3ZhciByPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlKXt0aGlzLl90ZXh0YXJlYT1lfXJldHVybiBPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImlzRm9jdXNlZCIse2dldDpmdW5jdGlvbigpe3JldHVybih0aGlzLl90ZXh0YXJlYS5nZXRSb290Tm9kZT90aGlzLl90ZXh0YXJlYS5nZXRSb290Tm9kZSgpOmRvY3VtZW50KS5hY3RpdmVFbGVtZW50PT09dGhpcy5fdGV4dGFyZWEmJmRvY3VtZW50Lmhhc0ZvY3VzKCl9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksZX0oKTt0LkNvcmVCcm93c2VyU2VydmljZT1yfSw4OTM0OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaT10aGlzJiZ0aGlzLl9fZGVjb3JhdGV8fGZ1bmN0aW9uKGUsdCxyLGkpe3ZhciBuLG89YXJndW1lbnRzLmxlbmd0aCxzPW88Mz90Om51bGw9PT1pP2k9T2JqZWN0LmdldE93blByb3BlcnR5RGVzY3JpcHRvcih0LHIpOmk7aWYoIm9iamVjdCI9PXR5cGVvZiBSZWZsZWN0JiYiZnVuY3Rpb24iPT10eXBlb2YgUmVmbGVjdC5kZWNvcmF0ZSlzPVJlZmxlY3QuZGVjb3JhdGUoZSx0LHIsaSk7ZWxzZSBmb3IodmFyIGE9ZS5sZW5ndGgtMTthPj0wO2EtLSkobj1lW2FdKSYmKHM9KG88Mz9uKHMpOm8+Mz9uKHQscixzKTpuKHQscikpfHxzKTtyZXR1cm4gbz4zJiZzJiZPYmplY3QuZGVmaW5lUHJvcGVydHkodCxyLHMpLHN9LG49dGhpcyYmdGhpcy5fX3BhcmFtfHxmdW5jdGlvbihlLHQpe3JldHVybiBmdW5jdGlvbihyLGkpe3QocixpLGUpfX07T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuTW91c2VTZXJ2aWNlPXZvaWQgMDt2YXIgbz1yKDQ3MjUpLHM9cig5ODA2KSxhPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlLHQpe3RoaXMuX3JlbmRlclNlcnZpY2U9ZSx0aGlzLl9jaGFyU2l6ZVNlcnZpY2U9dH1yZXR1cm4gZS5wcm90b3R5cGUuZ2V0Q29vcmRzPWZ1bmN0aW9uKGUsdCxyLGksbil7cmV0dXJuKDAscy5nZXRDb29yZHMpKGUsdCxyLGksdGhpcy5fY2hhclNpemVTZXJ2aWNlLmhhc1ZhbGlkU2l6ZSx0aGlzLl9yZW5kZXJTZXJ2aWNlLmRpbWVuc2lvbnMuYWN0dWFsQ2VsbFdpZHRoLHRoaXMuX3JlbmRlclNlcnZpY2UuZGltZW5zaW9ucy5hY3R1YWxDZWxsSGVpZ2h0LG4pfSxlLnByb3RvdHlwZS5nZXRSYXdCeXRlQ29vcmRzPWZ1bmN0aW9uKGUsdCxyLGkpe3ZhciBuPXRoaXMuZ2V0Q29vcmRzKGUsdCxyLGkpO3JldHVybigwLHMuZ2V0UmF3Qnl0ZUNvb3Jkcykobil9LGkoW24oMCxvLklSZW5kZXJTZXJ2aWNlKSxuKDEsby5JQ2hhclNpemVTZXJ2aWNlKV0sZSl9KCk7dC5Nb3VzZVNlcnZpY2U9YX0sMzIzMDpmdW5jdGlvbihlLHQscil7dmFyIGksbj10aGlzJiZ0aGlzLl9fZXh0ZW5kc3x8KGk9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gaT1PYmplY3Quc2V0UHJvdG90eXBlT2Z8fHtfX3Byb3RvX186W119aW5zdGFuY2VvZiBBcnJheSYmZnVuY3Rpb24oZSx0KXtlLl9fcHJvdG9fXz10fXx8ZnVuY3Rpb24oZSx0KXtmb3IodmFyIHIgaW4gdClPYmplY3QucHJvdG90eXBlLmhhc093blByb3BlcnR5LmNhbGwodCxyKSYmKGVbcl09dFtyXSl9LGkoZSx0KX0sZnVuY3Rpb24oZSx0KXtpZigiZnVuY3Rpb24iIT10eXBlb2YgdCYmbnVsbCE9PXQpdGhyb3cgbmV3IFR5cGVFcnJvcigiQ2xhc3MgZXh0ZW5kcyB2YWx1ZSAiK1N0cmluZyh0KSsiIGlzIG5vdCBhIGNvbnN0cnVjdG9yIG9yIG51bGwiKTtmdW5jdGlvbiByKCl7dGhpcy5jb25zdHJ1Y3Rvcj1lfWkoZSx0KSxlLnByb3RvdHlwZT1udWxsPT09dD9PYmplY3QuY3JlYXRlKHQpOihyLnByb3RvdHlwZT10LnByb3RvdHlwZSxuZXcgcil9KSxvPXRoaXMmJnRoaXMuX19kZWNvcmF0ZXx8ZnVuY3Rpb24oZSx0LHIsaSl7dmFyIG4sbz1hcmd1bWVudHMubGVuZ3RoLHM9bzwzP3Q6bnVsbD09PWk/aT1PYmplY3QuZ2V0T3duUHJvcGVydHlEZXNjcmlwdG9yKHQscik6aTtpZigib2JqZWN0Ij09dHlwZW9mIFJlZmxlY3QmJiJmdW5jdGlvbiI9PXR5cGVvZiBSZWZsZWN0LmRlY29yYXRlKXM9UmVmbGVjdC5kZWNvcmF0ZShlLHQscixpKTtlbHNlIGZvcih2YXIgYT1lLmxlbmd0aC0xO2E+PTA7YS0tKShuPWVbYV0pJiYocz0obzwzP24ocyk6bz4zP24odCxyLHMpOm4odCxyKSl8fHMpO3JldHVybiBvPjMmJnMmJk9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LHIscyksc30scz10aGlzJiZ0aGlzLl9fcGFyYW18fGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGZ1bmN0aW9uKHIsaSl7dChyLGksZSl9fTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5SZW5kZXJTZXJ2aWNlPXZvaWQgMDt2YXIgYT1yKDYxOTMpLGM9cig4NDYwKSxsPXIoODQ0KSx1PXIoNTU5NiksaD1yKDM2NTYpLGY9cigyNTg1KSxfPXIoNDcyNSksZD1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KHQscixpLG4sbyxzKXt2YXIgbD1lLmNhbGwodGhpcyl8fHRoaXM7aWYobC5fcmVuZGVyZXI9dCxsLl9yb3dDb3VudD1yLGwuX2NoYXJTaXplU2VydmljZT1vLGwuX2lzUGF1c2VkPSExLGwuX25lZWRzRnVsbFJlZnJlc2g9ITEsbC5faXNOZXh0UmVuZGVyUmVkcmF3T25seT0hMCxsLl9uZWVkc1NlbGVjdGlvblJlZnJlc2g9ITEsbC5fY2FudmFzV2lkdGg9MCxsLl9jYW52YXNIZWlnaHQ9MCxsLl9zZWxlY3Rpb25TdGF0ZT17c3RhcnQ6dm9pZCAwLGVuZDp2b2lkIDAsY29sdW1uU2VsZWN0TW9kZTohMX0sbC5fb25EaW1lbnNpb25zQ2hhbmdlPW5ldyBjLkV2ZW50RW1pdHRlcixsLl9vblJlbmRlcj1uZXcgYy5FdmVudEVtaXR0ZXIsbC5fb25SZWZyZXNoUmVxdWVzdD1uZXcgYy5FdmVudEVtaXR0ZXIsbC5yZWdpc3Rlcih7ZGlzcG9zZTpmdW5jdGlvbigpe3JldHVybiBsLl9yZW5kZXJlci5kaXNwb3NlKCl9fSksbC5fcmVuZGVyRGVib3VuY2VyPW5ldyBhLlJlbmRlckRlYm91bmNlcigoZnVuY3Rpb24oZSx0KXtyZXR1cm4gbC5fcmVuZGVyUm93cyhlLHQpfSkpLGwucmVnaXN0ZXIobC5fcmVuZGVyRGVib3VuY2VyKSxsLl9zY3JlZW5EcHJNb25pdG9yPW5ldyB1LlNjcmVlbkRwck1vbml0b3IsbC5fc2NyZWVuRHByTW9uaXRvci5zZXRMaXN0ZW5lcigoZnVuY3Rpb24oKXtyZXR1cm4gbC5vbkRldmljZVBpeGVsUmF0aW9DaGFuZ2UoKX0pKSxsLnJlZ2lzdGVyKGwuX3NjcmVlbkRwck1vbml0b3IpLGwucmVnaXN0ZXIocy5vblJlc2l6ZSgoZnVuY3Rpb24oZSl7cmV0dXJuIGwuX2Z1bGxSZWZyZXNoKCl9KSkpLGwucmVnaXN0ZXIobi5vbk9wdGlvbkNoYW5nZSgoZnVuY3Rpb24oKXtyZXR1cm4gbC5fcmVuZGVyZXIub25PcHRpb25zQ2hhbmdlZCgpfSkpKSxsLnJlZ2lzdGVyKGwuX2NoYXJTaXplU2VydmljZS5vbkNoYXJTaXplQ2hhbmdlKChmdW5jdGlvbigpe3JldHVybiBsLm9uQ2hhclNpemVDaGFuZ2VkKCl9KSkpLGwuX3JlbmRlcmVyLm9uUmVxdWVzdFJlZHJhdygoZnVuY3Rpb24oZSl7cmV0dXJuIGwucmVmcmVzaFJvd3MoZS5zdGFydCxlLmVuZCwhMCl9KSksbC5yZWdpc3RlcigoMCxoLmFkZERpc3Bvc2FibGVEb21MaXN0ZW5lcikod2luZG93LCJyZXNpemUiLChmdW5jdGlvbigpe3JldHVybiBsLm9uRGV2aWNlUGl4ZWxSYXRpb0NoYW5nZSgpfSkpKSwiSW50ZXJzZWN0aW9uT2JzZXJ2ZXIiaW4gd2luZG93KXt2YXIgZj1uZXcgSW50ZXJzZWN0aW9uT2JzZXJ2ZXIoKGZ1bmN0aW9uKGUpe3JldHVybiBsLl9vbkludGVyc2VjdGlvbkNoYW5nZShlW2UubGVuZ3RoLTFdKX0pLHt0aHJlc2hvbGQ6MH0pO2Yub2JzZXJ2ZShpKSxsLnJlZ2lzdGVyKHtkaXNwb3NlOmZ1bmN0aW9uKCl7cmV0dXJuIGYuZGlzY29ubmVjdCgpfX0pfXJldHVybiBsfXJldHVybiBuKHQsZSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvbkRpbWVuc2lvbnNDaGFuZ2UiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25EaW1lbnNpb25zQ2hhbmdlLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25SZW5kZXJlZEJ1ZmZlckNoYW5nZSIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vblJlbmRlci5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uUmVmcmVzaFJlcXVlc3QiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25SZWZyZXNoUmVxdWVzdC5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsImRpbWVuc2lvbnMiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fcmVuZGVyZXIuZGltZW5zaW9uc30sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSx0LnByb3RvdHlwZS5fb25JbnRlcnNlY3Rpb25DaGFuZ2U9ZnVuY3Rpb24oZSl7dGhpcy5faXNQYXVzZWQ9dm9pZCAwPT09ZS5pc0ludGVyc2VjdGluZz8wPT09ZS5pbnRlcnNlY3Rpb25SYXRpbzohZS5pc0ludGVyc2VjdGluZyx0aGlzLl9pc1BhdXNlZHx8dGhpcy5fY2hhclNpemVTZXJ2aWNlLmhhc1ZhbGlkU2l6ZXx8dGhpcy5fY2hhclNpemVTZXJ2aWNlLm1lYXN1cmUoKSwhdGhpcy5faXNQYXVzZWQmJnRoaXMuX25lZWRzRnVsbFJlZnJlc2gmJih0aGlzLnJlZnJlc2hSb3dzKDAsdGhpcy5fcm93Q291bnQtMSksdGhpcy5fbmVlZHNGdWxsUmVmcmVzaD0hMSl9LHQucHJvdG90eXBlLnJlZnJlc2hSb3dzPWZ1bmN0aW9uKGUsdCxyKXt2b2lkIDA9PT1yJiYocj0hMSksdGhpcy5faXNQYXVzZWQ/dGhpcy5fbmVlZHNGdWxsUmVmcmVzaD0hMDoocnx8KHRoaXMuX2lzTmV4dFJlbmRlclJlZHJhd09ubHk9ITEpLHRoaXMuX3JlbmRlckRlYm91bmNlci5yZWZyZXNoKGUsdCx0aGlzLl9yb3dDb3VudCkpfSx0LnByb3RvdHlwZS5fcmVuZGVyUm93cz1mdW5jdGlvbihlLHQpe3RoaXMuX3JlbmRlcmVyLnJlbmRlclJvd3MoZSx0KSx0aGlzLl9uZWVkc1NlbGVjdGlvblJlZnJlc2gmJih0aGlzLl9yZW5kZXJlci5vblNlbGVjdGlvbkNoYW5nZWQodGhpcy5fc2VsZWN0aW9uU3RhdGUuc3RhcnQsdGhpcy5fc2VsZWN0aW9uU3RhdGUuZW5kLHRoaXMuX3NlbGVjdGlvblN0YXRlLmNvbHVtblNlbGVjdE1vZGUpLHRoaXMuX25lZWRzU2VsZWN0aW9uUmVmcmVzaD0hMSksdGhpcy5faXNOZXh0UmVuZGVyUmVkcmF3T25seXx8dGhpcy5fb25SZW5kZXIuZmlyZSh7c3RhcnQ6ZSxlbmQ6dH0pLHRoaXMuX2lzTmV4dFJlbmRlclJlZHJhd09ubHk9ITB9LHQucHJvdG90eXBlLnJlc2l6ZT1mdW5jdGlvbihlLHQpe3RoaXMuX3Jvd0NvdW50PXQsdGhpcy5fZmlyZU9uQ2FudmFzUmVzaXplKCl9LHQucHJvdG90eXBlLmNoYW5nZU9wdGlvbnM9ZnVuY3Rpb24oKXt0aGlzLl9yZW5kZXJlci5vbk9wdGlvbnNDaGFuZ2VkKCksdGhpcy5yZWZyZXNoUm93cygwLHRoaXMuX3Jvd0NvdW50LTEpLHRoaXMuX2ZpcmVPbkNhbnZhc1Jlc2l6ZSgpfSx0LnByb3RvdHlwZS5fZmlyZU9uQ2FudmFzUmVzaXplPWZ1bmN0aW9uKCl7dGhpcy5fcmVuZGVyZXIuZGltZW5zaW9ucy5jYW52YXNXaWR0aD09PXRoaXMuX2NhbnZhc1dpZHRoJiZ0aGlzLl9yZW5kZXJlci5kaW1lbnNpb25zLmNhbnZhc0hlaWdodD09PXRoaXMuX2NhbnZhc0hlaWdodHx8dGhpcy5fb25EaW1lbnNpb25zQ2hhbmdlLmZpcmUodGhpcy5fcmVuZGVyZXIuZGltZW5zaW9ucyl9LHQucHJvdG90eXBlLmRpc3Bvc2U9ZnVuY3Rpb24oKXtlLnByb3RvdHlwZS5kaXNwb3NlLmNhbGwodGhpcyl9LHQucHJvdG90eXBlLnNldFJlbmRlcmVyPWZ1bmN0aW9uKGUpe3ZhciB0PXRoaXM7dGhpcy5fcmVuZGVyZXIuZGlzcG9zZSgpLHRoaXMuX3JlbmRlcmVyPWUsdGhpcy5fcmVuZGVyZXIub25SZXF1ZXN0UmVkcmF3KChmdW5jdGlvbihlKXtyZXR1cm4gdC5yZWZyZXNoUm93cyhlLnN0YXJ0LGUuZW5kLCEwKX0pKSx0aGlzLl9uZWVkc1NlbGVjdGlvblJlZnJlc2g9ITAsdGhpcy5fZnVsbFJlZnJlc2goKX0sdC5wcm90b3R5cGUuX2Z1bGxSZWZyZXNoPWZ1bmN0aW9uKCl7dGhpcy5faXNQYXVzZWQ/dGhpcy5fbmVlZHNGdWxsUmVmcmVzaD0hMDp0aGlzLnJlZnJlc2hSb3dzKDAsdGhpcy5fcm93Q291bnQtMSl9LHQucHJvdG90eXBlLmNsZWFyVGV4dHVyZUF0bGFzPWZ1bmN0aW9uKCl7dmFyIGUsdDtudWxsPT09KHQ9bnVsbD09PShlPXRoaXMuX3JlbmRlcmVyKXx8dm9pZCAwPT09ZT92b2lkIDA6ZS5jbGVhclRleHR1cmVBdGxhcyl8fHZvaWQgMD09PXR8fHQuY2FsbChlKSx0aGlzLl9mdWxsUmVmcmVzaCgpfSx0LnByb3RvdHlwZS5zZXRDb2xvcnM9ZnVuY3Rpb24oZSl7dGhpcy5fcmVuZGVyZXIuc2V0Q29sb3JzKGUpLHRoaXMuX2Z1bGxSZWZyZXNoKCl9LHQucHJvdG90eXBlLm9uRGV2aWNlUGl4ZWxSYXRpb0NoYW5nZT1mdW5jdGlvbigpe3RoaXMuX2NoYXJTaXplU2VydmljZS5tZWFzdXJlKCksdGhpcy5fcmVuZGVyZXIub25EZXZpY2VQaXhlbFJhdGlvQ2hhbmdlKCksdGhpcy5yZWZyZXNoUm93cygwLHRoaXMuX3Jvd0NvdW50LTEpfSx0LnByb3RvdHlwZS5vblJlc2l6ZT1mdW5jdGlvbihlLHQpe3RoaXMuX3JlbmRlcmVyLm9uUmVzaXplKGUsdCksdGhpcy5fZnVsbFJlZnJlc2goKX0sdC5wcm90b3R5cGUub25DaGFyU2l6ZUNoYW5nZWQ9ZnVuY3Rpb24oKXt0aGlzLl9yZW5kZXJlci5vbkNoYXJTaXplQ2hhbmdlZCgpfSx0LnByb3RvdHlwZS5vbkJsdXI9ZnVuY3Rpb24oKXt0aGlzLl9yZW5kZXJlci5vbkJsdXIoKX0sdC5wcm90b3R5cGUub25Gb2N1cz1mdW5jdGlvbigpe3RoaXMuX3JlbmRlcmVyLm9uRm9jdXMoKX0sdC5wcm90b3R5cGUub25TZWxlY3Rpb25DaGFuZ2VkPWZ1bmN0aW9uKGUsdCxyKXt0aGlzLl9zZWxlY3Rpb25TdGF0ZS5zdGFydD1lLHRoaXMuX3NlbGVjdGlvblN0YXRlLmVuZD10LHRoaXMuX3NlbGVjdGlvblN0YXRlLmNvbHVtblNlbGVjdE1vZGU9cix0aGlzLl9yZW5kZXJlci5vblNlbGVjdGlvbkNoYW5nZWQoZSx0LHIpfSx0LnByb3RvdHlwZS5vbkN1cnNvck1vdmU9ZnVuY3Rpb24oKXt0aGlzLl9yZW5kZXJlci5vbkN1cnNvck1vdmUoKX0sdC5wcm90b3R5cGUuY2xlYXI9ZnVuY3Rpb24oKXt0aGlzLl9yZW5kZXJlci5jbGVhcigpfSxvKFtzKDMsZi5JT3B0aW9uc1NlcnZpY2UpLHMoNCxfLklDaGFyU2l6ZVNlcnZpY2UpLHMoNSxmLklCdWZmZXJTZXJ2aWNlKV0sdCl9KGwuRGlzcG9zYWJsZSk7dC5SZW5kZXJTZXJ2aWNlPWR9LDkzMTI6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpLG49dGhpcyYmdGhpcy5fX2V4dGVuZHN8fChpPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGk9T2JqZWN0LnNldFByb3RvdHlwZU9mfHx7X19wcm90b19fOltdfWluc3RhbmNlb2YgQXJyYXkmJmZ1bmN0aW9uKGUsdCl7ZS5fX3Byb3RvX189dH18fGZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByIGluIHQpT2JqZWN0LnByb3RvdHlwZS5oYXNPd25Qcm9wZXJ0eS5jYWxsKHQscikmJihlW3JdPXRbcl0pfSxpKGUsdCl9LGZ1bmN0aW9uKGUsdCl7aWYoImZ1bmN0aW9uIiE9dHlwZW9mIHQmJm51bGwhPT10KXRocm93IG5ldyBUeXBlRXJyb3IoIkNsYXNzIGV4dGVuZHMgdmFsdWUgIitTdHJpbmcodCkrIiBpcyBub3QgYSBjb25zdHJ1Y3RvciBvciBudWxsIik7ZnVuY3Rpb24gcigpe3RoaXMuY29uc3RydWN0b3I9ZX1pKGUsdCksZS5wcm90b3R5cGU9bnVsbD09PXQ/T2JqZWN0LmNyZWF0ZSh0KTooci5wcm90b3R5cGU9dC5wcm90b3R5cGUsbmV3IHIpfSksbz10aGlzJiZ0aGlzLl9fZGVjb3JhdGV8fGZ1bmN0aW9uKGUsdCxyLGkpe3ZhciBuLG89YXJndW1lbnRzLmxlbmd0aCxzPW88Mz90Om51bGw9PT1pP2k9T2JqZWN0LmdldE93blByb3BlcnR5RGVzY3JpcHRvcih0LHIpOmk7aWYoIm9iamVjdCI9PXR5cGVvZiBSZWZsZWN0JiYiZnVuY3Rpb24iPT10eXBlb2YgUmVmbGVjdC5kZWNvcmF0ZSlzPVJlZmxlY3QuZGVjb3JhdGUoZSx0LHIsaSk7ZWxzZSBmb3IodmFyIGE9ZS5sZW5ndGgtMTthPj0wO2EtLSkobj1lW2FdKSYmKHM9KG88Mz9uKHMpOm8+Mz9uKHQscixzKTpuKHQscikpfHxzKTtyZXR1cm4gbz4zJiZzJiZPYmplY3QuZGVmaW5lUHJvcGVydHkodCxyLHMpLHN9LHM9dGhpcyYmdGhpcy5fX3BhcmFtfHxmdW5jdGlvbihlLHQpe3JldHVybiBmdW5jdGlvbihyLGkpe3QocixpLGUpfX07T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuU2VsZWN0aW9uU2VydmljZT12b2lkIDA7dmFyIGE9cig2MTE0KSxjPXIoNDU2KSxsPXIoNTExKSx1PXIoODQ2MCksaD1yKDQ3MjUpLGY9cigyNTg1KSxfPXIoOTgwNiksZD1yKDk1MDQpLHA9cig4NDQpLHY9cig0ODQxKSxnPVN0cmluZy5mcm9tQ2hhckNvZGUoMTYwKSx5PW5ldyBSZWdFeHAoZywiZyIpLG09ZnVuY3Rpb24oZSl7ZnVuY3Rpb24gdCh0LHIsaSxuLG8scyxhLGgpe3ZhciBmPWUuY2FsbCh0aGlzKXx8dGhpcztyZXR1cm4gZi5fZWxlbWVudD10LGYuX3NjcmVlbkVsZW1lbnQ9cixmLl9saW5raWZpZXI9aSxmLl9idWZmZXJTZXJ2aWNlPW4sZi5fY29yZVNlcnZpY2U9byxmLl9tb3VzZVNlcnZpY2U9cyxmLl9vcHRpb25zU2VydmljZT1hLGYuX3JlbmRlclNlcnZpY2U9aCxmLl9kcmFnU2Nyb2xsQW1vdW50PTAsZi5fZW5hYmxlZD0hMCxmLl93b3JrQ2VsbD1uZXcgbC5DZWxsRGF0YSxmLl9tb3VzZURvd25UaW1lU3RhbXA9MCxmLl9vbGRIYXNTZWxlY3Rpb249ITEsZi5fb2xkU2VsZWN0aW9uU3RhcnQ9dm9pZCAwLGYuX29sZFNlbGVjdGlvbkVuZD12b2lkIDAsZi5fb25MaW51eE1vdXNlU2VsZWN0aW9uPWYucmVnaXN0ZXIobmV3IHUuRXZlbnRFbWl0dGVyKSxmLl9vblJlZHJhd1JlcXVlc3Q9Zi5yZWdpc3RlcihuZXcgdS5FdmVudEVtaXR0ZXIpLGYuX29uU2VsZWN0aW9uQ2hhbmdlPWYucmVnaXN0ZXIobmV3IHUuRXZlbnRFbWl0dGVyKSxmLl9vblJlcXVlc3RTY3JvbGxMaW5lcz1mLnJlZ2lzdGVyKG5ldyB1LkV2ZW50RW1pdHRlciksZi5fbW91c2VNb3ZlTGlzdGVuZXI9ZnVuY3Rpb24oZSl7cmV0dXJuIGYuX29uTW91c2VNb3ZlKGUpfSxmLl9tb3VzZVVwTGlzdGVuZXI9ZnVuY3Rpb24oZSl7cmV0dXJuIGYuX29uTW91c2VVcChlKX0sZi5fY29yZVNlcnZpY2Uub25Vc2VySW5wdXQoKGZ1bmN0aW9uKCl7Zi5oYXNTZWxlY3Rpb24mJmYuY2xlYXJTZWxlY3Rpb24oKX0pKSxmLl90cmltTGlzdGVuZXI9Zi5fYnVmZmVyU2VydmljZS5idWZmZXIubGluZXMub25UcmltKChmdW5jdGlvbihlKXtyZXR1cm4gZi5fb25UcmltKGUpfSkpLGYucmVnaXN0ZXIoZi5fYnVmZmVyU2VydmljZS5idWZmZXJzLm9uQnVmZmVyQWN0aXZhdGUoKGZ1bmN0aW9uKGUpe3JldHVybiBmLl9vbkJ1ZmZlckFjdGl2YXRlKGUpfSkpKSxmLmVuYWJsZSgpLGYuX21vZGVsPW5ldyBjLlNlbGVjdGlvbk1vZGVsKGYuX2J1ZmZlclNlcnZpY2UpLGYuX2FjdGl2ZVNlbGVjdGlvbk1vZGU9MCxmfXJldHVybiBuKHQsZSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvbkxpbnV4TW91c2VTZWxlY3Rpb24iLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25MaW51eE1vdXNlU2VsZWN0aW9uLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25SZXF1ZXN0UmVkcmF3Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uUmVkcmF3UmVxdWVzdC5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uU2VsZWN0aW9uQ2hhbmdlIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uU2VsZWN0aW9uQ2hhbmdlLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25SZXF1ZXN0U2Nyb2xsTGluZXMiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25SZXF1ZXN0U2Nyb2xsTGluZXMuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksdC5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe3RoaXMuX3JlbW92ZU1vdXNlRG93bkxpc3RlbmVycygpfSx0LnByb3RvdHlwZS5yZXNldD1mdW5jdGlvbigpe3RoaXMuY2xlYXJTZWxlY3Rpb24oKX0sdC5wcm90b3R5cGUuZGlzYWJsZT1mdW5jdGlvbigpe3RoaXMuY2xlYXJTZWxlY3Rpb24oKSx0aGlzLl9lbmFibGVkPSExfSx0LnByb3RvdHlwZS5lbmFibGU9ZnVuY3Rpb24oKXt0aGlzLl9lbmFibGVkPSEwfSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsInNlbGVjdGlvblN0YXJ0Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX21vZGVsLmZpbmFsU2VsZWN0aW9uU3RhcnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJzZWxlY3Rpb25FbmQiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fbW9kZWwuZmluYWxTZWxlY3Rpb25FbmR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJoYXNTZWxlY3Rpb24iLHtnZXQ6ZnVuY3Rpb24oKXt2YXIgZT10aGlzLl9tb2RlbC5maW5hbFNlbGVjdGlvblN0YXJ0LHQ9dGhpcy5fbW9kZWwuZmluYWxTZWxlY3Rpb25FbmQ7cmV0dXJuISghZXx8IXR8fGVbMF09PT10WzBdJiZlWzFdPT09dFsxXSl9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJzZWxlY3Rpb25UZXh0Iix7Z2V0OmZ1bmN0aW9uKCl7dmFyIGU9dGhpcy5fbW9kZWwuZmluYWxTZWxlY3Rpb25TdGFydCx0PXRoaXMuX21vZGVsLmZpbmFsU2VsZWN0aW9uRW5kO2lmKCFlfHwhdClyZXR1cm4iIjt2YXIgcj10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlcixpPVtdO2lmKDM9PT10aGlzLl9hY3RpdmVTZWxlY3Rpb25Nb2RlKXtpZihlWzBdPT09dFswXSlyZXR1cm4iIjtmb3IodmFyIG49ZVsxXTtuPD10WzFdO24rKyl7dmFyIG89ci50cmFuc2xhdGVCdWZmZXJMaW5lVG9TdHJpbmcobiwhMCxlWzBdLHRbMF0pO2kucHVzaChvKX19ZWxzZXt2YXIgcz1lWzFdPT09dFsxXT90WzBdOnZvaWQgMDtmb3IoaS5wdXNoKHIudHJhbnNsYXRlQnVmZmVyTGluZVRvU3RyaW5nKGVbMV0sITAsZVswXSxzKSksbj1lWzFdKzE7bjw9dFsxXS0xO24rKyl7dmFyIGM9ci5saW5lcy5nZXQobik7bz1yLnRyYW5zbGF0ZUJ1ZmZlckxpbmVUb1N0cmluZyhuLCEwKSwobnVsbD09Yz92b2lkIDA6Yy5pc1dyYXBwZWQpP2lbaS5sZW5ndGgtMV0rPW86aS5wdXNoKG8pfWVbMV0hPT10WzFdJiYoYz1yLmxpbmVzLmdldCh0WzFdKSxvPXIudHJhbnNsYXRlQnVmZmVyTGluZVRvU3RyaW5nKHRbMV0sITAsMCx0WzBdKSxjJiZjLmlzV3JhcHBlZD9pW2kubGVuZ3RoLTFdKz1vOmkucHVzaChvKSl9cmV0dXJuIGkubWFwKChmdW5jdGlvbihlKXtyZXR1cm4gZS5yZXBsYWNlKHksIiAiKX0pKS5qb2luKGEuaXNXaW5kb3dzPyJcclxuIjoiXG4iKX0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSx0LnByb3RvdHlwZS5jbGVhclNlbGVjdGlvbj1mdW5jdGlvbigpe3RoaXMuX21vZGVsLmNsZWFyU2VsZWN0aW9uKCksdGhpcy5fcmVtb3ZlTW91c2VEb3duTGlzdGVuZXJzKCksdGhpcy5yZWZyZXNoKCksdGhpcy5fb25TZWxlY3Rpb25DaGFuZ2UuZmlyZSgpfSx0LnByb3RvdHlwZS5yZWZyZXNoPWZ1bmN0aW9uKGUpe3ZhciB0PXRoaXM7dGhpcy5fcmVmcmVzaEFuaW1hdGlvbkZyYW1lfHwodGhpcy5fcmVmcmVzaEFuaW1hdGlvbkZyYW1lPXdpbmRvdy5yZXF1ZXN0QW5pbWF0aW9uRnJhbWUoKGZ1bmN0aW9uKCl7cmV0dXJuIHQuX3JlZnJlc2goKX0pKSksYS5pc0xpbnV4JiZlJiZ0aGlzLnNlbGVjdGlvblRleHQubGVuZ3RoJiZ0aGlzLl9vbkxpbnV4TW91c2VTZWxlY3Rpb24uZmlyZSh0aGlzLnNlbGVjdGlvblRleHQpfSx0LnByb3RvdHlwZS5fcmVmcmVzaD1mdW5jdGlvbigpe3RoaXMuX3JlZnJlc2hBbmltYXRpb25GcmFtZT12b2lkIDAsdGhpcy5fb25SZWRyYXdSZXF1ZXN0LmZpcmUoe3N0YXJ0OnRoaXMuX21vZGVsLmZpbmFsU2VsZWN0aW9uU3RhcnQsZW5kOnRoaXMuX21vZGVsLmZpbmFsU2VsZWN0aW9uRW5kLGNvbHVtblNlbGVjdE1vZGU6Mz09PXRoaXMuX2FjdGl2ZVNlbGVjdGlvbk1vZGV9KX0sdC5wcm90b3R5cGUuX2lzQ2xpY2tJblNlbGVjdGlvbj1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9nZXRNb3VzZUJ1ZmZlckNvb3JkcyhlKSxyPXRoaXMuX21vZGVsLmZpbmFsU2VsZWN0aW9uU3RhcnQsaT10aGlzLl9tb2RlbC5maW5hbFNlbGVjdGlvbkVuZDtyZXR1cm4hIShyJiZpJiZ0KSYmdGhpcy5fYXJlQ29vcmRzSW5TZWxlY3Rpb24odCxyLGkpfSx0LnByb3RvdHlwZS5fYXJlQ29vcmRzSW5TZWxlY3Rpb249ZnVuY3Rpb24oZSx0LHIpe3JldHVybiBlWzFdPnRbMV0mJmVbMV08clsxXXx8dFsxXT09PXJbMV0mJmVbMV09PT10WzFdJiZlWzBdPj10WzBdJiZlWzBdPHJbMF18fHRbMV08clsxXSYmZVsxXT09PXJbMV0mJmVbMF08clswXXx8dFsxXTxyWzFdJiZlWzFdPT09dFsxXSYmZVswXT49dFswXX0sdC5wcm90b3R5cGUuX3NlbGVjdFdvcmRBdEN1cnNvcj1mdW5jdGlvbihlLHQpe3ZhciByLGksbj1udWxsPT09KGk9bnVsbD09PShyPXRoaXMuX2xpbmtpZmllci5jdXJyZW50TGluayl8fHZvaWQgMD09PXI/dm9pZCAwOnIubGluayl8fHZvaWQgMD09PWk/dm9pZCAwOmkucmFuZ2U7aWYobilyZXR1cm4gdGhpcy5fbW9kZWwuc2VsZWN0aW9uU3RhcnQ9W24uc3RhcnQueC0xLG4uc3RhcnQueS0xXSx0aGlzLl9tb2RlbC5zZWxlY3Rpb25TdGFydExlbmd0aD0oMCx2LmdldFJhbmdlTGVuZ3RoKShuLHRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyksdGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kPXZvaWQgMCwhMDt2YXIgbz10aGlzLl9nZXRNb3VzZUJ1ZmZlckNvb3JkcyhlKTtyZXR1cm4hIW8mJih0aGlzLl9zZWxlY3RXb3JkQXQobyx0KSx0aGlzLl9tb2RlbC5zZWxlY3Rpb25FbmQ9dm9pZCAwLCEwKX0sdC5wcm90b3R5cGUuc2VsZWN0QWxsPWZ1bmN0aW9uKCl7dGhpcy5fbW9kZWwuaXNTZWxlY3RBbGxBY3RpdmU9ITAsdGhpcy5yZWZyZXNoKCksdGhpcy5fb25TZWxlY3Rpb25DaGFuZ2UuZmlyZSgpfSx0LnByb3RvdHlwZS5zZWxlY3RMaW5lcz1mdW5jdGlvbihlLHQpe3RoaXMuX21vZGVsLmNsZWFyU2VsZWN0aW9uKCksZT1NYXRoLm1heChlLDApLHQ9TWF0aC5taW4odCx0aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci5saW5lcy5sZW5ndGgtMSksdGhpcy5fbW9kZWwuc2VsZWN0aW9uU3RhcnQ9WzAsZV0sdGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kPVt0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsdF0sdGhpcy5yZWZyZXNoKCksdGhpcy5fb25TZWxlY3Rpb25DaGFuZ2UuZmlyZSgpfSx0LnByb3RvdHlwZS5fb25UcmltPWZ1bmN0aW9uKGUpe3RoaXMuX21vZGVsLm9uVHJpbShlKSYmdGhpcy5yZWZyZXNoKCl9LHQucHJvdG90eXBlLl9nZXRNb3VzZUJ1ZmZlckNvb3Jkcz1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9tb3VzZVNlcnZpY2UuZ2V0Q29vcmRzKGUsdGhpcy5fc2NyZWVuRWxlbWVudCx0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsdGhpcy5fYnVmZmVyU2VydmljZS5yb3dzLCEwKTtpZih0KXJldHVybiB0WzBdLS0sdFsxXS0tLHRbMV0rPXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnlkaXNwLHR9LHQucHJvdG90eXBlLl9nZXRNb3VzZUV2ZW50U2Nyb2xsQW1vdW50PWZ1bmN0aW9uKGUpe3ZhciB0PSgwLF8uZ2V0Q29vcmRzUmVsYXRpdmVUb0VsZW1lbnQpKGUsdGhpcy5fc2NyZWVuRWxlbWVudClbMV0scj10aGlzLl9yZW5kZXJTZXJ2aWNlLmRpbWVuc2lvbnMuY2FudmFzSGVpZ2h0O3JldHVybiB0Pj0wJiZ0PD1yPzA6KHQ+ciYmKHQtPXIpLHQ9TWF0aC5taW4oTWF0aC5tYXgodCwtNTApLDUwKSwodC89NTApL01hdGguYWJzKHQpK01hdGgucm91bmQoMTQqdCkpfSx0LnByb3RvdHlwZS5zaG91bGRGb3JjZVNlbGVjdGlvbj1mdW5jdGlvbihlKXtyZXR1cm4gYS5pc01hYz9lLmFsdEtleSYmdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5tYWNPcHRpb25DbGlja0ZvcmNlc1NlbGVjdGlvbjplLnNoaWZ0S2V5fSx0LnByb3RvdHlwZS5vbk1vdXNlRG93bj1mdW5jdGlvbihlKXtpZih0aGlzLl9tb3VzZURvd25UaW1lU3RhbXA9ZS50aW1lU3RhbXAsKDIhPT1lLmJ1dHRvbnx8IXRoaXMuaGFzU2VsZWN0aW9uKSYmMD09PWUuYnV0dG9uKXtpZighdGhpcy5fZW5hYmxlZCl7aWYoIXRoaXMuc2hvdWxkRm9yY2VTZWxlY3Rpb24oZSkpcmV0dXJuO2Uuc3RvcFByb3BhZ2F0aW9uKCl9ZS5wcmV2ZW50RGVmYXVsdCgpLHRoaXMuX2RyYWdTY3JvbGxBbW91bnQ9MCx0aGlzLl9lbmFibGVkJiZlLnNoaWZ0S2V5P3RoaXMuX29uSW5jcmVtZW50YWxDbGljayhlKToxPT09ZS5kZXRhaWw/dGhpcy5fb25TaW5nbGVDbGljayhlKToyPT09ZS5kZXRhaWw/dGhpcy5fb25Eb3VibGVDbGljayhlKTozPT09ZS5kZXRhaWwmJnRoaXMuX29uVHJpcGxlQ2xpY2soZSksdGhpcy5fYWRkTW91c2VEb3duTGlzdGVuZXJzKCksdGhpcy5yZWZyZXNoKCEwKX19LHQucHJvdG90eXBlLl9hZGRNb3VzZURvd25MaXN0ZW5lcnM9ZnVuY3Rpb24oKXt2YXIgZT10aGlzO3RoaXMuX3NjcmVlbkVsZW1lbnQub3duZXJEb2N1bWVudCYmKHRoaXMuX3NjcmVlbkVsZW1lbnQub3duZXJEb2N1bWVudC5hZGRFdmVudExpc3RlbmVyKCJtb3VzZW1vdmUiLHRoaXMuX21vdXNlTW92ZUxpc3RlbmVyKSx0aGlzLl9zY3JlZW5FbGVtZW50Lm93bmVyRG9jdW1lbnQuYWRkRXZlbnRMaXN0ZW5lcigibW91c2V1cCIsdGhpcy5fbW91c2VVcExpc3RlbmVyKSksdGhpcy5fZHJhZ1Njcm9sbEludGVydmFsVGltZXI9d2luZG93LnNldEludGVydmFsKChmdW5jdGlvbigpe3JldHVybiBlLl9kcmFnU2Nyb2xsKCl9KSw1MCl9LHQucHJvdG90eXBlLl9yZW1vdmVNb3VzZURvd25MaXN0ZW5lcnM9ZnVuY3Rpb24oKXt0aGlzLl9zY3JlZW5FbGVtZW50Lm93bmVyRG9jdW1lbnQmJih0aGlzLl9zY3JlZW5FbGVtZW50Lm93bmVyRG9jdW1lbnQucmVtb3ZlRXZlbnRMaXN0ZW5lcigibW91c2Vtb3ZlIix0aGlzLl9tb3VzZU1vdmVMaXN0ZW5lciksdGhpcy5fc2NyZWVuRWxlbWVudC5vd25lckRvY3VtZW50LnJlbW92ZUV2ZW50TGlzdGVuZXIoIm1vdXNldXAiLHRoaXMuX21vdXNlVXBMaXN0ZW5lcikpLGNsZWFySW50ZXJ2YWwodGhpcy5fZHJhZ1Njcm9sbEludGVydmFsVGltZXIpLHRoaXMuX2RyYWdTY3JvbGxJbnRlcnZhbFRpbWVyPXZvaWQgMH0sdC5wcm90b3R5cGUuX29uSW5jcmVtZW50YWxDbGljaz1mdW5jdGlvbihlKXt0aGlzLl9tb2RlbC5zZWxlY3Rpb25TdGFydCYmKHRoaXMuX21vZGVsLnNlbGVjdGlvbkVuZD10aGlzLl9nZXRNb3VzZUJ1ZmZlckNvb3JkcyhlKSl9LHQucHJvdG90eXBlLl9vblNpbmdsZUNsaWNrPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX21vZGVsLnNlbGVjdGlvblN0YXJ0TGVuZ3RoPTAsdGhpcy5fbW9kZWwuaXNTZWxlY3RBbGxBY3RpdmU9ITEsdGhpcy5fYWN0aXZlU2VsZWN0aW9uTW9kZT10aGlzLnNob3VsZENvbHVtblNlbGVjdChlKT8zOjAsdGhpcy5fbW9kZWwuc2VsZWN0aW9uU3RhcnQ9dGhpcy5fZ2V0TW91c2VCdWZmZXJDb29yZHMoZSksdGhpcy5fbW9kZWwuc2VsZWN0aW9uU3RhcnQpe3RoaXMuX21vZGVsLnNlbGVjdGlvbkVuZD12b2lkIDA7dmFyIHQ9dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIubGluZXMuZ2V0KHRoaXMuX21vZGVsLnNlbGVjdGlvblN0YXJ0WzFdKTt0JiZ0Lmxlbmd0aCE9PXRoaXMuX21vZGVsLnNlbGVjdGlvblN0YXJ0WzBdJiYwPT09dC5oYXNXaWR0aCh0aGlzLl9tb2RlbC5zZWxlY3Rpb25TdGFydFswXSkmJnRoaXMuX21vZGVsLnNlbGVjdGlvblN0YXJ0WzBdKyt9fSx0LnByb3RvdHlwZS5fb25Eb3VibGVDbGljaz1mdW5jdGlvbihlKXt0aGlzLl9zZWxlY3RXb3JkQXRDdXJzb3IoZSwhMCkmJih0aGlzLl9hY3RpdmVTZWxlY3Rpb25Nb2RlPTEpfSx0LnByb3RvdHlwZS5fb25UcmlwbGVDbGljaz1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9nZXRNb3VzZUJ1ZmZlckNvb3JkcyhlKTt0JiYodGhpcy5fYWN0aXZlU2VsZWN0aW9uTW9kZT0yLHRoaXMuX3NlbGVjdExpbmVBdCh0WzFdKSl9LHQucHJvdG90eXBlLnNob3VsZENvbHVtblNlbGVjdD1mdW5jdGlvbihlKXtyZXR1cm4gZS5hbHRLZXkmJiEoYS5pc01hYyYmdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5tYWNPcHRpb25DbGlja0ZvcmNlc1NlbGVjdGlvbil9LHQucHJvdG90eXBlLl9vbk1vdXNlTW92ZT1mdW5jdGlvbihlKXtpZihlLnN0b3BJbW1lZGlhdGVQcm9wYWdhdGlvbigpLHRoaXMuX21vZGVsLnNlbGVjdGlvblN0YXJ0KXt2YXIgdD10aGlzLl9tb2RlbC5zZWxlY3Rpb25FbmQ/W3RoaXMuX21vZGVsLnNlbGVjdGlvbkVuZFswXSx0aGlzLl9tb2RlbC5zZWxlY3Rpb25FbmRbMV1dOm51bGw7aWYodGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kPXRoaXMuX2dldE1vdXNlQnVmZmVyQ29vcmRzKGUpLHRoaXMuX21vZGVsLnNlbGVjdGlvbkVuZCl7Mj09PXRoaXMuX2FjdGl2ZVNlbGVjdGlvbk1vZGU/dGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kWzFdPHRoaXMuX21vZGVsLnNlbGVjdGlvblN0YXJ0WzFdP3RoaXMuX21vZGVsLnNlbGVjdGlvbkVuZFswXT0wOnRoaXMuX21vZGVsLnNlbGVjdGlvbkVuZFswXT10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHM6MT09PXRoaXMuX2FjdGl2ZVNlbGVjdGlvbk1vZGUmJnRoaXMuX3NlbGVjdFRvV29yZEF0KHRoaXMuX21vZGVsLnNlbGVjdGlvbkVuZCksdGhpcy5fZHJhZ1Njcm9sbEFtb3VudD10aGlzLl9nZXRNb3VzZUV2ZW50U2Nyb2xsQW1vdW50KGUpLDMhPT10aGlzLl9hY3RpdmVTZWxlY3Rpb25Nb2RlJiYodGhpcy5fZHJhZ1Njcm9sbEFtb3VudD4wP3RoaXMuX21vZGVsLnNlbGVjdGlvbkVuZFswXT10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHM6dGhpcy5fZHJhZ1Njcm9sbEFtb3VudDwwJiYodGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kWzBdPTApKTt2YXIgcj10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlcjtpZih0aGlzLl9tb2RlbC5zZWxlY3Rpb25FbmRbMV08ci5saW5lcy5sZW5ndGgpe3ZhciBpPXIubGluZXMuZ2V0KHRoaXMuX21vZGVsLnNlbGVjdGlvbkVuZFsxXSk7aSYmMD09PWkuaGFzV2lkdGgodGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kWzBdKSYmdGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kWzBdKyt9dCYmdFswXT09PXRoaXMuX21vZGVsLnNlbGVjdGlvbkVuZFswXSYmdFsxXT09PXRoaXMuX21vZGVsLnNlbGVjdGlvbkVuZFsxXXx8dGhpcy5yZWZyZXNoKCEwKX1lbHNlIHRoaXMucmVmcmVzaCghMCl9fSx0LnByb3RvdHlwZS5fZHJhZ1Njcm9sbD1mdW5jdGlvbigpe2lmKHRoaXMuX21vZGVsLnNlbGVjdGlvbkVuZCYmdGhpcy5fbW9kZWwuc2VsZWN0aW9uU3RhcnQmJnRoaXMuX2RyYWdTY3JvbGxBbW91bnQpe3RoaXMuX29uUmVxdWVzdFNjcm9sbExpbmVzLmZpcmUoe2Ftb3VudDp0aGlzLl9kcmFnU2Nyb2xsQW1vdW50LHN1cHByZXNzU2Nyb2xsRXZlbnQ6ITF9KTt2YXIgZT10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlcjt0aGlzLl9kcmFnU2Nyb2xsQW1vdW50PjA/KDMhPT10aGlzLl9hY3RpdmVTZWxlY3Rpb25Nb2RlJiYodGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kWzBdPXRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyksdGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kWzFdPU1hdGgubWluKGUueWRpc3ArdGhpcy5fYnVmZmVyU2VydmljZS5yb3dzLGUubGluZXMubGVuZ3RoLTEpKTooMyE9PXRoaXMuX2FjdGl2ZVNlbGVjdGlvbk1vZGUmJih0aGlzLl9tb2RlbC5zZWxlY3Rpb25FbmRbMF09MCksdGhpcy5fbW9kZWwuc2VsZWN0aW9uRW5kWzFdPWUueWRpc3ApLHRoaXMucmVmcmVzaCgpfX0sdC5wcm90b3R5cGUuX29uTW91c2VVcD1mdW5jdGlvbihlKXt2YXIgdD1lLnRpbWVTdGFtcC10aGlzLl9tb3VzZURvd25UaW1lU3RhbXA7aWYodGhpcy5fcmVtb3ZlTW91c2VEb3duTGlzdGVuZXJzKCksdGhpcy5zZWxlY3Rpb25UZXh0Lmxlbmd0aDw9MSYmdDw1MDAmJmUuYWx0S2V5JiZ0aGlzLl9vcHRpb25zU2VydmljZS5nZXRPcHRpb24oImFsdENsaWNrTW92ZXNDdXJzb3IiKSl7aWYodGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueWJhc2U9PT10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55ZGlzcCl7dmFyIHI9dGhpcy5fbW91c2VTZXJ2aWNlLmdldENvb3JkcyhlLHRoaXMuX2VsZW1lbnQsdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLHRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cywhMSk7aWYociYmdm9pZCAwIT09clswXSYmdm9pZCAwIT09clsxXSl7dmFyIGk9KDAsZC5tb3ZlVG9DZWxsU2VxdWVuY2UpKHJbMF0tMSxyWzFdLTEsdGhpcy5fYnVmZmVyU2VydmljZSx0aGlzLl9jb3JlU2VydmljZS5kZWNQcml2YXRlTW9kZXMuYXBwbGljYXRpb25DdXJzb3JLZXlzKTt0aGlzLl9jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KGksITApfX19ZWxzZSB0aGlzLl9maXJlRXZlbnRJZlNlbGVjdGlvbkNoYW5nZWQoKX0sdC5wcm90b3R5cGUuX2ZpcmVFdmVudElmU2VsZWN0aW9uQ2hhbmdlZD1mdW5jdGlvbigpe3ZhciBlPXRoaXMuX21vZGVsLmZpbmFsU2VsZWN0aW9uU3RhcnQsdD10aGlzLl9tb2RlbC5maW5hbFNlbGVjdGlvbkVuZCxyPSEoIWV8fCF0fHxlWzBdPT09dFswXSYmZVsxXT09PXRbMV0pO3I/ZSYmdCYmKHRoaXMuX29sZFNlbGVjdGlvblN0YXJ0JiZ0aGlzLl9vbGRTZWxlY3Rpb25FbmQmJmVbMF09PT10aGlzLl9vbGRTZWxlY3Rpb25TdGFydFswXSYmZVsxXT09PXRoaXMuX29sZFNlbGVjdGlvblN0YXJ0WzFdJiZ0WzBdPT09dGhpcy5fb2xkU2VsZWN0aW9uRW5kWzBdJiZ0WzFdPT09dGhpcy5fb2xkU2VsZWN0aW9uRW5kWzFdfHx0aGlzLl9maXJlT25TZWxlY3Rpb25DaGFuZ2UoZSx0LHIpKTp0aGlzLl9vbGRIYXNTZWxlY3Rpb24mJnRoaXMuX2ZpcmVPblNlbGVjdGlvbkNoYW5nZShlLHQscil9LHQucHJvdG90eXBlLl9maXJlT25TZWxlY3Rpb25DaGFuZ2U9ZnVuY3Rpb24oZSx0LHIpe3RoaXMuX29sZFNlbGVjdGlvblN0YXJ0PWUsdGhpcy5fb2xkU2VsZWN0aW9uRW5kPXQsdGhpcy5fb2xkSGFzU2VsZWN0aW9uPXIsdGhpcy5fb25TZWxlY3Rpb25DaGFuZ2UuZmlyZSgpfSx0LnByb3RvdHlwZS5fb25CdWZmZXJBY3RpdmF0ZT1mdW5jdGlvbihlKXt2YXIgdD10aGlzO3RoaXMuY2xlYXJTZWxlY3Rpb24oKSx0aGlzLl90cmltTGlzdGVuZXIuZGlzcG9zZSgpLHRoaXMuX3RyaW1MaXN0ZW5lcj1lLmFjdGl2ZUJ1ZmZlci5saW5lcy5vblRyaW0oKGZ1bmN0aW9uKGUpe3JldHVybiB0Ll9vblRyaW0oZSl9KSl9LHQucHJvdG90eXBlLl9jb252ZXJ0Vmlld3BvcnRDb2xUb0NoYXJhY3RlckluZGV4PWZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByPXRbMF0saT0wO3RbMF0+PWk7aSsrKXt2YXIgbj1lLmxvYWRDZWxsKGksdGhpcy5fd29ya0NlbGwpLmdldENoYXJzKCkubGVuZ3RoOzA9PT10aGlzLl93b3JrQ2VsbC5nZXRXaWR0aCgpP3ItLTpuPjEmJnRbMF0hPT1pJiYocis9bi0xKX1yZXR1cm4gcn0sdC5wcm90b3R5cGUuc2V0U2VsZWN0aW9uPWZ1bmN0aW9uKGUsdCxyKXt0aGlzLl9tb2RlbC5jbGVhclNlbGVjdGlvbigpLHRoaXMuX3JlbW92ZU1vdXNlRG93bkxpc3RlbmVycygpLHRoaXMuX21vZGVsLnNlbGVjdGlvblN0YXJ0PVtlLHRdLHRoaXMuX21vZGVsLnNlbGVjdGlvblN0YXJ0TGVuZ3RoPXIsdGhpcy5yZWZyZXNoKCl9LHQucHJvdG90eXBlLnJpZ2h0Q2xpY2tTZWxlY3Q9ZnVuY3Rpb24oZSl7dGhpcy5faXNDbGlja0luU2VsZWN0aW9uKGUpfHwodGhpcy5fc2VsZWN0V29yZEF0Q3Vyc29yKGUsITEpJiZ0aGlzLnJlZnJlc2goITApLHRoaXMuX2ZpcmVFdmVudElmU2VsZWN0aW9uQ2hhbmdlZCgpKX0sdC5wcm90b3R5cGUuX2dldFdvcmRBdD1mdW5jdGlvbihlLHQscixpKXtpZih2b2lkIDA9PT1yJiYocj0hMCksdm9pZCAwPT09aSYmKGk9ITApLCEoZVswXT49dGhpcy5fYnVmZmVyU2VydmljZS5jb2xzKSl7dmFyIG49dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIsbz1uLmxpbmVzLmdldChlWzFdKTtpZihvKXt2YXIgcz1uLnRyYW5zbGF0ZUJ1ZmZlckxpbmVUb1N0cmluZyhlWzFdLCExKSxhPXRoaXMuX2NvbnZlcnRWaWV3cG9ydENvbFRvQ2hhcmFjdGVySW5kZXgobyxlKSxjPWEsbD1lWzBdLWEsdT0wLGg9MCxmPTAsXz0wO2lmKCIgIj09PXMuY2hhckF0KGEpKXtmb3IoO2E+MCYmIiAiPT09cy5jaGFyQXQoYS0xKTspYS0tO2Zvcig7YzxzLmxlbmd0aCYmIiAiPT09cy5jaGFyQXQoYysxKTspYysrfWVsc2V7dmFyIGQ9ZVswXSxwPWVbMF07MD09PW8uZ2V0V2lkdGgoZCkmJih1KyssZC0tKSwyPT09by5nZXRXaWR0aChwKSYmKGgrKyxwKyspO3ZhciB2PW8uZ2V0U3RyaW5nKHApLmxlbmd0aDtmb3Iodj4xJiYoXys9di0xLGMrPXYtMSk7ZD4wJiZhPjAmJiF0aGlzLl9pc0NoYXJXb3JkU2VwYXJhdG9yKG8ubG9hZENlbGwoZC0xLHRoaXMuX3dvcmtDZWxsKSk7KXtvLmxvYWRDZWxsKGQtMSx0aGlzLl93b3JrQ2VsbCk7dmFyIGc9dGhpcy5fd29ya0NlbGwuZ2V0Q2hhcnMoKS5sZW5ndGg7MD09PXRoaXMuX3dvcmtDZWxsLmdldFdpZHRoKCk/KHUrKyxkLS0pOmc+MSYmKGYrPWctMSxhLT1nLTEpLGEtLSxkLS19Zm9yKDtwPG8ubGVuZ3RoJiZjKzE8cy5sZW5ndGgmJiF0aGlzLl9pc0NoYXJXb3JkU2VwYXJhdG9yKG8ubG9hZENlbGwocCsxLHRoaXMuX3dvcmtDZWxsKSk7KXtvLmxvYWRDZWxsKHArMSx0aGlzLl93b3JrQ2VsbCk7dmFyIHk9dGhpcy5fd29ya0NlbGwuZ2V0Q2hhcnMoKS5sZW5ndGg7Mj09PXRoaXMuX3dvcmtDZWxsLmdldFdpZHRoKCk/KGgrKyxwKyspOnk+MSYmKF8rPXktMSxjKz15LTEpLGMrKyxwKyt9fWMrKzt2YXIgbT1hK2wtdStmLGI9TWF0aC5taW4odGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLGMtYSt1K2gtZi1fKTtpZih0fHwiIiE9PXMuc2xpY2UoYSxjKS50cmltKCkpe2lmKHImJjA9PT1tJiYzMiE9PW8uZ2V0Q29kZVBvaW50KDApKXt2YXIgUz1uLmxpbmVzLmdldChlWzFdLTEpO2lmKFMmJm8uaXNXcmFwcGVkJiYzMiE9PVMuZ2V0Q29kZVBvaW50KHRoaXMuX2J1ZmZlclNlcnZpY2UuY29scy0xKSl7dmFyIEM9dGhpcy5fZ2V0V29yZEF0KFt0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMtMSxlWzFdLTFdLCExLCEwLCExKTtpZihDKXt2YXIgdz10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMtQy5zdGFydDttLT13LGIrPXd9fX1pZihpJiZtK2I9PT10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMmJjMyIT09by5nZXRDb2RlUG9pbnQodGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLTEpKXt2YXIgTD1uLmxpbmVzLmdldChlWzFdKzEpO2lmKChudWxsPT1MP3ZvaWQgMDpMLmlzV3JhcHBlZCkmJjMyIT09TC5nZXRDb2RlUG9pbnQoMCkpe3ZhciBFPXRoaXMuX2dldFdvcmRBdChbMCxlWzFdKzFdLCExLCExLCEwKTtFJiYoYis9RS5sZW5ndGgpfX1yZXR1cm57c3RhcnQ6bSxsZW5ndGg6Yn19fX19LHQucHJvdG90eXBlLl9zZWxlY3RXb3JkQXQ9ZnVuY3Rpb24oZSx0KXt2YXIgcj10aGlzLl9nZXRXb3JkQXQoZSx0KTtpZihyKXtmb3IoO3Iuc3RhcnQ8MDspci5zdGFydCs9dGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLGVbMV0tLTt0aGlzLl9tb2RlbC5zZWxlY3Rpb25TdGFydD1bci5zdGFydCxlWzFdXSx0aGlzLl9tb2RlbC5zZWxlY3Rpb25TdGFydExlbmd0aD1yLmxlbmd0aH19LHQucHJvdG90eXBlLl9zZWxlY3RUb1dvcmRBdD1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9nZXRXb3JkQXQoZSwhMCk7aWYodCl7Zm9yKHZhciByPWVbMV07dC5zdGFydDwwOyl0LnN0YXJ0Kz10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsci0tO2lmKCF0aGlzLl9tb2RlbC5hcmVTZWxlY3Rpb25WYWx1ZXNSZXZlcnNlZCgpKWZvcig7dC5zdGFydCt0Lmxlbmd0aD50aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHM7KXQubGVuZ3RoLT10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMscisrO3RoaXMuX21vZGVsLnNlbGVjdGlvbkVuZD1bdGhpcy5fbW9kZWwuYXJlU2VsZWN0aW9uVmFsdWVzUmV2ZXJzZWQoKT90LnN0YXJ0OnQuc3RhcnQrdC5sZW5ndGgscl19fSx0LnByb3RvdHlwZS5faXNDaGFyV29yZFNlcGFyYXRvcj1mdW5jdGlvbihlKXtyZXR1cm4gMCE9PWUuZ2V0V2lkdGgoKSYmdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy53b3JkU2VwYXJhdG9yLmluZGV4T2YoZS5nZXRDaGFycygpKT49MH0sdC5wcm90b3R5cGUuX3NlbGVjdExpbmVBdD1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci5nZXRXcmFwcGVkUmFuZ2VGb3JMaW5lKGUpO3RoaXMuX21vZGVsLnNlbGVjdGlvblN0YXJ0PVswLHQuZmlyc3RdLHRoaXMuX21vZGVsLnNlbGVjdGlvbkVuZD1bdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLHQubGFzdF0sdGhpcy5fbW9kZWwuc2VsZWN0aW9uU3RhcnRMZW5ndGg9MH0sbyhbcygzLGYuSUJ1ZmZlclNlcnZpY2UpLHMoNCxmLklDb3JlU2VydmljZSkscyg1LGguSU1vdXNlU2VydmljZSkscyg2LGYuSU9wdGlvbnNTZXJ2aWNlKSxzKDcsaC5JUmVuZGVyU2VydmljZSldLHQpfShwLkRpc3Bvc2FibGUpO3QuU2VsZWN0aW9uU2VydmljZT1tfSw0NzI1OihlLHQscik9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5JQ2hhcmFjdGVySm9pbmVyU2VydmljZT10LklTb3VuZFNlcnZpY2U9dC5JU2VsZWN0aW9uU2VydmljZT10LklSZW5kZXJTZXJ2aWNlPXQuSU1vdXNlU2VydmljZT10LklDb3JlQnJvd3NlclNlcnZpY2U9dC5JQ2hhclNpemVTZXJ2aWNlPXZvaWQgMDt2YXIgaT1yKDgzNDMpO3QuSUNoYXJTaXplU2VydmljZT0oMCxpLmNyZWF0ZURlY29yYXRvcikoIkNoYXJTaXplU2VydmljZSIpLHQuSUNvcmVCcm93c2VyU2VydmljZT0oMCxpLmNyZWF0ZURlY29yYXRvcikoIkNvcmVCcm93c2VyU2VydmljZSIpLHQuSU1vdXNlU2VydmljZT0oMCxpLmNyZWF0ZURlY29yYXRvcikoIk1vdXNlU2VydmljZSIpLHQuSVJlbmRlclNlcnZpY2U9KDAsaS5jcmVhdGVEZWNvcmF0b3IpKCJSZW5kZXJTZXJ2aWNlIiksdC5JU2VsZWN0aW9uU2VydmljZT0oMCxpLmNyZWF0ZURlY29yYXRvcikoIlNlbGVjdGlvblNlcnZpY2UiKSx0LklTb3VuZFNlcnZpY2U9KDAsaS5jcmVhdGVEZWNvcmF0b3IpKCJTb3VuZFNlcnZpY2UiKSx0LklDaGFyYWN0ZXJKb2luZXJTZXJ2aWNlPSgwLGkuY3JlYXRlRGVjb3JhdG9yKSgiQ2hhcmFjdGVySm9pbmVyU2VydmljZSIpfSwzNTc6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPXRoaXMmJnRoaXMuX19kZWNvcmF0ZXx8ZnVuY3Rpb24oZSx0LHIsaSl7dmFyIG4sbz1hcmd1bWVudHMubGVuZ3RoLHM9bzwzP3Q6bnVsbD09PWk/aT1PYmplY3QuZ2V0T3duUHJvcGVydHlEZXNjcmlwdG9yKHQscik6aTtpZigib2JqZWN0Ij09dHlwZW9mIFJlZmxlY3QmJiJmdW5jdGlvbiI9PXR5cGVvZiBSZWZsZWN0LmRlY29yYXRlKXM9UmVmbGVjdC5kZWNvcmF0ZShlLHQscixpKTtlbHNlIGZvcih2YXIgYT1lLmxlbmd0aC0xO2E+PTA7YS0tKShuPWVbYV0pJiYocz0obzwzP24ocyk6bz4zP24odCxyLHMpOm4odCxyKSl8fHMpO3JldHVybiBvPjMmJnMmJk9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LHIscyksc30sbj10aGlzJiZ0aGlzLl9fcGFyYW18fGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGZ1bmN0aW9uKHIsaSl7dChyLGksZSl9fTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Tb3VuZFNlcnZpY2U9dm9pZCAwO3ZhciBvPXIoMjU4NSkscz1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoZSl7dGhpcy5fb3B0aW9uc1NlcnZpY2U9ZX1yZXR1cm4gT2JqZWN0LmRlZmluZVByb3BlcnR5KGUsImF1ZGlvQ29udGV4dCIse2dldDpmdW5jdGlvbigpe2lmKCFlLl9hdWRpb0NvbnRleHQpe3ZhciB0PXdpbmRvdy5BdWRpb0NvbnRleHR8fHdpbmRvdy53ZWJraXRBdWRpb0NvbnRleHQ7aWYoIXQpcmV0dXJuIGNvbnNvbGUud2FybigiV2ViIEF1ZGlvIEFQSSBpcyBub3Qgc3VwcG9ydGVkIGJ5IHRoaXMgYnJvd3Nlci4gQ29uc2lkZXIgdXBncmFkaW5nIHRvIHRoZSBsYXRlc3QgdmVyc2lvbiIpLG51bGw7ZS5fYXVkaW9Db250ZXh0PW5ldyB0fXJldHVybiBlLl9hdWRpb0NvbnRleHR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksZS5wcm90b3R5cGUucGxheUJlbGxTb3VuZD1mdW5jdGlvbigpe3ZhciB0PWUuYXVkaW9Db250ZXh0O2lmKHQpe3ZhciByPXQuY3JlYXRlQnVmZmVyU291cmNlKCk7dC5kZWNvZGVBdWRpb0RhdGEodGhpcy5fYmFzZTY0VG9BcnJheUJ1ZmZlcih0aGlzLl9yZW1vdmVNaW1lVHlwZSh0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmJlbGxTb3VuZCkpLChmdW5jdGlvbihlKXtyLmJ1ZmZlcj1lLHIuY29ubmVjdCh0LmRlc3RpbmF0aW9uKSxyLnN0YXJ0KDApfSkpfX0sZS5wcm90b3R5cGUuX2Jhc2U2NFRvQXJyYXlCdWZmZXI9ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PXdpbmRvdy5hdG9iKGUpLHI9dC5sZW5ndGgsaT1uZXcgVWludDhBcnJheShyKSxuPTA7bjxyO24rKylpW25dPXQuY2hhckNvZGVBdChuKTtyZXR1cm4gaS5idWZmZXJ9LGUucHJvdG90eXBlLl9yZW1vdmVNaW1lVHlwZT1mdW5jdGlvbihlKXtyZXR1cm4gZS5zcGxpdCgiLCIpWzFdfSxlPWkoW24oMCxvLklPcHRpb25zU2VydmljZSldLGUpfSgpO3QuU291bmRTZXJ2aWNlPXN9LDYzNDk6KGUsdCxyKT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkNpcmN1bGFyTGlzdD12b2lkIDA7dmFyIGk9cig4NDYwKSxuPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlKXt0aGlzLl9tYXhMZW5ndGg9ZSx0aGlzLm9uRGVsZXRlRW1pdHRlcj1uZXcgaS5FdmVudEVtaXR0ZXIsdGhpcy5vbkluc2VydEVtaXR0ZXI9bmV3IGkuRXZlbnRFbWl0dGVyLHRoaXMub25UcmltRW1pdHRlcj1uZXcgaS5FdmVudEVtaXR0ZXIsdGhpcy5fYXJyYXk9bmV3IEFycmF5KHRoaXMuX21heExlbmd0aCksdGhpcy5fc3RhcnRJbmRleD0wLHRoaXMuX2xlbmd0aD0wfXJldHVybiBPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsIm9uRGVsZXRlIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMub25EZWxldGVFbWl0dGVyLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwib25JbnNlcnQiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5vbkluc2VydEVtaXR0ZXIuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJvblRyaW0iLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5vblRyaW1FbWl0dGVyLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwibWF4TGVuZ3RoIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX21heExlbmd0aH0sc2V0OmZ1bmN0aW9uKGUpe2lmKHRoaXMuX21heExlbmd0aCE9PWUpe2Zvcih2YXIgdD1uZXcgQXJyYXkoZSkscj0wO3I8TWF0aC5taW4oZSx0aGlzLmxlbmd0aCk7cisrKXRbcl09dGhpcy5fYXJyYXlbdGhpcy5fZ2V0Q3ljbGljSW5kZXgocildO3RoaXMuX2FycmF5PXQsdGhpcy5fbWF4TGVuZ3RoPWUsdGhpcy5fc3RhcnRJbmRleD0wfX0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImxlbmd0aCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9sZW5ndGh9LHNldDpmdW5jdGlvbihlKXtpZihlPnRoaXMuX2xlbmd0aClmb3IodmFyIHQ9dGhpcy5fbGVuZ3RoO3Q8ZTt0KyspdGhpcy5fYXJyYXlbdF09dm9pZCAwO3RoaXMuX2xlbmd0aD1lfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLGUucHJvdG90eXBlLmdldD1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fYXJyYXlbdGhpcy5fZ2V0Q3ljbGljSW5kZXgoZSldfSxlLnByb3RvdHlwZS5zZXQ9ZnVuY3Rpb24oZSx0KXt0aGlzLl9hcnJheVt0aGlzLl9nZXRDeWNsaWNJbmRleChlKV09dH0sZS5wcm90b3R5cGUucHVzaD1mdW5jdGlvbihlKXt0aGlzLl9hcnJheVt0aGlzLl9nZXRDeWNsaWNJbmRleCh0aGlzLl9sZW5ndGgpXT1lLHRoaXMuX2xlbmd0aD09PXRoaXMuX21heExlbmd0aD8odGhpcy5fc3RhcnRJbmRleD0rK3RoaXMuX3N0YXJ0SW5kZXgldGhpcy5fbWF4TGVuZ3RoLHRoaXMub25UcmltRW1pdHRlci5maXJlKDEpKTp0aGlzLl9sZW5ndGgrK30sZS5wcm90b3R5cGUucmVjeWNsZT1mdW5jdGlvbigpe2lmKHRoaXMuX2xlbmd0aCE9PXRoaXMuX21heExlbmd0aCl0aHJvdyBuZXcgRXJyb3IoIkNhbiBvbmx5IHJlY3ljbGUgd2hlbiB0aGUgYnVmZmVyIGlzIGZ1bGwiKTtyZXR1cm4gdGhpcy5fc3RhcnRJbmRleD0rK3RoaXMuX3N0YXJ0SW5kZXgldGhpcy5fbWF4TGVuZ3RoLHRoaXMub25UcmltRW1pdHRlci5maXJlKDEpLHRoaXMuX2FycmF5W3RoaXMuX2dldEN5Y2xpY0luZGV4KHRoaXMuX2xlbmd0aC0xKV19LE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwiaXNGdWxsIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2xlbmd0aD09PXRoaXMuX21heExlbmd0aH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxlLnByb3RvdHlwZS5wb3A9ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fYXJyYXlbdGhpcy5fZ2V0Q3ljbGljSW5kZXgodGhpcy5fbGVuZ3RoLS0tMSldfSxlLnByb3RvdHlwZS5zcGxpY2U9ZnVuY3Rpb24oZSx0KXtmb3IodmFyIHI9W10saT0yO2k8YXJndW1lbnRzLmxlbmd0aDtpKyspcltpLTJdPWFyZ3VtZW50c1tpXTtpZih0KXtmb3IodmFyIG49ZTtuPHRoaXMuX2xlbmd0aC10O24rKyl0aGlzLl9hcnJheVt0aGlzLl9nZXRDeWNsaWNJbmRleChuKV09dGhpcy5fYXJyYXlbdGhpcy5fZ2V0Q3ljbGljSW5kZXgobit0KV07dGhpcy5fbGVuZ3RoLT10LHRoaXMub25EZWxldGVFbWl0dGVyLmZpcmUoe2luZGV4OmUsYW1vdW50OnR9KX1mb3Iobj10aGlzLl9sZW5ndGgtMTtuPj1lO24tLSl0aGlzLl9hcnJheVt0aGlzLl9nZXRDeWNsaWNJbmRleChuK3IubGVuZ3RoKV09dGhpcy5fYXJyYXlbdGhpcy5fZ2V0Q3ljbGljSW5kZXgobildO2ZvcihuPTA7bjxyLmxlbmd0aDtuKyspdGhpcy5fYXJyYXlbdGhpcy5fZ2V0Q3ljbGljSW5kZXgoZStuKV09cltuXTtpZihyLmxlbmd0aCYmdGhpcy5vbkluc2VydEVtaXR0ZXIuZmlyZSh7aW5kZXg6ZSxhbW91bnQ6ci5sZW5ndGh9KSx0aGlzLl9sZW5ndGgrci5sZW5ndGg+dGhpcy5fbWF4TGVuZ3RoKXt2YXIgbz10aGlzLl9sZW5ndGgrci5sZW5ndGgtdGhpcy5fbWF4TGVuZ3RoO3RoaXMuX3N0YXJ0SW5kZXgrPW8sdGhpcy5fbGVuZ3RoPXRoaXMuX21heExlbmd0aCx0aGlzLm9uVHJpbUVtaXR0ZXIuZmlyZShvKX1lbHNlIHRoaXMuX2xlbmd0aCs9ci5sZW5ndGh9LGUucHJvdG90eXBlLnRyaW1TdGFydD1mdW5jdGlvbihlKXtlPnRoaXMuX2xlbmd0aCYmKGU9dGhpcy5fbGVuZ3RoKSx0aGlzLl9zdGFydEluZGV4Kz1lLHRoaXMuX2xlbmd0aC09ZSx0aGlzLm9uVHJpbUVtaXR0ZXIuZmlyZShlKX0sZS5wcm90b3R5cGUuc2hpZnRFbGVtZW50cz1mdW5jdGlvbihlLHQscil7aWYoISh0PD0wKSl7aWYoZTwwfHxlPj10aGlzLl9sZW5ndGgpdGhyb3cgbmV3IEVycm9yKCJzdGFydCBhcmd1bWVudCBvdXQgb2YgcmFuZ2UiKTtpZihlK3I8MCl0aHJvdyBuZXcgRXJyb3IoIkNhbm5vdCBzaGlmdCBlbGVtZW50cyBpbiBsaXN0IGJleW9uZCBpbmRleCAwIik7aWYocj4wKXtmb3IodmFyIGk9dC0xO2k+PTA7aS0tKXRoaXMuc2V0KGUraStyLHRoaXMuZ2V0KGUraSkpO3ZhciBuPWUrdCtyLXRoaXMuX2xlbmd0aDtpZihuPjApZm9yKHRoaXMuX2xlbmd0aCs9bjt0aGlzLl9sZW5ndGg+dGhpcy5fbWF4TGVuZ3RoOyl0aGlzLl9sZW5ndGgtLSx0aGlzLl9zdGFydEluZGV4KyssdGhpcy5vblRyaW1FbWl0dGVyLmZpcmUoMSl9ZWxzZSBmb3IoaT0wO2k8dDtpKyspdGhpcy5zZXQoZStpK3IsdGhpcy5nZXQoZStpKSl9fSxlLnByb3RvdHlwZS5fZ2V0Q3ljbGljSW5kZXg9ZnVuY3Rpb24oZSl7cmV0dXJuKHRoaXMuX3N0YXJ0SW5kZXgrZSkldGhpcy5fbWF4TGVuZ3RofSxlfSgpO3QuQ2lyY3VsYXJMaXN0PW59LDE0Mzk6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5jbG9uZT12b2lkIDAsdC5jbG9uZT1mdW5jdGlvbiBlKHQscil7aWYodm9pZCAwPT09ciYmKHI9NSksIm9iamVjdCIhPXR5cGVvZiB0KXJldHVybiB0O3ZhciBpPUFycmF5LmlzQXJyYXkodCk/W106e307Zm9yKHZhciBuIGluIHQpaVtuXT1yPD0xP3Rbbl06dFtuXSYmZSh0W25dLHItMSk7cmV0dXJuIGl9fSw4OTY5OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pO09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkNvcmVUZXJtaW5hbD12b2lkIDA7dmFyIG89cig4NDQpLHM9cigyNTg1KSxhPXIoNDM0OCksYz1yKDc4NjYpLGw9cig3NDQpLHU9cig3MzAyKSxoPXIoNjk3NSksZj1yKDg0NjApLF89cigxNzUzKSxkPXIoMzczMCkscD1yKDE0ODApLHY9cig3OTk0KSxnPXIoOTI4MikseT1yKDU0MzUpLG09cig1OTgxKSxiPSExLFM9ZnVuY3Rpb24oZSl7ZnVuY3Rpb24gdCh0KXt2YXIgcj1lLmNhbGwodGhpcyl8fHRoaXM7cmV0dXJuIHIuX29uQmluYXJ5PW5ldyBmLkV2ZW50RW1pdHRlcixyLl9vbkRhdGE9bmV3IGYuRXZlbnRFbWl0dGVyLHIuX29uTGluZUZlZWQ9bmV3IGYuRXZlbnRFbWl0dGVyLHIuX29uUmVzaXplPW5ldyBmLkV2ZW50RW1pdHRlcixyLl9vblNjcm9sbD1uZXcgZi5FdmVudEVtaXR0ZXIsci5faW5zdGFudGlhdGlvblNlcnZpY2U9bmV3IGEuSW5zdGFudGlhdGlvblNlcnZpY2Usci5vcHRpb25zU2VydmljZT1uZXcgdS5PcHRpb25zU2VydmljZSh0KSxyLl9pbnN0YW50aWF0aW9uU2VydmljZS5zZXRTZXJ2aWNlKHMuSU9wdGlvbnNTZXJ2aWNlLHIub3B0aW9uc1NlcnZpY2UpLHIuX2J1ZmZlclNlcnZpY2U9ci5yZWdpc3RlcihyLl9pbnN0YW50aWF0aW9uU2VydmljZS5jcmVhdGVJbnN0YW5jZShsLkJ1ZmZlclNlcnZpY2UpKSxyLl9pbnN0YW50aWF0aW9uU2VydmljZS5zZXRTZXJ2aWNlKHMuSUJ1ZmZlclNlcnZpY2Usci5fYnVmZmVyU2VydmljZSksci5fbG9nU2VydmljZT1yLl9pbnN0YW50aWF0aW9uU2VydmljZS5jcmVhdGVJbnN0YW5jZShjLkxvZ1NlcnZpY2UpLHIuX2luc3RhbnRpYXRpb25TZXJ2aWNlLnNldFNlcnZpY2Uocy5JTG9nU2VydmljZSxyLl9sb2dTZXJ2aWNlKSxyLmNvcmVTZXJ2aWNlPXIucmVnaXN0ZXIoci5faW5zdGFudGlhdGlvblNlcnZpY2UuY3JlYXRlSW5zdGFuY2UoaC5Db3JlU2VydmljZSwoZnVuY3Rpb24oKXtyZXR1cm4gci5zY3JvbGxUb0JvdHRvbSgpfSkpKSxyLl9pbnN0YW50aWF0aW9uU2VydmljZS5zZXRTZXJ2aWNlKHMuSUNvcmVTZXJ2aWNlLHIuY29yZVNlcnZpY2UpLHIuY29yZU1vdXNlU2VydmljZT1yLl9pbnN0YW50aWF0aW9uU2VydmljZS5jcmVhdGVJbnN0YW5jZShfLkNvcmVNb3VzZVNlcnZpY2UpLHIuX2luc3RhbnRpYXRpb25TZXJ2aWNlLnNldFNlcnZpY2Uocy5JQ29yZU1vdXNlU2VydmljZSxyLmNvcmVNb3VzZVNlcnZpY2UpLHIuX2RpcnR5Um93U2VydmljZT1yLl9pbnN0YW50aWF0aW9uU2VydmljZS5jcmVhdGVJbnN0YW5jZShkLkRpcnR5Um93U2VydmljZSksci5faW5zdGFudGlhdGlvblNlcnZpY2Uuc2V0U2VydmljZShzLklEaXJ0eVJvd1NlcnZpY2Usci5fZGlydHlSb3dTZXJ2aWNlKSxyLnVuaWNvZGVTZXJ2aWNlPXIuX2luc3RhbnRpYXRpb25TZXJ2aWNlLmNyZWF0ZUluc3RhbmNlKHAuVW5pY29kZVNlcnZpY2UpLHIuX2luc3RhbnRpYXRpb25TZXJ2aWNlLnNldFNlcnZpY2Uocy5JVW5pY29kZVNlcnZpY2Usci51bmljb2RlU2VydmljZSksci5fY2hhcnNldFNlcnZpY2U9ci5faW5zdGFudGlhdGlvblNlcnZpY2UuY3JlYXRlSW5zdGFuY2Uodi5DaGFyc2V0U2VydmljZSksci5faW5zdGFudGlhdGlvblNlcnZpY2Uuc2V0U2VydmljZShzLklDaGFyc2V0U2VydmljZSxyLl9jaGFyc2V0U2VydmljZSksci5faW5wdXRIYW5kbGVyPW5ldyB5LklucHV0SGFuZGxlcihyLl9idWZmZXJTZXJ2aWNlLHIuX2NoYXJzZXRTZXJ2aWNlLHIuY29yZVNlcnZpY2Usci5fZGlydHlSb3dTZXJ2aWNlLHIuX2xvZ1NlcnZpY2Usci5vcHRpb25zU2VydmljZSxyLmNvcmVNb3VzZVNlcnZpY2Usci51bmljb2RlU2VydmljZSksci5yZWdpc3RlcigoMCxmLmZvcndhcmRFdmVudCkoci5faW5wdXRIYW5kbGVyLm9uTGluZUZlZWQsci5fb25MaW5lRmVlZCkpLHIucmVnaXN0ZXIoci5faW5wdXRIYW5kbGVyKSxyLnJlZ2lzdGVyKCgwLGYuZm9yd2FyZEV2ZW50KShyLl9idWZmZXJTZXJ2aWNlLm9uUmVzaXplLHIuX29uUmVzaXplKSksci5yZWdpc3RlcigoMCxmLmZvcndhcmRFdmVudCkoci5jb3JlU2VydmljZS5vbkRhdGEsci5fb25EYXRhKSksci5yZWdpc3RlcigoMCxmLmZvcndhcmRFdmVudCkoci5jb3JlU2VydmljZS5vbkJpbmFyeSxyLl9vbkJpbmFyeSkpLHIucmVnaXN0ZXIoci5vcHRpb25zU2VydmljZS5vbk9wdGlvbkNoYW5nZSgoZnVuY3Rpb24oZSl7cmV0dXJuIHIuX3VwZGF0ZU9wdGlvbnMoZSl9KSkpLHIucmVnaXN0ZXIoci5fYnVmZmVyU2VydmljZS5vblNjcm9sbCgoZnVuY3Rpb24oZSl7ci5fb25TY3JvbGwuZmlyZSh7cG9zaXRpb246ci5fYnVmZmVyU2VydmljZS5idWZmZXIueWRpc3Asc291cmNlOjB9KSxyLl9kaXJ0eVJvd1NlcnZpY2UubWFya1JhbmdlRGlydHkoci5fYnVmZmVyU2VydmljZS5idWZmZXIuc2Nyb2xsVG9wLHIuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnNjcm9sbEJvdHRvbSl9KSkpLHIucmVnaXN0ZXIoci5faW5wdXRIYW5kbGVyLm9uU2Nyb2xsKChmdW5jdGlvbihlKXtyLl9vblNjcm9sbC5maXJlKHtwb3NpdGlvbjpyLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci55ZGlzcCxzb3VyY2U6MH0pLHIuX2RpcnR5Um93U2VydmljZS5tYXJrUmFuZ2VEaXJ0eShyLl9idWZmZXJTZXJ2aWNlLmJ1ZmZlci5zY3JvbGxUb3Asci5fYnVmZmVyU2VydmljZS5idWZmZXIuc2Nyb2xsQm90dG9tKX0pKSksci5fd3JpdGVCdWZmZXI9bmV3IG0uV3JpdGVCdWZmZXIoKGZ1bmN0aW9uKGUsdCl7cmV0dXJuIHIuX2lucHV0SGFuZGxlci5wYXJzZShlLHQpfSkpLHJ9cmV0dXJuIG4odCxlKSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uQmluYXJ5Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uQmluYXJ5LmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25EYXRhIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uRGF0YS5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uTGluZUZlZWQiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25MaW5lRmVlZC5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uUmVzaXplIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uUmVzaXplLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25TY3JvbGwiLHtnZXQ6ZnVuY3Rpb24oKXt2YXIgZT10aGlzO3JldHVybiB0aGlzLl9vblNjcm9sbEFwaXx8KHRoaXMuX29uU2Nyb2xsQXBpPW5ldyBmLkV2ZW50RW1pdHRlcix0aGlzLnJlZ2lzdGVyKHRoaXMuX29uU2Nyb2xsLmV2ZW50KChmdW5jdGlvbih0KXt2YXIgcjtudWxsPT09KHI9ZS5fb25TY3JvbGxBcGkpfHx2b2lkIDA9PT1yfHxyLmZpcmUodC5wb3NpdGlvbil9KSkpKSx0aGlzLl9vblNjcm9sbEFwaS5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsImNvbHMiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwicm93cyIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3N9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJidWZmZXJzIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyc30sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9wdGlvbnMiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5vcHRpb25zU2VydmljZS5vcHRpb25zfSxzZXQ6ZnVuY3Rpb24oZSl7Zm9yKHZhciB0IGluIGUpdGhpcy5vcHRpb25zU2VydmljZS5vcHRpb25zW3RdPWVbdF19LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksdC5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe3ZhciB0O3RoaXMuX2lzRGlzcG9zZWR8fChlLnByb3RvdHlwZS5kaXNwb3NlLmNhbGwodGhpcyksbnVsbD09PSh0PXRoaXMuX3dpbmRvd3NNb2RlKXx8dm9pZCAwPT09dHx8dC5kaXNwb3NlKCksdGhpcy5fd2luZG93c01vZGU9dm9pZCAwKX0sdC5wcm90b3R5cGUud3JpdGU9ZnVuY3Rpb24oZSx0KXt0aGlzLl93cml0ZUJ1ZmZlci53cml0ZShlLHQpfSx0LnByb3RvdHlwZS53cml0ZVN5bmM9ZnVuY3Rpb24oZSx0KXt0aGlzLl9sb2dTZXJ2aWNlLmxvZ0xldmVsPD1zLkxvZ0xldmVsRW51bS5XQVJOJiYhYiYmKHRoaXMuX2xvZ1NlcnZpY2Uud2Fybigid3JpdGVTeW5jIGlzIHVucmVsaWFibGUgYW5kIHdpbGwgYmUgcmVtb3ZlZCBzb29uLiIpLGI9ITApLHRoaXMuX3dyaXRlQnVmZmVyLndyaXRlU3luYyhlLHQpfSx0LnByb3RvdHlwZS5yZXNpemU9ZnVuY3Rpb24oZSx0KXtpc05hTihlKXx8aXNOYU4odCl8fChlPU1hdGgubWF4KGUsbC5NSU5JTVVNX0NPTFMpLHQ9TWF0aC5tYXgodCxsLk1JTklNVU1fUk9XUyksdGhpcy5fYnVmZmVyU2VydmljZS5yZXNpemUoZSx0KSl9LHQucHJvdG90eXBlLnNjcm9sbD1mdW5jdGlvbihlLHQpe3ZvaWQgMD09PXQmJih0PSExKSx0aGlzLl9idWZmZXJTZXJ2aWNlLnNjcm9sbChlLHQpfSx0LnByb3RvdHlwZS5zY3JvbGxMaW5lcz1mdW5jdGlvbihlLHQscil7dGhpcy5fYnVmZmVyU2VydmljZS5zY3JvbGxMaW5lcyhlLHQscil9LHQucHJvdG90eXBlLnNjcm9sbFBhZ2VzPWZ1bmN0aW9uKGUpe3RoaXMuX2J1ZmZlclNlcnZpY2Uuc2Nyb2xsUGFnZXMoZSl9LHQucHJvdG90eXBlLnNjcm9sbFRvVG9wPWZ1bmN0aW9uKCl7dGhpcy5fYnVmZmVyU2VydmljZS5zY3JvbGxUb1RvcCgpfSx0LnByb3RvdHlwZS5zY3JvbGxUb0JvdHRvbT1mdW5jdGlvbigpe3RoaXMuX2J1ZmZlclNlcnZpY2Uuc2Nyb2xsVG9Cb3R0b20oKX0sdC5wcm90b3R5cGUuc2Nyb2xsVG9MaW5lPWZ1bmN0aW9uKGUpe3RoaXMuX2J1ZmZlclNlcnZpY2Uuc2Nyb2xsVG9MaW5lKGUpfSx0LnByb3RvdHlwZS5yZWdpc3RlckVzY0hhbmRsZXI9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gdGhpcy5faW5wdXRIYW5kbGVyLnJlZ2lzdGVyRXNjSGFuZGxlcihlLHQpfSx0LnByb3RvdHlwZS5yZWdpc3RlckRjc0hhbmRsZXI9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gdGhpcy5faW5wdXRIYW5kbGVyLnJlZ2lzdGVyRGNzSGFuZGxlcihlLHQpfSx0LnByb3RvdHlwZS5yZWdpc3RlckNzaUhhbmRsZXI9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gdGhpcy5faW5wdXRIYW5kbGVyLnJlZ2lzdGVyQ3NpSGFuZGxlcihlLHQpfSx0LnByb3RvdHlwZS5yZWdpc3Rlck9zY0hhbmRsZXI9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gdGhpcy5faW5wdXRIYW5kbGVyLnJlZ2lzdGVyT3NjSGFuZGxlcihlLHQpfSx0LnByb3RvdHlwZS5fc2V0dXA9ZnVuY3Rpb24oKXt0aGlzLm9wdGlvbnNTZXJ2aWNlLm9wdGlvbnMud2luZG93c01vZGUmJnRoaXMuX2VuYWJsZVdpbmRvd3NNb2RlKCl9LHQucHJvdG90eXBlLnJlc2V0PWZ1bmN0aW9uKCl7dGhpcy5faW5wdXRIYW5kbGVyLnJlc2V0KCksdGhpcy5fYnVmZmVyU2VydmljZS5yZXNldCgpLHRoaXMuX2NoYXJzZXRTZXJ2aWNlLnJlc2V0KCksdGhpcy5jb3JlU2VydmljZS5yZXNldCgpLHRoaXMuY29yZU1vdXNlU2VydmljZS5yZXNldCgpfSx0LnByb3RvdHlwZS5fdXBkYXRlT3B0aW9ucz1mdW5jdGlvbihlKXt2YXIgdDtzd2l0Y2goZSl7Y2FzZSJzY3JvbGxiYWNrIjp0aGlzLmJ1ZmZlcnMucmVzaXplKHRoaXMuY29scyx0aGlzLnJvd3MpO2JyZWFrO2Nhc2Uid2luZG93c01vZGUiOnRoaXMub3B0aW9uc1NlcnZpY2Uub3B0aW9ucy53aW5kb3dzTW9kZT90aGlzLl9lbmFibGVXaW5kb3dzTW9kZSgpOihudWxsPT09KHQ9dGhpcy5fd2luZG93c01vZGUpfHx2b2lkIDA9PT10fHx0LmRpc3Bvc2UoKSx0aGlzLl93aW5kb3dzTW9kZT12b2lkIDApfX0sdC5wcm90b3R5cGUuX2VuYWJsZVdpbmRvd3NNb2RlPWZ1bmN0aW9uKCl7dmFyIGU9dGhpcztpZighdGhpcy5fd2luZG93c01vZGUpe3ZhciB0PVtdO3QucHVzaCh0aGlzLm9uTGluZUZlZWQoZy51cGRhdGVXaW5kb3dzTW9kZVdyYXBwZWRTdGF0ZS5iaW5kKG51bGwsdGhpcy5fYnVmZmVyU2VydmljZSkpKSx0LnB1c2godGhpcy5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJIIn0sKGZ1bmN0aW9uKCl7cmV0dXJuKDAsZy51cGRhdGVXaW5kb3dzTW9kZVdyYXBwZWRTdGF0ZSkoZS5fYnVmZmVyU2VydmljZSksITF9KSkpLHRoaXMuX3dpbmRvd3NNb2RlPXtkaXNwb3NlOmZ1bmN0aW9uKCl7Zm9yKHZhciBlPTAscj10O2U8ci5sZW5ndGg7ZSsrKXJbZV0uZGlzcG9zZSgpfX19fSx0fShvLkRpc3Bvc2FibGUpO3QuQ29yZVRlcm1pbmFsPVN9LDg0NjA6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5mb3J3YXJkRXZlbnQ9dC5FdmVudEVtaXR0ZXI9dm9pZCAwO3ZhciByPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZSgpe3RoaXMuX2xpc3RlbmVycz1bXSx0aGlzLl9kaXNwb3NlZD0hMX1yZXR1cm4gT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJldmVudCIse2dldDpmdW5jdGlvbigpe3ZhciBlPXRoaXM7cmV0dXJuIHRoaXMuX2V2ZW50fHwodGhpcy5fZXZlbnQ9ZnVuY3Rpb24odCl7cmV0dXJuIGUuX2xpc3RlbmVycy5wdXNoKHQpLHtkaXNwb3NlOmZ1bmN0aW9uKCl7aWYoIWUuX2Rpc3Bvc2VkKWZvcih2YXIgcj0wO3I8ZS5fbGlzdGVuZXJzLmxlbmd0aDtyKyspaWYoZS5fbGlzdGVuZXJzW3JdPT09dClyZXR1cm4gdm9pZCBlLl9saXN0ZW5lcnMuc3BsaWNlKHIsMSl9fX0pLHRoaXMuX2V2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLGUucHJvdG90eXBlLmZpcmU9ZnVuY3Rpb24oZSx0KXtmb3IodmFyIHI9W10saT0wO2k8dGhpcy5fbGlzdGVuZXJzLmxlbmd0aDtpKyspci5wdXNoKHRoaXMuX2xpc3RlbmVyc1tpXSk7Zm9yKGk9MDtpPHIubGVuZ3RoO2krKylyW2ldLmNhbGwodm9pZCAwLGUsdCl9LGUucHJvdG90eXBlLmRpc3Bvc2U9ZnVuY3Rpb24oKXt0aGlzLl9saXN0ZW5lcnMmJih0aGlzLl9saXN0ZW5lcnMubGVuZ3RoPTApLHRoaXMuX2Rpc3Bvc2VkPSEwfSxlfSgpO3QuRXZlbnRFbWl0dGVyPXIsdC5mb3J3YXJkRXZlbnQ9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSgoZnVuY3Rpb24oZSl7cmV0dXJuIHQuZmlyZShlKX0pKX19LDU0MzU6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpLG49dGhpcyYmdGhpcy5fX2V4dGVuZHN8fChpPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGk9T2JqZWN0LnNldFByb3RvdHlwZU9mfHx7X19wcm90b19fOltdfWluc3RhbmNlb2YgQXJyYXkmJmZ1bmN0aW9uKGUsdCl7ZS5fX3Byb3RvX189dH18fGZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByIGluIHQpT2JqZWN0LnByb3RvdHlwZS5oYXNPd25Qcm9wZXJ0eS5jYWxsKHQscikmJihlW3JdPXRbcl0pfSxpKGUsdCl9LGZ1bmN0aW9uKGUsdCl7aWYoImZ1bmN0aW9uIiE9dHlwZW9mIHQmJm51bGwhPT10KXRocm93IG5ldyBUeXBlRXJyb3IoIkNsYXNzIGV4dGVuZHMgdmFsdWUgIitTdHJpbmcodCkrIiBpcyBub3QgYSBjb25zdHJ1Y3RvciBvciBudWxsIik7ZnVuY3Rpb24gcigpe3RoaXMuY29uc3RydWN0b3I9ZX1pKGUsdCksZS5wcm90b3R5cGU9bnVsbD09PXQ/T2JqZWN0LmNyZWF0ZSh0KTooci5wcm90b3R5cGU9dC5wcm90b3R5cGUsbmV3IHIpfSk7T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuSW5wdXRIYW5kbGVyPXQuV2luZG93c09wdGlvbnNSZXBvcnRUeXBlPXZvaWQgMDt2YXIgbyxzPXIoMjU4NCksYT1yKDcxMTYpLGM9cigyMDE1KSxsPXIoODQ0KSx1PXIoODI3MyksaD1yKDQ4MiksZj1yKDg0MzcpLF89cig4NDYwKSxkPXIoNjQzKSxwPXIoNTExKSx2PXIoMzczNCksZz1yKDI1ODUpLHk9cig2MjQyKSxtPXIoNjM1MSksYj1yKDU5NDEpLFM9eyIoIjowLCIpIjoxLCIqIjoyLCIrIjozLCItIjoxLCIuIjoyfSxDPTEzMTA3MjtmdW5jdGlvbiB3KGUsdCl7aWYoZT4yNClyZXR1cm4gdC5zZXRXaW5MaW5lc3x8ITE7c3dpdGNoKGUpe2Nhc2UgMTpyZXR1cm4hIXQucmVzdG9yZVdpbjtjYXNlIDI6cmV0dXJuISF0Lm1pbmltaXplV2luO2Nhc2UgMzpyZXR1cm4hIXQuc2V0V2luUG9zaXRpb247Y2FzZSA0OnJldHVybiEhdC5zZXRXaW5TaXplUGl4ZWxzO2Nhc2UgNTpyZXR1cm4hIXQucmFpc2VXaW47Y2FzZSA2OnJldHVybiEhdC5sb3dlcldpbjtjYXNlIDc6cmV0dXJuISF0LnJlZnJlc2hXaW47Y2FzZSA4OnJldHVybiEhdC5zZXRXaW5TaXplQ2hhcnM7Y2FzZSA5OnJldHVybiEhdC5tYXhpbWl6ZVdpbjtjYXNlIDEwOnJldHVybiEhdC5mdWxsc2NyZWVuV2luO2Nhc2UgMTE6cmV0dXJuISF0LmdldFdpblN0YXRlO2Nhc2UgMTM6cmV0dXJuISF0LmdldFdpblBvc2l0aW9uO2Nhc2UgMTQ6cmV0dXJuISF0LmdldFdpblNpemVQaXhlbHM7Y2FzZSAxNTpyZXR1cm4hIXQuZ2V0U2NyZWVuU2l6ZVBpeGVscztjYXNlIDE2OnJldHVybiEhdC5nZXRDZWxsU2l6ZVBpeGVscztjYXNlIDE4OnJldHVybiEhdC5nZXRXaW5TaXplQ2hhcnM7Y2FzZSAxOTpyZXR1cm4hIXQuZ2V0U2NyZWVuU2l6ZUNoYXJzO2Nhc2UgMjA6cmV0dXJuISF0LmdldEljb25UaXRsZTtjYXNlIDIxOnJldHVybiEhdC5nZXRXaW5UaXRsZTtjYXNlIDIyOnJldHVybiEhdC5wdXNoVGl0bGU7Y2FzZSAyMzpyZXR1cm4hIXQucG9wVGl0bGU7Y2FzZSAyNDpyZXR1cm4hIXQuc2V0V2luTGluZXN9cmV0dXJuITF9IWZ1bmN0aW9uKGUpe2VbZS5HRVRfV0lOX1NJWkVfUElYRUxTPTBdPSJHRVRfV0lOX1NJWkVfUElYRUxTIixlW2UuR0VUX0NFTExfU0laRV9QSVhFTFM9MV09IkdFVF9DRUxMX1NJWkVfUElYRUxTIn0obz10LldpbmRvd3NPcHRpb25zUmVwb3J0VHlwZXx8KHQuV2luZG93c09wdGlvbnNSZXBvcnRUeXBlPXt9KSk7dmFyIEw9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUsdCxyLGkpe3RoaXMuX2J1ZmZlclNlcnZpY2U9ZSx0aGlzLl9jb3JlU2VydmljZT10LHRoaXMuX2xvZ1NlcnZpY2U9cix0aGlzLl9vcHRpb25zU2VydmljZT1pLHRoaXMuX2RhdGE9bmV3IFVpbnQzMkFycmF5KDApfXJldHVybiBlLnByb3RvdHlwZS5ob29rPWZ1bmN0aW9uKGUpe3RoaXMuX2RhdGE9bmV3IFVpbnQzMkFycmF5KDApfSxlLnByb3RvdHlwZS5wdXQ9ZnVuY3Rpb24oZSx0LHIpe3RoaXMuX2RhdGE9KDAsdS5jb25jYXQpKHRoaXMuX2RhdGEsZS5zdWJhcnJheSh0LHIpKX0sZS5wcm90b3R5cGUudW5ob29rPWZ1bmN0aW9uKGUpe2lmKCFlKXJldHVybiB0aGlzLl9kYXRhPW5ldyBVaW50MzJBcnJheSgwKSwhMDt2YXIgdD0oMCxoLnV0ZjMyVG9TdHJpbmcpKHRoaXMuX2RhdGEpO3N3aXRjaCh0aGlzLl9kYXRhPW5ldyBVaW50MzJBcnJheSgwKSx0KXtjYXNlJyJxJzp0aGlzLl9jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KHMuQzAuRVNDKydQMSRyMCJxJytzLkMwLkVTQysiXFwiKTticmVhaztjYXNlJyJwJzp0aGlzLl9jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KHMuQzAuRVNDKydQMSRyNjE7MSJwJytzLkMwLkVTQysiXFwiKTticmVhaztjYXNlInIiOnZhciByPXRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLnNjcm9sbFRvcCsxKyI7IisodGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIuc2Nyb2xsQm90dG9tKzEpKyJyIjt0aGlzLl9jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KHMuQzAuRVNDKyJQMSRyIityK3MuQzAuRVNDKyJcXCIpO2JyZWFrO2Nhc2UibSI6dGhpcy5fY29yZVNlcnZpY2UudHJpZ2dlckRhdGFFdmVudChzLkMwLkVTQysiUDEkcjBtIitzLkMwLkVTQysiXFwiKTticmVhaztjYXNlIiBxIjp2YXIgaT17YmxvY2s6Mix1bmRlcmxpbmU6NCxiYXI6Nn1bdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5jdXJzb3JTdHlsZV07aS09dGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5jdXJzb3JCbGluaz8xOjAsdGhpcy5fY29yZVNlcnZpY2UudHJpZ2dlckRhdGFFdmVudChzLkMwLkVTQysiUDEkciIraSsiIHEiK3MuQzAuRVNDKyJcXCIpO2JyZWFrO2RlZmF1bHQ6dGhpcy5fbG9nU2VydmljZS5kZWJ1ZygiVW5rbm93biBEQ1MgJHEgJXMiLHQpLHRoaXMuX2NvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQocy5DMC5FU0MrIlAwJHIiK3MuQzAuRVNDKyJcXCIpfXJldHVybiEwfSxlfSgpLEU9ZnVuY3Rpb24oZSl7ZnVuY3Rpb24gdCh0LHIsaSxuLG8sbCx1LGQsdil7dm9pZCAwPT09diYmKHY9bmV3IGMuRXNjYXBlU2VxdWVuY2VQYXJzZXIpO3ZhciBnPWUuY2FsbCh0aGlzKXx8dGhpcztnLl9idWZmZXJTZXJ2aWNlPXQsZy5fY2hhcnNldFNlcnZpY2U9cixnLl9jb3JlU2VydmljZT1pLGcuX2RpcnR5Um93U2VydmljZT1uLGcuX2xvZ1NlcnZpY2U9byxnLl9vcHRpb25zU2VydmljZT1sLGcuX2NvcmVNb3VzZVNlcnZpY2U9dSxnLl91bmljb2RlU2VydmljZT1kLGcuX3BhcnNlcj12LGcuX3BhcnNlQnVmZmVyPW5ldyBVaW50MzJBcnJheSg0MDk2KSxnLl9zdHJpbmdEZWNvZGVyPW5ldyBoLlN0cmluZ1RvVXRmMzIsZy5fdXRmOERlY29kZXI9bmV3IGguVXRmOFRvVXRmMzIsZy5fd29ya0NlbGw9bmV3IHAuQ2VsbERhdGEsZy5fd2luZG93VGl0bGU9IiIsZy5faWNvbk5hbWU9IiIsZy5fd2luZG93VGl0bGVTdGFjaz1bXSxnLl9pY29uTmFtZVN0YWNrPVtdLGcuX2N1ckF0dHJEYXRhPWYuREVGQVVMVF9BVFRSX0RBVEEuY2xvbmUoKSxnLl9lcmFzZUF0dHJEYXRhSW50ZXJuYWw9Zi5ERUZBVUxUX0FUVFJfREFUQS5jbG9uZSgpLGcuX29uUmVxdWVzdEJlbGw9bmV3IF8uRXZlbnRFbWl0dGVyLGcuX29uUmVxdWVzdFJlZnJlc2hSb3dzPW5ldyBfLkV2ZW50RW1pdHRlcixnLl9vblJlcXVlc3RSZXNldD1uZXcgXy5FdmVudEVtaXR0ZXIsZy5fb25SZXF1ZXN0U2VuZEZvY3VzPW5ldyBfLkV2ZW50RW1pdHRlcixnLl9vblJlcXVlc3RTeW5jU2Nyb2xsQmFyPW5ldyBfLkV2ZW50RW1pdHRlcixnLl9vblJlcXVlc3RXaW5kb3dzT3B0aW9uc1JlcG9ydD1uZXcgXy5FdmVudEVtaXR0ZXIsZy5fb25BMTF5Q2hhcj1uZXcgXy5FdmVudEVtaXR0ZXIsZy5fb25BMTF5VGFiPW5ldyBfLkV2ZW50RW1pdHRlcixnLl9vbkN1cnNvck1vdmU9bmV3IF8uRXZlbnRFbWl0dGVyLGcuX29uTGluZUZlZWQ9bmV3IF8uRXZlbnRFbWl0dGVyLGcuX29uU2Nyb2xsPW5ldyBfLkV2ZW50RW1pdHRlcixnLl9vblRpdGxlQ2hhbmdlPW5ldyBfLkV2ZW50RW1pdHRlcixnLl9vbkNvbG9yPW5ldyBfLkV2ZW50RW1pdHRlcixnLl9wYXJzZVN0YWNrPXtwYXVzZWQ6ITEsY3Vyc29yU3RhcnRYOjAsY3Vyc29yU3RhcnRZOjAsZGVjb2RlZExlbmd0aDowLHBvc2l0aW9uOjB9LGcuX3NwZWNpYWxDb2xvcnM9WzI1NiwyNTcsMjU4XSxnLnJlZ2lzdGVyKGcuX3BhcnNlciksZy5fYWN0aXZlQnVmZmVyPWcuX2J1ZmZlclNlcnZpY2UuYnVmZmVyLGcucmVnaXN0ZXIoZy5fYnVmZmVyU2VydmljZS5idWZmZXJzLm9uQnVmZmVyQWN0aXZhdGUoKGZ1bmN0aW9uKGUpe3JldHVybiBnLl9hY3RpdmVCdWZmZXI9ZS5hY3RpdmVCdWZmZXJ9KSkpLGcuX3BhcnNlci5zZXRDc2lIYW5kbGVyRmFsbGJhY2soKGZ1bmN0aW9uKGUsdCl7Zy5fbG9nU2VydmljZS5kZWJ1ZygiVW5rbm93biBDU0kgY29kZTogIix7aWRlbnRpZmllcjpnLl9wYXJzZXIuaWRlbnRUb1N0cmluZyhlKSxwYXJhbXM6dC50b0FycmF5KCl9KX0pKSxnLl9wYXJzZXIuc2V0RXNjSGFuZGxlckZhbGxiYWNrKChmdW5jdGlvbihlKXtnLl9sb2dTZXJ2aWNlLmRlYnVnKCJVbmtub3duIEVTQyBjb2RlOiAiLHtpZGVudGlmaWVyOmcuX3BhcnNlci5pZGVudFRvU3RyaW5nKGUpfSl9KSksZy5fcGFyc2VyLnNldEV4ZWN1dGVIYW5kbGVyRmFsbGJhY2soKGZ1bmN0aW9uKGUpe2cuX2xvZ1NlcnZpY2UuZGVidWcoIlVua25vd24gRVhFQ1VURSBjb2RlOiAiLHtjb2RlOmV9KX0pKSxnLl9wYXJzZXIuc2V0T3NjSGFuZGxlckZhbGxiYWNrKChmdW5jdGlvbihlLHQscil7Zy5fbG9nU2VydmljZS5kZWJ1ZygiVW5rbm93biBPU0MgY29kZTogIix7aWRlbnRpZmllcjplLGFjdGlvbjp0LGRhdGE6cn0pfSkpLGcuX3BhcnNlci5zZXREY3NIYW5kbGVyRmFsbGJhY2soKGZ1bmN0aW9uKGUsdCxyKXsiSE9PSyI9PT10JiYocj1yLnRvQXJyYXkoKSksZy5fbG9nU2VydmljZS5kZWJ1ZygiVW5rbm93biBEQ1MgY29kZTogIix7aWRlbnRpZmllcjpnLl9wYXJzZXIuaWRlbnRUb1N0cmluZyhlKSxhY3Rpb246dCxwYXlsb2FkOnJ9KX0pKSxnLl9wYXJzZXIuc2V0UHJpbnRIYW5kbGVyKChmdW5jdGlvbihlLHQscil7cmV0dXJuIGcucHJpbnQoZSx0LHIpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJAIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmluc2VydENoYXJzKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ludGVybWVkaWF0ZXM6IiAiLGZpbmFsOiJAIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNjcm9sbExlZnQoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7ZmluYWw6IkEifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcuY3Vyc29yVXAoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7aW50ZXJtZWRpYXRlczoiICIsZmluYWw6IkEifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcuc2Nyb2xsUmlnaHQoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7ZmluYWw6IkIifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcuY3Vyc29yRG93bihlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtmaW5hbDoiQyJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5jdXJzb3JGb3J3YXJkKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJEIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmN1cnNvckJhY2t3YXJkKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJFIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmN1cnNvck5leHRMaW5lKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJGIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmN1cnNvclByZWNlZGluZ0xpbmUoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7ZmluYWw6IkcifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcuY3Vyc29yQ2hhckFic29sdXRlKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJIIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmN1cnNvclBvc2l0aW9uKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJJIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmN1cnNvckZvcndhcmRUYWIoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7ZmluYWw6IkoifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcuZXJhc2VJbkRpc3BsYXkoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7cHJlZml4OiI/IixmaW5hbDoiSiJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5lcmFzZUluRGlzcGxheShlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtmaW5hbDoiSyJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5lcmFzZUluTGluZShlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtwcmVmaXg6Ij8iLGZpbmFsOiJLIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmVyYXNlSW5MaW5lKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJMIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmluc2VydExpbmVzKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJNIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmRlbGV0ZUxpbmVzKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJQIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmRlbGV0ZUNoYXJzKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJTIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNjcm9sbFVwKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJUIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNjcm9sbERvd24oZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7ZmluYWw6IlgifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcuZXJhc2VDaGFycyhlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtmaW5hbDoiWiJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5jdXJzb3JCYWNrd2FyZFRhYihlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtmaW5hbDoiYCJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5jaGFyUG9zQWJzb2x1dGUoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7ZmluYWw6ImEifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcuaFBvc2l0aW9uUmVsYXRpdmUoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7ZmluYWw6ImIifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcucmVwZWF0UHJlY2VkaW5nQ2hhcmFjdGVyKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJjIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNlbmREZXZpY2VBdHRyaWJ1dGVzUHJpbWFyeShlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtwcmVmaXg6Ij4iLGZpbmFsOiJjIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNlbmREZXZpY2VBdHRyaWJ1dGVzU2Vjb25kYXJ5KGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJkIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmxpbmVQb3NBYnNvbHV0ZShlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtmaW5hbDoiZSJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy52UG9zaXRpb25SZWxhdGl2ZShlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtmaW5hbDoiZiJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5oVlBvc2l0aW9uKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJnIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLnRhYkNsZWFyKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJoIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNldE1vZGUoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7cHJlZml4OiI/IixmaW5hbDoiaCJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5zZXRNb2RlUHJpdmF0ZShlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtmaW5hbDoibCJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5yZXNldE1vZGUoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7cHJlZml4OiI/IixmaW5hbDoibCJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5yZXNldE1vZGVQcml2YXRlKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJtIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmNoYXJBdHRyaWJ1dGVzKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJuIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmRldmljZVN0YXR1cyhlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtwcmVmaXg6Ij8iLGZpbmFsOiJuIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmRldmljZVN0YXR1c1ByaXZhdGUoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7aW50ZXJtZWRpYXRlczoiISIsZmluYWw6InAifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcuc29mdFJlc2V0KGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ludGVybWVkaWF0ZXM6IiAiLGZpbmFsOiJxIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNldEN1cnNvclN0eWxlKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJyIn0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNldFNjcm9sbFJlZ2lvbihlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtmaW5hbDoicyJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5zYXZlQ3Vyc29yKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ZpbmFsOiJ0In0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLndpbmRvd09wdGlvbnMoZSl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyQ3NpSGFuZGxlcih7ZmluYWw6InUifSwoZnVuY3Rpb24oZSl7cmV0dXJuIGcucmVzdG9yZUN1cnNvcihlKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKHtpbnRlcm1lZGlhdGVzOiInIixmaW5hbDoifSJ9LChmdW5jdGlvbihlKXtyZXR1cm4gZy5pbnNlcnRDb2x1bW5zKGUpfSkpLGcuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoe2ludGVybWVkaWF0ZXM6IiciLGZpbmFsOiJ+In0sKGZ1bmN0aW9uKGUpe3JldHVybiBnLmRlbGV0ZUNvbHVtbnMoZSl9KSksZy5fcGFyc2VyLnNldEV4ZWN1dGVIYW5kbGVyKHMuQzAuQkVMLChmdW5jdGlvbigpe3JldHVybiBnLmJlbGwoKX0pKSxnLl9wYXJzZXIuc2V0RXhlY3V0ZUhhbmRsZXIocy5DMC5MRiwoZnVuY3Rpb24oKXtyZXR1cm4gZy5saW5lRmVlZCgpfSkpLGcuX3BhcnNlci5zZXRFeGVjdXRlSGFuZGxlcihzLkMwLlZULChmdW5jdGlvbigpe3JldHVybiBnLmxpbmVGZWVkKCl9KSksZy5fcGFyc2VyLnNldEV4ZWN1dGVIYW5kbGVyKHMuQzAuRkYsKGZ1bmN0aW9uKCl7cmV0dXJuIGcubGluZUZlZWQoKX0pKSxnLl9wYXJzZXIuc2V0RXhlY3V0ZUhhbmRsZXIocy5DMC5DUiwoZnVuY3Rpb24oKXtyZXR1cm4gZy5jYXJyaWFnZVJldHVybigpfSkpLGcuX3BhcnNlci5zZXRFeGVjdXRlSGFuZGxlcihzLkMwLkJTLChmdW5jdGlvbigpe3JldHVybiBnLmJhY2tzcGFjZSgpfSkpLGcuX3BhcnNlci5zZXRFeGVjdXRlSGFuZGxlcihzLkMwLkhULChmdW5jdGlvbigpe3JldHVybiBnLnRhYigpfSkpLGcuX3BhcnNlci5zZXRFeGVjdXRlSGFuZGxlcihzLkMwLlNPLChmdW5jdGlvbigpe3JldHVybiBnLnNoaWZ0T3V0KCl9KSksZy5fcGFyc2VyLnNldEV4ZWN1dGVIYW5kbGVyKHMuQzAuU0ksKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2hpZnRJbigpfSkpLGcuX3BhcnNlci5zZXRFeGVjdXRlSGFuZGxlcihzLkMxLklORCwoZnVuY3Rpb24oKXtyZXR1cm4gZy5pbmRleCgpfSkpLGcuX3BhcnNlci5zZXRFeGVjdXRlSGFuZGxlcihzLkMxLk5FTCwoZnVuY3Rpb24oKXtyZXR1cm4gZy5uZXh0TGluZSgpfSkpLGcuX3BhcnNlci5zZXRFeGVjdXRlSGFuZGxlcihzLkMxLkhUUywoZnVuY3Rpb24oKXtyZXR1cm4gZy50YWJTZXQoKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJPc2NIYW5kbGVyKDAsbmV3IHkuT3NjSGFuZGxlcigoZnVuY3Rpb24oZSl7cmV0dXJuIGcuc2V0VGl0bGUoZSksZy5zZXRJY29uTmFtZShlKSwhMH0pKSksZy5fcGFyc2VyLnJlZ2lzdGVyT3NjSGFuZGxlcigxLG5ldyB5Lk9zY0hhbmRsZXIoKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNldEljb25OYW1lKGUpfSkpKSxnLl9wYXJzZXIucmVnaXN0ZXJPc2NIYW5kbGVyKDIsbmV3IHkuT3NjSGFuZGxlcigoZnVuY3Rpb24oZSl7cmV0dXJuIGcuc2V0VGl0bGUoZSl9KSkpLGcuX3BhcnNlci5yZWdpc3Rlck9zY0hhbmRsZXIoNCxuZXcgeS5Pc2NIYW5kbGVyKChmdW5jdGlvbihlKXtyZXR1cm4gZy5zZXRPclJlcG9ydEluZGV4ZWRDb2xvcihlKX0pKSksZy5fcGFyc2VyLnJlZ2lzdGVyT3NjSGFuZGxlcigxMCxuZXcgeS5Pc2NIYW5kbGVyKChmdW5jdGlvbihlKXtyZXR1cm4gZy5zZXRPclJlcG9ydEZnQ29sb3IoZSl9KSkpLGcuX3BhcnNlci5yZWdpc3Rlck9zY0hhbmRsZXIoMTEsbmV3IHkuT3NjSGFuZGxlcigoZnVuY3Rpb24oZSl7cmV0dXJuIGcuc2V0T3JSZXBvcnRCZ0NvbG9yKGUpfSkpKSxnLl9wYXJzZXIucmVnaXN0ZXJPc2NIYW5kbGVyKDEyLG5ldyB5Lk9zY0hhbmRsZXIoKGZ1bmN0aW9uKGUpe3JldHVybiBnLnNldE9yUmVwb3J0Q3Vyc29yQ29sb3IoZSl9KSkpLGcuX3BhcnNlci5yZWdpc3Rlck9zY0hhbmRsZXIoMTA0LG5ldyB5Lk9zY0hhbmRsZXIoKGZ1bmN0aW9uKGUpe3JldHVybiBnLnJlc3RvcmVJbmRleGVkQ29sb3IoZSl9KSkpLGcuX3BhcnNlci5yZWdpc3Rlck9zY0hhbmRsZXIoMTEwLG5ldyB5Lk9zY0hhbmRsZXIoKGZ1bmN0aW9uKGUpe3JldHVybiBnLnJlc3RvcmVGZ0NvbG9yKGUpfSkpKSxnLl9wYXJzZXIucmVnaXN0ZXJPc2NIYW5kbGVyKDExMSxuZXcgeS5Pc2NIYW5kbGVyKChmdW5jdGlvbihlKXtyZXR1cm4gZy5yZXN0b3JlQmdDb2xvcihlKX0pKSksZy5fcGFyc2VyLnJlZ2lzdGVyT3NjSGFuZGxlcigxMTIsbmV3IHkuT3NjSGFuZGxlcigoZnVuY3Rpb24oZSl7cmV0dXJuIGcucmVzdG9yZUN1cnNvckNvbG9yKGUpfSkpKSxnLl9wYXJzZXIucmVnaXN0ZXJFc2NIYW5kbGVyKHtmaW5hbDoiNyJ9LChmdW5jdGlvbigpe3JldHVybiBnLnNhdmVDdXJzb3IoKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJFc2NIYW5kbGVyKHtmaW5hbDoiOCJ9LChmdW5jdGlvbigpe3JldHVybiBnLnJlc3RvcmVDdXJzb3IoKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJFc2NIYW5kbGVyKHtmaW5hbDoiRCJ9LChmdW5jdGlvbigpe3JldHVybiBnLmluZGV4KCl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyRXNjSGFuZGxlcih7ZmluYWw6IkUifSwoZnVuY3Rpb24oKXtyZXR1cm4gZy5uZXh0TGluZSgpfSkpLGcuX3BhcnNlci5yZWdpc3RlckVzY0hhbmRsZXIoe2ZpbmFsOiJIIn0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcudGFiU2V0KCl9KSksZy5fcGFyc2VyLnJlZ2lzdGVyRXNjSGFuZGxlcih7ZmluYWw6Ik0ifSwoZnVuY3Rpb24oKXtyZXR1cm4gZy5yZXZlcnNlSW5kZXgoKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJFc2NIYW5kbGVyKHtmaW5hbDoiPSJ9LChmdW5jdGlvbigpe3JldHVybiBnLmtleXBhZEFwcGxpY2F0aW9uTW9kZSgpfSkpLGcuX3BhcnNlci5yZWdpc3RlckVzY0hhbmRsZXIoe2ZpbmFsOiI+In0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcua2V5cGFkTnVtZXJpY01vZGUoKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJFc2NIYW5kbGVyKHtmaW5hbDoiYyJ9LChmdW5jdGlvbigpe3JldHVybiBnLmZ1bGxSZXNldCgpfSkpLGcuX3BhcnNlci5yZWdpc3RlckVzY0hhbmRsZXIoe2ZpbmFsOiJuIn0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2V0Z0xldmVsKDIpfSkpLGcuX3BhcnNlci5yZWdpc3RlckVzY0hhbmRsZXIoe2ZpbmFsOiJvIn0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2V0Z0xldmVsKDMpfSkpLGcuX3BhcnNlci5yZWdpc3RlckVzY0hhbmRsZXIoe2ZpbmFsOiJ8In0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2V0Z0xldmVsKDMpfSkpLGcuX3BhcnNlci5yZWdpc3RlckVzY0hhbmRsZXIoe2ZpbmFsOiJ9In0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2V0Z0xldmVsKDIpfSkpLGcuX3BhcnNlci5yZWdpc3RlckVzY0hhbmRsZXIoe2ZpbmFsOiJ+In0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2V0Z0xldmVsKDEpfSkpLGcuX3BhcnNlci5yZWdpc3RlckVzY0hhbmRsZXIoe2ludGVybWVkaWF0ZXM6IiUiLGZpbmFsOiJAIn0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2VsZWN0RGVmYXVsdENoYXJzZXQoKX0pKSxnLl9wYXJzZXIucmVnaXN0ZXJFc2NIYW5kbGVyKHtpbnRlcm1lZGlhdGVzOiIlIixmaW5hbDoiRyJ9LChmdW5jdGlvbigpe3JldHVybiBnLnNlbGVjdERlZmF1bHRDaGFyc2V0KCl9KSk7dmFyIG09ZnVuY3Rpb24oZSl7Yi5fcGFyc2VyLnJlZ2lzdGVyRXNjSGFuZGxlcih7aW50ZXJtZWRpYXRlczoiKCIsZmluYWw6ZX0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2VsZWN0Q2hhcnNldCgiKCIrZSl9KSksYi5fcGFyc2VyLnJlZ2lzdGVyRXNjSGFuZGxlcih7aW50ZXJtZWRpYXRlczoiKSIsZmluYWw6ZX0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2VsZWN0Q2hhcnNldCgiKSIrZSl9KSksYi5fcGFyc2VyLnJlZ2lzdGVyRXNjSGFuZGxlcih7aW50ZXJtZWRpYXRlczoiKiIsZmluYWw6ZX0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2VsZWN0Q2hhcnNldCgiKiIrZSl9KSksYi5fcGFyc2VyLnJlZ2lzdGVyRXNjSGFuZGxlcih7aW50ZXJtZWRpYXRlczoiKyIsZmluYWw6ZX0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2VsZWN0Q2hhcnNldCgiKyIrZSl9KSksYi5fcGFyc2VyLnJlZ2lzdGVyRXNjSGFuZGxlcih7aW50ZXJtZWRpYXRlczoiLSIsZmluYWw6ZX0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2VsZWN0Q2hhcnNldCgiLSIrZSl9KSksYi5fcGFyc2VyLnJlZ2lzdGVyRXNjSGFuZGxlcih7aW50ZXJtZWRpYXRlczoiLiIsZmluYWw6ZX0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2VsZWN0Q2hhcnNldCgiLiIrZSl9KSksYi5fcGFyc2VyLnJlZ2lzdGVyRXNjSGFuZGxlcih7aW50ZXJtZWRpYXRlczoiLyIsZmluYWw6ZX0sKGZ1bmN0aW9uKCl7cmV0dXJuIGcuc2VsZWN0Q2hhcnNldCgiLyIrZSl9KSl9LGI9dGhpcztmb3IodmFyIFMgaW4gYS5DSEFSU0VUUyltKFMpO3JldHVybiBnLl9wYXJzZXIucmVnaXN0ZXJFc2NIYW5kbGVyKHtpbnRlcm1lZGlhdGVzOiIjIixmaW5hbDoiOCJ9LChmdW5jdGlvbigpe3JldHVybiBnLnNjcmVlbkFsaWdubWVudFBhdHRlcm4oKX0pKSxnLl9wYXJzZXIuc2V0RXJyb3JIYW5kbGVyKChmdW5jdGlvbihlKXtyZXR1cm4gZy5fbG9nU2VydmljZS5lcnJvcigiUGFyc2luZyBlcnJvcjogIixlKSxlfSkpLGcuX3BhcnNlci5yZWdpc3RlckRjc0hhbmRsZXIoe2ludGVybWVkaWF0ZXM6IiQiLGZpbmFsOiJxIn0sbmV3IEwoZy5fYnVmZmVyU2VydmljZSxnLl9jb3JlU2VydmljZSxnLl9sb2dTZXJ2aWNlLGcuX29wdGlvbnNTZXJ2aWNlKSksZ31yZXR1cm4gbih0LGUpLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25SZXF1ZXN0QmVsbCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vblJlcXVlc3RCZWxsLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25SZXF1ZXN0UmVmcmVzaFJvd3MiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25SZXF1ZXN0UmVmcmVzaFJvd3MuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvblJlcXVlc3RSZXNldCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vblJlcXVlc3RSZXNldC5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uUmVxdWVzdFNlbmRGb2N1cyIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vblJlcXVlc3RTZW5kRm9jdXMuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvblJlcXVlc3RTeW5jU2Nyb2xsQmFyIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uUmVxdWVzdFN5bmNTY3JvbGxCYXIuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvblJlcXVlc3RXaW5kb3dzT3B0aW9uc1JlcG9ydCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vblJlcXVlc3RXaW5kb3dzT3B0aW9uc1JlcG9ydC5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uQTExeUNoYXIiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25BMTF5Q2hhci5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uQTExeVRhYiIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vbkExMXlUYWIuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvbkN1cnNvck1vdmUiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25DdXJzb3JNb3ZlLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25MaW5lRmVlZCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vbkxpbmVGZWVkLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25TY3JvbGwiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25TY3JvbGwuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvblRpdGxlQ2hhbmdlIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uVGl0bGVDaGFuZ2UuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvbkNvbG9yIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uQ29sb3IuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksdC5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe2UucHJvdG90eXBlLmRpc3Bvc2UuY2FsbCh0aGlzKX0sdC5wcm90b3R5cGUuX3ByZXNlcnZlU3RhY2s9ZnVuY3Rpb24oZSx0LHIsaSl7dGhpcy5fcGFyc2VTdGFjay5wYXVzZWQ9ITAsdGhpcy5fcGFyc2VTdGFjay5jdXJzb3JTdGFydFg9ZSx0aGlzLl9wYXJzZVN0YWNrLmN1cnNvclN0YXJ0WT10LHRoaXMuX3BhcnNlU3RhY2suZGVjb2RlZExlbmd0aD1yLHRoaXMuX3BhcnNlU3RhY2sucG9zaXRpb249aX0sdC5wcm90b3R5cGUuX2xvZ1Nsb3dSZXNvbHZpbmdBc3luYz1mdW5jdGlvbihlKXt0aGlzLl9sb2dTZXJ2aWNlLmxvZ0xldmVsPD1nLkxvZ0xldmVsRW51bS5XQVJOJiZQcm9taXNlLnJhY2UoW2UsbmV3IFByb21pc2UoKGZ1bmN0aW9uKGUsdCl7cmV0dXJuIHNldFRpbWVvdXQoKGZ1bmN0aW9uKCl7cmV0dXJuIHQoIiNTTE9XX1RJTUVPVVQiKX0pLDVlMyl9KSldKS5jYXRjaCgoZnVuY3Rpb24oZSl7aWYoIiNTTE9XX1RJTUVPVVQiIT09ZSl0aHJvdyBlO2NvbnNvbGUud2FybigiYXN5bmMgcGFyc2VyIGhhbmRsZXIgdGFraW5nIGxvbmdlciB0aGFuIDUwMDAgbXMiKX0pKX0sdC5wcm90b3R5cGUucGFyc2U9ZnVuY3Rpb24oZSx0KXt2YXIgcixpPXRoaXMuX2FjdGl2ZUJ1ZmZlci54LG49dGhpcy5fYWN0aXZlQnVmZmVyLnksbz0wLHM9dGhpcy5fcGFyc2VTdGFjay5wYXVzZWQ7aWYocyl7aWYocj10aGlzLl9wYXJzZXIucGFyc2UodGhpcy5fcGFyc2VCdWZmZXIsdGhpcy5fcGFyc2VTdGFjay5kZWNvZGVkTGVuZ3RoLHQpKXJldHVybiB0aGlzLl9sb2dTbG93UmVzb2x2aW5nQXN5bmMocikscjtpPXRoaXMuX3BhcnNlU3RhY2suY3Vyc29yU3RhcnRYLG49dGhpcy5fcGFyc2VTdGFjay5jdXJzb3JTdGFydFksdGhpcy5fcGFyc2VTdGFjay5wYXVzZWQ9ITEsZS5sZW5ndGg+QyYmKG89dGhpcy5fcGFyc2VTdGFjay5wb3NpdGlvbitDKX1pZih0aGlzLl9sb2dTZXJ2aWNlLmxvZ0xldmVsPD1nLkxvZ0xldmVsRW51bS5ERUJVRyYmdGhpcy5fbG9nU2VydmljZS5kZWJ1ZygicGFyc2luZyBkYXRhIisoInN0cmluZyI9PXR5cGVvZiBlPycgIicrZSsnIic6IiIpLCJzdHJpbmciPT10eXBlb2YgZT9lLnNwbGl0KCIiKS5tYXAoKGZ1bmN0aW9uKGUpe3JldHVybiBlLmNoYXJDb2RlQXQoMCl9KSk6ZSksdGhpcy5fcGFyc2VCdWZmZXIubGVuZ3RoPGUubGVuZ3RoJiZ0aGlzLl9wYXJzZUJ1ZmZlci5sZW5ndGg8QyYmKHRoaXMuX3BhcnNlQnVmZmVyPW5ldyBVaW50MzJBcnJheShNYXRoLm1pbihlLmxlbmd0aCxDKSkpLHN8fHRoaXMuX2RpcnR5Um93U2VydmljZS5jbGVhclJhbmdlKCksZS5sZW5ndGg+Qylmb3IodmFyIGE9bzthPGUubGVuZ3RoO2ErPUMpe3ZhciBjPWErQzxlLmxlbmd0aD9hK0M6ZS5sZW5ndGgsbD0ic3RyaW5nIj09dHlwZW9mIGU/dGhpcy5fc3RyaW5nRGVjb2Rlci5kZWNvZGUoZS5zdWJzdHJpbmcoYSxjKSx0aGlzLl9wYXJzZUJ1ZmZlcik6dGhpcy5fdXRmOERlY29kZXIuZGVjb2RlKGUuc3ViYXJyYXkoYSxjKSx0aGlzLl9wYXJzZUJ1ZmZlcik7aWYocj10aGlzLl9wYXJzZXIucGFyc2UodGhpcy5fcGFyc2VCdWZmZXIsbCkpcmV0dXJuIHRoaXMuX3ByZXNlcnZlU3RhY2soaSxuLGwsYSksdGhpcy5fbG9nU2xvd1Jlc29sdmluZ0FzeW5jKHIpLHJ9ZWxzZSBpZighcyYmKGw9InN0cmluZyI9PXR5cGVvZiBlP3RoaXMuX3N0cmluZ0RlY29kZXIuZGVjb2RlKGUsdGhpcy5fcGFyc2VCdWZmZXIpOnRoaXMuX3V0ZjhEZWNvZGVyLmRlY29kZShlLHRoaXMuX3BhcnNlQnVmZmVyKSxyPXRoaXMuX3BhcnNlci5wYXJzZSh0aGlzLl9wYXJzZUJ1ZmZlcixsKSkpcmV0dXJuIHRoaXMuX3ByZXNlcnZlU3RhY2soaSxuLGwsMCksdGhpcy5fbG9nU2xvd1Jlc29sdmluZ0FzeW5jKHIpLHI7dGhpcy5fYWN0aXZlQnVmZmVyLng9PT1pJiZ0aGlzLl9hY3RpdmVCdWZmZXIueT09PW58fHRoaXMuX29uQ3Vyc29yTW92ZS5maXJlKCksdGhpcy5fb25SZXF1ZXN0UmVmcmVzaFJvd3MuZmlyZSh0aGlzLl9kaXJ0eVJvd1NlcnZpY2Uuc3RhcnQsdGhpcy5fZGlydHlSb3dTZXJ2aWNlLmVuZCl9LHQucHJvdG90eXBlLnByaW50PWZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuLG89dGhpcy5fY2hhcnNldFNlcnZpY2UuY2hhcnNldCxzPXRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuc2NyZWVuUmVhZGVyTW9kZSxhPXRoaXMuX2J1ZmZlclNlcnZpY2UuY29scyxjPXRoaXMuX2NvcmVTZXJ2aWNlLmRlY1ByaXZhdGVNb2Rlcy53cmFwYXJvdW5kLGw9dGhpcy5fY29yZVNlcnZpY2UubW9kZXMuaW5zZXJ0TW9kZSx1PXRoaXMuX2N1ckF0dHJEYXRhLGY9dGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLmdldCh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UrdGhpcy5fYWN0aXZlQnVmZmVyLnkpO3RoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrRGlydHkodGhpcy5fYWN0aXZlQnVmZmVyLnkpLHRoaXMuX2FjdGl2ZUJ1ZmZlci54JiZyLXQ+MCYmMj09PWYuZ2V0V2lkdGgodGhpcy5fYWN0aXZlQnVmZmVyLngtMSkmJmYuc2V0Q2VsbEZyb21Db2RlUG9pbnQodGhpcy5fYWN0aXZlQnVmZmVyLngtMSwwLDEsdS5mZyx1LmJnLHUuZXh0ZW5kZWQpO2Zvcih2YXIgXz10O188cjsrK18pe2lmKGk9ZVtfXSxuPXRoaXMuX3VuaWNvZGVTZXJ2aWNlLndjd2lkdGgoaSksaTwxMjcmJm8pe3ZhciBwPW9bU3RyaW5nLmZyb21DaGFyQ29kZShpKV07cCYmKGk9cC5jaGFyQ29kZUF0KDApKX1pZihzJiZ0aGlzLl9vbkExMXlDaGFyLmZpcmUoKDAsaC5zdHJpbmdGcm9tQ29kZVBvaW50KShpKSksbnx8IXRoaXMuX2FjdGl2ZUJ1ZmZlci54KXtpZih0aGlzLl9hY3RpdmVCdWZmZXIueCtuLTE+PWEpaWYoYyl7Zm9yKDt0aGlzLl9hY3RpdmVCdWZmZXIueDxhOylmLnNldENlbGxGcm9tQ29kZVBvaW50KHRoaXMuX2FjdGl2ZUJ1ZmZlci54KyssMCwxLHUuZmcsdS5iZyx1LmV4dGVuZGVkKTt0aGlzLl9hY3RpdmVCdWZmZXIueD0wLHRoaXMuX2FjdGl2ZUJ1ZmZlci55KyssdGhpcy5fYWN0aXZlQnVmZmVyLnk9PT10aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tKzE/KHRoaXMuX2FjdGl2ZUJ1ZmZlci55LS0sdGhpcy5fYnVmZmVyU2VydmljZS5zY3JvbGwodGhpcy5fZXJhc2VBdHRyRGF0YSgpLCEwKSk6KHRoaXMuX2FjdGl2ZUJ1ZmZlci55Pj10aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MmJih0aGlzLl9hY3RpdmVCdWZmZXIueT10aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MtMSksdGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLmdldCh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UrdGhpcy5fYWN0aXZlQnVmZmVyLnkpLmlzV3JhcHBlZD0hMCksZj10aGlzLl9hY3RpdmVCdWZmZXIubGluZXMuZ2V0KHRoaXMuX2FjdGl2ZUJ1ZmZlci55YmFzZSt0aGlzLl9hY3RpdmVCdWZmZXIueSl9ZWxzZSBpZih0aGlzLl9hY3RpdmVCdWZmZXIueD1hLTEsMj09PW4pY29udGludWU7aWYobCYmKGYuaW5zZXJ0Q2VsbHModGhpcy5fYWN0aXZlQnVmZmVyLngsbix0aGlzLl9hY3RpdmVCdWZmZXIuZ2V0TnVsbENlbGwodSksdSksMj09PWYuZ2V0V2lkdGgoYS0xKSYmZi5zZXRDZWxsRnJvbUNvZGVQb2ludChhLTEsZC5OVUxMX0NFTExfQ09ERSxkLk5VTExfQ0VMTF9XSURUSCx1LmZnLHUuYmcsdS5leHRlbmRlZCkpLGYuc2V0Q2VsbEZyb21Db2RlUG9pbnQodGhpcy5fYWN0aXZlQnVmZmVyLngrKyxpLG4sdS5mZyx1LmJnLHUuZXh0ZW5kZWQpLG4+MClmb3IoOy0tbjspZi5zZXRDZWxsRnJvbUNvZGVQb2ludCh0aGlzLl9hY3RpdmVCdWZmZXIueCsrLDAsMCx1LmZnLHUuYmcsdS5leHRlbmRlZCl9ZWxzZSBmLmdldFdpZHRoKHRoaXMuX2FjdGl2ZUJ1ZmZlci54LTEpP2YuYWRkQ29kZXBvaW50VG9DZWxsKHRoaXMuX2FjdGl2ZUJ1ZmZlci54LTEsaSk6Zi5hZGRDb2RlcG9pbnRUb0NlbGwodGhpcy5fYWN0aXZlQnVmZmVyLngtMixpKX1yLXQ+MCYmKGYubG9hZENlbGwodGhpcy5fYWN0aXZlQnVmZmVyLngtMSx0aGlzLl93b3JrQ2VsbCksMj09PXRoaXMuX3dvcmtDZWxsLmdldFdpZHRoKCl8fHRoaXMuX3dvcmtDZWxsLmdldENvZGUoKT42NTUzNT90aGlzLl9wYXJzZXIucHJlY2VkaW5nQ29kZXBvaW50PTA6dGhpcy5fd29ya0NlbGwuaXNDb21iaW5lZCgpP3RoaXMuX3BhcnNlci5wcmVjZWRpbmdDb2RlcG9pbnQ9dGhpcy5fd29ya0NlbGwuZ2V0Q2hhcnMoKS5jaGFyQ29kZUF0KDApOnRoaXMuX3BhcnNlci5wcmVjZWRpbmdDb2RlcG9pbnQ9dGhpcy5fd29ya0NlbGwuY29udGVudCksdGhpcy5fYWN0aXZlQnVmZmVyLng8YSYmci10PjAmJjA9PT1mLmdldFdpZHRoKHRoaXMuX2FjdGl2ZUJ1ZmZlci54KSYmIWYuaGFzQ29udGVudCh0aGlzLl9hY3RpdmVCdWZmZXIueCkmJmYuc2V0Q2VsbEZyb21Db2RlUG9pbnQodGhpcy5fYWN0aXZlQnVmZmVyLngsMCwxLHUuZmcsdS5iZyx1LmV4dGVuZGVkKSx0aGlzLl9kaXJ0eVJvd1NlcnZpY2UubWFya0RpcnR5KHRoaXMuX2FjdGl2ZUJ1ZmZlci55KX0sdC5wcm90b3R5cGUucmVnaXN0ZXJDc2lIYW5kbGVyPWZ1bmN0aW9uKGUsdCl7dmFyIHI9dGhpcztyZXR1cm4idCIhPT1lLmZpbmFsfHxlLnByZWZpeHx8ZS5pbnRlcm1lZGlhdGVzP3RoaXMuX3BhcnNlci5yZWdpc3RlckNzaUhhbmRsZXIoZSx0KTp0aGlzLl9wYXJzZXIucmVnaXN0ZXJDc2lIYW5kbGVyKGUsKGZ1bmN0aW9uKGUpe3JldHVybiF3KGUucGFyYW1zWzBdLHIuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMud2luZG93T3B0aW9ucyl8fHQoZSl9KSl9LHQucHJvdG90eXBlLnJlZ2lzdGVyRGNzSGFuZGxlcj1mdW5jdGlvbihlLHQpe3JldHVybiB0aGlzLl9wYXJzZXIucmVnaXN0ZXJEY3NIYW5kbGVyKGUsbmV3IG0uRGNzSGFuZGxlcih0KSl9LHQucHJvdG90eXBlLnJlZ2lzdGVyRXNjSGFuZGxlcj1mdW5jdGlvbihlLHQpe3JldHVybiB0aGlzLl9wYXJzZXIucmVnaXN0ZXJFc2NIYW5kbGVyKGUsdCl9LHQucHJvdG90eXBlLnJlZ2lzdGVyT3NjSGFuZGxlcj1mdW5jdGlvbihlLHQpe3JldHVybiB0aGlzLl9wYXJzZXIucmVnaXN0ZXJPc2NIYW5kbGVyKGUsbmV3IHkuT3NjSGFuZGxlcih0KSl9LHQucHJvdG90eXBlLmJlbGw9ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25SZXF1ZXN0QmVsbC5maXJlKCksITB9LHQucHJvdG90eXBlLmxpbmVGZWVkPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrRGlydHkodGhpcy5fYWN0aXZlQnVmZmVyLnkpLHRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuY29udmVydEVvbCYmKHRoaXMuX2FjdGl2ZUJ1ZmZlci54PTApLHRoaXMuX2FjdGl2ZUJ1ZmZlci55KyssdGhpcy5fYWN0aXZlQnVmZmVyLnk9PT10aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tKzE/KHRoaXMuX2FjdGl2ZUJ1ZmZlci55LS0sdGhpcy5fYnVmZmVyU2VydmljZS5zY3JvbGwodGhpcy5fZXJhc2VBdHRyRGF0YSgpKSk6dGhpcy5fYWN0aXZlQnVmZmVyLnk+PXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cyYmKHRoaXMuX2FjdGl2ZUJ1ZmZlci55PXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cy0xKSx0aGlzLl9hY3RpdmVCdWZmZXIueD49dGhpcy5fYnVmZmVyU2VydmljZS5jb2xzJiZ0aGlzLl9hY3RpdmVCdWZmZXIueC0tLHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrRGlydHkodGhpcy5fYWN0aXZlQnVmZmVyLnkpLHRoaXMuX29uTGluZUZlZWQuZmlyZSgpLCEwfSx0LnByb3RvdHlwZS5jYXJyaWFnZVJldHVybj1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9hY3RpdmVCdWZmZXIueD0wLCEwfSx0LnByb3RvdHlwZS5iYWNrc3BhY2U9ZnVuY3Rpb24oKXt2YXIgZTtpZighdGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLnJldmVyc2VXcmFwYXJvdW5kKXJldHVybiB0aGlzLl9yZXN0cmljdEN1cnNvcigpLHRoaXMuX2FjdGl2ZUJ1ZmZlci54PjAmJnRoaXMuX2FjdGl2ZUJ1ZmZlci54LS0sITA7aWYodGhpcy5fcmVzdHJpY3RDdXJzb3IodGhpcy5fYnVmZmVyU2VydmljZS5jb2xzKSx0aGlzLl9hY3RpdmVCdWZmZXIueD4wKXRoaXMuX2FjdGl2ZUJ1ZmZlci54LS07ZWxzZSBpZigwPT09dGhpcy5fYWN0aXZlQnVmZmVyLngmJnRoaXMuX2FjdGl2ZUJ1ZmZlci55PnRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3AmJnRoaXMuX2FjdGl2ZUJ1ZmZlci55PD10aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tJiYobnVsbD09PShlPXRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5nZXQodGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3RoaXMuX2FjdGl2ZUJ1ZmZlci55KSl8fHZvaWQgMD09PWU/dm9pZCAwOmUuaXNXcmFwcGVkKSl7dGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLmdldCh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UrdGhpcy5fYWN0aXZlQnVmZmVyLnkpLmlzV3JhcHBlZD0hMSx0aGlzLl9hY3RpdmVCdWZmZXIueS0tLHRoaXMuX2FjdGl2ZUJ1ZmZlci54PXRoaXMuX2J1ZmZlclNlcnZpY2UuY29scy0xO3ZhciB0PXRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5nZXQodGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3RoaXMuX2FjdGl2ZUJ1ZmZlci55KTt0Lmhhc1dpZHRoKHRoaXMuX2FjdGl2ZUJ1ZmZlci54KSYmIXQuaGFzQ29udGVudCh0aGlzLl9hY3RpdmVCdWZmZXIueCkmJnRoaXMuX2FjdGl2ZUJ1ZmZlci54LS19cmV0dXJuIHRoaXMuX3Jlc3RyaWN0Q3Vyc29yKCksITB9LHQucHJvdG90eXBlLnRhYj1mdW5jdGlvbigpe2lmKHRoaXMuX2FjdGl2ZUJ1ZmZlci54Pj10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMpcmV0dXJuITA7dmFyIGU9dGhpcy5fYWN0aXZlQnVmZmVyLng7cmV0dXJuIHRoaXMuX2FjdGl2ZUJ1ZmZlci54PXRoaXMuX2FjdGl2ZUJ1ZmZlci5uZXh0U3RvcCgpLHRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuc2NyZWVuUmVhZGVyTW9kZSYmdGhpcy5fb25BMTF5VGFiLmZpcmUodGhpcy5fYWN0aXZlQnVmZmVyLngtZSksITB9LHQucHJvdG90eXBlLnNoaWZ0T3V0PWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2NoYXJzZXRTZXJ2aWNlLnNldGdMZXZlbCgxKSwhMH0sdC5wcm90b3R5cGUuc2hpZnRJbj1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9jaGFyc2V0U2VydmljZS5zZXRnTGV2ZWwoMCksITB9LHQucHJvdG90eXBlLl9yZXN0cmljdEN1cnNvcj1mdW5jdGlvbihlKXt2b2lkIDA9PT1lJiYoZT10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMtMSksdGhpcy5fYWN0aXZlQnVmZmVyLng9TWF0aC5taW4oZSxNYXRoLm1heCgwLHRoaXMuX2FjdGl2ZUJ1ZmZlci54KSksdGhpcy5fYWN0aXZlQnVmZmVyLnk9dGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLm9yaWdpbj9NYXRoLm1pbih0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tLE1hdGgubWF4KHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3AsdGhpcy5fYWN0aXZlQnVmZmVyLnkpKTpNYXRoLm1pbih0aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MtMSxNYXRoLm1heCgwLHRoaXMuX2FjdGl2ZUJ1ZmZlci55KSksdGhpcy5fZGlydHlSb3dTZXJ2aWNlLm1hcmtEaXJ0eSh0aGlzLl9hY3RpdmVCdWZmZXIueSl9LHQucHJvdG90eXBlLl9zZXRDdXJzb3I9ZnVuY3Rpb24oZSx0KXt0aGlzLl9kaXJ0eVJvd1NlcnZpY2UubWFya0RpcnR5KHRoaXMuX2FjdGl2ZUJ1ZmZlci55KSx0aGlzLl9jb3JlU2VydmljZS5kZWNQcml2YXRlTW9kZXMub3JpZ2luPyh0aGlzLl9hY3RpdmVCdWZmZXIueD1lLHRoaXMuX2FjdGl2ZUJ1ZmZlci55PXRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3ArdCk6KHRoaXMuX2FjdGl2ZUJ1ZmZlci54PWUsdGhpcy5fYWN0aXZlQnVmZmVyLnk9dCksdGhpcy5fcmVzdHJpY3RDdXJzb3IoKSx0aGlzLl9kaXJ0eVJvd1NlcnZpY2UubWFya0RpcnR5KHRoaXMuX2FjdGl2ZUJ1ZmZlci55KX0sdC5wcm90b3R5cGUuX21vdmVDdXJzb3I9ZnVuY3Rpb24oZSx0KXt0aGlzLl9yZXN0cmljdEN1cnNvcigpLHRoaXMuX3NldEN1cnNvcih0aGlzLl9hY3RpdmVCdWZmZXIueCtlLHRoaXMuX2FjdGl2ZUJ1ZmZlci55K3QpfSx0LnByb3RvdHlwZS5jdXJzb3JVcD1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9hY3RpdmVCdWZmZXIueS10aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wO3JldHVybiB0Pj0wP3RoaXMuX21vdmVDdXJzb3IoMCwtTWF0aC5taW4odCxlLnBhcmFtc1swXXx8MSkpOnRoaXMuX21vdmVDdXJzb3IoMCwtKGUucGFyYW1zWzBdfHwxKSksITB9LHQucHJvdG90eXBlLmN1cnNvckRvd249ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbS10aGlzLl9hY3RpdmVCdWZmZXIueTtyZXR1cm4gdD49MD90aGlzLl9tb3ZlQ3Vyc29yKDAsTWF0aC5taW4odCxlLnBhcmFtc1swXXx8MSkpOnRoaXMuX21vdmVDdXJzb3IoMCxlLnBhcmFtc1swXXx8MSksITB9LHQucHJvdG90eXBlLmN1cnNvckZvcndhcmQ9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX21vdmVDdXJzb3IoZS5wYXJhbXNbMF18fDEsMCksITB9LHQucHJvdG90eXBlLmN1cnNvckJhY2t3YXJkPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9tb3ZlQ3Vyc29yKC0oZS5wYXJhbXNbMF18fDEpLDApLCEwfSx0LnByb3RvdHlwZS5jdXJzb3JOZXh0TGluZT1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5jdXJzb3JEb3duKGUpLHRoaXMuX2FjdGl2ZUJ1ZmZlci54PTAsITB9LHQucHJvdG90eXBlLmN1cnNvclByZWNlZGluZ0xpbmU9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuY3Vyc29yVXAoZSksdGhpcy5fYWN0aXZlQnVmZmVyLng9MCwhMH0sdC5wcm90b3R5cGUuY3Vyc29yQ2hhckFic29sdXRlPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9zZXRDdXJzb3IoKGUucGFyYW1zWzBdfHwxKS0xLHRoaXMuX2FjdGl2ZUJ1ZmZlci55KSwhMH0sdC5wcm90b3R5cGUuY3Vyc29yUG9zaXRpb249ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX3NldEN1cnNvcihlLmxlbmd0aD49Mj8oZS5wYXJhbXNbMV18fDEpLTE6MCwoZS5wYXJhbXNbMF18fDEpLTEpLCEwfSx0LnByb3RvdHlwZS5jaGFyUG9zQWJzb2x1dGU9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX3NldEN1cnNvcigoZS5wYXJhbXNbMF18fDEpLTEsdGhpcy5fYWN0aXZlQnVmZmVyLnkpLCEwfSx0LnByb3RvdHlwZS5oUG9zaXRpb25SZWxhdGl2ZT1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fbW92ZUN1cnNvcihlLnBhcmFtc1swXXx8MSwwKSwhMH0sdC5wcm90b3R5cGUubGluZVBvc0Fic29sdXRlPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9zZXRDdXJzb3IodGhpcy5fYWN0aXZlQnVmZmVyLngsKGUucGFyYW1zWzBdfHwxKS0xKSwhMH0sdC5wcm90b3R5cGUudlBvc2l0aW9uUmVsYXRpdmU9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX21vdmVDdXJzb3IoMCxlLnBhcmFtc1swXXx8MSksITB9LHQucHJvdG90eXBlLmhWUG9zaXRpb249ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuY3Vyc29yUG9zaXRpb24oZSksITB9LHQucHJvdG90eXBlLnRhYkNsZWFyPWZ1bmN0aW9uKGUpe3ZhciB0PWUucGFyYW1zWzBdO3JldHVybiAwPT09dD9kZWxldGUgdGhpcy5fYWN0aXZlQnVmZmVyLnRhYnNbdGhpcy5fYWN0aXZlQnVmZmVyLnhdOjM9PT10JiYodGhpcy5fYWN0aXZlQnVmZmVyLnRhYnM9e30pLCEwfSx0LnByb3RvdHlwZS5jdXJzb3JGb3J3YXJkVGFiPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX2FjdGl2ZUJ1ZmZlci54Pj10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMpcmV0dXJuITA7Zm9yKHZhciB0PWUucGFyYW1zWzBdfHwxO3QtLTspdGhpcy5fYWN0aXZlQnVmZmVyLng9dGhpcy5fYWN0aXZlQnVmZmVyLm5leHRTdG9wKCk7cmV0dXJuITB9LHQucHJvdG90eXBlLmN1cnNvckJhY2t3YXJkVGFiPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX2FjdGl2ZUJ1ZmZlci54Pj10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMpcmV0dXJuITA7Zm9yKHZhciB0PWUucGFyYW1zWzBdfHwxO3QtLTspdGhpcy5fYWN0aXZlQnVmZmVyLng9dGhpcy5fYWN0aXZlQnVmZmVyLnByZXZTdG9wKCk7cmV0dXJuITB9LHQucHJvdG90eXBlLl9lcmFzZUluQnVmZmVyTGluZT1mdW5jdGlvbihlLHQscixpKXt2b2lkIDA9PT1pJiYoaT0hMSk7dmFyIG49dGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLmdldCh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UrZSk7bi5yZXBsYWNlQ2VsbHModCxyLHRoaXMuX2FjdGl2ZUJ1ZmZlci5nZXROdWxsQ2VsbCh0aGlzLl9lcmFzZUF0dHJEYXRhKCkpLHRoaXMuX2VyYXNlQXR0ckRhdGEoKSksaSYmKG4uaXNXcmFwcGVkPSExKX0sdC5wcm90b3R5cGUuX3Jlc2V0QnVmZmVyTGluZT1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9hY3RpdmVCdWZmZXIubGluZXMuZ2V0KHRoaXMuX2FjdGl2ZUJ1ZmZlci55YmFzZStlKTt0LmZpbGwodGhpcy5fYWN0aXZlQnVmZmVyLmdldE51bGxDZWxsKHRoaXMuX2VyYXNlQXR0ckRhdGEoKSkpLHQuaXNXcmFwcGVkPSExfSx0LnByb3RvdHlwZS5lcmFzZUluRGlzcGxheT1mdW5jdGlvbihlKXt2YXIgdDtzd2l0Y2godGhpcy5fcmVzdHJpY3RDdXJzb3IodGhpcy5fYnVmZmVyU2VydmljZS5jb2xzKSxlLnBhcmFtc1swXSl7Y2FzZSAwOmZvcih0PXRoaXMuX2FjdGl2ZUJ1ZmZlci55LHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrRGlydHkodCksdGhpcy5fZXJhc2VJbkJ1ZmZlckxpbmUodCsrLHRoaXMuX2FjdGl2ZUJ1ZmZlci54LHRoaXMuX2J1ZmZlclNlcnZpY2UuY29scywwPT09dGhpcy5fYWN0aXZlQnVmZmVyLngpO3Q8dGhpcy5fYnVmZmVyU2VydmljZS5yb3dzO3QrKyl0aGlzLl9yZXNldEJ1ZmZlckxpbmUodCk7dGhpcy5fZGlydHlSb3dTZXJ2aWNlLm1hcmtEaXJ0eSh0KTticmVhaztjYXNlIDE6Zm9yKHQ9dGhpcy5fYWN0aXZlQnVmZmVyLnksdGhpcy5fZGlydHlSb3dTZXJ2aWNlLm1hcmtEaXJ0eSh0KSx0aGlzLl9lcmFzZUluQnVmZmVyTGluZSh0LDAsdGhpcy5fYWN0aXZlQnVmZmVyLngrMSwhMCksdGhpcy5fYWN0aXZlQnVmZmVyLngrMT49dGhpcy5fYnVmZmVyU2VydmljZS5jb2xzJiYodGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLmdldCh0KzEpLmlzV3JhcHBlZD0hMSk7dC0tOyl0aGlzLl9yZXNldEJ1ZmZlckxpbmUodCk7dGhpcy5fZGlydHlSb3dTZXJ2aWNlLm1hcmtEaXJ0eSgwKTticmVhaztjYXNlIDI6Zm9yKHQ9dGhpcy5fYnVmZmVyU2VydmljZS5yb3dzLHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrRGlydHkodC0xKTt0LS07KXRoaXMuX3Jlc2V0QnVmZmVyTGluZSh0KTt0aGlzLl9kaXJ0eVJvd1NlcnZpY2UubWFya0RpcnR5KDApO2JyZWFrO2Nhc2UgMzp2YXIgcj10aGlzLl9hY3RpdmVCdWZmZXIubGluZXMubGVuZ3RoLXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cztyPjAmJih0aGlzLl9hY3RpdmVCdWZmZXIubGluZXMudHJpbVN0YXJ0KHIpLHRoaXMuX2FjdGl2ZUJ1ZmZlci55YmFzZT1NYXRoLm1heCh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UtciwwKSx0aGlzLl9hY3RpdmVCdWZmZXIueWRpc3A9TWF0aC5tYXgodGhpcy5fYWN0aXZlQnVmZmVyLnlkaXNwLXIsMCksdGhpcy5fb25TY3JvbGwuZmlyZSgwKSl9cmV0dXJuITB9LHQucHJvdG90eXBlLmVyYXNlSW5MaW5lPWZ1bmN0aW9uKGUpe3N3aXRjaCh0aGlzLl9yZXN0cmljdEN1cnNvcih0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMpLGUucGFyYW1zWzBdKXtjYXNlIDA6dGhpcy5fZXJhc2VJbkJ1ZmZlckxpbmUodGhpcy5fYWN0aXZlQnVmZmVyLnksdGhpcy5fYWN0aXZlQnVmZmVyLngsdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLDA9PT10aGlzLl9hY3RpdmVCdWZmZXIueCk7YnJlYWs7Y2FzZSAxOnRoaXMuX2VyYXNlSW5CdWZmZXJMaW5lKHRoaXMuX2FjdGl2ZUJ1ZmZlci55LDAsdGhpcy5fYWN0aXZlQnVmZmVyLngrMSwhMSk7YnJlYWs7Y2FzZSAyOnRoaXMuX2VyYXNlSW5CdWZmZXJMaW5lKHRoaXMuX2FjdGl2ZUJ1ZmZlci55LDAsdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzLCEwKX1yZXR1cm4gdGhpcy5fZGlydHlSb3dTZXJ2aWNlLm1hcmtEaXJ0eSh0aGlzLl9hY3RpdmVCdWZmZXIueSksITB9LHQucHJvdG90eXBlLmluc2VydExpbmVzPWZ1bmN0aW9uKGUpe3RoaXMuX3Jlc3RyaWN0Q3Vyc29yKCk7dmFyIHQ9ZS5wYXJhbXNbMF18fDE7aWYodGhpcy5fYWN0aXZlQnVmZmVyLnk+dGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbXx8dGhpcy5fYWN0aXZlQnVmZmVyLnk8dGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbFRvcClyZXR1cm4hMDtmb3IodmFyIHI9dGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3RoaXMuX2FjdGl2ZUJ1ZmZlci55LGk9dGhpcy5fYnVmZmVyU2VydmljZS5yb3dzLTEtdGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbSxuPXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cy0xK3RoaXMuX2FjdGl2ZUJ1ZmZlci55YmFzZS1pKzE7dC0tOyl0aGlzLl9hY3RpdmVCdWZmZXIubGluZXMuc3BsaWNlKG4tMSwxKSx0aGlzLl9hY3RpdmVCdWZmZXIubGluZXMuc3BsaWNlKHIsMCx0aGlzLl9hY3RpdmVCdWZmZXIuZ2V0QmxhbmtMaW5lKHRoaXMuX2VyYXNlQXR0ckRhdGEoKSkpO3JldHVybiB0aGlzLl9kaXJ0eVJvd1NlcnZpY2UubWFya1JhbmdlRGlydHkodGhpcy5fYWN0aXZlQnVmZmVyLnksdGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbSksdGhpcy5fYWN0aXZlQnVmZmVyLng9MCwhMH0sdC5wcm90b3R5cGUuZGVsZXRlTGluZXM9ZnVuY3Rpb24oZSl7dGhpcy5fcmVzdHJpY3RDdXJzb3IoKTt2YXIgdD1lLnBhcmFtc1swXXx8MTtpZih0aGlzLl9hY3RpdmVCdWZmZXIueT50aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tfHx0aGlzLl9hY3RpdmVCdWZmZXIueTx0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wKXJldHVybiEwO3ZhciByLGk9dGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3RoaXMuX2FjdGl2ZUJ1ZmZlci55O2ZvcihyPXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cy0xLXRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b20scj10aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MtMSt0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2Utcjt0LS07KXRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5zcGxpY2UoaSwxKSx0aGlzLl9hY3RpdmVCdWZmZXIubGluZXMuc3BsaWNlKHIsMCx0aGlzLl9hY3RpdmVCdWZmZXIuZ2V0QmxhbmtMaW5lKHRoaXMuX2VyYXNlQXR0ckRhdGEoKSkpO3JldHVybiB0aGlzLl9kaXJ0eVJvd1NlcnZpY2UubWFya1JhbmdlRGlydHkodGhpcy5fYWN0aXZlQnVmZmVyLnksdGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbSksdGhpcy5fYWN0aXZlQnVmZmVyLng9MCwhMH0sdC5wcm90b3R5cGUuaW5zZXJ0Q2hhcnM9ZnVuY3Rpb24oZSl7dGhpcy5fcmVzdHJpY3RDdXJzb3IoKTt2YXIgdD10aGlzLl9hY3RpdmVCdWZmZXIubGluZXMuZ2V0KHRoaXMuX2FjdGl2ZUJ1ZmZlci55YmFzZSt0aGlzLl9hY3RpdmVCdWZmZXIueSk7cmV0dXJuIHQmJih0Lmluc2VydENlbGxzKHRoaXMuX2FjdGl2ZUJ1ZmZlci54LGUucGFyYW1zWzBdfHwxLHRoaXMuX2FjdGl2ZUJ1ZmZlci5nZXROdWxsQ2VsbCh0aGlzLl9lcmFzZUF0dHJEYXRhKCkpLHRoaXMuX2VyYXNlQXR0ckRhdGEoKSksdGhpcy5fZGlydHlSb3dTZXJ2aWNlLm1hcmtEaXJ0eSh0aGlzLl9hY3RpdmVCdWZmZXIueSkpLCEwfSx0LnByb3RvdHlwZS5kZWxldGVDaGFycz1mdW5jdGlvbihlKXt0aGlzLl9yZXN0cmljdEN1cnNvcigpO3ZhciB0PXRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5nZXQodGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3RoaXMuX2FjdGl2ZUJ1ZmZlci55KTtyZXR1cm4gdCYmKHQuZGVsZXRlQ2VsbHModGhpcy5fYWN0aXZlQnVmZmVyLngsZS5wYXJhbXNbMF18fDEsdGhpcy5fYWN0aXZlQnVmZmVyLmdldE51bGxDZWxsKHRoaXMuX2VyYXNlQXR0ckRhdGEoKSksdGhpcy5fZXJhc2VBdHRyRGF0YSgpKSx0aGlzLl9kaXJ0eVJvd1NlcnZpY2UubWFya0RpcnR5KHRoaXMuX2FjdGl2ZUJ1ZmZlci55KSksITB9LHQucHJvdG90eXBlLnNjcm9sbFVwPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD1lLnBhcmFtc1swXXx8MTt0LS07KXRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5zcGxpY2UodGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3RoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3AsMSksdGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLnNwbGljZSh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UrdGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbSwwLHRoaXMuX2FjdGl2ZUJ1ZmZlci5nZXRCbGFua0xpbmUodGhpcy5fZXJhc2VBdHRyRGF0YSgpKSk7cmV0dXJuIHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrUmFuZ2VEaXJ0eSh0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wLHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b20pLCEwfSx0LnByb3RvdHlwZS5zY3JvbGxEb3duPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD1lLnBhcmFtc1swXXx8MTt0LS07KXRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5zcGxpY2UodGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3RoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b20sMSksdGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLnNwbGljZSh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UrdGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbFRvcCwwLHRoaXMuX2FjdGl2ZUJ1ZmZlci5nZXRCbGFua0xpbmUoZi5ERUZBVUxUX0FUVFJfREFUQSkpO3JldHVybiB0aGlzLl9kaXJ0eVJvd1NlcnZpY2UubWFya1JhbmdlRGlydHkodGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbFRvcCx0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tKSwhMH0sdC5wcm90b3R5cGUuc2Nyb2xsTGVmdD1mdW5jdGlvbihlKXtpZih0aGlzLl9hY3RpdmVCdWZmZXIueT50aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tfHx0aGlzLl9hY3RpdmVCdWZmZXIueTx0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wKXJldHVybiEwO2Zvcih2YXIgdD1lLnBhcmFtc1swXXx8MSxyPXRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3A7cjw9dGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbTsrK3Ipe3ZhciBpPXRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5nZXQodGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3IpO2kuZGVsZXRlQ2VsbHMoMCx0LHRoaXMuX2FjdGl2ZUJ1ZmZlci5nZXROdWxsQ2VsbCh0aGlzLl9lcmFzZUF0dHJEYXRhKCkpLHRoaXMuX2VyYXNlQXR0ckRhdGEoKSksaS5pc1dyYXBwZWQ9ITF9cmV0dXJuIHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrUmFuZ2VEaXJ0eSh0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wLHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b20pLCEwfSx0LnByb3RvdHlwZS5zY3JvbGxSaWdodD1mdW5jdGlvbihlKXtpZih0aGlzLl9hY3RpdmVCdWZmZXIueT50aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tfHx0aGlzLl9hY3RpdmVCdWZmZXIueTx0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wKXJldHVybiEwO2Zvcih2YXIgdD1lLnBhcmFtc1swXXx8MSxyPXRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3A7cjw9dGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbTsrK3Ipe3ZhciBpPXRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5nZXQodGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3IpO2kuaW5zZXJ0Q2VsbHMoMCx0LHRoaXMuX2FjdGl2ZUJ1ZmZlci5nZXROdWxsQ2VsbCh0aGlzLl9lcmFzZUF0dHJEYXRhKCkpLHRoaXMuX2VyYXNlQXR0ckRhdGEoKSksaS5pc1dyYXBwZWQ9ITF9cmV0dXJuIHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrUmFuZ2VEaXJ0eSh0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wLHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b20pLCEwfSx0LnByb3RvdHlwZS5pbnNlcnRDb2x1bW5zPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX2FjdGl2ZUJ1ZmZlci55PnRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b218fHRoaXMuX2FjdGl2ZUJ1ZmZlci55PHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3ApcmV0dXJuITA7Zm9yKHZhciB0PWUucGFyYW1zWzBdfHwxLHI9dGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbFRvcDtyPD10aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tOysrcil7dmFyIGk9dGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLmdldCh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2Urcik7aS5pbnNlcnRDZWxscyh0aGlzLl9hY3RpdmVCdWZmZXIueCx0LHRoaXMuX2FjdGl2ZUJ1ZmZlci5nZXROdWxsQ2VsbCh0aGlzLl9lcmFzZUF0dHJEYXRhKCkpLHRoaXMuX2VyYXNlQXR0ckRhdGEoKSksaS5pc1dyYXBwZWQ9ITF9cmV0dXJuIHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrUmFuZ2VEaXJ0eSh0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wLHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b20pLCEwfSx0LnByb3RvdHlwZS5kZWxldGVDb2x1bW5zPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX2FjdGl2ZUJ1ZmZlci55PnRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b218fHRoaXMuX2FjdGl2ZUJ1ZmZlci55PHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3ApcmV0dXJuITA7Zm9yKHZhciB0PWUucGFyYW1zWzBdfHwxLHI9dGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbFRvcDtyPD10aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tOysrcil7dmFyIGk9dGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLmdldCh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2Urcik7aS5kZWxldGVDZWxscyh0aGlzLl9hY3RpdmVCdWZmZXIueCx0LHRoaXMuX2FjdGl2ZUJ1ZmZlci5nZXROdWxsQ2VsbCh0aGlzLl9lcmFzZUF0dHJEYXRhKCkpLHRoaXMuX2VyYXNlQXR0ckRhdGEoKSksaS5pc1dyYXBwZWQ9ITF9cmV0dXJuIHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrUmFuZ2VEaXJ0eSh0aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wLHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b20pLCEwfSx0LnByb3RvdHlwZS5lcmFzZUNoYXJzPWZ1bmN0aW9uKGUpe3RoaXMuX3Jlc3RyaWN0Q3Vyc29yKCk7dmFyIHQ9dGhpcy5fYWN0aXZlQnVmZmVyLmxpbmVzLmdldCh0aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UrdGhpcy5fYWN0aXZlQnVmZmVyLnkpO3JldHVybiB0JiYodC5yZXBsYWNlQ2VsbHModGhpcy5fYWN0aXZlQnVmZmVyLngsdGhpcy5fYWN0aXZlQnVmZmVyLngrKGUucGFyYW1zWzBdfHwxKSx0aGlzLl9hY3RpdmVCdWZmZXIuZ2V0TnVsbENlbGwodGhpcy5fZXJhc2VBdHRyRGF0YSgpKSx0aGlzLl9lcmFzZUF0dHJEYXRhKCkpLHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrRGlydHkodGhpcy5fYWN0aXZlQnVmZmVyLnkpKSwhMH0sdC5wcm90b3R5cGUucmVwZWF0UHJlY2VkaW5nQ2hhcmFjdGVyPWZ1bmN0aW9uKGUpe2lmKCF0aGlzLl9wYXJzZXIucHJlY2VkaW5nQ29kZXBvaW50KXJldHVybiEwO2Zvcih2YXIgdD1lLnBhcmFtc1swXXx8MSxyPW5ldyBVaW50MzJBcnJheSh0KSxpPTA7aTx0OysraSlyW2ldPXRoaXMuX3BhcnNlci5wcmVjZWRpbmdDb2RlcG9pbnQ7cmV0dXJuIHRoaXMucHJpbnQociwwLHIubGVuZ3RoKSwhMH0sdC5wcm90b3R5cGUuc2VuZERldmljZUF0dHJpYnV0ZXNQcmltYXJ5PWZ1bmN0aW9uKGUpe3JldHVybiBlLnBhcmFtc1swXT4wfHwodGhpcy5faXMoInh0ZXJtIil8fHRoaXMuX2lzKCJyeHZ0LXVuaWNvZGUiKXx8dGhpcy5faXMoInNjcmVlbiIpP3RoaXMuX2NvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQocy5DMC5FU0MrIls/MTsyYyIpOnRoaXMuX2lzKCJsaW51eCIpJiZ0aGlzLl9jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KHMuQzAuRVNDKyJbPzZjIikpLCEwfSx0LnByb3RvdHlwZS5zZW5kRGV2aWNlQXR0cmlidXRlc1NlY29uZGFyeT1mdW5jdGlvbihlKXtyZXR1cm4gZS5wYXJhbXNbMF0+MHx8KHRoaXMuX2lzKCJ4dGVybSIpP3RoaXMuX2NvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQocy5DMC5FU0MrIls+MDsyNzY7MGMiKTp0aGlzLl9pcygicnh2dC11bmljb2RlIik/dGhpcy5fY29yZVNlcnZpY2UudHJpZ2dlckRhdGFFdmVudChzLkMwLkVTQysiWz44NTs5NTswYyIpOnRoaXMuX2lzKCJsaW51eCIpP3RoaXMuX2NvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQoZS5wYXJhbXNbMF0rImMiKTp0aGlzLl9pcygic2NyZWVuIikmJnRoaXMuX2NvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQocy5DMC5FU0MrIls+ODM7NDAwMDM7MGMiKSksITB9LHQucHJvdG90eXBlLl9pcz1mdW5jdGlvbihlKXtyZXR1cm4gMD09PSh0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLnRlcm1OYW1lKyIiKS5pbmRleE9mKGUpfSx0LnByb3RvdHlwZS5zZXRNb2RlPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD0wO3Q8ZS5sZW5ndGg7dCsrKTQ9PT1lLnBhcmFtc1t0XSYmKHRoaXMuX2NvcmVTZXJ2aWNlLm1vZGVzLmluc2VydE1vZGU9ITApO3JldHVybiEwfSx0LnByb3RvdHlwZS5zZXRNb2RlUHJpdmF0ZT1mdW5jdGlvbihlKXtmb3IodmFyIHQ9MDt0PGUubGVuZ3RoO3QrKylzd2l0Y2goZS5wYXJhbXNbdF0pe2Nhc2UgMTp0aGlzLl9jb3JlU2VydmljZS5kZWNQcml2YXRlTW9kZXMuYXBwbGljYXRpb25DdXJzb3JLZXlzPSEwO2JyZWFrO2Nhc2UgMjp0aGlzLl9jaGFyc2V0U2VydmljZS5zZXRnQ2hhcnNldCgwLGEuREVGQVVMVF9DSEFSU0VUKSx0aGlzLl9jaGFyc2V0U2VydmljZS5zZXRnQ2hhcnNldCgxLGEuREVGQVVMVF9DSEFSU0VUKSx0aGlzLl9jaGFyc2V0U2VydmljZS5zZXRnQ2hhcnNldCgyLGEuREVGQVVMVF9DSEFSU0VUKSx0aGlzLl9jaGFyc2V0U2VydmljZS5zZXRnQ2hhcnNldCgzLGEuREVGQVVMVF9DSEFSU0VUKTticmVhaztjYXNlIDM6dGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy53aW5kb3dPcHRpb25zLnNldFdpbkxpbmVzJiYodGhpcy5fYnVmZmVyU2VydmljZS5yZXNpemUoMTMyLHRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cyksdGhpcy5fb25SZXF1ZXN0UmVzZXQuZmlyZSgpKTticmVhaztjYXNlIDY6dGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLm9yaWdpbj0hMCx0aGlzLl9zZXRDdXJzb3IoMCwwKTticmVhaztjYXNlIDc6dGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLndyYXBhcm91bmQ9ITA7YnJlYWs7Y2FzZSAxMjpicmVhaztjYXNlIDQ1OnRoaXMuX2NvcmVTZXJ2aWNlLmRlY1ByaXZhdGVNb2Rlcy5yZXZlcnNlV3JhcGFyb3VuZD0hMDticmVhaztjYXNlIDY2OnRoaXMuX2xvZ1NlcnZpY2UuZGVidWcoIlNlcmlhbCBwb3J0IHJlcXVlc3RlZCBhcHBsaWNhdGlvbiBrZXlwYWQuIiksdGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLmFwcGxpY2F0aW9uS2V5cGFkPSEwLHRoaXMuX29uUmVxdWVzdFN5bmNTY3JvbGxCYXIuZmlyZSgpO2JyZWFrO2Nhc2UgOTp0aGlzLl9jb3JlTW91c2VTZXJ2aWNlLmFjdGl2ZVByb3RvY29sPSJYMTAiO2JyZWFrO2Nhc2UgMWUzOnRoaXMuX2NvcmVNb3VzZVNlcnZpY2UuYWN0aXZlUHJvdG9jb2w9IlZUMjAwIjticmVhaztjYXNlIDEwMDI6dGhpcy5fY29yZU1vdXNlU2VydmljZS5hY3RpdmVQcm90b2NvbD0iRFJBRyI7YnJlYWs7Y2FzZSAxMDAzOnRoaXMuX2NvcmVNb3VzZVNlcnZpY2UuYWN0aXZlUHJvdG9jb2w9IkFOWSI7YnJlYWs7Y2FzZSAxMDA0OnRoaXMuX2NvcmVTZXJ2aWNlLmRlY1ByaXZhdGVNb2Rlcy5zZW5kRm9jdXM9ITAsdGhpcy5fb25SZXF1ZXN0U2VuZEZvY3VzLmZpcmUoKTticmVhaztjYXNlIDEwMDU6dGhpcy5fbG9nU2VydmljZS5kZWJ1ZygiREVDU0VUIDEwMDUgbm90IHN1cHBvcnRlZCAoc2VlICMyNTA3KSIpO2JyZWFrO2Nhc2UgMTAwNjp0aGlzLl9jb3JlTW91c2VTZXJ2aWNlLmFjdGl2ZUVuY29kaW5nPSJTR1IiO2JyZWFrO2Nhc2UgMTAxNTp0aGlzLl9sb2dTZXJ2aWNlLmRlYnVnKCJERUNTRVQgMTAxNSBub3Qgc3VwcG9ydGVkIChzZWUgIzI1MDcpIik7YnJlYWs7Y2FzZSAyNTp0aGlzLl9jb3JlU2VydmljZS5pc0N1cnNvckhpZGRlbj0hMTticmVhaztjYXNlIDEwNDg6dGhpcy5zYXZlQ3Vyc29yKCk7YnJlYWs7Y2FzZSAxMDQ5OnRoaXMuc2F2ZUN1cnNvcigpO2Nhc2UgNDc6Y2FzZSAxMDQ3OnRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVycy5hY3RpdmF0ZUFsdEJ1ZmZlcih0aGlzLl9lcmFzZUF0dHJEYXRhKCkpLHRoaXMuX2NvcmVTZXJ2aWNlLmlzQ3Vyc29ySW5pdGlhbGl6ZWQ9ITAsdGhpcy5fb25SZXF1ZXN0UmVmcmVzaFJvd3MuZmlyZSgwLHRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cy0xKSx0aGlzLl9vblJlcXVlc3RTeW5jU2Nyb2xsQmFyLmZpcmUoKTticmVhaztjYXNlIDIwMDQ6dGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLmJyYWNrZXRlZFBhc3RlTW9kZT0hMH1yZXR1cm4hMH0sdC5wcm90b3R5cGUucmVzZXRNb2RlPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD0wO3Q8ZS5sZW5ndGg7dCsrKTQ9PT1lLnBhcmFtc1t0XSYmKHRoaXMuX2NvcmVTZXJ2aWNlLm1vZGVzLmluc2VydE1vZGU9ITEpO3JldHVybiEwfSx0LnByb3RvdHlwZS5yZXNldE1vZGVQcml2YXRlPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD0wO3Q8ZS5sZW5ndGg7dCsrKXN3aXRjaChlLnBhcmFtc1t0XSl7Y2FzZSAxOnRoaXMuX2NvcmVTZXJ2aWNlLmRlY1ByaXZhdGVNb2Rlcy5hcHBsaWNhdGlvbkN1cnNvcktleXM9ITE7YnJlYWs7Y2FzZSAzOnRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMud2luZG93T3B0aW9ucy5zZXRXaW5MaW5lcyYmKHRoaXMuX2J1ZmZlclNlcnZpY2UucmVzaXplKDgwLHRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cyksdGhpcy5fb25SZXF1ZXN0UmVzZXQuZmlyZSgpKTticmVhaztjYXNlIDY6dGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLm9yaWdpbj0hMSx0aGlzLl9zZXRDdXJzb3IoMCwwKTticmVhaztjYXNlIDc6dGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLndyYXBhcm91bmQ9ITE7YnJlYWs7Y2FzZSAxMjpicmVhaztjYXNlIDQ1OnRoaXMuX2NvcmVTZXJ2aWNlLmRlY1ByaXZhdGVNb2Rlcy5yZXZlcnNlV3JhcGFyb3VuZD0hMTticmVhaztjYXNlIDY2OnRoaXMuX2xvZ1NlcnZpY2UuZGVidWcoIlN3aXRjaGluZyBiYWNrIHRvIG5vcm1hbCBrZXlwYWQuIiksdGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLmFwcGxpY2F0aW9uS2V5cGFkPSExLHRoaXMuX29uUmVxdWVzdFN5bmNTY3JvbGxCYXIuZmlyZSgpO2JyZWFrO2Nhc2UgOTpjYXNlIDFlMzpjYXNlIDEwMDI6Y2FzZSAxMDAzOnRoaXMuX2NvcmVNb3VzZVNlcnZpY2UuYWN0aXZlUHJvdG9jb2w9Ik5PTkUiO2JyZWFrO2Nhc2UgMTAwNDp0aGlzLl9jb3JlU2VydmljZS5kZWNQcml2YXRlTW9kZXMuc2VuZEZvY3VzPSExO2JyZWFrO2Nhc2UgMTAwNTp0aGlzLl9sb2dTZXJ2aWNlLmRlYnVnKCJERUNSU1QgMTAwNSBub3Qgc3VwcG9ydGVkIChzZWUgIzI1MDcpIik7YnJlYWs7Y2FzZSAxMDA2OnRoaXMuX2NvcmVNb3VzZVNlcnZpY2UuYWN0aXZlRW5jb2Rpbmc9IkRFRkFVTFQiO2JyZWFrO2Nhc2UgMTAxNTp0aGlzLl9sb2dTZXJ2aWNlLmRlYnVnKCJERUNSU1QgMTAxNSBub3Qgc3VwcG9ydGVkIChzZWUgIzI1MDcpIik7YnJlYWs7Y2FzZSAyNTp0aGlzLl9jb3JlU2VydmljZS5pc0N1cnNvckhpZGRlbj0hMDticmVhaztjYXNlIDEwNDg6dGhpcy5yZXN0b3JlQ3Vyc29yKCk7YnJlYWs7Y2FzZSAxMDQ5OmNhc2UgNDc6Y2FzZSAxMDQ3OnRoaXMuX2J1ZmZlclNlcnZpY2UuYnVmZmVycy5hY3RpdmF0ZU5vcm1hbEJ1ZmZlcigpLDEwNDk9PT1lLnBhcmFtc1t0XSYmdGhpcy5yZXN0b3JlQ3Vyc29yKCksdGhpcy5fY29yZVNlcnZpY2UuaXNDdXJzb3JJbml0aWFsaXplZD0hMCx0aGlzLl9vblJlcXVlc3RSZWZyZXNoUm93cy5maXJlKDAsdGhpcy5fYnVmZmVyU2VydmljZS5yb3dzLTEpLHRoaXMuX29uUmVxdWVzdFN5bmNTY3JvbGxCYXIuZmlyZSgpO2JyZWFrO2Nhc2UgMjAwNDp0aGlzLl9jb3JlU2VydmljZS5kZWNQcml2YXRlTW9kZXMuYnJhY2tldGVkUGFzdGVNb2RlPSExfXJldHVybiEwfSx0LnByb3RvdHlwZS5fdXBkYXRlQXR0ckNvbG9yPWZ1bmN0aW9uKGUsdCxyLGksbil7cmV0dXJuIDI9PT10PyhlfD01MDMzMTY0OCxlJj0tMTY3NzcyMTYsZXw9di5BdHRyaWJ1dGVEYXRhLmZyb21Db2xvclJHQihbcixpLG5dKSk6NT09PXQmJihlJj0tNTAzMzE5MDQsZXw9MzM1NTQ0MzJ8MjU1JnIpLGV9LHQucHJvdG90eXBlLl9leHRyYWN0Q29sb3I9ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPVswLDAsLTEsMCwwLDBdLG49MCxvPTA7ZG97aWYoaVtvK25dPWUucGFyYW1zW3Qrb10sZS5oYXNTdWJQYXJhbXModCtvKSl7dmFyIHM9ZS5nZXRTdWJQYXJhbXModCtvKSxhPTA7ZG97NT09PWlbMV0mJihuPTEpLGlbbythKzErbl09c1thXX13aGlsZSgrK2E8cy5sZW5ndGgmJmErbysxK248aS5sZW5ndGgpO2JyZWFrfWlmKDU9PT1pWzFdJiZvK24+PTJ8fDI9PT1pWzFdJiZvK24+PTUpYnJlYWs7aVsxXSYmKG49MSl9d2hpbGUoKytvK3Q8ZS5sZW5ndGgmJm8rbjxpLmxlbmd0aCk7Zm9yKGE9MjthPGkubGVuZ3RoOysrYSktMT09PWlbYV0mJihpW2FdPTApO3N3aXRjaChpWzBdKXtjYXNlIDM4OnIuZmc9dGhpcy5fdXBkYXRlQXR0ckNvbG9yKHIuZmcsaVsxXSxpWzNdLGlbNF0saVs1XSk7YnJlYWs7Y2FzZSA0ODpyLmJnPXRoaXMuX3VwZGF0ZUF0dHJDb2xvcihyLmJnLGlbMV0saVszXSxpWzRdLGlbNV0pO2JyZWFrO2Nhc2UgNTg6ci5leHRlbmRlZD1yLmV4dGVuZGVkLmNsb25lKCksci5leHRlbmRlZC51bmRlcmxpbmVDb2xvcj10aGlzLl91cGRhdGVBdHRyQ29sb3Ioci5leHRlbmRlZC51bmRlcmxpbmVDb2xvcixpWzFdLGlbM10saVs0XSxpWzVdKX1yZXR1cm4gb30sdC5wcm90b3R5cGUuX3Byb2Nlc3NVbmRlcmxpbmU9ZnVuY3Rpb24oZSx0KXt0LmV4dGVuZGVkPXQuZXh0ZW5kZWQuY2xvbmUoKSwoIX5lfHxlPjUpJiYoZT0xKSx0LmV4dGVuZGVkLnVuZGVybGluZVN0eWxlPWUsdC5mZ3w9MjY4NDM1NDU2LDA9PT1lJiYodC5mZyY9LTI2ODQzNTQ1NyksdC51cGRhdGVFeHRlbmRlZCgpfSx0LnByb3RvdHlwZS5jaGFyQXR0cmlidXRlcz1mdW5jdGlvbihlKXtpZigxPT09ZS5sZW5ndGgmJjA9PT1lLnBhcmFtc1swXSlyZXR1cm4gdGhpcy5fY3VyQXR0ckRhdGEuZmc9Zi5ERUZBVUxUX0FUVFJfREFUQS5mZyx0aGlzLl9jdXJBdHRyRGF0YS5iZz1mLkRFRkFVTFRfQVRUUl9EQVRBLmJnLCEwO2Zvcih2YXIgdCxyPWUubGVuZ3RoLGk9dGhpcy5fY3VyQXR0ckRhdGEsbj0wO248cjtuKyspKHQ9ZS5wYXJhbXNbbl0pPj0zMCYmdDw9Mzc/KGkuZmcmPS01MDMzMTkwNCxpLmZnfD0xNjc3NzIxNnx0LTMwKTp0Pj00MCYmdDw9NDc/KGkuYmcmPS01MDMzMTkwNCxpLmJnfD0xNjc3NzIxNnx0LTQwKTp0Pj05MCYmdDw9OTc/KGkuZmcmPS01MDMzMTkwNCxpLmZnfD0xNjc3NzIyNHx0LTkwKTp0Pj0xMDAmJnQ8PTEwNz8oaS5iZyY9LTUwMzMxOTA0LGkuYmd8PTE2Nzc3MjI0fHQtMTAwKTowPT09dD8oaS5mZz1mLkRFRkFVTFRfQVRUUl9EQVRBLmZnLGkuYmc9Zi5ERUZBVUxUX0FUVFJfREFUQS5iZyk6MT09PXQ/aS5mZ3w9MTM0MjE3NzI4OjM9PT10P2kuYmd8PTY3MTA4ODY0OjQ9PT10PyhpLmZnfD0yNjg0MzU0NTYsdGhpcy5fcHJvY2Vzc1VuZGVybGluZShlLmhhc1N1YlBhcmFtcyhuKT9lLmdldFN1YlBhcmFtcyhuKVswXToxLGkpKTo1PT09dD9pLmZnfD01MzY4NzA5MTI6Nz09PXQ/aS5mZ3w9NjcxMDg4NjQ6OD09PXQ/aS5mZ3w9MTA3Mzc0MTgyNDo5PT09dD9pLmZnfD0yMTQ3NDgzNjQ4OjI9PT10P2kuYmd8PTEzNDIxNzcyODoyMT09PXQ/dGhpcy5fcHJvY2Vzc1VuZGVybGluZSgyLGkpOjIyPT09dD8oaS5mZyY9LTEzNDIxNzcyOSxpLmJnJj0tMTM0MjE3NzI5KToyMz09PXQ/aS5iZyY9LTY3MTA4ODY1OjI0PT09dD9pLmZnJj0tMjY4NDM1NDU3OjI1PT09dD9pLmZnJj0tNTM2ODcwOTEzOjI3PT09dD9pLmZnJj0tNjcxMDg4NjU6Mjg9PT10P2kuZmcmPS0xMDczNzQxODI1OjI5PT09dD9pLmZnJj0yMTQ3NDgzNjQ3OjM5PT09dD8oaS5mZyY9LTY3MTA4ODY0LGkuZmd8PTE2Nzc3MjE1JmYuREVGQVVMVF9BVFRSX0RBVEEuZmcpOjQ5PT09dD8oaS5iZyY9LTY3MTA4ODY0LGkuYmd8PTE2Nzc3MjE1JmYuREVGQVVMVF9BVFRSX0RBVEEuYmcpOjM4PT09dHx8NDg9PT10fHw1OD09PXQ/bis9dGhpcy5fZXh0cmFjdENvbG9yKGUsbixpKTo1OT09PXQ/KGkuZXh0ZW5kZWQ9aS5leHRlbmRlZC5jbG9uZSgpLGkuZXh0ZW5kZWQudW5kZXJsaW5lQ29sb3I9LTEsaS51cGRhdGVFeHRlbmRlZCgpKToxMDA9PT10PyhpLmZnJj0tNjcxMDg4NjQsaS5mZ3w9MTY3NzcyMTUmZi5ERUZBVUxUX0FUVFJfREFUQS5mZyxpLmJnJj0tNjcxMDg4NjQsaS5iZ3w9MTY3NzcyMTUmZi5ERUZBVUxUX0FUVFJfREFUQS5iZyk6dGhpcy5fbG9nU2VydmljZS5kZWJ1ZygiVW5rbm93biBTR1IgYXR0cmlidXRlOiAlZC4iLHQpO3JldHVybiEwfSx0LnByb3RvdHlwZS5kZXZpY2VTdGF0dXM9ZnVuY3Rpb24oZSl7c3dpdGNoKGUucGFyYW1zWzBdKXtjYXNlIDU6dGhpcy5fY29yZVNlcnZpY2UudHJpZ2dlckRhdGFFdmVudChzLkMwLkVTQysiWzBuIik7YnJlYWs7Y2FzZSA2OnZhciB0PXRoaXMuX2FjdGl2ZUJ1ZmZlci55KzEscj10aGlzLl9hY3RpdmVCdWZmZXIueCsxO3RoaXMuX2NvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQocy5DMC5FU0MrIlsiK3QrIjsiK3IrIlIiKX1yZXR1cm4hMH0sdC5wcm90b3R5cGUuZGV2aWNlU3RhdHVzUHJpdmF0ZT1mdW5jdGlvbihlKXtpZig2PT09ZS5wYXJhbXNbMF0pe3ZhciB0PXRoaXMuX2FjdGl2ZUJ1ZmZlci55KzEscj10aGlzLl9hY3RpdmVCdWZmZXIueCsxO3RoaXMuX2NvcmVTZXJ2aWNlLnRyaWdnZXJEYXRhRXZlbnQocy5DMC5FU0MrIls/Iit0KyI7IityKyJSIil9cmV0dXJuITB9LHQucHJvdG90eXBlLnNvZnRSZXNldD1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fY29yZVNlcnZpY2UuaXNDdXJzb3JIaWRkZW49ITEsdGhpcy5fb25SZXF1ZXN0U3luY1Njcm9sbEJhci5maXJlKCksdGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbFRvcD0wLHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b209dGhpcy5fYnVmZmVyU2VydmljZS5yb3dzLTEsdGhpcy5fY3VyQXR0ckRhdGE9Zi5ERUZBVUxUX0FUVFJfREFUQS5jbG9uZSgpLHRoaXMuX2NvcmVTZXJ2aWNlLnJlc2V0KCksdGhpcy5fY2hhcnNldFNlcnZpY2UucmVzZXQoKSx0aGlzLl9hY3RpdmVCdWZmZXIuc2F2ZWRYPTAsdGhpcy5fYWN0aXZlQnVmZmVyLnNhdmVkWT10aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UsdGhpcy5fYWN0aXZlQnVmZmVyLnNhdmVkQ3VyQXR0ckRhdGEuZmc9dGhpcy5fY3VyQXR0ckRhdGEuZmcsdGhpcy5fYWN0aXZlQnVmZmVyLnNhdmVkQ3VyQXR0ckRhdGEuYmc9dGhpcy5fY3VyQXR0ckRhdGEuYmcsdGhpcy5fYWN0aXZlQnVmZmVyLnNhdmVkQ2hhcnNldD10aGlzLl9jaGFyc2V0U2VydmljZS5jaGFyc2V0LHRoaXMuX2NvcmVTZXJ2aWNlLmRlY1ByaXZhdGVNb2Rlcy5vcmlnaW49ITEsITB9LHQucHJvdG90eXBlLnNldEN1cnNvclN0eWxlPWZ1bmN0aW9uKGUpe3ZhciB0PWUucGFyYW1zWzBdfHwxO3N3aXRjaCh0KXtjYXNlIDE6Y2FzZSAyOnRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuY3Vyc29yU3R5bGU9ImJsb2NrIjticmVhaztjYXNlIDM6Y2FzZSA0OnRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuY3Vyc29yU3R5bGU9InVuZGVybGluZSI7YnJlYWs7Y2FzZSA1OmNhc2UgNjp0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmN1cnNvclN0eWxlPSJiYXIifXZhciByPXQlMj09MTtyZXR1cm4gdGhpcy5fb3B0aW9uc1NlcnZpY2Uub3B0aW9ucy5jdXJzb3JCbGluaz1yLCEwfSx0LnByb3RvdHlwZS5zZXRTY3JvbGxSZWdpb249ZnVuY3Rpb24oZSl7dmFyIHQscj1lLnBhcmFtc1swXXx8MTtyZXR1cm4oZS5sZW5ndGg8Mnx8KHQ9ZS5wYXJhbXNbMV0pPnRoaXMuX2J1ZmZlclNlcnZpY2Uucm93c3x8MD09PXQpJiYodD10aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MpLHQ+ciYmKHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3A9ci0xLHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxCb3R0b209dC0xLHRoaXMuX3NldEN1cnNvcigwLDApKSwhMH0sdC5wcm90b3R5cGUud2luZG93T3B0aW9ucz1mdW5jdGlvbihlKXtpZighdyhlLnBhcmFtc1swXSx0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLndpbmRvd09wdGlvbnMpKXJldHVybiEwO3ZhciB0PWUubGVuZ3RoPjE/ZS5wYXJhbXNbMV06MDtzd2l0Y2goZS5wYXJhbXNbMF0pe2Nhc2UgMTQ6MiE9PXQmJnRoaXMuX29uUmVxdWVzdFdpbmRvd3NPcHRpb25zUmVwb3J0LmZpcmUoby5HRVRfV0lOX1NJWkVfUElYRUxTKTticmVhaztjYXNlIDE2OnRoaXMuX29uUmVxdWVzdFdpbmRvd3NPcHRpb25zUmVwb3J0LmZpcmUoby5HRVRfQ0VMTF9TSVpFX1BJWEVMUyk7YnJlYWs7Y2FzZSAxODp0aGlzLl9idWZmZXJTZXJ2aWNlJiZ0aGlzLl9jb3JlU2VydmljZS50cmlnZ2VyRGF0YUV2ZW50KHMuQzAuRVNDKyJbODsiK3RoaXMuX2J1ZmZlclNlcnZpY2Uucm93cysiOyIrdGhpcy5fYnVmZmVyU2VydmljZS5jb2xzKyJ0Iik7YnJlYWs7Y2FzZSAyMjowIT09dCYmMiE9PXR8fCh0aGlzLl93aW5kb3dUaXRsZVN0YWNrLnB1c2godGhpcy5fd2luZG93VGl0bGUpLHRoaXMuX3dpbmRvd1RpdGxlU3RhY2subGVuZ3RoPjEwJiZ0aGlzLl93aW5kb3dUaXRsZVN0YWNrLnNoaWZ0KCkpLDAhPT10JiYxIT09dHx8KHRoaXMuX2ljb25OYW1lU3RhY2sucHVzaCh0aGlzLl9pY29uTmFtZSksdGhpcy5faWNvbk5hbWVTdGFjay5sZW5ndGg+MTAmJnRoaXMuX2ljb25OYW1lU3RhY2suc2hpZnQoKSk7YnJlYWs7Y2FzZSAyMzowIT09dCYmMiE9PXR8fHRoaXMuX3dpbmRvd1RpdGxlU3RhY2subGVuZ3RoJiZ0aGlzLnNldFRpdGxlKHRoaXMuX3dpbmRvd1RpdGxlU3RhY2sucG9wKCkpLDAhPT10JiYxIT09dHx8dGhpcy5faWNvbk5hbWVTdGFjay5sZW5ndGgmJnRoaXMuc2V0SWNvbk5hbWUodGhpcy5faWNvbk5hbWVTdGFjay5wb3AoKSl9cmV0dXJuITB9LHQucHJvdG90eXBlLnNhdmVDdXJzb3I9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX2FjdGl2ZUJ1ZmZlci5zYXZlZFg9dGhpcy5fYWN0aXZlQnVmZmVyLngsdGhpcy5fYWN0aXZlQnVmZmVyLnNhdmVkWT10aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UrdGhpcy5fYWN0aXZlQnVmZmVyLnksdGhpcy5fYWN0aXZlQnVmZmVyLnNhdmVkQ3VyQXR0ckRhdGEuZmc9dGhpcy5fY3VyQXR0ckRhdGEuZmcsdGhpcy5fYWN0aXZlQnVmZmVyLnNhdmVkQ3VyQXR0ckRhdGEuYmc9dGhpcy5fY3VyQXR0ckRhdGEuYmcsdGhpcy5fYWN0aXZlQnVmZmVyLnNhdmVkQ2hhcnNldD10aGlzLl9jaGFyc2V0U2VydmljZS5jaGFyc2V0LCEwfSx0LnByb3RvdHlwZS5yZXN0b3JlQ3Vyc29yPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9hY3RpdmVCdWZmZXIueD10aGlzLl9hY3RpdmVCdWZmZXIuc2F2ZWRYfHwwLHRoaXMuX2FjdGl2ZUJ1ZmZlci55PU1hdGgubWF4KHRoaXMuX2FjdGl2ZUJ1ZmZlci5zYXZlZFktdGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlLDApLHRoaXMuX2N1ckF0dHJEYXRhLmZnPXRoaXMuX2FjdGl2ZUJ1ZmZlci5zYXZlZEN1ckF0dHJEYXRhLmZnLHRoaXMuX2N1ckF0dHJEYXRhLmJnPXRoaXMuX2FjdGl2ZUJ1ZmZlci5zYXZlZEN1ckF0dHJEYXRhLmJnLHRoaXMuX2NoYXJzZXRTZXJ2aWNlLmNoYXJzZXQ9dGhpcy5fc2F2ZWRDaGFyc2V0LHRoaXMuX2FjdGl2ZUJ1ZmZlci5zYXZlZENoYXJzZXQmJih0aGlzLl9jaGFyc2V0U2VydmljZS5jaGFyc2V0PXRoaXMuX2FjdGl2ZUJ1ZmZlci5zYXZlZENoYXJzZXQpLHRoaXMuX3Jlc3RyaWN0Q3Vyc29yKCksITB9LHQucHJvdG90eXBlLnNldFRpdGxlPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl93aW5kb3dUaXRsZT1lLHRoaXMuX29uVGl0bGVDaGFuZ2UuZmlyZShlKSwhMH0sdC5wcm90b3R5cGUuc2V0SWNvbk5hbWU9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX2ljb25OYW1lPWUsITB9LHQucHJvdG90eXBlLnNldE9yUmVwb3J0SW5kZXhlZENvbG9yPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD1bXSxyPWUuc3BsaXQoIjsiKTtyLmxlbmd0aD4xOyl7dmFyIGk9ci5zaGlmdCgpLG49ci5zaGlmdCgpO2lmKC9eXGQrJC8uZXhlYyhpKSl7dmFyIG89cGFyc2VJbnQoaSk7aWYoMDw9byYmbzwyNTYpaWYoIj8iPT09bil0LnB1c2goe3R5cGU6MCxpbmRleDpvfSk7ZWxzZXt2YXIgcz0oMCxiLnBhcnNlQ29sb3IpKG4pO3MmJnQucHVzaCh7dHlwZToxLGluZGV4Om8sY29sb3I6c30pfX19cmV0dXJuIHQubGVuZ3RoJiZ0aGlzLl9vbkNvbG9yLmZpcmUodCksITB9LHQucHJvdG90eXBlLl9zZXRPclJlcG9ydFNwZWNpYWxDb2xvcj1mdW5jdGlvbihlLHQpe2Zvcih2YXIgcj1lLnNwbGl0KCI7IiksaT0wO2k8ci5sZW5ndGgmJiEodD49dGhpcy5fc3BlY2lhbENvbG9ycy5sZW5ndGgpOysraSwrK3QpaWYoIj8iPT09cltpXSl0aGlzLl9vbkNvbG9yLmZpcmUoW3t0eXBlOjAsaW5kZXg6dGhpcy5fc3BlY2lhbENvbG9yc1t0XX1dKTtlbHNle3ZhciBuPSgwLGIucGFyc2VDb2xvcikocltpXSk7biYmdGhpcy5fb25Db2xvci5maXJlKFt7dHlwZToxLGluZGV4OnRoaXMuX3NwZWNpYWxDb2xvcnNbdF0sY29sb3I6bn1dKX1yZXR1cm4hMH0sdC5wcm90b3R5cGUuc2V0T3JSZXBvcnRGZ0NvbG9yPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9zZXRPclJlcG9ydFNwZWNpYWxDb2xvcihlLDApfSx0LnByb3RvdHlwZS5zZXRPclJlcG9ydEJnQ29sb3I9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX3NldE9yUmVwb3J0U3BlY2lhbENvbG9yKGUsMSl9LHQucHJvdG90eXBlLnNldE9yUmVwb3J0Q3Vyc29yQ29sb3I9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX3NldE9yUmVwb3J0U3BlY2lhbENvbG9yKGUsMil9LHQucHJvdG90eXBlLnJlc3RvcmVJbmRleGVkQ29sb3I9ZnVuY3Rpb24oZSl7aWYoIWUpcmV0dXJuIHRoaXMuX29uQ29sb3IuZmlyZShbe3R5cGU6Mn1dKSwhMDtmb3IodmFyIHQ9W10scj1lLnNwbGl0KCI7IiksaT0wO2k8ci5sZW5ndGg7KytpKWlmKC9eXGQrJC8uZXhlYyhyW2ldKSl7dmFyIG49cGFyc2VJbnQocltpXSk7MDw9biYmbjwyNTYmJnQucHVzaCh7dHlwZToyLGluZGV4Om59KX1yZXR1cm4gdC5sZW5ndGgmJnRoaXMuX29uQ29sb3IuZmlyZSh0KSwhMH0sdC5wcm90b3R5cGUucmVzdG9yZUZnQ29sb3I9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX29uQ29sb3IuZmlyZShbe3R5cGU6MixpbmRleDoyNTZ9XSksITB9LHQucHJvdG90eXBlLnJlc3RvcmVCZ0NvbG9yPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9vbkNvbG9yLmZpcmUoW3t0eXBlOjIsaW5kZXg6MjU3fV0pLCEwfSx0LnByb3RvdHlwZS5yZXN0b3JlQ3Vyc29yQ29sb3I9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX29uQ29sb3IuZmlyZShbe3R5cGU6MixpbmRleDoyNTh9XSksITB9LHQucHJvdG90eXBlLm5leHRMaW5lPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2FjdGl2ZUJ1ZmZlci54PTAsdGhpcy5pbmRleCgpLCEwfSx0LnByb3RvdHlwZS5rZXlwYWRBcHBsaWNhdGlvbk1vZGU9ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fbG9nU2VydmljZS5kZWJ1ZygiU2VyaWFsIHBvcnQgcmVxdWVzdGVkIGFwcGxpY2F0aW9uIGtleXBhZC4iKSx0aGlzLl9jb3JlU2VydmljZS5kZWNQcml2YXRlTW9kZXMuYXBwbGljYXRpb25LZXlwYWQ9ITAsdGhpcy5fb25SZXF1ZXN0U3luY1Njcm9sbEJhci5maXJlKCksITB9LHQucHJvdG90eXBlLmtleXBhZE51bWVyaWNNb2RlPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2xvZ1NlcnZpY2UuZGVidWcoIlN3aXRjaGluZyBiYWNrIHRvIG5vcm1hbCBrZXlwYWQuIiksdGhpcy5fY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLmFwcGxpY2F0aW9uS2V5cGFkPSExLHRoaXMuX29uUmVxdWVzdFN5bmNTY3JvbGxCYXIuZmlyZSgpLCEwfSx0LnByb3RvdHlwZS5zZWxlY3REZWZhdWx0Q2hhcnNldD1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9jaGFyc2V0U2VydmljZS5zZXRnTGV2ZWwoMCksdGhpcy5fY2hhcnNldFNlcnZpY2Uuc2V0Z0NoYXJzZXQoMCxhLkRFRkFVTFRfQ0hBUlNFVCksITB9LHQucHJvdG90eXBlLnNlbGVjdENoYXJzZXQ9ZnVuY3Rpb24oZSl7cmV0dXJuIDIhPT1lLmxlbmd0aD8odGhpcy5zZWxlY3REZWZhdWx0Q2hhcnNldCgpLCEwKTooIi8iPT09ZVswXXx8dGhpcy5fY2hhcnNldFNlcnZpY2Uuc2V0Z0NoYXJzZXQoU1tlWzBdXSxhLkNIQVJTRVRTW2VbMV1dfHxhLkRFRkFVTFRfQ0hBUlNFVCksITApfSx0LnByb3RvdHlwZS5pbmRleD1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9yZXN0cmljdEN1cnNvcigpLHRoaXMuX2FjdGl2ZUJ1ZmZlci55KyssdGhpcy5fYWN0aXZlQnVmZmVyLnk9PT10aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsQm90dG9tKzE/KHRoaXMuX2FjdGl2ZUJ1ZmZlci55LS0sdGhpcy5fYnVmZmVyU2VydmljZS5zY3JvbGwodGhpcy5fZXJhc2VBdHRyRGF0YSgpKSk6dGhpcy5fYWN0aXZlQnVmZmVyLnk+PXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cyYmKHRoaXMuX2FjdGl2ZUJ1ZmZlci55PXRoaXMuX2J1ZmZlclNlcnZpY2Uucm93cy0xKSx0aGlzLl9yZXN0cmljdEN1cnNvcigpLCEwfSx0LnByb3RvdHlwZS50YWJTZXQ9ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fYWN0aXZlQnVmZmVyLnRhYnNbdGhpcy5fYWN0aXZlQnVmZmVyLnhdPSEwLCEwfSx0LnByb3RvdHlwZS5yZXZlcnNlSW5kZXg9ZnVuY3Rpb24oKXtpZih0aGlzLl9yZXN0cmljdEN1cnNvcigpLHRoaXMuX2FjdGl2ZUJ1ZmZlci55PT09dGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbFRvcCl7dmFyIGU9dGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbS10aGlzLl9hY3RpdmVCdWZmZXIuc2Nyb2xsVG9wO3RoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5zaGlmdEVsZW1lbnRzKHRoaXMuX2FjdGl2ZUJ1ZmZlci55YmFzZSt0aGlzLl9hY3RpdmVCdWZmZXIueSxlLDEpLHRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5zZXQodGhpcy5fYWN0aXZlQnVmZmVyLnliYXNlK3RoaXMuX2FjdGl2ZUJ1ZmZlci55LHRoaXMuX2FjdGl2ZUJ1ZmZlci5nZXRCbGFua0xpbmUodGhpcy5fZXJhc2VBdHRyRGF0YSgpKSksdGhpcy5fZGlydHlSb3dTZXJ2aWNlLm1hcmtSYW5nZURpcnR5KHRoaXMuX2FjdGl2ZUJ1ZmZlci5zY3JvbGxUb3AsdGhpcy5fYWN0aXZlQnVmZmVyLnNjcm9sbEJvdHRvbSl9ZWxzZSB0aGlzLl9hY3RpdmVCdWZmZXIueS0tLHRoaXMuX3Jlc3RyaWN0Q3Vyc29yKCk7cmV0dXJuITB9LHQucHJvdG90eXBlLmZ1bGxSZXNldD1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9wYXJzZXIucmVzZXQoKSx0aGlzLl9vblJlcXVlc3RSZXNldC5maXJlKCksITB9LHQucHJvdG90eXBlLnJlc2V0PWZ1bmN0aW9uKCl7dGhpcy5fY3VyQXR0ckRhdGE9Zi5ERUZBVUxUX0FUVFJfREFUQS5jbG9uZSgpLHRoaXMuX2VyYXNlQXR0ckRhdGFJbnRlcm5hbD1mLkRFRkFVTFRfQVRUUl9EQVRBLmNsb25lKCl9LHQucHJvdG90eXBlLl9lcmFzZUF0dHJEYXRhPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2VyYXNlQXR0ckRhdGFJbnRlcm5hbC5iZyY9LTY3MTA4ODY0LHRoaXMuX2VyYXNlQXR0ckRhdGFJbnRlcm5hbC5iZ3w9NjcxMDg4NjMmdGhpcy5fY3VyQXR0ckRhdGEuYmcsdGhpcy5fZXJhc2VBdHRyRGF0YUludGVybmFsfSx0LnByb3RvdHlwZS5zZXRnTGV2ZWw9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX2NoYXJzZXRTZXJ2aWNlLnNldGdMZXZlbChlKSwhMH0sdC5wcm90b3R5cGUuc2NyZWVuQWxpZ25tZW50UGF0dGVybj1mdW5jdGlvbigpe3ZhciBlPW5ldyBwLkNlbGxEYXRhO2UuY29udGVudD0xPDwyMnwiRSIuY2hhckNvZGVBdCgwKSxlLmZnPXRoaXMuX2N1ckF0dHJEYXRhLmZnLGUuYmc9dGhpcy5fY3VyQXR0ckRhdGEuYmcsdGhpcy5fc2V0Q3Vyc29yKDAsMCk7Zm9yKHZhciB0PTA7dDx0aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3M7Kyt0KXt2YXIgcj10aGlzLl9hY3RpdmVCdWZmZXIueWJhc2UrdGhpcy5fYWN0aXZlQnVmZmVyLnkrdCxpPXRoaXMuX2FjdGl2ZUJ1ZmZlci5saW5lcy5nZXQocik7aSYmKGkuZmlsbChlKSxpLmlzV3JhcHBlZD0hMSl9cmV0dXJuIHRoaXMuX2RpcnR5Um93U2VydmljZS5tYXJrQWxsRGlydHkoKSx0aGlzLl9zZXRDdXJzb3IoMCwwKSwhMH0sdH0obC5EaXNwb3NhYmxlKTt0LklucHV0SGFuZGxlcj1FfSw4NDQ6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5nZXREaXNwb3NlQXJyYXlEaXNwb3NhYmxlPXQuZGlzcG9zZUFycmF5PXQuRGlzcG9zYWJsZT12b2lkIDA7dmFyIHI9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKCl7dGhpcy5fZGlzcG9zYWJsZXM9W10sdGhpcy5faXNEaXNwb3NlZD0hMX1yZXR1cm4gZS5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe3RoaXMuX2lzRGlzcG9zZWQ9ITA7Zm9yKHZhciBlPTAsdD10aGlzLl9kaXNwb3NhYmxlcztlPHQubGVuZ3RoO2UrKyl0W2VdLmRpc3Bvc2UoKTt0aGlzLl9kaXNwb3NhYmxlcy5sZW5ndGg9MH0sZS5wcm90b3R5cGUucmVnaXN0ZXI9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX2Rpc3Bvc2FibGVzLnB1c2goZSksZX0sZS5wcm90b3R5cGUudW5yZWdpc3Rlcj1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9kaXNwb3NhYmxlcy5pbmRleE9mKGUpOy0xIT09dCYmdGhpcy5fZGlzcG9zYWJsZXMuc3BsaWNlKHQsMSl9LGV9KCk7ZnVuY3Rpb24gaShlKXtmb3IodmFyIHQ9MCxyPWU7dDxyLmxlbmd0aDt0Kyspclt0XS5kaXNwb3NlKCk7ZS5sZW5ndGg9MH10LkRpc3Bvc2FibGU9cix0LmRpc3Bvc2VBcnJheT1pLHQuZ2V0RGlzcG9zZUFycmF5RGlzcG9zYWJsZT1mdW5jdGlvbihlKXtyZXR1cm57ZGlzcG9zZTpmdW5jdGlvbigpe3JldHVybiBpKGUpfX19fSw2MTE0OihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuaXNMaW51eD10LmlzV2luZG93cz10LmlzSXBob25lPXQuaXNJcGFkPXQuaXNNYWM9dC5pc1NhZmFyaT10LmlzRmlyZWZveD12b2lkIDA7dmFyIHI9InVuZGVmaW5lZCI9PXR5cGVvZiBuYXZpZ2F0b3IsaT1yPyJub2RlIjpuYXZpZ2F0b3IudXNlckFnZW50LG49cj8ibm9kZSI6bmF2aWdhdG9yLnBsYXRmb3JtO3QuaXNGaXJlZm94PWkuaW5jbHVkZXMoIkZpcmVmb3giKSx0LmlzU2FmYXJpPS9eKCg/IWNocm9tZXxhbmRyb2lkKS4pKnNhZmFyaS9pLnRlc3QoaSksdC5pc01hYz1bIk1hY2ludG9zaCIsIk1hY0ludGVsIiwiTWFjUFBDIiwiTWFjNjhLIl0uaW5jbHVkZXMobiksdC5pc0lwYWQ9ImlQYWQiPT09bix0LmlzSXBob25lPSJpUGhvbmUiPT09bix0LmlzV2luZG93cz1bIldpbmRvd3MiLCJXaW4xNiIsIldpbjMyIiwiV2luQ0UiXS5pbmNsdWRlcyhuKSx0LmlzTGludXg9bi5pbmRleE9mKCJMaW51eCIpPj0wfSw4MjczOihlLHQpPT57ZnVuY3Rpb24gcihlLHQscixpKXtpZih2b2lkIDA9PT1yJiYocj0wKSx2b2lkIDA9PT1pJiYoaT1lLmxlbmd0aCkscj49ZS5sZW5ndGgpcmV0dXJuIGU7cj0oZS5sZW5ndGgrciklZS5sZW5ndGgsaT1pPj1lLmxlbmd0aD9lLmxlbmd0aDooZS5sZW5ndGgraSklZS5sZW5ndGg7Zm9yKHZhciBuPXI7bjxpOysrbillW25dPXQ7cmV0dXJuIGV9T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuY29uY2F0PXQuZmlsbEZhbGxiYWNrPXQuZmlsbD12b2lkIDAsdC5maWxsPWZ1bmN0aW9uKGUsdCxpLG4pe3JldHVybiBlLmZpbGw/ZS5maWxsKHQsaSxuKTpyKGUsdCxpLG4pfSx0LmZpbGxGYWxsYmFjaz1yLHQuY29uY2F0PWZ1bmN0aW9uKGUsdCl7dmFyIHI9bmV3IGUuY29uc3RydWN0b3IoZS5sZW5ndGgrdC5sZW5ndGgpO3JldHVybiByLnNldChlKSxyLnNldCh0LGUubGVuZ3RoKSxyfX0sOTI4MjooZSx0LHIpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQudXBkYXRlV2luZG93c01vZGVXcmFwcGVkU3RhdGU9dm9pZCAwO3ZhciBpPXIoNjQzKTt0LnVwZGF0ZVdpbmRvd3NNb2RlV3JhcHBlZFN0YXRlPWZ1bmN0aW9uKGUpe3ZhciB0PWUuYnVmZmVyLmxpbmVzLmdldChlLmJ1ZmZlci55YmFzZStlLmJ1ZmZlci55LTEpLHI9bnVsbD09dD92b2lkIDA6dC5nZXQoZS5jb2xzLTEpLG49ZS5idWZmZXIubGluZXMuZ2V0KGUuYnVmZmVyLnliYXNlK2UuYnVmZmVyLnkpO24mJnImJihuLmlzV3JhcHBlZD1yW2kuQ0hBUl9EQVRBX0NPREVfSU5ERVhdIT09aS5OVUxMX0NFTExfQ09ERSYmcltpLkNIQVJfREFUQV9DT0RFX0lOREVYXSE9PWkuV0hJVEVTUEFDRV9DRUxMX0NPREUpfX0sMzczNDooZSx0KT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkV4dGVuZGVkQXR0cnM9dC5BdHRyaWJ1dGVEYXRhPXZvaWQgMDt2YXIgcj1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoKXt0aGlzLmZnPTAsdGhpcy5iZz0wLHRoaXMuZXh0ZW5kZWQ9bmV3IGl9cmV0dXJuIGUudG9Db2xvclJHQj1mdW5jdGlvbihlKXtyZXR1cm5bZT4+PjE2JjI1NSxlPj4+OCYyNTUsMjU1JmVdfSxlLmZyb21Db2xvclJHQj1mdW5jdGlvbihlKXtyZXR1cm4oMjU1JmVbMF0pPDwxNnwoMjU1JmVbMV0pPDw4fDI1NSZlWzJdfSxlLnByb3RvdHlwZS5jbG9uZT1mdW5jdGlvbigpe3ZhciB0PW5ldyBlO3JldHVybiB0LmZnPXRoaXMuZmcsdC5iZz10aGlzLmJnLHQuZXh0ZW5kZWQ9dGhpcy5leHRlbmRlZC5jbG9uZSgpLHR9LGUucHJvdG90eXBlLmlzSW52ZXJzZT1mdW5jdGlvbigpe3JldHVybiA2NzEwODg2NCZ0aGlzLmZnfSxlLnByb3RvdHlwZS5pc0JvbGQ9ZnVuY3Rpb24oKXtyZXR1cm4gMTM0MjE3NzI4JnRoaXMuZmd9LGUucHJvdG90eXBlLmlzVW5kZXJsaW5lPWZ1bmN0aW9uKCl7cmV0dXJuIDI2ODQzNTQ1NiZ0aGlzLmZnfSxlLnByb3RvdHlwZS5pc0JsaW5rPWZ1bmN0aW9uKCl7cmV0dXJuIDUzNjg3MDkxMiZ0aGlzLmZnfSxlLnByb3RvdHlwZS5pc0ludmlzaWJsZT1mdW5jdGlvbigpe3JldHVybiAxMDczNzQxODI0JnRoaXMuZmd9LGUucHJvdG90eXBlLmlzSXRhbGljPWZ1bmN0aW9uKCl7cmV0dXJuIDY3MTA4ODY0JnRoaXMuYmd9LGUucHJvdG90eXBlLmlzRGltPWZ1bmN0aW9uKCl7cmV0dXJuIDEzNDIxNzcyOCZ0aGlzLmJnfSxlLnByb3RvdHlwZS5pc1N0cmlrZXRocm91Z2g9ZnVuY3Rpb24oKXtyZXR1cm4gMjE0NzQ4MzY0OCZ0aGlzLmZnfSxlLnByb3RvdHlwZS5nZXRGZ0NvbG9yTW9kZT1mdW5jdGlvbigpe3JldHVybiA1MDMzMTY0OCZ0aGlzLmZnfSxlLnByb3RvdHlwZS5nZXRCZ0NvbG9yTW9kZT1mdW5jdGlvbigpe3JldHVybiA1MDMzMTY0OCZ0aGlzLmJnfSxlLnByb3RvdHlwZS5pc0ZnUkdCPWZ1bmN0aW9uKCl7cmV0dXJuIDUwMzMxNjQ4PT0oNTAzMzE2NDgmdGhpcy5mZyl9LGUucHJvdG90eXBlLmlzQmdSR0I9ZnVuY3Rpb24oKXtyZXR1cm4gNTAzMzE2NDg9PSg1MDMzMTY0OCZ0aGlzLmJnKX0sZS5wcm90b3R5cGUuaXNGZ1BhbGV0dGU9ZnVuY3Rpb24oKXtyZXR1cm4gMTY3NzcyMTY9PSg1MDMzMTY0OCZ0aGlzLmZnKXx8MzM1NTQ0MzI9PSg1MDMzMTY0OCZ0aGlzLmZnKX0sZS5wcm90b3R5cGUuaXNCZ1BhbGV0dGU9ZnVuY3Rpb24oKXtyZXR1cm4gMTY3NzcyMTY9PSg1MDMzMTY0OCZ0aGlzLmJnKXx8MzM1NTQ0MzI9PSg1MDMzMTY0OCZ0aGlzLmJnKX0sZS5wcm90b3R5cGUuaXNGZ0RlZmF1bHQ9ZnVuY3Rpb24oKXtyZXR1cm4gMD09KDUwMzMxNjQ4JnRoaXMuZmcpfSxlLnByb3RvdHlwZS5pc0JnRGVmYXVsdD1mdW5jdGlvbigpe3JldHVybiAwPT0oNTAzMzE2NDgmdGhpcy5iZyl9LGUucHJvdG90eXBlLmlzQXR0cmlidXRlRGVmYXVsdD1mdW5jdGlvbigpe3JldHVybiAwPT09dGhpcy5mZyYmMD09PXRoaXMuYmd9LGUucHJvdG90eXBlLmdldEZnQ29sb3I9ZnVuY3Rpb24oKXtzd2l0Y2goNTAzMzE2NDgmdGhpcy5mZyl7Y2FzZSAxNjc3NzIxNjpjYXNlIDMzNTU0NDMyOnJldHVybiAyNTUmdGhpcy5mZztjYXNlIDUwMzMxNjQ4OnJldHVybiAxNjc3NzIxNSZ0aGlzLmZnO2RlZmF1bHQ6cmV0dXJuLTF9fSxlLnByb3RvdHlwZS5nZXRCZ0NvbG9yPWZ1bmN0aW9uKCl7c3dpdGNoKDUwMzMxNjQ4JnRoaXMuYmcpe2Nhc2UgMTY3NzcyMTY6Y2FzZSAzMzU1NDQzMjpyZXR1cm4gMjU1JnRoaXMuYmc7Y2FzZSA1MDMzMTY0ODpyZXR1cm4gMTY3NzcyMTUmdGhpcy5iZztkZWZhdWx0OnJldHVybi0xfX0sZS5wcm90b3R5cGUuaGFzRXh0ZW5kZWRBdHRycz1mdW5jdGlvbigpe3JldHVybiAyNjg0MzU0NTYmdGhpcy5iZ30sZS5wcm90b3R5cGUudXBkYXRlRXh0ZW5kZWQ9ZnVuY3Rpb24oKXt0aGlzLmV4dGVuZGVkLmlzRW1wdHkoKT90aGlzLmJnJj0tMjY4NDM1NDU3OnRoaXMuYmd8PTI2ODQzNTQ1Nn0sZS5wcm90b3R5cGUuZ2V0VW5kZXJsaW5lQ29sb3I9ZnVuY3Rpb24oKXtpZigyNjg0MzU0NTYmdGhpcy5iZyYmfnRoaXMuZXh0ZW5kZWQudW5kZXJsaW5lQ29sb3Ipc3dpdGNoKDUwMzMxNjQ4JnRoaXMuZXh0ZW5kZWQudW5kZXJsaW5lQ29sb3Ipe2Nhc2UgMTY3NzcyMTY6Y2FzZSAzMzU1NDQzMjpyZXR1cm4gMjU1JnRoaXMuZXh0ZW5kZWQudW5kZXJsaW5lQ29sb3I7Y2FzZSA1MDMzMTY0ODpyZXR1cm4gMTY3NzcyMTUmdGhpcy5leHRlbmRlZC51bmRlcmxpbmVDb2xvcjtkZWZhdWx0OnJldHVybiB0aGlzLmdldEZnQ29sb3IoKX1yZXR1cm4gdGhpcy5nZXRGZ0NvbG9yKCl9LGUucHJvdG90eXBlLmdldFVuZGVybGluZUNvbG9yTW9kZT1mdW5jdGlvbigpe3JldHVybiAyNjg0MzU0NTYmdGhpcy5iZyYmfnRoaXMuZXh0ZW5kZWQudW5kZXJsaW5lQ29sb3I/NTAzMzE2NDgmdGhpcy5leHRlbmRlZC51bmRlcmxpbmVDb2xvcjp0aGlzLmdldEZnQ29sb3JNb2RlKCl9LGUucHJvdG90eXBlLmlzVW5kZXJsaW5lQ29sb3JSR0I9ZnVuY3Rpb24oKXtyZXR1cm4gMjY4NDM1NDU2JnRoaXMuYmcmJn50aGlzLmV4dGVuZGVkLnVuZGVybGluZUNvbG9yPzUwMzMxNjQ4PT0oNTAzMzE2NDgmdGhpcy5leHRlbmRlZC51bmRlcmxpbmVDb2xvcik6dGhpcy5pc0ZnUkdCKCl9LGUucHJvdG90eXBlLmlzVW5kZXJsaW5lQ29sb3JQYWxldHRlPWZ1bmN0aW9uKCl7cmV0dXJuIDI2ODQzNTQ1NiZ0aGlzLmJnJiZ+dGhpcy5leHRlbmRlZC51bmRlcmxpbmVDb2xvcj8xNjc3NzIxNj09KDUwMzMxNjQ4JnRoaXMuZXh0ZW5kZWQudW5kZXJsaW5lQ29sb3IpfHwzMzU1NDQzMj09KDUwMzMxNjQ4JnRoaXMuZXh0ZW5kZWQudW5kZXJsaW5lQ29sb3IpOnRoaXMuaXNGZ1BhbGV0dGUoKX0sZS5wcm90b3R5cGUuaXNVbmRlcmxpbmVDb2xvckRlZmF1bHQ9ZnVuY3Rpb24oKXtyZXR1cm4gMjY4NDM1NDU2JnRoaXMuYmcmJn50aGlzLmV4dGVuZGVkLnVuZGVybGluZUNvbG9yPzA9PSg1MDMzMTY0OCZ0aGlzLmV4dGVuZGVkLnVuZGVybGluZUNvbG9yKTp0aGlzLmlzRmdEZWZhdWx0KCl9LGUucHJvdG90eXBlLmdldFVuZGVybGluZVN0eWxlPWZ1bmN0aW9uKCl7cmV0dXJuIDI2ODQzNTQ1NiZ0aGlzLmZnPzI2ODQzNTQ1NiZ0aGlzLmJnP3RoaXMuZXh0ZW5kZWQudW5kZXJsaW5lU3R5bGU6MTowfSxlfSgpO3QuQXR0cmlidXRlRGF0YT1yO3ZhciBpPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlLHQpe3ZvaWQgMD09PWUmJihlPTApLHZvaWQgMD09PXQmJih0PS0xKSx0aGlzLnVuZGVybGluZVN0eWxlPWUsdGhpcy51bmRlcmxpbmVDb2xvcj10fXJldHVybiBlLnByb3RvdHlwZS5jbG9uZT1mdW5jdGlvbigpe3JldHVybiBuZXcgZSh0aGlzLnVuZGVybGluZVN0eWxlLHRoaXMudW5kZXJsaW5lQ29sb3IpfSxlLnByb3RvdHlwZS5pc0VtcHR5PWZ1bmN0aW9uKCl7cmV0dXJuIDA9PT10aGlzLnVuZGVybGluZVN0eWxlfSxlfSgpO3QuRXh0ZW5kZWRBdHRycz1pfSw5MDkyOihlLHQscik9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5CdWZmZXJTdHJpbmdJdGVyYXRvcj10LkJ1ZmZlcj10Lk1BWF9CVUZGRVJfU0laRT12b2lkIDA7dmFyIGk9cig2MzQ5KSxuPXIoODQzNyksbz1yKDUxMSkscz1yKDY0MyksYT1yKDQ2MzQpLGM9cig0ODYzKSxsPXIoNzExNiksdT1yKDM3MzQpO3QuTUFYX0JVRkZFUl9TSVpFPTQyOTQ5NjcyOTU7dmFyIGg9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUsdCxyKXt0aGlzLl9oYXNTY3JvbGxiYWNrPWUsdGhpcy5fb3B0aW9uc1NlcnZpY2U9dCx0aGlzLl9idWZmZXJTZXJ2aWNlPXIsdGhpcy55ZGlzcD0wLHRoaXMueWJhc2U9MCx0aGlzLnk9MCx0aGlzLng9MCx0aGlzLnNhdmVkWT0wLHRoaXMuc2F2ZWRYPTAsdGhpcy5zYXZlZEN1ckF0dHJEYXRhPW4uREVGQVVMVF9BVFRSX0RBVEEuY2xvbmUoKSx0aGlzLnNhdmVkQ2hhcnNldD1sLkRFRkFVTFRfQ0hBUlNFVCx0aGlzLm1hcmtlcnM9W10sdGhpcy5fbnVsbENlbGw9by5DZWxsRGF0YS5mcm9tQ2hhckRhdGEoWzAscy5OVUxMX0NFTExfQ0hBUixzLk5VTExfQ0VMTF9XSURUSCxzLk5VTExfQ0VMTF9DT0RFXSksdGhpcy5fd2hpdGVzcGFjZUNlbGw9by5DZWxsRGF0YS5mcm9tQ2hhckRhdGEoWzAscy5XSElURVNQQUNFX0NFTExfQ0hBUixzLldISVRFU1BBQ0VfQ0VMTF9XSURUSCxzLldISVRFU1BBQ0VfQ0VMTF9DT0RFXSksdGhpcy5fY29scz10aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsdGhpcy5fcm93cz10aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MsdGhpcy5saW5lcz1uZXcgaS5DaXJjdWxhckxpc3QodGhpcy5fZ2V0Q29ycmVjdEJ1ZmZlckxlbmd0aCh0aGlzLl9yb3dzKSksdGhpcy5zY3JvbGxUb3A9MCx0aGlzLnNjcm9sbEJvdHRvbT10aGlzLl9yb3dzLTEsdGhpcy5zZXR1cFRhYlN0b3BzKCl9cmV0dXJuIGUucHJvdG90eXBlLmdldE51bGxDZWxsPWZ1bmN0aW9uKGUpe3JldHVybiBlPyh0aGlzLl9udWxsQ2VsbC5mZz1lLmZnLHRoaXMuX251bGxDZWxsLmJnPWUuYmcsdGhpcy5fbnVsbENlbGwuZXh0ZW5kZWQ9ZS5leHRlbmRlZCk6KHRoaXMuX251bGxDZWxsLmZnPTAsdGhpcy5fbnVsbENlbGwuYmc9MCx0aGlzLl9udWxsQ2VsbC5leHRlbmRlZD1uZXcgdS5FeHRlbmRlZEF0dHJzKSx0aGlzLl9udWxsQ2VsbH0sZS5wcm90b3R5cGUuZ2V0V2hpdGVzcGFjZUNlbGw9ZnVuY3Rpb24oZSl7cmV0dXJuIGU/KHRoaXMuX3doaXRlc3BhY2VDZWxsLmZnPWUuZmcsdGhpcy5fd2hpdGVzcGFjZUNlbGwuYmc9ZS5iZyx0aGlzLl93aGl0ZXNwYWNlQ2VsbC5leHRlbmRlZD1lLmV4dGVuZGVkKToodGhpcy5fd2hpdGVzcGFjZUNlbGwuZmc9MCx0aGlzLl93aGl0ZXNwYWNlQ2VsbC5iZz0wLHRoaXMuX3doaXRlc3BhY2VDZWxsLmV4dGVuZGVkPW5ldyB1LkV4dGVuZGVkQXR0cnMpLHRoaXMuX3doaXRlc3BhY2VDZWxsfSxlLnByb3RvdHlwZS5nZXRCbGFua0xpbmU9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gbmV3IG4uQnVmZmVyTGluZSh0aGlzLl9idWZmZXJTZXJ2aWNlLmNvbHMsdGhpcy5nZXROdWxsQ2VsbChlKSx0KX0sT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJoYXNTY3JvbGxiYWNrIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2hhc1Njcm9sbGJhY2smJnRoaXMubGluZXMubWF4TGVuZ3RoPnRoaXMuX3Jvd3N9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJpc0N1cnNvckluVmlld3BvcnQiLHtnZXQ6ZnVuY3Rpb24oKXt2YXIgZT10aGlzLnliYXNlK3RoaXMueS10aGlzLnlkaXNwO3JldHVybiBlPj0wJiZlPHRoaXMuX3Jvd3N9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksZS5wcm90b3R5cGUuX2dldENvcnJlY3RCdWZmZXJMZW5ndGg9ZnVuY3Rpb24oZSl7aWYoIXRoaXMuX2hhc1Njcm9sbGJhY2spcmV0dXJuIGU7dmFyIHI9ZSt0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLnNjcm9sbGJhY2s7cmV0dXJuIHI+dC5NQVhfQlVGRkVSX1NJWkU/dC5NQVhfQlVGRkVSX1NJWkU6cn0sZS5wcm90b3R5cGUuZmlsbFZpZXdwb3J0Um93cz1mdW5jdGlvbihlKXtpZigwPT09dGhpcy5saW5lcy5sZW5ndGgpe3ZvaWQgMD09PWUmJihlPW4uREVGQVVMVF9BVFRSX0RBVEEpO2Zvcih2YXIgdD10aGlzLl9yb3dzO3QtLTspdGhpcy5saW5lcy5wdXNoKHRoaXMuZ2V0QmxhbmtMaW5lKGUpKX19LGUucHJvdG90eXBlLmNsZWFyPWZ1bmN0aW9uKCl7dGhpcy55ZGlzcD0wLHRoaXMueWJhc2U9MCx0aGlzLnk9MCx0aGlzLng9MCx0aGlzLmxpbmVzPW5ldyBpLkNpcmN1bGFyTGlzdCh0aGlzLl9nZXRDb3JyZWN0QnVmZmVyTGVuZ3RoKHRoaXMuX3Jvd3MpKSx0aGlzLnNjcm9sbFRvcD0wLHRoaXMuc2Nyb2xsQm90dG9tPXRoaXMuX3Jvd3MtMSx0aGlzLnNldHVwVGFiU3RvcHMoKX0sZS5wcm90b3R5cGUucmVzaXplPWZ1bmN0aW9uKGUsdCl7dmFyIHI9dGhpcy5nZXROdWxsQ2VsbChuLkRFRkFVTFRfQVRUUl9EQVRBKSxpPXRoaXMuX2dldENvcnJlY3RCdWZmZXJMZW5ndGgodCk7aWYoaT50aGlzLmxpbmVzLm1heExlbmd0aCYmKHRoaXMubGluZXMubWF4TGVuZ3RoPWkpLHRoaXMubGluZXMubGVuZ3RoPjApe2lmKHRoaXMuX2NvbHM8ZSlmb3IodmFyIG89MDtvPHRoaXMubGluZXMubGVuZ3RoO28rKyl0aGlzLmxpbmVzLmdldChvKS5yZXNpemUoZSxyKTt2YXIgcz0wO2lmKHRoaXMuX3Jvd3M8dClmb3IodmFyIGE9dGhpcy5fcm93czthPHQ7YSsrKXRoaXMubGluZXMubGVuZ3RoPHQrdGhpcy55YmFzZSYmKHRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMud2luZG93c01vZGU/dGhpcy5saW5lcy5wdXNoKG5ldyBuLkJ1ZmZlckxpbmUoZSxyKSk6dGhpcy55YmFzZT4wJiZ0aGlzLmxpbmVzLmxlbmd0aDw9dGhpcy55YmFzZSt0aGlzLnkrcysxPyh0aGlzLnliYXNlLS0scysrLHRoaXMueWRpc3A+MCYmdGhpcy55ZGlzcC0tKTp0aGlzLmxpbmVzLnB1c2gobmV3IG4uQnVmZmVyTGluZShlLHIpKSk7ZWxzZSBmb3IoYT10aGlzLl9yb3dzO2E+dDthLS0pdGhpcy5saW5lcy5sZW5ndGg+dCt0aGlzLnliYXNlJiYodGhpcy5saW5lcy5sZW5ndGg+dGhpcy55YmFzZSt0aGlzLnkrMT90aGlzLmxpbmVzLnBvcCgpOih0aGlzLnliYXNlKyssdGhpcy55ZGlzcCsrKSk7aWYoaTx0aGlzLmxpbmVzLm1heExlbmd0aCl7dmFyIGM9dGhpcy5saW5lcy5sZW5ndGgtaTtjPjAmJih0aGlzLmxpbmVzLnRyaW1TdGFydChjKSx0aGlzLnliYXNlPU1hdGgubWF4KHRoaXMueWJhc2UtYywwKSx0aGlzLnlkaXNwPU1hdGgubWF4KHRoaXMueWRpc3AtYywwKSx0aGlzLnNhdmVkWT1NYXRoLm1heCh0aGlzLnNhdmVkWS1jLDApKSx0aGlzLmxpbmVzLm1heExlbmd0aD1pfXRoaXMueD1NYXRoLm1pbih0aGlzLngsZS0xKSx0aGlzLnk9TWF0aC5taW4odGhpcy55LHQtMSkscyYmKHRoaXMueSs9cyksdGhpcy5zYXZlZFg9TWF0aC5taW4odGhpcy5zYXZlZFgsZS0xKSx0aGlzLnNjcm9sbFRvcD0wfWlmKHRoaXMuc2Nyb2xsQm90dG9tPXQtMSx0aGlzLl9pc1JlZmxvd0VuYWJsZWQmJih0aGlzLl9yZWZsb3coZSx0KSx0aGlzLl9jb2xzPmUpKWZvcihvPTA7bzx0aGlzLmxpbmVzLmxlbmd0aDtvKyspdGhpcy5saW5lcy5nZXQobykucmVzaXplKGUscik7dGhpcy5fY29scz1lLHRoaXMuX3Jvd3M9dH0sT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJfaXNSZWZsb3dFbmFibGVkIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2hhc1Njcm9sbGJhY2smJiF0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLndpbmRvd3NNb2RlfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLGUucHJvdG90eXBlLl9yZWZsb3c9ZnVuY3Rpb24oZSx0KXt0aGlzLl9jb2xzIT09ZSYmKGU+dGhpcy5fY29scz90aGlzLl9yZWZsb3dMYXJnZXIoZSx0KTp0aGlzLl9yZWZsb3dTbWFsbGVyKGUsdCkpfSxlLnByb3RvdHlwZS5fcmVmbG93TGFyZ2VyPWZ1bmN0aW9uKGUsdCl7dmFyIHI9KDAsYS5yZWZsb3dMYXJnZXJHZXRMaW5lc1RvUmVtb3ZlKSh0aGlzLmxpbmVzLHRoaXMuX2NvbHMsZSx0aGlzLnliYXNlK3RoaXMueSx0aGlzLmdldE51bGxDZWxsKG4uREVGQVVMVF9BVFRSX0RBVEEpKTtpZihyLmxlbmd0aD4wKXt2YXIgaT0oMCxhLnJlZmxvd0xhcmdlckNyZWF0ZU5ld0xheW91dCkodGhpcy5saW5lcyxyKTsoMCxhLnJlZmxvd0xhcmdlckFwcGx5TmV3TGF5b3V0KSh0aGlzLmxpbmVzLGkubGF5b3V0KSx0aGlzLl9yZWZsb3dMYXJnZXJBZGp1c3RWaWV3cG9ydChlLHQsaS5jb3VudFJlbW92ZWQpfX0sZS5wcm90b3R5cGUuX3JlZmxvd0xhcmdlckFkanVzdFZpZXdwb3J0PWZ1bmN0aW9uKGUsdCxyKXtmb3IodmFyIGk9dGhpcy5nZXROdWxsQ2VsbChuLkRFRkFVTFRfQVRUUl9EQVRBKSxvPXI7by0tID4wOykwPT09dGhpcy55YmFzZT8odGhpcy55PjAmJnRoaXMueS0tLHRoaXMubGluZXMubGVuZ3RoPHQmJnRoaXMubGluZXMucHVzaChuZXcgbi5CdWZmZXJMaW5lKGUsaSkpKToodGhpcy55ZGlzcD09PXRoaXMueWJhc2UmJnRoaXMueWRpc3AtLSx0aGlzLnliYXNlLS0pO3RoaXMuc2F2ZWRZPU1hdGgubWF4KHRoaXMuc2F2ZWRZLXIsMCl9LGUucHJvdG90eXBlLl9yZWZsb3dTbWFsbGVyPWZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByPXRoaXMuZ2V0TnVsbENlbGwobi5ERUZBVUxUX0FUVFJfREFUQSksaT1bXSxvPTAscz10aGlzLmxpbmVzLmxlbmd0aC0xO3M+PTA7cy0tKXt2YXIgYz10aGlzLmxpbmVzLmdldChzKTtpZighKCFjfHwhYy5pc1dyYXBwZWQmJmMuZ2V0VHJpbW1lZExlbmd0aCgpPD1lKSl7Zm9yKHZhciBsPVtjXTtjLmlzV3JhcHBlZCYmcz4wOyljPXRoaXMubGluZXMuZ2V0KC0tcyksbC51bnNoaWZ0KGMpO3ZhciB1PXRoaXMueWJhc2UrdGhpcy55O2lmKCEodT49cyYmdTxzK2wubGVuZ3RoKSl7dmFyIGgsZj1sW2wubGVuZ3RoLTFdLmdldFRyaW1tZWRMZW5ndGgoKSxfPSgwLGEucmVmbG93U21hbGxlckdldE5ld0xpbmVMZW5ndGhzKShsLHRoaXMuX2NvbHMsZSksZD1fLmxlbmd0aC1sLmxlbmd0aDtoPTA9PT10aGlzLnliYXNlJiZ0aGlzLnkhPT10aGlzLmxpbmVzLmxlbmd0aC0xP01hdGgubWF4KDAsdGhpcy55LXRoaXMubGluZXMubWF4TGVuZ3RoK2QpOk1hdGgubWF4KDAsdGhpcy5saW5lcy5sZW5ndGgtdGhpcy5saW5lcy5tYXhMZW5ndGgrZCk7Zm9yKHZhciBwPVtdLHY9MDt2PGQ7disrKXt2YXIgZz10aGlzLmdldEJsYW5rTGluZShuLkRFRkFVTFRfQVRUUl9EQVRBLCEwKTtwLnB1c2goZyl9cC5sZW5ndGg+MCYmKGkucHVzaCh7c3RhcnQ6cytsLmxlbmd0aCtvLG5ld0xpbmVzOnB9KSxvKz1wLmxlbmd0aCksbC5wdXNoLmFwcGx5KGwscCk7dmFyIHk9Xy5sZW5ndGgtMSxtPV9beV07MD09PW0mJihtPV9bLS15XSk7Zm9yKHZhciBiPWwubGVuZ3RoLWQtMSxTPWY7Yj49MDspe3ZhciBDPU1hdGgubWluKFMsbSk7aWYobFt5XS5jb3B5Q2VsbHNGcm9tKGxbYl0sUy1DLG0tQyxDLCEwKSwwPT0obS09QykmJihtPV9bLS15XSksMD09KFMtPUMpKXtiLS07dmFyIHc9TWF0aC5tYXgoYiwwKTtTPSgwLGEuZ2V0V3JhcHBlZExpbmVUcmltbWVkTGVuZ3RoKShsLHcsdGhpcy5fY29scyl9fWZvcih2PTA7djxsLmxlbmd0aDt2KyspX1t2XTxlJiZsW3ZdLnNldENlbGwoX1t2XSxyKTtmb3IodmFyIEw9ZC1oO0wtLSA+MDspMD09PXRoaXMueWJhc2U/dGhpcy55PHQtMT8odGhpcy55KyssdGhpcy5saW5lcy5wb3AoKSk6KHRoaXMueWJhc2UrKyx0aGlzLnlkaXNwKyspOnRoaXMueWJhc2U8TWF0aC5taW4odGhpcy5saW5lcy5tYXhMZW5ndGgsdGhpcy5saW5lcy5sZW5ndGgrbyktdCYmKHRoaXMueWJhc2U9PT10aGlzLnlkaXNwJiZ0aGlzLnlkaXNwKyssdGhpcy55YmFzZSsrKTt0aGlzLnNhdmVkWT1NYXRoLm1pbih0aGlzLnNhdmVkWStkLHRoaXMueWJhc2UrdC0xKX19fWlmKGkubGVuZ3RoPjApe3ZhciBFPVtdLHg9W107Zm9yKHY9MDt2PHRoaXMubGluZXMubGVuZ3RoO3YrKyl4LnB1c2godGhpcy5saW5lcy5nZXQodikpO3ZhciBBPXRoaXMubGluZXMubGVuZ3RoLGs9QS0xLE09MCxSPWlbTV07dGhpcy5saW5lcy5sZW5ndGg9TWF0aC5taW4odGhpcy5saW5lcy5tYXhMZW5ndGgsdGhpcy5saW5lcy5sZW5ndGgrbyk7dmFyIFQ9MDtmb3Iodj1NYXRoLm1pbih0aGlzLmxpbmVzLm1heExlbmd0aC0xLEErby0xKTt2Pj0wO3YtLSlpZihSJiZSLnN0YXJ0PmsrVCl7Zm9yKHZhciBPPVIubmV3TGluZXMubGVuZ3RoLTE7Tz49MDtPLS0pdGhpcy5saW5lcy5zZXQodi0tLFIubmV3TGluZXNbT10pO3YrKyxFLnB1c2goe2luZGV4OmsrMSxhbW91bnQ6Ui5uZXdMaW5lcy5sZW5ndGh9KSxUKz1SLm5ld0xpbmVzLmxlbmd0aCxSPWlbKytNXX1lbHNlIHRoaXMubGluZXMuc2V0KHYseFtrLS1dKTt2YXIgQj0wO2Zvcih2PUUubGVuZ3RoLTE7dj49MDt2LS0pRVt2XS5pbmRleCs9Qix0aGlzLmxpbmVzLm9uSW5zZXJ0RW1pdHRlci5maXJlKEVbdl0pLEIrPUVbdl0uYW1vdW50O3ZhciBEPU1hdGgubWF4KDAsQStvLXRoaXMubGluZXMubWF4TGVuZ3RoKTtEPjAmJnRoaXMubGluZXMub25UcmltRW1pdHRlci5maXJlKEQpfX0sZS5wcm90b3R5cGUuc3RyaW5nSW5kZXhUb0J1ZmZlckluZGV4PWZ1bmN0aW9uKGUsdCxyKXtmb3Iodm9pZCAwPT09ciYmKHI9ITEpO3Q7KXt2YXIgaT10aGlzLmxpbmVzLmdldChlKTtpZighaSlyZXR1cm5bLTEsLTFdO2Zvcih2YXIgbj1yP2kuZ2V0VHJpbW1lZExlbmd0aCgpOmkubGVuZ3RoLG89MDtvPG47KytvKWlmKGkuZ2V0KG8pW3MuQ0hBUl9EQVRBX1dJRFRIX0lOREVYXSYmKHQtPWkuZ2V0KG8pW3MuQ0hBUl9EQVRBX0NIQVJfSU5ERVhdLmxlbmd0aHx8MSksdDwwKXJldHVybltlLG9dO2UrK31yZXR1cm5bZSwwXX0sZS5wcm90b3R5cGUudHJhbnNsYXRlQnVmZmVyTGluZVRvU3RyaW5nPWZ1bmN0aW9uKGUsdCxyLGkpe3ZvaWQgMD09PXImJihyPTApO3ZhciBuPXRoaXMubGluZXMuZ2V0KGUpO3JldHVybiBuP24udHJhbnNsYXRlVG9TdHJpbmcodCxyLGkpOiIifSxlLnByb3RvdHlwZS5nZXRXcmFwcGVkUmFuZ2VGb3JMaW5lPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD1lLHI9ZTt0PjAmJnRoaXMubGluZXMuZ2V0KHQpLmlzV3JhcHBlZDspdC0tO2Zvcig7cisxPHRoaXMubGluZXMubGVuZ3RoJiZ0aGlzLmxpbmVzLmdldChyKzEpLmlzV3JhcHBlZDspcisrO3JldHVybntmaXJzdDp0LGxhc3Q6cn19LGUucHJvdG90eXBlLnNldHVwVGFiU3RvcHM9ZnVuY3Rpb24oZSl7Zm9yKG51bGwhPWU/dGhpcy50YWJzW2VdfHwoZT10aGlzLnByZXZTdG9wKGUpKToodGhpcy50YWJzPXt9LGU9MCk7ZTx0aGlzLl9jb2xzO2UrPXRoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMudGFiU3RvcFdpZHRoKXRoaXMudGFic1tlXT0hMH0sZS5wcm90b3R5cGUucHJldlN0b3A9ZnVuY3Rpb24oZSl7Zm9yKG51bGw9PWUmJihlPXRoaXMueCk7IXRoaXMudGFic1stLWVdJiZlPjA7KTtyZXR1cm4gZT49dGhpcy5fY29scz90aGlzLl9jb2xzLTE6ZTwwPzA6ZX0sZS5wcm90b3R5cGUubmV4dFN0b3A9ZnVuY3Rpb24oZSl7Zm9yKG51bGw9PWUmJihlPXRoaXMueCk7IXRoaXMudGFic1srK2VdJiZlPHRoaXMuX2NvbHM7KTtyZXR1cm4gZT49dGhpcy5fY29scz90aGlzLl9jb2xzLTE6ZTwwPzA6ZX0sZS5wcm90b3R5cGUuYWRkTWFya2VyPWZ1bmN0aW9uKGUpe3ZhciB0PXRoaXMscj1uZXcgYy5NYXJrZXIoZSk7cmV0dXJuIHRoaXMubWFya2Vycy5wdXNoKHIpLHIucmVnaXN0ZXIodGhpcy5saW5lcy5vblRyaW0oKGZ1bmN0aW9uKGUpe3IubGluZS09ZSxyLmxpbmU8MCYmci5kaXNwb3NlKCl9KSkpLHIucmVnaXN0ZXIodGhpcy5saW5lcy5vbkluc2VydCgoZnVuY3Rpb24oZSl7ci5saW5lPj1lLmluZGV4JiYoci5saW5lKz1lLmFtb3VudCl9KSkpLHIucmVnaXN0ZXIodGhpcy5saW5lcy5vbkRlbGV0ZSgoZnVuY3Rpb24oZSl7ci5saW5lPj1lLmluZGV4JiZyLmxpbmU8ZS5pbmRleCtlLmFtb3VudCYmci5kaXNwb3NlKCksci5saW5lPmUuaW5kZXgmJihyLmxpbmUtPWUuYW1vdW50KX0pKSksci5yZWdpc3RlcihyLm9uRGlzcG9zZSgoZnVuY3Rpb24oKXtyZXR1cm4gdC5fcmVtb3ZlTWFya2VyKHIpfSkpKSxyfSxlLnByb3RvdHlwZS5fcmVtb3ZlTWFya2VyPWZ1bmN0aW9uKGUpe3RoaXMubWFya2Vycy5zcGxpY2UodGhpcy5tYXJrZXJzLmluZGV4T2YoZSksMSl9LGUucHJvdG90eXBlLml0ZXJhdG9yPWZ1bmN0aW9uKGUsdCxyLGksbil7cmV0dXJuIG5ldyBmKHRoaXMsZSx0LHIsaSxuKX0sZX0oKTt0LkJ1ZmZlcj1oO3ZhciBmPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlLHQscixpLG4sbyl7dm9pZCAwPT09ciYmKHI9MCksdm9pZCAwPT09aSYmKGk9ZS5saW5lcy5sZW5ndGgpLHZvaWQgMD09PW4mJihuPTApLHZvaWQgMD09PW8mJihvPTApLHRoaXMuX2J1ZmZlcj1lLHRoaXMuX3RyaW1SaWdodD10LHRoaXMuX3N0YXJ0SW5kZXg9cix0aGlzLl9lbmRJbmRleD1pLHRoaXMuX3N0YXJ0T3ZlcnNjYW49bix0aGlzLl9lbmRPdmVyc2Nhbj1vLHRoaXMuX3N0YXJ0SW5kZXg8MCYmKHRoaXMuX3N0YXJ0SW5kZXg9MCksdGhpcy5fZW5kSW5kZXg+dGhpcy5fYnVmZmVyLmxpbmVzLmxlbmd0aCYmKHRoaXMuX2VuZEluZGV4PXRoaXMuX2J1ZmZlci5saW5lcy5sZW5ndGgpLHRoaXMuX2N1cnJlbnQ9dGhpcy5fc3RhcnRJbmRleH1yZXR1cm4gZS5wcm90b3R5cGUuaGFzTmV4dD1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9jdXJyZW50PHRoaXMuX2VuZEluZGV4fSxlLnByb3RvdHlwZS5uZXh0PWZ1bmN0aW9uKCl7dmFyIGU9dGhpcy5fYnVmZmVyLmdldFdyYXBwZWRSYW5nZUZvckxpbmUodGhpcy5fY3VycmVudCk7ZS5maXJzdDx0aGlzLl9zdGFydEluZGV4LXRoaXMuX3N0YXJ0T3ZlcnNjYW4mJihlLmZpcnN0PXRoaXMuX3N0YXJ0SW5kZXgtdGhpcy5fc3RhcnRPdmVyc2NhbiksZS5sYXN0PnRoaXMuX2VuZEluZGV4K3RoaXMuX2VuZE92ZXJzY2FuJiYoZS5sYXN0PXRoaXMuX2VuZEluZGV4K3RoaXMuX2VuZE92ZXJzY2FuKSxlLmZpcnN0PU1hdGgubWF4KGUuZmlyc3QsMCksZS5sYXN0PU1hdGgubWluKGUubGFzdCx0aGlzLl9idWZmZXIubGluZXMubGVuZ3RoKTtmb3IodmFyIHQ9IiIscj1lLmZpcnN0O3I8PWUubGFzdDsrK3IpdCs9dGhpcy5fYnVmZmVyLnRyYW5zbGF0ZUJ1ZmZlckxpbmVUb1N0cmluZyhyLHRoaXMuX3RyaW1SaWdodCk7cmV0dXJuIHRoaXMuX2N1cnJlbnQ9ZS5sYXN0KzEse3JhbmdlOmUsY29udGVudDp0fX0sZX0oKTt0LkJ1ZmZlclN0cmluZ0l0ZXJhdG9yPWZ9LDg0Mzc6KGUsdCxyKT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkJ1ZmZlckxpbmU9dC5ERUZBVUxUX0FUVFJfREFUQT12b2lkIDA7dmFyIGk9cig0ODIpLG49cig2NDMpLG89cig1MTEpLHM9cigzNzM0KTt0LkRFRkFVTFRfQVRUUl9EQVRBPU9iamVjdC5mcmVlemUobmV3IHMuQXR0cmlidXRlRGF0YSk7dmFyIGE9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUsdCxyKXt2b2lkIDA9PT1yJiYocj0hMSksdGhpcy5pc1dyYXBwZWQ9cix0aGlzLl9jb21iaW5lZD17fSx0aGlzLl9leHRlbmRlZEF0dHJzPXt9LHRoaXMuX2RhdGE9bmV3IFVpbnQzMkFycmF5KDMqZSk7Zm9yKHZhciBpPXR8fG8uQ2VsbERhdGEuZnJvbUNoYXJEYXRhKFswLG4uTlVMTF9DRUxMX0NIQVIsbi5OVUxMX0NFTExfV0lEVEgsbi5OVUxMX0NFTExfQ09ERV0pLHM9MDtzPGU7KytzKXRoaXMuc2V0Q2VsbChzLGkpO3RoaXMubGVuZ3RoPWV9cmV0dXJuIGUucHJvdG90eXBlLmdldD1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9kYXRhWzMqZSswXSxyPTIwOTcxNTEmdDtyZXR1cm5bdGhpcy5fZGF0YVszKmUrMV0sMjA5NzE1MiZ0P3RoaXMuX2NvbWJpbmVkW2VdOnI/KDAsaS5zdHJpbmdGcm9tQ29kZVBvaW50KShyKToiIix0Pj4yMiwyMDk3MTUyJnQ/dGhpcy5fY29tYmluZWRbZV0uY2hhckNvZGVBdCh0aGlzLl9jb21iaW5lZFtlXS5sZW5ndGgtMSk6cl19LGUucHJvdG90eXBlLnNldD1mdW5jdGlvbihlLHQpe3RoaXMuX2RhdGFbMyplKzFdPXRbbi5DSEFSX0RBVEFfQVRUUl9JTkRFWF0sdFtuLkNIQVJfREFUQV9DSEFSX0lOREVYXS5sZW5ndGg+MT8odGhpcy5fY29tYmluZWRbZV09dFsxXSx0aGlzLl9kYXRhWzMqZSswXT0yMDk3MTUyfGV8dFtuLkNIQVJfREFUQV9XSURUSF9JTkRFWF08PDIyKTp0aGlzLl9kYXRhWzMqZSswXT10W24uQ0hBUl9EQVRBX0NIQVJfSU5ERVhdLmNoYXJDb2RlQXQoMCl8dFtuLkNIQVJfREFUQV9XSURUSF9JTkRFWF08PDIyfSxlLnByb3RvdHlwZS5nZXRXaWR0aD1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fZGF0YVszKmUrMF0+PjIyfSxlLnByb3RvdHlwZS5oYXNXaWR0aD1mdW5jdGlvbihlKXtyZXR1cm4gMTI1ODI5MTImdGhpcy5fZGF0YVszKmUrMF19LGUucHJvdG90eXBlLmdldEZnPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9kYXRhWzMqZSsxXX0sZS5wcm90b3R5cGUuZ2V0Qmc9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMuX2RhdGFbMyplKzJdfSxlLnByb3RvdHlwZS5oYXNDb250ZW50PWZ1bmN0aW9uKGUpe3JldHVybiA0MTk0MzAzJnRoaXMuX2RhdGFbMyplKzBdfSxlLnByb3RvdHlwZS5nZXRDb2RlUG9pbnQ9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcy5fZGF0YVszKmUrMF07cmV0dXJuIDIwOTcxNTImdD90aGlzLl9jb21iaW5lZFtlXS5jaGFyQ29kZUF0KHRoaXMuX2NvbWJpbmVkW2VdLmxlbmd0aC0xKToyMDk3MTUxJnR9LGUucHJvdG90eXBlLmlzQ29tYmluZWQ9ZnVuY3Rpb24oZSl7cmV0dXJuIDIwOTcxNTImdGhpcy5fZGF0YVszKmUrMF19LGUucHJvdG90eXBlLmdldFN0cmluZz1mdW5jdGlvbihlKXt2YXIgdD10aGlzLl9kYXRhWzMqZSswXTtyZXR1cm4gMjA5NzE1MiZ0P3RoaXMuX2NvbWJpbmVkW2VdOjIwOTcxNTEmdD8oMCxpLnN0cmluZ0Zyb21Db2RlUG9pbnQpKDIwOTcxNTEmdCk6IiJ9LGUucHJvdG90eXBlLmxvYWRDZWxsPWZ1bmN0aW9uKGUsdCl7dmFyIHI9MyplO3JldHVybiB0LmNvbnRlbnQ9dGhpcy5fZGF0YVtyKzBdLHQuZmc9dGhpcy5fZGF0YVtyKzFdLHQuYmc9dGhpcy5fZGF0YVtyKzJdLDIwOTcxNTImdC5jb250ZW50JiYodC5jb21iaW5lZERhdGE9dGhpcy5fY29tYmluZWRbZV0pLDI2ODQzNTQ1NiZ0LmJnJiYodC5leHRlbmRlZD10aGlzLl9leHRlbmRlZEF0dHJzW2VdKSx0fSxlLnByb3RvdHlwZS5zZXRDZWxsPWZ1bmN0aW9uKGUsdCl7MjA5NzE1MiZ0LmNvbnRlbnQmJih0aGlzLl9jb21iaW5lZFtlXT10LmNvbWJpbmVkRGF0YSksMjY4NDM1NDU2JnQuYmcmJih0aGlzLl9leHRlbmRlZEF0dHJzW2VdPXQuZXh0ZW5kZWQpLHRoaXMuX2RhdGFbMyplKzBdPXQuY29udGVudCx0aGlzLl9kYXRhWzMqZSsxXT10LmZnLHRoaXMuX2RhdGFbMyplKzJdPXQuYmd9LGUucHJvdG90eXBlLnNldENlbGxGcm9tQ29kZVBvaW50PWZ1bmN0aW9uKGUsdCxyLGksbixvKXsyNjg0MzU0NTYmbiYmKHRoaXMuX2V4dGVuZGVkQXR0cnNbZV09byksdGhpcy5fZGF0YVszKmUrMF09dHxyPDwyMix0aGlzLl9kYXRhWzMqZSsxXT1pLHRoaXMuX2RhdGFbMyplKzJdPW59LGUucHJvdG90eXBlLmFkZENvZGVwb2ludFRvQ2VsbD1mdW5jdGlvbihlLHQpe3ZhciByPXRoaXMuX2RhdGFbMyplKzBdOzIwOTcxNTImcj90aGlzLl9jb21iaW5lZFtlXSs9KDAsaS5zdHJpbmdGcm9tQ29kZVBvaW50KSh0KTooMjA5NzE1MSZyPyh0aGlzLl9jb21iaW5lZFtlXT0oMCxpLnN0cmluZ0Zyb21Db2RlUG9pbnQpKDIwOTcxNTEmcikrKDAsaS5zdHJpbmdGcm9tQ29kZVBvaW50KSh0KSxyJj0tMjA5NzE1MixyfD0yMDk3MTUyKTpyPXR8MTw8MjIsdGhpcy5fZGF0YVszKmUrMF09cil9LGUucHJvdG90eXBlLmluc2VydENlbGxzPWZ1bmN0aW9uKGUsdCxyLGkpe2lmKChlJT10aGlzLmxlbmd0aCkmJjI9PT10aGlzLmdldFdpZHRoKGUtMSkmJnRoaXMuc2V0Q2VsbEZyb21Db2RlUG9pbnQoZS0xLDAsMSwobnVsbD09aT92b2lkIDA6aS5mZyl8fDAsKG51bGw9PWk/dm9pZCAwOmkuYmcpfHwwLChudWxsPT1pP3ZvaWQgMDppLmV4dGVuZGVkKXx8bmV3IHMuRXh0ZW5kZWRBdHRycyksdDx0aGlzLmxlbmd0aC1lKXtmb3IodmFyIG49bmV3IG8uQ2VsbERhdGEsYT10aGlzLmxlbmd0aC1lLXQtMTthPj0wOy0tYSl0aGlzLnNldENlbGwoZSt0K2EsdGhpcy5sb2FkQ2VsbChlK2EsbikpO2ZvcihhPTA7YTx0OysrYSl0aGlzLnNldENlbGwoZSthLHIpfWVsc2UgZm9yKGE9ZTthPHRoaXMubGVuZ3RoOysrYSl0aGlzLnNldENlbGwoYSxyKTsyPT09dGhpcy5nZXRXaWR0aCh0aGlzLmxlbmd0aC0xKSYmdGhpcy5zZXRDZWxsRnJvbUNvZGVQb2ludCh0aGlzLmxlbmd0aC0xLDAsMSwobnVsbD09aT92b2lkIDA6aS5mZyl8fDAsKG51bGw9PWk/dm9pZCAwOmkuYmcpfHwwLChudWxsPT1pP3ZvaWQgMDppLmV4dGVuZGVkKXx8bmV3IHMuRXh0ZW5kZWRBdHRycyl9LGUucHJvdG90eXBlLmRlbGV0ZUNlbGxzPWZ1bmN0aW9uKGUsdCxyLGkpe2lmKGUlPXRoaXMubGVuZ3RoLHQ8dGhpcy5sZW5ndGgtZSl7Zm9yKHZhciBuPW5ldyBvLkNlbGxEYXRhLGE9MDthPHRoaXMubGVuZ3RoLWUtdDsrK2EpdGhpcy5zZXRDZWxsKGUrYSx0aGlzLmxvYWRDZWxsKGUrdCthLG4pKTtmb3IoYT10aGlzLmxlbmd0aC10O2E8dGhpcy5sZW5ndGg7KythKXRoaXMuc2V0Q2VsbChhLHIpfWVsc2UgZm9yKGE9ZTthPHRoaXMubGVuZ3RoOysrYSl0aGlzLnNldENlbGwoYSxyKTtlJiYyPT09dGhpcy5nZXRXaWR0aChlLTEpJiZ0aGlzLnNldENlbGxGcm9tQ29kZVBvaW50KGUtMSwwLDEsKG51bGw9PWk/dm9pZCAwOmkuZmcpfHwwLChudWxsPT1pP3ZvaWQgMDppLmJnKXx8MCwobnVsbD09aT92b2lkIDA6aS5leHRlbmRlZCl8fG5ldyBzLkV4dGVuZGVkQXR0cnMpLDAhPT10aGlzLmdldFdpZHRoKGUpfHx0aGlzLmhhc0NvbnRlbnQoZSl8fHRoaXMuc2V0Q2VsbEZyb21Db2RlUG9pbnQoZSwwLDEsKG51bGw9PWk/dm9pZCAwOmkuZmcpfHwwLChudWxsPT1pP3ZvaWQgMDppLmJnKXx8MCwobnVsbD09aT92b2lkIDA6aS5leHRlbmRlZCl8fG5ldyBzLkV4dGVuZGVkQXR0cnMpfSxlLnByb3RvdHlwZS5yZXBsYWNlQ2VsbHM9ZnVuY3Rpb24oZSx0LHIsaSl7Zm9yKGUmJjI9PT10aGlzLmdldFdpZHRoKGUtMSkmJnRoaXMuc2V0Q2VsbEZyb21Db2RlUG9pbnQoZS0xLDAsMSwobnVsbD09aT92b2lkIDA6aS5mZyl8fDAsKG51bGw9PWk/dm9pZCAwOmkuYmcpfHwwLChudWxsPT1pP3ZvaWQgMDppLmV4dGVuZGVkKXx8bmV3IHMuRXh0ZW5kZWRBdHRycyksdDx0aGlzLmxlbmd0aCYmMj09PXRoaXMuZ2V0V2lkdGgodC0xKSYmdGhpcy5zZXRDZWxsRnJvbUNvZGVQb2ludCh0LDAsMSwobnVsbD09aT92b2lkIDA6aS5mZyl8fDAsKG51bGw9PWk/dm9pZCAwOmkuYmcpfHwwLChudWxsPT1pP3ZvaWQgMDppLmV4dGVuZGVkKXx8bmV3IHMuRXh0ZW5kZWRBdHRycyk7ZTx0JiZlPHRoaXMubGVuZ3RoOyl0aGlzLnNldENlbGwoZSsrLHIpfSxlLnByb3RvdHlwZS5yZXNpemU9ZnVuY3Rpb24oZSx0KXtpZihlIT09dGhpcy5sZW5ndGgpe2lmKGU+dGhpcy5sZW5ndGgpe3ZhciByPW5ldyBVaW50MzJBcnJheSgzKmUpO3RoaXMubGVuZ3RoJiYoMyplPHRoaXMuX2RhdGEubGVuZ3RoP3Iuc2V0KHRoaXMuX2RhdGEuc3ViYXJyYXkoMCwzKmUpKTpyLnNldCh0aGlzLl9kYXRhKSksdGhpcy5fZGF0YT1yO2Zvcih2YXIgaT10aGlzLmxlbmd0aDtpPGU7KytpKXRoaXMuc2V0Q2VsbChpLHQpfWVsc2UgaWYoZSl7KHI9bmV3IFVpbnQzMkFycmF5KDMqZSkpLnNldCh0aGlzLl9kYXRhLnN1YmFycmF5KDAsMyplKSksdGhpcy5fZGF0YT1yO3ZhciBuPU9iamVjdC5rZXlzKHRoaXMuX2NvbWJpbmVkKTtmb3IoaT0wO2k8bi5sZW5ndGg7aSsrKXt2YXIgbz1wYXJzZUludChuW2ldLDEwKTtvPj1lJiZkZWxldGUgdGhpcy5fY29tYmluZWRbb119fWVsc2UgdGhpcy5fZGF0YT1uZXcgVWludDMyQXJyYXkoMCksdGhpcy5fY29tYmluZWQ9e307dGhpcy5sZW5ndGg9ZX19LGUucHJvdG90eXBlLmZpbGw9ZnVuY3Rpb24oZSl7dGhpcy5fY29tYmluZWQ9e30sdGhpcy5fZXh0ZW5kZWRBdHRycz17fTtmb3IodmFyIHQ9MDt0PHRoaXMubGVuZ3RoOysrdCl0aGlzLnNldENlbGwodCxlKX0sZS5wcm90b3R5cGUuY29weUZyb209ZnVuY3Rpb24oZSl7Zm9yKHZhciB0IGluIHRoaXMubGVuZ3RoIT09ZS5sZW5ndGg/dGhpcy5fZGF0YT1uZXcgVWludDMyQXJyYXkoZS5fZGF0YSk6dGhpcy5fZGF0YS5zZXQoZS5fZGF0YSksdGhpcy5sZW5ndGg9ZS5sZW5ndGgsdGhpcy5fY29tYmluZWQ9e30sZS5fY29tYmluZWQpdGhpcy5fY29tYmluZWRbdF09ZS5fY29tYmluZWRbdF07Zm9yKHZhciB0IGluIHRoaXMuX2V4dGVuZGVkQXR0cnM9e30sZS5fZXh0ZW5kZWRBdHRycyl0aGlzLl9leHRlbmRlZEF0dHJzW3RdPWUuX2V4dGVuZGVkQXR0cnNbdF07dGhpcy5pc1dyYXBwZWQ9ZS5pc1dyYXBwZWR9LGUucHJvdG90eXBlLmNsb25lPWZ1bmN0aW9uKCl7dmFyIHQ9bmV3IGUoMCk7Zm9yKHZhciByIGluIHQuX2RhdGE9bmV3IFVpbnQzMkFycmF5KHRoaXMuX2RhdGEpLHQubGVuZ3RoPXRoaXMubGVuZ3RoLHRoaXMuX2NvbWJpbmVkKXQuX2NvbWJpbmVkW3JdPXRoaXMuX2NvbWJpbmVkW3JdO2Zvcih2YXIgciBpbiB0aGlzLl9leHRlbmRlZEF0dHJzKXQuX2V4dGVuZGVkQXR0cnNbcl09dGhpcy5fZXh0ZW5kZWRBdHRyc1tyXTtyZXR1cm4gdC5pc1dyYXBwZWQ9dGhpcy5pc1dyYXBwZWQsdH0sZS5wcm90b3R5cGUuZ2V0VHJpbW1lZExlbmd0aD1mdW5jdGlvbigpe2Zvcih2YXIgZT10aGlzLmxlbmd0aC0xO2U+PTA7LS1lKWlmKDQxOTQzMDMmdGhpcy5fZGF0YVszKmUrMF0pcmV0dXJuIGUrKHRoaXMuX2RhdGFbMyplKzBdPj4yMik7cmV0dXJuIDB9LGUucHJvdG90eXBlLmNvcHlDZWxsc0Zyb209ZnVuY3Rpb24oZSx0LHIsaSxuKXt2YXIgbz1lLl9kYXRhO2lmKG4pZm9yKHZhciBzPWktMTtzPj0wO3MtLSlmb3IodmFyIGE9MDthPDM7YSsrKXRoaXMuX2RhdGFbMyoocitzKSthXT1vWzMqKHQrcykrYV07ZWxzZSBmb3Iocz0wO3M8aTtzKyspZm9yKGE9MDthPDM7YSsrKXRoaXMuX2RhdGFbMyoocitzKSthXT1vWzMqKHQrcykrYV07dmFyIGM9T2JqZWN0LmtleXMoZS5fY29tYmluZWQpO2ZvcihhPTA7YTxjLmxlbmd0aDthKyspe3ZhciBsPXBhcnNlSW50KGNbYV0sMTApO2w+PXQmJih0aGlzLl9jb21iaW5lZFtsLXQrcl09ZS5fY29tYmluZWRbbF0pfX0sZS5wcm90b3R5cGUudHJhbnNsYXRlVG9TdHJpbmc9ZnVuY3Rpb24oZSx0LHIpe3ZvaWQgMD09PWUmJihlPSExKSx2b2lkIDA9PT10JiYodD0wKSx2b2lkIDA9PT1yJiYocj10aGlzLmxlbmd0aCksZSYmKHI9TWF0aC5taW4ocix0aGlzLmdldFRyaW1tZWRMZW5ndGgoKSkpO2Zvcih2YXIgbz0iIjt0PHI7KXt2YXIgcz10aGlzLl9kYXRhWzMqdCswXSxhPTIwOTcxNTEmcztvKz0yMDk3MTUyJnM/dGhpcy5fY29tYmluZWRbdF06YT8oMCxpLnN0cmluZ0Zyb21Db2RlUG9pbnQpKGEpOm4uV0hJVEVTUEFDRV9DRUxMX0NIQVIsdCs9cz4+MjJ8fDF9cmV0dXJuIG99LGV9KCk7dC5CdWZmZXJMaW5lPWF9LDQ4NDE6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5nZXRSYW5nZUxlbmd0aD12b2lkIDAsdC5nZXRSYW5nZUxlbmd0aD1mdW5jdGlvbihlLHQpe2lmKGUuc3RhcnQueT5lLmVuZC55KXRocm93IG5ldyBFcnJvcigiQnVmZmVyIHJhbmdlIGVuZCAoIitlLmVuZC54KyIsICIrZS5lbmQueSsiKSBjYW5ub3QgYmUgYmVmb3JlIHN0YXJ0ICgiK2Uuc3RhcnQueCsiLCAiK2Uuc3RhcnQueSsiKSIpO3JldHVybiB0KihlLmVuZC55LWUuc3RhcnQueSkrKGUuZW5kLngtZS5zdGFydC54KzEpfX0sNDYzNDooZSx0KT0+e2Z1bmN0aW9uIHIoZSx0LHIpe2lmKHQ9PT1lLmxlbmd0aC0xKXJldHVybiBlW3RdLmdldFRyaW1tZWRMZW5ndGgoKTt2YXIgaT0hZVt0XS5oYXNDb250ZW50KHItMSkmJjE9PT1lW3RdLmdldFdpZHRoKHItMSksbj0yPT09ZVt0KzFdLmdldFdpZHRoKDApO3JldHVybiBpJiZuP3ItMTpyfU9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LmdldFdyYXBwZWRMaW5lVHJpbW1lZExlbmd0aD10LnJlZmxvd1NtYWxsZXJHZXROZXdMaW5lTGVuZ3Rocz10LnJlZmxvd0xhcmdlckFwcGx5TmV3TGF5b3V0PXQucmVmbG93TGFyZ2VyQ3JlYXRlTmV3TGF5b3V0PXQucmVmbG93TGFyZ2VyR2V0TGluZXNUb1JlbW92ZT12b2lkIDAsdC5yZWZsb3dMYXJnZXJHZXRMaW5lc1RvUmVtb3ZlPWZ1bmN0aW9uKGUsdCxpLG4sbyl7Zm9yKHZhciBzPVtdLGE9MDthPGUubGVuZ3RoLTE7YSsrKXt2YXIgYz1hLGw9ZS5nZXQoKytjKTtpZihsLmlzV3JhcHBlZCl7Zm9yKHZhciB1PVtlLmdldChhKV07YzxlLmxlbmd0aCYmbC5pc1dyYXBwZWQ7KXUucHVzaChsKSxsPWUuZ2V0KCsrYyk7aWYobj49YSYmbjxjKWErPXUubGVuZ3RoLTE7ZWxzZXtmb3IodmFyIGg9MCxmPXIodSxoLHQpLF89MSxkPTA7Xzx1Lmxlbmd0aDspe3ZhciBwPXIodSxfLHQpLHY9cC1kLGc9aS1mLHk9TWF0aC5taW4odixnKTt1W2hdLmNvcHlDZWxsc0Zyb20odVtfXSxkLGYseSwhMSksKGYrPXkpPT09aSYmKGgrKyxmPTApLChkKz15KT09PXAmJihfKyssZD0wKSwwPT09ZiYmMCE9PWgmJjI9PT11W2gtMV0uZ2V0V2lkdGgoaS0xKSYmKHVbaF0uY29weUNlbGxzRnJvbSh1W2gtMV0saS0xLGYrKywxLCExKSx1W2gtMV0uc2V0Q2VsbChpLTEsbykpfXVbaF0ucmVwbGFjZUNlbGxzKGYsaSxvKTtmb3IodmFyIG09MCxiPXUubGVuZ3RoLTE7Yj4wJiYoYj5ofHwwPT09dVtiXS5nZXRUcmltbWVkTGVuZ3RoKCkpO2ItLSltKys7bT4wJiYocy5wdXNoKGErdS5sZW5ndGgtbSkscy5wdXNoKG0pKSxhKz11Lmxlbmd0aC0xfX19cmV0dXJuIHN9LHQucmVmbG93TGFyZ2VyQ3JlYXRlTmV3TGF5b3V0PWZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByPVtdLGk9MCxuPXRbaV0sbz0wLHM9MDtzPGUubGVuZ3RoO3MrKylpZihuPT09cyl7dmFyIGE9dFsrK2ldO2Uub25EZWxldGVFbWl0dGVyLmZpcmUoe2luZGV4OnMtbyxhbW91bnQ6YX0pLHMrPWEtMSxvKz1hLG49dFsrK2ldfWVsc2Ugci5wdXNoKHMpO3JldHVybntsYXlvdXQ6cixjb3VudFJlbW92ZWQ6b319LHQucmVmbG93TGFyZ2VyQXBwbHlOZXdMYXlvdXQ9ZnVuY3Rpb24oZSx0KXtmb3IodmFyIHI9W10saT0wO2k8dC5sZW5ndGg7aSsrKXIucHVzaChlLmdldCh0W2ldKSk7Zm9yKGk9MDtpPHIubGVuZ3RoO2krKyllLnNldChpLHJbaV0pO2UubGVuZ3RoPXQubGVuZ3RofSx0LnJlZmxvd1NtYWxsZXJHZXROZXdMaW5lTGVuZ3Rocz1mdW5jdGlvbihlLHQsaSl7Zm9yKHZhciBuPVtdLG89ZS5tYXAoKGZ1bmN0aW9uKGksbil7cmV0dXJuIHIoZSxuLHQpfSkpLnJlZHVjZSgoZnVuY3Rpb24oZSx0KXtyZXR1cm4gZSt0fSkpLHM9MCxhPTAsYz0wO2M8bzspe2lmKG8tYzxpKXtuLnB1c2goby1jKTticmVha31zKz1pO3ZhciBsPXIoZSxhLHQpO3M+bCYmKHMtPWwsYSsrKTt2YXIgdT0yPT09ZVthXS5nZXRXaWR0aChzLTEpO3UmJnMtLTt2YXIgaD11P2ktMTppO24ucHVzaChoKSxjKz1ofXJldHVybiBufSx0LmdldFdyYXBwZWRMaW5lVHJpbW1lZExlbmd0aD1yfSw1Mjk1OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pO09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkJ1ZmZlclNldD12b2lkIDA7dmFyIG89cig5MDkyKSxzPXIoODQ2MCksYT1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KHQscil7dmFyIGk9ZS5jYWxsKHRoaXMpfHx0aGlzO3JldHVybiBpLl9vcHRpb25zU2VydmljZT10LGkuX2J1ZmZlclNlcnZpY2U9cixpLl9vbkJ1ZmZlckFjdGl2YXRlPWkucmVnaXN0ZXIobmV3IHMuRXZlbnRFbWl0dGVyKSxpLnJlc2V0KCksaX1yZXR1cm4gbih0LGUpLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25CdWZmZXJBY3RpdmF0ZSIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9vbkJ1ZmZlckFjdGl2YXRlLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLHQucHJvdG90eXBlLnJlc2V0PWZ1bmN0aW9uKCl7dGhpcy5fbm9ybWFsPW5ldyBvLkJ1ZmZlcighMCx0aGlzLl9vcHRpb25zU2VydmljZSx0aGlzLl9idWZmZXJTZXJ2aWNlKSx0aGlzLl9ub3JtYWwuZmlsbFZpZXdwb3J0Um93cygpLHRoaXMuX2FsdD1uZXcgby5CdWZmZXIoITEsdGhpcy5fb3B0aW9uc1NlcnZpY2UsdGhpcy5fYnVmZmVyU2VydmljZSksdGhpcy5fYWN0aXZlQnVmZmVyPXRoaXMuX25vcm1hbCx0aGlzLl9vbkJ1ZmZlckFjdGl2YXRlLmZpcmUoe2FjdGl2ZUJ1ZmZlcjp0aGlzLl9ub3JtYWwsaW5hY3RpdmVCdWZmZXI6dGhpcy5fYWx0fSksdGhpcy5zZXR1cFRhYlN0b3BzKCl9LE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwiYWx0Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2FsdH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsImFjdGl2ZSIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9hY3RpdmVCdWZmZXJ9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJub3JtYWwiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fbm9ybWFsfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLHQucHJvdG90eXBlLmFjdGl2YXRlTm9ybWFsQnVmZmVyPWZ1bmN0aW9uKCl7dGhpcy5fYWN0aXZlQnVmZmVyIT09dGhpcy5fbm9ybWFsJiYodGhpcy5fbm9ybWFsLng9dGhpcy5fYWx0LngsdGhpcy5fbm9ybWFsLnk9dGhpcy5fYWx0LnksdGhpcy5fYWx0LmNsZWFyKCksdGhpcy5fYWN0aXZlQnVmZmVyPXRoaXMuX25vcm1hbCx0aGlzLl9vbkJ1ZmZlckFjdGl2YXRlLmZpcmUoe2FjdGl2ZUJ1ZmZlcjp0aGlzLl9ub3JtYWwsaW5hY3RpdmVCdWZmZXI6dGhpcy5fYWx0fSkpfSx0LnByb3RvdHlwZS5hY3RpdmF0ZUFsdEJ1ZmZlcj1mdW5jdGlvbihlKXt0aGlzLl9hY3RpdmVCdWZmZXIhPT10aGlzLl9hbHQmJih0aGlzLl9hbHQuZmlsbFZpZXdwb3J0Um93cyhlKSx0aGlzLl9hbHQueD10aGlzLl9ub3JtYWwueCx0aGlzLl9hbHQueT10aGlzLl9ub3JtYWwueSx0aGlzLl9hY3RpdmVCdWZmZXI9dGhpcy5fYWx0LHRoaXMuX29uQnVmZmVyQWN0aXZhdGUuZmlyZSh7YWN0aXZlQnVmZmVyOnRoaXMuX2FsdCxpbmFjdGl2ZUJ1ZmZlcjp0aGlzLl9ub3JtYWx9KSl9LHQucHJvdG90eXBlLnJlc2l6ZT1mdW5jdGlvbihlLHQpe3RoaXMuX25vcm1hbC5yZXNpemUoZSx0KSx0aGlzLl9hbHQucmVzaXplKGUsdCl9LHQucHJvdG90eXBlLnNldHVwVGFiU3RvcHM9ZnVuY3Rpb24oZSl7dGhpcy5fbm9ybWFsLnNldHVwVGFiU3RvcHMoZSksdGhpcy5fYWx0LnNldHVwVGFiU3RvcHMoZSl9LHR9KHIoODQ0KS5EaXNwb3NhYmxlKTt0LkJ1ZmZlclNldD1hfSw1MTE6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpLG49dGhpcyYmdGhpcy5fX2V4dGVuZHN8fChpPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGk9T2JqZWN0LnNldFByb3RvdHlwZU9mfHx7X19wcm90b19fOltdfWluc3RhbmNlb2YgQXJyYXkmJmZ1bmN0aW9uKGUsdCl7ZS5fX3Byb3RvX189dH18fGZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByIGluIHQpT2JqZWN0LnByb3RvdHlwZS5oYXNPd25Qcm9wZXJ0eS5jYWxsKHQscikmJihlW3JdPXRbcl0pfSxpKGUsdCl9LGZ1bmN0aW9uKGUsdCl7aWYoImZ1bmN0aW9uIiE9dHlwZW9mIHQmJm51bGwhPT10KXRocm93IG5ldyBUeXBlRXJyb3IoIkNsYXNzIGV4dGVuZHMgdmFsdWUgIitTdHJpbmcodCkrIiBpcyBub3QgYSBjb25zdHJ1Y3RvciBvciBudWxsIik7ZnVuY3Rpb24gcigpe3RoaXMuY29uc3RydWN0b3I9ZX1pKGUsdCksZS5wcm90b3R5cGU9bnVsbD09PXQ/T2JqZWN0LmNyZWF0ZSh0KTooci5wcm90b3R5cGU9dC5wcm90b3R5cGUsbmV3IHIpfSk7T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuQ2VsbERhdGE9dm9pZCAwO3ZhciBvPXIoNDgyKSxzPXIoNjQzKSxhPXIoMzczNCksYz1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KCl7dmFyIHQ9bnVsbCE9PWUmJmUuYXBwbHkodGhpcyxhcmd1bWVudHMpfHx0aGlzO3JldHVybiB0LmNvbnRlbnQ9MCx0LmZnPTAsdC5iZz0wLHQuZXh0ZW5kZWQ9bmV3IGEuRXh0ZW5kZWRBdHRycyx0LmNvbWJpbmVkRGF0YT0iIix0fXJldHVybiBuKHQsZSksdC5mcm9tQ2hhckRhdGE9ZnVuY3Rpb24oZSl7dmFyIHI9bmV3IHQ7cmV0dXJuIHIuc2V0RnJvbUNoYXJEYXRhKGUpLHJ9LHQucHJvdG90eXBlLmlzQ29tYmluZWQ9ZnVuY3Rpb24oKXtyZXR1cm4gMjA5NzE1MiZ0aGlzLmNvbnRlbnR9LHQucHJvdG90eXBlLmdldFdpZHRoPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuY29udGVudD4+MjJ9LHQucHJvdG90eXBlLmdldENoYXJzPWZ1bmN0aW9uKCl7cmV0dXJuIDIwOTcxNTImdGhpcy5jb250ZW50P3RoaXMuY29tYmluZWREYXRhOjIwOTcxNTEmdGhpcy5jb250ZW50PygwLG8uc3RyaW5nRnJvbUNvZGVQb2ludCkoMjA5NzE1MSZ0aGlzLmNvbnRlbnQpOiIifSx0LnByb3RvdHlwZS5nZXRDb2RlPWZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuaXNDb21iaW5lZCgpP3RoaXMuY29tYmluZWREYXRhLmNoYXJDb2RlQXQodGhpcy5jb21iaW5lZERhdGEubGVuZ3RoLTEpOjIwOTcxNTEmdGhpcy5jb250ZW50fSx0LnByb3RvdHlwZS5zZXRGcm9tQ2hhckRhdGE9ZnVuY3Rpb24oZSl7dGhpcy5mZz1lW3MuQ0hBUl9EQVRBX0FUVFJfSU5ERVhdLHRoaXMuYmc9MDt2YXIgdD0hMTtpZihlW3MuQ0hBUl9EQVRBX0NIQVJfSU5ERVhdLmxlbmd0aD4yKXQ9ITA7ZWxzZSBpZigyPT09ZVtzLkNIQVJfREFUQV9DSEFSX0lOREVYXS5sZW5ndGgpe3ZhciByPWVbcy5DSEFSX0RBVEFfQ0hBUl9JTkRFWF0uY2hhckNvZGVBdCgwKTtpZig1NTI5Njw9ciYmcjw9NTYzMTkpe3ZhciBpPWVbcy5DSEFSX0RBVEFfQ0hBUl9JTkRFWF0uY2hhckNvZGVBdCgxKTs1NjMyMDw9aSYmaTw9NTczNDM/dGhpcy5jb250ZW50PTEwMjQqKHItNTUyOTYpK2ktNTYzMjArNjU1MzZ8ZVtzLkNIQVJfREFUQV9XSURUSF9JTkRFWF08PDIyOnQ9ITB9ZWxzZSB0PSEwfWVsc2UgdGhpcy5jb250ZW50PWVbcy5DSEFSX0RBVEFfQ0hBUl9JTkRFWF0uY2hhckNvZGVBdCgwKXxlW3MuQ0hBUl9EQVRBX1dJRFRIX0lOREVYXTw8MjI7dCYmKHRoaXMuY29tYmluZWREYXRhPWVbcy5DSEFSX0RBVEFfQ0hBUl9JTkRFWF0sdGhpcy5jb250ZW50PTIwOTcxNTJ8ZVtzLkNIQVJfREFUQV9XSURUSF9JTkRFWF08PDIyKX0sdC5wcm90b3R5cGUuZ2V0QXNDaGFyRGF0YT1mdW5jdGlvbigpe3JldHVyblt0aGlzLmZnLHRoaXMuZ2V0Q2hhcnMoKSx0aGlzLmdldFdpZHRoKCksdGhpcy5nZXRDb2RlKCldfSx0fShhLkF0dHJpYnV0ZURhdGEpO3QuQ2VsbERhdGE9Y30sNjQzOihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuV0hJVEVTUEFDRV9DRUxMX0NPREU9dC5XSElURVNQQUNFX0NFTExfV0lEVEg9dC5XSElURVNQQUNFX0NFTExfQ0hBUj10Lk5VTExfQ0VMTF9DT0RFPXQuTlVMTF9DRUxMX1dJRFRIPXQuTlVMTF9DRUxMX0NIQVI9dC5DSEFSX0RBVEFfQ09ERV9JTkRFWD10LkNIQVJfREFUQV9XSURUSF9JTkRFWD10LkNIQVJfREFUQV9DSEFSX0lOREVYPXQuQ0hBUl9EQVRBX0FUVFJfSU5ERVg9dC5ERUZBVUxUX0FUVFI9dC5ERUZBVUxUX0NPTE9SPXZvaWQgMCx0LkRFRkFVTFRfQ09MT1I9MjU2LHQuREVGQVVMVF9BVFRSPTI1Nnx0LkRFRkFVTFRfQ09MT1I8PDksdC5DSEFSX0RBVEFfQVRUUl9JTkRFWD0wLHQuQ0hBUl9EQVRBX0NIQVJfSU5ERVg9MSx0LkNIQVJfREFUQV9XSURUSF9JTkRFWD0yLHQuQ0hBUl9EQVRBX0NPREVfSU5ERVg9Myx0Lk5VTExfQ0VMTF9DSEFSPSIiLHQuTlVMTF9DRUxMX1dJRFRIPTEsdC5OVUxMX0NFTExfQ09ERT0wLHQuV0hJVEVTUEFDRV9DRUxMX0NIQVI9IiAiLHQuV0hJVEVTUEFDRV9DRUxMX1dJRFRIPTEsdC5XSElURVNQQUNFX0NFTExfQ09ERT0zMn0sNDg2MzpmdW5jdGlvbihlLHQscil7dmFyIGksbj10aGlzJiZ0aGlzLl9fZXh0ZW5kc3x8KGk9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gaT1PYmplY3Quc2V0UHJvdG90eXBlT2Z8fHtfX3Byb3RvX186W119aW5zdGFuY2VvZiBBcnJheSYmZnVuY3Rpb24oZSx0KXtlLl9fcHJvdG9fXz10fXx8ZnVuY3Rpb24oZSx0KXtmb3IodmFyIHIgaW4gdClPYmplY3QucHJvdG90eXBlLmhhc093blByb3BlcnR5LmNhbGwodCxyKSYmKGVbcl09dFtyXSl9LGkoZSx0KX0sZnVuY3Rpb24oZSx0KXtpZigiZnVuY3Rpb24iIT10eXBlb2YgdCYmbnVsbCE9PXQpdGhyb3cgbmV3IFR5cGVFcnJvcigiQ2xhc3MgZXh0ZW5kcyB2YWx1ZSAiK1N0cmluZyh0KSsiIGlzIG5vdCBhIGNvbnN0cnVjdG9yIG9yIG51bGwiKTtmdW5jdGlvbiByKCl7dGhpcy5jb25zdHJ1Y3Rvcj1lfWkoZSx0KSxlLnByb3RvdHlwZT1udWxsPT09dD9PYmplY3QuY3JlYXRlKHQpOihyLnByb3RvdHlwZT10LnByb3RvdHlwZSxuZXcgcil9KTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5NYXJrZXI9dm9pZCAwO3ZhciBvPXIoODQ2MCkscz1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KHIpe3ZhciBpPWUuY2FsbCh0aGlzKXx8dGhpcztyZXR1cm4gaS5saW5lPXIsaS5faWQ9dC5fbmV4dElkKyssaS5pc0Rpc3Bvc2VkPSExLGkuX29uRGlzcG9zZT1uZXcgby5FdmVudEVtaXR0ZXIsaX1yZXR1cm4gbih0LGUpLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwiaWQiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5faWR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHQucHJvdG90eXBlLCJvbkRpc3Bvc2UiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25EaXNwb3NlLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLHQucHJvdG90eXBlLmRpc3Bvc2U9ZnVuY3Rpb24oKXt0aGlzLmlzRGlzcG9zZWR8fCh0aGlzLmlzRGlzcG9zZWQ9ITAsdGhpcy5saW5lPS0xLHRoaXMuX29uRGlzcG9zZS5maXJlKCksZS5wcm90b3R5cGUuZGlzcG9zZS5jYWxsKHRoaXMpKX0sdC5fbmV4dElkPTEsdH0ocig4NDQpLkRpc3Bvc2FibGUpO3QuTWFya2VyPXN9LDcxMTY6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5ERUZBVUxUX0NIQVJTRVQ9dC5DSEFSU0VUUz12b2lkIDAsdC5DSEFSU0VUUz17fSx0LkRFRkFVTFRfQ0hBUlNFVD10LkNIQVJTRVRTLkIsdC5DSEFSU0VUU1swXT17ImAiOiLil4YiLGE6IuKWkiIsYjoi4pCJIixjOiLikIwiLGQ6IuKQjSIsZToi4pCKIixmOiLCsCIsZzoiwrEiLGg6IuKQpCIsaToi4pCLIixqOiLilJgiLGs6IuKUkCIsbDoi4pSMIixtOiLilJQiLG46IuKUvCIsbzoi4o66IixwOiLijrsiLHE6IuKUgCIscjoi4o68IixzOiLijr0iLHQ6IuKUnCIsdToi4pSkIix2OiLilLQiLHc6IuKUrCIseDoi4pSCIix5OiLiiaQiLHo6IuKJpSIsInsiOiLPgCIsInwiOiLiiaAiLCJ9IjoiwqMiLCJ+IjoiwrcifSx0LkNIQVJTRVRTLkE9eyIjIjoiwqMifSx0LkNIQVJTRVRTLkI9dm9pZCAwLHQuQ0hBUlNFVFNbNF09eyIjIjoiwqMiLCJAIjoiwr4iLCJbIjoiaWoiLCJcXCI6IsK9IiwiXSI6InwiLCJ7IjoiwqgiLCJ8IjoiZiIsIn0iOiLCvCIsIn4iOiLCtCJ9LHQuQ0hBUlNFVFMuQz10LkNIQVJTRVRTWzVdPXsiWyI6IsOEIiwiXFwiOiLDliIsIl0iOiLDhSIsIl4iOiLDnCIsImAiOiLDqSIsInsiOiLDpCIsInwiOiLDtiIsIn0iOiLDpSIsIn4iOiLDvCJ9LHQuQ0hBUlNFVFMuUj17IiMiOiLCoyIsIkAiOiLDoCIsIlsiOiLCsCIsIlxcIjoiw6ciLCJdIjoiwqciLCJ7Ijoiw6kiLCJ8Ijoiw7kiLCJ9Ijoiw6giLCJ+IjoiwqgifSx0LkNIQVJTRVRTLlE9eyJAIjoiw6AiLCJbIjoiw6IiLCJcXCI6IsOnIiwiXSI6IsOqIiwiXiI6IsOuIiwiYCI6IsO0IiwieyI6IsOpIiwifCI6IsO5IiwifSI6IsOoIiwifiI6IsO7In0sdC5DSEFSU0VUUy5LPXsiQCI6IsKnIiwiWyI6IsOEIiwiXFwiOiLDliIsIl0iOiLDnCIsInsiOiLDpCIsInwiOiLDtiIsIn0iOiLDvCIsIn4iOiLDnyJ9LHQuQ0hBUlNFVFMuWT17IiMiOiLCoyIsIkAiOiLCpyIsIlsiOiLCsCIsIlxcIjoiw6ciLCJdIjoiw6kiLCJgIjoiw7kiLCJ7Ijoiw6AiLCJ8Ijoiw7IiLCJ9Ijoiw6giLCJ+Ijoiw6wifSx0LkNIQVJTRVRTLkU9dC5DSEFSU0VUU1s2XT17IkAiOiLDhCIsIlsiOiLDhiIsIlxcIjoiw5giLCJdIjoiw4UiLCJeIjoiw5wiLCJgIjoiw6QiLCJ7Ijoiw6YiLCJ8Ijoiw7giLCJ9Ijoiw6UiLCJ+Ijoiw7wifSx0LkNIQVJTRVRTLlo9eyIjIjoiwqMiLCJAIjoiwqciLCJbIjoiwqEiLCJcXCI6IsORIiwiXSI6IsK/IiwieyI6IsKwIiwifCI6IsOxIiwifSI6IsOnIn0sdC5DSEFSU0VUUy5IPXQuQ0hBUlNFVFNbN109eyJAIjoiw4kiLCJbIjoiw4QiLCJcXCI6IsOWIiwiXSI6IsOFIiwiXiI6IsOcIiwiYCI6IsOpIiwieyI6IsOkIiwifCI6IsO2IiwifSI6IsOlIiwifiI6IsO8In0sdC5DSEFSU0VUU1siPSJdPXsiIyI6IsO5IiwiQCI6IsOgIiwiWyI6IsOpIiwiXFwiOiLDpyIsIl0iOiLDqiIsIl4iOiLDriIsXzoiw6giLCJgIjoiw7QiLCJ7Ijoiw6QiLCJ8Ijoiw7YiLCJ9Ijoiw7wiLCJ+Ijoiw7sifX0sMjU4NDooZSx0KT0+e3ZhciByLGk7T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuQzE9dC5DMD12b2lkIDAsKGk9dC5DMHx8KHQuQzA9e30pKS5OVUw9IlwwIixpLlNPSD0iASIsaS5TVFg9IgIiLGkuRVRYPSIDIixpLkVPVD0iBCIsaS5FTlE9IgUiLGkuQUNLPSIGIixpLkJFTD0iByIsaS5CUz0iXGIiLGkuSFQ9Ilx0IixpLkxGPSJcbiIsaS5WVD0iXHYiLGkuRkY9IlxmIixpLkNSPSJcciIsaS5TTz0iDiIsaS5TST0iDyIsaS5ETEU9IhAiLGkuREMxPSIRIixpLkRDMj0iEiIsaS5EQzM9IhMiLGkuREM0PSIUIixpLk5BSz0iFSIsaS5TWU49IhYiLGkuRVRCPSIXIixpLkNBTj0iGCIsaS5FTT0iGSIsaS5TVUI9IhoiLGkuRVNDPSIbIixpLkZTPSIcIixpLkdTPSIdIixpLlJTPSIeIixpLlVTPSIfIixpLlNQPSIgIixpLkRFTD0ifyIsKHI9dC5DMXx8KHQuQzE9e30pKS5QQUQ9IsKAIixyLkhPUD0iwoEiLHIuQlBIPSLCgiIsci5OQkg9IsKDIixyLklORD0iwoQiLHIuTkVMPSLChSIsci5TU0E9IsKGIixyLkVTQT0iwociLHIuSFRTPSLCiCIsci5IVEo9IsKJIixyLlZUUz0iwooiLHIuUExEPSLCiyIsci5QTFU9IsKMIixyLlJJPSLCjSIsci5TUzI9IsKOIixyLlNTMz0iwo8iLHIuRENTPSLCkCIsci5QVTE9IsKRIixyLlBVMj0iwpIiLHIuU1RTPSLCkyIsci5DQ0g9IsKUIixyLk1XPSLClSIsci5TUEE9IsKWIixyLkVQQT0iwpciLHIuU09TPSLCmCIsci5TR0NJPSLCmSIsci5TQ0k9IsKaIixyLkNTST0iwpsiLHIuU1Q9IsKcIixyLk9TQz0iwp0iLHIuUE09IsKeIixyLkFQQz0iwp8ifSw3Mzk5OihlLHQscik9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5ldmFsdWF0ZUtleWJvYXJkRXZlbnQ9dm9pZCAwO3ZhciBpPXIoMjU4NCksbj17NDg6WyIwIiwiKSJdLDQ5OlsiMSIsIiEiXSw1MDpbIjIiLCJAIl0sNTE6WyIzIiwiIyJdLDUyOlsiNCIsIiQiXSw1MzpbIjUiLCIlIl0sNTQ6WyI2IiwiXiJdLDU1OlsiNyIsIiYiXSw1NjpbIjgiLCIqIl0sNTc6WyI5IiwiKCJdLDE4NjpbIjsiLCI6Il0sMTg3OlsiPSIsIisiXSwxODg6WyIsIiwiPCJdLDE4OTpbIi0iLCJfIl0sMTkwOlsiLiIsIj4iXSwxOTE6WyIvIiwiPyJdLDE5MjpbImAiLCJ+Il0sMjE5OlsiWyIsInsiXSwyMjA6WyJcXCIsInwiXSwyMjE6WyJdIiwifSJdLDIyMjpbIiciLCciJ119O3QuZXZhbHVhdGVLZXlib2FyZEV2ZW50PWZ1bmN0aW9uKGUsdCxyLG8pe3ZhciBzPXt0eXBlOjAsY2FuY2VsOiExLGtleTp2b2lkIDB9LGE9KGUuc2hpZnRLZXk/MTowKXwoZS5hbHRLZXk/MjowKXwoZS5jdHJsS2V5PzQ6MCl8KGUubWV0YUtleT84OjApO3N3aXRjaChlLmtleUNvZGUpe2Nhc2UgMDoiVUlLZXlJbnB1dFVwQXJyb3ciPT09ZS5rZXk/cy5rZXk9dD9pLkMwLkVTQysiT0EiOmkuQzAuRVNDKyJbQSI6IlVJS2V5SW5wdXRMZWZ0QXJyb3ciPT09ZS5rZXk/cy5rZXk9dD9pLkMwLkVTQysiT0QiOmkuQzAuRVNDKyJbRCI6IlVJS2V5SW5wdXRSaWdodEFycm93Ij09PWUua2V5P3Mua2V5PXQ/aS5DMC5FU0MrIk9DIjppLkMwLkVTQysiW0MiOiJVSUtleUlucHV0RG93bkFycm93Ij09PWUua2V5JiYocy5rZXk9dD9pLkMwLkVTQysiT0IiOmkuQzAuRVNDKyJbQiIpO2JyZWFrO2Nhc2UgODppZihlLnNoaWZ0S2V5KXtzLmtleT1pLkMwLkJTO2JyZWFrfWlmKGUuYWx0S2V5KXtzLmtleT1pLkMwLkVTQytpLkMwLkRFTDticmVha31zLmtleT1pLkMwLkRFTDticmVhaztjYXNlIDk6aWYoZS5zaGlmdEtleSl7cy5rZXk9aS5DMC5FU0MrIltaIjticmVha31zLmtleT1pLkMwLkhULHMuY2FuY2VsPSEwO2JyZWFrO2Nhc2UgMTM6cy5rZXk9ZS5hbHRLZXk/aS5DMC5FU0MraS5DMC5DUjppLkMwLkNSLHMuY2FuY2VsPSEwO2JyZWFrO2Nhc2UgMjc6cy5rZXk9aS5DMC5FU0MsZS5hbHRLZXkmJihzLmtleT1pLkMwLkVTQytpLkMwLkVTQykscy5jYW5jZWw9ITA7YnJlYWs7Y2FzZSAzNzppZihlLm1ldGFLZXkpYnJlYWs7YT8ocy5rZXk9aS5DMC5FU0MrIlsxOyIrKGErMSkrIkQiLHMua2V5PT09aS5DMC5FU0MrIlsxOzNEIiYmKHMua2V5PWkuQzAuRVNDKyhyPyJiIjoiWzE7NUQiKSkpOnMua2V5PXQ/aS5DMC5FU0MrIk9EIjppLkMwLkVTQysiW0QiO2JyZWFrO2Nhc2UgMzk6aWYoZS5tZXRhS2V5KWJyZWFrO2E/KHMua2V5PWkuQzAuRVNDKyJbMTsiKyhhKzEpKyJDIixzLmtleT09PWkuQzAuRVNDKyJbMTszQyImJihzLmtleT1pLkMwLkVTQysocj8iZiI6IlsxOzVDIikpKTpzLmtleT10P2kuQzAuRVNDKyJPQyI6aS5DMC5FU0MrIltDIjticmVhaztjYXNlIDM4OmlmKGUubWV0YUtleSlicmVhazthPyhzLmtleT1pLkMwLkVTQysiWzE7IisoYSsxKSsiQSIscnx8cy5rZXkhPT1pLkMwLkVTQysiWzE7M0EifHwocy5rZXk9aS5DMC5FU0MrIlsxOzVBIikpOnMua2V5PXQ/aS5DMC5FU0MrIk9BIjppLkMwLkVTQysiW0EiO2JyZWFrO2Nhc2UgNDA6aWYoZS5tZXRhS2V5KWJyZWFrO2E/KHMua2V5PWkuQzAuRVNDKyJbMTsiKyhhKzEpKyJCIixyfHxzLmtleSE9PWkuQzAuRVNDKyJbMTszQiJ8fChzLmtleT1pLkMwLkVTQysiWzE7NUIiKSk6cy5rZXk9dD9pLkMwLkVTQysiT0IiOmkuQzAuRVNDKyJbQiI7YnJlYWs7Y2FzZSA0NTplLnNoaWZ0S2V5fHxlLmN0cmxLZXl8fChzLmtleT1pLkMwLkVTQysiWzJ+Iik7YnJlYWs7Y2FzZSA0NjpzLmtleT1hP2kuQzAuRVNDKyJbMzsiKyhhKzEpKyJ+IjppLkMwLkVTQysiWzN+IjticmVhaztjYXNlIDM2OnMua2V5PWE/aS5DMC5FU0MrIlsxOyIrKGErMSkrIkgiOnQ/aS5DMC5FU0MrIk9IIjppLkMwLkVTQysiW0giO2JyZWFrO2Nhc2UgMzU6cy5rZXk9YT9pLkMwLkVTQysiWzE7IisoYSsxKSsiRiI6dD9pLkMwLkVTQysiT0YiOmkuQzAuRVNDKyJbRiI7YnJlYWs7Y2FzZSAzMzplLnNoaWZ0S2V5P3MudHlwZT0yOnMua2V5PWkuQzAuRVNDKyJbNX4iO2JyZWFrO2Nhc2UgMzQ6ZS5zaGlmdEtleT9zLnR5cGU9MzpzLmtleT1pLkMwLkVTQysiWzZ+IjticmVhaztjYXNlIDExMjpzLmtleT1hP2kuQzAuRVNDKyJbMTsiKyhhKzEpKyJQIjppLkMwLkVTQysiT1AiO2JyZWFrO2Nhc2UgMTEzOnMua2V5PWE/aS5DMC5FU0MrIlsxOyIrKGErMSkrIlEiOmkuQzAuRVNDKyJPUSI7YnJlYWs7Y2FzZSAxMTQ6cy5rZXk9YT9pLkMwLkVTQysiWzE7IisoYSsxKSsiUiI6aS5DMC5FU0MrIk9SIjticmVhaztjYXNlIDExNTpzLmtleT1hP2kuQzAuRVNDKyJbMTsiKyhhKzEpKyJTIjppLkMwLkVTQysiT1MiO2JyZWFrO2Nhc2UgMTE2OnMua2V5PWE/aS5DMC5FU0MrIlsxNTsiKyhhKzEpKyJ+IjppLkMwLkVTQysiWzE1fiI7YnJlYWs7Y2FzZSAxMTc6cy5rZXk9YT9pLkMwLkVTQysiWzE3OyIrKGErMSkrIn4iOmkuQzAuRVNDKyJbMTd+IjticmVhaztjYXNlIDExODpzLmtleT1hP2kuQzAuRVNDKyJbMTg7IisoYSsxKSsifiI6aS5DMC5FU0MrIlsxOH4iO2JyZWFrO2Nhc2UgMTE5OnMua2V5PWE/aS5DMC5FU0MrIlsxOTsiKyhhKzEpKyJ+IjppLkMwLkVTQysiWzE5fiI7YnJlYWs7Y2FzZSAxMjA6cy5rZXk9YT9pLkMwLkVTQysiWzIwOyIrKGErMSkrIn4iOmkuQzAuRVNDKyJbMjB+IjticmVhaztjYXNlIDEyMTpzLmtleT1hP2kuQzAuRVNDKyJbMjE7IisoYSsxKSsifiI6aS5DMC5FU0MrIlsyMX4iO2JyZWFrO2Nhc2UgMTIyOnMua2V5PWE/aS5DMC5FU0MrIlsyMzsiKyhhKzEpKyJ+IjppLkMwLkVTQysiWzIzfiI7YnJlYWs7Y2FzZSAxMjM6cy5rZXk9YT9pLkMwLkVTQysiWzI0OyIrKGErMSkrIn4iOmkuQzAuRVNDKyJbMjR+IjticmVhaztkZWZhdWx0OmlmKCFlLmN0cmxLZXl8fGUuc2hpZnRLZXl8fGUuYWx0S2V5fHxlLm1ldGFLZXkpaWYociYmIW98fCFlLmFsdEtleXx8ZS5tZXRhS2V5KSFyfHxlLmFsdEtleXx8ZS5jdHJsS2V5fHxlLnNoaWZ0S2V5fHwhZS5tZXRhS2V5P2Uua2V5JiYhZS5jdHJsS2V5JiYhZS5hbHRLZXkmJiFlLm1ldGFLZXkmJmUua2V5Q29kZT49NDgmJjE9PT1lLmtleS5sZW5ndGg/cy5rZXk9ZS5rZXk6ZS5rZXkmJmUuY3RybEtleSYmIl8iPT09ZS5rZXkmJihzLmtleT1pLkMwLlVTKTo2NT09PWUua2V5Q29kZSYmKHMudHlwZT0xKTtlbHNle3ZhciBjPW5bZS5rZXlDb2RlXSxsPW51bGw9PWM/dm9pZCAwOmNbZS5zaGlmdEtleT8xOjBdO2lmKGwpcy5rZXk9aS5DMC5FU0MrbDtlbHNlIGlmKGUua2V5Q29kZT49NjUmJmUua2V5Q29kZTw9OTApe3ZhciB1PWUuY3RybEtleT9lLmtleUNvZGUtNjQ6ZS5rZXlDb2RlKzMyO3Mua2V5PWkuQzAuRVNDK1N0cmluZy5mcm9tQ2hhckNvZGUodSl9fWVsc2UgZS5rZXlDb2RlPj02NSYmZS5rZXlDb2RlPD05MD9zLmtleT1TdHJpbmcuZnJvbUNoYXJDb2RlKGUua2V5Q29kZS02NCk6MzI9PT1lLmtleUNvZGU/cy5rZXk9aS5DMC5OVUw6ZS5rZXlDb2RlPj01MSYmZS5rZXlDb2RlPD01NT9zLmtleT1TdHJpbmcuZnJvbUNoYXJDb2RlKGUua2V5Q29kZS01MSsyNyk6NTY9PT1lLmtleUNvZGU/cy5rZXk9aS5DMC5ERUw6MjE5PT09ZS5rZXlDb2RlP3Mua2V5PWkuQzAuRVNDOjIyMD09PWUua2V5Q29kZT9zLmtleT1pLkMwLkZTOjIyMT09PWUua2V5Q29kZSYmKHMua2V5PWkuQzAuR1MpfXJldHVybiBzfX0sNDgyOihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuVXRmOFRvVXRmMzI9dC5TdHJpbmdUb1V0ZjMyPXQudXRmMzJUb1N0cmluZz10LnN0cmluZ0Zyb21Db2RlUG9pbnQ9dm9pZCAwLHQuc3RyaW5nRnJvbUNvZGVQb2ludD1mdW5jdGlvbihlKXtyZXR1cm4gZT42NTUzNT8oZS09NjU1MzYsU3RyaW5nLmZyb21DaGFyQ29kZSg1NTI5NisoZT4+MTApKStTdHJpbmcuZnJvbUNoYXJDb2RlKGUlMTAyNCs1NjMyMCkpOlN0cmluZy5mcm9tQ2hhckNvZGUoZSl9LHQudXRmMzJUb1N0cmluZz1mdW5jdGlvbihlLHQscil7dm9pZCAwPT09dCYmKHQ9MCksdm9pZCAwPT09ciYmKHI9ZS5sZW5ndGgpO2Zvcih2YXIgaT0iIixuPXQ7bjxyOysrbil7dmFyIG89ZVtuXTtvPjY1NTM1PyhvLT02NTUzNixpKz1TdHJpbmcuZnJvbUNoYXJDb2RlKDU1Mjk2KyhvPj4xMCkpK1N0cmluZy5mcm9tQ2hhckNvZGUobyUxMDI0KzU2MzIwKSk6aSs9U3RyaW5nLmZyb21DaGFyQ29kZShvKX1yZXR1cm4gaX07dmFyIHI9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKCl7dGhpcy5faW50ZXJpbT0wfXJldHVybiBlLnByb3RvdHlwZS5jbGVhcj1mdW5jdGlvbigpe3RoaXMuX2ludGVyaW09MH0sZS5wcm90b3R5cGUuZGVjb2RlPWZ1bmN0aW9uKGUsdCl7dmFyIHI9ZS5sZW5ndGg7aWYoIXIpcmV0dXJuIDA7dmFyIGk9MCxuPTA7dGhpcy5faW50ZXJpbSYmKDU2MzIwPD0oYT1lLmNoYXJDb2RlQXQobisrKSkmJmE8PTU3MzQzP3RbaSsrXT0xMDI0Kih0aGlzLl9pbnRlcmltLTU1Mjk2KSthLTU2MzIwKzY1NTM2Oih0W2krK109dGhpcy5faW50ZXJpbSx0W2krK109YSksdGhpcy5faW50ZXJpbT0wKTtmb3IodmFyIG89bjtvPHI7KytvKXt2YXIgcz1lLmNoYXJDb2RlQXQobyk7aWYoNTUyOTY8PXMmJnM8PTU2MzE5KXtpZigrK28+PXIpcmV0dXJuIHRoaXMuX2ludGVyaW09cyxpO3ZhciBhOzU2MzIwPD0oYT1lLmNoYXJDb2RlQXQobykpJiZhPD01NzM0Mz90W2krK109MTAyNCoocy01NTI5NikrYS01NjMyMCs2NTUzNjoodFtpKytdPXMsdFtpKytdPWEpfWVsc2UgNjUyNzkhPT1zJiYodFtpKytdPXMpfXJldHVybiBpfSxlfSgpO3QuU3RyaW5nVG9VdGYzMj1yO3ZhciBpPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZSgpe3RoaXMuaW50ZXJpbT1uZXcgVWludDhBcnJheSgzKX1yZXR1cm4gZS5wcm90b3R5cGUuY2xlYXI9ZnVuY3Rpb24oKXt0aGlzLmludGVyaW0uZmlsbCgwKX0sZS5wcm90b3R5cGUuZGVjb2RlPWZ1bmN0aW9uKGUsdCl7dmFyIHI9ZS5sZW5ndGg7aWYoIXIpcmV0dXJuIDA7dmFyIGksbixvLHMsYT0wLGM9MCxsPTA7aWYodGhpcy5pbnRlcmltWzBdKXt2YXIgdT0hMSxoPXRoaXMuaW50ZXJpbVswXTtoJj0xOTI9PSgyMjQmaCk/MzE6MjI0PT0oMjQwJmgpPzE1Ojc7Zm9yKHZhciBmPTAsXz12b2lkIDA7KF89NjMmdGhpcy5pbnRlcmltWysrZl0pJiZmPDQ7KWg8PD02LGh8PV87Zm9yKHZhciBkPTE5Mj09KDIyNCZ0aGlzLmludGVyaW1bMF0pPzI6MjI0PT0oMjQwJnRoaXMuaW50ZXJpbVswXSk/Mzo0LHA9ZC1mO2w8cDspe2lmKGw+PXIpcmV0dXJuIDA7aWYoMTI4IT0oMTkyJihfPWVbbCsrXSkpKXtsLS0sdT0hMDticmVha310aGlzLmludGVyaW1bZisrXT1fLGg8PD02LGh8PTYzJl99dXx8KDI9PT1kP2g8MTI4P2wtLTp0W2ErK109aDozPT09ZD9oPDIwNDh8fGg+PTU1Mjk2JiZoPD01NzM0M3x8NjUyNzk9PT1ofHwodFthKytdPWgpOmg8NjU1MzZ8fGg+MTExNDExMXx8KHRbYSsrXT1oKSksdGhpcy5pbnRlcmltLmZpbGwoMCl9Zm9yKHZhciB2PXItNCxnPWw7ZzxyOyl7Zm9yKDshKCEoZzx2KXx8MTI4JihpPWVbZ10pfHwxMjgmKG49ZVtnKzFdKXx8MTI4JihvPWVbZysyXSl8fDEyOCYocz1lW2crM10pKTspdFthKytdPWksdFthKytdPW4sdFthKytdPW8sdFthKytdPXMsZys9NDtpZigoaT1lW2crK10pPDEyOCl0W2ErK109aTtlbHNlIGlmKDE5Mj09KDIyNCZpKSl7aWYoZz49cilyZXR1cm4gdGhpcy5pbnRlcmltWzBdPWksYTtpZigxMjghPSgxOTImKG49ZVtnKytdKSkpe2ctLTtjb250aW51ZX1pZigoYz0oMzEmaSk8PDZ8NjMmbik8MTI4KXtnLS07Y29udGludWV9dFthKytdPWN9ZWxzZSBpZigyMjQ9PSgyNDAmaSkpe2lmKGc+PXIpcmV0dXJuIHRoaXMuaW50ZXJpbVswXT1pLGE7aWYoMTI4IT0oMTkyJihuPWVbZysrXSkpKXtnLS07Y29udGludWV9aWYoZz49cilyZXR1cm4gdGhpcy5pbnRlcmltWzBdPWksdGhpcy5pbnRlcmltWzFdPW4sYTtpZigxMjghPSgxOTImKG89ZVtnKytdKSkpe2ctLTtjb250aW51ZX1pZigoYz0oMTUmaSk8PDEyfCg2MyZuKTw8Nnw2MyZvKTwyMDQ4fHxjPj01NTI5NiYmYzw9NTczNDN8fDY1Mjc5PT09Yyljb250aW51ZTt0W2ErK109Y31lbHNlIGlmKDI0MD09KDI0OCZpKSl7aWYoZz49cilyZXR1cm4gdGhpcy5pbnRlcmltWzBdPWksYTtpZigxMjghPSgxOTImKG49ZVtnKytdKSkpe2ctLTtjb250aW51ZX1pZihnPj1yKXJldHVybiB0aGlzLmludGVyaW1bMF09aSx0aGlzLmludGVyaW1bMV09bixhO2lmKDEyOCE9KDE5MiYobz1lW2crK10pKSl7Zy0tO2NvbnRpbnVlfWlmKGc+PXIpcmV0dXJuIHRoaXMuaW50ZXJpbVswXT1pLHRoaXMuaW50ZXJpbVsxXT1uLHRoaXMuaW50ZXJpbVsyXT1vLGE7aWYoMTI4IT0oMTkyJihzPWVbZysrXSkpKXtnLS07Y29udGludWV9aWYoKGM9KDcmaSk8PDE4fCg2MyZuKTw8MTJ8KDYzJm8pPDw2fDYzJnMpPDY1NTM2fHxjPjExMTQxMTEpY29udGludWU7dFthKytdPWN9fXJldHVybiBhfSxlfSgpO3QuVXRmOFRvVXRmMzI9aX0sMjI1OihlLHQscik9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Vbmljb2RlVjY9dm9pZCAwO3ZhciBpLG49cig4MjczKSxvPVtbNzY4LDg3OV0sWzExNTUsMTE1OF0sWzExNjAsMTE2MV0sWzE0MjUsMTQ2OV0sWzE0NzEsMTQ3MV0sWzE0NzMsMTQ3NF0sWzE0NzYsMTQ3N10sWzE0NzksMTQ3OV0sWzE1MzYsMTUzOV0sWzE1NTIsMTU1N10sWzE2MTEsMTYzMF0sWzE2NDgsMTY0OF0sWzE3NTAsMTc2NF0sWzE3NjcsMTc2OF0sWzE3NzAsMTc3M10sWzE4MDcsMTgwN10sWzE4MDksMTgwOV0sWzE4NDAsMTg2Nl0sWzE5NTgsMTk2OF0sWzIwMjcsMjAzNV0sWzIzMDUsMjMwNl0sWzIzNjQsMjM2NF0sWzIzNjksMjM3Nl0sWzIzODEsMjM4MV0sWzIzODUsMjM4OF0sWzI0MDIsMjQwM10sWzI0MzMsMjQzM10sWzI0OTIsMjQ5Ml0sWzI0OTcsMjUwMF0sWzI1MDksMjUwOV0sWzI1MzAsMjUzMV0sWzI1NjEsMjU2Ml0sWzI2MjAsMjYyMF0sWzI2MjUsMjYyNl0sWzI2MzEsMjYzMl0sWzI2MzUsMjYzN10sWzI2NzIsMjY3M10sWzI2ODksMjY5MF0sWzI3NDgsMjc0OF0sWzI3NTMsMjc1N10sWzI3NTksMjc2MF0sWzI3NjUsMjc2NV0sWzI3ODYsMjc4N10sWzI4MTcsMjgxN10sWzI4NzYsMjg3Nl0sWzI4NzksMjg3OV0sWzI4ODEsMjg4M10sWzI4OTMsMjg5M10sWzI5MDIsMjkwMl0sWzI5NDYsMjk0Nl0sWzMwMDgsMzAwOF0sWzMwMjEsMzAyMV0sWzMxMzQsMzEzNl0sWzMxNDIsMzE0NF0sWzMxNDYsMzE0OV0sWzMxNTcsMzE1OF0sWzMyNjAsMzI2MF0sWzMyNjMsMzI2M10sWzMyNzAsMzI3MF0sWzMyNzYsMzI3N10sWzMyOTgsMzI5OV0sWzMzOTMsMzM5NV0sWzM0MDUsMzQwNV0sWzM1MzAsMzUzMF0sWzM1MzgsMzU0MF0sWzM1NDIsMzU0Ml0sWzM2MzMsMzYzM10sWzM2MzYsMzY0Ml0sWzM2NTUsMzY2Ml0sWzM3NjEsMzc2MV0sWzM3NjQsMzc2OV0sWzM3NzEsMzc3Ml0sWzM3ODQsMzc4OV0sWzM4NjQsMzg2NV0sWzM4OTMsMzg5M10sWzM4OTUsMzg5NV0sWzM4OTcsMzg5N10sWzM5NTMsMzk2Nl0sWzM5NjgsMzk3Ml0sWzM5NzQsMzk3NV0sWzM5ODQsMzk5MV0sWzM5OTMsNDAyOF0sWzQwMzgsNDAzOF0sWzQxNDEsNDE0NF0sWzQxNDYsNDE0Nl0sWzQxNTAsNDE1MV0sWzQxNTMsNDE1M10sWzQxODQsNDE4NV0sWzQ0NDgsNDYwN10sWzQ5NTksNDk1OV0sWzU5MDYsNTkwOF0sWzU5MzgsNTk0MF0sWzU5NzAsNTk3MV0sWzYwMDIsNjAwM10sWzYwNjgsNjA2OV0sWzYwNzEsNjA3N10sWzYwODYsNjA4Nl0sWzYwODksNjA5OV0sWzYxMDksNjEwOV0sWzYxNTUsNjE1N10sWzYzMTMsNjMxM10sWzY0MzIsNjQzNF0sWzY0MzksNjQ0MF0sWzY0NTAsNjQ1MF0sWzY0NTcsNjQ1OV0sWzY2NzksNjY4MF0sWzY5MTIsNjkxNV0sWzY5NjQsNjk2NF0sWzY5NjYsNjk3MF0sWzY5NzIsNjk3Ml0sWzY5NzgsNjk3OF0sWzcwMTksNzAyN10sWzc2MTYsNzYyNl0sWzc2NzgsNzY3OV0sWzgyMDMsODIwN10sWzgyMzQsODIzOF0sWzgyODgsODI5MV0sWzgyOTgsODMwM10sWzg0MDAsODQzMV0sWzEyMzMwLDEyMzM1XSxbMTI0NDEsMTI0NDJdLFs0MzAxNCw0MzAxNF0sWzQzMDE5LDQzMDE5XSxbNDMwNDUsNDMwNDZdLFs2NDI4Niw2NDI4Nl0sWzY1MDI0LDY1MDM5XSxbNjUwNTYsNjUwNTldLFs2NTI3OSw2NTI3OV0sWzY1NTI5LDY1NTMxXV0scz1bWzY4MDk3LDY4MDk5XSxbNjgxMDEsNjgxMDJdLFs2ODEwOCw2ODExMV0sWzY4MTUyLDY4MTU0XSxbNjgxNTksNjgxNTldLFsxMTkxNDMsMTE5MTQ1XSxbMTE5MTU1LDExOTE3MF0sWzExOTE3MywxMTkxNzldLFsxMTkyMTAsMTE5MjEzXSxbMTE5MzYyLDExOTM2NF0sWzkxNzUwNSw5MTc1MDVdLFs5MTc1MzYsOTE3NjMxXSxbOTE3NzYwLDkxNzk5OV1dLGE9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKCl7aWYodGhpcy52ZXJzaW9uPSI2IiwhaSl7aT1uZXcgVWludDhBcnJheSg2NTUzNiksKDAsbi5maWxsKShpLDEpLGlbMF09MCwoMCxuLmZpbGwpKGksMCwxLDMyKSwoMCxuLmZpbGwpKGksMCwxMjcsMTYwKSwoMCxuLmZpbGwpKGksMiw0MzUyLDQ0NDgpLGlbOTAwMV09MixpWzkwMDJdPTIsKDAsbi5maWxsKShpLDIsMTE5MDQsNDIxOTIpLGlbMTIzNTFdPTEsKDAsbi5maWxsKShpLDIsNDQwMzIsNTUyMDQpLCgwLG4uZmlsbCkoaSwyLDYzNzQ0LDY0MjU2KSwoMCxuLmZpbGwpKGksMiw2NTA0MCw2NTA1MCksKDAsbi5maWxsKShpLDIsNjUwNzIsNjUxMzYpLCgwLG4uZmlsbCkoaSwyLDY1MjgwLDY1Mzc3KSwoMCxuLmZpbGwpKGksMiw2NTUwNCw2NTUxMSk7Zm9yKHZhciBlPTA7ZTxvLmxlbmd0aDsrK2UpKDAsbi5maWxsKShpLDAsb1tlXVswXSxvW2VdWzFdKzEpfX1yZXR1cm4gZS5wcm90b3R5cGUud2N3aWR0aD1mdW5jdGlvbihlKXtyZXR1cm4gZTwzMj8wOmU8MTI3PzE6ZTw2NTUzNj9pW2VdOmZ1bmN0aW9uKGUsdCl7dmFyIHIsaT0wLG49dC5sZW5ndGgtMTtpZihlPHRbMF1bMF18fGU+dFtuXVsxXSlyZXR1cm4hMTtmb3IoO24+PWk7KWlmKGU+dFtyPWkrbj4+MV1bMV0paT1yKzE7ZWxzZXtpZighKGU8dFtyXVswXSkpcmV0dXJuITA7bj1yLTF9cmV0dXJuITF9KGUscyk/MDplPj0xMzEwNzImJmU8PTE5NjYwNXx8ZT49MTk2NjA4JiZlPD0yNjIxNDE/MjoxfSxlfSgpO3QuVW5pY29kZVY2PWF9LDU5ODE6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Xcml0ZUJ1ZmZlcj12b2lkIDA7dmFyIHI9InVuZGVmaW5lZCI9PXR5cGVvZiBxdWV1ZU1pY3JvdGFzaz9mdW5jdGlvbihlKXtQcm9taXNlLnJlc29sdmUoKS50aGVuKGUpfTpxdWV1ZU1pY3JvdGFzayxpPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlKXt0aGlzLl9hY3Rpb249ZSx0aGlzLl93cml0ZUJ1ZmZlcj1bXSx0aGlzLl9jYWxsYmFja3M9W10sdGhpcy5fcGVuZGluZ0RhdGE9MCx0aGlzLl9idWZmZXJPZmZzZXQ9MCx0aGlzLl9pc1N5bmNXcml0aW5nPSExLHRoaXMuX3N5bmNDYWxscz0wfXJldHVybiBlLnByb3RvdHlwZS53cml0ZVN5bmM9ZnVuY3Rpb24oZSx0KXtpZih2b2lkIDAhPT10JiZ0aGlzLl9zeW5jQ2FsbHM+dCl0aGlzLl9zeW5jQ2FsbHM9MDtlbHNlIGlmKHRoaXMuX3BlbmRpbmdEYXRhKz1lLmxlbmd0aCx0aGlzLl93cml0ZUJ1ZmZlci5wdXNoKGUpLHRoaXMuX2NhbGxiYWNrcy5wdXNoKHZvaWQgMCksdGhpcy5fc3luY0NhbGxzKyssIXRoaXMuX2lzU3luY1dyaXRpbmcpe3ZhciByO2Zvcih0aGlzLl9pc1N5bmNXcml0aW5nPSEwO3I9dGhpcy5fd3JpdGVCdWZmZXIuc2hpZnQoKTspe3RoaXMuX2FjdGlvbihyKTt2YXIgaT10aGlzLl9jYWxsYmFja3Muc2hpZnQoKTtpJiZpKCl9dGhpcy5fcGVuZGluZ0RhdGE9MCx0aGlzLl9idWZmZXJPZmZzZXQ9MjE0NzQ4MzY0Nyx0aGlzLl9pc1N5bmNXcml0aW5nPSExLHRoaXMuX3N5bmNDYWxscz0wfX0sZS5wcm90b3R5cGUud3JpdGU9ZnVuY3Rpb24oZSx0KXt2YXIgcj10aGlzO2lmKHRoaXMuX3BlbmRpbmdEYXRhPjVlNyl0aHJvdyBuZXcgRXJyb3IoIndyaXRlIGRhdGEgZGlzY2FyZGVkLCB1c2UgZmxvdyBjb250cm9sIHRvIGF2b2lkIGxvc2luZyBkYXRhIik7dGhpcy5fd3JpdGVCdWZmZXIubGVuZ3RofHwodGhpcy5fYnVmZmVyT2Zmc2V0PTAsc2V0VGltZW91dCgoZnVuY3Rpb24oKXtyZXR1cm4gci5faW5uZXJXcml0ZSgpfSkpKSx0aGlzLl9wZW5kaW5nRGF0YSs9ZS5sZW5ndGgsdGhpcy5fd3JpdGVCdWZmZXIucHVzaChlKSx0aGlzLl9jYWxsYmFja3MucHVzaCh0KX0sZS5wcm90b3R5cGUuX2lubmVyV3JpdGU9ZnVuY3Rpb24oZSx0KXt2YXIgaT10aGlzO3ZvaWQgMD09PWUmJihlPTApLHZvaWQgMD09PXQmJih0PSEwKTtmb3IodmFyIG49ZXx8RGF0ZS5ub3coKTt0aGlzLl93cml0ZUJ1ZmZlci5sZW5ndGg+dGhpcy5fYnVmZmVyT2Zmc2V0Oyl7dmFyIG89dGhpcy5fd3JpdGVCdWZmZXJbdGhpcy5fYnVmZmVyT2Zmc2V0XSxzPXRoaXMuX2FjdGlvbihvLHQpO2lmKHMpcmV0dXJuIHZvaWQgcy5jYXRjaCgoZnVuY3Rpb24oZSl7cmV0dXJuIHIoKGZ1bmN0aW9uKCl7dGhyb3cgZX0pKSxQcm9taXNlLnJlc29sdmUoITEpfSkpLnRoZW4oKGZ1bmN0aW9uKGUpe3JldHVybiBEYXRlLm5vdygpLW4+PTEyP3NldFRpbWVvdXQoKGZ1bmN0aW9uKCl7cmV0dXJuIGkuX2lubmVyV3JpdGUoMCxlKX0pKTppLl9pbm5lcldyaXRlKG4sZSl9KSk7dmFyIGE9dGhpcy5fY2FsbGJhY2tzW3RoaXMuX2J1ZmZlck9mZnNldF07aWYoYSYmYSgpLHRoaXMuX2J1ZmZlck9mZnNldCsrLHRoaXMuX3BlbmRpbmdEYXRhLT1vLmxlbmd0aCxEYXRlLm5vdygpLW4+PTEyKWJyZWFrfXRoaXMuX3dyaXRlQnVmZmVyLmxlbmd0aD50aGlzLl9idWZmZXJPZmZzZXQ/KHRoaXMuX2J1ZmZlck9mZnNldD41MCYmKHRoaXMuX3dyaXRlQnVmZmVyPXRoaXMuX3dyaXRlQnVmZmVyLnNsaWNlKHRoaXMuX2J1ZmZlck9mZnNldCksdGhpcy5fY2FsbGJhY2tzPXRoaXMuX2NhbGxiYWNrcy5zbGljZSh0aGlzLl9idWZmZXJPZmZzZXQpLHRoaXMuX2J1ZmZlck9mZnNldD0wKSxzZXRUaW1lb3V0KChmdW5jdGlvbigpe3JldHVybiBpLl9pbm5lcldyaXRlKCl9KSkpOih0aGlzLl93cml0ZUJ1ZmZlci5sZW5ndGg9MCx0aGlzLl9jYWxsYmFja3MubGVuZ3RoPTAsdGhpcy5fcGVuZGluZ0RhdGE9MCx0aGlzLl9idWZmZXJPZmZzZXQ9MCl9LGV9KCk7dC5Xcml0ZUJ1ZmZlcj1pfSw1OTQxOihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQudG9SZ2JTdHJpbmc9dC5wYXJzZUNvbG9yPXZvaWQgMDt2YXIgcj0vXihbXGRhLWZdezF9KVwvKFtcZGEtZl17MX0pXC8oW1xkYS1mXXsxfSkkfF4oW1xkYS1mXXsyfSlcLyhbXGRhLWZdezJ9KVwvKFtcZGEtZl17Mn0pJHxeKFtcZGEtZl17M30pXC8oW1xkYS1mXXszfSlcLyhbXGRhLWZdezN9KSR8XihbXGRhLWZdezR9KVwvKFtcZGEtZl17NH0pXC8oW1xkYS1mXXs0fSkkLyxpPS9eW1xkYS1mXSskLztmdW5jdGlvbiBuKGUsdCl7dmFyIHI9ZS50b1N0cmluZygxNiksaT1yLmxlbmd0aDwyPyIwIityOnI7c3dpdGNoKHQpe2Nhc2UgNDpyZXR1cm4gclswXTtjYXNlIDg6cmV0dXJuIGk7Y2FzZSAxMjpyZXR1cm4oaStpKS5zbGljZSgwLDMpO2RlZmF1bHQ6cmV0dXJuIGkraX19dC5wYXJzZUNvbG9yPWZ1bmN0aW9uKGUpe2lmKGUpe3ZhciB0PWUudG9Mb3dlckNhc2UoKTtpZigwPT09dC5pbmRleE9mKCJyZ2I6Iikpe3Q9dC5zbGljZSg0KTt2YXIgbj1yLmV4ZWModCk7aWYobil7dmFyIG89blsxXT8xNTpuWzRdPzI1NTpuWzddPzQwOTU6NjU1MzU7cmV0dXJuW01hdGgucm91bmQocGFyc2VJbnQoblsxXXx8bls0XXx8bls3XXx8blsxMF0sMTYpL28qMjU1KSxNYXRoLnJvdW5kKHBhcnNlSW50KG5bMl18fG5bNV18fG5bOF18fG5bMTFdLDE2KS9vKjI1NSksTWF0aC5yb3VuZChwYXJzZUludChuWzNdfHxuWzZdfHxuWzldfHxuWzEyXSwxNikvbyoyNTUpXX19ZWxzZSBpZigwPT09dC5pbmRleE9mKCIjIikmJih0PXQuc2xpY2UoMSksaS5leGVjKHQpJiZbMyw2LDksMTJdLmluY2x1ZGVzKHQubGVuZ3RoKSkpe2Zvcih2YXIgcz10Lmxlbmd0aC8zLGE9WzAsMCwwXSxjPTA7YzwzOysrYyl7dmFyIGw9cGFyc2VJbnQodC5zbGljZShzKmMscypjK3MpLDE2KTthW2NdPTE9PT1zP2w8PDQ6Mj09PXM/bDozPT09cz9sPj40Omw+Pjh9cmV0dXJuIGF9fX0sdC50b1JnYlN0cmluZz1mdW5jdGlvbihlLHQpe3ZvaWQgMD09PXQmJih0PTE2KTt2YXIgcj1lWzBdLGk9ZVsxXSxvPWVbMl07cmV0dXJuInJnYjoiK24ocix0KSsiLyIrbihpLHQpKyIvIituKG8sdCl9fSw1NzcwOihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuUEFZTE9BRF9MSU1JVD12b2lkIDAsdC5QQVlMT0FEX0xJTUlUPTFlN30sNjM1MTooZSx0LHIpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuRGNzSGFuZGxlcj10LkRjc1BhcnNlcj12b2lkIDA7dmFyIGk9cig0ODIpLG49cig4NzQyKSxvPXIoNTc3MCkscz1bXSxhPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZSgpe3RoaXMuX2hhbmRsZXJzPU9iamVjdC5jcmVhdGUobnVsbCksdGhpcy5fYWN0aXZlPXMsdGhpcy5faWRlbnQ9MCx0aGlzLl9oYW5kbGVyRmI9ZnVuY3Rpb24oKXt9LHRoaXMuX3N0YWNrPXtwYXVzZWQ6ITEsbG9vcFBvc2l0aW9uOjAsZmFsbFRocm91Z2g6ITF9fXJldHVybiBlLnByb3RvdHlwZS5kaXNwb3NlPWZ1bmN0aW9uKCl7dGhpcy5faGFuZGxlcnM9T2JqZWN0LmNyZWF0ZShudWxsKSx0aGlzLl9oYW5kbGVyRmI9ZnVuY3Rpb24oKXt9LHRoaXMuX2FjdGl2ZT1zfSxlLnByb3RvdHlwZS5yZWdpc3RlckhhbmRsZXI9ZnVuY3Rpb24oZSx0KXt2b2lkIDA9PT10aGlzLl9oYW5kbGVyc1tlXSYmKHRoaXMuX2hhbmRsZXJzW2VdPVtdKTt2YXIgcj10aGlzLl9oYW5kbGVyc1tlXTtyZXR1cm4gci5wdXNoKHQpLHtkaXNwb3NlOmZ1bmN0aW9uKCl7dmFyIGU9ci5pbmRleE9mKHQpOy0xIT09ZSYmci5zcGxpY2UoZSwxKX19fSxlLnByb3RvdHlwZS5jbGVhckhhbmRsZXI9ZnVuY3Rpb24oZSl7dGhpcy5faGFuZGxlcnNbZV0mJmRlbGV0ZSB0aGlzLl9oYW5kbGVyc1tlXX0sZS5wcm90b3R5cGUuc2V0SGFuZGxlckZhbGxiYWNrPWZ1bmN0aW9uKGUpe3RoaXMuX2hhbmRsZXJGYj1lfSxlLnByb3RvdHlwZS5yZXNldD1mdW5jdGlvbigpe2lmKHRoaXMuX2FjdGl2ZS5sZW5ndGgpZm9yKHZhciBlPXRoaXMuX3N0YWNrLnBhdXNlZD90aGlzLl9zdGFjay5sb29wUG9zaXRpb24tMTp0aGlzLl9hY3RpdmUubGVuZ3RoLTE7ZT49MDstLWUpdGhpcy5fYWN0aXZlW2VdLnVuaG9vayghMSk7dGhpcy5fc3RhY2sucGF1c2VkPSExLHRoaXMuX2FjdGl2ZT1zLHRoaXMuX2lkZW50PTB9LGUucHJvdG90eXBlLmhvb2s9ZnVuY3Rpb24oZSx0KXtpZih0aGlzLnJlc2V0KCksdGhpcy5faWRlbnQ9ZSx0aGlzLl9hY3RpdmU9dGhpcy5faGFuZGxlcnNbZV18fHMsdGhpcy5fYWN0aXZlLmxlbmd0aClmb3IodmFyIHI9dGhpcy5fYWN0aXZlLmxlbmd0aC0xO3I+PTA7ci0tKXRoaXMuX2FjdGl2ZVtyXS5ob29rKHQpO2Vsc2UgdGhpcy5faGFuZGxlckZiKHRoaXMuX2lkZW50LCJIT09LIix0KX0sZS5wcm90b3R5cGUucHV0PWZ1bmN0aW9uKGUsdCxyKXtpZih0aGlzLl9hY3RpdmUubGVuZ3RoKWZvcih2YXIgbj10aGlzLl9hY3RpdmUubGVuZ3RoLTE7bj49MDtuLS0pdGhpcy5fYWN0aXZlW25dLnB1dChlLHQscik7ZWxzZSB0aGlzLl9oYW5kbGVyRmIodGhpcy5faWRlbnQsIlBVVCIsKDAsaS51dGYzMlRvU3RyaW5nKShlLHQscikpfSxlLnByb3RvdHlwZS51bmhvb2s9ZnVuY3Rpb24oZSx0KXtpZih2b2lkIDA9PT10JiYodD0hMCksdGhpcy5fYWN0aXZlLmxlbmd0aCl7dmFyIHI9ITEsaT10aGlzLl9hY3RpdmUubGVuZ3RoLTEsbj0hMTtpZih0aGlzLl9zdGFjay5wYXVzZWQmJihpPXRoaXMuX3N0YWNrLmxvb3BQb3NpdGlvbi0xLHI9dCxuPXRoaXMuX3N0YWNrLmZhbGxUaHJvdWdoLHRoaXMuX3N0YWNrLnBhdXNlZD0hMSksIW4mJiExPT09cil7Zm9yKDtpPj0wJiYhMCE9PShyPXRoaXMuX2FjdGl2ZVtpXS51bmhvb2soZSkpO2ktLSlpZihyIGluc3RhbmNlb2YgUHJvbWlzZSlyZXR1cm4gdGhpcy5fc3RhY2sucGF1c2VkPSEwLHRoaXMuX3N0YWNrLmxvb3BQb3NpdGlvbj1pLHRoaXMuX3N0YWNrLmZhbGxUaHJvdWdoPSExLHI7aS0tfWZvcig7aT49MDtpLS0paWYoKHI9dGhpcy5fYWN0aXZlW2ldLnVuaG9vayghMSkpaW5zdGFuY2VvZiBQcm9taXNlKXJldHVybiB0aGlzLl9zdGFjay5wYXVzZWQ9ITAsdGhpcy5fc3RhY2subG9vcFBvc2l0aW9uPWksdGhpcy5fc3RhY2suZmFsbFRocm91Z2g9ITAscn1lbHNlIHRoaXMuX2hhbmRsZXJGYih0aGlzLl9pZGVudCwiVU5IT09LIixlKTt0aGlzLl9hY3RpdmU9cyx0aGlzLl9pZGVudD0wfSxlfSgpO3QuRGNzUGFyc2VyPWE7dmFyIGM9bmV3IG4uUGFyYW1zO2MuYWRkUGFyYW0oMCk7dmFyIGw9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUpe3RoaXMuX2hhbmRsZXI9ZSx0aGlzLl9kYXRhPSIiLHRoaXMuX3BhcmFtcz1jLHRoaXMuX2hpdExpbWl0PSExfXJldHVybiBlLnByb3RvdHlwZS5ob29rPWZ1bmN0aW9uKGUpe3RoaXMuX3BhcmFtcz1lLmxlbmd0aD4xfHxlLnBhcmFtc1swXT9lLmNsb25lKCk6Yyx0aGlzLl9kYXRhPSIiLHRoaXMuX2hpdExpbWl0PSExfSxlLnByb3RvdHlwZS5wdXQ9ZnVuY3Rpb24oZSx0LHIpe3RoaXMuX2hpdExpbWl0fHwodGhpcy5fZGF0YSs9KDAsaS51dGYzMlRvU3RyaW5nKShlLHQsciksdGhpcy5fZGF0YS5sZW5ndGg+by5QQVlMT0FEX0xJTUlUJiYodGhpcy5fZGF0YT0iIix0aGlzLl9oaXRMaW1pdD0hMCkpfSxlLnByb3RvdHlwZS51bmhvb2s9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcyxyPSExO2lmKHRoaXMuX2hpdExpbWl0KXI9ITE7ZWxzZSBpZihlJiYocj10aGlzLl9oYW5kbGVyKHRoaXMuX2RhdGEsdGhpcy5fcGFyYW1zKSlpbnN0YW5jZW9mIFByb21pc2UpcmV0dXJuIHIudGhlbigoZnVuY3Rpb24oZSl7cmV0dXJuIHQuX3BhcmFtcz1jLHQuX2RhdGE9IiIsdC5faGl0TGltaXQ9ITEsZX0pKTtyZXR1cm4gdGhpcy5fcGFyYW1zPWMsdGhpcy5fZGF0YT0iIix0aGlzLl9oaXRMaW1pdD0hMSxyfSxlfSgpO3QuRGNzSGFuZGxlcj1sfSwyMDE1OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pO09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkVzY2FwZVNlcXVlbmNlUGFyc2VyPXQuVlQ1MDBfVFJBTlNJVElPTl9UQUJMRT10LlRyYW5zaXRpb25UYWJsZT12b2lkIDA7dmFyIG89cig4NDQpLHM9cig4MjczKSxhPXIoODc0MiksYz1yKDYyNDIpLGw9cig2MzUxKSx1PWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlKXt0aGlzLnRhYmxlPW5ldyBVaW50OEFycmF5KGUpfXJldHVybiBlLnByb3RvdHlwZS5zZXREZWZhdWx0PWZ1bmN0aW9uKGUsdCl7KDAscy5maWxsKSh0aGlzLnRhYmxlLGU8PDR8dCl9LGUucHJvdG90eXBlLmFkZD1mdW5jdGlvbihlLHQscixpKXt0aGlzLnRhYmxlW3Q8PDh8ZV09cjw8NHxpfSxlLnByb3RvdHlwZS5hZGRNYW55PWZ1bmN0aW9uKGUsdCxyLGkpe2Zvcih2YXIgbj0wO248ZS5sZW5ndGg7bisrKXRoaXMudGFibGVbdDw8OHxlW25dXT1yPDw0fGl9LGV9KCk7dC5UcmFuc2l0aW9uVGFibGU9dTt2YXIgaD0xNjA7dC5WVDUwMF9UUkFOU0lUSU9OX1RBQkxFPWZ1bmN0aW9uKCl7dmFyIGU9bmV3IHUoNDA5NSksdD1BcnJheS5hcHBseShudWxsLEFycmF5KDI1NikpLm1hcCgoZnVuY3Rpb24oZSx0KXtyZXR1cm4gdH0pKSxyPWZ1bmN0aW9uKGUscil7cmV0dXJuIHQuc2xpY2UoZSxyKX0saT1yKDMyLDEyNyksbj1yKDAsMjQpO24ucHVzaCgyNSksbi5wdXNoLmFwcGx5KG4scigyOCwzMikpO3ZhciBvLHM9cigwLDE0KTtmb3IobyBpbiBlLnNldERlZmF1bHQoMSwwKSxlLmFkZE1hbnkoaSwwLDIsMCkscyllLmFkZE1hbnkoWzI0LDI2LDE1MywxNTRdLG8sMywwKSxlLmFkZE1hbnkocigxMjgsMTQ0KSxvLDMsMCksZS5hZGRNYW55KHIoMTQ0LDE1MiksbywzLDApLGUuYWRkKDE1NixvLDAsMCksZS5hZGQoMjcsbywxMSwxKSxlLmFkZCgxNTcsbyw0LDgpLGUuYWRkTWFueShbMTUyLDE1OCwxNTldLG8sMCw3KSxlLmFkZCgxNTUsbywxMSwzKSxlLmFkZCgxNDQsbywxMSw5KTtyZXR1cm4gZS5hZGRNYW55KG4sMCwzLDApLGUuYWRkTWFueShuLDEsMywxKSxlLmFkZCgxMjcsMSwwLDEpLGUuYWRkTWFueShuLDgsMCw4KSxlLmFkZE1hbnkobiwzLDMsMyksZS5hZGQoMTI3LDMsMCwzKSxlLmFkZE1hbnkobiw0LDMsNCksZS5hZGQoMTI3LDQsMCw0KSxlLmFkZE1hbnkobiw2LDMsNiksZS5hZGRNYW55KG4sNSwzLDUpLGUuYWRkKDEyNyw1LDAsNSksZS5hZGRNYW55KG4sMiwzLDIpLGUuYWRkKDEyNywyLDAsMiksZS5hZGQoOTMsMSw0LDgpLGUuYWRkTWFueShpLDgsNSw4KSxlLmFkZCgxMjcsOCw1LDgpLGUuYWRkTWFueShbMTU2LDI3LDI0LDI2LDddLDgsNiwwKSxlLmFkZE1hbnkocigyOCwzMiksOCwwLDgpLGUuYWRkTWFueShbODgsOTQsOTVdLDEsMCw3KSxlLmFkZE1hbnkoaSw3LDAsNyksZS5hZGRNYW55KG4sNywwLDcpLGUuYWRkKDE1Niw3LDAsMCksZS5hZGQoMTI3LDcsMCw3KSxlLmFkZCg5MSwxLDExLDMpLGUuYWRkTWFueShyKDY0LDEyNyksMyw3LDApLGUuYWRkTWFueShyKDQ4LDYwKSwzLDgsNCksZS5hZGRNYW55KFs2MCw2MSw2Miw2M10sMyw5LDQpLGUuYWRkTWFueShyKDQ4LDYwKSw0LDgsNCksZS5hZGRNYW55KHIoNjQsMTI3KSw0LDcsMCksZS5hZGRNYW55KFs2MCw2MSw2Miw2M10sNCwwLDYpLGUuYWRkTWFueShyKDMyLDY0KSw2LDAsNiksZS5hZGQoMTI3LDYsMCw2KSxlLmFkZE1hbnkocig2NCwxMjcpLDYsMCwwKSxlLmFkZE1hbnkocigzMiw0OCksMyw5LDUpLGUuYWRkTWFueShyKDMyLDQ4KSw1LDksNSksZS5hZGRNYW55KHIoNDgsNjQpLDUsMCw2KSxlLmFkZE1hbnkocig2NCwxMjcpLDUsNywwKSxlLmFkZE1hbnkocigzMiw0OCksNCw5LDUpLGUuYWRkTWFueShyKDMyLDQ4KSwxLDksMiksZS5hZGRNYW55KHIoMzIsNDgpLDIsOSwyKSxlLmFkZE1hbnkocig0OCwxMjcpLDIsMTAsMCksZS5hZGRNYW55KHIoNDgsODApLDEsMTAsMCksZS5hZGRNYW55KHIoODEsODgpLDEsMTAsMCksZS5hZGRNYW55KFs4OSw5MCw5Ml0sMSwxMCwwKSxlLmFkZE1hbnkocig5NiwxMjcpLDEsMTAsMCksZS5hZGQoODAsMSwxMSw5KSxlLmFkZE1hbnkobiw5LDAsOSksZS5hZGQoMTI3LDksMCw5KSxlLmFkZE1hbnkocigyOCwzMiksOSwwLDkpLGUuYWRkTWFueShyKDMyLDQ4KSw5LDksMTIpLGUuYWRkTWFueShyKDQ4LDYwKSw5LDgsMTApLGUuYWRkTWFueShbNjAsNjEsNjIsNjNdLDksOSwxMCksZS5hZGRNYW55KG4sMTEsMCwxMSksZS5hZGRNYW55KHIoMzIsMTI4KSwxMSwwLDExKSxlLmFkZE1hbnkocigyOCwzMiksMTEsMCwxMSksZS5hZGRNYW55KG4sMTAsMCwxMCksZS5hZGQoMTI3LDEwLDAsMTApLGUuYWRkTWFueShyKDI4LDMyKSwxMCwwLDEwKSxlLmFkZE1hbnkocig0OCw2MCksMTAsOCwxMCksZS5hZGRNYW55KFs2MCw2MSw2Miw2M10sMTAsMCwxMSksZS5hZGRNYW55KHIoMzIsNDgpLDEwLDksMTIpLGUuYWRkTWFueShuLDEyLDAsMTIpLGUuYWRkKDEyNywxMiwwLDEyKSxlLmFkZE1hbnkocigyOCwzMiksMTIsMCwxMiksZS5hZGRNYW55KHIoMzIsNDgpLDEyLDksMTIpLGUuYWRkTWFueShyKDQ4LDY0KSwxMiwwLDExKSxlLmFkZE1hbnkocig2NCwxMjcpLDEyLDEyLDEzKSxlLmFkZE1hbnkocig2NCwxMjcpLDEwLDEyLDEzKSxlLmFkZE1hbnkocig2NCwxMjcpLDksMTIsMTMpLGUuYWRkTWFueShuLDEzLDEzLDEzKSxlLmFkZE1hbnkoaSwxMywxMywxMyksZS5hZGQoMTI3LDEzLDAsMTMpLGUuYWRkTWFueShbMjcsMTU2LDI0LDI2XSwxMywxNCwwKSxlLmFkZChoLDAsMiwwKSxlLmFkZChoLDgsNSw4KSxlLmFkZChoLDYsMCw2KSxlLmFkZChoLDExLDAsMTEpLGUuYWRkKGgsMTMsMTMsMTMpLGV9KCk7dmFyIGY9ZnVuY3Rpb24oZSl7ZnVuY3Rpb24gcihyKXt2b2lkIDA9PT1yJiYocj10LlZUNTAwX1RSQU5TSVRJT05fVEFCTEUpO3ZhciBpPWUuY2FsbCh0aGlzKXx8dGhpcztyZXR1cm4gaS5fdHJhbnNpdGlvbnM9cixpLl9wYXJzZVN0YWNrPXtzdGF0ZTowLGhhbmRsZXJzOltdLGhhbmRsZXJQb3M6MCx0cmFuc2l0aW9uOjAsY2h1bmtQb3M6MH0saS5pbml0aWFsU3RhdGU9MCxpLmN1cnJlbnRTdGF0ZT1pLmluaXRpYWxTdGF0ZSxpLl9wYXJhbXM9bmV3IGEuUGFyYW1zLGkuX3BhcmFtcy5hZGRQYXJhbSgwKSxpLl9jb2xsZWN0PTAsaS5wcmVjZWRpbmdDb2RlcG9pbnQ9MCxpLl9wcmludEhhbmRsZXJGYj1mdW5jdGlvbihlLHQscil7fSxpLl9leGVjdXRlSGFuZGxlckZiPWZ1bmN0aW9uKGUpe30saS5fY3NpSGFuZGxlckZiPWZ1bmN0aW9uKGUsdCl7fSxpLl9lc2NIYW5kbGVyRmI9ZnVuY3Rpb24oZSl7fSxpLl9lcnJvckhhbmRsZXJGYj1mdW5jdGlvbihlKXtyZXR1cm4gZX0saS5fcHJpbnRIYW5kbGVyPWkuX3ByaW50SGFuZGxlckZiLGkuX2V4ZWN1dGVIYW5kbGVycz1PYmplY3QuY3JlYXRlKG51bGwpLGkuX2NzaUhhbmRsZXJzPU9iamVjdC5jcmVhdGUobnVsbCksaS5fZXNjSGFuZGxlcnM9T2JqZWN0LmNyZWF0ZShudWxsKSxpLl9vc2NQYXJzZXI9bmV3IGMuT3NjUGFyc2VyLGkuX2Rjc1BhcnNlcj1uZXcgbC5EY3NQYXJzZXIsaS5fZXJyb3JIYW5kbGVyPWkuX2Vycm9ySGFuZGxlckZiLGkucmVnaXN0ZXJFc2NIYW5kbGVyKHtmaW5hbDoiXFwifSwoZnVuY3Rpb24oKXtyZXR1cm4hMH0pKSxpfXJldHVybiBuKHIsZSksci5wcm90b3R5cGUuX2lkZW50aWZpZXI9ZnVuY3Rpb24oZSx0KXt2b2lkIDA9PT10JiYodD1bNjQsMTI2XSk7dmFyIHI9MDtpZihlLnByZWZpeCl7aWYoZS5wcmVmaXgubGVuZ3RoPjEpdGhyb3cgbmV3IEVycm9yKCJvbmx5IG9uZSBieXRlIGFzIHByZWZpeCBzdXBwb3J0ZWQiKTtpZigocj1lLnByZWZpeC5jaGFyQ29kZUF0KDApKSYmNjA+cnx8cj42Myl0aHJvdyBuZXcgRXJyb3IoInByZWZpeCBtdXN0IGJlIGluIHJhbmdlIDB4M2MgLi4gMHgzZiIpfWlmKGUuaW50ZXJtZWRpYXRlcyl7aWYoZS5pbnRlcm1lZGlhdGVzLmxlbmd0aD4yKXRocm93IG5ldyBFcnJvcigib25seSB0d28gYnl0ZXMgYXMgaW50ZXJtZWRpYXRlcyBhcmUgc3VwcG9ydGVkIik7Zm9yKHZhciBpPTA7aTxlLmludGVybWVkaWF0ZXMubGVuZ3RoOysraSl7dmFyIG49ZS5pbnRlcm1lZGlhdGVzLmNoYXJDb2RlQXQoaSk7aWYoMzI+bnx8bj40Nyl0aHJvdyBuZXcgRXJyb3IoImludGVybWVkaWF0ZSBtdXN0IGJlIGluIHJhbmdlIDB4MjAgLi4gMHgyZiIpO3I8PD04LHJ8PW59fWlmKDEhPT1lLmZpbmFsLmxlbmd0aCl0aHJvdyBuZXcgRXJyb3IoImZpbmFsIG11c3QgYmUgYSBzaW5nbGUgYnl0ZSIpO3ZhciBvPWUuZmluYWwuY2hhckNvZGVBdCgwKTtpZih0WzBdPm98fG8+dFsxXSl0aHJvdyBuZXcgRXJyb3IoImZpbmFsIG11c3QgYmUgaW4gcmFuZ2UgIit0WzBdKyIgLi4gIit0WzFdKTtyZXR1cm4ocjw8PTgpfG99LHIucHJvdG90eXBlLmlkZW50VG9TdHJpbmc9ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PVtdO2U7KXQucHVzaChTdHJpbmcuZnJvbUNoYXJDb2RlKDI1NSZlKSksZT4+PTg7cmV0dXJuIHQucmV2ZXJzZSgpLmpvaW4oIiIpfSxyLnByb3RvdHlwZS5kaXNwb3NlPWZ1bmN0aW9uKCl7dGhpcy5fY3NpSGFuZGxlcnM9T2JqZWN0LmNyZWF0ZShudWxsKSx0aGlzLl9leGVjdXRlSGFuZGxlcnM9T2JqZWN0LmNyZWF0ZShudWxsKSx0aGlzLl9lc2NIYW5kbGVycz1PYmplY3QuY3JlYXRlKG51bGwpLHRoaXMuX29zY1BhcnNlci5kaXNwb3NlKCksdGhpcy5fZGNzUGFyc2VyLmRpc3Bvc2UoKX0sci5wcm90b3R5cGUuc2V0UHJpbnRIYW5kbGVyPWZ1bmN0aW9uKGUpe3RoaXMuX3ByaW50SGFuZGxlcj1lfSxyLnByb3RvdHlwZS5jbGVhclByaW50SGFuZGxlcj1mdW5jdGlvbigpe3RoaXMuX3ByaW50SGFuZGxlcj10aGlzLl9wcmludEhhbmRsZXJGYn0sci5wcm90b3R5cGUucmVnaXN0ZXJFc2NIYW5kbGVyPWZ1bmN0aW9uKGUsdCl7dmFyIHI9dGhpcy5faWRlbnRpZmllcihlLFs0OCwxMjZdKTt2b2lkIDA9PT10aGlzLl9lc2NIYW5kbGVyc1tyXSYmKHRoaXMuX2VzY0hhbmRsZXJzW3JdPVtdKTt2YXIgaT10aGlzLl9lc2NIYW5kbGVyc1tyXTtyZXR1cm4gaS5wdXNoKHQpLHtkaXNwb3NlOmZ1bmN0aW9uKCl7dmFyIGU9aS5pbmRleE9mKHQpOy0xIT09ZSYmaS5zcGxpY2UoZSwxKX19fSxyLnByb3RvdHlwZS5jbGVhckVzY0hhbmRsZXI9ZnVuY3Rpb24oZSl7dGhpcy5fZXNjSGFuZGxlcnNbdGhpcy5faWRlbnRpZmllcihlLFs0OCwxMjZdKV0mJmRlbGV0ZSB0aGlzLl9lc2NIYW5kbGVyc1t0aGlzLl9pZGVudGlmaWVyKGUsWzQ4LDEyNl0pXX0sci5wcm90b3R5cGUuc2V0RXNjSGFuZGxlckZhbGxiYWNrPWZ1bmN0aW9uKGUpe3RoaXMuX2VzY0hhbmRsZXJGYj1lfSxyLnByb3RvdHlwZS5zZXRFeGVjdXRlSGFuZGxlcj1mdW5jdGlvbihlLHQpe3RoaXMuX2V4ZWN1dGVIYW5kbGVyc1tlLmNoYXJDb2RlQXQoMCldPXR9LHIucHJvdG90eXBlLmNsZWFyRXhlY3V0ZUhhbmRsZXI9ZnVuY3Rpb24oZSl7dGhpcy5fZXhlY3V0ZUhhbmRsZXJzW2UuY2hhckNvZGVBdCgwKV0mJmRlbGV0ZSB0aGlzLl9leGVjdXRlSGFuZGxlcnNbZS5jaGFyQ29kZUF0KDApXX0sci5wcm90b3R5cGUuc2V0RXhlY3V0ZUhhbmRsZXJGYWxsYmFjaz1mdW5jdGlvbihlKXt0aGlzLl9leGVjdXRlSGFuZGxlckZiPWV9LHIucHJvdG90eXBlLnJlZ2lzdGVyQ3NpSGFuZGxlcj1mdW5jdGlvbihlLHQpe3ZhciByPXRoaXMuX2lkZW50aWZpZXIoZSk7dm9pZCAwPT09dGhpcy5fY3NpSGFuZGxlcnNbcl0mJih0aGlzLl9jc2lIYW5kbGVyc1tyXT1bXSk7dmFyIGk9dGhpcy5fY3NpSGFuZGxlcnNbcl07cmV0dXJuIGkucHVzaCh0KSx7ZGlzcG9zZTpmdW5jdGlvbigpe3ZhciBlPWkuaW5kZXhPZih0KTstMSE9PWUmJmkuc3BsaWNlKGUsMSl9fX0sci5wcm90b3R5cGUuY2xlYXJDc2lIYW5kbGVyPWZ1bmN0aW9uKGUpe3RoaXMuX2NzaUhhbmRsZXJzW3RoaXMuX2lkZW50aWZpZXIoZSldJiZkZWxldGUgdGhpcy5fY3NpSGFuZGxlcnNbdGhpcy5faWRlbnRpZmllcihlKV19LHIucHJvdG90eXBlLnNldENzaUhhbmRsZXJGYWxsYmFjaz1mdW5jdGlvbihlKXt0aGlzLl9jc2lIYW5kbGVyRmI9ZX0sci5wcm90b3R5cGUucmVnaXN0ZXJEY3NIYW5kbGVyPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIHRoaXMuX2Rjc1BhcnNlci5yZWdpc3RlckhhbmRsZXIodGhpcy5faWRlbnRpZmllcihlKSx0KX0sci5wcm90b3R5cGUuY2xlYXJEY3NIYW5kbGVyPWZ1bmN0aW9uKGUpe3RoaXMuX2Rjc1BhcnNlci5jbGVhckhhbmRsZXIodGhpcy5faWRlbnRpZmllcihlKSl9LHIucHJvdG90eXBlLnNldERjc0hhbmRsZXJGYWxsYmFjaz1mdW5jdGlvbihlKXt0aGlzLl9kY3NQYXJzZXIuc2V0SGFuZGxlckZhbGxiYWNrKGUpfSxyLnByb3RvdHlwZS5yZWdpc3Rlck9zY0hhbmRsZXI9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gdGhpcy5fb3NjUGFyc2VyLnJlZ2lzdGVySGFuZGxlcihlLHQpfSxyLnByb3RvdHlwZS5jbGVhck9zY0hhbmRsZXI9ZnVuY3Rpb24oZSl7dGhpcy5fb3NjUGFyc2VyLmNsZWFySGFuZGxlcihlKX0sci5wcm90b3R5cGUuc2V0T3NjSGFuZGxlckZhbGxiYWNrPWZ1bmN0aW9uKGUpe3RoaXMuX29zY1BhcnNlci5zZXRIYW5kbGVyRmFsbGJhY2soZSl9LHIucHJvdG90eXBlLnNldEVycm9ySGFuZGxlcj1mdW5jdGlvbihlKXt0aGlzLl9lcnJvckhhbmRsZXI9ZX0sci5wcm90b3R5cGUuY2xlYXJFcnJvckhhbmRsZXI9ZnVuY3Rpb24oKXt0aGlzLl9lcnJvckhhbmRsZXI9dGhpcy5fZXJyb3JIYW5kbGVyRmJ9LHIucHJvdG90eXBlLnJlc2V0PWZ1bmN0aW9uKCl7dGhpcy5jdXJyZW50U3RhdGU9dGhpcy5pbml0aWFsU3RhdGUsdGhpcy5fb3NjUGFyc2VyLnJlc2V0KCksdGhpcy5fZGNzUGFyc2VyLnJlc2V0KCksdGhpcy5fcGFyYW1zLnJlc2V0KCksdGhpcy5fcGFyYW1zLmFkZFBhcmFtKDApLHRoaXMuX2NvbGxlY3Q9MCx0aGlzLnByZWNlZGluZ0NvZGVwb2ludD0wLDAhPT10aGlzLl9wYXJzZVN0YWNrLnN0YXRlJiYodGhpcy5fcGFyc2VTdGFjay5zdGF0ZT0yLHRoaXMuX3BhcnNlU3RhY2suaGFuZGxlcnM9W10pfSxyLnByb3RvdHlwZS5fcHJlc2VydmVTdGFjaz1mdW5jdGlvbihlLHQscixpLG4pe3RoaXMuX3BhcnNlU3RhY2suc3RhdGU9ZSx0aGlzLl9wYXJzZVN0YWNrLmhhbmRsZXJzPXQsdGhpcy5fcGFyc2VTdGFjay5oYW5kbGVyUG9zPXIsdGhpcy5fcGFyc2VTdGFjay50cmFuc2l0aW9uPWksdGhpcy5fcGFyc2VTdGFjay5jaHVua1Bvcz1ufSxyLnByb3RvdHlwZS5wYXJzZT1mdW5jdGlvbihlLHQscil7dmFyIGksbj0wLG89MCxzPTA7aWYodGhpcy5fcGFyc2VTdGFjay5zdGF0ZSlpZigyPT09dGhpcy5fcGFyc2VTdGFjay5zdGF0ZSl0aGlzLl9wYXJzZVN0YWNrLnN0YXRlPTAscz10aGlzLl9wYXJzZVN0YWNrLmNodW5rUG9zKzE7ZWxzZXtpZih2b2lkIDA9PT1yfHwxPT09dGhpcy5fcGFyc2VTdGFjay5zdGF0ZSl0aHJvdyB0aGlzLl9wYXJzZVN0YWNrLnN0YXRlPTEsbmV3IEVycm9yKCJpbXByb3BlciBjb250aW51YXRpb24gZHVlIHRvIHByZXZpb3VzIGFzeW5jIGhhbmRsZXIsIGdpdmluZyB1cCBwYXJzaW5nIik7dmFyIGE9dGhpcy5fcGFyc2VTdGFjay5oYW5kbGVycyxjPXRoaXMuX3BhcnNlU3RhY2suaGFuZGxlclBvcy0xO3N3aXRjaCh0aGlzLl9wYXJzZVN0YWNrLnN0YXRlKXtjYXNlIDM6aWYoITE9PT1yJiZjPi0xKWZvcig7Yz49MCYmITAhPT0oaT1hW2NdKHRoaXMuX3BhcmFtcykpO2MtLSlpZihpIGluc3RhbmNlb2YgUHJvbWlzZSlyZXR1cm4gdGhpcy5fcGFyc2VTdGFjay5oYW5kbGVyUG9zPWMsaTt0aGlzLl9wYXJzZVN0YWNrLmhhbmRsZXJzPVtdO2JyZWFrO2Nhc2UgNDppZighMT09PXImJmM+LTEpZm9yKDtjPj0wJiYhMCE9PShpPWFbY10oKSk7Yy0tKWlmKGkgaW5zdGFuY2VvZiBQcm9taXNlKXJldHVybiB0aGlzLl9wYXJzZVN0YWNrLmhhbmRsZXJQb3M9YyxpO3RoaXMuX3BhcnNlU3RhY2suaGFuZGxlcnM9W107YnJlYWs7Y2FzZSA2OmlmKG49ZVt0aGlzLl9wYXJzZVN0YWNrLmNodW5rUG9zXSxpPXRoaXMuX2Rjc1BhcnNlci51bmhvb2soMjQhPT1uJiYyNiE9PW4scikpcmV0dXJuIGk7Mjc9PT1uJiYodGhpcy5fcGFyc2VTdGFjay50cmFuc2l0aW9ufD0xKSx0aGlzLl9wYXJhbXMucmVzZXQoKSx0aGlzLl9wYXJhbXMuYWRkUGFyYW0oMCksdGhpcy5fY29sbGVjdD0wO2JyZWFrO2Nhc2UgNTppZihuPWVbdGhpcy5fcGFyc2VTdGFjay5jaHVua1Bvc10saT10aGlzLl9vc2NQYXJzZXIuZW5kKDI0IT09biYmMjYhPT1uLHIpKXJldHVybiBpOzI3PT09biYmKHRoaXMuX3BhcnNlU3RhY2sudHJhbnNpdGlvbnw9MSksdGhpcy5fcGFyYW1zLnJlc2V0KCksdGhpcy5fcGFyYW1zLmFkZFBhcmFtKDApLHRoaXMuX2NvbGxlY3Q9MH10aGlzLl9wYXJzZVN0YWNrLnN0YXRlPTAscz10aGlzLl9wYXJzZVN0YWNrLmNodW5rUG9zKzEsdGhpcy5wcmVjZWRpbmdDb2RlcG9pbnQ9MCx0aGlzLmN1cnJlbnRTdGF0ZT0xNSZ0aGlzLl9wYXJzZVN0YWNrLnRyYW5zaXRpb259Zm9yKHZhciBsPXM7bDx0OysrbCl7c3dpdGNoKG49ZVtsXSwobz10aGlzLl90cmFuc2l0aW9ucy50YWJsZVt0aGlzLmN1cnJlbnRTdGF0ZTw8OHwobjwxNjA/bjpoKV0pPj40KXtjYXNlIDI6Zm9yKHZhciB1PWwrMTs7Kyt1KXtpZih1Pj10fHwobj1lW3VdKTwzMnx8bj4xMjYmJm48aCl7dGhpcy5fcHJpbnRIYW5kbGVyKGUsbCx1KSxsPXUtMTticmVha31pZigrK3U+PXR8fChuPWVbdV0pPDMyfHxuPjEyNiYmbjxoKXt0aGlzLl9wcmludEhhbmRsZXIoZSxsLHUpLGw9dS0xO2JyZWFrfWlmKCsrdT49dHx8KG49ZVt1XSk8MzJ8fG4+MTI2JiZuPGgpe3RoaXMuX3ByaW50SGFuZGxlcihlLGwsdSksbD11LTE7YnJlYWt9aWYoKyt1Pj10fHwobj1lW3VdKTwzMnx8bj4xMjYmJm48aCl7dGhpcy5fcHJpbnRIYW5kbGVyKGUsbCx1KSxsPXUtMTticmVha319YnJlYWs7Y2FzZSAzOnRoaXMuX2V4ZWN1dGVIYW5kbGVyc1tuXT90aGlzLl9leGVjdXRlSGFuZGxlcnNbbl0oKTp0aGlzLl9leGVjdXRlSGFuZGxlckZiKG4pLHRoaXMucHJlY2VkaW5nQ29kZXBvaW50PTA7YnJlYWs7Y2FzZSAwOmJyZWFrO2Nhc2UgMTppZih0aGlzLl9lcnJvckhhbmRsZXIoe3Bvc2l0aW9uOmwsY29kZTpuLGN1cnJlbnRTdGF0ZTp0aGlzLmN1cnJlbnRTdGF0ZSxjb2xsZWN0OnRoaXMuX2NvbGxlY3QscGFyYW1zOnRoaXMuX3BhcmFtcyxhYm9ydDohMX0pLmFib3J0KXJldHVybjticmVhaztjYXNlIDc6Zm9yKHZhciBmPShhPXRoaXMuX2NzaUhhbmRsZXJzW3RoaXMuX2NvbGxlY3Q8PDh8bl0pP2EubGVuZ3RoLTE6LTE7Zj49MCYmITAhPT0oaT1hW2ZdKHRoaXMuX3BhcmFtcykpO2YtLSlpZihpIGluc3RhbmNlb2YgUHJvbWlzZSlyZXR1cm4gdGhpcy5fcHJlc2VydmVTdGFjaygzLGEsZixvLGwpLGk7ZjwwJiZ0aGlzLl9jc2lIYW5kbGVyRmIodGhpcy5fY29sbGVjdDw8OHxuLHRoaXMuX3BhcmFtcyksdGhpcy5wcmVjZWRpbmdDb2RlcG9pbnQ9MDticmVhaztjYXNlIDg6ZG97c3dpdGNoKG4pe2Nhc2UgNTk6dGhpcy5fcGFyYW1zLmFkZFBhcmFtKDApO2JyZWFrO2Nhc2UgNTg6dGhpcy5fcGFyYW1zLmFkZFN1YlBhcmFtKC0xKTticmVhaztkZWZhdWx0OnRoaXMuX3BhcmFtcy5hZGREaWdpdChuLTQ4KX19d2hpbGUoKytsPHQmJihuPWVbbF0pPjQ3JiZuPDYwKTtsLS07YnJlYWs7Y2FzZSA5OnRoaXMuX2NvbGxlY3Q8PD04LHRoaXMuX2NvbGxlY3R8PW47YnJlYWs7Y2FzZSAxMDpmb3IodmFyIF89dGhpcy5fZXNjSGFuZGxlcnNbdGhpcy5fY29sbGVjdDw8OHxuXSxkPV8/Xy5sZW5ndGgtMTotMTtkPj0wJiYhMCE9PShpPV9bZF0oKSk7ZC0tKWlmKGkgaW5zdGFuY2VvZiBQcm9taXNlKXJldHVybiB0aGlzLl9wcmVzZXJ2ZVN0YWNrKDQsXyxkLG8sbCksaTtkPDAmJnRoaXMuX2VzY0hhbmRsZXJGYih0aGlzLl9jb2xsZWN0PDw4fG4pLHRoaXMucHJlY2VkaW5nQ29kZXBvaW50PTA7YnJlYWs7Y2FzZSAxMTp0aGlzLl9wYXJhbXMucmVzZXQoKSx0aGlzLl9wYXJhbXMuYWRkUGFyYW0oMCksdGhpcy5fY29sbGVjdD0wO2JyZWFrO2Nhc2UgMTI6dGhpcy5fZGNzUGFyc2VyLmhvb2sodGhpcy5fY29sbGVjdDw8OHxuLHRoaXMuX3BhcmFtcyk7YnJlYWs7Y2FzZSAxMzpmb3IodmFyIHA9bCsxOzsrK3ApaWYocD49dHx8MjQ9PT0obj1lW3BdKXx8MjY9PT1ufHwyNz09PW58fG4+MTI3JiZuPGgpe3RoaXMuX2Rjc1BhcnNlci5wdXQoZSxsLHApLGw9cC0xO2JyZWFrfWJyZWFrO2Nhc2UgMTQ6aWYoaT10aGlzLl9kY3NQYXJzZXIudW5ob29rKDI0IT09biYmMjYhPT1uKSlyZXR1cm4gdGhpcy5fcHJlc2VydmVTdGFjayg2LFtdLDAsbyxsKSxpOzI3PT09biYmKG98PTEpLHRoaXMuX3BhcmFtcy5yZXNldCgpLHRoaXMuX3BhcmFtcy5hZGRQYXJhbSgwKSx0aGlzLl9jb2xsZWN0PTAsdGhpcy5wcmVjZWRpbmdDb2RlcG9pbnQ9MDticmVhaztjYXNlIDQ6dGhpcy5fb3NjUGFyc2VyLnN0YXJ0KCk7YnJlYWs7Y2FzZSA1OmZvcih2YXIgdj1sKzE7O3YrKylpZih2Pj10fHwobj1lW3ZdKTwzMnx8bj4xMjcmJm48aCl7dGhpcy5fb3NjUGFyc2VyLnB1dChlLGwsdiksbD12LTE7YnJlYWt9YnJlYWs7Y2FzZSA2OmlmKGk9dGhpcy5fb3NjUGFyc2VyLmVuZCgyNCE9PW4mJjI2IT09bikpcmV0dXJuIHRoaXMuX3ByZXNlcnZlU3RhY2soNSxbXSwwLG8sbCksaTsyNz09PW4mJihvfD0xKSx0aGlzLl9wYXJhbXMucmVzZXQoKSx0aGlzLl9wYXJhbXMuYWRkUGFyYW0oMCksdGhpcy5fY29sbGVjdD0wLHRoaXMucHJlY2VkaW5nQ29kZXBvaW50PTB9dGhpcy5jdXJyZW50U3RhdGU9MTUmb319LHJ9KG8uRGlzcG9zYWJsZSk7dC5Fc2NhcGVTZXF1ZW5jZVBhcnNlcj1mfSw2MjQyOihlLHQscik9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Pc2NIYW5kbGVyPXQuT3NjUGFyc2VyPXZvaWQgMDt2YXIgaT1yKDU3NzApLG49cig0ODIpLG89W10scz1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoKXt0aGlzLl9zdGF0ZT0wLHRoaXMuX2FjdGl2ZT1vLHRoaXMuX2lkPS0xLHRoaXMuX2hhbmRsZXJzPU9iamVjdC5jcmVhdGUobnVsbCksdGhpcy5faGFuZGxlckZiPWZ1bmN0aW9uKCl7fSx0aGlzLl9zdGFjaz17cGF1c2VkOiExLGxvb3BQb3NpdGlvbjowLGZhbGxUaHJvdWdoOiExfX1yZXR1cm4gZS5wcm90b3R5cGUucmVnaXN0ZXJIYW5kbGVyPWZ1bmN0aW9uKGUsdCl7dm9pZCAwPT09dGhpcy5faGFuZGxlcnNbZV0mJih0aGlzLl9oYW5kbGVyc1tlXT1bXSk7dmFyIHI9dGhpcy5faGFuZGxlcnNbZV07cmV0dXJuIHIucHVzaCh0KSx7ZGlzcG9zZTpmdW5jdGlvbigpe3ZhciBlPXIuaW5kZXhPZih0KTstMSE9PWUmJnIuc3BsaWNlKGUsMSl9fX0sZS5wcm90b3R5cGUuY2xlYXJIYW5kbGVyPWZ1bmN0aW9uKGUpe3RoaXMuX2hhbmRsZXJzW2VdJiZkZWxldGUgdGhpcy5faGFuZGxlcnNbZV19LGUucHJvdG90eXBlLnNldEhhbmRsZXJGYWxsYmFjaz1mdW5jdGlvbihlKXt0aGlzLl9oYW5kbGVyRmI9ZX0sZS5wcm90b3R5cGUuZGlzcG9zZT1mdW5jdGlvbigpe3RoaXMuX2hhbmRsZXJzPU9iamVjdC5jcmVhdGUobnVsbCksdGhpcy5faGFuZGxlckZiPWZ1bmN0aW9uKCl7fSx0aGlzLl9hY3RpdmU9b30sZS5wcm90b3R5cGUucmVzZXQ9ZnVuY3Rpb24oKXtpZigyPT09dGhpcy5fc3RhdGUpZm9yKHZhciBlPXRoaXMuX3N0YWNrLnBhdXNlZD90aGlzLl9zdGFjay5sb29wUG9zaXRpb24tMTp0aGlzLl9hY3RpdmUubGVuZ3RoLTE7ZT49MDstLWUpdGhpcy5fYWN0aXZlW2VdLmVuZCghMSk7dGhpcy5fc3RhY2sucGF1c2VkPSExLHRoaXMuX2FjdGl2ZT1vLHRoaXMuX2lkPS0xLHRoaXMuX3N0YXRlPTB9LGUucHJvdG90eXBlLl9zdGFydD1mdW5jdGlvbigpe2lmKHRoaXMuX2FjdGl2ZT10aGlzLl9oYW5kbGVyc1t0aGlzLl9pZF18fG8sdGhpcy5fYWN0aXZlLmxlbmd0aClmb3IodmFyIGU9dGhpcy5fYWN0aXZlLmxlbmd0aC0xO2U+PTA7ZS0tKXRoaXMuX2FjdGl2ZVtlXS5zdGFydCgpO2Vsc2UgdGhpcy5faGFuZGxlckZiKHRoaXMuX2lkLCJTVEFSVCIpfSxlLnByb3RvdHlwZS5fcHV0PWZ1bmN0aW9uKGUsdCxyKXtpZih0aGlzLl9hY3RpdmUubGVuZ3RoKWZvcih2YXIgaT10aGlzLl9hY3RpdmUubGVuZ3RoLTE7aT49MDtpLS0pdGhpcy5fYWN0aXZlW2ldLnB1dChlLHQscik7ZWxzZSB0aGlzLl9oYW5kbGVyRmIodGhpcy5faWQsIlBVVCIsKDAsbi51dGYzMlRvU3RyaW5nKShlLHQscikpfSxlLnByb3RvdHlwZS5zdGFydD1mdW5jdGlvbigpe3RoaXMucmVzZXQoKSx0aGlzLl9zdGF0ZT0xfSxlLnByb3RvdHlwZS5wdXQ9ZnVuY3Rpb24oZSx0LHIpe2lmKDMhPT10aGlzLl9zdGF0ZSl7aWYoMT09PXRoaXMuX3N0YXRlKWZvcig7dDxyOyl7dmFyIGk9ZVt0KytdO2lmKDU5PT09aSl7dGhpcy5fc3RhdGU9Mix0aGlzLl9zdGFydCgpO2JyZWFrfWlmKGk8NDh8fDU3PGkpcmV0dXJuIHZvaWQodGhpcy5fc3RhdGU9Myk7LTE9PT10aGlzLl9pZCYmKHRoaXMuX2lkPTApLHRoaXMuX2lkPTEwKnRoaXMuX2lkK2ktNDh9Mj09PXRoaXMuX3N0YXRlJiZyLXQ+MCYmdGhpcy5fcHV0KGUsdCxyKX19LGUucHJvdG90eXBlLmVuZD1mdW5jdGlvbihlLHQpe2lmKHZvaWQgMD09PXQmJih0PSEwKSwwIT09dGhpcy5fc3RhdGUpe2lmKDMhPT10aGlzLl9zdGF0ZSlpZigxPT09dGhpcy5fc3RhdGUmJnRoaXMuX3N0YXJ0KCksdGhpcy5fYWN0aXZlLmxlbmd0aCl7dmFyIHI9ITEsaT10aGlzLl9hY3RpdmUubGVuZ3RoLTEsbj0hMTtpZih0aGlzLl9zdGFjay5wYXVzZWQmJihpPXRoaXMuX3N0YWNrLmxvb3BQb3NpdGlvbi0xLHI9dCxuPXRoaXMuX3N0YWNrLmZhbGxUaHJvdWdoLHRoaXMuX3N0YWNrLnBhdXNlZD0hMSksIW4mJiExPT09cil7Zm9yKDtpPj0wJiYhMCE9PShyPXRoaXMuX2FjdGl2ZVtpXS5lbmQoZSkpO2ktLSlpZihyIGluc3RhbmNlb2YgUHJvbWlzZSlyZXR1cm4gdGhpcy5fc3RhY2sucGF1c2VkPSEwLHRoaXMuX3N0YWNrLmxvb3BQb3NpdGlvbj1pLHRoaXMuX3N0YWNrLmZhbGxUaHJvdWdoPSExLHI7aS0tfWZvcig7aT49MDtpLS0paWYoKHI9dGhpcy5fYWN0aXZlW2ldLmVuZCghMSkpaW5zdGFuY2VvZiBQcm9taXNlKXJldHVybiB0aGlzLl9zdGFjay5wYXVzZWQ9ITAsdGhpcy5fc3RhY2subG9vcFBvc2l0aW9uPWksdGhpcy5fc3RhY2suZmFsbFRocm91Z2g9ITAscn1lbHNlIHRoaXMuX2hhbmRsZXJGYih0aGlzLl9pZCwiRU5EIixlKTt0aGlzLl9hY3RpdmU9byx0aGlzLl9pZD0tMSx0aGlzLl9zdGF0ZT0wfX0sZX0oKTt0Lk9zY1BhcnNlcj1zO3ZhciBhPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlKXt0aGlzLl9oYW5kbGVyPWUsdGhpcy5fZGF0YT0iIix0aGlzLl9oaXRMaW1pdD0hMX1yZXR1cm4gZS5wcm90b3R5cGUuc3RhcnQ9ZnVuY3Rpb24oKXt0aGlzLl9kYXRhPSIiLHRoaXMuX2hpdExpbWl0PSExfSxlLnByb3RvdHlwZS5wdXQ9ZnVuY3Rpb24oZSx0LHIpe3RoaXMuX2hpdExpbWl0fHwodGhpcy5fZGF0YSs9KDAsbi51dGYzMlRvU3RyaW5nKShlLHQsciksdGhpcy5fZGF0YS5sZW5ndGg+aS5QQVlMT0FEX0xJTUlUJiYodGhpcy5fZGF0YT0iIix0aGlzLl9oaXRMaW1pdD0hMCkpfSxlLnByb3RvdHlwZS5lbmQ9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcyxyPSExO2lmKHRoaXMuX2hpdExpbWl0KXI9ITE7ZWxzZSBpZihlJiYocj10aGlzLl9oYW5kbGVyKHRoaXMuX2RhdGEpKWluc3RhbmNlb2YgUHJvbWlzZSlyZXR1cm4gci50aGVuKChmdW5jdGlvbihlKXtyZXR1cm4gdC5fZGF0YT0iIix0Ll9oaXRMaW1pdD0hMSxlfSkpO3JldHVybiB0aGlzLl9kYXRhPSIiLHRoaXMuX2hpdExpbWl0PSExLHJ9LGV9KCk7dC5Pc2NIYW5kbGVyPWF9LDg3NDI6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5QYXJhbXM9dm9pZCAwO3ZhciByPTIxNDc0ODM2NDcsaT1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoZSx0KXtpZih2b2lkIDA9PT1lJiYoZT0zMiksdm9pZCAwPT09dCYmKHQ9MzIpLHRoaXMubWF4TGVuZ3RoPWUsdGhpcy5tYXhTdWJQYXJhbXNMZW5ndGg9dCx0PjI1Nil0aHJvdyBuZXcgRXJyb3IoIm1heFN1YlBhcmFtc0xlbmd0aCBtdXN0IG5vdCBiZSBncmVhdGVyIHRoYW4gMjU2Iik7dGhpcy5wYXJhbXM9bmV3IEludDMyQXJyYXkoZSksdGhpcy5sZW5ndGg9MCx0aGlzLl9zdWJQYXJhbXM9bmV3IEludDMyQXJyYXkodCksdGhpcy5fc3ViUGFyYW1zTGVuZ3RoPTAsdGhpcy5fc3ViUGFyYW1zSWR4PW5ldyBVaW50MTZBcnJheShlKSx0aGlzLl9yZWplY3REaWdpdHM9ITEsdGhpcy5fcmVqZWN0U3ViRGlnaXRzPSExLHRoaXMuX2RpZ2l0SXNTdWI9ITF9cmV0dXJuIGUuZnJvbUFycmF5PWZ1bmN0aW9uKHQpe3ZhciByPW5ldyBlO2lmKCF0Lmxlbmd0aClyZXR1cm4gcjtmb3IodmFyIGk9QXJyYXkuaXNBcnJheSh0WzBdKT8xOjA7aTx0Lmxlbmd0aDsrK2kpe3ZhciBuPXRbaV07aWYoQXJyYXkuaXNBcnJheShuKSlmb3IodmFyIG89MDtvPG4ubGVuZ3RoOysrbylyLmFkZFN1YlBhcmFtKG5bb10pO2Vsc2Ugci5hZGRQYXJhbShuKX1yZXR1cm4gcn0sZS5wcm90b3R5cGUuY2xvbmU9ZnVuY3Rpb24oKXt2YXIgdD1uZXcgZSh0aGlzLm1heExlbmd0aCx0aGlzLm1heFN1YlBhcmFtc0xlbmd0aCk7cmV0dXJuIHQucGFyYW1zLnNldCh0aGlzLnBhcmFtcyksdC5sZW5ndGg9dGhpcy5sZW5ndGgsdC5fc3ViUGFyYW1zLnNldCh0aGlzLl9zdWJQYXJhbXMpLHQuX3N1YlBhcmFtc0xlbmd0aD10aGlzLl9zdWJQYXJhbXNMZW5ndGgsdC5fc3ViUGFyYW1zSWR4LnNldCh0aGlzLl9zdWJQYXJhbXNJZHgpLHQuX3JlamVjdERpZ2l0cz10aGlzLl9yZWplY3REaWdpdHMsdC5fcmVqZWN0U3ViRGlnaXRzPXRoaXMuX3JlamVjdFN1YkRpZ2l0cyx0Ll9kaWdpdElzU3ViPXRoaXMuX2RpZ2l0SXNTdWIsdH0sZS5wcm90b3R5cGUudG9BcnJheT1mdW5jdGlvbigpe2Zvcih2YXIgZT1bXSx0PTA7dDx0aGlzLmxlbmd0aDsrK3Qpe2UucHVzaCh0aGlzLnBhcmFtc1t0XSk7dmFyIHI9dGhpcy5fc3ViUGFyYW1zSWR4W3RdPj44LGk9MjU1JnRoaXMuX3N1YlBhcmFtc0lkeFt0XTtpLXI+MCYmZS5wdXNoKEFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKHRoaXMuX3N1YlBhcmFtcyxyLGkpKX1yZXR1cm4gZX0sZS5wcm90b3R5cGUucmVzZXQ9ZnVuY3Rpb24oKXt0aGlzLmxlbmd0aD0wLHRoaXMuX3N1YlBhcmFtc0xlbmd0aD0wLHRoaXMuX3JlamVjdERpZ2l0cz0hMSx0aGlzLl9yZWplY3RTdWJEaWdpdHM9ITEsdGhpcy5fZGlnaXRJc1N1Yj0hMX0sZS5wcm90b3R5cGUuYWRkUGFyYW09ZnVuY3Rpb24oZSl7aWYodGhpcy5fZGlnaXRJc1N1Yj0hMSx0aGlzLmxlbmd0aD49dGhpcy5tYXhMZW5ndGgpdGhpcy5fcmVqZWN0RGlnaXRzPSEwO2Vsc2V7aWYoZTwtMSl0aHJvdyBuZXcgRXJyb3IoInZhbHVlcyBsZXNzZXIgdGhhbiAtMSBhcmUgbm90IGFsbG93ZWQiKTt0aGlzLl9zdWJQYXJhbXNJZHhbdGhpcy5sZW5ndGhdPXRoaXMuX3N1YlBhcmFtc0xlbmd0aDw8OHx0aGlzLl9zdWJQYXJhbXNMZW5ndGgsdGhpcy5wYXJhbXNbdGhpcy5sZW5ndGgrK109ZT5yP3I6ZX19LGUucHJvdG90eXBlLmFkZFN1YlBhcmFtPWZ1bmN0aW9uKGUpe2lmKHRoaXMuX2RpZ2l0SXNTdWI9ITAsdGhpcy5sZW5ndGgpaWYodGhpcy5fcmVqZWN0RGlnaXRzfHx0aGlzLl9zdWJQYXJhbXNMZW5ndGg+PXRoaXMubWF4U3ViUGFyYW1zTGVuZ3RoKXRoaXMuX3JlamVjdFN1YkRpZ2l0cz0hMDtlbHNle2lmKGU8LTEpdGhyb3cgbmV3IEVycm9yKCJ2YWx1ZXMgbGVzc2VyIHRoYW4gLTEgYXJlIG5vdCBhbGxvd2VkIik7dGhpcy5fc3ViUGFyYW1zW3RoaXMuX3N1YlBhcmFtc0xlbmd0aCsrXT1lPnI/cjplLHRoaXMuX3N1YlBhcmFtc0lkeFt0aGlzLmxlbmd0aC0xXSsrfX0sZS5wcm90b3R5cGUuaGFzU3ViUGFyYW1zPWZ1bmN0aW9uKGUpe3JldHVybigyNTUmdGhpcy5fc3ViUGFyYW1zSWR4W2VdKS0odGhpcy5fc3ViUGFyYW1zSWR4W2VdPj44KT4wfSxlLnByb3RvdHlwZS5nZXRTdWJQYXJhbXM9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcy5fc3ViUGFyYW1zSWR4W2VdPj44LHI9MjU1JnRoaXMuX3N1YlBhcmFtc0lkeFtlXTtyZXR1cm4gci10PjA/dGhpcy5fc3ViUGFyYW1zLnN1YmFycmF5KHQscik6bnVsbH0sZS5wcm90b3R5cGUuZ2V0U3ViUGFyYW1zQWxsPWZ1bmN0aW9uKCl7Zm9yKHZhciBlPXt9LHQ9MDt0PHRoaXMubGVuZ3RoOysrdCl7dmFyIHI9dGhpcy5fc3ViUGFyYW1zSWR4W3RdPj44LGk9MjU1JnRoaXMuX3N1YlBhcmFtc0lkeFt0XTtpLXI+MCYmKGVbdF09dGhpcy5fc3ViUGFyYW1zLnNsaWNlKHIsaSkpfXJldHVybiBlfSxlLnByb3RvdHlwZS5hZGREaWdpdD1mdW5jdGlvbihlKXt2YXIgdDtpZighKHRoaXMuX3JlamVjdERpZ2l0c3x8ISh0PXRoaXMuX2RpZ2l0SXNTdWI/dGhpcy5fc3ViUGFyYW1zTGVuZ3RoOnRoaXMubGVuZ3RoKXx8dGhpcy5fZGlnaXRJc1N1YiYmdGhpcy5fcmVqZWN0U3ViRGlnaXRzKSl7dmFyIGk9dGhpcy5fZGlnaXRJc1N1Yj90aGlzLl9zdWJQYXJhbXM6dGhpcy5wYXJhbXMsbj1pW3QtMV07aVt0LTFdPX5uP01hdGgubWluKDEwKm4rZSxyKTplfX0sZX0oKTt0LlBhcmFtcz1pfSw1NzQxOihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuQWRkb25NYW5hZ2VyPXZvaWQgMDt2YXIgcj1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoKXt0aGlzLl9hZGRvbnM9W119cmV0dXJuIGUucHJvdG90eXBlLmRpc3Bvc2U9ZnVuY3Rpb24oKXtmb3IodmFyIGU9dGhpcy5fYWRkb25zLmxlbmd0aC0xO2U+PTA7ZS0tKXRoaXMuX2FkZG9uc1tlXS5pbnN0YW5jZS5kaXNwb3NlKCl9LGUucHJvdG90eXBlLmxvYWRBZGRvbj1mdW5jdGlvbihlLHQpe3ZhciByPXRoaXMsaT17aW5zdGFuY2U6dCxkaXNwb3NlOnQuZGlzcG9zZSxpc0Rpc3Bvc2VkOiExfTt0aGlzLl9hZGRvbnMucHVzaChpKSx0LmRpc3Bvc2U9ZnVuY3Rpb24oKXtyZXR1cm4gci5fd3JhcHBlZEFkZG9uRGlzcG9zZShpKX0sdC5hY3RpdmF0ZShlKX0sZS5wcm90b3R5cGUuX3dyYXBwZWRBZGRvbkRpc3Bvc2U9ZnVuY3Rpb24oZSl7aWYoIWUuaXNEaXNwb3NlZCl7Zm9yKHZhciB0PS0xLHI9MDtyPHRoaXMuX2FkZG9ucy5sZW5ndGg7cisrKWlmKHRoaXMuX2FkZG9uc1tyXT09PWUpe3Q9cjticmVha31pZigtMT09PXQpdGhyb3cgbmV3IEVycm9yKCJDb3VsZCBub3QgZGlzcG9zZSBhbiBhZGRvbiB0aGF0IGhhcyBub3QgYmVlbiBsb2FkZWQiKTtlLmlzRGlzcG9zZWQ9ITAsZS5kaXNwb3NlLmFwcGx5KGUuaW5zdGFuY2UpLHRoaXMuX2FkZG9ucy5zcGxpY2UodCwxKX19LGV9KCk7dC5BZGRvbk1hbmFnZXI9cn0sODc3MTooZSx0LHIpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuQnVmZmVyQXBpVmlldz12b2lkIDA7dmFyIGk9cigzNzg1KSxuPXIoNTExKSxvPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlLHQpe3RoaXMuX2J1ZmZlcj1lLHRoaXMudHlwZT10fXJldHVybiBlLnByb3RvdHlwZS5pbml0PWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9idWZmZXI9ZSx0aGlzfSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImN1cnNvclkiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fYnVmZmVyLnl9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJjdXJzb3JYIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2J1ZmZlci54fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwidmlld3BvcnRZIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2J1ZmZlci55ZGlzcH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImJhc2VZIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2J1ZmZlci55YmFzZX0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImxlbmd0aCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9idWZmZXIubGluZXMubGVuZ3RofSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLGUucHJvdG90eXBlLmdldExpbmU9ZnVuY3Rpb24oZSl7dmFyIHQ9dGhpcy5fYnVmZmVyLmxpbmVzLmdldChlKTtpZih0KXJldHVybiBuZXcgaS5CdWZmZXJMaW5lQXBpVmlldyh0KX0sZS5wcm90b3R5cGUuZ2V0TnVsbENlbGw9ZnVuY3Rpb24oKXtyZXR1cm4gbmV3IG4uQ2VsbERhdGF9LGV9KCk7dC5CdWZmZXJBcGlWaWV3PW99LDM3ODU6KGUsdCxyKT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkJ1ZmZlckxpbmVBcGlWaWV3PXZvaWQgMDt2YXIgaT1yKDUxMSksbj1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoZSl7dGhpcy5fbGluZT1lfXJldHVybiBPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImlzV3JhcHBlZCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9saW5lLmlzV3JhcHBlZH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImxlbmd0aCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9saW5lLmxlbmd0aH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxlLnByb3RvdHlwZS5nZXRDZWxsPWZ1bmN0aW9uKGUsdCl7aWYoIShlPDB8fGU+PXRoaXMuX2xpbmUubGVuZ3RoKSlyZXR1cm4gdD8odGhpcy5fbGluZS5sb2FkQ2VsbChlLHQpLHQpOnRoaXMuX2xpbmUubG9hZENlbGwoZSxuZXcgaS5DZWxsRGF0YSl9LGUucHJvdG90eXBlLnRyYW5zbGF0ZVRvU3RyaW5nPWZ1bmN0aW9uKGUsdCxyKXtyZXR1cm4gdGhpcy5fbGluZS50cmFuc2xhdGVUb1N0cmluZyhlLHQscil9LGV9KCk7dC5CdWZmZXJMaW5lQXBpVmlldz1ufSw4Mjg1OihlLHQscik9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5CdWZmZXJOYW1lc3BhY2VBcGk9dm9pZCAwO3ZhciBpPXIoODc3MSksbj1yKDg0NjApLG89ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUpe3ZhciB0PXRoaXM7dGhpcy5fY29yZT1lLHRoaXMuX29uQnVmZmVyQ2hhbmdlPW5ldyBuLkV2ZW50RW1pdHRlcix0aGlzLl9ub3JtYWw9bmV3IGkuQnVmZmVyQXBpVmlldyh0aGlzLl9jb3JlLmJ1ZmZlcnMubm9ybWFsLCJub3JtYWwiKSx0aGlzLl9hbHRlcm5hdGU9bmV3IGkuQnVmZmVyQXBpVmlldyh0aGlzLl9jb3JlLmJ1ZmZlcnMuYWx0LCJhbHRlcm5hdGUiKSx0aGlzLl9jb3JlLmJ1ZmZlcnMub25CdWZmZXJBY3RpdmF0ZSgoZnVuY3Rpb24oKXtyZXR1cm4gdC5fb25CdWZmZXJDaGFuZ2UuZmlyZSh0LmFjdGl2ZSl9KSl9cmV0dXJuIE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwib25CdWZmZXJDaGFuZ2UiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25CdWZmZXJDaGFuZ2UuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJhY3RpdmUiLHtnZXQ6ZnVuY3Rpb24oKXtpZih0aGlzLl9jb3JlLmJ1ZmZlcnMuYWN0aXZlPT09dGhpcy5fY29yZS5idWZmZXJzLm5vcm1hbClyZXR1cm4gdGhpcy5ub3JtYWw7aWYodGhpcy5fY29yZS5idWZmZXJzLmFjdGl2ZT09PXRoaXMuX2NvcmUuYnVmZmVycy5hbHQpcmV0dXJuIHRoaXMuYWx0ZXJuYXRlO3Rocm93IG5ldyBFcnJvcigiQWN0aXZlIGJ1ZmZlciBpcyBuZWl0aGVyIG5vcm1hbCBub3IgYWx0ZXJuYXRlIil9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJub3JtYWwiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fbm9ybWFsLmluaXQodGhpcy5fY29yZS5idWZmZXJzLm5vcm1hbCl9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJhbHRlcm5hdGUiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fYWx0ZXJuYXRlLmluaXQodGhpcy5fY29yZS5idWZmZXJzLmFsdCl9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksZX0oKTt0LkJ1ZmZlck5hbWVzcGFjZUFwaT1vfSw3OTc1OihlLHQpPT57T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuUGFyc2VyQXBpPXZvaWQgMDt2YXIgcj1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoZSl7dGhpcy5fY29yZT1lfXJldHVybiBlLnByb3RvdHlwZS5yZWdpc3RlckNzaUhhbmRsZXI9ZnVuY3Rpb24oZSx0KXtyZXR1cm4gdGhpcy5fY29yZS5yZWdpc3RlckNzaUhhbmRsZXIoZSwoZnVuY3Rpb24oZSl7cmV0dXJuIHQoZS50b0FycmF5KCkpfSkpfSxlLnByb3RvdHlwZS5hZGRDc2lIYW5kbGVyPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIHRoaXMucmVnaXN0ZXJDc2lIYW5kbGVyKGUsdCl9LGUucHJvdG90eXBlLnJlZ2lzdGVyRGNzSGFuZGxlcj1mdW5jdGlvbihlLHQpe3JldHVybiB0aGlzLl9jb3JlLnJlZ2lzdGVyRGNzSGFuZGxlcihlLChmdW5jdGlvbihlLHIpe3JldHVybiB0KGUsci50b0FycmF5KCkpfSkpfSxlLnByb3RvdHlwZS5hZGREY3NIYW5kbGVyPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIHRoaXMucmVnaXN0ZXJEY3NIYW5kbGVyKGUsdCl9LGUucHJvdG90eXBlLnJlZ2lzdGVyRXNjSGFuZGxlcj1mdW5jdGlvbihlLHQpe3JldHVybiB0aGlzLl9jb3JlLnJlZ2lzdGVyRXNjSGFuZGxlcihlLHQpfSxlLnByb3RvdHlwZS5hZGRFc2NIYW5kbGVyPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIHRoaXMucmVnaXN0ZXJFc2NIYW5kbGVyKGUsdCl9LGUucHJvdG90eXBlLnJlZ2lzdGVyT3NjSGFuZGxlcj1mdW5jdGlvbihlLHQpe3JldHVybiB0aGlzLl9jb3JlLnJlZ2lzdGVyT3NjSGFuZGxlcihlLHQpfSxlLnByb3RvdHlwZS5hZGRPc2NIYW5kbGVyPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIHRoaXMucmVnaXN0ZXJPc2NIYW5kbGVyKGUsdCl9LGV9KCk7dC5QYXJzZXJBcGk9cn0sNzA5MDooZSx0KT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LlVuaWNvZGVBcGk9dm9pZCAwO3ZhciByPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlKXt0aGlzLl9jb3JlPWV9cmV0dXJuIGUucHJvdG90eXBlLnJlZ2lzdGVyPWZ1bmN0aW9uKGUpe3RoaXMuX2NvcmUudW5pY29kZVNlcnZpY2UucmVnaXN0ZXIoZSl9LE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwidmVyc2lvbnMiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fY29yZS51bmljb2RlU2VydmljZS52ZXJzaW9uc30sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImFjdGl2ZVZlcnNpb24iLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fY29yZS51bmljb2RlU2VydmljZS5hY3RpdmVWZXJzaW9ufSxzZXQ6ZnVuY3Rpb24oZSl7dGhpcy5fY29yZS51bmljb2RlU2VydmljZS5hY3RpdmVWZXJzaW9uPWV9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksZX0oKTt0LlVuaWNvZGVBcGk9cn0sNzQ0OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaSxuPXRoaXMmJnRoaXMuX19leHRlbmRzfHwoaT1mdW5jdGlvbihlLHQpe3JldHVybiBpPU9iamVjdC5zZXRQcm90b3R5cGVPZnx8e19fcHJvdG9fXzpbXX1pbnN0YW5jZW9mIEFycmF5JiZmdW5jdGlvbihlLHQpe2UuX19wcm90b19fPXR9fHxmdW5jdGlvbihlLHQpe2Zvcih2YXIgciBpbiB0KU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LHIpJiYoZVtyXT10W3JdKX0saShlLHQpfSxmdW5jdGlvbihlLHQpe2lmKCJmdW5jdGlvbiIhPXR5cGVvZiB0JiZudWxsIT09dCl0aHJvdyBuZXcgVHlwZUVycm9yKCJDbGFzcyBleHRlbmRzIHZhbHVlICIrU3RyaW5nKHQpKyIgaXMgbm90IGEgY29uc3RydWN0b3Igb3IgbnVsbCIpO2Z1bmN0aW9uIHIoKXt0aGlzLmNvbnN0cnVjdG9yPWV9aShlLHQpLGUucHJvdG90eXBlPW51bGw9PT10P09iamVjdC5jcmVhdGUodCk6KHIucHJvdG90eXBlPXQucHJvdG90eXBlLG5ldyByKX0pLG89dGhpcyYmdGhpcy5fX2RlY29yYXRlfHxmdW5jdGlvbihlLHQscixpKXt2YXIgbixvPWFyZ3VtZW50cy5sZW5ndGgscz1vPDM/dDpudWxsPT09aT9pPU9iamVjdC5nZXRPd25Qcm9wZXJ0eURlc2NyaXB0b3IodCxyKTppO2lmKCJvYmplY3QiPT10eXBlb2YgUmVmbGVjdCYmImZ1bmN0aW9uIj09dHlwZW9mIFJlZmxlY3QuZGVjb3JhdGUpcz1SZWZsZWN0LmRlY29yYXRlKGUsdCxyLGkpO2Vsc2UgZm9yKHZhciBhPWUubGVuZ3RoLTE7YT49MDthLS0pKG49ZVthXSkmJihzPShvPDM/bihzKTpvPjM/bih0LHIscyk6bih0LHIpKXx8cyk7cmV0dXJuIG8+MyYmcyYmT2JqZWN0LmRlZmluZVByb3BlcnR5KHQscixzKSxzfSxzPXRoaXMmJnRoaXMuX19wYXJhbXx8ZnVuY3Rpb24oZSx0KXtyZXR1cm4gZnVuY3Rpb24ocixpKXt0KHIsaSxlKX19O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkJ1ZmZlclNlcnZpY2U9dC5NSU5JTVVNX1JPV1M9dC5NSU5JTVVNX0NPTFM9dm9pZCAwO3ZhciBhPXIoMjU4NSksYz1yKDUyOTUpLGw9cig4NDYwKSx1PXIoODQ0KTt0Lk1JTklNVU1fQ09MUz0yLHQuTUlOSU1VTV9ST1dTPTE7dmFyIGg9ZnVuY3Rpb24oZSl7ZnVuY3Rpb24gcihyKXt2YXIgaT1lLmNhbGwodGhpcyl8fHRoaXM7cmV0dXJuIGkuX29wdGlvbnNTZXJ2aWNlPXIsaS5pc1VzZXJTY3JvbGxpbmc9ITEsaS5fb25SZXNpemU9bmV3IGwuRXZlbnRFbWl0dGVyLGkuX29uU2Nyb2xsPW5ldyBsLkV2ZW50RW1pdHRlcixpLmNvbHM9TWF0aC5tYXgoci5vcHRpb25zLmNvbHN8fDAsdC5NSU5JTVVNX0NPTFMpLGkucm93cz1NYXRoLm1heChyLm9wdGlvbnMucm93c3x8MCx0Lk1JTklNVU1fUk9XUyksaS5idWZmZXJzPW5ldyBjLkJ1ZmZlclNldChyLGkpLGl9cmV0dXJuIG4ocixlKSxPYmplY3QuZGVmaW5lUHJvcGVydHkoci5wcm90b3R5cGUsIm9uUmVzaXplIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uUmVzaXplLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShyLnByb3RvdHlwZSwib25TY3JvbGwiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25TY3JvbGwuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KHIucHJvdG90eXBlLCJidWZmZXIiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5idWZmZXJzLmFjdGl2ZX0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxyLnByb3RvdHlwZS5kaXNwb3NlPWZ1bmN0aW9uKCl7ZS5wcm90b3R5cGUuZGlzcG9zZS5jYWxsKHRoaXMpLHRoaXMuYnVmZmVycy5kaXNwb3NlKCl9LHIucHJvdG90eXBlLnJlc2l6ZT1mdW5jdGlvbihlLHQpe3RoaXMuY29scz1lLHRoaXMucm93cz10LHRoaXMuYnVmZmVycy5yZXNpemUoZSx0KSx0aGlzLmJ1ZmZlcnMuc2V0dXBUYWJTdG9wcyh0aGlzLmNvbHMpLHRoaXMuX29uUmVzaXplLmZpcmUoe2NvbHM6ZSxyb3dzOnR9KX0sci5wcm90b3R5cGUucmVzZXQ9ZnVuY3Rpb24oKXt0aGlzLmJ1ZmZlcnMucmVzZXQoKSx0aGlzLmlzVXNlclNjcm9sbGluZz0hMX0sci5wcm90b3R5cGUuc2Nyb2xsPWZ1bmN0aW9uKGUsdCl7dm9pZCAwPT09dCYmKHQ9ITEpO3ZhciByLGk9dGhpcy5idWZmZXI7KHI9dGhpcy5fY2FjaGVkQmxhbmtMaW5lKSYmci5sZW5ndGg9PT10aGlzLmNvbHMmJnIuZ2V0RmcoMCk9PT1lLmZnJiZyLmdldEJnKDApPT09ZS5iZ3x8KHI9aS5nZXRCbGFua0xpbmUoZSx0KSx0aGlzLl9jYWNoZWRCbGFua0xpbmU9ciksci5pc1dyYXBwZWQ9dDt2YXIgbj1pLnliYXNlK2kuc2Nyb2xsVG9wLG89aS55YmFzZStpLnNjcm9sbEJvdHRvbTtpZigwPT09aS5zY3JvbGxUb3Ape3ZhciBzPWkubGluZXMuaXNGdWxsO289PT1pLmxpbmVzLmxlbmd0aC0xP3M/aS5saW5lcy5yZWN5Y2xlKCkuY29weUZyb20ocik6aS5saW5lcy5wdXNoKHIuY2xvbmUoKSk6aS5saW5lcy5zcGxpY2UobysxLDAsci5jbG9uZSgpKSxzP3RoaXMuaXNVc2VyU2Nyb2xsaW5nJiYoaS55ZGlzcD1NYXRoLm1heChpLnlkaXNwLTEsMCkpOihpLnliYXNlKyssdGhpcy5pc1VzZXJTY3JvbGxpbmd8fGkueWRpc3ArKyl9ZWxzZXt2YXIgYT1vLW4rMTtpLmxpbmVzLnNoaWZ0RWxlbWVudHMobisxLGEtMSwtMSksaS5saW5lcy5zZXQobyxyLmNsb25lKCkpfXRoaXMuaXNVc2VyU2Nyb2xsaW5nfHwoaS55ZGlzcD1pLnliYXNlKSx0aGlzLl9vblNjcm9sbC5maXJlKGkueWRpc3ApfSxyLnByb3RvdHlwZS5zY3JvbGxMaW5lcz1mdW5jdGlvbihlLHQscil7dmFyIGk9dGhpcy5idWZmZXI7aWYoZTwwKXtpZigwPT09aS55ZGlzcClyZXR1cm47dGhpcy5pc1VzZXJTY3JvbGxpbmc9ITB9ZWxzZSBlK2kueWRpc3A+PWkueWJhc2UmJih0aGlzLmlzVXNlclNjcm9sbGluZz0hMSk7dmFyIG49aS55ZGlzcDtpLnlkaXNwPU1hdGgubWF4KE1hdGgubWluKGkueWRpc3ArZSxpLnliYXNlKSwwKSxuIT09aS55ZGlzcCYmKHR8fHRoaXMuX29uU2Nyb2xsLmZpcmUoaS55ZGlzcCkpfSxyLnByb3RvdHlwZS5zY3JvbGxQYWdlcz1mdW5jdGlvbihlKXt0aGlzLnNjcm9sbExpbmVzKGUqKHRoaXMucm93cy0xKSl9LHIucHJvdG90eXBlLnNjcm9sbFRvVG9wPWZ1bmN0aW9uKCl7dGhpcy5zY3JvbGxMaW5lcygtdGhpcy5idWZmZXIueWRpc3ApfSxyLnByb3RvdHlwZS5zY3JvbGxUb0JvdHRvbT1mdW5jdGlvbigpe3RoaXMuc2Nyb2xsTGluZXModGhpcy5idWZmZXIueWJhc2UtdGhpcy5idWZmZXIueWRpc3ApfSxyLnByb3RvdHlwZS5zY3JvbGxUb0xpbmU9ZnVuY3Rpb24oZSl7dmFyIHQ9ZS10aGlzLmJ1ZmZlci55ZGlzcDswIT09dCYmdGhpcy5zY3JvbGxMaW5lcyh0KX0sbyhbcygwLGEuSU9wdGlvbnNTZXJ2aWNlKV0scil9KHUuRGlzcG9zYWJsZSk7dC5CdWZmZXJTZXJ2aWNlPWh9LDc5OTQ6KGUsdCk9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5DaGFyc2V0U2VydmljZT12b2lkIDA7dmFyIHI9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKCl7dGhpcy5nbGV2ZWw9MCx0aGlzLl9jaGFyc2V0cz1bXX1yZXR1cm4gZS5wcm90b3R5cGUucmVzZXQ9ZnVuY3Rpb24oKXt0aGlzLmNoYXJzZXQ9dm9pZCAwLHRoaXMuX2NoYXJzZXRzPVtdLHRoaXMuZ2xldmVsPTB9LGUucHJvdG90eXBlLnNldGdMZXZlbD1mdW5jdGlvbihlKXt0aGlzLmdsZXZlbD1lLHRoaXMuY2hhcnNldD10aGlzLl9jaGFyc2V0c1tlXX0sZS5wcm90b3R5cGUuc2V0Z0NoYXJzZXQ9ZnVuY3Rpb24oZSx0KXt0aGlzLl9jaGFyc2V0c1tlXT10LHRoaXMuZ2xldmVsPT09ZSYmKHRoaXMuY2hhcnNldD10KX0sZX0oKTt0LkNoYXJzZXRTZXJ2aWNlPXJ9LDE3NTM6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPXRoaXMmJnRoaXMuX19kZWNvcmF0ZXx8ZnVuY3Rpb24oZSx0LHIsaSl7dmFyIG4sbz1hcmd1bWVudHMubGVuZ3RoLHM9bzwzP3Q6bnVsbD09PWk/aT1PYmplY3QuZ2V0T3duUHJvcGVydHlEZXNjcmlwdG9yKHQscik6aTtpZigib2JqZWN0Ij09dHlwZW9mIFJlZmxlY3QmJiJmdW5jdGlvbiI9PXR5cGVvZiBSZWZsZWN0LmRlY29yYXRlKXM9UmVmbGVjdC5kZWNvcmF0ZShlLHQscixpKTtlbHNlIGZvcih2YXIgYT1lLmxlbmd0aC0xO2E+PTA7YS0tKShuPWVbYV0pJiYocz0obzwzP24ocyk6bz4zP24odCxyLHMpOm4odCxyKSl8fHMpO3JldHVybiBvPjMmJnMmJk9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LHIscyksc30sbj10aGlzJiZ0aGlzLl9fcGFyYW18fGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGZ1bmN0aW9uKHIsaSl7dChyLGksZSl9fTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Db3JlTW91c2VTZXJ2aWNlPXZvaWQgMDt2YXIgbz1yKDI1ODUpLHM9cig4NDYwKSxhPXtOT05FOntldmVudHM6MCxyZXN0cmljdDpmdW5jdGlvbigpe3JldHVybiExfX0sWDEwOntldmVudHM6MSxyZXN0cmljdDpmdW5jdGlvbihlKXtyZXR1cm4gNCE9PWUuYnV0dG9uJiYxPT09ZS5hY3Rpb24mJihlLmN0cmw9ITEsZS5hbHQ9ITEsZS5zaGlmdD0hMSwhMCl9fSxWVDIwMDp7ZXZlbnRzOjE5LHJlc3RyaWN0OmZ1bmN0aW9uKGUpe3JldHVybiAzMiE9PWUuYWN0aW9ufX0sRFJBRzp7ZXZlbnRzOjIzLHJlc3RyaWN0OmZ1bmN0aW9uKGUpe3JldHVybiAzMiE9PWUuYWN0aW9ufHwzIT09ZS5idXR0b259fSxBTlk6e2V2ZW50czozMSxyZXN0cmljdDpmdW5jdGlvbihlKXtyZXR1cm4hMH19fTtmdW5jdGlvbiBjKGUsdCl7dmFyIHI9KGUuY3RybD8xNjowKXwoZS5zaGlmdD80OjApfChlLmFsdD84OjApO3JldHVybiA0PT09ZS5idXR0b24/KHJ8PTY0LHJ8PWUuYWN0aW9uKToocnw9MyZlLmJ1dHRvbiw0JmUuYnV0dG9uJiYocnw9NjQpLDgmZS5idXR0b24mJihyfD0xMjgpLDMyPT09ZS5hY3Rpb24/cnw9MzI6MCE9PWUuYWN0aW9ufHx0fHwocnw9MykpLHJ9dmFyIGw9U3RyaW5nLmZyb21DaGFyQ29kZSx1PXtERUZBVUxUOmZ1bmN0aW9uKGUpe3ZhciB0PVtjKGUsITEpKzMyLGUuY29sKzMyLGUucm93KzMyXTtyZXR1cm4gdFswXT4yNTV8fHRbMV0+MjU1fHx0WzJdPjI1NT8iIjoiG1tNIitsKHRbMF0pK2wodFsxXSkrbCh0WzJdKX0sU0dSOmZ1bmN0aW9uKGUpe3ZhciB0PTA9PT1lLmFjdGlvbiYmNCE9PWUuYnV0dG9uPyJtIjoiTSI7cmV0dXJuIhtbPCIrYyhlLCEwKSsiOyIrZS5jb2wrIjsiK2Uucm93K3R9fSxoPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlLHQpe3RoaXMuX2J1ZmZlclNlcnZpY2U9ZSx0aGlzLl9jb3JlU2VydmljZT10LHRoaXMuX3Byb3RvY29scz17fSx0aGlzLl9lbmNvZGluZ3M9e30sdGhpcy5fYWN0aXZlUHJvdG9jb2w9IiIsdGhpcy5fYWN0aXZlRW5jb2Rpbmc9IiIsdGhpcy5fb25Qcm90b2NvbENoYW5nZT1uZXcgcy5FdmVudEVtaXR0ZXIsdGhpcy5fbGFzdEV2ZW50PW51bGw7Zm9yKHZhciByPTAsaT1PYmplY3Qua2V5cyhhKTtyPGkubGVuZ3RoO3IrKyl7dmFyIG49aVtyXTt0aGlzLmFkZFByb3RvY29sKG4sYVtuXSl9Zm9yKHZhciBvPTAsYz1PYmplY3Qua2V5cyh1KTtvPGMubGVuZ3RoO28rKyl7dmFyIGw9Y1tvXTt0aGlzLmFkZEVuY29kaW5nKGwsdVtsXSl9dGhpcy5yZXNldCgpfXJldHVybiBlLnByb3RvdHlwZS5hZGRQcm90b2NvbD1mdW5jdGlvbihlLHQpe3RoaXMuX3Byb3RvY29sc1tlXT10fSxlLnByb3RvdHlwZS5hZGRFbmNvZGluZz1mdW5jdGlvbihlLHQpe3RoaXMuX2VuY29kaW5nc1tlXT10fSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImFjdGl2ZVByb3RvY29sIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2FjdGl2ZVByb3RvY29sfSxzZXQ6ZnVuY3Rpb24oZSl7aWYoIXRoaXMuX3Byb3RvY29sc1tlXSl0aHJvdyBuZXcgRXJyb3IoJ3Vua25vd24gcHJvdG9jb2wgIicrZSsnIicpO3RoaXMuX2FjdGl2ZVByb3RvY29sPWUsdGhpcy5fb25Qcm90b2NvbENoYW5nZS5maXJlKHRoaXMuX3Byb3RvY29sc1tlXS5ldmVudHMpfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwiYXJlTW91c2VFdmVudHNBY3RpdmUiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gMCE9PXRoaXMuX3Byb3RvY29sc1t0aGlzLl9hY3RpdmVQcm90b2NvbF0uZXZlbnRzfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwiYWN0aXZlRW5jb2RpbmciLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fYWN0aXZlRW5jb2Rpbmd9LHNldDpmdW5jdGlvbihlKXtpZighdGhpcy5fZW5jb2RpbmdzW2VdKXRocm93IG5ldyBFcnJvcigndW5rbm93biBlbmNvZGluZyAiJytlKyciJyk7dGhpcy5fYWN0aXZlRW5jb2Rpbmc9ZX0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxlLnByb3RvdHlwZS5yZXNldD1mdW5jdGlvbigpe3RoaXMuYWN0aXZlUHJvdG9jb2w9Ik5PTkUiLHRoaXMuYWN0aXZlRW5jb2Rpbmc9IkRFRkFVTFQiLHRoaXMuX2xhc3RFdmVudD1udWxsfSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsIm9uUHJvdG9jb2xDaGFuZ2UiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25Qcm90b2NvbENoYW5nZS5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxlLnByb3RvdHlwZS50cmlnZ2VyTW91c2VFdmVudD1mdW5jdGlvbihlKXtpZihlLmNvbDwwfHxlLmNvbD49dGhpcy5fYnVmZmVyU2VydmljZS5jb2xzfHxlLnJvdzwwfHxlLnJvdz49dGhpcy5fYnVmZmVyU2VydmljZS5yb3dzKXJldHVybiExO2lmKDQ9PT1lLmJ1dHRvbiYmMzI9PT1lLmFjdGlvbilyZXR1cm4hMTtpZigzPT09ZS5idXR0b24mJjMyIT09ZS5hY3Rpb24pcmV0dXJuITE7aWYoNCE9PWUuYnV0dG9uJiYoMj09PWUuYWN0aW9ufHwzPT09ZS5hY3Rpb24pKXJldHVybiExO2lmKGUuY29sKyssZS5yb3crKywzMj09PWUuYWN0aW9uJiZ0aGlzLl9sYXN0RXZlbnQmJnRoaXMuX2NvbXBhcmVFdmVudHModGhpcy5fbGFzdEV2ZW50LGUpKXJldHVybiExO2lmKCF0aGlzLl9wcm90b2NvbHNbdGhpcy5fYWN0aXZlUHJvdG9jb2xdLnJlc3RyaWN0KGUpKXJldHVybiExO3ZhciB0PXRoaXMuX2VuY29kaW5nc1t0aGlzLl9hY3RpdmVFbmNvZGluZ10oZSk7cmV0dXJuIHQmJigiREVGQVVMVCI9PT10aGlzLl9hY3RpdmVFbmNvZGluZz90aGlzLl9jb3JlU2VydmljZS50cmlnZ2VyQmluYXJ5RXZlbnQodCk6dGhpcy5fY29yZVNlcnZpY2UudHJpZ2dlckRhdGFFdmVudCh0LCEwKSksdGhpcy5fbGFzdEV2ZW50PWUsITB9LGUucHJvdG90eXBlLmV4cGxhaW5FdmVudHM9ZnVuY3Rpb24oZSl7cmV0dXJue2Rvd246ISEoMSZlKSx1cDohISgyJmUpLGRyYWc6ISEoNCZlKSxtb3ZlOiEhKDgmZSksd2hlZWw6ISEoMTYmZSl9fSxlLnByb3RvdHlwZS5fY29tcGFyZUV2ZW50cz1mdW5jdGlvbihlLHQpe3JldHVybiBlLmNvbD09PXQuY29sJiZlLnJvdz09PXQucm93JiZlLmJ1dHRvbj09PXQuYnV0dG9uJiZlLmFjdGlvbj09PXQuYWN0aW9uJiZlLmN0cmw9PT10LmN0cmwmJmUuYWx0PT09dC5hbHQmJmUuc2hpZnQ9PT10LnNoaWZ0fSxpKFtuKDAsby5JQnVmZmVyU2VydmljZSksbigxLG8uSUNvcmVTZXJ2aWNlKV0sZSl9KCk7dC5Db3JlTW91c2VTZXJ2aWNlPWh9LDY5NzU6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpLG49dGhpcyYmdGhpcy5fX2V4dGVuZHN8fChpPWZ1bmN0aW9uKGUsdCl7cmV0dXJuIGk9T2JqZWN0LnNldFByb3RvdHlwZU9mfHx7X19wcm90b19fOltdfWluc3RhbmNlb2YgQXJyYXkmJmZ1bmN0aW9uKGUsdCl7ZS5fX3Byb3RvX189dH18fGZ1bmN0aW9uKGUsdCl7Zm9yKHZhciByIGluIHQpT2JqZWN0LnByb3RvdHlwZS5oYXNPd25Qcm9wZXJ0eS5jYWxsKHQscikmJihlW3JdPXRbcl0pfSxpKGUsdCl9LGZ1bmN0aW9uKGUsdCl7aWYoImZ1bmN0aW9uIiE9dHlwZW9mIHQmJm51bGwhPT10KXRocm93IG5ldyBUeXBlRXJyb3IoIkNsYXNzIGV4dGVuZHMgdmFsdWUgIitTdHJpbmcodCkrIiBpcyBub3QgYSBjb25zdHJ1Y3RvciBvciBudWxsIik7ZnVuY3Rpb24gcigpe3RoaXMuY29uc3RydWN0b3I9ZX1pKGUsdCksZS5wcm90b3R5cGU9bnVsbD09PXQ/T2JqZWN0LmNyZWF0ZSh0KTooci5wcm90b3R5cGU9dC5wcm90b3R5cGUsbmV3IHIpfSksbz10aGlzJiZ0aGlzLl9fZGVjb3JhdGV8fGZ1bmN0aW9uKGUsdCxyLGkpe3ZhciBuLG89YXJndW1lbnRzLmxlbmd0aCxzPW88Mz90Om51bGw9PT1pP2k9T2JqZWN0LmdldE93blByb3BlcnR5RGVzY3JpcHRvcih0LHIpOmk7aWYoIm9iamVjdCI9PXR5cGVvZiBSZWZsZWN0JiYiZnVuY3Rpb24iPT10eXBlb2YgUmVmbGVjdC5kZWNvcmF0ZSlzPVJlZmxlY3QuZGVjb3JhdGUoZSx0LHIsaSk7ZWxzZSBmb3IodmFyIGE9ZS5sZW5ndGgtMTthPj0wO2EtLSkobj1lW2FdKSYmKHM9KG88Mz9uKHMpOm8+Mz9uKHQscixzKTpuKHQscikpfHxzKTtyZXR1cm4gbz4zJiZzJiZPYmplY3QuZGVmaW5lUHJvcGVydHkodCxyLHMpLHN9LHM9dGhpcyYmdGhpcy5fX3BhcmFtfHxmdW5jdGlvbihlLHQpe3JldHVybiBmdW5jdGlvbihyLGkpe3QocixpLGUpfX07T2JqZWN0LmRlZmluZVByb3BlcnR5KHQsIl9fZXNNb2R1bGUiLHt2YWx1ZTohMH0pLHQuQ29yZVNlcnZpY2U9dm9pZCAwO3ZhciBhPXIoMjU4NSksYz1yKDg0NjApLGw9cigxNDM5KSx1PXIoODQ0KSxoPU9iamVjdC5mcmVlemUoe2luc2VydE1vZGU6ITF9KSxmPU9iamVjdC5mcmVlemUoe2FwcGxpY2F0aW9uQ3Vyc29yS2V5czohMSxhcHBsaWNhdGlvbktleXBhZDohMSxicmFja2V0ZWRQYXN0ZU1vZGU6ITEsb3JpZ2luOiExLHJldmVyc2VXcmFwYXJvdW5kOiExLHNlbmRGb2N1czohMSx3cmFwYXJvdW5kOiEwfSksXz1mdW5jdGlvbihlKXtmdW5jdGlvbiB0KHQscixpLG4pe3ZhciBvPWUuY2FsbCh0aGlzKXx8dGhpcztyZXR1cm4gby5fYnVmZmVyU2VydmljZT1yLG8uX2xvZ1NlcnZpY2U9aSxvLl9vcHRpb25zU2VydmljZT1uLG8uaXNDdXJzb3JJbml0aWFsaXplZD0hMSxvLmlzQ3Vyc29ySGlkZGVuPSExLG8uX29uRGF0YT1vLnJlZ2lzdGVyKG5ldyBjLkV2ZW50RW1pdHRlciksby5fb25Vc2VySW5wdXQ9by5yZWdpc3RlcihuZXcgYy5FdmVudEVtaXR0ZXIpLG8uX29uQmluYXJ5PW8ucmVnaXN0ZXIobmV3IGMuRXZlbnRFbWl0dGVyKSxvLl9zY3JvbGxUb0JvdHRvbT10LG8ucmVnaXN0ZXIoe2Rpc3Bvc2U6ZnVuY3Rpb24oKXtyZXR1cm4gby5fc2Nyb2xsVG9Cb3R0b209dm9pZCAwfX0pLG8ubW9kZXM9KDAsbC5jbG9uZSkoaCksby5kZWNQcml2YXRlTW9kZXM9KDAsbC5jbG9uZSkoZiksb31yZXR1cm4gbih0LGUpLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25EYXRhIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uRGF0YS5ldmVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkodC5wcm90b3R5cGUsIm9uVXNlcklucHV0Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uVXNlcklucHV0LmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LnByb3RvdHlwZSwib25CaW5hcnkiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25CaW5hcnkuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksdC5wcm90b3R5cGUucmVzZXQ9ZnVuY3Rpb24oKXt0aGlzLm1vZGVzPSgwLGwuY2xvbmUpKGgpLHRoaXMuZGVjUHJpdmF0ZU1vZGVzPSgwLGwuY2xvbmUpKGYpfSx0LnByb3RvdHlwZS50cmlnZ2VyRGF0YUV2ZW50PWZ1bmN0aW9uKGUsdCl7aWYodm9pZCAwPT09dCYmKHQ9ITEpLCF0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmRpc2FibGVTdGRpbil7dmFyIHI9dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXI7ci55YmFzZSE9PXIueWRpc3AmJnRoaXMuX3Njcm9sbFRvQm90dG9tKCksdCYmdGhpcy5fb25Vc2VySW5wdXQuZmlyZSgpLHRoaXMuX2xvZ1NlcnZpY2UuZGVidWcoJ3NlbmRpbmcgZGF0YSAiJytlKyciJywoZnVuY3Rpb24oKXtyZXR1cm4gZS5zcGxpdCgiIikubWFwKChmdW5jdGlvbihlKXtyZXR1cm4gZS5jaGFyQ29kZUF0KDApfSkpfSkpLHRoaXMuX29uRGF0YS5maXJlKGUpfX0sdC5wcm90b3R5cGUudHJpZ2dlckJpbmFyeUV2ZW50PWZ1bmN0aW9uKGUpe3RoaXMuX29wdGlvbnNTZXJ2aWNlLm9wdGlvbnMuZGlzYWJsZVN0ZGlufHwodGhpcy5fbG9nU2VydmljZS5kZWJ1Zygnc2VuZGluZyBiaW5hcnkgIicrZSsnIicsKGZ1bmN0aW9uKCl7cmV0dXJuIGUuc3BsaXQoIiIpLm1hcCgoZnVuY3Rpb24oZSl7cmV0dXJuIGUuY2hhckNvZGVBdCgwKX0pKX0pKSx0aGlzLl9vbkJpbmFyeS5maXJlKGUpKX0sbyhbcygxLGEuSUJ1ZmZlclNlcnZpY2UpLHMoMixhLklMb2dTZXJ2aWNlKSxzKDMsYS5JT3B0aW9uc1NlcnZpY2UpXSx0KX0odS5EaXNwb3NhYmxlKTt0LkNvcmVTZXJ2aWNlPV99LDM3MzA6ZnVuY3Rpb24oZSx0LHIpe3ZhciBpPXRoaXMmJnRoaXMuX19kZWNvcmF0ZXx8ZnVuY3Rpb24oZSx0LHIsaSl7dmFyIG4sbz1hcmd1bWVudHMubGVuZ3RoLHM9bzwzP3Q6bnVsbD09PWk/aT1PYmplY3QuZ2V0T3duUHJvcGVydHlEZXNjcmlwdG9yKHQscik6aTtpZigib2JqZWN0Ij09dHlwZW9mIFJlZmxlY3QmJiJmdW5jdGlvbiI9PXR5cGVvZiBSZWZsZWN0LmRlY29yYXRlKXM9UmVmbGVjdC5kZWNvcmF0ZShlLHQscixpKTtlbHNlIGZvcih2YXIgYT1lLmxlbmd0aC0xO2E+PTA7YS0tKShuPWVbYV0pJiYocz0obzwzP24ocyk6bz4zP24odCxyLHMpOm4odCxyKSl8fHMpO3JldHVybiBvPjMmJnMmJk9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LHIscyksc30sbj10aGlzJiZ0aGlzLl9fcGFyYW18fGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGZ1bmN0aW9uKHIsaSl7dChyLGksZSl9fTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5EaXJ0eVJvd1NlcnZpY2U9dm9pZCAwO3ZhciBvPXIoMjU4NSkscz1mdW5jdGlvbigpe2Z1bmN0aW9uIGUoZSl7dGhpcy5fYnVmZmVyU2VydmljZT1lLHRoaXMuY2xlYXJSYW5nZSgpfXJldHVybiBPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsInN0YXJ0Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX3N0YXJ0fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwiZW5kIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2VuZH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxlLnByb3RvdHlwZS5jbGVhclJhbmdlPWZ1bmN0aW9uKCl7dGhpcy5fc3RhcnQ9dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueSx0aGlzLl9lbmQ9dGhpcy5fYnVmZmVyU2VydmljZS5idWZmZXIueX0sZS5wcm90b3R5cGUubWFya0RpcnR5PWZ1bmN0aW9uKGUpe2U8dGhpcy5fc3RhcnQ/dGhpcy5fc3RhcnQ9ZTplPnRoaXMuX2VuZCYmKHRoaXMuX2VuZD1lKX0sZS5wcm90b3R5cGUubWFya1JhbmdlRGlydHk9ZnVuY3Rpb24oZSx0KXtpZihlPnQpe3ZhciByPWU7ZT10LHQ9cn1lPHRoaXMuX3N0YXJ0JiYodGhpcy5fc3RhcnQ9ZSksdD50aGlzLl9lbmQmJih0aGlzLl9lbmQ9dCl9LGUucHJvdG90eXBlLm1hcmtBbGxEaXJ0eT1mdW5jdGlvbigpe3RoaXMubWFya1JhbmdlRGlydHkoMCx0aGlzLl9idWZmZXJTZXJ2aWNlLnJvd3MtMSl9LGkoW24oMCxvLklCdWZmZXJTZXJ2aWNlKV0sZSl9KCk7dC5EaXJ0eVJvd1NlcnZpY2U9c30sNDM0ODpmdW5jdGlvbihlLHQscil7dmFyIGk9dGhpcyYmdGhpcy5fX3NwcmVhZEFycmF5fHxmdW5jdGlvbihlLHQscil7aWYocnx8Mj09PWFyZ3VtZW50cy5sZW5ndGgpZm9yKHZhciBpLG49MCxvPXQubGVuZ3RoO248bztuKyspIWkmJm4gaW4gdHx8KGl8fChpPUFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKHQsMCxuKSksaVtuXT10W25dKTtyZXR1cm4gZS5jb25jYXQoaXx8QXJyYXkucHJvdG90eXBlLnNsaWNlLmNhbGwodCkpfTtPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5JbnN0YW50aWF0aW9uU2VydmljZT10LlNlcnZpY2VDb2xsZWN0aW9uPXZvaWQgMDt2YXIgbj1yKDI1ODUpLG89cig4MzQzKSxzPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZSgpe2Zvcih2YXIgZT1bXSx0PTA7dDxhcmd1bWVudHMubGVuZ3RoO3QrKyllW3RdPWFyZ3VtZW50c1t0XTt0aGlzLl9lbnRyaWVzPW5ldyBNYXA7Zm9yKHZhciByPTAsaT1lO3I8aS5sZW5ndGg7cisrKXt2YXIgbj1pW3JdLG89blswXSxzPW5bMV07dGhpcy5zZXQobyxzKX19cmV0dXJuIGUucHJvdG90eXBlLnNldD1mdW5jdGlvbihlLHQpe3ZhciByPXRoaXMuX2VudHJpZXMuZ2V0KGUpO3JldHVybiB0aGlzLl9lbnRyaWVzLnNldChlLHQpLHJ9LGUucHJvdG90eXBlLmZvckVhY2g9ZnVuY3Rpb24oZSl7dGhpcy5fZW50cmllcy5mb3JFYWNoKChmdW5jdGlvbih0LHIpe3JldHVybiBlKHIsdCl9KSl9LGUucHJvdG90eXBlLmhhcz1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fZW50cmllcy5oYXMoZSl9LGUucHJvdG90eXBlLmdldD1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fZW50cmllcy5nZXQoZSl9LGV9KCk7dC5TZXJ2aWNlQ29sbGVjdGlvbj1zO3ZhciBhPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZSgpe3RoaXMuX3NlcnZpY2VzPW5ldyBzLHRoaXMuX3NlcnZpY2VzLnNldChuLklJbnN0YW50aWF0aW9uU2VydmljZSx0aGlzKX1yZXR1cm4gZS5wcm90b3R5cGUuc2V0U2VydmljZT1mdW5jdGlvbihlLHQpe3RoaXMuX3NlcnZpY2VzLnNldChlLHQpfSxlLnByb3RvdHlwZS5nZXRTZXJ2aWNlPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9zZXJ2aWNlcy5nZXQoZSl9LGUucHJvdG90eXBlLmNyZWF0ZUluc3RhbmNlPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD1bXSxyPTE7cjxhcmd1bWVudHMubGVuZ3RoO3IrKyl0W3ItMV09YXJndW1lbnRzW3JdO2Zvcih2YXIgbj0oMCxvLmdldFNlcnZpY2VEZXBlbmRlbmNpZXMpKGUpLnNvcnQoKGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGUuaW5kZXgtdC5pbmRleH0pKSxzPVtdLGE9MCxjPW47YTxjLmxlbmd0aDthKyspe3ZhciBsPWNbYV0sdT10aGlzLl9zZXJ2aWNlcy5nZXQobC5pZCk7aWYoIXUpdGhyb3cgbmV3IEVycm9yKCJbY3JlYXRlSW5zdGFuY2VdICIrZS5uYW1lKyIgZGVwZW5kcyBvbiBVTktOT1dOIHNlcnZpY2UgIitsLmlkKyIuIik7cy5wdXNoKHUpfXZhciBoPW4ubGVuZ3RoPjA/blswXS5pbmRleDp0Lmxlbmd0aDtpZih0Lmxlbmd0aCE9PWgpdGhyb3cgbmV3IEVycm9yKCJbY3JlYXRlSW5zdGFuY2VdIEZpcnN0IHNlcnZpY2UgZGVwZW5kZW5jeSBvZiAiK2UubmFtZSsiIGF0IHBvc2l0aW9uICIrKGgrMSkrIiBjb25mbGljdHMgd2l0aCAiK3QubGVuZ3RoKyIgc3RhdGljIGFyZ3VtZW50cyIpO3JldHVybiBuZXcoZS5iaW5kLmFwcGx5KGUsaShbdm9pZCAwXSxpKGkoW10sdCwhMCkscywhMCksITEpKSl9LGV9KCk7dC5JbnN0YW50aWF0aW9uU2VydmljZT1hfSw3ODY2OmZ1bmN0aW9uKGUsdCxyKXt2YXIgaT10aGlzJiZ0aGlzLl9fZGVjb3JhdGV8fGZ1bmN0aW9uKGUsdCxyLGkpe3ZhciBuLG89YXJndW1lbnRzLmxlbmd0aCxzPW88Mz90Om51bGw9PT1pP2k9T2JqZWN0LmdldE93blByb3BlcnR5RGVzY3JpcHRvcih0LHIpOmk7aWYoIm9iamVjdCI9PXR5cGVvZiBSZWZsZWN0JiYiZnVuY3Rpb24iPT10eXBlb2YgUmVmbGVjdC5kZWNvcmF0ZSlzPVJlZmxlY3QuZGVjb3JhdGUoZSx0LHIsaSk7ZWxzZSBmb3IodmFyIGE9ZS5sZW5ndGgtMTthPj0wO2EtLSkobj1lW2FdKSYmKHM9KG88Mz9uKHMpOm8+Mz9uKHQscixzKTpuKHQscikpfHxzKTtyZXR1cm4gbz4zJiZzJiZPYmplY3QuZGVmaW5lUHJvcGVydHkodCxyLHMpLHN9LG49dGhpcyYmdGhpcy5fX3BhcmFtfHxmdW5jdGlvbihlLHQpe3JldHVybiBmdW5jdGlvbihyLGkpe3QocixpLGUpfX0sbz10aGlzJiZ0aGlzLl9fc3ByZWFkQXJyYXl8fGZ1bmN0aW9uKGUsdCxyKXtpZihyfHwyPT09YXJndW1lbnRzLmxlbmd0aClmb3IodmFyIGksbj0wLG89dC5sZW5ndGg7bjxvO24rKykhaSYmbiBpbiB0fHwoaXx8KGk9QXJyYXkucHJvdG90eXBlLnNsaWNlLmNhbGwodCwwLG4pKSxpW25dPXRbbl0pO3JldHVybiBlLmNvbmNhdChpfHxBcnJheS5wcm90b3R5cGUuc2xpY2UuY2FsbCh0KSl9O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LkxvZ1NlcnZpY2U9dm9pZCAwO3ZhciBzPXIoMjU4NSksYT17ZGVidWc6cy5Mb2dMZXZlbEVudW0uREVCVUcsaW5mbzpzLkxvZ0xldmVsRW51bS5JTkZPLHdhcm46cy5Mb2dMZXZlbEVudW0uV0FSTixlcnJvcjpzLkxvZ0xldmVsRW51bS5FUlJPUixvZmY6cy5Mb2dMZXZlbEVudW0uT0ZGfSxjPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZShlKXt2YXIgdD10aGlzO3RoaXMuX29wdGlvbnNTZXJ2aWNlPWUsdGhpcy5sb2dMZXZlbD1zLkxvZ0xldmVsRW51bS5PRkYsdGhpcy5fdXBkYXRlTG9nTGV2ZWwoKSx0aGlzLl9vcHRpb25zU2VydmljZS5vbk9wdGlvbkNoYW5nZSgoZnVuY3Rpb24oZSl7ImxvZ0xldmVsIj09PWUmJnQuX3VwZGF0ZUxvZ0xldmVsKCl9KSl9cmV0dXJuIGUucHJvdG90eXBlLl91cGRhdGVMb2dMZXZlbD1mdW5jdGlvbigpe3RoaXMubG9nTGV2ZWw9YVt0aGlzLl9vcHRpb25zU2VydmljZS5vcHRpb25zLmxvZ0xldmVsXX0sZS5wcm90b3R5cGUuX2V2YWxMYXp5T3B0aW9uYWxQYXJhbXM9ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PTA7dDxlLmxlbmd0aDt0KyspImZ1bmN0aW9uIj09dHlwZW9mIGVbdF0mJihlW3RdPWVbdF0oKSl9LGUucHJvdG90eXBlLl9sb2c9ZnVuY3Rpb24oZSx0LHIpe3RoaXMuX2V2YWxMYXp5T3B0aW9uYWxQYXJhbXMociksZS5jYWxsLmFwcGx5KGUsbyhbY29uc29sZSwieHRlcm0uanM6ICIrdF0sciwhMSkpfSxlLnByb3RvdHlwZS5kZWJ1Zz1mdW5jdGlvbihlKXtmb3IodmFyIHQ9W10scj0xO3I8YXJndW1lbnRzLmxlbmd0aDtyKyspdFtyLTFdPWFyZ3VtZW50c1tyXTt0aGlzLmxvZ0xldmVsPD1zLkxvZ0xldmVsRW51bS5ERUJVRyYmdGhpcy5fbG9nKGNvbnNvbGUubG9nLGUsdCl9LGUucHJvdG90eXBlLmluZm89ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PVtdLHI9MTtyPGFyZ3VtZW50cy5sZW5ndGg7cisrKXRbci0xXT1hcmd1bWVudHNbcl07dGhpcy5sb2dMZXZlbDw9cy5Mb2dMZXZlbEVudW0uSU5GTyYmdGhpcy5fbG9nKGNvbnNvbGUuaW5mbyxlLHQpfSxlLnByb3RvdHlwZS53YXJuPWZ1bmN0aW9uKGUpe2Zvcih2YXIgdD1bXSxyPTE7cjxhcmd1bWVudHMubGVuZ3RoO3IrKyl0W3ItMV09YXJndW1lbnRzW3JdO3RoaXMubG9nTGV2ZWw8PXMuTG9nTGV2ZWxFbnVtLldBUk4mJnRoaXMuX2xvZyhjb25zb2xlLndhcm4sZSx0KX0sZS5wcm90b3R5cGUuZXJyb3I9ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PVtdLHI9MTtyPGFyZ3VtZW50cy5sZW5ndGg7cisrKXRbci0xXT1hcmd1bWVudHNbcl07dGhpcy5sb2dMZXZlbDw9cy5Mb2dMZXZlbEVudW0uRVJST1ImJnRoaXMuX2xvZyhjb25zb2xlLmVycm9yLGUsdCl9LGkoW24oMCxzLklPcHRpb25zU2VydmljZSldLGUpfSgpO3QuTG9nU2VydmljZT1jfSw3MzAyOmZ1bmN0aW9uKGUsdCxyKXt2YXIgaT10aGlzJiZ0aGlzLl9fYXNzaWdufHxmdW5jdGlvbigpe3JldHVybiBpPU9iamVjdC5hc3NpZ258fGZ1bmN0aW9uKGUpe2Zvcih2YXIgdCxyPTEsaT1hcmd1bWVudHMubGVuZ3RoO3I8aTtyKyspZm9yKHZhciBuIGluIHQ9YXJndW1lbnRzW3JdKU9iamVjdC5wcm90b3R5cGUuaGFzT3duUHJvcGVydHkuY2FsbCh0LG4pJiYoZVtuXT10W25dKTtyZXR1cm4gZX0saS5hcHBseSh0aGlzLGFyZ3VtZW50cyl9O09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0Lk9wdGlvbnNTZXJ2aWNlPXQuREVGQVVMVF9PUFRJT05TPXQuREVGQVVMVF9CRUxMX1NPVU5EPXZvaWQgMDt2YXIgbj1yKDg0NjApLG89cig2MTE0KTt0LkRFRkFVTFRfQkVMTF9TT1VORD0iZGF0YTphdWRpby9tcDM7YmFzZTY0LFNVUXpCQUFBQUFBQUkxUlRVMFVBQUFBUEFBQURUR0YyWmpVNExqTXlMakV3TkFBQUFBQUFBQUFBQUFBQS8vdFF4QUFEQjhBaFNteGhJSUVWQ1NpSnJEQ1FCVGN1M1VyQUl3VWRrUmdRYkZBWkMxQ1FFd1RKOW1qUnZCQTRVT0xEOG5LVk9XZmgrVWxLM3ovMTc3T1hyZk9kS2w3cHluM1hmLy9XcmV5VFJVb0FXZ0Jna09BR2JaSEJnRzFPRjZ6TTgyRFdiWmFVbU1CcHRnUWhHanN5WXFjOWFlOVhGejI4MDk0OE5NQldJbmxqeXpzTlJGTFBXZG5aR1dyZGREc2pLMXVudVNyVk45akpzSzhLdVF0UUN0TUJqQ0V0SW1JU2ROS0pPb3BJcEJGcE5TTWJJSENTUnBSUjVpYWtqVGl5ekxoY2hVVUJ3Q2d5S2l3ZUJ2LzdVc1FiZzhpc1ZOb01QTWpBQUFBMGdBQUFCRVZGR21ncUsvLy8vOWJQLzZYQ3lreEJUVVV6TGpFd01LcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXFxcXEiLHQuREVGQVVMVF9PUFRJT05TPXtjb2xzOjgwLHJvd3M6MjQsY3Vyc29yQmxpbms6ITEsY3Vyc29yU3R5bGU6ImJsb2NrIixjdXJzb3JXaWR0aDoxLGN1c3RvbUdseXBoczohMCxiZWxsU291bmQ6dC5ERUZBVUxUX0JFTExfU09VTkQsYmVsbFN0eWxlOiJub25lIixkcmF3Qm9sZFRleHRJbkJyaWdodENvbG9yczohMCxmYXN0U2Nyb2xsTW9kaWZpZXI6ImFsdCIsZmFzdFNjcm9sbFNlbnNpdGl2aXR5OjUsZm9udEZhbWlseToiY291cmllci1uZXcsIGNvdXJpZXIsIG1vbm9zcGFjZSIsZm9udFNpemU6MTUsZm9udFdlaWdodDoibm9ybWFsIixmb250V2VpZ2h0Qm9sZDoiYm9sZCIsbGluZUhlaWdodDoxLGxpbmtUb29sdGlwSG92ZXJEdXJhdGlvbjo1MDAsbGV0dGVyU3BhY2luZzowLGxvZ0xldmVsOiJpbmZvIixzY3JvbGxiYWNrOjFlMyxzY3JvbGxTZW5zaXRpdml0eToxLHNjcmVlblJlYWRlck1vZGU6ITEsbWFjT3B0aW9uSXNNZXRhOiExLG1hY09wdGlvbkNsaWNrRm9yY2VzU2VsZWN0aW9uOiExLG1pbmltdW1Db250cmFzdFJhdGlvOjEsZGlzYWJsZVN0ZGluOiExLGFsbG93UHJvcG9zZWRBcGk6ITAsYWxsb3dUcmFuc3BhcmVuY3k6ITEsdGFiU3RvcFdpZHRoOjgsdGhlbWU6e30scmlnaHRDbGlja1NlbGVjdHNXb3JkOm8uaXNNYWMscmVuZGVyZXJUeXBlOiJjYW52YXMiLHdpbmRvd09wdGlvbnM6e30sd2luZG93c01vZGU6ITEsd29yZFNlcGFyYXRvcjoiICgpW117fScsXCJgIixhbHRDbGlja01vdmVzQ3Vyc29yOiEwLGNvbnZlcnRFb2w6ITEsdGVybU5hbWU6Inh0ZXJtIixjYW5jZWxFdmVudHM6ITF9O3ZhciBzPVsibm9ybWFsIiwiYm9sZCIsIjEwMCIsIjIwMCIsIjMwMCIsIjQwMCIsIjUwMCIsIjYwMCIsIjcwMCIsIjgwMCIsIjkwMCJdLGE9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUpe2Zvcih2YXIgciBpbiB0aGlzLl9vbk9wdGlvbkNoYW5nZT1uZXcgbi5FdmVudEVtaXR0ZXIsdGhpcy5fb3B0aW9ucz1pKHt9LHQuREVGQVVMVF9PUFRJT05TKSxlKWlmKHIgaW4gdGhpcy5fb3B0aW9ucyl0cnl7dmFyIG89ZVtyXTt0aGlzLl9vcHRpb25zW3JdPXRoaXMuX3Nhbml0aXplQW5kVmFsaWRhdGVPcHRpb24ocixvKX1jYXRjaChlKXtjb25zb2xlLmVycm9yKGUpfXRoaXMub3B0aW9ucz10aGlzLl9zZXR1cE9wdGlvbnModGhpcy5fb3B0aW9ucyl9cmV0dXJuIE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwib25PcHRpb25DaGFuZ2UiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fb25PcHRpb25DaGFuZ2UuZXZlbnR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksZS5wcm90b3R5cGUuX3NldHVwT3B0aW9ucz1mdW5jdGlvbihlKXt2YXIgcj10aGlzLG49aSh7fSxlKSxvPWZ1bmN0aW9uKGUpe09iamVjdC5kZWZpbmVQcm9wZXJ0eShuLGUse2dldDpmdW5jdGlvbigpe2lmKCEoZSBpbiB0LkRFRkFVTFRfT1BUSU9OUykpdGhyb3cgbmV3IEVycm9yKCdObyBvcHRpb24gd2l0aCBrZXkgIicrZSsnIicpO3JldHVybiByLl9vcHRpb25zW2VdfSxzZXQ6ZnVuY3Rpb24oaSl7aWYoIShlIGluIHQuREVGQVVMVF9PUFRJT05TKSl0aHJvdyBuZXcgRXJyb3IoJ05vIG9wdGlvbiB3aXRoIGtleSAiJytlKyciJyk7aT1yLl9zYW5pdGl6ZUFuZFZhbGlkYXRlT3B0aW9uKGUsaSksci5fb3B0aW9uc1tlXSE9PWkmJihyLl9vcHRpb25zW2VdPWksci5fb25PcHRpb25DaGFuZ2UuZmlyZShlKSl9fSl9O2Zvcih2YXIgcyBpbiBuKW8ocyk7cmV0dXJuIG59LGUucHJvdG90eXBlLnNldE9wdGlvbj1mdW5jdGlvbihlLHQpe3RoaXMub3B0aW9uc1tlXT10fSxlLnByb3RvdHlwZS5fc2FuaXRpemVBbmRWYWxpZGF0ZU9wdGlvbj1mdW5jdGlvbihlLHIpe3N3aXRjaChlKXtjYXNlImJlbGxTdHlsZSI6Y2FzZSJjdXJzb3JTdHlsZSI6Y2FzZSJyZW5kZXJlclR5cGUiOmNhc2Uid29yZFNlcGFyYXRvciI6cnx8KHI9dC5ERUZBVUxUX09QVElPTlNbZV0pO2JyZWFrO2Nhc2UiZm9udFdlaWdodCI6Y2FzZSJmb250V2VpZ2h0Qm9sZCI6aWYoIm51bWJlciI9PXR5cGVvZiByJiYxPD1yJiZyPD0xZTMpYnJlYWs7cj1zLmluY2x1ZGVzKHIpP3I6dC5ERUZBVUxUX09QVElPTlNbZV07YnJlYWs7Y2FzZSJjdXJzb3JXaWR0aCI6cj1NYXRoLmZsb29yKHIpO2Nhc2UibGluZUhlaWdodCI6Y2FzZSJ0YWJTdG9wV2lkdGgiOmlmKHI8MSl0aHJvdyBuZXcgRXJyb3IoZSsiIGNhbm5vdCBiZSBsZXNzIHRoYW4gMSwgdmFsdWU6ICIrcik7YnJlYWs7Y2FzZSJtaW5pbXVtQ29udHJhc3RSYXRpbyI6cj1NYXRoLm1heCgxLE1hdGgubWluKDIxLE1hdGgucm91bmQoMTAqcikvMTApKTticmVhaztjYXNlInNjcm9sbGJhY2siOmlmKChyPU1hdGgubWluKHIsNDI5NDk2NzI5NSkpPDApdGhyb3cgbmV3IEVycm9yKGUrIiBjYW5ub3QgYmUgbGVzcyB0aGFuIDAsIHZhbHVlOiAiK3IpO2JyZWFrO2Nhc2UiZmFzdFNjcm9sbFNlbnNpdGl2aXR5IjpjYXNlInNjcm9sbFNlbnNpdGl2aXR5IjppZihyPD0wKXRocm93IG5ldyBFcnJvcihlKyIgY2Fubm90IGJlIGxlc3MgdGhhbiBvciBlcXVhbCB0byAwLCB2YWx1ZTogIityKTtjYXNlInJvd3MiOmNhc2UiY29scyI6aWYoIXImJjAhPT1yKXRocm93IG5ldyBFcnJvcihlKyIgbXVzdCBiZSBudW1lcmljLCB2YWx1ZTogIityKX1yZXR1cm4gcn0sZS5wcm90b3R5cGUuZ2V0T3B0aW9uPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLm9wdGlvbnNbZV19LGV9KCk7dC5PcHRpb25zU2VydmljZT1hfSw4MzQzOihlLHQpPT57ZnVuY3Rpb24gcihlLHQscil7dC5kaSR0YXJnZXQ9PT10P3QuZGkkZGVwZW5kZW5jaWVzLnB1c2goe2lkOmUsaW5kZXg6cn0pOih0LmRpJGRlcGVuZGVuY2llcz1be2lkOmUsaW5kZXg6cn1dLHQuZGkkdGFyZ2V0PXQpfU9iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LmNyZWF0ZURlY29yYXRvcj10LmdldFNlcnZpY2VEZXBlbmRlbmNpZXM9dC5zZXJ2aWNlUmVnaXN0cnk9dm9pZCAwLHQuc2VydmljZVJlZ2lzdHJ5PW5ldyBNYXAsdC5nZXRTZXJ2aWNlRGVwZW5kZW5jaWVzPWZ1bmN0aW9uKGUpe3JldHVybiBlLmRpJGRlcGVuZGVuY2llc3x8W119LHQuY3JlYXRlRGVjb3JhdG9yPWZ1bmN0aW9uKGUpe2lmKHQuc2VydmljZVJlZ2lzdHJ5LmhhcyhlKSlyZXR1cm4gdC5zZXJ2aWNlUmVnaXN0cnkuZ2V0KGUpO3ZhciBpPWZ1bmN0aW9uKGUsdCxuKXtpZigzIT09YXJndW1lbnRzLmxlbmd0aCl0aHJvdyBuZXcgRXJyb3IoIkBJU2VydmljZU5hbWUtZGVjb3JhdG9yIGNhbiBvbmx5IGJlIHVzZWQgdG8gZGVjb3JhdGUgYSBwYXJhbWV0ZXIiKTtyKGksZSxuKX07cmV0dXJuIGkudG9TdHJpbmc9ZnVuY3Rpb24oKXtyZXR1cm4gZX0sdC5zZXJ2aWNlUmVnaXN0cnkuc2V0KGUsaSksaX19LDI1ODU6KGUsdCxyKT0+e09iamVjdC5kZWZpbmVQcm9wZXJ0eSh0LCJfX2VzTW9kdWxlIix7dmFsdWU6ITB9KSx0LklVbmljb2RlU2VydmljZT10LklPcHRpb25zU2VydmljZT10LklMb2dTZXJ2aWNlPXQuTG9nTGV2ZWxFbnVtPXQuSUluc3RhbnRpYXRpb25TZXJ2aWNlPXQuSURpcnR5Um93U2VydmljZT10LklDaGFyc2V0U2VydmljZT10LklDb3JlU2VydmljZT10LklDb3JlTW91c2VTZXJ2aWNlPXQuSUJ1ZmZlclNlcnZpY2U9dm9pZCAwO3ZhciBpLG49cig4MzQzKTt0LklCdWZmZXJTZXJ2aWNlPSgwLG4uY3JlYXRlRGVjb3JhdG9yKSgiQnVmZmVyU2VydmljZSIpLHQuSUNvcmVNb3VzZVNlcnZpY2U9KDAsbi5jcmVhdGVEZWNvcmF0b3IpKCJDb3JlTW91c2VTZXJ2aWNlIiksdC5JQ29yZVNlcnZpY2U9KDAsbi5jcmVhdGVEZWNvcmF0b3IpKCJDb3JlU2VydmljZSIpLHQuSUNoYXJzZXRTZXJ2aWNlPSgwLG4uY3JlYXRlRGVjb3JhdG9yKSgiQ2hhcnNldFNlcnZpY2UiKSx0LklEaXJ0eVJvd1NlcnZpY2U9KDAsbi5jcmVhdGVEZWNvcmF0b3IpKCJEaXJ0eVJvd1NlcnZpY2UiKSx0LklJbnN0YW50aWF0aW9uU2VydmljZT0oMCxuLmNyZWF0ZURlY29yYXRvcikoIkluc3RhbnRpYXRpb25TZXJ2aWNlIiksKGk9dC5Mb2dMZXZlbEVudW18fCh0LkxvZ0xldmVsRW51bT17fSkpW2kuREVCVUc9MF09IkRFQlVHIixpW2kuSU5GTz0xXT0iSU5GTyIsaVtpLldBUk49Ml09IldBUk4iLGlbaS5FUlJPUj0zXT0iRVJST1IiLGlbaS5PRkY9NF09Ik9GRiIsdC5JTG9nU2VydmljZT0oMCxuLmNyZWF0ZURlY29yYXRvcikoIkxvZ1NlcnZpY2UiKSx0LklPcHRpb25zU2VydmljZT0oMCxuLmNyZWF0ZURlY29yYXRvcikoIk9wdGlvbnNTZXJ2aWNlIiksdC5JVW5pY29kZVNlcnZpY2U9KDAsbi5jcmVhdGVEZWNvcmF0b3IpKCJVbmljb2RlU2VydmljZSIpfSwxNDgwOihlLHQscik9PntPYmplY3QuZGVmaW5lUHJvcGVydHkodCwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksdC5Vbmljb2RlU2VydmljZT12b2lkIDA7dmFyIGk9cig4NDYwKSxuPXIoMjI1KSxvPWZ1bmN0aW9uKCl7ZnVuY3Rpb24gZSgpe3RoaXMuX3Byb3ZpZGVycz1PYmplY3QuY3JlYXRlKG51bGwpLHRoaXMuX2FjdGl2ZT0iIix0aGlzLl9vbkNoYW5nZT1uZXcgaS5FdmVudEVtaXR0ZXI7dmFyIGU9bmV3IG4uVW5pY29kZVY2O3RoaXMucmVnaXN0ZXIoZSksdGhpcy5fYWN0aXZlPWUudmVyc2lvbix0aGlzLl9hY3RpdmVQcm92aWRlcj1lfXJldHVybiBPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsIm9uQ2hhbmdlIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX29uQ2hhbmdlLmV2ZW50fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwidmVyc2lvbnMiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gT2JqZWN0LmtleXModGhpcy5fcHJvdmlkZXJzKX0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImFjdGl2ZVZlcnNpb24iLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fYWN0aXZlfSxzZXQ6ZnVuY3Rpb24oZSl7aWYoIXRoaXMuX3Byb3ZpZGVyc1tlXSl0aHJvdyBuZXcgRXJyb3IoJ3Vua25vd24gVW5pY29kZSB2ZXJzaW9uICInK2UrJyInKTt0aGlzLl9hY3RpdmU9ZSx0aGlzLl9hY3RpdmVQcm92aWRlcj10aGlzLl9wcm92aWRlcnNbZV0sdGhpcy5fb25DaGFuZ2UuZmlyZShlKX0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxlLnByb3RvdHlwZS5yZWdpc3Rlcj1mdW5jdGlvbihlKXt0aGlzLl9wcm92aWRlcnNbZS52ZXJzaW9uXT1lfSxlLnByb3RvdHlwZS53Y3dpZHRoPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9hY3RpdmVQcm92aWRlci53Y3dpZHRoKGUpfSxlLnByb3RvdHlwZS5nZXRTdHJpbmdDZWxsV2lkdGg9ZnVuY3Rpb24oZSl7Zm9yKHZhciB0PTAscj1lLmxlbmd0aCxpPTA7aTxyOysraSl7dmFyIG49ZS5jaGFyQ29kZUF0KGkpO2lmKDU1Mjk2PD1uJiZuPD01NjMxOSl7aWYoKytpPj1yKXJldHVybiB0K3RoaXMud2N3aWR0aChuKTt2YXIgbz1lLmNoYXJDb2RlQXQoaSk7NTYzMjA8PW8mJm88PTU3MzQzP249MTAyNCoobi01NTI5Nikrby01NjMyMCs2NTUzNjp0Kz10aGlzLndjd2lkdGgobyl9dCs9dGhpcy53Y3dpZHRoKG4pfXJldHVybiB0fSxlfSgpO3QuVW5pY29kZVNlcnZpY2U9b319LHQ9e307ZnVuY3Rpb24gcihpKXt2YXIgbj10W2ldO2lmKHZvaWQgMCE9PW4pcmV0dXJuIG4uZXhwb3J0czt2YXIgbz10W2ldPXtleHBvcnRzOnt9fTtyZXR1cm4gZVtpXS5jYWxsKG8uZXhwb3J0cyxvLG8uZXhwb3J0cyxyKSxvLmV4cG9ydHN9dmFyIGk9e307cmV0dXJuKCgpPT57dmFyIGU9aTtPYmplY3QuZGVmaW5lUHJvcGVydHkoZSwiX19lc01vZHVsZSIse3ZhbHVlOiEwfSksZS5UZXJtaW5hbD12b2lkIDA7dmFyIHQ9cigzMjM2KSxuPXIoOTA0Miksbz1yKDc5NzUpLHM9cig3MDkwKSxhPXIoNTc0MSksYz1yKDgyODUpLGw9WyJjb2xzIiwicm93cyJdLHU9ZnVuY3Rpb24oKXtmdW5jdGlvbiBlKGUpe3ZhciByPXRoaXM7dGhpcy5fY29yZT1uZXcgdC5UZXJtaW5hbChlKSx0aGlzLl9hZGRvbk1hbmFnZXI9bmV3IGEuQWRkb25NYW5hZ2VyLHRoaXMuX3B1YmxpY09wdGlvbnM9e307dmFyIGk9ZnVuY3Rpb24oZSl7T2JqZWN0LmRlZmluZVByb3BlcnR5KG4uX3B1YmxpY09wdGlvbnMsZSx7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHIuX2NvcmUub3B0aW9uc1tlXX0sc2V0OmZ1bmN0aW9uKHQpe3IuX2NoZWNrUmVhZG9ubHlPcHRpb25zKGUpLHIuX2NvcmUub3B0aW9uc1tlXT10fX0pfSxuPXRoaXM7Zm9yKHZhciBvIGluIHRoaXMuX2NvcmUub3B0aW9ucylpKG8pfXJldHVybiBlLnByb3RvdHlwZS5fY2hlY2tSZWFkb25seU9wdGlvbnM9ZnVuY3Rpb24oZSl7aWYobC5pbmNsdWRlcyhlKSl0aHJvdyBuZXcgRXJyb3IoJ09wdGlvbiAiJytlKyciIGNhbiBvbmx5IGJlIHNldCBpbiB0aGUgY29uc3RydWN0b3InKX0sZS5wcm90b3R5cGUuX2NoZWNrUHJvcG9zZWRBcGk9ZnVuY3Rpb24oKXtpZighdGhpcy5fY29yZS5vcHRpb25zU2VydmljZS5vcHRpb25zLmFsbG93UHJvcG9zZWRBcGkpdGhyb3cgbmV3IEVycm9yKCJZb3UgbXVzdCBzZXQgdGhlIGFsbG93UHJvcG9zZWRBcGkgb3B0aW9uIHRvIHRydWUgdG8gdXNlIHByb3Bvc2VkIEFQSSIpfSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsIm9uQmVsbCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9jb3JlLm9uQmVsbH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsIm9uQmluYXJ5Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2NvcmUub25CaW5hcnl9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJvbkN1cnNvck1vdmUiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fY29yZS5vbkN1cnNvck1vdmV9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJvbkRhdGEiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fY29yZS5vbkRhdGF9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJvbktleSIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9jb3JlLm9uS2V5fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwib25MaW5lRmVlZCIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9jb3JlLm9uTGluZUZlZWR9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJvblJlbmRlciIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9jb3JlLm9uUmVuZGVyfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwib25SZXNpemUiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fY29yZS5vblJlc2l6ZX0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsIm9uU2Nyb2xsIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2NvcmUub25TY3JvbGx9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJvblNlbGVjdGlvbkNoYW5nZSIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9jb3JlLm9uU2VsZWN0aW9uQ2hhbmdlfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwib25UaXRsZUNoYW5nZSIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9jb3JlLm9uVGl0bGVDaGFuZ2V9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJlbGVtZW50Iix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2NvcmUuZWxlbWVudH0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsInBhcnNlciIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9jaGVja1Byb3Bvc2VkQXBpKCksdGhpcy5fcGFyc2VyfHwodGhpcy5fcGFyc2VyPW5ldyBvLlBhcnNlckFwaSh0aGlzLl9jb3JlKSksdGhpcy5fcGFyc2VyfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwidW5pY29kZSIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9jaGVja1Byb3Bvc2VkQXBpKCksbmV3IHMuVW5pY29kZUFwaSh0aGlzLl9jb3JlKX0sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsInRleHRhcmVhIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2NvcmUudGV4dGFyZWF9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJyb3dzIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2NvcmUucm93c30sZW51bWVyYWJsZTohMSxjb25maWd1cmFibGU6ITB9KSxPYmplY3QuZGVmaW5lUHJvcGVydHkoZS5wcm90b3R5cGUsImNvbHMiLHtnZXQ6ZnVuY3Rpb24oKXtyZXR1cm4gdGhpcy5fY29yZS5jb2xzfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwiYnVmZmVyIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2NoZWNrUHJvcG9zZWRBcGkoKSx0aGlzLl9idWZmZXJ8fCh0aGlzLl9idWZmZXI9bmV3IGMuQnVmZmVyTmFtZXNwYWNlQXBpKHRoaXMuX2NvcmUpKSx0aGlzLl9idWZmZXJ9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJtYXJrZXJzIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIHRoaXMuX2NoZWNrUHJvcG9zZWRBcGkoKSx0aGlzLl9jb3JlLm1hcmtlcnN9LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksT2JqZWN0LmRlZmluZVByb3BlcnR5KGUucHJvdG90eXBlLCJtb2RlcyIse2dldDpmdW5jdGlvbigpe3ZhciBlPXRoaXMuX2NvcmUuY29yZVNlcnZpY2UuZGVjUHJpdmF0ZU1vZGVzLHQ9Im5vbmUiO3N3aXRjaCh0aGlzLl9jb3JlLmNvcmVNb3VzZVNlcnZpY2UuYWN0aXZlUHJvdG9jb2wpe2Nhc2UiWDEwIjp0PSJ4MTAiO2JyZWFrO2Nhc2UiVlQyMDAiOnQ9InZ0MjAwIjticmVhaztjYXNlIkRSQUciOnQ9ImRyYWciO2JyZWFrO2Nhc2UiQU5ZIjp0PSJhbnkifXJldHVybnthcHBsaWNhdGlvbkN1cnNvcktleXNNb2RlOmUuYXBwbGljYXRpb25DdXJzb3JLZXlzLGFwcGxpY2F0aW9uS2V5cGFkTW9kZTplLmFwcGxpY2F0aW9uS2V5cGFkLGJyYWNrZXRlZFBhc3RlTW9kZTplLmJyYWNrZXRlZFBhc3RlTW9kZSxpbnNlcnRNb2RlOnRoaXMuX2NvcmUuY29yZVNlcnZpY2UubW9kZXMuaW5zZXJ0TW9kZSxtb3VzZVRyYWNraW5nTW9kZTp0LG9yaWdpbk1vZGU6ZS5vcmlnaW4scmV2ZXJzZVdyYXBhcm91bmRNb2RlOmUucmV2ZXJzZVdyYXBhcm91bmQsc2VuZEZvY3VzTW9kZTplLnNlbmRGb2N1cyx3cmFwYXJvdW5kTW9kZTplLndyYXBhcm91bmR9fSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLnByb3RvdHlwZSwib3B0aW9ucyIse2dldDpmdW5jdGlvbigpe3JldHVybiB0aGlzLl9wdWJsaWNPcHRpb25zfSxzZXQ6ZnVuY3Rpb24oZSl7Zm9yKHZhciB0IGluIGUpdGhpcy5fcHVibGljT3B0aW9uc1t0XT1lW3RdfSxlbnVtZXJhYmxlOiExLGNvbmZpZ3VyYWJsZTohMH0pLGUucHJvdG90eXBlLmJsdXI9ZnVuY3Rpb24oKXt0aGlzLl9jb3JlLmJsdXIoKX0sZS5wcm90b3R5cGUuZm9jdXM9ZnVuY3Rpb24oKXt0aGlzLl9jb3JlLmZvY3VzKCl9LGUucHJvdG90eXBlLnJlc2l6ZT1mdW5jdGlvbihlLHQpe3RoaXMuX3ZlcmlmeUludGVnZXJzKGUsdCksdGhpcy5fY29yZS5yZXNpemUoZSx0KX0sZS5wcm90b3R5cGUub3Blbj1mdW5jdGlvbihlKXt0aGlzLl9jb3JlLm9wZW4oZSl9LGUucHJvdG90eXBlLmF0dGFjaEN1c3RvbUtleUV2ZW50SGFuZGxlcj1mdW5jdGlvbihlKXt0aGlzLl9jb3JlLmF0dGFjaEN1c3RvbUtleUV2ZW50SGFuZGxlcihlKX0sZS5wcm90b3R5cGUucmVnaXN0ZXJMaW5rTWF0Y2hlcj1mdW5jdGlvbihlLHQscil7cmV0dXJuIHRoaXMuX2NoZWNrUHJvcG9zZWRBcGkoKSx0aGlzLl9jb3JlLnJlZ2lzdGVyTGlua01hdGNoZXIoZSx0LHIpfSxlLnByb3RvdHlwZS5kZXJlZ2lzdGVyTGlua01hdGNoZXI9ZnVuY3Rpb24oZSl7dGhpcy5fY2hlY2tQcm9wb3NlZEFwaSgpLHRoaXMuX2NvcmUuZGVyZWdpc3RlckxpbmtNYXRjaGVyKGUpfSxlLnByb3RvdHlwZS5yZWdpc3RlckxpbmtQcm92aWRlcj1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fY2hlY2tQcm9wb3NlZEFwaSgpLHRoaXMuX2NvcmUucmVnaXN0ZXJMaW5rUHJvdmlkZXIoZSl9LGUucHJvdG90eXBlLnJlZ2lzdGVyQ2hhcmFjdGVySm9pbmVyPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9jaGVja1Byb3Bvc2VkQXBpKCksdGhpcy5fY29yZS5yZWdpc3RlckNoYXJhY3RlckpvaW5lcihlKX0sZS5wcm90b3R5cGUuZGVyZWdpc3RlckNoYXJhY3RlckpvaW5lcj1mdW5jdGlvbihlKXt0aGlzLl9jaGVja1Byb3Bvc2VkQXBpKCksdGhpcy5fY29yZS5kZXJlZ2lzdGVyQ2hhcmFjdGVySm9pbmVyKGUpfSxlLnByb3RvdHlwZS5yZWdpc3Rlck1hcmtlcj1mdW5jdGlvbihlKXtyZXR1cm4gdGhpcy5fY2hlY2tQcm9wb3NlZEFwaSgpLHRoaXMuX3ZlcmlmeUludGVnZXJzKGUpLHRoaXMuX2NvcmUuYWRkTWFya2VyKGUpfSxlLnByb3RvdHlwZS5hZGRNYXJrZXI9ZnVuY3Rpb24oZSl7cmV0dXJuIHRoaXMucmVnaXN0ZXJNYXJrZXIoZSl9LGUucHJvdG90eXBlLmhhc1NlbGVjdGlvbj1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9jb3JlLmhhc1NlbGVjdGlvbigpfSxlLnByb3RvdHlwZS5zZWxlY3Q9ZnVuY3Rpb24oZSx0LHIpe3RoaXMuX3ZlcmlmeUludGVnZXJzKGUsdCxyKSx0aGlzLl9jb3JlLnNlbGVjdChlLHQscil9LGUucHJvdG90eXBlLmdldFNlbGVjdGlvbj1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9jb3JlLmdldFNlbGVjdGlvbigpfSxlLnByb3RvdHlwZS5nZXRTZWxlY3Rpb25Qb3NpdGlvbj1mdW5jdGlvbigpe3JldHVybiB0aGlzLl9jb3JlLmdldFNlbGVjdGlvblBvc2l0aW9uKCl9LGUucHJvdG90eXBlLmNsZWFyU2VsZWN0aW9uPWZ1bmN0aW9uKCl7dGhpcy5fY29yZS5jbGVhclNlbGVjdGlvbigpfSxlLnByb3RvdHlwZS5zZWxlY3RBbGw9ZnVuY3Rpb24oKXt0aGlzLl9jb3JlLnNlbGVjdEFsbCgpfSxlLnByb3RvdHlwZS5zZWxlY3RMaW5lcz1mdW5jdGlvbihlLHQpe3RoaXMuX3ZlcmlmeUludGVnZXJzKGUsdCksdGhpcy5fY29yZS5zZWxlY3RMaW5lcyhlLHQpfSxlLnByb3RvdHlwZS5kaXNwb3NlPWZ1bmN0aW9uKCl7dGhpcy5fYWRkb25NYW5hZ2VyLmRpc3Bvc2UoKSx0aGlzLl9jb3JlLmRpc3Bvc2UoKX0sZS5wcm90b3R5cGUuc2Nyb2xsTGluZXM9ZnVuY3Rpb24oZSl7dGhpcy5fdmVyaWZ5SW50ZWdlcnMoZSksdGhpcy5fY29yZS5zY3JvbGxMaW5lcyhlKX0sZS5wcm90b3R5cGUuc2Nyb2xsUGFnZXM9ZnVuY3Rpb24oZSl7dGhpcy5fdmVyaWZ5SW50ZWdlcnMoZSksdGhpcy5fY29yZS5zY3JvbGxQYWdlcyhlKX0sZS5wcm90b3R5cGUuc2Nyb2xsVG9Ub3A9ZnVuY3Rpb24oKXt0aGlzLl9jb3JlLnNjcm9sbFRvVG9wKCl9LGUucHJvdG90eXBlLnNjcm9sbFRvQm90dG9tPWZ1bmN0aW9uKCl7dGhpcy5fY29yZS5zY3JvbGxUb0JvdHRvbSgpfSxlLnByb3RvdHlwZS5zY3JvbGxUb0xpbmU9ZnVuY3Rpb24oZSl7dGhpcy5fdmVyaWZ5SW50ZWdlcnMoZSksdGhpcy5fY29yZS5zY3JvbGxUb0xpbmUoZSl9LGUucHJvdG90eXBlLmNsZWFyPWZ1bmN0aW9uKCl7dGhpcy5fY29yZS5jbGVhcigpfSxlLnByb3RvdHlwZS53cml0ZT1mdW5jdGlvbihlLHQpe3RoaXMuX2NvcmUud3JpdGUoZSx0KX0sZS5wcm90b3R5cGUud3JpdGVVdGY4PWZ1bmN0aW9uKGUsdCl7dGhpcy5fY29yZS53cml0ZShlLHQpfSxlLnByb3RvdHlwZS53cml0ZWxuPWZ1bmN0aW9uKGUsdCl7dGhpcy5fY29yZS53cml0ZShlKSx0aGlzLl9jb3JlLndyaXRlKCJcclxuIix0KX0sZS5wcm90b3R5cGUucGFzdGU9ZnVuY3Rpb24oZSl7dGhpcy5fY29yZS5wYXN0ZShlKX0sZS5wcm90b3R5cGUuZ2V0T3B0aW9uPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9jb3JlLm9wdGlvbnNTZXJ2aWNlLmdldE9wdGlvbihlKX0sZS5wcm90b3R5cGUuc2V0T3B0aW9uPWZ1bmN0aW9uKGUsdCl7dGhpcy5fY2hlY2tSZWFkb25seU9wdGlvbnMoZSksdGhpcy5fY29yZS5vcHRpb25zU2VydmljZS5zZXRPcHRpb24oZSx0KX0sZS5wcm90b3R5cGUucmVmcmVzaD1mdW5jdGlvbihlLHQpe3RoaXMuX3ZlcmlmeUludGVnZXJzKGUsdCksdGhpcy5fY29yZS5yZWZyZXNoKGUsdCl9LGUucHJvdG90eXBlLnJlc2V0PWZ1bmN0aW9uKCl7dGhpcy5fY29yZS5yZXNldCgpfSxlLnByb3RvdHlwZS5jbGVhclRleHR1cmVBdGxhcz1mdW5jdGlvbigpe3RoaXMuX2NvcmUuY2xlYXJUZXh0dXJlQXRsYXMoKX0sZS5wcm90b3R5cGUubG9hZEFkZG9uPWZ1bmN0aW9uKGUpe3JldHVybiB0aGlzLl9hZGRvbk1hbmFnZXIubG9hZEFkZG9uKHRoaXMsZSl9LE9iamVjdC5kZWZpbmVQcm9wZXJ0eShlLCJzdHJpbmdzIix7Z2V0OmZ1bmN0aW9uKCl7cmV0dXJuIG59LGVudW1lcmFibGU6ITEsY29uZmlndXJhYmxlOiEwfSksZS5wcm90b3R5cGUuX3ZlcmlmeUludGVnZXJzPWZ1bmN0aW9uKCl7Zm9yKHZhciBlPVtdLHQ9MDt0PGFyZ3VtZW50cy5sZW5ndGg7dCsrKWVbdF09YXJndW1lbnRzW3RdO2Zvcih2YXIgcj0wLGk9ZTtyPGkubGVuZ3RoO3IrKyl7dmFyIG49aVtyXTtpZihuPT09MS8wfHxpc05hTihuKXx8biUxIT0wKXRocm93IG5ldyBFcnJvcigiVGhpcyBBUEkgb25seSBhY2NlcHRzIGludGVnZXJzIil9fSxlfSgpO2UuVGVybWluYWw9dX0pKCksaX0pKCl9fSx0PXt9O2Z1bmN0aW9uIHIoaSl7dmFyIG49dFtpXTtpZih2b2lkIDAhPT1uKXJldHVybiBuLmV4cG9ydHM7dmFyIG89dFtpXT17aWQ6aSxsb2FkZWQ6ITEsZXhwb3J0czp7fX07cmV0dXJuIGVbaV0uY2FsbChvLmV4cG9ydHMsbyxvLmV4cG9ydHMsciksby5sb2FkZWQ9ITAsby5leHBvcnRzfXIubj1lPT57dmFyIHQ9ZSYmZS5fX2VzTW9kdWxlPygpPT5lLmRlZmF1bHQ6KCk9PmU7cmV0dXJuIHIuZCh0LHthOnR9KSx0fSxyLmQ9KGUsdCk9Pntmb3IodmFyIGkgaW4gdClyLm8odCxpKSYmIXIubyhlLGkpJiZPYmplY3QuZGVmaW5lUHJvcGVydHkoZSxpLHtlbnVtZXJhYmxlOiEwLGdldDp0W2ldfSl9LHIuZz1mdW5jdGlvbigpe2lmKCJvYmplY3QiPT10eXBlb2YgZ2xvYmFsVGhpcylyZXR1cm4gZ2xvYmFsVGhpczt0cnl7cmV0dXJuIHRoaXN8fG5ldyBGdW5jdGlvbigicmV0dXJuIHRoaXMiKSgpfWNhdGNoKGUpe2lmKCJvYmplY3QiPT10eXBlb2Ygd2luZG93KXJldHVybiB3aW5kb3d9fSgpLHIubz0oZSx0KT0+T2JqZWN0LnByb3RvdHlwZS5oYXNPd25Qcm9wZXJ0eS5jYWxsKGUsdCksci5ubWQ9ZT0+KGUucGF0aHM9W10sZS5jaGlsZHJlbnx8KGUuY2hpbGRyZW49W10pLGUpLCgoKT0+eyJ1c2Ugc3RyaWN0Ijt2YXIgZT1yKDM3OSksdD1yLm4oZSksaT1yKDc5NSksbj1yLm4oaSksbz1yKDU2OSkscz1yLm4obyksYT1yKDU2NSksYz1yLm4oYSksbD1yKDIxNiksdT1yLm4obCksaD1yKDU4OSksZj1yLm4oaCksXz1yKDEwMiksZD17fTtkLnN0eWxlVGFnVHJhbnNmb3JtPWYoKSxkLnNldEF0dHJpYnV0ZXM9YygpLGQuaW5zZXJ0PXMoKS5iaW5kKG51bGwsImhlYWQiKSxkLmRvbUFQST1uKCksZC5pbnNlcnRTdHlsZUVsZW1lbnQ9dSgpLHQoKShfLlosZCksXy5aJiZfLloubG9jYWxzJiZfLloubG9jYWxzO3ZhciBwPXIoMzIwKSx2PXIoNjE3KSxnPXIoNDg2KSx5PXIubihnKSxtPWZ1bmN0aW9uKGUsdCxyLGkpe3JldHVybiBuZXcocnx8KHI9UHJvbWlzZSkpKChmdW5jdGlvbihuLG8pe2Z1bmN0aW9uIHMoZSl7dHJ5e2MoaS5uZXh0KGUpKX1jYXRjaChlKXtvKGUpfX1mdW5jdGlvbiBhKGUpe3RyeXtjKGkudGhyb3coZSkpfWNhdGNoKGUpe28oZSl9fWZ1bmN0aW9uIGMoZSl7dmFyIHQ7ZS5kb25lP24oZS52YWx1ZSk6KHQ9ZS52YWx1ZSx0IGluc3RhbmNlb2Ygcj90Om5ldyByKChmdW5jdGlvbihlKXtlKHQpfSkpKS50aGVuKHMsYSl9YygoaT1pLmFwcGx5KGUsdHx8W10pKS5uZXh0KCkpfSkpfSxiPWZ1bmN0aW9uKGUsdCl7dmFyIHIsaSxuLG8scz17bGFiZWw6MCxzZW50OmZ1bmN0aW9uKCl7aWYoMSZuWzBdKXRocm93IG5bMV07cmV0dXJuIG5bMV19LHRyeXM6W10sb3BzOltdfTtyZXR1cm4gbz17bmV4dDphKDApLHRocm93OmEoMSkscmV0dXJuOmEoMil9LCJmdW5jdGlvbiI9PXR5cGVvZiBTeW1ib2wmJihvW1N5bWJvbC5pdGVyYXRvcl09ZnVuY3Rpb24oKXtyZXR1cm4gdGhpc30pLG87ZnVuY3Rpb24gYShvKXtyZXR1cm4gZnVuY3Rpb24oYSl7cmV0dXJuIGZ1bmN0aW9uKG8pe2lmKHIpdGhyb3cgbmV3IFR5cGVFcnJvcigiR2VuZXJhdG9yIGlzIGFscmVhZHkgZXhlY3V0aW5nLiIpO2Zvcig7czspdHJ5e2lmKHI9MSxpJiYobj0yJm9bMF0/aS5yZXR1cm46b1swXT9pLnRocm93fHwoKG49aS5yZXR1cm4pJiZuLmNhbGwoaSksMCk6aS5uZXh0KSYmIShuPW4uY2FsbChpLG9bMV0pKS5kb25lKXJldHVybiBuO3N3aXRjaChpPTAsbiYmKG89WzImb1swXSxuLnZhbHVlXSksb1swXSl7Y2FzZSAwOmNhc2UgMTpuPW87YnJlYWs7Y2FzZSA0OnJldHVybiBzLmxhYmVsKysse3ZhbHVlOm9bMV0sZG9uZTohMX07Y2FzZSA1OnMubGFiZWwrKyxpPW9bMV0sbz1bMF07Y29udGludWU7Y2FzZSA3Om89cy5vcHMucG9wKCkscy50cnlzLnBvcCgpO2NvbnRpbnVlO2RlZmF1bHQ6aWYoISgobj0obj1zLnRyeXMpLmxlbmd0aD4wJiZuW24ubGVuZ3RoLTFdKXx8NiE9PW9bMF0mJjIhPT1vWzBdKSl7cz0wO2NvbnRpbnVlfWlmKDM9PT1vWzBdJiYoIW58fG9bMV0+blswXSYmb1sxXTxuWzNdKSl7cy5sYWJlbD1vWzFdO2JyZWFrfWlmKDY9PT1vWzBdJiZzLmxhYmVsPG5bMV0pe3MubGFiZWw9blsxXSxuPW87YnJlYWt9aWYobiYmcy5sYWJlbDxuWzJdKXtzLmxhYmVsPW5bMl0scy5vcHMucHVzaChvKTticmVha31uWzJdJiZzLm9wcy5wb3AoKSxzLnRyeXMucG9wKCk7Y29udGludWV9bz10LmNhbGwoZSxzKX1jYXRjaChlKXtvPVs2LGVdLGk9MH1maW5hbGx5e3I9bj0wfWlmKDUmb1swXSl0aHJvdyBvWzFdO3JldHVybnt2YWx1ZTpvWzBdP29bMV06dm9pZCAwLGRvbmU6ITB9fShbbyxhXSl9fX07d2luZG93Lm9ubG9hZD1mdW5jdGlvbigpe3ZhciBlPW5ldyBwLlRlcm1pbmFsLHQ9bmV3IHYuRml0QWRkb247d2luZG93LnRlcm09ZSx3aW5kb3cuZml0QWRkb249dCxlLmxvYWRBZGRvbih0KSxlLm9wZW4oZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoInRlcm1pbmFsIikpO3ZhciByPWZ1bmN0aW9uKCl7ZS5lbGVtZW50LnBhcmVudEVsZW1lbnQuc3R5bGUuaGVpZ2h0PXdpbmRvdy5pbm5lckhlaWdodC0xNisicHgiLHQuZml0KCksZmV0Y2goIi9yZXNpemU/cm93cz0iK2Uucm93cysiJmNvbHM9IitlLmNvbHMpfTtyKCksd2luZG93Lm9ucmVzaXplPXI7dmFyIGk9W107ZS5vbkRhdGEoKGZ1bmN0aW9uKGUpe2kucHVzaChlKX0pKSxtKHRoaXMsdm9pZCAwLHZvaWQgMCwoZnVuY3Rpb24oKXt2YXIgZSx0LHI7cmV0dXJuIGIodGhpcywoZnVuY3Rpb24obil7c3dpdGNoKG4ubGFiZWwpe2Nhc2UgMDplPWZ1bmN0aW9uKGUpe3JldHVybiBuZXcgUHJvbWlzZSgoZnVuY3Rpb24odCl7cmV0dXJuIHNldFRpbWVvdXQodCxlKX0pKX0sbi5sYWJlbD0xO2Nhc2UgMTpuLnRyeXMucHVzaChbMSwsNyw4XSksbi5sYWJlbD0yO2Nhc2UgMjpyZXR1cm5bNCxlKDEwMCldO2Nhc2UgMzpyZXR1cm4gbi5zZW50KCkseSgpLmlzRW1wdHkoaSk/WzMsNV06KHQ9aS5qb2luKCIiKSxyPXdpbmRvdy5idG9hKHQpLGkubGVuZ3RoPTAsWzQsZmV0Y2goIi9pbi8iK3IpXSk7Y2FzZSA0Om4uc2VudCgpLG4ubGFiZWw9NTtjYXNlIDU6cmV0dXJuWzMsMl07Y2FzZSA2OnJldHVyblszLDhdO2Nhc2UgNzpyZXR1cm4gY29uc29sZS5sb2coImlucHV0IGRpc2Nvbm5lY3QhIiksWzddO2Nhc2UgODpyZXR1cm5bMl19fSkpfSkpLGZ1bmN0aW9uKCl7bSh0aGlzLHZvaWQgMCx2b2lkIDAsKGZ1bmN0aW9uKCl7dmFyIHQscixpO3JldHVybiBiKHRoaXMsKGZ1bmN0aW9uKG4pe3N3aXRjaChuLmxhYmVsKXtjYXNlIDA6bi50cnlzLnB1c2goWzAsLDUsNl0pLG4ubGFiZWw9MTtjYXNlIDE6cmV0dXJuWzQsZmV0Y2goIi9vdXQiKV07Y2FzZSAyOnJldHVybiB0PW4uc2VudCgpLGk9VWludDhBcnJheS5iaW5kLFs0LHQuYXJyYXlCdWZmZXIoKV07Y2FzZSAzOnJldHVybiByPW5ldyhpLmFwcGx5KFVpbnQ4QXJyYXksW3ZvaWQgMCxuLnNlbnQoKV0pKSx0JiZlLndyaXRlKHIpLFszLDFdO2Nhc2UgNDpyZXR1cm5bMyw2XTtjYXNlIDU6cmV0dXJuIGNvbnNvbGUubG9nKCJpbnB1dCBkaXNjb25uZWN0ISIpLFs3XTtjYXNlIDY6cmV0dXJuWzJdfX0pKX0pKX0oKX19KSgpfSkoKTs=", + "headers": [ + [ + "content-length", + "426644" + ], + [ + "content-type", + "text/javascript" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/out": { + "data": "W3N1cGVyZ2F0ZXdheV0gUE9TVCAvbWVzc2FnZSAtPiBTU0UgdHJhbnNwb3J0DQpbc3VwZXJnYXRld2F5XSBTU0UgLT4gQ2hpbGQ6IHsianNvbnJwYyI6IjIuMCIsImlkIjowLCJtZXRob2QiOiJpbml0aWFsaXplIiwicGFyYW1zIjp7InByb3RvY29sVmVyc2lvbiI6IjIwMjQtMTEtMDUiLCJjYXBhYmlsaXRpZXMiOnsicm9vdHMiOnsibGlzdENoYW5nZWQiOnRydWV9fSwiY2xpZW50SW5mbyI6eyJuYW1lIjoibWNwIiwidmVyc2lvbiI6IjAuMS4wIn19fQ0KW3N1cGVyZ2F0ZXdheV0gQ2hpbGQgLT4gU1NFOiB7DQogIHJlc3VsdDogew0KICAgIHByb3RvY29sVmVyc2lvbjogG1szMm0nMjAyNC0xMS0wNScbWzM5bSwNCiAgICBjYXBhYmlsaXRpZXM6IHsgdG9vbHM6IHt9IH0sDQogICAgc2VydmVySW5mbzogeyBuYW1lOiAbWzMybSdzZWN1cmUtZmlsZXN5c3RlbS1zZXJ2ZXInG1szOW0sIHZlcnNpb246IBtbMzJtJzAuMi4wJxtbMzltIH0NCiAgfSwNCiAganNvbnJwYzogG1szMm0nMi4wJxtbMzltLA0KICBpZDogG1szM20wG1szOW0NCn0NCltzdXBlcmdhdGV3YXldIFBPU1QgL21lc3NhZ2UgLT4gU1NFIHRyYW5zcG9ydA0KW3N1cGVyZ2F0ZXdheV0gU1NFIC0+IENoaWxkOiB7Impzb25ycGMiOiIyLjAiLCJtZXRob2QiOiJub3RpZmljYXRpb25zL2luaXRpYWxpemVkIn0NCltzdXBlcmdhdGV3YXldIFBPU1QgL21lc3NhZ2UgLT4gU1NFIHRyYW5zcG9ydA0KW3N1cGVyZ2F0ZXdheV0gU1NFIC0+IENoaWxkOiB7Impzb25ycGMiOiIyLjAiLCJpZCI6MSwibWV0aG9kIjoidG9vbHMvY2FsbCIsInBhcmFtcyI6eyJuYW1lIjoibGlzdF9kaXJlY3RvcnkiLCJhcmd1bWVudHMiOnsic2Vzc2lvbl9pZCI6IjI1ZmU0OWQwLTg4YzAtNGQ3OC05MDFhLWI3YmQyMTBhNGQ1MiIsInBhdGgiOiIvY29udGVudCJ9fX0NCltzdXBlcmdhdGV3YXldIENoaWxkIC0+IFNTRTogeyByZXN1bHQ6IHsgY29udGVudDogWyAbWzM2bVtPYmplY3RdG1szOW0gXSB9LCBqc29ucnBjOiAbWzMybScyLjAnG1szOW0sIGlkOiAbWzMzbTEbWzM5bSB9DQpbc3VwZXJnYXRld2F5XSBTU0UgY29ubmVjdGlvbiBjbG9zZWQuDQo=", + "headers": [ + [ + "content-length", + "1067" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + }, + "https://localhost:10000/resize?rows=46&cols=196": { + "data": "", + "headers": [ + [ + "content-length", + "0" + ], + [ + "content-type", + "text/html; charset=UTF-8" + ] + ], + "ok": true, + "status": 200, + "status_text": "" + } + } + }, + "id": "giIA2M-ANUIM", + "outputId": "612c3487-1fd7-41ab-f65a-690b1325f46d" + }, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "%xterm\n", + "# touch /content/foo\n", + "# echo hello > /content/foo\n", + "# touch /content/bar\n", + "# npx -y supergateway --port 8000 --stdio 'npx -y @modelcontextprotocol/server-filesystem /content'" + ] + }, + { + "cell_type": "markdown", + "id": "f4ksBP6MN7cB", + "metadata": { + "id": "f4ksBP6MN7cB" + }, + "source": [ + "Register the toolgroup hosted in the MCP server with llama stack and verify if the stack discovers the tools correctly" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "DwdKhQb1N295", + "metadata": { + "id": "DwdKhQb1N295" + }, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "from llama_stack_client.types.toolgroup_register_params import McpEndpoint\n", + "client.toolgroups.register(\n", + " toolgroup_id=\"mcp::filesystem\",\n", + " provider_id=\"model-context-protocol\",\n", + " mcp_endpoint=McpEndpoint(uri=\"http://localhost:8000/sse\"),\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "ZZ5_vIkDOyAN", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "ZZ5_vIkDOyAN", + "outputId": "f6fa8639-c2d8-497d-f4ed-716b3bf775d4" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
[\n",
+       "Tool(\n",
+       "│   │   description='Read the complete contents of a file from the file system. Handles various text encodings and provides detailed error messages if the file cannot be read. Use this tool when you need to examine the contents of a single file. Only works within allowed directories.',\n",
+       "│   │   identifier='read_file',\n",
+       "│   │   parameters=[Parameter(description='', name='path', parameter_type='string', required=True, default=None)],\n",
+       "│   │   provider_id='model-context-protocol',\n",
+       "│   │   provider_resource_id='read_file',\n",
+       "│   │   tool_host='model_context_protocol',\n",
+       "│   │   toolgroup_id='mcp::filesystem',\n",
+       "│   │   type='tool',\n",
+       "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
+       "),\n",
+       "Tool(\n",
+       "│   │   description=\"Read the contents of multiple files simultaneously. This is more efficient than reading files one by one when you need to analyze or compare multiple files. Each file's content is returned with its path as a reference. Failed reads for individual files won't stop the entire operation. Only works within allowed directories.\",\n",
+       "│   │   identifier='read_multiple_files',\n",
+       "│   │   parameters=[Parameter(description='', name='paths', parameter_type='array', required=True, default=None)],\n",
+       "│   │   provider_id='model-context-protocol',\n",
+       "│   │   provider_resource_id='read_multiple_files',\n",
+       "│   │   tool_host='model_context_protocol',\n",
+       "│   │   toolgroup_id='mcp::filesystem',\n",
+       "│   │   type='tool',\n",
+       "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
+       "),\n",
+       "Tool(\n",
+       "│   │   description='Create a new file or completely overwrite an existing file with new content. Use with caution as it will overwrite existing files without warning. Handles text content with proper encoding. Only works within allowed directories.',\n",
+       "│   │   identifier='write_file',\n",
+       "│   │   parameters=[\n",
+       "│   │   │   Parameter(description='', name='path', parameter_type='string', required=True, default=None),\n",
+       "│   │   │   Parameter(description='', name='content', parameter_type='string', required=True, default=None)\n",
+       "│   │   ],\n",
+       "│   │   provider_id='model-context-protocol',\n",
+       "│   │   provider_resource_id='write_file',\n",
+       "│   │   tool_host='model_context_protocol',\n",
+       "│   │   toolgroup_id='mcp::filesystem',\n",
+       "│   │   type='tool',\n",
+       "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
+       "),\n",
+       "Tool(\n",
+       "│   │   description='Make line-based edits to a text file. Each edit replaces exact line sequences with new content. Returns a git-style diff showing the changes made. Only works within allowed directories.',\n",
+       "│   │   identifier='edit_file',\n",
+       "│   │   parameters=[\n",
+       "│   │   │   Parameter(description='', name='path', parameter_type='string', required=True, default=None),\n",
+       "│   │   │   Parameter(description='', name='edits', parameter_type='array', required=True, default=None),\n",
+       "│   │   │   Parameter(\n",
+       "│   │   │   │   description='Preview changes using git-style diff format',\n",
+       "│   │   │   │   name='dryRun',\n",
+       "│   │   │   │   parameter_type='boolean',\n",
+       "│   │   │   │   required=True,\n",
+       "│   │   │   │   default=None\n",
+       "│   │   │   )\n",
+       "│   │   ],\n",
+       "│   │   provider_id='model-context-protocol',\n",
+       "│   │   provider_resource_id='edit_file',\n",
+       "│   │   tool_host='model_context_protocol',\n",
+       "│   │   toolgroup_id='mcp::filesystem',\n",
+       "│   │   type='tool',\n",
+       "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
+       "),\n",
+       "Tool(\n",
+       "│   │   description='Create a new directory or ensure a directory exists. Can create multiple nested directories in one operation. If the directory already exists, this operation will succeed silently. Perfect for setting up directory structures for projects or ensuring required paths exist. Only works within allowed directories.',\n",
+       "│   │   identifier='create_directory',\n",
+       "│   │   parameters=[Parameter(description='', name='path', parameter_type='string', required=True, default=None)],\n",
+       "│   │   provider_id='model-context-protocol',\n",
+       "│   │   provider_resource_id='create_directory',\n",
+       "│   │   tool_host='model_context_protocol',\n",
+       "│   │   toolgroup_id='mcp::filesystem',\n",
+       "│   │   type='tool',\n",
+       "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
+       "),\n",
+       "Tool(\n",
+       "│   │   description='Get a detailed listing of all files and directories in a specified path. Results clearly distinguish between files and directories with [FILE] and [DIR] prefixes. This tool is essential for understanding directory structure and finding specific files within a directory. Only works within allowed directories.',\n",
+       "│   │   identifier='list_directory',\n",
+       "│   │   parameters=[Parameter(description='', name='path', parameter_type='string', required=True, default=None)],\n",
+       "│   │   provider_id='model-context-protocol',\n",
+       "│   │   provider_resource_id='list_directory',\n",
+       "│   │   tool_host='model_context_protocol',\n",
+       "│   │   toolgroup_id='mcp::filesystem',\n",
+       "│   │   type='tool',\n",
+       "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
+       "),\n",
+       "Tool(\n",
+       "│   │   description=\"Get a recursive tree view of files and directories as a JSON structure. Each entry includes 'name', 'type' (file/directory), and 'children' for directories. Files have no children array, while directories always have a children array (which may be empty). The output is formatted with 2-space indentation for readability. Only works within allowed directories.\",\n",
+       "│   │   identifier='directory_tree',\n",
+       "│   │   parameters=[Parameter(description='', name='path', parameter_type='string', required=True, default=None)],\n",
+       "│   │   provider_id='model-context-protocol',\n",
+       "│   │   provider_resource_id='directory_tree',\n",
+       "│   │   tool_host='model_context_protocol',\n",
+       "│   │   toolgroup_id='mcp::filesystem',\n",
+       "│   │   type='tool',\n",
+       "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
+       "),\n",
+       "Tool(\n",
+       "│   │   description='Move or rename files and directories. Can move files between directories and rename them in a single operation. If the destination exists, the operation will fail. Works across different directories and can be used for simple renaming within the same directory. Both source and destination must be within allowed directories.',\n",
+       "│   │   identifier='move_file',\n",
+       "│   │   parameters=[\n",
+       "│   │   │   Parameter(description='', name='source', parameter_type='string', required=True, default=None),\n",
+       "│   │   │   Parameter(description='', name='destination', parameter_type='string', required=True, default=None)\n",
+       "│   │   ],\n",
+       "│   │   provider_id='model-context-protocol',\n",
+       "│   │   provider_resource_id='move_file',\n",
+       "│   │   tool_host='model_context_protocol',\n",
+       "│   │   toolgroup_id='mcp::filesystem',\n",
+       "│   │   type='tool',\n",
+       "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
+       "),\n",
+       "Tool(\n",
+       "│   │   description=\"Recursively search for files and directories matching a pattern. Searches through all subdirectories from the starting path. The search is case-insensitive and matches partial names. Returns full paths to all matching items. Great for finding files when you don't know their exact location. Only searches within allowed directories.\",\n",
+       "│   │   identifier='search_files',\n",
+       "│   │   parameters=[\n",
+       "│   │   │   Parameter(description='', name='path', parameter_type='string', required=True, default=None),\n",
+       "│   │   │   Parameter(description='', name='pattern', parameter_type='string', required=True, default=None),\n",
+       "│   │   │   Parameter(\n",
+       "│   │   │   │   description='',\n",
+       "│   │   │   │   name='excludePatterns',\n",
+       "│   │   │   │   parameter_type='array',\n",
+       "│   │   │   │   required=True,\n",
+       "│   │   │   │   default=None\n",
+       "│   │   │   )\n",
+       "│   │   ],\n",
+       "│   │   provider_id='model-context-protocol',\n",
+       "│   │   provider_resource_id='search_files',\n",
+       "│   │   tool_host='model_context_protocol',\n",
+       "│   │   toolgroup_id='mcp::filesystem',\n",
+       "│   │   type='tool',\n",
+       "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
+       "),\n",
+       "Tool(\n",
+       "│   │   description='Retrieve detailed metadata about a file or directory. Returns comprehensive information including size, creation time, last modified time, permissions, and type. This tool is perfect for understanding file characteristics without reading the actual content. Only works within allowed directories.',\n",
+       "│   │   identifier='get_file_info',\n",
+       "│   │   parameters=[Parameter(description='', name='path', parameter_type='string', required=True, default=None)],\n",
+       "│   │   provider_id='model-context-protocol',\n",
+       "│   │   provider_resource_id='get_file_info',\n",
+       "│   │   tool_host='model_context_protocol',\n",
+       "│   │   toolgroup_id='mcp::filesystem',\n",
+       "│   │   type='tool',\n",
+       "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
+       "),\n",
+       "Tool(\n",
+       "│   │   description='Returns the list of directories that this server is allowed to access. Use this to understand which directories are available before trying to access files.',\n",
+       "│   │   identifier='list_allowed_directories',\n",
+       "│   │   parameters=[],\n",
+       "│   │   provider_id='model-context-protocol',\n",
+       "│   │   provider_resource_id='list_allowed_directories',\n",
+       "│   │   tool_host='model_context_protocol',\n",
+       "│   │   toolgroup_id='mcp::filesystem',\n",
+       "│   │   type='tool',\n",
+       "│   │   metadata={'endpoint': 'http://localhost:8000/sse'}\n",
+       ")\n",
+       "]\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Read the complete contents of a file from the file system. Handles various text encodings and provides detailed error messages if the file cannot be read. Use this tool when you need to examine the contents of a single file. Only works within allowed directories.'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'read_file'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'path'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'read_file'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m\"Read\u001b[0m\u001b[32m the contents of multiple files simultaneously. This is more efficient than reading files one by one when you need to analyze or compare multiple files. Each file's content is returned with its path as a reference. Failed reads for individual files won't stop the entire operation. Only works within allowed directories.\"\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'read_multiple_files'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'paths'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'array'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'read_multiple_files'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Create a new file or completely overwrite an existing file with new content. Use with caution as it will overwrite existing files without warning. Handles text content with proper encoding. Only works within allowed directories.'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'write_file'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'path'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'content'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'write_file'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Make line-based edits to a text file. Each edit replaces exact line sequences with new content. Returns a git-style diff showing the changes made. Only works within allowed directories.'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'edit_file'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'path'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'edits'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'array'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Preview changes using git-style diff format'\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mname\u001b[0m=\u001b[32m'dryRun'\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mparameter_type\u001b[0m=\u001b[32m'boolean'\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'edit_file'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Create a new directory or ensure a directory exists. Can create multiple nested directories in one operation. If the directory already exists, this operation will succeed silently. Perfect for setting up directory structures for projects or ensuring required paths exist. Only works within allowed directories.'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'create_directory'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'path'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'create_directory'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Get a detailed listing of all files and directories in a specified path. Results clearly distinguish between files and directories with \u001b[0m\u001b[32m[\u001b[0m\u001b[32mFILE\u001b[0m\u001b[32m]\u001b[0m\u001b[32m and \u001b[0m\u001b[32m[\u001b[0m\u001b[32mDIR\u001b[0m\u001b[32m]\u001b[0m\u001b[32m prefixes. This tool is essential for understanding directory structure and finding specific files within a directory. Only works within allowed directories.'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'list_directory'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'path'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'list_directory'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m\"Get\u001b[0m\u001b[32m a recursive tree view of files and directories as a JSON structure. Each entry includes 'name', 'type' \u001b[0m\u001b[32m(\u001b[0m\u001b[32mfile/directory\u001b[0m\u001b[32m)\u001b[0m\u001b[32m, and 'children' for directories. Files have no children array, while directories always have a children array \u001b[0m\u001b[32m(\u001b[0m\u001b[32mwhich may be empty\u001b[0m\u001b[32m)\u001b[0m\u001b[32m. The output is formatted with 2-space indentation for readability. Only works within allowed directories.\"\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'directory_tree'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'path'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'directory_tree'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Move or rename files and directories. Can move files between directories and rename them in a single operation. If the destination exists, the operation will fail. Works across different directories and can be used for simple renaming within the same directory. Both source and destination must be within allowed directories.'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'move_file'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'source'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'destination'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'move_file'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m\"Recursively\u001b[0m\u001b[32m search for files and directories matching a pattern. Searches through all subdirectories from the starting path. The search is case-insensitive and matches partial names. Returns full paths to all matching items. Great for finding files when you don't know their exact location. Only searches within allowed directories.\"\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'search_files'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'path'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'pattern'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mname\u001b[0m=\u001b[32m'excludePatterns'\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mparameter_type\u001b[0m=\u001b[32m'array'\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'search_files'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Retrieve detailed metadata about a file or directory. Returns comprehensive information including size, creation time, last modified time, permissions, and type. This tool is perfect for understanding file characteristics without reading the actual content. Only works within allowed directories.'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'get_file_info'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\u001b[1;35mParameter\u001b[0m\u001b[1m(\u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m''\u001b[0m, \u001b[33mname\u001b[0m=\u001b[32m'path'\u001b[0m, \u001b[33mparameter_type\u001b[0m=\u001b[32m'string'\u001b[0m, \u001b[33mrequired\u001b[0m=\u001b[3;92mTrue\u001b[0m, \u001b[33mdefault\u001b[0m=\u001b[3;35mNone\u001b[0m\u001b[1m)\u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'get_file_info'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[1;35mTool\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mdescription\u001b[0m=\u001b[32m'Returns the list of directories that this server is allowed to access. Use this to understand which directories are available before trying to access files.'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33midentifier\u001b[0m=\u001b[32m'list_allowed_directories'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mparameters\u001b[0m=\u001b[1m[\u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_id\u001b[0m=\u001b[32m'model-context-protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mprovider_resource_id\u001b[0m=\u001b[32m'list_allowed_directories'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtool_host\u001b[0m=\u001b[32m'model_context_protocol'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtoolgroup_id\u001b[0m=\u001b[32m'mcp::filesystem'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mtype\u001b[0m=\u001b[32m'tool'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[33mmetadata\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'endpoint'\u001b[0m: \u001b[32m'http://localhost:8000/sse'\u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[1m]\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pprint(client.tools.list(toolgroup_id=\"mcp::filesystem\"))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "vttLbj_YO01f", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vttLbj_YO01f", + "outputId": "04bc486c-3a61-49c6-d0d2-4a211d6de0b5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[32mUser> Hello\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33m[list\u001b[0m\u001b[33m_allowed\u001b[0m\u001b[33m_direct\u001b[0m\u001b[33mories\u001b[0m\u001b[33m()]\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[32mtool_execution> Tool:list_allowed_directories Args:{}\u001b[0m\n", + "\u001b[32mtool_execution> Tool:list_allowed_directories Response:{\"type\":\"text\",\"text\":\"Allowed directories:\\n/tmp/content\",\"annotations\":null}\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33m[list\u001b[0m\u001b[33m_directory\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[32mtool_execution> Tool:list_directory Args:{'path': '/tmp/content'}\u001b[0m\n", + "\u001b[32mtool_execution> Tool:list_directory Response:{\"type\":\"text\",\"text\":\"Error: Parent directory does not exist: /tmp\",\"annotations\":null}\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33m[\u001b[0m\u001b[33mcreate\u001b[0m\u001b[33m_directory\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[32mtool_execution> Tool:create_directory Args:{'path': '/tmp/content'}\u001b[0m\n", + "\u001b[32mtool_execution> Tool:create_directory Response:{\"type\":\"text\",\"text\":\"Error: Parent directory does not exist: /tmp\",\"annotations\":null}\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33m[\u001b[0m\u001b[33mcreate\u001b[0m\u001b[33m_directory\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m\"),\u001b[0m\u001b[33m create\u001b[0m\u001b[33m_directory\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[32mtool_execution> Tool:create_directory Args:{'path': '/tmp'}\u001b[0m\n", + "\u001b[32mtool_execution> Tool:create_directory Response:{\"type\":\"text\",\"text\":\"Error: Access denied - path outside allowed directories: /tmp not in /tmp/content\",\"annotations\":null}\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33m[list\u001b[0m\u001b[33m_allowed\u001b[0m\u001b[33m_direct\u001b[0m\u001b[33mories\u001b[0m\u001b[33m()]\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[32mtool_execution> Tool:list_allowed_directories Args:{}\u001b[0m\n", + "\u001b[32mtool_execution> Tool:list_allowed_directories Response:{\"type\":\"text\",\"text\":\"Allowed directories:\\n/tmp/content\",\"annotations\":null}\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33m[\u001b[0m\u001b[33mcreate\u001b[0m\u001b[33m_directory\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m/sub\u001b[0m\u001b[33mdir\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[32mtool_execution> Tool:create_directory Args:{'path': '/tmp/content/subdir'}\u001b[0m\n", + "\u001b[32mtool_execution> Tool:create_directory Response:{\"type\":\"text\",\"text\":\"Error: Parent directory does not exist: /tmp/content\",\"annotations\":null}\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33m[\u001b[0m\u001b[33mcreate\u001b[0m\u001b[33m_directory\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[32mtool_execution> Tool:create_directory Args:{'path': '/tmp/content'}\u001b[0m\n", + "\u001b[32mtool_execution> Tool:create_directory Response:{\"type\":\"text\",\"text\":\"Error: Parent directory does not exist: /tmp\",\"annotations\":null}\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33m[list\u001b[0m\u001b[33m_directory\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[32mtool_execution> Tool:list_directory Args:{'path': '/tmp/content'}\u001b[0m\n", + "\u001b[32mtool_execution> Tool:list_directory Response:{\"type\":\"text\",\"text\":\"Error: Parent directory does not exist: /tmp\",\"annotations\":null}\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33m[\u001b[0m\u001b[33mcreate\u001b[0m\u001b[33m_directory\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[32mtool_execution> Tool:create_directory Args:{'path': '/tmp/content'}\u001b[0m\n", + "\u001b[32mtool_execution> Tool:create_directory Response:{\"type\":\"text\",\"text\":\"Error: Parent directory does not exist: /tmp\",\"annotations\":null}\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33m[list\u001b[0m\u001b[33m_allowed\u001b[0m\u001b[33m_direct\u001b[0m\u001b[33mories\u001b[0m\u001b[33m()]\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[30m\u001b[0m\u001b[32mUser> Whats written in /tmp/content/foo ?\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33m[\u001b[0m\u001b[33mread\u001b[0m\u001b[33m_file\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m/foo\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[32mtool_execution> Tool:read_file Args:{'path': '/tmp/content/foo'}\u001b[0m\n", + "\u001b[32mtool_execution> Tool:read_file Response:{\"type\":\"text\",\"text\":\"Error: Parent directory does not exist: /tmp/content\",\"annotations\":null}\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33m[\u001b[0m\u001b[33mcreate\u001b[0m\u001b[33m_directory\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[32mtool_execution> Tool:create_directory Args:{'path': '/tmp/content'}\u001b[0m\n", + "\u001b[32mtool_execution> Tool:create_directory Response:{\"type\":\"text\",\"text\":\"Error: Parent directory does not exist: /tmp\",\"annotations\":null}\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33m[\u001b[0m\u001b[33mwrite\u001b[0m\u001b[33m_file\u001b[0m\u001b[33m(path\u001b[0m\u001b[33m=\"/\u001b[0m\u001b[33mtmp\u001b[0m\u001b[33m/content\u001b[0m\u001b[33m/foo\u001b[0m\u001b[33m\",\u001b[0m\u001b[33m content\u001b[0m\u001b[33m=\"\u001b[0m\u001b[33mHello\u001b[0m\u001b[33m World\u001b[0m\u001b[33m!\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[32mtool_execution> Tool:write_file Args:{'path': '/tmp/content/foo', 'content': 'Hello World!'}\u001b[0m\n", + "\u001b[32mtool_execution> Tool:write_file Response:{\"type\":\"text\",\"text\":\"Error: Parent directory does not exist: /tmp/content\",\"annotations\":null}\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[31m500: Internal server error: An unexpected error occurred.\u001b[0m\n" + ] + } + ], + "source": [ + "# NBVAL_SKIP\n", + "from llama_stack_client import Agent, AgentEventLogger\n", + "from termcolor import cprint\n", + "\n", + "agent = Agent(\n", + " client,\n", + " model=model_id,\n", + " instructions=\"You are a helpful assistant\",\n", + " tools=[\"mcp::filesystem\"],\n", + ")\n", + "user_prompts = [\n", + " \"Hello\",\n", + " \"Whats written in /content/foo ?\",\n", + "]\n", + "\n", + "session_id = agent.create_session(\"test-session\")\n", + "for prompt in user_prompts:\n", + " cprint(f\"User> {prompt}\", \"green\")\n", + " response = agent.create_turn(\n", + " messages=[\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": prompt,\n", + " }\n", + " ],\n", + " session_id=session_id,\n", + " )\n", + " for log in AgentEventLogger().log(response):\n", + " log.print()\n" + ] + }, + { + "cell_type": "markdown", + "id": "FJ85DUhgBZd7", + "metadata": { + "id": "FJ85DUhgBZd7" + }, + "source": [ + "## 3. Llama Stack Agent Evaluations\n" + ] + }, + { + "cell_type": "markdown", + "id": "ydeBDpDT5VHd", + "metadata": { + "id": "ydeBDpDT5VHd" + }, + "source": [ + "#### 3.1. Online Evaluation Dataset Collection\n", + "\n", + "- Llama Stack allows you to query each steps of the agents execution in your application. \n", + "- In this example, we will show how to \n", + " 1. build an Agent with Llama Stack\n", + " 2. Query the agent's session, turns, and steps\n", + " 3. Evaluate the results" + ] + }, + { + "cell_type": "markdown", + "id": "_t_tcWq0JcJ4", + "metadata": { + "id": "_t_tcWq0JcJ4" + }, + "source": [ + "##### 3.1.1. Building a Search Agent\n", + "\n", + "First, let's build an agent that have access to a search tool with Llama Stack, and use it to run some user queries. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4iCO59kP20Zs", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4iCO59kP20Zs", + "outputId": "894c6333-30e9-4f1e-9b63-1bfb1cae51e2" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33minference> \u001b[0m\u001b[36m\u001b[0m\u001b[36mbr\u001b[0m\u001b[36mave\u001b[0m\u001b[36m_search\u001b[0m\u001b[36m.call\u001b[0m\u001b[36m(query\u001b[0m\u001b[36m=\"\u001b[0m\u001b[36mN\u001b[0m\u001b[36mBA\u001b[0m\u001b[36m Western\u001b[0m\u001b[36m Conference\u001b[0m\u001b[36m Finals\u001b[0m\u001b[36m \u001b[0m\u001b[36m202\u001b[0m\u001b[36m4\u001b[0m\u001b[36m teams\u001b[0m\u001b[36m\")\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[32mtool_execution> Tool:brave_search Args:{'query': 'NBA Western Conference Finals 2024 teams'}\u001b[0m\n", + "\u001b[32mtool_execution> Tool:brave_search Response:{\"query\": \"NBA Western Conference Finals 2024 teams\", \"top_k\": [{\"title\": \"2024 NBA Western Conference Finals - Basketball-Reference.com\", \"url\": \"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\", \"content\": \"2024 NBA Playoffs Dallas Mavericks vs. Dallas Mavericks vs. Dallas Mavericks vs. 5 Dallas Mavericks (4-1) vs. 7 Derrick Jones Jr. 2024 NBA Playoffs Dallas Mavericks vs. Dallas Mavericks vs. Dallas Mavericks vs. College Tools: Player Season Finder, Player Game Finder, Team Season Finder, Team Game Finder Players, Teams, Seasons, Leaders, Awards ... Players, Teams, Seasons, Leaders, Awards ... Players, Teams, Seasons, Leaders, Awards, All-Star Games, Executives ... Players, Teams, Seasons, Leaders, Awards ... Subscribe to Stathead Basketball: Get your first month FREE The SPORTS REFERENCE, STATHEAD, IMMACULATE GRID, and IMMACULATE FOOTY trademarks are owned exclusively by Sports Reference LLC. Sports\\u00a0Reference\\u202f\\u00ae Baseball Football (college) Basketball (college) Hockey F\\u00fatbol Blog Stathead\\u202f\\u00ae Immaculate Grid\\u202f\\u00ae\", \"score\": 0.89030397, \"raw_content\": null}, {\"title\": \"NBA Standings - 2024-25 season - ESPN\", \"url\": \"https://www.espn.com/nba/standings\", \"content\": \"NBA Standings - 2024-25 season - ESPN Skip to main contentSkip to navigation ESPN NFL NBA NCAAF NHL NCAAM NCAAW Soccer More Sports Watch Fantasy NBA Home Scores Schedule Standings Stats Teams Odds Where To Watch All-Star Game Fantasy More NBA Standings 2024-25 Standings Expanded Vs. Division NBA Cup LeagueConferenceDivision Eastern Conference | | | --- | | 1CLECleveland Cavaliers | | 2BOSBoston Celtics | | 3NYNew York Knicks | | 4INDIndiana Pacers | | 5MILMilwaukee Bucks | | 6DETDetroit Pistons | | 7MIAMiami Heat | | 8ORLOrlando Magic | | 9ATLAtlanta Hawks | | 10CHIChicago Bulls | | PHIPhiladelphia 76ers | | BKNBrooklyn Nets | | TORToronto Raptors | | CHACharlotte Hornets | | WSHWashington Wizards | | W | L | PCT | GB | HOME | AWAY | DIV | CONF | PPG | OPP PPG | DIFF | STRK | L10 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | 42 | 10 | .808 | - | 24-4 | 18-6 | 9-1 | 28-7 | 122.4 | 112.1 | +10.3 | W2 | 6-4 | | 36 | 16 | .692 | 6 | 16-10 | 20-6 | 6-2 | 26-9 | 117.3 | 108.8 | +8.5 | L1 | 7-3 | | 34 | 17 | .667 | 7.5 | 18-9 | 16-8 | 9-1 | 23-10 | 117.9 | 111.4 | +6.5 | W2 | 8-2 | | 29 | 21 | .580 | 12 | 14-7 | 14-13 | 6-4 | 17-15 | 115.7 | 114.9 | +0.8 | W1 | 7-3 | | 27 | 23 | .540 | 14 | 16-8 | 10-15 | 6-5 | 22-16 | 114.2 | 112.6 | +1.6 | L1 | 4-6 | | 26 | 26 | .500 | 16 | 13-13 | 13-13 | 2-9 | 18-20 | 113.0 | 113.8 | -0.8 | W1 | 5-5 | | 25 | 25 | .500 | 16 | 12-10 | 12-15 | 5-3 | 14-15 | 110.5 | 110.6 | -0.1 | L1 | 5-5 | | 25 | 28 | .472 | 17.5 | 15-9 | 10-19 | 5-2 | 20-15 | 103.8 | 105.6 | -1.8 | L1 | 2-8 | | 24 | 28 | .462 | 18 | 12-12 | 12-15 | 4-2 | 17-13 | 116.1 | 119.0 | -2.9 | W1 | 2-8 | | 22 | 30 | .423 | 20 | 10-16 | 12-14 | 3-7 | 17-18 | 116.7 | 120.1 | -3.4 | L1 | 4-6 | | 20 | 31 | .392 | 21.5 | 10-16 | 10-15 | 3-4 | 14-17 | 109.1 | 112.9 | -3.8 | L2 | 5-5 | | 18 | 34 | .346 | 24 | 7-17 | 11-17 | 1-8 | 9-23 | 105.3 | 111.7 | -6.4 | W1 | 4-6 | | 16 | 36 | .308 | 26 | 12-16 | 4-20 | 3-7 | 10-23 | 111.2 | 116.9 | -5.7 | L3 | 6-4 | | 13 | 36 | .265 | 27.5 | 9-20 | 4-16 | 0-9 | 7-27 | 107.1 | 112.3 | -5.2 | W1 | 2-8 | | 9 | 42 | .176 | 32.5 | 5-20 | 4-21 | 5-3 | 7-21 | 107.8 | 121.5 | -13.7 | L1 | 3-7 | Western Conference | | | --- | | 1OKCOklahoma City Thunder | | 2MEMMemphis Grizzlies | | 3DENDenver Nuggets | | 4HOUHouston Rockets | | 5LALLos Angeles Lakers | | 6MINMinnesota Timberwolves | | 7LACLA Clippers | | 8DALDallas Mavericks | | 9PHXPhoenix Suns | | 10SACSacramento Kings | | GSGolden State Warriors | | SASan Antonio Spurs | | PORPortland Trail Blazers | | UTAHUtah Jazz | | NONew Orleans Pelicans | | W | L | PCT | GB | HOME | AWAY | DIV | CONF | PPG | OPP PPG | DIFF | STRK | L10 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | 41 | 9 | .820 | - | 23-3 | 17-6 | 7-1 | 23-8 | 117.7 | 104.7 | +13.0 | W4 | 7-3 | | 35 | 16 | .686 | 6.5 | 21-5 | 14-11 | 8-4 | 19-12 | 123.8 | 115.4 | +8.4 | W4 | 9-1 | | 33 | 19 | .635 | 9 | 17-8 | 16-11 | 4-4 | 19-12 | 120.8 | 115.9 | +4.9 | W5 | 7-3 | | 32 | 20 | .615 | 10 | 15-8 | 17-11 | 9-3 | 19-12 | 113.3 | 109.1 | +4.2 | L6 | 4-6 | | 30 | 19 | .612 | 10.5 | 17-6 | 13-13 | 9-3 | 19-11 | 112.6 | 112.0 | +0.6 | W4 | 8-2 | | 29 | 23 | .558 | 13 | 14-12 | 15-11 | 4-3 | 21-14 | 111.7 | 108.2 | +3.5 | W2 | 7-3 | | 28 | 23 | .549 | 13.5 | 17-10 | 11-13 | 6-4 | 17-18 | 110.1 | 107.7 | +2.4 | L3 | 4-6 | | 28 | 25 | .528 | 14.5 | 15-10 | 13-15 | 6-4 | 20-17 | 115.5 | 113.3 | +2.2 | W2 | 5-5 | | 26 | 25 | .510 | 15.5 | 16-9 | 10-16 | 7-4 | 17-14 | 113.4 | 114.7 | -1.3 | W1 | 5-5 | | 25 | 26 | .490 | 16.5 | 13-13 | 12-13 | 4-6 | 16-17 | 116.1 | 115.4 | +0.7 | L2 | 4-6 | | 25 | 26 | .490 | 16.5 | 15-13 | 10-13 | 1-10 | 17-18 | 111.5 | 111.9 | -0.4 | L2 | 4-6 | | 22 | 27 | .449 | 18.5 | 13-12 | 8-14 | 2-7 | 16-18 | 112.8 | 114.3 | -1.5 | L1 | 3-7 | | 23 | 29 | .442 | 19 | 15-13 | 8-16 | 4-5 | 14-24 | 109.0 | 113.9 | -4.9 | W6 | 9-1 | | 12 | 38 | .240 | 29 | 5-18 | 7-20 | 1-7 | 4-29 | 111.9 | 118.9 | -7.0 | L1 | 2-8 | | 12 | 39 | .235 | 29.5 | 8-18 | 4-21 | 1-8 | 6-23 | 110.0 | 118.8 | -8.8 | L7 | 3-7 | Standings are updated with the completion of each game.Teams seeded 7-10 in each conference will compete in a play-in tournament at the end of the regular season. Glossary W:Wins L:Losses PCT:Winning Percentage GB:Games Back HOME:Home Record AWAY:Away Record DIV:Division Record CONF:Conference Record PPG:Points Per Game OPP PPG:Opponent Points Per Game DIFF:Average Point Differential STRK:Current Streak L10:Record last 10 games NBA News Anthony Davis leads Mavericks past Rockets 116-105 in Mavs debut but leaves with lower-body injury -------------------------------------------------------------------------------------------------- \\u2014 Anthony Davis had 26 points, 16 rebounds, seven assists and three blocks in his Mavericks debut but left the game late in the third quarter with a... * 38m Hawks request waivers on newly acquired Bones Hyland ---------------------------------------------------- The Atlanta Hawks requested waivers on guard Bones Hyland on Saturday, just two days after the guard was obtained from the Clippers in a deal at the NBA trade deadline. * 1h AD posts 26-point double-double in debut before suffering injury ---------------------------------------------------------------- Anthony Davis has a strong debut with the Mavs, dropping 26 points, 16 rebounds and 7 assists, before leaving with a lower-body injury. * 1h All NBA News Terms of Use Privacy Policy Your US State Privacy Rights Children's Online Privacy Policy Interest-Based Ads About Nielsen Measurement Do Not Sell or Share My Personal Information Contact Us Disney Ad Sales Site Work for ESPN Corrections ESPN BET Sportsbook is owned and operated by PENN Entertainment, Inc. and its subsidiaries ('PENN').\", \"score\": 0.83549726, \"raw_content\": null}, {\"title\": \"2024 Playoffs: West Finals | Timberwolves (3) vs. Mavericks (5) | NBA.com\", \"url\": \"https://www.nba.com/playoffs/2024/west-final\", \"content\": \"Mavericks (5) | NBA.com 2024-25 NBA CrunchTime NBA TV Draft Kings DFS NBA Bet Home NBA Store NBA Game Worn NBA Photo Store NBA Experiences NBA G League NBA 2K League NBA Play NBA Bet ### Doncic, Irving carry Mavs to NBA Finals Luka Doncic and Kyrie Irving pour in 36 points apiece to guide Dallas to its 1st appearance in the NBA Finals since 2011. ### Luka: 'This is special, coming from the West' Luka Doncic with Ernie, Charles, Kenny & Shaq about the Mavs being NBA Finals-bound, his Game 5 play and more. NBA Organization NBA ID NBA Official NBA Careers NBA Initiatives NBA Cares NBA Foundation NBA Communications NBA Transactions NBA Auctions NBA Photostore\", \"score\": 0.75312227, \"raw_content\": null}, {\"title\": \"2024 NBA Playoffs | Official Bracket, Schedule and Series Matchups\", \"url\": \"https://www.nba.com/playoffs/2024?os=wtmbloozowcj&ref=app\", \"content\": \"Draft Kings DFS NBA Store NBA Play NBA Finals ### Chasing History: Celtics clinch banner 18 (Ep. 25) Jayson Tatum and Finals MVP Jaylen Brown close out Dallas in Game 5 to secure Boston's NBA-record 18th championship. WE DID ITTTT!' Jayson Tatum walkoff interview after Celtics defeat Mavericks in Game 5 of 2024 NBA Finals, clinching title with a 4-1 series win. ### Horford finally champ after key sacrifice Al Horford, who played the most playoff games in NBA history before winning his 1st title, crosses the plateau in his 17th season. 30:13 ### Best of the 2024 NBA Finals 17:47 ### Best of Boston Celtics from the 2024 NBA Finals\", \"score\": 0.63234437, \"raw_content\": null}, {\"title\": \"2025 NBA Playoffs: Standings, bracket and clinching updates\", \"url\": \"https://www.nba.com/news/2025-nba-playoffs-standings-and-bracket-updates\", \"content\": \"NBA TV NBA Play NBA Store NBA Game Worn NBA Play NBA Official NBA Playoffs bracket ### What to know about 2025 SoFi NBA Play-In Tournament The SoFi NBA Play-In Tournament features the Nos. 7-10 teams in each conference battling for the 7th and 8th playoff seeds. Click \\\"Access Content\\\" to agree to our Terms of Use and Privacy Policy and to sign up for emails about the latest news and products from the NBA Family and its partners. #### What to know about 2025 SoFi NBA Play-In Tournament The SoFi NBA Play-In Tournament features the Nos. 7-10 teams in each conference battling for the 7th and 8th playoff seeds. NBA ID NBA Official NBA Transactions NBA Auctions\", \"score\": 0.13435538, \"raw_content\": null}]}\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33mThe\u001b[0m\u001b[33m teams\u001b[0m\u001b[33m that\u001b[0m\u001b[33m played\u001b[0m\u001b[33m in\u001b[0m\u001b[33m the\u001b[0m\u001b[33m NBA\u001b[0m\u001b[33m Western\u001b[0m\u001b[33m Conference\u001b[0m\u001b[33m Finals\u001b[0m\u001b[33m of\u001b[0m\u001b[33m \u001b[0m\u001b[33m202\u001b[0m\u001b[33m4\u001b[0m\u001b[33m were\u001b[0m\u001b[33m the\u001b[0m\u001b[33m Dallas\u001b[0m\u001b[33m Mavericks\u001b[0m\u001b[33m and\u001b[0m\u001b[33m the\u001b[0m\u001b[33m Minnesota\u001b[0m\u001b[33m Timber\u001b[0m\u001b[33mw\u001b[0m\u001b[33molves\u001b[0m\u001b[33m.\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[30m\u001b[0m\u001b[33minference> \u001b[0m\u001b[36m\u001b[0m\u001b[36mbr\u001b[0m\u001b[36mave\u001b[0m\u001b[36m_search\u001b[0m\u001b[36m.call\u001b[0m\u001b[36m(query\u001b[0m\u001b[36m=\"\u001b[0m\u001b[36mSouth\u001b[0m\u001b[36m Park\u001b[0m\u001b[36m Bill\u001b[0m\u001b[36m Cosby\u001b[0m\u001b[36m episode\u001b[0m\u001b[36m season\u001b[0m\u001b[36m\")\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[32mtool_execution> Tool:brave_search Args:{'query': 'South Park Bill Cosby episode season'}\u001b[0m\n", + "\u001b[32mtool_execution> Tool:brave_search Response:{\"query\": \"South Park Bill Cosby episode season\", \"top_k\": [{\"title\": \"Bill Cosby | South Park Archives | Fandom\", \"url\": \"https://southpark.fandom.com/wiki/Bill_Cosby\", \"content\": \"SIGN IN CHARACTERS SIGN IN Explore EXPLORE CHARACTERS SIGN IN TO EDIT Character Information For other uses, see Bill (Disambiguation). Bill Cosby is elderly, having gray hair as well as various facial wrinkles. More Information: Criminal Celebrities More Information: Movie Celebrities Minor Characters from Season Four More information: List of Minor Characters from Season Four | Season Four Community content is available under CC-BY-SA unless otherwise noted. EXPLORE PROPERTIES FOLLOW US Terms of Use Global Sitemap Local Sitemap Follow on IG\", \"score\": 0.48294178, \"raw_content\": null}, {\"title\": \"Stunning and Brave - Wikipedia\", \"url\": \"https://en.wikipedia.org/wiki/Stunning_and_Brave\", \"content\": \"South Park episode \\\"Stunning and Brave\\\" is the first episode in the nineteenth season of the American animated television series South Park. Cartman and others mount an 'anti-PC' assault on the fraternity house but Kyle interrupts it, publicly calling Jenner a hero and brave. IGN's Max Nicholson gave the episode a 7.8 out of 10 and stated \\\"South Park's latest episode took on political correctness with scathing wit and truly outrageous moments.\\\"[1] \\\"South Park: \\\"Stunning and Brave\\\" Review\\\". \\\"South Park: Stunning and Brave Review\\\". \\\"South Park: Stunning and Brave\\\". \\\"South Park premiere is 'Stunning and Brave'\\\". \\\"Stunning and Brave\\\" Full episode at South Park Studios South Park episodes\", \"score\": 0.21465065, \"raw_content\": null}, {\"title\": \"Here Comes the Neighborhood - Wikipedia\", \"url\": \"https://en.wikipedia.org/wiki/Here_Comes_the_Neighborhood\", \"content\": \"\\\"Here Comes the Neighborhood\\\" is the 12th episode of the fifth season of the animated television series South Park, and the 77th episode of the series overall. Despondent at his social estrangement, Token decides to arrange for dozens of rich people (who all happen to be black) such as Will Smith and Snoop Dogg to move into South Park, which leads to Mr. Garrison complaining about the \\\"richers\\\" in the town, which in turn leads to ire among the other, less affluent members of the community (who all happen to be white). \\\"Here Comes the Neighborhood,\\\" along with the thirteen other episodes from South Park: the Complete Fifth Season, was released on a three-disc DVD set in the United States on February 22, 2005. South Park: The Complete Fifth Season: \\\"Here Comes the Neighborhood\\\" (DVD Disc audio commentary). \\\"Here Comes the Neighborhood\\\" Full episode at South Park Studios\", \"score\": 0.19947985, \"raw_content\": null}, {\"title\": \"Trapper Keeper | South Park Archives | Fandom\", \"url\": \"https://southpark.fandom.com/wiki/Trapper_Keeper\", \"content\": \"Trapper Keeper | South Park Archives | Fandom Episodes Episodes in: Episodes, Featured Article Winners, Season 4, Episodes Focusing On Cartman | Episode no. Episode 12 | | List of all South Park episodes | \\\"Trapper Keeper\\\" is the twelfth episode of Season Four and the 60th overall episode of South Park. Kyle takes a Dawson's Creek Trapper Keeper with him to school and is soon met by Cartman. Cartman brags about his Dawson's Creek Trapper Keeper Ultra Keeper Futura S 2000, of which shows off many features that far exceed Kyle's. \\u2191 Jump up to: 1.0 1.1 Trapper Keeper (Season 4, Episode 13). Episodes Episodes Focusing On Cartman Espa\\u00f1ol Fran\\u00e7ais Italiano Portugu\\u00eas do Brasil \\u4e2d\\u6587\", \"score\": 0.1287991, \"raw_content\": null}, {\"title\": \"\\\"South Park\\\" Trapper Keeper (TV Episode 2000) - IMDb\", \"url\": \"https://www.imdb.com/title/tt0705978/\", \"content\": \"Trapper Keeper is a very interesting south park episode.It spoofs plenty of classic sci-fi films such as The Terminator, 2001 A Space Odyssea and the 1988 anime classic Akira(great movie if you haven't seen it).The episode has Cartman with a Dawson's Creek Trapper Keeper.A trapper keeper seems to be a school supply(I have never heard of it before).Cartman's trapper keeper is very advanced in terms of technology, however a robot from the future has come to destroy it because the trapper keeper takes over the world and destroys humanity in the future.The Trapper Keeper turns into a big blob(like in Akira) and sucks Cartman in.It then roams South Park and the boys try to stop it.Meanwhile, Kyle's brother Ike starts kindergarten where Garrison is the teacher.They decide to have a vote for class president between Ike and a kid named Filmore.It turns into a heated debate!\", \"score\": 0.12658015, \"raw_content\": null}]}\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33mBill\u001b[0m\u001b[33m Cosby\u001b[0m\u001b[33m first\u001b[0m\u001b[33m appears\u001b[0m\u001b[33m in\u001b[0m\u001b[33m the\u001b[0m\u001b[33m episode\u001b[0m\u001b[33m \"\u001b[0m\u001b[33mTr\u001b[0m\u001b[33mapped\u001b[0m\u001b[33m in\u001b[0m\u001b[33m the\u001b[0m\u001b[33m Closet\u001b[0m\u001b[33m\"\u001b[0m\u001b[33m (\u001b[0m\u001b[33mSeason\u001b[0m\u001b[33m \u001b[0m\u001b[33m9\u001b[0m\u001b[33m,\u001b[0m\u001b[33m Episode\u001b[0m\u001b[33m \u001b[0m\u001b[33m12\u001b[0m\u001b[33m)\u001b[0m\u001b[33m of\u001b[0m\u001b[33m South\u001b[0m\u001b[33m Park\u001b[0m\u001b[33m.\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[30m\u001b[0m\u001b[33minference> \u001b[0m\u001b[36m\u001b[0m\u001b[36mbr\u001b[0m\u001b[36mave\u001b[0m\u001b[36m_search\u001b[0m\u001b[36m.call\u001b[0m\u001b[36m(query\u001b[0m\u001b[36m=\"\u001b[0m\u001b[36mAndrew\u001b[0m\u001b[36m Tate\u001b[0m\u001b[36m kick\u001b[0m\u001b[36mboxing\u001b[0m\u001b[36m name\u001b[0m\u001b[36m\")\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[32mtool_execution> Tool:brave_search Args:{'query': 'Andrew Tate kickboxing name'}\u001b[0m\n", + "\u001b[32mtool_execution> Tool:brave_search Response:{\"query\": \"Andrew Tate kickboxing name\", \"top_k\": [{\"title\": \"Andrew Tate Height, Weight, Biography, Age, Wife ... - News Unzip\", \"url\": \"https://www.newsunzip.com/wiki/andrew-tate/\", \"content\": \"Andrew Tate aka King Cobra (Real Name: 'Emory Andrew Tate III', born 1 December 1986, Age: 36 Years) is a professional kickboxer, MMA fighter, internet. Monday , 10 March 2025 ... Andrew's Kickboxing and MMA Record Andrew Tate Net worth, Lifestyle & Cars Collection. Andrew is a millionaire businessman. He makes a lot of money from his\", \"score\": 0.85995835, \"raw_content\": null}, {\"title\": \"The Life Of Andrew Tate (By Andrew Tate Himself ... - Sidekick Boxing\", \"url\": \"https://sidekickboxing.co.uk/the-life-of-andrew-king-cobra-tate/\", \"content\": \"Andrew Tate is a British-American former professional kickboxing world champion who fought in the cruiserweight and super cruiserweight divisions. Andrew Tate\\u2019s Kickboxing Career Andrew Tate in the Big Brother house Andrew Tate\\u2019s Kickboxing World Titles and his Sidekick boxing gloves Andrew Tate After Kickboxing Andrew Tate and his brother Tristan moved to Romania to set up their empire of businesses including trading in Bitcoin, Hustlers University, CobraTate.com, The Real World, and The War Room. From being a 4x kickboxing world champion to becoming the world\\u2019s most Googled man in the world with a private jet and over 33 cars, Andrew Tate\\u2019s life has been full of adventure.\", \"score\": 0.78194773, \"raw_content\": null}, {\"title\": \"Andrew Tate (\\\"King Cobra\\\") | MMA Fighter Page - Tapology\", \"url\": \"https://www.tapology.com/fightcenter/fighters/72139-andrew-tate\", \"content\": \"Andrew Tate (\\\"King Cobra\\\") | MMA Fighter Page | Tapology Andrew \\\"King Cobra\\\" Tate Andrew Tate Name: Andrew Tate Height: 6'1\\\" (185cm) | Reach: Andrew Tate is ineligible for Tapology's regional MMA rankings due to inactivity. Fighters must have at least one completed MMA bout in the past two years to be ranked. Andrew Tate MMA Fight Record Former top-ranked UFC fighter has called out Andrew Tate for having a paper title when it comes to combat... Andrew Tate \\u2022 All the biggest upcoming MMA & Boxing fights | UFC Fight Night | 02.01.2025, 12:00 PM ET | MMA Junkie: UFC Fight Night 249 video: Nine stoppages to open the year?! MMA Mania: Prochazka Vs. Hill: Odds, Full Fight Preview & Prediction\", \"score\": 0.6999322, \"raw_content\": null}, {\"title\": \"Andrew Tate: Kickboxing Record, Facts, Height, Weight, Age, Biography\", \"url\": \"https://www.lowkickmma.com/andrew-tate-kickboxing-record-facts-height-weight-age-biography/\", \"content\": \"Who is Andrew Tate? Andrew Tate is a businessman, internet personality, and former professional kickboxer. Where is Andrew Tate From? Who is Andrew Tate\\u2019s Father? Andrew Tate Kickboxing Record What Kickboxing Gym Did Andrew Tate Train Out Of? How Many Professional Kickboxing Matches Has Andrew Tate Participated In? Andrew Tate competed in a total of 86 professional kickboxing bouts. What is Andrew Tate\\u2019 Professional Kickboxing Record? What Weight Classes Did Andrew Tate Compete In? In his professional kickboxing career, Andrew Tate won 32 of his fights by knockout. Did Andrew Tate Compete For Any Championship Titles? Did Tate Ever Compete In MMA? Andrew Tate competed in 1 professional MMA bout. How Much Money Did Andrew Tate Make In Kickboxing?\", \"score\": 0.50930125, \"raw_content\": null}, {\"title\": \"Andrew Tate - Wikipedia\", \"url\": \"https://en.wikipedia.org/wiki/Andrew_Tate\", \"content\": \"In 2011, Tate won his first International Sport Kickboxing Association (ISKA) world title in a rematch against Jean-Luc Beno\\u00eet via knockout, having previously lost to Beno\\u00eet by decision.[41] In 2012, Tate lost to Sahak Parparyan by unanimous decision while challenging for his It's Showtime 85MAX Championship.[42] Later that year, Tate lost the Enfusion championship tournament to Franci Graj\\u0161.[1] Before his loss, he was ranked second-best light-heavyweight kickboxer in the world.[43] In 2013, Tate won his second ISKA world title in a 12-round match against Vincent Petitjean, making him world champion in two weight divisions.[44] He defended the ISKA Belt and Won the Enfusion Belt in 2014, making him a four-time world champion[45] before he retired with 31 recorded fights.[46]\", \"score\": 0.49904844, \"raw_content\": null}]}\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33mAndrew\u001b[0m\u001b[33m Tate\u001b[0m\u001b[33m's\u001b[0m\u001b[33m kick\u001b[0m\u001b[33mboxing\u001b[0m\u001b[33m name\u001b[0m\u001b[33m is\u001b[0m\u001b[33m \"\u001b[0m\u001b[33mKing\u001b[0m\u001b[33m Cobra\u001b[0m\u001b[33m\".\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[30m\u001b[0m" + ] + } + ], + "source": [ + "from llama_stack_client import Agent, AgentEventLogger\n", + "\n", + "agent = Agent(\n", + " client,\n", + " model=\"meta-llama/Llama-3.3-70B-Instruct\",\n", + " instructions=\"You are a helpful assistant. Use web_search tool to answer the questions.\",\n", + " tools=[\"builtin::websearch\"],\n", + ")\n", + "user_prompts = [\n", + " \"Which teams played in the NBA western conference finals of 2024. Search the web for the answer.\",\n", + " \"In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title. Search the web for the answer.\",\n", + " \"What is the British-American kickboxer Andrew Tate's kickboxing name? Search the web for the answer.\",\n", + "]\n", + "\n", + "session_id = agent.create_session(uuid.uuid4().hex)\n", + "\n", + "for prompt in user_prompts:\n", + " response = agent.create_turn(\n", + " messages=[\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": prompt,\n", + " }\n", + " ],\n", + " session_id=session_id,\n", + " )\n", + "\n", + " for log in AgentEventLogger().log(response):\n", + " log.print()\n" + ] + }, + { + "cell_type": "markdown", + "id": "d0a50faf", + "metadata": {}, + "source": [ + "##### 3.1.2 Query Agent Execution Steps\n", + "\n", + "Now, let's look deeper into the agent's execution steps and see if how well our agent performs. As a sanity check, we will first check if all user prompts is followed by a tool call to `brave_search`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c28ea2d1", + "metadata": {}, + "outputs": [], + "source": [ + "# query the agents session\n", + "from rich.pretty import pprint\n", + "\n", + "session_response = client.agents.session.retrieve(\n", + " session_id=session_id,\n", + " agent_id=agent.agent_id,\n", + ")\n", + "\n", + "pprint(session_response.turns)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "f87a376d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3/3 user prompts are followed by a tool call to `brave_search`\n" + ] + } + ], + "source": [ + "num_tool_call = 0\n", + "for turn in session_response.turns:\n", + " for step in turn.steps:\n", + " if step.step_type == \"tool_execution\" and step.tool_calls[0].tool_name == \"brave_search\":\n", + " num_tool_call += 1\n", + "\n", + "print(f\"{num_tool_call}/{len(session_response.turns)} user prompts are followed by a tool call to `brave_search`\")" + ] + }, + { + "cell_type": "markdown", + "id": "ed69220f", + "metadata": {}, + "source": [ + "##### 3.1.3 Evaluate Agent Responses\n", + "\n", + "Now, we want to evaluate the agent's responses to the user prompts. \n", + "\n", + "1. First, we will process the agent's execution history into a list of rows that can be used for evaluation.\n", + "2. Next, we will label the rows with the expected answer.\n", + "3. Finally, we will use the `/scoring` API to score the agent's responses." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "a2b293bc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
[\n",
+       "{\n",
+       "│   │   'input_query': 'Which teams played in the NBA western conference finals of 2024. Search the web for the answer.',\n",
+       "│   │   'generated_answer': 'The teams that played in the NBA Western Conference Finals of 2024 were the Dallas Mavericks and the Minnesota Timberwolves.',\n",
+       "│   │   'expected_answer': 'Dallas Mavericks and the Minnesota Timberwolves'\n",
+       "},\n",
+       "{\n",
+       "│   │   'input_query': 'In which episode and season of South Park does Bill Cosby (BSM-471) first appear? Give me the number and title. Search the web for the answer.',\n",
+       "│   │   'generated_answer': 'Bill Cosby first appears in the episode \"Trapped in the Closet\" (Season 9, Episode 12) of South Park.',\n",
+       "│   │   'expected_answer': 'Season 4, Episode 12'\n",
+       "},\n",
+       "{\n",
+       "│   │   'input_query': \"What is the British-American kickboxer Andrew Tate's kickboxing name? Search the web for the answer.\",\n",
+       "│   │   'generated_answer': 'Andrew Tate\\'s kickboxing name is \"King Cobra\".',\n",
+       "│   │   'expected_answer': 'King Cobra'\n",
+       "}\n",
+       "]\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'input_query'\u001b[0m: \u001b[32m'Which teams played in the NBA western conference finals of 2024. Search the web for the answer.'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The teams that played in the NBA Western Conference Finals of 2024 were the Dallas Mavericks and the Minnesota Timberwolves.'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'expected_answer'\u001b[0m: \u001b[32m'Dallas Mavericks and the Minnesota Timberwolves'\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'input_query'\u001b[0m: \u001b[32m'In which episode and season of South Park does Bill Cosby \u001b[0m\u001b[32m(\u001b[0m\u001b[32mBSM-471\u001b[0m\u001b[32m)\u001b[0m\u001b[32m first appear? Give me the number and title. Search the web for the answer.'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'Bill Cosby first appears in the episode \"Trapped in the Closet\" \u001b[0m\u001b[32m(\u001b[0m\u001b[32mSeason 9, Episode 12\u001b[0m\u001b[32m)\u001b[0m\u001b[32m of South Park.'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'expected_answer'\u001b[0m: \u001b[32m'Season 4, Episode 12'\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'input_query'\u001b[0m: \u001b[32m\"What is the British-American kickboxer Andrew Tate's kickboxing name? Search the web for the answer.\"\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'Andrew Tate\\'s kickboxing name is \"King Cobra\".'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'expected_answer'\u001b[0m: \u001b[32m'King Cobra'\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[1m]\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
ScoringScoreResponse(\n",
+       "results={\n",
+       "│   │   'basic::subset_of': ScoringResult(\n",
+       "│   │   │   aggregated_results={'accuracy': {'accuracy': 0.6666666666666666, 'num_correct': 2.0, 'num_total': 3}},\n",
+       "│   │   │   score_rows=[{'score': 1.0}, {'score': 0.0}, {'score': 1.0}]\n",
+       "│   │   )\n",
+       "}\n",
+       ")\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mScoringScoreResponse\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mresults\u001b[0m=\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'basic::subset_of'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1;36m0.6666666666666666\u001b[0m, \u001b[32m'num_correct'\u001b[0m: \u001b[1;36m2.0\u001b[0m, \u001b[32m'num_total'\u001b[0m: \u001b[1;36m3\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m\u001b[1m]\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "eval_rows = []\n", + "\n", + "expected_answers = [\n", + " \"Dallas Mavericks and the Minnesota Timberwolves\",\n", + " \"Season 4, Episode 12\",\n", + " \"King Cobra\",\n", + "]\n", + "\n", + "for i, turn in enumerate(session_response.turns):\n", + " eval_rows.append(\n", + " {\n", + " \"input_query\": turn.input_messages[0].content,\n", + " \"generated_answer\": turn.output_message.content,\n", + " \"expected_answer\": expected_answers[i],\n", + " }\n", + " )\n", + "\n", + "pprint(eval_rows)\n", + "\n", + "scoring_params = {\n", + " \"basic::subset_of\": None,\n", + "}\n", + "scoring_response = client.scoring.score(\n", + " input_rows=eval_rows, scoring_functions=scoring_params\n", + ")\n", + "pprint(scoring_response)" + ] + }, + { + "cell_type": "markdown", + "id": "ekOS2kM4P0LM", + "metadata": { + "id": "ekOS2kM4P0LM" + }, + "source": [ + "##### 3.1.4 Query Telemetry & Evaluate\n", + "\n", + "Another way to get the agent's execution history is to query the telemetry logs from the `/telemetry` API. The following example shows how to query the telemetry logs and post-process them to prepare data for evaluation." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "agkWgToGAsuA", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "agkWgToGAsuA", + "outputId": "4233a1d9-8282-4aa9-bdc4-0c105939f97e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Getting traces for session_id=d73d9aaa-65ac-4255-8153-9f5cbff6e01e\n", + "Here are examples of traces:\n" + ] + }, + { + "data": { + "text/html": [ + "
[\n",
+       "{\n",
+       "│   │   'input': '[{\"role\": \"system\", \"content\": \"You are a helpful assistant. Use web_search tool to answer the questions.\"}, {\"role\": \"user\", \"content\": \"Which teams played in the NBA western conference finals of 2024. Search the web for the answer.\", \"context\": null}]',\n",
+       "│   │   'output': '{\"content\": \"\", \"tool_calls\": [{\"call_id\": \"5f77ab69-72d9-4d51-b96c-bd4352ced54a\", \"tool_name\": \"brave_search\", \"arguments\": {\"query\": \"NBA Western Conference Finals 2024 teams\"}, \"arguments_json\": \"{\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\"}\"}]}'\n",
+       "},\n",
+       "{\n",
+       "│   │   'input': '{\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":[{\"call_id\":\"5f77ab69-72d9-4d51-b96c-bd4352ced54a\",\"tool_name\":\"brave_search\",\"arguments\":{\"query\":\"NBA Western Conference Finals 2024 teams\"},\"arguments_json\":\"{\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\"}\"}]}',\n",
+       "│   │   'output': '{\"role\":\"tool\",\"call_id\":\"5f77ab69-72d9-4d51-b96c-bd4352ced54a\",\"content\":\"{\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\", \\\\\"top_k\\\\\": [{\\\\\"title\\\\\": \\\\\"2024 NBA Western Conference Finals - Basketball-Reference.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\\\\\", \\\\\"content\\\\\": \\\\\"2024 NBA Playoffs Dallas Mavericks vs. Dallas Mavericks vs. Dallas Mavericks vs. 5 Dallas Mavericks (4-1) vs. 7   Derrick Jones Jr. 2024 NBA Playoffs Dallas Mavericks vs. Dallas Mavericks vs. Dallas Mavericks vs. College Tools: Player Season Finder, Player Game Finder, Team Season Finder, Team Game Finder Players, Teams, Seasons, Leaders, Awards ... Players, Teams, Seasons, Leaders, Awards ... Players, Teams, Seasons, Leaders, Awards, All-Star Games, Executives ... Players, Teams, Seasons, Leaders, Awards ... Subscribe to Stathead Basketball: Get your first month FREE The SPORTS REFERENCE, STATHEAD, IMMACULATE GRID, and IMMACULATE FOOTY trademarks are owned exclusively by Sports Reference LLC. Sports\\\\\\\\u00a0Reference\\\\\\\\u202f\\\\\\\\u00ae Baseball Football (college) Basketball (college) Hockey F\\\\\\\\u00fatbol Blog Stathead\\\\\\\\u202f\\\\\\\\u00ae Immaculate Grid\\\\\\\\u202f\\\\\\\\u00ae\\\\\", \\\\\"score\\\\\": 0.89030397, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"NBA Standings - 2024-25 season - ESPN\\\\\", \\\\\"url\\\\\": \\\\\"https://www.espn.com/nba/standings\\\\\", \\\\\"content\\\\\": \\\\\"NBA Standings - 2024-25 season - ESPN Skip to main contentSkip to navigation ESPN NFL NBA NCAAF NHL NCAAM NCAAW Soccer More Sports Watch Fantasy NBA Home Scores Schedule Standings Stats Teams Odds Where To Watch All-Star Game Fantasy More NBA Standings 2024-25 Standings Expanded Vs. Division NBA Cup LeagueConferenceDivision Eastern Conference | | | --- | | 1CLECleveland Cavaliers | | 2BOSBoston Celtics | | 3NYNew York Knicks | | 4INDIndiana Pacers | | 5MILMilwaukee Bucks | | 6DETDetroit Pistons | | 7MIAMiami Heat | | 8ORLOrlando Magic | | 9ATLAtlanta Hawks | | 10CHIChicago Bulls | | PHIPhiladelphia 76ers | | BKNBrooklyn Nets | | TORToronto Raptors | | CHACharlotte Hornets | | WSHWashington Wizards | | W | L | PCT | GB | HOME | AWAY | DIV | CONF | PPG | OPP PPG | DIFF | STRK | L10 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | 42 | 10 | .808 | - | 24-4 | 18-6 | 9-1 | 28-7 | 122.4 | 112.1 | +10.3 | W2 | 6-4 | | 36 | 16 | .692 | 6 | 16-10 | 20-6 | 6-2 | 26-9 | 117.3 | 108.8 | +8.5 | L1 | 7-3 | | 34 | 17 | .667 | 7.5 | 18-9 | 16-8 | 9-1 | 23-10 | 117.9 | 111.4 | +6.5 | W2 | 8-2 | | 29 | 21 | .580 | 12 | 14-7 | 14-13 | 6-4 | 17-15 | 115.7 | 114.9 | +0.8 | W1 | 7-3 | | 27 | 23 | .540 | 14 | 16-8 | 10-15 | 6-5 | 22-16 | 114.2 | 112.6 | +1.6 | L1 | 4-6 | | 26 | 26 | .500 | 16 | 13-13 | 13-13 | 2-9 | 18-20 | 113.0 | 113.8 | -0.8 | W1 | 5-5 | | 25 | 25 | .500 | 16 | 12-10 | 12-15 | 5-3 | 14-15 | 110.5 | 110.6 | -0.1 | L1 | 5-5 | | 25 | 28 | .472 | 17.5 | 15-9 | 10-19 | 5-2 | 20-15 | 103.8 | 105.6 | -1.8 | L1 | 2-8 | | 24 | 28 | .462 | 18 | 12-12 | 12-15 | 4-2 | 17-13 | 116.1 | 119.0 | -2.9 | W1 | 2-8 | | 22 | 30 | .423 | 20 | 10-16 | 12-14 | 3-7 | 17-18 | 116.7 | 120.1 | -3.4 | L1 | 4-6 | | 20 | 31 | .392 | 21.5 | 10-16 | 10-15 | 3-4 | 14-17 | 109.1 | 112.9 | -3.8 | L2 | 5-5 | | 18 | 34 | .346 | 24 | 7-17 | 11-17 | 1-8 | 9-23 | 105.3 | 111.7 | -6.4 | W1 | 4-6 | | 16 | 36 | .308 | 26 | 12-16 | 4-20 | 3-7 | 10-23 | 111.2 | 116.9 | -5.7 | L3 | 6-4 | | 13 | 36 | .265 | 27.5 | 9-20 | 4-16 | 0-9 | 7-27 | 107.1 | 112.3 | -5.2 | W1 | 2-8 | | 9 | 42 | .176 | 32.5 | 5-20 | 4-21 | 5-3 | 7-21 | 107.8 | 121.5 | -13.7 | L1 | 3-7 | Western Conference | | | --- | | 1OKCOklahoma City Thunder | | 2MEMMemphis Grizzlies | | 3DENDenver Nuggets | | 4HOUHouston Rockets | | 5LALLos Angeles Lakers | | 6MINMinnesota Timberwolves | | 7LACLA Clippers | | 8DALDallas Mavericks | | 9PHXPhoenix Suns | | 10SACSacramento Kings | | GSGolden State Warriors | | SASan Antonio Spurs | | PORPortland Trail Blazers | | UTAHUtah Jazz | | NONew Orleans Pelicans | | W | L | PCT | GB | HOME | AWAY | DIV | CONF | PPG | OPP PPG | DIFF | STRK | L10 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | 41 | 9 | .820 | - | 23-3 | 17-6 | 7-1 | 23-8 | 117.7 | 104.7 | +13.0 | W4 | 7-3 | | 35 | 16 | .686 | 6.5 | 21-5 | 14-11 | 8-4 | 19-12 | 123.8 | 115.4 | +8.4 | W4 | 9-1 | | 33 | 19 | .635 | 9 | 17-8 | 16-11 | 4-4 | 19-12 | 120.8 | 115.9 | +4.9 | W5 | 7-3 | | 32 | 20 | .615 | 10 | 15-8 | 17-11 | 9-3 | 19-12 | 113.3 | 109.1 | +4.2 | L6 | 4-6 | | 30 | 19 | .612 | 10.5 | 17-6 | 13-13 | 9-3 | 19-11 | 112.6 | 112.0 | +0.6 | W4 | 8-2 | | 29 | 23 | .558 | 13 | 14-12 | 15-11 | 4-3 | 21-14 | 111.7 | 108.2 | +3.5 | W2 | 7-3 | | 28 | 23 | .549 | 13.5 | 17-10 | 11-13 | 6-4 | 17-18 | 110.1 | 107.7 | +2.4 | L3 | 4-6 | | 28 | 25 | .528 | 14.5 | 15-10 | 13-15 | 6-4 | 20-17 | 115.5 | 113.3 | +2.2 | W2 | 5-5 | | 26 | 25 | .510 | 15.5 | 16-9 | 10-16 | 7-4 | 17-14 | 113.4 | 114.7 | -1.3 | W1 | 5-5 | | 25 | 26 | .490 | 16.5 | 13-13 | 12-13 | 4-6 | 16-17 | 116.1 | 115.4 | +0.7 | L2 | 4-6 | | 25 | 26 | .490 | 16.5 | 15-13 | 10-13 | 1-10 | 17-18 | 111.5 | 111.9 | -0.4 | L2 | 4-6 | | 22 | 27 | .449 | 18.5 | 13-12 | 8-14 | 2-7 | 16-18 | 112.8 | 114.3 | -1.5 | L1 | 3-7 | | 23 | 29 | .442 | 19 | 15-13 | 8-16 | 4-5 | 14-24 | 109.0 | 113.9 | -4.9 | W6 | 9-1 | | 12 | 38 | .240 | 29 | 5-18 | 7-20 | 1-7 | 4-29 | 111.9 | 118.9 | -7.0 | L1 | 2-8 | | 12 | 39 | .235 | 29.5 | 8-18 | 4-21 | 1-8 | 6-23 | 110.0 | 118.8 | -8.8 | L7 | 3-7 | Standings are updated with the completion of each game.Teams seeded 7-10 in each conference will compete in a play-in tournament at the end of the regular season. Glossary W:Wins L:Losses PCT:Winning Percentage GB:Games Back HOME:Home Record AWAY:Away Record DIV:Division Record CONF:Conference Record PPG:Points Per Game OPP PPG:Opponent Points Per Game DIFF:Average Point Differential STRK:Current Streak L10:Record last 10 games NBA News Anthony Davis leads Mavericks past Rockets 116-105 in Mavs debut but leaves with lower-body injury -------------------------------------------------------------------------------------------------- \\\\\\\\u2014 Anthony Davis had 26 points, 16 rebounds, seven assists and three blocks in his Mavericks debut but left the game late in the third quarter with a... * 38m Hawks request waivers on newly acquired Bones Hyland ---------------------------------------------------- The Atlanta Hawks requested waivers on guard Bones Hyland on Saturday, just two days after the guard was obtained from the Clippers in a deal at the NBA trade deadline. * 1h AD posts 26-point double-double in debut before suffering injury ---------------------------------------------------------------- Anthony Davis has a strong debut with the Mavs, dropping 26 points, 16 rebounds and 7 assists, before leaving with a lower-body injury. * 1h All NBA News Terms of Use Privacy Policy Your US State Privacy Rights Children\\'s Online Privacy Policy Interest-Based Ads About Nielsen Measurement Do Not Sell or Share My Personal Information Contact Us Disney Ad Sales Site Work for ESPN Corrections ESPN BET Sportsbook is owned and operated by PENN Entertainment, Inc. and its subsidiaries (\\'PENN\\').\\\\\", \\\\\"score\\\\\": 0.83549726, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"2024 Playoffs: West Finals | Timberwolves (3) vs. Mavericks (5) | NBA.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/playoffs/2024/west-final\\\\\", \\\\\"content\\\\\": \\\\\"Mavericks (5) | NBA.com 2024-25 NBA CrunchTime NBA TV Draft Kings DFS NBA Bet Home NBA Store NBA Game Worn NBA Photo Store NBA Experiences NBA G League NBA 2K League NBA Play NBA Bet ### Doncic, Irving carry Mavs to NBA Finals Luka Doncic and Kyrie Irving pour in 36 points apiece to guide Dallas to its 1st appearance in the NBA Finals since 2011. ### Luka: \\'This is special, coming from the West\\' Luka Doncic with Ernie, Charles, Kenny & Shaq about the Mavs being NBA Finals-bound, his Game 5 play and more. NBA Organization NBA ID NBA Official NBA Careers NBA Initiatives NBA Cares NBA Foundation NBA Communications NBA Transactions NBA Auctions NBA Photostore\\\\\", \\\\\"score\\\\\": 0.75312227, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"2024 NBA Playoffs | Official Bracket, Schedule and Series Matchups\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/playoffs/2024?os=wtmbloozowcj&ref=app\\\\\", \\\\\"content\\\\\": \\\\\"Draft Kings DFS NBA Store NBA Play NBA Finals ### Chasing History: Celtics clinch banner 18 (Ep. 25) Jayson Tatum and Finals MVP Jaylen Brown close out Dallas in Game 5 to secure Boston\\'s NBA-record 18th championship. WE DID ITTTT!\\' Jayson Tatum walkoff interview after Celtics defeat Mavericks in Game 5 of 2024 NBA Finals, clinching title with a 4-1 series win. ### Horford finally champ after key sacrifice Al Horford, who played the most playoff games in NBA history before winning his 1st title, crosses the plateau in his 17th season. 30:13 ### Best of the 2024 NBA Finals 17:47 ### Best of Boston Celtics from the 2024 NBA Finals\\\\\", \\\\\"score\\\\\": 0.63234437, \\\\\"raw_content\\\\\": null}, {\\\\\"title\\\\\": \\\\\"2025 NBA Playoffs: Standings, bracket and clinching updates\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/news/2025-nba-playoffs-standings-and-bracket-updates\\\\\", \\\\\"content\\\\\": \\\\\"NBA TV NBA Play NBA Store NBA Game Worn NBA Play NBA Official NBA Playoffs bracket ### What to know about 2025 SoFi NBA Play-In Tournament The SoFi NBA Play-In Tournament features the Nos. 7-10 teams in each conference battling for the 7th and 8th playoff seeds. Click \\\\\\\\\\\\\"Access Content\\\\\\\\\\\\\" to agree to our Terms of Use and Privacy Policy and to sign up for emails about the latest news and products from the NBA Family and its partners. #### What to know about 2025 SoFi NBA Play-In Tournament The SoFi NBA Play-In Tournament features the Nos. 7-10 teams in each conference battling for the 7th and 8th playoff seeds. NBA ID NBA Official NBA Transactions NBA Auctions\\\\\", \\\\\"score\\\\\": 0.13435538, \\\\\"raw_content\\\\\": null}]}\"}'\n",
+       "}\n",
+       "]\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'input'\u001b[0m: \u001b[32m'\u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\": \"system\", \"content\": \"You are a helpful assistant. Use web_search tool to answer the questions.\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\": \"user\", \"content\": \"Which teams played in the NBA western conference finals of 2024. Search the web for the answer.\", \"context\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'output'\u001b[0m: \u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"content\": \"\", \"tool_calls\": \u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"call_id\": \"5f77ab69-72d9-4d51-b96c-bd4352ced54a\", \"tool_name\": \"brave_search\", \"arguments\": \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"query\": \"NBA Western Conference Finals 2024 teams\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \"arguments_json\": \"\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'input'\u001b[0m: \u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"assistant\",\"content\":\"\",\"stop_reason\":\"end_of_turn\",\"tool_calls\":\u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"call_id\":\"5f77ab69-72d9-4d51-b96c-bd4352ced54a\",\"tool_name\":\"brave_search\",\"arguments\":\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"query\":\"NBA Western Conference Finals 2024 teams\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m,\"arguments_json\":\"\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'output'\u001b[0m: \u001b[32m'\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\"role\":\"tool\",\"call_id\":\"5f77ab69-72d9-4d51-b96c-bd4352ced54a\",\"content\":\"\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"query\\\\\": \\\\\"NBA Western Conference Finals 2024 teams\\\\\", \\\\\"top_k\\\\\": \u001b[0m\u001b[32m[\u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"2024 NBA Western Conference Finals - Basketball-Reference.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.basketball-reference.com/playoffs/2024-nba-western-conference-finals-mavericks-vs-timberwolves.html\\\\\", \\\\\"content\\\\\": \\\\\"2024 NBA Playoffs Dallas Mavericks vs. Dallas Mavericks vs. Dallas Mavericks vs. 5 Dallas Mavericks \u001b[0m\u001b[32m(\u001b[0m\u001b[32m4-1\u001b[0m\u001b[32m)\u001b[0m\u001b[32m vs. 7 Derrick Jones Jr. 2024 NBA Playoffs Dallas Mavericks vs. Dallas Mavericks vs. Dallas Mavericks vs. College Tools: Player Season Finder, Player Game Finder, Team Season Finder, Team Game Finder Players, Teams, Seasons, Leaders, Awards ... Players, Teams, Seasons, Leaders, Awards ... Players, Teams, Seasons, Leaders, Awards, All-Star Games, Executives ... Players, Teams, Seasons, Leaders, Awards ... Subscribe to Stathead Basketball: Get your first month FREE The SPORTS REFERENCE, STATHEAD, IMMACULATE GRID, and IMMACULATE FOOTY trademarks are owned exclusively by Sports Reference LLC. Sports\\\\\\\\u00a0Reference\\\\\\\\u202f\\\\\\\\u00ae Baseball Football \u001b[0m\u001b[32m(\u001b[0m\u001b[32mcollege\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Basketball \u001b[0m\u001b[32m(\u001b[0m\u001b[32mcollege\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Hockey F\\\\\\\\u00fatbol Blog Stathead\\\\\\\\u202f\\\\\\\\u00ae Immaculate Grid\\\\\\\\u202f\\\\\\\\u00ae\\\\\", \\\\\"score\\\\\": 0.89030397, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"NBA Standings - 2024-25 season - ESPN\\\\\", \\\\\"url\\\\\": \\\\\"https://www.espn.com/nba/standings\\\\\", \\\\\"content\\\\\": \\\\\"NBA Standings - 2024-25 season - ESPN Skip to main contentSkip to navigation ESPN NFL NBA NCAAF NHL NCAAM NCAAW Soccer More Sports Watch Fantasy NBA Home Scores Schedule Standings Stats Teams Odds Where To Watch All-Star Game Fantasy More NBA Standings 2024-25 Standings Expanded Vs. Division NBA Cup LeagueConferenceDivision Eastern Conference | | | --- | | 1CLECleveland Cavaliers | | 2BOSBoston Celtics | | 3NYNew York Knicks | | 4INDIndiana Pacers | | 5MILMilwaukee Bucks | | 6DETDetroit Pistons | | 7MIAMiami Heat | | 8ORLOrlando Magic | | 9ATLAtlanta Hawks | | 10CHIChicago Bulls | | PHIPhiladelphia 76ers | | BKNBrooklyn Nets | | TORToronto Raptors | | CHACharlotte Hornets | | WSHWashington Wizards | | W | L | PCT | GB | HOME | AWAY | DIV | CONF | PPG | OPP PPG | DIFF | STRK | L10 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | 42 | 10 | .808 | - | 24-4 | 18-6 | 9-1 | 28-7 | 122.4 | 112.1 | +10.3 | W2 | 6-4 | | 36 | 16 | .692 | 6 | 16-10 | 20-6 | 6-2 | 26-9 | 117.3 | 108.8 | +8.5 | L1 | 7-3 | | 34 | 17 | .667 | 7.5 | 18-9 | 16-8 | 9-1 | 23-10 | 117.9 | 111.4 | +6.5 | W2 | 8-2 | | 29 | 21 | .580 | 12 | 14-7 | 14-13 | 6-4 | 17-15 | 115.7 | 114.9 | +0.8 | W1 | 7-3 | | 27 | 23 | .540 | 14 | 16-8 | 10-15 | 6-5 | 22-16 | 114.2 | 112.6 | +1.6 | L1 | 4-6 | | 26 | 26 | .500 | 16 | 13-13 | 13-13 | 2-9 | 18-20 | 113.0 | 113.8 | -0.8 | W1 | 5-5 | | 25 | 25 | .500 | 16 | 12-10 | 12-15 | 5-3 | 14-15 | 110.5 | 110.6 | -0.1 | L1 | 5-5 | | 25 | 28 | .472 | 17.5 | 15-9 | 10-19 | 5-2 | 20-15 | 103.8 | 105.6 | -1.8 | L1 | 2-8 | | 24 | 28 | .462 | 18 | 12-12 | 12-15 | 4-2 | 17-13 | 116.1 | 119.0 | -2.9 | W1 | 2-8 | | 22 | 30 | .423 | 20 | 10-16 | 12-14 | 3-7 | 17-18 | 116.7 | 120.1 | -3.4 | L1 | 4-6 | | 20 | 31 | .392 | 21.5 | 10-16 | 10-15 | 3-4 | 14-17 | 109.1 | 112.9 | -3.8 | L2 | 5-5 | | 18 | 34 | .346 | 24 | 7-17 | 11-17 | 1-8 | 9-23 | 105.3 | 111.7 | -6.4 | W1 | 4-6 | | 16 | 36 | .308 | 26 | 12-16 | 4-20 | 3-7 | 10-23 | 111.2 | 116.9 | -5.7 | L3 | 6-4 | | 13 | 36 | .265 | 27.5 | 9-20 | 4-16 | 0-9 | 7-27 | 107.1 | 112.3 | -5.2 | W1 | 2-8 | | 9 | 42 | .176 | 32.5 | 5-20 | 4-21 | 5-3 | 7-21 | 107.8 | 121.5 | -13.7 | L1 | 3-7 | Western Conference | | | --- | | 1OKCOklahoma City Thunder | | 2MEMMemphis Grizzlies | | 3DENDenver Nuggets | | 4HOUHouston Rockets | | 5LALLos Angeles Lakers | | 6MINMinnesota Timberwolves | | 7LACLA Clippers | | 8DALDallas Mavericks | | 9PHXPhoenix Suns | | 10SACSacramento Kings | | GSGolden State Warriors | | SASan Antonio Spurs | | PORPortland Trail Blazers | | UTAHUtah Jazz | | NONew Orleans Pelicans | | W | L | PCT | GB | HOME | AWAY | DIV | CONF | PPG | OPP PPG | DIFF | STRK | L10 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | 41 | 9 | .820 | - | 23-3 | 17-6 | 7-1 | 23-8 | 117.7 | 104.7 | +13.0 | W4 | 7-3 | | 35 | 16 | .686 | 6.5 | 21-5 | 14-11 | 8-4 | 19-12 | 123.8 | 115.4 | +8.4 | W4 | 9-1 | | 33 | 19 | .635 | 9 | 17-8 | 16-11 | 4-4 | 19-12 | 120.8 | 115.9 | +4.9 | W5 | 7-3 | | 32 | 20 | .615 | 10 | 15-8 | 17-11 | 9-3 | 19-12 | 113.3 | 109.1 | +4.2 | L6 | 4-6 | | 30 | 19 | .612 | 10.5 | 17-6 | 13-13 | 9-3 | 19-11 | 112.6 | 112.0 | +0.6 | W4 | 8-2 | | 29 | 23 | .558 | 13 | 14-12 | 15-11 | 4-3 | 21-14 | 111.7 | 108.2 | +3.5 | W2 | 7-3 | | 28 | 23 | .549 | 13.5 | 17-10 | 11-13 | 6-4 | 17-18 | 110.1 | 107.7 | +2.4 | L3 | 4-6 | | 28 | 25 | .528 | 14.5 | 15-10 | 13-15 | 6-4 | 20-17 | 115.5 | 113.3 | +2.2 | W2 | 5-5 | | 26 | 25 | .510 | 15.5 | 16-9 | 10-16 | 7-4 | 17-14 | 113.4 | 114.7 | -1.3 | W1 | 5-5 | | 25 | 26 | .490 | 16.5 | 13-13 | 12-13 | 4-6 | 16-17 | 116.1 | 115.4 | +0.7 | L2 | 4-6 | | 25 | 26 | .490 | 16.5 | 15-13 | 10-13 | 1-10 | 17-18 | 111.5 | 111.9 | -0.4 | L2 | 4-6 | | 22 | 27 | .449 | 18.5 | 13-12 | 8-14 | 2-7 | 16-18 | 112.8 | 114.3 | -1.5 | L1 | 3-7 | | 23 | 29 | .442 | 19 | 15-13 | 8-16 | 4-5 | 14-24 | 109.0 | 113.9 | -4.9 | W6 | 9-1 | | 12 | 38 | .240 | 29 | 5-18 | 7-20 | 1-7 | 4-29 | 111.9 | 118.9 | -7.0 | L1 | 2-8 | | 12 | 39 | .235 | 29.5 | 8-18 | 4-21 | 1-8 | 6-23 | 110.0 | 118.8 | -8.8 | L7 | 3-7 | Standings are updated with the completion of each game.Teams seeded 7-10 in each conference will compete in a play-in tournament at the end of the regular season. Glossary W:Wins L:Losses PCT:Winning Percentage GB:Games Back HOME:Home Record AWAY:Away Record DIV:Division Record CONF:Conference Record PPG:Points Per Game OPP PPG:Opponent Points Per Game DIFF:Average Point Differential STRK:Current Streak L10:Record last 10 games NBA News Anthony Davis leads Mavericks past Rockets 116-105 in Mavs debut but leaves with lower-body injury -------------------------------------------------------------------------------------------------- \\\\\\\\u2014 Anthony Davis had 26 points, 16 rebounds, seven assists and three blocks in his Mavericks debut but left the game late in the third quarter with a... * 38m Hawks request waivers on newly acquired Bones Hyland ---------------------------------------------------- The Atlanta Hawks requested waivers on guard Bones Hyland on Saturday, just two days after the guard was obtained from the Clippers in a deal at the NBA trade deadline. * 1h AD posts 26-point double-double in debut before suffering injury ---------------------------------------------------------------- Anthony Davis has a strong debut with the Mavs, dropping 26 points, 16 rebounds and 7 assists, before leaving with a lower-body injury. * 1h All NBA News Terms of Use Privacy Policy Your US State Privacy Rights Children\\'s Online Privacy Policy Interest-Based Ads About Nielsen Measurement Do Not Sell or Share My Personal Information Contact Us Disney Ad Sales Site Work for ESPN Corrections ESPN BET Sportsbook is owned and operated by PENN Entertainment, Inc. and its subsidiaries \u001b[0m\u001b[32m(\u001b[0m\u001b[32m\\'PENN\\'\u001b[0m\u001b[32m)\u001b[0m\u001b[32m.\\\\\", \\\\\"score\\\\\": 0.83549726, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"2024 Playoffs: West Finals | Timberwolves \u001b[0m\u001b[32m(\u001b[0m\u001b[32m3\u001b[0m\u001b[32m)\u001b[0m\u001b[32m vs. Mavericks \u001b[0m\u001b[32m(\u001b[0m\u001b[32m5\u001b[0m\u001b[32m)\u001b[0m\u001b[32m | NBA.com\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/playoffs/2024/west-final\\\\\", \\\\\"content\\\\\": \\\\\"Mavericks \u001b[0m\u001b[32m(\u001b[0m\u001b[32m5\u001b[0m\u001b[32m)\u001b[0m\u001b[32m | NBA.com 2024-25 NBA CrunchTime NBA TV Draft Kings DFS NBA Bet Home NBA Store NBA Game Worn NBA Photo Store NBA Experiences NBA G League NBA 2K League NBA Play NBA Bet ### Doncic, Irving carry Mavs to NBA Finals Luka Doncic and Kyrie Irving pour in 36 points apiece to guide Dallas to its 1st appearance in the NBA Finals since 2011. ### Luka: \\'This is special, coming from the West\\' Luka Doncic with Ernie, Charles, Kenny & Shaq about the Mavs being NBA Finals-bound, his Game 5 play and more. NBA Organization NBA ID NBA Official NBA Careers NBA Initiatives NBA Cares NBA Foundation NBA Communications NBA Transactions NBA Auctions NBA Photostore\\\\\", \\\\\"score\\\\\": 0.75312227, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"2024 NBA Playoffs | Official Bracket, Schedule and Series Matchups\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/playoffs/2024?\u001b[0m\u001b[32mos\u001b[0m\u001b[32m=\u001b[0m\u001b[32mwtmbloozowcj\u001b[0m\u001b[32m&\u001b[0m\u001b[32mref\u001b[0m\u001b[32m=\u001b[0m\u001b[32mapp\u001b[0m\u001b[32m\\\\\", \\\\\"content\\\\\": \\\\\"Draft Kings DFS NBA Store NBA Play NBA Finals ### Chasing History: Celtics clinch banner 18 \u001b[0m\u001b[32m(\u001b[0m\u001b[32mEp. 25\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Jayson Tatum and Finals MVP Jaylen Brown close out Dallas in Game 5 to secure Boston\\'s NBA-record 18th championship. WE DID ITTTT!\\' Jayson Tatum walkoff interview after Celtics defeat Mavericks in Game 5 of 2024 NBA Finals, clinching title with a 4-1 series win. ### Horford finally champ after key sacrifice Al Horford, who played the most playoff games in NBA history before winning his 1st title, crosses the plateau in his 17th season. 30:13 ### Best of the 2024 NBA Finals 17:47 ### Best of Boston Celtics from the 2024 NBA Finals\\\\\", \\\\\"score\\\\\": 0.63234437, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m, \u001b[0m\u001b[32m{\u001b[0m\u001b[32m\\\\\"title\\\\\": \\\\\"2025 NBA Playoffs: Standings, bracket and clinching updates\\\\\", \\\\\"url\\\\\": \\\\\"https://www.nba.com/news/2025-nba-playoffs-standings-and-bracket-updates\\\\\", \\\\\"content\\\\\": \\\\\"NBA TV NBA Play NBA Store NBA Game Worn NBA Play NBA Official NBA Playoffs bracket ### What to know about 2025 SoFi NBA Play-In Tournament The SoFi NBA Play-In Tournament features the Nos. 7-10 teams in each conference battling for the 7th and 8th playoff seeds. Click \\\\\\\\\\\\\"Access Content\\\\\\\\\\\\\" to agree to our Terms of Use and Privacy Policy and to sign up for emails about the latest news and products from the NBA Family and its partners. #### What to know about 2025 SoFi NBA Play-In Tournament The SoFi NBA Play-In Tournament features the Nos. 7-10 teams in each conference battling for the 7th and 8th playoff seeds. NBA ID NBA Official NBA Transactions NBA Auctions\\\\\", \\\\\"score\\\\\": 0.13435538, \\\\\"raw_content\\\\\": null\u001b[0m\u001b[32m}\u001b[0m\u001b[32m]\u001b[0m\u001b[32m}\u001b[0m\u001b[32m\"\u001b[0m\u001b[32m}\u001b[0m\u001b[32m'\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[1m]\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# NBVAL_SKIP\n", + "print(f\"Getting traces for session_id={session_id}\")\n", + "import json\n", + "\n", + "from rich.pretty import pprint\n", + "\n", + "agent_logs = []\n", + "\n", + "for span in client.telemetry.query_spans(\n", + " attribute_filters=[\n", + " {\"key\": \"session_id\", \"op\": \"eq\", \"value\": session_id},\n", + " ],\n", + " attributes_to_return=[\"input\", \"output\"],\n", + "):\n", + " if span.attributes[\"output\"] != \"no shields\":\n", + " agent_logs.append(span.attributes)\n", + "\n", + "print(\"Here are examples of traces:\")\n", + "pprint(agent_logs[:2])\n" + ] + }, + { + "cell_type": "markdown", + "id": "QF30H7ufP2RE", + "metadata": { + "id": "QF30H7ufP2RE" + }, + "source": [ + "- Now, we want to run evaluation to assert that our search agent succesfully calls brave_search from online traces.\n", + "- We will first post-process the agent's telemetry logs and run evaluation." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "sy4Xaff_Avuu", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 432 + }, + "id": "sy4Xaff_Avuu", + "outputId": "1b14b5ed-4c77-47c4-edfb-1c13a88e5ef4" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
ScoringScoreResponse(\n",
+       "results={\n",
+       "│   │   'basic::subset_of': ScoringResult(\n",
+       "│   │   │   aggregated_results={'accuracy': {'accuracy': 1.0, 'num_correct': 3.0, 'num_total': 3}},\n",
+       "│   │   │   score_rows=[{'score': 1.0}, {'score': 1.0}, {'score': 1.0}]\n",
+       "│   │   )\n",
+       "}\n",
+       ")\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mScoringScoreResponse\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mresults\u001b[0m=\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'basic::subset_of'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1;36m1.0\u001b[0m, \u001b[32m'num_correct'\u001b[0m: \u001b[1;36m3.0\u001b[0m, \u001b[32m'num_total'\u001b[0m: \u001b[1;36m3\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m\u001b[1m]\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# NBVAL_SKIP\n", + "# post-process telemetry spance and prepare data for eval\n", + "# in this case, we want to assert that all user prompts is followed by a tool call\n", + "import ast\n", + "import json\n", + "\n", + "eval_rows = []\n", + "\n", + "for log in agent_logs:\n", + " input = json.loads(log[\"input\"])\n", + " if isinstance(input, list):\n", + " input = input[-1]\n", + " if input[\"role\"] == \"user\":\n", + " eval_rows.append(\n", + " {\n", + " \"input_query\": input[\"content\"],\n", + " \"generated_answer\": log[\"output\"],\n", + " # check if generated_answer uses tools brave_search\n", + " \"expected_answer\": \"brave_search\",\n", + " },\n", + " )\n", + "\n", + "# pprint(eval_rows)\n", + "scoring_params = {\n", + " \"basic::subset_of\": None,\n", + "}\n", + "scoring_response = client.scoring.score(\n", + " input_rows=eval_rows, scoring_functions=scoring_params\n", + ")\n", + "pprint(scoring_response)\n" + ] + }, + { + "cell_type": "markdown", + "id": "IKbzhxcw5e_c", + "metadata": { + "id": "IKbzhxcw5e_c" + }, + "source": [ + "#### 3.2. Agentic Application Dataset Scoring\n", + "- Llama Stack offers a library of scoring functions and the `/scoring` API, allowing you to run evaluations on your pre-annotated AI application datasets.\n", + "\n", + "- In this example, we will work with an example RAG dataset you have built previously, label with an annotation, and use LLM-As-Judge with custom judge prompt for scoring. Please checkout our [Llama Stack Playground](https://llama-stack.readthedocs.io/en/latest/playground/index.html) for an interactive interface to upload datasets and run scorings." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "xG4Y84VQBb0g", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 304 + }, + "id": "xG4Y84VQBb0g", + "outputId": "cf7dcecc-a81d-4c60-af5e-b36b8fe85c69" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
ScoringScoreResponse(\n",
+       "results={\n",
+       "│   │   'llm-as-judge::base': ScoringResult(\n",
+       "│   │   │   aggregated_results={},\n",
+       "│   │   │   score_rows=[\n",
+       "│   │   │   │   {\n",
+       "│   │   │   │   │   'score': 'B',\n",
+       "│   │   │   │   │   'judge_feedback': 'Answer: B, Explanation: The GENERATED_RESPONSE is a superset of the EXPECTED_RESPONSE and is fully consistent with it. The EXPECTED_RESPONSE only mentions \"LoRA\", which is a topic that is extensively covered in the GENERATED_RESPONSE. The GENERATED_RESPONSE provides more specific and detailed topics related to LoRA, but it does not contradict the EXPECTED_RESPONSE.'\n",
+       "│   │   │   │   }\n",
+       "│   │   │   ]\n",
+       "│   │   ),\n",
+       "│   │   'basic::subset_of': ScoringResult(\n",
+       "│   │   │   aggregated_results={'accuracy': {'accuracy': 1.0, 'num_correct': 1.0, 'num_total': 1}},\n",
+       "│   │   │   score_rows=[{'score': 1.0}]\n",
+       "│   │   )\n",
+       "}\n",
+       ")\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mScoringScoreResponse\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mresults\u001b[0m=\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'llm-as-judge::base'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ │ │ \u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'B'\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ │ \u001b[0m\u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'Answer: B, Explanation: The GENERATED_RESPONSE is a superset of the EXPECTED_RESPONSE and is fully consistent with it. The EXPECTED_RESPONSE only mentions \"LoRA\", which is a topic that is extensively covered in the GENERATED_RESPONSE. The GENERATED_RESPONSE provides more specific and detailed topics related to LoRA, but it does not contradict the EXPECTED_RESPONSE.'\u001b[0m\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[1m]\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'basic::subset_of'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1;36m1.0\u001b[0m, \u001b[32m'num_correct'\u001b[0m: \u001b[1;36m1.0\u001b[0m, \u001b[32m'num_total'\u001b[0m: \u001b[1;36m1\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m\u001b[1m]\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import rich\n", + "from rich.pretty import pprint\n", + "\n", + "# could even use larger models like 405B\n", + "judge_model_id = \"meta-llama/Llama-3.3-70B-Instruct\"\n", + "\n", + "JUDGE_PROMPT = \"\"\"\n", + "Given a QUESTION and GENERATED_RESPONSE and EXPECTED_RESPONSE.\n", + "\n", + "Compare the factual content of the GENERATED_RESPONSE with the EXPECTED_RESPONSE. Ignore any differences in style, grammar, or punctuation.\n", + " The GENERATED_RESPONSE may either be a subset or superset of the EXPECTED_RESPONSE, or it may conflict with it. Determine which case applies. Answer the question by selecting one of the following options:\n", + " (A) The GENERATED_RESPONSE is a subset of the EXPECTED_RESPONSE and is fully consistent with it.\n", + " (B) The GENERATED_RESPONSE is a superset of the EXPECTED_RESPONSE and is fully consistent with it.\n", + " (C) The GENERATED_RESPONSE contains all the same details as the EXPECTED_RESPONSE.\n", + " (D) There is a disagreement between the GENERATED_RESPONSE and the EXPECTED_RESPONSE.\n", + " (E) The answers differ, but these differences don't matter from the perspective of factuality.\n", + "\n", + "Give your answer in the format \"Answer: One of ABCDE, Explanation: \".\n", + "\n", + "Your actual task:\n", + "\n", + "QUESTION: {input_query}\n", + "GENERATED_RESPONSE: {generated_answer}\n", + "EXPECTED_RESPONSE: {expected_answer}\n", + "\"\"\"\n", + "\n", + "input_query = (\n", + " \"What are the top 5 topics that were explained? Only list succinct bullet points.\"\n", + ")\n", + "generated_answer = \"\"\"\n", + "Here are the top 5 topics that were explained in the documentation for Torchtune:\n", + "\n", + "* What is LoRA and how does it work?\n", + "* Fine-tuning with LoRA: memory savings and parameter-efficient finetuning\n", + "* Running a LoRA finetune with Torchtune: overview and recipe\n", + "* Experimenting with different LoRA configurations: rank, alpha, and attention modules\n", + "* LoRA finetuning\n", + "\"\"\"\n", + "expected_answer = \"\"\"LoRA\"\"\"\n", + "\n", + "rows = [\n", + " {\n", + " \"input_query\": input_query,\n", + " \"generated_answer\": generated_answer,\n", + " \"expected_answer\": expected_answer,\n", + " },\n", + "]\n", + "\n", + "scoring_params = {\n", + " \"llm-as-judge::base\": {\n", + " \"judge_model\": judge_model_id,\n", + " \"prompt_template\": JUDGE_PROMPT,\n", + " \"type\": \"llm_as_judge\",\n", + " \"judge_score_regexes\": [\"Answer: (A|B|C|D|E)\"],\n", + " },\n", + " \"basic::subset_of\": None,\n", + "}\n", + "\n", + "response = client.scoring.score(input_rows=rows, scoring_functions=scoring_params)\n", + "pprint(response)\n" + ] + }, + { + "cell_type": "markdown", + "id": "ad077440", + "metadata": {}, + "source": [ + "## 4. Image Understanding with Llama 3.2\n", + "\n", + "Below is a complete example of to ask Llama 3.2 questions about an image." + ] + }, + { + "cell_type": "markdown", + "id": "82e381ec", + "metadata": {}, + "source": [ + "### 4.1 Setup and helpers\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "44e05e16", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 275k 100 275k 0 0 901k 0 --:--:-- --:--:-- --:--:-- 903k\n" + ] + }, + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4QmWaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA0LjQuMC1FeGl2MiI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiIHhtbG5zOmlwdGNFeHQ9Imh0dHA6Ly9pcHRjLm9yZy9zdGQvSXB0YzR4bXBFeHQvMjAwOC0wMi0yOS8iIGlwdGNFeHQ6RGlnaXRhbFNvdXJjZVR5cGU9InRyYWluZWRBbGdvcml0aG1pY01lZGlhIi8+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94cGFja2V0IGVuZD0idyI/Pv/bAEMAAgEBAQEBAgEBAQICAgICBAMCAgICBQQEAwQGBQYGBgUGBgYHCQgGBwkHBgYICwgJCgoKCgoGCAsMCwoMCQoKCv/bAEMBAgICAgICBQMDBQoHBgcKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCv/AABEIAwADAAMBEQACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APxxgtYgAAtfLxrVGkfVe3qvqXILSMDOwUSqzLVWrbcmht4mfG0GpdSfcqNao+pI9tEvzKgNT7SfcbrVF1LumwROmcVnOpPuaQrVWtyxBbRiXIXP4VDqTLjWq33J/IjLY2A1Dqz7l+2q33B4o1b7n5U/aTtuL29VdS1p1sj5+X8aznUmVCvVfUstCgOAtR7SZft6vcIIo/MOVoc5gq9W+5dsYkL52/jUSnM1hXqX3LEsCk8rwKlVJ9zSVap3IvsqHkoB+FN1J9yPa1X1ITaIWYADkelTOpNDVaqnueEfF21ji8WMNoxu5r67KKtWVA+PzXEVXidzuvhbDaSWUQSLoBXn5jRn7S8z38BWq+xVmemxQqsK4TtxXiuTTsj0/bVUtxfIUuAV7/lSc523E61W+5JqUCC2UbeamE5t2Q6leqorUrw26sgG0UnUnfcI1qltxViUttA/Gp9pMr21RdQuLZCu4qM+lONSb0uEqtVK9ySSyF3YFQoOBR7WaluQ61Vx0ZV0uAwxmIjGDitJTk9TOlXqrqXLS1BnL7azlUkkbwr1b7kd2P3u0j2ojOdgliKqluP8hPLBIGcVHtJX3NPbVLbiGJScBRSdSY/b1e5JHbocfL1qXUn3KVap3LFvbp5g+XuKl1Jle3qrqbSxqZF46ADpXRCU3RbM5Yir7TcsxwJn7o/KuSVSfc3Ver3J0iUjoKh1J9y1XqdxkkKZ4Wlzy7h7ep3IzBGP4R+VHPIPb1O5FPGozhaanJ9ROvUXUjiRTxsGPpTc5i9vV7kbIok6VSnK24e3q33C7CCPGB04pKpLuKVerbcjto1I3Y+tDqTYo16vckeJSfujFLnnuV7er3GiJCQABT55tbi9vU7kkkKmLIWpU5jdepbcgghViRj9K055mca9V9R/2RNhJWiNSV9wdeq+pRitF+0k46H0rWVSXLuYxrVFPctXMaBMFR0rLnkdEq9VdSBYEbkDjvxR7SXcSrVO49IE6EfjUOpJ63LVep3GvHHu+7UupJLcft6j6ixQpnO2p9pN9S1WqdyRoF24I61KnO+5brVO5DHBH5vC/pWvtJ2Od1avNudJ4ShjE2Qo69axlUnfc0hXqqVrieMbaNroEr39K0p1J2M69eqpWuUtVt4z4clXA+4ePwqHVmp3G69WNHRnyv4ttIl8cXCmMf6yvuMHXqPBp3PicTiKrxb1Om0K2jUIdnp2rmqSqT6nrYWtPld2d34fgjMakJXj1p1E9zup1aqe5uRwx/3RXO6k+50+2qW3LlpbxkjC9azlUn3LjWqdzQggjBB2/Soc5s0daqupfECeVnaAPWp55sp1a1hIbeMoTihzmnuJVqvcqLErzMAPxxVc8jNV6re5FJaoJOB071ftJ23EqtW+40W0ZVuB0qXOdx+1q66mfYWMP28sE7+lbe1nynJCtV9puab2y78bahznbc6nWq9wmt0EX3e1R7SfcbrVe5FYWyNNkKOtN1JdxQrVb7jdThTzApWmpza0FVr1U7XIbuGMWnKinGc7ilWqqF7mPbxIZSNvfmtXKZhCvVfUvQ2yEcLn3rNzmjZVqvchliQvwtNVJkurV7kZt0xkLVe0mL2lXuV5YRu+5Ve0n3E6lW9rkUkSjkpRzzZLqVV1IZY1IO0Cr5pcl2Eas7XbPof/AIJ8+HEW/wDEnidlwdsFpG//AH07fzFf0F4I4BfV8VipbNqP4H8O/SrzqpXzjBYFPSEHJ/N2R+gXwH0yL/hWOvXEvzFlAXNfuc604VoRi9Ln8aYyk69KvVf2FG33nyr8f9EimvrtWT+Jq4s1qSnFn6LwljasaUHc+Iv2gPA8VxHdKEOSpIxX5LncZ6rof09wjnFWEoO5yXg7UDrXhW1vJzmSJTDOWP8AEhx/LBr8AzOjLCZlUg9r3Xof1dk2Z18Zl0W5Xa0LEsCE9B7VlGcrHoOtV7jWtYzHnaKaqTF7WrbcpNbR+ZwBxWvPUsZqtWvucn8UrdBZqdo+telldaftLXPJzbEVVHc4W2to/MXC817rrTfU8mlWnzJtnd+FoUa2A29Bya8bEuo5Xue/Rq1GrxehrG3jJwFFcLqzXU19vV7lS5tkEhG38K2hVmzGVWt3IpbVBHnaPzrVOo+o1Uq23KciR9NnzfwkVTpubvIMRUnGGhv2i7wDntXO6dOGjNXSpqTVy/Ase3aWrnnZbEaJkkATfjcMH0qXsEVdk1yVRMhhShe5pKKvZFrRdpTDnAPvWddJbMulGFi0NqTHa3TvWW6HsyZAhwxYVN7HRCEZLzI7qQKSY8Y+tXBJoUqT6l7RzmLJYdOazqxSejKpQp/MnlaJWO5xn61KuW6TvoRW84MxXitGrRJjBKRpaafmyxwO1YVLWNYxgtS1JyRgjpUKw0k5akbsqrk8/hVKzdjV00tSC3dDKd3p3rapStFM57S9oeE/GotN4yMcWNuetfXZVKNPDLufL5jQtiLyO8+FFvHDpsZB5wOa8XMqlSrVZ7eAcY0bHpEDO8CknjHGa8V+47M9KXK4qw5FYyAn8eKTasQtZWZPqkZ+yKw5xUUpJSNp000itao5i+YYAHHHNXKK6mduV2EYfOc8+vFQkjSEOZXY+7+W33L1Fa04LmM5dhdJufMiKYGSO9OrSUdUaUow6kMkc0U8hEfHfiiFpKxlOnGN3EtWNxCM7h1GKyrQtsVRlHqVrwM1xvQdT6VVN2iN01J3JimIvfHpWcoxi7gm3oNRDnLDn6VNk2aWsieNegx3olCKBPUnjIR1Y9jWdkNtI07WdJphgiuhK1OxinzVS+pVSe+a5XGx1bD1bPVcn6VLVtykmxCpPRf0qWkPlsMKknG3mhxSVws2yK5t5yMqn40RcS1TbY23tLhjwvP0rbliQ4yTegraReNICqnGeeKpRp9xKMmWJ/Dd3JFvzjHtXPGUVLRmvsnIhg0r7P8Au2lJb6VvyQtdshxcdESf2PNJznAPcCsZNKWhoqMmiMaPcK+Bzirjytak+ybZLJpcnlc+npWX2tCnRlYrxaXODkc/hW9lZXOfk5W0NlQwxnzODg4GKapXehbilEzIGllvCFXODyfSt6lLk+I5owu7ot3lrOYxx+lZqMTaMefRkUVpcAhSuSe1S4wNXTstBy2twDtaL9KzlGCWhVOk5A1hcsSFTj1xWas9yZwlFiJZXgbHlkfhV8lNFxg2iV7C7EeRH+OKxaV7BZ8xWSKaOXEi85rpVOPKTKCjK50vhFR52PzrlqwtqghZz1H+MIx9oAUd6KTj1CvGPPqUNTjzoEoYfwH+VNqLejKcIOmfL3im1eTxzckAf6w4/OvtMFGP1NXPjMVCh9bdmdVoFg+E3Edq58RKMY+6ztpQvojtNHtxFGCrYwK8erNvRnq0lBKzNe3jyeSPyrnlY1ajfQtwoBgZFSrGtOMWy9bEkgggCqjBLUupBQRcyBEV3D6UWT0LjNONhFnjSIgtj04qZwSepFRKCKUMgaVhu6mnKEUtyKcFJXFmxnCGhRsyE+WepAkyorZOcjvVummbPlaKmmTg3xJ9ac6bS0OKMH7XQ05WDZcMP8KlQN9b6kM1wPL2hucdKHSinqVJRtuN02QF8k/pWcox0dyqVLuR6nMhmwGHvWkIwtuc87upZkN1IhtvvdO1aJxTOicUqdjKhaMyli9aNpvRnFRbvZIuwSxrHwwI9TUSipHY6aauQNIXkySOe9Hs42OeyTaCQlD7UlCI4pSe5Wc7nwT9Dir5Ioc4JK5Hc/d4bOPatoxMYz5SmJcngj86VS3LsW/fWp9cfsMaOLH4VtqG3DX+qTPz3ChVH8jX9Q+D2GlR4RU39ucn+n6H+cX0jcbHE+IlaCf8OMI/hf8AU+3vgzbywfDDU8ZAkzxjrxX6dVilXppn89uUZYDF2fRHzR8cbDdqFy23qTXPmMFys+h4Xq2oxPkf45aP5bSSFMqwPavz3N8LCcWf0NwriINJXPAPBtwNK8Sat4WlOFkYXVsPXsw/lX4fxhlsKU4YiPoz+suBsV7bDOnfdfkbU5Cnrz6V8dTacrXPuYxUpWIzcRxoWaQAe5rVPWxdflhHUoyXFuZt0cynJ6ZroV+XVGFCopSstTlvilIn9nBmIwK68upSdbQ8vOIKyscJZedPKoRRjI5r6OUKdJXkzy6dJaXPQPDSxRWi+c2OPpXzuKqy9o7bHuYdQpI1AYiTtkH4Vwtu5cVGUtyjcn98SzD2rqp3gjphTjErX2q6dYxZurhV7YJrohCrU+BHBiKtOFWzZDbXFrdfvLd1ZT6Cs66qxXK0ac9OS5pHXWfhV1jUGftXFVxMXK56EsHeTdy7H4WIPFz+RrJ11bYyWEcnuTxeEgW3G4P4GlKukrpFrB2ejJn8JBhtE5NZQxL7G6waa1ZNaeFni4ExA9Qa1nVhKJmsHJS0ZbTwuuc+cScda5/aK50fVNNyxbeGCx+ab9aznVS2COHaejFuPCYZsJN7GiFfubexbjqT2nhlowFWUj1IrSpWp8uxgsLJO9y3/wAInG/Lzc4rjVexuqEu5EvhJVfKyc9q6IV7rUU8N5k8Hh5oiCHPvzTnUhJWsZxw0l1LI0iToZDXPJxR0Rw73uMbQpSCBKfxqfapHR7LQaugSwHeRnIrZ11OFjOVFx2PO/GXwM1DxPrx1OO62rnoK9LCZrHD0uVo+dxmVVsRW5uY6fwd8OZvDtqI5p87R3rOvjadWVzqwuDnSjys6OC1ZIhHnIHeuWo4Se56EKMrWJ4Ik3KSnQdqyaS6m8aSW5PIiXEflOvSsrcrvc0UF1GxWUKHBWtHUTREqcbjnsbUSfMmD1GazjNpXNlGKWhDe3WlWMX+kkYx0NaU5TqStE463JF6odok2magCbaAAHoRVV5zjo2bYdUpLQ000qAgl4wfauSFWVzpdKFtiS30jTUOPJyamrVm+pKoQ6IedK08Hd9nFKlUa6mrpwUbWJYtN04rt8pevcVdSUpLcinShzbEqaDpzHcUXB74rFTcTaVOmyaPQNLA6D6EVLnKRmqdIevh7SmGCBU88l1L9jSkTQ6BpcB3IRVRrS2uJUKUXoWItMsM8sPzpSqNLc0jSp3LCadpqDO7rWPPJlctNCSWtgOg5xVJu25FoX2GpBaKf4cGpnK/U0Sh2FkgtCMFFIrNSsyrwS0INlohyBj0rp9ppqZPlfQXzIs/KfxHFR7VRZPKr6Djl1y05xVKvT/lK5JLZkUltETuZ8n1qpV01YFFX1Ii0UXCseOxNLmiDlYT7ZCvXnNHMQpa3Ip9RiAw2OParhYtziyu+rWqNuxjjFdCszgqTakQXF9b3g2bRk+1aJcqumEZqWjKwFtYP5yJ1PNaRftNGy3aEbpEU/iSxUlWTk8dK0jh1JnH9YfNsSW2t2JILYHHWoqUY9DqWJioki63ZFuxx6Cs1h09yaeLvJjm8QabGucDntQ8PFuyKq4rsiNPE2nvkrEPxq3hVsFPF2Wor+JLIjAUAVLwKT3JlX5myOe8guo98Sjgfw9qToSS0IeIWxq+DZiZNpGea4qseWVjow8efVljxkzLcAkY5FZw1VhYlOMyhqbr/wAI/Kcj7nrVUqTcrMqzdJ2Pl/xQks3j2ZYyV+evucPCNPAbnx1bCSnjXqdp4a0m5MYLuRwO9eLiK9NaW1PXo4VwW50tnDcQrhZMj1rklKDjqdUKMpbM0YvtAHJNZRlTN/q8l1JohdNyHPtUyqQj0NorlHT3l9aJvDZqY1oSdrCrKTjuV7XxHfXjGNWxjjNdU/ZUkclOck7DrjUr+Pjfk4qYToSepVV1KmxENRv4FEzn6VTlRY4TnCNipP4zeF2Lg/L1rspYeE1c82riKvO9B1t4rS4bdnr09qdSgoHXSxEWtWKviCGCffn8azcOaFrGsasU7jLjx1ZwPiacAHtmrp4SVTaJyYjFKEhbbxSt+NlrJke1Z4ikqK1Rvh60aivcu22oXSDAb6nFcDdJnV7aUXoNmurmSQMzZI6VUVGxm4SlLmEuHupYSA5GRWbqQjKzNW5WsZyW13HMW80nJ69q19tTa0RjKm4LmRK8t2nrx2xRGUGtWTGU2V2uL5TuOQPcVsnTtuVaS6EbarO3yljke1HKkYKfJO5Vu9VvIR5pQkemaqHI5WbLq1HyMypPFV3cu0cUbZB5yetetDCxpw5mzyY4i83Ysx39+bbzMAcZ61xVYU+bc1+tVJrY+/v2UNEOjfBTw5byLh5LETPx3di39a/sTgXCQwPCmFpJfZT+/U/y18VcxlmfHWY1273qSS9FofYXwwtmi+F07KSFcN+Py19LiV/tUEfmNG/9k4qTe7t+B85/GiwElzO2MfMcVnj43iexw3XfJFHy/wDGPQEuLWVSnQHjFfF5hC6aP3PhnF8lSJ8mfEO3/wCEc8XW2ux4QRSFXP8Astwa/LeIculisLUp/P7j+neDs3lh5wce5Fe6vcOzKs2OevtX5bRo04S94/ao1KjlzIz9Qju7m2JF4RjqPWuqjOjTqJuNzLEOdeHKVdG03UIJxcS3e5Sfu1WMr0qmkYmOHpTodRPGOkXmswC3jBAx3pYOosOm2bVqbxEe5g2XgTVrdgxJ46HFdTzCnUdmeQsJXU2bVvpup2wVc5x2xUTlQcb9TupUK83YuRLfBcFSCe9cLdK53woThqQXlnf3ERCEjjitHUpRtcqftEjlta8LazdTbnZnXPAr0sNj8PTjY8ivg61eTdjQ0DTb7TVzcK2MdKmtXoVfebOaFKvHc9atcBA27qPWvlHB31Pra0p+0aLcKDjDjrUVJ6WQoSadi1Eg/v8A6VHtNLGimTRoBwT2qOaxfO2Txrzgt+lVz3Qc7RKoUdHFQ5K4c82ToRxuNQ5IuMpImQLjk0uYvnZLGwU5Bx+VRJ3BTZOrgjJP5GkrFqUujHBwBwfzrRNInm11HKynvQ5pGkXF7DhIucZH1qG29Sm5WGPNtPWr5boqnK+4Rzh85b6VPK4suUmWISMfeHtSaSZg7ykN3HJBlH0ptpI0jRas7jti7QWcH2rL2rYno9BokgXgYP41Sk2TzNjhND1bHPTk0pK61HzMeskb8KePrWfNYHqOEKu4Zjx9KUqlkXDUzfEnh+LUovLB5xwQK1oYiVN3KqUFVjYf4P8AD95pShJGyvrV16kaupy0aFSlN9jqIY1Y/vH49K5Jy5dEd8WupL5NmvLyL+JrLnm0bxSkCrZOdqyrx70RUmwqRUUEiWiHHnD6VquexNNRb3HRvbE7TcD86xqcyKmoomSK3b/lv+tY88kQoxfUebeMni4/Wj2ja1G4We49LRCRib9aFJIpU49ST7GoH+t49zQ53D2aJY7VM5Mw/Opchqmhz20WMCcfnQ6jtZh7OPcjMKA/64fnScx8iAQxscecKlzGqavuI9rGOso/Omqg3CKIXhiBx5oq+e6I5EKI0UYDfjmk5lcqGvGp5z+tHOZuFxnkRnqw/E0nNjVJMhkhgzgsB+NUpsUqaQz7LaP8pkX8TR7SSEoRZDdabYEYLrn2NVGtU7l+wiykbOJJQY5x+ddCqVOpyyw+ug99OjmXbJKv51lPFST0NY0boqSeHLKST5pV/Oqjiq0tmafVKbjqTL4dsNv+tXH1pe2rLqc31WLeoLoWnqcGZfzo+sVktxvB046jbjQdMCZ80ZqFi619zSFCmyFdL0iIbHkHPvW8a1fmvczqYamnoVNafRrGJWEn611UnWrysc1WMYosaTc28to0kWMY4ya3k3B2uKnRTV7G34P+a8O0cZrmr1EzuoRjFk3jbcs4BPGe9Z0mc+LSc0Z18N3h+UNz8v8ASuiL982ikqWp86a3bxjx5KZCCS3H519NRU3gtWfI1sQnjmoo7nw+HMYRHxwOoryKyhHdanrUY1Jam7bqIiBI4+mK4KtVNWOxTUdiyvK53j24qITWzKTqMhvdXj06PzJcYrphS9s7IitNU43ZDp/ie01omKOQHBxWVfCTwr1McNX+suxoWtjbROCzJk89Kz9pKUdTrqUILUsta2knG9eenFczquLsghGCGy2ds67PNT6YputKLD2cXIy7vwvZyyljKnI7100sdVSsCwcZXYtt4Vs41wJkqni6j3ucksHaTHP4WsZThpxz1rKWNqR0RrDDR5TN1T4f6fctn7Qv410Uc2xFPYp5dSq7ljSfC9ppagLcJx0FTUxdWu7yMFg40Z6M0VW2U5LrjFYTqPY6FCC1ZFLdWcLckEe1aU7yKdSK2K/9s2TsYt2PrRUpVIasyTu9R2bdyCJhU020tTeShKGhKkMDn5nGampUeyMI04jZLS2YY81eahTkU1Eoz6ZbiTargfjXXCo0tTGdKMxz6LBJDsaZcYrJ4i0roPYJxsZn/CK2cM5cTrya7Y46pOKXYxngKaV0OutJtkjEUEoJdgoA9ScVdKpLE1owitZNL72cGNorBYGpXk9Ixb+5Nn6M/CzTBpXhTS9JRSFtrGKMLj0QCv7qyqisNgqNH+WKX3I/yJ4jxDxOZ16z3lKT+9tn018PraWL4fN3Romxkd8V24lp4mK6nxmH9pLAYmT2ueD/ABdsvMeZv9o0Y2LcT1uH6nLynzf8T9LEsMyleoOK+UxlJSufsuR1+WUT5I+OPhkzi4XbzyVr4bMocsmf0TwnilFxbZyfhGzj1rQorqQgyxExTexHH8sV+F59CrgsznBbPVH9KZNi6eOwCfVaMnvvDzPEyQybSRwc159HFSi7S1PR+rqexR03w/qEU2J7jcF6c131cThnC6WpnDB1FN3ZuQWSYG8Z2jnivPlXvsdcYRoaWHSwwL8rLxWcJSTvchQjUldGdcXFnDdiJkH0A611yjWnS5k9DOpUjTmoomNtA3KqMYzjFcfNJHbS1jdhHawLkNj6YpOc5aJinCDI5tPimY4Ax24q4qoiXyQgVJNORA3HQdK1qPkhZHOsPGUtStD8W7BQNoTn1NdkcsnVepxwzWGImy9B8V9NCB5FQY965p5ZK9kOeY0obFiP4v6P/EU/Os3llQxWbUyaL4uaMy53pzSeWVGbRzSla5Ivxf0c8F19uaHllQl5tTeg9fjDpP8AeWoeWVB/2tBEsXxn0sfxLSeV1RrNYMmX4z6X1ytR/ZdUr+1KZIvxl07HG2h5ZV7lLNIWFT4zaavULS/s2oNZpAd/wurTC2zcuT2NH9m1TSGPjN36E9v8WrOc4QqfTApPL6iOn+0aUVZEo+J8G7n8iKby+pylfX1KFxk/xQh2HOPbitKOBlcini7vUqt8WIIuuPyraeX3Z1xxcEhg+N+mISskwBPqapZZKTtY8/EZnCFayIn+NOklsi8GD1BarllnLpJHXRx3MrtliP4xae6DF0v/AH1Xn1MtfNZI56uYxU7Eq/FfTiNz3S/99VP9nzQ1mUIokX4taSOTdL+dJ4Cpcn+0qbJI/i1pYwwuV/76qHgJlrMItEg+MGnIc/a1/wC+ql5dMHmUYu5HL8X9Pc5+2D/vqtaeXyTKjmysCfGmyhPyz5/Gtp4OytYzeapsk/4XbHIfllGPrXK8A2y4Y/mY4/ErVL+Fri2yVHcVVPAJO0jaOZSTsisnxRukJ82Vht64Jrs/s+nBGk8wTjqLL8arUKEa55z/AHqUctb1ZyUsx5p2Q+D4x2rjcLnj/erCtlyex3zx8Iw1ZYj+NVoP+Xsf99Vyf2XJvRHFDM1zEg+N1ooyLz/x6tFlNTsaVc1gpWCL49Whk8tLvPr81XLJuSN5GlHMeZ3Lf/C7YP8An7/DdXO8rcn7qLqZktkOX42W68tef+PULKZvoRHMPMa/xwgH/L2P++qiWWOL2IeZq+40fG23Jz9rH/fQpf2a+w/7SQo+NsI63Y/76o/suTD+0ra3Eb44Rnpdj8TR/Zj7E/2onuxv/C7EY8Xa+/zU/wCzGCzJdxR8bGbhbkE+zUPK2DzPzA/GaUrkz/8Aj1X/AGVIP7RklcjHxiJPM/8A49R/ZbbCOZ6kNx8YIwebsD/gVP8Asxp6oKmZruRD4txvyLwYH+1Tjlt3sFPMU5bjZPi5CFy12P8AvqrlliXQdXM1GVrjI/izBIcC54PvQsva6EQzHme4+X4swRD5bsfi1KeWN62NJZiodSu/xbhd932vHPrVQy9R2RLzh8th6fFlMcXo/FqcsvUyP7SW4rfFmNFybwf99VEsqjYHmXdiJ8XoWOPtX61m8simOGaa6Edx8ULdut9jP+1XdSy9ON7HbDGqpHUoah48t9RQK2pA47ZrSnhnSnexwVputOxu+HvHMRshB5gOAOc1yYjDzcmdscTTpU+W56h8LrsakDMORnINebVoSi3c1w9d1GXPHgK3QyO/NEXFLQMQpc9zMvyV0GR06bK1i1zXZsoTq0T5r8Uaxa2XjmaW5lAAb1r63DOUsHaJ8riPZYXFNvc2rD4laTCAkVwhz15rknldaory2O6jjY1UaUXxN07GTcL+dedUy1xlZBUx1OE7JkyfFPTApAuUP40QyyftLI6aWLS1ZT1Lx/p2pIYjcA59DXcsDOj7yHWxNOcbFPS/FOn6TMXjmHJ9ac6E8T8RhQrwormNX/hY9twTcjjoc1xVMByuyM55ipPckh+JNtzm6Hv81Zf2c29i6WOjJ7g/xLtf+fofnTeXOL1QVMdGEtxv/CybRz/x9Dj3p08A1LY0pZom7XGn4j2yk/6WOP8AarepgJKOxWIxsIxvcVPiXblsC7B/4FXK8v7o5o5ir7iy/Ea1bBa7H/fVOOB5XdI6HmkYIj/4WJadftgP/Aq1eFdrWOeWZRmxr/EO16faV/76qHgX2JePiRt45tZutwPb5quODkmXSx0WyGbxfZg7luQD6g1rLDTvYdbFwtoFv48hU4N0PzrKWCdtDCGNu7XJW+IMC8C5X/vqp+o69y3jYrqIfiHB3uR/31VfUH2E8dHuNHxAtXODdL+BoeBdiFjot6MlPju02Y+1qM/7VCwVnsbfXow6ld/HlmrYW6BP+9XSsI1HY1ji3W3Nz4Z6hF4r+JPh7w+swdrzWLePZnORvBP6V6fDOVVMbxHhaaWjnH8z47xJzqGW8D4+qnqqUvxVj9OvC8QQIingYAxX9q0ocskj/JrHzcm2z6I8GQBPAoBx80TfxEdvSqxD/wBrifPUFfLaz831PFPilbLJ5yg9GPatsTG8DuyWdnE+eviLpxdX445r5jFRV2frmT1rNWPmT416BhpJVTjntXxWbwitT9x4XxMpJI8G07WU8I+ILzTbhsQXQEkeTwHHX9P5V+ScV4RYnkqQWq0P6d4Nx1KnQcJvdfkaE3j7SRgSXKj2zXykMsrPofXLHQc3y6kR+IWkRkhZ1P5VNTLqiVjup4iDV2LF8Q9OZ/8AXr+dEMrqbEYjFU1TbEu/Hlgy7hKvHcV0wyySdjzoY+F7Gc/jXT7iUSblJHTmtKmEdOPKjf21NvmY/wD4T2JTsYrisll6lFs1ljFy6CP4/iYfLjgVH9nKLOOGMftNWQN8QIkyGYZI7U54F8tjpr4pSV0NTx5By8jDPYetZzwFSqvdRzVcypw0uVYPg/clV3XBBxXbHMVTm1Y4o5U8PUety5/wqOVItxuCePWn9eg+gPLvaMavwmlYZ8+sXjlcz/sppksfwolxhZx+dWsZBGiyuRIPhHOeftA/E1lUx8U9A/sqVyZfhFMMYuB9c0ljoNFrKpEyfCOccC4H0zR9ep3L/sqRKPhJKBua5H51lPHxTBZVIsR/CGYpvFwMfWiGPg9zVZY7E0HwakkGTdis6mZRi9EEcslfctQfBFXGftq5HvXM80lfY6P7NaVkdF4R+FNjYO3nurketTWxrqRReGy/37M25Phzo8khxGoP0rFY2SjY9iGCpRjYY3wy0lsKUU/hUQx0kafU6S6EN18LNDMDlo14B6U62PqK1mL6vSTPAfixpCaJr7Wtq+F3dq+lyms61HmZ8tmtKHtdEM8O+Cb3WYBNECeOuTWtaqlLVnHThVlojdt/hZq7cAt7cmuaWJpRR0wwNabuWF+E2sk4Dv8AmaFjKNjR5bVkia3+D+qSSYaZhzyCTXLPMKavYiGX1L2aNGH4L6kwCrcN+ZrGOPhe7O2GXTlsSL8D9WLcTn863/tCg0W8sk0WIPgTqUjY881yvMqakQssqIlT4A6mz4Nw2D71U80pcmiG8sm0WrP4DX6XAR52wD61zf2jFk/UKsXZHWzeDofCujCC4TJZcg1j9YdasmjseHeGp3kU7HwFBfaLPdvHhipIOK1rYlxq2Zlh0qtNuxxVn8HbnVbl5hIdu4966pYxpWRbwPuc0VqX1+BFx9xZTk+5qFjOXVmccDUqSsxw+At4OBKffmkszhzHX/ZUbDZPgDqrgmO4IxWzzWnFXsZ1cr0ukSaN8AtVubryi546nNclXMeaN0c0MJNS5TZb9nHVTjErfTmojmajE7qOWTnLUcv7N2rEEl3/AFrSnmkWjq/smwz/AIZy1MEhmb6ZNRVzKPQ5p5S29Bsv7OuoJzvb9aiGZx6lRyh21K8n7PmqJ92Vv1roWY02hyyrQik+BOqIMbz+ZrmqZiovQ4Xl0lKyEX4Gap/AM8+9OnmMZPU0/s6aWwi/BjXEfy1Sqnj6aZvHK5WFf4M+JFPEZxXSsfQcSnl0trDT8GPEL8FSKyjmNGMiY5TNasjb4F61K2ZC35GrnmVLl0B5U5O1gb4CascBWYfnWVHM4Ju4LJ5JkU/wG1iD/WSN+tb1cypuN0c2IyqUZXJYvgPqjw5jlbPWuenmUPaWZrTyqVrkY+BGuF9rSN+ddU8zo2LllMp7Cy/ALWVGTK2KlZjRcdDN5PPlGD4F6mp2mds+nNcn9qxUrE08pm9yNvgfq+/Hmt14Ga7FmVFwuazyp2sPPwP1ZV3LIc98VySzKClYVHKHcWH4Has7Zd2NU82gqbsbzy2UdEB+BuqxuW3n9axWbprUUsBOMLo1vDnwr1SC4AnkOwHmnVzCm4X6nFHCVnPU9w+GeippNusCcAAA14dbESqT0PfweG9mg+IBAuwpHGfzopXuPGJRaRQuIRJoEgH9w1MpSWprSlakfIHxk0u4/wCE3uPKlPLcAfWvusjqx+qK6PiM1g6+L5SnoHg/ULsAhmOevNd1fEX0Rzxpzh7qN6H4a6rPjaX6eprlniacI6lrCVKkrlqz+EOsSNy78+5rl/tCEZXsezSwUpRL0Xwa1gHKyN+dbSzGlKOo44GXMPb4Oa8xwJGNZ08worQK2AqWshR8HdazteR/zqa2OptXRzPKqjkPPwZ1hgBHM/PXk1lQzGnfU6KeVTiRv8GdcQ7TO351vVx1JxuYYjLKnNdDm+DWsFPluG59656WYQ9psXTyqe5A/wAF9eX/AJbsfXmu6eYUXEqtlk5xtcIPg3rTMVE7ZHUZNcDzCHY4f7MqxGyfCPXPM8syP+ZrqljaKp3N3llScRW+D2uAZEr5+tRSx1BuzCOU1ENPwk1xOS7/AJmtpYuhYmWV1G9Bf+FU60FyHf8AM1lDHUeazLWV1Yif8Ku1lhy7/nWs8ZQKeXVHoMf4W6wOVL/nRHF0GjCWWVb6DG+F+s55Z/zNX9bw/kCyyqRSfDDWMcO/51LxdFomWW1H1GD4YayPmEj/AJ0oYui5WMv7Nq30I5fhrrgGA75+pro+sYffQqWW1N7jI/hjrynczuc+prGpjaLdkS6FWMeVHq/7EXww1af9qPwzPfszw2LT3bg9AUjbH6kV9v4c1KWI4qowir8t5fcj8W8d69TLfD3Ecz1qOMF83r+CP038NZEiA+ozxX9QQ5nM/wA68ak4s+h/DKSDwbGGUoDB1KdaKyviEz5yjKUcBUi9L3PG/iPHvkmP+0cGunEK8DpyiVlE8K8d2RbfuODz0r5nFx95n6nlNWzR8+/GPRo5YHO3nnPFfG5pT54s/ZOGMU4VEfK/xV8LecZGVtrIcoRX5tmUHKLjY/oTh/MFDlb2PPl8Maq0p3F2APFfKfW4yVkz9SeCkoc8epZTwlqUowIWyelSpxerZzQp15SsmypqfhzV9HXz50YD61o8RSlK0WddfCVPZ6szjcSzuFEjD15rSM+U4IRhT1bO2+Gnguz1/D3MuDu7niuLESnfU6aFqy0Opu/A2jWk/ksgJBxmuCeIlsmehToJblKXwto8WSEH0zW1KcpPVmlXCwdmitdeFdINuZ/LXPoT0q5zmp6EypKNKxz11oUGSqKMfWtIYh00eNPCqcj1aWEGNdpIryaSi56n0mN5vatItwWRNvhieR1rCpNc1kaUYXRLFpmUOemKwnNJmjppFi00v5sGs5Vi1CLRKdKy4HT8Kl1bgoRuTx6QAPmH4VPtbGns0tSSHStpyFHPtUOqi4xW5LJpvTcMc+lJTu9SVFKRdttOH2bGB07Cl7TlZq4xSuT21iCmB/KspTdyIxTLlpYbcjH6UKcWbQo3RYFksPzAd+SKHO6sgUPZyLENup4x6c1lzNHRGVx0luG4ZeQO1EZe8bNaFe+URwOT/drWpHntYwad9D5p+N0Bl8TFkx96vr8lpyjQ1Pk80nGNbU6n4W2bx6Uuecis8fJe0sbYTllC6PQbGyHloxXqPSvAq1L6HtUrKyNa3sEEZLDPFc3tJLQ3nFRVyGxtl+2lSc5PTFU6bavc56UeeRs21pGkw+QY78VE9EdtOPLI04LONlPyAenFYc7RpJWdwtrUCc7RxUPuQpRehZFuFk2gde9DbaFdOVhFtD5wkznB4q4pA6VpmL4zszfkRYGABxXRhfclc58dT54WHTmDRfCzq525j4461o2qtax56p+xoPoY3gJxeQuwXhiTzV4h+zWp3YBynT1OkSAJNnaPauCVS+x2wUYy1LTQbeq9elYXludVtCWO3/ck5xxQp8zszFtK9yz4WtVN3uA5D8mumy5DippOsdStkuThc/hXFOT2PYilEnSxymOOlTBu5p0KlzZ7JOneqm1YxcrSsVrq1JTOMYrNM0eqK5twU5WtoOyJaujOvLYAkH0p2uzit74WVsGX5k7UW5Tq5E1oOj09ftBfYMZ61m5NoItXsWprBNowg6dxTjN2NHErfYVB4GPpUNu5HOrjktAWzt/CqbfLY0S1uSLbIGHFRDVlNWINbtFMOSMcd67IK+h5+Jb6kGmwAwnI7VnJcrN6NlAlS1AlyOv0rOUrlRmnIsPaqyYb05ojJpGs1pcotaJ5nAH5Vm02zOla9hJbRGIGzHPpWik0rXHNWkRtaKAQAOawb1KTUVcWO12jn8TU6sPdmx72qMhOPxFVFWd0KpG0SpDbKsjEKPxrodmtTlpwi2dX4UiJcL7VlJRTOymrGZ8RE23gx61rRaR5mNbdQqEH/hH5f9w9fpSnqx03+6PlD4sxtN49kCjjca+2yam1gj5HG1IQxl2bPg3TnRVI79qvEzib0nGo7nf6NYZiHGa8atNJ2O+mkdLoulqSGK8n1FcE5I9LDs11tYoziSMe3y1hKc7WuaSkoyLljYRTcmMYx6VjzSizog1NCSaZEZSPKX8q0lUdiG0pE1tpMO7mJRjsRWSk0zoWupDf6dEH/wBSv/fNdLcpQOaqJDpsBXIgU/UVz3aZpTalHQlbTLcpgwr0/u1rGbtuElYg07SYBcljEvX+7UO9jGCUpahd6TbC4O2FfyFaOb5bFNqEgk0yEAful57YFZxbT0LTUxl3pUCxgiFc/StfaSa3Mp2gyOPS7fZkxL+VZ3d7mqScSIaXAW5hUD6VUqjfUyVrjZdJtgM+UuO/FOM5dGXZEEulW4GPLX8qpVJdyJJFdtPtySphXgd1q1KTW5hNJakDafb7uEXHcYqVKSe44KMtSOfS4Uw4jGP92t+eTjuRW90rSW0ajoOv92lST1dzl5E5HqX7FOlJP8Zr3UhF/wAeejMA2Ohd1H8ga/ZvBfCwq8QV67XwU7fNv/gH8ufSlxrp8N4PCp/HUb/8BX/BPtLwvFmZAfUYr+m6TXMj+Asc9Gz6H0NHbweqySbituAoPGBSnriLpHztNyngJuTvbZeR498QIw0swzkZOc111fhsdOVy0jY8V8b2gJcjv0yK+excdT9Jyupojw/4nafHJHLuXse1fK5hC8WfqWR15RlGzPmT4p6YFuJVVOue1fnuNwkuds/e8gxadJXZzHhaL7bogYRqXgkMTkr0x0/TFflOb4Z4HM5Rvo9Uf0FkePhjMriusdGaNtaBpQrqMA/3a4ZVLLRnq0qcd7GX8TLS3OkZCgZXpVYTm9vcyxn8PU8sttLd5SQeCfSvp6fK1dniSwsKlNu56D8N9PlsogVlIPXGa4cdWjJWNcBhpUzoLi0nuZCXkOSeua8SpKy0PTlCXQrXWnMCFHUVpGs1Y6acW0QS6VJLAVOcEVusRdainTbVjJutEaFG5p+0jKokcFSiqcj0W2tTKFFeepcsmezWpc9Vl7aqbYwgyPUVk31OeMnCROkWEz2rGqzafM1ctWUfPK+nNc8iYbkoi/ffMPpU30Lt7xOEbbhl461LlqarYlii5Ax3oS5i0rK464g55HGacU0yGW4IyLXB9Kyne5bTcSazhJTntUSbuVTWhbtYyXwB6VUFodsI2iTXSEHHr6VRhUXvD7VCV5HYVE7WOinFOI8qfMxjGRWcfiNraFTVVC2r+wrp6Iwe7R80/GVwfEmCON9faZN/u58NnbaxFjtfhfGG0uMY7V5eYNqqztwEf3aPQ7CD92gK4x0rwZXctT36EE9zUtoT5e1hgEdTTejOirFKBWhtWS8HycHrW104WOej7s9DYskWSXjqK46rtojpablc1IUDR5AxWFmzRqTQWsRWdjircVymFveJljZpSB6d6zbsaQScx7RFQWxj2FXDc65WSuZN1ZNd3Dbuv0rV1OVHJUXMzH8VaJfahbLZiUhcYwK0oVUpXOerRlVjylvwb4fGkWnkuO3TFRXcqsrs0w9KVHQ0po9knPGPWslE1TtO5YYboQSKmavodq1iSIMwt8o6Vza3OepdJl3wgu66wwH3q6EpclzloL96deIeeRiuaex6kiykAKgFQPSpje5rDUoahEQ5GPrmqZjONpFV0JiyRzioBNlQodprWGxstjMvYzvbjqKq9mcMviF09CqgEelEm7HZTs4lgQlLkntXO2zF6SLU0ZaMEgcdaqDudMNUVJYtrHjtVnPU0mJbrk8jtik1c6I6of5ahge49BUU7ph1INdXdF97jvXXA4sYivpyARbcdqyk2VS0pEgGLjBHfis+hK0mWZF3RcjHHWneyO56w0M8g+ZtwPxrNNnND4wljZeMY+tDkbVfIbsJGMdRWWtzJJsQKwHPpVJF0/iHsn7pgfTmtkVW2K1uuZmBHANa6NHNSXvM6bwsCsgUjnHWsLO52KOhlfElh9sX6itaWjPJxy98qbQfD8v+4f5VM22wh/BZ8qfE9B/wnkn+8f5193lF1gT4jHJ/XDpfBsBaNOPpXHinJyuehhl7p3+kW5EeMYFeNWbvqepBHUaDBgKNoPNcc2dlLY2G0sSDIH41ldm0oc2pZsLHy02FRj6VL3NoLlQS2xE2SPxos7Gbs5XJII1HJxzQlLqdMG3oRaha7hyO3StuZNWIqr3SO0iG3bj2rF3UjOk7MsC3JiOB0HBrWLujWpqivYxf6QcevNKzsc1O/tBbi3xcMxHSh7GlZWYySEswAH1pR3CjuF9DiEDHb0ptkV/iIYocp0qQhflI/s+HzjtzQZPcWa3+XcV59aqJo20VZbbPLL+NNPUzV2yq0J3HK4Hat47DqRsis0Z3kgYwemKdtSKbfNYbdxHyxheMVd7JmldNRM94TnHSqjNxWhyQ+I9x/YX0fGpeItcdPvNbwK303Mf5iv6C8EcJL6vi8S+sox+5X/U/ib6VOYc+a4HBp/DCUv8AwJ2/Q+sPCiD7VGT/AHhX79SV5H8X49/u2fRGnrCvg9JIZA3+iqGIA4PpUa/WOXzPGUYLLHKD6anjfj1N0shB53HtXfU1joGVu0UePeNbZiXyO57V4eKifouWTVkeN/EKzaSKUFcj1xXy+Nje5+kZNU5ZRPm74s6U6ysxQEc44r47MaVkz9q4fxCaSR5j4Kkaz8U3uhSnCXcPmxAnjevX9D+lfknFuGk4xrr7Ls/mfvXB2M990X9pfidHHAVkwR3718epNn6NSRz/AMUYyNMAzjivayxpz1MMbZ0Tg9LiTeBXsVNDwIStdHoPhO3Cwqy/pXiYiq+Zo9bBq7NgRorFj0rz6kpnfPkTsQXS+Y544HfFEbJGVOfLOyFjtwbcEp+YojP3rHXNGbqNp5kb4H4CuiM7VEctWCcrs7DT4sRg+1c0nqehL+Ix93G3mhQ2OayjqcT0kaFtGTbAHj3rKpds63ZwRZs4sHkZHasZGcYpMsRwkyEkc1F9C+XUkWE7jxxU7s05SSOMbh9eK1Xuo6OX3B1wpzyPShNHO1rYuW8f+jZ29RWFR6nRyrlJrRP3XI/OsZbkRLFgnz5I71onyxO1bBesVcqRx9KSd9TnavMs2SkR/MOe1TJtnQmox0Gyj95j9KI/EaPYraqA1pJ/unit3eyMHq2fMnxnDf8ACVY/26+0yXTDHw2cx/2g7z4Wqf7Jjbj7ory8xv7Zo9LL43pqx6LYRsY1LH3rxpLlZ9FSjFJGjNKbW2zg8jrisdJTsiqy9x6lC2kuruXgFeeDW8rUk4y3OSknubmj20kMeZDk+prkqe/LQ64SvubNqh8pge561m5cpvzJIIQFlYGocm0cz+JksKGSfkcZ6g0krm1BLmuWLyMLDtHBI9K1iXWujNtE3St259auUbq5MWm7kOpWrGcMc8GiKSRFSXLInt4QsY54Heoc+hvSXMrkV+mx844BzTT6mNWPJK4+JzJFjHGOKUtjejJNWJohi3Yk965pfEKstGX/AAaM3fvu61vF+4cdBfvTsiv7wcfWuWpqeoy1Gg2YpRNoKxR1SFuT+RFORlWWqKCjdCcjp3rPqQiqEBJGK0baRvsjLu1YSsMd6Iyu9TlcLu5JZRgN8xxmrfY0jO2haljO/IHGBUOOg+XmdywV+QHHWpjozeCSKV2PLwGPb86blqYVY3lcZaksMBeKTlY1pqyJGBDgEY5pRG1qQa2v7jkdAOa3g9Tlrq7sVtOUhMkcVckhNWpgxxcYOOvSs1EiKvI0PLBgyR2rGejO9L3TPlUrJ9elEFpqYNJMV1DJz7Up6Ie5EEIO3AqUluaxS5RMH7pXn6UX1M425xw5jY4PA70+bU1qrQq2WXuGGO/et3JKKOSkrSudT4bTEorJvU6k1bQxPiSh+0qSckHmtqVtTx8YnzkMMYfw9J/1z/pWbumaUo3os+WPijAV8fSZP8Z/nX3eVzX1KyPkcxgvrdzpvBkeETA9K4sRpJs6MPax6FpEY2g4rxqrdz04JHTaLEVAJXvya5JnXTR0NrEWQj2rM7IomWMRDgjp3oB3ZHNC0h3oOnWq5+UpU1a7CGAxMN3pWTcm7F8ySHTRrJ8v48VaVlcStKOpVaF4ZOcYOMcUrqWphJWehaWL9ycnPHNOL1sauzgU7EA3ZX/arpS0MqaXMTXaATEleMc1jJq5piFsRxxiSTb78cUk7EUVqM1CPAI29BUJ3JrayI4IjtB21fQcFaBG0YLsMfnUmSSbFmjIXJXtWiRrUjaJXZPk3EChL3jGCTkU5IcA5HTpgVurIuqroolD5hB9RxV3Oek1zjrpD5IyOMVLkjorfCZ5j559e9KL0OGLPpL9irRxa+BLrUNuDdalIc47KFFf1b4OYV0uEfaW+Ocn92n6H+eH0ksd9a8QalP/AJ9whH8L/qfR3hS3H2yIE/xCv1yiveR/L+Pk/Zs+jtNSyl8KwosCBltMHYuN3Hf3rmqKUcS2n1M6UaE8rVoq6i726+p4r45T/SZdw7ng16cneJ5uXNcqPJvGNsWD89+K8fEpXPvMtnax5L44ssrKNvUHtXzeMhe5+hZVV2Pnz4saTujdivrmvk8wp3R+wcO4i0kjwPxA8mi+ILfWYRg20wJ916EflX59nWFWJoTpPqj9pyXGPDVYVI9Hc68sjv5iNlWGVPqDyK/JIrlbi+h+40aiqQU47NHNfEx92nDPp6V6uXztU0OXHu2HZw2lDLjPrXuVHeLPCpp2PR/CMObda+frRam2z3cDG7NeWDa3C/WuSb1OqtG0xi2oI3HnNRuOlBXuOFudhT2pKXLI62tDPu4AVJxWvP76ZyYle47HSWOfJB9qmXxHZLSpIffg7gR3706Nupyte9c0NPQtbAOayruz0NU1Yt24/vCuRvuOJYgX5v61D2LsSouH96RoSeX/ABgdetDk27Gy1iNkRmb5RwfWmmzO1nc0LdCbYAelZT0epXNdEttGQm2odxxRZsY9pJbrVWlY3c1siG5fdckdxTUHYasW7YnAJGOKcvdQS0QyVf3vGfeoT1NW7orako+ySY/u810LZEdz5o+NSL/wlO7/AG/619nk3+7nw+c/xzuvhYpbSUwP4R1ry8xX71no5Z8CPSNMXKJlegrxqklFHvqVkjRubZpbfB9OBXGn7xTXOhuk2ojdV2cbueOtbtXWocisbSQBQdq8duKyk0loNKxes1/dEGuaVylZsBDumJZc8dKpK61LlT0uSQxhZwh4FO6SsFJqMh+ozI0e0cYoTkzSu7rQoWGTcEMO/StJcyRFCKTLGrQAgOorFSbdiMQve0IoR+6yOlLVM0oP3Srqe7yySOR7U1J3HXjfYgsJpSgVyOnFVOTWhFKUYF+Mny2TvWfK73NKvvRujR8Ggi7wf79dCj+7OOlpVO18vLHmuSex63YsxFVUZHPp61EdzoS0Kt+m6Mj07CiSZnUimZYTaSDUnMtyFkw5AXjvVTeh0vSJmXKgSnNZxu2c8gto2lYqPrXQ5KMdRwhY0VgULlhyVrBtyZrJpbEkcYKYI+uab91ChJlPVLRVUMByD2pRZUtRlnEAMKOKfLcy5tQuFIYqD9TVQvsaxdyvqoJgyR/COK2ppp3OXEO0irZ5WLAPWrk7F6cgwlWnAb161HOrGMW+fQ1UB+zDjnHWueTu9D0UvcM6dSZCaqOiOa92IAxXB/E1nJXHKIIoGC3pxSadjSm9BrRNnn9KhExi+ck8jEBHtxxU3szZlOwjCXBPbNdkVzQRyzVlodN4c5lABqXZF0dTG+Jhxc5963oL3tDz8w0kkV7Xnw9Jj+4f5VlWlqVTf7lnyz8VXH/CfP8A7x/nX2WVP/Yz47MZXxdjpvBAzEmPascS9Tpw2yPRNGHy4AGcDFeLV3PThudXpMfy9M5xXJI76aN6zUqpwPpmpZ1pIeIN7YYdfWplK2iLaWyHiMKMe9ZxjKpLlirvsJu2h33w+/ZX+PXxSu7GHwX8MtTnXUifsV3LbmOF1BGX3tgbRkZIr6nB8G8TY2CnTw7UW1q9EEcLiq13GDsjQ+OH7J/xW+CuoJJ4g8HXMGn3l79l0qWSQPJduMLlUHzYZgdvHQivQzjgjOspofWJRvTbtdO+p2vLcVQpc0tbbtHmWuaReaPdy6dqdnJBc20zRTwTJteN1OGVgehBBBFfFTjKE3FqzR58rLchXHkfUUr2dxLYoaejfb2z/errg7xM4O1SxZv4yXbnqa5m9TWuhdPgJP8A9am07E0UkR6gm+Ug+tQiJWlIYkexPmX9K2lsXJWiQRp5kp3fhWaMI/EFyu0cjBArS9jevpAqzKdhAP19qIvU5ofEV3U7CdvWqk3c1nsZ6xu8x9DVp+6YRjyyuSXMY8rGO3OalO5pValAzZIwuSK0iklocG6PrT9ljSv7P+FelKVwZkeVsjrucn/Cv7R8OsK8FwdhKbW8eb73c/y98Zsw/tDxAzGqv+fjj/4Dp+h7l4Qh36hEB/fGOK+6pr3kfhuYStSZ9Cp5ceiIRbbQ1sM7DxkDqa4226u/UnnjHLVJRtePQ8Z8dwv9skJIzk8gV6k17p5uWS9xHlvi22B38da8nERPuMvnseWeNLQssnHUda8HFQbR93ldTVHhnxN0wyRyBh69q+Wx0bH6tkVflkrHzv4/0kJcSrs4Oe1fD4+DU7n7JlddypxH+C746l4fiDH95bEwyZ9un6Yr8jzuh9UzKfLs9UfuXDeL+sZaoveOny6Gd8SY/wDiVjvWeXSvV1PWxqXsTiNGX96oPrX0M9Inh09T03wen7hcj6V4OIvzM97AGvcqRwRzXC22zpr/ABBBEWizisnLlbFSaQjJtUgjvxxU36s7I2ZQnjyCSOh7CrlK5y4hWize09MRDPpV1L8x01NJsddOCo45HtVUk0rmKSaNHTCTa9O1Z10hW0LtooLYNcctjSO5bijy/K/hU3drHQ0h7AbxzUttCvYlkX5QSMZFQneRrH4RChMYyK1joiaj7F225g+7xWM3eQQi5Ilt9oHHNEYmzVtCSOXbnd09RWqaQpe5qQKVec89+tNy0Kppz1ZegXGB3A5Nc85XRrOPujZgWf8ArSi9RxINQj3Wkh/2a6L7Catc+ZvjaCviccfx/wBa+0yZ/wCznwuc3+sHc/CbLaVH9BXmZimqrPSyxfu0enWKhLZVK4OK8GpK7se02tjTs1EkRDL9Kwsr3NYSaRNp9uBNnHGetOVV2sPmbZpupYkYx0rBu5qotk0W6HK4x0oauGzJUQEh8U3JctkbT+G5HGHkmPrntUx+GzMqceeZLcW2SFkOPrWkUVUg1Ipoqx3O0DBz1rbRolS1si5cgSRAMB061yy+IucFYgiQKDkAccZon8JcVaNyG+VZNyMBzis4pha8ioIBCgyuOPzroUUtTKpFJ6E9kQ5K/wA6cnZFwi5o1PCw23xwMfPVRleNjnUbVjtkyG6fWuSpueolZIsquFAH51mtzdP3SCQBoyMdqp6ol6oy7hDFKeOvesznatIheMbScHpSk7s2voZVxHvmIFVB2MZJouaZpdxcTJBbQs7t91VBJP4Unebt1FdQV2eofAn9lr4p/H7xRpXh3wXobeXqdw0S6hP8sEQRlDszdMLuGfrX0uRcJZvnic6UbQW8mNU61WnKpH4URfG39m34mfs/eNr3wV498PTwy2czLHciE+VcIGIEiN0KnHBrfOuEM3yafvw5oPaS1Xf5M7pYOpCnGotYvqjz3VLJjHkj6ZFfJNOErM55qxStYmQYI5703K6MYx1GXaEOc/rV09maJWdynq7ZhCjriuqiuY566TZTswfLxU1JWY4Jcuo0Rf6SGYkc9KzXvIm/v6GurHyNnTjvWcklqdkW3EpMPn5HHrWSZztNO4MpUEnv2qm1Y3klyjeRgd/Wjczp3HFCVzxU6JnQl7w9RiNl9PWspK8hVNEUoIyZ2PfdXZDSJzXvG50nhtMSgiom9UaUlZGJ8To/34B5wa1otanlY+7mV7YAeG5c/wDPOsJ35iqd/YM+V/imP+K/fjPzH+dfdZSn9SPjsbF/Wm2dV4HBEKfhXNiXqzuwy0R6Joa5+Ujj1rx6q1PUprU6/SV+QZHUDmuKZ3Q0Ogso8g4HpmsZao6FbqPKqJdh4J6ipUerLv2Po39h34NeDdXk1T40/EHSrfUNO8PTwrDYXhxDI7N8zN6hVDMB3IA96/oDwd4UwmJpTzPERTeqjdXtZbn0GTYGFRurUTd9Fbv3Pp4/8FFba61P7JodraWul6ezLbRWduixxuoISJemMkZav22eW4BR5bt38+p9JTyjDUab523J73Z5F8Xf2+tO+I/xF8M6dqniOzbxhbTSz2WuXUBuTYXMvyiQRsdpkUH5SQdpIPWvNznDYCjlUsLRtFtaeVjz8fDA/Vng6N1B291abdDwX4//AA9+FvgA6pptz4p1LUPE3niTETpLHDubLPdSgsDNLywjU/KCM85FfydxHlmHweKqONRylffp5r1Pj3GHs23Fxs2rO3R2T0b0e6623Seh4+02ID0r5eMJPcwjK6KOlsXvmz/ertjHlgQo/vLl/VF27sDvXI2uYusx+mL+63kfjTcrBR1TK1wrPOc1KZk/iHyoViOPSqlK5rN+6VoY8NkjvQc8dHcbdKSpP05oT1LqvmKkiEr05qo7mcNyGdcREdPWnJalTM5AQ/A59cV0QWhLRJdEmLBHIFCirky0izKulba2D1FVFc0uXucFaapUXN9E39x9s/BrRjpPgrStOC/6qxiBHvtBNf3hktJYbKqFJL4YRX3JH+RfF+N+u55icQ/tzm/vkz1fwXATfxEDHzivZpu8j85zKX7po99haJtJjjIH+qAbI9jXHKMva3Xc9DDwpSy6MZLXlseP/EG1EV/IFPGTjjFetfmijwsC1FuK6M8v8UW+Sx6H0rzcRE+wwM7WPM/GNqy7yRjPt1rwsTE+3y2pqjxn4iad5gclfXpXzWMgnc/S8mrWaPnz4maT5czsydSe1fG5jR1P2LIsRzwszi/AU4svEt5o8jYW6i8yIHpvXr+hP5V+X8V4W9ONZfZdn8z9m4NxiVZ0n9pfiiT4jMDpmD2r5vAfxlY+6xz/AHBw2igfaBn1r6Ccm1Y8Wgrtnp/g07rdPTvXiYu6bPeweht3EIk4HT1ry1LU6J3lIWBCsRXHSqlFbjceWJEELhgtZt2NqL0KV7GV4FOLuzDEu6ZuWuFjBLdq2qS947K3xMYzBnAxyema0pv3dTmjF81zX0yM/ZjgVzVZ3ZvKOly1ZKd+AO/XFc71Qobl6IEEnHPrUtWN2mP8os2SetZy0ElckKFkAOMipWkjZaIWRCEAH4U9WzNq5ZiUiEAk+9VFO51RhamPUhE47Hir23Mk0ndlaS5aRmRW4Jwah33sTf2tQs2sAiGW56Go1kb35VYuwHcc4qJq2hb+Ajk5fG7OP0pQ+IcdGR3qj7NISOdhrp6IGtWfM3xzXHinP+3X2WS/7ufD5yv353XwhTOlJj0rzcyb9qz0cr1gkenW6nyE6fd614E/iPbkrI1dPGLfGPxrFgloWNLXMzFl70nFjp6yNCJS0+GxT5bHfBKxJeDYMjtii1zmraSJLVzJD8opTjrY6YWnALMH7V5bLxmptaOoQiozF1qZoRwuOetKDuTiE+hRso5bqdtxrSpOUFZGVOK5rsv3ERVQo7Vild3ZpJ3ZEUbGQKc9jWXwaFSVGaTB6Y61MWkjKEmQ3kEoXAOPrTU9SmuYn0WAKx388dxQ7thGXLoanh9f+JmQBxuFWtEcsZXr2O1GMgdOnNc82z1X8KLKjMZBH4Vk7otPQgVcjkdKE20KL1M/U4irkYqrEVFaRWXmIgmoadynojLlhZbv0BNaxi0jKTvsdn8NNO8Zafr1l4p8Lz3NlJYXkbxarDGcW0oOVJboDnsetehltCt7ZVafR7i9j7f3JLQ/S/4WeK/+Ed/Y9/s7w1o9nYeLtSa51C6udPgCLeoWHnsoHEZY4YqoA7gV/VHC6XJTqOK5OXVW+13Pq8swtOji4VJNOmkly+fR+ZyHw9+P+meMX0zSfilJbarY6fvt9Vt9QtUlEwIZUiYsN2xSQcgggnuK+srYOhicPVhyr3tl+Z3YuFOaqQjHl5trfn2u9jwv9rX9mr9nvRfDdz4p+GfxjsbjxEIVu7vw3a2Rjt41b76ROTyVPQelfjfGvh3TxWHr4/BYd0eTW117yXW3Q8itgauIpSqex9morrJO/n/X3HycsKhskc5r+dkpbHgxaILyMM/I61vBWiVN2VzMv4mlj5bgVtSk07M5qkk0VIsQLhzjPetZxTM0pNCS6pplpIDJIM+hNP2b6ImFenCfLI1La6iv7TzISMY6iuWqpKVj0IzhylQqfN254rKxLs4j3XII+maGrBe6K5RgwHbtVpaChoTKCUwPx9qylpI0hJuY+NMRsO+Kyk9TSrblKdqhM7D34rrhfl1OWC0Ol8NgeeAQOOtZyepvFaGN8TYwbkfUVtRWp5WOj7xUiTHhyUH+5/Spl8RVOP7lnyt8UAf+E9fP94/zr7nKn/sR8hmH+8nV+BlxEmB3FcmJvqdOGPRtDTaBxxxzXi1XuerCyOr0lfl247DGa45O7OqGp0dgcIQBk46VLVjqhFtEogXzNxPGe/asas3yNI2jZH1L4LupPBf7I8mhy2fkz3d1DcW534aczFl6d8BQB/vGv6/8OcHiMFwlQjBPmkvz2Ps8LWVDBUXDzbPn3x74/wBL+C+iXOr6r5iW+iWsq29tGQfteqSkEKR325JNd+Oxry3mjNOLV9LdW9dO99/M83NM6q0sPKpzXb0R81fBfxX4s8XfGaDXvFF9MXa6af8Adv8AOF68A9+mBXzjxteVOdao/Q+OwuPxFXE+1kz6C+J+u+ItcaFbqOGyslzJDo9qDtjPeWQnmSVupZifQYAxX4HxDja+NxbTVld6L8zR1J1puUnds5NpN8ZxxXza3OhRUUQaOcX/AOI610WvC5zpv2hqaoNzEY4rz3uy56k+mxAWxGKbWhUFywuVHTMuSO9OKbVibXkPnB2ciiUbFNakDRkHp1q4pJEzSRFMu4HP4VDfvEW90qSDjOK0huRH4iG5UiMkDim9y6mxnpGd/I963j8JDauLcJmIg/kaUXqKTWxBpmmtqOr2WnKCTcXUaY+rCvVyPCvHZ5h8P/NOK/FHynGOOWWcLYzFP7FKb/8AJWfdvgyyWGBLdBwihQPoMV/dtKKhHl7H+QmaVXKbk+p6H4Ih8vU4mwMqwPSuyilzHyOPqWhc9se7W8s9wCq7KPurwK5eRxlZHq1MbDEUOZKzaPK/iDGXuHkY7juOTnJr01pBHz2AquU3fe55f4mt9xdc1wV1c+xwU7JHm/iy23K4Zs49a8TEK59ngJ2aPJ/HNgGVzt49u1eBioJo/Qsqq6o8J+J2kGRGJTpntXyOZR0aP1fIcVyHiesvPoWuwavGCDbzBjjuO4/LNfBZlhfrOHnSfVH6vkWMdCvCpF7NGh8SJYpNP82I5RxuQg9Qea/OcDCUa3K+mh+xY2onQUls9ThNJl2zj3NfSKmlHU87CwlO7PU/AvNogPpXz2NSUme/hlqdD5ZfOa8mWjOlx94Ux7IyO1aSehVaNooht1GCzVjJhRWhUvkGCSKE7GdePus17eAPAB0yOtazl+8Oup8bQ1LfEmAOe3FbJc0TKrGy0NvTeISD0x61z1YpO5MG2tSa0B8wjPesm0kXH4i6GC8r+IrNts3lK5JDyCSO/asp7hElQMZMY6VLRVwlGcL3z+VXAuMbO5ZC4gwBz3rbZHVJ+4Ub+/EK+TEcnPQVmtXqcE25OyJdHtJJCJpR17VMmtkdEFyRv1L04Mb4UHoM1UdgTuyzaYVcEZxWFTc6ErxImB8056npRAq3UbdAtbuP9jrXT0Qktz5o+O6lPEoOP46+yybTDs+IzuyrHc/B4Z0pDj+GvLzL+Kzuyr4UenW4P2dM/wB3pXhVNGe9NaI1NPObchelYp6hTSZZsSIpTvPBParlJ8ug/djLQsRzfvOuKhzk1qbUql3qOu58x5JJ4qU22KvFt3JtEvk2FZCD2FObaNcPKMYliBc3JZSDUSnJQsVdc1yHVna5baPXnNRG6WpDbnIXTYjC/Hr1rW11cLLnsT3bkjPf3rOUrbETspEYGU4HFQ22dENaZVIKyEkd+lVbQwXxDbwExggZGMgmpimmbok0kFCcjAHetm7IxluX/DYDav8A8CoSbRy02vrB2zJtO4+1YPc9m6ZZQAx9D7VjO4m7EaLhyw/lSg7McGUdVj65yeBWjY6q2ZnxgBCT3pN6kSehRkyLjcRnBq27IzvbY9N/Z8Hiy98faZpvh3xFLpceoyG2kuFAaKcnkRSo3yupxjaQa+k4ZwdbG45U4ysmdlNScLn3H8efiN4R/Z/1r4Y+CPF9mdPa70VpNWh0qQxrDJOSUcLyEQcEg8Y4r+n8lw8aOW6vrZdNjbB4qv7Jyi7q9lf8THl+Hfhy7g1PxTbSW1sIJd0lvG+5W3jPnI2MFCOvpn2492GLXMlbpuevCtUnUjTim2z5E+Lqj4f/ABG1g3mmvPFHZrBYNeXZwzyE/wCrXILADnkVHFeJWD4YxWLm3pBpK+l2dGNxapUpSm9WrHl8gzkHqeeO1fw8m3K7PkqcPduyKZdynJ6dK1NG7qxmXWwSeTx14zVJpHHzRjJpmNr8r2doZD8oKn5iK0Sc1oTVdqbaPLNa1/ULzVjbxzEjeMMK9aMKcaOq1Pnp+0lV5j1bwF5zaGokJ+51PWvIrcqdz28LKdSOpoMmHI965b3kdyXKrCycLnFE2b8vuEDEnAHrUxZjFEkXA5HXtSmjaMfeJ1X5GGOo61hZ3NKiumUYlIuGGOM9a7IbHHF2VjpPC+1p1DHGKie5001oZfxMjUXinI5Irek00edjV76M8bf7Bl7fuz/KsqmkgT/cux8r/FMD/hO2IP8AEa+1yl/7HY+Lx7vijq/Aw/dJ+Fc+KTTudmGWiPR9FUgDjkDnNeLW0PUjsdTpfyjYOvBzXPy6anVSTZ02lwkrlv4h1FYVJdjthex0/gX4W+Pvibrn9i/D/wAKXWrXSjc8NrDu2r6segFellGRZlneIVPCQ5tdexpGjWrS5aaufQfx08Pa5pXiHwr8M9XgntLiHR4DNE0e0QMics3rtG4/Wv7Ty2ksuyGjSmtYxX3o+xkv7PyyLl21Ph39rrxhazeKpLrStNEul2TtHZG6YskDZJe5kXgySsegGcDHpXw2ZYl47EuXT+tT89zDGRrVnbWJ5p+zhrKz/GKzuwHu08wAXEybMfQdh7VhWpQlg5uOyRx4K9WraGx9KeLtNutbjuNW0TSJWt43P2jULhAAzf3FLHn6CvwfNMHWqVJShHrv3PUhFRlynIhMR7n7CvmU7MU5NOxFpKj7cfrzXUpXpkU1zO5rXiF5QpHOeK4HbUp3uXYoxDaZx161V77nS42pGey7mPcZP4UQ0MI6yJJIwIwO9EmazVkQvkDJFZ3Zg1cgeM4we3tS2HbQp3AO4j6VtBmS+Iiuh+54H1FH2hz3KESFnwPrnFbr4SZJXC4TGVIxx6U49zKW5s/CTSv7V+Keg2ZXIF8JHHsuW/pX2/hzhfrfGuEX8rcvuVz8j8csweXeGePnfWUVBf8Ab0kvyPtnwjAWiVuhIr+zYs/yuzGa5meg+Bo1j1WIsuQGGRiuujHmufKY53geuXCSJZvHDgblAHesI6z1PQxLqRwzjS0ujzDxlAwmcSLgjOT616NvdPFwL5XY828SQAFgPfmuCsj7DBzvY878UQHD8Y968bEq6PscDLY8t8YWjkuMYPpXh4hWR91l1RKx454/0sSK4I9eK+Xx1LmTP0jKKzVmeD/EPRyHkUD17V8fWo++freR1lJq5zGoag1z4OjgmfMlu5ibPoOn6fyr4TMMJHD5tLl2lqfsuExLxWVRu9Y6HPaRGRcDnqe1bVLKNrnfhJ80LI9V8CqRapn0r5jHP3me1hkdKhAOT09a8pq7O1R/eDpAfLOfy9aJdhYjZFVMhSFH4VnLciiVb0EIcn60InEP3WbdqAsYU+mK3cFKdy3U5p3RLHAxYELV3UFY1nqjStF2jHr1rmqTuZR1ZPFGF5HXHFZNrlsaJWehYjDN+FZy7G1OPMyeMbEGPyqZWKasOTIP40uli6ceZj5SVIb2raCsKpbmSQXuoLb22Oh7j1pOPMx1alocqM+wt3u5vOkOR2zSlK2gUoWV2bVo4j4xgA9qXLyop6q4skoaXaxFSmTBcxYgzjjgYHNRJq522UYg6rvJHepi/eE2RyD9y4I/h61u37qBM+bPj9GB4iU9Pnr6/JHeiz4XPH++O0+DvOloPYVwZl/FZ6GVaxR6fFkWycfw14NXc+gnblL+mSMIuawSuwpLqWWLI+V9jmtlBNGctZFm3DSgSA9etROFtjppxSRdFtGItpANZxjZ3KrR90ovCIpv3fyjPaupOPLYwiktjT01mCEsefWuWra2h0Qg3uKYFaQu4HXioSuU1yahbg+aexrV/CKGsri3CFyVH51ildiqRfMC5VAGAocFua09NCrMpWXBGPemmrGM42kNeMlBkUXNou8SazQRk56U07mL95k/hjzTq2FXjdXQ2oQuYUqf7+53iQgYJ9OledOTbPWukShty49uMChJtEvXYckWTkg89azejEtGVNUiwmfQU+YqbujIlUqSuKSbZlK9yrMqtIOCfm7V0JLl1KUF0Pev2JI01P46eGtIg0eG5zq0QVYoiVbJAIlUjA4JIYdD9a+w4S9r/asXCLtbex6EJ044WfO9kz1r/gqv47hu/wBqbXrLUPG19pWm6Vbx2V7BprMjXFqkYHkZUHOSAMYxkgngcf0tTpxw+R0HKN/teafcyjajk9Fw66v7zf8A2NviZ4M8beEhpfhS9v5NItQtvHFq7hrqzzwUk6F1zznFdUcU6qi1vYv61L2V1ueBf8FG/CGk2nxS0LXbeNg0Vy9sAE4ZvLznOOnUj61z8Vxni+CMTTau7G9bmng1KerPEWQgbvzr+NZLllY86LtoI8ZaNsA89KcpWQ7KRzmqJcfbS+Mbf8aqFuU4atNxndEeuJHqGkeRs3HaRtxW1FSvcio+enY4fT/h3cxah9rnQ7C2QD2retW5vdTOCGHs/ePQtEhSzsxbxjAC4zXDODR6uHjyxsKfv59aw2NZS1FxuGOMUpNtHUrONiMrhixBJognY53pIIs7ifWqexvB6lmOM+UxwelYydmby+EoRhvtDL2Jrog/dPOUbO50Hh3KzCs5XbOqDRlfEckzISeR610UUtTzcbfmRRU58Pyf9cz/ACrOprKwJf7Oz5b+KKH/AITth/tH+dfa5SrYM+KxqX1k6vwQoWJM9wK58Um2z0MKro9J0FSzDA7V4lXWR6cUdRpCIzDAzjjmsamkTrpJ20OstLeaG0F6I22dFbHDH0rnjTlPRI6veWx9r/sxXsnwW+ANqY7WTTtT1+Vrm5uIn2XN2qYIiB/hjxwfUnjnp/Xnhpw3RyvJIOrFKb95t29ba+X/AANT7nKKGEwODVWtG8n36X2OK/bB+J+v+HdBk0/xKou/Eup2hkcPiY2VsVJSBTjKyEcnngYr188x9LlcaTsvI+U4gzZ1ZOMHaC6dz8rvjLea8PHMt7r1jdz28zlzb3HiBZIxz3jiIKduOor8+k68qq8+zPzrETlVqpR0Rvfs1aZ/xc2xktlQKZQ2xmOMenJr3qlN08BP0PsMuhGjS1Ppn4oaNqutzPrHiWfUZFgCixVohb20K9gqnBbPqBzX8+Z5Kc6sueTtcULSldM4l5n2bX49q+V9xsmV7sdo+ftpfb3rsX8MdF+9Y2ZBvnxjjPGK5GtToULT1Ls/ywBMc4qG+iN6vwFCNDn8aIvU54qzJZh8uPUVbLm7orSYxU8tzJK5E5BzxxQ0S3Z2Kdwu1yCOe1VBaCjG7uQXH+px0oXxEztzFWFArgsPwrqfwkyGTpufHepTsjJrU7r9mfSftvxTS7ZeLSykfnsWG0fzr9c8FsKq/FVSq/sU397aR/Nf0ocw+rcC0sMnrVrL7opv/I+vfCy7YVHpX9VQP83se7yZ6D4BUS6sq+Xu6cYrrofC2fL46LlFJdWeq3Muy1bjnCjAFYxXvHp4ut7LDtLfRHmnjPfJPIzsSQT1rutZHiYN63fU848RR5LE8e1cVY+twb0RwHia2yXB9OleTXjc+twU9rHmfi+zdt4x9Aa8fERS1Z9xl1RKx5N47tFhDGXqc7R6183jU5n6DlNVzaseH/EbSZMtMY8H+7618pi6ahJs/VsgrxUrXPJfESXNjHcRCP5JQG+jCvhc7pqpUjUXTQ/X+Hq8anPRb3V0Z/hmJpZwZSQc8V4+Ik+TQ+tw79jues+D41S2UL0r5/ENvc9vDS5nc6CNcHkDmuE9BbizkCPpgkcVk3dmVd3K6AKpyO9TLcVKNkU7s7lYEfhTtYivbkZs6eDOVc/dIziuiclDQunBQjqaaKgXpjjisYqUncpvm0LECHBIFYyVmSlZlmNdqg+o4rNs0VieCMhsnj6UX0ub0HYlK4OO1ZNhLWQICOetbU1c3hZRC5mEEQkbqOme9Xd3sjnrvl1M4GXUbkAk4Bxirm3TVmtTOhB1JczNe3gW2t9qisEru51TktkT26EoTmpqTLdlGwyBD553NnB7ik9gilBGjDDlTj09KxloaqV0MdMMQSdvrThrIFdu414w0LfQ1tfQo+bP2gSP+EkCgdH/AK19hkelA+Czu/tzsfg4caYn+7XBmb/es9LKvhR6dCGaFVJHSvCqWTPoJr3UXLBtgAP4CoWrNKVlEsXMxjjVs846VpGTeyMqu5b065Vk3EYU9qmcjopfDqWLq/8ALiIB5HSsbXeg6t2jPtLma6u+e5wQa1qNRRz0YtTdzoLRFhiDE9O1c6vLc74tNhNMASM8ZqnKysRVd9CKG5XeTt7+tKUu5NKyepL5yg7mwT2zWXM+hVSVw3oxxgVMpMKbsVr1G3ZUU4MqUL6iwLuiG4cnrTabZnflHRIxkK84PpWiaigiang+zkm1oQxRlmJ4AGSaicnJGUHy1T1fwt8JvHHjW/h0zw74curmSWB5h5UJIEajLOT6DHWtqOBxFf4Y+ZvKvBK7Z2nhn9jv4uaj4Dvfilr+gT6XoNjp5vLi+vIiuIixWFVH8TysMIo5x83Su+lk+IdGVSaskrhHGUFVVJO8n0POLvR9Q0+CC4vdPmt47qMyWzzIV81ASNwz1GQRmvFq0pws2tGbpxlJpPYzNQiyv8/asS2tDEvYSmSBj3rSmr6mUlqVobf7Rdxw93kA+vNaTvojaFrn2F/wTLsLiz/ae8P6FI02nym8Aeyugsq3CLhmA4+TGAQTjPY9a/R+CYSWKknf4e2jLxShPDVYvSyOT/bs1OLxF+1t428QGaKZU1hoVtLpQYud6qWBHK5xn1xX9I4mj/wjUodomuLlGjgqUI62ijK/YW+Kn9na1e+EfEFtp935eom2v9XZjFuKjKR2zHPmoBtwh27e2a8bAxUVfqeAsZXr4lRi32d+x6Z/wUM8JS+NvhLa/FfSrIxxWRjunwg/5YNtk/ONia9eg44ihUwtXVSTv8z6fC02sPKm3qtT5CvYEU5gbcpGQexHUV/H+fZdPLMzq0JL4W7ehwVIcruVmH7sj9a8ezkJNNmZrEMcaiTZzxzjrWtOLTuYYiSiZVvC08md3GeB6V1cySsctO83dFi6tgoGT09a572d2XUiyWygLJmsp1GbUWnEZLGUfAB96werLcR6oSv1oaaRvTkmQy5VuRinF9DOa94IEO4ArVPbQ1ptFyFf3TAkcisJbnRJe6ZpXFyTjjNdFNaWPO57uxu+HTvmHanONkbU9DI+JLbJhn8a3oQ0ODGSXMkUrUh9BkAYH5Dj8qyqRfPYcbyw70Pl74syGD4gsgXPzdq+6yyCWDWp8ViaUpYrU63wDC0kSM/tjNeZjaiTsj28PCMIHpWgrt6DkjgV5L21OqKcpaHUaREVlB7nsa4q1SPModzsh7qse6fszeCPFnxJ+JXh7whpunQSafdXLk3N3biSO1kjUOzc8AlAeDxg19xwLktXNsyhBr3E02ell9H63X5LXS3PoDVvG1lfeK/E3xMu1tpNF8GQJa+H7SPG2S5GVRD+ILkfjX9Z42Ussy+FCNnGST6Nq11buuunVWfY9zO8YsPT9lHoj4B/aj+K3jD4g61eappM2pSrBI5vZ4xta8c53hZGZQq9s8nA4r85x2LjXnJvZH5ZmGNnJqV1ZPW/U+Sbmyjk8RyXMuhNaSSvkp9sMxOT1LZNfP4CKq4nmSObB0fbVue1j2j9mPRzdfE3TrFohtJzKGXcGH07/Svr8wrxo5ZU923LHfvv+P8AwD6ulKUI+R9ReK5fCr2byXPh7U4HLHN7JcRNI5HQBHXKr9K/mjH4qjWqS5oNa73N+RuSaaPLPEcFxHme2zjPfrivFpwUnuYVVJ7Ffw7qW+5IkIXnvXTL3Y2RNGShK7OlhIeTzAQRmuV3PQjKMmXbxv3YGew6Vzyb5hyK0QBxxznrVwiyHHS4XHCbc9q0k7IiT0KzLlcZAx61ClYUdHchcY6n6UORFTVkEybhnb0qoy0CDKt4hC4zz2NVF6mVValeGMj/AD0reUlykxegyRfmOevfFZpuzId7nrn7I+lGXVtY1YpwohhU/iWP8hX9CeBWEdsbin3hFfi3+h/Fn0scz/fZbgk9o1Jv5tRX5M+nvD0QCque1f0NA/hfGSu2ei/DqJ/7TVkYAjGDiu6lb2bPmsU25xt3PSJpsRMkg3cg5HQGsUlzHdiK6hSkpq7PO/F0cstxLMzgjJ4rrs3G7PHwctFc868RRtuYgVx1j63BPY4LxJHjcMg5ry62iPq8E9jzjxarh2igTc+OT2Hua8LE80nofZZe00nJ6HmPizSSGeVjvc/xV42IjpaJ9zl+IvZLRHkHxC0nekhK/WvmsfR91n6Tk2JcWjxTxrpx+zzIF5U5FfEY6hzwaP1vJcV7HEU6iOY8PyYuFXb/ABenSvnZwXsz9RqWnZo9a8IAm3X0IFfM4pu7R7OCtynQxpzzXnT0R6Em1qhHQlME9KwvqZ25iq2RnjAq2vdubRVkUbrkNzQ3octfWLPSfh38MNV8ba9Z+GtJmt4Gu5/Igur1ikLSn7se7GNx7CppxniZJodWpGjpLc9m0r/gnV8bvEmkWGqeFLVbs3dnc+dbFCsttfQZL2bj+F2UZQnhq9yllVSUdGcNHHL2tpKx5v8AED4OeMPhbrcuia9YNJGLaK5gvIYyY5oJR8jgkccgqQeQysp5FeZi8JVoS1Wh6vNCaumc+tsV+Ug++a4ZRaHFWY6NTEwyKye1i1oxzEn5QetOMbnQo2V2OQqOv41t8KJjK2rMzWL5pnFvCeSaIrqznnJ1Z2L2k2gt4Azr8xpfEzqiuWNkXWYsnJqZys7IiWjJbVgI/p1rB67myvbUbCrfaDxxmtI/CD6GlbYAOfSsZp3LjJJWIZRmTJ/ECiKszaKdh6RF0Yf7JrYLq582/tD2wi8Qq7f36+vyT+BY+DzqV8RZHV/BmRJNNUIvIXnNcWaRUajbPVyqlPkTPUbRCYgD2WvAqyi9j3ZxaSLFspJwc47Gs76EQdmWdRt1MYPbHWqg22ays0T6QuYwpqZp3Jg2noTX0SlNg/Os4t3Nt2MsLQRuWHQniqlHmWpE1yyujYi5ADd+2aTfKrIqErMV7QOCefzrHmbZ0WcmPh05B0P1JquVvczlBpj3soxycc1KTuUoXiRiBQ3y8U5RVjNXixtzACASKzjudF7K41FWNQCOT7Vra5hbmZLbwkvuxx3qKjSZfKkz2v8AYP8AhNf/ABJ+O+nwWtgbgBm8iLy9weXhUQ54OWYV62W4P6xVSseXip+zi5PY/fL9nb9jD4OfAf4f2Kav4esZ9Qh0EWN/eXMahfLPzOv0JJz6195ChCjBU4K7SsfD4nMq9Wo0nZX0Nrx14B+Anx38Ox/DK5u7P7DbEOlpaIqLwuwbeMBgp2gjle2Dgjo+r81LlnHQinjcRhavtE7yPy1/4KcfADTbPUrbWtM0yDT7ttbbR9D0iFX8xLOGMLb28EAGWZ2LMW6cepr4viGjGKv1vaK8j6/Jca5vls7NXb835nxt8W/hX4k+Emvnwr4y+zQ6msKyXVhFcrJJaEjISUKTsf1U8jvivkJxlTnyy3PpqVRVYc0djg79QY+aum/esNpWKIEZcEgcMM56VrUvZWFHm5j7O/4JoeO/EfhT45+G4tejmuLS7uY44EutNh+ReBlH5kUDOeymv0rgmrUWLcJyesXbsa4nDVMRRmm7aHk/7Z7tD+0Z8Q7m9gY51S5WMY5dfNYKw9SOeK/qWtBLK6Epx0cV8+n56G+Jw7hRpc38qPOP2fvilFofxBl07xLolvquosyLDqdzdGOLTYlwI/KiGFaTGcE85Jr42rWVHEqMHqeHLkp1NXZn6R/Drw58O/jb8AfEHgyFZ2hEDyWw1RcvnaQ6ZKjdkHqABV4epXo4uEqjvfRmkswrxxUXT+F/kfmR4o0OfwhqV14V1D/W6LfPYTEA8qp/dOfQMmB9RX5/4q8MRqwWZ4dbaS/Q9eUVOnoZsigKzetfgSjynPHS9zF8Qyu0Y2np6VVOT5jkxEHLUo6JDJy7Grmww9o6Fq7XBOfxrKUi6tiSzXEfGQKxmrk03YSaM5Pt0pKOtzXm0EjZc4A71UloXCLvchu1QvyOlYRTuObsxsQZmCp0HWttIajpx6l5ExET7dawbuzeU/dsjKkfbcsq+tdULqOpw8t5XN/w0u2QH86iUm2a82lkYPxSl3TKievIr0cOrQOGvTvK7M7Szs0sxtxlfWuStL3zeEkoWR4L8YfBGpx+Lv7cihzCTyfSvpsDjYyw3Ij5XHwqPEXWxseCU2RKG644rGrCN/eNaHNM9K8OWvmBWYDpXl16ii+VHr00ox0Ox0PSri9u44LaFnJYDCjJNcsIOpUUVuy23sj7n/Z48Pa/+y/+yj4v+Mnie0+z3HiEi18MWksYDHCYe4TuAQce9f0/4W8PTy7D+1rKzer/AER9dlGE+rXqS3Suzyn4462fhP8As56B4Lu7xrXUtaaXWNXQW/mybphgDaeM7OhJ4zX02b5hWjNuk9XdfJ6P8D57PMQ5zcoPf9T85fjrqq6rqdxLqLDUEUnbDqmsGBVHYpFGRz7V8BjJU+X3rN+p+eV+RxcJfEeb+FrYNMCkAjySdoYkL+fOK78mw8IrmasexltKpThqfRP7JunrB4uTW5nkKWdoXZ4s5LHgdBXbxTjaeGyKbTvdaeZ7MU5KzPV9bu/t11JeSyvvZiSGV+R7lySa/mXFVlVm5JWudsNFyoxLwCYEFfwrmhdMtpQMG90ya3b7VBxg5wK6ozhf3zkrUXKN4l/w94jJPlT8HOCDUzh2MaVWUHqb73fnxB1IIIrnlA9CFRVBYQQmSOtOOhq+wlwpYD8qcmkibJakfl7F5rJXbIlJFeVG3dO/FaOJnNNkQGQRjqamz3JUbPUrX6ELtHbrThuTKxWjjIGDXRYzaSZE4xJgUnZIhu1z3v8AZE00x+E7m+K/8fF+xB9lAH9a/qjwUwvsuEp1rfHUk/kkkf53fSfx/wBY4+VFP+HRgvm25fqfQeix42Kf5V+wxR/KOKe56H8PVP28DfxgcEda7qHwM+bxTvOOnU9Au5Jfsx3BVAGNmazUVzpp/wDBOnGSlGg3JW8jgfEjBZZSG9eK6G2ebhrtI8/8QpuLHHeuWofU4N7HCeJoQQ20Zry66ufV4KW1zzvxJpxjd3inJ3feU15NWn0R9hgq3Mkmjz3xRal967cY6GvJxEEj6/A1LWZ5V4408Or/AC889q+exkbxPv8AK6zTR4h4z04rcvGy9TXxmLp8tQ/V8sxDdJHB2VkLPWXt8fdkyM+lfIY6Eqc2j9ayjFPFYOEn6Hqvg1f9HTjOQK+RxWsj7DBrQ6GMcEYzzmvNqbHoTGyghC3fFYRV5ELSRSkJCn5eD3rpkrI6GUX+fOBWUkcVZaM/Vr/gmX+zD4H+KllJ4NvILfXNKZgZtMvdJkjktnyfnEpB+YZx1Ar7DKcFh4LXWP6nk5pKpzvpY/Sr4f8A7IfgT4ZQBhqKoxaPzGuZdzMqfcJJ+8y9ATzivedOkp2ijyniOaOpxH7TX/BPf4afEbwxe3mnaTaLHNaXKF4otwMcxDNgDpiQCQD1B9a4sXhoV3ZoFmVWLSvoj8MPjP8ACrxB8IviNr3gTXrIxzaNq0loxYdQMlT+K818Ri8JKhVknsj6zB1Pb01JHHOh278cD1rzpRSlZHoqnFiKuAQ3fpxVaRRu1aNipqOoJAvlxdT2oh77u9jhqOV7Ii0jTpLqYXE46daJytojWnBR1ZtFFBAToOuBSbtEpuzuDKdnHTNYLcEnNktoNoK9qJKViuZbCxL++JPTvVxTsU3cuxsfuoBjsaGkty4xuBj+bJ45rJu70NXJRViS3AyxI4K1d2kZyd3ofNP7SbyP4lWBB0l9fevtMl5YYdyZ8bmkUq3MzsfgtZiLS43xztrxMzrOrWaR7WAmo0UemQ7vLGB26V4/LZanqRfMixaR7+c4FWkmjN6SJ7su8QjBzx0IrWKUVdlKDauyxpqCKPk4z19qxqSc3oP4SWQF5PkGR9KIxUVdlwTvdk0CYOc1Dn2Lm0y5bglh/OspMzjuW/mY/wBKUY31OuD0HrgDIz15rQibaYkgyDg9cUrInmZXeN2YE5H0pSWhWhL5Rxhhz71nGOoNuSGx2hZ9xBwP1qpy5VoWlZGhYaZLqF1HZwIS8rhQoGazhFzlYirJKJ+pn/BCn9jbxhbfFVfjT4stFXQrDRUubGFk+9dSlghPHUIm/wDFa+7yPCOgnVfbT5nzGd4qEMJyLdv8j9Av2lPGMlxFPYPPImnWR2SJE+DPLj7v0FfS0JqGjR8lCDi7tHzN4Z+OGm6L8XLXwkZJprrzFkAadY7eEZyFJYfMfbFdyn7urdjrp0PbPsdX+2h4l+G9jYHxx4hNro988BEmreHXtxqCoyfNturkhbUEcFogZDnjHJHzOaV6CjJN9Pn8j28JTrwlThTg5puz2tHRu71V100u7taWu1+PXx18R+ANa8aXh+HGhWtnYCVsNBdS3MkzZ5eWeU7pXJ5LcCvzrFRoOpenGyPt6blCkoyd2jze7cliG6nrWcYqOoOPcqIBvOG4zxVVLtWIcuV6H0j+wV4zTw58c/CpuPDwnshfKLq7jtkj8vJHLuzBnHsM8npX2PB1Z0syhzaK251QlVq0ZKL1sWv+CnXgu18IftKeNkWJ0jvZRdWeeMkgSKw9iAw+or+tsJF4rIKFR32/I6K9aVbLaU+trHzd8Oohrt8PFHgC4inkivVmt9GuGRbcyYxJMzu4CtwACQcDkYxXxuKhOOK5ovqfG4lS9u5tf5n6s/sP+I/FPi3wRaaf43u9Iv4mO2NbG8huJLbK9GkR8tjpzmuWtO1S8ZbGns4Qj7SDafmfBf7ffgVfh/8AtW6vobyra22uWzI8phVyJEyUYB8DPbPUZ4r6NUaeYYFQqrmjJWaPp43rYaM1+B4xHvk0yC8OCJVIJBJ+YHB6gfyr+XOLshrZDmMotfu5axf6HPUkpXsZur2/nRcDpXydPcxlqippUZRipXjNdErJGdODbO++BH7M/wAYP2qvH7fDT4J+GU1TWFsZbs28l3HAPLjGW+aRguegAzySBV4DA18wrSjS+zuPEOnQp883Zdepx13pWs6Bqd34f1/S5rK+sLl7e9tLhCrwyoxVkYHoQQRSxeGqYStKlVVpIdNU7XTuQSjf36HtXLdJG65Yka4ViFPJqG3IpzSN3wp8IPiJ8R9B8S+KvBnhyS9sfCGlJqXiGeNgPstq0qxCQgnJG5gOOcZPauzC4CviaVSpT2huZ+0purGDestl3MnQdB1rX9VtNA8P6Tc39/fTLDZ2VnCZZp5GOFRFUEsSegHNcHJUrVFCK1YOuqdNzlokX9a8N6/4W1S98N+KdEutO1HT53gvrG9gaKWCVThkdGGVYHqDVyozo1OSaszSM4zgpJ6M5qG1vNQ1hLHT7V5pp5AkMUabmdieAAOpraFGrWmqVKLlJ9FuZq50WjQS28pjlQq6nDKeoI6isuVxk4yVmtzelFHNfEVlNyAWHB5J7V2UeeVlY8/HX51E9Ak/Znfwj+y3eftF/Fb4hW/hqfUokk+H3hCTT3mv/EUAlVJrxgCPstqoLbJWB8xlIUY5r6OHCuPxOAqYpRdoq5nTo4uu5vDwcqcF78tkvLzPnD4iXgu9MLEAjOQe1eVl8HBnj1pKqjK8D2LSyBmGMHiuzGVUlZGuHiken+HrKSUqscZOOuB2ryPZuctTu62R92/8E7v+CfsPxj1RPi78Q7WeHwhpF3Fc2NyxaGS+kC/NFjOCmTye/QV+ycE8I0qVsbi43k/gi/zPbwGDjSn7WprJ/Cv1Z6P+2p4otfjZ+0H4Y+AXh63jj0azuUja3hfEUEURDP0H90Yx71+6RVLLspkpxfNNaWdrO63VtVa6tprZ30s/Yx1V4PCcl9Xqz48/4KFeINP8XeL9Su4/D97PBBH5EOy/FrGkSDaFMjbcKAB0JzX53jMVzVGr7H51meLmo3g7n5yeP5NFuddNpYadpkbh+tncvcOf96Rjgn6V85Upwr4hLQ+XoWr4pXLXhGxuJb/ylO1SuGdu3rX1+W03TjqfWUozS0Wh9Rfs86DqGjeD7nXrQiKWd/KjZSM7B9cV8X4iZhNYeNClKzPRoWlLU6e9e7lXN3cF3J6EV+FzlJy953Oumlcy7hwueMAU20KsrakUW2ViNoINTN3WgUpXVjP1bRDG32iz4I5OKqliLe7PYyxGGT96O47RNfZD9nuOCOMGt5WkrxRw05ypyszorSeOWPcrcEflWEkerGopx0H+ZtJLD6UJ6ag4NvUxb7xhpdte/ZGmUMTggkVpGlOesUc061KE+W+poQz293biWNsgjIrOamnY6HONiB+pAwBSs0jlk22Vrghvx9aSdiLNlc4Ude9bxkmhNOLISBk80pbE1E+U+nv2ZNJGn/DrTxjBl3yEEerH/Cv7R8NMH9S4IwkGtXHm/wDAm2f5Z+OmZrMvEbMKkdUp8q/7dSj+h7No8QyBnmvvIrQ/B8TLQ9A+Hsb/AG0Mq7iAMDFddFrkZ8/Xb9rGy1udxfW+ozQs0RBVVzIfQelKDgpasvGUcVVg5fZW5wfiBQDJ6k1tO3Q5cNrY4PXwxLdiK5Knc+nwmhxHiFclsn8RXnVtWfT4NnCeI4Q7MX/AivNrNH1WDnZJI4DxLbo+8Bfzrx8Qrn1uCm1Y8y8Z2Pyvxxzwa8DFRufc5bVV0eK/EDSzvaUAcE84r5TMKWtz9PybEe7Y811S0MOsRXQHEnB+or4/OYWpqaP1XhfF/vHQfqj0XwbzZoM84A4r8+rzUps/UsGrx1OjOMZC8964JvWx2z3EkT9znFZx1kCWpm3GApH610z1N+5QiJEuGHU1nPY4K8tWj+in/gkzpCxfC3UdXt/CMWn3UFuXjWG584NgZzyeK/R8v5JYazseBnnOq1zp9V+Ndz4w1TULB7q4kmtGxeRKdghBJAyeOTjitqbine55dOMpU7vY9E+GnxA1LRbaKzvLn7bpVxH/ABndtzxzVyipEuKWp8pf8FV/+Cad18X9D1L46/CHTBc3981tPqFvCMtviDqW/FG6+wr5vOcM61G0Vqe3luZOnUjCS0PyU8VfCbxt4YTzNX8PXECO8wUvGePKcK+fTBI6+tfHfV60ZXa2PpvrEHLc5W5geOMrjNYOTlLQ6lO8ShDpfn3Pny/d/lV875bIhQ+0akaJEmyNQMelOPu6shzuxVU8nPNZTd2NXY4KTwBweaUVdmyaiiWCMhTnNaNpoyejBSFk9T6U0rIcE2y/ZWV1eSxWdnbySyyuFjijUszseAABySfSueo25G0p8ur0R6D+z9+zzfftCa5rPgzSPFtrpev2mmyy6DpuoRNjVbuMgvZhh/qZCm4qWGCyheCRXTg8N9Zm4t2fmcWIxUqMo2V0932OQ8O+EvFHiPW5PCWk6FcPq0azCXTmTbKjRIzuhDY+YBG+XqSMAZpOjU9q6dtUdkeSUOa+h8t/H1A/iFbiQH/Xf1r6LAVL0eVHymcyhGrY+rf2G/2RfA37Snw213Wvht8Z5Br3grw7JqHjLwjqeg+XejEhUS2IWVhd26AqZWPlyJnIRgRRLAUasZVJyafZK/p127mVDMnQnySjfsaVl8FPjB8Pfi5pGgt4HS+vYrc69p2UEtnqdhbxtctOjHiSLy4XJB5+VlIDAivGWHrfWVCKvbX5I+khVhVpSjs7foexftV/sa+L9b/ai8XRfAbwBa6f4Zl0O08XIkl/DBZ6RYXsMcyxNK7bEAklMaqTk4AA5Fd1TK6zry5FpucGCx9NUUpu7vb1PmnULe40q9k03VIDDcwNtmibqp9K8iesmj2FUTjdHqv7Nn7JXxW/abtvF2qeAP7PttL8C+FrjXvEmsatcGK3treJGYR7gDmV9pCrjnB6AV6GByyti4ynHRI4MVjqWHqRjLeR5xYyJcIpQY3AH868qoveseiproeo/BT9lb4j/G/4c/EL4teHLiws/D/w30VL/W9R1KYxRyyu4WO0ibGGnYbiF44X3GeqjgK1WhOstIxPOxeZUsNiYUXq5duh57AwJznj61xct1c9KGrLKsGbH5cUm+VHUvdjqDOeq9KlSIVpPUbvKgFh2pttky0Y5HBHPX1FNXY1dkyI0p4U0m1FGsYpLUtw2uAFA696xbu7g2fSv7AX7IHiT4/fES1eHSpJYWmEUaqnVdod29MFQyg/3jXtZZg6lWomlr+h5eMxCpR53sj92fhR4B8Lfsu/BO30WUwQNBAJLwx8B5yoARfYABR7KK+7oQjCKiv6Z8LXrPG4ty6XPm/4z/FvS9XhvI7e6lljgV5Lm4jI2xsckku3yK3uTxXRKcYy1FOm9bHw14b/AGhLH4gftDDw/wCG76H7Bp0hBTTJd4d8/ellwTIcemBWka0pU7LY76FKcaXtD2T9rDRtO8bWdqbP4c6r4w1GK0Urb3O+PTrXj70jE8+/SvnM2um58ik0j2sBKpGzvZH55fGXw3qHh7xTNa6zqWitcsSWstCZWgtR2TK8ZH1NfCV7892fUULKOupwN2mHJ7DvipTui6jvsU4tzSnaep6VTk1EIwW7PSvgx460X4f69Zas2nWjXPnLi4u4WuGHI4VB93616OXZhTwteLjC7v6m6rRpRtFanu37dOj3XjLXtP8Ais267i8SeC8KQ3EdxbYJQZ6ZADc88mv694SxbxOUWTdkrnbhY062G5Xpa58UC28QaRLew+G71LCys7tZpjcQCSG3DYw5Qg8tjp3x7V4GYxcqkvet6nyWYRnGUpJfNH6G/wDBNr4u6tfaLHEmv+EtQhV1Ah0S1hsZh6lgqqzH2JNckI0+V6nHB2pO99e7uYv/AAWa+HL217ovxh0qFo0TZJJIqbiGU8g/hX0eTTlPDSjfY9XLsZKVH2aPh1rvT7PxRczM3lWN4Ulk2RY+8PlkGST1PIFcPFXC+FzzL5Uais3qn2Z6qjy0/e1LOo2E1pJ5M6/eUMhxwwPINfyzmuTYzJMdLDYlWkvxXdGaiuS/cpwwqj8cc15tS7Ri3bY9g+DP7PfjD4j/AAi1P4ofCH4nxQeJtB1tI77wpZXZg1CSxMYYXcIyDMobcGVeRtBr9W8LcFODq1cNU/fytaNk00une/yOvJs4xGXZpyte5JW12+dyr8d7rV5ptE/aJ1vRbW/nnmjg8VW12hMdzfW5G7zQMHE0agk9c7u9dPiPklWhmNLOFS92VlUVtE1uejmWWcuNdS1oz102uVf2ofhb4P8AA66V8bPg1azTfDnx7ZSX/h2OWbzJtIuU/wCPjS5jnLPE+QrHlkKn1r89z3Ko0OTFYdXpz2t37HlxwlWPuVN09X0a6WOz1v8AYa8O3niPwF8Kvhb8VLnV/H/i3QINQ1jQNR0j7Lb6MZIvMxJOWICgYG4juPWvtl4Z8+CU41nGryqXK1dNeq27HZDJsQ8JXxNZqEYfD1cl5W/Ix/hBovxf+BHxU+JHwC8WWUuk3Wq+Abqx161PzpNBHNHKWVh8roQuVYZBzVcJZDicDmuIweNpaTpy1+W6+89ngvA4TFZrH63T5otPlb6SadjW+Ctp4l/ZU/Z38QftieHCp8Xajqf/AAi3wyuwoJsrmQZuL6MH/lqkR2IezSEjkCteGOFaODp1cfiFzWdonHPh2Cqyw+J1jFuTVt0npfyf6Gd8Xfg9478TeALT9oq61u61+8vLW2j+JE10f3+ka1LkeVOWOS8gUP65PPUVrx7wfOcoZrhVa8E5Q7WSu7f19x1ZhgqFbFKNCCp+7dRXWKW6XY5n9kcJ8Nvi8nx18U6I76L4U0u71GC6kg3QvdouyJDng/vHTI6jIryvDTLVDF1c5xVN+whGSjKzs5K10ns2rq6vpdX3PJwWEhXdVVvdSjf11NP4Afs3+IPi/wDDLxT+0D4x8Uw6FoGnXRtrAvbb59Y1WVspaQrkAKM7nkJwi9ieK8rB8L4nOniMfVbjFuUvXr/wCKNOtUxUaVON3L8F3Lmi/AL4E+FPCuoftFeL/iLB4/fRvEraJ4U+Hem6dNHF4r1YeXsxLkSSWilsuFRS4Crkbzj28n4ew2EwNLFV0+dtvlaVktLapu736WVt2KeAlUxzg17iV3K9rPqrW/rqtNZ/2/fiZb+FPibqvhTxtYTap8X/ABT4UsbTxBotxdeZpnga2ECmSGLaFUSBQAkQGyEEqNzHNfouJxuBjh3Qw0bc0LWv5avob0syVPK3gsJ8ErttK115+fn+R8WeJPDPiC++Hk3xEt9LuToEOsjSk1NosRPdeWZPKBPVgg3HHQYz1FfiU8JWw8XOSsr2R8TUhyNqw74daelxaiZmCqMbmPQZrzqic52NKNlG5+gX/BN7/gnVqn7Qk9r8Rvinpcmk+ENKut7TFismrgdEXP8AB6t36Cv1HhPhFTUcZioafZi+vr5Hu4TDR9nGpJa9Eff/AMefij4f+Ffwvl0XwTpdtZ6Zp1qLbT7WIbE34KooHTPQ1+35Tl371Tqf0j6fL6FqnPU3PiLwXe3Wl3fjL4y+Jr+Mta2/9naZMreaGnkXdMygZ56A/QVOfYydT93F+6r2Pnc5xjxFZpNpK58F/tX6wviHU7i5vtAvNUVnZg+sXskFrH77cID+tfm2MTUuj9T89xsrtxR8oTSjUdde1abT440biLTowIk/4EOW+tceXJzr/wCROXUoQndu7Ox+Ffh6fUtQbajO3mBYy3Qljivs6clSpNvSyvc9+nzK7vofVFlpdpomlWuiQwBRbQBSSg5OOfrzX87cWZiswzac+2iPWw3u0xs54ICkV8k7Jm0W+Yzb2JyhO3t0xTvd6lVI8yKmlGUSZZ+M806l4mdNqErGowQDaeQawUWzSpMxdb0XcxubUYYc8V10ZuOkmctWipxulqGha3JE3kT8EHHNbzUbXijmo1JUp2Z0Ec0dyhK45Fc9rnqJqaujxf4ueF/EVv4hXWtMuXARiQmTg17+DxFCnQ5ZRufL5nh6sKqqRep6z+zp8N/iT8Xfsuj6NbqbmciOJdhYufQADJNeJmGNw9BNqN2uh25XSxmMR7t8ZP2YvBPwK+HqzeM/GjHxWzhZNFdCjRDGckGvlMvzTNMyxcn7PlpLTzPfxGDw2GoJqfNPqeAzuqt26etfTwhzM8tyWxUkmLGuhw5YFWuRu5HB6mstZy5V10OfF1Y0cNKb6Jv7lc+xPhFpP9meE9Os+nl2cYIx32gn9TX985Jh1g8nw9BfZhFfckf478XZhLMc6xOJe86k5ffJnpGkR4KjPfrivXWx8FiXoz0DwFGyyMTLs4HzeldVKyi9DwK1nUWtjrbtnitWVJDt28nNCXNMjGSlTp8kXocRrjsSwJ9cH1rR2sLDrVI4TXwxLljXLVdz6fCdDitfQ7myK86rc+mwj0OJ8QJu3ZP415lVan02EaOE8Q27fMpI9q8ysmz6rBzWljzzxbbeasgK84rxMRHU+wy6dmjyHx7p+5H/AHfr2r5/GUudH6Nk9azR5N4hh8sOQvMb7hXy+PwftaMoH6VlOJdDFU6iOz8GsklpHJGflZQQRX5Bif3deUH0P33CKLpqUdmjo5M7RkCuGTvI2ndscwP2fBHaphfmKgmzOkj3IRnjNazdmaSlZMotDtffUSfunDUV7s/or/4I06Vq2mfDjULG68Bx6UskDAk6ms7t8p7ehr9CyuEZ02mjw8+k5VeU8u+JV3Ja/EbXFsbiK21ZLuY2q3LeXb3TKTsjfHoehPrXpThTpux5sqE1TSWx7J+zz8SdM+IHhNLTULZ7DVbdQt9pq27FUkAwwVxwwzyCOKSqRmuVGChJSsz3j4Z+Ozplp/ZlwFeAtsImQhX/ANkhq5p0VN6FTThqjk/2i/8Agn7+z/8AtIeF9Vn0PQbbStZvNNuYTNFGFQNMoBYDpnKr+VctTDUXGUGt/LuXRxdalNPdH4d/t7fsur+yh8YF+FcVw9wttYI8l0y4Esh+9j2FfFZngI4KrFR2Z9dl+NliY3PCChxgdPpXDZR1PX1cdB+W24I/HFZuTZzj0V9oPvU8qZ1QcbD0Q7uD2qkrGc/iJCSowoHTpinZIcVzCRxYYu3FZVaj5bJmnw6GpoWs6zoms2mu+GdVlstRsLqO4sbq2fbJDMjBkdT2IIBrKDknzLdGNaUZwce591f8E+NP0X4h/ts6X+094++H17Za5qUuoDxvFFa7dNF0NNnna8CFDtNwCrsgdAjq+0FXUJ9LlVWjin7TeXfp/XzPncdhamHwMqEZ6/iehfBb9lPTPitrPiP9oCHwxDNfLpFjN4msFiYyQapaXCTpMCOdl5YswDjgvuU85FdcsLOvN1la73M4Y2vTpKF7PbU+If2+P2KP2TfgJ8ZtT8F/G/VfE+lnXbqLUPh/qNhAo0i+t5WYos0xBe34ZQz7W2FWyDxXZhMvhQpt332fQ5LyxFROauluegf8EqJtV+Bnxw8XaX+0RYQN4p8I6XBL4Hu3wZ305+J7WWdI1W9tJ7ec7ZcttZVIAU5CqciqezsnLa/QTw03Fzi/kfcen/soa/rf7Pfxh+F9g8P9o+B/EN23gDVoUDSw6LfW6tNbBhztaKTnsWDGnQwNlKzs7aP818ylXU8VSb+F7rzRp/8ABUbwx4d0/wDYo03wf4U0Sa1ufEHhHS18YXmnwFpLqK1tmSwhxniPziGOM9BnoMaZhUqQw/sqXVamuXqEcQ1L7L0PiH9nz/gn/wCKvFnxLvNF1/xLprQ23w4nsr3xLrOmvEkuqyxeTcHBL5a3mmVN5+Y7R3FeDgcC6tXVWX3nq5ljVyJRv33Prn47/s36V+xR/wAE+tG/Yc+FGtG58V/GLV47zxl4imh8oyaZGA0jspbckKoAADz1GMvX0OIpxw2FWHpOzlu/I8enUq4zGKu9kvXU8X/YV/4JB6x+1B4/1j4neKLG68P/AAu01LiPT9Z1iM26X0gUpHLGpILohJc4wGIC7hk14uV5bTli268OaFn5avZ/Lc7cwzeNHD8lN++fSv7TP7KPgX9njwT8MP2cvhX4Ge9+GPh/Un12bQtSuUS9+JPiDy2Km4LD5LWJf3k00gWOOPgc7AfeeHpwjGnCPuLWx4uBVfFV5Vpy956X7H5C6h5q6xeiY2o23sqkWL7oM7zxG38SehHUYr4DEyiqslE/Q6FqdNJj0AXp1rlV5Gsql42JI14yB1NKzJT6gFBX1PbitVG2rGk5MktbVmk3MMA9qU59Ea25DRt7TBwqg57Vz6yYpS5Uet/s7/ss/ET46+LrXw94Y0G4nAvreO9MMRYwRyOF8wgc7RnNengMtqY2uqadtVfyXfucGKxKow5pbH7rfsWfsreB/wBkT4RWGq6rp8NtqsWhw29/KVGV2FmOPclv0FfbYLCOhTV17zWp8XmWMliqnsoO8U2cD8cv2gb7xlrU001qTpUKMIYZFZowARwQnJY9ePQ9OK9eFLklsRQoKET4x/bB/aAFzpNzYabogltLeIuNOWyggtkbuwW5kCs3uQ3XpUYh05yutDojSVWVo6PzPnX9jOSbxN8Sm1+5tEt5JpdywFIRgZxgeSirxyeBXRCmvYNJ2stPP+t9TrnGTiqa2Pqz9pfw9qfjW1TS9T+IfjC+hSJVTRfDGkuwUY6E8KT7818bndGtKLabt5I97AU1CKtb5nwd8bfBE3gjxE1lJ4U1nSkcnYmtyjznHqVH3a+JmnTdtT3IWlE851BkVDnpRFNsHZlG3OZgR68VrpYhNvQ6nwhq1tourwX80cTbD8onciP/AIHt5Yf7PeunBV1hMRGZvThG92fT7+K9Q+LfwD1H+0ENxcaFMt9Y3A05beOSEjZOkUYAwgQg/hX9G+GmfTxcqlKSt8rJ37LsdtOp77S0Pjn4m6Te+DPiY6rOfslxAIwVTIYEDy2x0OVx19K+kzpSoz97ZnzWYyVFtdWe/wD7CuufEe01eMQ+DNEu7O3ulCXGkQ7L0g/xMiHkj3NeLhcPP2nvbHjQrVKi5X0PuD9qH4Zz/HD9mDVfD+r6NcJe21s81oLyM+YRjnIOcfTNezgcTChimqcrxZ6+XQjTrLsz8gtTE2mWws9QbdPp80lheDBXgE7cnjt/Kvqoz542ep7c4S5+W5teCvEVnqkC+E/EsypjBtbrdkx7sAE+q+3tXyHFXCmD4iwzpSsq0VeL6/PyGoprXYu6h4evtJvjZ3sW1uqspyHB6EHuDX8wZrluMynFyw2JjaS/HzRm6fY1fCdxfaHrVrqOm6lcWDQzKTfWZIlhGeWQ5HzAZrmy/G4rLsXHE0JOMou+mhrCSpp3V2fWut+HPhp+0DomqaP4Q13UdS0DWLU2kep6/Yw299JfRrlZpkiZkDnJwQeR1yeT/VOUZlHjXhNrExV5q0ra+966fkj6jL6lTG5aqVRJPrZtpJ9rnkn7Mnwv8TeIfhv8Xf2U/iK6iDQ4U8Q+Hzeg4jvIz8wjz/z0TKkDrxXwWRcJ4x08Tl+Jp3jF3pvzRhLD14NU3G6T0fkdL+yL4yX42an458L/ABOvbzXIBq9ol/eWFuItQfRoHVfsyyDLIhjzuQHGQMkha/ReE81q4zAynXaWJopwWl1t8r+Ttc9/LIVZ4ZzhJKpT5nHm2vbS6Ou8LaxF4j8Yx/DK88OC5h8Da+um+HdauU/0q48PX8r25tpf72zKOM/d2kZx17MZTqY7EKtLSooe9pprudE4zWKWOvaU4JtLbnWt1/Wpk/Eb4PfE7T/Cfg/9jnSAl2+mfFi4vLbUcHbbxoiSLMT2G0r7ZJ715GHyv2GXUqKl1u35JtorHuOOm8XradNXt63Nz9q3w/4g+FXwgu/hSmtwi8vPG8nirWWugyxarfZhEdsT/EWCsEX1IxXNxJOp9XlUpSbqOybls1s0Y4HD0KlaWPs2/ZqEddl3K/jP9lvxX49+GOv/AA/8J+D7zQD8QPiTDcWmkcyNZ2UUKvIWPCxIZvlZjwAo44xXFgcnw9PI5YXmfLL3rJaXa7X2el/LueEsPSq0VCvUbUYt3S3fRb/15npXxu/Z2n8V2Xg/9nnwl4mXRfBHhbTJH8SeJlvFje91KZ905gUfNJIwGN2MYzkjodaeS1K+XxwdNcsNLpaXQZW8RQo1arXvzaSSW0UtPQ5D49eFvBvwj1TSj8H/AAwniPxhYxJYfC6GG28mw8Jxplnu3fjzbgkl/MkH3+nau3EcO15YeEILVafL0FLB1acL695X1u/0R8uftHfsR/t1a14bl8ZeE/gZaak+qzNe65rtrfyzahrMzN80s0shO4ZJIRQBkmufG5BjYYD2VGMJVI9b2fp/SPn67xDgqSUU1pvZv19Oh8q6wPHek+Fk+DPjW81O1sdF1G4ntvDdyhVYL+ZVSSTZ3dgirk84AFfkeaYXGTr/AFasmnF/D5s+ZxW7j1PvX/gl1/wSu1LxfoVl8Zf2jtPNlokbCS00ZxhroDkeYD/D04r7rhfgmnQccTi43l0j/mdeX4KVlKa17H6FeMvGVrp+l23g3wNZx21hbqIILe1jCqqjgYHA4r9cweEp00pTWx9Xh8M6b5pnzn+2B43tvC/hdzLbSS/2TIRHbyy7jeahL8qIFPPyZz7V3UIww1CcoN+829W3v2u3ZdktF0R0V8QqVByi9WeHfF7xRF8Ovgxpfw+0rTrma7itjPqjW+pGL7RcyfM5IRCeDx+FfB5pi68arimfm+YYmpKo7M/OL9o7xNr15rE8978N7NYBuMc+s3F7OVPsJCo/8dr5TF1qsorZnydao7uz1PE9E0/7dKzyxJG078iFAij2AHSu7J6XK+aW7PVy7BPku92fRH7OngVrbUhrF1EhSwQZR2O0y9uDxwDk1pxdmMcrymfK/flotT3qdN39metXUrO/b6AV/Olecqs25bvU9CEPZRUVsipJJk9OB61yOGh1RimrkF1go2B271jsxPcy7DeLhgP71dXuunsYON53LdxObckHisbq5dVKIQTxXAIHPtRJ2QUdTO1rSWjb7TAORycVVKq+az2Ma1KEndLUbo+ryxuElOMdc1rZDpy5NGaGq6ba61BuZVJI9KaqezdkFeFOsrMn8CePPGvwtjktPC+sS20bnOI2KlT7FSD+Fc2IwWFxkuaotRYaVbA3VN6Mr+IfGHiLxjqjax4k1ie8uXHMtxIWOPatqeGpYelywVkRKrf1KLyiQYB5xWkGxKN1dlcFt2Ofxrpkk4ChqyzpNm2pa3ZWKrkz3KJj6kV2ZBgvr/EGGw6+1UivxR8rx7j1lXCONxW3JSm/nytI+2PCFt5VuiKAAqgD8K/vSCUEkf4/ZlO83c7LSUOV5rdbWPmsQzu/BvmoH+bA47V007cp87inaSZ0d+bhoPJlQHPKkck1UEk7mWIlNRUai87nH66pRmVjyKJnVhmm1Y4rXV+ds1y1NT6TC7I4zXUyWwec159VH0uFkjjNfibexGPcV59VWPpMK1Y4jxFB1+XjFedUV0fT4SWxwHiiDAfK5yK8bExPq8BPVHlfjiyZ0cdueorxa0eh+g5VVSaPH/EVjHHfNGw4bOeK8LFQsz9HwlVeyTNv4XSo+lyWxPz20pQ59DyP0r8a4jwksNmcpdJan7pwjj/r2VqLesdPkdU3zAjNfPySPpprUc6jyOR1FTB+8XFWM2fcMgevTFaztfUGkyq6YXkVnI5Kzsmfuv8A8ERL/UfC2qGy1fR/C1mJzgrZ+IfOnI9QCSPwr7DLKs/aNL8zzs4hpZo0P26fAVppvxj8RaXqWBZ3skjDKcpvyVbH1xX0Ps7xV2cKalSTR5B+zv8AtK/Eb4U67B8KtT1dpI7dDb6ZpWm/6LD5MeR59xO7ARqBgcYFYurTpS5ZdDycTFpuR9t/DH4xSeOPDVpeyxpcW5YJGbK0xGx9pXOX+ozmuuCja6YU1KejPS/DHjiTw9feTPJKtuXG9LmJgyA/hyKmfK1Yv2Op8Af8FtP2WNa+I1xY/ErwVp5vLy2uCJEgQl5bdx19Tg4/CvBzvCxr4PmXxI9zKKkKMnCT3Pyw1LQ7jTJZYrqJkeKYxyK4wQw6g+lfAzk7n0vOraFGZcLjH4UkKSVrjrcjbtIxmh3JTsPZSijAzWkNUUldksVuSC7d/WoqTtojdWS0Ox8A/s7/ABw+LPh+98T/AAr+H13r8GnybbyDSpYprqIAAlvswfzmXBHzBCPetqGX4nFQcoK55+IxdGlLlmz7O8H/AAD/AGZf269f0fSvjN8XZfhz8SdJ8NW9tqP9keDZo7TUoLaLHnTwSRQtDcIo2yOuUOwMCRyfoI5Tg6llWlyysvJXa21S16Ppfa6szwnUxWCVqC54777H1p+w7/wTy+HPwY8PeJrTRf2kF8c+HvEOiG0GradZzQy20vz+TJ+7cAhQzLznAYqSFJFe1hMDg8JR/dyv9xwVsfUxM4txtJGp8Irj4hfsaeI7T4bWVzN9mnvFthpes2Qkiu7AuXC2l1j54xuOLeRi6/wEDCnCEadOSaf/AAx01YLGQvL5PzOq/bd/Yl+HX7Y/wo1jwBdaZZTWes6Q9/4LVrfabK7RS0lsMc4YncBxg5wK9OqqSw7gtnsc9Kr7K0Z9Nz4Q/wCCWfhrUPiDfXfwF8feAp4PEfwnupbLQ5NRuVnmn00BE1DTpHKgtH+8W5t8jISQLklTXzuGhOVe0pXa26aGlesow91NJ/muvz39D9OPA/hzRvhb8QrjQRoYA19rO1uUZ8iULYhCSPTCH8MV70oxi2oxOb2c6lJSSehwv7RmgaXpv7T/AIW8C6vpqXlhd6KNP/s2UB1eNMvuGeBsKrj3b2rCdOC1k9dreRvCMo0nJep3H7NX7OWk+CtJ8Q+JfHdn/as2r+MpNVsBeDdIjlmYyFjyWZyWOe7DHaqwkKWFpWirWMq3Piqiv0Ru2nwT8JeLvjR4i/ah+Nzw6jpOg6Sum6Tp1xDmEJHlpCUb5WLPjC8jgc5zV16FOo1VvfTZdPU2q1fYYaNCmrPqVfgX4s8R/tXfEy/8T69JJYeAvCc3k2Ph2C1EVp5q4Kh2DfvXUcsMbV4A61eGdCVBSg3e7TVtPKzvr56fNnk1KTU7NavrfXz0Pk/9sj9mn9s//god+0nraeFfE1t4S+E8cAsH8TXM7QxNao2GiLFkZkLclE4YnkmvNx1OpiJtRm1FrpofQ08VhMHQjTS5pfqfHvx6/wCCdmj/ALLX2zVvhh48f4lf2azRvr1xoX9l6Boblwgae6uH2XEoydsabsttzu+6fFqZOovmparzOmhmtWp7lZcvVWd2/kYHxG/4JzfE/wCEv7I95+0Z8Wl03w1K2swroCa1rqfafElvJwfslrGpIxuVyXYfKOKxq5R9XwjqS3NKOcxr42NKndq2uh84AEAJj614tup9LBdyW1tQTkg9eKynK7LT1NjSdBvNQkC21s7jeqFlUkAnpUxi5PQzqVVE+vv2Jf8Agmx4o/aT1XWdCtLNxLHp0M1pfXERFtAzEcu+MfgMk+lezl+WVa6do3T69EeTjcxp4S0p6p9D9ev2R/2GfhR+yho8OoaRYxXnieXTIrXVdb2bPNVOcKucKufx9TX2ODwVHCRtBavd9z5HGZlWxnut+70RyH7Tvxjt9T1G7gtL6ddOtIzbmS2Vm3dzgKCck8Z9BXfBR6FUIqnC/U+Ev2iv2kNG0TQrmDUtbluIY3Li2GhXjIMf7IZc8d6upVaXKmd9Jyqx5dUfAvxX+OFp+0H4pGieGfDmhrpTSIjXUGkywXKzhvmU+azEDGORisqPNOo72sjoUW2kuh9I/sQeGlXxdCoi3xRERPu6Y2g/lz+tdrqQlCSjvHT8LnVOlGVOz2Z6l+1h8Rm+zTad4h+Md9Z2xUolvpcV5JImONoVGhT8ya+LzaqneMnZPrrdfc/zO7Bpy0ij4W8X3Wmya5O2l6ld3cTMds9+hWVvcgu2PzNfFVVTU3yO67nvwcpRtY5+9O5SSeaqL0LmuVFeyYeaOf0pN6mVPfU2dNufIukmDgFSCCVyBUuLTumaSk+h9DfAX4hTabqVrqHiC8imtZojb3EV9c7pLuNxtMUUC8AEHrX6bwVmdTLMxjWnPRq2r1+SIbnLXY4z9vb9nq88NeGYdS0Ey4sYfPs7lOs9mG3x546rkxkdsV+85xOGPwMatNvSz0+/8dmZYyjTq0VNannn7L/ivxPrmvWGs+HPE9xp80a+VjS/IsBIM4KyXJwRx1yDmvnMPjG6lqcrNaadn0Pka1R06z00P1V/Z/1LVLnwWlr4h1mK5jmh8uSN9UF6xBGDlgOn6Culxp4f95LRLf8Ar+rb7HpU8Q6qTitT8yf2/fhNc/BL9oTU7fC21hrM3nQSBPl80HKkE+vSvrqVdOUX0Z71LEutTu0eNwJA1yqxyMpjx9mlZCpbAy647nPA/pXs04KcWnv0NoSna0keifDnXdI8UWEPg/xNdGMMSsF6Vy1u+ef95cda+M4w4QwnEWAcZK1VfDK3Xt6Hp0kpwaaN7xV4UuNA14+Hp7aUWcJH2SRUz9oU9JOOCW64zx0r+YMxyvMMsxv1PExaaeiWt/NepyVYSUkpKx7B8BdD8YfDyFNf8SeFr2z0q/gTUNNluflS4WGYJIVGemGce5XA5r9e8LI5jlzxFDERahNKUb9GvyPf4dlzVqtBb2Xy6nvEuteD7PWr/wDsjRbOWXU9HWDzmjHmTWwYMrZ7lWwMj1wetftcJRVRRUlzNX83bR/LX8UfRRwVWUISd/dlfyvtqcR8NfBGh/Cnxz4j8c+BmW1n8R6G8Gp2EkY/0eYZYlcDkMCea58NgcLhqsp8tru7sKdCEJOWu9zE+DXj+C90vxB8Qb5Ior+80+IwEkbt8byJuI7HzNx/Wrr1KdS7hombQlGrJKOqT/NX/I9Y8GarPreoXHjXVjFLKmoyW6XAPJ/cxgnPvgflXncl5cvYeJnGko0odtg+JsfhjWrSwk8dafa3/l2jTrJqFvvRZArBJEXu4b7vYGtqWEjUoqNV3a3duv6XJpe0pp8q07GWvjLxRaaH/wAIxe+KJoUutLji2rIUl8ojHzdlLdcAd66q+AoYjBuhK7Tja+z1Vrq2z9OpnSlS+sc0Y+diZ1TUNTeDU7iK9mtUE9rGGDLaPt4wf721mBPbJreMoqKO181FOMNL7/n+ZpWGmeHX83xN4ytbaGwtomYylQwnQZ3Zz1BORjp1q+dRj7j1/I4cRzXUYPU8i+O3gDxP+0T8VtFm0z4863o2nWejMvh/wt4RtHXMqrujEiJ/q4gAMtgfWvjM0niZ1VGlW5N2+7Z8lmmHUqntY3TW77/M539jb/gm1rviz4pXvx3/AGpb2Rms5x9lgnw5Zl4Er7hhm4yBg1y5Lw/W+uvGY1+0n0v+p5H1PnxSqS18u59ueL/HC30UXhrQEjt7SLCQKh2hVHAz6GvuqVCNJXe57FKlHDR5upi6Sp86aW6vYLa20+Jprq9fkQgHliQevoKK9WFON3u+hnUxUYLmbevQ+SvHXxU0z9ov4+y+KpZlXwr4Slc6dBJLhLu5HG8k/eOR1NcmJxCp4dKL9Tw8dmEKj5Y7WPnf9qf4i31ppt1cabpl0LGJikosxeSbF6AAwKMfia+BzKu8RUcr6t6nwlf2ODpQoUtIxSSXZLY/Pz4keJfD3ibWpVtLHV0nLnbJeXkpA56bZOcfjXgezjOty2Z5vK6uIUYI1fhv4av9T1OG0tIN88kojt1I4Zj3+g6/hX12CdPDUJVJacv+R9fhqcqUE2fVXh/w7beCfDFvotpPGzxLuuGMZzI5+8civxLi7PZ5vj5crXLHY9XCwtdsj/tGOVsM21vQ5r4hu5tOw4yq/wAw4Hes73ClJEcxDIR7VjL4jSUbsp6Oga7MbDvW9m4HO175o6vpAkjJU8gVyqTjLU6ZLnVjKtYHtH9++auVps5nenoXAgul+UA+oouoKxpTs9WZupaMY8zQDkdQBVUqrcjDEK+wzS9SZH8qUnI9a2qQ6nLTnJPUvzxpcLkDr3qYyaOxSi46mdc2MkYLJwK39pGSsYKKvcp+c8XU01ZLQU5SSJEm8wfLyKFKw6SV7nTfBvTTqvxP0e3dcqlz5jD2UE/0r7bw0w/1vjfCq3wty+5M/H/pBY/6h4X41p2c+SH/AIFJX/A+xPCsTC2THYV/aMddz/K3MJJ1GdbpIIZT19QK1R8/iHod34PwInY+gxxXVD4T53FuzRu38khiJZsbR8vNXFK5y1JSnJc5yGtZJZmJJ9aU2ejh3rZHHa6Mlua46h9HhbOxx2uISSa4qiPo8K7JHG68hLnsa4Kp9JhWcZr8R+bA7815tTRH0mFlocJ4kg++MHkV5OIVz6jBT2PNPGNkXDblrx60Ve59tltVK1jyHxnpJW5Mo7GvDxtlufpOVVlUhYpeArz+yfGH2GUgRajFhc/89F5H6Zr804zoOphlXivhP1HgbMPY490G9JaHeyx/PyMV+eQkpWufr8kuUUqdhXpnpRflkWrWuUp4MDcRjHrVyV9TCdSzdim6B+M8j2pygkrs5Jqck2fqD/wSc1fW/CfijStQXxH8M7RWkASIThp355GSCc/jX0+W0bVeZNHHmVKvVv0R+hH7efgqHxTPpHj22tklGo6cIrmWMfLvA6g/lX08ZrlseVh4TUeVs+APi34Ga78Uf29BaJEYNLEsDMpeOS5SUrh1zzjcOPpxzmsKkOZ7CqUk7pdTK+Bv7UXjT4U+Nbrw78RdX1PWtdWQIvk3SxmNTyBGWwttEox9xST/AHu1OhW9lFqo7ihhVD32z7x+D/7Rem+J7TTxqA0yWe6TaVtdTluLnHo2AQD7nimp+1leJz1aqTseqfGvwxPrngW21Tw4k0lxpiC6hNxAAWA5ZG7Hj/8AVWMoLmtIlVJKzifG/wAe/wDgmF8If2orf/hM/hjqyeGNevb9bzULMoDBdnHzBeyE/lmvJxuS0MQ+eGmux3YbNKtF8s9Uj4A+M/7E3x5+Evim68O+Jvh9fWsqPcyoZIvkFtETh9w45XB6183WyuvTm9ND3aOPp1Y6M8gFhNAw82MrnkEjqPWuGVNxdmdimmSKmXAI698USjaJvTTZteH/AAb4p8Swm70bwvqlzZJcLFdX9ppU88Vux6bjGpxx261lTw9Wq/dTYsRXpUVyuVmfaP7NX/BO+L463Gn/ABJk17V/A2uRxxy6frfhzSLiLRdRiUBQ8r7leGQYxInyEHnvmvq6GAhUoczcqT7q363X4Hzs8XTpzSsqq3s/+Br9x9m/BX9hz4jabcQt+07Zaf42vLXyn0fx3osJLuI33JFcMr5YEZUknJU4IINejJ127NqS76HJGtBybpNpvdM9d8Nfs7S/CjV4PHH7LbP4deO4afXfh/eKpsdUViBL5L43RScZUBtmc8DcTWPs3zc8L37EQk2406yuu/X797fl06ntWqaPoHj/AEy3XVNKiaB4ln077TH+8tnHWMnqCp4HpXbTmkioxlTmysNFFno5gsIFMun3iXNmc42sOGH0NRVm1HQU4RmeefBf9k/wJ4J+PPiv9oXT/DUFtqOvxRo/lrtWXBcqzjpvXzXQN/c2jtWVCjBS5+xy1bytDoj1A+AbfUvFa+JbuLdKsh8rJ6cEZ9uGI/GuxVLNnbSvGjZMwfEfwisPF37Q8XxO1S1Vk0XTTFZqx/5aNjJ/ICueonKqZySUFE9Be0MsGPLA2MMY4yRz/OtJdxwSRa8Q/DFvHPhe28InV7jT7JGEt1LaNtleTO75W7H36/lXVFNRTi7Na6dzlnWjGpKctX0NnRfBfw9+HnguHwNoelwWmlW6bRaIDh+5Ld3JOSSckknOayjy01Y4IOtKrzLVnB/En4bfDP4t3MVh46udX1HTbJleLQbW6NtYqB0EuwgN9Ce+MVnUjSlJXOtSxFON6as+r6lfxX+z38GPFg0zWbr4T2msx6MyvothqsZk07T5F6TJb8q8g/vbS3uK3l7kLJGdOE5yu5WffqfDf/BQr9iDTfi/4pb9of8AaF/bE1GO1tlNlp1rfeB5lttKhGTssbVBmSQnADHr1LHivJxmDWIaVSfy30/zO3K8Tyxao0tbtPWzdnbr07W0e6uj8u/iN8K9W8EfEDUPDUWl62tsJmk0yTxBpDWV3c2xyUmaEkldw5Ar4/GwhSqtQeh9vhK061JXWvk7ln4f/CXxH49mtotItGAnnVQSP4S20n8DgfiKwpUXOW2g6uIUYvl3P0l/4J8/8EjfEGvWh1j4saJNp+gTXMV3b3k48q6mxghEjOcDr8ze2AetfTZdkk5JSrLlj26s+dxucRpXUHeX5H6g/Df4beBvhB4StvBXw+8OW+mafaoFjhgTGf8AaY9WY9yea+np0qdOKjBWR8pUqzr1HObuzD+PfxHi8D+Bbv7JcqLu4TywQ3MSnq2B7cD3NEm+ZRRVCLnUu9j85v2qNf1XW7ZtM07X7E2LwkiyvZTs388s0cyNn/ewParahbc9WMVPU/MT9r6H4gadqDtpVpbw3TTLFFdaTqdxGYyxwCCZHDfTg15Uqk5VUlqdkabXwifAvwpM10L+UtNNE3+ukGTLNkbnJPXJJFe3QhK/MehSi4Ru9z7a/Zt8N3Ph7RJdYt9OaSRLfEMQZV8x8dMnAp4utGlSaRaXNKx5D+0T4713SruZfGHwA0xvNLKLjVonlMfPDIUkx+NfnOYYiu5tumrHrYaCmtHsfOV/cJLM0kUSxqxyI0GAvsPavn7XZ69JWIJkMkJYdBV3UQm7lOzIE2Pek+5m1Y1k5HSo55K6N4Jcp2Hwx8b2vgfU01GPV4dPdj81xFame6YeiZ4WvWynGLC101Ll76XZlUcUuW1z7A8M6TH+0J8JJ/B2paS8N5DaPN4eg1GQNcXMZGZo39N4GQP7wFfv3CubvGYN0J3Se192jilUaTjumfnh4m+F8fwu+L118P8AxTotxe6dd3XmabbpqJtYsE8lmA4xgZ+la4nCUMBiPe1TPncZh4puUtz9B/2FvG/hHSNNg0xPGfhrT3QLEtgvitriTI9VC8/ia9PD4iFeNoInCOck4bmt/wAFQPgRZfGH4Vr4y0q3inmsI/8Aj5gXJYA53ZPI5717mXtuLptvU9/DR5qPs9nc/NO60rV9Bv49M1WVZroKrxT2nWQNww46P0BBHavpqUrU7NnoYX2ilaWh0fhHTli1O3ubYNl5PKEanAZ+flHtyMk8k/StHUhXmowu29LefkelGs4LU+mf2fdVvvFdjB4JuTDPLt3W73Vup2PgjCsSMZA9q86eWYWvyynFOS6tLT0Z7GGVKtJe0jdHvfwd1G38C6dq3gq00/QbFLpJA2n3cCXqTmRWEsitMC0MmSThSc+tZTyvDxaSVknfTTf/AIJ9H9QpYlQnLm922qbi9Nk7bq3f7iD4b2V3NCz+K47NZrEvBavCekecr0xhW4BAz61306bUk7eR6l6fwRbs9/U2IIfDevyLNqOmvo88RZAzssigDtuXJZW7ZHHtVRjOau7q19/L0vvuvXVJkYiPs/dXvI888b/svwXtnrHiD4Z3kFhLfxETxSs3kzOf4kYfdJ56+tcVWLaahpc4JYhwSutEanwVsr6PQ9U8PeIbC4sbiyvxN9jl4aYkAFge4yCc0QtGNupg5ynJTZ2vwu8K+E/Geur4h+IF+4js7iW08PabBLua6mUZMm08FFyO3Gee1Z15TTXLpfuVXq4iFK1NX7s6+/8AhR+zRp3il/FPibUdVv8AUoLdYFSe9j8m4Y5LOoC4yvr6niodTMKseWCSR5sa2ZuacIpL0H+H9P8A2YNXvJ9A8I6dcSfaZVW5M16u+RuflVgucc8gde/Ss5wzGEOao0kd/t8xjG85RXy/4J2Wt/s4fDG98K3Wh+Mvhzrk2mTspW2tNVl2lQBtGNoAHfHPU81z0sbXlJqNWN/NHDLHV6s17KrC/mv+Cc54h/Yu+Gev6pL4x8L+OvEmi3DxwpqNi8sYjnhTO2MsoBwMnhcdTmuOcYzxKlVin5o4K9bEc3LOKd+qf6Br+mXOhaSfDugXQksLNB5MglJ85j3w2CTn8q+uwtWkkmlqRCEvtR1ONutQlt7tbZYWkmjbDLu5Mh7VtXdGSUrbHNWnJbs8P/bU/aA1Kys0/Z7+Hc80d1qYRtevLdwChBBMfPXAz+JFeDiKt6nM9+h81jcZZvm36Himta/oXwt8DR2lwNX0yyEZMuojTXlUHHLFk+77kggV89j8e4/u0z5upWv7t9T4l/ad+LOi3N5O3g79oy6m3yESWGnXzRK455J2nJ9uBXz1T2TTl7SzPBxU17SUZLU8N8P2Op+I75rjULye4Yn5rieUu+PqeprTAYSWIb956rfqj1MmwcpTVRo+oP2e/hc3h60Xxjqlr/pLJstYccpH/ia4OMs4WBwX1ak/ee59PKCvY9DuZopSWjllUk8xSdq/B6z5pOWup10bmZqViLhd8cYDD0HWuNTs9TWUVNGSt3Nby+XIMfWtGla6ORRcJal6F1ljOWB44rNJt6m7qK2hFpaYvTtH8XJrouuQypvnqG9KAykbeOhrha947eWzKM+nLMN2MHsRWikooxqWkP0fQry91COytkwztgE1CjKrKyOaU/ZrU+ovgv8Ash6V8bfB58Mr4Qaz1SKImO7IP+kE9MN0H0PWvpMFl1OrSs1ZnlzrVI1eZv3Tyf4z/wDBPr49/DLWJhZ+FLi/gjLFGhjO/A65WlXyrFU37qujVYnD1I3TPI77Q9e8PlbfW9KuLVnB2iaMrnHXGa8qpSlD4lY2jOEo6MgdlZPmHBHOawacXcqMkZ2o2YzhR9DWkJXL5ebcqW4aM7Txg1ra6uYSvCdkelfsx6d9u+JD3hXi1smP0LfL/Wv1zwUwarcU1azXwU397aR/Mn0qcy+r8E4bC31q1k/lCLf5tH1f4ch2wKAf0r+rIbH+cuNleTOn0wfMOK2R4lfY7rwiyrEx8vniuqMfcPnsVpNM1dQmDhmkPPQGrSOWTnUndnKa02GO8+tZzPUw3kchrRyW5rmqH0eGWxyGtDls1xTPocM9DjddUFmHOPWuGqj6LCvQ4/XIgzHnn1rzaqPosJLQ4vxDbk7uPpXmVo3R9JhJWsee+KrTIbI4xwRXk1oo+vwFS1jy3xfpZkVzjvXz+PjdH3+VYjlaOI1PTLuOz/tmxY+dp0olUDqQDmvncbgI4/AVKb7H2eAx/wBSzGnNaXaPRrK7ttUsodTtWzHcRCRCPQivw50p0arpy3Tsf0bQrxxOHjUjs0SmNVGc8Vdrs1TZTuFMgKov4it+ZRRSppvUrvaiIZxk1zTlKorGdRqKZ9O/sD/Eb4L/AAl8QW8l34r8TRX9zLgw20Nu2eeAhaN2DehGPwr3cJjcNFpRumGY0/Zwdz9sPhb4x0f9ob9mV9N0nTtaWfS4RPbya8hM8vHPJAzX1WD9+F2fFYivKFe6Pj743eCZmjmsLVmS6NpO6MkfBbB3jB6Zwp/Ou+K599WdkG17yPBfHHhzxLrI1jxJo8cMeoLotrcSSRA7JYgVSQSAfwlsDB45FcOKpwVpGknUqrlPVv2Kfif4ihuDZaNofiy2lumWKQzW5+yRjPcrxgcHADDHfjFVh8U6cbK6vo/M8+pR96/Y/Qv4M67rFlZDw/4nke4glQrLczuCZM91UKOB74NVK8mxxpKx5/4j0Cf4d+NL7RrUv5PmG809lzh4ycso9wea2pRSj7xnOKOv0fxl4L+Ivha48CfFnw3bavpWoWz203nKPMETjDBX6jr2p1KEK0bNGUJVabvFnyD+2j/wRS0DXdGf4gfseX32y0sNGEX/AAis7/6QroxYMrH73Bx+FeJjcmpyg5RWqR7eBzG0v3p+aXjH4V+L/AHiK58LeK9BubG/tZfKmtrmIqwbPTnqPeviMRGVOTi+h9TSqwnT5oanq/7HXwh/aP1/4sWNh8FPF2v6LNcgm4bSr3VIoSQMr5wsrebI7cjvzgc1vl31qVRezk0v68mcWOnheW9S1/M/VD9n34J/tV6vpUKftGa14Ea0hYpFp/iHw3LJdS88yGaWUS59G2gEHoOlfWr61OP7yd/Jnzt8Hd+zTTPqD4ZeBfBfhC2MPgnUraxLIC9ppd032Z27/I2cCtaVOnB3QqlSTS5lqddPpVtK0ax2aRyL8wKDbye446e1XUnpYhNXuMls5HAxndHJuYY7nrWN76m68yW+09XTzgq4bGT681q0mtRap2L8OnItuqxqqbowCVXqfWlbl2MUlfUmWxaKPAjAPRW6cVKhZ3Zp7VPREE1qiRvIo/1snJzVhJM0bexKWqXUg2og3E/3j6U5Nbsz9qlJx6sstq8yW42y7Sv3kDDkmqVVuNjGVOKlqjD1qeeXzJri7WGEj968j44z0Hfr2rJJRk5J79/60/p7m0KalokW9H8K6fOkVyqvcvnKi4OIsdyF9PfBrX3KkbIzlUcLouaz4I8Q63JGk/in7Paoc/ZILVSregOeMD0xXVBRjGxhDEUqbaUdTkf2i/AHiHWvhpPpHg/Sr2W/MTImo6WLZLyAEYJiaVdsbEcbhyO1Y15yhTfJuZU6vLO7+53t8z8rNT/4J+/Gnxx+0BNpV34Y12S41KEss0viNdXvV+UruuZndduOMgYAz+FfJyyupWxFpt6p9n6H2VLMqOGw6ldR9Fpsffv7Hv8AwTM+HPwF0rQtV8aaLp95q2kWxW3jhVmQSMwZpJNxxI+QMcYH619BgctpYaKc9ZHzGLzSpiVaLsvzPqpY44UAUBVA4A4xXptuTPKbuZ0uvWlzdPaaZtnkh/1rhsJF7saG+U05eSN5HyF+1V8W7G88S3Npp+q6a1pAzENNdbVll6MxJ6dMDtgcVrRoprme53YaDqI+Bf2oLbwf4t+1pqvh/SrlWjO06X4tbc+f4SvHU+9efj5U4ux7VOjaPJFHw3q/gbwnpvjOebw1ot3aXkjG38m41J7gITySoLEDA4BHqelY4Ci5S54nRCHsvU91+AfgAXupWem2ULFYGAHOAzY5J9ea9ufLFKbdmr9dPn3LbcrI+gfjLqOneEPh9H4a0nxPoM10se640q83o+cdVcEYP1r5LN8ddtJr5nZRpPc+M/GmofbtVklme6jcMcwtdmWMfQ5r4qrVi46Sd/wPaoQV9Ec1cOGf5f51hBNnf8KJoxut2qKlyFuZqqUuOBitF8Ipo1oDuXb3IqLLqVC9jT0LU7jR7xb208tZlPyyvEH2e4B71dOpKjPmiPlV7s97/Zn+LGsW/jS0/s2ae4vmlVpWUmWY4P35ZPuxqP7o4r77hjOFQxUWrtv5/ec1eCcX0PRf23/2S/D37SngbUvid8MjDNqliPN1K0szwsuCXK7edjHk46HPrX7RCrgs/wAJy396Oh4uJpc8VGrp28z5r/Yo+L/w++GnjK28Ia7pM1z4mLGE6BoeikujbsZklf6dS2AKeCnRwT+rz0kebLlwknFLU/Tax0bUvjB8Krm01SztLOG5siFsFnSV0yOCxGQD7Zr2aMlQxKnzO3bp69z1sNU95Se5+X3x2+A+t+DvifeaIqPJNNhLZZHKKzox29sDOeT3Ar26+NjKPu7HtyjGUvaK+ptfCr4Bp8RPtEt6IYbgzG10y80u5SW2nkjxu3qMPEDnG8gA89wRWOFxDm9jspKVd8qurLW6PrP9l39kTWtN8VHU/HFqkdnZ2vnywD5MqAVVffI5z3yK7q+Mp0qCUHds+iw3JhaafV6I9X8Wap+zRp1k+r6r4ekTU5RHFcNburRqQDkgsASe3v7VhTp5hUa95WPoaMc4lU5Yyjyea1K2g6h+ztrkjvaeHdRt7G7XdPeXjeUiFRxsBXkHHPPaprrHUVfmRvKOYUKTlKUbrpbcisvCn7KnxH8TXPhnT/G2oWurTIoWT7QPs4IyQQBjGfU1TxePpUudxTj1tucOJxWcU0qnJGUVul8Rg2Om/Drw346Pw+b4n6lb39pZi6vknt1a1kh37SwPfqvINZ1qlWXv8qs9kXW9tKDmoafiTnT9J+J/iHUrL4U65Drd1oblESEqjjg4JVdxwQRxk47VHtPZ006lk2Yfu6dJTq+7ffXY4t7j4n6BYanok15pE0+nSi50+3u5jbyPkqBH5mNuWJJBO0ZXn3JV6iaitU39wpe/JNXs9B1/4W+MfjTxBdw6J4Pu71pbyGLTI/tETpEmCHLMrYTafXrknjpXfTr0acLy0SLl7GhSdSpJrXReR6dpPw48M/sh+DbjxHr6xa34nLmVVkl/caeSM7kU8Fh/exXJ7Svmlqd2qSu7dzgpqtnE24tqH4swP2RP2hfjZ+0j4nu75H1FhdazPBoUmoXyxrNFG2GcRhiApAPzY4x1NaYvA5dhMH7XlSit9NTTEf2ZhcsnVq0+WMfLVn0TN8Q/Aeh+LtQ+FGv3+j3WpWjRSatHaRAtCzY2lyB6/ieDXz8MF7SCr0YtJ6+v9JHg0IVsdRWJpOSVtLvoSX/hX4UaZrlpqfjK1luoFlZ9lpahI3VgfmJYkggehA596cq+Z1KDhh7KXmU6+ZTw0oYayfm7s8D+K/iP4O6BfeIr34daZqW+ELqGkyXOpR7YoAnIaERl1Yuwxk8gZ78d+GebxUHiJLlSfMktb9Nf6/DXyMW8fGnGWIauk727+p+f9uuu6h4q1f4r6tpWr3kEtwSQIt4Bzksdq7lB9u1cFabhWlVUna1uXS3rte/zsfI4vERkrHkH7RP7QdnJp949l8ULnw7JG2BYWzPLGpGeWSbcSPUjPXpXzGNrxq1G+blv0PmMXVmtlfzPiPxRr2t+N/FUr3Or2uo73P8Apltp8cO8Zzk7AK4KVGdapFQfMn1JwuHqYmokke4fs5/B+S+mg1zV7Ui2jO+Eyp/rG/vH2r2MZj6WRYByT97ofoGDwywtJXWp79c/8SyIQy2YeDoWhmyp9wR0Nfh2d5jWxmJlUqa3NpwkzPkmDTFoyxU/d3nJr5qpPmZdO9rDo8OQD+FcVTc6LcqKuqaTFdKWRfm+nWrpTadhTgqkTJImsXKOMYPXFdEmjh9nKMrE+h75rstkZ3VMp2jYqjyxqnRSIUy3FYLVnfN3REu7dwPwquSNtTFRbOu+EVib7xjaQf2bJcI8oEixJuOK6ME4RrK5zYmEXC7P2d/ZV8A/Df4V/BrTfGXiGBMXEY8ozjBHsc1+i0aEXSi0j47G1ayqckWd/cf8Kq8Z3K30FrCsxyUfhlIPY+1digrWZyKNaC3PkP8A4KkfsO+FPGP7Pl78QPhl4fiTVdDuGu5IrSPlkP3wMdR3ryczy2OJw7dNao1wOKqU8Sk3ofkVMkisysCMcEEcg18LNJaPc+tcYqN0RNlk2MBwOKSjyoFN2K0sWDkVvGT5GiXLmlqet/si2BfVdX1JxwDDED+bH+Qr+gPAzCNU8bibbuMV8k3+p/FX0tMwUsVluCT+GE5v/t5pL8mfTmiqQg5/Sv6Dpn8M4l6nRaYmSMmumGp41dnceE0lSIvvwFx1rsSSp6nhYiS59DR1QxuzFRgnvTWxzP3p3OV1rcXYYz9aiZ6mGscjrSkAmuWaPosK9jkdaU85PWuKofQYZo5HW0JLZ/SuKpqfQYZo5HWImLMS1edVR9BhpWRx3iCL7wJrzqx9FhZaHB+JLfcGJ6/SvJxCPqsFO1jznxTZ/eHqOteJiYcyZ9vltVKxyGiW0C+IH068H7q5UowPvXBhEoVuV7M+ix1WbwinDeOpL4Dml0mXUvAl1J++0u5JhB7wscjH0NfkHFmXPBZnKSWjP6A8Ps0Wa5PFN6o6ERSy8nOBXykqii9D79QURJIxEvNZOTlqRJ21Z9cf8ElP+CZWv/t3/FuLxT46sLmz+Gfh+6V9f1LBT7e6nIs4W7s38TD7q57kV7+R5RPH1ueatBfifK55mrw1JwpayPnf4GXQ0/xlaE3l9DvbaRp19DayN7edN8qD3rzMLKNGtdn0uY0quId4n7Af8E5f2iNI8Li18O6udNtmlCpIJPiDFq11IuMfMq5Az7Yr6vC4yMpKMfzPnMXl8KDu3+B6X+098Oo/Dvi1PEOi7G06+DS20pQHajA7l9OMnj3r3aMpx2OWFdLRI+OPjD4Om8HQXGt2GVZ9Huo3hjBKuVJcxnHYgZHqPpWteEZQWpT9pJ+6VfhNc+KdQ0Ia1o2ua/q2qWlqrT2ui5W0hVjkMT5ilRztCgc46E1xRowjK9/68iVGpKGq2Ps/9lfX/G1posD/ABJFlYh41McZO+5P+9kk7q6klYhyU07Ht/xJ0JPHHhGLV9EDrfab+8tjLGdxUdVPqCKycn0MVTu7HlEAgvoV1Owv2gh3/vYT/wAu8oPKn0BrfnkluTKnKOjOo8I+KPEGkSQ3OnXgSFCSbhJiSx4xx6UVKnPFRt8yJJSjZFX4z/s8/s5/td6asXxe8OQw6quPs2u2QEc5YcbnC/e59a8rGZbh8VHVa9zow2Lr4TSMtD518N/8EwPHnwG+NWg6v4V+MWoHw4dUe51W6ttansbZ7VRlYJBC4ck9CQynAOOTXj08lrUKjcJtJ9v6t+B21MwjiqMlKPvPbQ+sv2VPhf8ACrwzrV3ceCdE1nxTqTzM9/4g1QXRtw2fuwyXLM5VcYGDt7969hUaKs1G76mcpVuT3tF8j6Lh0rSpVCnQoIpm+80Y2kk9e3X3qZtR6GLu+pbW0kRDBLHJgHCuTytc0m07MEr6jorfcojmcbgTySKEmzWLfQnfS2v7T7CUaME/6z0rZJtco+ZU3zXuXL+50vw3pfkwp5siL3OTW1SpSpQsZQp1MTO70RUu9aSPSotQupFaCQYJIwY29DWLqq1yI00qzhHdfiQ2k1vdSsyyhkQZIB49qj2kVudjhJRLfiLVJbbTorW1jJLABI8clj0qJylKyRy0oQdVzkatsmk+E9KSS8G5yBvcrlmNdjlHD0rs5K3tMXUtDYo3HiDwFq+px6fe28DXcjDy0mhG4nGfzArCFfD1qij1NIUsVRpcyehPq+laNaSjVZp5UcALEpuCqA9sDpXVOEKUbhSqVJvlRnapqkUagC9nZimGQ3ZCqe3I5/HFRSq233No4d3baMfXfA6eN9BfRdL8WXNtOTmVBfM/HcZ7jn9e1aVKUa0ddiZNU/flHU0fhZ8KfDPwqsmg0eECSQDzp95LSn1bPelTowpR0OSvVlW06HXXF/a2URurudUT1Jra3NscsITnLlijn7nxkviTUH8P+HoS5HE8zZCqveqaVKN2dbpRw8bzep5D+018fNJ8F+Gp/h54BuVM7qUvbmFh+KKT3PQnt0qqFCVR88vuM6cJVp8z2Pgn43/FvWLezklk0jVEUghiNEhvVznuFOcV1VJKCsz3qMYQp2Z8EftQ/G7wDeNJpU+maA2qXG5YbabwjdWFxJz1VlIUHvzXjVowcr7nVTlGkrp3ZyPwt0jMUE5mdriQeXBvJJ9S3PPtXoYKFo2RulPdn118CvCGk+G9Ph8V+LtXjskYB4JJ0Yjd6nArLMqyjTak9Tow1PmbbOE/ao13Vm1N/EEGi+HtdsZRtkuIgZMejZVgyH618BmLkpcySkj16UeZW2Pn2a8S4dpYoBErHiNWJC+3PNfOtKUrpWPRpR01KrZeRV71stEaTdi6BiA4HWuaoyofCZrkiYkAda0jsRJdTSsCWQM3pUyNKdrFwA554z1PrTjyy0YSR03hLxTr0US6HYa0mlWBYG7eFMNKPQ7fmc+1dWHr4m/s4PlXUxqSUFfsfWf7L/xqh8EarZaNpiNIsq7JdPcb5JkYfM03ZRjtniv1LhfNI4SrCEW30svzZ5OMl7dWd0cb/wAFAP2HYNN1NP2ovgppd7LpTuJNf0jRtQNtM4xkp5iqSoznnHI4r9mp4fCZtB1Z354p2s7XdtOj2e66rS63POnTniLpaTW11f8AyPQv+CfHx10nUvCNnoeqWdvpNnMpSx0xr5neUA4OQ3zSNnqTwOmDT5KFWiqV7ytaSZpSquPuXfMvItftzfBSHxJdR+JbTT0VF2ExhcZUHoQOn09K9ClRpvDcqdrH0GFqt0FHVu5ofsgv4M8S6hc+HNB+C+lJNa3YTUtSgDRpEEHJdwojkfIONhwB2PBPM6nK5cjafRW3PbowftZJJq2l9Gm/K39eZ9D/ABh8ceFdJ8A6nqOnXAtrS6titjcBMlygJbJHUE4HTvRl+HxM8YlUe2tj2MuwddV4KprKO6/LQ83+Dfws+Efijwxf+LNH8Kalq+ryyK13F9r8to2yfuDGVAznpivZxdbEwcU3GMXs9z6CrisTh68VOpGEH1av+pxPxL/Z1+FnxBtNQttd8R+PdFvbyPdHYafqLSW9yw6GQjA2juSOMdaU1i1Dli48j36fh+R04p4qVO1KacNLu9vw1ueY65+x344/Zn1+z1qDU9avtMvNMe2XU7SP7cs8kmfJXahUpyQNxJAHPPSssM8NNWoN3Ss1J267r5f128fCVVWqPlk79b6WPV/CP7AGtfETT4tZ+LXiWXRHbS4rSO30e8G5LcHLB8dzheQegI5q62MoQTUVeRVfNsNSXu3nPr2PY/A3w+/Zy+B1/Hpfwu8OQW+u3KSQHWonWCWcxrjL/LhskcsQck5OSa8mVPFVm6k0kt7HlcuaYxurXSUNLxt/l/w5m/EL4RfAHx14p03xbdXuppLrmhTWdzZrGktjcRFds+VI2oygllbIZWwy8gYKUMROMlJL3X3szanHM4wlCaTUZXWrT7r18+jWjOl8T+HvhZ8KvhxHpfg/wPsg1a2jt7HbcN9su0CEkyggEKozzk5B5xW+G+s4mu+d3tvpp/wRYR5ljcZzVJ3lFu6S91drPqcv8HvBOr/ERPEvjX40eBoL7wzPfpbaFp+qqYZJoRxJKxUNhfvY45GM4zkPG4ucZxoYeVnZ3aV9ei6FYvHYjDxVDAySqde2/wA/l+h6zow/Z78C6J/wifgSK28J2kVqXjvbGWKRn3BsxpySMfkTj0rzI0s4qPnrLn8tkeFVw+f4mXta69r/AHbOKXmz43/aY/ad8M/Db4pWHwr/AGf7G3E+s6qs/iHWdTfNxqDLHku8rHhQDtC9ATxgCvewtGo0pYh+/ayXRI9PD0qs5qeJfvPRJbJHYeIPjBbfELwGfCmt61JpsGq6VI97qz6iYmsX6IYlCnfk44ODz0NdSwM6MpSPSrwpUsPJ0r81rLQ+Xfifo8nwI+CT+GNR8bHVvFHiqdoX1SG5Z/Os4y3lM+7Hl5BVOBjCZwSTnzquIjgoyhVk9b20vbT5dd+2+ux+f4rEVaLkm7tnznrvizTvDGhnWbnxRHo1zHGUvJ9Cu2ukYDOBLlAVx7p+Jr5vEVYSf8Sx8Hi8VUk0qsbPsn+un5HyN+0b8VLrxlqjJB4n8P6/5r7VlsYWWYA9CQyqVPqMn2r5+tCpXq2TT/M8tUZ1attVc1P2avgBc+JrxNU1iJktkYMwcYMp9Bntmu2tVw+SYTmb1PuMqwMMNTU5bn0tDbW2g240y1gktmjGECKFx7YPUV+PZ7ndfGYiSmevzOcrplG5ncBmRcZ+8q8V8bVquUiprmIrVd7ZbgGuaU7KyCK5S0FUKMisndluSY6NQzbSeBVLbQaTG6pp8E1uzMoBx1FNOSkOULq6MPRMxXxjxgBuuK6+VOJ5/J++0OjkJcEEdetYNJM9BK0dRkYxw3pxnvRLUzcktj0P9nabWj8QrJNDldZGmABjAJ6+h611ZfD9/e5wYxOVJn64eKdF1Txh+xfFHcySLc2Q/esPlYcDnjpX6EpynSjc+IxHOq9mfMfwu+JvxZ+H+qC30rXRqFkGwbe5f5l9q9GGHk4pp6GanPmaZ9TfBn49+HviDZy+HNf05YGlj8q7sZsbZARg/WlGPIrWInB7JHwv/wAFJv8AgllqHgm7vvjf8ALI3ekTu0+oaVAMtCTySoH8q+bzHIfaKValv2PYyvGVL+yrM/Py5SWGZkmQq6sQyMMEHuDXyDdpcr3R78rLYgbBbAHWtbJIlRcme7/sk6S0Phy7viP9fqB5/wB1QP61/U3gtRjS4PlU6zqyf3JI/wA+PpS4tVOPlQT/AIdGC++8v1Pf9HGAFDV+vQWlz+TMRrdnR6WOQT17V001qeLXZ2vhgHy9ytxx8prutaFjw8Q/eRo6mSFb5cDNT0MLXkcrrB3FhgjGeazmelhrLQ5LWR94GuaZ9Bh2lY5PWVXJOK5Jps9/DS0OS1qPBY5riqRZ9BhpbHKaxEBuOK8+qme/hpnIa7ADuGa8+rFn0OGmcXr9soLK1ebVp3PpMJUehwHiOyDFmx0rycTTsfW4Oq0ked+JLd7O9W8txh0fNeTVpezkpH2OBkqtNwlsxfGRTQ9a0P4qwj9xdKLPVABx6An9Pyr5HjjBxxuGjVgfbeHmdvKMbPCN6J3+TPV9L+FF/wCPND8MX3wZN54s1HxALmK90PStNkefTLqGYxmKQgYIZdkgfIGHwelfkU8sxarQhTTlzLp01P3ijnWGq0pTm7Jba7n2v+xZ/wAEKvHfxAv7Txl+1vrR0HSAyyDwrpU4e8uR12yyj5Yge4XLe4r6jAcLTVpYr7jwsbn8qqcaC+Z+qsMXgD9lj4DLoHw58MWejaRpNmLfR9KsowibsYHH8TE8knJJ5NfWxjTowVOmrI+clG6lKTuz+ae0CSAIyAr6MOtfkk07n69VmlNo+i/2M/jVqHhHx1p3hXw7oWi6Tbu4Nze2Xh9ry+m56KeSD9SBXo5XWdOpqr+iuz5/MYOem5+wng/xFoHxZ+GkXg3VLkw3DWwaxXUbpPtWcfeMaklM+lfaUMTCpa2nqeGsPKDUmnb0Pnj4sfDe60+8k8Ka+pjdeLeZlyAV+5knsfu59DXU58+jO26i+Y+SPHvg7Wfgz4v1DxTpWuTozy2EU9hNdPFZmLyyomIQgsSQqhOm4t3HPHO8PQzrzvDlXU+qv2VfiLq+rCyt9W8LapZXUZAe603wsyynPZp7kkAe6itMPVclo7o8+NRwXvRPuv4YeI9INksBV4pXGHFxfCSVvXcBxzXSoyhqg9opvQ4n4weCl8F62/jDSYs6Vf5+3wbDwem7HqKz509/118v6/yOh/vIWe5z9npt/ZzRXdpdQPYyAeVJnAZT6+9aRlbU5pRcDqNL0jRIDDdRXkqsM7dpyrGtE4sh3bPUPhUJSUT7Sq7uTDcqDyfXgilKSitDOybPV5pte0d7aytdLVobgZZ44kEfPryCfoBXDVqcz3saJRcerNeHRmnQTQyQiU8EJHgcf0rhklNtxdzolOMNJIsrplwg3GIlv7ymtIU2lqSqkG7JkV7YRPGNzhXxjIHNFSMbGlOtyu1tAt70woIJOBjBZqmNRpWG6aqPnRg+IYdQikc20ZkUj5FC5zXNVvzanfScHBdznWg123kMJDJYXrskiuoxCx4BBPXntWKm0rPY0lCE1zL4ka/wusbyW5u31wstvZXDKskjf61vfgcD9TSwsZznepsjix9dqKUN2ehQSQTsJIbcMB0baP517y9m1oj56fPHRsr3+iz6ldLNNMiqp+6Rk1nUpubV9jpoYmFOPLa7CHw/o+nzCez0mFZR0lCZb861pUqUXdJIVWvWmtXoS3WnWOpwi21TT4riLcG2TRhgCOh57061OFSNnqYU8RUpSvF2Zkaj8LPBV6HfyZrUucs1vdun9cVzfV6aPTpZni+S2/yMqw8B+HvBuqf2vY+Ob4AH57a4nSRX9umf1rqpRUdEjP6zWre7KK+Wg3VvHNpGxc3KcScLmtXBJamsaairnLeLviRHdXK2wv8AoAc+/pzwOvWqpRvsaQ5IaRRyvxO+PGgeCvCMvh7wreh725T/AEmdAQXyDlVIBwo6bvyq/q0py55Pboc2JpuVW7Pjn4u/FzRrY3WpX6TiTZiS4t43YKATgEqN2OvQd6cpQpy5ranRRjy2fQ+Jf2nv2pvCNpbzpb/EuCIzK223t/El/AykeqiDg/U1zVKsaiutPU9ONGM1dHx/4bg1z4leLX8R6rreoXUJlP2U6hdyTlEz8zBn56VzRp+0qabG1CmubVaH1P8Ast/CabxX4gi1q/hZNOt/lR2UAKi9z9a9NNYSk5s7rKcrI9Y+L/xO8FaRG3hLUNUudImRStvIIRLEy+6/xL645r4rM8ypqo1NnXToux8v+Mf9E1qY2ep2sqS5PmabI6xOP909PpXx+Inao+WV0z1aEFymIpDeg9CKxgdySS0GqhMgPr3q2Zy1ZeQgQE46iueotTVKyM90/ebj68U4NtWE7NFy0cDAA49PSlIyWhogbowTgnFTF2Zu02iS0kaGVWRipH8Q4xWi1dzCSaZ6H8J/ijF4K1OKN7n7PDI/74WsRkubps8IvqSfUgCvosmzSeErpXsn26nPVw3O00r/AKH3H+zR8aYL6zubL4hTae2laiq28mjMwZYkIxtd8/PNzkhelfsOSZ3UhJSnPfZLp6+Zx4ig017O/Muv9dDznxz+xn4d/Zc/aZHxw8FS2kXh3XITLFePGzCD+IooXIDk4HT6kDJr7+lVhjZe2XxdUvz/AFMYU1i6ntJNqS3R7X4lNl8T9AtWitx5UiNJOrdWUITu56nODn6161GnXhKDVuW/vX7We3ne2/S57mXUVUbb3PL4YPiBb+LrD4T6ZZ6iuh3KMLWLRpBZtJdMMgyyGNjIACMgEHBwCDzXTisM1FVqckuWzbeu39f8Bn1NGqlyeylGLi022m/dvr1Vm+j/AAex9I/tDfCyz0v4WeCfhdrfii7tI7a236m2lSLHdTIf9cGdjkKFzk5yM5NfPZTjK9bF4nEw3eive34HPk2Mq5ljMdiKTceb3Yt/D2VvV9Cv+yJ+zJo3w8u9V8f2nxV1jVNHvJkbSovEF1HNdQWwACwu2TkBQE6DA6YrrzTM5U8LDCqkufW9k0rvqvnqTnmY4nCZfSy2UOaovilra/dfnueYftVftX/Cn4X+LE0rWfD2lWrWkzR2WpW+Ukw5wwBC8A45564r0sPhZrDxqzqO7WzPbwcKuGwanUrSfMleL20/yPCvhB+04moeMNV09PHGry6b4l1KWOwLurNDax8+Z1wrlQR07gg+nVOh9ZoKK0na1159j0oYvD12uWKly7XVvyPWPEX7ZHw38XeHPEVz4bNtYX4lRLSRbkJPcQxEY39wQCTt56n1rGlg5wa5ne25y4eKgoJz5kr6dE3vY83l+LDeKrq68XaZrEssmkrMomkk2s0T+XKSMd2KhTj19jVcuF9o52u43Sfk7P8AGy+42VWbo2tZdvQdo/7Tuo6Hp8+kL4r1EajHobNa6lpwUpbMCWY+WVIAZSBkj+E0VKFOtKyuk+qtf8br70zopuhiI3qQT8u5o6J+07p3xQ+KlxrPjwRX+kaKEf7LJCskfl+Tt2DA6ksMjJ+Y13SoQjQcaPuvucqbVB06Pu+a3Lp/b/8AE/xI8Z6n8KvBulG8ht9RjgXTjEIFsohGoKhtpCgHnLA/e9AAPKw2EwkK0nd8yMsLh8HRm7R/eLd9X6m74S+DPwk8Xa48+s/GHXNL1q7Q/wBqXFpqjT28L7gVh8rykUocZLADGB1zkd9fE42lrCmpQXyf9f11OvEYnF0acnSjdaabXX3/AIF3UP8AgmZ4u8e/EWH4maNf+H9f0W0+e2ksZGeQtk7iY2O4ccYy3JryZ8QZdCajVTjPzR8zis5yyDUKt4T7NaffsL4T+EujePNUvIfjR4d0fRdJ8PTTWmjDUlNjcNOhVjPwu8g9PMYMAMhQMcdmJzOMf4Db5rXtr/X4F4iToUva0JOTetk7ra1vJenqeW/tbfsr/s8/EvVYda0z43atBbQQKt5cRBP7PgmwRFC0oHmfNhmUqATsbPA58yeHePg/b+7Lp3a7ny2YYatiJ83s2l/X9fLc+Cf+ChX7N/wd+BPh2201dQvdT166tllsLy11Bv8ASI34XypGkxIM8FQuRxxXhZhgcNh6Kkk+b0Pjcdl2IpVOfdPpofNf7Of7NmreJ9Yh1fXrF41eZt+8lsYzknrj8+teVSUMuoSxM3rYvBYWPOpSR9aW3hCLwrocNhpenq6RR48u3yJFAAOSOpHuOK/MM+zTFY+pKXNePRH0XNa3KZ02uifO9EY9HicFs+/OSDXxGIqS+0XRkrlKcxyIWXAPb2ry23zHQldkVqMtjbx6U+XqyJXuWo8kEdulS9io7jvL2MM/hxUK1zpWqHTDMLA+lbrUibaizGsYQL89zurXmdjhoa1tTZnOwY9vWsmzuqfCQJKHB3H6HFLpoc0Gr6m74D1a60fxHa6hZ3LRSRygq6Oykc9cqc1WHlUVdWFVlFRZ+wf7B/izWfij+zbrfhDxNcC4n+yl4H+b5l2/7XNfpuAtUopSPkMXCn9ZTaPjL45ad4m8HeNTPomqzWpMzI6Rnqyk8fiK9GnVcdEeXXi+d8pq/s7/ALVl/wCJJ20mXwv9nGmzkXWq3s21lAOMlj1rfnVRXZFGM1J3PtX4KfFzQfiDpx0CbVUu4bhdvmhQy5PGDnqK5nK6aiXOqlG73Pmn9sf/AIJR/D74satqt58PJYfDPjGXNxbQvxZagMZwP7pNeRiuHKWOTqU/dn+ZFLPp4OdqvvRPzd+J/wCz58W/gh4pl8JfFHwRe6ZcxOQGkhJikH95HHDA18LmVDF5fNwqxat1PqMFmeEx0U6Utz179mi3Wz8AWwOQ0s00mCOxfA/QV/YHhVg54XgXBqSs5Jyf/bzbX4H+Z3j/AJlHNPE7MKtN3jGSgv8AtyKi/wAUz2PRwGQFTX6TGNkfz9iNGdJpSscY59q6aVro8au0dt4XSQxHaOcZ6V2Tdoo8WuryVi9qbbo3ZF6tg+1Sk7aGVru5yusBstuNTKDO6hZPQ5TWc/MCORWE4o97DI5bV1JJxXHO1rHvYey3OX1eAkk471xTTZ7mHmjltagI3Y/I1yVKaPdwsr2OR1u1kbOBx6YrgqxSPocLNHH69psmCWGa8qtsfR4OtE4nxJpgAZ1T65rzKtFydz6bCV02kef+ItL8x2UR5J7ivKxVP3T7HLquq1PRf2Wf2XdT/ansde8F6i0tp4e0aGK51bVgP9U7SBYoI/WWRvlA7AMx4U14sqVKtSlTqq6uepzyo5nTq0pJSafzP2C/Y3+D3w4+Bnge08KfD7wfZ6cscSCeaOIebK+Bl3fqzHuTXHVhhsPFxpwSWy8j9Ty11XSSmz6p8FwidAzHCgZZie1eVOTkz20rR1PJ/i18QbT4rfEVfD2nz50Dw4+biXOFmn9PfFZ0Y+0qp9ATTgz+fG2lKxjBr8lbXNqfq1RJ1WbuieMfGPh60lsfDPiy/wBMjuGBnNjLsLfiOaiNarS0hKyK9jSXvPc+xv2CP2p/BHwGvILO712J9U1N1WZbW3l1bWL9s8LuPyQr7DHvXsYDGWqWTv6as8TMFJ/1ofpNq+naH8evBcerw2xs9WNtvS2uHQzKuOjhc4Pt2r66i3VSb0Z4LqyjKyPln4+/s96h4w0m80PUrCKbVo7YxW1tLDj7XF18ssf4lIDKfXgd6qtytd2U2+W7Pmr4Ya1qvwh+JFxoHjKe2uoFlc2b+ItVvxAi9NpWGUEsp4C4wcDgjNYU6Xs3+JgqbrPVH6F/stfG1bjTbWPUdZktIXIEcUdlHZW7n/pn5jmab8FzXoSnCdNckvkVU5aEWnHY+sF0+18c+GZLC9V5UuIvl8+PGOO2Rn86zjTTfvGUa9ppo8J1vwbdfC7xBJY63cynS5HLWvPywt/gTWrcNkVOr7TU2dG0HWbGRUu50c3EfmxRKSUVex56nFTGLuT6nu/wk+GHiK5sINVv9XS0t5FHlwFV8w/jg4rOpWhB2vuYSVRq8I3a7s9gtPCGnRwwxXlxPdJC26PzyCVPqK5XFNam6xM4RtFWNIRWkcYSGAn6dazl7OK0RzKU3K7ZITGq8KcY7mkqqsaat3MHVVt/tBe3lCMP4S+M1z1ZRvc9CLkoLmRTv762kt0mkVo5EPysVOGH9KTqRUbjw6lN3js/k/x1NR7thoq6pZWnnNEMmPb1HfrV1Jc1LngrmagvrDpzdrnB678XdMug2nXVgXiS4LPE8GCo3f415v1lvWS0R6FHBwpt8rd+56BpDRatYxXrWhhg2ho42OCcjvXs0JxrJStZHi14ewm43ux2pa/NZYttO05rmUjhFwAB7mlVxjhPkhHmZlHDSq+9J2RnreeNLu5Ed5CqRHlorUHeo92z1rkq1MbOVmrLyOylQwVOHMnd93saR0CyihNwLW9dyMmP7W+Sf++v611Qo0ow2f4nLVqOcrXX3EOs69H4W0ZtTvdHvFRB8sa5kbPvtJx9amtiXTp6JhGlCc+VSR5f47/aBntITDcaWlujjMfnRHcy+27FTCdSSUprc7YUFS2PPbr4va5rdz51i10YD952j8qNPXDV30aiUr9DWNJX0L0nxR+HWk6RKPEonubxYi6b7sxBPVl4yR05xzWs5SnJJGFZTlax4J8QfjXFd661ro+q/MpZYoZJCvynHznIGR/9evQw9OKld7l0Vd6nH+KvinNotm+tHxfbYK5uJ5iWP0bA3KvvjFb1ZqLNZRhfU+Tv2pPjxc3Wh3eq+F/iobG7Ct9nk06Rbm3Ydcs4Vin4rivJr1Iyg+WWvp0MOW+x8GX/AIi+MHxm8T3dr488YJe6Zat5jzwW6AMAeSXQAN2xwOtckPaS0vod9CE6kUe8fs7fAfUvF93HJDYvFYIFad3TA8teQn1PU13UJxwv7ySul0fU9VUmoWifSHiHxPoHwk8GRw+DzC8CJtlbZ0bHKuO31rwswzeMrm9LC2kpI+ePiL400rxQZL2zv5o2ZyZNMu18xFP96N+30r4XHVKda7ue5TpRjG5w905YEgfSvMhE66cdCGAMXGelbXshNk0iEMABxU3ZKWpO2RBtHSpaudE/gKOCW49apWRhFlm1LFgR3wM1L2NOW5qKP3RI/IVnezNktBkT4Q5OfYVqjCauSRXcsNyJopWR16SKcEfjW1OTpvmTsTFu1j2D9nLxB4t17xPbWmlXkdtBb4E2p3rqsduvXjPC/RRkmvqMkxeMr11GDt5s58RVhShZJtn6IfDa68M/Fb4fTfC/UNQTVYWUNa3bg/LNjhlzyBniv3bIsSnTjO+255cp1HNVLWaMrwp4LvNIuLnS9VW4e7VjHKz3G4EKGwuCflHr+HoK+9VWnGhHl2PYy6m/bOpBb7726/Lrv169Do/hX8E/GE3iPS/FOhadqU2pWloPs2rS28Sae0hGGmHzBmI7dR83T04MRj8LDDSo4mon/Nb4n8lornvYnMMtw0JwxE1brFX5vTY9D+KnwV+BniDxRY3/AMT9c1fXNaRCPKstRMflErh8KCCQehx2PNeVgM2zeOHlDB0404d2iMlzziNYOcMBShSo93G99dLswte0zwCIJ/CfguS9jv2AaC3v7Y+XGoHyoJV4ByO+SM+mK9OisdGKrV7OPk9fPQ9qNfNElWxKTgt3F6vzs/0Pgn9tb9mv9pX40/FSDwe/wC1g6kzD7JrWm2hktbleeXdcqSMjLHb+GK65YzAvDe7VSj5uzXyMMRisLjUlSqKKXVu33o1fDH/BIf8Aas0nRLLxj488d+GPB0qQyRateXtxsZEPyhoooVCg7MHBPJPOKxee4C6hSbnLlS91K1193zerbu3cwlmODeJUcLUdSb3UI6fojzz4ufsyfss/DXw3e6La/Ebxf4il0a/Zn1QSrbwPdTCMSNGB85BCIBnjcv1rooUlJc9T3ZyW3l/TO9YCdCCqVE4zl57evQ5T9nmX4o2HxJk+H+q+E9Xu/DN/YmDTtTTRpCJFIYjzHVOWGc5OSRxngY87BYKthcXUjOTcJa6vb79vRaddyY1505clV7bHqfww/Ze+OPxD+Kj+AvBmkaxOZPDK3WoWcFt9mLOrusQkMgHGAQM9Qc4r0MVXwuBgqtaraL210uarHYXDUlXryUY6pN7dDu9X/wCCZP7ZfjG4NtpXgVPC9tbWqQQPO8O66ZiAxk2HkKCTuOTkAdOh/b2VTo2dZaLSy/P+n2OWtnuScrSxKv5K52/wc/4If+Jvh1JqdtqnxfkSx1pd2q2sknmSyTlOTHIoQrkjPfsOeteFRz3BYWTdO7bPMhxRkeErudJTlzW3f39upwHjP9iX9l79m3WNR0r40ftJeO0t2IuLxV8qEwgZ2qk7DfkntGRkY3Doa+hhicRLBOsuXlls5PXT8v1PVnWzLMsE6lBJU20029dPPdLXbr8j3r/gn78UPB/xLN/D+zpY3tt4T01Atxr+raz5tzdsDgnr8vA9s9uK8vOMPSpUKdSu1OU1olZ/et187d9jhzONH6opYv35bJW0ubP/AAUS/bF/ZN+FvwzfRPijBp3iG8e0eKDRZjme5l7YYNuBzxn3rz8BgcVQvVqy5IP+tjy8syzFYPmr15ckW9En+Fj4F8F/BzwB+0hZar4h/Z/8Z6pDqM1mG1PwB4g1eSSFDtJiEEiYDbSc7eG4xk4xXvQw8a0nNSdmreX3G0518Vo3aKe9tTzb4o/Az4s/DXwtceDvF/g208Ya9r7lHbWtPMy6AVIw9qpz5Y27huPBxzXHmGDlhKPNF86b69DyMzwFOtP2qvZdupgT+CxpHhGez014YioYXckIESzN/EybQAFBAx27CvybivFyqU3ThpffsedSpKmko3su5y8eo6rYWkdhdTSPGgDQGfPmxH1VuuPxr8prValNcrPRjGLjoiHVddnv18m7CyEEESyRgy/TfjJH1rza2Jq1VZmfsUqnMiorGUjHA9a5LXZ0qSiOiG1uap7Ca5tSe1JaTjFYSZMVqTSrzkj8MVKudUVYdIhaBjnt1rZSJmrxMmxX/iZEf7XWtvsnDBctQ09QQjnPb0rByTO+VmjMEsqtyPqM1poonFKNpXLWn6hLa3KTwSbXRsq4HSnGXLNSQKMZKx+j3/BIv49apD4iPhXxFNdzQXKeUs1wFC4Ix0Br7DKsd7yi7niZtQhCnzI6H9vH4TXOieNb1Le3CxzObi2lC8Z619RRi1ufP+2hJXR8d+IfCt/fa/bXVlI4SCbzL2wjOBJIOhIyPlJ61c78yOarKpLY+j/2V/inqmhTRHXtBuDqstwFg0/ToyY4kHd+OPqfwrZVIQV2jklGUlZn2t4ts7n4tfCZdbs4PI1fSo/MhY/eKjquauniXCfuo5q+E9rBxZ41r19oHxA8OHw78TNAttUtihVXuIlZ4T0yp6jmvfpYbDYyKVeKafc+Ixrx2DUnh5uMl2PnbxB+yPa6Zqclt8MNUtY8OTDY3cixKwJJAVzwOvfFfteUY7CYXLoQjG0YpJW1SSP4S4pynNXxHXpVXzylKT973Xq77vR/gc/c+GfFHgfXG8M+NNAudMvkUN9nuo8b0PR0PR1PZlJBr38Li8Pi4c1KSa8j8+zrK8bltTkxEHF+ZvaNF+8BFejSTufI4hnofhTSZ1tv7QSQBQMEHvXRWmo+4ctGhVmnWjsnYs61axLG7w9C+QCOlKk5O1zlxNKMZ3hscjqtqZJGVvw4rWpojaleNjmNV0u6Zz5cJb3ArinJN2PXoVYpWuVPBfgGbx74/wBK8Fhmi/tC/ihlkC58tGYBnx7Lk/hXl5liFgMJOu1flTaXc+nyfCzzHHUcNB61JKN97Xdr/Iyf2gPhWPhf8R9a8LaVLNdabZanNb2GoSR4FxGp4bPTO0gnHrWGW4uOY4CnXkrSkk2u1z6LH4CeVZpWwjfMqcnFStZSSej+aPKtV06cyEFCc8jiitbY68NUVtDJTwhqmvSyW+nWTyukRkZUTJCgZJrzqkU3Y9SGK9lYk+Ff7L/xj/aF8YjwJ8KPA9zqd9jdOxAjhto+8ksr4WNR6k142Z1aGX0+evLl/U+xyHA47OKqp4OPM326er2XzPZdc/4I+23hWxutM8efHPRNX8SvYO1l4c8NXqwxC4wNqyX1wvl9TyFU9MZGc15NLMqVeCqexlyd3/lufWV8pxOXVFS9vT9r/LdvT10V/vPkL4ufsK/tR/CaWSLxr8BvEdsgDFbmGyNzA47MssW5GHuDXkYnFUqzagz3qdSrhKlqiaS8nY+lv2YvA8/wM+GvhP4Xyad5V7eTf234oHlHe93KMQxtxyI4sADsXf1ryq8/ZJRtruz6rh+k8xx312/urSKt/W592/BrRZdRu4YYk8tnAkMMgwQD3IPT8a8vFUoykp3tfXT7tf8AJ+T7H7DhIcsOaRq/H79oCx8HaRL8NfAWopJqEq+XqF7GwK26nrz615lSTnpHY6k3XduiPnXV/if4X0LSjoM/ixoIsMzogGZZD1YsWHJrpockIWR0K8absj8fbUgxqSeor8akrzP1Gp/FZpWyKwHH1qGtCE2dP8Ote8Q+HdejXw34wt/D7TNifVJkOY078qC34DrTw1SdKr7rtc4cXS9pFPdn3h+yT+1d4K+E5s9B8N+JL/xFqepMAsl3ITd6pJ3fYTttrdeTvbGfrX0+ExatpO7/ABPMrYSUEnJWPuLPg/4s6JHNrF5bReIprVZYoYJ/mTHKtwPl574r36U4Tkjiqr2afstW+/f9PuPlz9r/APY48QeInjvtO0iBrtVa5nuokx58iHckqYGA4+bcO/BHOaK04yTj1Hz14cqgly2d+9+lvxvsedfsh+K/FHhTxdf3Pj/VjZ39hdmOXULo+deSJgYESn7i9Rxgmpwn7id2ziqN1Z33ufpP+z18SrvxxaxixxFbAANJNP5k8h7ByThSeuxckd66pVOew/YqlC7PSPih4I0jxXocmn3KxyzeX+8AXOyko3Zk530R4t4Y0PxCdYu/CGoM6x25SSG7RiGVFPAx35PT3raTUV6HTStHVn1J8IfD3igQRXd7p1xcQCMAS3swQ/VUHSvOlySdwnUjBtbHp8cUMEQx1785rVcqieZVqSk9CHfulxHZtjuw4rCVJylZIiE2viYy8+yWsYaZmT3BNY1YRoxPQoynUdlqcz4iGk6ihM7ucHCyRygEn8xXnSrQbPVoxqxVkvwM3QfCfim9uStnrUclju/eC9G7A9gDz1ojh8RXfubBiMVh6EFzr3vI7nRtLOkWpgt7nzh/dYbQPYV6dDDTw0bbnhV8ZHEyvazK0ujaTPd/a73w1AZP+erxq1P6vSqSvKBo69WNO0Zlq5Z3hMNpEGJ4HOAPr7VvUpe5ywRxQnLnvIZa2dzp0eY4lllfmRy+PwHtWNOhKlra7OqVWNXS9kS3uqXOmwrJHpM9xlgH8gBtvvjNbzlKEb8tzJQVaXKpJepYW/t0txdXr/ZwennMAaUq9OC97T1M/Yz57LUR9T08R7mu1ZGHDZyMU+elON76FKhUlK1jwH43eK/Dll4zlj8P6Vb38S2zS37SYJVsgYUtz36DvXLBR9o0tj1aVOooKM9znH+Eo+ItmPEHw+1kG7WPcdJvXO0cfw9q9SFGHs9zVVPY+7P7zyb4ht4p8GWF1beMtISHUIFby4XjEQf05Y/N09qqK5OplN9U9z5NuPG/iY+IJ9UfU1vnklZxDeWyRMCTjy+m51xjBJwM+9d9OTSsOmlBtnnnx0/aB0mysyuv3raNeEFYoJHMaMcdNzjaPTBGK561WKvcOZXuz4O+JVze/Er4mL/wjpFreGbfJd6ZI1uUTPDSCM7HJ55B59K8qVBVXodeGoOT5kz3v9mD9lPUvErC+1iKW30YRB2MikG5Ktk59QSAcV1Qn9WptHs06ShDQ9+8YeNNB+GejDTvD1kIoLaIGSGIbXYD+Iep9a+fx2ZKW5cbx1SPnf4m/Fs+KNXGueGNSa2lf5ZQnKXC+jr0zXzWOxEZR5ou56GFXM7rQ4uW7aeQyuACxyyqMAfQV4Mvfk2etFOW4p3SDA/PFaJWRt5CW4Mb5I69vSpkZO1yaQncO/HWs73dgWjFaTMJyB0zQ3Y2lrEz0lYydO/FHNoZRi0zQtVJOT69qhybNuaNzSBJhC47dal7lKQwAqMgdferUiZJESoS+H7/AJVs/eWhg3Z6HZfCTwz8QPHviq38P+DpFjSH57m9up1htLFO8skjfKoHqefTJr2MnwuZYrEpYd2t1btbzOWvyw3Wp98/ss+J/BHwwji0vwPqsniK7YqL3xTOjCGZ+628TclAf425PoBX7pw7haUKfIpcz6silRlUV5Hs3hzwx8cvGfxy1GD4XeEliSaBHl1i4QiFd4wwHTtnI75r7zEYjKsHl0XjJ3S6LfQ9hYrKcuwvtMZOy7LdnsOg/slfFfR7CKDx/wDF86iFsAkYicwmGfPLqFwPu5Xp36V4P+teV1p/7Ph7a9r3Rwx4vySU+bC4azvu1e6+ep4l8aP2CPHuveLD4r8LftGXui3VsCwhe2Vomc9ywXLc4z6j0r6ClxHQrU0pUW42eisvT8en5bn11Di9V6UVGm4ra0ba+qZ5D8Qvg5+2P8Nkn1Xxd4eh8a6asW6TUfBN0RdbfVomwQcc5GemK9rLMwy6vQnzz5JRXuxkvid0rdtrv5WNqfENG75k1fSzVv6+RheGP2+dc+F+heV4c+Nt5GLcmG78O69ZeVd257HLE5IPGABmjEZVlmLrL21FXet0ehWw2Q5lBSrYdNrr1+djz342/td+O/jx4XdvC/xRtrrXoVdZrC4ukMN0mSURSMbjk+gNaU8FhsNeFGKUfLcbp4fD0fZZZDld3p8u+579+xR+wDqGmeF4/wBpD9oXwlp2veONUdbxrGeFUgs4+qhYV+QEDPRcV8/iMwoRrfV4ya6X3/E+YxGZQoWwk6jUtnLfXtdnulp+0teaPNdeFtN02ySSF/NjNlaKRhRloFBGQ2Bgj8qipkFGo1VnJ7W1f4nHV4bpYicaknJp6av8f1Om8LfG7RbCabxPpdxFJrdzYtPfMLVUVolB2qHHOVJxg881wYrI5V4qlJfu07LVvXroc2IyGpUhHD1F+6T93Vt36trz8jybXP2u/H3ijxjqei2+qzrEXt4bdlGVd3JLomOpAHJ7bvavYw+TZfhYql7LWKu3+n9d0ev/AGHlWDpR5aabX9I9E8BfGLSPHXi6x8Eya0L9tOKfaro4H+kZ+4M9cHg/WvMxWA+r4edbl5W9l5HnYjLo4bCVa6jyt9PI+ef+CgPwe/YN+Jnxk0hv2qvGfis3FwCE8MeH7orBcuvBMwXHQcA+hrKnTzDE4OMaUI22Te9jvwWKzZ5XChRUVFd29fl1PHP2jPHf7Sun/D6P4Df8E2v2S7bwN4TaMJJ4k12SGJ5APuy7clye43DjrXp4XKMdCmpuoue33DeEzHEWhOalLdX+Fei73W+583eB/wDgjv8Ata+P9ZT4m/Hr4qpq2qzXSvFcSXBcKCecevsOlVTyqrF2xFbmZyvLMTRrc1etzWPpz4c/8E+viX8M4biy03xLPHJaSRXLQG7MFvG6kjzZNo/eSAFsA8DOPWvUws6FBpRno/xPVjXw0MPyc2j6Lqz0e21Szk0rUtR+Olql7pCQpbT6kloDM5Hyg7j2HJPbFdNeEZUnGn6s4amHjy8tHffc+OvjF4b8Alpofh7K8Phe3vH+z35s/Il1hgxKQwRj/lmgIXI4PWvxHjHkqT5oR5Ka6d2u3kfOewrxk5VHdtv5a/pt5niHjJ5b/UTbR2eLiNP+PeEcW6DszdzjtX47j8R7So0kXCeljm3RW5I44wfQ15L1Oq11cFIQZI78jNK1jmk9RytuGc/Sm9jWnqiezJzz2PQ1zyV2Nx5WXJAQc4PQZqVozSD0BFBgYNT1uVN6GTaJ/wATIgD+Ku2K904Y6zNi8VWTBGTgda5JJpnXZ2Ma6QRnIUdeK2itNTKduUrxTES4U556VTdonLC6mepfsveNvEfg34taZq+j62LVY51MrSzlExnvXdltWUa3NfY4syp+0p2sfrp8UNI8OftK/Ay18SaBqlte6jZWg89rZw2Tiv0ChifawXLqfHulOjKzR+dnxr8Pa94T1warp0r29yshhm3Icbs/xY7Hn869BWcbvcHSk3sdp8APi/8AErSERtflSK0f5GgaI+bdgHorBevsSOO9VBOWxnKMOdI+/wD9l74gWfi7SktrbTHtkZdsiSDOcjoatxUNR1aaSucJ8Q/AGp+GPG+paVMUWETGS3x3Rua9XL605Rsz5jOaNOU+aGzOQ1XwvaXCSQlC0ipuj74PcV9vk2YVKD9nfRn4H4h8NYTH0fbuCc11sZWpeArb4leFpPCWoEfaYkZ9IunOTazYyACeitjaw6EHPUCvqcNi3h8Qqq+fmfhOZZBHMsG8O1qvh8n29GeN+EEuLi4NrexGOaGUxzxnqrg4I/A1+j0ZxcVJa3P57zPDSwlWUXuj1nwP4W1jWZvJsInkjQZYKOlTi8VRoQvLRnFlOBxmZYjkoptLV2N7V/h9eXELtaIXCjLY7GualmNKHxaHr43h3EVE5UdbHOap8EviLLYtrlr4K1Ga2BH72O0Yg/jil/beWSqezdaPN2ujKjwtxR7D2qwdRx7qLt+R9HfsffBa3+HngfWNW+Lfww0i8m1WHbYRamgMypggg5B2A9c9a/IeOuJKdbHU4YOvKKhvyvRv5H9beB/hZXweTYnFZ9l9Ocq1uRVFeSVvPb8y/on7Onwjl8Y2PjnwVpkWk6tpcLQ3WlSgMLpSTh427kDA9eK+fnxfj8ZhZYbES5oyd0+3qff4Hwf4fyvM6WZYKl7OVJNShunfqvNB4D+Fvwf8RXN/4S+L/gqDU7eS5na0g1GP7krIqByRzjH5EA1zZhnWYYSEZ4Wo4uyvy9kfTZbwNkOZUpUcww6qLmlJKS2bSV9Pl9xwnh39hD4M+A7TUL/xz8OE8Wa7e3brpVnbF0tLODayoWwfmbkH3wM104zjXMsfOPsansqcUuZ6czfU+QyXwYyPIqVT69B4itNvkXNJQiumzu2dP8E/gN8EP2RNA1zVbnwFpuveLbuyka6WaESW1jBgKsPzZySSAfWuXMM8x2czj7zjTjbbRt93Y+l4Y4CyXhSFSUqUZ15J/F7yiv5dfxOT8U+PfGvxc8PeJNVv/h0lsukLEnhyy0CxEEUqsuAXRMb9pJxnp+lelhKOFw1WnD2l+bWTk7/mcWKWY4yhXl7Br2elNQjZfcrXPC/GPwy/aL8daleD/hE723gtbGNYYbqwKLM7EfKrDjOCOuOlfZ08fk2Ew7vVi0+lz8izXIeOc2xUn9XlGMYq3u2u+yfcT4QeGP2+fgv460Tw74U1i/s7K/V7fUNO1y2820hJJwDyflK7TnjBJ4718rj8VkeMc5WW+jW7/LU+w4a4f4yyuthlTlN8ytUjNe6ndqy1d1y2d7J3uraXfuf7EX7MVp4a+LniX44ftCXVpcf8I/PLPcMUDQLLztC54OOcfhXx+ZYuUr8h++5Jkby+leSvbf1PP/2wP+CmPjnxH4o8S+A/hRoel6Rp+oW8ds+sG0U3NrbKT8u7HDvnOOwxXiUVOc9WfQSjKSXZnzhpXxD1bwpZfa7r7POJ/mlvL+TPmE/3uOK9GmlTNvZ8sPdOC+N/xNs7rTZJLnw9FMskR3T6feLtx7jPOK2U09UHJPlsfntaOSiivyN/Gz9SqfxWa9iCVAbr2FY1JWRMbcxfiOTgdRWNubc1tGOp1fw5+IfiL4d30s/g42NpfXpVJNUu4t/kqD97H8WOoXpnHpXXgsRPCNqOzOLFU1WScdz60/Zt/ao0f4ZtDeN4gv8AVJdQmHnS3c6i+164B5Z2Jxa2qenU9OSePco49Q0i9X07v9DkqYFJ3l95+gfwi+OWhfEi0k0fxXHaTXDWKy6jabP3dhE33QcjKsewPOBnAr2KE3OXvv5djx8RG7tE8u/aY/Ye0XxskXxI+FU6ie2kD27+UXZSMnEikYdPrXrOFOtT8zmjFU3aSepx/wAA/Fnxm8GaxD4J8T+PLqxvIrh8lYAqxREgYt0B2Bm7ttz06UqceV2b2M6s+eKitj7q+EXjfRb7SYvDVreMJVQPetNLvfkZ+dj1Y56Vs9tDgVlLUt+N/h7NLfWuoaHaxzXxn3BGPXJyM+wrlnTcVe7On23Q9p+FWmeIl0xTei5Z14lubqUqmfREHUe5/WuaNJzlzMydWKW9zt0tFQ73kd29SeB+FdMaME7nJOrrogMqxgmV8AdSTWzkkYtOTuMTWtOJ8szh+3AyK46uIw70ep2UaNZq6INS0fwtMEfUtFgJmYKu6POTXFKhhE7yjudcMRio6Rk9A07w3oOiyu+l6etuX+8sLEKfw6Zr0KNClS1grHJicdWrx5Zu9i2qsvANdd09TjgluR3V3FBFvkk7gDJ7k1x1cRCGiZ0UsPVquyJfLdSFLflXVF3iZ2s2mKsiscoxcE4GKx9rC+hWttEJNeXEU3k21pvYdWaQAVlOrK9kjalSVuabscF8YdK8TaOy+MrKym1C1Tm8s4pCzx9MFV/iGQM15WKw96ntHqezgMRRqfuXp2fczLfU/H/xG0uK08PWJ0bTVCiW6uzhpVxyR3/Tn2xXfh6blSd9NunQK0cPh6nNe7LP/CpfChsZ0W0uNav7iPaZ4EWNFPqGACjH41s03U5tPkkvy0MoV2neWi8yLQfgn4p8NxRapa3saTw8rbJMx+XrgMQOfwrthKCerMquJoTnZakmvad4C+M+kSeCvil4bVrgMYzM6hJIT2YE4I5+vWonCXMnAwqU5ppweh8B/tyf8E7vHPwdvLr4m/Dj7X4jsnwyqtwUAVc7UmIV9oGeGUdeoNdlOrzR952ZrTat7zPza/aY8E+NPGvi5NCv9Oa4luxiHQLqJZZCV6STzkABR/dABPA5qfY1a75b62vrpt6/09kddCg6jWh2/wCzb+yJ4Y+Gmgrr/jKNfOkk33KmHaC5yAMEcICeO1cs6tPDxtLc+jwuHVNWR6F42+Ndj4VgntdEj8uG2l+z28IARd5AO0noCB0PevExuYQTdmayjZ2XU+fviR8Wr7W0Ux3odo2YpOPveafvKQeQuPXjjivj8bjE6Titzoo4eUZ36Hl1rcb9RaZQB5jEsF6Zrzowfsk7nTSpfvTbhYt1NZqKR6raii/bJ8mWHQc0pOxKbbFaMK+NtTqy5R0uI4JwMdqlJGcbXJfLVYCCOcd6iSdzZ7GcExMcLxn8qtLuZ8xftHweRS5bCSRfjYlAp7dDWT3NYu7JJVwORjt9aVrhNWRXGS3zfke1dENEZx5WyawjK3kb7EkCyBvKldvLYg8ZAPP411YatXo1E4v8TRuKV2j6e/Zh+It2dVQa/JqlsFKbJ4IVMUpyP3Y6eWuOpx+PcfsnBGZOGJjTnF66X6a9vT+r7HLPmm0oOzv0/rrt/kfrF+yvc654X+Ecvxb8ZyNaWRgK6Xp/mBsqCQHJxk7uw5xX2fE0sLisyhl2FXNLTml+nyPmuIIQx2Y08voK705meYfEj9p/XtV1O7v4tTeNVlASLldwxuO3PXHA98kdjj6nL+H8FhacYcuttz7LBZfgcDQjSVO9upufDT4x2HxBQWc1wUuo3wZSQDjGRuHoeOma5sfl/wBVfNTV4hUw1NOUqW3b/Il13xDLoGrNLZhY2LbX56k5+QkdVPY0UKUK0LT1NY0lVpqM9V0OM+JX7Ov7Pv7QEsOt+LfBNg1zLEVW+jhCOWGMxS8d+zda2oY3G4OfKveS6Pt5HXgsbi8A3FLmS6P80YXhL9ir9kr4cPBq1t8HIZNQspjLDMEDgsTgvtAx5nT3rrq5lj60bRklD0Oz+1cyqz/dSjFPys1/Xc7jxvd+Ko9OvNV8P3M9jqphIt7Yltk8AyAUz3GRxWGGeHdRU5pSj1fZnnwdGTUJRU4LVvqpeZ498MrD4ifEzRr240Lw/NP4i0HUm8y5gh/fXCbiFdl65I/nXqZlicLgK37ydoPa+x7DxeCo071Z8sXor6I95+FX7GXxRmudWvfEzWlla3mlvHZQsdx82QfMzLjjoK+RxnF+WxUI07ys9bHyObcZZTRcFRbk09bdkcde/wDBPnxt8O9EXxNdePbCXWoYbiOysGciNpZWAR9x6Yz6dz1rb/W/CY3EuNKlKzWrNaXGWW4zEclOEuXe7PA9S+IXhH9gTw9deJvib4+0TU9ftLOaLQtMtbhQZHLNI91M5+9IWzgckKFXqa68RW+tUXbmServfotlf9N35np4jGxzGl7Ne7Hdt6Xstv63PgDTvif42/bQ/attvE99qt9DKbnbZyyW3ysGYmSb5zzg4VQBjn250ymVfGYuLStCK6iw1eGM5Iw05NPVd3r6dP8Ag/pJ4E+F0Xhu9tvh+qNJNcsDcSS3JmkmUKMvK2BlmxjaOAK+vqYqHsue+yPclP2NL2yb0PSviV4usvhstvZQWcL3YC22lQRyAmSRmCmTB4wCQBXjYelPFwnU1stX6HlqTxMHO+j3/wAjyP49/tKaBotjJ4APiELp0EoGt3aSDzL662lmijOQCq4OTwB9KwoxVOoqtV2eyueYsVRoydeXp6I+YvCH7auo/FnxXNptnd28XhDTZhamGO4iuEvZTyYkG7DkDjjnOc4xXq0qlOVRx0bstU007q+6/Fbp6OzNcJi8Pi7zi9L2u9DS/aN+Dt/4/wBKX4r+E/E15YWcCBLvSJbEtc6aMAeXbouFOe7ZwDnnivzHjnIZY6PteaUFH4rK7XfS61+a9TDHSpqHuWlbqno/M+UPEV5bafcz+H9GtSJTkSxpNvkb/amkHAPcqpP1r+e8YqVCbpQ1/rqeQuWbuc5LbhV2Aj3IHH/6q8m7UtTug2U7oPGhCjHFJy5hTjfUXTkd0+ZvpmolJoVNqJetlCOeO/X0qdSpPmZdxvyDjtg0ramkEG0iJsjtWi1Y6i0MmxXOpHP96uqN+Q4aTvOxqXw2qee1Y21O9rQyr11I2Y4qJS1OVvUpQJ++znoeoqviViJrl1RftZGjlB80pgj5gcVLi11M7RkfeH/BN79rjwd8PLy2+HOo+IHne9ITyPJbYM9iT1r67KMfQw8FG+p5WZYSThzxWx7b+2T+z3Y+KLCfxn4SjBgvId0yxrnaeoPFfUQc6j5k9GfNSrTfunyhY634q8JNbaxFYx3DW8vk30NxgLEw6S84HSvSjFxhdbkRgotuSuz7Z/Yy+J2vazpsN0qQRWpwySRpzJ7n6+gzTjzyV2cFerzppI9p/aF0Wa90+y8XQBmdY9s+F7e9a0a6pVLLqefUw/tqTPE7spFMJQxGVJJPcV9TgqyhNNn57n+CdWhKI7wjpcq3cc6ngsCDj3r66NdSjdH4RUwXsqzVupxGjfs4fFP4m/tD+KtI+Gfg+W9tob5Z5rofJBEZVD4LnAzz0HNfW0OJMtynKaVTFzs2tFu3bTY/B814E4h4q4ixOGyrDyqSUnd7RSeqvJ6I+mPhz+xBrHgG2XVvij8W9N0ZAwaW2spgzYHUMxxXy+Z+ImGxV4YXDuXnLRH6Rwb9HDN8vrrE5rmMaPVwpu79Gz0Xwr+z1+zL431B7Twn4wvtRuY5M3P2K9yAR644HNfIVuOM9ptxnGKVux+4YPwR4Br4jnpSqNrVtS0Z6zNpOneC9Gj0q78RRpp8EOwWzwqztjuSe9fB47M267q7SfY/astyOhhMPDD0leEVZJnAeMtM8CeIr17izvNRuGbO8C4CgDGMCvKnjJz3d0z3KOW31tscxZeDJnuLcWmhTiNCfJuTdk7TnqR2ohiJxskbrCUGvP0I/GUN9feIE0/UbJEn+7BdxL98getdEsdUfut6GM8FQhK8SzN8UdZ+GekQ6MlxDLPdwlo3kQF1UcHmlzSsc/1JOXNY8u0fQ/GHxB8dXunadZ+XYW0Il1e9nY7Oecf7R9qv+0MRD3Kb6FUsjw0m51FudOl74mhddK8K2TWsEA2ieODa0+O+3OWrGFfEVpa6s9RYLCYeCUYpBrmj+Ok8NSajrN7qBg6ut2vkhcdMZ7V2Qcox1ZwV6VOpKyicZoOpeGNb1SO98T+Mr6IRnAaVyRuHA5Brop4unQSd7nLLBR2sTXujat4i8O3Hw80LVFvdNubwzXEFiSpfv87NyST1JPStak415XTsdNLDyjSaSvc+G/jp8GNe8E2fihB4Y1CaW41Qy3OpNDI0fmOflijbHzEAAYHSnBRimoX+486cJU5cr3PlT4yfHh/AljJ4Qvor23vWxE0DWTSrLx1GeK56uIjT0loUoSk9Fdngmqx6nrs76jq9/Lbw5JW1tZChcf7Xp9BXk4rOKdCbp0pXV91/wT38Dlzkuaoji7FdwUewxXyEnaZ9fVbVVmxauBgj04rGUVJDpr3jQtSzD5hgD9Kh2idE1dEu4yHCj61LlFo54u0jc8F+KNQ8E66nifTbWCa+t0P2Rrpd6wyfwvtPBKnkZ4ziqw9b6tV57akVoyqKyPb/AIYftgeIvhz4Lh8I6H5uq6tqmsC61KW8lJbU7on5WnbP+pj4IjH3iOTjg+xQziUY6K829v8ANnDHK1Oau9D7l/Z6/bztm1C08PXWuW9xFp0aprutMvy3t+wB+zW6D74XnOK9ynmUo1VG+iWr8+xGKwsE3da30R9EXnw8+E37S+jW2uaa0Gn38sbyRojbZGIP30YHgAg/XPtz7dGSrQ82fNYhVoV1ytctndW1vpZ3vstbqzvdaq2ub8Fvhj45+Cni0aRftcapaTXTy2ZWPkyNtG6RuWY4UAemPrXSpTjHlvorkLCurqlqz608A+G5PEILNZSOZCPtEkU4Vx6nOeB9K55vnerIlHke56tpOlR6ZZRWEJcpEMKZJCx/EnJNRzpHFUauW/KYc4pORKsytc25YFQgJ7BuhqottF8qsJaGVVAmtzGe6jn+VT7qWqHOXLomWZZRGASSBkc4pSlCEbsiEZTZmavr+l6Tuku7gbgMkZ6VhUx0V7sFdm9LBzra9Dnf+FtWJ1EWBkhUSH9zKvOfwrnWIxNlztK50wwdJO2rMfxt47mW5EocBbdwWOcADgk/lmuWpJyk31R3U40qC5Vuz0S8v7e309dRBHzopQE9SRwK9epV9lQu/wCmeJSoyxFexnX/AIq0/SbCe8Z122qiNEDfekIziuKOJjG9umi9Ts9goySfXX5HM6p8QrXQmhh1Bxd6ldNvhgU5EIxnn0IFbUoSqPvLyNnSp4h25fdTMkeNr7xZjTrC8kQSb0lu5UXypHIwqcjkAnt6Vz2ctDeVOnCaktkdD4B+H09tp0Vx4r1dtQlVQFQArCvHZCe/XnpnjFelTpxilfVnLi8XduMFY6vUda0zw3pj6jqVxHBbRLkseB+FVOUY7nmRg6suVbnj3in9qc6r4qt/BHgs28Etycvd3EoJii5+fb/D7Z/Ko9pHoepRw1CjC83dnivxZ/ab8M6L42/s/wAHa82o/ZZAL2SOFpSZB1djtIyecLnPsK6aEnUV+hfJOauejfD/APaD+HPjPw3LpfimG4l85GBkuJmjByMbSqDA/WrnCbq3jsRJS5lY+G/2pdA+Gnhzx7qHiLwpo0YunJd4SwExxnGN6KXHvV4qvGlSu9z6DAr3Ez5R+JPxwt4Eks0ujudXV4pMjaD1VgO3oecV8bjsxd2etSU+XlR4V4v8fXmoQ/Y/P3qGb93Iu5tp6hjwGyOjDkYr5qvjJzOmFFRZyF3eyXD+ZJwQMKCckL2BPfHqea4aknNnoQjzIztMdzeleuXzW9NWhqYyly1NDqbaMhQD1PtXNJnUnzGjbsFHPfr71hKTZUXYVuQc+lPm0N3rEgabBwBnn0pJvqYJWZO7EwEjNK5u9Y6GfHKVlKkd6q7sYKLT1LdsQG5FZSk2NtNaF+zcuQpPNIun8RPcAgZI7U0+xtUV4lVZT94N7VvHbU5krFzRoftuoR2K2RuJJW+SFSMsfbPFdOGk5Vko7lShSkrVFdeZ9Z/sYfCn4ifEb4g6T4cj8BXawSTqs0lzp0Yj25GSS3oPQiv1/hKFaniFVrR5YwTexP1vD0bzk7KJ+mf7UPi+bwp4OtPhxoFvCltYWKRohlEaNIF4U9x9QDX3/C2D9pVqY2es23a/+ep4+Q0YzrTxdR6zbt6HxD8R/HDQX15c6lc3DyNKsi7Imba6ncDjGFdcDjGHGcYPX9H9nTcUj6CdeUfdgtjC+GP7SM/hn4kWrw3UUFtOVX7Od20kYBAzn5WB3DnGeBxiuXF+yqQ5I9SqVeNP4kfUmt+PLLXoFmkvQ8dxBjzE43RN9xuO6EgH6V5NLDRpLYcFJU3rfVtffp9yM7wD4y1W8v7/AMDvfObme2EsK7OfMQc4x6lWH5VviI4eMY1pbp/gap+yaqyR28fja/g8Gx+ItM8P3BllP2e7wAVnYnBdUwWBB/j6DGc8GuFUKdXFuEpaLVf1+nUt0I1MS4VJ+6rNb3Xlft/TOaubL4y+LNdtvCNros+pxPeqNMkGpxeZanBO855KqTyCORXWq+TYWnOq58rS10ev/BN6+Jy3BRlWi0tNdHZn118HPgb4V+EsT6lYWKf2rfwxDU7lPlErqPvbc4HJ7V+U51nWJzefLJ+5FvlR+P55xDic0fs7/u03Zf8ABO8u7z7HZyTmMtsTIVeprxKdNSkkfNpSnNJdTwb9oDx7qNndi4i05ZWi2qyMuQm7GOfXr+dfdZHhaEaWr3Pr8uoewpKz3PjX4tfGrTtf1a1sNa1HQtJs/Dyyyatc6vo1rcMYFDLiMyxlmkUgYA25PUnv9PGhRjTcpJtvbVn0DmnSule588J+1P8ACr4z/HXQdT8K6es1r4LikSHVIoYreS63HpNGigJg89uK9fLalCnzRpvf7l5H0mTU6LV07X/A+h/2dfirpGs3N14/1iSGOC3h8uwcvljHubMzen3SeewHrztjIVJR9nB3TPpcS41MMqFPo9fPr/X+Z8+ftEftceGtP8S6l8Qda8QlItKs2i0Ibh0HDSnPGeh+p4rmklgcLGLlfu+vzPnsbjoYag4rQ/NX9oP9rTxN8S9Uu/DnhxJrLSG3GF/7SZZ7wPyxYlQEDdMgE46Yr53G5hisbUdJJWW2u/r2+9nwGLx9Su/Zwlo2c38Kh8afFQh03wTe6dohij8iyWO0ldlBIyqM5XaD1LKCWIAPs8NTx7lGEXyq3QMNUxdVyoU5Wt08/wDhuuvY+n/2etH/AGh/htM2lfEO7u76C4Rlurc2Mr/aEYYKsCrBVI44ANe5UdSngaiq2krP5n0GDw2NoJ+2d16knjfwvJas81l4Rm062D5SyitDFEfeSSQgn6Yr+Ws8w1X6zNQgoq+iSt+LOimte69TiLmXcxeTaOcYXpXyUozcved2dLfYp3Z8xDtHHqRULRlWYmnH5cFfp7Vo1Yz6lvO2XP5mhFx5S5bkEZb8OKhuzLjJD5FOxsnoOKnmLlZoxrBWOpE4/irri/cOCKUKhqXoG8gj6ispNna5XiY11tWY5PHrWerOa3vXIgmFHHXpW0EippS0FDHOGP14q9DkmnF3Ok+GXxF1f4ca6muaG4W4BAVigJ69s9K6cLVdCd0rhUjGrTtI/Sf9jj9q/SvG3hKLwn8WtZtI7q7QJHA9wGdsj07V9rgMxi6a59GfNYvAyoe9FGf+07+zRJBdz+KPCFo1zpc4D3EMR4cdccV7lKtUnK6PInUUpW6mP+z3+0No/hPXYNB1KNbaa0IittLUNvkc+x6/hwBXbKUZqy3OZ0eRO59w6N4x0rxd4ClstVukaZ4g9wA2RHxwv1qYUpQd2cc6ri9DyHxJ4Fv7yN7Wx+7ICRwcha76NaUVZnjYzA/W2xzM3hmyitRod3c3AK+TBbplpHGMAZ98V9Hh82ocqhJ2sfmmZcEY2hOVemlJXPSvhV8DPHeu2c2tfEL4uax4Zs9QYXD+G9AmELE4AxLIOS2ABxXFmed0HJeypptaXep6+UcA+xpOdetKKm+Zxg7L59z1TwB8MfDj3Mmg+H/DUd/bykie81+d7p9vc5fNfI4vHYrES3+7T8j7bB5Ll+Ap8kKaaffX8z1XR/CfhL4TeFJNP8DeHLCxAy2y3hWISOepOB61yV5yp0eaTuz0sLQpc/JCPLHyRxGsr8TNVukuZ/BRuRK/ytE6lQPUkkYrxIwxFWfw3uevGdCn7sZLQ6HQPhRqghS5vLuG0mLZbyEDcehyOtdtPB1OX39GZvG0qTdlc1vEHhPQrPSR9stpJ35wYFClj15xWlSEaaSOWGInUm+XRHlfjjQU8SM0fhVWtbuzQyC1mkIdx/eGainRVWOmhtFtay1R5doHhzXfGvjdLaRC0FtI0YeT7yEgbs/0/GsrVVK0fQ6nUpey5V/XzPYPhZ4A1DTRq1/qFuq2jTERW3lf6zHcjvzXVQw00+aQOtBJQW5b1XVPCvg67FwNJtZdZuXCR7oAFi9ACBjPeumUlzruFT2k6Zi/FbStEu7KE+ONZLjy/MnQTEIoPQH/AArdRko3ORWhr1OG8PeAfhT4jQ3mnaTfzWEbZae4GyIY/u561gqcW/fRUZTaudJfaVCdEk0LwNYvZwSIV82KLDufrVQulyrUuVeOjPjP9tz9jH9rXxRpslz8KbG/1S7MRNk17qH7i3Y9W8s8ZxXo04OULKdmzz60PbSvFH5gftFfBbxz8EvFB8M/FPxBHqOuhfMkKTbxDnqDg4H0618rxFKrg4ezcr3PYyfCJe846HkWo3se4o7dueetfIwqxurbn0U5QUGkcdp7qEU5610SjeZ1Ts6zNWyYuQuOgrNpRiaxSjI0EfauF9K5XrcJzu7ElqSDzzSa00YKFtTQT7vHPHNJpLcqMLoVEljmE8MrIy/ddDgj8aE+XWJTdjq/hr43n8PeMtM1TXtQuW0/TInEFjbnYoyMkDHdz95uuM124XFclVOq9EcFbDyqaRPrb9nv9uu78O3UeseItea1uNRkSFmgG/7DaqQEt7eIHl26BR3OSa+lwOdUpzjzuzemivZHJLK7U27XZ+hnws/aE8K/EOKxtvEesrZ6lNEpigF4rCFWUFUlZTtEnTKj5gTg45r3qWJVZp3t09TxK3ufCv6R9L/s42/ia98RFjA8em20TM00THy5ieFGcfMe/wCFdNSNOlSasrv/AIc8qviPe5UeyXt5babA95ezrFDGpZ3Y4AFYWXLqcDpylLQTT9Y0vWIBdaZqEU0bDIMbZqbp6DcJQHzYdjsPTrWkJRii/eaGTSmG1eaJxuAyPrUVqloNxNaNK81zHO6747t/7NkiJAYRkMV6hx2rzatWpUXLY7YUIwqXTPLbvxZfeLYpIhM4ltp9mGOBIpPAPpSoqKd2dcX71lsblr8DtS1W/s9Xt52sfLcG6W7G/eBg/Lg9eozxXTLC8zujlrYiFKPLe53Nz8LvCGoxtFrlo16ksapLFKcIwHqB6+9b0sNCDvbU85YypJ2Ny60nTtUtVsbq3zErAxgEjaR0wR6U60FNWkrl0sRKjLmi9ThfiX4C1aw06O90SVprS1le4miILSlzk/8AAhnFcv1eKZrHFOcvePlyX4j6pdeKQviiXM1zcMq2qPiWVd3CkA/ImOTXO4SozXPLV+Z68ZxVDRbH1H8LtDvJrGw1W68mcBfkjjQCK2GP4MD5m7Z+vPY91OMEtXc8mtKVrLY6nxB4x0PQJ3h1G6WNYITLKxPAFVKq72sQqUpQuj5V/ae/aztb6eWwsrwR21pljGD0x0/E/wBKzvFO8nqduHo+zjZbnwf8RP2sPFehatq8/hlp5dV1IYaSGTa0UPZQ3RAe59OlXRnKSfLG9j0YUY8vJJWM/wCE3iGfXtRWbxB400m0845+xQtwGPVmYsXZv948+lerTpJy5lp/XmRVjGL00Poj4a+AL3xYGtvhz4ntZdTtiXazkkaN7k4+6BuCn2wPzrplywiiKdKMruWx8u/tLeM/ilpPjO/tPFHhK6t44SVNpfpdOQw4yGWNQPwNfNZrVnHZ3R7eFw9Pk91nyV8QPEia1qUsv2J4SDnDSu+f+++a+Fxdfnk01Y9qlBxicXdzl32lfpXAm2dkIJK5XJOCRz70cqT1NHJRK+j86hg/3uldD0hocDu6h1sHbGfauGb0O+K0LsaNjAHXvWLLsTwRB02n054qJNo2i7IrTwbJsbe/WriuZCmrouQxKbfkDpSlCxKukUWsV80sBx3xVpaDdmixDCOmAPpSaszO2pZs4/nG0fQUO1jeCVy3doAhXHas1uazSM8RkNn161utTnukavhLT59Q1RY7bTLW7IPzC5s/P2j1C9PxNellWHnVxSUY3M6l5LXY+6P+CZPgbwVa/EdPiv8AEi3isNB8NoZzqV1fhRPOBhUVIzsUD+6PSv3nhbK8RHLKrwsG5z0V+i6vyMZ+2hgqiw+spJLVLTzOv/bO/wCCh/wf13xTdR+DtWknleTZHBbywxJt6fPJMdqA+/51+mZXh8Nl2Ep4WVROq33SV/NvRLzuZKvh8BgYUnK7ju0fKvjD4gfGLWluvGyeHdH0TQJwEkvNbmvL23uFzgeWm9IWzn70SkAclsDNVjsRj41/ZJxSTs3dNfenZ+tzlhia2LlaDSWr1svzt9xZ0f4feF/HH/FdfD3x9pcmu2cCNqmjeHtXuTAY0AbeIrh2PLKGKgkDjAGAK4qUsPKrfn5pR1Ip4rnnyt+Wh9EfDv4qx6z4USZIXAtbceYGOcjhZV9sN8w9Aa7PauSu9z6Kn7OUEoprbr1tr+P3bak8/wAY77SfG1l4j065MeoIpkWRYwqlcgOSOn3mQ49z60m6c37KabT8u3n/AF+DNvclFRlt6nfaFren/Fu0u9Mma4e7a4YSyXOvrp8dmBzlJGOCSOcYOewzRzPD+9G/L5R5m/lY9KWMoUqFm2tdUouTf3an1L+xJ+zx4R8AQy/Ek6RDJqN1AFj1k63JemZTnPzNgAfSviOLc0r1p/V+Z2vrFxUf+CfnfGGcyqWwdKT5esXHl9PM+ibe986TchyN+GJr4apDlPgZUrR1LUzxTwOD93GCR2rH3k9DJKUWrHzZ+1nNBDDJJo6i4ZEJmWOQnKhgzkgDsBn8B0619xw+pqj+80PoMG5qC53b+tD8dP2p/EV9cfEvXraOa7GxTOmkt/qZgolcu7dQAGLZ6YXpxX0Pt2oOMnY+ii606SjFXfl6Hzd+z54q1vS/iN4p8NatfjS7jUrEXCXFjKZwM8uwJwZCOeMA8isMDiPY1ZpP0O3BYmtH3UrHsOkftQal4V+Gs/wx0/VpY7rUNMZtVuQp8yzgeXklmx+9faAFGSAa+hpZlCFPl6vc9lY6pGFnfXqfLH7QXxA8e/FjX7nTkR0sNkdvbWiuyiTbn5TgfdXClm7k+1eDisViqs5xg7Rla6u9db7bWTSe+/ofL5lOtXfvHzV481LxffXesaf8Lobme10C08/X9Ys+Ci71QneMbU3sqjHJNfC5lmWInVlTw90o7tH59jsWqVdQcrJuy82cToPxU+Kuk3CJovxG1q2beCoTU5Au7tkFsV5VDG5ipfuqsrvzZVHGV8LJzUmvmfUPwD/bM8VeDrn/AIV/+0bY3DoJgo+2tcW0ikjO4OhUDOc88HOaWOx2bTw84Vqrumly63trd6aaWV9eqsnrb6DAcUV6tNKtO6ez8j6C1CTw9q8MXiHw9etdW06ZiM0pkKg9sljn61+WZnF8/Mm7ee59tgZRrw5o6mdMSxGf0rz4W5T0HDlEeHenHSpauyoO4xCbZST+VU7bEVEoq463ufOJXPNS9CKb5mXLaR1bknNZO8mbe7sXGbdCxPpScWmU9jIsONRb/ertgvcOO3NM1L0BssMj1Nc9Tc6eljFvYWMwYnjPGRSjsZtaDcAAjHPrWy0RFPV6leaUKdx7e9DauY11aQ1Jg5ypzg/lVKStqKmn1Ol+HHiy68KeJbfWIrlkZGH74Elox6r71eHrSo1U29DDFQVSFkj7+/Zx/wCCgnhu38OjTfH/AJSaPCqwxNcyeZJcN0/HNfcYfN6cIxbVkz5Stl1SVT3dz2LxZ8Bvhj8YbGDx58NJ49N1WWPfBLGFDJkZr6SjXhUhdM5K1GdK0JJu/wCHqcVr/if4u/ATQZrXV9Gubq10+Iuvkks95L2LH0rX2ztdo854RzqWRD+zd+2T4l8VeO9O8IeNtP8ALvtSR7m6yPktogQFX68gU41JVJJIiuoUYWsfW3jjwlbSxWmsaVKVlaMS2zr1DDBrp5eV76nJGftI26HZeE4PEHj7To4/D2km6uJgBfeY/wAsTDjJyeB3rzsTShOLUtU+jOmNRQjZ6M9g+Fnw11nwVatJrWti6nkHKRqVSP2HrXKoKMrkuouWzN/X/Cdl4jtfseqxM8ec7Qcc1VSjCvG0x4fFTwrbhuy1aWn9m2C6fp0AjWJNsanoK0cVCFooyc3OpzTe5biZvKC7h5m35vQGsHKTXmKSjfyOU8Z6ld2rC3u7maNmPySwgBcfjXC/aOdpM7acKXs7xOcu4YdW1KC5udNf7VHHm1u45vmc+n0rpjGfLoS1N6dCf4UaTod1rGsTx2SxXsNwEuUx0JHB6VtSoJe/JamdWU0kjuriGz06wCsQo6DjvW05aWIhJuehy+r6D4Vlnilk09JpFcv5m45UnqetZRpxjLmOh1K0o2OK8Q+ALr4yeM44cGLRdOH8S5Sd/RlOCcfka3pu8tdiuVU4XqPU6bxP4X8IeE7GGEWaySom2C2Hyxg+u3oKprne1jNTlNNRWhwPjXx9aeFrZUW5iiupshGAACgfeI9hSjGKYXh1Z5Z4t/an8NeA7e3v/FOrtNLdyt/Z1i0+wSIPvO3PT611U6LqzUYb/d+ehnVqJK0D5j/aI+Af/BO34zaTrX7RHjj4daxcXltbeZd2Gj620IunAPGAePrXl47A0K/vV4XsbUKmNpRtB2PyP/aLv/AnjDxXcW/wR+CkHg/TLSYoBca9cXd0VHdy52DPoK+NxX1KUmsPStbrc96hTxLs61T8Dy+3mKIij07Vkrc7ue3V0qs2LC6WOP5iMkcZrnqroUptl2zmaZiK5px5dCqXvSNC3Vo2BPejRRN6jSZoW5BX5uoxWEnqVBuw8sF5x+FEdQauKknOBn3JquS7HGPLuaehX15a6jbtYXMsUwkAikgYBwT/AHSeAfetKEJe2Si7BO72Prz9mvxvqOj6hp/narp9tqAcBGl1EanqT88hIY8xwnHrg8/WvsMuxU6M1T6/efPY7CWbdtfPY/bX9hDX/EGufAmG/wBdsbmBBcsLVr26EkzptU7nA4Q5/hHSvo6zUuV9Wj42pC2IkkaPxZ+KOlw3jaWurxrb42lc8FvU1iouUkmy6Ur6I4vw18T38PXpa31SF4lYE7GBDL7c10zoO8k7XXmv6fyN+SJ6zo/xH02/sRqkN2jxSRhsKffmuSpCUZOz0NYUYySZlan8RbS2nliSbMXKMN3r901yRgloaTjqkeXeK/G063dxFE7CO6gZkIPPmLUKmti4RlJp2Nf4I+HtQ8T2TeIdNgS9guP3dyDKAFIPP0NdKwyaTZdSpGjvoe6W1uYbeKDyyAigAFt2PxrsTjFaHgYio5X8x2xi9TGetjCEb7Dbq5hsrZnnuUQbeCzYGfrVbvRHQ1CC5pbHzj8Uvipq/wAHNdfUrO+uEkS4WSKzN+1wsqsRkNuORn9M12+zp1Y67+hMYxxK91WPCr630/xH8epPGd9oUUE+rXAkV4cSsmeflUnbHz6152KwlP2ytE+iotxwqhFao+4PCLw+FPAEeu6tqKultZA7BNuRMDhc85bOAT61lUXI+U8zESUqvLFWPkr9pb9o1oI7hYr/AGPdsXmCnoozsX8TzWKkr72O6FKySPhf4r/FfxH4x1eXTtLMk88srN8pyN5B6+uM1x4p1KiVSV93rrq+vrvqn5Psd8KMYR1PhX9sv9rrwp8DLqfwja6m2o6irlbxrOYGSSXuoPICr0LHvwM104alWac4J2XU4K+YQozUVqz5v8N/t2adq+oeXeanqOiSO3E1y7Sw593iw6/Xaa9OGsfj+/8AzNaOY06rvUjZn038Gf2zvjh8KJNO8dWepam2krKktpqkbC5tZMH7yToCcZGMHoeDRCvVd4dHb+r/ANeZ14jERdL93sz658ffFTwd+214IHxc+HPirR28UxQD+39D1e1WRLlgMGWJ2wwJ6lfXpXHnFGE4NUZJtfj95tllWo7KaaR8meNbO/tL6UanotjbSo21m0+43KD7qWJFfnOK9om+aNmfVUo2WjOYuQN24muSEn1OpOyIyoCYxipnOzsRFXepW0lSNR6d+tdbbdEza/eHW2pIYEDtyTXDPY6Y7GjFyoU/hWL0NLuw6NmUcdfpUsrZDZMO2D7VpDQIyb3JZGMUOVHbkUN3NJL3dCpG7ySYIPvxQmkjKKs9ScZTkcYqZSbHO3QsWJ+YAfgalNmtEtXpwmR6VSRpUfuma0p521asjmirjtPvLqzvo57aRRhxvR/uuM9D7VthsXXwleNWm7WNW3FaHs9r8RfFvxX0WDwbqvxV0zwdo8EYQfZ7eS4kI7lY0AUH6mv1vB+IeKlh40YzVKPW27OLE4fEV05KVin8dLP9lv8AYi/Zu1T9rPQLLUPij4h0vWLXTNIj8Vwqlh/aNwsjJJJAuQyosTtg9SADxX1mBzbB1ssni4Xk72TfdnmVsM8Hl9TFTd2tEmaP7EP/AASa+PH/AAWTstR/a+/4KA/tj3nhXwvYeJobC58JQW0VuXiS3hk2RESLFaR7ZUVBsbjnBqM7eY5d7PDYj3+ZKaUdVrfqr327n4vl2f4fOKuJqKrZUpuMnfd2T67KzX9I+V/21fB/7Ln/AAT8/wCCid/8O/2KPi/rmt+BdNe3tr/UpNbW4eO4KKJvLmTasnlvnnGOCOetXCliMHhKWKs4Tle8dbW6Oz1PXyTPHLMpwvemmrO/lr+J9w/safF6D4lanqXgjWZ7dPEFpsmmt4ABHqFs4wl5CD1RlI3r/C2a+pyjMnjJOM37y/E/VaGYR+C51Xi211fR9WutIvVdZ7Fwi5Q/cLZOM/7oyPevo5NeyvfXt/X9anfCs5xvc9v/AOCctho3xF+IGqJ4t0/T5oNI1HdBFrasUVioBMaAbZGI6E4xmvPxuZYijl01Rc9Xb3dH/wAN3ZniK01hJqLlzP8Al/Vn6YaE1jp1kmh6XoSWcEEAkHkqoX8h0r8prSq4io6s58zbtre5+aYmNSpJ1Z1OaTdtSxolyLhDPK4QiThCentU4mLi7IVaHs3yrU3I5Mx5cgD0NcK30POa10PF/wBp/wANaZfeFrq8g0y53wo7Fkg3ByACSc84xkZzivq8hqVPacrktT3cGqlRpNo/Dn/goL4At4PGOo67Y3xkOmQiW6hgz89m+VEgXPOxiTg46jNfTYtuK5Ybn0cUoUU3ujyv9jj4OeBvitHLL4h+LC+FtRMSx6dqU+nPPFJ1ASUrh1B55AOCK4IQlzc6ZzLGVKeyPbvit+xD8cfD3h6HxPB4Z0TW9EthNJPrfhmVLpGI+5IxzujO0k4de/bFelh5Qu+Z2Z1U8xov3XfmPz7/AG3vG8Pwl0qfwnoFwo1a9Xy5riP70MW4/Lnsep/GuDNsdHDYeTh8TVkcOcY9UaSpp6yPmP4mfEnwJ4w8GeCPDng/4WWvh+98N+HJLHxFqtvctI+v3bXtxMLuQEAIwilihAGeIhz0A/N61ODkpLd7nw9qqlLmle708ji1dy3mKa7MNGMJppXZTi2j9GPhRpVv4k+A3hGz8f6Na6lcHQbfz/t9ssjEbf3edwzkJtH4V+bcR5jiK2d1pxk0r2+5H6ZkOW4dZPShVgno3t3baN3TNB0Hw5ZjTvDukw2VsDkQwLhQfYdq+enUqVZXm7nu0MPQwseWkrImKGTAHr1pxasayeg7ouCMcCldmcHZlS+3bMDipTu9S52asJpMRABZc896TTbsjOCUWaMkgTBIx9apKwpNJk6TK0JVD0HNaaM3vzQMywbOpt/vVtF+6cVLWoa17kKSPSuWpqzsmkjLuVDnIXk9aUNzDm0IWQgbm6Vu3ZDiklco3XJI9B1rHmfMZSSlLUZbIAoxgZq1qzOT5WWdxjGc8H0rRQuLkclct6dr11Z3ltI8xaO2k3xxsflB9cVtSm4yXNsjllTUZXR7p8Cf2yfHmh/EXTpNd8VT23h/T23TRBvmnPvXtYbNKka6u7QRzYvDwlSfLHVn3H8H/wBvf4UfHW+m0XVdPhWzMq21ubrGZ3PGEB5Jr6rCZzQrxPDqZdWo0+Y7bx/+x9oOsOfip8JolW9gRDJbxnG9VOce/evRhUcZc6PEqU4124y3Pb/COtLrvgzTI7m38uaKDbN5nVCBjb+dd8Oes1I5VSdJqNj0b9m3wF490vxlL4lu7N7fSJLdxvkfHnscbcL1IHPNGJdCNHlveX5BUhG/Mz3VAF+8RivMcW2ccpaiTSIg3OwAq7qK1JTbGStIIi8adBngdaG+WNzSCc5JM53xN4uXTLBbgAoWYjcWxtPvXBKftNT0I0Y0pe9qjDfWrnxjfwafZ6hbGbYGa3ngZ1xnqSDUpN1NDRqO6Wh2dlptjp0YSC0iRwPmaOPGTXqQjZann16zvZPQlgt7SCZ7iK2jjeTmV1QAtj19aqXmZ87nGxQ8SeJfDthYsdRv4lyMKCec1jzRb7nTh6E+bmZ4340+NOjeEZJJftWYADtwep9/xppczOvnUpWidd8AfjPoHxJ8OyT2nlxzQucxKwJYev1qmuTU56tKpKWoz4wTmL/iZ3LbIoocvID8309qiE+ZluXsqNkfDPx1/aJk8QeKpdJ0mRBFFuE0inIihTr+f61tBtbnLJSmryPlfx14d+MPx2+IVx4+1LENhFGI9L02W6WIiBeBwTkk9cChRnKd0a0acVK6Rl+Ovi7rfwZ+H13B4+hs9CDQukNtewy3CXBx8ucJsyfQmjMa6oU7t6WO7C4etiai6an5+fEzx14j+IWsT6pqt7E5dz5SW0IjTb2+VeMV+dV8dLFV7tWX3H1MMNGEEnrZHCrDwCvpVJrm1OrER1bRbtiSox2GOtS3czpS1samkcOMjvXLUSudkYrc1yegIrGXkZz0lqWoGOBjv0rJq50UknEnGD+I71n1DRSF2kdq6I25SnrqWYY0bAkx178isJ8yY3NLY9s/ZX+D/i34l+OrLwR8MJtRfVLxgNlrqErCLkHc0VsmyIdOZHGfTtXvZdltSfLKnJ67vWx5WOxFKn70lf1P3z+CngS2/Y5/ZF0T4Y+LvF+7VpYWk1G+uHy7zP8ANIRk5O0YH4V9lgqE6k7N6I+Lqfv8RKcVoeA+IPjJ4s+J/wAS7n4G/sZ/AmPxz4qt7RLvW/GHjnUDaaHokchYRl0QGSZztYhFXJ28mrWIw0ZN72dtN7nn1JYihUSS3Plf9rH9rv8AaU/ZL/aGf4P/ABP/AGx/h/4k1TRNEXVvEnhXwv4HNlp+mFnAiszctKzPO67iE4bbgkc4r6PDZZLE4CWNUXGC7rcMLi6bxHs6msntZn2R+x9+0b4P/aJ+CifF74Z3xl06baNQ04vmTT5/4lI6hTyRXi1PZ1NYbHs86jodZq3iEJqDtHelojEVDZ4J7Z9xWHslBXEqrvoc7p82s674hSwFu0siN9w8CXJ7GlSoSnO6RvGUbXufTXwr0DX/AA4i2cXgez0yykjDTSJdDcz44OwA5PqSRXXNU4q1zysTWc20+h3SKNgJFcU3eR5zXcaVZX3Y4oVrmlNWjco65fWtnpzvc26y8fKmOp/KumFOU9nYVVXjtc+Tv2rtWvrK7F7/AGDGjeT8k00YIA3DOeP512R54aHRg8NJr3dD4yvND1i7/aSvbbUPEupMs1xBLbabb3TJCy4JLHB7fr+FckYXq2kfQRrUqWHtfX+v6/rX9J/AHhi08Wfs/Hw1b2v2KKO2aSNknMkkrAE5Ixnk+nPSoxVLkqX6M+fqVr4j2lz8zv2p/GF2niy98NJPPHNuaNBJGUZOxYg/dP8AKvGxsYtSgm15nvYPlqwUj5K/az/ab0r9mH4Mavd6FcJP4mvbGZY5lOfs+RjIPZiTjNc9OEqr5LjxdXkpNo/Kzxp8RPFGj3etXnijw/pWpyeOPDNsYbq+jMr2UbSRyiWBgw2ShomQk5yGcEc19phsxqZXhauHVOLjWhFa9PNed7/M+CqUI5lVp1faSi6U3e2ilurPy1ueaQjfw3YZrzU+WNpHt1JtKyP0C/4Js2/i7wz+zpqY1pHt4ZvEkd5oiykMHheBklyhJVo2KJlSOSua8XievXyulRUVyykub5PY+v4NwscZRrTnrC6XzW/6Ht2lR/B1LuXVbhNT8HayeYtU8LRB7d29ZbYuoPPUqR9K+Zp55HEe7idPNf5H1E8njRqc1J+72OM8XTm51OS4m8QwapI3JvIbV4fM/wB5G6H8/rXkV6tOVT3ZcxtCmznpmJkwag1Ss7DiwEefWsmryCp7pDpXN0Xx/FXXoqZirykdVYgnJPXA6VxVGjshGyNFAygZH/16ysNxsSIuBz+BpaI005RgB8wnH6U76GK0ZNK48vBGKz6mybkiCOFlPmEYNaKN0KomrA5LHgDr1quVWJRLp7MHK4wfU0uRLU1g0noWdRk/d49qm5dT4TN88DBz3pqzORN3Ft9zSZx9aqyLjNXNrScGRQgHX1qowkprl1RrzNnt/jn9lu4/am/4I3/HnTtCt2n1vwVqWneKdPhRcu62qyeao9/KaWv13h9VqmQRoR2lJ/erWPl+JamKVKNFfDK/3n41N+0d8ZG0w+FH+JWtyaW8yytZNqEgiZ1UIrFN2CVUYBPQV9THiLGUKcacpXUNFdK/6/mfkC4ZymE5SjSUW97Lcz/+EkGqyNJq15lgchnPJOa4a2dSx9Vuq72OtZbGlFeyVrH65fsmfAD4lfGv4F+Cf2hfhJ4C8YfD2/8ADcFrb+F/FPjVIo7XWZ9uZYowhEk1u5HBKEAHrXfhq1fETj9TXvLv1PucuqQxVKMZXjZKx+nHwR+Ffg/4u6Vpur/HbQ7bQPFCKE1W3gkE1rcOOrxOACVyv3WAYZ6cV9ZWr5lRh8F3b7j3HXr4WnZrmPqP4c/Ar9nnwhafZvCukxpIrAymINuZsccAcjnNfNYnMs9taWi+R4tfN86jK0Eop+SO/wBK0u10fSb4WekywKIwscs8m/ePxOce3FeFVr1K9eHNNP0VjyqtepiK9Nzmn1aSsSWN5aRoEkuQJIyN+SQPpjNa1Kc27paMwnGq5XS0ZqWupW7Moy+8tjHOD7d+K8+VOSZk6M1d9DjvjzpFrr3ht7B4NSnlKnyo7FtozkZySMAD1NetktaVCrzXil56s6MJJ01dWPx9/b++H8vhb4oxa3rlkLmC4SXT9QdVASW1lLK+eOSCR0PFfZZhiIxcKkNrdj6rAv2mH2ep8M/B03Pwm+IWt+BL3UpP+JdqTQxMD9xNwKEHGSCOfYmvOhiZudi5U1TdrHvXxF/aKm+BngZdHGqtLd64ZEhg84yllk5JIboDk4HboOOK9O/PC8jllSVrO5+an7TXgDxZrni7V9Y1rUZLgag4ubCV87CDkiPpjOK8LG4GvWUo30ex81mOHrVXpuj59tltNP1B4Nf02eVEVkaCKcROGxwclW6HnGOfavlakKdCpatFu3RO342f5HmqlO2js/NX/VHpH7Mf7Onif41eL4LybQrhPC1jcq2t6o0ZEe0fMIFc9ZHxtwOQCW6A1w1szWW4KdW2m3nfoj1cBl8sxxUacVpfV9D7uSOKJFghjWNEQKiIOFAGAB7ACvympUdapKcnq3c/UaUVCKjHZDJdxGPwxXO3qKd7hgouf61UdjaMfc1IZJgAcnkdKGzC9mMKPcMAOlQjeMb6li3tDCw2rj8K0T5YktK43UYZSAUGRUKSuROnfVEtkNtuQx5Ap3cmVzWjYpWGRqZI/vda6Y/DY56Vue5sXwypHtXNO6Z1VHdGZJksAfwpwRmoWRFdzKqbPwOatvQyb5TKndmfgfSpSuNJN3HRvsBbFbLRGNRWlckifepCk4o5luXTk3oxkjup4PH0oTTInTu9ByO7jGTj0xQ3dWZCjFG94G8da74G1uHWtDumiuovlt5c8QA9WA6A4711YSu6VSyObFr2lJxP0x/4JvftzX/j++uvCN2C9jpFtDCbiVsmeQ/eJz1r7nLMWqidtkfGY6hKlNPqfb2jf8I0NRTVXhQRSEPGP4Ax7n1r6fDzUItPqcLtLbc96+GusWOreHt+n6tJfLDIUaeRAo3YGVUDoBXLXjyz2sck4u7uYPxP+KVroKbNI1QJPay5mQ8BsdverpUPa7lUoxSd0R6J8dfDfi7wzJeW12sNzGMPG3UH1xWNXBVE+V7BCk1K7NTw/wDFmxn08LqsZSRRjP8Ae9/5VlKHLGyNZYZ814nI/GDWIrrRJ5rCQyFW3xqoznvggdax9jJGkrLSW52HwmfU7rwhBq+qaetq9zGpjiK4dV960pUknc5qk7QsdADls5rdyPOlK8ixEvOSOtTzX0Oilojhvjl4Yu9a8Mztp9goYIdsi9VOOvH4VnGPv2sdKm0nqfnn8TP2g4rvUdV8AeIbgWer6O/k3EMnHmKSdsgPcEfqKtp7MqE1ubn7H37Sel/D7x/b+D47iNjOFx+9y0rN7fiKbkpJRR2VXGnC01bRan0X+0H4g8R6f8ONQvNXu/s39pzSfZw/G2PZwfzP86z9m4nn1ZRk0uh+W/7Rn7SHhn9mnwNrviK4g+3yWls9xfXCo0hjTdt3MByBuZAPUmtIylJNRWy1Mq1WNFJX3Pyl8fftvftweP5tY+OPhv4t29to9hdIZLWw1W0ElqkrARj7PI3nMBkAkKQDnkVtDLsXOg8TBqUY72auvVb/AIHBSzGH16NCTkpu9vddnb+9bl/E+i/2J/8AgrR8QPHvg67+HX7VvgO28WeFxKLe5vUiTzMlT1VuQec5UjmvJxmaUsPJU665oy/A+ohTrY7llTk4um7+7a0tGrPTbrpbVLW10+b+POj/AAT0jXpPEHwJ8Zve6PeksNJvkZLiyJ/hyfvKO1fK5nhsDCftcLO8e3VHt4PEYiScKq1PMVBaIELnjqK4pO1Sx7NZc0mMtEnZ8Enk1TfunP8AAzc0cHIyefWuealY3jUNSaQqcnj61mou4tZMt2sm/tUTi0dMNFYnO4NjHBrImUSaNyAGxmtY7FwblGxNGrMdwOPTHas5uxtCmk9T6n/Yf/4KC6f+x3CniG1+HMWsa3FcKlpp/kiGzVBgmeTad0szHozcJ1APSvs8t4jw+HwSpVIt9Glp8zxsyy2tjJctKSWqd2r6X1W63Wz6PWz2PRYf2+f2iv2rfjDc+MPir4zmDalEIbHQ9ODJa2EOdwjjUdeQCzk5P5CtKXENacpU6XuwkrPz1v8AojOplWGw1PRXaPDf+Cmv7RHx1/YI/bkt/i38PviX400bQvH/AMMNPuby18IeIH04X7xDyJEd8NhVkjc/L8wL5BGa9vhfE5Vl2bOpj6LrU5K/LdKzto9n/XU/O+I8vxmPotYWpyVF18j5L/an/wCCqPxH/bB+GekfANvh54a8IeEdN1UXlzDotqz32qXZODd3t25M13MQTl3bJzX0+aZ1hatKdLBwlTjN63ley7JWskeXleRzy+ccRiZ89RK17WPvT/ggl8ZvFnwC+NeheA7bXpda0Pxtpch1bRwCxt0jA2zNnjkE89sGvmsLVpxlyNn0NZTqQU1c/VS48W/C3Vr258R+F/FMM1ispD20tzHtBz93cCRkfUGuyUqMp2TuXT51T95nSfDeTSvFUqT+FPCd/foZPklsbfzFjb2lA2r/AMCI+tONSMHbYuU24e8e+/DGD4i2oeHxRpC2tkEAhNzqnn3LH3VV2qP+BsfYVhWfNK6POunJnZgnbg+tckr81yW9Bk2cEg9KE9TemnymbrV7JaabLJDaSTSbSFSIHP1rtoxUnuKpK2qPkb9rLxAdPQ6Rq9pdfZb+2kjlmnf5FkJOAMdM9M13qMqa5uhtSjHEx5NdVZ9P60Pj/wCI2qpo3xe0XxNZQGKS5so7YTDOSQwBUEetcqqU4zUup60MLFUVGP8AVj6osNU+EN14Pk0nx5rutx30triOTQdbkhlhBA7oVG7npXTVjKrT0RxVabcbRR8Z/G79jOy1TWtW8Q/D39onXr13jLpa6yfMc98FjzkY9ea86eApVE3ezKpVKtKGq0PhH9q/9kbx1498Iarp82uKupxWs0cYkY+VOc8bjj5TwOvTnn189YKNOpz32/E6aqeIw8lHqfmX4p8LeI9A8Qz+DvEtpJa32nO0LwXJ27CCeOeMHJIPQ5969enCM4pSdtNLngRoypXbVu5rfDv4KfED4jazFpOgaKBG74m1G7mSG0t1H3nkmchEUDkkmp+p4uvNLlsu/T79h1KtL4U9T9FPhhoHh7wL8JdG8L+FNd/tGwjgH2TUdjIt4qqsZmQMAQjsjugIztcV8TxhiI18fFX0ilFfI/UuFqKw2Ux0s5av1Yl/K0j4c89+a+QSij26tRvQy7oljjp6H1rKKtIIx0MyZwkxJHfpmup3auYTvzCOz+WeKxcuZlVIpoTRlP2gg92rqbfIZRtB6nUWEgEY57AE1xzvc3jK6NCJiRjPPas3oW3oPVyGxmpbuRdiqcPkimk2hpXdyQZYgH0p8tmbQQly4jXjrTvYqrflKsd0WJGO/NF7Ixin1JbacrNnbgetLmNYcqZYvZg8eCegqGyqj0MtsmQknjuKpPQ55WSuOhn2yhBzn3raKtuTFam74dPnXiRZyCRklsBfqfSunDR56ljdNH6j/wDBEvwcLiz8faHfy2GoaPq2jol7bJlkYEMrI+Rg5UkfjX7hlmB/s/hehUe7ndfceFxU1Ty6hOW/M7H5af8ABQf/AIN4fjD8OPjZrXjL9lCDw/4w8BazqTy6fHca9FZz6H5jMTDN5jqNqHgHnIA4rzcywmMq4luCaXkfIYqjD2jnOmry6NtfPdFL9kn/AIJkfszfs7eLLPxd+094psfiR4whuP8AQfAXhtXl0uyl/hlu5Tg3QBwfKTCHu56V7uSZJTdeH1m9m+ivZd91d+V0cdDDYly5eX8f1P1T/Zq8H+PvGVxZfEj4tahDNd6fZRx6JpPkqltYLJxHHHEAFQDHQAACv0ChgqeBpWS3Pq8Nh1CKuj6a+A3g6x8Ra9qeqxWsIh0u5lncLkbpBkJnBHcuce9eVnmMlhqcIX1nZfIWYVJRhFPeTsdN4LvW8WyzXGp3bQ/ZpWChCFAGSNzsMMzemTgVyYyLwkUoK/Ml5/dfRG9an9TheK5r9/06HqvhvUZ7Twrc2l5qRuPsgQmdwRlSAevevksRRhPGRnCNua+h8fjOWrmEHGHLzX0Iku4bvfPaMELSjIb/APXW7pyhZSN1RdNpT6Ict/LBcrJHIWUn5wjYVTnqR26YrN0YyjZqwSipQaSKvj2w1fxbph8G+Hpxm6RlvZJ2wscLggnodx7AfnTwMqOEn7esttrd0c9H91L2ktLbep8E/to/sl/Fbxf4Q1p9M8OarqOm6WxWxuWhBMsfSUIM5I3DepAP5HFfUYjHYXGYdQjP3rbLX7z18NmVOnJQufkD8ct/g74m23iDVLfy7m4t2s9SWRSD9otzgEgjI3JtP4V41KcqTXNue5WmpRUonKRnUPi5eT6xqTh7okyW6sSQgjUYAz046V7GHrqe7OKblUuZnxJ0+38T+HhplrKGaytGk8rHzqWbC4PoCrcf7XtXXOpTVJrqY/V5RSk9jwrxl8DdO8T3E00qmO+itmkDRL/rVAXDY79efqK+XxuBp46eukjzquXxxF57M9a/Y2+F9h8O/A93rV7p8rarqEuwXssx2iAEHy0j6Lk4JPU8V+X8W0auGqQoN3W57vDeXU8IpVHrJ6XPX0YEfMc+lfFTlpY+pbsJMCcDIrKKM95CfwcgjiqlK2hve0SmYS0oXd36k1N9DO2ty9axKnUAHtxTUW9RqRYbCkD8sUSbYPcbNHlASozipiaRtYjiQKj5PatU+xnKKbM7Typ1Nhu71vFysc0E4zsbF7yhGccCsKj1Om+hmyk7chaSlZCumjOmaSR2X26U02c/LdkbxgBSacdyrqJFcByhIU+xq+ZN2FKKmhukqxG16mXMiYyUXqWJypfBNEXyib94jQtGePwzW6lFoiUHJ3HyvlCen4UOKfUynBpHo37LH7RcvwF8Ufa/Iee28zeLSI4M0p4Ga9DLswnh5ctjzcTl8aurP18/Y4+MDfHzwLa6fqsUdtqE6hhbrcBjHnoDg1+k5VfE0eaT1Pj8c44Orax9VeNvjB8GP2OPg3AvxI+IGn6UwiPlLPOGmnmbJOyMZZzk8AA54pVqsXW12PKrVnzJPc+LPh1+2v43/bu+Nmv/AAG/Yt+G0D3Hh11/4Sfxj8Q9QNna6cW5CrZRZuJ5cHOw+WADlmHStqGbUZv3VeK/M5Pr8liVRglffXt/XY8xl/4KZeAP2bP22db/AGN/2gfGmk3Op6NNbxJ4w0Gylt9NuZZEVmgkikeQxMjErv3spx2r2MTyRhFzVuZXS8jtwGMp5hOSg7pO11+J9k+DPjBoHxBkml0XVY5FZsW6RSB8jtjB47V5nLTc2z26vLBK50smi/ELWG8u18N6neJKBmS3gxkfViBn3rKcUjirYik5XbPfPC1vNH4esrOexngaGBUZLjBYEDvtJFYxfKjjxDU9YsvNasGLBSaTscsKepJCpDD61Kepvay0K2safBqGny2FxcFA6H589Kp3vdFJtvRH5H/8Fffh7pvw++I1r8WPCl1+8jP2bWVClN8Z6MfXB5FdNSjUlBTSFFOL8jzr9j+yEPjm3+KWheF9X8SvahWhgs7cykEdRjI5FTCmo+9Y1rTc4KLPXP2tf2s/jh8cdXHw+8PfB7XLKaCArb21/AIDJtXPCscnpXNVVZ35VoNUVGmpSPxb/wCClPxO/aT0PSta8G+M/D+p6NpuvX0EV1LgbJ7aL94IZCDkZl2tjvsHNLDVcRSpTh1l+R5mLhRrYum39m9vU+HHjJIwAR15ojFpanVGLs29D6c/Z28OP4f+EtlJNDsk1G4lvHyOdpwifomf+BV8TnOKVTG8q2irH1+QYeSwjqS+07/LY6i9cRKxAydvWvKi+edj3vZqKuR2jbYgT6VvNNzY5fxWWAh3DC9T1rWMUkKdpM0dOBjO8ilJq1iuRKNy40wdsbgPqayVkzKMrMu2TYAGecVjVZ2JJK7Lm4H5gOtc63BO6HRPtfaacpXWhKbiy7BHuHy/lURabszfnsi3bAh1LH8KrToKNRdD1n9nnxXLovimC0aDVJbaeVBNHpS7mlwQQr+iZAPUDiu/BShGet/kcuK9o4Ple59Y/t0/8E8vH3/BT79hez1j4OaIJPiN8MJ5rnR9BaWP7RqGmTqPtFmrfd81WCyIp4JyP4q+uovmipx3R8HmNJwxKlfc/Ij4Z/8ABKf9tL4k+NG8O+FvgR4ntoYpwuo6prWkPp1tYhW+YzT3G2KMDByS3GPpXowVWvG669TzK8Jxlyt3fbqfqv8AsR/8EytO1j4kR6dpXxmtJbfRNIhsde1Hwfdzb7kMo3wRzFQqJnI3IdzdRgGrnl8K/wC8hUV46OPV+e1vx6+tvQw2JcKCi4623P1I+H37K/wr+D/g+x8HeAPBum21taRKwMtkZXhbHLZbO5snknn1r1KNKlCKsrGTbi7t3Po7wdpS6F4QstOXYGW2UyGOMIGYjJOB05PSuCSUq0n5nJOVtEW0Zy+NvGaqSijNRtqSklRx1rJbsLMikdscjrSsrnQvdgVb+a4GjXFzbo0bLGxBK5PHoK6Icikrigudnwv+3FqXijw/eWUt3pGoXJuoJHmt5W81DH6lQMoR1BHTFejUqJq0NT0aEYxWmrPk34p+ILe18N2ms2d8ZJdOm8+0lYDJ56H3FeVP3WmdCrNvQx/An7RWjeKPF8OizXT3cjQYnZyR5LZySo6fjXXSx0ZaGkaEnSu9D0XxNI6wP4itZmdQgW6jQ8SwkY38dxW75ZNTRzOzXJI8c+Kml2ckk9y0gmBXbMGUESRPnax9xnFc9Rwd2jtpKPKkfEP7V/7JXg7xvrV7dXumGa4SNJbS7t3CTLGeCA3OcHswI57V5OKnNuy2Kq4eGJ33PAvhJ+wNp/i34p2Wl614n1D+yUuwbqzm08JJKgblN6uRyBjP6U8OlKOqPPjk/ta65paemp9o/FjQbPw3r0ekaVZRwWMFpHFZW8Y2pHGihQoHbAFfL8QUrVE4o/RcIlSoqMVokef6jIHbHIHvXyctzdtszZhjJzkd6TkiryM26iBkznvWiqaWHa4m4BCCeaizuQmJpLD7T1/i612aOkiLNysdFpznGMZ49K5KhtTi7GlEcKMfjWL1Ld72FiYBjnn6VXs76j5R/mK7BWz+VLVFqDZOrbDv29e1OzaKTsMlIlODz71i207BdtkJjVMHbz6+tWk2ElZCAkMcA+1aciRktJXCWdmTB4IFYvcubTKsrqOcdTVwV2Yy10CGF5JlVAS7HgVq3eVkKN2z1f4BfA+++Kfiq10+x1HR2lLASQXmqRxvnI42kgmvuOGuHpZliY6rzOmnCE7an66f8EzfhzY/AnxJqPw5bUba5mu9NW4uBAiYjIIG3Kjnr35r9w4gwFPD8OUI000oOx5XGdCM8lpVIprllY4f9s3/AIJy+DPGHi7WvFa3d7anUbsvItlqMkG6Nwcn5CB1wPx68YoyuWX5lhYwrx95K1/Q+fValmOCpylG7Wn3HjfwP/Y08A/B7xFcJpMciz6gZIZ5p2LtKyxtKwdsncFMYPoCv0r6iGDwOEoxlCCutu9/L5X+RvhoNRbgtFv6X/zse4eKvHGhfD9NQspbgGSwvrcJhQPkWHA246jdk+2TURTr8s3s0/zO2im2rLQ9q/ZMu5bX9lbVfiJqMAD6tNN5TZOZEBKKT+Oa+Mzuf1ziKlh4bRsebj6kaub0qUX8Ope+HmgDSNFttfv4Le2a6k+W1YHMhJ5dwOWOM9fWu/H1vbV5UoXduv6K+x3Yit9YqypRba/rY9rR7Sw8JSaxqNrHE00SmQLwG7AV8NapLGqlCTdnofEVISnjVTptuzOTj8WLfo32LZEAQCD2X0Fe88F7N+/qez9RlGS59TO8QeNVtpZGnmDWvlkYi4bpkn+VaQwyjBWVpA8PTjBJrX1L2gfE9G0rztLElzcTWzvFEU4wo6kgZ68fjXBXyxVJpydlfU86vQ9o+yR8ifHNvj3481HW/iP4v8XXY0jS32afZ2UrQpGwz8oGQM8dT0r6bC4TB4ZqlSWr+82p0qcNKcfVn5a/t+aQPjL8P9Y+MGliy/trR9SEuriBlLTwg7fOKp0IzgnuK8zMf39WUo9D1o1lTi1I8K+A98lpbRXUq74vMGXQbuvX8MVxxrclmgjeZw95qd/4c+I+t+G9aKyLbaxmJ8DD28udo64xz+de1GvTqLfodKilLVl46LZnWX8kq5tLopkDny5BnB/SuaE6UqrUXqtzT3eWyRu3PjPwv8O/E1l8N9ZlkiifTI5Vu4gSkM7E4jcAHHy7T9DXy+f8NUs4brc9mkdWCrNVfZpbnXOsUE/lwX0NzGwBjnt3yrD19vpX4zmeBqYDFOlJ3se+6dlqPYq4GK89Re4uVDJX2KQOmOtHI2Q5JMqQsWlBYj2q+SxSd1oaMWCBipbaGklqx0rAYBY8VNmwdmwkcGPPbH50+VoV2mRZDI3PaqgmmN6amZZBYtSLH1rf3rHNGalUNi6lzx3xWU1c2lFrUqTbVT69ay5WKNjOuwIiX6ematRZEnGBntdM7bRWzgkjmd5O5KjgpjHX1rPkdzeGqsNiJiY4HFXZJEVIq4zezyktmo6EKHM9CYYA9PqaqMWWm07CTHMRI/nWiTJqOysULRjBfLcZIKtnPpWkIxjJNmK5pxPpP9kH9sDxt8KfHum6TpXiFtP06SQfbJkjDSSDPTJ6fnX0mU53Vw2I5L+6eRjMpo1Yucldn63fAK3+Cfx/1qx8Y6vY2Os3kZjZ764IlkXBBxuOSv0Br7GNWGJTlHc+OzCCg7NWPwj/AOCwfiX9pP8A4JVf8Fevi5efBPxtqfh+18d6r/wlOj31jK0Zltr4F3CsDztkM0Z/3a2ybMXllaS5FJPRpq6PjsyyPD5z7lSTTV9U2nr6Hx34Y/aK+IvxK+Laap4gt7vxNrfibUkinWRy0s7yOBwepb0rozbN6mYYr2s1Z7WXY9rJsBhcgwaw9JaI/b/9ir4Cftoa3f6d8Rv2drpbKx0WxhtNY/tu+aSy1F0UBzgAkSZ43L6Csabk1zp6npVKrrR11Z+qX7PPi34w+K9Ej07xjoV3p17boq3Esbo9uzd9hcbsfVaVWvGV4uNmck04yseqw/8ACR6SDLeSpcr3OQCPyUCuPnUupslzos2PiS3vGMckTIc45WtOS5jJSg7MstcRH5kJ/KlyFXuRpdm6VlktWVc4+fvV8tluNWTuj5Z/4KIfAPVvj74YvvA2k+A7aVLrTpB9umIHzAZGPevUw1SEaHK3c0jTdk5PRn5J/A74qeMP2c/EN94Cup7iy1DSbqS3ukMhB3KxAIwehGMVxQqKL5ex2OnTlG9juk+OOqa58QLXWNV1WYvMpVbl3JZW65BJ6+9dEZ0+phKStqtDO/a3+Dnw++NXgS+0rULe1u5L2wJuYbiEFpOp+91yOoNarkpx5zn9lTbtNan5Gal+xhqPh7xfrMF1Z38ukaZdIyyIgyIC3zF/YAgZFfK5hjpx5nTjsdWFwvtai9s7RPStlvbW6WlrGqRRIEijQcKqjAA9sCviZ2nJyl1PuocsIqMFZIo3WCD8tc0ny6o7FHmVmR2y4VQfWvRfxswn/FZeQcjjtUO5inaRctldY8gdaxlJHZzKS1IiszTAN2ppqxi48rujXtXMcYOKzcG3cv2mli/aHeMVhJJGlMlMYLZHpUlzehctiUXdjp2q0kRFczsWY9zEc49TmiUopaGiUVoevfssaf4N1nxX5Xie2guo0cCS0fxIdNG3I5dsHzE9QOa3wTjUqchy4mpGMGj9rv8AgmB4Y/s4tLYHTrWztrLda2eikyWrxNgB/NPLt6mvvsFho08I5S3v20sfHZtO1o23PKP21f8Agn34i8b/ALVd7dfCrwHpGnjxXOt3f67/AGULqaPu7xiQlEfcTyF4616FONarR5Yzso7o82MsLGPtZRXO9L9bH0Z+zd+yn4d/Zq8MR6HZDzRbIZr+8kyzzznux6sxJya3jL2Xw63MoytGzO8nuZpExbgtcXUqL5YGOWbFaKp7w1LRM9J3XUF95kxVbVbZY0G7ndnkkY9Md+3Suf3eW/Uys3JtFlVUAMvNY1Ndh8tlqDkk5CmojcIpJEGoahHYwGeVGbb0VFySa2hSU5aMipJxiVfD+s/2xBNHdqAYuX29MelOvBQVosdGNVwV9z5V/bY8ReBfiyup+Btf0i5u5orSQWsVocSKADhh8p7jPH5104ak0ve2OqVGtBp9D80PGEeq6HfXfg6+acwJGwtmmUbyuONw65FZ16atJI6qUuZXe5438DbXUdU8V6i1lfsdRtr13iduC5B+6fY15mEi1UbkejVm3FLufWfhjx7/AG94fjhu4kh8g+XeRMuChbhlPsTyK9j28eSxyRoSctTzTxBqotNRuPDmpTAm3maEsy/eiflT74NcbrqKsdsaLTPONe0eK/migu41Z42ktpj6gjIrgc3OdrHbGk+S9yn4I+G0Hh+Z9XulTfaxPJK7r/AuT/hW9Runbk26nRRp8vvGN8Qg/izw1a+IUJL5ODu7dq8DN6bqxuj2sPVVrM8p1RiHIcFSM5Br42cXfU7+WyujMupAo3HoO/rWagmRzNuxQlkDtyc+lNQS1No2GvGCmM1V9TCr7uw3SGAnPHOec10ST5LWFCa5jo7BQGBJ7VxyjY6YvU1IV4wO3Ws7MvUeI1yOfoa0Tdhc1hsQIm54Prik4iTk2Wzs2bS3albQttxZVEx8wjHWj2a3HGzFaVME559TS5dCZtpkDXcYYAHiq5LoiLTI2mZ8EED0qJUwk0V3ZjLs4xVpKESFrqafhmz07U9bis9TuHjhJy/lXEcb/gZCF/Wu7LKFCrXXtr8vlqzObT91bn3/AP8ABPP9n/RvEc0vj3wp4Xii060T/StZ1S2tnuEYd42jGPx5r+huFssweX041YwfvbX3Z62GpYbD0+acfee3mfZf7FWq2ev/ABt8YS2108g0/RxC0juCzkn7xwBgnFfVcZSlDKcOrbyPI4xk/wCzaMYr7Z71C2ifFHwYl/qjr9p03dFeR9SWHQnnv1/GviputlGN5YfDOzR8RiVUyzGSpQ+GVmj50+Ifibwh8MIb6C7FsGNrdSWEBUfMpCiR5D/fLyk++7619xSnPF8rbfS/y2X9fod9CCSSjonq/m9f+D5nxX8VPjZrnxH8c2+jeGZVl1DUblYrW2CA7neQqigHrx+p9q9GNRUqlqTXuK+traa9dP8APY9GFVYeOi27n6Q+K/EGlfA34NeFv2fNIt0u9Wh0aMvbMuVZkUFy3Hdtx/Cvi8nwNTH4+rmE3aF3qeHlWGqYzHzxU9I3sbPwttdS1Dxelpqls0tzLCslzJvAVM87UUnIUDGeO4680s2r06WCcoOyvp/wfM9rNHRw2XOpGVv66nefHK+1EaPYeEPD1q9xfX048q3h+9sXqx9ACRk8da+byL2NPESxNd2jFb+Z8nklShGtOvWdkuvmQeGPg3rsNolz4h1uNJiAWhgTKjrkEn610YnP6NSdqNN27s6cTnuHU+WlBtd2eefGfSJdJ1z7EsuSf4ANqOPx712YTFKtSTehNPEe2ipI88+EnjnUNT1KPQrZhFCfNtIpC+WiIkb5iD2xg/UivTl7OVJt9DqqUrRbZgfEDwH4v+N96nwV+F81tLcyyyebd3mXgsYhkGeQcEkk8DqSa0qYqjgqDrT6oxnOjRpOUtEz5c/aC/4ILftDfDPQ9W8XfDb416P45l1HSp4tT8K3GniwnuVZDuW3+dldh2VsE465rxKeb4WdOVotfijipZhhfhkmflr8PdD1jwpJceFNf0y7s7/TbqWzv7G5RoZYXjYqyurYKkY6V5sq99EevTk2uZGD8btDuotWj8R2dixH2UWty5bJKggxyn15yufeuvLsTFNqWltEdMIzlJF34dahZNc3PijV49ltbWayXC5++6jp/IV1VcUlJ8p2QlGC16HjV94r1rxFFe+PJ72SK8n16SczdPLBOFH0CgDHtXblkvbU5JmOFrNS55dz6B8Ea3da74Qs9YubyCZjHtkeJNuT74HNfjnGWWzo491ktGfRQxKqxujROpxxsSW/WvjYrTU6FJcpFNq6sNpP0NVZI56jW5GmpJG+4dD3zQ72KpVE2Tr4gVCDn61DSNJyVtBJdfUvnI6cc0WRjGrZh/b4MZXjNDtcc6lncauvqq4BHvTLc1KJVTV4Uut7HgmtFJtWTOOEmpltvEayYBI46c9KmSR3OacdSGfXosgM/P1pJXehy+01sipNq6ODkjGKcrDqaorC8h3fKe/enq0KmnbUet8nWld3BN8w+O9GMGnIueqD7SgfPHPelHYzpS1B7xW5J6e1XZFu1xG1FdhQHOR1pt21Iq8tiksyvLwevYU1PQxpt3NLTpRHOrNj7wyNxAP4ilBp1C60rQsj9Z/+CJGq3PiK7FlY31m0ESrvtrIthPdiepr9GybEUvY2PzvOaLk/mdt/wW8/4JNS/wDBRnSdN8VeD/G9h4S+I3gNXbQNf1CHMF7pso/f2cpweAcujYOCWH8Rx1YylTlTc4q78zyaEeXERnFtNPofDX7DP/BH3Sfh58VofCvhLR/Dt3qyT+X4j8XR3k+pXcEB4kW2AiSC1ZhkDAZ8H73rhhKOIxE+aW39bHqYyGGp2cd33P3I+G/wd8M/CfwTo3gTwXpMVjZWsSxW9kkW4KB1Zs/xHkknua9Op7OPNGC0R5dFSi9WdpLrM2kOLWz095iMDCLisJJNXbNp2TbZbtdcubtzBc6LOmMZ4BrL2d0ncUXfVFXVta/st8/2RIR1ZhFnsalN81h1Yrl5rF/SdZh1O085YXTB6NGRV31M48ttBdVvDb2nnRoTh1z9M1tSV3qWos4T49eHNY8c+F10/R9dfT41HmPcR8McckCujCpQqakzp1JwtE/E3/gp/wDCO3+HXxhX4peDryS606+mEGrSeXteOcfddgCevTOearMYUKb5qbfmddJcsLPc8k0u9m8Q+FnvbG8b7VZkTRbc5OOo/KuClWg2rvQy5ZM6r/hcN7q/hFYbeZVleLa7ydQB1FOpX9ppc0pRk5angPxbvrS10LUZJC0U92whUrwHB6g+tePj6qo0XbqephqEatdJnhl0EtzsIxjjGK+MlGUndH1SstCnJcKxworN0W0wnOUVdEcRICnNd7+NhU/isvISFBHSok7GT3LltN8v1rmkjWMk9xGZllDbcHtWlO1tS525S1FM2MA/WiUlcwj8RftJGUda55anW5KMVYuwkuQCfes3YS95l2JRkYNPdlPQ3fDdp4WvLK7stXnvU1GXy10kxyxJbbt3z+ez8qMdCvfrWtKhTqaSlZkONW91sfUH7I/7Ni3HiKw8WeKPD/ggWsVwrF7jxi0kTgAgF4Y2O9v9npz7V9Bl+DjRlzXizx8ZVk9Eft3+xbpnimD4dJea7qel3Vt5McemtpNj5EUcQ/gUHnAGMZr62Muagle9z5XFTjKWt7ruexStDF/pUwXKKcORyB3pqPKjz2+aVjhfHfiPT4VXS7e5DLOfOm2+44H6D861pxbndo2Ssl2MbwDdpr/jeztxAzi2SW7nkOfkP3UXoR/Fkcg/LW072d2JRfLqeh+I9A/4SWwTT21O4tVW4ilaS1fa5COG259Gxg+oJFYNO1jF1LKyNHK7Aka4AGAKhU1Bag5Sm9BrkgZyAPUUla5cY23M7xPeQnw/OYW2kgKZCMYNXFuMtDaKitzkPhjr0t9a3+m2ciyzyNsVGHQ4wSfb3onGUtWVOolayKuufsnfDHxXBdzeMTd3V3eW7RSzifaI1bsg6DHbvXVHGVVFRSukZe1q8176H55/to/8EqPiJ8JNVvPiv8GdQfxVoKZkvrKLJvLNMHLFFP7xR6jkY6VdWrSqQu1ys66deM9JaHwh8LGudA+Ll9C4aINdkh9mCue5r5+E3HEtM9u/tKSklofTOraEbvSZdas7opd+RmYbCsdyuOhIwAe4r1pRXs+cilNX5Tyf4uSx/wBkxeKLJZJDDGsczk4Yg/3vdTx+VefUfVHZTgndNHO2F8l/Ob9fn3xI5GchiOhB9az9o4q6OynBN8rQnxE8TNF4K1TTtMY+dPYySXLDqq44FX7S+7N50lGm7dDivAV5Nq/wnbeN7QxgkAcj8K5MRHmpvQ6MEpSjdnmniXVLMyNKSFZWxIhOCD64r47EUrzPR9tyqxgXWr2JcqRgg9CaxWGbdkzkeJ12Kb6paM2B0HfNH1axrCuwOpWrJjt9aiVGz0KqYjmjawyyvoYZiycjNVyNLUxpz965qW3iIRjG3jHcVhOmmdixCsWU8WvnCtxUezSRTrOwN4tboG6U+VGXtJtjP+ErkzkPyaVoXNYTcdbiN4smIz5p+hofJsFSrNrQi/4Se5dvlaq9xIVOc1qNfxLcYP7w+4NS3EKs5yREviKYvkHPtVXikYxc2yUa/IBtz17+lJcrLcrsmh1fcdxbJxyM1M2tilN9D6B/Ym+DvxB+Mfi61svBOk2zQNcqLnUL3QlnWIA8hZJcKDj+6Ca/TOC8nxVaUZ2Shve1395ph4OrPm6Lc/VLxFFp/wAFPhXH4A8OWayNHbf6W0Vuu6VyOflH8q/cssoQqVlJv4T3qMFUqe3k7JbGz/wTnXzNH8a+Lk8zHmpaRm4tvKcEAkgjAPVuvpXHxrOM6uHoLrqfKcUt1alGl0bbPT/h/pN5e+NNV0S8vpILLV7ZrVVR8YkwcMPQ8H8xXmZvKEMsp1Iq8oO/yPLzrkjl8KkVeUD4F/bY8XX3gX4g658P/FHiXbfWFuQ9tdOsbGLzAd8IPLlvlGB27cGvcwmPw88LCcPtdlf/AIYdBUp0VUjrzItf8EvP2bdb1z4mn9qL4seH3ttP0qJW8P6fcRbWlkUsFlKnsA2Qe5OawzODqUuWnpKatfy7HVUoueH5V1Psn4u6FaeK9I174oTADUrC3jfTRIQA5DH5OeueOOOeM1OXTq4SdHB01eMr833DoTnhalLDUo3i73Jf+Cdni74gfESTUtd+Ii2S3MCMyxQSCWRA8rKgkkAwWCKMgcDOO1eTxpSoYSlCnBWb+77jyeLf3eFhCMZK767dz6O8W6/oHhG3ufEstskt2kSxYXG8jkqmew5J/OvhMPTniZqleyPiqFNztBv3dzwbxR+0L4tu9Va7OplISDttIH2qi++OSa+lpYDCYena12enCnSbSjEpf8LJ0b4qaS+napfo08g2xSbcbGGec9jXNKdGnUTpvTy8j0VQ5UmjxLTbjxH8P/GesaRJbwPPb3wnikQ7d8Dcsw/IduwHFe5g5U6sXd2HXcqi3Po/4C2fh/4C/Cq9+JvjiGO01zxEWvp4JXG9Yx/q4xxwACD9Wrwsyq/2hilCHwR/PqeVVmq01G+iPm/4p/tdX2vfEVdY/t6LzlZmhjW52C1jG7B478d69OMMJRwyppqzX9XJVGLPgX/gqLZfDX4q+LR+1D8N/s0GsySx2fju0tV2reORtg1AAdGJHlv6nYe5r52tShTblB6HtYKnKnHkex8jXunp4kuxBGWkmP7ry2X5XU9QR09Kqkk3dbnoqEtOx5v428SaO3jd/hH4Xljkt9J3Nq1zCcq8+D+7z3Cjr7/SuyFKp9o2Uoe1stkeX2sU138NdXktoiXtrwSBV7jeQa9rKKVm0+pzShOVGUo9z1X9m2/lu/DU9lNpkscg5znIH5Gvm+NsFCeCbS95HrZZzzpNM7W5V0bp3r8Nc7Ox6iT5bFSRnPGPrzU88SPZu5GiyHkuQal1VYPhYN5ykhRmp503qV8SGIk5b5mqnViloTycuo7bJnAP41DncG0KIpWGAx470e06Bq3oMEbmUJk9elaxm7aClHl1JzBKqZAPPak5NbgmmQeQ7tyfrQ6lkLlW4r2vHf2qed3KVmIISOn596fNKwm7Mb5ZV+px6Gi8mg2FIdPu/hS5n1E/eGpvP3mPNae0sTbkBxL0Gc9yaaqLqNXYyVJFTkke9CqJsTi5DbVGJyWziru3oQ0oo1NOjuLm4itre3eRncARr1Y+laKLT91mM2rH7Lf8EcPB3ibwP8Ppdb1Pwvb6bEbQyRPDHtZzjOWPevv8kpyjR94+SzTklK19T9CPEPgnRPjj8M4re+maGS7sdn2hOvI5B9q9KzhLyPnZpQehz/wh+Afgb9mrwzJZaGql5XLzOBjzG9T6nn+ddtKd4csFZGEr1ZqU9+hsaD4yS+8VyT3w+WGBijHovsPWs69NpK2x0um2kmavhfxidc1qaO3tvkVsBvWsJ0pcmphWk4T5UdVHexOdrZU5xjFRCLirDumh809pGp85lwP7woauNRlIonXdInn+zWl9DuHVUYE1vChKKu0TUXs15lHxZrsWl2yRMoPmH7zcCle0jswlNyjzMwdZum1vwwdOtbP7QLklEXdgq2RgfSt6dua9xyThO1tDwL9oX/glh+zl8YPhzqdv8UvGWp6bfXkLD+1rW6EccDnJX92RhwD68/SsZznVuoxucl6ildPQ/Hz4l/Azxl+yh8XNR+E/i/VbfUUtm36ZrFg+bfUrQk7JkIz1AwR1BBFeXKE6U7M9CjarC55t4g1MaDrEhtFZ7SeTciqfunOf504qUtGXJK+h438f/GF3rHiy0sk+S2hQq2P43I5NeXm0lGml3PYy6yldbnE6pKk6LIT8xX5vqK+bjNt2PoVSsr9TPhUNxjvSrS5YtmUo8zsOQgxrXXo5suf8VluFyy9aiSRjU0ZYgbZ/9espxTWhVPUmRw7YI5pKFkXNSSHszq+FHUdcU4wjYiKRctJnZhk845qZwikbXWxp2b4xnr7VzSiaxi0i9DITwfzqEtbiuW4GhJUXETSLn5kR8Fh6ZqJ8zemoqlSSg9bH35/wTI/Yz1Dxhqdh8R9M8H6XptmZlKX/AIhvJ5+Qeih/LRWHbCsa+myzJ5xala19bs+cx2LhTW/MvI/bfwPosXgTwLp2j/uhKqxo/lgKpdiBx0/LrX2FODhaPY+YclWncx/jp4h1Hwz4Vi1SxQtGJik4H+0MA/nTUkqiv1MIxTqnka+KZ9cZxI+/a6KSueo7Z9OK6qkobXOuEbvVaHp3wM0yBrO98RopkkuWWBZ+cMiegI4GSemc0ndpXIrrkjY79CA+DIMgcLnms5SSOWMFucb8SPitB4eEmkaHeQi9Q4mkYbvK9gO5pRiqj97YjncpWgeX65+0J4lsphJYa9NK4OGhuMbTz7cVpCnTi7M7o4Rzje51WmfGBPG/g+4+0qhlBxP5bDCEdCfbjH41TjTjNpdPmW4NVY01Bu/XTT1/4Fzovgdpmm2Phe58cXKxxveSMBLngRISufxIJ/KsKtZS93ojKulTl7NHiH7VH7X93pNz/wAI94Q1GKHdKI1aSYIp5xuZj0FFHEwpyuEKbtqfJXjT/gpv4r+FXxNfTrTxRaXsqzBWFjdrJFKO4z0Ppiu6riY19+pUcNKo7rZHjn7Vkfwa+IPxY0/40/C7SodC1TWrT7R4j0e1GIJZQebiIdFJz8y9M815eJwtKFZTi9T28FCrGm4N6HH/ABX8Tap4h+COp+H9D8RvZ3YRGjkhB3ooP3hjrg9R6Gum9OeGfc7IUo06t7Hnngnxvd+JPCz6VrsiPcSRBbqNudzY5I968dVOh2wpylK7MLSrjVtDvJdKtJg1uJMxHPIFKVrHXLmTsi9KHvtH1SS4U77qykEf0C9ayi3J3N4xU9JGF8A7lv7Fk04qpEkZRgw4J5612KKdPUqjJRhY4b4neBtS/tGYf2eyAuTlUDD8D1r4zMajpTaS0NYQjVicLP4WmRgsrnjpnivKWKk9i1hIojbQYY+pxjoc0vb1GS6KQ5dEV8FW/EGolWqAqV3YI9F8hs9P60/aTkipUGtizFpm87T+BzWUp2Q4UWTLpAzhhWLrSZuqVmDaZEv3gDx60uebL5LCjTom4Cj8qPftcmw2fTU29BSUmXGBElqo4AGO5q7NomcbMdJZBhlgPbipUmtBxV0QLAsfIGDWlnJXJnFp2Q4QlmBH8qptQVjKzRseFfD2nazq0Vvq2vW2m2wYGS5ukZx/uqigl2PZR1r0MowUcfjI0pS5VfccoNrQ/WD/AIJffsxHRdPt/i34l0TXkt7aAf2Pc67cCES5Ucx2qHbEnoTlj3r+hspwdLLsJyRbbff9EehGdHB4R0qUm5S3XY9M/aE8Sva6hLKZre2mfO15Hznnge4r77JcBTnL2vL7zSV7a2XS59BRpP6rFdD2j9jPSLqH4JR3Woui3Gu6jNcSGNQAyqAo49OBXy3E8k84bW0EkfAcRVm8zbS0gkvvN29ubzwp4l0rVBEqNNrKtveXAKlgh+nHb1qZezxWDqQetodvmY+ypYnD1abbd1+hr/tOfBL4d+Ldd0/xvrfgXSr6+KeWl1d2quwYcrye1eFw3i5KMqLbstTyOHsTGFGdGf2XdHCuFt1S0itTGDLtdFTbGqgHr6JxX2cEnG99l/XzPoZTi1zI1PCWsWGpx3GkWBW5gCv9ql8vcHJB+Rc/dUflzXnV8M8K/aOTu3dXd7f10XQh0pX538jo/wBifwtp3h8eJrjTVXbNcxYZYwoP3+nr9a8DjTESr4qipfynh8Z121QhfozzT9qz9omH4X/EXxP4E8WX7WbTTR6hpkkowtzbm3jQhCTyVdGyB615mW06ccOqvr+Z8vQpylRUkrn5p/E3/gvP+yX8JPixP4E8faf4rlhjufLvNS07QWMEYzg8uVLgc8qD04zSnmlCMmmmVQqRhUtLQ+s/hH8a/BPjbwDo/wC0N8H/AB7aeIvA+uu32TULOTPkP3jkU4ZHHdWGQamjNYmLnDY9ZYmnUTUGdf4P8eeGfiH+0Z4O0PUpY2ivZ2jmII2ywpG0h3HqMbcY+tdsMQoUZRhvZjpSfsZN7o5b/goV+3Zo/wDwlcng7wlr1v5cW63jSUrtVcHc2eiqoBJY9OvavMoTWGg02r9dO/r/AF1R40KSTcpbH4tftF/8FatJh+JOp+E/hZJqWsadCxt21iJEVbxw3zNGD83l56E4JHsa4KmMlN2jsjqw2MwkpXcXpsan7K/xY8ZfGHw7411PxRZTw2T+HiiR3U2S7+ahQ4HHBAOK6MLSr1acpy2PXw+JVestCt8U/G6/CnwDc61plyE1S+BtNKBX/VOw+aXH+yMn64r1cso06k7z0SPUxElGnofP/wAEtPlsDLeXErNcXAkeSeQ8uTkkn1J/rXZOfMtDLK6M53T1RZ+Hdump+CfFWlSP9+0lJK9QQ2c124NuFSF3udlenGFKUEbv7K+oi01BrU6hdESDG1icfUiuXP6Cq0GjfJ5qneJ7NeQJ5hGeOvPFfzhjYexxMovuex8TKTxRg4PPHWuZR5h8mhGEG7cR19q0UEkZtXYpjGfu/Q1nKOpUYWG7Bndt47irUFYc4ocLcOen6UKKQlT0Jktk2kEDpzUTSTHGCiymtu5vcIOhrppWtqRNJuxrSaeNn3MHHNRVBU2V2sCp+79KiEU9zTSxG1iScbcetaOMUiIxs7iHTWHJUVLkrWG4pvUY9gQ33c0RloDimgNqqgll/wAah3bI5EiH7KQ+K2ilYUopjhAoPK1E4ohKxHcWylOB+NJLUuxXSAo3oK6VFJGFRo7T4N+AfFnj3xrZ6Z4UmEMvnrmduAgz1rswWHniK6SZ52Lqxp0/M/cr9i74ZeI/hL+zvPLr+tyXk7WOwSPKCMkY/Cv07AYb2NJRPhMRWlXrt2PqXw5qF34P+H2hSw94EEqZ4INdFozk7owhD2l7nnvxI+L19cavdWV9LHbR2zlXaZ9oUfnVKrTp6dBPCy5jqPgR4X1LxBoNx4k1HS3htbzC2L3QIeaPqZdvVVP8OeSOehFc03KU99CHVvLlR6Ja6Xpfha2ee00UuqjJ+zjcx/Dqac5SlHluZNK/NuJ4f8YeGPErtHppYOrcrLHtINZuE6W5FKcajsjkP2jPilZfC/wqXsNPa5v7w+Xbxp6kHkn2rvy3CyxdbXZHNjsXKjFKL1Z84XHxi+J1nD5lncvak/NmAEc+/rXv1o4en5kYOnOpaUpXO5+F37Sc/wAQ9Pk8C/EGdY75B/ol2y43+mfevlsU7V/d2PpqbpQjdHbfBL4gWGpeI59BvNQB/s+Jmdz06gA/rThecHYxrp1HeJ80/wDBRT9uXRNFvr/wrYanGNP02N43kWXHmSlTwPxrSFSFL3UcU/aXtHQ/Hq5/aIuPi14h1KzOsi9g026eSNhJ5ggaTG6IP35AJA4zXm4jkTsd2Ea5bPfqVr+9iMHm323aiGRs9sCs4vodip2ep4h8W4HOn6Vq8nD3Ms0jfi3H6V4mbwcqKfmejlUoqs0zkmmLxYOfZq+fUVF3Z9JKp0IUDp1PPUVnUXtNEccpNXaCBS8a5Pbit5VOSbKnf2raLkTMo4PPfFRKpzLUmV27k8LA9ajncS6bsyUzIhCkHNNTkzWSbQoviHwAMU7uxnya6l6xc5GTw3vWUpvY3i4xNa0dCAAcHPFYNvqVKpctIxzx+NWmkrijZbnZfCie3tPEkM6WFw955q/Y7u3mi/0Vs8sYpFbzeOiit8LOPtkurOXGTtC6P1t/4Jj/ALMnirxN4y0jxr4z17V/EMcRWd7nxDrO54hgEBLVMLHg8DK96+3y/CVaaU3O6XQ+axlXD+zb6+h+mmrXcUGo2OnLcBC8wKpj7wAPFej7T37PqeNSp+65FTxsLVtKVb2382E3kIkTZuGC4ByPT37VpPlULs5oK9Uoaz8IfDuqXaS6fK+nK0u+6is0ULcDHQ5Bx+GKlXep0fWXGOp0sNlaadbJZ2qBI41woHatNWjllOdSQ6L7JLKZ4tjOPlLjkj29qycVcmTex8VfFfxV4y8I/EbWFvNOnvreO+kJNr8zgbjwRnNdUP4aMKUrM5/TPiZovxU1Cfw9oglsNWtYzKun3bxrNcooy2xN25sDrgdK58RGU17srfce7h8QuS80VvAfxkXwp42fRr2ZRaajC8MyycYfB2n8xXNSqONT3mdU3zJOB23xD/aw07wd+zv4f0fT7xY/N0oSSKrfMzFiQv8An1rnr10pJozeFUq7kfmL+3B+3R4Y+Fl7JfeNrxLjWNRBk0zw4sg3bTkCSQZyFrnq1JVJtpWb18kaTdKm+TdnyX4R+NcvxS8bD4pfGHx/pWj2VvgotzdRW8UEQ6KiZyT+GTWkMS6dNczOn2bS5paWPZvg18ZtG+N/xQh1fwjcPLoOnxG0sLmQMPtIJ+ZwD/D6etdeFc8RLnvpt5lUqsLe6dL4sme31i/8Nw3TAwSshCv93J6H2IolJRbgdtKPtXcxrHw+gu2vEkaJ/KCsQPvD1rn9mraHpQTR02m/DaPXLlLu5v4Y7cKGkkHDY71lW54o2jDnOf0TV7HxP4n1KTTlxYRhrazHqigjP4nJqKDctDGjJzrtGB8DreOHWbizOcR3LL+prvgmk0yqN3JpifGnw+1lrM1xFp8hU87hKyj/AAr5HOKDc7xO+g+XQ8svUMjYOcj1NfN8qg9Tv5o2sUZ7IypgjHpVqa6CUVJ6FMpNZNkdO4ptKWpjUi4K5ZtnW4A2EdPTpS8gpTTdidYXjPK8YrKpFHRy2Jgp24PfpkVz9Q1IZbdmyR6c4reNkS5SegQxFSCR75qpWK5UPmiDDaeK59mLmaehEbUghsVtGV0NJyGywkrgrwenFKyuS7xZCtvlssMe1aJ2WhEnzMmtbKa6nW3trd5JHYLHGi7mcnsAKzk25JLccoWjc+jPgb8NvC/wB8R6V4j+MPh2LWPFl00c2i+Cmi80QAnCy3m3Ji5wdmC2AcgZFff5BgHlU4Vq0OactYxWphGT5W0m30S7n63fs0Q/FOb4Dr4s+L8enQ3+oxl7PSdOtkjgs4v4VQADt7V+u4FVKlaEZJp9Tpko/W4UYpqS1k/0PnT9qDUtM07UZLu506I3kinyru4kwoGegr9byqmqdOMj7im5ypxp9D7f/Z4024t/h34UsGhQFPDiSyDP8TjOfevyPOqqniq1RvedvuPyTiGcYVq7v9tL7jl/HkF1e6ysDHdJHOPs6bfuMDktjB9P1zXuYPkjhm+jWp14eXLTUo7W1PVNXTTPin8PZNE1V2WSBUPnICDn+8tfIYf2mU5gqkFo76HzkIvLcxVWG0r6Hlfxj+C/jTWNOu/D/gPxJNaALGGZFyzArgnk4LdOtfTYLNqPs1OqrN317Hv4HHUnFTlvqZ2g+Ebz4feFdQtNQsCTFbGOa9kHDIByTj1OcjvxWtSvDF1afvXZ3+1dStFqW/Rdz1z4M6dH8NfhfF4h1O2itn1K6gLrGMBY2IVc49jn8a+RzibzXNHTp68qf4bnxGcVHmeaOnF3UE7fqc5+1v8As9+Dv2gdBE+saNbXslshWEyJ8yn1Vuo+orPKqiox9jVW+pxYTmpU+SW58FfGP9gXR76zufDN1oc11A6MHjvH+1Q454Mcu4Ee2K9yrhMPjEqfJdW306HU3GppJHzj+xD+z18Uf2QPjj8QP2Y9NQP8OviFoF1rOhW3lsV0vWLWMyMsaYBUSRhsY4+XHbn5+ph/qWIcIX5JfgcUcM6Ff2kb8vU818Bftw3Hgn4xw+KNZ1gN/YUV+i4JQndDJGny84PNeVHF/V67s7pN2dreml3+Z6KqwlTcY9T4v/bm/a08S+IPCt4LO/8AKuPFMklrYeRlStgrYmcZGcO2IgRwQsormr1qtSblJ6s8fGcuHoqhHT/LseA/BP4V3Gr3STz2zmRyGx5eeD25ruwWB9prIxwcJvXufZ/wA0N9Dx4BtUiDanFtRSh+eXGUQn1JGMete/OChhnCO59RgaSpPmaPEf2j/GB8Z+P5NBhJ8vR7doHiY/dnZvnBHYjGK58DVnToOJ2Vr1KvKhnw/s/slooMQCiFunsDXVCMbpHqYWDpQ8yH4GWkl5p3iKc7cNbT/j1r0HONKUX5mE5Oo5FH4Ca7df8ACTb9P1BhEHw9vcJg9eTkDn6U8e1XpOxGX80a59JXd5ZXjhn0+MExjEiE88da/D+IqWDoYqUfZ6vqfS25Xe5Tmso2OVPH8q+PUlFhKbYxdP2dBwD1zScwSuElmAcED60kky3TXLcja1L8LVJWMVoySG0CrlutNo6VqSR2/BBGPas3FMzqRsQWcCm/Kn15rogko7GNNe+bFxb7UB9ulI6eW6K5RCwyMVHMkYNqLGG3Gdw6VLldDu2I8A28j9KhNg2ypJGQ1WQr3I5FwCSPyq7qxVTa5GqhznH40cxjFsSRcNgCle4P4hjjI6dKtRRVV2KsgLMdorW6juYKPc+g/wBhT4T6f408e2s2rvqEq+eoW1tt6I3P8TjgCveyWnCpNSPBzOo4Jn7aeD/Do8PfBu08PramGJxGptxLuOMjvX6FCUYpKSuvu/zPlXDmq3R7T4x0/wArwBaW6KSILVMBfYCppzXO7ijaMpD7v4PeDfGN9p3jK8so2cwRySwSxBo5TtB3Fe7fX8qzkouepn9YcYuJ0Oq+NtG0YixU72GF2pwBSjaTOKFGe6Lejava6ynm2wbg9xSqPSzLnRcCvc+F7eDXk1/T40icn/SEUACQev1qYylOHI2ZNLRo8Y/b++F/xH+JPwpEfwk8RJpetwMxt7l0Dc444717OVYhYecoy6nl42ip1IyfQ/Jb4j3v/Bf/AOBWty6j4ai8D+ONJt3LCw1DSvLkkQfw7lcc/jWeIlipTfLqjuozoUqd4Kx9DfAH9o/W/wBor9nNvjJ4v+Gs/gTxz4W1b+zvG3hZ5cizuQnmJJG38UUqfMp7cjqK48Q3TjeR14Wo2nd3Ob+AH7fkWoSeNprPWFaSPV/7PjRZMsFdAcj9PzrmwWJXNKT6HqUYU7pLdn5Ef8FS/wBvLx1+0B8bLz4E/CXX5Tpun3zR6rqFnId15dZxIoYchFOV4+8Qe2KyUqlSrd9zxsU71nCL0WnqWv2R/Bs/g3w//ZF9E0UZjywYdXHOW980Yujyr31qj2ssoKnB3O48U68968mmWxz5vyyEHotcifKmzaVSPPyo434824g0vQbRRjZGxIFeNmuIfsoxPUy2nZuTOFRcLgD8K+fm+ZnrNSepFIvGTUOTirIjlujQtdI/djB7VrJ3mdNaNqjRKmmOoxsHualpcoo07ssQaW7Hpik7WHKk09CddF3dV7daybd9BwV3YUaKAwOBn61Sk3obuknEtw6ZtA+X9aptGXsrE8doyDI/U0ly3BU3fQvW8L5C5znvU1Gka2ilqevfsxeCtC1nxna6pqmla9Pc28oNsmkTfZdwyCd07fKF45AOelerldGlN3ktTxcfNyTS2P2+/wCCWHgfw9pWnXetaJpOn2w+zAFodWN5cHOP9Y/TPHOO9fb0ORUrRR83mKmqCufWl+lo/ia08yyEkqo5WUsP3Yx1x79KFG8zzqU37Jq5X8Z21zf+GL+2tFBkMJKZOMEc5/St6llTOeCft16kPhjxbb6t4ITVZ5N0lvF5d1g4JYcE+2etTF3eh1SoWqpdCvrfxB0W0hXJBAI46kfhVRTvqZKDUjV8LavZ6vprXNspVQ+COeuBTlH3hVqbUbnyZ+3/APsC6j+0dr0/iDwf4x1vQ5buBRevpFzJF5hAxn5T1rSChOn7OTsebUUoTuldH53/ABN/4IQfEH4BeJ7D9pD4afG/xRbeKvDV/HqelahdXk0hEkbBtrbv4WxtI6EE06eEp03ZNtnVSxFaS5XHQ9H/AGs/iXe+EYpfGCMthPeaHFqtuoUjy3kh3kAez7l/CvHzSlUo4iVKpFxa0aejX3nu4KdqaUjyT4m/tXaJpej6S/ijWI7iDRNBheW3WTlvLgDysQORjmuChJU6kHbmSto7/pY7sQ1TpSml0Pxe+Iur/E79tj46eIvifqM7s9/fPIHkDMltDnEUK+ypgAe3vXs0KTnK0T5alKdesuZ6s9O+Ev7Ba3+p27+InnuyCGIMTCP8TjFROjV9tyt2+X6nfLDpz1dz7i+A3g2x+FcNtbW0aI6YCIhyqgdzXVFfV48qPaw2H/d2R0fipLq1+Jeo6ncxEw6oiTQsV4GQARz715c+b2zbPbw9PlopvcstGkUYeSVVUsPLcfypymki7tMp/EDxhPoXhB9H0d2W91H9yjKeVQj5m/LiuWrea1NK03Cjpuyh8MNOXTEhtk+6AB/+uuijyxVwwVLk1kVfhkRZeONQWMDC3rZU/WutSd2UrKszQ+LtnrKau8i6iskEi/LBcrlGyOlfP5mpPVHbTV9zxzWLaS3u3SSy8jn7g6fhXx1eElNt6HW4uJQk25Cg/jWSLjoQXMQljwVwQODQ52NJxU42McTz2M/yDKk81rBnn8jpzubWm3kV7EAxAOOOaicm3Y7VUi4k0qMhwOlY2Kg0MEy45I59aOZinoKuGOFX6HtSc7kR1FEfOfXpxUqxTjYGTnp1q00jWDWxDMAuPenza6EVb9iONA8gXcOau7UTOKRr+H9M13UdYtLHwvBdPqE0wW1Wyz5pcnjbjnP0pUaWIxNdQoL3+lhVZSjBs/Rf9gX9mi6+GPifSND+JYsbnxTNL9oj8OW9rC9xBkbjLfzgblx1EZYknsK/ofhbJK+CyiDxdrq7+Fc2veW78k3ZdOpvl2GlSw06z0j36/I+9/iTrUf9lf2RcKjrFEFPkttHuBjtX1uVYf8Ae866jyui1iPaw699T4+/aM0/wR4g1KK21fUrgzmZVg0+FSQ5LDHP19K/R8JUqYej7y0sfY0Y1HJSex9//CJBZwQaa8KobTw7axomeV/d9K/Fc1aneS6zf5n49n1pU7p71JP8TzrxhHcXHiSa1RVWV5HBkc9ADkBeOucD8a+owzisIn0sd9JXoxtsdd4J8T29tpk4a6ZGkt1ZwTuVZAcMV455/WvExmElOonbr+HmcOJw0pTi2jqbfVJG1sNd3X7uYoyDbkNx146HNebKivq/urVXOSUILDNRWqubmq2sEskiw+GvtaGEloSq7JST3z/nmvOpzaiuapy6/NHjQqykkp1eXXfW6NXxZoVr4h8Iy6TPpKzJ5astsGxhlwQAe2CBXBhcRLC4r2kZa3epwUKsqOLupfM4zTbnxVpcDwXOnysinLgRl8c9OBzX0FSODr2kpK/3HrP2NWdrq5pH4beH/FkH2rW9DMMk3BAjwenU9cfjiuCeY1cLLlpSukcFSv7Gemp8lftnWEP7MvjzSviP4W8Jx6hLpU5uPLlkVY5oSCJImLH5dyFxwD/SvVoQqZhgnJf1YbcsTQa2ufhl/wAFBj8LvhJ8Q9d8aQeG0fw5f30lza22j+PdLeWXe24QPDn7VGRuZSfKyAPTp8jjqMKM9Hdt7X1OBYp0XyuPkfIfhb4f/Ez9pjx9/wAJ7c+FbgWRKQabZWdq7RW0C8JEgAJ2qO56nLMckmvSyvLK2LXPKOhrRo1MRd1Op9afCP8AZ4ufBcUI1e1eJwxDCeLHzAZwQR/nFfVwoU8PCzVj1sP7KmktzSj8I622prrMAeG5tJyFkgGBuDbkYgd+OP8A9dcjnHmbserTbjqec/tTfCuS0+NDfEyLTVitvFltHe3aImFW9HyzfTcRvx/tGvJnXXtGkjso03GXMc+9pFpWkXl2Twlm4ZcdDg100a1mro6o1Gk7DP2ftNktvDOoyyoM3FrKM5xnKMa2xVe6VjGSlGm5JbnHfBvVrw+JzZ+XADFcENGwG7GTyOlaVJynTvcxwXM6+qPpJ40EcZCKCYxwvTpX4nxTJSzOSZ9Vy3AhgO4Ir5NkirkEGpGnqJcZJ4/SnHc3iyu7MvJ4OfStnqc83qSW0hcEe/FJnRB6EsbHJBFKxNVkGn5bUj35rePwmNP4zdnU7Rnk4/Osps6VsUpbdxJkd6hRvuc04tMYyFSFLdqtRRpCyQ1+BuxxmjlRcloV7gEHcvpzimkjmd0yrKJCMdRVaFuSaI4EbPOcUppdDK+o+RDnJwfeskD3uQzDCYIx61d+xNVoj0/S7/WtRj03S4i80rBUUHvVRU5OxzTnyo++v+CbfwI1TwP4rstU8UI91cvIGS3Ops0cfH9wcZr7bIMC6NnI+YzGrd6o/V7w/Fd6/py2ptViW3MKoFXtkV9Y3qeDK8Z3R61rUX2nTltlIwkSggd+KIwtIzTezNHSbf8AtLwrBaF2Tda+UxXgggY4rOpuzncvZVUzzfXfCvibTZWisonuJUfAY8swzxWEW7Hp2pqHMen+F7W7sNBtra9hWOYRDzETopp2lJ3PJrVFKbaLc0g5ya0howWpz/jPT7/VbNILGzEu1sum7BP0rtockZXk7EVaSqKxiP8ADDwtc6a13rWgSlwuSuQSKudZ83LF3Lw9OnBWauz4v/bF8C6R8Oz4vvPDFm9rZ+M/Dn2DVJNOMX2y28suYrqHeNplj3yDacbgxGelc+Kw1SpQ5m/ka1KcFCPReR+FWo+K7n4Vav4p+C/7HereNviH471e6ltt9xpEyDSy5Km5mLKFWRUIC4+UHDZ4wfFoUcdiqyio2S7dTKriKGGTjTm3J/h6HY/sq/8ABG74qeFtOHiD4jaXJJrl0PMnSLD+XnnaCepz1PTNfW0soqUaXPP4vyOVOCak2fQXjn9lm++FnhOSzutJMKTL5Rd0wd2Ox7nPavLx1KadlqethsYpRsj5rbR5LHVWgn6rJhmPPINfOzk4txZ6FOHO02cp+0HdxtrOnaej58m1yw+teDmcrzSPawSSOCebbHgfhXn01bVnqJc2hTubwLlWfA6Zz0qatuhpzQp7m9DqHyAgZyKH8dgrt+0dizBqCEcHjvms5SlYISdyxHeqOQ4pcztqbSd0SLqTE7Ff8QKV7IyT1uWbeR2IO/I7YqJVDp5rrQsQswOAx/AVLndGMm2yZCx4Gc57VpBqwQTvoXIAVwMk57UTlG5tyK15H1F+yl+zpreoahoviP4uxw22lCUT6YureN1hjjU8iQWqbmP0OCSa+jymlWpyjKXy12PHxU0r8iP24/4J9aR4Z0n4eSQeHrewVQqjfp9rLGjjn+KTl/r0r7Cm4+y0PlMxlOcFc9jum0KP4iQTSeYb97RkT5jt29Tx0zWftLVLI8tOahZbG3IkbI0TJkOpDA+mK3spaMyi2pJnD6Np50i9utGS1KW16GTywPunsaxb5Gek6iluc/qvhDxbP4ji0WxtTGjOB9oxn5R1ye1bJ80WxSlCCvE9O0nSoNE02PTLMfKg+YkfePc1NPm3ZwzrOT1LCwrKNsqAj0IrSdhRcUtTgv2iL7whB4Bv9C1G2hmuLiAqkK4yMjqf/r1eGjUnVT6FqpBM/Hj9s3wN4d1PwmfAvj+21yyGkm4Gg+INEs/tRS1di5tZ7fILqrsxVlORnBBFZZnhXODlJfMqjXdOrzX0Z+a/xf8ACvxh/aj8a3fwu/ZZ0TxVq8d1PJZal4j1LTP7NsY4s7JUUMSXOQVPpyAD24sny/F4uV1H3ToxWYQqL2N9D7U/ZK/4IL/FXwv4AsLOfULSyZtr3T3MZ826kI5OOwJ6Z9q+1p4DB4enZuzPEninQleMTvPHH7E2vfA/On+IIXSOJ8AW6DdK3ORgkGvMxVGCTaZ7eX4v226sebX+nW+hai9vHG6uzbc3CBWUCvHlZM9+jVktjqrqPSNR8Iw6xfRI32OQASFQCUNctZRcT0qVSdrM4/4iWVnYT276dOxtpZ0YKTxwNx+vGa8upeM7I6Hscne3DeIdVOoFQFLbYVI+4g6Vavy2ZMYupO7Oo8HWxS9RV6NtJHvmtqeh3QXKjF8EokPxG1VEHAv2z+ddberOaGtVmj8Zn0ufUHsdV19rMmMFFYHa3HHSvBzCtTinzM9SlGaSseM63a3tlOVnvBPEeY3STIx/Ovk671bvdG03KT1MuRskH865k7mlPUZNIVTcvTNQ4sJvlZThgW5kYOvBNWrg4qcQuLG505xLAuV9q05YNHJKnODL2najHdxiKXg+9YtWZcKj6j7i32negqXF2OiLU9wgYdCOO/FLkdhJWloTOP8A61Q1YptsYq7j0pBFNu5FcwgkDGPwrWmm9RzbejC2tSWGc1U5WQopQPRfgf4S8W6t4rg1DwvrV1pfkv8AvNQs5RC0a9yZWwsYx/FnPoD0r3+FctzDH5pBYeXLrv2+fQTbnI/Wj9hH4PaD8JPh23j+6i+XVWDNfz3DTXGpSY5fc43bffvX9DUaKwtFYOjNye7b2O6vFzisJh23Ldt7I9S1fRNX8bpNDZWjW1pLktI/yZX6+le/hsVRwSXM7yOuFXDZdBe1lzTXRHhnx38FeCvhrbN4o1TVPtd5boDbLv3bCDnjn1r6bBYrEZhBrlskj0aGJq4pXimkfWvwe1ddZurK/knIGqeHLaRWI77OgPc1+ZZnSVOhJL7M2fmObUJxw7VvgmzkviFLNb+L1MirsjumKr0PmY+U/TIz+FevhtcIrdjspOKoLl3aI7XVo7cvK9+JEJka1lzjavHt1Y960VJtbev9eRE1z9DqNA8RSTahHJdxmJoViEfltkAMOuPXPGK82vRUabitb3Oerh0oWXU2f2lfEXxi0z4O/wDCR/BiLzdRtHjnubeJN7ywocuij1xXiZNQyueZSp434XdJ+b2PmKeGoxqzUt1sd98Evij4f+MHw803xzoEoaO8t1M8TDDwTAYeNweVZTkEHmvBzDAVsvxUqNTo3Z913PExMZU6tpK3qdRNFBDL5rsqg9sdTXKnKSsjNczRU1zxFpui2Zubp+gwqqMkn8Kqlh5VJWiXCjOZ8Y/trftCeFPFemy+HNY0O4tmt1LzpPYO5liwc7SB1HHPNfZZdhpYKlZSumd9pRo8sWfjv8SPgn+zz45/bkfxLr/hi01GE+CNYu4UvbZXUSQrCImZWUAsodiCR1rnlg6FfHc0oo8itQXOuZ6s+x/2QIPgb8PdPn0nwxpV01xJpkYkTR9LSCMQuCG33LAhc8/KvJB4x39uo3DCpxdtbGs5V+fl1Vl5nTfEL4c/CTXvC1/rn/CJWssUMyxwO8TF9PbadzySybQz7SQCpz8wGOTXnyrus/elsdNFTp8r1PifxHo+gQeJb+GG5byjKUi24yWBxu75ODXBWqKKsj6rBy54ps8j/aE8Xxa14q1XwYthB9i0fyofNZT5jXGwM+PQDIH4V5FOnKVVzvoepGbcfQ8H+JN5/Z+hDR1/19421hnnbXo0YvmJ5k2dR4KhtfDmg2ttKgzJYzzuvfaE2/1NaVlFaI66qcIKJwHw6isbrxNHqEdnFE3nnbKjg5Gf4hiuqMHOnoY4bljWXmfQJUskZLf8sx/KvxHiqPLm80fRqOtx4QEYxz6mvlOpDWoAdz/KrkkVFK5G/DFiOPftTitDWySKt5IAoGKd9TkqaMbYuGGcdOvFEnY1pXLKOST2IqFIursQ6a//ABMyfeuqPwnNT/iHQykYAPTHUmsZL3jtvoVrmRIxg1N7GNV6FRrhJOMH6jtVXFBajZJQAcjt2obVjUp3E43dPpxSTZzzi7kSSFzn3pOTIaW4oPzZI/OldsmyEdgCMj86aTYa3ILiZSOh/OtY0+5nO7WgaBGs+sxRTXNzErOAWtP9Z+FdNH2fP7xjKlzKx+mf/BLfQNO0+Vb7Tre+JBG6bVLre59wP6V9vlFWnCFoo+ZzJRjPlkfp58GrZdWsNS1QQP8AuduJGH3yPQV9FBp20Pnql4NI7aC8W5shKzDcGwW7VUtNTN6PU1vCWoRrY/ZZTyJSFYDg55rkbfOYVVzamhPbAzqyfKASzOAM/SqskriVTmhY574x+LfFPgv4S+I/GfgjRF1PVtN0S4utM09wSLiZI2ZEOOcEgDjmtaKjOai9jKcJ8ra3SOZ/ZP8Aj5Y/tG/BjRviC1xbx6ncWaHVrGEFTbz4+ZdrEsBnOM1ti6McPWcU7rozKlVVWipbPqj0pbcA7v61gp9Acm2c18UvGtr4X8OTRl5VmkjIRolJIrqwtLmnzPZHTSg0uZn5u/tnfF6+S4ns7qVJLaSNw85GyRW/usp4/GvUdKElfoROVRq58b/sr/HHw/8ACiP4sG1sNDmD61Z3t0LuKMXFw00XkxIhZl3nfEw8vByX6jByZfVo0K7ktP67nPLCxrQk7a/ofYfw0+NXiiy0aLUPETBNQubGGa/kitk+QHlbeNQCqD1GQT1Jp16k69R20QUoQpxUJanjf7X3x2ufiJr6PNdpONOgHlRKqCEud2RtXgkEjJ5ry8TdSaPRp0YqHuKzPgXWpLi+8S3bSRIjNqUmEj+6Bu7e1fJVtcQz2qbl7Fdzyj4xXwvvH9yqtkQqsY59BXz2Yy5sQ0evgo+6cpc5RMjrXFGTasepGSjuc1r1tf3ZZDIygn+E4r0sN7GK95anjY91azfKz0ez0eHYoJ7V5lrzPoK0OWbRPHpMG4LuH51bWgqagi5Bo9qQcn65rmqSd9Dfl7jk0WISZHQds1PvSVhOmmrotxafEFAUj603BEqDLEFgpJ46DpmsnEtwSJo7SMHORnuKtaItJRWhaW3DMqQozFiAqKMkk9sU+W7QnCUtz6i/ZF/YzttJ8Z6d8T/2lp5PDel2jJdWFj/b6x3sxyGDeSm5wPTJX619FluErYeoqlWXpqeVjOSHuwWp+3P7C2s+ENX8DGXwjphsrAIBp8LQyIzxDjexbhifXJr66FnT5ou6PiMdXqVJuJ6wmnawnjkXiaaxs/LbdctKOCemBUqE+a5xy5eS9zakYBgM/Wu6EX1OZao5u61W2bVVaNCGEnA28nmspwbR1wi2kmdMi7wH8vDd+OaINNamVRuN0hUkhaX7P5i+ZtzszyR64pykoszVOyuRXU5s43mZSVRSxAHJxWisxqKtoeAftAfFXQb21mWXT3hdFI3sACwHqa9nD0404bnM0qj0Phv45+MPCPiq0u9OMlylyUPlz2jRllGDkhZFIJHvxxyDW0+WUPeV7F1V7TCundxk9pK2nnZpq+1r6d0zyv8AYj17wreeCNDisLEvJYa5r0D3slggmwmo3BYHawCnAznGDgVpl01Qw1lojGpGXNbc+5LD46ab4a01tK0nWrtLeNRIMLiU55AMr/KOOpHHYClUSxDbRtFXS5jy74o+OvhlrZuPFWvTB5GjJhvLW3e5vRkEbd5H7vOf4RXJiYRhC13byNYpQkmlqfI/xYHgG51Yz6ZaxbsktMyyPK2T3L55ryK8aXPdH0OEqzVNJo87+JfiWWw8P2fhXTbIyXGs3qRWNqpLExqQXdsYwAO/qa82rJ8p68XKVuQz/iR5UDW2iwTGWWODM3pGduMfz/OvN1lM9R0mkmzF0q1WMoWUhV6cVq2mh25WdT4QjH2pTt5G3knpzVwk0bI57wBELv4havP2a/f6da65PRmdOC5ncu/Gy68P3N82l63bRHZENkshOF9M4HAr5vNFRatM76bvojxXX9ITSrhjbXMEkLHKm3n3gV8vWoOLutjWVkzJeT5sdQKzSSRvRI53Owrmk9ya25HpEm64I4+9Td0kFHU3VgilQowyCO9YSm7m9kmZWpaRLat9ptRx6VUZqW5z1aKesRtjqQkHlTcMOOa0SZjG6LMcY370PXtSafU2jPUmJXbyPxNS6aOhpNDl247e1Q0ioWK8p3SfjxWkXZGdSykOR9rAAj396h23ZjrM+iP2VdI8EfD/AEBf2jP2lNRePwhp9z5fhbwjG5WXxJfKeWZR/wAsIyRuc9+Bk5r9C4TrUcrofXMVPlp30Xd9/wDIuFJQblOVkfe3/BOP4w/E/wDa/wDFniL4v+IoZx4d0yRbTTbRNM+z6ZYooG2G3JbMjY+8Soxxyc8fouS5zUxkZzcbRl8Pccs4wWHwUqNL45P5vzbPor4ka/cfZJ7Nrl7e0KbEEEO5nPoq/wBa+4y+jShadry8zpyvD03OM2uaXmz50+M3w98R+IdJku4tNa2UISlzKSZc9ic/dr7fBY2jTsoz18j6aM/e0ex77+yT4rbU/gp4W8RXMonuNFdtPvnUklgjbd3POPrX57nVK2Y1sPf4tUz4HPoWxlWhH7auiX473dtB4qnv7ObNu8QnhcrkEgjP6EitMtjL+z48+60Z5OAjVeEip7rQwNb1+Cd5bmFPKWGCKKEquAA38VdtCNlY7VFwjZFzS/Hxg1GeQymJkktgzk/M59vY1z1cPF7rTUzlGbhqj6E8AeMLCy8HWuua9dqsThw7lDg/N1+lfDZjhalbHypUFrofHY+jOriJQpox/EEegfADX5fi94fhjh8Ma7KreJI7eElYpm2rHd8H5Vx8r4HQgnoa55SqY6n9XrP95D4b/iv8jhjRqYuLpz+OP5Gp4o+MvgOQrHc6vtG3dDcIcrgjO4HvSwmX4pq6SJ5PY+6eU/GT9pC103w9dWvh/XNOntxHnzdRmKgk5OMgZGcdjzivVw+BhRqKpUVn5EKTpS5pH5zftq/tK+HdEsG/sDWbaLVJbdw1zpfieQxnK/cZByM5IOK9L2lotv5DbqSal0Pzif8AaFmsPj/qXiK2uIJH/wCEA1yFD5zMzNJHEqjLZOc4x64rw3mUqWNl2scvsqlSaklsfRHws/ao1nRfCFrc6fZ2dveaaIH1TVbi4knuVhkKoSkchMCheB8sZbDc9DipY2M6fvt+h11JVZUnyRV1/wAMew/Fn9tLSvFOiR6nc+LvDV87QlHm1Ce4nnjOAFIhOyEH0wo69DXR7TDRo+05rCoU6z+K79DwbT9Zm13xRP4y17TLaOxtmWSaeC0VBLkhljRR0ZmAAUfyBrwsbjqMZ2jq+nzPoMthJ6K9j561XV7q/wBR1jxZ4nl2td6pcXLoHyAzuSEB7gDA/CuykuWmj3lBKNjzuKzvfiF43ifYSpkxGo6da66WiuwjQdR6Gudeh1rxH4lmt5R/Z+k2H2G3cHglR8xH1bNdMlCPvMzqVVzycfQ4n4PWuoHxCsioZojISzhOF5749K0hUS9Dpy/Dy51KR9LKCsMKMBlYVBx9K/EOKqiqZvUaPfnK7AzdMDNfJPQyb1FLELz+dBa0K8rtuIB/GtOb3S7qxRumklfYeBQtjLkV7lmxQRqCB25rOzkwcrEyZy2eKd7GjV4lbTyP7SI967KbTicqvGZ0KZL5b8RWNR2OpPS5FeQK4+8ee9ZczuLmvoQpBGqj5RnHXFXZsmasxJIUbjAxUy0JUtCtJaxcEoM9qEmUlcrTKqsBmrjTuZyVnYaAmOn61Xs7AoXIbh15UduvtTTsxONivJ9zceBitE9DCUlHYveBdF1jxD4kh0vQtImvZ5JABFEcd+5HStaGHrVanuowcpPc/W3/AIJyfCbxB4I8HWx1zRYLGYqGUMc7SR6k5zX3mV4atTprmPlMzVN1VJrbY/Qn4Ah7fwbfwyXpuWMpbzCOOnQe1e8k9D5+o26qZof2itvpU8e3aRJ0IrZ2sXNXbHafr0WnsISxHyq3B4zXLUSvoL2aW50w8V2r22T8pzgZ7+/0oW5P1ZJ3RY0nUoJofJuJFA3FUJPB9qbVnoZVac07o4bxn4B034V3V78Xfhr4Qi+1JEW1rTbKIKb6HqzIowPNHJB78jvTqVbw99mEYU27vRnlmn/H3w74qibxL8PvGC31nKx3LFdkSW7A8oy5yrA8EEVrQeHqRST1HKNNvVnEfGP9qTXtL0WW3kv3uVKkeTcWpcdOxrv9nyx902UoqnZO5+d37Ynx/j8ZWNzpVzaTfaYyXRnzDJEBztB43L7EUe09nBqRg2pRUZadT4i8AWfxL8PfEPVPF2p+DkntNUvrEacuosDueATyhsN90E8An8K8XB5vSjjZQT09DXExqTpe4tD6J0H9pr4pz+F7fSdU8D39nDFOzx2sOLhBIwAf5+p3bV+g6V6k8xp25VPRamVKhUlJe7oZHi34tWGg2F9/wkWi3Frc3i+ZY2c0JWTcGz0zkIWzycdBXnYrMqEYe67nsU6Da2PHbXUvOun1O5xvZmlfHTJ5r5+lLnqXZ6UaTSseJa/dy6jr17qMv3prhiOe2a+bx01PESt3PaoWjTVig+HyB1GODXPCNlc2lqrlC6giydwq6k3FaGMaPOtTro73YgxIc47VlzLmtY9SvzObshIdQmmkKjPvVOcYrUyhF3uaFpLJgbnOD1rllNNnRzpGjA5zkt+IqeawKoTpK2QF/GpbbJUtSdJQq/UVPMzZttD1m3jrVRd9CYXvqWYWOQd3Q9abhK1ynOTeiPoH9gL4I+FPip8UYfEF34inSbTrob47i8eaQuCCHhtV5LDIAd228n0r3crp/voqbfc8bMIq7XU/dj9jeW+0zSDo8EdxIjDMtxqt2HupMdyi5CgdMV9fR9mlaGi7Hy2NjCUOaW57lq3mJYySJdCEKhLSEZ2gda61NJHiSvexFBcw3drHeWz745IwysO4x1roi7xIs1NJnFNqztrUdxOwAEozgYPWsOZtM7qkoxVkegShkJZD370U7uJ58neZj+J9Zj8PXFrr9zb/AOjBjDdzqP8AUq2MO3ooYAE9s59a1VP2qaT1FaSnGXTqJ4z8TaRoWhvdXd6i70ypDc49R60qFOdWei0QsVJ0qbS3PjD9qT4teFjpt/GdQeffGylFh2BcggMrA9QecV7MZRpR1PNpqpLbc/Mb9pv4030EMPg/SL6yeebUvsrz6ncAtEXPH3F86QgDJVUIGeetcmIxlOOkWbfvFWje+v8AXojyH9iX41z2Oi69qOibml0LxjrC290mnlHnzM0pJaRwIwFdiMDOQMDJJqcvxMbSVSW/Q6Z+2rVn7NPT/hz6Sg/bL8N6RDAdevI75Cp+xGC7div95XG5grDqCVx6cV6ixNJWUXoa06dSUXocv4q/a+0nV7mWPw3rr3fO7ytT+Rkz/AHi6jr3Fc2NrwcfckdlGDejRyE/j7Wb6Ftd8UX8Wm6XvBeSW7YrKeyqvVyewA718risfBStfU97B4eoo+87JkHhiz8QX3iO68feOIysx/daJZxSHZBbg/Ljoeep9Sa4Z4tTk79D6PDYNUZXZPe2slxdtczJvaQ5JJ5z71jzpu7OuWhZtdODyAytt8tcYA4Jq3NWMuV3sdD4atFWVpwm0BCxOOmBRGqrmvwo5P4PYuL++1A4JlvHKk9/mNdPNzRu2c9GTnJlT43Xj3esy28tjDMVTCiUYYfQ968LMaiTs1c9GmlGN0ePaozRMQIlTjgBQD+NfPVJXlZbGqTluUBLvYbhjnmsJOyN6SaG3TbYyc8is4ybYqi5loM0kgzlipHPpVSk7GdJcstTobeWMKA787RWMnc6ZSTRMHhkG1iCD1FS/ImMkY+saMgYz23GDk4ropVOjJqUlL3kUrbUXgPlynB6c1s7PY423B6k5vGkOVb6ipem50U5uSJYblig/TNYzRvFu42Z2A3Dp9aqNmjOd3K4sEpDguM89+9KUlDUum0ndnpvgWPxP+0p8YNC8C3a7lkgisNPtkQ+VptrGuXdFyAuFDOWPGck5rry5182zWlQd+XRWXRHNjZKtVSvp1/zP1B/4J8/E6Hx94o1T4ffCmJ9N+FHw8g/s/QhFknXLzP769mcgFyzZwOgr+j8Bh6WHwKUYe9ok7W08go4WhHAyr04pym7J22S7HuepXt3qusy6pf6itpaRPtiWNMs3twOK+koQjTpKCV29z3qdCOGoKFOPNJrU8/+M+iXOt2M1rYXC7JASsVuSh6clsjk172VSo0mrqx2UFNQV7pkn7Amu6fa6p4s+EF+wt47hI7izWV8lWYYJ6fLlhn8q8ni6nKHs8TDVxetux8xxHQqKUMQtWnr6HafGb7PceCb7T4yBf6NJ+8GOqucPx6ZOR7NXk4OVXnU38MzwnOVKqmlpI8S8HfFNdU0W50O8vI2uLC9azuieC3B2Ng9scivShUik7dDopzc/eNDTPH1sYDqVzcxurWKRMCeVdHwre5x/Ks5O6u2aVHdWeh2Nn8eb2902Pw0+qStbW7yIYomzuhzuY4yDzgDJ4AzXEo0Pauajr3PNWCi6vtEj3/9lH4j2vxn8A6l4U8Y3FrfId0YsmjBH2ZhgKwxg8dfrXx3EGFVDExrUVbu/M8LPKUMNVjVo6PqfKv7TXjRf2EvG0ngX4zNfzfDi+l8zwx4itImmn01GzmCYAfNGh4BzuAx71lSxVWdB4n2iTi0nG2stHrtay66p3atdXt5Ek61L2iV31PDfiujfG3Qn1v9n740aL4ismUyI+n36SyJ32tBuDKce1bSzt1F7rsa4eEa6sz4w+MP7IXxq8ReKDrty95BIzg3U1npP2ZFXnLF5GWOPsSx465715uJ4jqyrXhpLyVvyKq0FCm9dEfKHje7/ZW+Hfxy0r4TeJ/F+hfaLiwuoNb8T6PfSXsNncs6+THcXCHYy/LhvJBVMjkkGvMoVsWqkq9TVdjCPsakoQi7d2e8+Dv2Yfidqeltr3hnxvpGtaZKqeRdWutW0ttHFzja8bA7f985FZLM6bqNuTSfTTT066+bflY7Fg40na6a7oZrafBn4N3Ij+I3xE0KfU1X5dK8K3I1C9unPRcI7Rx+m5ioA7GprZzKp+6hDRLf7/Pp6W9dTsjhacVGSmvQb4l8f6lB4Cfxv4mtE0e2kV4vDGgxPuNsGXDzyMf9bMVPLHgdAAKWW0qmMxKb2R71Cly4dpKzez7Hzb4p8VXHiK5NtaMVtl/1Yz1r7SUYRajHY15JSaNOyvV+Gfw61H4gTri6aI2+mK3VpnGN2P8AZHP5U4uM6igjfEVVg8M2t3ocl4bB0f4T3LEkTXsoDMTy5Jya3lLm9083D0X7JN9TofgZoZ/t1ZI5GETffXOVI7g1hi6lOjRnVW1u/b+tT6KjenTWh7FdXAWQBRjI4r8Fx05YjEynLds1i+ZiJcAk579/SvPlCxooakjTcYx9aOVWKqKyIfNAYk+tKUbmClqQSj94CTn3pRibxaa0LEMirFyOnfNNqzIt7w6NwQ2DUpXZpK6WhUsWP9pHA79a7IJKJxRl+8szfE205/OsZq7O2zURlxNgjBzmoUEZJ6kLznnHHArSw6juiLzmIwc89aTgmKGqFEuRk/kaFCwTdihcOxfdyKpWQk0xpnVI/mOPxqlqTVbSuilPMWk+Tn2FaKKtqc/tVchmlYoQDRZRG7M1PAeq6zY67FFo+rT2hkcBntpNjH2zV0Kk4VUosxqr3Hofrd/wTk8Ea4ngu31rVZ7tmkUGOTUtQaUucZ6HgV+g5e2qSbe58Zjm3UaXQ/Qv9n5oJfCl0kF4J9spV3Xpn0Fel7W7sePWvzIg1HUrex1ybSbx8eaepGPyrR1E0dTp2ipHN+IdcbTbyaymnYHAKlTwQKzbj1MpN30K3/C17QWkZa7aMn93CAfvepq3KFr3Kg23Yqa18d3Fn9isro/u3CqwPVvWl7RNEzpSk9D2L4T/ABN0b4j+GBPHdIbm2AjvUJ6HHX6GsXNSumcNek41LI+Cv+Ck3/BOn4mWviy9+P8A+xv8QLvwd4jlXzL+0tV32monrmWI8E/7QwfeuR4fm+B2ZFRNwTSuj8t/j1+2p/wVE+DZl0H4hfBjStca3Yg3drqE8Kygdcp7+xrSnPMKStKpp6XNqVakqcm46nyz8Wv+CrP7VeoxS2rfA3QNGuTlftlzp813In08xtp/EGojCeJm/aVG122OaeJ55e7FI8I0X9tj9sDRtc1bXLH4kX8lxrdxHLqEd5p8M8cjINqbY5EKoFHACgCtp4fA0oWsdNKVaM3JS1O68I/tVft4/E6+XTU+LV9pdvI4Eh07T4Ldj24KICK8evTwcHeMb382egsbiKiUItfcfR/hTwjdeA/h4V8S6vd6nrmtOs+p6jqVw008gH3QXckge3SsHGMIXZ30YyS97cz9ZvW03Qbq83cLEQD9aaqKMHJnarxPI5JGkUue/NfL1J887nrUY3sVY5gC27045rdK0DWdk7Fdmy2W6A96wqu6YpS5EdS0UXKgj2Oaxu+Y6pSk3qOtBHGQcd+1aODa1FLfQvwHeeBg96lxikQ009S7a5B5br0rOajYpWb0LcQ5GTj8Kw3NoxsWERGAyuPSk7o0THKAh+XpWlNNu7JfxE0fI2g9TzWsnyq5rA+lf2N9W/aE+KXj7SvAnh/VJfC+iW0aJc3GlaSts97GP4pbkrtiXGcyEkkkY5NfQZfiZVlGFRWR5uOnGMZt7pH7K/sd+LrTwW9t4D8MTwa9eABLq4sbhvs8Xu8jkmRvc9T0UZr66k8JO3s0fn+JliHRftXrd7dr6fhv+h9V30TzWbxggMyEc9B/9atGrqyPOjzXuYng26mn06TTrtwZLeQ7QOMoTxWlPSKNa+rTOE1G7W18QS2pbmCc/eHQA0tIvU2nSbtfqeiWHizS7yyS48zLYxtx1pXdtDGpThCW5Pca5oJj8i8njCSja6SDIIPUGp5mtwacFfoeEftSeK3/AGfNEW/ufDVzqHhW6DGO6tB5kulv12hD9+LuBnI6DIwAfXKlGWuxzypqpGx8D/Gb4/fs/fEC9muLn44eGXitcypb6pqSW8tuwzx5b4ZDz1+vrRXzegqVm9SqWFipX6nwF+2r+27+yb8Kby81nwH4qt/F/jMqws57JhJ9nZs5y4yFznBbOcE9K8mM8XjJpxVovqeolhaFNyqvmk9j5m/YH/4KjWX7Nur+MvB/x7+HUXiLwh47v/tt6kEKtPpt108yMHqNuARnPyjrzWuLwGIqQToys0uvU5cBVVOrJzWjPYfG/wC1/wD8Ey/ER/4SHRPHusadIpLJZx6Vc7hnkjaBtz7156/t2jLl5L/NWPbq1srcOWL1fkzzw/tnfBy71GWx+Cvg/X9fnY/u7zU0FvAvucksfpiitPMeS1SVr9ERTqYSmrrVnpv7P3hXxz8ZPHln4j+Id405hYG2tFyILZf9lfX/AGjzUQoqjTvJ3OzCzq4yqkfRXiaKO61VkhGIoVEcYHoK4PbWkz63llcoHT3kcKFPyjog/nWkavMHs22WbfT1z5iLgdCCe1X7S2g/ZstapeR6B4N1bWpBgR2jhcnuRgCrpyu7owxMuSkzlfhFA9hpUDOvJw7j1zya9KP8MwwqtT9Tnfivqr3uuz/ZoTNGrfKpQ4x/vdsV89j1LmPQj0R5lq0e+UkQeUM/cDZxXjyVjqpqT3KKQFWyV/OuKbbZo5qOgTwF1xjr0qEpJlRtJDILdo3JBxzWiVtzGpFt6FwRyf3jg1nNxvoVGnOSJI0m3cN+FO0W9iuRx3JNzIMSE80+W+xUblHVdIE6GaAYOO1EZpaMmpSUjLtZ5baTypuueM9615brQ5OZ0pWNCOZSodB1HbtS5dNTpp1eYfvJT5jyahKzKk1fUWPAIY8n2okoyMryk7H0H+ylolp48sz8LvhdM2haprFtIfiJ8RNWmWOPSdIzhrK0Gc75R9+T7xB2DA3E/oPAGEwlbHtU1ZpXnJuyS7Iyhga+LxaS+Fb+h+kP7G3jb4DWdtL8AP2fx9osPD9nGLq9ZSrXTEfeGcEj3r9iw2bZVjsRLD4eon7NLY+kqvDKneEl7uyWy/4J7J4pv9J8PaWJNYgWN0/1UKMDz+PU17OCp4mu09F87+nRdPI56Mqteq3Td13OKe81nVbOR/DOixQXDxuVuLkZYg9hj+texGhGnL95PQ9iUKcVzTkcT8MfAfibwV8WpNV8SSu/9tWTQXN3EMbcZIK89Rz69q6cd7OvhLx1sePmLhVo3h0O1+IGt+Kvh/4ohHxGgim0bUoBbS6qsTEyRsvyNNgYRh03Hrx6GvnIexqx/dvZ/wDDnyWKp050eaG/b8z5t+M2haj4E8TalqOjzrJa39sClxEeHkQZjfI/vDinVi1ByicFOtKy5tzg/Cnxy0zxV4du7eG4VLizZRdwBjuWRWLEEdhjvXlyxU5UlrY7m3V96S0Oi8J+Jr7UP+KjtL0RS3xeO0t3l5C55GOvPr71lCspov2sYR5Ue6fsv/tCah8JPEo8YXMIbT5YkiltoH+ZwAdzEHpkg45p4+jDF4Z0n8jzMbgvr1P2fXufVfxn0H4Hfty/Ai/sbC9sdVit4v3oDqz2rlc7W7g4r4aNOrgsR7OotGfKvC4jLcT7KstGfhL+2n/wTRj+Gfiu81f4dape6bJNO6wyWE8kLZ5PVCCOlXWwNJz54bF1KahOL/mdl9zfy0R8E/HT4Q/Gn7U2k6/4/wDEl6gBBjvNVuJUIHqHYiuBwo4duRjPLpTneXU8r0z4E3bTme7jllUNggqRz/WvOrZgmrx2Lp4ZRjaKO68KfAOW4YQx20uwj5kQsc/gOtZ1pxp03MqjgJVZ2sfSvwN/Zw8MeA9KPxC8ehbPS7dN25kAaRwOFUHqc1hhlLFVOWC1Z9XhcupwpKU9Ejgvjv8AGa5+KfiR3tx5enWv7u3tkYbFQHAA9vf1r7vL8NTwMF1fU7Y3c7pbGJ4H8K3euajHAybF3AvI4wEGMkk+mK1rT9mvM7KVJU1eRh/tB+NLXXtTtPCWjSj7Bp42QgHrz8zt7sf0xVYVypxv1Z5OPar1PJFbxnqL6T8OdKtbUH95eAsq9cDvXo4WknK8jZJqlG2x6X8G7i1t/CD6/MpiaJckcDdngV8/xZioYTCOC6o9RSSp8xvp4qguSiqcn0r8ZlCUtRRrJy0NKDUkljBUYzXHN6ncpxSHnUVIwevY1Mr9BN8yIjfEyYU1N2tzJRs9SRHdmDMRU8zLUorYma4AH0pJtsTl74sE4w2eapuxstUV9OuFfUCP9qt4ytE4Iq2INua7Ctg9az5tbnouSsVptRQfKeRziqTucj+Ii+3A5yO1KUtDZpNDftuME/hQmKNo7DZL7A5bH0puRFV3K0l3vOcggUr30JhaOpm6vdyeWQnB7VpTaT1McS26bsUYPGkNlF9lktFLkEFiM16FOEHG7PHjVmpixaq90AQmBjnNYVeVXPRhVujsvhHqsWneKIJx4dTUHEqkQsM55FGHjJ1FYzrV7QaP2W/YLsvHvjD4dWUmqaQlhDIoHljA8pcf56V+h4CH7hJ6HxWIn+9tZu7+4+7PhH4ctfB/hBdLs4VRfMLMwz8x7mulpQehyVoxdkVfin4WfXdM/tDSlH2qA70VerYobSVzak/3bjI8T8deIRrmmmz1J2tLy3+XBOG/+vWMql0cvI0zyjXLjxC5F5bTh/JBVQxwAO5qLu9zSPKloYtn4pM2ryi7ldF2ABi3Ab2pqTUjq5F0Z0vgD4wX/wAPYb2eGaWF7y2MTrnPfhvrW8KkVHXqU6Kvc9p/Z/8A2ltP+NOgXfg3xfFtv7Fdtvc3Q2i6Ttx60cvNH3NyK2Fpxd4bHgn7Y3wg+D3iCeaK402E3MoYFPKUgt71pzqKtM4p4GcldH5cftTfsxfD+0W4uLXR40lIYPIYlwpzwF4rL2tGCbSJhQjBe9HU+aIf2ZtIdSsmi7J+GMqxjO3tnIry604yeu5ccJOqrLQ9C+HXwK8KeALZ/FXiUJb2sI3IHUAyHsAO5rzpTtLfQ9PD4GNCPM0UfEPiKTxRqb6llRFnEaDoF7VjKU6tTyO2KSdzjPinrqx6XHolq2N/MpHpWeYSlGhyo6aFOM58z6Hnk8jKvHT6149NRbPVprQqsx5x/KuqTSQpNN3IDvGd/wCWKxUVN3OWvPmWhvrdSKgGT0qHGPtNT0KqlKbZc0/dJjNTOdloCk+Y0Y9wwfT2rB3YtWy3almPtniplFo0UWnqXY9w7moHdonhV2G0ZxSdi4ptkgjKrmqpu8i7O5Nb7R171rKN0Lmktj3T9lHxf4evfFuj+F/EPjbUGje7WOLwtoVjtfUnP3Y5pAOSc4DEjGevFfQ5ZClOMW+x4+NjXndWP2Z/Y1tZNF8N2baD8M7bTGtDvW2tY/tM1uSMYZz8olOSCc5UZ9Tn6+EYQp2hsz5bF4eg5Rc0m4u6v0equvOza9HbqfYFjPfSaGk19hZjFl8cgGhS7Hl1JRU2oHI6Lr9vpPi4QyuAJ22OxOBz0/WoVVxepuoKpTZjfGrS30LVV1+JT5NypD7ezgd/w/lVO/Pp1NIS9rRXdHBad8SLm1FxpTXIURYdW/vL1rdJRhczlTVRi3nxKbXNTTTtNu2lkBAZWz82fb0965/a8zepo6bULWPYNY8N6J8VvhbN4R1r7Pds9oElXcG2SBeDx0pWTXK9zzJxcJ2Z+Kn/AAUu/wCCXfgzxTrF7eTeHk+07nK/usY69M81x1sPTeqNY3cbH5W/FT9gjSvCWrSwweesYLD92SMEdauOJlTp6O5ssLQSvLc4T/hl7w/DdLYra3TTsPvzOQn51yzxeKqPV2R2U6NOUdi34e/ZW0tr0C608EpzIrAkn2Fa1K9edOykawjQTase5fBn4HWFkYYLTSVGCF+RdrLnuQa89SjTd3uCpSnNJH2n8Gvh/D8PfBj6zdq32mdfLt/MXDEetefi8ZOoz6vKcD7Gld6ssRafJdzl1XdznJHSvPdeN7HvKJMuiyKmQCDgkt61Ua9tiuRDZLEb8bBjHIBraNRyZPKcn8Z9RQaVZeDYGG+8mElwAeiL6/jXdQvJ2PNxiUmoh4YaOxh+Vc+XH90cE/SvZirU9R04pw5Tyz4matcz6pKZZGKFvlilG3zPy718/mLf2TqppU4qL1ZxkGqrfXX2QwmMhgPKccr+PevFlGT3OynzN2SK3xF1238B28LXvy+bjBJ9aqhgnWg2uhw4/F0cHJKT1Zj2nj7TbmMOLgYx/erJ4SpF2aJoYyNTYtW/iS1n5jnUjPauapFwlY7o1YWLi+IrZV4cGseSTZcK8WxV8S23QuACexrXksgqVUoit4gtJG2+eM9jVKErGUKybsi3baksiBdwPuKxqRszqjbcp6tbLIDLGMH2rSlUa0ObEQjNe7uVNOvst5TDpwc1q7WuctH3Z2ZfGQMqQeKzTTZ2zXMtCSBGLH1Papm0OCstTrfB3i/WvD+mN4e8JeHLWbU9RuVjiujHJLO7H5UjRNwX7xzwMk98cV6OXY+vh4So0IJynp1vr6P+vQ58TXlSpycNHbc/RD/gnp8ILH4AftBaV4R8ceILvWvirqmmPN4u23hFp4etdoaKzYAYknOQW/ufd65r9X4LyzCZbUqc0r1XH3l2MMDRrVMHVrbQtt31Prr4oNoltqP2/X75G82UC2tUYEk5756Gv1zL5VJUlGnH5n0GWyqQoqMI7bsj0C50+NcQokiICbiNec+27PQVtXVRySudVeNSpHffY8i+L/jvxjqvjO1tfBGnpFb2Eq3D3UkvCoG5jjIwWcjtXu4XD0aeGfPq2jVYWlTw6U3dvc9T+JfjTwfo/hu2OsTbLm8tkl1PT9QhISQkdTyx3YHTHpzXzeCw2Ir1pJx9xXSaPlquHqV5yTV4rZo8/wDix8N/gjf6bba7outTWcF5AjSWEcp2cjHAbgUKliYNwqLQ8OtQxNNe8vmfNHxe/Y28Kz3Nz4x8EeLJLC4nDBpLSfDynGBlV+91rgxWBo1k3bbXT/gasmNao4KNtDwbxj8Iv2mfBF3D/wAI541muAYmjj8xMsFIOc9NuRkf5FedLJ5022p6Ee2U3Zo4PWfiN+2x4chl0rTtRjtoAdm+RGLKMEHBPbn8c1hPAYuyake3CUFHoan7O/8AwUR/b2/ZO16fVtG8HaXrcF9GYdY0lneNdSQsMlyOQ4XO1hgjPesMVlmIxdLkqfetH8mtUcWMw8cwav02PrS7/bg+AH7UGnw3HjPT7zwdqs5XfpOrIrpEzKQQJV4YbsYPBGa87EYCtTp8qRFPLnCnbc8C+M3wX+DHiMPfab4w0q5jnt55IjHcJlgg3MMZyCFINfHZhRxEXawo5c5Jtx0R4DefAP4TaJd3T6h4ssljR8JiQEncgkXp6rXmUcNiKr0iy6WXUprRnP6z8U/gT8IJE/sfQbnXtQABjjVPLhBIyCzdSM16MMixeIXNN8qPRo5fQoO7R5F8TfjR8TvjLeRi926fZRyFrfTbNNkcQOc7QOM9yx5Ne/gsJSwFpQfvLr1+RjVp03eMVZPp66swtG8HQQlpNVnESJ94sMbffkc11KpKbaW5tQw6ptNlX4mfGvRvCGnt4S8GOkt5OoWTC/8AoRHYHt3rqhh9eaocOZZjTo/u463PMTcXFzexy3ku64lk3ySHue9dEZJz0R5NGM6lRW1PQPEsH2rwTpyGPKpcja3v3/pXpUm022j3qiiqS7nsPw50S0uPBQ0d02iQLJhlx+NflfHuJbqQSN8OnKNmWk8EpFMCpAAPFfncqzkjd0EldGtbeHHSIEEe/NY6J3IjTk9yzH4eLDt0rCU9Tf2dhjaCFc4I4z3qo3krFOkuUlXRV28tg1pZIxcLCHSU3bQR+dCilqXGkmrlmLR4/KP0rGTtIuMbMy7CxC6oUDD73NdNNc0TlqRvUujam01GblueMVnN2OiKcUV5NEi3A7unrSTbGkmIdKjAzxT5SLO4w6ZGOeOadrDlBrUrXOmxZ4bjuKFcIpSITZxrxt5quXqRONiK40q2uF5ORUXlFk8qaMyfwxYrcb3xx04reNSclY5quHg1cc1jbRjYgH5VXKuph7N9Dsvgn4c1zWPGdrbaMSi+cvmyF9oUZ9e1b4apL2qUSZ0ouD5j9qv2NNNvz4L0/RdN1eOWOFV3QWThsnHJZu596/QsDJeyTufI4xqlKyPs7wzcPa+FY7f5lYcKsnXP1roqSe5xQSnJNhp17dTuwHHJyT6UoNtHROMYnJfFb4R6B8RbJ42hEEqrjz4mwc/UVjWhfbcznTvqtz5b+Kn7K/xQ8OpJL4c8R3EiyElYd27P1z7VwVKdSD0ZknJK1SKPBfG2nftFeBo5FeHz2jGUQwHAH17GslPFQ21Omk6Tdle5434m+PvxOsp2t/Emq31oWBMnkwZC/jWMsTWjK8z1vcSSe5lwftBtaahbSwfFHVIJ42Db1vRFtPUEn09qqGOmtbmroa7Xueky/tc6T4xtpLTWdfi1O5sLfM93Bcg7gByzkcV0/wBoOUVpuJ4enZq55t8W9S8K+I7qWOS7QmPaWhkmXbGzYwM+veuKrmEVKxgsts3Jni3i7xX8N/AymXVL2KWXABt4W3FWI/i9ulZ80pu7NJxpUVdLU8v8bfEmXxPfC5uWD2K/8e4iAKRj3WuarTmzL2j6nL3+twMm2xVOTgmLgEV24SlazZLbaucZ4jM95evJOc46Zryc1q3xHKj1MDSU4XMuSwUKSSPyrgpt7nrOEYxsMOnKsWNoB9aKlRnI4JtmdcWQDYHrU+1cUYOlzGyIFEakdaptuoelKym0y5YKSQv5GqlFJXM4wvIvMwVQSPrWd4pilaDuWtNCseDkE0ptNHRTXMrs0EGG6Vhy3M56MnjBGD1FP2asdMV7tyRuBkj061UEkyHoS2yCRsDv6UTbSsNNJHpnwI8cWXg7xXo+lvoFrIt9frDdSW5nhnnViMRyTQxSSpHnGREAxHFenluLrK1OML/mcWNklRer26H60fsBaH+094x0K8+IXxvu4/Bnhqy2x+HPCOlKbeNUPd8jfIzZ5J59SSTX2OBhiGm6rsux8PjvefLDXzZ95fDmyv73Q0leeQRuv3p2yW/D0rsk4vSJ5riqesi3qfw607VZjNJqUiMGDDYgAB9aj6u5bMJYvlVkg+I1ppV/4Sk0TW5Ml48Rz7ejDofatG/ZLUeGlLnclsfM3iiGXQLt7Ka1DuIyiSDJEi56U5O8DpW90YWm3E+m3e+OfZcyj55yThF7YrjaSd0a8kqjVzq/hR8Tta8Iay+rvqaw2ifKySsT9o+ua1p1Ixd2aPDQqrU1vjrongf416XJqumxCO8eHdcWhQFsY4Ycc061SNuVIzlhnCNkrn51/tSfsmWqX01/Y6UssY+aaMRj5l3cjjvXmVLRHSg7aq58v+Mv2aLOfxQ0dpbxpYW8fmoZosMgb1PrXK6q2NfZTb0MST4CXF9rqvBpkg+VRGqRYyR3/SqdVRg7s7aWGlUlax6/4B/Z18P+DbU+JfiJcJaxJ86RsgE0ueRtXvz36V42KxSndJnu4fL4UkpyRd8T/Ejwrc3KoNyQxriCGNRhFH9a81VJVND0qdVU9EjHHxW8MxjybPSrxlz8xENWqcrbm/tEMk+Knh5n2TloBnjzVwB+NVGnO9jRVI23K958RNBjtpb6S4URopLMDw1d1GjOTRnKtCO7POLbV7nxZr0/ia+BXzWAhjP8CA8V6+HgqZ5cZOrV5uh0OkX5b7R5bAKF2klulejOXLA64x7HkXxH1G7i1aaG7tirhyVnRd6uPpXzWLm029zqhDlszjW16W1mN08Y3AHa2MfpXnSfPK5rCooMw/iJeXXxCEcV5ysYGPwohipYe9nuedjMJHGzTZyk/gu5toswXDAj0NbLHOeljCeE9hH3TW8EaLeyyeXJOTg4OTXPXlF6tEYdVZSs2dsvg98gGXHHrXBKrFbI9SGHne4S+BpGXPn4rL293sdLpXRmy+D72CUulyTjoK6PrF42OeeGlT1RZs3utPfbOeM96zdJT1TIjWmtGa0MqzxYJyPap5LG8Jq5Q1CxaB/OhPXuKcddGKtTuuaJNY36uoRmGapU9bmdGpJbmjbleOM+lKSR0crlqfSP/BPfw1oN74w1Xxro6w6j490q1YeBNIupPJtrW78t3OpzyupjCW6rlUcjdIy+mK+s4XwNOdKriotOpHSKb7/a+QqmBdenzuaUVv3fkl5n2H/wTo0HR/BfxW8Q6hffFtfGHim53Tavd2582CB3G5x5xx5jFs8jqDX6LwZleGpyqylW56stZf8ADnbGSrUXSUbRsvzPoDX/AAd4o8UXtxfxfIs0+BfTgr5K9yuBwOvJ7mv1vD4qjg0oxld9tD35YnC0KEYdUtl1LvhPV/DU+qzeCNEjmMcER+03UZGLo45wSefc0q9PEKH1ie76djzsRKvGHtpfLyOb8T6B4d06++03VoUS1mEwmLLtt/fp8zflivTo1qlSmkuv4mvNVlBO+5pfBrXNO/aFsdc8TaHYacul6VMtqur3ESm4u7heCc87VX+7xk9RXkZlP+ycVTpXblJXstkebj50cvcISu5S6LZI5H42eGvhpFr1toqiTXvE19GYtJ0KymJXZnmaXHG7pz0GOK6sJPE14OpUXLTju3+hMKNXE0W5x5YLqzxH4w/sp/EPwei/2T8a77RtUkZAbCzKy29vnsd4Jz68jgU6eHo46LqUZNHi1MuhXd6ex8xfErW/23PBurS+F/DXizSPFpVGWSSK0ZGBwTyykgV59XL8zhJey944KuBnQVo6nzl8Rv2j/wBqjR7r7d4m8AaVK64S5eO4bc4U9NxXnk8D3rz6lbG0Ye/BGMVilLmjG7PH/En7aPxvgkkl1vwfHareT8CKQiW4YDgdjt9/SvKxOYYulFe4d31vE0oa09WZcv7YfiDXmbUvHo/syONtxggUuwQLhF5YEsxyT2AxXHTzWc9KqsP67Tp0+at7pyOofGbxFqAgfSfEF6iRYkLzb0XLLl844wc498DiufF1sG56tdxVMYqkP3bdjL1L46azDJd6bdajOt2giISTdlSqgDIPbFeVHH4OpL91qjyP7SarOC3XQh0n9oTUEjNrf2C3IIAVXj3Z+mf5V1wxFCvE9WnnKaSaHXPx8kkhEOlaWimPkJ5YXaR7Vyv2d7RWh59XN71W4LU53xB8X/GusqVS4aONydwU/MBXdhpRjryhXzPE1KWisZelPGf9Ku41kaQ8yvyc+9XUquRw0ubEz95G27SXRgeYoCpzHz1H1FXQjeR7MYxppHqltai88E29xNuPkTqWxkgjPpXZVqRp3d9js0qQPY/hxPZ3/heC+06WOS3xtV1Pzhh1DDtX5NxvWp1ZU+Vnbh3FrQ2yhLfL+dfn91E6HPoTRodvX6g1LlzArWuOVvX8DQ1ZFuSsJnc2MVCkjNTfMK/yrk8VpdjqbkaDLbgOQKpN21CCZYDtsOScYqbKTNZbGTYf8hQnuGFdELRjZHDTbdbU2Z3CtjPH1rKSV7ndU+EryThnCk8HvTWhzwbvoBIxjcePeplI0krK41zgHtx0p30KlrAz5JR5vXv0NOLuc0bpjZ22jOO1NtGlX4SETqcAeg5zQ4pmNNu5FcjdkZ/HPWnTsmXV+EqpaXN1dJbWcDSyyMFjjVcliegrSS5lY89zaloer/Cr4Ba7b+O7HTvihdz6FBI6M0LTeW0gODjg08PTTrpSY8RTnGk31P2S/ZT8N+F/h78KLR/AUE08oiAiXzcgnHViDz+NfpODhGlh0kj4rFycp+8fVXgP7fJ4Ct5dS2/aXGZdhzg+laSg47s46MZKprsX4p/IsG2tiQthmP06UlLlOyUE6g+CXAIlUKiruOf4j61XxImaKFwbS/8AM1C9iUomVhiK4z71laz7mUotNI8n+IvgrRdf1FtKj0+ExRwl5ZmBOe+PehyTeiNINQjex83/ABS/Zz8J3sTy32hI1zcKfslqkYAYD+I+g+tcdWkqj1RTnKbuj5E/aR/ZZ8PaTNBJFZh5Lw4htIRksO59cCuWWFUeh1Uq85NI+cfFnwAtWjuLrw2Johbz+TcqhKkP74qYQgjaT0uefa54b8QadBJbyavchi21/wB6xO4HI3c++ayrUIN3COIfLa5yV/pV1eTul7IzTp1aRs71pxcUjOpKUmRWltLaMy25/dMcOhP3TWcveYQi3uQ7QrFVG35u1dVFcqLm0tEc9qDPLcuc/wAVfOY93xLZ72BcY0UVdp3EHjHauZtRR01JXY2ZmEZIFZJ8z1CEboyLonBy3PrVNXdjCrJQ1NnBCjmt9Oc0xDaqNFmxcryOM4pVfhNackWpo5ioUHIrlTSFOKeqLulr5SAMaGnKWhdGa2Lxk2vn+dVsya2jJbebJ5ok7RN4P3SQyEkg+vWpgnuZ6tk8JdO9U5RtqP2dz0n9nLVvBmj+L49X8ZePfG+jtHcIunWXgLSVmvdQl6+X5zsqwDA+98x5+7xXq5VUw1NOc216HJi6cuSyjc/T39hL4gav4xia4k1e6hstPiA0+y1DWVvWslYg5kf/AJb3ZJy5PC5wAACK+rwVf65L3W9D4/Ma8cNC0lY/Qz4LappWlxroN/r0X225XKW812HnkIHJI7fTFdseSFSze54teVSpC+rR38uUOK6lK0jkgk1qUtd0O18RWh0+4bYCPvYzipqwdSOh0UaipM8Y+Lf7OHja8t5bzw7qscyYyFztI/SuGUp0t0dtGtSk9T558YaN8V/Az+VqOhQXAjfKnztpb6+tc7qTknY74yptJHnuq/GXWIZbiHxfo1zp0UQYxyPEzgnoMbeBj34rlqVKi3OuEIdGaPgj4+aWyRXun6+0VzBEPKj89WaaQMCXfPTjt0p+0vG99TePLN8rWhP4y8Y6Z4tmZtVQsJrvfMRwo46AjrXBVxElKxSw1No8i8T+GfAghjkNo7vK8gnBAChAcIo/OvPrY5paI6aWDg3qcdr+saZ4feYaDo8EO9/3UtwoJVWG0Afqfqa43XqTv2PRo4eEXscD40S/8WXUk2pas7zK2YVJ3gqM8H0rBpp3Ouo7wscvJ4ctbWHzbqIAx8ATOB3/AJU6d29CYQcVdHJ+K/H/AIF8MMY7/X4HdVP7mA7uffArsjTk9zCWJhGVmcFrXxXXW1ddJtAIGOFlmHH5V0Rpaoj2/MmkZcUmoahIqz38jQqQWt84T64716MLJWRhN8zO30CLy4cL2HY9q76a5TppuPLoaPh9yljdTMhbO7MYbBIq6tROFjppq8tDy3x9fR3mpSCyuCDzkAAMPqD1r5vEtc53taWsefa7KsUohll+bdgbhzXA+W5w1XyVLMhgxEuSa5KiudVNXV2MulBjYjgEcU4e6Y4jZoPBTkXzjPGfSt6qi4XZhg4xc2egRozAPnjAyMV5kknseyrJFnau3aR+NY21I5kVpbUM/PHcVtFpIJO6sZ2p6R9oTIHI74raNTkMXRjJXMWb7bpcuBkr9KG1J3RyShOm7svWOox3ibJGByO9JSdzeNaLVitqFlJay/aIM7T6VspqS1ZnUhy+8i9pGoxSgRyt83ua55xbdyoYi7se+fsm/sifE/8AaFvLzxraeJU8G+CtGjI17xrqybbMDjMCcgyyEZwi55xnANfZcKcLTzepKtUqSpxitLJNSd0mpO6skru6vqkmrO6iU6jr2grvt1PuD9hLV/2ZvDvxtg+CPwOF9eTWOntcX2sXsrLJfhcfvCq/Kinj5SemK/XsqjlOC/2XCu87atf5n0kKapYOdRJKTVmfTXxY1/V30+40KK7aCC5lAkaHBYL/ACFfcZXhaPtI1ZK7ReEo0IRVVxvJI4/9ne70rxF4m8R3cUjXFhpEC2jsQVQsclkT168txkk1257FuhGlHRz/AK3M8yrKNKCjfml+Bwv7WXizxDNpr+GfCkJFzq7eRpdiC3zuc4yAP17CvUyijSpYdzqSV0nq/Tb5nbgqPJRU6mpc8C+EtQ+DPw0s/g94bvorGOOJ73xFfRhjHDI+Wcgkku2TtVeSc5PQ1596dbEe3mrz2RNX2FWo67jdvRI6X4V6d4L+DdjqXju8Rr7xJqroReXyBpI4xnZGD/BjrjtzU46licfUjSWkFvY4MYsXj0qd7QXQ8A8e+MPiD+1z+0SnwC+GuqPbW0JNz4t18crY2xJzgngSP0Ge3Ndsp0cowqTWvREypLB0vdex1Xxs8BfCD4CeBLv7Vdw6fpCQi3iuZ3/f3LkhWYZI3O5PLEgKKqhUniKXM/n5GdWjGdLmnufLS/Dj4V/tReOfFk/gSP7R4S8BW0FvqWqpbMy3V/Lt3KvBBEYbk9Op6AmvHr05Ymsk9lf8NTx4VaCs3F72tZt726dO72S1eiufG8PwMj+M/wAUfEXiqOxkbRrQ3cGmOqFUWG3Us7A+pwff0rkjlf1mpKbV10PRjgqlaq520XRniHiH9nC/+IHxt0bwFaCMrczS32oOpCpFaRAs7kngfIMcnqa+D4unQyXB/Wqj1Wy7voj5XO4wnVjCS6i694F8EeNviJLd6JeRP4L8JaAda8VzQzk5lWZ40tMj+J2EKDqcPntX5tVq5lh8HGpWfNVrv3UndpXa1XRqzdn0afU58HGli6jTuo01d+bWyPJxpF94mmu/HF5tN5qF88pwvAJ+YIPbHA+lfa5bltOlgopbhg8MqsJYmS96TJZNAsrxBLGoCzDBC8FH9a744d01cqNPmlsY95p88d0YpeLpDjfj/WL/AIiuazlN9zF0IczdveRLZrbOfs80YDnknPAPr9K6ISnsEZe2lyWsWY4jbsZ47fIBCyKB0PqK1VKTd2dLVPDr3UamnpIs6H5SC3+r7rz+ldVNxVkY+1lJns/hGNJfCAMhAiSRDkckfNzxWGOX7id9rHsUnF0bI9k0y3trXT4orWONUZAwMSAB8jhuK/A8fOU68uboz1YRUaV0TKQWyOPwrznqQtWShtgyR+tJuxrK0UERDnAxwetS5Noz1kKoHmYAoirmkIai3H3cdPrWkSavxDLYBmJAwcdat7GkWrE4QGNiDxjrWaepcl7pjWTY1c/7/WuuK908+m0qpszk7ySc9sVzydtD0J6xKYT9+Sx4NCbascysmWHO1Bx+VZ8rRbdyJ1JGDx70SZp9kzpU2z9OB0NaR1Rzu0WFyjNHwcHHWp2dipNSjqVIVw/zevFU23sY/AxZsEE+lVFuJcrSiVTJLFOskE7RupyroSCD9RWim73OOEffujvfgxceJ9X8fabGjx6hK9ygUalIZE6jqM104SMp11YyxVaKjeZ+1HwM+y/D/wCGumweIdX0+KeaJDb29muFLEdNo6/Qmv0PDVPZ0UpM+Nr04VZ8/Z33/q59b+AhcyeDLJ5SuWjyx2bRyO4pqTmrnPVnH2mhasra3C3G5SwR87W6dO1SnbctzloyKJ2k4m5VvmeNew+vai9ndmskpLQrazcrHA11LBhCpjiUHpnvzTctDNRclY4vV7iyv9WWzECfZrGHfcyBvvsegNZxknKwnCUI33ueceKp7KdrnWntYlnkb7PACM7Yx94/lxVOS3HaySPn3WPBmn+JdY1bxzqVvEy2ytBp8QiwsSgYB/8A1VzSnKpdlfBFKJ4BD8KWtD4ga/4N2xuEOzjcO31xWNODu7lOpOx4j8XPhMhv7u1tLfcWYyJ8mGBAGR/OipD3QifPvjHQIJnnMQMc8DbZFI5UjviuHkb2OuCTZzUdq5+Z1UZ4MgHDH3rWNNJainU7GIY2W8eJlwFfqKvnsrIVP3nqc9eMBcSE/wDPQivmsQ+avK57uGVoJFYtknjB+tctRaHU9GQzk7MZ5qYm0DIu+MkDvWietzhxWzN6VTsBHpxV3bmdWJTVRsfZuwbGBk96c03AKDRpKwkQDpgVyW5Xqayukyxa/IR1zmtbqxFBXkXHIIz696lF1txLdyW2mipG8TSm1YtxIJACKmOkSpRitS3bW89zdxWNpA0s08ixxRIMlmJwAPqalU51JqMepi6krXPXdE/ZJ+N2k+OdC8OePvAfjexjku1k/sbQ9P3zXcjD5MfMAvGfm7CvawmX4ulPllTbXc560nWotRZ+kX7D3wI174T2Qi8d31n4PjNuqxWU1+jXsaEkiOK23sVfH3pW5b2AAH01BU6KTvY+YxeFqVIRvrufen7MVx8OYbuSx8I2KT3IjYz35YzSf9tJSOWPoOB05rqpWqT5or5ng14uEPf0ev5nrkmfO9a7m7HBHW9hkrlTuYgVtBrluy2mkPktUvLcrdOVjPVQcZHvWFSn7VjUnB6bnB+OPhtoXioSRaJpMbuAd1xJ90H+tcNSlraJ2RlOK98+dPjB8EIHmuIZbeK+kVCWiVQEA9yOgrknDl1Z34ecj5q+I/7PvhmS8e+i0a5tTFGS7QsI4wfYjk/nXNUlC1kjqlUlN6M8A+MV18VfhpZ28nh3xBeTT31x5el6bOwczP3YjsoHP4VwVfdkXHETR5b4y/am+L+jmXRb7QLW4nsyDJINwGTkn9QK5KkU4nVTxE1HzPN/Ef7VXxhnt2mGnWaSC33AeWzHIOSOT1rlhS97c9D6zVjC5zOrfGX4v+IbIX8HiyaKO5XdCIFCDI/hNXOmpoiFapVerOb1DUvE/iG3W+uvEl4Sx4d7pv3b90bnoexq6SjGNjrdSUY6MrLfaxFIIdYcy7RtaVkG9D6N6j3rWLsjlUHLVmrZ2ciuGikAdx8uR8knscdDVxm2W24Rsjf0ZyX+zSRHKkbkYfMn+Irtp1OVWZMLykd/4VRJYRGpywQ4I7iu+nUbR3wp2RN4fuGiguCRIhDMBKBnn3HpU1al46HbTUYux5h8SDaXOoy+ZZp5iA7trAFvevAxLtK7OpXkjyjXoJDqCyeZuTJ2t6VyU5x18zy69O1dMtwuDGNp6DrXJKLuz0VJco2+Yrb468VnGPMzKajIXwNHJ9tkcevGa2rRfKc1Jckz0OFsRjjnbzxXDNWPRu3ElQEnk/jWW4opyYMpGTtFaWsaSjYjQgsdw4+lOWo1oVNSsIbhSGQdOmKSbixSipKzOb1DTbiwcz24JAOSK6o8k15nnVaE6bvEfY6zHcx+TcD25ocHHYiFa+jEkgaKQT25yPak530Z0KmovmR6T4R+OXxWuPDWjfDK98a3s3h3RLiaaw0SeU/ZomlOZDt6ZJ7nkV7+W8T5tgKUaFKfubNW3R34fFOnNqKWvl+p97f8EVfCM2oat42+OR8KWum+ENNg+yf8JBdIFL3Yb95EGbBYAEZ7ZIFfoHCud5diMTKjGny1NDkxGZ05YmNCF3Un0/4B9geObW01iSW3sCNsytIzbMZGPve3Ffs2WQjh7yS1k7vXrZL9Omh9Tg/aKmnU6HKeDXtNAt5PBngi2Kx83F/JtOZJCfujnp616eLbqTVSr8vQjE04c/tKnyOd8Ri4s7qXxM7pd6nKHj02QLuW1VeGcY6ntn2rWnBTtHZDUqtamoR+E5nwbqOo654avNU1qSe6jvLl0SLeVKW6HGT6NI3HHRQea3qQpe15Y9F0/wCAdEKXs56JqxzP7RXxYk8MaO1/ZTI+GaVYIzg3UjZijjT/AGd7dT2Q/hvSjONNyW/X+u5hib0oWXUv/wDBOjwzoug/Cjxh471y9t7iC6vJJNT1QA41ObJB2EgExADYvqOcZNeHm2GliJ0qUoXdTdPt5o56icqdOlFXm/wR418SJR+3L8Ydf8beILtz8O/hsC9xCG2QXl4AQkC44IBxn3NfQ+yjgadPDLXm3NKjVJRpLVo4f4r+PtQ+Df7L9t8LvhEzaa/xB1I/2vqdtHlYLd5QjSDPZQTzxzivHzBQc0qa66WMI4ejGTqTVn0RL8c/hd4c+APwS8LeAvBkhuF1qwaaa7jwcQLAd67gOrN8x9S3oMDqowdXDzlFWUFb1ZrjYuWH5krWPlf9nnwvZ/FMfHDUNNeJtd034Zr/AMI9YzXEUC25edPNcyS/KgUKAc46jmv528aMfi8Ljcmw0k1SqVU5dk+3zstfI+JzClKdTRNng37HHw1uPiP8BPGPw6s7MMbi5XUtXvJDgzGAN5cYbuoJZsdyR6V7WQZPHM8e8VNX5VaK6a9TbIsJRqZRUXVvX5dDh7rwn/Z3hjWLezUmTT5xPFx9wo5BGPpxX1VLBxpUJw6oypKSpSh0RSg8NLqOjya9pik27hWlQZ/dlsH8vQ+2KxVP2qOyOGU6anE57xbpEt/am/to9txbnEh3fxdj+PSuSrhFD3up52LpRUeZbmTaQQ6xpy6nCdkittlQdY27/ga53NfZ3R5ixKrx5oqzW5raJb7ioXJnAKyK/IZf/rdvWh4iVjpoN1H7w6CFEvhb5IdXxu9OehopyfNcxmv3tj3D4cWl1H4NnntbaIzRFZIUnAKmRWyNwP8ACT1rkzfERpYWTPbhScqTPV9HeVNHtorlVEqwASqgwqt3AHYA9B6V+H5nOMsXJx2Z6FP3aCiyaB90nTp1zXmsUdyeQfusH0pSZ0TV4hAgJz196UVciNooczEPg9KuNkVB3ZHdzbY+SOBQpJMira4tlKrgMv48Url0k2ixIQsTtu4xS5rM3a90w9OfzNWOBkb66oytA8uK/fmzJ95ua55yuehJ2RUXe0/PrTi7Iwskyww2pj880m2xppsiYtszUyZcnaOhmyNI8hGO/FaQaSOdx1uOkb93g1nL4h3VykVYScnvW0Niamw9sc1Mr3Jv7lioWUyZzzWsYO2pz+/sjs/g74g8WaN4qtpfCtiZ5PNUMDamRRk98CuihL2U00zmr0VUi+Y/XT9jv4U+M/FGm2Pizxp4rtUlSFXjtim4RjHUK3Q19tgYOcVKTufHY1yb5UtD9APCVv5XhW0jRzJsjwGbjNejKcbaHDGLvqWIPKZmHQytzUR7nVO8V6FHUWgRzED5KAHPHL47VNSRvRT5bszNflt4bFr+5R1xH+6j68+tSn7o4+9Oy2OP8QrLp+iF0QwJdDBJABcnofwpNqK8wuvaaO55/wCP7C006W38M21x5rQW7STSIudgbqSfWlJSclFGbu5czPMUm0S5sb7QhfvHCjKJfNXBILfepx5YRZdTlT0PMfH/AIelXTba38O2wkuYdQkE0XQtEGycf8B70lZmdm5Hlvxs8FfYPF9tqvlRwwXNuWRVOQrf7Xp0qZRu7jipcp8nftGfD4WWvXHifw2oVpCVu7QdMg/yxzWM4a+6PmadjyWaxje0kn8raCvKYxzXPOEky5NI4w7vPdn6hj1qFsdFK1kcpLJ5kj5OMua+dxLSrs96iuSKIOQxBP0rnnqjqtciuGwhI61nHc2ijHu5epJ71o1ocOJtZnSyqWiyB/DWispHfiI3bG28gBHIyKpvQ5Ke9kX7U84B69656ljs5eaOpcjG2Tp3796iLFTXLItM4WLJ9OaHKz0HVQy1cSOAvbnNVJrlCmu5fgz1zg4rJS0NnFNkz7JBskAbI6EVUW73QrJGx4Ij1DS9UXXdFjENysscCam12wa2L5HyLnLNjOAK6qMpqDfM90txScY0nJR2Ptb/AIJ7/DHwx4q8fPrrahcTIZFtL26mu3d5ZFbIjcsx3SnO4wx4xkbm4xXuZbThCvzTk3fufLZniOVJJux+y/wJhsfh14VtdPuXttLsSOGvlSO4nY9PlXAUDoOp+pyT9ZKrSp/Cl8j42NCq48rlKbu9Xa+r20SWmy0vZatu7PUWeOVRJCcg8hh3FaRfNqQoOEmmMfyIv3s54Xpmm2r3ZpFORnXl5LrLmzjk8q3X/WN3Yeg9KwdVzlZbGsaSpLm3Zg6/4kvdVuB4O8FxbQFxc3e35Il+vrSb9p7sTeFDlXtKjOa+IHhXSdA0eOzFqZ5rghLa3ViZLuU929FHWuatSUbJBGq3fseW/Gz4GweGdFjvdfu0kupoy8qL9xB/dA/SonQjTj725th63OtD5fufgoviM6x8XNds8okf2TQYmTHkrzucccFv8K4J024vs327ee/y/wCAd0oRclZnyjrnwli1u61jUp7bCtI8iEDJIEgUZ/EGuL2cYpnY4xjFI831r4RQxXl/o13blZEfz7VynDI1c/sbApOWh5te+CP+EN1i48O6pH5dleSbrKd1z5cv90ntzWU1yG1FuMjE8S6IfC9w08kH+jXgCXcf91+zD2Nc8lK+h3pOSuzNSF5IHguFR5oBiCX/AJ7R+h9xW1KE2veLm4qGhNZw+RCbiCykkgJG9c5MZ9/Qe9dMYqK0OfS2p0WgvDdHJyJE4DMcOvsfUVrB3kXTlY7Xwt5izImQGJ6g8H2r0aXwndF3RWtZriC8vkt5WiZZSybm4B9ff6VniLLY7aKa3PPviHImo6m41bSwjKMtNAMY9G+leFVqc87NG0Xd6nluuzJa3RUjcN2DnvXPFL2iSVzhxTadxum6hFcriMjg8isqkXHc3oSUojdZvhDEVYY470qcLy0OetUVKRpfD6NpN0xPWlVbjGz3OijFNczO/tsAD6V59TU6201oWvLXHTj1qIlwSRHMQAVA4x2olK4VHYrofm3Y70k2ODuhtzyNrcVpZGc20UriFHQqVHTvSjeMrgvejZnOazoTqxntSR64ruVWL+I46lBR95FfTNYFs/2W+cL7vwKwlDmldbGEcQ78rPcPhb+znqtn4Lt/2jvjda3ehfDuO4Q2LNAy3viaUMMWtkmMhGOFe6YCKMHqzYQ+/luS4irSliZxtCGr01ZdHnxeJeFw7vNrfpH1Z95+DNN8T67deFPgDoXwFh+G+i+N/EB8a+M/DuiXrvb2ljAqCxsXcAKZJWXz5AAMhl4GcV9VwNkTr8STx1ROKdpW2W2it0/A+gyDL6WDqutOp7R0YtKTt8T3a7+p9G+P9cstMsLjU7mOWKKNdkiod7MQOEAAr+hcKlNpR3Pew1Kc5csXucJoDeMrzw1dMwfTX1CNoxsTH2O1JyTuHLSH8+fSvRqzpKrG+rRpVwlNVbt81jm/iD4j0PwZ4JvNbuVEawWIit1d/nMQzxn1PU/U1pJyaOGrVknyrY4bwT4u1i5/ZzHjHUJ5li1bzJrt5piJJQAyxQxkcxRhTjj0+mJpUISrt/dbTfd+txUufm5222vu/wCCeIwal4t+OWm+J/i14jVNN0HRCmlae1sxbyYyG824bHIcgOF6YBrulFRqLmdk0Y05TrYl83R9T2D4nfEi8+Ff7E+jeFfAFsbXUNdtA9laqMNFHLhIARzg4O4nrk+wFZ4Kn9ZxrrX0joj0KdKUKsqvyOY/aD8PD9m/9jHwh+zJ4GUvrXijyptZuScyTz3DgFmPr8zNk9K3y6jXxuOnUjq78sf13PKpzqTrTqS2Rw/7RvhnRrj4e+Afh/awJ/aN/IplKNuc2dvIxUtjpGCpYjjcXHYVFGjTqVJxk/hdyqkMTOVnflOu+EHizw9+1X8MJfCV9NDDqHw/SSy1W3nwZri3MLCKZWB+Undk9eeOK46+IrYbF+zptcrfvKzu+1ndW+5/qd0IUJUJRlqz5e/Z8+H3wfsf2vfE/wAL/F2va5pug+I/BF7b694i0i4iUDT1XMkKwSIQ0jnADlgF3EdSDX4F49xxiy7C4rDwUpwnG0Zd27J6bW369ND4rN8JWlVTjK0Nb2Wrs+/bdPTro0ZX/BMXwD4Xv734ntpXhe5j8NadY6hFZaZeXYeXZHG2P3oUB2J+YcYOcCvueCKOLw2SxqV3+8bV7Lv5f13KyrmWXJRTSvoeA6TaaN8QfFWrXWl25gsdS1W6tTFKuCm9fl4/3h0969qveUpu250YelG0mtbnJfDzSbvwpeXVu1os8dncPDeWhHE8J5PHtyR6EV5WHjaXkgpw5YOJz/iyPQ7DxvJ4dETQidCAGY4lhPKsD6rnpUYitT9vyM8qvVpOuqOz/M4HU9FufC3ix/KUCGZisqkfLkdD+NeFiaTpYi62Z87Uws8PjXJbSNjSLZIXDEbRjKjGeP4l96FTdrs93DUbIa9nFFrzqjBELjtkEf8A1qdKHNM5akLVz3/4dabeS+BJXsITLcRJ5nkjgzIOoU+uOleHxK3DCNJ7nuRX+znbaDqNprujQ6pp8u6Nk2sW6hhwQ3oRX41jY8tQnDVfawt2LED+XNjj6VyJXN07S1LkzZjDDpinKJ2aSiFsSRyPpWbTiZS0ERHklwc9fSlewU20xL+2k8vd/SkpK5clzdA0u1K8MMmnZsm8ouxeuoR9nckfw1L0Zsr2Of0hV/tYj/arsirwOCaftdDelCgHAx71zzjZnXb3blAKRKBz161rFKxloySViy8+lJ2Q4qzI5TtjIOKxk9Rt3KOTuL7a0gu5nPREEsuAR/KqktDLXcg3BjnHPpTgrI1l8JBLK5cqp49a1SVrnPdkRQls5wPepcmxNxgd98BNW18+NbTRfDevanaSXNwokNjdCJHGejGunC0XVqpXOGrU0Z+zv7J1r4y0fwBbi+trpHaFVW6ecSM34kdK/QsJQ9nRSZ81iVBM+zPBTXMvgy0acgt5Qy3U1ckoqxx1FGNVWLdrLHvVlGPmxkmpg7mdROzKviCRLd1umt94RTgleM/WlUjc2wycoNGPqiqY47/U1Vj/AAoGxx61lzWVmVZ7I43VFuPEeuR6t4mnEVhZEtBGGxzz1xWfNd++KSVOFoq7Z5/Y31pr2u6t4omhRrS2TyLGAvkSdRn1P1PpU4eo5VHNjp4b2cIwXRdzznxlBay3FzZ2tuA91bhpwi/NGd3Bz6YrWclLQUo2sc54T8NldfvL3xjeLtRm+zSngEAYrOleN7lSjZHB/G+08N+JNfs9Os5II4hGImZGBLdeGA6deDVynd2RldnyT+0B4UOn67c6NLcu11GGEZBGWQcj2OPQ0Qd2VBa33PA/Eek3NhbTNdRYV+pUYGfWs6sbsc9UeYzALNM3puOc5rmlZROihukcXIX+dh/ePJr5StK9dn0tKPuIYmRyTyaxm2zXm1sR3eCuc96UGawMW/BDZNapnn4rW51dt+/hABHTilPSZ6dRxlNplU28sdxuJOM9MVpfmic8oOnqjUsCFQHNYODHGrJlkOWYHP0qnCy0OiNlqWpiDCV5wetYJ+8VuJZJg56elW1damc/dehdjkIIx1pKKTKjO6sSpxyDVt2Whd1FXOq+EFv4B1Px9pVh431qezQ38T+bHC0iJGuWcsqAs5IG1UA5LdRirwdP2tbWVvxOWrUhKm43aZ+mn/BOWx8D+LfiWvxH+G3guziGnxfYrSXVblN1gAcDybSMlLd2xlnkZ5nIJIUcV9tg6Srq9lY8DF04ezvN6n6S/Drws8mqx6z4tuhNOrH5NQcHYM8MBnAJ6gdh+Ir1JQhFJHgJzdC8otSTf52T07rXv3s9D1ZJEdd8LKyEfKV5FbxcXG6PKbanqUtUu4S4hdWJPXArKo0dVGEmrmVeQ6rqgNpbKtrbfxyk/MwrmUpX93Q0hyQlrqyr4WdJdRlh09Fj02wBMkueZ5P/AK1VRqXm0tka4lOMUn8T/AyfCR/4T/4q3fiK6jP2fQ4/Kt1JypkYdfqB/OtIS9rU5l0MsTH2OGUe55/+1JqF1resxeFbeRRJeyrGoXnavp9TXFXl7ary3t/W3zLw9PlpKRwfx50rTPC3w/n8N2mES0tfmTGBuC8/596mUVCmzppuTfkfI3gXwAniTwfqutWkfmRCKR328gZk4H51yU4RnDmO2pJpWPNPiN4bguTZaxa2uPLVQ8qJ99CdpB+hrnq2S0Lg9dDjfiT8KdL8S6Rf6XqZ25g2q4UZjfqj/wD1655U4zjqdClZXR4RpECatb3ngLxgHe90xvKZwoZtuflkxjlT39K50nTfKdEK03omcze+FoNGmfR9TDKkhP2W57A+me1bJycSk3a7I7KGexLCVwssShWkCbgy/wC2O49xWcXJPUdlYv2mm29wwv4JER8g7ojlc+h9q6Ias0gjsPCyl5kUoNysN4HfnrXp0tYnfBNMqSyXC6jeGzu1ikZzhJlASUenNcmKcYt3PSimo6nB+OJrN3m+02LQzKv8DkxZ9Rgd68KvVSbaJcopXPL9cso74iMRgehziuONWXPchxdXRlTTNPisDkg7h3NXWcqiTuZQg6UrGJ4yvpvtAij4+bFaYd21OTFQfNqd38ObYR6WryAZK8GuKrKUqjud9GcVSsdlaElVJ64rlqPU6FexdjUBOT1FS9jW9iJzuOAOe1JJtjcbogbCP07+laqKRnB2ZDdMTkE/gKbuVUtcqsx6n14oSHoo6Fe6iaRSQOvU4q1YyknI679m7xR+z98NPiFP8Qvj18Hr3x2umWRl8OeGUu1gsLrUAw2G+b77QL94onLHg8Zr08urYbD1earG9tkctXCKtScac+SXe19PLzOtn/be+PHif423vx08XXOj6tq19ZCyh0zVNIjm0ywtlIMMNvat+7jjiKqUUDAKgnJJz6dLOsTSxUq0Hq1ZLojqyuf9lU5U4Run33v3utbn0d/wTM+IvxY+NP7WOr/ED4j+NdQ1y6GkS3OpXl9MzIjsVUFR91eBgKBgAADpiv0Hw2r4vF43EyqO6sr+tz0sNi6kaTpR0hbZbH2N460y18T+JbWCA5hjmMzgF1CydAzkDBYDGFNftWFlRwilaNnLfTfZX/TvZdke7QnUjR5r6mV8QtWvbOD/AIRmS8aO2OQR5hSRlHLOxGME9AOM5rpp0KOJjLzXRtfc1qvVO5UJ2fM92fNX7bXjWXWYrDwX4Xs1NzrNzb6bbWLzYLea6q33cHhSSQOg/Gt5Xo0uR6tnHUppNwV7s6D9qvUtL8AfCyx+Gnh6A2MOmWiWZwVLMdi7mUHPOcgcZyPxr0ctwtVUeZs9PB4epTw2rvc+e/jf4o1X4d/BXTvgD4Ms7y2vPFfjJYdfWefdIITsZ0bgZO3cCSODms8V7T3E9ZPRaaeZxYh8knKDbk9nufQfxQn8M3t3Z6veafLFaWFtAwtpJeF2xpHBCpOAvOWOO5A70qU5YKg1LVpPbqzqoRrToOE5XZW/au05PG3x7+1zxg2nhbw7FcxxhcxwkRqF9sgv+ZFcuDxMqWCT2u3+JzUKTw2AXeTZ4r438br4p+I/iL4laZcJLp+g2DeHdBtoY8jeIgJJOmDjceemV+lduFwqlKMlO/M7u19O1yoVXG8bdNzifhlqniP4G/trLF4dv47jTNf8LJaXlldr8kz+WTgleAcknvRioQqVtev6HmR9oscnJe6+w/4GXPhTXtX+LH7R3jSztNKsPh14ZvFv4pHF1b6kzrJGLW4iI3ASMUA2FOVXJIyp/AvGPMeapg8vjFSnUkrau6tJO/rb8PPVeNmuIw9aSg5SjyXelveTTVndPS7T92zulra6dX/gj14wuPiP8O/GfhjVbGOC91HTJ7iEW642RgZCIO6qoCgdgMV+q5FJvLKbm7tWWuvSy+4WWv2+CjzX0aPFfDXw+t28S+INImhSC+07WGa4UptzMJSyPjsHU49MkVriadqsonrqhCldWOb8e+FtJ0v4ga3NbI0FpdSpLHI+VMTEcgn+HqTn2rz5UIQi2efVSU3JHkf7R3hA2+k22sW7L9v0iQL8p+/FwcqR95ST26ZweleDmmHU4KrB6o+dzqjJ041orWLv8jiPFs0Gr+E7HxPCGJLBZWB+6ePzrGVKWJoqoKq4YjDRqpDokCaS0+zMvlBkcD+Neen0pVaLVPQ7aSlOh7pAl0b3UBdsgAfa4ArzleD0PKk5KrY+kfhnBNa+ELW+tomLQ/OVU8lOOR7ivlOK60o0Fc+goTTpI6DR9OisdWn1XSo1Wy1TL3ECcCGcfxAdgw6j1r85zGnCVJVV1NKOFVOq5rZkt5uhcPjgV48bJIVaPK9C3bXAuIMZGAKo0oybViSAiM7SaymXNdSWB/m345zwazSuTTSZNcusoCYz6ZoUWtzR+4ri2gVDnA9xV30HG09US3jD7Mw77azteRc1yxOc0pR/apx/eruhpE82Dcqhuz5HK9+5rCpqd0k1AoEsre+eaqKaRzU7X1HkqF46e9RO5pJohnfdGwyOnFZWdyYu7KZcjB/KuhLQzqMrOy5OePWiSbFTV0QklT6GmlZFytYgkkUPnuetUtTkd72Rc8Oz+F7bXrW58Y6feXWmJKDdW9jKEkde4BOcVceVS1F7JdT2rwj8dv2aPCvim2n8NeEr/T9PEq5tGi8yZv8AtoOa6aFenTqJtDq06Lp2R+oX7FvxdufiL4bhurDT5LfTTEpsrJH3yMPV/T6V99hKjr0U0fG42tGMmj728Pfu/CNsXQKRCOi4wcVo42jqeW6jnV0GW88e0TSdQcjIrKLtudEk72Qy+mN3ahrsDaGyq56+laTfu6jp2pSstznNR+33mo7VsmlSM5k+X5R7e9cm8zoSjGK1OV8bNaXaym8k2Rt8hiTjcM9AKyqOLdgXkcR4x1DSbbWdO8LaREiQcMIpIxmQ1UZWmoouMZSvI4fVdMlm8X3ySq32t4iJMLhQoHA47Vry/vLMirZJGHotzo7aTd6fqczSi1dkMTKAynseaqMUFk4nmHivwXp2rarqV9phdZotplTGC6Hr7ZpOMVIxlFo+Y/2ovDunanq4SOZ5THGf3xyHT0zjrVXitgimj518c2dzpWnXFpcysxwMg45HrWUle4SPIriLZBcusYGFbAbqK46ySizegnzo4R3LgljySa+QqfxGz6mm7QRGchcUaWBayILmT5BmktDoiZF4d2c1TRxYlaNHS2shhC57DmrlC9S511vdm2XI0S6XHf1rRLlRUZKroOiH2RsOCMetYzknsZVI8jLFrPHK4IIz2NLm901o3bLkzlY+RXP10NG0mLaHIO3tWsmlEl6lmBsuST6VlFvmIi+VllTn7mOlW7WNFFz3Oz+EviD/AIRppYvDepaboWq3+6C88UandSMILQj54kiVTgsMgsPmOcAjmu/BY9YaLjFJN9fIc8LzK6Z9Z/s5ftn2Pg7UNB+FnwWOrzpbzbLnxbdaUCbZXIBSxsUIhgJI/wBZIxkb7zNX0WHzpV5QoxT5U97fkv6ueRisPThG9R2P1K+A97P4m0W01bUvEk16AoN3JcTnhyOQgH+tfnGQSBzjpXu8jdO8j42tXbumfT2gPB/YlstnbSQxCIbY5AQwHvmt6NlTPKmnz7jdXeJY8ZIJ7qOawxE1ax14W7Of1i31S8g+w2crwRuR5jtnc/0rhd5LQ9SnGlH3nuF/b/8ACO+FWtox5KCMs5b07k+5rZXpwscvNGpX5iv8IbWTRfh9JrO0yTX1xJPjGCcnCj8gK6KLjChcnGN1sQodjymWKbW/iYdd1CJZI9Lk853zwpGSR7npXFGF566rudjUlT5Yo8u/aXn1bxjp97ZRhUS8jErODyAXII/LFZ1oqZ0Yegk1c8svfCMvgLw1JZaJF5VpLZq06YwHyQeAK5uWMNIm9WMWeX+KPDY8LW8N1qsWbRryS2unA4QSAEP+BNTKFNLVhBrY53x74WtrfTTqcjrLFc6e0czRnpIo4YfzrGfKl7pfMj4/+N/g/XbfXrT4geGr82l3EyoLkEmOZOflk9PxrnnRc1zLobckm7ostaJ4z8NHU9RskjuUUrPCTgFh+hB7EVMZJxOtXhCxxrwpp0gkeSY25OAQMvCfT3Ws5XiQtWaOm6RcQzebBsKt8wlRfvD3AroopN3OqCs1c6bw6pE8Y27Srche9epDSJ2RZk3ckc9xexyzxKrZ4lclD9dvIrzsTKMZM74NWvc828aW9rHNJcNb2zD7p8u4Zj9cZ6V4OIcpNuwVYSlqzjLp1kfgZwPSuaEHe7FFqxBIoEZb8qJzdrES1Oe1e0a+1Ddj7rDrW9FtRsznqQ9od54QIhsljH9zoKyqxle5VGNtzqLEMyKW9K45LU9CMdDQRsR5IOfSspblN2IGVgST69atWSNFqtClNOyyHb696pMwafNqMuHOQzDtzSUkaTs4lYyJxz+FO+hCuKAQCuOo4qHK7HN2WhClsWlOfWrbaWhndI6DwP8AD/xj4+1tPDvgTwjqGtahIMpZaXYvcSkeu1ATj3rpwlDE4qfJRjdmc5yfQ/SP9gP9n/xN+zX8JrzUPHHg7U9G8SeJruOCOHW7JYJmTbu+VdxYKvJ5xnHSv6K4Ay2WAyeUqkbS3l+h7eWUabwntHq1q7a26H0BpGteFI9Ih1O01MX9qZ3WGZSCplAO5/fG0j8K+lqYlyrRTdnJ2X3N2+5M9Ne1mrxVj568X/FKPxj+07bfDy5SU6dFE08Vw7IqN82GYrnLN7ZwM/jX12FpyoYKU47pHRyypUuaT1Z5qDYeMP28Dr+rxyz6R4KjU6Tbrbl3nnlfYJiiZ2og6ueFDZJwM1xV66eIpRqac0fxHgqUquKsnryt6tLZX69ey3b0Wpn/ALVvjSz1vxVNqct5DJBbsGkiDD5CZFVVCn7zliORnA/Ovr8HG2F9n2OzEYiFCkk9Dzjx4ttca23xl1S1M8ulXwMcTjd5t27DLDONxCuq89zxXFUk5u9m+XyMqdC0U3szvv2ofEtx4v8AD8HhfQddNs620VzeQvGkcdnKiblIO75yi4Oe7NgDjnmhh/aturt6mFWusJC6j8zhvhB+0p8TP2iR4ktLTwjbx+G/DEFtpdx4xik8s6vOAGkjYyAAsAOOx2jkYr5/BY2FfOqtCUrRjsr/AH6ep5UKssdipN35I7b7+SIfiJ4StvB+t33hRdUNquraBcanLbJIdlhAoJhhJ6ec5PmMR13DngAfQYTE0niqkYKW3y0/D9fuR6kVKtRTilZdX1/4HQ8z1TU7jxB4jg8aiWSWXSrTTGjkgyuws7Bt3OScH8q7J06dd31urHE1KVrHB/EHQvizpP7O1/otnFp2maH8c/Hsl1LdCRhcXljp0oUjav8AAZGJJ9RX4ZnGBwvEfiHFpX+rR36Xk/8AJHyGZ4SviMwUY3s9z0n/AIJy32mfs/fHDRtOaAW1vJqZ07UDM+NqzwqynHYZDc/h1r9JwmHjRwsqUFtqe3h6Hs8NOEFsVf2tIW+BH7aGtaTpOnpe6ZrELyXUezBkiQZYgY6qnIrWrKL5aj3a/IbhWqU4zn1OT+Jup/C34reJLnTtHuo7Ca/0pI7y3vZgAMxq0dwjYG5CxZfVc/N3rxq9Xn5lcurSpyptJ7I+QfiBL420LWZPh/4hvXmSwkeKzMxyUGclcnqD6dK+frOqm4PY+TxPtlUdKWzM3wrGn/CMaj4eu0HkyjA5z5TdVP8AStcE3DDuDN6dF08ucGuozTtVS60CWydMmPAbH3tw4P1GKSftYO5WBrQdBxKnh1EZhbMQJI35JGQBXnSouLOWGGlKd33Pqn4VgJ4Ks2H30LAkD2H6Gvzjjqs06SR7lOj7Kmjok2LkxoFzyQBjNfmtWpKe7Gpu9itfxiRCcdO9RF2NJx5omdp9/Jb3Plds81pzdGcdNuEzZXDrvQ9RUT1O63Mh0J+bHasb2MovlYsvmgDjgUcybLklIsWKZALdKlybZVOSTsSX/FuwP93tWsUVWfuHP6Sd2rkA/wAVdUfhPOpfxDcnbAx7VjM9CfwGc0h83nrn1pxOOKdxzthB2rOTNJ6IhdhtPH51C3JgUpSQvBroTRFZa3K+ctx+VUKk+g1lJGAOaynI1exTnQpLu7VUW5aHK7qVxwlxwDxVciW7BNyZr+DLPVLnX7WLSbA3UxmXbH5W7PNXS0qR5dTHENcjP2c/4Jv+CPFNj8MbS6vdAbSpbjYJHlB8x19Pm6V9/gq83RVlY+IxVGUqrZ+gWnMIvDsMS5+WIAhh149a6nKUo6nKqXLXM22uEgR/PBPz8A5rOGj1Ozlu9CPU7meRQkZwDwNxxirqXauVTilJ3Ma4UmCS20S+kyAWuJ2bjHcVzJq+jHJu95I4bxcLq8162tdKiSe6ZcncuBGPX3qJQblZBG7jZ7HI+MoJ9I16ze3iW41IsBI7kYT6VfMoTSS1OmlC1J32OL8Za/qVje6hqVjOJLxWRZncDYy5wVHv1qKlWak0jKcJNIwrbR4zFqEmtxpMtzcAO0I+5wCCf6VpTm1oypJQV0cv440QaRdi5F3OIVgGTDjdKvvjk/zFbSsjmnJWPl/492AufE8+pRahLHbiPaGdCEGf6VDklsZqpOWlj5r+M1mlnamKWNi4Q4kHKsvqD/SpcopGjaSPFL1R/Z92/J/dt83euWouZM6MPrUSPOEORj3618hVSU2fSbWEZsZx61LtyhfUr3LAj5elSjoi9TKvE/vHnNWjgxTbudMihowcduK0bXMelWjzNjrWdoJckjk1V04nHFunM0mjW8g+Xriudtpux3XjUQlhEITtb8yKlxbMtYTLsx3KMHmiMUmJN82o+0+XovXrTnFM1abV0WY1w/y8D1qNETF66lmEqoGeeM/SsW22auVibT9H1LxPq1v4e0aBZbq7kEcKyTrGoJ7s7EKoHUkkACtqFKVWXKkZ1KsuXRH03+zFqf7Pvwc8RaX4ZsviU3izxDa3Xm6p9ihdvD+nSkY+eX/l4ZTgEqACRgFh1+nwVbDYJqkrtvp0ufO4pYzFaT+Fa2P2Z/YzgvPG/gWz8VBpYhMcw3NxbiNivTMSZ+QHnaAMAcnJr6q8alG6bUr7W0+8+blHku+h9LafdJcWarCjgRnyyz9Wx3qqT0aZwVoqLv3H3jlcEQbzng+lTVUX0uKkn3sUtUv1jXyrUp55H3z/AA/SuZtLbc7aUG/j2OW8cWQFgF1OeSQuM+SG+aU9hjsKyqRXVnVQtL4VZB4dvNUtPBU+is6x3iRM+ztbofur7ECqjNRo8oYilGVdSR53Np2naLZ3OloknmamzJb75PmkUnJb6/LUc0Y6LqVTqNzt2OU8QeDtMfT55tRYtEZvKBJ6Iq5yfxHXpUThpub+1adonllxpE3xDsJrKGBkdCbayMeeQOc9uMA81hBQe5Tk4u7OI8feEbLV9J1LQ7aMysrpDIMfK79M/l3rKolU2NITvqkec6NpMUfhC/8ACOq27y/2bKCJnHzKR1B9RjIopUVGLuatRck0fOvxO/se2/tXw7JaJd6ereTcLEmXjDA7JB7gnBFclZ3vGLOuM0uh5/pPw21XQfDbW0cMxV7Usqht22QHh1B6Bh1HrmppUZRTuU5pnFadaLqEc1okUuYZCJV3ZZG78HtUcuti1JSWhc03S57XeI5jtUgqynH5g/dNb0YWeh0013Oi8Oxs8ocZIDdxzXpJNQOuKVzldd021eac3FntZtwDmfYT7g4NeRi5xUnc9KnFRPLfEVjcWN1JLIuEY8YlDfyrwa0ua9hSpycr9DBaMu53KRz+dZKokiJWTI7tcJgHtUKSkzOabRmwwAXHmkDk966E+xhTdpanU+GjmMAHnHBqKsrI6YrU66zXYucc4FcUnc617sS1kn5e3vWO5DdxHIA6U9S4Np2KN5HyZAvHtWsVoFRXVyvIxlTaRgds1ErJkQkVhEFfDevFXbmiU9GTqo2gheOxrJqzF01AIpO0Nz7Vt0Iik2amg614g8M6hHrPhvXr7TLuI/Jd6dcvFIB6blIp0MXicHV56EnF+R1Jxhqj7/8A+CdkPjL4ofDPx14z1XWtQ1X7DpSvoaarr8d5di8jUhvk4eIFWO3KjIJwWwTX7fwXxBjnkGJcp3bv112v/lrazfoR9dxOGwsYTkn7RtNxVla+ml3r67721Q//AIJ5eOb/AFD4Y+OvCnivxNFeT+FvF18LdPKcGCO7AmiiO8Ah08xk4yPc9a+i4DzBZ1go1K69+nJrWzd9VfyutO9n8jvyPEVq/PTqRas2vVLZ6PZ7mDqHhrW7v47XvxIKn7BpGlbIlMZCyOxztJx14/DNfrXMlCyeh72Lw79mpJ7kv7Knxh8O638evi98a9S8JPpHh/wD4Nmsdb1W4didRvLtl8qD52CbIghYBQGJk5J4r8o4pxVetxJg8JTb0d7el/n1/D1Pk8RVr18xp0IqzT31u/6/XU8B8SXj/F3xJpvxEFvJCJFW40ywmwG8sllSWReAXcsSo7DHYV+y4GXOo1G7WSaPr6MXOcfa+nkdD+1VJp3h7wvNo9nGmnw2tgH0+WNgz3FyApaVfQl+A3YfhVzxPtaclJ6v+kaVKs6VK6Tev4HC/Ef4qSfE74H6vLoGnyWkvhXQ2ivpJFAkup8/vCxxyeAcdhiuZ0JVYzlzP/hjyqjUoOcr+h3t9470/wCMf7P1r8BPD3g/QH+JOjaOl94U0SJXsrXxbZuoYzbotqi8g5YqTiRRwM1+QZxSxXBvECzOcnVw1bRt/Yfd22sclBYyjiEk3yy1Wv4HkWt+PdX8U/De8WTWzqOs+GbN9N1nVpbWaEz3DgeYNsypIAj4RdyAYBA7Gv2jCVsLUwcpYepGcXtON7PRd7P8D0qMq2KpXcbW3RQ8H6JZ6xoXi3U/tyLZWU0BMglIEkcScH3ySCfbIqacksJUqPt08kehSjCOFUktUupzHwc07WPi2LHxH448yQ+F/Bsn/CLWMc5eC2gSfzS4yCNzsWJx149K+O4ewOFiq2KkveqPdM+SwtOpOrKvNbnYfA+O71TxLq2v67MHuP8AiWpa2oHKyq29jk9wpYk9sj3r1r8s5WTsz0ML7t4ln/goxqqax44tfiRZxtbyf2W1wsvOdkZxu9cMox759jXn4m/1e7duU5MyrKhRt0Wp8ueObnw34x+H1v8AEXwhrQkewmRLq2LbZYoJVO+HjG5AylxnpuI4AArxcTOnUp80Hc8SWJji6anSW255d461G8nvPLvNT+2SJL5YuCcttwCjEjjocV5qblLlOTExmrO9yhaahYyWl0lyPKuAu24jHTrww9u9dM5RpwuU68VQcWZHhK6lmupBBIXeRztQk8ken1FeTTraNnn5TCV5Tlsbmk29uutr5IIBk6HuPQ0pOU02j1Z1VGp7p9S+AkMPgyxYKAhB24+nSvyjjdtYuEX0R6CnzRTNgPnBGeOua/Pp7kJXYrIrRk+3NZ8zN4voYuoWxhm81FGFNbRd0c9eFndGlpt4JYguB0qkh0al1YmjLLKSD161jUSSKkveLT4aMH8qxW5aaJLIEcEZ9eK2shwjqLqLf6OwJ/hq1oXUV4nOaO2dZYf7VdS+A86l/FN+U8Enp3rlm9Tvk9ChtzNn34pK7Rg1ZXHzDjao6dqlprUhtyK0xwuCT7Gqii6asVLxcIT29KE3czra7FSESOQM/pWzehEXYcfl4/PPaspG71RUustJtA+hq6W5zS3EiUZ+Y9a1krmTm+h6Z+zh4O+PXi3xpaW/wh0ebDTqr3ws96xnPqa9DL8FOpNNbGU+VpuXQ/af9lr4MeMPBHhGy1D4s/EW7vL0bCqSTqgLYHAReB6etfa0qMKCtzXPk8TiFKUrK2p9eWMm3w9Ai8fuxtz6Y/WtZSvC5xtr2tzLguN8zuwLBD0rmg/eudNkloQ6rIl0nn3EjKirgIDjdTqy5t9i43iuVGNczokot7DTpHRQMxA5X6k1kleRDi1q2YUPmR6nqep3Vkn2uZQkaKuQiA859OKu1ro1n7sUkjhtUvYtZ+JU89hYuXtYwuWUMoGOo7ZrKMf3zY7yVI5XxnBZal4lm0Bhiz2Ft5ULtkHI/HIqeXmqWE3OnG7MXULmysYb2aGzk8zhZGLfhke9dMIXbMpXmkcR8S9E8WeINK8+1v2msZI1DhV2OvP8LdQfatpwvHVmbhb4jxf4m+CkttE1HS7xpZQkOQtywDgkdR2YGs1ZINIO58UfF2w17R7yezv12QNzDFjjHtnpXNUk3KxnKSnueQa1u+wXYQbR5ZxXNNtRfodeHSVRanmWW5r5Oo7zdz6NO6GsxzzUPYpbleVs5zxzTibwM68wQTnimzkxKVmdRCu6EL7UTdqh6E5WqsbLAT0/HmqTTM6kFNXRNpl60L+S5GP51ryx5djnp1HTnZmqqRyATKOorN3SPQtGaugmYrkJ/KsFJt3ZjKPUmtshee9TKbexakuWxLCziQ5/lUsz1uTmRl+UGqhBNal6S2I7yzS9t/IljDBvlORxRKTi/ddi7RS1PtH/AIJ+/BTwQ3ibSNF8KjxBrtnFdR3N3f8AiKH7Ho1tckgOLW0U5uZh0EjYPByvr9Bl2H9rXi4Kz0u+9jxcfi60abg2+XpbuftX4X13wh8NPBtppBmntL+WPaqSKHkCHpgcgE8YH0zzxX29RRprc+StVrq9rev/AAO+/wDkeo+DWuJ/DcN3PayQ+b86JL97B6ZrKhdtnDiowjPzNG6mjS3PmsQOmR1rao4xptszpXclYx7u/tbCFpLOH95jC8ZJY9h715LmorTc9SNOU2ufYzhot1ZRNrutXCG9k/1Zk6QD14zzTVNqPNPc19rGXuU17q/ExpfD1zdaZPPDNI6S7tzsu0SHnLH0FZVLON0aufvpdTy+e31e5+I2naz5X2gaZZyiFJHwjAbckDuRk8+9cyc/bJotQgqTv1ZzvxR8KG/8RagINcnaBYwr20bkrhumR7dCa1q80noyouKgmkeUaj4L8d+Erye+stVkhOmr+6towfLnj59Oc1yqnUve5TcakdTjtPj8V6r4iutMu2WKBEa5shFkByBkqR1OPSrTqwm7lKKklY8+1S2+LfiCPVNY8KXa2qtYtKmntahopxnDMjDkjI/nxVxdSrB8r1NpxjBKLPNfCHwziuYtY1rxGWs7uYh5nVV6j+Eo2Mj3rCFBpvmNZLkicZ+0NbeDLK5i/sLx7c2xktV863aFovLYdGIwTtz/ABLVzlCPUzg5SlqjxF/B92upPrS6is0x4mkjcBvYn1BHeuSTjJ6HdBK2xp/2U67p54tswOPmH3uPUcGuyjZanVSk9jU8LcyjcMYzwK7ZWcTpi7HKat/ZWp3M+marp7XCBmKlZCrL75AIxXg4mMZTfNsdlNzqaHLX/wAC5dU1jyvD/jzw1aW0i7lk1rxPbwBfrk5/rXnSoKbtTdvUVT2lON2zC+IXwkk+HNrFdzfFLwXrbSMQbfw34hW8kj/3gqgAfjXm1qNSk9Wn6MiFVTlZnG3kqmMKDxjrShGT1NG+ZWRmzysr4TIORz610XcWYOFnqdF4TLtGCx4rGpLmsjohNW0O4tVbyg2ecVjJI6I+9EtpD8ocjisuU0UURXEbAcD6GhWuKyUiC5jwmD6cU3K2w5u6M4ZDEY/MUmZqKirkMp+fnr0+taKVkJNyY/JC7B6VWktSmtLD7cbmG8fjionKyshpcup0XgbwX4q+Ini3TvAvgfSHvtW1S5WCytUIG5j3JPCgDJJPAAJPSrwmEr47ERo0VeTM6k+WNz9If2Sf2XfG/wAAr200nwx4i8OfY7eWK71/W7/VcG+lZSsgjjC7vIiBZF/vklvQV+x5bw/mWTYGOHwicpTd5NrT09Ed8KeH/spwnGcqkr6KOi7anaa34a+G/hTxz4m1nwTp5gsNb1NL3V0ICteTrGI1KDsmFXHc1+lcIcMvJcPJ2fNK7+897KMJVo4aKq/G1/XzOA8d2V/Y+GJ1iaezgvpMy27OGK9W5xwTzz2FfeYefNBaON0rp7+jtpdeV/U9LEOMpWWtjzj4Ox6H4++GfjfwrbWtqNCk8SI+pzxKqrfSop/dFsDKgcEjnAIyBkV41XLKFTOljpaySsjyaUKEsUqzWqZ5V8VItNtzqd74KsWOt6jamPTbWRflto0G1rqXA+XPIRQPlGBzzn6eXPVlanpoexCdRNRltqeZ/F/VfiV468I6ba6+8Q1G20aKzkvQmQZXyWwCMfKgUk9z9KzqUf3ai9Gcbk0lCD66k3jDw5rGj/sQ6v4rhsQBfXd3F4h1xmzLNKzArCMDBZsuzHjGFGDk4Uaro0Jwptp228tmZ432bhUcpNzlrr17u5137K/7O2p/E/xT8KNR8YXkgbTo5bosL97d4rWOEvuLqQYwzDHPGK8DiitRp8I1o1qfMnG1mr7/AKnjYvEVIZcpPS2zPQfDX7N4/ac0Lw78fdE/aJ+Dl83iTTry28U6VLqI0nVriJZjGoukllYSvD5eRcAh3AUEEHdX4Hwl4k4fgTFPK5YKo8LC/NO7lu73t2V909NrHdlma4SEI069Kop2T5ormi7ry/U848M/sj+P9E8B+ONM8V6RPp3hvTJylz4lvbiKCzu7Uq2WgcsRLlfulSdxr9d/4ilwZicudHB1ZS9qn7tndX7prT5nbi62DpWowm7y79jkv2bNY0Cb4WSWeiRRlb7wtfQ2106gLBHDLHGpznriTgHruzzg19BlU6ayiCg9E/zufPYatH2Uacry+JrR20a67LfRbvW2zNDS4fD+k+OL6zhvvK+x2dxcCYjm5Kx+Q0gH90SMfruFeisRFX3Wh6MZUY2drO1zx/8A4KG/GLTJNMsPBtlqSXV7d6bZWs8jR/NEvkKzsMdM78/jXzebYi0PZpt3Pns6r86cbaSPj3RbrVPD9ldW1pfY8lDBcQIcCeJjkfXjP6V4MaUqNHTdHztDmw0LQ6FeKRtVluJrfdgkZhkzllAPt1HA/Koouo5czPQoPnTl3K+t3tnO/wBilljeeNPKWTcR5q+9LF10nys8vGVIe09m3qTeFLRFugs0Pl+UeShwFxkgn1rmUbs76C5KWht6BbJe68kLkKPO3Blz83NauUacblUoJzuz6T8Ha3Dpwj8MG6ZQIFZLa4iChzjlom/iPqOtfinGEa+IzSVRfCj0ZV4KSizdWZGbKPnnivjHa5abTJ42BTb6+1Q0dCtoyrfRCRTkd6pS5SasXOOjM6xungudqZHPetFKyOSnHknqbMbEuGHpnIrKep1vVF2NCUGBjjk1mSkSxqYxn86Z0R0RHfrugb6U+Zslyu7HO6KFXVm3H+KuyCbgea7xq6G9PIMkfrWE0zsb90pucPyOp64qorQm9xGYtk57cUpbAokEzZPseopWsiU0mVLx8Lhj25NQtWTNOTK0TMT/ACrZfCZySiwyWYnH1qZmkZXRVuDsbPqOKIbmE1d3EQFznbkntWzny6BCKserfs1eJv2kNU8X2Hw8+C/ie405JrkGWZWCxxLnlia9LLqmKqSUYOyPPzCrFRatqfsD+zZ8FoNLXSLrxz8W9Q8Sa3EyPLGLwtCj4HZflr7alQppXbuz4utVqVN0faiN5WjRx5PyoB+lOo/dsiYJqdjLsJEJmmaPcwPB9a5oas9CUW4qxFdahJP8iWbHHViOM1Uk5dAhDl6lC+WRbaW1F0kW9cssPJY+lS70yuSnF8yW5xV5p6NdFbae8iIB81m/5bE9selZ/FJO5tJ3hexw13ceIpdeu7HSTFbyxQj7SqLyE9SfXFTGM5VGOmoqPM9Tl9dHiOXUJZCI5IPLZbclOVcA4Y+gFNtxmTVSk7FTQra6awmad3luFP8ApMsvKufQYrrpSbRFSUIqyOPez1C5/tK/029uGEUnFvIPlz3B9RVyu27mNRTa1PE/ipBceJ7u+04XsrTlMhPMx5fspPX6Vm+SO5zprqfH/wAZtF8Qae11p+tt5yR/dcj54/qPSudckmTfmex4RrKMthdqV+7GwDAVlWhFRZ30IpTVzzLaxX5hzmvj6ivJ2PorWImII5x7YotoDK02OuPoaR00loZl65AK9/Sm1c48VLRo6i3lGwY7CrnBN3O3EL3myRJMyEMevQUKFlcVKV1YiuUKNvTtyKamloYYinyu6NDR9TMh2Nge1VNJq6NMLV+yzSlZTyq9u1cbi0zraQsRKnJo5EznvaZPF/fI601BRRtON43RIhBbJ/WqREGkvMnRZpSkNpAZJJHCpGoyWJOABSUOaVhqMm7s+5/+CafgSH4Q+NLb4kfG7wNrd9r1gjSeH7HUb3aYTziMQb8JECNxlcqM4Cq2SR9dlqWG5VOWqPGxkHKUkm1G21tPvP0w/Zr+LOp/FA6b8Sdf0Frm9vrlzbQZ3o5DEDZ0+RRjL8jjjrXtRnUxUG4q7PAxNSlShyLorfM+wzK72Uc8qhTsBYDp0rqg1Shdnzc7zdkVdTv4reAIYt7SttRV6msMTWiqaXcdGMnP0KuoRvBHHDawqhxl5Mcp9PeuWUGkkkepSlGd3JmRqttdanMhliZbaPsRy/1705RcrX2OujKFBNJ3bKPjHWIbfSjaySFVSM7IEPLn8qxxEm1YKVPlfM1v1POPB954euvifY6dH5s9ytnN5wlGEQNjPHTsBU4dU51Ei6tKbouXS5x/jjU/EPhf4maZZ6RozznUZJY9RQDiNOofnrWc3OOISiiopOEl0Wxj+O9esr6PUI7oulza3CPbxZ+UIM7gTjJFaN+8xqD5bv8Ar+tDwP4h/FDUtX8R6jpHg/RblvItxPbahEojNnOVwFBON44zj3rlniFKryxO2jShGIeB/BGjab4Uvr7VvEX2TUbmEGWW2nHmB2+8SnbJ9K64qFON3owqO09jzDxR+zvrMet3Hi7StdOsLNEZGsrm9IJXuecbT7c1x1VJu8XdBKrFrlaPHviFomk6lq39k6naalayJgCPUEMixjHVJBghe3WuRtSbTNILS6PM/E3w1g8L3xTTbVgr8qLvLLg9kcHp7U6dKN3qdkWlHUpzWQhtCv2RoWyN8QkyB7r3rsp2NqaaLHheN2Zjg4G7BxjtXTKSUdDshC+55xruuxl77RtcXyVG5ra8VuQe2cdR9K+dxVS02d/tY0lZHl3iC2nimIm1K1vU/hkh6/jxmvJk5Td7mMmpS1MpUWLJUAE+lYztJjjBSegPl1+Y8GtIPQtxUUV51CgSAfTNXFKT1MZy5om34Rm6KfUUpwsiKaakd9aHMYOe3euSWjPUgrRLyNtQcfhWDYmxkilwaRLIJV+XbjJoKSbKU1vtXdj6EVSTFPTQotF++I9+5rW2lgSJBHu6dqS0QPTclVRGeOT6Y61Di5bEc05bH17+x78DfHnwb0e3+KXi+3htNT8VoIPDnh2IJJqF9bEZYyKTmCA8MxGHZVx0Jz+n8K0YcP4OWLqte0qWSXVK61PSyukqcpzrWWlle+h9YWNva/DLwfY2moQR3ereJtUhiE0nyl8vwFU/dVT0UdMZr9/yynChlyk3dWvf1ProSpwvKLaSW3qP+Mvh7UE1Cz0eyZLRpbo/vS5y54wq4GSTjHtzXt5dVUqTm3qZ4STdN1Gmzzr4xeGtQ1nS5tAtNRNqJ4hHcT2pJwSfmAP97/PFbRc5rQ65ypyp6nDeMfEHhX4BfBO08NeEtCma3ScLZaZA+5765kbaGbA5LOxyx9aI4V8spwV+XVveybS+WrSv3aPJk44X3b6N6epz1t4UHw304z+P4YL7XdUT7TrrvyAx5hs48g4UE4I64z6k11xnywTiz1IwfsLJs8b+MGt31jf6jqOovJPZaPaPLDaQ8RLdPkbhgEM2cDdzjGOgq5OfI2mcelNNxRz9to/xSg/ZKuvhTFLdzWlwIpL6RsyKLicSYJ6847+g9qI04Socq+No5HCdem5T37/kb/7NHxF8Qaj4X1LQfFfiN7bxBo+nvpVzKgUeZEVJLcdjlgfrXlY/D/2tk9TAVVd2Zw1Ye2oPCcuyPkTTvB02i/E7UpvF1rba54g1PxNLp+g6Bb6cWa+mM+IYQgYAoS4yuOfpX5rwvj8uyzKsRUxsopUk1JySdlHWzve589lmM+pYadTFO9nyxjqm/wDgdyL9qTwJ8Wfhx8aJ/wBnL4pPNZeJLCeOTV9Gsr1hbWIaESCFIl+RVUOBtXptrv4e4k4a4+yuGMyzDw/eTl7ygoOyumlFWVm9dF00OTGVvrNWnTi25T1+8n+Fa+PtM8N/2PpfiSSCz1BbuzltoiyLAzxhuMdFYoMEdC1e/hcuq0sPy8zWr7/me3luHxqpcsLaEfg34tfHbxn4r1ldW1GKK4RWYJCmWEIKmRRjkqTGMj1qKMq1XEShUkcuEoYuWJmsQ+uhw/x71zUrv4h32keLLySW9t7kTW0rHdlCgAQgdAAMfSuLHTiqzp72OPGzjPEuh22OJ1W+0jTZ3iurcwwTW/lt8uSDwflP17+hrnhOKXvbMyrqjhVeXUPDVtcalJJE1ssXmW5DvGMEYXIbn1pxpKKbRVGo5rY534gWp07XVslhWRSNs5YdGzgkGvn8dUcaqR4eYRjHFRbW5seEdPlLmKGRvKYclhzwP8/WqoqSOqjVm48tjf8AD0DWmuQqUAxN82Dg49a1nBTVjsox98+lI/D2m614etrS+h5EKtFLFw0Z7Mp7Gvx/iurPD5o7arsepWowqwUWMtWv9On+wahJ5zKMx3Cj/WqOpI7MO/r1r5KrRVdOpSXqjBQnSXLL7zSguBKgdG5x61yKxrCavZjndWXg9etZzTRs3czbpVSfzQuMmrh5nNWaTNLT7gyRgenernHQqk7xNW3PyY7Cua1mdNNEjSqq57jtmmo3Lk+XQpXd0pgdd3JHrWsY2Oebd2YGlBzqjHH8VdcVaJwwd61jcnfDn9a55nfJWgV2IbGDj3NSpK5hHcAQPw70nJHRayKsrEtgHHvmk3c5X8RXuznBqYldSqX42gcd810WM6m46Js8npisqgU2VrpPmCgZ5ogxyQseFGT+taSjfYwu9kej/BvQtDk8VaYo+IV7bzTzr5kGnuUAGejMDXdh6cYTT5rHHWw9Spd2P2e/Yg0H+wdI0218LaTLLBJAv2nUL3kufYnrX2uFpNQVtT5zFU4RmfXV9J/oCxyAnC9TxzXTJNROZr3m0Z2iTIq3G1AWB4IHB9KwpqzudOjSFvLm68lBNhM52gHr79elOc2h2hfQyb2yOozfZdMvApZc3FxjDAc8CsHK7F71rs43X7i2srsX9pbTTMuY1aZ9wCjq1UpRSujVU3JWPM7RPHOq+I5F8LzRQaffMz3c8vMzxggYHoOtc3tKnO+TZnVajThrujG8bWV/FfHSYdXeB2B+WNQC8Y5bPuamcKjnqznU1J3KWy8m0lo9Hu7qyjlIVoZT8zHuRXdQajDQ5525znI/CWtGwuD4c8SXcsSZLqWXer+pBz+XFOcZyegTmno0ePfF3S9cspLiwntEn8+ElpCgR93qMHrWbUmrHI4xTufI/wAXCLjTbyHVTNHfwZVfNGN6896UISkyk47o+ddXnZ7G7D4BCMMCssQ4wjJHbh176seXyq3IJ718Y5XbPeSdiGQkLkDpSAgcB1JB70XszWk9DM1AESZ/OtIvQ48Rd3OhgkCx8ntWk5WkeniE3exDFqI8/Z6nqKevKctKdplwl5gMqRn1rK1zqfLNFcu1lOJAe9bwXNoefUTpT0N/Sbxb2DIxwOlZ1IKJ6NKftIll5ArhP1rlbdzOdrlmEq0fXtxUts2i7xsNjc7uenat9oiirPUuKuU3EgjuMVzylJvQt1EkfRf7EXwu+OniOa+s/BWheM1trpCbm30u1U21+vG2GeQssiRkZY5ZgwXAUnp9Hl2CrVaN6l0eDisWnKVn0P19/Yb0PVNH8MaLpPiKVoXjhjivSq/LCRjFtGSowm7jaAScckdK+kwyVJ6XR8/WhUrxvLqfaWoXSWmnNN5DP8vyoozn2rqxE+Wjfc8WjS5qvLexVikBtlvLm2KNjIUjJWnRjempzRFaChJqLKd1fmfgKVB7lefwrOT9o9Drw9K27K0lxJJdhY7ZmSMfffnb/wDXrH3uZnZyQUNdzk/Fdze6vqT2+kl3fbueY7Rs/PtXLKVTnvHodEYrks18jjIbaxuvH+n6N4VdlSI+brF4V5bH8I+p44q6Eb1El8zepeNB3Wr6Fb4ieIbCPxq7JIrScv8AaJUIWJRxtJ9/61VWpCNT3TKjh6ipuUjhvjHY6Rd6ddHRbRGAtj54RhkhiASD2xXLVqOV2mOHNoeZ6N4Bl0FVtYljuhd2weKCXpIVPQt2P1pUlyyOtT5lqaXjf4Y6LPZ3N7NocduLlI1kuIZ8SRN05PVSP1ror041IkObUjxTxLrnj7wftsI7qK7k02dlS7jRXZ4y3BZWByccHFcCU4mijTk7nkHxP8Y6hD4sW+8UWdkbeVT5MunxZGT2eNgMKe/oafKoy940hfaKPL/HPhe6n2+IPDuojBciXTp3G36hc/rWvLFRujqgrKzOR1WBRbbQzg7vlRsNg+gPpVRWp0xfvaD/AAqGBkBAHyNlcd8VpKzR2wvzI8q8RXT35u7AeWziQ+X9ohzg5PG4cV4eJgnJtnY6Maj8zzXURf2Vy9te26xsOqKBivInTcG2Yzpypu0igy72yBx9axlFPY6KfK1oNuVZV46etNNRCXvaEDlfLw2CKqMrM5KsXFmj4TmUybQM/NxV1Je4aYfc9Gsc/Z1yf4BzXBLVnpRasXVPy8VnJWZnJWYqkEZA/CpHG1yGbIIyKuPKaaIqXDELxx65qnJLYzqWtcoN87jHX2oUlbUiFyXYQvHFF1ctxuSQKRIGBwQeD6UnJrUqLjF3R6L8B4vjP43+Mmh+HPhHrGrN4n1K4+yWU2n3bJOqOpWT5yw2r5e4Mcgbc54rbC4SrmOMhTtzO60euzTX3bmdfE+zpucmfoYPDn/Cxv2g4dSmndvDvw2ixFdTuVhursJhpBjIKp8xJ9cV/TnFPFGG4eyOmqitHRN28uh9TPEToYOnzXTkkdLqOv8Agjx5rVr478HeJbHVtCh07ZoOpWErTRsOUll6Z3ggryM5Nezw7mmBlw7CvRk/YqO7bbsu97tu27d2engq8quEUor3pPVf1oeY/FbUtN8KTPDLMVmdCLSHd8yIfvMfRiO56V9vhbyhfZF1a+iaPO/hlY6F448TT/G7WEsp9O8HYtdDsZLnEK3BGGlIAOSi52j19OtYxpR9qqcHaLXT8FY47fXK7ld/8E5jVdd1H4k+LvttleRRWqXJkWaZM8Kf3ki9OduQpz1NenOlal7j1R3KSpxSOF+Lx0mz1fUbaxtwun3sLRWkdyolKRZ6sAvEjEjB69CMVi1Jwip76X7GVVQcLtPv/Wxl/D290m+1nxZs86aDTNIthqCKjCJZxkoD/tYx7813YXDx9s6jfl+BlGDqPaxx3hCbUPC3xj03xZPd+XZajp/k3NrcwZEgk+XJGOuDnnHAqKtOEuepdKy21vLVaKy+etlZd7J8+IgqFeNRK729D279h/4ffs+6t/wUQsNc8S6Vrx8TeBtBuvFV14uutTtBpOl2VsIlaUQNCCbhyzDe7FUDgj5lFfyH4+4TiDL6LhRqQp4bFyjTUIp+0cpN3d27Wt5ep8rm1P2eMlWUE+eLjZpuzemmvz+R8r+NfEnhj9sn9uj4j/tKxLdQ6drerXV/pN1qscaTtFGoSMMI12gME6gdGHPev2Hwk4Vp8OcLUMO1rT1vaz1PWy/LMN7KNRqzirJ6/h19DF+A+iR+I/DGs2OiajdwSvquz7UkYlChdzFihB2/KCMjgj0r9Ow0XUpS5l1ZvSdqLpxb3vdeXTVPfb8tTjNBu9A0n47WlsmsRodp+3TRHKAMzMoJ6E9CV759q+dnGNLFu71PDq1b412vbQ4T9p7R9dvvinH44msYLiK4tIjqUNg26OORkVm2MOqhia8XF06tbERqJdNTz8whVjjY1acXKK3MvW/Dmkan4ZS1u5bSQzsjRX3RgCTgMM/wng/XPTiu2VCHs7bnTi1GtRUeXcXwVpkltqTxy2aGSOLPlsRteRc8Z7Ajp9a5p03LyMKFPktzaI4a50S6+JXjy+0eNoopXucWkdxOsQzknZliBk4wBnk4FfJ4qpQp1ajqvSJ5FaVPFYipCenLsW9B0zUdJv77Sdf0650/UtOmVLiwuUKSRlcAgg1rhcTSxVO9N3M8NWpVrqOjRv6UyT+IYVtYjH++DASLxz6Z61rVkoxZ61BWkuY+nbSIWWn2cTPndbKQV6Hivxbi67zK/kevUlFyRFdxM7LLDIySI2UdTgqfXNfJ0qtXD1OaDszCooVI8sjKa9msboiQAbjkgDAP+FJp1JcyOLWE7dC9DdrNHuRs/wBKnR7nYpRtuVr+QbCSMEU/hMqq5loWdAuklwo9amU+boTh076m9G2xApHasbNs77pIr3t1sjbnqKpOzsyJy7GK+oySOy4P1rRnLZylch0R3fUyxGPmq+dRiY07Rq6m7cjBYAj8qwcm9zrnJNFU/Kc9j2qlG6M1ZajkbcuccGpkrFc1yrcL8+D+FKKciOXqVbljg89a2jFIxk2pFfODkiqexo0pIRGZW6/XNZyTZhflYyT94QScH3pxiU5tLQQsoOK2tZGafK9Tpvg/p8+q/EXSNEtPPDXeoRp/ozsGJJ6cEVvhYTqV4xic+Lk3h5La/Z2P3f8A2WdGvfDej6NY+INRkEqQKkFsTgjAHavvcP8AuoJSPkJKcqjbPpPU5fL05ULsEIycDJp1ZvlLcdblDQJ1CTIq84yXbPFZ05aFtO6GyML4mGBhKoUhnlJAWpklN6GrXL0szF1TS5rLzb6KWW6mdCIkhPyj3pezjEL3snocrNpWqW8j32pQGyU2bBQG35z1JrJaPU3m7Q93U5CO+gj1m8afMUVpaLDHJFIAS3Xn0pLk579jKVOXIr9WcVrHi3TLrW7vV5bWKO+sdsUcbMBwep56nvWSqJybaInCUHyoyY/FnhrxGbrTD4kadoyAZUmULFJ1wD6V2UZRbdmKpSkrN9Tl/FXj/QvC93O1t4kgN0luQ9nC5Ys2PvZXrVSlZkzpNI+c9W1jxf8AETxNLqSai8caHYsIbD5z97D1MWk9DGdpaWPFf2ipr+Fp7TVwizhTtn8sDd7HPQ10QlfoCioanzTq1s90JYFVQ7Arg8ZNebi4OzN6LcqqSOF1/wAFanoFkdQ1G7slXft8oXamT/vnOa+SdCo27H0Mn7BpSOfnKFMqegqY031LfvLRFZGyCaU42kXCNkZ96yuxNGqRz146M3FEawjd16VXvOWp3Sk3NkNpa7ZSxHGa31cdTkqQtK5Ze7AJjDAAdMUKC2LhVjERs3UeQozUczhKxVWn7SOg7RryWzudhbHrVtpoyw9T2b5WdESsyeah571yNNM63FSdyzbv8gGfpxiocUJ3ixVKgkn+daLYrmcizZXlzY3cNzAyBo5ldDIu5cgg8juKI1IwqKXYfsYzXK+p9L/BT9pXWU+IGp/Ebx54jv8AXNZW/wArFp/iQ6TpNvYRMojZ4ogGnkZvuxryAOh5r6HDZknzJdfM8vEYSjhLRWq2vv8A18z9Cv2Ef2pvir8Yvi3ZaVBYpY2fngxJdnMyx4PK26D9ypH8chGfxr0MPOriPhex4mNrQpJJRP06S58qzVpPmwvJ9eK9tSUaabPl7SnUdiGO/iuIWnRTgE9RVRxEZU+aw6lGUHZmZJqBkl8yG3I+o9654z55XsdNOk4xs2Vb9Jb/AOWa7WJV+/EmTx3zjilOV3vY7aceVaK5gazY3d/DNa6VYG3jZcNJGuWk+p7CuKq3zXivmdkXGik27sy/h9oV3H4vutPsxCTbWoLyBOInbOMnHLYzWmGhKTfKzLF1qcKak+pxPxeOnN4ij8IRwqxuLtftN0snzOM5K4H06VzVqfv8qLpVpOHMcN8c7ay8MWV9dQ5ZTCDHFG2A2NuNx+tc9e1PQ0oRnU3OUn0zxJ4iuLfxCbe6szpkal4RyEY8bWA/hOevrWtFTm1Jl8vs24sxfjH4lVNA1DVdB1ZEvRCokspCcOwH3XPb2NdFW+5EYJP3j5v0SPx78TUmn1qzsrKWeQiSx0+QlgO7L0IJ9q5KUpzWqsdfs7anK/Fv4W3Gn820mohbcbHGoEjIPBBY4OOeKmrBp+RsqsIaI8ym0vyJ5tHvNWDS+Xut4pXJljI6ADA3qfUVlGVtEdEHFq9jldfjvoISNUVIpN3zxxnr/tbSAQfp1rqpNNm0bc2hB4XY7ny2f3L4YHrxXRKN46HWr3R5V4vt9P1yG6ubaI219AxBaMho5lB6sM/Ka8PE2SfM9T04RVl3PMr4yBizsC4+9jpXhzqXloc9WUpaMr27EtyR7Cs22zSilFaj7lcoU7Csm7CcryKlxAfLK4Ge1VCWoTipRLXhEeXdbT/ereSly3OKnUlGpY9LsHXyE/3fyrjdz1qequWzJngn05rLcTbFjcnofxxSaGlqRzseQBigck9ypOd4YfrU6phuVFjUSFgMc1pZtEy93YkL5Gw+lChrca5nqS2ysTjGea0bQRhd6nqX7MX7QvjH9lzx9P8AErwFYWEuqTaTPYQz39v5n2ZZV2s8fo+MgH3NdmWZriMqxPtqUU3br0HUp0asOSav/wAA9+/Z28beO/EXgDxt8SvGmi3zae+itpvh66tVMVvLezyKzxhm+VmKrye3frXZnfEmbcT5ZHLsQ+aUpJRsvPv6HrVsXiZ4N09W21ZX1/zPZv2Vfg1B+zd+zT4c+EZ11rrUmE+qXSzYK7rmRpmUEcBEyq9OTk1/TXBeWPKsgp4er8SWp3YChUo4flPGv2ldR8T+PviB/wAK68GyPPqWqQN9sv2OE0+HOGnkY/dVR0HtX2FfEyjh+SOiS36JHpTo4rFNQWt9C3450bwF8EPhHYfDXTFubmxsrZnuNlwM6jMR87nPGWJ6n8K7cHh3Tp3bO2FN0IKMHojiry60e9awuPC0Miz6ZaxzataltsSLnKxZGTtA28dya7rSfNGb32tucXtZat9Tyl7vUfiV8bNVk1SCGz0vQC9zPIzuv264ZRhAMHARVAxjv7VyurOpilGLdoolUK866lK/Kjcs5tL0fwTrGhW+oQ2s963267ZUCo5yAq79vzNjgcDrXsUrxTdjunONOCSje5xvxivrm78NXus21oirpSwpbNFcBPPEeWLgj5j1I5x6dhXPieWNF26ankZhTfsVdn0D+xlp3wW+KmreNdR+MOl6ve+G9c+E15da9aaFOiNc29uELRXMuVZE3uAqqwV2f5zgCv5Y+klWzSg8mq4VfvHVSh11ex5eZSl/Z0Z0muZyS13+R8Nfs/ahZXer6lpWll7SzuYZ4tPtJpt728BJ8pWbocDA9OK/oHhWWIo4SlSxLvPkje3ex24fEu6gnp066GzqVyvwOOs3uiXkRD3htJZEYgoJAwZgDjgjGOnFe3XqwpRly/ca1KH1ebk9UeGaRZ6LqutapZW+qyre2shmlO8neYomKuD35J/WvkcQ1OblLc+YrVoValSlB7a/NJ/8Ef8AA7xNP8RdSutN8RmNNQhuTJb3E0BKlVTaxxjoV4PB9azy6cq0Jcy1TMcgxU8VRn7RNNP7yl8UNFsLfVIxo8/l21ypQW6rtImALLj1U4ADDtiuzEUrRvE7MfBwlbY19O+yT6B/wlH2QNJbtGZ4EfLPFtILEdcq2f5968+tKbV2Ztxq0zyzWtD+36peag8ccwdzLFIqbS4z1r5yth4Sm3JXufOVMCpVZSkty1p8J1N5Yr+5ZrySJRDcu5dgR0BPcdBWEKMKEfcVghQhTldI3/BllqX9tQWt4xWVZMuFA+Y/0rGb0vI6Yc85pM+ltTtmgsLSJWHy2yEd8HFfjXEtb2uaSXSx7k4ONkVYrkMgdj9c8c18vU1dzmnuQahBbXiFCRnHBFEJuJLaqRsYzXNzpU+xySvrWjjTavE43CpTlqXFuor2EsjZ45qJRexp7SVrEekXD2V4VDcE9KpwXLY0py11OshuBNCrKevWsGuU6U2yO5hWT5T071g5NsbbZTktY0QnaOBTi22VCKVzM0qdV1MxkfxV2Rprl1PNl71fQ2bmTLsGIrGUbPQ7WuWJWeRRjJqomcXfQfG/y479qyqbltW1K9wdxyPXkGrg1FDvoUrmTDbSc0+a+xyy1loQh89R9PeqcjaKstSLzX8z8PSrsrXMXFOQ4YY5PH1qOa2xbUYoAEZtq4zinzSULsyestT6A/Yt8R6N8L/F0HiuTw3Z6jqsp/0RtQK+TbD+/wA969nJZOE3N9TjzCS9kkn9x+of7ANp4++JfxFufid468YfbI2O2ztIExDGvqPWvqaNGbm5yeh8ziV7S3Ktj7T1CWJd0UhJz94Z/KnVkm3Yxpw116mfpVrqQhuGdVWF2wgdgAaxipyRvVcIyVtx2oL9mtVt4tr7xhIox8rn1zWlnFWNKbb99mXrML21u/nyhCqZk2Px9Kl6BfmldHEeLdQnubCNtOs3E0bb1jEpyyD19BXPOKvc0pQnOeux5h8UjoU9re3+oSy2UAtmlvfJJO9uqgY/LAokqbjzSWhrKXuqJwmk/BDwprduvxAvIrmO9udnlQiVtydwSpqY0qdX3rGcaj1T1RY8V+DPA3h/TxosnhWztppXDPbQHaZAepPqa6IuFN2SHPnk7szdT03wjoM0UOl+GbaArAfsl4IN3z9djA+uT+NdjleKSexx1ZTqKzPFPjTqC6prY1EaQEaJwJHt4RG8fHoODWFryuYRcYRsz52/ai1PTLrSnsVZrl1jBEzpiSM+jf41102lHUJS5j5W19ZG0W73OVlRTtcHmvNxTXIztwnL7ZXPJZLSR7rz76dppOzOOcV8pOrUta57dTDRlU5iR1BHA4ojK6OmSdONiBiVyFNZTS5h03eNzMupOSG9eBSabVjmxMkkzcVyYgCa15b1Gdk/4jJbiQQ2eVPJFPmbdkY14y5boy9Pmub24ZSTwa2rtU0kc+GjrqbVv/o8fzcGuS3M7nRKpyuxXnBMoniHA9K6IOK3Ma0eb3om7od8s0QViM9wa55Rd7nXQqJxszRGVAI4HtXPLcuauSW7bsFhyPUVMpMIvk3JC5ZtoH0FOKVrlKd9jX8HTRHxHa2B14aaZ5douFsBcsMjGFTB+Y9Ae2a6MJye2V3Y4MZVai7OzP2N/wCCO/wf1X4bX9lp4EMNlcKJ0t5bYx3sqFSfOumZndmYnhSVAHYEYr7HDctlyanzNem5JuV9vkfptq9xFb2RGRyvTPWvUnLlhqeJQi/aXK2m3MM+niRNxHutVTkpQsFdS9rqQWssGx7oQMMttXcOazptb2NJxkrakOqW+lwAS3s5LKMrAnApTjFayN6M69RWitO5yvibV7xLSRoQ9vCxxtjG3dn+dclRpN20OtUoxjeSb9PMyPhbq1rFoXiBrC/DT3N+qCZlJLEIAQP1ooVqUIz5JdvyFisMvaQclseVeKvGekaZ40fVbvRpyNPh/dSyNlZJCcE/y5rBTUpvTRHbDklSUb7nner+PdD+JOvawNRlh8iziW3hgUEZPADAHGcHHT0rmjOnVrSTKdOULKOp1OkaFPcaXNqmkziEwaeqSkHf5jcdMdc9xXp04xa2Mqj5NGec6v8A2j4j8QXl5rFzZWsiIIpbeUgM3uT1GfQ1k4pzdxpxaszzX4iReEfhPq0viTUtLvI9PAJmuYJNpjyPvA9xn0qZKNJ3RuqjkrRPI/GjfEj4ys3iTwR43t9SsFiJSJ3BYDsGUnJrnk5VPejIEoJ2a1PFfG2geJG1GJ9XtzBd2jneXg2LGc9UdTyD6EVCjJas9GmoQgZXiiWUw5nminfbj7QvJz6ZrSLTZpT3KfhncrvuUDZE4YHp0NdP2Tui1zHmeufYreW7kubOKUZbMcsbcfR0/rXiYik23dHfB87PNdbm0CQM+mwTQuHI8op8gHsTzXh1oR5tFYxrckXpuZkbb3G3p3NJ+7EdJuW4+R/l4/HNcsndkS92YMu9eBxTp7my+EZpJa21D5eQT1rudnA4nFe0PRNKul+zIXbBxxzXDVavoelCUVBF/wC0xFcHv2zWKWpcLORNHPFgb8fnWlhzsiOeeN+BjHamoocZXVijd3K7SBS5UmZStGRWWdSTk9vWnKNglqh0cqM27PA6UJCjK6sX7QBSG459aOWNzXlbO0+C5+FKfEbTb341jU38M203nalaaNGGubxV5ECFiAm84BYngZPNXTdKNRc6ujWFP3ZWdpW0v3Pvf9nv4+a5+298Wf8AhV+heF7TwB8O9A8PXCaDpdowa10ZghCXE4CHz5W9cDr1xnPr4XL8zzjHQq4JOn7NaJK6T7vbW+/daHDKjHBUXUjzVKmjumk27rRX6Wvp8/XptDvl0/wpqOreIb03VxFKdPtJ5I2QXKxfJ5wDKuFbGQAAOeK/q7Kvb4nBUalVWlZc19Ndup+hYei6MKalpdXa9fQ4XU7208JyXms26bLq9K/aZ1hAlfJ4TgcLX0tOEUklubVK3IrLueGfGbxxea343stC0GxW+vJZvNiiktFlSPAwZHU5AVc8Z71bg4w5W7XOOtat+71s+zszM0Pwl4hvptR1iyvra2W1gHmR3IaOS+lYnfN0IEaYwOmSeARkio1/36hrtv0/z/r0N6cKNKShq7fOxxfiHQbJvENnZWGry28c9yTqLO37y5XaSSOgROBnJ9PfGy5Vu7DdepTk77MwPitqqk6fq6S26T3tk8SWMDF1ndflU9BhV657mvQo1bxuRVm5NtHH/FOS28QaT/wjlhZ6pNPe6ekSiC2MnzIv72QBf4M5PoAOvGa8rG1eShNz1uZ5nCjXofu01ovvtr267dlprufUX/BJ/wCGMXxv/Y1+MXg6P4bW3i68k0BNHs9CbU5LH+0pSxnNjNcY+RG8pWYLk4HPv/Hf0oOK1knFHDeGdTk5Zc8ra2jdK7X/AAfmfGY+sp/V6FSXupty8trHwx8IvDVzbfFHU/DeoyJZS6e721zbYaPyJI3JNrzz8rDyvcAc1/TXC+KWIpUq0anMnCLT11urpfp2+R6eEdS3NFX6f16Gv8cfEcOuyroY0xEtb29SLVCyZmTylJyM4x1PPTp1xXs4m9aoqnVHfilVUFC9z59gsr7xB441a/WP7NC83lRRbgBKgO3IPckE181CNatjJvoz5Ghg69bMKlSStrsdh4E0XRY7+XSFuPJv7C7Nqjwj5juXhhjr0Gc8817dKn7OO2x69CKpycEtUQ+NpdR8W31tcvbqJbBzaX6R8bGTkNzjJJz9ex7VlXqSbTaMa8JTndfMy/EutxeA9QtdSgCNdz2aJJZj50uASOVboQQCCDg5ry8XUd3ZGWJqSoKLZyV95GrajM9tbNZl93lo5wI+ckA+me1ecoxnI4nT9vK8djM08T2eqbWgdpd+Ny4GPwPUVlUitjLljzWPQ/h5pjXfi20tN5lJcHLEe3px7V42LUadKTfY68LSfNdo9/1fDkRKMbFCr6HAxX4NmdX22MnLzOyUnKVzHu7K6C/JJt3flXlc13qctWKk9CibS+gk3yyZB9Kc5p6RRgoTpNNsluLaC+t9r9cYBxWcZuMrGytURhXMt3olxkZ255FdMZRlscFeE6cr9C5aalBeFZ4mGe4qW3HRmtCamzptEvVlgEZPPbJrGd3qd10y3O2V5NY21EtGQsQ0bA5HFWlYupK0TG07adWIH96uuCtA4KKvVubF24Vzk9qyem511F7tyn5iu2N/Pakmc8L3sPVwOM8g8ZqKlmdNrIZM+Tk4wTQldCasilcqx579qqNkcstGQAYG3NW7MuMrsay7Gy3GfWnvGxMmlsbvwv8AA9r8UPiJpXgS88daP4Zt9QuRHca7r0/l2tmnUyORzgDt3rKSjT1lsYz9o1dK57J8VfhB/wAE+/gNr9nY2n7Xt38UpYZAdTtfCml/ZYZOP9XHM2/v/F6U6s5upy0Y8y6vY56VScqb9ppLotzsf2FdM/ZT8W/Fe78f/ETw1d2Ghac+7S9FutQMpbGdu8nGTivocihGHNOrrYnFwnOkuVH6yfsR/FPwX8VLe6u/hz4Vh03RbKTy7cRxABse/evoqdd1leOx89WtTly31PcdauDKTGrhDk4OeTSkmyIOyGPLHDpirdyOsQPK7uWNNLlRpBuUmyO/vBZWcconKRFdwUHLt+Hapm7DUXJ6HKapqup6zem4GkOtpF03tteQ+4rOTdtEaRpxg7HHeOptat7We8Hh2eQrGTPEsu3PHC1hUc2r2N4KKdr2PJPGngPxt480xLqbxN/YtvbxebaafaMGdmXnEmeozUVo1Kqsnawc1L4Uru5h+HNF8falpI1T/hPre9uJH2XawxBTHt4yD24qsNGqrvmugmoUXy2LbeDYjAkmqay+qOGDS30lwA9v3Ix9P5V1ShGDV3c5515XtY5T4nXp8PXaSJq9zLpckYZrhrdtqnPBUgcn2Fa0lKpp0OOznd7HkPjfUk1m6up9NuPNmchdkrFTt7fKe9XG19DPk59T5x/aCa/8m4g1GMxXUIwj7MCRfQ1tZWaLcGtD5n1+UHSrt3bO5DggdPavIxkX7FnTRglUieZSoT0bPvXykHfQ+lpW5SIklSPT3reyiiakr7kGA2cHHNYTbvdCpt2MvUB+8yPxqouyOTEJtM6C3haVV5/OtJy5Xc76j/etD9WT/RNiDnFZU5e/qRNtqxV0u2MXse5xW805PcyjBxZcui6x5zzwcik2k9CaqaI7CcyKVZBg053Vma0FeOpaspXtJwRx7VPNdWMU+WrodDazJPAGI7dK5aqaZ6StyKwofB2jr1pQimrmbV2TR5JA9enFOTii4xSPRPgl4v8Ais+uad8MvhfrrabJqGoq093peiwzXwzhdyyFd4Az03KOa7MrjVqYmMVdRvq0rtL8PuujhxKoq8mrux+23/BLLwP/AMKbsY/B3jTXWfxLf/6Tf20t2bmediOZ53JO125OwHC5IGK+yowpUeVbs+fxtWcqTgtmfaeuvLcgwQDdkhTheFrsm+aVjxaMVBJssWFxGjLppPzqgLEDitYyjflRyV0+bm6C3l1bwgF2AIOAKVSpGKsVRhOTMzW57LT7V7tmRZCCd8vb6AdTXFWacbno0E5SSex534i07xX4yaQadLNHBkKZZvlGD3Gelea6VWte7PQjUp0la5yPjqwtfh/oyW1hrjiBSTctCSSznjC8csf61p7OFONkWm5u8kec6/4I8b6pbTX08t1ZWMEG+2tX2+fKBzlsnnJ7VLp1YenY0Sowempy3jzQPDsWpLBrQuN0iqI7qGLy/IlOMZI5696h0eeWpcKihG6Ot8JeEk8JxXSG/vBHcKstwgJkPmNj5165GSPzrvpqFODVznrT9va6OU8UeA9E0jWp5fEkM8JvYmkkuDk7iB8rev4VzVOVSbQS+BI8M1rxB45+LVjqnh7S9Os9Q0yylkjsjv3SyKOCQCP0rOhKvWk+wKmoyT7nkfg3w7YaXfXGlahGILiGYpNBO7WsqoeMqwGCRxWahySs9GehZQV2Y3jj4feN9L1WU2X2m9snjyizTJKCO3OOntVvnivIJTjNnlvjC4RpxZSR+TNu/eRgAKffgDmopy986qSRQ0B8PIoPHlvnHXpXY5Wp3O2nFc9zzfxyz6U8+pCO6jikXBmt3wCf6GvFxNZtM7eaMXoeVaqryO0hnZi/ILPnI968OdWMpXOdRcpe8VIFYfNmlJ8yNFLkehK5Xpx061zWd7F25tSWIgx4PUnrWluUybaYscIE4ZR/GMjFbKXumM22zp7Bpvsq4JHFcc3dnTDmcTRszMQBuJoijppKw+7nngj+UHOKaabsOtfdFa2vbmYnOR7GrlLl0JpaakN5LOXwrHPrWalrqKpFylcRlkSMHr61Ld3YbTcbIitxOXwHIz78U5S5dERFcpt6Hp2ranci0sbeadyMhIYi5x64ANClJnTBSlsdLpulLbyiOVW80Dkuu3H5iu2kocusdToitbH6B/sS+D7v4Yfs6/2nHbyDV/GdyGRQRvNqhwF9geSSeMc1/Q3h5lKo5VCcvim7/wCR62XYROXtZLRHW+OJntp4UvoY2hi2sCpym4HgL7D17mv03CTjObp8rSVnd2s/JdbrR6pbqzetvolFShzX1Z4/8S/EUqC9fm3t1BmU7vmKjPJ9K9RwW8XYlqMKdmeVaR4m0Pw34f1TxjNp0F3q+oxgy3jgBLeBeUQDpzjJJ9ac7/E3oY0owjFzbOG+A+qeK/FvhjxH4x8W38F1HrmvyrJMbsGOO2RSEVduQwJGMDg5PPas8NCcKfO+rKwlaNaDrxuu2n+exy/xgv7600p9W0rS1N1FM5txPPgT7QRhlAyeuQOmAc1dWT5XZiqxk5b6GU+i2PjC21C21TxElwtvpXkW8lqG2xqRmQxZwVzg5c468VvhYyqJ819VYhSk5bbE/wAM/EmufDudtX8JXclrqU2kyRQ/a7USxwWjrsZwXJ/hYktjtkU1g6VSm/aa+Ry1f30Wmz7R+Eesfs6/8E7/ANmzwN8UNa+JPhXUvD2lXd14o1HVtP1DGpeI9WubaSAWcNmpG4Rqyx7nPIUnAwc/5seNuXcb+IPizi8FDD1E3GFGDcEqcaakpOSlvq1018z4tt051KU3JTldarS173v5/wCR+ZmleLrPUPEev/Fe+dLF9Sa7164sIbfy0iaW5LJBgZ2DBHHPAFf3pwnlMOHOG8PhJzbdOnFXfdJI9yjz4XCRirt9TUm1zQviDo97rlloal9Qiht5GuDjdKVIZy30ORnj3r6ya9tRc77ndzL2NzzGztRps26K1gEkWmXU0AbBwckbz6MSMjuK8lUaVKVrruedQqKFVpljQ7a7g8Watqeobkh1i2VbqZxnyZQq4PA4zng96JKSm+XW50U8KozlUb0ZFdXdlbwX9jc3z3L3qgWtzCD56yqco8ik4UcnLZI4rlnrJpqxlUai2uU5HUxrfjOzZPEFnPJqFohI2SAuqrkcenrjj+teZiffg0tzw8Qq2Jg01axgWFy0tjHPPJJGVl2yCRd3zA43MDz+PvXjRqu/mYUKziuWwyPzNQ1D7UCkas4AJGeMY47gVpWqRauJ25rs9V+AmlCfxSJZEC+USwUHJHv9K+Vz2vOGBm/I7qFaMdEeuXjBn4J65FfhNV+87mi1M++lYJkngdQKwgoc2py4huL0Etgl5DsdulKV1LTYdN+1jZleaBraTntWE3d6ByOmyDUbCHU7cq2NwHFOnUcZaDko1I2ZzISbRb3aykDdz716Cj7SFlqzzJKVCemx1Gh3yzoHRhzXO4OGh2Yeupmy04ZQwH1rGUbHXHcazYibPpwaSauVNc0TD06X/ibtj+9XbFLkPOov97Y1b52MhwecVzSZ3VPgKagqwLnr0p2ujCm0idGyPf3qHHqaxlzOw2clcn1qk7IU5WKF07scAc0ouxjKHUjQtncepqucUWouwpBbIY5zSc10KskV7uGORTHJGGB4wRTXvEyWhFZW1vbfJFEqD2FdEpSitDNcu6R63+zD8K/ih8W/HCeG/hXoS3NwR+/u7lv3cI/vH3rqy+jXq1XyvQ83HYuNDU/c/wDYI+Fep/CH4K2vh3X0RL9YQLpoVABbHJ4r6ulalT5bHzvL7WTlY9Xv73ZdYBBYdGPG2nfqdDp2gZGl69qfjLUprmUQ6do2nzbPt08w33LjqEXso9e9KNRSfZImKcZpJXbNi1vdL1yOW70q8iuVQ7ftIPCgccVDlGb0OmcZUtGjH1HXgNRNvYoW8tDuaRePrVboU9YnE+MNagttFcO7zLNPi6HmbduTwKym0tBRi5S1PIvi5qGopqlrpnhuwmtr+7j8i3eBt6ond3PasKi/eqMdLnTQVPku3sc94YsLHwLpVxo+q61ctcRSb2mLcuzHkE+hPeuuEY0Y2M6svaVLs57xp4T8P+M5x4ouftunxQH/AEv7FeMpDdiwB6Up8k2n2FGSiuVK5S0rwx4kis0bxN4ivri0EgXToYWVkWPPDNnkn8a9Cg5ez1ZyV5xeiVjkPjV4P0/VruWztGT7QF3Wt5FgPuA6EA8VVoXFF8sV2Plf42ahc634curLUkb7faEh5H43D1rJ1uUznPlZ8u+IZGTSbuMnHXIHevKxla9GRpRUp1U72POps7TuFfMQeqPo6SkmVy+EI6GtKulhVGVg5CkCsWXR2M2+Yhjx9atK6ObEaJnUQSxxKCPwpzu3Y6qzSqMdK3n5wvBHes4plwSeoyHCtj0PArdtqIRSchbxh5ZJH0rFSlLQzqxc3oQabGd+NuATxVNtJCg/ZysXp4TxJtpxkhV4pao0dGn3oEyOBxU1NUb4eXNuXwPmLGs4KxpJqLJkkCLwMk0pQW4lzyPb/hBYxppulWHw++PnhbQpbxGfxHLbXcmk6hZRYPyy3VxGyzKSAoihViWZTwFJH0eD9jRppQqxXl1Z59Si4ylKWp+p3/BH3wPo5+JN34k0Lx1J4gsY7COGG6vJ2ubiTaPvvIQME56BRj1NexhvZSre7qvM+fxkoQotNWdj9Gb66ERMMFud2eSq/er0KktWkjxIwlJJtlLR57w6hLJfw7EY/usnlqKPNGXvCrKm6a5XqT3V5YfaxHKRvzwKVRwc9S6cKqp3Wxk+LmiWPz2t8oo4BX7x7CuOvNXOrDXUdWcnrNtrF3YG71K4eODPyQLwMD19BXJOU7e9sdMHBNuB5kupWviT4l6Wt6PM07SnaW7dBmLf0CnI+Y1nRqfv0+iNeWcqDvo2L8R7u41i81HxNaaqyQ28RS0MkHDNnjj0HtXVUxEKknJFUqUowUTw3xN408QXnj+7K6ZJcpHoLSTz8GKRxjBAHQjHSuWWJ56zjY6PZKNNd7nRfDL4n6j4z0TVNa8LaiZDbW6lJY4iFSZFAdACODnjPT+dbU5uqtERUjCklFnPfETXvE/i3Vry30C4u5Ly705DPa3g/wBUSPvJnj8Kia97lW5m+VpXPLdG8P8AiTwnLPb65qB+3AtNHNbWgjK46nK4GeenerpS5Gdc5csVY8h+JWs6nq/iNdbl1cNDuKvdKNvmAnrkdD7VnUnFy5i6aco6mD4r8R3PhC1OpWCzuFtyYrhI+GGehA4IrOUpO9janyzZ4t4q1vUfEV4urXUMeZskiNsEZ56fw/Sijbm1OqmruyKujSuyzyoknyWzksOv1/Wuyrb2djrinsjgvEvia10bULi3uLPZNsG6OVN0cox1ZeleLibU4u3U640mldnmHiLU7HUJvtNlpMNpk4byM7WP0PSvEcYS1SM1JyZkxSyGQAH8PWlJRihxjHm1JvLccseM/lXM3d3N1a1kTICNwHpSbbMKiaZNasWkAPQMK1hG61IUU9TqtNQvbICB071lKKuddP4TStQEAJH51EttDWLdyW4jEqYxn+lZpu43vqVURYEwPwIrZQM5aMq3GZJi351LQQd1qOGGix3HXilKALSREgVOPXvRy3HPUu2l5PCd1tMyNjGVYjj6imrpgnKx33wHsNT8d/EXSvB2p6xBaaXLcB9Vvrp1jjtbZfmkkLnHOMgepIr18olHFZlSo1ZWhfVvsd+EblNRm9D9Ffg/45+C/wAY9b1nxGvji10v4cfDrSyNT1K6R40mhVMLBG+COcbjnBbtnNfTcf8AjHS4ejSynIZwjiXbljJSbmrpNRUU1pu+Zx02u9D1cVnn1LCw+rpuTbXTTz7/AHXPK/hn+0/pX7T97Pc+FvDFtp1pdXD23hTS7f7WXCrIYohO1wFUO+BIAmVAYAkHIH7FwLxNmeKyz22bpJpO7V0k/n23Ky3Ma9WjUq4lu0Xfmdldbt6dOmup5R+1JefGg3kPgLRvhFqd3HNNHHf3MkflxzR7vm2S9DnGODX2scwli4Kng5Kdt9Vt30NcVjXiElhmtTlv2iPCGu2Xg3/hALmzi0u4udPWS/s7SIlYS/ypDuJ5IUc168XKdPk1vbXTT79v680ehHBN0E5u+hlL4itvA/w7vfDeleFraA6dDbpbzpDliwyQQPXP867Lqckk7JDUo0YKLbsux5T4a1fxx8QnuZbv7JcxwOTfaqsryGOaZsmIDGNwUgE9s+1ZYZqcnGOyOWnOeKm56pIg1LWJITrWieFdKKXN/wCXZx3KXeCIxgM3+zwDxXVztSko7nXUkqSQ/wAdjT9G0D+yraG7tmsLdmNys3mPcQIMlemRkg5+vanXnJYX3rrl103f6/5nLVlUmnZ6HoWr/wDBN34k/tgfsL+Fvjf8JLDT77xDaeKZ7G3N9eJEyFYhILdkGMR7Ukk8yTgEkZweP5+8QOO8JkXFUaVaLtGKu0tdXoceeYnA43BrCu8a9OPNF2dmr669+lj5M8K6B4u1u2Pg2xuIjb2BNl4kZV3kMsm1o1KE7wCCMqSMc5xX6dldeedYSlOi/caTd9Dy8v58RhoSv0szqvijqNl8L9Mn0ixmWSay05oYLZceU0jFdrf7RGCM+5r6DFt0Ka5HbRq3R7f0vVnr15unhG4rXoeGxXfji2v5tRudQ8y/SQC4jkceXNEx+59B618wsNjVU9rKWvY+Nhh8x9u6nNeSfyseg6L4k1CeyuLLxBaSWVyji5aXO4jYMgKe6kfKR6GvbpTcoNSunufSU6tR3jUWpk6D4U8Sahrs/iG01dF2nDW0ZAXy2ByQCfu4PIrgqU61WrdPQ4nCpKq5X07Gv400QeEtGt/EE0kT3Cf6swhZI5kByCSOhFc+MpxoR5pBUk6cXNbHCeJ9etNduv7esLCCK5lfbcC3H7mRcdfY1484wrPmhuzyZ8tR81MqxOJZ5fIT94p3NkbdhzgkY46VDgoRsZ8rnKx6l8CLq6sNejuLa3iYGPO2a7ESSHByCx6E4r5jiWpSjl0+l0dD5cPTc2erw3NrrHhnT/GGnXkEttqDzRPHHIWa1uIiPMhfIHIDIQRwysD6gfgWIhOjUtLqThcXHExbRn6krsnHcdawhJOaN6kOdFfSGkichuhPOTTqTeyM6LUNGaN3B58ZbuB19awuzduNRGc4aFtp6ClFO5ztOEtSrqmmxanBtZRvA+U11Uq0oMmap1o2MjTLi60a68ifpnvXS7SV9zhcJUJXOostQjnQMhzkc4rCSaPQoVVOJalYfZ2IPY1yy0kbvVGDpBJ1Zs4xurtg24WR58eWFY2bqQBySKya1O6o7wKMkyl9oPGetUn2OON2yxb7iMv+dTJ9DrhFRQy6kIxjvUPY55v3io7DPvUpGqXukZYk8/yrayOSWjFOSnPFZyTT0NoakU2QMqORWtNJvUKmiI4UMhOO/qK0lKysZQSZ6/8Aslw/Ey++Ken+H/APjVdFiluUa/u5rnyo1jBBOfU8VrgpVpV1GDsjhx8KHJqrs/e/9ni6kufhlaf8TD7SBCF+0r0kwPvZr7KnHlgm9zwW41IOO35mt4vg8SfZGk0BIPNHLJP/ABqOorCs6jXuHXSVOXuyM/wFpl34t0n+2fGehxaZbxuRFpUCAhyM/M575rKCqVI3mrIus4YVqNPqdFYtbW2m3ItLBLazT5YYIEABJ71tTXLHTY5ZO8tdWc/rN1fXMjw6ZCFt4o8Ts4ABP1p+/wDI0b5Vc8/8apZ3GsAeT55MXy2pYBQ+OCfWjkUpXZUZy5bI8w8T3Guf2jHqdlPJbXEB2XVzKMxOuQCsY69+tYSvCpc0iqdONmjnviPqGtX+rDTGmtYI7vZEbwphgM9/Srk23qYJqb0Itbt7vSXmmsZPNi8oW95ayuNrn+/mtIJ82goqyszHXwzL4WhKzG6EM5Dxhbvcid+euB2r0YRcI2OWq+Z3OM+JunWWqQyraedb6kmJEHmZDY9CO1Q4t6o5/azsfJ3xk1Swu3vjdS+RfICsqMpAb161M4xBuSV2fMXiyVTY3WAAdxH0rysbD9yzooS/eRZ55OWXI7/SvnqcYn0VOTK8mdmcdaKr1sKbuysMBTmsrGtLYzbw/vtprSOxyV3udIoJjXHBwOabV6h3VYJzZbtIyy/MMAd6bikTBdiVbZfMDAc1lUegKVpWG39qGQcD24rKD1NlG7IrW3IOQMCuhpI5pR94utA7REAZHrWF7SN3BTgN0sPDNjHfvWjvYypv2c7GvIBw4OOPWlHQ6p2tcdDJk+3es5PUqLdrm94DsfAcvi6x1DxrBqsqW82YLbS9PjuWmc8bSJMhc+uD644rfBSw9KupVP0/U83G+0qU2k7H72/8EavDT6F8JbnVo/Ar+HLSVVaHT5pmklZccSSlud5B+nJr7rBVqU6CUdz4zHqrZuT0Z9gx6rdJI6XrL+9P7tEHA+vpXRzSW7B0YezXL0JbzU7GzVW1C7RAnzEk8KPrTdWCkrs4vZyk3yIradc6Nr1z/auj3azgHaXQ5UGnJ05vmhqdC9tQhyVFYq+KtdsbFTcX7RsYh8gI4X6+tcVapG+p0Yem2tDjbuy1H4hsFivlsdPjO6Yxna8nqaxjBYjVvY1p0qeFVoxtdt6d3q38zEv9Gkjg/wCEb8KCFNsh3SJACW54Lfp9ayjFW5b669PP/L79zapPklzHl/xJ+0eF52D2892sEbBoZZtqzykcn0AHT8K56vuaJm0KrqRstDzj4fXHhbTtE1fV9bvZxeyp/pUKpmKzOfuBv4htx6dTU4ZRjFyudco3SuVP2efFes6rpusf8IJJbyWs2rXBaZYGjBhDYyqMPmJ9q6KcZauDv5+Ry4qnFT1ZBOPiKPjZb6pq/hO5s9Iu7MJFfKzI7Sq3WSNsYT6VjJ1XXTlsVRUI0W0P+PkOsxXsWvkWYe2mWN4rKNQsoPRiMDDY/Ouhxad4jUlJanzH+0HpscWmvrS6OqWnm+ZG9vGUVz3JHfntWcqGnM3odNCprynk+pa3qN1aiaGGQqIv3SwE7GB6gr0B96h3tY6bOUrHAeKYktmkubvT3EgciXzPlYc9Djr9fetKUdTthHl0M5bm8h8Ja7qNtLEj/Zkij3HG7c3Y9jgVeKdqOh00klUWh57rlu2s6MLzXFvTPFGFF3GuYtv91mHp6+lePVcqlP3tDZwqTna+hweraTYW8Ujxa/ZysrYWGJ2JI/EV5Cik9GbTpQpx3MyJQp57GiVzkbvqiZWUndnr1rJtG1F6k0eChz1zmoSuwrJbjrQfvymc/MDXTF+6Yw952Ou0sAWq/T8q5qj1O2KtGxeWUBfm9awWrHTauONyiKdzY/GtNAqSsVXnVshTz603LQiK52VwzF/m71ncpQUWSA7VyQc4/Om5FSkuhCZCx+QU1sZqLLVmis4zwD6Csm3GWho5RtY9M+BnwO8cfHj4naB8G/AulNLq2vXixQxPkKidWmkA5CKuWP0rix+YrKcM8RKPNLaKWrb7Cq1YUIOpU0UVdn394+8E/CD4Z6Jafsc/BTTotSsvDfzeLNRkhMh1bUgAXY4yNqHIAIIHTtk/SeAPA888zPEca51F1MTPmhRg0nGEFu46aa9fnc9nJsJKrhPreL3l8K7Lp82cFqOl2U/jbTtH0aL+z3tiJZZLW0DAlTkrjHGRxx69q/rnERoVYqi3aOl7W+757HuRg1C7Scdj5t8d/E/9pL4C/FDx3Z/D3Vk1nw0upW98PC2tRB7e1eYkGa1kJzDIoBPHr718N7DMOF8/nPCK+Hla/wA2ePUwNeliXXjOyXTui54m8Qa142tdNuLu/k8y5VZnmbBYouWcknOOOMnk9q/Xk1UivZO19T31iadCim9b/qcf8TprHULW4ttOu5rWSQSMGnmJM7IpwQFHA6AD19O01JNxt1CXs5xVtNDzXR9F1b4c+HbceH7n7Mbq1lnvI1mDecc5bcQfkDd2POBgUUqbpRfQ5+dRjy09Sj8Itf0TxFDqGt63o09lNb3/AO8gmLIXPZh0JT/JrpoVYSvK1mZUZTqtzkmmtNSl4p8b2mr6ZqV9BOqv9k8q2jfCLGi7tzYJ43ZP1wKxknOrOXM1dLRuyVru+vV/jZCxFVSh7NJXPo342+N/Gf7L3/BFnwxpWg6YR4j8b29xeXF810UNva6jK0EZCbSN7QxygHPAc888/wAq5pQnxj4q4mClejSSTS2bXd+p4GMrYqWGq1ot2ilFer8z4J+B+o2nh+yktV1iS1jNu0d5Mznagx8xDDnJ5AOK/ofJlSwlFQjoloTlEYLDKMG3b8zc1jVx4zSfUkthPHNOu043GNI+4BOQx7Dv1r1q8va1L3PSlUdV+z6GV4/iXRCrnToR9ssYjcSWwDL5pbg+xwOQaxxSaSt1MsXONJLlXkdNfappWt+G5LNrm1yFjhuHkAEmHQYYewYf+PVpB04QbkxNyqRs1v1OLsLfVPDoksr8FHtXMkkYlPzKc5dGOMcYOOnoK46lWyslYxVF076nK+IL/Tb/AF2bSoPFkyQyyZsWlf8AdD0PXj3HvXzOOrQjUcXLc8XF16Mq0qCqtX27FfS9OutLnbSNVCqH4S4Qgxyrycg9MA1lhYVIq0gw+GqYeny1N+5PF5kdxFJATtKbWcHBc+lPEWSBWjNHo3hfwHrfxF0SLwjoWmxXcl64WOOW6SBUHJLmSRlVQByckYxXx+fzp0sulOeljPMKMsRhHGKPan8CeB/hz4I0jwp4d8SDUdWS5muNeFkimwgdkiVI4Zc5mYbW3uPkJxtLDk/iOaYiliaicGVgsNWw8ORtfIzbt1MR9q8uPxHa7op2jDzSG79DXTL4UjFq8tDRjmYDa4FYtK5a9zUgvrfeu5eBioehUkpxM7e8T7T0z1q4tW2OSzhIg1KxW9h3oPnA4NbU60oPQqpGNeFihpt/cWE3lOeAe9U29zlo81KpZnQxXqS2pZWxleRWTi5M7pVexlaPJu1YqP71dlOKjE5ItzqG1e5DE81yzlqd1RWjYz7eLzJmz0qZPsYwSiXkZY0wQaEuppGV2U7lyxwT9PahS1Odr3xkYBOWGPrTavsavSIyQc+npVJGE73IwXyQVOKt2Kg02OkUNHkjipUrMqsnyEVs+3lTn0rSS7nPFSkz2X9kf/hnzTvH1vr3x48T30MccoFlp1ip/evngufTOK2wssNGpeozPEUYuN29j92f2aLjTZvg/puoaTGwtJola2Ruuzt+lfWqKdJK2h4DqRqS0O1mvYXmjVm3t3wv3RT5dS7OKHXcixRCDzCI8ZYAYJNaXsiObmZVtpIWgnlm3fMP3UAbv2OO1S5LlG03K/Q5jXdJ8Q6dbXKx60hadNzIwBES+gHc1yyu9Ewm4ykjz3xobTw5Ml5MGnmNqRBGTg7yfvNgVpCXK+UI1JP3Ujh/HV3Pda3Z3N5aFV02386JnuAsMx4yNg5OKKsIqd5ChBuMn3Od+JeuW15qP20WkOI5IXk2jO8kjAHv7U1acrE0m4opeIdTt/FsUlnc6PIBCuWeMFADx971rqXLB2E4u1yhrJsdRktLPTgrslvz/pGPwI71q62trGXs/duePfHZkjiln0OWaK5hiBDwzEqCDyCP4abqXWgKKjufMPxB1rTPHmn3sGpQtFqkf8TjG/HWsJOetzOdm7Hzf4sEsIubabIKsRya8rGyfsWjTDRj7ZHCXfzKQp/GvBop6XPok4pFdgwjIPpWlVozdmtCumCp9Kxd0zSm/dM2/Ubi2eh61Sdjlrx0Z0sIzGM9MdaJfxDtrNuq7Fu3Y8A1fQdNMsM2zD7eg6VDSkTL4xmXnOO30qVTUTpjqiSOIqucc5qpMwmrMsRNuBX8qwcWmdEErDHiaKUSqK0Wxz1U1O5oWbfaLbk8445oudEGpR1BR5HLfjWUk27mbqK9j2n4IfBPxlpuoad448f6fa6J4euQktvqOqeIZLPepOFdYbeQTTg9AoGDnkivXwOBxVGpGpOyi+pyVqtOpTfK9UfuX/wS4i8NaR8HZE8I+FrrS9PMuQl3btEZzjmUK7O6qe25ia+rowjGCcdT5jHtyhyt3Z9E+HL861qlzJbKPKifEkjLxx2HrVKTbskccpxjStIta94a1LxHALSEpbWxf940nzM656Adq2VKVTZWRlTr0aLblqzSh0+w0LSBZ2m2OOKPqi1pOmoUrJnJ9YniK92crpfhbU/F1y2oahG0VkkmUW5HMv4dhXnUcJVru728z16mIpYeHLu/IoeNvh34m1RbhNJ8VfY/NXaDa26hYkHb+dW8JJP4rehtTxlJU0lHXzONsPhx4ttfCVzFpfjloIlbaJsqZJpPcgcD+dZRpRjTfLIU6kJVPeieN+MvA+ua/wCOFgXWb/Xri0tiZ4ZLgRRQ4HLYUda8mpTftN7ndTqRjG7VjmdH8UWnw+sPEHgYfDy71mK9T7TZ3M8uWZyQTGXz0z+YqsPVlRco2uGJcqvK1pY6X4R+MfBunX0FhrVgmlatZwug0vygjxgrnepICnOfXtXpYatGq7NWsclSE2rp3OI8NfFLUPjB8V/EvgfT/Flpq0OnQIPJWVGnjl5+Rg3C4x2NS61KeIlFdDtdD2VJTkjhfHHhn4oweIJtJ1jxxd/Z4T8tnb20cjRjPIcNncPSoaknowbpzVoo8u/aH07xdomhXWm6hc2E9ltE1rDc2TRPn1XHANW3NQaOhRhFaLU+ej4jn1WwWO1sWtiqkeUW278dRnFcSbZvSXVnLeObzdI5RJFjLDa7Nk8/wmtacrPU6ott3RleIHa3+HU5OG36lFkheMAHrV4r3qWh3QahY4rXtAnksZ4rHSrwRzRhleynOxj/ALQPSvMqQkqdkPnbd7Hn2r+FdV0ohrzTZIlxw8mM/nXg1VUhO7ISd9UZnktuBL+wJqXNtFNKKHohPy5+lZu4qbSkTRAiMg/nVRdjWorq4lgxF4YyeNw5rpXwmFNpSO0sBts0B9K5JnbzaFmNGZgT+lZLQVN6iXlsdnXkUKSuXNXRVSMxjJ5rRpMzhLlE3gN92jlRTlzDnXcuDWcrJktWdxqKqe9UtUO7ktC3p9wlldw3jWkc6xSqzQTFtkgBztbaQcH2OaiajZq5pTgk02rn1B+xr+2tdfBT463vi3wL8P8Awzp+o+KNEOjW95LA0UOhlv8AltG7yOxHdix5x6V89jMkxGKqUZYeu4ygpJ82t+ZNN+ttmenUo4XN5RoVo2jdOye9ujPbvgn4I8R+HNLvtV8c380l3A8st1cFDsvix3CZCfmdHzkHvmv6m8L6mGp8K0qdHSNL3Xp1W+m/+Z9RCtTxFNKla23pYi0q71iPxxd+N11dTM0DxWwSDi3yCO4wG54xnH4V+pww9CcLTiVVowpUoxeqer377P8Apq33Hz98d/h9rnizXdQsNJ1G7lFzbQ2lxuG7e4fMkhx/dUd+5rhzDDU8bONKN+ifye5y4lKc9Fa5yfjqaXwlZi8e9eO0tikE08zlfNROigd8kjpXu160cNQvJ2Ud76BKUaVC03ojz6H4g+EPiJPqOtxaytpNC3lx2cRUyQRE8AKxzuYn3ODmsMHj6eMourCSfzOOhjadSnGEXd9TjNSn09ftWm6XYXsdvp9wHvIBd+YLonlImOOOevWvQhXjVdr6K1/M3VRU5czGfFLxtqupxXOnaiscJS1jCJbAYtWVc+SMY5Pf3PtWsp3v2LnX9pTUjzTVIr298fQ6PduY9M1GyUMwkzypzycYzya8bEyn9aqTb932cn80rnkQp1JZmnPWLPp7/gspqOneKfiN4b+GvhzS9Q0rw54V8G6VpelR3d2wN1HbKyeb5HCoN7MUkGd6sSDjFfgHgtl6zCjj8xqy/eTqyb8tTz1g6uOy2UajteTZ8b6V4J1PSri90os0jKqsy5x5it91QO/rX71TwH1aLXMaYLBVMInBMm8N+INN0mTUZ7i3KXUdzmwQNvMbBsKfxGRmnTrppq+prhq8Y1ZJ79i4gujrGoahdSr5ZGZbC4cPlcfeH97HqORXRKuorU3lTc53voYXirXJ9Ov553he4sJowIzGO6jgn2B5ryMbNwk3J3izgx+Lng/etp5GP4v8TeJvF1rbSWVwhggRVmz1wPrzjHavNrYutUivZ7HiY7E4zGUovD7dSr4h8Mqmhw3k3kXMAXdCI2JYnurY5HrXHicPzwu1c2rZanh41Ki5rak/hlZZbY6Y8ksKTIDGlwMqPc56fWu7CpRpqJthm6sOVFq5iXTZEsb8ESH7lzE4YN9Mf0rCtFKXvbETouFRXZ7N8DrO01Tw7JJdWiERkFc9Q3rzX5rx/VjLLYwjpqejyr6ud1zGojUbeOBX4+4cr1OPm5ZWILtx3PWs5pXNHqiGyTMgPHJ70SbsiFZMvv8A6vA7VDZpUS5bojSbzFKNUXZlB2ZRvYOpH4U0n1KqU7oqwylG2Mf1qtHscivGRDqNgl0hliGGropms4Rmroq2V/Nbh4ZTjjjNbSXU55e5uO8OSiTVS+7+OtU/3bOfDybr2Ojum3Ftv/668+Wkj1JoqwLtkJxjNNK7Ja90nfJOAOMUS0QkrIpTKxfg8dzUoLJaiYAGB+taLRGTldkMr7ODn3zS5riauxkLmQn6U76FRikyZ8CHkdulZ3HUehBAoJ24xWnvNXOVSfQ9n/Zb/Z3uPij4o0/xRqWu6Xb6ZFfpE8T3am5d8ghVjzu59a9fK8DCrNVKr0OTHzqxpNRW5+8/wp0hPCHww0fw7bxlBBZooXv0r6WrUUnaOx4lCi4x13No3lvaxlZtq7cs7E5qZTUUbTTtYxrK91zxxrHk2CiHT4QQ94f4j6D8qwbqSafRiVOMfee5sDRdL0+0mslaSS4lOPNkc5Kj0qlGNipVLtHMX6WGmM7QQSyEphpLiQnyz2qVBX0RLlzLU87vNS0/xF47fUNRi3Q21uUlLH5Semc0U03UckLl9xLzPMPi5p3hy6ube6DyRXCXAK3QlJhCKfugdxRJJyvJ6G8qnsoOJw41z7bq896LyFo3v1FkbhCELDGTz0FZwn+9ck9DKEPdWhq+L7XXL6J3tbxoJBzE0K/upsfwj3rvUrszcoxVjmrqwSXSr7xLcR3S3saBZYdhV4j6+9azpqcTOUmny2PNPijqP/CReHbnxDpM/wBnvoEAfdjbKOnNOmo3M25LQ+RfH3iCJ5LmW5hUXAJ3+X/C3rRUXM7GUtzxXxfOZbWe6dssT3714+MtGkzqw0OeukjgpJWMmST+NeSlHkVj3XpoNmfdGa55xdxTi4rUqCQgEUNWWpdJrlM27kJRiTxmlLQwxLtF2OpgYeUoB6ino56ndOyqst2xPfjnvTk1FFxSJZZlAIY/hWakjln8Q61w2OgpTmddJLlLRxjJHXvUc6IqrXQWIAdsZ70pTQ6LHuN0fTpSUtC6seZC2Nw0E23OOKuKuYw0Vi3OGZgeOabcUjRU0tTsvgZ4W0PX/H+mzeJ7fWraKK7QxarpemPdguDxEVzgZOBkAkGunDV37Rb2ucGLdKNOSWj7n9Bn/BNq0lsv2erV7nSbzSzPIxFnqTSNcKCeN5k+bJ64PTOBX2FCopU03pc+UrKd7vU+jLOaO2aPS9LhVELZYbep712JbRRh7JOLqTLmvanJZwBIVO88ACqr1JRSijloUPazcnsQWLvBYG81N97Yzs9KlOFOHNN3NJxh7XlponD3GoafvcNbIeenOK39o6lK+yMuXkra6s5XxpcNBoM95cav9isAhU7SGZz7d8mvOqqpJaOyPVozhz8qV5Hm0ngz4g23g24vNOvxp0U7F7eC4+aVR/eOe5rBYZ+y1dkzaVRPEJSRh/C6+svh1ompav4ruRcandRStLc3KgAjIGSR2rCCo0YWkVjKrrSSW1zzzwZ8QPBHjz4meKWV5DZWcKLAbi3MUVyO/lM4AkxyMjNZYRwq1W9kDjW5I8pl+FNG1Xxd471691HSLPUNPb5LeCVzHNChHBJb72Pbiu2lC05KxrVlTpU0upb8dfDfwb4OEjf8IjaWV/c2ZkW80S3KSFgM5Yr/ADq6mHo3vZXI9tXqJK55dHqGtfE/R/tlncQCOzR4pZjcIkznJ+RmzncMd6wj+Bbi6OvU8d+JNvrdrp7WLy3V4GJESXTLKsvBymV6Hr1q3eKsdUG5/EeA6e1lY6y9vqFv9ljMjFbW8DJg9wDggA1585RhLQ7Wmo6HD+NpbOS9nWzlJUS/KhlztA7H/GqpyvudVLmsUdfszc/DK9mKlTDewszBc461tVkvZHXSi2zzLxXJqzqNU0WeOW22bZmtZiCD/tL2rysUqk6d47Ft8jOVvr25uF/fSMzDu5NeCubZjjapqzOYMzA5/SttEiXq7CtvQbsc9cVNkyUlzWJojlD+orNw1NKr0IbJyNQO71FdUV7pzq3MdtYMTZpz2rkraM7FpEuQsSw+lYbjhZC3YbZub04xTUWaSqaaFASjJ6+/FaONjGzkxwBb5ie9RKaWxrFKIkqysMKR7VmndkzaYkUbA5brV2layIi5dCdAx4VuKnks9TaLla7NHw5qVxoet2erW9xLA1vcI/nQY8xBnkrnjOM9a0oaVL9jKdSSlofoh8C/jDrvx18I63rl3a6kZoIIYrS81jUmu57qKNNqO7HAQADiNQAoGO1f0D4YUIUMmqKmrJzb+8+jyirGnh0oRSSfTuZ3i26tvC+jQR2zYkjRpZmkf/WuT0A7DtX6tSjUkm5S9D2XOdV3OL8TLbroGp6/rlwtvcXR+WOMbBtPJC06lGnKDirq6tdO33Nar1M6lSSnzI+YfjL8TNZuvB3irxH8NdJvLnxv4bvtHk8ESNFDJp8T/asTmZJARK2NgUEYGST2r8w8T81xVGphMvjf2da6k09dNl8z4Ti/EZi1To4Vaybv6HzP4b+Gmo+OPG3irxb8Q9Qli1RI5LnWZbaPyUFyRubZGmMYPQAdTxX0vC2TUcPl0ad2klrudXD+XOTUZ35ra69RLv4MfEHwvNep4c8ZSQpbW0NzcLcPuLPu4jAPJbByf/rV9T/Z08M3yVH6M9yeBxSi/ZVPvKWi6h49vNXvn17wjL9jgi824urfnzXX+I5/z2rfDvGKcpVIad0Y0J5h7Zwrx91bM7z4Tt4U8UX2h6PcIt7dnVNPSYqQrMWuAjJjqMk9q5M1xNKGRYiSlqoS8uh3yrUPYzcXay/E+lf+Cwn2bxZ+1t46m/sSW1g0J7PRbRZZQwiCwhxGMADC5LA47mvxr6PuGVPg6tVa+Obd+t7nLlapPJovd9/M+Hri5WLUUu7+8dz5p+zzxjGwxk7VI7/Wv2ypiac7dv8AIyniI0+juc14J1u61bxLqeszaRCgeUoytFnykHGVHP6V4mBrRnXlK3U+WyrEVMZiak5q2poeO7zTtDuUsRCsFw1kWgSJshuMhsj19K6MbiqVO6j8Vj3Mbi6WDai9ZPZHKS3fijxbdwzXkywW0YUtBFjanbdjrznmvFg8RjK16m3Y8OnHG5hW5qrtHsXJ9JvPCojsrqOIi4YNDI7bgGOeVx7dq7Xh40ZJdzp9l9RrKHRlq+jgs1j1SaPytqorKoIWQd2APGM5rSUYxTkz0cTPko83Qoarq9kmqf6HcBZ5IQ/kwygIvBJzjjB9K4J4mEZ8qZ4lLHxp1nCMtWuhW8g317DcSSt5mS+xSCiH6fT1xXBiazm7I6KktFJvU+j/AIC2TDwZKXUIpwCvQivznjlKOFhfudVKpKULGtqB1bTbkSWASaHPzwsACfxr8wSpVL3djlrQrxnzR2HyEzjzAuMjoTyPauNu0rHZBxcRLQbDg9+lN7EzVi15wIIYYGKiS1LtzUyFSVc4OOeDTtoYp2Yk3zcDFQ2buWhn3cJU7gSCO9CTbOSokRRzsTjJzW0W4qyHBNFXVrKRojPF1A5xWiquTSZFZRaM/wAKTlNRPmHkPjFdUqcnC62PNoyaraHWzzAuQp4rkaitz1veluLDEWw7Gp54o0ukPk+UbV6etRJ3MnLsV5FJGSKUdx83ukQwCR09aubdjBaMikQSnGPrWabRal0ESNY+nStUu5Ll7wkjkjBPShRdyZST0I41BlygHNbN8kQglE+oP+CVPwZX4q/tYaNdzWDyxaOTcyOM7FI4GfWurK+edR9jlx1dKNj9wY45Yo1iVACBt3HoBX1CVlqeQ5dihdw6bqF+lpNdt9mhOZFReHPoTWEk5ysCbauar6xZWdu1pY26xQKAAgGAPrWySskiKl3a5h+IteS4mFrb3hQ7cmQIR+tXboQoW1ZyPir/AISB7X7VNdyxQs6osIIJYZ61lVUoaJm8I80dEc74vuNC0+0lt4byeBhCTIoXLOe+KOeMFYVvZq9tTxv4rJceI7zSvCWkTyxQEGUxuoLyrjJz6VjUfPNRME/ecjO1qPRLPTrbTNVMTaXNHtdZECskpIA5rqjGKjaxvBcsH3Mvxe954avovD8upRPZ5Q2+6f7vfGTWqXI7HA3GUuZIzPEOqPpVo95dSOLeVSsiLKCw/wARWzlymqT3Z4d4rsNQ8PW2o69oupvLbuzFo2OQN3ZgegNSnbUmpUjI+UfiTcZ1a4u4Y9kcjHeg9aicm2YPXQ8r8ZTm3tHOMruyPSvOxsH7Bs9DARtUOY1i70aXT4o7KItct80so4Vf9nFefGMfZ3Z6dWf71GTLI+zBP41jJI0mnKFyq8hUHFZz1RNHVWM6didwI/Ss5IwxDsrHVWh3IueOKzm7VDuqX9qy/bjpg8VNSbaHCTTsOeHc+N1ZxkXJKRat18tcEfnVON9TOLadkT7FZSAf0rLVM6GrrUIAAQPzpuLZjZxkXFjV0wcVCumbqSK89r5Mm9K6YNtGTdndF+xR7rZBBC0ssjBUiRSzMT2AHU1LpynKyVw5pNH0j+yX+zl8XLXxzaz+N/BGs6HAu27sY9T8WnRYLpgQUEkJHmSqf9gA+/Ne7l+XYiHvTWnm7Hm4icKsWk1c/cf9jC51y6+FVnda7FZrLgCQ2KERLgfdQk5YDpubk45r6CDlGKX3nhV/ZuLSZ7T4buYJL6WYfO68Fh0rohJrU5MRH9xZMt6jd4k82SNRg9D1ArN1HKV2YUqSUeVMdp8raiiyCHZGp6sOtdEIe0V2tDmrr2Umr3ZR13WBfMNJt3wjNgmPkn/CsKmIVaXs47HVhcPKn+8ktTj/ABpo9xqF1H9uvY44LTDKX+ZYx6/7Te1Y1tGuyPTpOnGle2rOE8W3mu+PfFUHg3wXJNFaPMovLmYgPIOuBnucH2Argkq2IqWhsW5xpU3N6s88/aX0q71rxDH8P9C01/Ke2WC4dZSCqGRQxI9+eK5sTzuo6a1SDDRtF1JrqRfEfwO2q6/DpelaWtzHo8lukMEcYVV+XLY29e5rrjTcpqy0R0UFy07LqQeMfiF4W+Hk0mteMWhgivNLCLbxxsrhzjG0jqT2rplWoQfvPyOWnS9tPl7Hn/jT4nS/GCeR/DOna7bwWFr5c9hcXAt5FQjqhOCQRXHVqc8nZPUitRdGXvLfqfL/AMNPAmh/Dn4l654L0831ql9dG9VZb+S4jG5slmO75Wz2rHD0VCbTuelDmqUlN9De+Onhy00jw2/jHwdq01rd2rFb8ycqT67T1z6gV6M4OULxY4z5nZI8U0nxHJ4nlZr6VZfNjYbjCGDt9SPlPpXnSalubwi9jy/xpdefqUkrzhtp2iUxBWI9Gx3FXSg0jvpqwrR/bvAGp6eF3o7xZ3cAjJ5PpXROlHkep2UubmPIPGNtq2lS/wBnTebGiE7A4QnHbDjlh9a8XFVHShyxYVVrscxP8w3n8TXip+8FNt6MrjIyffmrexE9wbBUnH4elZOVmJbjYZFUnLUOTNp3cSO1k3X+Fxk10QnaOpzKKU9TtrBiLNcjnFclSXM7nfpylqKYLgg81EI31Jih80gkTDHjqKptI1ULIqvGAxrO9zOUrux2v7OPwQ8RftK/HDw58C/CV/bWt/4ivhbxXV2SIoRglnbHOABWVecaFLnl3S7avRHLia31ei5tXsZvxc+G/iD4MfEzXfhV4uhEep+H9VmsbxR0Z42K7h6qcZB9CKqhONSF0bQkqkFJbNXOegUvyR16c1rKXY2iuVXLVvEGwFGSahJyYpTdzSs9KeZ0Vc5J6YrRRey3M3vc+8P2QPD0mmfs8xC3zbGS9/0uXy8F164OfUAgV/RHA+ExdHI4KHuttXdr6X1XzWnlufVZW1GjZrVlvxJ8M7rXbtvib8Tta07wz4M0xsW99rF0bdbmQHgRqAWmI44UHrX0eccW5RkK5MRU959Op3TzTAYX925XkeL/ALVmuaZq+naprtrf+JNM0HTLtbNLu88Mmxe+u2UGOztYJW8yV3HJcqFUHJOSAebCcZPMpww1ChP3rcrSeresbet1Y8jEZsuV0oU3zp2s/XXoeLabZS/Dz4bH4t/EzSVtQ1nLLp+ng5827JBjyB94J3PTdmvRxOVVc8VDEY9fwtYpdzOhhq2Km6lbS2x5r8DdO1YLqnirVoy82t3cjqZYOOQDuPHB9M96+zynDPCYVX3k7noZdgJUaTlJFrxxYnSNVk3yhpb9DJcnJYxxqTtGB0ySMmuuScqtjtrVUkrEuttp2mXzaS8C/Z7q0AncfK052Fjn+6gPf0NdtPkjD3npqaQqRjHm6nQ/sT+HfAl3+1j8PdY174a6brkkfiEXNpb3N3JawXVzGwdN7orFQpUHGGz6HOK/NfFPB1v9QMdicPG0+R2a691/W1zxcXhI4+lKF3FvrFXf3Fv9srXdB8a/FrxH4o8LeOL/AF/w94y1W61jT9Y1Wy8qS9YuYpQig4McbIYwcdu9fn3gZNx4XqYGvFQqUmlKCd7XV1f1NsHh54fAxpS6f1958zeI7ewg+228PleVC7ENOuNzAAlV+g4z6mv2Ks4yjJRT08vy7+qOWtytWbR57od1DbapqF3o05t5rX97AJWzngZ47814OHpS9rNR0aPm6FSn7apGjo0yW20rVPEk03irUXV7rzNx2gERqCBjGOnNbxwbnL2k9zoo4Kripe2r/EX9OtBpupnTIMQ3LBVSdk3pz7HhcgcfU100afIz1KMIQdupzHjyfxBomvRQ69GZbWGUbRGmNvpxXlY2tXhXi5L3T5zNljo42DqxvDyNLxU63PhuTV948mSLFtyMKe6+3ripxmJisO3Fnp4qUHgXZ9DkNBeO9nMsUCyTYyxJ+9gcjP8AWvDpzXLz9T57AQgn7S3vG/osDfacmIlmIKnnLc9BW0XzTuzs5pTkfTvwWVYfA8hXKjcAFA+7x0r854+nzUoLzPUppQomjqGHJyP0r8us2yed3KwLAMuM/Sh2iKMXcRAY+vUdqiTQ5O48OMdeD15rPmLjNKJE7kSY3fjRzXMdG7jt/Gf8iqULq45S1K93NEq/vGHtk0+R9DO6KDOPM+Tn1NappbgovqThmaMoy9RUNxvdF2gt2Yuk2LR627r0z+ddHtn7M4W7VrxR2EFleX8wt7KzeZ8fcjQk1zWlN6anROtGC942PBfgLxL441k+HvD+lSyXSj549hytbUMLVrT5YoyniacVe4urfDvxloniVvCWqeH7mO+DYEJiJJqsRQqUZ8jWptGpCUOa+hT8Q+DPEvhq+Ona5otxbSldyrJCQSKcsPVpL3kVzRnG6Zmz6VqaIZH024CAcsYjj+VT7Go43swtGxVA2/KDz9Olc7VmZtqIxuOnI681ukuXUlRcncjkjeTqMc9RS5ktinCKe4+CAhtoHTuayqNy0B6bn6y/8EO/hZ4d0D4Raj8T4ikt7fXBjMw52Afw19XleHhSwqkeBiG6tZn3ZDJNPKqXMmE6geteluZKLSsW5b2ztLfzRaAZ+6u3Ofes0lfQpeTKc1m1y7XNxlFHzFMYB9qttLclmTrWoedeRubXCiP93GE4yO5pKpzSBNKNmc54i1yK71OO4Aje4Vwqq8Ywo7kZqJxlJ6jTnay2OE+LQvILCW5tlW13YEboQXmckYUCs5xt1Fe+h5zLpDLrs2rXr7r+2tQJrgyYAJ/gA9aUIKVW7Woocqicp8QXvfFeoRaPceHzBCIRM0sT4yy8jg9K7JXggcjB8VaZrJie68QQtJN5A+xxkAgY6moSnNXsZuEYoral5Wr6E8V5C0UixqiqhG0ntz2rWC5tzGU7M8K8Yatf6JLqKgzuwZluI5FBDg+o7H3rVK7sZyTeqPl34iXLS6vO0I2qxPXt7VzVIuLuU1ZHlvjS6IslgPXdjBNeZj5NUbG+DcvanIXKPsJUV5UKslpc9eEeZkMqARYGcjsaJOTZpKpaNio6ksQPWiWiIptWK1xGOp69+KINLc5qzcrnSQSqsK4IqOW87s9Oo7Tdi9bzZT0x61MoRW5lJtO5IkmX5ajlikbQldaFmLkctmocrMTlystRmMDaxH1qGtQ55DhIkbZAHtTs+o0pNk0bu/KDHqcVL5YmkYdyYQmRfnPNRKdti3yxRa0NNes9Vhu/DUtzHfW7iW3ms2YSRMvO4Ecrj17U41ZJ3Rm5pLQ9N+ACeLrn4gJqWv6bq2u6tcBk066kvmuBbzlhiV13Zc/ewNw/TFdeFxE/brmlf1OXFP8Ac8z0P32/YB/4SFP2btKXWzcSXIgCzG4djIzDgltxJz+Nfdw9n7BKPU+LqSlKs10Pe9CWDS7YKIT5jkEnGCSannsrGVWNSfXQdqM/2u4W3sbYu7N85I7etTH36iSRpSi4U3KTLGtyx6dpDRtOIvkwcfyrpxc/Z0eVaHNhY+0xHO1exy1rZBbmDTkuzbtcHdJBndKU9T/dFcFGikktrnp1K7ndpXt9xhfEnUbaOYxWYwifLErnjPdj60q3KtCqCnypyep554Q13xXpuv3WraEII2aUl9QvlyUTB3CPjA47n1qYSlGN46WOiVKk9ZO9+hxVr4k0Tx38V7zxT9qMhiEUOx35kw26Rh07DGa4qc6dfEuTWptXg40FEg17xRZeMrHU7uzjuXjivViP2KNguN2Cdw6/LxW06sXdJGLvTSj1PMPiNq8nxF1qHR/DRuzZWEZghM8SvFLjkDPIDdRmsIv21T3XoKgnBXe7J/APh7RgI3122FvdQKwliu73Mg4/1f8AtIe3pXoxgnY6ZvV31R5Z8TvBniHQPizp/ibSfC0mnabPbMkr2cYdX543+2KyrXhUT6FRrQ9m4oz/ANofRtcs/hsl5rWoGCWXdLbOsZ/ejsGA5PHrWdeo+TQVGabdkfK+orr1gTqs+WilIJnsRuhI9GzyprjWmsjthJWt1OL8WzNNPIUCsC331bO89ifet6U1c76Cb3JtLlhj8KX8k2xV+Tdv6Lz39q2qNuGh1qfI7Hlvjr4feMLCeXV4dNlu9Of5kubaTzEQe4HSvm8bSqqTa1QSjKTucbI46dPqK8xJ3JvYh4J4X8a1knYS03AIQeP5day5bobXUelqrDp+VQm0zRakMFt5d+NqHrjNdMUuUxqqzOus3JtkXHGOM1jNWN6fw6lhOWyelZx0RcXYtWdlPqN3FY2xHmTSBEJOAM0oUqlWooR3ZUpSloj6H0T4G/s923w9ttK1Rry58QE7rzUI5f3an+6o9K+srZLgMJhleV52OlYSimm5X7k37MXhKP4BftSaR43W9WXTksbr7BentKYztXjvmvyPxAwWLxnD8sJRvec4pW9TCrBRnFrbUj/aW+Cvi340eGW/aK0+eS/8T2928Hi7TgC0k0Wf3V0vrhcKw9ga+gy/Czy3CxwsYaRS89ep2VYSxeFjVjG04qzS7dzyrwV8B/HHjbxBaeGtB0WWa5uJFUR7Dnk17mGy7EYypGFNXueXVquNN9z6n+HX7Angm+u9Q8LeNfBmtNftDHHpt3pTjfHcAfOrxtwwz7g19hDIMEuaNaDja2vnb7jtw2AVelGftEu9zovC/wCwP8J/D2rK2t6zqEnlqG3vCAEYHlHUnr9M19bgeFMmoTg1Fyur3e19NP67HqU8vgk58t16nsPg7wb4Ha6t/h1pBjWzhVp7qQoSlraRgtJM/U5wOB64FfX4vNcHkOT1K0rxkrKK/rrsbYivPBYRzWj2SXU+JP2l/Bnxp/am+IF38bvib4vbSvA+gtcx+A/B8M+0RQQlUimZAAQ7khgcZY5Pavx2nwbxNn1KWPxElH2jveTu+W/wpdN+2p4lPJsVVre2lK6l08/M4LTPhlb+IvHWmeANF86XTPCMASJbqUnzLxjukkZicbixOT9PSv23IOHaVGvThH4aSV+l2e1gcqUq0Vf4dzT+NWgTa2UEjGS0soI7YQJFuRBGSSij+8T+dfpVJUrWPdxFOKppbNGDqeq5sG0G302KGO0RJ5tOJy0H3gZZOwI7VsqsZTsnojKhOT9y+551qPjL7N43v9ZNpE8JtvKtIJx1UjGT/OpqVbT1Qq8VGFjh7f4nHxNrl7Lq2kzjT9OTyFuvOAMwB/1YyOmMdPSscNVnKUk17qPIw+IrVK0oyjZI2fhb4u1DS/iz4V8VLNJbRLrdsQFwpiiNwq7gc5UlWI49K8viOlUx3DuNox+1SnZdE7O3mehT/dVFOGln+Z3H7c37Td5+0X8RtZ0D4R/Dqx0fwT8EFOhiPT7fy2tbVrjyg8pBw2+fv15575/l7wKyiHAE+bNsU54nM3zPmd9Ur2XayPnsPi8M51Uqt3Fu619D5o8aawms28csd2UhE/LseWO3k4HUV/U+Nq0HFcrdl/kbVnelzb3PONEk1WTxRctdQR/Mo3DGCQBjA98V4OCbeIl2Z8xhKNajjpuS3PVfDdzp+jSS3sNomxrPMTt8yluAd3sccjtmvb0jFtn2UORU07GBFdXGuapqM8wWGPelvvdcgICFV/qM5zXj+1nVlJrY8fD1a2InOS72K3iVYr66ma7u/NnS5SJ2ByjFVIL+vYfnWcqUqifMd1eEHRlzu7RX0rS9M8W6BLpd5fLbPZKX+/8AIcAkAjuevWvKxlOFSCp31R5NGnDGxlRbOF0ixu7fUZ7dGT5HwY4xhW57V5dCk1JroeJOjUoSlFdGdXoUnkXsMJB3CT5AwwN3ofau32cWmkdWGhKTPpv4RSCb4eyXLhYy8/3EP3eK/N+PlCFCmvM9v2LjRu2XZg8jkFvpX5TOaWxz2UWRSr5Y5GM+tZpSbBtormYFz8wyKc4uxEndAkqnqevQ1k4szTsMmbDctz2qowBt2K17qCWVs88gwFXPNbwSbsD0jdmPovhv4i+PdPufEfhvRJbmxtT+9kjGdor0I0F7N2R5ssQ+a62JdMe6ZxbywP5gONmMnP0rzakbz0OiniFyXbPQ/AX7PXxe+Is0aeGvBl3Isn3ZHjIX9a66WXYqrG6RjUx1GLPcvhh/wSb+PPiW5F5r8kGnoxBxgk4rsoZJiKj992OCvmcIO0UfUP7OH/BM/RfhNqMureJrtdRuHXH71BhfpXuYTK6OE1epwVcXWxMtT2HwH+yH8MvA/iebxZougQJdTnMjBBXXSoU6dVzRftJuFja1T9nP4e6v4mTxTe+G7Z7uMZWUxjNFahTqTUmtSlXqez5SPxN+zb8N/Gd0mo+I/B9rNMgCqzRDOK2lGEo6oIVqkFYzNZ/Zd+EF/bvpU/gWyVGTbxCM1MIQSs1oU69W+55be/8ABMz4G6jqVzIND2eaDgoOBXn1Mvwrq8ziTUxVZzvc8T+K3/BIrVo7yW6+HOvhQeVhmFebisq9prS0OmnmdWK2PPtc/wCCVHxr0nw1Jrq+INP82MZMM7bB+dcEsoxUYXTRtTzJ1KnLYtfsp/8ABMzxP8a/iVb6N408VRWWg2d1H/a+oxIUgkXq0STNjcxAx8oOM1wYqWAwWGcp1f3vRW923W8r9PR37o9mnhcTVoupKLsui3+4/Tb9mbUPhjoOr+JPgx8JfBNroGmeEHht7e2th/rwUB805Azn17813cK5hUxdKqpWsnpZ/iPPMseBw1Gf86u9LfI9isrxGTEcuCOHY84r6hyTeh8u02mLPqEl7N5sSkhRhnbgfhUq7dwjvqUr/Wrqd5QYiyJHhELdfpQ4ybLkk0Yc3iWKO9lnu7abf5AwjIdnHvUr93LUI03KJzvi++8P3iLLfSpb22zeRbvh2Pp7CpnVTeppTtCFoo8s8c2virUbiO70VQFgUzWltM5cuBzz6VLUnqjJyjL3banF6Na+Jzp934o1fRihdpX+ztLu3SYOOvUhea1w8ZSk2zWpCEbRE8PJd3thDq+qTxuJ8eeXcDaMn5QOeTXRZ7tnJNqMrHM+PvF8enXO+2CJJdQuLe0Z9xAzg/TjNCqJaInl5jgPFOv6ulhejT+FeQbkVsgcc/TBrWNzPl1SaPE/iXq2szefcTXg88RhDIo4IP8AepubiyvdjufO/jqeWFp45Bkq/wAzZ6VlUve7Oe/MzyXxxraG/EafOsUirMy9F3ZxmvJxycqTR3YNWnzGVc3C44JPFeZSpO1meynZFVpS2WY9+lVO0bIxqK5AJF8wg0ptuAqC5nYhmZST8tc0m0h1YRi9S9b3EzIo9q67LnNpXdRstLeXIX92prKTVxTUpO5Yt7i7Iy47ccVm4tuyJVRx2LUEl8wyin6Y61XJTjuO1STuy9DDd8eYp+mKylOP2TaNktS/a24cjIOa5pTZrz6F+G0m84Wyws0jcCMLlj+FRrJ6ImVTlWp2Xhz4KeNfEXg28+INrZxppFjOIbm6kkxtkPRMdcmumGErTg5paI554mCqqHVn0n+z5+zne+DPhVZfEm/8IXCXeqW16oup9PMyiQqghRk/ucuW49K9OjhZU6Clbc4JVPa1nDmPVPhH+xP4Ma4tPip4o8Kr4c1GwuFnuG0m6b7FecElvKPIcknC9MdK1pYOlKXPKPK/IynXqv3Iu6fc/Vz9lxNOHwWsG0u2uI4io2+dCY3YdRkHoP8AGvp8PBexvY8bF0rzs3bZ6eX9a+R6Na35dfJVhnILEr+lNx1I92WqNuK4s9PsPtMqhTiuqHLSp3Z51T2lStyROe1Sa71e8jkhni3K24M54j9/c1yVG6s+ZnoxpRo0mrf8Ey7S7tbbXJ5DcB1VSbm9l4MhHbPYewrOMouQ17tK1vkcTezTeL9cuNcvrVf7KsTuLhsCZs8getZOCnU53sdMIVI0o3tzaX/U5H4ieOvDMVwV+zFbUcmKInCHjhj2HHapqyi1psbKFSR5RYeL/DepfGSw0jQH895YWWS4Ns0MOzocMwGTXFGvSjXiox9ToeHksO5zKnijXde1HxHdfD7wl4ru9MtJFkhtYdIjRo3lyT+9bB6gYB45qq3PKbUXZGHs41LVLanCeHf2bfEfwT8FXXxW8HXup/2RDfs+s6Bc3DMPOY/vJVLnK5646cdKKGGVD34/M6nKlP3Z7l268F6D48DeKvCusSiTYpt42Ynyw3pj7w6j15r0ZRjKPNEyVRxlyyRj65rHiLQrJtOvtHu50AMcwllMOxhzvj3fe9emK4qs52s2U6UG7nAeJbbV/iTocFsuvXa3UVu/lNeOAMew6H6VnJK24KNpaI+c9Su9a8D3F3Y6zZW8gQMs1xFGTE3X76AfL9a5HUs3c6ormWh5n4vkiur6S5tkhRWOf3J+R+K2pNc2h20+aOjFs0jn8FavAQrg2oOMd8967nKPsz0IU+azZ4xrlxremXTRreTwKw5SKf5SPbBr5rF+4+aL1CT1sjCmkZst1z15rkj3YuTlQRO8XXvUTTlsEbSJFl3Hd69KycZJBJNEgdun9KlRe5PtLbAny3AJ79hXRHRakPmqSN6wnkaBQTwBWNRxW51RhZGjbo7YUn8qxlOKdjRKKNLSwbW5S4HVDmnTquFRSRpFpfCekeDNZOqLHbpetGx6ljXrRxKrRu3qXGavqfS3wG+Fs+ueGYNZvLBL+PTtUilKOPklUHlS3UAjivqMo4anmOXxxUoqXLJOz8j0sJgPrmGlz6du56Vo+nP4d+K0uv8AhzwfcabaSsXjtX+eLYfvIc19BVyKMM8XJh52lG6drwWys+zd9Doo4GrTwlr3e3meia38IPA2sQQeL/hzAND1VwWuEjh+fee6n0r3J8NUKUPcn7F7t6aelzzqOWzhXarxTj6lyy+GvxA8MzRt4n169heQearzjy2/3vU1ll2EyyVZ06WKdZ/Lf5Hrwhls43oJP01En03SLkvG920txI/MzMSWP19a+npYGrHDx5tHF9OxvBy5bWsjzz4mfEf4ceBPEl1+z9brqiajr8Bmu/FkYeO0v9hDy6VHOeCyDa7pkFhxyBXwuGzCHE3GFShj6nuUpXUeazbWt2uup50aftMXF4m6drxi7feeH/EbxCbPRYSl7bP9rvpLiSJBxFbxkmOP8Tj8u1ftawsZU04vS+q8kv8AM9GhQlKb51sed/Dq90WC0n1C/s5Zr27mkuJkEfBfjbnPUDg4r2cHShDBq27PUpUpUo+6jnvinrgjw9pcqrWcUknnZwZnGSSe3HQfQV0WSTZjUlKejPNr670y9tb+e3tJlOqQRRXkso3PIMfdHTcT+gNZ0KT5ua4lNRl7qOF+JAii1K4fSLJbeRr0LYW5cM8shGwE/wB4IOSQPWsMRVkna+pnWm5tIoa54a06y0zTtMtbnz3MTPPLsLLKT/rJfQkdj712wSVBQW5VanGFGxz3iR309rLXJYo4THAzxJHFkosRDRkjsDg+pJNGHw3t67oS2lGSfzWh49ScnL2SbV9bn2z+1d4Gbwt+yJ4r1PwF8MPh/pNn8Z/h0PE2r3WnI/8Aak89pJHJGzbiVCOHlfagUBgpOScj/OfLpynx9TeKxFWc8vxMqME7ez5ZN/itEr367dfKw2V4bE4TG4lRcZxvbs9NdO90fmp4f05NV8FNq1zE7K8G1UOcqD/Fx74r+78PB1MFKpJbjy+UquXKpNboxdK0p76/gC3Iij8wr9o6lJMcE+3FLDUktTlgm5czO20+C21DwncWMKkyxEmW0H3zKOroPwBIrodR1INI9aFX2tJxiYmiywadaXVvMsTSSQEqZGz5gJGcehHpUYWlCMHcyw0JUaVplqXTbW4sLnUIBEwlt0kLq2WGMguR254I/GitVi0+XYK/v07oxNJs7Q39yEdYpo4flSIj95xwV7H6ZrwMTGPM+54+G5I1Zcu5yEGnzrfzfaZXMiynOCMqc9civLw9WEU11PH5pOrJTfU6Tw1YySX6pOxeQAEMP4x2rrbcoaHsYZKDTZ9QeBEg0rwDbRDCqzEjBr8q8QObmpR+Z11a8px5Ue5fD79kPTLTRLb4lftZ/GLT/hX4Zuoln0+zvrN7vX9XiPO6005PnCntLMUTnI3Cvx/E5hHn9nh4ucu61S9WeRicb7D3aUeaX4Hq/wCzZ4b/AGNPil421jwx8EfhR4nkisLJGXWfHeqQXFxfcnc4toYglspHYMx969DLZZhQqN10tVojvwVOtiIylWs7fgbnxY/Y7+Dniq0mfSdGj02+wQr242jP0r3OSNaOqCry2tE+O/jB8HfE3wh1drbUoWktS2IrhRwR7159bDSg7x2OSEpOVpHHxOswBY5HauWUlHRHUkkiHWtIu9ZsjpmmwPJNN8qJGuSSaVDmnWSObFytRaZ9P/sB/sh/H7+zzp2raSbbSrwZkEikFlPqK+wwuCqp+9sz5761GlBxPtD4X/8ABML4LeHtVXxLrPh9bm7kbc29MqDXbDBYSnK6Wpwyq1Zn0J4a+D3hDw1BHZaPocFskYABjiHSulcnQSi27M6ax8OxxSeVEhHocdKWiK5EXl8KBn2zjhupobvoVH3WW/8AhBooVD7CVI604pLc2EtfCsBl4XHsw60pW6EpkyeE4GkwYwvbBqtOUFvZkVz4LspCXMPzDjg9acZJoFK7tYrf8ILBaHz3URovzFpTtGPqa561alCdmylh51JI8/8AF2oWi6zcwaZOkixIcSqMjP1rj9s5y93Y6p4KcKEnGylbS+1z5n/br+Jes6Tq/gvwVFY3y6Rca7bP4imtbR3MlsSSUBUY5wFxnPzV4md5k05YSEXzct792foHDPCtF5as1xFRK8lFLe2j1foe+u0/xCksfHN94bPhvwjo/lt4f8PwqImkCR48yYA8564/Ovm3w/iM2wcpYl8mlor/ADYUMwpZROWHpz9o53Up/wCS8j0r4IeOdK+PVnr/AMTtL8F2WlXNqxsFe1Oz7SsJxub1615eSOvlOdVvaxjG0Uvddk13s+pwZnQoYPD0MNGtKrCevvbxbNfTluXujbh1jQ8uA2S1fq0HGpFTT0Z8pVw3sJOLWxdvri6063ZZkCQq3EQIJI966L6HEtxlvKk98JVKLGI8F/WnexT0WpU1u7tpIvs8MW0hQVUKDkDrWTlKUirpQtE53xJbaD/ZrahJpC+bOoRSRnJz3qJxp321ElUat0OC8Ua3ai/W4s4ljFvAYjOr/KxNJXvoiFHlOKmmvdEWaWeZpY0ciJCMrh1wTVRcqY6k3I8/1DTpNP0/UFhupUEkonhCjA68fhmk+Z7swau1c5TXdLuvERk1FrJknhgJjkBzkH+KtaS5mXy6HD2+pXXmz2MilHjlw+88Mf8A69a3adhySSPI/jDrUdu11p0EBjldjj6DqKqybuzmUXUZ84fEnX7fR9KudTncDyUYypIevWpupPXoRUlGktNzx3wVZ6zqNle65qyuYtVOZEI+4gPyEfSvFxeJ563u7Hs5bhJey56nUtXelzWe1JY2UFd0bspw49R61ytShq+p3VGmtCrJGUUgdPeuapO7IkouJS8shyVPU03P3bE0VZkV3uRCDWSs2Z4l3TOisYYxEgAHSnVcnN2OmVoyaZdiji+bcgxjpis1GT3Jck3ZEsESO33Bj1rVtQRUYpas6jQNGjurEGCwaeaS4WKNEGcZBP8ASuVynORcqsYLU0/DHgHxJ4kvLSztdHkVLy6MMcxQ4j+YKSw9BkVcMNVqz5UjmliYwpuT2Ppj4df8E/vFHirX20DWNEgWG10wRQahZhlM0zcq7epBOK9fD5JOUvePOrZlGEU4n0R+zH/wS01vwZqll4w8cwWl/qdjMzW8kkA2uhAG1l5BIxwfevTwuT08O7y1Zy4jHus7JaM9++GX/BPfwvoOmap4cv8ASFNpq+o/bZYCvyFwcgmu6OEpxul1OedepdM910H4AeEvDmn2mh3GkQtCEUQ28qfLwKuaUfdZEZSbumbt38DdI13SW0x4UtJFB+yzwIuYiOhGRzULDxqqz0NoVnSndnqXw+0m98N+ErfR7/V5LqSCLBuHG0yNjHQcDiu+K5YctzmruNSfMtDQ0+9FvJ9mZ0VRy3zc/iazT7GVNN6Gpf6vZyWYkW5BjT7zMeB9PU1nVq8y8jSjQcKjutSnqJa00RtQnSQQMSVjjX55T2ArCrJxhzNWRrFxdTkbu/yOMu9D+IPjfybi+ik07SLds/ZGUb5APU55zXOvaPllH5pr/h7/AHGiWGo3V7yIPiVrem6DpMejwWoht4IwdscRyD3J9TWs5qNKzQUXed5M82stNsvENpf67JatHp6EyZuCUa4k7Zz90duPc1zRqTnFytojarKNOo+R3u/69PQ8c/aC8W+D9F0u98Y6tYNFa6VEZ2trZyu5VGSeOQD0A71zV6kYL2rWiKpuT92+55P+z/4T+Lnxp1Ob48aZ4rufDT3tsj6HoltGFWK3ByGkQ53OfWnSofW260JNLTTY6q1TD0YKK17n0F4rtXn+EWox6/4r1S5u57Z/7ajtgZEnjxhwycEHnqK6varD0Wk2zzYc0q/5HjHwK03wfD8KbW+8C+P7tbdwyWFmzsJ0wxGcSDkZHTrxWFKrCtStGVmddec1Vs4mPpPhnxn4s8S3Evjv4i3GoacspS3eSAKYSOOcckiqpU5xlec9C3zRV7WG/FbwMfh34UXxLHqNtqFrGTIqWtwHeJ+zY4OO+DW1WLjG8dUCrRlKyPlbxv4wt/GGuT6ylpFbSyIUla2GFbPQsD0z3Hqa4OWLbuddKLjoeT+KLXyNVc29uIdxIkiQYUkdTjsfWtlT5VZHoU2oq0ixo10X8O6jEsoDGxPTvzW7/h3Z0Nya0PGPFAsZbktDFPHLn5xIMLn1FfO4xwuXCy3MjYFGSa4YzuFST5QLKON3Wqc7GUbkkQUHPHvmoc7lSTHFg3yjpReyHGGt2SQrGkoYtnA55rPn5inaJv6Ja3mobYbK1eVz/DGhJ/SofvaIFPQ7LRPhR8RdUQNZeD9QcHoRbN/hTjhcTVdoU2/kVFt6pHpHw1/ZF+Iniy8SXW9OksrYDLlxhsV9Tk3B+ZZlVUqq5Y+Z2UcLVqu+x9FeA/2IvCkD26abHc3cjAK7SIQu761+mYTgjJMLFSqrmPTo4GFFOVRn1b8EP2X38K+HLnTLTUdNa8+RYtCe62yXRP8Ad45I4q8ZxNw5w/ReHkrU1ukVic8weEceaEuT+ZLRep1mmal4D8En7JrukR6nfgc2UkWFgwT8ue+OnvXymL4l4q4oxH1Xh9KhQtrUqJ3/AO3djhqYrF468cPeMX1K3iL4p33iRDFpHh2x06NMAx2duAwA9/Wva4f4DhhVKpmONqYmct1Jvl87K+hvg8pjR96tUcmzn9Zt/EPi++jm1jVbu+ZlCp5znA9gT/KvtsFlWUZNTtRgoXZ7uGp0MLTtCCiiGz8IXOnGRmeF/KkBdFZcoPfNevCvVVGVO/ut3+7+mKpVp1HZaM8a+L/hbQ/Hvwj8X/sv+LtYa0ebxnNrmk+IcbbrSbl4VltZ4XB5TeCjKR91mr8Sznw94gqcYQz3I6q5ub34z0VrdH5u255eMwE8VivrEG+ZRSWvb1Pn608Oa74j0iyufiJBFa67a2XlatbQSBoXccGVD3Rsbh6A1/Q2SPE4jAwli4ctW2qvdH0OCqOnhoqovf6mfq1/p1vpcNzHBFEgLJFDE43zEdWPcA+tfQxXu2RdSt+8cTxn48eIxaxST2dhFJ54dbW0TOJHx29QPWsJ88YW3ZyYm3LdbmObS60HwTBpl0pN8LHzwY15jldckZ9MCtIQcad5ble9CjZ7nn7W+pX+pf8ACW3kCQz29jusklbCxQ87nz3c4OB1rjdObqc7Oe0k+dso2GoWhu5td1pflSJNsDHDfZiDtXgdGPftXo2koczNKVRufNUenY5rVLbV55Lm7FyEtzpRjX5AVTduIVv6VnTxFSFVTWnQc6LjJTWx3nxm/aM0TRfAHgTwzqHjuLX/ABH4m8J6ZodjpMbOW0ezE0sM28DG3fywwT1z2r+U8z4Soy4yzCUqPsaUKrq8z055tRd0fn2NzbF4XiP6olaFTkt89Hoj52a4hsdNbQdMu2aCO8MLHeQdiEgH9BX9H5fWp1MBTS7I+gpSkqahBe6m19xVGjBLq7ltZAIJSFulV/m9VYfQ1qqSUmo7Mn6o+ZtbPc0fBvhLVNC1F7e1uTM8q70zKQJD6oeMHFcyoSozdupeDorBtqLvc6C807TmZtNubdRNGytMk0eOD0bOPv8AUY712ulGVPU7pyU42sYt/JpyNNoFvbGDaSqlnBaI4yzLjqPXNeVXppRaicV1L3F0OVjuNN0m/wDtWoytDbxqcPu53fSvFnGMJXnokeFO2HrtydonO6fGWvprmJ9rNKW2Oedue4PevNo06U4OpB3TZ4sKVqjlfdnWeFGSbUIzCSQXwHz931roVVQStqe/gqUn8R9QfD/XfEHg+003UfD91FbXEFpujuDbpI8LsTh03AhWA6NjI6gg81+M+ItaWKzGFFbJanbiFaaSJNd1TVvEGqT67rurXV/f3D7rm+vbhpZpW9WdySx+pr4OjCGHjaCsjhlTpxfMehfsifG+6+BPxaj1xW3W2pQm0ugx6Ang/nXXR9+qpSMfrE6Eny7M+7/BUEHj5DqET5Wf5lIPrXsRcWrIV5PVFb4h/staR8TdCuNH1G1WQtGQhYcg1TceRxCcrI+O9Q/4J3/GM/Es+DvD+nlrSST5Llxwi5rxPqFarWtHY5quMVGGu59u/sn/APBLbwL8MYIPEHjO3Go6mwBLTICEPsK+qwOWUcLFNq7PAr4utXlrsfW3h74c6LoEEdtY6ekaIBwigD6V6bq8uiOdQ5tzo7bQ1yFWMKM1n8UrlN8hcPh4QurJEDkd61toNSVy/Z6DbGPfFGQw68Vk4sHNSWg6bTMOSUz2HHNXzRSEkr67ktvaOf8AR5SQnsKnm6lSY86DlvMSXhfuseKHLQUW0VdYm0awRZLrX7GJycMHuFBP4ZpwvI2jCpPocl8SfijZeEYPsPhgQXt28YJlUbkX8qyrXpp23OqFFxabPHPEfjLxf4mulm1vUrm4DZzDkrGv4CvNmmveep6VKnCO25DpKTRTjbEDHICCDmoi5xltozblclcl134aaJ8V/HPhiy8Tndp/hdpNTu4PKG2Q4KoGPruPHtmtMRRjXqQ/u6s78Nj5YPKK1Pmd5tKK6eb8jY+NGtvceFbp7WMR24hYxqBhVUKcCtWqNSPPB6NXPNpqcY2e5b/4J0z2kn7N76j4sj+yNqE94+mSIv8ArlM5C7gB1Yd6/P8APMso0pV8VVbTlG0Wtfe0smuh6mIrYiv9XjSV3H4l5a6nq3i3wvfWUhntF+x3Cou6LHEpxnIPb6V3ZRncsLJYbGK2isc1SlHHU7wd99f0Zyyx6gLtYdQuZpWCkuHUhfxNfaU5pxvF3R4c6Psb33HXmtXV7cbbeJLe2hjIkmTv/sgVtCV9zJqMjK1zxINFijSSSUyiMskJjJYj1PpSnPlHycu5z+peJzqFxDYx3G9Jk86ZZDgYpJWehN3Z2OY8ZJbR2bxXTxwOF3wRx8KVyCSw9fSrjNO5fJy6s5/xf4rsl0m4lm8pFNuNxbjaAMDt61NS81oZ3d/I4jV9ehstBY/ZAxWwC4BzgkZFOMdLMzSblaxxehR+I7nQJbmWfZO0LfKjfwg5H/6q1p+4XOCi7I808WX9/b3N5NKgWSSMSFF6g+vtVSkrmfs7K7PFfjT4nhnZ76bi4UAnI68daxdRtkVJqMbJanzB49lvPi341h8C6TG2GfzdUljUkRQg8lvTPSuXFYxYei316GWBwk8bjFT+81fiHYn4fQReHrTyy4iUqpT5WiYda8enOTjzyPq8wp1cKlSVrr8jzxpmAzI7FRnaGYkD6VEp1amj2OGKjF3W5BPKfLDA9uKfsl1JdT3iitx83zevpWkqK5TSDSGXb7ozXLazZjX+BnRwOIkCk1ry3dzZy9pK5ailZ2GRgd6iUlFFxilqzZ8MaRqPiXXLXw7olqZ7u7lEcMajJYk1zxjOtPlW5NWvGlG7PqL9m34B+O/DHxWs/DF/4Rna+t7iG42XNtlEIPIPHIINe1g8vqUcQuZXPLxGIhWpXTP0H+En7BPgo+LG8fzeG1tZ7gZawXPkqTgtgdByM19EsNRU+e2p5Uq9WcOR7H034E+CHhrw7dC307SoiQo3CTnBre66IyUbLU9AsPCFnaFoJLeMLjLj1qG+5SSvc2bHw6jZMdqojVeC69Pxp26hJssnQjMyxTRBzDkowXp9KHS5tSFdal620ksA7KE+bBJHWm4KJbvJ3ZYVJmDxxMuehfrTcrqxGmzMyHwzrepav9pOrbIIgdtiItokc93bqR7DFYS5mtDoTpU6e2p0Fp4b06C7S91y93+V/q7NOIgevI7/AI1MaajLmqP5HO8VVceWlHfr1IvFPjm0jQkxL8vywiMbiPcCscRX53tp0LpYZU1ruzibzxNqfibV4rbVdVlsNPhYFl25ZvqO1TTftJLmdkdbpQhSvFalPxnrvhaLUFUX5ljDgfZjGd0nua3nKkndO6MqdKpJe9oef/EvXNRii8q0to0CnzLezcDYo6/MO/0rirTlNcqR0KME9D5a/aLufEnjTVNN+GtpqV3HqvijV48wWFmqgQRkMxdhjYNo4wD1x715uIjaKpXak3pb+tDswsI87qvS2t/M+h/gb4V0nR9W0xLfRDbtboLIObgKQyjH3Txtr16K5GklsclaKmmbmp+IfDHhLxZrdr401uBZ/skxtUvtqwp8pzl1HTpzzWXNSUmp7GM4ycE6avY+T/gd468NfEnSPE9v4ciS+02y8TXUFleQja8XJIKleqhicVzYWEa1OVmdc7qa0szk7qy+NNlqN1oF74vtb+zNyZbVyhimRuylhwW7e9dKpzpxcW7o6lyTs7HOyaY9vqV2dT1C9t7uQfvrSYkoR3O3PI915HpXP7RJtdTWUEo2SPEfix4XtfDer3GoaQpQSoXCKpdH9QTnJHv1HcVzSlJSKoysrSPH9U1SGeRzEHBMmTukyAfStozkjrUW3qXvCMkV7pt1ZmMjfaupGehrupXqU7WOlbWRz938M/Dtzqi/8LM8bQeFrTYDFLFA15JKp7iNW6/lXm5hlslHnlJIPeascL4s0Lw1putTWng7xRLq9gp/c3lxYG2d/wDgBZsfnXzrp8srJ3G1yrUyxYTHnbxmtPZX6kO8dRxtZh+7Xv3pKk4gm5Mki0u727unNZVLs01SPXf2d/2WLn4opJ4w8baodN0C0bBZf9Zct/dT/GvXyvKHil7SppEqlh5V3d6I+l/A1r8MfhfZtpfw/wDClpb5+9dXMQklYY6biK+qpUcBhF+7gvVnoKhRhb3Tq/Dfi7xFq9xFaafL8pUgLEo49BxXr5dUxNatFUkuW2/5HpYWipOyjZH0H8APgX8V/ijLCdD8PPLEoAnu7rEUC/7zHj8q9yvntLLKagnz1ErW0XzZnmeZZflcWqs9ey1f3HpXiH4Z+LvArDQL+9sD5ecvplyrhcepzXh06ud8TOUZVfZQT+y9fwPPwuZUMe+aEXbzVjMstLU3n9oXiiTyVyJTcEuP8K9zDcKZdQoqNWPtH1ctT0qf1l81PlSh08++li3pvhHUvE0k2raWkphg+/I8BYMT6nvXuUo4TA0+RK1uiR0Sq4fCqMajSb6Gnqvwh16ztleG9sbd2gM08klwFG32B71vTzSgpqlyu712Maec4Pmsk3rbYy01a7awGj6PcgRxsWaYQjdu74OK9iOGpzaqTV+up6kI3n7Sf3GNqWgC2g/tOS6SVwjO6ySFcnH8eeMV6N6ThtpY1p1VKra1jxL4zajLrXxHSSylt7eG98PRM8lu29NysRyfxxXJl9Gsqk7aKWwqnLz2jc8b+KFppyBbhZJoDCDmWN8iQj+HHHBr6+m4cqezOqlGy5tzzPx3eWXiPTpNT8N2TRNYRCK6SaUBy+TuyP4R6CpjVcnuYSqOTet+1jxjw/4o1vxjr1/rPiXThbTWUos9LgkzsWPIDSDH8XXmlCU6lZt6JGWFU603OrpbYi8feJdRW8a2swJXgi22ioP+PhkBX8EA7+1b1pNU36GuIasmcheTSpoVi9xe+ZZqrm6df+WmSAVUdcZwM98VnRs0mzCMJpczd0c/42nvXtl0+GeOCWFI1u1SM7VTf8sY+oPT1p4mtNLlRhXklC61NK+s0aKayN2wlnhjS3kGDyQckjGAw7LzRCneDu2bc05wUdj6N/Zc8Q/sC/s6/scah+2D8cPhZpPiL4h6N4ivvDNgdXtvPZY5bYyWrJGflR1LORJ1GDX8i+NWC454i8SqeRYCo6WFnCE3NaP3ZK+v3aHzeIwuChmbxWKlyqCVpLe99Efn/wCD4oLjT7vU7qRQrMZAgA5Dtyueelf0vk0IU8JGMpXcUl9ysb4CpB4b3dVds2rT7NPrR0e3tmhKwf6U2BluPvDIxx1r2lKKnodcZKUlFC6kZGaMWclxDLY2TOJlPB5+V+Oma5sTXitOprVoqKvExdU8f6r4phudPu7hROoXfdlQN5XuT1PpXEsZKtTcEzghjI1oTpx0a6nGPFNDdvfNdy7A5MoVuT/tAntXiV5Sg27s+eq06lGo5KT8z0P9jr9m7x9+1n+1h4L+CPw7k0651K/1QXTvrk6ra+TD+9kMgz84CqflHLdK/PePM5ocO8O1sbiHLlSe2+uiOWUKbxdKU/ejFpyT6q+2hmfHvTLbQf2jvHmjQ6vFqq23i29Q30Gn/ZVlImbLLD/yzXOQF9BVcEY2eN4XwtRQ5eaEXa/NbRdepVWCo5hVjbS9189STwnFbnUIWTCgyjfGOtfXKg3oejRq1Hsj6atrT/iQ2N0tuVDW4VWxgMBwcH2NfhvGVVSz2a7JI7J883dlaUfLkgg18qmpM5Kidys7SRSB42wykEEdjVpPdMy5Ln3N/wAE9fjbbeJ9GXw7q14q3dmQrLI3LD1r0cNUVuVGkpQVPzPsfw9YXeqXiy6dGCGPJA4r0adGc5XR51XEwpx1PUfBvw0t4ZV1S5tozNgfMV5r1qFBQdzw8VX9o7nZ2WhShiEiAVR2reV2Y3Rq6foc96CkEeNvJIHWoUGy7pK5P9kFqvlyx4ZehPenaxlJqQAySTIqjtyQKpSGl1POP21/jZa/s4/s8ah8Rb/w5qmoW8l7b2NxJpN4IJLJZ3Eazl8HYqsVBOO4rHFVJwoN01dm2E9+ukmk+h5P4c/b/wDiNZxW/h1PgjNdrBAsf29pjdzEgYBcb4wxPBzmuenOr7O9jtngVWfMpak3iX9qX9oDVoftllca1oMLPhlh8A2o49nkv3P47aVSdZK92vkZQwVpWkvx/wCAYB+JXxr8Sws99rvjPWcEBoorq0tck/7KwPj86xhUqT0V2ztoYSlGeyNPRY9ajuI38QeAvGdq+NxnupLm5Vf+/WmP+hralLEKVuU65x5VZWf9eo3x/wCM/EOhXCS6J4uhgiZSNt/4Z1cuPqwsEArSusSmvZzUX56fiTF0qlL+FO/lb/M4rTPjreXk8iTeJfDMhtwC4vY760BJ9DPbKDx2HPtXj1MRi4vWUGr23Oig8Pd80Kmn9256N4Rk+IXieC2m0X4RazrEcmGWfRVV4SOuVMhjyPcZBrqUsylFKULrpZr8NTmr5jlUE0qjT84tfodHrPip/CNubHWfg94/hu7iXddTDwpJMpVRhUJiY5A5+tdUcaqdNwlTd+v9XOWGKpVLNTTXTf8AyPK/jj8bfCV74avLK50fxlpqPaOolv8AwBqcMSZHVpGh2IBj7xOBnrWFb2OIlGTTTXTY7aNVOldPc9v/AGW49K1H9mXwXqmixItjPosM1ui9DGy5B/I5rnjCFai1NXTvob1qlSliG1o0dwPFF94UvbzU9Ss21TT7u1KtAzcxEDG4E9Pwr5XNMhlCpLEYZc11rFvy3XoawxGHxkYUW/ZTi7qSWj8mV9et9A1Cwh1fwdfm7gktlkkhZiXtyTjBHfniscrzb6hJUpNuFtU94s6p4WpjIyhiIqM7vll0kcNr9/eW6siIWkibcARtUHnrX3dHFU8RBSp6o+fq4SeGqclRHKatr15dYiktZ55LpT51xEcFAB90Z6VurSWpLgp7mElzDok9w9wXa4W14SQlljXsMjvSaUfeM5QS1PPr7XfEviXUZsRiaMTYWTBBwP7wPRR+tZ05O7uN6LU534h32q3sjaHp1rLdsrp9qaJcqq7h1NTUrpPlQqVF1G30F8XXkKWX2XywG8pGVFPLHgYIraMmS6aizA1fWV0TbZXMIjW5tyRsGAp961ulqY8jk7nkPxB1a3jmeR7lTIYSJPw6Coi1Udr2FPZW1PDbP4cfED9pj4w23wd+FdgLrVNQI8xmbEdtEPvTSH+FFBzn8K87NszwmT4V168rLou7OnBZVWzCpyrRdX2Mv4qafafsRS+If2eYvDIl1XVkI1zxRPErNeOpHyxHJKRLjp3r5TLMauJJrGQbUVpY++q5dh+E8P7OpDm9rG6nbf0PnLxt4wufEepG+u5dxWNUj3HOFAwBX0NSHRbHxuJxLrzczmnu0YfvZePTNOMNEjKGzbKl74k0mxjPnXIOe2a3p4WrWlaKOLEYmnSepFpmoW+q5ltAdvY0sTSlh/dZvg5qqudkk+FUoTXEo8zHiKis0jobL99iRx1FTUqcqsjrjaOh0vgrwR4r+IOuxeGfBmhz6hfSqTHb265bAGSfpWFKnOtPlgtSK1anSjeTPpb9jT/gn547+Nur2Xifwp4ou9OvtL1QJqkMlo0b25U8gEjk+4r38Bljupt2a3PFxWMVnFq5+x/wm/Z503TrWzu9ZsFutQt7dIpLt1HmPgYyTX0Emlojzop2PZvDnhKzguRbXCBY0Tg55H1qVqJux0+n6JYTwu9kgOzGCFGavlQ7suR6U93bsL6MhgcLIMYIqHqxuyehoWujz2FkUt5VaNhzg9aFexlKpCUrMjismLovmhj3Ut0raCbRpKSjG7G6/NqEVsun6Na7ru4ilFvKyZijdVyC5HQE4pVISlojD2mvoZq61bGIwRMrSo5T5ByGGQxrJ8nLZPU6I05pXkbGm3EdtALgFWG3OH6k5ojKEVdhVUnpF6GTql1qWr3E7aFeW6SKp2NMp2KfWuaq5VPgKpqEUlJXKWk3Vto5RtZuo570tmVVjyCB6VMXGK13NcRTcknHRGdf315rGoyRaPpkQeT5mYwDCD1yeppqcpPQUH7vvHN2miX+tXk2orEvlRSeUt20eGuH5yF9hjrWbkpu+lnojedox5VueWfFm81iPUX0tb4AQsWdtoJbHYtg/lXPUlKm7M0p0owXNI4T4Q/C3X/if4yvPjpqHiddGjs5PsehIqA7mBOXZWBzluOMcCuejD6zU9vKVrbGuJreyh7CMbo6jwD47s7jWdds/F+oWR13wxOI5rixB8mRX5ztP3WOfwrrhWhUlJPeJx1ZLlioJtM+b/jDrT/tPfEOfQ9PiurXTNAMlpdA3BA1GRsck8ZH4815/tVjJOK0SOuivY0td2b3w4+FUnwO1zUdMtYJrHTdW06GTZDDhYLleN3H4V1Yek6E2u50SUZUlJ7m5rNjFe3V/FrNnuExXdKj8iX+Fxn15z9a6ql5XRkqjWiPLNXufDV1NdeG/HsVzCYyUt78sBJbkdCD6Z7HmuCajB+8jW073Pmn9pS1134Y6y+n3ztdwXMfm2V6sm+G6TnDxnOA3rjHvXPUhVir9DqpU6Klzq9356aeXT9TxefVTewbykSF2374024z2IrWlTd9WdkItl/wTdG3v2VNpBBVgfcYNejSkoqx0xklJWOI8Z6ZcaRr1zCHjbLkmOQguo9vavCzCjU9o5N3QVUo1NepjySBlwT1ryYfFoUo8yuyNCc5AA/Ct21bUjlUmTRqgJdhWE56WKaS0R1nwd+GXjT44fELT/hn8O9GN7qV/LgDOI4Yxy0srHhEUcljwAK0wuHniqqhA5qtaMEe3eFZfFGh6vdfClNSg1G00e7a2ivdNBaGZlOCyccjOcHvX3WApOdNYfp3PYw/NGCitT1nwd8DfFutaottqxmsoCAzG4gKuy+uD2r148OYmeM+O8F5WZ6uEwvtVzzWh9aeGfg38B/hp4D02z8Hpcaj4gaEvqF1cxgRoSPuqO5r28PQnhJOjCKjFI4qeIzKtiZxnFQprbuzWg1/xVBpX9kvqlxFp/3msUmKKMey9aWE4ay+vUlWrx5+Z316Gscvwspqq4Jy77lfw54YttSvrjUdMjy0hLzYlbaeOQBmvbhlmDy13oRST7HrVaqjBRkvwN+28EaFJDcXtvqMsTtGF+zruYs3t2rWvRrVIqML69exz0sXiVUUFFNdwurr4h3WlvoGjSXiaanzRyw2/JI+9zx0rrhDCYeXNVabZcaGAo1fa1UnNmV9nW9tjJPrt1Mkg/drdkqffA9K9KhdK6Ss9jpVZvSMEvQdGWjtgobYF+8okxkZ4rWn7XEQtNW32fn380bypycSh4tj1jxFpkth4b1CC1uZnj8ozJvEiqwLoe3K5H41GaU6iwE1F2bsTTgrS5k36Hj3xk0Dw7pniGe801Bauq7UjTgFP7o9s+tetlrfsYLrY3UXGCvqz5y+K/iS+vpprC3eFVuH/ci5OCADgnOM+vSvd5JShZC9pOEbdDgTZzaTZGHSYQkNxe5upWl3POwGcBeuPcgD8qIqlT0S1DlpwXM92cXr8MaRAxxCR5oZpGCrtRXJPQ9wMZz61LlquXqY1W3rFnlcfijV7+5liutEvRK0jW08xt28uKAd1boNw4rmxEql0pHFByqytJPQpr4s0GWxa8lNsRHPmVTPuWCOP7sf4nnjvU05RUbpo1q1oRpuzMy+vlvbGa4e5W3e7P22UZyUQH5ck9/QVr7aFrtnJTjzq7NJdVEdpHfXkaFLmAiy3HBiIUgyvz1pxrt13bWLX3ef+X6nqudKNNR6nrv/AAS98N+FPjj8U/HXwD+JnwitviBpep+EJNd0rw1cS+Uh1CxIeJkbPysys6nthsEV/OH0msxzLIeHcDmmX4l4eaqxpymle0J6fcfOYtYacpRrP3ZNb7bny9+0xpXw10X9qjx14b+AF1eReD7bxA50eDUbKS3mtUbG6Bo2yQEfcgPOQoI619j4aYjN8dwpha2YTUqrSvJdfM8zC1OXEToU3ov1ONKa4gOoWd7JsT9zcS+Wd6gkg5GOR71+iqpU5XJS8mdjqVY1FaRRmg8T2+q/Z7nVPLAQokwYgOuMhT6Yry6k61SpqzKX1z2zjKWhX0/Q7uOC4nBZEdN027kvk4O39DSow9nFoxo4aVFvle5Slt9SR5rC9H3TkTKBn8fbpxSqOVnFmEoVVJxqbHS/s9w63pP7RPgq88PalBZXyeJ7VLO6lumhTe0gVd8icqpJwSOxr8+4+oUKvDeKWIjzwUW2rXv6HDDF0ctx9PESV4xabS6rsL8X9I8eWfxy8ZJ8SbCax8Qf8JPeDVLO8Vlkjk81ichiWxzkEk8YPNHBbwFPh/DxwUk6fKuW3axtKr/bGZVsXFcsZybSfRE3gmGKTW7a3V2VmnAZxxu596+yrTfs207M9Om6dBrmPffgl4hTUPh7NYyXBlEl7PLiRi32ecSYwuRwGTIIHGVWv594hi6+KrVZb3/A4qWKnVqOK2uat5Kc7V6nrXz1OOly3eT1IAoAyR1olO+gpNRR9I/sIfss/Gfx/wCNrTx14aeWw0+OQeY5U4mX0r18vwdWXv8AQ8TG4lc9on65fCj4bDw9oMUGpqHlWMB2Pc19JRhKCseZVbq6S2O+06yOV8mPIU4xiulPUyatojVih8pyrx43DkGm2RJIsaRcy2TukK4LZAJpK/QlydrDLuC4kctKBg85xScWVFPqSQRGTGyEB8YBNJRRocd8ePhr4u+KXwj8T/Djw7qmnrL4g0S5sfK1K282Ji6ELlfUHBB7HmhUud8re5jT9nOpGTT0fpsfB/wh8Y674m1VrnWYvJumZY7q2Jx5U0Y8mVD7iRGFcbnaVu2h9TClCCue1afICIt1sjADqyZP0zWjcnuYTd3Y6vwhauZWWSABG5HsOOh604Ra1sROLXU7aCWWOIDa/wAi4GWJyDWvPKKvYwvucr8R/PKENNJnbheT6VzYuS5bHVhJS5jz2C9ubdipuH5O0KWNfOVnHm5W9X+J9HCUuXRnT/Dg+F4v7Q1jVdOs7y7EOLSK5thgjIDPkEHIz71WFwuHUZSmteh52YRrVnFJ6LcwfETaRqWqtEmjWyvHGSWUY3HHvVKlSctFqXBcsEkjxP8Aaf1ZtH8H3T28awTnS7hEjViQcxkAYzzkkV38jp0HK1mkTCnLE4uml3sfbX7OvgweBv2a/CHgmSPa2leHbOBlH+zCo/nTw1NQw0U9zDNqsFjppbXt+hsvdRXFq0LBcKCrBq6FqjzJJKVmcXfeGtc8J6u/izwLf+TMxRp4CMpMFbcFIry8ZkeFxq5oq0u/c9ehmtRUfq9dc1Pp3XTQ5DxN+0ELA6pF8T/AU8kl1qKyWc2mjaIojjcCO4B5rwZYHNcrlJ0veV7/AC7Hs4eOX472dGnU5YqNmpa3fe5o+J/CHiC68P2nijw0y3ujXdr9ohl04qzhB1VlHK+9elhOIqNTljWXK3/w2vY8avgKMK0qVGXvRdrNW+57M898W3ss12LPRS0UixEv5wAIOMfN7+1e7GrGUU4u557oVqLvWi0YGjxvbaXcW9td+e4nJ1CVx1P90VLqc+iCcfaapaHJeGPEF/Dca9fRRi3t5rjYjk5LAdetcUKkouUpbI6YxhFKC3OV8dvJHfx60lzjDEGNerjtxXa69krnO4Ru7nGePvFzXdsLmRwjbNzgnuOla3nbm6GSpup7sUYXhb9mL4r/AB8Nx4gupV8M+E7aN5r7xDqY8tpEXlhBG3MjEcA429Oa+WznizBZVCUab5qi6H0WUcM1sVXjCtFq7XTv37I8W/aO/bV+COjeAL/9nT9lL4ZapoPky+Ve+PU1HytR1EjhhIygNtzkbQQB2ryMtyTM87xFPMc1a5Vqobry02Pq8zzbL+EqVbA4SbnVkkm4pKMX5N6tnyRr82oXdu1zfandXcvQzXly0rcnJOWJPWvuo08NhqLVKKivJH5ficwx2YVF7eo5W2u72ObvEmdtqygYrhdVSlqa06M27soS6HNeEobkgN2FbxxMaaukFWlK1kyjdeB9Od900hYg87jV08xrRvYw+o06rvPoaumWdlpVl5UAAAHYVyVJVa8+aTNFGFFWRUZ/tExI+7nrRW/dJpMzjBSep3ng/R4dS1y0t7u1uZbRp1W4FmuZNmedo9a4KUXVaTOqo3COm5+gH/BPz/gmd4k1D4qxfFKfxRfxaHG+7TUUGGV4zziTHWvq8uyuNCXtG9DwMZinV9xLU/Vn4S/BDw74Jt0stB0WK3cyZcoADI3qSOtevKy0icSVviPUdG0y2tbrf5YiKHJUj71QlqVJ3RvtYLdyGa0iX5sBmK8GiW5DdjRtIbG0iVHXaDw3l9z70nJLQXvdC5E0YBt0QgN90keveqSctBO7d2SppyaSFvmnZxjBXOQKJQ9m7maqOvLksWpbaynh3R4VmHJUc10RcHG6JSqRlZnAftEan4o8K/B+/vPDVvcyymSNJZbeJ3lhiZgHkVE+ZioOQB+PGa8PP6mJWXSVFtN21W6V9WetlMcLVzBe1tono9m7aI5P4V/E/U/iDdajbz3tvq9rpV/b2VvdJaqsjMIFeUkqefmYjBGeK83IsTjsSp+2qc8U0k7Wf4G+Y0aGH5PZxcZSTbV3bfTQ7XULvUL+9FlYwyocFQm3AOfevcqXlLliefC7jds0rHRZ9JsgJ3jWVuS8hB2/h0reNH2Ss2Q6ylPRGVq/hux8VeaBHcNJjBu3fylHsMc4rmrU4yeh3wqOnFc1vTdnJa58MNH8JaLLeRfEHVrcshL7bsshJPQZ/LiuKtRUI35rFqvPn0hoJpPj2e3063tL4LJaW6YW3aIxtIMdc1dKt+75U9jlqxvJ23OB1uCw+JvjmDwnaabBaee7NNDAdwWMnAyeOTWaUa1dU/vN4xnGm53uN8R/D3V/hNplxpngjU4YYIZMfIwLxvz9xc/MenaqqUlQbjB6C9pGu/eWp87+Knn8K+Or3T7LVpLpdeRn1y6uXSO9kyucKg5wMEZwccZxmvOjKdOq4xe+53UlTnFK2q27C/B34UW2g6LeR6zbXQt7x5b6yvZgZGj25Pzeh+tdeDoKLbZriEnNO52tzPDq2rXOq2+pfbbKTQ1eTHO1hjJI7HHP4V2TUnPmicrnNxtY8+uNY8NeKItVsW1Yf2nZjyriESY3oAWV1HsDXP7ZO/cpRdOKkz5q+IXinxB4n1G/sbSybEMzQT6hKDslAA6ZHpjB6157qzqTsdVJcmrPB/H/AIKk1dB5/iK7WKPLQebcNJCjA/MChPAJPUUnzt2ud1OEZz5mcNc6RLZwvG9m6qRzhdwB/vBh1FdNJt7nVLTYm8MzTGfyJNquvAYcZrqp8vMrkxbUjL+MFxE/iQyYQymJd5xk9Pfoa8/NJSpy0NqkW0mcVJgHqeeleHBO9wU3JWHxEA5eqlrohOdtjtPgH8H7n4+/F7RvhXB4rsdDi1GR2u9X1GTEVrBGheRsfxNtU4Uck4FTCnHVyeiJ5KtTSK1Pse0v/wBmX9l3wtqHw88E6Jq0lhqNsYNa1+K68nUb9O58zBCITn5F4wec15dDO8ZRxPNh4pRXfqe1HLsHhqS+sXbZ1f7K/gz4TXljN4s8D6NqD6aWJs21dAXjOfUY3kevvX6RwnTzfiDEJTg4U073Wn4m1KnCdRRpX5T3MwaVrly/9qxzTzOFDzq5BCjoo9BX7Osqapcqk159T1qcJ4dJU7JI6K20f+wIYdWlitViui0drE91ulUqOsg6gV8tiJ1KuZ+xptvu7djm5aOKqyg20476aa9ix4s8LappnhNPFF1rVrKbl/8Aj3hlBIX3HavosFVquu6HLpbcvC4qnVxf1eMHp1Nf4JR6R5iSeJZPs1i8DmYock8dOh4riz6rUw2X2p251bToZ5wqsIv2OskyO/8AEVlpuogWnia42IzG3iWPaFTOBnI+b/PFfOYbPOJc1awlFRptLWTV9PIxi604csYrme5V1TxXqM8EMF1q9zCq5aIqdu/PqOlfSZbw1PC8tbEYiVSSbfZam1GgqdXmqJNmbqJ+z3J+1RqTBHiMxNuMmf4j7/yr6ujCHsUoux6MFzK6e4aOY5dW+3aoBJbogKxA/f8Ar7UVYYp0UqDV+5tXVSVLkpvUj8aanePo0reCfCNzqF4ZFaHT7O6Ebld3zbWIPQc89cGvMz6VWhlUpOeun5mEabw9FynPXzPEPiY9vPNe6tJPMzx5Pzjkeo4r6PAVL0Iy8kaRU5ySPm34i2Fnq2pu1nGsc0gkFv8AONyN+PQetey6jkrRN37z5Tx/xNb/ABE0C/NpfPHfQzRASX0IwwDE9+gAHGatRafM9UcuIpzpLmucudWu9RF7YQz+YLVWRTG5KBQcBQTjOetVeLs0ZUpupqGpX13baVLoMmtTJFPZ+ZOlufvnHC+2P61lOpKSsayqKGq1PPV+G3gu8vri2OmQOJNjFFPBJ+/IxPXH8645QovRxOX2FKoruKOV8Q/Dq2tnt00m8u4mlR1EL3W4FFOQ7ZPT2rmeA52uRtHPiMNFpezbRQ8Sp8QbKVpE1MXkUFv5hLpjMRGP0rolQxOHfNF3Vr6nLUoY+mvaKd0j6B/4IrQ+PoP+ChHhSw02C5t3v9L1S0muIUDM0LWrtuOSMAYHvxwD0r8F+kTgMXmfhBjn7LmnTlTkrK+007/cfPY2piPY89WOkWUv29PhXD8S/D95+2b4av4Jr7StVTSvGsloDJBqDNLLFBeLMW+aQ+Vh1woBIA+7k/M+GXGFTB4vC8P4pNOdNTg3o9Em01/wT3s5yilgaFDM6LtzKPMvlufL6xX98GOnXQEbDcisuTKQMkN61/QdSpUqtypPT8zhtUq+9F6GNfS39/etMbpMK5/cIMjOMZI7DiuOnCvUq8zZinVqTblLQvXsN2IngtXJmtLT5wRkKCc9e4Pb0zXdWThTutzasqsoNweqMiWSVo3llfdceUA5XnjHBPr6GuJzU43k9Tz1Kbj771KN48ryfa7biWLa48tiuCOSOOnrXm4ynTrU5Kyd1Z+aODEUlVk3DW259HT+G7//AIKH6fBrumaxb2PxQ0XQEh0qK9ljjTxnZ2y7WSaZiAt/CoCgtxMmz7pALfz/ABx8/DbGunJN4OpNt9fZOT6L+R/+Su/QirVjGrzUnbT3U+vdP0PF/C2m6s2rCz1K3nsr2xmaOS0kQpJC65DKykcEEdDX7TSx1PHYONalPmi1dNPR6eR14OtVx1NTasfTWmeA7PTvgw/iXwvIf+EjsdRtLq809VAW+00Aq7IcDMsbkMV6srN/dr80z7D4Z1qkXK0t7GM6VWGKjKG3UfIElUTqMBhnB7V8JJq9kerOzV0ekfsx/s9+K/jt8QLLSdL0aaSxEwN1cBDsAB6Zr0suwFSvVUmvdPHxmKVNcqep+zX7Pnwg0v4WeDLLw3oumpH5EShio64FfZKNOnHlijwZOUpXZ65p1rbm1MZyZD1UdBQrWJ5m3Zo09EIt5lheLLYOPrSi3cUotkt3HdS3W2RCRnjFXZt6kaCzWz2+JGP0ANU/dRctEP3yXMf73gY61PM5CjJ31It9xgJE3A9BU3sbbajIlmgnS7dj8jBuTmtF7upL1i0j8+v2iLKP4F/tp+J/DpQQadrlxF4j0kkbUMN1kTqP924SQ/8AAxXPXhCFTTZnsYCnUrYWKk9tD1PQtS0mXTDqa3yNA2CX3DC57fgaj2iijV0nSk02dx4Wu7a4tY5rMKwLAqynjBFKneWpyVZtvQ64anbhAtwyxqihd5BwvPU4Hat1poZOpPkulscb8TdVtp5ZrexvIpljkaITQsSkpGRuU9wa5MRFvSR2YNtpSta5wO4LFudAW659zXh1uSOslsfQUW9Dfj1fxhrlr/wqDwV8Mbm51HQLU6lqetvF9mijt5l3FFmORK4C524q8Oq2NpunBW5Xv6njYvF0cJXnWlJ+9olvt+RwXwn8Sal8XHvNTj8A654du01qXT9N03xDJGk16ikf6Su04CNg4JxxzWjwjhjrJ3sreWtjSliva4fnkrI80+LOkt47+Mvhb4ZXbB5b7XLeCSNfmDBZg8gz6bEfmuzGyisDJS3ei9b/APDnZh6lq6qLaOp+hehXdrCBpsWBH5SooPQADAFZQVkkeTOTnNyfcwNZjj0LVJLy5Qy2znkZ+6fU1q/dVzKpPmWhTu9YkuofNtrRTCPuNE3Nax5ZxuRF3Vmc94v8M6DrSG41a1RUkQrzyc0pSg9Gbwm07Hgvjb4KePvDd8PFPw08dalpywsSkEF4wVxnJUr0wa8XE5HlmKSc6d+9nZ/f/wAA9vC57jMMuVWmu0kmcJ4o/bS8e+EvCV/4X+IPwL0zWNUkvPMj8T2+5JUTPIIHDY5r5+PD2Y5ff6tV0vdc17ry3selSzHKcZjoVcXzwglZwVnF+euqHf8ADWH7Imk/Cyy8RN8ZHtNWupimoaBeWLJJHIeN5PcZrlhm+dUJOFWk5yTeysrd73OupgcoxuOnGm406P2Zc2r8rFnVPGP7Mfhvw0tvr/7VfhqxW9086jCunW8t3J8xP7lsYCv7E104fiLF1a3s3R5U02tG9eifY1pcPUknKEJNJ2blKEVbutW2vkeOeK/2s/2MLbQ7G/bxv4z1m/jusappUOnRW0TxZxujmJYg47FfxrHFZpxHUoQ9hR9++qeit5P/AIBq8qyCniaka1eCgl7rTcnfzVkrfM43xD/wUr+AXw5v5p/gH+y2NUuvLxbXvj+9+2vbvn7yIoCenBH406eW8V4+o3XrqnBrZav79DF4zhvBUUuaVSS/kXIn6t8z+6x8s/Gj45fGv4/+Mb3xh4v8a6tbC8mLCwgvXWCJW/5Zqi4AXtjHavcyzh7KcrVlTU59ZS1bfc8HOOL81xtZwoSlTpLRRT6ebVrnEHwz9gjLKMhThiT196+lcW1dHydWUpvmb1MzxJZqNLkjgUEKRyK568P3bCh7tXXY5GVNrFWNebBWR6fPcVRtXrxWVW7JV07sq3u6TIAyOxzVU2luaOcUtCtJDM0PlkEe9bSqxT0OflUrsgjh8tcFqlpTd2Yzm7M/Rn/glZ/wTv1D4r6zafF34haUE8OqUl061lZxM8gPUggDafxBr3MqwHLL2klpbQwzjFONeUKZ+wvw7+G+jeHrW3sdP0pbWOEgBE4AAGOlezNJRsjxqaa1Z6TpWjPayhrK23RplhKV61ny2CUlY39KgW7D3U6KwBIbIxRzIhyb0NCP+0fsn/EkSJgvVM4+tQ3K/uktQT9409Pt4mi8x4gZQOV7ZrROPLe2pNVtaLYs21wl4ptpoSjilGrzaMxnCdJ8yehMGgjiMM0GV7ZOauUtLSKtKU04vURIbWJBLAvA7A0U1CLuhynUbtIfNLFLbt50I2kEFX6HinVanHYyVOXNozyxPA+h+E5L0eH9Nit4r3UfP8i3ULGrCNUGMdOFHT1rzqOFhQptRVr6no1alWtUi6jbsrGzpOp3UFs7IUj+b5m3Zc+2fpW0W07msacbLQjGralKyhYk2ryZpiCQfXPT8ql1JSeiFOnFO5Dpvi7TfEl9J4a0S9jv5oji5O7IQ+mBwal1YzfJF3ZtCi6cPaTVjVl8LaHpU7aprub6VVGyFm/dp/wH1qpUKdP3p6sxdetiIezg+WP5nNfEG90HWQbTVfDkTM8fyxBsFR7jsK5JxVTRxHCEqXU8r8LeD73wl4mv/GHhTR7mWJrQrNLFlhGw6AFuv4VFHCOlUdSK0OmpWdWiqb0Zw/jHU/Hty0t3Z6c15qRimmtrdTnymxgMR6jNZS9ok9Ls0pul8MnY8i8XeDn8C/FDTPH3j3XbZby4tE028nupMKskpyowe+eNx9cVmqapVIylu1uddJv2ThTXU+o/hafCHhiCG38aIJmWxleRpkxGFAwe2DyePY17OHlRpP3jzq0atSXus+c9T1n4U3fivXvFOga6+mI8TpbpHI32dGTuyEAYPc46GvKqYilUnKUHZI3qucYqLWx4L8Ov2jPBvjPUddhh8MQ3Ot6ZqskF7IqMkNwOm+J+4I7Vx08TCcWuvkdM4TlQXY81h1DWNNOr6ANSZtPvdRcxQSEFrdnztHPPFZQag20bRpuSSPAvEev6tpt21jrENxHd2d1IgkgTdHImfvYB9OorP2ltWeirJKKMl9SNzcMonSMbc4Riv4gGuuhNS1NLNLUlsY5J7hElm3At1POR9a9OnCLaKgk2cf8AE+7F34mdTNG5iQIGUYJA9R614+cVIuqoLobVbtKKOXLBn5FeQm+UycXFEinB2E59KSlccLbFm3EplSaN2RkbKuhKkH2I6VjKcn73Q3dlGx9C/s3+EfHX7RXiO00zxbr13c6Fp4AnebkED+AGvquFeFa3EWLUpq1NGmHhiMdWUOZuKPvLw14e0bQNFttC0K2SCztkCRWyDrgdTX9E4HLMLlmHjSoqyR9bh8LGhDlSO10Hw15Vl9uEkLzbSQFIKwAd29/avJzLMKlOuqNM5MRikqvskmRTaILC6mluJhMjpv3Acn6Z6CuzBYKlRXOluejh25UuXualh4r0LR7RZtRskuk2/wCpkPGexauvE4epVd07I5atCtJtRfK+5oWHxOsPEelLFPodtFBBE6CPTwqY9CWI5A4r4DMstx2YY1Uack4dWtTz54SopumpNt9WchEmrSXsk9zqlxeSONkUTKuI17YAHJ96+pyrIsPlknU53JtJanp0KFOlDRa9yl4quIHhfT9ddjsjxJhymPYehr6CNONSOmx00qbcroZp9/HZxCPTEl2zj5zcNuY/TNddOhBKzOhpX1FbX1M8UUKlWXgpvAGKIUYUIKMFZG/LHlOq+F1h4317xxa6f4VYQ3ju2yaG6CrEhU7mcsMDjPH5V8P4i8T5DwjwtUxWZySTWi6t9EjycXKlRwtWeNiuRPS13daW6LW/RXXmfP8A8RNOfRta1rw2+sRSfZruaKWWFsqzbzznvz6V7vCOYwzbI8NiqWkZwjJejSH7R1eWpFWTWx8y+MYdR8Pa3OJ4UuQ4dYrmIFiuTzuHavtYRgmmdi51Hscl401K41VhabwkIt1EZd/lAA5Z1A6ZzxU1HZGeJcZU7NnhnhiHxXrvxDutViu7ay0fTyY7WJn2LezE8scjoK5qHPOq5t+6eDhaeKnjJSk2oEPi7xFqFkmoWOoQrDcrMGnVWyzxDODu7Lj+VViK8YppHXXqKndbnNp4+0x57xIEjdUtVVRE4OVxk85rCNSlKL1TDD4mFaHuO9jBt/Hml33iS+mu5w8EVsscBR8DHQ8/U4rejiaTm7M53jac6ji2aet6xDrmqXP2CQJAumiL5emAOTU1qrqzbvpY63Uo1aPLc+6v+CTH7Jtvfa1bftvfHq8vNC8F2ME2j+Co7AlJ9VvnjaMzNjBEIyQPUn25/PuMMfUxmX4im1fDxp2mkr3t+p81ia2KxWMdLDJWjZtd0eB/tz/tcfBnwR+ynJ/wT2/Z4ksdRefxP9p8VajbaZgxeRNI6wtIQGL72PTIOOtfzn4a8I8R8QcbLijNIunSpQ5aMdNU+tl5d9TTiHNoY+UcOm7pWt0S8130Pjuw8RWNnp1vqcUA82Esoj8w424wxx2PpX9ZYSvhnhE1pK+xzYWpTlho1L7XW/6FCTWbfzbpYUXy7lARJnlJh+PfmuatiKUeaz3LdSnOT9ns/wAyTT/Ect4jbJgk4CpI+R8xHOD7EcVOHqqpS1d2bUqsatPlTs1v/XmUbu9BuZrjToBsYcHbnHPP4Vw1Irnbi9DgqckKrlHVD0itri4EsroI2jOAp7+n51h7Snz26GtKphpSbeiaZ61+xJpF1rnxk0rQ9J+H1jrs3habUPFOpR6neTxWZ061snklhnaA7kR3SP5gCQQMZ6H8U8W40MJkknOvKnOs40o8qi5JzklzRUtG0r6dj5yUVLFRw97ayd0rtK3Q9Q/bJ1bw/wCNf2sn8c6Fp1taya34W0fUNWtLchkhvJrVXZMhVzhSgzyT1JzwI8HMFjcu4MeEqyclCrOMW93FP1fU+gw1L2cuXyR0+nyiDTNJe2kwZLbYCoHBz61rxHDmzG7WtiMQ17eyPVv2fv2Ivih8bfG9rC+mNb6M8ge4u2P3lz0FfP4fKa9Wum1aJwYzHKnDlhufq3+z3+zn4H+Cvhe00Hw3o0MbxIBJMIwGY+tfWxiqMFCCPn0pTd5bntGgwWoVosbSq55pK5NR30JtAvIluZVaTgE1m7h71zb0F47q9YqxAH8ZrSlq7sUYqMGi1rGpQwt5MRXd2I5rZys7GD+IqwW13d4d3OPSk9dzVK6uyymlzuBEJADjkE1OlxO6Y8aPLEvmG4XIAyAetEktzaLUkVb66eaby/KAIXHAxmhu60Glrc+Of+Ct3w7ibSvh18colVH0vWpPD+qTf9Ot4u6Mn2WaNcf79c9anKpFWZ6GCxnspOna9zJ/Zo8L6LYeDdYu9EfxRrGhXlzGJdQ1+1hWC2utih44NjFjGWz8zVpRw0VTctbGdXEVq9dRqWTX5HrngxbayT7LDblUjXEe1ahWUrI1lSVrtna6TIJ2E0UQQl+RjAHvWsJW1OdxR558Rmmm1O5klyzCQ7iR35rmxTc22elhkoJHIwT6dZzLd6vFPNbWqNNdw2o/eSogLFFHdjjA9zXz2KUo03Jq7XTueo3VdNqm7PubPxH+Jvhbw1pGk+H7Px9qtrqviANLb+B4lSecIRlY224Z3C4zkkL6VhmGa0cPhVSTcZbtWPEwOHnVxbUouVuv528irpi6bZ3Mmr6vY6hfpFBGE0/VmCtCcYYEptOOen0Fe1ltp4ZTm7ndilGM2qN1E8t+FtlH47/b08OXEVuixafpV/qaLGMJG+0RooHp+8bFGYxVVU6ae8vyJo1XClNb7H2PZX6yXSqx2SocOh71o42OV6RbLfiCSGOJjcQq8MqhTmk30OX4tEcX4i8Kan4Rtl17wncfbLRsvPaliSnuK2jBKnaJcailLkktTCh8VWXiaPzJpgFR8vEx5BHUYrGUU3ctRnTMnxpq0lzZx2FpKAkr/u4o1wSPc01JOy7mlOWtjhPH3hHQo9FabXNMhMnKQIyj5z9P8a0lScfidy0k3vc+VfjD+yp4f8U6s1yunIjMhJ479q4K+HfNcavKokkfPmqfs0SWNxfWsLyCOObDjqc5I4rOjhly3S3OqrVcU4t/iZMPwOlh1J9DvCGZk3wlhwwodJ8xz86a8iDVPhjYaE8F3JGCj/LuzkKe9ehCnaKOepUcXoZPiex0XTmECKMs5IlUjij2Svc5qs7nDeL5I5Q1tYLwM5kA+9WsbGHtFs0cvIn7nY3OR0P8XNKqvdLw6c66M298OWsymRVKHHXtmvKqwvG0EezKMI6GNqmi31ivmtA/l9n2nFcbVSEfeRzyqRehmlSW5HFTdWuZJNsZKSqFePatYRTV2OScdCnvG7btNKr7q0NPZpn9P37PnwU0f4ZeC7PRdOtlhjs4VSNCecAdB7e1ffvlhoj5rETlKs2z1Wy0UyTB7OEqxh+YtyGHpXNLVmfPdHT6LcXOl2JgEhcSR8lsAg+mDScnYykrmvp+nMg+zvLtMg3Lk+tQvMuLS942bWCOzTzzPGoUYKqBzWl4wRhOaqPlSJsusZmtolO7H3RSXvPRBBJytJkyWkcxWaWMh8ZyDV8iRlUm4XSeg6SNwNjWwZccHNXzJrYUJa3TsJHGxx5cYUjtmoive0KlLe7I9YuQIhFNJ5ZJ4BIw1ayld2YsPF3vHU5K7kO0oYAcPlW29zWM5JKx6HNaVyu1nFdj7HDGrurAydAoOe/vXPd9ClOn9oy9UiDo6XyMY4925XkAVh+HQVjLezOmEpTV1oWvDF7oGkRiLQdGt7fcu+d4QAWOP14p0YQhL3UkZVlVn8crnO+LfiNZG4lHntGOQjMRkc/e/wAKKsoy6msYS5FE5Ntcn8QX5jaU2lhE4N1OZBvmHcZ7muWNROVug6kfZ+9a5znxJ+KxtYzo+mXf2e0UOLOBJtp24+8xzyT/AFpVcUmuRPQunCMpXseUfs5/F7WvFvx18U2onPl2WhRILhAWAmdmBGT3xissvrJ4io49joxODcKMZeZ0Hx78MeF5tTS28b6XHqMaxr9vtLmMMspPTIbg9fwIqsTzwn7yuXTqyjTtHQ47xZZ694S0GXQLfxRd39jBCJ7CK4uN7xwsRmMseWA4GD2rGFOUU+Z3CE3KSbVjyL4veL9J8P6bc6b4os7C1u7+Em3ubeIqFjzwgwcEnAJzXLiIKmrNmsYSnLRXRx3gTxr8OvC3hy803UdPtb21urMkXdrDseF/Uj2+ppQnB0uXoarnqStseOxajZ63qd4NLuhJL5rMrB/llA6ZPY1jBKTZtN8tkeTX1vqOqeI7y11a3k8xpSY9pB3D15PJ9u9TzJTsdFFNRuZOqyWNq0lts3SqcbXi2nH9DXZSlFLQ0b1E09cukittOdxXtmvTptaNGkFJnP8Axt0CHSPGARI5Y5Z7OKeVJYtv31yCPUEYINfO5rKnLE3i9ep0VLxSOKIVTuP6V58btnNNuTHwkudzDjsaJvlLglFHUfDTwLq3xE8W2nhbR4S8lxKA20fdXPWuzJsrr5tjlRh8wk5TahHdn6L/AAY+DVl8K/Ctr4X02AJKoBmwPmdu+a/prJMqpZVgI0aejVrv8z7HK8PDD0NPme0yeCtR8L+HItY12I20Vz9w4IYj2rprY+E1KnTd2azxlNtqm7tCeHteOt6d5Nnpf2e2t90YRm5c9CW9a8/AZX+9datq2cWFoSdd1Zyu90PS6vZr/wAiRgImGUbPXFe/KHLtse1GPLTv1Gz+Fm8UzLY+WQshJlSOQYVcck5xXFjMQqOGkpbPoRUqRhFy6oSRtK0uxXTfDkyyxQJsLbcBj6muXKsLGhRvGNrnLFuc7tWZQn1Mwyh0AWR1+Zg+M4/lXsOjSfvJa9TopRlezM+62zhXmRGkZi22Rdw+uD3rWMGrWOuNo6FC71+9MhitFRY432tufaR69OTXbCmrXKklzWIdHGra34ktdF8L6LHd3F/OILdY8s0khIA+vWuLH43D5bhKmLxDtTpptv0NHUpYWm61Z2jHVnfWnj6PwR+1/wCFv2Q/CWvyfZdLsjffES/t7bzJbq8kULBaIx6KpJPQ9vev4N4ghmPi9lWb8VY9SlhqMnDD01ppB6yts7/10PFw855rlGKzCpFNpfu03ZKKer+48F+K1hbaJ448Q6fJ5iNaaxcIsF4gV4z5h5YADn8B1r+t/CfHxzDgHLsSla9KKt2srHpzm66hUjazS222+f5ngfxViL7r6CJoRHLvlSF/mkGevPSv1CCbV7lVHKS5VqeY+JbOyupwBazmMwkxhDhnBJyOO3vVWvuczScfeOA8Z61pWk6ra6HY6dHHNcgpbxTw7nnwM8Mf4Qa5q1SKkox3OHFYinTkqSvd7HlXxB8Kaz4uu7q71PWJY1WIwFYMIWc5woA6jg1w18O6y5bnm4jBTxiab0OU0v4MaLp2mI73s0cjJiWLzyGJLY2n3P6Cop5fhqMbI4MHlVPBXjFvzI/Efws0jRrWaCKGIx2ThElWY/vZGPb1x69K2eCoqF0dmJwdP2S5I2NU+H59G0qfSxuDNb7WyDkkgMDk9sGtXT9lBrujSlgpwon6afAb9o7wb+0d/wAEufDnw8ljMC+FNPbSNbXS4mmm0+7V18qZ4kGQrddwr5GnClKNSg/t3T9D1Mgw2G+s+1g/eas07LZHyn+2X/wTakfwvN+038G9Cm0fxHHZC68deCHhaUz5xt1K2TG5YpchiuMqzYr8cwnEGb8D8RPJ8zj+4lrRqNaNPZPpoup8fUy2pi86nUwvdp9nY+Q/jB+zn8dfhnPFP4y+F+q6Vc3EHnLbm2LxzxHGZEK5BUZGfQ8Hmv0LBcQ5XnFT2uFrLmvZpdyc0y/E4fCuvCNrOzS1HaH+z34n8V2Gh2mh2t1qOueJrhf7H8N2MOZ50DhPOdiNsMZJwHbuD6VrxLmeCyDBxxOMqxhB66vXtovPoclHByqqEY806lTVQitdN230R7cf+Cb/AMH7iYP4i/bk+HvgHWfmGoeDrq9udauLTYCXZp7SERk4A+UZ69a/M4+JuKjWaw2ArThpaekU77WvY+lqcKYirVi8K+VyV3FSjK1tXu09Fq9Cuv7Bf7M2nXVvFP8A8FMPDE6XkTG3Om/D/VJgyg4Y8qoAHJPfAq63iDnzg5U8rqad5wRi+FMfKCkqnxXtotbb9RmsfsR/ADwRFaeIvGP7bclz4f1FmGnX2gfDq5Zr5BklYzNIiK52nCsa8p+JHEVebo4fLb1FupVYq33Juxy/6q5jpF4iKctNl/mb9t8Wvgh+xz4Y8U2n7IWp6jrknjaeyabVtejgluzpUGHuLGeIL+43yDlcncjgZ4OPlsZhM445z2hXzumqSoOVqcebl55aRlGTfvWWzezPIzXL4ZKqdLm5pS1bW/p5Hl+rfEjXvix8Qdb+L/imSEap4h1d767jtYBGkZdt2xFXhVUYAUdAK/f8kyLAZHkdPBUG1yW+fVtv7r97nfg6U/YqS7dT6R+GXwu8Y/FbwJplr4K0uSa+W78uIheFyAQSa+Jz6P1nHtU9zDMF7JprqfrJ+wr8FPG3wz+FFlY/EC4jlvlhG7YuMe1ZQhOlTSk9T5WrJzkz6O0SKzgYecAeOF96NQ1Rbt7uH7S7EYXstDkkZTiri6HDJdamVt8KpPzfSoVnIuDvA6q9uLfTbUW1uAJCOStbQ905pvWxnCzubh1mkfr61LvcqKT1NK1jaGPy47gEjrzUtNq5V2QXWj6/dzCa1uxGnUk1i4SbNoum1dofDa3llEDd3ok4z61aTW4o1KdSKcNmC24vZtysM46niqSVhN6HiX/BSfwZF4r/AGHfH8Jh3zaRYQ6vbbeSr2syTZ/JTSk6nK4wFSbjXi13sfGn7PVnqnibW7aDwrqDRXWoQZga71kQW4k2gqGj7g4ODxyawlGTWsrHuqpCl7043+Wp9SfDDU9Yv9Eg1bUIkXZuiuXSQbFkjHzfMfbJ+lOg5T6nHia9NyvE9N8Nw6ZMj3C67YTeTEssiQ3qM+G+6QmcnqDx1rshTTejOCWI/ectjyzxZqcOqfaby0uAQt26MVbPPvXHiPdUme1QhK65jM+GOow2/wAQn1q+tYrq00XS5b25hlg8wO7fIgI785/Kvm8dmP1HFU3JcyfSzb7Lbz+49iVF1KDipWb87HkfgX4hePPilf8Ain4x3PhFfDzQ317p/gi6j0rF0XVW3Xm9gSm48L0BCgd+fNwGVVcTjKuLnNSi1e3Z6af1qebUqxkoxlG1nZaPXfV/0vvO90K51uP4f6fJ4gvpLvU7m2VtYupmzLPNt3FiR3JzX1mHUaeHSsc0m1PdtHKfsfObv9qbxD4ma3ymnaCYUuDyp3XCKVH02H86wxNWjUxFGPLqru/fa33fqdeFUKeHqTb1dkfXHivTGuwNT0jiVED/AC9GBrsq2lHQ4Izv7rQ2x14ajALHVGCsI8OhHfsa5IfFaRzzjJSunoYmsXt94Su2cyu9q4xuU5H0NdXvQ+E3hyT23OT8aeDNG8ZImpaHqraXf5wk0LfIc+o6GnKFOove3Hep8MtjzzxI/jL4d60l54002W8hVSIryzXcgX1IzkGp5IxKioW91nNah8VPC/jHVDcT67CIIjiKKRgCWHsabnKUjOTUHYTwLo+k/EP4nRaBHNDLbxRS3uoyq3yw20S7mLEdBwBn1Ir5zizOKGQ5FVxk371rRXdvY9HLqUqmKg5rS6/M+YtVvY38Vy63ZaXNNZvczNHLG3y+WWOMjvxXo4B1HhKTl8Tim/VmOZRpfW5pbczOR8b6vp2oaqjQRzWzWsuIGKYYqf6V6CgnucbqRirROG8Uy3GryR26IJmY7pFdMA4+lNy5Ymcry1ZxHivwnqFsRNcW7OjNlFY8JWMptqzMJxdzifEsMUEpgwAqnjHQ8VKlZmLg7nIs011PHFaoCzSkYx2rbldSyOrDzjCaOs8M+Boru/jfUweCP3eP6V7GDy2EY3kelK9XY6n4hWHh3TPCckd1Ywqu0hQy81eKwtCVF3iFShGEUfPOqWUdvI9xbL+7Lcewr4SpFLEOC2JilGJh3d2yk4PFdPLy0yZtyIoZg3zN1zWFSLa0FOcYM/rMTTTZIAiZIAeQZ4AFfeVU3Jo+ZrP98/U19Ge502T7XqEWVc74SFJ/CudNo537zOk07zNQm+2CxwD9xWXGaaTepUUtmba215OiXSWeNv8ACRzRKMr6IfPCDcWzRlgsbq3DABnUcqDjJpuCmjni6sJeRZgbZEpYbTjhDVxaitQa1YXKXFxA1tJHtRxgsGwayqc1WNiUqcJcyepFZ2X9m2i2dqzsoOSXck0qcJUopQ1FVrxrTcpaFgRyErtOea6o06m5z+0gyv4pjt10lprtAxUfKAe9XOOl5G2DqNVbR2OK1BnjhBzIm48gGuaaVtT0eV312MLVdTS0szFaWkmJWyxRt2/n07VyOp9mJrGMVNO+pztzrqzRTCSeWS7CcW5ACoOvJ7//AF6yqTdrLc7lG2j2Mu3v9e0zzrvUL20in8jlpZfL8tT2C9zWdKVSMtRTlCo+WKZh3EOjzI974j1QTqfnEKDJb3zWdbVe8xtyvZI848c+MNQ1WGSLR7PZaoTtRyQuPb1NcVSdSWqWhUILq7s4XWJ9U8RXVsvlfZLe1t2WNMYEnHU+9SoucfQ66fLTjqdH8HrLTPhzb/a9CtTHc61cpH5oXdvfPzEnt7ZrbCJYTXa7IrupX22Rc+MfiywttZvI9Ui+1rNMIXWZ+Ru43e2DjH1rTE14876mdG1OK6s8W8afHDwR4Q1GVPFXiqKws1ke3vLq4fCxOchPXAO3v1wa4/rFOL96VhyjOS91HzTr7+Mfit45f4gXHjaS6t1DR6c1kytaGPOAzLgjJ9a86KnWquTldHdQTVO1hJ7e4EUlre6lJCkP+tiht9sbH1U4/wDrGu3WMLFy0ehgan4g8JeHLC6FtcW6zSxlreZUKkH1Ix+lZR5Neh0U0pbo8gmk1bUpHa7nJLuWBVMbWzxg9s04QTe5ry30RnahBev5kV1MzurBd8gIJPXBrpjGxUaaRY0SRWv0WReduMk9fxruoSfMlY1U+XY2v2ivDw8SfDfQfjHpczSvp7jQfEsO7cYJFBa2lPorx5Ue6e9fNZhCdPHyT2YSlFrR6nisibmyTx9azclFWRn8KJbVHllEUaksxwqjqayhGVWaildsHJJH2f8AsG/AjU/DwXx5r1gYpZcGITLgheuRX7XwPkFTLKP1isrSZ6WV4Zyftam/Q+q/Cdzqk2sS61JACIXxGpH3jX6YqinCz2Z9PUtClyrqdl448Yat8QoLbSNTv/NaCNV8pFAWJR9K8/DYOhSqS5Diw+DpYeblBbkT22leH9F8h5ljt1Qne2fnPevWpJylyrY9BJRvZXZn6bdya55U+mqXTf8AIAh55xjBraoo0ldvQ3ilKDudLIYvBpez1DS0e8voTFNbyWpcopH3s9iBnmvmMfUwuN/dN8qb3PNqzlUmnFuyfRnGzaFcaJcxXNnHdJb3RP2CK4QBZADycemfWu7LuWrUlGlNuKSXl6nVGrGvdLdbjPEGm2qayl7FczSSNEBNBwY1f2r2aMZU99TqoQdNe8UdY1RIUedr6OFE+XezAE57e9dsZO1rG8oc7ujJeSG+nQwQdeBERtAB6sxJqZTlRjz6s6KTUr+R3/7OutT+GfFWsfFe6kht9A8BaNLcTsq/8fN66kRRL64wW/Aetfz19IjiKpg+FqeR4Sb+sYySjZb8p4ueUpYrDRwqu5VZW9IrVs8J/ZO8VeMZ/FPif9pnVWkj13xHrMl1bz3I3sih/lPTpjGB7V9X4ccI4XA8Exy2cbU/ZuNrdWtWCjSq/wCzW/dpctttNi7+1Tbnwv8AFTWLnUdRe9fU/I1Dzpl+d/OjWTJUfdGScDr61XhBThl/Cs8sev1epOHnbmuvwZvg5qWDjGEbKN192h86/EK8ttTv5sN5i+WDKQuFjx3PrX7NGUfZ7nXFOMTzDULy/wBS1CW0tHIsj+5NwDiS4OPuj0H6VtZOmmcsoybOD1LSfN8VSa5bLEZLAiO3Lckdm2k9h3PeubmXNZIweGhGpzyd2jlfGmq6Xpni0yXRKTxwloVjQ7RMAcNXNOqufUwqVXT2R5f4w8YeW0H2u+ljdrkm5h2FftOT1B9Md/euGWISmk9jxsXWqQrR3Vyfxlca34ouLApcsltCIpEtwoARAcAZ7kZrTESlUsovRHdVVWdONn1Oj8ea1BHbtG1y7tHaoGMTkApt2tyOc9K0rSapNXe1vv8AM7qtdQotx3OK8IfFD4jfCnxg/ij4L/EfUNA1E+WLiXTZSqSL12un3WA75FeDiMPSr1LRdpdz5S8qtVujPlke7fBb/grp8cvhp8X7bxl+0XZT+L9FjExurPR5/sMtw+wBDJt4ZFZUYrxnbXw3HPBlXiPLVQ5kpJ/Fa7sjqq5xjcJSVPERTS2lFWfzPUfE/wDwU/0DUf2c9Etfgrp+qz+OxHqttd+J9ctop47exvJYpZLSJj8ycxpk46opzkcfnOW+HWc086+szqqGHXK0oaNuKtdncoPMaMq6fuStb1Xc+W/HvxT+JmrfBG68IeENRFlLYyTSeKbayhjS51Cwd1dMSqocwxOATEDtGd2OtfXYnh6jUzqGKx8nUSSUbu6j8trnk4uniMJR5qWjW7W7Xr+h4NHLpDxOOrSruTLk8/pX13s8LSfKoryPAqSp1JO3XzYhtFtZDcNbFEZcFg5Byf6VlVjRt8KsU8HKEOaz+9ktgiljbySMdwyUEhwfQ0JYNWi4rmt5XOnCr3WqmvzPQfgj4PGq6b498QrHHN/ZfhR52DIWG55FjByOB97vXw/FmLjRzPA0lp7Sol92pwVlGVZot/DOV7nTIbYMpAKY4HY5PPriv0dp1FofSYKsvZKKV9D9Ev8AghMPDc8+veFJ9RkFzea3NJBNf3hkIdCAEUN90bT0r80xDSzivTe62PArRqzcr9Gz9dtB0qfTrdbeWUttxyB1rCc9TypJc2h0nh2TT4rvde491pxd0Q1poReJrq3jnLWoKg9NtN2uYRT59R/gmx1IF79pOAMj6VEYa3OhySjZGgbi9vL7CqeDjGOMU2rHI4K9zTniulgWNX+qqKFvqaR5UX9OjmWNXnLZ+nWrdrETXUs3d9KseFDAY6etQmmiqbdyK1WW5wbhSFxnmk7FpNPUnvoLRtMkghl2SFfvL2pRumO2p538ZdFGu/Anxv4UuAZlvvCOowMH/iLW71cGk7M1ovlqRdup+ff7Hvw01DxT4X0rxDceMbC2sLrw+iS6Vf6Ct2skpQYlVycq/YHnbk461y+xlJ8ylY9LErl11+TPpH4LeCZ/CcQtPEGrrqUjXEjrmDEaBhjbsbtjI+lFDDSpO7dzkqpTaaR7f4ZsdEnjFjb6VDh5Iz5qQKjR7AQmMddoYgDBwCe1dtGlCLukYSjed2eUfEDTtHttV1e3tZBDKsvmNFwd55BcDjqR6VjWw6kmtmenTqVZRjZXRzula9Z/DbS9W1C7t3nuUuLSPVIV+UpCUL7WPYYYE56d6/Ocfi1Uz+U6LbVHS3fuetKKlRUZOz8zL8Kar4asNMu9C8BaLq8GlPfCQnViT5jbchY+zR4b5WXgg8E19hk1f6xQqOEXGMnez6v+rnJiqVSi1zal/wARadLDoUl9Y2YeU2js8US87iSAPYnAH41vWXJF8pxzTUb3Oa/4J+6L4wn1PXY/iFo8Om63HpUa32mwSB1geS6mk8vcOCwXaDjuPavIcZxzGMJ7pGkXH6oprZs+j49Wm0xRYl2MTn91I3b2r1Y1LoyUebYra9ax3rSX+mPmRFG5PeiynIycuWdmYVxr99C66XqtuGt5yW+c44HbmtXLljexclFao53UbKG5nkl8HaudsR3y274OP61hGLnLQTqykuWxyWv/ABJ1Tw5LKmuQGW2lfakcnKqMc5zVzqezMnBLU4HxJYfCj4o60dLj0yz+0Kha4uIAFMI78j1qaVWFSVrFxvLU57SLfwj8Evhh8QvD/wAOjdPr3jG1isG1BpS32eyDHzVQk/Luyc49vSvi+KeE8TxLnGDbny4elLmnH+ZrZHqYTHwpU+ad+aO36fceY2Wk+F/DtoqlIvLe32xxmTkPjuK+5Spwb5TyqjlOXM92c9faBoN3ezzX8qG4jQBXLfLg9s1rFprQydkzifGUHh+0uWlsZk862OGiLAZHXj1qJKPUmc7nkvxC+JelsZ7fTnV3xkoeqEVzyjKWxCbUbs8k8Qa5NfmSUsTufIAHSrjTimYNyk7HN3F1qFrcLc2infA+4g9xV+1VGSkdOHpvn1O58MfFvSLOz+03zhJwoJV+xr6DA4pYj3Voe1TqQgtTkviP8Vr7x3fCxsm224b5sGsM5rQw9BtPU46lf20uVGHLEj2/lEDgdK/P1U/eOTOunSbjqYOr6GTF50PJHUCulV19o5qzlFaIxgdhKsOR1BrSLjucEm7M/rZ0iSDWJ7h3cYUEBW9uwr7ed5TZ42ITVR+pv6ZBPOVaa1ICjCqjdB71zpamUbNnQWWfKADbju42vyKbvsaI1rWa4LiWOY4x0JqoppBOEHGzRc8yGxjF0YNzucbV6k0SqKnE5Pfm+S+iJuZ3EroSc8DPT61zybk9RxXIrElzI+0IelbRUrGD5egzDKuS2OOtdKglG5ytqUh8IDKCkxPPJpp3jeMiuVLdFLxk6tZpFIPfBP61lVm3JI7cBBRTkcLrDqcLCWZVU4LNwzd+lYz96DO9u8bI8s8TXXivwzczT6ReuGus+ZCWzGfQe2K86UJU9Yvc76dGnVV30MS48QXGkW/23UxMmAQxEZIJ9ff2qZVY01qinFSVjh9f8V6VLei/1vV4vJ8zeUuDxGB3YHqa4ZVYOV7nSpWjyxRTb4q+HfiH4tfRfCmoJKbNAsdnbqBjtlznn14rX2kK8kodDOScYptNF3XYHkke51fVbbbbx7ZIcYSI/h1PNX7J9WKFNX0MC7vvDhWZ1glmeb92HBOfdscYH061N1TXKlctScZanj3xF17xHDqTx6T49vrVNPcTQRWKlQrr0b5hznuDXnSU5S53JpI3U0k7Lc8g8XftgeLdSudesfHnh97y58mOXS9R0uLarzI33ZlPvg5FYV8TJuUmr3K+rNRTgc94O+Dl/wCMLm58R/ECw8691OAzby26JiR9wBugow1B1I3qIcZpK0TWX4N614MtLi00uyFnFCFZbWIfLjrk46fypxo+zl7uiOtOMYjLzw9PpEhl1p4UiNsWd50JhIwSC39081cvPQ5nJt6HgGv+HtYl1y68QJq7XNnPIQscc/mRJ/8AW965V71RtO51UG3G1jK1EJY2kqRxHmPdBnkY7rmuukrHZokYMlzNewlHnLHAJYZzx2Oa6I3UrXCne5NZApMYmTfHjJIHT3FejSlHmsjX2Tb0LJ+IOj+BvG3/AAhXiu8T/hGfGlmNN1tM58ok/ubkDs0Um1h7ZHeuDPcPyU41brucsa8KNflmtzz7xN4Q1Xwb4hvvCWuptu9NuGinA6Ng8MPUEYIPoa+Z54z1RtUTT1Pb/wBjT9nu08Za2njjxVamSytWykTDAOB1561+p8B8NTxNWGMqw5o3+5WevnrZfO/Q7cvwP1qXPPZbH2d4b+IGnf2va+HLfT40ggUIsEacqvTk1+z4ilCqnTS6H0MKEaStFbHpP9k3VtceRo1q7ySIDFGF6DHJrhg6eHgoXtbQcqkIRTmyLQNG1GJ3kv4cFv8AWgH9K9GMYcqkjspzg46FvWZLSS2Vb5EJC48lm+VVreDlb3TWmhV13+xbZYLG3SJcBoyp9ORmoqUZVrqQSSUThdej8b67ql5qKeJbyGa9XZKDN8vl/wA8/Svk63Cc8di1VqVGorojzv7OnVrc/NaK6G74bF1omippM9w9zLGoAmuCXdR9T0Ht3r63D4KhgqahSPSiorRGfdvqElxPLZnaka8s6nOT3xXdBK12bqLbKWoNDcLHNc6Uk8akFFmHGQeTj+tNxbWhtT59rmfrk9lp6p9m1oS3czhYrO0TKs7HCrkjrk1lUnGhRdWtK0I6s0cFGV7adfI1/wBqnxEPhZ8OfDn7HHhfXo4/FOpzrq3i+S0YNIrNjcjZ5AVcKPp+f8mZHUxvid40yzKlKUKOBfuSS+3FrueZhubFOpmMm0pe7TX93v8AMx9LtrbQ9Gt9C0URx20EIVQxxg46H0zX9eUMNDDU/Zw2SNqOHSld6mb+1JHpN34X8OeJdNXd9t0GGK+uGDs0lxCWjcBm+8FUIOMj3r8T8OcTCHF+eYGD2qxl98VsRTUqbqwmtU9PR6nytrmoGyubqQRM1q7Yllk4IH09a/dIQSiOE5cq5tzjNR1hYLi6bQoPuoTaSgA9R2Hb3reEk1YKs7o4bTr+dri9ZtLglhhsytxK4Pzuc8fUVnyRs2zi5KrfNJnA+M9e0vVtXOoG2EsMEQS5nQ/dcnhR615lSalUMakoqGqPN/Ed0ni7xwugRgXN1HGAzeT9wE8EccYrgjS9vXcO2p506lPF13R6x1L+oCPQ9QW1vX3GHS8Ro7gjecYxjryfzrslBQlYbnKnXUWw8QNc317fRoiwrLpoZozyGfaM/Q1lWd4NHXiVejyLdnHR6LLYQDz5kMtxPsnlUcqhGV49/wClccaFo3W7PNw+CjQp80nqyjq9qxe4+1b2miXYXK8Od2On0rWalJNzeoV1GcG5aln4Z6zaeGvEaaNqEyppeqsI2L8rbSnG1/pk4NfNV6Lo1r3919Dz8BiZ4XFexb9yf4M9K0We78NeLYZ9PRLTUrSaSIMyApiRSjKyHqjKzZHTmuTHUaeLw7p1Ntz6OvQhWhKlU6qx4NqHh1tI12+0C7hAuLC6eNgSQBhuMcfdxWdPlrUk+qPiKdOilKm170WOW1mhZ4rkghk+UP8Ax040+X3WFN11JxlsS2SBCCBwchJB/KlCmpyu9kaRhUjueq/s2i/n0T4k6HFO8dvP4GkuLqFYwxlEMyHBzzj5s8EdB2r8748jCGNy6s1qqqS8rnM8FUrV1Lmtbp330f56dV2Mj4cW++1SKXqcEbWIJI5/Cv0hzUocu3o7fkfR4Gl7KNz3z9hj4g6toVp4kfwxdTWl9pfioTW80b8jIBxnPQ46V8J7H23FsuqcTzJTjLEziu5+737IXxstfjP8FdL8XXjhr4W4S9UdpAMGscXhZYfENPY+bx65cS0jvb+5i89XVip6lQelYIwhe2pR1XUHYeYoPHU+tSxcnv3Nnwff6i+nMDNtBHGaUJDm1HRG5pgmBL+ZwOcmqSuZrYt6fc3M918xz2JIppJE7PU1NSu7u10+WawhV5Y4yY489Tis5yaj7pfIqkrNnFfCHxB8WfG93eXfj/w/HpsUNyyWsaSlt8YPDHjjPpXPRlXaftFY3nRpUfhdz0WZo7aLYDk98GtrmPOm7GdfzCOHEUZ3N1FNaPUtJGffWMepaPe2Nwo23NlNCy+u5CP60+W+ncFNQ97sfnz+xDq1nafDDQ9NdJZJI7MWu2Lna8ZKnPHXK1ph6UlDU7q1WdazaPoPQbsPeCN5SAWOCTzmt/dWhEYOx6n4BlE9xEdg+/yCfve9UpWd0c1V3i7nnd/o/wAObrxN4i+JXiLwxg+GfEiw3GrLqzSvdS+QJFszbjCxx/vAc4JYjr0x8NxDnGN9rPCUoPW1pLV69Ldj3MK3h1HlqX5o35bba737nlXw68Uan4m8KeJ/EHiO2W4v9X12a6SO5UqNgwqqQcHbtAWvCwGW4unndJ0/ehFe9dbt7nVN/WI3et317Gx4T0xYNNtVtVaOJH329vJKZPsse7AiBJJAUHaBngV+jzvKba0OKu4qTSjZdhnjrxENN0K6+ySGIvFIQ7NgALk/4Vx1bdCIOMrmZ/wT7uZLU+I51iKvAbQzHcSZWYSSMef9+uF0lLNJNfyodSSeEgl3Z9Ba/Ja3AkeA7opF34Xqp713OKTsjOGhzlzqeoaNbJqNlL5gX7y/3x7+9Q24O6MakU3qGpXqfE/SUutPVWMI2tGnDKfTiq+sRqRsJK0tTzzxFqN58ONQl1CeLCyqTcKTyvGMmsruDvEc3GS0POb7x7onjyT7Dp2pw3CwZeeQt1xU3UpWZmk46PUwr/QNHstRuY/C1wLe5uIgbiTdxjrj8q2pQhF6GzcfQ8z+IHiR/CZFtb6gt59pjMcQByR6mh1OxzznzSsjxzxFpviS5v0EfiSdZWl3JkEBB/dqIRbbuKnKXNuc/qdz44t3utMv9XJVvmTjofeuhXgtBuD5rtnnXiK28TAyvd63K1zu3Bg3UVi5p7mdRJHFatbvNLJK5Pnj7zf3ql1Eloc9p21OW1gm1ZmcYzyAaIyNIRUUUNIna+lmMij5hjGarERTpnZhnzVNCfVfCNre27POuCqZLDiscNUqUnozuqwjJaoxILK3sMxwhTz1HeuPH4irWk+Z3FRoU1JND9zMmBXlxUUzslZIikcbNhWrabORpSepha3pClGniHI5qozl8LOWdC+x/WnYWEGnwjysrJIRggZJFfoc17zPnKzbqv1NjTLaK2JmIf5u27PNc2zMoq89DaiaAooCNG55x61ad9S2aEFzHbwoxTcz8Ih6k0TkoxDyLdhBqVq3mXZV2c5xkAKK5kpJ3MZqlNaMvw7MbxFgntn+tbxjfVo56kmla45wd5YqcAc1aqpOxjytq5C06ynEkZC/zpSqKro1oTGk4a9SW2uICREkR46cVUKtFPlii5U6jjdsw/iHIGEaGQjAzgd6zqe/UudeCVqTOSluIsbd7ow4YkDn25pNt6HU99DH1zSbC4mhWO2ZgjbpAU4J61zypu5tSlyJnP8Ai600gqzagqA7PkCgFUHbj1rKpGnfUuEubRnmXjfwH4a1zTJLu9s0jQPgLjlyecn1rjlRhe9jppqUJXvofP3jr4U3J1lrjw/NNb3QuNlk9hIYpWJOMll6GuPEU1Jrk0fkejGpTcbbrzPQPAv7OHjfwboi6v8AFX4g6prtzLyLS7vMrbrjhcAfMenX3rtoYV04XqSbZjVxHNNKnFIwfF/hmyke4g0HVNZa7CYmS2QlYUHJ2nHYDrXNiY03rdoXJWmvhVjyB/g/4h8Zakvn+ONXubOJ2LW87rGAOeGKjk8dM15vsufVSbQ1JQVrakLfBzQbHw3/AGzqEMa+d50kQbnMaL1/PFdNKEVA2p1L1OVmp8C9QS08JW+leK4P9IW3kWxdk4dHztJz6HFdVB+7qOtZSvFFH4o+M9N+Ht7caxrs0iWu9re/iiTcy71GGAHXDZNY1uWjLVEcs3Gx5T8QNT1LxxYyaJNf2t1FboUhurNwxnhPIEgz6flXJUhKcrSOmnBwR49a+DLPwrKYbWOSzidmBiEg498Hgj2qYUYUdUdkVaN2YGuaZNZLc2ryJcRySb1+zPxn+8B29xVOpLmCE3N6HMTWyQ7k2BZMBj83DCuim3I3s4q6LFgR5yqqcA9Cfzr0aXKrK+ppGT5XcrfEL4W6Trm3xL4p8beENJ06Q+WEuy0+pyEdSkSZK+xbANcuMneo4tq34nlV4OpWUrljTYLT44+NNHtLZpJJrO0isbi6kTD3ccXyxyOOzbMD8BXNkOTyzPNI0Vqr6nq1FHEVYQifa3w08LaP4I0O38M6dAu5YhvG3viv6ey/BUsswSo0ktEfWYWgqFNJHRWVtB4a1BLuK0Tz3wBnoK9KjTVRK9lfft/XyOipG6bR3l/L4judJgv7TVJLOWQYYw9QPT2r56pgOfFtvYwjQpzl7yui1Z3V3oWkqzSs6sQ8js5y/rmvVcYqNl0OqMYr3Ymhd/2Xqmnx65e7ogQf3W3JY9q5oV5QnboEJyb5YlSSwkaMyz6XdhWG6APH2Hc1vQrUatSXJU5n20djeXK7K6fcqanqOk6bYRXuozw2kXLBpWwTj1rsjCdVWKUVZ8pn6Rqtxr0cmoWUq5ZTtkIxhfX2pz5absR7JU5Ixbi81RPMgtLsSx44LDJds10Q5XC7OuN3K7M26u767mkeW6aIbcFs4Bx7VWjVtjWMlCZ2X7MegnX/AI2aLNeCE6f4dhl1jUWkGdyxLmPdng5cr+Vfh/jzxXPhHw8r1KFTlrVfdhfv5Hm5nUbwVSMb81S0V89/wPHz4i/4W98avGHx9vLkq+r6lJBYXbwBWEETlcKD1DEEj2NT4C8KYrLPDmn9am4YjEXqSmklK8rdWn26pryPRjQp0IU6UVdQSj9xt6vqR+y7LcmNCw+SXjcc8Mea/dsS/Y4apUk9Ipt/JFwcYzSO8/bLtdPi+C/hKGHxfpGrTeFY4rC/j0iBYYtNM8Xm+TIAfnmJwxbjIYcV/HXhdxfVxXibiXUSUcQpcrSt8Mml6vTVniZfSUliavs5Rc5X953vbS67LyPh3x/BDLDfOZyYyCYwRxnHGK/sGlzSpyble/4f15nSppRseR6B4ovbaO6uWmc3fmGMebFtUjphR/Wqi7QS7GMXyO8kZ2vXc9rodxp9qQr+ZmW4xwxPJ/D+dPnTj7wV60XTstzyOLSNZsEu5J7kGQzM6pKMIsh+6qjuf5V59WDk27nk0qFWUnKTG+GvDN94Lvp9duGW51O5RjcysASpxwo96dGHsE5dSo4aGGk5rWT3Obu5oT4ktri9YSPbptUOOsjEHB9xXBKq1X5medaP1yMpdDf8R61ZXlw8QsookMbSQIFwJl6ud31H6Vu3dHrVqsVC5zs17BfX2ovHEuJniRYyuSgGByPpnmlTqRjJo89V3UvfoYmowQsbmeQyYVgwc8fvVHzj8ea56uJp3k2yZyg4v+tTkmimvZJUuN+CCEUN2HINeK/aV230PnnTqSquUj034a+LbXxHYrpGsXL/ANuWaqqzO5P2yAABcZ/jUAfUe+a8r2FdSkpao9nA4qeIfs5fEip8fvBk1nrFp8RrNJmivEWDUWdOBOq/KT6ZXHPtXmUavsq7hc5M3y+pRxSxSWkt/U4d4orlGRZi+QFUA/db0r04yVV2TOdLTQq2sM0jG3lVo2Unhjgmt3NU42e5th4VJP39D1j9luG3XV/HGp39xcQWVr8OdSa9mtPvgMEVFJPGGcqv41+b8e11OGDhFJylXhyp+t39yMZTdSo7dFf8TD8HahFZ6T/a14oAiUmMnBOcdSK/QVSpVmrr4dfR2Omnip8j5Nj0r9i/xQli3iPzp12vqMUkmF7kf/Wr5qpThhOLaS/mgzgwlGTxEm+rP1Q/4Jg/tA2XhrxfP8MdRvDFZantktJGPy+YeqjPSunOcPKbdRLREZhls6rdS599aiGgcOhB6fMR1r5ByufPPlSsUJbs3kqIEyC2DgUJajWx0mlultb+QyhSFHJFbwSSMJJ3NXTXldstwCOMVErtidS2xpW08NjG0siDg8ZpO/KKylZP1DQ9YfV55HH3RwDXPGTbNWrGr9pFpBsRR747mt0roJ3aGiZ7ltwx78VLdjOMU5X6lS8uA8uwbiAOSKlfEbOzK9/dpboiJwpcA56n2q3daoqMb7n5o/s13V54c8Q+LvC9hqRhm0PxvrFonzkBY0u5ePrtIrXD1G6Tv3PaqwjGEVboe2/BrxjceIbY3V1cRmaHUZoOufungn3xShK7OTEyUFaJ9E/Du6jM8JJDFk4yvb1FdEVY8itds5H4oSWlleyW+gaFBHLf3Uc+pFY8fapEBCyuO7BcAZB4FebPCUqmI9py+8z0cMqkYat26HnWoWN3dvNNDpyTgxMRHDhJF2/MSB3FTG3M7npxfJFal7Rzb3ly0aQPbK1sj4cYIbg+nQ/1roSlu3c5asalbRPZ/wBf5Hk/xW8URXWiSRG6VY4pJYpDnGCD3/KuNSTu2bVLRXKlqdd/wT11a1N94wWWyWDN1aRSRE5Ab7Pnj881zx5VmEvQqWHdLBRb3uz2xJLjwhrs/wDarJJYTn9zJ2UnsfSuybS2OKVRTXuvVbmZ4s05iXvtKdktZD+8AIxg9xWL5uRtLUqm1OSU9jJuNY8EfB3wPfeI/DF3d6hqF66mSZ50Ecch6gDPBr5KjjcdWzN0mrI9XGYShRw3Mnp0PGD4o1zxBFLceJbhnuLxHZlbkIuf8K+ppx5VZnjtJrQ5/wAe+A/DZ0SC+0BhZ3U0m3zITtLHPcd61lShJXHFWvoec+JLPx74cuZb0auPKwIljOBvXuWNVyKMdGRU99HH3MWqX+sSX94RM0PEZCghM9SDXO0rmcYnP6vo8k9/9hm1IkQnc0wPG6tYxbRajGK1OV1+K0m1F4Irl/tIXLSHow9KbT6hKV9EcF4iuNIjuJIZnxG4OHbjYwrCSTehm5Jbnl3ifxDYW88itIrSITwP4qXs5JamM5pPQ4XVdUur+QvMeSeFx2rWNJJ6mSU5kWhXa2t+YGYAOeTVziuTQ3wNRU61mbfifWRBp/kx8NIMYBrjvKMXI9mpzX0OWDbW2ntXlt892wcrLQVb+3U+UT83riuWVKSlcFVdRWIZpFJ3KfrWsWr2KUJWK904e2dPUGhJKqmPlkz+sq0g12C8WR9PhNsvLv5g3D8PpX31epKNRp7HyFZp1Glvc17azRhJNYXrum3dgLioS57NMmMZKOpaQeWIznzGxyXyCKtWi7MlX1uTaXfTalqBuUtmMFv8sJUck9zWM25O5pCKtdnQ28eJPMaVyc8B26UQV2ZTkmrWRqWyxC3M8p2qoy2a6XZQuzyqjlz2RBFczzKZmtiqs3yAnkj1rjhKb962h1ezgklfXqEzKDvZcexrWM0tzFQbe4kE80vyxJgbutaRlzfCjRw5fiZzfxKlaFgGBAC9RWjVmdGGTdPQ5SCWGRDPcW+4RRkqrA4LdiaxlJROu6iZk0fiLxFqn2KDd5SriZ0wFHtzXDJVZTv0LfJY4/xytxYXL29tFvByryuvIx6DvWE072RVFpq7ONvtUslmj0OzZvtRQ485MhSRyxzUXa91HS4ycXJ7Gp8GvAmiXPjg6i8ouotMjzKWiBEkzdCPXFdGHpw5+boZ1JVHTsdj470q813Uf7Js3TzJTlsR8Rr7+9Ks5Tk4xNKc4QhdnAfEDwPouk6a9hFIbi4l+Rmh/j/2R/jWNSnzRUWXGrKT0R5F498D6foHh94LCaOByhSYK3C7uo68muOrQhTp8tzaLcp3PJvFPiO98T+FNP0W2eC0nvr6Sy02ytjvYWkWPMlb0yePxFccXKUVGJqouFRnTa14Z0fR/B9pYX8ZDyoqQSltrqwyNvPQ5xx716E0oRSKhJp6nEfFLw9aPomoi6tRM32UxmRxz5u0ldwPQ4FclWKBXUz5A8Dabc6Rqt3caXcvBcyXLtcQkkLLzyMdjXA7qo7HqRilqze1bXdOcSWl9ZyPEg2tkENG3vXRKVoWY276I4TxPYRTXHnWc3mxnpJna/8Aj+dc8Vcqyic/dWRMpDtIqDpuwxB+orvo6I1vdXDTTtuQx5IOMkGvRopykmy1JtWOI+KtpFN47urlbdFc7cSLIDkY/SvKzBRjinLqYSpJSuz3X9gb4e3Wo+I5vF13A32aBflZl7+1fe+GuAq4jMJYiS91dT0Mtpe1xKl0PpDV/Fw0jWVFxMEDtiIbDub2r9vlJQk3J3XofTynCE7M9T8KWmmXmhJ4k8QwhHUAxQtwT781p7VydobGrm5L3VfU1F1KeTTZJ1A253Jz2ry5Tn9alTcdEk7/AH6FTWtkaEl4upaR/as8PmxeTsxj5Fb1JqcTi8PgqXNVlZGEEqMruRz+t+Pm0yxt28CmDWNQkJR7eQlYrUf3s45r8xx+N4j4jxjwuApuFHrLy8jgxEsRi5Onh9PMj0aHxjIG1Hxb4ukvrlskIPkihH93Ar7nhrhSlw8pOVWVST6y/wArs68vwUsIr1ZNsqanYReLNQRdSaJ4oyFEKjOTX1spuEdD1/a8tPlSG+NdYt/C+ktp1tJGJDjzCAQCOw9/pXNTvOd2Rq5Jswb28h0+3guZrpvOePdJEuFEantivQo+8tDdNuyRnXniRL2/aKztERvLCxktuC5HA9zVyjaDtuauFtzrPAPj258DfDD4jXuiFpNbu9MtNOs3RCzr527cxx/q0GAcnjiv48+kbgsVxTxnkHD0P4cp88vOzWhz1abr1acXtFt/M81sGs/COkWmhaY4keCFUhZuQGA5P49c1/X2X4F4DK44fD2ThGyvtorL5Hpuneau9DY+GmlN45+JPh3w9dAS/wBoazBE5c7QytIuQB2HX614HiLmdXJvDvMcbtOFGTuu/Kzlxk/q9GpUj9lNnX/Erx9r37QniT9qD4K3+haBbN8M2sJNAi0S3WKZ7dIwxkucEmR8kgNgYGBX8JcHZfheHMDw1xJRk28ROSqc0rr3paaHz2VYpYWNOnKbftG93fVpPTtqfEGqeKFW0S01yNA0qjyNy/I2Ofzr/QvDYmKgrvfbsd1VckrSOB8YaTP4r1AxwAWyJxGkceCR1ZuOgrsc4yIqc1S1jhPF/imezS8iktndIlXbvPHy8Aj1xWFSpGKOSspRVzjx4ltr2KK61FRJbxQsYpFPzNITyfrz+FcUaic/IijLrLYoeKfFkIvbqHz4obxAkkUEZ+VQM/NnucVjiKnNLl2M6+I10OHs9UXU/F4WKcOpk82aUngFuMn8K4aShUr2T0R4kKyxOMsuh0F1ZWN/JPci8eOCCJIsMf8AVxMcbwfXqce9d9Wzi0j3XTjOkZ9hb2lm90qyss+1trbv4kG7cfqOlYrlirHJUjGjflOanE1oGiurgNFI4mbuIXz3+o/nXkVYtVGjyVGoptN6MqamsFvcTXOxFXcPKfPGcj+YFCaorU7JU4RTbRV+2QQyhoN6qZQ1tIj4KMvbNYfWk24W0Z5bnyV24m+vxd8Uaxoc2i+ItVOo2k6LHcQSjL8DCurHkEYFeTicuwsn7ZaO52PMKtSg4VHdPoctM89uGSPDoxxHPnG4eh5/zitsPFKLuebGFWn73Qcl2pzIsilguS5PX25qakFLqb1KsqiTj0Pa/DdvpXwt/ZD1C3ubyAeKvirIJY7VnAe10K0kIViD/wA97gHA4JWH3r8czKtiM843p8sf9nwn2v5qkt//AAFfmckI1E7SW6ueXaJeqsBhMWwgEMB0U+9fsODSgufvqejhH7lrHYfs638tkPErmQBlltiGX6sK+QzetJcWYNN68sxYapCNeUfM+s/gfrX7ROv/AGbV/wBmqaxvNe0xlkfR70gfaQvPynqDXuYv2sqTS0NMdXgqbaR+xP7NfxK8ZfFH4G6J4q+JHhWXRfEBtFTVtMuCN0MoGGGR1Ge9fIYmnCnPQ+IqRakzudCRQ7XEyDG75ciuTdhzWibojkuZA8fAHXFbJ2ISctS1Jqi6TZvfXcgWGFSWZj2qZzSVxOBT+GnxP0f4o21xdaM4lt4pWjEingkHBrClWVZXRrycu61R2dtNp+lWpEQC45LGq0itjKd5O6YlpqkWoxs9u+4Zx04pqV0U276ssiT7EgcnqOaLJoqyRUnvw0h2gZPUAdKnqN6mXqt87X8UCw5jRw0kj9Bz0rRRbWgN9j81/AN/Pp/7RXxl06NzGkfxR1MCRByiysGz6Y+b9a68HQjG9+56CdWVGM+tj0/4N6hpWmeNvGfhnTL8XMGneIwsd0zcsHhU5HbrU1HFVHFdBeynKnGU1a59RfDOfzBFCABlF2+qisveepxVlGKOS8X+I7DxBc3Wp2jTyJDezWccs0e0yCIlGcdPl3A4OOcZFc8oyWrOyil7JWZw2nSXH7y8eYAhiihTggdvzFVGMdzqcWoli9uZ5JJok8+4mS1JREYAiNFy3zHHIGMDrxx0ranCU2+Xo/I56tXDwtRmmlO+qT/NbPXTVPtseZeO9A0mysB4itp0uItSma5+zEkeW65DCRCMjJwR7ZrzsNKVbEVIzjy8r+89LE0qVOnFKV2/wOm/YFtm1Sy+IJnZY7l9btjbsuB8ywDA/LiojSi8ZORjiK1qMILoe8w6hBr9hL4c1+HaSCJVZeQexFVKSWhxu25x0Wo6l4M1FvCfie4EsEpIsblvusnoe2aypwbndv8Ar8i3G8Lo5Lxr8MvAdtqMutzy3MU8o3ACYmIsOjFelJ4elGpz21MJOtOPLfQ8o8Walq3hq1ubzXNNaNHJSK9hGUKZ6/7NXJcu5cVyK5laF4m0nxfbDUNI1WO6trKMCORGzl+/A6U4zi1ZMxlVtIx/iBa2OpWX9jJdFxJHvnkLfdP1qHdvcnnb3PK/EPgvU9Lae10nVJEjG1kTeTvz3qowi9bmqmzznWNM8X28d1M2qu+XxKm3tRzSg7IJtTOC1+y8cpem6/tJ96D5ABwy1M3KWphOJxWu2Gt3cMtze37M8hAkUHioTs9THllc4zWNLFtIzM+Tzv3NyDT53IFT97U5m9uIVkKRNuZehBraEWtzZ26GfcH7MDMzfMORzWt9Dgb5J3RfmvWvbSKWVskLjrXn45PlcUe7hputBNlCSQsSVNeQptROtwjE87+LnjbUfB91DPZsSCeVzXsZVh6eNUozPAzbM54JrkRY8A/GHTfEgFreSBJsY2k1WPymWGhzQ1R05Tm0cZ7stzsgq3WDG2VYda+arVJRvc9ty5Xc/rG1bwToPivUba41kXZNmd8SwXjxoxx/EFPzfjX6DiMPSr1nKZ8kqkqUm11N6Gw0/TrYPGxiUY/dZP3RTtGEbIzUpTVyD7R4l1m5RtFvbaG1DEXkc8JLsuONjZ4/GoftPskxhC95HQ6Yw01UtlYgr0Hrx1otcmbi7I1rZ5X5ON27nC9quOhEopIv6hdMbdLKI8nBkJ6Y9KVecpRUEcFKleq5vboJNeuArHC4HT1oc2lY3hRiroiv7pwihRhmHGTWUpsdKjHmfYn043DRglcDvmumjKpbRHPiOSMrXOW8dzSXVxIhXKquOR0rVyu9Tuox5KCscTf3v9mSSIlwQXGY1PQfhXPNqLNYQcrOSMPVPFMlpaS6fFe8uS0h2gZP19K5G5NPU6VHXY5TSdWm8671PWLoTGOPbbrIo2qe/FRRVpNsqUVJpLRFK50QeIJDLp0Ku7Lh1SPaxz1OewFOSckzSU4wjY6n4O6CNF0fU54f3gtSFjO0/KxzkZ9ff3rWlTtSvcxqyc5pIzPEXie/tJHs45gHugWlmAwFQds/0rGU1DTqXGmoxuzzX4h+Ozpk4LSkXMiFLeOM/Mq45OO1cdWraVludVJqWyPBPjn8Tri00W4vJbgpa2sZeXLYyB1JP6VyVJXvKR1U5JK1jzT9mzT59XVPiJdAmS4keSMSgnyk3Bti56ZHJxWeFSUuc2cdW2e0fGzUNJm8PpNYXZJuoVm3kFvLbdx05xwRx0rsxcrQ0MqUOaoeP+OPFGpatoMxvLgiLje55boRhgfvL2/GuRTco2NPZ3lofNsyXS69c2twiqY5N684LJnhvwrkfKpvU67vl1M/Xtcur3UGjku0yY8eepyJB6N/jSfvF0/huzkNTvbgXEllBb7nJyx3Y3e/1qI3T0N4r2hlMrHdv+WTbnZuGT/jXo029ik7KzLWmRGSdXdCrBs4Hau+m43T1NEklci8TfDe+1/4mWNtZxAJqcStNsYNjHBPPSvOq4Sti82jQjtK3QzkpSmktbn2J8J9E0DwR4StPDWkQrHHGo8x8cyPX9CcOUsJluEhhqS9X5n0GAoqilbc6+18GWWpavb6/qVuHCPlI8A8/SvrrQlF3PXnTjJqTN7xVo93riB7C4uF3MAsYPAA7YFYwkqcrLY6ZqLguVWOhuJRp3hyOyuQMiHBG07mP0rjnJTqt9CFHllzHH+NfiukWn2vww8Oam7yTHddQWqZcD3/ALor4THSrZ1mqwcY/u1uzxK37/Fezgm3+BZ0PTk8OaYloGEcwG5wZM/ma/QsDgqWAw0adNaI96jRVGCSXqYfxX8eT+EPDUbaba/aby8mWO3gjBJyT1ra0ZzSsKs5U9UbHhW21Gw0qJLmRxdTIGmeRjiPIyeaqpOLRtJJannXxw+IM/hO8j1RdPn1RYZhDZWVqhJnmJwCfYdc14mZZpDA+zppe9LoebmGJqUEnFXb6G8j6nqOkxz6woS4+zq8wfpGSM49yK+iw6tCy3aPXoqUaMXJGdcarY2JijspcTNxGVXLE/3iO3tWsYSjJXNpTjVgnY2vAWl2mhfArx18SNX8TLbXGs+LLHTbW0Sf95PHDAzsHGDhMt04zX8t8U4yrmX0kcswcYXhQozk/K7seb7epLN40YxdrXv0OIl1tQZZ4ovnl6TOu4kf7K9q/q6nFOV0e/7Pnud5+zG9uf2hvA2nSQJJLLrsUkgcguxBzyMjpX5X4+Yl4XwhzW27pNfeeXmE5U8vru/RnMfs9/EXT9O/4LJfGj4RXmnWTxfEPTNS0+61A3OX3xxRvGhUDAwFIAxnvk1/K2AymX/EruW5w4JywtWnO7ve3PZ+h87KlKphKc4rWm4y9dkfOnxJ8OWYW/8ACOqyRNJZX8kOyOUMflYjII+ma/tPJcdh82yLD4qk7xnCLVvNH02YUOWs13PItQ1bWfC11NDPMZLST5Dfbf3ir0w2fbvXpUZTS948fEN4a6ucn4iuNI1mS7uhGjWyjAYTbti+49SazqTUupwuqpR1PO9Ukv8ASbOcQ2asjROY4HHCknggdu1ZuKirkNuxxF/ql6Y5JJrITXcoVJ3PXb/dFcOIqSSslqebVnNvQo3EUUge2s5PsisdwkB5f/Z965qMfe00MlThD4NLm9BpWpWFvHJLqeIDBhQ2CG9iPX+VdU/adzvoSq8vxGTqGk6qzzNJqLhpFBuGB4Uj7ozXDV572TOfEUatTaW5Vv8ASL2e5klvL7MkcSgBejL6n1FcrhJTu5XM1hXDWUtURalpCSQyWcku5dqlXDZEn/161xTXJysqcozpuDM++sbRyLfzEGUGSP4WHTI9a82VpK0TCpTouDS0ZTVnVDGIQsyfMSR/rB6gVzudRp855lBy5rSWq/EYFkvSbmB9oP30Tpj1pUn7TWL0OucJVIXjp5FqG2hgtVMiEKQB0yW5xge56VGLaoUG27JLc541IUleWiPTFiufE1r8Sh460IjxFoml6aun26NhdJtIdq+QMdCFI3D1znnNflUZPC4jAzw0v3NSc3Jv7Tez/wAjHB4hYqWJn1VvkuxwOjaisqkTuGDAh379OOa/WcK+a8WXh8RNNxR03wa1drNvEiMoC4tTuDdPnYc8818zndOnT4lwUnv735GOFp1fr0uZnvXwE+LV58J/HVl4rW8uIrMOvnyWdyY3xnnnt9a+grQVem4I9WpS9rNwklY/VL9j+y+LXxJ8Z6f8WfCHxUvrzwbPaYm0m6dJcPxg7xz618bmuAnSq3bPKxtGlhYOEo6n2PFKFRVU4xgYxg1510j5/luzTTUYoYwWJztGc9qm91qLlaK+safD4k0mfSbqZhHOhDHOOKLRe5rF2ewz4VeBNB+FfhpfD/h+JUiDEgL6k5JpQhGmmoiqz5pbHSXsi31qYJZtu4euKHFvRhBJPYs+HYLDwzozyXFwCq/MWc0StTV7kVVGo7WK+k+L7bxMrXFswZdxClT1xU0ZxnFyRfLJblme6t4LhY/vu/B46USavYq2hn+IJpYWEDuCMg4U1pKUoxshxVkfnAJrew/a7+OOmqEMbeOjOB/fD2kDgcVvgXVnKXN3PTjOlUw0JQd1ub3wdkgg+KPjMyW01jDPf2lwjCNv3swhI8oknkDA5A6EVrVpfv25PQWIqtxhF7WPrz4P6jfz6FLf3yr50VsSF9McDvxik5wjBs8qopOqkjnfG13Le3jNPIQduRxgHI9q4W3J3Z6dKKirM5CzBN0cMowwyAOuBTg7M3laUNBdRt2ubIyNbj52P3umPWlKa5Wwpy5fdZ5v8TJZYtLZbiUozozKM/fGcd/ahTikwnF6Ski/+xvf3OlaB47uLBCrQa3aScZ6GFa4YScq9RrQyqQclFn0LqDP4y8Np4o8OupvoIx58K8F629nzNMx5JRdnsc9NeJ4+0R9E1q22SocDecPEf7wNXotzW/LFcqOGju9S03X5PBnj2/RlIIsLpj8sg9/ek7ydmZ1Xy6ox/Fs1tortZ6rbfaNMzgOo3Lj39q53Lk0aJcVUSuebeOPgl8MtbsDd+BNYk0W6u2IaTT59gZj3Kjg01SpSVzKbi9GjynxR8Gvjn8P2n/4RzxPDr1oBhkvchs4yPmHX8qznBr4Tkc+aTS0sec614/+KNvDJFrHgq6guYnBklDAqcf3a0pJ9Tqimkctf/Gq6zcPqulzwLKMM7QnqPwpzcYszcmtDide+N2nXz+ed0LwDam+IhZKzvKTsZ+0bkef+LPiBcancyT6GgDEfOoXgH0qlTUd2Kc5N2RyOo3WqaoWe8mIZ+GVe1UlCPQUYzluZF1Els6xqpLkEHPXNat+5c1domVqLSvIY5CQexz0qVtc55U7y0Lmk+ZNYGMn7vSuDFyco3R6GDqRj7pC8gRyK8lKXIelN80TyX9oLZcTwRjrn0r3siTjKTZ8fn8Jc0VY87Fhf6JImp27kY5BFfQurCrF0zz6VKvhEqsD1f4QfFGLVol0rU5gsoIAJPWvk84yepG86ex9HQzenWSi3qf2SabbC1RhIrZYbkKkZz6V9ZJLmZ5uJb9o/UkuTcyT73Ifeu0byDiuaUVIUG1sWppDpVisWEWSTBzGvOPpWsY2VmO8ZLQn0yTfsE0o3EjnHJ9qTVhWSdmb1lOIkMjcBckhuf1pRundkTSlLlW4QXUcitMU4bJb5u1Q5JaiqU3FpII763mk8tRkbsAk1k6iehXspxjdjbq5JvUgjBIA5OOKy3nZFQgvZOTNSFtsG8vjHc16UJOMDyJrmqHIeJTG99JK64KrwprK+lz2IpqlE5PX9Ls7+yaV5lilIxH853KOe1RKMZfEa05Nas8u1qSWC++xTTFCnIcjl/rmuZySTibJSqO6MK9u0tBLJbwy5YEEBgxdvXHHFY3cZGsrSaXQb4f8d614f8Ny2GpX6R39zIzzSswykfpzT9vCEPeerD2EXO9tjudJ8XaXZ/CyGKzlaNXZprlpJMNITxz6/SrU5SppJmVrV7o4DUPEtjrtzLc3cjN9hVS0TNhQT91B68/zrnqyXNq9jSonZRR4x8UtXkg1ee+u1Mk0zFHkU52dMIv58ntXnOT59TqguSGh82ftDX9/48k/sazRotKjkSOcA4+0sT936D9a5ak5VXboddFRUuZ7nafBCzTQPAkGnPNtlmtfNtee6ghh+QFdVFqNOx0zcampc8UXurxao890jG3SBQYV+6jZHzL7GlWU5NERlFR0RyXxBEJ0O8vhJtjuIfNhRe3PP447Vy1G4RHTdtz5n+K2q3VpPHf6VdKZbZwELZCyRsOhrik23c6HH3Tk5pr5oGnulwz8goMjHf8AH2rRORdON0Unh1GaX7ZazJIrD7rHBX862ppM6tIxIZ/LRv38S7tvUN0rup2uYfFIsaNK3nD1DcZ7/jXfTguZM6Iw5mevfAnx9FN4lvfhzrvhvT28yOOex1OWD9/HjIZQ47H0Ne3lee4bKMd7HE0041LKMmtU/UqjPlxPKe8aLDY6fZLftaN5Yb9xu6MfWv0vKEo13VlJci217n0+Hpubumde2qx2tmi/Kk4j3MVHQelfXqfvpLS518/NotkVvDGr6zqs26K+AQMSdpI2/U1tVUYxTTuaRkop3Rs2+pz/AGiSXULjzHUbQG6H1rlkrQdkKcm2omd5Oh6NdS6tZ6dDFLKvzTbcFvxrTDUIR1hHVmlOEab5krMgu9TsL2QMZGdEG55SuB9Peu3llGOprz2SsUob6113VmvEtllSzH7osnesJ6GiuJqer3t1IljNKTLK+GhUdR7ntW1OMPZ3ZHNy6nn2i6Vr6fFLUfGXjDVo2s7WIRaFpir8ob+KQ46nt+FeHTyqdfNXiquqWxwYXCYr+0JV6r93oaWu6zNNHKJpm8xjlYgeXPqfQV9JKL5bns87lIyLk2ttbtrGoam0cFuQbuVDlpT/AM804/D8ac8RKUVZakVVGnETTtY8H6n+zrZ3Ol+J7q91fXfiDdv9ikfbFZwwwhFQLuwzHdkntnpX8rZBiszzX6RWMc6aVKhQUb9W5O/yOCjXrvM9V7ttCC0l07S5WIlWW9C/vMnKjHqfQfrX9a0oU4u6Wtlc968ou93Y7X9lbUvElr+0h4Z1XwnYrf6t9qd7W1mbajnYw2gkHaPfH4V+Q+P1GjPwozJTk0pR31dtlov0+ZzYqlhMRhZwxUuWnbVrp+Vz5w+JHxEg+Af/AAV3Xx7BpsulyeHvGFtc65ZzSbg/nELcMzNy25XbqT0z3xXwHg9lUeOfoyV8jg+dzpVOXTrG7j+R5uJqKtH2NF3jKFlbS+mjOn/4KFeF7P4cftxeKJJtYs54dYaPULWO0hEUdqsqq3lnBILkFXPTh1PQiu/6OHEP9teHNHCYqPLXwrdOS8k7X/C3yMqWMp4zAU5Qldw9yet2pJJ2fZ2adnrZp7M8a8Sar4P1e4eyuraKZZPlibaM8dSa/fJe9J2fu9NAnCFSOp4r46+GutW9/LP4XmH2KOQvJbRsP3jHkDA/OvPqYRt80WeZUwk41Lp6HEan4ouleWx1W2SG5kIcbhkADg8/QUozcfdkY1Z2dpGQpsLtp47SGNVWP5JQAQB3A9TXDUjzyuc9SKktEZ9zoVle3sc7TKqQR740PG0+rDsKujCFzKEadRpdUW9Rt3a2htpJ2UFlIfBBZD1OOwqMQ+iZ0OhOKV+pDqzQWhd4SUZkDIM5DqCfmP4fzrllAcoNRuzE8QgwSia3Zo4lC/OpyShx1/GsXBKV2eXiatpK70Mu9LRucMUMiGTZnK5ByCfTipq04y3E0krorvHBdzGUny5DGCmTnp39zXGowjN2OPnU61upVSK4BKXB5jXci55HPUVnV5Zx1NVCU1eXQV7lixl2HpgnOMe9YQlGDdhPEpPQ7j9nnTIZvFF/8V/E+nrNoHgG0GpXMUn3Lq+Y7LK254O6XDkf3I2r8943zStXpQyvDStUrvl06R+0/u09WeFVnUxGJcX8Mdfn0JfgfNqHiDxZ4sh1K8mluvEHh2/mvZScvNJgyknJ7msOJ6NPLcpwrpq0aU4L9DfK6apV5xX2k7nGaJbKLUG4H7s8Ag9PrX2+FxU56vY7KcY05cxp+GUnFh4jvbTUvsr21tbuyhcrMA/Kkge9eHmyqVeI8GpK++vbQwhXlLFyXY7v4V+OLTxbaHQNUKASKFBPJ/WvsPZKELo9bDOVde7ufan/AASZ/ak+Lf7PHxbk+Gepa5Z3PhC7nRJLa5ucSwlzhXQdxmvms6oVa8VNdDHOIQ9h7+6P2Q03Uo9Rjjv4nBjdAyH2NfLqPc+P5n0H3l8TMRGxPHrQ1oXF3Ra017iRMzTbRj7oqbalJpM0rZ58hcFVPbPWtNLDkm0XftigrDHjgdRzSe5Ck0RaxFPdQfZ5pGaJuCmeCKyqJt2ZrpuXNDg07SLMRW9qqDb26URioqyQTm72I7rWEM21FAYr94nrSe4km0ZesXdw9yGkYBdvb61o02jW+mh+evjFGs/22fjKqYH2jxHZOgJ7vp8GP1Felgly83qd1Cj/ALPG52k+ozQ+NNL8RXd3czvrMhN+0gIEVxGu0KMcEFRmtMZFyV0OFOnGna2x9K/Da6f/AIRK9DlpD9k3M4GCFLA/kP5Vw1IRjByZi4J1FYyfFcWoWklvLcwoFvbcTWrbwcoSVB68ZNcbnG1yoyUk7dDm9QtdQsZ7i0jSJbqKZVZZj8u0N83I77c496uDbnZla1KSlB7kWtxWUoiu0ilQ2yyi12SHG18Z3IeGIwcE9MmtISVOk4SV7spU5tt31Z5z8W9G8RSWi6hY6E81sls0izQHeqRBgrM5GdnJHX1HrXPVjOC90pyoyaTdpW+fyOr/AOCflvY3cfj6yvlXyrjUbVCScnPkDk151CfPiqkTXEVYxowS3O6XxBqPwf8AiJH4Z1NjHp+oPttrovwWJ6HPArvquMFHlXr6nKpwlHUf8ZNE8XaHMvj3wwVmgVv9JgQ5Lp/eHvTcfaQTTMFUlNtW9DI16Hwf8T/h5/xMLlC0oxBOhHmQP7dxg1EZJaSKvJo8f17xJ4l+Ejw+HPi3OLnSp322WqoDtK9ll4wDRVilFS3uZOlJvQreJ/hjpXiLw4fEHg/X2tmjffbiKbK5PfFZ8sHGyYppxWp5X4q1n4/eCbq4stUtDd2aKJGmiU5IxXO+aDOZ2ucWvx3tdUuhca/pbxRyRmNhLCQNwq4ykaJNJNo4XVfGvg/xJNc2KGHzYn4UqMdeaGnfUJTRwfikeDrdmdraCWHnMfG5DRz2MmlJnB6m3hOzkcWgTyn5Y55B9Kzvzamiajscdrmp6VJdSJYRksBgNt4raFluZuq7mEfNuHa8uE5A9Kuc9LISblqZdysjgylfvHjFRZvQuCJtJl2AfL1BBrOVLmhYmNT2dQqXT5uWWvJrQdK57UJuUU0eVfGxozqcCE8k17OTTnKEj5vPKt6kUzNfRo7vTAjKMFfSuhVGqmhacXhkjDg8M6lp+orcaZKUIPBBxXpRxtF0HCqeDLBVlW5qZ/bDbR3c9qbtFACdGc9quo25M9avd1HbuO0NNSXVGvJnYRr83lhePrWVOMlMTaVOw+6ubi/1Bpln4JwSqZFaXTZFPmirGno5cbfLKkBv4V7+9JWlsdDbUdjTu711UW8pLqoy6rj5j6VE5WdmYU4WnzDftgu4i1vaBf7wL9qyqS5tjp9lyv3pE+lzRISqwZAXk4xzWSuuhnXjLuSG7a5mVfL+6M9KtXk9ifZ8kHqaRuI/siq67Tj5U7mu5uPJY8uNOXtXY43VZyb6VZJgqkHCv3rKyR6ig7I53WJ9Pil8+dG2MpGVOCB61jUsPmblaJyfivwhpHjWza30G2dpEQ7irEj6k1yVVzxtE6IOVJ2Z5Tc3Xij4dauttqMUUwLbBLJFnYCaiClD4jrUYzRtNoGi3Ok3OtauEkugmFjMY3ck8kAcE9hQ6dL4pGVSUubl2sc7rMPiLwl4YnTXLBdm0y2sKkgopHG4etZqpKnBtozTjKWjPPPh942W80G7l121ubRmumESSEZZRk72OeP/AK9c0armndWudUnd2toedeOdYm1HUbixt5pZ5WJ+WNchAe49h+ua5qsYrQ7KdJRjc8u+JZTw/awwQ5KwKHlSZxmSY8AZ4z17dK55KUVZGiXUs/DLT7uLwcIp9Vle6tySs2MmJs5IGOnatcPScI3bLs5S1LvjDxNruoWhvLm13Ep8k8ZyJNvXI9D3or1GEVGLsjyfXPG/iLVNCurr7Cn2aJdjQxTbymD1x1Fcrs43ZryxZ478QLyTVmeWGJJIJUUEIeVxxnHrSXIzopRd9TBtXltbV7c7EfHyjqHHqQeho5Y3Nm9bIrXbSEIxUCVuoUYDfStI2CV7WM7Ub427tEy5lPVH5C110e4o6bE+gzTJdAOw2sM8Pmu2lUfPynVBrqe2fAf4NeKviX8QRe+Gr77I+n6RPcyySkAOI4y+3J6kjj8a7s1y3+0+Gq/s03UgnKKW94psKVOVapPkV5Wue/w/tGfDH9orQbW68AW1nYDQLBdPm0uKHy5lmj4kkkU8kls8+mMV6nhFndWrlKy7H6V1qut16mnDWMp1oSU9Kjb0bGT6jqdzrUNjBb5UwhWk21+40+d1Euh9TB8jN+0vNO0Gye1QbWGC4IxXXKEpy0OhJtanK+OPjD4c8NX6wTShppOILKLl3J9q5JzhF8hy168ac7dQspNW8XC21LWJprG0TDJbjgn612UXLD8rpnoK8qabLF/fSXcy6TpTMTghYkXPHqfSuiFRvWW5M4pTTuP0iabR7KaKeZ1ZRhSV53VlXlztFxkovU5zR9T1PxLqF1dwyg+WSpZiRx9e9dCcYU7BUVpX6FK/1JD4hNrFdfaY0XEyJ1Zuyg+lYyqWg2uhpGcpbIZe3Onw6kza0TboEIaPqznHTFU6jlTumHvRdzlvGurtL4bmuLqVLRFQtBAOMgHqwHf60RioJzT6G2IqQq0/e0sM0m8u/BXwc8LaPqmlW8N5HZ3upo8EgeS5S5nOx8jpwnSv5x8KqEsV4g8Q5wv3keeMFbf3VdpX89DycAnVq86baV/vKVlqMaFZlkMl3Iv73d0QdhX9RxhCM4yW7Wp7sOecLydkj039lLXfDXg79pvwpq3jnxc2m6fZvNc3N8suAwVC20kHhT07da/IPpE/WX4S4+OHjzSaSSXm7HPiqWKxOFq0sNDmlJNWPkX9tLVb/wAS/wDBRfx1dWd1ut7wxXEUs4KeWjoCrYxyenBPQ5ya+a+iTi54Dwyw2HSTalKMvK619fwPOqOeDxNKm9JKMT6P/wCChlzq/wC0J+wz8L/2rTNaRnQoYtP1uWwGJCij7NL5g3YyJFRyQTw3TufwrgbE/wDELvpFZpw5Vk1SxMnJJ7Lm1X5s6ZYWlHCVqcZPR+0+T3Piq/sPEPhsxavDbx32kmE7JoG+ZFPXgdT/AI1/c1ZOglyr3VseSnObvHVDrfxtorW0qeHbkSoFcsZQAUBAB4/vHpRSmpQujpnKnOCdzl/GHhXw54jhlu3soYRHbYk2dWc/dQe/rXFUjCUrSOCrRjfU8v1L4W69ZXF19g1N4YoF3th/lX/ZHvXi4jDOU7wlY8vEYCdR2hNowtO0TxZY313cee8hmAK+d94D146VyRjiaV7O5w0MLicDKTcr37jYvFOpKJFu9MlZUBjlndSy7c9q5lXxM5e9FlU8fUrNpxenUp33i2TVfMdgoLJ5a7wRsUenpmtXXk1sbvGOcOUz9V8S3V6wLWTH9yFEfTGOQfzrmliZ1JbHk4jEVKs9IlJjq99KHlGF8rYQTyPw71NWtUbLhOrU0G3mnavcNDmQpKkeUZP4hXK4Tlrcmtg6zamnqSpamdWlkJE4PKjvWbvUVnozSC+sK0nZof5ZiCs8LPKzBEjTkyOThQB3JJArDFVI4em5yeyMa9Sjhqd5bnp/xsjX4R+ENL/Zo0+RUvtMk/tLx1MP+W2sSqP9HPqttFtixz85lI61+e8PUZ5rmNXOKv2vdp36RXX/ALeevpY86EXCFlvu33f/AADD/ZgU3/x207SJEdvtmn30JAU85t3/ACFdnHHucOVG18LhL/yZCwLk81jTSve/5HKpM0NttztMcpVlz3BNfW5dSU6FOd+if4Ho4i9OmaHgy8TSrmLXViEkN00kV1E2MSoDgr164rKrCGPxk3HSVPVM5sBUi/fa30FuIrPwF8QVfTpHNndgTWRm4IU9vw6V7GEdask6m7LjXqYXGcltGfSfwnOleJr/AEvV5rtY7+0njl0+5i7lWB2HnnNcmYU2qUoHfXhKvB3P3S+CXii61f4U6Fqt4rLNLYRlg3HO0V8BqnZo+WlQdJ8p1A1HbiVzyW609UHKaOn6jI7NISMg8Y6U1ZESi1qjUstQRpBGJd0mOcniiLuy0nyj01EW1yZJSOB603KxnJXF/t2O8lCowwByqjNRLXU0gna7LjXLIioxAXHSqViZNuRXilso7gzyuzFuFXP3azaNVblsUdW1VWdtx4C4DHjvWjl7o4wcVqfBfxnijs/23/iQnnBGu5NJnGSOT9ijA/8AQa7svbnKa80dkajqUopdDc+IeqSJoGlX1siwvaalBKGY4yHOCN2enWvTrxhGgdOFw0qsuVs+nf2cJIvE+nXFnqd5AtrHYzPdNOcAIFyo25BbJwMA14mMnL6u3E8zEVfq7t8Tv0K3xFu59ZnS/wBd0uC31KR4MyW0GIjEsRjVgOApCjoB39hnnoxc6Kc3f/I6I06dC6graXfm2cvObq3uHtIWMsRBdmV85Zc8/kTWsoqErJmmHqSqUuVLzt/XYpeJbs2+kz6lDG85it2k2Lkl8ckADqaEueolJ6PqaQg+bR6nH+MrW4tbHW7XT9Qumtb9zstWGwmIKGYui/7QzgngAVjOMI42caDbX+W5koVK2Hg60VzK479h3X47TTvHcowmNbt8KeufIXrXBR5FiKltzavh0qcGe0eONI074v8AgybTLp1NzEN9rNjBRxyOfrXZzRa1Vzl9kov1OS+EHxTvdfs7r4f+MLkLrWiqYri3PAmToHAPUEVzKo6cuVl1IKC0OF+LHgfxv4D8XW3jrwCGubBJDJqWig8MOpKehpVE/iREqkXTIPEPxm+F/wAYLOPwRq0UTm6XbcWFwuGh7EYPSkqinozmVZnkHxH/AGfPij8M9MfU/gf8QJm01nP/ABJ7xt4QZ/hPUCqp0FF6PQhyurs4zWf2lviPo9vJo3j7w8yPHbiJ3C5B96K3PfYzd27o5aTVdA13TDc6dHbyF23SKwBKj2pQV9S4q61OJ8beE/DVyzPplmsbImWKjlqmbsxvkZw2q+DNIk3T3Mg8xhzufGPrUtNrQh8qZxXiQ+CtFG+6uYSxGWjRgSTUqnUS2HOUUjir26i1KQzWsIit0blsYNdEKWilc5tZdCpGh1BmWEYiUHBB61NSEos2SSVigsIlgaNgA0bHirUZN3LgrIqwAxSFEXgN0qpK0jnavUuVNSlC3pIGB15rxsfC1mezRl7p5F8V7mO+8UQwRtnaea9bKISjhpM+Zzr3sVFFsAQ2scYXnHSrp025tnVGP7tIt2FpG0ZZ4wcjPSuGupc1rndhaEJRuz+x1pknXy5Z34wQsfIr6WpD947nlyTU22alrIYdPa7e2dCifKD0Ip2sjmqTU5WMW0DzXTSl518w/u0jfisbWdzopxUVdnUaM08VrmdQ4VclVJ4PvTSa1Co3eyIJLnzBLN5jtg4ITpj0rJ2kiqaukWbO4uZrXyrewMSMfmYpklR/n9awcpXslob8tFVOdvU0LNmtrXzrhQTjO3Iq0uRanPXtOpaI+0vLq5iJEfDZ2rH1FWpTcdBzhCD1ZM1y8REM0wXA9cmqjJvRmfs4vVI5zxGkI1NrwIJCgBEbnGDVttmruopHI+I2h1jelwyqXUgBH+6PpWc7LcmKcZXSMjRNWvImOheGY1wPlnfGD36mojKM4+6dDi370jJ8eeGdP1OJ7ae7ea4aP5l3gIp9c03CC0bCE5djzK3XXvhx4gtzrql9FFwJZXU7ioHTPqK4pxVOV3sFSDqU7rcveN/iFZeJ7ea7hkWaO6BEbgggDnDH2ArOpLnWmxdKmkrtHjPjS5vToV40NvmOCIRWxHG+Zj984HPT2rhqTnyto2ULSWp4B4o8cfFmGa507TNLtYpIo2M1wzsu7HI5HJPt+FccJVpq7O+Kp2V2eY6foXxV8fePotT8WeIS0MJPkW8cexEPbI7n61ivazqq70OhJTR6loF/4g8N2dxYWyJJFcxkpLu2mGZeoP1r0EmohOS2RmeLtc17UtEB+1xW91CMT26dVf8Avj2Nc1VNhJQUlY8v1LRyfMvLedorlmxOI+/ufUVi4Nm0Umclrunx6dbyaldQxPan5peCQp9ahpJmyqKKPP8AV9Z0vVnkt9EleYq5/epGRtGenI5pqDetyoe+rxRlTNrUkcitrSn5ujWxG0Dt/wDXrVO2lh8km9WUpJJEIeX5txw3U7j6100Ggvy7FzR9RtdKvob29UyQxzK00an5iueQMjvXo0YKWiZooyldJ2PoX4O+LZ7/AFS6n8P+IEWzmuG/s+3kYrJHAekbY64AA96+r4TweLo15+1mpRlp56nZhMLKNTmkztPD3wi8DaR8SdR+LGiaMYNd1iNY7+WCUrDJtGASg+XPvjNfYZNwXkmV5l9couXNrZX0V97GmBynAYTFyrxWrO2trxoF2xO7yKfm8sbi35dBX37nBJO9kfR04uettDN8R6hcecYGvwqzDCJn7p967IVXZpGvPFe6U/C3gDwxp+qzeIrh11O/OCskq58segPauKFJc7lIqFKnCfM1qaWuapHDKwExjwuTnnnsAK6VFs0clN6OxS8OzX9mk17LOEeTnzDne1VUULJIEmVrjxLLq+oS6PZy7ljU+a6nJH1pypxhH3i6cG5FLQ/FWlz6de6bZIirEzCSYnqwrGUlN6dCqk1yuNjifhs/i7UNQ1bxP4l2WdrHdbNMVR8zD++fXvXLh41nOUpu6OfCwrWlOe3Q29a1uGzR73yUa6YExzTnJA9ea9LD0HVvE6KtSVlI4fUtN8TfE+90zwF4eVUk1vUEs3uXfAG9xljk84FeRn2Y0sjySvjJ7QhJ/gS7Vmp223Lut614Atddk0Lw7rNzKdFu5tG1WOcl1RoZWELR46IYyCeOua/H/Ar6x/ZmLxNWKUa9T2ia39625WHf7qXKrK5j3GspZXFxcq2IRuKoBgzt2HfAr+hasZt3pvRdH1/y/E78PKKjafU9N/Yz1G9g/an8PXd14b0/XZri0uTLpmpFUjij8v72T1I6gY5r8c+khHk8GcwnzcrfLr21XYcYfWIzp87p6brf+mfJH7Quuah8Wf8AgpN4+utVvbTQPD9lJDDf3t7YkrarjIcRrkyN1IHfivjvo1062T+H1FYePtG05b9T5jHTxcc+lCPvRpwir93ufXn7JWi/Dj9oX9iL4rfAeDW9W1e28JTPe6YbrT2tZLqK8h8s7YFcgqJItwDEcn1r8h+k3QzLI/EbKOJKVNQnXSjJ9nCSe/p1PdyvNZLFRo8t41k4NtLTt+bPgLwJrmt6LZ3T6vrdxPbaCnkX+kpagSK4fazHBPyjAzX9k5BmVLNMno4+EnKMoRbVtLta9Xf1/A+TpzqYTHVaKu+R2ZDqmj+D/GiN4l8N6glneu37nyWyHye69vxr1YzpV0uXRnoWpYpc9M5vXr3xJ4Mt0tdbstlqlxua+2Z3nu1efi5ypR7nLiq8qUG5lSLxpp3id5YLOeN4ApCIp4IHVzn+tcMKsauzOehXhUjzoh1u8hd1g02GNXv1WOMkZIX+Jq6oypvRE1asa0uXuV9YtdMRIPDkMMalWO4qeSuOWPTmlU5LKMTuo4WEKfLYxdX0PQ3RHtbEKrAY3c7TnAJ9zyfwrirwXY5K1GnfRGN4g0XSLe5MKKBEWKrIOcDA5+meK8/2K5tjndKDfkZt3apDdOjR7Cg2Mw7HsfxzUVMOmzixFCNKV1sVr37XK7M6lNq/KOwHt6VMKO9wUptalSaWLTohe310qoBkszfeNYVVRp6yZw1atHD+9N2PSf2ZdL0zw7o2rftkeO7WM6H4QuPsfgjT7pRjW/ETLmLCn70VspE8hxjIjU/fr8w4xzOpmGKp5Hg2+arrNr7FPrfs5fCvK7Pno1f7SxLqf8u47eb/AOAeX6v4hnu57rxDr2ovcXFzM811NM+WlkYlix9ckk19Zg8NTwVCKWkYqyR04nEUcJT5pP0R0X7I2u6on7T3hTX5AI4n1NbaOOToVkUoc/8AfVePxXh6uK4Vx9aW3s9F6NP9DiyD6xVzhYytpHWyKnjC1m0HxF4i0qcKDYapcpwOm2RgK9HI8UqmR0aqejgn+B9HmCf1epJPa5U8Oxy3vhGJG+/E7ORj15yK68vfsG6st5HLl1GMMsg3u3cv+KIRrfgOLVRc+Zd6ROMIcf6tuuO9dtOc4VZSTev4HVjKMKlJVk9Y20PT/gFrq634afTYLgLMqkwuh2nP862qvmak9j0qdSM6UZJn6a/8EfP2ndSfwVqPw/8Ai78RGlaxuiunW9/J80SdgCeor5fOaFOnU5oLQ4Mxw/MuZI++ItTtb23F1ZXCyRPysinINeApc2x89J8pq6XeRxxbGbGR0z1p2tqZ3uzRsLq0QtJDJnPUtT5rLQtSurCype39wIrduN3zN7VF7lJK5oxLpejR48xWfGSc96aT6kXkyvqGtoxG1gPQ5olEcacmU3vJWmEhG1dufrUJWZsoqxleItQv7m90qz8N2aTeZqKjWp7qXYltZhWLumAS0mQoC8DnJPFXNOVrDSbvzbdD4u/agmms/wBsnxBe2tjxd6FpEmLh9u8iN0HbjO2vRyyUfaT+R10aPLQiXvHinxR4R1Cwt4RbLBsItd5JUgZ4PXrXZimpUGkdmFfsnaTvc+kP2b/CUUvwyvvHGq6VE2m6qtnptvczylmiuIyszEpjIBwuGxwRXhZnVlHDKmoX5mlfseNCCrZmoc9nG7faw/4h3kGovb6bPeSxxQ3JeYwSMCQrHZ0KnHqM4wSDkdVT6K+3kdMVX9nOUkubVLrpf06r7n16nKrbz6ZPLAuoecUjMxPmhgokwQuR6bgNvbvVUqM/ed7pf1+pdOop04yUbEs07yWiQ3AVo1JKjA6nvWntKns1Dpf8zRavY4jxtqV5ZXt9Bau6i1svtEkg4AVjsUZxySTjA5xn0rz1JvNZQTsoq9/X/M6GnHDxb+03YrfsQ6ZPrel/EKwhk+f+0bdwe4JgU8+9c+DnCeJq+pljG404WPYPAniFNKtZ7bUn2TWrlWDNyfeupQlF3ZxOTepyvxj8DXHinWI/iB8Np1ttfs4slozhbhf7jeoqaqVSOm5pJ6WZzHwz/aHTxXqF54c8eWkul61bOI5ra6OAevzKejA4rODlu1ocEp20ZyXxW+AXhT4leKn8deE9UbStXtFPk3FscLMfRuxodJT1izKSerR5nffG34qfC24bw98UPDN26eaNl9axmSNl9SRnH+eaVN1Iz5Qg5zpp2t5PdC+NvGHwu+KGk3epxzWrubRRvRxnPvXROcZaCi7ux5B4t+AGoWdtLqvw98YCESwhhCGBAJ9qdKEe5pVkkrI8o13wh8cbRitx4igMUYxlV/KsJx993OSUZLVnH+IvAvxIubwW+r+K3TzVy3lcbvSikrbmqp3jdmTP8MNJ0VBeavdtI+3c7Svu5HatHUmo8q2EouT1Zz1+R4gvBZaGpFsDiTANaQi1FO50LljHQ0LfToNNi8lgAVGOBVNXRjfU59IC+rTRyR7RjI96znN7Iy55c25XubcwymQeuR71ndyHTfvGB46vl07y7grgOvNclak6iud1OtGlrLY8cvRLrfi83O0lVbrivWpSWHwljxFTnjsw5n8KOia2MrhBxj1rBVPduezWgoaIvW0SxQkE/wAPpXnzk3V1NaScKTP7CdOMV5cLBpTMvzDexbGfavqZa1GjyqnNGbv3Zd8S3psbdNJM3GOGJyRWVR8uiOKycrmfpd0skxhsjI3lgFnOcUo66nVb3dTpxc/2boD3I/5bHkKDk1M5tR0CUZc6S2M6y1C4vVwqRxxxvy5X5h9B61zSemptThymtpdxcyT7lllMYXcQ4I3fgBU05SbZVX2bjsW1vo51ZFGxmyAaU530MqlNxdxdCmiFw2npdEPIhy6VVGV04pjrRfs1O2iGB7O1lKXKNt8w7CTlnP8AhRBKErM0mpzV12+4z7uz1C61K48y0Kq8BMe4ZNbxvzES5HBO55d4mhK3zWkjOUdj5rr8pHtk9qxqpsuEowQ7TotQuLA6N4XuoRknzcIW/M96zpOzsmTOo73ZgX3h3xFpeqJda5qzSWqODNaRIFBPbJ5qasJqV+bQ6IzXJoh3iHX/AA/4h0pglhbtKvyxIz7kiXoWPHXH86znJyjqRKFlqeAeIPAPjOz1m4vvhusclrOz+dZTDEVy+PUcrj1Fc0qNSa/dGkJOpZT6HHn4pW2sLc6Pf2bWGq2Uqx3GmTAYQjjcrdHHoRz681k9Ycr0Z2SpRjZ9DJ1vwrJcW8ai7SN5pBLdTyZIUHPpnJ9KxdJwp2CMovoYmm+ErFNUtrlrSKEPdYBPGNuACwqIU0mjf2iSsil8QvFXhi30rURp1urXZuwhsoo8jzARuIPocH860nVULmkYN2cjwzx/4Z+Kus6lcaro2p22nSooW2C7n3D0YHBPHauKrGrUd0ypKLmo9DjdS+Gf7S8LJqer+OdNtVkzieCwyXA9SW9e1TTcoSs2OoklaBzms/C74hahbKfEvxEmuI1fLxW0ax98klQMkVNWUm7JmlCE5RtIy77wxcWIWSTUra8K/wCqZ7fCsB2YgDn601KTjY7FBRjoZV/Gt3O0TWKRyADHlswUGs1e4LUwbyQPMYZ5DEy8BdxOf/rV20YW1QSSS1KmsXCW9nGofeXl6Y6gV6OGu5hGd5HYfDnxLJol1FqEEu1QoPynrX0+AxH1aopI7o1JRtY+lrXxdrGs/Do3Hg14/t1wm2FnXIVyMZPtX6RDFVMTgH7GVm+p10asnG52Xw81XXfg/wDD9bbxXeW9/rlzbk3dxJACEB67RzisaeQYrFQjOtWl7uva5TjiJvmk9O1zhNM1/VfH2pzXFvZPDaLIUEsikFiTyRX0eFx804xpp22O2jObsrbHUwa+thA3h7TIArpjdMT8zH0r15x5Y87O2c20lIxJtQuk1byr+5Es8n8JI2xitI1PaQuhwemg3XPE40G3mlknCyyREQR5q4KM5bnT7Rp2RR0fUBoHhK91O+Bkup4SzArzk9BU4mpNrToaQlGlBz6nPeB4bzRfA0+s+KE+zrczSSyrnBwfujmuajGSi3JnNRk1Rc5dyLTPE0Wp6aL+4Hylj9mjGMAepNaU0/vB1vaU7JlTR1PxC8bx6LdXhtrGAZvr7+GJB1xxyfaqr1PY0XyayN1FpcsjovB2vBvjBoSeEI2W1sb4RaZbwv5ct3JnBb/eboK+B8Ua9LD+HeOq15cq5Gr+uhrQlGNfkfwnjfhrWY77xN8RvEDWaaMJvE8oOllxI0TR8MWPZyQSevWvC8E8NOjwlC8+aNk1K1r6HHh1fm5b2v8AqO0fxM/iLUU1iz8qQqpSzgkPCgdZGx+lftVFqdW9z1MPNSn73Q9Y/wCCfOpSa1+2jp6ww2jPFp93G8t6WIkbysnCggH6c/Q1+KfSfrxj4IZjo0lOmr7XvJbB7dxc2m7W6ep8ufFzxFN4i/a/+K91qtxJOq+Jz5qrbbFby0CKxXaOg4Ax3710/RswFPC+GOG5E7Wu+u/nr3PIw1OtWzHEObdrx/BaHvX/AATL+IngfSf2uIfAHxD0yym8L+OdIl0y7j1i2DxPPERcWpZQwO4SRjHXBIPFfL/S7yXMMb4df2nlbkquEndWspckvdkvuevQvH0KVWi6cI83JKNRXS0cHzJpO6umrrqmk1qeS/GjS7L4NftGePNNudJiSx8RCHWdDlHmbWt5/nXakvznHOVYDB4Iru+jtnks24AhQqSvUovkls9Vvtp92hyVpKWZSxEXeNWKlqrPVdVpZ+W55n4t8AeHvE9zJ4j+FobSdWW2je5tJGAg1CQcsBj/AFZ6c9OcV+x1sPKnVk0mrL5P9fw66dQr5eqtP22GdpdV3OP07xPqXi+W5h8V2TwtpreV/ZlyeS/ckHqO+a8uni3Vm1JWPHo15YhtVVZroUfEfgPQtQ1FWskXTpWh+e5t2272IzgjptxTnTpz20N6+Ho1IcsdGcdaWnxC0fUp7n+yDqaWcOBcW/ZB3x2ryJvFUK17cyPDpvF4KpepHmsV4/iTpZaabVc211K2D9oQjC9OM1qsfy/GrHfTzqhNNt8r8yteeNdBvLt7e3v4DAmZMvJwSBgfl/Wrlj6clrJBPMMNK651b1MjV/HujXE0l8LqHCw+XFAOQfcivN/tShGo9Tx/7bwKk25r0MKXx7Pc747exaUSYw5XrjjFZ1sbWmrwRy183daDjSp3v1Kz6x4t1Fv9GiWFW+8epAryZ18wnpscFStm9ZW+FHZfs6fss+L/ANqr4r2/w8t/ESWFhawNqHinxDenFpoemRYM11KemFX7q9WYqo5NfI8S5xHh7AyxNZuc3pCC3lJ7Jfq+hwLLauLxHsqlRt7vyRr/ALW/x0+H/j3xrY/Dj9n/AEm5g+Hfgi0OmeDLCVQHmUHM1/OR1mnkzIx7ZCjhRXm8JZbisHTljMYubFVnzTa2XaK8orQ1xmZ4WhKNDAJy5VZdr9WeUQ6Zd39wJ9WlDOPuxgfKor7yjhalWfNV+4WEy2viantsXq+iOq+HWqx+D/HugeIGdYxaazayhioycSqfauzO6CqcO4qg/tU5L8GexWdLDK7djvv2y/DD+C/jj4+0raUMuvyCNZE2k7yHP86/NPD3MFmHBeHlfXlS+7Q6s3oyjlrktpWscP4duZLW3eAMvEfAx94elfp2EpU/q6RMLqioLoifw5c+ZFeWkSK6zQsGSUlQw75PNdHuxasU+f2LgjT+B+rf2fczQ28pYQtkKwweD2+lRiItJRNMBUpex5H0Z9e/sl+FNE+IPxVsLLUneIasvkTT29wVKvjKtlea8PMG1QaktC8diXGi+Q/YLwJpK+CvB+neHmnaVIYVXe7ZJ46k18o5Qi9D5fldTVnSDUomCJK/G3Kle9Q3zGkYpaM0LfUIbS23SMQcZAzTbViZOzsXNJ8R3Ez7QwXd0xUx3HG5ca4hlnEty2UB55rbdlLYpzmxvdS86O4IRTwu6oqq70KUrIXVdWCKY1cFQuABzUcut2EW2zHfVDG/kxhVLDH1H0olOK93qaRioo+Tf2w9PP8Aw1TNcQWaO0vhHTnUOOPkkmBPtijLGo4irqd1PnVAPD1/Dq0199uuS6m1jaIINoxt64+te3ScJOSv0M/ZuDTaPbP2f76x0z4ZX/imW6nF5cav/ZemWqXRMEUMcKPNKydPMJZFB6gA15OJj7XHutF7aWHUxEvbxw0ErWcm7a76K5d1PUVaMm4uFd5CcblHOc1Ttaz3KhGUdL3MFZYUundlUbchfLbIY46/oKGlsdKjZcsiy8jtam4aKQqjKu4ISoZs4B9CcHArGpGKXNroKlBSqWvqcb8VdTt10+REVEYR/wCkN03sBgdTzjnH1NFZR9m3Favf5HNTVSrWuul0l0JP2BNZiN/8RYHkUbdTs1UAdW+yoea8bLqaWJqMzxnO3FPt+p1nxR0XxTZNLrenzRxOuSBtwJB7+9etV5nHQwi4RXvE/wAN/Ey2dgt68hl8+P8Aebh9xj2rmpX6jqS5locJ+0P8OvCPxEktSVW11Rmxa3VudrofXI5pSjFuxyODcrni/iS1/aT+AFy0V3HL4j04MH8+L5JEXGRxjDfhVRozUHK2v9dDFcjbir6ev4d/kZvh79qnwt44vbrSPFMggdUKNaajFtPPs1Y+1960hPlerPPPE3wy8B+I/HP23wNqv2ZmX/SILSf9059SBxVcsJbCpq7sUNd8H+JdA1UQQ6tdv5ibXSGXgY7A11qnyw0OiSSVjkfFUfivQrSW/wBTlEahP3cUj8tj61ytWMJXWiPPNc8W+IfEciG3sSjwryWGN1FPmubU3ZWZxHjT/hJrjULfTNTuTGLggsi9e1apNpt9DmlSn7TU0rbRbfRrIJuMbd8jlqamrG8uWOhTkvLe8laGOLcynnPalzysc6k27IyPEFtJZajDqCn5WO2SpkpWI5Wp6lfVIkI3AjaRxiroxu9TdxUVc5Px3YPqGhNhQWibPviiUYRlqVCmq2557bWVvbuXWMAt1NcjnKcvI7aMaVNaFtERSGArOdRvRGdSUZskfBIJPGOa55yvqjWFRQjdn9iWlpFYTLBaoJptvzSMM4GP0r7OVlJo8PESlzP1MLW7r7XqZUzEEHayD+LnoBWDabsZUmi/pMt7HJ5AKRpuwYkGSfrUqLubPe9jovEssNtY28D5JRAxUt1rKt7uhMHKU2Z9pfwzgIkQyr5UeX8o/wATWL99HVqlobegX4dbm9ZVbC7ThQBn0oi1AmpBy5V5jlv4bqdUClVxhugz9e+KzT5maVKfLDuypLqKaFrVrOiCOGWYRABSc5OBVQcac0TFOtSlFu73NTWL02F1HMlv5szSYBYcIM9q0qtRne2pNCHtKbT0Rn+LNUu9J1OO6Q/dUDJc8jHNE5SjLUzpUoexUOhw/wAQvDt7420htW0ZRAZAQVi5xjvSqTjKGh00acaUkmedW2va34CgSwnEsodwDcb8tuJ6sR0GKw0ikkRWjGtU00Kmva54g1e6W4tkCWpBAkZt5lfphRj5s81EnNPVnVTUFCyMDxT4J8T2OlPdXupfZ5JRiGLyxuI+nqamtTk4aMpOPNZov6R4t8NaV8PTeWl9G12yfZpIgvMLgHcPcnjmt6UoKhdbmE4T9v5Hz/8AFD4Z6b4rgawS1E2o6jJwF5YE5x9McGvNrRi3Z9TvhJuOux5X4i8D/Fz4Dstp4b8Tvq1uHBk03WWMiKVySFc/Mv45HtXFOMqSdjGoozemhF8PvirrXxNTUtS8Q+CZtNhS4kiijeQSeY+Mb0x0XOBVUZTqay0NYRcUrmp4h0zwnpzBDf2+62EQujuwwduSGPZgPXritJqMXY7ovmVkUZfEnw9jLpf65Y3EZkGJWnXfnnHeub2sLvUz1jK7PP8AVviVoEhvNGHiS2nigmZFt1nRg4bpgnnIrnlua3drs8j8Z6xrtprEkaTJcWRB8pnwWQemanks73OiMpKN0cpqEttL8slkELLndGSA1VoaQuzH1VYxCbiZLiLb1+cEY6flUSumJPXc566ngnmOw7wOF2jt/Su6gmjSetMwvEd2s+pJawOcQLxkdDXq0UooilJKRreGdTI/0cycEYx0w1d1OTvY64zUVc92/Z3+IU9hBcaJdkYQFod7dPev0HhSuo3pVGdOEk5ybO7i8S6lqkEt3fz7kY8KxyTX6NR5eW3RnuU4JrYsSa9Jp1tC/wBwEEiFBwfriumNOnFpI6IuPJZDPDOumXULrWb63QSuNsCE9Pesc4qexwfkc1eo0m2zL0nxXo9/4uutLfLiyAadkUkFz2JrxcpzL65S5IO9jLCV/bScY9CO91O01jVlvNTiKrA+IVZPvfQV9NSpyUdj06bkkk9yS81dvtjLLHmNgNgfv+FE4waaNb2Zx3xV8VS3tsLHWrtYYiwMke7aoUevoK4LtUlzWX5HNja8fg2RJ8JIdI+MUOpQ+ENTg/sjRIx/at8CREjf88w3QmvKr57Qw+KjhafvTfRGeGq4efuQd7bs1Nf8b+HND0qTwz4TkaGxP+tQjLTsO/rXtUMA1VdaTd2lo9kehKSlFcy2NH9lfxjpyfGv/hNNZmhitfCui3moxQCRwsbrCVRmYKcfMwyK/EvpIYuthfDV4SK97EVYU0lrdN3fbojgxNaUH7nbc+f/AIZ6iuvaNq1yniptWstR1e5vL3WDGyi4ldixVQ3JAY7Qcc7c9MV9r4V4WdDhilRceRJWt6I7MFWpfVU4S5vP1/yK+la7Y/Dewu9L/tIzajczMtogXpuP8R7YGPpiv0ejFUW0mVGpUpS5X12Pdv8AgmyUsP2t/D+h26wXDz6TqMk9wsuxixgJJyWXOPrX4n9KmpyeBuLhH+em9r686O7DwVCErv8Aq58ifF3UrDQv2mPibfzap5sCeJ5zudyxkIPAyCc+nWva+j1en4X4WdTRqK02PPr4mNPE1ql+35Gr8HJLe48SL8U5dRt7bWbGdLnQLJgx8h0IIfg9TjNfqOPyXCcT5ficHj1enXg4cr2V1uedgqtSrUdafyPpX/go/qfgf9of4d+Fv2tPhfcxpqWnabDa+IoDbsZpVbKTRsyxrHmGZQ2wMzCOUNgLgn+FfAeGdeE/iFjeEcyuozqSUdVZJawe7dpLrZK6PVxGGnVwSrNO8NfWN/U+RdHkRr1LprqSUJmSZyxC7jng+tf3RVVTES55yblfV9359zy6Nao1eOiL3jyz8IeK9BTVNYgNtqEcJWyvbNx5rOeBuHQj2NeXi8JCbutzLExo1vi+LueXalqPiXwpdrZeLbUCQZliuYmJWZdnf+6fY15rp4mlPlcb7v7jw1UxNKVq606Mfp2vxRWYVL2RVnHm3e2T7wzwvvW1FQ5b3O5uDhpqUvEWn6FqKTCfTo8RqFCkAliei5PYd6VSNKfxJM89rDzn7yOf1jwL4RS6hX+y4gXwHAUcZHWsKmDwrj8KLqZfgalv3aM/UPA+k2dss9lpkZR0JJZRlSDjmvOhgMJGrdROOWU4CKvCCIZdFsIpTHbwLtCfOMfd/GuurRpqLUbG6pU6MdEL4T8DeMPHvjHTPhv8PNEOpa3rV4tppdjCOXkY4yT2UDkk8AAk18zm2Kw2UYKpjMVJRhBXf9fkjxMVWrzkqVFXk9F/meq/tHfETwx8EfhnL+wx+z14ggvVkuUn+LfjqwbnXtQTpYwv1+xwNkAA4d8se1fmmVZbjOIsxWc4yDS/5dQf2Yv7T/vNfcefjaE6UHgcPK9/4k+7/lXkjwaxsLbTrcpaRgBR8wPev0mhhIUYaI1wGXwoRSgiwiJbneUDKy5VQ1dtKHs3d7Hr1GsM1ZbnPX80uveJbbR1dvJjuFe7mhXJVQQTj3615Ga4udWToUVd2Z8viZyx+ZRoR2T1Psf/AIKXeH/gHqmkeHPEvwD17WbmSCyhu9SfX4gkmprcQRyfaI1UYVUIaMqST8mc84H4V4Vzz/DYvEYTMoxUHJqKj9mzej13e59BjquLxeEkpO6hLT00/rofMXhy4S+hwTt44Ir+iaFNQpLUMParQWpf8OTMmpOgALOCojY4B4xUSmr2jqdMeRzaKvw61Sez8S3WnuF3JOR+8ODgeh+nauhVlUm1NnBlNPmxVSnJ7M+mf2ffib/wrbxvpviJCFiguopllUkY5+YcexryccvaQcbH0FShCVNpn7TeB/iPpvjbwPp2uWNysyXFmjK6NnJIFfD1IqMuU+UqpU6jRsaZrFzDJ5ckoAxxmotZGEpGpa6vPc3yxzS8D7oBpPTUWm50VtqdjaFYbdcyEZNKL1KatqP1LXIoVEbfMzdqtSRKepRbWfs4BWEKzDiiU49DZJdTzz9pz9o2L9nDwhofiiXweutz65qjWsVqbrySsaoWd84PTgfjXhZ7nSyXDxqcvM29rnflmCeY4p0U7WVziPCn7fvwO8RTpF4lGoeG536rexebF/32mcD64rz8FxjleJ0rJ0357Hsz4WzKEW42kcr8ctd0v4i/Hix8d/DXxVotzZJ4TjtTq39pIginEsjbcMeuCK9bDZzlscS+WpGzXcyeSY6OFtOm99jP8A/Db4pai0Wm6RaaZdTXUKqt7/bKebOWySCpfCKoGAMCvRwmYUIVHNVE07dUVWwrhCMalNxt5P8A4b8D1T4YeHPiLpGh3HgOL4c311dWOrTXLSaZbeewieMAvL5bME/1Z69cUpZlgYVqkItuzve3T7zCvg5KUcRNpJpLXT87Ca54hfT7Zn1OxurdgQWe5tHXYDwAcjjNckc3wKfK56+emnQSwOJT91XRkw+OtCuZgtvqMPynLAjH1rZY7DysozRtLBYhfZZrweInubKRrOd2iQbpNjfLx0J59/1q3jKaT10MnhasZXaszzj4zasz6C9wImXYC3Ldj0JHp/jXDiKiqQ52x0ornasR/sP3t+2q/EZ7CRUY6rZMg/vD7JEP8/Wsspmva1EmcmNjBKPc9L+I/i7xNLs8OC3WS9ul2QRoPmHqa9ic+V67nlN8zsY+kjXfhzPPoHia5x+580k8YPpWbukXNckb2PNdW8SeO/H3i8eOPDGw6XozlXhUE+Yw6n6CsFFupdGCUqjSaNKw+Ntt481P+zNVuBE0Y2yRSNg9cdK73K8TSdoxOK8dfBPwB8QtQ1H7bptq5RSBIiAEe+RXJKEaidjjcebY8Ng+EGv/AAW8aTQeEYLi9gu1Mgj3lioH1rJU3Bl07Q0ILj4x3+nyzTeINNntpVcjy5UJAxXTGo5KxNSrZnEaj4x1D4iXb6tfyO9rE/7uIr1rNJJkpuaMh76PT9ReVkC7uEQjp6V0cqtoN/u0cxdWEvizxO+uzRLm2wqJ079a5oxlzWKjVTNHT9NF3fyJfKGCdYz1A9a6XGMUROPNqc61vDca9cS2IIjjYBo260uaJhTk77EfjDTUk0iQsgBGGBU5NV7ttTaas0zCiAm09GbH3eDmsqTVyudSWpk6kLSMmW4P7o8Sj0FZ4ulOpTfLuKFWSlZIp6L+z1Y/EW6bUfC/xT8N6fDyzQ6pe+UV9s15NLF+yg4VIu5UasXVa5kcV4m8OxeGNYm0hfENlfmFtrT2UhZCR6E9aqDctbG0uR7MzBL6EVtGmlqzOUKklof2DaHd3trFc3TycspAOOfpX1Lb5pHDX1m0u7OcEepSarJIb6OCBjjBX5j6n2rnd1uTTioq7Oq8MQhryM2jEREjcX+8/vj0qouUnYpzRZ8RX8dxrDxxFQUTClxgLiuWo1KegUlz6kUckt80azg+Qemw9fespSleyOhWgjoNLvLJ7MwQ2ZRAckfxEVXMuVXCTfNe45r23EWILJTvP3XHJ/PtWcpx1VjRxlJc1zE8Q3XibWtasrTSrB544ryN5djBUjUNknNZVPbSa5VfUuhGhSjJylbQ67xTp6JZSXksMkrKN21eSMfSuypCd3Jt6/gcGGrpz5LmNePbeKPD6anBC5knQ7Qy/d2jB/lUq01e+5vKLpTaOS+G2vFfDer6T5SyXFlftE4VSWAZQwFc14Rb6tG1Z+/F9Di/iN4E8Q6xHcSaZpk4iuMeamMDOMdPSmoyfTQxjUhza7nD6Dp+qfCTVRc+LhfXoDf6M0sh8q0GRg46AZ65qpQVJXep0e15o2j0NHxLqmr+MdWjs9Oud01/JstnPzEju/sMVhNznNK+rFGcXG/Y5740WGl+HtMi8I6BboyWyfO+35nl/icn61c6iUORdAp3qSbZxHwluIfDd1qXxA+KEgh8wLBoLKmF3KAWJznk9M+lY06fLJ1KvyCuqlVKFN2ta/ye3z2/I5DxlcWXj7xJ/Zy3kT2l5JIrXCyAqGbgZOevU1y1v3lSzejNqd4wu1qVpvA3hlbe30HTkSKK3heBLgryJQPmz7EgHNdCglHlOiLcdWec+M7K40C9vbDVL4S5xLs2DbPGDnccckjjn2rgrU3zG0KnNpE4bxr8PfD+r2323TVQvE4MkZUE5I+8PXIwfwrB04I3SkldnCa14O06C0eW1tbTz48s37sL5hB7+jdaxquyNI+8ee+I9SstKu9wYeRKu11D5CMc+nT1pRvY6NFE8+vfHWj6hdT2FuWivYJyvlXWVDj+8h6MKpJx3MadTmnypFS+mur6UG+tcY+9iU4zRzRudM4RjqzP1KeDSrR7yQ7CoxHx94+ldEakrJmc5pRscl9tuFvt0/zFhuJHPNelQk5K/Yzox980Yr8WOoo5YMsw4cN3HqK64VmpHY1zaHf+C/EMlpPDewNt3DDEN1FfSZZiZQqwktDqhUVDY9di8RGDTLa7tkUBxwzyYDNX7PgasKlCLaPapYhOmnct3/iJLK3WW/vYzLKuREDwK9FVKa6HS/dV0Lp1zqB083NkDHnBMs5PAryMzjVx0PYw2ZyVIyqqy2Jor7T7KJ9P0iIAz/Pd3HeQ9+a6MsymhgadorU6aMY0oJRWpnx6zHd62S0ey3iTGC3OfrXpzlUilZnXHkfxFaHxDJf6+bO3jNxIqkRRxAkj8qwrVI0sNz1JWXcU2r2OJ+LPw51n4leLofh9d6otnYFRLrdwz8rD1KqR0YjivnamLqYuHJQ95X6/8A8mvRWMly3sjZ1rVvCfhfwTZfCH4R6SND8NWSAtEpCyXUo+9LI/Uk/jXZlOR4TAy9va9Tuztp0qOF9yCsvzOf0zTdW1RJJbC/8AKhX5XuZjw/09q+hpYitzNxdnax0xozxHodN4e8Mad/wqv4gafNrUlnYDwpO+rX1oyrcvGuGKRg/MxYgDqOK/BvH+daOVZbOEVKUcRFJPa70u/QjGYWi8PKNSTt+J5D8FZFg+DOi2FvP5Qe33r3OP8cV+pcITVLLqVOo0m03+F7F4ak1gIqDtsY+u6zqWueKls9D0SW4S1jL3t7JF+6tgOuMfeb2r6F1pOurLTqViKz9tH3dFuz2D/glj4n8K+Pf26tC0O80uO/07+yb6CQy5jM8pgPGWKjP41+OfSNrut4QZg6WnK4P58y/I46GbVK2In7CTXL/meJfHrwvpGl/tp/EXw1exbbeHWWlWyuX3lcgHG4MQcfX0qfo55jLH+HWG59dDsrezlmk4Td/dT/A4bxhYHSidR8NSuYGcsUAKkkZz9BX7nONWVPmotrXbVbf18/Q4sbRnTjeCPp//AIJqfFzVPiz8JPHf7GHiia21LT9XhXUYtF1ERebHGf3dzdwvIDukgjPmCIAbwp5B5r+MPpI5BSybiLLeNaKlCtH3JzV2rrWEZJW0k/d5unZ7DwWLlOgnGn7SqpKNnJxXJJrmezu0tUravS6vdfMPibSNe+B/xG1f4a65qCiTR7h4VniYBL2A8xyoQTlXQqRz/FzX9J8DcX0OLOH6GYUZWco2lHtK2qfUxxMVgsbPCTVraq/bdFG31d9Vv21QM2+F9lnaSDkc/ePrX1cbc3Mzk96VT3jSutRg8W3MPhVrOOVJTm4LbcSMOq5bgccVjinH2bvt/Wh0zlCdN8yuuxxGvfCeOzluL/wb4kFhHGdstrcjcFkYE4HsAO3Ar56thnF/up2fY8mvl8oq9CfK30exxuo3fjDSZUi1TTS8KSh3niYsGXpkjrXnyrYuhJKoro8Tlx9Kr+9XurqjR03VxrEgvokZ/MkBjPoFzzg/SuiOLVSJ7EcXCpFKGtyre6qFvni80eUR8qbu+c80lWj7XlM4125crK11qSPO+4hUMZ3HrngZrrqVqNODlNg+V/Gx3hf4oeOvhraaxF4Lni0u81y0+xz6zD/x+RWbD54Ym/5ZCQcMw+Yr8uQCc/B5plkc+xsJ4h3pQd1Ho30bXWx5ydaDnyxUebr1t/wTmbCFI4B5ICbWHuT717PJGnG0FYxp0uaCUdCZWBxDHgsUwTjhTmtqckoHTOaow5Y7mZr+vz+d/wAI9o4We4bKs6crHk14+OzCpOXsKGrPlc0zetOo8Jh/el3XQt6BodtoloYyS0z/ADSuw+8a6svwkcO+ep8TO3LcF9Uhd6ye7PrjxnPZfFv4Kjw3PpUEGoeBvhlot/okTqIjcxMJPtPHJlPzA5PQdOlfgssXDJeIIV6TvCvXnGb6Jp2S8jfJqFT2uI5neKd7fI+UdJf7Lfnyk2xuxKD2NfvOHqza5ZbdDdXoV+RbMtWFzHBqZkySBICpB5x604p+1ZvhtJ6j7kRnxjM5gETBwTMvRgfWtXGz5gWIhTxTaWp618Pb6K7iFjvT5hiQSdzjg/jWFRNLmZ6H1iU9T9Vv+CYnimHWv2e7XSmZxNpUjQziWTd37e1fG49Qhimkj5/Gwl9YbtufQtzrdtaXuJWAzwu6uCUkzlSZatdRuZpxdxx4jA5JHBqbtjUL7mp4f8Rrc3zXc0gEcY4z2qnaw5rQdpniO78TeIJZbBF+zw9weprFScpEwp8uy3LV7q0LXQWWcF1HQchTVSTUbo1d5Qtsz5Y/4KPeO4fEHxH8O+CrUfutB0NpZvm486dv5hVH51+c8aVnVxdOkvsq7+Z9hwhQajUqvrofNV9qM8dyLNIw6SRZ+YgDjjrXx1OSVTlaufoVGUuRnV+Fb621maHR7XwrBBJaWknmy7cibPRieelexSUKr+C1i4c+7dznfEmnWRivvsrssyFCPKcrzj2Oa6I04K6aJre+l3O28K6noeh/Cu6sIPEHibS9diZ2vbrS/EC20F5p8iBG/ds6yXNwGfhM7doOeM1x4io6UpKndSe9m9Uc9SnWnVXNGMoJdVd3OW1XV103V7+Hw14v8U3GkkxizXxHqKtdELgASKh2jvgDoBXPQpSlFSqK0vmL3pK8kMa+vYWcS38wabkkzMQAV9jmujVPVmnLy+9Y9V+FGpytoNpCZnZigDbnJzkn1PPSvosqlGULPofMZrNubsdh8XPEk2oeEJJbqchhYhVIXGQOP6V9POUPq7PlYqftx37FmttpFv8AEDUC+EF1ZSZZsZxap/hTyqrCLn6/ocOYXUkutv1PS/h34iMN3P8AEbxcwE87sthG4GY17GvYpvnXv9zjp0+W5hfELVrv41eJ5LHw/qXlosGy7vUP3D6Zq6kuZ6Dqp8ljjLfxNF8FrePwNeTh/NkKxSMTmZieT704x5dzGKdrmR8U/hfaXAj8VeDrqOHUHhEkoj9+1Opy8um4qqckcF4H+K3iXwXrt5pHi1Bm4B8qbadpOOhrlp8ykYRVuo7QvjLBL41i8QzbGjDyWxJ6Z/8A1Vqp825nflVznPHOoeGfFWpXd9ay20sdsSZVjxnJ7VKlG9kVNwktDzvSLm10O8v7KztlfzBvjR0FaKF3c0pLlRkXNhpd3dG9vlWKIgszluQfStdEjHETs9Tz+TxFLca5ep4e09p4McyJ0LexrBRnJ+6c8Jc7sjQsLTxHqcPmwx+S8gwXY8mtZQfKrnXGPLEx7fR5/DeuyW8t2ZTM2ZQWyQf8KzlCzuc0f3dQ0dZWzlspEliYeYnGR7VWria1Xzx0OK0q0lmgmiimGYmI2n0rNNRlqZU433MLxNEPss0W3qhyB61cpNK6OlJJnj82jGK6kEV9cR7nPCuRWEMQ7PmSZzPAQc+a5esrGGxt/wDWO5P3mdsmuKpUdWrc76GHhGPuiNjfjt9a6Hbl1LrSdNaH9gU149hAyMdpxlee/vXv1vdk0ePNt1n6mTbtamQy3Nw/kNzIe7H0+lRFJ6suV2rI6zwciTSNdwQrFEiExkPk496tySM+S0Xcz7q+t5LuVBH87t+8nl9PQV58ppvQ2owZZsdRjheaYW+SqYVSMn6j0p3Rta8kjR0XUoprQiNXjjA+fPGW9T61hOTtuaSgky1Y2cd2xffMYE5YudokP19Ky5HPUpScY+ZU8e6w9joMj2gkgiRc+Xangke/erlNKNnp6GdGlGNS71fmdNcahJdeHbe5RHWOWzRtyvycrnmu6crw0Wll6nHQopVXfV3Zz3gK7ujFqtppV407xTZ8mccxow5wcetccbu6R241Rlytqxxum2VzpXjjUri8uFjkkizDp9qoUSMp+8zDqcGlGhBTvJjnC9KPVDj49vNNvZIJD/rWyzbuFOcY6da15nAhUKersc749ew8bR3WmQwtGoiPnz+YCT7dOtTGtGo7MpU4xStueK2K+O/2fvHP9uWEsuq6fPamOWxuJxusQf8AlpGzdD6g1xyozVZOCNp0/aQUVoyTR9f0j4y6n5vh/WFuIZJCJp05EIGS2/0I96KS9rOy+ZEEqWj3Mb4reItK17Tbi30SBDa24NjpqtwrRr/rJj9T3qcTUc7pbGiTjLle58wR+Ftdvvipp+oaXrM0NtbXIIhgkKxuM4yyjr9a8yNJyxCktkehCKUfeR63qZvLe+mhtp9twtzujVuiN/gwrunU5ZEqMWeZ/HjTf7V1Wzt5ZpofIjIBhJV4gRjgj+GuKrWcnyroaQSitDwrxjpnj/Rr+507SPiDc/Ph1SRVZRtHGDjoe3esaUb31OjmcoWaPOLzxj8TNO1qaPWvGDTWtz3kth+6kHQ8e9FSlDdvUVKi9ylrVnfXfmXOtzpI8gDFk4Vsenoaxc2nY62tbnN3egWsrGSWBTk/umyMY+vY05yb0CVuUq3n2fSLaW8vp/Jt4jmRiCcD0xULVmV5crb6HHat4hXxNfrMk6tbQki3UgjIPc+9dlOm0mjJSdSzRn316i6nHAImwifM2f513YdNQNpWjKxcvba1vrZBdtt2MGjkGcg/UcV6ENEVFNanT+FrpRCIsnG3GD1z6124Oty6M1i3NnonhrUVvrOKfUpS0NkciHOea/XOG8XLEYfl7Hs4JJr0Ne28UaNrurqzOJDEc+SpzsHua+rdOVtT0lJyVmbOo+JxcyJamfEarwitjIA71pSUYvQaTWxW1PX7VdOR5IAkCA7nzyxq6U7t3ZpN8qucxY+MX8U+IBoPhKNGaLhyj8AnjqeM1lVqU6UW5O6RjGu6s7djv/EFjJ8J/hVrukfCG+g1P4iahCAl1KQ0enI3XBP8WDX4XxRxJmmd8X08tw0XDDxd7X37Xdv0PHx2KrYip7HDv30efeHdL1vwx4Qt9G13XGv9ZmXzNXuBzl+pBPfnPFfrmX0o4RRTVrnq4eFSnhYqW/U5u5g8R+I719P060klcHBXGEHP8TdhXrUsSpy5UyJ069aqlA6SaxfQ7dFv9ZikuEj/ANSmTFFgdsdT1rvpwu1Y9ylB4ei43M2x8dTaH8MviF43drRo08My2qXF3GJHSSQhR5aMMZIBHPSvxDx1qxrUsrwUVdyrcz/7dPPxdTlw1S7d7HnfgDUp9N+DulrKwWVbBCu05PIGa/TOHYN5ZTT0aSsbYOUvqcG+xoReJ2sdOh06yYRrsMkzBMb8+vr+NfU6Kokhyqt2SO2/Ye8T23gn9vL4aeO/7Ntl8/Vzp+6eQiI+cjoC4+6PmYc81+beNWVSzLwrzWnH/n3f/wABdziVCk6r5U1ftueVftgTa34d/bo+KC+MNUsbjUJNTVg2ly74VUjgKcDgDjGBXxf0cKmCpeH1FYdNJWWuj8zor06FHOJuUndwi1fc5Kx8UCc7LqN2tzBtiYgZOc5zmv6Hp1pq9tP61N705xV3uQ+C9R8QfB74rad8bvhvdCG+0C6S6i4yt0uMNE4PBVkLKQcghjXxvFvB+B40yHE5Vi17lWLs+07e6/k7Hj14SpVvaUv+HPpL9qLwr8M/jP4dT456V4Is9Q0bSPC8Wr+DI7i9lhk1vTs7LuzuHi2sHspSwXDFivXgDP8AGnhjnmYeHvEiyvGyfNOq6VeL2hL7FRa7TVnta/e9j2auGee5TKtUhyzpfDK+rXnp02Pi671LXriNrjwuba1+2TMYrJQ7xwLkkKHcliACBkkniv7TqvGTjajI+QxGGzF008PNNvubfwznOl6reWHxKntbcx6fKdGkEDGKW8wCA/dcjIB9SDXxvGGK4qw2Ew0MFRU/fip27X1ZdOtmGGpv26Ta7GXd61exx3VndlI4JX3CJMnYSQSmScnr1NfYOlKcOaUbN9NdPLW7+82lUqtJsguNXivbyK0iIUuxF1Iqg5A4C/Tk/nXI6cZS5WKok4NPqY+t+ERqF3Lf6fO9rdMGIaAhAEGOoHXiuDFYGlJ3jo/I8CtlSq1eeEnH0M9rnVvD90ZLvR7DUxFCCqXMJAdc5ydpGa8XEUcXRTcZGqqV8DdySnp1RR1TxFqvi9ll1CG0t7aMkpZ6farFEvuQOWP1JNedQpzqu9SVzlWIxOMnz1Hp2WxQjhIMgLhj0Ar0aMo07pHQq8eVp7kF5e6bosIlvLpUXqqA/Nn6VjisXh6C1epzVcyweBpXqz+XUxbvW9X8QE2uh2zW1u3DzEfM1efLEYrHvkpKy7nzWIzLH5xP2WGjywfU09B0e30mBorcEztyzkZLV6ODytYfVfF3PUyzK4YaPIvi6s1bG2vdU1C20bTofMuby4S3gjUZLyOwVR+ZFVmWIp4PDVK03ZRTbforndiJ/V9EfVvxV8ZaZ4C/bdsPAdwBHpOh6XZ+D76NfuyxR2ywStnp98t2r8DyfAvOvDueNcbVHVlWj/4E2n91jfJakY4acv52z5l+IfhObwB8R9S8IXUZVtL1SW32nrt3EofyxX7Bw3mEcyyujiH1S+85ajlKsm+jsYFlexz6i8kR/wCWuCpr3IVE6kok4Wcp4hxRPqU0lt4x/eONssCkrnqKr2sVPlNnTaxtn1R3XgjxAmnaglvdMuwqFZt3UHoaKzVSNonrU6KjE/Qz/gl78V7jw/qWp+GxG7QXG2RpVfKZx6etfHZtTUKikkcuYcipq59pza5pN/cJqVxL8i89e9eK7tXPDdQ3/CvjrTdehe0twioq4z64rNTSkaJ6XL6DTtQglsdMm2tjnBwTTb5iJy5nYi8Nazb+E7ebT4zh2zncefxpU0oz0KVuXQW21SBrhpjJudiCctxW75uUtRvHU+Ufjb8OviR8YfjT4w8ReCPC1zrcWnXiW93DpBW4ntkSIHMkKEyKuP4iuOetfkPETnVziqrbH3HD88Ph8BDnkk5N7njd1o4ub7+y9b06ePbER8/7kg9erDjpXj0KPtaqUZK/qkfYwqRjHlZ1fwl0u6HiKW0tbGW6dNMknaKykMzJCgLO7HHAAySTxXcpSpTs9Wl01JdX2MVKeibsVtVaybUJpoYisdxAhVmHO4Hjnjr/AFrojVnUOm19WWdRut9nHamyjYRuMlgA3OM8jqBirknFbGSnLboc1cRxQ30kwVMsrBpfU5yOvXr+tc0pSXQaippsq3FwXkdmOxS3APQ4FZ1FYylK3unpXwv1Q/YrKBXxtcZJP6V7eV1OWC0PncwpOrUsn1Oz+K05m+FL3EjIWAfyxuz36V7uLquOD5jxqaksTyNGN8CdavdMttf0nTLZGudWubFYolPDYt1yT6AVhkNWVRzsefnEIw5Wes6n8KfFmvxWx8T+PZY7cAMbaxjwgH93NfZUYShZtnjKrDlsi7qup+EvhloH9maEvkRIcTbmG+Vj61tOyOd1W6nLIx9Vh8Ka94akvfEFklzPIubZ24eH3FaQUeWzIc1T1R5b4L1jxBHqNzZXchuI45tkTFvmZM8Zrm5ZKT7EynKaNDUtB0vxbevpWqWiQy78xnbzWtNp6GXLoeY/Fn4W3ngpZJ9KKzW0s29niP3PU1jKGjZHs5Mq6d4asr/SBc6bGiIsYL7R/rB3J9amMYy2NlBKJi6/4Rj+1NqdqnO3KhT1x2rVtoxnJo8g8XXV14u8QHwv4bkeFFlzfBv4R3FYc7Uk0c8lKo7F9dPs/CWinRtBs1Z1jwW7sTXTRvE6YQUIkuk2GqR6b512PLQRszc1tUTFFy5jkFXW5r6fUI7BXhR9qsvLMPWsoxu9QqRTehoDVrG5QWkzDfjDJKMH8KJTSdkYqVtDjtZtTpet+fbApHNnORWcmpLUhTk5GLr7BkOCM85OKxmrF8zbVmeX6wgF2+0fxmuBaTaPUopSp2KfmNjYex6+tb+zgtSofu9Bm0Y8wseKzrTaXKjOs11P65dXv/tDmOSQFVlGUbjP419HX1qM8apdzdvMnjltr/U0L20UbINiRYO1fckVEU2yYuUJanV6dssNBnCKsZlXbG4blz3PPQUVJOMbGjaumYMAjgheUxSSADCSsON2ew71yRSaOqm0omnZ3D2m6S6ZYyE3SE8lh6GiT5HqJuz01G6DrY8RXTX9qy+W85SNdmAQOprjvzyvc3s1ub2q6rHZw+dLOdip8ikYH5Vc58quKLXLdHN3Ok+PvirayL4Wlgs7NMr9vuSQgI9APvGsqSr1byg7W6le2wuHqqdTV9kdf4bguV8Fw6Be6vHe3Omxrb3VzbrhZWCjnHbtXdTTlSSctV+Jy1pxWJ54qyZk+AtcsPDPjC60iVw76n8iPzwVBIBz7E/lWNOp7OpZ9TXER+s0F/ddznfjJZ61aXH/AAkOj2rJdQSGSIwsBvA7E46GicqnLztG2HcZWg3ocrLfaL438LN4m8MMyF2zqNrNLmW2nGcqw7dePrxRTca1N8j9dR1oulUUGclovjzT9BjubbUIY0kjmD+XJncSOckHryKxsqab6h7KTaZk+J/EEuv6QdPtbdHvtXb5P3eWQHufSk6klG3Vm0Y637HgHxX+FnxV+DlvqUvwf+Jc+kahqsDLqMDxK8Nwe4KH7pxwGXBFReVK/Lo2UoU5yUmtijoXig6/4Dgis9Lu7bVYoksZrCch/KYDMkg55U9QepzXHKo3olqapxlNnO3kcema39qsG8l4h5Ks4yjHAwT7HkZ96cZO9jV3tY2NQ8Y6SNOR5H2yJDsmllfOHHKgnuD2NKTijNyvocF8RvF+laxryajpki3Nt9nCzgv80EmOVbuv8ulck2pSNYRaieW+NbeGNvMs7t2kC5tZuoZf7pz3FJRUep0Qfc4PXtPtNYEq3sTC82BmwMc+vuMVMouTNZyklZI46SaUCa3a2AYHY4YZDio5YxYru2pzPjbxh4P8IID4g1iOzckhLQtvd/oo5qlTnPZE1KsIO8jhtR8W6p4uLOJxHYhsQwJGQZFzwWzVwpRhLUw551X7uwllYrLIHWPjPJA5GK6la1joUVTjoYcc8+teIrq7iMeyJtkeD98DrXUkqaJi1Undm1ICbf7Osm9HXBXd901tSnc2ctLIs+H9SniVBIwbyzjcK7KVotM1opxd2dzoWsPanKEMkiZwTxmvvuGMb7PEcnRnq4apyyLun3n2BWvpDHaw7sybByR71+mus3BHotxkrp6mf4N8Z/8ACzfF93Z6LIv2DTEPmzLn539K5lOr7S3QmOJU6rjDZHdX91Bd6ZHpc8iiKMfvEB6Z/rXVzqOiN4y5jKsb/RfB0cp0uKODfu3u6cvxTnTlUiOUVCXuKx5Z4B8FeMrn426t41m8XXkml3KDFuLhlXjJ/wDrYrwaeVYbD4uWKkry2R4GHy/EQzKdectGal+njnx742e3k1VtI8PWz5nkSTbJOe4BNebV+sYzFpRlods3KpV9mnob+reIrXSdMfSfD8kkdhEMks/zSn1z3r6/CU4YejaOrR6arexShE56a/u/ElxGIpQlvFGfMAYncD3rrU6nMrbdR3qTW5Y+IOqeINI/Zq8VXGjaZK6X+p2WlT3RCFLUSA8hDySRkZHSvw3xS+qZhxrleElL3oxlK2vddjkxcqi5ad9Wc14h1bQ/Cfhy10mO5jVbeFI43I4wFGQB71+tYJ06EIQS2R6U8UsPSUDMvfF1odStoySVeHJXbgZxxz6Yr3FWvJHJGbdS70Ov+Aeu3Fz+0l4AvYXt/ItvFdm0IuG+SVzMow3H3ea+a4/5sVwPmNH7Loy/J3OyMo05qWvyMP8A4K66Cfhj+354m1iC8tbhb/D3gs7gusRzjO0/cXsB6DrX8+fRtzGrLg2UWmo05W1XT9TyeKZypY7DY+75ZQs/k+p5Lp2tWkuhSyCbz3kQuAjDcPYe3+Nf1PQxEKsL82jKhi4TpqpB3RbtPE62vh6RbiZJIhsLBj169fYVo8c6VNwUtNH6tXt+bOhypSp899j6d/4JbeN7P43adrv7K2o6fHc6nbPca14LvbloRDbwNEy6nayNIyny5IgCAmTu5xjJH8P/AEmcnlkec0eLsK7Uq1qdaKvdzTXs5JJWun1fTzOfLs9pZdmVO9KVSM5cj5bWirN80rtO10o+6m7yWlrtfK/jrwxc/Cv4p+IfhjqKMW0a/lhgeWFoy8RbMThW5wVKn/Gv6Y8OOJYcScK4fG9XFJ+qVn8yZSp4bGVKEns7r0eqMp9dOoCZrh9pC8tsyQR3r7lVVGLfU5qr5tLmNeXNw9w1jLG7uuZWm5/eoOSa46lR1OpyTrqGjJtIuo31WSWGBGZUykanOeOtcUWoyu2aUL1W0yzfa3CIWjs4UV4IQHDcltx5I9sUSqwcrNmdWpGnsU7y9tLeWNxKpMUuHMvQKw6H27e2K48W4yWwqk4Sjexy/ixtH8L6tO6XKQwuN/lbs9fT1FfL4iVPC1WtvI8DGSoZbVbnJK+tjl5fEOq6zIYPD1syqes7jn8K4qksVX/hKyPnK2Px2Mny4WFk+pPp/gcySC/1adp5CRkue9b4fJ+aXNVd2dGFyDml7TEO7N3+z4rWMRQwAYwMgf5zX0eFwsKaulsfSU8LTpWUEPhtbdJkl3gRhPmOelXW5YTTexvKdKlJSTPdP+Cb3w103x38dbr40eJreUeEfhbpkuv6vem2LwNdRA/ZoWYAgbpdp+imvw7xe4iWCyFZbQlfEYuSpRV9bSfvO3lG587i8RGupyi3orfN6HlXxH8c6t48+IWqePry5zd3uqzXjShyTvaTfuyfwr7bh/JqWWZDQwEY2jGHL+B6cIrD0KUIv4Tc/aJnXxJdaL8ULeQyf8JJoomu5mx/x+QNtkXPsMfhivP4QoyweJxOBmlFU37q8u/zFRwKwql77mnzTvJ3ercrLbRXtFdEktTybwkJJx9qfozEvk19TGcnUdjjyio6kXO3U1/GJgjv9O1GEBw8ZRufQ1bi1JNizSrKjjaU+5vaUltf2Ud89ysUkGAo/vCtJuVPY+gp14+yTPrL/gn/AHGr6t8SdNsrOIywsuy5CTmMkdj7187m1S1PVHFjeapTvY/QfU7aOztpNL0+6dQI8Krvknivm3rdHlWtqzV+Gz3GmaOYY5t8zcEBueamNOzdxSk5aHT+HLi58NK95ql8WkLE4JyFzSfusS93Qv6RdW+tyyXdw5Ck/fXgVaSLi9Ste6wkN59mt5WAVgM/jVqWpo1KWl7HyH8Tjbt8evGWqxDbc/2sAJosrJjylGAy81+TcQKFfPayeyt+R+pZLyUsngkr/I86X4heMtN1y+sU8U3rQrgLFPJ5iDjurZr4/FUaUK37tWfc9mhUTldG9pfxn16wjmtrnSdMuVu7cxXDi08lpIywYqWTBIzXZSr18PpCd00en7ChX5faR2Fv/i9oBlS41Tw1LFiPbGlrc5VB2GGrrp5g4L3ofcc2JpJT0Y2L4oeA7hyNUuNTgRypaRbVZGX6DI/nW08yhK7ady6WEpyV+YhfxV8HLjUzFb+PdWjjbOJbjRcHHbgOayeKpS1uyK2GnGPutFTWPEXwvspyJvGuo/MpyRozevbLCrjiaNR6NnLHD141LSsvU3/DXjjwrbxW0fhrWri6dX3E3sUUAUc+rsw/KqWd4XCR5XcdbJquJakmjV8Y/FCXUdAi03UZreC0tEYXEcCvO8pOONx2hQfUE9BUy4nlXh7Nqy+85v8AVxUpOpF3aNf9lXXYrn416vb3kqi3i0i0kjR3wyZjx0PqB1zX2nB841I1G99D4fiTDSp14u2lj3zxz8QI764i0jSpxHGE2ja2FUe3vX291F2R8g21Kxw3xS8KLcaDHqk87gxrvQyP1YHhiM1lKHW4p+6rnNT6j4y/4R6PV7i9t7mCRdjJAcOo9MVcJNRtcxjC7uef+LfHnhzwfDcXEOrTQXkbZMb9v/r1NWWtiXW5dEjD+EHx9l8Q3d42q363E0jskc5Y5UfjWcJcuzuYufvG9qPxRjjSTTbiZZISCjhjuBNbR5bamnM3CyOU8FeK5rLxBdeG5pgI8l4MHAZT2rWCURxjJq7ZZ8e/EzQ/B/hS5aeRfNQ5CFuR7Cone17aEvk2Z454P0Hxfrs1z48vv3AupMwwBMHb2z71NKlz63OeEJSnc39NicedJdQhpMgEN2rrilFG7kloTeIFvFUwRx7V2KEQYG6pndq5M3yxM4wjS5431FBE0w4VR8oPao3V2RFq2ph/E+10e6SHUrGNUuI5MHYcbq52tdAlFS1OM8V6ms1ksluSHTG5GNaU6TkQ30Ry+p3xmtS+AMjn61FaNpEKx57qLl7mRz/ePWvNf8Q9Gi5KKKTvlemD9a0qKyOyDu2RSkiJh1yKwauzkxMrpn9bK35jnuXmt9zKMoCc49819TWV6jPNqu1Rov8AhlZtUuUdCYrfOZcjBc96VOOupDabsb+t6tBLei3tIWkW3j+QSJgMawrNylY1cHGKszLe6mlvDLczn5esS9AfYVyt8u51U+VQI9fezlZbBElDyjChW5bPUk1hVmp6G1OF3zGvHJYeDLeyt7iNQkVszDeeje9YztCKTJqTcm+U5i/1rVfir4xs/BOg3ZS4uTuu2Vc+RCD8zH09Priua9TEVFSgVHlp0nWmtj1XxRBpfhrQIdB0S5Zba2gCJGhGGIHLZ9TXZWpOi7Rk7JWtpa/fa9/nY5cNJ1E6jWr/ACOT+DWrzz6n4h8Padp0077YZ2BfI3NuU/T7o/Wng6j5nTjFseMVOnyTk7GJ46v9R8JeI4/EOp2j2IsLqJ4lwMSLvAfODn7pNXiFGn70laxtGKqU/d1uema3r2isPtVzp8U6m2JSR26kjgYrr9qm7NXVjkhRqW0dj521/wAe6L8JvHF94oHh+RLPWfLj1ae2yEtduQJnTYcgZHzZGAOc9uBThhp6LRnfChOrBcz1Rk/GPTbLVo49W0a+W+v5lMts9tEAjoeVJI7Y4z+NS71Ho7sXNLW2x5l8CfiFLY+Ntdu/iw0WjXlmgXSUkuQftEY6upbjPbAqaUJc7dR2ZclNwUUw8ea23im8l8QK7bHl2Wasud2c/OTVyXNHnb9CouUY2bPH9X13xd4C8fP4p8FavBeFLZl1S0mTdHLuHyqTjg8kgjmsHyQk2tX1NKcFOKk2c1Z/HHwT4li/sLxK50bV3nylpcABSo64fpg4+vNc7afkdTjJq62HeNfEngG007+z9T8QWFpHd2pa1e7ulUXIA3YU56g8A+9ZycH1Of2tOMrX2PK9S1bwZr2oi50nWLSGa4iCSEXiE3G3p908+lc0knqjtpXqrm6HPa3rNj4e86HW32W0smDPMNu0juCcA9uRW0aU3uaRSbdlb5HnXxG+Knw78JTm6vfGVmzLnyGiuQ0j4/h2KST1qakHGTUSpSjBas8U8R/Fb4qeOr+eHwwsGkaXK2BdLATPIP73zAbfyq/ZUadT4lLzV7fikzg58TW02QzRPhrp2n3SX+rCS6u5Vy97cyeY5OPU/wAqirUk9Is6aVJy+PUsvGL+Tyd67l+SIhcDA9aiN1udahCC0INW1eHw3oN7q7ZLLERGo6ljx0ropuLlc5cRKUINpHL+EJYTYI0YyCd5JblWPWuvR7lUOb2WvU1prt/tRtptuGG6JwO/vWtKVtEXCVpO5Na3EazbkUoso5GeN1dcHfc6velsb2mauWjVMLwMg5619LklRU8TFnXSukN8RXkmvRHSl1YW0Tr87Jnp6mv2TDVoSppnSp9GangXXPCXw08DXUOgkjGTNcA8yP3oxE7L3WbJQp0XykPw78a6p4kFx4h8QwtFaq/7qMjHHY81FKTvuThqlaXvWZoXXiGLWdSFxPcOsag+XCB94V0udSPU7J1ZTklcZZ61c3F+6L+5hUcBV5rgxbcqepnWck9DnV1678SeJpba71DNtA3/AB6w4+Y+/pXmYSCjUa6nPh6cp1m3qcz8WfilYaLfDR9MVp5nxFBbr0DE4x7mvXa9j7999DpzDERw1JdZPY6zRnOjaVZvq1ssVw0AaSPd3I6tmuqF58rZ10ptUl3Zj/EbWrex8GaXc6vCWl1TXWmsit7tURxLgsydCckivxrOq8s18SqdODTjRhZ6d3fczqV4Rr04t3Zy+mWUOu6x/wAJh4tvdllbOGtrOQ584/Sv1rDUJJ+0kzadGFSfPUehifErxlaa1eKtqPsNojKpdByFJxhRnJ7CtcViUldM8/G4mnTgkzs/A2qSaR8RvBpd0tYv7csFV7tN0aL5yfMwyO1GdQjV4exUWr3pS0/7dZ0SryhUgo3u2tFv8jsf+C1LaVY/te6jbaNPp00ctlgpZ2DxFyTj5y33jnP0r+YPo11W+HMbTlF6S6tPr07HHxZOc8Bh1JWcovTd7ny7b+F/Evw60uDUoL77XazQZu4u9tu7fSv6OwuGr4Oaad4P8DwMHlOOyrDxqKblF6tdi/by6FrDRvc3jsSg/dBvkfHqewxXs8tKors9+hKhUhe51nwW8V+HvA3xc8OeJ/FEFzF4fttSEGuxaddNDNJp8p8u4CsuCMxs2DmviuP8oxOf8HYrD4aEfbRjKVPmSklKOsXZ6dLnFi/aYet7XDuzR7n/AMFX/AcXiPWbn9qP4feDpNKt/D2sDw/rWjrdi4f+z9gfT753HzMJIiMM3XI5r+YfAHiarw5iI5FjK3tPbRdSMrcq9pe1SCW14vojsznL3HKKOcRd5w92ovLufIOi+J7DWF8+K48wSsQRvxj61/W9PNY4uTfNd9T5/C5rh8Yr05IsSXJlc2X2obZBtkbrtXr+H4VXtlsmdvtqadmtTOubOeGR7rRrt7a4hH+tV8nk9D68VzVacaqbjLVDqQbhz0pcsjPvtT8UFmu/skLF0AdEyM49fevKrvG3vA4KssfUd1FMzdUu/Ger/vEtIocKAcEndip9nmWIjrocld5vUh7kVELTwm2uz+fr0xlnAwFfoAOwrHDZROrieeu7szo5P9dre0xcuaZq2GkxWTLbgCPZnIC+1e+8NTpwtax6X1RUZKOyRP8A2jGkAuoY9zWzDz0xncvrXLdRXOum5nOuvZ88Ffl3K93dTajdpDotu9y8zhbe2gQu7M3RQo5JrStiadHDSxDajTja7bSte7/JMzjiZVrKlq+iW56Hp/wp8L/CULq37RGk3Opa60PnWHw3t52tiFwGR7+UDcinP+qT5yDyy1+PZxxnjc/ruhkzUKC0dfe/R8i627vTyZVfK3Ti6mK+J7QT/M0PHP7ffx+8ffByT9nXwvc+H/Anw/ecvP4P8F6BFZRXLbiQbiVQZrkjpmRycVllHhrkU8zhm+LlKviY/DOrJyt/hWy+SR4WHwkpVPaSdvJHlF009nYs93cpLEiDay8Yr9MdqMXzbI9dxmqfNPZHZ6XqKeLv2Z9U0oQ+ZdeFtYi1C0IUHFvOPKmBPoDsNfM5m54HiPDYpfBWi4v1Wq/C5VSqp4eLj2seaeG4pYWIYDCk5CnqK9zCtJOTPNyWEoUnGWjL+v2t5qOkFLWHebZ/NLJ1A705yUmdWY4N4qjzR3jqXfAN+NShFjcEEOMDPBFbTqwlTTsb5dKnOldn0F+xl4y1Dwf8SbW0+1bWjn5bJBx7eteDmNL28dEdmInT9kfo1PqV7qFrFd2l4SJkXbIOpzXzNSChJo8KS5nZHQ+CvEcvh2FzcXBeRODuHQ1i9TNx5WasPiSXWb5p751WDOchiM0pQY0nuzptH8U2sts0GmuBEv3zv5FKnfYvl1MyTxrZS6stnbtufcA3PXmtrSjonua6HzL43kll+MvjG5t5MSf24dhPIztHWvyXN1GGb1mz9DyKtKOGppM8s8UWkw8ZaoGuQNrgMOAO3518lWnBptb3PpqUY+0bJZYzaSfZWYZTGSpz27GlHmkj0IVWnYzPEE+FAyR8vJxW8Gm7EYi/Lcypb15otzthhjBHpz1q5Nt67k0W7GbeXkgkODx7/StYQ0uyK09ChqGpTXEeJZ2cKuPnbOM1vCC3R5sqkpb9DovAt9DbXjXWw5ZY49xGNrZ7fhXkZnTcoJI9LCVowqHoWtySHw/PIyjy2VDjPPPWvDozbqKB9BaPsuZ9jp/gxpY8T+M/Et9pusJZ3ul6ZZ29vk4M48vLFvU81+28E0VLDzntbQ/G+MMRKWNjTiuh1dnH8TtPvDquoWS3SR5Ktz09a+3e9j4uSaZznjX4yaprVwmgJcS21x0JckKPpmlUSS1FzXSuMg8bXPhOALe3pmMirsKtkZ+lRTtzBJPoac6/D3xfp/8AbOsRxmRm28xD8TW1SnFq5hOnGZ4z4z8I6R4X8TT6v4EugYCGEqLwPrx0rk5LvQ5pR5XZnW/Di306aFI7i3S485N0u45w1dCp6XN6Ka1KPxN8PzWcbaxpF4kU0LfuWUY49DW8Iq2pU23ojy7wJo+v/F7x61rrpY29k/7yMtxI2c81jUnJvliR7GMn7zPafFw0vwzZR6fYxI4RQNoH3TitYR5VoavkgjzyQalqU9zc6fEME53Uc13Y4pNtmF4nfxHNOklwW+VsMUPI9M1FSTvYHeW5javqes3zrZ3mUZTlTvzUXbVjJp3MHWL/AFCDUII9Rb93ng56mhtJ6GkW5aGd4wubKWIi2Qq+OT2NdMLKA6zUI6HFajfMISp4xnP1rlqvU5Iye5yN++WYg8kmvKWtVnu4eC9kUlyecVvVV4lxfKxsygqWJHTiue9jkrRbTZ/V9dXxe02QwzfO3yykfePpX1NZ+8zgqt+1kdF4KvZriXc0IDIoVUP3SB1/Csot3Iive2NM6lNNeXV2qZkeQI0oHAUdl+tcknzTbOrl2TK0OoSHVpJIrQKI/lHy5P4e9ZJc0mbVIKMEWGuJIZ/Kd44guCzkbnz6VOilcqElFFzVNO0bXLI2OtS77ZoioxxIx/mKwq8tX3WW1JTTWxD8DfDfhz4bafres6RbOt5qF7sluJp2kl2KOF+boPYetXg6aowcorVl4t+05IPZFLxx46u7u4fF4Am0/KxAx/8AXrGquWbk38ghBJWI/wBl2HxPqPiHxN8RJLgw6bHGmn2iRkYuZh8zvn0XIUe+70rpy+Lc5VU9LW0M8dTp2hRkrvcufE86H4qtW8Hy6eZdQvcx25ZizSyN0TnP1z2qqii04X1d9+/b+tPkbUH7F87+FbkniLSfFHgKx0jw34h2tfy2sMCyRMXWSQDbge9YSlWjaEtzNYihWbqQehc+JvgSy0TwFL4euzDcX1+N+ouU6gj7n+6K6KlJUoKL3ZhRxE8VKU1ouh8a+BfiLY/s3fEKT4M+OtQZPD/ia9kXwtrdzMSLSdjn7Flhwh5KHoPu+lcPt4Yf3V1OidByXNHdbnYfHHwN4J+JGky+GrnSYpoIoFUyunJJ/i3D606jVSPvGtKpJU9D5i+JWn/tB/BW2eD4fa9B4g0yzicafp2p7tkZHTEg+bHTrk1xT9pB+67olL2lXcb8EPizonxD8GWmn+JdfT/hMIUZ/Eulzrsc3HdlD4LRgAKpH8NVRjJx5up1SiqcbJFL4sfDHQvFenm6vtLg814mcxxoMAH/ADxSmuaLT3ZcZS9m0eA/GP8AZo8G6syre6bFcfZLdBELtd6w55wu7p+lcUqUqSbuYxoc0rs4Jv2X/BQZbaDw9DZzRIS4VcFhj+EjBFEUzvUHGMVHRJ6nI6t+z7p2n3l3bXF9dXcMePLt725eWMBuMbXJA/KrVWd9Tb3U/wCmV7b4KeEdGvfP0/w/bxSNFkHYACfY/nWlaTkjL2cKj2Lupab4b0GwbVtXvYbS2V9ryTEAKPQ/571zU5NOw5ctGnd7HFat8Rk8SyGw8AWUzacshM2pzoVLAY4jU9uvNaumlHnk/l/X9aHHSxcqk7QWncvWFot1CjtP97BjcDv6GpVSysjscmzmfGmoJrOunQbcxtFZtunkRuDIR0qqc3ESq+1fK9iHTdMttOvTMrbFZCdhGQrdsj0rr997Gim9kU0vbyW6b7eyMxbon3cf0reCcVdkwpylK7NeJYZYSqZDxnIIPb3rSNSTeh0urFOxPaXygBFcFWPBHUV7+X1OSomdMZe8jkPFll8YdQ8UfZPCN3bR2TLmWSTHC1+q4DETlBWehNaniXVXs3odh4cg0PR9Fi0fxFqKSzSNmV3cBWNetCrd+8eh7ekqdma+q69o66OLaxCRwK2CIzy9bwkmbxrrkSRVfV7fT4X1ydV4ixFEpzj61bqJvU0motX6lDwjr+tX9ld6tfqIpJg3kxRn7q1xV5Sa5YnFTqVJXciHwtPb+EtC1LU7O1E945Zri5n+7Hn09TWFHnpyvI68O5005Hn/AMPXPinx6/i/UwJbXTZS1mrDAkkPfpzXVCUqtV32OTCy+u4z2tX4Y7HoGs+IbnWdRLSXCiS5fYVUc7jwBXW5ypJ1JSShGLurddLO/kr6eZ69SalJtbs53486rYzfGTR/hlHLdxjwxpg86KeMFTK/LEDP/wBfB7dK/FOC3DMM+xGZOSftJPla7LSx5NGp7bG3mnFxvpp0e+nff87PQx9b1qFnZTesqAYCDqvHQe9ftCqQn8bsj0K1dONzj/DNp/wsj4hQ6ZH/AMgzR28/UbjqMj7qZ+teVhoPG4yMIfBDc+WlKrnWaKMP4cHqz034Ua5BrH7Uvw/057iNbYeMLDdLJym0TrjcPTijjbEVaXCmPdFXaozdl1tFnr1k546EOl+h3H/BXDxbH48/bdu/GEXi211fT5rm8t4Psli1vDbtBcFHjVWdySGBBIwMg1/Pv0ZcFKhkOIo1KPs5vkk03dvmV0/n+R6We4L2FTARmn8D376Hk9lqun3EHlghopowJiYwxkAH3Tnt/jX9Pumr2Wnc6ZTfJyy1R574p8Na7od1LrOhW/naY7ndGB80Pfp6D2rlxFCtTj7SnrHsfK4/D47DTc6KvB/gaPhTXrbXNMewE+9vL9B075rowOJvTun/AMN1LwNZV4Wvdn2t+y94w0D9o79k3XPAmvaFc6p4jsLCPwx4umEnA0o7jpuovlhuNvJ+5ZiCdm3+7X8I+LOQ1uB/EOlXw01ToTk69Ff37r2lNaacy1SutfU+ryRwxEp4WcbwqLkl2Xnqfn7q3gWw0PUb3Qps22p6fdyW80kBwm9GKk479OvfNf1tkEMvz7KqWLp3i5xT07s/Oa+QYGlWlTptxnFtXRV/sjxrYl5oJoruN1J5OxiB3r06uUZlhnelLnXnuaU8tzWj76kpr7mSDxINPIj1S2a2kLDKTKfm4656da82tjnh5qNaLiwq5pRoPkqpwfmXtMuobiyExIYmbjaeucjP0rtwmIpTpcya3O3A4mNSN463GrIltJNbBlyg3Bieh9a7aVeL5oLod/PHVdhk11arErp1Oc4PTilOvSjJdzzalZUpKTepf8CeAfir8cfGlt8NPgz4B1PxP4gvAz22l6PatLKyqMu5x91AoJLEgADJNeRnmd4PLMK62IqKEVu2zkxuJr4pKNNXfkd6vwo+CnwCvI7j9pr4inWPElrMou/h74KkSbYA3zRXd9kxRsRxti8wjuQeK/Na/F3EWdfu8joqFN6e2qJ2fnGGjfk3Zep6EMLhsupKWNqe818Mf1MrxX+0Pa3N83/DO3ws8O/D+KOYSWxtQ9xqAIxgi6lJbPAPy45zW+B4MxeYxdTNMZPESe8G+WHpyrR/O5ngcbOEbYFRi11a1Ou8F+IdY/aW+EvjfxJ8adXvNZ8deFWs7jS9eu3XzJLB90UkEzAZdQdm0k5GSOh4+H4hwMuEOIcBhsvioYaspKVNLRSTTTXbrc82vmOLqYhSxDvK9nstz55s45LfU5eFMYc4wOoJr9qy+M4xSZKUvbNrYPFd40FilkiKDMwKkN2rqxcXy8ncrMsXCnh1SjvI7f4C3sFrqtx4b1aQ/Ydd02bT7lQOu9TsP4Ng15HFOGliMmjKHxUmpL5b/gFCLcFF6o4mKC60u6k0+7iCSWszQzoeoIOKMHWdenFx2aOWo5Ua7S0sXpbqfSp4r+zfKMfXgn3rt9hJSv0PQo1JRamthb21Fg48UaDH+4cj7VAv/LNj3+hrSUYQdmRWpWrc9LbqelfCHxCy+K7DW7dl3EgP83GR0NcOMlCNF8p3ulTdO5+g3wW+N9n4q0iDTppE8yEKjRg8gjuK+NqqfOeXiJU4vQ9MS4+1v9qS5KxuCAc9ayscim+pei1/dZGxibdj5Scc/wD16TTTF7S70L+iW9/oumSTR3eVlByu7pn+VWopamyk7WHeC7VItWS/nlDkybt5PQA1M2jOcuXV6HjFi8etfE7xvdyxjMetTMjMMgEYA/z71+Q5w/8AhUqu5+h5JG+Egzy7xGDL4s1MuQWFwoIB47V8o7KL9T6zDSipakN40qzeWzdDj9K2TThY7lrPQzfErsFRV4Ixgn6UqEnz6BWfcyN7CErjAKg5rotd3Zin2My/LB2PGRgVqpIxrTMyYHzMuQAcADHeuuEeaF0cuiV0dFoVzLb6UqscRtdCRc4zhRzXl4mEnNo0oO2vmegXWqxal4IJWQZghRWAHXqa+cgqkcYk13PsYcssLp2M7RfidB8O/Fuq3kNpPL9rt7ZmeEFtuIxkH/Cv2XgrESnl8rbXPxfjh+yxyiux33w5/astr/UG0m6uWkEq7TDITu6fTivuqbgnqz4KNVN3kO8V+IPAOo6uZpp1hCKSOQcGtJy5kaOrTitDiIPBJ8Uao15aeKWkQHMMKSjaPw71NONtTWnPnhqZviW917RJv7KuZbhdxGJEfgf4V0v4dTmk+WRxmu32veHLiVo7t5Y7hDuUnua5JSUXoYOLlK50nwL8di5mWzu02Or/AHWPJrVT5kayqODsdf4zvrpoZmDYhIOc+tarVaEOpyq5zf7P58uXU7yEqsjTNhz1xWKpckuZjiqlRXLXxM8bWtnI9rDOWcnknnn2ro5ko3ComtznPCPxChtY54Cw3Mudr8VlS95spRUVcxvEfxBNrfToJl/erviJ6Y9DVVoN7HLKraZytlr13rutvfXEqxxjop6ZqadJPUScp7lfxxej7HEUO4RuCCrfpVShGLCVRwaUTI1PVYbmzEXKnZwWo5rRM5SlV0Zw+s3bYYbs4JBzXJVd0Qo+9ZHPTyMwJJ/GuOMNbs+iorlopFfzSi/1NaVFoQmrkbT/ALsg/lXM0YVmkj+qrVNctbeD/iYXzyhWB2K2PLX09zX1FbSbPOq39rI63wFLbi2kuoW80bN67mwFHYVjpytmblaL5dzQ0jUUm0xniXenmsVbHG4nk5rjTVrnRGbbSaH6LcsnmSoDLNn5So4X8ad4xib1E3Pcp2q6nrviE2dtMLeOP5rm67c9vrXIrzk7M3ioxjzSOgaOOzCafbxgCY7RKx+d/Vgf4R704qPNZCnLZlPwvoet6hfXGhWDfZ411RkvZnUs0SZAwuPvbsHBHTFVBzcuRdx4ipQgvbNapaP1tp+Rs6x8H/Cfh6WWaa7V2nAKxzjzpBzlhhsgcdD2rSrhYQbb6mdGtUq2fb5G/wCF9A0L4c/DLSvDMcZSGCN5plc4Ls5LnJHUkk8+9XRhDD4eMEZ1q06+JnNb7HL/AAhs9J1f4ya144W4SaDQNMSO13PuQXE2SzAAdlAX1+9V0VF1pTfRfiZYz20sLCntzPX0RyPxY+NUvh/4g6Z411u8Y2djqaNJGbdjuUHDMMjGADmuCrWUaqqN7M66GEo+wcEzW8c/EBvF9wZbHUkuEnUSLLEfk8k87s9DkVcpzqvmb3/IIUo04Witjwz4mfC7wr8bvH9n4cutOiurPR0ad9yK2JMcH8OTXKqXt6/dIFU5KbUup8z/ABFsv2m/2dPHs2neFNVbxZ4ZkbzP7F1K4KTW4DZIim5LDGRtbI9xUVYOh7sdh3gqehsL+198IfH1tH4TsJn03xDb3WZvD+sWnlyEE4yN2BIoxxjNRKajVtHVLr0f3/qRTnPmvY4L4wfs9eD/AImTanrqO9rqUDolleWn7uSOR/4kZeQOe1Eqjvod6nPluzwbxB40/am+Dqy6BPrNv4rsokAR75THcIqtkKZVHzYHqO/WuSpVqWukROrJKyONvf22fi1b6pquqeIvgYZrMwQiGK3vh5pCsN7Elcfd5HuKyjzykrsuhOvzPmWhV8d/tf3szKNF+EGpOu0LBLcTopZCCecdCD0Ndkqd477Hc5xS2ZwPib4+/GLU0GqaP8KkW4a1Ec0F9efJnI5yq5IxXIlBz95kSxFotQj95l3fxI+PWuMY9P8AD2laWzQAMFV5m+o3EAH8K6o+xcNDGNTETm3aw20+FfiDxZff2t8QtUudSlQbgsgAjjbj+AcZrGcnTvymkqcqllJnRWfh/ToFiig2rsG3cqYTjqCKwbdjdU401ZIx/H/iGw8BaDNfkI8052WdoHB3yE4BAx2zk06dKrUi3FaLcxq1IUo3l12OG8KWUyWwaWRXmdt9wxxlmPJNdMKd/eHh/hVy54mvrbSLqyzJ5ZuCUzjgkdua3UtBVJqnNWK0sq2sv2wWytG4xPHn/wAeFapc3U61LniWoYoMi6t5j5Tfclx+hrpXLDQzWkiKeQw3H38DIJKr0r0cNO7R0qTurHE/E7/hYVt4xs28PasIrC5XEuT2r9IyiUqkE0/UwxkMd7WLpP3XuWPEVpYazbxac+sFXgUbpVOMmvqWqcoWudkYxqwUWzU0WzSO3SG41eQQRDO5zkt9PSoVqfU6oxVLRM1z4gsBHHb26KyYI8t25b3NaRmjb2yfUz9V8WXGnv8AYrGFBJKgCsGxtBrSKi2FSXLLQTxv4lfS/A/2PYxLKWZmP3ie9TUcWtzdxfsG79Dk/hVr9zcaQYdMtwBEx3ykfKuetPC1FHY5MtXNTfY9E+EnjHwj4c8Zt428bxCfSdBt3uprdmP7+UA7E/FsflXx3iTmuKwPDE6GF/i1moLyUtG/kjtniIUJOV9l+J47H421nxf411z4m+JryQTajcvJbLJj93GTkKPwwK8fgLLoYHL1FaKC09er+Z42FnieeVWtu9vQqWqa/wDEzxLD4Q8PzLCZD/pNwekEfdifWvs6tWviWqVN7Car4+t9Xg7Lqz0BLPw58PtF/wCEB8GZwx/027P37hz1Yn0r38voxw1Llhu9z6XDYPDZXh1TpL18/U5c6f4k8F+JIPiPouoW850m6juUDMVbdG4Ycjp0rpr4H65GdOTThOMov5po8LFYXGUcQ8TB6LU99/4KKtrHj3T/AAb8aLW2mXw0YEOjuNJjhtzFeRrO7o6ud2J/MQl8Esp9Mn+UfBeWH4X4txeSya9s3JS95tpwk1FWa092zVrqzR9Fm9aliMPSxLjJezly3bTUk4p3Vm9Lu2tndPS1m/n+3nkjsfLSRGSZgFCqThR1Nf1YnNz1PPqV+en7hbuNQVVlt43YIig8nrjrUYptwtdpabeT/XqbQqtU7M878Rf2h4d8TSXvhuHck0fmSWqnqM8kYr5avWxOExzlRV0+h8NjHiMszNywy5k1do98/wCCePxRuvCX7UGjacsmnwr4hKQmx1pCbS5uI2EkdvcLkZSQjZznG4Gvznxk4djxRwlOq4yVSkm4uNlKN9G16LU9vKc3p1Ma8PWbhGqnto1JLQT/AIKceFvDukfHw/tAeBPDSaX4Y8fPJdLpAtGgGj6hG225s/LYAoFbDKehVgRXzfgRnMqOSyyPH1OethbatqXPHeMrq6b79mjjzFVcpxEalRtxmrXe9139Tw601a01QidrpBGqfc3df/rV/SCq08XU5ua0excMZHEzvF6I9u/Yl1H4c6xqXjrwl44j8PhNX8LGE3Wv2azG3gV98piLgiOQhVAYYIz161+WeJc6qhhqtHmlyzV4x63018jD2OGxrlKouZq2h4XceB9KjvrtvDOqz20MdyyRBH3KQGwDz7c/jXr4TJViKMakJOLaV15mKyajBc+Hm4eRn3vhvWreSYw6x5zqMyFlGDg12zyjFYWm5Rq3fmbwweNhBv2t35or/wBkeIp7rbIiBVjJIUHkVzU8HjpVbyehjPL8ZXq3k1axvfBXwJ8Q/FPxEsdD8J+JbnSbnVZDbS3FrctCRAQTJuIIJXaCSPavCzvCwp5dUxOOs4R1s11MsBDG4bEcym430duqMGz0u2vEluIZfm3t87LncM9TXqYTAU/YKy1Kq4SOIqOo2QtpYjl37fLKcknuPWur2DptaWOerT9lG0Va3U9V/ZpdtS0v4k+GCzSG9+HlzKI1hDmRoJopM88jChjwa/P/ABBVKFbLcQ941kr/AOJNHj14Va1anr9pXPM5bOJ3C+Zgqu4sOc/WvtqNeMd+h9FVh7O9uhgZl1vW2lEeY4sqhDVjTxDrVHLojwcGpY7GSqP4VsdRYTf2eqTQz+WyEMrqPmDCutpVYtT2eh7iTU7I0PjFbbfE1l41jgkW28Q2CTs8mP3koG1yMdiRXzWSzWFVTDS+xKy9N0Ga0uRxqpaS0fqc9a3sJB0+7cbX4XnpX0VKvfRnJhKj5uRl/SLo6bI1jdpvhl+V1xw61q7SVj2l+6jy9y/4S1O48JeJIofmNlNKDDL0289PauOdCOvMzi5aqqOL2Pr/AOCfiPQtMuoZ7fWomu54xJtST+fbNfL433W3Yirh5pXsfRmieM21W0S2tnX7ik4boe9eNduWhwuUb2JPEniDU/DyC6t5W8wDJB71UpWM5r3boj0b4s6x4isnjtkdZB1YcBqhOzvcVPmvdnafDz4iafFaeZq0ojkiceZE5681o3fYtyU24taHl/gLWkuPFfjO9C5hutafzArc7C4/+tX5Pm1P/hRrWf8AVz9HyScfYRjFaHn2oulx438QQy7lC3gEIA4JyuM183jKcIRs2fTYaK57Fe6YNdMrLyJPWuOk/cZ6UdJmf4lKeaoLen4cVtQledjLEOzMZn+QnsMdK6UtyYO5lX85887m4Pc10RilHQ48RJJlCZwQBg5AyMnit6dkjnVRvQ2rG7lfT7ez25CwEgbgeSea4K9uds7aMGtGdJot+/2S600ybhNYgge615NamnOM10Z7eFrW5ot7o6/9n+Tw/eN4puNfto5zvt44vNUEgLEuSPzH51+s8EYfly+T6X/U/HeM8Uq2buL7flb/ADM7x74K8EC9GseFlZbtMl1UY/lX21SK0sj46bg1schHruh6jaz2UzrHeEYIbr+dSnfQil7zaOZm13WPBepm4s9QlWPjDB8qBW9NRSJxLnT2Op8O/ESHxmT/AGyI94jK+YD96tKkbx0LpVI1InM3WqQzeIW0q5cmMDKBuSPauFxd7CU3e1hljdNpfiS1lsiVUSlWbpmtOVxjoZ1lzas7Hxl4vd9JKeZjbGQVz1reLfKFNKWhzfgjxZceFtEYI2WuHY7h2zWNJOc9TplOMYqxn3093q94dRvCWw3Hpz6101FpYxbdRamRrUM+j6gNVsJhL8nzRhutKDS0Iq1Ixja5yF7qWp69MWMZRUkIVW9M0TlzOyORLnYqy6tZTFtjJkcYOaKSszolJRhoZ+r3eqXtwkc0hUZ+YUVPeehxqLkynrOpOqhRIRt4GaaV42aG5ODscveXjyo7FuSeBXFiHyvQ6sNSUql2Z7u0ny1l0uerOpZWI5cICDyfWpndwOdVPeIfMV0O8iuWSaLqpW1P6ltUkh+1/wBo21gZ+QMOeHb255xX1Va3O7nnVm/aNeZ2dpNcW3hP7La3KrcXYwWA6euDXHUvy2RlGCc7mn58kGlQ6LaRFYYUAK95D3J9K5pxsrHVSi43kTT6je2Glt5SeXAoxsRcBiffr+NZtS6G0eWpPUd4P0zWDDJPdxRPc3B/dW0Y+RB2J9WqKdNxvfc1xMqfJyW0LuhapfG91O4eOW5isrY/bNkJJjYA45xwR6fhTgr1JO2xzzUY8qT32Oj+HJuvC3hD+37iErf6s5m/eLhkQjC5HrtA61pTUaNPmluy6vPUfK9kcl428f8A2KznvY3IuipCksSxb+6uO/auWpUXxdTWgpSkkny2Ol8WaxqlxoVmdThuYnFgmQ6sFT5Bnr1PX3rfEcsIqTvovMmlGkm7O7bOQ/Zp1+31v4seKNFOnz2ul2+ixSyzSFlFxOXYFfQgAZx71yYatVqYmUfs2KzOm44SnJfFcy/2gZtD8a3DeA9G0qa7muWWOEF8wIQGBCAgDJySx56CnV5a37uJyUlKn78meFfDfxTrXwOvtZ+AvxLt7yG00+Mah4fuLaFpTHbY/eQMuSzBC28egbAwABTqSdGPs7bL+uvz+Z21KsZpSh8zq/gb8QPBl7Fq9/4c1q3v1nkMQntJ/McbjjDAcqfY9KnL5xasmGJpy5E5I574ti3/AOEge3vCkdvERG0jDLb2BBp1oSU3czpRUl72x80eDvh94H+N37RfxB+F3iyyUyL4RtLrRbhothSaKV/MMbjndgoeK5IpSlZnYqUacVLoYOqS/GL9nfWL5/G2n3fiTRWjBh1W1OZoo1Pyh4xw+P7y89Mg1U6M/ivuKpJJ+6Zeg6p4a+MPg6Lxno+rQ3aS3xN3FECWhlY4Mci4yg/3hXHySfu9iOeDaT3OQ1fQdEtWvhd2NvbpHGygoAUx75/zzVRikd8LtJIo+LvAvhOTw3ba9G1uLW7hWVH2jELHhlPtlSR6Vs5NKxEqqU2jCvPDNmLAWSaeJTISdwTO5VH3gw69a55RXY1puLRzN94RgfUFjtQmYYQ6pIRyf7pP9KiN+hopRWxHNJ4ZOYWvIrOTG6Xz5Bt3A98HIPv0ok31KvpdnI+KPEmktdeRot9BecFnRMuF+rKRRTgpsy9qpNy7Hit3Z3vjfxCfF+pXW6WIsmnJz5cMYPYHue5rqm+VcsdEcqh9alzS2Wx2Xh7QNQ8Q2k8mm2zC8tIS9xFEg+ZB1bnrRFux3+7GGhzfj/TLnxP4Xk+xyZuLVhPbllxgrzinBw9prsYukqsbrdE/hG8s/EGgQX6rjzIwWK9j0OatKXMONWLjoFsP7K1FtMuciOXmJhnbV7TuEJPmsQayzJMEdwCOBJ2Ye9ephHdanTdxZxnxmuns9DtNUWWRSkmG8scEV99kWIioOJvOpy0Ls4vwvd3d3cnUb+4l8leYwwHzH8a+lpzlPVHHTqpz02NWXX9Z1S+WC3vmDtxGsZGF+vrWnvM66jlJGzpstn4bw+q6gZrgnLK5zk1v7WNOI6UvZv3mJpniG18Sa4zxAzKj/K4UhRVxra6HYqiluM+NetlLCG0tFdZCgVSGxkmlVU5JSi7MMZiJrD8sOpX8P6kmjeG00TTwoO0G4b/a9K6aSVOCOrDSVLCqKNay1Wz0HRJLKSJZ5LhfNmt5xlXA5ANfN5xhKGcc1Cor21XqjmxLcXFpX1PM/G3iy3tFaa1tEVZyWitbccF2P3QPQVxYX2eBwSo0zgzrHwwzXKrt7JHVfC3T9Q8G+FJtb1ePyL7Us7hnDKnUDrX1WWYWdGgpz+JndlUJ0MNzVfikMh8QXd3qcl8uDtHyvIB/KvUpzSdrnoxq87u+hG1/ceKfENl4QgbiWTfdhRnKDk5zWcsS6uMp0YvZpv5GWOqfWasMPH1foe5eOrTX/jN+xtqtnFcxte/Da7ENgrXTmZbN2M0cQiHyBQfO+Y92A96/AuOJ0OEvGWjjYR5YY2PNskuaNot33u9NDslh1jcoxGGpr3ormXyPnTwd4vD2qXxYFmTBJOQvBzx61+/4bH0a1PmXU8bLqlKvhYt7jj4hdzLGnO4EAhuM96zxNaDgzb6zBOUfuM3wxfPrnjC5uZI1EdrCI/nH3vUV5OVuOIxkqnZHz2XSnjM0qVZbR0Oov/C1xqN4dd0u6a3vYLlJbGeJtrJKmCrD3BGa9OtgqOO541FeMk4td09Drx2UU8U+dO0r3R9ZftX+M/id+15+yVoHxg8QvPr1rLpzXGsybF8rSdXsiIbiNUABzNCVkyCe3FfxHwvhMD4aeKlfLZWpzhUtbVupSqaxbf8Adem3zPqqeGweZ5S41aXvpXv6aP8AU+IdQ+H1o0S3PhjWEXzl3CItnPt7V/ZdaNOqubCTs3rY+TxWUU6bvhJWutjO0LVdU8FazLZ63Y7PPjaMytnDg8H8PavPhCWH93GQvrvueXgq9bLMS1i479TcsNTgQzWoYKJSSu1vujIOfyrtwmIhGbjE96hOEru+hG+pnZuAyJojuIPU56munGYnnjbuTWxMUrIbPqhW8aIEDMQGB2xXBRxCdZxNKNaN2jd+FEz3XibW/EQufs9v4e8K6jfNMHKN5phMEC++Zpoxjvk5r5fjPEU8Rh6WDS/iVIKy7KSk/lZO55lSp7TFPleiTf6HJaOJLG1JVgrIny8deO9fRUKVSjF+TOqnTXs7McHe7C2su0bFPzAevTNdc4e0SuRNKpaMtkdp+y9q1n4a+NekrqNyFstZhudGviXxiO7haHk9uWU/hX5nx9ljxPD9SpBXlTlGovWDT/Q8epTpwvO2x554wtdQ0HWLrwnLE0V/BcyQXUb5zEUYqwOe/FdtPERxWGpypO/Ok9PMyx2MWIao0fil+BDpun/2VGsZCvG3fHf3r2MLhpUIWexpQoSy6j7Pe5cKJMGST7+PvEda75wcqdos7Fd09Xqb+o26eJ/gks9rcmW40TUit1AwyYIpB8kqY6KWyrA99p718hXisPnC51b2kd+7Q6dR43CSoyW3U4fSWtb7Md0AJY+DXv4a1SPLLdHnUpw5uTaSNezeSXFjdKHAwY5AeQP8K64UlCTZ61OpKUOWW5pWlzBLAba5wyqcdehz1rnrKdzeEIvWW56T8DvA3xBbxNDq9v4oZNJWVXZVk+9joD614OOkuVxkcmIxtZKUFsfS+m/E6bw5qCOZgFOB1wPrXzU5KnojxXBuVz0yHxXH420nziwb9394Go1bNtbWNvwVfaDpFjgGJpEPO89KfsubUp6Iz9ZvLTUNcFxazBQzgsEbg1tbliYtPoYfwuvvsni7xJZJ8iteBmcnIzkV+Y53SccbUkup+j8PcqwqXmctpd2L/VvEeoSSBpBqQ+bGP4gK+LzO8ZJdz6zCLnqshvsm6YAjPmHJrjpyTpne3y1LGZ4tUiWPOcY5rbCyTZz4u/MmjJnA8lgDnsD26V1qVpNCpv3TE1NC5Z93GOgPSuqnNtHLXs3ZlE20jyYDh4mP3n7+1ae0VrI53FQdzorXypJoPKjCZgC4AwMeteXOMnFtnZGq5SSRuaIgGp2saf8ALSCRCD3wprhxE+WhJvo1+Z7OEpXxMU1umO+HviN9Eh8SWzMfmvV3ZHTEaiv2PgufPlumzPyHi9Qhms4+f6FO18UG11A6gl23luSDkc/iK+zmopo+IlNJ2Rx3iPwlda1rs2rWl4wVUySj4yPpQoQehUWoK5jXOuxW2kzWd9mY9Fc84PpUqCgyKtSVRWMHwfq+p20rwQE7C5MYY9s9KJ1YRVkyKUKkNzu/Dvw91vWzJr1zdBJdvyrnFcsJylqd0aa36mPcXGq6bPLDqMLBoZ8q2eDW85KJy1r35WGo+Kf7UR0ySDhRzUyrWixU6UxIb8PdRgkiONQMY4ooTvqjaaSVnudBFrWlTQLbnbhgR8vUV1pcxjBvkOJ1aK807Xp7hblmiZPkUnIFKUVHU5XTk5FPRIZmuJLy7YBQThWrHVy0OiKjBW6jNU1G5DyPbwPIEH30jJC/U1006fLo2tTNwc9kZZv4rmJ7mR1JHT5qxlGSm0jn5rOyOR1vV43u3iTHA4x2reK0uxxpykzKkm+TdIea83Ecsquh62FhyQIUkAyc8/Wpkiakm5aFe8uT91epPWnZcuoWSd2VjJiM7mHSso0+aWpjiK3MtD+n7T7fxLfzRvea9FFbFw625QFtgHr/AIV7lWEpVXcxxFlNnpHh3UIdQkhUyEwKgBQphm/DsKym1AzirmiL0vcGOztXchsjjhvc+1cr11O+K9wTWtdaxtjd3XzT5yofov8Au+9ZynybhSjFyNLwfcnV7M2+ps9sCu5JfNCqp/2iRyT27Z/Okr9dBV7RknFXsd34Xa70Pw2oudVuC8yl5yXAaQdgxAHQYFaOc4Qeu5MoQbTscN8QfirPpdpcy3TswcYiPfA4GPrXnVa0o3v1NlCUtEVvhh4A8fa/qdr448a6ZbaHpYUi1TUJP9IlLdH2fwj0JNa4WjOo1UqKyCrUgqbUNWez+N9S8OaJ4anttVeOQyxACNXG7tjH+NepX9nGm1I83DwnOspLoeOXl1C6alrfhu0lt7O3hIu7lSEMiKMlQSeTgZ4ziuHncbzgtD03Vg5ezvqVP2bNXsviFaXXx9uLQSaTYNLaeF3DSHz3BKyS4bCkAgqCBzzye0QVOdKNWNnu7q91razvppa+nR6u+iyxMIRl7LqcH+1Pdx2nizw58U7fQVRBqiW0rzSonnwzkwsNoAL8uSTz07YrnxdScEp8u4sOuROKd3ueG/FL4IX/AOyhrK/ED4RwxW95Z2yy+JLYDEeoyyfOyPjqy5wrdqwp0vq81JbHdUrOvQvIr/Dn4qWv7VXh/wASeN/Aek3a6V4YjM3iu7vLZ4Y9OlRd3lGSQBXcgnAXJ6V304SxN5x2RxLE0qKUG9X0MGytIPCDN8S7OM/2jMzXiKY/mMHA8okY+8v8645JP3up1zjUmrNG1r/ijRvEnhq3vrXT8afdxK9t56AqYpEyV9ip4/D6VlJy3b0LhR0s0fJ2t/ArUfDPjrxB8RPg74oudHv1uVMNxZKTFcZPAli5V1PfIyBnnvXPKN5e6GJpU4axZkeGvGD/ABYWYfEy0FtqtvcGC8gszshZuSZNuf4sLx2JpRjeV2a4WTitTnviBeeOvh49lp3gbXLafQdUnKXen3UXmxq4JUsueVPYgGrvrYdWlUqSvE5248X/ABS0LTDZHwXbXlom9hHY3LxOhPUISWGOPb09KmUtVFHRR5YR94dY+J7fxfpks8GqnTLyBFLaRqdokmATzk4+bP1q5QfLZmtoSXMc94m1jTdduCraQlrdsm2S4tpN0M6kc5BHH0rncZ3dzP2jktDjvGrjwdop0jRXiW6vi0bCEYMcZ6vgcc1K1djCporGH4Hso4pj4f1VdpKZtpiMK4x0+tdUueT5pf1Y66PLGnZFrxfcXnhfS7mezvJLS8VhDHJDJgyo3BXPetaceY5py1s0VdOgeOzRiNodNrMwz+frUclttDqptJWOa8IGbwj4n1DwtJIBCZTPbA9CjdRz710VKiZ5ybhXkjpfEWnC6sQyEgH5oXzyD1xWNObvoejTt1MO4vXvrARzRYkiGOe5r08JdGrqJHE/Fe6u/wDhEVMX3I5csrDivs8hcXUaZnWU50jzS+1CS8SOK4utid/KOMivsKVaF9zjVRRkuZk+h6/Y2FwzW8pyi485n6ewrWeIhGNjvjWhFXTGpq76pe7bi6Hl7/mYsckVy87bMKdRzneR1NprkdmY7XSAIoyw3Hby34120pKMbs6ZVHKXulnx5PDftCbkGRmQAZXke9KdWpJcqOucoumomF4ZPiLUPEcdrdeJYY7GHLypJGFG0DOCfXsK5ZwrQjzqV/IMBg8VPE3lU93sWrXWtU8S+K7lRAUtxbOWl2nakY4LE9hXJm+PWXZe5qVpy0XncwzDG/VKzi1p0OS0SSC98aS6qIF8uyJSyVjkZ/vc1jkdKrVqKpWXQnBU6eLzKWIkvhWh1Wsa3qC2+17rfI4J5OT+FfV4nERpqyZ6lTESUnZFGxu3NhIqOVZc+Y5fqaxw9f7Tehz0KkXd9t9Sz8IL9m8Q6t4luYTMscfkxHdx708qcp4qpiWrrb+vQ5cjxc8bj69ZvRaI+jv2HtXuPF3jPxd8FbPxENMl8U+H/tNs7Isn2iSxbz2twCD80sXmxj/e6jqPxL6Q2GjHL8Dnfs/aLDzcHrblVRcqk7W+GVn8uux9HlePjgceqs482yt87P8AM+UPHPhK90H4na94R8KXcsFna37tawXsOxxGxJAYZO0jOPwr7bguvmGccP0Z865lFXs7p/M+SxeCzDD5xiMNQkoxvzJeT1MxdR1nRMNqensvlufnVSyk9/wr6arXxGHhy1ov5HNKtiMK060duq1Lvw7lmufMuPlVryYs+RjAq8iUlFy7muTVl7OUusmz0MaysS21yCEUDK5P3iAQa+ndWnF32PecUkrs+mv+CeM/h74rfDP4n/DPxD4oEMejeRrmmaI8h2XomU21zGqdGYhkbGR931r+P/pGxnl/FeW5rg6N3Wi6c52Xu8jUotv70enkeOpLEyovWL06WV/+CfHCaVqngnxrrfhnVHdX0a/lt1jlXBUKxxx9MV+68DYqeY5ZTxnNdOK/I+boYetRx1aFR/A2vl0F1C5s9aPl3UImj2kMuO/HP5191z0qsbVNjepOhXXLVV0c34i0XU/Dduuo6TL50cj+WlsTk5PpXzuOoQwTVWk9H0PGx8a2XwVTD+8npYksn8UWcS/2ppgthL8olY7lUf3T6Vy1q2JteUbHNRq4yMv38OW/UvWpSJ5fNCSNtwcnrnvXTgqkeWTb1PVoTp8zTd2b97fp4X+CUsMUKfbvGmtJHE6DDDT7L5n+qyXDp+Nua+bqyWY8Sxa1jQV/+3pf5L8zw8e5Uq0ZR+0/wX/B/I5+0vFkjmWRArBQGyPu+1fc05KpTbR71Oq61K4+a7gghkeVVUxQ/ezjms3VjFNs5/rEYN83Qo2FxN5SzQErIPnVlfBzngg+tebjIqthnGS0kmn6PQ5qqjOmvM9E+M/h9fiZ4Wsv2ofD8JkuLmVNM8ewxxfLZ6iq4iuSeyXCLu/66I47ivzbhvmyvHzyqra0bum2947tfL/InD4JRqfWYr1/zPOHmht4ZJJJwy4wPrX31SpSpQbbN8ZOlCDlJ3I9OvLbU3/0Ny7McFQcke9a0a1OrC6Zz4SVPGK6eh0vwajN/fa/4au7aVhNYuspGSNu0kFvoQD+FfG57ioc0JPRwlo/XoduS4im8RVodUcTqWmTWUh1O0UloWKzqVxnBr3VVfIqi3OHMMDUg3WorVbos2WopqCC4to/mUc4ODXXSr+0tYrBVoVFzM1g7lBc7cK42yKvr61vUlGJ6CU5u/Q9U+COtX1vZM7XTbUxiP15r5rMuWs/Myrqmlc77xVc6jcWQvbbftUfLXzVWlY86TW523wU+KsVxpx0eW42SKu1lY8k1jCUr6nJOvZ2Zs65ruuWdwbqyvGUtzgdMVu5uJpFya1E0Xx/eteIZbsiQMMN60m2zPneqOt+BN1FqvjHxBqGqSLHFFG0k0lwcJkDK49ycV8RnsIKs7adz73h+NqJl+CglzZ+Irhf+WupZT3G8V+ZZ3XUa6R+g5dGPzZJcx7rp8KOH5PrXn0qi9m0dM4fvLmX4xjw0YAOSveunBNznyxOfGLlsYzRF7dgeBkYrockrmdP4DI1KAlcFM8HOPSumlNM5Ky94p29qJLhZhGSFHT+EV089oszqJN2NuOJhewrGMZC8Yrgcl7OTZ004XqROs0WwSPVdPlCKVSGXcx6/dOce3rXgYipKdGovNHuwTp4mn6MxIYraz1/xBo11cgPcMksYI7tGpBr9w8PuSeTqfm19x+J8awks7nF+TONutE1a1kuI7u7XC5KKT1r7pqKuz47lUZalWwe/ttSMX2iQKUw6nnrXP7ZqVkbTfNHQd4k8EskFtO/yLcnKHoDTxF6cLswpzcZWOot/wBn5INHt720vIwzpuyHBPNc9HCzqpM3q30aM/UbPxT4SlFrciTAGF2rnP5V0SoPDP3rfeVSlVe6uVtRt9V1qyMcWi3MsjdStsxrCrVhTV2zSVGb95xZj2Pws+Il1NusvBeouucj/RyMfnXn1Mbh+s0aRp15K0abOgtPgd8VJVDf8InLEDyxmODWlPMcHSi/fHSy/GV5tKNvUvv+zV8SdQjUxta2jt0ZnJxVrPcBHudayPFtboLb9kTxbK4k8ReO0ZRw8Vrb8j8T0rgxWfRf8OJU+Hq07NzOksf2f9M8P22zTbSKdwMGa8DOSfp0rzpZzjWrJ2XkdmHyjD0mur8y/p2jeP8Aw9aXGm6bqdtHBOv762XTIypX3yvNZuqq7UpN39T1oQdCHLFK3oedeNP2crXxeJL37Y+nXEpJM9talU+pWvRw+aVcKrbnz+KynD4hupHRnnsn7IWoWlwZLv4ixOnqlkd2PxNbTzqrU2icMMpqp2lPQiuf2bPDMCZuvGN/KO/l2yqD+dTTxleTu0b/AFGEV8TIh8FPhzYYSdtTnIGTumC/yFOri8TLayM1gqKd22T23wx+GJLCDw0zsgGfPuWJrmdbFzVuYt4XDdiyvgTwLalRD4SsDn++hb+Zpr6zfWTJeFw6V1E/fRfEFnZ6+ohtTOXYKIhJk78dT9PSvuK2k2eRWUpVHzaanfeC9Q/tq9kuUUBI48TOy4UKOw9e1ctS7ehXNCKsbLarcQq5W5LFz/AvRff0Fcs5WR0qMWkZGs6tHdazaaYlhJcgNvMcacADnn0FcdWfvIunRsnqejeENJW/0+HVNcV0kEm9bO1ePYFycFhnIAx6Z5rSPNJczJdSPNyr9Sbxx42trS1lRigQKQwRuMdAPelN2u2xcnMmmcP8EdPf4z/EqfWruHfoPhsgySkgpc3RPyw/8B6ke49ajDUfa1Od2cTabVGmu7Pc/iPpf9paQb1w+bRleYoPvqOq49B/SvQqxTin2OClXam0lozh9b1fSPEGswWus3MVnEy7lhkkG6TA4XPQGuOdp1fedjTnqwhdLUreI9C1/wCIqnwh4QgEFgFCaheIgEMEJ+8FPQsRngeuTW8Y+0fKtjl9o3Nye5iSfEX4b+G/A1r8H/h7LHaWXhaP+zGst2DCYwQXIHc43Z75zWPNBw9lTVrG9OM51OefU+Wf2u/i34H8I+ALi88UaTqV5cKQmlPbZlEcySIY2CBd3D7cndwDnB6VxVOSMeWR2KlVnLkps+gdR8Hw/EnQjr/ieFpNJgH2qZOhv7hlyI/91c8/TFdlSHNDma0X4nPK9KPsz4i/ac+GXjbwl4lmvPhZ42vdL0nVNXjmvPCRunOm3twMBGlhVgCw4wfYelcFWq6KcabdmbUKdKM1OSu0QeJfjhqHhLSp/Cvxm8M3Xh3U5I2MN/Cxns5FKj5Qx5jz6EY9KxlUUY8rNq1Z1GrHzh+z38X5vC3xm1fwj4r+K06+E/E95v0lZpc22n33YMSf3aSjjPTI96e8EkV7ScIXb0Ppi+sbDw0lxaWKjelsrXWyXcuwhwHGM8Etwfb8qhBRk4p6lqoqkVY8f134USXfjy8v9JeVI7mYfvUH8YXd27jHb0qKukdAi2noY2o+CNY8Q6Suma0gV9MzKSiH94wY5bHY1hGEmdsZNbFKOex0qKNLC7ie3ETtLGFy6S5HzEehG7NWqbg7i1buzjPGWmm21WPWIFEcb4Pn2wyFBPQjuP5Zp1JvsTKbbscv451PQfB2hSeJdeCiApmBIWDGeXOAgX3/AK0op1GrBUapLU8Q8D+IPFXi7xpfz+OEEU15IZNOjUZWKEcCP8O/1reoqUZLkRy4d1K83zo73VbGK2skWZD5IOQ+3DIc9j2qU77HoaQjY4v4zalrtlpem3U0kd1ZWt6JJpFGXUH1Iq6M7TscOKVXmi+iOp0oQ6noqXtqCyyKGwp6HHWocldo9GHIoXRgeOdMSaxh160wL3T3/eow5eI9aE0cGIjeXMiaw1dzZBLvmN13QyHp9DU/CzalJsw9QliS7dhF8so5APQ16WHk0jrVra7nNeOVk1HwZf2ixebtTdgDkV9BlVVxrWZtJp0nE+eZ5Lp7nZ9qfYTgoDyPavqIScal0z5CrQnCtzc912NW2vrK2KWyR7pe46ivQhJX1PYeLo04KEVdksmokXAaRFGOgPc1v7WEVa46NZSlY6jTdbts25LbihA+RflH4/0q6c3LZnqU5U4zSZf8a6s4lR2k2nblBniuxJwhc2xVRxgpWMJNTijAB3hGHzSA4DGkpR5bMrD4hcq1Lei+NJYlv9KScpb3No3mQgZafaMhM54GRn8K+U4rwzxdGk4Ru4yR5WbqWJiuRXaZyXhrUGh1V45oCiO2QlerltdYetyW0M8rnVpYuUZaJmpr2tzRlrqRN2PlWPPU13Y7FRVO63OzMsQqUHrqa8OgXt74bj04asbTzEDzsseTk8/hW+EwVbEUopysmdtLLKmIy9U/act92aGn3Wn+CPDy6TYQb4clpJpCCzsepPoK9eVWjlmFVOCuurN6FPC5JhFRpa9W+5f+GHxAn8JfEfRfHmi6y9lJYanHKbyEZaOMttc47/KTx3r5XizBYbP+E8Zg/Zqp7SDaXeSV1+RpQxdOliIVFqrnf/t2eBvCnw9/aO1DVfBHiR9b8Pa1bpNpWuXUUkb3wGMyYkA+UluMAcY4HSvyvwEzjF4nIZYfGwVOrDeCa922y0b17/mVnmKqzxdPEyp8nPFKz3ujyWG9tWAt5GWSMsS25ck1+/KrSkuVu69DzqNaEpcsnci8E6VDctqElq3lKjkRMOnPavLwtlKbg7K+hngsEnUqThtcXxNqOoaft03ULYxiJf3Mg5D985r0K/Nb3isZVqR9x6eZ6r+wV8WPAHgP9pDSE+JVtbnQfEUEmkX088e4WUsmDbXZ9RFOsb49FNflni5k1XPODak8Jd1aL5ko7yVvej/28ro5MDDD1cRFV4KfvRaT/mi1KL9U1ddmb/8AwUI+EXin4RfG281fxbPa38niSPzX1rT1c2l1MnymSN2VQQ4w2AOOa+M8DOK8Fi8mqYKC5OTaMviiuzV3sfUZnyU6v1mSt7Rarsz5zs9Qk3SlxkSOVUgV+yU8Y6kpXd1c+ReJTqO3oWNKubnXdcjxCTDYLx8uQZDU4eTx2N/uwNcHUeOxt38NP8zbvFi80W7QlTKCLlGwRkdVOfXmvflQp2s9nuepiYRlfmV0znZdG1u41610HwxZmc6tcpbWMW7JWV2CqD7ZNfMZmv7LpyxEXanb7j5t0a+Dq+5rGWi8jT+Jeq/2h4tXSfDQW50nQbFNK0ZmYjzI4ifMmGenmytJL/20x2rx8oo4qhhPayV51HzP9F8lZBi6Vd1FyLmSVkc1/b6WE6wXVq0RUFWEi8N75717scfKklGasbUcbTw9PkqJpjNW1NdUCtczgnA2gYwwHc0qtdVrO55WLq/WPebL9pcBraJ4lwChAP8AerqdWnKkk+zPdoKMqEbne+FfFbeA7u88M3qu+ka1Ypba5YGQhZ0yGBOD95GwynsRXwMcLHM5uu1edJvkl+aNqGIVCo4NaM43xz4R/wCET1AxR3H2uwm+azuR91kPIz6EDrXt4fFOtG1VepGIjSW6umZNlYWmn3AvdNYDoSAa6o0EpqVPRHFy08PK9FWPpT9m39lvxrbpJ8YNP+Juk6VrWveHLxtH8IS2bTS31m8DoXmkBC2wkAbZnLHAOACDX5RxdxBgKePdGdFygpxvK+id1062PErYidLMZV6asvzZ518avg4nw18PeGfit4f1r+2PCPjKCQW+oNHslsNSh2i8066TnZNEzBh2kjkRx1IH2GWZtGrJ0Z6Sj+MejR6GCz6nVryjVVjzOTTI7e4N5pOGjkGXQHpX0dCk1LnjsaVKCp1va0HdPoW7KUKpQEEuTlMda7pNTidqnOtGy0Oz+EfiuGya4sLooWHILnBA715GOUHruwVB3u2e/aDqGk6v4QwpVl2ny27mvj8VNyqNR2MpVYJ2seY6vqN94T106lpZ2kPyvqM1y3lHQ8nFuLnoek+FPi1aeLtOWymbEy8EDvXXKFne+xVCU5R94q6nrbaffhkkPytnB7VPPfQh3uzb+Gfii4udVubl2kJmO1Iyx2ZyOT618hnSi6slY+yyWrOlRSTPSvh1mXR9SkeJd7Xjcj6j/CvxziCnKGMs2fo+UVPavma1X6jpbf8AflmHO45FcVOcIxPZcZSdyl4n0+W8hTAyQnBzXTQrqL1FiaPtIaGTLZPEhBjA4HB9a29opNmUKHLEzLuxeUgMnatoVbHPOjd3IYdMfzR8gGB1I4NbuuuXcxnTvI1bLTCLuGXryO3WvPrV7wkjqpU71I6HbQaVIbyznRMbIHVhgdwa8GNdck4vq0e+qPvxk1sjL139nT4k+PfE914p8NX+m21jJBAm+7udrllQA4UfhX7HwFmlKhkPLL+Zn47x3l+LxWdt0UrcsSdf2MvE11cCbXviZYquOFt4mbHsa+wqZ3T5nyJ2PkVkGKn8ckjbg/ZQ8H6deC71DxLc3UgUDEUIXPvyawedS5rqJ3UeH4KPvTubF38GvhfPbwwappf2tLYfujPcEAH3ApYnPMRUp2bSR2UsowcFrG7NWPRvDunQLaWGkWqKqYRRGG4/GuFY7EP7bOhYDDxd1BCkxyZVbdQy8ASWsY5+uOazliKst5M6lRhBaJCfZLvcFjmCtn5kCqv8hR7bm+LUGrFiDSdfvMrba3MdoywVsYH1rmajzXsS+a2hUvdD1+aPjVrl1LYJEpUjH1BFXzwXQdGMlrcyb3wj46+2FrLxEwhIASO5Yuw9fmUKD9MUoShe8kaVVNxdmVT4M8eyMS2uxDJw6qrZ/nxW8pUHE50q3LYjk8L+K7SUTX2tRPAPvRyK/wAvv8vU/SolUp2skVRpSjdtlJfDVxq08otfEksyx5AKRSoPzIFEKsY6NGs6btuUdT+ES6mFP/CRXKGXIYPMy/iBW0q8bbHLUoc8bHPXXwCvgzvpnjJJCFGUknbp6GlTxMb+8jz54KcXozE1r4H+LLOMRzRSyLksGhmbkD65Fd8MXTaF9SqtbGHqHwo8Zx27XFv4a1CYrJtYTMh47Ywcn8qJYin3MamGqR6GLf8Ag7xlYqHuvDV0m4H5hbNjGe5xg1UK9FrVnOqUm9TOhhurclJraRCv3hKmP503OMvdTLnNQjsft3f3emtqRvSpWGJ8yuhIyfQnr2r7urG83c+crczqNHpPwn126v8ARJ70wBSeEDJwqdse9ctSairEOk0zotEvIL+4neOImJDiRgDgEcc+tcLbk7nXyuMU7iXWtixIgs4zuIPmS4wxH+0TwBUWSd7Fxu48rdzrPBup6dqmhNqcFtJd3CxujtasTGPmOGwBzxxnIHFaRUeW/UTTpzXNotDivEHh3xd8WNZ/4RTwk32K2XAvNS2/u7aMnk8kZbGcAd68+oninKF2u2nW/XVW0vrrrpbquiFOnSSatZdD6M+HPgvwB8LfAdj4M8CQRyWdkmfPLbnmlPLSsf75OSSea9fDUaWHoqEDyq9WpVqOUlYh1/XriRhbW8as75CITx7k+tVPXRGMIpO55V8cPDHgm30+PSbbWlsNc1SdIYVik3NKWYblCc7flycjAFcWJpU5RSTs2ddGpXqysk2kO8SeOYvhd4Ug8A/DqUadaWkOJHyDgj78smRySc8VK5sPFQTshTpWquUkfF/7S0PxQOrT/FT4Q3csN20jJ592mU1ORztAkXuMnj07VjbVyp9/vO+jycjvsuh0njjwlrHwQ+Gsmi/EDU5tY17UNM+267ff2jLDEJdu8wpCGKCMAlSuPnwNxOKqcPZxafU0oRc6ilHT1sfQGq/FbTvE/wAO9O1DwxNALVdMhe1iU/KWlQMDx171vVqxdJI5a1P96zwH42adaNcaTYqhnubO+t3uZJG+WRzKrN+QxXBOn7WSSYJ6WtqdZ+1f8MPDXi2Z4bpbZgbcMRJEMDEYbbn3Na4ihGMTOCbjex8Z/wDDNPw/0f47aPZaxpCJp3iBpNJuIpF+Tz/LMkLHt/CV59a4rSjPlNv3koNX0KnxM/Y/i0XUJ9M8GeMdb0m3ug0Qis9SlSNdpztChsL0HT1rqpQ5Lt9TelBRWx5RdeDf2kPg1qXleFvivcXttbXAkSLUIRcKhHAfLfNyOpz3rGvh6N/dZp7JX0N34HeHvij8QfF1/wCOfHfi4yXBzGqE7IEI5K4GcEnj0+lYxjZ2ZXtJU1ypnY+NfhLZNq7apo+oB5I4Fa4tsYKHPp/EPQ06suxoqjktTzH4k+L/AA94C05m1uQsCXBtcfvDL2Vcdc1i02rEVKsYHhLaZ4g8da2niXxShSOAFbGzB+W3Q9Mjux7mtKT0sSqc6s7vYu694LeOwTVrK0IuLF/NQoeoHUfjzVOSXuo7YxjSVy34o1GG+8Jx3tnmQyqpCsOme2alKTJu6iujFTTtPvbFrDUId8MsRSSJ/Q9TRGk27l/FBqRg+Bry58Ma3dfD26nDpbjzLI+ZzLAT/MdK6q1ODSlCNjgpc1KpySZ116lte2rROoYEYJKgOP8A61ZRsjqaU0cdDILSWfQrwEmMloSTw6n0NN8zd2a0Yrl0MnVLmFoHtCxz1jc8YPpXdh5WlY0lFJmLLeRtZXFpcFseW2dvXp+te1hFL2yZUPj1PnfXro2uuT/Yjty5yWHPWvrWvZSufP5jWjRqNQRRW423AaNzuPVu9awrO1jghKWrTG3dyxmV5JCw3etZKKlUu2c1GtKNe8mddpfiGGO0t5L/AJii/wBXGo6V7EJUqMbn08KtJuMpO1zU8RajFqkCahFDhQMYccCtKtWTp3T0PaxMVPDpxeiMfTNbfUZ/Jis3lVRhpZBhV/CsaVdvRRPKwuNfNZRbS0uXNZuILuNNOhS3McDFhLDFtZ8+ppVIznfmOuXtK2sXoZOj3kbatPNJGMQpxkd64sG3PESnfRHNQrv6xOb+ygM5u9ZtoJl3OZN5XsB711TpQq14J+p537zGY+EZPrc6u8124ljBC7MDAjzzj1Ne1HEzUEorl9f+AfbPEumuRHP6prN3qUo0bSn+0SyDD9wv1ryMTip1/wBxSvJnzOY5iq0/YUPek+2yLHgZTBBqPhe/TFzGvm20g9uorfI04e1wmI+Kzt8zy8trV41Z4Wq/eWqPpT9tS+n+PP7Onw4+L8HjSO6vodEg09NISw8tNPMGYpQJB8rlyEfBORzjiv5s8PqNThvjnG5NGlyqVST53K7lzax06W27H2uZYStm3D0KtNWmndNvps/xPlGfUdc8O3baZqaZYLyyZI/H0r+hKlfE5XiJUqz5vQ+KVXFZZVcMRr6Ha+BZY9O8PZSVC8x3OwOe/SvUy/38MpRe+p9FluJh9WVne5r609veRtBNCHhEQOxl65/lXs0aiqS5JbHdOrBx5ZK9zkb3whfwyfb/AAzdkMD8kRPQ56g9ulc+Iy+lL36D7q3TzPJr5biaf73Dy1Wtj7G8I/tCaJ+1N+zRJ+zh8SvCGl3EEMcT2fie5MtxrmnamAVUK5Y4t2IA2AYIftgV/MeYZPT4X4jqYvCrkm5XasknF9+56zjDPqXNKq4ytZxvon39T411t73wlpupaFqtgovra/MLhk5jkRip/Ov2TD5gllbqRXx2a8j5GvXnhMDUUo+/e33E3g1prOwADhZpGMjnH519BlFHlwt38T1Z2ZMp08NdvV6s1LuVLi1F55p3M5Cnuw559zk166SlC9z2VUc43E8N+KR4U1iLUzEvmiF4rZ3UZiaRNhkHuqsxB7HFfMcU01VyqOHvZOS07pHDiq3s3GPVkN9aRR61c2Tw+QokzEhGCo6rXRhlFvl7bGjklWafQr30NjJam2voANr4dHTgc5yD2/8Ar111XTlS9/8AIyrVack+dX+Ryt/oA1bVZU0JFh2r+7QN8rn0rwalJ1pyeH0t+J5E8HHEzbwytb8Ta+HFpceJNesvDrwMsiXAE8ZU/Io5Yn2wDTeJdLLqlWorOC19TDB46VWXsp6OJv8AjacS61cXVuQFZz+7A6DP6Vw8OwnSwSs9ZbndKUnC7Md/GlpFZDw5rZM1nI/RRlkY9xXdjMIqdqylZdfMqOLjTXJVe5mahoGoaNIJrV/tFlLysi+lFGulC6d0Yzpzg7xd0z7A+Bvj6y1jwBo3jbUvE6WN3Yz2Whs0tpJ9nbYhwrygbQdirx359K/IeM8phKnikrt3vZarr1/LuebjvYUm9Xd9EcH+0RL8JtT8B/EKTSo7u+uH1KxvrCbTNQ/0G3vFd4Zy8XRmZdw3DpiubhGhnKxGEcnanFSjK695pq8denfzPOp4etiHzy0a301fY+ePDk8jHEblRjBz0r9lhOMFyo+qy9UqdNXNKWAQyqyyAseoFRKpK77HZKdOnK6NK68F3d7p/wDa+k3XlzKPneOTkj6V506nPUOLFVqs7qOiPYvh5r0Nh4TtdP8AtILLGBISR1r5/Epe0dkedD2kyXUdGj10TXKNwgzzXOqMou7HKnd6oxNLEOg6gJoZgrKcsNwFCvJ2MpT6RLniDxfaufMkuoxxnG4c1u6fJG5DqxhE9F+Cf2XUdNh1AK8g8wkCOIkk5r4rM5J15N9T6TKavNTi77M9g+F0IPhy9lZMM94+ARyOe9fjPFdVrMLI/WuHo3wzky5Lbbp2DDBzycV4SqtI+iikQXFqXUk4JGAeOtaKq27lJJuxW/s2E/MY1bjuKPbyTNFGJC+hW5bPkLz7VbxMu5MqUZdB0egWvAa2AJFS8TN9TF4aF9jS0zQIRKv7gYBGB6GuariHy6s6KVGMXsdXpOk7sBuw649q8irXUXoejpyna+HdEnaxXy7aMoc5LMf5V+tcFu+Rp92z814hlzZlL5Fz/hFb+aTe1xbRxj5n80tvPsCD9K+uvC58/wAk76Esuh6a8uWhQxrgMQxPP064pN8uxUKd9y3oejeChqCt4i0q8ltf4hpU0ayk+3m5FcmJqYrlvRtc1jT10KY0SCK8uZZdKjW0EubNWlDSGPPBkxgA+uKujOq0nU3KqJLYgvtHtfOQXGmQ8rkCIcdO9dLqcxi276jR4c0+cP5ekknHJXOMf41l7RoyaTdyF/CSRjEULwq3PLYDelVztlOEbalabwzPHiZ4Z1VD8xaTgnPX8qG+4WtEgXw7fRlnkgdNzfJumJIAoukiEhk2iXcSmUXCjP35POPfsatTuPUoTaLMg/1+Bj5185ifXNPmCXvRsV5RHIotGuUJyGUyTSDGB04OKE7PQcX7tmZ1xZAIZLhArEEbWkc5H51uncyejKkqSrF5VtY23JH7x4txzz361EldmU1cz3tdelTa8WcsD5kAIB9Rknj8qcHZWLV2tChdreNvke0WTAICyg5A9OoJ65reKizGSkyhNLrDRrLBbzDYh8qIXDLgenJI7elKUV0MpprYy77xZd3l4umXlvCs6q7GGfT8kqDwS7qqn2wfwqbxg9DnlH3bPU/SzVvE+n63OtmbkQjcu8IxwFHXJBPWv1CrKKm2mfHSvGbbPVvhFr8sXw+uLuOJUjknYREAnKjgYz7VyTjeLbMlUcqnkdXouo3z2CxSeXAijeVJ2hj7+prLVRO614lfVrm1uv8AkItLJ5nDxdFc+lcztzalUZOKvY6TwfqWlzunhrD29nI4Vo7SQhQ3oAFYsxHAAHUjmhxjOVugqsptcyWpe8VeI7TwU7aDplyEgMw2W8Uu7JPXe2BlhnB7cVNWpCl7qFSTa5jU1rxxc6FFBqOn3TIIVUyS7vvnr5YA5Oe/1qpTtqmZSlztqS90h+M/x+8N/Dv4f/8ACW210z3moosenRwxl5AzDnaq5JKjdn0IFOtiIQp8y1bOahQnUrcnY8s+BXhPx/4w1Y/H34nW9xp1ogceF9Hum/fzs2QbuUfw8ZCg88kms6NOok5z27HsaUabgma83h+b4reNX0ae/a10HTMza3dA8zMeViz6k043xVSz2OedRRVt7nKfH7V9BvtT8P6FpsNvY6XBr1nGn2mby42VZlJ3E8DOMZPHNKVSFKSj5hQpctNtkX7ZOnSfEjQbu8l8PSaY9tcNbwXEk243EeDwflGVA5Dc8HA4xW0+WeslsPD80dU7o8X+BvxJ8aQfCSaxh0m1lfwpO1pcWk85XdbqfMgZDzglTtye9c060JKyRdVRjPfVmVq/x40H4tapei10bVNOl09GluItTRY42nAQrGkgbD4OOnp+Fc0HzT1NadKUPeZ0uv8A7VXhjW9ZfTfF2mX+n6lPZR20tjqKj7PKMNGzRSdGY5BxnOK1qxhOV5N2tt0FytX0PIv2pxr3xOsrWb4fSTac2gzQX1ndsSS19EQVP+7uA47jNKPRroZ0qSqbo67wL8R7T42eA5vEt0r22qx3CJq9mzAGyvQoEi467Tjep7g96mFR12dEZwirM888eXGnzWrWbORqCHCHjDj+IZ/EfnUunaWrE5TlHYwvg00Utp4k0A2MCS2199psyxKO0ZVVmjyPRgGHuKykoqVkKnBv4iDxn4hSztTONTkMsbARSD72zP3Tj04rKcfeNrciPALpX+KnjTUda1tGb+yX+zws6bccZLnPUnpmlOhWpVOWomn2YQ5Kr0HBNHkD6fcuiSFgI2Y8Yzgg+nNXyWXunRG0FynM6r8UNN0ue78O2tnDqc6xkARTYVTjpuHfrVezsrsmo7ppHmPhn4m3c4n0O+09omtrwzx2gffvi/iQdOcHI+mKThUlK6ehx0KkuZq2h2+i3FjqNqJ7dxcK4LodnVfT2qlJuWh6Ckkcv8VvDt/ax2njjS023mly5+U43wn7wPtXRFOouQ4sTRlUaqLob+kaxF4m0uK+tpwzSxh0cEDHtXL1NYy5onP+InIn8yeMbo8jIHJHr7Vo2rG1OTUbHL65a/Zl+120izQuOcH7hrpw9Rc1jTnVzKYtKGWRwr4/duRweK9qjJ8ysZyqOMro8H8dQyHXbn7UgRvOOSgxmvp5qpPlbPncXWnVqONjAicQS5xwT3qIVOWWpMX7OOgT38SSgDGQelOVdp3PKqKSq3ZpaFqss14qyxpsToXGQvvit8PinXnboerhsdDm5Fsu52OkaoviGyksltFEEPAlK43GvapuM1ZrQ+my7GSxiacfdXUY/wBmija0hiCIFIO3Hze1dtP2UVpojsxcqUaaULGbdymxiYui+YT8qDqTXkZhiuSLV9Tx8RjPYUXFLU15Pg98WfD3w0h+LOvfDPXLXw7fXv2eDXbnTJI7SaU8iNJGADH6VxYGpRo4dtSTb31OHB4ilCjKHNee7V9TH0qw1HTtauZNZsJ7S7jVdtvdwGN1BGQdrYIyOa1weMWIrSqqSdtEPLKr+szrTeq0RHr9/NFHi3k/eyHaF9SavGYyThyRerKzbMq0o8lN6vQ09L02Dw/pi2aBWuJ13TysPmB9Aa9zLqdLBYVqXxS3Z6mX4Snl+Ba3nLVsj0T7ReeMINQtoCYbZGW7mA42kfrXDThVxOcQq0l7sU+Znk4ecq2dQrQXuR+Jn058C9b1n4gfsV+IfhbF4hvbzTtM1i4kn0KzsY2W1aVMw3s0zLuVFcbNoIGZe/b+b+NqGHyfxKhjo04xnUUXGpKTvKztKEY3s21re3T7/u8hdDHZfKkn7yU0te7utO68vn0PmvR1imgFxexrNJMpDs6A4r+lMJQVaKqTV3Neq2ufJYXlq0256t6Mm0HSbzw7cu9hOs1rIhLwN1QeorSngq2Blam/d7Dy/K8RgqzlGV4PoaN9rvnzCWNsK8JVV9cV6FGrFT0OueKjTqpIjfVFsY1i3H96nDDsSDXWlyUmk3r19TprYqrGKt1P0S/4IkaT8N3/AGevjP8AEzxT4T8C+Ir3SZLKCTSPEUXl3hgl2/v7afPyumxiFxyeMgE1/H30hc+x2UcV0MHRg5RxVCUFOzlySTTUlbaV0le+zas02jxadKX9p8zfxJPeyutz4s/a3tPBGs/tH+MX8JBv7Mn1QyQGQlmBIGc5759OPev27wswmMxnAWFWYK9Tl1fe2x7FXC0a0LT3PKri7OlSuYVzGdwD7cbTX38aEsO79DjlGphb3WlhDrcUdqoeUeUIsls8f55q3iKdGHNUegU6vLTvN+7a5Y06KS+8ISa9J8smpXf2e1Xji3iwzn/gTlOf9k181Cs82xsnvCOiMKUvrGGdbu7L0Qy/1F5reG/kuTLdDKlpG5YDp+QGK9ilRjFJrdFSi/ZqSepk3uo6tr12LaytGywAkY5xXDmGJnWfs6a1OGvVq16ns6a9S/8A2DLocy2upRGI7cghuvHXNZYaMqLSkd1JvCJJnefAbwddaxdeOvizazpHbeEPDMct1IvQyXFxHbovPBJ3t+Rr5Di/MIvEUMGnrXnbTtFOT/I8yNOOMzWUoK+mpw3inXWvJJpo2wSSdxPOOn8q+lwdWGEpJJ7I9LFzoUE7vYzfhxYHxT4pNja2r3Eqo0kaRwmRsKCWOACcAc+gxmvGzjN5zwM6UOrR8zRxMMRiW5/I7O68NeLNPuC+leE9TvLCY7R5NjI4B9sCvKwGZOlh/wB49D2I1ZxcUk2j6r/Zo0zQ2/Zd0D4ZePPAmsLayfEDUNZvBbeH57hpilqsUMU0YTcqZDEY65NfHZnmGLxOMr0sPdxko7NLZ9G/Jnz+a5TmNbNoVsNTlLl6LRanD/tK/siftOeLLbwtofwy+FsutWMPg+Cylu9NthaIiLcSSpFKJdhaRA+0kg4AUAkAVvw5mlDBOvOvGUHKbdpO/RK6s3ZO3l3tdnsfU81fM40JXlvdnG+F/wDgmd+2lfbI5vhrYafuGSb/AF63XA9wrE19GuLMHCV1d/I76OBzenD+F+J3Ojf8Ek/2ib0LJ4j8deEtLTvtu5bhlOf9lAP1rLFcZUVC1ODZ0wyvM6jvKy+Z6L4Q/wCCVTaZCE8VfHkvlfmTS9Ixn15djXlvi2tJaU7HWsnxMvinb5HXaP8A8ExPgbYvm/8AHHi29zyViukhGfoFryq2fY2c+ZJI7aOQYRK8pNs7HQf2GP2dtD4i0DVbtX4IvdZkYH6gEVnUzvH1I6yOtZRl8X8N/VnQWf7JP7PFpJiL4QaW744eZWkx+JNefPH41u/OzaGW4CCt7JG/pvwD+F+hZudH+EeioEXDSrpcZA9yWFJ43GVo2c2aLBYSEdKa+427HQNEghUQaVbWsP8AD5EESj9BXG4ye7ZVOhQi9IpfI8Y/shNF1DWLERhR/acu3nrnmvyvim/9rNeR9vksfZ4axSdUKiQknkYPr9a8LVOx7lO1yFihztHOfyrVJ2NGhjRdSij39KXMhwsIts5IIUg+uetJyRrGSRYtrAO3XjHbtWU6iSNbNrQ1dMsyjD93yOBxXBWqXRUeVHQWaRW8e58Y9c150pObCVRROz8GSDWtETUIsRqsrog8/htpxX7hwjReHyGlGW+v5n5pmtV1swnI1HtIMEyx/KvcS9T/AIV9E3fY86/cqS6ho8c0VvcXEcc0pYwRySkNLgZOB3xTm2+hKlFEN5qFiUN3LYKU3cylhuX2qNXqNy6lNr1TAJIo3JXpiQtjnvxzQ07EpyZZe8cWlxaxzTxuJ41j8yIbZ1wS0mQcgA4ABwSc+lRFzTsnoyuVct2Vr6/lu7i2u725Dy2sskloYpJIxGzrtYlYyA/HQOCBngVoqEl719yHayRBNq8nyq8spHVj8oHr2NbKCMG7MrzapluUlZSMAvKQAf8ACm4qxfM3EqzzqQX3oN2eTJkjnuB1qLaEIhkuGRQn9oAN1Lxwk55/IVSso6kNtMq6hI4C/ap7lQ5VdyL94t9B0qJzildEyneNiFtCjuyrQu4ypyGcgY+vHb0oV0ydWipd+H7ZQXismcoSPMLOcfn2rdNpDUJPVFGewZkxa2isMn5AS3X6dPxqebqS9dCre6WLVC0+lNGqrl3LlQPrkgfjRHV3TGpcu43QpfDPiC5uvI1u1iFjArzyXd1tXB6LHhSZmP8AdjDEd8VM68qcuU2Si1cnvdO0g3QtVt7ySMx71kgsHKOCNwwxC889OCO4zWyqSa2JqRXKPTTreaDyxoWsybjyIhCvbp+8bIrnfPUla5ySclTeh9maHZSa3qVvJZ2qxWbuA8UTBjIeOSew4FfrMqb5rM/PKkp1Lvuer2etWPh3RRY2ibnjcCOLfje2OgHoK56snayNqNK7Oj0bU7u100XWohJJyMsrfdBPYD2rGU2o2Ou0djOn1a+1TUhDGfkiGZWx90egrjbfNoOMIwW50ei3F/YgandxCPaMxMgA8sD0H94+tVDmbu0bXi1oZEWs6D4r8Z2ugarfMhF7ETGl4sTmLDF2XIJlYEINi4Pz+1Y8sKtW0uhhUlOC02PQPGdiNP0Y6zrbiKIsY0EeMW45+XGTtJAP159K0qxtvsJOLfLE8dt/EOieI/GunfDnwLp6pJe3Bl1O/I3ypbKct8x+7uxjiuejSjOdoouUpR949J+JnxLOj6azW0bJDDbKkUW7BCgfKoHY131qkaUeUzoweIiqquk11/yML4b3eryeEIl1SCaP7Vei4ugsTNmR87AzYPAUEn0AJrJT5o2iiq1qHmfNX7ZfjJfHviDRPhH4W8Qiy1nWNdWwvdOkLCa2VH3STR4GCoRWyeNrLjncueaVOOIpyTkk10e716afPW2z62TKTqSd7aM9Y+Knjawl0bTtC0+RZdPtbOGC1t5nIMjAfMzd+eM10QTUeW5NNtXPG/FvjPw1+zr4N1/x14tu47e21KNo9Rl2k7EVgqMVHoc8dcVqqcVsNt813ujI8DWun+LdAvNV8L6pbarYNeG4eWJiyPC+0Eg44bbvOOoOM4zXFKE0/d1OyNVTSdjZ8d+D/CXivwZfeFNUPmXNrAJrK6Y/Og69c/wtjmtadmrMbc07o3/hTDo/jr4AWGpPBCdUimay1BlcMrSRKwbj/aA3D6GrbpqNhydnseEeMp5/g18SZviJaRlrfVI1h1a2jJRZFVsLLjn5lGRn0NcyrU6Sate+39ehnKmk73OA+P8A471HxBqdp4U+D1tHLr+ou81m7fNBZWvBa4kI/hGcKDyzfTNRKsqjBYiKkoJHmOip8Tvg0iQ6d4zn1aRJnuGuNVG8zyOf3gyOg+UcdAMelZRgnWuzodJqGjKusfG3xz8RpGsrPwy1nfPf+XdzS3GYkYjJYAcnrkCtq75k5dRr95CxyvifUIfg1p8eoWt7JIivIJbUnLag247s+ueeawo3nuKNJUYu+xzup+L/ABJ8Q7E32iWT6ZZXEoMhkbMhP932HStXJ0Z3SujOM51tUQWfhfTPD+hTagbiO3MT7pGY4J9WJrnlN3vc29q3HVHBaek/ir4g3uq6baNDZPEn2SQj/WMv8Y/Q1sm2kcc1ed0tzsNO1rxB4RuEGp2H2i0Ay01lw4PdmXoffFJQcVoaL2ravsdDpHjrwj4qsZba31COWO4Upg5wp6FSDyD7VPtGnytG0MRGqnFHGeHWu/B/iW48FXbjy9xlsTu4dDztFWuWSuiYwdPdmtrmoWl/E8T71P8AEGXlTj+XvQ11R07RZwd5MYriSHzNrfxRj7rL6iuilH3rmNNyk9SlLcbI2Ct8uDhhXuUF70SnBylY8R8WSSXWt3TPeeaqykBmHIr6WviFCPLE8etKNOtKzvYp6V4a1vxHMbXQ9Eubx1XJFvAWwPXgV5FfGU8N/FdjhUpVJaK5Ss9AutQup4obKdhaqXugkZJjAPOfStaNSOJaXQ5ZR+tVOSKem5JZ6lBFKI7KyAiJwzvyTXr061LBNKKudFGpSoVPcjdeZ3Gn3F3e2BTSNJnmZIDJJBZwlyqDq5x0HvXbUx9GlRU6suVPbzPqJZnQw+FUrKK7H058Kv8Agnb4S1P9mIftKfHv4wXWlT6sw/4RjwToFmGurlMZ86eaT5Yk6DABJr82zrxHw9GU6GFa54y5bP8AF6f5n57jeKZ18S6VN7M9x/ZQ/ZK8DfDLwLa67o3gjTLrxnqAYrqeu2wvDaxN0Kq42q+OhAzmvyHOeMc9zbGOEajUNrLS54eNz/FYiuoRlyxXbr8zt/Cn7PHjPxR4lttS8fzya/c2E73FgviEk2GmIhBUiJvkXAHYZya4v7UzOvQdCnJwVtXe3r1PMeYOg7Qdm92t2fL3xe/Yd/bA/a0/aT8UfGHUvEukDS73UhGninX79ILdokAWNVCknAUYAx2r9MyzivJuG8ppUlNuSjstW2ffLF4ChRpzjXTbitLNu55V+1d+x/4R/ZTn0HU5f2pvBfjjUr+RlvdE8OibztPYD7zl1Clc8dR9K9/hPi6XEePcp4acIx6yVk/Q6MtxtPEY2FWrFqKfVWPIr69k1S/TR9PGWmY5frsXuc1+sRjVxNT2cXv+R9TXq1MZV+r0ftdfI2NQ1Gw0nTotI0uELDD98EfM7HqSe9e/GVDC0uSG3U7pqhhqHsKS0W/n5nu3/BOy++IfiHW/iR8L/Ayxmy17wct5ryTX7QKlpaTxyySAKp8xgDkKcDvkYr+ePHCjktCtl2ZYhe9Co4wtG/vTVknqrJ919zFkFb6tmkVCCnzNbu1k7ptaO7120v3R4OYIdP1jUdJSQGK01KeJGXuA7AGv23h3FxnkdGpPdxX3kUaKo1asX0k/zL2kXA+1uJmyu0Dt8wrujWlXm4neq2iRmeJbf7Nr8ZtISFlJMYHasK0Xh6sXfc8/FYVU8TGQ++bfHFp+cux5IXlV7ms8Ti5yapQb1Lr14tKl3Pbv2UPBOgfFnS/iZ8ErG7ube7vvAUuq+HLyKYxM17YSJNtYDlg0ZkGP9kHtX5P4y4yOTSyjNIJSpQq+yndK/LUur+qbXXbQxzKaw0ISo3cdm35o8u8dJo1j4purbRr53too4UaWUgNJIIl8wkZOMvuPWv1PhyrTp5VT5dI2v231PUiqare5K8bLfTp8zlrieK+V7RD5oPPloCxP5V6+KxlKFF3krHHi69NpweppaD8EPiL4ohii07wFrd7bbWEUVtpkrlzn+LC8DNfA4/G4Wo7VKyUeiujylgatVe+3yrodpH+zB+1L4i0/T9M0L9mjxgRY2IiUDQpY1J3ElssAD161pl2aZNgaFvbK78xxlV5I04U5aeRteHf+CcH7cHia+gnf4FT2ESMSTqmq2tvkdOQ0mf0rmxvGuU0q0Wqidu3UqrhM0qVYNU2kvM9J8P8A/BI/9qZ42m17WPCekRAAuDqjTFQemfLQ/wA68LEcf4VtypU219x6FLAY2V9ErnTQ/wDBIHxTqqJD4m/aJ02EHomnaLLM4HsWK+vpXm1+Oa04/u6f4hDI8bWnapOyPS/Bv/BOv4d+DPgvrPwJT4l65PpfiPU7a+8RX1tYQwXV61vu8mLzXDhI0Ls21Rkk5J4FfKVs0li84p5jWhedNNRV3Zc279Wejh+HsPhouKk7vd7P0JvDP/BL/wDZR8PHzG8D32qMh2mXW9XlmByOpRSq/pWmL4hzWvL4+VeRS4dyty5ppy9Wz074Z/s4+APg1eWurfC7wfo2g39rC6WuqaTpMCXcaSKVceeF8wqykggt0JFcbx+Lqw5ak20XTybL6ErwpJHXWui6hDaCCGZQoO5kWBVI46kbeKiWJk42uehChGP2V9xI+i6vNIjnUGfPeGbGT7jt+VZKTg7p/idLv2JbLwcZS0r2tzhny6GNuvqOamrO6uyYvni32LVv4XjZt5F3tXIUC3JxjtyORSUkZWbdmXrPw/4lUNst1lt1kUkTWYx9CaTqXg2ldIHQqWuZfje78ceHrnRYfCvwJXxJbX4caxe22vJZS2JLAKVidSHAGT94UoVKPs5OcrPp5mFaGJjNOnG8eup1kfwzsp4BMLu6ty5AIlG/GccZXgkc8e3Wub2knudsY+5fYS2+GV5FcSKskE8IwbZoUdJNvferZAIPofyqvapA4Nxuh0nghLKY2U29JCpIDSAA/wD1qHUhawcs0LF4SSXKDT4JgTgiYbh09+DWTqOOxaV9xknhB0fy4bWKEZwVWIYP0o9pKT0YJanhfjbwL8Vr7xF4j1rwt8LdU1jw9b3wjutT0m3817KXAyJFHRSDkGvls94d+v4j29Gf7xLWLOzBZ7DB1XQqLR/ecg3hi6uLMzRarcQDOTHcRqrL9c18VKnUpVHGpFXR9Xh68p01OL0Ma/8ADXiOAbotc4YcHaDS+sYdW5oGspVZL4jIudN8YKfl8QgAf7ArojXwKX8MzTxC+0JBpPi5+nirafeMUSrYL/n1+I1VxKekjR0/wz47MgMXjCPB6ZiFcdXE4C2tH8TT2uPtpNfcdn4X+FPxi1mYfY7l7hUj3t5dmS23+9j0968fE5jk1OPvKz9TKpUxsFzTn+B6V8Dv2dfif8T/AB7YaR4U8UaPNPGRcNHfXdtCi7DuKt5rYPTkd658PVjiq/ssPS9/dczstPN2R52OzGVCg515Plemib/I6Lx5d6kfHWtf8JBe2jXTai7Xj2EUUMBfofLWH5AuR2HPWv2bhzMJ5hlcatS3Ns0rW/A+dnThTaUL2tpe9/xOPufil8MrPxsnw4l8YWkniQ2ZuotHjhlLeUASWZwNq8epzXuN1lH2ij7t7XOGWJw0cQqLl776BfeNYhCYIZAiyZwscucc9+Mgf41u2+W66nSuVoyI9dupm8mxsotpBZpPKJXoSOaTaSuc9ZJPcrS+KYZmY3N3NCyKUxGdqkj8OnvWidlcyjPXQiXxDbSBTHMzHG5jlmDfyzQ3HdGt2lqxZdSkcsTGwbnCsflxjnBNK6J3IReRM4CkA4JHTco6468iqTSdzNq7LNqJrtiLaCZ2zhfLXI/Wpck9h8yjoXk0PXLj5YdHlUg5JckDPbgdO1LmsL4h8/hb4jT2kkmmafYQyyQFLe9N0UaFu0gwCCRwcEEHuKUoue5zTjKZp2yfEKG009dX1Dw/c31jZ/ZjqM9rvadcEB3jPyBsHtxWX1Z05Pl2HCCtZlOLw7rUlzKx8R28judzJDaqFU49AOB7VsoNrc25YtWNXwH4OS98ZWS+JdM1HUdHtbyO58QQWNi0kpsY3VrhlVME4j3dO9RVqclN36diU3ZqO/QwvFXhjQ7XxPc6jIt3PZXd1JLp9q1zPBbxQM58tRDuGMLgfPluOSaVKKdLVv57kVaMou8txsPh7RZLhrjTvCtpAxBDGKJcnHvXRCmrWQLV7EjW9xt8sREbcjoFBGOtUtHexteVtyo9rcHfMbVXPUq2euP1rVTsiJXa0HLYXDMbg6WmckAqw/pWfNzTuZTUnTZ638PPiTc6ZfxwQl4ZYxmZZ24Y46qeOfzr9RnWlKR+eTSVRqJ6h4T8Uy6jdx3uoeUWllHljf8AdGeTj8azqS7GvOkj1K01q2vLApYDakLcnacbvf1rmnGUlcmNSK0FsNUFvPiYlrh2yIgM592NRGMVudc0pQJfE/jK8gQzEqcqdrKflB6cVFWXUmEXeyOV+BYtL/4hXnxS1p43GjxNb6TJJJuO98eYwHIBAGB35NcuHvKq9BVFra5oeNfjn47+IHjnTvBXgnRTqz6fObmS1t18uGMgZWS5k+6AGC5GMsN3UkmuipO8rR3Qo04RbjDS53/hbR/Anw2tdW8Vm1gOsXlhHEkix9HLB5MFe2WkA/2QorppctKm21qN05KyTM/UtX0Txv4q0q38L6ZaSzW1wk+pxSRyFIbXy/3hmZwBu3Z2lckdc8DGE1TrK63TWnl1/rzM3KoouLZhfH34w3FrPqeleDLmK30+bT1gSOVNpVQoVZODgPlTgjoCa55zfM1HsYxhJr3mfBfgnVviK37Xuv8AxI8b+Ik1C607w40fh9bxyG82Q/vWZjyW2qo9amhTTjK79466PNFNI9S8FeO9RvPN17x1qETSyXXk2FpahsKAGYsWPTp1rane2pU1yy9Sz4Z8I2/7S3xKfSfEYRvDvhKM32qRP/qry8b5oYDnqFILkH0HrROtyzsjWMOWPM0c58Uf2cr3wTrlz8QvhL49utC1CVjmztZD5N3kEhXiOVZeBngHHQ1EZWu2y5Soxhd7ni/jf9tnxZ4EuZoPjNpK6VcmKOFtZ0+Jmt513fMGTqhbIHce9cvPUV2tzOlXjduW3Q9b/ZI+Omn2/guXN0kkeog/a4kJJinZvlYjqCR3x3qYOrUjfYdSqqj90rftJ62NQ0+4tTlpGAWLavV3O0AZ68/zqGp81kVzqMG5I86/Zm0e20PVvH+jXsqTa2JLKCF2AZkthESY1B6fPvOK0VGcXdnLRlGpUbtsJ448MiC7EtyP3PziRDD8zPweM9uv6UndSudzq+7Y8we98M6HqvibWWZfs1pLbTpE6fPIrhlC49yBk+mah1bzaM6dSSkedeJheeMLmXVNVaK4upTmGKMfLbqOiD0681tBJPc0dWpJuPQZpgfwfLNNeNDHaRxEzpcNtRSO9XOnJ+6inJUYO+hw+q+J4PixrFzY6OSmkW7lmBZv9Mbj5R/sDj61zunKD11ZxUK31mpZaJfidhoulWMOiTWnlpFNbL5tq2eBgfMp9sD9K6VFLRHbWaUPQr6TqWmeJImk0zUUkkc5Ko/Q+1JSS0Iw84ybSMK50238Pa619BDHHHcvtvIgmMt2es6nccacKUuZi/EW2a80eHU7fC3NgweCWMnkDqPyrWjT55WN6yVSCcehl3Hie51vRY9TtLhTIqD5SevqDVuioPVmUqmmpympaobllljHltuPykjKnuPoa6aSgOg5X2NPwz8Ovid8QbK71LwB8O9a1uHTlDX8+laZLPFbAnGZGUEIPc4rpnicJhmnWqKL6Xdr/wCZtUqKNl3Nzwb+x14ZW4k8RfEi5kvLmb5jplr8kcZ7bm6k185mHE+Jr1HToK0e5H9kU4TdSpu+h6Npvhm18K2i2PgrTbfTIVTaUtogpPsTjJ/GvJdWWI/iSbOmGEpRXuxseMfFL9jvWtd1G88SfDnxE9lc3rFruwkciOUnk4YdM+hr6PAcSfU4KnNbdUeViMj5G6lCVmzxnxJ8Gfib4EuF07xD4Fv4yZNqTW0RlWQ5wACvrX0mEzXB5hrGe254mIwuKwcL1IO3dan6L/8ABP8A/Zx/4V7+zN4jtvFPg0P4n8b2yLIZYB9osrIMNsKqRkM/JI9x6V+M+JHF0cwzyGDwUueFLa2nvd9H/mfJZ5jKuIrU6UJbaux6J8SvhL8SW8HWWt+JPCOoaBoNs8NpoVrrUItpLjawU7ImwzAdeBg8HPNfJU6FfDwlUxF+Z6/eeLRoJxlVs1vumvLr+fXdaGN8cPihf/DmKGy06T7JcWdvE9sHbDXcnGEQDqcmtckpvMMY4w05evcmlg4YibTkk7X6/wCR5B8YP2mfjXo2nX3h258OX1xPqtrtfZqUZgtd3/PZmI5/2RX2GByPDVcVL28tt7p3v/Xc9DBZZRnW97X+vmfKvjX4pftT+JbeXwfd+NbyPSbRdqxaXI4gb/ZGwAGvu8syjhmlW5+Rc3d7/ifS0ctw1KS5Eubv1OYi/Zx+M+sWn9rXHw48S3b3A3wXMWlTOZPfOOa+2gsooQ5J14xbWlj3lk1fFU3qzd+H37M/7TivLcwfs++MZpGG1Jv7CmA2/UgV7OX8Q5ThIy9rWjzdHc9PKHicBGXPTk5bXsdVZ/sRftheItXWwsf2fPECzTqWjjvEjhLKCMkb3HAJGfqPWli+K8np0XJVk1s2rvf+vwG8TWrYlUIxanJNqL0bSsm0uybSb6XXdHuP7FX7G37UPwU+Nl1rvxX+Gg0fRNR8L6lo9/Nc6lC5ja4gKxhkjdmPzhexxX5P4l4vBcTcOwpYGSlWpVYTS2fuy138j0MswmYYfHRnKm1brfzGW/8AwS01zXvFmpa34h+OMGkrqFzJNDp2neGJZ235+ZAzui5zk9cV3ZVxjHAZbToSb5orVWZtj8ozWtmNStTmuWTudz8MP+CSfwx8WPNZ6p8c/E9xqVmoN7oUOiQWV3ACc7tsjPlSOjLkVvivEPH0IKeFhzXPJxWX8Sxm1Rs7dz0jSP8AgjZ8At1vqOp6d451UqdoSfxHBCOvX93HnOBXj4vxA4sxUOZRgvvMMTkPHeNUWqtOC03u2SaJ/wAEWf2arDUL3VPEXjTxjOs0xa101bmONrWI9IzIUzJjn5sAmoocfZ9Cn7/Lzdz6PAcO1KUU8VU559baI7v4bf8ABN39lb4QeIYPFHg/wXq41S3ikjjvrrxDOzFHUo4wpUYZSQRjvXlZnxBjc9wzw2PUZwunZrqndP7z2/7JwlrON15m7ov7Dn7LmjXRu9M/Z38KeaT80lxp4uDu7kmTNVV4hzWVPkVRpLTTQ6FhMPHXkR2+ifCDwX4Z2w+HPhv4fsgCSDY6Jbpj8QgNck8yx9aNp1G/mw+r0G78prNo8iKy3LTQRbSNyoQqf98Akjp2riu76mjUehTn8DNdzmdbhroBTsaOZirD3DYI69CKvn6DUEtbDE+H8KMc2JxIOCGyo59TUyaeoOTZEPhzAHluxHIJppB5kglYlsH6jFJSS3JVO7A+BL0gFo5WjVcKwkPfPHQ8f57UnOTVjZR5SGb4fSSuo07VLxYwFwrW6uvXJLMq5I7Zq6c7L3gm1JJomtPCV8+3ZAkka4LhUOM5BGM9DxmnKSlqY620L2l+GL9jLLDov2nyAqh0hP3WIz2yvIzxmuapXdNWHCmnLUv2ngqyvrqS18QaPNaRTYFvdwWu9o1XqSM8jrWUq0mrm0Y8pLa+D59C1BriG80qa0kiQQwjRQGLdC5Z2O4HJ4A4rKHNJttm/PDlulqJH8PdNjuTdFAGaMgCO5cIx91BwO3UV0ym+SyZzevU6fQvAPwu1PTLuyufiD/YGuWUCyj+0rO4e2u42D4EUqK4MmVAIIHWuKMsVKpK80kuncTqyo1Yr2LlF9U1p8mUNQ8H+JND8IS+JtO8Max4gRIpvs9lpFsHubyRFyERHKYLZGC20c1nRqYipWjCUXFPr0HjalPD0W0m/wA/8i7o+hXsmh6fqWr+FtQ0Se8t1nbS9btvLntSwyYpApZQynI4JFejJyi3F6mFBqpRUlf0ZqL4bW4Bu4poArsC3lhct7Y54pOXM7mkryb0A+GIZ5MW1tE69XaKIncB7gcfjWdWXK9GOKi4kE2gRxvI0ejuV2ZUyNu/Dp/QCphU10G2tjPu7OK1g+03luDD56oHtbZn3M2dqgICcnHT61nicVSw8F7Vq7dl89hyjJwc1tFXZwXwZ+MngP8AaA8Dt4+8EPNFBDq89jPaXymOWOSNtpDIeRxzg+taVfaUKzpTVmrP5P0OTL8VSxsOeHRnzr8RoPilafEbxP4k+GHxd1Xw/bDUmg1KLR45WFzGRgqwBCgdOT6VnWqQda7WrW97HGqdac5zir9Ds/2WP2d2+Kmiaxba9eaVql4Y3MVx4g8bQ2PlYGQ+wckexzya+OzfDSljL0qijpdqy1+bPey6tUo4RcybV7aXZwXjHwf4d8J30mhtb2jyxM0cjxa3LKMqSODtwV44NeN9QxlW1SNWNn09096jiaUFy1Iv53Odgj8JTwGYxpsXhtt7I3I/CuadDHQdr3+SO6hi8BUTvbTzZJC3w1ijBvJpFDL/AM/DY/CocM0vaCX3ImpXyqGrkXNO134L2U6tefaJAq5CtfOoyPoKmeFz+pH3Ul8l/mQsbk0mk7/ez1C4+IH7MGkfDfwbf+HPiB4hbxVql3eTeJIbK7uBDp1puCxRFsYkZsbsDoCK5MVkeaQo+0jKE207wcErNPR3v11v2PPo411sbONeNqK+F3u330PPdL0wad4gujaeLL2W1urxpbSW50+48yRSfX5e3HFb1OevRgp0kpJWdmrDowVBySm3Fu6vudTqOsavo149xpHhu6miuI1EksrEAOB0AfkEjmvteClUp4apSfR7Hl5tU5akXFdDA1jXPEV9Itw2ixwyldjzKYw5XP3SwGcV9xGg7XaPFb53zNakcUetsQryQx/KfvuW5P05q3GSL5kt2Rnw9NPK0114mY72G5YkYg47cnFJQXVEz9nLUfD4c0SBxPLqkrMcg/vEj/xq9loK6juaNtH4atypVvMJGSrXRbp9KjkbM5VOZlqGfTo4w9tocTjcMuynIz25o5L6hC7JJdcu9p8rR7dCFwpRM9fcVtCiupbdi/aav4mYPtnULkCFVtypOBzu9PStHCCWhzTWu5oW1x4iaZ3klBZUYHzEJ5xgHGR0NYSRV2SpZ3cpDzxJkrlwgwpbHJAJ4+lODaKTdhw0eVMbbXcCD94jH5jmrbstCXqWItHVlZJYuucAyEY7YBFRzaFwauRXXhBdUUCa0SVScDczkr9cnAojKxray0GQeD4rGXNkiB3UhlWM5I6EHOcjB/Wrk1IyqRjP3WJa6BHo1mILTSmgiV/ljUEj36jI5rNTsiEkkSMjJCXksFOW5If5T7fpT5rj6AlmZ51t4bKczuPkEdu8gOBk8jI4qJT11HBNiS6Xq0482OILwWcNY8k/XIrWHLzIpxbgztvE2n6Nd3KQoiRGFQ0khYkAjnr3+lfq9aykz80rScZM0vBlzqOqLLe2BKqSUjmljKcf3voK53Z6nOpc0j2Xwn4nXT/DkOjWuoAxxJmRygLu3dif5VhKaasjppws7i6R4jS9uHuRIkIX7+Xwx+v+FZxXLqdjcZaGL428R3muQtDBJMjMhSNgR8i56qv0rkrylU901jKK0RnWt14pFtp3wy8Cxf2bHOSr3GPMlAPLHGPmc8n+6O5rWlHktGJnOKWr6np2nQeGvhR4TbwrZkqJfmuoLaXdJcv3eaXqxPp0HQV2OMIRutDFQU7xlszg/iP8ZrzTIbjUGmt7e2gty0ru2fIUD2HU+g5rlc30N6s4wVkdR4C1q68I/B+3utRili1LXoxfatLM+1grcxRnngBcceprVt04+ZjBvmbseA/H/wCL76QBPJcPLJIwjtLdSMyyscKMeueg9K5JuV7vcKjSMT4gfCXQ/DHgXTb/AMaTyDU5UNzqc0aneWcZ2ZHOBwMVc04pITnUgfMPxZ8aftEL4xs7T4S+JFSXVbmSeS3vrFJY47aMfMyqABGFLABRjrXPzODa7gpy5nKW7PUf2EvjF4h8HaV4g+G/xO8SS3ustqDajLeTxBPtcLAKflz1TGBjoD71VKmrNyM4Yiam4y1R6/q/xFk1m1u5DeJIjzbrPYQcR7QvT65496XxN6nZGN43Z4H+1D4X0vxdpV9p19YwThYgjNgfe3Kf0pOLV2Z1ouUeVl34y/CG88CaLbeJPAF3Lpeq2umRTSAjC/6tThx0ZSMnJ6bqlVabSb0Ip4eST5mcL8DvH/xZ/aS1+fxtrNrBZ6X4ZZ4rWBZCf7TvkADSk/3EPQdz+FNXjK8QhKeIlrokXfCeq6n8Kv2hLafXdXlkm1zT2ikd22hLqJ2ZRuHUkMw59K65tShe2p0qKoyvtctfH74022jaddapr1zkByQ0bHdK+cBVGTuY5xXDKFSozWc/ZQ52eAWPhD4lanq0vxG8TeIJdOW+iCR6OgBRIQcqJBjl8HPtVxoqEbW1MI4epOr7WT+RB4u8QWHhBTrVrY3DBVY/ZIVLs4UfMf8APrURpOdRKJ23hTXNYyfhV8M/F/7Rnw81f9ozxZZXcXgHw7rkdg2mxkqbi7cFxHI3O3Kq3BrjzrNnlmPpZbRX72or3eyR8/iK1XE1o0qafK2/6/rY0dN0PT72Q6lpFskEIO2O3QghVHTp9K2SqprmevU9qnTjQglFFP4ha5DoXh17eGdo5tVmW2jIXoCcMw+i5rojJcyUtjLEKbikupjXmkzaeYr7QpxG9sEWIrwSuO/r/wDXqfcvua0qU6TuaGs6k2ueH/O8ryr+3BLof4vf6VtBPcqvCPIuUoaNrw1OxFvKQ0cqlfn6j1Fbp8quhU6/u2RyLuPC+r3GizEfZ52MkDg8Z9KtpT6HHzzVTUytSV7w77KMtdE+WiAffY9BWlL2cVzT0SO9OcoaI+3f2SfjT8Q/hv8AD/TfAFtfLoOo2FmY5Z9EXy1mDHJFwAB5pOcZbNfmWe4ShjsTOs3d3012KjP2ibe6Wh1HirwhF45uLnxDomkQWd+qh57eE4S967nRSMK3fA4PbFeVgsTVpv2dV3WyZvhcbUnifZ1PhsrPz/qxw8uh2jqXEZBJwy7eVI9a92nUtoj2ZQSWg2HQYxJ5Lbpc5ztx/ShS5J+/dr+vI55Qluej/s6Wvw28F+Jl8f8Ajm9sXurRimmafdLvWFiObhlxglR90Hvz2r5jPcVmM0qGETs92fG8T4vGVaX1bDxbT3Z7x8Fv2i/2fvAfx/0K88I6ve+JbiC9a7ubC40j9zIxOSzyH5QFzwK+cweGxGW5jDGOOkej6nyNPLKuHiq9SNmvM+VP+Cmvxg+M3xo/4KNeGtS17xDJqdqdR86y09XK21vaZGFjUHA24B/GvssuxSzbIcdicUveu0vL0OWUo1cJVqVJO/RG14o/Z6+J/wC0r8fbHSPBnhuG8k0W3EdvNfybLayU/ekZsYLAZPtXk8P4qhluE5VpffueZg6k1gJRjH3v60uc1+2P+z5b+FtZs/hF8CvA2sa/pdm4k8X67aIbgS3pHKeZwBznC+nNfSZXxJl9LFVJVqqSn8MXq/8Ag+tj6XInhYYiPt5q7Wxu/s7/ALCn7T/xv8X6XdW37PE+gWUcRTSINcihsopYYgN02Cct1BLnuwz1Fe1RzDD4qq1R97ZX6LsvXR+p9o82yLCZhClOUfaSTcY6XajZNpbtK6Tfmr7o9P8AGHw41H4J2l9d/FD4kaBBHonyz21hrRlMT9TtC8YxxxxnjrXh4/OcDTrxpSlzTeyWrO+jxpkvO4O6t5Fvwbp/hn4h+FrLxV4a119U0/UAJLeWOZmVl+ueKhVlJuKVmujWtz6zD4jD4qkqlH4Wa6eAbZtQaGzk2DP+qlm4z67jXRGakrM6YyjGWm4H4Zanrem39hL4Wmu7m4OdP1ZtZe2WxIzhyiKfNGSDg+nWnQqxjJ6nR7GU5Kd0rfiXNA+AHj3UNRszZeLvC9osdtbw3Ok3llPPaTTCIJNcLL5vmxb3BfaGwpbgADFVCdOEm5Xlr1t92ltv67mGLourFRi7PujpLf4KeP7HU4bnV/EPhmS606fGl6jYXlxHPbRHIeMSAN5ikHbhsjFVUxDirwJoUpw5rt9jqNT+G2kHUHvdBuXMYAeGKW4LvESOR5gRNwB77R9K5PaN30Ol3SsX9M0vUdPiEU+pSzDgPDcZkXjGOo/lSctCYrU3oF0fUE8uRjbOOu9S8bfQ4yoqYycZXZq5K1x8Ph4Ah0izGRkmEAofqetaOto9TO/OW4dA0mQFXjZSv/PIZJ745/wqOdj5WtBs2g2EoKJAwZcjJyAfrV8yKVkiGXwwm4TCxYkdTjBJ/wAKUn2J5rif2HaCMM1gFcZbEi47dT6UX0JUW2SDQoZE/wCPJcnOCTnA7/hTT1NrcoSeE3kP+j6e+A37wRIcd/yptu5Ld0R/8I5bSxrNNp00TRn54570RlvfYBzjjv1olLQS1A+FbedCfsKLsOHEcqtk89cnrWd1Fk8liO8+HemaneW98+q3UEsAJi+yaxNbJIM/8tEjYK/0YHFTUipFK1yW68C3DurzLFdFQd7NN83PbknPr2/SjljGOhFSSeiC08JQWQwlhHb7ozsWXhl59en86hNPY1px5Y6kyeHopVDOEnkL7kIYNjg8nApz5bak3TZY/sa4t1W3ZZQACWBxgHPqOaUJPmuaxWhY0/T555UZYpWXeTu2FizDpwDRV13M5y6M05vCWvtajVpYriK2aPc0nzFY1Jx83HAJ6VlCpyuyI9rSvy31K154efRXFtqMd2kr4YCdSjAEbhyBnbj1HNKT5tLiVWL+F3RFe2iatZC2RL+2kgkWS3uLDVZIJAw5z8jDzF/2WBHqKHGcot3JUeeW5Ve48UXnnm4l85pZSSzR7SfQ1VOHKrI6rRVjMsofjZZ602p23xAkhhi1SC8stPs7cRLC0Ksq54O9sM2SeOelZVcBRq14Vajd4u9lp/TCpCklJJbq2p5xr37Pfxjt/FZ8WeFdXsLK3e5mvdTtbPTMvczFeHAQqA3GDnrnrXPhsG8LUk4Tdn3d2edOL57pW9D5d8XaT8SPB/gu/fxt8RZfDmoanrtw0/ho3Drc3CszeXOy7SgXG3jeeSa+hy/BYDEYtuqum7/Q4IVMZh8M4xnJJu7V9HbZ9tDn/hr8PvE2oW1ymm/GHV9OlkhZpJZL2ONGx23EHmvUrZFkeLqXqU07Cw2Pxqi405tW13sF34R+KMQZpfirq924jKlDqaHI9Puk9K4a3B/DkpaUEjR5rmdVW5m0IbWK10+SHUbTX5Lh23JcReJvLQgdQUER4/HNXHhHJrXUEvkCzjFQVtbnP3aeJrQLI9veSx8ITJr0uPocY5qP9UMqb3t8kZzzbHSXNYXT9X1y1vmiv/Dc01vg7d2tXRHGcDh8UpcHZVOTSm0uj5UVSz/EUVZxv82ewfs7+OND8cfEHS/Avxe8RDwfoENncG11ldTuyPNABjR3Zm2KSOwrzqHh1kHt5VK7bi99EjnzHinNakIxp6dDr/hJonxL/aY+Oj+APCS3d9a/PDp/iLX3lgsoo42kJla6n+TbtC4wSSTgDnFfM5nwlChiVhsq1u9L6WXzPfwXEtOOXvEY9uTSS7v5HI/Ez4vRaZ8P/FPwlN1N/wAJXp3j2GOK1gtTNbzQW8VzDNIlwg2MpZ0K4PzDkVrgsHmWR5o4zs4OOtn9roVPE0s0pQxEbrfRpo890rSPitrcgl+zTRg9CUx/+qvajj61So09uhg4NrRHRaV8L/iBdkNfXsq8Z+VuPzxxXQqzdNX3MvYSeqRtw/BXW5IkS5knct1VZcge/UVmq0myoUmknJGhB8C57cJO6KVzgs7579+4rpjiIJalyhGWxp2Pw4s1AKuM4IJGNrYHTNNYiD2Zg6LuXovBtsuMRNkckKpIPHTJHIp+1SKjCSLMfhi1tojiGRHDbWVkYDHr0PIGabru+hPLdlj+y7OR/JSeEScbIzIA5HXPvVe0JcGnqiYadcF9hjB4y24ckiq5ieRix2REZtwq8Zwduc1PNYVnsPNjCowqMzEHeDJggZ5H5UNtkyuiR9NhlAe1tpRjGFlcbhn8uKSbSCFyGTTFR1IsVxySVnbBNPme5tzLlLdo9vIlwtq0imzkiim8yFowXkUsoQsB5uAOSm4LkA4JFZe39/lZmqsXLl6iExAFZLaYy5z5jxnHP0x2q3ZrQTvzCSfZVQFbVMMc/NkgDPTrx/8AXpIfKQTskcZWKziAdcEqzE4PGTjpVdSoqyK+pwves91d3U0TJFtVLedwhIHOfm69+K3pKKkkaN3RcivbC71y3u7398IeIoi3yq2OWbnn9a/VJNTlc/L6ztN+p6BZT3eu6a9jYwhYrZN1w5UKo9uamVNyJhCzKfgvXzDq8y61rU1vaxg+XDCwUlvVua4ZLkluaRq8nQ6O01CyWwY6RPLcxl98kqoRxn35P1NJyurXNXLmVzL1rxrpEU4vZBEogJWNi2SPUkj/ACK56koRlqax0SIPht8c4Lc6h41sUDXc0RjtpGGVjtwcEpz1Y962pVVCPNuVJqasQr8RfEfil21HUbn7JAScAnBI9/U+1TzubbFNqKSRn+CPL+PnxDTw5aQv/wAIj4ZuFn8QXoU4vrhTlLYHvg8t7YFaUqac/IiyXvSOm+PPx+0SzF1brqAhWFfnuJsMoOMLHEgPzN0H0NKVSDm1fRBGLndo+ePgjMfjF8Yj8RPFKrH4c8JnzbaO4nH7+6JIG4f3gASAfWsFGXtubo1f+v8Ag+uxVNc7aZ2fx9+J0fiEybbgSpKSkcrN8qkkA4A6kHC81VV63ewqtotRR59+zJ4ct/FN5rfxE1nXoLWC51T+y9NmuoH2R2UI/ftkZwTIevOdvA9FDmkrp7HJHmleVhPE974N8OfEOPxrDo4uF0268uRQcefA+BKzcfKPm+nFTUldK2htRpSn0NH4n6DpWj6zd+IvhN4hgZYJ1gntJn+XeY1l2cn5TtdeR1zWMXGLdnc75v2dP3jwz4k/tEaM6QaZ4kUWskVysuprL0VEYZcH+IE+nNWqt21Y5YVYu7tsd1q3xM8e/tQ+EpNatLG60nQ7jTYra1guHK3N3DGTghScRqcn3IPPapjRalzSXy/rQ6Pb+2VkrFP9nTVbH4TeILn4V6xHHbLdSSzaJO0eFZjgvH/vZGR61dacYdBtxpxsc3+08t1eaH51nctFdW8sc1pOAVeKRWJySeQDkfnWVOcpta6HLNuR5b8JP+Ej+OPjCT4k+NpIhY6dfNbaHp2/908q/wCsnbtnOcUVPerckTXC+0rycqm3RHX+JNXmuryWEMoeQoqtsHbIwB6Vo5vl1O6bsrdTG8INpMWoX3iLVrZpfIkFrFbvGDuwPnPNKDVzCnJ3budJ4K+Jml+DNP8AEHwd0jVhY+BfH99ZnW4guUs7uFjsugf4SAxVsdQfbFeDnuVLEzhmCV61FPl812JkvbTj9mzH/G79l74sfs/eKYox4XvtU0LVlafRdV02Bpo72Ic7025yMY/OpynO8Jj6fvNRmt0+jOqap06vLe7eyPB/F3g34v8AjAxeIL34U+JYrKCULYldEn2EdS+7b9Pzr2ZY3LaMGpVY8ze10cKqqVT3tPI1YVEmh2l/dSAMpEMiMMEMMjv3zgVeHinq9T0KzvDmQ3VY1ZT5abZFU4KDJwfWuj3pOyRxzUpOyRwz3N5omrvBJGY4Z23IWB6/XtScqdN3bHCk4K7HeKYF1qwxvzPCdysBzn3pOtJsqTgle2p1v7Mek+FNe8aSa54ptvtUel6c8y2azBXM+QisOOxOefSvA4ixOJjg1TpP4nr6HBjcbLD0eaKv6HqOrW/xM+Husp4ztVa104tkX6SpIHUnDArnJIH8OM189LE4VQVOsn936nHh8TXjWVTWEX18j2fV/jV+zn4I07VIpPjHfeIVstDhu9LFho0tuX1FiN1u6OAQi8neODivEli69aMaNODUW21qrX+8vMM8yjL6tTlm6iUbppdTwPxp+0p4jkuZdTs9E0S0lvPmjM94HYk9CY1PGfTFevhXXqR5Wnp1UXb73octHjPHYiEYqEYp9b3fzRH8MfiP8UfHWqS2/iPxFDbRW0W57C1tDA5zgjJbn8q668VOF4bd7p/kexSzLF17wlPb5HaNPfSX8Gn2sI+0XbiOD58l2PGTnrXm4nEU6FFyeluphVxEaUHUmfTfwjtPCvwR0M6h4nsLeb7LD9o1GW4XHnYGSueuK+TlUqyqc9W7b2T63PjcTi62LrKUtl0PM/BNt8L/ANoTxB8Qv2s5HFvd6e5g8I6WX3Q+WCA3JGRzzn0rrzCdfC0lgY+5F+9K3meXj8TCo/ZU7RT/AAKfwR/a3/aj/aGnl+Bnwd+Edl4cis73yPEniO1uQY0QHk7l5lOOgPcirzrLsFluX05VsS3dXjBKzfqThaU8TJUqf4H1h8XPjn+zf/wS0+DsN9qNxB4o8WataebY6G53gTkZMku4csSep4Havncvy/F4/EQWGnCo5r3t7U/J3S970bR2VatLBv2claS28z4a8W/8FS/2jvjf4ofxB4o+KV7Dby2cv/Ek0oHybK3I5HHfHftX188hr4WnaLd/h5m7XuraI86pVxNSak5a2fyOU+DWk+Mf28PiVHbRG8i+G3h6UNrUxYr/AGhJ18rceWJ789678LkkeH8PzSSeIns/5V3/AMj67hfJfr9ROavCO/mfbOleG/DnhHSItC8HaOmk6fBGsdrYwYVQOgxjpThHkTe7e77n61Tpwo01CmrLsOtJ4Reva3whFwDtgt5CS59xjrRKpG6SOynVjTdnq2dd4H8LeJL5J/Emm+EtRubKFGF1c3Vufs0OByctwKmrOlGPxWbLnj6NOnaT2Oz8DwaTrNutppd+s8d2oe3lEIAbsQrAE4B9DWf1mndpy+EeHzHC4iPuvRnSN4LsVWMGCKcLIV80OG2kdQT61p7Xnaa1OqhUjVhzQd0Ph8MWby7IYSABkRsw5x+H8qr2ivZGko63HXHhSKbYxtWyG/do/IXPoaNHuQ32K1z4QnJ8pI5Qy5+Vz3p84a7EMGm6tpMm61EqEN0XOP8A69F4sm3U1INdmeIR3lvbsxbcZGwpIzyMj1qXFrYd5LZlxJ45JBFbW0sUjgBRuEinPcY5xVa2stzSKbiXktJYgyNYqGziTc5XPPPFa6X0MGmnuOXQLRQSti6hjtCh8k/Wm3boWpW6jv8AhHLMAP8AZiGxySSB71FhuorEj6GCuyANgcsrPjNaW0CMvIlTR1Y4VEOV4Jwdw980JtMPQBoNrGR5WmQgNguVjGSahq7uO7aJV0BZCfLs0znlcA/jVPVAm3oRvoEsYzJaq/Ygp3qWlYm6uH/CPsgybePBByWjxn2PFRCGpcpNFdvDUFxC2zTosdAsJG7HofT61NSJNN6jhpsOigR3V21vE0Jcn5pd4XJICqpOcduprPmlA25mloF78OfCfi/yNWa1iMkhD29xG81rInXBK5DKfwyKlS59TmnUbkrorx/Bq60/T57bTPGviW3triMx3EEevysrjOcBXJ4pyip6GfsoOV7fgSTeDPFk1wkJ8dapeMiKgS/VJsKowEJK5wB71P1ead0zVRjBWjEY/g/xcl1Ffbba4VGxO1taqrSJjkEHqe/BHf1qY0qyfc0puFzQuLfTIo4GZN0zRb5kNuVWBySNmT1OOcjjmuhR25i7yk3dWHRw2kkW1fnZhyRH+Oc4quaysDXcqyaPpctw1tbWTvO5Pzg4UgAk9Ezn8aiV0tUQ5Qa8/UxfEvw98N+LLZ7HxH4TstRjxt8u8tQ4x1PXJrnlKT2uVfnVmec6n+wr+zhcie7t/h9PpzysN0ml3M0IJ68bD+ldFHF4qikoSY3hcNUjdwRg3v7CPwuu49ln4r8WW8WCyxNe+av5So1d8s3xvLo9TFYDCbctvmY2p/8ABOjwXcoXtvHWrKmMEPpdlnnqP9QKqnnWNUfesZPLMG9k0ZN3/wAEzfC92qxzfE/V9kfKAaVafN/5B9zWX9rY7V3RMsqwSW7K8P8AwS6+FyOJJ/iP4p27ThLWWO3Ujv8A6uMUoZtj+Xc5amTYWcr6mpYf8Evv2dohi8m8S3uOsd7rtxtJ+isBUVc1zSpHldSy9Ap5JgYSvy3Oktv+CfXwOgt1tYfDqzwx4EcF/eTSKMdMB2YcZ9K4lLEc15Tuz26FHCUKfLGCS9DpNF/ZU8CaTCIdJ07ToVjAUxx7iqZ/2VwBVSpRcdTSeJjJWsreRqR/s/eF7CeOCS0gk3H97JGWP0xk4IrFU/e1OV1G37q0Ih8CDFOBJc6S0BPy+XaOjBeeuXxXROELaCinfUhvvgzpMgMdnaWxlGQzsWGBxj+KnGKsUtEZt58EfEttMmoaJbWEtqTiQSztnn0656DFc9X2kfhRmlFy1ZdufhakFvZ3N62mO08Je6htjLFJaODjafMQpJkcgofrinTlUsr2JgrzkpRfkyCP4d6NFAxmurmOckjy2gXGO/JwDgVor33NVGNth118OPDkEhitNbM74XdHcXaQ7SckjB6/nVKTUjju/aWsZsvhrSI5vK+zQ9yC8u9vw9O1buUrG71Ww0eE4pmINnGwx8gVsluvYjPvT55Iz5ebQlsfhlq2oz28ejeGGne9uVht1R4l3uxAAZnICn/eIqJYiFN2ZE4KFJzb0RjjQILhmj/suS3dZXjkiuCokUoSrZ2FgeR1BII71pGXNsYcqkrohk8PWQ3GSwcH+EAkDj69q0TsioxaIX061jAWWxwOuGY4B/HpRuJq+hHcAJGsckSYTICtyB645o5ddSuTQqA2kaF5LWLoSGGOR+Ap2I5dRHWwkUv5O0A8Iq4J9smhpIbS6ELW+jSXESJt8xiFj+YAgk9Onek3bUaTtZDL63tY5HWWyjiZFIkDgK2fTHTua1pTbqL1CXNtY860LxJDqusLpFmU88/vWiL8/U1+tygoM/LYqbfvanpWman/AGPaR6d9vBg2lpFDD5m9Tn+VTOorWNEnfQtT+Hn8T6RJdW8qW7bPljeQgynPAYY6VwVINq6GnfQlsdMuvB2hf2l4tEbTvnZaxOyxxJjAI+tc8vhs9zWXvQSijh/GC/25HJZWmnMyyxHcqZXapB3Z5yPr7VzVdUPlbRwvhPxPJ4Nkkt5obfykTZFasWKxKOF3YxvbGDgcc81TlypIS5k7nQeBX+If7SPiGTwf4JlNnp9gwXX9e24isUPJjUngyHHTtWuGjUqyeuhorP32eqeOviT4G/Z4+HyfDf4ZgqRAYwRId0zZJaQ88sxOSep4qq9aMfcW5zSh7XEOor9Fa+ml+n5vr8j5K+InjzXPGWsW+lzXLJcXk6wxJHMd0kjnAxzkHnnHQVxRUp3j3Oh1FSsj0L4j3l18JvBNp8KPhxZww3sMQku7iaIOssxUFnIByQMkc+ldUeem+RK36mNWpJO8Tx74kXfxR8ZWd/BY/Fw2aW9vHbx6XpmmpDI7lAztvOSRk5GMH8aXvyfLcxSdWScmeIfCPxd8TvC+lXvw/t/iFrcB0W7dhC052lX3MJMHqcn862hRcJOSdhUqdaN4p6Gp4v8AAXxl8a+G5NSv/izqklhLOUZUu1VnlwrsHxglcFDzwe3Q1hJ8tRnalKjRTbPafgn8VdT+Lfwj/wCER15YoNX8LzG0AtlJE8DKWVySSWIUYDMSflHPFKNG0bPcxWIVSajJ6vT+vuPOPi94Gs9P8RaDqV9bieBNXgS4SU8qGcDnPXqDQo+zlzG7g6Svc+xR4e0SPw9byWGmW9hF9i8uK3kwJ5kTO5wy8Fc8gejCrhWdXV7m8b6dzxv47f2XqNpMbGVklguVe0vB8rwspJB/2fX6VM4KSZnUhKSucV8QfihB41+D154i1ZY4dU02IwatGGziRVBDD0DAZrOdGdKSi2tQekLo5/8AZ+gW0+D2hag8LRQTWrTKXBC+ZIWO4nsMc5NVOMYTs0dOHVT2epznin4u+EtI1ySPS521a6hyFgtFLJ5n+2/QUTpztoxYmpaOjOV0rxN8QNfmXRdN0ZLFYZWea7uHypkbJY+/Yc0lanT13OehCrze9sbkfhyOxs5LW61GeeRgwnU4COCByBWHPKcrnW3Hpue5/AL/AIKC/Fv4EeApvhJrF4mtaOthPb+Hr+9gSSfRTNtDiNnBO07VGPavmsz4boYrFRrYWfI3ZyXRtHHHCU5YpVpfGk0n1SdrpPs7K/oj1z9iP/gqz4K/ZP8ABMng74kfC3xH4onvEnWN52tru0g3ncXjiEatETxxuPTBrxMx4azWderUw/spKcWveTum1a6d91v/AMA0rYTEayXvWOA/Zu8ffsJfGD9qTxRqP7TOmPovhbxNcNPYQzziJrRmPPoEbOTjPfrxUV6fEGT5XhoU3KfJpNxs218zmc8XCnGnO+r6FbUvg5+wh8Qf2/vD3wP+HHjbXk+F91dLb6x4gsbxGfzXGFVXJYKuc8+nSuvDcRZlhcnlisZzRd+q95R72RhKtWSum1bqHjj/AIJVQa/+1T4g/Zu+Ffxq0aCOwhuL+wuNf1WJnnsogzbkK8ElRxnv1xXHLj+lTwX1hU3Ujzct0mvQupj1TShOV2zK8KfsBfBW0An8R+MNb8QTxgCeCCRbSDcOo3DLEV3/AOsmPxUYukuW+p7dHLvaJSk3qd3pnwO+DHgOOWXwl4E0/RYjEfMu7iEkle4ad+tcVXOIyrclSb11S3/FKx2xwODp071Eku7POfjJr/wPv/CTeAb6407UL7UpyNLn09mK21yvzIdxAGciuXF4/GVbfV1pDWX+HZnz3EWeZSst+qU2pSbtddPmeHeAvC3xf/aU8Ua/4Y8JtAde0PTJJLhZWCtcQQrkjngt16dTXXWWU8P4ajWrp+yqP7m/0PhMmyzH5vjKlOjTvZXOh+AXj74J/AjxFYS6/wDBew8e+JY7ac6+viy6e3t7EspCGHZz5iN827nkDHqOjELGYqt7Wq7YXaMIN3mvOS1VxYSustqqcqSnLVWeyOx8BeN9a/aM1a9+IXxB+Lltf3VjYtG15fRxQvHDEMLESgAYgALzzxXzlVYfhWKoYbDOMZPRJt3b663PYwuOre15pa36En7L6aH8XfiTqHjvWfEFrbaDou620mWaUqksw+83GTx0rHP61TCqhg5+7Op70m7+6umye5xZtmcKuK+rw7HrvxwitPiJ8P7vTPDuszokVk8e/wC1fLcEd07/AJ1z+1cq1Ke/Jbftc8uVZy5VHRo82/Zp8fT/AAv+GY8FaxpaSed5sclvJbHv1z9cZzXVmWMUMxqVeXm5lZeXoebKlOpWlJq56B+wN4b8Ga38ZvEfxm0LTrbR/B/gS2kv9VltHIi1HU8ZjtyQcM2eT1rzOIauaUMspe0fNUfw83SP/BPbyXC81ZypxsoavzPh79r79oHxd+0p+0HrHizWrpo7eXUZFtoXkYJbxBuAAegr9I4XybD5LksWknOSu7dWz5/F4ipiq8q0u+hf/ZW+FPxH+OXxLutP8KyXGn+DtKtgvi/WrZhGRbk/NGjMOXboMc81rnOOy3LMJBYlKVabvTi+/d+SPUyrL3mNaMJ37vyR+kHwn8JeDPAPhCHwr8KfDsmhaFbx7rXTpphJLKOpklfAyT1NeK5SnWlUnJuUu7vby6H7blmFpYTDqlSVkjs4NSuLoxRXwQqw2pGLc5H4+lTJTT3TR6lNx6bml4d+Aem/HjV38Lpqs1k+nxm71HW7NgjWSLyFZu2fSvGz/MY5ZgVUpyTm+nXQ+dzjMHTnyQ3R2+ry+INT+CmpfC74b6/ql8qrNPqGoTTCC1giWLYi5481yQzbRkkkegrxctxsMTh6c5ytUu5Wb3Xz/p9NTzMPT9rhF7z9pJttNpLlSW347/I5f9mVfDfwi+DWn3njDxElmNB0+RYDqkxR57lsDLBjnbkk/hWWJq0JTqVp1rufb8jLDV8tw9CCm2kk7Wbd3brqVv2TPiJoU+rXXwn+GguNXtYb+4vtV8S6ldskd5eTyFvItgclyM9Bxg9a6/7ZnhFTjL3+ayUYrVLuysh4j+o4j6hSpymu+lte1306+ul3c9313U7bwfqT6N4nnh07UFiL/ZLuVfMx1yBnpivoYVoVG1s1vfofexzXC15+zvaS3XUXw9478Ja3JLp+m61DNOkPnMEdSygcnj0xRKquVPmOmhjMNWk4wabXmWfCvjXwF48tp7rwn4ls9Sit7o2t1JayqxSUdFOD15H51bkouzOnD1qGITdOSlbe3Q2ZtLQQZ+yEqR3GSD+NXBt7l6zRSm0e3OD/AGejkfxheffIockLljFamH4o0G3nsybDw/CNSjIW0v47hk2jnKyJyJAfbBHrWU4VLc0ZWGoSavfQpa/qGsXdnYafqV5Gk9i7i1ntlZd0br80LBmPyhsEHrnvWNClWo4nnlO6OeOH5Zt3uOsJ/ENpiK3vrhiCAykZ5/wr1faKS902jBTdkjRstc1/azNOmxQWlkYAKp7liegx/KnGV9AUY3sbXgnxFofjbQY/EPhzVrPULOSRkS8tJRJG5QkMAwODggjijnu2hOacbpm+bMMmEhHXDbc5U+lUmrXMnJj104j5RbsM/ex9e9LfYfM+gqaLDIpYQBSRx89DRfO0TPpc9vERFZCcg9DKAfzNErpaExabuxz2aKzbgRlflEuDgYHHFC0QTdxPsFpcAs1tHvwP3oXawP1qJKT2GtEK+gzKBgo8bcjY6huD1OMGh3QNqWhQuvD1ow81ki3NnO5NrenUc1KjzFLzG22iXtrys7/eG0KSf/105RjHVFpq5O0moWgUSW6sN/KBMfrR0HpYhlvZCJGa1hGc7x0PtnH8xRB2M+R3IXa2u3El18owfl83IP4Grlqim5IieCwRmdpHXggbTyPb2FZclhpyluVZLm/kgWysdTvfs8bGQwmQ7EOMZPpWnLUqJqKulq/LzIjTp81+pRuLhXZpQ7M54LM5BY47H/8AXXE2nsdNox0KjSvBmWIgYblTyM/Tv+NUr2uEW2itcNM6CRrdMs3JjYjOcZPFE5aD5rMiMd0ckXEmc/MW6H2qVa5XMpDHDqGIRpNow2JWXA46e1OVrCmlazIP7QglQSWieYpbgG5Zsjoe9OE9NDOMZN2GPqt1IpIhkACnByeOB703Zm3LYryXeoF8qWLEbQRwe3p0qeW7uJ3sMNxqD8i8kC8ZIIB9x71onoZODfUfDcy7QVu2x1JyeePzoTV9AUEtyVbuRyQZGyWwTyB/9endMCMzz7toDFjjAJIHvzRd9CJXHHUri2hZfKmAUD7uAWOemT0pStLUyepLMReKFuZGHykgFuB0I5H8qqysVzNlRNK02aX7RPczQk7trxTscggjgE4oajY0jPTVHL+IfhZqE+sPqsHxj1toTIsjWL2sJRSM8A7c9yOvesI0ZqbfMc0qd23Yvw+HZnjkIne5yuDNMMnJ+nSuq035lpvlsMg02ewS7eS3gaWS4VrS68x1EMIUAxmPo2Wyd2c4OKyeGrSrqaqadi+aKjYqT6XcrEqJewINx3+XCeSfUZwK2dNN6mMm7aGbNp1zGFEmpMRkDCLjv7DvWitFEXdypd6eVbJug5xht0h/XFNMq3MjPujYQKGuLhE/i37srjj16f8A16bmkYyjy7mZca54eiUn7arFjtXy2DF+ODxT5k1cuKctinJrekthl8+Rh1KR4z3Izjmo532M5KSZXuNZtZyETRZc7dw33RVj+A9OMUm5SJcZplVtSf7K1jJ4asbgyRkSJdgybx33A/55pOLfU0p3UipJPNaxyvYaFptqWYu3kWyjccdTx1rppRtNFybsz5+ufiKkVxHD4ciH2+6ZY4RFzLO5Iwi9etfrc047n5K3GjUsex+G/h78WdN0Ea3411uyF8QCumRREvbKRkB27t9Kx5E9WzN13J6noXwdC3F//a3iq+DRIoMVtCpAZwepJ6inzwStcpy5ranTfEHU4dfinvnjVYmVWOAAHI6KPyFctSlOo9EdtKyhfoeZ69ftFBPdxskUs0a+YxAUk+nuMcVj7Cb6Gl4vY8h8cW+p+M9TXwx4d1Q2UtwMNNBGu6NTjLD3/rWbwspPYJQlJbHq3h/xBpfwm+HEXw48O3EENtZhZrq0FzvmuJiSTPO2Ms7HJ/8A1VtOcqUNXr1+f+Zm4xjBQkeMfEbx5careTahrF6qxbiyBcAge5zx0rz9ZO9732GpwjHVnnvwW8SW/if4pT/EuSBZtK8MkpZMh+SW6fAz6YQc59TXpYbDyg+ZmkFzrmWptwfGKLUPiDqFzr80b77craSNNvIPIyevJ9D2repRlOXMc9R+8efeK9T1K21tPElhqUn2cNkbFI2tg4BH+P8ASuZ0505XsTHmpPmOXk0m7l8TQfETRptqTxNb6ujcAox4Y/Q/oTWFSTqND9pKXvHSeGtSk8RacZJrySCS3lka4WGL5ZHGQePfgZ9hVqHJG/UlVVN2Om/Z51238JfHlrS4jjEXiHSZIlhbjmP5lyMfewTzXNJudRJHXRUYassfHSa3udIupZmMZs7qOYFhkrh1JHv0HNaP2luU6Y8tW6Wp6brPxGu9Qi3tdlFS2TaS+BjaMj8a1hSm1ypGllBnBfEPxX9sae2YosNzCHYD+8FI/Pk/nUKLp3uRWrRirHlfwxh0n4kfFDxJpviEEeENC0qPUPGDxkjzFRtsdsG7PM7LGCOcEntXDjadeqouPUjA0/azk5bI0/F2t2WtaMljdqsNsuDb6XbsUgt06BNo+9gYHPpXZSjONPllc6K0lFW2OE1iCDRJ430mOJXaaNbWDywBuz97j0GTzWFeck9DmpxdSWhuNqEJEnmyhpGk3SNgZZjySaajOWr6nVVbS1IpdTgaUJcFWbBxtOMjtU+zcFexnBKTKV7MzROWlLZPK9+OlSpyhFpdToUdLWF8I+I0t5rpLiXPlyKYznJAx0x3rGakoNo0oVIxbitzqVvtFu4990sL7+gaIcf4VkoVVI7ORw1LWmW3hhIjCNMsJS+N37sDp0P1rOdKtLSSvfyM4Uot35Uz0H9mL9nTRPj78e9L8HaILTTJWVrrVtfuLt1FjYQgvM7PnIULnjoSa+e4kzajw1kNWtOnzX0jG28nt/w5xY2ng6VGUpQVz0r9pP8AaQ8Mz+IJvC//AAT++E0mr6LpQNpceO/FUhMdxIgwzQRNgEdcE9ewr85ytYilRVTP6/JKWqpw3Se12j5TMeLa+GpRjTX4XPnDxn4U+N+q2954z/aM+Kt2unpGsk1rczCOOMHlVSMcLnHGOSK+pw+dYKrbDZZQTb0va7+97eqt26nyOYZnmOOi+eo7W1OF+DvgyL9obxvf/EzVtW/sD4ceANhl1WQlUMzgiNBx8zsecele1m81w9lkMHTh7TF4jp5Lf5FZVl31hqKdox1bZueKPAWlNpV1rvwj8aalcTWu+VtW0+0Nv5as2NzlBuwSQMucciubAV8a6ns8VQTgkuZaySWi66LV9t2j6SthqWCw3Nhar5n1Wn3Hn2qaPJr2iyahd3MkmvaagW+ljywuIsdWPtmvTli/q2JUIpKlLZdmfPwrqjBRb5mt2+pofB3RvhZqs4sdft9Xj0RFafV4NLmZPMX+MsOOM55PYivMzavmdHWm4uo9IuSvbtb5HLXxNSXvQsmz2v4S/Cb4ZeLdSuNY+DCa/pngTTrgHUI4rYkTyuDhHk5Ck7T7/KfQ18zjs4xeCUIZvGNStLrezSW9tPx2VzzqVNvF805LnaPQPj/+0P8AA79mbw//AGYLvTNc8STWbW+l+H4DvitS4wGlc/xc98VOU5VmWe4jnoR5aOt29dP1Z6eGoKrLmm9j5f8AhT4O8YfEq38S+DviH4i1rSfELaj9osmSVlWFe6ArwV7DBr67NswweW1aGJwtOFSly2fdvuXWxtKmlGk1qj7N+FXi/wCDHwN+BWo/AJdJu5YtM0KS/j0qzjO/WdWkXajycZZQSehP4dK/PswxWIzTEutXT5ajtzXsoJbfcj67C5xluAyv97C75Xou9up+ePjv9mP4+2FnffEj4m2iaDpkkwlkNw4EjBySqqgOTX63l/FHD85QwWCftJpW8tPM/OqWNw0JKEabbfdaHTfs4fCn4ja74bvvGC/GG68LeFoJRvZJSiXMg6fLwCeB1rm4izTLcJiIUPqqq13+C9T0JZlHCy5KafN1PdvCOs/GrwlqmkS+KPip4ql0XUtPlu7HULaJYLSdI2MaMJJEJdPMVgSoIJjcEgivmq2OUoyjRoxi00mm25a+S/z66I+my/iWrSpPnk3y6WT1vbS+j8nbqu257v8ABj9tBvhZ8Er7/hbeoJ4i8UG5xoz3VuUMqE/IQcA4IK84xiuavinWmoUItW3fRW3NY8byVF02rvoz1PS/2jdSutB0L9jX4Z+IoND8e/EV/tvjfxA0asukWp+ZQCwwWA6D8TXy+WYDFZ7iXi8XZYeMrK/V38uhGAnUxyVKc7Sm7tvojzDXvgDYfBf4zaje/Ez9qLW/G3w+imiC6va+JPs8Nvcg9HeH5fvZxjvxXrZy402sLltOHtLtNxje68r3OfNZ4TC4qK9u5RXmZn7SvwL/AGd9V8daRF8OPjX4q1TUdWjWay8Pr4ninjmDjGJh5jlT35APeuHBVM4wWDtKjFxevM4K61t02fk+lns0d+LWWw9hKhq2rpX39V0/p9TrPDH7K2l/ss6bbfGH4jftS/2dN4fmTUrTwQNe3+a4BKowwCM4445reWNqYijbD0I+0lpzcu3ma1qGFwkFiZ1bNaqKepL4Qn0X9sD4lP8AtW/tWeI76W8vQf8AhGvCOk3jQPDAD0dFwW3YGc8EGvDzjNcyw2J/s7AR91/xJ21fo3seDh6v9qZp9YrtqL7bne+JtT/Zd8Z+JNQbVrdvD2p6jY/Zrn+wfE32a9ECjoQpG3gfXjA9KMFhMyXJSw7+FOXv2t7qb3lo3ZaK929Em2kfRyxvD9Cna0k2raN3+Z2X7CHwv/Z2+D1nqGmfs4+K5JbSUS3Umga3qBklvbzoGWRjy33R/wABFRjuK87y2ssXmVLnTstFZJfI9Lh/H4XLas6mEd1KOsZPd9DpP2bPi58X9W17xx8Sv2mNLm8NQy6mNP0Hw9fTBYo0TgGM4wzM3OfoK63xZgJZhCjRnzQcU27Pd9D0uG88xM8ZXr4u8YvaLvZeh6xH8UdKsUmS+04CUxJNhG2lo275HXFfRYbHYWq3yb+h9dTzjCV0+Um0bxf4b8fMt74fsAEt4zHMsvLmXJBOOoAxiut1G1d6I76VejUhoxms6JP5UiXkQO5NyhVAOOx5z7U6cufS935HRFNQuloU/Dlzp+kpcy+JdPm1EWVld3QH2+G3Fw6JuSJ5nwIlP8TnOBzU18TLARUpK669Dgx1XEU6V6PxX6nyd8Ufg3/wUS/az8R3em+P9LtvhZ4HtZ0Wc3F2BYWyeZ1CRlptUkwRgPsjyeRiuihjMG5JRd2+i3fz6fK79D5NzzbGV5Uqit530tY+zv2dfhb8Nvg18LNE+Cng+0nstG067ka61262vdX1xM5eW4eCMKsKsxJEUYCoCAB0rRV0oOpJKKTS1evlu7vbV6+bu1f0suw9bLsO6cG5W2u/1Oqmla2u57FFdTFK0ZZxt3gE4bBHQ9a3w9eGIXus+hp05zpKbW6I0urgLsZiVAxhmGDXX7KfYyvHoyRHtJR8yqpYdQ3QU/Yz7BzjhFH94sCpHTfkfWj2M+zBSGyJBMeCAcYGGzQ6M30HzEZjkBy0YcEdG7Co9jJdw5kKsbcmRQB2w1HsZ9ilIa7wjIdUYkcBj0o9jLsPmuNV4t2Y/lyOqvjpUOjLsx30HbbqRSDLwecFsih0pbal80SKRH4YxpwPugDGalUpxe34Fb6laWz3ks0KnIxhl6f40pz5dzTklFXex4l8fPGH7buk/E2Dwl+zX+y1b+KtCGji6vvEN1clVjl3OGgC5GSAFOO+6sHTqVqTlSl719rXPJxeNq0qyhBKz63R852PhH/gvN8evH/lada2nw+0y43tbJqFtBaWsKr821wyvLM21T8oAI4JPWvQw9DL7ezqtuXXW33f0zz44vMqbk9l0as/vPq34M2Px6Hw10y0+PP9mah4sgjYatdeHbNltG5O3aCOuMDPc815LdCnUbpP3fM9zCOvLDr27Tl5HSnQNY4zpbqWGT5p6+3NZe1jJaM74030RUm8O62JQzXMEGQdxJY/oOKlSctg9lJ6pMbHoi3AZ28Tc5+aNI8Ac+9dCoVN9TJzcXtYdJ4YtGhZ5dRuHLZbCHHH1xWU2lKzZUanN0K7ab4dtNzW/nDLN8s9wcgg+g7VpCE5arYJuUWPNpYu+UtVLN1bkntyfWlJcj94lVU3uRvb2EQHmW+1AMcYBoi1L4WaKM5apEMt1YWwf7LsdjIYwSgwg/vE9z9K2VCpfVEO6ZV+2WO4uiRFuhYgDPT862VCXZkN6jjPPISYrMH5chQB8o/ClKm4LUS1ZEJLxoCIbYYUYBZxgkdiT+VEKc5r3RzhOC1RXtb/AF0xtHe3dtD5iEMkQDDHbBIFV9XqdUzntrdhDFaxo8Zuz0wTv+8etDoztsXFpvQhupNFteLq8Ve/zSYx9KXspPZFNyXQyb/xT4asic6hG2B8x35yf61aw872aG7qOxly/EbS0RmjunJOCdq+3bNW6E+lzmc+xQvvHUlxI0lhYMzbcbjgZGf/ANdSsPNO9tfQXMZ0mteKbuNvLtII1bliRknIo9jNuzJ51czpm8V3HEusNEScERKoI/OtFQl1TK8yF9KaYSvc69dyNn5w9wcZ+i+1J03HoV7VRWpTudF02H5ZYlfKnJcE8dO/tWXNG4tKivEgj/sOzRg1uY1TGNigDp2/GrUZS2RPPyuxTuta0a3yjw7yQSRIafsalrWE3cqXPi+1CHZbxnOSORkCrVGpbYlszLnxvKzkKI1GM70weeuP6U/Y1OwJ2ZQuPGRkZxHKoZz820YzVU6coSvYcp8qbP/Z", + "text/plain": [ + "" + ] + }, + "execution_count": 29, + "metadata": { + "image/jpeg": { + "height": 256, + "width": 256 + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "!curl -O https://raw.githubusercontent.com/meta-llama/llama-models/refs/heads/main/Llama_Repo.jpeg\n", + "\n", + "from IPython.display import Image\n", + "Image(\"Llama_Repo.jpeg\", width=256, height=256)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "a2c1e1c2", + "metadata": {}, + "outputs": [], + "source": [ + "import base64\n", + "vision_model_id = \"meta-llama/Llama-3.2-11B-Vision-Instruct\"\n", + "\n", + "def encode_image(image_path):\n", + " with open(image_path, \"rb\") as image_file:\n", + " base64_string = base64.b64encode(image_file.read()).decode(\"utf-8\")\n", + " base64_url = f\"data:image/png;base64,{base64_string}\"\n", + " return base64_url" + ] + }, + { + "cell_type": "markdown", + "id": "7737cd41", + "metadata": {}, + "source": [ + "### 4.2 Using Llama Stack Inference API for multimodal inference" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "d7914894", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There are three llamas in the image. The llama in the middle is purple, the llama on the left is white, and the llama on the right is also white, but it is wearing a blue party hat. Therefore, there are two different colors of llama in the image: purple and white.\n" + ] + } + ], + "source": [ + "response = client.chat.completions.create(\n", + " messages=[\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": [\n", + " {\n", + " \"type\": \"image\",\n", + " \"image\": {\n", + " \"url\": {\n", + " \"uri\": encode_image(\"Llama_Repo.jpeg\")\n", + " }\n", + " }\n", + " },\n", + " {\n", + " \"type\": \"text\",\n", + " \"text\": \"How many different colors are those llamas? What are those colors?\",\n", + " }\n", + " ]\n", + " }\n", + " ],\n", + " model=vision_model_id,\n", + " stream=False,\n", + ")\n", + "\n", + "print(response.choices[0].message.content)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f3352379", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.16" + } + }, + "nbformat": 4, + "nbformat_minor": 5 } diff --git a/docs/getting_started_llama4.ipynb b/docs/getting_started_llama4.ipynb index 0ec9aa0e6..9544e760a 100644 --- a/docs/getting_started_llama4.ipynb +++ b/docs/getting_started_llama4.ipynb @@ -1,878 +1,879 @@ { - "cells": [ - { - "cell_type": "markdown", - "id": "c1e7571c", - "metadata": { - "id": "c1e7571c" - }, - "source": [ - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb)\n", - "\n", - "# Getting Started with Llama 4 in Llama Stack\n", - "\n", - "\"drawing\"\n", - "\n", - "[Llama Stack](https://github.com/meta-llama/llama-stack) defines and standardizes the set of core building blocks needed to bring generative AI applications to market. These building blocks are presented in the form of interoperable APIs with a broad set of Service Providers providing their implementations.\n", - "\n", - "Read more about the project here: https://llamastack.github.io/latest/index.html\n", - "\n", - "In this guide, we will showcase how you can get started with using Llama 4 in Llama Stack.\n", - "\n", - "**💡 Quick Start Option:** If you want a simpler and faster way to test out Llama Stack, check out the [quick_start.ipynb](quick_start.ipynb) notebook instead. It provides a streamlined experience for getting up and running in just a few steps.\n" - ] - }, - { - "cell_type": "markdown", - "id": "4CV1Q19BDMVw", - "metadata": { - "id": "4CV1Q19BDMVw" - }, - "source": [ - "## 1. Getting started with Llama Stack" - ] - }, - { - "cell_type": "markdown", - "id": "K4AvfUAJZOeS", - "metadata": { - "id": "K4AvfUAJZOeS" - }, - "source": [ - "### 1.1. Download Llama 4 Model\n", - "\n", - "In this showcase, we will use run Llama 4 locally. Note you need 8xH100 GPU-host to run these models." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8fb2e8b6", - "metadata": {}, - "outputs": [], - "source": [ - "!pip install uv \"huggingface_hub[cli]\"\n", - "\n", - "MODEL=\"Llama-4-Scout-17B-16E-Instruct\"\n", - "# get meta url from llama.com\n", - "huggingface-cli download meta-llama/$MODEL --local-dir ~/.llama/$MODEL\n", - "\n", - "model_id = f\"meta-llama/{MODEL}\"" - ] - }, - { - "cell_type": "markdown", - "id": "oDUB7M_qe-Gs", - "metadata": { - "id": "oDUB7M_qe-Gs" - }, - "source": [ - "### 1.2. Setup and Running a Llama Stack server\n", - "\n", - "Llama Stack is architected as a collection of APIs that provide developers with the building blocks to build AI applications. \n", - "\n", - "Llama stack is typically available as a server with an endpoint that you can make calls to. Partners like Together and Fireworks offer their own Llama Stack compatible endpoints.\n", - "\n", - "In this showcase, we will start a Llama Stack server that is running locally.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "J2kGed0R5PSf", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "collapsed": true, - "id": "J2kGed0R5PSf", - "outputId": "2478ea60-8d35-48a1-b011-f233831740c5" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: uv in /opt/homebrew/Caskroom/miniconda/base/envs/l4/lib/python3.10/site-packages (0.6.12)\n", - "\u001b[2mUsing Python 3.10.16 environment at: /opt/homebrew/Caskroom/miniconda/base/envs/l4\u001b[0m\n", - "\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 83ms\u001b[0m\u001b[0m\n", - "Environment '/Users/erichuang/projects/internal-llama-stack/.venv' already exists, re-using it.\n", - "Virtual environment /Users/erichuang/projects/internal-llama-stack/.venv is already active\n", - "\u001b[2mUsing Python 3.11.11 environment at: /Users/erichuang/projects/internal-llama-stack/.venv\u001b[0m\n", - "\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 387ms\u001b[0m\u001b[0m\n", - "Installing pip dependencies\n", - "\u001b[2mUsing Python 3.11.11 environment at: /Users/erichuang/projects/internal-llama-stack/.venv\u001b[0m\n", - "\u001b[2K\u001b[2mResolved \u001b[1m123 packages\u001b[0m \u001b[2min 1.13s\u001b[0m\u001b[0m \u001b[0m\n", - "\u001b[2K\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6) \n", - "\u001b[2K\u001b[1A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)-----\u001b[0m\u001b[0m 0 B/9.53 KiB \u001b[1A\n", - "\u001b[2K\u001b[1A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)-\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB \u001b[1A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2K\u001b[2A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 0 B/44.00 KiB \u001b[2A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2K\u001b[2A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[2A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m\u001b[2m------------------------------\u001b[0m\u001b[0m 0 B/34.43 KiB\n", - "\u001b[2K\u001b[3A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[3A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", - "\u001b[2K\u001b[3A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[3A\n", - "\u001b[2meval-type-backport\u001b[0m \u001b[32m\u001b[2m------------------------------\u001b[0m\u001b[0m 0 B/5.69 KiB\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", - "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[4A\n", - "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", - "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[4A\n", - "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2K\u001b[5A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 0 B/85.81 KiB \u001b[5A\n", - "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2K\u001b[5A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB \u001b[5A\n", - "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[6A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 0 B/3.08 MiB \u001b[6A\n", - "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[6A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.91 KiB/3.08 MiB \u001b[6A\n", - "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m---------------------------\u001b[2m---\u001b[0m\u001b[0m 30.83 KiB/34.43 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[6A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.91 KiB/3.08 MiB \u001b[6A\n", - "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 34.43 KiB/34.43 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[6A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.91 KiB/3.08 MiB \u001b[6A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 34.43 KiB/34.43 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[5A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.91 KiB/3.08 MiB \u001b[5A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 34.43 KiB/34.43 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[5A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 30.91 KiB/3.08 MiB \u001b[5A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 30.91 KiB/3.08 MiB \u001b[4A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 46.91 KiB/3.08 MiB \u001b[4A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 62.91 KiB/3.08 MiB \u001b[4A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 78.91 KiB/3.08 MiB \u001b[4A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 94.91 KiB/3.08 MiB \u001b[4A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------------\u001b[2m------------------\u001b[0m\u001b[0m 32.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 2.62 MiB/3.08 MiB \u001b[4A\n", - "\u001b[2mtyper \u001b[0m \u001b[32m----------------------\u001b[2m--------\u001b[0m\u001b[0m 30.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------------\u001b[2m------------------\u001b[0m\u001b[0m 32.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[3A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)----\u001b[0m\u001b[0m 2.62 MiB/3.08 MiB \u001b[3A\n", - "\u001b[2mtyper \u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 44.00 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------------\u001b[2m------------------\u001b[0m\u001b[0m 32.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[3A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)----\u001b[0m\u001b[0m 2.62 MiB/3.08 MiB \u001b[3A\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------------\u001b[2m------------------\u001b[0m\u001b[0m 32.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[2A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)2m--\u001b[0m\u001b[0m 2.80 MiB/3.08 MiB \u001b[2A\n", - "\u001b[2mtogether \u001b[0m \u001b[32m-----------------\u001b[2m-------------\u001b[0m\u001b[0m 48.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[2A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)2m--\u001b[0m\u001b[0m 2.81 MiB/3.08 MiB \u001b[2A\n", - "\u001b[2K\u001b[1A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)----\u001b[0m\u001b[0m 48.00 KiB/85.81 KiB \u001b[1A\n", - "\u001b[2K\u001b[1A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)2m--\u001b[0m\u001b[0m 80.00 KiB/85.81 KiB \u001b[1A\n", - "\u001b[2K\u001b[2mPrepared \u001b[1m6 packages\u001b[0m \u001b[2min 365ms\u001b[0m\u001b[0m \u001b[1A\n", - "\u001b[2K\u001b[2mInstalled \u001b[1m6 packages\u001b[0m \u001b[2min 50ms\u001b[0m\u001b[0m \u001b[0m\n", - " \u001b[32m+\u001b[39m \u001b[1meval-type-backport\u001b[0m\u001b[2m==0.2.2\u001b[0m\n", - " \u001b[32m+\u001b[39m \u001b[1mfaiss-cpu\u001b[0m\u001b[2m==1.10.0\u001b[0m\n", - " \u001b[32m+\u001b[39m \u001b[1mshellingham\u001b[0m\u001b[2m==1.5.4\u001b[0m\n", - " \u001b[32m+\u001b[39m \u001b[1mtabulate\u001b[0m\u001b[2m==0.9.0\u001b[0m\n", - " \u001b[32m+\u001b[39m \u001b[1mtogether\u001b[0m\u001b[2m==1.5.5\u001b[0m\n", - " \u001b[32m+\u001b[39m \u001b[1mtyper\u001b[0m\u001b[2m==0.15.2\u001b[0m\n", - "torch torchvision --index-url https://download.pytorch.org/whl/cpu\n", - "\u001b[2mUsing Python 3.11.11 environment at: /Users/erichuang/projects/internal-llama-stack/.venv\u001b[0m\n", - "\u001b[2mAudited \u001b[1m2 packages\u001b[0m \u001b[2min 32ms\u001b[0m\u001b[0m\n", - "sentence-transformers --no-deps\n", - "\u001b[2mUsing Python 3.11.11 environment at: /Users/erichuang/projects/internal-llama-stack/.venv\u001b[0m\n", - "\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 63ms\u001b[0m\u001b[0m\n", - "\u001b[32mBuild Successful!\u001b[0m\n" - ] - } - ], - "source": [ - "import os\n", - "import subprocess\n", - "import time\n", - "\n", - "!uv pip install requests\n", - "\n", - "if \"UV_SYSTEM_PYTHON\" in os.environ:\n", - " del os.environ[\"UV_SYSTEM_PYTHON\"]\n", - "\n", - "# this command installs all the dependencies needed for the llama stack server\n", - "!uv run --with llama-stack llama stack build --distro meta-reference-gpu\n", - "\n", - "def run_llama_stack_server_background():\n", - " log_file = open(\"llama_stack_server.log\", \"w\")\n", - " process = subprocess.Popen(\n", - " f\"INFERENCE_MODEL={model_id} uv run --with llama-stack llama stack run meta-reference-gpu\",\n", - " shell=True,\n", - " stdout=log_file,\n", - " stderr=log_file,\n", - " text=True\n", - " )\n", - "\n", - " print(f\"Starting Llama Stack server with PID: {process.pid}\")\n", - " return process\n", - "\n", - "def wait_for_server_to_start():\n", - " import requests\n", - " from requests.exceptions import ConnectionError\n", - " import time\n", - "\n", - " url = \"http://0.0.0.0:8321/v1/health\"\n", - " max_retries = 30\n", - " retry_interval = 1\n", - "\n", - " print(\"Waiting for server to start\", end=\"\")\n", - " for _ in range(max_retries):\n", - " try:\n", - " response = requests.get(url)\n", - " if response.status_code == 200:\n", - " print(\"\\nServer is ready!\")\n", - " return True\n", - " except ConnectionError:\n", - " print(\".\", end=\"\", flush=True)\n", - " time.sleep(retry_interval)\n", - "\n", - " print(\"\\nServer failed to start after\", max_retries * retry_interval, \"seconds\")\n", - " return False\n", - "\n", - "\n", - "# use this helper if needed to kill the server\n", - "def kill_llama_stack_server():\n", - " # Kill any existing llama stack server processes\n", - " os.system(\"ps aux | grep -v grep | grep llama_stack.core.server.server | awk '{print $2}' | xargs kill -9\")\n" - ] - }, - { - "cell_type": "markdown", - "id": "c40e9efd", - "metadata": {}, - "source": [ - "### 1.3 Starting the Llama Stack Server" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f779283d", - "metadata": {}, - "outputs": [], - "source": [ - "server_process = run_llama_stack_server_background()\n", - "assert wait_for_server_to_start()" - ] - }, - { - "cell_type": "markdown", - "id": "90eb721b", - "metadata": {}, - "source": [ - "### 1.4 Install and Configure the Client\n", - "\n", - "Now that we have our Llama Stack server running locally, we need to install the client package to interact with it. The `llama-stack-client` provides a simple Python interface to access all the functionality of Llama Stack, including:\n", - "\n", - "- Chat Completions ( text and multimodal )\n", - "- Safety Shields \n", - "- Agent capabilities with tools like web search, RAG with Telemetry\n", - "- Evaluation and scoring frameworks\n", - "\n", - "The client handles all the API communication with our local server, making it easy to integrate Llama Stack's capabilities into your applications.\n", - "\n", - "In the next cells, we'll:\n", - "\n", - "1. Install the client package\n", - "2. Initialize the client to connect to our local server\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "2e68e32a", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[2mUsing Python 3.10.16 environment at: /opt/homebrew/Caskroom/miniconda/base/envs/stack\u001b[0m\n", - "\u001b[2K\u001b[2mResolved \u001b[1m31 packages\u001b[0m \u001b[2min 284ms\u001b[0m\u001b[0m \u001b[0m\n", - "\u001b[2mAudited \u001b[1m31 packages\u001b[0m \u001b[2min 0.04ms\u001b[0m\u001b[0m\n" - ] - } - ], - "source": [ - "!pip install -U llama-stack-client" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "E1UFuJC570Tk", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000, - "referenced_widgets": [ - "75307e3dee604d30aa44713e6e293e64", - "5ce87402a79342af995df41ac3940d55", - "fbbcc19886cc43b38424fbb184162c61", - "29212208db6b432eb4f708cd64258954", - "50dd8994a4cf486ebbec5ffd4322992a", - "f9b768c703494dd198f2978aff4892e8", - "1231b9e4cab34c33a38bee63543f1e75", - "754deb3970604d48a522bc9f021ad945", - "f6ecca7a1a8340fbbe056235a2714fc3", - "ef4f63fe9d8f4683a9d20becb6e4e2cb", - "7508f10c13634e7aa682cfb29c48d9e7", - "26f1430ca7cb4ad5b1b8df1ffdbd32a9", - "7cd2d9c9ea7b4d70902ffaff33033078", - "101288236cff40b8bb9dbad80dbbc7ee", - "d5c9977838a249eeab6ef628279b8155", - "d032d1e7b4b54ba28ac83c1a12b23876", - "321fce57c158432abeae496ae8a947aa", - "3ebe00201bdb4e119e3b74f684a58345", - "0f8bab6b8ed04774b386fe952aae66f1", - "cfcb6e456c354d99be91f161552f3376", - "61bd0d490c0e4c04a331cf9ce6b7d38f", - "7d8653fca29f4df3a7487733ff9db60b", - "943f8fcb66614353a51f32f8344b6122", - "0e695245b97c4bbc85e349fda3dc07b9", - "bb0d168c41f540b8ae42239d3938483a", - "87700a80125348f28c4f249bdf8b0a8d", - "8902c3622da540e496ed5b1524bd01ca", - "90432ec1c24b4607a935c94e130cd68d", - "464147b149824f20afc727751a702fc7", - "67e37a088be64a2ba786ca923b1017dd", - "98786f52ef5345b0b9164b9c1f2b8e18", - "0e1b9910a77d4b7fa69cb8926e6547d7", - "0b276315be4345be83da1e03905c8495", - "e11f8c3891284e07bd2572257afd5e1b", - "ee18d96394994d01b49d5b03b3d9a019", - "844b06df5749441fab6f61656ce581a9", - "e1c6b9a20e074f17aeba976b24e80c65", - "c690da8daa1e4f9ea73bcacdd92e8a6d", - "d0b161ae25c441e8b3caf7a3d88c1b05", - "47cf4b6b835d43388576a2abf4cc54f8", - "03bbebd659e64b5d9c29a73570c34854", - "b68e5097d2504d2cbd7e19aa1aac3a04", - "22a665deff88477b9372c0350c4c572b", - "5e535ed2b83e496ab57b1c80b615ab0c", - "d9de065c7f81443e98ddf066c7b5bd54", - "1e836106837c4ac7a11b36e700c46b64", - "55591e8179084fcfa3a61c8bd8d09dcb", - "de1ef93c41364eda9b4b111231057348", - "23b0b2f4f82c4a21846e91d7cea91da5", - "9e4d0fbb51284a7487c495c7b95a293d", - "b0f8cf1f79e04b5fb47a810f2c81bd7e", - "0c359bc4c94c46acbc9094354a15c33d", - "59d0b59b6c2248508d0601ff13878d33", - "891cb726d45c4fef8f2c74a56df5532b", - "fa39189070334939aea5fa4a7de5ec8b", - "f0e107dd6d54483aa367da0e337a97cd", - "861a00796f55470e85d94733eeee9a5f", - "5459633eb6e94ec391d13fcf67425726", - "b7b7467ece304ffbbd352b9b96a03aad", - "9dece059f1204e29b106fca9e191ddb3", - "e2e49c25d6fc4592b317e94cfabc2e5e", - "76d37a48a73946bab2821f097cf2605f", - "8e81ae00681347cb906b392c3656a64a", - "74bedc38b7da4e8a83b0c892d7aa59b5", - "d1e67c28b4664e8098dce8f5e80b8779", - "abe6cf39b784436993fcbe92221c31a3", - "d021a18ab70b4c7e8aec43932a124c36", - "72e7c092fb054b7ea0dcd2782b5d8a7d", - "8b1ea80221174fae943d5c9f997dfb57", - "f8073d625f80415dbf712cee434f6e3a", - "5f6014ba13fa4a659b9eb1b5f83599a7", - "327ff8f5292d47afbfebd3beea187739", - "988cac4341b646079fc73719f3f88ad7", - "900a4dac08f540dfb35c29f63236a12c", - "1e6009b9b0684b8fbaa379ea96f111ee", - "541b9b4e74614e2cb855bb90f03df538", - "ff256b2275f740ed82bca4f43b4d6fd2", - "3703041a499c426bb427ee008c81cde5", - "4b22bbacb995425fb32a2368f3685a92", - "49a66eeb9ef74de5ab8904fd90eb7558", - "08f9d125018b41c582a0fa1e234315f9", - "736c770230644894b85dbc34bd8f1d52", - "b67cbbf32f844a19b219be612d5038c9", - "774b513d64524ac7823a2cf13efa8d41", - "1e56da93bcf64ff490416d2b66cd3dc0", - "b7e35038ce344110b785753b655130f5", - "5472af91737446f4a4a2d92a3f684a45", - "9fb4368802da4a5a8101ba200d98403a", - "2e713bcc372e48b2a006558db4d1df68", - "1a277abd5ea44253bc6894bef258b52b", - "b3eedd82e7da4ce8b3ded70e49a2afd0", - "6f5c18cb8002471f8b3764effee37324", - "3bebac362b344e8d9103c5011613f1ea", - "670905a55b19458da69f83c8bcd511d1", - "ff54451a48394faaaa9d8cdb690d0718", - "36b5bc19b2d0407f8ab28ff0da2ce12d", - "879e48d9a9e04183903d94ffe98313d2", - "abce503d70594c2ca9afdc47847c125b", - "028e291ee53947bbbbc4bfb68c695f5f", - "a530662719374c95a9bef12e59e28c85", - "bffc0f4b12f141398535990709fd4f2c", - "04804c74e1dd43449d5f758cf5d0ba5e", - "95a506c3007c4525b01ee4e1600d671b", - "a0d6b0caeb2340fe96c8f5569e3d3ae4", - "30798f87a8b848d783fdacd71af5dc04", - "07ce54c75e76488ba4019a20b3707061", - "f023175de68445f98a6b01bb40ccdc6d", - "7389b79a0ff44cd68c7866995d728023", - "8e2b70ffe4eb4974bd6393fcc1292267", - "13eee164dc534424acb9dc9ee37a9465", - "722a7fe16af3422585a20c651345cfa4", - "f5596c1c9c4d42f3bc171961f9582eff", - "85d66e615b5742e78657b1e60c75fc72", - "731c02dc5dd446c3b22765575148e256", - "254ce460ce244c99a5afe39d5d51f6b7", - "4cf1dc345ace4da59f978f661487f975", - "8f30fca71bf24e5ca26e17c2321f893c", - "dd85d37dd1d14c7ea4592f8e11b2d2c8", - "3cb06377e4454f009d6b2aa7aa6ff0a9", - "4502477db4d948e693012364c2dcb370", - "52fe404ec9c14db2a7279b4c154eef3d" - ] - }, - "collapsed": true, - "id": "E1UFuJC570Tk", - "outputId": "aebb69d4-c167-4de5-eb8a-dd19dd538f63" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Not in Google Colab environment\n" - ] - } - ], - "source": [ - "from llama_stack_client import LlamaStackClient\n", - "\n", - "client = LlamaStackClient(\n", - " base_url=\"http://0.0.0.0:8321\",\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "635a7a6f", - "metadata": {}, - "source": [ - "Now that we have completed the setup and configuration, let's start exploring the capabilities of Llama 4!\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "0fc75d73", - "metadata": {}, - "source": [ - "## 2. Running Llama 4" - ] - }, - { - "cell_type": "markdown", - "id": "7dacaa2d-94e9-42e9-82a0-73522dfc7010", - "metadata": { - "id": "7dacaa2d-94e9-42e9-82a0-73522dfc7010" - }, - "source": [ - "### 2.1 Check available models\n", - "\n", - "All the models available are programmatically accessible via the client." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "ruO9jQna_t_S", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "collapsed": true, - "id": "ruO9jQna_t_S", - "outputId": "ab1722a7-62ab-43bb-9cab-4e45bf62068a" - }, - "outputs": [], - "source": [ - "from rich.pretty import pprint\n", - "\n", - "print(\"Available models:\")\n", - "for m in client.models.list():\n", - " print(f\"- {m.identifier}\")\n" - ] - }, - { - "cell_type": "markdown", - "id": "86366383", - "metadata": { - "id": "86366383" - }, - "source": [ - "### 2.2 Run a simple chat completion with one of the models\n", - "\n", - "We will test the client by doing a simple chat completion." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "77c29dba", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "77c29dba", - "outputId": "4857974f-4c70-4bc4-f90a-6ae49dc9c41e" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Here is a two-sentence poem about a llama:\n", - "\n", - "With soft fur and gentle eyes, the llama roams with gentle surprise, a peaceful presence in the Andean skies. Its calm demeanor and soft humming song bring serenity to all who belong.\n" - ] - } - ], - "source": [ - "response = client.chat.completions.create(\n", - " model=model_id,\n", - " messages=[\n", - " {\"role\": \"system\", \"content\": \"You are a friendly assistant.\"},\n", - " {\"role\": \"user\", \"content\": \"Write a two-sentence poem about llama.\"},\n", - " ],\n", - ")\n", - "\n", - "print(response.choices[0].message.content)\n" - ] - }, - { - "cell_type": "markdown", - "id": "7737cd41", - "metadata": {}, - "source": [ - "### 2.3 Running multimodal inference" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "e7b1baa7", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - "100 275k 100 275k 0 0 847k 0 --:--:-- --:--:-- --:--:-- 845k--:--:-- --:--:-- 0\n" - ] - }, - { - "data": { - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4QmWaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA0LjQuMC1FeGl2MiI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiIHhtbG5zOmlwdGNFeHQ9Imh0dHA6Ly9pcHRjLm9yZy9zdGQvSXB0YzR4bXBFeHQvMjAwOC0wMi0yOS8iIGlwdGNFeHQ6RGlnaXRhbFNvdXJjZVR5cGU9InRyYWluZWRBbGdvcml0aG1pY01lZGlhIi8+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94cGFja2V0IGVuZD0idyI/Pv/bAEMAAgEBAQEBAgEBAQICAgICBAMCAgICBQQEAwQGBQYGBgUGBgYHCQgGBwkHBgYICwgJCgoKCgoGCAsMCwoMCQoKCv/bAEMBAgICAgICBQMDBQoHBgcKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCv/AABEIAwADAAMBEQACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APxxgtYgAAtfLxrVGkfVe3qvqXILSMDOwUSqzLVWrbcmht4mfG0GpdSfcqNao+pI9tEvzKgNT7SfcbrVF1LumwROmcVnOpPuaQrVWtyxBbRiXIXP4VDqTLjWq33J/IjLY2A1Dqz7l+2q33B4o1b7n5U/aTtuL29VdS1p1sj5+X8aznUmVCvVfUstCgOAtR7SZft6vcIIo/MOVoc5gq9W+5dsYkL52/jUSnM1hXqX3LEsCk8rwKlVJ9zSVap3IvsqHkoB+FN1J9yPa1X1ITaIWYADkelTOpNDVaqnueEfF21ji8WMNoxu5r67KKtWVA+PzXEVXidzuvhbDaSWUQSLoBXn5jRn7S8z38BWq+xVmemxQqsK4TtxXiuTTsj0/bVUtxfIUuAV7/lSc523E61W+5JqUCC2UbeamE5t2Q6leqorUrw26sgG0UnUnfcI1qltxViUttA/Gp9pMr21RdQuLZCu4qM+lONSb0uEqtVK9ySSyF3YFQoOBR7WaluQ61Vx0ZV0uAwxmIjGDitJTk9TOlXqrqXLS1BnL7azlUkkbwr1b7kd2P3u0j2ojOdgliKqluP8hPLBIGcVHtJX3NPbVLbiGJScBRSdSY/b1e5JHbocfL1qXUn3KVap3LFvbp5g+XuKl1Jle3qrqbSxqZF46ADpXRCU3RbM5Yir7TcsxwJn7o/KuSVSfc3Ver3J0iUjoKh1J9y1XqdxkkKZ4Wlzy7h7ep3IzBGP4R+VHPIPb1O5FPGozhaanJ9ROvUXUjiRTxsGPpTc5i9vV7kbIok6VSnK24e3q33C7CCPGB04pKpLuKVerbcjto1I3Y+tDqTYo16vckeJSfujFLnnuV7er3GiJCQABT55tbi9vU7kkkKmLIWpU5jdepbcgghViRj9K055mca9V9R/2RNhJWiNSV9wdeq+pRitF+0k46H0rWVSXLuYxrVFPctXMaBMFR0rLnkdEq9VdSBYEbkDjvxR7SXcSrVO49IE6EfjUOpJ63LVep3GvHHu+7UupJLcft6j6ixQpnO2p9pN9S1WqdyRoF24I61KnO+5brVO5DHBH5vC/pWvtJ2Od1avNudJ4ShjE2Qo69axlUnfc0hXqqVrieMbaNroEr39K0p1J2M69eqpWuUtVt4z4clXA+4ePwqHVmp3G69WNHRnyv4ttIl8cXCmMf6yvuMHXqPBp3PicTiKrxb1Om0K2jUIdnp2rmqSqT6nrYWtPld2d34fgjMakJXj1p1E9zup1aqe5uRwx/3RXO6k+50+2qW3LlpbxkjC9azlUn3LjWqdzQggjBB2/Soc5s0daqupfECeVnaAPWp55sp1a1hIbeMoTihzmnuJVqvcqLErzMAPxxVc8jNV6re5FJaoJOB071ftJ23EqtW+40W0ZVuB0qXOdx+1q66mfYWMP28sE7+lbe1nynJCtV9puab2y78bahznbc6nWq9wmt0EX3e1R7SfcbrVe5FYWyNNkKOtN1JdxQrVb7jdThTzApWmpza0FVr1U7XIbuGMWnKinGc7ilWqqF7mPbxIZSNvfmtXKZhCvVfUvQ2yEcLn3rNzmjZVqvchliQvwtNVJkurV7kZt0xkLVe0mL2lXuV5YRu+5Ve0n3E6lW9rkUkSjkpRzzZLqVV1IZY1IO0Cr5pcl2Eas7XbPof/AIJ8+HEW/wDEnidlwdsFpG//AH07fzFf0F4I4BfV8VipbNqP4H8O/SrzqpXzjBYFPSEHJ/N2R+gXwH0yL/hWOvXEvzFlAXNfuc604VoRi9Ln8aYyk69KvVf2FG33nyr8f9EimvrtWT+Jq4s1qSnFn6LwljasaUHc+Iv2gPA8VxHdKEOSpIxX5LncZ6rof09wjnFWEoO5yXg7UDrXhW1vJzmSJTDOWP8AEhx/LBr8AzOjLCZlUg9r3Xof1dk2Z18Zl0W5Xa0LEsCE9B7VlGcrHoOtV7jWtYzHnaKaqTF7WrbcpNbR+ZwBxWvPUsZqtWvucn8UrdBZqdo+telldaftLXPJzbEVVHc4W2to/MXC817rrTfU8mlWnzJtnd+FoUa2A29Bya8bEuo5Xue/Rq1GrxehrG3jJwFFcLqzXU19vV7lS5tkEhG38K2hVmzGVWt3IpbVBHnaPzrVOo+o1Uq23KciR9NnzfwkVTpubvIMRUnGGhv2i7wDntXO6dOGjNXSpqTVy/Ase3aWrnnZbEaJkkATfjcMH0qXsEVdk1yVRMhhShe5pKKvZFrRdpTDnAPvWddJbMulGFi0NqTHa3TvWW6HsyZAhwxYVN7HRCEZLzI7qQKSY8Y+tXBJoUqT6l7RzmLJYdOazqxSejKpQp/MnlaJWO5xn61KuW6TvoRW84MxXitGrRJjBKRpaafmyxwO1YVLWNYxgtS1JyRgjpUKw0k5akbsqrk8/hVKzdjV00tSC3dDKd3p3rapStFM57S9oeE/GotN4yMcWNuetfXZVKNPDLufL5jQtiLyO8+FFvHDpsZB5wOa8XMqlSrVZ7eAcY0bHpEDO8CknjHGa8V+47M9KXK4qw5FYyAn8eKTasQtZWZPqkZ+yKw5xUUpJSNp000itao5i+YYAHHHNXKK6mduV2EYfOc8+vFQkjSEOZXY+7+W33L1Fa04LmM5dhdJufMiKYGSO9OrSUdUaUow6kMkc0U8hEfHfiiFpKxlOnGN3EtWNxCM7h1GKyrQtsVRlHqVrwM1xvQdT6VVN2iN01J3JimIvfHpWcoxi7gm3oNRDnLDn6VNk2aWsieNegx3olCKBPUnjIR1Y9jWdkNtI07WdJphgiuhK1OxinzVS+pVSe+a5XGx1bD1bPVcn6VLVtykmxCpPRf0qWkPlsMKknG3mhxSVws2yK5t5yMqn40RcS1TbY23tLhjwvP0rbliQ4yTegraReNICqnGeeKpRp9xKMmWJ/Dd3JFvzjHtXPGUVLRmvsnIhg0r7P8Au2lJb6VvyQtdshxcdESf2PNJznAPcCsZNKWhoqMmiMaPcK+Bzirjytak+ybZLJpcnlc+npWX2tCnRlYrxaXODkc/hW9lZXOfk5W0NlQwxnzODg4GKapXehbilEzIGllvCFXODyfSt6lLk+I5owu7ot3lrOYxx+lZqMTaMefRkUVpcAhSuSe1S4wNXTstBy2twDtaL9KzlGCWhVOk5A1hcsSFTj1xWas9yZwlFiJZXgbHlkfhV8lNFxg2iV7C7EeRH+OKxaV7BZ8xWSKaOXEi85rpVOPKTKCjK50vhFR52PzrlqwtqghZz1H+MIx9oAUd6KTj1CvGPPqUNTjzoEoYfwH+VNqLejKcIOmfL3im1eTxzckAf6w4/OvtMFGP1NXPjMVCh9bdmdVoFg+E3Edq58RKMY+6ztpQvojtNHtxFGCrYwK8erNvRnq0lBKzNe3jyeSPyrnlY1ajfQtwoBgZFSrGtOMWy9bEkgggCqjBLUupBQRcyBEV3D6UWT0LjNONhFnjSIgtj04qZwSepFRKCKUMgaVhu6mnKEUtyKcFJXFmxnCGhRsyE+WepAkyorZOcjvVummbPlaKmmTg3xJ9ac6bS0OKMH7XQ05WDZcMP8KlQN9b6kM1wPL2hucdKHSinqVJRtuN02QF8k/pWcox0dyqVLuR6nMhmwGHvWkIwtuc87upZkN1IhtvvdO1aJxTOicUqdjKhaMyli9aNpvRnFRbvZIuwSxrHwwI9TUSipHY6aauQNIXkySOe9Hs42OeyTaCQlD7UlCI4pSe5Wc7nwT9Dir5Ioc4JK5Hc/d4bOPatoxMYz5SmJcngj86VS3LsW/fWp9cfsMaOLH4VtqG3DX+qTPz3ChVH8jX9Q+D2GlR4RU39ucn+n6H+cX0jcbHE+IlaCf8OMI/hf8AU+3vgzbywfDDU8ZAkzxjrxX6dVilXppn89uUZYDF2fRHzR8cbDdqFy23qTXPmMFys+h4Xq2oxPkf45aP5bSSFMqwPavz3N8LCcWf0NwriINJXPAPBtwNK8Sat4WlOFkYXVsPXsw/lX4fxhlsKU4YiPoz+suBsV7bDOnfdfkbU5Cnrz6V8dTacrXPuYxUpWIzcRxoWaQAe5rVPWxdflhHUoyXFuZt0cynJ6ZroV+XVGFCopSstTlvilIn9nBmIwK68upSdbQ8vOIKyscJZedPKoRRjI5r6OUKdJXkzy6dJaXPQPDSxRWi+c2OPpXzuKqy9o7bHuYdQpI1AYiTtkH4Vwtu5cVGUtyjcn98SzD2rqp3gjphTjErX2q6dYxZurhV7YJrohCrU+BHBiKtOFWzZDbXFrdfvLd1ZT6Cs66qxXK0ac9OS5pHXWfhV1jUGftXFVxMXK56EsHeTdy7H4WIPFz+RrJ11bYyWEcnuTxeEgW3G4P4GlKukrpFrB2ejJn8JBhtE5NZQxL7G6waa1ZNaeFni4ExA9Qa1nVhKJmsHJS0ZbTwuuc+cScda5/aK50fVNNyxbeGCx+ab9aznVS2COHaejFuPCYZsJN7GiFfubexbjqT2nhlowFWUj1IrSpWp8uxgsLJO9y3/wAInG/Lzc4rjVexuqEu5EvhJVfKyc9q6IV7rUU8N5k8Hh5oiCHPvzTnUhJWsZxw0l1LI0iToZDXPJxR0Rw73uMbQpSCBKfxqfapHR7LQaugSwHeRnIrZ11OFjOVFx2PO/GXwM1DxPrx1OO62rnoK9LCZrHD0uVo+dxmVVsRW5uY6fwd8OZvDtqI5p87R3rOvjadWVzqwuDnSjys6OC1ZIhHnIHeuWo4Se56EKMrWJ4Ik3KSnQdqyaS6m8aSW5PIiXEflOvSsrcrvc0UF1GxWUKHBWtHUTREqcbjnsbUSfMmD1GazjNpXNlGKWhDe3WlWMX+kkYx0NaU5TqStE463JF6odok2magCbaAAHoRVV5zjo2bYdUpLQ000qAgl4wfauSFWVzpdKFtiS30jTUOPJyamrVm+pKoQ6IedK08Hd9nFKlUa6mrpwUbWJYtN04rt8pevcVdSUpLcinShzbEqaDpzHcUXB74rFTcTaVOmyaPQNLA6D6EVLnKRmqdIevh7SmGCBU88l1L9jSkTQ6BpcB3IRVRrS2uJUKUXoWItMsM8sPzpSqNLc0jSp3LCadpqDO7rWPPJlctNCSWtgOg5xVJu25FoX2GpBaKf4cGpnK/U0Sh2FkgtCMFFIrNSsyrwS0INlohyBj0rp9ppqZPlfQXzIs/KfxHFR7VRZPKr6Djl1y05xVKvT/lK5JLZkUltETuZ8n1qpV01YFFX1Ii0UXCseOxNLmiDlYT7ZCvXnNHMQpa3Ip9RiAw2OParhYtziyu+rWqNuxjjFdCszgqTakQXF9b3g2bRk+1aJcqumEZqWjKwFtYP5yJ1PNaRftNGy3aEbpEU/iSxUlWTk8dK0jh1JnH9YfNsSW2t2JILYHHWoqUY9DqWJioki63ZFuxx6Cs1h09yaeLvJjm8QabGucDntQ8PFuyKq4rsiNPE2nvkrEPxq3hVsFPF2Wor+JLIjAUAVLwKT3JlX5myOe8guo98Sjgfw9qToSS0IeIWxq+DZiZNpGea4qseWVjow8efVljxkzLcAkY5FZw1VhYlOMyhqbr/wAI/Kcj7nrVUqTcrMqzdJ2Pl/xQks3j2ZYyV+evucPCNPAbnx1bCSnjXqdp4a0m5MYLuRwO9eLiK9NaW1PXo4VwW50tnDcQrhZMj1rklKDjqdUKMpbM0YvtAHJNZRlTN/q8l1JohdNyHPtUyqQj0NorlHT3l9aJvDZqY1oSdrCrKTjuV7XxHfXjGNWxjjNdU/ZUkclOck7DrjUr+Pjfk4qYToSepVV1KmxENRv4FEzn6VTlRY4TnCNipP4zeF2Lg/L1rspYeE1c82riKvO9B1t4rS4bdnr09qdSgoHXSxEWtWKviCGCffn8azcOaFrGsasU7jLjx1ZwPiacAHtmrp4SVTaJyYjFKEhbbxSt+NlrJke1Z4ikqK1Rvh60aivcu22oXSDAb6nFcDdJnV7aUXoNmurmSQMzZI6VUVGxm4SlLmEuHupYSA5GRWbqQjKzNW5WsZyW13HMW80nJ69q19tTa0RjKm4LmRK8t2nrx2xRGUGtWTGU2V2uL5TuOQPcVsnTtuVaS6EbarO3yljke1HKkYKfJO5Vu9VvIR5pQkemaqHI5WbLq1HyMypPFV3cu0cUbZB5yetetDCxpw5mzyY4i83Ysx39+bbzMAcZ61xVYU+bc1+tVJrY+/v2UNEOjfBTw5byLh5LETPx3di39a/sTgXCQwPCmFpJfZT+/U/y18VcxlmfHWY1273qSS9FofYXwwtmi+F07KSFcN+Py19LiV/tUEfmNG/9k4qTe7t+B85/GiwElzO2MfMcVnj43iexw3XfJFHy/wDGPQEuLWVSnQHjFfF5hC6aP3PhnF8lSJ8mfEO3/wCEc8XW2ux4QRSFXP8Astwa/LeIculisLUp/P7j+neDs3lh5wce5Fe6vcOzKs2OevtX5bRo04S94/ao1KjlzIz9Qju7m2JF4RjqPWuqjOjTqJuNzLEOdeHKVdG03UIJxcS3e5Sfu1WMr0qmkYmOHpTodRPGOkXmswC3jBAx3pYOosOm2bVqbxEe5g2XgTVrdgxJ46HFdTzCnUdmeQsJXU2bVvpup2wVc5x2xUTlQcb9TupUK83YuRLfBcFSCe9cLdK53woThqQXlnf3ERCEjjitHUpRtcqftEjlta8LazdTbnZnXPAr0sNj8PTjY8ivg61eTdjQ0DTb7TVzcK2MdKmtXoVfebOaFKvHc9atcBA27qPWvlHB31Pra0p+0aLcKDjDjrUVJ6WQoSadi1Eg/v8A6VHtNLGimTRoBwT2qOaxfO2Txrzgt+lVz3Qc7RKoUdHFQ5K4c82ToRxuNQ5IuMpImQLjk0uYvnZLGwU5Bx+VRJ3BTZOrgjJP5GkrFqUujHBwBwfzrRNInm11HKynvQ5pGkXF7DhIucZH1qG29Sm5WGPNtPWr5boqnK+4Rzh85b6VPK4suUmWISMfeHtSaSZg7ykN3HJBlH0ptpI0jRas7jti7QWcH2rL2rYno9BokgXgYP41Sk2TzNjhND1bHPTk0pK61HzMeskb8KePrWfNYHqOEKu4Zjx9KUqlkXDUzfEnh+LUovLB5xwQK1oYiVN3KqUFVjYf4P8AD95pShJGyvrV16kaupy0aFSlN9jqIY1Y/vH49K5Jy5dEd8WupL5NmvLyL+JrLnm0bxSkCrZOdqyrx70RUmwqRUUEiWiHHnD6VquexNNRb3HRvbE7TcD86xqcyKmoomSK3b/lv+tY88kQoxfUebeMni4/Wj2ja1G4We49LRCRib9aFJIpU49ST7GoH+t49zQ53D2aJY7VM5Mw/Opchqmhz20WMCcfnQ6jtZh7OPcjMKA/64fnScx8iAQxscecKlzGqavuI9rGOso/Omqg3CKIXhiBx5oq+e6I5EKI0UYDfjmk5lcqGvGp5z+tHOZuFxnkRnqw/E0nNjVJMhkhgzgsB+NUpsUqaQz7LaP8pkX8TR7SSEoRZDdabYEYLrn2NVGtU7l+wiykbOJJQY5x+ddCqVOpyyw+ug99OjmXbJKv51lPFST0NY0boqSeHLKST5pV/Oqjiq0tmafVKbjqTL4dsNv+tXH1pe2rLqc31WLeoLoWnqcGZfzo+sVktxvB046jbjQdMCZ80ZqFi619zSFCmyFdL0iIbHkHPvW8a1fmvczqYamnoVNafRrGJWEn611UnWrysc1WMYosaTc28to0kWMY4ya3k3B2uKnRTV7G34P+a8O0cZrmr1EzuoRjFk3jbcs4BPGe9Z0mc+LSc0Z18N3h+UNz8v8ASuiL982ikqWp86a3bxjx5KZCCS3H519NRU3gtWfI1sQnjmoo7nw+HMYRHxwOoryKyhHdanrUY1Jam7bqIiBI4+mK4KtVNWOxTUdiyvK53j24qITWzKTqMhvdXj06PzJcYrphS9s7IitNU43ZDp/ie01omKOQHBxWVfCTwr1McNX+suxoWtjbROCzJk89Kz9pKUdTrqUILUsta2knG9eenFczquLsghGCGy2ds67PNT6YputKLD2cXIy7vwvZyyljKnI7100sdVSsCwcZXYtt4Vs41wJkqni6j3ucksHaTHP4WsZThpxz1rKWNqR0RrDDR5TN1T4f6fctn7Qv410Uc2xFPYp5dSq7ljSfC9ppagLcJx0FTUxdWu7yMFg40Z6M0VW2U5LrjFYTqPY6FCC1ZFLdWcLckEe1aU7yKdSK2K/9s2TsYt2PrRUpVIasyTu9R2bdyCJhU020tTeShKGhKkMDn5nGampUeyMI04jZLS2YY81eahTkU1Eoz6ZbiTargfjXXCo0tTGdKMxz6LBJDsaZcYrJ4i0roPYJxsZn/CK2cM5cTrya7Y46pOKXYxngKaV0OutJtkjEUEoJdgoA9ScVdKpLE1owitZNL72cGNorBYGpXk9Ixb+5Nn6M/CzTBpXhTS9JRSFtrGKMLj0QCv7qyqisNgqNH+WKX3I/yJ4jxDxOZ16z3lKT+9tn018PraWL4fN3Romxkd8V24lp4mK6nxmH9pLAYmT2ueD/ABdsvMeZv9o0Y2LcT1uH6nLynzf8T9LEsMyleoOK+UxlJSufsuR1+WUT5I+OPhkzi4XbzyVr4bMocsmf0TwnilFxbZyfhGzj1rQorqQgyxExTexHH8sV+F59CrgsznBbPVH9KZNi6eOwCfVaMnvvDzPEyQybSRwc159HFSi7S1PR+rqexR03w/qEU2J7jcF6c131cThnC6WpnDB1FN3ZuQWSYG8Z2jnivPlXvsdcYRoaWHSwwL8rLxWcJSTvchQjUldGdcXFnDdiJkH0A611yjWnS5k9DOpUjTmoomNtA3KqMYzjFcfNJHbS1jdhHawLkNj6YpOc5aJinCDI5tPimY4Ax24q4qoiXyQgVJNORA3HQdK1qPkhZHOsPGUtStD8W7BQNoTn1NdkcsnVepxwzWGImy9B8V9NCB5FQY965p5ZK9kOeY0obFiP4v6P/EU/Os3llQxWbUyaL4uaMy53pzSeWVGbRzSla5Ivxf0c8F19uaHllQl5tTeg9fjDpP8AeWoeWVB/2tBEsXxn0sfxLSeV1RrNYMmX4z6X1ytR/ZdUr+1KZIvxl07HG2h5ZV7lLNIWFT4zaavULS/s2oNZpAd/wurTC2zcuT2NH9m1TSGPjN36E9v8WrOc4QqfTApPL6iOn+0aUVZEo+J8G7n8iKby+pylfX1KFxk/xQh2HOPbitKOBlcini7vUqt8WIIuuPyraeX3Z1xxcEhg+N+mISskwBPqapZZKTtY8/EZnCFayIn+NOklsi8GD1BarllnLpJHXRx3MrtliP4xae6DF0v/AH1Xn1MtfNZI56uYxU7Eq/FfTiNz3S/99VP9nzQ1mUIokX4taSOTdL+dJ4Cpcn+0qbJI/i1pYwwuV/76qHgJlrMItEg+MGnIc/a1/wC+ql5dMHmUYu5HL8X9Pc5+2D/vqtaeXyTKjmysCfGmyhPyz5/Gtp4OytYzeapsk/4XbHIfllGPrXK8A2y4Y/mY4/ErVL+Fri2yVHcVVPAJO0jaOZSTsisnxRukJ82Vht64Jrs/s+nBGk8wTjqLL8arUKEa55z/AHqUctb1ZyUsx5p2Q+D4x2rjcLnj/erCtlyex3zx8Iw1ZYj+NVoP+Xsf99Vyf2XJvRHFDM1zEg+N1ooyLz/x6tFlNTsaVc1gpWCL49Whk8tLvPr81XLJuSN5GlHMeZ3Lf/C7YP8An7/DdXO8rcn7qLqZktkOX42W68tef+PULKZvoRHMPMa/xwgH/L2P++qiWWOL2IeZq+40fG23Jz9rH/fQpf2a+w/7SQo+NsI63Y/76o/suTD+0ra3Eb44Rnpdj8TR/Zj7E/2onuxv/C7EY8Xa+/zU/wCzGCzJdxR8bGbhbkE+zUPK2DzPzA/GaUrkz/8Aj1X/AGVIP7RklcjHxiJPM/8A49R/ZbbCOZ6kNx8YIwebsD/gVP8Asxp6oKmZruRD4txvyLwYH+1Tjlt3sFPMU5bjZPi5CFy12P8AvqrlliXQdXM1GVrjI/izBIcC54PvQsva6EQzHme4+X4swRD5bsfi1KeWN62NJZiodSu/xbhd932vHPrVQy9R2RLzh8th6fFlMcXo/FqcsvUyP7SW4rfFmNFybwf99VEsqjYHmXdiJ8XoWOPtX61m8simOGaa6Edx8ULdut9jP+1XdSy9ON7HbDGqpHUoah48t9RQK2pA47ZrSnhnSnexwVputOxu+HvHMRshB5gOAOc1yYjDzcmdscTTpU+W56h8LrsakDMORnINebVoSi3c1w9d1GXPHgK3QyO/NEXFLQMQpc9zMvyV0GR06bK1i1zXZsoTq0T5r8Uaxa2XjmaW5lAAb1r63DOUsHaJ8riPZYXFNvc2rD4laTCAkVwhz15rknldaory2O6jjY1UaUXxN07GTcL+dedUy1xlZBUx1OE7JkyfFPTApAuUP40QyyftLI6aWLS1ZT1Lx/p2pIYjcA59DXcsDOj7yHWxNOcbFPS/FOn6TMXjmHJ9ac6E8T8RhQrwormNX/hY9twTcjjoc1xVMByuyM55ipPckh+JNtzm6Hv81Zf2c29i6WOjJ7g/xLtf+fofnTeXOL1QVMdGEtxv/CybRz/x9Dj3p08A1LY0pZom7XGn4j2yk/6WOP8AarepgJKOxWIxsIxvcVPiXblsC7B/4FXK8v7o5o5ir7iy/Ea1bBa7H/fVOOB5XdI6HmkYIj/4WJadftgP/Aq1eFdrWOeWZRmxr/EO16faV/76qHgX2JePiRt45tZutwPb5quODkmXSx0WyGbxfZg7luQD6g1rLDTvYdbFwtoFv48hU4N0PzrKWCdtDCGNu7XJW+IMC8C5X/vqp+o69y3jYrqIfiHB3uR/31VfUH2E8dHuNHxAtXODdL+BoeBdiFjot6MlPju02Y+1qM/7VCwVnsbfXow6ld/HlmrYW6BP+9XSsI1HY1ji3W3Nz4Z6hF4r+JPh7w+swdrzWLePZnORvBP6V6fDOVVMbxHhaaWjnH8z47xJzqGW8D4+qnqqUvxVj9OvC8QQIingYAxX9q0ocskj/JrHzcm2z6I8GQBPAoBx80TfxEdvSqxD/wBrifPUFfLaz831PFPilbLJ5yg9GPatsTG8DuyWdnE+eviLpxdX445r5jFRV2frmT1rNWPmT416BhpJVTjntXxWbwitT9x4XxMpJI8G07WU8I+ILzTbhsQXQEkeTwHHX9P5V+ScV4RYnkqQWq0P6d4Nx1KnQcJvdfkaE3j7SRgSXKj2zXykMsrPofXLHQc3y6kR+IWkRkhZ1P5VNTLqiVjup4iDV2LF8Q9OZ/8AXr+dEMrqbEYjFU1TbEu/Hlgy7hKvHcV0wyySdjzoY+F7Gc/jXT7iUSblJHTmtKmEdOPKjf21NvmY/wD4T2JTsYrisll6lFs1ljFy6CP4/iYfLjgVH9nKLOOGMftNWQN8QIkyGYZI7U54F8tjpr4pSV0NTx5By8jDPYetZzwFSqvdRzVcypw0uVYPg/clV3XBBxXbHMVTm1Y4o5U8PUety5/wqOVItxuCePWn9eg+gPLvaMavwmlYZ8+sXjlcz/sppksfwolxhZx+dWsZBGiyuRIPhHOeftA/E1lUx8U9A/sqVyZfhFMMYuB9c0ljoNFrKpEyfCOccC4H0zR9ep3L/sqRKPhJKBua5H51lPHxTBZVIsR/CGYpvFwMfWiGPg9zVZY7E0HwakkGTdis6mZRi9EEcslfctQfBFXGftq5HvXM80lfY6P7NaVkdF4R+FNjYO3nurketTWxrqRReGy/37M25Phzo8khxGoP0rFY2SjY9iGCpRjYY3wy0lsKUU/hUQx0kafU6S6EN18LNDMDlo14B6U62PqK1mL6vSTPAfixpCaJr7Wtq+F3dq+lyms61HmZ8tmtKHtdEM8O+Cb3WYBNECeOuTWtaqlLVnHThVlojdt/hZq7cAt7cmuaWJpRR0wwNabuWF+E2sk4Dv8AmaFjKNjR5bVkia3+D+qSSYaZhzyCTXLPMKavYiGX1L2aNGH4L6kwCrcN+ZrGOPhe7O2GXTlsSL8D9WLcTn863/tCg0W8sk0WIPgTqUjY881yvMqakQssqIlT4A6mz4Nw2D71U80pcmiG8sm0WrP4DX6XAR52wD61zf2jFk/UKsXZHWzeDofCujCC4TJZcg1j9YdasmjseHeGp3kU7HwFBfaLPdvHhipIOK1rYlxq2Zlh0qtNuxxVn8HbnVbl5hIdu4966pYxpWRbwPuc0VqX1+BFx9xZTk+5qFjOXVmccDUqSsxw+At4OBKffmkszhzHX/ZUbDZPgDqrgmO4IxWzzWnFXsZ1cr0ukSaN8AtVubryi546nNclXMeaN0c0MJNS5TZb9nHVTjErfTmojmajE7qOWTnLUcv7N2rEEl3/AFrSnmkWjq/smwz/AIZy1MEhmb6ZNRVzKPQ5p5S29Bsv7OuoJzvb9aiGZx6lRyh21K8n7PmqJ92Vv1roWY02hyyrQik+BOqIMbz+ZrmqZiovQ4Xl0lKyEX4Gap/AM8+9OnmMZPU0/s6aWwi/BjXEfy1Sqnj6aZvHK5WFf4M+JFPEZxXSsfQcSnl0trDT8GPEL8FSKyjmNGMiY5TNasjb4F61K2ZC35GrnmVLl0B5U5O1gb4CascBWYfnWVHM4Ju4LJ5JkU/wG1iD/WSN+tb1cypuN0c2IyqUZXJYvgPqjw5jlbPWuenmUPaWZrTyqVrkY+BGuF9rSN+ddU8zo2LllMp7Cy/ALWVGTK2KlZjRcdDN5PPlGD4F6mp2mds+nNcn9qxUrE08pm9yNvgfq+/Hmt14Ga7FmVFwuazyp2sPPwP1ZV3LIc98VySzKClYVHKHcWH4Has7Zd2NU82gqbsbzy2UdEB+BuqxuW3n9axWbprUUsBOMLo1vDnwr1SC4AnkOwHmnVzCm4X6nFHCVnPU9w+GeippNusCcAAA14dbESqT0PfweG9mg+IBAuwpHGfzopXuPGJRaRQuIRJoEgH9w1MpSWprSlakfIHxk0u4/wCE3uPKlPLcAfWvusjqx+qK6PiM1g6+L5SnoHg/ULsAhmOevNd1fEX0Rzxpzh7qN6H4a6rPjaX6eprlniacI6lrCVKkrlqz+EOsSNy78+5rl/tCEZXsezSwUpRL0Xwa1gHKyN+dbSzGlKOo44GXMPb4Oa8xwJGNZ08worQK2AqWshR8HdazteR/zqa2OptXRzPKqjkPPwZ1hgBHM/PXk1lQzGnfU6KeVTiRv8GdcQ7TO351vVx1JxuYYjLKnNdDm+DWsFPluG59656WYQ9psXTyqe5A/wAF9eX/AJbsfXmu6eYUXEqtlk5xtcIPg3rTMVE7ZHUZNcDzCHY4f7MqxGyfCPXPM8syP+ZrqljaKp3N3llScRW+D2uAZEr5+tRSx1BuzCOU1ENPwk1xOS7/AJmtpYuhYmWV1G9Bf+FU60FyHf8AM1lDHUeazLWV1Yif8Ku1lhy7/nWs8ZQKeXVHoMf4W6wOVL/nRHF0GjCWWVb6DG+F+s55Z/zNX9bw/kCyyqRSfDDWMcO/51LxdFomWW1H1GD4YayPmEj/AJ0oYui5WMv7Nq30I5fhrrgGA75+pro+sYffQqWW1N7jI/hjrynczuc+prGpjaLdkS6FWMeVHq/7EXww1af9qPwzPfszw2LT3bg9AUjbH6kV9v4c1KWI4qowir8t5fcj8W8d69TLfD3Ecz1qOMF83r+CP038NZEiA+ozxX9QQ5nM/wA68ak4s+h/DKSDwbGGUoDB1KdaKyviEz5yjKUcBUi9L3PG/iPHvkmP+0cGunEK8DpyiVlE8K8d2RbfuODz0r5nFx95n6nlNWzR8+/GPRo5YHO3nnPFfG5pT54s/ZOGMU4VEfK/xV8LecZGVtrIcoRX5tmUHKLjY/oTh/MFDlb2PPl8Maq0p3F2APFfKfW4yVkz9SeCkoc8epZTwlqUowIWyelSpxerZzQp15SsmypqfhzV9HXz50YD61o8RSlK0WddfCVPZ6szjcSzuFEjD15rSM+U4IRhT1bO2+Gnguz1/D3MuDu7niuLESnfU6aFqy0Opu/A2jWk/ksgJBxmuCeIlsmehToJblKXwto8WSEH0zW1KcpPVmlXCwdmitdeFdINuZ/LXPoT0q5zmp6EypKNKxz11oUGSqKMfWtIYh00eNPCqcj1aWEGNdpIryaSi56n0mN5vatItwWRNvhieR1rCpNc1kaUYXRLFpmUOemKwnNJmjppFi00v5sGs5Vi1CLRKdKy4HT8Kl1bgoRuTx6QAPmH4VPtbGns0tSSHStpyFHPtUOqi4xW5LJpvTcMc+lJTu9SVFKRdttOH2bGB07Cl7TlZq4xSuT21iCmB/KspTdyIxTLlpYbcjH6UKcWbQo3RYFksPzAd+SKHO6sgUPZyLENup4x6c1lzNHRGVx0luG4ZeQO1EZe8bNaFe+URwOT/drWpHntYwad9D5p+N0Bl8TFkx96vr8lpyjQ1Pk80nGNbU6n4W2bx6Uuecis8fJe0sbYTllC6PQbGyHloxXqPSvAq1L6HtUrKyNa3sEEZLDPFc3tJLQ3nFRVyGxtl+2lSc5PTFU6bavc56UeeRs21pGkw+QY78VE9EdtOPLI04LONlPyAenFYc7RpJWdwtrUCc7RxUPuQpRehZFuFk2gde9DbaFdOVhFtD5wkznB4q4pA6VpmL4zszfkRYGABxXRhfclc58dT54WHTmDRfCzq525j4461o2qtax56p+xoPoY3gJxeQuwXhiTzV4h+zWp3YBynT1OkSAJNnaPauCVS+x2wUYy1LTQbeq9elYXludVtCWO3/ck5xxQp8zszFtK9yz4WtVN3uA5D8mumy5DippOsdStkuThc/hXFOT2PYilEnSxymOOlTBu5p0KlzZ7JOneqm1YxcrSsVrq1JTOMYrNM0eqK5twU5WtoOyJaujOvLYAkH0p2uzit74WVsGX5k7UW5Tq5E1oOj09ftBfYMZ61m5NoItXsWprBNowg6dxTjN2NHErfYVB4GPpUNu5HOrjktAWzt/CqbfLY0S1uSLbIGHFRDVlNWINbtFMOSMcd67IK+h5+Jb6kGmwAwnI7VnJcrN6NlAlS1AlyOv0rOUrlRmnIsPaqyYb05ojJpGs1pcotaJ5nAH5Vm02zOla9hJbRGIGzHPpWik0rXHNWkRtaKAQAOawb1KTUVcWO12jn8TU6sPdmx72qMhOPxFVFWd0KpG0SpDbKsjEKPxrodmtTlpwi2dX4UiJcL7VlJRTOymrGZ8RE23gx61rRaR5mNbdQqEH/hH5f9w9fpSnqx03+6PlD4sxtN49kCjjca+2yam1gj5HG1IQxl2bPg3TnRVI79qvEzib0nGo7nf6NYZiHGa8atNJ2O+mkdLoulqSGK8n1FcE5I9LDs11tYoziSMe3y1hKc7WuaSkoyLljYRTcmMYx6VjzSizog1NCSaZEZSPKX8q0lUdiG0pE1tpMO7mJRjsRWSk0zoWupDf6dEH/wBSv/fNdLcpQOaqJDpsBXIgU/UVz3aZpTalHQlbTLcpgwr0/u1rGbtuElYg07SYBcljEvX+7UO9jGCUpahd6TbC4O2FfyFaOb5bFNqEgk0yEAful57YFZxbT0LTUxl3pUCxgiFc/StfaSa3Mp2gyOPS7fZkxL+VZ3d7mqScSIaXAW5hUD6VUqjfUyVrjZdJtgM+UuO/FOM5dGXZEEulW4GPLX8qpVJdyJJFdtPtySphXgd1q1KTW5hNJakDafb7uEXHcYqVKSe44KMtSOfS4Uw4jGP92t+eTjuRW90rSW0ajoOv92lST1dzl5E5HqX7FOlJP8Zr3UhF/wAeejMA2Ohd1H8ga/ZvBfCwq8QV67XwU7fNv/gH8ufSlxrp8N4PCp/HUb/8BX/BPtLwvFmZAfUYr+m6TXMj+Asc9Gz6H0NHbweqySbituAoPGBSnriLpHztNyngJuTvbZeR498QIw0swzkZOc111fhsdOVy0jY8V8b2gJcjv0yK+excdT9Jyupojw/4nafHJHLuXse1fK5hC8WfqWR15RlGzPmT4p6YFuJVVOue1fnuNwkuds/e8gxadJXZzHhaL7bogYRqXgkMTkr0x0/TFflOb4Z4HM5Rvo9Uf0FkePhjMriusdGaNtaBpQrqMA/3a4ZVLLRnq0qcd7GX8TLS3OkZCgZXpVYTm9vcyxn8PU8sttLd5SQeCfSvp6fK1dniSwsKlNu56D8N9PlsogVlIPXGa4cdWjJWNcBhpUzoLi0nuZCXkOSeua8SpKy0PTlCXQrXWnMCFHUVpGs1Y6acW0QS6VJLAVOcEVusRdainTbVjJutEaFG5p+0jKokcFSiqcj0W2tTKFFeepcsmezWpc9Vl7aqbYwgyPUVk31OeMnCROkWEz2rGqzafM1ctWUfPK+nNc8iYbkoi/ffMPpU30Lt7xOEbbhl461LlqarYlii5Ax3oS5i0rK464g55HGacU0yGW4IyLXB9Kyne5bTcSazhJTntUSbuVTWhbtYyXwB6VUFodsI2iTXSEHHr6VRhUXvD7VCV5HYVE7WOinFOI8qfMxjGRWcfiNraFTVVC2r+wrp6Iwe7R80/GVwfEmCON9faZN/u58NnbaxFjtfhfGG0uMY7V5eYNqqztwEf3aPQ7CD92gK4x0rwZXctT36EE9zUtoT5e1hgEdTTejOirFKBWhtWS8HycHrW104WOej7s9DYskWSXjqK46rtojpablc1IUDR5AxWFmzRqTQWsRWdjircVymFveJljZpSB6d6zbsaQScx7RFQWxj2FXDc65WSuZN1ZNd3Dbuv0rV1OVHJUXMzH8VaJfahbLZiUhcYwK0oVUpXOerRlVjylvwb4fGkWnkuO3TFRXcqsrs0w9KVHQ0po9knPGPWslE1TtO5YYboQSKmavodq1iSIMwt8o6Vza3OepdJl3wgu66wwH3q6EpclzloL96deIeeRiuaex6kiykAKgFQPSpje5rDUoahEQ5GPrmqZjONpFV0JiyRzioBNlQodprWGxstjMvYzvbjqKq9mcMviF09CqgEelEm7HZTs4lgQlLkntXO2zF6SLU0ZaMEgcdaqDudMNUVJYtrHjtVnPU0mJbrk8jtik1c6I6of5ahge49BUU7ph1INdXdF97jvXXA4sYivpyARbcdqyk2VS0pEgGLjBHfis+hK0mWZF3RcjHHWneyO56w0M8g+ZtwPxrNNnND4wljZeMY+tDkbVfIbsJGMdRWWtzJJsQKwHPpVJF0/iHsn7pgfTmtkVW2K1uuZmBHANa6NHNSXvM6bwsCsgUjnHWsLO52KOhlfElh9sX6itaWjPJxy98qbQfD8v+4f5VM22wh/BZ8qfE9B/wnkn+8f5193lF1gT4jHJ/XDpfBsBaNOPpXHinJyuehhl7p3+kW5EeMYFeNWbvqepBHUaDBgKNoPNcc2dlLY2G0sSDIH41ldm0oc2pZsLHy02FRj6VL3NoLlQS2xE2SPxos7Gbs5XJII1HJxzQlLqdMG3oRaha7hyO3StuZNWIqr3SO0iG3bj2rF3UjOk7MsC3JiOB0HBrWLujWpqivYxf6QcevNKzsc1O/tBbi3xcMxHSh7GlZWYySEswAH1pR3CjuF9DiEDHb0ptkV/iIYocp0qQhflI/s+HzjtzQZPcWa3+XcV59aqJo20VZbbPLL+NNPUzV2yq0J3HK4Hat47DqRsis0Z3kgYwemKdtSKbfNYbdxHyxheMVd7JmldNRM94TnHSqjNxWhyQ+I9x/YX0fGpeItcdPvNbwK303Mf5iv6C8EcJL6vi8S+sox+5X/U/ib6VOYc+a4HBp/DCUv8AwJ2/Q+sPCiD7VGT/AHhX79SV5H8X49/u2fRGnrCvg9JIZA3+iqGIA4PpUa/WOXzPGUYLLHKD6anjfj1N0shB53HtXfU1joGVu0UePeNbZiXyO57V4eKifouWTVkeN/EKzaSKUFcj1xXy+Nje5+kZNU5ZRPm74s6U6ysxQEc44r47MaVkz9q4fxCaSR5j4Kkaz8U3uhSnCXcPmxAnjevX9D+lfknFuGk4xrr7Ls/mfvXB2M990X9pfidHHAVkwR3718epNn6NSRz/AMUYyNMAzjivayxpz1MMbZ0Tg9LiTeBXsVNDwIStdHoPhO3Cwqy/pXiYiq+Zo9bBq7NgRorFj0rz6kpnfPkTsQXS+Y544HfFEbJGVOfLOyFjtwbcEp+YojP3rHXNGbqNp5kb4H4CuiM7VEctWCcrs7DT4sRg+1c0nqehL+Ix93G3mhQ2OayjqcT0kaFtGTbAHj3rKpds63ZwRZs4sHkZHasZGcYpMsRwkyEkc1F9C+XUkWE7jxxU7s05SSOMbh9eK1Xuo6OX3B1wpzyPShNHO1rYuW8f+jZ29RWFR6nRyrlJrRP3XI/OsZbkRLFgnz5I71onyxO1bBesVcqRx9KSd9TnavMs2SkR/MOe1TJtnQmox0Gyj95j9KI/EaPYraqA1pJ/unit3eyMHq2fMnxnDf8ACVY/26+0yXTDHw2cx/2g7z4Wqf7Jjbj7ory8xv7Zo9LL43pqx6LYRsY1LH3rxpLlZ9FSjFJGjNKbW2zg8jrisdJTsiqy9x6lC2kuruXgFeeDW8rUk4y3OSknubmj20kMeZDk+prkqe/LQ64SvubNqh8pge561m5cpvzJIIQFlYGocm0cz+JksKGSfkcZ6g0krm1BLmuWLyMLDtHBI9K1iXWujNtE3St259auUbq5MWm7kOpWrGcMc8GiKSRFSXLInt4QsY54Heoc+hvSXMrkV+mx844BzTT6mNWPJK4+JzJFjHGOKUtjejJNWJohi3Yk965pfEKstGX/AAaM3fvu61vF+4cdBfvTsiv7wcfWuWpqeoy1Gg2YpRNoKxR1SFuT+RFORlWWqKCjdCcjp3rPqQiqEBJGK0baRvsjLu1YSsMd6Iyu9TlcLu5JZRgN8xxmrfY0jO2haljO/IHGBUOOg+XmdywV+QHHWpjozeCSKV2PLwGPb86blqYVY3lcZaksMBeKTlY1pqyJGBDgEY5pRG1qQa2v7jkdAOa3g9Tlrq7sVtOUhMkcVckhNWpgxxcYOOvSs1EiKvI0PLBgyR2rGejO9L3TPlUrJ9elEFpqYNJMV1DJz7Up6Ie5EEIO3AqUluaxS5RMH7pXn6UX1M425xw5jY4PA70+bU1qrQq2WXuGGO/et3JKKOSkrSudT4bTEorJvU6k1bQxPiSh+0qSckHmtqVtTx8YnzkMMYfw9J/1z/pWbumaUo3os+WPijAV8fSZP8Z/nX3eVzX1KyPkcxgvrdzpvBkeETA9K4sRpJs6MPax6FpEY2g4rxqrdz04JHTaLEVAJXvya5JnXTR0NrEWQj2rM7IomWMRDgjp3oB3ZHNC0h3oOnWq5+UpU1a7CGAxMN3pWTcm7F8ySHTRrJ8v48VaVlcStKOpVaF4ZOcYOMcUrqWphJWehaWL9ycnPHNOL1sauzgU7EA3ZX/arpS0MqaXMTXaATEleMc1jJq5piFsRxxiSTb78cUk7EUVqM1CPAI29BUJ3JrayI4IjtB21fQcFaBG0YLsMfnUmSSbFmjIXJXtWiRrUjaJXZPk3EChL3jGCTkU5IcA5HTpgVurIuqroolD5hB9RxV3Oek1zjrpD5IyOMVLkjorfCZ5j559e9KL0OGLPpL9irRxa+BLrUNuDdalIc47KFFf1b4OYV0uEfaW+Ocn92n6H+eH0ksd9a8QalP/AJ9whH8L/qfR3hS3H2yIE/xCv1yiveR/L+Pk/Zs+jtNSyl8KwosCBltMHYuN3Hf3rmqKUcS2n1M6UaE8rVoq6i726+p4r45T/SZdw7ng16cneJ5uXNcqPJvGNsWD89+K8fEpXPvMtnax5L44ssrKNvUHtXzeMhe5+hZVV2Pnz4saTujdivrmvk8wp3R+wcO4i0kjwPxA8mi+ILfWYRg20wJ916EflX59nWFWJoTpPqj9pyXGPDVYVI9Hc68sjv5iNlWGVPqDyK/JIrlbi+h+40aiqQU47NHNfEx92nDPp6V6uXztU0OXHu2HZw2lDLjPrXuVHeLPCpp2PR/CMObda+frRam2z3cDG7NeWDa3C/WuSb1OqtG0xi2oI3HnNRuOlBXuOFudhT2pKXLI62tDPu4AVJxWvP76ZyYle47HSWOfJB9qmXxHZLSpIffg7gR3706Nupyte9c0NPQtbAOayruz0NU1Yt24/vCuRvuOJYgX5v61D2LsSouH96RoSeX/ABgdetDk27Gy1iNkRmb5RwfWmmzO1nc0LdCbYAelZT0epXNdEttGQm2odxxRZsY9pJbrVWlY3c1siG5fdckdxTUHYasW7YnAJGOKcvdQS0QyVf3vGfeoT1NW7orako+ySY/u810LZEdz5o+NSL/wlO7/AG/619nk3+7nw+c/xzuvhYpbSUwP4R1ry8xX71no5Z8CPSNMXKJlegrxqklFHvqVkjRubZpbfB9OBXGn7xTXOhuk2ojdV2cbueOtbtXWocisbSQBQdq8duKyk0loNKxes1/dEGuaVylZsBDumJZc8dKpK61LlT0uSQxhZwh4FO6SsFJqMh+ozI0e0cYoTkzSu7rQoWGTcEMO/StJcyRFCKTLGrQAgOorFSbdiMQve0IoR+6yOlLVM0oP3Srqe7yySOR7U1J3HXjfYgsJpSgVyOnFVOTWhFKUYF+Mny2TvWfK73NKvvRujR8Ggi7wf79dCj+7OOlpVO18vLHmuSex63YsxFVUZHPp61EdzoS0Kt+m6Mj07CiSZnUimZYTaSDUnMtyFkw5AXjvVTeh0vSJmXKgSnNZxu2c8gto2lYqPrXQ5KMdRwhY0VgULlhyVrBtyZrJpbEkcYKYI+uab91ChJlPVLRVUMByD2pRZUtRlnEAMKOKfLcy5tQuFIYqD9TVQvsaxdyvqoJgyR/COK2ppp3OXEO0irZ5WLAPWrk7F6cgwlWnAb161HOrGMW+fQ1UB+zDjnHWueTu9D0UvcM6dSZCaqOiOa92IAxXB/E1nJXHKIIoGC3pxSadjSm9BrRNnn9KhExi+ck8jEBHtxxU3szZlOwjCXBPbNdkVzQRyzVlodN4c5lABqXZF0dTG+Jhxc5963oL3tDz8w0kkV7Xnw9Jj+4f5VlWlqVTf7lnyz8VXH/CfP8A7x/nX2WVP/Yz47MZXxdjpvBAzEmPascS9Tpw2yPRNGHy4AGcDFeLV3PThudXpMfy9M5xXJI76aN6zUqpwPpmpZ1pIeIN7YYdfWplK2iLaWyHiMKMe9ZxjKpLlirvsJu2h33w+/ZX+PXxSu7GHwX8MtTnXUifsV3LbmOF1BGX3tgbRkZIr6nB8G8TY2CnTw7UW1q9EEcLiq13GDsjQ+OH7J/xW+CuoJJ4g8HXMGn3l79l0qWSQPJduMLlUHzYZgdvHQivQzjgjOspofWJRvTbtdO+p2vLcVQpc0tbbtHmWuaReaPdy6dqdnJBc20zRTwTJteN1OGVgehBBBFfFTjKE3FqzR58rLchXHkfUUr2dxLYoaejfb2z/errg7xM4O1SxZv4yXbnqa5m9TWuhdPgJP8A9am07E0UkR6gm+Ug+tQiJWlIYkexPmX9K2lsXJWiQRp5kp3fhWaMI/EFyu0cjBArS9jevpAqzKdhAP19qIvU5ofEV3U7CdvWqk3c1nsZ6xu8x9DVp+6YRjyyuSXMY8rGO3OalO5pValAzZIwuSK0iklocG6PrT9ljSv7P+FelKVwZkeVsjrucn/Cv7R8OsK8FwdhKbW8eb73c/y98Zsw/tDxAzGqv+fjj/4Dp+h7l4Qh36hEB/fGOK+6pr3kfhuYStSZ9Cp5ceiIRbbQ1sM7DxkDqa4226u/UnnjHLVJRtePQ8Z8dwv9skJIzk8gV6k17p5uWS9xHlvi22B38da8nERPuMvnseWeNLQssnHUda8HFQbR93ldTVHhnxN0wyRyBh69q+Wx0bH6tkVflkrHzv4/0kJcSrs4Oe1fD4+DU7n7JlddypxH+C746l4fiDH95bEwyZ9un6Yr8jzuh9UzKfLs9UfuXDeL+sZaoveOny6Gd8SY/wDiVjvWeXSvV1PWxqXsTiNGX96oPrX0M9Inh09T03wen7hcj6V4OIvzM97AGvcqRwRzXC22zpr/ABBBEWizisnLlbFSaQjJtUgjvxxU36s7I2ZQnjyCSOh7CrlK5y4hWize09MRDPpV1L8x01NJsddOCo45HtVUk0rmKSaNHTCTa9O1Z10hW0LtooLYNcctjSO5bijy/K/hU3drHQ0h7AbxzUttCvYlkX5QSMZFQneRrH4RChMYyK1joiaj7F225g+7xWM3eQQi5Ilt9oHHNEYmzVtCSOXbnd09RWqaQpe5qQKVec89+tNy0Kppz1ZegXGB3A5Nc85XRrOPujZgWf8ArSi9RxINQj3Wkh/2a6L7Catc+ZvjaCviccfx/wBa+0yZ/wCznwuc3+sHc/CbLaVH9BXmZimqrPSyxfu0enWKhLZVK4OK8GpK7se02tjTs1EkRDL9Kwsr3NYSaRNp9uBNnHGetOVV2sPmbZpupYkYx0rBu5qotk0W6HK4x0oauGzJUQEh8U3JctkbT+G5HGHkmPrntUx+GzMqceeZLcW2SFkOPrWkUVUg1Ipoqx3O0DBz1rbRolS1si5cgSRAMB061yy+IucFYgiQKDkAccZon8JcVaNyG+VZNyMBzis4pha8ioIBCgyuOPzroUUtTKpFJ6E9kQ5K/wA6cnZFwi5o1PCw23xwMfPVRleNjnUbVjtkyG6fWuSpueolZIsquFAH51mtzdP3SCQBoyMdqp6ol6oy7hDFKeOvesznatIheMbScHpSk7s2voZVxHvmIFVB2MZJouaZpdxcTJBbQs7t91VBJP4Unebt1FdQV2eofAn9lr4p/H7xRpXh3wXobeXqdw0S6hP8sEQRlDszdMLuGfrX0uRcJZvnic6UbQW8mNU61WnKpH4URfG39m34mfs/eNr3wV498PTwy2czLHciE+VcIGIEiN0KnHBrfOuEM3yafvw5oPaS1Xf5M7pYOpCnGotYvqjz3VLJjHkj6ZFfJNOErM55qxStYmQYI5703K6MYx1GXaEOc/rV09maJWdynq7ZhCjriuqiuY566TZTswfLxU1JWY4Jcuo0Rf6SGYkc9KzXvIm/v6GurHyNnTjvWcklqdkW3EpMPn5HHrWSZztNO4MpUEnv2qm1Y3klyjeRgd/Wjczp3HFCVzxU6JnQl7w9RiNl9PWspK8hVNEUoIyZ2PfdXZDSJzXvG50nhtMSgiom9UaUlZGJ8To/34B5wa1otanlY+7mV7YAeG5c/wDPOsJ35iqd/YM+V/imP+K/fjPzH+dfdZSn9SPjsbF/Wm2dV4HBEKfhXNiXqzuwy0R6Joa5+Ujj1rx6q1PUprU6/SV+QZHUDmuKZ3Q0Ogso8g4HpmsZao6FbqPKqJdh4J6ipUerLv2Po39h34NeDdXk1T40/EHSrfUNO8PTwrDYXhxDI7N8zN6hVDMB3IA96/oDwd4UwmJpTzPERTeqjdXtZbn0GTYGFRurUTd9Fbv3Pp4/8FFba61P7JodraWul6ezLbRWduixxuoISJemMkZav22eW4BR5bt38+p9JTyjDUab523J73Z5F8Xf2+tO+I/xF8M6dqniOzbxhbTSz2WuXUBuTYXMvyiQRsdpkUH5SQdpIPWvNznDYCjlUsLRtFtaeVjz8fDA/Vng6N1B291abdDwX4//AA9+FvgA6pptz4p1LUPE3niTETpLHDubLPdSgsDNLywjU/KCM85FfydxHlmHweKqONRylffp5r1Pj3GHs23Fxs2rO3R2T0b0e6623Seh4+02ID0r5eMJPcwjK6KOlsXvmz/ertjHlgQo/vLl/VF27sDvXI2uYusx+mL+63kfjTcrBR1TK1wrPOc1KZk/iHyoViOPSqlK5rN+6VoY8NkjvQc8dHcbdKSpP05oT1LqvmKkiEr05qo7mcNyGdcREdPWnJalTM5AQ/A59cV0QWhLRJdEmLBHIFCirky0izKulba2D1FVFc0uXucFaapUXN9E39x9s/BrRjpPgrStOC/6qxiBHvtBNf3hktJYbKqFJL4YRX3JH+RfF+N+u55icQ/tzm/vkz1fwXATfxEDHzivZpu8j85zKX7po99haJtJjjIH+qAbI9jXHKMva3Xc9DDwpSy6MZLXlseP/EG1EV/IFPGTjjFetfmijwsC1FuK6M8v8UW+Sx6H0rzcRE+wwM7WPM/GNqy7yRjPt1rwsTE+3y2pqjxn4iad5gclfXpXzWMgnc/S8mrWaPnz4maT5czsydSe1fG5jR1P2LIsRzwszi/AU4svEt5o8jYW6i8yIHpvXr+hP5V+X8V4W9ONZfZdn8z9m4NxiVZ0n9pfiiT4jMDpmD2r5vAfxlY+6xz/AHBw2igfaBn1r6Ccm1Y8Wgrtnp/g07rdPTvXiYu6bPeweht3EIk4HT1ry1LU6J3lIWBCsRXHSqlFbjceWJEELhgtZt2NqL0KV7GV4FOLuzDEu6ZuWuFjBLdq2qS947K3xMYzBnAxyema0pv3dTmjF81zX0yM/ZjgVzVZ3ZvKOly1ZKd+AO/XFc71Qobl6IEEnHPrUtWN2mP8os2SetZy0ElckKFkAOMipWkjZaIWRCEAH4U9WzNq5ZiUiEAk+9VFO51RhamPUhE47Hir23Mk0ndlaS5aRmRW4Jwah33sTf2tQs2sAiGW56Go1kb35VYuwHcc4qJq2hb+Ajk5fG7OP0pQ+IcdGR3qj7NISOdhrp6IGtWfM3xzXHinP+3X2WS/7ufD5yv353XwhTOlJj0rzcyb9qz0cr1gkenW6nyE6fd614E/iPbkrI1dPGLfGPxrFgloWNLXMzFl70nFjp6yNCJS0+GxT5bHfBKxJeDYMjtii1zmraSJLVzJD8opTjrY6YWnALMH7V5bLxmptaOoQiozF1qZoRwuOetKDuTiE+hRso5bqdtxrSpOUFZGVOK5rsv3ERVQo7Vild3ZpJ3ZEUbGQKc9jWXwaFSVGaTB6Y61MWkjKEmQ3kEoXAOPrTU9SmuYn0WAKx388dxQ7thGXLoanh9f+JmQBxuFWtEcsZXr2O1GMgdOnNc82z1X8KLKjMZBH4Vk7otPQgVcjkdKE20KL1M/U4irkYqrEVFaRWXmIgmoadynojLlhZbv0BNaxi0jKTvsdn8NNO8Zafr1l4p8Lz3NlJYXkbxarDGcW0oOVJboDnsetehltCt7ZVafR7i9j7f3JLQ/S/4WeK/+Ed/Y9/s7w1o9nYeLtSa51C6udPgCLeoWHnsoHEZY4YqoA7gV/VHC6XJTqOK5OXVW+13Pq8swtOji4VJNOmkly+fR+ZyHw9+P+meMX0zSfilJbarY6fvt9Vt9QtUlEwIZUiYsN2xSQcgggnuK+srYOhicPVhyr3tl+Z3YuFOaqQjHl5trfn2u9jwv9rX9mr9nvRfDdz4p+GfxjsbjxEIVu7vw3a2Rjt41b76ROTyVPQelfjfGvh3TxWHr4/BYd0eTW117yXW3Q8itgauIpSqex9morrJO/n/X3HycsKhskc5r+dkpbHgxaILyMM/I61vBWiVN2VzMv4mlj5bgVtSk07M5qkk0VIsQLhzjPetZxTM0pNCS6pplpIDJIM+hNP2b6ImFenCfLI1La6iv7TzISMY6iuWqpKVj0IzhylQqfN254rKxLs4j3XII+maGrBe6K5RgwHbtVpaChoTKCUwPx9qylpI0hJuY+NMRsO+Kyk9TSrblKdqhM7D34rrhfl1OWC0Ol8NgeeAQOOtZyepvFaGN8TYwbkfUVtRWp5WOj7xUiTHhyUH+5/Spl8RVOP7lnyt8UAf+E9fP94/zr7nKn/sR8hmH+8nV+BlxEmB3FcmJvqdOGPRtDTaBxxxzXi1XuerCyOr0lfl247DGa45O7OqGp0dgcIQBk46VLVjqhFtEogXzNxPGe/asas3yNI2jZH1L4LupPBf7I8mhy2fkz3d1DcW534aczFl6d8BQB/vGv6/8OcHiMFwlQjBPmkvz2Ps8LWVDBUXDzbPn3x74/wBL+C+iXOr6r5iW+iWsq29tGQfteqSkEKR325JNd+Oxry3mjNOLV9LdW9dO99/M83NM6q0sPKpzXb0R81fBfxX4s8XfGaDXvFF9MXa6af8Adv8AOF68A9+mBXzjxteVOdao/Q+OwuPxFXE+1kz6C+J+u+ItcaFbqOGyslzJDo9qDtjPeWQnmSVupZifQYAxX4HxDja+NxbTVld6L8zR1J1puUnds5NpN8ZxxXza3OhRUUQaOcX/AOI610WvC5zpv2hqaoNzEY4rz3uy56k+mxAWxGKbWhUFywuVHTMuSO9OKbVibXkPnB2ciiUbFNakDRkHp1q4pJEzSRFMu4HP4VDfvEW90qSDjOK0huRH4iG5UiMkDim9y6mxnpGd/I963j8JDauLcJmIg/kaUXqKTWxBpmmtqOr2WnKCTcXUaY+rCvVyPCvHZ5h8P/NOK/FHynGOOWWcLYzFP7FKb/8AJWfdvgyyWGBLdBwihQPoMV/dtKKhHl7H+QmaVXKbk+p6H4Ih8vU4mwMqwPSuyilzHyOPqWhc9se7W8s9wCq7KPurwK5eRxlZHq1MbDEUOZKzaPK/iDGXuHkY7juOTnJr01pBHz2AquU3fe55f4mt9xdc1wV1c+xwU7JHm/iy23K4Zs49a8TEK59ngJ2aPJ/HNgGVzt49u1eBioJo/Qsqq6o8J+J2kGRGJTpntXyOZR0aP1fIcVyHiesvPoWuwavGCDbzBjjuO4/LNfBZlhfrOHnSfVH6vkWMdCvCpF7NGh8SJYpNP82I5RxuQg9Qea/OcDCUa3K+mh+xY2onQUls9ThNJl2zj3NfSKmlHU87CwlO7PU/AvNogPpXz2NSUme/hlqdD5ZfOa8mWjOlx94Ux7IyO1aSehVaNooht1GCzVjJhRWhUvkGCSKE7GdePus17eAPAB0yOtazl+8Oup8bQ1LfEmAOe3FbJc0TKrGy0NvTeISD0x61z1YpO5MG2tSa0B8wjPesm0kXH4i6GC8r+IrNts3lK5JDyCSO/asp7hElQMZMY6VLRVwlGcL3z+VXAuMbO5ZC4gwBz3rbZHVJ+4Ub+/EK+TEcnPQVmtXqcE25OyJdHtJJCJpR17VMmtkdEFyRv1L04Mb4UHoM1UdgTuyzaYVcEZxWFTc6ErxImB8056npRAq3UbdAtbuP9jrXT0Qktz5o+O6lPEoOP46+yybTDs+IzuyrHc/B4Z0pDj+GvLzL+Kzuyr4UenW4P2dM/wB3pXhVNGe9NaI1NPObchelYp6hTSZZsSIpTvPBParlJ8ug/djLQsRzfvOuKhzk1qbUql3qOu58x5JJ4qU22KvFt3JtEvk2FZCD2FObaNcPKMYliBc3JZSDUSnJQsVdc1yHVna5baPXnNRG6WpDbnIXTYjC/Hr1rW11cLLnsT3bkjPf3rOUrbETspEYGU4HFQ22dENaZVIKyEkd+lVbQwXxDbwExggZGMgmpimmbok0kFCcjAHetm7IxluX/DYDav8A8CoSbRy02vrB2zJtO4+1YPc9m6ZZQAx9D7VjO4m7EaLhyw/lSg7McGUdVj65yeBWjY6q2ZnxgBCT3pN6kSehRkyLjcRnBq27IzvbY9N/Z8Hiy98faZpvh3xFLpceoyG2kuFAaKcnkRSo3yupxjaQa+k4ZwdbG45U4ysmdlNScLn3H8efiN4R/Z/1r4Y+CPF9mdPa70VpNWh0qQxrDJOSUcLyEQcEg8Y4r+n8lw8aOW6vrZdNjbB4qv7Jyi7q9lf8THl+Hfhy7g1PxTbSW1sIJd0lvG+5W3jPnI2MFCOvpn2492GLXMlbpuevCtUnUjTim2z5E+Lqj4f/ABG1g3mmvPFHZrBYNeXZwzyE/wCrXILADnkVHFeJWD4YxWLm3pBpK+l2dGNxapUpSm9WrHl8gzkHqeeO1fw8m3K7PkqcPduyKZdynJ6dK1NG7qxmXWwSeTx14zVJpHHzRjJpmNr8r2doZD8oKn5iK0Sc1oTVdqbaPLNa1/ULzVjbxzEjeMMK9aMKcaOq1Pnp+0lV5j1bwF5zaGokJ+51PWvIrcqdz28LKdSOpoMmHI965b3kdyXKrCycLnFE2b8vuEDEnAHrUxZjFEkXA5HXtSmjaMfeJ1X5GGOo61hZ3NKiumUYlIuGGOM9a7IbHHF2VjpPC+1p1DHGKie5001oZfxMjUXinI5Irek00edjV76M8bf7Bl7fuz/KsqmkgT/cux8r/FMD/hO2IP8AEa+1yl/7HY+Lx7vijq/Aw/dJ+Fc+KTTudmGWiPR9FUgDjkDnNeLW0PUjsdTpfyjYOvBzXPy6anVSTZ02lwkrlv4h1FYVJdjthex0/gX4W+Pvibrn9i/D/wAKXWrXSjc8NrDu2r6segFellGRZlneIVPCQ5tdexpGjWrS5aaufQfx08Pa5pXiHwr8M9XgntLiHR4DNE0e0QMics3rtG4/Wv7Ty2ksuyGjSmtYxX3o+xkv7PyyLl21Ph39rrxhazeKpLrStNEul2TtHZG6YskDZJe5kXgySsegGcDHpXw2ZYl47EuXT+tT89zDGRrVnbWJ5p+zhrKz/GKzuwHu08wAXEybMfQdh7VhWpQlg5uOyRx4K9WraGx9KeLtNutbjuNW0TSJWt43P2jULhAAzf3FLHn6CvwfNMHWqVJShHrv3PUhFRlynIhMR7n7CvmU7MU5NOxFpKj7cfrzXUpXpkU1zO5rXiF5QpHOeK4HbUp3uXYoxDaZx161V77nS42pGey7mPcZP4UQ0MI6yJJIwIwO9EmazVkQvkDJFZ3Zg1cgeM4we3tS2HbQp3AO4j6VtBmS+Iiuh+54H1FH2hz3KESFnwPrnFbr4SZJXC4TGVIxx6U49zKW5s/CTSv7V+Keg2ZXIF8JHHsuW/pX2/hzhfrfGuEX8rcvuVz8j8csweXeGePnfWUVBf8Ab0kvyPtnwjAWiVuhIr+zYs/yuzGa5meg+Bo1j1WIsuQGGRiuujHmufKY53geuXCSJZvHDgblAHesI6z1PQxLqRwzjS0ujzDxlAwmcSLgjOT616NvdPFwL5XY828SQAFgPfmuCsj7DBzvY878UQHD8Y968bEq6PscDLY8t8YWjkuMYPpXh4hWR91l1RKx454/0sSK4I9eK+Xx1LmTP0jKKzVmeD/EPRyHkUD17V8fWo++freR1lJq5zGoag1z4OjgmfMlu5ibPoOn6fyr4TMMJHD5tLl2lqfsuExLxWVRu9Y6HPaRGRcDnqe1bVLKNrnfhJ80LI9V8CqRapn0r5jHP3me1hkdKhAOT09a8pq7O1R/eDpAfLOfy9aJdhYjZFVMhSFH4VnLciiVb0EIcn60InEP3WbdqAsYU+mK3cFKdy3U5p3RLHAxYELV3UFY1nqjStF2jHr1rmqTuZR1ZPFGF5HXHFZNrlsaJWehYjDN+FZy7G1OPMyeMbEGPyqZWKasOTIP40uli6ceZj5SVIb2raCsKpbmSQXuoLb22Oh7j1pOPMx1alocqM+wt3u5vOkOR2zSlK2gUoWV2bVo4j4xgA9qXLyop6q4skoaXaxFSmTBcxYgzjjgYHNRJq522UYg6rvJHepi/eE2RyD9y4I/h61u37qBM+bPj9GB4iU9Pnr6/JHeiz4XPH++O0+DvOloPYVwZl/FZ6GVaxR6fFkWycfw14NXc+gnblL+mSMIuawSuwpLqWWLI+V9jmtlBNGctZFm3DSgSA9etROFtjppxSRdFtGItpANZxjZ3KrR90ovCIpv3fyjPaupOPLYwiktjT01mCEsefWuWra2h0Qg3uKYFaQu4HXioSuU1yahbg+aexrV/CKGsri3CFyVH51ildiqRfMC5VAGAocFua09NCrMpWXBGPemmrGM42kNeMlBkUXNou8SazQRk56U07mL95k/hjzTq2FXjdXQ2oQuYUqf7+53iQgYJ9OledOTbPWukShty49uMChJtEvXYckWTkg89azejEtGVNUiwmfQU+YqbujIlUqSuKSbZlK9yrMqtIOCfm7V0JLl1KUF0Pev2JI01P46eGtIg0eG5zq0QVYoiVbJAIlUjA4JIYdD9a+w4S9r/asXCLtbex6EJ044WfO9kz1r/gqv47hu/wBqbXrLUPG19pWm6Vbx2V7BprMjXFqkYHkZUHOSAMYxkgngcf0tTpxw+R0HKN/teafcyjajk9Fw66v7zf8A2NviZ4M8beEhpfhS9v5NItQtvHFq7hrqzzwUk6F1zznFdUcU6qi1vYv61L2V1ueBf8FG/CGk2nxS0LXbeNg0Vy9sAE4ZvLznOOnUj61z8Vxni+CMTTau7G9bmng1KerPEWQgbvzr+NZLllY86LtoI8ZaNsA89KcpWQ7KRzmqJcfbS+Mbf8aqFuU4atNxndEeuJHqGkeRs3HaRtxW1FSvcio+enY4fT/h3cxah9rnQ7C2QD2retW5vdTOCGHs/ePQtEhSzsxbxjAC4zXDODR6uHjyxsKfv59aw2NZS1FxuGOMUpNtHUrONiMrhixBJognY53pIIs7ifWqexvB6lmOM+UxwelYydmby+EoRhvtDL2Jrog/dPOUbO50Hh3KzCs5XbOqDRlfEckzISeR610UUtTzcbfmRRU58Pyf9cz/ACrOprKwJf7Oz5b+KKH/AITth/tH+dfa5SrYM+KxqX1k6vwQoWJM9wK58Um2z0MKro9J0FSzDA7V4lXWR6cUdRpCIzDAzjjmsamkTrpJ20OstLeaG0F6I22dFbHDH0rnjTlPRI6veWx9r/sxXsnwW+ANqY7WTTtT1+Vrm5uIn2XN2qYIiB/hjxwfUnjnp/Xnhpw3RyvJIOrFKb95t29ba+X/AANT7nKKGEwODVWtG8n36X2OK/bB+J+v+HdBk0/xKou/Eup2hkcPiY2VsVJSBTjKyEcnngYr188x9LlcaTsvI+U4gzZ1ZOMHaC6dz8rvjLea8PHMt7r1jdz28zlzb3HiBZIxz3jiIKduOor8+k68qq8+zPzrETlVqpR0Rvfs1aZ/xc2xktlQKZQ2xmOMenJr3qlN08BP0PsMuhGjS1Ppn4oaNqutzPrHiWfUZFgCixVohb20K9gqnBbPqBzX8+Z5Kc6sueTtcULSldM4l5n2bX49q+V9xsmV7sdo+ftpfb3rsX8MdF+9Y2ZBvnxjjPGK5GtToULT1Ls/ywBMc4qG+iN6vwFCNDn8aIvU54qzJZh8uPUVbLm7orSYxU8tzJK5E5BzxxQ0S3Z2Kdwu1yCOe1VBaCjG7uQXH+px0oXxEztzFWFArgsPwrqfwkyGTpufHepTsjJrU7r9mfSftvxTS7ZeLSykfnsWG0fzr9c8FsKq/FVSq/sU397aR/Nf0ocw+rcC0sMnrVrL7opv/I+vfCy7YVHpX9VQP83se7yZ6D4BUS6sq+Xu6cYrrofC2fL46LlFJdWeq3Muy1bjnCjAFYxXvHp4ut7LDtLfRHmnjPfJPIzsSQT1rutZHiYN63fU848RR5LE8e1cVY+twb0RwHia2yXB9OleTXjc+twU9rHmfi+zdt4x9Aa8fERS1Z9xl1RKx5N47tFhDGXqc7R6183jU5n6DlNVzaseH/EbSZMtMY8H+7618pi6ahJs/VsgrxUrXPJfESXNjHcRCP5JQG+jCvhc7pqpUjUXTQ/X+Hq8anPRb3V0Z/hmJpZwZSQc8V4+Ik+TQ+tw79jues+D41S2UL0r5/ENvc9vDS5nc6CNcHkDmuE9BbizkCPpgkcVk3dmVd3K6AKpyO9TLcVKNkU7s7lYEfhTtYivbkZs6eDOVc/dIziuiclDQunBQjqaaKgXpjjisYqUncpvm0LECHBIFYyVmSlZlmNdqg+o4rNs0VieCMhsnj6UX0ub0HYlK4OO1ZNhLWQICOetbU1c3hZRC5mEEQkbqOme9Xd3sjnrvl1M4GXUbkAk4Bxirm3TVmtTOhB1JczNe3gW2t9qisEru51TktkT26EoTmpqTLdlGwyBD553NnB7ik9gilBGjDDlTj09KxloaqV0MdMMQSdvrThrIFdu414w0LfQ1tfQo+bP2gSP+EkCgdH/AK19hkelA+Czu/tzsfg4caYn+7XBmb/es9LKvhR6dCGaFVJHSvCqWTPoJr3UXLBtgAP4CoWrNKVlEsXMxjjVs846VpGTeyMqu5b065Vk3EYU9qmcjopfDqWLq/8ALiIB5HSsbXeg6t2jPtLma6u+e5wQa1qNRRz0YtTdzoLRFhiDE9O1c6vLc74tNhNMASM8ZqnKysRVd9CKG5XeTt7+tKUu5NKyepL5yg7mwT2zWXM+hVSVw3oxxgVMpMKbsVr1G3ZUU4MqUL6iwLuiG4cnrTabZnflHRIxkK84PpWiaigiang+zkm1oQxRlmJ4AGSaicnJGUHy1T1fwt8JvHHjW/h0zw74curmSWB5h5UJIEajLOT6DHWtqOBxFf4Y+ZvKvBK7Z2nhn9jv4uaj4Dvfilr+gT6XoNjp5vLi+vIiuIixWFVH8TysMIo5x83Su+lk+IdGVSaskrhHGUFVVJO8n0POLvR9Q0+CC4vdPmt47qMyWzzIV81ASNwz1GQRmvFq0pws2tGbpxlJpPYzNQiyv8/asS2tDEvYSmSBj3rSmr6mUlqVobf7Rdxw93kA+vNaTvojaFrn2F/wTLsLiz/ae8P6FI02nym8Aeyugsq3CLhmA4+TGAQTjPY9a/R+CYSWKknf4e2jLxShPDVYvSyOT/bs1OLxF+1t428QGaKZU1hoVtLpQYud6qWBHK5xn1xX9I4mj/wjUodomuLlGjgqUI62ijK/YW+Kn9na1e+EfEFtp935eom2v9XZjFuKjKR2zHPmoBtwh27e2a8bAxUVfqeAsZXr4lRi32d+x6Z/wUM8JS+NvhLa/FfSrIxxWRjunwg/5YNtk/ONia9eg44ihUwtXVSTv8z6fC02sPKm3qtT5CvYEU5gbcpGQexHUV/H+fZdPLMzq0JL4W7ehwVIcruVmH7sj9a8ezkJNNmZrEMcaiTZzxzjrWtOLTuYYiSiZVvC08md3GeB6V1cySsctO83dFi6tgoGT09a572d2XUiyWygLJmsp1GbUWnEZLGUfAB96werLcR6oSv1oaaRvTkmQy5VuRinF9DOa94IEO4ArVPbQ1ptFyFf3TAkcisJbnRJe6ZpXFyTjjNdFNaWPO57uxu+HTvmHanONkbU9DI+JLbJhn8a3oQ0ODGSXMkUrUh9BkAYH5Dj8qyqRfPYcbyw70Pl74syGD4gsgXPzdq+6yyCWDWp8ViaUpYrU63wDC0kSM/tjNeZjaiTsj28PCMIHpWgrt6DkjgV5L21OqKcpaHUaREVlB7nsa4q1SPModzsh7qse6fszeCPFnxJ+JXh7whpunQSafdXLk3N3biSO1kjUOzc8AlAeDxg19xwLktXNsyhBr3E02ell9H63X5LXS3PoDVvG1lfeK/E3xMu1tpNF8GQJa+H7SPG2S5GVRD+ILkfjX9Z42Ussy+FCNnGST6Nq11buuunVWfY9zO8YsPT9lHoj4B/aj+K3jD4g61eappM2pSrBI5vZ4xta8c53hZGZQq9s8nA4r85x2LjXnJvZH5ZmGNnJqV1ZPW/U+Sbmyjk8RyXMuhNaSSvkp9sMxOT1LZNfP4CKq4nmSObB0fbVue1j2j9mPRzdfE3TrFohtJzKGXcGH07/Svr8wrxo5ZU923LHfvv+P8AwD6ulKUI+R9ReK5fCr2byXPh7U4HLHN7JcRNI5HQBHXKr9K/mjH4qjWqS5oNa73N+RuSaaPLPEcFxHme2zjPfrivFpwUnuYVVJ7Ffw7qW+5IkIXnvXTL3Y2RNGShK7OlhIeTzAQRmuV3PQjKMmXbxv3YGew6Vzyb5hyK0QBxxznrVwiyHHS4XHCbc9q0k7IiT0KzLlcZAx61ClYUdHchcY6n6UORFTVkEybhnb0qoy0CDKt4hC4zz2NVF6mVValeGMj/AD0reUlykxegyRfmOevfFZpuzId7nrn7I+lGXVtY1YpwohhU/iWP8hX9CeBWEdsbin3hFfi3+h/Fn0scz/fZbgk9o1Jv5tRX5M+nvD0QCque1f0NA/hfGSu2ei/DqJ/7TVkYAjGDiu6lb2bPmsU25xt3PSJpsRMkg3cg5HQGsUlzHdiK6hSkpq7PO/F0cstxLMzgjJ4rrs3G7PHwctFc868RRtuYgVx1j63BPY4LxJHjcMg5ry62iPq8E9jzjxarh2igTc+OT2Hua8LE80nofZZe00nJ6HmPizSSGeVjvc/xV42IjpaJ9zl+IvZLRHkHxC0nekhK/WvmsfR91n6Tk2JcWjxTxrpx+zzIF5U5FfEY6hzwaP1vJcV7HEU6iOY8PyYuFXb/ABenSvnZwXsz9RqWnZo9a8IAm3X0IFfM4pu7R7OCtynQxpzzXnT0R6Em1qhHQlME9KwvqZ25iq2RnjAq2vdubRVkUbrkNzQ3octfWLPSfh38MNV8ba9Z+GtJmt4Gu5/Igur1ikLSn7se7GNx7CppxniZJodWpGjpLc9m0r/gnV8bvEmkWGqeFLVbs3dnc+dbFCsttfQZL2bj+F2UZQnhq9yllVSUdGcNHHL2tpKx5v8AED4OeMPhbrcuia9YNJGLaK5gvIYyY5oJR8jgkccgqQeQysp5FeZi8JVoS1Wh6vNCaumc+tsV+Ug++a4ZRaHFWY6NTEwyKye1i1oxzEn5QetOMbnQo2V2OQqOv41t8KJjK2rMzWL5pnFvCeSaIrqznnJ1Z2L2k2gt4Azr8xpfEzqiuWNkXWYsnJqZys7IiWjJbVgI/p1rB67myvbUbCrfaDxxmtI/CD6GlbYAOfSsZp3LjJJWIZRmTJ/ECiKszaKdh6RF0Yf7JrYLq582/tD2wi8Qq7f36+vyT+BY+DzqV8RZHV/BmRJNNUIvIXnNcWaRUajbPVyqlPkTPUbRCYgD2WvAqyi9j3ZxaSLFspJwc47Gs76EQdmWdRt1MYPbHWqg22ays0T6QuYwpqZp3Jg2noTX0SlNg/Os4t3Nt2MsLQRuWHQniqlHmWpE1yyujYi5ADd+2aTfKrIqErMV7QOCefzrHmbZ0WcmPh05B0P1JquVvczlBpj3soxycc1KTuUoXiRiBQ3y8U5RVjNXixtzACASKzjudF7K41FWNQCOT7Vra5hbmZLbwkvuxx3qKjSZfKkz2v8AYP8AhNf/ABJ+O+nwWtgbgBm8iLy9weXhUQ54OWYV62W4P6xVSseXip+zi5PY/fL9nb9jD4OfAf4f2Kav4esZ9Qh0EWN/eXMahfLPzOv0JJz6195ChCjBU4K7SsfD4nMq9Wo0nZX0Nrx14B+Anx38Ox/DK5u7P7DbEOlpaIqLwuwbeMBgp2gjle2Dgjo+r81LlnHQinjcRhavtE7yPy1/4KcfADTbPUrbWtM0yDT7ttbbR9D0iFX8xLOGMLb28EAGWZ2LMW6cepr4viGjGKv1vaK8j6/Jca5vls7NXb835nxt8W/hX4k+Emvnwr4y+zQ6msKyXVhFcrJJaEjISUKTsf1U8jvivkJxlTnyy3PpqVRVYc0djg79QY+aum/esNpWKIEZcEgcMM56VrUvZWFHm5j7O/4JoeO/EfhT45+G4tejmuLS7uY44EutNh+ReBlH5kUDOeymv0rgmrUWLcJyesXbsa4nDVMRRmm7aHk/7Z7tD+0Z8Q7m9gY51S5WMY5dfNYKw9SOeK/qWtBLK6Epx0cV8+n56G+Jw7hRpc38qPOP2fvilFofxBl07xLolvquosyLDqdzdGOLTYlwI/KiGFaTGcE85Jr42rWVHEqMHqeHLkp1NXZn6R/Drw58O/jb8AfEHgyFZ2hEDyWw1RcvnaQ6ZKjdkHqABV4epXo4uEqjvfRmkswrxxUXT+F/kfmR4o0OfwhqV14V1D/W6LfPYTEA8qp/dOfQMmB9RX5/4q8MRqwWZ4dbaS/Q9eUVOnoZsigKzetfgSjynPHS9zF8Qyu0Y2np6VVOT5jkxEHLUo6JDJy7Grmww9o6Fq7XBOfxrKUi6tiSzXEfGQKxmrk03YSaM5Pt0pKOtzXm0EjZc4A71UloXCLvchu1QvyOlYRTuObsxsQZmCp0HWttIajpx6l5ExET7dawbuzeU/dsjKkfbcsq+tdULqOpw8t5XN/w0u2QH86iUm2a82lkYPxSl3TKievIr0cOrQOGvTvK7M7Szs0sxtxlfWuStL3zeEkoWR4L8YfBGpx+Lv7cihzCTyfSvpsDjYyw3Ij5XHwqPEXWxseCU2RKG644rGrCN/eNaHNM9K8OWvmBWYDpXl16ii+VHr00ox0Ox0PSri9u44LaFnJYDCjJNcsIOpUUVuy23sj7n/Z48Pa/+y/+yj4v+Mnie0+z3HiEi18MWksYDHCYe4TuAQce9f0/4W8PTy7D+1rKzer/AER9dlGE+rXqS3Suzyn4462fhP8As56B4Lu7xrXUtaaXWNXQW/mybphgDaeM7OhJ4zX02b5hWjNuk9XdfJ6P8D57PMQ5zcoPf9T85fjrqq6rqdxLqLDUEUnbDqmsGBVHYpFGRz7V8BjJU+X3rN+p+eV+RxcJfEeb+FrYNMCkAjySdoYkL+fOK78mw8IrmasexltKpThqfRP7JunrB4uTW5nkKWdoXZ4s5LHgdBXbxTjaeGyKbTvdaeZ7MU5KzPV9bu/t11JeSyvvZiSGV+R7lySa/mXFVlVm5JWudsNFyoxLwCYEFfwrmhdMtpQMG90ya3b7VBxg5wK6ozhf3zkrUXKN4l/w94jJPlT8HOCDUzh2MaVWUHqb73fnxB1IIIrnlA9CFRVBYQQmSOtOOhq+wlwpYD8qcmkibJakfl7F5rJXbIlJFeVG3dO/FaOJnNNkQGQRjqamz3JUbPUrX6ELtHbrThuTKxWjjIGDXRYzaSZE4xJgUnZIhu1z3v8AZE00x+E7m+K/8fF+xB9lAH9a/qjwUwvsuEp1rfHUk/kkkf53fSfx/wBY4+VFP+HRgvm25fqfQeix42Kf5V+wxR/KOKe56H8PVP28DfxgcEda7qHwM+bxTvOOnU9Au5Jfsx3BVAGNmazUVzpp/wDBOnGSlGg3JW8jgfEjBZZSG9eK6G2ebhrtI8/8QpuLHHeuWofU4N7HCeJoQQ20Zry66ufV4KW1zzvxJpxjd3inJ3feU15NWn0R9hgq3Mkmjz3xRal967cY6GvJxEEj6/A1LWZ5V4408Or/AC889q+exkbxPv8AK6zTR4h4z04rcvGy9TXxmLp8tQ/V8sxDdJHB2VkLPWXt8fdkyM+lfIY6Eqc2j9ayjFPFYOEn6Hqvg1f9HTjOQK+RxWsj7DBrQ6GMcEYzzmvNqbHoTGyghC3fFYRV5ELSRSkJCn5eD3rpkrI6GUX+fOBWUkcVZaM/Vr/gmX+zD4H+KllJ4NvILfXNKZgZtMvdJkjktnyfnEpB+YZx1Ar7DKcFh4LXWP6nk5pKpzvpY/Sr4f8A7IfgT4ZQBhqKoxaPzGuZdzMqfcJJ+8y9ATzivedOkp2ijyniOaOpxH7TX/BPf4afEbwxe3mnaTaLHNaXKF4otwMcxDNgDpiQCQD1B9a4sXhoV3ZoFmVWLSvoj8MPjP8ACrxB8IviNr3gTXrIxzaNq0loxYdQMlT+K818Ri8JKhVknsj6zB1Pb01JHHOh278cD1rzpRSlZHoqnFiKuAQ3fpxVaRRu1aNipqOoJAvlxdT2oh77u9jhqOV7Ii0jTpLqYXE46daJytojWnBR1ZtFFBAToOuBSbtEpuzuDKdnHTNYLcEnNktoNoK9qJKViuZbCxL++JPTvVxTsU3cuxsfuoBjsaGkty4xuBj+bJ45rJu70NXJRViS3AyxI4K1d2kZyd3ofNP7SbyP4lWBB0l9fevtMl5YYdyZ8bmkUq3MzsfgtZiLS43xztrxMzrOrWaR7WAmo0UemQ7vLGB26V4/LZanqRfMixaR7+c4FWkmjN6SJ7su8QjBzx0IrWKUVdlKDauyxpqCKPk4z19qxqSc3oP4SWQF5PkGR9KIxUVdlwTvdk0CYOc1Dn2Lm0y5bglh/OspMzjuW/mY/wBKUY31OuD0HrgDIz15rQibaYkgyDg9cUrInmZXeN2YE5H0pSWhWhL5Rxhhz71nGOoNuSGx2hZ9xBwP1qpy5VoWlZGhYaZLqF1HZwIS8rhQoGazhFzlYirJKJ+pn/BCn9jbxhbfFVfjT4stFXQrDRUubGFk+9dSlghPHUIm/wDFa+7yPCOgnVfbT5nzGd4qEMJyLdv8j9Av2lPGMlxFPYPPImnWR2SJE+DPLj7v0FfS0JqGjR8lCDi7tHzN4Z+OGm6L8XLXwkZJprrzFkAadY7eEZyFJYfMfbFdyn7urdjrp0PbPsdX+2h4l+G9jYHxx4hNro988BEmreHXtxqCoyfNturkhbUEcFogZDnjHJHzOaV6CjJN9Pn8j28JTrwlThTg5puz2tHRu71V100u7taWu1+PXx18R+ANa8aXh+HGhWtnYCVsNBdS3MkzZ5eWeU7pXJ5LcCvzrFRoOpenGyPt6blCkoyd2jze7cliG6nrWcYqOoOPcqIBvOG4zxVVLtWIcuV6H0j+wV4zTw58c/CpuPDwnshfKLq7jtkj8vJHLuzBnHsM8npX2PB1Z0syhzaK251QlVq0ZKL1sWv+CnXgu18IftKeNkWJ0jvZRdWeeMkgSKw9iAw+or+tsJF4rIKFR32/I6K9aVbLaU+trHzd8Oohrt8PFHgC4inkivVmt9GuGRbcyYxJMzu4CtwACQcDkYxXxuKhOOK5ovqfG4lS9u5tf5n6s/sP+I/FPi3wRaaf43u9Iv4mO2NbG8huJLbK9GkR8tjpzmuWtO1S8ZbGns4Qj7SDafmfBf7ffgVfh/8AtW6vobyra22uWzI8phVyJEyUYB8DPbPUZ4r6NUaeYYFQqrmjJWaPp43rYaM1+B4xHvk0yC8OCJVIJBJ+YHB6gfyr+XOLshrZDmMotfu5axf6HPUkpXsZur2/nRcDpXydPcxlqippUZRipXjNdErJGdODbO++BH7M/wAYP2qvH7fDT4J+GU1TWFsZbs28l3HAPLjGW+aRguegAzySBV4DA18wrSjS+zuPEOnQp883Zdepx13pWs6Bqd34f1/S5rK+sLl7e9tLhCrwyoxVkYHoQQRSxeGqYStKlVVpIdNU7XTuQSjf36HtXLdJG65Yka4ViFPJqG3IpzSN3wp8IPiJ8R9B8S+KvBnhyS9sfCGlJqXiGeNgPstq0qxCQgnJG5gOOcZPauzC4CviaVSpT2huZ+0purGDestl3MnQdB1rX9VtNA8P6Tc39/fTLDZ2VnCZZp5GOFRFUEsSegHNcHJUrVFCK1YOuqdNzlokX9a8N6/4W1S98N+KdEutO1HT53gvrG9gaKWCVThkdGGVYHqDVyozo1OSaszSM4zgpJ6M5qG1vNQ1hLHT7V5pp5AkMUabmdieAAOpraFGrWmqVKLlJ9FuZq50WjQS28pjlQq6nDKeoI6isuVxk4yVmtzelFHNfEVlNyAWHB5J7V2UeeVlY8/HX51E9Ak/Znfwj+y3eftF/Fb4hW/hqfUokk+H3hCTT3mv/EUAlVJrxgCPstqoLbJWB8xlIUY5r6OHCuPxOAqYpRdoq5nTo4uu5vDwcqcF78tkvLzPnD4iXgu9MLEAjOQe1eVl8HBnj1pKqjK8D2LSyBmGMHiuzGVUlZGuHiken+HrKSUqscZOOuB2ryPZuctTu62R92/8E7v+CfsPxj1RPi78Q7WeHwhpF3Fc2NyxaGS+kC/NFjOCmTye/QV+ycE8I0qVsbi43k/gi/zPbwGDjSn7WprJ/Cv1Z6P+2p4otfjZ+0H4Y+AXh63jj0azuUja3hfEUEURDP0H90Yx71+6RVLLspkpxfNNaWdrO63VtVa6tprZ30s/Yx1V4PCcl9Xqz48/4KFeINP8XeL9Su4/D97PBBH5EOy/FrGkSDaFMjbcKAB0JzX53jMVzVGr7H51meLmo3g7n5yeP5NFuddNpYadpkbh+tncvcOf96Rjgn6V85Upwr4hLQ+XoWr4pXLXhGxuJb/ylO1SuGdu3rX1+W03TjqfWUozS0Wh9Rfs86DqGjeD7nXrQiKWd/KjZSM7B9cV8X4iZhNYeNClKzPRoWlLU6e9e7lXN3cF3J6EV+FzlJy953Oumlcy7hwueMAU20KsrakUW2ViNoINTN3WgUpXVjP1bRDG32iz4I5OKqliLe7PYyxGGT96O47RNfZD9nuOCOMGt5WkrxRw05ypyszorSeOWPcrcEflWEkerGopx0H+ZtJLD6UJ6ag4NvUxb7xhpdte/ZGmUMTggkVpGlOesUc061KE+W+poQz293biWNsgjIrOamnY6HONiB+pAwBSs0jlk22Vrghvx9aSdiLNlc4Ude9bxkmhNOLISBk80pbE1E+U+nv2ZNJGn/DrTxjBl3yEEerH/Cv7R8NMH9S4IwkGtXHm/wDAm2f5Z+OmZrMvEbMKkdUp8q/7dSj+h7No8QyBnmvvIrQ/B8TLQ9A+Hsb/AG0Mq7iAMDFddFrkZ8/Xb9rGy1udxfW+ozQs0RBVVzIfQelKDgpasvGUcVVg5fZW5wfiBQDJ6k1tO3Q5cNrY4PXwxLdiK5Knc+nwmhxHiFclsn8RXnVtWfT4NnCeI4Q7MX/AivNrNH1WDnZJI4DxLbo+8Bfzrx8Qrn1uCm1Y8y8Z2Pyvxxzwa8DFRufc5bVV0eK/EDSzvaUAcE84r5TMKWtz9PybEe7Y811S0MOsRXQHEnB+or4/OYWpqaP1XhfF/vHQfqj0XwbzZoM84A4r8+rzUps/UsGrx1OjOMZC8964JvWx2z3EkT9znFZx1kCWpm3GApH610z1N+5QiJEuGHU1nPY4K8tWj+in/gkzpCxfC3UdXt/CMWn3UFuXjWG584NgZzyeK/R8v5JYazseBnnOq1zp9V+Ndz4w1TULB7q4kmtGxeRKdghBJAyeOTjitqbine55dOMpU7vY9E+GnxA1LRbaKzvLn7bpVxH/ABndtzxzVyipEuKWp8pf8FV/+Cad18X9D1L46/CHTBc3981tPqFvCMtviDqW/FG6+wr5vOcM61G0Vqe3luZOnUjCS0PyU8VfCbxt4YTzNX8PXECO8wUvGePKcK+fTBI6+tfHfV60ZXa2PpvrEHLc5W5geOMrjNYOTlLQ6lO8ShDpfn3Pny/d/lV875bIhQ+0akaJEmyNQMelOPu6shzuxVU8nPNZTd2NXY4KTwBweaUVdmyaiiWCMhTnNaNpoyejBSFk9T6U0rIcE2y/ZWV1eSxWdnbySyyuFjijUszseAABySfSueo25G0p8ur0R6D+z9+zzfftCa5rPgzSPFtrpev2mmyy6DpuoRNjVbuMgvZhh/qZCm4qWGCyheCRXTg8N9Zm4t2fmcWIxUqMo2V0932OQ8O+EvFHiPW5PCWk6FcPq0azCXTmTbKjRIzuhDY+YBG+XqSMAZpOjU9q6dtUdkeSUOa+h8t/H1A/iFbiQH/Xf1r6LAVL0eVHymcyhGrY+rf2G/2RfA37Snw213Wvht8Z5Br3grw7JqHjLwjqeg+XejEhUS2IWVhd26AqZWPlyJnIRgRRLAUasZVJyafZK/p127mVDMnQnySjfsaVl8FPjB8Pfi5pGgt4HS+vYrc69p2UEtnqdhbxtctOjHiSLy4XJB5+VlIDAivGWHrfWVCKvbX5I+khVhVpSjs7foexftV/sa+L9b/ai8XRfAbwBa6f4Zl0O08XIkl/DBZ6RYXsMcyxNK7bEAklMaqTk4AA5Fd1TK6zry5FpucGCx9NUUpu7vb1PmnULe40q9k03VIDDcwNtmibqp9K8iesmj2FUTjdHqv7Nn7JXxW/abtvF2qeAP7PttL8C+FrjXvEmsatcGK3treJGYR7gDmV9pCrjnB6AV6GByyti4ynHRI4MVjqWHqRjLeR5xYyJcIpQY3AH868qoveseiproeo/BT9lb4j/G/4c/EL4teHLiws/D/w30VL/W9R1KYxRyyu4WO0ibGGnYbiF44X3GeqjgK1WhOstIxPOxeZUsNiYUXq5duh57AwJznj61xct1c9KGrLKsGbH5cUm+VHUvdjqDOeq9KlSIVpPUbvKgFh2pttky0Y5HBHPX1FNXY1dkyI0p4U0m1FGsYpLUtw2uAFA696xbu7g2fSv7AX7IHiT4/fES1eHSpJYWmEUaqnVdod29MFQyg/3jXtZZg6lWomlr+h5eMxCpR53sj92fhR4B8Lfsu/BO30WUwQNBAJLwx8B5yoARfYABR7KK+7oQjCKiv6Z8LXrPG4ty6XPm/4z/FvS9XhvI7e6lljgV5Lm4jI2xsckku3yK3uTxXRKcYy1FOm9bHw14b/AGhLH4gftDDw/wCG76H7Bp0hBTTJd4d8/ellwTIcemBWka0pU7LY76FKcaXtD2T9rDRtO8bWdqbP4c6r4w1GK0Urb3O+PTrXj70jE8+/SvnM2um58ik0j2sBKpGzvZH55fGXw3qHh7xTNa6zqWitcsSWstCZWgtR2TK8ZH1NfCV7892fUULKOupwN2mHJ7DvipTui6jvsU4tzSnaep6VTk1EIwW7PSvgx460X4f69Zas2nWjXPnLi4u4WuGHI4VB93616OXZhTwteLjC7v6m6rRpRtFanu37dOj3XjLXtP8Ais267i8SeC8KQ3EdxbYJQZ6ZADc88mv694SxbxOUWTdkrnbhY062G5Xpa58UC28QaRLew+G71LCys7tZpjcQCSG3DYw5Qg8tjp3x7V4GYxcqkvet6nyWYRnGUpJfNH6G/wDBNr4u6tfaLHEmv+EtQhV1Ah0S1hsZh6lgqqzH2JNckI0+V6nHB2pO99e7uYv/AAWa+HL217ovxh0qFo0TZJJIqbiGU8g/hX0eTTlPDSjfY9XLsZKVH2aPh1rvT7PxRczM3lWN4Ulk2RY+8PlkGST1PIFcPFXC+FzzL5Uais3qn2Z6qjy0/e1LOo2E1pJ5M6/eUMhxwwPINfyzmuTYzJMdLDYlWkvxXdGaiuS/cpwwqj8cc15tS7Ri3bY9g+DP7PfjD4j/AAi1P4ofCH4nxQeJtB1tI77wpZXZg1CSxMYYXcIyDMobcGVeRtBr9W8LcFODq1cNU/fytaNk00une/yOvJs4xGXZpyte5JW12+dyr8d7rV5ptE/aJ1vRbW/nnmjg8VW12hMdzfW5G7zQMHE0agk9c7u9dPiPklWhmNLOFS92VlUVtE1uejmWWcuNdS1oz102uVf2ofhb4P8AA66V8bPg1azTfDnx7ZSX/h2OWbzJtIuU/wCPjS5jnLPE+QrHlkKn1r89z3Ko0OTFYdXpz2t37HlxwlWPuVN09X0a6WOz1v8AYa8O3niPwF8Kvhb8VLnV/H/i3QINQ1jQNR0j7Lb6MZIvMxJOWICgYG4juPWvtl4Z8+CU41nGryqXK1dNeq27HZDJsQ8JXxNZqEYfD1cl5W/Ix/hBovxf+BHxU+JHwC8WWUuk3Wq+Abqx161PzpNBHNHKWVh8roQuVYZBzVcJZDicDmuIweNpaTpy1+W6+89ngvA4TFZrH63T5otPlb6SadjW+Ctp4l/ZU/Z38QftieHCp8Xajqf/AAi3wyuwoJsrmQZuL6MH/lqkR2IezSEjkCteGOFaODp1cfiFzWdonHPh2Cqyw+J1jFuTVt0npfyf6Gd8Xfg9478TeALT9oq61u61+8vLW2j+JE10f3+ka1LkeVOWOS8gUP65PPUVrx7wfOcoZrhVa8E5Q7WSu7f19x1ZhgqFbFKNCCp+7dRXWKW6XY5n9kcJ8Nvi8nx18U6I76L4U0u71GC6kg3QvdouyJDng/vHTI6jIryvDTLVDF1c5xVN+whGSjKzs5K10ns2rq6vpdX3PJwWEhXdVVvdSjf11NP4Afs3+IPi/wDDLxT+0D4x8Uw6FoGnXRtrAvbb59Y1WVspaQrkAKM7nkJwi9ieK8rB8L4nOniMfVbjFuUvXr/wCKNOtUxUaVON3L8F3Lmi/AL4E+FPCuoftFeL/iLB4/fRvEraJ4U+Hem6dNHF4r1YeXsxLkSSWilsuFRS4Crkbzj28n4ew2EwNLFV0+dtvlaVktLapu736WVt2KeAlUxzg17iV3K9rPqrW/rqtNZ/2/fiZb+FPibqvhTxtYTap8X/ABT4UsbTxBotxdeZpnga2ECmSGLaFUSBQAkQGyEEqNzHNfouJxuBjh3Qw0bc0LWv5avob0syVPK3gsJ8ErttK115+fn+R8WeJPDPiC++Hk3xEt9LuToEOsjSk1NosRPdeWZPKBPVgg3HHQYz1FfiU8JWw8XOSsr2R8TUhyNqw74daelxaiZmCqMbmPQZrzqic52NKNlG5+gX/BN7/gnVqn7Qk9r8Rvinpcmk+ENKut7TFismrgdEXP8AB6t36Cv1HhPhFTUcZioafZi+vr5Hu4TDR9nGpJa9Eff/AMefij4f+Ffwvl0XwTpdtZ6Zp1qLbT7WIbE34KooHTPQ1+35Tl371Tqf0j6fL6FqnPU3PiLwXe3Wl3fjL4y+Jr+Mta2/9naZMreaGnkXdMygZ56A/QVOfYydT93F+6r2Pnc5xjxFZpNpK58F/tX6wviHU7i5vtAvNUVnZg+sXskFrH77cID+tfm2MTUuj9T89xsrtxR8oTSjUdde1abT440biLTowIk/4EOW+tceXJzr/wCROXUoQndu7Ox+Ffh6fUtQbajO3mBYy3Qljivs6clSpNvSyvc9+nzK7vofVFlpdpomlWuiQwBRbQBSSg5OOfrzX87cWZiswzac+2iPWw3u0xs54ICkV8k7Jm0W+Yzb2JyhO3t0xTvd6lVI8yKmlGUSZZ+M806l4mdNqErGowQDaeQawUWzSpMxdb0XcxubUYYc8V10ZuOkmctWipxulqGha3JE3kT8EHHNbzUbXijmo1JUp2Z0Ec0dyhK45Fc9rnqJqaujxf4ueF/EVv4hXWtMuXARiQmTg17+DxFCnQ5ZRufL5nh6sKqqRep6z+zp8N/iT8Xfsuj6NbqbmciOJdhYufQADJNeJmGNw9BNqN2uh25XSxmMR7t8ZP2YvBPwK+HqzeM/GjHxWzhZNFdCjRDGckGvlMvzTNMyxcn7PlpLTzPfxGDw2GoJqfNPqeAzuqt26etfTwhzM8tyWxUkmLGuhw5YFWuRu5HB6mstZy5V10OfF1Y0cNKb6Jv7lc+xPhFpP9meE9Os+nl2cYIx32gn9TX985Jh1g8nw9BfZhFfckf478XZhLMc6xOJe86k5ffJnpGkR4KjPfrivXWx8FiXoz0DwFGyyMTLs4HzeldVKyi9DwK1nUWtjrbtnitWVJDt28nNCXNMjGSlTp8kXocRrjsSwJ9cH1rR2sLDrVI4TXwxLljXLVdz6fCdDitfQ7myK86rc+mwj0OJ8QJu3ZP415lVan02EaOE8Q27fMpI9q8ysmz6rBzWljzzxbbeasgK84rxMRHU+wy6dmjyHx7p+5H/AHfr2r5/GUudH6Nk9azR5N4hh8sOQvMb7hXy+PwftaMoH6VlOJdDFU6iOz8GsklpHJGflZQQRX5Bif3deUH0P33CKLpqUdmjo5M7RkCuGTvI2ndscwP2fBHaphfmKgmzOkj3IRnjNazdmaSlZMotDtffUSfunDUV7s/or/4I06Vq2mfDjULG68Bx6UskDAk6ms7t8p7ehr9CyuEZ02mjw8+k5VeU8u+JV3Ja/EbXFsbiK21ZLuY2q3LeXb3TKTsjfHoehPrXpThTpux5sqE1TSWx7J+zz8SdM+IHhNLTULZ7DVbdQt9pq27FUkAwwVxwwzyCOKSqRmuVGChJSsz3j4Z+Ozplp/ZlwFeAtsImQhX/ANkhq5p0VN6FTThqjk/2i/8Agn7+z/8AtIeF9Vn0PQbbStZvNNuYTNFGFQNMoBYDpnKr+VctTDUXGUGt/LuXRxdalNPdH4d/t7fsur+yh8YF+FcVw9wttYI8l0y4Esh+9j2FfFZngI4KrFR2Z9dl+NliY3PCChxgdPpXDZR1PX1cdB+W24I/HFZuTZzj0V9oPvU8qZ1QcbD0Q7uD2qkrGc/iJCSowoHTpinZIcVzCRxYYu3FZVaj5bJmnw6GpoWs6zoms2mu+GdVlstRsLqO4sbq2fbJDMjBkdT2IIBrKDknzLdGNaUZwce591f8E+NP0X4h/ts6X+094++H17Za5qUuoDxvFFa7dNF0NNnna8CFDtNwCrsgdAjq+0FXUJ9LlVWjin7TeXfp/XzPncdhamHwMqEZ6/iehfBb9lPTPitrPiP9oCHwxDNfLpFjN4msFiYyQapaXCTpMCOdl5YswDjgvuU85FdcsLOvN1la73M4Y2vTpKF7PbU+If2+P2KP2TfgJ8ZtT8F/G/VfE+lnXbqLUPh/qNhAo0i+t5WYos0xBe34ZQz7W2FWyDxXZhMvhQpt332fQ5LyxFROauluegf8EqJtV+Bnxw8XaX+0RYQN4p8I6XBL4Hu3wZ305+J7WWdI1W9tJ7ec7ZcttZVIAU5CqciqezsnLa/QTw03Fzi/kfcen/soa/rf7Pfxh+F9g8P9o+B/EN23gDVoUDSw6LfW6tNbBhztaKTnsWDGnQwNlKzs7aP818ylXU8VSb+F7rzRp/8ABUbwx4d0/wDYo03wf4U0Sa1ufEHhHS18YXmnwFpLqK1tmSwhxniPziGOM9BnoMaZhUqQw/sqXVamuXqEcQ1L7L0PiH9nz/gn/wCKvFnxLvNF1/xLprQ23w4nsr3xLrOmvEkuqyxeTcHBL5a3mmVN5+Y7R3FeDgcC6tXVWX3nq5ljVyJRv33Prn47/s36V+xR/wAE+tG/Yc+FGtG58V/GLV47zxl4imh8oyaZGA0jspbckKoAADz1GMvX0OIpxw2FWHpOzlu/I8enUq4zGKu9kvXU8X/YV/4JB6x+1B4/1j4neKLG68P/AAu01LiPT9Z1iM26X0gUpHLGpILohJc4wGIC7hk14uV5bTli268OaFn5avZ/Lc7cwzeNHD8lN++fSv7TP7KPgX9njwT8MP2cvhX4Ge9+GPh/Un12bQtSuUS9+JPiDy2Km4LD5LWJf3k00gWOOPgc7AfeeHpwjGnCPuLWx4uBVfFV5Vpy956X7H5C6h5q6xeiY2o23sqkWL7oM7zxG38SehHUYr4DEyiqslE/Q6FqdNJj0AXp1rlV5Gsql42JI14yB1NKzJT6gFBX1PbitVG2rGk5MktbVmk3MMA9qU59Ea25DRt7TBwqg57Vz6yYpS5Uet/s7/ss/ET46+LrXw94Y0G4nAvreO9MMRYwRyOF8wgc7RnNengMtqY2uqadtVfyXfucGKxKow5pbH7rfsWfsreB/wBkT4RWGq6rp8NtqsWhw29/KVGV2FmOPclv0FfbYLCOhTV17zWp8XmWMliqnsoO8U2cD8cv2gb7xlrU001qTpUKMIYZFZowARwQnJY9ePQ9OK9eFLklsRQoKET4x/bB/aAFzpNzYabogltLeIuNOWyggtkbuwW5kCs3uQ3XpUYh05yutDojSVWVo6PzPnX9jOSbxN8Sm1+5tEt5JpdywFIRgZxgeSirxyeBXRCmvYNJ2stPP+t9TrnGTiqa2Pqz9pfw9qfjW1TS9T+IfjC+hSJVTRfDGkuwUY6E8KT7818bndGtKLabt5I97AU1CKtb5nwd8bfBE3gjxE1lJ4U1nSkcnYmtyjznHqVH3a+JmnTdtT3IWlE851BkVDnpRFNsHZlG3OZgR68VrpYhNvQ6nwhq1tourwX80cTbD8onciP/AIHt5Yf7PeunBV1hMRGZvThG92fT7+K9Q+LfwD1H+0ENxcaFMt9Y3A05beOSEjZOkUYAwgQg/hX9G+GmfTxcqlKSt8rJ37LsdtOp77S0Pjn4m6Te+DPiY6rOfslxAIwVTIYEDy2x0OVx19K+kzpSoz97ZnzWYyVFtdWe/wD7CuufEe01eMQ+DNEu7O3ulCXGkQ7L0g/xMiHkj3NeLhcPP2nvbHjQrVKi5X0PuD9qH4Zz/HD9mDVfD+r6NcJe21s81oLyM+YRjnIOcfTNezgcTChimqcrxZ6+XQjTrLsz8gtTE2mWws9QbdPp80lheDBXgE7cnjt/Kvqoz542ep7c4S5+W5teCvEVnqkC+E/EsypjBtbrdkx7sAE+q+3tXyHFXCmD4iwzpSsq0VeL6/PyGoprXYu6h4evtJvjZ3sW1uqspyHB6EHuDX8wZrluMynFyw2JjaS/HzRm6fY1fCdxfaHrVrqOm6lcWDQzKTfWZIlhGeWQ5HzAZrmy/G4rLsXHE0JOMou+mhrCSpp3V2fWut+HPhp+0DomqaP4Q13UdS0DWLU2kep6/Yw299JfRrlZpkiZkDnJwQeR1yeT/VOUZlHjXhNrExV5q0ra+966fkj6jL6lTG5aqVRJPrZtpJ9rnkn7Mnwv8TeIfhv8Xf2U/iK6iDQ4U8Q+Hzeg4jvIz8wjz/z0TKkDrxXwWRcJ4x08Tl+Jp3jF3pvzRhLD14NU3G6T0fkdL+yL4yX42an458L/ABOvbzXIBq9ol/eWFuItQfRoHVfsyyDLIhjzuQHGQMkha/ReE81q4zAynXaWJopwWl1t8r+Ttc9/LIVZ4ZzhJKpT5nHm2vbS6Ou8LaxF4j8Yx/DK88OC5h8Da+um+HdauU/0q48PX8r25tpf72zKOM/d2kZx17MZTqY7EKtLSooe9pprudE4zWKWOvaU4JtLbnWt1/Wpk/Eb4PfE7T/Cfg/9jnSAl2+mfFi4vLbUcHbbxoiSLMT2G0r7ZJ715GHyv2GXUqKl1u35JtorHuOOm8XradNXt63Nz9q3w/4g+FXwgu/hSmtwi8vPG8nirWWugyxarfZhEdsT/EWCsEX1IxXNxJOp9XlUpSbqOybls1s0Y4HD0KlaWPs2/ZqEddl3K/jP9lvxX49+GOv/AA/8J+D7zQD8QPiTDcWmkcyNZ2UUKvIWPCxIZvlZjwAo44xXFgcnw9PI5YXmfLL3rJaXa7X2el/LueEsPSq0VCvUbUYt3S3fRb/15npXxu/Z2n8V2Xg/9nnwl4mXRfBHhbTJH8SeJlvFje91KZ905gUfNJIwGN2MYzkjodaeS1K+XxwdNcsNLpaXQZW8RQo1arXvzaSSW0UtPQ5D49eFvBvwj1TSj8H/AAwniPxhYxJYfC6GG28mw8Jxplnu3fjzbgkl/MkH3+nau3EcO15YeEILVafL0FLB1acL695X1u/0R8uftHfsR/t1a14bl8ZeE/gZaak+qzNe65rtrfyzahrMzN80s0shO4ZJIRQBkmufG5BjYYD2VGMJVI9b2fp/SPn67xDgqSUU1pvZv19Oh8q6wPHek+Fk+DPjW81O1sdF1G4ntvDdyhVYL+ZVSSTZ3dgirk84AFfkeaYXGTr/AFasmnF/D5s+ZxW7j1PvX/gl1/wSu1LxfoVl8Zf2jtPNlokbCS00ZxhroDkeYD/D04r7rhfgmnQccTi43l0j/mdeX4KVlKa17H6FeMvGVrp+l23g3wNZx21hbqIILe1jCqqjgYHA4r9cweEp00pTWx9Xh8M6b5pnzn+2B43tvC/hdzLbSS/2TIRHbyy7jeahL8qIFPPyZz7V3UIww1CcoN+829W3v2u3ZdktF0R0V8QqVByi9WeHfF7xRF8Ovgxpfw+0rTrma7itjPqjW+pGL7RcyfM5IRCeDx+FfB5pi68arimfm+YYmpKo7M/OL9o7xNr15rE8978N7NYBuMc+s3F7OVPsJCo/8dr5TF1qsorZnydao7uz1PE9E0/7dKzyxJG078iFAij2AHSu7J6XK+aW7PVy7BPku92fRH7OngVrbUhrF1EhSwQZR2O0y9uDxwDk1pxdmMcrymfK/flotT3qdN39metXUrO/b6AV/Olecqs25bvU9CEPZRUVsipJJk9OB61yOGh1RimrkF1go2B271jsxPcy7DeLhgP71dXuunsYON53LdxObckHisbq5dVKIQTxXAIHPtRJ2QUdTO1rSWjb7TAORycVVKq+az2Ma1KEndLUbo+ryxuElOMdc1rZDpy5NGaGq6ba61BuZVJI9KaqezdkFeFOsrMn8CePPGvwtjktPC+sS20bnOI2KlT7FSD+Fc2IwWFxkuaotRYaVbA3VN6Mr+IfGHiLxjqjax4k1ie8uXHMtxIWOPatqeGpYelywVkRKrf1KLyiQYB5xWkGxKN1dlcFt2Ofxrpkk4ChqyzpNm2pa3ZWKrkz3KJj6kV2ZBgvr/EGGw6+1UivxR8rx7j1lXCONxW3JSm/nytI+2PCFt5VuiKAAqgD8K/vSCUEkf4/ZlO83c7LSUOV5rdbWPmsQzu/BvmoH+bA47V007cp87inaSZ0d+bhoPJlQHPKkck1UEk7mWIlNRUai87nH66pRmVjyKJnVhmm1Y4rXV+ds1y1NT6TC7I4zXUyWwec159VH0uFkjjNfibexGPcV59VWPpMK1Y4jxFB1+XjFedUV0fT4SWxwHiiDAfK5yK8bExPq8BPVHlfjiyZ0cdueorxa0eh+g5VVSaPH/EVjHHfNGw4bOeK8LFQsz9HwlVeyTNv4XSo+lyWxPz20pQ59DyP0r8a4jwksNmcpdJan7pwjj/r2VqLesdPkdU3zAjNfPySPpprUc6jyOR1FTB+8XFWM2fcMgevTFaztfUGkyq6YXkVnI5Kzsmfuv8A8ERL/UfC2qGy1fR/C1mJzgrZ+IfOnI9QCSPwr7DLKs/aNL8zzs4hpZo0P26fAVppvxj8RaXqWBZ3skjDKcpvyVbH1xX0Ps7xV2cKalSTR5B+zv8AtK/Eb4U67B8KtT1dpI7dDb6ZpWm/6LD5MeR59xO7ARqBgcYFYurTpS5ZdDycTFpuR9t/DH4xSeOPDVpeyxpcW5YJGbK0xGx9pXOX+ozmuuCja6YU1KejPS/DHjiTw9feTPJKtuXG9LmJgyA/hyKmfK1Yv2Op8Af8FtP2WNa+I1xY/ErwVp5vLy2uCJEgQl5bdx19Tg4/CvBzvCxr4PmXxI9zKKkKMnCT3Pyw1LQ7jTJZYrqJkeKYxyK4wQw6g+lfAzk7n0vOraFGZcLjH4UkKSVrjrcjbtIxmh3JTsPZSijAzWkNUUldksVuSC7d/WoqTtojdWS0Ox8A/s7/ABw+LPh+98T/AAr+H13r8GnybbyDSpYprqIAAlvswfzmXBHzBCPetqGX4nFQcoK55+IxdGlLlmz7O8H/AAD/AGZf269f0fSvjN8XZfhz8SdJ8NW9tqP9keDZo7TUoLaLHnTwSRQtDcIo2yOuUOwMCRyfoI5Tg6llWlyysvJXa21S16Ppfa6szwnUxWCVqC54777H1p+w7/wTy+HPwY8PeJrTRf2kF8c+HvEOiG0GradZzQy20vz+TJ+7cAhQzLznAYqSFJFe1hMDg8JR/dyv9xwVsfUxM4txtJGp8Irj4hfsaeI7T4bWVzN9mnvFthpes2Qkiu7AuXC2l1j54xuOLeRi6/wEDCnCEadOSaf/AAx01YLGQvL5PzOq/bd/Yl+HX7Y/wo1jwBdaZZTWes6Q9/4LVrfabK7RS0lsMc4YncBxg5wK9OqqSw7gtnsc9Kr7K0Z9Nz4Q/wCCWfhrUPiDfXfwF8feAp4PEfwnupbLQ5NRuVnmn00BE1DTpHKgtH+8W5t8jISQLklTXzuGhOVe0pXa26aGlesow91NJ/muvz39D9OPA/hzRvhb8QrjQRoYA19rO1uUZ8iULYhCSPTCH8MV70oxi2oxOb2c6lJSSehwv7RmgaXpv7T/AIW8C6vpqXlhd6KNP/s2UB1eNMvuGeBsKrj3b2rCdOC1k9dreRvCMo0nJep3H7NX7OWk+CtJ8Q+JfHdn/as2r+MpNVsBeDdIjlmYyFjyWZyWOe7DHaqwkKWFpWirWMq3Piqiv0Ru2nwT8JeLvjR4i/ah+Nzw6jpOg6Sum6Tp1xDmEJHlpCUb5WLPjC8jgc5zV16FOo1VvfTZdPU2q1fYYaNCmrPqVfgX4s8R/tXfEy/8T69JJYeAvCc3k2Ph2C1EVp5q4Kh2DfvXUcsMbV4A61eGdCVBSg3e7TVtPKzvr56fNnk1KTU7NavrfXz0Pk/9sj9mn9s//god+0nraeFfE1t4S+E8cAsH8TXM7QxNao2GiLFkZkLclE4YnkmvNx1OpiJtRm1FrpofQ08VhMHQjTS5pfqfHvx6/wCCdmj/ALLX2zVvhh48f4lf2azRvr1xoX9l6Boblwgae6uH2XEoydsabsttzu+6fFqZOovmparzOmhmtWp7lZcvVWd2/kYHxG/4JzfE/wCEv7I95+0Z8Wl03w1K2swroCa1rqfafElvJwfslrGpIxuVyXYfKOKxq5R9XwjqS3NKOcxr42NKndq2uh84AEAJj614tup9LBdyW1tQTkg9eKynK7LT1NjSdBvNQkC21s7jeqFlUkAnpUxi5PQzqVVE+vv2Jf8Agmx4o/aT1XWdCtLNxLHp0M1pfXERFtAzEcu+MfgMk+lezl+WVa6do3T69EeTjcxp4S0p6p9D9ev2R/2GfhR+yho8OoaRYxXnieXTIrXVdb2bPNVOcKucKufx9TX2ODwVHCRtBavd9z5HGZlWxnut+70RyH7Tvxjt9T1G7gtL6ddOtIzbmS2Vm3dzgKCck8Z9BXfBR6FUIqnC/U+Ev2iv2kNG0TQrmDUtbluIY3Li2GhXjIMf7IZc8d6upVaXKmd9Jyqx5dUfAvxX+OFp+0H4pGieGfDmhrpTSIjXUGkywXKzhvmU+azEDGORisqPNOo72sjoUW2kuh9I/sQeGlXxdCoi3xRERPu6Y2g/lz+tdrqQlCSjvHT8LnVOlGVOz2Z6l+1h8Rm+zTad4h+Md9Z2xUolvpcV5JImONoVGhT8ya+LzaqneMnZPrrdfc/zO7Bpy0ij4W8X3Wmya5O2l6ld3cTMds9+hWVvcgu2PzNfFVVTU3yO67nvwcpRtY5+9O5SSeaqL0LmuVFeyYeaOf0pN6mVPfU2dNufIukmDgFSCCVyBUuLTumaSk+h9DfAX4hTabqVrqHiC8imtZojb3EV9c7pLuNxtMUUC8AEHrX6bwVmdTLMxjWnPRq2r1+SIbnLXY4z9vb9nq88NeGYdS0Ey4sYfPs7lOs9mG3x546rkxkdsV+85xOGPwMatNvSz0+/8dmZYyjTq0VNannn7L/ivxPrmvWGs+HPE9xp80a+VjS/IsBIM4KyXJwRx1yDmvnMPjG6lqcrNaadn0Pka1R06z00P1V/Z/1LVLnwWlr4h1mK5jmh8uSN9UF6xBGDlgOn6Culxp4f95LRLf8Ar+rb7HpU8Q6qTitT8yf2/fhNc/BL9oTU7fC21hrM3nQSBPl80HKkE+vSvrqVdOUX0Z71LEutTu0eNwJA1yqxyMpjx9mlZCpbAy647nPA/pXs04KcWnv0NoSna0keifDnXdI8UWEPg/xNdGMMSsF6Vy1u+ef95cda+M4w4QwnEWAcZK1VfDK3Xt6Hp0kpwaaN7xV4UuNA14+Hp7aUWcJH2SRUz9oU9JOOCW64zx0r+YMxyvMMsxv1PExaaeiWt/NepyVYSUkpKx7B8BdD8YfDyFNf8SeFr2z0q/gTUNNluflS4WGYJIVGemGce5XA5r9e8LI5jlzxFDERahNKUb9GvyPf4dlzVqtBb2Xy6nvEuteD7PWr/wDsjRbOWXU9HWDzmjHmTWwYMrZ7lWwMj1wetftcJRVRRUlzNX83bR/LX8UfRRwVWUISd/dlfyvtqcR8NfBGh/Cnxz4j8c+BmW1n8R6G8Gp2EkY/0eYZYlcDkMCea58NgcLhqsp8tru7sKdCEJOWu9zE+DXj+C90vxB8Qb5Ior+80+IwEkbt8byJuI7HzNx/Wrr1KdS7hombQlGrJKOqT/NX/I9Y8GarPreoXHjXVjFLKmoyW6XAPJ/cxgnPvgflXncl5cvYeJnGko0odtg+JsfhjWrSwk8dafa3/l2jTrJqFvvRZArBJEXu4b7vYGtqWEjUoqNV3a3duv6XJpe0pp8q07GWvjLxRaaH/wAIxe+KJoUutLji2rIUl8ojHzdlLdcAd66q+AoYjBuhK7Tja+z1Vrq2z9OpnSlS+sc0Y+diZ1TUNTeDU7iK9mtUE9rGGDLaPt4wf721mBPbJreMoqKO181FOMNL7/n+ZpWGmeHX83xN4ytbaGwtomYylQwnQZ3Zz1BORjp1q+dRj7j1/I4cRzXUYPU8i+O3gDxP+0T8VtFm0z4863o2nWejMvh/wt4RtHXMqrujEiJ/q4gAMtgfWvjM0niZ1VGlW5N2+7Z8lmmHUqntY3TW77/M539jb/gm1rviz4pXvx3/AGpb2Rms5x9lgnw5Zl4Er7hhm4yBg1y5Lw/W+uvGY1+0n0v+p5H1PnxSqS18u59ueL/HC30UXhrQEjt7SLCQKh2hVHAz6GvuqVCNJXe57FKlHDR5upi6Sp86aW6vYLa20+Jprq9fkQgHliQevoKK9WFON3u+hnUxUYLmbevQ+SvHXxU0z9ov4+y+KpZlXwr4Slc6dBJLhLu5HG8k/eOR1NcmJxCp4dKL9Tw8dmEKj5Y7WPnf9qf4i31ppt1cabpl0LGJikosxeSbF6AAwKMfia+BzKu8RUcr6t6nwlf2ODpQoUtIxSSXZLY/Pz4keJfD3ibWpVtLHV0nLnbJeXkpA56bZOcfjXgezjOty2Z5vK6uIUYI1fhv4av9T1OG0tIN88kojt1I4Zj3+g6/hX12CdPDUJVJacv+R9fhqcqUE2fVXh/w7beCfDFvotpPGzxLuuGMZzI5+8civxLi7PZ5vj5crXLHY9XCwtdsj/tGOVsM21vQ5r4hu5tOw4yq/wAw4Hes73ClJEcxDIR7VjL4jSUbsp6Oga7MbDvW9m4HO175o6vpAkjJU8gVyqTjLU6ZLnVjKtYHtH9++auVps5nenoXAgul+UA+oouoKxpTs9WZupaMY8zQDkdQBVUqrcjDEK+wzS9SZH8qUnI9a2qQ6nLTnJPUvzxpcLkDr3qYyaOxSi46mdc2MkYLJwK39pGSsYKKvcp+c8XU01ZLQU5SSJEm8wfLyKFKw6SV7nTfBvTTqvxP0e3dcqlz5jD2UE/0r7bw0w/1vjfCq3wty+5M/H/pBY/6h4X41p2c+SH/AIFJX/A+xPCsTC2THYV/aMddz/K3MJJ1GdbpIIZT19QK1R8/iHod34PwInY+gxxXVD4T53FuzRu38khiJZsbR8vNXFK5y1JSnJc5yGtZJZmJJ9aU2ejh3rZHHa6Mlua46h9HhbOxx2uISSa4qiPo8K7JHG68hLnsa4Kp9JhWcZr8R+bA7815tTRH0mFlocJ4kg++MHkV5OIVz6jBT2PNPGNkXDblrx60Ve59tltVK1jyHxnpJW5Mo7GvDxtlufpOVVlUhYpeArz+yfGH2GUgRajFhc/89F5H6Zr804zoOphlXivhP1HgbMPY490G9JaHeyx/PyMV+eQkpWufr8kuUUqdhXpnpRflkWrWuUp4MDcRjHrVyV9TCdSzdim6B+M8j2pygkrs5Jqck2fqD/wSc1fW/CfijStQXxH8M7RWkASIThp355GSCc/jX0+W0bVeZNHHmVKvVv0R+hH7efgqHxTPpHj22tklGo6cIrmWMfLvA6g/lX08ZrlseVh4TUeVs+APi34Ga78Uf29BaJEYNLEsDMpeOS5SUrh1zzjcOPpxzmsKkOZ7CqUk7pdTK+Bv7UXjT4U+Nbrw78RdX1PWtdWQIvk3SxmNTyBGWwttEox9xST/AHu1OhW9lFqo7ihhVD32z7x+D/7Rem+J7TTxqA0yWe6TaVtdTluLnHo2AQD7nimp+1leJz1aqTseqfGvwxPrngW21Tw4k0lxpiC6hNxAAWA5ZG7Hj/8AVWMoLmtIlVJKzifG/wAe/wDgmF8If2orf/hM/hjqyeGNevb9bzULMoDBdnHzBeyE/lmvJxuS0MQ+eGmux3YbNKtF8s9Uj4A+M/7E3x5+Evim68O+Jvh9fWsqPcyoZIvkFtETh9w45XB6183WyuvTm9ND3aOPp1Y6M8gFhNAw82MrnkEjqPWuGVNxdmdimmSKmXAI698USjaJvTTZteH/AAb4p8Swm70bwvqlzZJcLFdX9ppU88Vux6bjGpxx261lTw9Wq/dTYsRXpUVyuVmfaP7NX/BO+L463Gn/ABJk17V/A2uRxxy6frfhzSLiLRdRiUBQ8r7leGQYxInyEHnvmvq6GAhUoczcqT7q363X4Hzs8XTpzSsqq3s/+Br9x9m/BX9hz4jabcQt+07Zaf42vLXyn0fx3osJLuI33JFcMr5YEZUknJU4IINejJ127NqS76HJGtBybpNpvdM9d8Nfs7S/CjV4PHH7LbP4deO4afXfh/eKpsdUViBL5L43RScZUBtmc8DcTWPs3zc8L37EQk2406yuu/X797fl06ntWqaPoHj/AEy3XVNKiaB4ln077TH+8tnHWMnqCp4HpXbTmkioxlTmysNFFno5gsIFMun3iXNmc42sOGH0NRVm1HQU4RmeefBf9k/wJ4J+PPiv9oXT/DUFtqOvxRo/lrtWXBcqzjpvXzXQN/c2jtWVCjBS5+xy1bytDoj1A+AbfUvFa+JbuLdKsh8rJ6cEZ9uGI/GuxVLNnbSvGjZMwfEfwisPF37Q8XxO1S1Vk0XTTFZqx/5aNjJ/ICueonKqZySUFE9Be0MsGPLA2MMY4yRz/OtJdxwSRa8Q/DFvHPhe28InV7jT7JGEt1LaNtleTO75W7H36/lXVFNRTi7Na6dzlnWjGpKctX0NnRfBfw9+HnguHwNoelwWmlW6bRaIDh+5Ld3JOSSckknOayjy01Y4IOtKrzLVnB/En4bfDP4t3MVh46udX1HTbJleLQbW6NtYqB0EuwgN9Ce+MVnUjSlJXOtSxFON6as+r6lfxX+z38GPFg0zWbr4T2msx6MyvothqsZk07T5F6TJb8q8g/vbS3uK3l7kLJGdOE5yu5WffqfDf/BQr9iDTfi/4pb9of8AaF/bE1GO1tlNlp1rfeB5lttKhGTssbVBmSQnADHr1LHivJxmDWIaVSfy30/zO3K8Tyxao0tbtPWzdnbr07W0e6uj8u/iN8K9W8EfEDUPDUWl62tsJmk0yTxBpDWV3c2xyUmaEkldw5Ar4/GwhSqtQeh9vhK061JXWvk7ln4f/CXxH49mtotItGAnnVQSP4S20n8DgfiKwpUXOW2g6uIUYvl3P0l/4J8/8EjfEGvWh1j4saJNp+gTXMV3b3k48q6mxghEjOcDr8ze2AetfTZdkk5JSrLlj26s+dxucRpXUHeX5H6g/Df4beBvhB4StvBXw+8OW+mafaoFjhgTGf8AaY9WY9yea+np0qdOKjBWR8pUqzr1HObuzD+PfxHi8D+Bbv7JcqLu4TywQ3MSnq2B7cD3NEm+ZRRVCLnUu9j85v2qNf1XW7ZtM07X7E2LwkiyvZTs388s0cyNn/ewParahbc9WMVPU/MT9r6H4gadqDtpVpbw3TTLFFdaTqdxGYyxwCCZHDfTg15Uqk5VUlqdkabXwifAvwpM10L+UtNNE3+ukGTLNkbnJPXJJFe3QhK/MehSi4Ru9z7a/Zt8N3Ph7RJdYt9OaSRLfEMQZV8x8dMnAp4utGlSaRaXNKx5D+0T4713SruZfGHwA0xvNLKLjVonlMfPDIUkx+NfnOYYiu5tumrHrYaCmtHsfOV/cJLM0kUSxqxyI0GAvsPavn7XZ69JWIJkMkJYdBV3UQm7lOzIE2Pek+5m1Y1k5HSo55K6N4Jcp2Hwx8b2vgfU01GPV4dPdj81xFame6YeiZ4WvWynGLC101Ll76XZlUcUuW1z7A8M6TH+0J8JJ/B2paS8N5DaPN4eg1GQNcXMZGZo39N4GQP7wFfv3CubvGYN0J3Se192jilUaTjumfnh4m+F8fwu+L118P8AxTotxe6dd3XmabbpqJtYsE8lmA4xgZ+la4nCUMBiPe1TPncZh4puUtz9B/2FvG/hHSNNg0xPGfhrT3QLEtgvitriTI9VC8/ia9PD4iFeNoInCOck4bmt/wAFQPgRZfGH4Vr4y0q3inmsI/8Aj5gXJYA53ZPI5717mXtuLptvU9/DR5qPs9nc/NO60rV9Bv49M1WVZroKrxT2nWQNww46P0BBHavpqUrU7NnoYX2ilaWh0fhHTli1O3ubYNl5PKEanAZ+flHtyMk8k/StHUhXmowu29LefkelGs4LU+mf2fdVvvFdjB4JuTDPLt3W73Vup2PgjCsSMZA9q86eWYWvyynFOS6tLT0Z7GGVKtJe0jdHvfwd1G38C6dq3gq00/QbFLpJA2n3cCXqTmRWEsitMC0MmSThSc+tZTyvDxaSVknfTTf/AIJ9H9QpYlQnLm922qbi9Nk7bq3f7iD4b2V3NCz+K47NZrEvBavCekecr0xhW4BAz61306bUk7eR6l6fwRbs9/U2IIfDevyLNqOmvo88RZAzssigDtuXJZW7ZHHtVRjOau7q19/L0vvuvXVJkYiPs/dXvI888b/svwXtnrHiD4Z3kFhLfxETxSs3kzOf4kYfdJ56+tcVWLaahpc4JYhwSutEanwVsr6PQ9U8PeIbC4sbiyvxN9jl4aYkAFge4yCc0QtGNupg5ynJTZ2vwu8K+E/Geur4h+IF+4js7iW08PabBLua6mUZMm08FFyO3Gee1Z15TTXLpfuVXq4iFK1NX7s6+/8AhR+zRp3il/FPibUdVv8AUoLdYFSe9j8m4Y5LOoC4yvr6niodTMKseWCSR5sa2ZuacIpL0H+H9P8A2YNXvJ9A8I6dcSfaZVW5M16u+RuflVgucc8gde/Ss5wzGEOao0kd/t8xjG85RXy/4J2Wt/s4fDG98K3Wh+Mvhzrk2mTspW2tNVl2lQBtGNoAHfHPU81z0sbXlJqNWN/NHDLHV6s17KrC/mv+Cc54h/Yu+Gev6pL4x8L+OvEmi3DxwpqNi8sYjnhTO2MsoBwMnhcdTmuOcYzxKlVin5o4K9bEc3LOKd+qf6Br+mXOhaSfDugXQksLNB5MglJ85j3w2CTn8q+uwtWkkmlqRCEvtR1ONutQlt7tbZYWkmjbDLu5Mh7VtXdGSUrbHNWnJbs8P/bU/aA1Kys0/Z7+Hc80d1qYRtevLdwChBBMfPXAz+JFeDiKt6nM9+h81jcZZvm36Himta/oXwt8DR2lwNX0yyEZMuojTXlUHHLFk+77kggV89j8e4/u0z5upWv7t9T4l/ad+LOi3N5O3g79oy6m3yESWGnXzRK455J2nJ9uBXz1T2TTl7SzPBxU17SUZLU8N8P2Op+I75rjULye4Yn5rieUu+PqeprTAYSWIb956rfqj1MmwcpTVRo+oP2e/hc3h60Xxjqlr/pLJstYccpH/ia4OMs4WBwX1ak/ee59PKCvY9DuZopSWjllUk8xSdq/B6z5pOWup10bmZqViLhd8cYDD0HWuNTs9TWUVNGSt3Nby+XIMfWtGla6ORRcJal6F1ljOWB44rNJt6m7qK2hFpaYvTtH8XJrouuQypvnqG9KAykbeOhrha947eWzKM+nLMN2MHsRWikooxqWkP0fQry91COytkwztgE1CjKrKyOaU/ZrU+ovgv8Ash6V8bfB58Mr4Qaz1SKImO7IP+kE9MN0H0PWvpMFl1OrSs1ZnlzrVI1eZv3Tyf4z/wDBPr49/DLWJhZ+FLi/gjLFGhjO/A65WlXyrFU37qujVYnD1I3TPI77Q9e8PlbfW9KuLVnB2iaMrnHXGa8qpSlD4lY2jOEo6MgdlZPmHBHOawacXcqMkZ2o2YzhR9DWkJXL5ebcqW4aM7Txg1ra6uYSvCdkelfsx6d9u+JD3hXi1smP0LfL/Wv1zwUwarcU1azXwU397aR/Mn0qcy+r8E4bC31q1k/lCLf5tH1f4ch2wKAf0r+rIbH+cuNleTOn0wfMOK2R4lfY7rwiyrEx8vniuqMfcPnsVpNM1dQmDhmkPPQGrSOWTnUndnKa02GO8+tZzPUw3kchrRyW5rmqH0eGWxyGtDls1xTPocM9DjddUFmHOPWuGqj6LCvQ4/XIgzHnn1rzaqPosJLQ4vxDbk7uPpXmVo3R9JhJWsee+KrTIbI4xwRXk1oo+vwFS1jy3xfpZkVzjvXz+PjdH3+VYjlaOI1PTLuOz/tmxY+dp0olUDqQDmvncbgI4/AVKb7H2eAx/wBSzGnNaXaPRrK7ttUsodTtWzHcRCRCPQivw50p0arpy3Tsf0bQrxxOHjUjs0SmNVGc8Vdrs1TZTuFMgKov4it+ZRRSppvUrvaiIZxk1zTlKorGdRqKZ9O/sD/Eb4L/AAl8QW8l34r8TRX9zLgw20Nu2eeAhaN2DehGPwr3cJjcNFpRumGY0/Zwdz9sPhb4x0f9ob9mV9N0nTtaWfS4RPbya8hM8vHPJAzX1WD9+F2fFYivKFe6Pj743eCZmjmsLVmS6NpO6MkfBbB3jB6Zwp/Ou+K599WdkG17yPBfHHhzxLrI1jxJo8cMeoLotrcSSRA7JYgVSQSAfwlsDB45FcOKpwVpGknUqrlPVv2Kfif4ihuDZaNofiy2lumWKQzW5+yRjPcrxgcHADDHfjFVh8U6cbK6vo/M8+pR96/Y/Qv4M67rFlZDw/4nke4glQrLczuCZM91UKOB74NVK8mxxpKx5/4j0Cf4d+NL7RrUv5PmG809lzh4ycso9wea2pRSj7xnOKOv0fxl4L+Ivha48CfFnw3bavpWoWz203nKPMETjDBX6jr2p1KEK0bNGUJVabvFnyD+2j/wRS0DXdGf4gfseX32y0sNGEX/AAis7/6QroxYMrH73Bx+FeJjcmpyg5RWqR7eBzG0v3p+aXjH4V+L/AHiK58LeK9BubG/tZfKmtrmIqwbPTnqPeviMRGVOTi+h9TSqwnT5oanq/7HXwh/aP1/4sWNh8FPF2v6LNcgm4bSr3VIoSQMr5wsrebI7cjvzgc1vl31qVRezk0v68mcWOnheW9S1/M/VD9n34J/tV6vpUKftGa14Ea0hYpFp/iHw3LJdS88yGaWUS59G2gEHoOlfWr61OP7yd/Jnzt8Hd+zTTPqD4ZeBfBfhC2MPgnUraxLIC9ppd032Z27/I2cCtaVOnB3QqlSTS5lqddPpVtK0ax2aRyL8wKDbye446e1XUnpYhNXuMls5HAxndHJuYY7nrWN76m68yW+09XTzgq4bGT681q0mtRap2L8OnItuqxqqbowCVXqfWlbl2MUlfUmWxaKPAjAPRW6cVKhZ3Zp7VPREE1qiRvIo/1snJzVhJM0bexKWqXUg2og3E/3j6U5Nbsz9qlJx6sstq8yW42y7Sv3kDDkmqVVuNjGVOKlqjD1qeeXzJri7WGEj968j44z0Hfr2rJJRk5J79/60/p7m0KalokW9H8K6fOkVyqvcvnKi4OIsdyF9PfBrX3KkbIzlUcLouaz4I8Q63JGk/in7Paoc/ZILVSregOeMD0xXVBRjGxhDEUqbaUdTkf2i/AHiHWvhpPpHg/Sr2W/MTImo6WLZLyAEYJiaVdsbEcbhyO1Y15yhTfJuZU6vLO7+53t8z8rNT/4J+/Gnxx+0BNpV34Y12S41KEss0viNdXvV+UruuZndduOMgYAz+FfJyyupWxFpt6p9n6H2VLMqOGw6ldR9Fpsffv7Hv8AwTM+HPwF0rQtV8aaLp95q2kWxW3jhVmQSMwZpJNxxI+QMcYH619BgctpYaKc9ZHzGLzSpiVaLsvzPqpY44UAUBVA4A4xXptuTPKbuZ0uvWlzdPaaZtnkh/1rhsJF7saG+U05eSN5HyF+1V8W7G88S3Npp+q6a1pAzENNdbVll6MxJ6dMDtgcVrRoprme53YaDqI+Bf2oLbwf4t+1pqvh/SrlWjO06X4tbc+f4SvHU+9efj5U4ux7VOjaPJFHw3q/gbwnpvjOebw1ot3aXkjG38m41J7gITySoLEDA4BHqelY4Ci5S54nRCHsvU91+AfgAXupWem2ULFYGAHOAzY5J9ea9ufLFKbdmr9dPn3LbcrI+gfjLqOneEPh9H4a0nxPoM10se640q83o+cdVcEYP1r5LN8ddtJr5nZRpPc+M/GmofbtVklme6jcMcwtdmWMfQ5r4qrVi46Sd/wPaoQV9Ec1cOGf5f51hBNnf8KJoxut2qKlyFuZqqUuOBitF8Ipo1oDuXb3IqLLqVC9jT0LU7jR7xb208tZlPyyvEH2e4B71dOpKjPmiPlV7s97/Zn+LGsW/jS0/s2ae4vmlVpWUmWY4P35ZPuxqP7o4r77hjOFQxUWrtv5/ec1eCcX0PRf23/2S/D37SngbUvid8MjDNqliPN1K0szwsuCXK7edjHk46HPrX7RCrgs/wAJy396Oh4uJpc8VGrp28z5r/Yo+L/w++GnjK28Ia7pM1z4mLGE6BoeikujbsZklf6dS2AKeCnRwT+rz0kebLlwknFLU/Tax0bUvjB8Krm01SztLOG5siFsFnSV0yOCxGQD7Zr2aMlQxKnzO3bp69z1sNU95Se5+X3x2+A+t+DvifeaIqPJNNhLZZHKKzox29sDOeT3Ar26+NjKPu7HtyjGUvaK+ptfCr4Bp8RPtEt6IYbgzG10y80u5SW2nkjxu3qMPEDnG8gA89wRWOFxDm9jspKVd8qurLW6PrP9l39kTWtN8VHU/HFqkdnZ2vnywD5MqAVVffI5z3yK7q+Mp0qCUHds+iw3JhaafV6I9X8Wap+zRp1k+r6r4ekTU5RHFcNburRqQDkgsASe3v7VhTp5hUa95WPoaMc4lU5Yyjyea1K2g6h+ztrkjvaeHdRt7G7XdPeXjeUiFRxsBXkHHPPaprrHUVfmRvKOYUKTlKUbrpbcisvCn7KnxH8TXPhnT/G2oWurTIoWT7QPs4IyQQBjGfU1TxePpUudxTj1tucOJxWcU0qnJGUVul8Rg2Om/Drw346Pw+b4n6lb39pZi6vknt1a1kh37SwPfqvINZ1qlWXv8qs9kXW9tKDmoafiTnT9J+J/iHUrL4U65Drd1oblESEqjjg4JVdxwQRxk47VHtPZ006lk2Yfu6dJTq+7ffXY4t7j4n6BYanok15pE0+nSi50+3u5jbyPkqBH5mNuWJJBO0ZXn3JV6iaitU39wpe/JNXs9B1/4W+MfjTxBdw6J4Pu71pbyGLTI/tETpEmCHLMrYTafXrknjpXfTr0acLy0SLl7GhSdSpJrXReR6dpPw48M/sh+DbjxHr6xa34nLmVVkl/caeSM7kU8Fh/exXJ7Svmlqd2qSu7dzgpqtnE24tqH4swP2RP2hfjZ+0j4nu75H1FhdazPBoUmoXyxrNFG2GcRhiApAPzY4x1NaYvA5dhMH7XlSit9NTTEf2ZhcsnVq0+WMfLVn0TN8Q/Aeh+LtQ+FGv3+j3WpWjRSatHaRAtCzY2lyB6/ieDXz8MF7SCr0YtJ6+v9JHg0IVsdRWJpOSVtLvoSX/hX4UaZrlpqfjK1luoFlZ9lpahI3VgfmJYkggehA596cq+Z1KDhh7KXmU6+ZTw0oYayfm7s8D+K/iP4O6BfeIr34daZqW+ELqGkyXOpR7YoAnIaERl1Yuwxk8gZ78d+GebxUHiJLlSfMktb9Nf6/DXyMW8fGnGWIauk727+p+f9uuu6h4q1f4r6tpWr3kEtwSQIt4Bzksdq7lB9u1cFabhWlVUna1uXS3rte/zsfI4vERkrHkH7RP7QdnJp949l8ULnw7JG2BYWzPLGpGeWSbcSPUjPXpXzGNrxq1G+blv0PmMXVmtlfzPiPxRr2t+N/FUr3Or2uo73P8Apltp8cO8Zzk7AK4KVGdapFQfMn1JwuHqYmokke4fs5/B+S+mg1zV7Ui2jO+Eyp/rG/vH2r2MZj6WRYByT97ofoGDwywtJXWp79c/8SyIQy2YeDoWhmyp9wR0Nfh2d5jWxmJlUqa3NpwkzPkmDTFoyxU/d3nJr5qpPmZdO9rDo8OQD+FcVTc6LcqKuqaTFdKWRfm+nWrpTadhTgqkTJImsXKOMYPXFdEmjh9nKMrE+h75rstkZ3VMp2jYqjyxqnRSIUy3FYLVnfN3REu7dwPwquSNtTFRbOu+EVib7xjaQf2bJcI8oEixJuOK6ME4RrK5zYmEXC7P2d/ZV8A/Df4V/BrTfGXiGBMXEY8ozjBHsc1+i0aEXSi0j47G1ayqckWd/cf8Kq8Z3K30FrCsxyUfhlIPY+1digrWZyKNaC3PkP8A4KkfsO+FPGP7Pl78QPhl4fiTVdDuGu5IrSPlkP3wMdR3ryczy2OJw7dNao1wOKqU8Sk3ofkVMkisysCMcEEcg18LNJaPc+tcYqN0RNlk2MBwOKSjyoFN2K0sWDkVvGT5GiXLmlqet/si2BfVdX1JxwDDED+bH+Qr+gPAzCNU8bibbuMV8k3+p/FX0tMwUsVluCT+GE5v/t5pL8mfTmiqQg5/Sv6Dpn8M4l6nRaYmSMmumGp41dnceE0lSIvvwFx1rsSSp6nhYiS59DR1QxuzFRgnvTWxzP3p3OV1rcXYYz9aiZ6mGscjrSkAmuWaPosK9jkdaU85PWuKofQYZo5HW0JLZ/SuKpqfQYZo5HWImLMS1edVR9BhpWRx3iCL7wJrzqx9FhZaHB+JLfcGJ6/SvJxCPqsFO1jznxTZ/eHqOteJiYcyZ9vltVKxyGiW0C+IH068H7q5UowPvXBhEoVuV7M+ix1WbwinDeOpL4Dml0mXUvAl1J++0u5JhB7wscjH0NfkHFmXPBZnKSWjP6A8Ps0Wa5PFN6o6ERSy8nOBXykqii9D79QURJIxEvNZOTlqRJ21Z9cf8ElP+CZWv/t3/FuLxT46sLmz+Gfh+6V9f1LBT7e6nIs4W7s38TD7q57kV7+R5RPH1ueatBfifK55mrw1JwpayPnf4GXQ0/xlaE3l9DvbaRp19DayN7edN8qD3rzMLKNGtdn0uY0quId4n7Af8E5f2iNI8Li18O6udNtmlCpIJPiDFq11IuMfMq5Az7Yr6vC4yMpKMfzPnMXl8KDu3+B6X+098Oo/Dvi1PEOi7G06+DS20pQHajA7l9OMnj3r3aMpx2OWFdLRI+OPjD4Om8HQXGt2GVZ9Huo3hjBKuVJcxnHYgZHqPpWteEZQWpT9pJ+6VfhNc+KdQ0Ia1o2ua/q2qWlqrT2ui5W0hVjkMT5ilRztCgc46E1xRowjK9/68iVGpKGq2Ps/9lfX/G1posD/ABJFlYh41McZO+5P+9kk7q6klYhyU07Ht/xJ0JPHHhGLV9EDrfab+8tjLGdxUdVPqCKycn0MVTu7HlEAgvoV1Owv2gh3/vYT/wAu8oPKn0BrfnkluTKnKOjOo8I+KPEGkSQ3OnXgSFCSbhJiSx4xx6UVKnPFRt8yJJSjZFX4z/s8/s5/td6asXxe8OQw6quPs2u2QEc5YcbnC/e59a8rGZbh8VHVa9zow2Lr4TSMtD518N/8EwPHnwG+NWg6v4V+MWoHw4dUe51W6ttansbZ7VRlYJBC4ck9CQynAOOTXj08lrUKjcJtJ9v6t+B21MwjiqMlKPvPbQ+sv2VPhf8ACrwzrV3ceCdE1nxTqTzM9/4g1QXRtw2fuwyXLM5VcYGDt7969hUaKs1G76mcpVuT3tF8j6Lh0rSpVCnQoIpm+80Y2kk9e3X3qZtR6GLu+pbW0kRDBLHJgHCuTytc0m07MEr6jorfcojmcbgTySKEmzWLfQnfS2v7T7CUaME/6z0rZJtco+ZU3zXuXL+50vw3pfkwp5siL3OTW1SpSpQsZQp1MTO70RUu9aSPSotQupFaCQYJIwY29DWLqq1yI00qzhHdfiQ2k1vdSsyyhkQZIB49qj2kVudjhJRLfiLVJbbTorW1jJLABI8clj0qJylKyRy0oQdVzkatsmk+E9KSS8G5yBvcrlmNdjlHD0rs5K3tMXUtDYo3HiDwFq+px6fe28DXcjDy0mhG4nGfzArCFfD1qij1NIUsVRpcyehPq+laNaSjVZp5UcALEpuCqA9sDpXVOEKUbhSqVJvlRnapqkUagC9nZimGQ3ZCqe3I5/HFRSq233No4d3baMfXfA6eN9BfRdL8WXNtOTmVBfM/HcZ7jn9e1aVKUa0ddiZNU/flHU0fhZ8KfDPwqsmg0eECSQDzp95LSn1bPelTowpR0OSvVlW06HXXF/a2URurudUT1Jra3NscsITnLlijn7nxkviTUH8P+HoS5HE8zZCqveqaVKN2dbpRw8bzep5D+018fNJ8F+Gp/h54BuVM7qUvbmFh+KKT3PQnt0qqFCVR88vuM6cJVp8z2Pgn43/FvWLezklk0jVEUghiNEhvVznuFOcV1VJKCsz3qMYQp2Z8EftQ/G7wDeNJpU+maA2qXG5YbabwjdWFxJz1VlIUHvzXjVowcr7nVTlGkrp3ZyPwt0jMUE5mdriQeXBvJJ9S3PPtXoYKFo2RulPdn118CvCGk+G9Ph8V+LtXjskYB4JJ0Yjd6nArLMqyjTak9Tow1PmbbOE/ao13Vm1N/EEGi+HtdsZRtkuIgZMejZVgyH618BmLkpcySkj16UeZW2Pn2a8S4dpYoBErHiNWJC+3PNfOtKUrpWPRpR01KrZeRV71stEaTdi6BiA4HWuaoyofCZrkiYkAda0jsRJdTSsCWQM3pUyNKdrFwA554z1PrTjyy0YSR03hLxTr0US6HYa0mlWBYG7eFMNKPQ7fmc+1dWHr4m/s4PlXUxqSUFfsfWf7L/xqh8EarZaNpiNIsq7JdPcb5JkYfM03ZRjtniv1LhfNI4SrCEW30svzZ5OMl7dWd0cb/wAFAP2HYNN1NP2ovgppd7LpTuJNf0jRtQNtM4xkp5iqSoznnHI4r9mp4fCZtB1Z354p2s7XdtOj2e66rS63POnTniLpaTW11f8AyPQv+CfHx10nUvCNnoeqWdvpNnMpSx0xr5neUA4OQ3zSNnqTwOmDT5KFWiqV7ytaSZpSquPuXfMvItftzfBSHxJdR+JbTT0VF2ExhcZUHoQOn09K9ClRpvDcqdrH0GFqt0FHVu5ofsgv4M8S6hc+HNB+C+lJNa3YTUtSgDRpEEHJdwojkfIONhwB2PBPM6nK5cjafRW3PbowftZJJq2l9Gm/K39eZ9D/ABh8ceFdJ8A6nqOnXAtrS6titjcBMlygJbJHUE4HTvRl+HxM8YlUe2tj2MuwddV4KprKO6/LQ83+Dfws+Efijwxf+LNH8Kalq+ryyK13F9r8to2yfuDGVAznpivZxdbEwcU3GMXs9z6CrisTh68VOpGEH1av+pxPxL/Z1+FnxBtNQttd8R+PdFvbyPdHYafqLSW9yw6GQjA2juSOMdaU1i1Dli48j36fh+R04p4qVO1KacNLu9vw1ueY65+x344/Zn1+z1qDU9avtMvNMe2XU7SP7cs8kmfJXahUpyQNxJAHPPSssM8NNWoN3Ss1J267r5f128fCVVWqPlk79b6WPV/CP7AGtfETT4tZ+LXiWXRHbS4rSO30e8G5LcHLB8dzheQegI5q62MoQTUVeRVfNsNSXu3nPr2PY/A3w+/Zy+B1/Hpfwu8OQW+u3KSQHWonWCWcxrjL/LhskcsQck5OSa8mVPFVm6k0kt7HlcuaYxurXSUNLxt/l/w5m/EL4RfAHx14p03xbdXuppLrmhTWdzZrGktjcRFds+VI2oygllbIZWwy8gYKUMROMlJL3X3szanHM4wlCaTUZXWrT7r18+jWjOl8T+HvhZ8KvhxHpfg/wPsg1a2jt7HbcN9su0CEkyggEKozzk5B5xW+G+s4mu+d3tvpp/wRYR5ljcZzVJ3lFu6S91drPqcv8HvBOr/ERPEvjX40eBoL7wzPfpbaFp+qqYZJoRxJKxUNhfvY45GM4zkPG4ucZxoYeVnZ3aV9ei6FYvHYjDxVDAySqde2/wA/l+h6zow/Z78C6J/wifgSK28J2kVqXjvbGWKRn3BsxpySMfkTj0rzI0s4qPnrLn8tkeFVw+f4mXta69r/AHbOKXmz43/aY/ad8M/Db4pWHwr/AGf7G3E+s6qs/iHWdTfNxqDLHku8rHhQDtC9ATxgCvewtGo0pYh+/ayXRI9PD0qs5qeJfvPRJbJHYeIPjBbfELwGfCmt61JpsGq6VI97qz6iYmsX6IYlCnfk44ODz0NdSwM6MpSPSrwpUsPJ0r81rLQ+Xfifo8nwI+CT+GNR8bHVvFHiqdoX1SG5Z/Os4y3lM+7Hl5BVOBjCZwSTnzquIjgoyhVk9b20vbT5dd+2+ux+f4rEVaLkm7tnznrvizTvDGhnWbnxRHo1zHGUvJ9Cu2ukYDOBLlAVx7p+Jr5vEVYSf8Sx8Hi8VUk0qsbPsn+un5HyN+0b8VLrxlqjJB4n8P6/5r7VlsYWWYA9CQyqVPqMn2r5+tCpXq2TT/M8tUZ1attVc1P2avgBc+JrxNU1iJktkYMwcYMp9Bntmu2tVw+SYTmb1PuMqwMMNTU5bn0tDbW2g240y1gktmjGECKFx7YPUV+PZ7ndfGYiSmevzOcrplG5ncBmRcZ+8q8V8bVquUiprmIrVd7ZbgGuaU7KyCK5S0FUKMisndluSY6NQzbSeBVLbQaTG6pp8E1uzMoBx1FNOSkOULq6MPRMxXxjxgBuuK6+VOJ5/J++0OjkJcEEdetYNJM9BK0dRkYxw3pxnvRLUzcktj0P9nabWj8QrJNDldZGmABjAJ6+h611ZfD9/e5wYxOVJn64eKdF1Txh+xfFHcySLc2Q/esPlYcDnjpX6EpynSjc+IxHOq9mfMfwu+JvxZ+H+qC30rXRqFkGwbe5f5l9q9GGHk4pp6GanPmaZ9TfBn49+HviDZy+HNf05YGlj8q7sZsbZARg/WlGPIrWInB7JHwv/wAFJv8AgllqHgm7vvjf8ALI3ekTu0+oaVAMtCTySoH8q+bzHIfaKValv2PYyvGVL+yrM/Py5SWGZkmQq6sQyMMEHuDXyDdpcr3R78rLYgbBbAHWtbJIlRcme7/sk6S0Phy7viP9fqB5/wB1QP61/U3gtRjS4PlU6zqyf3JI/wA+PpS4tVOPlQT/AIdGC++8v1Pf9HGAFDV+vQWlz+TMRrdnR6WOQT17V001qeLXZ2vhgHy9ytxx8prutaFjw8Q/eRo6mSFb5cDNT0MLXkcrrB3FhgjGeazmelhrLQ5LWR94GuaZ9Bh2lY5PWVXJOK5Jps9/DS0OS1qPBY5riqRZ9BhpbHKaxEBuOK8+qme/hpnIa7ADuGa8+rFn0OGmcXr9soLK1ebVp3PpMJUehwHiOyDFmx0rycTTsfW4Oq0ked+JLd7O9W8txh0fNeTVpezkpH2OBkqtNwlsxfGRTQ9a0P4qwj9xdKLPVABx6An9Pyr5HjjBxxuGjVgfbeHmdvKMbPCN6J3+TPV9L+FF/wCPND8MX3wZN54s1HxALmK90PStNkefTLqGYxmKQgYIZdkgfIGHwelfkU8sxarQhTTlzLp01P3ijnWGq0pTm7Jba7n2v+xZ/wAEKvHfxAv7Txl+1vrR0HSAyyDwrpU4e8uR12yyj5Yge4XLe4r6jAcLTVpYr7jwsbn8qqcaC+Z+qsMXgD9lj4DLoHw58MWejaRpNmLfR9KsowibsYHH8TE8knJJ5NfWxjTowVOmrI+clG6lKTuz+ae0CSAIyAr6MOtfkk07n69VmlNo+i/2M/jVqHhHx1p3hXw7oWi6Tbu4Nze2Xh9ry+m56KeSD9SBXo5XWdOpqr+iuz5/MYOem5+wng/xFoHxZ+GkXg3VLkw3DWwaxXUbpPtWcfeMaklM+lfaUMTCpa2nqeGsPKDUmnb0Pnj4sfDe60+8k8Ka+pjdeLeZlyAV+5knsfu59DXU58+jO26i+Y+SPHvg7Wfgz4v1DxTpWuTozy2EU9hNdPFZmLyyomIQgsSQqhOm4t3HPHO8PQzrzvDlXU+qv2VfiLq+rCyt9W8LapZXUZAe603wsyynPZp7kkAe6itMPVclo7o8+NRwXvRPuv4YeI9INksBV4pXGHFxfCSVvXcBxzXSoyhqg9opvQ4n4weCl8F62/jDSYs6Vf5+3wbDwem7HqKz509/118v6/yOh/vIWe5z9npt/ZzRXdpdQPYyAeVJnAZT6+9aRlbU5pRcDqNL0jRIDDdRXkqsM7dpyrGtE4sh3bPUPhUJSUT7Sq7uTDcqDyfXgilKSitDOybPV5pte0d7aytdLVobgZZ44kEfPryCfoBXDVqcz3saJRcerNeHRmnQTQyQiU8EJHgcf0rhklNtxdzolOMNJIsrplwg3GIlv7ymtIU2lqSqkG7JkV7YRPGNzhXxjIHNFSMbGlOtyu1tAt70woIJOBjBZqmNRpWG6aqPnRg+IYdQikc20ZkUj5FC5zXNVvzanfScHBdznWg123kMJDJYXrskiuoxCx4BBPXntWKm0rPY0lCE1zL4ka/wusbyW5u31wstvZXDKskjf61vfgcD9TSwsZznepsjix9dqKUN2ehQSQTsJIbcMB0baP517y9m1oj56fPHRsr3+iz6ldLNNMiqp+6Rk1nUpubV9jpoYmFOPLa7CHw/o+nzCez0mFZR0lCZb861pUqUXdJIVWvWmtXoS3WnWOpwi21TT4riLcG2TRhgCOh57061OFSNnqYU8RUpSvF2Zkaj8LPBV6HfyZrUucs1vdun9cVzfV6aPTpZni+S2/yMqw8B+HvBuqf2vY+Ob4AH57a4nSRX9umf1rqpRUdEjP6zWre7KK+Wg3VvHNpGxc3KcScLmtXBJamsaairnLeLviRHdXK2wv8AoAc+/pzwOvWqpRvsaQ5IaRRyvxO+PGgeCvCMvh7wreh725T/AEmdAQXyDlVIBwo6bvyq/q0py55Pboc2JpuVW7Pjn4u/FzRrY3WpX6TiTZiS4t43YKATgEqN2OvQd6cpQpy5ranRRjy2fQ+Jf2nv2pvCNpbzpb/EuCIzK223t/El/AykeqiDg/U1zVKsaiutPU9ONGM1dHx/4bg1z4leLX8R6rreoXUJlP2U6hdyTlEz8zBn56VzRp+0qabG1CmubVaH1P8Ast/CabxX4gi1q/hZNOt/lR2UAKi9z9a9NNYSk5s7rKcrI9Y+L/xO8FaRG3hLUNUudImRStvIIRLEy+6/xL645r4rM8ypqo1NnXToux8v+Mf9E1qY2ep2sqS5PmabI6xOP909PpXx+Inao+WV0z1aEFymIpDeg9CKxgdySS0GqhMgPr3q2Zy1ZeQgQE46iueotTVKyM90/ebj68U4NtWE7NFy0cDAA49PSlIyWhogbowTgnFTF2Zu02iS0kaGVWRipH8Q4xWi1dzCSaZ6H8J/ijF4K1OKN7n7PDI/74WsRkubps8IvqSfUgCvosmzSeErpXsn26nPVw3O00r/AKH3H+zR8aYL6zubL4hTae2laiq28mjMwZYkIxtd8/PNzkhelfsOSZ3UhJSnPfZLp6+Zx4ig017O/Muv9dDznxz+xn4d/Zc/aZHxw8FS2kXh3XITLFePGzCD+IooXIDk4HT6kDJr7+lVhjZe2XxdUvz/AFMYU1i6ntJNqS3R7X4lNl8T9AtWitx5UiNJOrdWUITu56nODn6161GnXhKDVuW/vX7We3ne2/S57mXUVUbb3PL4YPiBb+LrD4T6ZZ6iuh3KMLWLRpBZtJdMMgyyGNjIACMgEHBwCDzXTisM1FVqckuWzbeu39f8Bn1NGqlyeylGLi022m/dvr1Vm+j/AAex9I/tDfCyz0v4WeCfhdrfii7tI7a236m2lSLHdTIf9cGdjkKFzk5yM5NfPZTjK9bF4nEw3eive34HPk2Mq5ljMdiKTceb3Yt/D2VvV9Cv+yJ+zJo3w8u9V8f2nxV1jVNHvJkbSovEF1HNdQWwACwu2TkBQE6DA6YrrzTM5U8LDCqkufW9k0rvqvnqTnmY4nCZfSy2UOaovilra/dfnueYftVftX/Cn4X+LE0rWfD2lWrWkzR2WpW+Ukw5wwBC8A45564r0sPhZrDxqzqO7WzPbwcKuGwanUrSfMleL20/yPCvhB+04moeMNV09PHGry6b4l1KWOwLurNDax8+Z1wrlQR07gg+nVOh9ZoKK0na1159j0oYvD12uWKly7XVvyPWPEX7ZHw38XeHPEVz4bNtYX4lRLSRbkJPcQxEY39wQCTt56n1rGlg5wa5ne25y4eKgoJz5kr6dE3vY83l+LDeKrq68XaZrEssmkrMomkk2s0T+XKSMd2KhTj19jVcuF9o52u43Sfk7P8AGy+42VWbo2tZdvQdo/7Tuo6Hp8+kL4r1EajHobNa6lpwUpbMCWY+WVIAZSBkj+E0VKFOtKyuk+qtf8br70zopuhiI3qQT8u5o6J+07p3xQ+KlxrPjwRX+kaKEf7LJCskfl+Tt2DA6ksMjJ+Y13SoQjQcaPuvucqbVB06Pu+a3Lp/b/8AE/xI8Z6n8KvBulG8ht9RjgXTjEIFsohGoKhtpCgHnLA/e9AAPKw2EwkK0nd8yMsLh8HRm7R/eLd9X6m74S+DPwk8Xa48+s/GHXNL1q7Q/wBqXFpqjT28L7gVh8rykUocZLADGB1zkd9fE42lrCmpQXyf9f11OvEYnF0acnSjdaabXX3/AIF3UP8AgmZ4u8e/EWH4maNf+H9f0W0+e2ksZGeQtk7iY2O4ccYy3JryZ8QZdCajVTjPzR8zis5yyDUKt4T7NaffsL4T+EujePNUvIfjR4d0fRdJ8PTTWmjDUlNjcNOhVjPwu8g9PMYMAMhQMcdmJzOMf4Db5rXtr/X4F4iToUva0JOTetk7ra1vJenqeW/tbfsr/s8/EvVYda0z43atBbQQKt5cRBP7PgmwRFC0oHmfNhmUqATsbPA58yeHePg/b+7Lp3a7ny2YYatiJ83s2l/X9fLc+Cf+ChX7N/wd+BPh2201dQvdT166tllsLy11Bv8ASI34XypGkxIM8FQuRxxXhZhgcNh6Kkk+b0Pjcdl2IpVOfdPpofNf7Of7NmreJ9Yh1fXrF41eZt+8lsYzknrj8+teVSUMuoSxM3rYvBYWPOpSR9aW3hCLwrocNhpenq6RR48u3yJFAAOSOpHuOK/MM+zTFY+pKXNePRH0XNa3KZ02uifO9EY9HicFs+/OSDXxGIqS+0XRkrlKcxyIWXAPb2ry23zHQldkVqMtjbx6U+XqyJXuWo8kEdulS9io7jvL2MM/hxUK1zpWqHTDMLA+lbrUibaizGsYQL89zurXmdjhoa1tTZnOwY9vWsmzuqfCQJKHB3H6HFLpoc0Gr6m74D1a60fxHa6hZ3LRSRygq6Oykc9cqc1WHlUVdWFVlFRZ+wf7B/izWfij+zbrfhDxNcC4n+yl4H+b5l2/7XNfpuAtUopSPkMXCn9ZTaPjL45ad4m8HeNTPomqzWpMzI6Rnqyk8fiK9GnVcdEeXXi+d8pq/s7/ALVl/wCJJ20mXwv9nGmzkXWq3s21lAOMlj1rfnVRXZFGM1J3PtX4KfFzQfiDpx0CbVUu4bhdvmhQy5PGDnqK5nK6aiXOqlG73Pmn9sf/AIJR/D74satqt58PJYfDPjGXNxbQvxZagMZwP7pNeRiuHKWOTqU/dn+ZFLPp4OdqvvRPzd+J/wCz58W/gh4pl8JfFHwRe6ZcxOQGkhJikH95HHDA18LmVDF5fNwqxat1PqMFmeEx0U6Utz179mi3Wz8AWwOQ0s00mCOxfA/QV/YHhVg54XgXBqSs5Jyf/bzbX4H+Z3j/AJlHNPE7MKtN3jGSgv8AtyKi/wAUz2PRwGQFTX6TGNkfz9iNGdJpSscY59q6aVro8au0dt4XSQxHaOcZ6V2Tdoo8WuryVi9qbbo3ZF6tg+1Sk7aGVru5yusBstuNTKDO6hZPQ5TWc/MCORWE4o97DI5bV1JJxXHO1rHvYey3OX1eAkk471xTTZ7mHmjltagI3Y/I1yVKaPdwsr2OR1u1kbOBx6YrgqxSPocLNHH69psmCWGa8qtsfR4OtE4nxJpgAZ1T65rzKtFydz6bCV02kef+ItL8x2UR5J7ivKxVP3T7HLquq1PRf2Wf2XdT/ansde8F6i0tp4e0aGK51bVgP9U7SBYoI/WWRvlA7AMx4U14sqVKtSlTqq6uepzyo5nTq0pJSafzP2C/Y3+D3w4+Bnge08KfD7wfZ6cscSCeaOIebK+Bl3fqzHuTXHVhhsPFxpwSWy8j9Ty11XSSmz6p8FwidAzHCgZZie1eVOTkz20rR1PJ/i18QbT4rfEVfD2nz50Dw4+biXOFmn9PfFZ0Y+0qp9ATTgz+fG2lKxjBr8lbXNqfq1RJ1WbuieMfGPh60lsfDPiy/wBMjuGBnNjLsLfiOaiNarS0hKyK9jSXvPc+xv2CP2p/BHwGvILO712J9U1N1WZbW3l1bWL9s8LuPyQr7DHvXsYDGWqWTv6as8TMFJ/1ofpNq+naH8evBcerw2xs9WNtvS2uHQzKuOjhc4Pt2r66i3VSb0Z4LqyjKyPln4+/s96h4w0m80PUrCKbVo7YxW1tLDj7XF18ssf4lIDKfXgd6qtytd2U2+W7Pmr4Ya1qvwh+JFxoHjKe2uoFlc2b+ItVvxAi9NpWGUEsp4C4wcDgjNYU6Xs3+JgqbrPVH6F/stfG1bjTbWPUdZktIXIEcUdlHZW7n/pn5jmab8FzXoSnCdNckvkVU5aEWnHY+sF0+18c+GZLC9V5UuIvl8+PGOO2Rn86zjTTfvGUa9ppo8J1vwbdfC7xBJY63cynS5HLWvPywt/gTWrcNkVOr7TU2dG0HWbGRUu50c3EfmxRKSUVex56nFTGLuT6nu/wk+GHiK5sINVv9XS0t5FHlwFV8w/jg4rOpWhB2vuYSVRq8I3a7s9gtPCGnRwwxXlxPdJC26PzyCVPqK5XFNam6xM4RtFWNIRWkcYSGAn6dazl7OK0RzKU3K7ZITGq8KcY7mkqqsaat3MHVVt/tBe3lCMP4S+M1z1ZRvc9CLkoLmRTv762kt0mkVo5EPysVOGH9KTqRUbjw6lN3js/k/x1NR7thoq6pZWnnNEMmPb1HfrV1Jc1LngrmagvrDpzdrnB678XdMug2nXVgXiS4LPE8GCo3f415v1lvWS0R6FHBwpt8rd+56BpDRatYxXrWhhg2ho42OCcjvXs0JxrJStZHi14ewm43ux2pa/NZYttO05rmUjhFwAB7mlVxjhPkhHmZlHDSq+9J2RnreeNLu5Ed5CqRHlorUHeo92z1rkq1MbOVmrLyOylQwVOHMnd93saR0CyihNwLW9dyMmP7W+Sf++v611Qo0ow2f4nLVqOcrXX3EOs69H4W0ZtTvdHvFRB8sa5kbPvtJx9amtiXTp6JhGlCc+VSR5f47/aBntITDcaWlujjMfnRHcy+27FTCdSSUprc7YUFS2PPbr4va5rdz51i10YD952j8qNPXDV30aiUr9DWNJX0L0nxR+HWk6RKPEonubxYi6b7sxBPVl4yR05xzWs5SnJJGFZTlax4J8QfjXFd661ro+q/MpZYoZJCvynHznIGR/9evQw9OKld7l0Vd6nH+KvinNotm+tHxfbYK5uJ5iWP0bA3KvvjFb1ZqLNZRhfU+Tv2pPjxc3Wh3eq+F/iobG7Ct9nk06Rbm3Ydcs4Vin4rivJr1Iyg+WWvp0MOW+x8GX/AIi+MHxm8T3dr488YJe6Zat5jzwW6AMAeSXQAN2xwOtckPaS0vod9CE6kUe8fs7fAfUvF93HJDYvFYIFad3TA8teQn1PU13UJxwv7ySul0fU9VUmoWifSHiHxPoHwk8GRw+DzC8CJtlbZ0bHKuO31rwswzeMrm9LC2kpI+ePiL400rxQZL2zv5o2ZyZNMu18xFP96N+30r4XHVKda7ue5TpRjG5w905YEgfSvMhE66cdCGAMXGelbXshNk0iEMABxU3ZKWpO2RBtHSpaudE/gKOCW49apWRhFlm1LFgR3wM1L2NOW5qKP3RI/IVnezNktBkT4Q5OfYVqjCauSRXcsNyJopWR16SKcEfjW1OTpvmTsTFu1j2D9nLxB4t17xPbWmlXkdtBb4E2p3rqsduvXjPC/RRkmvqMkxeMr11GDt5s58RVhShZJtn6IfDa68M/Fb4fTfC/UNQTVYWUNa3bg/LNjhlzyBniv3bIsSnTjO+255cp1HNVLWaMrwp4LvNIuLnS9VW4e7VjHKz3G4EKGwuCflHr+HoK+9VWnGhHl2PYy6m/bOpBb7726/Lrv169Do/hX8E/GE3iPS/FOhadqU2pWloPs2rS28Sae0hGGmHzBmI7dR83T04MRj8LDDSo4mon/Nb4n8lornvYnMMtw0JwxE1brFX5vTY9D+KnwV+BniDxRY3/AMT9c1fXNaRCPKstRMflErh8KCCQehx2PNeVgM2zeOHlDB0404d2iMlzziNYOcMBShSo93G99dLswte0zwCIJ/CfguS9jv2AaC3v7Y+XGoHyoJV4ByO+SM+mK9OisdGKrV7OPk9fPQ9qNfNElWxKTgt3F6vzs/0Pgn9tb9mv9pX40/FSDwe/wC1g6kzD7JrWm2hktbleeXdcqSMjLHb+GK65YzAvDe7VSj5uzXyMMRisLjUlSqKKXVu33o1fDH/BIf8Aas0nRLLxj488d+GPB0qQyRateXtxsZEPyhoooVCg7MHBPJPOKxee4C6hSbnLlS91K1193zerbu3cwlmODeJUcLUdSb3UI6fojzz4ufsyfss/DXw3e6La/Ebxf4il0a/Zn1QSrbwPdTCMSNGB85BCIBnjcv1rooUlJc9T3ZyW3l/TO9YCdCCqVE4zl57evQ5T9nmX4o2HxJk+H+q+E9Xu/DN/YmDTtTTRpCJFIYjzHVOWGc5OSRxngY87BYKthcXUjOTcJa6vb79vRaddyY1505clV7bHqfww/Ze+OPxD+Kj+AvBmkaxOZPDK3WoWcFt9mLOrusQkMgHGAQM9Qc4r0MVXwuBgqtaraL210uarHYXDUlXryUY6pN7dDu9X/wCCZP7ZfjG4NtpXgVPC9tbWqQQPO8O66ZiAxk2HkKCTuOTkAdOh/b2VTo2dZaLSy/P+n2OWtnuScrSxKv5K52/wc/4If+Jvh1JqdtqnxfkSx1pd2q2sknmSyTlOTHIoQrkjPfsOeteFRz3BYWTdO7bPMhxRkeErudJTlzW3f39upwHjP9iX9l79m3WNR0r40ftJeO0t2IuLxV8qEwgZ2qk7DfkntGRkY3Doa+hhicRLBOsuXlls5PXT8v1PVnWzLMsE6lBJU20029dPPdLXbr8j3r/gn78UPB/xLN/D+zpY3tt4T01Atxr+raz5tzdsDgnr8vA9s9uK8vOMPSpUKdSu1OU1olZ/et187d9jhzONH6opYv35bJW0ubP/AAUS/bF/ZN+FvwzfRPijBp3iG8e0eKDRZjme5l7YYNuBzxn3rz8BgcVQvVqy5IP+tjy8syzFYPmr15ckW9En+Fj4F8F/BzwB+0hZar4h/Z/8Z6pDqM1mG1PwB4g1eSSFDtJiEEiYDbSc7eG4xk4xXvQw8a0nNSdmreX3G0518Vo3aKe9tTzb4o/Az4s/DXwtceDvF/g208Ya9r7lHbWtPMy6AVIw9qpz5Y27huPBxzXHmGDlhKPNF86b69DyMzwFOtP2qvZdupgT+CxpHhGez014YioYXckIESzN/EybQAFBAx27CvybivFyqU3ThpffsedSpKmko3su5y8eo6rYWkdhdTSPGgDQGfPmxH1VuuPxr8prValNcrPRjGLjoiHVddnv18m7CyEEESyRgy/TfjJH1rza2Jq1VZmfsUqnMiorGUjHA9a5LXZ0qSiOiG1uap7Ca5tSe1JaTjFYSZMVqTSrzkj8MVKudUVYdIhaBjnt1rZSJmrxMmxX/iZEf7XWtvsnDBctQ09QQjnPb0rByTO+VmjMEsqtyPqM1poonFKNpXLWn6hLa3KTwSbXRsq4HSnGXLNSQKMZKx+j3/BIv49apD4iPhXxFNdzQXKeUs1wFC4Ix0Br7DKsd7yi7niZtQhCnzI6H9vH4TXOieNb1Le3CxzObi2lC8Z619RRi1ufP+2hJXR8d+IfCt/fa/bXVlI4SCbzL2wjOBJIOhIyPlJ61c78yOarKpLY+j/2V/inqmhTRHXtBuDqstwFg0/ToyY4kHd+OPqfwrZVIQV2jklGUlZn2t4ts7n4tfCZdbs4PI1fSo/MhY/eKjquauniXCfuo5q+E9rBxZ41r19oHxA8OHw78TNAttUtihVXuIlZ4T0yp6jmvfpYbDYyKVeKafc+Ixrx2DUnh5uMl2PnbxB+yPa6Zqclt8MNUtY8OTDY3cixKwJJAVzwOvfFfteUY7CYXLoQjG0YpJW1SSP4S4pynNXxHXpVXzylKT973Xq77vR/gc/c+GfFHgfXG8M+NNAudMvkUN9nuo8b0PR0PR1PZlJBr38Li8Pi4c1KSa8j8+zrK8bltTkxEHF+ZvaNF+8BFejSTufI4hnofhTSZ1tv7QSQBQMEHvXRWmo+4ctGhVmnWjsnYs61axLG7w9C+QCOlKk5O1zlxNKMZ3hscjqtqZJGVvw4rWpojaleNjmNV0u6Zz5cJb3ArinJN2PXoVYpWuVPBfgGbx74/wBK8Fhmi/tC/ihlkC58tGYBnx7Lk/hXl5liFgMJOu1flTaXc+nyfCzzHHUcNB61JKN97Xdr/Iyf2gPhWPhf8R9a8LaVLNdabZanNb2GoSR4FxGp4bPTO0gnHrWGW4uOY4CnXkrSkk2u1z6LH4CeVZpWwjfMqcnFStZSSej+aPKtV06cyEFCc8jiitbY68NUVtDJTwhqmvSyW+nWTyukRkZUTJCgZJrzqkU3Y9SGK9lYk+Ff7L/xj/aF8YjwJ8KPA9zqd9jdOxAjhto+8ksr4WNR6k142Z1aGX0+evLl/U+xyHA47OKqp4OPM326er2XzPZdc/4I+23hWxutM8efHPRNX8SvYO1l4c8NXqwxC4wNqyX1wvl9TyFU9MZGc15NLMqVeCqexlyd3/lufWV8pxOXVFS9vT9r/LdvT10V/vPkL4ufsK/tR/CaWSLxr8BvEdsgDFbmGyNzA47MssW5GHuDXkYnFUqzagz3qdSrhKlqiaS8nY+lv2YvA8/wM+GvhP4Xyad5V7eTf234oHlHe93KMQxtxyI4sADsXf1ryq8/ZJRtruz6rh+k8xx312/urSKt/W592/BrRZdRu4YYk8tnAkMMgwQD3IPT8a8vFUoykp3tfXT7tf8AJ+T7H7DhIcsOaRq/H79oCx8HaRL8NfAWopJqEq+XqF7GwK26nrz615lSTnpHY6k3XduiPnXV/if4X0LSjoM/ixoIsMzogGZZD1YsWHJrpockIWR0K8absj8fbUgxqSeor8akrzP1Gp/FZpWyKwHH1qGtCE2dP8Ote8Q+HdejXw34wt/D7TNifVJkOY078qC34DrTw1SdKr7rtc4cXS9pFPdn3h+yT+1d4K+E5s9B8N+JL/xFqepMAsl3ITd6pJ3fYTttrdeTvbGfrX0+ExatpO7/ABPMrYSUEnJWPuLPg/4s6JHNrF5bReIprVZYoYJ/mTHKtwPl574r36U4Tkjiqr2afstW+/f9PuPlz9r/APY48QeInjvtO0iBrtVa5nuokx58iHckqYGA4+bcO/BHOaK04yTj1Hz14cqgly2d+9+lvxvsedfsh+K/FHhTxdf3Pj/VjZ39hdmOXULo+deSJgYESn7i9Rxgmpwn7id2ziqN1Z33ufpP+z18SrvxxaxixxFbAANJNP5k8h7ByThSeuxckd66pVOew/YqlC7PSPih4I0jxXocmn3KxyzeX+8AXOyko3Zk530R4t4Y0PxCdYu/CGoM6x25SSG7RiGVFPAx35PT3raTUV6HTStHVn1J8IfD3igQRXd7p1xcQCMAS3swQ/VUHSvOlySdwnUjBtbHp8cUMEQx1785rVcqieZVqSk9CHfulxHZtjuw4rCVJylZIiE2viYy8+yWsYaZmT3BNY1YRoxPQoynUdlqcz4iGk6ihM7ucHCyRygEn8xXnSrQbPVoxqxVkvwM3QfCfim9uStnrUclju/eC9G7A9gDz1ojh8RXfubBiMVh6EFzr3vI7nRtLOkWpgt7nzh/dYbQPYV6dDDTw0bbnhV8ZHEyvazK0ujaTPd/a73w1AZP+erxq1P6vSqSvKBo69WNO0Zlq5Z3hMNpEGJ4HOAPr7VvUpe5ywRxQnLnvIZa2dzp0eY4lllfmRy+PwHtWNOhKlra7OqVWNXS9kS3uqXOmwrJHpM9xlgH8gBtvvjNbzlKEb8tzJQVaXKpJepYW/t0txdXr/ZwennMAaUq9OC97T1M/Yz57LUR9T08R7mu1ZGHDZyMU+elON76FKhUlK1jwH43eK/Dll4zlj8P6Vb38S2zS37SYJVsgYUtz36DvXLBR9o0tj1aVOooKM9znH+Eo+ItmPEHw+1kG7WPcdJvXO0cfw9q9SFGHs9zVVPY+7P7zyb4ht4p8GWF1beMtISHUIFby4XjEQf05Y/N09qqK5OplN9U9z5NuPG/iY+IJ9UfU1vnklZxDeWyRMCTjy+m51xjBJwM+9d9OTSsOmlBtnnnx0/aB0mysyuv3raNeEFYoJHMaMcdNzjaPTBGK561WKvcOZXuz4O+JVze/Er4mL/wjpFreGbfJd6ZI1uUTPDSCM7HJ55B59K8qVBVXodeGoOT5kz3v9mD9lPUvErC+1iKW30YRB2MikG5Ktk59QSAcV1Qn9WptHs06ShDQ9+8YeNNB+GejDTvD1kIoLaIGSGIbXYD+Iep9a+fx2ZKW5cbx1SPnf4m/Fs+KNXGueGNSa2lf5ZQnKXC+jr0zXzWOxEZR5ou56GFXM7rQ4uW7aeQyuACxyyqMAfQV4Mvfk2etFOW4p3SDA/PFaJWRt5CW4Mb5I69vSpkZO1yaQncO/HWs73dgWjFaTMJyB0zQ3Y2lrEz0lYydO/FHNoZRi0zQtVJOT69qhybNuaNzSBJhC47dal7lKQwAqMgdferUiZJESoS+H7/AJVs/eWhg3Z6HZfCTwz8QPHviq38P+DpFjSH57m9up1htLFO8skjfKoHqefTJr2MnwuZYrEpYd2t1btbzOWvyw3Wp98/ss+J/BHwwji0vwPqsniK7YqL3xTOjCGZ+628TclAf425PoBX7pw7haUKfIpcz6silRlUV5Hs3hzwx8cvGfxy1GD4XeEliSaBHl1i4QiFd4wwHTtnI75r7zEYjKsHl0XjJ3S6LfQ9hYrKcuwvtMZOy7LdnsOg/slfFfR7CKDx/wDF86iFsAkYicwmGfPLqFwPu5Xp36V4P+teV1p/7Ph7a9r3Rwx4vySU+bC4azvu1e6+ep4l8aP2CPHuveLD4r8LftGXui3VsCwhe2Vomc9ywXLc4z6j0r6ClxHQrU0pUW42eisvT8en5bn11Di9V6UVGm4ra0ba+qZ5D8Qvg5+2P8Nkn1Xxd4eh8a6asW6TUfBN0RdbfVomwQcc5GemK9rLMwy6vQnzz5JRXuxkvid0rdtrv5WNqfENG75k1fSzVv6+RheGP2+dc+F+heV4c+Nt5GLcmG78O69ZeVd257HLE5IPGABmjEZVlmLrL21FXet0ehWw2Q5lBSrYdNrr1+djz342/td+O/jx4XdvC/xRtrrXoVdZrC4ukMN0mSURSMbjk+gNaU8FhsNeFGKUfLcbp4fD0fZZZDld3p8u+579+xR+wDqGmeF4/wBpD9oXwlp2veONUdbxrGeFUgs4+qhYV+QEDPRcV8/iMwoRrfV4ya6X3/E+YxGZQoWwk6jUtnLfXtdnulp+0teaPNdeFtN02ySSF/NjNlaKRhRloFBGQ2Bgj8qipkFGo1VnJ7W1f4nHV4bpYicaknJp6av8f1Om8LfG7RbCabxPpdxFJrdzYtPfMLVUVolB2qHHOVJxg881wYrI5V4qlJfu07LVvXroc2IyGpUhHD1F+6T93Vt36trz8jybXP2u/H3ijxjqei2+qzrEXt4bdlGVd3JLomOpAHJ7bvavYw+TZfhYql7LWKu3+n9d0ev/AGHlWDpR5aabX9I9E8BfGLSPHXi6x8Eya0L9tOKfaro4H+kZ+4M9cHg/WvMxWA+r4edbl5W9l5HnYjLo4bCVa6jyt9PI+ef+CgPwe/YN+Jnxk0hv2qvGfis3FwCE8MeH7orBcuvBMwXHQcA+hrKnTzDE4OMaUI22Te9jvwWKzZ5XChRUVFd29fl1PHP2jPHf7Sun/D6P4Df8E2v2S7bwN4TaMJJ4k12SGJ5APuy7clye43DjrXp4XKMdCmpuoue33DeEzHEWhOalLdX+Fei73W+583eB/wDgjv8Ata+P9ZT4m/Hr4qpq2qzXSvFcSXBcKCecevsOlVTyqrF2xFbmZyvLMTRrc1etzWPpz4c/8E+viX8M4biy03xLPHJaSRXLQG7MFvG6kjzZNo/eSAFsA8DOPWvUws6FBpRno/xPVjXw0MPyc2j6Lqz0e21Szk0rUtR+Olql7pCQpbT6kloDM5Hyg7j2HJPbFdNeEZUnGn6s4amHjy8tHffc+OvjF4b8Alpofh7K8Phe3vH+z35s/Il1hgxKQwRj/lmgIXI4PWvxHjHkqT5oR5Ka6d2u3kfOewrxk5VHdtv5a/pt5niHjJ5b/UTbR2eLiNP+PeEcW6DszdzjtX47j8R7So0kXCeljm3RW5I44wfQ15L1Oq11cFIQZI78jNK1jmk9RytuGc/Sm9jWnqiezJzz2PQ1zyV2Nx5WXJAQc4PQZqVozSD0BFBgYNT1uVN6GTaJ/wATIgD+Ku2K904Y6zNi8VWTBGTgda5JJpnXZ2Ma6QRnIUdeK2itNTKduUrxTES4U556VTdonLC6mepfsveNvEfg34taZq+j62LVY51MrSzlExnvXdltWUa3NfY4syp+0p2sfrp8UNI8OftK/Ay18SaBqlte6jZWg89rZw2Tiv0ChifawXLqfHulOjKzR+dnxr8Pa94T1warp0r29yshhm3Icbs/xY7Hn869BWcbvcHSk3sdp8APi/8AErSERtflSK0f5GgaI+bdgHorBevsSOO9VBOWxnKMOdI+/wD9l74gWfi7SktrbTHtkZdsiSDOcjoatxUNR1aaSucJ8Q/AGp+GPG+paVMUWETGS3x3Rua9XL605Rsz5jOaNOU+aGzOQ1XwvaXCSQlC0ipuj74PcV9vk2YVKD9nfRn4H4h8NYTH0fbuCc11sZWpeArb4leFpPCWoEfaYkZ9IunOTazYyACeitjaw6EHPUCvqcNi3h8Qqq+fmfhOZZBHMsG8O1qvh8n29GeN+EEuLi4NrexGOaGUxzxnqrg4I/A1+j0ZxcVJa3P57zPDSwlWUXuj1nwP4W1jWZvJsInkjQZYKOlTi8VRoQvLRnFlOBxmZYjkoptLV2N7V/h9eXELtaIXCjLY7GualmNKHxaHr43h3EVE5UdbHOap8EviLLYtrlr4K1Ga2BH72O0Yg/jil/beWSqezdaPN2ujKjwtxR7D2qwdRx7qLt+R9HfsffBa3+HngfWNW+Lfww0i8m1WHbYRamgMypggg5B2A9c9a/IeOuJKdbHU4YOvKKhvyvRv5H9beB/hZXweTYnFZ9l9Ocq1uRVFeSVvPb8y/on7Onwjl8Y2PjnwVpkWk6tpcLQ3WlSgMLpSTh427kDA9eK+fnxfj8ZhZYbES5oyd0+3qff4Hwf4fyvM6WZYKl7OVJNShunfqvNB4D+Fvwf8RXN/4S+L/gqDU7eS5na0g1GP7krIqByRzjH5EA1zZhnWYYSEZ4Wo4uyvy9kfTZbwNkOZUpUcww6qLmlJKS2bSV9Pl9xwnh39hD4M+A7TUL/xz8OE8Wa7e3brpVnbF0tLODayoWwfmbkH3wM104zjXMsfOPsansqcUuZ6czfU+QyXwYyPIqVT69B4itNvkXNJQiumzu2dP8E/gN8EP2RNA1zVbnwFpuveLbuyka6WaESW1jBgKsPzZySSAfWuXMM8x2czj7zjTjbbRt93Y+l4Y4CyXhSFSUqUZ15J/F7yiv5dfxOT8U+PfGvxc8PeJNVv/h0lsukLEnhyy0CxEEUqsuAXRMb9pJxnp+lelhKOFw1WnD2l+bWTk7/mcWKWY4yhXl7Br2elNQjZfcrXPC/GPwy/aL8daleD/hE723gtbGNYYbqwKLM7EfKrDjOCOuOlfZ08fk2Ew7vVi0+lz8izXIeOc2xUn9XlGMYq3u2u+yfcT4QeGP2+fgv460Tw74U1i/s7K/V7fUNO1y2820hJJwDyflK7TnjBJ4718rj8VkeMc5WW+jW7/LU+w4a4f4yyuthlTlN8ytUjNe6ndqy1d1y2d7J3uraXfuf7EX7MVp4a+LniX44ftCXVpcf8I/PLPcMUDQLLztC54OOcfhXx+ZYuUr8h++5Jkby+leSvbf1PP/2wP+CmPjnxH4o8S+A/hRoel6Rp+oW8ds+sG0U3NrbKT8u7HDvnOOwxXiUVOc9WfQSjKSXZnzhpXxD1bwpZfa7r7POJ/mlvL+TPmE/3uOK9GmlTNvZ8sPdOC+N/xNs7rTZJLnw9FMskR3T6feLtx7jPOK2U09UHJPlsfntaOSiivyN/Gz9SqfxWa9iCVAbr2FY1JWRMbcxfiOTgdRWNubc1tGOp1fw5+IfiL4d30s/g42NpfXpVJNUu4t/kqD97H8WOoXpnHpXXgsRPCNqOzOLFU1WScdz60/Zt/ao0f4ZtDeN4gv8AVJdQmHnS3c6i+164B5Z2Jxa2qenU9OSePco49Q0i9X07v9DkqYFJ3l95+gfwi+OWhfEi0k0fxXHaTXDWKy6jabP3dhE33QcjKsewPOBnAr2KE3OXvv5djx8RG7tE8u/aY/Ye0XxskXxI+FU6ie2kD27+UXZSMnEikYdPrXrOFOtT8zmjFU3aSepx/wAA/Fnxm8GaxD4J8T+PLqxvIrh8lYAqxREgYt0B2Bm7ttz06UqceV2b2M6s+eKitj7q+EXjfRb7SYvDVreMJVQPetNLvfkZ+dj1Y56Vs9tDgVlLUt+N/h7NLfWuoaHaxzXxn3BGPXJyM+wrlnTcVe7On23Q9p+FWmeIl0xTei5Z14lubqUqmfREHUe5/WuaNJzlzMydWKW9zt0tFQ73kd29SeB+FdMaME7nJOrrogMqxgmV8AdSTWzkkYtOTuMTWtOJ8szh+3AyK46uIw70ep2UaNZq6INS0fwtMEfUtFgJmYKu6POTXFKhhE7yjudcMRio6Rk9A07w3oOiyu+l6etuX+8sLEKfw6Zr0KNClS1grHJicdWrx5Zu9i2qsvANdd09TjgluR3V3FBFvkk7gDJ7k1x1cRCGiZ0UsPVquyJfLdSFLflXVF3iZ2s2mKsiscoxcE4GKx9rC+hWttEJNeXEU3k21pvYdWaQAVlOrK9kjalSVuabscF8YdK8TaOy+MrKym1C1Tm8s4pCzx9MFV/iGQM15WKw96ntHqezgMRRqfuXp2fczLfU/H/xG0uK08PWJ0bTVCiW6uzhpVxyR3/Tn2xXfh6blSd9NunQK0cPh6nNe7LP/CpfChsZ0W0uNav7iPaZ4EWNFPqGACjH41s03U5tPkkvy0MoV2neWi8yLQfgn4p8NxRapa3saTw8rbJMx+XrgMQOfwrthKCerMquJoTnZakmvad4C+M+kSeCvil4bVrgMYzM6hJIT2YE4I5+vWonCXMnAwqU5ppweh8B/tyf8E7vHPwdvLr4m/Dj7X4jsnwyqtwUAVc7UmIV9oGeGUdeoNdlOrzR952ZrTat7zPza/aY8E+NPGvi5NCv9Oa4luxiHQLqJZZCV6STzkABR/dABPA5qfY1a75b62vrpt6/09kddCg6jWh2/wCzb+yJ4Y+Gmgrr/jKNfOkk33KmHaC5yAMEcICeO1cs6tPDxtLc+jwuHVNWR6F42+Ndj4VgntdEj8uG2l+z28IARd5AO0noCB0PevExuYQTdmayjZ2XU+fviR8Wr7W0Ux3odo2YpOPveafvKQeQuPXjjivj8bjE6Titzoo4eUZ36Hl1rcb9RaZQB5jEsF6Zrzowfsk7nTSpfvTbhYt1NZqKR6raii/bJ8mWHQc0pOxKbbFaMK+NtTqy5R0uI4JwMdqlJGcbXJfLVYCCOcd6iSdzZ7GcExMcLxn8qtLuZ8xftHweRS5bCSRfjYlAp7dDWT3NYu7JJVwORjt9aVrhNWRXGS3zfke1dENEZx5WyawjK3kb7EkCyBvKldvLYg8ZAPP411YatXo1E4v8TRuKV2j6e/Zh+It2dVQa/JqlsFKbJ4IVMUpyP3Y6eWuOpx+PcfsnBGZOGJjTnF66X6a9vT+r7HLPmm0oOzv0/rrt/kfrF+yvc654X+Ecvxb8ZyNaWRgK6Xp/mBsqCQHJxk7uw5xX2fE0sLisyhl2FXNLTml+nyPmuIIQx2Y08voK705meYfEj9p/XtV1O7v4tTeNVlASLldwxuO3PXHA98kdjj6nL+H8FhacYcuttz7LBZfgcDQjSVO9upufDT4x2HxBQWc1wUuo3wZSQDjGRuHoeOma5sfl/wBVfNTV4hUw1NOUqW3b/Il13xDLoGrNLZhY2LbX56k5+QkdVPY0UKUK0LT1NY0lVpqM9V0OM+JX7Ov7Pv7QEsOt+LfBNg1zLEVW+jhCOWGMxS8d+zda2oY3G4OfKveS6Pt5HXgsbi8A3FLmS6P80YXhL9ir9kr4cPBq1t8HIZNQspjLDMEDgsTgvtAx5nT3rrq5lj60bRklD0Oz+1cyqz/dSjFPys1/Xc7jxvd+Ko9OvNV8P3M9jqphIt7Yltk8AyAUz3GRxWGGeHdRU5pSj1fZnnwdGTUJRU4LVvqpeZ498MrD4ifEzRr240Lw/NP4i0HUm8y5gh/fXCbiFdl65I/nXqZlicLgK37ydoPa+x7DxeCo071Z8sXor6I95+FX7GXxRmudWvfEzWlla3mlvHZQsdx82QfMzLjjoK+RxnF+WxUI07ys9bHyObcZZTRcFRbk09bdkcde/wDBPnxt8O9EXxNdePbCXWoYbiOysGciNpZWAR9x6Yz6dz1rb/W/CY3EuNKlKzWrNaXGWW4zEclOEuXe7PA9S+IXhH9gTw9deJvib4+0TU9ftLOaLQtMtbhQZHLNI91M5+9IWzgckKFXqa68RW+tUXbmServfotlf9N35np4jGxzGl7Ne7Hdt6Xstv63PgDTvif42/bQ/attvE99qt9DKbnbZyyW3ysGYmSb5zzg4VQBjn250ymVfGYuLStCK6iw1eGM5Iw05NPVd3r6dP8Ag/pJ4E+F0Xhu9tvh+qNJNcsDcSS3JmkmUKMvK2BlmxjaOAK+vqYqHsue+yPclP2NL2yb0PSviV4usvhstvZQWcL3YC22lQRyAmSRmCmTB4wCQBXjYelPFwnU1stX6HlqTxMHO+j3/wAjyP49/tKaBotjJ4APiELp0EoGt3aSDzL662lmijOQCq4OTwB9KwoxVOoqtV2eyueYsVRoydeXp6I+YvCH7auo/FnxXNptnd28XhDTZhamGO4iuEvZTyYkG7DkDjjnOc4xXq0qlOVRx0bstU007q+6/Fbp6OzNcJi8Pi7zi9L2u9DS/aN+Dt/4/wBKX4r+E/E15YWcCBLvSJbEtc6aMAeXbouFOe7ZwDnnivzHjnIZY6PteaUFH4rK7XfS61+a9TDHSpqHuWlbqno/M+UPEV5bafcz+H9GtSJTkSxpNvkb/amkHAPcqpP1r+e8YqVCbpQ1/rqeQuWbuc5LbhV2Aj3IHH/6q8m7UtTug2U7oPGhCjHFJy5hTjfUXTkd0+ZvpmolJoVNqJetlCOeO/X0qdSpPmZdxvyDjtg0ramkEG0iJsjtWi1Y6i0MmxXOpHP96uqN+Q4aTvOxqXw2qee1Y21O9rQyr11I2Y4qJS1OVvUpQJ++znoeoqviViJrl1RftZGjlB80pgj5gcVLi11M7RkfeH/BN79rjwd8PLy2+HOo+IHne9ITyPJbYM9iT1r67KMfQw8FG+p5WZYSThzxWx7b+2T+z3Y+KLCfxn4SjBgvId0yxrnaeoPFfUQc6j5k9GfNSrTfunyhY634q8JNbaxFYx3DW8vk30NxgLEw6S84HSvSjFxhdbkRgotuSuz7Z/Yy+J2vazpsN0qQRWpwySRpzJ7n6+gzTjzyV2cFerzppI9p/aF0Wa90+y8XQBmdY9s+F7e9a0a6pVLLqefUw/tqTPE7spFMJQxGVJJPcV9TgqyhNNn57n+CdWhKI7wjpcq3cc6ngsCDj3r66NdSjdH4RUwXsqzVupxGjfs4fFP4m/tD+KtI+Gfg+W9tob5Z5rofJBEZVD4LnAzz0HNfW0OJMtynKaVTFzs2tFu3bTY/B814E4h4q4ixOGyrDyqSUnd7RSeqvJ6I+mPhz+xBrHgG2XVvij8W9N0ZAwaW2spgzYHUMxxXy+Z+ImGxV4YXDuXnLRH6Rwb9HDN8vrrE5rmMaPVwpu79Gz0Xwr+z1+zL431B7Twn4wvtRuY5M3P2K9yAR644HNfIVuOM9ptxnGKVux+4YPwR4Br4jnpSqNrVtS0Z6zNpOneC9Gj0q78RRpp8EOwWzwqztjuSe9fB47M267q7SfY/astyOhhMPDD0leEVZJnAeMtM8CeIr17izvNRuGbO8C4CgDGMCvKnjJz3d0z3KOW31tscxZeDJnuLcWmhTiNCfJuTdk7TnqR2ohiJxskbrCUGvP0I/GUN9feIE0/UbJEn+7BdxL98getdEsdUfut6GM8FQhK8SzN8UdZ+GekQ6MlxDLPdwlo3kQF1UcHmlzSsc/1JOXNY8u0fQ/GHxB8dXunadZ+XYW0Il1e9nY7Oecf7R9qv+0MRD3Kb6FUsjw0m51FudOl74mhddK8K2TWsEA2ieODa0+O+3OWrGFfEVpa6s9RYLCYeCUYpBrmj+Ok8NSajrN7qBg6ut2vkhcdMZ7V2Qcox1ZwV6VOpKyicZoOpeGNb1SO98T+Mr6IRnAaVyRuHA5Brop4unQSd7nLLBR2sTXujat4i8O3Hw80LVFvdNubwzXEFiSpfv87NyST1JPStak415XTsdNLDyjSaSvc+G/jp8GNe8E2fihB4Y1CaW41Qy3OpNDI0fmOflijbHzEAAYHSnBRimoX+486cJU5cr3PlT4yfHh/AljJ4Qvor23vWxE0DWTSrLx1GeK56uIjT0loUoSk9Fdngmqx6nrs76jq9/Lbw5JW1tZChcf7Xp9BXk4rOKdCbp0pXV91/wT38Dlzkuaoji7FdwUewxXyEnaZ9fVbVVmxauBgj04rGUVJDpr3jQtSzD5hgD9Kh2idE1dEu4yHCj61LlFo54u0jc8F+KNQ8E66nifTbWCa+t0P2Rrpd6wyfwvtPBKnkZ4ziqw9b6tV57akVoyqKyPb/AIYftgeIvhz4Lh8I6H5uq6tqmsC61KW8lJbU7on5WnbP+pj4IjH3iOTjg+xQziUY6K829v8ANnDHK1Oau9D7l/Z6/bztm1C08PXWuW9xFp0aprutMvy3t+wB+zW6D74XnOK9ynmUo1VG+iWr8+xGKwsE3da30R9EXnw8+E37S+jW2uaa0Gn38sbyRojbZGIP30YHgAg/XPtz7dGSrQ82fNYhVoV1ytctndW1vpZ3vstbqzvdaq2ub8Fvhj45+Cni0aRftcapaTXTy2ZWPkyNtG6RuWY4UAemPrXSpTjHlvorkLCurqlqz608A+G5PEILNZSOZCPtEkU4Vx6nOeB9K55vnerIlHke56tpOlR6ZZRWEJcpEMKZJCx/EnJNRzpHFUauW/KYc4pORKsytc25YFQgJ7BuhqottF8qsJaGVVAmtzGe6jn+VT7qWqHOXLomWZZRGASSBkc4pSlCEbsiEZTZmavr+l6Tuku7gbgMkZ6VhUx0V7sFdm9LBzra9Dnf+FtWJ1EWBkhUSH9zKvOfwrnWIxNlztK50wwdJO2rMfxt47mW5EocBbdwWOcADgk/lmuWpJyk31R3U40qC5Vuz0S8v7e309dRBHzopQE9SRwK9epV9lQu/wCmeJSoyxFexnX/AIq0/SbCe8Z122qiNEDfekIziuKOJjG9umi9Ts9goySfXX5HM6p8QrXQmhh1Bxd6ldNvhgU5EIxnn0IFbUoSqPvLyNnSp4h25fdTMkeNr7xZjTrC8kQSb0lu5UXypHIwqcjkAnt6Vz2ctDeVOnCaktkdD4B+H09tp0Vx4r1dtQlVQFQArCvHZCe/XnpnjFelTpxilfVnLi8XduMFY6vUda0zw3pj6jqVxHBbRLkseB+FVOUY7nmRg6suVbnj3in9qc6r4qt/BHgs28Etycvd3EoJii5+fb/D7Z/Ko9pHoepRw1CjC83dnivxZ/ab8M6L42/s/wAHa82o/ZZAL2SOFpSZB1djtIyecLnPsK6aEnUV+hfJOauejfD/APaD+HPjPw3LpfimG4l85GBkuJmjByMbSqDA/WrnCbq3jsRJS5lY+G/2pdA+Gnhzx7qHiLwpo0YunJd4SwExxnGN6KXHvV4qvGlSu9z6DAr3Ez5R+JPxwt4Eks0ujudXV4pMjaD1VgO3oecV8bjsxd2etSU+XlR4V4v8fXmoQ/Y/P3qGb93Iu5tp6hjwGyOjDkYr5qvjJzOmFFRZyF3eyXD+ZJwQMKCckL2BPfHqea4aknNnoQjzIztMdzeleuXzW9NWhqYyly1NDqbaMhQD1PtXNJnUnzGjbsFHPfr71hKTZUXYVuQc+lPm0N3rEgabBwBnn0pJvqYJWZO7EwEjNK5u9Y6GfHKVlKkd6q7sYKLT1LdsQG5FZSk2NtNaF+zcuQpPNIun8RPcAgZI7U0+xtUV4lVZT94N7VvHbU5krFzRoftuoR2K2RuJJW+SFSMsfbPFdOGk5Vko7lShSkrVFdeZ9Z/sYfCn4ifEb4g6T4cj8BXawSTqs0lzp0Yj25GSS3oPQiv1/hKFaniFVrR5YwTexP1vD0bzk7KJ+mf7UPi+bwp4OtPhxoFvCltYWKRohlEaNIF4U9x9QDX3/C2D9pVqY2es23a/+ep4+Q0YzrTxdR6zbt6HxD8R/HDQX15c6lc3DyNKsi7Imba6ncDjGFdcDjGHGcYPX9H9nTcUj6CdeUfdgtjC+GP7SM/hn4kWrw3UUFtOVX7Od20kYBAzn5WB3DnGeBxiuXF+yqQ5I9SqVeNP4kfUmt+PLLXoFmkvQ8dxBjzE43RN9xuO6EgH6V5NLDRpLYcFJU3rfVtffp9yM7wD4y1W8v7/AMDvfObme2EsK7OfMQc4x6lWH5VviI4eMY1pbp/gap+yaqyR28fja/g8Gx+ItM8P3BllP2e7wAVnYnBdUwWBB/j6DGc8GuFUKdXFuEpaLVf1+nUt0I1MS4VJ+6rNb3Xlft/TOaubL4y+LNdtvCNros+pxPeqNMkGpxeZanBO855KqTyCORXWq+TYWnOq58rS10ev/BN6+Jy3BRlWi0tNdHZn118HPgb4V+EsT6lYWKf2rfwxDU7lPlErqPvbc4HJ7V+U51nWJzefLJ+5FvlR+P55xDic0fs7/u03Zf8ABO8u7z7HZyTmMtsTIVeprxKdNSkkfNpSnNJdTwb9oDx7qNndi4i05ZWi2qyMuQm7GOfXr+dfdZHhaEaWr3Pr8uoewpKz3PjX4tfGrTtf1a1sNa1HQtJs/Dyyyatc6vo1rcMYFDLiMyxlmkUgYA25PUnv9PGhRjTcpJtvbVn0DmnSule588J+1P8ACr4z/HXQdT8K6es1r4LikSHVIoYreS63HpNGigJg89uK9fLalCnzRpvf7l5H0mTU6LV07X/A+h/2dfirpGs3N14/1iSGOC3h8uwcvljHubMzen3SeewHrztjIVJR9nB3TPpcS41MMqFPo9fPr/X+Z8+ftEftceGtP8S6l8Qda8QlItKs2i0Ibh0HDSnPGeh+p4rmklgcLGLlfu+vzPnsbjoYag4rQ/NX9oP9rTxN8S9Uu/DnhxJrLSG3GF/7SZZ7wPyxYlQEDdMgE46Yr53G5hisbUdJJWW2u/r2+9nwGLx9Su/Zwlo2c38Kh8afFQh03wTe6dohij8iyWO0ldlBIyqM5XaD1LKCWIAPs8NTx7lGEXyq3QMNUxdVyoU5Wt08/wDhuuvY+n/2etH/AGh/htM2lfEO7u76C4Rlurc2Mr/aEYYKsCrBVI44ANe5UdSngaiq2krP5n0GDw2NoJ+2d16knjfwvJas81l4Rm062D5SyitDFEfeSSQgn6Yr+Ws8w1X6zNQgoq+iSt+LOimte69TiLmXcxeTaOcYXpXyUozcved2dLfYp3Z8xDtHHqRULRlWYmnH5cFfp7Vo1Yz6lvO2XP5mhFx5S5bkEZb8OKhuzLjJD5FOxsnoOKnmLlZoxrBWOpE4/irri/cOCKUKhqXoG8gj6ispNna5XiY11tWY5PHrWerOa3vXIgmFHHXpW0EippS0FDHOGP14q9DkmnF3Ok+GXxF1f4ca6muaG4W4BAVigJ69s9K6cLVdCd0rhUjGrTtI/Sf9jj9q/SvG3hKLwn8WtZtI7q7QJHA9wGdsj07V9rgMxi6a59GfNYvAyoe9FGf+07+zRJBdz+KPCFo1zpc4D3EMR4cdccV7lKtUnK6PInUUpW6mP+z3+0No/hPXYNB1KNbaa0IittLUNvkc+x6/hwBXbKUZqy3OZ0eRO59w6N4x0rxd4ClstVukaZ4g9wA2RHxwv1qYUpQd2cc6ri9DyHxJ4Fv7yN7Wx+7ICRwcha76NaUVZnjYzA/W2xzM3hmyitRod3c3AK+TBbplpHGMAZ98V9Hh82ocqhJ2sfmmZcEY2hOVemlJXPSvhV8DPHeu2c2tfEL4uax4Zs9QYXD+G9AmELE4AxLIOS2ABxXFmed0HJeypptaXep6+UcA+xpOdetKKm+Zxg7L59z1TwB8MfDj3Mmg+H/DUd/bykie81+d7p9vc5fNfI4vHYrES3+7T8j7bB5Ll+Ap8kKaaffX8z1XR/CfhL4TeFJNP8DeHLCxAy2y3hWISOepOB61yV5yp0eaTuz0sLQpc/JCPLHyRxGsr8TNVukuZ/BRuRK/ytE6lQPUkkYrxIwxFWfw3uevGdCn7sZLQ6HQPhRqghS5vLuG0mLZbyEDcehyOtdtPB1OX39GZvG0qTdlc1vEHhPQrPSR9stpJ35wYFClj15xWlSEaaSOWGInUm+XRHlfjjQU8SM0fhVWtbuzQyC1mkIdx/eGainRVWOmhtFtay1R5doHhzXfGvjdLaRC0FtI0YeT7yEgbs/0/GsrVVK0fQ6nUpey5V/XzPYPhZ4A1DTRq1/qFuq2jTERW3lf6zHcjvzXVQw00+aQOtBJQW5b1XVPCvg67FwNJtZdZuXCR7oAFi9ACBjPeumUlzruFT2k6Zi/FbStEu7KE+ONZLjy/MnQTEIoPQH/AArdRko3ORWhr1OG8PeAfhT4jQ3mnaTfzWEbZae4GyIY/u561gqcW/fRUZTaudJfaVCdEk0LwNYvZwSIV82KLDufrVQulyrUuVeOjPjP9tz9jH9rXxRpslz8KbG/1S7MRNk17qH7i3Y9W8s8ZxXo04OULKdmzz60PbSvFH5gftFfBbxz8EvFB8M/FPxBHqOuhfMkKTbxDnqDg4H0618rxFKrg4ezcr3PYyfCJe846HkWo3se4o7dueetfIwqxurbn0U5QUGkcdp7qEU5610SjeZ1Ts6zNWyYuQuOgrNpRiaxSjI0EfauF9K5XrcJzu7ElqSDzzSa00YKFtTQT7vHPHNJpLcqMLoVEljmE8MrIy/ddDgj8aE+XWJTdjq/hr43n8PeMtM1TXtQuW0/TInEFjbnYoyMkDHdz95uuM124XFclVOq9EcFbDyqaRPrb9nv9uu78O3UeseItea1uNRkSFmgG/7DaqQEt7eIHl26BR3OSa+lwOdUpzjzuzemivZHJLK7U27XZ+hnws/aE8K/EOKxtvEesrZ6lNEpigF4rCFWUFUlZTtEnTKj5gTg45r3qWJVZp3t09TxK3ufCv6R9L/s42/ia98RFjA8em20TM00THy5ieFGcfMe/wCFdNSNOlSasrv/AIc8qviPe5UeyXt5babA95ezrFDGpZ3Y4AFYWXLqcDpylLQTT9Y0vWIBdaZqEU0bDIMbZqbp6DcJQHzYdjsPTrWkJRii/eaGTSmG1eaJxuAyPrUVqloNxNaNK81zHO6747t/7NkiJAYRkMV6hx2rzatWpUXLY7YUIwqXTPLbvxZfeLYpIhM4ltp9mGOBIpPAPpSoqKd2dcX71lsblr8DtS1W/s9Xt52sfLcG6W7G/eBg/Lg9eozxXTLC8zujlrYiFKPLe53Nz8LvCGoxtFrlo16ksapLFKcIwHqB6+9b0sNCDvbU85YypJ2Ny60nTtUtVsbq3zErAxgEjaR0wR6U60FNWkrl0sRKjLmi9ThfiX4C1aw06O90SVprS1le4miILSlzk/8AAhnFcv1eKZrHFOcvePlyX4j6pdeKQviiXM1zcMq2qPiWVd3CkA/ImOTXO4SozXPLV+Z68ZxVDRbH1H8LtDvJrGw1W68mcBfkjjQCK2GP4MD5m7Z+vPY91OMEtXc8mtKVrLY6nxB4x0PQJ3h1G6WNYITLKxPAFVKq72sQqUpQuj5V/ae/aztb6eWwsrwR21pljGD0x0/E/wBKzvFO8nqduHo+zjZbnwf8RP2sPFehatq8/hlp5dV1IYaSGTa0UPZQ3RAe59OlXRnKSfLG9j0YUY8vJJWM/wCE3iGfXtRWbxB400m0845+xQtwGPVmYsXZv948+lerTpJy5lp/XmRVjGL00Poj4a+AL3xYGtvhz4ntZdTtiXazkkaN7k4+6BuCn2wPzrplywiiKdKMruWx8u/tLeM/ilpPjO/tPFHhK6t44SVNpfpdOQw4yGWNQPwNfNZrVnHZ3R7eFw9Pk91nyV8QPEia1qUsv2J4SDnDSu+f+++a+Fxdfnk01Y9qlBxicXdzl32lfpXAm2dkIJK5XJOCRz70cqT1NHJRK+j86hg/3uldD0hocDu6h1sHbGfauGb0O+K0LsaNjAHXvWLLsTwRB02n054qJNo2i7IrTwbJsbe/WriuZCmrouQxKbfkDpSlCxKukUWsV80sBx3xVpaDdmixDCOmAPpSaszO2pZs4/nG0fQUO1jeCVy3doAhXHas1uazSM8RkNn161utTnukavhLT59Q1RY7bTLW7IPzC5s/P2j1C9PxNellWHnVxSUY3M6l5LXY+6P+CZPgbwVa/EdPiv8AEi3isNB8NoZzqV1fhRPOBhUVIzsUD+6PSv3nhbK8RHLKrwsG5z0V+i6vyMZ+2hgqiw+spJLVLTzOv/bO/wCCh/wf13xTdR+DtWknleTZHBbywxJt6fPJMdqA+/51+mZXh8Nl2Ep4WVROq33SV/NvRLzuZKvh8BgYUnK7ju0fKvjD4gfGLWluvGyeHdH0TQJwEkvNbmvL23uFzgeWm9IWzn70SkAclsDNVjsRj41/ZJxSTs3dNfenZ+tzlhia2LlaDSWr1svzt9xZ0f4feF/HH/FdfD3x9pcmu2cCNqmjeHtXuTAY0AbeIrh2PLKGKgkDjAGAK4qUsPKrfn5pR1Ip4rnnyt+Wh9EfDv4qx6z4USZIXAtbceYGOcjhZV9sN8w9Aa7PauSu9z6Kn7OUEoprbr1tr+P3bak8/wAY77SfG1l4j065MeoIpkWRYwqlcgOSOn3mQ49z60m6c37KabT8u3n/AF+DNvclFRlt6nfaFren/Fu0u9Mma4e7a4YSyXOvrp8dmBzlJGOCSOcYOewzRzPD+9G/L5R5m/lY9KWMoUqFm2tdUouTf3an1L+xJ+zx4R8AQy/Ek6RDJqN1AFj1k63JemZTnPzNgAfSviOLc0r1p/V+Z2vrFxUf+CfnfGGcyqWwdKT5esXHl9PM+ibe986TchyN+GJr4apDlPgZUrR1LUzxTwOD93GCR2rH3k9DJKUWrHzZ+1nNBDDJJo6i4ZEJmWOQnKhgzkgDsBn8B0619xw+pqj+80PoMG5qC53b+tD8dP2p/EV9cfEvXraOa7GxTOmkt/qZgolcu7dQAGLZ6YXpxX0Pt2oOMnY+ii606SjFXfl6Hzd+z54q1vS/iN4p8NatfjS7jUrEXCXFjKZwM8uwJwZCOeMA8isMDiPY1ZpP0O3BYmtH3UrHsOkftQal4V+Gs/wx0/VpY7rUNMZtVuQp8yzgeXklmx+9faAFGSAa+hpZlCFPl6vc9lY6pGFnfXqfLH7QXxA8e/FjX7nTkR0sNkdvbWiuyiTbn5TgfdXClm7k+1eDisViqs5xg7Rla6u9db7bWTSe+/ofL5lOtXfvHzV481LxffXesaf8Lobme10C08/X9Ys+Ci71QneMbU3sqjHJNfC5lmWInVlTw90o7tH59jsWqVdQcrJuy82cToPxU+Kuk3CJovxG1q2beCoTU5Au7tkFsV5VDG5ipfuqsrvzZVHGV8LJzUmvmfUPwD/bM8VeDrn/AIV/+0bY3DoJgo+2tcW0ikjO4OhUDOc88HOaWOx2bTw84Vqrumly63trd6aaWV9eqsnrb6DAcUV6tNKtO6ez8j6C1CTw9q8MXiHw9etdW06ZiM0pkKg9sljn61+WZnF8/Mm7ee59tgZRrw5o6mdMSxGf0rz4W5T0HDlEeHenHSpauyoO4xCbZST+VU7bEVEoq463ufOJXPNS9CKb5mXLaR1bknNZO8mbe7sXGbdCxPpScWmU9jIsONRb/ertgvcOO3NM1L0BssMj1Nc9Tc6eljFvYWMwYnjPGRSjsZtaDcAAjHPrWy0RFPV6leaUKdx7e9DauY11aQ1Jg5ypzg/lVKStqKmn1Ol+HHiy68KeJbfWIrlkZGH74Elox6r71eHrSo1U29DDFQVSFkj7+/Zx/wCCgnhu38OjTfH/AJSaPCqwxNcyeZJcN0/HNfcYfN6cIxbVkz5Stl1SVT3dz2LxZ8Bvhj8YbGDx58NJ49N1WWPfBLGFDJkZr6SjXhUhdM5K1GdK0JJu/wCHqcVr/if4u/ATQZrXV9Gubq10+Iuvkks95L2LH0rX2ztdo854RzqWRD+zd+2T4l8VeO9O8IeNtP8ALvtSR7m6yPktogQFX68gU41JVJJIiuoUYWsfW3jjwlbSxWmsaVKVlaMS2zr1DDBrp5eV76nJGftI26HZeE4PEHj7To4/D2km6uJgBfeY/wAsTDjJyeB3rzsTShOLUtU+jOmNRQjZ6M9g+Fnw11nwVatJrWti6nkHKRqVSP2HrXKoKMrkuouWzN/X/Cdl4jtfseqxM8ec7Qcc1VSjCvG0x4fFTwrbhuy1aWn9m2C6fp0AjWJNsanoK0cVCFooyc3OpzTe5biZvKC7h5m35vQGsHKTXmKSjfyOU8Z6ld2rC3u7maNmPySwgBcfjXC/aOdpM7acKXs7xOcu4YdW1KC5udNf7VHHm1u45vmc+n0rpjGfLoS1N6dCf4UaTod1rGsTx2SxXsNwEuUx0JHB6VtSoJe/JamdWU0kjuriGz06wCsQo6DjvW05aWIhJuehy+r6D4Vlnilk09JpFcv5m45UnqetZRpxjLmOh1K0o2OK8Q+ALr4yeM44cGLRdOH8S5Sd/RlOCcfka3pu8tdiuVU4XqPU6bxP4X8IeE7GGEWaySom2C2Hyxg+u3oKprne1jNTlNNRWhwPjXx9aeFrZUW5iiupshGAACgfeI9hSjGKYXh1Z5Z4t/an8NeA7e3v/FOrtNLdyt/Z1i0+wSIPvO3PT611U6LqzUYb/d+ehnVqJK0D5j/aI+Af/BO34zaTrX7RHjj4daxcXltbeZd2Gj620IunAPGAePrXl47A0K/vV4XsbUKmNpRtB2PyP/aLv/AnjDxXcW/wR+CkHg/TLSYoBca9cXd0VHdy52DPoK+NxX1KUmsPStbrc96hTxLs61T8Dy+3mKIij07Vkrc7ue3V0qs2LC6WOP5iMkcZrnqroUptl2zmaZiK5px5dCqXvSNC3Vo2BPejRRN6jSZoW5BX5uoxWEnqVBuw8sF5x+FEdQauKknOBn3JquS7HGPLuaehX15a6jbtYXMsUwkAikgYBwT/AHSeAfetKEJe2Si7BO72Prz9mvxvqOj6hp/narp9tqAcBGl1EanqT88hIY8xwnHrg8/WvsMuxU6M1T6/efPY7CWbdtfPY/bX9hDX/EGufAmG/wBdsbmBBcsLVr26EkzptU7nA4Q5/hHSvo6zUuV9Wj42pC2IkkaPxZ+KOlw3jaWurxrb42lc8FvU1iouUkmy6Ur6I4vw18T38PXpa31SF4lYE7GBDL7c10zoO8k7XXmv6fyN+SJ6zo/xH02/sRqkN2jxSRhsKffmuSpCUZOz0NYUYySZlan8RbS2nliSbMXKMN3r901yRgloaTjqkeXeK/G063dxFE7CO6gZkIPPmLUKmti4RlJp2Nf4I+HtQ8T2TeIdNgS9guP3dyDKAFIPP0NdKwyaTZdSpGjvoe6W1uYbeKDyyAigAFt2PxrsTjFaHgYio5X8x2xi9TGetjCEb7Dbq5hsrZnnuUQbeCzYGfrVbvRHQ1CC5pbHzj8Uvipq/wAHNdfUrO+uEkS4WSKzN+1wsqsRkNuORn9M12+zp1Y67+hMYxxK91WPCr630/xH8epPGd9oUUE+rXAkV4cSsmeflUnbHz6152KwlP2ytE+iotxwqhFao+4PCLw+FPAEeu6tqKultZA7BNuRMDhc85bOAT61lUXI+U8zESUqvLFWPkr9pb9o1oI7hYr/AGPdsXmCnoozsX8TzWKkr72O6FKySPhf4r/FfxH4x1eXTtLMk88srN8pyN5B6+uM1x4p1KiVSV93rrq+vrvqn5Psd8KMYR1PhX9sv9rrwp8DLqfwja6m2o6irlbxrOYGSSXuoPICr0LHvwM104alWac4J2XU4K+YQozUVqz5v8N/t2adq+oeXeanqOiSO3E1y7Sw593iw6/Xaa9OGsfj+/8AzNaOY06rvUjZn038Gf2zvjh8KJNO8dWepam2krKktpqkbC5tZMH7yToCcZGMHoeDRCvVd4dHb+r/ANeZ14jERdL93sz658ffFTwd+214IHxc+HPirR28UxQD+39D1e1WRLlgMGWJ2wwJ6lfXpXHnFGE4NUZJtfj95tllWo7KaaR8meNbO/tL6UanotjbSo21m0+43KD7qWJFfnOK9om+aNmfVUo2WjOYuQN24muSEn1OpOyIyoCYxipnOzsRFXepW0lSNR6d+tdbbdEza/eHW2pIYEDtyTXDPY6Y7GjFyoU/hWL0NLuw6NmUcdfpUsrZDZMO2D7VpDQIyb3JZGMUOVHbkUN3NJL3dCpG7ySYIPvxQmkjKKs9ScZTkcYqZSbHO3QsWJ+YAfgalNmtEtXpwmR6VSRpUfuma0p521asjmirjtPvLqzvo57aRRhxvR/uuM9D7VthsXXwleNWm7WNW3FaHs9r8RfFvxX0WDwbqvxV0zwdo8EYQfZ7eS4kI7lY0AUH6mv1vB+IeKlh40YzVKPW27OLE4fEV05KVin8dLP9lv8AYi/Zu1T9rPQLLUPij4h0vWLXTNIj8Vwqlh/aNwsjJJJAuQyosTtg9SADxX1mBzbB1ssni4Xk72TfdnmVsM8Hl9TFTd2tEmaP7EP/AASa+PH/AAWTstR/a+/4KA/tj3nhXwvYeJobC58JQW0VuXiS3hk2RESLFaR7ZUVBsbjnBqM7eY5d7PDYj3+ZKaUdVrfqr327n4vl2f4fOKuJqKrZUpuMnfd2T67KzX9I+V/21fB/7Ln/AAT8/wCCid/8O/2KPi/rmt+BdNe3tr/UpNbW4eO4KKJvLmTasnlvnnGOCOetXCliMHhKWKs4Tle8dbW6Oz1PXyTPHLMpwvemmrO/lr+J9w/safF6D4lanqXgjWZ7dPEFpsmmt4ABHqFs4wl5CD1RlI3r/C2a+pyjMnjJOM37y/E/VaGYR+C51Xi211fR9WutIvVdZ7Fwi5Q/cLZOM/7oyPevo5NeyvfXt/X9anfCs5xvc9v/AOCctho3xF+IGqJ4t0/T5oNI1HdBFrasUVioBMaAbZGI6E4xmvPxuZYijl01Rc9Xb3dH/wAN3ZniK01hJqLlzP8Al/Vn6YaE1jp1kmh6XoSWcEEAkHkqoX8h0r8prSq4io6s58zbtre5+aYmNSpJ1Z1OaTdtSxolyLhDPK4QiThCentU4mLi7IVaHs3yrU3I5Mx5cgD0NcK30POa10PF/wBp/wANaZfeFrq8g0y53wo7Fkg3ByACSc84xkZzivq8hqVPacrktT3cGqlRpNo/Dn/goL4At4PGOo67Y3xkOmQiW6hgz89m+VEgXPOxiTg46jNfTYtuK5Ybn0cUoUU3ujyv9jj4OeBvitHLL4h+LC+FtRMSx6dqU+nPPFJ1ASUrh1B55AOCK4IQlzc6ZzLGVKeyPbvit+xD8cfD3h6HxPB4Z0TW9EthNJPrfhmVLpGI+5IxzujO0k4de/bFelh5Qu+Z2Z1U8xov3XfmPz7/AG3vG8Pwl0qfwnoFwo1a9Xy5riP70MW4/Lnsep/GuDNsdHDYeTh8TVkcOcY9UaSpp6yPmP4mfEnwJ4w8GeCPDng/4WWvh+98N+HJLHxFqtvctI+v3bXtxMLuQEAIwilihAGeIhz0A/N61ODkpLd7nw9qqlLmle708ji1dy3mKa7MNGMJppXZTi2j9GPhRpVv4k+A3hGz8f6Na6lcHQbfz/t9ssjEbf3edwzkJtH4V+bcR5jiK2d1pxk0r2+5H6ZkOW4dZPShVgno3t3baN3TNB0Hw5ZjTvDukw2VsDkQwLhQfYdq+enUqVZXm7nu0MPQwseWkrImKGTAHr1pxasayeg7ouCMcCldmcHZlS+3bMDipTu9S52asJpMRABZc896TTbsjOCUWaMkgTBIx9apKwpNJk6TK0JVD0HNaaM3vzQMywbOpt/vVtF+6cVLWoa17kKSPSuWpqzsmkjLuVDnIXk9aUNzDm0IWQgbm6Vu3ZDiklco3XJI9B1rHmfMZSSlLUZbIAoxgZq1qzOT5WWdxjGc8H0rRQuLkclct6dr11Z3ltI8xaO2k3xxsflB9cVtSm4yXNsjllTUZXR7p8Cf2yfHmh/EXTpNd8VT23h/T23TRBvmnPvXtYbNKka6u7QRzYvDwlSfLHVn3H8H/wBvf4UfHW+m0XVdPhWzMq21ubrGZ3PGEB5Jr6rCZzQrxPDqZdWo0+Y7bx/+x9oOsOfip8JolW9gRDJbxnG9VOce/evRhUcZc6PEqU4124y3Pb/COtLrvgzTI7m38uaKDbN5nVCBjb+dd8Oes1I5VSdJqNj0b9m3wF490vxlL4lu7N7fSJLdxvkfHnscbcL1IHPNGJdCNHlveX5BUhG/Mz3VAF+8RivMcW2ccpaiTSIg3OwAq7qK1JTbGStIIi8adBngdaG+WNzSCc5JM53xN4uXTLBbgAoWYjcWxtPvXBKftNT0I0Y0pe9qjDfWrnxjfwafZ6hbGbYGa3ngZ1xnqSDUpN1NDRqO6Wh2dlptjp0YSC0iRwPmaOPGTXqQjZann16zvZPQlgt7SCZ7iK2jjeTmV1QAtj19aqXmZ87nGxQ8SeJfDthYsdRv4lyMKCec1jzRb7nTh6E+bmZ4340+NOjeEZJJftWYADtwep9/xppczOvnUpWidd8AfjPoHxJ8OyT2nlxzQucxKwJYev1qmuTU56tKpKWoz4wTmL/iZ3LbIoocvID8309qiE+ZluXsqNkfDPx1/aJk8QeKpdJ0mRBFFuE0inIihTr+f61tBtbnLJSmryPlfx14d+MPx2+IVx4+1LENhFGI9L02W6WIiBeBwTkk9cChRnKd0a0acVK6Rl+Ovi7rfwZ+H13B4+hs9CDQukNtewy3CXBx8ucJsyfQmjMa6oU7t6WO7C4etiai6an5+fEzx14j+IWsT6pqt7E5dz5SW0IjTb2+VeMV+dV8dLFV7tWX3H1MMNGEEnrZHCrDwCvpVJrm1OrER1bRbtiSox2GOtS3czpS1samkcOMjvXLUSudkYrc1yegIrGXkZz0lqWoGOBjv0rJq50UknEnGD+I71n1DRSF2kdq6I25SnrqWYY0bAkx178isJ8yY3NLY9s/ZX+D/i34l+OrLwR8MJtRfVLxgNlrqErCLkHc0VsmyIdOZHGfTtXvZdltSfLKnJ67vWx5WOxFKn70lf1P3z+CngS2/Y5/ZF0T4Y+LvF+7VpYWk1G+uHy7zP8ANIRk5O0YH4V9lgqE6k7N6I+Lqfv8RKcVoeA+IPjJ4s+J/wAS7n4G/sZ/AmPxz4qt7RLvW/GHjnUDaaHokchYRl0QGSZztYhFXJ28mrWIw0ZN72dtN7nn1JYihUSS3Plf9rH9rv8AaU/ZL/aGf4P/ABP/AGx/h/4k1TRNEXVvEnhXwv4HNlp+mFnAiszctKzPO67iE4bbgkc4r6PDZZLE4CWNUXGC7rcMLi6bxHs6msntZn2R+x9+0b4P/aJ+CifF74Z3xl06baNQ04vmTT5/4lI6hTyRXi1PZ1NYbHs86jodZq3iEJqDtHelojEVDZ4J7Z9xWHslBXEqrvoc7p82s674hSwFu0siN9w8CXJ7GlSoSnO6RvGUbXufTXwr0DX/AA4i2cXgez0yykjDTSJdDcz44OwA5PqSRXXNU4q1zysTWc20+h3SKNgJFcU3eR5zXcaVZX3Y4oVrmlNWjco65fWtnpzvc26y8fKmOp/KumFOU9nYVVXjtc+Tv2rtWvrK7F7/AGDGjeT8k00YIA3DOeP512R54aHRg8NJr3dD4yvND1i7/aSvbbUPEupMs1xBLbabb3TJCy4JLHB7fr+FckYXq2kfQRrUqWHtfX+v6/rX9J/AHhi08Wfs/Hw1b2v2KKO2aSNknMkkrAE5Ixnk+nPSoxVLkqX6M+fqVr4j2lz8zv2p/GF2niy98NJPPHNuaNBJGUZOxYg/dP8AKvGxsYtSgm15nvYPlqwUj5K/az/ab0r9mH4Mavd6FcJP4mvbGZY5lOfs+RjIPZiTjNc9OEqr5LjxdXkpNo/Kzxp8RPFGj3etXnijw/pWpyeOPDNsYbq+jMr2UbSRyiWBgw2ShomQk5yGcEc19phsxqZXhauHVOLjWhFa9PNed7/M+CqUI5lVp1faSi6U3e2ilurPy1ueaQjfw3YZrzU+WNpHt1JtKyP0C/4Js2/i7wz+zpqY1pHt4ZvEkd5oiykMHheBklyhJVo2KJlSOSua8XievXyulRUVyykub5PY+v4NwscZRrTnrC6XzW/6Ht2lR/B1LuXVbhNT8HayeYtU8LRB7d29ZbYuoPPUqR9K+Zp55HEe7idPNf5H1E8njRqc1J+72OM8XTm51OS4m8QwapI3JvIbV4fM/wB5G6H8/rXkV6tOVT3ZcxtCmznpmJkwag1Ss7DiwEefWsmryCp7pDpXN0Xx/FXXoqZirykdVYgnJPXA6VxVGjshGyNFAygZH/16ysNxsSIuBz+BpaI005RgB8wnH6U76GK0ZNK48vBGKz6mybkiCOFlPmEYNaKN0KomrA5LHgDr1quVWJRLp7MHK4wfU0uRLU1g0noWdRk/d49qm5dT4TN88DBz3pqzORN3Ft9zSZx9aqyLjNXNrScGRQgHX1qowkprl1RrzNnt/jn9lu4/am/4I3/HnTtCt2n1vwVqWneKdPhRcu62qyeao9/KaWv13h9VqmQRoR2lJ/erWPl+JamKVKNFfDK/3n41N+0d8ZG0w+FH+JWtyaW8yytZNqEgiZ1UIrFN2CVUYBPQV9THiLGUKcacpXUNFdK/6/mfkC4ZymE5SjSUW97Lcz/+EkGqyNJq15lgchnPJOa4a2dSx9Vuq72OtZbGlFeyVrH65fsmfAD4lfGv4F+Cf2hfhJ4C8YfD2/8ADcFrb+F/FPjVIo7XWZ9uZYowhEk1u5HBKEAHrXfhq1fETj9TXvLv1PucuqQxVKMZXjZKx+nHwR+Ffg/4u6Vpur/HbQ7bQPFCKE1W3gkE1rcOOrxOACVyv3WAYZ6cV9ZWr5lRh8F3b7j3HXr4WnZrmPqP4c/Ar9nnwhafZvCukxpIrAymINuZsccAcjnNfNYnMs9taWi+R4tfN86jK0Eop+SO/wBK0u10fSb4WekywKIwscs8m/ePxOce3FeFVr1K9eHNNP0VjyqtepiK9Nzmn1aSsSWN5aRoEkuQJIyN+SQPpjNa1Kc27paMwnGq5XS0ZqWupW7Moy+8tjHOD7d+K8+VOSZk6M1d9DjvjzpFrr3ht7B4NSnlKnyo7FtozkZySMAD1NetktaVCrzXil56s6MJJ01dWPx9/b++H8vhb4oxa3rlkLmC4SXT9QdVASW1lLK+eOSCR0PFfZZhiIxcKkNrdj6rAv2mH2ep8M/B03Pwm+IWt+BL3UpP+JdqTQxMD9xNwKEHGSCOfYmvOhiZudi5U1TdrHvXxF/aKm+BngZdHGqtLd64ZEhg84yllk5JIboDk4HboOOK9O/PC8jllSVrO5+an7TXgDxZrni7V9Y1rUZLgag4ubCV87CDkiPpjOK8LG4GvWUo30ex81mOHrVXpuj59tltNP1B4Nf02eVEVkaCKcROGxwclW6HnGOfavlakKdCpatFu3RO342f5HmqlO2js/NX/VHpH7Mf7Onif41eL4LybQrhPC1jcq2t6o0ZEe0fMIFc9ZHxtwOQCW6A1w1szWW4KdW2m3nfoj1cBl8sxxUacVpfV9D7uSOKJFghjWNEQKiIOFAGAB7ACvympUdapKcnq3c/UaUVCKjHZDJdxGPwxXO3qKd7hgouf61UdjaMfc1IZJgAcnkdKGzC9mMKPcMAOlQjeMb6li3tDCw2rj8K0T5YktK43UYZSAUGRUKSuROnfVEtkNtuQx5Ap3cmVzWjYpWGRqZI/vda6Y/DY56Vue5sXwypHtXNO6Z1VHdGZJksAfwpwRmoWRFdzKqbPwOatvQyb5TKndmfgfSpSuNJN3HRvsBbFbLRGNRWlckifepCk4o5luXTk3oxkjup4PH0oTTInTu9ByO7jGTj0xQ3dWZCjFG94G8da74G1uHWtDumiuovlt5c8QA9WA6A4711YSu6VSyObFr2lJxP0x/4JvftzX/j++uvCN2C9jpFtDCbiVsmeQ/eJz1r7nLMWqidtkfGY6hKlNPqfb2jf8I0NRTVXhQRSEPGP4Ax7n1r6fDzUItPqcLtLbc96+GusWOreHt+n6tJfLDIUaeRAo3YGVUDoBXLXjyz2sck4u7uYPxP+KVroKbNI1QJPay5mQ8BsdverpUPa7lUoxSd0R6J8dfDfi7wzJeW12sNzGMPG3UH1xWNXBVE+V7BCk1K7NTw/wDFmxn08LqsZSRRjP8Ae9/5VlKHLGyNZYZ814nI/GDWIrrRJ5rCQyFW3xqoznvggdax9jJGkrLSW52HwmfU7rwhBq+qaetq9zGpjiK4dV960pUknc5qk7QsdADls5rdyPOlK8ixEvOSOtTzX0Oilojhvjl4Yu9a8Mztp9goYIdsi9VOOvH4VnGPv2sdKm0nqfnn8TP2g4rvUdV8AeIbgWer6O/k3EMnHmKSdsgPcEfqKtp7MqE1ubn7H37Sel/D7x/b+D47iNjOFx+9y0rN7fiKbkpJRR2VXGnC01bRan0X+0H4g8R6f8ONQvNXu/s39pzSfZw/G2PZwfzP86z9m4nn1ZRk0uh+W/7Rn7SHhn9mnwNrviK4g+3yWls9xfXCo0hjTdt3MByBuZAPUmtIylJNRWy1Mq1WNFJX3Pyl8fftvftweP5tY+OPhv4t29to9hdIZLWw1W0ElqkrARj7PI3nMBkAkKQDnkVtDLsXOg8TBqUY72auvVb/AIHBSzGH16NCTkpu9vddnb+9bl/E+i/2J/8AgrR8QPHvg67+HX7VvgO28WeFxKLe5vUiTzMlT1VuQec5UjmvJxmaUsPJU665oy/A+ohTrY7llTk4um7+7a0tGrPTbrpbVLW10+b+POj/AAT0jXpPEHwJ8Zve6PeksNJvkZLiyJ/hyfvKO1fK5nhsDCftcLO8e3VHt4PEYiScKq1PMVBaIELnjqK4pO1Sx7NZc0mMtEnZ8Enk1TfunP8AAzc0cHIyefWuealY3jUNSaQqcnj61mou4tZMt2sm/tUTi0dMNFYnO4NjHBrImUSaNyAGxmtY7FwblGxNGrMdwOPTHas5uxtCmk9T6n/Yf/4KC6f+x3CniG1+HMWsa3FcKlpp/kiGzVBgmeTad0szHozcJ1APSvs8t4jw+HwSpVIt9Glp8zxsyy2tjJctKSWqd2r6X1W63Wz6PWz2PRYf2+f2iv2rfjDc+MPir4zmDalEIbHQ9ODJa2EOdwjjUdeQCzk5P5CtKXENacpU6XuwkrPz1v8AojOplWGw1PRXaPDf+Cmv7RHx1/YI/bkt/i38PviX400bQvH/AMMNPuby18IeIH04X7xDyJEd8NhVkjc/L8wL5BGa9vhfE5Vl2bOpj6LrU5K/LdKzto9n/XU/O+I8vxmPotYWpyVF18j5L/an/wCCqPxH/bB+GekfANvh54a8IeEdN1UXlzDotqz32qXZODd3t25M13MQTl3bJzX0+aZ1hatKdLBwlTjN63ley7JWskeXleRzy+ccRiZ89RK17WPvT/ggl8ZvFnwC+NeheA7bXpda0Pxtpch1bRwCxt0jA2zNnjkE89sGvmsLVpxlyNn0NZTqQU1c/VS48W/C3Vr258R+F/FMM1ispD20tzHtBz93cCRkfUGuyUqMp2TuXT51T95nSfDeTSvFUqT+FPCd/foZPklsbfzFjb2lA2r/AMCI+tONSMHbYuU24e8e+/DGD4i2oeHxRpC2tkEAhNzqnn3LH3VV2qP+BsfYVhWfNK6POunJnZgnbg+tckr81yW9Bk2cEg9KE9TemnymbrV7JaabLJDaSTSbSFSIHP1rtoxUnuKpK2qPkb9rLxAdPQ6Rq9pdfZb+2kjlmnf5FkJOAMdM9M13qMqa5uhtSjHEx5NdVZ9P60Pj/wCI2qpo3xe0XxNZQGKS5so7YTDOSQwBUEetcqqU4zUup60MLFUVGP8AVj6osNU+EN14Pk0nx5rutx30triOTQdbkhlhBA7oVG7npXTVjKrT0RxVabcbRR8Z/G79jOy1TWtW8Q/D39onXr13jLpa6yfMc98FjzkY9ea86eApVE3ezKpVKtKGq0PhH9q/9kbx1498Iarp82uKupxWs0cYkY+VOc8bjj5TwOvTnn189YKNOpz32/E6aqeIw8lHqfmX4p8LeI9A8Qz+DvEtpJa32nO0LwXJ27CCeOeMHJIPQ5969enCM4pSdtNLngRoypXbVu5rfDv4KfED4jazFpOgaKBG74m1G7mSG0t1H3nkmchEUDkkmp+p4uvNLlsu/T79h1KtL4U9T9FPhhoHh7wL8JdG8L+FNd/tGwjgH2TUdjIt4qqsZmQMAQjsjugIztcV8TxhiI18fFX0ilFfI/UuFqKw2Ux0s5av1Yl/K0j4c89+a+QSij26tRvQy7oljjp6H1rKKtIIx0MyZwkxJHfpmup3auYTvzCOz+WeKxcuZlVIpoTRlP2gg92rqbfIZRtB6nUWEgEY57AE1xzvc3jK6NCJiRjPPas3oW3oPVyGxmpbuRdiqcPkimk2hpXdyQZYgH0p8tmbQQly4jXjrTvYqrflKsd0WJGO/NF7Ixin1JbacrNnbgetLmNYcqZYvZg8eCegqGyqj0MtsmQknjuKpPQ55WSuOhn2yhBzn3raKtuTFam74dPnXiRZyCRklsBfqfSunDR56ljdNH6j/wDBEvwcLiz8faHfy2GoaPq2jol7bJlkYEMrI+Rg5UkfjX7hlmB/s/hehUe7ndfceFxU1Ty6hOW/M7H5af8ABQf/AIN4fjD8OPjZrXjL9lCDw/4w8BazqTy6fHca9FZz6H5jMTDN5jqNqHgHnIA4rzcywmMq4luCaXkfIYqjD2jnOmry6NtfPdFL9kn/AIJkfszfs7eLLPxd+094psfiR4whuP8AQfAXhtXl0uyl/hlu5Tg3QBwfKTCHu56V7uSZJTdeH1m9m+ivZd91d+V0cdDDYly5eX8f1P1T/Zq8H+PvGVxZfEj4tahDNd6fZRx6JpPkqltYLJxHHHEAFQDHQAACv0ChgqeBpWS3Pq8Nh1CKuj6a+A3g6x8Ra9qeqxWsIh0u5lncLkbpBkJnBHcuce9eVnmMlhqcIX1nZfIWYVJRhFPeTsdN4LvW8WyzXGp3bQ/ZpWChCFAGSNzsMMzemTgVyYyLwkUoK/Ml5/dfRG9an9TheK5r9/06HqvhvUZ7Twrc2l5qRuPsgQmdwRlSAevevksRRhPGRnCNua+h8fjOWrmEHGHLzX0Iku4bvfPaMELSjIb/APXW7pyhZSN1RdNpT6Ict/LBcrJHIWUn5wjYVTnqR26YrN0YyjZqwSipQaSKvj2w1fxbph8G+Hpxm6RlvZJ2wscLggnodx7AfnTwMqOEn7esttrd0c9H91L2ktLbep8E/to/sl/Fbxf4Q1p9M8OarqOm6WxWxuWhBMsfSUIM5I3DepAP5HFfUYjHYXGYdQjP3rbLX7z18NmVOnJQufkD8ct/g74m23iDVLfy7m4t2s9SWRSD9otzgEgjI3JtP4V41KcqTXNue5WmpRUonKRnUPi5eT6xqTh7okyW6sSQgjUYAz046V7GHrqe7OKblUuZnxJ0+38T+HhplrKGaytGk8rHzqWbC4PoCrcf7XtXXOpTVJrqY/V5RSk9jwrxl8DdO8T3E00qmO+itmkDRL/rVAXDY79efqK+XxuBp46eukjzquXxxF57M9a/Y2+F9h8O/A93rV7p8rarqEuwXssx2iAEHy0j6Lk4JPU8V+X8W0auGqQoN3W57vDeXU8IpVHrJ6XPX0YEfMc+lfFTlpY+pbsJMCcDIrKKM95CfwcgjiqlK2hve0SmYS0oXd36k1N9DO2ty9axKnUAHtxTUW9RqRYbCkD8sUSbYPcbNHlASozipiaRtYjiQKj5PatU+xnKKbM7Typ1Nhu71vFysc0E4zsbF7yhGccCsKj1Om+hmyk7chaSlZCumjOmaSR2X26U02c/LdkbxgBSacdyrqJFcByhIU+xq+ZN2FKKmhukqxG16mXMiYyUXqWJypfBNEXyib94jQtGePwzW6lFoiUHJ3HyvlCen4UOKfUynBpHo37LH7RcvwF8Ufa/Iee28zeLSI4M0p4Ga9DLswnh5ctjzcTl8aurP18/Y4+MDfHzwLa6fqsUdtqE6hhbrcBjHnoDg1+k5VfE0eaT1Pj8c44Orax9VeNvjB8GP2OPg3AvxI+IGn6UwiPlLPOGmnmbJOyMZZzk8AA54pVqsXW12PKrVnzJPc+LPh1+2v43/bu+Nmv/AAG/Yt+G0D3Hh11/4Sfxj8Q9QNna6cW5CrZRZuJ5cHOw+WADlmHStqGbUZv3VeK/M5Pr8liVRglffXt/XY8xl/4KZeAP2bP22db/AGN/2gfGmk3Op6NNbxJ4w0Gylt9NuZZEVmgkikeQxMjErv3spx2r2MTyRhFzVuZXS8jtwGMp5hOSg7pO11+J9k+DPjBoHxBkml0XVY5FZsW6RSB8jtjB47V5nLTc2z26vLBK50smi/ELWG8u18N6neJKBmS3gxkfViBn3rKcUjirYik5XbPfPC1vNH4esrOexngaGBUZLjBYEDvtJFYxfKjjxDU9YsvNasGLBSaTscsKepJCpDD61Kepvay0K2safBqGny2FxcFA6H589Kp3vdFJtvRH5H/8Fffh7pvw++I1r8WPCl1+8jP2bWVClN8Z6MfXB5FdNSjUlBTSFFOL8jzr9j+yEPjm3+KWheF9X8SvahWhgs7cykEdRjI5FTCmo+9Y1rTc4KLPXP2tf2s/jh8cdXHw+8PfB7XLKaCArb21/AIDJtXPCscnpXNVVZ35VoNUVGmpSPxb/wCClPxO/aT0PSta8G+M/D+p6NpuvX0EV1LgbJ7aL94IZCDkZl2tjvsHNLDVcRSpTh1l+R5mLhRrYum39m9vU+HHjJIwAR15ojFpanVGLs29D6c/Z28OP4f+EtlJNDsk1G4lvHyOdpwifomf+BV8TnOKVTG8q2irH1+QYeSwjqS+07/LY6i9cRKxAydvWvKi+edj3vZqKuR2jbYgT6VvNNzY5fxWWAh3DC9T1rWMUkKdpM0dOBjO8ilJq1iuRKNy40wdsbgPqayVkzKMrMu2TYAGecVjVZ2JJK7Lm4H5gOtc63BO6HRPtfaacpXWhKbiy7BHuHy/lURabszfnsi3bAh1LH8KrToKNRdD1n9nnxXLovimC0aDVJbaeVBNHpS7mlwQQr+iZAPUDiu/BShGet/kcuK9o4Ple59Y/t0/8E8vH3/BT79hez1j4OaIJPiN8MJ5rnR9BaWP7RqGmTqPtFmrfd81WCyIp4JyP4q+uovmipx3R8HmNJwxKlfc/Ij4Z/8ABKf9tL4k+NG8O+FvgR4ntoYpwuo6prWkPp1tYhW+YzT3G2KMDByS3GPpXowVWvG669TzK8Jxlyt3fbqfqv8AsR/8EytO1j4kR6dpXxmtJbfRNIhsde1Hwfdzb7kMo3wRzFQqJnI3IdzdRgGrnl8K/wC8hUV46OPV+e1vx6+tvQw2JcKCi4623P1I+H37K/wr+D/g+x8HeAPBum21taRKwMtkZXhbHLZbO5snknn1r1KNKlCKsrGTbi7t3Po7wdpS6F4QstOXYGW2UyGOMIGYjJOB05PSuCSUq0n5nJOVtEW0Zy+NvGaqSijNRtqSklRx1rJbsLMikdscjrSsrnQvdgVb+a4GjXFzbo0bLGxBK5PHoK6Icikrigudnwv+3FqXijw/eWUt3pGoXJuoJHmt5W81DH6lQMoR1BHTFejUqJq0NT0aEYxWmrPk34p+ILe18N2ms2d8ZJdOm8+0lYDJ56H3FeVP3WmdCrNvQx/An7RWjeKPF8OizXT3cjQYnZyR5LZySo6fjXXSx0ZaGkaEnSu9D0XxNI6wP4itZmdQgW6jQ8SwkY38dxW75ZNTRzOzXJI8c+Kml2ckk9y0gmBXbMGUESRPnax9xnFc9Rwd2jtpKPKkfEP7V/7JXg7xvrV7dXumGa4SNJbS7t3CTLGeCA3OcHswI57V5OKnNuy2Kq4eGJ33PAvhJ+wNp/i34p2Wl614n1D+yUuwbqzm08JJKgblN6uRyBjP6U8OlKOqPPjk/ta65paemp9o/FjQbPw3r0ekaVZRwWMFpHFZW8Y2pHGihQoHbAFfL8QUrVE4o/RcIlSoqMVokef6jIHbHIHvXyctzdtszZhjJzkd6TkiryM26iBkznvWiqaWHa4m4BCCeaizuQmJpLD7T1/i612aOkiLNysdFpznGMZ49K5KhtTi7GlEcKMfjWL1Ld72FiYBjnn6VXs76j5R/mK7BWz+VLVFqDZOrbDv29e1OzaKTsMlIlODz71i207BdtkJjVMHbz6+tWk2ElZCAkMcA+1aciRktJXCWdmTB4IFYvcubTKsrqOcdTVwV2Yy10CGF5JlVAS7HgVq3eVkKN2z1f4BfA+++Kfiq10+x1HR2lLASQXmqRxvnI42kgmvuOGuHpZliY6rzOmnCE7an66f8EzfhzY/AnxJqPw5bUba5mu9NW4uBAiYjIIG3Kjnr35r9w4gwFPD8OUI000oOx5XGdCM8lpVIprllY4f9s3/AIJy+DPGHi7WvFa3d7anUbsvItlqMkG6Nwcn5CB1wPx68YoyuWX5lhYwrx95K1/Q+fValmOCpylG7Wn3HjfwP/Y08A/B7xFcJpMciz6gZIZ5p2LtKyxtKwdsncFMYPoCv0r6iGDwOEoxlCCutu9/L5X+RvhoNRbgtFv6X/zse4eKvHGhfD9NQspbgGSwvrcJhQPkWHA246jdk+2TURTr8s3s0/zO2im2rLQ9q/ZMu5bX9lbVfiJqMAD6tNN5TZOZEBKKT+Oa+Mzuf1ziKlh4bRsebj6kaub0qUX8Ope+HmgDSNFttfv4Le2a6k+W1YHMhJ5dwOWOM9fWu/H1vbV5UoXduv6K+x3Yit9YqypRba/rY9rR7Sw8JSaxqNrHE00SmQLwG7AV8NapLGqlCTdnofEVISnjVTptuzOTj8WLfo32LZEAQCD2X0Fe88F7N+/qez9RlGS59TO8QeNVtpZGnmDWvlkYi4bpkn+VaQwyjBWVpA8PTjBJrX1L2gfE9G0rztLElzcTWzvFEU4wo6kgZ68fjXBXyxVJpydlfU86vQ9o+yR8ifHNvj3481HW/iP4v8XXY0jS32afZ2UrQpGwz8oGQM8dT0r6bC4TB4ZqlSWr+82p0qcNKcfVn5a/t+aQPjL8P9Y+MGliy/trR9SEuriBlLTwg7fOKp0IzgnuK8zMf39WUo9D1o1lTi1I8K+A98lpbRXUq74vMGXQbuvX8MVxxrclmgjeZw95qd/4c+I+t+G9aKyLbaxmJ8DD28udo64xz+de1GvTqLfodKilLVl46LZnWX8kq5tLopkDny5BnB/SuaE6UqrUXqtzT3eWyRu3PjPwv8O/E1l8N9ZlkiifTI5Vu4gSkM7E4jcAHHy7T9DXy+f8NUs4brc9mkdWCrNVfZpbnXOsUE/lwX0NzGwBjnt3yrD19vpX4zmeBqYDFOlJ3se+6dlqPYq4GK89Re4uVDJX2KQOmOtHI2Q5JMqQsWlBYj2q+SxSd1oaMWCBipbaGklqx0rAYBY8VNmwdmwkcGPPbH50+VoV2mRZDI3PaqgmmN6amZZBYtSLH1rf3rHNGalUNi6lzx3xWU1c2lFrUqTbVT69ay5WKNjOuwIiX6ematRZEnGBntdM7bRWzgkjmd5O5KjgpjHX1rPkdzeGqsNiJiY4HFXZJEVIq4zezyktmo6EKHM9CYYA9PqaqMWWm07CTHMRI/nWiTJqOysULRjBfLcZIKtnPpWkIxjJNmK5pxPpP9kH9sDxt8KfHum6TpXiFtP06SQfbJkjDSSDPTJ6fnX0mU53Vw2I5L+6eRjMpo1Yucldn63fAK3+Cfx/1qx8Y6vY2Os3kZjZ764IlkXBBxuOSv0Br7GNWGJTlHc+OzCCg7NWPwj/AOCwfiX9pP8A4JVf8Fevi5efBPxtqfh+18d6r/wlOj31jK0Zltr4F3CsDztkM0Z/3a2ybMXllaS5FJPRpq6PjsyyPD5z7lSTTV9U2nr6Hx34Y/aK+IvxK+Laap4gt7vxNrfibUkinWRy0s7yOBwepb0rozbN6mYYr2s1Z7WXY9rJsBhcgwaw9JaI/b/9ir4Cftoa3f6d8Rv2drpbKx0WxhtNY/tu+aSy1F0UBzgAkSZ43L6Csabk1zp6npVKrrR11Z+qX7PPi34w+K9Ej07xjoV3p17boq3Esbo9uzd9hcbsfVaVWvGV4uNmck04yseqw/8ACR6SDLeSpcr3OQCPyUCuPnUupslzos2PiS3vGMckTIc45WtOS5jJSg7MstcRH5kJ/KlyFXuRpdm6VlktWVc4+fvV8tluNWTuj5Z/4KIfAPVvj74YvvA2k+A7aVLrTpB9umIHzAZGPevUw1SEaHK3c0jTdk5PRn5J/A74qeMP2c/EN94Cup7iy1DSbqS3ukMhB3KxAIwehGMVxQqKL5ex2OnTlG9juk+OOqa58QLXWNV1WYvMpVbl3JZW65BJ6+9dEZ0+phKStqtDO/a3+Dnw++NXgS+0rULe1u5L2wJuYbiEFpOp+91yOoNarkpx5zn9lTbtNan5Gal+xhqPh7xfrMF1Z38ukaZdIyyIgyIC3zF/YAgZFfK5hjpx5nTjsdWFwvtai9s7RPStlvbW6WlrGqRRIEijQcKqjAA9sCviZ2nJyl1PuocsIqMFZIo3WCD8tc0ny6o7FHmVmR2y4VQfWvRfxswn/FZeQcjjtUO5inaRctldY8gdaxlJHZzKS1IiszTAN2ppqxi48rujXtXMcYOKzcG3cv2mli/aHeMVhJJGlMlMYLZHpUlzehctiUXdjp2q0kRFczsWY9zEc49TmiUopaGiUVoevfssaf4N1nxX5Xie2guo0cCS0fxIdNG3I5dsHzE9QOa3wTjUqchy4mpGMGj9rv8AgmB4Y/s4tLYHTrWztrLda2eikyWrxNgB/NPLt6mvvsFho08I5S3v20sfHZtO1o23PKP21f8Agn34i8b/ALVd7dfCrwHpGnjxXOt3f67/AGULqaPu7xiQlEfcTyF4616FONarR5Yzso7o82MsLGPtZRXO9L9bH0Z+zd+yn4d/Zq8MR6HZDzRbIZr+8kyzzznux6sxJya3jL2Xw63MoytGzO8nuZpExbgtcXUqL5YGOWbFaKp7w1LRM9J3XUF95kxVbVbZY0G7ndnkkY9Md+3Suf3eW/Uys3JtFlVUAMvNY1Ndh8tlqDkk5CmojcIpJEGoahHYwGeVGbb0VFySa2hSU5aMipJxiVfD+s/2xBNHdqAYuX29MelOvBQVosdGNVwV9z5V/bY8ReBfiyup+Btf0i5u5orSQWsVocSKADhh8p7jPH5104ak0ve2OqVGtBp9D80PGEeq6HfXfg6+acwJGwtmmUbyuONw65FZ16atJI6qUuZXe5438DbXUdU8V6i1lfsdRtr13iduC5B+6fY15mEi1UbkejVm3FLufWfhjx7/AG94fjhu4kh8g+XeRMuChbhlPsTyK9j28eSxyRoSctTzTxBqotNRuPDmpTAm3maEsy/eiflT74NcbrqKsdsaLTPONe0eK/migu41Z42ktpj6gjIrgc3OdrHbGk+S9yn4I+G0Hh+Z9XulTfaxPJK7r/AuT/hW9Runbk26nRRp8vvGN8Qg/izw1a+IUJL5ODu7dq8DN6bqxuj2sPVVrM8p1RiHIcFSM5Br42cXfU7+WyujMupAo3HoO/rWagmRzNuxQlkDtyc+lNQS1No2GvGCmM1V9TCr7uw3SGAnPHOec10ST5LWFCa5jo7BQGBJ7VxyjY6YvU1IV4wO3Ws7MvUeI1yOfoa0Tdhc1hsQIm54Prik4iTk2Wzs2bS3albQttxZVEx8wjHWj2a3HGzFaVME559TS5dCZtpkDXcYYAHiq5LoiLTI2mZ8EED0qJUwk0V3ZjLs4xVpKESFrqafhmz07U9bis9TuHjhJy/lXEcb/gZCF/Wu7LKFCrXXtr8vlqzObT91bn3/AP8ABPP9n/RvEc0vj3wp4Xii060T/StZ1S2tnuEYd42jGPx5r+huFssweX041YwfvbX3Z62GpYbD0+acfee3mfZf7FWq2ev/ABt8YS2108g0/RxC0juCzkn7xwBgnFfVcZSlDKcOrbyPI4xk/wCzaMYr7Z71C2ifFHwYl/qjr9p03dFeR9SWHQnnv1/GviputlGN5YfDOzR8RiVUyzGSpQ+GVmj50+Ifibwh8MIb6C7FsGNrdSWEBUfMpCiR5D/fLyk++7619xSnPF8rbfS/y2X9fod9CCSSjonq/m9f+D5nxX8VPjZrnxH8c2+jeGZVl1DUblYrW2CA7neQqigHrx+p9q9GNRUqlqTXuK+traa9dP8APY9GFVYeOi27n6Q+K/EGlfA34NeFv2fNIt0u9Wh0aMvbMuVZkUFy3Hdtx/Cvi8nwNTH4+rmE3aF3qeHlWGqYzHzxU9I3sbPwttdS1Dxelpqls0tzLCslzJvAVM87UUnIUDGeO4680s2r06WCcoOyvp/wfM9rNHRw2XOpGVv66nefHK+1EaPYeEPD1q9xfX048q3h+9sXqx9ACRk8da+byL2NPESxNd2jFb+Z8nklShGtOvWdkuvmQeGPg3rsNolz4h1uNJiAWhgTKjrkEn610YnP6NSdqNN27s6cTnuHU+WlBtd2eefGfSJdJ1z7EsuSf4ANqOPx712YTFKtSTehNPEe2ipI88+EnjnUNT1KPQrZhFCfNtIpC+WiIkb5iD2xg/UivTl7OVJt9DqqUrRbZgfEDwH4v+N96nwV+F81tLcyyyebd3mXgsYhkGeQcEkk8DqSa0qYqjgqDrT6oxnOjRpOUtEz5c/aC/4ILftDfDPQ9W8XfDb416P45l1HSp4tT8K3GniwnuVZDuW3+dldh2VsE465rxKeb4WdOVotfijipZhhfhkmflr8PdD1jwpJceFNf0y7s7/TbqWzv7G5RoZYXjYqyurYKkY6V5sq99EevTk2uZGD8btDuotWj8R2dixH2UWty5bJKggxyn15yufeuvLsTFNqWltEdMIzlJF34dahZNc3PijV49ltbWayXC5++6jp/IV1VcUlJ8p2QlGC16HjV94r1rxFFe+PJ72SK8n16SczdPLBOFH0CgDHtXblkvbU5JmOFrNS55dz6B8Ea3da74Qs9YubyCZjHtkeJNuT74HNfjnGWWzo491ktGfRQxKqxujROpxxsSW/WvjYrTU6FJcpFNq6sNpP0NVZI56jW5GmpJG+4dD3zQ72KpVE2Tr4gVCDn61DSNJyVtBJdfUvnI6cc0WRjGrZh/b4MZXjNDtcc6lncauvqq4BHvTLc1KJVTV4Uut7HgmtFJtWTOOEmpltvEayYBI46c9KmSR3OacdSGfXosgM/P1pJXehy+01sipNq6ODkjGKcrDqaorC8h3fKe/enq0KmnbUet8nWld3BN8w+O9GMGnIueqD7SgfPHPelHYzpS1B7xW5J6e1XZFu1xG1FdhQHOR1pt21Iq8tiksyvLwevYU1PQxpt3NLTpRHOrNj7wyNxAP4ilBp1C60rQsj9Z/+CJGq3PiK7FlY31m0ESrvtrIthPdiepr9GybEUvY2PzvOaLk/mdt/wW8/4JNS/wDBRnSdN8VeD/G9h4S+I3gNXbQNf1CHMF7pso/f2cpweAcujYOCWH8Rx1YylTlTc4q78zyaEeXERnFtNPofDX7DP/BH3Sfh58VofCvhLR/Dt3qyT+X4j8XR3k+pXcEB4kW2AiSC1ZhkDAZ8H73rhhKOIxE+aW39bHqYyGGp2cd33P3I+G/wd8M/CfwTo3gTwXpMVjZWsSxW9kkW4KB1Zs/xHkknua9Op7OPNGC0R5dFSi9WdpLrM2kOLWz095iMDCLisJJNXbNp2TbZbtdcubtzBc6LOmMZ4BrL2d0ncUXfVFXVta/st8/2RIR1ZhFnsalN81h1Yrl5rF/SdZh1O085YXTB6NGRV31M48ttBdVvDb2nnRoTh1z9M1tSV3qWos4T49eHNY8c+F10/R9dfT41HmPcR8McckCujCpQqakzp1JwtE/E3/gp/wDCO3+HXxhX4peDryS606+mEGrSeXteOcfddgCevTOearMYUKb5qbfmddJcsLPc8k0u9m8Q+FnvbG8b7VZkTRbc5OOo/KuClWg2rvQy5ZM6r/hcN7q/hFYbeZVleLa7ydQB1FOpX9ppc0pRk5angPxbvrS10LUZJC0U92whUrwHB6g+tePj6qo0XbqephqEatdJnhl0EtzsIxjjGK+MlGUndH1SstCnJcKxworN0W0wnOUVdEcRICnNd7+NhU/isvISFBHSok7GT3LltN8v1rmkjWMk9xGZllDbcHtWlO1tS525S1FM2MA/WiUlcwj8RftJGUda55anW5KMVYuwkuQCfes3YS95l2JRkYNPdlPQ3fDdp4WvLK7stXnvU1GXy10kxyxJbbt3z+ez8qMdCvfrWtKhTqaSlZkONW91sfUH7I/7Ni3HiKw8WeKPD/ggWsVwrF7jxi0kTgAgF4Y2O9v9npz7V9Bl+DjRlzXizx8ZVk9Eft3+xbpnimD4dJea7qel3Vt5McemtpNj5EUcQ/gUHnAGMZr62Muagle9z5XFTjKWt7ruexStDF/pUwXKKcORyB3pqPKjz2+aVjhfHfiPT4VXS7e5DLOfOm2+44H6D861pxbndo2Ssl2MbwDdpr/jeztxAzi2SW7nkOfkP3UXoR/Fkcg/LW072d2JRfLqeh+I9A/4SWwTT21O4tVW4ilaS1fa5COG259Gxg+oJFYNO1jF1LKyNHK7Aka4AGAKhU1Bag5Sm9BrkgZyAPUUla5cY23M7xPeQnw/OYW2kgKZCMYNXFuMtDaKitzkPhjr0t9a3+m2ciyzyNsVGHQ4wSfb3onGUtWVOolayKuufsnfDHxXBdzeMTd3V3eW7RSzifaI1bsg6DHbvXVHGVVFRSukZe1q8176H55/to/8EqPiJ8JNVvPiv8GdQfxVoKZkvrKLJvLNMHLFFP7xR6jkY6VdWrSqQu1ys66deM9JaHwh8LGudA+Ll9C4aINdkh9mCue5r5+E3HEtM9u/tKSklofTOraEbvSZdas7opd+RmYbCsdyuOhIwAe4r1pRXs+cilNX5Tyf4uSx/wBkxeKLJZJDDGsczk4Yg/3vdTx+VefUfVHZTgndNHO2F8l/Ob9fn3xI5GchiOhB9az9o4q6OynBN8rQnxE8TNF4K1TTtMY+dPYySXLDqq44FX7S+7N50lGm7dDivAV5Nq/wnbeN7QxgkAcj8K5MRHmpvQ6MEpSjdnmniXVLMyNKSFZWxIhOCD64r47EUrzPR9tyqxgXWr2JcqRgg9CaxWGbdkzkeJ12Kb6paM2B0HfNH1axrCuwOpWrJjt9aiVGz0KqYjmjawyyvoYZiycjNVyNLUxpz965qW3iIRjG3jHcVhOmmdixCsWU8WvnCtxUezSRTrOwN4tboG6U+VGXtJtjP+ErkzkPyaVoXNYTcdbiN4smIz5p+hofJsFSrNrQi/4Se5dvlaq9xIVOc1qNfxLcYP7w+4NS3EKs5yREviKYvkHPtVXikYxc2yUa/IBtz17+lJcrLcrsmh1fcdxbJxyM1M2tilN9D6B/Ym+DvxB+Mfi61svBOk2zQNcqLnUL3QlnWIA8hZJcKDj+6Ca/TOC8nxVaUZ2Shve1395ph4OrPm6Lc/VLxFFp/wAFPhXH4A8OWayNHbf6W0Vuu6VyOflH8q/cssoQqVlJv4T3qMFUqe3k7JbGz/wTnXzNH8a+Lk8zHmpaRm4tvKcEAkgjAPVuvpXHxrOM6uHoLrqfKcUt1alGl0bbPT/h/pN5e+NNV0S8vpILLV7ZrVVR8YkwcMPQ8H8xXmZvKEMsp1Iq8oO/yPLzrkjl8KkVeUD4F/bY8XX3gX4g658P/FHiXbfWFuQ9tdOsbGLzAd8IPLlvlGB27cGvcwmPw88LCcPtdlf/AIYdBUp0VUjrzItf8EvP2bdb1z4mn9qL4seH3ttP0qJW8P6fcRbWlkUsFlKnsA2Qe5OawzODqUuWnpKatfy7HVUoueH5V1Psn4u6FaeK9I174oTADUrC3jfTRIQA5DH5OeueOOOeM1OXTq4SdHB01eMr833DoTnhalLDUo3i73Jf+Cdni74gfESTUtd+Ii2S3MCMyxQSCWRA8rKgkkAwWCKMgcDOO1eTxpSoYSlCnBWb+77jyeLf3eFhCMZK767dz6O8W6/oHhG3ufEstskt2kSxYXG8jkqmew5J/OvhMPTniZqleyPiqFNztBv3dzwbxR+0L4tu9Va7OplISDttIH2qi++OSa+lpYDCYena12enCnSbSjEpf8LJ0b4qaS+napfo08g2xSbcbGGec9jXNKdGnUTpvTy8j0VQ5UmjxLTbjxH8P/GesaRJbwPPb3wnikQ7d8Dcsw/IduwHFe5g5U6sXd2HXcqi3Po/4C2fh/4C/Cq9+JvjiGO01zxEWvp4JXG9Yx/q4xxwACD9Wrwsyq/2hilCHwR/PqeVVmq01G+iPm/4p/tdX2vfEVdY/t6LzlZmhjW52C1jG7B478d69OMMJRwyppqzX9XJVGLPgX/gqLZfDX4q+LR+1D8N/s0GsySx2fju0tV2reORtg1AAdGJHlv6nYe5r52tShTblB6HtYKnKnHkex8jXunp4kuxBGWkmP7ry2X5XU9QR09Kqkk3dbnoqEtOx5v428SaO3jd/hH4Xljkt9J3Nq1zCcq8+D+7z3Cjr7/SuyFKp9o2Uoe1stkeX2sU138NdXktoiXtrwSBV7jeQa9rKKVm0+pzShOVGUo9z1X9m2/lu/DU9lNpkscg5znIH5Gvm+NsFCeCbS95HrZZzzpNM7W5V0bp3r8Nc7Ox6iT5bFSRnPGPrzU88SPZu5GiyHkuQal1VYPhYN5ykhRmp503qV8SGIk5b5mqnViloTycuo7bJnAP41DncG0KIpWGAx470e06Bq3oMEbmUJk9elaxm7aClHl1JzBKqZAPPak5NbgmmQeQ7tyfrQ6lkLlW4r2vHf2qed3KVmIISOn596fNKwm7Mb5ZV+px6Gi8mg2FIdPu/hS5n1E/eGpvP3mPNae0sTbkBxL0Gc9yaaqLqNXYyVJFTkke9CqJsTi5DbVGJyWziru3oQ0oo1NOjuLm4itre3eRncARr1Y+laKLT91mM2rH7Lf8EcPB3ibwP8Ppdb1Pwvb6bEbQyRPDHtZzjOWPevv8kpyjR94+SzTklK19T9CPEPgnRPjj8M4re+maGS7sdn2hOvI5B9q9KzhLyPnZpQehz/wh+Afgb9mrwzJZaGql5XLzOBjzG9T6nn+ddtKd4csFZGEr1ZqU9+hsaD4yS+8VyT3w+WGBijHovsPWs69NpK2x0um2kmavhfxidc1qaO3tvkVsBvWsJ0pcmphWk4T5UdVHexOdrZU5xjFRCLirDumh809pGp85lwP7woauNRlIonXdInn+zWl9DuHVUYE1vChKKu0TUXs15lHxZrsWl2yRMoPmH7zcCle0jswlNyjzMwdZum1vwwdOtbP7QLklEXdgq2RgfSt6dua9xyThO1tDwL9oX/glh+zl8YPhzqdv8UvGWp6bfXkLD+1rW6EccDnJX92RhwD68/SsZznVuoxucl6ildPQ/Hz4l/Azxl+yh8XNR+E/i/VbfUUtm36ZrFg+bfUrQk7JkIz1AwR1BBFeXKE6U7M9CjarC55t4g1MaDrEhtFZ7SeTciqfunOf504qUtGXJK+h438f/GF3rHiy0sk+S2hQq2P43I5NeXm0lGml3PYy6yldbnE6pKk6LIT8xX5vqK+bjNt2PoVSsr9TPhUNxjvSrS5YtmUo8zsOQgxrXXo5suf8VluFyy9aiSRjU0ZYgbZ/9espxTWhVPUmRw7YI5pKFkXNSSHszq+FHUdcU4wjYiKRctJnZhk845qZwikbXWxp2b4xnr7VzSiaxi0i9DITwfzqEtbiuW4GhJUXETSLn5kR8Fh6ZqJ8zemoqlSSg9bH35/wTI/Yz1Dxhqdh8R9M8H6XptmZlKX/AIhvJ5+Qeih/LRWHbCsa+myzJ5xala19bs+cx2LhTW/MvI/bfwPosXgTwLp2j/uhKqxo/lgKpdiBx0/LrX2FODhaPY+YclWncx/jp4h1Hwz4Vi1SxQtGJik4H+0MA/nTUkqiv1MIxTqnka+KZ9cZxI+/a6KSueo7Z9OK6qkobXOuEbvVaHp3wM0yBrO98RopkkuWWBZ+cMiegI4GSemc0ndpXIrrkjY79CA+DIMgcLnms5SSOWMFucb8SPitB4eEmkaHeQi9Q4mkYbvK9gO5pRiqj97YjncpWgeX65+0J4lsphJYa9NK4OGhuMbTz7cVpCnTi7M7o4Rzje51WmfGBPG/g+4+0qhlBxP5bDCEdCfbjH41TjTjNpdPmW4NVY01Bu/XTT1/4Fzovgdpmm2Phe58cXKxxveSMBLngRISufxIJ/KsKtZS93ojKulTl7NHiH7VH7X93pNz/wAI94Q1GKHdKI1aSYIp5xuZj0FFHEwpyuEKbtqfJXjT/gpv4r+FXxNfTrTxRaXsqzBWFjdrJFKO4z0Ppiu6riY19+pUcNKo7rZHjn7Vkfwa+IPxY0/40/C7SodC1TWrT7R4j0e1GIJZQebiIdFJz8y9M815eJwtKFZTi9T28FCrGm4N6HH/ABX8Tap4h+COp+H9D8RvZ3YRGjkhB3ooP3hjrg9R6Gum9OeGfc7IUo06t7Hnngnxvd+JPCz6VrsiPcSRBbqNudzY5I968dVOh2wpylK7MLSrjVtDvJdKtJg1uJMxHPIFKVrHXLmTsi9KHvtH1SS4U77qykEf0C9ayi3J3N4xU9JGF8A7lv7Fk04qpEkZRgw4J5612KKdPUqjJRhY4b4neBtS/tGYf2eyAuTlUDD8D1r4zMajpTaS0NYQjVicLP4WmRgsrnjpnivKWKk9i1hIojbQYY+pxjoc0vb1GS6KQ5dEV8FW/EGolWqAqV3YI9F8hs9P60/aTkipUGtizFpm87T+BzWUp2Q4UWTLpAzhhWLrSZuqVmDaZEv3gDx60uebL5LCjTom4Cj8qPftcmw2fTU29BSUmXGBElqo4AGO5q7NomcbMdJZBhlgPbipUmtBxV0QLAsfIGDWlnJXJnFp2Q4QlmBH8qptQVjKzRseFfD2nazq0Vvq2vW2m2wYGS5ukZx/uqigl2PZR1r0MowUcfjI0pS5VfccoNrQ/WD/AIJffsxHRdPt/i34l0TXkt7aAf2Pc67cCES5Ucx2qHbEnoTlj3r+hspwdLLsJyRbbff9EehGdHB4R0qUm5S3XY9M/aE8Sva6hLKZre2mfO15Hznnge4r77JcBTnL2vL7zSV7a2XS59BRpP6rFdD2j9jPSLqH4JR3Woui3Gu6jNcSGNQAyqAo49OBXy3E8k84bW0EkfAcRVm8zbS0gkvvN29ubzwp4l0rVBEqNNrKtveXAKlgh+nHb1qZezxWDqQetodvmY+ypYnD1abbd1+hr/tOfBL4d+Ldd0/xvrfgXSr6+KeWl1d2quwYcrye1eFw3i5KMqLbstTyOHsTGFGdGf2XdHCuFt1S0itTGDLtdFTbGqgHr6JxX2cEnG99l/XzPoZTi1zI1PCWsWGpx3GkWBW5gCv9ql8vcHJB+Rc/dUflzXnV8M8K/aOTu3dXd7f10XQh0pX538jo/wBifwtp3h8eJrjTVXbNcxYZYwoP3+nr9a8DjTESr4qipfynh8Z121QhfozzT9qz9omH4X/EXxP4E8WX7WbTTR6hpkkowtzbm3jQhCTyVdGyB615mW06ccOqvr+Z8vQpylRUkrn5p/E3/gvP+yX8JPixP4E8faf4rlhjufLvNS07QWMEYzg8uVLgc8qD04zSnmlCMmmmVQqRhUtLQ+s/hH8a/BPjbwDo/wC0N8H/AB7aeIvA+uu32TULOTPkP3jkU4ZHHdWGQamjNYmLnDY9ZYmnUTUGdf4P8eeGfiH+0Z4O0PUpY2ivZ2jmII2ywpG0h3HqMbcY+tdsMQoUZRhvZjpSfsZN7o5b/goV+3Zo/wDwlcng7wlr1v5cW63jSUrtVcHc2eiqoBJY9OvavMoTWGg02r9dO/r/AF1R40KSTcpbH4tftF/8FatJh+JOp+E/hZJqWsadCxt21iJEVbxw3zNGD83l56E4JHsa4KmMlN2jsjqw2MwkpXcXpsan7K/xY8ZfGHw7411PxRZTw2T+HiiR3U2S7+ahQ4HHBAOK6MLSr1acpy2PXw+JVestCt8U/G6/CnwDc61plyE1S+BtNKBX/VOw+aXH+yMn64r1cso06k7z0SPUxElGnofP/wAEtPlsDLeXErNcXAkeSeQ8uTkkn1J/rXZOfMtDLK6M53T1RZ+Hdump+CfFWlSP9+0lJK9QQ2c124NuFSF3udlenGFKUEbv7K+oi01BrU6hdESDG1icfUiuXP6Cq0GjfJ5qneJ7NeQJ5hGeOvPFfzhjYexxMovuex8TKTxRg4PPHWuZR5h8mhGEG7cR19q0UEkZtXYpjGfu/Q1nKOpUYWG7Bndt47irUFYc4ocLcOen6UKKQlT0Jktk2kEDpzUTSTHGCiymtu5vcIOhrppWtqRNJuxrSaeNn3MHHNRVBU2V2sCp+79KiEU9zTSxG1iScbcetaOMUiIxs7iHTWHJUVLkrWG4pvUY9gQ33c0RloDimgNqqgll/wAah3bI5EiH7KQ+K2ilYUopjhAoPK1E4ohKxHcWylOB+NJLUuxXSAo3oK6VFJGFRo7T4N+AfFnj3xrZ6Z4UmEMvnrmduAgz1rswWHniK6SZ52Lqxp0/M/cr9i74ZeI/hL+zvPLr+tyXk7WOwSPKCMkY/Cv07AYb2NJRPhMRWlXrt2PqXw5qF34P+H2hSw94EEqZ4INdFozk7owhD2l7nnvxI+L19cavdWV9LHbR2zlXaZ9oUfnVKrTp6dBPCy5jqPgR4X1LxBoNx4k1HS3htbzC2L3QIeaPqZdvVVP8OeSOehFc03KU99CHVvLlR6Ja6Xpfha2ee00UuqjJ+zjcx/Dqac5SlHluZNK/NuJ4f8YeGPErtHppYOrcrLHtINZuE6W5FKcajsjkP2jPilZfC/wqXsNPa5v7w+Xbxp6kHkn2rvy3CyxdbXZHNjsXKjFKL1Z84XHxi+J1nD5lncvak/NmAEc+/rXv1o4en5kYOnOpaUpXO5+F37Sc/wAQ9Pk8C/EGdY75B/ol2y43+mfevlsU7V/d2PpqbpQjdHbfBL4gWGpeI59BvNQB/s+Jmdz06gA/rThecHYxrp1HeJ80/wDBRT9uXRNFvr/wrYanGNP02N43kWXHmSlTwPxrSFSFL3UcU/aXtHQ/Hq5/aIuPi14h1KzOsi9g026eSNhJ5ggaTG6IP35AJA4zXm4jkTsd2Ea5bPfqVr+9iMHm323aiGRs9sCs4vodip2ep4h8W4HOn6Vq8nD3Ms0jfi3H6V4mbwcqKfmejlUoqs0zkmmLxYOfZq+fUVF3Z9JKp0IUDp1PPUVnUXtNEccpNXaCBS8a5Pbit5VOSbKnf2raLkTMo4PPfFRKpzLUmV27k8LA9ajncS6bsyUzIhCkHNNTkzWSbQoviHwAMU7uxnya6l6xc5GTw3vWUpvY3i4xNa0dCAAcHPFYNvqVKpctIxzx+NWmkrijZbnZfCie3tPEkM6WFw955q/Y7u3mi/0Vs8sYpFbzeOiit8LOPtkurOXGTtC6P1t/4Jj/ALMnirxN4y0jxr4z17V/EMcRWd7nxDrO54hgEBLVMLHg8DK96+3y/CVaaU3O6XQ+axlXD+zb6+h+mmrXcUGo2OnLcBC8wKpj7wAPFej7T37PqeNSp+65FTxsLVtKVb2382E3kIkTZuGC4ByPT37VpPlULs5oK9Uoaz8IfDuqXaS6fK+nK0u+6is0ULcDHQ5Bx+GKlXep0fWXGOp0sNlaadbJZ2qBI41woHatNWjllOdSQ6L7JLKZ4tjOPlLjkj29qycVcmTex8VfFfxV4y8I/EbWFvNOnvreO+kJNr8zgbjwRnNdUP4aMKUrM5/TPiZovxU1Cfw9oglsNWtYzKun3bxrNcooy2xN25sDrgdK58RGU17srfce7h8QuS80VvAfxkXwp42fRr2ZRaajC8MyycYfB2n8xXNSqONT3mdU3zJOB23xD/aw07wd+zv4f0fT7xY/N0oSSKrfMzFiQv8An1rnr10pJozeFUq7kfmL+3B+3R4Y+Fl7JfeNrxLjWNRBk0zw4sg3bTkCSQZyFrnq1JVJtpWb18kaTdKm+TdnyX4R+NcvxS8bD4pfGHx/pWj2VvgotzdRW8UEQ6KiZyT+GTWkMS6dNczOn2bS5paWPZvg18ZtG+N/xQh1fwjcPLoOnxG0sLmQMPtIJ+ZwD/D6etdeFc8RLnvpt5lUqsLe6dL4sme31i/8Nw3TAwSshCv93J6H2IolJRbgdtKPtXcxrHw+gu2vEkaJ/KCsQPvD1rn9mraHpQTR02m/DaPXLlLu5v4Y7cKGkkHDY71lW54o2jDnOf0TV7HxP4n1KTTlxYRhrazHqigjP4nJqKDctDGjJzrtGB8DreOHWbizOcR3LL+prvgmk0yqN3JpifGnw+1lrM1xFp8hU87hKyj/AAr5HOKDc7xO+g+XQ8svUMjYOcj1NfN8qg9Tv5o2sUZ7IypgjHpVqa6CUVJ6FMpNZNkdO4ptKWpjUi4K5ZtnW4A2EdPTpS8gpTTdidYXjPK8YrKpFHRy2Jgp24PfpkVz9Q1IZbdmyR6c4reNkS5SegQxFSCR75qpWK5UPmiDDaeK59mLmaehEbUghsVtGV0NJyGywkrgrwenFKyuS7xZCtvlssMe1aJ2WhEnzMmtbKa6nW3trd5JHYLHGi7mcnsAKzk25JLccoWjc+jPgb8NvC/wB8R6V4j+MPh2LWPFl00c2i+Cmi80QAnCy3m3Ji5wdmC2AcgZFff5BgHlU4Vq0OactYxWphGT5W0m30S7n63fs0Q/FOb4Dr4s+L8enQ3+oxl7PSdOtkjgs4v4VQADt7V+u4FVKlaEZJp9Tpko/W4UYpqS1k/0PnT9qDUtM07UZLu506I3kinyru4kwoGegr9byqmqdOMj7im5ypxp9D7f/Z4024t/h34UsGhQFPDiSyDP8TjOfevyPOqqniq1RvedvuPyTiGcYVq7v9tL7jl/HkF1e6ysDHdJHOPs6bfuMDktjB9P1zXuYPkjhm+jWp14eXLTUo7W1PVNXTTPin8PZNE1V2WSBUPnICDn+8tfIYf2mU5gqkFo76HzkIvLcxVWG0r6Hlfxj+C/jTWNOu/D/gPxJNaALGGZFyzArgnk4LdOtfTYLNqPs1OqrN317Hv4HHUnFTlvqZ2g+Ebz4feFdQtNQsCTFbGOa9kHDIByTj1OcjvxWtSvDF1afvXZ3+1dStFqW/Rdz1z4M6dH8NfhfF4h1O2itn1K6gLrGMBY2IVc49jn8a+RzibzXNHTp68qf4bnxGcVHmeaOnF3UE7fqc5+1v8As9+Dv2gdBE+saNbXslshWEyJ8yn1Vuo+orPKqiox9jVW+pxYTmpU+SW58FfGP9gXR76zufDN1oc11A6MHjvH+1Q454Mcu4Ee2K9yrhMPjEqfJdW306HU3GppJHzj+xD+z18Uf2QPjj8QP2Y9NQP8OviFoF1rOhW3lsV0vWLWMyMsaYBUSRhsY4+XHbn5+ph/qWIcIX5JfgcUcM6Ff2kb8vU818Bftw3Hgn4xw+KNZ1gN/YUV+i4JQndDJGny84PNeVHF/V67s7pN2dreml3+Z6KqwlTcY9T4v/bm/a08S+IPCt4LO/8AKuPFMklrYeRlStgrYmcZGcO2IgRwQsormr1qtSblJ6s8fGcuHoqhHT/LseA/BP4V3Gr3STz2zmRyGx5eeD25ruwWB9prIxwcJvXufZ/wA0N9Dx4BtUiDanFtRSh+eXGUQn1JGMete/OChhnCO59RgaSpPmaPEf2j/GB8Z+P5NBhJ8vR7doHiY/dnZvnBHYjGK58DVnToOJ2Vr1KvKhnw/s/slooMQCiFunsDXVCMbpHqYWDpQ8yH4GWkl5p3iKc7cNbT/j1r0HONKUX5mE5Oo5FH4Ca7df8ACTb9P1BhEHw9vcJg9eTkDn6U8e1XpOxGX80a59JXd5ZXjhn0+MExjEiE88da/D+IqWDoYqUfZ6vqfS25Xe5Tmso2OVPH8q+PUlFhKbYxdP2dBwD1zScwSuElmAcED60kky3TXLcja1L8LVJWMVoySG0CrlutNo6VqSR2/BBGPas3FMzqRsQWcCm/Kn15rogko7GNNe+bFxb7UB9ulI6eW6K5RCwyMVHMkYNqLGG3Gdw6VLldDu2I8A28j9KhNg2ypJGQ1WQr3I5FwCSPyq7qxVTa5GqhznH40cxjFsSRcNgCle4P4hjjI6dKtRRVV2KsgLMdorW6juYKPc+g/wBhT4T6f408e2s2rvqEq+eoW1tt6I3P8TjgCveyWnCpNSPBzOo4Jn7aeD/Do8PfBu08PramGJxGptxLuOMjvX6FCUYpKSuvu/zPlXDmq3R7T4x0/wArwBaW6KSILVMBfYCppzXO7ijaMpD7v4PeDfGN9p3jK8so2cwRySwSxBo5TtB3Fe7fX8qzkouepn9YcYuJ0Oq+NtG0YixU72GF2pwBSjaTOKFGe6Lejava6ynm2wbg9xSqPSzLnRcCvc+F7eDXk1/T40icn/SEUACQev1qYylOHI2ZNLRo8Y/b++F/xH+JPwpEfwk8RJpetwMxt7l0Dc444717OVYhYecoy6nl42ip1IyfQ/Jb4j3v/Bf/AOBWty6j4ai8D+ONJt3LCw1DSvLkkQfw7lcc/jWeIlipTfLqjuozoUqd4Kx9DfAH9o/W/wBor9nNvjJ4v+Gs/gTxz4W1b+zvG3hZ5cizuQnmJJG38UUqfMp7cjqK48Q3TjeR14Wo2nd3Ob+AH7fkWoSeNprPWFaSPV/7PjRZMsFdAcj9PzrmwWJXNKT6HqUYU7pLdn5Ef8FS/wBvLx1+0B8bLz4E/CXX5Tpun3zR6rqFnId15dZxIoYchFOV4+8Qe2KyUqlSrd9zxsU71nCL0WnqWv2R/Bs/g3w//ZF9E0UZjywYdXHOW980Yujyr31qj2ssoKnB3O48U68968mmWxz5vyyEHotcifKmzaVSPPyo434824g0vQbRRjZGxIFeNmuIfsoxPUy2nZuTOFRcLgD8K+fm+ZnrNSepFIvGTUOTirIjlujQtdI/djB7VrJ3mdNaNqjRKmmOoxsHualpcoo07ssQaW7Hpik7WHKk09CddF3dV7daybd9BwV3YUaKAwOBn61Sk3obuknEtw6ZtA+X9aptGXsrE8doyDI/U0ly3BU3fQvW8L5C5znvU1Gka2ilqevfsxeCtC1nxna6pqmla9Pc28oNsmkTfZdwyCd07fKF45AOelerldGlN3ktTxcfNyTS2P2+/wCCWHgfw9pWnXetaJpOn2w+zAFodWN5cHOP9Y/TPHOO9fb0ORUrRR83mKmqCufWl+lo/ia08yyEkqo5WUsP3Yx1x79KFG8zzqU37Jq5X8Z21zf+GL+2tFBkMJKZOMEc5/St6llTOeCft16kPhjxbb6t4ITVZ5N0lvF5d1g4JYcE+2etTF3eh1SoWqpdCvrfxB0W0hXJBAI46kfhVRTvqZKDUjV8LavZ6vprXNspVQ+COeuBTlH3hVqbUbnyZ+3/APsC6j+0dr0/iDwf4x1vQ5buBRevpFzJF5hAxn5T1rSChOn7OTsebUUoTuldH53/ABN/4IQfEH4BeJ7D9pD4afG/xRbeKvDV/HqelahdXk0hEkbBtrbv4WxtI6EE06eEp03ZNtnVSxFaS5XHQ9H/AGs/iXe+EYpfGCMthPeaHFqtuoUjy3kh3kAez7l/CvHzSlUo4iVKpFxa0aejX3nu4KdqaUjyT4m/tXaJpej6S/ijWI7iDRNBheW3WTlvLgDysQORjmuChJU6kHbmSto7/pY7sQ1TpSml0Pxe+Iur/E79tj46eIvifqM7s9/fPIHkDMltDnEUK+ypgAe3vXs0KTnK0T5alKdesuZ6s9O+Ev7Ba3+p27+InnuyCGIMTCP8TjFROjV9tyt2+X6nfLDpz1dz7i+A3g2x+FcNtbW0aI6YCIhyqgdzXVFfV48qPaw2H/d2R0fipLq1+Jeo6ncxEw6oiTQsV4GQARz715c+b2zbPbw9PlopvcstGkUYeSVVUsPLcfypymki7tMp/EDxhPoXhB9H0d2W91H9yjKeVQj5m/LiuWrea1NK03Cjpuyh8MNOXTEhtk+6AB/+uuijyxVwwVLk1kVfhkRZeONQWMDC3rZU/WutSd2UrKszQ+LtnrKau8i6iskEi/LBcrlGyOlfP5mpPVHbTV9zxzWLaS3u3SSy8jn7g6fhXx1eElNt6HW4uJQk25Cg/jWSLjoQXMQljwVwQODQ52NJxU42McTz2M/yDKk81rBnn8jpzubWm3kV7EAxAOOOaicm3Y7VUi4k0qMhwOlY2Kg0MEy45I59aOZinoKuGOFX6HtSc7kR1FEfOfXpxUqxTjYGTnp1q00jWDWxDMAuPenza6EVb9iONA8gXcOau7UTOKRr+H9M13UdYtLHwvBdPqE0wW1Wyz5pcnjbjnP0pUaWIxNdQoL3+lhVZSjBs/Rf9gX9mi6+GPifSND+JYsbnxTNL9oj8OW9rC9xBkbjLfzgblx1EZYknsK/ofhbJK+CyiDxdrq7+Fc2veW78k3ZdOpvl2GlSw06z0j36/I+9/iTrUf9lf2RcKjrFEFPkttHuBjtX1uVYf8Ae866jyui1iPaw699T4+/aM0/wR4g1KK21fUrgzmZVg0+FSQ5LDHP19K/R8JUqYej7y0sfY0Y1HJSex9//CJBZwQaa8KobTw7axomeV/d9K/Fc1aneS6zf5n49n1pU7p71JP8TzrxhHcXHiSa1RVWV5HBkc9ADkBeOucD8a+owzisIn0sd9JXoxtsdd4J8T29tpk4a6ZGkt1ZwTuVZAcMV455/WvExmElOonbr+HmcOJw0pTi2jqbfVJG1sNd3X7uYoyDbkNx146HNebKivq/urVXOSUILDNRWqubmq2sEskiw+GvtaGEloSq7JST3z/nmvOpzaiuapy6/NHjQqykkp1eXXfW6NXxZoVr4h8Iy6TPpKzJ5astsGxhlwQAe2CBXBhcRLC4r2kZa3epwUKsqOLupfM4zTbnxVpcDwXOnysinLgRl8c9OBzX0FSODr2kpK/3HrP2NWdrq5pH4beH/FkH2rW9DMMk3BAjwenU9cfjiuCeY1cLLlpSukcFSv7Gemp8lftnWEP7MvjzSviP4W8Jx6hLpU5uPLlkVY5oSCJImLH5dyFxwD/SvVoQqZhgnJf1YbcsTQa2ufhl/wAFBj8LvhJ8Q9d8aQeG0fw5f30lza22j+PdLeWXe24QPDn7VGRuZSfKyAPTp8jjqMKM9Hdt7X1OBYp0XyuPkfIfhb4f/Ez9pjx9/wAJ7c+FbgWRKQabZWdq7RW0C8JEgAJ2qO56nLMckmvSyvLK2LXPKOhrRo1MRd1Op9afCP8AZ4ufBcUI1e1eJwxDCeLHzAZwQR/nFfVwoU8PCzVj1sP7KmktzSj8I622prrMAeG5tJyFkgGBuDbkYgd+OP8A9dcjnHmbserTbjqec/tTfCuS0+NDfEyLTVitvFltHe3aImFW9HyzfTcRvx/tGvJnXXtGkjso03GXMc+9pFpWkXl2Twlm4ZcdDg100a1mro6o1Gk7DP2ftNktvDOoyyoM3FrKM5xnKMa2xVe6VjGSlGm5JbnHfBvVrw+JzZ+XADFcENGwG7GTyOlaVJynTvcxwXM6+qPpJ40EcZCKCYxwvTpX4nxTJSzOSZ9Vy3AhgO4Ir5NkirkEGpGnqJcZJ4/SnHc3iyu7MvJ4OfStnqc83qSW0hcEe/FJnRB6EsbHJBFKxNVkGn5bUj35rePwmNP4zdnU7Rnk4/Osps6VsUpbdxJkd6hRvuc04tMYyFSFLdqtRRpCyQ1+BuxxmjlRcloV7gEHcvpzimkjmd0yrKJCMdRVaFuSaI4EbPOcUppdDK+o+RDnJwfeskD3uQzDCYIx61d+xNVoj0/S7/WtRj03S4i80rBUUHvVRU5OxzTnyo++v+CbfwI1TwP4rstU8UI91cvIGS3Ops0cfH9wcZr7bIMC6NnI+YzGrd6o/V7w/Fd6/py2ptViW3MKoFXtkV9Y3qeDK8Z3R61rUX2nTltlIwkSggd+KIwtIzTezNHSbf8AtLwrBaF2Tda+UxXgggY4rOpuzncvZVUzzfXfCvibTZWisonuJUfAY8swzxWEW7Hp2pqHMen+F7W7sNBtra9hWOYRDzETopp2lJ3PJrVFKbaLc0g5ya0howWpz/jPT7/VbNILGzEu1sum7BP0rtockZXk7EVaSqKxiP8ADDwtc6a13rWgSlwuSuQSKudZ83LF3Lw9OnBWauz4v/bF8C6R8Oz4vvPDFm9rZ+M/Dn2DVJNOMX2y28suYrqHeNplj3yDacbgxGelc+Kw1SpQ5m/ka1KcFCPReR+FWo+K7n4Vav4p+C/7HereNviH471e6ltt9xpEyDSy5Km5mLKFWRUIC4+UHDZ4wfFoUcdiqyio2S7dTKriKGGTjTm3J/h6HY/sq/8ABG74qeFtOHiD4jaXJJrl0PMnSLD+XnnaCepz1PTNfW0soqUaXPP4vyOVOCak2fQXjn9lm++FnhOSzutJMKTL5Rd0wd2Ox7nPavLx1KadlqethsYpRsj5rbR5LHVWgn6rJhmPPINfOzk4txZ6FOHO02cp+0HdxtrOnaej58m1yw+teDmcrzSPawSSOCebbHgfhXn01bVnqJc2hTubwLlWfA6Zz0qatuhpzQp7m9DqHyAgZyKH8dgrt+0dizBqCEcHjvms5SlYISdyxHeqOQ4pcztqbSd0SLqTE7Ff8QKV7IyT1uWbeR2IO/I7YqJVDp5rrQsQswOAx/AVLndGMm2yZCx4Gc57VpBqwQTvoXIAVwMk57UTlG5tyK15H1F+yl+zpreoahoviP4uxw22lCUT6YureN1hjjU8iQWqbmP0OCSa+jymlWpyjKXy12PHxU0r8iP24/4J9aR4Z0n4eSQeHrewVQqjfp9rLGjjn+KTl/r0r7Cm4+y0PlMxlOcFc9jum0KP4iQTSeYb97RkT5jt29Tx0zWftLVLI8tOahZbG3IkbI0TJkOpDA+mK3spaMyi2pJnD6Np50i9utGS1KW16GTywPunsaxb5Gek6iluc/qvhDxbP4ji0WxtTGjOB9oxn5R1ye1bJ80WxSlCCvE9O0nSoNE02PTLMfKg+YkfePc1NPm3ZwzrOT1LCwrKNsqAj0IrSdhRcUtTgv2iL7whB4Bv9C1G2hmuLiAqkK4yMjqf/r1eGjUnVT6FqpBM/Hj9s3wN4d1PwmfAvj+21yyGkm4Gg+INEs/tRS1di5tZ7fILqrsxVlORnBBFZZnhXODlJfMqjXdOrzX0Z+a/xf8ACvxh/aj8a3fwu/ZZ0TxVq8d1PJZal4j1LTP7NsY4s7JUUMSXOQVPpyAD24sny/F4uV1H3ToxWYQqL2N9D7U/ZK/4IL/FXwv4AsLOfULSyZtr3T3MZ826kI5OOwJ6Z9q+1p4DB4enZuzPEninQleMTvPHH7E2vfA/On+IIXSOJ8AW6DdK3ORgkGvMxVGCTaZ7eX4v226sebX+nW+hai9vHG6uzbc3CBWUCvHlZM9+jVktjqrqPSNR8Iw6xfRI32OQASFQCUNctZRcT0qVSdrM4/4iWVnYT276dOxtpZ0YKTxwNx+vGa8upeM7I6Hscne3DeIdVOoFQFLbYVI+4g6Vavy2ZMYupO7Oo8HWxS9RV6NtJHvmtqeh3QXKjF8EokPxG1VEHAv2z+ddberOaGtVmj8Zn0ufUHsdV19rMmMFFYHa3HHSvBzCtTinzM9SlGaSseM63a3tlOVnvBPEeY3STIx/Ovk671bvdG03KT1MuRskH865k7mlPUZNIVTcvTNQ4sJvlZThgW5kYOvBNWrg4qcQuLG505xLAuV9q05YNHJKnODL2najHdxiKXg+9YtWZcKj6j7i32negqXF2OiLU9wgYdCOO/FLkdhJWloTOP8A61Q1YptsYq7j0pBFNu5FcwgkDGPwrWmm9RzbejC2tSWGc1U5WQopQPRfgf4S8W6t4rg1DwvrV1pfkv8AvNQs5RC0a9yZWwsYx/FnPoD0r3+FctzDH5pBYeXLrv2+fQTbnI/Wj9hH4PaD8JPh23j+6i+XVWDNfz3DTXGpSY5fc43bffvX9DUaKwtFYOjNye7b2O6vFzisJh23Ldt7I9S1fRNX8bpNDZWjW1pLktI/yZX6+le/hsVRwSXM7yOuFXDZdBe1lzTXRHhnx38FeCvhrbN4o1TVPtd5boDbLv3bCDnjn1r6bBYrEZhBrlskj0aGJq4pXimkfWvwe1ddZurK/knIGqeHLaRWI77OgPc1+ZZnSVOhJL7M2fmObUJxw7VvgmzkviFLNb+L1MirsjumKr0PmY+U/TIz+FevhtcIrdjspOKoLl3aI7XVo7cvK9+JEJka1lzjavHt1Y960VJtbev9eRE1z9DqNA8RSTahHJdxmJoViEfltkAMOuPXPGK82vRUabitb3Oerh0oWXU2f2lfEXxi0z4O/wDCR/BiLzdRtHjnubeJN7ywocuij1xXiZNQyueZSp434XdJ+b2PmKeGoxqzUt1sd98Evij4f+MHw803xzoEoaO8t1M8TDDwTAYeNweVZTkEHmvBzDAVsvxUqNTo3Z913PExMZU6tpK3qdRNFBDL5rsqg9sdTXKnKSsjNczRU1zxFpui2Zubp+gwqqMkn8Kqlh5VJWiXCjOZ8Y/trftCeFPFemy+HNY0O4tmt1LzpPYO5liwc7SB1HHPNfZZdhpYKlZSumd9pRo8sWfjv8SPgn+zz45/bkfxLr/hi01GE+CNYu4UvbZXUSQrCImZWUAsodiCR1rnlg6FfHc0oo8itQXOuZ6s+x/2QIPgb8PdPn0nwxpV01xJpkYkTR9LSCMQuCG33LAhc8/KvJB4x39uo3DCpxdtbGs5V+fl1Vl5nTfEL4c/CTXvC1/rn/CJWssUMyxwO8TF9PbadzySybQz7SQCpz8wGOTXnyrus/elsdNFTp8r1PifxHo+gQeJb+GG5byjKUi24yWBxu75ODXBWqKKsj6rBy54ps8j/aE8Xxa14q1XwYthB9i0fyofNZT5jXGwM+PQDIH4V5FOnKVVzvoepGbcfQ8H+JN5/Z+hDR1/19421hnnbXo0YvmJ5k2dR4KhtfDmg2ttKgzJYzzuvfaE2/1NaVlFaI66qcIKJwHw6isbrxNHqEdnFE3nnbKjg5Gf4hiuqMHOnoY4bljWXmfQJUskZLf8sx/KvxHiqPLm80fRqOtx4QEYxz6mvlOpDWoAdz/KrkkVFK5G/DFiOPftTitDWySKt5IAoGKd9TkqaMbYuGGcdOvFEnY1pXLKOST2IqFIursQ6a//ABMyfeuqPwnNT/iHQykYAPTHUmsZL3jtvoVrmRIxg1N7GNV6FRrhJOMH6jtVXFBajZJQAcjt2obVjUp3E43dPpxSTZzzi7kSSFzn3pOTIaW4oPzZI/OldsmyEdgCMj86aTYa3ILiZSOh/OtY0+5nO7WgaBGs+sxRTXNzErOAWtP9Z+FdNH2fP7xjKlzKx+mf/BLfQNO0+Vb7Tre+JBG6bVLre59wP6V9vlFWnCFoo+ZzJRjPlkfp58GrZdWsNS1QQP8AuduJGH3yPQV9FBp20Pnql4NI7aC8W5shKzDcGwW7VUtNTN6PU1vCWoRrY/ZZTyJSFYDg55rkbfOYVVzamhPbAzqyfKASzOAM/SqskriVTmhY574x+LfFPgv4S+I/GfgjRF1PVtN0S4utM09wSLiZI2ZEOOcEgDjmtaKjOai9jKcJ8ra3SOZ/ZP8Aj5Y/tG/BjRviC1xbx6ncWaHVrGEFTbz4+ZdrEsBnOM1ti6McPWcU7rozKlVVWipbPqj0pbcA7v61gp9Acm2c18UvGtr4X8OTRl5VmkjIRolJIrqwtLmnzPZHTSg0uZn5u/tnfF6+S4ns7qVJLaSNw85GyRW/usp4/GvUdKElfoROVRq58b/sr/HHw/8ACiP4sG1sNDmD61Z3t0LuKMXFw00XkxIhZl3nfEw8vByX6jByZfVo0K7ktP67nPLCxrQk7a/ofYfw0+NXiiy0aLUPETBNQubGGa/kitk+QHlbeNQCqD1GQT1Jp16k69R20QUoQpxUJanjf7X3x2ufiJr6PNdpONOgHlRKqCEud2RtXgkEjJ5ry8TdSaPRp0YqHuKzPgXWpLi+8S3bSRIjNqUmEj+6Bu7e1fJVtcQz2qbl7Fdzyj4xXwvvH9yqtkQqsY59BXz2Yy5sQ0evgo+6cpc5RMjrXFGTasepGSjuc1r1tf3ZZDIygn+E4r0sN7GK95anjY91azfKz0ez0eHYoJ7V5lrzPoK0OWbRPHpMG4LuH51bWgqagi5Bo9qQcn65rmqSd9Dfl7jk0WISZHQds1PvSVhOmmrotxafEFAUj603BEqDLEFgpJ46DpmsnEtwSJo7SMHORnuKtaItJRWhaW3DMqQozFiAqKMkk9sU+W7QnCUtz6i/ZF/YzttJ8Z6d8T/2lp5PDel2jJdWFj/b6x3sxyGDeSm5wPTJX619FluErYeoqlWXpqeVjOSHuwWp+3P7C2s+ENX8DGXwjphsrAIBp8LQyIzxDjexbhifXJr66FnT5ou6PiMdXqVJuJ6wmnawnjkXiaaxs/LbdctKOCemBUqE+a5xy5eS9zakYBgM/Wu6EX1OZao5u61W2bVVaNCGEnA28nmspwbR1wi2kmdMi7wH8vDd+OaINNamVRuN0hUkhaX7P5i+ZtzszyR64pykoszVOyuRXU5s43mZSVRSxAHJxWisxqKtoeAftAfFXQb21mWXT3hdFI3sACwHqa9nD0404bnM0qj0Phv45+MPCPiq0u9OMlylyUPlz2jRllGDkhZFIJHvxxyDW0+WUPeV7F1V7TCundxk9pK2nnZpq+1r6d0zyv8AYj17wreeCNDisLEvJYa5r0D3slggmwmo3BYHawCnAznGDgVpl01Qw1lojGpGXNbc+5LD46ab4a01tK0nWrtLeNRIMLiU55AMr/KOOpHHYClUSxDbRtFXS5jy74o+OvhlrZuPFWvTB5GjJhvLW3e5vRkEbd5H7vOf4RXJiYRhC13byNYpQkmlqfI/xYHgG51Yz6ZaxbsktMyyPK2T3L55ryK8aXPdH0OEqzVNJo87+JfiWWw8P2fhXTbIyXGs3qRWNqpLExqQXdsYwAO/qa82rJ8p68XKVuQz/iR5UDW2iwTGWWODM3pGduMfz/OvN1lM9R0mkmzF0q1WMoWUhV6cVq2mh25WdT4QjH2pTt5G3knpzVwk0bI57wBELv4havP2a/f6da65PRmdOC5ncu/Gy68P3N82l63bRHZENkshOF9M4HAr5vNFRatM76bvojxXX9ITSrhjbXMEkLHKm3n3gV8vWoOLutjWVkzJeT5sdQKzSSRvRI53Owrmk9ya25HpEm64I4+9Td0kFHU3VgilQowyCO9YSm7m9kmZWpaRLat9ptRx6VUZqW5z1aKesRtjqQkHlTcMOOa0SZjG6LMcY370PXtSafU2jPUmJXbyPxNS6aOhpNDl247e1Q0ioWK8p3SfjxWkXZGdSykOR9rAAj396h23ZjrM+iP2VdI8EfD/AEBf2jP2lNRePwhp9z5fhbwjG5WXxJfKeWZR/wAsIyRuc9+Bk5r9C4TrUcrofXMVPlp30Xd9/wDIuFJQblOVkfe3/BOP4w/E/wDa/wDFniL4v+IoZx4d0yRbTTbRNM+z6ZYooG2G3JbMjY+8Soxxyc8fouS5zUxkZzcbRl8Pccs4wWHwUqNL45P5vzbPor4ka/cfZJ7Nrl7e0KbEEEO5nPoq/wBa+4y+jShadry8zpyvD03OM2uaXmz50+M3w98R+IdJku4tNa2UISlzKSZc9ic/dr7fBY2jTsoz18j6aM/e0ex77+yT4rbU/gp4W8RXMonuNFdtPvnUklgjbd3POPrX57nVK2Y1sPf4tUz4HPoWxlWhH7auiX473dtB4qnv7ObNu8QnhcrkEgjP6EitMtjL+z48+60Z5OAjVeEip7rQwNb1+Cd5bmFPKWGCKKEquAA38VdtCNlY7VFwjZFzS/Hxg1GeQymJkktgzk/M59vY1z1cPF7rTUzlGbhqj6E8AeMLCy8HWuua9dqsThw7lDg/N1+lfDZjhalbHypUFrofHY+jOriJQpox/EEegfADX5fi94fhjh8Ma7KreJI7eElYpm2rHd8H5Vx8r4HQgnoa55SqY6n9XrP95D4b/iv8jhjRqYuLpz+OP5Gp4o+MvgOQrHc6vtG3dDcIcrgjO4HvSwmX4pq6SJ5PY+6eU/GT9pC103w9dWvh/XNOntxHnzdRmKgk5OMgZGcdjzivVw+BhRqKpUVn5EKTpS5pH5zftq/tK+HdEsG/sDWbaLVJbdw1zpfieQxnK/cZByM5IOK9L2lotv5DbqSal0Pzif8AaFmsPj/qXiK2uIJH/wCEA1yFD5zMzNJHEqjLZOc4x64rw3mUqWNl2scvsqlSaklsfRHws/ao1nRfCFrc6fZ2dveaaIH1TVbi4knuVhkKoSkchMCheB8sZbDc9DipY2M6fvt+h11JVZUnyRV1/wAMew/Fn9tLSvFOiR6nc+LvDV87QlHm1Ce4nnjOAFIhOyEH0wo69DXR7TDRo+05rCoU6z+K79DwbT9Zm13xRP4y17TLaOxtmWSaeC0VBLkhljRR0ZmAAUfyBrwsbjqMZ2jq+nzPoMthJ6K9j561XV7q/wBR1jxZ4nl2td6pcXLoHyAzuSEB7gDA/CuykuWmj3lBKNjzuKzvfiF43ifYSpkxGo6da66WiuwjQdR6Gudeh1rxH4lmt5R/Z+k2H2G3cHglR8xH1bNdMlCPvMzqVVzycfQ4n4PWuoHxCsioZojISzhOF5749K0hUS9Dpy/Dy51KR9LKCsMKMBlYVBx9K/EOKqiqZvUaPfnK7AzdMDNfJPQyb1FLELz+dBa0K8rtuIB/GtOb3S7qxRumklfYeBQtjLkV7lmxQRqCB25rOzkwcrEyZy2eKd7GjV4lbTyP7SI967KbTicqvGZ0KZL5b8RWNR2OpPS5FeQK4+8ee9ZczuLmvoQpBGqj5RnHXFXZsmasxJIUbjAxUy0JUtCtJaxcEoM9qEmUlcrTKqsBmrjTuZyVnYaAmOn61Xs7AoXIbh15UduvtTTsxONivJ9zceBitE9DCUlHYveBdF1jxD4kh0vQtImvZ5JABFEcd+5HStaGHrVanuowcpPc/W3/AIJyfCbxB4I8HWx1zRYLGYqGUMc7SR6k5zX3mV4atTprmPlMzVN1VJrbY/Qn4Ah7fwbfwyXpuWMpbzCOOnQe1e8k9D5+o26qZof2itvpU8e3aRJ0IrZ2sXNXbHafr0WnsISxHyq3B4zXLUSvoL2aW50w8V2r22T8pzgZ7+/0oW5P1ZJ3RY0nUoJofJuJFA3FUJPB9qbVnoZVac07o4bxn4B034V3V78Xfhr4Qi+1JEW1rTbKIKb6HqzIowPNHJB78jvTqVbw99mEYU27vRnlmn/H3w74qibxL8PvGC31nKx3LFdkSW7A8oy5yrA8EEVrQeHqRST1HKNNvVnEfGP9qTXtL0WW3kv3uVKkeTcWpcdOxrv9nyx902UoqnZO5+d37Ynx/j8ZWNzpVzaTfaYyXRnzDJEBztB43L7EUe09nBqRg2pRUZadT4i8AWfxL8PfEPVPF2p+DkntNUvrEacuosDueATyhsN90E8An8K8XB5vSjjZQT09DXExqTpe4tD6J0H9pr4pz+F7fSdU8D39nDFOzx2sOLhBIwAf5+p3bV+g6V6k8xp25VPRamVKhUlJe7oZHi34tWGg2F9/wkWi3Frc3i+ZY2c0JWTcGz0zkIWzycdBXnYrMqEYe67nsU6Da2PHbXUvOun1O5xvZmlfHTJ5r5+lLnqXZ6UaTSseJa/dy6jr17qMv3prhiOe2a+bx01PESt3PaoWjTVig+HyB1GODXPCNlc2lqrlC6giydwq6k3FaGMaPOtTro73YgxIc47VlzLmtY9SvzObshIdQmmkKjPvVOcYrUyhF3uaFpLJgbnOD1rllNNnRzpGjA5zkt+IqeawKoTpK2QF/GpbbJUtSdJQq/UVPMzZttD1m3jrVRd9CYXvqWYWOQd3Q9abhK1ynOTeiPoH9gL4I+FPip8UYfEF34inSbTrob47i8eaQuCCHhtV5LDIAd228n0r3crp/voqbfc8bMIq7XU/dj9jeW+0zSDo8EdxIjDMtxqt2HupMdyi5CgdMV9fR9mlaGi7Hy2NjCUOaW57lq3mJYySJdCEKhLSEZ2gda61NJHiSvexFBcw3drHeWz745IwysO4x1roi7xIs1NJnFNqztrUdxOwAEozgYPWsOZtM7qkoxVkegShkJZD370U7uJ58neZj+J9Zj8PXFrr9zb/AOjBjDdzqP8AUq2MO3ooYAE9s59a1VP2qaT1FaSnGXTqJ4z8TaRoWhvdXd6i70ypDc49R60qFOdWei0QsVJ0qbS3PjD9qT4teFjpt/GdQeffGylFh2BcggMrA9QecV7MZRpR1PNpqpLbc/Mb9pv4030EMPg/SL6yeebUvsrz6ncAtEXPH3F86QgDJVUIGeetcmIxlOOkWbfvFWje+v8AXojyH9iX41z2Oi69qOibml0LxjrC290mnlHnzM0pJaRwIwFdiMDOQMDJJqcvxMbSVSW/Q6Z+2rVn7NPT/hz6Sg/bL8N6RDAdevI75Cp+xGC7div95XG5grDqCVx6cV6ixNJWUXoa06dSUXocv4q/a+0nV7mWPw3rr3fO7ytT+Rkz/AHi6jr3Fc2NrwcfckdlGDejRyE/j7Wb6Ftd8UX8Wm6XvBeSW7YrKeyqvVyewA718risfBStfU97B4eoo+87JkHhiz8QX3iO68feOIysx/daJZxSHZBbg/Ljoeep9Sa4Z4tTk79D6PDYNUZXZPe2slxdtczJvaQ5JJ5z71jzpu7OuWhZtdODyAytt8tcYA4Jq3NWMuV3sdD4atFWVpwm0BCxOOmBRGqrmvwo5P4PYuL++1A4JlvHKk9/mNdPNzRu2c9GTnJlT43Xj3esy28tjDMVTCiUYYfQ968LMaiTs1c9GmlGN0ePaozRMQIlTjgBQD+NfPVJXlZbGqTluUBLvYbhjnmsJOyN6SaG3TbYyc8is4ybYqi5loM0kgzlipHPpVSk7GdJcstTobeWMKA787RWMnc6ZSTRMHhkG1iCD1FS/ImMkY+saMgYz23GDk4ropVOjJqUlL3kUrbUXgPlynB6c1s7PY423B6k5vGkOVb6ipem50U5uSJYblig/TNYzRvFu42Z2A3Dp9aqNmjOd3K4sEpDguM89+9KUlDUum0ndnpvgWPxP+0p8YNC8C3a7lkgisNPtkQ+VptrGuXdFyAuFDOWPGck5rry5182zWlQd+XRWXRHNjZKtVSvp1/zP1B/4J8/E6Hx94o1T4ffCmJ9N+FHw8g/s/QhFknXLzP769mcgFyzZwOgr+j8Bh6WHwKUYe9ok7W08go4WhHAyr04pym7J22S7HuepXt3qusy6pf6itpaRPtiWNMs3twOK+koQjTpKCV29z3qdCOGoKFOPNJrU8/+M+iXOt2M1rYXC7JASsVuSh6clsjk172VSo0mrqx2UFNQV7pkn7Amu6fa6p4s+EF+wt47hI7izWV8lWYYJ6fLlhn8q8ni6nKHs8TDVxetux8xxHQqKUMQtWnr6HafGb7PceCb7T4yBf6NJ+8GOqucPx6ZOR7NXk4OVXnU38MzwnOVKqmlpI8S8HfFNdU0W50O8vI2uLC9azuieC3B2Ng9scivShUik7dDopzc/eNDTPH1sYDqVzcxurWKRMCeVdHwre5x/Ks5O6u2aVHdWeh2Nn8eb2902Pw0+qStbW7yIYomzuhzuY4yDzgDJ4AzXEo0Pauajr3PNWCi6vtEj3/9lH4j2vxn8A6l4U8Y3FrfId0YsmjBH2ZhgKwxg8dfrXx3EGFVDExrUVbu/M8LPKUMNVjVo6PqfKv7TXjRf2EvG0ngX4zNfzfDi+l8zwx4itImmn01GzmCYAfNGh4BzuAx71lSxVWdB4n2iTi0nG2stHrtay66p3atdXt5Ek61L2iV31PDfiujfG3Qn1v9n740aL4ismUyI+n36SyJ32tBuDKce1bSzt1F7rsa4eEa6sz4w+MP7IXxq8ReKDrty95BIzg3U1npP2ZFXnLF5GWOPsSx465715uJ4jqyrXhpLyVvyKq0FCm9dEfKHje7/ZW+Hfxy0r4TeJ/F+hfaLiwuoNb8T6PfSXsNncs6+THcXCHYy/LhvJBVMjkkGvMoVsWqkq9TVdjCPsakoQi7d2e8+Dv2Yfidqeltr3hnxvpGtaZKqeRdWutW0ttHFzja8bA7f985FZLM6bqNuTSfTTT066+bflY7Fg40na6a7oZrafBn4N3Ij+I3xE0KfU1X5dK8K3I1C9unPRcI7Rx+m5ioA7GprZzKp+6hDRLf7/Pp6W9dTsjhacVGSmvQb4l8f6lB4Cfxv4mtE0e2kV4vDGgxPuNsGXDzyMf9bMVPLHgdAAKWW0qmMxKb2R71Cly4dpKzez7Hzb4p8VXHiK5NtaMVtl/1Yz1r7SUYRajHY15JSaNOyvV+Gfw61H4gTri6aI2+mK3VpnGN2P8AZHP5U4uM6igjfEVVg8M2t3ocl4bB0f4T3LEkTXsoDMTy5Jya3lLm9083D0X7JN9TofgZoZ/t1ZI5GETffXOVI7g1hi6lOjRnVW1u/b+tT6KjenTWh7FdXAWQBRjI4r8Fx05YjEynLds1i+ZiJcAk579/SvPlCxooakjTcYx9aOVWKqKyIfNAYk+tKUbmClqQSj94CTn3pRibxaa0LEMirFyOnfNNqzIt7w6NwQ2DUpXZpK6WhUsWP9pHA79a7IJKJxRl+8szfE205/OsZq7O2zURlxNgjBzmoUEZJ6kLznnHHArSw6juiLzmIwc89aTgmKGqFEuRk/kaFCwTdihcOxfdyKpWQk0xpnVI/mOPxqlqTVbSuilPMWk+Tn2FaKKtqc/tVchmlYoQDRZRG7M1PAeq6zY67FFo+rT2hkcBntpNjH2zV0Kk4VUosxqr3Hofrd/wTk8Ea4ngu31rVZ7tmkUGOTUtQaUucZ6HgV+g5e2qSbe58Zjm3UaXQ/Qv9n5oJfCl0kF4J9spV3Xpn0Fel7W7sePWvzIg1HUrex1ybSbx8eaepGPyrR1E0dTp2ipHN+IdcbTbyaymnYHAKlTwQKzbj1MpN30K3/C17QWkZa7aMn93CAfvepq3KFr3Kg23Yqa18d3Fn9isro/u3CqwPVvWl7RNEzpSk9D2L4T/ABN0b4j+GBPHdIbm2AjvUJ6HHX6GsXNSumcNek41LI+Cv+Ck3/BOn4mWviy9+P8A+xv8QLvwd4jlXzL+0tV32monrmWI8E/7QwfeuR4fm+B2ZFRNwTSuj8t/j1+2p/wVE+DZl0H4hfBjStca3Yg3drqE8Kygdcp7+xrSnPMKStKpp6XNqVakqcm46nyz8Wv+CrP7VeoxS2rfA3QNGuTlftlzp813In08xtp/EGojCeJm/aVG122OaeJ55e7FI8I0X9tj9sDRtc1bXLH4kX8lxrdxHLqEd5p8M8cjINqbY5EKoFHACgCtp4fA0oWsdNKVaM3JS1O68I/tVft4/E6+XTU+LV9pdvI4Eh07T4Ldj24KICK8evTwcHeMb382egsbiKiUItfcfR/hTwjdeA/h4V8S6vd6nrmtOs+p6jqVw008gH3QXckge3SsHGMIXZ30YyS97cz9ZvW03Qbq83cLEQD9aaqKMHJnarxPI5JGkUue/NfL1J887nrUY3sVY5gC27045rdK0DWdk7Fdmy2W6A96wqu6YpS5EdS0UXKgj2Oaxu+Y6pSk3qOtBHGQcd+1aODa1FLfQvwHeeBg96lxikQ009S7a5B5br0rOajYpWb0LcQ5GTj8Kw3NoxsWERGAyuPSk7o0THKAh+XpWlNNu7JfxE0fI2g9TzWsnyq5rA+lf2N9W/aE+KXj7SvAnh/VJfC+iW0aJc3GlaSts97GP4pbkrtiXGcyEkkkY5NfQZfiZVlGFRWR5uOnGMZt7pH7K/sd+LrTwW9t4D8MTwa9eABLq4sbhvs8Xu8jkmRvc9T0UZr66k8JO3s0fn+JliHRftXrd7dr6fhv+h9V30TzWbxggMyEc9B/9atGrqyPOjzXuYng26mn06TTrtwZLeQ7QOMoTxWlPSKNa+rTOE1G7W18QS2pbmCc/eHQA0tIvU2nSbtfqeiWHizS7yyS48zLYxtx1pXdtDGpThCW5Pca5oJj8i8njCSja6SDIIPUGp5mtwacFfoeEftSeK3/AGfNEW/ufDVzqHhW6DGO6tB5kulv12hD9+LuBnI6DIwAfXKlGWuxzypqpGx8D/Gb4/fs/fEC9muLn44eGXitcypb6pqSW8tuwzx5b4ZDz1+vrRXzegqVm9SqWFipX6nwF+2r+27+yb8Kby81nwH4qt/F/jMqws57JhJ9nZs5y4yFznBbOcE9K8mM8XjJpxVovqeolhaFNyqvmk9j5m/YH/4KjWX7Nur+MvB/x7+HUXiLwh47v/tt6kEKtPpt108yMHqNuARnPyjrzWuLwGIqQToys0uvU5cBVVOrJzWjPYfG/wC1/wD8Ey/ER/4SHRPHusadIpLJZx6Vc7hnkjaBtz7156/t2jLl5L/NWPbq1srcOWL1fkzzw/tnfBy71GWx+Cvg/X9fnY/u7zU0FvAvucksfpiitPMeS1SVr9ERTqYSmrrVnpv7P3hXxz8ZPHln4j+Id405hYG2tFyILZf9lfX/AGjzUQoqjTvJ3OzCzq4yqkfRXiaKO61VkhGIoVEcYHoK4PbWkz63llcoHT3kcKFPyjog/nWkavMHs22WbfT1z5iLgdCCe1X7S2g/ZstapeR6B4N1bWpBgR2jhcnuRgCrpyu7owxMuSkzlfhFA9hpUDOvJw7j1zya9KP8MwwqtT9Tnfivqr3uuz/ZoTNGrfKpQ4x/vdsV89j1LmPQj0R5lq0e+UkQeUM/cDZxXjyVjqpqT3KKQFWyV/OuKbbZo5qOgTwF1xjr0qEpJlRtJDILdo3JBxzWiVtzGpFt6FwRyf3jg1nNxvoVGnOSJI0m3cN+FO0W9iuRx3JNzIMSE80+W+xUblHVdIE6GaAYOO1EZpaMmpSUjLtZ5baTypuueM9615brQ5OZ0pWNCOZSodB1HbtS5dNTpp1eYfvJT5jyahKzKk1fUWPAIY8n2okoyMryk7H0H+ylolp48sz8LvhdM2haprFtIfiJ8RNWmWOPSdIzhrK0Gc75R9+T7xB2DA3E/oPAGEwlbHtU1ZpXnJuyS7Iyhga+LxaS+Fb+h+kP7G3jb4DWdtL8AP2fx9osPD9nGLq9ZSrXTEfeGcEj3r9iw2bZVjsRLD4eon7NLY+kqvDKneEl7uyWy/4J7J4pv9J8PaWJNYgWN0/1UKMDz+PU17OCp4mu09F87+nRdPI56Mqteq3Td13OKe81nVbOR/DOixQXDxuVuLkZYg9hj+texGhGnL95PQ9iUKcVzTkcT8MfAfibwV8WpNV8SSu/9tWTQXN3EMbcZIK89Rz69q6cd7OvhLx1sePmLhVo3h0O1+IGt+Kvh/4ohHxGgim0bUoBbS6qsTEyRsvyNNgYRh03Hrx6GvnIexqx/dvZ/wDDnyWKp050eaG/b8z5t+M2haj4E8TalqOjzrJa39sClxEeHkQZjfI/vDinVi1ByicFOtKy5tzg/Cnxy0zxV4du7eG4VLizZRdwBjuWRWLEEdhjvXlyxU5UlrY7m3V96S0Oi8J+Jr7UP+KjtL0RS3xeO0t3l5C55GOvPr71lCspov2sYR5Ue6fsv/tCah8JPEo8YXMIbT5YkiltoH+ZwAdzEHpkg45p4+jDF4Z0n8jzMbgvr1P2fXufVfxn0H4Hfty/Ai/sbC9sdVit4v3oDqz2rlc7W7g4r4aNOrgsR7OotGfKvC4jLcT7KstGfhL+2n/wTRj+Gfiu81f4dape6bJNO6wyWE8kLZ5PVCCOlXWwNJz54bF1KahOL/mdl9zfy0R8E/HT4Q/Gn7U2k6/4/wDEl6gBBjvNVuJUIHqHYiuBwo4duRjPLpTneXU8r0z4E3bTme7jllUNggqRz/WvOrZgmrx2Lp4ZRjaKO68KfAOW4YQx20uwj5kQsc/gOtZ1pxp03MqjgJVZ2sfSvwN/Zw8MeA9KPxC8ehbPS7dN25kAaRwOFUHqc1hhlLFVOWC1Z9XhcupwpKU9Ejgvjv8AGa5+KfiR3tx5enWv7u3tkYbFQHAA9vf1r7vL8NTwMF1fU7Y3c7pbGJ4H8K3euajHAybF3AvI4wEGMkk+mK1rT9mvM7KVJU1eRh/tB+NLXXtTtPCWjSj7Bp42QgHrz8zt7sf0xVYVypxv1Z5OPar1PJFbxnqL6T8OdKtbUH95eAsq9cDvXo4WknK8jZJqlG2x6X8G7i1t/CD6/MpiaJckcDdngV8/xZioYTCOC6o9RSSp8xvp4qguSiqcn0r8ZlCUtRRrJy0NKDUkljBUYzXHN6ncpxSHnUVIwevY1Mr9BN8yIjfEyYU1N2tzJRs9SRHdmDMRU8zLUorYma4AH0pJtsTl74sE4w2eapuxstUV9OuFfUCP9qt4ytE4Iq2INua7Ctg9az5tbnouSsVptRQfKeRziqTucj+Ii+3A5yO1KUtDZpNDftuME/hQmKNo7DZL7A5bH0puRFV3K0l3vOcggUr30JhaOpm6vdyeWQnB7VpTaT1McS26bsUYPGkNlF9lktFLkEFiM16FOEHG7PHjVmpixaq90AQmBjnNYVeVXPRhVujsvhHqsWneKIJx4dTUHEqkQsM55FGHjJ1FYzrV7QaP2W/YLsvHvjD4dWUmqaQlhDIoHljA8pcf56V+h4CH7hJ6HxWIn+9tZu7+4+7PhH4ctfB/hBdLs4VRfMLMwz8x7mulpQehyVoxdkVfin4WfXdM/tDSlH2qA70VerYobSVzak/3bjI8T8deIRrmmmz1J2tLy3+XBOG/+vWMql0cvI0zyjXLjxC5F5bTh/JBVQxwAO5qLu9zSPKloYtn4pM2ryi7ldF2ABi3Ab2pqTUjq5F0Z0vgD4wX/wAPYb2eGaWF7y2MTrnPfhvrW8KkVHXqU6Kvc9p/Z/8A2ltP+NOgXfg3xfFtv7Fdtvc3Q2i6Ttx60cvNH3NyK2Fpxd4bHgn7Y3wg+D3iCeaK402E3MoYFPKUgt71pzqKtM4p4GcldH5cftTfsxfD+0W4uLXR40lIYPIYlwpzwF4rL2tGCbSJhQjBe9HU+aIf2ZtIdSsmi7J+GMqxjO3tnIry604yeu5ccJOqrLQ9C+HXwK8KeALZ/FXiUJb2sI3IHUAyHsAO5rzpTtLfQ9PD4GNCPM0UfEPiKTxRqb6llRFnEaDoF7VjKU6tTyO2KSdzjPinrqx6XHolq2N/MpHpWeYSlGhyo6aFOM58z6Hnk8jKvHT6149NRbPVprQqsx5x/KuqTSQpNN3IDvGd/wCWKxUVN3OWvPmWhvrdSKgGT0qHGPtNT0KqlKbZc0/dJjNTOdloCk+Y0Y9wwfT2rB3YtWy3almPtniplFo0UWnqXY9w7moHdonhV2G0ZxSdi4ptkgjKrmqpu8i7O5Nb7R171rKN0Lmktj3T9lHxf4evfFuj+F/EPjbUGje7WOLwtoVjtfUnP3Y5pAOSc4DEjGevFfQ5ZClOMW+x4+NjXndWP2Z/Y1tZNF8N2baD8M7bTGtDvW2tY/tM1uSMYZz8olOSCc5UZ9Tn6+EYQp2hsz5bF4eg5Rc0m4u6v0equvOza9HbqfYFjPfSaGk19hZjFl8cgGhS7Hl1JRU2oHI6Lr9vpPi4QyuAJ22OxOBz0/WoVVxepuoKpTZjfGrS30LVV1+JT5NypD7ezgd/w/lVO/Pp1NIS9rRXdHBad8SLm1FxpTXIURYdW/vL1rdJRhczlTVRi3nxKbXNTTTtNu2lkBAZWz82fb0965/a8zepo6bULWPYNY8N6J8VvhbN4R1r7Pds9oElXcG2SBeDx0pWTXK9zzJxcJ2Z+Kn/AAUu/wCCXfgzxTrF7eTeHk+07nK/usY69M81x1sPTeqNY3cbH5W/FT9gjSvCWrSwweesYLD92SMEdauOJlTp6O5ssLQSvLc4T/hl7w/DdLYra3TTsPvzOQn51yzxeKqPV2R2U6NOUdi34e/ZW0tr0C608EpzIrAkn2Fa1K9edOykawjQTase5fBn4HWFkYYLTSVGCF+RdrLnuQa89SjTd3uCpSnNJH2n8Gvh/D8PfBj6zdq32mdfLt/MXDEetefi8ZOoz6vKcD7Gld6ssRafJdzl1XdznJHSvPdeN7HvKJMuiyKmQCDgkt61Ua9tiuRDZLEb8bBjHIBraNRyZPKcn8Z9RQaVZeDYGG+8mElwAeiL6/jXdQvJ2PNxiUmoh4YaOxh+Vc+XH90cE/SvZirU9R04pw5Tyz4matcz6pKZZGKFvlilG3zPy718/mLf2TqppU4qL1ZxkGqrfXX2QwmMhgPKccr+PevFlGT3OynzN2SK3xF1238B28LXvy+bjBJ9aqhgnWg2uhw4/F0cHJKT1Zj2nj7TbmMOLgYx/erJ4SpF2aJoYyNTYtW/iS1n5jnUjPauapFwlY7o1YWLi+IrZV4cGseSTZcK8WxV8S23QuACexrXksgqVUoit4gtJG2+eM9jVKErGUKybsi3baksiBdwPuKxqRszqjbcp6tbLIDLGMH2rSlUa0ObEQjNe7uVNOvst5TDpwc1q7WuctH3Z2ZfGQMqQeKzTTZ2zXMtCSBGLH1Papm0OCstTrfB3i/WvD+mN4e8JeHLWbU9RuVjiujHJLO7H5UjRNwX7xzwMk98cV6OXY+vh4So0IJynp1vr6P+vQ58TXlSpycNHbc/RD/gnp8ILH4AftBaV4R8ceILvWvirqmmPN4u23hFp4etdoaKzYAYknOQW/ufd65r9X4LyzCZbUqc0r1XH3l2MMDRrVMHVrbQtt31Prr4oNoltqP2/X75G82UC2tUYEk5756Gv1zL5VJUlGnH5n0GWyqQoqMI7bsj0C50+NcQokiICbiNec+27PQVtXVRySudVeNSpHffY8i+L/jvxjqvjO1tfBGnpFb2Eq3D3UkvCoG5jjIwWcjtXu4XD0aeGfPq2jVYWlTw6U3dvc9T+JfjTwfo/hu2OsTbLm8tkl1PT9QhISQkdTyx3YHTHpzXzeCw2Ir1pJx9xXSaPlquHqV5yTV4rZo8/wDix8N/gjf6bba7outTWcF5AjSWEcp2cjHAbgUKliYNwqLQ8OtQxNNe8vmfNHxe/Y28Kz3Nz4x8EeLJLC4nDBpLSfDynGBlV+91rgxWBo1k3bbXT/gasmNao4KNtDwbxj8Iv2mfBF3D/wAI541muAYmjj8xMsFIOc9NuRkf5FedLJ5022p6Ee2U3Zo4PWfiN+2x4chl0rTtRjtoAdm+RGLKMEHBPbn8c1hPAYuyake3CUFHoan7O/8AwUR/b2/ZO16fVtG8HaXrcF9GYdY0lneNdSQsMlyOQ4XO1hgjPesMVlmIxdLkqfetH8mtUcWMw8cwav02PrS7/bg+AH7UGnw3HjPT7zwdqs5XfpOrIrpEzKQQJV4YbsYPBGa87EYCtTp8qRFPLnCnbc8C+M3wX+DHiMPfab4w0q5jnt55IjHcJlgg3MMZyCFINfHZhRxEXawo5c5Jtx0R4DefAP4TaJd3T6h4ssljR8JiQEncgkXp6rXmUcNiKr0iy6WXUprRnP6z8U/gT8IJE/sfQbnXtQABjjVPLhBIyCzdSM16MMixeIXNN8qPRo5fQoO7R5F8TfjR8TvjLeRi926fZRyFrfTbNNkcQOc7QOM9yx5Ne/gsJSwFpQfvLr1+RjVp03eMVZPp66swtG8HQQlpNVnESJ94sMbffkc11KpKbaW5tQw6ptNlX4mfGvRvCGnt4S8GOkt5OoWTC/8AoRHYHt3rqhh9eaocOZZjTo/u463PMTcXFzexy3ku64lk3ySHue9dEZJz0R5NGM6lRW1PQPEsH2rwTpyGPKpcja3v3/pXpUm022j3qiiqS7nsPw50S0uPBQ0d02iQLJhlx+NflfHuJbqQSN8OnKNmWk8EpFMCpAAPFfncqzkjd0EldGtbeHHSIEEe/NY6J3IjTk9yzH4eLDt0rCU9Tf2dhjaCFc4I4z3qo3krFOkuUlXRV28tg1pZIxcLCHSU3bQR+dCilqXGkmrlmLR4/KP0rGTtIuMbMy7CxC6oUDD73NdNNc0TlqRvUujam01GblueMVnN2OiKcUV5NEi3A7unrSTbGkmIdKjAzxT5SLO4w6ZGOeOadrDlBrUrXOmxZ4bjuKFcIpSITZxrxt5quXqRONiK40q2uF5ORUXlFk8qaMyfwxYrcb3xx04reNSclY5quHg1cc1jbRjYgH5VXKuph7N9Dsvgn4c1zWPGdrbaMSi+cvmyF9oUZ9e1b4apL2qUSZ0ouD5j9qv2NNNvz4L0/RdN1eOWOFV3QWThsnHJZu596/QsDJeyTufI4xqlKyPs7wzcPa+FY7f5lYcKsnXP1roqSe5xQSnJNhp17dTuwHHJyT6UoNtHROMYnJfFb4R6B8RbJ42hEEqrjz4mwc/UVjWhfbcznTvqtz5b+Kn7K/xQ8OpJL4c8R3EiyElYd27P1z7VwVKdSD0ZknJK1SKPBfG2nftFeBo5FeHz2jGUQwHAH17GslPFQ21Omk6Tdle5434m+PvxOsp2t/Emq31oWBMnkwZC/jWMsTWjK8z1vcSSe5lwftBtaahbSwfFHVIJ42Db1vRFtPUEn09qqGOmtbmroa7Xueky/tc6T4xtpLTWdfi1O5sLfM93Bcg7gByzkcV0/wBoOUVpuJ4enZq55t8W9S8K+I7qWOS7QmPaWhkmXbGzYwM+veuKrmEVKxgsts3Jni3i7xX8N/AymXVL2KWXABt4W3FWI/i9ulZ80pu7NJxpUVdLU8v8bfEmXxPfC5uWD2K/8e4iAKRj3WuarTmzL2j6nL3+twMm2xVOTgmLgEV24SlazZLbaucZ4jM95evJOc46Zryc1q3xHKj1MDSU4XMuSwUKSSPyrgpt7nrOEYxsMOnKsWNoB9aKlRnI4JtmdcWQDYHrU+1cUYOlzGyIFEakdaptuoelKym0y5YKSQv5GqlFJXM4wvIvMwVQSPrWd4pilaDuWtNCseDkE0ptNHRTXMrs0EGG6Vhy3M56MnjBGD1FP2asdMV7tyRuBkj061UEkyHoS2yCRsDv6UTbSsNNJHpnwI8cWXg7xXo+lvoFrIt9frDdSW5nhnnViMRyTQxSSpHnGREAxHFenluLrK1OML/mcWNklRer26H60fsBaH+094x0K8+IXxvu4/Bnhqy2x+HPCOlKbeNUPd8jfIzZ5J59SSTX2OBhiGm6rsux8PjvefLDXzZ95fDmyv73Q0leeQRuv3p2yW/D0rsk4vSJ5riqesi3qfw607VZjNJqUiMGDDYgAB9aj6u5bMJYvlVkg+I1ppV/4Sk0TW5Ml48Rz7ejDofatG/ZLUeGlLnclsfM3iiGXQLt7Ka1DuIyiSDJEi56U5O8DpW90YWm3E+m3e+OfZcyj55yThF7YrjaSd0a8kqjVzq/hR8Tta8Iay+rvqaw2ifKySsT9o+ua1p1Ixd2aPDQqrU1vjrongf416XJqumxCO8eHdcWhQFsY4Ycc061SNuVIzlhnCNkrn51/tSfsmWqX01/Y6UssY+aaMRj5l3cjjvXmVLRHSg7aq58v+Mv2aLOfxQ0dpbxpYW8fmoZosMgb1PrXK6q2NfZTb0MST4CXF9rqvBpkg+VRGqRYyR3/SqdVRg7s7aWGlUlax6/4B/Z18P+DbU+JfiJcJaxJ86RsgE0ueRtXvz36V42KxSndJnu4fL4UkpyRd8T/Ejwrc3KoNyQxriCGNRhFH9a81VJVND0qdVU9EjHHxW8MxjybPSrxlz8xENWqcrbm/tEMk+Knh5n2TloBnjzVwB+NVGnO9jRVI23K958RNBjtpb6S4URopLMDw1d1GjOTRnKtCO7POLbV7nxZr0/ia+BXzWAhjP8CA8V6+HgqZ5cZOrV5uh0OkX5b7R5bAKF2klulejOXLA64x7HkXxH1G7i1aaG7tirhyVnRd6uPpXzWLm029zqhDlszjW16W1mN08Y3AHa2MfpXnSfPK5rCooMw/iJeXXxCEcV5ysYGPwohipYe9nuedjMJHGzTZyk/gu5toswXDAj0NbLHOeljCeE9hH3TW8EaLeyyeXJOTg4OTXPXlF6tEYdVZSs2dsvg98gGXHHrXBKrFbI9SGHne4S+BpGXPn4rL293sdLpXRmy+D72CUulyTjoK6PrF42OeeGlT1RZs3utPfbOeM96zdJT1TIjWmtGa0MqzxYJyPap5LG8Jq5Q1CxaB/OhPXuKcddGKtTuuaJNY36uoRmGapU9bmdGpJbmjbleOM+lKSR0crlqfSP/BPfw1oN74w1Xxro6w6j490q1YeBNIupPJtrW78t3OpzyupjCW6rlUcjdIy+mK+s4XwNOdKriotOpHSKb7/a+QqmBdenzuaUVv3fkl5n2H/wTo0HR/BfxW8Q6hffFtfGHim53Tavd2582CB3G5x5xx5jFs8jqDX6LwZleGpyqylW56stZf8ADnbGSrUXSUbRsvzPoDX/AAd4o8UXtxfxfIs0+BfTgr5K9yuBwOvJ7mv1vD4qjg0oxld9tD35YnC0KEYdUtl1LvhPV/DU+qzeCNEjmMcER+03UZGLo45wSefc0q9PEKH1ie76djzsRKvGHtpfLyOb8T6B4d06++03VoUS1mEwmLLtt/fp8zflivTo1qlSmkuv4mvNVlBO+5pfBrXNO/aFsdc8TaHYacul6VMtqur3ESm4u7heCc87VX+7xk9RXkZlP+ycVTpXblJXstkebj50cvcISu5S6LZI5H42eGvhpFr1toqiTXvE19GYtJ0KymJXZnmaXHG7pz0GOK6sJPE14OpUXLTju3+hMKNXE0W5x5YLqzxH4w/sp/EPwei/2T8a77RtUkZAbCzKy29vnsd4Jz68jgU6eHo46LqUZNHi1MuhXd6ex8xfErW/23PBurS+F/DXizSPFpVGWSSK0ZGBwTyykgV59XL8zhJey944KuBnQVo6nzl8Rv2j/wBqjR7r7d4m8AaVK64S5eO4bc4U9NxXnk8D3rz6lbG0Ye/BGMVilLmjG7PH/En7aPxvgkkl1vwfHareT8CKQiW4YDgdjt9/SvKxOYYulFe4d31vE0oa09WZcv7YfiDXmbUvHo/syONtxggUuwQLhF5YEsxyT2AxXHTzWc9KqsP67Tp0+at7pyOofGbxFqAgfSfEF6iRYkLzb0XLLl844wc498DiufF1sG56tdxVMYqkP3bdjL1L46azDJd6bdajOt2giISTdlSqgDIPbFeVHH4OpL91qjyP7SarOC3XQh0n9oTUEjNrf2C3IIAVXj3Z+mf5V1wxFCvE9WnnKaSaHXPx8kkhEOlaWimPkJ5YXaR7Vyv2d7RWh59XN71W4LU53xB8X/GusqVS4aONydwU/MBXdhpRjryhXzPE1KWisZelPGf9Ku41kaQ8yvyc+9XUquRw0ubEz95G27SXRgeYoCpzHz1H1FXQjeR7MYxppHqltai88E29xNuPkTqWxkgjPpXZVqRp3d9js0qQPY/hxPZ3/heC+06WOS3xtV1Pzhh1DDtX5NxvWp1ZU+Vnbh3FrQ2yhLfL+dfn91E6HPoTRodvX6g1LlzArWuOVvX8DQ1ZFuSsJnc2MVCkjNTfMK/yrk8VpdjqbkaDLbgOQKpN21CCZYDtsOScYqbKTNZbGTYf8hQnuGFdELRjZHDTbdbU2Z3CtjPH1rKSV7ndU+EryThnCk8HvTWhzwbvoBIxjcePeplI0krK41zgHtx0p30KlrAz5JR5vXv0NOLuc0bpjZ22jOO1NtGlX4SETqcAeg5zQ4pmNNu5FcjdkZ/HPWnTsmXV+EqpaXN1dJbWcDSyyMFjjVcliegrSS5lY89zaloer/Cr4Ba7b+O7HTvihdz6FBI6M0LTeW0gODjg08PTTrpSY8RTnGk31P2S/ZT8N+F/h78KLR/AUE08oiAiXzcgnHViDz+NfpODhGlh0kj4rFycp+8fVXgP7fJ4Ct5dS2/aXGZdhzg+laSg47s46MZKprsX4p/IsG2tiQthmP06UlLlOyUE6g+CXAIlUKiruOf4j61XxImaKFwbS/8AM1C9iUomVhiK4z71laz7mUotNI8n+IvgrRdf1FtKj0+ExRwl5ZmBOe+PehyTeiNINQjex83/ABS/Zz8J3sTy32hI1zcKfslqkYAYD+I+g+tcdWkqj1RTnKbuj5E/aR/ZZ8PaTNBJFZh5Lw4htIRksO59cCuWWFUeh1Uq85NI+cfFnwAtWjuLrw2Johbz+TcqhKkP74qYQgjaT0uefa54b8QadBJbyavchi21/wB6xO4HI3c++ayrUIN3COIfLa5yV/pV1eTul7IzTp1aRs71pxcUjOpKUmRWltLaMy25/dMcOhP3TWcveYQi3uQ7QrFVG35u1dVFcqLm0tEc9qDPLcuc/wAVfOY93xLZ72BcY0UVdp3EHjHauZtRR01JXY2ZmEZIFZJ8z1CEboyLonBy3PrVNXdjCrJQ1NnBCjmt9Oc0xDaqNFmxcryOM4pVfhNackWpo5ioUHIrlTSFOKeqLulr5SAMaGnKWhdGa2Lxk2vn+dVsya2jJbebJ5ok7RN4P3SQyEkg+vWpgnuZ6tk8JdO9U5RtqP2dz0n9nLVvBmj+L49X8ZePfG+jtHcIunWXgLSVmvdQl6+X5zsqwDA+98x5+7xXq5VUw1NOc216HJi6cuSyjc/T39hL4gav4xia4k1e6hstPiA0+y1DWVvWslYg5kf/AJb3ZJy5PC5wAACK+rwVf65L3W9D4/Ma8cNC0lY/Qz4LappWlxroN/r0X225XKW812HnkIHJI7fTFdseSFSze54teVSpC+rR38uUOK6lK0jkgk1qUtd0O18RWh0+4bYCPvYzipqwdSOh0UaipM8Y+Lf7OHja8t5bzw7qscyYyFztI/SuGUp0t0dtGtSk9T558YaN8V/Az+VqOhQXAjfKnztpb6+tc7qTknY74yptJHnuq/GXWIZbiHxfo1zp0UQYxyPEzgnoMbeBj34rlqVKi3OuEIdGaPgj4+aWyRXun6+0VzBEPKj89WaaQMCXfPTjt0p+0vG99TePLN8rWhP4y8Y6Z4tmZtVQsJrvfMRwo46AjrXBVxElKxSw1No8i8T+GfAghjkNo7vK8gnBAChAcIo/OvPrY5paI6aWDg3qcdr+saZ4feYaDo8EO9/3UtwoJVWG0Afqfqa43XqTv2PRo4eEXscD40S/8WXUk2pas7zK2YVJ3gqM8H0rBpp3Ouo7wscvJ4ctbWHzbqIAx8ATOB3/AJU6d29CYQcVdHJ+K/H/AIF8MMY7/X4HdVP7mA7uffArsjTk9zCWJhGVmcFrXxXXW1ddJtAIGOFlmHH5V0Rpaoj2/MmkZcUmoahIqz38jQqQWt84T64716MLJWRhN8zO30CLy4cL2HY9q76a5TppuPLoaPh9yljdTMhbO7MYbBIq6tROFjppq8tDy3x9fR3mpSCyuCDzkAAMPqD1r5vEtc53taWsefa7KsUohll+bdgbhzXA+W5w1XyVLMhgxEuSa5KiudVNXV2MulBjYjgEcU4e6Y4jZoPBTkXzjPGfSt6qi4XZhg4xc2egRozAPnjAyMV5kknseyrJFnau3aR+NY21I5kVpbUM/PHcVtFpIJO6sZ2p6R9oTIHI74raNTkMXRjJXMWb7bpcuBkr9KG1J3RyShOm7svWOox3ibJGByO9JSdzeNaLVitqFlJay/aIM7T6VspqS1ZnUhy+8i9pGoxSgRyt83ua55xbdyoYi7se+fsm/sifE/8AaFvLzxraeJU8G+CtGjI17xrqybbMDjMCcgyyEZwi55xnANfZcKcLTzepKtUqSpxitLJNSd0mpO6skru6vqkmrO6iU6jr2grvt1PuD9hLV/2ZvDvxtg+CPwOF9eTWOntcX2sXsrLJfhcfvCq/Kinj5SemK/XsqjlOC/2XCu87atf5n0kKapYOdRJKTVmfTXxY1/V30+40KK7aCC5lAkaHBYL/ACFfcZXhaPtI1ZK7ReEo0IRVVxvJI4/9ne70rxF4m8R3cUjXFhpEC2jsQVQsclkT168txkk1257FuhGlHRz/AK3M8yrKNKCjfml+Bwv7WXizxDNpr+GfCkJFzq7eRpdiC3zuc4yAP17CvUyijSpYdzqSV0nq/Tb5nbgqPJRU6mpc8C+EtQ+DPw0s/g94bvorGOOJ73xFfRhjHDI+Wcgkku2TtVeSc5PQ1596dbEe3mrz2RNX2FWo67jdvRI6X4V6d4L+DdjqXju8Rr7xJqroReXyBpI4xnZGD/BjrjtzU46licfUjSWkFvY4MYsXj0qd7QXQ8A8e+MPiD+1z+0SnwC+GuqPbW0JNz4t18crY2xJzgngSP0Ge3Ndsp0cowqTWvREypLB0vdex1Xxs8BfCD4CeBLv7Vdw6fpCQi3iuZ3/f3LkhWYZI3O5PLEgKKqhUniKXM/n5GdWjGdLmnufLS/Dj4V/tReOfFk/gSP7R4S8BW0FvqWqpbMy3V/Lt3KvBBEYbk9Op6AmvHr05Ymsk9lf8NTx4VaCs3F72tZt726dO72S1eiufG8PwMj+M/wAUfEXiqOxkbRrQ3cGmOqFUWG3Us7A+pwff0rkjlf1mpKbV10PRjgqlaq520XRniHiH9nC/+IHxt0bwFaCMrczS32oOpCpFaRAs7kngfIMcnqa+D4unQyXB/Wqj1Wy7voj5XO4wnVjCS6i694F8EeNviJLd6JeRP4L8JaAda8VzQzk5lWZ40tMj+J2EKDqcPntX5tVq5lh8HGpWfNVrv3UndpXa1XRqzdn0afU58HGli6jTuo01d+bWyPJxpF94mmu/HF5tN5qF88pwvAJ+YIPbHA+lfa5bltOlgopbhg8MqsJYmS96TJZNAsrxBLGoCzDBC8FH9a744d01cqNPmlsY95p88d0YpeLpDjfj/WL/AIiuazlN9zF0IczdveRLZrbOfs80YDnknPAPr9K6ISnsEZe2lyWsWY4jbsZ47fIBCyKB0PqK1VKTd2dLVPDr3UamnpIs6H5SC3+r7rz+ldVNxVkY+1lJns/hGNJfCAMhAiSRDkckfNzxWGOX7id9rHsUnF0bI9k0y3trXT4orWONUZAwMSAB8jhuK/A8fOU68uboz1YRUaV0TKQWyOPwrznqQtWShtgyR+tJuxrK0UERDnAxwetS5Noz1kKoHmYAoirmkIai3H3cdPrWkSavxDLYBmJAwcdat7GkWrE4QGNiDxjrWaepcl7pjWTY1c/7/WuuK908+m0qpszk7ySc9sVzydtD0J6xKYT9+Sx4NCbascysmWHO1Bx+VZ8rRbdyJ1JGDx70SZp9kzpU2z9OB0NaR1Rzu0WFyjNHwcHHWp2dipNSjqVIVw/zevFU23sY/AxZsEE+lVFuJcrSiVTJLFOskE7RupyroSCD9RWim73OOEffujvfgxceJ9X8fabGjx6hK9ygUalIZE6jqM104SMp11YyxVaKjeZ+1HwM+y/D/wCGumweIdX0+KeaJDb29muFLEdNo6/Qmv0PDVPZ0UpM+Nr04VZ8/Z33/q59b+AhcyeDLJ5SuWjyx2bRyO4pqTmrnPVnH2mhasra3C3G5SwR87W6dO1SnbctzloyKJ2k4m5VvmeNew+vai9ndmskpLQrazcrHA11LBhCpjiUHpnvzTctDNRclY4vV7iyv9WWzECfZrGHfcyBvvsegNZxknKwnCUI33ueceKp7KdrnWntYlnkb7PACM7Yx94/lxVOS3HaySPn3WPBmn+JdY1bxzqVvEy2ytBp8QiwsSgYB/8A1VzSnKpdlfBFKJ4BD8KWtD4ga/4N2xuEOzjcO31xWNODu7lOpOx4j8XPhMhv7u1tLfcWYyJ8mGBAGR/OipD3QifPvjHQIJnnMQMc8DbZFI5UjviuHkb2OuCTZzUdq5+Z1UZ4MgHDH3rWNNJainU7GIY2W8eJlwFfqKvnsrIVP3nqc9eMBcSE/wDPQivmsQ+avK57uGVoJFYtknjB+tctRaHU9GQzk7MZ5qYm0DIu+MkDvWietzhxWzN6VTsBHpxV3bmdWJTVRsfZuwbGBk96c03AKDRpKwkQDpgVyW5Xqayukyxa/IR1zmtbqxFBXkXHIIz696lF1txLdyW2mipG8TSm1YtxIJACKmOkSpRitS3bW89zdxWNpA0s08ixxRIMlmJwAPqalU51JqMepi6krXPXdE/ZJ+N2k+OdC8OePvAfjexjku1k/sbQ9P3zXcjD5MfMAvGfm7CvawmX4ulPllTbXc560nWotRZ+kX7D3wI174T2Qi8d31n4PjNuqxWU1+jXsaEkiOK23sVfH3pW5b2AAH01BU6KTvY+YxeFqVIRvrufen7MVx8OYbuSx8I2KT3IjYz35YzSf9tJSOWPoOB05rqpWqT5or5ng14uEPf0ev5nrkmfO9a7m7HBHW9hkrlTuYgVtBrluy2mkPktUvLcrdOVjPVQcZHvWFSn7VjUnB6bnB+OPhtoXioSRaJpMbuAd1xJ90H+tcNSlraJ2RlOK98+dPjB8EIHmuIZbeK+kVCWiVQEA9yOgrknDl1Z34ecj5q+I/7PvhmS8e+i0a5tTFGS7QsI4wfYjk/nXNUlC1kjqlUlN6M8A+MV18VfhpZ28nh3xBeTT31x5el6bOwczP3YjsoHP4VwVfdkXHETR5b4y/am+L+jmXRb7QLW4nsyDJINwGTkn9QK5KkU4nVTxE1HzPN/Ef7VXxhnt2mGnWaSC33AeWzHIOSOT1rlhS97c9D6zVjC5zOrfGX4v+IbIX8HiyaKO5XdCIFCDI/hNXOmpoiFapVerOb1DUvE/iG3W+uvEl4Sx4d7pv3b90bnoexq6SjGNjrdSUY6MrLfaxFIIdYcy7RtaVkG9D6N6j3rWLsjlUHLVmrZ2ciuGikAdx8uR8knscdDVxm2W24Rsjf0ZyX+zSRHKkbkYfMn+Irtp1OVWZMLykd/4VRJYRGpywQ4I7iu+nUbR3wp2RN4fuGiguCRIhDMBKBnn3HpU1al46HbTUYux5h8SDaXOoy+ZZp5iA7trAFvevAxLtK7OpXkjyjXoJDqCyeZuTJ2t6VyU5x18zy69O1dMtwuDGNp6DrXJKLuz0VJco2+Yrb468VnGPMzKajIXwNHJ9tkcevGa2rRfKc1Jckz0OFsRjjnbzxXDNWPRu3ElQEnk/jWW4opyYMpGTtFaWsaSjYjQgsdw4+lOWo1oVNSsIbhSGQdOmKSbixSipKzOb1DTbiwcz24JAOSK6o8k15nnVaE6bvEfY6zHcx+TcD25ocHHYiFa+jEkgaKQT25yPak530Z0KmovmR6T4R+OXxWuPDWjfDK98a3s3h3RLiaaw0SeU/ZomlOZDt6ZJ7nkV7+W8T5tgKUaFKfubNW3R34fFOnNqKWvl+p97f8EVfCM2oat42+OR8KWum+ENNg+yf8JBdIFL3Yb95EGbBYAEZ7ZIFfoHCud5diMTKjGny1NDkxGZ05YmNCF3Un0/4B9geObW01iSW3sCNsytIzbMZGPve3Ffs2WQjh7yS1k7vXrZL9Omh9Tg/aKmnU6HKeDXtNAt5PBngi2Kx83F/JtOZJCfujnp616eLbqTVSr8vQjE04c/tKnyOd8Ri4s7qXxM7pd6nKHj02QLuW1VeGcY6ntn2rWnBTtHZDUqtamoR+E5nwbqOo654avNU1qSe6jvLl0SLeVKW6HGT6NI3HHRQea3qQpe15Y9F0/wCAdEKXs56JqxzP7RXxYk8MaO1/ZTI+GaVYIzg3UjZijjT/AGd7dT2Q/hvSjONNyW/X+u5hib0oWXUv/wDBOjwzoug/Cjxh471y9t7iC6vJJNT1QA41ObJB2EgExADYvqOcZNeHm2GliJ0qUoXdTdPt5o56icqdOlFXm/wR418SJR+3L8Ydf8beILtz8O/hsC9xCG2QXl4AQkC44IBxn3NfQ+yjgadPDLXm3NKjVJRpLVo4f4r+PtQ+Df7L9t8LvhEzaa/xB1I/2vqdtHlYLd5QjSDPZQTzxzivHzBQc0qa66WMI4ejGTqTVn0RL8c/hd4c+APwS8LeAvBkhuF1qwaaa7jwcQLAd67gOrN8x9S3oMDqowdXDzlFWUFb1ZrjYuWH5krWPlf9nnwvZ/FMfHDUNNeJtd034Zr/AMI9YzXEUC25edPNcyS/KgUKAc46jmv528aMfi8Ljcmw0k1SqVU5dk+3zstfI+JzClKdTRNng37HHw1uPiP8BPGPw6s7MMbi5XUtXvJDgzGAN5cYbuoJZsdyR6V7WQZPHM8e8VNX5VaK6a9TbIsJRqZRUXVvX5dDh7rwn/Z3hjWLezUmTT5xPFx9wo5BGPpxX1VLBxpUJw6oypKSpSh0RSg8NLqOjya9pik27hWlQZ/dlsH8vQ+2KxVP2qOyOGU6anE57xbpEt/am/to9txbnEh3fxdj+PSuSrhFD3up52LpRUeZbmTaQQ6xpy6nCdkittlQdY27/ga53NfZ3R5ixKrx5oqzW5raJb7ioXJnAKyK/IZf/rdvWh4iVjpoN1H7w6CFEvhb5IdXxu9OehopyfNcxmv3tj3D4cWl1H4NnntbaIzRFZIUnAKmRWyNwP8ACT1rkzfERpYWTPbhScqTPV9HeVNHtorlVEqwASqgwqt3AHYA9B6V+H5nOMsXJx2Z6FP3aCiyaB90nTp1zXmsUdyeQfusH0pSZ0TV4hAgJz196UVciNooczEPg9KuNkVB3ZHdzbY+SOBQpJMira4tlKrgMv48Url0k2ixIQsTtu4xS5rM3a90w9OfzNWOBkb66oytA8uK/fmzJ95ua55yuehJ2RUXe0/PrTi7Iwskyww2pj880m2xppsiYtszUyZcnaOhmyNI8hGO/FaQaSOdx1uOkb93g1nL4h3VykVYScnvW0Niamw9sc1Mr3Jv7lioWUyZzzWsYO2pz+/sjs/g74g8WaN4qtpfCtiZ5PNUMDamRRk98CuihL2U00zmr0VUi+Y/XT9jv4U+M/FGm2Pizxp4rtUlSFXjtim4RjHUK3Q19tgYOcVKTufHY1yb5UtD9APCVv5XhW0jRzJsjwGbjNejKcbaHDGLvqWIPKZmHQytzUR7nVO8V6FHUWgRzED5KAHPHL47VNSRvRT5bszNflt4bFr+5R1xH+6j68+tSn7o4+9Oy2OP8QrLp+iF0QwJdDBJABcnofwpNqK8wuvaaO55/wCP7C006W38M21x5rQW7STSIudgbqSfWlJSclFGbu5czPMUm0S5sb7QhfvHCjKJfNXBILfepx5YRZdTlT0PMfH/AIelXTba38O2wkuYdQkE0XQtEGycf8B70lZmdm5Hlvxs8FfYPF9tqvlRwwXNuWRVOQrf7Xp0qZRu7jipcp8nftGfD4WWvXHifw2oVpCVu7QdMg/yxzWM4a+6PmadjyWaxje0kn8raCvKYxzXPOEky5NI4w7vPdn6hj1qFsdFK1kcpLJ5kj5OMua+dxLSrs96iuSKIOQxBP0rnnqjqtciuGwhI61nHc2ijHu5epJ71o1ocOJtZnSyqWiyB/DWispHfiI3bG28gBHIyKpvQ5Ke9kX7U84B69656ljs5eaOpcjG2Tp3796iLFTXLItM4WLJ9OaHKz0HVQy1cSOAvbnNVJrlCmu5fgz1zg4rJS0NnFNkz7JBskAbI6EVUW73QrJGx4Ij1DS9UXXdFjENysscCam12wa2L5HyLnLNjOAK6qMpqDfM90txScY0nJR2Ptb/AIJ7/DHwx4q8fPrrahcTIZFtL26mu3d5ZFbIjcsx3SnO4wx4xkbm4xXuZbThCvzTk3fufLZniOVJJux+y/wJhsfh14VtdPuXttLsSOGvlSO4nY9PlXAUDoOp+pyT9ZKrSp/Cl8j42NCq48rlKbu9Xa+r20SWmy0vZatu7PUWeOVRJCcg8hh3FaRfNqQoOEmmMfyIv3s54Xpmm2r3ZpFORnXl5LrLmzjk8q3X/WN3Yeg9KwdVzlZbGsaSpLm3Zg6/4kvdVuB4O8FxbQFxc3e35Il+vrSb9p7sTeFDlXtKjOa+IHhXSdA0eOzFqZ5rghLa3ViZLuU929FHWuatSUbJBGq3fseW/Gz4GweGdFjvdfu0kupoy8qL9xB/dA/SonQjTj725th63OtD5fufgoviM6x8XNds8okf2TQYmTHkrzucccFv8K4J024vs327ee/y/wCAd0oRclZnyjrnwli1u61jUp7bCtI8iEDJIEgUZ/EGuL2cYpnY4xjFI831r4RQxXl/o13blZEfz7VynDI1c/sbApOWh5te+CP+EN1i48O6pH5dleSbrKd1z5cv90ntzWU1yG1FuMjE8S6IfC9w08kH+jXgCXcf91+zD2Nc8lK+h3pOSuzNSF5IHguFR5oBiCX/AJ7R+h9xW1KE2veLm4qGhNZw+RCbiCykkgJG9c5MZ9/Qe9dMYqK0OfS2p0WgvDdHJyJE4DMcOvsfUVrB3kXTlY7Xwt5izImQGJ6g8H2r0aXwndF3RWtZriC8vkt5WiZZSybm4B9ff6VniLLY7aKa3PPviHImo6m41bSwjKMtNAMY9G+leFVqc87NG0Xd6nluuzJa3RUjcN2DnvXPFL2iSVzhxTadxum6hFcriMjg8isqkXHc3oSUojdZvhDEVYY470qcLy0OetUVKRpfD6NpN0xPWlVbjGz3OijFNczO/tsAD6V59TU6201oWvLXHTj1qIlwSRHMQAVA4x2olK4VHYrofm3Y70k2ODuhtzyNrcVpZGc20UriFHQqVHTvSjeMrgvejZnOazoTqxntSR64ruVWL+I46lBR95FfTNYFs/2W+cL7vwKwlDmldbGEcQ78rPcPhb+znqtn4Lt/2jvjda3ehfDuO4Q2LNAy3viaUMMWtkmMhGOFe6YCKMHqzYQ+/luS4irSliZxtCGr01ZdHnxeJeFw7vNrfpH1Z95+DNN8T67deFPgDoXwFh+G+i+N/EB8a+M/DuiXrvb2ljAqCxsXcAKZJWXz5AAMhl4GcV9VwNkTr8STx1ROKdpW2W2it0/A+gyDL6WDqutOp7R0YtKTt8T3a7+p9G+P9cstMsLjU7mOWKKNdkiod7MQOEAAr+hcKlNpR3Pew1Kc5csXucJoDeMrzw1dMwfTX1CNoxsTH2O1JyTuHLSH8+fSvRqzpKrG+rRpVwlNVbt81jm/iD4j0PwZ4JvNbuVEawWIit1d/nMQzxn1PU/U1pJyaOGrVknyrY4bwT4u1i5/ZzHjHUJ5li1bzJrt5piJJQAyxQxkcxRhTjj0+mJpUISrt/dbTfd+txUufm5222vu/wCCeIwal4t+OWm+J/i14jVNN0HRCmlae1sxbyYyG824bHIcgOF6YBrulFRqLmdk0Y05TrYl83R9T2D4nfEi8+Ff7E+jeFfAFsbXUNdtA9laqMNFHLhIARzg4O4nrk+wFZ4Kn9ZxrrX0joj0KdKUKsqvyOY/aD8PD9m/9jHwh+zJ4GUvrXijyptZuScyTz3DgFmPr8zNk9K3y6jXxuOnUjq78sf13PKpzqTrTqS2Rw/7RvhnRrj4e+Afh/awJ/aN/IplKNuc2dvIxUtjpGCpYjjcXHYVFGjTqVJxk/hdyqkMTOVnflOu+EHizw9+1X8MJfCV9NDDqHw/SSy1W3nwZri3MLCKZWB+Undk9eeOK46+IrYbF+zptcrfvKzu+1ndW+5/qd0IUJUJRlqz5e/Z8+H3wfsf2vfE/wAL/F2va5pug+I/BF7b694i0i4iUDT1XMkKwSIQ0jnADlgF3EdSDX4F49xxiy7C4rDwUpwnG0Zd27J6bW369ND4rN8JWlVTjK0Nb2Wrs+/bdPTro0ZX/BMXwD4Xv734ntpXhe5j8NadY6hFZaZeXYeXZHG2P3oUB2J+YcYOcCvueCKOLw2SxqV3+8bV7Lv5f13KyrmWXJRTSvoeA6TaaN8QfFWrXWl25gsdS1W6tTFKuCm9fl4/3h0969qveUpu250YelG0mtbnJfDzSbvwpeXVu1os8dncPDeWhHE8J5PHtyR6EV5WHjaXkgpw5YOJz/iyPQ7DxvJ4dETQidCAGY4lhPKsD6rnpUYitT9vyM8qvVpOuqOz/M4HU9FufC3ix/KUCGZisqkfLkdD+NeFiaTpYi62Z87Uws8PjXJbSNjSLZIXDEbRjKjGeP4l96FTdrs93DUbIa9nFFrzqjBELjtkEf8A1qdKHNM5akLVz3/4dabeS+BJXsITLcRJ5nkjgzIOoU+uOleHxK3DCNJ7nuRX+znbaDqNprujQ6pp8u6Nk2sW6hhwQ3oRX41jY8tQnDVfawt2LED+XNjj6VyJXN07S1LkzZjDDpinKJ2aSiFsSRyPpWbTiZS0ERHklwc9fSlewU20xL+2k8vd/SkpK5clzdA0u1K8MMmnZsm8ouxeuoR9nckfw1L0Zsr2Of0hV/tYj/arsirwOCaftdDelCgHAx71zzjZnXb3blAKRKBz161rFKxloySViy8+lJ2Q4qzI5TtjIOKxk9Rt3KOTuL7a0gu5nPREEsuAR/KqktDLXcg3BjnHPpTgrI1l8JBLK5cqp49a1SVrnPdkRQls5wPepcmxNxgd98BNW18+NbTRfDevanaSXNwokNjdCJHGejGunC0XVqpXOGrU0Z+zv7J1r4y0fwBbi+trpHaFVW6ecSM34kdK/QsJQ9nRSZ81iVBM+zPBTXMvgy0acgt5Qy3U1ckoqxx1FGNVWLdrLHvVlGPmxkmpg7mdROzKviCRLd1umt94RTgleM/WlUjc2wycoNGPqiqY47/U1Vj/AAoGxx61lzWVmVZ7I43VFuPEeuR6t4mnEVhZEtBGGxzz1xWfNd++KSVOFoq7Z5/Y31pr2u6t4omhRrS2TyLGAvkSdRn1P1PpU4eo5VHNjp4b2cIwXRdzznxlBay3FzZ2tuA91bhpwi/NGd3Bz6YrWclLQUo2sc54T8NldfvL3xjeLtRm+zSngEAYrOleN7lSjZHB/G+08N+JNfs9Os5II4hGImZGBLdeGA6deDVynd2RldnyT+0B4UOn67c6NLcu11GGEZBGWQcj2OPQ0Qd2VBa33PA/Eek3NhbTNdRYV+pUYGfWs6sbsc9UeYzALNM3puOc5rmlZROihukcXIX+dh/ePJr5StK9dn0tKPuIYmRyTyaxm2zXm1sR3eCuc96UGawMW/BDZNapnn4rW51dt+/hABHTilPSZ6dRxlNplU28sdxuJOM9MVpfmic8oOnqjUsCFQHNYODHGrJlkOWYHP0qnCy0OiNlqWpiDCV5wetYJ+8VuJZJg56elW1damc/dehdjkIIx1pKKTKjO6sSpxyDVt2Whd1FXOq+EFv4B1Px9pVh431qezQ38T+bHC0iJGuWcsqAs5IG1UA5LdRirwdP2tbWVvxOWrUhKm43aZ+mn/BOWx8D+LfiWvxH+G3guziGnxfYrSXVblN1gAcDybSMlLd2xlnkZ5nIJIUcV9tg6Srq9lY8DF04ezvN6n6S/Drws8mqx6z4tuhNOrH5NQcHYM8MBnAJ6gdh+Ir1JQhFJHgJzdC8otSTf52T07rXv3s9D1ZJEdd8LKyEfKV5FbxcXG6PKbanqUtUu4S4hdWJPXArKo0dVGEmrmVeQ6rqgNpbKtrbfxyk/MwrmUpX93Q0hyQlrqyr4WdJdRlh09Fj02wBMkueZ5P/AK1VRqXm0tka4lOMUn8T/AyfCR/4T/4q3fiK6jP2fQ4/Kt1JypkYdfqB/OtIS9rU5l0MsTH2OGUe55/+1JqF1resxeFbeRRJeyrGoXnavp9TXFXl7ary3t/W3zLw9PlpKRwfx50rTPC3w/n8N2mES0tfmTGBuC8/596mUVCmzppuTfkfI3gXwAniTwfqutWkfmRCKR328gZk4H51yU4RnDmO2pJpWPNPiN4bguTZaxa2uPLVQ8qJ99CdpB+hrnq2S0Lg9dDjfiT8KdL8S6Rf6XqZ25g2q4UZjfqj/wD1655U4zjqdClZXR4RpECatb3ngLxgHe90xvKZwoZtuflkxjlT39K50nTfKdEK03omcze+FoNGmfR9TDKkhP2W57A+me1bJycSk3a7I7KGexLCVwssShWkCbgy/wC2O49xWcXJPUdlYv2mm29wwv4JER8g7ojlc+h9q6Ias0gjsPCyl5kUoNysN4HfnrXp0tYnfBNMqSyXC6jeGzu1ikZzhJlASUenNcmKcYt3PSimo6nB+OJrN3m+02LQzKv8DkxZ9Rgd68KvVSbaJcopXPL9cso74iMRgehziuONWXPchxdXRlTTNPisDkg7h3NXWcqiTuZQg6UrGJ4yvpvtAij4+bFaYd21OTFQfNqd38ObYR6WryAZK8GuKrKUqjud9GcVSsdlaElVJ64rlqPU6FexdjUBOT1FS9jW9iJzuOAOe1JJtjcbogbCP07+laqKRnB2ZDdMTkE/gKbuVUtcqsx6n14oSHoo6Fe6iaRSQOvU4q1YyknI679m7xR+z98NPiFP8Qvj18Hr3x2umWRl8OeGUu1gsLrUAw2G+b77QL94onLHg8Zr08urYbD1earG9tkctXCKtScac+SXe19PLzOtn/be+PHif423vx08XXOj6tq19ZCyh0zVNIjm0ywtlIMMNvat+7jjiKqUUDAKgnJJz6dLOsTSxUq0Hq1ZLojqyuf9lU5U4Run33v3utbn0d/wTM+IvxY+NP7WOr/ED4j+NdQ1y6GkS3OpXl9MzIjsVUFR91eBgKBgAADpiv0Hw2r4vF43EyqO6sr+tz0sNi6kaTpR0hbZbH2N460y18T+JbWCA5hjmMzgF1CydAzkDBYDGFNftWFlRwilaNnLfTfZX/TvZdke7QnUjR5r6mV8QtWvbOD/AIRmS8aO2OQR5hSRlHLOxGME9AOM5rpp0KOJjLzXRtfc1qvVO5UJ2fM92fNX7bXjWXWYrDwX4Xs1NzrNzb6bbWLzYLea6q33cHhSSQOg/Gt5Xo0uR6tnHUppNwV7s6D9qvUtL8AfCyx+Gnh6A2MOmWiWZwVLMdi7mUHPOcgcZyPxr0ctwtVUeZs9PB4epTw2rvc+e/jf4o1X4d/BXTvgD4Ms7y2vPFfjJYdfWefdIITsZ0bgZO3cCSODms8V7T3E9ZPRaaeZxYh8knKDbk9nufQfxQn8M3t3Z6veafLFaWFtAwtpJeF2xpHBCpOAvOWOO5A70qU5YKg1LVpPbqzqoRrToOE5XZW/au05PG3x7+1zxg2nhbw7FcxxhcxwkRqF9sgv+ZFcuDxMqWCT2u3+JzUKTw2AXeTZ4r438br4p+I/iL4laZcJLp+g2DeHdBtoY8jeIgJJOmDjceemV+lduFwqlKMlO/M7u19O1yoVXG8bdNzifhlqniP4G/trLF4dv47jTNf8LJaXlldr8kz+WTgleAcknvRioQqVtev6HmR9oscnJe6+w/4GXPhTXtX+LH7R3jSztNKsPh14ZvFv4pHF1b6kzrJGLW4iI3ASMUA2FOVXJIyp/AvGPMeapg8vjFSnUkrau6tJO/rb8PPVeNmuIw9aSg5SjyXelveTTVndPS7T92zulra6dX/gj14wuPiP8O/GfhjVbGOC91HTJ7iEW642RgZCIO6qoCgdgMV+q5FJvLKbm7tWWuvSy+4WWv2+CjzX0aPFfDXw+t28S+INImhSC+07WGa4UptzMJSyPjsHU49MkVriadqsonrqhCldWOb8e+FtJ0v4ga3NbI0FpdSpLHI+VMTEcgn+HqTn2rz5UIQi2efVSU3JHkf7R3hA2+k22sW7L9v0iQL8p+/FwcqR95ST26ZweleDmmHU4KrB6o+dzqjJ041orWLv8jiPFs0Gr+E7HxPCGJLBZWB+6ePzrGVKWJoqoKq4YjDRqpDokCaS0+zMvlBkcD+Neen0pVaLVPQ7aSlOh7pAl0b3UBdsgAfa4ArzleD0PKk5KrY+kfhnBNa+ELW+tomLQ/OVU8lOOR7ivlOK60o0Fc+goTTpI6DR9OisdWn1XSo1Wy1TL3ECcCGcfxAdgw6j1r85zGnCVJVV1NKOFVOq5rZkt5uhcPjgV48bJIVaPK9C3bXAuIMZGAKo0oybViSAiM7SaymXNdSWB/m345zwazSuTTSZNcusoCYz6ZoUWtzR+4ri2gVDnA9xV30HG09US3jD7Mw77azteRc1yxOc0pR/apx/eruhpE82Dcqhuz5HK9+5rCpqd0k1AoEsre+eaqKaRzU7X1HkqF46e9RO5pJohnfdGwyOnFZWdyYu7KZcjB/KuhLQzqMrOy5OePWiSbFTV0QklT6GmlZFytYgkkUPnuetUtTkd72Rc8Oz+F7bXrW58Y6feXWmJKDdW9jKEkde4BOcVceVS1F7JdT2rwj8dv2aPCvim2n8NeEr/T9PEq5tGi8yZv8AtoOa6aFenTqJtDq06Lp2R+oX7FvxdufiL4bhurDT5LfTTEpsrJH3yMPV/T6V99hKjr0U0fG42tGMmj728Pfu/CNsXQKRCOi4wcVo42jqeW6jnV0GW88e0TSdQcjIrKLtudEk72Qy+mN3ahrsDaGyq56+laTfu6jp2pSstznNR+33mo7VsmlSM5k+X5R7e9cm8zoSjGK1OV8bNaXaym8k2Rt8hiTjcM9AKyqOLdgXkcR4x1DSbbWdO8LaREiQcMIpIxmQ1UZWmoouMZSvI4fVdMlm8X3ySq32t4iJMLhQoHA47Vry/vLMirZJGHotzo7aTd6fqczSi1dkMTKAynseaqMUFk4nmHivwXp2rarqV9phdZotplTGC6Hr7ZpOMVIxlFo+Y/2ovDunanq4SOZ5THGf3xyHT0zjrVXitgimj518c2dzpWnXFpcysxwMg45HrWUle4SPIriLZBcusYGFbAbqK46ySizegnzo4R3LgljySa+QqfxGz6mm7QRGchcUaWBayILmT5BmktDoiZF4d2c1TRxYlaNHS2shhC57DmrlC9S511vdm2XI0S6XHf1rRLlRUZKroOiH2RsOCMetYzknsZVI8jLFrPHK4IIz2NLm901o3bLkzlY+RXP10NG0mLaHIO3tWsmlEl6lmBsuST6VlFvmIi+VllTn7mOlW7WNFFz3Oz+EviD/AIRppYvDepaboWq3+6C88UandSMILQj54kiVTgsMgsPmOcAjmu/BY9YaLjFJN9fIc8LzK6Z9Z/s5ftn2Pg7UNB+FnwWOrzpbzbLnxbdaUCbZXIBSxsUIhgJI/wBZIxkb7zNX0WHzpV5QoxT5U97fkv6ueRisPThG9R2P1K+A97P4m0W01bUvEk16AoN3JcTnhyOQgH+tfnGQSBzjpXu8jdO8j42tXbumfT2gPB/YlstnbSQxCIbY5AQwHvmt6NlTPKmnz7jdXeJY8ZIJ7qOawxE1ax14W7Of1i31S8g+w2crwRuR5jtnc/0rhd5LQ9SnGlH3nuF/b/8ACO+FWtox5KCMs5b07k+5rZXpwscvNGpX5iv8IbWTRfh9JrO0yTX1xJPjGCcnCj8gK6KLjChcnGN1sQodjymWKbW/iYdd1CJZI9Lk853zwpGSR7npXFGF566rudjUlT5Yo8u/aXn1bxjp97ZRhUS8jErODyAXII/LFZ1oqZ0Yegk1c8svfCMvgLw1JZaJF5VpLZq06YwHyQeAK5uWMNIm9WMWeX+KPDY8LW8N1qsWbRryS2unA4QSAEP+BNTKFNLVhBrY53x74WtrfTTqcjrLFc6e0czRnpIo4YfzrGfKl7pfMj4/+N/g/XbfXrT4geGr82l3EyoLkEmOZOflk9PxrnnRc1zLobckm7ostaJ4z8NHU9RskjuUUrPCTgFh+hB7EVMZJxOtXhCxxrwpp0gkeSY25OAQMvCfT3Ws5XiQtWaOm6RcQzebBsKt8wlRfvD3AroopN3OqCs1c6bw6pE8Y27Srche9epDSJ2RZk3ckc9xexyzxKrZ4lclD9dvIrzsTKMZM74NWvc828aW9rHNJcNb2zD7p8u4Zj9cZ6V4OIcpNuwVYSlqzjLp1kfgZwPSuaEHe7FFqxBIoEZb8qJzdrES1Oe1e0a+1Ddj7rDrW9FtRsznqQ9od54QIhsljH9zoKyqxle5VGNtzqLEMyKW9K45LU9CMdDQRsR5IOfSspblN2IGVgST69atWSNFqtClNOyyHb696pMwafNqMuHOQzDtzSUkaTs4lYyJxz+FO+hCuKAQCuOo4qHK7HN2WhClsWlOfWrbaWhndI6DwP8AD/xj4+1tPDvgTwjqGtahIMpZaXYvcSkeu1ATj3rpwlDE4qfJRjdmc5yfQ/SP9gP9n/xN+zX8JrzUPHHg7U9G8SeJruOCOHW7JYJmTbu+VdxYKvJ5xnHSv6K4Ay2WAyeUqkbS3l+h7eWUabwntHq1q7a26H0BpGteFI9Ih1O01MX9qZ3WGZSCplAO5/fG0j8K+lqYlyrRTdnJ2X3N2+5M9Ne1mrxVj568X/FKPxj+07bfDy5SU6dFE08Vw7IqN82GYrnLN7ZwM/jX12FpyoYKU47pHRyypUuaT1Z5qDYeMP28Dr+rxyz6R4KjU6Tbrbl3nnlfYJiiZ2og6ueFDZJwM1xV66eIpRqac0fxHgqUquKsnryt6tLZX69ey3b0Wpn/ALVvjSz1vxVNqct5DJBbsGkiDD5CZFVVCn7zliORnA/Ovr8HG2F9n2OzEYiFCkk9Dzjx4ttca23xl1S1M8ulXwMcTjd5t27DLDONxCuq89zxXFUk5u9m+XyMqdC0U3szvv2ofEtx4v8AD8HhfQddNs620VzeQvGkcdnKiblIO75yi4Oe7NgDjnmhh/aturt6mFWusJC6j8zhvhB+0p8TP2iR4ktLTwjbx+G/DEFtpdx4xik8s6vOAGkjYyAAsAOOx2jkYr5/BY2FfOqtCUrRjsr/AH6ep5UKssdipN35I7b7+SIfiJ4StvB+t33hRdUNquraBcanLbJIdlhAoJhhJ6ec5PmMR13DngAfQYTE0niqkYKW3y0/D9fuR6kVKtRTilZdX1/4HQ8z1TU7jxB4jg8aiWSWXSrTTGjkgyuws7Bt3OScH8q7J06dd31urHE1KVrHB/EHQvizpP7O1/otnFp2maH8c/Hsl1LdCRhcXljp0oUjav8AAZGJJ9RX4ZnGBwvEfiHFpX+rR36Xk/8AJHyGZ4SviMwUY3s9z0n/AIJy32mfs/fHDRtOaAW1vJqZ07UDM+NqzwqynHYZDc/h1r9JwmHjRwsqUFtqe3h6Hs8NOEFsVf2tIW+BH7aGtaTpOnpe6ZrELyXUezBkiQZYgY6qnIrWrKL5aj3a/IbhWqU4zn1OT+Jup/C34reJLnTtHuo7Ca/0pI7y3vZgAMxq0dwjYG5CxZfVc/N3rxq9Xn5lcurSpyptJ7I+QfiBL420LWZPh/4hvXmSwkeKzMxyUGclcnqD6dK+frOqm4PY+TxPtlUdKWzM3wrGn/CMaj4eu0HkyjA5z5TdVP8AStcE3DDuDN6dF08ucGuozTtVS60CWydMmPAbH3tw4P1GKSftYO5WBrQdBxKnh1EZhbMQJI35JGQBXnSouLOWGGlKd33Pqn4VgJ4Ks2H30LAkD2H6Gvzjjqs06SR7lOj7Kmjok2LkxoFzyQBjNfmtWpKe7Gpu9itfxiRCcdO9RF2NJx5omdp9/Jb3Plds81pzdGcdNuEzZXDrvQ9RUT1O63Mh0J+bHasb2MovlYsvmgDjgUcybLklIsWKZALdKlybZVOSTsSX/FuwP93tWsUVWfuHP6Sd2rkA/wAVdUfhPOpfxDcnbAx7VjM9CfwGc0h83nrn1pxOOKdxzthB2rOTNJ6IhdhtPH51C3JgUpSQvBroTRFZa3K+ctx+VUKk+g1lJGAOaynI1exTnQpLu7VUW5aHK7qVxwlxwDxVciW7BNyZr+DLPVLnX7WLSbA3UxmXbH5W7PNXS0qR5dTHENcjP2c/4Jv+CPFNj8MbS6vdAbSpbjYJHlB8x19Pm6V9/gq83RVlY+IxVGUqrZ+gWnMIvDsMS5+WIAhh149a6nKUo6nKqXLXM22uEgR/PBPz8A5rOGj1Ozlu9CPU7meRQkZwDwNxxirqXauVTilJ3Ma4UmCS20S+kyAWuJ2bjHcVzJq+jHJu95I4bxcLq8162tdKiSe6ZcncuBGPX3qJQblZBG7jZ7HI+MoJ9I16ze3iW41IsBI7kYT6VfMoTSS1OmlC1J32OL8Za/qVje6hqVjOJLxWRZncDYy5wVHv1qKlWak0jKcJNIwrbR4zFqEmtxpMtzcAO0I+5wCCf6VpTm1oypJQV0cv440QaRdi5F3OIVgGTDjdKvvjk/zFbSsjmnJWPl/492AufE8+pRahLHbiPaGdCEGf6VDklsZqpOWlj5r+M1mlnamKWNi4Q4kHKsvqD/SpcopGjaSPFL1R/Z92/J/dt83euWouZM6MPrUSPOEORj3618hVSU2fSbWEZsZx61LtyhfUr3LAj5elSjoi9TKvE/vHnNWjgxTbudMihowcduK0bXMelWjzNjrWdoJckjk1V04nHFunM0mjW8g+Xriudtpux3XjUQlhEITtb8yKlxbMtYTLsx3KMHmiMUmJN82o+0+XovXrTnFM1abV0WY1w/y8D1qNETF66lmEqoGeeM/SsW22auVibT9H1LxPq1v4e0aBZbq7kEcKyTrGoJ7s7EKoHUkkACtqFKVWXKkZ1KsuXRH03+zFqf7Pvwc8RaX4ZsviU3izxDa3Xm6p9ihdvD+nSkY+eX/l4ZTgEqACRgFh1+nwVbDYJqkrtvp0ufO4pYzFaT+Fa2P2Z/YzgvPG/gWz8VBpYhMcw3NxbiNivTMSZ+QHnaAMAcnJr6q8alG6bUr7W0+8+blHku+h9LafdJcWarCjgRnyyz9Wx3qqT0aZwVoqLv3H3jlcEQbzng+lTVUX0uKkn3sUtUv1jXyrUp55H3z/AA/SuZtLbc7aUG/j2OW8cWQFgF1OeSQuM+SG+aU9hjsKyqRXVnVQtL4VZB4dvNUtPBU+is6x3iRM+ztbofur7ECqjNRo8oYilGVdSR53Np2naLZ3OloknmamzJb75PmkUnJb6/LUc0Y6LqVTqNzt2OU8QeDtMfT55tRYtEZvKBJ6Iq5yfxHXpUThpub+1adonllxpE3xDsJrKGBkdCbayMeeQOc9uMA81hBQe5Tk4u7OI8feEbLV9J1LQ7aMysrpDIMfK79M/l3rKolU2NITvqkec6NpMUfhC/8ACOq27y/2bKCJnHzKR1B9RjIopUVGLuatRck0fOvxO/se2/tXw7JaJd6ereTcLEmXjDA7JB7gnBFclZ3vGLOuM0uh5/pPw21XQfDbW0cMxV7Usqht22QHh1B6Bh1HrmppUZRTuU5pnFadaLqEc1okUuYZCJV3ZZG78HtUcuti1JSWhc03S57XeI5jtUgqynH5g/dNb0YWeh0013Oi8Oxs8ocZIDdxzXpJNQOuKVzldd021eac3FntZtwDmfYT7g4NeRi5xUnc9KnFRPLfEVjcWN1JLIuEY8YlDfyrwa0ua9hSpycr9DBaMu53KRz+dZKokiJWTI7tcJgHtUKSkzOabRmwwAXHmkDk966E+xhTdpanU+GjmMAHnHBqKsrI6YrU66zXYucc4FcUnc617sS1kn5e3vWO5DdxHIA6U9S4Np2KN5HyZAvHtWsVoFRXVyvIxlTaRgds1ErJkQkVhEFfDevFXbmiU9GTqo2gheOxrJqzF01AIpO0Nz7Vt0Iik2amg614g8M6hHrPhvXr7TLuI/Jd6dcvFIB6blIp0MXicHV56EnF+R1Jxhqj7/8A+CdkPjL4ofDPx14z1XWtQ1X7DpSvoaarr8d5di8jUhvk4eIFWO3KjIJwWwTX7fwXxBjnkGJcp3bv112v/lrazfoR9dxOGwsYTkn7RtNxVla+ml3r67721Q//AIJ5eOb/AFD4Y+OvCnivxNFeT+FvF18LdPKcGCO7AmiiO8Ah08xk4yPc9a+i4DzBZ1go1K69+nJrWzd9VfyutO9n8jvyPEVq/PTqRas2vVLZ6PZ7mDqHhrW7v47XvxIKn7BpGlbIlMZCyOxztJx14/DNfrXMlCyeh72Lw79mpJ7kv7Knxh8O638evi98a9S8JPpHh/wD4Nmsdb1W4didRvLtl8qD52CbIghYBQGJk5J4r8o4pxVetxJg8JTb0d7el/n1/D1Pk8RVr18xp0IqzT31u/6/XU8B8SXj/F3xJpvxEFvJCJFW40ywmwG8sllSWReAXcsSo7DHYV+y4GXOo1G7WSaPr6MXOcfa+nkdD+1VJp3h7wvNo9nGmnw2tgH0+WNgz3FyApaVfQl+A3YfhVzxPtaclJ6v+kaVKs6VK6Tev4HC/Ef4qSfE74H6vLoGnyWkvhXQ2ivpJFAkup8/vCxxyeAcdhiuZ0JVYzlzP/hjyqjUoOcr+h3t9470/wCMf7P1r8BPD3g/QH+JOjaOl94U0SJXsrXxbZuoYzbotqi8g5YqTiRRwM1+QZxSxXBvECzOcnVw1bRt/Yfd22sclBYyjiEk3yy1Wv4HkWt+PdX8U/De8WTWzqOs+GbN9N1nVpbWaEz3DgeYNsypIAj4RdyAYBA7Gv2jCVsLUwcpYepGcXtON7PRd7P8D0qMq2KpXcbW3RQ8H6JZ6xoXi3U/tyLZWU0BMglIEkcScH3ySCfbIqacksJUqPt08kehSjCOFUktUupzHwc07WPi2LHxH448yQ+F/Bsn/CLWMc5eC2gSfzS4yCNzsWJx149K+O4ewOFiq2KkveqPdM+SwtOpOrKvNbnYfA+O71TxLq2v67MHuP8AiWpa2oHKyq29jk9wpYk9sj3r1r8s5WTsz0ML7t4ln/goxqqax44tfiRZxtbyf2W1wsvOdkZxu9cMox759jXn4m/1e7duU5MyrKhRt0Wp8ueObnw34x+H1v8AEXwhrQkewmRLq2LbZYoJVO+HjG5AylxnpuI4AArxcTOnUp80Hc8SWJji6anSW255d461G8nvPLvNT+2SJL5YuCcttwCjEjjocV5qblLlOTExmrO9yhaahYyWl0lyPKuAu24jHTrww9u9dM5RpwuU68VQcWZHhK6lmupBBIXeRztQk8ken1FeTTraNnn5TCV5Tlsbmk29uutr5IIBk6HuPQ0pOU02j1Z1VGp7p9S+AkMPgyxYKAhB24+nSvyjjdtYuEX0R6CnzRTNgPnBGeOua/Pp7kJXYrIrRk+3NZ8zN4voYuoWxhm81FGFNbRd0c9eFndGlpt4JYguB0qkh0al1YmjLLKSD161jUSSKkveLT4aMH8qxW5aaJLIEcEZ9eK2shwjqLqLf6OwJ/hq1oXUV4nOaO2dZYf7VdS+A86l/FN+U8Enp3rlm9Tvk9ChtzNn34pK7Rg1ZXHzDjao6dqlprUhtyK0xwuCT7Gqii6asVLxcIT29KE3czra7FSESOQM/pWzehEXYcfl4/PPaspG71RUustJtA+hq6W5zS3EiUZ+Y9a1krmTm+h6Z+zh4O+PXi3xpaW/wh0ebDTqr3ws96xnPqa9DL8FOpNNbGU+VpuXQ/af9lr4MeMPBHhGy1D4s/EW7vL0bCqSTqgLYHAReB6etfa0qMKCtzXPk8TiFKUrK2p9eWMm3w9Ai8fuxtz6Y/WtZSvC5xtr2tzLguN8zuwLBD0rmg/eudNkloQ6rIl0nn3EjKirgIDjdTqy5t9i43iuVGNczokot7DTpHRQMxA5X6k1kleRDi1q2YUPmR6nqep3Vkn2uZQkaKuQiA859OKu1ro1n7sUkjhtUvYtZ+JU89hYuXtYwuWUMoGOo7ZrKMf3zY7yVI5XxnBZal4lm0Bhiz2Ft5ULtkHI/HIqeXmqWE3OnG7MXULmysYb2aGzk8zhZGLfhke9dMIXbMpXmkcR8S9E8WeINK8+1v2msZI1DhV2OvP8LdQfatpwvHVmbhb4jxf4m+CkttE1HS7xpZQkOQtywDgkdR2YGs1ZINIO58UfF2w17R7yezv12QNzDFjjHtnpXNUk3KxnKSnueQa1u+wXYQbR5ZxXNNtRfodeHSVRanmWW5r5Oo7zdz6NO6GsxzzUPYpbleVs5zxzTibwM68wQTnimzkxKVmdRCu6EL7UTdqh6E5WqsbLAT0/HmqTTM6kFNXRNpl60L+S5GP51ryx5djnp1HTnZmqqRyATKOorN3SPQtGaugmYrkJ/KsFJt3ZjKPUmtshee9TKbexakuWxLCziQ5/lUsz1uTmRl+UGqhBNal6S2I7yzS9t/IljDBvlORxRKTi/ddi7RS1PtH/AIJ+/BTwQ3ibSNF8KjxBrtnFdR3N3f8AiKH7Ho1tckgOLW0U5uZh0EjYPByvr9Bl2H9rXi4Kz0u+9jxcfi60abg2+XpbuftX4X13wh8NPBtppBmntL+WPaqSKHkCHpgcgE8YH0zzxX29RRprc+StVrq9rev/AAO+/wDkeo+DWuJ/DcN3PayQ+b86JL97B6ZrKhdtnDiowjPzNG6mjS3PmsQOmR1rao4xptszpXclYx7u/tbCFpLOH95jC8ZJY9h715LmorTc9SNOU2ufYzhot1ZRNrutXCG9k/1Zk6QD14zzTVNqPNPc19rGXuU17q/ExpfD1zdaZPPDNI6S7tzsu0SHnLH0FZVLON0aufvpdTy+e31e5+I2naz5X2gaZZyiFJHwjAbckDuRk8+9cyc/bJotQgqTv1ZzvxR8KG/8RagINcnaBYwr20bkrhumR7dCa1q80noyouKgmkeUaj4L8d+Erye+stVkhOmr+6towfLnj59Oc1yqnUve5TcakdTjtPj8V6r4iutMu2WKBEa5shFkByBkqR1OPSrTqwm7lKKklY8+1S2+LfiCPVNY8KXa2qtYtKmntahopxnDMjDkjI/nxVxdSrB8r1NpxjBKLPNfCHwziuYtY1rxGWs7uYh5nVV6j+Eo2Mj3rCFBpvmNZLkicZ+0NbeDLK5i/sLx7c2xktV863aFovLYdGIwTtz/ABLVzlCPUzg5SlqjxF/B92upPrS6is0x4mkjcBvYn1BHeuSTjJ6HdBK2xp/2U67p54tswOPmH3uPUcGuyjZanVSk9jU8LcyjcMYzwK7ZWcTpi7HKat/ZWp3M+marp7XCBmKlZCrL75AIxXg4mMZTfNsdlNzqaHLX/wAC5dU1jyvD/jzw1aW0i7lk1rxPbwBfrk5/rXnSoKbtTdvUVT2lON2zC+IXwkk+HNrFdzfFLwXrbSMQbfw34hW8kj/3gqgAfjXm1qNSk9Wn6MiFVTlZnG3kqmMKDxjrShGT1NG+ZWRmzysr4TIORz610XcWYOFnqdF4TLtGCx4rGpLmsjohNW0O4tVbyg2ecVjJI6I+9EtpD8ocjisuU0UURXEbAcD6GhWuKyUiC5jwmD6cU3K2w5u6M4ZDEY/MUmZqKirkMp+fnr0+taKVkJNyY/JC7B6VWktSmtLD7cbmG8fjionKyshpcup0XgbwX4q+Ini3TvAvgfSHvtW1S5WCytUIG5j3JPCgDJJPAAJPSrwmEr47ERo0VeTM6k+WNz9If2Sf2XfG/wAAr200nwx4i8OfY7eWK71/W7/VcG+lZSsgjjC7vIiBZF/vklvQV+x5bw/mWTYGOHwicpTd5NrT09Ed8KeH/spwnGcqkr6KOi7anaa34a+G/hTxz4m1nwTp5gsNb1NL3V0ICteTrGI1KDsmFXHc1+lcIcMvJcPJ2fNK7+897KMJVo4aKq/G1/XzOA8d2V/Y+GJ1iaezgvpMy27OGK9W5xwTzz2FfeYefNBaON0rp7+jtpdeV/U9LEOMpWWtjzj4Ox6H4++GfjfwrbWtqNCk8SI+pzxKqrfSop/dFsDKgcEjnAIyBkV41XLKFTOljpaySsjyaUKEsUqzWqZ5V8VItNtzqd74KsWOt6jamPTbWRflto0G1rqXA+XPIRQPlGBzzn6eXPVlanpoexCdRNRltqeZ/F/VfiV468I6ba6+8Q1G20aKzkvQmQZXyWwCMfKgUk9z9KzqUf3ai9Gcbk0lCD66k3jDw5rGj/sQ6v4rhsQBfXd3F4h1xmzLNKzArCMDBZsuzHjGFGDk4Uaro0Jwptp228tmZ432bhUcpNzlrr17u5137K/7O2p/E/xT8KNR8YXkgbTo5bosL97d4rWOEvuLqQYwzDHPGK8DiitRp8I1o1qfMnG1mr7/AKnjYvEVIZcpPS2zPQfDX7N4/ac0Lw78fdE/aJ+Dl83iTTry28U6VLqI0nVriJZjGoukllYSvD5eRcAh3AUEEHdX4Hwl4k4fgTFPK5YKo8LC/NO7lu73t2V909NrHdlma4SEI069Kop2T5ormi7ry/U848M/sj+P9E8B+ONM8V6RPp3hvTJylz4lvbiKCzu7Uq2WgcsRLlfulSdxr9d/4ilwZicudHB1ZS9qn7tndX7prT5nbi62DpWowm7y79jkv2bNY0Cb4WSWeiRRlb7wtfQ2106gLBHDLHGpznriTgHruzzg19BlU6ayiCg9E/zufPYatH2Uacry+JrR20a67LfRbvW2zNDS4fD+k+OL6zhvvK+x2dxcCYjm5Kx+Q0gH90SMfruFeisRFX3Wh6MZUY2drO1zx/8A4KG/GLTJNMsPBtlqSXV7d6bZWs8jR/NEvkKzsMdM78/jXzebYi0PZpt3Pns6r86cbaSPj3RbrVPD9ldW1pfY8lDBcQIcCeJjkfXjP6V4MaUqNHTdHztDmw0LQ6FeKRtVluJrfdgkZhkzllAPt1HA/Koouo5czPQoPnTl3K+t3tnO/wBilljeeNPKWTcR5q+9LF10nys8vGVIe09m3qTeFLRFugs0Pl+UeShwFxkgn1rmUbs76C5KWht6BbJe68kLkKPO3Blz83NauUacblUoJzuz6T8Ha3Dpwj8MG6ZQIFZLa4iChzjlom/iPqOtfinGEa+IzSVRfCj0ZV4KSizdWZGbKPnnivjHa5abTJ42BTb6+1Q0dCtoyrfRCRTkd6pS5SasXOOjM6xungudqZHPetFKyOSnHknqbMbEuGHpnIrKep1vVF2NCUGBjjk1mSkSxqYxn86Z0R0RHfrugb6U+Zslyu7HO6KFXVm3H+KuyCbgea7xq6G9PIMkfrWE0zsb90pucPyOp64qorQm9xGYtk57cUpbAokEzZPseopWsiU0mVLx8Lhj25NQtWTNOTK0TMT/ACrZfCZySiwyWYnH1qZmkZXRVuDsbPqOKIbmE1d3EQFznbkntWzny6BCKserfs1eJv2kNU8X2Hw8+C/ie405JrkGWZWCxxLnlia9LLqmKqSUYOyPPzCrFRatqfsD+zZ8FoNLXSLrxz8W9Q8Sa3EyPLGLwtCj4HZflr7alQppXbuz4utVqVN0faiN5WjRx5PyoB+lOo/dsiYJqdjLsJEJmmaPcwPB9a5oas9CUW4qxFdahJP8iWbHHViOM1Uk5dAhDl6lC+WRbaW1F0kW9cssPJY+lS70yuSnF8yW5xV5p6NdFbae8iIB81m/5bE9selZ/FJO5tJ3hexw13ceIpdeu7HSTFbyxQj7SqLyE9SfXFTGM5VGOmoqPM9Tl9dHiOXUJZCI5IPLZbclOVcA4Y+gFNtxmTVSk7FTQra6awmad3luFP8ApMsvKufQYrrpSbRFSUIqyOPez1C5/tK/029uGEUnFvIPlz3B9RVyu27mNRTa1PE/ipBceJ7u+04XsrTlMhPMx5fspPX6Vm+SO5zprqfH/wAZtF8Qae11p+tt5yR/dcj54/qPSudckmTfmex4RrKMthdqV+7GwDAVlWhFRZ30IpTVzzLaxX5hzmvj6ivJ2PorWImII5x7YotoDK02OuPoaR00loZl65AK9/Sm1c48VLRo6i3lGwY7CrnBN3O3EL3myRJMyEMevQUKFlcVKV1YiuUKNvTtyKamloYYinyu6NDR9TMh2Nge1VNJq6NMLV+yzSlZTyq9u1cbi0zraQsRKnJo5EznvaZPF/fI601BRRtON43RIhBbJ/WqREGkvMnRZpSkNpAZJJHCpGoyWJOABSUOaVhqMm7s+5/+CafgSH4Q+NLb4kfG7wNrd9r1gjSeH7HUb3aYTziMQb8JECNxlcqM4Cq2SR9dlqWG5VOWqPGxkHKUkm1G21tPvP0w/Zr+LOp/FA6b8Sdf0Frm9vrlzbQZ3o5DEDZ0+RRjL8jjjrXtRnUxUG4q7PAxNSlShyLorfM+wzK72Uc8qhTsBYDp0rqg1Shdnzc7zdkVdTv4reAIYt7SttRV6msMTWiqaXcdGMnP0KuoRvBHHDawqhxl5Mcp9PeuWUGkkkepSlGd3JmRqttdanMhliZbaPsRy/1705RcrX2OujKFBNJ3bKPjHWIbfSjaySFVSM7IEPLn8qxxEm1YKVPlfM1v1POPB954euvifY6dH5s9ytnN5wlGEQNjPHTsBU4dU51Ei6tKbouXS5x/jjU/EPhf4maZZ6RozznUZJY9RQDiNOofnrWc3OOISiiopOEl0Wxj+O9esr6PUI7oulza3CPbxZ+UIM7gTjJFaN+8xqD5bv8Ar+tDwP4h/FDUtX8R6jpHg/RblvItxPbahEojNnOVwFBON44zj3rlniFKryxO2jShGIeB/BGjab4Uvr7VvEX2TUbmEGWW2nHmB2+8SnbJ9K64qFON3owqO09jzDxR+zvrMet3Hi7StdOsLNEZGsrm9IJXuecbT7c1x1VJu8XdBKrFrlaPHviFomk6lq39k6naalayJgCPUEMixjHVJBghe3WuRtSbTNILS6PM/E3w1g8L3xTTbVgr8qLvLLg9kcHp7U6dKN3qdkWlHUpzWQhtCv2RoWyN8QkyB7r3rsp2NqaaLHheN2Zjg4G7BxjtXTKSUdDshC+55xruuxl77RtcXyVG5ra8VuQe2cdR9K+dxVS02d/tY0lZHl3iC2nimIm1K1vU/hkh6/jxmvJk5Td7mMmpS1MpUWLJUAE+lYztJjjBSegPl1+Y8GtIPQtxUUV51CgSAfTNXFKT1MZy5om34Rm6KfUUpwsiKaakd9aHMYOe3euSWjPUgrRLyNtQcfhWDYmxkilwaRLIJV+XbjJoKSbKU1vtXdj6EVSTFPTQotF++I9+5rW2lgSJBHu6dqS0QPTclVRGeOT6Y61Di5bEc05bH17+x78DfHnwb0e3+KXi+3htNT8VoIPDnh2IJJqF9bEZYyKTmCA8MxGHZVx0Jz+n8K0YcP4OWLqte0qWSXVK61PSyukqcpzrWWlle+h9YWNva/DLwfY2moQR3ereJtUhiE0nyl8vwFU/dVT0UdMZr9/yynChlyk3dWvf1ProSpwvKLaSW3qP+Mvh7UE1Cz0eyZLRpbo/vS5y54wq4GSTjHtzXt5dVUqTm3qZ4STdN1Gmzzr4xeGtQ1nS5tAtNRNqJ4hHcT2pJwSfmAP97/PFbRc5rQ65ypyp6nDeMfEHhX4BfBO08NeEtCma3ScLZaZA+5765kbaGbA5LOxyx9aI4V8spwV+XVveybS+WrSv3aPJk44X3b6N6epz1t4UHw304z+P4YL7XdUT7TrrvyAx5hs48g4UE4I64z6k11xnywTiz1IwfsLJs8b+MGt31jf6jqOovJPZaPaPLDaQ8RLdPkbhgEM2cDdzjGOgq5OfI2mcelNNxRz9to/xSg/ZKuvhTFLdzWlwIpL6RsyKLicSYJ6847+g9qI04Socq+No5HCdem5T37/kb/7NHxF8Qaj4X1LQfFfiN7bxBo+nvpVzKgUeZEVJLcdjlgfrXlY/D/2tk9TAVVd2Zw1Ye2oPCcuyPkTTvB02i/E7UpvF1rba54g1PxNLp+g6Bb6cWa+mM+IYQgYAoS4yuOfpX5rwvj8uyzKsRUxsopUk1JySdlHWzve589lmM+pYadTFO9nyxjqm/wDgdyL9qTwJ8Wfhx8aJ/wBnL4pPNZeJLCeOTV9Gsr1hbWIaESCFIl+RVUOBtXptrv4e4k4a4+yuGMyzDw/eTl7ygoOyumlFWVm9dF00OTGVvrNWnTi25T1+8n+Fa+PtM8N/2PpfiSSCz1BbuzltoiyLAzxhuMdFYoMEdC1e/hcuq0sPy8zWr7/me3luHxqpcsLaEfg34tfHbxn4r1ldW1GKK4RWYJCmWEIKmRRjkqTGMj1qKMq1XEShUkcuEoYuWJmsQ+uhw/x71zUrv4h32keLLySW9t7kTW0rHdlCgAQgdAAMfSuLHTiqzp72OPGzjPEuh22OJ1W+0jTZ3iurcwwTW/lt8uSDwflP17+hrnhOKXvbMyrqjhVeXUPDVtcalJJE1ssXmW5DvGMEYXIbn1pxpKKbRVGo5rY534gWp07XVslhWRSNs5YdGzgkGvn8dUcaqR4eYRjHFRbW5seEdPlLmKGRvKYclhzwP8/WqoqSOqjVm48tjf8AD0DWmuQqUAxN82Dg49a1nBTVjsox98+lI/D2m614etrS+h5EKtFLFw0Z7Mp7Gvx/iurPD5o7arsepWowqwUWMtWv9On+wahJ5zKMx3Cj/WqOpI7MO/r1r5KrRVdOpSXqjBQnSXLL7zSguBKgdG5x61yKxrCavZjndWXg9etZzTRs3czbpVSfzQuMmrh5nNWaTNLT7gyRgenernHQqk7xNW3PyY7Cua1mdNNEjSqq57jtmmo3Lk+XQpXd0pgdd3JHrWsY2Oebd2YGlBzqjHH8VdcVaJwwd61jcnfDn9a55nfJWgV2IbGDj3NSpK5hHcAQPw70nJHRayKsrEtgHHvmk3c5X8RXuznBqYldSqX42gcd810WM6m46Js8npisqgU2VrpPmCgZ5ogxyQseFGT+taSjfYwu9kej/BvQtDk8VaYo+IV7bzTzr5kGnuUAGejMDXdh6cYTT5rHHWw9Spd2P2e/Yg0H+wdI0218LaTLLBJAv2nUL3kufYnrX2uFpNQVtT5zFU4RmfXV9J/oCxyAnC9TxzXTJNROZr3m0Z2iTIq3G1AWB4IHB9KwpqzudOjSFvLm68lBNhM52gHr79elOc2h2hfQyb2yOozfZdMvApZc3FxjDAc8CsHK7F71rs43X7i2srsX9pbTTMuY1aZ9wCjq1UpRSujVU3JWPM7RPHOq+I5F8LzRQaffMz3c8vMzxggYHoOtc3tKnO+TZnVajThrujG8bWV/FfHSYdXeB2B+WNQC8Y5bPuamcKjnqznU1J3KWy8m0lo9Hu7qyjlIVoZT8zHuRXdQajDQ5525znI/CWtGwuD4c8SXcsSZLqWXer+pBz+XFOcZyegTmno0ePfF3S9cspLiwntEn8+ElpCgR93qMHrWbUmrHI4xTufI/wAXCLjTbyHVTNHfwZVfNGN6896UISkyk47o+ddXnZ7G7D4BCMMCssQ4wjJHbh176seXyq3IJ718Y5XbPeSdiGQkLkDpSAgcB1JB70XszWk9DM1AESZ/OtIvQ48Rd3OhgkCx8ntWk5WkeniE3exDFqI8/Z6nqKevKctKdplwl5gMqRn1rK1zqfLNFcu1lOJAe9bwXNoefUTpT0N/Sbxb2DIxwOlZ1IKJ6NKftIll5ArhP1rlbdzOdrlmEq0fXtxUts2i7xsNjc7uenat9oiirPUuKuU3EgjuMVzylJvQt1EkfRf7EXwu+OniOa+s/BWheM1trpCbm30u1U21+vG2GeQssiRkZY5ZgwXAUnp9Hl2CrVaN6l0eDisWnKVn0P19/Yb0PVNH8MaLpPiKVoXjhjivSq/LCRjFtGSowm7jaAScckdK+kwyVJ6XR8/WhUrxvLqfaWoXSWmnNN5DP8vyoozn2rqxE+Wjfc8WjS5qvLexVikBtlvLm2KNjIUjJWnRjempzRFaChJqLKd1fmfgKVB7lefwrOT9o9Drw9K27K0lxJJdhY7ZmSMfffnb/wDXrH3uZnZyQUNdzk/Fdze6vqT2+kl3fbueY7Rs/PtXLKVTnvHodEYrks18jjIbaxuvH+n6N4VdlSI+brF4V5bH8I+p44q6Eb1El8zepeNB3Wr6Fb4ieIbCPxq7JIrScv8AaJUIWJRxtJ9/61VWpCNT3TKjh6ipuUjhvjHY6Rd6ddHRbRGAtj54RhkhiASD2xXLVqOV2mOHNoeZ6N4Bl0FVtYljuhd2weKCXpIVPQt2P1pUlyyOtT5lqaXjf4Y6LPZ3N7NocduLlI1kuIZ8SRN05PVSP1ror041IkObUjxTxLrnj7wftsI7qK7k02dlS7jRXZ4y3BZWByccHFcCU4mijTk7nkHxP8Y6hD4sW+8UWdkbeVT5MunxZGT2eNgMKe/oafKoy940hfaKPL/HPhe6n2+IPDuojBciXTp3G36hc/rWvLFRujqgrKzOR1WBRbbQzg7vlRsNg+gPpVRWp0xfvaD/AAqGBkBAHyNlcd8VpKzR2wvzI8q8RXT35u7AeWziQ+X9ohzg5PG4cV4eJgnJtnY6Maj8zzXURf2Vy9te26xsOqKBivInTcG2Yzpypu0igy72yBx9axlFPY6KfK1oNuVZV46etNNRCXvaEDlfLw2CKqMrM5KsXFmj4TmUybQM/NxV1Je4aYfc9Gsc/Z1yf4BzXBLVnpRasXVPy8VnJWZnJWYqkEZA/CpHG1yGbIIyKuPKaaIqXDELxx65qnJLYzqWtcoN87jHX2oUlbUiFyXYQvHFF1ctxuSQKRIGBwQeD6UnJrUqLjF3R6L8B4vjP43+Mmh+HPhHrGrN4n1K4+yWU2n3bJOqOpWT5yw2r5e4Mcgbc54rbC4SrmOMhTtzO60euzTX3bmdfE+zpucmfoYPDn/Cxv2g4dSmndvDvw2ixFdTuVhursJhpBjIKp8xJ9cV/TnFPFGG4eyOmqitHRN28uh9TPEToYOnzXTkkdLqOv8Agjx5rVr478HeJbHVtCh07ZoOpWErTRsOUll6Z3ggryM5Nezw7mmBlw7CvRk/YqO7bbsu97tu27d2engq8quEUor3pPVf1oeY/FbUtN8KTPDLMVmdCLSHd8yIfvMfRiO56V9vhbyhfZF1a+iaPO/hlY6F448TT/G7WEsp9O8HYtdDsZLnEK3BGGlIAOSi52j19OtYxpR9qqcHaLXT8FY47fXK7ld/8E5jVdd1H4k+LvttleRRWqXJkWaZM8Kf3ki9OduQpz1NenOlal7j1R3KSpxSOF+Lx0mz1fUbaxtwun3sLRWkdyolKRZ6sAvEjEjB69CMVi1Jwip76X7GVVQcLtPv/Wxl/D290m+1nxZs86aDTNIthqCKjCJZxkoD/tYx7813YXDx9s6jfl+BlGDqPaxx3hCbUPC3xj03xZPd+XZajp/k3NrcwZEgk+XJGOuDnnHAqKtOEuepdKy21vLVaKy+etlZd7J8+IgqFeNRK729D279h/4ffs+6t/wUQsNc8S6Vrx8TeBtBuvFV14uutTtBpOl2VsIlaUQNCCbhyzDe7FUDgj5lFfyH4+4TiDL6LhRqQp4bFyjTUIp+0cpN3d27Wt5ep8rm1P2eMlWUE+eLjZpuzemmvz+R8r+NfEnhj9sn9uj4j/tKxLdQ6drerXV/pN1qscaTtFGoSMMI12gME6gdGHPev2Hwk4Vp8OcLUMO1rT1vaz1PWy/LMN7KNRqzirJ6/h19DF+A+iR+I/DGs2OiajdwSvquz7UkYlChdzFihB2/KCMjgj0r9Ow0XUpS5l1ZvSdqLpxb3vdeXTVPfb8tTjNBu9A0n47WlsmsRodp+3TRHKAMzMoJ6E9CV759q+dnGNLFu71PDq1b412vbQ4T9p7R9dvvinH44msYLiK4tIjqUNg26OORkVm2MOqhia8XF06tbERqJdNTz8whVjjY1acXKK3MvW/Dmkan4ZS1u5bSQzsjRX3RgCTgMM/wng/XPTiu2VCHs7bnTi1GtRUeXcXwVpkltqTxy2aGSOLPlsRteRc8Z7Ajp9a5p03LyMKFPktzaI4a50S6+JXjy+0eNoopXucWkdxOsQzknZliBk4wBnk4FfJ4qpQp1ajqvSJ5FaVPFYipCenLsW9B0zUdJv77Sdf0650/UtOmVLiwuUKSRlcAgg1rhcTSxVO9N3M8NWpVrqOjRv6UyT+IYVtYjH++DASLxz6Z61rVkoxZ61BWkuY+nbSIWWn2cTPndbKQV6Hivxbi67zK/kevUlFyRFdxM7LLDIySI2UdTgqfXNfJ0qtXD1OaDszCooVI8sjKa9msboiQAbjkgDAP+FJp1JcyOLWE7dC9DdrNHuRs/wBKnR7nYpRtuVr+QbCSMEU/hMqq5loWdAuklwo9amU+boTh076m9G2xApHasbNs77pIr3t1sjbnqKpOzsyJy7GK+oySOy4P1rRnLZylch0R3fUyxGPmq+dRiY07Rq6m7cjBYAj8qwcm9zrnJNFU/Kc9j2qlG6M1ZajkbcuccGpkrFc1yrcL8+D+FKKciOXqVbljg89a2jFIxk2pFfODkiqexo0pIRGZW6/XNZyTZhflYyT94QScH3pxiU5tLQQsoOK2tZGafK9Tpvg/p8+q/EXSNEtPPDXeoRp/ozsGJJ6cEVvhYTqV4xic+Lk3h5La/Z2P3f8A2WdGvfDej6NY+INRkEqQKkFsTgjAHavvcP8AuoJSPkJKcqjbPpPU5fL05ULsEIycDJp1ZvlLcdblDQJ1CTIq84yXbPFZ05aFtO6GyML4mGBhKoUhnlJAWpklN6GrXL0szF1TS5rLzb6KWW6mdCIkhPyj3pezjEL3snocrNpWqW8j32pQGyU2bBQG35z1JrJaPU3m7Q93U5CO+gj1m8afMUVpaLDHJFIAS3Xn0pLk579jKVOXIr9WcVrHi3TLrW7vV5bWKO+sdsUcbMBwep56nvWSqJybaInCUHyoyY/FnhrxGbrTD4kadoyAZUmULFJ1wD6V2UZRbdmKpSkrN9Tl/FXj/QvC93O1t4kgN0luQ9nC5Ys2PvZXrVSlZkzpNI+c9W1jxf8AETxNLqSai8caHYsIbD5z97D1MWk9DGdpaWPFf2ipr+Fp7TVwizhTtn8sDd7HPQ10QlfoCioanzTq1s90JYFVQ7Arg8ZNebi4OzN6LcqqSOF1/wAFanoFkdQ1G7slXft8oXamT/vnOa+SdCo27H0Mn7BpSOfnKFMqegqY031LfvLRFZGyCaU42kXCNkZ96yuxNGqRz146M3FEawjd16VXvOWp3Sk3NkNpa7ZSxHGa31cdTkqQtK5Ze7AJjDAAdMUKC2LhVjERs3UeQozUczhKxVWn7SOg7RryWzudhbHrVtpoyw9T2b5WdESsyeah571yNNM63FSdyzbv8gGfpxiocUJ3ixVKgkn+daLYrmcizZXlzY3cNzAyBo5ldDIu5cgg8juKI1IwqKXYfsYzXK+p9L/BT9pXWU+IGp/Ebx54jv8AXNZW/wArFp/iQ6TpNvYRMojZ4ogGnkZvuxryAOh5r6HDZknzJdfM8vEYSjhLRWq2vv8A18z9Cv2Ef2pvir8Yvi3ZaVBYpY2fngxJdnMyx4PK26D9ypH8chGfxr0MPOriPhex4mNrQpJJRP06S58qzVpPmwvJ9eK9tSUaabPl7SnUdiGO/iuIWnRTgE9RVRxEZU+aw6lGUHZmZJqBkl8yG3I+o9654z55XsdNOk4xs2Vb9Jb/AOWa7WJV+/EmTx3zjilOV3vY7aceVaK5gazY3d/DNa6VYG3jZcNJGuWk+p7CuKq3zXivmdkXGik27sy/h9oV3H4vutPsxCTbWoLyBOInbOMnHLYzWmGhKTfKzLF1qcKak+pxPxeOnN4ij8IRwqxuLtftN0snzOM5K4H06VzVqfv8qLpVpOHMcN8c7ay8MWV9dQ5ZTCDHFG2A2NuNx+tc9e1PQ0oRnU3OUn0zxJ4iuLfxCbe6szpkal4RyEY8bWA/hOevrWtFTm1Jl8vs24sxfjH4lVNA1DVdB1ZEvRCokspCcOwH3XPb2NdFW+5EYJP3j5v0SPx78TUmn1qzsrKWeQiSx0+QlgO7L0IJ9q5KUpzWqsdfs7anK/Fv4W3Gn820mohbcbHGoEjIPBBY4OOeKmrBp+RsqsIaI8ym0vyJ5tHvNWDS+Xut4pXJljI6ADA3qfUVlGVtEdEHFq9jldfjvoISNUVIpN3zxxnr/tbSAQfp1rqpNNm0bc2hB4XY7ny2f3L4YHrxXRKN46HWr3R5V4vt9P1yG6ubaI219AxBaMho5lB6sM/Ka8PE2SfM9T04RVl3PMr4yBizsC4+9jpXhzqXloc9WUpaMr27EtyR7Cs22zSilFaj7lcoU7Csm7CcryKlxAfLK4Ge1VCWoTipRLXhEeXdbT/ereSly3OKnUlGpY9LsHXyE/3fyrjdz1qequWzJngn05rLcTbFjcnofxxSaGlqRzseQBigck9ypOd4YfrU6phuVFjUSFgMc1pZtEy93YkL5Gw+lChrca5nqS2ysTjGea0bQRhd6nqX7MX7QvjH9lzx9P8AErwFYWEuqTaTPYQz39v5n2ZZV2s8fo+MgH3NdmWZriMqxPtqUU3br0HUp0asOSav/wAA9+/Z28beO/EXgDxt8SvGmi3zae+itpvh66tVMVvLezyKzxhm+VmKrye3frXZnfEmbcT5ZHLsQ+aUpJRsvPv6HrVsXiZ4N09W21ZX1/zPZv2Vfg1B+zd+zT4c+EZ11rrUmE+qXSzYK7rmRpmUEcBEyq9OTk1/TXBeWPKsgp4er8SWp3YChUo4flPGv2ldR8T+PviB/wAK68GyPPqWqQN9sv2OE0+HOGnkY/dVR0HtX2FfEyjh+SOiS36JHpTo4rFNQWt9C3450bwF8EPhHYfDXTFubmxsrZnuNlwM6jMR87nPGWJ6n8K7cHh3Tp3bO2FN0IKMHojiry60e9awuPC0Miz6ZaxzataltsSLnKxZGTtA28dya7rSfNGb32tucXtZat9Tyl7vUfiV8bNVk1SCGz0vQC9zPIzuv264ZRhAMHARVAxjv7VyurOpilGLdoolUK866lK/Kjcs5tL0fwTrGhW+oQ2s963267ZUCo5yAq79vzNjgcDrXsUrxTdjunONOCSje5xvxivrm78NXus21oirpSwpbNFcBPPEeWLgj5j1I5x6dhXPieWNF26ankZhTfsVdn0D+xlp3wW+KmreNdR+MOl6ve+G9c+E15da9aaFOiNc29uELRXMuVZE3uAqqwV2f5zgCv5Y+klWzSg8mq4VfvHVSh11ex5eZSl/Z0Z0muZyS13+R8Nfs/ahZXer6lpWll7SzuYZ4tPtJpt728BJ8pWbocDA9OK/oHhWWIo4SlSxLvPkje3ex24fEu6gnp066GzqVyvwOOs3uiXkRD3htJZEYgoJAwZgDjgjGOnFe3XqwpRly/ca1KH1ebk9UeGaRZ6LqutapZW+qyre2shmlO8neYomKuD35J/WvkcQ1OblLc+YrVoValSlB7a/NJ/8Ef8AA7xNP8RdSutN8RmNNQhuTJb3E0BKlVTaxxjoV4PB9azy6cq0Jcy1TMcgxU8VRn7RNNP7yl8UNFsLfVIxo8/l21ypQW6rtImALLj1U4ADDtiuzEUrRvE7MfBwlbY19O+yT6B/wlH2QNJbtGZ4EfLPFtILEdcq2f5968+tKbV2Ztxq0zyzWtD+36peag8ccwdzLFIqbS4z1r5yth4Sm3JXufOVMCpVZSkty1p8J1N5Yr+5ZrySJRDcu5dgR0BPcdBWEKMKEfcVghQhTldI3/BllqX9tQWt4xWVZMuFA+Y/0rGb0vI6Yc85pM+ltTtmgsLSJWHy2yEd8HFfjXEtb2uaSXSx7k4ONkVYrkMgdj9c8c18vU1dzmnuQahBbXiFCRnHBFEJuJLaqRsYzXNzpU+xySvrWjjTavE43CpTlqXFuor2EsjZ45qJRexp7SVrEekXD2V4VDcE9KpwXLY0py11OshuBNCrKevWsGuU6U2yO5hWT5T071g5NsbbZTktY0QnaOBTi22VCKVzM0qdV1MxkfxV2Rprl1PNl71fQ2bmTLsGIrGUbPQ7WuWJWeRRjJqomcXfQfG/y479qyqbltW1K9wdxyPXkGrg1FDvoUrmTDbSc0+a+xyy1loQh89R9PeqcjaKstSLzX8z8PSrsrXMXFOQ4YY5PH1qOa2xbUYoAEZtq4zinzSULsyestT6A/Yt8R6N8L/F0HiuTw3Z6jqsp/0RtQK+TbD+/wA969nJZOE3N9TjzCS9kkn9x+of7ANp4++JfxFufid468YfbI2O2ztIExDGvqPWvqaNGbm5yeh8ziV7S3Ktj7T1CWJd0UhJz94Z/KnVkm3Yxpw116mfpVrqQhuGdVWF2wgdgAaxipyRvVcIyVtx2oL9mtVt4tr7xhIox8rn1zWlnFWNKbb99mXrML21u/nyhCqZk2Px9Kl6BfmldHEeLdQnubCNtOs3E0bb1jEpyyD19BXPOKvc0pQnOeux5h8UjoU9re3+oSy2UAtmlvfJJO9uqgY/LAokqbjzSWhrKXuqJwmk/BDwprduvxAvIrmO9udnlQiVtydwSpqY0qdX3rGcaj1T1RY8V+DPA3h/TxosnhWztppXDPbQHaZAepPqa6IuFN2SHPnk7szdT03wjoM0UOl+GbaArAfsl4IN3z9djA+uT+NdjleKSexx1ZTqKzPFPjTqC6prY1EaQEaJwJHt4RG8fHoODWFryuYRcYRsz52/ai1PTLrSnsVZrl1jBEzpiSM+jf41102lHUJS5j5W19ZG0W73OVlRTtcHmvNxTXIztwnL7ZXPJZLSR7rz76dppOzOOcV8pOrUta57dTDRlU5iR1BHA4ojK6OmSdONiBiVyFNZTS5h03eNzMupOSG9eBSabVjmxMkkzcVyYgCa15b1Gdk/4jJbiQQ2eVPJFPmbdkY14y5boy9Pmub24ZSTwa2rtU0kc+GjrqbVv/o8fzcGuS3M7nRKpyuxXnBMoniHA9K6IOK3Ma0eb3om7od8s0QViM9wa55Rd7nXQqJxszRGVAI4HtXPLcuauSW7bsFhyPUVMpMIvk3JC5ZtoH0FOKVrlKd9jX8HTRHxHa2B14aaZ5douFsBcsMjGFTB+Y9Ae2a6MJye2V3Y4MZVai7OzP2N/wCCO/wf1X4bX9lp4EMNlcKJ0t5bYx3sqFSfOumZndmYnhSVAHYEYr7HDctlyanzNem5JuV9vkfptq9xFb2RGRyvTPWvUnLlhqeJQi/aXK2m3MM+niRNxHutVTkpQsFdS9rqQWssGx7oQMMttXcOazptb2NJxkrakOqW+lwAS3s5LKMrAnApTjFayN6M69RWitO5yvibV7xLSRoQ9vCxxtjG3dn+dclRpN20OtUoxjeSb9PMyPhbq1rFoXiBrC/DT3N+qCZlJLEIAQP1ooVqUIz5JdvyFisMvaQclseVeKvGekaZ40fVbvRpyNPh/dSyNlZJCcE/y5rBTUpvTRHbDklSUb7nner+PdD+JOvawNRlh8iziW3hgUEZPADAHGcHHT0rmjOnVrSTKdOULKOp1OkaFPcaXNqmkziEwaeqSkHf5jcdMdc9xXp04xa2Mqj5NGec6v8A2j4j8QXl5rFzZWsiIIpbeUgM3uT1GfQ1k4pzdxpxaszzX4iReEfhPq0viTUtLvI9PAJmuYJNpjyPvA9xn0qZKNJ3RuqjkrRPI/GjfEj4ys3iTwR43t9SsFiJSJ3BYDsGUnJrnk5VPejIEoJ2a1PFfG2geJG1GJ9XtzBd2jneXg2LGc9UdTyD6EVCjJas9GmoQgZXiiWUw5nminfbj7QvJz6ZrSLTZpT3KfhncrvuUDZE4YHp0NdP2Tui1zHmeufYreW7kubOKUZbMcsbcfR0/rXiYik23dHfB87PNdbm0CQM+mwTQuHI8op8gHsTzXh1oR5tFYxrckXpuZkbb3G3p3NJ+7EdJuW4+R/l4/HNcsndkS92YMu9eBxTp7my+EZpJa21D5eQT1rudnA4nFe0PRNKul+zIXbBxxzXDVavoelCUVBF/wC0xFcHv2zWKWpcLORNHPFgb8fnWlhzsiOeeN+BjHamoocZXVijd3K7SBS5UmZStGRWWdSTk9vWnKNglqh0cqM27PA6UJCjK6sX7QBSG459aOWNzXlbO0+C5+FKfEbTb341jU38M203nalaaNGGubxV5ECFiAm84BYngZPNXTdKNRc6ujWFP3ZWdpW0v3Pvf9nv4+a5+298Wf8AhV+heF7TwB8O9A8PXCaDpdowa10ZghCXE4CHz5W9cDr1xnPr4XL8zzjHQq4JOn7NaJK6T7vbW+/daHDKjHBUXUjzVKmjumk27rRX6Wvp8/XptDvl0/wpqOreIb03VxFKdPtJ5I2QXKxfJ5wDKuFbGQAAOeK/q7Kvb4nBUalVWlZc19Ndup+hYei6MKalpdXa9fQ4XU7208JyXms26bLq9K/aZ1hAlfJ4TgcLX0tOEUklubVK3IrLueGfGbxxea343stC0GxW+vJZvNiiktFlSPAwZHU5AVc8Z71bg4w5W7XOOtat+71s+zszM0Pwl4hvptR1iyvra2W1gHmR3IaOS+lYnfN0IEaYwOmSeARkio1/36hrtv0/z/r0N6cKNKShq7fOxxfiHQbJvENnZWGry28c9yTqLO37y5XaSSOgROBnJ9PfGy5Vu7DdepTk77MwPitqqk6fq6S26T3tk8SWMDF1ndflU9BhV657mvQo1bxuRVm5NtHH/FOS28QaT/wjlhZ6pNPe6ekSiC2MnzIv72QBf4M5PoAOvGa8rG1eShNz1uZ5nCjXofu01ovvtr267dlprufUX/BJ/wCGMXxv/Y1+MXg6P4bW3i68k0BNHs9CbU5LH+0pSxnNjNcY+RG8pWYLk4HPv/Hf0oOK1knFHDeGdTk5Zc8ra2jdK7X/AAfmfGY+sp/V6FSXupty8trHwx8IvDVzbfFHU/DeoyJZS6e721zbYaPyJI3JNrzz8rDyvcAc1/TXC+KWIpUq0anMnCLT11urpfp2+R6eEdS3NFX6f16Gv8cfEcOuyroY0xEtb29SLVCyZmTylJyM4x1PPTp1xXs4m9aoqnVHfilVUFC9z59gsr7xB441a/WP7NC83lRRbgBKgO3IPckE181CNatjJvoz5Ghg69bMKlSStrsdh4E0XRY7+XSFuPJv7C7Nqjwj5juXhhjr0Gc8817dKn7OO2x69CKpycEtUQ+NpdR8W31tcvbqJbBzaX6R8bGTkNzjJJz9ex7VlXqSbTaMa8JTndfMy/EutxeA9QtdSgCNdz2aJJZj50uASOVboQQCCDg5ry8XUd3ZGWJqSoKLZyV95GrajM9tbNZl93lo5wI+ckA+me1ecoxnI4nT9vK8djM08T2eqbWgdpd+Ny4GPwPUVlUitjLljzWPQ/h5pjXfi20tN5lJcHLEe3px7V42LUadKTfY68LSfNdo9/1fDkRKMbFCr6HAxX4NmdX22MnLzOyUnKVzHu7K6C/JJt3flXlc13qctWKk9CibS+gk3yyZB9Kc5p6RRgoTpNNsluLaC+t9r9cYBxWcZuMrGytURhXMt3olxkZ255FdMZRlscFeE6cr9C5aalBeFZ4mGe4qW3HRmtCamzptEvVlgEZPPbJrGd3qd10y3O2V5NY21EtGQsQ0bA5HFWlYupK0TG07adWIH96uuCtA4KKvVubF24Vzk9qyem511F7tyn5iu2N/Pakmc8L3sPVwOM8g8ZqKlmdNrIZM+Tk4wTQldCasilcqx579qqNkcstGQAYG3NW7MuMrsay7Gy3GfWnvGxMmlsbvwv8AA9r8UPiJpXgS88daP4Zt9QuRHca7r0/l2tmnUyORzgDt3rKSjT1lsYz9o1dK57J8VfhB/wAE+/gNr9nY2n7Xt38UpYZAdTtfCml/ZYZOP9XHM2/v/F6U6s5upy0Y8y6vY56VScqb9ppLotzsf2FdM/ZT8W/Fe78f/ETw1d2Ghac+7S9FutQMpbGdu8nGTivocihGHNOrrYnFwnOkuVH6yfsR/FPwX8VLe6u/hz4Vh03RbKTy7cRxABse/evoqdd1leOx89WtTly31PcdauDKTGrhDk4OeTSkmyIOyGPLHDpirdyOsQPK7uWNNLlRpBuUmyO/vBZWcconKRFdwUHLt+Hapm7DUXJ6HKapqup6zem4GkOtpF03tteQ+4rOTdtEaRpxg7HHeOptat7We8Hh2eQrGTPEsu3PHC1hUc2r2N4KKdr2PJPGngPxt480xLqbxN/YtvbxebaafaMGdmXnEmeozUVo1Kqsnawc1L4Uru5h+HNF8falpI1T/hPre9uJH2XawxBTHt4yD24qsNGqrvmugmoUXy2LbeDYjAkmqay+qOGDS30lwA9v3Ix9P5V1ShGDV3c5515XtY5T4nXp8PXaSJq9zLpckYZrhrdtqnPBUgcn2Fa0lKpp0OOznd7HkPjfUk1m6up9NuPNmchdkrFTt7fKe9XG19DPk59T5x/aCa/8m4g1GMxXUIwj7MCRfQ1tZWaLcGtD5n1+UHSrt3bO5DggdPavIxkX7FnTRglUieZSoT0bPvXykHfQ+lpW5SIklSPT3reyiiakr7kGA2cHHNYTbvdCpt2MvUB+8yPxqouyOTEJtM6C3haVV5/OtJy5Xc76j/etD9WT/RNiDnFZU5e/qRNtqxV0u2MXse5xW805PcyjBxZcui6x5zzwcik2k9CaqaI7CcyKVZBg053Vma0FeOpaspXtJwRx7VPNdWMU+WrodDazJPAGI7dK5aqaZ6StyKwofB2jr1pQimrmbV2TR5JA9enFOTii4xSPRPgl4v8Ais+uad8MvhfrrabJqGoq093peiwzXwzhdyyFd4Az03KOa7MrjVqYmMVdRvq0rtL8PuujhxKoq8mrux+23/BLLwP/AMKbsY/B3jTXWfxLf/6Tf20t2bmediOZ53JO125OwHC5IGK+yowpUeVbs+fxtWcqTgtmfaeuvLcgwQDdkhTheFrsm+aVjxaMVBJssWFxGjLppPzqgLEDitYyjflRyV0+bm6C3l1bwgF2AIOAKVSpGKsVRhOTMzW57LT7V7tmRZCCd8vb6AdTXFWacbno0E5SSex534i07xX4yaQadLNHBkKZZvlGD3Gelea6VWte7PQjUp0la5yPjqwtfh/oyW1hrjiBSTctCSSznjC8csf61p7OFONkWm5u8kec6/4I8b6pbTX08t1ZWMEG+2tX2+fKBzlsnnJ7VLp1YenY0Sowempy3jzQPDsWpLBrQuN0iqI7qGLy/IlOMZI5696h0eeWpcKihG6Ot8JeEk8JxXSG/vBHcKstwgJkPmNj5165GSPzrvpqFODVznrT9va6OU8UeA9E0jWp5fEkM8JvYmkkuDk7iB8rev4VzVOVSbQS+BI8M1rxB45+LVjqnh7S9Os9Q0yylkjsjv3SyKOCQCP0rOhKvWk+wKmoyT7nkfg3w7YaXfXGlahGILiGYpNBO7WsqoeMqwGCRxWahySs9GehZQV2Y3jj4feN9L1WU2X2m9snjyizTJKCO3OOntVvnivIJTjNnlvjC4RpxZSR+TNu/eRgAKffgDmopy986qSRQ0B8PIoPHlvnHXpXY5Wp3O2nFc9zzfxyz6U8+pCO6jikXBmt3wCf6GvFxNZtM7eaMXoeVaqryO0hnZi/ILPnI968OdWMpXOdRcpe8VIFYfNmlJ8yNFLkehK5Xpx061zWd7F25tSWIgx4PUnrWluUybaYscIE4ZR/GMjFbKXumM22zp7Bpvsq4JHFcc3dnTDmcTRszMQBuJoijppKw+7nngj+UHOKaabsOtfdFa2vbmYnOR7GrlLl0JpaakN5LOXwrHPrWalrqKpFylcRlkSMHr61Ld3YbTcbIitxOXwHIz78U5S5dERFcpt6Hp2ranci0sbeadyMhIYi5x64ANClJnTBSlsdLpulLbyiOVW80Dkuu3H5iu2kocusdToitbH6B/sS+D7v4Yfs6/2nHbyDV/GdyGRQRvNqhwF9geSSeMc1/Q3h5lKo5VCcvim7/wCR62XYROXtZLRHW+OJntp4UvoY2hi2sCpym4HgL7D17mv03CTjObp8rSVnd2s/JdbrR6pbqzetvolFShzX1Z4/8S/EUqC9fm3t1BmU7vmKjPJ9K9RwW8XYlqMKdmeVaR4m0Pw34f1TxjNp0F3q+oxgy3jgBLeBeUQDpzjJJ9ac7/E3oY0owjFzbOG+A+qeK/FvhjxH4x8W38F1HrmvyrJMbsGOO2RSEVduQwJGMDg5PPas8NCcKfO+rKwlaNaDrxuu2n+exy/xgv7600p9W0rS1N1FM5txPPgT7QRhlAyeuQOmAc1dWT5XZiqxk5b6GU+i2PjC21C21TxElwtvpXkW8lqG2xqRmQxZwVzg5c468VvhYyqJ819VYhSk5bbE/wAM/EmufDudtX8JXclrqU2kyRQ/a7USxwWjrsZwXJ/hYktjtkU1g6VSm/aa+Ry1f30Wmz7R+Eesfs6/8E7/ANmzwN8UNa+JPhXUvD2lXd14o1HVtP1DGpeI9WubaSAWcNmpG4Rqyx7nPIUnAwc/5seNuXcb+IPizi8FDD1E3GFGDcEqcaakpOSlvq1018z4tt051KU3JTldarS173v5/wCR+ZmleLrPUPEev/Fe+dLF9Sa7164sIbfy0iaW5LJBgZ2DBHHPAFf3pwnlMOHOG8PhJzbdOnFXfdJI9yjz4XCRirt9TUm1zQviDo97rlloal9Qiht5GuDjdKVIZy30ORnj3r6ya9tRc77ndzL2NzzGztRps26K1gEkWmXU0AbBwckbz6MSMjuK8lUaVKVrruedQqKFVpljQ7a7g8Watqeobkh1i2VbqZxnyZQq4PA4zng96JKSm+XW50U8KozlUb0ZFdXdlbwX9jc3z3L3qgWtzCD56yqco8ik4UcnLZI4rlnrJpqxlUai2uU5HUxrfjOzZPEFnPJqFohI2SAuqrkcenrjj+teZiffg0tzw8Qq2Jg01axgWFy0tjHPPJJGVl2yCRd3zA43MDz+PvXjRqu/mYUKziuWwyPzNQ1D7UCkas4AJGeMY47gVpWqRauJ25rs9V+AmlCfxSJZEC+USwUHJHv9K+Vz2vOGBm/I7qFaMdEeuXjBn4J65FfhNV+87mi1M++lYJkngdQKwgoc2py4huL0Etgl5DsdulKV1LTYdN+1jZleaBraTntWE3d6ByOmyDUbCHU7cq2NwHFOnUcZaDko1I2ZzISbRb3aykDdz716Cj7SFlqzzJKVCemx1Gh3yzoHRhzXO4OGh2Yeupmy04ZQwH1rGUbHXHcazYibPpwaSauVNc0TD06X/ibtj+9XbFLkPOov97Y1b52MhwecVzSZ3VPgKagqwLnr0p2ujCm0idGyPf3qHHqaxlzOw2clcn1qk7IU5WKF07scAc0ouxjKHUjQtncepqucUWouwpBbIY5zSc10KskV7uGORTHJGGB4wRTXvEyWhFZW1vbfJFEqD2FdEpSitDNcu6R63+zD8K/ih8W/HCeG/hXoS3NwR+/u7lv3cI/vH3rqy+jXq1XyvQ83HYuNDU/c/wDYI+Fep/CH4K2vh3X0RL9YQLpoVABbHJ4r6ulalT5bHzvL7WTlY9Xv73ZdYBBYdGPG2nfqdDp2gZGl69qfjLUprmUQ6do2nzbPt08w33LjqEXso9e9KNRSfZImKcZpJXbNi1vdL1yOW70q8iuVQ7ftIPCgccVDlGb0OmcZUtGjH1HXgNRNvYoW8tDuaRePrVboU9YnE+MNagttFcO7zLNPi6HmbduTwKym0tBRi5S1PIvi5qGopqlrpnhuwmtr+7j8i3eBt6ond3PasKi/eqMdLnTQVPku3sc94YsLHwLpVxo+q61ctcRSb2mLcuzHkE+hPeuuEY0Y2M6svaVLs57xp4T8P+M5x4ouftunxQH/AEv7FeMpDdiwB6Up8k2n2FGSiuVK5S0rwx4kis0bxN4ivri0EgXToYWVkWPPDNnkn8a9Cg5ez1ZyV5xeiVjkPjV4P0/VruWztGT7QF3Wt5FgPuA6EA8VVoXFF8sV2Plf42ahc634curLUkb7faEh5H43D1rJ1uUznPlZ8u+IZGTSbuMnHXIHevKxla9GRpRUp1U72POps7TuFfMQeqPo6SkmVy+EI6GtKulhVGVg5CkCsWXR2M2+Yhjx9atK6ObEaJnUQSxxKCPwpzu3Y6qzSqMdK3n5wvBHes4plwSeoyHCtj0PArdtqIRSchbxh5ZJH0rFSlLQzqxc3oQabGd+NuATxVNtJCg/ZysXp4TxJtpxkhV4pao0dGn3oEyOBxU1NUb4eXNuXwPmLGs4KxpJqLJkkCLwMk0pQW4lzyPb/hBYxppulWHw++PnhbQpbxGfxHLbXcmk6hZRYPyy3VxGyzKSAoihViWZTwFJH0eD9jRppQqxXl1Z59Si4ylKWp+p3/BH3wPo5+JN34k0Lx1J4gsY7COGG6vJ2ubiTaPvvIQME56BRj1NexhvZSre7qvM+fxkoQotNWdj9Gb66ERMMFud2eSq/er0KktWkjxIwlJJtlLR57w6hLJfw7EY/usnlqKPNGXvCrKm6a5XqT3V5YfaxHKRvzwKVRwc9S6cKqp3Wxk+LmiWPz2t8oo4BX7x7CuOvNXOrDXUdWcnrNtrF3YG71K4eODPyQLwMD19BXJOU7e9sdMHBNuB5kupWviT4l6Wt6PM07SnaW7dBmLf0CnI+Y1nRqfv0+iNeWcqDvo2L8R7u41i81HxNaaqyQ28RS0MkHDNnjj0HtXVUxEKknJFUqUowUTw3xN408QXnj+7K6ZJcpHoLSTz8GKRxjBAHQjHSuWWJ56zjY6PZKNNd7nRfDL4n6j4z0TVNa8LaiZDbW6lJY4iFSZFAdACODnjPT+dbU5uqtERUjCklFnPfETXvE/i3Vry30C4u5Ly705DPa3g/wBUSPvJnj8Kia97lW5m+VpXPLdG8P8AiTwnLPb65qB+3AtNHNbWgjK46nK4GeenerpS5Gdc5csVY8h+JWs6nq/iNdbl1cNDuKvdKNvmAnrkdD7VnUnFy5i6aco6mD4r8R3PhC1OpWCzuFtyYrhI+GGehA4IrOUpO9janyzZ4t4q1vUfEV4urXUMeZskiNsEZ56fw/Sijbm1OqmruyKujSuyzyoknyWzksOv1/Wuyrb2djrinsjgvEvia10bULi3uLPZNsG6OVN0cox1ZeleLibU4u3U640mldnmHiLU7HUJvtNlpMNpk4byM7WP0PSvEcYS1SM1JyZkxSyGQAH8PWlJRihxjHm1JvLccseM/lXM3d3N1a1kTICNwHpSbbMKiaZNasWkAPQMK1hG61IUU9TqtNQvbICB071lKKuddP4TStQEAJH51EttDWLdyW4jEqYxn+lZpu43vqVURYEwPwIrZQM5aMq3GZJi351LQQd1qOGGix3HXilKALSREgVOPXvRy3HPUu2l5PCd1tMyNjGVYjj6imrpgnKx33wHsNT8d/EXSvB2p6xBaaXLcB9Vvrp1jjtbZfmkkLnHOMgepIr18olHFZlSo1ZWhfVvsd+EblNRm9D9Ffg/45+C/wAY9b1nxGvji10v4cfDrSyNT1K6R40mhVMLBG+COcbjnBbtnNfTcf8AjHS4ejSynIZwjiXbljJSbmrpNRUU1pu+Zx02u9D1cVnn1LCw+rpuTbXTTz7/AHXPK/hn+0/pX7T97Pc+FvDFtp1pdXD23hTS7f7WXCrIYohO1wFUO+BIAmVAYAkHIH7FwLxNmeKyz22bpJpO7V0k/n23Ky3Ma9WjUq4lu0Xfmdldbt6dOmup5R+1JefGg3kPgLRvhFqd3HNNHHf3MkflxzR7vm2S9DnGODX2scwli4Kng5Kdt9Vt30NcVjXiElhmtTlv2iPCGu2Xg3/hALmzi0u4udPWS/s7SIlYS/ypDuJ5IUc168XKdPk1vbXTT79v680ehHBN0E5u+hlL4itvA/w7vfDeleFraA6dDbpbzpDliwyQQPXP867Lqckk7JDUo0YKLbsux5T4a1fxx8QnuZbv7JcxwOTfaqsryGOaZsmIDGNwUgE9s+1ZYZqcnGOyOWnOeKm56pIg1LWJITrWieFdKKXN/wCXZx3KXeCIxgM3+zwDxXVztSko7nXUkqSQ/wAdjT9G0D+yraG7tmsLdmNys3mPcQIMlemRkg5+vanXnJYX3rrl103f6/5nLVlUmnZ6HoWr/wDBN34k/tgfsL+Fvjf8JLDT77xDaeKZ7G3N9eJEyFYhILdkGMR7Ukk8yTgEkZweP5+8QOO8JkXFUaVaLtGKu0tdXoceeYnA43BrCu8a9OPNF2dmr669+lj5M8K6B4u1u2Pg2xuIjb2BNl4kZV3kMsm1o1KE7wCCMqSMc5xX6dldeedYSlOi/caTd9Dy8v58RhoSv0szqvijqNl8L9Mn0ixmWSay05oYLZceU0jFdrf7RGCM+5r6DFt0Ka5HbRq3R7f0vVnr15unhG4rXoeGxXfji2v5tRudQ8y/SQC4jkceXNEx+59B618wsNjVU9rKWvY+Nhh8x9u6nNeSfyseg6L4k1CeyuLLxBaSWVyji5aXO4jYMgKe6kfKR6GvbpTcoNSunufSU6tR3jUWpk6D4U8Sahrs/iG01dF2nDW0ZAXy2ByQCfu4PIrgqU61WrdPQ4nCpKq5X07Gv400QeEtGt/EE0kT3Cf6swhZI5kByCSOhFc+MpxoR5pBUk6cXNbHCeJ9etNduv7esLCCK5lfbcC3H7mRcdfY1484wrPmhuzyZ8tR81MqxOJZ5fIT94p3NkbdhzgkY46VDgoRsZ8rnKx6l8CLq6sNejuLa3iYGPO2a7ESSHByCx6E4r5jiWpSjl0+l0dD5cPTc2erw3NrrHhnT/GGnXkEttqDzRPHHIWa1uIiPMhfIHIDIQRwysD6gfgWIhOjUtLqThcXHExbRn6krsnHcdawhJOaN6kOdFfSGkichuhPOTTqTeyM6LUNGaN3B58ZbuB19awuzduNRGc4aFtp6ClFO5ztOEtSrqmmxanBtZRvA+U11Uq0oMmap1o2MjTLi60a68ifpnvXS7SV9zhcJUJXOostQjnQMhzkc4rCSaPQoVVOJalYfZ2IPY1yy0kbvVGDpBJ1Zs4xurtg24WR58eWFY2bqQBySKya1O6o7wKMkyl9oPGetUn2OON2yxb7iMv+dTJ9DrhFRQy6kIxjvUPY55v3io7DPvUpGqXukZYk8/yrayOSWjFOSnPFZyTT0NoakU2QMqORWtNJvUKmiI4UMhOO/qK0lKysZQSZ6/8Aslw/Ey++Ken+H/APjVdFiluUa/u5rnyo1jBBOfU8VrgpVpV1GDsjhx8KHJqrs/e/9ni6kufhlaf8TD7SBCF+0r0kwPvZr7KnHlgm9zwW41IOO35mt4vg8SfZGk0BIPNHLJP/ABqOorCs6jXuHXSVOXuyM/wFpl34t0n+2fGehxaZbxuRFpUCAhyM/M575rKCqVI3mrIus4YVqNPqdFYtbW2m3ItLBLazT5YYIEABJ71tTXLHTY5ZO8tdWc/rN1fXMjw6ZCFt4o8Ts4ABP1p+/wDI0b5Vc8/8apZ3GsAeT55MXy2pYBQ+OCfWjkUpXZUZy5bI8w8T3Guf2jHqdlPJbXEB2XVzKMxOuQCsY69+tYSvCpc0iqdONmjnviPqGtX+rDTGmtYI7vZEbwphgM9/Srk23qYJqb0Itbt7vSXmmsZPNi8oW95ayuNrn+/mtIJ82goqyszHXwzL4WhKzG6EM5Dxhbvcid+euB2r0YRcI2OWq+Z3OM+JunWWqQyraedb6kmJEHmZDY9CO1Q4t6o5/azsfJ3xk1Swu3vjdS+RfICsqMpAb161M4xBuSV2fMXiyVTY3WAAdxH0rysbD9yzooS/eRZ55OWXI7/SvnqcYn0VOTK8mdmcdaKr1sKbuysMBTmsrGtLYzbw/vtprSOxyV3udIoJjXHBwOabV6h3VYJzZbtIyy/MMAd6bikTBdiVbZfMDAc1lUegKVpWG39qGQcD24rKD1NlG7IrW3IOQMCuhpI5pR94utA7REAZHrWF7SN3BTgN0sPDNjHfvWjvYypv2c7GvIBw4OOPWlHQ6p2tcdDJk+3es5PUqLdrm94DsfAcvi6x1DxrBqsqW82YLbS9PjuWmc8bSJMhc+uD644rfBSw9KupVP0/U83G+0qU2k7H72/8EavDT6F8JbnVo/Ar+HLSVVaHT5pmklZccSSlud5B+nJr7rBVqU6CUdz4zHqrZuT0Z9gx6rdJI6XrL+9P7tEHA+vpXRzSW7B0YezXL0JbzU7GzVW1C7RAnzEk8KPrTdWCkrs4vZyk3yIradc6Nr1z/auj3azgHaXQ5UGnJ05vmhqdC9tQhyVFYq+KtdsbFTcX7RsYh8gI4X6+tcVapG+p0Yem2tDjbuy1H4hsFivlsdPjO6Yxna8nqaxjBYjVvY1p0qeFVoxtdt6d3q38zEv9Gkjg/wCEb8KCFNsh3SJACW54Lfp9ayjFW5b669PP/L79zapPklzHl/xJ+0eF52D2892sEbBoZZtqzykcn0AHT8K56vuaJm0KrqRstDzj4fXHhbTtE1fV9bvZxeyp/pUKpmKzOfuBv4htx6dTU4ZRjFyudco3SuVP2efFes6rpusf8IJJbyWs2rXBaZYGjBhDYyqMPmJ9q6KcZauDv5+Ry4qnFT1ZBOPiKPjZb6pq/hO5s9Iu7MJFfKzI7Sq3WSNsYT6VjJ1XXTlsVRUI0W0P+PkOsxXsWvkWYe2mWN4rKNQsoPRiMDDY/Ouhxad4jUlJanzH+0HpscWmvrS6OqWnm+ZG9vGUVz3JHfntWcqGnM3odNCprynk+pa3qN1aiaGGQqIv3SwE7GB6gr0B96h3tY6bOUrHAeKYktmkubvT3EgciXzPlYc9Djr9fetKUdTthHl0M5bm8h8Ja7qNtLEj/Zkij3HG7c3Y9jgVeKdqOh00klUWh57rlu2s6MLzXFvTPFGFF3GuYtv91mHp6+lePVcqlP3tDZwqTna+hweraTYW8Ujxa/ZysrYWGJ2JI/EV5Cik9GbTpQpx3MyJQp57GiVzkbvqiZWUndnr1rJtG1F6k0eChz1zmoSuwrJbjrQfvymc/MDXTF+6Yw952Ou0sAWq/T8q5qj1O2KtGxeWUBfm9awWrHTauONyiKdzY/GtNAqSsVXnVshTz603LQiK52VwzF/m71ncpQUWSA7VyQc4/Om5FSkuhCZCx+QU1sZqLLVmis4zwD6Csm3GWho5RtY9M+BnwO8cfHj4naB8G/AulNLq2vXixQxPkKidWmkA5CKuWP0rix+YrKcM8RKPNLaKWrb7Cq1YUIOpU0UVdn394+8E/CD4Z6Jafsc/BTTotSsvDfzeLNRkhMh1bUgAXY4yNqHIAIIHTtk/SeAPA888zPEca51F1MTPmhRg0nGEFu46aa9fnc9nJsJKrhPreL3l8K7Lp82cFqOl2U/jbTtH0aL+z3tiJZZLW0DAlTkrjHGRxx69q/rnERoVYqi3aOl7W+757HuRg1C7Scdj5t8d/E/9pL4C/FDx3Z/D3Vk1nw0upW98PC2tRB7e1eYkGa1kJzDIoBPHr718N7DMOF8/nPCK+Hla/wA2ePUwNeliXXjOyXTui54m8Qa142tdNuLu/k8y5VZnmbBYouWcknOOOMnk9q/Xk1UivZO19T31iadCim9b/qcf8TprHULW4ttOu5rWSQSMGnmJM7IpwQFHA6AD19O01JNxt1CXs5xVtNDzXR9F1b4c+HbceH7n7Mbq1lnvI1mDecc5bcQfkDd2POBgUUqbpRfQ5+dRjy09Sj8Itf0TxFDqGt63o09lNb3/AO8gmLIXPZh0JT/JrpoVYSvK1mZUZTqtzkmmtNSl4p8b2mr6ZqV9BOqv9k8q2jfCLGi7tzYJ43ZP1wKxknOrOXM1dLRuyVru+vV/jZCxFVSh7NJXPo342+N/Gf7L3/BFnwxpWg6YR4j8b29xeXF810UNva6jK0EZCbSN7QxygHPAc888/wAq5pQnxj4q4mClejSSTS2bXd+p4GMrYqWGq1ot2ilFer8z4J+B+o2nh+yktV1iS1jNu0d5Mznagx8xDDnJ5AOK/ofJlSwlFQjoloTlEYLDKMG3b8zc1jVx4zSfUkthPHNOu043GNI+4BOQx7Dv1r1q8va1L3PSlUdV+z6GV4/iXRCrnToR9ssYjcSWwDL5pbg+xwOQaxxSaSt1MsXONJLlXkdNfappWt+G5LNrm1yFjhuHkAEmHQYYewYf+PVpB04QbkxNyqRs1v1OLsLfVPDoksr8FHtXMkkYlPzKc5dGOMcYOOnoK46lWyslYxVF076nK+IL/Tb/AF2bSoPFkyQyyZsWlf8AdD0PXj3HvXzOOrQjUcXLc8XF16Mq0qCqtX27FfS9OutLnbSNVCqH4S4Qgxyrycg9MA1lhYVIq0gw+GqYeny1N+5PF5kdxFJATtKbWcHBc+lPEWSBWjNHo3hfwHrfxF0SLwjoWmxXcl64WOOW6SBUHJLmSRlVQByckYxXx+fzp0sulOeljPMKMsRhHGKPan8CeB/hz4I0jwp4d8SDUdWS5muNeFkimwgdkiVI4Zc5mYbW3uPkJxtLDk/iOaYiliaicGVgsNWw8ORtfIzbt1MR9q8uPxHa7op2jDzSG79DXTL4UjFq8tDRjmYDa4FYtK5a9zUgvrfeu5eBioehUkpxM7e8T7T0z1q4tW2OSzhIg1KxW9h3oPnA4NbU60oPQqpGNeFihpt/cWE3lOeAe9U29zlo81KpZnQxXqS2pZWxleRWTi5M7pVexlaPJu1YqP71dlOKjE5ItzqG1e5DE81yzlqd1RWjYz7eLzJmz0qZPsYwSiXkZY0wQaEuppGV2U7lyxwT9PahS1Odr3xkYBOWGPrTavsavSIyQc+npVJGE73IwXyQVOKt2Kg02OkUNHkjipUrMqsnyEVs+3lTn0rSS7nPFSkz2X9kf/hnzTvH1vr3x48T30MccoFlp1ip/evngufTOK2wssNGpeozPEUYuN29j92f2aLjTZvg/puoaTGwtJola2Ruuzt+lfWqKdJK2h4DqRqS0O1mvYXmjVm3t3wv3RT5dS7OKHXcixRCDzCI8ZYAYJNaXsiObmZVtpIWgnlm3fMP3UAbv2OO1S5LlG03K/Q5jXdJ8Q6dbXKx60hadNzIwBES+gHc1yyu9Ewm4ykjz3xobTw5Ml5MGnmNqRBGTg7yfvNgVpCXK+UI1JP3Ujh/HV3Pda3Z3N5aFV02386JnuAsMx4yNg5OKKsIqd5ChBuMn3Od+JeuW15qP20WkOI5IXk2jO8kjAHv7U1acrE0m4opeIdTt/FsUlnc6PIBCuWeMFADx971rqXLB2E4u1yhrJsdRktLPTgrslvz/pGPwI71q62trGXs/duePfHZkjiln0OWaK5hiBDwzEqCDyCP4abqXWgKKjufMPxB1rTPHmn3sGpQtFqkf8TjG/HWsJOetzOdm7Hzf4sEsIubabIKsRya8rGyfsWjTDRj7ZHCXfzKQp/GvBop6XPok4pFdgwjIPpWlVozdmtCumCp9Kxd0zSm/dM2/Ubi2eh61Sdjlrx0Z0sIzGM9MdaJfxDtrNuq7Fu3Y8A1fQdNMsM2zD7eg6VDSkTL4xmXnOO30qVTUTpjqiSOIqucc5qpMwmrMsRNuBX8qwcWmdEErDHiaKUSqK0Wxz1U1O5oWbfaLbk8445oudEGpR1BR5HLfjWUk27mbqK9j2n4IfBPxlpuoad448f6fa6J4euQktvqOqeIZLPepOFdYbeQTTg9AoGDnkivXwOBxVGpGpOyi+pyVqtOpTfK9UfuX/wS4i8NaR8HZE8I+FrrS9PMuQl3btEZzjmUK7O6qe25ia+rowjGCcdT5jHtyhyt3Z9E+HL861qlzJbKPKifEkjLxx2HrVKTbskccpxjStIta94a1LxHALSEpbWxf940nzM656Adq2VKVTZWRlTr0aLblqzSh0+w0LSBZ2m2OOKPqi1pOmoUrJnJ9YniK92crpfhbU/F1y2oahG0VkkmUW5HMv4dhXnUcJVru728z16mIpYeHLu/IoeNvh34m1RbhNJ8VfY/NXaDa26hYkHb+dW8JJP4rehtTxlJU0lHXzONsPhx4ttfCVzFpfjloIlbaJsqZJpPcgcD+dZRpRjTfLIU6kJVPeieN+MvA+ua/wCOFgXWb/Xri0tiZ4ZLgRRQ4HLYUda8mpTftN7ndTqRjG7VjmdH8UWnw+sPEHgYfDy71mK9T7TZ3M8uWZyQTGXz0z+YqsPVlRco2uGJcqvK1pY6X4R+MfBunX0FhrVgmlatZwug0vygjxgrnepICnOfXtXpYatGq7NWsclSE2rp3OI8NfFLUPjB8V/EvgfT/Flpq0OnQIPJWVGnjl5+Rg3C4x2NS61KeIlFdDtdD2VJTkjhfHHhn4oweIJtJ1jxxd/Z4T8tnb20cjRjPIcNncPSoaknowbpzVoo8u/aH07xdomhXWm6hc2E9ltE1rDc2TRPn1XHANW3NQaOhRhFaLU+ej4jn1WwWO1sWtiqkeUW278dRnFcSbZvSXVnLeObzdI5RJFjLDa7Nk8/wmtacrPU6ott3RleIHa3+HU5OG36lFkheMAHrV4r3qWh3QahY4rXtAnksZ4rHSrwRzRhleynOxj/ALQPSvMqQkqdkPnbd7Hn2r+FdV0ohrzTZIlxw8mM/nXg1VUhO7ISd9UZnktuBL+wJqXNtFNKKHohPy5+lZu4qbSkTRAiMg/nVRdjWorq4lgxF4YyeNw5rpXwmFNpSO0sBts0B9K5JnbzaFmNGZgT+lZLQVN6iXlsdnXkUKSuXNXRVSMxjJ5rRpMzhLlE3gN92jlRTlzDnXcuDWcrJktWdxqKqe9UtUO7ktC3p9wlldw3jWkc6xSqzQTFtkgBztbaQcH2OaiajZq5pTgk02rn1B+xr+2tdfBT463vi3wL8P8Awzp+o+KNEOjW95LA0UOhlv8AltG7yOxHdix5x6V89jMkxGKqUZYeu4ygpJ82t+ZNN+ttmenUo4XN5RoVo2jdOye9ujPbvgn4I8R+HNLvtV8c380l3A8st1cFDsvix3CZCfmdHzkHvmv6m8L6mGp8K0qdHSNL3Xp1W+m/+Z9RCtTxFNKla23pYi0q71iPxxd+N11dTM0DxWwSDi3yCO4wG54xnH4V+pww9CcLTiVVowpUoxeqer377P8Apq33Hz98d/h9rnizXdQsNJ1G7lFzbQ2lxuG7e4fMkhx/dUd+5rhzDDU8bONKN+ifye5y4lKc9Fa5yfjqaXwlZi8e9eO0tikE08zlfNROigd8kjpXu160cNQvJ2Ud76BKUaVC03ojz6H4g+EPiJPqOtxaytpNC3lx2cRUyQRE8AKxzuYn3ODmsMHj6eMourCSfzOOhjadSnGEXd9TjNSn09ftWm6XYXsdvp9wHvIBd+YLonlImOOOevWvQhXjVdr6K1/M3VRU5czGfFLxtqupxXOnaiscJS1jCJbAYtWVc+SMY5Pf3PtWsp3v2LnX9pTUjzTVIr298fQ6PduY9M1GyUMwkzypzycYzya8bEyn9aqTb932cn80rnkQp1JZmnPWLPp7/gspqOneKfiN4b+GvhzS9Q0rw54V8G6VpelR3d2wN1HbKyeb5HCoN7MUkGd6sSDjFfgHgtl6zCjj8xqy/eTqyb8tTz1g6uOy2UajteTZ8b6V4J1PSri90os0jKqsy5x5it91QO/rX71TwH1aLXMaYLBVMInBMm8N+INN0mTUZ7i3KXUdzmwQNvMbBsKfxGRmnTrppq+prhq8Y1ZJ79i4gujrGoahdSr5ZGZbC4cPlcfeH97HqORXRKuorU3lTc53voYXirXJ9Ov553he4sJowIzGO6jgn2B5ryMbNwk3J3izgx+Lng/etp5GP4v8TeJvF1rbSWVwhggRVmz1wPrzjHavNrYutUivZ7HiY7E4zGUovD7dSr4h8Mqmhw3k3kXMAXdCI2JYnurY5HrXHicPzwu1c2rZanh41Ki5rak/hlZZbY6Y8ksKTIDGlwMqPc56fWu7CpRpqJthm6sOVFq5iXTZEsb8ESH7lzE4YN9Mf0rCtFKXvbETouFRXZ7N8DrO01Tw7JJdWiERkFc9Q3rzX5rx/VjLLYwjpqejyr6ud1zGojUbeOBX4+4cr1OPm5ZWILtx3PWs5pXNHqiGyTMgPHJ70SbsiFZMvv8A6vA7VDZpUS5bojSbzFKNUXZlB2ZRvYOpH4U0n1KqU7oqwylG2Mf1qtHscivGRDqNgl0hliGGropms4Rmroq2V/Nbh4ZTjjjNbSXU55e5uO8OSiTVS+7+OtU/3bOfDybr2Ojum3Ftv/668+Wkj1JoqwLtkJxjNNK7Ja90nfJOAOMUS0QkrIpTKxfg8dzUoLJaiYAGB+taLRGTldkMr7ODn3zS5riauxkLmQn6U76FRikyZ8CHkdulZ3HUehBAoJ24xWnvNXOVSfQ9n/Zb/Z3uPij4o0/xRqWu6Xb6ZFfpE8T3am5d8ghVjzu59a9fK8DCrNVKr0OTHzqxpNRW5+8/wp0hPCHww0fw7bxlBBZooXv0r6WrUUnaOx4lCi4x13No3lvaxlZtq7cs7E5qZTUUbTTtYxrK91zxxrHk2CiHT4QQ94f4j6D8qwbqSafRiVOMfee5sDRdL0+0mslaSS4lOPNkc5Kj0qlGNipVLtHMX6WGmM7QQSyEphpLiQnyz2qVBX0RLlzLU87vNS0/xF47fUNRi3Q21uUlLH5Semc0U03UckLl9xLzPMPi5p3hy6ube6DyRXCXAK3QlJhCKfugdxRJJyvJ6G8qnsoOJw41z7bq896LyFo3v1FkbhCELDGTz0FZwn+9ck9DKEPdWhq+L7XXL6J3tbxoJBzE0K/upsfwj3rvUrszcoxVjmrqwSXSr7xLcR3S3saBZYdhV4j6+9azpqcTOUmny2PNPijqP/CReHbnxDpM/wBnvoEAfdjbKOnNOmo3M25LQ+RfH3iCJ5LmW5hUXAJ3+X/C3rRUXM7GUtzxXxfOZbWe6dssT3714+MtGkzqw0OeukjgpJWMmST+NeSlHkVj3XpoNmfdGa55xdxTi4rUqCQgEUNWWpdJrlM27kJRiTxmlLQwxLtF2OpgYeUoB6ino56ndOyqst2xPfjnvTk1FFxSJZZlAIY/hWakjln8Q61w2OgpTmddJLlLRxjJHXvUc6IqrXQWIAdsZ70pTQ6LHuN0fTpSUtC6seZC2Nw0E23OOKuKuYw0Vi3OGZgeOabcUjRU0tTsvgZ4W0PX/H+mzeJ7fWraKK7QxarpemPdguDxEVzgZOBkAkGunDV37Rb2ucGLdKNOSWj7n9Bn/BNq0lsv2erV7nSbzSzPIxFnqTSNcKCeN5k+bJ64PTOBX2FCopU03pc+UrKd7vU+jLOaO2aPS9LhVELZYbep712JbRRh7JOLqTLmvanJZwBIVO88ACqr1JRSijloUPazcnsQWLvBYG81N97Yzs9KlOFOHNN3NJxh7XlponD3GoafvcNbIeenOK39o6lK+yMuXkra6s5XxpcNBoM95cav9isAhU7SGZz7d8mvOqqpJaOyPVozhz8qV5Hm0ngz4g23g24vNOvxp0U7F7eC4+aVR/eOe5rBYZ+y1dkzaVRPEJSRh/C6+svh1ompav4ruRcandRStLc3KgAjIGSR2rCCo0YWkVjKrrSSW1zzzwZ8QPBHjz4meKWV5DZWcKLAbi3MUVyO/lM4AkxyMjNZYRwq1W9kDjW5I8pl+FNG1Xxd471691HSLPUNPb5LeCVzHNChHBJb72Pbiu2lC05KxrVlTpU0upb8dfDfwb4OEjf8IjaWV/c2ZkW80S3KSFgM5Yr/ADq6mHo3vZXI9tXqJK55dHqGtfE/R/tlncQCOzR4pZjcIkznJ+RmzncMd6wj+Bbi6OvU8d+JNvrdrp7WLy3V4GJESXTLKsvBymV6Hr1q3eKsdUG5/EeA6e1lY6y9vqFv9ljMjFbW8DJg9wDggA1585RhLQ7Wmo6HD+NpbOS9nWzlJUS/KhlztA7H/GqpyvudVLmsUdfszc/DK9mKlTDewszBc461tVkvZHXSi2zzLxXJqzqNU0WeOW22bZmtZiCD/tL2rysUqk6d47Ft8jOVvr25uF/fSMzDu5NeCubZjjapqzOYMzA5/SttEiXq7CtvQbsc9cVNkyUlzWJojlD+orNw1NKr0IbJyNQO71FdUV7pzq3MdtYMTZpz2rkraM7FpEuQsSw+lYbjhZC3YbZub04xTUWaSqaaFASjJ6+/FaONjGzkxwBb5ie9RKaWxrFKIkqysMKR7VmndkzaYkUbA5brV2layIi5dCdAx4VuKnks9TaLla7NHw5qVxoet2erW9xLA1vcI/nQY8xBnkrnjOM9a0oaVL9jKdSSlofoh8C/jDrvx18I63rl3a6kZoIIYrS81jUmu57qKNNqO7HAQADiNQAoGO1f0D4YUIUMmqKmrJzb+8+jyirGnh0oRSSfTuZ3i26tvC+jQR2zYkjRpZmkf/WuT0A7DtX6tSjUkm5S9D2XOdV3OL8TLbroGp6/rlwtvcXR+WOMbBtPJC06lGnKDirq6tdO33Nar1M6lSSnzI+YfjL8TNZuvB3irxH8NdJvLnxv4bvtHk8ESNFDJp8T/asTmZJARK2NgUEYGST2r8w8T81xVGphMvjf2da6k09dNl8z4Ti/EZi1To4Vaybv6HzP4b+Gmo+OPG3irxb8Q9Qli1RI5LnWZbaPyUFyRubZGmMYPQAdTxX0vC2TUcPl0ad2klrudXD+XOTUZ35ra69RLv4MfEHwvNep4c8ZSQpbW0NzcLcPuLPu4jAPJbByf/rV9T/Z08M3yVH6M9yeBxSi/ZVPvKWi6h49vNXvn17wjL9jgi824urfnzXX+I5/z2rfDvGKcpVIad0Y0J5h7Zwrx91bM7z4Tt4U8UX2h6PcIt7dnVNPSYqQrMWuAjJjqMk9q5M1xNKGRYiSlqoS8uh3yrUPYzcXay/E+lf+Cwn2bxZ+1t46m/sSW1g0J7PRbRZZQwiCwhxGMADC5LA47mvxr6PuGVPg6tVa+Obd+t7nLlapPJovd9/M+Hri5WLUUu7+8dz5p+zzxjGwxk7VI7/Wv2ypiac7dv8AIyniI0+juc14J1u61bxLqeszaRCgeUoytFnykHGVHP6V4mBrRnXlK3U+WyrEVMZiak5q2poeO7zTtDuUsRCsFw1kWgSJshuMhsj19K6MbiqVO6j8Vj3Mbi6WDai9ZPZHKS3fijxbdwzXkywW0YUtBFjanbdjrznmvFg8RjK16m3Y8OnHG5hW5qrtHsXJ9JvPCojsrqOIi4YNDI7bgGOeVx7dq7Xh40ZJdzp9l9RrKHRlq+jgs1j1SaPytqorKoIWQd2APGM5rSUYxTkz0cTPko83Qoarq9kmqf6HcBZ5IQ/kwygIvBJzjjB9K4J4mEZ8qZ4lLHxp1nCMtWuhW8g317DcSSt5mS+xSCiH6fT1xXBiazm7I6KktFJvU+j/AIC2TDwZKXUIpwCvQivznjlKOFhfudVKpKULGtqB1bTbkSWASaHPzwsACfxr8wSpVL3djlrQrxnzR2HyEzjzAuMjoTyPauNu0rHZBxcRLQbDg9+lN7EzVi15wIIYYGKiS1LtzUyFSVc4OOeDTtoYp2Yk3zcDFQ2buWhn3cJU7gSCO9CTbOSokRRzsTjJzW0W4qyHBNFXVrKRojPF1A5xWiquTSZFZRaM/wAKTlNRPmHkPjFdUqcnC62PNoyaraHWzzAuQp4rkaitz1veluLDEWw7Gp54o0ukPk+UbV6etRJ3MnLsV5FJGSKUdx83ukQwCR09aubdjBaMikQSnGPrWabRal0ESNY+nStUu5Ll7wkjkjBPShRdyZST0I41BlygHNbN8kQglE+oP+CVPwZX4q/tYaNdzWDyxaOTcyOM7FI4GfWurK+edR9jlx1dKNj9wY45Yo1iVACBt3HoBX1CVlqeQ5dihdw6bqF+lpNdt9mhOZFReHPoTWEk5ysCbauar6xZWdu1pY26xQKAAgGAPrWySskiKl3a5h+IteS4mFrb3hQ7cmQIR+tXboQoW1ZyPir/AISB7X7VNdyxQs6osIIJYZ61lVUoaJm8I80dEc74vuNC0+0lt4byeBhCTIoXLOe+KOeMFYVvZq9tTxv4rJceI7zSvCWkTyxQEGUxuoLyrjJz6VjUfPNRME/ecjO1qPRLPTrbTNVMTaXNHtdZECskpIA5rqjGKjaxvBcsH3Mvxe954avovD8upRPZ5Q2+6f7vfGTWqXI7HA3GUuZIzPEOqPpVo95dSOLeVSsiLKCw/wARWzlymqT3Z4d4rsNQ8PW2o69oupvLbuzFo2OQN3ZgegNSnbUmpUjI+UfiTcZ1a4u4Y9kcjHeg9aicm2YPXQ8r8ZTm3tHOMruyPSvOxsH7Bs9DARtUOY1i70aXT4o7KItct80so4Vf9nFefGMfZ3Z6dWf71GTLI+zBP41jJI0mnKFyq8hUHFZz1RNHVWM6didwI/Ss5IwxDsrHVWh3IueOKzm7VDuqX9qy/bjpg8VNSbaHCTTsOeHc+N1ZxkXJKRat18tcEfnVON9TOLadkT7FZSAf0rLVM6GrrUIAAQPzpuLZjZxkXFjV0wcVCumbqSK89r5Mm9K6YNtGTdndF+xR7rZBBC0ssjBUiRSzMT2AHU1LpynKyVw5pNH0j+yX+zl8XLXxzaz+N/BGs6HAu27sY9T8WnRYLpgQUEkJHmSqf9gA+/Ne7l+XYiHvTWnm7Hm4icKsWk1c/cf9jC51y6+FVnda7FZrLgCQ2KERLgfdQk5YDpubk45r6CDlGKX3nhV/ZuLSZ7T4buYJL6WYfO68Fh0rohJrU5MRH9xZMt6jd4k82SNRg9D1ArN1HKV2YUqSUeVMdp8raiiyCHZGp6sOtdEIe0V2tDmrr2Umr3ZR13WBfMNJt3wjNgmPkn/CsKmIVaXs47HVhcPKn+8ktTj/ABpo9xqF1H9uvY44LTDKX+ZYx6/7Te1Y1tGuyPTpOnGle2rOE8W3mu+PfFUHg3wXJNFaPMovLmYgPIOuBnucH2Argkq2IqWhsW5xpU3N6s88/aX0q71rxDH8P9C01/Ke2WC4dZSCqGRQxI9+eK5sTzuo6a1SDDRtF1JrqRfEfwO2q6/DpelaWtzHo8lukMEcYVV+XLY29e5rrjTcpqy0R0UFy07LqQeMfiF4W+Hk0mteMWhgivNLCLbxxsrhzjG0jqT2rplWoQfvPyOWnS9tPl7Hn/jT4nS/GCeR/DOna7bwWFr5c9hcXAt5FQjqhOCQRXHVqc8nZPUitRdGXvLfqfL/AMNPAmh/Dn4l654L0831ql9dG9VZb+S4jG5slmO75Wz2rHD0VCbTuelDmqUlN9De+Onhy00jw2/jHwdq01rd2rFb8ycqT67T1z6gV6M4OULxY4z5nZI8U0nxHJ4nlZr6VZfNjYbjCGDt9SPlPpXnSalubwi9jy/xpdefqUkrzhtp2iUxBWI9Gx3FXSg0jvpqwrR/bvAGp6eF3o7xZ3cAjJ5PpXROlHkep2UubmPIPGNtq2lS/wBnTebGiE7A4QnHbDjlh9a8XFVHShyxYVVrscxP8w3n8TXip+8FNt6MrjIyffmrexE9wbBUnH4elZOVmJbjYZFUnLUOTNp3cSO1k3X+Fxk10QnaOpzKKU9TtrBiLNcjnFclSXM7nfpylqKYLgg81EI31Jih80gkTDHjqKptI1ULIqvGAxrO9zOUrux2v7OPwQ8RftK/HDw58C/CV/bWt/4ivhbxXV2SIoRglnbHOABWVecaFLnl3S7avRHLia31ei5tXsZvxc+G/iD4MfEzXfhV4uhEep+H9VmsbxR0Z42K7h6qcZB9CKqhONSF0bQkqkFJbNXOegUvyR16c1rKXY2iuVXLVvEGwFGSahJyYpTdzSs9KeZ0Vc5J6YrRRey3M3vc+8P2QPD0mmfs8xC3zbGS9/0uXy8F164OfUAgV/RHA+ExdHI4KHuttXdr6X1XzWnlufVZW1GjZrVlvxJ8M7rXbtvib8Tta07wz4M0xsW99rF0bdbmQHgRqAWmI44UHrX0eccW5RkK5MRU959Op3TzTAYX925XkeL/ALVmuaZq+naprtrf+JNM0HTLtbNLu88Mmxe+u2UGOztYJW8yV3HJcqFUHJOSAebCcZPMpww1ChP3rcrSeresbet1Y8jEZsuV0oU3zp2s/XXoeLabZS/Dz4bH4t/EzSVtQ1nLLp+ng5827JBjyB94J3PTdmvRxOVVc8VDEY9fwtYpdzOhhq2Km6lbS2x5r8DdO1YLqnirVoy82t3cjqZYOOQDuPHB9M96+zynDPCYVX3k7noZdgJUaTlJFrxxYnSNVk3yhpb9DJcnJYxxqTtGB0ySMmuuScqtjtrVUkrEuttp2mXzaS8C/Z7q0AncfK052Fjn+6gPf0NdtPkjD3npqaQqRjHm6nQ/sT+HfAl3+1j8PdY174a6brkkfiEXNpb3N3JawXVzGwdN7orFQpUHGGz6HOK/NfFPB1v9QMdicPG0+R2a691/W1zxcXhI4+lKF3FvrFXf3Fv9srXdB8a/FrxH4o8LeOL/AF/w94y1W61jT9Y1Wy8qS9YuYpQig4McbIYwcdu9fn3gZNx4XqYGvFQqUmlKCd7XV1f1NsHh54fAxpS6f1958zeI7ewg+228PleVC7ENOuNzAAlV+g4z6mv2Ks4yjJRT08vy7+qOWtytWbR57od1DbapqF3o05t5rX97AJWzngZ47814OHpS9rNR0aPm6FSn7apGjo0yW20rVPEk03irUXV7rzNx2gERqCBjGOnNbxwbnL2k9zoo4Kripe2r/EX9OtBpupnTIMQ3LBVSdk3pz7HhcgcfU100afIz1KMIQdupzHjyfxBomvRQ69GZbWGUbRGmNvpxXlY2tXhXi5L3T5zNljo42DqxvDyNLxU63PhuTV948mSLFtyMKe6+3ripxmJisO3Fnp4qUHgXZ9DkNBeO9nMsUCyTYyxJ+9gcjP8AWvDpzXLz9T57AQgn7S3vG/osDfacmIlmIKnnLc9BW0XzTuzs5pTkfTvwWVYfA8hXKjcAFA+7x0r854+nzUoLzPUppQomjqGHJyP0r8us2yed3KwLAMuM/Sh2iKMXcRAY+vUdqiTQ5O48OMdeD15rPmLjNKJE7kSY3fjRzXMdG7jt/Gf8iqULq45S1K93NEq/vGHtk0+R9DO6KDOPM+Tn1NappbgovqThmaMoy9RUNxvdF2gt2Yuk2LR627r0z+ddHtn7M4W7VrxR2EFleX8wt7KzeZ8fcjQk1zWlN6anROtGC942PBfgLxL441k+HvD+lSyXSj549hytbUMLVrT5YoyniacVe4urfDvxloniVvCWqeH7mO+DYEJiJJqsRQqUZ8jWptGpCUOa+hT8Q+DPEvhq+Ona5otxbSldyrJCQSKcsPVpL3kVzRnG6Zmz6VqaIZH024CAcsYjj+VT7Go43swtGxVA2/KDz9Olc7VmZtqIxuOnI681ukuXUlRcncjkjeTqMc9RS5ktinCKe4+CAhtoHTuayqNy0B6bn6y/8EO/hZ4d0D4Raj8T4ikt7fXBjMw52Afw19XleHhSwqkeBiG6tZn3ZDJNPKqXMmE6geteluZKLSsW5b2ztLfzRaAZ+6u3Ofes0lfQpeTKc1m1y7XNxlFHzFMYB9qttLclmTrWoedeRubXCiP93GE4yO5pKpzSBNKNmc54i1yK71OO4Aje4Vwqq8Ywo7kZqJxlJ6jTnay2OE+LQvILCW5tlW13YEboQXmckYUCs5xt1Fe+h5zLpDLrs2rXr7r+2tQJrgyYAJ/gA9aUIKVW7Woocqicp8QXvfFeoRaPceHzBCIRM0sT4yy8jg9K7JXggcjB8VaZrJie68QQtJN5A+xxkAgY6moSnNXsZuEYoral5Wr6E8V5C0UixqiqhG0ntz2rWC5tzGU7M8K8Yatf6JLqKgzuwZluI5FBDg+o7H3rVK7sZyTeqPl34iXLS6vO0I2qxPXt7VzVIuLuU1ZHlvjS6IslgPXdjBNeZj5NUbG+DcvanIXKPsJUV5UKslpc9eEeZkMqARYGcjsaJOTZpKpaNio6ksQPWiWiIptWK1xGOp69+KINLc5qzcrnSQSqsK4IqOW87s9Oo7Tdi9bzZT0x61MoRW5lJtO5IkmX5ajlikbQldaFmLkctmocrMTlystRmMDaxH1qGtQ55DhIkbZAHtTs+o0pNk0bu/KDHqcVL5YmkYdyYQmRfnPNRKdti3yxRa0NNes9Vhu/DUtzHfW7iW3ms2YSRMvO4Ecrj17U41ZJ3Rm5pLQ9N+ACeLrn4gJqWv6bq2u6tcBk066kvmuBbzlhiV13Zc/ewNw/TFdeFxE/brmlf1OXFP8Ac8z0P32/YB/4SFP2btKXWzcSXIgCzG4djIzDgltxJz+Nfdw9n7BKPU+LqSlKs10Pe9CWDS7YKIT5jkEnGCSannsrGVWNSfXQdqM/2u4W3sbYu7N85I7etTH36iSRpSi4U3KTLGtyx6dpDRtOIvkwcfyrpxc/Z0eVaHNhY+0xHO1exy1rZBbmDTkuzbtcHdJBndKU9T/dFcFGikktrnp1K7ndpXt9xhfEnUbaOYxWYwifLErnjPdj60q3KtCqCnypyep554Q13xXpuv3WraEII2aUl9QvlyUTB3CPjA47n1qYSlGN46WOiVKk9ZO9+hxVr4k0Tx38V7zxT9qMhiEUOx35kw26Rh07DGa4qc6dfEuTWptXg40FEg17xRZeMrHU7uzjuXjivViP2KNguN2Cdw6/LxW06sXdJGLvTSj1PMPiNq8nxF1qHR/DRuzZWEZghM8SvFLjkDPIDdRmsIv21T3XoKgnBXe7J/APh7RgI3122FvdQKwliu73Mg4/1f8AtIe3pXoxgnY6ZvV31R5Z8TvBniHQPizp/ibSfC0mnabPbMkr2cYdX543+2KyrXhUT6FRrQ9m4oz/ANofRtcs/hsl5rWoGCWXdLbOsZ/ejsGA5PHrWdeo+TQVGabdkfK+orr1gTqs+WilIJnsRuhI9GzyprjWmsjthJWt1OL8WzNNPIUCsC331bO89ifet6U1c76Cb3JtLlhj8KX8k2xV+Tdv6Lz39q2qNuGh1qfI7Hlvjr4feMLCeXV4dNlu9Of5kubaTzEQe4HSvm8bSqqTa1QSjKTucbI46dPqK8xJ3JvYh4J4X8a1knYS03AIQeP5day5bobXUelqrDp+VQm0zRakMFt5d+NqHrjNdMUuUxqqzOus3JtkXHGOM1jNWN6fw6lhOWyelZx0RcXYtWdlPqN3FY2xHmTSBEJOAM0oUqlWooR3ZUpSloj6H0T4G/s923w9ttK1Rry58QE7rzUI5f3an+6o9K+srZLgMJhleV52OlYSimm5X7k37MXhKP4BftSaR43W9WXTksbr7BentKYztXjvmvyPxAwWLxnD8sJRvec4pW9TCrBRnFrbUj/aW+Cvi340eGW/aK0+eS/8T2928Hi7TgC0k0Wf3V0vrhcKw9ga+gy/Czy3CxwsYaRS89ep2VYSxeFjVjG04qzS7dzyrwV8B/HHjbxBaeGtB0WWa5uJFUR7Dnk17mGy7EYypGFNXueXVquNN9z6n+HX7Angm+u9Q8LeNfBmtNftDHHpt3pTjfHcAfOrxtwwz7g19hDIMEuaNaDja2vnb7jtw2AVelGftEu9zovC/wCwP8J/D2rK2t6zqEnlqG3vCAEYHlHUnr9M19bgeFMmoTg1Fyur3e19NP67HqU8vgk58t16nsPg7wb4Ha6t/h1pBjWzhVp7qQoSlraRgtJM/U5wOB64FfX4vNcHkOT1K0rxkrKK/rrsbYivPBYRzWj2SXU+JP2l/Bnxp/am+IF38bvib4vbSvA+gtcx+A/B8M+0RQQlUimZAAQ7khgcZY5Pavx2nwbxNn1KWPxElH2jveTu+W/wpdN+2p4lPJsVVre2lK6l08/M4LTPhlb+IvHWmeANF86XTPCMASJbqUnzLxjukkZicbixOT9PSv23IOHaVGvThH4aSV+l2e1gcqUq0Vf4dzT+NWgTa2UEjGS0soI7YQJFuRBGSSij+8T+dfpVJUrWPdxFOKppbNGDqeq5sG0G302KGO0RJ5tOJy0H3gZZOwI7VsqsZTsnojKhOT9y+551qPjL7N43v9ZNpE8JtvKtIJx1UjGT/OpqVbT1Qq8VGFjh7f4nHxNrl7Lq2kzjT9OTyFuvOAMwB/1YyOmMdPSscNVnKUk17qPIw+IrVK0oyjZI2fhb4u1DS/iz4V8VLNJbRLrdsQFwpiiNwq7gc5UlWI49K8viOlUx3DuNox+1SnZdE7O3mehT/dVFOGln+Z3H7c37Td5+0X8RtZ0D4R/Dqx0fwT8EFOhiPT7fy2tbVrjyg8pBw2+fv15575/l7wKyiHAE+bNsU54nM3zPmd9Ur2XayPnsPi8M51Uqt3Fu619D5o8aawms28csd2UhE/LseWO3k4HUV/U+Nq0HFcrdl/kbVnelzb3PONEk1WTxRctdQR/Mo3DGCQBjA98V4OCbeIl2Z8xhKNajjpuS3PVfDdzp+jSS3sNomxrPMTt8yluAd3sccjtmvb0jFtn2UORU07GBFdXGuapqM8wWGPelvvdcgICFV/qM5zXj+1nVlJrY8fD1a2InOS72K3iVYr66ma7u/NnS5SJ2ByjFVIL+vYfnWcqUqifMd1eEHRlzu7RX0rS9M8W6BLpd5fLbPZKX+/8AIcAkAjuevWvKxlOFSCp31R5NGnDGxlRbOF0ixu7fUZ7dGT5HwY4xhW57V5dCk1JroeJOjUoSlFdGdXoUnkXsMJB3CT5AwwN3ofau32cWmkdWGhKTPpv4RSCb4eyXLhYy8/3EP3eK/N+PlCFCmvM9v2LjRu2XZg8jkFvpX5TOaWxz2UWRSr5Y5GM+tZpSbBtormYFz8wyKc4uxEndAkqnqevQ1k4szTsMmbDctz2qowBt2K17qCWVs88gwFXPNbwSbsD0jdmPovhv4i+PdPufEfhvRJbmxtT+9kjGdor0I0F7N2R5ssQ+a62JdMe6ZxbywP5gONmMnP0rzakbz0OiniFyXbPQ/AX7PXxe+Is0aeGvBl3Isn3ZHjIX9a66WXYqrG6RjUx1GLPcvhh/wSb+PPiW5F5r8kGnoxBxgk4rsoZJiKj992OCvmcIO0UfUP7OH/BM/RfhNqMureJrtdRuHXH71BhfpXuYTK6OE1epwVcXWxMtT2HwH+yH8MvA/iebxZougQJdTnMjBBXXSoU6dVzRftJuFja1T9nP4e6v4mTxTe+G7Z7uMZWUxjNFahTqTUmtSlXqez5SPxN+zb8N/Gd0mo+I/B9rNMgCqzRDOK2lGEo6oIVqkFYzNZ/Zd+EF/bvpU/gWyVGTbxCM1MIQSs1oU69W+55be/8ABMz4G6jqVzIND2eaDgoOBXn1Mvwrq8ziTUxVZzvc8T+K3/BIrVo7yW6+HOvhQeVhmFebisq9prS0OmnmdWK2PPtc/wCCVHxr0nw1Jrq+INP82MZMM7bB+dcEsoxUYXTRtTzJ1KnLYtfsp/8ABMzxP8a/iVb6N408VRWWg2d1H/a+oxIUgkXq0STNjcxAx8oOM1wYqWAwWGcp1f3vRW923W8r9PR37o9mnhcTVoupKLsui3+4/Tb9mbUPhjoOr+JPgx8JfBNroGmeEHht7e2th/rwUB805Azn17813cK5hUxdKqpWsnpZ/iPPMseBw1Gf86u9LfI9isrxGTEcuCOHY84r6hyTeh8u02mLPqEl7N5sSkhRhnbgfhUq7dwjvqUr/Wrqd5QYiyJHhELdfpQ4ybLkk0Yc3iWKO9lnu7abf5AwjIdnHvUr93LUI03KJzvi++8P3iLLfSpb22zeRbvh2Pp7CpnVTeppTtCFoo8s8c2virUbiO70VQFgUzWltM5cuBzz6VLUnqjJyjL3banF6Na+Jzp934o1fRihdpX+ztLu3SYOOvUhea1w8ZSk2zWpCEbRE8PJd3thDq+qTxuJ8eeXcDaMn5QOeTXRZ7tnJNqMrHM+PvF8enXO+2CJJdQuLe0Z9xAzg/TjNCqJaInl5jgPFOv6ulhejT+FeQbkVsgcc/TBrWNzPl1SaPE/iXq2szefcTXg88RhDIo4IP8AepubiyvdjufO/jqeWFp45Bkq/wAzZ6VlUve7Oe/MzyXxxraG/EafOsUirMy9F3ZxmvJxycqTR3YNWnzGVc3C44JPFeZSpO1meynZFVpS2WY9+lVO0bIxqK5AJF8wg0ptuAqC5nYhmZST8tc0m0h1YRi9S9b3EzIo9q67LnNpXdRstLeXIX92prKTVxTUpO5Yt7i7Iy47ccVm4tuyJVRx2LUEl8wyin6Y61XJTjuO1STuy9DDd8eYp+mKylOP2TaNktS/a24cjIOa5pTZrz6F+G0m84Wyws0jcCMLlj+FRrJ6ImVTlWp2Xhz4KeNfEXg28+INrZxppFjOIbm6kkxtkPRMdcmumGErTg5paI554mCqqHVn0n+z5+zne+DPhVZfEm/8IXCXeqW16oup9PMyiQqghRk/ucuW49K9OjhZU6Clbc4JVPa1nDmPVPhH+xP4Ma4tPip4o8Kr4c1GwuFnuG0m6b7FecElvKPIcknC9MdK1pYOlKXPKPK/IynXqv3Iu6fc/Vz9lxNOHwWsG0u2uI4io2+dCY3YdRkHoP8AGvp8PBexvY8bF0rzs3bZ6eX9a+R6Na35dfJVhnILEr+lNx1I92WqNuK4s9PsPtMqhTiuqHLSp3Z51T2lStyROe1Sa71e8jkhni3K24M54j9/c1yVG6s+ZnoxpRo0mrf8Ey7S7tbbXJ5DcB1VSbm9l4MhHbPYewrOMouQ17tK1vkcTezTeL9cuNcvrVf7KsTuLhsCZs8getZOCnU53sdMIVI0o3tzaX/U5H4ieOvDMVwV+zFbUcmKInCHjhj2HHapqyi1psbKFSR5RYeL/DepfGSw0jQH895YWWS4Ns0MOzocMwGTXFGvSjXiox9ToeHksO5zKnijXde1HxHdfD7wl4ru9MtJFkhtYdIjRo3lyT+9bB6gYB45qq3PKbUXZGHs41LVLanCeHf2bfEfwT8FXXxW8HXup/2RDfs+s6Bc3DMPOY/vJVLnK5646cdKKGGVD34/M6nKlP3Z7l268F6D48DeKvCusSiTYpt42Ynyw3pj7w6j15r0ZRjKPNEyVRxlyyRj65rHiLQrJtOvtHu50AMcwllMOxhzvj3fe9emK4qs52s2U6UG7nAeJbbV/iTocFsuvXa3UVu/lNeOAMew6H6VnJK24KNpaI+c9Su9a8D3F3Y6zZW8gQMs1xFGTE3X76AfL9a5HUs3c6ormWh5n4vkiur6S5tkhRWOf3J+R+K2pNc2h20+aOjFs0jn8FavAQrg2oOMd8967nKPsz0IU+azZ4xrlxremXTRreTwKw5SKf5SPbBr5rF+4+aL1CT1sjCmkZst1z15rkj3YuTlQRO8XXvUTTlsEbSJFl3Hd69KycZJBJNEgdun9KlRe5PtLbAny3AJ79hXRHRakPmqSN6wnkaBQTwBWNRxW51RhZGjbo7YUn8qxlOKdjRKKNLSwbW5S4HVDmnTquFRSRpFpfCekeDNZOqLHbpetGx6ljXrRxKrRu3qXGavqfS3wG+Fs+ueGYNZvLBL+PTtUilKOPklUHlS3UAjivqMo4anmOXxxUoqXLJOz8j0sJgPrmGlz6du56Vo+nP4d+K0uv8AhzwfcabaSsXjtX+eLYfvIc19BVyKMM8XJh52lG6drwWys+zd9Doo4GrTwlr3e3meia38IPA2sQQeL/hzAND1VwWuEjh+fee6n0r3J8NUKUPcn7F7t6aelzzqOWzhXarxTj6lyy+GvxA8MzRt4n169heQearzjy2/3vU1ll2EyyVZ06WKdZ/Lf5Hrwhls43oJP01En03SLkvG920txI/MzMSWP19a+npYGrHDx5tHF9OxvBy5bWsjzz4mfEf4ceBPEl1+z9brqiajr8Bmu/FkYeO0v9hDy6VHOeCyDa7pkFhxyBXwuGzCHE3GFShj6nuUpXUeazbWt2uup50aftMXF4m6drxi7feeH/EbxCbPRYSl7bP9rvpLiSJBxFbxkmOP8Tj8u1ftawsZU04vS+q8kv8AM9GhQlKb51sed/Dq90WC0n1C/s5Zr27mkuJkEfBfjbnPUDg4r2cHShDBq27PUpUpUo+6jnvinrgjw9pcqrWcUknnZwZnGSSe3HQfQV0WSTZjUlKejPNr670y9tb+e3tJlOqQRRXkso3PIMfdHTcT+gNZ0KT5ua4lNRl7qOF+JAii1K4fSLJbeRr0LYW5cM8shGwE/wB4IOSQPWsMRVkna+pnWm5tIoa54a06y0zTtMtbnz3MTPPLsLLKT/rJfQkdj712wSVBQW5VanGFGxz3iR309rLXJYo4THAzxJHFkosRDRkjsDg+pJNGHw3t67oS2lGSfzWh49ScnL2SbV9bn2z+1d4Gbwt+yJ4r1PwF8MPh/pNn8Z/h0PE2r3WnI/8Aak89pJHJGzbiVCOHlfagUBgpOScj/OfLpynx9TeKxFWc8vxMqME7ez5ZN/itEr367dfKw2V4bE4TG4lRcZxvbs9NdO90fmp4f05NV8FNq1zE7K8G1UOcqD/Fx74r+78PB1MFKpJbjy+UquXKpNboxdK0p76/gC3Iij8wr9o6lJMcE+3FLDUktTlgm5czO20+C21DwncWMKkyxEmW0H3zKOroPwBIrodR1INI9aFX2tJxiYmiywadaXVvMsTSSQEqZGz5gJGcehHpUYWlCMHcyw0JUaVplqXTbW4sLnUIBEwlt0kLq2WGMguR254I/GitVi0+XYK/v07oxNJs7Q39yEdYpo4flSIj95xwV7H6ZrwMTGPM+54+G5I1Zcu5yEGnzrfzfaZXMiynOCMqc9civLw9WEU11PH5pOrJTfU6Tw1YySX6pOxeQAEMP4x2rrbcoaHsYZKDTZ9QeBEg0rwDbRDCqzEjBr8q8QObmpR+Z11a8px5Ue5fD79kPTLTRLb4lftZ/GLT/hX4Zuoln0+zvrN7vX9XiPO6005PnCntLMUTnI3Cvx/E5hHn9nh4ucu61S9WeRicb7D3aUeaX4Hq/wCzZ4b/AGNPil421jwx8EfhR4nkisLJGXWfHeqQXFxfcnc4toYglspHYMx969DLZZhQqN10tVojvwVOtiIylWs7fgbnxY/Y7+Dniq0mfSdGj02+wQr242jP0r3OSNaOqCry2tE+O/jB8HfE3wh1drbUoWktS2IrhRwR7159bDSg7x2OSEpOVpHHxOswBY5HauWUlHRHUkkiHWtIu9ZsjpmmwPJNN8qJGuSSaVDmnWSObFytRaZ9P/sB/sh/H7+zzp2raSbbSrwZkEikFlPqK+wwuCqp+9sz5761GlBxPtD4X/8ABML4LeHtVXxLrPh9bm7kbc29MqDXbDBYSnK6Wpwyq1Zn0J4a+D3hDw1BHZaPocFskYABjiHSulcnQSi27M6ax8OxxSeVEhHocdKWiK5EXl8KBn2zjhupobvoVH3WW/8AhBooVD7CVI604pLc2EtfCsBl4XHsw60pW6EpkyeE4GkwYwvbBqtOUFvZkVz4LspCXMPzDjg9acZJoFK7tYrf8ILBaHz3URovzFpTtGPqa561alCdmylh51JI8/8AF2oWi6zcwaZOkixIcSqMjP1rj9s5y93Y6p4KcKEnGylbS+1z5n/br+Jes6Tq/gvwVFY3y6Rca7bP4imtbR3MlsSSUBUY5wFxnPzV4md5k05YSEXzct792foHDPCtF5as1xFRK8lFLe2j1foe+u0/xCksfHN94bPhvwjo/lt4f8PwqImkCR48yYA8564/Ovm3w/iM2wcpYl8mlor/ADYUMwpZROWHpz9o53Up/wCS8j0r4IeOdK+PVnr/AMTtL8F2WlXNqxsFe1Oz7SsJxub1615eSOvlOdVvaxjG0Uvddk13s+pwZnQoYPD0MNGtKrCevvbxbNfTluXujbh1jQ8uA2S1fq0HGpFTT0Z8pVw3sJOLWxdvri6063ZZkCQq3EQIJI966L6HEtxlvKk98JVKLGI8F/WnexT0WpU1u7tpIvs8MW0hQVUKDkDrWTlKUirpQtE53xJbaD/ZrahJpC+bOoRSRnJz3qJxp321ElUat0OC8Ua3ai/W4s4ljFvAYjOr/KxNJXvoiFHlOKmmvdEWaWeZpY0ciJCMrh1wTVRcqY6k3I8/1DTpNP0/UFhupUEkonhCjA68fhmk+Z7swau1c5TXdLuvERk1FrJknhgJjkBzkH+KtaS5mXy6HD2+pXXmz2MilHjlw+88Mf8A69a3adhySSPI/jDrUdu11p0EBjldjj6DqKqybuzmUXUZ84fEnX7fR9KudTncDyUYypIevWpupPXoRUlGktNzx3wVZ6zqNle65qyuYtVOZEI+4gPyEfSvFxeJ563u7Hs5bhJey56nUtXelzWe1JY2UFd0bspw49R61ytShq+p3VGmtCrJGUUgdPeuapO7IkouJS8shyVPU03P3bE0VZkV3uRCDWSs2Z4l3TOisYYxEgAHSnVcnN2OmVoyaZdiji+bcgxjpis1GT3Jck3ZEsESO33Bj1rVtQRUYpas6jQNGjurEGCwaeaS4WKNEGcZBP8ASuVynORcqsYLU0/DHgHxJ4kvLSztdHkVLy6MMcxQ4j+YKSw9BkVcMNVqz5UjmliYwpuT2Ppj4df8E/vFHirX20DWNEgWG10wRQahZhlM0zcq7epBOK9fD5JOUvePOrZlGEU4n0R+zH/wS01vwZqll4w8cwWl/qdjMzW8kkA2uhAG1l5BIxwfevTwuT08O7y1Zy4jHus7JaM9++GX/BPfwvoOmap4cv8ASFNpq+o/bZYCvyFwcgmu6OEpxul1OedepdM910H4AeEvDmn2mh3GkQtCEUQ28qfLwKuaUfdZEZSbumbt38DdI13SW0x4UtJFB+yzwIuYiOhGRzULDxqqz0NoVnSndnqXw+0m98N+ErfR7/V5LqSCLBuHG0yNjHQcDiu+K5YctzmruNSfMtDQ0+9FvJ9mZ0VRy3zc/iazT7GVNN6Gpf6vZyWYkW5BjT7zMeB9PU1nVq8y8jSjQcKjutSnqJa00RtQnSQQMSVjjX55T2ArCrJxhzNWRrFxdTkbu/yOMu9D+IPjfybi+ik07SLds/ZGUb5APU55zXOvaPllH5pr/h7/AHGiWGo3V7yIPiVrem6DpMejwWoht4IwdscRyD3J9TWs5qNKzQUXed5M82stNsvENpf67JatHp6EyZuCUa4k7Zz90duPc1zRqTnFytojarKNOo+R3u/69PQ8c/aC8W+D9F0u98Y6tYNFa6VEZ2trZyu5VGSeOQD0A71zV6kYL2rWiKpuT92+55P+z/4T+Lnxp1Ob48aZ4rufDT3tsj6HoltGFWK3ByGkQ53OfWnSofW260JNLTTY6q1TD0YKK17n0F4rtXn+EWox6/4r1S5u57Z/7ajtgZEnjxhwycEHnqK6varD0Wk2zzYc0q/5HjHwK03wfD8KbW+8C+P7tbdwyWFmzsJ0wxGcSDkZHTrxWFKrCtStGVmddec1Vs4mPpPhnxn4s8S3Evjv4i3GoacspS3eSAKYSOOcckiqpU5xlec9C3zRV7WG/FbwMfh34UXxLHqNtqFrGTIqWtwHeJ+zY4OO+DW1WLjG8dUCrRlKyPlbxv4wt/GGuT6ylpFbSyIUla2GFbPQsD0z3Hqa4OWLbuddKLjoeT+KLXyNVc29uIdxIkiQYUkdTjsfWtlT5VZHoU2oq0ixo10X8O6jEsoDGxPTvzW7/h3Z0Nya0PGPFAsZbktDFPHLn5xIMLn1FfO4xwuXCy3MjYFGSa4YzuFST5QLKON3Wqc7GUbkkQUHPHvmoc7lSTHFg3yjpReyHGGt2SQrGkoYtnA55rPn5inaJv6Ja3mobYbK1eVz/DGhJ/SofvaIFPQ7LRPhR8RdUQNZeD9QcHoRbN/hTjhcTVdoU2/kVFt6pHpHw1/ZF+Iniy8SXW9OksrYDLlxhsV9Tk3B+ZZlVUqq5Y+Z2UcLVqu+x9FeA/2IvCkD26abHc3cjAK7SIQu761+mYTgjJMLFSqrmPTo4GFFOVRn1b8EP2X38K+HLnTLTUdNa8+RYtCe62yXRP8Ad45I4q8ZxNw5w/ReHkrU1ukVic8weEceaEuT+ZLRep1mmal4D8En7JrukR6nfgc2UkWFgwT8ue+OnvXymL4l4q4oxH1Xh9KhQtrUqJ3/AO3djhqYrF468cPeMX1K3iL4p33iRDFpHh2x06NMAx2duAwA9/Wva4f4DhhVKpmONqYmct1Jvl87K+hvg8pjR96tUcmzn9Zt/EPi++jm1jVbu+ZlCp5znA9gT/KvtsFlWUZNTtRgoXZ7uGp0MLTtCCiiGz8IXOnGRmeF/KkBdFZcoPfNevCvVVGVO/ut3+7+mKpVp1HZaM8a+L/hbQ/Hvwj8X/sv+LtYa0ebxnNrmk+IcbbrSbl4VltZ4XB5TeCjKR91mr8Sznw94gqcYQz3I6q5ub34z0VrdH5u255eMwE8VivrEG+ZRSWvb1Pn608Oa74j0iyufiJBFa67a2XlatbQSBoXccGVD3Rsbh6A1/Q2SPE4jAwli4ctW2qvdH0OCqOnhoqovf6mfq1/p1vpcNzHBFEgLJFDE43zEdWPcA+tfQxXu2RdSt+8cTxn48eIxaxST2dhFJ54dbW0TOJHx29QPWsJ88YW3ZyYm3LdbmObS60HwTBpl0pN8LHzwY15jldckZ9MCtIQcad5ble9CjZ7nn7W+pX+pf8ACW3kCQz29jusklbCxQ87nz3c4OB1rjdObqc7Oe0k+dso2GoWhu5td1pflSJNsDHDfZiDtXgdGPftXo2koczNKVRufNUenY5rVLbV55Lm7FyEtzpRjX5AVTduIVv6VnTxFSFVTWnQc6LjJTWx3nxm/aM0TRfAHgTwzqHjuLX/ABH4m8J6ZodjpMbOW0ezE0sM28DG3fywwT1z2r+U8z4Soy4yzCUqPsaUKrq8z055tRd0fn2NzbF4XiP6olaFTkt89Hoj52a4hsdNbQdMu2aCO8MLHeQdiEgH9BX9H5fWp1MBTS7I+gpSkqahBe6m19xVGjBLq7ltZAIJSFulV/m9VYfQ1qqSUmo7Mn6o+ZtbPc0fBvhLVNC1F7e1uTM8q70zKQJD6oeMHFcyoSozdupeDorBtqLvc6C807TmZtNubdRNGytMk0eOD0bOPv8AUY712ulGVPU7pyU42sYt/JpyNNoFvbGDaSqlnBaI4yzLjqPXNeVXppRaicV1L3F0OVjuNN0m/wDtWoytDbxqcPu53fSvFnGMJXnokeFO2HrtydonO6fGWvprmJ9rNKW2Oedue4PevNo06U4OpB3TZ4sKVqjlfdnWeFGSbUIzCSQXwHz931roVVQStqe/gqUn8R9QfD/XfEHg+003UfD91FbXEFpujuDbpI8LsTh03AhWA6NjI6gg81+M+ItaWKzGFFbJanbiFaaSJNd1TVvEGqT67rurXV/f3D7rm+vbhpZpW9WdySx+pr4OjCGHjaCsjhlTpxfMehfsifG+6+BPxaj1xW3W2pQm0ugx6Ang/nXXR9+qpSMfrE6Eny7M+7/BUEHj5DqET5Wf5lIPrXsRcWrIV5PVFb4h/staR8TdCuNH1G1WQtGQhYcg1TceRxCcrI+O9Q/4J3/GM/Es+DvD+nlrSST5Llxwi5rxPqFarWtHY5quMVGGu59u/sn/APBLbwL8MYIPEHjO3Go6mwBLTICEPsK+qwOWUcLFNq7PAr4utXlrsfW3h74c6LoEEdtY6ekaIBwigD6V6bq8uiOdQ5tzo7bQ1yFWMKM1n8UrlN8hcPh4QurJEDkd61toNSVy/Z6DbGPfFGQw68Vk4sHNSWg6bTMOSUz2HHNXzRSEkr67ktvaOf8AR5SQnsKnm6lSY86DlvMSXhfuseKHLQUW0VdYm0awRZLrX7GJycMHuFBP4ZpwvI2jCpPocl8SfijZeEYPsPhgQXt28YJlUbkX8qyrXpp23OqFFxabPHPEfjLxf4mulm1vUrm4DZzDkrGv4CvNmmveep6VKnCO25DpKTRTjbEDHICCDmoi5xltozblclcl134aaJ8V/HPhiy8Tndp/hdpNTu4PKG2Q4KoGPruPHtmtMRRjXqQ/u6s78Nj5YPKK1Pmd5tKK6eb8jY+NGtvceFbp7WMR24hYxqBhVUKcCtWqNSPPB6NXPNpqcY2e5b/4J0z2kn7N76j4sj+yNqE94+mSIv8ArlM5C7gB1Yd6/P8APMso0pV8VVbTlG0Wtfe0smuh6mIrYiv9XjSV3H4l5a6nq3i3wvfWUhntF+x3Cou6LHEpxnIPb6V3ZRncsLJYbGK2isc1SlHHU7wd99f0Zyyx6gLtYdQuZpWCkuHUhfxNfaU5pxvF3R4c6Psb33HXmtXV7cbbeJLe2hjIkmTv/sgVtCV9zJqMjK1zxINFijSSSUyiMskJjJYj1PpSnPlHycu5z+peJzqFxDYx3G9Jk86ZZDgYpJWehN3Z2OY8ZJbR2bxXTxwOF3wRx8KVyCSw9fSrjNO5fJy6s5/xf4rsl0m4lm8pFNuNxbjaAMDt61NS81oZ3d/I4jV9ehstBY/ZAxWwC4BzgkZFOMdLMzSblaxxehR+I7nQJbmWfZO0LfKjfwg5H/6q1p+4XOCi7I808WX9/b3N5NKgWSSMSFF6g+vtVSkrmfs7K7PFfjT4nhnZ76bi4UAnI68daxdRtkVJqMbJanzB49lvPi341h8C6TG2GfzdUljUkRQg8lvTPSuXFYxYei316GWBwk8bjFT+81fiHYn4fQReHrTyy4iUqpT5WiYda8enOTjzyPq8wp1cKlSVrr8jzxpmAzI7FRnaGYkD6VEp1amj2OGKjF3W5BPKfLDA9uKfsl1JdT3iitx83zevpWkqK5TSDSGXb7ozXLazZjX+BnRwOIkCk1ry3dzZy9pK5ailZ2GRgd6iUlFFxilqzZ8MaRqPiXXLXw7olqZ7u7lEcMajJYk1zxjOtPlW5NWvGlG7PqL9m34B+O/DHxWs/DF/4Rna+t7iG42XNtlEIPIPHIINe1g8vqUcQuZXPLxGIhWpXTP0H+En7BPgo+LG8fzeG1tZ7gZawXPkqTgtgdByM19EsNRU+e2p5Uq9WcOR7H034E+CHhrw7dC307SoiQo3CTnBre66IyUbLU9AsPCFnaFoJLeMLjLj1qG+5SSvc2bHw6jZMdqojVeC69Pxp26hJssnQjMyxTRBzDkowXp9KHS5tSFdal620ksA7KE+bBJHWm4KJbvJ3ZYVJmDxxMuehfrTcrqxGmzMyHwzrepav9pOrbIIgdtiItokc93bqR7DFYS5mtDoTpU6e2p0Fp4b06C7S91y93+V/q7NOIgevI7/AI1MaajLmqP5HO8VVceWlHfr1IvFPjm0jQkxL8vywiMbiPcCscRX53tp0LpYZU1ruzibzxNqfibV4rbVdVlsNPhYFl25ZvqO1TTftJLmdkdbpQhSvFalPxnrvhaLUFUX5ljDgfZjGd0nua3nKkndO6MqdKpJe9oef/EvXNRii8q0to0CnzLezcDYo6/MO/0rirTlNcqR0KME9D5a/aLufEnjTVNN+GtpqV3HqvijV48wWFmqgQRkMxdhjYNo4wD1x715uIjaKpXak3pb+tDswsI87qvS2t/M+h/gb4V0nR9W0xLfRDbtboLIObgKQyjH3Txtr16K5GklsclaKmmbmp+IfDHhLxZrdr401uBZ/skxtUvtqwp8pzl1HTpzzWXNSUmp7GM4ycE6avY+T/gd468NfEnSPE9v4ciS+02y8TXUFleQja8XJIKleqhicVzYWEa1OVmdc7qa0szk7qy+NNlqN1oF74vtb+zNyZbVyhimRuylhwW7e9dKpzpxcW7o6lyTs7HOyaY9vqV2dT1C9t7uQfvrSYkoR3O3PI915HpXP7RJtdTWUEo2SPEfix4XtfDer3GoaQpQSoXCKpdH9QTnJHv1HcVzSlJSKoysrSPH9U1SGeRzEHBMmTukyAfStozkjrUW3qXvCMkV7pt1ZmMjfaupGehrupXqU7WOlbWRz938M/Dtzqi/8LM8bQeFrTYDFLFA15JKp7iNW6/lXm5hlslHnlJIPeascL4s0Lw1putTWng7xRLq9gp/c3lxYG2d/wDgBZsfnXzrp8srJ3G1yrUyxYTHnbxmtPZX6kO8dRxtZh+7Xv3pKk4gm5Mki0u727unNZVLs01SPXf2d/2WLn4opJ4w8baodN0C0bBZf9Zct/dT/GvXyvKHil7SppEqlh5V3d6I+l/A1r8MfhfZtpfw/wDClpb5+9dXMQklYY6biK+qpUcBhF+7gvVnoKhRhb3Tq/Dfi7xFq9xFaafL8pUgLEo49BxXr5dUxNatFUkuW2/5HpYWipOyjZH0H8APgX8V/ijLCdD8PPLEoAnu7rEUC/7zHj8q9yvntLLKagnz1ErW0XzZnmeZZflcWqs9ey1f3HpXiH4Z+LvArDQL+9sD5ecvplyrhcepzXh06ud8TOUZVfZQT+y9fwPPwuZUMe+aEXbzVjMstLU3n9oXiiTyVyJTcEuP8K9zDcKZdQoqNWPtH1ctT0qf1l81PlSh08++li3pvhHUvE0k2raWkphg+/I8BYMT6nvXuUo4TA0+RK1uiR0Sq4fCqMajSb6Gnqvwh16ztleG9sbd2gM08klwFG32B71vTzSgpqlyu712Maec4Pmsk3rbYy01a7awGj6PcgRxsWaYQjdu74OK9iOGpzaqTV+up6kI3n7Sf3GNqWgC2g/tOS6SVwjO6ySFcnH8eeMV6N6ThtpY1p1VKra1jxL4zajLrXxHSSylt7eG98PRM8lu29NysRyfxxXJl9Gsqk7aKWwqnLz2jc8b+KFppyBbhZJoDCDmWN8iQj+HHHBr6+m4cqezOqlGy5tzzPx3eWXiPTpNT8N2TRNYRCK6SaUBy+TuyP4R6CpjVcnuYSqOTet+1jxjw/4o1vxjr1/rPiXThbTWUos9LgkzsWPIDSDH8XXmlCU6lZt6JGWFU603OrpbYi8feJdRW8a2swJXgi22ioP+PhkBX8EA7+1b1pNU36GuIasmcheTSpoVi9xe+ZZqrm6df+WmSAVUdcZwM98VnRs0mzCMJpczd0c/42nvXtl0+GeOCWFI1u1SM7VTf8sY+oPT1p4mtNLlRhXklC61NK+s0aKayN2wlnhjS3kGDyQckjGAw7LzRCneDu2bc05wUdj6N/Zc8Q/sC/s6/scah+2D8cPhZpPiL4h6N4ivvDNgdXtvPZY5bYyWrJGflR1LORJ1GDX8i+NWC454i8SqeRYCo6WFnCE3NaP3ZK+v3aHzeIwuChmbxWKlyqCVpLe99Efn/wCD4oLjT7vU7qRQrMZAgA5Dtyueelf0vk0IU8JGMpXcUl9ysb4CpB4b3dVds2rT7NPrR0e3tmhKwf6U2BluPvDIxx1r2lKKnodcZKUlFC6kZGaMWclxDLY2TOJlPB5+V+Oma5sTXitOprVoqKvExdU8f6r4phudPu7hROoXfdlQN5XuT1PpXEsZKtTcEzghjI1oTpx0a6nGPFNDdvfNdy7A5MoVuT/tAntXiV5Sg27s+eq06lGo5KT8z0P9jr9m7x9+1n+1h4L+CPw7k0651K/1QXTvrk6ra+TD+9kMgz84CqflHLdK/PePM5ocO8O1sbiHLlSe2+uiOWUKbxdKU/ejFpyT6q+2hmfHvTLbQf2jvHmjQ6vFqq23i29Q30Gn/ZVlImbLLD/yzXOQF9BVcEY2eN4XwtRQ5eaEXa/NbRdepVWCo5hVjbS9189STwnFbnUIWTCgyjfGOtfXKg3oejRq1Hsj6atrT/iQ2N0tuVDW4VWxgMBwcH2NfhvGVVSz2a7JI7J883dlaUfLkgg18qmpM5Kidys7SRSB42wykEEdjVpPdMy5Ln3N/wAE9fjbbeJ9GXw7q14q3dmQrLI3LD1r0cNUVuVGkpQVPzPsfw9YXeqXiy6dGCGPJA4r0adGc5XR51XEwpx1PUfBvw0t4ZV1S5tozNgfMV5r1qFBQdzw8VX9o7nZ2WhShiEiAVR2reV2Y3Rq6foc96CkEeNvJIHWoUGy7pK5P9kFqvlyx4ZehPenaxlJqQAySTIqjtyQKpSGl1POP21/jZa/s4/s8ah8Rb/w5qmoW8l7b2NxJpN4IJLJZ3Eazl8HYqsVBOO4rHFVJwoN01dm2E9+ukmk+h5P4c/b/wDiNZxW/h1PgjNdrBAsf29pjdzEgYBcb4wxPBzmuenOr7O9jtngVWfMpak3iX9qX9oDVoftllca1oMLPhlh8A2o49nkv3P47aVSdZK92vkZQwVpWkvx/wCAYB+JXxr8Sws99rvjPWcEBoorq0tck/7KwPj86xhUqT0V2ztoYSlGeyNPRY9ajuI38QeAvGdq+NxnupLm5Vf+/WmP+hralLEKVuU65x5VZWf9eo3x/wCM/EOhXCS6J4uhgiZSNt/4Z1cuPqwsEArSusSmvZzUX56fiTF0qlL+FO/lb/M4rTPjreXk8iTeJfDMhtwC4vY760BJ9DPbKDx2HPtXj1MRi4vWUGr23Oig8Pd80Kmn9256N4Rk+IXieC2m0X4RazrEcmGWfRVV4SOuVMhjyPcZBrqUsylFKULrpZr8NTmr5jlUE0qjT84tfodHrPip/CNubHWfg94/hu7iXddTDwpJMpVRhUJiY5A5+tdUcaqdNwlTd+v9XOWGKpVLNTTXTf8AyPK/jj8bfCV74avLK50fxlpqPaOolv8AwBqcMSZHVpGh2IBj7xOBnrWFb2OIlGTTTXTY7aNVOldPc9v/AGW49K1H9mXwXqmixItjPosM1ui9DGy5B/I5rnjCFai1NXTvob1qlSliG1o0dwPFF94UvbzU9Ss21TT7u1KtAzcxEDG4E9Pwr5XNMhlCpLEYZc11rFvy3XoawxGHxkYUW/ZTi7qSWj8mV9et9A1Cwh1fwdfm7gktlkkhZiXtyTjBHfniscrzb6hJUpNuFtU94s6p4WpjIyhiIqM7vll0kcNr9/eW6siIWkibcARtUHnrX3dHFU8RBSp6o+fq4SeGqclRHKatr15dYiktZ55LpT51xEcFAB90Z6VurSWpLgp7mElzDok9w9wXa4W14SQlljXsMjvSaUfeM5QS1PPr7XfEviXUZsRiaMTYWTBBwP7wPRR+tZ05O7uN6LU534h32q3sjaHp1rLdsrp9qaJcqq7h1NTUrpPlQqVF1G30F8XXkKWX2XywG8pGVFPLHgYIraMmS6aizA1fWV0TbZXMIjW5tyRsGAp961ulqY8jk7nkPxB1a3jmeR7lTIYSJPw6Coi1Udr2FPZW1PDbP4cfED9pj4w23wd+FdgLrVNQI8xmbEdtEPvTSH+FFBzn8K87NszwmT4V168rLou7OnBZVWzCpyrRdX2Mv4qafafsRS+If2eYvDIl1XVkI1zxRPErNeOpHyxHJKRLjp3r5TLMauJJrGQbUVpY++q5dh+E8P7OpDm9rG6nbf0PnLxt4wufEepG+u5dxWNUj3HOFAwBX0NSHRbHxuJxLrzczmnu0YfvZePTNOMNEjKGzbKl74k0mxjPnXIOe2a3p4WrWlaKOLEYmnSepFpmoW+q5ltAdvY0sTSlh/dZvg5qqudkk+FUoTXEo8zHiKis0jobL99iRx1FTUqcqsjrjaOh0vgrwR4r+IOuxeGfBmhz6hfSqTHb265bAGSfpWFKnOtPlgtSK1anSjeTPpb9jT/gn547+Nur2Xifwp4ou9OvtL1QJqkMlo0b25U8gEjk+4r38Bljupt2a3PFxWMVnFq5+x/wm/Z503TrWzu9ZsFutQt7dIpLt1HmPgYyTX0Emlojzop2PZvDnhKzguRbXCBY0Tg55H1qVqJux0+n6JYTwu9kgOzGCFGavlQ7suR6U93bsL6MhgcLIMYIqHqxuyehoWujz2FkUt5VaNhzg9aFexlKpCUrMjismLovmhj3Ut0raCbRpKSjG7G6/NqEVsun6Na7ru4ilFvKyZijdVyC5HQE4pVISlojD2mvoZq61bGIwRMrSo5T5ByGGQxrJ8nLZPU6I05pXkbGm3EdtALgFWG3OH6k5ojKEVdhVUnpF6GTql1qWr3E7aFeW6SKp2NMp2KfWuaq5VPgKpqEUlJXKWk3Vto5RtZuo570tmVVjyCB6VMXGK13NcRTcknHRGdf315rGoyRaPpkQeT5mYwDCD1yeppqcpPQUH7vvHN2miX+tXk2orEvlRSeUt20eGuH5yF9hjrWbkpu+lnojedox5VueWfFm81iPUX0tb4AQsWdtoJbHYtg/lXPUlKm7M0p0owXNI4T4Q/C3X/if4yvPjpqHiddGjs5PsehIqA7mBOXZWBzluOMcCuejD6zU9vKVrbGuJreyh7CMbo6jwD47s7jWdds/F+oWR13wxOI5rixB8mRX5ztP3WOfwrrhWhUlJPeJx1ZLlioJtM+b/jDrT/tPfEOfQ9PiurXTNAMlpdA3BA1GRsck8ZH4815/tVjJOK0SOuivY0td2b3w4+FUnwO1zUdMtYJrHTdW06GTZDDhYLleN3H4V1Yek6E2u50SUZUlJ7m5rNjFe3V/FrNnuExXdKj8iX+Fxn15z9a6ql5XRkqjWiPLNXufDV1NdeG/HsVzCYyUt78sBJbkdCD6Z7HmuCajB+8jW073Pmn9pS1134Y6y+n3ztdwXMfm2V6sm+G6TnDxnOA3rjHvXPUhVir9DqpU6Klzq9356aeXT9TxefVTewbykSF2374024z2IrWlTd9WdkItl/wTdG3v2VNpBBVgfcYNejSkoqx0xklJWOI8Z6ZcaRr1zCHjbLkmOQguo9vavCzCjU9o5N3QVUo1NepjySBlwT1ryYfFoUo8yuyNCc5AA/Ct21bUjlUmTRqgJdhWE56WKaS0R1nwd+GXjT44fELT/hn8O9GN7qV/LgDOI4Yxy0srHhEUcljwAK0wuHniqqhA5qtaMEe3eFZfFGh6vdfClNSg1G00e7a2ivdNBaGZlOCyccjOcHvX3WApOdNYfp3PYw/NGCitT1nwd8DfFutaottqxmsoCAzG4gKuy+uD2r148OYmeM+O8F5WZ6uEwvtVzzWh9aeGfg38B/hp4D02z8Hpcaj4gaEvqF1cxgRoSPuqO5r28PQnhJOjCKjFI4qeIzKtiZxnFQprbuzWg1/xVBpX9kvqlxFp/3msUmKKMey9aWE4ay+vUlWrx5+Z316Gscvwspqq4Jy77lfw54YttSvrjUdMjy0hLzYlbaeOQBmvbhlmDy13oRST7HrVaqjBRkvwN+28EaFJDcXtvqMsTtGF+zruYs3t2rWvRrVIqML69exz0sXiVUUFFNdwurr4h3WlvoGjSXiaanzRyw2/JI+9zx0rrhDCYeXNVabZcaGAo1fa1UnNmV9nW9tjJPrt1Mkg/drdkqffA9K9KhdK6Ss9jpVZvSMEvQdGWjtgobYF+8okxkZ4rWn7XEQtNW32fn380bypycSh4tj1jxFpkth4b1CC1uZnj8ozJvEiqwLoe3K5H41GaU6iwE1F2bsTTgrS5k36Hj3xk0Dw7pniGe801Bauq7UjTgFP7o9s+tetlrfsYLrY3UXGCvqz5y+K/iS+vpprC3eFVuH/ci5OCADgnOM+vSvd5JShZC9pOEbdDgTZzaTZGHSYQkNxe5upWl3POwGcBeuPcgD8qIqlT0S1DlpwXM92cXr8MaRAxxCR5oZpGCrtRXJPQ9wMZz61LlquXqY1W3rFnlcfijV7+5liutEvRK0jW08xt28uKAd1boNw4rmxEql0pHFByqytJPQpr4s0GWxa8lNsRHPmVTPuWCOP7sf4nnjvU05RUbpo1q1oRpuzMy+vlvbGa4e5W3e7P22UZyUQH5ck9/QVr7aFrtnJTjzq7NJdVEdpHfXkaFLmAiy3HBiIUgyvz1pxrt13bWLX3ef+X6nqudKNNR6nrv/AAS98N+FPjj8U/HXwD+JnwitviBpep+EJNd0rw1cS+Uh1CxIeJkbPysys6nthsEV/OH0msxzLIeHcDmmX4l4eaqxpymle0J6fcfOYtYacpRrP3ZNb7bny9+0xpXw10X9qjx14b+AF1eReD7bxA50eDUbKS3mtUbG6Bo2yQEfcgPOQoI619j4aYjN8dwpha2YTUqrSvJdfM8zC1OXEToU3ov1ONKa4gOoWd7JsT9zcS+Wd6gkg5GOR71+iqpU5XJS8mdjqVY1FaRRmg8T2+q/Z7nVPLAQokwYgOuMhT6Yry6k61SpqzKX1z2zjKWhX0/Q7uOC4nBZEdN027kvk4O39DSow9nFoxo4aVFvle5Slt9SR5rC9H3TkTKBn8fbpxSqOVnFmEoVVJxqbHS/s9w63pP7RPgq88PalBZXyeJ7VLO6lumhTe0gVd8icqpJwSOxr8+4+oUKvDeKWIjzwUW2rXv6HDDF0ctx9PESV4xabS6rsL8X9I8eWfxy8ZJ8SbCax8Qf8JPeDVLO8Vlkjk81ichiWxzkEk8YPNHBbwFPh/DxwUk6fKuW3axtKr/bGZVsXFcsZybSfRE3gmGKTW7a3V2VmnAZxxu596+yrTfs207M9Om6dBrmPffgl4hTUPh7NYyXBlEl7PLiRi32ecSYwuRwGTIIHGVWv594hi6+KrVZb3/A4qWKnVqOK2uat5Kc7V6nrXz1OOly3eT1IAoAyR1olO+gpNRR9I/sIfss/Gfx/wCNrTx14aeWw0+OQeY5U4mX0r18vwdWXv8AQ8TG4lc9on65fCj4bDw9oMUGpqHlWMB2Pc19JRhKCseZVbq6S2O+06yOV8mPIU4xiulPUyatojVih8pyrx43DkGm2RJIsaRcy2TukK4LZAJpK/QlydrDLuC4kctKBg85xScWVFPqSQRGTGyEB8YBNJRRocd8ePhr4u+KXwj8T/Djw7qmnrL4g0S5sfK1K282Ji6ELlfUHBB7HmhUud8re5jT9nOpGTT0fpsfB/wh8Y674m1VrnWYvJumZY7q2Jx5U0Y8mVD7iRGFcbnaVu2h9TClCCue1afICIt1sjADqyZP0zWjcnuYTd3Y6vwhauZWWSABG5HsOOh604Ra1sROLXU7aCWWOIDa/wAi4GWJyDWvPKKvYwvucr8R/PKENNJnbheT6VzYuS5bHVhJS5jz2C9ubdipuH5O0KWNfOVnHm5W9X+J9HCUuXRnT/Dg+F4v7Q1jVdOs7y7EOLSK5thgjIDPkEHIz71WFwuHUZSmteh52YRrVnFJ6LcwfETaRqWqtEmjWyvHGSWUY3HHvVKlSctFqXBcsEkjxP8Aaf1ZtH8H3T28awTnS7hEjViQcxkAYzzkkV38jp0HK1mkTCnLE4uml3sfbX7OvgweBv2a/CHgmSPa2leHbOBlH+zCo/nTw1NQw0U9zDNqsFjppbXt+hsvdRXFq0LBcKCrBq6FqjzJJKVmcXfeGtc8J6u/izwLf+TMxRp4CMpMFbcFIry8ZkeFxq5oq0u/c9ehmtRUfq9dc1Pp3XTQ5DxN+0ELA6pF8T/AU8kl1qKyWc2mjaIojjcCO4B5rwZYHNcrlJ0veV7/AC7Hs4eOX472dGnU5YqNmpa3fe5o+J/CHiC68P2nijw0y3ujXdr9ohl04qzhB1VlHK+9elhOIqNTljWXK3/w2vY8avgKMK0qVGXvRdrNW+57M898W3ss12LPRS0UixEv5wAIOMfN7+1e7GrGUU4u557oVqLvWi0YGjxvbaXcW9td+e4nJ1CVx1P90VLqc+iCcfaapaHJeGPEF/Dca9fRRi3t5rjYjk5LAdetcUKkouUpbI6YxhFKC3OV8dvJHfx60lzjDEGNerjtxXa69krnO4Ru7nGePvFzXdsLmRwjbNzgnuOla3nbm6GSpup7sUYXhb9mL4r/AB8Nx4gupV8M+E7aN5r7xDqY8tpEXlhBG3MjEcA429Oa+WznizBZVCUab5qi6H0WUcM1sVXjCtFq7XTv37I8W/aO/bV+COjeAL/9nT9lL4ZapoPky+Ve+PU1HytR1EjhhIygNtzkbQQB2ryMtyTM87xFPMc1a5Vqobry02Pq8zzbL+EqVbA4SbnVkkm4pKMX5N6tnyRr82oXdu1zfandXcvQzXly0rcnJOWJPWvuo08NhqLVKKivJH5ficwx2YVF7eo5W2u72ObvEmdtqygYrhdVSlqa06M27soS6HNeEobkgN2FbxxMaaukFWlK1kyjdeB9Od900hYg87jV08xrRvYw+o06rvPoaumWdlpVl5UAAAHYVyVJVa8+aTNFGFFWRUZ/tExI+7nrRW/dJpMzjBSep3ng/R4dS1y0t7u1uZbRp1W4FmuZNmedo9a4KUXVaTOqo3COm5+gH/BPz/gmd4k1D4qxfFKfxRfxaHG+7TUUGGV4zziTHWvq8uyuNCXtG9DwMZinV9xLU/Vn4S/BDw74Jt0stB0WK3cyZcoADI3qSOtevKy0icSVviPUdG0y2tbrf5YiKHJUj71QlqVJ3RvtYLdyGa0iX5sBmK8GiW5DdjRtIbG0iVHXaDw3l9z70nJLQXvdC5E0YBt0QgN90keveqSctBO7d2SppyaSFvmnZxjBXOQKJQ9m7maqOvLksWpbaynh3R4VmHJUc10RcHG6JSqRlZnAftEan4o8K/B+/vPDVvcyymSNJZbeJ3lhiZgHkVE+ZioOQB+PGa8PP6mJWXSVFtN21W6V9WetlMcLVzBe1tono9m7aI5P4V/E/U/iDdajbz3tvq9rpV/b2VvdJaqsjMIFeUkqefmYjBGeK83IsTjsSp+2qc8U0k7Wf4G+Y0aGH5PZxcZSTbV3bfTQ7XULvUL+9FlYwyocFQm3AOfevcqXlLliefC7jds0rHRZ9JsgJ3jWVuS8hB2/h0reNH2Ss2Q6ylPRGVq/hux8VeaBHcNJjBu3fylHsMc4rmrU4yeh3wqOnFc1vTdnJa58MNH8JaLLeRfEHVrcshL7bsshJPQZ/LiuKtRUI35rFqvPn0hoJpPj2e3063tL4LJaW6YW3aIxtIMdc1dKt+75U9jlqxvJ23OB1uCw+JvjmDwnaabBaee7NNDAdwWMnAyeOTWaUa1dU/vN4xnGm53uN8R/D3V/hNplxpngjU4YYIZMfIwLxvz9xc/MenaqqUlQbjB6C9pGu/eWp87+Knn8K+Or3T7LVpLpdeRn1y6uXSO9kyucKg5wMEZwccZxmvOjKdOq4xe+53UlTnFK2q27C/B34UW2g6LeR6zbXQt7x5b6yvZgZGj25Pzeh+tdeDoKLbZriEnNO52tzPDq2rXOq2+pfbbKTQ1eTHO1hjJI7HHP4V2TUnPmicrnNxtY8+uNY8NeKItVsW1Yf2nZjyriESY3oAWV1HsDXP7ZO/cpRdOKkz5q+IXinxB4n1G/sbSybEMzQT6hKDslAA6ZHpjB6157qzqTsdVJcmrPB/H/AIKk1dB5/iK7WKPLQebcNJCjA/MChPAJPUUnzt2ud1OEZz5mcNc6RLZwvG9m6qRzhdwB/vBh1FdNJt7nVLTYm8MzTGfyJNquvAYcZrqp8vMrkxbUjL+MFxE/iQyYQymJd5xk9Pfoa8/NJSpy0NqkW0mcVJgHqeeleHBO9wU3JWHxEA5eqlrohOdtjtPgH8H7n4+/F7RvhXB4rsdDi1GR2u9X1GTEVrBGheRsfxNtU4Uck4FTCnHVyeiJ5KtTSK1Pse0v/wBmX9l3wtqHw88E6Jq0lhqNsYNa1+K68nUb9O58zBCITn5F4wec15dDO8ZRxPNh4pRXfqe1HLsHhqS+sXbZ1f7K/gz4TXljN4s8D6NqD6aWJs21dAXjOfUY3kevvX6RwnTzfiDEJTg4U073Wn4m1KnCdRRpX5T3MwaVrly/9qxzTzOFDzq5BCjoo9BX7Osqapcqk159T1qcJ4dJU7JI6K20f+wIYdWlitViui0drE91ulUqOsg6gV8tiJ1KuZ+xptvu7djm5aOKqyg20476aa9ix4s8LappnhNPFF1rVrKbl/8Aj3hlBIX3HavosFVquu6HLpbcvC4qnVxf1eMHp1Nf4JR6R5iSeJZPs1i8DmYock8dOh4riz6rUw2X2p251bToZ5wqsIv2OskyO/8AEVlpuogWnia42IzG3iWPaFTOBnI+b/PFfOYbPOJc1awlFRptLWTV9PIxi604csYrme5V1TxXqM8EMF1q9zCq5aIqdu/PqOlfSZbw1PC8tbEYiVSSbfZam1GgqdXmqJNmbqJ+z3J+1RqTBHiMxNuMmf4j7/yr6ujCHsUoux6MFzK6e4aOY5dW+3aoBJbogKxA/f8Ar7UVYYp0UqDV+5tXVSVLkpvUj8aanePo0reCfCNzqF4ZFaHT7O6Ebld3zbWIPQc89cGvMz6VWhlUpOeun5mEabw9FynPXzPEPiY9vPNe6tJPMzx5Pzjkeo4r6PAVL0Iy8kaRU5ySPm34i2Fnq2pu1nGsc0gkFv8AONyN+PQetey6jkrRN37z5Tx/xNb/ABE0C/NpfPHfQzRASX0IwwDE9+gAHGatRafM9UcuIpzpLmucudWu9RF7YQz+YLVWRTG5KBQcBQTjOetVeLs0ZUpupqGpX13baVLoMmtTJFPZ+ZOlufvnHC+2P61lOpKSsayqKGq1PPV+G3gu8vri2OmQOJNjFFPBJ+/IxPXH8645QovRxOX2FKoruKOV8Q/Dq2tnt00m8u4mlR1EL3W4FFOQ7ZPT2rmeA52uRtHPiMNFpezbRQ8Sp8QbKVpE1MXkUFv5hLpjMRGP0rolQxOHfNF3Vr6nLUoY+mvaKd0j6B/4IrQ+PoP+ChHhSw02C5t3v9L1S0muIUDM0LWrtuOSMAYHvxwD0r8F+kTgMXmfhBjn7LmnTlTkrK+007/cfPY2piPY89WOkWUv29PhXD8S/D95+2b4av4Jr7StVTSvGsloDJBqDNLLFBeLMW+aQ+Vh1woBIA+7k/M+GXGFTB4vC8P4pNOdNTg3o9Em01/wT3s5yilgaFDM6LtzKPMvlufL6xX98GOnXQEbDcisuTKQMkN61/QdSpUqtypPT8zhtUq+9F6GNfS39/etMbpMK5/cIMjOMZI7DiuOnCvUq8zZinVqTblLQvXsN2IngtXJmtLT5wRkKCc9e4Pb0zXdWThTutzasqsoNweqMiWSVo3llfdceUA5XnjHBPr6GuJzU43k9Tz1Kbj771KN48ryfa7biWLa48tiuCOSOOnrXm4ynTrU5Kyd1Z+aODEUlVk3DW259HT+G7//AIKH6fBrumaxb2PxQ0XQEh0qK9ljjTxnZ2y7WSaZiAt/CoCgtxMmz7pALfz/ABx8/DbGunJN4OpNt9fZOT6L+R/+Su/QirVjGrzUnbT3U+vdP0PF/C2m6s2rCz1K3nsr2xmaOS0kQpJC65DKykcEEdDX7TSx1PHYONalPmi1dNPR6eR14OtVx1NTasfTWmeA7PTvgw/iXwvIf+EjsdRtLq809VAW+00Aq7IcDMsbkMV6srN/dr80z7D4Z1qkXK0t7GM6VWGKjKG3UfIElUTqMBhnB7V8JJq9kerOzV0ekfsx/s9+K/jt8QLLSdL0aaSxEwN1cBDsAB6Zr0suwFSvVUmvdPHxmKVNcqep+zX7Pnwg0v4WeDLLw3oumpH5EShio64FfZKNOnHlijwZOUpXZ65p1rbm1MZyZD1UdBQrWJ5m3Zo09EIt5lheLLYOPrSi3cUotkt3HdS3W2RCRnjFXZt6kaCzWz2+JGP0ANU/dRctEP3yXMf73gY61PM5CjJ31It9xgJE3A9BU3sbbajIlmgnS7dj8jBuTmtF7upL1i0j8+v2iLKP4F/tp+J/DpQQadrlxF4j0kkbUMN1kTqP924SQ/8AAxXPXhCFTTZnsYCnUrYWKk9tD1PQtS0mXTDqa3yNA2CX3DC57fgaj2iijV0nSk02dx4Wu7a4tY5rMKwLAqynjBFKneWpyVZtvQ64anbhAtwyxqihd5BwvPU4Hat1poZOpPkulscb8TdVtp5ZrexvIpljkaITQsSkpGRuU9wa5MRFvSR2YNtpSta5wO4LFudAW659zXh1uSOslsfQUW9Dfj1fxhrlr/wqDwV8Mbm51HQLU6lqetvF9mijt5l3FFmORK4C524q8Oq2NpunBW5Xv6njYvF0cJXnWlJ+9olvt+RwXwn8Sal8XHvNTj8A654du01qXT9N03xDJGk16ikf6Su04CNg4JxxzWjwjhjrJ3sreWtjSliva4fnkrI80+LOkt47+Mvhb4ZXbB5b7XLeCSNfmDBZg8gz6bEfmuzGyisDJS3ei9b/APDnZh6lq6qLaOp+hehXdrCBpsWBH5SooPQADAFZQVkkeTOTnNyfcwNZjj0LVJLy5Qy2znkZ+6fU1q/dVzKpPmWhTu9YkuofNtrRTCPuNE3Nax5ZxuRF3Vmc94v8M6DrSG41a1RUkQrzyc0pSg9Gbwm07Hgvjb4KePvDd8PFPw08dalpywsSkEF4wVxnJUr0wa8XE5HlmKSc6d+9nZ/f/wAA9vC57jMMuVWmu0kmcJ4o/bS8e+EvCV/4X+IPwL0zWNUkvPMj8T2+5JUTPIIHDY5r5+PD2Y5ff6tV0vdc17ry3selSzHKcZjoVcXzwglZwVnF+euqHf8ADWH7Imk/Cyy8RN8ZHtNWupimoaBeWLJJHIeN5PcZrlhm+dUJOFWk5yTeysrd73OupgcoxuOnGm406P2Zc2r8rFnVPGP7Mfhvw0tvr/7VfhqxW9086jCunW8t3J8xP7lsYCv7E104fiLF1a3s3R5U02tG9eifY1pcPUknKEJNJ2blKEVbutW2vkeOeK/2s/2MLbQ7G/bxv4z1m/jusappUOnRW0TxZxujmJYg47FfxrHFZpxHUoQ9hR9++qeit5P/AIBq8qyCniaka1eCgl7rTcnfzVkrfM43xD/wUr+AXw5v5p/gH+y2NUuvLxbXvj+9+2vbvn7yIoCenBH406eW8V4+o3XrqnBrZav79DF4zhvBUUuaVSS/kXIn6t8z+6x8s/Gj45fGv4/+Mb3xh4v8a6tbC8mLCwgvXWCJW/5Zqi4AXtjHavcyzh7KcrVlTU59ZS1bfc8HOOL81xtZwoSlTpLRRT6ebVrnEHwz9gjLKMhThiT196+lcW1dHydWUpvmb1MzxJZqNLkjgUEKRyK568P3bCh7tXXY5GVNrFWNebBWR6fPcVRtXrxWVW7JV07sq3u6TIAyOxzVU2luaOcUtCtJDM0PlkEe9bSqxT0OflUrsgjh8tcFqlpTd2Yzm7M/Rn/glZ/wTv1D4r6zafF34haUE8OqUl061lZxM8gPUggDafxBr3MqwHLL2klpbQwzjFONeUKZ+wvw7+G+jeHrW3sdP0pbWOEgBE4AAGOlezNJRsjxqaa1Z6TpWjPayhrK23RplhKV61ny2CUlY39KgW7D3U6KwBIbIxRzIhyb0NCP+0fsn/EkSJgvVM4+tQ3K/uktQT9409Pt4mi8x4gZQOV7ZrROPLe2pNVtaLYs21wl4ptpoSjilGrzaMxnCdJ8yehMGgjiMM0GV7ZOauUtLSKtKU04vURIbWJBLAvA7A0U1CLuhynUbtIfNLFLbt50I2kEFX6HinVanHYyVOXNozyxPA+h+E5L0eH9Nit4r3UfP8i3ULGrCNUGMdOFHT1rzqOFhQptRVr6no1alWtUi6jbsrGzpOp3UFs7IUj+b5m3Zc+2fpW0W07msacbLQjGralKyhYk2ryZpiCQfXPT8ql1JSeiFOnFO5Dpvi7TfEl9J4a0S9jv5oji5O7IQ+mBwal1YzfJF3ZtCi6cPaTVjVl8LaHpU7aprub6VVGyFm/dp/wH1qpUKdP3p6sxdetiIezg+WP5nNfEG90HWQbTVfDkTM8fyxBsFR7jsK5JxVTRxHCEqXU8r8LeD73wl4mv/GHhTR7mWJrQrNLFlhGw6AFuv4VFHCOlUdSK0OmpWdWiqb0Zw/jHU/Hty0t3Z6c15qRimmtrdTnymxgMR6jNZS9ok9Ls0pul8MnY8i8XeDn8C/FDTPH3j3XbZby4tE028nupMKskpyowe+eNx9cVmqapVIylu1uddJv2ThTXU+o/hafCHhiCG38aIJmWxleRpkxGFAwe2DyePY17OHlRpP3jzq0atSXus+c9T1n4U3fivXvFOga6+mI8TpbpHI32dGTuyEAYPc46GvKqYilUnKUHZI3qucYqLWx4L8Ov2jPBvjPUddhh8MQ3Ot6ZqskF7IqMkNwOm+J+4I7Vx08TCcWuvkdM4TlQXY81h1DWNNOr6ANSZtPvdRcxQSEFrdnztHPPFZQag20bRpuSSPAvEev6tpt21jrENxHd2d1IgkgTdHImfvYB9OorP2ltWeirJKKMl9SNzcMonSMbc4Riv4gGuuhNS1NLNLUlsY5J7hElm3At1POR9a9OnCLaKgk2cf8AE+7F34mdTNG5iQIGUYJA9R614+cVIuqoLobVbtKKOXLBn5FeQm+UycXFEinB2E59KSlccLbFm3EplSaN2RkbKuhKkH2I6VjKcn73Q3dlGx9C/s3+EfHX7RXiO00zxbr13c6Fp4AnebkED+AGvquFeFa3EWLUpq1NGmHhiMdWUOZuKPvLw14e0bQNFttC0K2SCztkCRWyDrgdTX9E4HLMLlmHjSoqyR9bh8LGhDlSO10Hw15Vl9uEkLzbSQFIKwAd29/avJzLMKlOuqNM5MRikqvskmRTaILC6mluJhMjpv3Acn6Z6CuzBYKlRXOluejh25UuXualh4r0LR7RZtRskuk2/wCpkPGexauvE4epVd07I5atCtJtRfK+5oWHxOsPEelLFPodtFBBE6CPTwqY9CWI5A4r4DMstx2YY1Uack4dWtTz54SopumpNt9WchEmrSXsk9zqlxeSONkUTKuI17YAHJ96+pyrIsPlknU53JtJanp0KFOlDRa9yl4quIHhfT9ddjsjxJhymPYehr6CNONSOmx00qbcroZp9/HZxCPTEl2zj5zcNuY/TNddOhBKzOhpX1FbX1M8UUKlWXgpvAGKIUYUIKMFZG/LHlOq+F1h4317xxa6f4VYQ3ju2yaG6CrEhU7mcsMDjPH5V8P4i8T5DwjwtUxWZySTWi6t9EjycXKlRwtWeNiuRPS13daW6LW/RXXmfP8A8RNOfRta1rw2+sRSfZruaKWWFsqzbzznvz6V7vCOYwzbI8NiqWkZwjJejSH7R1eWpFWTWx8y+MYdR8Pa3OJ4UuQ4dYrmIFiuTzuHavtYRgmmdi51Hscl401K41VhabwkIt1EZd/lAA5Z1A6ZzxU1HZGeJcZU7NnhnhiHxXrvxDutViu7ay0fTyY7WJn2LezE8scjoK5qHPOq5t+6eDhaeKnjJSk2oEPi7xFqFkmoWOoQrDcrMGnVWyzxDODu7Lj+VViK8YppHXXqKndbnNp4+0x57xIEjdUtVVRE4OVxk85rCNSlKL1TDD4mFaHuO9jBt/Hml33iS+mu5w8EVsscBR8DHQ8/U4rejiaTm7M53jac6ji2aet6xDrmqXP2CQJAumiL5emAOTU1qrqzbvpY63Uo1aPLc+6v+CTH7Jtvfa1bftvfHq8vNC8F2ME2j+Co7AlJ9VvnjaMzNjBEIyQPUn25/PuMMfUxmX4im1fDxp2mkr3t+p81ia2KxWMdLDJWjZtd0eB/tz/tcfBnwR+ynJ/wT2/Z4ksdRefxP9p8VajbaZgxeRNI6wtIQGL72PTIOOtfzn4a8I8R8QcbLijNIunSpQ5aMdNU+tl5d9TTiHNoY+UcOm7pWt0S8130Pjuw8RWNnp1vqcUA82Esoj8w424wxx2PpX9ZYSvhnhE1pK+xzYWpTlho1L7XW/6FCTWbfzbpYUXy7lARJnlJh+PfmuatiKUeaz3LdSnOT9ns/wAyTT/Ect4jbJgk4CpI+R8xHOD7EcVOHqqpS1d2bUqsatPlTs1v/XmUbu9BuZrjToBsYcHbnHPP4Vw1Irnbi9DgqckKrlHVD0itri4EsroI2jOAp7+n51h7Snz26GtKphpSbeiaZ61+xJpF1rnxk0rQ9J+H1jrs3habUPFOpR6neTxWZ061snklhnaA7kR3SP5gCQQMZ6H8U8W40MJkknOvKnOs40o8qi5JzklzRUtG0r6dj5yUVLFRw97ayd0rtK3Q9Q/bJ1bw/wCNf2sn8c6Fp1taya34W0fUNWtLchkhvJrVXZMhVzhSgzyT1JzwI8HMFjcu4MeEqyclCrOMW93FP1fU+gw1L2cuXyR0+nyiDTNJe2kwZLbYCoHBz61rxHDmzG7WtiMQ17eyPVv2fv2Ivih8bfG9rC+mNb6M8ge4u2P3lz0FfP4fKa9Wum1aJwYzHKnDlhufq3+z3+zn4H+Cvhe00Hw3o0MbxIBJMIwGY+tfWxiqMFCCPn0pTd5bntGgwWoVosbSq55pK5NR30JtAvIluZVaTgE1m7h71zb0F47q9YqxAH8ZrSlq7sUYqMGi1rGpQwt5MRXd2I5rZys7GD+IqwW13d4d3OPSk9dzVK6uyymlzuBEJADjkE1OlxO6Y8aPLEvmG4XIAyAetEktzaLUkVb66eaby/KAIXHAxmhu60Glrc+Of+Ct3w7ibSvh18colVH0vWpPD+qTf9Ot4u6Mn2WaNcf79c9anKpFWZ6GCxnspOna9zJ/Zo8L6LYeDdYu9EfxRrGhXlzGJdQ1+1hWC2utih44NjFjGWz8zVpRw0VTctbGdXEVq9dRqWTX5HrngxbayT7LDblUjXEe1ahWUrI1lSVrtna6TIJ2E0UQQl+RjAHvWsJW1OdxR558Rmmm1O5klyzCQ7iR35rmxTc22elhkoJHIwT6dZzLd6vFPNbWqNNdw2o/eSogLFFHdjjA9zXz2KUo03Jq7XTueo3VdNqm7PubPxH+Jvhbw1pGk+H7Px9qtrqviANLb+B4lSecIRlY224Z3C4zkkL6VhmGa0cPhVSTcZbtWPEwOHnVxbUouVuv528irpi6bZ3Mmr6vY6hfpFBGE0/VmCtCcYYEptOOen0Fe1ltp4ZTm7ndilGM2qN1E8t+FtlH47/b08OXEVuixafpV/qaLGMJG+0RooHp+8bFGYxVVU6ae8vyJo1XClNb7H2PZX6yXSqx2SocOh71o42OV6RbLfiCSGOJjcQq8MqhTmk30OX4tEcX4i8Kan4Rtl17wncfbLRsvPaliSnuK2jBKnaJcailLkktTCh8VWXiaPzJpgFR8vEx5BHUYrGUU3ctRnTMnxpq0lzZx2FpKAkr/u4o1wSPc01JOy7mlOWtjhPH3hHQo9FabXNMhMnKQIyj5z9P8a0lScfidy0k3vc+VfjD+yp4f8U6s1yunIjMhJ479q4K+HfNcavKokkfPmqfs0SWNxfWsLyCOObDjqc5I4rOjhly3S3OqrVcU4t/iZMPwOlh1J9DvCGZk3wlhwwodJ8xz86a8iDVPhjYaE8F3JGCj/LuzkKe9ehCnaKOepUcXoZPiex0XTmECKMs5IlUjij2Svc5qs7nDeL5I5Q1tYLwM5kA+9WsbGHtFs0cvIn7nY3OR0P8XNKqvdLw6c66M298OWsymRVKHHXtmvKqwvG0EezKMI6GNqmi31ivmtA/l9n2nFcbVSEfeRzyqRehmlSW5HFTdWuZJNsZKSqFePatYRTV2OScdCnvG7btNKr7q0NPZpn9P37PnwU0f4ZeC7PRdOtlhjs4VSNCecAdB7e1ffvlhoj5rETlKs2z1Wy0UyTB7OEqxh+YtyGHpXNLVmfPdHT6LcXOl2JgEhcSR8lsAg+mDScnYykrmvp+nMg+zvLtMg3Lk+tQvMuLS942bWCOzTzzPGoUYKqBzWl4wRhOaqPlSJsusZmtolO7H3RSXvPRBBJytJkyWkcxWaWMh8ZyDV8iRlUm4XSeg6SNwNjWwZccHNXzJrYUJa3TsJHGxx5cYUjtmoive0KlLe7I9YuQIhFNJ5ZJ4BIw1ayld2YsPF3vHU5K7kO0oYAcPlW29zWM5JKx6HNaVyu1nFdj7HDGrurAydAoOe/vXPd9ClOn9oy9UiDo6XyMY4925XkAVh+HQVjLezOmEpTV1oWvDF7oGkRiLQdGt7fcu+d4QAWOP14p0YQhL3UkZVlVn8crnO+LfiNZG4lHntGOQjMRkc/e/wAKKsoy6msYS5FE5Ntcn8QX5jaU2lhE4N1OZBvmHcZ7muWNROVug6kfZ+9a5znxJ+KxtYzo+mXf2e0UOLOBJtp24+8xzyT/AFpVcUmuRPQunCMpXseUfs5/F7WvFvx18U2onPl2WhRILhAWAmdmBGT3xissvrJ4io49joxODcKMZeZ0Hx78MeF5tTS28b6XHqMaxr9vtLmMMspPTIbg9fwIqsTzwn7yuXTqyjTtHQ47xZZ694S0GXQLfxRd39jBCJ7CK4uN7xwsRmMseWA4GD2rGFOUU+Z3CE3KSbVjyL4veL9J8P6bc6b4os7C1u7+Em3ubeIqFjzwgwcEnAJzXLiIKmrNmsYSnLRXRx3gTxr8OvC3hy803UdPtb21urMkXdrDseF/Uj2+ppQnB0uXoarnqStseOxajZ63qd4NLuhJL5rMrB/llA6ZPY1jBKTZtN8tkeTX1vqOqeI7y11a3k8xpSY9pB3D15PJ9u9TzJTsdFFNRuZOqyWNq0lts3SqcbXi2nH9DXZSlFLQ0b1E09cukittOdxXtmvTptaNGkFJnP8Axt0CHSPGARI5Y5Z7OKeVJYtv31yCPUEYINfO5rKnLE3i9ep0VLxSOKIVTuP6V58btnNNuTHwkudzDjsaJvlLglFHUfDTwLq3xE8W2nhbR4S8lxKA20fdXPWuzJsrr5tjlRh8wk5TahHdn6L/AAY+DVl8K/Ctr4X02AJKoBmwPmdu+a/prJMqpZVgI0aejVrv8z7HK8PDD0NPme0yeCtR8L+HItY12I20Vz9w4IYj2rprY+E1KnTd2azxlNtqm7tCeHteOt6d5Nnpf2e2t90YRm5c9CW9a8/AZX+9datq2cWFoSdd1Zyu90PS6vZr/wAiRgImGUbPXFe/KHLtse1GPLTv1Gz+Fm8UzLY+WQshJlSOQYVcck5xXFjMQqOGkpbPoRUqRhFy6oSRtK0uxXTfDkyyxQJsLbcBj6muXKsLGhRvGNrnLFuc7tWZQn1Mwyh0AWR1+Zg+M4/lXsOjSfvJa9TopRlezM+62zhXmRGkZi22Rdw+uD3rWMGrWOuNo6FC71+9MhitFRY432tufaR69OTXbCmrXKklzWIdHGra34ktdF8L6LHd3F/OILdY8s0khIA+vWuLH43D5bhKmLxDtTpptv0NHUpYWm61Z2jHVnfWnj6PwR+1/wCFv2Q/CWvyfZdLsjffES/t7bzJbq8kULBaIx6KpJPQ9vev4N4ghmPi9lWb8VY9SlhqMnDD01ppB6yts7/10PFw855rlGKzCpFNpfu03ZKKer+48F+K1hbaJ448Q6fJ5iNaaxcIsF4gV4z5h5YADn8B1r+t/CfHxzDgHLsSla9KKt2srHpzm66hUjazS222+f5ngfxViL7r6CJoRHLvlSF/mkGevPSv1CCbV7lVHKS5VqeY+JbOyupwBazmMwkxhDhnBJyOO3vVWvuczScfeOA8Z61pWk6ra6HY6dHHNcgpbxTw7nnwM8Mf4Qa5q1SKkox3OHFYinTkqSvd7HlXxB8Kaz4uu7q71PWJY1WIwFYMIWc5woA6jg1w18O6y5bnm4jBTxiab0OU0v4MaLp2mI73s0cjJiWLzyGJLY2n3P6Cop5fhqMbI4MHlVPBXjFvzI/Efws0jRrWaCKGIx2ThElWY/vZGPb1x69K2eCoqF0dmJwdP2S5I2NU+H59G0qfSxuDNb7WyDkkgMDk9sGtXT9lBrujSlgpwon6afAb9o7wb+0d/wAEufDnw8ljMC+FNPbSNbXS4mmm0+7V18qZ4kGQrddwr5GnClKNSg/t3T9D1Mgw2G+s+1g/eas07LZHyn+2X/wTakfwvN+038G9Cm0fxHHZC68deCHhaUz5xt1K2TG5YpchiuMqzYr8cwnEGb8D8RPJ8zj+4lrRqNaNPZPpoup8fUy2pi86nUwvdp9nY+Q/jB+zn8dfhnPFP4y+F+q6Vc3EHnLbm2LxzxHGZEK5BUZGfQ8Hmv0LBcQ5XnFT2uFrLmvZpdyc0y/E4fCuvCNrOzS1HaH+z34n8V2Gh2mh2t1qOueJrhf7H8N2MOZ50DhPOdiNsMZJwHbuD6VrxLmeCyDBxxOMqxhB66vXtovPoclHByqqEY806lTVQitdN230R7cf+Cb/AMH7iYP4i/bk+HvgHWfmGoeDrq9udauLTYCXZp7SERk4A+UZ69a/M4+JuKjWaw2ArThpaekU77WvY+lqcKYirVi8K+VyV3FSjK1tXu09Fq9Cuv7Bf7M2nXVvFP8A8FMPDE6XkTG3Om/D/VJgyg4Y8qoAHJPfAq63iDnzg5U8rqad5wRi+FMfKCkqnxXtotbb9RmsfsR/ADwRFaeIvGP7bclz4f1FmGnX2gfDq5Zr5BklYzNIiK52nCsa8p+JHEVebo4fLb1FupVYq33Juxy/6q5jpF4iKctNl/mb9t8Wvgh+xz4Y8U2n7IWp6jrknjaeyabVtejgluzpUGHuLGeIL+43yDlcncjgZ4OPlsZhM445z2hXzumqSoOVqcebl55aRlGTfvWWzezPIzXL4ZKqdLm5pS1bW/p5Hl+rfEjXvix8Qdb+L/imSEap4h1d767jtYBGkZdt2xFXhVUYAUdAK/f8kyLAZHkdPBUG1yW+fVtv7r97nfg6U/YqS7dT6R+GXwu8Y/FbwJplr4K0uSa+W78uIheFyAQSa+Jz6P1nHtU9zDMF7JprqfrJ+wr8FPG3wz+FFlY/EC4jlvlhG7YuMe1ZQhOlTSk9T5WrJzkz6O0SKzgYecAeOF96NQ1Rbt7uH7S7EYXstDkkZTiri6HDJdamVt8KpPzfSoVnIuDvA6q9uLfTbUW1uAJCOStbQ905pvWxnCzubh1mkfr61LvcqKT1NK1jaGPy47gEjrzUtNq5V2QXWj6/dzCa1uxGnUk1i4SbNoum1dofDa3llEDd3ok4z61aTW4o1KdSKcNmC24vZtysM46niqSVhN6HiX/BSfwZF4r/AGHfH8Jh3zaRYQ6vbbeSr2syTZ/JTSk6nK4wFSbjXi13sfGn7PVnqnibW7aDwrqDRXWoQZga71kQW4k2gqGj7g4ODxyawlGTWsrHuqpCl7043+Wp9SfDDU9Yv9Eg1bUIkXZuiuXSQbFkjHzfMfbJ+lOg5T6nHia9NyvE9N8Nw6ZMj3C67YTeTEssiQ3qM+G+6QmcnqDx1rshTTejOCWI/ectjyzxZqcOqfaby0uAQt26MVbPPvXHiPdUme1QhK65jM+GOow2/wAQn1q+tYrq00XS5b25hlg8wO7fIgI785/Kvm8dmP1HFU3JcyfSzb7Lbz+49iVF1KDipWb87HkfgX4hePPilf8Ain4x3PhFfDzQ317p/gi6j0rF0XVW3Xm9gSm48L0BCgd+fNwGVVcTjKuLnNSi1e3Z6af1qebUqxkoxlG1nZaPXfV/0vvO90K51uP4f6fJ4gvpLvU7m2VtYupmzLPNt3FiR3JzX1mHUaeHSsc0m1PdtHKfsfObv9qbxD4ma3ymnaCYUuDyp3XCKVH02H86wxNWjUxFGPLqru/fa33fqdeFUKeHqTb1dkfXHivTGuwNT0jiVED/AC9GBrsq2lHQ4Izv7rQ2x14ajALHVGCsI8OhHfsa5IfFaRzzjJSunoYmsXt94Su2cyu9q4xuU5H0NdXvQ+E3hyT23OT8aeDNG8ZImpaHqraXf5wk0LfIc+o6GnKFOove3Hep8MtjzzxI/jL4d60l54002W8hVSIryzXcgX1IzkGp5IxKioW91nNah8VPC/jHVDcT67CIIjiKKRgCWHsabnKUjOTUHYTwLo+k/EP4nRaBHNDLbxRS3uoyq3yw20S7mLEdBwBn1Ir5zizOKGQ5FVxk371rRXdvY9HLqUqmKg5rS6/M+YtVvY38Vy63ZaXNNZvczNHLG3y+WWOMjvxXo4B1HhKTl8Tim/VmOZRpfW5pbczOR8b6vp2oaqjQRzWzWsuIGKYYqf6V6CgnucbqRirROG8Uy3GryR26IJmY7pFdMA4+lNy5Ymcry1ZxHivwnqFsRNcW7OjNlFY8JWMptqzMJxdzifEsMUEpgwAqnjHQ8VKlZmLg7nIs011PHFaoCzSkYx2rbldSyOrDzjCaOs8M+Boru/jfUweCP3eP6V7GDy2EY3kelK9XY6n4hWHh3TPCckd1Ywqu0hQy81eKwtCVF3iFShGEUfPOqWUdvI9xbL+7Lcewr4SpFLEOC2JilGJh3d2yk4PFdPLy0yZtyIoZg3zN1zWFSLa0FOcYM/rMTTTZIAiZIAeQZ4AFfeVU3Jo+ZrP98/U19Ge502T7XqEWVc74SFJ/CudNo537zOk07zNQm+2CxwD9xWXGaaTepUUtmba215OiXSWeNv8ACRzRKMr6IfPCDcWzRlgsbq3DABnUcqDjJpuCmjni6sJeRZgbZEpYbTjhDVxaitQa1YXKXFxA1tJHtRxgsGwayqc1WNiUqcJcyepFZ2X9m2i2dqzsoOSXck0qcJUopQ1FVrxrTcpaFgRyErtOea6o06m5z+0gyv4pjt10lprtAxUfKAe9XOOl5G2DqNVbR2OK1BnjhBzIm48gGuaaVtT0eV312MLVdTS0szFaWkmJWyxRt2/n07VyOp9mJrGMVNO+pztzrqzRTCSeWS7CcW5ACoOvJ7//AF6yqTdrLc7lG2j2Mu3v9e0zzrvUL20in8jlpZfL8tT2C9zWdKVSMtRTlCo+WKZh3EOjzI974j1QTqfnEKDJb3zWdbVe8xtyvZI848c+MNQ1WGSLR7PZaoTtRyQuPb1NcVSdSWqWhUILq7s4XWJ9U8RXVsvlfZLe1t2WNMYEnHU+9SoucfQ66fLTjqdH8HrLTPhzb/a9CtTHc61cpH5oXdvfPzEnt7ZrbCJYTXa7IrupX22Rc+MfiywttZvI9Ui+1rNMIXWZ+Ru43e2DjH1rTE14876mdG1OK6s8W8afHDwR4Q1GVPFXiqKws1ke3vLq4fCxOchPXAO3v1wa4/rFOL96VhyjOS91HzTr7+Mfit45f4gXHjaS6t1DR6c1kytaGPOAzLgjJ9a86KnWquTldHdQTVO1hJ7e4EUlre6lJCkP+tiht9sbH1U4/wDrGu3WMLFy0ehgan4g8JeHLC6FtcW6zSxlreZUKkH1Ix+lZR5Neh0U0pbo8gmk1bUpHa7nJLuWBVMbWzxg9s04QTe5ry30RnahBev5kV1MzurBd8gIJPXBrpjGxUaaRY0SRWv0WReduMk9fxruoSfMlY1U+XY2v2ivDw8SfDfQfjHpczSvp7jQfEsO7cYJFBa2lPorx5Ue6e9fNZhCdPHyT2YSlFrR6nisibmyTx9azclFWRn8KJbVHllEUaksxwqjqayhGVWaildsHJJH2f8AsG/AjU/DwXx5r1gYpZcGITLgheuRX7XwPkFTLKP1isrSZ6WV4Zyftam/Q+q/Cdzqk2sS61JACIXxGpH3jX6YqinCz2Z9PUtClyrqdl448Yat8QoLbSNTv/NaCNV8pFAWJR9K8/DYOhSqS5Diw+DpYeblBbkT22leH9F8h5ljt1Qne2fnPevWpJylyrY9BJRvZXZn6bdya55U+mqXTf8AIAh55xjBraoo0ldvQ3ilKDudLIYvBpez1DS0e8voTFNbyWpcopH3s9iBnmvmMfUwuN/dN8qb3PNqzlUmnFuyfRnGzaFcaJcxXNnHdJb3RP2CK4QBZADycemfWu7LuWrUlGlNuKSXl6nVGrGvdLdbjPEGm2qayl7FczSSNEBNBwY1f2r2aMZU99TqoQdNe8UdY1RIUedr6OFE+XezAE57e9dsZO1rG8oc7ujJeSG+nQwQdeBERtAB6sxJqZTlRjz6s6KTUr+R3/7OutT+GfFWsfFe6kht9A8BaNLcTsq/8fN66kRRL64wW/Aetfz19IjiKpg+FqeR4Sb+sYySjZb8p4ueUpYrDRwqu5VZW9IrVs8J/ZO8VeMZ/FPif9pnVWkj13xHrMl1bz3I3sih/lPTpjGB7V9X4ccI4XA8Exy2cbU/ZuNrdWtWCjSq/wCzW/dpctttNi7+1Tbnwv8AFTWLnUdRe9fU/I1Dzpl+d/OjWTJUfdGScDr61XhBThl/Cs8sev1epOHnbmuvwZvg5qWDjGEbKN192h86/EK8ttTv5sN5i+WDKQuFjx3PrX7NGUfZ7nXFOMTzDULy/wBS1CW0tHIsj+5NwDiS4OPuj0H6VtZOmmcsoybOD1LSfN8VSa5bLEZLAiO3Lckdm2k9h3PeubmXNZIweGhGpzyd2jlfGmq6Xpni0yXRKTxwloVjQ7RMAcNXNOqufUwqVXT2R5f4w8YeW0H2u+ljdrkm5h2FftOT1B9Md/euGWISmk9jxsXWqQrR3Vyfxlca34ouLApcsltCIpEtwoARAcAZ7kZrTESlUsovRHdVVWdONn1Oj8ea1BHbtG1y7tHaoGMTkApt2tyOc9K0rSapNXe1vv8AM7qtdQotx3OK8IfFD4jfCnxg/ij4L/EfUNA1E+WLiXTZSqSL12un3WA75FeDiMPSr1LRdpdz5S8qtVujPlke7fBb/grp8cvhp8X7bxl+0XZT+L9FjExurPR5/sMtw+wBDJt4ZFZUYrxnbXw3HPBlXiPLVQ5kpJ/Fa7sjqq5xjcJSVPERTS2lFWfzPUfE/wDwU/0DUf2c9Etfgrp+qz+OxHqttd+J9ctop47exvJYpZLSJj8ycxpk46opzkcfnOW+HWc086+szqqGHXK0oaNuKtdncoPMaMq6fuStb1Xc+W/HvxT+JmrfBG68IeENRFlLYyTSeKbayhjS51Cwd1dMSqocwxOATEDtGd2OtfXYnh6jUzqGKx8nUSSUbu6j8trnk4uniMJR5qWjW7W7Xr+h4NHLpDxOOrSruTLk8/pX13s8LSfKoryPAqSp1JO3XzYhtFtZDcNbFEZcFg5Byf6VlVjRt8KsU8HKEOaz+9ktgiljbySMdwyUEhwfQ0JYNWi4rmt5XOnCr3WqmvzPQfgj4PGq6b498QrHHN/ZfhR52DIWG55FjByOB97vXw/FmLjRzPA0lp7Sol92pwVlGVZot/DOV7nTIbYMpAKY4HY5PPriv0dp1FofSYKsvZKKV9D9Ev8AghMPDc8+veFJ9RkFzea3NJBNf3hkIdCAEUN90bT0r80xDSzivTe62PArRqzcr9Gz9dtB0qfTrdbeWUttxyB1rCc9TypJc2h0nh2TT4rvde491pxd0Q1poReJrq3jnLWoKg9NtN2uYRT59R/gmx1IF79pOAMj6VEYa3OhySjZGgbi9vL7CqeDjGOMU2rHI4K9zTniulgWNX+qqKFvqaR5UX9OjmWNXnLZ+nWrdrETXUs3d9KseFDAY6etQmmiqbdyK1WW5wbhSFxnmk7FpNPUnvoLRtMkghl2SFfvL2pRumO2p538ZdFGu/Anxv4UuAZlvvCOowMH/iLW71cGk7M1ovlqRdup+ff7Hvw01DxT4X0rxDceMbC2sLrw+iS6Vf6Ct2skpQYlVycq/YHnbk461y+xlJ8ylY9LErl11+TPpH4LeCZ/CcQtPEGrrqUjXEjrmDEaBhjbsbtjI+lFDDSpO7dzkqpTaaR7f4ZsdEnjFjb6VDh5Iz5qQKjR7AQmMddoYgDBwCe1dtGlCLukYSjed2eUfEDTtHttV1e3tZBDKsvmNFwd55BcDjqR6VjWw6kmtmenTqVZRjZXRzula9Z/DbS9W1C7t3nuUuLSPVIV+UpCUL7WPYYYE56d6/Ocfi1Uz+U6LbVHS3fuetKKlRUZOz8zL8Kar4asNMu9C8BaLq8GlPfCQnViT5jbchY+zR4b5WXgg8E19hk1f6xQqOEXGMnez6v+rnJiqVSi1zal/wARadLDoUl9Y2YeU2js8US87iSAPYnAH41vWXJF8pxzTUb3Oa/4J+6L4wn1PXY/iFo8Om63HpUa32mwSB1geS6mk8vcOCwXaDjuPavIcZxzGMJ7pGkXH6oprZs+j49Wm0xRYl2MTn91I3b2r1Y1LoyUebYra9ax3rSX+mPmRFG5PeiynIycuWdmYVxr99C66XqtuGt5yW+c44HbmtXLljexclFao53UbKG5nkl8HaudsR3y274OP61hGLnLQTqykuWxyWv/ABJ1Tw5LKmuQGW2lfakcnKqMc5zVzqezMnBLU4HxJYfCj4o60dLj0yz+0Kha4uIAFMI78j1qaVWFSVrFxvLU57SLfwj8Evhh8QvD/wAOjdPr3jG1isG1BpS32eyDHzVQk/Luyc49vSvi+KeE8TxLnGDbny4elLmnH+ZrZHqYTHwpU+ad+aO36fceY2Wk+F/DtoqlIvLe32xxmTkPjuK+5Spwb5TyqjlOXM92c9faBoN3ezzX8qG4jQBXLfLg9s1rFprQydkzifGUHh+0uWlsZk862OGiLAZHXj1qJKPUmc7nkvxC+JelsZ7fTnV3xkoeqEVzyjKWxCbUbs8k8Qa5NfmSUsTufIAHSrjTimYNyk7HN3F1qFrcLc2infA+4g9xV+1VGSkdOHpvn1O58MfFvSLOz+03zhJwoJV+xr6DA4pYj3Voe1TqQgtTkviP8Vr7x3fCxsm224b5sGsM5rQw9BtPU46lf20uVGHLEj2/lEDgdK/P1U/eOTOunSbjqYOr6GTF50PJHUCulV19o5qzlFaIxgdhKsOR1BrSLjucEm7M/rZ0iSDWJ7h3cYUEBW9uwr7ed5TZ42ITVR+pv6ZBPOVaa1ICjCqjdB71zpamUbNnQWWfKADbju42vyKbvsaI1rWa4LiWOY4x0JqoppBOEHGzRc8yGxjF0YNzucbV6k0SqKnE5Pfm+S+iJuZ3EroSc8DPT61zybk9RxXIrElzI+0IelbRUrGD5egzDKuS2OOtdKglG5ytqUh8IDKCkxPPJpp3jeMiuVLdFLxk6tZpFIPfBP61lVm3JI7cBBRTkcLrDqcLCWZVU4LNwzd+lYz96DO9u8bI8s8TXXivwzczT6ReuGus+ZCWzGfQe2K86UJU9Yvc76dGnVV30MS48QXGkW/23UxMmAQxEZIJ9ff2qZVY01qinFSVjh9f8V6VLei/1vV4vJ8zeUuDxGB3YHqa4ZVYOV7nSpWjyxRTb4q+HfiH4tfRfCmoJKbNAsdnbqBjtlznn14rX2kK8kodDOScYptNF3XYHkke51fVbbbbx7ZIcYSI/h1PNX7J9WKFNX0MC7vvDhWZ1glmeb92HBOfdscYH061N1TXKlctScZanj3xF17xHDqTx6T49vrVNPcTQRWKlQrr0b5hznuDXnSU5S53JpI3U0k7Lc8g8XftgeLdSudesfHnh97y58mOXS9R0uLarzI33ZlPvg5FYV8TJuUmr3K+rNRTgc94O+Dl/wCMLm58R/ECw8691OAzby26JiR9wBugow1B1I3qIcZpK0TWX4N614MtLi00uyFnFCFZbWIfLjrk46fypxo+zl7uiOtOMYjLzw9PpEhl1p4UiNsWd50JhIwSC39081cvPQ5nJt6HgGv+HtYl1y68QJq7XNnPIQscc/mRJ/8AW965V71RtO51UG3G1jK1EJY2kqRxHmPdBnkY7rmuukrHZokYMlzNewlHnLHAJYZzx2Oa6I3UrXCne5NZApMYmTfHjJIHT3FejSlHmsjX2Tb0LJ+IOj+BvG3/AAhXiu8T/hGfGlmNN1tM58ok/ubkDs0Um1h7ZHeuDPcPyU41brucsa8KNflmtzz7xN4Q1Xwb4hvvCWuptu9NuGinA6Ng8MPUEYIPoa+Z54z1RtUTT1Pb/wBjT9nu08Za2njjxVamSytWykTDAOB1561+p8B8NTxNWGMqw5o3+5WevnrZfO/Q7cvwP1qXPPZbH2d4b+IGnf2va+HLfT40ggUIsEacqvTk1+z4ilCqnTS6H0MKEaStFbHpP9k3VtceRo1q7ySIDFGF6DHJrhg6eHgoXtbQcqkIRTmyLQNG1GJ3kv4cFv8AWgH9K9GMYcqkjspzg46FvWZLSS2Vb5EJC48lm+VVreDlb3TWmhV13+xbZYLG3SJcBoyp9ORmoqUZVrqQSSUThdej8b67ql5qKeJbyGa9XZKDN8vl/wA8/Svk63Cc8di1VqVGorojzv7OnVrc/NaK6G74bF1omippM9w9zLGoAmuCXdR9T0Ht3r63D4KhgqahSPSiorRGfdvqElxPLZnaka8s6nOT3xXdBK12bqLbKWoNDcLHNc6Uk8akFFmHGQeTj+tNxbWhtT59rmfrk9lp6p9m1oS3czhYrO0TKs7HCrkjrk1lUnGhRdWtK0I6s0cFGV7adfI1/wBqnxEPhZ8OfDn7HHhfXo4/FOpzrq3i+S0YNIrNjcjZ5AVcKPp+f8mZHUxvid40yzKlKUKOBfuSS+3FrueZhubFOpmMm0pe7TX93v8AMx9LtrbQ9Gt9C0URx20EIVQxxg46H0zX9eUMNDDU/Zw2SNqOHSld6mb+1JHpN34X8OeJdNXd9t0GGK+uGDs0lxCWjcBm+8FUIOMj3r8T8OcTCHF+eYGD2qxl98VsRTUqbqwmtU9PR6nytrmoGyubqQRM1q7Yllk4IH09a/dIQSiOE5cq5tzjNR1hYLi6bQoPuoTaSgA9R2Hb3reEk1YKs7o4bTr+dri9ZtLglhhsytxK4Pzuc8fUVnyRs2zi5KrfNJnA+M9e0vVtXOoG2EsMEQS5nQ/dcnhR615lSalUMakoqGqPN/Ed0ni7xwugRgXN1HGAzeT9wE8EccYrgjS9vXcO2p506lPF13R6x1L+oCPQ9QW1vX3GHS8Ro7gjecYxjryfzrslBQlYbnKnXUWw8QNc317fRoiwrLpoZozyGfaM/Q1lWd4NHXiVejyLdnHR6LLYQDz5kMtxPsnlUcqhGV49/wClccaFo3W7PNw+CjQp80nqyjq9qxe4+1b2miXYXK8Od2On0rWalJNzeoV1GcG5aln4Z6zaeGvEaaNqEyppeqsI2L8rbSnG1/pk4NfNV6Lo1r3919Dz8BiZ4XFexb9yf4M9K0We78NeLYZ9PRLTUrSaSIMyApiRSjKyHqjKzZHTmuTHUaeLw7p1Ntz6OvQhWhKlU6qx4NqHh1tI12+0C7hAuLC6eNgSQBhuMcfdxWdPlrUk+qPiKdOilKm170WOW1mhZ4rkghk+UP8Ax040+X3WFN11JxlsS2SBCCBwchJB/KlCmpyu9kaRhUjueq/s2i/n0T4k6HFO8dvP4GkuLqFYwxlEMyHBzzj5s8EdB2r8748jCGNy6s1qqqS8rnM8FUrV1Lmtbp330f56dV2Mj4cW++1SKXqcEbWIJI5/Cv0hzUocu3o7fkfR4Gl7KNz3z9hj4g6toVp4kfwxdTWl9pfioTW80b8jIBxnPQ46V8J7H23FsuqcTzJTjLEziu5+737IXxstfjP8FdL8XXjhr4W4S9UdpAMGscXhZYfENPY+bx65cS0jvb+5i89XVip6lQelYIwhe2pR1XUHYeYoPHU+tSxcnv3Nnwff6i+nMDNtBHGaUJDm1HRG5pgmBL+ZwOcmqSuZrYt6fc3M918xz2JIppJE7PU1NSu7u10+WawhV5Y4yY489Tis5yaj7pfIqkrNnFfCHxB8WfG93eXfj/w/HpsUNyyWsaSlt8YPDHjjPpXPRlXaftFY3nRpUfhdz0WZo7aLYDk98GtrmPOm7GdfzCOHEUZ3N1FNaPUtJGffWMepaPe2Nwo23NlNCy+u5CP60+W+ncFNQ97sfnz+xDq1nafDDQ9NdJZJI7MWu2Lna8ZKnPHXK1ph6UlDU7q1WdazaPoPQbsPeCN5SAWOCTzmt/dWhEYOx6n4BlE9xEdg+/yCfve9UpWd0c1V3i7nnd/o/wAObrxN4i+JXiLwxg+GfEiw3GrLqzSvdS+QJFszbjCxx/vAc4JYjr0x8NxDnGN9rPCUoPW1pLV69Ldj3MK3h1HlqX5o35bba737nlXw68Uan4m8KeJ/EHiO2W4v9X12a6SO5UqNgwqqQcHbtAWvCwGW4unndJ0/ehFe9dbt7nVN/WI3et317Gx4T0xYNNtVtVaOJH329vJKZPsse7AiBJJAUHaBngV+jzvKba0OKu4qTSjZdhnjrxENN0K6+ySGIvFIQ7NgALk/4Vx1bdCIOMrmZ/wT7uZLU+I51iKvAbQzHcSZWYSSMef9+uF0lLNJNfyodSSeEgl3Z9Ba/Ja3AkeA7opF34Xqp713OKTsjOGhzlzqeoaNbJqNlL5gX7y/3x7+9Q24O6MakU3qGpXqfE/SUutPVWMI2tGnDKfTiq+sRqRsJK0tTzzxFqN58ONQl1CeLCyqTcKTyvGMmsruDvEc3GS0POb7x7onjyT7Dp2pw3CwZeeQt1xU3UpWZmk46PUwr/QNHstRuY/C1wLe5uIgbiTdxjrj8q2pQhF6GzcfQ8z+IHiR/CZFtb6gt59pjMcQByR6mh1OxzznzSsjxzxFpviS5v0EfiSdZWl3JkEBB/dqIRbbuKnKXNuc/qdz44t3utMv9XJVvmTjofeuhXgtBuD5rtnnXiK28TAyvd63K1zu3Bg3UVi5p7mdRJHFatbvNLJK5Pnj7zf3ql1Eloc9p21OW1gm1ZmcYzyAaIyNIRUUUNIna+lmMij5hjGarERTpnZhnzVNCfVfCNre27POuCqZLDiscNUqUnozuqwjJaoxILK3sMxwhTz1HeuPH4irWk+Z3FRoU1JND9zMmBXlxUUzslZIikcbNhWrabORpSepha3pClGniHI5qozl8LOWdC+x/WnYWEGnwjysrJIRggZJFfoc17zPnKzbqv1NjTLaK2JmIf5u27PNc2zMoq89DaiaAooCNG55x61ad9S2aEFzHbwoxTcz8Ih6k0TkoxDyLdhBqVq3mXZV2c5xkAKK5kpJ3MZqlNaMvw7MbxFgntn+tbxjfVo56kmla45wd5YqcAc1aqpOxjytq5C06ynEkZC/zpSqKro1oTGk4a9SW2uICREkR46cVUKtFPlii5U6jjdsw/iHIGEaGQjAzgd6zqe/UudeCVqTOSluIsbd7ow4YkDn25pNt6HU99DH1zSbC4mhWO2ZgjbpAU4J61zypu5tSlyJnP8Ai600gqzagqA7PkCgFUHbj1rKpGnfUuEubRnmXjfwH4a1zTJLu9s0jQPgLjlyecn1rjlRhe9jppqUJXvofP3jr4U3J1lrjw/NNb3QuNlk9hIYpWJOMll6GuPEU1Jrk0fkejGpTcbbrzPQPAv7OHjfwboi6v8AFX4g6prtzLyLS7vMrbrjhcAfMenX3rtoYV04XqSbZjVxHNNKnFIwfF/hmyke4g0HVNZa7CYmS2QlYUHJ2nHYDrXNiY03rdoXJWmvhVjyB/g/4h8Zakvn+ONXubOJ2LW87rGAOeGKjk8dM15vsufVSbQ1JQVrakLfBzQbHw3/AGzqEMa+d50kQbnMaL1/PFdNKEVA2p1L1OVmp8C9QS08JW+leK4P9IW3kWxdk4dHztJz6HFdVB+7qOtZSvFFH4o+M9N+Ht7caxrs0iWu9re/iiTcy71GGAHXDZNY1uWjLVEcs3Gx5T8QNT1LxxYyaJNf2t1FboUhurNwxnhPIEgz6flXJUhKcrSOmnBwR49a+DLPwrKYbWOSzidmBiEg498Hgj2qYUYUdUdkVaN2YGuaZNZLc2ryJcRySb1+zPxn+8B29xVOpLmCE3N6HMTWyQ7k2BZMBj83DCuim3I3s4q6LFgR5yqqcA9Cfzr0aXKrK+ppGT5XcrfEL4W6Trm3xL4p8beENJ06Q+WEuy0+pyEdSkSZK+xbANcuMneo4tq34nlV4OpWUrljTYLT44+NNHtLZpJJrO0isbi6kTD3ccXyxyOOzbMD8BXNkOTyzPNI0Vqr6nq1FHEVYQifa3w08LaP4I0O38M6dAu5YhvG3viv6ey/BUsswSo0ktEfWYWgqFNJHRWVtB4a1BLuK0Tz3wBnoK9KjTVRK9lfft/XyOipG6bR3l/L4judJgv7TVJLOWQYYw9QPT2r56pgOfFtvYwjQpzl7yui1Z3V3oWkqzSs6sQ8js5y/rmvVcYqNl0OqMYr3Ymhd/2Xqmnx65e7ogQf3W3JY9q5oV5QnboEJyb5YlSSwkaMyz6XdhWG6APH2Hc1vQrUatSXJU5n20djeXK7K6fcqanqOk6bYRXuozw2kXLBpWwTj1rsjCdVWKUVZ8pn6Rqtxr0cmoWUq5ZTtkIxhfX2pz5absR7JU5Ixbi81RPMgtLsSx44LDJds10Q5XC7OuN3K7M26u767mkeW6aIbcFs4Bx7VWjVtjWMlCZ2X7MegnX/AI2aLNeCE6f4dhl1jUWkGdyxLmPdng5cr+Vfh/jzxXPhHw8r1KFTlrVfdhfv5Hm5nUbwVSMb81S0V89/wPHz4i/4W98avGHx9vLkq+r6lJBYXbwBWEETlcKD1DEEj2NT4C8KYrLPDmn9am4YjEXqSmklK8rdWn26pryPRjQp0IU6UVdQSj9xt6vqR+y7LcmNCw+SXjcc8Mea/dsS/Y4apUk9Ipt/JFwcYzSO8/bLtdPi+C/hKGHxfpGrTeFY4rC/j0iBYYtNM8Xm+TIAfnmJwxbjIYcV/HXhdxfVxXibiXUSUcQpcrSt8Mml6vTVniZfSUliavs5Rc5X953vbS67LyPh3x/BDLDfOZyYyCYwRxnHGK/sGlzSpyble/4f15nSppRseR6B4ovbaO6uWmc3fmGMebFtUjphR/Wqi7QS7GMXyO8kZ2vXc9rodxp9qQr+ZmW4xwxPJ/D+dPnTj7wV60XTstzyOLSNZsEu5J7kGQzM6pKMIsh+6qjuf5V59WDk27nk0qFWUnKTG+GvDN94Lvp9duGW51O5RjcysASpxwo96dGHsE5dSo4aGGk5rWT3Obu5oT4ktri9YSPbptUOOsjEHB9xXBKq1X5medaP1yMpdDf8R61ZXlw8QsookMbSQIFwJl6ud31H6Vu3dHrVqsVC5zs17BfX2ovHEuJniRYyuSgGByPpnmlTqRjJo89V3UvfoYmowQsbmeQyYVgwc8fvVHzj8ea56uJp3k2yZyg4v+tTkmimvZJUuN+CCEUN2HINeK/aV230PnnTqSquUj034a+LbXxHYrpGsXL/ANuWaqqzO5P2yAABcZ/jUAfUe+a8r2FdSkpao9nA4qeIfs5fEip8fvBk1nrFp8RrNJmivEWDUWdOBOq/KT6ZXHPtXmUavsq7hc5M3y+pRxSxSWkt/U4d4orlGRZi+QFUA/db0r04yVV2TOdLTQq2sM0jG3lVo2Unhjgmt3NU42e5th4VJP39D1j9luG3XV/HGp39xcQWVr8OdSa9mtPvgMEVFJPGGcqv41+b8e11OGDhFJylXhyp+t39yMZTdSo7dFf8TD8HahFZ6T/a14oAiUmMnBOcdSK/QVSpVmrr4dfR2Omnip8j5Nj0r9i/xQli3iPzp12vqMUkmF7kf/Wr5qpThhOLaS/mgzgwlGTxEm+rP1Q/4Jg/tA2XhrxfP8MdRvDFZantktJGPy+YeqjPSunOcPKbdRLREZhls6rdS599aiGgcOhB6fMR1r5ByufPPlSsUJbs3kqIEyC2DgUJajWx0mlultb+QyhSFHJFbwSSMJJ3NXTXldstwCOMVErtidS2xpW08NjG0siDg8ZpO/KKylZP1DQ9YfV55HH3RwDXPGTbNWrGr9pFpBsRR747mt0roJ3aGiZ7ltwx78VLdjOMU5X6lS8uA8uwbiAOSKlfEbOzK9/dpboiJwpcA56n2q3daoqMb7n5o/s13V54c8Q+LvC9hqRhm0PxvrFonzkBY0u5ePrtIrXD1G6Tv3PaqwjGEVboe2/BrxjceIbY3V1cRmaHUZoOufungn3xShK7OTEyUFaJ9E/Du6jM8JJDFk4yvb1FdEVY8itds5H4oSWlleyW+gaFBHLf3Uc+pFY8fapEBCyuO7BcAZB4FebPCUqmI9py+8z0cMqkYat26HnWoWN3dvNNDpyTgxMRHDhJF2/MSB3FTG3M7npxfJFal7Rzb3ly0aQPbK1sj4cYIbg+nQ/1roSlu3c5asalbRPZ/wBf5Hk/xW8URXWiSRG6VY4pJYpDnGCD3/KuNSTu2bVLRXKlqdd/wT11a1N94wWWyWDN1aRSRE5Ab7Pnj881zx5VmEvQqWHdLBRb3uz2xJLjwhrs/wDarJJYTn9zJ2UnsfSuybS2OKVRTXuvVbmZ4s05iXvtKdktZD+8AIxg9xWL5uRtLUqm1OSU9jJuNY8EfB3wPfeI/DF3d6hqF66mSZ50Ecch6gDPBr5KjjcdWzN0mrI9XGYShRw3Mnp0PGD4o1zxBFLceJbhnuLxHZlbkIuf8K+ppx5VZnjtJrQ5/wAe+A/DZ0SC+0BhZ3U0m3zITtLHPcd61lShJXHFWvoec+JLPx74cuZb0auPKwIljOBvXuWNVyKMdGRU99HH3MWqX+sSX94RM0PEZCghM9SDXO0rmcYnP6vo8k9/9hm1IkQnc0wPG6tYxbRajGK1OV1+K0m1F4Irl/tIXLSHow9KbT6hKV9EcF4iuNIjuJIZnxG4OHbjYwrCSTehm5Jbnl3ifxDYW88itIrSITwP4qXs5JamM5pPQ4XVdUur+QvMeSeFx2rWNJJ6mSU5kWhXa2t+YGYAOeTVziuTQ3wNRU61mbfifWRBp/kx8NIMYBrjvKMXI9mpzX0OWDbW2ntXlt892wcrLQVb+3U+UT83riuWVKSlcFVdRWIZpFJ3KfrWsWr2KUJWK904e2dPUGhJKqmPlkz+sq0g12C8WR9PhNsvLv5g3D8PpX31epKNRp7HyFZp1Glvc17azRhJNYXrum3dgLioS57NMmMZKOpaQeWIznzGxyXyCKtWi7MlX1uTaXfTalqBuUtmMFv8sJUck9zWM25O5pCKtdnQ28eJPMaVyc8B26UQV2ZTkmrWRqWyxC3M8p2qoy2a6XZQuzyqjlz2RBFczzKZmtiqs3yAnkj1rjhKb962h1ezgklfXqEzKDvZcexrWM0tzFQbe4kE80vyxJgbutaRlzfCjRw5fiZzfxKlaFgGBAC9RWjVmdGGTdPQ5SCWGRDPcW+4RRkqrA4LdiaxlJROu6iZk0fiLxFqn2KDd5SriZ0wFHtzXDJVZTv0LfJY4/xytxYXL29tFvByryuvIx6DvWE072RVFpq7ONvtUslmj0OzZvtRQ485MhSRyxzUXa91HS4ycXJ7Gp8GvAmiXPjg6i8ouotMjzKWiBEkzdCPXFdGHpw5+boZ1JVHTsdj470q813Uf7Js3TzJTlsR8Rr7+9Ks5Tk4xNKc4QhdnAfEDwPouk6a9hFIbi4l+Rmh/j/2R/jWNSnzRUWXGrKT0R5F498D6foHh94LCaOByhSYK3C7uo68muOrQhTp8tzaLcp3PJvFPiO98T+FNP0W2eC0nvr6Sy02ytjvYWkWPMlb0yePxFccXKUVGJqouFRnTa14Z0fR/B9pYX8ZDyoqQSltrqwyNvPQ5xx716E0oRSKhJp6nEfFLw9aPomoi6tRM32UxmRxz5u0ldwPQ4FclWKBXUz5A8Dabc6Rqt3caXcvBcyXLtcQkkLLzyMdjXA7qo7HqRilqze1bXdOcSWl9ZyPEg2tkENG3vXRKVoWY276I4TxPYRTXHnWc3mxnpJna/8Aj+dc8Vcqyic/dWRMpDtIqDpuwxB+orvo6I1vdXDTTtuQx5IOMkGvRopykmy1JtWOI+KtpFN47urlbdFc7cSLIDkY/SvKzBRjinLqYSpJSuz3X9gb4e3Wo+I5vF13A32aBflZl7+1fe+GuAq4jMJYiS91dT0Mtpe1xKl0PpDV/Fw0jWVFxMEDtiIbDub2r9vlJQk3J3XofTynCE7M9T8KWmmXmhJ4k8QwhHUAxQtwT781p7VydobGrm5L3VfU1F1KeTTZJ1A253Jz2ry5Tn9alTcdEk7/AH6FTWtkaEl4upaR/as8PmxeTsxj5Fb1JqcTi8PgqXNVlZGEEqMruRz+t+Pm0yxt28CmDWNQkJR7eQlYrUf3s45r8xx+N4j4jxjwuApuFHrLy8jgxEsRi5Onh9PMj0aHxjIG1Hxb4ukvrlskIPkihH93Ar7nhrhSlw8pOVWVST6y/wArs68vwUsIr1ZNsqanYReLNQRdSaJ4oyFEKjOTX1spuEdD1/a8tPlSG+NdYt/C+ktp1tJGJDjzCAQCOw9/pXNTvOd2Rq5Jswb28h0+3guZrpvOePdJEuFEantivQo+8tDdNuyRnXniRL2/aKztERvLCxktuC5HA9zVyjaDtuauFtzrPAPj258DfDD4jXuiFpNbu9MtNOs3RCzr527cxx/q0GAcnjiv48+kbgsVxTxnkHD0P4cp88vOzWhz1abr1acXtFt/M81sGs/COkWmhaY4keCFUhZuQGA5P49c1/X2X4F4DK44fD2ThGyvtorL5Hpuneau9DY+GmlN45+JPh3w9dAS/wBoazBE5c7QytIuQB2HX614HiLmdXJvDvMcbtOFGTuu/Kzlxk/q9GpUj9lNnX/Erx9r37QniT9qD4K3+haBbN8M2sJNAi0S3WKZ7dIwxkucEmR8kgNgYGBX8JcHZfheHMDw1xJRk28ROSqc0rr3paaHz2VYpYWNOnKbftG93fVpPTtqfEGqeKFW0S01yNA0qjyNy/I2Ofzr/QvDYmKgrvfbsd1VckrSOB8YaTP4r1AxwAWyJxGkceCR1ZuOgrsc4yIqc1S1jhPF/imezS8iktndIlXbvPHy8Aj1xWFSpGKOSspRVzjx4ltr2KK61FRJbxQsYpFPzNITyfrz+FcUaic/IijLrLYoeKfFkIvbqHz4obxAkkUEZ+VQM/NnucVjiKnNLl2M6+I10OHs9UXU/F4WKcOpk82aUngFuMn8K4aShUr2T0R4kKyxOMsuh0F1ZWN/JPci8eOCCJIsMf8AVxMcbwfXqce9d9Wzi0j3XTjOkZ9hb2lm90qyss+1trbv4kG7cfqOlYrlirHJUjGjflOanE1oGiurgNFI4mbuIXz3+o/nXkVYtVGjyVGoptN6MqamsFvcTXOxFXcPKfPGcj+YFCaorU7JU4RTbRV+2QQyhoN6qZQ1tIj4KMvbNYfWk24W0Z5bnyV24m+vxd8Uaxoc2i+ItVOo2k6LHcQSjL8DCurHkEYFeTicuwsn7ZaO52PMKtSg4VHdPoctM89uGSPDoxxHPnG4eh5/zitsPFKLuebGFWn73Qcl2pzIsilguS5PX25qakFLqb1KsqiTj0Pa/DdvpXwt/ZD1C3ubyAeKvirIJY7VnAe10K0kIViD/wA97gHA4JWH3r8czKtiM843p8sf9nwn2v5qkt//AAFfmckI1E7SW6ueXaJeqsBhMWwgEMB0U+9fsODSgufvqejhH7lrHYfs638tkPErmQBlltiGX6sK+QzetJcWYNN68sxYapCNeUfM+s/gfrX7ROv/AGbV/wBmqaxvNe0xlkfR70gfaQvPynqDXuYv2sqTS0NMdXgqbaR+xP7NfxK8ZfFH4G6J4q+JHhWXRfEBtFTVtMuCN0MoGGGR1Ge9fIYmnCnPQ+IqRakzudCRQ7XEyDG75ciuTdhzWibojkuZA8fAHXFbJ2ISctS1Jqi6TZvfXcgWGFSWZj2qZzSVxOBT+GnxP0f4o21xdaM4lt4pWjEingkHBrClWVZXRrycu61R2dtNp+lWpEQC45LGq0itjKd5O6YlpqkWoxs9u+4Zx04pqV0U276ssiT7EgcnqOaLJoqyRUnvw0h2gZPUAdKnqN6mXqt87X8UCw5jRw0kj9Bz0rRRbWgN9j81/AN/Pp/7RXxl06NzGkfxR1MCRByiysGz6Y+b9a68HQjG9+56CdWVGM+tj0/4N6hpWmeNvGfhnTL8XMGneIwsd0zcsHhU5HbrU1HFVHFdBeynKnGU1a59RfDOfzBFCABlF2+qisveepxVlGKOS8X+I7DxBc3Wp2jTyJDezWccs0e0yCIlGcdPl3A4OOcZFc8oyWrOyil7JWZw2nSXH7y8eYAhiihTggdvzFVGMdzqcWoli9uZ5JJok8+4mS1JREYAiNFy3zHHIGMDrxx0ranCU2+Xo/I56tXDwtRmmlO+qT/NbPXTVPtseZeO9A0mysB4itp0uItSma5+zEkeW65DCRCMjJwR7ZrzsNKVbEVIzjy8r+89LE0qVOnFKV2/wOm/YFtm1Sy+IJnZY7l9btjbsuB8ywDA/LiojSi8ZORjiK1qMILoe8w6hBr9hL4c1+HaSCJVZeQexFVKSWhxu25x0Wo6l4M1FvCfie4EsEpIsblvusnoe2aypwbndv8Ar8i3G8Lo5Lxr8MvAdtqMutzy3MU8o3ACYmIsOjFelJ4elGpz21MJOtOPLfQ8o8Walq3hq1ubzXNNaNHJSK9hGUKZ6/7NXJcu5cVyK5laF4m0nxfbDUNI1WO6trKMCORGzl+/A6U4zi1ZMxlVtIx/iBa2OpWX9jJdFxJHvnkLfdP1qHdvcnnb3PK/EPgvU9Lae10nVJEjG1kTeTvz3qowi9bmqmzznWNM8X28d1M2qu+XxKm3tRzSg7IJtTOC1+y8cpem6/tJ96D5ABwy1M3KWphOJxWu2Gt3cMtze37M8hAkUHioTs9THllc4zWNLFtIzM+Tzv3NyDT53IFT97U5m9uIVkKRNuZehBraEWtzZ26GfcH7MDMzfMORzWt9Dgb5J3RfmvWvbSKWVskLjrXn45PlcUe7hputBNlCSQsSVNeQptROtwjE87+LnjbUfB91DPZsSCeVzXsZVh6eNUozPAzbM54JrkRY8A/GHTfEgFreSBJsY2k1WPymWGhzQ1R05Tm0cZ7stzsgq3WDG2VYda+arVJRvc9ty5Xc/rG1bwToPivUba41kXZNmd8SwXjxoxx/EFPzfjX6DiMPSr1nKZ8kqkqUm11N6Gw0/TrYPGxiUY/dZP3RTtGEbIzUpTVyD7R4l1m5RtFvbaG1DEXkc8JLsuONjZ4/GoftPskxhC95HQ6Yw01UtlYgr0Hrx1otcmbi7I1rZ5X5ON27nC9quOhEopIv6hdMbdLKI8nBkJ6Y9KVecpRUEcFKleq5vboJNeuArHC4HT1oc2lY3hRiroiv7pwihRhmHGTWUpsdKjHmfYn043DRglcDvmumjKpbRHPiOSMrXOW8dzSXVxIhXKquOR0rVyu9Tuox5KCscTf3v9mSSIlwQXGY1PQfhXPNqLNYQcrOSMPVPFMlpaS6fFe8uS0h2gZP19K5G5NPU6VHXY5TSdWm8671PWLoTGOPbbrIo2qe/FRRVpNsqUVJpLRFK50QeIJDLp0Ku7Lh1SPaxz1OewFOSckzSU4wjY6n4O6CNF0fU54f3gtSFjO0/KxzkZ9ff3rWlTtSvcxqyc5pIzPEXie/tJHs45gHugWlmAwFQds/0rGU1DTqXGmoxuzzX4h+Ozpk4LSkXMiFLeOM/Mq45OO1cdWraVludVJqWyPBPjn8Tri00W4vJbgpa2sZeXLYyB1JP6VyVJXvKR1U5JK1jzT9mzT59XVPiJdAmS4keSMSgnyk3Bti56ZHJxWeFSUuc2cdW2e0fGzUNJm8PpNYXZJuoVm3kFvLbdx05xwRx0rsxcrQ0MqUOaoeP+OPFGpatoMxvLgiLje55boRhgfvL2/GuRTco2NPZ3lofNsyXS69c2twiqY5N684LJnhvwrkfKpvU67vl1M/Xtcur3UGjku0yY8eepyJB6N/jSfvF0/huzkNTvbgXEllBb7nJyx3Y3e/1qI3T0N4r2hlMrHdv+WTbnZuGT/jXo029ik7KzLWmRGSdXdCrBs4Hau+m43T1NEklci8TfDe+1/4mWNtZxAJqcStNsYNjHBPPSvOq4Sti82jQjtK3QzkpSmktbn2J8J9E0DwR4StPDWkQrHHGo8x8cyPX9CcOUsJluEhhqS9X5n0GAoqilbc6+18GWWpavb6/qVuHCPlI8A8/SvrrQlF3PXnTjJqTN7xVo93riB7C4uF3MAsYPAA7YFYwkqcrLY6ZqLguVWOhuJRp3hyOyuQMiHBG07mP0rjnJTqt9CFHllzHH+NfiukWn2vww8Oam7yTHddQWqZcD3/ALor4THSrZ1mqwcY/u1uzxK37/Fezgm3+BZ0PTk8OaYloGEcwG5wZM/ma/QsDgqWAw0adNaI96jRVGCSXqYfxX8eT+EPDUbaba/aby8mWO3gjBJyT1ra0ZzSsKs5U9UbHhW21Gw0qJLmRxdTIGmeRjiPIyeaqpOLRtJJannXxw+IM/hO8j1RdPn1RYZhDZWVqhJnmJwCfYdc14mZZpDA+zppe9LoebmGJqUEnFXb6G8j6nqOkxz6woS4+zq8wfpGSM49yK+iw6tCy3aPXoqUaMXJGdcarY2JijspcTNxGVXLE/3iO3tWsYSjJXNpTjVgnY2vAWl2mhfArx18SNX8TLbXGs+LLHTbW0Sf95PHDAzsHGDhMt04zX8t8U4yrmX0kcswcYXhQozk/K7seb7epLN40YxdrXv0OIl1tQZZ4ovnl6TOu4kf7K9q/q6nFOV0e/7Pnud5+zG9uf2hvA2nSQJJLLrsUkgcguxBzyMjpX5X4+Yl4XwhzW27pNfeeXmE5U8vru/RnMfs9/EXT9O/4LJfGj4RXmnWTxfEPTNS0+61A3OX3xxRvGhUDAwFIAxnvk1/K2AymX/EruW5w4JywtWnO7ve3PZ+h87KlKphKc4rWm4y9dkfOnxJ8OWYW/8ACOqyRNJZX8kOyOUMflYjII+ma/tPJcdh82yLD4qk7xnCLVvNH02YUOWs13PItQ1bWfC11NDPMZLST5Dfbf3ir0w2fbvXpUZTS948fEN4a6ucn4iuNI1mS7uhGjWyjAYTbti+49SazqTUupwuqpR1PO9Ukv8ASbOcQ2asjROY4HHCknggdu1ZuKirkNuxxF/ql6Y5JJrITXcoVJ3PXb/dFcOIqSSslqebVnNvQo3EUUge2s5PsisdwkB5f/Z965qMfe00MlThD4NLm9BpWpWFvHJLqeIDBhQ2CG9iPX+VdU/adzvoSq8vxGTqGk6qzzNJqLhpFBuGB4Uj7ozXDV572TOfEUatTaW5Vv8ASL2e5klvL7MkcSgBejL6n1FcrhJTu5XM1hXDWUtURalpCSQyWcku5dqlXDZEn/161xTXJysqcozpuDM++sbRyLfzEGUGSP4WHTI9a82VpK0TCpTouDS0ZTVnVDGIQsyfMSR/rB6gVzudRp855lBy5rSWq/EYFkvSbmB9oP30Tpj1pUn7TWL0OucJVIXjp5FqG2hgtVMiEKQB0yW5xge56VGLaoUG27JLc541IUleWiPTFiufE1r8Sh460IjxFoml6aun26NhdJtIdq+QMdCFI3D1znnNflUZPC4jAzw0v3NSc3Jv7Tez/wAjHB4hYqWJn1VvkuxwOjaisqkTuGDAh379OOa/WcK+a8WXh8RNNxR03wa1drNvEiMoC4tTuDdPnYc8818zndOnT4lwUnv735GOFp1fr0uZnvXwE+LV58J/HVl4rW8uIrMOvnyWdyY3xnnnt9a+grQVem4I9WpS9rNwklY/VL9j+y+LXxJ8Z6f8WfCHxUvrzwbPaYm0m6dJcPxg7xz618bmuAnSq3bPKxtGlhYOEo6n2PFKFRVU4xgYxg1510j5/luzTTUYoYwWJztGc9qm91qLlaK+safD4k0mfSbqZhHOhDHOOKLRe5rF2ewz4VeBNB+FfhpfD/h+JUiDEgL6k5JpQhGmmoiqz5pbHSXsi31qYJZtu4euKHFvRhBJPYs+HYLDwzozyXFwCq/MWc0StTV7kVVGo7WK+k+L7bxMrXFswZdxClT1xU0ZxnFyRfLJblme6t4LhY/vu/B46USavYq2hn+IJpYWEDuCMg4U1pKUoxshxVkfnAJrew/a7+OOmqEMbeOjOB/fD2kDgcVvgXVnKXN3PTjOlUw0JQd1ub3wdkgg+KPjMyW01jDPf2lwjCNv3swhI8oknkDA5A6EVrVpfv25PQWIqtxhF7WPrz4P6jfz6FLf3yr50VsSF9McDvxik5wjBs8qopOqkjnfG13Le3jNPIQduRxgHI9q4W3J3Z6dKKirM5CzBN0cMowwyAOuBTg7M3laUNBdRt2ubIyNbj52P3umPWlKa5Wwpy5fdZ5v8TJZYtLZbiUozozKM/fGcd/ahTikwnF6Ski/+xvf3OlaB47uLBCrQa3aScZ6GFa4YScq9RrQyqQclFn0LqDP4y8Np4o8OupvoIx58K8F629nzNMx5JRdnsc9NeJ4+0R9E1q22SocDecPEf7wNXotzW/LFcqOGju9S03X5PBnj2/RlIIsLpj8sg9/ek7ydmZ1Xy6ox/Fs1tortZ6rbfaNMzgOo3Lj39q53Lk0aJcVUSuebeOPgl8MtbsDd+BNYk0W6u2IaTT59gZj3Kjg01SpSVzKbi9GjynxR8Gvjn8P2n/4RzxPDr1oBhkvchs4yPmHX8qznBr4Tkc+aTS0sec614/+KNvDJFrHgq6guYnBklDAqcf3a0pJ9Tqimkctf/Gq6zcPqulzwLKMM7QnqPwpzcYszcmtDide+N2nXz+ed0LwDam+IhZKzvKTsZ+0bkef+LPiBcancyT6GgDEfOoXgH0qlTUd2Kc5N2RyOo3WqaoWe8mIZ+GVe1UlCPQUYzluZF1Els6xqpLkEHPXNat+5c1domVqLSvIY5CQexz0qVtc55U7y0Lmk+ZNYGMn7vSuDFyco3R6GDqRj7pC8gRyK8lKXIelN80TyX9oLZcTwRjrn0r3siTjKTZ8fn8Jc0VY87Fhf6JImp27kY5BFfQurCrF0zz6VKvhEqsD1f4QfFGLVol0rU5gsoIAJPWvk84yepG86ex9HQzenWSi3qf2SabbC1RhIrZYbkKkZz6V9ZJLmZ5uJb9o/UkuTcyT73Ifeu0byDiuaUVIUG1sWppDpVisWEWSTBzGvOPpWsY2VmO8ZLQn0yTfsE0o3EjnHJ9qTVhWSdmb1lOIkMjcBckhuf1pRundkTSlLlW4QXUcitMU4bJb5u1Q5JaiqU3FpII763mk8tRkbsAk1k6iehXspxjdjbq5JvUgjBIA5OOKy3nZFQgvZOTNSFtsG8vjHc16UJOMDyJrmqHIeJTG99JK64KrwprK+lz2IpqlE5PX9Ls7+yaV5lilIxH853KOe1RKMZfEa05Nas8u1qSWC++xTTFCnIcjl/rmuZySTibJSqO6MK9u0tBLJbwy5YEEBgxdvXHHFY3cZGsrSaXQb4f8d614f8Ny2GpX6R39zIzzSswykfpzT9vCEPeerD2EXO9tjudJ8XaXZ/CyGKzlaNXZprlpJMNITxz6/SrU5SppJmVrV7o4DUPEtjrtzLc3cjN9hVS0TNhQT91B68/zrnqyXNq9jSonZRR4x8UtXkg1ee+u1Mk0zFHkU52dMIv58ntXnOT59TqguSGh82ftDX9/48k/sazRotKjkSOcA4+0sT936D9a5ak5VXboddFRUuZ7nafBCzTQPAkGnPNtlmtfNtee6ghh+QFdVFqNOx0zcampc8UXurxao890jG3SBQYV+6jZHzL7GlWU5NERlFR0RyXxBEJ0O8vhJtjuIfNhRe3PP447Vy1G4RHTdtz5n+K2q3VpPHf6VdKZbZwELZCyRsOhrik23c6HH3Tk5pr5oGnulwz8goMjHf8AH2rRORdON0Unh1GaX7ZazJIrD7rHBX862ppM6tIxIZ/LRv38S7tvUN0rup2uYfFIsaNK3nD1DcZ7/jXfTguZM6Iw5mevfAnx9FN4lvfhzrvhvT28yOOex1OWD9/HjIZQ47H0Ne3lee4bKMd7HE0041LKMmtU/UqjPlxPKe8aLDY6fZLftaN5Yb9xu6MfWv0vKEo13VlJci217n0+Hpubumde2qx2tmi/Kk4j3MVHQelfXqfvpLS518/NotkVvDGr6zqs26K+AQMSdpI2/U1tVUYxTTuaRkop3Rs2+pz/AGiSXULjzHUbQG6H1rlkrQdkKcm2omd5Oh6NdS6tZ6dDFLKvzTbcFvxrTDUIR1hHVmlOEab5krMgu9TsL2QMZGdEG55SuB9Peu3llGOprz2SsUob6113VmvEtllSzH7osnesJ6GiuJqer3t1IljNKTLK+GhUdR7ntW1OMPZ3ZHNy6nn2i6Vr6fFLUfGXjDVo2s7WIRaFpir8ob+KQ46nt+FeHTyqdfNXiquqWxwYXCYr+0JV6r93oaWu6zNNHKJpm8xjlYgeXPqfQV9JKL5bns87lIyLk2ttbtrGoam0cFuQbuVDlpT/AM804/D8ac8RKUVZakVVGnETTtY8H6n+zrZ3Ol+J7q91fXfiDdv9ikfbFZwwwhFQLuwzHdkntnpX8rZBiszzX6RWMc6aVKhQUb9W5O/yOCjXrvM9V7ttCC0l07S5WIlWW9C/vMnKjHqfQfrX9a0oU4u6Wtlc968ou93Y7X9lbUvElr+0h4Z1XwnYrf6t9qd7W1mbajnYw2gkHaPfH4V+Q+P1GjPwozJTk0pR31dtlov0+ZzYqlhMRhZwxUuWnbVrp+Vz5w+JHxEg+Af/AAV3Xx7BpsulyeHvGFtc65ZzSbg/nELcMzNy25XbqT0z3xXwHg9lUeOfoyV8jg+dzpVOXTrG7j+R5uJqKtH2NF3jKFlbS+mjOn/4KFeF7P4cftxeKJJtYs54dYaPULWO0hEUdqsqq3lnBILkFXPTh1PQiu/6OHEP9teHNHCYqPLXwrdOS8k7X/C3yMqWMp4zAU5Qldw9yet2pJJ2fZ2adnrZp7M8a8Sar4P1e4eyuraKZZPlibaM8dSa/fJe9J2fu9NAnCFSOp4r46+GutW9/LP4XmH2KOQvJbRsP3jHkDA/OvPqYRt80WeZUwk41Lp6HEan4ouleWx1W2SG5kIcbhkADg8/QUozcfdkY1Z2dpGQpsLtp47SGNVWP5JQAQB3A9TXDUjzyuc9SKktEZ9zoVle3sc7TKqQR740PG0+rDsKujCFzKEadRpdUW9Rt3a2htpJ2UFlIfBBZD1OOwqMQ+iZ0OhOKV+pDqzQWhd4SUZkDIM5DqCfmP4fzrllAcoNRuzE8QgwSia3Zo4lC/OpyShx1/GsXBKV2eXiatpK70Mu9LRucMUMiGTZnK5ByCfTipq04y3E0krorvHBdzGUny5DGCmTnp39zXGowjN2OPnU61upVSK4BKXB5jXci55HPUVnV5Zx1NVCU1eXQV7lixl2HpgnOMe9YQlGDdhPEpPQ7j9nnTIZvFF/8V/E+nrNoHgG0GpXMUn3Lq+Y7LK254O6XDkf3I2r8943zStXpQyvDStUrvl06R+0/u09WeFVnUxGJcX8Mdfn0JfgfNqHiDxZ4sh1K8mluvEHh2/mvZScvNJgyknJ7msOJ6NPLcpwrpq0aU4L9DfK6apV5xX2k7nGaJbKLUG4H7s8Ag9PrX2+FxU56vY7KcY05cxp+GUnFh4jvbTUvsr21tbuyhcrMA/Kkge9eHmyqVeI8GpK++vbQwhXlLFyXY7v4V+OLTxbaHQNUKASKFBPJ/WvsPZKELo9bDOVde7ufan/AASZ/ak+Lf7PHxbk+Gepa5Z3PhC7nRJLa5ucSwlzhXQdxmvms6oVa8VNdDHOIQ9h7+6P2Q03Uo9Rjjv4nBjdAyH2NfLqPc+P5n0H3l8TMRGxPHrQ1oXF3Ra017iRMzTbRj7oqbalJpM0rZ58hcFVPbPWtNLDkm0XftigrDHjgdRzSe5Ck0RaxFPdQfZ5pGaJuCmeCKyqJt2ZrpuXNDg07SLMRW9qqDb26URioqyQTm72I7rWEM21FAYr94nrSe4km0ZesXdw9yGkYBdvb61o02jW+mh+evjFGs/22fjKqYH2jxHZOgJ7vp8GP1Felgly83qd1Cj/ALPG52k+ozQ+NNL8RXd3czvrMhN+0gIEVxGu0KMcEFRmtMZFyV0OFOnGna2x9K/Da6f/AIRK9DlpD9k3M4GCFLA/kP5Vw1IRjByZi4J1FYyfFcWoWklvLcwoFvbcTWrbwcoSVB68ZNcbnG1yoyUk7dDm9QtdQsZ7i0jSJbqKZVZZj8u0N83I77c496uDbnZla1KSlB7kWtxWUoiu0ilQ2yyi12SHG18Z3IeGIwcE9MmtISVOk4SV7spU5tt31Z5z8W9G8RSWi6hY6E81sls0izQHeqRBgrM5GdnJHX1HrXPVjOC90pyoyaTdpW+fyOr/AOCflvY3cfj6yvlXyrjUbVCScnPkDk151CfPiqkTXEVYxowS3O6XxBqPwf8AiJH4Z1NjHp+oPttrovwWJ6HPArvquMFHlXr6nKpwlHUf8ZNE8XaHMvj3wwVmgVv9JgQ5Lp/eHvTcfaQTTMFUlNtW9DI16Hwf8T/h5/xMLlC0oxBOhHmQP7dxg1EZJaSKvJo8f17xJ4l+Ejw+HPi3OLnSp322WqoDtK9ll4wDRVilFS3uZOlJvQreJ/hjpXiLw4fEHg/X2tmjffbiKbK5PfFZ8sHGyYppxWp5X4q1n4/eCbq4stUtDd2aKJGmiU5IxXO+aDOZ2ucWvx3tdUuhca/pbxRyRmNhLCQNwq4ykaJNJNo4XVfGvg/xJNc2KGHzYn4UqMdeaGnfUJTRwfikeDrdmdraCWHnMfG5DRz2MmlJnB6m3hOzkcWgTyn5Y55B9Kzvzamiajscdrmp6VJdSJYRksBgNt4raFluZuq7mEfNuHa8uE5A9Kuc9LISblqZdysjgylfvHjFRZvQuCJtJl2AfL1BBrOVLmhYmNT2dQqXT5uWWvJrQdK57UJuUU0eVfGxozqcCE8k17OTTnKEj5vPKt6kUzNfRo7vTAjKMFfSuhVGqmhacXhkjDg8M6lp+orcaZKUIPBBxXpRxtF0HCqeDLBVlW5qZ/bDbR3c9qbtFACdGc9quo25M9avd1HbuO0NNSXVGvJnYRr83lhePrWVOMlMTaVOw+6ubi/1Bpln4JwSqZFaXTZFPmirGno5cbfLKkBv4V7+9JWlsdDbUdjTu711UW8pLqoy6rj5j6VE5WdmYU4WnzDftgu4i1vaBf7wL9qyqS5tjp9lyv3pE+lzRISqwZAXk4xzWSuuhnXjLuSG7a5mVfL+6M9KtXk9ifZ8kHqaRuI/siq67Tj5U7mu5uPJY8uNOXtXY43VZyb6VZJgqkHCv3rKyR6ig7I53WJ9Pil8+dG2MpGVOCB61jUsPmblaJyfivwhpHjWza30G2dpEQ7irEj6k1yVVzxtE6IOVJ2Z5Tc3Xij4dauttqMUUwLbBLJFnYCaiClD4jrUYzRtNoGi3Ok3OtauEkugmFjMY3ck8kAcE9hQ6dL4pGVSUubl2sc7rMPiLwl4YnTXLBdm0y2sKkgopHG4etZqpKnBtozTjKWjPPPh942W80G7l121ubRmumESSEZZRk72OeP/AK9c0armndWudUnd2toedeOdYm1HUbixt5pZ5WJ+WNchAe49h+ua5qsYrQ7KdJRjc8u+JZTw/awwQ5KwKHlSZxmSY8AZ4z17dK55KUVZGiXUs/DLT7uLwcIp9Vle6tySs2MmJs5IGOnatcPScI3bLs5S1LvjDxNruoWhvLm13Ep8k8ZyJNvXI9D3or1GEVGLsjyfXPG/iLVNCurr7Cn2aJdjQxTbymD1x1Fcrs43ZryxZ478QLyTVmeWGJJIJUUEIeVxxnHrSXIzopRd9TBtXltbV7c7EfHyjqHHqQeho5Y3Nm9bIrXbSEIxUCVuoUYDfStI2CV7WM7Ub427tEy5lPVH5C110e4o6bE+gzTJdAOw2sM8Pmu2lUfPynVBrqe2fAf4NeKviX8QRe+Gr77I+n6RPcyySkAOI4y+3J6kjj8a7s1y3+0+Gq/s03UgnKKW94psKVOVapPkV5Wue/w/tGfDH9orQbW68AW1nYDQLBdPm0uKHy5lmj4kkkU8kls8+mMV6nhFndWrlKy7H6V1qut16mnDWMp1oSU9Kjb0bGT6jqdzrUNjBb5UwhWk21+40+d1Euh9TB8jN+0vNO0Gye1QbWGC4IxXXKEpy0OhJtanK+OPjD4c8NX6wTShppOILKLl3J9q5JzhF8hy168ac7dQspNW8XC21LWJprG0TDJbjgn612UXLD8rpnoK8qabLF/fSXcy6TpTMTghYkXPHqfSuiFRvWW5M4pTTuP0iabR7KaKeZ1ZRhSV53VlXlztFxkovU5zR9T1PxLqF1dwyg+WSpZiRx9e9dCcYU7BUVpX6FK/1JD4hNrFdfaY0XEyJ1Zuyg+lYyqWg2uhpGcpbIZe3Onw6kza0TboEIaPqznHTFU6jlTumHvRdzlvGurtL4bmuLqVLRFQtBAOMgHqwHf60RioJzT6G2IqQq0/e0sM0m8u/BXwc8LaPqmlW8N5HZ3upo8EgeS5S5nOx8jpwnSv5x8KqEsV4g8Q5wv3keeMFbf3VdpX89DycAnVq86baV/vKVlqMaFZlkMl3Iv73d0QdhX9RxhCM4yW7Wp7sOecLydkj039lLXfDXg79pvwpq3jnxc2m6fZvNc3N8suAwVC20kHhT07da/IPpE/WX4S4+OHjzSaSSXm7HPiqWKxOFq0sNDmlJNWPkX9tLVb/wAS/wDBRfx1dWd1ut7wxXEUs4KeWjoCrYxyenBPQ5ya+a+iTi54Dwyw2HSTalKMvK619fwPOqOeDxNKm9JKMT6P/wCChlzq/wC0J+wz8L/2rTNaRnQoYtP1uWwGJCij7NL5g3YyJFRyQTw3TufwrgbE/wDELvpFZpw5Vk1SxMnJJ7Lm1X5s6ZYWlHCVqcZPR+0+T3Piq/sPEPhsxavDbx32kmE7JoG+ZFPXgdT/AI1/c1ZOglyr3VseSnObvHVDrfxtorW0qeHbkSoFcsZQAUBAB4/vHpRSmpQujpnKnOCdzl/GHhXw54jhlu3soYRHbYk2dWc/dQe/rXFUjCUrSOCrRjfU8v1L4W69ZXF19g1N4YoF3th/lX/ZHvXi4jDOU7wlY8vEYCdR2hNowtO0TxZY313cee8hmAK+d94D146VyRjiaV7O5w0MLicDKTcr37jYvFOpKJFu9MlZUBjlndSy7c9q5lXxM5e9FlU8fUrNpxenUp33i2TVfMdgoLJ5a7wRsUenpmtXXk1sbvGOcOUz9V8S3V6wLWTH9yFEfTGOQfzrmliZ1JbHk4jEVKs9IlJjq99KHlGF8rYQTyPw71NWtUbLhOrU0G3mnavcNDmQpKkeUZP4hXK4Tlrcmtg6zamnqSpamdWlkJE4PKjvWbvUVnozSC+sK0nZof5ZiCs8LPKzBEjTkyOThQB3JJArDFVI4em5yeyMa9Sjhqd5bnp/xsjX4R+ENL/Zo0+RUvtMk/tLx1MP+W2sSqP9HPqttFtixz85lI61+e8PUZ5rmNXOKv2vdp36RXX/ALeevpY86EXCFlvu33f/AADD/ZgU3/x207SJEdvtmn30JAU85t3/ACFdnHHucOVG18LhL/yZCwLk81jTSve/5HKpM0NttztMcpVlz3BNfW5dSU6FOd+if4Ho4i9OmaHgy8TSrmLXViEkN00kV1E2MSoDgr164rKrCGPxk3HSVPVM5sBUi/fa30FuIrPwF8QVfTpHNndgTWRm4IU9vw6V7GEdask6m7LjXqYXGcltGfSfwnOleJr/AEvV5rtY7+0njl0+5i7lWB2HnnNcmYU2qUoHfXhKvB3P3S+CXii61f4U6Fqt4rLNLYRlg3HO0V8BqnZo+WlQdJ8p1A1HbiVzyW609UHKaOn6jI7NISMg8Y6U1ZESi1qjUstQRpBGJd0mOcniiLuy0nyj01EW1yZJSOB603KxnJXF/t2O8lCowwByqjNRLXU0gna7LjXLIioxAXHSqViZNuRXilso7gzyuzFuFXP3azaNVblsUdW1VWdtx4C4DHjvWjl7o4wcVqfBfxnijs/23/iQnnBGu5NJnGSOT9ijA/8AQa7svbnKa80dkajqUopdDc+IeqSJoGlX1siwvaalBKGY4yHOCN2enWvTrxhGgdOFw0qsuVs+nf2cJIvE+nXFnqd5AtrHYzPdNOcAIFyo25BbJwMA14mMnL6u3E8zEVfq7t8Tv0K3xFu59ZnS/wBd0uC31KR4MyW0GIjEsRjVgOApCjoB39hnnoxc6Kc3f/I6I06dC6graXfm2cvObq3uHtIWMsRBdmV85Zc8/kTWsoqErJmmHqSqUuVLzt/XYpeJbs2+kz6lDG85it2k2Lkl8ckADqaEueolJ6PqaQg+bR6nH+MrW4tbHW7XT9Qumtb9zstWGwmIKGYui/7QzgngAVjOMI42caDbX+W5koVK2Hg60VzK479h3X47TTvHcowmNbt8KeufIXrXBR5FiKltzavh0qcGe0eONI074v8AgybTLp1NzEN9rNjBRxyOfrXZzRa1Vzl9kov1OS+EHxTvdfs7r4f+MLkLrWiqYri3PAmToHAPUEVzKo6cuVl1IKC0OF+LHgfxv4D8XW3jrwCGubBJDJqWig8MOpKehpVE/iREqkXTIPEPxm+F/wAYLOPwRq0UTm6XbcWFwuGh7EYPSkqinozmVZnkHxH/AGfPij8M9MfU/gf8QJm01nP/ABJ7xt4QZ/hPUCqp0FF6PQhyurs4zWf2lviPo9vJo3j7w8yPHbiJ3C5B96K3PfYzd27o5aTVdA13TDc6dHbyF23SKwBKj2pQV9S4q61OJ8beE/DVyzPplmsbImWKjlqmbsxvkZw2q+DNIk3T3Mg8xhzufGPrUtNrQh8qZxXiQ+CtFG+6uYSxGWjRgSTUqnUS2HOUUjir26i1KQzWsIit0blsYNdEKWilc5tZdCpGh1BmWEYiUHBB61NSEos2SSVigsIlgaNgA0bHirUZN3LgrIqwAxSFEXgN0qpK0jnavUuVNSlC3pIGB15rxsfC1mezRl7p5F8V7mO+8UQwRtnaea9bKISjhpM+Zzr3sVFFsAQ2scYXnHSrp025tnVGP7tIt2FpG0ZZ4wcjPSuGupc1rndhaEJRuz+x1pknXy5Z34wQsfIr6WpD947nlyTU22alrIYdPa7e2dCifKD0Ip2sjmqTU5WMW0DzXTSl518w/u0jfisbWdzopxUVdnUaM08VrmdQ4VclVJ4PvTSa1Co3eyIJLnzBLN5jtg4ITpj0rJ2kiqaukWbO4uZrXyrewMSMfmYpklR/n9awcpXslob8tFVOdvU0LNmtrXzrhQTjO3Iq0uRanPXtOpaI+0vLq5iJEfDZ2rH1FWpTcdBzhCD1ZM1y8REM0wXA9cmqjJvRmfs4vVI5zxGkI1NrwIJCgBEbnGDVttmruopHI+I2h1jelwyqXUgBH+6PpWc7LcmKcZXSMjRNWvImOheGY1wPlnfGD36mojKM4+6dDi370jJ8eeGdP1OJ7ae7ea4aP5l3gIp9c03CC0bCE5djzK3XXvhx4gtzrql9FFwJZXU7ioHTPqK4pxVOV3sFSDqU7rcveN/iFZeJ7ea7hkWaO6BEbgggDnDH2ArOpLnWmxdKmkrtHjPjS5vToV40NvmOCIRWxHG+Zj984HPT2rhqTnyto2ULSWp4B4o8cfFmGa507TNLtYpIo2M1wzsu7HI5HJPt+FccJVpq7O+Kp2V2eY6foXxV8fePotT8WeIS0MJPkW8cexEPbI7n61ivazqq70OhJTR6loF/4g8N2dxYWyJJFcxkpLu2mGZeoP1r0EmohOS2RmeLtc17UtEB+1xW91CMT26dVf8Avj2Nc1VNhJQUlY8v1LRyfMvLedorlmxOI+/ufUVi4Nm0Umclrunx6dbyaldQxPan5peCQp9ahpJmyqKKPP8AV9Z0vVnkt9EleYq5/epGRtGenI5pqDetyoe+rxRlTNrUkcitrSn5ujWxG0Dt/wDXrVO2lh8km9WUpJJEIeX5txw3U7j6100Ggvy7FzR9RtdKvob29UyQxzK00an5iueQMjvXo0YKWiZooyldJ2PoX4O+LZ7/AFS6n8P+IEWzmuG/s+3kYrJHAekbY64AA96+r4TweLo15+1mpRlp56nZhMLKNTmkztPD3wi8DaR8SdR+LGiaMYNd1iNY7+WCUrDJtGASg+XPvjNfYZNwXkmV5l9couXNrZX0V97GmBynAYTFyrxWrO2trxoF2xO7yKfm8sbi35dBX37nBJO9kfR04uettDN8R6hcecYGvwqzDCJn7p967IVXZpGvPFe6U/C3gDwxp+qzeIrh11O/OCskq58segPauKFJc7lIqFKnCfM1qaWuapHDKwExjwuTnnnsAK6VFs0clN6OxS8OzX9mk17LOEeTnzDne1VUULJIEmVrjxLLq+oS6PZy7ljU+a6nJH1pypxhH3i6cG5FLQ/FWlz6de6bZIirEzCSYnqwrGUlN6dCqk1yuNjifhs/i7UNQ1bxP4l2WdrHdbNMVR8zD++fXvXLh41nOUpu6OfCwrWlOe3Q29a1uGzR73yUa6YExzTnJA9ea9LD0HVvE6KtSVlI4fUtN8TfE+90zwF4eVUk1vUEs3uXfAG9xljk84FeRn2Y0sjySvjJ7QhJ/gS7Vmp223Lut614Atddk0Lw7rNzKdFu5tG1WOcl1RoZWELR46IYyCeOua/H/Ar6x/ZmLxNWKUa9T2ia39625WHf7qXKrK5j3GspZXFxcq2IRuKoBgzt2HfAr+hasZt3pvRdH1/y/E78PKKjafU9N/Yz1G9g/an8PXd14b0/XZri0uTLpmpFUjij8v72T1I6gY5r8c+khHk8GcwnzcrfLr21XYcYfWIzp87p6brf+mfJH7Quuah8Wf8AgpN4+utVvbTQPD9lJDDf3t7YkrarjIcRrkyN1IHfivjvo1062T+H1FYePtG05b9T5jHTxcc+lCPvRpwir93ufXn7JWi/Dj9oX9iL4rfAeDW9W1e28JTPe6YbrT2tZLqK8h8s7YFcgqJItwDEcn1r8h+k3QzLI/EbKOJKVNQnXSjJ9nCSe/p1PdyvNZLFRo8t41k4NtLTt+bPgLwJrmt6LZ3T6vrdxPbaCnkX+kpagSK4fazHBPyjAzX9k5BmVLNMno4+EnKMoRbVtLta9Xf1/A+TpzqYTHVaKu+R2ZDqmj+D/GiN4l8N6glneu37nyWyHye69vxr1YzpV0uXRnoWpYpc9M5vXr3xJ4Mt0tdbstlqlxua+2Z3nu1efi5ypR7nLiq8qUG5lSLxpp3id5YLOeN4ApCIp4IHVzn+tcMKsauzOehXhUjzoh1u8hd1g02GNXv1WOMkZIX+Jq6oypvRE1asa0uXuV9YtdMRIPDkMMalWO4qeSuOWPTmlU5LKMTuo4WEKfLYxdX0PQ3RHtbEKrAY3c7TnAJ9zyfwrirwXY5K1GnfRGN4g0XSLe5MKKBEWKrIOcDA5+meK8/2K5tjndKDfkZt3apDdOjR7Cg2Mw7HsfxzUVMOmzixFCNKV1sVr37XK7M6lNq/KOwHt6VMKO9wUptalSaWLTohe310qoBkszfeNYVVRp6yZw1atHD+9N2PSf2ZdL0zw7o2rftkeO7WM6H4QuPsfgjT7pRjW/ETLmLCn70VspE8hxjIjU/fr8w4xzOpmGKp5Hg2+arrNr7FPrfs5fCvK7Pno1f7SxLqf8u47eb/AOAeX6v4hnu57rxDr2ovcXFzM811NM+WlkYlix9ckk19Zg8NTwVCKWkYqyR04nEUcJT5pP0R0X7I2u6on7T3hTX5AI4n1NbaOOToVkUoc/8AfVePxXh6uK4Vx9aW3s9F6NP9DiyD6xVzhYytpHWyKnjC1m0HxF4i0qcKDYapcpwOm2RgK9HI8UqmR0aqejgn+B9HmCf1epJPa5U8Oxy3vhGJG+/E7ORj15yK68vfsG6st5HLl1GMMsg3u3cv+KIRrfgOLVRc+Zd6ROMIcf6tuuO9dtOc4VZSTev4HVjKMKlJVk9Y20PT/gFrq634afTYLgLMqkwuh2nP862qvmak9j0qdSM6UZJn6a/8EfP2ndSfwVqPw/8Ai78RGlaxuiunW9/J80SdgCeor5fOaFOnU5oLQ4Mxw/MuZI++ItTtb23F1ZXCyRPysinINeApc2x89J8pq6XeRxxbGbGR0z1p2tqZ3uzRsLq0QtJDJnPUtT5rLQtSurCype39wIrduN3zN7VF7lJK5oxLpejR48xWfGSc96aT6kXkyvqGtoxG1gPQ5olEcacmU3vJWmEhG1dufrUJWZsoqxleItQv7m90qz8N2aTeZqKjWp7qXYltZhWLumAS0mQoC8DnJPFXNOVrDSbvzbdD4u/agmms/wBsnxBe2tjxd6FpEmLh9u8iN0HbjO2vRyyUfaT+R10aPLQiXvHinxR4R1Cwt4RbLBsItd5JUgZ4PXrXZimpUGkdmFfsnaTvc+kP2b/CUUvwyvvHGq6VE2m6qtnptvczylmiuIyszEpjIBwuGxwRXhZnVlHDKmoX5mlfseNCCrZmoc9nG7faw/4h3kGovb6bPeSxxQ3JeYwSMCQrHZ0KnHqM4wSDkdVT6K+3kdMVX9nOUkubVLrpf06r7n16nKrbz6ZPLAuoecUjMxPmhgokwQuR6bgNvbvVUqM/ed7pf1+pdOop04yUbEs07yWiQ3AVo1JKjA6nvWntKns1Dpf8zRavY4jxtqV5ZXt9Bau6i1svtEkg4AVjsUZxySTjA5xn0rz1JvNZQTsoq9/X/M6GnHDxb+03YrfsQ6ZPrel/EKwhk+f+0bdwe4JgU8+9c+DnCeJq+pljG404WPYPAniFNKtZ7bUn2TWrlWDNyfeupQlF3ZxOTepyvxj8DXHinWI/iB8Np1ttfs4slozhbhf7jeoqaqVSOm5pJ6WZzHwz/aHTxXqF54c8eWkul61bOI5ra6OAevzKejA4rODlu1ocEp20ZyXxW+AXhT4leKn8deE9UbStXtFPk3FscLMfRuxodJT1izKSerR5nffG34qfC24bw98UPDN26eaNl9axmSNl9SRnH+eaVN1Iz5Qg5zpp2t5PdC+NvGHwu+KGk3epxzWrubRRvRxnPvXROcZaCi7ux5B4t+AGoWdtLqvw98YCESwhhCGBAJ9qdKEe5pVkkrI8o13wh8cbRitx4igMUYxlV/KsJx993OSUZLVnH+IvAvxIubwW+r+K3TzVy3lcbvSikrbmqp3jdmTP8MNJ0VBeavdtI+3c7Svu5HatHUmo8q2EouT1Zz1+R4gvBZaGpFsDiTANaQi1FO50LljHQ0LfToNNi8lgAVGOBVNXRjfU59IC+rTRyR7RjI96znN7Iy55c25XubcwymQeuR71ndyHTfvGB46vl07y7grgOvNclak6iud1OtGlrLY8cvRLrfi83O0lVbrivWpSWHwljxFTnjsw5n8KOia2MrhBxj1rBVPduezWgoaIvW0SxQkE/wAPpXnzk3V1NaScKTP7CdOMV5cLBpTMvzDexbGfavqZa1GjyqnNGbv3Zd8S3psbdNJM3GOGJyRWVR8uiOKycrmfpd0skxhsjI3lgFnOcUo66nVb3dTpxc/2boD3I/5bHkKDk1M5tR0CUZc6S2M6y1C4vVwqRxxxvy5X5h9B61zSemptThymtpdxcyT7lllMYXcQ4I3fgBU05SbZVX2bjsW1vo51ZFGxmyAaU530MqlNxdxdCmiFw2npdEPIhy6VVGV04pjrRfs1O2iGB7O1lKXKNt8w7CTlnP8AhRBKErM0mpzV12+4z7uz1C61K48y0Kq8BMe4ZNbxvzES5HBO55d4mhK3zWkjOUdj5rr8pHtk9qxqpsuEowQ7TotQuLA6N4XuoRknzcIW/M96zpOzsmTOo73ZgX3h3xFpeqJda5qzSWqODNaRIFBPbJ5qasJqV+bQ6IzXJoh3iHX/AA/4h0pglhbtKvyxIz7kiXoWPHXH86znJyjqRKFlqeAeIPAPjOz1m4vvhusclrOz+dZTDEVy+PUcrj1Fc0qNSa/dGkJOpZT6HHn4pW2sLc6Pf2bWGq2Uqx3GmTAYQjjcrdHHoRz681k9Ycr0Z2SpRjZ9DJ1vwrJcW8ai7SN5pBLdTyZIUHPpnJ9KxdJwp2CMovoYmm+ErFNUtrlrSKEPdYBPGNuACwqIU0mjf2iSsil8QvFXhi30rURp1urXZuwhsoo8jzARuIPocH860nVULmkYN2cjwzx/4Z+Kus6lcaro2p22nSooW2C7n3D0YHBPHauKrGrUd0ypKLmo9DjdS+Gf7S8LJqer+OdNtVkzieCwyXA9SW9e1TTcoSs2OoklaBzms/C74hahbKfEvxEmuI1fLxW0ax98klQMkVNWUm7JmlCE5RtIy77wxcWIWSTUra8K/wCqZ7fCsB2YgDn601KTjY7FBRjoZV/Gt3O0TWKRyADHlswUGs1e4LUwbyQPMYZ5DEy8BdxOf/rV20YW1QSSS1KmsXCW9nGofeXl6Y6gV6OGu5hGd5HYfDnxLJol1FqEEu1QoPynrX0+AxH1aopI7o1JRtY+lrXxdrGs/Do3Hg14/t1wm2FnXIVyMZPtX6RDFVMTgH7GVm+p10asnG52Xw81XXfg/wDD9bbxXeW9/rlzbk3dxJACEB67RzisaeQYrFQjOtWl7uva5TjiJvmk9O1zhNM1/VfH2pzXFvZPDaLIUEsikFiTyRX0eFx804xpp22O2jObsrbHUwa+thA3h7TIArpjdMT8zH0r15x5Y87O2c20lIxJtQuk1byr+5Es8n8JI2xitI1PaQuhwemg3XPE40G3mlknCyyREQR5q4KM5bnT7Rp2RR0fUBoHhK91O+Bkup4SzArzk9BU4mpNrToaQlGlBz6nPeB4bzRfA0+s+KE+zrczSSyrnBwfujmuajGSi3JnNRk1Rc5dyLTPE0Wp6aL+4Hylj9mjGMAepNaU0/vB1vaU7JlTR1PxC8bx6LdXhtrGAZvr7+GJB1xxyfaqr1PY0XyayN1FpcsjovB2vBvjBoSeEI2W1sb4RaZbwv5ct3JnBb/eboK+B8Ua9LD+HeOq15cq5Gr+uhrQlGNfkfwnjfhrWY77xN8RvEDWaaMJvE8oOllxI0TR8MWPZyQSevWvC8E8NOjwlC8+aNk1K1r6HHh1fm5b2v8AqO0fxM/iLUU1iz8qQqpSzgkPCgdZGx+lftVFqdW9z1MPNSn73Q9Y/wCCfOpSa1+2jp6ww2jPFp93G8t6WIkbysnCggH6c/Q1+KfSfrxj4IZjo0lOmr7XvJbB7dxc2m7W6ep8ufFzxFN4i/a/+K91qtxJOq+Jz5qrbbFby0CKxXaOg4Ax3710/RswFPC+GOG5E7Wu+u/nr3PIw1OtWzHEObdrx/BaHvX/AATL+IngfSf2uIfAHxD0yym8L+OdIl0y7j1i2DxPPERcWpZQwO4SRjHXBIPFfL/S7yXMMb4df2nlbkquEndWspckvdkvuevQvH0KVWi6cI83JKNRXS0cHzJpO6umrrqmk1qeS/GjS7L4NftGePNNudJiSx8RCHWdDlHmbWt5/nXakvznHOVYDB4Iru+jtnks24AhQqSvUovkls9Vvtp92hyVpKWZSxEXeNWKlqrPVdVpZ+W55n4t8AeHvE9zJ4j+FobSdWW2je5tJGAg1CQcsBj/AFZ6c9OcV+x1sPKnVk0mrL5P9fw66dQr5eqtP22GdpdV3OP07xPqXi+W5h8V2TwtpreV/ZlyeS/ckHqO+a8uni3Vm1JWPHo15YhtVVZroUfEfgPQtQ1FWskXTpWh+e5t2272IzgjptxTnTpz20N6+Ho1IcsdGcdaWnxC0fUp7n+yDqaWcOBcW/ZB3x2ryJvFUK17cyPDpvF4KpepHmsV4/iTpZaabVc211K2D9oQjC9OM1qsfy/GrHfTzqhNNt8r8yteeNdBvLt7e3v4DAmZMvJwSBgfl/Wrlj6clrJBPMMNK651b1MjV/HujXE0l8LqHCw+XFAOQfcivN/tShGo9Tx/7bwKk25r0MKXx7Pc747exaUSYw5XrjjFZ1sbWmrwRy183daDjSp3v1Kz6x4t1Fv9GiWFW+8epAryZ18wnpscFStm9ZW+FHZfs6fss+L/ANqr4r2/w8t/ESWFhawNqHinxDenFpoemRYM11KemFX7q9WYqo5NfI8S5xHh7AyxNZuc3pCC3lJ7Jfq+hwLLauLxHsqlRt7vyRr/ALW/x0+H/j3xrY/Dj9n/AEm5g+Hfgi0OmeDLCVQHmUHM1/OR1mnkzIx7ZCjhRXm8JZbisHTljMYubFVnzTa2XaK8orQ1xmZ4WhKNDAJy5VZdr9WeUQ6Zd39wJ9WlDOPuxgfKor7yjhalWfNV+4WEy2viantsXq+iOq+HWqx+D/HugeIGdYxaazayhioycSqfauzO6CqcO4qg/tU5L8GexWdLDK7djvv2y/DD+C/jj4+0raUMuvyCNZE2k7yHP86/NPD3MFmHBeHlfXlS+7Q6s3oyjlrktpWscP4duZLW3eAMvEfAx94elfp2EpU/q6RMLqioLoifw5c+ZFeWkSK6zQsGSUlQw75PNdHuxasU+f2LgjT+B+rf2fczQ28pYQtkKwweD2+lRiItJRNMBUpex5H0Z9e/sl+FNE+IPxVsLLUneIasvkTT29wVKvjKtlea8PMG1QaktC8diXGi+Q/YLwJpK+CvB+neHmnaVIYVXe7ZJ46k18o5Qi9D5fldTVnSDUomCJK/G3Kle9Q3zGkYpaM0LfUIbS23SMQcZAzTbViZOzsXNJ8R3Ez7QwXd0xUx3HG5ca4hlnEty2UB55rbdlLYpzmxvdS86O4IRTwu6oqq70KUrIXVdWCKY1cFQuABzUcut2EW2zHfVDG/kxhVLDH1H0olOK93qaRioo+Tf2w9PP8Aw1TNcQWaO0vhHTnUOOPkkmBPtijLGo4irqd1PnVAPD1/Dq0199uuS6m1jaIINoxt64+te3ScJOSv0M/ZuDTaPbP2f76x0z4ZX/imW6nF5cav/ZemWqXRMEUMcKPNKydPMJZFB6gA15OJj7XHutF7aWHUxEvbxw0ErWcm7a76K5d1PUVaMm4uFd5CcblHOc1Ttaz3KhGUdL3MFZYUundlUbchfLbIY46/oKGlsdKjZcsiy8jtam4aKQqjKu4ISoZs4B9CcHArGpGKXNroKlBSqWvqcb8VdTt10+REVEYR/wCkN03sBgdTzjnH1NFZR9m3Favf5HNTVSrWuul0l0JP2BNZiN/8RYHkUbdTs1UAdW+yoea8bLqaWJqMzxnO3FPt+p1nxR0XxTZNLrenzRxOuSBtwJB7+9etV5nHQwi4RXvE/wAN/Ey2dgt68hl8+P8Aebh9xj2rmpX6jqS5locJ+0P8OvCPxEktSVW11Rmxa3VudrofXI5pSjFuxyODcrni/iS1/aT+AFy0V3HL4j04MH8+L5JEXGRxjDfhVRozUHK2v9dDFcjbir6ev4d/kZvh79qnwt44vbrSPFMggdUKNaajFtPPs1Y+1960hPlerPPPE3wy8B+I/HP23wNqv2ZmX/SILSf9059SBxVcsJbCpq7sUNd8H+JdA1UQQ6tdv5ibXSGXgY7A11qnyw0OiSSVjkfFUfivQrSW/wBTlEahP3cUj8tj61ytWMJXWiPPNc8W+IfEciG3sSjwryWGN1FPmubU3ZWZxHjT/hJrjULfTNTuTGLggsi9e1apNpt9DmlSn7TU0rbRbfRrIJuMbd8jlqamrG8uWOhTkvLe8laGOLcynnPalzysc6k27IyPEFtJZajDqCn5WO2SpkpWI5Wp6lfVIkI3AjaRxiroxu9TdxUVc5Px3YPqGhNhQWibPviiUYRlqVCmq2557bWVvbuXWMAt1NcjnKcvI7aMaVNaFtERSGArOdRvRGdSUZskfBIJPGOa55yvqjWFRQjdn9iWlpFYTLBaoJptvzSMM4GP0r7OVlJo8PESlzP1MLW7r7XqZUzEEHayD+LnoBWDabsZUmi/pMt7HJ5AKRpuwYkGSfrUqLubPe9jovEssNtY28D5JRAxUt1rKt7uhMHKU2Z9pfwzgIkQyr5UeX8o/wATWL99HVqlobegX4dbm9ZVbC7ThQBn0oi1AmpBy5V5jlv4bqdUClVxhugz9e+KzT5maVKfLDuypLqKaFrVrOiCOGWYRABSc5OBVQcac0TFOtSlFu73NTWL02F1HMlv5szSYBYcIM9q0qtRne2pNCHtKbT0Rn+LNUu9J1OO6Q/dUDJc8jHNE5SjLUzpUoexUOhw/wAQvDt7420htW0ZRAZAQVi5xjvSqTjKGh00acaUkmedW2va34CgSwnEsodwDcb8tuJ6sR0GKw0ikkRWjGtU00Kmva54g1e6W4tkCWpBAkZt5lfphRj5s81EnNPVnVTUFCyMDxT4J8T2OlPdXupfZ5JRiGLyxuI+nqamtTk4aMpOPNZov6R4t8NaV8PTeWl9G12yfZpIgvMLgHcPcnjmt6UoKhdbmE4T9v5Hz/8AFD4Z6b4rgawS1E2o6jJwF5YE5x9McGvNrRi3Z9TvhJuOux5X4i8D/Fz4Dstp4b8Tvq1uHBk03WWMiKVySFc/Mv45HtXFOMqSdjGoozemhF8PvirrXxNTUtS8Q+CZtNhS4kiijeQSeY+Mb0x0XOBVUZTqay0NYRcUrmp4h0zwnpzBDf2+62EQujuwwduSGPZgPXritJqMXY7ovmVkUZfEnw9jLpf65Y3EZkGJWnXfnnHeub2sLvUz1jK7PP8AVviVoEhvNGHiS2nigmZFt1nRg4bpgnnIrnlua3drs8j8Z6xrtprEkaTJcWRB8pnwWQemanks73OiMpKN0cpqEttL8slkELLndGSA1VoaQuzH1VYxCbiZLiLb1+cEY6flUSumJPXc566ngnmOw7wOF2jt/Su6gmjSetMwvEd2s+pJawOcQLxkdDXq0UooilJKRreGdTI/0cycEYx0w1d1OTvY64zUVc92/Z3+IU9hBcaJdkYQFod7dPev0HhSuo3pVGdOEk5ybO7i8S6lqkEt3fz7kY8KxyTX6NR5eW3RnuU4JrYsSa9Jp1tC/wBwEEiFBwfriumNOnFpI6IuPJZDPDOumXULrWb63QSuNsCE9Pesc4qexwfkc1eo0m2zL0nxXo9/4uutLfLiyAadkUkFz2JrxcpzL65S5IO9jLCV/bScY9CO91O01jVlvNTiKrA+IVZPvfQV9NSpyUdj06bkkk9yS81dvtjLLHmNgNgfv+FE4waaNb2Zx3xV8VS3tsLHWrtYYiwMke7aoUevoK4LtUlzWX5HNja8fg2RJ8JIdI+MUOpQ+ENTg/sjRIx/at8CREjf88w3QmvKr57Qw+KjhafvTfRGeGq4efuQd7bs1Nf8b+HND0qTwz4TkaGxP+tQjLTsO/rXtUMA1VdaTd2lo9kehKSlFcy2NH9lfxjpyfGv/hNNZmhitfCui3moxQCRwsbrCVRmYKcfMwyK/EvpIYuthfDV4SK97EVYU0lrdN3fbojgxNaUH7nbc+f/AIZ6iuvaNq1yniptWstR1e5vL3WDGyi4ldixVQ3JAY7Qcc7c9MV9r4V4WdDhilRceRJWt6I7MFWpfVU4S5vP1/yK+la7Y/Dewu9L/tIzajczMtogXpuP8R7YGPpiv0ejFUW0mVGpUpS5X12Pdv8AgmyUsP2t/D+h26wXDz6TqMk9wsuxixgJJyWXOPrX4n9KmpyeBuLhH+em9r686O7DwVCErv8Aq58ifF3UrDQv2mPibfzap5sCeJ5zudyxkIPAyCc+nWva+j1en4X4WdTRqK02PPr4mNPE1ql+35Gr8HJLe48SL8U5dRt7bWbGdLnQLJgx8h0IIfg9TjNfqOPyXCcT5ficHj1enXg4cr2V1uedgqtSrUdafyPpX/go/qfgf9of4d+Fv2tPhfcxpqWnabDa+IoDbsZpVbKTRsyxrHmGZQ2wMzCOUNgLgn+FfAeGdeE/iFjeEcyuozqSUdVZJawe7dpLrZK6PVxGGnVwSrNO8NfWN/U+RdHkRr1LprqSUJmSZyxC7jng+tf3RVVTES55yblfV9359zy6Nao1eOiL3jyz8IeK9BTVNYgNtqEcJWyvbNx5rOeBuHQj2NeXi8JCbutzLExo1vi+LueXalqPiXwpdrZeLbUCQZliuYmJWZdnf+6fY15rp4mlPlcb7v7jw1UxNKVq606Mfp2vxRWYVL2RVnHm3e2T7wzwvvW1FQ5b3O5uDhpqUvEWn6FqKTCfTo8RqFCkAliei5PYd6VSNKfxJM89rDzn7yOf1jwL4RS6hX+y4gXwHAUcZHWsKmDwrj8KLqZfgalv3aM/UPA+k2dss9lpkZR0JJZRlSDjmvOhgMJGrdROOWU4CKvCCIZdFsIpTHbwLtCfOMfd/GuurRpqLUbG6pU6MdEL4T8DeMPHvjHTPhv8PNEOpa3rV4tppdjCOXkY4yT2UDkk8AAk18zm2Kw2UYKpjMVJRhBXf9fkjxMVWrzkqVFXk9F/meq/tHfETwx8EfhnL+wx+z14ggvVkuUn+LfjqwbnXtQTpYwv1+xwNkAA4d8se1fmmVZbjOIsxWc4yDS/5dQf2Yv7T/vNfcefjaE6UHgcPK9/4k+7/lXkjwaxsLbTrcpaRgBR8wPev0mhhIUYaI1wGXwoRSgiwiJbneUDKy5VQ1dtKHs3d7Hr1GsM1ZbnPX80uveJbbR1dvJjuFe7mhXJVQQTj3615Ga4udWToUVd2Z8viZyx+ZRoR2T1Psf/AIKXeH/gHqmkeHPEvwD17WbmSCyhu9SfX4gkmprcQRyfaI1UYVUIaMqST8mc84H4V4Vzz/DYvEYTMoxUHJqKj9mzej13e59BjquLxeEkpO6hLT00/rofMXhy4S+hwTt44Ir+iaFNQpLUMParQWpf8OTMmpOgALOCojY4B4xUSmr2jqdMeRzaKvw61Sez8S3WnuF3JOR+8ODgeh+nauhVlUm1NnBlNPmxVSnJ7M+mf2ffib/wrbxvpviJCFiguopllUkY5+YcexryccvaQcbH0FShCVNpn7TeB/iPpvjbwPp2uWNysyXFmjK6NnJIFfD1IqMuU+UqpU6jRsaZrFzDJ5ckoAxxmotZGEpGpa6vPc3yxzS8D7oBpPTUWm50VtqdjaFYbdcyEZNKL1KatqP1LXIoVEbfMzdqtSRKepRbWfs4BWEKzDiiU49DZJdTzz9pz9o2L9nDwhofiiXweutz65qjWsVqbrySsaoWd84PTgfjXhZ7nSyXDxqcvM29rnflmCeY4p0U7WVziPCn7fvwO8RTpF4lGoeG536rexebF/32mcD64rz8FxjleJ0rJ0357Hsz4WzKEW42kcr8ctd0v4i/Hix8d/DXxVotzZJ4TjtTq39pIginEsjbcMeuCK9bDZzlscS+WpGzXcyeSY6OFtOm99jP8A/Db4pai0Wm6RaaZdTXUKqt7/bKebOWySCpfCKoGAMCvRwmYUIVHNVE07dUVWwrhCMalNxt5P8A4b8D1T4YeHPiLpGh3HgOL4c311dWOrTXLSaZbeewieMAvL5bME/1Z69cUpZlgYVqkItuzve3T7zCvg5KUcRNpJpLXT87Ca54hfT7Zn1OxurdgQWe5tHXYDwAcjjNckc3wKfK56+emnQSwOJT91XRkw+OtCuZgtvqMPynLAjH1rZY7DysozRtLBYhfZZrweInubKRrOd2iQbpNjfLx0J59/1q3jKaT10MnhasZXaszzj4zasz6C9wImXYC3Ldj0JHp/jXDiKiqQ52x0ornasR/sP3t+2q/EZ7CRUY6rZMg/vD7JEP8/Wsspmva1EmcmNjBKPc9L+I/i7xNLs8OC3WS9ul2QRoPmHqa9ic+V67nlN8zsY+kjXfhzPPoHia5x+580k8YPpWbukXNckb2PNdW8SeO/H3i8eOPDGw6XozlXhUE+Yw6n6CsFFupdGCUqjSaNKw+Ntt481P+zNVuBE0Y2yRSNg9cdK73K8TSdoxOK8dfBPwB8QtQ1H7bptq5RSBIiAEe+RXJKEaidjjcebY8Ng+EGv/AAW8aTQeEYLi9gu1Mgj3lioH1rJU3Bl07Q0ILj4x3+nyzTeINNntpVcjy5UJAxXTGo5KxNSrZnEaj4x1D4iXb6tfyO9rE/7uIr1rNJJkpuaMh76PT9ReVkC7uEQjp6V0cqtoN/u0cxdWEvizxO+uzRLm2wqJ079a5oxlzWKjVTNHT9NF3fyJfKGCdYz1A9a6XGMUROPNqc61vDca9cS2IIjjYBo260uaJhTk77EfjDTUk0iQsgBGGBU5NV7ttTaas0zCiAm09GbH3eDmsqTVyudSWpk6kLSMmW4P7o8Sj0FZ4ulOpTfLuKFWSlZIp6L+z1Y/EW6bUfC/xT8N6fDyzQ6pe+UV9s15NLF+yg4VIu5UasXVa5kcV4m8OxeGNYm0hfENlfmFtrT2UhZCR6E9aqDctbG0uR7MzBL6EVtGmlqzOUKklof2DaHd3trFc3TycspAOOfpX1Lb5pHDX1m0u7OcEepSarJIb6OCBjjBX5j6n2rnd1uTTioq7Oq8MQhryM2jEREjcX+8/vj0qouUnYpzRZ8RX8dxrDxxFQUTClxgLiuWo1KegUlz6kUckt80azg+Qemw9fespSleyOhWgjoNLvLJ7MwQ2ZRAckfxEVXMuVXCTfNe45r23EWILJTvP3XHJ/PtWcpx1VjRxlJc1zE8Q3XibWtasrTSrB544ryN5djBUjUNknNZVPbSa5VfUuhGhSjJylbQ67xTp6JZSXksMkrKN21eSMfSuypCd3Jt6/gcGGrpz5LmNePbeKPD6anBC5knQ7Qy/d2jB/lUq01e+5vKLpTaOS+G2vFfDer6T5SyXFlftE4VSWAZQwFc14Rb6tG1Z+/F9Di/iN4E8Q6xHcSaZpk4iuMeamMDOMdPSmoyfTQxjUhza7nD6Dp+qfCTVRc+LhfXoDf6M0sh8q0GRg46AZ65qpQVJXep0e15o2j0NHxLqmr+MdWjs9Oud01/JstnPzEju/sMVhNznNK+rFGcXG/Y5740WGl+HtMi8I6BboyWyfO+35nl/icn61c6iUORdAp3qSbZxHwluIfDd1qXxA+KEgh8wLBoLKmF3KAWJznk9M+lY06fLJ1KvyCuqlVKFN2ta/ye3z2/I5DxlcWXj7xJ/Zy3kT2l5JIrXCyAqGbgZOevU1y1v3lSzejNqd4wu1qVpvA3hlbe30HTkSKK3heBLgryJQPmz7EgHNdCglHlOiLcdWec+M7K40C9vbDVL4S5xLs2DbPGDnccckjjn2rgrU3zG0KnNpE4bxr8PfD+r2323TVQvE4MkZUE5I+8PXIwfwrB04I3SkldnCa14O06C0eW1tbTz48s37sL5hB7+jdaxquyNI+8ee+I9SstKu9wYeRKu11D5CMc+nT1pRvY6NFE8+vfHWj6hdT2FuWivYJyvlXWVDj+8h6MKpJx3MadTmnypFS+mur6UG+tcY+9iU4zRzRudM4RjqzP1KeDSrR7yQ7CoxHx94+ldEakrJmc5pRscl9tuFvt0/zFhuJHPNelQk5K/Yzox980Yr8WOoo5YMsw4cN3HqK64VmpHY1zaHf+C/EMlpPDewNt3DDEN1FfSZZiZQqwktDqhUVDY9di8RGDTLa7tkUBxwzyYDNX7PgasKlCLaPapYhOmnct3/iJLK3WW/vYzLKuREDwK9FVKa6HS/dV0Lp1zqB083NkDHnBMs5PAryMzjVx0PYw2ZyVIyqqy2Jor7T7KJ9P0iIAz/Pd3HeQ9+a6MsymhgadorU6aMY0oJRWpnx6zHd62S0ey3iTGC3OfrXpzlUilZnXHkfxFaHxDJf6+bO3jNxIqkRRxAkj8qwrVI0sNz1JWXcU2r2OJ+LPw51n4leLofh9d6otnYFRLrdwz8rD1KqR0YjivnamLqYuHJQ95X6/8A8mvRWMly3sjZ1rVvCfhfwTZfCH4R6SND8NWSAtEpCyXUo+9LI/Uk/jXZlOR4TAy9va9Tuztp0qOF9yCsvzOf0zTdW1RJJbC/8AKhX5XuZjw/09q+hpYitzNxdnax0xozxHodN4e8Mad/wqv4gafNrUlnYDwpO+rX1oyrcvGuGKRg/MxYgDqOK/BvH+daOVZbOEVKUcRFJPa70u/QjGYWi8PKNSTt+J5D8FZFg+DOi2FvP5Qe33r3OP8cV+pcITVLLqVOo0m03+F7F4ak1gIqDtsY+u6zqWueKls9D0SW4S1jL3t7JF+6tgOuMfeb2r6F1pOurLTqViKz9tH3dFuz2D/glj4n8K+Pf26tC0O80uO/07+yb6CQy5jM8pgPGWKjP41+OfSNrut4QZg6WnK4P58y/I46GbVK2In7CTXL/meJfHrwvpGl/tp/EXw1exbbeHWWlWyuX3lcgHG4MQcfX0qfo55jLH+HWG59dDsrezlmk4Td/dT/A4bxhYHSidR8NSuYGcsUAKkkZz9BX7nONWVPmotrXbVbf18/Q4sbRnTjeCPp//AIJqfFzVPiz8JPHf7GHiia21LT9XhXUYtF1ERebHGf3dzdwvIDukgjPmCIAbwp5B5r+MPpI5BSybiLLeNaKlCtH3JzV2rrWEZJW0k/d5unZ7DwWLlOgnGn7SqpKNnJxXJJrmezu0tUravS6vdfMPibSNe+B/xG1f4a65qCiTR7h4VniYBL2A8xyoQTlXQqRz/FzX9J8DcX0OLOH6GYUZWco2lHtK2qfUxxMVgsbPCTVraq/bdFG31d9Vv21QM2+F9lnaSDkc/ePrX1cbc3Mzk96VT3jSutRg8W3MPhVrOOVJTm4LbcSMOq5bgccVjinH2bvt/Wh0zlCdN8yuuxxGvfCeOzluL/wb4kFhHGdstrcjcFkYE4HsAO3Ar56thnF/up2fY8mvl8oq9CfK30exxuo3fjDSZUi1TTS8KSh3niYsGXpkjrXnyrYuhJKoro8Tlx9Kr+9XurqjR03VxrEgvokZ/MkBjPoFzzg/SuiOLVSJ7EcXCpFKGtyre6qFvni80eUR8qbu+c80lWj7XlM4125crK11qSPO+4hUMZ3HrngZrrqVqNODlNg+V/Gx3hf4oeOvhraaxF4Lni0u81y0+xz6zD/x+RWbD54Ym/5ZCQcMw+Yr8uQCc/B5plkc+xsJ4h3pQd1Ho30bXWx5ydaDnyxUebr1t/wTmbCFI4B5ICbWHuT717PJGnG0FYxp0uaCUdCZWBxDHgsUwTjhTmtqckoHTOaow5Y7mZr+vz+d/wAI9o4We4bKs6crHk14+OzCpOXsKGrPlc0zetOo8Jh/el3XQt6BodtoloYyS0z/ADSuw+8a6svwkcO+ep8TO3LcF9Uhd6ye7PrjxnPZfFv4Kjw3PpUEGoeBvhlot/okTqIjcxMJPtPHJlPzA5PQdOlfgssXDJeIIV6TvCvXnGb6Jp2S8jfJqFT2uI5neKd7fI+UdJf7Lfnyk2xuxKD2NfvOHqza5ZbdDdXoV+RbMtWFzHBqZkySBICpB5x604p+1ZvhtJ6j7kRnxjM5gETBwTMvRgfWtXGz5gWIhTxTaWp618Pb6K7iFjvT5hiQSdzjg/jWFRNLmZ6H1iU9T9Vv+CYnimHWv2e7XSmZxNpUjQziWTd37e1fG49Qhimkj5/Gwl9YbtufQtzrdtaXuJWAzwu6uCUkzlSZatdRuZpxdxx4jA5JHBqbtjUL7mp4f8Rrc3zXc0gEcY4z2qnaw5rQdpniO78TeIJZbBF+zw9weprFScpEwp8uy3LV7q0LXQWWcF1HQchTVSTUbo1d5Qtsz5Y/4KPeO4fEHxH8O+CrUfutB0NpZvm486dv5hVH51+c8aVnVxdOkvsq7+Z9hwhQajUqvrofNV9qM8dyLNIw6SRZ+YgDjjrXx1OSVTlaufoVGUuRnV+Fb621maHR7XwrBBJaWknmy7cibPRieelexSUKr+C1i4c+7dznfEmnWRivvsrssyFCPKcrzj2Oa6I04K6aJre+l3O28K6noeh/Cu6sIPEHibS9diZ2vbrS/EC20F5p8iBG/ds6yXNwGfhM7doOeM1x4io6UpKndSe9m9Uc9SnWnVXNGMoJdVd3OW1XV103V7+Hw14v8U3GkkxizXxHqKtdELgASKh2jvgDoBXPQpSlFSqK0vmL3pK8kMa+vYWcS38wabkkzMQAV9jmujVPVmnLy+9Y9V+FGpytoNpCZnZigDbnJzkn1PPSvosqlGULPofMZrNubsdh8XPEk2oeEJJbqchhYhVIXGQOP6V9POUPq7PlYqftx37FmttpFv8AEDUC+EF1ZSZZsZxap/hTyqrCLn6/ocOYXUkutv1PS/h34iMN3P8AEbxcwE87sthG4GY17GvYpvnXv9zjp0+W5hfELVrv41eJ5LHw/qXlosGy7vUP3D6Zq6kuZ6Dqp8ljjLfxNF8FrePwNeTh/NkKxSMTmZieT704x5dzGKdrmR8U/hfaXAj8VeDrqOHUHhEkoj9+1Opy8um4qqckcF4H+K3iXwXrt5pHi1Bm4B8qbadpOOhrlp8ykYRVuo7QvjLBL41i8QzbGjDyWxJ6Z/8A1Vqp825nflVznPHOoeGfFWpXd9ay20sdsSZVjxnJ7VKlG9kVNwktDzvSLm10O8v7KztlfzBvjR0FaKF3c0pLlRkXNhpd3dG9vlWKIgszluQfStdEjHETs9Tz+TxFLca5ep4e09p4McyJ0LexrBRnJ+6c8Jc7sjQsLTxHqcPmwx+S8gwXY8mtZQfKrnXGPLEx7fR5/DeuyW8t2ZTM2ZQWyQf8KzlCzuc0f3dQ0dZWzlspEliYeYnGR7VWria1Xzx0OK0q0lmgmiimGYmI2n0rNNRlqZU433MLxNEPss0W3qhyB61cpNK6OlJJnj82jGK6kEV9cR7nPCuRWEMQ7PmSZzPAQc+a5esrGGxt/wDWO5P3mdsmuKpUdWrc76GHhGPuiNjfjt9a6Hbl1LrSdNaH9gU149hAyMdpxlee/vXv1vdk0ePNt1n6mTbtamQy3Nw/kNzIe7H0+lRFJ6suV2rI6zwciTSNdwQrFEiExkPk496tySM+S0Xcz7q+t5LuVBH87t+8nl9PQV58ppvQ2owZZsdRjheaYW+SqYVSMn6j0p3Rta8kjR0XUoprQiNXjjA+fPGW9T61hOTtuaSgky1Y2cd2xffMYE5YudokP19Ky5HPUpScY+ZU8e6w9joMj2gkgiRc+Xangke/erlNKNnp6GdGlGNS71fmdNcahJdeHbe5RHWOWzRtyvycrnmu6crw0Wll6nHQopVXfV3Zz3gK7ujFqtppV407xTZ8mccxow5wcetccbu6R241Rlytqxxum2VzpXjjUri8uFjkkizDp9qoUSMp+8zDqcGlGhBTvJjnC9KPVDj49vNNvZIJD/rWyzbuFOcY6da15nAhUKersc749ew8bR3WmQwtGoiPnz+YCT7dOtTGtGo7MpU4xStueK2K+O/2fvHP9uWEsuq6fPamOWxuJxusQf8AlpGzdD6g1xyozVZOCNp0/aQUVoyTR9f0j4y6n5vh/WFuIZJCJp05EIGS2/0I96KS9rOy+ZEEqWj3Mb4reItK17Tbi30SBDa24NjpqtwrRr/rJj9T3qcTUc7pbGiTjLle58wR+Ftdvvipp+oaXrM0NtbXIIhgkKxuM4yyjr9a8yNJyxCktkehCKUfeR63qZvLe+mhtp9twtzujVuiN/gwrunU5ZEqMWeZ/HjTf7V1Wzt5ZpofIjIBhJV4gRjgj+GuKrWcnyroaQSitDwrxjpnj/Rr+507SPiDc/Ph1SRVZRtHGDjoe3esaUb31OjmcoWaPOLzxj8TNO1qaPWvGDTWtz3kth+6kHQ8e9FSlDdvUVKi9ylrVnfXfmXOtzpI8gDFk4Vsenoaxc2nY62tbnN3egWsrGSWBTk/umyMY+vY05yb0CVuUq3n2fSLaW8vp/Jt4jmRiCcD0xULVmV5crb6HHat4hXxNfrMk6tbQki3UgjIPc+9dlOm0mjJSdSzRn316i6nHAImwifM2f513YdNQNpWjKxcvba1vrZBdtt2MGjkGcg/UcV6ENEVFNanT+FrpRCIsnG3GD1z6124Oty6M1i3NnonhrUVvrOKfUpS0NkciHOea/XOG8XLEYfl7Hs4JJr0Ne28UaNrurqzOJDEc+SpzsHua+rdOVtT0lJyVmbOo+JxcyJamfEarwitjIA71pSUYvQaTWxW1PX7VdOR5IAkCA7nzyxq6U7t3ZpN8qucxY+MX8U+IBoPhKNGaLhyj8AnjqeM1lVqU6UW5O6RjGu6s7djv/EFjJ8J/hVrukfCG+g1P4iahCAl1KQ0enI3XBP8WDX4XxRxJmmd8X08tw0XDDxd7X37Xdv0PHx2KrYip7HDv30efeHdL1vwx4Qt9G13XGv9ZmXzNXuBzl+pBPfnPFfrmX0o4RRTVrnq4eFSnhYqW/U5u5g8R+I719P060klcHBXGEHP8TdhXrUsSpy5UyJ069aqlA6SaxfQ7dFv9ZikuEj/ANSmTFFgdsdT1rvpwu1Y9ylB4ei43M2x8dTaH8MviF43drRo08My2qXF3GJHSSQhR5aMMZIBHPSvxDx1qxrUsrwUVdyrcz/7dPPxdTlw1S7d7HnfgDUp9N+DulrKwWVbBCu05PIGa/TOHYN5ZTT0aSsbYOUvqcG+xoReJ2sdOh06yYRrsMkzBMb8+vr+NfU6Kokhyqt2SO2/Ye8T23gn9vL4aeO/7Ntl8/Vzp+6eQiI+cjoC4+6PmYc81+beNWVSzLwrzWnH/n3f/wABdziVCk6r5U1ftueVftgTa34d/bo+KC+MNUsbjUJNTVg2ly74VUjgKcDgDjGBXxf0cKmCpeH1FYdNJWWuj8zor06FHOJuUndwi1fc5Kx8UCc7LqN2tzBtiYgZOc5zmv6Hp1pq9tP61N705xV3uQ+C9R8QfB74rad8bvhvdCG+0C6S6i4yt0uMNE4PBVkLKQcghjXxvFvB+B40yHE5Vi17lWLs+07e6/k7Hj14SpVvaUv+HPpL9qLwr8M/jP4dT456V4Is9Q0bSPC8Wr+DI7i9lhk1vTs7LuzuHi2sHspSwXDFivXgDP8AGnhjnmYeHvEiyvGyfNOq6VeL2hL7FRa7TVnta/e9j2auGee5TKtUhyzpfDK+rXnp02Pi671LXriNrjwuba1+2TMYrJQ7xwLkkKHcliACBkkniv7TqvGTjajI+QxGGzF008PNNvubfwznOl6reWHxKntbcx6fKdGkEDGKW8wCA/dcjIB9SDXxvGGK4qw2Ew0MFRU/fip27X1ZdOtmGGpv26Ta7GXd61exx3VndlI4JX3CJMnYSQSmScnr1NfYOlKcOaUbN9NdPLW7+82lUqtJsguNXivbyK0iIUuxF1Iqg5A4C/Tk/nXI6cZS5WKok4NPqY+t+ERqF3Lf6fO9rdMGIaAhAEGOoHXiuDFYGlJ3jo/I8CtlSq1eeEnH0M9rnVvD90ZLvR7DUxFCCqXMJAdc5ydpGa8XEUcXRTcZGqqV8DdySnp1RR1TxFqvi9ll1CG0t7aMkpZ6farFEvuQOWP1JNedQpzqu9SVzlWIxOMnz1Hp2WxQjhIMgLhj0Ar0aMo07pHQq8eVp7kF5e6bosIlvLpUXqqA/Nn6VjisXh6C1epzVcyweBpXqz+XUxbvW9X8QE2uh2zW1u3DzEfM1efLEYrHvkpKy7nzWIzLH5xP2WGjywfU09B0e30mBorcEztyzkZLV6ODytYfVfF3PUyzK4YaPIvi6s1bG2vdU1C20bTofMuby4S3gjUZLyOwVR+ZFVmWIp4PDVK03ZRTbforndiJ/V9EfVvxV8ZaZ4C/bdsPAdwBHpOh6XZ+D76NfuyxR2ywStnp98t2r8DyfAvOvDueNcbVHVlWj/4E2n91jfJakY4acv52z5l+IfhObwB8R9S8IXUZVtL1SW32nrt3EofyxX7Bw3mEcyyujiH1S+85ajlKsm+jsYFlexz6i8kR/wCWuCpr3IVE6kok4Wcp4hxRPqU0lt4x/eONssCkrnqKr2sVPlNnTaxtn1R3XgjxAmnaglvdMuwqFZt3UHoaKzVSNonrU6KjE/Qz/gl78V7jw/qWp+GxG7QXG2RpVfKZx6etfHZtTUKikkcuYcipq59pza5pN/cJqVxL8i89e9eK7tXPDdQ3/CvjrTdehe0twioq4z64rNTSkaJ6XL6DTtQglsdMm2tjnBwTTb5iJy5nYi8Nazb+E7ebT4zh2zncefxpU0oz0KVuXQW21SBrhpjJudiCctxW75uUtRvHU+Ufjb8OviR8YfjT4w8ReCPC1zrcWnXiW93DpBW4ntkSIHMkKEyKuP4iuOetfkPETnVziqrbH3HD88Ph8BDnkk5N7njd1o4ub7+y9b06ePbER8/7kg9erDjpXj0KPtaqUZK/qkfYwqRjHlZ1fwl0u6HiKW0tbGW6dNMknaKykMzJCgLO7HHAAySTxXcpSpTs9Wl01JdX2MVKeibsVtVaybUJpoYisdxAhVmHO4Hjnjr/AFrojVnUOm19WWdRut9nHamyjYRuMlgA3OM8jqBirknFbGSnLboc1cRxQ30kwVMsrBpfU5yOvXr+tc0pSXQaippsq3FwXkdmOxS3APQ4FZ1FYylK3unpXwv1Q/YrKBXxtcZJP6V7eV1OWC0PncwpOrUsn1Oz+K05m+FL3EjIWAfyxuz36V7uLquOD5jxqaksTyNGN8CdavdMttf0nTLZGudWubFYolPDYt1yT6AVhkNWVRzsefnEIw5Wes6n8KfFmvxWx8T+PZY7cAMbaxjwgH93NfZUYShZtnjKrDlsi7qup+EvhloH9maEvkRIcTbmG+Vj61tOyOd1W6nLIx9Vh8Ka94akvfEFklzPIubZ24eH3FaQUeWzIc1T1R5b4L1jxBHqNzZXchuI45tkTFvmZM8Zrm5ZKT7EynKaNDUtB0vxbevpWqWiQy78xnbzWtNp6GXLoeY/Fn4W3ngpZJ9KKzW0s29niP3PU1jKGjZHs5Mq6d4asr/SBc6bGiIsYL7R/rB3J9amMYy2NlBKJi6/4Rj+1NqdqnO3KhT1x2rVtoxnJo8g8XXV14u8QHwv4bkeFFlzfBv4R3FYc7Uk0c8lKo7F9dPs/CWinRtBs1Z1jwW7sTXTRvE6YQUIkuk2GqR6b512PLQRszc1tUTFFy5jkFXW5r6fUI7BXhR9qsvLMPWsoxu9QqRTehoDVrG5QWkzDfjDJKMH8KJTSdkYqVtDjtZtTpet+fbApHNnORWcmpLUhTk5GLr7BkOCM85OKxmrF8zbVmeX6wgF2+0fxmuBaTaPUopSp2KfmNjYex6+tb+zgtSofu9Bm0Y8wseKzrTaXKjOs11P65dXv/tDmOSQFVlGUbjP419HX1qM8apdzdvMnjltr/U0L20UbINiRYO1fckVEU2yYuUJanV6dssNBnCKsZlXbG4blz3PPQUVJOMbGjaumYMAjgheUxSSADCSsON2ew71yRSaOqm0omnZ3D2m6S6ZYyE3SE8lh6GiT5HqJuz01G6DrY8RXTX9qy+W85SNdmAQOprjvzyvc3s1ub2q6rHZw+dLOdip8ikYH5Vc58quKLXLdHN3Ok+PvirayL4Wlgs7NMr9vuSQgI9APvGsqSr1byg7W6le2wuHqqdTV9kdf4bguV8Fw6Be6vHe3Omxrb3VzbrhZWCjnHbtXdTTlSSctV+Jy1pxWJ54qyZk+AtcsPDPjC60iVw76n8iPzwVBIBz7E/lWNOp7OpZ9TXER+s0F/ddznfjJZ61aXH/AAkOj2rJdQSGSIwsBvA7E46GicqnLztG2HcZWg3ocrLfaL438LN4m8MMyF2zqNrNLmW2nGcqw7dePrxRTca1N8j9dR1oulUUGclovjzT9BjubbUIY0kjmD+XJncSOckHryKxsqab6h7KTaZk+J/EEuv6QdPtbdHvtXb5P3eWQHufSk6klG3Vm0Y637HgHxX+FnxV+DlvqUvwf+Jc+kahqsDLqMDxK8Nwe4KH7pxwGXBFReVK/Lo2UoU5yUmtijoXig6/4Dgis9Lu7bVYoksZrCch/KYDMkg55U9QepzXHKo3olqapxlNnO3kcema39qsG8l4h5Ks4yjHAwT7HkZ96cZO9jV3tY2NQ8Y6SNOR5H2yJDsmllfOHHKgnuD2NKTijNyvocF8RvF+laxryajpki3Nt9nCzgv80EmOVbuv8ulck2pSNYRaieW+NbeGNvMs7t2kC5tZuoZf7pz3FJRUep0Qfc4PXtPtNYEq3sTC82BmwMc+vuMVMouTNZyklZI46SaUCa3a2AYHY4YZDio5YxYru2pzPjbxh4P8IID4g1iOzckhLQtvd/oo5qlTnPZE1KsIO8jhtR8W6p4uLOJxHYhsQwJGQZFzwWzVwpRhLUw551X7uwllYrLIHWPjPJA5GK6la1joUVTjoYcc8+teIrq7iMeyJtkeD98DrXUkqaJi1Undm1ICbf7Osm9HXBXd901tSnc2ctLIs+H9SniVBIwbyzjcK7KVotM1opxd2dzoWsPanKEMkiZwTxmvvuGMb7PEcnRnq4apyyLun3n2BWvpDHaw7sybByR71+mus3BHotxkrp6mf4N8Z/8ACzfF93Z6LIv2DTEPmzLn539K5lOr7S3QmOJU6rjDZHdX91Bd6ZHpc8iiKMfvEB6Z/rXVzqOiN4y5jKsb/RfB0cp0uKODfu3u6cvxTnTlUiOUVCXuKx5Z4B8FeMrn426t41m8XXkml3KDFuLhlXjJ/wDrYrwaeVYbD4uWKkry2R4GHy/EQzKdectGal+njnx742e3k1VtI8PWz5nkSTbJOe4BNebV+sYzFpRlods3KpV9mnob+reIrXSdMfSfD8kkdhEMks/zSn1z3r6/CU4YejaOrR6arexShE56a/u/ElxGIpQlvFGfMAYncD3rrU6nMrbdR3qTW5Y+IOqeINI/Zq8VXGjaZK6X+p2WlT3RCFLUSA8hDySRkZHSvw3xS+qZhxrleElL3oxlK2vddjkxcqi5ad9Wc14h1bQ/Cfhy10mO5jVbeFI43I4wFGQB71+tYJ06EIQS2R6U8UsPSUDMvfF1odStoySVeHJXbgZxxz6Yr3FWvJHJGbdS70Ov+Aeu3Fz+0l4AvYXt/ItvFdm0IuG+SVzMow3H3ea+a4/5sVwPmNH7Loy/J3OyMo05qWvyMP8A4K66Cfhj+354m1iC8tbhb/D3gs7gusRzjO0/cXsB6DrX8+fRtzGrLg2UWmo05W1XT9TyeKZypY7DY+75ZQs/k+p5Lp2tWkuhSyCbz3kQuAjDcPYe3+Nf1PQxEKsL82jKhi4TpqpB3RbtPE62vh6RbiZJIhsLBj169fYVo8c6VNwUtNH6tXt+bOhypSp899j6d/4JbeN7P43adrv7K2o6fHc6nbPca14LvbloRDbwNEy6nayNIyny5IgCAmTu5xjJH8P/AEmcnlkec0eLsK7Uq1qdaKvdzTXs5JJWun1fTzOfLs9pZdmVO9KVSM5cj5bWirN80rtO10o+6m7yWlrtfK/jrwxc/Cv4p+IfhjqKMW0a/lhgeWFoy8RbMThW5wVKn/Gv6Y8OOJYcScK4fG9XFJ+qVn8yZSp4bGVKEns7r0eqMp9dOoCZrh9pC8tsyQR3r7lVVGLfU5qr5tLmNeXNw9w1jLG7uuZWm5/eoOSa46lR1OpyTrqGjJtIuo31WSWGBGZUykanOeOtcUWoyu2aUL1W0yzfa3CIWjs4UV4IQHDcltx5I9sUSqwcrNmdWpGnsU7y9tLeWNxKpMUuHMvQKw6H27e2K48W4yWwqk4Sjexy/ixtH8L6tO6XKQwuN/lbs9fT1FfL4iVPC1WtvI8DGSoZbVbnJK+tjl5fEOq6zIYPD1syqes7jn8K4qksVX/hKyPnK2Px2Mny4WFk+pPp/gcySC/1adp5CRkue9b4fJ+aXNVd2dGFyDml7TEO7N3+z4rWMRQwAYwMgf5zX0eFwsKaulsfSU8LTpWUEPhtbdJkl3gRhPmOelXW5YTTexvKdKlJSTPdP+Cb3w103x38dbr40eJreUeEfhbpkuv6vem2LwNdRA/ZoWYAgbpdp+imvw7xe4iWCyFZbQlfEYuSpRV9bSfvO3lG587i8RGupyi3orfN6HlXxH8c6t48+IWqePry5zd3uqzXjShyTvaTfuyfwr7bh/JqWWZDQwEY2jGHL+B6cIrD0KUIv4Tc/aJnXxJdaL8ULeQyf8JJoomu5mx/x+QNtkXPsMfhivP4QoyweJxOBmlFU37q8u/zFRwKwql77mnzTvJ3ercrLbRXtFdEktTybwkJJx9qfozEvk19TGcnUdjjyio6kXO3U1/GJgjv9O1GEBw8ZRufQ1bi1JNizSrKjjaU+5vaUltf2Ud89ysUkGAo/vCtJuVPY+gp14+yTPrL/gn/AHGr6t8SdNsrOIywsuy5CTmMkdj7187m1S1PVHFjeapTvY/QfU7aOztpNL0+6dQI8Krvknivm3rdHlWtqzV+Gz3GmaOYY5t8zcEBueamNOzdxSk5aHT+HLi58NK95ql8WkLE4JyFzSfusS93Qv6RdW+tyyXdw5Ck/fXgVaSLi9Ste6wkN59mt5WAVgM/jVqWpo1KWl7HyH8Tjbt8evGWqxDbc/2sAJosrJjylGAy81+TcQKFfPayeyt+R+pZLyUsngkr/I86X4heMtN1y+sU8U3rQrgLFPJ5iDjurZr4/FUaUK37tWfc9mhUTldG9pfxn16wjmtrnSdMuVu7cxXDi08lpIywYqWTBIzXZSr18PpCd00en7ChX5faR2Fv/i9oBlS41Tw1LFiPbGlrc5VB2GGrrp5g4L3ofcc2JpJT0Y2L4oeA7hyNUuNTgRypaRbVZGX6DI/nW08yhK7ady6WEpyV+YhfxV8HLjUzFb+PdWjjbOJbjRcHHbgOayeKpS1uyK2GnGPutFTWPEXwvspyJvGuo/MpyRozevbLCrjiaNR6NnLHD141LSsvU3/DXjjwrbxW0fhrWri6dX3E3sUUAUc+rsw/KqWd4XCR5XcdbJquJakmjV8Y/FCXUdAi03UZreC0tEYXEcCvO8pOONx2hQfUE9BUy4nlXh7Nqy+85v8AVxUpOpF3aNf9lXXYrn416vb3kqi3i0i0kjR3wyZjx0PqB1zX2nB841I1G99D4fiTDSp14u2lj3zxz8QI764i0jSpxHGE2ja2FUe3vX291F2R8g21Kxw3xS8KLcaDHqk87gxrvQyP1YHhiM1lKHW4p+6rnNT6j4y/4R6PV7i9t7mCRdjJAcOo9MVcJNRtcxjC7uef+LfHnhzwfDcXEOrTQXkbZMb9v/r1NWWtiXW5dEjD+EHx9l8Q3d42q363E0jskc5Y5UfjWcJcuzuYufvG9qPxRjjSTTbiZZISCjhjuBNbR5bamnM3CyOU8FeK5rLxBdeG5pgI8l4MHAZT2rWCURxjJq7ZZ8e/EzQ/B/hS5aeRfNQ5CFuR7Cone17aEvk2Z454P0Hxfrs1z48vv3AupMwwBMHb2z71NKlz63OeEJSnc39NicedJdQhpMgEN2rrilFG7kloTeIFvFUwRx7V2KEQYG6pndq5M3yxM4wjS5431FBE0w4VR8oPao3V2RFq2ph/E+10e6SHUrGNUuI5MHYcbq52tdAlFS1OM8V6ms1ksluSHTG5GNaU6TkQ30Ry+p3xmtS+AMjn61FaNpEKx57qLl7mRz/ePWvNf8Q9Gi5KKKTvlemD9a0qKyOyDu2RSkiJh1yKwauzkxMrpn9bK35jnuXmt9zKMoCc49819TWV6jPNqu1Rov8AhlZtUuUdCYrfOZcjBc96VOOupDabsb+t6tBLei3tIWkW3j+QSJgMawrNylY1cHGKszLe6mlvDLczn5esS9AfYVyt8u51U+VQI9fezlZbBElDyjChW5bPUk1hVmp6G1OF3zGvHJYeDLeyt7iNQkVszDeeje9YztCKTJqTcm+U5i/1rVfir4xs/BOg3ZS4uTuu2Vc+RCD8zH09Priua9TEVFSgVHlp0nWmtj1XxRBpfhrQIdB0S5Zba2gCJGhGGIHLZ9TXZWpOi7Rk7JWtpa/fa9/nY5cNJ1E6jWr/ACOT+DWrzz6n4h8Padp0077YZ2BfI3NuU/T7o/Wng6j5nTjFseMVOnyTk7GJ46v9R8JeI4/EOp2j2IsLqJ4lwMSLvAfODn7pNXiFGn70laxtGKqU/d1uema3r2isPtVzp8U6m2JSR26kjgYrr9qm7NXVjkhRqW0dj521/wAe6L8JvHF94oHh+RLPWfLj1ae2yEtduQJnTYcgZHzZGAOc9uBThhp6LRnfChOrBcz1Rk/GPTbLVo49W0a+W+v5lMts9tEAjoeVJI7Y4z+NS71Ho7sXNLW2x5l8CfiFLY+Ntdu/iw0WjXlmgXSUkuQftEY6upbjPbAqaUJc7dR2ZclNwUUw8ea23im8l8QK7bHl2Wasud2c/OTVyXNHnb9CouUY2bPH9X13xd4C8fP4p8FavBeFLZl1S0mTdHLuHyqTjg8kgjmsHyQk2tX1NKcFOKk2c1Z/HHwT4li/sLxK50bV3nylpcABSo64fpg4+vNc7afkdTjJq62HeNfEngG007+z9T8QWFpHd2pa1e7ulUXIA3YU56g8A+9ZycH1Of2tOMrX2PK9S1bwZr2oi50nWLSGa4iCSEXiE3G3p908+lc0knqjtpXqrm6HPa3rNj4e86HW32W0smDPMNu0juCcA9uRW0aU3uaRSbdlb5HnXxG+Knw78JTm6vfGVmzLnyGiuQ0j4/h2KST1qakHGTUSpSjBas8U8R/Fb4qeOr+eHwwsGkaXK2BdLATPIP73zAbfyq/ZUadT4lLzV7fikzg58TW02QzRPhrp2n3SX+rCS6u5Vy97cyeY5OPU/wAqirUk9Is6aVJy+PUsvGL+Tyd67l+SIhcDA9aiN1udahCC0INW1eHw3oN7q7ZLLERGo6ljx0ropuLlc5cRKUINpHL+EJYTYI0YyCd5JblWPWuvR7lUOb2WvU1prt/tRtptuGG6JwO/vWtKVtEXCVpO5Na3EazbkUoso5GeN1dcHfc6velsb2mauWjVMLwMg5619LklRU8TFnXSukN8RXkmvRHSl1YW0Tr87Jnp6mv2TDVoSppnSp9GangXXPCXw08DXUOgkjGTNcA8yP3oxE7L3WbJQp0XykPw78a6p4kFx4h8QwtFaq/7qMjHHY81FKTvuThqlaXvWZoXXiGLWdSFxPcOsag+XCB94V0udSPU7J1ZTklcZZ61c3F+6L+5hUcBV5rgxbcqepnWck9DnV1678SeJpba71DNtA3/AB6w4+Y+/pXmYSCjUa6nPh6cp1m3qcz8WfilYaLfDR9MVp5nxFBbr0DE4x7mvXa9j7999DpzDERw1JdZPY6zRnOjaVZvq1ssVw0AaSPd3I6tmuqF58rZ10ptUl3Zj/EbWrex8GaXc6vCWl1TXWmsit7tURxLgsydCckivxrOq8s18SqdODTjRhZ6d3fczqV4Rr04t3Zy+mWUOu6x/wAJh4tvdllbOGtrOQ584/Sv1rDUJJ+0kzadGFSfPUehifErxlaa1eKtqPsNojKpdByFJxhRnJ7CtcViUldM8/G4mnTgkzs/A2qSaR8RvBpd0tYv7csFV7tN0aL5yfMwyO1GdQjV4exUWr3pS0/7dZ0SryhUgo3u2tFv8jsf+C1LaVY/te6jbaNPp00ctlgpZ2DxFyTj5y33jnP0r+YPo11W+HMbTlF6S6tPr07HHxZOc8Bh1JWcovTd7ny7b+F/Evw60uDUoL77XazQZu4u9tu7fSv6OwuGr4Oaad4P8DwMHlOOyrDxqKblF6tdi/by6FrDRvc3jsSg/dBvkfHqewxXs8tKors9+hKhUhe51nwW8V+HvA3xc8OeJ/FEFzF4fttSEGuxaddNDNJp8p8u4CsuCMxs2DmviuP8oxOf8HYrD4aEfbRjKVPmSklKOsXZ6dLnFi/aYet7XDuzR7n/AMFX/AcXiPWbn9qP4feDpNKt/D2sDw/rWjrdi4f+z9gfT753HzMJIiMM3XI5r+YfAHiarw5iI5FjK3tPbRdSMrcq9pe1SCW14vojsznL3HKKOcRd5w92ovLufIOi+J7DWF8+K48wSsQRvxj61/W9PNY4uTfNd9T5/C5rh8Yr05IsSXJlc2X2obZBtkbrtXr+H4VXtlsmdvtqadmtTOubOeGR7rRrt7a4hH+tV8nk9D68VzVacaqbjLVDqQbhz0pcsjPvtT8UFmu/skLF0AdEyM49fevKrvG3vA4KssfUd1FMzdUu/Ger/vEtIocKAcEndip9nmWIjrocld5vUh7kVELTwm2uz+fr0xlnAwFfoAOwrHDZROrieeu7szo5P9dre0xcuaZq2GkxWTLbgCPZnIC+1e+8NTpwtax6X1RUZKOyRP8A2jGkAuoY9zWzDz0xncvrXLdRXOum5nOuvZ88Ffl3K93dTajdpDotu9y8zhbe2gQu7M3RQo5JrStiadHDSxDajTja7bSte7/JMzjiZVrKlq+iW56Hp/wp8L/CULq37RGk3Opa60PnWHw3t52tiFwGR7+UDcinP+qT5yDyy1+PZxxnjc/ruhkzUKC0dfe/R8i627vTyZVfK3Ti6mK+J7QT/M0PHP7ffx+8ffByT9nXwvc+H/Anw/ecvP4P8F6BFZRXLbiQbiVQZrkjpmRycVllHhrkU8zhm+LlKviY/DOrJyt/hWy+SR4WHwkpVPaSdvJHlF009nYs93cpLEiDay8Yr9MdqMXzbI9dxmqfNPZHZ6XqKeLv2Z9U0oQ+ZdeFtYi1C0IUHFvOPKmBPoDsNfM5m54HiPDYpfBWi4v1Wq/C5VSqp4eLj2seaeG4pYWIYDCk5CnqK9zCtJOTPNyWEoUnGWjL+v2t5qOkFLWHebZ/NLJ1A705yUmdWY4N4qjzR3jqXfAN+NShFjcEEOMDPBFbTqwlTTsb5dKnOldn0F+xl4y1Dwf8SbW0+1bWjn5bJBx7eteDmNL28dEdmInT9kfo1PqV7qFrFd2l4SJkXbIOpzXzNSChJo8KS5nZHQ+CvEcvh2FzcXBeRODuHQ1i9TNx5WasPiSXWb5p751WDOchiM0pQY0nuzptH8U2sts0GmuBEv3zv5FKnfYvl1MyTxrZS6stnbtufcA3PXmtrSjonua6HzL43kll+MvjG5t5MSf24dhPIztHWvyXN1GGb1mz9DyKtKOGppM8s8UWkw8ZaoGuQNrgMOAO3518lWnBptb3PpqUY+0bJZYzaSfZWYZTGSpz27GlHmkj0IVWnYzPEE+FAyR8vJxW8Gm7EYi/Lcypb15otzthhjBHpz1q5Nt67k0W7GbeXkgkODx7/StYQ0uyK09ChqGpTXEeJZ2cKuPnbOM1vCC3R5sqkpb9DovAt9DbXjXWw5ZY49xGNrZ7fhXkZnTcoJI9LCVowqHoWtySHw/PIyjy2VDjPPPWvDozbqKB9BaPsuZ9jp/gxpY8T+M/Et9pusJZ3ul6ZZ29vk4M48vLFvU81+28E0VLDzntbQ/G+MMRKWNjTiuh1dnH8TtPvDquoWS3SR5Ktz09a+3e9j4uSaZznjX4yaprVwmgJcS21x0JckKPpmlUSS1FzXSuMg8bXPhOALe3pmMirsKtkZ+lRTtzBJPoac6/D3xfp/8AbOsRxmRm28xD8TW1SnFq5hOnGZ4z4z8I6R4X8TT6v4EugYCGEqLwPrx0rk5LvQ5pR5XZnW/Di306aFI7i3S485N0u45w1dCp6XN6Ka1KPxN8PzWcbaxpF4kU0LfuWUY49DW8Iq2pU23ojy7wJo+v/F7x61rrpY29k/7yMtxI2c81jUnJvliR7GMn7zPafFw0vwzZR6fYxI4RQNoH3TitYR5VoavkgjzyQalqU9zc6fEME53Uc13Y4pNtmF4nfxHNOklwW+VsMUPI9M1FSTvYHeW5javqes3zrZ3mUZTlTvzUXbVjJp3MHWL/AFCDUII9Rb93ng56mhtJ6GkW5aGd4wubKWIi2Qq+OT2NdMLKA6zUI6HFajfMISp4xnP1rlqvU5Iye5yN++WYg8kmvKWtVnu4eC9kUlyecVvVV4lxfKxsygqWJHTiue9jkrRbTZ/V9dXxe02QwzfO3yykfePpX1NZ+8zgqt+1kdF4KvZriXc0IDIoVUP3SB1/Csot3Iive2NM6lNNeXV2qZkeQI0oHAUdl+tcknzTbOrl2TK0OoSHVpJIrQKI/lHy5P4e9ZJc0mbVIKMEWGuJIZ/Kd44guCzkbnz6VOilcqElFFzVNO0bXLI2OtS77ZoioxxIx/mKwq8tX3WW1JTTWxD8DfDfhz4bafres6RbOt5qF7sluJp2kl2KOF+boPYetXg6aowcorVl4t+05IPZFLxx46u7u4fF4Am0/KxAx/8AXrGquWbk38ghBJWI/wBl2HxPqPiHxN8RJLgw6bHGmn2iRkYuZh8zvn0XIUe+70rpy+Lc5VU9LW0M8dTp2hRkrvcufE86H4qtW8Hy6eZdQvcx25ZizSyN0TnP1z2qqii04X1d9+/b+tPkbUH7F87+FbkniLSfFHgKx0jw34h2tfy2sMCyRMXWSQDbge9YSlWjaEtzNYihWbqQehc+JvgSy0TwFL4euzDcX1+N+ouU6gj7n+6K6KlJUoKL3ZhRxE8VKU1ouh8a+BfiLY/s3fEKT4M+OtQZPD/ia9kXwtrdzMSLSdjn7Flhwh5KHoPu+lcPt4Yf3V1OidByXNHdbnYfHHwN4J+JGky+GrnSYpoIoFUyunJJ/i3D606jVSPvGtKpJU9D5i+JWn/tB/BW2eD4fa9B4g0yzicafp2p7tkZHTEg+bHTrk1xT9pB+67olL2lXcb8EPizonxD8GWmn+JdfT/hMIUZ/Eulzrsc3HdlD4LRgAKpH8NVRjJx5up1SiqcbJFL4sfDHQvFenm6vtLg814mcxxoMAH/ADxSmuaLT3ZcZS9m0eA/GP8AZo8G6syre6bFcfZLdBELtd6w55wu7p+lcUqUqSbuYxoc0rs4Jv2X/BQZbaDw9DZzRIS4VcFhj+EjBFEUzvUHGMVHRJ6nI6t+z7p2n3l3bXF9dXcMePLt725eWMBuMbXJA/KrVWd9Tb3U/wCmV7b4KeEdGvfP0/w/bxSNFkHYACfY/nWlaTkjL2cKj2Lupab4b0GwbVtXvYbS2V9ryTEAKPQ/571zU5NOw5ctGnd7HFat8Rk8SyGw8AWUzacshM2pzoVLAY4jU9uvNaumlHnk/l/X9aHHSxcqk7QWncvWFot1CjtP97BjcDv6GpVSysjscmzmfGmoJrOunQbcxtFZtunkRuDIR0qqc3ESq+1fK9iHTdMttOvTMrbFZCdhGQrdsj0rr997Gim9kU0vbyW6b7eyMxbon3cf0reCcVdkwpylK7NeJYZYSqZDxnIIPb3rSNSTeh0urFOxPaXygBFcFWPBHUV7+X1OSomdMZe8jkPFll8YdQ8UfZPCN3bR2TLmWSTHC1+q4DETlBWehNaniXVXs3odh4cg0PR9Fi0fxFqKSzSNmV3cBWNetCrd+8eh7ekqdma+q69o66OLaxCRwK2CIzy9bwkmbxrrkSRVfV7fT4X1ydV4ixFEpzj61bqJvU0motX6lDwjr+tX9ld6tfqIpJg3kxRn7q1xV5Sa5YnFTqVJXciHwtPb+EtC1LU7O1E945Zri5n+7Hn09TWFHnpyvI68O5005Hn/AMPXPinx6/i/UwJbXTZS1mrDAkkPfpzXVCUqtV32OTCy+u4z2tX4Y7HoGs+IbnWdRLSXCiS5fYVUc7jwBXW5ypJ1JSShGLurddLO/kr6eZ69SalJtbs53486rYzfGTR/hlHLdxjwxpg86KeMFTK/LEDP/wBfB7dK/FOC3DMM+xGZOSftJPla7LSx5NGp7bG3mnFxvpp0e+nff87PQx9b1qFnZTesqAYCDqvHQe9ftCqQn8bsj0K1dONzj/DNp/wsj4hQ6ZH/AMgzR28/UbjqMj7qZ+teVhoPG4yMIfBDc+WlKrnWaKMP4cHqz034Ua5BrH7Uvw/057iNbYeMLDdLJym0TrjcPTijjbEVaXCmPdFXaozdl1tFnr1k546EOl+h3H/BXDxbH48/bdu/GEXi211fT5rm8t4Psli1vDbtBcFHjVWdySGBBIwMg1/Pv0ZcFKhkOIo1KPs5vkk03dvmV0/n+R6We4L2FTARmn8D376Hk9lqun3EHlghopowJiYwxkAH3Tnt/jX9Pumr2Wnc6ZTfJyy1R574p8Na7od1LrOhW/naY7ndGB80Pfp6D2rlxFCtTj7SnrHsfK4/D47DTc6KvB/gaPhTXrbXNMewE+9vL9B075rowOJvTun/AMN1LwNZV4Wvdn2t+y94w0D9o79k3XPAmvaFc6p4jsLCPwx4umEnA0o7jpuovlhuNvJ+5ZiCdm3+7X8I+LOQ1uB/EOlXw01ToTk69Ff37r2lNaacy1SutfU+ryRwxEp4WcbwqLkl2Xnqfn7q3gWw0PUb3Qps22p6fdyW80kBwm9GKk479OvfNf1tkEMvz7KqWLp3i5xT07s/Oa+QYGlWlTptxnFtXRV/sjxrYl5oJoruN1J5OxiB3r06uUZlhnelLnXnuaU8tzWj76kpr7mSDxINPIj1S2a2kLDKTKfm4656da82tjnh5qNaLiwq5pRoPkqpwfmXtMuobiyExIYmbjaeucjP0rtwmIpTpcya3O3A4mNSN463GrIltJNbBlyg3Bieh9a7aVeL5oLod/PHVdhk11arErp1Oc4PTilOvSjJdzzalZUpKTepf8CeAfir8cfGlt8NPgz4B1PxP4gvAz22l6PatLKyqMu5x91AoJLEgADJNeRnmd4PLMK62IqKEVu2zkxuJr4pKNNXfkd6vwo+CnwCvI7j9pr4inWPElrMou/h74KkSbYA3zRXd9kxRsRxti8wjuQeK/Na/F3EWdfu8joqFN6e2qJ2fnGGjfk3Zep6EMLhsupKWNqe818Mf1MrxX+0Pa3N83/DO3ws8O/D+KOYSWxtQ9xqAIxgi6lJbPAPy45zW+B4MxeYxdTNMZPESe8G+WHpyrR/O5ngcbOEbYFRi11a1Ou8F+IdY/aW+EvjfxJ8adXvNZ8deFWs7jS9eu3XzJLB90UkEzAZdQdm0k5GSOh4+H4hwMuEOIcBhsvioYaspKVNLRSTTTXbrc82vmOLqYhSxDvK9nstz55s45LfU5eFMYc4wOoJr9qy+M4xSZKUvbNrYPFd40FilkiKDMwKkN2rqxcXy8ncrMsXCnh1SjvI7f4C3sFrqtx4b1aQ/Ydd02bT7lQOu9TsP4Ng15HFOGliMmjKHxUmpL5b/gFCLcFF6o4mKC60u6k0+7iCSWszQzoeoIOKMHWdenFx2aOWo5Ua7S0sXpbqfSp4r+zfKMfXgn3rt9hJSv0PQo1JRamthb21Fg48UaDH+4cj7VAv/LNj3+hrSUYQdmRWpWrc9LbqelfCHxCy+K7DW7dl3EgP83GR0NcOMlCNF8p3ulTdO5+g3wW+N9n4q0iDTppE8yEKjRg8gjuK+NqqfOeXiJU4vQ9MS4+1v9qS5KxuCAc9ayscim+pei1/dZGxibdj5Scc/wD16TTTF7S70L+iW9/oumSTR3eVlByu7pn+VWopamyk7WHeC7VItWS/nlDkybt5PQA1M2jOcuXV6HjFi8etfE7xvdyxjMetTMjMMgEYA/z71+Q5w/8AhUqu5+h5JG+Egzy7xGDL4s1MuQWFwoIB47V8o7KL9T6zDSipakN40qzeWzdDj9K2TThY7lrPQzfErsFRV4Ixgn6UqEnz6BWfcyN7CErjAKg5rotd3Zin2My/LB2PGRgVqpIxrTMyYHzMuQAcADHeuuEeaF0cuiV0dFoVzLb6UqscRtdCRc4zhRzXl4mEnNo0oO2vmegXWqxal4IJWQZghRWAHXqa+cgqkcYk13PsYcssLp2M7RfidB8O/Fuq3kNpPL9rt7ZmeEFtuIxkH/Cv2XgrESnl8rbXPxfjh+yxyiux33w5/astr/UG0m6uWkEq7TDITu6fTivuqbgnqz4KNVN3kO8V+IPAOo6uZpp1hCKSOQcGtJy5kaOrTitDiIPBJ8Uao15aeKWkQHMMKSjaPw71NONtTWnPnhqZviW917RJv7KuZbhdxGJEfgf4V0v4dTmk+WRxmu32veHLiVo7t5Y7hDuUnua5JSUXoYOLlK50nwL8di5mWzu02Or/AHWPJrVT5kayqODsdf4zvrpoZmDYhIOc+tarVaEOpyq5zf7P58uXU7yEqsjTNhz1xWKpckuZjiqlRXLXxM8bWtnI9rDOWcnknnn2ro5ko3ComtznPCPxChtY54Cw3Mudr8VlS95spRUVcxvEfxBNrfToJl/erviJ6Y9DVVoN7HLKraZytlr13rutvfXEqxxjop6ZqadJPUScp7lfxxej7HEUO4RuCCrfpVShGLCVRwaUTI1PVYbmzEXKnZwWo5rRM5SlV0Zw+s3bYYbs4JBzXJVd0Qo+9ZHPTyMwJJ/GuOMNbs+iorlopFfzSi/1NaVFoQmrkbT/ALsg/lXM0YVmkj+qrVNctbeD/iYXzyhWB2K2PLX09zX1FbSbPOq39rI63wFLbi2kuoW80bN67mwFHYVjpytmblaL5dzQ0jUUm0xniXenmsVbHG4nk5rjTVrnRGbbSaH6LcsnmSoDLNn5So4X8ad4xib1E3Pcp2q6nrviE2dtMLeOP5rm67c9vrXIrzk7M3ioxjzSOgaOOzCafbxgCY7RKx+d/Vgf4R704qPNZCnLZlPwvoet6hfXGhWDfZ411RkvZnUs0SZAwuPvbsHBHTFVBzcuRdx4ipQgvbNapaP1tp+Rs6x8H/Cfh6WWaa7V2nAKxzjzpBzlhhsgcdD2rSrhYQbb6mdGtUq2fb5G/wCF9A0L4c/DLSvDMcZSGCN5plc4Ls5LnJHUkk8+9XRhDD4eMEZ1q06+JnNb7HL/AAhs9J1f4ya144W4SaDQNMSO13PuQXE2SzAAdlAX1+9V0VF1pTfRfiZYz20sLCntzPX0RyPxY+NUvh/4g6Z411u8Y2djqaNJGbdjuUHDMMjGADmuCrWUaqqN7M66GEo+wcEzW8c/EBvF9wZbHUkuEnUSLLEfk8k87s9DkVcpzqvmb3/IIUo04Witjwz4mfC7wr8bvH9n4cutOiurPR0ad9yK2JMcH8OTXKqXt6/dIFU5KbUup8z/ABFsv2m/2dPHs2neFNVbxZ4ZkbzP7F1K4KTW4DZIim5LDGRtbI9xUVYOh7sdh3gqehsL+198IfH1tH4TsJn03xDb3WZvD+sWnlyEE4yN2BIoxxjNRKajVtHVLr0f3/qRTnPmvY4L4wfs9eD/AImTanrqO9rqUDolleWn7uSOR/4kZeQOe1Eqjvod6nPluzwbxB40/am+Dqy6BPrNv4rsokAR75THcIqtkKZVHzYHqO/WuSpVqWukROrJKyONvf22fi1b6pquqeIvgYZrMwQiGK3vh5pCsN7Elcfd5HuKyjzykrsuhOvzPmWhV8d/tf3szKNF+EGpOu0LBLcTopZCCecdCD0Ndkqd477Hc5xS2ZwPib4+/GLU0GqaP8KkW4a1Ec0F9efJnI5yq5IxXIlBz95kSxFotQj95l3fxI+PWuMY9P8AD2laWzQAMFV5m+o3EAH8K6o+xcNDGNTETm3aw20+FfiDxZff2t8QtUudSlQbgsgAjjbj+AcZrGcnTvymkqcqllJnRWfh/ToFiig2rsG3cqYTjqCKwbdjdU401ZIx/H/iGw8BaDNfkI8052WdoHB3yE4BAx2zk06dKrUi3FaLcxq1IUo3l12OG8KWUyWwaWRXmdt9wxxlmPJNdMKd/eHh/hVy54mvrbSLqyzJ5ZuCUzjgkdua3UtBVJqnNWK0sq2sv2wWytG4xPHn/wAeFapc3U61LniWoYoMi6t5j5Tfclx+hrpXLDQzWkiKeQw3H38DIJKr0r0cNO7R0qTurHE/E7/hYVt4xs28PasIrC5XEuT2r9IyiUqkE0/UwxkMd7WLpP3XuWPEVpYazbxac+sFXgUbpVOMmvqWqcoWudkYxqwUWzU0WzSO3SG41eQQRDO5zkt9PSoVqfU6oxVLRM1z4gsBHHb26KyYI8t25b3NaRmjb2yfUz9V8WXGnv8AYrGFBJKgCsGxtBrSKi2FSXLLQTxv4lfS/A/2PYxLKWZmP3ie9TUcWtzdxfsG79Dk/hVr9zcaQYdMtwBEx3ykfKuetPC1FHY5MtXNTfY9E+EnjHwj4c8Zt428bxCfSdBt3uprdmP7+UA7E/FsflXx3iTmuKwPDE6GF/i1moLyUtG/kjtniIUJOV9l+J47H421nxf411z4m+JryQTajcvJbLJj93GTkKPwwK8fgLLoYHL1FaKC09er+Z42FnieeVWtu9vQqWqa/wDEzxLD4Q8PzLCZD/pNwekEfdifWvs6tWviWqVN7Car4+t9Xg7Lqz0BLPw58PtF/wCEB8GZwx/027P37hz1Yn0r38voxw1Llhu9z6XDYPDZXh1TpL18/U5c6f4k8F+JIPiPouoW850m6juUDMVbdG4Ycjp0rpr4H65GdOTThOMov5po8LFYXGUcQ8TB6LU99/4KKtrHj3T/AAb8aLW2mXw0YEOjuNJjhtzFeRrO7o6ud2J/MQl8Esp9Mn+UfBeWH4X4txeSya9s3JS95tpwk1FWa092zVrqzR9Fm9aliMPSxLjJezly3bTUk4p3Vm9Lu2tndPS1m/n+3nkjsfLSRGSZgFCqThR1Nf1YnNz1PPqV+en7hbuNQVVlt43YIig8nrjrUYptwtdpabeT/XqbQqtU7M878Rf2h4d8TSXvhuHck0fmSWqnqM8kYr5avWxOExzlRV0+h8NjHiMszNywy5k1do98/wCCePxRuvCX7UGjacsmnwr4hKQmx1pCbS5uI2EkdvcLkZSQjZznG4Gvznxk4djxRwlOq4yVSkm4uNlKN9G16LU9vKc3p1Ma8PWbhGqnto1JLQT/AIKceFvDukfHw/tAeBPDSaX4Y8fPJdLpAtGgGj6hG225s/LYAoFbDKehVgRXzfgRnMqOSyyPH1OethbatqXPHeMrq6b79mjjzFVcpxEalRtxmrXe9139Tw601a01QidrpBGqfc3df/rV/SCq08XU5ua0excMZHEzvF6I9u/Yl1H4c6xqXjrwl44j8PhNX8LGE3Wv2azG3gV98piLgiOQhVAYYIz161+WeJc6qhhqtHmlyzV4x63018jD2OGxrlKouZq2h4XceB9KjvrtvDOqz20MdyyRBH3KQGwDz7c/jXr4TJViKMakJOLaV15mKyajBc+Hm4eRn3vhvWreSYw6x5zqMyFlGDg12zyjFYWm5Rq3fmbwweNhBv2t35or/wBkeIp7rbIiBVjJIUHkVzU8HjpVbyehjPL8ZXq3k1axvfBXwJ8Q/FPxEsdD8J+JbnSbnVZDbS3FrctCRAQTJuIIJXaCSPavCzvCwp5dUxOOs4R1s11MsBDG4bEcym430duqMGz0u2vEluIZfm3t87LncM9TXqYTAU/YKy1Kq4SOIqOo2QtpYjl37fLKcknuPWur2DptaWOerT9lG0Va3U9V/ZpdtS0v4k+GCzSG9+HlzKI1hDmRoJopM88jChjwa/P/ABBVKFbLcQ941kr/AOJNHj14Va1anr9pXPM5bOJ3C+Zgqu4sOc/WvtqNeMd+h9FVh7O9uhgZl1vW2lEeY4sqhDVjTxDrVHLojwcGpY7GSqP4VsdRYTf2eqTQz+WyEMrqPmDCutpVYtT2eh7iTU7I0PjFbbfE1l41jgkW28Q2CTs8mP3koG1yMdiRXzWSzWFVTDS+xKy9N0Ga0uRxqpaS0fqc9a3sJB0+7cbX4XnpX0VKvfRnJhKj5uRl/SLo6bI1jdpvhl+V1xw61q7SVj2l+6jy9y/4S1O48JeJIofmNlNKDDL0289PauOdCOvMzi5aqqOL2Pr/AOCfiPQtMuoZ7fWomu54xJtST+fbNfL433W3Yirh5pXsfRmieM21W0S2tnX7ik4boe9eNduWhwuUb2JPEniDU/DyC6t5W8wDJB71UpWM5r3boj0b4s6x4isnjtkdZB1YcBqhOzvcVPmvdnafDz4iafFaeZq0ojkiceZE5681o3fYtyU24taHl/gLWkuPFfjO9C5hutafzArc7C4/+tX5Pm1P/hRrWf8AVz9HyScfYRjFaHn2oulx438QQy7lC3gEIA4JyuM183jKcIRs2fTYaK57Fe6YNdMrLyJPWuOk/cZ6UdJmf4lKeaoLen4cVtQledjLEOzMZn+QnsMdK6UtyYO5lX85887m4Pc10RilHQ48RJJlCZwQBg5AyMnit6dkjnVRvQ2rG7lfT7ez25CwEgbgeSea4K9uds7aMGtGdJot+/2S600ybhNYgge615NamnOM10Z7eFrW5ot7o6/9n+Tw/eN4puNfto5zvt44vNUEgLEuSPzH51+s8EYfly+T6X/U/HeM8Uq2buL7flb/ADM7x74K8EC9GseFlZbtMl1UY/lX21SK0sj46bg1schHruh6jaz2UzrHeEYIbr+dSnfQil7zaOZm13WPBepm4s9QlWPjDB8qBW9NRSJxLnT2Op8O/ESHxmT/AGyI94jK+YD96tKkbx0LpVI1InM3WqQzeIW0q5cmMDKBuSPauFxd7CU3e1hljdNpfiS1lsiVUSlWbpmtOVxjoZ1lzas7Hxl4vd9JKeZjbGQVz1reLfKFNKWhzfgjxZceFtEYI2WuHY7h2zWNJOc9TplOMYqxn3093q94dRvCWw3Hpz6101FpYxbdRamRrUM+j6gNVsJhL8nzRhutKDS0Iq1Ixja5yF7qWp69MWMZRUkIVW9M0TlzOyORLnYqy6tZTFtjJkcYOaKSszolJRhoZ+r3eqXtwkc0hUZ+YUVPeehxqLkynrOpOqhRIRt4GaaV42aG5ODscveXjyo7FuSeBXFiHyvQ6sNSUql2Z7u0ny1l0uerOpZWI5cICDyfWpndwOdVPeIfMV0O8iuWSaLqpW1P6ltUkh+1/wBo21gZ+QMOeHb255xX1Va3O7nnVm/aNeZ2dpNcW3hP7La3KrcXYwWA6euDXHUvy2RlGCc7mn58kGlQ6LaRFYYUAK95D3J9K5pxsrHVSi43kTT6je2Glt5SeXAoxsRcBiffr+NZtS6G0eWpPUd4P0zWDDJPdxRPc3B/dW0Y+RB2J9WqKdNxvfc1xMqfJyW0LuhapfG91O4eOW5isrY/bNkJJjYA45xwR6fhTgr1JO2xzzUY8qT32Oj+HJuvC3hD+37iErf6s5m/eLhkQjC5HrtA61pTUaNPmluy6vPUfK9kcl428f8A2KznvY3IuipCksSxb+6uO/auWpUXxdTWgpSkkny2Ol8WaxqlxoVmdThuYnFgmQ6sFT5Bnr1PX3rfEcsIqTvovMmlGkm7O7bOQ/Zp1+31v4seKNFOnz2ul2+ixSyzSFlFxOXYFfQgAZx71yYatVqYmUfs2KzOm44SnJfFcy/2gZtD8a3DeA9G0qa7muWWOEF8wIQGBCAgDJySx56CnV5a37uJyUlKn78meFfDfxTrXwOvtZ+AvxLt7yG00+Mah4fuLaFpTHbY/eQMuSzBC28egbAwABTqSdGPs7bL+uvz+Z21KsZpSh8zq/gb8QPBl7Fq9/4c1q3v1nkMQntJ/McbjjDAcqfY9KnL5xasmGJpy5E5I574ti3/AOEge3vCkdvERG0jDLb2BBp1oSU3czpRUl72x80eDvh94H+N37RfxB+F3iyyUyL4RtLrRbhothSaKV/MMbjndgoeK5IpSlZnYqUacVLoYOqS/GL9nfWL5/G2n3fiTRWjBh1W1OZoo1Pyh4xw+P7y89Mg1U6M/ivuKpJJ+6Zeg6p4a+MPg6Lxno+rQ3aS3xN3FECWhlY4Mci4yg/3hXHySfu9iOeDaT3OQ1fQdEtWvhd2NvbpHGygoAUx75/zzVRikd8LtJIo+LvAvhOTw3ba9G1uLW7hWVH2jELHhlPtlSR6Vs5NKxEqqU2jCvPDNmLAWSaeJTISdwTO5VH3gw69a55RXY1puLRzN94RgfUFjtQmYYQ6pIRyf7pP9KiN+hopRWxHNJ4ZOYWvIrOTG6Xz5Bt3A98HIPv0ok31KvpdnI+KPEmktdeRot9BecFnRMuF+rKRRTgpsy9qpNy7Hit3Z3vjfxCfF+pXW6WIsmnJz5cMYPYHue5rqm+VcsdEcqh9alzS2Wx2Xh7QNQ8Q2k8mm2zC8tIS9xFEg+ZB1bnrRFux3+7GGhzfj/TLnxP4Xk+xyZuLVhPbllxgrzinBw9prsYukqsbrdE/hG8s/EGgQX6rjzIwWK9j0OatKXMONWLjoFsP7K1FtMuciOXmJhnbV7TuEJPmsQayzJMEdwCOBJ2Ye9ephHdanTdxZxnxmuns9DtNUWWRSkmG8scEV99kWIioOJvOpy0Ls4vwvd3d3cnUb+4l8leYwwHzH8a+lpzlPVHHTqpz02NWXX9Z1S+WC3vmDtxGsZGF+vrWnvM66jlJGzpstn4bw+q6gZrgnLK5zk1v7WNOI6UvZv3mJpniG18Sa4zxAzKj/K4UhRVxra6HYqiluM+NetlLCG0tFdZCgVSGxkmlVU5JSi7MMZiJrD8sOpX8P6kmjeG00TTwoO0G4b/a9K6aSVOCOrDSVLCqKNay1Wz0HRJLKSJZ5LhfNmt5xlXA5ANfN5xhKGcc1Cor21XqjmxLcXFpX1PM/G3iy3tFaa1tEVZyWitbccF2P3QPQVxYX2eBwSo0zgzrHwwzXKrt7JHVfC3T9Q8G+FJtb1ePyL7Us7hnDKnUDrX1WWYWdGgpz+JndlUJ0MNzVfikMh8QXd3qcl8uDtHyvIB/KvUpzSdrnoxq87u+hG1/ceKfENl4QgbiWTfdhRnKDk5zWcsS6uMp0YvZpv5GWOqfWasMPH1foe5eOrTX/jN+xtqtnFcxte/Da7ENgrXTmZbN2M0cQiHyBQfO+Y92A96/AuOJ0OEvGWjjYR5YY2PNskuaNot33u9NDslh1jcoxGGpr3ormXyPnTwd4vD2qXxYFmTBJOQvBzx61+/4bH0a1PmXU8bLqlKvhYt7jj4hdzLGnO4EAhuM96zxNaDgzb6zBOUfuM3wxfPrnjC5uZI1EdrCI/nH3vUV5OVuOIxkqnZHz2XSnjM0qVZbR0Oov/C1xqN4dd0u6a3vYLlJbGeJtrJKmCrD3BGa9OtgqOO541FeMk4td09Drx2UU8U+dO0r3R9ZftX+M/id+15+yVoHxg8QvPr1rLpzXGsybF8rSdXsiIbiNUABzNCVkyCe3FfxHwvhMD4aeKlfLZWpzhUtbVupSqaxbf8Adem3zPqqeGweZ5S41aXvpXv6aP8AU+IdQ+H1o0S3PhjWEXzl3CItnPt7V/ZdaNOqubCTs3rY+TxWUU6bvhJWutjO0LVdU8FazLZ63Y7PPjaMytnDg8H8PavPhCWH93GQvrvueXgq9bLMS1i479TcsNTgQzWoYKJSSu1vujIOfyrtwmIhGbjE96hOEru+hG+pnZuAyJojuIPU56munGYnnjbuTWxMUrIbPqhW8aIEDMQGB2xXBRxCdZxNKNaN2jd+FEz3XibW/EQufs9v4e8K6jfNMHKN5phMEC++Zpoxjvk5r5fjPEU8Rh6WDS/iVIKy7KSk/lZO55lSp7TFPleiTf6HJaOJLG1JVgrIny8deO9fRUKVSjF+TOqnTXs7McHe7C2su0bFPzAevTNdc4e0SuRNKpaMtkdp+y9q1n4a+NekrqNyFstZhudGviXxiO7haHk9uWU/hX5nx9ljxPD9SpBXlTlGovWDT/Q8epTpwvO2x554wtdQ0HWLrwnLE0V/BcyQXUb5zEUYqwOe/FdtPERxWGpypO/Ok9PMyx2MWIao0fil+BDpun/2VGsZCvG3fHf3r2MLhpUIWexpQoSy6j7Pe5cKJMGST7+PvEda75wcqdos7Fd09Xqb+o26eJ/gks9rcmW40TUit1AwyYIpB8kqY6KWyrA99p718hXisPnC51b2kd+7Q6dR43CSoyW3U4fSWtb7Md0AJY+DXv4a1SPLLdHnUpw5uTaSNezeSXFjdKHAwY5AeQP8K64UlCTZ61OpKUOWW5pWlzBLAba5wyqcdehz1rnrKdzeEIvWW56T8DvA3xBbxNDq9v4oZNJWVXZVk+9joD614OOkuVxkcmIxtZKUFsfS+m/E6bw5qCOZgFOB1wPrXzU5KnojxXBuVz0yHxXH420nziwb9394Go1bNtbWNvwVfaDpFjgGJpEPO89KfsubUp6Iz9ZvLTUNcFxazBQzgsEbg1tbliYtPoYfwuvvsni7xJZJ8iteBmcnIzkV+Y53SccbUkup+j8PcqwqXmctpd2L/VvEeoSSBpBqQ+bGP4gK+LzO8ZJdz6zCLnqshvsm6YAjPmHJrjpyTpne3y1LGZ4tUiWPOcY5rbCyTZz4u/MmjJnA8lgDnsD26V1qVpNCpv3TE1NC5Z93GOgPSuqnNtHLXs3ZlE20jyYDh4mP3n7+1ae0VrI53FQdzorXypJoPKjCZgC4AwMeteXOMnFtnZGq5SSRuaIgGp2saf8ALSCRCD3wprhxE+WhJvo1+Z7OEpXxMU1umO+HviN9Eh8SWzMfmvV3ZHTEaiv2PgufPlumzPyHi9Qhms4+f6FO18UG11A6gl23luSDkc/iK+zmopo+IlNJ2Rx3iPwlda1rs2rWl4wVUySj4yPpQoQehUWoK5jXOuxW2kzWd9mY9Fc84PpUqCgyKtSVRWMHwfq+p20rwQE7C5MYY9s9KJ1YRVkyKUKkNzu/Dvw91vWzJr1zdBJdvyrnFcsJylqd0aa36mPcXGq6bPLDqMLBoZ8q2eDW85KJy1r35WGo+Kf7UR0ySDhRzUyrWixU6UxIb8PdRgkiONQMY4ooTvqjaaSVnudBFrWlTQLbnbhgR8vUV1pcxjBvkOJ1aK807Xp7hblmiZPkUnIFKUVHU5XTk5FPRIZmuJLy7YBQThWrHVy0OiKjBW6jNU1G5DyPbwPIEH30jJC/U1006fLo2tTNwc9kZZv4rmJ7mR1JHT5qxlGSm0jn5rOyOR1vV43u3iTHA4x2reK0uxxpykzKkm+TdIea83Ecsquh62FhyQIUkAyc8/Wpkiakm5aFe8uT91epPWnZcuoWSd2VjJiM7mHSso0+aWpjiK3MtD+n7T7fxLfzRvea9FFbFw625QFtgHr/AIV7lWEpVXcxxFlNnpHh3UIdQkhUyEwKgBQphm/DsKym1AzirmiL0vcGOztXchsjjhvc+1cr11O+K9wTWtdaxtjd3XzT5yofov8Au+9ZynybhSjFyNLwfcnV7M2+ps9sCu5JfNCqp/2iRyT27Z/Okr9dBV7RknFXsd34Xa70Pw2oudVuC8yl5yXAaQdgxAHQYFaOc4Qeu5MoQbTscN8QfirPpdpcy3TswcYiPfA4GPrXnVa0o3v1NlCUtEVvhh4A8fa/qdr448a6ZbaHpYUi1TUJP9IlLdH2fwj0JNa4WjOo1UqKyCrUgqbUNWez+N9S8OaJ4anttVeOQyxACNXG7tjH+NepX9nGm1I83DwnOspLoeOXl1C6alrfhu0lt7O3hIu7lSEMiKMlQSeTgZ4ziuHncbzgtD03Vg5ezvqVP2bNXsviFaXXx9uLQSaTYNLaeF3DSHz3BKyS4bCkAgqCBzzye0QVOdKNWNnu7q91razvppa+nR6u+iyxMIRl7LqcH+1Pdx2nizw58U7fQVRBqiW0rzSonnwzkwsNoAL8uSTz07YrnxdScEp8u4sOuROKd3ueG/FL4IX/AOyhrK/ED4RwxW95Z2yy+JLYDEeoyyfOyPjqy5wrdqwp0vq81JbHdUrOvQvIr/Dn4qWv7VXh/wASeN/Aek3a6V4YjM3iu7vLZ4Y9OlRd3lGSQBXcgnAXJ6V304SxN5x2RxLE0qKUG9X0MGytIPCDN8S7OM/2jMzXiKY/mMHA8okY+8v8645JP3up1zjUmrNG1r/ijRvEnhq3vrXT8afdxK9t56AqYpEyV9ip4/D6VlJy3b0LhR0s0fJ2t/ArUfDPjrxB8RPg74oudHv1uVMNxZKTFcZPAli5V1PfIyBnnvXPKN5e6GJpU4axZkeGvGD/ABYWYfEy0FtqtvcGC8gszshZuSZNuf4sLx2JpRjeV2a4WTitTnviBeeOvh49lp3gbXLafQdUnKXen3UXmxq4JUsueVPYgGrvrYdWlUqSvE5248X/ABS0LTDZHwXbXlom9hHY3LxOhPUISWGOPb09KmUtVFHRR5YR94dY+J7fxfpks8GqnTLyBFLaRqdokmATzk4+bP1q5QfLZmtoSXMc94m1jTdduCraQlrdsm2S4tpN0M6kc5BHH0rncZ3dzP2jktDjvGrjwdop0jRXiW6vi0bCEYMcZ6vgcc1K1djCporGH4Hso4pj4f1VdpKZtpiMK4x0+tdUueT5pf1Y66PLGnZFrxfcXnhfS7mezvJLS8VhDHJDJgyo3BXPetaceY5py1s0VdOgeOzRiNodNrMwz+frUclttDqptJWOa8IGbwj4n1DwtJIBCZTPbA9CjdRz710VKiZ5ybhXkjpfEWnC6sQyEgH5oXzyD1xWNObvoejTt1MO4vXvrARzRYkiGOe5r08JdGrqJHE/Fe6u/wDhEVMX3I5csrDivs8hcXUaZnWU50jzS+1CS8SOK4utid/KOMivsKVaF9zjVRRkuZk+h6/Y2FwzW8pyi485n6ewrWeIhGNjvjWhFXTGpq76pe7bi6Hl7/mYsckVy87bMKdRzneR1NprkdmY7XSAIoyw3Hby34120pKMbs6ZVHKXulnx5PDftCbkGRmQAZXke9KdWpJcqOucoumomF4ZPiLUPEcdrdeJYY7GHLypJGFG0DOCfXsK5ZwrQjzqV/IMBg8VPE3lU93sWrXWtU8S+K7lRAUtxbOWl2nakY4LE9hXJm+PWXZe5qVpy0XncwzDG/VKzi1p0OS0SSC98aS6qIF8uyJSyVjkZ/vc1jkdKrVqKpWXQnBU6eLzKWIkvhWh1Wsa3qC2+17rfI4J5OT+FfV4nERpqyZ6lTESUnZFGxu3NhIqOVZc+Y5fqaxw9f7Tehz0KkXd9t9Sz8IL9m8Q6t4luYTMscfkxHdx708qcp4qpiWrrb+vQ5cjxc8bj69ZvRaI+jv2HtXuPF3jPxd8FbPxENMl8U+H/tNs7Isn2iSxbz2twCD80sXmxj/e6jqPxL6Q2GjHL8Dnfs/aLDzcHrblVRcqk7W+GVn8uux9HlePjgceqs482yt87P8AM+UPHPhK90H4na94R8KXcsFna37tawXsOxxGxJAYZO0jOPwr7bguvmGccP0Z865lFXs7p/M+SxeCzDD5xiMNQkoxvzJeT1MxdR1nRMNqensvlufnVSyk9/wr6arXxGHhy1ov5HNKtiMK060duq1Lvw7lmufMuPlVryYs+RjAq8iUlFy7muTVl7OUusmz0MaysS21yCEUDK5P3iAQa+ndWnF32PecUkrs+mv+CeM/h74rfDP4n/DPxD4oEMejeRrmmaI8h2XomU21zGqdGYhkbGR931r+P/pGxnl/FeW5rg6N3Wi6c52Xu8jUotv70enkeOpLEyovWL06WV/+CfHCaVqngnxrrfhnVHdX0a/lt1jlXBUKxxx9MV+68DYqeY5ZTxnNdOK/I+boYetRx1aFR/A2vl0F1C5s9aPl3UImj2kMuO/HP5191z0qsbVNjepOhXXLVV0c34i0XU/Dduuo6TL50cj+WlsTk5PpXzuOoQwTVWk9H0PGx8a2XwVTD+8npYksn8UWcS/2ppgthL8olY7lUf3T6Vy1q2JteUbHNRq4yMv38OW/UvWpSJ5fNCSNtwcnrnvXTgqkeWTb1PVoTp8zTd2b97fp4X+CUsMUKfbvGmtJHE6DDDT7L5n+qyXDp+Nua+bqyWY8Sxa1jQV/+3pf5L8zw8e5Uq0ZR+0/wX/B/I5+0vFkjmWRArBQGyPu+1fc05KpTbR71Oq61K4+a7gghkeVVUxQ/ezjms3VjFNs5/rEYN83Qo2FxN5SzQErIPnVlfBzngg+tebjIqthnGS0kmn6PQ5qqjOmvM9E+M/h9fiZ4Wsv2ofD8JkuLmVNM8ewxxfLZ6iq4iuSeyXCLu/66I47ivzbhvmyvHzyqra0bum2947tfL/InD4JRqfWYr1/zPOHmht4ZJJJwy4wPrX31SpSpQbbN8ZOlCDlJ3I9OvLbU3/0Ny7McFQcke9a0a1OrC6Zz4SVPGK6eh0vwajN/fa/4au7aVhNYuspGSNu0kFvoQD+FfG57ioc0JPRwlo/XoduS4im8RVodUcTqWmTWUh1O0UloWKzqVxnBr3VVfIqi3OHMMDUg3WorVbos2WopqCC4to/mUc4ODXXSr+0tYrBVoVFzM1g7lBc7cK42yKvr61vUlGJ6CU5u/Q9U+COtX1vZM7XTbUxiP15r5rMuWs/Myrqmlc77xVc6jcWQvbbftUfLXzVWlY86TW523wU+KsVxpx0eW42SKu1lY8k1jCUr6nJOvZ2Zs65ruuWdwbqyvGUtzgdMVu5uJpFya1E0Xx/eteIZbsiQMMN60m2zPneqOt+BN1FqvjHxBqGqSLHFFG0k0lwcJkDK49ycV8RnsIKs7adz73h+NqJl+CglzZ+Irhf+WupZT3G8V+ZZ3XUa6R+g5dGPzZJcx7rp8KOH5PrXn0qi9m0dM4fvLmX4xjw0YAOSveunBNznyxOfGLlsYzRF7dgeBkYrockrmdP4DI1KAlcFM8HOPSumlNM5Ky94p29qJLhZhGSFHT+EV089oszqJN2NuOJhewrGMZC8Yrgcl7OTZ004XqROs0WwSPVdPlCKVSGXcx6/dOce3rXgYipKdGovNHuwTp4mn6MxIYraz1/xBo11cgPcMksYI7tGpBr9w8PuSeTqfm19x+J8awks7nF+TONutE1a1kuI7u7XC5KKT1r7pqKuz47lUZalWwe/ttSMX2iQKUw6nnrXP7ZqVkbTfNHQd4k8EskFtO/yLcnKHoDTxF6cLswpzcZWOot/wBn5INHt720vIwzpuyHBPNc9HCzqpM3q30aM/UbPxT4SlFrciTAGF2rnP5V0SoPDP3rfeVSlVe6uVtRt9V1qyMcWi3MsjdStsxrCrVhTV2zSVGb95xZj2Pws+Il1NusvBeouucj/RyMfnXn1Mbh+s0aRp15K0abOgtPgd8VJVDf8InLEDyxmODWlPMcHSi/fHSy/GV5tKNvUvv+zV8SdQjUxta2jt0ZnJxVrPcBHudayPFtboLb9kTxbK4k8ReO0ZRw8Vrb8j8T0rgxWfRf8OJU+Hq07NzOksf2f9M8P22zTbSKdwMGa8DOSfp0rzpZzjWrJ2XkdmHyjD0mur8y/p2jeP8Aw9aXGm6bqdtHBOv762XTIypX3yvNZuqq7UpN39T1oQdCHLFK3oedeNP2crXxeJL37Y+nXEpJM9talU+pWvRw+aVcKrbnz+KynD4hupHRnnsn7IWoWlwZLv4ixOnqlkd2PxNbTzqrU2icMMpqp2lPQiuf2bPDMCZuvGN/KO/l2yqD+dTTxleTu0b/AFGEV8TIh8FPhzYYSdtTnIGTumC/yFOri8TLayM1gqKd22T23wx+GJLCDw0zsgGfPuWJrmdbFzVuYt4XDdiyvgTwLalRD4SsDn++hb+Zpr6zfWTJeFw6V1E/fRfEFnZ6+ohtTOXYKIhJk78dT9PSvuK2k2eRWUpVHzaanfeC9Q/tq9kuUUBI48TOy4UKOw9e1ctS7ehXNCKsbLarcQq5W5LFz/AvRff0Fcs5WR0qMWkZGs6tHdazaaYlhJcgNvMcacADnn0FcdWfvIunRsnqejeENJW/0+HVNcV0kEm9bO1ePYFycFhnIAx6Z5rSPNJczJdSPNyr9Sbxx42trS1lRigQKQwRuMdAPelN2u2xcnMmmcP8EdPf4z/EqfWruHfoPhsgySkgpc3RPyw/8B6ke49ajDUfa1Od2cTabVGmu7Pc/iPpf9paQb1w+bRleYoPvqOq49B/SvQqxTin2OClXam0lozh9b1fSPEGswWus3MVnEy7lhkkG6TA4XPQGuOdp1fedjTnqwhdLUreI9C1/wCIqnwh4QgEFgFCaheIgEMEJ+8FPQsRngeuTW8Y+0fKtjl9o3Nye5iSfEX4b+G/A1r8H/h7LHaWXhaP+zGst2DCYwQXIHc43Z75zWPNBw9lTVrG9OM51OefU+Wf2u/i34H8I+ALi88UaTqV5cKQmlPbZlEcySIY2CBd3D7cndwDnB6VxVOSMeWR2KlVnLkps+gdR8Hw/EnQjr/ieFpNJgH2qZOhv7hlyI/91c8/TFdlSHNDma0X4nPK9KPsz4i/ac+GXjbwl4lmvPhZ42vdL0nVNXjmvPCRunOm3twMBGlhVgCw4wfYelcFWq6KcabdmbUKdKM1OSu0QeJfjhqHhLSp/Cvxm8M3Xh3U5I2MN/Cxns5FKj5Qx5jz6EY9KxlUUY8rNq1Z1GrHzh+z38X5vC3xm1fwj4r+K06+E/E95v0lZpc22n33YMSf3aSjjPTI96e8EkV7ScIXb0Ppi+sbDw0lxaWKjelsrXWyXcuwhwHGM8Etwfb8qhBRk4p6lqoqkVY8f134USXfjy8v9JeVI7mYfvUH8YXd27jHb0qKukdAi2noY2o+CNY8Q6Suma0gV9MzKSiH94wY5bHY1hGEmdsZNbFKOex0qKNLC7ie3ETtLGFy6S5HzEehG7NWqbg7i1buzjPGWmm21WPWIFEcb4Pn2wyFBPQjuP5Zp1JvsTKbbscv451PQfB2hSeJdeCiApmBIWDGeXOAgX3/AK0op1GrBUapLU8Q8D+IPFXi7xpfz+OEEU15IZNOjUZWKEcCP8O/1reoqUZLkRy4d1K83zo73VbGK2skWZD5IOQ+3DIc9j2qU77HoaQjY4v4zalrtlpem3U0kd1ZWt6JJpFGXUH1Iq6M7TscOKVXmi+iOp0oQ6noqXtqCyyKGwp6HHWocldo9GHIoXRgeOdMSaxh160wL3T3/eow5eI9aE0cGIjeXMiaw1dzZBLvmN13QyHp9DU/CzalJsw9QliS7dhF8so5APQ16WHk0jrVra7nNeOVk1HwZf2ixebtTdgDkV9BlVVxrWZtJp0nE+eZ5Lp7nZ9qfYTgoDyPavqIScal0z5CrQnCtzc912NW2vrK2KWyR7pe46ivQhJX1PYeLo04KEVdksmokXAaRFGOgPc1v7WEVa46NZSlY6jTdbts25LbihA+RflH4/0q6c3LZnqU5U4zSZf8a6s4lR2k2nblBniuxJwhc2xVRxgpWMJNTijAB3hGHzSA4DGkpR5bMrD4hcq1Lei+NJYlv9KScpb3No3mQgZafaMhM54GRn8K+U4rwzxdGk4Ru4yR5WbqWJiuRXaZyXhrUGh1V45oCiO2QlerltdYetyW0M8rnVpYuUZaJmpr2tzRlrqRN2PlWPPU13Y7FRVO63OzMsQqUHrqa8OgXt74bj04asbTzEDzsseTk8/hW+EwVbEUopysmdtLLKmIy9U/act92aGn3Wn+CPDy6TYQb4clpJpCCzsepPoK9eVWjlmFVOCuurN6FPC5JhFRpa9W+5f+GHxAn8JfEfRfHmi6y9lJYanHKbyEZaOMttc47/KTx3r5XizBYbP+E8Zg/Zqp7SDaXeSV1+RpQxdOliIVFqrnf/t2eBvCnw9/aO1DVfBHiR9b8Pa1bpNpWuXUUkb3wGMyYkA+UluMAcY4HSvyvwEzjF4nIZYfGwVOrDeCa922y0b17/mVnmKqzxdPEyp8nPFKz3ujyWG9tWAt5GWSMsS25ck1+/KrSkuVu69DzqNaEpcsnci8E6VDctqElq3lKjkRMOnPavLwtlKbg7K+hngsEnUqThtcXxNqOoaft03ULYxiJf3Mg5D985r0K/Nb3isZVqR9x6eZ6r+wV8WPAHgP9pDSE+JVtbnQfEUEmkX088e4WUsmDbXZ9RFOsb49FNflni5k1XPODak8Jd1aL5ko7yVvej/28ro5MDDD1cRFV4KfvRaT/mi1KL9U1ddmb/8AwUI+EXin4RfG281fxbPa38niSPzX1rT1c2l1MnymSN2VQQ4w2AOOa+M8DOK8Fi8mqYKC5OTaMviiuzV3sfUZnyU6v1mSt7Rarsz5zs9Qk3SlxkSOVUgV+yU8Y6kpXd1c+ReJTqO3oWNKubnXdcjxCTDYLx8uQZDU4eTx2N/uwNcHUeOxt38NP8zbvFi80W7QlTKCLlGwRkdVOfXmvflQp2s9nuepiYRlfmV0znZdG1u41610HwxZmc6tcpbWMW7JWV2CqD7ZNfMZmv7LpyxEXanb7j5t0a+Dq+5rGWi8jT+Jeq/2h4tXSfDQW50nQbFNK0ZmYjzI4ifMmGenmytJL/20x2rx8oo4qhhPayV51HzP9F8lZBi6Vd1FyLmSVkc1/b6WE6wXVq0RUFWEi8N75717scfKklGasbUcbTw9PkqJpjNW1NdUCtczgnA2gYwwHc0qtdVrO55WLq/WPebL9pcBraJ4lwChAP8AerqdWnKkk+zPdoKMqEbne+FfFbeA7u88M3qu+ka1Ypba5YGQhZ0yGBOD95GwynsRXwMcLHM5uu1edJvkl+aNqGIVCo4NaM43xz4R/wCET1AxR3H2uwm+azuR91kPIz6EDrXt4fFOtG1VepGIjSW6umZNlYWmn3AvdNYDoSAa6o0EpqVPRHFy08PK9FWPpT9m39lvxrbpJ8YNP+Juk6VrWveHLxtH8IS2bTS31m8DoXmkBC2wkAbZnLHAOACDX5RxdxBgKePdGdFygpxvK+id1062PErYidLMZV6asvzZ518avg4nw18PeGfit4f1r+2PCPjKCQW+oNHslsNSh2i8066TnZNEzBh2kjkRx1IH2GWZtGrJ0Z6Sj+MejR6GCz6nVryjVVjzOTTI7e4N5pOGjkGXQHpX0dCk1LnjsaVKCp1va0HdPoW7KUKpQEEuTlMda7pNTidqnOtGy0Oz+EfiuGya4sLooWHILnBA715GOUHruwVB3u2e/aDqGk6v4QwpVl2ny27mvj8VNyqNR2MpVYJ2seY6vqN94T106lpZ2kPyvqM1y3lHQ8nFuLnoek+FPi1aeLtOWymbEy8EDvXXKFne+xVCU5R94q6nrbaffhkkPytnB7VPPfQh3uzb+Gfii4udVubl2kJmO1Iyx2ZyOT618hnSi6slY+yyWrOlRSTPSvh1mXR9SkeJd7Xjcj6j/CvxziCnKGMs2fo+UVPavma1X6jpbf8AflmHO45FcVOcIxPZcZSdyl4n0+W8hTAyQnBzXTQrqL1FiaPtIaGTLZPEhBjA4HB9a29opNmUKHLEzLuxeUgMnatoVbHPOjd3IYdMfzR8gGB1I4NbuuuXcxnTvI1bLTCLuGXryO3WvPrV7wkjqpU71I6HbQaVIbyznRMbIHVhgdwa8GNdck4vq0e+qPvxk1sjL139nT4k+PfE914p8NX+m21jJBAm+7udrllQA4UfhX7HwFmlKhkPLL+Zn47x3l+LxWdt0UrcsSdf2MvE11cCbXviZYquOFt4mbHsa+wqZ3T5nyJ2PkVkGKn8ckjbg/ZQ8H6deC71DxLc3UgUDEUIXPvyawedS5rqJ3UeH4KPvTubF38GvhfPbwwappf2tLYfujPcEAH3ApYnPMRUp2bSR2UsowcFrG7NWPRvDunQLaWGkWqKqYRRGG4/GuFY7EP7bOhYDDxd1BCkxyZVbdQy8ASWsY5+uOazliKst5M6lRhBaJCfZLvcFjmCtn5kCqv8hR7bm+LUGrFiDSdfvMrba3MdoywVsYH1rmajzXsS+a2hUvdD1+aPjVrl1LYJEpUjH1BFXzwXQdGMlrcyb3wj46+2FrLxEwhIASO5Yuw9fmUKD9MUoShe8kaVVNxdmVT4M8eyMS2uxDJw6qrZ/nxW8pUHE50q3LYjk8L+K7SUTX2tRPAPvRyK/wAvv8vU/SolUp2skVRpSjdtlJfDVxq08otfEksyx5AKRSoPzIFEKsY6NGs6btuUdT+ES6mFP/CRXKGXIYPMy/iBW0q8bbHLUoc8bHPXXwCvgzvpnjJJCFGUknbp6GlTxMb+8jz54KcXozE1r4H+LLOMRzRSyLksGhmbkD65Fd8MXTaF9SqtbGHqHwo8Zx27XFv4a1CYrJtYTMh47Ywcn8qJYin3MamGqR6GLf8Ag7xlYqHuvDV0m4H5hbNjGe5xg1UK9FrVnOqUm9TOhhurclJraRCv3hKmP503OMvdTLnNQjsft3f3emtqRvSpWGJ8yuhIyfQnr2r7urG83c+crczqNHpPwn126v8ARJ70wBSeEDJwqdse9ctSairEOk0zotEvIL+4neOImJDiRgDgEcc+tcLbk7nXyuMU7iXWtixIgs4zuIPmS4wxH+0TwBUWSd7Fxu48rdzrPBup6dqmhNqcFtJd3CxujtasTGPmOGwBzxxnIHFaRUeW/UTTpzXNotDivEHh3xd8WNZ/4RTwk32K2XAvNS2/u7aMnk8kZbGcAd68+oninKF2u2nW/XVW0vrrrpbquiFOnSSatZdD6M+HPgvwB8LfAdj4M8CQRyWdkmfPLbnmlPLSsf75OSSea9fDUaWHoqEDyq9WpVqOUlYh1/XriRhbW8as75CITx7k+tVPXRGMIpO55V8cPDHgm30+PSbbWlsNc1SdIYVik3NKWYblCc7flycjAFcWJpU5RSTs2ddGpXqysk2kO8SeOYvhd4Ug8A/DqUadaWkOJHyDgj78smRySc8VK5sPFQTshTpWquUkfF/7S0PxQOrT/FT4Q3csN20jJ592mU1ORztAkXuMnj07VjbVyp9/vO+jycjvsuh0njjwlrHwQ+Gsmi/EDU5tY17UNM+267ff2jLDEJdu8wpCGKCMAlSuPnwNxOKqcPZxafU0oRc6ilHT1sfQGq/FbTvE/wAO9O1DwxNALVdMhe1iU/KWlQMDx171vVqxdJI5a1P96zwH42adaNcaTYqhnubO+t3uZJG+WRzKrN+QxXBOn7WSSYJ6WtqdZ+1f8MPDXi2Z4bpbZgbcMRJEMDEYbbn3Na4ihGMTOCbjex8Z/wDDNPw/0f47aPZaxpCJp3iBpNJuIpF+Tz/LMkLHt/CV59a4rSjPlNv3koNX0KnxM/Y/i0XUJ9M8GeMdb0m3ug0Qis9SlSNdpztChsL0HT1rqpQ5Lt9TelBRWx5RdeDf2kPg1qXleFvivcXttbXAkSLUIRcKhHAfLfNyOpz3rGvh6N/dZp7JX0N34HeHvij8QfF1/wCOfHfi4yXBzGqE7IEI5K4GcEnj0+lYxjZ2ZXtJU1ypnY+NfhLZNq7apo+oB5I4Fa4tsYKHPp/EPQ06suxoqjktTzH4k+L/AA94C05m1uQsCXBtcfvDL2Vcdc1i02rEVKsYHhLaZ4g8da2niXxShSOAFbGzB+W3Q9Mjux7mtKT0sSqc6s7vYu694LeOwTVrK0IuLF/NQoeoHUfjzVOSXuo7YxjSVy34o1GG+8Jx3tnmQyqpCsOme2alKTJu6iujFTTtPvbFrDUId8MsRSSJ/Q9TRGk27l/FBqRg+Bry58Ma3dfD26nDpbjzLI+ZzLAT/MdK6q1ODSlCNjgpc1KpySZ116lte2rROoYEYJKgOP8A61ZRsjqaU0cdDILSWfQrwEmMloSTw6n0NN8zd2a0Yrl0MnVLmFoHtCxz1jc8YPpXdh5WlY0lFJmLLeRtZXFpcFseW2dvXp+te1hFL2yZUPj1PnfXro2uuT/Yjty5yWHPWvrWvZSufP5jWjRqNQRRW423AaNzuPVu9awrO1jghKWrTG3dyxmV5JCw3etZKKlUu2c1GtKNe8mddpfiGGO0t5L/AJii/wBXGo6V7EJUqMbn08KtJuMpO1zU8RajFqkCahFDhQMYccCtKtWTp3T0PaxMVPDpxeiMfTNbfUZ/Jis3lVRhpZBhV/CsaVdvRRPKwuNfNZRbS0uXNZuILuNNOhS3McDFhLDFtZ8+ppVIznfmOuXtK2sXoZOj3kbatPNJGMQpxkd64sG3PESnfRHNQrv6xOb+ygM5u9ZtoJl3OZN5XsB711TpQq14J+p537zGY+EZPrc6u8124ljBC7MDAjzzj1Ne1HEzUEorl9f+AfbPEumuRHP6prN3qUo0bSn+0SyDD9wv1ryMTip1/wBxSvJnzOY5iq0/YUPek+2yLHgZTBBqPhe/TFzGvm20g9uorfI04e1wmI+Kzt8zy8trV41Z4Wq/eWqPpT9tS+n+PP7Onw4+L8HjSO6vodEg09NISw8tNPMGYpQJB8rlyEfBORzjiv5s8PqNThvjnG5NGlyqVST53K7lzax06W27H2uZYStm3D0KtNWmndNvps/xPlGfUdc8O3baZqaZYLyyZI/H0r+hKlfE5XiJUqz5vQ+KVXFZZVcMRr6Ha+BZY9O8PZSVC8x3OwOe/SvUy/38MpRe+p9FluJh9WVne5r609veRtBNCHhEQOxl65/lXs0aiqS5JbHdOrBx5ZK9zkb3whfwyfb/AAzdkMD8kRPQ56g9ulc+Iy+lL36D7q3TzPJr5biaf73Dy1Wtj7G8I/tCaJ+1N+zRJ+zh8SvCGl3EEMcT2fie5MtxrmnamAVUK5Y4t2IA2AYIftgV/MeYZPT4X4jqYvCrkm5XasknF9+56zjDPqXNKq4ytZxvon39T411t73wlpupaFqtgovra/MLhk5jkRip/Ov2TD5gllbqRXx2a8j5GvXnhMDUUo+/e33E3g1prOwADhZpGMjnH519BlFHlwt38T1Z2ZMp08NdvV6s1LuVLi1F55p3M5Cnuw559zk166SlC9z2VUc43E8N+KR4U1iLUzEvmiF4rZ3UZiaRNhkHuqsxB7HFfMcU01VyqOHvZOS07pHDiq3s3GPVkN9aRR61c2Tw+QokzEhGCo6rXRhlFvl7bGjklWafQr30NjJam2voANr4dHTgc5yD2/8Ar111XTlS9/8AIyrVack+dX+Ryt/oA1bVZU0JFh2r+7QN8rn0rwalJ1pyeH0t+J5E8HHEzbwytb8Ta+HFpceJNesvDrwMsiXAE8ZU/Io5Yn2wDTeJdLLqlWorOC19TDB46VWXsp6OJv8AjacS61cXVuQFZz+7A6DP6Vw8OwnSwSs9ZbndKUnC7Md/GlpFZDw5rZM1nI/RRlkY9xXdjMIqdqylZdfMqOLjTXJVe5mahoGoaNIJrV/tFlLysi+lFGulC6d0Yzpzg7xd0z7A+Bvj6y1jwBo3jbUvE6WN3Yz2Whs0tpJ9nbYhwrygbQdirx359K/IeM8phKnikrt3vZarr1/LuebjvYUm9Xd9EcH+0RL8JtT8B/EKTSo7u+uH1KxvrCbTNQ/0G3vFd4Zy8XRmZdw3DpiubhGhnKxGEcnanFSjK695pq8denfzPOp4etiHzy0a301fY+ePDk8jHEblRjBz0r9lhOMFyo+qy9UqdNXNKWAQyqyyAseoFRKpK77HZKdOnK6NK68F3d7p/wDa+k3XlzKPneOTkj6V506nPUOLFVqs7qOiPYvh5r0Nh4TtdP8AtILLGBISR1r5/Epe0dkedD2kyXUdGj10TXKNwgzzXOqMou7HKnd6oxNLEOg6gJoZgrKcsNwFCvJ2MpT6RLniDxfaufMkuoxxnG4c1u6fJG5DqxhE9F+Cf2XUdNh1AK8g8wkCOIkk5r4rM5J15N9T6TKavNTi77M9g+F0IPhy9lZMM94+ARyOe9fjPFdVrMLI/WuHo3wzky5Lbbp2DDBzycV4SqtI+iikQXFqXUk4JGAeOtaKq27lJJuxW/s2E/MY1bjuKPbyTNFGJC+hW5bPkLz7VbxMu5MqUZdB0egWvAa2AJFS8TN9TF4aF9jS0zQIRKv7gYBGB6GuariHy6s6KVGMXsdXpOk7sBuw649q8irXUXoejpyna+HdEnaxXy7aMoc5LMf5V+tcFu+Rp92z814hlzZlL5Fz/hFb+aTe1xbRxj5n80tvPsCD9K+uvC58/wAk76Esuh6a8uWhQxrgMQxPP064pN8uxUKd9y3oejeChqCt4i0q8ltf4hpU0ayk+3m5FcmJqYrlvRtc1jT10KY0SCK8uZZdKjW0EubNWlDSGPPBkxgA+uKujOq0nU3KqJLYgvtHtfOQXGmQ8rkCIcdO9dLqcxi276jR4c0+cP5ekknHJXOMf41l7RoyaTdyF/CSRjEULwq3PLYDelVztlOEbalabwzPHiZ4Z1VD8xaTgnPX8qG+4WtEgXw7fRlnkgdNzfJumJIAoukiEhk2iXcSmUXCjP35POPfsatTuPUoTaLMg/1+Bj5185ifXNPmCXvRsV5RHIotGuUJyGUyTSDGB04OKE7PQcX7tmZ1xZAIZLhArEEbWkc5H51uncyejKkqSrF5VtY23JH7x4txzz361EldmU1cz3tdelTa8WcsD5kAIB9Rknj8qcHZWLV2tChdreNvke0WTAICyg5A9OoJ65reKizGSkyhNLrDRrLBbzDYh8qIXDLgenJI7elKUV0MpprYy77xZd3l4umXlvCs6q7GGfT8kqDwS7qqn2wfwqbxg9DnlH3bPU/SzVvE+n63OtmbkQjcu8IxwFHXJBPWv1CrKKm2mfHSvGbbPVvhFr8sXw+uLuOJUjknYREAnKjgYz7VyTjeLbMlUcqnkdXouo3z2CxSeXAijeVJ2hj7+prLVRO614lfVrm1uv8AkItLJ5nDxdFc+lcztzalUZOKvY6TwfqWlzunhrD29nI4Vo7SQhQ3oAFYsxHAAHUjmhxjOVugqsptcyWpe8VeI7TwU7aDplyEgMw2W8Uu7JPXe2BlhnB7cVNWpCl7qFSTa5jU1rxxc6FFBqOn3TIIVUyS7vvnr5YA5Oe/1qpTtqmZSlztqS90h+M/x+8N/Dv4f/8ACW210z3moosenRwxl5AzDnaq5JKjdn0IFOtiIQp8y1bOahQnUrcnY8s+BXhPx/4w1Y/H34nW9xp1ogceF9Hum/fzs2QbuUfw8ZCg88kms6NOok5z27HsaUabgma83h+b4reNX0ae/a10HTMza3dA8zMeViz6k043xVSz2OedRRVt7nKfH7V9BvtT8P6FpsNvY6XBr1nGn2mby42VZlJ3E8DOMZPHNKVSFKSj5hQpctNtkX7ZOnSfEjQbu8l8PSaY9tcNbwXEk243EeDwflGVA5Dc8HA4xW0+WeslsPD80dU7o8X+BvxJ8aQfCSaxh0m1lfwpO1pcWk85XdbqfMgZDzglTtye9c060JKyRdVRjPfVmVq/x40H4tapei10bVNOl09GluItTRY42nAQrGkgbD4OOnp+Fc0HzT1NadKUPeZ0uv8A7VXhjW9ZfTfF2mX+n6lPZR20tjqKj7PKMNGzRSdGY5BxnOK1qxhOV5N2tt0FytX0PIv2pxr3xOsrWb4fSTac2gzQX1ndsSS19EQVP+7uA47jNKPRroZ0qSqbo67wL8R7T42eA5vEt0r22qx3CJq9mzAGyvQoEi467Tjep7g96mFR12dEZwirM888eXGnzWrWbORqCHCHjDj+IZ/EfnUunaWrE5TlHYwvg00Utp4k0A2MCS2199psyxKO0ZVVmjyPRgGHuKykoqVkKnBv4iDxn4hSztTONTkMsbARSD72zP3Tj04rKcfeNrciPALpX+KnjTUda1tGb+yX+zws6bccZLnPUnpmlOhWpVOWomn2YQ5Kr0HBNHkD6fcuiSFgI2Y8Yzgg+nNXyWXunRG0FynM6r8UNN0ue78O2tnDqc6xkARTYVTjpuHfrVezsrsmo7ppHmPhn4m3c4n0O+09omtrwzx2gffvi/iQdOcHI+mKThUlK6ehx0KkuZq2h2+i3FjqNqJ7dxcK4LodnVfT2qlJuWh6Ckkcv8VvDt/ax2njjS023mly5+U43wn7wPtXRFOouQ4sTRlUaqLob+kaxF4m0uK+tpwzSxh0cEDHtXL1NYy5onP+InIn8yeMbo8jIHJHr7Vo2rG1OTUbHL65a/Zl+120izQuOcH7hrpw9Rc1jTnVzKYtKGWRwr4/duRweK9qjJ8ysZyqOMro8H8dQyHXbn7UgRvOOSgxmvp5qpPlbPncXWnVqONjAicQS5xwT3qIVOWWpMX7OOgT38SSgDGQelOVdp3PKqKSq3ZpaFqss14qyxpsToXGQvvit8PinXnboerhsdDm5Fsu52OkaoviGyksltFEEPAlK43GvapuM1ZrQ+my7GSxiacfdXUY/wBmija0hiCIFIO3Hze1dtP2UVpojsxcqUaaULGbdymxiYui+YT8qDqTXkZhiuSLV9Tx8RjPYUXFLU15Pg98WfD3w0h+LOvfDPXLXw7fXv2eDXbnTJI7SaU8iNJGADH6VxYGpRo4dtSTb31OHB4ilCjKHNee7V9TH0qw1HTtauZNZsJ7S7jVdtvdwGN1BGQdrYIyOa1weMWIrSqqSdtEPLKr+szrTeq0RHr9/NFHi3k/eyHaF9SavGYyThyRerKzbMq0o8lN6vQ09L02Dw/pi2aBWuJ13TysPmB9Aa9zLqdLBYVqXxS3Z6mX4Snl+Ba3nLVsj0T7ReeMINQtoCYbZGW7mA42kfrXDThVxOcQq0l7sU+Znk4ecq2dQrQXuR+Jn058C9b1n4gfsV+IfhbF4hvbzTtM1i4kn0KzsY2W1aVMw3s0zLuVFcbNoIGZe/b+b+NqGHyfxKhjo04xnUUXGpKTvKztKEY3s21re3T7/u8hdDHZfKkn7yU0te7utO68vn0PmvR1imgFxexrNJMpDs6A4r+lMJQVaKqTV3Neq2ufJYXlq0256t6Mm0HSbzw7cu9hOs1rIhLwN1QeorSngq2Blam/d7Dy/K8RgqzlGV4PoaN9rvnzCWNsK8JVV9cV6FGrFT0OueKjTqpIjfVFsY1i3H96nDDsSDXWlyUmk3r19TprYqrGKt1P0S/4IkaT8N3/AGevjP8AEzxT4T8C+Ir3SZLKCTSPEUXl3hgl2/v7afPyumxiFxyeMgE1/H30hc+x2UcV0MHRg5RxVCUFOzlySTTUlbaV0le+zas02jxadKX9p8zfxJPeyutz4s/a3tPBGs/tH+MX8JBv7Mn1QyQGQlmBIGc5759OPev27wswmMxnAWFWYK9Tl1fe2x7FXC0a0LT3PKri7OlSuYVzGdwD7cbTX38aEsO79DjlGphb3WlhDrcUdqoeUeUIsls8f55q3iKdGHNUegU6vLTvN+7a5Y06KS+8ISa9J8smpXf2e1Xji3iwzn/gTlOf9k181Cs82xsnvCOiMKUvrGGdbu7L0Qy/1F5reG/kuTLdDKlpG5YDp+QGK9ilRjFJrdFSi/ZqSepk3uo6tr12LaytGywAkY5xXDmGJnWfs6a1OGvVq16ns6a9S/8A2DLocy2upRGI7cghuvHXNZYaMqLSkd1JvCJJnefAbwddaxdeOvizazpHbeEPDMct1IvQyXFxHbovPBJ3t+Rr5Di/MIvEUMGnrXnbTtFOT/I8yNOOMzWUoK+mpw3inXWvJJpo2wSSdxPOOn8q+lwdWGEpJJ7I9LFzoUE7vYzfhxYHxT4pNja2r3Eqo0kaRwmRsKCWOACcAc+gxmvGzjN5zwM6UOrR8zRxMMRiW5/I7O68NeLNPuC+leE9TvLCY7R5NjI4B9sCvKwGZOlh/wB49D2I1ZxcUk2j6r/Zo0zQ2/Zd0D4ZePPAmsLayfEDUNZvBbeH57hpilqsUMU0YTcqZDEY65NfHZnmGLxOMr0sPdxko7NLZ9G/Jnz+a5TmNbNoVsNTlLl6LRanD/tK/siftOeLLbwtofwy+FsutWMPg+Cylu9NthaIiLcSSpFKJdhaRA+0kg4AUAkAVvw5mlDBOvOvGUHKbdpO/RK6s3ZO3l3tdnsfU81fM40JXlvdnG+F/wDgmd+2lfbI5vhrYafuGSb/AF63XA9wrE19GuLMHCV1d/I76OBzenD+F+J3Ojf8Ek/2ib0LJ4j8deEtLTvtu5bhlOf9lAP1rLFcZUVC1ODZ0wyvM6jvKy+Z6L4Q/wCCVTaZCE8VfHkvlfmTS9Ixn15djXlvi2tJaU7HWsnxMvinb5HXaP8A8ExPgbYvm/8AHHi29zyViukhGfoFryq2fY2c+ZJI7aOQYRK8pNs7HQf2GP2dtD4i0DVbtX4IvdZkYH6gEVnUzvH1I6yOtZRl8X8N/VnQWf7JP7PFpJiL4QaW744eZWkx+JNefPH41u/OzaGW4CCt7JG/pvwD+F+hZudH+EeioEXDSrpcZA9yWFJ43GVo2c2aLBYSEdKa+427HQNEghUQaVbWsP8AD5EESj9BXG4ye7ZVOhQi9IpfI8Y/shNF1DWLERhR/acu3nrnmvyvim/9rNeR9vksfZ4axSdUKiQknkYPr9a8LVOx7lO1yFihztHOfyrVJ2NGhjRdSij39KXMhwsIts5IIUg+uetJyRrGSRYtrAO3XjHbtWU6iSNbNrQ1dMsyjD93yOBxXBWqXRUeVHQWaRW8e58Y9c150pObCVRROz8GSDWtETUIsRqsrog8/htpxX7hwjReHyGlGW+v5n5pmtV1swnI1HtIMEyx/KvcS9T/AIV9E3fY86/cqS6ho8c0VvcXEcc0pYwRySkNLgZOB3xTm2+hKlFEN5qFiUN3LYKU3cylhuX2qNXqNy6lNr1TAJIo3JXpiQtjnvxzQ07EpyZZe8cWlxaxzTxuJ41j8yIbZ1wS0mQcgA4ABwSc+lRFzTsnoyuVct2Vr6/lu7i2u725Dy2sskloYpJIxGzrtYlYyA/HQOCBngVoqEl719yHayRBNq8nyq8spHVj8oHr2NbKCMG7MrzapluUlZSMAvKQAf8ACm4qxfM3EqzzqQX3oN2eTJkjnuB1qLaEIhkuGRQn9oAN1Lxwk55/IVSso6kNtMq6hI4C/ap7lQ5VdyL94t9B0qJzildEyneNiFtCjuyrQu4ypyGcgY+vHb0oV0ydWipd+H7ZQXismcoSPMLOcfn2rdNpDUJPVFGewZkxa2isMn5AS3X6dPxqebqS9dCre6WLVC0+lNGqrl3LlQPrkgfjRHV3TGpcu43QpfDPiC5uvI1u1iFjArzyXd1tXB6LHhSZmP8AdjDEd8VM68qcuU2Si1cnvdO0g3QtVt7ySMx71kgsHKOCNwwxC889OCO4zWyqSa2JqRXKPTTreaDyxoWsybjyIhCvbp+8bIrnfPUla5ySclTeh9maHZSa3qVvJZ2qxWbuA8UTBjIeOSew4FfrMqb5rM/PKkp1Lvuer2etWPh3RRY2ibnjcCOLfje2OgHoK56snayNqNK7Oj0bU7u100XWohJJyMsrfdBPYD2rGU2o2Ou0djOn1a+1TUhDGfkiGZWx90egrjbfNoOMIwW50ei3F/YgandxCPaMxMgA8sD0H94+tVDmbu0bXi1oZEWs6D4r8Z2ugarfMhF7ETGl4sTmLDF2XIJlYEINi4Pz+1Y8sKtW0uhhUlOC02PQPGdiNP0Y6zrbiKIsY0EeMW45+XGTtJAP159K0qxtvsJOLfLE8dt/EOieI/GunfDnwLp6pJe3Bl1O/I3ypbKct8x+7uxjiuejSjOdoouUpR949J+JnxLOj6azW0bJDDbKkUW7BCgfKoHY131qkaUeUzoweIiqquk11/yML4b3eryeEIl1SCaP7Vei4ugsTNmR87AzYPAUEn0AJrJT5o2iiq1qHmfNX7ZfjJfHviDRPhH4W8Qiy1nWNdWwvdOkLCa2VH3STR4GCoRWyeNrLjncueaVOOIpyTkk10e716afPW2z62TKTqSd7aM9Y+Knjawl0bTtC0+RZdPtbOGC1t5nIMjAfMzd+eM10QTUeW5NNtXPG/FvjPw1+zr4N1/x14tu47e21KNo9Rl2k7EVgqMVHoc8dcVqqcVsNt813ujI8DWun+LdAvNV8L6pbarYNeG4eWJiyPC+0Eg44bbvOOoOM4zXFKE0/d1OyNVTSdjZ8d+D/CXivwZfeFNUPmXNrAJrK6Y/Og69c/wtjmtadmrMbc07o3/hTDo/jr4AWGpPBCdUimay1BlcMrSRKwbj/aA3D6GrbpqNhydnseEeMp5/g18SZviJaRlrfVI1h1a2jJRZFVsLLjn5lGRn0NcyrU6Sate+39ehnKmk73OA+P8A471HxBqdp4U+D1tHLr+ou81m7fNBZWvBa4kI/hGcKDyzfTNRKsqjBYiKkoJHmOip8Tvg0iQ6d4zn1aRJnuGuNVG8zyOf3gyOg+UcdAMelZRgnWuzodJqGjKusfG3xz8RpGsrPwy1nfPf+XdzS3GYkYjJYAcnrkCtq75k5dRr95CxyvifUIfg1p8eoWt7JIivIJbUnLag247s+ueeawo3nuKNJUYu+xzup+L/ABJ8Q7E32iWT6ZZXEoMhkbMhP932HStXJ0Z3SujOM51tUQWfhfTPD+hTagbiO3MT7pGY4J9WJrnlN3vc29q3HVHBaek/ir4g3uq6baNDZPEn2SQj/WMv8Y/Q1sm2kcc1ed0tzsNO1rxB4RuEGp2H2i0Ay01lw4PdmXoffFJQcVoaL2ravsdDpHjrwj4qsZba31COWO4Upg5wp6FSDyD7VPtGnytG0MRGqnFHGeHWu/B/iW48FXbjy9xlsTu4dDztFWuWSuiYwdPdmtrmoWl/E8T71P8AEGXlTj+XvQ11R07RZwd5MYriSHzNrfxRj7rL6iuilH3rmNNyk9SlLcbI2Ct8uDhhXuUF70SnBylY8R8WSSXWt3TPeeaqykBmHIr6WviFCPLE8etKNOtKzvYp6V4a1vxHMbXQ9Eubx1XJFvAWwPXgV5FfGU8N/FdjhUpVJaK5Ss9AutQup4obKdhaqXugkZJjAPOfStaNSOJaXQ5ZR+tVOSKem5JZ6lBFKI7KyAiJwzvyTXr061LBNKKudFGpSoVPcjdeZ3Gn3F3e2BTSNJnmZIDJJBZwlyqDq5x0HvXbUx9GlRU6suVPbzPqJZnQw+FUrKK7H058Kv8Agnb4S1P9mIftKfHv4wXWlT6sw/4RjwToFmGurlMZ86eaT5Yk6DABJr82zrxHw9GU6GFa54y5bP8AF6f5n57jeKZ18S6VN7M9x/ZQ/ZK8DfDLwLa67o3gjTLrxnqAYrqeu2wvDaxN0Kq42q+OhAzmvyHOeMc9zbGOEajUNrLS54eNz/FYiuoRlyxXbr8zt/Cn7PHjPxR4lttS8fzya/c2E73FgviEk2GmIhBUiJvkXAHYZya4v7UzOvQdCnJwVtXe3r1PMeYOg7Qdm92t2fL3xe/Yd/bA/a0/aT8UfGHUvEukDS73UhGninX79ILdokAWNVCknAUYAx2r9MyzivJuG8ppUlNuSjstW2ffLF4ChRpzjXTbitLNu55V+1d+x/4R/ZTn0HU5f2pvBfjjUr+RlvdE8OibztPYD7zl1Clc8dR9K9/hPi6XEePcp4acIx6yVk/Q6MtxtPEY2FWrFqKfVWPIr69k1S/TR9PGWmY5frsXuc1+sRjVxNT2cXv+R9TXq1MZV+r0ftdfI2NQ1Gw0nTotI0uELDD98EfM7HqSe9e/GVDC0uSG3U7pqhhqHsKS0W/n5nu3/BOy++IfiHW/iR8L/Ayxmy17wct5ryTX7QKlpaTxyySAKp8xgDkKcDvkYr+ePHCjktCtl2ZYhe9Co4wtG/vTVknqrJ919zFkFb6tmkVCCnzNbu1k7ptaO7120v3R4OYIdP1jUdJSQGK01KeJGXuA7AGv23h3FxnkdGpPdxX3kUaKo1asX0k/zL2kXA+1uJmyu0Dt8wrujWlXm4neq2iRmeJbf7Nr8ZtISFlJMYHasK0Xh6sXfc8/FYVU8TGQ++bfHFp+cux5IXlV7ms8Ti5yapQb1Lr14tKl3Pbv2UPBOgfFnS/iZ8ErG7ube7vvAUuq+HLyKYxM17YSJNtYDlg0ZkGP9kHtX5P4y4yOTSyjNIJSpQq+yndK/LUur+qbXXbQxzKaw0ISo3cdm35o8u8dJo1j4purbRr53too4UaWUgNJIIl8wkZOMvuPWv1PhyrTp5VT5dI2v231PUiqare5K8bLfTp8zlrieK+V7RD5oPPloCxP5V6+KxlKFF3krHHi69NpweppaD8EPiL4ohii07wFrd7bbWEUVtpkrlzn+LC8DNfA4/G4Wo7VKyUeiujylgatVe+3yrodpH+zB+1L4i0/T9M0L9mjxgRY2IiUDQpY1J3ElssAD161pl2aZNgaFvbK78xxlV5I04U5aeRteHf+CcH7cHia+gnf4FT2ESMSTqmq2tvkdOQ0mf0rmxvGuU0q0Wqidu3UqrhM0qVYNU2kvM9J8P8A/BI/9qZ42m17WPCekRAAuDqjTFQemfLQ/wA68LEcf4VtypU219x6FLAY2V9ErnTQ/wDBIHxTqqJD4m/aJ02EHomnaLLM4HsWK+vpXm1+Oa04/u6f4hDI8bWnapOyPS/Bv/BOv4d+DPgvrPwJT4l65PpfiPU7a+8RX1tYQwXV61vu8mLzXDhI0Ls21Rkk5J4FfKVs0li84p5jWhedNNRV3Zc279Wejh+HsPhouKk7vd7P0JvDP/BL/wDZR8PHzG8D32qMh2mXW9XlmByOpRSq/pWmL4hzWvL4+VeRS4dyty5ppy9Wz074Z/s4+APg1eWurfC7wfo2g39rC6WuqaTpMCXcaSKVceeF8wqykggt0JFcbx+Lqw5ak20XTybL6ErwpJHXWui6hDaCCGZQoO5kWBVI46kbeKiWJk42uehChGP2V9xI+i6vNIjnUGfPeGbGT7jt+VZKTg7p/idLv2JbLwcZS0r2tzhny6GNuvqOamrO6uyYvni32LVv4XjZt5F3tXIUC3JxjtyORSUkZWbdmXrPw/4lUNst1lt1kUkTWYx9CaTqXg2ldIHQqWuZfje78ceHrnRYfCvwJXxJbX4caxe22vJZS2JLAKVidSHAGT94UoVKPs5OcrPp5mFaGJjNOnG8eup1kfwzsp4BMLu6ty5AIlG/GccZXgkc8e3Wub2knudsY+5fYS2+GV5FcSKskE8IwbZoUdJNvferZAIPofyqvapA4Nxuh0nghLKY2U29JCpIDSAA/wD1qHUhawcs0LF4SSXKDT4JgTgiYbh09+DWTqOOxaV9xknhB0fy4bWKEZwVWIYP0o9pKT0YJanhfjbwL8Vr7xF4j1rwt8LdU1jw9b3wjutT0m3817KXAyJFHRSDkGvls94d+v4j29Gf7xLWLOzBZ7DB1XQqLR/ecg3hi6uLMzRarcQDOTHcRqrL9c18VKnUpVHGpFXR9Xh68p01OL0Ma/8ADXiOAbotc4YcHaDS+sYdW5oGspVZL4jIudN8YKfl8QgAf7ArojXwKX8MzTxC+0JBpPi5+nirafeMUSrYL/n1+I1VxKekjR0/wz47MgMXjCPB6ZiFcdXE4C2tH8TT2uPtpNfcdn4X+FPxi1mYfY7l7hUj3t5dmS23+9j0968fE5jk1OPvKz9TKpUxsFzTn+B6V8Dv2dfif8T/AB7YaR4U8UaPNPGRcNHfXdtCi7DuKt5rYPTkd658PVjiq/ssPS9/dczstPN2R52OzGVCg515Plemib/I6Lx5d6kfHWtf8JBe2jXTai7Xj2EUUMBfofLWH5AuR2HPWv2bhzMJ5hlcatS3Ns0rW/A+dnThTaUL2tpe9/xOPufil8MrPxsnw4l8YWkniQ2ZuotHjhlLeUASWZwNq8epzXuN1lH2ij7t7XOGWJw0cQqLl776BfeNYhCYIZAiyZwscucc9+Mgf41u2+W66nSuVoyI9dupm8mxsotpBZpPKJXoSOaTaSuc9ZJPcrS+KYZmY3N3NCyKUxGdqkj8OnvWidlcyjPXQiXxDbSBTHMzHG5jlmDfyzQ3HdGt2lqxZdSkcsTGwbnCsflxjnBNK6J3IReRM4CkA4JHTco6468iqTSdzNq7LNqJrtiLaCZ2zhfLXI/Wpck9h8yjoXk0PXLj5YdHlUg5JckDPbgdO1LmsL4h8/hb4jT2kkmmafYQyyQFLe9N0UaFu0gwCCRwcEEHuKUoue5zTjKZp2yfEKG009dX1Dw/c31jZ/ZjqM9rvadcEB3jPyBsHtxWX1Z05Pl2HCCtZlOLw7rUlzKx8R28judzJDaqFU49AOB7VsoNrc25YtWNXwH4OS98ZWS+JdM1HUdHtbyO58QQWNi0kpsY3VrhlVME4j3dO9RVqclN36diU3ZqO/QwvFXhjQ7XxPc6jIt3PZXd1JLp9q1zPBbxQM58tRDuGMLgfPluOSaVKKdLVv57kVaMou8txsPh7RZLhrjTvCtpAxBDGKJcnHvXRCmrWQLV7EjW9xt8sREbcjoFBGOtUtHexteVtyo9rcHfMbVXPUq2euP1rVTsiJXa0HLYXDMbg6WmckAqw/pWfNzTuZTUnTZ638PPiTc6ZfxwQl4ZYxmZZ24Y46qeOfzr9RnWlKR+eTSVRqJ6h4T8Uy6jdx3uoeUWllHljf8AdGeTj8azqS7GvOkj1K01q2vLApYDakLcnacbvf1rmnGUlcmNSK0FsNUFvPiYlrh2yIgM592NRGMVudc0pQJfE/jK8gQzEqcqdrKflB6cVFWXUmEXeyOV+BYtL/4hXnxS1p43GjxNb6TJJJuO98eYwHIBAGB35NcuHvKq9BVFra5oeNfjn47+IHjnTvBXgnRTqz6fObmS1t18uGMgZWS5k+6AGC5GMsN3UkmuipO8rR3Qo04RbjDS53/hbR/Anw2tdW8Vm1gOsXlhHEkix9HLB5MFe2WkA/2QorppctKm21qN05KyTM/UtX0Txv4q0q38L6ZaSzW1wk+pxSRyFIbXy/3hmZwBu3Z2lckdc8DGE1TrK63TWnl1/rzM3KoouLZhfH34w3FrPqeleDLmK30+bT1gSOVNpVQoVZODgPlTgjoCa55zfM1HsYxhJr3mfBfgnVviK37Xuv8AxI8b+Ik1C607w40fh9bxyG82Q/vWZjyW2qo9amhTTjK79466PNFNI9S8FeO9RvPN17x1qETSyXXk2FpahsKAGYsWPTp1rane2pU1yy9Sz4Z8I2/7S3xKfSfEYRvDvhKM32qRP/qry8b5oYDnqFILkH0HrROtyzsjWMOWPM0c58Uf2cr3wTrlz8QvhL49utC1CVjmztZD5N3kEhXiOVZeBngHHQ1EZWu2y5Soxhd7ni/jf9tnxZ4EuZoPjNpK6VcmKOFtZ0+Jmt513fMGTqhbIHce9cvPUV2tzOlXjduW3Q9b/ZI+Omn2/guXN0kkeog/a4kJJinZvlYjqCR3x3qYOrUjfYdSqqj90rftJ62NQ0+4tTlpGAWLavV3O0AZ68/zqGp81kVzqMG5I86/Zm0e20PVvH+jXsqTa2JLKCF2AZkthESY1B6fPvOK0VGcXdnLRlGpUbtsJ448MiC7EtyP3PziRDD8zPweM9uv6UndSudzq+7Y8we98M6HqvibWWZfs1pLbTpE6fPIrhlC49yBk+mah1bzaM6dSSkedeJheeMLmXVNVaK4upTmGKMfLbqOiD0681tBJPc0dWpJuPQZpgfwfLNNeNDHaRxEzpcNtRSO9XOnJ+6inJUYO+hw+q+J4PixrFzY6OSmkW7lmBZv9Mbj5R/sDj61zunKD11ZxUK31mpZaJfidhoulWMOiTWnlpFNbL5tq2eBgfMp9sD9K6VFLRHbWaUPQr6TqWmeJImk0zUUkkc5Ko/Q+1JSS0Iw84ybSMK50238Pa619BDHHHcvtvIgmMt2es6nccacKUuZi/EW2a80eHU7fC3NgweCWMnkDqPyrWjT55WN6yVSCcehl3Hie51vRY9TtLhTIqD5SevqDVuioPVmUqmmpympaobllljHltuPykjKnuPoa6aSgOg5X2NPwz8Ovid8QbK71LwB8O9a1uHTlDX8+laZLPFbAnGZGUEIPc4rpnicJhmnWqKL6Xdr/wCZtUqKNl3Nzwb+x14ZW4k8RfEi5kvLmb5jplr8kcZ7bm6k185mHE+Jr1HToK0e5H9kU4TdSpu+h6Npvhm18K2i2PgrTbfTIVTaUtogpPsTjJ/GvJdWWI/iSbOmGEpRXuxseMfFL9jvWtd1G88SfDnxE9lc3rFruwkciOUnk4YdM+hr6PAcSfU4KnNbdUeViMj5G6lCVmzxnxJ8Gfib4EuF07xD4Fv4yZNqTW0RlWQ5wACvrX0mEzXB5hrGe254mIwuKwcL1IO3dan6L/8ABP8A/Zx/4V7+zN4jtvFPg0P4n8b2yLIZYB9osrIMNsKqRkM/JI9x6V+M+JHF0cwzyGDwUueFLa2nvd9H/mfJZ5jKuIrU6UJbaux6J8SvhL8SW8HWWt+JPCOoaBoNs8NpoVrrUItpLjawU7ImwzAdeBg8HPNfJU6FfDwlUxF+Z6/eeLRoJxlVs1vumvLr+fXdaGN8cPihf/DmKGy06T7JcWdvE9sHbDXcnGEQDqcmtckpvMMY4w05evcmlg4YibTkk7X6/wCR5B8YP2mfjXo2nX3h258OX1xPqtrtfZqUZgtd3/PZmI5/2RX2GByPDVcVL28tt7p3v/Xc9DBZZRnW97X+vmfKvjX4pftT+JbeXwfd+NbyPSbRdqxaXI4gb/ZGwAGvu8syjhmlW5+Rc3d7/ifS0ctw1KS5Eubv1OYi/Zx+M+sWn9rXHw48S3b3A3wXMWlTOZPfOOa+2gsooQ5J14xbWlj3lk1fFU3qzd+H37M/7TivLcwfs++MZpGG1Jv7CmA2/UgV7OX8Q5ThIy9rWjzdHc9PKHicBGXPTk5bXsdVZ/sRftheItXWwsf2fPECzTqWjjvEjhLKCMkb3HAJGfqPWli+K8np0XJVk1s2rvf+vwG8TWrYlUIxanJNqL0bSsm0uybSb6XXdHuP7FX7G37UPwU+Nl1rvxX+Gg0fRNR8L6lo9/Nc6lC5ja4gKxhkjdmPzhexxX5P4l4vBcTcOwpYGSlWpVYTS2fuy138j0MswmYYfHRnKm1brfzGW/8AwS01zXvFmpa34h+OMGkrqFzJNDp2neGJZ235+ZAzui5zk9cV3ZVxjHAZbToSb5orVWZtj8ozWtmNStTmuWTudz8MP+CSfwx8WPNZ6p8c/E9xqVmoN7oUOiQWV3ACc7tsjPlSOjLkVvivEPH0IKeFhzXPJxWX8Sxm1Rs7dz0jSP8AgjZ8At1vqOp6d451UqdoSfxHBCOvX93HnOBXj4vxA4sxUOZRgvvMMTkPHeNUWqtOC03u2SaJ/wAEWf2arDUL3VPEXjTxjOs0xa101bmONrWI9IzIUzJjn5sAmoocfZ9Cn7/Lzdz6PAcO1KUU8VU559baI7v4bf8ABN39lb4QeIYPFHg/wXq41S3ikjjvrrxDOzFHUo4wpUYZSQRjvXlZnxBjc9wzw2PUZwunZrqndP7z2/7JwlrON15m7ov7Dn7LmjXRu9M/Z38KeaT80lxp4uDu7kmTNVV4hzWVPkVRpLTTQ6FhMPHXkR2+ifCDwX4Z2w+HPhv4fsgCSDY6Jbpj8QgNck8yx9aNp1G/mw+r0G78prNo8iKy3LTQRbSNyoQqf98Akjp2riu76mjUehTn8DNdzmdbhroBTsaOZirD3DYI69CKvn6DUEtbDE+H8KMc2JxIOCGyo59TUyaeoOTZEPhzAHluxHIJppB5kglYlsH6jFJSS3JVO7A+BL0gFo5WjVcKwkPfPHQ8f57UnOTVjZR5SGb4fSSuo07VLxYwFwrW6uvXJLMq5I7Zq6c7L3gm1JJomtPCV8+3ZAkka4LhUOM5BGM9DxmnKSlqY620L2l+GL9jLLDov2nyAqh0hP3WIz2yvIzxmuapXdNWHCmnLUv2ngqyvrqS18QaPNaRTYFvdwWu9o1XqSM8jrWUq0mrm0Y8pLa+D59C1BriG80qa0kiQQwjRQGLdC5Z2O4HJ4A4rKHNJttm/PDlulqJH8PdNjuTdFAGaMgCO5cIx91BwO3UV0ym+SyZzevU6fQvAPwu1PTLuyufiD/YGuWUCyj+0rO4e2u42D4EUqK4MmVAIIHWuKMsVKpK80kuncTqyo1Yr2LlF9U1p8mUNQ8H+JND8IS+JtO8Max4gRIpvs9lpFsHubyRFyERHKYLZGC20c1nRqYipWjCUXFPr0HjalPD0W0m/wA/8i7o+hXsmh6fqWr+FtQ0Se8t1nbS9btvLntSwyYpApZQynI4JFejJyi3F6mFBqpRUlf0ZqL4bW4Bu4poArsC3lhct7Y54pOXM7mkryb0A+GIZ5MW1tE69XaKIncB7gcfjWdWXK9GOKi4kE2gRxvI0ejuV2ZUyNu/Dp/QCphU10G2tjPu7OK1g+03luDD56oHtbZn3M2dqgICcnHT61nicVSw8F7Vq7dl89hyjJwc1tFXZwXwZ+MngP8AaA8Dt4+8EPNFBDq89jPaXymOWOSNtpDIeRxzg+taVfaUKzpTVmrP5P0OTL8VSxsOeHRnzr8RoPilafEbxP4k+GHxd1Xw/bDUmg1KLR45WFzGRgqwBCgdOT6VnWqQda7WrW97HGqdac5zir9Ds/2WP2d2+Kmiaxba9eaVql4Y3MVx4g8bQ2PlYGQ+wckexzya+OzfDSljL0qijpdqy1+bPey6tUo4RcybV7aXZwXjHwf4d8J30mhtb2jyxM0cjxa3LKMqSODtwV44NeN9QxlW1SNWNn09096jiaUFy1Iv53Odgj8JTwGYxpsXhtt7I3I/CuadDHQdr3+SO6hi8BUTvbTzZJC3w1ijBvJpFDL/AM/DY/CocM0vaCX3ImpXyqGrkXNO134L2U6tefaJAq5CtfOoyPoKmeFz+pH3Ul8l/mQsbk0mk7/ez1C4+IH7MGkfDfwbf+HPiB4hbxVql3eTeJIbK7uBDp1puCxRFsYkZsbsDoCK5MVkeaQo+0jKE207wcErNPR3v11v2PPo411sbONeNqK+F3u330PPdL0wad4gujaeLL2W1urxpbSW50+48yRSfX5e3HFb1OevRgp0kpJWdmrDowVBySm3Fu6vudTqOsavo149xpHhu6miuI1EksrEAOB0AfkEjmvteClUp4apSfR7Hl5tU5akXFdDA1jXPEV9Itw2ixwyldjzKYw5XP3SwGcV9xGg7XaPFb53zNakcUetsQryQx/KfvuW5P05q3GSL5kt2Rnw9NPK0114mY72G5YkYg47cnFJQXVEz9nLUfD4c0SBxPLqkrMcg/vEj/xq9loK6juaNtH4atypVvMJGSrXRbp9KjkbM5VOZlqGfTo4w9tocTjcMuynIz25o5L6hC7JJdcu9p8rR7dCFwpRM9fcVtCiupbdi/aav4mYPtnULkCFVtypOBzu9PStHCCWhzTWu5oW1x4iaZ3klBZUYHzEJ5xgHGR0NYSRV2SpZ3cpDzxJkrlwgwpbHJAJ4+lODaKTdhw0eVMbbXcCD94jH5jmrbstCXqWItHVlZJYuucAyEY7YBFRzaFwauRXXhBdUUCa0SVScDczkr9cnAojKxray0GQeD4rGXNkiB3UhlWM5I6EHOcjB/Wrk1IyqRjP3WJa6BHo1mILTSmgiV/ljUEj36jI5rNTsiEkkSMjJCXksFOW5If5T7fpT5rj6AlmZ51t4bKczuPkEdu8gOBk8jI4qJT11HBNiS6Xq0482OILwWcNY8k/XIrWHLzIpxbgztvE2n6Nd3KQoiRGFQ0khYkAjnr3+lfq9aykz80rScZM0vBlzqOqLLe2BKqSUjmljKcf3voK53Z6nOpc0j2Xwn4nXT/DkOjWuoAxxJmRygLu3dif5VhKaasjppws7i6R4jS9uHuRIkIX7+Xwx+v+FZxXLqdjcZaGL428R3muQtDBJMjMhSNgR8i56qv0rkrylU901jKK0RnWt14pFtp3wy8Cxf2bHOSr3GPMlAPLHGPmc8n+6O5rWlHktGJnOKWr6np2nQeGvhR4TbwrZkqJfmuoLaXdJcv3eaXqxPp0HQV2OMIRutDFQU7xlszg/iP8ZrzTIbjUGmt7e2gty0ru2fIUD2HU+g5rlc30N6s4wVkdR4C1q68I/B+3utRili1LXoxfatLM+1grcxRnngBcceprVt04+ZjBvmbseA/H/wCL76QBPJcPLJIwjtLdSMyyscKMeueg9K5JuV7vcKjSMT4gfCXQ/DHgXTb/AMaTyDU5UNzqc0aneWcZ2ZHOBwMVc04pITnUgfMPxZ8aftEL4xs7T4S+JFSXVbmSeS3vrFJY47aMfMyqABGFLABRjrXPzODa7gpy5nKW7PUf2EvjF4h8HaV4g+G/xO8SS3ustqDajLeTxBPtcLAKflz1TGBjoD71VKmrNyM4Yiam4y1R6/q/xFk1m1u5DeJIjzbrPYQcR7QvT65496XxN6nZGN43Z4H+1D4X0vxdpV9p19YwThYgjNgfe3Kf0pOLV2Z1ouUeVl34y/CG88CaLbeJPAF3Lpeq2umRTSAjC/6tThx0ZSMnJ6bqlVabSb0Ip4eST5mcL8DvH/xZ/aS1+fxtrNrBZ6X4ZZ4rWBZCf7TvkADSk/3EPQdz+FNXjK8QhKeIlrokXfCeq6n8Kv2hLafXdXlkm1zT2ikd22hLqJ2ZRuHUkMw59K65tShe2p0qKoyvtctfH74022jaddapr1zkByQ0bHdK+cBVGTuY5xXDKFSozWc/ZQ52eAWPhD4lanq0vxG8TeIJdOW+iCR6OgBRIQcqJBjl8HPtVxoqEbW1MI4epOr7WT+RB4u8QWHhBTrVrY3DBVY/ZIVLs4UfMf8APrURpOdRKJ23hTXNYyfhV8M/F/7Rnw81f9ozxZZXcXgHw7rkdg2mxkqbi7cFxHI3O3Kq3BrjzrNnlmPpZbRX72or3eyR8/iK1XE1o0qafK2/6/rY0dN0PT72Q6lpFskEIO2O3QghVHTp9K2SqprmevU9qnTjQglFFP4ha5DoXh17eGdo5tVmW2jIXoCcMw+i5rojJcyUtjLEKbikupjXmkzaeYr7QpxG9sEWIrwSuO/r/wDXqfcvua0qU6TuaGs6k2ueH/O8ryr+3BLof4vf6VtBPcqvCPIuUoaNrw1OxFvKQ0cqlfn6j1Fbp8quhU6/u2RyLuPC+r3GizEfZ52MkDg8Z9KtpT6HHzzVTUytSV7w77KMtdE+WiAffY9BWlL2cVzT0SO9OcoaI+3f2SfjT8Q/hv8AD/TfAFtfLoOo2FmY5Z9EXy1mDHJFwAB5pOcZbNfmWe4ShjsTOs3d3012KjP2ibe6Wh1HirwhF45uLnxDomkQWd+qh57eE4S967nRSMK3fA4PbFeVgsTVpv2dV3WyZvhcbUnifZ1PhsrPz/qxw8uh2jqXEZBJwy7eVI9a92nUtoj2ZQSWg2HQYxJ5Lbpc5ztx/ShS5J+/dr+vI55Qluej/s6Wvw28F+Jl8f8Ajm9sXurRimmafdLvWFiObhlxglR90Hvz2r5jPcVmM0qGETs92fG8T4vGVaX1bDxbT3Z7x8Fv2i/2fvAfx/0K88I6ve+JbiC9a7ubC40j9zIxOSzyH5QFzwK+cweGxGW5jDGOOkej6nyNPLKuHiq9SNmvM+VP+Cmvxg+M3xo/4KNeGtS17xDJqdqdR86y09XK21vaZGFjUHA24B/GvssuxSzbIcdicUveu0vL0OWUo1cJVqVJO/RG14o/Z6+J/wC0r8fbHSPBnhuG8k0W3EdvNfybLayU/ekZsYLAZPtXk8P4qhluE5VpffueZg6k1gJRjH3v60uc1+2P+z5b+FtZs/hF8CvA2sa/pdm4k8X67aIbgS3pHKeZwBznC+nNfSZXxJl9LFVJVqqSn8MXq/8Ag+tj6XInhYYiPt5q7Wxu/s7/ALCn7T/xv8X6XdW37PE+gWUcRTSINcihsopYYgN02Cct1BLnuwz1Fe1RzDD4qq1R97ZX6LsvXR+p9o82yLCZhClOUfaSTcY6XajZNpbtK6Tfmr7o9P8AGHw41H4J2l9d/FD4kaBBHonyz21hrRlMT9TtC8YxxxxnjrXh4/OcDTrxpSlzTeyWrO+jxpkvO4O6t5Fvwbp/hn4h+FrLxV4a119U0/UAJLeWOZmVl+ueKhVlJuKVmujWtz6zD4jD4qkqlH4Wa6eAbZtQaGzk2DP+qlm4z67jXRGakrM6YyjGWm4H4Zanrem39hL4Wmu7m4OdP1ZtZe2WxIzhyiKfNGSDg+nWnQqxjJ6nR7GU5Kd0rfiXNA+AHj3UNRszZeLvC9osdtbw3Ok3llPPaTTCIJNcLL5vmxb3BfaGwpbgADFVCdOEm5Xlr1t92ltv67mGLourFRi7PujpLf4KeP7HU4bnV/EPhmS606fGl6jYXlxHPbRHIeMSAN5ikHbhsjFVUxDirwJoUpw5rt9jqNT+G2kHUHvdBuXMYAeGKW4LvESOR5gRNwB77R9K5PaN30Ol3SsX9M0vUdPiEU+pSzDgPDcZkXjGOo/lSctCYrU3oF0fUE8uRjbOOu9S8bfQ4yoqYycZXZq5K1x8Ph4Ah0izGRkmEAofqetaOto9TO/OW4dA0mQFXjZSv/PIZJ745/wqOdj5WtBs2g2EoKJAwZcjJyAfrV8yKVkiGXwwm4TCxYkdTjBJ/wAKUn2J5rif2HaCMM1gFcZbEi47dT6UX0JUW2SDQoZE/wCPJcnOCTnA7/hTT1NrcoSeE3kP+j6e+A37wRIcd/yptu5Ld0R/8I5bSxrNNp00TRn54570RlvfYBzjjv1olLQS1A+FbedCfsKLsOHEcqtk89cnrWd1Fk8liO8+HemaneW98+q3UEsAJi+yaxNbJIM/8tEjYK/0YHFTUipFK1yW68C3DurzLFdFQd7NN83PbknPr2/SjljGOhFSSeiC08JQWQwlhHb7ozsWXhl59en86hNPY1px5Y6kyeHopVDOEnkL7kIYNjg8nApz5bak3TZY/sa4t1W3ZZQACWBxgHPqOaUJPmuaxWhY0/T555UZYpWXeTu2FizDpwDRV13M5y6M05vCWvtajVpYriK2aPc0nzFY1Jx83HAJ6VlCpyuyI9rSvy31K154efRXFtqMd2kr4YCdSjAEbhyBnbj1HNKT5tLiVWL+F3RFe2iatZC2RL+2kgkWS3uLDVZIJAw5z8jDzF/2WBHqKHGcot3JUeeW5Ve48UXnnm4l85pZSSzR7SfQ1VOHKrI6rRVjMsofjZZ602p23xAkhhi1SC8stPs7cRLC0Ksq54O9sM2SeOelZVcBRq14Vajd4u9lp/TCpCklJJbq2p5xr37Pfxjt/FZ8WeFdXsLK3e5mvdTtbPTMvczFeHAQqA3GDnrnrXPhsG8LUk4Tdn3d2edOL57pW9D5d8XaT8SPB/gu/fxt8RZfDmoanrtw0/ho3Drc3CszeXOy7SgXG3jeeSa+hy/BYDEYtuqum7/Q4IVMZh8M4xnJJu7V9HbZ9tDn/hr8PvE2oW1ymm/GHV9OlkhZpJZL2ONGx23EHmvUrZFkeLqXqU07Cw2Pxqi405tW13sF34R+KMQZpfirq924jKlDqaHI9Puk9K4a3B/DkpaUEjR5rmdVW5m0IbWK10+SHUbTX5Lh23JcReJvLQgdQUER4/HNXHhHJrXUEvkCzjFQVtbnP3aeJrQLI9veSx8ITJr0uPocY5qP9UMqb3t8kZzzbHSXNYXT9X1y1vmiv/Dc01vg7d2tXRHGcDh8UpcHZVOTSm0uj5UVSz/EUVZxv82ewfs7+OND8cfEHS/Avxe8RDwfoENncG11ldTuyPNABjR3Zm2KSOwrzqHh1kHt5VK7bi99EjnzHinNakIxp6dDr/hJonxL/aY+Oj+APCS3d9a/PDp/iLX3lgsoo42kJla6n+TbtC4wSSTgDnFfM5nwlChiVhsq1u9L6WXzPfwXEtOOXvEY9uTSS7v5HI/Ez4vRaZ8P/FPwlN1N/wAJXp3j2GOK1gtTNbzQW8VzDNIlwg2MpZ0K4PzDkVrgsHmWR5o4zs4OOtn9roVPE0s0pQxEbrfRpo890rSPitrcgl+zTRg9CUx/+qvajj61So09uhg4NrRHRaV8L/iBdkNfXsq8Z+VuPzxxXQqzdNX3MvYSeqRtw/BXW5IkS5knct1VZcge/UVmq0myoUmknJGhB8C57cJO6KVzgs7579+4rpjiIJalyhGWxp2Pw4s1AKuM4IJGNrYHTNNYiD2Zg6LuXovBtsuMRNkckKpIPHTJHIp+1SKjCSLMfhi1tojiGRHDbWVkYDHr0PIGabru+hPLdlj+y7OR/JSeEScbIzIA5HXPvVe0JcGnqiYadcF9hjB4y24ckiq5ieRix2REZtwq8Zwduc1PNYVnsPNjCowqMzEHeDJggZ5H5UNtkyuiR9NhlAe1tpRjGFlcbhn8uKSbSCFyGTTFR1IsVxySVnbBNPme5tzLlLdo9vIlwtq0imzkiim8yFowXkUsoQsB5uAOSm4LkA4JFZe39/lZmqsXLl6iExAFZLaYy5z5jxnHP0x2q3ZrQTvzCSfZVQFbVMMc/NkgDPTrx/8AXpIfKQTskcZWKziAdcEqzE4PGTjpVdSoqyK+pwves91d3U0TJFtVLedwhIHOfm69+K3pKKkkaN3RcivbC71y3u7398IeIoi3yq2OWbnn9a/VJNTlc/L6ztN+p6BZT3eu6a9jYwhYrZN1w5UKo9uamVNyJhCzKfgvXzDq8y61rU1vaxg+XDCwUlvVua4ZLkluaRq8nQ6O01CyWwY6RPLcxl98kqoRxn35P1NJyurXNXLmVzL1rxrpEU4vZBEogJWNi2SPUkj/ACK56koRlqax0SIPht8c4Lc6h41sUDXc0RjtpGGVjtwcEpz1Y962pVVCPNuVJqasQr8RfEfil21HUbn7JAScAnBI9/U+1TzubbFNqKSRn+CPL+PnxDTw5aQv/wAIj4ZuFn8QXoU4vrhTlLYHvg8t7YFaUqac/IiyXvSOm+PPx+0SzF1brqAhWFfnuJsMoOMLHEgPzN0H0NKVSDm1fRBGLndo+ePgjMfjF8Yj8RPFKrH4c8JnzbaO4nH7+6JIG4f3gASAfWsFGXtubo1f+v8Ag+uxVNc7aZ2fx9+J0fiEybbgSpKSkcrN8qkkA4A6kHC81VV63ewqtotRR59+zJ4ct/FN5rfxE1nXoLWC51T+y9NmuoH2R2UI/ftkZwTIevOdvA9FDmkrp7HJHmleVhPE974N8OfEOPxrDo4uF0268uRQcefA+BKzcfKPm+nFTUldK2htRpSn0NH4n6DpWj6zd+IvhN4hgZYJ1gntJn+XeY1l2cn5TtdeR1zWMXGLdnc75v2dP3jwz4k/tEaM6QaZ4kUWskVysuprL0VEYZcH+IE+nNWqt21Y5YVYu7tsd1q3xM8e/tQ+EpNatLG60nQ7jTYra1guHK3N3DGTghScRqcn3IPPapjRalzSXy/rQ6Pb+2VkrFP9nTVbH4TeILn4V6xHHbLdSSzaJO0eFZjgvH/vZGR61dacYdBtxpxsc3+08t1eaH51nctFdW8sc1pOAVeKRWJySeQDkfnWVOcpta6HLNuR5b8JP+Ej+OPjCT4k+NpIhY6dfNbaHp2/908q/wCsnbtnOcUVPerckTXC+0rycqm3RHX+JNXmuryWEMoeQoqtsHbIwB6Vo5vl1O6bsrdTG8INpMWoX3iLVrZpfIkFrFbvGDuwPnPNKDVzCnJ3budJ4K+Jml+DNP8AEHwd0jVhY+BfH99ZnW4guUs7uFjsugf4SAxVsdQfbFeDnuVLEzhmCV61FPl812JkvbTj9mzH/G79l74sfs/eKYox4XvtU0LVlafRdV02Bpo72Ic7025yMY/OpynO8Jj6fvNRmt0+jOqap06vLe7eyPB/F3g34v8AjAxeIL34U+JYrKCULYldEn2EdS+7b9Pzr2ZY3LaMGpVY8ze10cKqqVT3tPI1YVEmh2l/dSAMpEMiMMEMMjv3zgVeHinq9T0KzvDmQ3VY1ZT5abZFU4KDJwfWuj3pOyRxzUpOyRwz3N5omrvBJGY4Z23IWB6/XtScqdN3bHCk4K7HeKYF1qwxvzPCdysBzn3pOtJsqTgle2p1v7Mek+FNe8aSa54ptvtUel6c8y2azBXM+QisOOxOefSvA4ixOJjg1TpP4nr6HBjcbLD0eaKv6HqOrW/xM+Husp4ztVa104tkX6SpIHUnDArnJIH8OM189LE4VQVOsn936nHh8TXjWVTWEX18j2fV/jV+zn4I07VIpPjHfeIVstDhu9LFho0tuX1FiN1u6OAQi8neODivEli69aMaNODUW21qrX+8vMM8yjL6tTlm6iUbppdTwPxp+0p4jkuZdTs9E0S0lvPmjM94HYk9CY1PGfTFevhXXqR5Wnp1UXb73octHjPHYiEYqEYp9b3fzRH8MfiP8UfHWqS2/iPxFDbRW0W57C1tDA5zgjJbn8q668VOF4bd7p/kexSzLF17wlPb5HaNPfSX8Gn2sI+0XbiOD58l2PGTnrXm4nEU6FFyeluphVxEaUHUmfTfwjtPCvwR0M6h4nsLeb7LD9o1GW4XHnYGSueuK+TlUqyqc9W7b2T63PjcTi62LrKUtl0PM/BNt8L/ANoTxB8Qv2s5HFvd6e5g8I6WX3Q+WCA3JGRzzn0rrzCdfC0lgY+5F+9K3meXj8TCo/ZU7RT/AAKfwR/a3/aj/aGnl+Bnwd+Edl4cis73yPEniO1uQY0QHk7l5lOOgPcirzrLsFluX05VsS3dXjBKzfqThaU8TJUqf4H1h8XPjn+zf/wS0+DsN9qNxB4o8WataebY6G53gTkZMku4csSep4Havncvy/F4/EQWGnCo5r3t7U/J3S970bR2VatLBv2claS28z4a8W/8FS/2jvjf4ofxB4o+KV7Dby2cv/Ek0oHybK3I5HHfHftX188hr4WnaLd/h5m7XuraI86pVxNSak5a2fyOU+DWk+Mf28PiVHbRG8i+G3h6UNrUxYr/AGhJ18rceWJ789678LkkeH8PzSSeIns/5V3/AMj67hfJfr9ROavCO/mfbOleG/DnhHSItC8HaOmk6fBGsdrYwYVQOgxjpThHkTe7e77n61Tpwo01CmrLsOtJ4Reva3whFwDtgt5CS59xjrRKpG6SOynVjTdnq2dd4H8LeJL5J/Emm+EtRubKFGF1c3Vufs0OByctwKmrOlGPxWbLnj6NOnaT2Oz8DwaTrNutppd+s8d2oe3lEIAbsQrAE4B9DWf1mndpy+EeHzHC4iPuvRnSN4LsVWMGCKcLIV80OG2kdQT61p7Xnaa1OqhUjVhzQd0Ph8MWby7IYSABkRsw5x+H8qr2ivZGko63HXHhSKbYxtWyG/do/IXPoaNHuQ32K1z4QnJ8pI5Qy5+Vz3p84a7EMGm6tpMm61EqEN0XOP8A69F4sm3U1INdmeIR3lvbsxbcZGwpIzyMj1qXFrYd5LZlxJ45JBFbW0sUjgBRuEinPcY5xVa2stzSKbiXktJYgyNYqGziTc5XPPPFa6X0MGmnuOXQLRQSti6hjtCh8k/Wm3boWpW6jv8AhHLMAP8AZiGxySSB71FhuorEj6GCuyANgcsrPjNaW0CMvIlTR1Y4VEOV4Jwdw980JtMPQBoNrGR5WmQgNguVjGSahq7uO7aJV0BZCfLs0znlcA/jVPVAm3oRvoEsYzJaq/Ygp3qWlYm6uH/CPsgybePBByWjxn2PFRCGpcpNFdvDUFxC2zTosdAsJG7HofT61NSJNN6jhpsOigR3V21vE0Jcn5pd4XJICqpOcduprPmlA25mloF78OfCfi/yNWa1iMkhD29xG81rInXBK5DKfwyKlS59TmnUbkrorx/Bq60/T57bTPGviW3triMx3EEevysrjOcBXJ4pyip6GfsoOV7fgSTeDPFk1wkJ8dapeMiKgS/VJsKowEJK5wB71P1ead0zVRjBWjEY/g/xcl1Ffbba4VGxO1taqrSJjkEHqe/BHf1qY0qyfc0puFzQuLfTIo4GZN0zRb5kNuVWBySNmT1OOcjjmuhR25i7yk3dWHRw2kkW1fnZhyRH+Oc4quaysDXcqyaPpctw1tbWTvO5Pzg4UgAk9Ezn8aiV0tUQ5Qa8/UxfEvw98N+LLZ7HxH4TstRjxt8u8tQ4x1PXJrnlKT2uVfnVmec6n+wr+zhcie7t/h9PpzysN0ml3M0IJ68bD+ldFHF4qikoSY3hcNUjdwRg3v7CPwuu49ln4r8WW8WCyxNe+av5So1d8s3xvLo9TFYDCbctvmY2p/8ABOjwXcoXtvHWrKmMEPpdlnnqP9QKqnnWNUfesZPLMG9k0ZN3/wAEzfC92qxzfE/V9kfKAaVafN/5B9zWX9rY7V3RMsqwSW7K8P8AwS6+FyOJJ/iP4p27ThLWWO3Ujv8A6uMUoZtj+Xc5amTYWcr6mpYf8Evv2dohi8m8S3uOsd7rtxtJ+isBUVc1zSpHldSy9Ap5JgYSvy3Oktv+CfXwOgt1tYfDqzwx4EcF/eTSKMdMB2YcZ9K4lLEc15Tuz26FHCUKfLGCS9DpNF/ZU8CaTCIdJ07ToVjAUxx7iqZ/2VwBVSpRcdTSeJjJWsreRqR/s/eF7CeOCS0gk3H97JGWP0xk4IrFU/e1OV1G37q0Ih8CDFOBJc6S0BPy+XaOjBeeuXxXROELaCinfUhvvgzpMgMdnaWxlGQzsWGBxj+KnGKsUtEZt58EfEttMmoaJbWEtqTiQSztnn0656DFc9X2kfhRmlFy1ZdufhakFvZ3N62mO08Je6htjLFJaODjafMQpJkcgofrinTlUsr2JgrzkpRfkyCP4d6NFAxmurmOckjy2gXGO/JwDgVor33NVGNth118OPDkEhitNbM74XdHcXaQ7SckjB6/nVKTUjju/aWsZsvhrSI5vK+zQ9yC8u9vw9O1buUrG71Ww0eE4pmINnGwx8gVsluvYjPvT55Iz5ebQlsfhlq2oz28ejeGGne9uVht1R4l3uxAAZnICn/eIqJYiFN2ZE4KFJzb0RjjQILhmj/suS3dZXjkiuCokUoSrZ2FgeR1BII71pGXNsYcqkrohk8PWQ3GSwcH+EAkDj69q0TsioxaIX061jAWWxwOuGY4B/HpRuJq+hHcAJGsckSYTICtyB645o5ddSuTQqA2kaF5LWLoSGGOR+Ap2I5dRHWwkUv5O0A8Iq4J9smhpIbS6ELW+jSXESJt8xiFj+YAgk9Onek3bUaTtZDL63tY5HWWyjiZFIkDgK2fTHTua1pTbqL1CXNtY860LxJDqusLpFmU88/vWiL8/U1+tygoM/LYqbfvanpWman/AGPaR6d9vBg2lpFDD5m9Tn+VTOorWNEnfQtT+Hn8T6RJdW8qW7bPljeQgynPAYY6VwVINq6GnfQlsdMuvB2hf2l4tEbTvnZaxOyxxJjAI+tc8vhs9zWXvQSijh/GC/25HJZWmnMyyxHcqZXapB3Z5yPr7VzVdUPlbRwvhPxPJ4Nkkt5obfykTZFasWKxKOF3YxvbGDgcc81TlypIS5k7nQeBX+If7SPiGTwf4JlNnp9gwXX9e24isUPJjUngyHHTtWuGjUqyeuhorP32eqeOviT4G/Z4+HyfDf4ZgqRAYwRId0zZJaQ88sxOSep4qq9aMfcW5zSh7XEOor9Fa+ml+n5vr8j5K+InjzXPGWsW+lzXLJcXk6wxJHMd0kjnAxzkHnnHQVxRUp3j3Oh1FSsj0L4j3l18JvBNp8KPhxZww3sMQku7iaIOssxUFnIByQMkc+ldUeem+RK36mNWpJO8Tx74kXfxR8ZWd/BY/Fw2aW9vHbx6XpmmpDI7lAztvOSRk5GMH8aXvyfLcxSdWScmeIfCPxd8TvC+lXvw/t/iFrcB0W7dhC052lX3MJMHqcn862hRcJOSdhUqdaN4p6Gp4v8AAXxl8a+G5NSv/izqklhLOUZUu1VnlwrsHxglcFDzwe3Q1hJ8tRnalKjRTbPafgn8VdT+Lfwj/wCER15YoNX8LzG0AtlJE8DKWVySSWIUYDMSflHPFKNG0bPcxWIVSajJ6vT+vuPOPi94Gs9P8RaDqV9bieBNXgS4SU8qGcDnPXqDQo+zlzG7g6Svc+xR4e0SPw9byWGmW9hF9i8uK3kwJ5kTO5wy8Fc8gejCrhWdXV7m8b6dzxv47f2XqNpMbGVklguVe0vB8rwspJB/2fX6VM4KSZnUhKSucV8QfihB41+D154i1ZY4dU02IwatGGziRVBDD0DAZrOdGdKSi2tQekLo5/8AZ+gW0+D2hag8LRQTWrTKXBC+ZIWO4nsMc5NVOMYTs0dOHVT2epznin4u+EtI1ySPS521a6hyFgtFLJ5n+2/QUTpztoxYmpaOjOV0rxN8QNfmXRdN0ZLFYZWea7uHypkbJY+/Yc0lanT13OehCrze9sbkfhyOxs5LW61GeeRgwnU4COCByBWHPKcrnW3Hpue5/AL/AIKC/Fv4EeApvhJrF4mtaOthPb+Hr+9gSSfRTNtDiNnBO07VGPavmsz4boYrFRrYWfI3ZyXRtHHHCU5YpVpfGk0n1SdrpPs7K/oj1z9iP/gqz4K/ZP8ABMng74kfC3xH4onvEnWN52tru0g3ncXjiEatETxxuPTBrxMx4azWderUw/spKcWveTum1a6d91v/AMA0rYTEayXvWOA/Zu8ffsJfGD9qTxRqP7TOmPovhbxNcNPYQzziJrRmPPoEbOTjPfrxUV6fEGT5XhoU3KfJpNxs218zmc8XCnGnO+r6FbUvg5+wh8Qf2/vD3wP+HHjbXk+F91dLb6x4gsbxGfzXGFVXJYKuc8+nSuvDcRZlhcnlisZzRd+q95R72RhKtWSum1bqHjj/AIJVQa/+1T4g/Zu+Ffxq0aCOwhuL+wuNf1WJnnsogzbkK8ElRxnv1xXHLj+lTwX1hU3Ujzct0mvQupj1TShOV2zK8KfsBfBW0An8R+MNb8QTxgCeCCRbSDcOo3DLEV3/AOsmPxUYukuW+p7dHLvaJSk3qd3pnwO+DHgOOWXwl4E0/RYjEfMu7iEkle4ad+tcVXOIyrclSb11S3/FKx2xwODp071Eku7POfjJr/wPv/CTeAb6407UL7UpyNLn09mK21yvzIdxAGciuXF4/GVbfV1pDWX+HZnz3EWeZSst+qU2pSbtddPmeHeAvC3xf/aU8Ua/4Y8JtAde0PTJJLhZWCtcQQrkjngt16dTXXWWU8P4ajWrp+yqP7m/0PhMmyzH5vjKlOjTvZXOh+AXj74J/AjxFYS6/wDBew8e+JY7ac6+viy6e3t7EspCGHZz5iN827nkDHqOjELGYqt7Wq7YXaMIN3mvOS1VxYSustqqcqSnLVWeyOx8BeN9a/aM1a9+IXxB+Lltf3VjYtG15fRxQvHDEMLESgAYgALzzxXzlVYfhWKoYbDOMZPRJt3b663PYwuOre15pa36En7L6aH8XfiTqHjvWfEFrbaDou620mWaUqksw+83GTx0rHP61TCqhg5+7Op70m7+6umye5xZtmcKuK+rw7HrvxwitPiJ8P7vTPDuszokVk8e/wC1fLcEd07/AJ1z+1cq1Ke/Jbftc8uVZy5VHRo82/Zp8fT/AAv+GY8FaxpaSed5sclvJbHv1z9cZzXVmWMUMxqVeXm5lZeXoebKlOpWlJq56B+wN4b8Ga38ZvEfxm0LTrbR/B/gS2kv9VltHIi1HU8ZjtyQcM2eT1rzOIauaUMspe0fNUfw83SP/BPbyXC81ZypxsoavzPh79r79oHxd+0p+0HrHizWrpo7eXUZFtoXkYJbxBuAAegr9I4XybD5LksWknOSu7dWz5/F4ipiq8q0u+hf/ZW+FPxH+OXxLutP8KyXGn+DtKtgvi/WrZhGRbk/NGjMOXboMc81rnOOy3LMJBYlKVabvTi+/d+SPUyrL3mNaMJ37vyR+kHwn8JeDPAPhCHwr8KfDsmhaFbx7rXTpphJLKOpklfAyT1NeK5SnWlUnJuUu7vby6H7blmFpYTDqlSVkjs4NSuLoxRXwQqw2pGLc5H4+lTJTT3TR6lNx6bml4d+Aem/HjV38Lpqs1k+nxm71HW7NgjWSLyFZu2fSvGz/MY5ZgVUpyTm+nXQ+dzjMHTnyQ3R2+ry+INT+CmpfC74b6/ql8qrNPqGoTTCC1giWLYi5481yQzbRkkkegrxctxsMTh6c5ytUu5Wb3Xz/p9NTzMPT9rhF7z9pJttNpLlSW347/I5f9mVfDfwi+DWn3njDxElmNB0+RYDqkxR57lsDLBjnbkk/hWWJq0JTqVp1rufb8jLDV8tw9CCm2kk7Wbd3brqVv2TPiJoU+rXXwn+GguNXtYb+4vtV8S6ldskd5eTyFvItgclyM9Bxg9a6/7ZnhFTjL3+ayUYrVLuysh4j+o4j6hSpymu+lte1306+ul3c9313U7bwfqT6N4nnh07UFiL/ZLuVfMx1yBnpivoYVoVG1s1vfofexzXC15+zvaS3XUXw9478Ja3JLp+m61DNOkPnMEdSygcnj0xRKquVPmOmhjMNWk4wabXmWfCvjXwF48tp7rwn4ls9Sit7o2t1JayqxSUdFOD15H51bkouzOnD1qGITdOSlbe3Q2ZtLQQZ+yEqR3GSD+NXBt7l6zRSm0e3OD/AGejkfxheffIockLljFamH4o0G3nsybDw/CNSjIW0v47hk2jnKyJyJAfbBHrWU4VLc0ZWGoSavfQpa/qGsXdnYafqV5Gk9i7i1ntlZd0br80LBmPyhsEHrnvWNClWo4nnlO6OeOH5Zt3uOsJ/ENpiK3vrhiCAykZ5/wr1faKS902jBTdkjRstc1/azNOmxQWlkYAKp7liegx/KnGV9AUY3sbXgnxFofjbQY/EPhzVrPULOSRkS8tJRJG5QkMAwODggjijnu2hOacbpm+bMMmEhHXDbc5U+lUmrXMnJj104j5RbsM/ex9e9LfYfM+gqaLDIpYQBSRx89DRfO0TPpc9vERFZCcg9DKAfzNErpaExabuxz2aKzbgRlflEuDgYHHFC0QTdxPsFpcAs1tHvwP3oXawP1qJKT2GtEK+gzKBgo8bcjY6huD1OMGh3QNqWhQuvD1ow81ki3NnO5NrenUc1KjzFLzG22iXtrys7/eG0KSf/105RjHVFpq5O0moWgUSW6sN/KBMfrR0HpYhlvZCJGa1hGc7x0PtnH8xRB2M+R3IXa2u3El18owfl83IP4Grlqim5IieCwRmdpHXggbTyPb2FZclhpyluVZLm/kgWysdTvfs8bGQwmQ7EOMZPpWnLUqJqKulq/LzIjTp81+pRuLhXZpQ7M54LM5BY47H/8AXXE2nsdNox0KjSvBmWIgYblTyM/Tv+NUr2uEW2itcNM6CRrdMs3JjYjOcZPFE5aD5rMiMd0ckXEmc/MW6H2qVa5XMpDHDqGIRpNow2JWXA46e1OVrCmlazIP7QglQSWieYpbgG5Zsjoe9OE9NDOMZN2GPqt1IpIhkACnByeOB703Zm3LYryXeoF8qWLEbQRwe3p0qeW7uJ3sMNxqD8i8kC8ZIIB9x71onoZODfUfDcy7QVu2x1JyeePzoTV9AUEtyVbuRyQZGyWwTyB/9endMCMzz7toDFjjAJIHvzRd9CJXHHUri2hZfKmAUD7uAWOemT0pStLUyepLMReKFuZGHykgFuB0I5H8qqysVzNlRNK02aX7RPczQk7trxTscggjgE4oajY0jPTVHL+IfhZqE+sPqsHxj1toTIsjWL2sJRSM8A7c9yOvesI0ZqbfMc0qd23Yvw+HZnjkIne5yuDNMMnJ+nSuq035lpvlsMg02ewS7eS3gaWS4VrS68x1EMIUAxmPo2Wyd2c4OKyeGrSrqaqadi+aKjYqT6XcrEqJewINx3+XCeSfUZwK2dNN6mMm7aGbNp1zGFEmpMRkDCLjv7DvWitFEXdypd6eVbJug5xht0h/XFNMq3MjPujYQKGuLhE/i37srjj16f8A16bmkYyjy7mZca54eiUn7arFjtXy2DF+ODxT5k1cuKctinJrekthl8+Rh1KR4z3Izjmo532M5KSZXuNZtZyETRZc7dw33RVj+A9OMUm5SJcZplVtSf7K1jJ4asbgyRkSJdgybx33A/55pOLfU0p3UipJPNaxyvYaFptqWYu3kWyjccdTx1rppRtNFybsz5+ufiKkVxHD4ciH2+6ZY4RFzLO5Iwi9etfrc047n5K3GjUsex+G/h78WdN0Ea3411uyF8QCumRREvbKRkB27t9Kx5E9WzN13J6noXwdC3F//a3iq+DRIoMVtCpAZwepJ6inzwStcpy5ranTfEHU4dfinvnjVYmVWOAAHI6KPyFctSlOo9EdtKyhfoeZ69ftFBPdxskUs0a+YxAUk+nuMcVj7Cb6Gl4vY8h8cW+p+M9TXwx4d1Q2UtwMNNBGu6NTjLD3/rWbwspPYJQlJbHq3h/xBpfwm+HEXw48O3EENtZhZrq0FzvmuJiSTPO2Ms7HJ/8A1VtOcqUNXr1+f+Zm4xjBQkeMfEbx5careTahrF6qxbiyBcAge5zx0rz9ZO9732GpwjHVnnvwW8SW/if4pT/EuSBZtK8MkpZMh+SW6fAz6YQc59TXpYbDyg+ZmkFzrmWptwfGKLUPiDqFzr80b77craSNNvIPIyevJ9D2repRlOXMc9R+8efeK9T1K21tPElhqUn2cNkbFI2tg4BH+P8ASuZ0505XsTHmpPmOXk0m7l8TQfETRptqTxNb6ujcAox4Y/Q/oTWFSTqND9pKXvHSeGtSk8RacZJrySCS3lka4WGL5ZHGQePfgZ9hVqHJG/UlVVN2Om/Z51238JfHlrS4jjEXiHSZIlhbjmP5lyMfewTzXNJudRJHXRUYassfHSa3udIupZmMZs7qOYFhkrh1JHv0HNaP2luU6Y8tW6Wp6brPxGu9Qi3tdlFS2TaS+BjaMj8a1hSm1ypGllBnBfEPxX9sae2YosNzCHYD+8FI/Pk/nUKLp3uRWrRirHlfwxh0n4kfFDxJpviEEeENC0qPUPGDxkjzFRtsdsG7PM7LGCOcEntXDjadeqouPUjA0/azk5bI0/F2t2WtaMljdqsNsuDb6XbsUgt06BNo+9gYHPpXZSjONPllc6K0lFW2OE1iCDRJ430mOJXaaNbWDywBuz97j0GTzWFeck9DmpxdSWhuNqEJEnmyhpGk3SNgZZjySaajOWr6nVVbS1IpdTgaUJcFWbBxtOMjtU+zcFexnBKTKV7MzROWlLZPK9+OlSpyhFpdToUdLWF8I+I0t5rpLiXPlyKYznJAx0x3rGakoNo0oVIxbitzqVvtFu4990sL7+gaIcf4VkoVVI7ORw1LWmW3hhIjCNMsJS+N37sDp0P1rOdKtLSSvfyM4Uot35Uz0H9mL9nTRPj78e9L8HaILTTJWVrrVtfuLt1FjYQgvM7PnIULnjoSa+e4kzajw1kNWtOnzX0jG28nt/w5xY2ng6VGUpQVz0r9pP8AaQ8Mz+IJvC//AAT++E0mr6LpQNpceO/FUhMdxIgwzQRNgEdcE9ewr85ytYilRVTP6/JKWqpw3Se12j5TMeLa+GpRjTX4XPnDxn4U+N+q2954z/aM+Kt2unpGsk1rczCOOMHlVSMcLnHGOSK+pw+dYKrbDZZQTb0va7+97eqt26nyOYZnmOOi+eo7W1OF+DvgyL9obxvf/EzVtW/sD4ceANhl1WQlUMzgiNBx8zsecele1m81w9lkMHTh7TF4jp5Lf5FZVl31hqKdox1bZueKPAWlNpV1rvwj8aalcTWu+VtW0+0Nv5as2NzlBuwSQMucciubAV8a6ns8VQTgkuZaySWi66LV9t2j6SthqWCw3Nhar5n1Wn3Hn2qaPJr2iyahd3MkmvaagW+ljywuIsdWPtmvTli/q2JUIpKlLZdmfPwrqjBRb5mt2+pofB3RvhZqs4sdft9Xj0RFafV4NLmZPMX+MsOOM55PYivMzavmdHWm4uo9IuSvbtb5HLXxNSXvQsmz2v4S/Cb4ZeLdSuNY+DCa/pngTTrgHUI4rYkTyuDhHk5Ck7T7/KfQ18zjs4xeCUIZvGNStLrezSW9tPx2VzzqVNvF805LnaPQPj/+0P8AA79mbw//AGYLvTNc8STWbW+l+H4DvitS4wGlc/xc98VOU5VmWe4jnoR5aOt29dP1Z6eGoKrLmm9j5f8AhT4O8YfEq38S+DviH4i1rSfELaj9osmSVlWFe6ArwV7DBr67NswweW1aGJwtOFSly2fdvuXWxtKmlGk1qj7N+FXi/wCDHwN+BWo/AJdJu5YtM0KS/j0qzjO/WdWkXajycZZQSehP4dK/PswxWIzTEutXT5ajtzXsoJbfcj67C5xluAyv97C75Xou9up+ePjv9mP4+2FnffEj4m2iaDpkkwlkNw4EjBySqqgOTX63l/FHD85QwWCftJpW8tPM/OqWNw0JKEabbfdaHTfs4fCn4ja74bvvGC/GG68LeFoJRvZJSiXMg6fLwCeB1rm4izTLcJiIUPqqq13+C9T0JZlHCy5KafN1PdvCOs/GrwlqmkS+KPip4ql0XUtPlu7HULaJYLSdI2MaMJJEJdPMVgSoIJjcEgivmq2OUoyjRoxi00mm25a+S/z66I+my/iWrSpPnk3y6WT1vbS+j8nbqu257v8ABj9tBvhZ8Er7/hbeoJ4i8UG5xoz3VuUMqE/IQcA4IK84xiuavinWmoUItW3fRW3NY8byVF02rvoz1PS/2jdSutB0L9jX4Z+IoND8e/EV/tvjfxA0asukWp+ZQCwwWA6D8TXy+WYDFZ7iXi8XZYeMrK/V38uhGAnUxyVKc7Sm7tvojzDXvgDYfBf4zaje/Ez9qLW/G3w+imiC6va+JPs8Nvcg9HeH5fvZxjvxXrZy402sLltOHtLtNxje68r3OfNZ4TC4qK9u5RXmZn7SvwL/AGd9V8daRF8OPjX4q1TUdWjWay8Pr4ninjmDjGJh5jlT35APeuHBVM4wWDtKjFxevM4K61t02fk+lns0d+LWWw9hKhq2rpX39V0/p9TrPDH7K2l/ss6bbfGH4jftS/2dN4fmTUrTwQNe3+a4BKowwCM4445reWNqYijbD0I+0lpzcu3ma1qGFwkFiZ1bNaqKepL4Qn0X9sD4lP8AtW/tWeI76W8vQf8AhGvCOk3jQPDAD0dFwW3YGc8EGvDzjNcyw2J/s7AR91/xJ21fo3seDh6v9qZp9YrtqL7bne+JtT/Zd8Z+JNQbVrdvD2p6jY/Zrn+wfE32a9ECjoQpG3gfXjA9KMFhMyXJSw7+FOXv2t7qb3lo3ZaK929Em2kfRyxvD9Cna0k2raN3+Z2X7CHwv/Z2+D1nqGmfs4+K5JbSUS3Umga3qBklvbzoGWRjy33R/wABFRjuK87y2ssXmVLnTstFZJfI9Lh/H4XLas6mEd1KOsZPd9DpP2bPi58X9W17xx8Sv2mNLm8NQy6mNP0Hw9fTBYo0TgGM4wzM3OfoK63xZgJZhCjRnzQcU27Pd9D0uG88xM8ZXr4u8YvaLvZeh6xH8UdKsUmS+04CUxJNhG2lo275HXFfRYbHYWq3yb+h9dTzjCV0+Um0bxf4b8fMt74fsAEt4zHMsvLmXJBOOoAxiut1G1d6I76VejUhoxms6JP5UiXkQO5NyhVAOOx5z7U6cufS935HRFNQuloU/Dlzp+kpcy+JdPm1EWVld3QH2+G3Fw6JuSJ5nwIlP8TnOBzU18TLARUpK669Dgx1XEU6V6PxX6nyd8Ufg3/wUS/az8R3em+P9LtvhZ4HtZ0Wc3F2BYWyeZ1CRlptUkwRgPsjyeRiuihjMG5JRd2+i3fz6fK79D5NzzbGV5Uqit530tY+zv2dfhb8Nvg18LNE+Cng+0nstG067ka61262vdX1xM5eW4eCMKsKsxJEUYCoCAB0rRV0oOpJKKTS1evlu7vbV6+bu1f0suw9bLsO6cG5W2u/1Oqmla2u57FFdTFK0ZZxt3gE4bBHQ9a3w9eGIXus+hp05zpKbW6I0urgLsZiVAxhmGDXX7KfYyvHoyRHtJR8yqpYdQ3QU/Yz7BzjhFH94sCpHTfkfWj2M+zBSGyJBMeCAcYGGzQ6M30HzEZjkBy0YcEdG7Co9jJdw5kKsbcmRQB2w1HsZ9ilIa7wjIdUYkcBj0o9jLsPmuNV4t2Y/lyOqvjpUOjLsx30HbbqRSDLwecFsih0pbal80SKRH4YxpwPugDGalUpxe34Fb6laWz3ks0KnIxhl6f40pz5dzTklFXex4l8fPGH7buk/E2Dwl+zX+y1b+KtCGji6vvEN1clVjl3OGgC5GSAFOO+6sHTqVqTlSl719rXPJxeNq0qyhBKz63R852PhH/gvN8evH/lada2nw+0y43tbJqFtBaWsKr821wyvLM21T8oAI4JPWvQw9DL7ezqtuXXW33f0zz44vMqbk9l0as/vPq34M2Px6Hw10y0+PP9mah4sgjYatdeHbNltG5O3aCOuMDPc815LdCnUbpP3fM9zCOvLDr27Tl5HSnQNY4zpbqWGT5p6+3NZe1jJaM74030RUm8O62JQzXMEGQdxJY/oOKlSctg9lJ6pMbHoi3AZ28Tc5+aNI8Ac+9dCoVN9TJzcXtYdJ4YtGhZ5dRuHLZbCHHH1xWU2lKzZUanN0K7ab4dtNzW/nDLN8s9wcgg+g7VpCE5arYJuUWPNpYu+UtVLN1bkntyfWlJcj94lVU3uRvb2EQHmW+1AMcYBoi1L4WaKM5apEMt1YWwf7LsdjIYwSgwg/vE9z9K2VCpfVEO6ZV+2WO4uiRFuhYgDPT862VCXZkN6jjPPISYrMH5chQB8o/ClKm4LUS1ZEJLxoCIbYYUYBZxgkdiT+VEKc5r3RzhOC1RXtb/AF0xtHe3dtD5iEMkQDDHbBIFV9XqdUzntrdhDFaxo8Zuz0wTv+8etDoztsXFpvQhupNFteLq8Ve/zSYx9KXspPZFNyXQyb/xT4asic6hG2B8x35yf61aw872aG7qOxly/EbS0RmjunJOCdq+3bNW6E+lzmc+xQvvHUlxI0lhYMzbcbjgZGf/ANdSsPNO9tfQXMZ0mteKbuNvLtII1bliRknIo9jNuzJ51czpm8V3HEusNEScERKoI/OtFQl1TK8yF9KaYSvc69dyNn5w9wcZ+i+1J03HoV7VRWpTudF02H5ZYlfKnJcE8dO/tWXNG4tKivEgj/sOzRg1uY1TGNigDp2/GrUZS2RPPyuxTuta0a3yjw7yQSRIafsalrWE3cqXPi+1CHZbxnOSORkCrVGpbYlszLnxvKzkKI1GM70weeuP6U/Y1OwJ2ZQuPGRkZxHKoZz820YzVU6coSvYcp8qbP/Z", - "text/plain": [ - "" - ] - }, - "execution_count": 15, - "metadata": { - "image/jpeg": { - "height": 256, - "width": 256 - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "!curl -O https://raw.githubusercontent.com/meta-llama/llama-models/refs/heads/main/Llama_Repo.jpeg\n", - "\n", - "from IPython.display import Image\n", - "Image(\"Llama_Repo.jpeg\", width=256, height=256)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "e1450ecc", - "metadata": {}, - "outputs": [], - "source": [ - "import base64\n", - "def encode_image(image_path):\n", - " with open(image_path, \"rb\") as image_file:\n", - " base64_string = base64.b64encode(image_file.read()).decode(\"utf-8\")\n", - " base64_url = f\"data:image/png;base64,{base64_string}\"\n", - " return base64_url" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "d7914894", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The image features three llamas, each with a distinct color. The llama on the left is white, the middle one is purple, and the one on the right is also white but wears a blue party hat.\n", - "\n", - "To determine the number of different colors present, we can count the unique hues:\n", - "\n", - "1. White (two llamas)\n", - "2. Purple (one llama)\n", - "3. Blue (party hat)\n", - "\n", - "Therefore, there are 3 different colors visible in the image: white, purple, and blue.\n" - ] - } - ], - "source": [ - "response = client.chat.completions.create(\n", - " messages=[\n", - " {\n", - " \"role\": \"user\",\n", - " \"content\": [\n", - " {\n", - " \"type\": \"image\",\n", - " \"image\": {\n", - " \"url\": {\n", - " \"uri\": encode_image(\"Llama_Repo.jpeg\")\n", - " }\n", - " }\n", - " },\n", - " {\n", - " \"type\": \"text\",\n", - " \"text\": \"How many different colors are those llamas? What are those colors?\",\n", - " }\n", - " ]\n", - " }\n", - " ],\n", - " model=model_id,\n", - " stream=False,\n", - ")\n", - "\n", - "print(response.choices[0].message.content)" - ] - }, - { - "cell_type": "markdown", - "id": "8cf0d555", - "metadata": { - "id": "8cf0d555" - }, - "source": [ - "### 2.4 Have a conversation\n", - "\n", - "Maintaining a conversation history allows the model to retain context from previous interactions. Use a list to accumulate messages, enabling continuity throughout the chat session." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "3fdf9df6", - "metadata": { - "id": "3fdf9df6" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[36m> Response: The most famous Prime Minister of England during World War 2 was Winston Churchill. He served as the Prime Minister of the United Kingdom from 1940 to 1945, and again from 1951 to 1955. Churchill is widely regarded as one of the greatest wartime leaders in history, known for his leadership, oratory skills, and unwavering resolve during the war.\n", - "\n", - "Churchill played a crucial role in rallying the British people during the war, and his speeches, such as the \"We shall fight on the beaches\" and \"Their finest hour\" speeches, are still remembered and celebrated today. He worked closely with other Allied leaders, including US President Franklin D. Roosevelt and Soviet leader Joseph Stalin, to coordinate the war effort and ultimately secure the defeat of Nazi Germany.\n", - "\n", - "Churchill's leadership and legacy have endured long after the war, and he remains one of the most iconic and influential figures in British history.\u001b[0m\n", - "\u001b[36m> Response: Winston Churchill was known for his many memorable quotes, but one of his most famous is:\n", - "\n", - "**\"We shall fight on the beaches, we shall fight on the landing grounds, we shall fight in the fields and in the streets, we shall fight in the hills; we shall never surrender.\"**\n", - "\n", - "This quote is from his speech to the House of Commons on June 4, 1940, during the early stages of World War II, when Nazi Germany was threatening to invade Britain. The speech is known as the \"We Shall Fight on the Beaches\" speech, and it's considered one of the greatest speeches of the 20th century.\n", - "\n", - "However, if I had to pick a single, even more concise quote, it would be:\n", - "\n", - "**\"Blood, toil, tears, and sweat.\"**\n", - "\n", - "This was the opening phrase of his first speech as Prime Minister to the House of Commons on May 13, 1940, in which he said:\n", - "\n", - "\"I say to the House as I said to those who have joined this Government, I have nothing to offer but blood, toil, tears, and sweat. We have before us an ordeal of the most grievous kind.\"\n", - "\n", - "This quote has become synonymous with Churchill's leadership and resolve during the war.\u001b[0m\n" - ] - } - ], - "source": [ - "from termcolor import cprint\n", - "\n", - "questions = [\n", - " \"Who was the most famous PM of England during world war 2 ?\",\n", - " \"What was his most famous quote ?\"\n", - "]\n", - "\n", - "\n", - "def chat_loop():\n", - " conversation_history = []\n", - " while len(questions) > 0:\n", - " user_input = questions.pop(0)\n", - " if user_input.lower() in [\"exit\", \"quit\", \"bye\"]:\n", - " cprint(\"Ending conversation. Goodbye!\", \"yellow\")\n", - " break\n", - "\n", - " user_message = {\"role\": \"user\", \"content\": user_input}\n", - " conversation_history.append(user_message)\n", - "\n", - " response = client.chat.completions.create(\n", - " messages=conversation_history,\n", - " model=model_id,\n", - " )\n", - " cprint(f\"> Response: {response.choices[0].message.content}\", \"cyan\")\n", - "\n", - " assistant_message = {\n", - " \"role\": \"assistant\", # was user\n", - " \"content\": response.choices[0].message.content,\n", - " \"stop_reason\": response.choices[0].finish_reason,\n", - " }\n", - " conversation_history.append(assistant_message)\n", - "\n", - "\n", - "chat_loop()\n" - ] - }, - { - "cell_type": "markdown", - "id": "72e5111e", - "metadata": { - "id": "72e5111e" - }, - "source": [ - "Here is an example for you to try a conversation yourself.\n", - "Remember to type `quit` or `exit` after you are done chatting." - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "id": "9496f75c", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "9496f75c", - "outputId": "7d93a4cf-a5d4-4741-b6eb-6bce3a27ff66" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[36m> Response: Hello! How are you today? Is there something I can help you with or would you like to chat?\u001b[0m\n", - "\u001b[33mEnding conversation. Goodbye!\u001b[0m\n" - ] - } - ], - "source": [ - "# NBVAL_SKIP\n", - "from termcolor import cprint\n", - "\n", - "def chat_loop():\n", - " conversation_history = []\n", - " while True:\n", - " user_input = input(\"User> \")\n", - " if user_input.lower() in [\"exit\", \"quit\", \"bye\"]:\n", - " cprint(\"Ending conversation. Goodbye!\", \"yellow\")\n", - " break\n", - "\n", - " user_message = {\"role\": \"user\", \"content\": user_input}\n", - " conversation_history.append(user_message)\n", - "\n", - " response = client.chat.completions.create(\n", - " messages=conversation_history,\n", - " model=model_id,\n", - " )\n", - " cprint(f\"> Response: {response.choices[0].message.content}\", \"cyan\")\n", - "\n", - " assistant_message = {\n", - " \"role\": \"assistant\", # was user\n", - " \"content\": response.choices[0].message.content,\n", - " \"stop_reason\": response.choices[0].finish_reason,\n", - " }\n", - " conversation_history.append(assistant_message)\n", - "\n", - "\n", - "chat_loop()\n" - ] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "gpuType": "T4", - "provenance": [] - }, - "kernelspec": { - "display_name": "l4", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.16" - } + "cells": [ + { + "cell_type": "markdown", + "id": "c1e7571c", + "metadata": { + "id": "c1e7571c" + }, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb)\n", + "\n", + "# Getting Started with Llama 4 in Llama Stack\n", + "\n", + "\"drawing\"\n", + "\n", + "[Llama Stack](https://github.com/meta-llama/llama-stack) defines and standardizes the set of core building blocks needed to bring generative AI applications to market. These building blocks are presented in the form of interoperable APIs with a broad set of Service Providers providing their implementations.\n", + "\n", + "Read more about the project here: https://llamastack.github.io/latest/index.html\n", + "\n", + "In this guide, we will showcase how you can get started with using Llama 4 in Llama Stack.\n", + "\n", + "**💡 Quick Start Option:** If you want a simpler and faster way to test out Llama Stack, check out the [quick_start.ipynb](quick_start.ipynb) notebook instead. It provides a streamlined experience for getting up and running in just a few steps.\n" + ] }, - "nbformat": 4, - "nbformat_minor": 5 + { + "cell_type": "markdown", + "id": "4CV1Q19BDMVw", + "metadata": { + "id": "4CV1Q19BDMVw" + }, + "source": [ + "## 1. Getting started with Llama Stack" + ] + }, + { + "cell_type": "markdown", + "id": "K4AvfUAJZOeS", + "metadata": { + "id": "K4AvfUAJZOeS" + }, + "source": [ + "### 1.1. Download Llama 4 Model\n", + "\n", + "In this showcase, we will use run Llama 4 locally. Note you need 8xH100 GPU-host to run these models." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8fb2e8b6", + "metadata": {}, + "outputs": [], + "source": [ + "!pip install uv \"huggingface_hub[cli]\"\n", + "\n", + "MODEL=\"Llama-4-Scout-17B-16E-Instruct\"\n", + "# get meta url from llama.com\n", + "huggingface-cli download meta-llama/$MODEL --local-dir ~/.llama/$MODEL\n", + "\n", + "model_id = f\"meta-llama/{MODEL}\"" + ] + }, + { + "cell_type": "markdown", + "id": "oDUB7M_qe-Gs", + "metadata": { + "id": "oDUB7M_qe-Gs" + }, + "source": [ + "### 1.2. Setup and Running a Llama Stack server\n", + "\n", + "Llama Stack is architected as a collection of APIs that provide developers with the building blocks to build AI applications. \n", + "\n", + "Llama stack is typically available as a server with an endpoint that you can make calls to. Partners like Together and Fireworks offer their own Llama Stack compatible endpoints.\n", + "\n", + "In this showcase, we will start a Llama Stack server that is running locally.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "J2kGed0R5PSf", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "collapsed": true, + "id": "J2kGed0R5PSf", + "outputId": "2478ea60-8d35-48a1-b011-f233831740c5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: uv in /opt/homebrew/Caskroom/miniconda/base/envs/l4/lib/python3.10/site-packages (0.6.12)\n", + "\u001b[2mUsing Python 3.10.16 environment at: /opt/homebrew/Caskroom/miniconda/base/envs/l4\u001b[0m\n", + "\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 83ms\u001b[0m\u001b[0m\n", + "Environment '/Users/erichuang/projects/internal-llama-stack/.venv' already exists, re-using it.\n", + "Virtual environment /Users/erichuang/projects/internal-llama-stack/.venv is already active\n", + "\u001b[2mUsing Python 3.11.11 environment at: /Users/erichuang/projects/internal-llama-stack/.venv\u001b[0m\n", + "\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 387ms\u001b[0m\u001b[0m\n", + "Installing pip dependencies\n", + "\u001b[2mUsing Python 3.11.11 environment at: /Users/erichuang/projects/internal-llama-stack/.venv\u001b[0m\n", + "\u001b[2K\u001b[2mResolved \u001b[1m123 packages\u001b[0m \u001b[2min 1.13s\u001b[0m\u001b[0m \u001b[0m\n", + "\u001b[2K\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6) \n", + "\u001b[2K\u001b[1A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)-----\u001b[0m\u001b[0m 0 B/9.53 KiB \u001b[1A\n", + "\u001b[2K\u001b[1A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)-\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB \u001b[1A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2K\u001b[2A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 0 B/44.00 KiB \u001b[2A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2K\u001b[2A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[2A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m\u001b[2m------------------------------\u001b[0m\u001b[0m 0 B/34.43 KiB\n", + "\u001b[2K\u001b[3A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[3A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", + "\u001b[2K\u001b[3A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[3A\n", + "\u001b[2meval-type-backport\u001b[0m \u001b[32m\u001b[2m------------------------------\u001b[0m\u001b[0m 0 B/5.69 KiB\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", + "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[4A\n", + "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", + "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[4A\n", + "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2K\u001b[5A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 0 B/85.81 KiB \u001b[5A\n", + "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2K\u001b[5A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB \u001b[5A\n", + "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[6A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 0 B/3.08 MiB \u001b[6A\n", + "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[6A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.91 KiB/3.08 MiB \u001b[6A\n", + "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m---------------------------\u001b[2m---\u001b[0m\u001b[0m 30.83 KiB/34.43 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[6A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.91 KiB/3.08 MiB \u001b[6A\n", + "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 34.43 KiB/34.43 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[6A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.91 KiB/3.08 MiB \u001b[6A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 34.43 KiB/34.43 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[5A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.91 KiB/3.08 MiB \u001b[5A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 34.43 KiB/34.43 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[5A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 30.91 KiB/3.08 MiB \u001b[5A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 30.91 KiB/3.08 MiB \u001b[4A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 46.91 KiB/3.08 MiB \u001b[4A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 62.91 KiB/3.08 MiB \u001b[4A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 78.91 KiB/3.08 MiB \u001b[4A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 94.91 KiB/3.08 MiB \u001b[4A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------------\u001b[2m------------------\u001b[0m\u001b[0m 32.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 2.62 MiB/3.08 MiB \u001b[4A\n", + "\u001b[2mtyper \u001b[0m \u001b[32m----------------------\u001b[2m--------\u001b[0m\u001b[0m 30.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------------\u001b[2m------------------\u001b[0m\u001b[0m 32.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[3A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)----\u001b[0m\u001b[0m 2.62 MiB/3.08 MiB \u001b[3A\n", + "\u001b[2mtyper \u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 44.00 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------------\u001b[2m------------------\u001b[0m\u001b[0m 32.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[3A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)----\u001b[0m\u001b[0m 2.62 MiB/3.08 MiB \u001b[3A\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------------\u001b[2m------------------\u001b[0m\u001b[0m 32.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[2A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)2m--\u001b[0m\u001b[0m 2.80 MiB/3.08 MiB \u001b[2A\n", + "\u001b[2mtogether \u001b[0m \u001b[32m-----------------\u001b[2m-------------\u001b[0m\u001b[0m 48.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[2A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)2m--\u001b[0m\u001b[0m 2.81 MiB/3.08 MiB \u001b[2A\n", + "\u001b[2K\u001b[1A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)----\u001b[0m\u001b[0m 48.00 KiB/85.81 KiB \u001b[1A\n", + "\u001b[2K\u001b[1A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)2m--\u001b[0m\u001b[0m 80.00 KiB/85.81 KiB \u001b[1A\n", + "\u001b[2K\u001b[2mPrepared \u001b[1m6 packages\u001b[0m \u001b[2min 365ms\u001b[0m\u001b[0m \u001b[1A\n", + "\u001b[2K\u001b[2mInstalled \u001b[1m6 packages\u001b[0m \u001b[2min 50ms\u001b[0m\u001b[0m \u001b[0m\n", + " \u001b[32m+\u001b[39m \u001b[1meval-type-backport\u001b[0m\u001b[2m==0.2.2\u001b[0m\n", + " \u001b[32m+\u001b[39m \u001b[1mfaiss-cpu\u001b[0m\u001b[2m==1.10.0\u001b[0m\n", + " \u001b[32m+\u001b[39m \u001b[1mshellingham\u001b[0m\u001b[2m==1.5.4\u001b[0m\n", + " \u001b[32m+\u001b[39m \u001b[1mtabulate\u001b[0m\u001b[2m==0.9.0\u001b[0m\n", + " \u001b[32m+\u001b[39m \u001b[1mtogether\u001b[0m\u001b[2m==1.5.5\u001b[0m\n", + " \u001b[32m+\u001b[39m \u001b[1mtyper\u001b[0m\u001b[2m==0.15.2\u001b[0m\n", + "torch torchvision --index-url https://download.pytorch.org/whl/cpu\n", + "\u001b[2mUsing Python 3.11.11 environment at: /Users/erichuang/projects/internal-llama-stack/.venv\u001b[0m\n", + "\u001b[2mAudited \u001b[1m2 packages\u001b[0m \u001b[2min 32ms\u001b[0m\u001b[0m\n", + "sentence-transformers --no-deps\n", + "\u001b[2mUsing Python 3.11.11 environment at: /Users/erichuang/projects/internal-llama-stack/.venv\u001b[0m\n", + "\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 63ms\u001b[0m\u001b[0m\n", + "\u001b[32mBuild Successful!\u001b[0m\n" + ] + } + ], + "source": [ + "import os\n", + "import subprocess\n", + "import time\n", + "\n", + "!uv pip install requests\n", + "\n", + "if \"UV_SYSTEM_PYTHON\" in os.environ:\n", + " del os.environ[\"UV_SYSTEM_PYTHON\"]\n", + "\n", + "# this command installs all the dependencies needed for the llama stack server\n", + "!uv run --with llama-stack llama stack list-deps meta-reference-gpu | xargs -L1 uv pip install\n", + "!uv run --with llama-stack llama stack run meta-reference-gpu\n", + "\n", + "def run_llama_stack_server_background():\n", + " log_file = open(\"llama_stack_server.log\", \"w\")\n", + " process = subprocess.Popen(\n", + " f\"INFERENCE_MODEL={model_id} uv run --with llama-stack llama stack run meta-reference-gpu\",\n", + " shell=True,\n", + " stdout=log_file,\n", + " stderr=log_file,\n", + " text=True\n", + " )\n", + "\n", + " print(f\"Starting Llama Stack server with PID: {process.pid}\")\n", + " return process\n", + "\n", + "def wait_for_server_to_start():\n", + " import requests\n", + " from requests.exceptions import ConnectionError\n", + " import time\n", + "\n", + " url = \"http://0.0.0.0:8321/v1/health\"\n", + " max_retries = 30\n", + " retry_interval = 1\n", + "\n", + " print(\"Waiting for server to start\", end=\"\")\n", + " for _ in range(max_retries):\n", + " try:\n", + " response = requests.get(url)\n", + " if response.status_code == 200:\n", + " print(\"\\nServer is ready!\")\n", + " return True\n", + " except ConnectionError:\n", + " print(\".\", end=\"\", flush=True)\n", + " time.sleep(retry_interval)\n", + "\n", + " print(\"\\nServer failed to start after\", max_retries * retry_interval, \"seconds\")\n", + " return False\n", + "\n", + "\n", + "# use this helper if needed to kill the server\n", + "def kill_llama_stack_server():\n", + " # Kill any existing llama stack server processes\n", + " os.system(\"ps aux | grep -v grep | grep llama_stack.core.server.server | awk '{print $2}' | xargs kill -9\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "c40e9efd", + "metadata": {}, + "source": [ + "### 1.3 Starting the Llama Stack Server" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f779283d", + "metadata": {}, + "outputs": [], + "source": [ + "server_process = run_llama_stack_server_background()\n", + "assert wait_for_server_to_start()" + ] + }, + { + "cell_type": "markdown", + "id": "90eb721b", + "metadata": {}, + "source": [ + "### 1.4 Install and Configure the Client\n", + "\n", + "Now that we have our Llama Stack server running locally, we need to install the client package to interact with it. The `llama-stack-client` provides a simple Python interface to access all the functionality of Llama Stack, including:\n", + "\n", + "- Chat Completions ( text and multimodal )\n", + "- Safety Shields \n", + "- Agent capabilities with tools like web search, RAG with Telemetry\n", + "- Evaluation and scoring frameworks\n", + "\n", + "The client handles all the API communication with our local server, making it easy to integrate Llama Stack's capabilities into your applications.\n", + "\n", + "In the next cells, we'll:\n", + "\n", + "1. Install the client package\n", + "2. Initialize the client to connect to our local server\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "2e68e32a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[2mUsing Python 3.10.16 environment at: /opt/homebrew/Caskroom/miniconda/base/envs/stack\u001b[0m\n", + "\u001b[2K\u001b[2mResolved \u001b[1m31 packages\u001b[0m \u001b[2min 284ms\u001b[0m\u001b[0m \u001b[0m\n", + "\u001b[2mAudited \u001b[1m31 packages\u001b[0m \u001b[2min 0.04ms\u001b[0m\u001b[0m\n" + ] + } + ], + "source": [ + "!pip install -U llama-stack-client" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "E1UFuJC570Tk", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000, + "referenced_widgets": [ + "75307e3dee604d30aa44713e6e293e64", + "5ce87402a79342af995df41ac3940d55", + "fbbcc19886cc43b38424fbb184162c61", + "29212208db6b432eb4f708cd64258954", + "50dd8994a4cf486ebbec5ffd4322992a", + "f9b768c703494dd198f2978aff4892e8", + "1231b9e4cab34c33a38bee63543f1e75", + "754deb3970604d48a522bc9f021ad945", + "f6ecca7a1a8340fbbe056235a2714fc3", + "ef4f63fe9d8f4683a9d20becb6e4e2cb", + "7508f10c13634e7aa682cfb29c48d9e7", + "26f1430ca7cb4ad5b1b8df1ffdbd32a9", + "7cd2d9c9ea7b4d70902ffaff33033078", + "101288236cff40b8bb9dbad80dbbc7ee", + "d5c9977838a249eeab6ef628279b8155", + "d032d1e7b4b54ba28ac83c1a12b23876", + "321fce57c158432abeae496ae8a947aa", + "3ebe00201bdb4e119e3b74f684a58345", + "0f8bab6b8ed04774b386fe952aae66f1", + "cfcb6e456c354d99be91f161552f3376", + "61bd0d490c0e4c04a331cf9ce6b7d38f", + "7d8653fca29f4df3a7487733ff9db60b", + "943f8fcb66614353a51f32f8344b6122", + "0e695245b97c4bbc85e349fda3dc07b9", + "bb0d168c41f540b8ae42239d3938483a", + "87700a80125348f28c4f249bdf8b0a8d", + "8902c3622da540e496ed5b1524bd01ca", + "90432ec1c24b4607a935c94e130cd68d", + "464147b149824f20afc727751a702fc7", + "67e37a088be64a2ba786ca923b1017dd", + "98786f52ef5345b0b9164b9c1f2b8e18", + "0e1b9910a77d4b7fa69cb8926e6547d7", + "0b276315be4345be83da1e03905c8495", + "e11f8c3891284e07bd2572257afd5e1b", + "ee18d96394994d01b49d5b03b3d9a019", + "844b06df5749441fab6f61656ce581a9", + "e1c6b9a20e074f17aeba976b24e80c65", + "c690da8daa1e4f9ea73bcacdd92e8a6d", + "d0b161ae25c441e8b3caf7a3d88c1b05", + "47cf4b6b835d43388576a2abf4cc54f8", + "03bbebd659e64b5d9c29a73570c34854", + "b68e5097d2504d2cbd7e19aa1aac3a04", + "22a665deff88477b9372c0350c4c572b", + "5e535ed2b83e496ab57b1c80b615ab0c", + "d9de065c7f81443e98ddf066c7b5bd54", + "1e836106837c4ac7a11b36e700c46b64", + "55591e8179084fcfa3a61c8bd8d09dcb", + "de1ef93c41364eda9b4b111231057348", + "23b0b2f4f82c4a21846e91d7cea91da5", + "9e4d0fbb51284a7487c495c7b95a293d", + "b0f8cf1f79e04b5fb47a810f2c81bd7e", + "0c359bc4c94c46acbc9094354a15c33d", + "59d0b59b6c2248508d0601ff13878d33", + "891cb726d45c4fef8f2c74a56df5532b", + "fa39189070334939aea5fa4a7de5ec8b", + "f0e107dd6d54483aa367da0e337a97cd", + "861a00796f55470e85d94733eeee9a5f", + "5459633eb6e94ec391d13fcf67425726", + "b7b7467ece304ffbbd352b9b96a03aad", + "9dece059f1204e29b106fca9e191ddb3", + "e2e49c25d6fc4592b317e94cfabc2e5e", + "76d37a48a73946bab2821f097cf2605f", + "8e81ae00681347cb906b392c3656a64a", + "74bedc38b7da4e8a83b0c892d7aa59b5", + "d1e67c28b4664e8098dce8f5e80b8779", + "abe6cf39b784436993fcbe92221c31a3", + "d021a18ab70b4c7e8aec43932a124c36", + "72e7c092fb054b7ea0dcd2782b5d8a7d", + "8b1ea80221174fae943d5c9f997dfb57", + "f8073d625f80415dbf712cee434f6e3a", + "5f6014ba13fa4a659b9eb1b5f83599a7", + "327ff8f5292d47afbfebd3beea187739", + "988cac4341b646079fc73719f3f88ad7", + "900a4dac08f540dfb35c29f63236a12c", + "1e6009b9b0684b8fbaa379ea96f111ee", + "541b9b4e74614e2cb855bb90f03df538", + "ff256b2275f740ed82bca4f43b4d6fd2", + "3703041a499c426bb427ee008c81cde5", + "4b22bbacb995425fb32a2368f3685a92", + "49a66eeb9ef74de5ab8904fd90eb7558", + "08f9d125018b41c582a0fa1e234315f9", + "736c770230644894b85dbc34bd8f1d52", + "b67cbbf32f844a19b219be612d5038c9", + "774b513d64524ac7823a2cf13efa8d41", + "1e56da93bcf64ff490416d2b66cd3dc0", + "b7e35038ce344110b785753b655130f5", + "5472af91737446f4a4a2d92a3f684a45", + "9fb4368802da4a5a8101ba200d98403a", + "2e713bcc372e48b2a006558db4d1df68", + "1a277abd5ea44253bc6894bef258b52b", + "b3eedd82e7da4ce8b3ded70e49a2afd0", + "6f5c18cb8002471f8b3764effee37324", + "3bebac362b344e8d9103c5011613f1ea", + "670905a55b19458da69f83c8bcd511d1", + "ff54451a48394faaaa9d8cdb690d0718", + "36b5bc19b2d0407f8ab28ff0da2ce12d", + "879e48d9a9e04183903d94ffe98313d2", + "abce503d70594c2ca9afdc47847c125b", + "028e291ee53947bbbbc4bfb68c695f5f", + "a530662719374c95a9bef12e59e28c85", + "bffc0f4b12f141398535990709fd4f2c", + "04804c74e1dd43449d5f758cf5d0ba5e", + "95a506c3007c4525b01ee4e1600d671b", + "a0d6b0caeb2340fe96c8f5569e3d3ae4", + "30798f87a8b848d783fdacd71af5dc04", + "07ce54c75e76488ba4019a20b3707061", + "f023175de68445f98a6b01bb40ccdc6d", + "7389b79a0ff44cd68c7866995d728023", + "8e2b70ffe4eb4974bd6393fcc1292267", + "13eee164dc534424acb9dc9ee37a9465", + "722a7fe16af3422585a20c651345cfa4", + "f5596c1c9c4d42f3bc171961f9582eff", + "85d66e615b5742e78657b1e60c75fc72", + "731c02dc5dd446c3b22765575148e256", + "254ce460ce244c99a5afe39d5d51f6b7", + "4cf1dc345ace4da59f978f661487f975", + "8f30fca71bf24e5ca26e17c2321f893c", + "dd85d37dd1d14c7ea4592f8e11b2d2c8", + "3cb06377e4454f009d6b2aa7aa6ff0a9", + "4502477db4d948e693012364c2dcb370", + "52fe404ec9c14db2a7279b4c154eef3d" + ] + }, + "collapsed": true, + "id": "E1UFuJC570Tk", + "outputId": "aebb69d4-c167-4de5-eb8a-dd19dd538f63" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Not in Google Colab environment\n" + ] + } + ], + "source": [ + "from llama_stack_client import LlamaStackClient\n", + "\n", + "client = LlamaStackClient(\n", + " base_url=\"http://0.0.0.0:8321\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "635a7a6f", + "metadata": {}, + "source": [ + "Now that we have completed the setup and configuration, let's start exploring the capabilities of Llama 4!\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "0fc75d73", + "metadata": {}, + "source": [ + "## 2. Running Llama 4" + ] + }, + { + "cell_type": "markdown", + "id": "7dacaa2d-94e9-42e9-82a0-73522dfc7010", + "metadata": { + "id": "7dacaa2d-94e9-42e9-82a0-73522dfc7010" + }, + "source": [ + "### 2.1 Check available models\n", + "\n", + "All the models available are programmatically accessible via the client." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ruO9jQna_t_S", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "collapsed": true, + "id": "ruO9jQna_t_S", + "outputId": "ab1722a7-62ab-43bb-9cab-4e45bf62068a" + }, + "outputs": [], + "source": [ + "from rich.pretty import pprint\n", + "\n", + "print(\"Available models:\")\n", + "for m in client.models.list():\n", + " print(f\"- {m.identifier}\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "86366383", + "metadata": { + "id": "86366383" + }, + "source": [ + "### 2.2 Run a simple chat completion with one of the models\n", + "\n", + "We will test the client by doing a simple chat completion." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "77c29dba", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "77c29dba", + "outputId": "4857974f-4c70-4bc4-f90a-6ae49dc9c41e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here is a two-sentence poem about a llama:\n", + "\n", + "With soft fur and gentle eyes, the llama roams with gentle surprise, a peaceful presence in the Andean skies. Its calm demeanor and soft humming song bring serenity to all who belong.\n" + ] + } + ], + "source": [ + "response = client.chat.completions.create(\n", + " model=model_id,\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": \"You are a friendly assistant.\"},\n", + " {\"role\": \"user\", \"content\": \"Write a two-sentence poem about llama.\"},\n", + " ],\n", + ")\n", + "\n", + "print(response.choices[0].message.content)\n" + ] + }, + { + "cell_type": "markdown", + "id": "7737cd41", + "metadata": {}, + "source": [ + "### 2.3 Running multimodal inference" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "e7b1baa7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 275k 100 275k 0 0 847k 0 --:--:-- --:--:-- --:--:-- 845k--:--:-- --:--:-- 0\n" + ] + }, + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4QmWaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA0LjQuMC1FeGl2MiI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiIHhtbG5zOmlwdGNFeHQ9Imh0dHA6Ly9pcHRjLm9yZy9zdGQvSXB0YzR4bXBFeHQvMjAwOC0wMi0yOS8iIGlwdGNFeHQ6RGlnaXRhbFNvdXJjZVR5cGU9InRyYWluZWRBbGdvcml0aG1pY01lZGlhIi8+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94cGFja2V0IGVuZD0idyI/Pv/bAEMAAgEBAQEBAgEBAQICAgICBAMCAgICBQQEAwQGBQYGBgUGBgYHCQgGBwkHBgYICwgJCgoKCgoGCAsMCwoMCQoKCv/bAEMBAgICAgICBQMDBQoHBgcKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCv/AABEIAwADAAMBEQACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APxxgtYgAAtfLxrVGkfVe3qvqXILSMDOwUSqzLVWrbcmht4mfG0GpdSfcqNao+pI9tEvzKgNT7SfcbrVF1LumwROmcVnOpPuaQrVWtyxBbRiXIXP4VDqTLjWq33J/IjLY2A1Dqz7l+2q33B4o1b7n5U/aTtuL29VdS1p1sj5+X8aznUmVCvVfUstCgOAtR7SZft6vcIIo/MOVoc5gq9W+5dsYkL52/jUSnM1hXqX3LEsCk8rwKlVJ9zSVap3IvsqHkoB+FN1J9yPa1X1ITaIWYADkelTOpNDVaqnueEfF21ji8WMNoxu5r67KKtWVA+PzXEVXidzuvhbDaSWUQSLoBXn5jRn7S8z38BWq+xVmemxQqsK4TtxXiuTTsj0/bVUtxfIUuAV7/lSc523E61W+5JqUCC2UbeamE5t2Q6leqorUrw26sgG0UnUnfcI1qltxViUttA/Gp9pMr21RdQuLZCu4qM+lONSb0uEqtVK9ySSyF3YFQoOBR7WaluQ61Vx0ZV0uAwxmIjGDitJTk9TOlXqrqXLS1BnL7azlUkkbwr1b7kd2P3u0j2ojOdgliKqluP8hPLBIGcVHtJX3NPbVLbiGJScBRSdSY/b1e5JHbocfL1qXUn3KVap3LFvbp5g+XuKl1Jle3qrqbSxqZF46ADpXRCU3RbM5Yir7TcsxwJn7o/KuSVSfc3Ver3J0iUjoKh1J9y1XqdxkkKZ4Wlzy7h7ep3IzBGP4R+VHPIPb1O5FPGozhaanJ9ROvUXUjiRTxsGPpTc5i9vV7kbIok6VSnK24e3q33C7CCPGB04pKpLuKVerbcjto1I3Y+tDqTYo16vckeJSfujFLnnuV7er3GiJCQABT55tbi9vU7kkkKmLIWpU5jdepbcgghViRj9K055mca9V9R/2RNhJWiNSV9wdeq+pRitF+0k46H0rWVSXLuYxrVFPctXMaBMFR0rLnkdEq9VdSBYEbkDjvxR7SXcSrVO49IE6EfjUOpJ63LVep3GvHHu+7UupJLcft6j6ixQpnO2p9pN9S1WqdyRoF24I61KnO+5brVO5DHBH5vC/pWvtJ2Od1avNudJ4ShjE2Qo69axlUnfc0hXqqVrieMbaNroEr39K0p1J2M69eqpWuUtVt4z4clXA+4ePwqHVmp3G69WNHRnyv4ttIl8cXCmMf6yvuMHXqPBp3PicTiKrxb1Om0K2jUIdnp2rmqSqT6nrYWtPld2d34fgjMakJXj1p1E9zup1aqe5uRwx/3RXO6k+50+2qW3LlpbxkjC9azlUn3LjWqdzQggjBB2/Soc5s0daqupfECeVnaAPWp55sp1a1hIbeMoTihzmnuJVqvcqLErzMAPxxVc8jNV6re5FJaoJOB071ftJ23EqtW+40W0ZVuB0qXOdx+1q66mfYWMP28sE7+lbe1nynJCtV9puab2y78bahznbc6nWq9wmt0EX3e1R7SfcbrVe5FYWyNNkKOtN1JdxQrVb7jdThTzApWmpza0FVr1U7XIbuGMWnKinGc7ilWqqF7mPbxIZSNvfmtXKZhCvVfUvQ2yEcLn3rNzmjZVqvchliQvwtNVJkurV7kZt0xkLVe0mL2lXuV5YRu+5Ve0n3E6lW9rkUkSjkpRzzZLqVV1IZY1IO0Cr5pcl2Eas7XbPof/AIJ8+HEW/wDEnidlwdsFpG//AH07fzFf0F4I4BfV8VipbNqP4H8O/SrzqpXzjBYFPSEHJ/N2R+gXwH0yL/hWOvXEvzFlAXNfuc604VoRi9Ln8aYyk69KvVf2FG33nyr8f9EimvrtWT+Jq4s1qSnFn6LwljasaUHc+Iv2gPA8VxHdKEOSpIxX5LncZ6rof09wjnFWEoO5yXg7UDrXhW1vJzmSJTDOWP8AEhx/LBr8AzOjLCZlUg9r3Xof1dk2Z18Zl0W5Xa0LEsCE9B7VlGcrHoOtV7jWtYzHnaKaqTF7WrbcpNbR+ZwBxWvPUsZqtWvucn8UrdBZqdo+telldaftLXPJzbEVVHc4W2to/MXC817rrTfU8mlWnzJtnd+FoUa2A29Bya8bEuo5Xue/Rq1GrxehrG3jJwFFcLqzXU19vV7lS5tkEhG38K2hVmzGVWt3IpbVBHnaPzrVOo+o1Uq23KciR9NnzfwkVTpubvIMRUnGGhv2i7wDntXO6dOGjNXSpqTVy/Ase3aWrnnZbEaJkkATfjcMH0qXsEVdk1yVRMhhShe5pKKvZFrRdpTDnAPvWddJbMulGFi0NqTHa3TvWW6HsyZAhwxYVN7HRCEZLzI7qQKSY8Y+tXBJoUqT6l7RzmLJYdOazqxSejKpQp/MnlaJWO5xn61KuW6TvoRW84MxXitGrRJjBKRpaafmyxwO1YVLWNYxgtS1JyRgjpUKw0k5akbsqrk8/hVKzdjV00tSC3dDKd3p3rapStFM57S9oeE/GotN4yMcWNuetfXZVKNPDLufL5jQtiLyO8+FFvHDpsZB5wOa8XMqlSrVZ7eAcY0bHpEDO8CknjHGa8V+47M9KXK4qw5FYyAn8eKTasQtZWZPqkZ+yKw5xUUpJSNp000itao5i+YYAHHHNXKK6mduV2EYfOc8+vFQkjSEOZXY+7+W33L1Fa04LmM5dhdJufMiKYGSO9OrSUdUaUow6kMkc0U8hEfHfiiFpKxlOnGN3EtWNxCM7h1GKyrQtsVRlHqVrwM1xvQdT6VVN2iN01J3JimIvfHpWcoxi7gm3oNRDnLDn6VNk2aWsieNegx3olCKBPUnjIR1Y9jWdkNtI07WdJphgiuhK1OxinzVS+pVSe+a5XGx1bD1bPVcn6VLVtykmxCpPRf0qWkPlsMKknG3mhxSVws2yK5t5yMqn40RcS1TbY23tLhjwvP0rbliQ4yTegraReNICqnGeeKpRp9xKMmWJ/Dd3JFvzjHtXPGUVLRmvsnIhg0r7P8Au2lJb6VvyQtdshxcdESf2PNJznAPcCsZNKWhoqMmiMaPcK+Bzirjytak+ybZLJpcnlc+npWX2tCnRlYrxaXODkc/hW9lZXOfk5W0NlQwxnzODg4GKapXehbilEzIGllvCFXODyfSt6lLk+I5owu7ot3lrOYxx+lZqMTaMefRkUVpcAhSuSe1S4wNXTstBy2twDtaL9KzlGCWhVOk5A1hcsSFTj1xWas9yZwlFiJZXgbHlkfhV8lNFxg2iV7C7EeRH+OKxaV7BZ8xWSKaOXEi85rpVOPKTKCjK50vhFR52PzrlqwtqghZz1H+MIx9oAUd6KTj1CvGPPqUNTjzoEoYfwH+VNqLejKcIOmfL3im1eTxzckAf6w4/OvtMFGP1NXPjMVCh9bdmdVoFg+E3Edq58RKMY+6ztpQvojtNHtxFGCrYwK8erNvRnq0lBKzNe3jyeSPyrnlY1ajfQtwoBgZFSrGtOMWy9bEkgggCqjBLUupBQRcyBEV3D6UWT0LjNONhFnjSIgtj04qZwSepFRKCKUMgaVhu6mnKEUtyKcFJXFmxnCGhRsyE+WepAkyorZOcjvVummbPlaKmmTg3xJ9ac6bS0OKMH7XQ05WDZcMP8KlQN9b6kM1wPL2hucdKHSinqVJRtuN02QF8k/pWcox0dyqVLuR6nMhmwGHvWkIwtuc87upZkN1IhtvvdO1aJxTOicUqdjKhaMyli9aNpvRnFRbvZIuwSxrHwwI9TUSipHY6aauQNIXkySOe9Hs42OeyTaCQlD7UlCI4pSe5Wc7nwT9Dir5Ioc4JK5Hc/d4bOPatoxMYz5SmJcngj86VS3LsW/fWp9cfsMaOLH4VtqG3DX+qTPz3ChVH8jX9Q+D2GlR4RU39ucn+n6H+cX0jcbHE+IlaCf8OMI/hf8AU+3vgzbywfDDU8ZAkzxjrxX6dVilXppn89uUZYDF2fRHzR8cbDdqFy23qTXPmMFys+h4Xq2oxPkf45aP5bSSFMqwPavz3N8LCcWf0NwriINJXPAPBtwNK8Sat4WlOFkYXVsPXsw/lX4fxhlsKU4YiPoz+suBsV7bDOnfdfkbU5Cnrz6V8dTacrXPuYxUpWIzcRxoWaQAe5rVPWxdflhHUoyXFuZt0cynJ6ZroV+XVGFCopSstTlvilIn9nBmIwK68upSdbQ8vOIKyscJZedPKoRRjI5r6OUKdJXkzy6dJaXPQPDSxRWi+c2OPpXzuKqy9o7bHuYdQpI1AYiTtkH4Vwtu5cVGUtyjcn98SzD2rqp3gjphTjErX2q6dYxZurhV7YJrohCrU+BHBiKtOFWzZDbXFrdfvLd1ZT6Cs66qxXK0ac9OS5pHXWfhV1jUGftXFVxMXK56EsHeTdy7H4WIPFz+RrJ11bYyWEcnuTxeEgW3G4P4GlKukrpFrB2ejJn8JBhtE5NZQxL7G6waa1ZNaeFni4ExA9Qa1nVhKJmsHJS0ZbTwuuc+cScda5/aK50fVNNyxbeGCx+ab9aznVS2COHaejFuPCYZsJN7GiFfubexbjqT2nhlowFWUj1IrSpWp8uxgsLJO9y3/wAInG/Lzc4rjVexuqEu5EvhJVfKyc9q6IV7rUU8N5k8Hh5oiCHPvzTnUhJWsZxw0l1LI0iToZDXPJxR0Rw73uMbQpSCBKfxqfapHR7LQaugSwHeRnIrZ11OFjOVFx2PO/GXwM1DxPrx1OO62rnoK9LCZrHD0uVo+dxmVVsRW5uY6fwd8OZvDtqI5p87R3rOvjadWVzqwuDnSjys6OC1ZIhHnIHeuWo4Se56EKMrWJ4Ik3KSnQdqyaS6m8aSW5PIiXEflOvSsrcrvc0UF1GxWUKHBWtHUTREqcbjnsbUSfMmD1GazjNpXNlGKWhDe3WlWMX+kkYx0NaU5TqStE463JF6odok2magCbaAAHoRVV5zjo2bYdUpLQ000qAgl4wfauSFWVzpdKFtiS30jTUOPJyamrVm+pKoQ6IedK08Hd9nFKlUa6mrpwUbWJYtN04rt8pevcVdSUpLcinShzbEqaDpzHcUXB74rFTcTaVOmyaPQNLA6D6EVLnKRmqdIevh7SmGCBU88l1L9jSkTQ6BpcB3IRVRrS2uJUKUXoWItMsM8sPzpSqNLc0jSp3LCadpqDO7rWPPJlctNCSWtgOg5xVJu25FoX2GpBaKf4cGpnK/U0Sh2FkgtCMFFIrNSsyrwS0INlohyBj0rp9ppqZPlfQXzIs/KfxHFR7VRZPKr6Djl1y05xVKvT/lK5JLZkUltETuZ8n1qpV01YFFX1Ii0UXCseOxNLmiDlYT7ZCvXnNHMQpa3Ip9RiAw2OParhYtziyu+rWqNuxjjFdCszgqTakQXF9b3g2bRk+1aJcqumEZqWjKwFtYP5yJ1PNaRftNGy3aEbpEU/iSxUlWTk8dK0jh1JnH9YfNsSW2t2JILYHHWoqUY9DqWJioki63ZFuxx6Cs1h09yaeLvJjm8QabGucDntQ8PFuyKq4rsiNPE2nvkrEPxq3hVsFPF2Wor+JLIjAUAVLwKT3JlX5myOe8guo98Sjgfw9qToSS0IeIWxq+DZiZNpGea4qseWVjow8efVljxkzLcAkY5FZw1VhYlOMyhqbr/wAI/Kcj7nrVUqTcrMqzdJ2Pl/xQks3j2ZYyV+evucPCNPAbnx1bCSnjXqdp4a0m5MYLuRwO9eLiK9NaW1PXo4VwW50tnDcQrhZMj1rklKDjqdUKMpbM0YvtAHJNZRlTN/q8l1JohdNyHPtUyqQj0NorlHT3l9aJvDZqY1oSdrCrKTjuV7XxHfXjGNWxjjNdU/ZUkclOck7DrjUr+Pjfk4qYToSepVV1KmxENRv4FEzn6VTlRY4TnCNipP4zeF2Lg/L1rspYeE1c82riKvO9B1t4rS4bdnr09qdSgoHXSxEWtWKviCGCffn8azcOaFrGsasU7jLjx1ZwPiacAHtmrp4SVTaJyYjFKEhbbxSt+NlrJke1Z4ikqK1Rvh60aivcu22oXSDAb6nFcDdJnV7aUXoNmurmSQMzZI6VUVGxm4SlLmEuHupYSA5GRWbqQjKzNW5WsZyW13HMW80nJ69q19tTa0RjKm4LmRK8t2nrx2xRGUGtWTGU2V2uL5TuOQPcVsnTtuVaS6EbarO3yljke1HKkYKfJO5Vu9VvIR5pQkemaqHI5WbLq1HyMypPFV3cu0cUbZB5yetetDCxpw5mzyY4i83Ysx39+bbzMAcZ61xVYU+bc1+tVJrY+/v2UNEOjfBTw5byLh5LETPx3di39a/sTgXCQwPCmFpJfZT+/U/y18VcxlmfHWY1273qSS9FofYXwwtmi+F07KSFcN+Py19LiV/tUEfmNG/9k4qTe7t+B85/GiwElzO2MfMcVnj43iexw3XfJFHy/wDGPQEuLWVSnQHjFfF5hC6aP3PhnF8lSJ8mfEO3/wCEc8XW2ux4QRSFXP8Astwa/LeIculisLUp/P7j+neDs3lh5wce5Fe6vcOzKs2OevtX5bRo04S94/ao1KjlzIz9Qju7m2JF4RjqPWuqjOjTqJuNzLEOdeHKVdG03UIJxcS3e5Sfu1WMr0qmkYmOHpTodRPGOkXmswC3jBAx3pYOosOm2bVqbxEe5g2XgTVrdgxJ46HFdTzCnUdmeQsJXU2bVvpup2wVc5x2xUTlQcb9TupUK83YuRLfBcFSCe9cLdK53woThqQXlnf3ERCEjjitHUpRtcqftEjlta8LazdTbnZnXPAr0sNj8PTjY8ivg61eTdjQ0DTb7TVzcK2MdKmtXoVfebOaFKvHc9atcBA27qPWvlHB31Pra0p+0aLcKDjDjrUVJ6WQoSadi1Eg/v8A6VHtNLGimTRoBwT2qOaxfO2Txrzgt+lVz3Qc7RKoUdHFQ5K4c82ToRxuNQ5IuMpImQLjk0uYvnZLGwU5Bx+VRJ3BTZOrgjJP5GkrFqUujHBwBwfzrRNInm11HKynvQ5pGkXF7DhIucZH1qG29Sm5WGPNtPWr5boqnK+4Rzh85b6VPK4suUmWISMfeHtSaSZg7ykN3HJBlH0ptpI0jRas7jti7QWcH2rL2rYno9BokgXgYP41Sk2TzNjhND1bHPTk0pK61HzMeskb8KePrWfNYHqOEKu4Zjx9KUqlkXDUzfEnh+LUovLB5xwQK1oYiVN3KqUFVjYf4P8AD95pShJGyvrV16kaupy0aFSlN9jqIY1Y/vH49K5Jy5dEd8WupL5NmvLyL+JrLnm0bxSkCrZOdqyrx70RUmwqRUUEiWiHHnD6VquexNNRb3HRvbE7TcD86xqcyKmoomSK3b/lv+tY88kQoxfUebeMni4/Wj2ja1G4We49LRCRib9aFJIpU49ST7GoH+t49zQ53D2aJY7VM5Mw/Opchqmhz20WMCcfnQ6jtZh7OPcjMKA/64fnScx8iAQxscecKlzGqavuI9rGOso/Omqg3CKIXhiBx5oq+e6I5EKI0UYDfjmk5lcqGvGp5z+tHOZuFxnkRnqw/E0nNjVJMhkhgzgsB+NUpsUqaQz7LaP8pkX8TR7SSEoRZDdabYEYLrn2NVGtU7l+wiykbOJJQY5x+ddCqVOpyyw+ug99OjmXbJKv51lPFST0NY0boqSeHLKST5pV/Oqjiq0tmafVKbjqTL4dsNv+tXH1pe2rLqc31WLeoLoWnqcGZfzo+sVktxvB046jbjQdMCZ80ZqFi619zSFCmyFdL0iIbHkHPvW8a1fmvczqYamnoVNafRrGJWEn611UnWrysc1WMYosaTc28to0kWMY4ya3k3B2uKnRTV7G34P+a8O0cZrmr1EzuoRjFk3jbcs4BPGe9Z0mc+LSc0Z18N3h+UNz8v8ASuiL982ikqWp86a3bxjx5KZCCS3H519NRU3gtWfI1sQnjmoo7nw+HMYRHxwOoryKyhHdanrUY1Jam7bqIiBI4+mK4KtVNWOxTUdiyvK53j24qITWzKTqMhvdXj06PzJcYrphS9s7IitNU43ZDp/ie01omKOQHBxWVfCTwr1McNX+suxoWtjbROCzJk89Kz9pKUdTrqUILUsta2knG9eenFczquLsghGCGy2ds67PNT6YputKLD2cXIy7vwvZyyljKnI7100sdVSsCwcZXYtt4Vs41wJkqni6j3ucksHaTHP4WsZThpxz1rKWNqR0RrDDR5TN1T4f6fctn7Qv410Uc2xFPYp5dSq7ljSfC9ppagLcJx0FTUxdWu7yMFg40Z6M0VW2U5LrjFYTqPY6FCC1ZFLdWcLckEe1aU7yKdSK2K/9s2TsYt2PrRUpVIasyTu9R2bdyCJhU020tTeShKGhKkMDn5nGampUeyMI04jZLS2YY81eahTkU1Eoz6ZbiTargfjXXCo0tTGdKMxz6LBJDsaZcYrJ4i0roPYJxsZn/CK2cM5cTrya7Y46pOKXYxngKaV0OutJtkjEUEoJdgoA9ScVdKpLE1owitZNL72cGNorBYGpXk9Ixb+5Nn6M/CzTBpXhTS9JRSFtrGKMLj0QCv7qyqisNgqNH+WKX3I/yJ4jxDxOZ16z3lKT+9tn018PraWL4fN3Romxkd8V24lp4mK6nxmH9pLAYmT2ueD/ABdsvMeZv9o0Y2LcT1uH6nLynzf8T9LEsMyleoOK+UxlJSufsuR1+WUT5I+OPhkzi4XbzyVr4bMocsmf0TwnilFxbZyfhGzj1rQorqQgyxExTexHH8sV+F59CrgsznBbPVH9KZNi6eOwCfVaMnvvDzPEyQybSRwc159HFSi7S1PR+rqexR03w/qEU2J7jcF6c131cThnC6WpnDB1FN3ZuQWSYG8Z2jnivPlXvsdcYRoaWHSwwL8rLxWcJSTvchQjUldGdcXFnDdiJkH0A611yjWnS5k9DOpUjTmoomNtA3KqMYzjFcfNJHbS1jdhHawLkNj6YpOc5aJinCDI5tPimY4Ax24q4qoiXyQgVJNORA3HQdK1qPkhZHOsPGUtStD8W7BQNoTn1NdkcsnVepxwzWGImy9B8V9NCB5FQY965p5ZK9kOeY0obFiP4v6P/EU/Os3llQxWbUyaL4uaMy53pzSeWVGbRzSla5Ivxf0c8F19uaHllQl5tTeg9fjDpP8AeWoeWVB/2tBEsXxn0sfxLSeV1RrNYMmX4z6X1ytR/ZdUr+1KZIvxl07HG2h5ZV7lLNIWFT4zaavULS/s2oNZpAd/wurTC2zcuT2NH9m1TSGPjN36E9v8WrOc4QqfTApPL6iOn+0aUVZEo+J8G7n8iKby+pylfX1KFxk/xQh2HOPbitKOBlcini7vUqt8WIIuuPyraeX3Z1xxcEhg+N+mISskwBPqapZZKTtY8/EZnCFayIn+NOklsi8GD1BarllnLpJHXRx3MrtliP4xae6DF0v/AH1Xn1MtfNZI56uYxU7Eq/FfTiNz3S/99VP9nzQ1mUIokX4taSOTdL+dJ4Cpcn+0qbJI/i1pYwwuV/76qHgJlrMItEg+MGnIc/a1/wC+ql5dMHmUYu5HL8X9Pc5+2D/vqtaeXyTKjmysCfGmyhPyz5/Gtp4OytYzeapsk/4XbHIfllGPrXK8A2y4Y/mY4/ErVL+Fri2yVHcVVPAJO0jaOZSTsisnxRukJ82Vht64Jrs/s+nBGk8wTjqLL8arUKEa55z/AHqUctb1ZyUsx5p2Q+D4x2rjcLnj/erCtlyex3zx8Iw1ZYj+NVoP+Xsf99Vyf2XJvRHFDM1zEg+N1ooyLz/x6tFlNTsaVc1gpWCL49Whk8tLvPr81XLJuSN5GlHMeZ3Lf/C7YP8An7/DdXO8rcn7qLqZktkOX42W68tef+PULKZvoRHMPMa/xwgH/L2P++qiWWOL2IeZq+40fG23Jz9rH/fQpf2a+w/7SQo+NsI63Y/76o/suTD+0ra3Eb44Rnpdj8TR/Zj7E/2onuxv/C7EY8Xa+/zU/wCzGCzJdxR8bGbhbkE+zUPK2DzPzA/GaUrkz/8Aj1X/AGVIP7RklcjHxiJPM/8A49R/ZbbCOZ6kNx8YIwebsD/gVP8Asxp6oKmZruRD4txvyLwYH+1Tjlt3sFPMU5bjZPi5CFy12P8AvqrlliXQdXM1GVrjI/izBIcC54PvQsva6EQzHme4+X4swRD5bsfi1KeWN62NJZiodSu/xbhd932vHPrVQy9R2RLzh8th6fFlMcXo/FqcsvUyP7SW4rfFmNFybwf99VEsqjYHmXdiJ8XoWOPtX61m8simOGaa6Edx8ULdut9jP+1XdSy9ON7HbDGqpHUoah48t9RQK2pA47ZrSnhnSnexwVputOxu+HvHMRshB5gOAOc1yYjDzcmdscTTpU+W56h8LrsakDMORnINebVoSi3c1w9d1GXPHgK3QyO/NEXFLQMQpc9zMvyV0GR06bK1i1zXZsoTq0T5r8Uaxa2XjmaW5lAAb1r63DOUsHaJ8riPZYXFNvc2rD4laTCAkVwhz15rknldaory2O6jjY1UaUXxN07GTcL+dedUy1xlZBUx1OE7JkyfFPTApAuUP40QyyftLI6aWLS1ZT1Lx/p2pIYjcA59DXcsDOj7yHWxNOcbFPS/FOn6TMXjmHJ9ac6E8T8RhQrwormNX/hY9twTcjjoc1xVMByuyM55ipPckh+JNtzm6Hv81Zf2c29i6WOjJ7g/xLtf+fofnTeXOL1QVMdGEtxv/CybRz/x9Dj3p08A1LY0pZom7XGn4j2yk/6WOP8AarepgJKOxWIxsIxvcVPiXblsC7B/4FXK8v7o5o5ir7iy/Ea1bBa7H/fVOOB5XdI6HmkYIj/4WJadftgP/Aq1eFdrWOeWZRmxr/EO16faV/76qHgX2JePiRt45tZutwPb5quODkmXSx0WyGbxfZg7luQD6g1rLDTvYdbFwtoFv48hU4N0PzrKWCdtDCGNu7XJW+IMC8C5X/vqp+o69y3jYrqIfiHB3uR/31VfUH2E8dHuNHxAtXODdL+BoeBdiFjot6MlPju02Y+1qM/7VCwVnsbfXow6ld/HlmrYW6BP+9XSsI1HY1ji3W3Nz4Z6hF4r+JPh7w+swdrzWLePZnORvBP6V6fDOVVMbxHhaaWjnH8z47xJzqGW8D4+qnqqUvxVj9OvC8QQIingYAxX9q0ocskj/JrHzcm2z6I8GQBPAoBx80TfxEdvSqxD/wBrifPUFfLaz831PFPilbLJ5yg9GPatsTG8DuyWdnE+eviLpxdX445r5jFRV2frmT1rNWPmT416BhpJVTjntXxWbwitT9x4XxMpJI8G07WU8I+ILzTbhsQXQEkeTwHHX9P5V+ScV4RYnkqQWq0P6d4Nx1KnQcJvdfkaE3j7SRgSXKj2zXykMsrPofXLHQc3y6kR+IWkRkhZ1P5VNTLqiVjup4iDV2LF8Q9OZ/8AXr+dEMrqbEYjFU1TbEu/Hlgy7hKvHcV0wyySdjzoY+F7Gc/jXT7iUSblJHTmtKmEdOPKjf21NvmY/wD4T2JTsYrisll6lFs1ljFy6CP4/iYfLjgVH9nKLOOGMftNWQN8QIkyGYZI7U54F8tjpr4pSV0NTx5By8jDPYetZzwFSqvdRzVcypw0uVYPg/clV3XBBxXbHMVTm1Y4o5U8PUety5/wqOVItxuCePWn9eg+gPLvaMavwmlYZ8+sXjlcz/sppksfwolxhZx+dWsZBGiyuRIPhHOeftA/E1lUx8U9A/sqVyZfhFMMYuB9c0ljoNFrKpEyfCOccC4H0zR9ep3L/sqRKPhJKBua5H51lPHxTBZVIsR/CGYpvFwMfWiGPg9zVZY7E0HwakkGTdis6mZRi9EEcslfctQfBFXGftq5HvXM80lfY6P7NaVkdF4R+FNjYO3nurketTWxrqRReGy/37M25Phzo8khxGoP0rFY2SjY9iGCpRjYY3wy0lsKUU/hUQx0kafU6S6EN18LNDMDlo14B6U62PqK1mL6vSTPAfixpCaJr7Wtq+F3dq+lyms61HmZ8tmtKHtdEM8O+Cb3WYBNECeOuTWtaqlLVnHThVlojdt/hZq7cAt7cmuaWJpRR0wwNabuWF+E2sk4Dv8AmaFjKNjR5bVkia3+D+qSSYaZhzyCTXLPMKavYiGX1L2aNGH4L6kwCrcN+ZrGOPhe7O2GXTlsSL8D9WLcTn863/tCg0W8sk0WIPgTqUjY881yvMqakQssqIlT4A6mz4Nw2D71U80pcmiG8sm0WrP4DX6XAR52wD61zf2jFk/UKsXZHWzeDofCujCC4TJZcg1j9YdasmjseHeGp3kU7HwFBfaLPdvHhipIOK1rYlxq2Zlh0qtNuxxVn8HbnVbl5hIdu4966pYxpWRbwPuc0VqX1+BFx9xZTk+5qFjOXVmccDUqSsxw+At4OBKffmkszhzHX/ZUbDZPgDqrgmO4IxWzzWnFXsZ1cr0ukSaN8AtVubryi546nNclXMeaN0c0MJNS5TZb9nHVTjErfTmojmajE7qOWTnLUcv7N2rEEl3/AFrSnmkWjq/smwz/AIZy1MEhmb6ZNRVzKPQ5p5S29Bsv7OuoJzvb9aiGZx6lRyh21K8n7PmqJ92Vv1roWY02hyyrQik+BOqIMbz+ZrmqZiovQ4Xl0lKyEX4Gap/AM8+9OnmMZPU0/s6aWwi/BjXEfy1Sqnj6aZvHK5WFf4M+JFPEZxXSsfQcSnl0trDT8GPEL8FSKyjmNGMiY5TNasjb4F61K2ZC35GrnmVLl0B5U5O1gb4CascBWYfnWVHM4Ju4LJ5JkU/wG1iD/WSN+tb1cypuN0c2IyqUZXJYvgPqjw5jlbPWuenmUPaWZrTyqVrkY+BGuF9rSN+ddU8zo2LllMp7Cy/ALWVGTK2KlZjRcdDN5PPlGD4F6mp2mds+nNcn9qxUrE08pm9yNvgfq+/Hmt14Ga7FmVFwuazyp2sPPwP1ZV3LIc98VySzKClYVHKHcWH4Has7Zd2NU82gqbsbzy2UdEB+BuqxuW3n9axWbprUUsBOMLo1vDnwr1SC4AnkOwHmnVzCm4X6nFHCVnPU9w+GeippNusCcAAA14dbESqT0PfweG9mg+IBAuwpHGfzopXuPGJRaRQuIRJoEgH9w1MpSWprSlakfIHxk0u4/wCE3uPKlPLcAfWvusjqx+qK6PiM1g6+L5SnoHg/ULsAhmOevNd1fEX0Rzxpzh7qN6H4a6rPjaX6eprlniacI6lrCVKkrlqz+EOsSNy78+5rl/tCEZXsezSwUpRL0Xwa1gHKyN+dbSzGlKOo44GXMPb4Oa8xwJGNZ08worQK2AqWshR8HdazteR/zqa2OptXRzPKqjkPPwZ1hgBHM/PXk1lQzGnfU6KeVTiRv8GdcQ7TO351vVx1JxuYYjLKnNdDm+DWsFPluG59656WYQ9psXTyqe5A/wAF9eX/AJbsfXmu6eYUXEqtlk5xtcIPg3rTMVE7ZHUZNcDzCHY4f7MqxGyfCPXPM8syP+ZrqljaKp3N3llScRW+D2uAZEr5+tRSx1BuzCOU1ENPwk1xOS7/AJmtpYuhYmWV1G9Bf+FU60FyHf8AM1lDHUeazLWV1Yif8Ku1lhy7/nWs8ZQKeXVHoMf4W6wOVL/nRHF0GjCWWVb6DG+F+s55Z/zNX9bw/kCyyqRSfDDWMcO/51LxdFomWW1H1GD4YayPmEj/AJ0oYui5WMv7Nq30I5fhrrgGA75+pro+sYffQqWW1N7jI/hjrynczuc+prGpjaLdkS6FWMeVHq/7EXww1af9qPwzPfszw2LT3bg9AUjbH6kV9v4c1KWI4qowir8t5fcj8W8d69TLfD3Ecz1qOMF83r+CP038NZEiA+ozxX9QQ5nM/wA68ak4s+h/DKSDwbGGUoDB1KdaKyviEz5yjKUcBUi9L3PG/iPHvkmP+0cGunEK8DpyiVlE8K8d2RbfuODz0r5nFx95n6nlNWzR8+/GPRo5YHO3nnPFfG5pT54s/ZOGMU4VEfK/xV8LecZGVtrIcoRX5tmUHKLjY/oTh/MFDlb2PPl8Maq0p3F2APFfKfW4yVkz9SeCkoc8epZTwlqUowIWyelSpxerZzQp15SsmypqfhzV9HXz50YD61o8RSlK0WddfCVPZ6szjcSzuFEjD15rSM+U4IRhT1bO2+Gnguz1/D3MuDu7niuLESnfU6aFqy0Opu/A2jWk/ksgJBxmuCeIlsmehToJblKXwto8WSEH0zW1KcpPVmlXCwdmitdeFdINuZ/LXPoT0q5zmp6EypKNKxz11oUGSqKMfWtIYh00eNPCqcj1aWEGNdpIryaSi56n0mN5vatItwWRNvhieR1rCpNc1kaUYXRLFpmUOemKwnNJmjppFi00v5sGs5Vi1CLRKdKy4HT8Kl1bgoRuTx6QAPmH4VPtbGns0tSSHStpyFHPtUOqi4xW5LJpvTcMc+lJTu9SVFKRdttOH2bGB07Cl7TlZq4xSuT21iCmB/KspTdyIxTLlpYbcjH6UKcWbQo3RYFksPzAd+SKHO6sgUPZyLENup4x6c1lzNHRGVx0luG4ZeQO1EZe8bNaFe+URwOT/drWpHntYwad9D5p+N0Bl8TFkx96vr8lpyjQ1Pk80nGNbU6n4W2bx6Uuecis8fJe0sbYTllC6PQbGyHloxXqPSvAq1L6HtUrKyNa3sEEZLDPFc3tJLQ3nFRVyGxtl+2lSc5PTFU6bavc56UeeRs21pGkw+QY78VE9EdtOPLI04LONlPyAenFYc7RpJWdwtrUCc7RxUPuQpRehZFuFk2gde9DbaFdOVhFtD5wkznB4q4pA6VpmL4zszfkRYGABxXRhfclc58dT54WHTmDRfCzq525j4461o2qtax56p+xoPoY3gJxeQuwXhiTzV4h+zWp3YBynT1OkSAJNnaPauCVS+x2wUYy1LTQbeq9elYXludVtCWO3/ck5xxQp8zszFtK9yz4WtVN3uA5D8mumy5DippOsdStkuThc/hXFOT2PYilEnSxymOOlTBu5p0KlzZ7JOneqm1YxcrSsVrq1JTOMYrNM0eqK5twU5WtoOyJaujOvLYAkH0p2uzit74WVsGX5k7UW5Tq5E1oOj09ftBfYMZ61m5NoItXsWprBNowg6dxTjN2NHErfYVB4GPpUNu5HOrjktAWzt/CqbfLY0S1uSLbIGHFRDVlNWINbtFMOSMcd67IK+h5+Jb6kGmwAwnI7VnJcrN6NlAlS1AlyOv0rOUrlRmnIsPaqyYb05ojJpGs1pcotaJ5nAH5Vm02zOla9hJbRGIGzHPpWik0rXHNWkRtaKAQAOawb1KTUVcWO12jn8TU6sPdmx72qMhOPxFVFWd0KpG0SpDbKsjEKPxrodmtTlpwi2dX4UiJcL7VlJRTOymrGZ8RE23gx61rRaR5mNbdQqEH/hH5f9w9fpSnqx03+6PlD4sxtN49kCjjca+2yam1gj5HG1IQxl2bPg3TnRVI79qvEzib0nGo7nf6NYZiHGa8atNJ2O+mkdLoulqSGK8n1FcE5I9LDs11tYoziSMe3y1hKc7WuaSkoyLljYRTcmMYx6VjzSizog1NCSaZEZSPKX8q0lUdiG0pE1tpMO7mJRjsRWSk0zoWupDf6dEH/wBSv/fNdLcpQOaqJDpsBXIgU/UVz3aZpTalHQlbTLcpgwr0/u1rGbtuElYg07SYBcljEvX+7UO9jGCUpahd6TbC4O2FfyFaOb5bFNqEgk0yEAful57YFZxbT0LTUxl3pUCxgiFc/StfaSa3Mp2gyOPS7fZkxL+VZ3d7mqScSIaXAW5hUD6VUqjfUyVrjZdJtgM+UuO/FOM5dGXZEEulW4GPLX8qpVJdyJJFdtPtySphXgd1q1KTW5hNJakDafb7uEXHcYqVKSe44KMtSOfS4Uw4jGP92t+eTjuRW90rSW0ajoOv92lST1dzl5E5HqX7FOlJP8Zr3UhF/wAeejMA2Ohd1H8ga/ZvBfCwq8QV67XwU7fNv/gH8ufSlxrp8N4PCp/HUb/8BX/BPtLwvFmZAfUYr+m6TXMj+Asc9Gz6H0NHbweqySbituAoPGBSnriLpHztNyngJuTvbZeR498QIw0swzkZOc111fhsdOVy0jY8V8b2gJcjv0yK+excdT9Jyupojw/4nafHJHLuXse1fK5hC8WfqWR15RlGzPmT4p6YFuJVVOue1fnuNwkuds/e8gxadJXZzHhaL7bogYRqXgkMTkr0x0/TFflOb4Z4HM5Rvo9Uf0FkePhjMriusdGaNtaBpQrqMA/3a4ZVLLRnq0qcd7GX8TLS3OkZCgZXpVYTm9vcyxn8PU8sttLd5SQeCfSvp6fK1dniSwsKlNu56D8N9PlsogVlIPXGa4cdWjJWNcBhpUzoLi0nuZCXkOSeua8SpKy0PTlCXQrXWnMCFHUVpGs1Y6acW0QS6VJLAVOcEVusRdainTbVjJutEaFG5p+0jKokcFSiqcj0W2tTKFFeepcsmezWpc9Vl7aqbYwgyPUVk31OeMnCROkWEz2rGqzafM1ctWUfPK+nNc8iYbkoi/ffMPpU30Lt7xOEbbhl461LlqarYlii5Ax3oS5i0rK464g55HGacU0yGW4IyLXB9Kyne5bTcSazhJTntUSbuVTWhbtYyXwB6VUFodsI2iTXSEHHr6VRhUXvD7VCV5HYVE7WOinFOI8qfMxjGRWcfiNraFTVVC2r+wrp6Iwe7R80/GVwfEmCON9faZN/u58NnbaxFjtfhfGG0uMY7V5eYNqqztwEf3aPQ7CD92gK4x0rwZXctT36EE9zUtoT5e1hgEdTTejOirFKBWhtWS8HycHrW104WOej7s9DYskWSXjqK46rtojpablc1IUDR5AxWFmzRqTQWsRWdjircVymFveJljZpSB6d6zbsaQScx7RFQWxj2FXDc65WSuZN1ZNd3Dbuv0rV1OVHJUXMzH8VaJfahbLZiUhcYwK0oVUpXOerRlVjylvwb4fGkWnkuO3TFRXcqsrs0w9KVHQ0po9knPGPWslE1TtO5YYboQSKmavodq1iSIMwt8o6Vza3OepdJl3wgu66wwH3q6EpclzloL96deIeeRiuaex6kiykAKgFQPSpje5rDUoahEQ5GPrmqZjONpFV0JiyRzioBNlQodprWGxstjMvYzvbjqKq9mcMviF09CqgEelEm7HZTs4lgQlLkntXO2zF6SLU0ZaMEgcdaqDudMNUVJYtrHjtVnPU0mJbrk8jtik1c6I6of5ahge49BUU7ph1INdXdF97jvXXA4sYivpyARbcdqyk2VS0pEgGLjBHfis+hK0mWZF3RcjHHWneyO56w0M8g+ZtwPxrNNnND4wljZeMY+tDkbVfIbsJGMdRWWtzJJsQKwHPpVJF0/iHsn7pgfTmtkVW2K1uuZmBHANa6NHNSXvM6bwsCsgUjnHWsLO52KOhlfElh9sX6itaWjPJxy98qbQfD8v+4f5VM22wh/BZ8qfE9B/wnkn+8f5193lF1gT4jHJ/XDpfBsBaNOPpXHinJyuehhl7p3+kW5EeMYFeNWbvqepBHUaDBgKNoPNcc2dlLY2G0sSDIH41ldm0oc2pZsLHy02FRj6VL3NoLlQS2xE2SPxos7Gbs5XJII1HJxzQlLqdMG3oRaha7hyO3StuZNWIqr3SO0iG3bj2rF3UjOk7MsC3JiOB0HBrWLujWpqivYxf6QcevNKzsc1O/tBbi3xcMxHSh7GlZWYySEswAH1pR3CjuF9DiEDHb0ptkV/iIYocp0qQhflI/s+HzjtzQZPcWa3+XcV59aqJo20VZbbPLL+NNPUzV2yq0J3HK4Hat47DqRsis0Z3kgYwemKdtSKbfNYbdxHyxheMVd7JmldNRM94TnHSqjNxWhyQ+I9x/YX0fGpeItcdPvNbwK303Mf5iv6C8EcJL6vi8S+sox+5X/U/ib6VOYc+a4HBp/DCUv8AwJ2/Q+sPCiD7VGT/AHhX79SV5H8X49/u2fRGnrCvg9JIZA3+iqGIA4PpUa/WOXzPGUYLLHKD6anjfj1N0shB53HtXfU1joGVu0UePeNbZiXyO57V4eKifouWTVkeN/EKzaSKUFcj1xXy+Nje5+kZNU5ZRPm74s6U6ysxQEc44r47MaVkz9q4fxCaSR5j4Kkaz8U3uhSnCXcPmxAnjevX9D+lfknFuGk4xrr7Ls/mfvXB2M990X9pfidHHAVkwR3718epNn6NSRz/AMUYyNMAzjivayxpz1MMbZ0Tg9LiTeBXsVNDwIStdHoPhO3Cwqy/pXiYiq+Zo9bBq7NgRorFj0rz6kpnfPkTsQXS+Y544HfFEbJGVOfLOyFjtwbcEp+YojP3rHXNGbqNp5kb4H4CuiM7VEctWCcrs7DT4sRg+1c0nqehL+Ix93G3mhQ2OayjqcT0kaFtGTbAHj3rKpds63ZwRZs4sHkZHasZGcYpMsRwkyEkc1F9C+XUkWE7jxxU7s05SSOMbh9eK1Xuo6OX3B1wpzyPShNHO1rYuW8f+jZ29RWFR6nRyrlJrRP3XI/OsZbkRLFgnz5I71onyxO1bBesVcqRx9KSd9TnavMs2SkR/MOe1TJtnQmox0Gyj95j9KI/EaPYraqA1pJ/unit3eyMHq2fMnxnDf8ACVY/26+0yXTDHw2cx/2g7z4Wqf7Jjbj7ory8xv7Zo9LL43pqx6LYRsY1LH3rxpLlZ9FSjFJGjNKbW2zg8jrisdJTsiqy9x6lC2kuruXgFeeDW8rUk4y3OSknubmj20kMeZDk+prkqe/LQ64SvubNqh8pge561m5cpvzJIIQFlYGocm0cz+JksKGSfkcZ6g0krm1BLmuWLyMLDtHBI9K1iXWujNtE3St259auUbq5MWm7kOpWrGcMc8GiKSRFSXLInt4QsY54Heoc+hvSXMrkV+mx844BzTT6mNWPJK4+JzJFjHGOKUtjejJNWJohi3Yk965pfEKstGX/AAaM3fvu61vF+4cdBfvTsiv7wcfWuWpqeoy1Gg2YpRNoKxR1SFuT+RFORlWWqKCjdCcjp3rPqQiqEBJGK0baRvsjLu1YSsMd6Iyu9TlcLu5JZRgN8xxmrfY0jO2haljO/IHGBUOOg+XmdywV+QHHWpjozeCSKV2PLwGPb86blqYVY3lcZaksMBeKTlY1pqyJGBDgEY5pRG1qQa2v7jkdAOa3g9Tlrq7sVtOUhMkcVckhNWpgxxcYOOvSs1EiKvI0PLBgyR2rGejO9L3TPlUrJ9elEFpqYNJMV1DJz7Up6Ie5EEIO3AqUluaxS5RMH7pXn6UX1M425xw5jY4PA70+bU1qrQq2WXuGGO/et3JKKOSkrSudT4bTEorJvU6k1bQxPiSh+0qSckHmtqVtTx8YnzkMMYfw9J/1z/pWbumaUo3os+WPijAV8fSZP8Z/nX3eVzX1KyPkcxgvrdzpvBkeETA9K4sRpJs6MPax6FpEY2g4rxqrdz04JHTaLEVAJXvya5JnXTR0NrEWQj2rM7IomWMRDgjp3oB3ZHNC0h3oOnWq5+UpU1a7CGAxMN3pWTcm7F8ySHTRrJ8v48VaVlcStKOpVaF4ZOcYOMcUrqWphJWehaWL9ycnPHNOL1sauzgU7EA3ZX/arpS0MqaXMTXaATEleMc1jJq5piFsRxxiSTb78cUk7EUVqM1CPAI29BUJ3JrayI4IjtB21fQcFaBG0YLsMfnUmSSbFmjIXJXtWiRrUjaJXZPk3EChL3jGCTkU5IcA5HTpgVurIuqroolD5hB9RxV3Oek1zjrpD5IyOMVLkjorfCZ5j559e9KL0OGLPpL9irRxa+BLrUNuDdalIc47KFFf1b4OYV0uEfaW+Ocn92n6H+eH0ksd9a8QalP/AJ9whH8L/qfR3hS3H2yIE/xCv1yiveR/L+Pk/Zs+jtNSyl8KwosCBltMHYuN3Hf3rmqKUcS2n1M6UaE8rVoq6i726+p4r45T/SZdw7ng16cneJ5uXNcqPJvGNsWD89+K8fEpXPvMtnax5L44ssrKNvUHtXzeMhe5+hZVV2Pnz4saTujdivrmvk8wp3R+wcO4i0kjwPxA8mi+ILfWYRg20wJ916EflX59nWFWJoTpPqj9pyXGPDVYVI9Hc68sjv5iNlWGVPqDyK/JIrlbi+h+40aiqQU47NHNfEx92nDPp6V6uXztU0OXHu2HZw2lDLjPrXuVHeLPCpp2PR/CMObda+frRam2z3cDG7NeWDa3C/WuSb1OqtG0xi2oI3HnNRuOlBXuOFudhT2pKXLI62tDPu4AVJxWvP76ZyYle47HSWOfJB9qmXxHZLSpIffg7gR3706Nupyte9c0NPQtbAOayruz0NU1Yt24/vCuRvuOJYgX5v61D2LsSouH96RoSeX/ABgdetDk27Gy1iNkRmb5RwfWmmzO1nc0LdCbYAelZT0epXNdEttGQm2odxxRZsY9pJbrVWlY3c1siG5fdckdxTUHYasW7YnAJGOKcvdQS0QyVf3vGfeoT1NW7orako+ySY/u810LZEdz5o+NSL/wlO7/AG/619nk3+7nw+c/xzuvhYpbSUwP4R1ry8xX71no5Z8CPSNMXKJlegrxqklFHvqVkjRubZpbfB9OBXGn7xTXOhuk2ojdV2cbueOtbtXWocisbSQBQdq8duKyk0loNKxes1/dEGuaVylZsBDumJZc8dKpK61LlT0uSQxhZwh4FO6SsFJqMh+ozI0e0cYoTkzSu7rQoWGTcEMO/StJcyRFCKTLGrQAgOorFSbdiMQve0IoR+6yOlLVM0oP3Srqe7yySOR7U1J3HXjfYgsJpSgVyOnFVOTWhFKUYF+Mny2TvWfK73NKvvRujR8Ggi7wf79dCj+7OOlpVO18vLHmuSex63YsxFVUZHPp61EdzoS0Kt+m6Mj07CiSZnUimZYTaSDUnMtyFkw5AXjvVTeh0vSJmXKgSnNZxu2c8gto2lYqPrXQ5KMdRwhY0VgULlhyVrBtyZrJpbEkcYKYI+uab91ChJlPVLRVUMByD2pRZUtRlnEAMKOKfLcy5tQuFIYqD9TVQvsaxdyvqoJgyR/COK2ppp3OXEO0irZ5WLAPWrk7F6cgwlWnAb161HOrGMW+fQ1UB+zDjnHWueTu9D0UvcM6dSZCaqOiOa92IAxXB/E1nJXHKIIoGC3pxSadjSm9BrRNnn9KhExi+ck8jEBHtxxU3szZlOwjCXBPbNdkVzQRyzVlodN4c5lABqXZF0dTG+Jhxc5963oL3tDz8w0kkV7Xnw9Jj+4f5VlWlqVTf7lnyz8VXH/CfP8A7x/nX2WVP/Yz47MZXxdjpvBAzEmPascS9Tpw2yPRNGHy4AGcDFeLV3PThudXpMfy9M5xXJI76aN6zUqpwPpmpZ1pIeIN7YYdfWplK2iLaWyHiMKMe9ZxjKpLlirvsJu2h33w+/ZX+PXxSu7GHwX8MtTnXUifsV3LbmOF1BGX3tgbRkZIr6nB8G8TY2CnTw7UW1q9EEcLiq13GDsjQ+OH7J/xW+CuoJJ4g8HXMGn3l79l0qWSQPJduMLlUHzYZgdvHQivQzjgjOspofWJRvTbtdO+p2vLcVQpc0tbbtHmWuaReaPdy6dqdnJBc20zRTwTJteN1OGVgehBBBFfFTjKE3FqzR58rLchXHkfUUr2dxLYoaejfb2z/errg7xM4O1SxZv4yXbnqa5m9TWuhdPgJP8A9am07E0UkR6gm+Ug+tQiJWlIYkexPmX9K2lsXJWiQRp5kp3fhWaMI/EFyu0cjBArS9jevpAqzKdhAP19qIvU5ofEV3U7CdvWqk3c1nsZ6xu8x9DVp+6YRjyyuSXMY8rGO3OalO5pValAzZIwuSK0iklocG6PrT9ljSv7P+FelKVwZkeVsjrucn/Cv7R8OsK8FwdhKbW8eb73c/y98Zsw/tDxAzGqv+fjj/4Dp+h7l4Qh36hEB/fGOK+6pr3kfhuYStSZ9Cp5ceiIRbbQ1sM7DxkDqa4226u/UnnjHLVJRtePQ8Z8dwv9skJIzk8gV6k17p5uWS9xHlvi22B38da8nERPuMvnseWeNLQssnHUda8HFQbR93ldTVHhnxN0wyRyBh69q+Wx0bH6tkVflkrHzv4/0kJcSrs4Oe1fD4+DU7n7JlddypxH+C746l4fiDH95bEwyZ9un6Yr8jzuh9UzKfLs9UfuXDeL+sZaoveOny6Gd8SY/wDiVjvWeXSvV1PWxqXsTiNGX96oPrX0M9Inh09T03wen7hcj6V4OIvzM97AGvcqRwRzXC22zpr/ABBBEWizisnLlbFSaQjJtUgjvxxU36s7I2ZQnjyCSOh7CrlK5y4hWize09MRDPpV1L8x01NJsddOCo45HtVUk0rmKSaNHTCTa9O1Z10hW0LtooLYNcctjSO5bijy/K/hU3drHQ0h7AbxzUttCvYlkX5QSMZFQneRrH4RChMYyK1joiaj7F225g+7xWM3eQQi5Ilt9oHHNEYmzVtCSOXbnd09RWqaQpe5qQKVec89+tNy0Kppz1ZegXGB3A5Nc85XRrOPujZgWf8ArSi9RxINQj3Wkh/2a6L7Catc+ZvjaCviccfx/wBa+0yZ/wCznwuc3+sHc/CbLaVH9BXmZimqrPSyxfu0enWKhLZVK4OK8GpK7se02tjTs1EkRDL9Kwsr3NYSaRNp9uBNnHGetOVV2sPmbZpupYkYx0rBu5qotk0W6HK4x0oauGzJUQEh8U3JctkbT+G5HGHkmPrntUx+GzMqceeZLcW2SFkOPrWkUVUg1Ipoqx3O0DBz1rbRolS1si5cgSRAMB061yy+IucFYgiQKDkAccZon8JcVaNyG+VZNyMBzis4pha8ioIBCgyuOPzroUUtTKpFJ6E9kQ5K/wA6cnZFwi5o1PCw23xwMfPVRleNjnUbVjtkyG6fWuSpueolZIsquFAH51mtzdP3SCQBoyMdqp6ol6oy7hDFKeOvesznatIheMbScHpSk7s2voZVxHvmIFVB2MZJouaZpdxcTJBbQs7t91VBJP4Unebt1FdQV2eofAn9lr4p/H7xRpXh3wXobeXqdw0S6hP8sEQRlDszdMLuGfrX0uRcJZvnic6UbQW8mNU61WnKpH4URfG39m34mfs/eNr3wV498PTwy2czLHciE+VcIGIEiN0KnHBrfOuEM3yafvw5oPaS1Xf5M7pYOpCnGotYvqjz3VLJjHkj6ZFfJNOErM55qxStYmQYI5703K6MYx1GXaEOc/rV09maJWdynq7ZhCjriuqiuY566TZTswfLxU1JWY4Jcuo0Rf6SGYkc9KzXvIm/v6GurHyNnTjvWcklqdkW3EpMPn5HHrWSZztNO4MpUEnv2qm1Y3klyjeRgd/Wjczp3HFCVzxU6JnQl7w9RiNl9PWspK8hVNEUoIyZ2PfdXZDSJzXvG50nhtMSgiom9UaUlZGJ8To/34B5wa1otanlY+7mV7YAeG5c/wDPOsJ35iqd/YM+V/imP+K/fjPzH+dfdZSn9SPjsbF/Wm2dV4HBEKfhXNiXqzuwy0R6Joa5+Ujj1rx6q1PUprU6/SV+QZHUDmuKZ3Q0Ogso8g4HpmsZao6FbqPKqJdh4J6ipUerLv2Po39h34NeDdXk1T40/EHSrfUNO8PTwrDYXhxDI7N8zN6hVDMB3IA96/oDwd4UwmJpTzPERTeqjdXtZbn0GTYGFRurUTd9Fbv3Pp4/8FFba61P7JodraWul6ezLbRWduixxuoISJemMkZav22eW4BR5bt38+p9JTyjDUab523J73Z5F8Xf2+tO+I/xF8M6dqniOzbxhbTSz2WuXUBuTYXMvyiQRsdpkUH5SQdpIPWvNznDYCjlUsLRtFtaeVjz8fDA/Vng6N1B291abdDwX4//AA9+FvgA6pptz4p1LUPE3niTETpLHDubLPdSgsDNLywjU/KCM85FfydxHlmHweKqONRylffp5r1Pj3GHs23Fxs2rO3R2T0b0e6623Seh4+02ID0r5eMJPcwjK6KOlsXvmz/ertjHlgQo/vLl/VF27sDvXI2uYusx+mL+63kfjTcrBR1TK1wrPOc1KZk/iHyoViOPSqlK5rN+6VoY8NkjvQc8dHcbdKSpP05oT1LqvmKkiEr05qo7mcNyGdcREdPWnJalTM5AQ/A59cV0QWhLRJdEmLBHIFCirky0izKulba2D1FVFc0uXucFaapUXN9E39x9s/BrRjpPgrStOC/6qxiBHvtBNf3hktJYbKqFJL4YRX3JH+RfF+N+u55icQ/tzm/vkz1fwXATfxEDHzivZpu8j85zKX7po99haJtJjjIH+qAbI9jXHKMva3Xc9DDwpSy6MZLXlseP/EG1EV/IFPGTjjFetfmijwsC1FuK6M8v8UW+Sx6H0rzcRE+wwM7WPM/GNqy7yRjPt1rwsTE+3y2pqjxn4iad5gclfXpXzWMgnc/S8mrWaPnz4maT5czsydSe1fG5jR1P2LIsRzwszi/AU4svEt5o8jYW6i8yIHpvXr+hP5V+X8V4W9ONZfZdn8z9m4NxiVZ0n9pfiiT4jMDpmD2r5vAfxlY+6xz/AHBw2igfaBn1r6Ccm1Y8Wgrtnp/g07rdPTvXiYu6bPeweht3EIk4HT1ry1LU6J3lIWBCsRXHSqlFbjceWJEELhgtZt2NqL0KV7GV4FOLuzDEu6ZuWuFjBLdq2qS947K3xMYzBnAxyema0pv3dTmjF81zX0yM/ZjgVzVZ3ZvKOly1ZKd+AO/XFc71Qobl6IEEnHPrUtWN2mP8os2SetZy0ElckKFkAOMipWkjZaIWRCEAH4U9WzNq5ZiUiEAk+9VFO51RhamPUhE47Hir23Mk0ndlaS5aRmRW4Jwah33sTf2tQs2sAiGW56Go1kb35VYuwHcc4qJq2hb+Ajk5fG7OP0pQ+IcdGR3qj7NISOdhrp6IGtWfM3xzXHinP+3X2WS/7ufD5yv353XwhTOlJj0rzcyb9qz0cr1gkenW6nyE6fd614E/iPbkrI1dPGLfGPxrFgloWNLXMzFl70nFjp6yNCJS0+GxT5bHfBKxJeDYMjtii1zmraSJLVzJD8opTjrY6YWnALMH7V5bLxmptaOoQiozF1qZoRwuOetKDuTiE+hRso5bqdtxrSpOUFZGVOK5rsv3ERVQo7Vild3ZpJ3ZEUbGQKc9jWXwaFSVGaTB6Y61MWkjKEmQ3kEoXAOPrTU9SmuYn0WAKx388dxQ7thGXLoanh9f+JmQBxuFWtEcsZXr2O1GMgdOnNc82z1X8KLKjMZBH4Vk7otPQgVcjkdKE20KL1M/U4irkYqrEVFaRWXmIgmoadynojLlhZbv0BNaxi0jKTvsdn8NNO8Zafr1l4p8Lz3NlJYXkbxarDGcW0oOVJboDnsetehltCt7ZVafR7i9j7f3JLQ/S/4WeK/+Ed/Y9/s7w1o9nYeLtSa51C6udPgCLeoWHnsoHEZY4YqoA7gV/VHC6XJTqOK5OXVW+13Pq8swtOji4VJNOmkly+fR+ZyHw9+P+meMX0zSfilJbarY6fvt9Vt9QtUlEwIZUiYsN2xSQcgggnuK+srYOhicPVhyr3tl+Z3YuFOaqQjHl5trfn2u9jwv9rX9mr9nvRfDdz4p+GfxjsbjxEIVu7vw3a2Rjt41b76ROTyVPQelfjfGvh3TxWHr4/BYd0eTW117yXW3Q8itgauIpSqex9morrJO/n/X3HycsKhskc5r+dkpbHgxaILyMM/I61vBWiVN2VzMv4mlj5bgVtSk07M5qkk0VIsQLhzjPetZxTM0pNCS6pplpIDJIM+hNP2b6ImFenCfLI1La6iv7TzISMY6iuWqpKVj0IzhylQqfN254rKxLs4j3XII+maGrBe6K5RgwHbtVpaChoTKCUwPx9qylpI0hJuY+NMRsO+Kyk9TSrblKdqhM7D34rrhfl1OWC0Ol8NgeeAQOOtZyepvFaGN8TYwbkfUVtRWp5WOj7xUiTHhyUH+5/Spl8RVOP7lnyt8UAf+E9fP94/zr7nKn/sR8hmH+8nV+BlxEmB3FcmJvqdOGPRtDTaBxxxzXi1XuerCyOr0lfl247DGa45O7OqGp0dgcIQBk46VLVjqhFtEogXzNxPGe/asas3yNI2jZH1L4LupPBf7I8mhy2fkz3d1DcW534aczFl6d8BQB/vGv6/8OcHiMFwlQjBPmkvz2Ps8LWVDBUXDzbPn3x74/wBL+C+iXOr6r5iW+iWsq29tGQfteqSkEKR325JNd+Oxry3mjNOLV9LdW9dO99/M83NM6q0sPKpzXb0R81fBfxX4s8XfGaDXvFF9MXa6af8Adv8AOF68A9+mBXzjxteVOdao/Q+OwuPxFXE+1kz6C+J+u+ItcaFbqOGyslzJDo9qDtjPeWQnmSVupZifQYAxX4HxDja+NxbTVld6L8zR1J1puUnds5NpN8ZxxXza3OhRUUQaOcX/AOI610WvC5zpv2hqaoNzEY4rz3uy56k+mxAWxGKbWhUFywuVHTMuSO9OKbVibXkPnB2ciiUbFNakDRkHp1q4pJEzSRFMu4HP4VDfvEW90qSDjOK0huRH4iG5UiMkDim9y6mxnpGd/I963j8JDauLcJmIg/kaUXqKTWxBpmmtqOr2WnKCTcXUaY+rCvVyPCvHZ5h8P/NOK/FHynGOOWWcLYzFP7FKb/8AJWfdvgyyWGBLdBwihQPoMV/dtKKhHl7H+QmaVXKbk+p6H4Ih8vU4mwMqwPSuyilzHyOPqWhc9se7W8s9wCq7KPurwK5eRxlZHq1MbDEUOZKzaPK/iDGXuHkY7juOTnJr01pBHz2AquU3fe55f4mt9xdc1wV1c+xwU7JHm/iy23K4Zs49a8TEK59ngJ2aPJ/HNgGVzt49u1eBioJo/Qsqq6o8J+J2kGRGJTpntXyOZR0aP1fIcVyHiesvPoWuwavGCDbzBjjuO4/LNfBZlhfrOHnSfVH6vkWMdCvCpF7NGh8SJYpNP82I5RxuQg9Qea/OcDCUa3K+mh+xY2onQUls9ThNJl2zj3NfSKmlHU87CwlO7PU/AvNogPpXz2NSUme/hlqdD5ZfOa8mWjOlx94Ux7IyO1aSehVaNooht1GCzVjJhRWhUvkGCSKE7GdePus17eAPAB0yOtazl+8Oup8bQ1LfEmAOe3FbJc0TKrGy0NvTeISD0x61z1YpO5MG2tSa0B8wjPesm0kXH4i6GC8r+IrNts3lK5JDyCSO/asp7hElQMZMY6VLRVwlGcL3z+VXAuMbO5ZC4gwBz3rbZHVJ+4Ub+/EK+TEcnPQVmtXqcE25OyJdHtJJCJpR17VMmtkdEFyRv1L04Mb4UHoM1UdgTuyzaYVcEZxWFTc6ErxImB8056npRAq3UbdAtbuP9jrXT0Qktz5o+O6lPEoOP46+yybTDs+IzuyrHc/B4Z0pDj+GvLzL+Kzuyr4UenW4P2dM/wB3pXhVNGe9NaI1NPObchelYp6hTSZZsSIpTvPBParlJ8ug/djLQsRzfvOuKhzk1qbUql3qOu58x5JJ4qU22KvFt3JtEvk2FZCD2FObaNcPKMYliBc3JZSDUSnJQsVdc1yHVna5baPXnNRG6WpDbnIXTYjC/Hr1rW11cLLnsT3bkjPf3rOUrbETspEYGU4HFQ22dENaZVIKyEkd+lVbQwXxDbwExggZGMgmpimmbok0kFCcjAHetm7IxluX/DYDav8A8CoSbRy02vrB2zJtO4+1YPc9m6ZZQAx9D7VjO4m7EaLhyw/lSg7McGUdVj65yeBWjY6q2ZnxgBCT3pN6kSehRkyLjcRnBq27IzvbY9N/Z8Hiy98faZpvh3xFLpceoyG2kuFAaKcnkRSo3yupxjaQa+k4ZwdbG45U4ysmdlNScLn3H8efiN4R/Z/1r4Y+CPF9mdPa70VpNWh0qQxrDJOSUcLyEQcEg8Y4r+n8lw8aOW6vrZdNjbB4qv7Jyi7q9lf8THl+Hfhy7g1PxTbSW1sIJd0lvG+5W3jPnI2MFCOvpn2492GLXMlbpuevCtUnUjTim2z5E+Lqj4f/ABG1g3mmvPFHZrBYNeXZwzyE/wCrXILADnkVHFeJWD4YxWLm3pBpK+l2dGNxapUpSm9WrHl8gzkHqeeO1fw8m3K7PkqcPduyKZdynJ6dK1NG7qxmXWwSeTx14zVJpHHzRjJpmNr8r2doZD8oKn5iK0Sc1oTVdqbaPLNa1/ULzVjbxzEjeMMK9aMKcaOq1Pnp+0lV5j1bwF5zaGokJ+51PWvIrcqdz28LKdSOpoMmHI965b3kdyXKrCycLnFE2b8vuEDEnAHrUxZjFEkXA5HXtSmjaMfeJ1X5GGOo61hZ3NKiumUYlIuGGOM9a7IbHHF2VjpPC+1p1DHGKie5001oZfxMjUXinI5Irek00edjV76M8bf7Bl7fuz/KsqmkgT/cux8r/FMD/hO2IP8AEa+1yl/7HY+Lx7vijq/Aw/dJ+Fc+KTTudmGWiPR9FUgDjkDnNeLW0PUjsdTpfyjYOvBzXPy6anVSTZ02lwkrlv4h1FYVJdjthex0/gX4W+Pvibrn9i/D/wAKXWrXSjc8NrDu2r6segFellGRZlneIVPCQ5tdexpGjWrS5aaufQfx08Pa5pXiHwr8M9XgntLiHR4DNE0e0QMics3rtG4/Wv7Ty2ksuyGjSmtYxX3o+xkv7PyyLl21Ph39rrxhazeKpLrStNEul2TtHZG6YskDZJe5kXgySsegGcDHpXw2ZYl47EuXT+tT89zDGRrVnbWJ5p+zhrKz/GKzuwHu08wAXEybMfQdh7VhWpQlg5uOyRx4K9WraGx9KeLtNutbjuNW0TSJWt43P2jULhAAzf3FLHn6CvwfNMHWqVJShHrv3PUhFRlynIhMR7n7CvmU7MU5NOxFpKj7cfrzXUpXpkU1zO5rXiF5QpHOeK4HbUp3uXYoxDaZx161V77nS42pGey7mPcZP4UQ0MI6yJJIwIwO9EmazVkQvkDJFZ3Zg1cgeM4we3tS2HbQp3AO4j6VtBmS+Iiuh+54H1FH2hz3KESFnwPrnFbr4SZJXC4TGVIxx6U49zKW5s/CTSv7V+Keg2ZXIF8JHHsuW/pX2/hzhfrfGuEX8rcvuVz8j8csweXeGePnfWUVBf8Ab0kvyPtnwjAWiVuhIr+zYs/yuzGa5meg+Bo1j1WIsuQGGRiuujHmufKY53geuXCSJZvHDgblAHesI6z1PQxLqRwzjS0ujzDxlAwmcSLgjOT616NvdPFwL5XY828SQAFgPfmuCsj7DBzvY878UQHD8Y968bEq6PscDLY8t8YWjkuMYPpXh4hWR91l1RKx454/0sSK4I9eK+Xx1LmTP0jKKzVmeD/EPRyHkUD17V8fWo++freR1lJq5zGoag1z4OjgmfMlu5ibPoOn6fyr4TMMJHD5tLl2lqfsuExLxWVRu9Y6HPaRGRcDnqe1bVLKNrnfhJ80LI9V8CqRapn0r5jHP3me1hkdKhAOT09a8pq7O1R/eDpAfLOfy9aJdhYjZFVMhSFH4VnLciiVb0EIcn60InEP3WbdqAsYU+mK3cFKdy3U5p3RLHAxYELV3UFY1nqjStF2jHr1rmqTuZR1ZPFGF5HXHFZNrlsaJWehYjDN+FZy7G1OPMyeMbEGPyqZWKasOTIP40uli6ceZj5SVIb2raCsKpbmSQXuoLb22Oh7j1pOPMx1alocqM+wt3u5vOkOR2zSlK2gUoWV2bVo4j4xgA9qXLyop6q4skoaXaxFSmTBcxYgzjjgYHNRJq522UYg6rvJHepi/eE2RyD9y4I/h61u37qBM+bPj9GB4iU9Pnr6/JHeiz4XPH++O0+DvOloPYVwZl/FZ6GVaxR6fFkWycfw14NXc+gnblL+mSMIuawSuwpLqWWLI+V9jmtlBNGctZFm3DSgSA9etROFtjppxSRdFtGItpANZxjZ3KrR90ovCIpv3fyjPaupOPLYwiktjT01mCEsefWuWra2h0Qg3uKYFaQu4HXioSuU1yahbg+aexrV/CKGsri3CFyVH51ildiqRfMC5VAGAocFua09NCrMpWXBGPemmrGM42kNeMlBkUXNou8SazQRk56U07mL95k/hjzTq2FXjdXQ2oQuYUqf7+53iQgYJ9OledOTbPWukShty49uMChJtEvXYckWTkg89azejEtGVNUiwmfQU+YqbujIlUqSuKSbZlK9yrMqtIOCfm7V0JLl1KUF0Pev2JI01P46eGtIg0eG5zq0QVYoiVbJAIlUjA4JIYdD9a+w4S9r/asXCLtbex6EJ044WfO9kz1r/gqv47hu/wBqbXrLUPG19pWm6Vbx2V7BprMjXFqkYHkZUHOSAMYxkgngcf0tTpxw+R0HKN/teafcyjajk9Fw66v7zf8A2NviZ4M8beEhpfhS9v5NItQtvHFq7hrqzzwUk6F1zznFdUcU6qi1vYv61L2V1ueBf8FG/CGk2nxS0LXbeNg0Vy9sAE4ZvLznOOnUj61z8Vxni+CMTTau7G9bmng1KerPEWQgbvzr+NZLllY86LtoI8ZaNsA89KcpWQ7KRzmqJcfbS+Mbf8aqFuU4atNxndEeuJHqGkeRs3HaRtxW1FSvcio+enY4fT/h3cxah9rnQ7C2QD2retW5vdTOCGHs/ePQtEhSzsxbxjAC4zXDODR6uHjyxsKfv59aw2NZS1FxuGOMUpNtHUrONiMrhixBJognY53pIIs7ifWqexvB6lmOM+UxwelYydmby+EoRhvtDL2Jrog/dPOUbO50Hh3KzCs5XbOqDRlfEckzISeR610UUtTzcbfmRRU58Pyf9cz/ACrOprKwJf7Oz5b+KKH/AITth/tH+dfa5SrYM+KxqX1k6vwQoWJM9wK58Um2z0MKro9J0FSzDA7V4lXWR6cUdRpCIzDAzjjmsamkTrpJ20OstLeaG0F6I22dFbHDH0rnjTlPRI6veWx9r/sxXsnwW+ANqY7WTTtT1+Vrm5uIn2XN2qYIiB/hjxwfUnjnp/Xnhpw3RyvJIOrFKb95t29ba+X/AANT7nKKGEwODVWtG8n36X2OK/bB+J+v+HdBk0/xKou/Eup2hkcPiY2VsVJSBTjKyEcnngYr188x9LlcaTsvI+U4gzZ1ZOMHaC6dz8rvjLea8PHMt7r1jdz28zlzb3HiBZIxz3jiIKduOor8+k68qq8+zPzrETlVqpR0Rvfs1aZ/xc2xktlQKZQ2xmOMenJr3qlN08BP0PsMuhGjS1Ppn4oaNqutzPrHiWfUZFgCixVohb20K9gqnBbPqBzX8+Z5Kc6sueTtcULSldM4l5n2bX49q+V9xsmV7sdo+ftpfb3rsX8MdF+9Y2ZBvnxjjPGK5GtToULT1Ls/ywBMc4qG+iN6vwFCNDn8aIvU54qzJZh8uPUVbLm7orSYxU8tzJK5E5BzxxQ0S3Z2Kdwu1yCOe1VBaCjG7uQXH+px0oXxEztzFWFArgsPwrqfwkyGTpufHepTsjJrU7r9mfSftvxTS7ZeLSykfnsWG0fzr9c8FsKq/FVSq/sU397aR/Nf0ocw+rcC0sMnrVrL7opv/I+vfCy7YVHpX9VQP83se7yZ6D4BUS6sq+Xu6cYrrofC2fL46LlFJdWeq3Muy1bjnCjAFYxXvHp4ut7LDtLfRHmnjPfJPIzsSQT1rutZHiYN63fU848RR5LE8e1cVY+twb0RwHia2yXB9OleTXjc+twU9rHmfi+zdt4x9Aa8fERS1Z9xl1RKx5N47tFhDGXqc7R6183jU5n6DlNVzaseH/EbSZMtMY8H+7618pi6ahJs/VsgrxUrXPJfESXNjHcRCP5JQG+jCvhc7pqpUjUXTQ/X+Hq8anPRb3V0Z/hmJpZwZSQc8V4+Ik+TQ+tw79jues+D41S2UL0r5/ENvc9vDS5nc6CNcHkDmuE9BbizkCPpgkcVk3dmVd3K6AKpyO9TLcVKNkU7s7lYEfhTtYivbkZs6eDOVc/dIziuiclDQunBQjqaaKgXpjjisYqUncpvm0LECHBIFYyVmSlZlmNdqg+o4rNs0VieCMhsnj6UX0ub0HYlK4OO1ZNhLWQICOetbU1c3hZRC5mEEQkbqOme9Xd3sjnrvl1M4GXUbkAk4Bxirm3TVmtTOhB1JczNe3gW2t9qisEru51TktkT26EoTmpqTLdlGwyBD553NnB7ik9gilBGjDDlTj09KxloaqV0MdMMQSdvrThrIFdu414w0LfQ1tfQo+bP2gSP+EkCgdH/AK19hkelA+Czu/tzsfg4caYn+7XBmb/es9LKvhR6dCGaFVJHSvCqWTPoJr3UXLBtgAP4CoWrNKVlEsXMxjjVs846VpGTeyMqu5b065Vk3EYU9qmcjopfDqWLq/8ALiIB5HSsbXeg6t2jPtLma6u+e5wQa1qNRRz0YtTdzoLRFhiDE9O1c6vLc74tNhNMASM8ZqnKysRVd9CKG5XeTt7+tKUu5NKyepL5yg7mwT2zWXM+hVSVw3oxxgVMpMKbsVr1G3ZUU4MqUL6iwLuiG4cnrTabZnflHRIxkK84PpWiaigiang+zkm1oQxRlmJ4AGSaicnJGUHy1T1fwt8JvHHjW/h0zw74curmSWB5h5UJIEajLOT6DHWtqOBxFf4Y+ZvKvBK7Z2nhn9jv4uaj4Dvfilr+gT6XoNjp5vLi+vIiuIixWFVH8TysMIo5x83Su+lk+IdGVSaskrhHGUFVVJO8n0POLvR9Q0+CC4vdPmt47qMyWzzIV81ASNwz1GQRmvFq0pws2tGbpxlJpPYzNQiyv8/asS2tDEvYSmSBj3rSmr6mUlqVobf7Rdxw93kA+vNaTvojaFrn2F/wTLsLiz/ae8P6FI02nym8Aeyugsq3CLhmA4+TGAQTjPY9a/R+CYSWKknf4e2jLxShPDVYvSyOT/bs1OLxF+1t428QGaKZU1hoVtLpQYud6qWBHK5xn1xX9I4mj/wjUodomuLlGjgqUI62ijK/YW+Kn9na1e+EfEFtp935eom2v9XZjFuKjKR2zHPmoBtwh27e2a8bAxUVfqeAsZXr4lRi32d+x6Z/wUM8JS+NvhLa/FfSrIxxWRjunwg/5YNtk/ONia9eg44ihUwtXVSTv8z6fC02sPKm3qtT5CvYEU5gbcpGQexHUV/H+fZdPLMzq0JL4W7ehwVIcruVmH7sj9a8ezkJNNmZrEMcaiTZzxzjrWtOLTuYYiSiZVvC08md3GeB6V1cySsctO83dFi6tgoGT09a572d2XUiyWygLJmsp1GbUWnEZLGUfAB96werLcR6oSv1oaaRvTkmQy5VuRinF9DOa94IEO4ArVPbQ1ptFyFf3TAkcisJbnRJe6ZpXFyTjjNdFNaWPO57uxu+HTvmHanONkbU9DI+JLbJhn8a3oQ0ODGSXMkUrUh9BkAYH5Dj8qyqRfPYcbyw70Pl74syGD4gsgXPzdq+6yyCWDWp8ViaUpYrU63wDC0kSM/tjNeZjaiTsj28PCMIHpWgrt6DkjgV5L21OqKcpaHUaREVlB7nsa4q1SPModzsh7qse6fszeCPFnxJ+JXh7whpunQSafdXLk3N3biSO1kjUOzc8AlAeDxg19xwLktXNsyhBr3E02ell9H63X5LXS3PoDVvG1lfeK/E3xMu1tpNF8GQJa+H7SPG2S5GVRD+ILkfjX9Z42Ussy+FCNnGST6Nq11buuunVWfY9zO8YsPT9lHoj4B/aj+K3jD4g61eappM2pSrBI5vZ4xta8c53hZGZQq9s8nA4r85x2LjXnJvZH5ZmGNnJqV1ZPW/U+Sbmyjk8RyXMuhNaSSvkp9sMxOT1LZNfP4CKq4nmSObB0fbVue1j2j9mPRzdfE3TrFohtJzKGXcGH07/Svr8wrxo5ZU923LHfvv+P8AwD6ulKUI+R9ReK5fCr2byXPh7U4HLHN7JcRNI5HQBHXKr9K/mjH4qjWqS5oNa73N+RuSaaPLPEcFxHme2zjPfrivFpwUnuYVVJ7Ffw7qW+5IkIXnvXTL3Y2RNGShK7OlhIeTzAQRmuV3PQjKMmXbxv3YGew6Vzyb5hyK0QBxxznrVwiyHHS4XHCbc9q0k7IiT0KzLlcZAx61ClYUdHchcY6n6UORFTVkEybhnb0qoy0CDKt4hC4zz2NVF6mVValeGMj/AD0reUlykxegyRfmOevfFZpuzId7nrn7I+lGXVtY1YpwohhU/iWP8hX9CeBWEdsbin3hFfi3+h/Fn0scz/fZbgk9o1Jv5tRX5M+nvD0QCque1f0NA/hfGSu2ei/DqJ/7TVkYAjGDiu6lb2bPmsU25xt3PSJpsRMkg3cg5HQGsUlzHdiK6hSkpq7PO/F0cstxLMzgjJ4rrs3G7PHwctFc868RRtuYgVx1j63BPY4LxJHjcMg5ry62iPq8E9jzjxarh2igTc+OT2Hua8LE80nofZZe00nJ6HmPizSSGeVjvc/xV42IjpaJ9zl+IvZLRHkHxC0nekhK/WvmsfR91n6Tk2JcWjxTxrpx+zzIF5U5FfEY6hzwaP1vJcV7HEU6iOY8PyYuFXb/ABenSvnZwXsz9RqWnZo9a8IAm3X0IFfM4pu7R7OCtynQxpzzXnT0R6Em1qhHQlME9KwvqZ25iq2RnjAq2vdubRVkUbrkNzQ3octfWLPSfh38MNV8ba9Z+GtJmt4Gu5/Igur1ikLSn7se7GNx7CppxniZJodWpGjpLc9m0r/gnV8bvEmkWGqeFLVbs3dnc+dbFCsttfQZL2bj+F2UZQnhq9yllVSUdGcNHHL2tpKx5v8AED4OeMPhbrcuia9YNJGLaK5gvIYyY5oJR8jgkccgqQeQysp5FeZi8JVoS1Wh6vNCaumc+tsV+Ug++a4ZRaHFWY6NTEwyKye1i1oxzEn5QetOMbnQo2V2OQqOv41t8KJjK2rMzWL5pnFvCeSaIrqznnJ1Z2L2k2gt4Azr8xpfEzqiuWNkXWYsnJqZys7IiWjJbVgI/p1rB67myvbUbCrfaDxxmtI/CD6GlbYAOfSsZp3LjJJWIZRmTJ/ECiKszaKdh6RF0Yf7JrYLq582/tD2wi8Qq7f36+vyT+BY+DzqV8RZHV/BmRJNNUIvIXnNcWaRUajbPVyqlPkTPUbRCYgD2WvAqyi9j3ZxaSLFspJwc47Gs76EQdmWdRt1MYPbHWqg22ays0T6QuYwpqZp3Jg2noTX0SlNg/Os4t3Nt2MsLQRuWHQniqlHmWpE1yyujYi5ADd+2aTfKrIqErMV7QOCefzrHmbZ0WcmPh05B0P1JquVvczlBpj3soxycc1KTuUoXiRiBQ3y8U5RVjNXixtzACASKzjudF7K41FWNQCOT7Vra5hbmZLbwkvuxx3qKjSZfKkz2v8AYP8AhNf/ABJ+O+nwWtgbgBm8iLy9weXhUQ54OWYV62W4P6xVSseXip+zi5PY/fL9nb9jD4OfAf4f2Kav4esZ9Qh0EWN/eXMahfLPzOv0JJz6195ChCjBU4K7SsfD4nMq9Wo0nZX0Nrx14B+Anx38Ox/DK5u7P7DbEOlpaIqLwuwbeMBgp2gjle2Dgjo+r81LlnHQinjcRhavtE7yPy1/4KcfADTbPUrbWtM0yDT7ttbbR9D0iFX8xLOGMLb28EAGWZ2LMW6cepr4viGjGKv1vaK8j6/Jca5vls7NXb835nxt8W/hX4k+Emvnwr4y+zQ6msKyXVhFcrJJaEjISUKTsf1U8jvivkJxlTnyy3PpqVRVYc0djg79QY+aum/esNpWKIEZcEgcMM56VrUvZWFHm5j7O/4JoeO/EfhT45+G4tejmuLS7uY44EutNh+ReBlH5kUDOeymv0rgmrUWLcJyesXbsa4nDVMRRmm7aHk/7Z7tD+0Z8Q7m9gY51S5WMY5dfNYKw9SOeK/qWtBLK6Epx0cV8+n56G+Jw7hRpc38qPOP2fvilFofxBl07xLolvquosyLDqdzdGOLTYlwI/KiGFaTGcE85Jr42rWVHEqMHqeHLkp1NXZn6R/Drw58O/jb8AfEHgyFZ2hEDyWw1RcvnaQ6ZKjdkHqABV4epXo4uEqjvfRmkswrxxUXT+F/kfmR4o0OfwhqV14V1D/W6LfPYTEA8qp/dOfQMmB9RX5/4q8MRqwWZ4dbaS/Q9eUVOnoZsigKzetfgSjynPHS9zF8Qyu0Y2np6VVOT5jkxEHLUo6JDJy7Grmww9o6Fq7XBOfxrKUi6tiSzXEfGQKxmrk03YSaM5Pt0pKOtzXm0EjZc4A71UloXCLvchu1QvyOlYRTuObsxsQZmCp0HWttIajpx6l5ExET7dawbuzeU/dsjKkfbcsq+tdULqOpw8t5XN/w0u2QH86iUm2a82lkYPxSl3TKievIr0cOrQOGvTvK7M7Szs0sxtxlfWuStL3zeEkoWR4L8YfBGpx+Lv7cihzCTyfSvpsDjYyw3Ij5XHwqPEXWxseCU2RKG644rGrCN/eNaHNM9K8OWvmBWYDpXl16ii+VHr00ox0Ox0PSri9u44LaFnJYDCjJNcsIOpUUVuy23sj7n/Z48Pa/+y/+yj4v+Mnie0+z3HiEi18MWksYDHCYe4TuAQce9f0/4W8PTy7D+1rKzer/AER9dlGE+rXqS3Suzyn4462fhP8As56B4Lu7xrXUtaaXWNXQW/mybphgDaeM7OhJ4zX02b5hWjNuk9XdfJ6P8D57PMQ5zcoPf9T85fjrqq6rqdxLqLDUEUnbDqmsGBVHYpFGRz7V8BjJU+X3rN+p+eV+RxcJfEeb+FrYNMCkAjySdoYkL+fOK78mw8IrmasexltKpThqfRP7JunrB4uTW5nkKWdoXZ4s5LHgdBXbxTjaeGyKbTvdaeZ7MU5KzPV9bu/t11JeSyvvZiSGV+R7lySa/mXFVlVm5JWudsNFyoxLwCYEFfwrmhdMtpQMG90ya3b7VBxg5wK6ozhf3zkrUXKN4l/w94jJPlT8HOCDUzh2MaVWUHqb73fnxB1IIIrnlA9CFRVBYQQmSOtOOhq+wlwpYD8qcmkibJakfl7F5rJXbIlJFeVG3dO/FaOJnNNkQGQRjqamz3JUbPUrX6ELtHbrThuTKxWjjIGDXRYzaSZE4xJgUnZIhu1z3v8AZE00x+E7m+K/8fF+xB9lAH9a/qjwUwvsuEp1rfHUk/kkkf53fSfx/wBY4+VFP+HRgvm25fqfQeix42Kf5V+wxR/KOKe56H8PVP28DfxgcEda7qHwM+bxTvOOnU9Au5Jfsx3BVAGNmazUVzpp/wDBOnGSlGg3JW8jgfEjBZZSG9eK6G2ebhrtI8/8QpuLHHeuWofU4N7HCeJoQQ20Zry66ufV4KW1zzvxJpxjd3inJ3feU15NWn0R9hgq3Mkmjz3xRal967cY6GvJxEEj6/A1LWZ5V4408Or/AC889q+exkbxPv8AK6zTR4h4z04rcvGy9TXxmLp8tQ/V8sxDdJHB2VkLPWXt8fdkyM+lfIY6Eqc2j9ayjFPFYOEn6Hqvg1f9HTjOQK+RxWsj7DBrQ6GMcEYzzmvNqbHoTGyghC3fFYRV5ELSRSkJCn5eD3rpkrI6GUX+fOBWUkcVZaM/Vr/gmX+zD4H+KllJ4NvILfXNKZgZtMvdJkjktnyfnEpB+YZx1Ar7DKcFh4LXWP6nk5pKpzvpY/Sr4f8A7IfgT4ZQBhqKoxaPzGuZdzMqfcJJ+8y9ATzivedOkp2ijyniOaOpxH7TX/BPf4afEbwxe3mnaTaLHNaXKF4otwMcxDNgDpiQCQD1B9a4sXhoV3ZoFmVWLSvoj8MPjP8ACrxB8IviNr3gTXrIxzaNq0loxYdQMlT+K818Ri8JKhVknsj6zB1Pb01JHHOh278cD1rzpRSlZHoqnFiKuAQ3fpxVaRRu1aNipqOoJAvlxdT2oh77u9jhqOV7Ii0jTpLqYXE46daJytojWnBR1ZtFFBAToOuBSbtEpuzuDKdnHTNYLcEnNktoNoK9qJKViuZbCxL++JPTvVxTsU3cuxsfuoBjsaGkty4xuBj+bJ45rJu70NXJRViS3AyxI4K1d2kZyd3ofNP7SbyP4lWBB0l9fevtMl5YYdyZ8bmkUq3MzsfgtZiLS43xztrxMzrOrWaR7WAmo0UemQ7vLGB26V4/LZanqRfMixaR7+c4FWkmjN6SJ7su8QjBzx0IrWKUVdlKDauyxpqCKPk4z19qxqSc3oP4SWQF5PkGR9KIxUVdlwTvdk0CYOc1Dn2Lm0y5bglh/OspMzjuW/mY/wBKUY31OuD0HrgDIz15rQibaYkgyDg9cUrInmZXeN2YE5H0pSWhWhL5Rxhhz71nGOoNuSGx2hZ9xBwP1qpy5VoWlZGhYaZLqF1HZwIS8rhQoGazhFzlYirJKJ+pn/BCn9jbxhbfFVfjT4stFXQrDRUubGFk+9dSlghPHUIm/wDFa+7yPCOgnVfbT5nzGd4qEMJyLdv8j9Av2lPGMlxFPYPPImnWR2SJE+DPLj7v0FfS0JqGjR8lCDi7tHzN4Z+OGm6L8XLXwkZJprrzFkAadY7eEZyFJYfMfbFdyn7urdjrp0PbPsdX+2h4l+G9jYHxx4hNro988BEmreHXtxqCoyfNturkhbUEcFogZDnjHJHzOaV6CjJN9Pn8j28JTrwlThTg5puz2tHRu71V100u7taWu1+PXx18R+ANa8aXh+HGhWtnYCVsNBdS3MkzZ5eWeU7pXJ5LcCvzrFRoOpenGyPt6blCkoyd2jze7cliG6nrWcYqOoOPcqIBvOG4zxVVLtWIcuV6H0j+wV4zTw58c/CpuPDwnshfKLq7jtkj8vJHLuzBnHsM8npX2PB1Z0syhzaK251QlVq0ZKL1sWv+CnXgu18IftKeNkWJ0jvZRdWeeMkgSKw9iAw+or+tsJF4rIKFR32/I6K9aVbLaU+trHzd8Oohrt8PFHgC4inkivVmt9GuGRbcyYxJMzu4CtwACQcDkYxXxuKhOOK5ovqfG4lS9u5tf5n6s/sP+I/FPi3wRaaf43u9Iv4mO2NbG8huJLbK9GkR8tjpzmuWtO1S8ZbGns4Qj7SDafmfBf7ffgVfh/8AtW6vobyra22uWzI8phVyJEyUYB8DPbPUZ4r6NUaeYYFQqrmjJWaPp43rYaM1+B4xHvk0yC8OCJVIJBJ+YHB6gfyr+XOLshrZDmMotfu5axf6HPUkpXsZur2/nRcDpXydPcxlqippUZRipXjNdErJGdODbO++BH7M/wAYP2qvH7fDT4J+GU1TWFsZbs28l3HAPLjGW+aRguegAzySBV4DA18wrSjS+zuPEOnQp883Zdepx13pWs6Bqd34f1/S5rK+sLl7e9tLhCrwyoxVkYHoQQRSxeGqYStKlVVpIdNU7XTuQSjf36HtXLdJG65Yka4ViFPJqG3IpzSN3wp8IPiJ8R9B8S+KvBnhyS9sfCGlJqXiGeNgPstq0qxCQgnJG5gOOcZPauzC4CviaVSpT2huZ+0purGDestl3MnQdB1rX9VtNA8P6Tc39/fTLDZ2VnCZZp5GOFRFUEsSegHNcHJUrVFCK1YOuqdNzlokX9a8N6/4W1S98N+KdEutO1HT53gvrG9gaKWCVThkdGGVYHqDVyozo1OSaszSM4zgpJ6M5qG1vNQ1hLHT7V5pp5AkMUabmdieAAOpraFGrWmqVKLlJ9FuZq50WjQS28pjlQq6nDKeoI6isuVxk4yVmtzelFHNfEVlNyAWHB5J7V2UeeVlY8/HX51E9Ak/Znfwj+y3eftF/Fb4hW/hqfUokk+H3hCTT3mv/EUAlVJrxgCPstqoLbJWB8xlIUY5r6OHCuPxOAqYpRdoq5nTo4uu5vDwcqcF78tkvLzPnD4iXgu9MLEAjOQe1eVl8HBnj1pKqjK8D2LSyBmGMHiuzGVUlZGuHiken+HrKSUqscZOOuB2ryPZuctTu62R92/8E7v+CfsPxj1RPi78Q7WeHwhpF3Fc2NyxaGS+kC/NFjOCmTye/QV+ycE8I0qVsbi43k/gi/zPbwGDjSn7WprJ/Cv1Z6P+2p4otfjZ+0H4Y+AXh63jj0azuUja3hfEUEURDP0H90Yx71+6RVLLspkpxfNNaWdrO63VtVa6tprZ30s/Yx1V4PCcl9Xqz48/4KFeINP8XeL9Su4/D97PBBH5EOy/FrGkSDaFMjbcKAB0JzX53jMVzVGr7H51meLmo3g7n5yeP5NFuddNpYadpkbh+tncvcOf96Rjgn6V85Upwr4hLQ+XoWr4pXLXhGxuJb/ylO1SuGdu3rX1+W03TjqfWUozS0Wh9Rfs86DqGjeD7nXrQiKWd/KjZSM7B9cV8X4iZhNYeNClKzPRoWlLU6e9e7lXN3cF3J6EV+FzlJy953Oumlcy7hwueMAU20KsrakUW2ViNoINTN3WgUpXVjP1bRDG32iz4I5OKqliLe7PYyxGGT96O47RNfZD9nuOCOMGt5WkrxRw05ypyszorSeOWPcrcEflWEkerGopx0H+ZtJLD6UJ6ag4NvUxb7xhpdte/ZGmUMTggkVpGlOesUc061KE+W+poQz293biWNsgjIrOamnY6HONiB+pAwBSs0jlk22Vrghvx9aSdiLNlc4Ude9bxkmhNOLISBk80pbE1E+U+nv2ZNJGn/DrTxjBl3yEEerH/Cv7R8NMH9S4IwkGtXHm/wDAm2f5Z+OmZrMvEbMKkdUp8q/7dSj+h7No8QyBnmvvIrQ/B8TLQ9A+Hsb/AG0Mq7iAMDFddFrkZ8/Xb9rGy1udxfW+ozQs0RBVVzIfQelKDgpasvGUcVVg5fZW5wfiBQDJ6k1tO3Q5cNrY4PXwxLdiK5Knc+nwmhxHiFclsn8RXnVtWfT4NnCeI4Q7MX/AivNrNH1WDnZJI4DxLbo+8Bfzrx8Qrn1uCm1Y8y8Z2Pyvxxzwa8DFRufc5bVV0eK/EDSzvaUAcE84r5TMKWtz9PybEe7Y811S0MOsRXQHEnB+or4/OYWpqaP1XhfF/vHQfqj0XwbzZoM84A4r8+rzUps/UsGrx1OjOMZC8964JvWx2z3EkT9znFZx1kCWpm3GApH610z1N+5QiJEuGHU1nPY4K8tWj+in/gkzpCxfC3UdXt/CMWn3UFuXjWG584NgZzyeK/R8v5JYazseBnnOq1zp9V+Ndz4w1TULB7q4kmtGxeRKdghBJAyeOTjitqbine55dOMpU7vY9E+GnxA1LRbaKzvLn7bpVxH/ABndtzxzVyipEuKWp8pf8FV/+Cad18X9D1L46/CHTBc3981tPqFvCMtviDqW/FG6+wr5vOcM61G0Vqe3luZOnUjCS0PyU8VfCbxt4YTzNX8PXECO8wUvGePKcK+fTBI6+tfHfV60ZXa2PpvrEHLc5W5geOMrjNYOTlLQ6lO8ShDpfn3Pny/d/lV875bIhQ+0akaJEmyNQMelOPu6shzuxVU8nPNZTd2NXY4KTwBweaUVdmyaiiWCMhTnNaNpoyejBSFk9T6U0rIcE2y/ZWV1eSxWdnbySyyuFjijUszseAABySfSueo25G0p8ur0R6D+z9+zzfftCa5rPgzSPFtrpev2mmyy6DpuoRNjVbuMgvZhh/qZCm4qWGCyheCRXTg8N9Zm4t2fmcWIxUqMo2V0932OQ8O+EvFHiPW5PCWk6FcPq0azCXTmTbKjRIzuhDY+YBG+XqSMAZpOjU9q6dtUdkeSUOa+h8t/H1A/iFbiQH/Xf1r6LAVL0eVHymcyhGrY+rf2G/2RfA37Snw213Wvht8Z5Br3grw7JqHjLwjqeg+XejEhUS2IWVhd26AqZWPlyJnIRgRRLAUasZVJyafZK/p127mVDMnQnySjfsaVl8FPjB8Pfi5pGgt4HS+vYrc69p2UEtnqdhbxtctOjHiSLy4XJB5+VlIDAivGWHrfWVCKvbX5I+khVhVpSjs7foexftV/sa+L9b/ai8XRfAbwBa6f4Zl0O08XIkl/DBZ6RYXsMcyxNK7bEAklMaqTk4AA5Fd1TK6zry5FpucGCx9NUUpu7vb1PmnULe40q9k03VIDDcwNtmibqp9K8iesmj2FUTjdHqv7Nn7JXxW/abtvF2qeAP7PttL8C+FrjXvEmsatcGK3treJGYR7gDmV9pCrjnB6AV6GByyti4ynHRI4MVjqWHqRjLeR5xYyJcIpQY3AH868qoveseiproeo/BT9lb4j/G/4c/EL4teHLiws/D/w30VL/W9R1KYxRyyu4WO0ibGGnYbiF44X3GeqjgK1WhOstIxPOxeZUsNiYUXq5duh57AwJznj61xct1c9KGrLKsGbH5cUm+VHUvdjqDOeq9KlSIVpPUbvKgFh2pttky0Y5HBHPX1FNXY1dkyI0p4U0m1FGsYpLUtw2uAFA696xbu7g2fSv7AX7IHiT4/fES1eHSpJYWmEUaqnVdod29MFQyg/3jXtZZg6lWomlr+h5eMxCpR53sj92fhR4B8Lfsu/BO30WUwQNBAJLwx8B5yoARfYABR7KK+7oQjCKiv6Z8LXrPG4ty6XPm/4z/FvS9XhvI7e6lljgV5Lm4jI2xsckku3yK3uTxXRKcYy1FOm9bHw14b/AGhLH4gftDDw/wCG76H7Bp0hBTTJd4d8/ellwTIcemBWka0pU7LY76FKcaXtD2T9rDRtO8bWdqbP4c6r4w1GK0Urb3O+PTrXj70jE8+/SvnM2um58ik0j2sBKpGzvZH55fGXw3qHh7xTNa6zqWitcsSWstCZWgtR2TK8ZH1NfCV7892fUULKOupwN2mHJ7DvipTui6jvsU4tzSnaep6VTk1EIwW7PSvgx460X4f69Zas2nWjXPnLi4u4WuGHI4VB93616OXZhTwteLjC7v6m6rRpRtFanu37dOj3XjLXtP8Ais267i8SeC8KQ3EdxbYJQZ6ZADc88mv694SxbxOUWTdkrnbhY062G5Xpa58UC28QaRLew+G71LCys7tZpjcQCSG3DYw5Qg8tjp3x7V4GYxcqkvet6nyWYRnGUpJfNH6G/wDBNr4u6tfaLHEmv+EtQhV1Ah0S1hsZh6lgqqzH2JNckI0+V6nHB2pO99e7uYv/AAWa+HL217ovxh0qFo0TZJJIqbiGU8g/hX0eTTlPDSjfY9XLsZKVH2aPh1rvT7PxRczM3lWN4Ulk2RY+8PlkGST1PIFcPFXC+FzzL5Uais3qn2Z6qjy0/e1LOo2E1pJ5M6/eUMhxwwPINfyzmuTYzJMdLDYlWkvxXdGaiuS/cpwwqj8cc15tS7Ri3bY9g+DP7PfjD4j/AAi1P4ofCH4nxQeJtB1tI77wpZXZg1CSxMYYXcIyDMobcGVeRtBr9W8LcFODq1cNU/fytaNk00une/yOvJs4xGXZpyte5JW12+dyr8d7rV5ptE/aJ1vRbW/nnmjg8VW12hMdzfW5G7zQMHE0agk9c7u9dPiPklWhmNLOFS92VlUVtE1uejmWWcuNdS1oz102uVf2ofhb4P8AA66V8bPg1azTfDnx7ZSX/h2OWbzJtIuU/wCPjS5jnLPE+QrHlkKn1r89z3Ko0OTFYdXpz2t37HlxwlWPuVN09X0a6WOz1v8AYa8O3niPwF8Kvhb8VLnV/H/i3QINQ1jQNR0j7Lb6MZIvMxJOWICgYG4juPWvtl4Z8+CU41nGryqXK1dNeq27HZDJsQ8JXxNZqEYfD1cl5W/Ix/hBovxf+BHxU+JHwC8WWUuk3Wq+Abqx161PzpNBHNHKWVh8roQuVYZBzVcJZDicDmuIweNpaTpy1+W6+89ngvA4TFZrH63T5otPlb6SadjW+Ctp4l/ZU/Z38QftieHCp8Xajqf/AAi3wyuwoJsrmQZuL6MH/lqkR2IezSEjkCteGOFaODp1cfiFzWdonHPh2Cqyw+J1jFuTVt0npfyf6Gd8Xfg9478TeALT9oq61u61+8vLW2j+JE10f3+ka1LkeVOWOS8gUP65PPUVrx7wfOcoZrhVa8E5Q7WSu7f19x1ZhgqFbFKNCCp+7dRXWKW6XY5n9kcJ8Nvi8nx18U6I76L4U0u71GC6kg3QvdouyJDng/vHTI6jIryvDTLVDF1c5xVN+whGSjKzs5K10ns2rq6vpdX3PJwWEhXdVVvdSjf11NP4Afs3+IPi/wDDLxT+0D4x8Uw6FoGnXRtrAvbb59Y1WVspaQrkAKM7nkJwi9ieK8rB8L4nOniMfVbjFuUvXr/wCKNOtUxUaVON3L8F3Lmi/AL4E+FPCuoftFeL/iLB4/fRvEraJ4U+Hem6dNHF4r1YeXsxLkSSWilsuFRS4Crkbzj28n4ew2EwNLFV0+dtvlaVktLapu736WVt2KeAlUxzg17iV3K9rPqrW/rqtNZ/2/fiZb+FPibqvhTxtYTap8X/ABT4UsbTxBotxdeZpnga2ECmSGLaFUSBQAkQGyEEqNzHNfouJxuBjh3Qw0bc0LWv5avob0syVPK3gsJ8ErttK115+fn+R8WeJPDPiC++Hk3xEt9LuToEOsjSk1NosRPdeWZPKBPVgg3HHQYz1FfiU8JWw8XOSsr2R8TUhyNqw74daelxaiZmCqMbmPQZrzqic52NKNlG5+gX/BN7/gnVqn7Qk9r8Rvinpcmk+ENKut7TFismrgdEXP8AB6t36Cv1HhPhFTUcZioafZi+vr5Hu4TDR9nGpJa9Eff/AMefij4f+Ffwvl0XwTpdtZ6Zp1qLbT7WIbE34KooHTPQ1+35Tl371Tqf0j6fL6FqnPU3PiLwXe3Wl3fjL4y+Jr+Mta2/9naZMreaGnkXdMygZ56A/QVOfYydT93F+6r2Pnc5xjxFZpNpK58F/tX6wviHU7i5vtAvNUVnZg+sXskFrH77cID+tfm2MTUuj9T89xsrtxR8oTSjUdde1abT440biLTowIk/4EOW+tceXJzr/wCROXUoQndu7Ox+Ffh6fUtQbajO3mBYy3Qljivs6clSpNvSyvc9+nzK7vofVFlpdpomlWuiQwBRbQBSSg5OOfrzX87cWZiswzac+2iPWw3u0xs54ICkV8k7Jm0W+Yzb2JyhO3t0xTvd6lVI8yKmlGUSZZ+M806l4mdNqErGowQDaeQawUWzSpMxdb0XcxubUYYc8V10ZuOkmctWipxulqGha3JE3kT8EHHNbzUbXijmo1JUp2Z0Ec0dyhK45Fc9rnqJqaujxf4ueF/EVv4hXWtMuXARiQmTg17+DxFCnQ5ZRufL5nh6sKqqRep6z+zp8N/iT8Xfsuj6NbqbmciOJdhYufQADJNeJmGNw9BNqN2uh25XSxmMR7t8ZP2YvBPwK+HqzeM/GjHxWzhZNFdCjRDGckGvlMvzTNMyxcn7PlpLTzPfxGDw2GoJqfNPqeAzuqt26etfTwhzM8tyWxUkmLGuhw5YFWuRu5HB6mstZy5V10OfF1Y0cNKb6Jv7lc+xPhFpP9meE9Os+nl2cYIx32gn9TX985Jh1g8nw9BfZhFfckf478XZhLMc6xOJe86k5ffJnpGkR4KjPfrivXWx8FiXoz0DwFGyyMTLs4HzeldVKyi9DwK1nUWtjrbtnitWVJDt28nNCXNMjGSlTp8kXocRrjsSwJ9cH1rR2sLDrVI4TXwxLljXLVdz6fCdDitfQ7myK86rc+mwj0OJ8QJu3ZP415lVan02EaOE8Q27fMpI9q8ysmz6rBzWljzzxbbeasgK84rxMRHU+wy6dmjyHx7p+5H/AHfr2r5/GUudH6Nk9azR5N4hh8sOQvMb7hXy+PwftaMoH6VlOJdDFU6iOz8GsklpHJGflZQQRX5Bif3deUH0P33CKLpqUdmjo5M7RkCuGTvI2ndscwP2fBHaphfmKgmzOkj3IRnjNazdmaSlZMotDtffUSfunDUV7s/or/4I06Vq2mfDjULG68Bx6UskDAk6ms7t8p7ehr9CyuEZ02mjw8+k5VeU8u+JV3Ja/EbXFsbiK21ZLuY2q3LeXb3TKTsjfHoehPrXpThTpux5sqE1TSWx7J+zz8SdM+IHhNLTULZ7DVbdQt9pq27FUkAwwVxwwzyCOKSqRmuVGChJSsz3j4Z+Ozplp/ZlwFeAtsImQhX/ANkhq5p0VN6FTThqjk/2i/8Agn7+z/8AtIeF9Vn0PQbbStZvNNuYTNFGFQNMoBYDpnKr+VctTDUXGUGt/LuXRxdalNPdH4d/t7fsur+yh8YF+FcVw9wttYI8l0y4Esh+9j2FfFZngI4KrFR2Z9dl+NliY3PCChxgdPpXDZR1PX1cdB+W24I/HFZuTZzj0V9oPvU8qZ1QcbD0Q7uD2qkrGc/iJCSowoHTpinZIcVzCRxYYu3FZVaj5bJmnw6GpoWs6zoms2mu+GdVlstRsLqO4sbq2fbJDMjBkdT2IIBrKDknzLdGNaUZwce591f8E+NP0X4h/ts6X+094++H17Za5qUuoDxvFFa7dNF0NNnna8CFDtNwCrsgdAjq+0FXUJ9LlVWjin7TeXfp/XzPncdhamHwMqEZ6/iehfBb9lPTPitrPiP9oCHwxDNfLpFjN4msFiYyQapaXCTpMCOdl5YswDjgvuU85FdcsLOvN1la73M4Y2vTpKF7PbU+If2+P2KP2TfgJ8ZtT8F/G/VfE+lnXbqLUPh/qNhAo0i+t5WYos0xBe34ZQz7W2FWyDxXZhMvhQpt332fQ5LyxFROauluegf8EqJtV+Bnxw8XaX+0RYQN4p8I6XBL4Hu3wZ305+J7WWdI1W9tJ7ec7ZcttZVIAU5CqciqezsnLa/QTw03Fzi/kfcen/soa/rf7Pfxh+F9g8P9o+B/EN23gDVoUDSw6LfW6tNbBhztaKTnsWDGnQwNlKzs7aP818ylXU8VSb+F7rzRp/8ABUbwx4d0/wDYo03wf4U0Sa1ufEHhHS18YXmnwFpLqK1tmSwhxniPziGOM9BnoMaZhUqQw/sqXVamuXqEcQ1L7L0PiH9nz/gn/wCKvFnxLvNF1/xLprQ23w4nsr3xLrOmvEkuqyxeTcHBL5a3mmVN5+Y7R3FeDgcC6tXVWX3nq5ljVyJRv33Prn47/s36V+xR/wAE+tG/Yc+FGtG58V/GLV47zxl4imh8oyaZGA0jspbckKoAADz1GMvX0OIpxw2FWHpOzlu/I8enUq4zGKu9kvXU8X/YV/4JB6x+1B4/1j4neKLG68P/AAu01LiPT9Z1iM26X0gUpHLGpILohJc4wGIC7hk14uV5bTli268OaFn5avZ/Lc7cwzeNHD8lN++fSv7TP7KPgX9njwT8MP2cvhX4Ge9+GPh/Un12bQtSuUS9+JPiDy2Km4LD5LWJf3k00gWOOPgc7AfeeHpwjGnCPuLWx4uBVfFV5Vpy956X7H5C6h5q6xeiY2o23sqkWL7oM7zxG38SehHUYr4DEyiqslE/Q6FqdNJj0AXp1rlV5Gsql42JI14yB1NKzJT6gFBX1PbitVG2rGk5MktbVmk3MMA9qU59Ea25DRt7TBwqg57Vz6yYpS5Uet/s7/ss/ET46+LrXw94Y0G4nAvreO9MMRYwRyOF8wgc7RnNengMtqY2uqadtVfyXfucGKxKow5pbH7rfsWfsreB/wBkT4RWGq6rp8NtqsWhw29/KVGV2FmOPclv0FfbYLCOhTV17zWp8XmWMliqnsoO8U2cD8cv2gb7xlrU001qTpUKMIYZFZowARwQnJY9ePQ9OK9eFLklsRQoKET4x/bB/aAFzpNzYabogltLeIuNOWyggtkbuwW5kCs3uQ3XpUYh05yutDojSVWVo6PzPnX9jOSbxN8Sm1+5tEt5JpdywFIRgZxgeSirxyeBXRCmvYNJ2stPP+t9TrnGTiqa2Pqz9pfw9qfjW1TS9T+IfjC+hSJVTRfDGkuwUY6E8KT7818bndGtKLabt5I97AU1CKtb5nwd8bfBE3gjxE1lJ4U1nSkcnYmtyjznHqVH3a+JmnTdtT3IWlE851BkVDnpRFNsHZlG3OZgR68VrpYhNvQ6nwhq1tourwX80cTbD8onciP/AIHt5Yf7PeunBV1hMRGZvThG92fT7+K9Q+LfwD1H+0ENxcaFMt9Y3A05beOSEjZOkUYAwgQg/hX9G+GmfTxcqlKSt8rJ37LsdtOp77S0Pjn4m6Te+DPiY6rOfslxAIwVTIYEDy2x0OVx19K+kzpSoz97ZnzWYyVFtdWe/wD7CuufEe01eMQ+DNEu7O3ulCXGkQ7L0g/xMiHkj3NeLhcPP2nvbHjQrVKi5X0PuD9qH4Zz/HD9mDVfD+r6NcJe21s81oLyM+YRjnIOcfTNezgcTChimqcrxZ6+XQjTrLsz8gtTE2mWws9QbdPp80lheDBXgE7cnjt/Kvqoz542ep7c4S5+W5teCvEVnqkC+E/EsypjBtbrdkx7sAE+q+3tXyHFXCmD4iwzpSsq0VeL6/PyGoprXYu6h4evtJvjZ3sW1uqspyHB6EHuDX8wZrluMynFyw2JjaS/HzRm6fY1fCdxfaHrVrqOm6lcWDQzKTfWZIlhGeWQ5HzAZrmy/G4rLsXHE0JOMou+mhrCSpp3V2fWut+HPhp+0DomqaP4Q13UdS0DWLU2kep6/Yw299JfRrlZpkiZkDnJwQeR1yeT/VOUZlHjXhNrExV5q0ra+966fkj6jL6lTG5aqVRJPrZtpJ9rnkn7Mnwv8TeIfhv8Xf2U/iK6iDQ4U8Q+Hzeg4jvIz8wjz/z0TKkDrxXwWRcJ4x08Tl+Jp3jF3pvzRhLD14NU3G6T0fkdL+yL4yX42an458L/ABOvbzXIBq9ol/eWFuItQfRoHVfsyyDLIhjzuQHGQMkha/ReE81q4zAynXaWJopwWl1t8r+Ttc9/LIVZ4ZzhJKpT5nHm2vbS6Ou8LaxF4j8Yx/DK88OC5h8Da+um+HdauU/0q48PX8r25tpf72zKOM/d2kZx17MZTqY7EKtLSooe9pprudE4zWKWOvaU4JtLbnWt1/Wpk/Eb4PfE7T/Cfg/9jnSAl2+mfFi4vLbUcHbbxoiSLMT2G0r7ZJ715GHyv2GXUqKl1u35JtorHuOOm8XradNXt63Nz9q3w/4g+FXwgu/hSmtwi8vPG8nirWWugyxarfZhEdsT/EWCsEX1IxXNxJOp9XlUpSbqOybls1s0Y4HD0KlaWPs2/ZqEddl3K/jP9lvxX49+GOv/AA/8J+D7zQD8QPiTDcWmkcyNZ2UUKvIWPCxIZvlZjwAo44xXFgcnw9PI5YXmfLL3rJaXa7X2el/LueEsPSq0VCvUbUYt3S3fRb/15npXxu/Z2n8V2Xg/9nnwl4mXRfBHhbTJH8SeJlvFje91KZ905gUfNJIwGN2MYzkjodaeS1K+XxwdNcsNLpaXQZW8RQo1arXvzaSSW0UtPQ5D49eFvBvwj1TSj8H/AAwniPxhYxJYfC6GG28mw8Jxplnu3fjzbgkl/MkH3+nau3EcO15YeEILVafL0FLB1acL695X1u/0R8uftHfsR/t1a14bl8ZeE/gZaak+qzNe65rtrfyzahrMzN80s0shO4ZJIRQBkmufG5BjYYD2VGMJVI9b2fp/SPn67xDgqSUU1pvZv19Oh8q6wPHek+Fk+DPjW81O1sdF1G4ntvDdyhVYL+ZVSSTZ3dgirk84AFfkeaYXGTr/AFasmnF/D5s+ZxW7j1PvX/gl1/wSu1LxfoVl8Zf2jtPNlokbCS00ZxhroDkeYD/D04r7rhfgmnQccTi43l0j/mdeX4KVlKa17H6FeMvGVrp+l23g3wNZx21hbqIILe1jCqqjgYHA4r9cweEp00pTWx9Xh8M6b5pnzn+2B43tvC/hdzLbSS/2TIRHbyy7jeahL8qIFPPyZz7V3UIww1CcoN+829W3v2u3ZdktF0R0V8QqVByi9WeHfF7xRF8Ovgxpfw+0rTrma7itjPqjW+pGL7RcyfM5IRCeDx+FfB5pi68arimfm+YYmpKo7M/OL9o7xNr15rE8978N7NYBuMc+s3F7OVPsJCo/8dr5TF1qsorZnydao7uz1PE9E0/7dKzyxJG078iFAij2AHSu7J6XK+aW7PVy7BPku92fRH7OngVrbUhrF1EhSwQZR2O0y9uDxwDk1pxdmMcrymfK/flotT3qdN39metXUrO/b6AV/Olecqs25bvU9CEPZRUVsipJJk9OB61yOGh1RimrkF1go2B271jsxPcy7DeLhgP71dXuunsYON53LdxObckHisbq5dVKIQTxXAIHPtRJ2QUdTO1rSWjb7TAORycVVKq+az2Ma1KEndLUbo+ryxuElOMdc1rZDpy5NGaGq6ba61BuZVJI9KaqezdkFeFOsrMn8CePPGvwtjktPC+sS20bnOI2KlT7FSD+Fc2IwWFxkuaotRYaVbA3VN6Mr+IfGHiLxjqjax4k1ie8uXHMtxIWOPatqeGpYelywVkRKrf1KLyiQYB5xWkGxKN1dlcFt2Ofxrpkk4ChqyzpNm2pa3ZWKrkz3KJj6kV2ZBgvr/EGGw6+1UivxR8rx7j1lXCONxW3JSm/nytI+2PCFt5VuiKAAqgD8K/vSCUEkf4/ZlO83c7LSUOV5rdbWPmsQzu/BvmoH+bA47V007cp87inaSZ0d+bhoPJlQHPKkck1UEk7mWIlNRUai87nH66pRmVjyKJnVhmm1Y4rXV+ds1y1NT6TC7I4zXUyWwec159VH0uFkjjNfibexGPcV59VWPpMK1Y4jxFB1+XjFedUV0fT4SWxwHiiDAfK5yK8bExPq8BPVHlfjiyZ0cdueorxa0eh+g5VVSaPH/EVjHHfNGw4bOeK8LFQsz9HwlVeyTNv4XSo+lyWxPz20pQ59DyP0r8a4jwksNmcpdJan7pwjj/r2VqLesdPkdU3zAjNfPySPpprUc6jyOR1FTB+8XFWM2fcMgevTFaztfUGkyq6YXkVnI5Kzsmfuv8A8ERL/UfC2qGy1fR/C1mJzgrZ+IfOnI9QCSPwr7DLKs/aNL8zzs4hpZo0P26fAVppvxj8RaXqWBZ3skjDKcpvyVbH1xX0Ps7xV2cKalSTR5B+zv8AtK/Eb4U67B8KtT1dpI7dDb6ZpWm/6LD5MeR59xO7ARqBgcYFYurTpS5ZdDycTFpuR9t/DH4xSeOPDVpeyxpcW5YJGbK0xGx9pXOX+ozmuuCja6YU1KejPS/DHjiTw9feTPJKtuXG9LmJgyA/hyKmfK1Yv2Op8Af8FtP2WNa+I1xY/ErwVp5vLy2uCJEgQl5bdx19Tg4/CvBzvCxr4PmXxI9zKKkKMnCT3Pyw1LQ7jTJZYrqJkeKYxyK4wQw6g+lfAzk7n0vOraFGZcLjH4UkKSVrjrcjbtIxmh3JTsPZSijAzWkNUUldksVuSC7d/WoqTtojdWS0Ox8A/s7/ABw+LPh+98T/AAr+H13r8GnybbyDSpYprqIAAlvswfzmXBHzBCPetqGX4nFQcoK55+IxdGlLlmz7O8H/AAD/AGZf269f0fSvjN8XZfhz8SdJ8NW9tqP9keDZo7TUoLaLHnTwSRQtDcIo2yOuUOwMCRyfoI5Tg6llWlyysvJXa21S16Ppfa6szwnUxWCVqC54777H1p+w7/wTy+HPwY8PeJrTRf2kF8c+HvEOiG0GradZzQy20vz+TJ+7cAhQzLznAYqSFJFe1hMDg8JR/dyv9xwVsfUxM4txtJGp8Irj4hfsaeI7T4bWVzN9mnvFthpes2Qkiu7AuXC2l1j54xuOLeRi6/wEDCnCEadOSaf/AAx01YLGQvL5PzOq/bd/Yl+HX7Y/wo1jwBdaZZTWes6Q9/4LVrfabK7RS0lsMc4YncBxg5wK9OqqSw7gtnsc9Kr7K0Z9Nz4Q/wCCWfhrUPiDfXfwF8feAp4PEfwnupbLQ5NRuVnmn00BE1DTpHKgtH+8W5t8jISQLklTXzuGhOVe0pXa26aGlesow91NJ/muvz39D9OPA/hzRvhb8QrjQRoYA19rO1uUZ8iULYhCSPTCH8MV70oxi2oxOb2c6lJSSehwv7RmgaXpv7T/AIW8C6vpqXlhd6KNP/s2UB1eNMvuGeBsKrj3b2rCdOC1k9dreRvCMo0nJep3H7NX7OWk+CtJ8Q+JfHdn/as2r+MpNVsBeDdIjlmYyFjyWZyWOe7DHaqwkKWFpWirWMq3Piqiv0Ru2nwT8JeLvjR4i/ah+Nzw6jpOg6Sum6Tp1xDmEJHlpCUb5WLPjC8jgc5zV16FOo1VvfTZdPU2q1fYYaNCmrPqVfgX4s8R/tXfEy/8T69JJYeAvCc3k2Ph2C1EVp5q4Kh2DfvXUcsMbV4A61eGdCVBSg3e7TVtPKzvr56fNnk1KTU7NavrfXz0Pk/9sj9mn9s//god+0nraeFfE1t4S+E8cAsH8TXM7QxNao2GiLFkZkLclE4YnkmvNx1OpiJtRm1FrpofQ08VhMHQjTS5pfqfHvx6/wCCdmj/ALLX2zVvhh48f4lf2azRvr1xoX9l6Boblwgae6uH2XEoydsabsttzu+6fFqZOovmparzOmhmtWp7lZcvVWd2/kYHxG/4JzfE/wCEv7I95+0Z8Wl03w1K2swroCa1rqfafElvJwfslrGpIxuVyXYfKOKxq5R9XwjqS3NKOcxr42NKndq2uh84AEAJj614tup9LBdyW1tQTkg9eKynK7LT1NjSdBvNQkC21s7jeqFlUkAnpUxi5PQzqVVE+vv2Jf8Agmx4o/aT1XWdCtLNxLHp0M1pfXERFtAzEcu+MfgMk+lezl+WVa6do3T69EeTjcxp4S0p6p9D9ev2R/2GfhR+yho8OoaRYxXnieXTIrXVdb2bPNVOcKucKufx9TX2ODwVHCRtBavd9z5HGZlWxnut+70RyH7Tvxjt9T1G7gtL6ddOtIzbmS2Vm3dzgKCck8Z9BXfBR6FUIqnC/U+Ev2iv2kNG0TQrmDUtbluIY3Li2GhXjIMf7IZc8d6upVaXKmd9Jyqx5dUfAvxX+OFp+0H4pGieGfDmhrpTSIjXUGkywXKzhvmU+azEDGORisqPNOo72sjoUW2kuh9I/sQeGlXxdCoi3xRERPu6Y2g/lz+tdrqQlCSjvHT8LnVOlGVOz2Z6l+1h8Rm+zTad4h+Md9Z2xUolvpcV5JImONoVGhT8ya+LzaqneMnZPrrdfc/zO7Bpy0ij4W8X3Wmya5O2l6ld3cTMds9+hWVvcgu2PzNfFVVTU3yO67nvwcpRtY5+9O5SSeaqL0LmuVFeyYeaOf0pN6mVPfU2dNufIukmDgFSCCVyBUuLTumaSk+h9DfAX4hTabqVrqHiC8imtZojb3EV9c7pLuNxtMUUC8AEHrX6bwVmdTLMxjWnPRq2r1+SIbnLXY4z9vb9nq88NeGYdS0Ey4sYfPs7lOs9mG3x546rkxkdsV+85xOGPwMatNvSz0+/8dmZYyjTq0VNannn7L/ivxPrmvWGs+HPE9xp80a+VjS/IsBIM4KyXJwRx1yDmvnMPjG6lqcrNaadn0Pka1R06z00P1V/Z/1LVLnwWlr4h1mK5jmh8uSN9UF6xBGDlgOn6Culxp4f95LRLf8Ar+rb7HpU8Q6qTitT8yf2/fhNc/BL9oTU7fC21hrM3nQSBPl80HKkE+vSvrqVdOUX0Z71LEutTu0eNwJA1yqxyMpjx9mlZCpbAy647nPA/pXs04KcWnv0NoSna0keifDnXdI8UWEPg/xNdGMMSsF6Vy1u+ef95cda+M4w4QwnEWAcZK1VfDK3Xt6Hp0kpwaaN7xV4UuNA14+Hp7aUWcJH2SRUz9oU9JOOCW64zx0r+YMxyvMMsxv1PExaaeiWt/NepyVYSUkpKx7B8BdD8YfDyFNf8SeFr2z0q/gTUNNluflS4WGYJIVGemGce5XA5r9e8LI5jlzxFDERahNKUb9GvyPf4dlzVqtBb2Xy6nvEuteD7PWr/wDsjRbOWXU9HWDzmjHmTWwYMrZ7lWwMj1wetftcJRVRRUlzNX83bR/LX8UfRRwVWUISd/dlfyvtqcR8NfBGh/Cnxz4j8c+BmW1n8R6G8Gp2EkY/0eYZYlcDkMCea58NgcLhqsp8tru7sKdCEJOWu9zE+DXj+C90vxB8Qb5Ior+80+IwEkbt8byJuI7HzNx/Wrr1KdS7hombQlGrJKOqT/NX/I9Y8GarPreoXHjXVjFLKmoyW6XAPJ/cxgnPvgflXncl5cvYeJnGko0odtg+JsfhjWrSwk8dafa3/l2jTrJqFvvRZArBJEXu4b7vYGtqWEjUoqNV3a3duv6XJpe0pp8q07GWvjLxRaaH/wAIxe+KJoUutLji2rIUl8ojHzdlLdcAd66q+AoYjBuhK7Tja+z1Vrq2z9OpnSlS+sc0Y+diZ1TUNTeDU7iK9mtUE9rGGDLaPt4wf721mBPbJreMoqKO181FOMNL7/n+ZpWGmeHX83xN4ytbaGwtomYylQwnQZ3Zz1BORjp1q+dRj7j1/I4cRzXUYPU8i+O3gDxP+0T8VtFm0z4863o2nWejMvh/wt4RtHXMqrujEiJ/q4gAMtgfWvjM0niZ1VGlW5N2+7Z8lmmHUqntY3TW77/M539jb/gm1rviz4pXvx3/AGpb2Rms5x9lgnw5Zl4Er7hhm4yBg1y5Lw/W+uvGY1+0n0v+p5H1PnxSqS18u59ueL/HC30UXhrQEjt7SLCQKh2hVHAz6GvuqVCNJXe57FKlHDR5upi6Sp86aW6vYLa20+Jprq9fkQgHliQevoKK9WFON3u+hnUxUYLmbevQ+SvHXxU0z9ov4+y+KpZlXwr4Slc6dBJLhLu5HG8k/eOR1NcmJxCp4dKL9Tw8dmEKj5Y7WPnf9qf4i31ppt1cabpl0LGJikosxeSbF6AAwKMfia+BzKu8RUcr6t6nwlf2ODpQoUtIxSSXZLY/Pz4keJfD3ibWpVtLHV0nLnbJeXkpA56bZOcfjXgezjOty2Z5vK6uIUYI1fhv4av9T1OG0tIN88kojt1I4Zj3+g6/hX12CdPDUJVJacv+R9fhqcqUE2fVXh/w7beCfDFvotpPGzxLuuGMZzI5+8civxLi7PZ5vj5crXLHY9XCwtdsj/tGOVsM21vQ5r4hu5tOw4yq/wAw4Hes73ClJEcxDIR7VjL4jSUbsp6Oga7MbDvW9m4HO175o6vpAkjJU8gVyqTjLU6ZLnVjKtYHtH9++auVps5nenoXAgul+UA+oouoKxpTs9WZupaMY8zQDkdQBVUqrcjDEK+wzS9SZH8qUnI9a2qQ6nLTnJPUvzxpcLkDr3qYyaOxSi46mdc2MkYLJwK39pGSsYKKvcp+c8XU01ZLQU5SSJEm8wfLyKFKw6SV7nTfBvTTqvxP0e3dcqlz5jD2UE/0r7bw0w/1vjfCq3wty+5M/H/pBY/6h4X41p2c+SH/AIFJX/A+xPCsTC2THYV/aMddz/K3MJJ1GdbpIIZT19QK1R8/iHod34PwInY+gxxXVD4T53FuzRu38khiJZsbR8vNXFK5y1JSnJc5yGtZJZmJJ9aU2ejh3rZHHa6Mlua46h9HhbOxx2uISSa4qiPo8K7JHG68hLnsa4Kp9JhWcZr8R+bA7815tTRH0mFlocJ4kg++MHkV5OIVz6jBT2PNPGNkXDblrx60Ve59tltVK1jyHxnpJW5Mo7GvDxtlufpOVVlUhYpeArz+yfGH2GUgRajFhc/89F5H6Zr804zoOphlXivhP1HgbMPY490G9JaHeyx/PyMV+eQkpWufr8kuUUqdhXpnpRflkWrWuUp4MDcRjHrVyV9TCdSzdim6B+M8j2pygkrs5Jqck2fqD/wSc1fW/CfijStQXxH8M7RWkASIThp355GSCc/jX0+W0bVeZNHHmVKvVv0R+hH7efgqHxTPpHj22tklGo6cIrmWMfLvA6g/lX08ZrlseVh4TUeVs+APi34Ga78Uf29BaJEYNLEsDMpeOS5SUrh1zzjcOPpxzmsKkOZ7CqUk7pdTK+Bv7UXjT4U+Nbrw78RdX1PWtdWQIvk3SxmNTyBGWwttEox9xST/AHu1OhW9lFqo7ihhVD32z7x+D/7Rem+J7TTxqA0yWe6TaVtdTluLnHo2AQD7nimp+1leJz1aqTseqfGvwxPrngW21Tw4k0lxpiC6hNxAAWA5ZG7Hj/8AVWMoLmtIlVJKzifG/wAe/wDgmF8If2orf/hM/hjqyeGNevb9bzULMoDBdnHzBeyE/lmvJxuS0MQ+eGmux3YbNKtF8s9Uj4A+M/7E3x5+Evim68O+Jvh9fWsqPcyoZIvkFtETh9w45XB6183WyuvTm9ND3aOPp1Y6M8gFhNAw82MrnkEjqPWuGVNxdmdimmSKmXAI698USjaJvTTZteH/AAb4p8Swm70bwvqlzZJcLFdX9ppU88Vux6bjGpxx261lTw9Wq/dTYsRXpUVyuVmfaP7NX/BO+L463Gn/ABJk17V/A2uRxxy6frfhzSLiLRdRiUBQ8r7leGQYxInyEHnvmvq6GAhUoczcqT7q363X4Hzs8XTpzSsqq3s/+Br9x9m/BX9hz4jabcQt+07Zaf42vLXyn0fx3osJLuI33JFcMr5YEZUknJU4IINejJ127NqS76HJGtBybpNpvdM9d8Nfs7S/CjV4PHH7LbP4deO4afXfh/eKpsdUViBL5L43RScZUBtmc8DcTWPs3zc8L37EQk2406yuu/X797fl06ntWqaPoHj/AEy3XVNKiaB4ln077TH+8tnHWMnqCp4HpXbTmkioxlTmysNFFno5gsIFMun3iXNmc42sOGH0NRVm1HQU4RmeefBf9k/wJ4J+PPiv9oXT/DUFtqOvxRo/lrtWXBcqzjpvXzXQN/c2jtWVCjBS5+xy1bytDoj1A+AbfUvFa+JbuLdKsh8rJ6cEZ9uGI/GuxVLNnbSvGjZMwfEfwisPF37Q8XxO1S1Vk0XTTFZqx/5aNjJ/ICueonKqZySUFE9Be0MsGPLA2MMY4yRz/OtJdxwSRa8Q/DFvHPhe28InV7jT7JGEt1LaNtleTO75W7H36/lXVFNRTi7Na6dzlnWjGpKctX0NnRfBfw9+HnguHwNoelwWmlW6bRaIDh+5Ld3JOSSckknOayjy01Y4IOtKrzLVnB/En4bfDP4t3MVh46udX1HTbJleLQbW6NtYqB0EuwgN9Ce+MVnUjSlJXOtSxFON6as+r6lfxX+z38GPFg0zWbr4T2msx6MyvothqsZk07T5F6TJb8q8g/vbS3uK3l7kLJGdOE5yu5WffqfDf/BQr9iDTfi/4pb9of8AaF/bE1GO1tlNlp1rfeB5lttKhGTssbVBmSQnADHr1LHivJxmDWIaVSfy30/zO3K8Tyxao0tbtPWzdnbr07W0e6uj8u/iN8K9W8EfEDUPDUWl62tsJmk0yTxBpDWV3c2xyUmaEkldw5Ar4/GwhSqtQeh9vhK061JXWvk7ln4f/CXxH49mtotItGAnnVQSP4S20n8DgfiKwpUXOW2g6uIUYvl3P0l/4J8/8EjfEGvWh1j4saJNp+gTXMV3b3k48q6mxghEjOcDr8ze2AetfTZdkk5JSrLlj26s+dxucRpXUHeX5H6g/Df4beBvhB4StvBXw+8OW+mafaoFjhgTGf8AaY9WY9yea+np0qdOKjBWR8pUqzr1HObuzD+PfxHi8D+Bbv7JcqLu4TywQ3MSnq2B7cD3NEm+ZRRVCLnUu9j85v2qNf1XW7ZtM07X7E2LwkiyvZTs388s0cyNn/ewParahbc9WMVPU/MT9r6H4gadqDtpVpbw3TTLFFdaTqdxGYyxwCCZHDfTg15Uqk5VUlqdkabXwifAvwpM10L+UtNNE3+ukGTLNkbnJPXJJFe3QhK/MehSi4Ru9z7a/Zt8N3Ph7RJdYt9OaSRLfEMQZV8x8dMnAp4utGlSaRaXNKx5D+0T4713SruZfGHwA0xvNLKLjVonlMfPDIUkx+NfnOYYiu5tumrHrYaCmtHsfOV/cJLM0kUSxqxyI0GAvsPavn7XZ69JWIJkMkJYdBV3UQm7lOzIE2Pek+5m1Y1k5HSo55K6N4Jcp2Hwx8b2vgfU01GPV4dPdj81xFame6YeiZ4WvWynGLC101Ll76XZlUcUuW1z7A8M6TH+0J8JJ/B2paS8N5DaPN4eg1GQNcXMZGZo39N4GQP7wFfv3CubvGYN0J3Se192jilUaTjumfnh4m+F8fwu+L118P8AxTotxe6dd3XmabbpqJtYsE8lmA4xgZ+la4nCUMBiPe1TPncZh4puUtz9B/2FvG/hHSNNg0xPGfhrT3QLEtgvitriTI9VC8/ia9PD4iFeNoInCOck4bmt/wAFQPgRZfGH4Vr4y0q3inmsI/8Aj5gXJYA53ZPI5717mXtuLptvU9/DR5qPs9nc/NO60rV9Bv49M1WVZroKrxT2nWQNww46P0BBHavpqUrU7NnoYX2ilaWh0fhHTli1O3ubYNl5PKEanAZ+flHtyMk8k/StHUhXmowu29LefkelGs4LU+mf2fdVvvFdjB4JuTDPLt3W73Vup2PgjCsSMZA9q86eWYWvyynFOS6tLT0Z7GGVKtJe0jdHvfwd1G38C6dq3gq00/QbFLpJA2n3cCXqTmRWEsitMC0MmSThSc+tZTyvDxaSVknfTTf/AIJ9H9QpYlQnLm922qbi9Nk7bq3f7iD4b2V3NCz+K47NZrEvBavCekecr0xhW4BAz61306bUk7eR6l6fwRbs9/U2IIfDevyLNqOmvo88RZAzssigDtuXJZW7ZHHtVRjOau7q19/L0vvuvXVJkYiPs/dXvI888b/svwXtnrHiD4Z3kFhLfxETxSs3kzOf4kYfdJ56+tcVWLaahpc4JYhwSutEanwVsr6PQ9U8PeIbC4sbiyvxN9jl4aYkAFge4yCc0QtGNupg5ynJTZ2vwu8K+E/Geur4h+IF+4js7iW08PabBLua6mUZMm08FFyO3Gee1Z15TTXLpfuVXq4iFK1NX7s6+/8AhR+zRp3il/FPibUdVv8AUoLdYFSe9j8m4Y5LOoC4yvr6niodTMKseWCSR5sa2ZuacIpL0H+H9P8A2YNXvJ9A8I6dcSfaZVW5M16u+RuflVgucc8gde/Ss5wzGEOao0kd/t8xjG85RXy/4J2Wt/s4fDG98K3Wh+Mvhzrk2mTspW2tNVl2lQBtGNoAHfHPU81z0sbXlJqNWN/NHDLHV6s17KrC/mv+Cc54h/Yu+Gev6pL4x8L+OvEmi3DxwpqNi8sYjnhTO2MsoBwMnhcdTmuOcYzxKlVin5o4K9bEc3LOKd+qf6Br+mXOhaSfDugXQksLNB5MglJ85j3w2CTn8q+uwtWkkmlqRCEvtR1ONutQlt7tbZYWkmjbDLu5Mh7VtXdGSUrbHNWnJbs8P/bU/aA1Kys0/Z7+Hc80d1qYRtevLdwChBBMfPXAz+JFeDiKt6nM9+h81jcZZvm36Himta/oXwt8DR2lwNX0yyEZMuojTXlUHHLFk+77kggV89j8e4/u0z5upWv7t9T4l/ad+LOi3N5O3g79oy6m3yESWGnXzRK455J2nJ9uBXz1T2TTl7SzPBxU17SUZLU8N8P2Op+I75rjULye4Yn5rieUu+PqeprTAYSWIb956rfqj1MmwcpTVRo+oP2e/hc3h60Xxjqlr/pLJstYccpH/ia4OMs4WBwX1ak/ee59PKCvY9DuZopSWjllUk8xSdq/B6z5pOWup10bmZqViLhd8cYDD0HWuNTs9TWUVNGSt3Nby+XIMfWtGla6ORRcJal6F1ljOWB44rNJt6m7qK2hFpaYvTtH8XJrouuQypvnqG9KAykbeOhrha947eWzKM+nLMN2MHsRWikooxqWkP0fQry91COytkwztgE1CjKrKyOaU/ZrU+ovgv8Ash6V8bfB58Mr4Qaz1SKImO7IP+kE9MN0H0PWvpMFl1OrSs1ZnlzrVI1eZv3Tyf4z/wDBPr49/DLWJhZ+FLi/gjLFGhjO/A65WlXyrFU37qujVYnD1I3TPI77Q9e8PlbfW9KuLVnB2iaMrnHXGa8qpSlD4lY2jOEo6MgdlZPmHBHOawacXcqMkZ2o2YzhR9DWkJXL5ebcqW4aM7Txg1ra6uYSvCdkelfsx6d9u+JD3hXi1smP0LfL/Wv1zwUwarcU1azXwU397aR/Mn0qcy+r8E4bC31q1k/lCLf5tH1f4ch2wKAf0r+rIbH+cuNleTOn0wfMOK2R4lfY7rwiyrEx8vniuqMfcPnsVpNM1dQmDhmkPPQGrSOWTnUndnKa02GO8+tZzPUw3kchrRyW5rmqH0eGWxyGtDls1xTPocM9DjddUFmHOPWuGqj6LCvQ4/XIgzHnn1rzaqPosJLQ4vxDbk7uPpXmVo3R9JhJWsee+KrTIbI4xwRXk1oo+vwFS1jy3xfpZkVzjvXz+PjdH3+VYjlaOI1PTLuOz/tmxY+dp0olUDqQDmvncbgI4/AVKb7H2eAx/wBSzGnNaXaPRrK7ttUsodTtWzHcRCRCPQivw50p0arpy3Tsf0bQrxxOHjUjs0SmNVGc8Vdrs1TZTuFMgKov4it+ZRRSppvUrvaiIZxk1zTlKorGdRqKZ9O/sD/Eb4L/AAl8QW8l34r8TRX9zLgw20Nu2eeAhaN2DehGPwr3cJjcNFpRumGY0/Zwdz9sPhb4x0f9ob9mV9N0nTtaWfS4RPbya8hM8vHPJAzX1WD9+F2fFYivKFe6Pj743eCZmjmsLVmS6NpO6MkfBbB3jB6Zwp/Ou+K599WdkG17yPBfHHhzxLrI1jxJo8cMeoLotrcSSRA7JYgVSQSAfwlsDB45FcOKpwVpGknUqrlPVv2Kfif4ihuDZaNofiy2lumWKQzW5+yRjPcrxgcHADDHfjFVh8U6cbK6vo/M8+pR96/Y/Qv4M67rFlZDw/4nke4glQrLczuCZM91UKOB74NVK8mxxpKx5/4j0Cf4d+NL7RrUv5PmG809lzh4ycso9wea2pRSj7xnOKOv0fxl4L+Ivha48CfFnw3bavpWoWz203nKPMETjDBX6jr2p1KEK0bNGUJVabvFnyD+2j/wRS0DXdGf4gfseX32y0sNGEX/AAis7/6QroxYMrH73Bx+FeJjcmpyg5RWqR7eBzG0v3p+aXjH4V+L/AHiK58LeK9BubG/tZfKmtrmIqwbPTnqPeviMRGVOTi+h9TSqwnT5oanq/7HXwh/aP1/4sWNh8FPF2v6LNcgm4bSr3VIoSQMr5wsrebI7cjvzgc1vl31qVRezk0v68mcWOnheW9S1/M/VD9n34J/tV6vpUKftGa14Ea0hYpFp/iHw3LJdS88yGaWUS59G2gEHoOlfWr61OP7yd/Jnzt8Hd+zTTPqD4ZeBfBfhC2MPgnUraxLIC9ppd032Z27/I2cCtaVOnB3QqlSTS5lqddPpVtK0ax2aRyL8wKDbye446e1XUnpYhNXuMls5HAxndHJuYY7nrWN76m68yW+09XTzgq4bGT681q0mtRap2L8OnItuqxqqbowCVXqfWlbl2MUlfUmWxaKPAjAPRW6cVKhZ3Zp7VPREE1qiRvIo/1snJzVhJM0bexKWqXUg2og3E/3j6U5Nbsz9qlJx6sstq8yW42y7Sv3kDDkmqVVuNjGVOKlqjD1qeeXzJri7WGEj968j44z0Hfr2rJJRk5J79/60/p7m0KalokW9H8K6fOkVyqvcvnKi4OIsdyF9PfBrX3KkbIzlUcLouaz4I8Q63JGk/in7Paoc/ZILVSregOeMD0xXVBRjGxhDEUqbaUdTkf2i/AHiHWvhpPpHg/Sr2W/MTImo6WLZLyAEYJiaVdsbEcbhyO1Y15yhTfJuZU6vLO7+53t8z8rNT/4J+/Gnxx+0BNpV34Y12S41KEss0viNdXvV+UruuZndduOMgYAz+FfJyyupWxFpt6p9n6H2VLMqOGw6ldR9Fpsffv7Hv8AwTM+HPwF0rQtV8aaLp95q2kWxW3jhVmQSMwZpJNxxI+QMcYH619BgctpYaKc9ZHzGLzSpiVaLsvzPqpY44UAUBVA4A4xXptuTPKbuZ0uvWlzdPaaZtnkh/1rhsJF7saG+U05eSN5HyF+1V8W7G88S3Npp+q6a1pAzENNdbVll6MxJ6dMDtgcVrRoprme53YaDqI+Bf2oLbwf4t+1pqvh/SrlWjO06X4tbc+f4SvHU+9efj5U4ux7VOjaPJFHw3q/gbwnpvjOebw1ot3aXkjG38m41J7gITySoLEDA4BHqelY4Ci5S54nRCHsvU91+AfgAXupWem2ULFYGAHOAzY5J9ea9ufLFKbdmr9dPn3LbcrI+gfjLqOneEPh9H4a0nxPoM10se640q83o+cdVcEYP1r5LN8ddtJr5nZRpPc+M/GmofbtVklme6jcMcwtdmWMfQ5r4qrVi46Sd/wPaoQV9Ec1cOGf5f51hBNnf8KJoxut2qKlyFuZqqUuOBitF8Ipo1oDuXb3IqLLqVC9jT0LU7jR7xb208tZlPyyvEH2e4B71dOpKjPmiPlV7s97/Zn+LGsW/jS0/s2ae4vmlVpWUmWY4P35ZPuxqP7o4r77hjOFQxUWrtv5/ec1eCcX0PRf23/2S/D37SngbUvid8MjDNqliPN1K0szwsuCXK7edjHk46HPrX7RCrgs/wAJy396Oh4uJpc8VGrp28z5r/Yo+L/w++GnjK28Ia7pM1z4mLGE6BoeikujbsZklf6dS2AKeCnRwT+rz0kebLlwknFLU/Tax0bUvjB8Krm01SztLOG5siFsFnSV0yOCxGQD7Zr2aMlQxKnzO3bp69z1sNU95Se5+X3x2+A+t+DvifeaIqPJNNhLZZHKKzox29sDOeT3Ar26+NjKPu7HtyjGUvaK+ptfCr4Bp8RPtEt6IYbgzG10y80u5SW2nkjxu3qMPEDnG8gA89wRWOFxDm9jspKVd8qurLW6PrP9l39kTWtN8VHU/HFqkdnZ2vnywD5MqAVVffI5z3yK7q+Mp0qCUHds+iw3JhaafV6I9X8Wap+zRp1k+r6r4ekTU5RHFcNburRqQDkgsASe3v7VhTp5hUa95WPoaMc4lU5Yyjyea1K2g6h+ztrkjvaeHdRt7G7XdPeXjeUiFRxsBXkHHPPaprrHUVfmRvKOYUKTlKUbrpbcisvCn7KnxH8TXPhnT/G2oWurTIoWT7QPs4IyQQBjGfU1TxePpUudxTj1tucOJxWcU0qnJGUVul8Rg2Om/Drw346Pw+b4n6lb39pZi6vknt1a1kh37SwPfqvINZ1qlWXv8qs9kXW9tKDmoafiTnT9J+J/iHUrL4U65Drd1oblESEqjjg4JVdxwQRxk47VHtPZ006lk2Yfu6dJTq+7ffXY4t7j4n6BYanok15pE0+nSi50+3u5jbyPkqBH5mNuWJJBO0ZXn3JV6iaitU39wpe/JNXs9B1/4W+MfjTxBdw6J4Pu71pbyGLTI/tETpEmCHLMrYTafXrknjpXfTr0acLy0SLl7GhSdSpJrXReR6dpPw48M/sh+DbjxHr6xa34nLmVVkl/caeSM7kU8Fh/exXJ7Svmlqd2qSu7dzgpqtnE24tqH4swP2RP2hfjZ+0j4nu75H1FhdazPBoUmoXyxrNFG2GcRhiApAPzY4x1NaYvA5dhMH7XlSit9NTTEf2ZhcsnVq0+WMfLVn0TN8Q/Aeh+LtQ+FGv3+j3WpWjRSatHaRAtCzY2lyB6/ieDXz8MF7SCr0YtJ6+v9JHg0IVsdRWJpOSVtLvoSX/hX4UaZrlpqfjK1luoFlZ9lpahI3VgfmJYkggehA596cq+Z1KDhh7KXmU6+ZTw0oYayfm7s8D+K/iP4O6BfeIr34daZqW+ELqGkyXOpR7YoAnIaERl1Yuwxk8gZ78d+GebxUHiJLlSfMktb9Nf6/DXyMW8fGnGWIauk727+p+f9uuu6h4q1f4r6tpWr3kEtwSQIt4Bzksdq7lB9u1cFabhWlVUna1uXS3rte/zsfI4vERkrHkH7RP7QdnJp949l8ULnw7JG2BYWzPLGpGeWSbcSPUjPXpXzGNrxq1G+blv0PmMXVmtlfzPiPxRr2t+N/FUr3Or2uo73P8Apltp8cO8Zzk7AK4KVGdapFQfMn1JwuHqYmokke4fs5/B+S+mg1zV7Ui2jO+Eyp/rG/vH2r2MZj6WRYByT97ofoGDwywtJXWp79c/8SyIQy2YeDoWhmyp9wR0Nfh2d5jWxmJlUqa3NpwkzPkmDTFoyxU/d3nJr5qpPmZdO9rDo8OQD+FcVTc6LcqKuqaTFdKWRfm+nWrpTadhTgqkTJImsXKOMYPXFdEmjh9nKMrE+h75rstkZ3VMp2jYqjyxqnRSIUy3FYLVnfN3REu7dwPwquSNtTFRbOu+EVib7xjaQf2bJcI8oEixJuOK6ME4RrK5zYmEXC7P2d/ZV8A/Df4V/BrTfGXiGBMXEY8ozjBHsc1+i0aEXSi0j47G1ayqckWd/cf8Kq8Z3K30FrCsxyUfhlIPY+1digrWZyKNaC3PkP8A4KkfsO+FPGP7Pl78QPhl4fiTVdDuGu5IrSPlkP3wMdR3ryczy2OJw7dNao1wOKqU8Sk3ofkVMkisysCMcEEcg18LNJaPc+tcYqN0RNlk2MBwOKSjyoFN2K0sWDkVvGT5GiXLmlqet/si2BfVdX1JxwDDED+bH+Qr+gPAzCNU8bibbuMV8k3+p/FX0tMwUsVluCT+GE5v/t5pL8mfTmiqQg5/Sv6Dpn8M4l6nRaYmSMmumGp41dnceE0lSIvvwFx1rsSSp6nhYiS59DR1QxuzFRgnvTWxzP3p3OV1rcXYYz9aiZ6mGscjrSkAmuWaPosK9jkdaU85PWuKofQYZo5HW0JLZ/SuKpqfQYZo5HWImLMS1edVR9BhpWRx3iCL7wJrzqx9FhZaHB+JLfcGJ6/SvJxCPqsFO1jznxTZ/eHqOteJiYcyZ9vltVKxyGiW0C+IH068H7q5UowPvXBhEoVuV7M+ix1WbwinDeOpL4Dml0mXUvAl1J++0u5JhB7wscjH0NfkHFmXPBZnKSWjP6A8Ps0Wa5PFN6o6ERSy8nOBXykqii9D79QURJIxEvNZOTlqRJ21Z9cf8ElP+CZWv/t3/FuLxT46sLmz+Gfh+6V9f1LBT7e6nIs4W7s38TD7q57kV7+R5RPH1ueatBfifK55mrw1JwpayPnf4GXQ0/xlaE3l9DvbaRp19DayN7edN8qD3rzMLKNGtdn0uY0quId4n7Af8E5f2iNI8Li18O6udNtmlCpIJPiDFq11IuMfMq5Az7Yr6vC4yMpKMfzPnMXl8KDu3+B6X+098Oo/Dvi1PEOi7G06+DS20pQHajA7l9OMnj3r3aMpx2OWFdLRI+OPjD4Om8HQXGt2GVZ9Huo3hjBKuVJcxnHYgZHqPpWteEZQWpT9pJ+6VfhNc+KdQ0Ia1o2ua/q2qWlqrT2ui5W0hVjkMT5ilRztCgc46E1xRowjK9/68iVGpKGq2Ps/9lfX/G1posD/ABJFlYh41McZO+5P+9kk7q6klYhyU07Ht/xJ0JPHHhGLV9EDrfab+8tjLGdxUdVPqCKycn0MVTu7HlEAgvoV1Owv2gh3/vYT/wAu8oPKn0BrfnkluTKnKOjOo8I+KPEGkSQ3OnXgSFCSbhJiSx4xx6UVKnPFRt8yJJSjZFX4z/s8/s5/td6asXxe8OQw6quPs2u2QEc5YcbnC/e59a8rGZbh8VHVa9zow2Lr4TSMtD518N/8EwPHnwG+NWg6v4V+MWoHw4dUe51W6ttansbZ7VRlYJBC4ck9CQynAOOTXj08lrUKjcJtJ9v6t+B21MwjiqMlKPvPbQ+sv2VPhf8ACrwzrV3ceCdE1nxTqTzM9/4g1QXRtw2fuwyXLM5VcYGDt7969hUaKs1G76mcpVuT3tF8j6Lh0rSpVCnQoIpm+80Y2kk9e3X3qZtR6GLu+pbW0kRDBLHJgHCuTytc0m07MEr6jorfcojmcbgTySKEmzWLfQnfS2v7T7CUaME/6z0rZJtco+ZU3zXuXL+50vw3pfkwp5siL3OTW1SpSpQsZQp1MTO70RUu9aSPSotQupFaCQYJIwY29DWLqq1yI00qzhHdfiQ2k1vdSsyyhkQZIB49qj2kVudjhJRLfiLVJbbTorW1jJLABI8clj0qJylKyRy0oQdVzkatsmk+E9KSS8G5yBvcrlmNdjlHD0rs5K3tMXUtDYo3HiDwFq+px6fe28DXcjDy0mhG4nGfzArCFfD1qij1NIUsVRpcyehPq+laNaSjVZp5UcALEpuCqA9sDpXVOEKUbhSqVJvlRnapqkUagC9nZimGQ3ZCqe3I5/HFRSq233No4d3baMfXfA6eN9BfRdL8WXNtOTmVBfM/HcZ7jn9e1aVKUa0ddiZNU/flHU0fhZ8KfDPwqsmg0eECSQDzp95LSn1bPelTowpR0OSvVlW06HXXF/a2URurudUT1Jra3NscsITnLlijn7nxkviTUH8P+HoS5HE8zZCqveqaVKN2dbpRw8bzep5D+018fNJ8F+Gp/h54BuVM7qUvbmFh+KKT3PQnt0qqFCVR88vuM6cJVp8z2Pgn43/FvWLezklk0jVEUghiNEhvVznuFOcV1VJKCsz3qMYQp2Z8EftQ/G7wDeNJpU+maA2qXG5YbabwjdWFxJz1VlIUHvzXjVowcr7nVTlGkrp3ZyPwt0jMUE5mdriQeXBvJJ9S3PPtXoYKFo2RulPdn118CvCGk+G9Ph8V+LtXjskYB4JJ0Yjd6nArLMqyjTak9Tow1PmbbOE/ao13Vm1N/EEGi+HtdsZRtkuIgZMejZVgyH618BmLkpcySkj16UeZW2Pn2a8S4dpYoBErHiNWJC+3PNfOtKUrpWPRpR01KrZeRV71stEaTdi6BiA4HWuaoyofCZrkiYkAda0jsRJdTSsCWQM3pUyNKdrFwA554z1PrTjyy0YSR03hLxTr0US6HYa0mlWBYG7eFMNKPQ7fmc+1dWHr4m/s4PlXUxqSUFfsfWf7L/xqh8EarZaNpiNIsq7JdPcb5JkYfM03ZRjtniv1LhfNI4SrCEW30svzZ5OMl7dWd0cb/wAFAP2HYNN1NP2ovgppd7LpTuJNf0jRtQNtM4xkp5iqSoznnHI4r9mp4fCZtB1Z354p2s7XdtOj2e66rS63POnTniLpaTW11f8AyPQv+CfHx10nUvCNnoeqWdvpNnMpSx0xr5neUA4OQ3zSNnqTwOmDT5KFWiqV7ytaSZpSquPuXfMvItftzfBSHxJdR+JbTT0VF2ExhcZUHoQOn09K9ClRpvDcqdrH0GFqt0FHVu5ofsgv4M8S6hc+HNB+C+lJNa3YTUtSgDRpEEHJdwojkfIONhwB2PBPM6nK5cjafRW3PbowftZJJq2l9Gm/K39eZ9D/ABh8ceFdJ8A6nqOnXAtrS6titjcBMlygJbJHUE4HTvRl+HxM8YlUe2tj2MuwddV4KprKO6/LQ83+Dfws+Efijwxf+LNH8Kalq+ryyK13F9r8to2yfuDGVAznpivZxdbEwcU3GMXs9z6CrisTh68VOpGEH1av+pxPxL/Z1+FnxBtNQttd8R+PdFvbyPdHYafqLSW9yw6GQjA2juSOMdaU1i1Dli48j36fh+R04p4qVO1KacNLu9vw1ueY65+x344/Zn1+z1qDU9avtMvNMe2XU7SP7cs8kmfJXahUpyQNxJAHPPSssM8NNWoN3Ss1J267r5f128fCVVWqPlk79b6WPV/CP7AGtfETT4tZ+LXiWXRHbS4rSO30e8G5LcHLB8dzheQegI5q62MoQTUVeRVfNsNSXu3nPr2PY/A3w+/Zy+B1/Hpfwu8OQW+u3KSQHWonWCWcxrjL/LhskcsQck5OSa8mVPFVm6k0kt7HlcuaYxurXSUNLxt/l/w5m/EL4RfAHx14p03xbdXuppLrmhTWdzZrGktjcRFds+VI2oygllbIZWwy8gYKUMROMlJL3X3szanHM4wlCaTUZXWrT7r18+jWjOl8T+HvhZ8KvhxHpfg/wPsg1a2jt7HbcN9su0CEkyggEKozzk5B5xW+G+s4mu+d3tvpp/wRYR5ljcZzVJ3lFu6S91drPqcv8HvBOr/ERPEvjX40eBoL7wzPfpbaFp+qqYZJoRxJKxUNhfvY45GM4zkPG4ucZxoYeVnZ3aV9ei6FYvHYjDxVDAySqde2/wA/l+h6zow/Z78C6J/wifgSK28J2kVqXjvbGWKRn3BsxpySMfkTj0rzI0s4qPnrLn8tkeFVw+f4mXta69r/AHbOKXmz43/aY/ad8M/Db4pWHwr/AGf7G3E+s6qs/iHWdTfNxqDLHku8rHhQDtC9ATxgCvewtGo0pYh+/ayXRI9PD0qs5qeJfvPRJbJHYeIPjBbfELwGfCmt61JpsGq6VI97qz6iYmsX6IYlCnfk44ODz0NdSwM6MpSPSrwpUsPJ0r81rLQ+Xfifo8nwI+CT+GNR8bHVvFHiqdoX1SG5Z/Os4y3lM+7Hl5BVOBjCZwSTnzquIjgoyhVk9b20vbT5dd+2+ux+f4rEVaLkm7tnznrvizTvDGhnWbnxRHo1zHGUvJ9Cu2ukYDOBLlAVx7p+Jr5vEVYSf8Sx8Hi8VUk0qsbPsn+un5HyN+0b8VLrxlqjJB4n8P6/5r7VlsYWWYA9CQyqVPqMn2r5+tCpXq2TT/M8tUZ1attVc1P2avgBc+JrxNU1iJktkYMwcYMp9Bntmu2tVw+SYTmb1PuMqwMMNTU5bn0tDbW2g240y1gktmjGECKFx7YPUV+PZ7ndfGYiSmevzOcrplG5ncBmRcZ+8q8V8bVquUiprmIrVd7ZbgGuaU7KyCK5S0FUKMisndluSY6NQzbSeBVLbQaTG6pp8E1uzMoBx1FNOSkOULq6MPRMxXxjxgBuuK6+VOJ5/J++0OjkJcEEdetYNJM9BK0dRkYxw3pxnvRLUzcktj0P9nabWj8QrJNDldZGmABjAJ6+h611ZfD9/e5wYxOVJn64eKdF1Txh+xfFHcySLc2Q/esPlYcDnjpX6EpynSjc+IxHOq9mfMfwu+JvxZ+H+qC30rXRqFkGwbe5f5l9q9GGHk4pp6GanPmaZ9TfBn49+HviDZy+HNf05YGlj8q7sZsbZARg/WlGPIrWInB7JHwv/wAFJv8AgllqHgm7vvjf8ALI3ekTu0+oaVAMtCTySoH8q+bzHIfaKValv2PYyvGVL+yrM/Py5SWGZkmQq6sQyMMEHuDXyDdpcr3R78rLYgbBbAHWtbJIlRcme7/sk6S0Phy7viP9fqB5/wB1QP61/U3gtRjS4PlU6zqyf3JI/wA+PpS4tVOPlQT/AIdGC++8v1Pf9HGAFDV+vQWlz+TMRrdnR6WOQT17V001qeLXZ2vhgHy9ytxx8prutaFjw8Q/eRo6mSFb5cDNT0MLXkcrrB3FhgjGeazmelhrLQ5LWR94GuaZ9Bh2lY5PWVXJOK5Jps9/DS0OS1qPBY5riqRZ9BhpbHKaxEBuOK8+qme/hpnIa7ADuGa8+rFn0OGmcXr9soLK1ebVp3PpMJUehwHiOyDFmx0rycTTsfW4Oq0ked+JLd7O9W8txh0fNeTVpezkpH2OBkqtNwlsxfGRTQ9a0P4qwj9xdKLPVABx6An9Pyr5HjjBxxuGjVgfbeHmdvKMbPCN6J3+TPV9L+FF/wCPND8MX3wZN54s1HxALmK90PStNkefTLqGYxmKQgYIZdkgfIGHwelfkU8sxarQhTTlzLp01P3ijnWGq0pTm7Jba7n2v+xZ/wAEKvHfxAv7Txl+1vrR0HSAyyDwrpU4e8uR12yyj5Yge4XLe4r6jAcLTVpYr7jwsbn8qqcaC+Z+qsMXgD9lj4DLoHw58MWejaRpNmLfR9KsowibsYHH8TE8knJJ5NfWxjTowVOmrI+clG6lKTuz+ae0CSAIyAr6MOtfkk07n69VmlNo+i/2M/jVqHhHx1p3hXw7oWi6Tbu4Nze2Xh9ry+m56KeSD9SBXo5XWdOpqr+iuz5/MYOem5+wng/xFoHxZ+GkXg3VLkw3DWwaxXUbpPtWcfeMaklM+lfaUMTCpa2nqeGsPKDUmnb0Pnj4sfDe60+8k8Ka+pjdeLeZlyAV+5knsfu59DXU58+jO26i+Y+SPHvg7Wfgz4v1DxTpWuTozy2EU9hNdPFZmLyyomIQgsSQqhOm4t3HPHO8PQzrzvDlXU+qv2VfiLq+rCyt9W8LapZXUZAe603wsyynPZp7kkAe6itMPVclo7o8+NRwXvRPuv4YeI9INksBV4pXGHFxfCSVvXcBxzXSoyhqg9opvQ4n4weCl8F62/jDSYs6Vf5+3wbDwem7HqKz509/118v6/yOh/vIWe5z9npt/ZzRXdpdQPYyAeVJnAZT6+9aRlbU5pRcDqNL0jRIDDdRXkqsM7dpyrGtE4sh3bPUPhUJSUT7Sq7uTDcqDyfXgilKSitDOybPV5pte0d7aytdLVobgZZ44kEfPryCfoBXDVqcz3saJRcerNeHRmnQTQyQiU8EJHgcf0rhklNtxdzolOMNJIsrplwg3GIlv7ymtIU2lqSqkG7JkV7YRPGNzhXxjIHNFSMbGlOtyu1tAt70woIJOBjBZqmNRpWG6aqPnRg+IYdQikc20ZkUj5FC5zXNVvzanfScHBdznWg123kMJDJYXrskiuoxCx4BBPXntWKm0rPY0lCE1zL4ka/wusbyW5u31wstvZXDKskjf61vfgcD9TSwsZznepsjix9dqKUN2ehQSQTsJIbcMB0baP517y9m1oj56fPHRsr3+iz6ldLNNMiqp+6Rk1nUpubV9jpoYmFOPLa7CHw/o+nzCez0mFZR0lCZb861pUqUXdJIVWvWmtXoS3WnWOpwi21TT4riLcG2TRhgCOh57061OFSNnqYU8RUpSvF2Zkaj8LPBV6HfyZrUucs1vdun9cVzfV6aPTpZni+S2/yMqw8B+HvBuqf2vY+Ob4AH57a4nSRX9umf1rqpRUdEjP6zWre7KK+Wg3VvHNpGxc3KcScLmtXBJamsaairnLeLviRHdXK2wv8AoAc+/pzwOvWqpRvsaQ5IaRRyvxO+PGgeCvCMvh7wreh725T/AEmdAQXyDlVIBwo6bvyq/q0py55Pboc2JpuVW7Pjn4u/FzRrY3WpX6TiTZiS4t43YKATgEqN2OvQd6cpQpy5ranRRjy2fQ+Jf2nv2pvCNpbzpb/EuCIzK223t/El/AykeqiDg/U1zVKsaiutPU9ONGM1dHx/4bg1z4leLX8R6rreoXUJlP2U6hdyTlEz8zBn56VzRp+0qabG1CmubVaH1P8Ast/CabxX4gi1q/hZNOt/lR2UAKi9z9a9NNYSk5s7rKcrI9Y+L/xO8FaRG3hLUNUudImRStvIIRLEy+6/xL645r4rM8ypqo1NnXToux8v+Mf9E1qY2ep2sqS5PmabI6xOP909PpXx+Inao+WV0z1aEFymIpDeg9CKxgdySS0GqhMgPr3q2Zy1ZeQgQE46iueotTVKyM90/ebj68U4NtWE7NFy0cDAA49PSlIyWhogbowTgnFTF2Zu02iS0kaGVWRipH8Q4xWi1dzCSaZ6H8J/ijF4K1OKN7n7PDI/74WsRkubps8IvqSfUgCvosmzSeErpXsn26nPVw3O00r/AKH3H+zR8aYL6zubL4hTae2laiq28mjMwZYkIxtd8/PNzkhelfsOSZ3UhJSnPfZLp6+Zx4ig017O/Muv9dDznxz+xn4d/Zc/aZHxw8FS2kXh3XITLFePGzCD+IooXIDk4HT6kDJr7+lVhjZe2XxdUvz/AFMYU1i6ntJNqS3R7X4lNl8T9AtWitx5UiNJOrdWUITu56nODn6161GnXhKDVuW/vX7We3ne2/S57mXUVUbb3PL4YPiBb+LrD4T6ZZ6iuh3KMLWLRpBZtJdMMgyyGNjIACMgEHBwCDzXTisM1FVqckuWzbeu39f8Bn1NGqlyeylGLi022m/dvr1Vm+j/AAex9I/tDfCyz0v4WeCfhdrfii7tI7a236m2lSLHdTIf9cGdjkKFzk5yM5NfPZTjK9bF4nEw3eive34HPk2Mq5ljMdiKTceb3Yt/D2VvV9Cv+yJ+zJo3w8u9V8f2nxV1jVNHvJkbSovEF1HNdQWwACwu2TkBQE6DA6YrrzTM5U8LDCqkufW9k0rvqvnqTnmY4nCZfSy2UOaovilra/dfnueYftVftX/Cn4X+LE0rWfD2lWrWkzR2WpW+Ukw5wwBC8A45564r0sPhZrDxqzqO7WzPbwcKuGwanUrSfMleL20/yPCvhB+04moeMNV09PHGry6b4l1KWOwLurNDax8+Z1wrlQR07gg+nVOh9ZoKK0na1159j0oYvD12uWKly7XVvyPWPEX7ZHw38XeHPEVz4bNtYX4lRLSRbkJPcQxEY39wQCTt56n1rGlg5wa5ne25y4eKgoJz5kr6dE3vY83l+LDeKrq68XaZrEssmkrMomkk2s0T+XKSMd2KhTj19jVcuF9o52u43Sfk7P8AGy+42VWbo2tZdvQdo/7Tuo6Hp8+kL4r1EajHobNa6lpwUpbMCWY+WVIAZSBkj+E0VKFOtKyuk+qtf8br70zopuhiI3qQT8u5o6J+07p3xQ+KlxrPjwRX+kaKEf7LJCskfl+Tt2DA6ksMjJ+Y13SoQjQcaPuvucqbVB06Pu+a3Lp/b/8AE/xI8Z6n8KvBulG8ht9RjgXTjEIFsohGoKhtpCgHnLA/e9AAPKw2EwkK0nd8yMsLh8HRm7R/eLd9X6m74S+DPwk8Xa48+s/GHXNL1q7Q/wBqXFpqjT28L7gVh8rykUocZLADGB1zkd9fE42lrCmpQXyf9f11OvEYnF0acnSjdaabXX3/AIF3UP8AgmZ4u8e/EWH4maNf+H9f0W0+e2ksZGeQtk7iY2O4ccYy3JryZ8QZdCajVTjPzR8zis5yyDUKt4T7NaffsL4T+EujePNUvIfjR4d0fRdJ8PTTWmjDUlNjcNOhVjPwu8g9PMYMAMhQMcdmJzOMf4Db5rXtr/X4F4iToUva0JOTetk7ra1vJenqeW/tbfsr/s8/EvVYda0z43atBbQQKt5cRBP7PgmwRFC0oHmfNhmUqATsbPA58yeHePg/b+7Lp3a7ny2YYatiJ83s2l/X9fLc+Cf+ChX7N/wd+BPh2201dQvdT166tllsLy11Bv8ASI34XypGkxIM8FQuRxxXhZhgcNh6Kkk+b0Pjcdl2IpVOfdPpofNf7Of7NmreJ9Yh1fXrF41eZt+8lsYzknrj8+teVSUMuoSxM3rYvBYWPOpSR9aW3hCLwrocNhpenq6RR48u3yJFAAOSOpHuOK/MM+zTFY+pKXNePRH0XNa3KZ02uifO9EY9HicFs+/OSDXxGIqS+0XRkrlKcxyIWXAPb2ry23zHQldkVqMtjbx6U+XqyJXuWo8kEdulS9io7jvL2MM/hxUK1zpWqHTDMLA+lbrUibaizGsYQL89zurXmdjhoa1tTZnOwY9vWsmzuqfCQJKHB3H6HFLpoc0Gr6m74D1a60fxHa6hZ3LRSRygq6Oykc9cqc1WHlUVdWFVlFRZ+wf7B/izWfij+zbrfhDxNcC4n+yl4H+b5l2/7XNfpuAtUopSPkMXCn9ZTaPjL45ad4m8HeNTPomqzWpMzI6Rnqyk8fiK9GnVcdEeXXi+d8pq/s7/ALVl/wCJJ20mXwv9nGmzkXWq3s21lAOMlj1rfnVRXZFGM1J3PtX4KfFzQfiDpx0CbVUu4bhdvmhQy5PGDnqK5nK6aiXOqlG73Pmn9sf/AIJR/D74satqt58PJYfDPjGXNxbQvxZagMZwP7pNeRiuHKWOTqU/dn+ZFLPp4OdqvvRPzd+J/wCz58W/gh4pl8JfFHwRe6ZcxOQGkhJikH95HHDA18LmVDF5fNwqxat1PqMFmeEx0U6Utz179mi3Wz8AWwOQ0s00mCOxfA/QV/YHhVg54XgXBqSs5Jyf/bzbX4H+Z3j/AJlHNPE7MKtN3jGSgv8AtyKi/wAUz2PRwGQFTX6TGNkfz9iNGdJpSscY59q6aVro8au0dt4XSQxHaOcZ6V2Tdoo8WuryVi9qbbo3ZF6tg+1Sk7aGVru5yusBstuNTKDO6hZPQ5TWc/MCORWE4o97DI5bV1JJxXHO1rHvYey3OX1eAkk471xTTZ7mHmjltagI3Y/I1yVKaPdwsr2OR1u1kbOBx6YrgqxSPocLNHH69psmCWGa8qtsfR4OtE4nxJpgAZ1T65rzKtFydz6bCV02kef+ItL8x2UR5J7ivKxVP3T7HLquq1PRf2Wf2XdT/ansde8F6i0tp4e0aGK51bVgP9U7SBYoI/WWRvlA7AMx4U14sqVKtSlTqq6uepzyo5nTq0pJSafzP2C/Y3+D3w4+Bnge08KfD7wfZ6cscSCeaOIebK+Bl3fqzHuTXHVhhsPFxpwSWy8j9Ty11XSSmz6p8FwidAzHCgZZie1eVOTkz20rR1PJ/i18QbT4rfEVfD2nz50Dw4+biXOFmn9PfFZ0Y+0qp9ATTgz+fG2lKxjBr8lbXNqfq1RJ1WbuieMfGPh60lsfDPiy/wBMjuGBnNjLsLfiOaiNarS0hKyK9jSXvPc+xv2CP2p/BHwGvILO712J9U1N1WZbW3l1bWL9s8LuPyQr7DHvXsYDGWqWTv6as8TMFJ/1ofpNq+naH8evBcerw2xs9WNtvS2uHQzKuOjhc4Pt2r66i3VSb0Z4LqyjKyPln4+/s96h4w0m80PUrCKbVo7YxW1tLDj7XF18ssf4lIDKfXgd6qtytd2U2+W7Pmr4Ya1qvwh+JFxoHjKe2uoFlc2b+ItVvxAi9NpWGUEsp4C4wcDgjNYU6Xs3+JgqbrPVH6F/stfG1bjTbWPUdZktIXIEcUdlHZW7n/pn5jmab8FzXoSnCdNckvkVU5aEWnHY+sF0+18c+GZLC9V5UuIvl8+PGOO2Rn86zjTTfvGUa9ppo8J1vwbdfC7xBJY63cynS5HLWvPywt/gTWrcNkVOr7TU2dG0HWbGRUu50c3EfmxRKSUVex56nFTGLuT6nu/wk+GHiK5sINVv9XS0t5FHlwFV8w/jg4rOpWhB2vuYSVRq8I3a7s9gtPCGnRwwxXlxPdJC26PzyCVPqK5XFNam6xM4RtFWNIRWkcYSGAn6dazl7OK0RzKU3K7ZITGq8KcY7mkqqsaat3MHVVt/tBe3lCMP4S+M1z1ZRvc9CLkoLmRTv762kt0mkVo5EPysVOGH9KTqRUbjw6lN3js/k/x1NR7thoq6pZWnnNEMmPb1HfrV1Jc1LngrmagvrDpzdrnB678XdMug2nXVgXiS4LPE8GCo3f415v1lvWS0R6FHBwpt8rd+56BpDRatYxXrWhhg2ho42OCcjvXs0JxrJStZHi14ewm43ux2pa/NZYttO05rmUjhFwAB7mlVxjhPkhHmZlHDSq+9J2RnreeNLu5Ed5CqRHlorUHeo92z1rkq1MbOVmrLyOylQwVOHMnd93saR0CyihNwLW9dyMmP7W+Sf++v611Qo0ow2f4nLVqOcrXX3EOs69H4W0ZtTvdHvFRB8sa5kbPvtJx9amtiXTp6JhGlCc+VSR5f47/aBntITDcaWlujjMfnRHcy+27FTCdSSUprc7YUFS2PPbr4va5rdz51i10YD952j8qNPXDV30aiUr9DWNJX0L0nxR+HWk6RKPEonubxYi6b7sxBPVl4yR05xzWs5SnJJGFZTlax4J8QfjXFd661ro+q/MpZYoZJCvynHznIGR/9evQw9OKld7l0Vd6nH+KvinNotm+tHxfbYK5uJ5iWP0bA3KvvjFb1ZqLNZRhfU+Tv2pPjxc3Wh3eq+F/iobG7Ct9nk06Rbm3Ydcs4Vin4rivJr1Iyg+WWvp0MOW+x8GX/AIi+MHxm8T3dr488YJe6Zat5jzwW6AMAeSXQAN2xwOtckPaS0vod9CE6kUe8fs7fAfUvF93HJDYvFYIFad3TA8teQn1PU13UJxwv7ySul0fU9VUmoWifSHiHxPoHwk8GRw+DzC8CJtlbZ0bHKuO31rwswzeMrm9LC2kpI+ePiL400rxQZL2zv5o2ZyZNMu18xFP96N+30r4XHVKda7ue5TpRjG5w905YEgfSvMhE66cdCGAMXGelbXshNk0iEMABxU3ZKWpO2RBtHSpaudE/gKOCW49apWRhFlm1LFgR3wM1L2NOW5qKP3RI/IVnezNktBkT4Q5OfYVqjCauSRXcsNyJopWR16SKcEfjW1OTpvmTsTFu1j2D9nLxB4t17xPbWmlXkdtBb4E2p3rqsduvXjPC/RRkmvqMkxeMr11GDt5s58RVhShZJtn6IfDa68M/Fb4fTfC/UNQTVYWUNa3bg/LNjhlzyBniv3bIsSnTjO+255cp1HNVLWaMrwp4LvNIuLnS9VW4e7VjHKz3G4EKGwuCflHr+HoK+9VWnGhHl2PYy6m/bOpBb7726/Lrv169Do/hX8E/GE3iPS/FOhadqU2pWloPs2rS28Sae0hGGmHzBmI7dR83T04MRj8LDDSo4mon/Nb4n8lornvYnMMtw0JwxE1brFX5vTY9D+KnwV+BniDxRY3/AMT9c1fXNaRCPKstRMflErh8KCCQehx2PNeVgM2zeOHlDB0404d2iMlzziNYOcMBShSo93G99dLswte0zwCIJ/CfguS9jv2AaC3v7Y+XGoHyoJV4ByO+SM+mK9OisdGKrV7OPk9fPQ9qNfNElWxKTgt3F6vzs/0Pgn9tb9mv9pX40/FSDwe/wC1g6kzD7JrWm2hktbleeXdcqSMjLHb+GK65YzAvDe7VSj5uzXyMMRisLjUlSqKKXVu33o1fDH/BIf8Aas0nRLLxj488d+GPB0qQyRateXtxsZEPyhoooVCg7MHBPJPOKxee4C6hSbnLlS91K1193zerbu3cwlmODeJUcLUdSb3UI6fojzz4ufsyfss/DXw3e6La/Ebxf4il0a/Zn1QSrbwPdTCMSNGB85BCIBnjcv1rooUlJc9T3ZyW3l/TO9YCdCCqVE4zl57evQ5T9nmX4o2HxJk+H+q+E9Xu/DN/YmDTtTTRpCJFIYjzHVOWGc5OSRxngY87BYKthcXUjOTcJa6vb79vRaddyY1505clV7bHqfww/Ze+OPxD+Kj+AvBmkaxOZPDK3WoWcFt9mLOrusQkMgHGAQM9Qc4r0MVXwuBgqtaraL210uarHYXDUlXryUY6pN7dDu9X/wCCZP7ZfjG4NtpXgVPC9tbWqQQPO8O66ZiAxk2HkKCTuOTkAdOh/b2VTo2dZaLSy/P+n2OWtnuScrSxKv5K52/wc/4If+Jvh1JqdtqnxfkSx1pd2q2sknmSyTlOTHIoQrkjPfsOeteFRz3BYWTdO7bPMhxRkeErudJTlzW3f39upwHjP9iX9l79m3WNR0r40ftJeO0t2IuLxV8qEwgZ2qk7DfkntGRkY3Doa+hhicRLBOsuXlls5PXT8v1PVnWzLMsE6lBJU20029dPPdLXbr8j3r/gn78UPB/xLN/D+zpY3tt4T01Atxr+raz5tzdsDgnr8vA9s9uK8vOMPSpUKdSu1OU1olZ/et187d9jhzONH6opYv35bJW0ubP/AAUS/bF/ZN+FvwzfRPijBp3iG8e0eKDRZjme5l7YYNuBzxn3rz8BgcVQvVqy5IP+tjy8syzFYPmr15ckW9En+Fj4F8F/BzwB+0hZar4h/Z/8Z6pDqM1mG1PwB4g1eSSFDtJiEEiYDbSc7eG4xk4xXvQw8a0nNSdmreX3G0518Vo3aKe9tTzb4o/Az4s/DXwtceDvF/g208Ya9r7lHbWtPMy6AVIw9qpz5Y27huPBxzXHmGDlhKPNF86b69DyMzwFOtP2qvZdupgT+CxpHhGez014YioYXckIESzN/EybQAFBAx27CvybivFyqU3ThpffsedSpKmko3su5y8eo6rYWkdhdTSPGgDQGfPmxH1VuuPxr8prValNcrPRjGLjoiHVddnv18m7CyEEESyRgy/TfjJH1rza2Jq1VZmfsUqnMiorGUjHA9a5LXZ0qSiOiG1uap7Ca5tSe1JaTjFYSZMVqTSrzkj8MVKudUVYdIhaBjnt1rZSJmrxMmxX/iZEf7XWtvsnDBctQ09QQjnPb0rByTO+VmjMEsqtyPqM1poonFKNpXLWn6hLa3KTwSbXRsq4HSnGXLNSQKMZKx+j3/BIv49apD4iPhXxFNdzQXKeUs1wFC4Ix0Br7DKsd7yi7niZtQhCnzI6H9vH4TXOieNb1Le3CxzObi2lC8Z619RRi1ufP+2hJXR8d+IfCt/fa/bXVlI4SCbzL2wjOBJIOhIyPlJ61c78yOarKpLY+j/2V/inqmhTRHXtBuDqstwFg0/ToyY4kHd+OPqfwrZVIQV2jklGUlZn2t4ts7n4tfCZdbs4PI1fSo/MhY/eKjquauniXCfuo5q+E9rBxZ41r19oHxA8OHw78TNAttUtihVXuIlZ4T0yp6jmvfpYbDYyKVeKafc+Ixrx2DUnh5uMl2PnbxB+yPa6Zqclt8MNUtY8OTDY3cixKwJJAVzwOvfFfteUY7CYXLoQjG0YpJW1SSP4S4pynNXxHXpVXzylKT973Xq77vR/gc/c+GfFHgfXG8M+NNAudMvkUN9nuo8b0PR0PR1PZlJBr38Li8Pi4c1KSa8j8+zrK8bltTkxEHF+ZvaNF+8BFejSTufI4hnofhTSZ1tv7QSQBQMEHvXRWmo+4ctGhVmnWjsnYs61axLG7w9C+QCOlKk5O1zlxNKMZ3hscjqtqZJGVvw4rWpojaleNjmNV0u6Zz5cJb3ArinJN2PXoVYpWuVPBfgGbx74/wBK8Fhmi/tC/ihlkC58tGYBnx7Lk/hXl5liFgMJOu1flTaXc+nyfCzzHHUcNB61JKN97Xdr/Iyf2gPhWPhf8R9a8LaVLNdabZanNb2GoSR4FxGp4bPTO0gnHrWGW4uOY4CnXkrSkk2u1z6LH4CeVZpWwjfMqcnFStZSSej+aPKtV06cyEFCc8jiitbY68NUVtDJTwhqmvSyW+nWTyukRkZUTJCgZJrzqkU3Y9SGK9lYk+Ff7L/xj/aF8YjwJ8KPA9zqd9jdOxAjhto+8ksr4WNR6k142Z1aGX0+evLl/U+xyHA47OKqp4OPM326er2XzPZdc/4I+23hWxutM8efHPRNX8SvYO1l4c8NXqwxC4wNqyX1wvl9TyFU9MZGc15NLMqVeCqexlyd3/lufWV8pxOXVFS9vT9r/LdvT10V/vPkL4ufsK/tR/CaWSLxr8BvEdsgDFbmGyNzA47MssW5GHuDXkYnFUqzagz3qdSrhKlqiaS8nY+lv2YvA8/wM+GvhP4Xyad5V7eTf234oHlHe93KMQxtxyI4sADsXf1ryq8/ZJRtruz6rh+k8xx312/urSKt/W592/BrRZdRu4YYk8tnAkMMgwQD3IPT8a8vFUoykp3tfXT7tf8AJ+T7H7DhIcsOaRq/H79oCx8HaRL8NfAWopJqEq+XqF7GwK26nrz615lSTnpHY6k3XduiPnXV/if4X0LSjoM/ixoIsMzogGZZD1YsWHJrpockIWR0K8absj8fbUgxqSeor8akrzP1Gp/FZpWyKwHH1qGtCE2dP8Ote8Q+HdejXw34wt/D7TNifVJkOY078qC34DrTw1SdKr7rtc4cXS9pFPdn3h+yT+1d4K+E5s9B8N+JL/xFqepMAsl3ITd6pJ3fYTttrdeTvbGfrX0+ExatpO7/ABPMrYSUEnJWPuLPg/4s6JHNrF5bReIprVZYoYJ/mTHKtwPl574r36U4Tkjiqr2afstW+/f9PuPlz9r/APY48QeInjvtO0iBrtVa5nuokx58iHckqYGA4+bcO/BHOaK04yTj1Hz14cqgly2d+9+lvxvsedfsh+K/FHhTxdf3Pj/VjZ39hdmOXULo+deSJgYESn7i9Rxgmpwn7id2ziqN1Z33ufpP+z18SrvxxaxixxFbAANJNP5k8h7ByThSeuxckd66pVOew/YqlC7PSPih4I0jxXocmn3KxyzeX+8AXOyko3Zk530R4t4Y0PxCdYu/CGoM6x25SSG7RiGVFPAx35PT3raTUV6HTStHVn1J8IfD3igQRXd7p1xcQCMAS3swQ/VUHSvOlySdwnUjBtbHp8cUMEQx1785rVcqieZVqSk9CHfulxHZtjuw4rCVJylZIiE2viYy8+yWsYaZmT3BNY1YRoxPQoynUdlqcz4iGk6ihM7ucHCyRygEn8xXnSrQbPVoxqxVkvwM3QfCfim9uStnrUclju/eC9G7A9gDz1ojh8RXfubBiMVh6EFzr3vI7nRtLOkWpgt7nzh/dYbQPYV6dDDTw0bbnhV8ZHEyvazK0ujaTPd/a73w1AZP+erxq1P6vSqSvKBo69WNO0Zlq5Z3hMNpEGJ4HOAPr7VvUpe5ywRxQnLnvIZa2dzp0eY4lllfmRy+PwHtWNOhKlra7OqVWNXS9kS3uqXOmwrJHpM9xlgH8gBtvvjNbzlKEb8tzJQVaXKpJepYW/t0txdXr/ZwennMAaUq9OC97T1M/Yz57LUR9T08R7mu1ZGHDZyMU+elON76FKhUlK1jwH43eK/Dll4zlj8P6Vb38S2zS37SYJVsgYUtz36DvXLBR9o0tj1aVOooKM9znH+Eo+ItmPEHw+1kG7WPcdJvXO0cfw9q9SFGHs9zVVPY+7P7zyb4ht4p8GWF1beMtISHUIFby4XjEQf05Y/N09qqK5OplN9U9z5NuPG/iY+IJ9UfU1vnklZxDeWyRMCTjy+m51xjBJwM+9d9OTSsOmlBtnnnx0/aB0mysyuv3raNeEFYoJHMaMcdNzjaPTBGK561WKvcOZXuz4O+JVze/Er4mL/wjpFreGbfJd6ZI1uUTPDSCM7HJ55B59K8qVBVXodeGoOT5kz3v9mD9lPUvErC+1iKW30YRB2MikG5Ktk59QSAcV1Qn9WptHs06ShDQ9+8YeNNB+GejDTvD1kIoLaIGSGIbXYD+Iep9a+fx2ZKW5cbx1SPnf4m/Fs+KNXGueGNSa2lf5ZQnKXC+jr0zXzWOxEZR5ou56GFXM7rQ4uW7aeQyuACxyyqMAfQV4Mvfk2etFOW4p3SDA/PFaJWRt5CW4Mb5I69vSpkZO1yaQncO/HWs73dgWjFaTMJyB0zQ3Y2lrEz0lYydO/FHNoZRi0zQtVJOT69qhybNuaNzSBJhC47dal7lKQwAqMgdferUiZJESoS+H7/AJVs/eWhg3Z6HZfCTwz8QPHviq38P+DpFjSH57m9up1htLFO8skjfKoHqefTJr2MnwuZYrEpYd2t1btbzOWvyw3Wp98/ss+J/BHwwji0vwPqsniK7YqL3xTOjCGZ+628TclAf425PoBX7pw7haUKfIpcz6silRlUV5Hs3hzwx8cvGfxy1GD4XeEliSaBHl1i4QiFd4wwHTtnI75r7zEYjKsHl0XjJ3S6LfQ9hYrKcuwvtMZOy7LdnsOg/slfFfR7CKDx/wDF86iFsAkYicwmGfPLqFwPu5Xp36V4P+teV1p/7Ph7a9r3Rwx4vySU+bC4azvu1e6+ep4l8aP2CPHuveLD4r8LftGXui3VsCwhe2Vomc9ywXLc4z6j0r6ClxHQrU0pUW42eisvT8en5bn11Di9V6UVGm4ra0ba+qZ5D8Qvg5+2P8Nkn1Xxd4eh8a6asW6TUfBN0RdbfVomwQcc5GemK9rLMwy6vQnzz5JRXuxkvid0rdtrv5WNqfENG75k1fSzVv6+RheGP2+dc+F+heV4c+Nt5GLcmG78O69ZeVd257HLE5IPGABmjEZVlmLrL21FXet0ehWw2Q5lBSrYdNrr1+djz342/td+O/jx4XdvC/xRtrrXoVdZrC4ukMN0mSURSMbjk+gNaU8FhsNeFGKUfLcbp4fD0fZZZDld3p8u+579+xR+wDqGmeF4/wBpD9oXwlp2veONUdbxrGeFUgs4+qhYV+QEDPRcV8/iMwoRrfV4ya6X3/E+YxGZQoWwk6jUtnLfXtdnulp+0teaPNdeFtN02ySSF/NjNlaKRhRloFBGQ2Bgj8qipkFGo1VnJ7W1f4nHV4bpYicaknJp6av8f1Om8LfG7RbCabxPpdxFJrdzYtPfMLVUVolB2qHHOVJxg881wYrI5V4qlJfu07LVvXroc2IyGpUhHD1F+6T93Vt36trz8jybXP2u/H3ijxjqei2+qzrEXt4bdlGVd3JLomOpAHJ7bvavYw+TZfhYql7LWKu3+n9d0ev/AGHlWDpR5aabX9I9E8BfGLSPHXi6x8Eya0L9tOKfaro4H+kZ+4M9cHg/WvMxWA+r4edbl5W9l5HnYjLo4bCVa6jyt9PI+ef+CgPwe/YN+Jnxk0hv2qvGfis3FwCE8MeH7orBcuvBMwXHQcA+hrKnTzDE4OMaUI22Te9jvwWKzZ5XChRUVFd29fl1PHP2jPHf7Sun/D6P4Df8E2v2S7bwN4TaMJJ4k12SGJ5APuy7clye43DjrXp4XKMdCmpuoue33DeEzHEWhOalLdX+Fei73W+583eB/wDgjv8Ata+P9ZT4m/Hr4qpq2qzXSvFcSXBcKCecevsOlVTyqrF2xFbmZyvLMTRrc1etzWPpz4c/8E+viX8M4biy03xLPHJaSRXLQG7MFvG6kjzZNo/eSAFsA8DOPWvUws6FBpRno/xPVjXw0MPyc2j6Lqz0e21Szk0rUtR+Olql7pCQpbT6kloDM5Hyg7j2HJPbFdNeEZUnGn6s4amHjy8tHffc+OvjF4b8Alpofh7K8Phe3vH+z35s/Il1hgxKQwRj/lmgIXI4PWvxHjHkqT5oR5Ka6d2u3kfOewrxk5VHdtv5a/pt5niHjJ5b/UTbR2eLiNP+PeEcW6DszdzjtX47j8R7So0kXCeljm3RW5I44wfQ15L1Oq11cFIQZI78jNK1jmk9RytuGc/Sm9jWnqiezJzz2PQ1zyV2Nx5WXJAQc4PQZqVozSD0BFBgYNT1uVN6GTaJ/wATIgD+Ku2K904Y6zNi8VWTBGTgda5JJpnXZ2Ma6QRnIUdeK2itNTKduUrxTES4U556VTdonLC6mepfsveNvEfg34taZq+j62LVY51MrSzlExnvXdltWUa3NfY4syp+0p2sfrp8UNI8OftK/Ay18SaBqlte6jZWg89rZw2Tiv0ChifawXLqfHulOjKzR+dnxr8Pa94T1warp0r29yshhm3Icbs/xY7Hn869BWcbvcHSk3sdp8APi/8AErSERtflSK0f5GgaI+bdgHorBevsSOO9VBOWxnKMOdI+/wD9l74gWfi7SktrbTHtkZdsiSDOcjoatxUNR1aaSucJ8Q/AGp+GPG+paVMUWETGS3x3Rua9XL605Rsz5jOaNOU+aGzOQ1XwvaXCSQlC0ipuj74PcV9vk2YVKD9nfRn4H4h8NYTH0fbuCc11sZWpeArb4leFpPCWoEfaYkZ9IunOTazYyACeitjaw6EHPUCvqcNi3h8Qqq+fmfhOZZBHMsG8O1qvh8n29GeN+EEuLi4NrexGOaGUxzxnqrg4I/A1+j0ZxcVJa3P57zPDSwlWUXuj1nwP4W1jWZvJsInkjQZYKOlTi8VRoQvLRnFlOBxmZYjkoptLV2N7V/h9eXELtaIXCjLY7GualmNKHxaHr43h3EVE5UdbHOap8EviLLYtrlr4K1Ga2BH72O0Yg/jil/beWSqezdaPN2ujKjwtxR7D2qwdRx7qLt+R9HfsffBa3+HngfWNW+Lfww0i8m1WHbYRamgMypggg5B2A9c9a/IeOuJKdbHU4YOvKKhvyvRv5H9beB/hZXweTYnFZ9l9Ocq1uRVFeSVvPb8y/on7Onwjl8Y2PjnwVpkWk6tpcLQ3WlSgMLpSTh427kDA9eK+fnxfj8ZhZYbES5oyd0+3qff4Hwf4fyvM6WZYKl7OVJNShunfqvNB4D+Fvwf8RXN/4S+L/gqDU7eS5na0g1GP7krIqByRzjH5EA1zZhnWYYSEZ4Wo4uyvy9kfTZbwNkOZUpUcww6qLmlJKS2bSV9Pl9xwnh39hD4M+A7TUL/xz8OE8Wa7e3brpVnbF0tLODayoWwfmbkH3wM104zjXMsfOPsansqcUuZ6czfU+QyXwYyPIqVT69B4itNvkXNJQiumzu2dP8E/gN8EP2RNA1zVbnwFpuveLbuyka6WaESW1jBgKsPzZySSAfWuXMM8x2czj7zjTjbbRt93Y+l4Y4CyXhSFSUqUZ15J/F7yiv5dfxOT8U+PfGvxc8PeJNVv/h0lsukLEnhyy0CxEEUqsuAXRMb9pJxnp+lelhKOFw1WnD2l+bWTk7/mcWKWY4yhXl7Br2elNQjZfcrXPC/GPwy/aL8daleD/hE723gtbGNYYbqwKLM7EfKrDjOCOuOlfZ08fk2Ew7vVi0+lz8izXIeOc2xUn9XlGMYq3u2u+yfcT4QeGP2+fgv460Tw74U1i/s7K/V7fUNO1y2820hJJwDyflK7TnjBJ4718rj8VkeMc5WW+jW7/LU+w4a4f4yyuthlTlN8ytUjNe6ndqy1d1y2d7J3uraXfuf7EX7MVp4a+LniX44ftCXVpcf8I/PLPcMUDQLLztC54OOcfhXx+ZYuUr8h++5Jkby+leSvbf1PP/2wP+CmPjnxH4o8S+A/hRoel6Rp+oW8ds+sG0U3NrbKT8u7HDvnOOwxXiUVOc9WfQSjKSXZnzhpXxD1bwpZfa7r7POJ/mlvL+TPmE/3uOK9GmlTNvZ8sPdOC+N/xNs7rTZJLnw9FMskR3T6feLtx7jPOK2U09UHJPlsfntaOSiivyN/Gz9SqfxWa9iCVAbr2FY1JWRMbcxfiOTgdRWNubc1tGOp1fw5+IfiL4d30s/g42NpfXpVJNUu4t/kqD97H8WOoXpnHpXXgsRPCNqOzOLFU1WScdz60/Zt/ao0f4ZtDeN4gv8AVJdQmHnS3c6i+164B5Z2Jxa2qenU9OSePco49Q0i9X07v9DkqYFJ3l95+gfwi+OWhfEi0k0fxXHaTXDWKy6jabP3dhE33QcjKsewPOBnAr2KE3OXvv5djx8RG7tE8u/aY/Ye0XxskXxI+FU6ie2kD27+UXZSMnEikYdPrXrOFOtT8zmjFU3aSepx/wAA/Fnxm8GaxD4J8T+PLqxvIrh8lYAqxREgYt0B2Bm7ttz06UqceV2b2M6s+eKitj7q+EXjfRb7SYvDVreMJVQPetNLvfkZ+dj1Y56Vs9tDgVlLUt+N/h7NLfWuoaHaxzXxn3BGPXJyM+wrlnTcVe7On23Q9p+FWmeIl0xTei5Z14lubqUqmfREHUe5/WuaNJzlzMydWKW9zt0tFQ73kd29SeB+FdMaME7nJOrrogMqxgmV8AdSTWzkkYtOTuMTWtOJ8szh+3AyK46uIw70ep2UaNZq6INS0fwtMEfUtFgJmYKu6POTXFKhhE7yjudcMRio6Rk9A07w3oOiyu+l6etuX+8sLEKfw6Zr0KNClS1grHJicdWrx5Zu9i2qsvANdd09TjgluR3V3FBFvkk7gDJ7k1x1cRCGiZ0UsPVquyJfLdSFLflXVF3iZ2s2mKsiscoxcE4GKx9rC+hWttEJNeXEU3k21pvYdWaQAVlOrK9kjalSVuabscF8YdK8TaOy+MrKym1C1Tm8s4pCzx9MFV/iGQM15WKw96ntHqezgMRRqfuXp2fczLfU/H/xG0uK08PWJ0bTVCiW6uzhpVxyR3/Tn2xXfh6blSd9NunQK0cPh6nNe7LP/CpfChsZ0W0uNav7iPaZ4EWNFPqGACjH41s03U5tPkkvy0MoV2neWi8yLQfgn4p8NxRapa3saTw8rbJMx+XrgMQOfwrthKCerMquJoTnZakmvad4C+M+kSeCvil4bVrgMYzM6hJIT2YE4I5+vWonCXMnAwqU5ppweh8B/tyf8E7vHPwdvLr4m/Dj7X4jsnwyqtwUAVc7UmIV9oGeGUdeoNdlOrzR952ZrTat7zPza/aY8E+NPGvi5NCv9Oa4luxiHQLqJZZCV6STzkABR/dABPA5qfY1a75b62vrpt6/09kddCg6jWh2/wCzb+yJ4Y+Gmgrr/jKNfOkk33KmHaC5yAMEcICeO1cs6tPDxtLc+jwuHVNWR6F42+Ndj4VgntdEj8uG2l+z28IARd5AO0noCB0PevExuYQTdmayjZ2XU+fviR8Wr7W0Ux3odo2YpOPveafvKQeQuPXjjivj8bjE6Titzoo4eUZ36Hl1rcb9RaZQB5jEsF6Zrzowfsk7nTSpfvTbhYt1NZqKR6raii/bJ8mWHQc0pOxKbbFaMK+NtTqy5R0uI4JwMdqlJGcbXJfLVYCCOcd6iSdzZ7GcExMcLxn8qtLuZ8xftHweRS5bCSRfjYlAp7dDWT3NYu7JJVwORjt9aVrhNWRXGS3zfke1dENEZx5WyawjK3kb7EkCyBvKldvLYg8ZAPP411YatXo1E4v8TRuKV2j6e/Zh+It2dVQa/JqlsFKbJ4IVMUpyP3Y6eWuOpx+PcfsnBGZOGJjTnF66X6a9vT+r7HLPmm0oOzv0/rrt/kfrF+yvc654X+Ecvxb8ZyNaWRgK6Xp/mBsqCQHJxk7uw5xX2fE0sLisyhl2FXNLTml+nyPmuIIQx2Y08voK705meYfEj9p/XtV1O7v4tTeNVlASLldwxuO3PXHA98kdjj6nL+H8FhacYcuttz7LBZfgcDQjSVO9upufDT4x2HxBQWc1wUuo3wZSQDjGRuHoeOma5sfl/wBVfNTV4hUw1NOUqW3b/Il13xDLoGrNLZhY2LbX56k5+QkdVPY0UKUK0LT1NY0lVpqM9V0OM+JX7Ov7Pv7QEsOt+LfBNg1zLEVW+jhCOWGMxS8d+zda2oY3G4OfKveS6Pt5HXgsbi8A3FLmS6P80YXhL9ir9kr4cPBq1t8HIZNQspjLDMEDgsTgvtAx5nT3rrq5lj60bRklD0Oz+1cyqz/dSjFPys1/Xc7jxvd+Ko9OvNV8P3M9jqphIt7Yltk8AyAUz3GRxWGGeHdRU5pSj1fZnnwdGTUJRU4LVvqpeZ498MrD4ifEzRr240Lw/NP4i0HUm8y5gh/fXCbiFdl65I/nXqZlicLgK37ydoPa+x7DxeCo071Z8sXor6I95+FX7GXxRmudWvfEzWlla3mlvHZQsdx82QfMzLjjoK+RxnF+WxUI07ys9bHyObcZZTRcFRbk09bdkcde/wDBPnxt8O9EXxNdePbCXWoYbiOysGciNpZWAR9x6Yz6dz1rb/W/CY3EuNKlKzWrNaXGWW4zEclOEuXe7PA9S+IXhH9gTw9deJvib4+0TU9ftLOaLQtMtbhQZHLNI91M5+9IWzgckKFXqa68RW+tUXbmServfotlf9N35np4jGxzGl7Ne7Hdt6Xstv63PgDTvif42/bQ/attvE99qt9DKbnbZyyW3ysGYmSb5zzg4VQBjn250ymVfGYuLStCK6iw1eGM5Iw05NPVd3r6dP8Ag/pJ4E+F0Xhu9tvh+qNJNcsDcSS3JmkmUKMvK2BlmxjaOAK+vqYqHsue+yPclP2NL2yb0PSviV4usvhstvZQWcL3YC22lQRyAmSRmCmTB4wCQBXjYelPFwnU1stX6HlqTxMHO+j3/wAjyP49/tKaBotjJ4APiELp0EoGt3aSDzL662lmijOQCq4OTwB9KwoxVOoqtV2eyueYsVRoydeXp6I+YvCH7auo/FnxXNptnd28XhDTZhamGO4iuEvZTyYkG7DkDjjnOc4xXq0qlOVRx0bstU007q+6/Fbp6OzNcJi8Pi7zi9L2u9DS/aN+Dt/4/wBKX4r+E/E15YWcCBLvSJbEtc6aMAeXbouFOe7ZwDnnivzHjnIZY6PteaUFH4rK7XfS61+a9TDHSpqHuWlbqno/M+UPEV5bafcz+H9GtSJTkSxpNvkb/amkHAPcqpP1r+e8YqVCbpQ1/rqeQuWbuc5LbhV2Aj3IHH/6q8m7UtTug2U7oPGhCjHFJy5hTjfUXTkd0+ZvpmolJoVNqJetlCOeO/X0qdSpPmZdxvyDjtg0ramkEG0iJsjtWi1Y6i0MmxXOpHP96uqN+Q4aTvOxqXw2qee1Y21O9rQyr11I2Y4qJS1OVvUpQJ++znoeoqviViJrl1RftZGjlB80pgj5gcVLi11M7RkfeH/BN79rjwd8PLy2+HOo+IHne9ITyPJbYM9iT1r67KMfQw8FG+p5WZYSThzxWx7b+2T+z3Y+KLCfxn4SjBgvId0yxrnaeoPFfUQc6j5k9GfNSrTfunyhY634q8JNbaxFYx3DW8vk30NxgLEw6S84HSvSjFxhdbkRgotuSuz7Z/Yy+J2vazpsN0qQRWpwySRpzJ7n6+gzTjzyV2cFerzppI9p/aF0Wa90+y8XQBmdY9s+F7e9a0a6pVLLqefUw/tqTPE7spFMJQxGVJJPcV9TgqyhNNn57n+CdWhKI7wjpcq3cc6ngsCDj3r66NdSjdH4RUwXsqzVupxGjfs4fFP4m/tD+KtI+Gfg+W9tob5Z5rofJBEZVD4LnAzz0HNfW0OJMtynKaVTFzs2tFu3bTY/B814E4h4q4ixOGyrDyqSUnd7RSeqvJ6I+mPhz+xBrHgG2XVvij8W9N0ZAwaW2spgzYHUMxxXy+Z+ImGxV4YXDuXnLRH6Rwb9HDN8vrrE5rmMaPVwpu79Gz0Xwr+z1+zL431B7Twn4wvtRuY5M3P2K9yAR644HNfIVuOM9ptxnGKVux+4YPwR4Br4jnpSqNrVtS0Z6zNpOneC9Gj0q78RRpp8EOwWzwqztjuSe9fB47M267q7SfY/astyOhhMPDD0leEVZJnAeMtM8CeIr17izvNRuGbO8C4CgDGMCvKnjJz3d0z3KOW31tscxZeDJnuLcWmhTiNCfJuTdk7TnqR2ohiJxskbrCUGvP0I/GUN9feIE0/UbJEn+7BdxL98getdEsdUfut6GM8FQhK8SzN8UdZ+GekQ6MlxDLPdwlo3kQF1UcHmlzSsc/1JOXNY8u0fQ/GHxB8dXunadZ+XYW0Il1e9nY7Oecf7R9qv+0MRD3Kb6FUsjw0m51FudOl74mhddK8K2TWsEA2ieODa0+O+3OWrGFfEVpa6s9RYLCYeCUYpBrmj+Ok8NSajrN7qBg6ut2vkhcdMZ7V2Qcox1ZwV6VOpKyicZoOpeGNb1SO98T+Mr6IRnAaVyRuHA5Brop4unQSd7nLLBR2sTXujat4i8O3Hw80LVFvdNubwzXEFiSpfv87NyST1JPStak415XTsdNLDyjSaSvc+G/jp8GNe8E2fihB4Y1CaW41Qy3OpNDI0fmOflijbHzEAAYHSnBRimoX+486cJU5cr3PlT4yfHh/AljJ4Qvor23vWxE0DWTSrLx1GeK56uIjT0loUoSk9Fdngmqx6nrs76jq9/Lbw5JW1tZChcf7Xp9BXk4rOKdCbp0pXV91/wT38Dlzkuaoji7FdwUewxXyEnaZ9fVbVVmxauBgj04rGUVJDpr3jQtSzD5hgD9Kh2idE1dEu4yHCj61LlFo54u0jc8F+KNQ8E66nifTbWCa+t0P2Rrpd6wyfwvtPBKnkZ4ziqw9b6tV57akVoyqKyPb/AIYftgeIvhz4Lh8I6H5uq6tqmsC61KW8lJbU7on5WnbP+pj4IjH3iOTjg+xQziUY6K829v8ANnDHK1Oau9D7l/Z6/bztm1C08PXWuW9xFp0aprutMvy3t+wB+zW6D74XnOK9ynmUo1VG+iWr8+xGKwsE3da30R9EXnw8+E37S+jW2uaa0Gn38sbyRojbZGIP30YHgAg/XPtz7dGSrQ82fNYhVoV1ytctndW1vpZ3vstbqzvdaq2ub8Fvhj45+Cni0aRftcapaTXTy2ZWPkyNtG6RuWY4UAemPrXSpTjHlvorkLCurqlqz608A+G5PEILNZSOZCPtEkU4Vx6nOeB9K55vnerIlHke56tpOlR6ZZRWEJcpEMKZJCx/EnJNRzpHFUauW/KYc4pORKsytc25YFQgJ7BuhqottF8qsJaGVVAmtzGe6jn+VT7qWqHOXLomWZZRGASSBkc4pSlCEbsiEZTZmavr+l6Tuku7gbgMkZ6VhUx0V7sFdm9LBzra9Dnf+FtWJ1EWBkhUSH9zKvOfwrnWIxNlztK50wwdJO2rMfxt47mW5EocBbdwWOcADgk/lmuWpJyk31R3U40qC5Vuz0S8v7e309dRBHzopQE9SRwK9epV9lQu/wCmeJSoyxFexnX/AIq0/SbCe8Z122qiNEDfekIziuKOJjG9umi9Ts9goySfXX5HM6p8QrXQmhh1Bxd6ldNvhgU5EIxnn0IFbUoSqPvLyNnSp4h25fdTMkeNr7xZjTrC8kQSb0lu5UXypHIwqcjkAnt6Vz2ctDeVOnCaktkdD4B+H09tp0Vx4r1dtQlVQFQArCvHZCe/XnpnjFelTpxilfVnLi8XduMFY6vUda0zw3pj6jqVxHBbRLkseB+FVOUY7nmRg6suVbnj3in9qc6r4qt/BHgs28Etycvd3EoJii5+fb/D7Z/Ko9pHoepRw1CjC83dnivxZ/ab8M6L42/s/wAHa82o/ZZAL2SOFpSZB1djtIyecLnPsK6aEnUV+hfJOauejfD/APaD+HPjPw3LpfimG4l85GBkuJmjByMbSqDA/WrnCbq3jsRJS5lY+G/2pdA+Gnhzx7qHiLwpo0YunJd4SwExxnGN6KXHvV4qvGlSu9z6DAr3Ez5R+JPxwt4Eks0ujudXV4pMjaD1VgO3oecV8bjsxd2etSU+XlR4V4v8fXmoQ/Y/P3qGb93Iu5tp6hjwGyOjDkYr5qvjJzOmFFRZyF3eyXD+ZJwQMKCckL2BPfHqea4aknNnoQjzIztMdzeleuXzW9NWhqYyly1NDqbaMhQD1PtXNJnUnzGjbsFHPfr71hKTZUXYVuQc+lPm0N3rEgabBwBnn0pJvqYJWZO7EwEjNK5u9Y6GfHKVlKkd6q7sYKLT1LdsQG5FZSk2NtNaF+zcuQpPNIun8RPcAgZI7U0+xtUV4lVZT94N7VvHbU5krFzRoftuoR2K2RuJJW+SFSMsfbPFdOGk5Vko7lShSkrVFdeZ9Z/sYfCn4ifEb4g6T4cj8BXawSTqs0lzp0Yj25GSS3oPQiv1/hKFaniFVrR5YwTexP1vD0bzk7KJ+mf7UPi+bwp4OtPhxoFvCltYWKRohlEaNIF4U9x9QDX3/C2D9pVqY2es23a/+ep4+Q0YzrTxdR6zbt6HxD8R/HDQX15c6lc3DyNKsi7Imba6ncDjGFdcDjGHGcYPX9H9nTcUj6CdeUfdgtjC+GP7SM/hn4kWrw3UUFtOVX7Od20kYBAzn5WB3DnGeBxiuXF+yqQ5I9SqVeNP4kfUmt+PLLXoFmkvQ8dxBjzE43RN9xuO6EgH6V5NLDRpLYcFJU3rfVtffp9yM7wD4y1W8v7/AMDvfObme2EsK7OfMQc4x6lWH5VviI4eMY1pbp/gap+yaqyR28fja/g8Gx+ItM8P3BllP2e7wAVnYnBdUwWBB/j6DGc8GuFUKdXFuEpaLVf1+nUt0I1MS4VJ+6rNb3Xlft/TOaubL4y+LNdtvCNros+pxPeqNMkGpxeZanBO855KqTyCORXWq+TYWnOq58rS10ev/BN6+Jy3BRlWi0tNdHZn118HPgb4V+EsT6lYWKf2rfwxDU7lPlErqPvbc4HJ7V+U51nWJzefLJ+5FvlR+P55xDic0fs7/u03Zf8ABO8u7z7HZyTmMtsTIVeprxKdNSkkfNpSnNJdTwb9oDx7qNndi4i05ZWi2qyMuQm7GOfXr+dfdZHhaEaWr3Pr8uoewpKz3PjX4tfGrTtf1a1sNa1HQtJs/Dyyyatc6vo1rcMYFDLiMyxlmkUgYA25PUnv9PGhRjTcpJtvbVn0DmnSule588J+1P8ACr4z/HXQdT8K6es1r4LikSHVIoYreS63HpNGigJg89uK9fLalCnzRpvf7l5H0mTU6LV07X/A+h/2dfirpGs3N14/1iSGOC3h8uwcvljHubMzen3SeewHrztjIVJR9nB3TPpcS41MMqFPo9fPr/X+Z8+ftEftceGtP8S6l8Qda8QlItKs2i0Ibh0HDSnPGeh+p4rmklgcLGLlfu+vzPnsbjoYag4rQ/NX9oP9rTxN8S9Uu/DnhxJrLSG3GF/7SZZ7wPyxYlQEDdMgE46Yr53G5hisbUdJJWW2u/r2+9nwGLx9Su/Zwlo2c38Kh8afFQh03wTe6dohij8iyWO0ldlBIyqM5XaD1LKCWIAPs8NTx7lGEXyq3QMNUxdVyoU5Wt08/wDhuuvY+n/2etH/AGh/htM2lfEO7u76C4Rlurc2Mr/aEYYKsCrBVI44ANe5UdSngaiq2krP5n0GDw2NoJ+2d16knjfwvJas81l4Rm062D5SyitDFEfeSSQgn6Yr+Ws8w1X6zNQgoq+iSt+LOimte69TiLmXcxeTaOcYXpXyUozcved2dLfYp3Z8xDtHHqRULRlWYmnH5cFfp7Vo1Yz6lvO2XP5mhFx5S5bkEZb8OKhuzLjJD5FOxsnoOKnmLlZoxrBWOpE4/irri/cOCKUKhqXoG8gj6ispNna5XiY11tWY5PHrWerOa3vXIgmFHHXpW0EippS0FDHOGP14q9DkmnF3Ok+GXxF1f4ca6muaG4W4BAVigJ69s9K6cLVdCd0rhUjGrTtI/Sf9jj9q/SvG3hKLwn8WtZtI7q7QJHA9wGdsj07V9rgMxi6a59GfNYvAyoe9FGf+07+zRJBdz+KPCFo1zpc4D3EMR4cdccV7lKtUnK6PInUUpW6mP+z3+0No/hPXYNB1KNbaa0IittLUNvkc+x6/hwBXbKUZqy3OZ0eRO59w6N4x0rxd4ClstVukaZ4g9wA2RHxwv1qYUpQd2cc6ri9DyHxJ4Fv7yN7Wx+7ICRwcha76NaUVZnjYzA/W2xzM3hmyitRod3c3AK+TBbplpHGMAZ98V9Hh82ocqhJ2sfmmZcEY2hOVemlJXPSvhV8DPHeu2c2tfEL4uax4Zs9QYXD+G9AmELE4AxLIOS2ABxXFmed0HJeypptaXep6+UcA+xpOdetKKm+Zxg7L59z1TwB8MfDj3Mmg+H/DUd/bykie81+d7p9vc5fNfI4vHYrES3+7T8j7bB5Ll+Ap8kKaaffX8z1XR/CfhL4TeFJNP8DeHLCxAy2y3hWISOepOB61yV5yp0eaTuz0sLQpc/JCPLHyRxGsr8TNVukuZ/BRuRK/ytE6lQPUkkYrxIwxFWfw3uevGdCn7sZLQ6HQPhRqghS5vLuG0mLZbyEDcehyOtdtPB1OX39GZvG0qTdlc1vEHhPQrPSR9stpJ35wYFClj15xWlSEaaSOWGInUm+XRHlfjjQU8SM0fhVWtbuzQyC1mkIdx/eGainRVWOmhtFtay1R5doHhzXfGvjdLaRC0FtI0YeT7yEgbs/0/GsrVVK0fQ6nUpey5V/XzPYPhZ4A1DTRq1/qFuq2jTERW3lf6zHcjvzXVQw00+aQOtBJQW5b1XVPCvg67FwNJtZdZuXCR7oAFi9ACBjPeumUlzruFT2k6Zi/FbStEu7KE+ONZLjy/MnQTEIoPQH/AArdRko3ORWhr1OG8PeAfhT4jQ3mnaTfzWEbZae4GyIY/u561gqcW/fRUZTaudJfaVCdEk0LwNYvZwSIV82KLDufrVQulyrUuVeOjPjP9tz9jH9rXxRpslz8KbG/1S7MRNk17qH7i3Y9W8s8ZxXo04OULKdmzz60PbSvFH5gftFfBbxz8EvFB8M/FPxBHqOuhfMkKTbxDnqDg4H0618rxFKrg4ezcr3PYyfCJe846HkWo3se4o7dueetfIwqxurbn0U5QUGkcdp7qEU5610SjeZ1Ts6zNWyYuQuOgrNpRiaxSjI0EfauF9K5XrcJzu7ElqSDzzSa00YKFtTQT7vHPHNJpLcqMLoVEljmE8MrIy/ddDgj8aE+XWJTdjq/hr43n8PeMtM1TXtQuW0/TInEFjbnYoyMkDHdz95uuM124XFclVOq9EcFbDyqaRPrb9nv9uu78O3UeseItea1uNRkSFmgG/7DaqQEt7eIHl26BR3OSa+lwOdUpzjzuzemivZHJLK7U27XZ+hnws/aE8K/EOKxtvEesrZ6lNEpigF4rCFWUFUlZTtEnTKj5gTg45r3qWJVZp3t09TxK3ufCv6R9L/s42/ia98RFjA8em20TM00THy5ieFGcfMe/wCFdNSNOlSasrv/AIc8qviPe5UeyXt5babA95ezrFDGpZ3Y4AFYWXLqcDpylLQTT9Y0vWIBdaZqEU0bDIMbZqbp6DcJQHzYdjsPTrWkJRii/eaGTSmG1eaJxuAyPrUVqloNxNaNK81zHO6747t/7NkiJAYRkMV6hx2rzatWpUXLY7YUIwqXTPLbvxZfeLYpIhM4ltp9mGOBIpPAPpSoqKd2dcX71lsblr8DtS1W/s9Xt52sfLcG6W7G/eBg/Lg9eozxXTLC8zujlrYiFKPLe53Nz8LvCGoxtFrlo16ksapLFKcIwHqB6+9b0sNCDvbU85YypJ2Ny60nTtUtVsbq3zErAxgEjaR0wR6U60FNWkrl0sRKjLmi9ThfiX4C1aw06O90SVprS1le4miILSlzk/8AAhnFcv1eKZrHFOcvePlyX4j6pdeKQviiXM1zcMq2qPiWVd3CkA/ImOTXO4SozXPLV+Z68ZxVDRbH1H8LtDvJrGw1W68mcBfkjjQCK2GP4MD5m7Z+vPY91OMEtXc8mtKVrLY6nxB4x0PQJ3h1G6WNYITLKxPAFVKq72sQqUpQuj5V/ae/aztb6eWwsrwR21pljGD0x0/E/wBKzvFO8nqduHo+zjZbnwf8RP2sPFehatq8/hlp5dV1IYaSGTa0UPZQ3RAe59OlXRnKSfLG9j0YUY8vJJWM/wCE3iGfXtRWbxB400m0845+xQtwGPVmYsXZv948+lerTpJy5lp/XmRVjGL00Poj4a+AL3xYGtvhz4ntZdTtiXazkkaN7k4+6BuCn2wPzrplywiiKdKMruWx8u/tLeM/ilpPjO/tPFHhK6t44SVNpfpdOQw4yGWNQPwNfNZrVnHZ3R7eFw9Pk91nyV8QPEia1qUsv2J4SDnDSu+f+++a+Fxdfnk01Y9qlBxicXdzl32lfpXAm2dkIJK5XJOCRz70cqT1NHJRK+j86hg/3uldD0hocDu6h1sHbGfauGb0O+K0LsaNjAHXvWLLsTwRB02n054qJNo2i7IrTwbJsbe/WriuZCmrouQxKbfkDpSlCxKukUWsV80sBx3xVpaDdmixDCOmAPpSaszO2pZs4/nG0fQUO1jeCVy3doAhXHas1uazSM8RkNn161utTnukavhLT59Q1RY7bTLW7IPzC5s/P2j1C9PxNellWHnVxSUY3M6l5LXY+6P+CZPgbwVa/EdPiv8AEi3isNB8NoZzqV1fhRPOBhUVIzsUD+6PSv3nhbK8RHLKrwsG5z0V+i6vyMZ+2hgqiw+spJLVLTzOv/bO/wCCh/wf13xTdR+DtWknleTZHBbywxJt6fPJMdqA+/51+mZXh8Nl2Ep4WVROq33SV/NvRLzuZKvh8BgYUnK7ju0fKvjD4gfGLWluvGyeHdH0TQJwEkvNbmvL23uFzgeWm9IWzn70SkAclsDNVjsRj41/ZJxSTs3dNfenZ+tzlhia2LlaDSWr1svzt9xZ0f4feF/HH/FdfD3x9pcmu2cCNqmjeHtXuTAY0AbeIrh2PLKGKgkDjAGAK4qUsPKrfn5pR1Ip4rnnyt+Wh9EfDv4qx6z4USZIXAtbceYGOcjhZV9sN8w9Aa7PauSu9z6Kn7OUEoprbr1tr+P3bak8/wAY77SfG1l4j065MeoIpkWRYwqlcgOSOn3mQ49z60m6c37KabT8u3n/AF+DNvclFRlt6nfaFren/Fu0u9Mma4e7a4YSyXOvrp8dmBzlJGOCSOcYOewzRzPD+9G/L5R5m/lY9KWMoUqFm2tdUouTf3an1L+xJ+zx4R8AQy/Ek6RDJqN1AFj1k63JemZTnPzNgAfSviOLc0r1p/V+Z2vrFxUf+CfnfGGcyqWwdKT5esXHl9PM+ibe986TchyN+GJr4apDlPgZUrR1LUzxTwOD93GCR2rH3k9DJKUWrHzZ+1nNBDDJJo6i4ZEJmWOQnKhgzkgDsBn8B0619xw+pqj+80PoMG5qC53b+tD8dP2p/EV9cfEvXraOa7GxTOmkt/qZgolcu7dQAGLZ6YXpxX0Pt2oOMnY+ii606SjFXfl6Hzd+z54q1vS/iN4p8NatfjS7jUrEXCXFjKZwM8uwJwZCOeMA8isMDiPY1ZpP0O3BYmtH3UrHsOkftQal4V+Gs/wx0/VpY7rUNMZtVuQp8yzgeXklmx+9faAFGSAa+hpZlCFPl6vc9lY6pGFnfXqfLH7QXxA8e/FjX7nTkR0sNkdvbWiuyiTbn5TgfdXClm7k+1eDisViqs5xg7Rla6u9db7bWTSe+/ofL5lOtXfvHzV481LxffXesaf8Lobme10C08/X9Ys+Ci71QneMbU3sqjHJNfC5lmWInVlTw90o7tH59jsWqVdQcrJuy82cToPxU+Kuk3CJovxG1q2beCoTU5Au7tkFsV5VDG5ipfuqsrvzZVHGV8LJzUmvmfUPwD/bM8VeDrn/AIV/+0bY3DoJgo+2tcW0ikjO4OhUDOc88HOaWOx2bTw84Vqrumly63trd6aaWV9eqsnrb6DAcUV6tNKtO6ez8j6C1CTw9q8MXiHw9etdW06ZiM0pkKg9sljn61+WZnF8/Mm7ee59tgZRrw5o6mdMSxGf0rz4W5T0HDlEeHenHSpauyoO4xCbZST+VU7bEVEoq463ufOJXPNS9CKb5mXLaR1bknNZO8mbe7sXGbdCxPpScWmU9jIsONRb/ertgvcOO3NM1L0BssMj1Nc9Tc6eljFvYWMwYnjPGRSjsZtaDcAAjHPrWy0RFPV6leaUKdx7e9DauY11aQ1Jg5ypzg/lVKStqKmn1Ol+HHiy68KeJbfWIrlkZGH74Elox6r71eHrSo1U29DDFQVSFkj7+/Zx/wCCgnhu38OjTfH/AJSaPCqwxNcyeZJcN0/HNfcYfN6cIxbVkz5Stl1SVT3dz2LxZ8Bvhj8YbGDx58NJ49N1WWPfBLGFDJkZr6SjXhUhdM5K1GdK0JJu/wCHqcVr/if4u/ATQZrXV9Gubq10+Iuvkks95L2LH0rX2ztdo854RzqWRD+zd+2T4l8VeO9O8IeNtP8ALvtSR7m6yPktogQFX68gU41JVJJIiuoUYWsfW3jjwlbSxWmsaVKVlaMS2zr1DDBrp5eV76nJGftI26HZeE4PEHj7To4/D2km6uJgBfeY/wAsTDjJyeB3rzsTShOLUtU+jOmNRQjZ6M9g+Fnw11nwVatJrWti6nkHKRqVSP2HrXKoKMrkuouWzN/X/Cdl4jtfseqxM8ec7Qcc1VSjCvG0x4fFTwrbhuy1aWn9m2C6fp0AjWJNsanoK0cVCFooyc3OpzTe5biZvKC7h5m35vQGsHKTXmKSjfyOU8Z6ld2rC3u7maNmPySwgBcfjXC/aOdpM7acKXs7xOcu4YdW1KC5udNf7VHHm1u45vmc+n0rpjGfLoS1N6dCf4UaTod1rGsTx2SxXsNwEuUx0JHB6VtSoJe/JamdWU0kjuriGz06wCsQo6DjvW05aWIhJuehy+r6D4Vlnilk09JpFcv5m45UnqetZRpxjLmOh1K0o2OK8Q+ALr4yeM44cGLRdOH8S5Sd/RlOCcfka3pu8tdiuVU4XqPU6bxP4X8IeE7GGEWaySom2C2Hyxg+u3oKprne1jNTlNNRWhwPjXx9aeFrZUW5iiupshGAACgfeI9hSjGKYXh1Z5Z4t/an8NeA7e3v/FOrtNLdyt/Z1i0+wSIPvO3PT611U6LqzUYb/d+ehnVqJK0D5j/aI+Af/BO34zaTrX7RHjj4daxcXltbeZd2Gj620IunAPGAePrXl47A0K/vV4XsbUKmNpRtB2PyP/aLv/AnjDxXcW/wR+CkHg/TLSYoBca9cXd0VHdy52DPoK+NxX1KUmsPStbrc96hTxLs61T8Dy+3mKIij07Vkrc7ue3V0qs2LC6WOP5iMkcZrnqroUptl2zmaZiK5px5dCqXvSNC3Vo2BPejRRN6jSZoW5BX5uoxWEnqVBuw8sF5x+FEdQauKknOBn3JquS7HGPLuaehX15a6jbtYXMsUwkAikgYBwT/AHSeAfetKEJe2Si7BO72Prz9mvxvqOj6hp/narp9tqAcBGl1EanqT88hIY8xwnHrg8/WvsMuxU6M1T6/efPY7CWbdtfPY/bX9hDX/EGufAmG/wBdsbmBBcsLVr26EkzptU7nA4Q5/hHSvo6zUuV9Wj42pC2IkkaPxZ+KOlw3jaWurxrb42lc8FvU1iouUkmy6Ur6I4vw18T38PXpa31SF4lYE7GBDL7c10zoO8k7XXmv6fyN+SJ6zo/xH02/sRqkN2jxSRhsKffmuSpCUZOz0NYUYySZlan8RbS2nliSbMXKMN3r901yRgloaTjqkeXeK/G063dxFE7CO6gZkIPPmLUKmti4RlJp2Nf4I+HtQ8T2TeIdNgS9guP3dyDKAFIPP0NdKwyaTZdSpGjvoe6W1uYbeKDyyAigAFt2PxrsTjFaHgYio5X8x2xi9TGetjCEb7Dbq5hsrZnnuUQbeCzYGfrVbvRHQ1CC5pbHzj8Uvipq/wAHNdfUrO+uEkS4WSKzN+1wsqsRkNuORn9M12+zp1Y67+hMYxxK91WPCr630/xH8epPGd9oUUE+rXAkV4cSsmeflUnbHz6152KwlP2ytE+iotxwqhFao+4PCLw+FPAEeu6tqKultZA7BNuRMDhc85bOAT61lUXI+U8zESUqvLFWPkr9pb9o1oI7hYr/AGPdsXmCnoozsX8TzWKkr72O6FKySPhf4r/FfxH4x1eXTtLMk88srN8pyN5B6+uM1x4p1KiVSV93rrq+vrvqn5Psd8KMYR1PhX9sv9rrwp8DLqfwja6m2o6irlbxrOYGSSXuoPICr0LHvwM104alWac4J2XU4K+YQozUVqz5v8N/t2adq+oeXeanqOiSO3E1y7Sw593iw6/Xaa9OGsfj+/8AzNaOY06rvUjZn038Gf2zvjh8KJNO8dWepam2krKktpqkbC5tZMH7yToCcZGMHoeDRCvVd4dHb+r/ANeZ14jERdL93sz658ffFTwd+214IHxc+HPirR28UxQD+39D1e1WRLlgMGWJ2wwJ6lfXpXHnFGE4NUZJtfj95tllWo7KaaR8meNbO/tL6UanotjbSo21m0+43KD7qWJFfnOK9om+aNmfVUo2WjOYuQN24muSEn1OpOyIyoCYxipnOzsRFXepW0lSNR6d+tdbbdEza/eHW2pIYEDtyTXDPY6Y7GjFyoU/hWL0NLuw6NmUcdfpUsrZDZMO2D7VpDQIyb3JZGMUOVHbkUN3NJL3dCpG7ySYIPvxQmkjKKs9ScZTkcYqZSbHO3QsWJ+YAfgalNmtEtXpwmR6VSRpUfuma0p521asjmirjtPvLqzvo57aRRhxvR/uuM9D7VthsXXwleNWm7WNW3FaHs9r8RfFvxX0WDwbqvxV0zwdo8EYQfZ7eS4kI7lY0AUH6mv1vB+IeKlh40YzVKPW27OLE4fEV05KVin8dLP9lv8AYi/Zu1T9rPQLLUPij4h0vWLXTNIj8Vwqlh/aNwsjJJJAuQyosTtg9SADxX1mBzbB1ssni4Xk72TfdnmVsM8Hl9TFTd2tEmaP7EP/AASa+PH/AAWTstR/a+/4KA/tj3nhXwvYeJobC58JQW0VuXiS3hk2RESLFaR7ZUVBsbjnBqM7eY5d7PDYj3+ZKaUdVrfqr327n4vl2f4fOKuJqKrZUpuMnfd2T67KzX9I+V/21fB/7Ln/AAT8/wCCid/8O/2KPi/rmt+BdNe3tr/UpNbW4eO4KKJvLmTasnlvnnGOCOetXCliMHhKWKs4Tle8dbW6Oz1PXyTPHLMpwvemmrO/lr+J9w/safF6D4lanqXgjWZ7dPEFpsmmt4ABHqFs4wl5CD1RlI3r/C2a+pyjMnjJOM37y/E/VaGYR+C51Xi211fR9WutIvVdZ7Fwi5Q/cLZOM/7oyPevo5NeyvfXt/X9anfCs5xvc9v/AOCctho3xF+IGqJ4t0/T5oNI1HdBFrasUVioBMaAbZGI6E4xmvPxuZYijl01Rc9Xb3dH/wAN3ZniK01hJqLlzP8Al/Vn6YaE1jp1kmh6XoSWcEEAkHkqoX8h0r8prSq4io6s58zbtre5+aYmNSpJ1Z1OaTdtSxolyLhDPK4QiThCentU4mLi7IVaHs3yrU3I5Mx5cgD0NcK30POa10PF/wBp/wANaZfeFrq8g0y53wo7Fkg3ByACSc84xkZzivq8hqVPacrktT3cGqlRpNo/Dn/goL4At4PGOo67Y3xkOmQiW6hgz89m+VEgXPOxiTg46jNfTYtuK5Ybn0cUoUU3ujyv9jj4OeBvitHLL4h+LC+FtRMSx6dqU+nPPFJ1ASUrh1B55AOCK4IQlzc6ZzLGVKeyPbvit+xD8cfD3h6HxPB4Z0TW9EthNJPrfhmVLpGI+5IxzujO0k4de/bFelh5Qu+Z2Z1U8xov3XfmPz7/AG3vG8Pwl0qfwnoFwo1a9Xy5riP70MW4/Lnsep/GuDNsdHDYeTh8TVkcOcY9UaSpp6yPmP4mfEnwJ4w8GeCPDng/4WWvh+98N+HJLHxFqtvctI+v3bXtxMLuQEAIwilihAGeIhz0A/N61ODkpLd7nw9qqlLmle708ji1dy3mKa7MNGMJppXZTi2j9GPhRpVv4k+A3hGz8f6Na6lcHQbfz/t9ssjEbf3edwzkJtH4V+bcR5jiK2d1pxk0r2+5H6ZkOW4dZPShVgno3t3baN3TNB0Hw5ZjTvDukw2VsDkQwLhQfYdq+enUqVZXm7nu0MPQwseWkrImKGTAHr1pxasayeg7ouCMcCldmcHZlS+3bMDipTu9S52asJpMRABZc896TTbsjOCUWaMkgTBIx9apKwpNJk6TK0JVD0HNaaM3vzQMywbOpt/vVtF+6cVLWoa17kKSPSuWpqzsmkjLuVDnIXk9aUNzDm0IWQgbm6Vu3ZDiklco3XJI9B1rHmfMZSSlLUZbIAoxgZq1qzOT5WWdxjGc8H0rRQuLkclct6dr11Z3ltI8xaO2k3xxsflB9cVtSm4yXNsjllTUZXR7p8Cf2yfHmh/EXTpNd8VT23h/T23TRBvmnPvXtYbNKka6u7QRzYvDwlSfLHVn3H8H/wBvf4UfHW+m0XVdPhWzMq21ubrGZ3PGEB5Jr6rCZzQrxPDqZdWo0+Y7bx/+x9oOsOfip8JolW9gRDJbxnG9VOce/evRhUcZc6PEqU4124y3Pb/COtLrvgzTI7m38uaKDbN5nVCBjb+dd8Oes1I5VSdJqNj0b9m3wF490vxlL4lu7N7fSJLdxvkfHnscbcL1IHPNGJdCNHlveX5BUhG/Mz3VAF+8RivMcW2ccpaiTSIg3OwAq7qK1JTbGStIIi8adBngdaG+WNzSCc5JM53xN4uXTLBbgAoWYjcWxtPvXBKftNT0I0Y0pe9qjDfWrnxjfwafZ6hbGbYGa3ngZ1xnqSDUpN1NDRqO6Wh2dlptjp0YSC0iRwPmaOPGTXqQjZann16zvZPQlgt7SCZ7iK2jjeTmV1QAtj19aqXmZ87nGxQ8SeJfDthYsdRv4lyMKCec1jzRb7nTh6E+bmZ4340+NOjeEZJJftWYADtwep9/xppczOvnUpWidd8AfjPoHxJ8OyT2nlxzQucxKwJYev1qmuTU56tKpKWoz4wTmL/iZ3LbIoocvID8309qiE+ZluXsqNkfDPx1/aJk8QeKpdJ0mRBFFuE0inIihTr+f61tBtbnLJSmryPlfx14d+MPx2+IVx4+1LENhFGI9L02W6WIiBeBwTkk9cChRnKd0a0acVK6Rl+Ovi7rfwZ+H13B4+hs9CDQukNtewy3CXBx8ucJsyfQmjMa6oU7t6WO7C4etiai6an5+fEzx14j+IWsT6pqt7E5dz5SW0IjTb2+VeMV+dV8dLFV7tWX3H1MMNGEEnrZHCrDwCvpVJrm1OrER1bRbtiSox2GOtS3czpS1samkcOMjvXLUSudkYrc1yegIrGXkZz0lqWoGOBjv0rJq50UknEnGD+I71n1DRSF2kdq6I25SnrqWYY0bAkx178isJ8yY3NLY9s/ZX+D/i34l+OrLwR8MJtRfVLxgNlrqErCLkHc0VsmyIdOZHGfTtXvZdltSfLKnJ67vWx5WOxFKn70lf1P3z+CngS2/Y5/ZF0T4Y+LvF+7VpYWk1G+uHy7zP8ANIRk5O0YH4V9lgqE6k7N6I+Lqfv8RKcVoeA+IPjJ4s+J/wAS7n4G/sZ/AmPxz4qt7RLvW/GHjnUDaaHokchYRl0QGSZztYhFXJ28mrWIw0ZN72dtN7nn1JYihUSS3Plf9rH9rv8AaU/ZL/aGf4P/ABP/AGx/h/4k1TRNEXVvEnhXwv4HNlp+mFnAiszctKzPO67iE4bbgkc4r6PDZZLE4CWNUXGC7rcMLi6bxHs6msntZn2R+x9+0b4P/aJ+CifF74Z3xl06baNQ04vmTT5/4lI6hTyRXi1PZ1NYbHs86jodZq3iEJqDtHelojEVDZ4J7Z9xWHslBXEqrvoc7p82s674hSwFu0siN9w8CXJ7GlSoSnO6RvGUbXufTXwr0DX/AA4i2cXgez0yykjDTSJdDcz44OwA5PqSRXXNU4q1zysTWc20+h3SKNgJFcU3eR5zXcaVZX3Y4oVrmlNWjco65fWtnpzvc26y8fKmOp/KumFOU9nYVVXjtc+Tv2rtWvrK7F7/AGDGjeT8k00YIA3DOeP512R54aHRg8NJr3dD4yvND1i7/aSvbbUPEupMs1xBLbabb3TJCy4JLHB7fr+FckYXq2kfQRrUqWHtfX+v6/rX9J/AHhi08Wfs/Hw1b2v2KKO2aSNknMkkrAE5Ixnk+nPSoxVLkqX6M+fqVr4j2lz8zv2p/GF2niy98NJPPHNuaNBJGUZOxYg/dP8AKvGxsYtSgm15nvYPlqwUj5K/az/ab0r9mH4Mavd6FcJP4mvbGZY5lOfs+RjIPZiTjNc9OEqr5LjxdXkpNo/Kzxp8RPFGj3etXnijw/pWpyeOPDNsYbq+jMr2UbSRyiWBgw2ShomQk5yGcEc19phsxqZXhauHVOLjWhFa9PNed7/M+CqUI5lVp1faSi6U3e2ilurPy1ueaQjfw3YZrzU+WNpHt1JtKyP0C/4Js2/i7wz+zpqY1pHt4ZvEkd5oiykMHheBklyhJVo2KJlSOSua8XievXyulRUVyykub5PY+v4NwscZRrTnrC6XzW/6Ht2lR/B1LuXVbhNT8HayeYtU8LRB7d29ZbYuoPPUqR9K+Zp55HEe7idPNf5H1E8njRqc1J+72OM8XTm51OS4m8QwapI3JvIbV4fM/wB5G6H8/rXkV6tOVT3ZcxtCmznpmJkwag1Ss7DiwEefWsmryCp7pDpXN0Xx/FXXoqZirykdVYgnJPXA6VxVGjshGyNFAygZH/16ysNxsSIuBz+BpaI005RgB8wnH6U76GK0ZNK48vBGKz6mybkiCOFlPmEYNaKN0KomrA5LHgDr1quVWJRLp7MHK4wfU0uRLU1g0noWdRk/d49qm5dT4TN88DBz3pqzORN3Ft9zSZx9aqyLjNXNrScGRQgHX1qowkprl1RrzNnt/jn9lu4/am/4I3/HnTtCt2n1vwVqWneKdPhRcu62qyeao9/KaWv13h9VqmQRoR2lJ/erWPl+JamKVKNFfDK/3n41N+0d8ZG0w+FH+JWtyaW8yytZNqEgiZ1UIrFN2CVUYBPQV9THiLGUKcacpXUNFdK/6/mfkC4ZymE5SjSUW97Lcz/+EkGqyNJq15lgchnPJOa4a2dSx9Vuq72OtZbGlFeyVrH65fsmfAD4lfGv4F+Cf2hfhJ4C8YfD2/8ADcFrb+F/FPjVIo7XWZ9uZYowhEk1u5HBKEAHrXfhq1fETj9TXvLv1PucuqQxVKMZXjZKx+nHwR+Ffg/4u6Vpur/HbQ7bQPFCKE1W3gkE1rcOOrxOACVyv3WAYZ6cV9ZWr5lRh8F3b7j3HXr4WnZrmPqP4c/Ar9nnwhafZvCukxpIrAymINuZsccAcjnNfNYnMs9taWi+R4tfN86jK0Eop+SO/wBK0u10fSb4WekywKIwscs8m/ePxOce3FeFVr1K9eHNNP0VjyqtepiK9Nzmn1aSsSWN5aRoEkuQJIyN+SQPpjNa1Kc27paMwnGq5XS0ZqWupW7Moy+8tjHOD7d+K8+VOSZk6M1d9DjvjzpFrr3ht7B4NSnlKnyo7FtozkZySMAD1NetktaVCrzXil56s6MJJ01dWPx9/b++H8vhb4oxa3rlkLmC4SXT9QdVASW1lLK+eOSCR0PFfZZhiIxcKkNrdj6rAv2mH2ep8M/B03Pwm+IWt+BL3UpP+JdqTQxMD9xNwKEHGSCOfYmvOhiZudi5U1TdrHvXxF/aKm+BngZdHGqtLd64ZEhg84yllk5JIboDk4HboOOK9O/PC8jllSVrO5+an7TXgDxZrni7V9Y1rUZLgag4ubCV87CDkiPpjOK8LG4GvWUo30ex81mOHrVXpuj59tltNP1B4Nf02eVEVkaCKcROGxwclW6HnGOfavlakKdCpatFu3RO342f5HmqlO2js/NX/VHpH7Mf7Onif41eL4LybQrhPC1jcq2t6o0ZEe0fMIFc9ZHxtwOQCW6A1w1szWW4KdW2m3nfoj1cBl8sxxUacVpfV9D7uSOKJFghjWNEQKiIOFAGAB7ACvympUdapKcnq3c/UaUVCKjHZDJdxGPwxXO3qKd7hgouf61UdjaMfc1IZJgAcnkdKGzC9mMKPcMAOlQjeMb6li3tDCw2rj8K0T5YktK43UYZSAUGRUKSuROnfVEtkNtuQx5Ap3cmVzWjYpWGRqZI/vda6Y/DY56Vue5sXwypHtXNO6Z1VHdGZJksAfwpwRmoWRFdzKqbPwOatvQyb5TKndmfgfSpSuNJN3HRvsBbFbLRGNRWlckifepCk4o5luXTk3oxkjup4PH0oTTInTu9ByO7jGTj0xQ3dWZCjFG94G8da74G1uHWtDumiuovlt5c8QA9WA6A4711YSu6VSyObFr2lJxP0x/4JvftzX/j++uvCN2C9jpFtDCbiVsmeQ/eJz1r7nLMWqidtkfGY6hKlNPqfb2jf8I0NRTVXhQRSEPGP4Ax7n1r6fDzUItPqcLtLbc96+GusWOreHt+n6tJfLDIUaeRAo3YGVUDoBXLXjyz2sck4u7uYPxP+KVroKbNI1QJPay5mQ8BsdverpUPa7lUoxSd0R6J8dfDfi7wzJeW12sNzGMPG3UH1xWNXBVE+V7BCk1K7NTw/wDFmxn08LqsZSRRjP8Ae9/5VlKHLGyNZYZ814nI/GDWIrrRJ5rCQyFW3xqoznvggdax9jJGkrLSW52HwmfU7rwhBq+qaetq9zGpjiK4dV960pUknc5qk7QsdADls5rdyPOlK8ixEvOSOtTzX0Oilojhvjl4Yu9a8Mztp9goYIdsi9VOOvH4VnGPv2sdKm0nqfnn8TP2g4rvUdV8AeIbgWer6O/k3EMnHmKSdsgPcEfqKtp7MqE1ubn7H37Sel/D7x/b+D47iNjOFx+9y0rN7fiKbkpJRR2VXGnC01bRan0X+0H4g8R6f8ONQvNXu/s39pzSfZw/G2PZwfzP86z9m4nn1ZRk0uh+W/7Rn7SHhn9mnwNrviK4g+3yWls9xfXCo0hjTdt3MByBuZAPUmtIylJNRWy1Mq1WNFJX3Pyl8fftvftweP5tY+OPhv4t29to9hdIZLWw1W0ElqkrARj7PI3nMBkAkKQDnkVtDLsXOg8TBqUY72auvVb/AIHBSzGH16NCTkpu9vddnb+9bl/E+i/2J/8AgrR8QPHvg67+HX7VvgO28WeFxKLe5vUiTzMlT1VuQec5UjmvJxmaUsPJU665oy/A+ohTrY7llTk4um7+7a0tGrPTbrpbVLW10+b+POj/AAT0jXpPEHwJ8Zve6PeksNJvkZLiyJ/hyfvKO1fK5nhsDCftcLO8e3VHt4PEYiScKq1PMVBaIELnjqK4pO1Sx7NZc0mMtEnZ8Enk1TfunP8AAzc0cHIyefWuealY3jUNSaQqcnj61mou4tZMt2sm/tUTi0dMNFYnO4NjHBrImUSaNyAGxmtY7FwblGxNGrMdwOPTHas5uxtCmk9T6n/Yf/4KC6f+x3CniG1+HMWsa3FcKlpp/kiGzVBgmeTad0szHozcJ1APSvs8t4jw+HwSpVIt9Glp8zxsyy2tjJctKSWqd2r6X1W63Wz6PWz2PRYf2+f2iv2rfjDc+MPir4zmDalEIbHQ9ODJa2EOdwjjUdeQCzk5P5CtKXENacpU6XuwkrPz1v8AojOplWGw1PRXaPDf+Cmv7RHx1/YI/bkt/i38PviX400bQvH/AMMNPuby18IeIH04X7xDyJEd8NhVkjc/L8wL5BGa9vhfE5Vl2bOpj6LrU5K/LdKzto9n/XU/O+I8vxmPotYWpyVF18j5L/an/wCCqPxH/bB+GekfANvh54a8IeEdN1UXlzDotqz32qXZODd3t25M13MQTl3bJzX0+aZ1hatKdLBwlTjN63ley7JWskeXleRzy+ccRiZ89RK17WPvT/ggl8ZvFnwC+NeheA7bXpda0Pxtpch1bRwCxt0jA2zNnjkE89sGvmsLVpxlyNn0NZTqQU1c/VS48W/C3Vr258R+F/FMM1ispD20tzHtBz93cCRkfUGuyUqMp2TuXT51T95nSfDeTSvFUqT+FPCd/foZPklsbfzFjb2lA2r/AMCI+tONSMHbYuU24e8e+/DGD4i2oeHxRpC2tkEAhNzqnn3LH3VV2qP+BsfYVhWfNK6POunJnZgnbg+tckr81yW9Bk2cEg9KE9TemnymbrV7JaabLJDaSTSbSFSIHP1rtoxUnuKpK2qPkb9rLxAdPQ6Rq9pdfZb+2kjlmnf5FkJOAMdM9M13qMqa5uhtSjHEx5NdVZ9P60Pj/wCI2qpo3xe0XxNZQGKS5so7YTDOSQwBUEetcqqU4zUup60MLFUVGP8AVj6osNU+EN14Pk0nx5rutx30triOTQdbkhlhBA7oVG7npXTVjKrT0RxVabcbRR8Z/G79jOy1TWtW8Q/D39onXr13jLpa6yfMc98FjzkY9ea86eApVE3ezKpVKtKGq0PhH9q/9kbx1498Iarp82uKupxWs0cYkY+VOc8bjj5TwOvTnn189YKNOpz32/E6aqeIw8lHqfmX4p8LeI9A8Qz+DvEtpJa32nO0LwXJ27CCeOeMHJIPQ5969enCM4pSdtNLngRoypXbVu5rfDv4KfED4jazFpOgaKBG74m1G7mSG0t1H3nkmchEUDkkmp+p4uvNLlsu/T79h1KtL4U9T9FPhhoHh7wL8JdG8L+FNd/tGwjgH2TUdjIt4qqsZmQMAQjsjugIztcV8TxhiI18fFX0ilFfI/UuFqKw2Ux0s5av1Yl/K0j4c89+a+QSij26tRvQy7oljjp6H1rKKtIIx0MyZwkxJHfpmup3auYTvzCOz+WeKxcuZlVIpoTRlP2gg92rqbfIZRtB6nUWEgEY57AE1xzvc3jK6NCJiRjPPas3oW3oPVyGxmpbuRdiqcPkimk2hpXdyQZYgH0p8tmbQQly4jXjrTvYqrflKsd0WJGO/NF7Ixin1JbacrNnbgetLmNYcqZYvZg8eCegqGyqj0MtsmQknjuKpPQ55WSuOhn2yhBzn3raKtuTFam74dPnXiRZyCRklsBfqfSunDR56ljdNH6j/wDBEvwcLiz8faHfy2GoaPq2jol7bJlkYEMrI+Rg5UkfjX7hlmB/s/hehUe7ndfceFxU1Ty6hOW/M7H5af8ABQf/AIN4fjD8OPjZrXjL9lCDw/4w8BazqTy6fHca9FZz6H5jMTDN5jqNqHgHnIA4rzcywmMq4luCaXkfIYqjD2jnOmry6NtfPdFL9kn/AIJkfszfs7eLLPxd+094psfiR4whuP8AQfAXhtXl0uyl/hlu5Tg3QBwfKTCHu56V7uSZJTdeH1m9m+ivZd91d+V0cdDDYly5eX8f1P1T/Zq8H+PvGVxZfEj4tahDNd6fZRx6JpPkqltYLJxHHHEAFQDHQAACv0ChgqeBpWS3Pq8Nh1CKuj6a+A3g6x8Ra9qeqxWsIh0u5lncLkbpBkJnBHcuce9eVnmMlhqcIX1nZfIWYVJRhFPeTsdN4LvW8WyzXGp3bQ/ZpWChCFAGSNzsMMzemTgVyYyLwkUoK/Ml5/dfRG9an9TheK5r9/06HqvhvUZ7Twrc2l5qRuPsgQmdwRlSAevevksRRhPGRnCNua+h8fjOWrmEHGHLzX0Iku4bvfPaMELSjIb/APXW7pyhZSN1RdNpT6Ict/LBcrJHIWUn5wjYVTnqR26YrN0YyjZqwSipQaSKvj2w1fxbph8G+Hpxm6RlvZJ2wscLggnodx7AfnTwMqOEn7esttrd0c9H91L2ktLbep8E/to/sl/Fbxf4Q1p9M8OarqOm6WxWxuWhBMsfSUIM5I3DepAP5HFfUYjHYXGYdQjP3rbLX7z18NmVOnJQufkD8ct/g74m23iDVLfy7m4t2s9SWRSD9otzgEgjI3JtP4V41KcqTXNue5WmpRUonKRnUPi5eT6xqTh7okyW6sSQgjUYAz046V7GHrqe7OKblUuZnxJ0+38T+HhplrKGaytGk8rHzqWbC4PoCrcf7XtXXOpTVJrqY/V5RSk9jwrxl8DdO8T3E00qmO+itmkDRL/rVAXDY79efqK+XxuBp46eukjzquXxxF57M9a/Y2+F9h8O/A93rV7p8rarqEuwXssx2iAEHy0j6Lk4JPU8V+X8W0auGqQoN3W57vDeXU8IpVHrJ6XPX0YEfMc+lfFTlpY+pbsJMCcDIrKKM95CfwcgjiqlK2hve0SmYS0oXd36k1N9DO2ty9axKnUAHtxTUW9RqRYbCkD8sUSbYPcbNHlASozipiaRtYjiQKj5PatU+xnKKbM7Typ1Nhu71vFysc0E4zsbF7yhGccCsKj1Om+hmyk7chaSlZCumjOmaSR2X26U02c/LdkbxgBSacdyrqJFcByhIU+xq+ZN2FKKmhukqxG16mXMiYyUXqWJypfBNEXyib94jQtGePwzW6lFoiUHJ3HyvlCen4UOKfUynBpHo37LH7RcvwF8Ufa/Iee28zeLSI4M0p4Ga9DLswnh5ctjzcTl8aurP18/Y4+MDfHzwLa6fqsUdtqE6hhbrcBjHnoDg1+k5VfE0eaT1Pj8c44Orax9VeNvjB8GP2OPg3AvxI+IGn6UwiPlLPOGmnmbJOyMZZzk8AA54pVqsXW12PKrVnzJPc+LPh1+2v43/bu+Nmv/AAG/Yt+G0D3Hh11/4Sfxj8Q9QNna6cW5CrZRZuJ5cHOw+WADlmHStqGbUZv3VeK/M5Pr8liVRglffXt/XY8xl/4KZeAP2bP22db/AGN/2gfGmk3Op6NNbxJ4w0Gylt9NuZZEVmgkikeQxMjErv3spx2r2MTyRhFzVuZXS8jtwGMp5hOSg7pO11+J9k+DPjBoHxBkml0XVY5FZsW6RSB8jtjB47V5nLTc2z26vLBK50smi/ELWG8u18N6neJKBmS3gxkfViBn3rKcUjirYik5XbPfPC1vNH4esrOexngaGBUZLjBYEDvtJFYxfKjjxDU9YsvNasGLBSaTscsKepJCpDD61Kepvay0K2safBqGny2FxcFA6H589Kp3vdFJtvRH5H/8Fffh7pvw++I1r8WPCl1+8jP2bWVClN8Z6MfXB5FdNSjUlBTSFFOL8jzr9j+yEPjm3+KWheF9X8SvahWhgs7cykEdRjI5FTCmo+9Y1rTc4KLPXP2tf2s/jh8cdXHw+8PfB7XLKaCArb21/AIDJtXPCscnpXNVVZ35VoNUVGmpSPxb/wCClPxO/aT0PSta8G+M/D+p6NpuvX0EV1LgbJ7aL94IZCDkZl2tjvsHNLDVcRSpTh1l+R5mLhRrYum39m9vU+HHjJIwAR15ojFpanVGLs29D6c/Z28OP4f+EtlJNDsk1G4lvHyOdpwifomf+BV8TnOKVTG8q2irH1+QYeSwjqS+07/LY6i9cRKxAydvWvKi+edj3vZqKuR2jbYgT6VvNNzY5fxWWAh3DC9T1rWMUkKdpM0dOBjO8ilJq1iuRKNy40wdsbgPqayVkzKMrMu2TYAGecVjVZ2JJK7Lm4H5gOtc63BO6HRPtfaacpXWhKbiy7BHuHy/lURabszfnsi3bAh1LH8KrToKNRdD1n9nnxXLovimC0aDVJbaeVBNHpS7mlwQQr+iZAPUDiu/BShGet/kcuK9o4Ple59Y/t0/8E8vH3/BT79hez1j4OaIJPiN8MJ5rnR9BaWP7RqGmTqPtFmrfd81WCyIp4JyP4q+uovmipx3R8HmNJwxKlfc/Ij4Z/8ABKf9tL4k+NG8O+FvgR4ntoYpwuo6prWkPp1tYhW+YzT3G2KMDByS3GPpXowVWvG669TzK8Jxlyt3fbqfqv8AsR/8EytO1j4kR6dpXxmtJbfRNIhsde1Hwfdzb7kMo3wRzFQqJnI3IdzdRgGrnl8K/wC8hUV46OPV+e1vx6+tvQw2JcKCi4623P1I+H37K/wr+D/g+x8HeAPBum21taRKwMtkZXhbHLZbO5snknn1r1KNKlCKsrGTbi7t3Po7wdpS6F4QstOXYGW2UyGOMIGYjJOB05PSuCSUq0n5nJOVtEW0Zy+NvGaqSijNRtqSklRx1rJbsLMikdscjrSsrnQvdgVb+a4GjXFzbo0bLGxBK5PHoK6Icikrigudnwv+3FqXijw/eWUt3pGoXJuoJHmt5W81DH6lQMoR1BHTFejUqJq0NT0aEYxWmrPk34p+ILe18N2ms2d8ZJdOm8+0lYDJ56H3FeVP3WmdCrNvQx/An7RWjeKPF8OizXT3cjQYnZyR5LZySo6fjXXSx0ZaGkaEnSu9D0XxNI6wP4itZmdQgW6jQ8SwkY38dxW75ZNTRzOzXJI8c+Kml2ckk9y0gmBXbMGUESRPnax9xnFc9Rwd2jtpKPKkfEP7V/7JXg7xvrV7dXumGa4SNJbS7t3CTLGeCA3OcHswI57V5OKnNuy2Kq4eGJ33PAvhJ+wNp/i34p2Wl614n1D+yUuwbqzm08JJKgblN6uRyBjP6U8OlKOqPPjk/ta65paemp9o/FjQbPw3r0ekaVZRwWMFpHFZW8Y2pHGihQoHbAFfL8QUrVE4o/RcIlSoqMVokef6jIHbHIHvXyctzdtszZhjJzkd6TkiryM26iBkznvWiqaWHa4m4BCCeaizuQmJpLD7T1/i612aOkiLNysdFpznGMZ49K5KhtTi7GlEcKMfjWL1Ld72FiYBjnn6VXs76j5R/mK7BWz+VLVFqDZOrbDv29e1OzaKTsMlIlODz71i207BdtkJjVMHbz6+tWk2ElZCAkMcA+1aciRktJXCWdmTB4IFYvcubTKsrqOcdTVwV2Yy10CGF5JlVAS7HgVq3eVkKN2z1f4BfA+++Kfiq10+x1HR2lLASQXmqRxvnI42kgmvuOGuHpZliY6rzOmnCE7an66f8EzfhzY/AnxJqPw5bUba5mu9NW4uBAiYjIIG3Kjnr35r9w4gwFPD8OUI000oOx5XGdCM8lpVIprllY4f9s3/AIJy+DPGHi7WvFa3d7anUbsvItlqMkG6Nwcn5CB1wPx68YoyuWX5lhYwrx95K1/Q+fValmOCpylG7Wn3HjfwP/Y08A/B7xFcJpMciz6gZIZ5p2LtKyxtKwdsncFMYPoCv0r6iGDwOEoxlCCutu9/L5X+RvhoNRbgtFv6X/zse4eKvHGhfD9NQspbgGSwvrcJhQPkWHA246jdk+2TURTr8s3s0/zO2im2rLQ9q/ZMu5bX9lbVfiJqMAD6tNN5TZOZEBKKT+Oa+Mzuf1ziKlh4bRsebj6kaub0qUX8Ope+HmgDSNFttfv4Le2a6k+W1YHMhJ5dwOWOM9fWu/H1vbV5UoXduv6K+x3Yit9YqypRba/rY9rR7Sw8JSaxqNrHE00SmQLwG7AV8NapLGqlCTdnofEVISnjVTptuzOTj8WLfo32LZEAQCD2X0Fe88F7N+/qez9RlGS59TO8QeNVtpZGnmDWvlkYi4bpkn+VaQwyjBWVpA8PTjBJrX1L2gfE9G0rztLElzcTWzvFEU4wo6kgZ68fjXBXyxVJpydlfU86vQ9o+yR8ifHNvj3481HW/iP4v8XXY0jS32afZ2UrQpGwz8oGQM8dT0r6bC4TB4ZqlSWr+82p0qcNKcfVn5a/t+aQPjL8P9Y+MGliy/trR9SEuriBlLTwg7fOKp0IzgnuK8zMf39WUo9D1o1lTi1I8K+A98lpbRXUq74vMGXQbuvX8MVxxrclmgjeZw95qd/4c+I+t+G9aKyLbaxmJ8DD28udo64xz+de1GvTqLfodKilLVl46LZnWX8kq5tLopkDny5BnB/SuaE6UqrUXqtzT3eWyRu3PjPwv8O/E1l8N9ZlkiifTI5Vu4gSkM7E4jcAHHy7T9DXy+f8NUs4brc9mkdWCrNVfZpbnXOsUE/lwX0NzGwBjnt3yrD19vpX4zmeBqYDFOlJ3se+6dlqPYq4GK89Re4uVDJX2KQOmOtHI2Q5JMqQsWlBYj2q+SxSd1oaMWCBipbaGklqx0rAYBY8VNmwdmwkcGPPbH50+VoV2mRZDI3PaqgmmN6amZZBYtSLH1rf3rHNGalUNi6lzx3xWU1c2lFrUqTbVT69ay5WKNjOuwIiX6ematRZEnGBntdM7bRWzgkjmd5O5KjgpjHX1rPkdzeGqsNiJiY4HFXZJEVIq4zezyktmo6EKHM9CYYA9PqaqMWWm07CTHMRI/nWiTJqOysULRjBfLcZIKtnPpWkIxjJNmK5pxPpP9kH9sDxt8KfHum6TpXiFtP06SQfbJkjDSSDPTJ6fnX0mU53Vw2I5L+6eRjMpo1Yucldn63fAK3+Cfx/1qx8Y6vY2Os3kZjZ764IlkXBBxuOSv0Br7GNWGJTlHc+OzCCg7NWPwj/AOCwfiX9pP8A4JVf8Fevi5efBPxtqfh+18d6r/wlOj31jK0Zltr4F3CsDztkM0Z/3a2ybMXllaS5FJPRpq6PjsyyPD5z7lSTTV9U2nr6Hx34Y/aK+IvxK+Laap4gt7vxNrfibUkinWRy0s7yOBwepb0rozbN6mYYr2s1Z7WXY9rJsBhcgwaw9JaI/b/9ir4Cftoa3f6d8Rv2drpbKx0WxhtNY/tu+aSy1F0UBzgAkSZ43L6Csabk1zp6npVKrrR11Z+qX7PPi34w+K9Ej07xjoV3p17boq3Esbo9uzd9hcbsfVaVWvGV4uNmck04yseqw/8ACR6SDLeSpcr3OQCPyUCuPnUupslzos2PiS3vGMckTIc45WtOS5jJSg7MstcRH5kJ/KlyFXuRpdm6VlktWVc4+fvV8tluNWTuj5Z/4KIfAPVvj74YvvA2k+A7aVLrTpB9umIHzAZGPevUw1SEaHK3c0jTdk5PRn5J/A74qeMP2c/EN94Cup7iy1DSbqS3ukMhB3KxAIwehGMVxQqKL5ex2OnTlG9juk+OOqa58QLXWNV1WYvMpVbl3JZW65BJ6+9dEZ0+phKStqtDO/a3+Dnw++NXgS+0rULe1u5L2wJuYbiEFpOp+91yOoNarkpx5zn9lTbtNan5Gal+xhqPh7xfrMF1Z38ukaZdIyyIgyIC3zF/YAgZFfK5hjpx5nTjsdWFwvtai9s7RPStlvbW6WlrGqRRIEijQcKqjAA9sCviZ2nJyl1PuocsIqMFZIo3WCD8tc0ny6o7FHmVmR2y4VQfWvRfxswn/FZeQcjjtUO5inaRctldY8gdaxlJHZzKS1IiszTAN2ppqxi48rujXtXMcYOKzcG3cv2mli/aHeMVhJJGlMlMYLZHpUlzehctiUXdjp2q0kRFczsWY9zEc49TmiUopaGiUVoevfssaf4N1nxX5Xie2guo0cCS0fxIdNG3I5dsHzE9QOa3wTjUqchy4mpGMGj9rv8AgmB4Y/s4tLYHTrWztrLda2eikyWrxNgB/NPLt6mvvsFho08I5S3v20sfHZtO1o23PKP21f8Agn34i8b/ALVd7dfCrwHpGnjxXOt3f67/AGULqaPu7xiQlEfcTyF4616FONarR5Yzso7o82MsLGPtZRXO9L9bH0Z+zd+yn4d/Zq8MR6HZDzRbIZr+8kyzzznux6sxJya3jL2Xw63MoytGzO8nuZpExbgtcXUqL5YGOWbFaKp7w1LRM9J3XUF95kxVbVbZY0G7ndnkkY9Md+3Suf3eW/Uys3JtFlVUAMvNY1Ndh8tlqDkk5CmojcIpJEGoahHYwGeVGbb0VFySa2hSU5aMipJxiVfD+s/2xBNHdqAYuX29MelOvBQVosdGNVwV9z5V/bY8ReBfiyup+Btf0i5u5orSQWsVocSKADhh8p7jPH5104ak0ve2OqVGtBp9D80PGEeq6HfXfg6+acwJGwtmmUbyuONw65FZ16atJI6qUuZXe5438DbXUdU8V6i1lfsdRtr13iduC5B+6fY15mEi1UbkejVm3FLufWfhjx7/AG94fjhu4kh8g+XeRMuChbhlPsTyK9j28eSxyRoSctTzTxBqotNRuPDmpTAm3maEsy/eiflT74NcbrqKsdsaLTPONe0eK/migu41Z42ktpj6gjIrgc3OdrHbGk+S9yn4I+G0Hh+Z9XulTfaxPJK7r/AuT/hW9Runbk26nRRp8vvGN8Qg/izw1a+IUJL5ODu7dq8DN6bqxuj2sPVVrM8p1RiHIcFSM5Br42cXfU7+WyujMupAo3HoO/rWagmRzNuxQlkDtyc+lNQS1No2GvGCmM1V9TCr7uw3SGAnPHOec10ST5LWFCa5jo7BQGBJ7VxyjY6YvU1IV4wO3Ws7MvUeI1yOfoa0Tdhc1hsQIm54Prik4iTk2Wzs2bS3albQttxZVEx8wjHWj2a3HGzFaVME559TS5dCZtpkDXcYYAHiq5LoiLTI2mZ8EED0qJUwk0V3ZjLs4xVpKESFrqafhmz07U9bis9TuHjhJy/lXEcb/gZCF/Wu7LKFCrXXtr8vlqzObT91bn3/AP8ABPP9n/RvEc0vj3wp4Xii060T/StZ1S2tnuEYd42jGPx5r+huFssweX041YwfvbX3Z62GpYbD0+acfee3mfZf7FWq2ev/ABt8YS2108g0/RxC0juCzkn7xwBgnFfVcZSlDKcOrbyPI4xk/wCzaMYr7Z71C2ifFHwYl/qjr9p03dFeR9SWHQnnv1/GviputlGN5YfDOzR8RiVUyzGSpQ+GVmj50+Ifibwh8MIb6C7FsGNrdSWEBUfMpCiR5D/fLyk++7619xSnPF8rbfS/y2X9fod9CCSSjonq/m9f+D5nxX8VPjZrnxH8c2+jeGZVl1DUblYrW2CA7neQqigHrx+p9q9GNRUqlqTXuK+traa9dP8APY9GFVYeOi27n6Q+K/EGlfA34NeFv2fNIt0u9Wh0aMvbMuVZkUFy3Hdtx/Cvi8nwNTH4+rmE3aF3qeHlWGqYzHzxU9I3sbPwttdS1Dxelpqls0tzLCslzJvAVM87UUnIUDGeO4680s2r06WCcoOyvp/wfM9rNHRw2XOpGVv66nefHK+1EaPYeEPD1q9xfX048q3h+9sXqx9ACRk8da+byL2NPESxNd2jFb+Z8nklShGtOvWdkuvmQeGPg3rsNolz4h1uNJiAWhgTKjrkEn610YnP6NSdqNN27s6cTnuHU+WlBtd2eefGfSJdJ1z7EsuSf4ANqOPx712YTFKtSTehNPEe2ipI88+EnjnUNT1KPQrZhFCfNtIpC+WiIkb5iD2xg/UivTl7OVJt9DqqUrRbZgfEDwH4v+N96nwV+F81tLcyyyebd3mXgsYhkGeQcEkk8DqSa0qYqjgqDrT6oxnOjRpOUtEz5c/aC/4ILftDfDPQ9W8XfDb416P45l1HSp4tT8K3GniwnuVZDuW3+dldh2VsE465rxKeb4WdOVotfijipZhhfhkmflr8PdD1jwpJceFNf0y7s7/TbqWzv7G5RoZYXjYqyurYKkY6V5sq99EevTk2uZGD8btDuotWj8R2dixH2UWty5bJKggxyn15yufeuvLsTFNqWltEdMIzlJF34dahZNc3PijV49ltbWayXC5++6jp/IV1VcUlJ8p2QlGC16HjV94r1rxFFe+PJ72SK8n16SczdPLBOFH0CgDHtXblkvbU5JmOFrNS55dz6B8Ea3da74Qs9YubyCZjHtkeJNuT74HNfjnGWWzo491ktGfRQxKqxujROpxxsSW/WvjYrTU6FJcpFNq6sNpP0NVZI56jW5GmpJG+4dD3zQ72KpVE2Tr4gVCDn61DSNJyVtBJdfUvnI6cc0WRjGrZh/b4MZXjNDtcc6lncauvqq4BHvTLc1KJVTV4Uut7HgmtFJtWTOOEmpltvEayYBI46c9KmSR3OacdSGfXosgM/P1pJXehy+01sipNq6ODkjGKcrDqaorC8h3fKe/enq0KmnbUet8nWld3BN8w+O9GMGnIueqD7SgfPHPelHYzpS1B7xW5J6e1XZFu1xG1FdhQHOR1pt21Iq8tiksyvLwevYU1PQxpt3NLTpRHOrNj7wyNxAP4ilBp1C60rQsj9Z/+CJGq3PiK7FlY31m0ESrvtrIthPdiepr9GybEUvY2PzvOaLk/mdt/wW8/4JNS/wDBRnSdN8VeD/G9h4S+I3gNXbQNf1CHMF7pso/f2cpweAcujYOCWH8Rx1YylTlTc4q78zyaEeXERnFtNPofDX7DP/BH3Sfh58VofCvhLR/Dt3qyT+X4j8XR3k+pXcEB4kW2AiSC1ZhkDAZ8H73rhhKOIxE+aW39bHqYyGGp2cd33P3I+G/wd8M/CfwTo3gTwXpMVjZWsSxW9kkW4KB1Zs/xHkknua9Op7OPNGC0R5dFSi9WdpLrM2kOLWz095iMDCLisJJNXbNp2TbZbtdcubtzBc6LOmMZ4BrL2d0ncUXfVFXVta/st8/2RIR1ZhFnsalN81h1Yrl5rF/SdZh1O085YXTB6NGRV31M48ttBdVvDb2nnRoTh1z9M1tSV3qWos4T49eHNY8c+F10/R9dfT41HmPcR8McckCujCpQqakzp1JwtE/E3/gp/wDCO3+HXxhX4peDryS606+mEGrSeXteOcfddgCevTOearMYUKb5qbfmddJcsLPc8k0u9m8Q+FnvbG8b7VZkTRbc5OOo/KuClWg2rvQy5ZM6r/hcN7q/hFYbeZVleLa7ydQB1FOpX9ppc0pRk5angPxbvrS10LUZJC0U92whUrwHB6g+tePj6qo0XbqephqEatdJnhl0EtzsIxjjGK+MlGUndH1SstCnJcKxworN0W0wnOUVdEcRICnNd7+NhU/isvISFBHSok7GT3LltN8v1rmkjWMk9xGZllDbcHtWlO1tS525S1FM2MA/WiUlcwj8RftJGUda55anW5KMVYuwkuQCfes3YS95l2JRkYNPdlPQ3fDdp4WvLK7stXnvU1GXy10kxyxJbbt3z+ez8qMdCvfrWtKhTqaSlZkONW91sfUH7I/7Ni3HiKw8WeKPD/ggWsVwrF7jxi0kTgAgF4Y2O9v9npz7V9Bl+DjRlzXizx8ZVk9Eft3+xbpnimD4dJea7qel3Vt5McemtpNj5EUcQ/gUHnAGMZr62Muagle9z5XFTjKWt7ruexStDF/pUwXKKcORyB3pqPKjz2+aVjhfHfiPT4VXS7e5DLOfOm2+44H6D861pxbndo2Ssl2MbwDdpr/jeztxAzi2SW7nkOfkP3UXoR/Fkcg/LW072d2JRfLqeh+I9A/4SWwTT21O4tVW4ilaS1fa5COG259Gxg+oJFYNO1jF1LKyNHK7Aka4AGAKhU1Bag5Sm9BrkgZyAPUUla5cY23M7xPeQnw/OYW2kgKZCMYNXFuMtDaKitzkPhjr0t9a3+m2ciyzyNsVGHQ4wSfb3onGUtWVOolayKuufsnfDHxXBdzeMTd3V3eW7RSzifaI1bsg6DHbvXVHGVVFRSukZe1q8176H55/to/8EqPiJ8JNVvPiv8GdQfxVoKZkvrKLJvLNMHLFFP7xR6jkY6VdWrSqQu1ys66deM9JaHwh8LGudA+Ll9C4aINdkh9mCue5r5+E3HEtM9u/tKSklofTOraEbvSZdas7opd+RmYbCsdyuOhIwAe4r1pRXs+cilNX5Tyf4uSx/wBkxeKLJZJDDGsczk4Yg/3vdTx+VefUfVHZTgndNHO2F8l/Ob9fn3xI5GchiOhB9az9o4q6OynBN8rQnxE8TNF4K1TTtMY+dPYySXLDqq44FX7S+7N50lGm7dDivAV5Nq/wnbeN7QxgkAcj8K5MRHmpvQ6MEpSjdnmniXVLMyNKSFZWxIhOCD64r47EUrzPR9tyqxgXWr2JcqRgg9CaxWGbdkzkeJ12Kb6paM2B0HfNH1axrCuwOpWrJjt9aiVGz0KqYjmjawyyvoYZiycjNVyNLUxpz965qW3iIRjG3jHcVhOmmdixCsWU8WvnCtxUezSRTrOwN4tboG6U+VGXtJtjP+ErkzkPyaVoXNYTcdbiN4smIz5p+hofJsFSrNrQi/4Se5dvlaq9xIVOc1qNfxLcYP7w+4NS3EKs5yREviKYvkHPtVXikYxc2yUa/IBtz17+lJcrLcrsmh1fcdxbJxyM1M2tilN9D6B/Ym+DvxB+Mfi61svBOk2zQNcqLnUL3QlnWIA8hZJcKDj+6Ca/TOC8nxVaUZ2Shve1395ph4OrPm6Lc/VLxFFp/wAFPhXH4A8OWayNHbf6W0Vuu6VyOflH8q/cssoQqVlJv4T3qMFUqe3k7JbGz/wTnXzNH8a+Lk8zHmpaRm4tvKcEAkgjAPVuvpXHxrOM6uHoLrqfKcUt1alGl0bbPT/h/pN5e+NNV0S8vpILLV7ZrVVR8YkwcMPQ8H8xXmZvKEMsp1Iq8oO/yPLzrkjl8KkVeUD4F/bY8XX3gX4g658P/FHiXbfWFuQ9tdOsbGLzAd8IPLlvlGB27cGvcwmPw88LCcPtdlf/AIYdBUp0VUjrzItf8EvP2bdb1z4mn9qL4seH3ttP0qJW8P6fcRbWlkUsFlKnsA2Qe5OawzODqUuWnpKatfy7HVUoueH5V1Psn4u6FaeK9I174oTADUrC3jfTRIQA5DH5OeueOOOeM1OXTq4SdHB01eMr833DoTnhalLDUo3i73Jf+Cdni74gfESTUtd+Ii2S3MCMyxQSCWRA8rKgkkAwWCKMgcDOO1eTxpSoYSlCnBWb+77jyeLf3eFhCMZK767dz6O8W6/oHhG3ufEstskt2kSxYXG8jkqmew5J/OvhMPTniZqleyPiqFNztBv3dzwbxR+0L4tu9Va7OplISDttIH2qi++OSa+lpYDCYena12enCnSbSjEpf8LJ0b4qaS+napfo08g2xSbcbGGec9jXNKdGnUTpvTy8j0VQ5UmjxLTbjxH8P/GesaRJbwPPb3wnikQ7d8Dcsw/IduwHFe5g5U6sXd2HXcqi3Po/4C2fh/4C/Cq9+JvjiGO01zxEWvp4JXG9Yx/q4xxwACD9Wrwsyq/2hilCHwR/PqeVVmq01G+iPm/4p/tdX2vfEVdY/t6LzlZmhjW52C1jG7B478d69OMMJRwyppqzX9XJVGLPgX/gqLZfDX4q+LR+1D8N/s0GsySx2fju0tV2reORtg1AAdGJHlv6nYe5r52tShTblB6HtYKnKnHkex8jXunp4kuxBGWkmP7ry2X5XU9QR09Kqkk3dbnoqEtOx5v428SaO3jd/hH4Xljkt9J3Nq1zCcq8+D+7z3Cjr7/SuyFKp9o2Uoe1stkeX2sU138NdXktoiXtrwSBV7jeQa9rKKVm0+pzShOVGUo9z1X9m2/lu/DU9lNpkscg5znIH5Gvm+NsFCeCbS95HrZZzzpNM7W5V0bp3r8Nc7Ox6iT5bFSRnPGPrzU88SPZu5GiyHkuQal1VYPhYN5ykhRmp503qV8SGIk5b5mqnViloTycuo7bJnAP41DncG0KIpWGAx470e06Bq3oMEbmUJk9elaxm7aClHl1JzBKqZAPPak5NbgmmQeQ7tyfrQ6lkLlW4r2vHf2qed3KVmIISOn596fNKwm7Mb5ZV+px6Gi8mg2FIdPu/hS5n1E/eGpvP3mPNae0sTbkBxL0Gc9yaaqLqNXYyVJFTkke9CqJsTi5DbVGJyWziru3oQ0oo1NOjuLm4itre3eRncARr1Y+laKLT91mM2rH7Lf8EcPB3ibwP8Ppdb1Pwvb6bEbQyRPDHtZzjOWPevv8kpyjR94+SzTklK19T9CPEPgnRPjj8M4re+maGS7sdn2hOvI5B9q9KzhLyPnZpQehz/wh+Afgb9mrwzJZaGql5XLzOBjzG9T6nn+ddtKd4csFZGEr1ZqU9+hsaD4yS+8VyT3w+WGBijHovsPWs69NpK2x0um2kmavhfxidc1qaO3tvkVsBvWsJ0pcmphWk4T5UdVHexOdrZU5xjFRCLirDumh809pGp85lwP7woauNRlIonXdInn+zWl9DuHVUYE1vChKKu0TUXs15lHxZrsWl2yRMoPmH7zcCle0jswlNyjzMwdZum1vwwdOtbP7QLklEXdgq2RgfSt6dua9xyThO1tDwL9oX/glh+zl8YPhzqdv8UvGWp6bfXkLD+1rW6EccDnJX92RhwD68/SsZznVuoxucl6ildPQ/Hz4l/Azxl+yh8XNR+E/i/VbfUUtm36ZrFg+bfUrQk7JkIz1AwR1BBFeXKE6U7M9CjarC55t4g1MaDrEhtFZ7SeTciqfunOf504qUtGXJK+h438f/GF3rHiy0sk+S2hQq2P43I5NeXm0lGml3PYy6yldbnE6pKk6LIT8xX5vqK+bjNt2PoVSsr9TPhUNxjvSrS5YtmUo8zsOQgxrXXo5suf8VluFyy9aiSRjU0ZYgbZ/9espxTWhVPUmRw7YI5pKFkXNSSHszq+FHUdcU4wjYiKRctJnZhk845qZwikbXWxp2b4xnr7VzSiaxi0i9DITwfzqEtbiuW4GhJUXETSLn5kR8Fh6ZqJ8zemoqlSSg9bH35/wTI/Yz1Dxhqdh8R9M8H6XptmZlKX/AIhvJ5+Qeih/LRWHbCsa+myzJ5xala19bs+cx2LhTW/MvI/bfwPosXgTwLp2j/uhKqxo/lgKpdiBx0/LrX2FODhaPY+YclWncx/jp4h1Hwz4Vi1SxQtGJik4H+0MA/nTUkqiv1MIxTqnka+KZ9cZxI+/a6KSueo7Z9OK6qkobXOuEbvVaHp3wM0yBrO98RopkkuWWBZ+cMiegI4GSemc0ndpXIrrkjY79CA+DIMgcLnms5SSOWMFucb8SPitB4eEmkaHeQi9Q4mkYbvK9gO5pRiqj97YjncpWgeX65+0J4lsphJYa9NK4OGhuMbTz7cVpCnTi7M7o4Rzje51WmfGBPG/g+4+0qhlBxP5bDCEdCfbjH41TjTjNpdPmW4NVY01Bu/XTT1/4Fzovgdpmm2Phe58cXKxxveSMBLngRISufxIJ/KsKtZS93ojKulTl7NHiH7VH7X93pNz/wAI94Q1GKHdKI1aSYIp5xuZj0FFHEwpyuEKbtqfJXjT/gpv4r+FXxNfTrTxRaXsqzBWFjdrJFKO4z0Ppiu6riY19+pUcNKo7rZHjn7Vkfwa+IPxY0/40/C7SodC1TWrT7R4j0e1GIJZQebiIdFJz8y9M815eJwtKFZTi9T28FCrGm4N6HH/ABX8Tap4h+COp+H9D8RvZ3YRGjkhB3ooP3hjrg9R6Gum9OeGfc7IUo06t7Hnngnxvd+JPCz6VrsiPcSRBbqNudzY5I968dVOh2wpylK7MLSrjVtDvJdKtJg1uJMxHPIFKVrHXLmTsi9KHvtH1SS4U77qykEf0C9ayi3J3N4xU9JGF8A7lv7Fk04qpEkZRgw4J5612KKdPUqjJRhY4b4neBtS/tGYf2eyAuTlUDD8D1r4zMajpTaS0NYQjVicLP4WmRgsrnjpnivKWKk9i1hIojbQYY+pxjoc0vb1GS6KQ5dEV8FW/EGolWqAqV3YI9F8hs9P60/aTkipUGtizFpm87T+BzWUp2Q4UWTLpAzhhWLrSZuqVmDaZEv3gDx60uebL5LCjTom4Cj8qPftcmw2fTU29BSUmXGBElqo4AGO5q7NomcbMdJZBhlgPbipUmtBxV0QLAsfIGDWlnJXJnFp2Q4QlmBH8qptQVjKzRseFfD2nazq0Vvq2vW2m2wYGS5ukZx/uqigl2PZR1r0MowUcfjI0pS5VfccoNrQ/WD/AIJffsxHRdPt/i34l0TXkt7aAf2Pc67cCES5Ucx2qHbEnoTlj3r+hspwdLLsJyRbbff9EehGdHB4R0qUm5S3XY9M/aE8Sva6hLKZre2mfO15Hznnge4r77JcBTnL2vL7zSV7a2XS59BRpP6rFdD2j9jPSLqH4JR3Woui3Gu6jNcSGNQAyqAo49OBXy3E8k84bW0EkfAcRVm8zbS0gkvvN29ubzwp4l0rVBEqNNrKtveXAKlgh+nHb1qZezxWDqQetodvmY+ypYnD1abbd1+hr/tOfBL4d+Ldd0/xvrfgXSr6+KeWl1d2quwYcrye1eFw3i5KMqLbstTyOHsTGFGdGf2XdHCuFt1S0itTGDLtdFTbGqgHr6JxX2cEnG99l/XzPoZTi1zI1PCWsWGpx3GkWBW5gCv9ql8vcHJB+Rc/dUflzXnV8M8K/aOTu3dXd7f10XQh0pX538jo/wBifwtp3h8eJrjTVXbNcxYZYwoP3+nr9a8DjTESr4qipfynh8Z121QhfozzT9qz9omH4X/EXxP4E8WX7WbTTR6hpkkowtzbm3jQhCTyVdGyB615mW06ccOqvr+Z8vQpylRUkrn5p/E3/gvP+yX8JPixP4E8faf4rlhjufLvNS07QWMEYzg8uVLgc8qD04zSnmlCMmmmVQqRhUtLQ+s/hH8a/BPjbwDo/wC0N8H/AB7aeIvA+uu32TULOTPkP3jkU4ZHHdWGQamjNYmLnDY9ZYmnUTUGdf4P8eeGfiH+0Z4O0PUpY2ivZ2jmII2ywpG0h3HqMbcY+tdsMQoUZRhvZjpSfsZN7o5b/goV+3Zo/wDwlcng7wlr1v5cW63jSUrtVcHc2eiqoBJY9OvavMoTWGg02r9dO/r/AF1R40KSTcpbH4tftF/8FatJh+JOp+E/hZJqWsadCxt21iJEVbxw3zNGD83l56E4JHsa4KmMlN2jsjqw2MwkpXcXpsan7K/xY8ZfGHw7411PxRZTw2T+HiiR3U2S7+ahQ4HHBAOK6MLSr1acpy2PXw+JVestCt8U/G6/CnwDc61plyE1S+BtNKBX/VOw+aXH+yMn64r1cso06k7z0SPUxElGnofP/wAEtPlsDLeXErNcXAkeSeQ8uTkkn1J/rXZOfMtDLK6M53T1RZ+Hdump+CfFWlSP9+0lJK9QQ2c124NuFSF3udlenGFKUEbv7K+oi01BrU6hdESDG1icfUiuXP6Cq0GjfJ5qneJ7NeQJ5hGeOvPFfzhjYexxMovuex8TKTxRg4PPHWuZR5h8mhGEG7cR19q0UEkZtXYpjGfu/Q1nKOpUYWG7Bndt47irUFYc4ocLcOen6UKKQlT0Jktk2kEDpzUTSTHGCiymtu5vcIOhrppWtqRNJuxrSaeNn3MHHNRVBU2V2sCp+79KiEU9zTSxG1iScbcetaOMUiIxs7iHTWHJUVLkrWG4pvUY9gQ33c0RloDimgNqqgll/wAah3bI5EiH7KQ+K2ilYUopjhAoPK1E4ohKxHcWylOB+NJLUuxXSAo3oK6VFJGFRo7T4N+AfFnj3xrZ6Z4UmEMvnrmduAgz1rswWHniK6SZ52Lqxp0/M/cr9i74ZeI/hL+zvPLr+tyXk7WOwSPKCMkY/Cv07AYb2NJRPhMRWlXrt2PqXw5qF34P+H2hSw94EEqZ4INdFozk7owhD2l7nnvxI+L19cavdWV9LHbR2zlXaZ9oUfnVKrTp6dBPCy5jqPgR4X1LxBoNx4k1HS3htbzC2L3QIeaPqZdvVVP8OeSOehFc03KU99CHVvLlR6Ja6Xpfha2ee00UuqjJ+zjcx/Dqac5SlHluZNK/NuJ4f8YeGPErtHppYOrcrLHtINZuE6W5FKcajsjkP2jPilZfC/wqXsNPa5v7w+Xbxp6kHkn2rvy3CyxdbXZHNjsXKjFKL1Z84XHxi+J1nD5lncvak/NmAEc+/rXv1o4en5kYOnOpaUpXO5+F37Sc/wAQ9Pk8C/EGdY75B/ol2y43+mfevlsU7V/d2PpqbpQjdHbfBL4gWGpeI59BvNQB/s+Jmdz06gA/rThecHYxrp1HeJ80/wDBRT9uXRNFvr/wrYanGNP02N43kWXHmSlTwPxrSFSFL3UcU/aXtHQ/Hq5/aIuPi14h1KzOsi9g026eSNhJ5ggaTG6IP35AJA4zXm4jkTsd2Ea5bPfqVr+9iMHm323aiGRs9sCs4vodip2ep4h8W4HOn6Vq8nD3Ms0jfi3H6V4mbwcqKfmejlUoqs0zkmmLxYOfZq+fUVF3Z9JKp0IUDp1PPUVnUXtNEccpNXaCBS8a5Pbit5VOSbKnf2raLkTMo4PPfFRKpzLUmV27k8LA9ajncS6bsyUzIhCkHNNTkzWSbQoviHwAMU7uxnya6l6xc5GTw3vWUpvY3i4xNa0dCAAcHPFYNvqVKpctIxzx+NWmkrijZbnZfCie3tPEkM6WFw955q/Y7u3mi/0Vs8sYpFbzeOiit8LOPtkurOXGTtC6P1t/4Jj/ALMnirxN4y0jxr4z17V/EMcRWd7nxDrO54hgEBLVMLHg8DK96+3y/CVaaU3O6XQ+axlXD+zb6+h+mmrXcUGo2OnLcBC8wKpj7wAPFej7T37PqeNSp+65FTxsLVtKVb2382E3kIkTZuGC4ByPT37VpPlULs5oK9Uoaz8IfDuqXaS6fK+nK0u+6is0ULcDHQ5Bx+GKlXep0fWXGOp0sNlaadbJZ2qBI41woHatNWjllOdSQ6L7JLKZ4tjOPlLjkj29qycVcmTex8VfFfxV4y8I/EbWFvNOnvreO+kJNr8zgbjwRnNdUP4aMKUrM5/TPiZovxU1Cfw9oglsNWtYzKun3bxrNcooy2xN25sDrgdK58RGU17srfce7h8QuS80VvAfxkXwp42fRr2ZRaajC8MyycYfB2n8xXNSqONT3mdU3zJOB23xD/aw07wd+zv4f0fT7xY/N0oSSKrfMzFiQv8An1rnr10pJozeFUq7kfmL+3B+3R4Y+Fl7JfeNrxLjWNRBk0zw4sg3bTkCSQZyFrnq1JVJtpWb18kaTdKm+TdnyX4R+NcvxS8bD4pfGHx/pWj2VvgotzdRW8UEQ6KiZyT+GTWkMS6dNczOn2bS5paWPZvg18ZtG+N/xQh1fwjcPLoOnxG0sLmQMPtIJ+ZwD/D6etdeFc8RLnvpt5lUqsLe6dL4sme31i/8Nw3TAwSshCv93J6H2IolJRbgdtKPtXcxrHw+gu2vEkaJ/KCsQPvD1rn9mraHpQTR02m/DaPXLlLu5v4Y7cKGkkHDY71lW54o2jDnOf0TV7HxP4n1KTTlxYRhrazHqigjP4nJqKDctDGjJzrtGB8DreOHWbizOcR3LL+prvgmk0yqN3JpifGnw+1lrM1xFp8hU87hKyj/AAr5HOKDc7xO+g+XQ8svUMjYOcj1NfN8qg9Tv5o2sUZ7IypgjHpVqa6CUVJ6FMpNZNkdO4ptKWpjUi4K5ZtnW4A2EdPTpS8gpTTdidYXjPK8YrKpFHRy2Jgp24PfpkVz9Q1IZbdmyR6c4reNkS5SegQxFSCR75qpWK5UPmiDDaeK59mLmaehEbUghsVtGV0NJyGywkrgrwenFKyuS7xZCtvlssMe1aJ2WhEnzMmtbKa6nW3trd5JHYLHGi7mcnsAKzk25JLccoWjc+jPgb8NvC/wB8R6V4j+MPh2LWPFl00c2i+Cmi80QAnCy3m3Ji5wdmC2AcgZFff5BgHlU4Vq0OactYxWphGT5W0m30S7n63fs0Q/FOb4Dr4s+L8enQ3+oxl7PSdOtkjgs4v4VQADt7V+u4FVKlaEZJp9Tpko/W4UYpqS1k/0PnT9qDUtM07UZLu506I3kinyru4kwoGegr9byqmqdOMj7im5ypxp9D7f/Z4024t/h34UsGhQFPDiSyDP8TjOfevyPOqqniq1RvedvuPyTiGcYVq7v9tL7jl/HkF1e6ysDHdJHOPs6bfuMDktjB9P1zXuYPkjhm+jWp14eXLTUo7W1PVNXTTPin8PZNE1V2WSBUPnICDn+8tfIYf2mU5gqkFo76HzkIvLcxVWG0r6Hlfxj+C/jTWNOu/D/gPxJNaALGGZFyzArgnk4LdOtfTYLNqPs1OqrN317Hv4HHUnFTlvqZ2g+Ebz4feFdQtNQsCTFbGOa9kHDIByTj1OcjvxWtSvDF1afvXZ3+1dStFqW/Rdz1z4M6dH8NfhfF4h1O2itn1K6gLrGMBY2IVc49jn8a+RzibzXNHTp68qf4bnxGcVHmeaOnF3UE7fqc5+1v8As9+Dv2gdBE+saNbXslshWEyJ8yn1Vuo+orPKqiox9jVW+pxYTmpU+SW58FfGP9gXR76zufDN1oc11A6MHjvH+1Q454Mcu4Ee2K9yrhMPjEqfJdW306HU3GppJHzj+xD+z18Uf2QPjj8QP2Y9NQP8OviFoF1rOhW3lsV0vWLWMyMsaYBUSRhsY4+XHbn5+ph/qWIcIX5JfgcUcM6Ff2kb8vU818Bftw3Hgn4xw+KNZ1gN/YUV+i4JQndDJGny84PNeVHF/V67s7pN2dreml3+Z6KqwlTcY9T4v/bm/a08S+IPCt4LO/8AKuPFMklrYeRlStgrYmcZGcO2IgRwQsormr1qtSblJ6s8fGcuHoqhHT/LseA/BP4V3Gr3STz2zmRyGx5eeD25ruwWB9prIxwcJvXufZ/wA0N9Dx4BtUiDanFtRSh+eXGUQn1JGMete/OChhnCO59RgaSpPmaPEf2j/GB8Z+P5NBhJ8vR7doHiY/dnZvnBHYjGK58DVnToOJ2Vr1KvKhnw/s/slooMQCiFunsDXVCMbpHqYWDpQ8yH4GWkl5p3iKc7cNbT/j1r0HONKUX5mE5Oo5FH4Ca7df8ACTb9P1BhEHw9vcJg9eTkDn6U8e1XpOxGX80a59JXd5ZXjhn0+MExjEiE88da/D+IqWDoYqUfZ6vqfS25Xe5Tmso2OVPH8q+PUlFhKbYxdP2dBwD1zScwSuElmAcED60kky3TXLcja1L8LVJWMVoySG0CrlutNo6VqSR2/BBGPas3FMzqRsQWcCm/Kn15rogko7GNNe+bFxb7UB9ulI6eW6K5RCwyMVHMkYNqLGG3Gdw6VLldDu2I8A28j9KhNg2ypJGQ1WQr3I5FwCSPyq7qxVTa5GqhznH40cxjFsSRcNgCle4P4hjjI6dKtRRVV2KsgLMdorW6juYKPc+g/wBhT4T6f408e2s2rvqEq+eoW1tt6I3P8TjgCveyWnCpNSPBzOo4Jn7aeD/Do8PfBu08PramGJxGptxLuOMjvX6FCUYpKSuvu/zPlXDmq3R7T4x0/wArwBaW6KSILVMBfYCppzXO7ijaMpD7v4PeDfGN9p3jK8so2cwRySwSxBo5TtB3Fe7fX8qzkouepn9YcYuJ0Oq+NtG0YixU72GF2pwBSjaTOKFGe6Lejava6ynm2wbg9xSqPSzLnRcCvc+F7eDXk1/T40icn/SEUACQev1qYylOHI2ZNLRo8Y/b++F/xH+JPwpEfwk8RJpetwMxt7l0Dc444717OVYhYecoy6nl42ip1IyfQ/Jb4j3v/Bf/AOBWty6j4ai8D+ONJt3LCw1DSvLkkQfw7lcc/jWeIlipTfLqjuozoUqd4Kx9DfAH9o/W/wBor9nNvjJ4v+Gs/gTxz4W1b+zvG3hZ5cizuQnmJJG38UUqfMp7cjqK48Q3TjeR14Wo2nd3Ob+AH7fkWoSeNprPWFaSPV/7PjRZMsFdAcj9PzrmwWJXNKT6HqUYU7pLdn5Ef8FS/wBvLx1+0B8bLz4E/CXX5Tpun3zR6rqFnId15dZxIoYchFOV4+8Qe2KyUqlSrd9zxsU71nCL0WnqWv2R/Bs/g3w//ZF9E0UZjywYdXHOW980Yujyr31qj2ssoKnB3O48U68968mmWxz5vyyEHotcifKmzaVSPPyo434824g0vQbRRjZGxIFeNmuIfsoxPUy2nZuTOFRcLgD8K+fm+ZnrNSepFIvGTUOTirIjlujQtdI/djB7VrJ3mdNaNqjRKmmOoxsHualpcoo07ssQaW7Hpik7WHKk09CddF3dV7daybd9BwV3YUaKAwOBn61Sk3obuknEtw6ZtA+X9aptGXsrE8doyDI/U0ly3BU3fQvW8L5C5znvU1Gka2ilqevfsxeCtC1nxna6pqmla9Pc28oNsmkTfZdwyCd07fKF45AOelerldGlN3ktTxcfNyTS2P2+/wCCWHgfw9pWnXetaJpOn2w+zAFodWN5cHOP9Y/TPHOO9fb0ORUrRR83mKmqCufWl+lo/ia08yyEkqo5WUsP3Yx1x79KFG8zzqU37Jq5X8Z21zf+GL+2tFBkMJKZOMEc5/St6llTOeCft16kPhjxbb6t4ITVZ5N0lvF5d1g4JYcE+2etTF3eh1SoWqpdCvrfxB0W0hXJBAI46kfhVRTvqZKDUjV8LavZ6vprXNspVQ+COeuBTlH3hVqbUbnyZ+3/APsC6j+0dr0/iDwf4x1vQ5buBRevpFzJF5hAxn5T1rSChOn7OTsebUUoTuldH53/ABN/4IQfEH4BeJ7D9pD4afG/xRbeKvDV/HqelahdXk0hEkbBtrbv4WxtI6EE06eEp03ZNtnVSxFaS5XHQ9H/AGs/iXe+EYpfGCMthPeaHFqtuoUjy3kh3kAez7l/CvHzSlUo4iVKpFxa0aejX3nu4KdqaUjyT4m/tXaJpej6S/ijWI7iDRNBheW3WTlvLgDysQORjmuChJU6kHbmSto7/pY7sQ1TpSml0Pxe+Iur/E79tj46eIvifqM7s9/fPIHkDMltDnEUK+ypgAe3vXs0KTnK0T5alKdesuZ6s9O+Ev7Ba3+p27+InnuyCGIMTCP8TjFROjV9tyt2+X6nfLDpz1dz7i+A3g2x+FcNtbW0aI6YCIhyqgdzXVFfV48qPaw2H/d2R0fipLq1+Jeo6ncxEw6oiTQsV4GQARz715c+b2zbPbw9PlopvcstGkUYeSVVUsPLcfypymki7tMp/EDxhPoXhB9H0d2W91H9yjKeVQj5m/LiuWrea1NK03Cjpuyh8MNOXTEhtk+6AB/+uuijyxVwwVLk1kVfhkRZeONQWMDC3rZU/WutSd2UrKszQ+LtnrKau8i6iskEi/LBcrlGyOlfP5mpPVHbTV9zxzWLaS3u3SSy8jn7g6fhXx1eElNt6HW4uJQk25Cg/jWSLjoQXMQljwVwQODQ52NJxU42McTz2M/yDKk81rBnn8jpzubWm3kV7EAxAOOOaicm3Y7VUi4k0qMhwOlY2Kg0MEy45I59aOZinoKuGOFX6HtSc7kR1FEfOfXpxUqxTjYGTnp1q00jWDWxDMAuPenza6EVb9iONA8gXcOau7UTOKRr+H9M13UdYtLHwvBdPqE0wW1Wyz5pcnjbjnP0pUaWIxNdQoL3+lhVZSjBs/Rf9gX9mi6+GPifSND+JYsbnxTNL9oj8OW9rC9xBkbjLfzgblx1EZYknsK/ofhbJK+CyiDxdrq7+Fc2veW78k3ZdOpvl2GlSw06z0j36/I+9/iTrUf9lf2RcKjrFEFPkttHuBjtX1uVYf8Ae866jyui1iPaw699T4+/aM0/wR4g1KK21fUrgzmZVg0+FSQ5LDHP19K/R8JUqYej7y0sfY0Y1HJSex9//CJBZwQaa8KobTw7axomeV/d9K/Fc1aneS6zf5n49n1pU7p71JP8TzrxhHcXHiSa1RVWV5HBkc9ADkBeOucD8a+owzisIn0sd9JXoxtsdd4J8T29tpk4a6ZGkt1ZwTuVZAcMV455/WvExmElOonbr+HmcOJw0pTi2jqbfVJG1sNd3X7uYoyDbkNx146HNebKivq/urVXOSUILDNRWqubmq2sEskiw+GvtaGEloSq7JST3z/nmvOpzaiuapy6/NHjQqykkp1eXXfW6NXxZoVr4h8Iy6TPpKzJ5astsGxhlwQAe2CBXBhcRLC4r2kZa3epwUKsqOLupfM4zTbnxVpcDwXOnysinLgRl8c9OBzX0FSODr2kpK/3HrP2NWdrq5pH4beH/FkH2rW9DMMk3BAjwenU9cfjiuCeY1cLLlpSukcFSv7Gemp8lftnWEP7MvjzSviP4W8Jx6hLpU5uPLlkVY5oSCJImLH5dyFxwD/SvVoQqZhgnJf1YbcsTQa2ufhl/wAFBj8LvhJ8Q9d8aQeG0fw5f30lza22j+PdLeWXe24QPDn7VGRuZSfKyAPTp8jjqMKM9Hdt7X1OBYp0XyuPkfIfhb4f/Ez9pjx9/wAJ7c+FbgWRKQabZWdq7RW0C8JEgAJ2qO56nLMckmvSyvLK2LXPKOhrRo1MRd1Op9afCP8AZ4ufBcUI1e1eJwxDCeLHzAZwQR/nFfVwoU8PCzVj1sP7KmktzSj8I622prrMAeG5tJyFkgGBuDbkYgd+OP8A9dcjnHmbserTbjqec/tTfCuS0+NDfEyLTVitvFltHe3aImFW9HyzfTcRvx/tGvJnXXtGkjso03GXMc+9pFpWkXl2Twlm4ZcdDg100a1mro6o1Gk7DP2ftNktvDOoyyoM3FrKM5xnKMa2xVe6VjGSlGm5JbnHfBvVrw+JzZ+XADFcENGwG7GTyOlaVJynTvcxwXM6+qPpJ40EcZCKCYxwvTpX4nxTJSzOSZ9Vy3AhgO4Ir5NkirkEGpGnqJcZJ4/SnHc3iyu7MvJ4OfStnqc83qSW0hcEe/FJnRB6EsbHJBFKxNVkGn5bUj35rePwmNP4zdnU7Rnk4/Osps6VsUpbdxJkd6hRvuc04tMYyFSFLdqtRRpCyQ1+BuxxmjlRcloV7gEHcvpzimkjmd0yrKJCMdRVaFuSaI4EbPOcUppdDK+o+RDnJwfeskD3uQzDCYIx61d+xNVoj0/S7/WtRj03S4i80rBUUHvVRU5OxzTnyo++v+CbfwI1TwP4rstU8UI91cvIGS3Ops0cfH9wcZr7bIMC6NnI+YzGrd6o/V7w/Fd6/py2ptViW3MKoFXtkV9Y3qeDK8Z3R61rUX2nTltlIwkSggd+KIwtIzTezNHSbf8AtLwrBaF2Tda+UxXgggY4rOpuzncvZVUzzfXfCvibTZWisonuJUfAY8swzxWEW7Hp2pqHMen+F7W7sNBtra9hWOYRDzETopp2lJ3PJrVFKbaLc0g5ya0howWpz/jPT7/VbNILGzEu1sum7BP0rtockZXk7EVaSqKxiP8ADDwtc6a13rWgSlwuSuQSKudZ83LF3Lw9OnBWauz4v/bF8C6R8Oz4vvPDFm9rZ+M/Dn2DVJNOMX2y28suYrqHeNplj3yDacbgxGelc+Kw1SpQ5m/ka1KcFCPReR+FWo+K7n4Vav4p+C/7HereNviH471e6ltt9xpEyDSy5Km5mLKFWRUIC4+UHDZ4wfFoUcdiqyio2S7dTKriKGGTjTm3J/h6HY/sq/8ABG74qeFtOHiD4jaXJJrl0PMnSLD+XnnaCepz1PTNfW0soqUaXPP4vyOVOCak2fQXjn9lm++FnhOSzutJMKTL5Rd0wd2Ox7nPavLx1KadlqethsYpRsj5rbR5LHVWgn6rJhmPPINfOzk4txZ6FOHO02cp+0HdxtrOnaej58m1yw+teDmcrzSPawSSOCebbHgfhXn01bVnqJc2hTubwLlWfA6Zz0qatuhpzQp7m9DqHyAgZyKH8dgrt+0dizBqCEcHjvms5SlYISdyxHeqOQ4pcztqbSd0SLqTE7Ff8QKV7IyT1uWbeR2IO/I7YqJVDp5rrQsQswOAx/AVLndGMm2yZCx4Gc57VpBqwQTvoXIAVwMk57UTlG5tyK15H1F+yl+zpreoahoviP4uxw22lCUT6YureN1hjjU8iQWqbmP0OCSa+jymlWpyjKXy12PHxU0r8iP24/4J9aR4Z0n4eSQeHrewVQqjfp9rLGjjn+KTl/r0r7Cm4+y0PlMxlOcFc9jum0KP4iQTSeYb97RkT5jt29Tx0zWftLVLI8tOahZbG3IkbI0TJkOpDA+mK3spaMyi2pJnD6Np50i9utGS1KW16GTywPunsaxb5Gek6iluc/qvhDxbP4ji0WxtTGjOB9oxn5R1ye1bJ80WxSlCCvE9O0nSoNE02PTLMfKg+YkfePc1NPm3ZwzrOT1LCwrKNsqAj0IrSdhRcUtTgv2iL7whB4Bv9C1G2hmuLiAqkK4yMjqf/r1eGjUnVT6FqpBM/Hj9s3wN4d1PwmfAvj+21yyGkm4Gg+INEs/tRS1di5tZ7fILqrsxVlORnBBFZZnhXODlJfMqjXdOrzX0Z+a/xf8ACvxh/aj8a3fwu/ZZ0TxVq8d1PJZal4j1LTP7NsY4s7JUUMSXOQVPpyAD24sny/F4uV1H3ToxWYQqL2N9D7U/ZK/4IL/FXwv4AsLOfULSyZtr3T3MZ826kI5OOwJ6Z9q+1p4DB4enZuzPEninQleMTvPHH7E2vfA/On+IIXSOJ8AW6DdK3ORgkGvMxVGCTaZ7eX4v226sebX+nW+hai9vHG6uzbc3CBWUCvHlZM9+jVktjqrqPSNR8Iw6xfRI32OQASFQCUNctZRcT0qVSdrM4/4iWVnYT276dOxtpZ0YKTxwNx+vGa8upeM7I6Hscne3DeIdVOoFQFLbYVI+4g6Vavy2ZMYupO7Oo8HWxS9RV6NtJHvmtqeh3QXKjF8EokPxG1VEHAv2z+ddberOaGtVmj8Zn0ufUHsdV19rMmMFFYHa3HHSvBzCtTinzM9SlGaSseM63a3tlOVnvBPEeY3STIx/Ovk671bvdG03KT1MuRskH865k7mlPUZNIVTcvTNQ4sJvlZThgW5kYOvBNWrg4qcQuLG505xLAuV9q05YNHJKnODL2najHdxiKXg+9YtWZcKj6j7i32negqXF2OiLU9wgYdCOO/FLkdhJWloTOP8A61Q1YptsYq7j0pBFNu5FcwgkDGPwrWmm9RzbejC2tSWGc1U5WQopQPRfgf4S8W6t4rg1DwvrV1pfkv8AvNQs5RC0a9yZWwsYx/FnPoD0r3+FctzDH5pBYeXLrv2+fQTbnI/Wj9hH4PaD8JPh23j+6i+XVWDNfz3DTXGpSY5fc43bffvX9DUaKwtFYOjNye7b2O6vFzisJh23Ldt7I9S1fRNX8bpNDZWjW1pLktI/yZX6+le/hsVRwSXM7yOuFXDZdBe1lzTXRHhnx38FeCvhrbN4o1TVPtd5boDbLv3bCDnjn1r6bBYrEZhBrlskj0aGJq4pXimkfWvwe1ddZurK/knIGqeHLaRWI77OgPc1+ZZnSVOhJL7M2fmObUJxw7VvgmzkviFLNb+L1MirsjumKr0PmY+U/TIz+FevhtcIrdjspOKoLl3aI7XVo7cvK9+JEJka1lzjavHt1Y960VJtbev9eRE1z9DqNA8RSTahHJdxmJoViEfltkAMOuPXPGK82vRUabitb3Oerh0oWXU2f2lfEXxi0z4O/wDCR/BiLzdRtHjnubeJN7ywocuij1xXiZNQyueZSp434XdJ+b2PmKeGoxqzUt1sd98Evij4f+MHw803xzoEoaO8t1M8TDDwTAYeNweVZTkEHmvBzDAVsvxUqNTo3Z913PExMZU6tpK3qdRNFBDL5rsqg9sdTXKnKSsjNczRU1zxFpui2Zubp+gwqqMkn8Kqlh5VJWiXCjOZ8Y/trftCeFPFemy+HNY0O4tmt1LzpPYO5liwc7SB1HHPNfZZdhpYKlZSumd9pRo8sWfjv8SPgn+zz45/bkfxLr/hi01GE+CNYu4UvbZXUSQrCImZWUAsodiCR1rnlg6FfHc0oo8itQXOuZ6s+x/2QIPgb8PdPn0nwxpV01xJpkYkTR9LSCMQuCG33LAhc8/KvJB4x39uo3DCpxdtbGs5V+fl1Vl5nTfEL4c/CTXvC1/rn/CJWssUMyxwO8TF9PbadzySybQz7SQCpz8wGOTXnyrus/elsdNFTp8r1PifxHo+gQeJb+GG5byjKUi24yWBxu75ODXBWqKKsj6rBy54ps8j/aE8Xxa14q1XwYthB9i0fyofNZT5jXGwM+PQDIH4V5FOnKVVzvoepGbcfQ8H+JN5/Z+hDR1/19421hnnbXo0YvmJ5k2dR4KhtfDmg2ttKgzJYzzuvfaE2/1NaVlFaI66qcIKJwHw6isbrxNHqEdnFE3nnbKjg5Gf4hiuqMHOnoY4bljWXmfQJUskZLf8sx/KvxHiqPLm80fRqOtx4QEYxz6mvlOpDWoAdz/KrkkVFK5G/DFiOPftTitDWySKt5IAoGKd9TkqaMbYuGGcdOvFEnY1pXLKOST2IqFIursQ6a//ABMyfeuqPwnNT/iHQykYAPTHUmsZL3jtvoVrmRIxg1N7GNV6FRrhJOMH6jtVXFBajZJQAcjt2obVjUp3E43dPpxSTZzzi7kSSFzn3pOTIaW4oPzZI/OldsmyEdgCMj86aTYa3ILiZSOh/OtY0+5nO7WgaBGs+sxRTXNzErOAWtP9Z+FdNH2fP7xjKlzKx+mf/BLfQNO0+Vb7Tre+JBG6bVLre59wP6V9vlFWnCFoo+ZzJRjPlkfp58GrZdWsNS1QQP8AuduJGH3yPQV9FBp20Pnql4NI7aC8W5shKzDcGwW7VUtNTN6PU1vCWoRrY/ZZTyJSFYDg55rkbfOYVVzamhPbAzqyfKASzOAM/SqskriVTmhY574x+LfFPgv4S+I/GfgjRF1PVtN0S4utM09wSLiZI2ZEOOcEgDjmtaKjOai9jKcJ8ra3SOZ/ZP8Aj5Y/tG/BjRviC1xbx6ncWaHVrGEFTbz4+ZdrEsBnOM1ti6McPWcU7rozKlVVWipbPqj0pbcA7v61gp9Acm2c18UvGtr4X8OTRl5VmkjIRolJIrqwtLmnzPZHTSg0uZn5u/tnfF6+S4ns7qVJLaSNw85GyRW/usp4/GvUdKElfoROVRq58b/sr/HHw/8ACiP4sG1sNDmD61Z3t0LuKMXFw00XkxIhZl3nfEw8vByX6jByZfVo0K7ktP67nPLCxrQk7a/ofYfw0+NXiiy0aLUPETBNQubGGa/kitk+QHlbeNQCqD1GQT1Jp16k69R20QUoQpxUJanjf7X3x2ufiJr6PNdpONOgHlRKqCEud2RtXgkEjJ5ry8TdSaPRp0YqHuKzPgXWpLi+8S3bSRIjNqUmEj+6Bu7e1fJVtcQz2qbl7Fdzyj4xXwvvH9yqtkQqsY59BXz2Yy5sQ0evgo+6cpc5RMjrXFGTasepGSjuc1r1tf3ZZDIygn+E4r0sN7GK95anjY91azfKz0ez0eHYoJ7V5lrzPoK0OWbRPHpMG4LuH51bWgqagi5Bo9qQcn65rmqSd9Dfl7jk0WISZHQds1PvSVhOmmrotxafEFAUj603BEqDLEFgpJ46DpmsnEtwSJo7SMHORnuKtaItJRWhaW3DMqQozFiAqKMkk9sU+W7QnCUtz6i/ZF/YzttJ8Z6d8T/2lp5PDel2jJdWFj/b6x3sxyGDeSm5wPTJX619FluErYeoqlWXpqeVjOSHuwWp+3P7C2s+ENX8DGXwjphsrAIBp8LQyIzxDjexbhifXJr66FnT5ou6PiMdXqVJuJ6wmnawnjkXiaaxs/LbdctKOCemBUqE+a5xy5eS9zakYBgM/Wu6EX1OZao5u61W2bVVaNCGEnA28nmspwbR1wi2kmdMi7wH8vDd+OaINNamVRuN0hUkhaX7P5i+ZtzszyR64pykoszVOyuRXU5s43mZSVRSxAHJxWisxqKtoeAftAfFXQb21mWXT3hdFI3sACwHqa9nD0404bnM0qj0Phv45+MPCPiq0u9OMlylyUPlz2jRllGDkhZFIJHvxxyDW0+WUPeV7F1V7TCundxk9pK2nnZpq+1r6d0zyv8AYj17wreeCNDisLEvJYa5r0D3slggmwmo3BYHawCnAznGDgVpl01Qw1lojGpGXNbc+5LD46ab4a01tK0nWrtLeNRIMLiU55AMr/KOOpHHYClUSxDbRtFXS5jy74o+OvhlrZuPFWvTB5GjJhvLW3e5vRkEbd5H7vOf4RXJiYRhC13byNYpQkmlqfI/xYHgG51Yz6ZaxbsktMyyPK2T3L55ryK8aXPdH0OEqzVNJo87+JfiWWw8P2fhXTbIyXGs3qRWNqpLExqQXdsYwAO/qa82rJ8p68XKVuQz/iR5UDW2iwTGWWODM3pGduMfz/OvN1lM9R0mkmzF0q1WMoWUhV6cVq2mh25WdT4QjH2pTt5G3knpzVwk0bI57wBELv4havP2a/f6da65PRmdOC5ncu/Gy68P3N82l63bRHZENkshOF9M4HAr5vNFRatM76bvojxXX9ITSrhjbXMEkLHKm3n3gV8vWoOLutjWVkzJeT5sdQKzSSRvRI53Owrmk9ya25HpEm64I4+9Td0kFHU3VgilQowyCO9YSm7m9kmZWpaRLat9ptRx6VUZqW5z1aKesRtjqQkHlTcMOOa0SZjG6LMcY370PXtSafU2jPUmJXbyPxNS6aOhpNDl247e1Q0ioWK8p3SfjxWkXZGdSykOR9rAAj396h23ZjrM+iP2VdI8EfD/AEBf2jP2lNRePwhp9z5fhbwjG5WXxJfKeWZR/wAsIyRuc9+Bk5r9C4TrUcrofXMVPlp30Xd9/wDIuFJQblOVkfe3/BOP4w/E/wDa/wDFniL4v+IoZx4d0yRbTTbRNM+z6ZYooG2G3JbMjY+8Soxxyc8fouS5zUxkZzcbRl8Pccs4wWHwUqNL45P5vzbPor4ka/cfZJ7Nrl7e0KbEEEO5nPoq/wBa+4y+jShadry8zpyvD03OM2uaXmz50+M3w98R+IdJku4tNa2UISlzKSZc9ic/dr7fBY2jTsoz18j6aM/e0ex77+yT4rbU/gp4W8RXMonuNFdtPvnUklgjbd3POPrX57nVK2Y1sPf4tUz4HPoWxlWhH7auiX473dtB4qnv7ObNu8QnhcrkEgjP6EitMtjL+z48+60Z5OAjVeEip7rQwNb1+Cd5bmFPKWGCKKEquAA38VdtCNlY7VFwjZFzS/Hxg1GeQymJkktgzk/M59vY1z1cPF7rTUzlGbhqj6E8AeMLCy8HWuua9dqsThw7lDg/N1+lfDZjhalbHypUFrofHY+jOriJQpox/EEegfADX5fi94fhjh8Ma7KreJI7eElYpm2rHd8H5Vx8r4HQgnoa55SqY6n9XrP95D4b/iv8jhjRqYuLpz+OP5Gp4o+MvgOQrHc6vtG3dDcIcrgjO4HvSwmX4pq6SJ5PY+6eU/GT9pC103w9dWvh/XNOntxHnzdRmKgk5OMgZGcdjzivVw+BhRqKpUVn5EKTpS5pH5zftq/tK+HdEsG/sDWbaLVJbdw1zpfieQxnK/cZByM5IOK9L2lotv5DbqSal0Pzif8AaFmsPj/qXiK2uIJH/wCEA1yFD5zMzNJHEqjLZOc4x64rw3mUqWNl2scvsqlSaklsfRHws/ao1nRfCFrc6fZ2dveaaIH1TVbi4knuVhkKoSkchMCheB8sZbDc9DipY2M6fvt+h11JVZUnyRV1/wAMew/Fn9tLSvFOiR6nc+LvDV87QlHm1Ce4nnjOAFIhOyEH0wo69DXR7TDRo+05rCoU6z+K79DwbT9Zm13xRP4y17TLaOxtmWSaeC0VBLkhljRR0ZmAAUfyBrwsbjqMZ2jq+nzPoMthJ6K9j561XV7q/wBR1jxZ4nl2td6pcXLoHyAzuSEB7gDA/CuykuWmj3lBKNjzuKzvfiF43ifYSpkxGo6da66WiuwjQdR6Gudeh1rxH4lmt5R/Z+k2H2G3cHglR8xH1bNdMlCPvMzqVVzycfQ4n4PWuoHxCsioZojISzhOF5749K0hUS9Dpy/Dy51KR9LKCsMKMBlYVBx9K/EOKqiqZvUaPfnK7AzdMDNfJPQyb1FLELz+dBa0K8rtuIB/GtOb3S7qxRumklfYeBQtjLkV7lmxQRqCB25rOzkwcrEyZy2eKd7GjV4lbTyP7SI967KbTicqvGZ0KZL5b8RWNR2OpPS5FeQK4+8ee9ZczuLmvoQpBGqj5RnHXFXZsmasxJIUbjAxUy0JUtCtJaxcEoM9qEmUlcrTKqsBmrjTuZyVnYaAmOn61Xs7AoXIbh15UduvtTTsxONivJ9zceBitE9DCUlHYveBdF1jxD4kh0vQtImvZ5JABFEcd+5HStaGHrVanuowcpPc/W3/AIJyfCbxB4I8HWx1zRYLGYqGUMc7SR6k5zX3mV4atTprmPlMzVN1VJrbY/Qn4Ah7fwbfwyXpuWMpbzCOOnQe1e8k9D5+o26qZof2itvpU8e3aRJ0IrZ2sXNXbHafr0WnsISxHyq3B4zXLUSvoL2aW50w8V2r22T8pzgZ7+/0oW5P1ZJ3RY0nUoJofJuJFA3FUJPB9qbVnoZVac07o4bxn4B034V3V78Xfhr4Qi+1JEW1rTbKIKb6HqzIowPNHJB78jvTqVbw99mEYU27vRnlmn/H3w74qibxL8PvGC31nKx3LFdkSW7A8oy5yrA8EEVrQeHqRST1HKNNvVnEfGP9qTXtL0WW3kv3uVKkeTcWpcdOxrv9nyx902UoqnZO5+d37Ynx/j8ZWNzpVzaTfaYyXRnzDJEBztB43L7EUe09nBqRg2pRUZadT4i8AWfxL8PfEPVPF2p+DkntNUvrEacuosDueATyhsN90E8An8K8XB5vSjjZQT09DXExqTpe4tD6J0H9pr4pz+F7fSdU8D39nDFOzx2sOLhBIwAf5+p3bV+g6V6k8xp25VPRamVKhUlJe7oZHi34tWGg2F9/wkWi3Frc3i+ZY2c0JWTcGz0zkIWzycdBXnYrMqEYe67nsU6Da2PHbXUvOun1O5xvZmlfHTJ5r5+lLnqXZ6UaTSseJa/dy6jr17qMv3prhiOe2a+bx01PESt3PaoWjTVig+HyB1GODXPCNlc2lqrlC6giydwq6k3FaGMaPOtTro73YgxIc47VlzLmtY9SvzObshIdQmmkKjPvVOcYrUyhF3uaFpLJgbnOD1rllNNnRzpGjA5zkt+IqeawKoTpK2QF/GpbbJUtSdJQq/UVPMzZttD1m3jrVRd9CYXvqWYWOQd3Q9abhK1ynOTeiPoH9gL4I+FPip8UYfEF34inSbTrob47i8eaQuCCHhtV5LDIAd228n0r3crp/voqbfc8bMIq7XU/dj9jeW+0zSDo8EdxIjDMtxqt2HupMdyi5CgdMV9fR9mlaGi7Hy2NjCUOaW57lq3mJYySJdCEKhLSEZ2gda61NJHiSvexFBcw3drHeWz745IwysO4x1roi7xIs1NJnFNqztrUdxOwAEozgYPWsOZtM7qkoxVkegShkJZD370U7uJ58neZj+J9Zj8PXFrr9zb/AOjBjDdzqP8AUq2MO3ooYAE9s59a1VP2qaT1FaSnGXTqJ4z8TaRoWhvdXd6i70ypDc49R60qFOdWei0QsVJ0qbS3PjD9qT4teFjpt/GdQeffGylFh2BcggMrA9QecV7MZRpR1PNpqpLbc/Mb9pv4030EMPg/SL6yeebUvsrz6ncAtEXPH3F86QgDJVUIGeetcmIxlOOkWbfvFWje+v8AXojyH9iX41z2Oi69qOibml0LxjrC290mnlHnzM0pJaRwIwFdiMDOQMDJJqcvxMbSVSW/Q6Z+2rVn7NPT/hz6Sg/bL8N6RDAdevI75Cp+xGC7div95XG5grDqCVx6cV6ixNJWUXoa06dSUXocv4q/a+0nV7mWPw3rr3fO7ytT+Rkz/AHi6jr3Fc2NrwcfckdlGDejRyE/j7Wb6Ftd8UX8Wm6XvBeSW7YrKeyqvVyewA718risfBStfU97B4eoo+87JkHhiz8QX3iO68feOIysx/daJZxSHZBbg/Ljoeep9Sa4Z4tTk79D6PDYNUZXZPe2slxdtczJvaQ5JJ5z71jzpu7OuWhZtdODyAytt8tcYA4Jq3NWMuV3sdD4atFWVpwm0BCxOOmBRGqrmvwo5P4PYuL++1A4JlvHKk9/mNdPNzRu2c9GTnJlT43Xj3esy28tjDMVTCiUYYfQ968LMaiTs1c9GmlGN0ePaozRMQIlTjgBQD+NfPVJXlZbGqTluUBLvYbhjnmsJOyN6SaG3TbYyc8is4ybYqi5loM0kgzlipHPpVSk7GdJcstTobeWMKA787RWMnc6ZSTRMHhkG1iCD1FS/ImMkY+saMgYz23GDk4ropVOjJqUlL3kUrbUXgPlynB6c1s7PY423B6k5vGkOVb6ipem50U5uSJYblig/TNYzRvFu42Z2A3Dp9aqNmjOd3K4sEpDguM89+9KUlDUum0ndnpvgWPxP+0p8YNC8C3a7lkgisNPtkQ+VptrGuXdFyAuFDOWPGck5rry5182zWlQd+XRWXRHNjZKtVSvp1/zP1B/4J8/E6Hx94o1T4ffCmJ9N+FHw8g/s/QhFknXLzP769mcgFyzZwOgr+j8Bh6WHwKUYe9ok7W08go4WhHAyr04pym7J22S7HuepXt3qusy6pf6itpaRPtiWNMs3twOK+koQjTpKCV29z3qdCOGoKFOPNJrU8/+M+iXOt2M1rYXC7JASsVuSh6clsjk172VSo0mrqx2UFNQV7pkn7Amu6fa6p4s+EF+wt47hI7izWV8lWYYJ6fLlhn8q8ni6nKHs8TDVxetux8xxHQqKUMQtWnr6HafGb7PceCb7T4yBf6NJ+8GOqucPx6ZOR7NXk4OVXnU38MzwnOVKqmlpI8S8HfFNdU0W50O8vI2uLC9azuieC3B2Ng9scivShUik7dDopzc/eNDTPH1sYDqVzcxurWKRMCeVdHwre5x/Ks5O6u2aVHdWeh2Nn8eb2902Pw0+qStbW7yIYomzuhzuY4yDzgDJ4AzXEo0Pauajr3PNWCi6vtEj3/9lH4j2vxn8A6l4U8Y3FrfId0YsmjBH2ZhgKwxg8dfrXx3EGFVDExrUVbu/M8LPKUMNVjVo6PqfKv7TXjRf2EvG0ngX4zNfzfDi+l8zwx4itImmn01GzmCYAfNGh4BzuAx71lSxVWdB4n2iTi0nG2stHrtay66p3atdXt5Ek61L2iV31PDfiujfG3Qn1v9n740aL4ismUyI+n36SyJ32tBuDKce1bSzt1F7rsa4eEa6sz4w+MP7IXxq8ReKDrty95BIzg3U1npP2ZFXnLF5GWOPsSx465715uJ4jqyrXhpLyVvyKq0FCm9dEfKHje7/ZW+Hfxy0r4TeJ/F+hfaLiwuoNb8T6PfSXsNncs6+THcXCHYy/LhvJBVMjkkGvMoVsWqkq9TVdjCPsakoQi7d2e8+Dv2Yfidqeltr3hnxvpGtaZKqeRdWutW0ttHFzja8bA7f985FZLM6bqNuTSfTTT066+bflY7Fg40na6a7oZrafBn4N3Ij+I3xE0KfU1X5dK8K3I1C9unPRcI7Rx+m5ioA7GprZzKp+6hDRLf7/Pp6W9dTsjhacVGSmvQb4l8f6lB4Cfxv4mtE0e2kV4vDGgxPuNsGXDzyMf9bMVPLHgdAAKWW0qmMxKb2R71Cly4dpKzez7Hzb4p8VXHiK5NtaMVtl/1Yz1r7SUYRajHY15JSaNOyvV+Gfw61H4gTri6aI2+mK3VpnGN2P8AZHP5U4uM6igjfEVVg8M2t3ocl4bB0f4T3LEkTXsoDMTy5Jya3lLm9083D0X7JN9TofgZoZ/t1ZI5GETffXOVI7g1hi6lOjRnVW1u/b+tT6KjenTWh7FdXAWQBRjI4r8Fx05YjEynLds1i+ZiJcAk579/SvPlCxooakjTcYx9aOVWKqKyIfNAYk+tKUbmClqQSj94CTn3pRibxaa0LEMirFyOnfNNqzIt7w6NwQ2DUpXZpK6WhUsWP9pHA79a7IJKJxRl+8szfE205/OsZq7O2zURlxNgjBzmoUEZJ6kLznnHHArSw6juiLzmIwc89aTgmKGqFEuRk/kaFCwTdihcOxfdyKpWQk0xpnVI/mOPxqlqTVbSuilPMWk+Tn2FaKKtqc/tVchmlYoQDRZRG7M1PAeq6zY67FFo+rT2hkcBntpNjH2zV0Kk4VUosxqr3Hofrd/wTk8Ea4ngu31rVZ7tmkUGOTUtQaUucZ6HgV+g5e2qSbe58Zjm3UaXQ/Qv9n5oJfCl0kF4J9spV3Xpn0Fel7W7sePWvzIg1HUrex1ybSbx8eaepGPyrR1E0dTp2ipHN+IdcbTbyaymnYHAKlTwQKzbj1MpN30K3/C17QWkZa7aMn93CAfvepq3KFr3Kg23Yqa18d3Fn9isro/u3CqwPVvWl7RNEzpSk9D2L4T/ABN0b4j+GBPHdIbm2AjvUJ6HHX6GsXNSumcNek41LI+Cv+Ck3/BOn4mWviy9+P8A+xv8QLvwd4jlXzL+0tV32monrmWI8E/7QwfeuR4fm+B2ZFRNwTSuj8t/j1+2p/wVE+DZl0H4hfBjStca3Yg3drqE8Kygdcp7+xrSnPMKStKpp6XNqVakqcm46nyz8Wv+CrP7VeoxS2rfA3QNGuTlftlzp813In08xtp/EGojCeJm/aVG122OaeJ55e7FI8I0X9tj9sDRtc1bXLH4kX8lxrdxHLqEd5p8M8cjINqbY5EKoFHACgCtp4fA0oWsdNKVaM3JS1O68I/tVft4/E6+XTU+LV9pdvI4Eh07T4Ldj24KICK8evTwcHeMb382egsbiKiUItfcfR/hTwjdeA/h4V8S6vd6nrmtOs+p6jqVw008gH3QXckge3SsHGMIXZ30YyS97cz9ZvW03Qbq83cLEQD9aaqKMHJnarxPI5JGkUue/NfL1J887nrUY3sVY5gC27045rdK0DWdk7Fdmy2W6A96wqu6YpS5EdS0UXKgj2Oaxu+Y6pSk3qOtBHGQcd+1aODa1FLfQvwHeeBg96lxikQ009S7a5B5br0rOajYpWb0LcQ5GTj8Kw3NoxsWERGAyuPSk7o0THKAh+XpWlNNu7JfxE0fI2g9TzWsnyq5rA+lf2N9W/aE+KXj7SvAnh/VJfC+iW0aJc3GlaSts97GP4pbkrtiXGcyEkkkY5NfQZfiZVlGFRWR5uOnGMZt7pH7K/sd+LrTwW9t4D8MTwa9eABLq4sbhvs8Xu8jkmRvc9T0UZr66k8JO3s0fn+JliHRftXrd7dr6fhv+h9V30TzWbxggMyEc9B/9atGrqyPOjzXuYng26mn06TTrtwZLeQ7QOMoTxWlPSKNa+rTOE1G7W18QS2pbmCc/eHQA0tIvU2nSbtfqeiWHizS7yyS48zLYxtx1pXdtDGpThCW5Pca5oJj8i8njCSja6SDIIPUGp5mtwacFfoeEftSeK3/AGfNEW/ufDVzqHhW6DGO6tB5kulv12hD9+LuBnI6DIwAfXKlGWuxzypqpGx8D/Gb4/fs/fEC9muLn44eGXitcypb6pqSW8tuwzx5b4ZDz1+vrRXzegqVm9SqWFipX6nwF+2r+27+yb8Kby81nwH4qt/F/jMqws57JhJ9nZs5y4yFznBbOcE9K8mM8XjJpxVovqeolhaFNyqvmk9j5m/YH/4KjWX7Nur+MvB/x7+HUXiLwh47v/tt6kEKtPpt108yMHqNuARnPyjrzWuLwGIqQToys0uvU5cBVVOrJzWjPYfG/wC1/wD8Ey/ER/4SHRPHusadIpLJZx6Vc7hnkjaBtz7156/t2jLl5L/NWPbq1srcOWL1fkzzw/tnfBy71GWx+Cvg/X9fnY/u7zU0FvAvucksfpiitPMeS1SVr9ERTqYSmrrVnpv7P3hXxz8ZPHln4j+Id405hYG2tFyILZf9lfX/AGjzUQoqjTvJ3OzCzq4yqkfRXiaKO61VkhGIoVEcYHoK4PbWkz63llcoHT3kcKFPyjog/nWkavMHs22WbfT1z5iLgdCCe1X7S2g/ZstapeR6B4N1bWpBgR2jhcnuRgCrpyu7owxMuSkzlfhFA9hpUDOvJw7j1zya9KP8MwwqtT9Tnfivqr3uuz/ZoTNGrfKpQ4x/vdsV89j1LmPQj0R5lq0e+UkQeUM/cDZxXjyVjqpqT3KKQFWyV/OuKbbZo5qOgTwF1xjr0qEpJlRtJDILdo3JBxzWiVtzGpFt6FwRyf3jg1nNxvoVGnOSJI0m3cN+FO0W9iuRx3JNzIMSE80+W+xUblHVdIE6GaAYOO1EZpaMmpSUjLtZ5baTypuueM9615brQ5OZ0pWNCOZSodB1HbtS5dNTpp1eYfvJT5jyahKzKk1fUWPAIY8n2okoyMryk7H0H+ylolp48sz8LvhdM2haprFtIfiJ8RNWmWOPSdIzhrK0Gc75R9+T7xB2DA3E/oPAGEwlbHtU1ZpXnJuyS7Iyhga+LxaS+Fb+h+kP7G3jb4DWdtL8AP2fx9osPD9nGLq9ZSrXTEfeGcEj3r9iw2bZVjsRLD4eon7NLY+kqvDKneEl7uyWy/4J7J4pv9J8PaWJNYgWN0/1UKMDz+PU17OCp4mu09F87+nRdPI56Mqteq3Td13OKe81nVbOR/DOixQXDxuVuLkZYg9hj+texGhGnL95PQ9iUKcVzTkcT8MfAfibwV8WpNV8SSu/9tWTQXN3EMbcZIK89Rz69q6cd7OvhLx1sePmLhVo3h0O1+IGt+Kvh/4ohHxGgim0bUoBbS6qsTEyRsvyNNgYRh03Hrx6GvnIexqx/dvZ/wDDnyWKp050eaG/b8z5t+M2haj4E8TalqOjzrJa39sClxEeHkQZjfI/vDinVi1ByicFOtKy5tzg/Cnxy0zxV4du7eG4VLizZRdwBjuWRWLEEdhjvXlyxU5UlrY7m3V96S0Oi8J+Jr7UP+KjtL0RS3xeO0t3l5C55GOvPr71lCspov2sYR5Ue6fsv/tCah8JPEo8YXMIbT5YkiltoH+ZwAdzEHpkg45p4+jDF4Z0n8jzMbgvr1P2fXufVfxn0H4Hfty/Ai/sbC9sdVit4v3oDqz2rlc7W7g4r4aNOrgsR7OotGfKvC4jLcT7KstGfhL+2n/wTRj+Gfiu81f4dape6bJNO6wyWE8kLZ5PVCCOlXWwNJz54bF1KahOL/mdl9zfy0R8E/HT4Q/Gn7U2k6/4/wDEl6gBBjvNVuJUIHqHYiuBwo4duRjPLpTneXU8r0z4E3bTme7jllUNggqRz/WvOrZgmrx2Lp4ZRjaKO68KfAOW4YQx20uwj5kQsc/gOtZ1pxp03MqjgJVZ2sfSvwN/Zw8MeA9KPxC8ehbPS7dN25kAaRwOFUHqc1hhlLFVOWC1Z9XhcupwpKU9Ejgvjv8AGa5+KfiR3tx5enWv7u3tkYbFQHAA9vf1r7vL8NTwMF1fU7Y3c7pbGJ4H8K3euajHAybF3AvI4wEGMkk+mK1rT9mvM7KVJU1eRh/tB+NLXXtTtPCWjSj7Bp42QgHrz8zt7sf0xVYVypxv1Z5OPar1PJFbxnqL6T8OdKtbUH95eAsq9cDvXo4WknK8jZJqlG2x6X8G7i1t/CD6/MpiaJckcDdngV8/xZioYTCOC6o9RSSp8xvp4qguSiqcn0r8ZlCUtRRrJy0NKDUkljBUYzXHN6ncpxSHnUVIwevY1Mr9BN8yIjfEyYU1N2tzJRs9SRHdmDMRU8zLUorYma4AH0pJtsTl74sE4w2eapuxstUV9OuFfUCP9qt4ytE4Iq2INua7Ctg9az5tbnouSsVptRQfKeRziqTucj+Ii+3A5yO1KUtDZpNDftuME/hQmKNo7DZL7A5bH0puRFV3K0l3vOcggUr30JhaOpm6vdyeWQnB7VpTaT1McS26bsUYPGkNlF9lktFLkEFiM16FOEHG7PHjVmpixaq90AQmBjnNYVeVXPRhVujsvhHqsWneKIJx4dTUHEqkQsM55FGHjJ1FYzrV7QaP2W/YLsvHvjD4dWUmqaQlhDIoHljA8pcf56V+h4CH7hJ6HxWIn+9tZu7+4+7PhH4ctfB/hBdLs4VRfMLMwz8x7mulpQehyVoxdkVfin4WfXdM/tDSlH2qA70VerYobSVzak/3bjI8T8deIRrmmmz1J2tLy3+XBOG/+vWMql0cvI0zyjXLjxC5F5bTh/JBVQxwAO5qLu9zSPKloYtn4pM2ryi7ldF2ABi3Ab2pqTUjq5F0Z0vgD4wX/wAPYb2eGaWF7y2MTrnPfhvrW8KkVHXqU6Kvc9p/Z/8A2ltP+NOgXfg3xfFtv7Fdtvc3Q2i6Ttx60cvNH3NyK2Fpxd4bHgn7Y3wg+D3iCeaK402E3MoYFPKUgt71pzqKtM4p4GcldH5cftTfsxfD+0W4uLXR40lIYPIYlwpzwF4rL2tGCbSJhQjBe9HU+aIf2ZtIdSsmi7J+GMqxjO3tnIry604yeu5ccJOqrLQ9C+HXwK8KeALZ/FXiUJb2sI3IHUAyHsAO5rzpTtLfQ9PD4GNCPM0UfEPiKTxRqb6llRFnEaDoF7VjKU6tTyO2KSdzjPinrqx6XHolq2N/MpHpWeYSlGhyo6aFOM58z6Hnk8jKvHT6149NRbPVprQqsx5x/KuqTSQpNN3IDvGd/wCWKxUVN3OWvPmWhvrdSKgGT0qHGPtNT0KqlKbZc0/dJjNTOdloCk+Y0Y9wwfT2rB3YtWy3almPtniplFo0UWnqXY9w7moHdonhV2G0ZxSdi4ptkgjKrmqpu8i7O5Nb7R171rKN0Lmktj3T9lHxf4evfFuj+F/EPjbUGje7WOLwtoVjtfUnP3Y5pAOSc4DEjGevFfQ5ZClOMW+x4+NjXndWP2Z/Y1tZNF8N2baD8M7bTGtDvW2tY/tM1uSMYZz8olOSCc5UZ9Tn6+EYQp2hsz5bF4eg5Rc0m4u6v0equvOza9HbqfYFjPfSaGk19hZjFl8cgGhS7Hl1JRU2oHI6Lr9vpPi4QyuAJ22OxOBz0/WoVVxepuoKpTZjfGrS30LVV1+JT5NypD7ezgd/w/lVO/Pp1NIS9rRXdHBad8SLm1FxpTXIURYdW/vL1rdJRhczlTVRi3nxKbXNTTTtNu2lkBAZWz82fb0965/a8zepo6bULWPYNY8N6J8VvhbN4R1r7Pds9oElXcG2SBeDx0pWTXK9zzJxcJ2Z+Kn/AAUu/wCCXfgzxTrF7eTeHk+07nK/usY69M81x1sPTeqNY3cbH5W/FT9gjSvCWrSwweesYLD92SMEdauOJlTp6O5ssLQSvLc4T/hl7w/DdLYra3TTsPvzOQn51yzxeKqPV2R2U6NOUdi34e/ZW0tr0C608EpzIrAkn2Fa1K9edOykawjQTase5fBn4HWFkYYLTSVGCF+RdrLnuQa89SjTd3uCpSnNJH2n8Gvh/D8PfBj6zdq32mdfLt/MXDEetefi8ZOoz6vKcD7Gld6ssRafJdzl1XdznJHSvPdeN7HvKJMuiyKmQCDgkt61Ua9tiuRDZLEb8bBjHIBraNRyZPKcn8Z9RQaVZeDYGG+8mElwAeiL6/jXdQvJ2PNxiUmoh4YaOxh+Vc+XH90cE/SvZirU9R04pw5Tyz4matcz6pKZZGKFvlilG3zPy718/mLf2TqppU4qL1ZxkGqrfXX2QwmMhgPKccr+PevFlGT3OynzN2SK3xF1238B28LXvy+bjBJ9aqhgnWg2uhw4/F0cHJKT1Zj2nj7TbmMOLgYx/erJ4SpF2aJoYyNTYtW/iS1n5jnUjPauapFwlY7o1YWLi+IrZV4cGseSTZcK8WxV8S23QuACexrXksgqVUoit4gtJG2+eM9jVKErGUKybsi3baksiBdwPuKxqRszqjbcp6tbLIDLGMH2rSlUa0ObEQjNe7uVNOvst5TDpwc1q7WuctH3Z2ZfGQMqQeKzTTZ2zXMtCSBGLH1Papm0OCstTrfB3i/WvD+mN4e8JeHLWbU9RuVjiujHJLO7H5UjRNwX7xzwMk98cV6OXY+vh4So0IJynp1vr6P+vQ58TXlSpycNHbc/RD/gnp8ILH4AftBaV4R8ceILvWvirqmmPN4u23hFp4etdoaKzYAYknOQW/ufd65r9X4LyzCZbUqc0r1XH3l2MMDRrVMHVrbQtt31Prr4oNoltqP2/X75G82UC2tUYEk5756Gv1zL5VJUlGnH5n0GWyqQoqMI7bsj0C50+NcQokiICbiNec+27PQVtXVRySudVeNSpHffY8i+L/jvxjqvjO1tfBGnpFb2Eq3D3UkvCoG5jjIwWcjtXu4XD0aeGfPq2jVYWlTw6U3dvc9T+JfjTwfo/hu2OsTbLm8tkl1PT9QhISQkdTyx3YHTHpzXzeCw2Ir1pJx9xXSaPlquHqV5yTV4rZo8/wDix8N/gjf6bba7outTWcF5AjSWEcp2cjHAbgUKliYNwqLQ8OtQxNNe8vmfNHxe/Y28Kz3Nz4x8EeLJLC4nDBpLSfDynGBlV+91rgxWBo1k3bbXT/gasmNao4KNtDwbxj8Iv2mfBF3D/wAI541muAYmjj8xMsFIOc9NuRkf5FedLJ5022p6Ee2U3Zo4PWfiN+2x4chl0rTtRjtoAdm+RGLKMEHBPbn8c1hPAYuyake3CUFHoan7O/8AwUR/b2/ZO16fVtG8HaXrcF9GYdY0lneNdSQsMlyOQ4XO1hgjPesMVlmIxdLkqfetH8mtUcWMw8cwav02PrS7/bg+AH7UGnw3HjPT7zwdqs5XfpOrIrpEzKQQJV4YbsYPBGa87EYCtTp8qRFPLnCnbc8C+M3wX+DHiMPfab4w0q5jnt55IjHcJlgg3MMZyCFINfHZhRxEXawo5c5Jtx0R4DefAP4TaJd3T6h4ssljR8JiQEncgkXp6rXmUcNiKr0iy6WXUprRnP6z8U/gT8IJE/sfQbnXtQABjjVPLhBIyCzdSM16MMixeIXNN8qPRo5fQoO7R5F8TfjR8TvjLeRi926fZRyFrfTbNNkcQOc7QOM9yx5Ne/gsJSwFpQfvLr1+RjVp03eMVZPp66swtG8HQQlpNVnESJ94sMbffkc11KpKbaW5tQw6ptNlX4mfGvRvCGnt4S8GOkt5OoWTC/8AoRHYHt3rqhh9eaocOZZjTo/u463PMTcXFzexy3ku64lk3ySHue9dEZJz0R5NGM6lRW1PQPEsH2rwTpyGPKpcja3v3/pXpUm022j3qiiqS7nsPw50S0uPBQ0d02iQLJhlx+NflfHuJbqQSN8OnKNmWk8EpFMCpAAPFfncqzkjd0EldGtbeHHSIEEe/NY6J3IjTk9yzH4eLDt0rCU9Tf2dhjaCFc4I4z3qo3krFOkuUlXRV28tg1pZIxcLCHSU3bQR+dCilqXGkmrlmLR4/KP0rGTtIuMbMy7CxC6oUDD73NdNNc0TlqRvUujam01GblueMVnN2OiKcUV5NEi3A7unrSTbGkmIdKjAzxT5SLO4w6ZGOeOadrDlBrUrXOmxZ4bjuKFcIpSITZxrxt5quXqRONiK40q2uF5ORUXlFk8qaMyfwxYrcb3xx04reNSclY5quHg1cc1jbRjYgH5VXKuph7N9Dsvgn4c1zWPGdrbaMSi+cvmyF9oUZ9e1b4apL2qUSZ0ouD5j9qv2NNNvz4L0/RdN1eOWOFV3QWThsnHJZu596/QsDJeyTufI4xqlKyPs7wzcPa+FY7f5lYcKsnXP1roqSe5xQSnJNhp17dTuwHHJyT6UoNtHROMYnJfFb4R6B8RbJ42hEEqrjz4mwc/UVjWhfbcznTvqtz5b+Kn7K/xQ8OpJL4c8R3EiyElYd27P1z7VwVKdSD0ZknJK1SKPBfG2nftFeBo5FeHz2jGUQwHAH17GslPFQ21Omk6Tdle5434m+PvxOsp2t/Emq31oWBMnkwZC/jWMsTWjK8z1vcSSe5lwftBtaahbSwfFHVIJ42Db1vRFtPUEn09qqGOmtbmroa7Xueky/tc6T4xtpLTWdfi1O5sLfM93Bcg7gByzkcV0/wBoOUVpuJ4enZq55t8W9S8K+I7qWOS7QmPaWhkmXbGzYwM+veuKrmEVKxgsts3Jni3i7xX8N/AymXVL2KWXABt4W3FWI/i9ulZ80pu7NJxpUVdLU8v8bfEmXxPfC5uWD2K/8e4iAKRj3WuarTmzL2j6nL3+twMm2xVOTgmLgEV24SlazZLbaucZ4jM95evJOc46Zryc1q3xHKj1MDSU4XMuSwUKSSPyrgpt7nrOEYxsMOnKsWNoB9aKlRnI4JtmdcWQDYHrU+1cUYOlzGyIFEakdaptuoelKym0y5YKSQv5GqlFJXM4wvIvMwVQSPrWd4pilaDuWtNCseDkE0ptNHRTXMrs0EGG6Vhy3M56MnjBGD1FP2asdMV7tyRuBkj061UEkyHoS2yCRsDv6UTbSsNNJHpnwI8cWXg7xXo+lvoFrIt9frDdSW5nhnnViMRyTQxSSpHnGREAxHFenluLrK1OML/mcWNklRer26H60fsBaH+094x0K8+IXxvu4/Bnhqy2x+HPCOlKbeNUPd8jfIzZ5J59SSTX2OBhiGm6rsux8PjvefLDXzZ95fDmyv73Q0leeQRuv3p2yW/D0rsk4vSJ5riqesi3qfw607VZjNJqUiMGDDYgAB9aj6u5bMJYvlVkg+I1ppV/4Sk0TW5Ml48Rz7ejDofatG/ZLUeGlLnclsfM3iiGXQLt7Ka1DuIyiSDJEi56U5O8DpW90YWm3E+m3e+OfZcyj55yThF7YrjaSd0a8kqjVzq/hR8Tta8Iay+rvqaw2ifKySsT9o+ua1p1Ixd2aPDQqrU1vjrongf416XJqumxCO8eHdcWhQFsY4Ycc061SNuVIzlhnCNkrn51/tSfsmWqX01/Y6UssY+aaMRj5l3cjjvXmVLRHSg7aq58v+Mv2aLOfxQ0dpbxpYW8fmoZosMgb1PrXK6q2NfZTb0MST4CXF9rqvBpkg+VRGqRYyR3/SqdVRg7s7aWGlUlax6/4B/Z18P+DbU+JfiJcJaxJ86RsgE0ueRtXvz36V42KxSndJnu4fL4UkpyRd8T/Ejwrc3KoNyQxriCGNRhFH9a81VJVND0qdVU9EjHHxW8MxjybPSrxlz8xENWqcrbm/tEMk+Knh5n2TloBnjzVwB+NVGnO9jRVI23K958RNBjtpb6S4URopLMDw1d1GjOTRnKtCO7POLbV7nxZr0/ia+BXzWAhjP8CA8V6+HgqZ5cZOrV5uh0OkX5b7R5bAKF2klulejOXLA64x7HkXxH1G7i1aaG7tirhyVnRd6uPpXzWLm029zqhDlszjW16W1mN08Y3AHa2MfpXnSfPK5rCooMw/iJeXXxCEcV5ysYGPwohipYe9nuedjMJHGzTZyk/gu5toswXDAj0NbLHOeljCeE9hH3TW8EaLeyyeXJOTg4OTXPXlF6tEYdVZSs2dsvg98gGXHHrXBKrFbI9SGHne4S+BpGXPn4rL293sdLpXRmy+D72CUulyTjoK6PrF42OeeGlT1RZs3utPfbOeM96zdJT1TIjWmtGa0MqzxYJyPap5LG8Jq5Q1CxaB/OhPXuKcddGKtTuuaJNY36uoRmGapU9bmdGpJbmjbleOM+lKSR0crlqfSP/BPfw1oN74w1Xxro6w6j490q1YeBNIupPJtrW78t3OpzyupjCW6rlUcjdIy+mK+s4XwNOdKriotOpHSKb7/a+QqmBdenzuaUVv3fkl5n2H/wTo0HR/BfxW8Q6hffFtfGHim53Tavd2582CB3G5x5xx5jFs8jqDX6LwZleGpyqylW56stZf8ADnbGSrUXSUbRsvzPoDX/AAd4o8UXtxfxfIs0+BfTgr5K9yuBwOvJ7mv1vD4qjg0oxld9tD35YnC0KEYdUtl1LvhPV/DU+qzeCNEjmMcER+03UZGLo45wSefc0q9PEKH1ie76djzsRKvGHtpfLyOb8T6B4d06++03VoUS1mEwmLLtt/fp8zflivTo1qlSmkuv4mvNVlBO+5pfBrXNO/aFsdc8TaHYacul6VMtqur3ESm4u7heCc87VX+7xk9RXkZlP+ycVTpXblJXstkebj50cvcISu5S6LZI5H42eGvhpFr1toqiTXvE19GYtJ0KymJXZnmaXHG7pz0GOK6sJPE14OpUXLTju3+hMKNXE0W5x5YLqzxH4w/sp/EPwei/2T8a77RtUkZAbCzKy29vnsd4Jz68jgU6eHo46LqUZNHi1MuhXd6ex8xfErW/23PBurS+F/DXizSPFpVGWSSK0ZGBwTyykgV59XL8zhJey944KuBnQVo6nzl8Rv2j/wBqjR7r7d4m8AaVK64S5eO4bc4U9NxXnk8D3rz6lbG0Ye/BGMVilLmjG7PH/En7aPxvgkkl1vwfHareT8CKQiW4YDgdjt9/SvKxOYYulFe4d31vE0oa09WZcv7YfiDXmbUvHo/syONtxggUuwQLhF5YEsxyT2AxXHTzWc9KqsP67Tp0+at7pyOofGbxFqAgfSfEF6iRYkLzb0XLLl844wc498DiufF1sG56tdxVMYqkP3bdjL1L46azDJd6bdajOt2giISTdlSqgDIPbFeVHH4OpL91qjyP7SarOC3XQh0n9oTUEjNrf2C3IIAVXj3Z+mf5V1wxFCvE9WnnKaSaHXPx8kkhEOlaWimPkJ5YXaR7Vyv2d7RWh59XN71W4LU53xB8X/GusqVS4aONydwU/MBXdhpRjryhXzPE1KWisZelPGf9Ku41kaQ8yvyc+9XUquRw0ubEz95G27SXRgeYoCpzHz1H1FXQjeR7MYxppHqltai88E29xNuPkTqWxkgjPpXZVqRp3d9js0qQPY/hxPZ3/heC+06WOS3xtV1Pzhh1DDtX5NxvWp1ZU+Vnbh3FrQ2yhLfL+dfn91E6HPoTRodvX6g1LlzArWuOVvX8DQ1ZFuSsJnc2MVCkjNTfMK/yrk8VpdjqbkaDLbgOQKpN21CCZYDtsOScYqbKTNZbGTYf8hQnuGFdELRjZHDTbdbU2Z3CtjPH1rKSV7ndU+EryThnCk8HvTWhzwbvoBIxjcePeplI0krK41zgHtx0p30KlrAz5JR5vXv0NOLuc0bpjZ22jOO1NtGlX4SETqcAeg5zQ4pmNNu5FcjdkZ/HPWnTsmXV+EqpaXN1dJbWcDSyyMFjjVcliegrSS5lY89zaloer/Cr4Ba7b+O7HTvihdz6FBI6M0LTeW0gODjg08PTTrpSY8RTnGk31P2S/ZT8N+F/h78KLR/AUE08oiAiXzcgnHViDz+NfpODhGlh0kj4rFycp+8fVXgP7fJ4Ct5dS2/aXGZdhzg+laSg47s46MZKprsX4p/IsG2tiQthmP06UlLlOyUE6g+CXAIlUKiruOf4j61XxImaKFwbS/8AM1C9iUomVhiK4z71laz7mUotNI8n+IvgrRdf1FtKj0+ExRwl5ZmBOe+PehyTeiNINQjex83/ABS/Zz8J3sTy32hI1zcKfslqkYAYD+I+g+tcdWkqj1RTnKbuj5E/aR/ZZ8PaTNBJFZh5Lw4htIRksO59cCuWWFUeh1Uq85NI+cfFnwAtWjuLrw2Johbz+TcqhKkP74qYQgjaT0uefa54b8QadBJbyavchi21/wB6xO4HI3c++ayrUIN3COIfLa5yV/pV1eTul7IzTp1aRs71pxcUjOpKUmRWltLaMy25/dMcOhP3TWcveYQi3uQ7QrFVG35u1dVFcqLm0tEc9qDPLcuc/wAVfOY93xLZ72BcY0UVdp3EHjHauZtRR01JXY2ZmEZIFZJ8z1CEboyLonBy3PrVNXdjCrJQ1NnBCjmt9Oc0xDaqNFmxcryOM4pVfhNackWpo5ioUHIrlTSFOKeqLulr5SAMaGnKWhdGa2Lxk2vn+dVsya2jJbebJ5ok7RN4P3SQyEkg+vWpgnuZ6tk8JdO9U5RtqP2dz0n9nLVvBmj+L49X8ZePfG+jtHcIunWXgLSVmvdQl6+X5zsqwDA+98x5+7xXq5VUw1NOc216HJi6cuSyjc/T39hL4gav4xia4k1e6hstPiA0+y1DWVvWslYg5kf/AJb3ZJy5PC5wAACK+rwVf65L3W9D4/Ma8cNC0lY/Qz4LappWlxroN/r0X225XKW812HnkIHJI7fTFdseSFSze54teVSpC+rR38uUOK6lK0jkgk1qUtd0O18RWh0+4bYCPvYzipqwdSOh0UaipM8Y+Lf7OHja8t5bzw7qscyYyFztI/SuGUp0t0dtGtSk9T558YaN8V/Az+VqOhQXAjfKnztpb6+tc7qTknY74yptJHnuq/GXWIZbiHxfo1zp0UQYxyPEzgnoMbeBj34rlqVKi3OuEIdGaPgj4+aWyRXun6+0VzBEPKj89WaaQMCXfPTjt0p+0vG99TePLN8rWhP4y8Y6Z4tmZtVQsJrvfMRwo46AjrXBVxElKxSw1No8i8T+GfAghjkNo7vK8gnBAChAcIo/OvPrY5paI6aWDg3qcdr+saZ4feYaDo8EO9/3UtwoJVWG0Afqfqa43XqTv2PRo4eEXscD40S/8WXUk2pas7zK2YVJ3gqM8H0rBpp3Ouo7wscvJ4ctbWHzbqIAx8ATOB3/AJU6d29CYQcVdHJ+K/H/AIF8MMY7/X4HdVP7mA7uffArsjTk9zCWJhGVmcFrXxXXW1ddJtAIGOFlmHH5V0Rpaoj2/MmkZcUmoahIqz38jQqQWt84T64716MLJWRhN8zO30CLy4cL2HY9q76a5TppuPLoaPh9yljdTMhbO7MYbBIq6tROFjppq8tDy3x9fR3mpSCyuCDzkAAMPqD1r5vEtc53taWsefa7KsUohll+bdgbhzXA+W5w1XyVLMhgxEuSa5KiudVNXV2MulBjYjgEcU4e6Y4jZoPBTkXzjPGfSt6qi4XZhg4xc2egRozAPnjAyMV5kknseyrJFnau3aR+NY21I5kVpbUM/PHcVtFpIJO6sZ2p6R9oTIHI74raNTkMXRjJXMWb7bpcuBkr9KG1J3RyShOm7svWOox3ibJGByO9JSdzeNaLVitqFlJay/aIM7T6VspqS1ZnUhy+8i9pGoxSgRyt83ua55xbdyoYi7se+fsm/sifE/8AaFvLzxraeJU8G+CtGjI17xrqybbMDjMCcgyyEZwi55xnANfZcKcLTzepKtUqSpxitLJNSd0mpO6skru6vqkmrO6iU6jr2grvt1PuD9hLV/2ZvDvxtg+CPwOF9eTWOntcX2sXsrLJfhcfvCq/Kinj5SemK/XsqjlOC/2XCu87atf5n0kKapYOdRJKTVmfTXxY1/V30+40KK7aCC5lAkaHBYL/ACFfcZXhaPtI1ZK7ReEo0IRVVxvJI4/9ne70rxF4m8R3cUjXFhpEC2jsQVQsclkT168txkk1257FuhGlHRz/AK3M8yrKNKCjfml+Bwv7WXizxDNpr+GfCkJFzq7eRpdiC3zuc4yAP17CvUyijSpYdzqSV0nq/Tb5nbgqPJRU6mpc8C+EtQ+DPw0s/g94bvorGOOJ73xFfRhjHDI+Wcgkku2TtVeSc5PQ1596dbEe3mrz2RNX2FWo67jdvRI6X4V6d4L+DdjqXju8Rr7xJqroReXyBpI4xnZGD/BjrjtzU46licfUjSWkFvY4MYsXj0qd7QXQ8A8e+MPiD+1z+0SnwC+GuqPbW0JNz4t18crY2xJzgngSP0Ge3Ndsp0cowqTWvREypLB0vdex1Xxs8BfCD4CeBLv7Vdw6fpCQi3iuZ3/f3LkhWYZI3O5PLEgKKqhUniKXM/n5GdWjGdLmnufLS/Dj4V/tReOfFk/gSP7R4S8BW0FvqWqpbMy3V/Lt3KvBBEYbk9Op6AmvHr05Ymsk9lf8NTx4VaCs3F72tZt726dO72S1eiufG8PwMj+M/wAUfEXiqOxkbRrQ3cGmOqFUWG3Us7A+pwff0rkjlf1mpKbV10PRjgqlaq520XRniHiH9nC/+IHxt0bwFaCMrczS32oOpCpFaRAs7kngfIMcnqa+D4unQyXB/Wqj1Wy7voj5XO4wnVjCS6i694F8EeNviJLd6JeRP4L8JaAda8VzQzk5lWZ40tMj+J2EKDqcPntX5tVq5lh8HGpWfNVrv3UndpXa1XRqzdn0afU58HGli6jTuo01d+bWyPJxpF94mmu/HF5tN5qF88pwvAJ+YIPbHA+lfa5bltOlgopbhg8MqsJYmS96TJZNAsrxBLGoCzDBC8FH9a744d01cqNPmlsY95p88d0YpeLpDjfj/WL/AIiuazlN9zF0IczdveRLZrbOfs80YDnknPAPr9K6ISnsEZe2lyWsWY4jbsZ47fIBCyKB0PqK1VKTd2dLVPDr3UamnpIs6H5SC3+r7rz+ldVNxVkY+1lJns/hGNJfCAMhAiSRDkckfNzxWGOX7id9rHsUnF0bI9k0y3trXT4orWONUZAwMSAB8jhuK/A8fOU68uboz1YRUaV0TKQWyOPwrznqQtWShtgyR+tJuxrK0UERDnAxwetS5Noz1kKoHmYAoirmkIai3H3cdPrWkSavxDLYBmJAwcdat7GkWrE4QGNiDxjrWaepcl7pjWTY1c/7/WuuK908+m0qpszk7ySc9sVzydtD0J6xKYT9+Sx4NCbascysmWHO1Bx+VZ8rRbdyJ1JGDx70SZp9kzpU2z9OB0NaR1Rzu0WFyjNHwcHHWp2dipNSjqVIVw/zevFU23sY/AxZsEE+lVFuJcrSiVTJLFOskE7RupyroSCD9RWim73OOEffujvfgxceJ9X8fabGjx6hK9ygUalIZE6jqM104SMp11YyxVaKjeZ+1HwM+y/D/wCGumweIdX0+KeaJDb29muFLEdNo6/Qmv0PDVPZ0UpM+Nr04VZ8/Z33/q59b+AhcyeDLJ5SuWjyx2bRyO4pqTmrnPVnH2mhasra3C3G5SwR87W6dO1SnbctzloyKJ2k4m5VvmeNew+vai9ndmskpLQrazcrHA11LBhCpjiUHpnvzTctDNRclY4vV7iyv9WWzECfZrGHfcyBvvsegNZxknKwnCUI33ueceKp7KdrnWntYlnkb7PACM7Yx94/lxVOS3HaySPn3WPBmn+JdY1bxzqVvEy2ytBp8QiwsSgYB/8A1VzSnKpdlfBFKJ4BD8KWtD4ga/4N2xuEOzjcO31xWNODu7lOpOx4j8XPhMhv7u1tLfcWYyJ8mGBAGR/OipD3QifPvjHQIJnnMQMc8DbZFI5UjviuHkb2OuCTZzUdq5+Z1UZ4MgHDH3rWNNJainU7GIY2W8eJlwFfqKvnsrIVP3nqc9eMBcSE/wDPQivmsQ+avK57uGVoJFYtknjB+tctRaHU9GQzk7MZ5qYm0DIu+MkDvWietzhxWzN6VTsBHpxV3bmdWJTVRsfZuwbGBk96c03AKDRpKwkQDpgVyW5Xqayukyxa/IR1zmtbqxFBXkXHIIz696lF1txLdyW2mipG8TSm1YtxIJACKmOkSpRitS3bW89zdxWNpA0s08ixxRIMlmJwAPqalU51JqMepi6krXPXdE/ZJ+N2k+OdC8OePvAfjexjku1k/sbQ9P3zXcjD5MfMAvGfm7CvawmX4ulPllTbXc560nWotRZ+kX7D3wI174T2Qi8d31n4PjNuqxWU1+jXsaEkiOK23sVfH3pW5b2AAH01BU6KTvY+YxeFqVIRvrufen7MVx8OYbuSx8I2KT3IjYz35YzSf9tJSOWPoOB05rqpWqT5or5ng14uEPf0ev5nrkmfO9a7m7HBHW9hkrlTuYgVtBrluy2mkPktUvLcrdOVjPVQcZHvWFSn7VjUnB6bnB+OPhtoXioSRaJpMbuAd1xJ90H+tcNSlraJ2RlOK98+dPjB8EIHmuIZbeK+kVCWiVQEA9yOgrknDl1Z34ecj5q+I/7PvhmS8e+i0a5tTFGS7QsI4wfYjk/nXNUlC1kjqlUlN6M8A+MV18VfhpZ28nh3xBeTT31x5el6bOwczP3YjsoHP4VwVfdkXHETR5b4y/am+L+jmXRb7QLW4nsyDJINwGTkn9QK5KkU4nVTxE1HzPN/Ef7VXxhnt2mGnWaSC33AeWzHIOSOT1rlhS97c9D6zVjC5zOrfGX4v+IbIX8HiyaKO5XdCIFCDI/hNXOmpoiFapVerOb1DUvE/iG3W+uvEl4Sx4d7pv3b90bnoexq6SjGNjrdSUY6MrLfaxFIIdYcy7RtaVkG9D6N6j3rWLsjlUHLVmrZ2ciuGikAdx8uR8knscdDVxm2W24Rsjf0ZyX+zSRHKkbkYfMn+Irtp1OVWZMLykd/4VRJYRGpywQ4I7iu+nUbR3wp2RN4fuGiguCRIhDMBKBnn3HpU1al46HbTUYux5h8SDaXOoy+ZZp5iA7trAFvevAxLtK7OpXkjyjXoJDqCyeZuTJ2t6VyU5x18zy69O1dMtwuDGNp6DrXJKLuz0VJco2+Yrb468VnGPMzKajIXwNHJ9tkcevGa2rRfKc1Jckz0OFsRjjnbzxXDNWPRu3ElQEnk/jWW4opyYMpGTtFaWsaSjYjQgsdw4+lOWo1oVNSsIbhSGQdOmKSbixSipKzOb1DTbiwcz24JAOSK6o8k15nnVaE6bvEfY6zHcx+TcD25ocHHYiFa+jEkgaKQT25yPak530Z0KmovmR6T4R+OXxWuPDWjfDK98a3s3h3RLiaaw0SeU/ZomlOZDt6ZJ7nkV7+W8T5tgKUaFKfubNW3R34fFOnNqKWvl+p97f8EVfCM2oat42+OR8KWum+ENNg+yf8JBdIFL3Yb95EGbBYAEZ7ZIFfoHCud5diMTKjGny1NDkxGZ05YmNCF3Un0/4B9geObW01iSW3sCNsytIzbMZGPve3Ffs2WQjh7yS1k7vXrZL9Omh9Tg/aKmnU6HKeDXtNAt5PBngi2Kx83F/JtOZJCfujnp616eLbqTVSr8vQjE04c/tKnyOd8Ri4s7qXxM7pd6nKHj02QLuW1VeGcY6ntn2rWnBTtHZDUqtamoR+E5nwbqOo654avNU1qSe6jvLl0SLeVKW6HGT6NI3HHRQea3qQpe15Y9F0/wCAdEKXs56JqxzP7RXxYk8MaO1/ZTI+GaVYIzg3UjZijjT/AGd7dT2Q/hvSjONNyW/X+u5hib0oWXUv/wDBOjwzoug/Cjxh471y9t7iC6vJJNT1QA41ObJB2EgExADYvqOcZNeHm2GliJ0qUoXdTdPt5o56icqdOlFXm/wR418SJR+3L8Ydf8beILtz8O/hsC9xCG2QXl4AQkC44IBxn3NfQ+yjgadPDLXm3NKjVJRpLVo4f4r+PtQ+Df7L9t8LvhEzaa/xB1I/2vqdtHlYLd5QjSDPZQTzxzivHzBQc0qa66WMI4ejGTqTVn0RL8c/hd4c+APwS8LeAvBkhuF1qwaaa7jwcQLAd67gOrN8x9S3oMDqowdXDzlFWUFb1ZrjYuWH5krWPlf9nnwvZ/FMfHDUNNeJtd034Zr/AMI9YzXEUC25edPNcyS/KgUKAc46jmv528aMfi8Ljcmw0k1SqVU5dk+3zstfI+JzClKdTRNng37HHw1uPiP8BPGPw6s7MMbi5XUtXvJDgzGAN5cYbuoJZsdyR6V7WQZPHM8e8VNX5VaK6a9TbIsJRqZRUXVvX5dDh7rwn/Z3hjWLezUmTT5xPFx9wo5BGPpxX1VLBxpUJw6oypKSpSh0RSg8NLqOjya9pik27hWlQZ/dlsH8vQ+2KxVP2qOyOGU6anE57xbpEt/am/to9txbnEh3fxdj+PSuSrhFD3up52LpRUeZbmTaQQ6xpy6nCdkittlQdY27/ga53NfZ3R5ixKrx5oqzW5raJb7ioXJnAKyK/IZf/rdvWh4iVjpoN1H7w6CFEvhb5IdXxu9OehopyfNcxmv3tj3D4cWl1H4NnntbaIzRFZIUnAKmRWyNwP8ACT1rkzfERpYWTPbhScqTPV9HeVNHtorlVEqwASqgwqt3AHYA9B6V+H5nOMsXJx2Z6FP3aCiyaB90nTp1zXmsUdyeQfusH0pSZ0TV4hAgJz196UVciNooczEPg9KuNkVB3ZHdzbY+SOBQpJMira4tlKrgMv48Url0k2ixIQsTtu4xS5rM3a90w9OfzNWOBkb66oytA8uK/fmzJ95ua55yuehJ2RUXe0/PrTi7Iwskyww2pj880m2xppsiYtszUyZcnaOhmyNI8hGO/FaQaSOdx1uOkb93g1nL4h3VykVYScnvW0Niamw9sc1Mr3Jv7lioWUyZzzWsYO2pz+/sjs/g74g8WaN4qtpfCtiZ5PNUMDamRRk98CuihL2U00zmr0VUi+Y/XT9jv4U+M/FGm2Pizxp4rtUlSFXjtim4RjHUK3Q19tgYOcVKTufHY1yb5UtD9APCVv5XhW0jRzJsjwGbjNejKcbaHDGLvqWIPKZmHQytzUR7nVO8V6FHUWgRzED5KAHPHL47VNSRvRT5bszNflt4bFr+5R1xH+6j68+tSn7o4+9Oy2OP8QrLp+iF0QwJdDBJABcnofwpNqK8wuvaaO55/wCP7C006W38M21x5rQW7STSIudgbqSfWlJSclFGbu5czPMUm0S5sb7QhfvHCjKJfNXBILfepx5YRZdTlT0PMfH/AIelXTba38O2wkuYdQkE0XQtEGycf8B70lZmdm5Hlvxs8FfYPF9tqvlRwwXNuWRVOQrf7Xp0qZRu7jipcp8nftGfD4WWvXHifw2oVpCVu7QdMg/yxzWM4a+6PmadjyWaxje0kn8raCvKYxzXPOEky5NI4w7vPdn6hj1qFsdFK1kcpLJ5kj5OMua+dxLSrs96iuSKIOQxBP0rnnqjqtciuGwhI61nHc2ijHu5epJ71o1ocOJtZnSyqWiyB/DWispHfiI3bG28gBHIyKpvQ5Ke9kX7U84B69656ljs5eaOpcjG2Tp3796iLFTXLItM4WLJ9OaHKz0HVQy1cSOAvbnNVJrlCmu5fgz1zg4rJS0NnFNkz7JBskAbI6EVUW73QrJGx4Ij1DS9UXXdFjENysscCam12wa2L5HyLnLNjOAK6qMpqDfM90txScY0nJR2Ptb/AIJ7/DHwx4q8fPrrahcTIZFtL26mu3d5ZFbIjcsx3SnO4wx4xkbm4xXuZbThCvzTk3fufLZniOVJJux+y/wJhsfh14VtdPuXttLsSOGvlSO4nY9PlXAUDoOp+pyT9ZKrSp/Cl8j42NCq48rlKbu9Xa+r20SWmy0vZatu7PUWeOVRJCcg8hh3FaRfNqQoOEmmMfyIv3s54Xpmm2r3ZpFORnXl5LrLmzjk8q3X/WN3Yeg9KwdVzlZbGsaSpLm3Zg6/4kvdVuB4O8FxbQFxc3e35Il+vrSb9p7sTeFDlXtKjOa+IHhXSdA0eOzFqZ5rghLa3ViZLuU929FHWuatSUbJBGq3fseW/Gz4GweGdFjvdfu0kupoy8qL9xB/dA/SonQjTj725th63OtD5fufgoviM6x8XNds8okf2TQYmTHkrzucccFv8K4J024vs327ee/y/wCAd0oRclZnyjrnwli1u61jUp7bCtI8iEDJIEgUZ/EGuL2cYpnY4xjFI831r4RQxXl/o13blZEfz7VynDI1c/sbApOWh5te+CP+EN1i48O6pH5dleSbrKd1z5cv90ntzWU1yG1FuMjE8S6IfC9w08kH+jXgCXcf91+zD2Nc8lK+h3pOSuzNSF5IHguFR5oBiCX/AJ7R+h9xW1KE2veLm4qGhNZw+RCbiCykkgJG9c5MZ9/Qe9dMYqK0OfS2p0WgvDdHJyJE4DMcOvsfUVrB3kXTlY7Xwt5izImQGJ6g8H2r0aXwndF3RWtZriC8vkt5WiZZSybm4B9ff6VniLLY7aKa3PPviHImo6m41bSwjKMtNAMY9G+leFVqc87NG0Xd6nluuzJa3RUjcN2DnvXPFL2iSVzhxTadxum6hFcriMjg8isqkXHc3oSUojdZvhDEVYY470qcLy0OetUVKRpfD6NpN0xPWlVbjGz3OijFNczO/tsAD6V59TU6201oWvLXHTj1qIlwSRHMQAVA4x2olK4VHYrofm3Y70k2ODuhtzyNrcVpZGc20UriFHQqVHTvSjeMrgvejZnOazoTqxntSR64ruVWL+I46lBR95FfTNYFs/2W+cL7vwKwlDmldbGEcQ78rPcPhb+znqtn4Lt/2jvjda3ehfDuO4Q2LNAy3viaUMMWtkmMhGOFe6YCKMHqzYQ+/luS4irSliZxtCGr01ZdHnxeJeFw7vNrfpH1Z95+DNN8T67deFPgDoXwFh+G+i+N/EB8a+M/DuiXrvb2ljAqCxsXcAKZJWXz5AAMhl4GcV9VwNkTr8STx1ROKdpW2W2it0/A+gyDL6WDqutOp7R0YtKTt8T3a7+p9G+P9cstMsLjU7mOWKKNdkiod7MQOEAAr+hcKlNpR3Pew1Kc5csXucJoDeMrzw1dMwfTX1CNoxsTH2O1JyTuHLSH8+fSvRqzpKrG+rRpVwlNVbt81jm/iD4j0PwZ4JvNbuVEawWIit1d/nMQzxn1PU/U1pJyaOGrVknyrY4bwT4u1i5/ZzHjHUJ5li1bzJrt5piJJQAyxQxkcxRhTjj0+mJpUISrt/dbTfd+txUufm5222vu/wCCeIwal4t+OWm+J/i14jVNN0HRCmlae1sxbyYyG824bHIcgOF6YBrulFRqLmdk0Y05TrYl83R9T2D4nfEi8+Ff7E+jeFfAFsbXUNdtA9laqMNFHLhIARzg4O4nrk+wFZ4Kn9ZxrrX0joj0KdKUKsqvyOY/aD8PD9m/9jHwh+zJ4GUvrXijyptZuScyTz3DgFmPr8zNk9K3y6jXxuOnUjq78sf13PKpzqTrTqS2Rw/7RvhnRrj4e+Afh/awJ/aN/IplKNuc2dvIxUtjpGCpYjjcXHYVFGjTqVJxk/hdyqkMTOVnflOu+EHizw9+1X8MJfCV9NDDqHw/SSy1W3nwZri3MLCKZWB+Undk9eeOK46+IrYbF+zptcrfvKzu+1ndW+5/qd0IUJUJRlqz5e/Z8+H3wfsf2vfE/wAL/F2va5pug+I/BF7b694i0i4iUDT1XMkKwSIQ0jnADlgF3EdSDX4F49xxiy7C4rDwUpwnG0Zd27J6bW369ND4rN8JWlVTjK0Nb2Wrs+/bdPTro0ZX/BMXwD4Xv734ntpXhe5j8NadY6hFZaZeXYeXZHG2P3oUB2J+YcYOcCvueCKOLw2SxqV3+8bV7Lv5f13KyrmWXJRTSvoeA6TaaN8QfFWrXWl25gsdS1W6tTFKuCm9fl4/3h0969qveUpu250YelG0mtbnJfDzSbvwpeXVu1os8dncPDeWhHE8J5PHtyR6EV5WHjaXkgpw5YOJz/iyPQ7DxvJ4dETQidCAGY4lhPKsD6rnpUYitT9vyM8qvVpOuqOz/M4HU9FufC3ix/KUCGZisqkfLkdD+NeFiaTpYi62Z87Uws8PjXJbSNjSLZIXDEbRjKjGeP4l96FTdrs93DUbIa9nFFrzqjBELjtkEf8A1qdKHNM5akLVz3/4dabeS+BJXsITLcRJ5nkjgzIOoU+uOleHxK3DCNJ7nuRX+znbaDqNprujQ6pp8u6Nk2sW6hhwQ3oRX41jY8tQnDVfawt2LED+XNjj6VyJXN07S1LkzZjDDpinKJ2aSiFsSRyPpWbTiZS0ERHklwc9fSlewU20xL+2k8vd/SkpK5clzdA0u1K8MMmnZsm8ouxeuoR9nckfw1L0Zsr2Of0hV/tYj/arsirwOCaftdDelCgHAx71zzjZnXb3blAKRKBz161rFKxloySViy8+lJ2Q4qzI5TtjIOKxk9Rt3KOTuL7a0gu5nPREEsuAR/KqktDLXcg3BjnHPpTgrI1l8JBLK5cqp49a1SVrnPdkRQls5wPepcmxNxgd98BNW18+NbTRfDevanaSXNwokNjdCJHGejGunC0XVqpXOGrU0Z+zv7J1r4y0fwBbi+trpHaFVW6ecSM34kdK/QsJQ9nRSZ81iVBM+zPBTXMvgy0acgt5Qy3U1ckoqxx1FGNVWLdrLHvVlGPmxkmpg7mdROzKviCRLd1umt94RTgleM/WlUjc2wycoNGPqiqY47/U1Vj/AAoGxx61lzWVmVZ7I43VFuPEeuR6t4mnEVhZEtBGGxzz1xWfNd++KSVOFoq7Z5/Y31pr2u6t4omhRrS2TyLGAvkSdRn1P1PpU4eo5VHNjp4b2cIwXRdzznxlBay3FzZ2tuA91bhpwi/NGd3Bz6YrWclLQUo2sc54T8NldfvL3xjeLtRm+zSngEAYrOleN7lSjZHB/G+08N+JNfs9Os5II4hGImZGBLdeGA6deDVynd2RldnyT+0B4UOn67c6NLcu11GGEZBGWQcj2OPQ0Qd2VBa33PA/Eek3NhbTNdRYV+pUYGfWs6sbsc9UeYzALNM3puOc5rmlZROihukcXIX+dh/ePJr5StK9dn0tKPuIYmRyTyaxm2zXm1sR3eCuc96UGawMW/BDZNapnn4rW51dt+/hABHTilPSZ6dRxlNplU28sdxuJOM9MVpfmic8oOnqjUsCFQHNYODHGrJlkOWYHP0qnCy0OiNlqWpiDCV5wetYJ+8VuJZJg56elW1damc/dehdjkIIx1pKKTKjO6sSpxyDVt2Whd1FXOq+EFv4B1Px9pVh431qezQ38T+bHC0iJGuWcsqAs5IG1UA5LdRirwdP2tbWVvxOWrUhKm43aZ+mn/BOWx8D+LfiWvxH+G3guziGnxfYrSXVblN1gAcDybSMlLd2xlnkZ5nIJIUcV9tg6Srq9lY8DF04ezvN6n6S/Drws8mqx6z4tuhNOrH5NQcHYM8MBnAJ6gdh+Ir1JQhFJHgJzdC8otSTf52T07rXv3s9D1ZJEdd8LKyEfKV5FbxcXG6PKbanqUtUu4S4hdWJPXArKo0dVGEmrmVeQ6rqgNpbKtrbfxyk/MwrmUpX93Q0hyQlrqyr4WdJdRlh09Fj02wBMkueZ5P/AK1VRqXm0tka4lOMUn8T/AyfCR/4T/4q3fiK6jP2fQ4/Kt1JypkYdfqB/OtIS9rU5l0MsTH2OGUe55/+1JqF1resxeFbeRRJeyrGoXnavp9TXFXl7ary3t/W3zLw9PlpKRwfx50rTPC3w/n8N2mES0tfmTGBuC8/596mUVCmzppuTfkfI3gXwAniTwfqutWkfmRCKR328gZk4H51yU4RnDmO2pJpWPNPiN4bguTZaxa2uPLVQ8qJ99CdpB+hrnq2S0Lg9dDjfiT8KdL8S6Rf6XqZ25g2q4UZjfqj/wD1655U4zjqdClZXR4RpECatb3ngLxgHe90xvKZwoZtuflkxjlT39K50nTfKdEK03omcze+FoNGmfR9TDKkhP2W57A+me1bJycSk3a7I7KGexLCVwssShWkCbgy/wC2O49xWcXJPUdlYv2mm29wwv4JER8g7ojlc+h9q6Ias0gjsPCyl5kUoNysN4HfnrXp0tYnfBNMqSyXC6jeGzu1ikZzhJlASUenNcmKcYt3PSimo6nB+OJrN3m+02LQzKv8DkxZ9Rgd68KvVSbaJcopXPL9cso74iMRgehziuONWXPchxdXRlTTNPisDkg7h3NXWcqiTuZQg6UrGJ4yvpvtAij4+bFaYd21OTFQfNqd38ObYR6WryAZK8GuKrKUqjud9GcVSsdlaElVJ64rlqPU6FexdjUBOT1FS9jW9iJzuOAOe1JJtjcbogbCP07+laqKRnB2ZDdMTkE/gKbuVUtcqsx6n14oSHoo6Fe6iaRSQOvU4q1YyknI679m7xR+z98NPiFP8Qvj18Hr3x2umWRl8OeGUu1gsLrUAw2G+b77QL94onLHg8Zr08urYbD1earG9tkctXCKtScac+SXe19PLzOtn/be+PHif423vx08XXOj6tq19ZCyh0zVNIjm0ywtlIMMNvat+7jjiKqUUDAKgnJJz6dLOsTSxUq0Hq1ZLojqyuf9lU5U4Run33v3utbn0d/wTM+IvxY+NP7WOr/ED4j+NdQ1y6GkS3OpXl9MzIjsVUFR91eBgKBgAADpiv0Hw2r4vF43EyqO6sr+tz0sNi6kaTpR0hbZbH2N460y18T+JbWCA5hjmMzgF1CydAzkDBYDGFNftWFlRwilaNnLfTfZX/TvZdke7QnUjR5r6mV8QtWvbOD/AIRmS8aO2OQR5hSRlHLOxGME9AOM5rpp0KOJjLzXRtfc1qvVO5UJ2fM92fNX7bXjWXWYrDwX4Xs1NzrNzb6bbWLzYLea6q33cHhSSQOg/Gt5Xo0uR6tnHUppNwV7s6D9qvUtL8AfCyx+Gnh6A2MOmWiWZwVLMdi7mUHPOcgcZyPxr0ctwtVUeZs9PB4epTw2rvc+e/jf4o1X4d/BXTvgD4Ms7y2vPFfjJYdfWefdIITsZ0bgZO3cCSODms8V7T3E9ZPRaaeZxYh8knKDbk9nufQfxQn8M3t3Z6veafLFaWFtAwtpJeF2xpHBCpOAvOWOO5A70qU5YKg1LVpPbqzqoRrToOE5XZW/au05PG3x7+1zxg2nhbw7FcxxhcxwkRqF9sgv+ZFcuDxMqWCT2u3+JzUKTw2AXeTZ4r438br4p+I/iL4laZcJLp+g2DeHdBtoY8jeIgJJOmDjceemV+lduFwqlKMlO/M7u19O1yoVXG8bdNzifhlqniP4G/trLF4dv47jTNf8LJaXlldr8kz+WTgleAcknvRioQqVtev6HmR9oscnJe6+w/4GXPhTXtX+LH7R3jSztNKsPh14ZvFv4pHF1b6kzrJGLW4iI3ASMUA2FOVXJIyp/AvGPMeapg8vjFSnUkrau6tJO/rb8PPVeNmuIw9aSg5SjyXelveTTVndPS7T92zulra6dX/gj14wuPiP8O/GfhjVbGOC91HTJ7iEW642RgZCIO6qoCgdgMV+q5FJvLKbm7tWWuvSy+4WWv2+CjzX0aPFfDXw+t28S+INImhSC+07WGa4UptzMJSyPjsHU49MkVriadqsonrqhCldWOb8e+FtJ0v4ga3NbI0FpdSpLHI+VMTEcgn+HqTn2rz5UIQi2efVSU3JHkf7R3hA2+k22sW7L9v0iQL8p+/FwcqR95ST26ZweleDmmHU4KrB6o+dzqjJ041orWLv8jiPFs0Gr+E7HxPCGJLBZWB+6ePzrGVKWJoqoKq4YjDRqpDokCaS0+zMvlBkcD+Neen0pVaLVPQ7aSlOh7pAl0b3UBdsgAfa4ArzleD0PKk5KrY+kfhnBNa+ELW+tomLQ/OVU8lOOR7ivlOK60o0Fc+goTTpI6DR9OisdWn1XSo1Wy1TL3ECcCGcfxAdgw6j1r85zGnCVJVV1NKOFVOq5rZkt5uhcPjgV48bJIVaPK9C3bXAuIMZGAKo0oybViSAiM7SaymXNdSWB/m345zwazSuTTSZNcusoCYz6ZoUWtzR+4ri2gVDnA9xV30HG09US3jD7Mw77azteRc1yxOc0pR/apx/eruhpE82Dcqhuz5HK9+5rCpqd0k1AoEsre+eaqKaRzU7X1HkqF46e9RO5pJohnfdGwyOnFZWdyYu7KZcjB/KuhLQzqMrOy5OePWiSbFTV0QklT6GmlZFytYgkkUPnuetUtTkd72Rc8Oz+F7bXrW58Y6feXWmJKDdW9jKEkde4BOcVceVS1F7JdT2rwj8dv2aPCvim2n8NeEr/T9PEq5tGi8yZv8AtoOa6aFenTqJtDq06Lp2R+oX7FvxdufiL4bhurDT5LfTTEpsrJH3yMPV/T6V99hKjr0U0fG42tGMmj728Pfu/CNsXQKRCOi4wcVo42jqeW6jnV0GW88e0TSdQcjIrKLtudEk72Qy+mN3ahrsDaGyq56+laTfu6jp2pSstznNR+33mo7VsmlSM5k+X5R7e9cm8zoSjGK1OV8bNaXaym8k2Rt8hiTjcM9AKyqOLdgXkcR4x1DSbbWdO8LaREiQcMIpIxmQ1UZWmoouMZSvI4fVdMlm8X3ySq32t4iJMLhQoHA47Vry/vLMirZJGHotzo7aTd6fqczSi1dkMTKAynseaqMUFk4nmHivwXp2rarqV9phdZotplTGC6Hr7ZpOMVIxlFo+Y/2ovDunanq4SOZ5THGf3xyHT0zjrVXitgimj518c2dzpWnXFpcysxwMg45HrWUle4SPIriLZBcusYGFbAbqK46ySizegnzo4R3LgljySa+QqfxGz6mm7QRGchcUaWBayILmT5BmktDoiZF4d2c1TRxYlaNHS2shhC57DmrlC9S511vdm2XI0S6XHf1rRLlRUZKroOiH2RsOCMetYzknsZVI8jLFrPHK4IIz2NLm901o3bLkzlY+RXP10NG0mLaHIO3tWsmlEl6lmBsuST6VlFvmIi+VllTn7mOlW7WNFFz3Oz+EviD/AIRppYvDepaboWq3+6C88UandSMILQj54kiVTgsMgsPmOcAjmu/BY9YaLjFJN9fIc8LzK6Z9Z/s5ftn2Pg7UNB+FnwWOrzpbzbLnxbdaUCbZXIBSxsUIhgJI/wBZIxkb7zNX0WHzpV5QoxT5U97fkv6ueRisPThG9R2P1K+A97P4m0W01bUvEk16AoN3JcTnhyOQgH+tfnGQSBzjpXu8jdO8j42tXbumfT2gPB/YlstnbSQxCIbY5AQwHvmt6NlTPKmnz7jdXeJY8ZIJ7qOawxE1ax14W7Of1i31S8g+w2crwRuR5jtnc/0rhd5LQ9SnGlH3nuF/b/8ACO+FWtox5KCMs5b07k+5rZXpwscvNGpX5iv8IbWTRfh9JrO0yTX1xJPjGCcnCj8gK6KLjChcnGN1sQodjymWKbW/iYdd1CJZI9Lk853zwpGSR7npXFGF566rudjUlT5Yo8u/aXn1bxjp97ZRhUS8jErODyAXII/LFZ1oqZ0Yegk1c8svfCMvgLw1JZaJF5VpLZq06YwHyQeAK5uWMNIm9WMWeX+KPDY8LW8N1qsWbRryS2unA4QSAEP+BNTKFNLVhBrY53x74WtrfTTqcjrLFc6e0czRnpIo4YfzrGfKl7pfMj4/+N/g/XbfXrT4geGr82l3EyoLkEmOZOflk9PxrnnRc1zLobckm7ostaJ4z8NHU9RskjuUUrPCTgFh+hB7EVMZJxOtXhCxxrwpp0gkeSY25OAQMvCfT3Ws5XiQtWaOm6RcQzebBsKt8wlRfvD3AroopN3OqCs1c6bw6pE8Y27Srche9epDSJ2RZk3ckc9xexyzxKrZ4lclD9dvIrzsTKMZM74NWvc828aW9rHNJcNb2zD7p8u4Zj9cZ6V4OIcpNuwVYSlqzjLp1kfgZwPSuaEHe7FFqxBIoEZb8qJzdrES1Oe1e0a+1Ddj7rDrW9FtRsznqQ9od54QIhsljH9zoKyqxle5VGNtzqLEMyKW9K45LU9CMdDQRsR5IOfSspblN2IGVgST69atWSNFqtClNOyyHb696pMwafNqMuHOQzDtzSUkaTs4lYyJxz+FO+hCuKAQCuOo4qHK7HN2WhClsWlOfWrbaWhndI6DwP8AD/xj4+1tPDvgTwjqGtahIMpZaXYvcSkeu1ATj3rpwlDE4qfJRjdmc5yfQ/SP9gP9n/xN+zX8JrzUPHHg7U9G8SeJruOCOHW7JYJmTbu+VdxYKvJ5xnHSv6K4Ay2WAyeUqkbS3l+h7eWUabwntHq1q7a26H0BpGteFI9Ih1O01MX9qZ3WGZSCplAO5/fG0j8K+lqYlyrRTdnJ2X3N2+5M9Ne1mrxVj568X/FKPxj+07bfDy5SU6dFE08Vw7IqN82GYrnLN7ZwM/jX12FpyoYKU47pHRyypUuaT1Z5qDYeMP28Dr+rxyz6R4KjU6Tbrbl3nnlfYJiiZ2og6ueFDZJwM1xV66eIpRqac0fxHgqUquKsnryt6tLZX69ey3b0Wpn/ALVvjSz1vxVNqct5DJBbsGkiDD5CZFVVCn7zliORnA/Ovr8HG2F9n2OzEYiFCkk9Dzjx4ttca23xl1S1M8ulXwMcTjd5t27DLDONxCuq89zxXFUk5u9m+XyMqdC0U3szvv2ofEtx4v8AD8HhfQddNs620VzeQvGkcdnKiblIO75yi4Oe7NgDjnmhh/aturt6mFWusJC6j8zhvhB+0p8TP2iR4ktLTwjbx+G/DEFtpdx4xik8s6vOAGkjYyAAsAOOx2jkYr5/BY2FfOqtCUrRjsr/AH6ep5UKssdipN35I7b7+SIfiJ4StvB+t33hRdUNquraBcanLbJIdlhAoJhhJ6ec5PmMR13DngAfQYTE0niqkYKW3y0/D9fuR6kVKtRTilZdX1/4HQ8z1TU7jxB4jg8aiWSWXSrTTGjkgyuws7Bt3OScH8q7J06dd31urHE1KVrHB/EHQvizpP7O1/otnFp2maH8c/Hsl1LdCRhcXljp0oUjav8AAZGJJ9RX4ZnGBwvEfiHFpX+rR36Xk/8AJHyGZ4SviMwUY3s9z0n/AIJy32mfs/fHDRtOaAW1vJqZ07UDM+NqzwqynHYZDc/h1r9JwmHjRwsqUFtqe3h6Hs8NOEFsVf2tIW+BH7aGtaTpOnpe6ZrELyXUezBkiQZYgY6qnIrWrKL5aj3a/IbhWqU4zn1OT+Jup/C34reJLnTtHuo7Ca/0pI7y3vZgAMxq0dwjYG5CxZfVc/N3rxq9Xn5lcurSpyptJ7I+QfiBL420LWZPh/4hvXmSwkeKzMxyUGclcnqD6dK+frOqm4PY+TxPtlUdKWzM3wrGn/CMaj4eu0HkyjA5z5TdVP8AStcE3DDuDN6dF08ucGuozTtVS60CWydMmPAbH3tw4P1GKSftYO5WBrQdBxKnh1EZhbMQJI35JGQBXnSouLOWGGlKd33Pqn4VgJ4Ks2H30LAkD2H6Gvzjjqs06SR7lOj7Kmjok2LkxoFzyQBjNfmtWpKe7Gpu9itfxiRCcdO9RF2NJx5omdp9/Jb3Plds81pzdGcdNuEzZXDrvQ9RUT1O63Mh0J+bHasb2MovlYsvmgDjgUcybLklIsWKZALdKlybZVOSTsSX/FuwP93tWsUVWfuHP6Sd2rkA/wAVdUfhPOpfxDcnbAx7VjM9CfwGc0h83nrn1pxOOKdxzthB2rOTNJ6IhdhtPH51C3JgUpSQvBroTRFZa3K+ctx+VUKk+g1lJGAOaynI1exTnQpLu7VUW5aHK7qVxwlxwDxVciW7BNyZr+DLPVLnX7WLSbA3UxmXbH5W7PNXS0qR5dTHENcjP2c/4Jv+CPFNj8MbS6vdAbSpbjYJHlB8x19Pm6V9/gq83RVlY+IxVGUqrZ+gWnMIvDsMS5+WIAhh149a6nKUo6nKqXLXM22uEgR/PBPz8A5rOGj1Ozlu9CPU7meRQkZwDwNxxirqXauVTilJ3Ma4UmCS20S+kyAWuJ2bjHcVzJq+jHJu95I4bxcLq8162tdKiSe6ZcncuBGPX3qJQblZBG7jZ7HI+MoJ9I16ze3iW41IsBI7kYT6VfMoTSS1OmlC1J32OL8Za/qVje6hqVjOJLxWRZncDYy5wVHv1qKlWak0jKcJNIwrbR4zFqEmtxpMtzcAO0I+5wCCf6VpTm1oypJQV0cv440QaRdi5F3OIVgGTDjdKvvjk/zFbSsjmnJWPl/492AufE8+pRahLHbiPaGdCEGf6VDklsZqpOWlj5r+M1mlnamKWNi4Q4kHKsvqD/SpcopGjaSPFL1R/Z92/J/dt83euWouZM6MPrUSPOEORj3618hVSU2fSbWEZsZx61LtyhfUr3LAj5elSjoi9TKvE/vHnNWjgxTbudMihowcduK0bXMelWjzNjrWdoJckjk1V04nHFunM0mjW8g+Xriudtpux3XjUQlhEITtb8yKlxbMtYTLsx3KMHmiMUmJN82o+0+XovXrTnFM1abV0WY1w/y8D1qNETF66lmEqoGeeM/SsW22auVibT9H1LxPq1v4e0aBZbq7kEcKyTrGoJ7s7EKoHUkkACtqFKVWXKkZ1KsuXRH03+zFqf7Pvwc8RaX4ZsviU3izxDa3Xm6p9ihdvD+nSkY+eX/l4ZTgEqACRgFh1+nwVbDYJqkrtvp0ufO4pYzFaT+Fa2P2Z/YzgvPG/gWz8VBpYhMcw3NxbiNivTMSZ+QHnaAMAcnJr6q8alG6bUr7W0+8+blHku+h9LafdJcWarCjgRnyyz9Wx3qqT0aZwVoqLv3H3jlcEQbzng+lTVUX0uKkn3sUtUv1jXyrUp55H3z/AA/SuZtLbc7aUG/j2OW8cWQFgF1OeSQuM+SG+aU9hjsKyqRXVnVQtL4VZB4dvNUtPBU+is6x3iRM+ztbofur7ECqjNRo8oYilGVdSR53Np2naLZ3OloknmamzJb75PmkUnJb6/LUc0Y6LqVTqNzt2OU8QeDtMfT55tRYtEZvKBJ6Iq5yfxHXpUThpub+1adonllxpE3xDsJrKGBkdCbayMeeQOc9uMA81hBQe5Tk4u7OI8feEbLV9J1LQ7aMysrpDIMfK79M/l3rKolU2NITvqkec6NpMUfhC/8ACOq27y/2bKCJnHzKR1B9RjIopUVGLuatRck0fOvxO/se2/tXw7JaJd6ereTcLEmXjDA7JB7gnBFclZ3vGLOuM0uh5/pPw21XQfDbW0cMxV7Usqht22QHh1B6Bh1HrmppUZRTuU5pnFadaLqEc1okUuYZCJV3ZZG78HtUcuti1JSWhc03S57XeI5jtUgqynH5g/dNb0YWeh0013Oi8Oxs8ocZIDdxzXpJNQOuKVzldd021eac3FntZtwDmfYT7g4NeRi5xUnc9KnFRPLfEVjcWN1JLIuEY8YlDfyrwa0ua9hSpycr9DBaMu53KRz+dZKokiJWTI7tcJgHtUKSkzOabRmwwAXHmkDk966E+xhTdpanU+GjmMAHnHBqKsrI6YrU66zXYucc4FcUnc617sS1kn5e3vWO5DdxHIA6U9S4Np2KN5HyZAvHtWsVoFRXVyvIxlTaRgds1ErJkQkVhEFfDevFXbmiU9GTqo2gheOxrJqzF01AIpO0Nz7Vt0Iik2amg614g8M6hHrPhvXr7TLuI/Jd6dcvFIB6blIp0MXicHV56EnF+R1Jxhqj7/8A+CdkPjL4ofDPx14z1XWtQ1X7DpSvoaarr8d5di8jUhvk4eIFWO3KjIJwWwTX7fwXxBjnkGJcp3bv112v/lrazfoR9dxOGwsYTkn7RtNxVla+ml3r67721Q//AIJ5eOb/AFD4Y+OvCnivxNFeT+FvF18LdPKcGCO7AmiiO8Ah08xk4yPc9a+i4DzBZ1go1K69+nJrWzd9VfyutO9n8jvyPEVq/PTqRas2vVLZ6PZ7mDqHhrW7v47XvxIKn7BpGlbIlMZCyOxztJx14/DNfrXMlCyeh72Lw79mpJ7kv7Knxh8O638evi98a9S8JPpHh/wD4Nmsdb1W4didRvLtl8qD52CbIghYBQGJk5J4r8o4pxVetxJg8JTb0d7el/n1/D1Pk8RVr18xp0IqzT31u/6/XU8B8SXj/F3xJpvxEFvJCJFW40ywmwG8sllSWReAXcsSo7DHYV+y4GXOo1G7WSaPr6MXOcfa+nkdD+1VJp3h7wvNo9nGmnw2tgH0+WNgz3FyApaVfQl+A3YfhVzxPtaclJ6v+kaVKs6VK6Tev4HC/Ef4qSfE74H6vLoGnyWkvhXQ2ivpJFAkup8/vCxxyeAcdhiuZ0JVYzlzP/hjyqjUoOcr+h3t9470/wCMf7P1r8BPD3g/QH+JOjaOl94U0SJXsrXxbZuoYzbotqi8g5YqTiRRwM1+QZxSxXBvECzOcnVw1bRt/Yfd22sclBYyjiEk3yy1Wv4HkWt+PdX8U/De8WTWzqOs+GbN9N1nVpbWaEz3DgeYNsypIAj4RdyAYBA7Gv2jCVsLUwcpYepGcXtON7PRd7P8D0qMq2KpXcbW3RQ8H6JZ6xoXi3U/tyLZWU0BMglIEkcScH3ySCfbIqacksJUqPt08kehSjCOFUktUupzHwc07WPi2LHxH448yQ+F/Bsn/CLWMc5eC2gSfzS4yCNzsWJx149K+O4ewOFiq2KkveqPdM+SwtOpOrKvNbnYfA+O71TxLq2v67MHuP8AiWpa2oHKyq29jk9wpYk9sj3r1r8s5WTsz0ML7t4ln/goxqqax44tfiRZxtbyf2W1wsvOdkZxu9cMox759jXn4m/1e7duU5MyrKhRt0Wp8ueObnw34x+H1v8AEXwhrQkewmRLq2LbZYoJVO+HjG5AylxnpuI4AArxcTOnUp80Hc8SWJji6anSW255d461G8nvPLvNT+2SJL5YuCcttwCjEjjocV5qblLlOTExmrO9yhaahYyWl0lyPKuAu24jHTrww9u9dM5RpwuU68VQcWZHhK6lmupBBIXeRztQk8ken1FeTTraNnn5TCV5Tlsbmk29uutr5IIBk6HuPQ0pOU02j1Z1VGp7p9S+AkMPgyxYKAhB24+nSvyjjdtYuEX0R6CnzRTNgPnBGeOua/Pp7kJXYrIrRk+3NZ8zN4voYuoWxhm81FGFNbRd0c9eFndGlpt4JYguB0qkh0al1YmjLLKSD161jUSSKkveLT4aMH8qxW5aaJLIEcEZ9eK2shwjqLqLf6OwJ/hq1oXUV4nOaO2dZYf7VdS+A86l/FN+U8Enp3rlm9Tvk9ChtzNn34pK7Rg1ZXHzDjao6dqlprUhtyK0xwuCT7Gqii6asVLxcIT29KE3czra7FSESOQM/pWzehEXYcfl4/PPaspG71RUustJtA+hq6W5zS3EiUZ+Y9a1krmTm+h6Z+zh4O+PXi3xpaW/wh0ebDTqr3ws96xnPqa9DL8FOpNNbGU+VpuXQ/af9lr4MeMPBHhGy1D4s/EW7vL0bCqSTqgLYHAReB6etfa0qMKCtzXPk8TiFKUrK2p9eWMm3w9Ai8fuxtz6Y/WtZSvC5xtr2tzLguN8zuwLBD0rmg/eudNkloQ6rIl0nn3EjKirgIDjdTqy5t9i43iuVGNczokot7DTpHRQMxA5X6k1kleRDi1q2YUPmR6nqep3Vkn2uZQkaKuQiA859OKu1ro1n7sUkjhtUvYtZ+JU89hYuXtYwuWUMoGOo7ZrKMf3zY7yVI5XxnBZal4lm0Bhiz2Ft5ULtkHI/HIqeXmqWE3OnG7MXULmysYb2aGzk8zhZGLfhke9dMIXbMpXmkcR8S9E8WeINK8+1v2msZI1DhV2OvP8LdQfatpwvHVmbhb4jxf4m+CkttE1HS7xpZQkOQtywDgkdR2YGs1ZINIO58UfF2w17R7yezv12QNzDFjjHtnpXNUk3KxnKSnueQa1u+wXYQbR5ZxXNNtRfodeHSVRanmWW5r5Oo7zdz6NO6GsxzzUPYpbleVs5zxzTibwM68wQTnimzkxKVmdRCu6EL7UTdqh6E5WqsbLAT0/HmqTTM6kFNXRNpl60L+S5GP51ryx5djnp1HTnZmqqRyATKOorN3SPQtGaugmYrkJ/KsFJt3ZjKPUmtshee9TKbexakuWxLCziQ5/lUsz1uTmRl+UGqhBNal6S2I7yzS9t/IljDBvlORxRKTi/ddi7RS1PtH/AIJ+/BTwQ3ibSNF8KjxBrtnFdR3N3f8AiKH7Ho1tckgOLW0U5uZh0EjYPByvr9Bl2H9rXi4Kz0u+9jxcfi60abg2+XpbuftX4X13wh8NPBtppBmntL+WPaqSKHkCHpgcgE8YH0zzxX29RRprc+StVrq9rev/AAO+/wDkeo+DWuJ/DcN3PayQ+b86JL97B6ZrKhdtnDiowjPzNG6mjS3PmsQOmR1rao4xptszpXclYx7u/tbCFpLOH95jC8ZJY9h715LmorTc9SNOU2ufYzhot1ZRNrutXCG9k/1Zk6QD14zzTVNqPNPc19rGXuU17q/ExpfD1zdaZPPDNI6S7tzsu0SHnLH0FZVLON0aufvpdTy+e31e5+I2naz5X2gaZZyiFJHwjAbckDuRk8+9cyc/bJotQgqTv1ZzvxR8KG/8RagINcnaBYwr20bkrhumR7dCa1q80noyouKgmkeUaj4L8d+Erye+stVkhOmr+6towfLnj59Oc1yqnUve5TcakdTjtPj8V6r4iutMu2WKBEa5shFkByBkqR1OPSrTqwm7lKKklY8+1S2+LfiCPVNY8KXa2qtYtKmntahopxnDMjDkjI/nxVxdSrB8r1NpxjBKLPNfCHwziuYtY1rxGWs7uYh5nVV6j+Eo2Mj3rCFBpvmNZLkicZ+0NbeDLK5i/sLx7c2xktV863aFovLYdGIwTtz/ABLVzlCPUzg5SlqjxF/B92upPrS6is0x4mkjcBvYn1BHeuSTjJ6HdBK2xp/2U67p54tswOPmH3uPUcGuyjZanVSk9jU8LcyjcMYzwK7ZWcTpi7HKat/ZWp3M+marp7XCBmKlZCrL75AIxXg4mMZTfNsdlNzqaHLX/wAC5dU1jyvD/jzw1aW0i7lk1rxPbwBfrk5/rXnSoKbtTdvUVT2lON2zC+IXwkk+HNrFdzfFLwXrbSMQbfw34hW8kj/3gqgAfjXm1qNSk9Wn6MiFVTlZnG3kqmMKDxjrShGT1NG+ZWRmzysr4TIORz610XcWYOFnqdF4TLtGCx4rGpLmsjohNW0O4tVbyg2ecVjJI6I+9EtpD8ocjisuU0UURXEbAcD6GhWuKyUiC5jwmD6cU3K2w5u6M4ZDEY/MUmZqKirkMp+fnr0+taKVkJNyY/JC7B6VWktSmtLD7cbmG8fjionKyshpcup0XgbwX4q+Ini3TvAvgfSHvtW1S5WCytUIG5j3JPCgDJJPAAJPSrwmEr47ERo0VeTM6k+WNz9If2Sf2XfG/wAAr200nwx4i8OfY7eWK71/W7/VcG+lZSsgjjC7vIiBZF/vklvQV+x5bw/mWTYGOHwicpTd5NrT09Ed8KeH/spwnGcqkr6KOi7anaa34a+G/hTxz4m1nwTp5gsNb1NL3V0ICteTrGI1KDsmFXHc1+lcIcMvJcPJ2fNK7+897KMJVo4aKq/G1/XzOA8d2V/Y+GJ1iaezgvpMy27OGK9W5xwTzz2FfeYefNBaON0rp7+jtpdeV/U9LEOMpWWtjzj4Ox6H4++GfjfwrbWtqNCk8SI+pzxKqrfSop/dFsDKgcEjnAIyBkV41XLKFTOljpaySsjyaUKEsUqzWqZ5V8VItNtzqd74KsWOt6jamPTbWRflto0G1rqXA+XPIRQPlGBzzn6eXPVlanpoexCdRNRltqeZ/F/VfiV468I6ba6+8Q1G20aKzkvQmQZXyWwCMfKgUk9z9KzqUf3ai9Gcbk0lCD66k3jDw5rGj/sQ6v4rhsQBfXd3F4h1xmzLNKzArCMDBZsuzHjGFGDk4Uaro0Jwptp228tmZ432bhUcpNzlrr17u5137K/7O2p/E/xT8KNR8YXkgbTo5bosL97d4rWOEvuLqQYwzDHPGK8DiitRp8I1o1qfMnG1mr7/AKnjYvEVIZcpPS2zPQfDX7N4/ac0Lw78fdE/aJ+Dl83iTTry28U6VLqI0nVriJZjGoukllYSvD5eRcAh3AUEEHdX4Hwl4k4fgTFPK5YKo8LC/NO7lu73t2V909NrHdlma4SEI069Kop2T5ormi7ry/U848M/sj+P9E8B+ONM8V6RPp3hvTJylz4lvbiKCzu7Uq2WgcsRLlfulSdxr9d/4ilwZicudHB1ZS9qn7tndX7prT5nbi62DpWowm7y79jkv2bNY0Cb4WSWeiRRlb7wtfQ2106gLBHDLHGpznriTgHruzzg19BlU6ayiCg9E/zufPYatH2Uacry+JrR20a67LfRbvW2zNDS4fD+k+OL6zhvvK+x2dxcCYjm5Kx+Q0gH90SMfruFeisRFX3Wh6MZUY2drO1zx/8A4KG/GLTJNMsPBtlqSXV7d6bZWs8jR/NEvkKzsMdM78/jXzebYi0PZpt3Pns6r86cbaSPj3RbrVPD9ldW1pfY8lDBcQIcCeJjkfXjP6V4MaUqNHTdHztDmw0LQ6FeKRtVluJrfdgkZhkzllAPt1HA/Koouo5czPQoPnTl3K+t3tnO/wBilljeeNPKWTcR5q+9LF10nys8vGVIe09m3qTeFLRFugs0Pl+UeShwFxkgn1rmUbs76C5KWht6BbJe68kLkKPO3Blz83NauUacblUoJzuz6T8Ha3Dpwj8MG6ZQIFZLa4iChzjlom/iPqOtfinGEa+IzSVRfCj0ZV4KSizdWZGbKPnnivjHa5abTJ42BTb6+1Q0dCtoyrfRCRTkd6pS5SasXOOjM6xungudqZHPetFKyOSnHknqbMbEuGHpnIrKep1vVF2NCUGBjjk1mSkSxqYxn86Z0R0RHfrugb6U+Zslyu7HO6KFXVm3H+KuyCbgea7xq6G9PIMkfrWE0zsb90pucPyOp64qorQm9xGYtk57cUpbAokEzZPseopWsiU0mVLx8Lhj25NQtWTNOTK0TMT/ACrZfCZySiwyWYnH1qZmkZXRVuDsbPqOKIbmE1d3EQFznbkntWzny6BCKserfs1eJv2kNU8X2Hw8+C/ie405JrkGWZWCxxLnlia9LLqmKqSUYOyPPzCrFRatqfsD+zZ8FoNLXSLrxz8W9Q8Sa3EyPLGLwtCj4HZflr7alQppXbuz4utVqVN0faiN5WjRx5PyoB+lOo/dsiYJqdjLsJEJmmaPcwPB9a5oas9CUW4qxFdahJP8iWbHHViOM1Uk5dAhDl6lC+WRbaW1F0kW9cssPJY+lS70yuSnF8yW5xV5p6NdFbae8iIB81m/5bE9selZ/FJO5tJ3hexw13ceIpdeu7HSTFbyxQj7SqLyE9SfXFTGM5VGOmoqPM9Tl9dHiOXUJZCI5IPLZbclOVcA4Y+gFNtxmTVSk7FTQra6awmad3luFP8ApMsvKufQYrrpSbRFSUIqyOPez1C5/tK/029uGEUnFvIPlz3B9RVyu27mNRTa1PE/ipBceJ7u+04XsrTlMhPMx5fspPX6Vm+SO5zprqfH/wAZtF8Qae11p+tt5yR/dcj54/qPSudckmTfmex4RrKMthdqV+7GwDAVlWhFRZ30IpTVzzLaxX5hzmvj6ivJ2PorWImII5x7YotoDK02OuPoaR00loZl65AK9/Sm1c48VLRo6i3lGwY7CrnBN3O3EL3myRJMyEMevQUKFlcVKV1YiuUKNvTtyKamloYYinyu6NDR9TMh2Nge1VNJq6NMLV+yzSlZTyq9u1cbi0zraQsRKnJo5EznvaZPF/fI601BRRtON43RIhBbJ/WqREGkvMnRZpSkNpAZJJHCpGoyWJOABSUOaVhqMm7s+5/+CafgSH4Q+NLb4kfG7wNrd9r1gjSeH7HUb3aYTziMQb8JECNxlcqM4Cq2SR9dlqWG5VOWqPGxkHKUkm1G21tPvP0w/Zr+LOp/FA6b8Sdf0Frm9vrlzbQZ3o5DEDZ0+RRjL8jjjrXtRnUxUG4q7PAxNSlShyLorfM+wzK72Uc8qhTsBYDp0rqg1Shdnzc7zdkVdTv4reAIYt7SttRV6msMTWiqaXcdGMnP0KuoRvBHHDawqhxl5Mcp9PeuWUGkkkepSlGd3JmRqttdanMhliZbaPsRy/1705RcrX2OujKFBNJ3bKPjHWIbfSjaySFVSM7IEPLn8qxxEm1YKVPlfM1v1POPB954euvifY6dH5s9ytnN5wlGEQNjPHTsBU4dU51Ei6tKbouXS5x/jjU/EPhf4maZZ6RozznUZJY9RQDiNOofnrWc3OOISiiopOEl0Wxj+O9esr6PUI7oulza3CPbxZ+UIM7gTjJFaN+8xqD5bv8Ar+tDwP4h/FDUtX8R6jpHg/RblvItxPbahEojNnOVwFBON44zj3rlniFKryxO2jShGIeB/BGjab4Uvr7VvEX2TUbmEGWW2nHmB2+8SnbJ9K64qFON3owqO09jzDxR+zvrMet3Hi7StdOsLNEZGsrm9IJXuecbT7c1x1VJu8XdBKrFrlaPHviFomk6lq39k6naalayJgCPUEMixjHVJBghe3WuRtSbTNILS6PM/E3w1g8L3xTTbVgr8qLvLLg9kcHp7U6dKN3qdkWlHUpzWQhtCv2RoWyN8QkyB7r3rsp2NqaaLHheN2Zjg4G7BxjtXTKSUdDshC+55xruuxl77RtcXyVG5ra8VuQe2cdR9K+dxVS02d/tY0lZHl3iC2nimIm1K1vU/hkh6/jxmvJk5Td7mMmpS1MpUWLJUAE+lYztJjjBSegPl1+Y8GtIPQtxUUV51CgSAfTNXFKT1MZy5om34Rm6KfUUpwsiKaakd9aHMYOe3euSWjPUgrRLyNtQcfhWDYmxkilwaRLIJV+XbjJoKSbKU1vtXdj6EVSTFPTQotF++I9+5rW2lgSJBHu6dqS0QPTclVRGeOT6Y61Di5bEc05bH17+x78DfHnwb0e3+KXi+3htNT8VoIPDnh2IJJqF9bEZYyKTmCA8MxGHZVx0Jz+n8K0YcP4OWLqte0qWSXVK61PSyukqcpzrWWlle+h9YWNva/DLwfY2moQR3ereJtUhiE0nyl8vwFU/dVT0UdMZr9/yynChlyk3dWvf1ProSpwvKLaSW3qP+Mvh7UE1Cz0eyZLRpbo/vS5y54wq4GSTjHtzXt5dVUqTm3qZ4STdN1Gmzzr4xeGtQ1nS5tAtNRNqJ4hHcT2pJwSfmAP97/PFbRc5rQ65ypyp6nDeMfEHhX4BfBO08NeEtCma3ScLZaZA+5765kbaGbA5LOxyx9aI4V8spwV+XVveybS+WrSv3aPJk44X3b6N6epz1t4UHw304z+P4YL7XdUT7TrrvyAx5hs48g4UE4I64z6k11xnywTiz1IwfsLJs8b+MGt31jf6jqOovJPZaPaPLDaQ8RLdPkbhgEM2cDdzjGOgq5OfI2mcelNNxRz9to/xSg/ZKuvhTFLdzWlwIpL6RsyKLicSYJ6847+g9qI04Socq+No5HCdem5T37/kb/7NHxF8Qaj4X1LQfFfiN7bxBo+nvpVzKgUeZEVJLcdjlgfrXlY/D/2tk9TAVVd2Zw1Ye2oPCcuyPkTTvB02i/E7UpvF1rba54g1PxNLp+g6Bb6cWa+mM+IYQgYAoS4yuOfpX5rwvj8uyzKsRUxsopUk1JySdlHWzve589lmM+pYadTFO9nyxjqm/wDgdyL9qTwJ8Wfhx8aJ/wBnL4pPNZeJLCeOTV9Gsr1hbWIaESCFIl+RVUOBtXptrv4e4k4a4+yuGMyzDw/eTl7ygoOyumlFWVm9dF00OTGVvrNWnTi25T1+8n+Fa+PtM8N/2PpfiSSCz1BbuzltoiyLAzxhuMdFYoMEdC1e/hcuq0sPy8zWr7/me3luHxqpcsLaEfg34tfHbxn4r1ldW1GKK4RWYJCmWEIKmRRjkqTGMj1qKMq1XEShUkcuEoYuWJmsQ+uhw/x71zUrv4h32keLLySW9t7kTW0rHdlCgAQgdAAMfSuLHTiqzp72OPGzjPEuh22OJ1W+0jTZ3iurcwwTW/lt8uSDwflP17+hrnhOKXvbMyrqjhVeXUPDVtcalJJE1ssXmW5DvGMEYXIbn1pxpKKbRVGo5rY534gWp07XVslhWRSNs5YdGzgkGvn8dUcaqR4eYRjHFRbW5seEdPlLmKGRvKYclhzwP8/WqoqSOqjVm48tjf8AD0DWmuQqUAxN82Dg49a1nBTVjsox98+lI/D2m614etrS+h5EKtFLFw0Z7Mp7Gvx/iurPD5o7arsepWowqwUWMtWv9On+wahJ5zKMx3Cj/WqOpI7MO/r1r5KrRVdOpSXqjBQnSXLL7zSguBKgdG5x61yKxrCavZjndWXg9etZzTRs3czbpVSfzQuMmrh5nNWaTNLT7gyRgenernHQqk7xNW3PyY7Cua1mdNNEjSqq57jtmmo3Lk+XQpXd0pgdd3JHrWsY2Oebd2YGlBzqjHH8VdcVaJwwd61jcnfDn9a55nfJWgV2IbGDj3NSpK5hHcAQPw70nJHRayKsrEtgHHvmk3c5X8RXuznBqYldSqX42gcd810WM6m46Js8npisqgU2VrpPmCgZ5ogxyQseFGT+taSjfYwu9kej/BvQtDk8VaYo+IV7bzTzr5kGnuUAGejMDXdh6cYTT5rHHWw9Spd2P2e/Yg0H+wdI0218LaTLLBJAv2nUL3kufYnrX2uFpNQVtT5zFU4RmfXV9J/oCxyAnC9TxzXTJNROZr3m0Z2iTIq3G1AWB4IHB9KwpqzudOjSFvLm68lBNhM52gHr79elOc2h2hfQyb2yOozfZdMvApZc3FxjDAc8CsHK7F71rs43X7i2srsX9pbTTMuY1aZ9wCjq1UpRSujVU3JWPM7RPHOq+I5F8LzRQaffMz3c8vMzxggYHoOtc3tKnO+TZnVajThrujG8bWV/FfHSYdXeB2B+WNQC8Y5bPuamcKjnqznU1J3KWy8m0lo9Hu7qyjlIVoZT8zHuRXdQajDQ5525znI/CWtGwuD4c8SXcsSZLqWXer+pBz+XFOcZyegTmno0ePfF3S9cspLiwntEn8+ElpCgR93qMHrWbUmrHI4xTufI/wAXCLjTbyHVTNHfwZVfNGN6896UISkyk47o+ddXnZ7G7D4BCMMCssQ4wjJHbh176seXyq3IJ718Y5XbPeSdiGQkLkDpSAgcB1JB70XszWk9DM1AESZ/OtIvQ48Rd3OhgkCx8ntWk5WkeniE3exDFqI8/Z6nqKevKctKdplwl5gMqRn1rK1zqfLNFcu1lOJAe9bwXNoefUTpT0N/Sbxb2DIxwOlZ1IKJ6NKftIll5ArhP1rlbdzOdrlmEq0fXtxUts2i7xsNjc7uenat9oiirPUuKuU3EgjuMVzylJvQt1EkfRf7EXwu+OniOa+s/BWheM1trpCbm30u1U21+vG2GeQssiRkZY5ZgwXAUnp9Hl2CrVaN6l0eDisWnKVn0P19/Yb0PVNH8MaLpPiKVoXjhjivSq/LCRjFtGSowm7jaAScckdK+kwyVJ6XR8/WhUrxvLqfaWoXSWmnNN5DP8vyoozn2rqxE+Wjfc8WjS5qvLexVikBtlvLm2KNjIUjJWnRjempzRFaChJqLKd1fmfgKVB7lefwrOT9o9Drw9K27K0lxJJdhY7ZmSMfffnb/wDXrH3uZnZyQUNdzk/Fdze6vqT2+kl3fbueY7Rs/PtXLKVTnvHodEYrks18jjIbaxuvH+n6N4VdlSI+brF4V5bH8I+p44q6Eb1El8zepeNB3Wr6Fb4ieIbCPxq7JIrScv8AaJUIWJRxtJ9/61VWpCNT3TKjh6ipuUjhvjHY6Rd6ddHRbRGAtj54RhkhiASD2xXLVqOV2mOHNoeZ6N4Bl0FVtYljuhd2weKCXpIVPQt2P1pUlyyOtT5lqaXjf4Y6LPZ3N7NocduLlI1kuIZ8SRN05PVSP1ror041IkObUjxTxLrnj7wftsI7qK7k02dlS7jRXZ4y3BZWByccHFcCU4mijTk7nkHxP8Y6hD4sW+8UWdkbeVT5MunxZGT2eNgMKe/oafKoy940hfaKPL/HPhe6n2+IPDuojBciXTp3G36hc/rWvLFRujqgrKzOR1WBRbbQzg7vlRsNg+gPpVRWp0xfvaD/AAqGBkBAHyNlcd8VpKzR2wvzI8q8RXT35u7AeWziQ+X9ohzg5PG4cV4eJgnJtnY6Maj8zzXURf2Vy9te26xsOqKBivInTcG2Yzpypu0igy72yBx9axlFPY6KfK1oNuVZV46etNNRCXvaEDlfLw2CKqMrM5KsXFmj4TmUybQM/NxV1Je4aYfc9Gsc/Z1yf4BzXBLVnpRasXVPy8VnJWZnJWYqkEZA/CpHG1yGbIIyKuPKaaIqXDELxx65qnJLYzqWtcoN87jHX2oUlbUiFyXYQvHFF1ctxuSQKRIGBwQeD6UnJrUqLjF3R6L8B4vjP43+Mmh+HPhHrGrN4n1K4+yWU2n3bJOqOpWT5yw2r5e4Mcgbc54rbC4SrmOMhTtzO60euzTX3bmdfE+zpucmfoYPDn/Cxv2g4dSmndvDvw2ixFdTuVhursJhpBjIKp8xJ9cV/TnFPFGG4eyOmqitHRN28uh9TPEToYOnzXTkkdLqOv8Agjx5rVr478HeJbHVtCh07ZoOpWErTRsOUll6Z3ggryM5Nezw7mmBlw7CvRk/YqO7bbsu97tu27d2engq8quEUor3pPVf1oeY/FbUtN8KTPDLMVmdCLSHd8yIfvMfRiO56V9vhbyhfZF1a+iaPO/hlY6F448TT/G7WEsp9O8HYtdDsZLnEK3BGGlIAOSi52j19OtYxpR9qqcHaLXT8FY47fXK7ld/8E5jVdd1H4k+LvttleRRWqXJkWaZM8Kf3ki9OduQpz1NenOlal7j1R3KSpxSOF+Lx0mz1fUbaxtwun3sLRWkdyolKRZ6sAvEjEjB69CMVi1Jwip76X7GVVQcLtPv/Wxl/D290m+1nxZs86aDTNIthqCKjCJZxkoD/tYx7813YXDx9s6jfl+BlGDqPaxx3hCbUPC3xj03xZPd+XZajp/k3NrcwZEgk+XJGOuDnnHAqKtOEuepdKy21vLVaKy+etlZd7J8+IgqFeNRK729D279h/4ffs+6t/wUQsNc8S6Vrx8TeBtBuvFV14uutTtBpOl2VsIlaUQNCCbhyzDe7FUDgj5lFfyH4+4TiDL6LhRqQp4bFyjTUIp+0cpN3d27Wt5ep8rm1P2eMlWUE+eLjZpuzemmvz+R8r+NfEnhj9sn9uj4j/tKxLdQ6drerXV/pN1qscaTtFGoSMMI12gME6gdGHPev2Hwk4Vp8OcLUMO1rT1vaz1PWy/LMN7KNRqzirJ6/h19DF+A+iR+I/DGs2OiajdwSvquz7UkYlChdzFihB2/KCMjgj0r9Ow0XUpS5l1ZvSdqLpxb3vdeXTVPfb8tTjNBu9A0n47WlsmsRodp+3TRHKAMzMoJ6E9CV759q+dnGNLFu71PDq1b412vbQ4T9p7R9dvvinH44msYLiK4tIjqUNg26OORkVm2MOqhia8XF06tbERqJdNTz8whVjjY1acXKK3MvW/Dmkan4ZS1u5bSQzsjRX3RgCTgMM/wng/XPTiu2VCHs7bnTi1GtRUeXcXwVpkltqTxy2aGSOLPlsRteRc8Z7Ajp9a5p03LyMKFPktzaI4a50S6+JXjy+0eNoopXucWkdxOsQzknZliBk4wBnk4FfJ4qpQp1ajqvSJ5FaVPFYipCenLsW9B0zUdJv77Sdf0650/UtOmVLiwuUKSRlcAgg1rhcTSxVO9N3M8NWpVrqOjRv6UyT+IYVtYjH++DASLxz6Z61rVkoxZ61BWkuY+nbSIWWn2cTPndbKQV6Hivxbi67zK/kevUlFyRFdxM7LLDIySI2UdTgqfXNfJ0qtXD1OaDszCooVI8sjKa9msboiQAbjkgDAP+FJp1JcyOLWE7dC9DdrNHuRs/wBKnR7nYpRtuVr+QbCSMEU/hMqq5loWdAuklwo9amU+boTh076m9G2xApHasbNs77pIr3t1sjbnqKpOzsyJy7GK+oySOy4P1rRnLZylch0R3fUyxGPmq+dRiY07Rq6m7cjBYAj8qwcm9zrnJNFU/Kc9j2qlG6M1ZajkbcuccGpkrFc1yrcL8+D+FKKciOXqVbljg89a2jFIxk2pFfODkiqexo0pIRGZW6/XNZyTZhflYyT94QScH3pxiU5tLQQsoOK2tZGafK9Tpvg/p8+q/EXSNEtPPDXeoRp/ozsGJJ6cEVvhYTqV4xic+Lk3h5La/Z2P3f8A2WdGvfDej6NY+INRkEqQKkFsTgjAHavvcP8AuoJSPkJKcqjbPpPU5fL05ULsEIycDJp1ZvlLcdblDQJ1CTIq84yXbPFZ05aFtO6GyML4mGBhKoUhnlJAWpklN6GrXL0szF1TS5rLzb6KWW6mdCIkhPyj3pezjEL3snocrNpWqW8j32pQGyU2bBQG35z1JrJaPU3m7Q93U5CO+gj1m8afMUVpaLDHJFIAS3Xn0pLk579jKVOXIr9WcVrHi3TLrW7vV5bWKO+sdsUcbMBwep56nvWSqJybaInCUHyoyY/FnhrxGbrTD4kadoyAZUmULFJ1wD6V2UZRbdmKpSkrN9Tl/FXj/QvC93O1t4kgN0luQ9nC5Ys2PvZXrVSlZkzpNI+c9W1jxf8AETxNLqSai8caHYsIbD5z97D1MWk9DGdpaWPFf2ipr+Fp7TVwizhTtn8sDd7HPQ10QlfoCioanzTq1s90JYFVQ7Arg8ZNebi4OzN6LcqqSOF1/wAFanoFkdQ1G7slXft8oXamT/vnOa+SdCo27H0Mn7BpSOfnKFMqegqY031LfvLRFZGyCaU42kXCNkZ96yuxNGqRz146M3FEawjd16VXvOWp3Sk3NkNpa7ZSxHGa31cdTkqQtK5Ze7AJjDAAdMUKC2LhVjERs3UeQozUczhKxVWn7SOg7RryWzudhbHrVtpoyw9T2b5WdESsyeah571yNNM63FSdyzbv8gGfpxiocUJ3ixVKgkn+daLYrmcizZXlzY3cNzAyBo5ldDIu5cgg8juKI1IwqKXYfsYzXK+p9L/BT9pXWU+IGp/Ebx54jv8AXNZW/wArFp/iQ6TpNvYRMojZ4ogGnkZvuxryAOh5r6HDZknzJdfM8vEYSjhLRWq2vv8A18z9Cv2Ef2pvir8Yvi3ZaVBYpY2fngxJdnMyx4PK26D9ypH8chGfxr0MPOriPhex4mNrQpJJRP06S58qzVpPmwvJ9eK9tSUaabPl7SnUdiGO/iuIWnRTgE9RVRxEZU+aw6lGUHZmZJqBkl8yG3I+o9654z55XsdNOk4xs2Vb9Jb/AOWa7WJV+/EmTx3zjilOV3vY7aceVaK5gazY3d/DNa6VYG3jZcNJGuWk+p7CuKq3zXivmdkXGik27sy/h9oV3H4vutPsxCTbWoLyBOInbOMnHLYzWmGhKTfKzLF1qcKak+pxPxeOnN4ij8IRwqxuLtftN0snzOM5K4H06VzVqfv8qLpVpOHMcN8c7ay8MWV9dQ5ZTCDHFG2A2NuNx+tc9e1PQ0oRnU3OUn0zxJ4iuLfxCbe6szpkal4RyEY8bWA/hOevrWtFTm1Jl8vs24sxfjH4lVNA1DVdB1ZEvRCokspCcOwH3XPb2NdFW+5EYJP3j5v0SPx78TUmn1qzsrKWeQiSx0+QlgO7L0IJ9q5KUpzWqsdfs7anK/Fv4W3Gn820mohbcbHGoEjIPBBY4OOeKmrBp+RsqsIaI8ym0vyJ5tHvNWDS+Xut4pXJljI6ADA3qfUVlGVtEdEHFq9jldfjvoISNUVIpN3zxxnr/tbSAQfp1rqpNNm0bc2hB4XY7ny2f3L4YHrxXRKN46HWr3R5V4vt9P1yG6ubaI219AxBaMho5lB6sM/Ka8PE2SfM9T04RVl3PMr4yBizsC4+9jpXhzqXloc9WUpaMr27EtyR7Cs22zSilFaj7lcoU7Csm7CcryKlxAfLK4Ge1VCWoTipRLXhEeXdbT/ereSly3OKnUlGpY9LsHXyE/3fyrjdz1qequWzJngn05rLcTbFjcnofxxSaGlqRzseQBigck9ypOd4YfrU6phuVFjUSFgMc1pZtEy93YkL5Gw+lChrca5nqS2ysTjGea0bQRhd6nqX7MX7QvjH9lzx9P8AErwFYWEuqTaTPYQz39v5n2ZZV2s8fo+MgH3NdmWZriMqxPtqUU3br0HUp0asOSav/wAA9+/Z28beO/EXgDxt8SvGmi3zae+itpvh66tVMVvLezyKzxhm+VmKrye3frXZnfEmbcT5ZHLsQ+aUpJRsvPv6HrVsXiZ4N09W21ZX1/zPZv2Vfg1B+zd+zT4c+EZ11rrUmE+qXSzYK7rmRpmUEcBEyq9OTk1/TXBeWPKsgp4er8SWp3YChUo4flPGv2ldR8T+PviB/wAK68GyPPqWqQN9sv2OE0+HOGnkY/dVR0HtX2FfEyjh+SOiS36JHpTo4rFNQWt9C3450bwF8EPhHYfDXTFubmxsrZnuNlwM6jMR87nPGWJ6n8K7cHh3Tp3bO2FN0IKMHojiry60e9awuPC0Miz6ZaxzataltsSLnKxZGTtA28dya7rSfNGb32tucXtZat9Tyl7vUfiV8bNVk1SCGz0vQC9zPIzuv264ZRhAMHARVAxjv7VyurOpilGLdoolUK866lK/Kjcs5tL0fwTrGhW+oQ2s963267ZUCo5yAq79vzNjgcDrXsUrxTdjunONOCSje5xvxivrm78NXus21oirpSwpbNFcBPPEeWLgj5j1I5x6dhXPieWNF26ankZhTfsVdn0D+xlp3wW+KmreNdR+MOl6ve+G9c+E15da9aaFOiNc29uELRXMuVZE3uAqqwV2f5zgCv5Y+klWzSg8mq4VfvHVSh11ex5eZSl/Z0Z0muZyS13+R8Nfs/ahZXer6lpWll7SzuYZ4tPtJpt728BJ8pWbocDA9OK/oHhWWIo4SlSxLvPkje3ex24fEu6gnp066GzqVyvwOOs3uiXkRD3htJZEYgoJAwZgDjgjGOnFe3XqwpRly/ca1KH1ebk9UeGaRZ6LqutapZW+qyre2shmlO8neYomKuD35J/WvkcQ1OblLc+YrVoValSlB7a/NJ/8Ef8AA7xNP8RdSutN8RmNNQhuTJb3E0BKlVTaxxjoV4PB9azy6cq0Jcy1TMcgxU8VRn7RNNP7yl8UNFsLfVIxo8/l21ypQW6rtImALLj1U4ADDtiuzEUrRvE7MfBwlbY19O+yT6B/wlH2QNJbtGZ4EfLPFtILEdcq2f5968+tKbV2Ztxq0zyzWtD+36peag8ccwdzLFIqbS4z1r5yth4Sm3JXufOVMCpVZSkty1p8J1N5Yr+5ZrySJRDcu5dgR0BPcdBWEKMKEfcVghQhTldI3/BllqX9tQWt4xWVZMuFA+Y/0rGb0vI6Yc85pM+ltTtmgsLSJWHy2yEd8HFfjXEtb2uaSXSx7k4ONkVYrkMgdj9c8c18vU1dzmnuQahBbXiFCRnHBFEJuJLaqRsYzXNzpU+xySvrWjjTavE43CpTlqXFuor2EsjZ45qJRexp7SVrEekXD2V4VDcE9KpwXLY0py11OshuBNCrKevWsGuU6U2yO5hWT5T071g5NsbbZTktY0QnaOBTi22VCKVzM0qdV1MxkfxV2Rprl1PNl71fQ2bmTLsGIrGUbPQ7WuWJWeRRjJqomcXfQfG/y479qyqbltW1K9wdxyPXkGrg1FDvoUrmTDbSc0+a+xyy1loQh89R9PeqcjaKstSLzX8z8PSrsrXMXFOQ4YY5PH1qOa2xbUYoAEZtq4zinzSULsyestT6A/Yt8R6N8L/F0HiuTw3Z6jqsp/0RtQK+TbD+/wA969nJZOE3N9TjzCS9kkn9x+of7ANp4++JfxFufid468YfbI2O2ztIExDGvqPWvqaNGbm5yeh8ziV7S3Ktj7T1CWJd0UhJz94Z/KnVkm3Yxpw116mfpVrqQhuGdVWF2wgdgAaxipyRvVcIyVtx2oL9mtVt4tr7xhIox8rn1zWlnFWNKbb99mXrML21u/nyhCqZk2Px9Kl6BfmldHEeLdQnubCNtOs3E0bb1jEpyyD19BXPOKvc0pQnOeux5h8UjoU9re3+oSy2UAtmlvfJJO9uqgY/LAokqbjzSWhrKXuqJwmk/BDwprduvxAvIrmO9udnlQiVtydwSpqY0qdX3rGcaj1T1RY8V+DPA3h/TxosnhWztppXDPbQHaZAepPqa6IuFN2SHPnk7szdT03wjoM0UOl+GbaArAfsl4IN3z9djA+uT+NdjleKSexx1ZTqKzPFPjTqC6prY1EaQEaJwJHt4RG8fHoODWFryuYRcYRsz52/ai1PTLrSnsVZrl1jBEzpiSM+jf41102lHUJS5j5W19ZG0W73OVlRTtcHmvNxTXIztwnL7ZXPJZLSR7rz76dppOzOOcV8pOrUta57dTDRlU5iR1BHA4ojK6OmSdONiBiVyFNZTS5h03eNzMupOSG9eBSabVjmxMkkzcVyYgCa15b1Gdk/4jJbiQQ2eVPJFPmbdkY14y5boy9Pmub24ZSTwa2rtU0kc+GjrqbVv/o8fzcGuS3M7nRKpyuxXnBMoniHA9K6IOK3Ma0eb3om7od8s0QViM9wa55Rd7nXQqJxszRGVAI4HtXPLcuauSW7bsFhyPUVMpMIvk3JC5ZtoH0FOKVrlKd9jX8HTRHxHa2B14aaZ5douFsBcsMjGFTB+Y9Ae2a6MJye2V3Y4MZVai7OzP2N/wCCO/wf1X4bX9lp4EMNlcKJ0t5bYx3sqFSfOumZndmYnhSVAHYEYr7HDctlyanzNem5JuV9vkfptq9xFb2RGRyvTPWvUnLlhqeJQi/aXK2m3MM+niRNxHutVTkpQsFdS9rqQWssGx7oQMMttXcOazptb2NJxkrakOqW+lwAS3s5LKMrAnApTjFayN6M69RWitO5yvibV7xLSRoQ9vCxxtjG3dn+dclRpN20OtUoxjeSb9PMyPhbq1rFoXiBrC/DT3N+qCZlJLEIAQP1ooVqUIz5JdvyFisMvaQclseVeKvGekaZ40fVbvRpyNPh/dSyNlZJCcE/y5rBTUpvTRHbDklSUb7nner+PdD+JOvawNRlh8iziW3hgUEZPADAHGcHHT0rmjOnVrSTKdOULKOp1OkaFPcaXNqmkziEwaeqSkHf5jcdMdc9xXp04xa2Mqj5NGec6v8A2j4j8QXl5rFzZWsiIIpbeUgM3uT1GfQ1k4pzdxpxaszzX4iReEfhPq0viTUtLvI9PAJmuYJNpjyPvA9xn0qZKNJ3RuqjkrRPI/GjfEj4ys3iTwR43t9SsFiJSJ3BYDsGUnJrnk5VPejIEoJ2a1PFfG2geJG1GJ9XtzBd2jneXg2LGc9UdTyD6EVCjJas9GmoQgZXiiWUw5nminfbj7QvJz6ZrSLTZpT3KfhncrvuUDZE4YHp0NdP2Tui1zHmeufYreW7kubOKUZbMcsbcfR0/rXiYik23dHfB87PNdbm0CQM+mwTQuHI8op8gHsTzXh1oR5tFYxrckXpuZkbb3G3p3NJ+7EdJuW4+R/l4/HNcsndkS92YMu9eBxTp7my+EZpJa21D5eQT1rudnA4nFe0PRNKul+zIXbBxxzXDVavoelCUVBF/wC0xFcHv2zWKWpcLORNHPFgb8fnWlhzsiOeeN+BjHamoocZXVijd3K7SBS5UmZStGRWWdSTk9vWnKNglqh0cqM27PA6UJCjK6sX7QBSG459aOWNzXlbO0+C5+FKfEbTb341jU38M203nalaaNGGubxV5ECFiAm84BYngZPNXTdKNRc6ujWFP3ZWdpW0v3Pvf9nv4+a5+298Wf8AhV+heF7TwB8O9A8PXCaDpdowa10ZghCXE4CHz5W9cDr1xnPr4XL8zzjHQq4JOn7NaJK6T7vbW+/daHDKjHBUXUjzVKmjumk27rRX6Wvp8/XptDvl0/wpqOreIb03VxFKdPtJ5I2QXKxfJ5wDKuFbGQAAOeK/q7Kvb4nBUalVWlZc19Ndup+hYei6MKalpdXa9fQ4XU7208JyXms26bLq9K/aZ1hAlfJ4TgcLX0tOEUklubVK3IrLueGfGbxxea343stC0GxW+vJZvNiiktFlSPAwZHU5AVc8Z71bg4w5W7XOOtat+71s+zszM0Pwl4hvptR1iyvra2W1gHmR3IaOS+lYnfN0IEaYwOmSeARkio1/36hrtv0/z/r0N6cKNKShq7fOxxfiHQbJvENnZWGry28c9yTqLO37y5XaSSOgROBnJ9PfGy5Vu7DdepTk77MwPitqqk6fq6S26T3tk8SWMDF1ndflU9BhV657mvQo1bxuRVm5NtHH/FOS28QaT/wjlhZ6pNPe6ekSiC2MnzIv72QBf4M5PoAOvGa8rG1eShNz1uZ5nCjXofu01ovvtr267dlprufUX/BJ/wCGMXxv/Y1+MXg6P4bW3i68k0BNHs9CbU5LH+0pSxnNjNcY+RG8pWYLk4HPv/Hf0oOK1knFHDeGdTk5Zc8ra2jdK7X/AAfmfGY+sp/V6FSXupty8trHwx8IvDVzbfFHU/DeoyJZS6e721zbYaPyJI3JNrzz8rDyvcAc1/TXC+KWIpUq0anMnCLT11urpfp2+R6eEdS3NFX6f16Gv8cfEcOuyroY0xEtb29SLVCyZmTylJyM4x1PPTp1xXs4m9aoqnVHfilVUFC9z59gsr7xB441a/WP7NC83lRRbgBKgO3IPckE181CNatjJvoz5Ghg69bMKlSStrsdh4E0XRY7+XSFuPJv7C7Nqjwj5juXhhjr0Gc8817dKn7OO2x69CKpycEtUQ+NpdR8W31tcvbqJbBzaX6R8bGTkNzjJJz9ex7VlXqSbTaMa8JTndfMy/EutxeA9QtdSgCNdz2aJJZj50uASOVboQQCCDg5ry8XUd3ZGWJqSoKLZyV95GrajM9tbNZl93lo5wI+ckA+me1ecoxnI4nT9vK8djM08T2eqbWgdpd+Ny4GPwPUVlUitjLljzWPQ/h5pjXfi20tN5lJcHLEe3px7V42LUadKTfY68LSfNdo9/1fDkRKMbFCr6HAxX4NmdX22MnLzOyUnKVzHu7K6C/JJt3flXlc13qctWKk9CibS+gk3yyZB9Kc5p6RRgoTpNNsluLaC+t9r9cYBxWcZuMrGytURhXMt3olxkZ255FdMZRlscFeE6cr9C5aalBeFZ4mGe4qW3HRmtCamzptEvVlgEZPPbJrGd3qd10y3O2V5NY21EtGQsQ0bA5HFWlYupK0TG07adWIH96uuCtA4KKvVubF24Vzk9qyem511F7tyn5iu2N/Pakmc8L3sPVwOM8g8ZqKlmdNrIZM+Tk4wTQldCasilcqx579qqNkcstGQAYG3NW7MuMrsay7Gy3GfWnvGxMmlsbvwv8AA9r8UPiJpXgS88daP4Zt9QuRHca7r0/l2tmnUyORzgDt3rKSjT1lsYz9o1dK57J8VfhB/wAE+/gNr9nY2n7Xt38UpYZAdTtfCml/ZYZOP9XHM2/v/F6U6s5upy0Y8y6vY56VScqb9ppLotzsf2FdM/ZT8W/Fe78f/ETw1d2Ghac+7S9FutQMpbGdu8nGTivocihGHNOrrYnFwnOkuVH6yfsR/FPwX8VLe6u/hz4Vh03RbKTy7cRxABse/evoqdd1leOx89WtTly31PcdauDKTGrhDk4OeTSkmyIOyGPLHDpirdyOsQPK7uWNNLlRpBuUmyO/vBZWcconKRFdwUHLt+Hapm7DUXJ6HKapqup6zem4GkOtpF03tteQ+4rOTdtEaRpxg7HHeOptat7We8Hh2eQrGTPEsu3PHC1hUc2r2N4KKdr2PJPGngPxt480xLqbxN/YtvbxebaafaMGdmXnEmeozUVo1Kqsnawc1L4Uru5h+HNF8falpI1T/hPre9uJH2XawxBTHt4yD24qsNGqrvmugmoUXy2LbeDYjAkmqay+qOGDS30lwA9v3Ix9P5V1ShGDV3c5515XtY5T4nXp8PXaSJq9zLpckYZrhrdtqnPBUgcn2Fa0lKpp0OOznd7HkPjfUk1m6up9NuPNmchdkrFTt7fKe9XG19DPk59T5x/aCa/8m4g1GMxXUIwj7MCRfQ1tZWaLcGtD5n1+UHSrt3bO5DggdPavIxkX7FnTRglUieZSoT0bPvXykHfQ+lpW5SIklSPT3reyiiakr7kGA2cHHNYTbvdCpt2MvUB+8yPxqouyOTEJtM6C3haVV5/OtJy5Xc76j/etD9WT/RNiDnFZU5e/qRNtqxV0u2MXse5xW805PcyjBxZcui6x5zzwcik2k9CaqaI7CcyKVZBg053Vma0FeOpaspXtJwRx7VPNdWMU+WrodDazJPAGI7dK5aqaZ6StyKwofB2jr1pQimrmbV2TR5JA9enFOTii4xSPRPgl4v8Ais+uad8MvhfrrabJqGoq093peiwzXwzhdyyFd4Az03KOa7MrjVqYmMVdRvq0rtL8PuujhxKoq8mrux+23/BLLwP/AMKbsY/B3jTXWfxLf/6Tf20t2bmediOZ53JO125OwHC5IGK+yowpUeVbs+fxtWcqTgtmfaeuvLcgwQDdkhTheFrsm+aVjxaMVBJssWFxGjLppPzqgLEDitYyjflRyV0+bm6C3l1bwgF2AIOAKVSpGKsVRhOTMzW57LT7V7tmRZCCd8vb6AdTXFWacbno0E5SSex534i07xX4yaQadLNHBkKZZvlGD3Gelea6VWte7PQjUp0la5yPjqwtfh/oyW1hrjiBSTctCSSznjC8csf61p7OFONkWm5u8kec6/4I8b6pbTX08t1ZWMEG+2tX2+fKBzlsnnJ7VLp1YenY0Sowempy3jzQPDsWpLBrQuN0iqI7qGLy/IlOMZI5696h0eeWpcKihG6Ot8JeEk8JxXSG/vBHcKstwgJkPmNj5165GSPzrvpqFODVznrT9va6OU8UeA9E0jWp5fEkM8JvYmkkuDk7iB8rev4VzVOVSbQS+BI8M1rxB45+LVjqnh7S9Os9Q0yylkjsjv3SyKOCQCP0rOhKvWk+wKmoyT7nkfg3w7YaXfXGlahGILiGYpNBO7WsqoeMqwGCRxWahySs9GehZQV2Y3jj4feN9L1WU2X2m9snjyizTJKCO3OOntVvnivIJTjNnlvjC4RpxZSR+TNu/eRgAKffgDmopy986qSRQ0B8PIoPHlvnHXpXY5Wp3O2nFc9zzfxyz6U8+pCO6jikXBmt3wCf6GvFxNZtM7eaMXoeVaqryO0hnZi/ILPnI968OdWMpXOdRcpe8VIFYfNmlJ8yNFLkehK5Xpx061zWd7F25tSWIgx4PUnrWluUybaYscIE4ZR/GMjFbKXumM22zp7Bpvsq4JHFcc3dnTDmcTRszMQBuJoijppKw+7nngj+UHOKaabsOtfdFa2vbmYnOR7GrlLl0JpaakN5LOXwrHPrWalrqKpFylcRlkSMHr61Ld3YbTcbIitxOXwHIz78U5S5dERFcpt6Hp2ranci0sbeadyMhIYi5x64ANClJnTBSlsdLpulLbyiOVW80Dkuu3H5iu2kocusdToitbH6B/sS+D7v4Yfs6/2nHbyDV/GdyGRQRvNqhwF9geSSeMc1/Q3h5lKo5VCcvim7/wCR62XYROXtZLRHW+OJntp4UvoY2hi2sCpym4HgL7D17mv03CTjObp8rSVnd2s/JdbrR6pbqzetvolFShzX1Z4/8S/EUqC9fm3t1BmU7vmKjPJ9K9RwW8XYlqMKdmeVaR4m0Pw34f1TxjNp0F3q+oxgy3jgBLeBeUQDpzjJJ9ac7/E3oY0owjFzbOG+A+qeK/FvhjxH4x8W38F1HrmvyrJMbsGOO2RSEVduQwJGMDg5PPas8NCcKfO+rKwlaNaDrxuu2n+exy/xgv7600p9W0rS1N1FM5txPPgT7QRhlAyeuQOmAc1dWT5XZiqxk5b6GU+i2PjC21C21TxElwtvpXkW8lqG2xqRmQxZwVzg5c468VvhYyqJ819VYhSk5bbE/wAM/EmufDudtX8JXclrqU2kyRQ/a7USxwWjrsZwXJ/hYktjtkU1g6VSm/aa+Ry1f30Wmz7R+Eesfs6/8E7/ANmzwN8UNa+JPhXUvD2lXd14o1HVtP1DGpeI9WubaSAWcNmpG4Rqyx7nPIUnAwc/5seNuXcb+IPizi8FDD1E3GFGDcEqcaakpOSlvq1018z4tt051KU3JTldarS173v5/wCR+ZmleLrPUPEev/Fe+dLF9Sa7164sIbfy0iaW5LJBgZ2DBHHPAFf3pwnlMOHOG8PhJzbdOnFXfdJI9yjz4XCRirt9TUm1zQviDo97rlloal9Qiht5GuDjdKVIZy30ORnj3r6ya9tRc77ndzL2NzzGztRps26K1gEkWmXU0AbBwckbz6MSMjuK8lUaVKVrruedQqKFVpljQ7a7g8Watqeobkh1i2VbqZxnyZQq4PA4zng96JKSm+XW50U8KozlUb0ZFdXdlbwX9jc3z3L3qgWtzCD56yqco8ik4UcnLZI4rlnrJpqxlUai2uU5HUxrfjOzZPEFnPJqFohI2SAuqrkcenrjj+teZiffg0tzw8Qq2Jg01axgWFy0tjHPPJJGVl2yCRd3zA43MDz+PvXjRqu/mYUKziuWwyPzNQ1D7UCkas4AJGeMY47gVpWqRauJ25rs9V+AmlCfxSJZEC+USwUHJHv9K+Vz2vOGBm/I7qFaMdEeuXjBn4J65FfhNV+87mi1M++lYJkngdQKwgoc2py4huL0Etgl5DsdulKV1LTYdN+1jZleaBraTntWE3d6ByOmyDUbCHU7cq2NwHFOnUcZaDko1I2ZzISbRb3aykDdz716Cj7SFlqzzJKVCemx1Gh3yzoHRhzXO4OGh2Yeupmy04ZQwH1rGUbHXHcazYibPpwaSauVNc0TD06X/ibtj+9XbFLkPOov97Y1b52MhwecVzSZ3VPgKagqwLnr0p2ujCm0idGyPf3qHHqaxlzOw2clcn1qk7IU5WKF07scAc0ouxjKHUjQtncepqucUWouwpBbIY5zSc10KskV7uGORTHJGGB4wRTXvEyWhFZW1vbfJFEqD2FdEpSitDNcu6R63+zD8K/ih8W/HCeG/hXoS3NwR+/u7lv3cI/vH3rqy+jXq1XyvQ83HYuNDU/c/wDYI+Fep/CH4K2vh3X0RL9YQLpoVABbHJ4r6ulalT5bHzvL7WTlY9Xv73ZdYBBYdGPG2nfqdDp2gZGl69qfjLUprmUQ6do2nzbPt08w33LjqEXso9e9KNRSfZImKcZpJXbNi1vdL1yOW70q8iuVQ7ftIPCgccVDlGb0OmcZUtGjH1HXgNRNvYoW8tDuaRePrVboU9YnE+MNagttFcO7zLNPi6HmbduTwKym0tBRi5S1PIvi5qGopqlrpnhuwmtr+7j8i3eBt6ond3PasKi/eqMdLnTQVPku3sc94YsLHwLpVxo+q61ctcRSb2mLcuzHkE+hPeuuEY0Y2M6svaVLs57xp4T8P+M5x4ouftunxQH/AEv7FeMpDdiwB6Up8k2n2FGSiuVK5S0rwx4kis0bxN4ivri0EgXToYWVkWPPDNnkn8a9Cg5ez1ZyV5xeiVjkPjV4P0/VruWztGT7QF3Wt5FgPuA6EA8VVoXFF8sV2Plf42ahc634curLUkb7faEh5H43D1rJ1uUznPlZ8u+IZGTSbuMnHXIHevKxla9GRpRUp1U72POps7TuFfMQeqPo6SkmVy+EI6GtKulhVGVg5CkCsWXR2M2+Yhjx9atK6ObEaJnUQSxxKCPwpzu3Y6qzSqMdK3n5wvBHes4plwSeoyHCtj0PArdtqIRSchbxh5ZJH0rFSlLQzqxc3oQabGd+NuATxVNtJCg/ZysXp4TxJtpxkhV4pao0dGn3oEyOBxU1NUb4eXNuXwPmLGs4KxpJqLJkkCLwMk0pQW4lzyPb/hBYxppulWHw++PnhbQpbxGfxHLbXcmk6hZRYPyy3VxGyzKSAoihViWZTwFJH0eD9jRppQqxXl1Z59Si4ylKWp+p3/BH3wPo5+JN34k0Lx1J4gsY7COGG6vJ2ubiTaPvvIQME56BRj1NexhvZSre7qvM+fxkoQotNWdj9Gb66ERMMFud2eSq/er0KktWkjxIwlJJtlLR57w6hLJfw7EY/usnlqKPNGXvCrKm6a5XqT3V5YfaxHKRvzwKVRwc9S6cKqp3Wxk+LmiWPz2t8oo4BX7x7CuOvNXOrDXUdWcnrNtrF3YG71K4eODPyQLwMD19BXJOU7e9sdMHBNuB5kupWviT4l6Wt6PM07SnaW7dBmLf0CnI+Y1nRqfv0+iNeWcqDvo2L8R7u41i81HxNaaqyQ28RS0MkHDNnjj0HtXVUxEKknJFUqUowUTw3xN408QXnj+7K6ZJcpHoLSTz8GKRxjBAHQjHSuWWJ56zjY6PZKNNd7nRfDL4n6j4z0TVNa8LaiZDbW6lJY4iFSZFAdACODnjPT+dbU5uqtERUjCklFnPfETXvE/i3Vry30C4u5Ly705DPa3g/wBUSPvJnj8Kia97lW5m+VpXPLdG8P8AiTwnLPb65qB+3AtNHNbWgjK46nK4GeenerpS5Gdc5csVY8h+JWs6nq/iNdbl1cNDuKvdKNvmAnrkdD7VnUnFy5i6aco6mD4r8R3PhC1OpWCzuFtyYrhI+GGehA4IrOUpO9janyzZ4t4q1vUfEV4urXUMeZskiNsEZ56fw/Sijbm1OqmruyKujSuyzyoknyWzksOv1/Wuyrb2djrinsjgvEvia10bULi3uLPZNsG6OVN0cox1ZeleLibU4u3U640mldnmHiLU7HUJvtNlpMNpk4byM7WP0PSvEcYS1SM1JyZkxSyGQAH8PWlJRihxjHm1JvLccseM/lXM3d3N1a1kTICNwHpSbbMKiaZNasWkAPQMK1hG61IUU9TqtNQvbICB071lKKuddP4TStQEAJH51EttDWLdyW4jEqYxn+lZpu43vqVURYEwPwIrZQM5aMq3GZJi351LQQd1qOGGix3HXilKALSREgVOPXvRy3HPUu2l5PCd1tMyNjGVYjj6imrpgnKx33wHsNT8d/EXSvB2p6xBaaXLcB9Vvrp1jjtbZfmkkLnHOMgepIr18olHFZlSo1ZWhfVvsd+EblNRm9D9Ffg/45+C/wAY9b1nxGvji10v4cfDrSyNT1K6R40mhVMLBG+COcbjnBbtnNfTcf8AjHS4ejSynIZwjiXbljJSbmrpNRUU1pu+Zx02u9D1cVnn1LCw+rpuTbXTTz7/AHXPK/hn+0/pX7T97Pc+FvDFtp1pdXD23hTS7f7WXCrIYohO1wFUO+BIAmVAYAkHIH7FwLxNmeKyz22bpJpO7V0k/n23Ky3Ma9WjUq4lu0Xfmdldbt6dOmup5R+1JefGg3kPgLRvhFqd3HNNHHf3MkflxzR7vm2S9DnGODX2scwli4Kng5Kdt9Vt30NcVjXiElhmtTlv2iPCGu2Xg3/hALmzi0u4udPWS/s7SIlYS/ypDuJ5IUc168XKdPk1vbXTT79v680ehHBN0E5u+hlL4itvA/w7vfDeleFraA6dDbpbzpDliwyQQPXP867Lqckk7JDUo0YKLbsux5T4a1fxx8QnuZbv7JcxwOTfaqsryGOaZsmIDGNwUgE9s+1ZYZqcnGOyOWnOeKm56pIg1LWJITrWieFdKKXN/wCXZx3KXeCIxgM3+zwDxXVztSko7nXUkqSQ/wAdjT9G0D+yraG7tmsLdmNys3mPcQIMlemRkg5+vanXnJYX3rrl103f6/5nLVlUmnZ6HoWr/wDBN34k/tgfsL+Fvjf8JLDT77xDaeKZ7G3N9eJEyFYhILdkGMR7Ukk8yTgEkZweP5+8QOO8JkXFUaVaLtGKu0tdXoceeYnA43BrCu8a9OPNF2dmr669+lj5M8K6B4u1u2Pg2xuIjb2BNl4kZV3kMsm1o1KE7wCCMqSMc5xX6dldeedYSlOi/caTd9Dy8v58RhoSv0szqvijqNl8L9Mn0ixmWSay05oYLZceU0jFdrf7RGCM+5r6DFt0Ka5HbRq3R7f0vVnr15unhG4rXoeGxXfji2v5tRudQ8y/SQC4jkceXNEx+59B618wsNjVU9rKWvY+Nhh8x9u6nNeSfyseg6L4k1CeyuLLxBaSWVyji5aXO4jYMgKe6kfKR6GvbpTcoNSunufSU6tR3jUWpk6D4U8Sahrs/iG01dF2nDW0ZAXy2ByQCfu4PIrgqU61WrdPQ4nCpKq5X07Gv400QeEtGt/EE0kT3Cf6swhZI5kByCSOhFc+MpxoR5pBUk6cXNbHCeJ9etNduv7esLCCK5lfbcC3H7mRcdfY1484wrPmhuzyZ8tR81MqxOJZ5fIT94p3NkbdhzgkY46VDgoRsZ8rnKx6l8CLq6sNejuLa3iYGPO2a7ESSHByCx6E4r5jiWpSjl0+l0dD5cPTc2erw3NrrHhnT/GGnXkEttqDzRPHHIWa1uIiPMhfIHIDIQRwysD6gfgWIhOjUtLqThcXHExbRn6krsnHcdawhJOaN6kOdFfSGkichuhPOTTqTeyM6LUNGaN3B58ZbuB19awuzduNRGc4aFtp6ClFO5ztOEtSrqmmxanBtZRvA+U11Uq0oMmap1o2MjTLi60a68ifpnvXS7SV9zhcJUJXOostQjnQMhzkc4rCSaPQoVVOJalYfZ2IPY1yy0kbvVGDpBJ1Zs4xurtg24WR58eWFY2bqQBySKya1O6o7wKMkyl9oPGetUn2OON2yxb7iMv+dTJ9DrhFRQy6kIxjvUPY55v3io7DPvUpGqXukZYk8/yrayOSWjFOSnPFZyTT0NoakU2QMqORWtNJvUKmiI4UMhOO/qK0lKysZQSZ6/8Aslw/Ey++Ken+H/APjVdFiluUa/u5rnyo1jBBOfU8VrgpVpV1GDsjhx8KHJqrs/e/9ni6kufhlaf8TD7SBCF+0r0kwPvZr7KnHlgm9zwW41IOO35mt4vg8SfZGk0BIPNHLJP/ABqOorCs6jXuHXSVOXuyM/wFpl34t0n+2fGehxaZbxuRFpUCAhyM/M575rKCqVI3mrIus4YVqNPqdFYtbW2m3ItLBLazT5YYIEABJ71tTXLHTY5ZO8tdWc/rN1fXMjw6ZCFt4o8Ts4ABP1p+/wDI0b5Vc8/8apZ3GsAeT55MXy2pYBQ+OCfWjkUpXZUZy5bI8w8T3Guf2jHqdlPJbXEB2XVzKMxOuQCsY69+tYSvCpc0iqdONmjnviPqGtX+rDTGmtYI7vZEbwphgM9/Srk23qYJqb0Itbt7vSXmmsZPNi8oW95ayuNrn+/mtIJ82goqyszHXwzL4WhKzG6EM5Dxhbvcid+euB2r0YRcI2OWq+Z3OM+JunWWqQyraedb6kmJEHmZDY9CO1Q4t6o5/azsfJ3xk1Swu3vjdS+RfICsqMpAb161M4xBuSV2fMXiyVTY3WAAdxH0rysbD9yzooS/eRZ55OWXI7/SvnqcYn0VOTK8mdmcdaKr1sKbuysMBTmsrGtLYzbw/vtprSOxyV3udIoJjXHBwOabV6h3VYJzZbtIyy/MMAd6bikTBdiVbZfMDAc1lUegKVpWG39qGQcD24rKD1NlG7IrW3IOQMCuhpI5pR94utA7REAZHrWF7SN3BTgN0sPDNjHfvWjvYypv2c7GvIBw4OOPWlHQ6p2tcdDJk+3es5PUqLdrm94DsfAcvi6x1DxrBqsqW82YLbS9PjuWmc8bSJMhc+uD644rfBSw9KupVP0/U83G+0qU2k7H72/8EavDT6F8JbnVo/Ar+HLSVVaHT5pmklZccSSlud5B+nJr7rBVqU6CUdz4zHqrZuT0Z9gx6rdJI6XrL+9P7tEHA+vpXRzSW7B0YezXL0JbzU7GzVW1C7RAnzEk8KPrTdWCkrs4vZyk3yIradc6Nr1z/auj3azgHaXQ5UGnJ05vmhqdC9tQhyVFYq+KtdsbFTcX7RsYh8gI4X6+tcVapG+p0Yem2tDjbuy1H4hsFivlsdPjO6Yxna8nqaxjBYjVvY1p0qeFVoxtdt6d3q38zEv9Gkjg/wCEb8KCFNsh3SJACW54Lfp9ayjFW5b669PP/L79zapPklzHl/xJ+0eF52D2892sEbBoZZtqzykcn0AHT8K56vuaJm0KrqRstDzj4fXHhbTtE1fV9bvZxeyp/pUKpmKzOfuBv4htx6dTU4ZRjFyudco3SuVP2efFes6rpusf8IJJbyWs2rXBaZYGjBhDYyqMPmJ9q6KcZauDv5+Ry4qnFT1ZBOPiKPjZb6pq/hO5s9Iu7MJFfKzI7Sq3WSNsYT6VjJ1XXTlsVRUI0W0P+PkOsxXsWvkWYe2mWN4rKNQsoPRiMDDY/Ouhxad4jUlJanzH+0HpscWmvrS6OqWnm+ZG9vGUVz3JHfntWcqGnM3odNCprynk+pa3qN1aiaGGQqIv3SwE7GB6gr0B96h3tY6bOUrHAeKYktmkubvT3EgciXzPlYc9Djr9fetKUdTthHl0M5bm8h8Ja7qNtLEj/Zkij3HG7c3Y9jgVeKdqOh00klUWh57rlu2s6MLzXFvTPFGFF3GuYtv91mHp6+lePVcqlP3tDZwqTna+hweraTYW8Ujxa/ZysrYWGJ2JI/EV5Cik9GbTpQpx3MyJQp57GiVzkbvqiZWUndnr1rJtG1F6k0eChz1zmoSuwrJbjrQfvymc/MDXTF+6Yw952Ou0sAWq/T8q5qj1O2KtGxeWUBfm9awWrHTauONyiKdzY/GtNAqSsVXnVshTz603LQiK52VwzF/m71ncpQUWSA7VyQc4/Om5FSkuhCZCx+QU1sZqLLVmis4zwD6Csm3GWho5RtY9M+BnwO8cfHj4naB8G/AulNLq2vXixQxPkKidWmkA5CKuWP0rix+YrKcM8RKPNLaKWrb7Cq1YUIOpU0UVdn394+8E/CD4Z6Jafsc/BTTotSsvDfzeLNRkhMh1bUgAXY4yNqHIAIIHTtk/SeAPA888zPEca51F1MTPmhRg0nGEFu46aa9fnc9nJsJKrhPreL3l8K7Lp82cFqOl2U/jbTtH0aL+z3tiJZZLW0DAlTkrjHGRxx69q/rnERoVYqi3aOl7W+757HuRg1C7Scdj5t8d/E/9pL4C/FDx3Z/D3Vk1nw0upW98PC2tRB7e1eYkGa1kJzDIoBPHr718N7DMOF8/nPCK+Hla/wA2ePUwNeliXXjOyXTui54m8Qa142tdNuLu/k8y5VZnmbBYouWcknOOOMnk9q/Xk1UivZO19T31iadCim9b/qcf8TprHULW4ttOu5rWSQSMGnmJM7IpwQFHA6AD19O01JNxt1CXs5xVtNDzXR9F1b4c+HbceH7n7Mbq1lnvI1mDecc5bcQfkDd2POBgUUqbpRfQ5+dRjy09Sj8Itf0TxFDqGt63o09lNb3/AO8gmLIXPZh0JT/JrpoVYSvK1mZUZTqtzkmmtNSl4p8b2mr6ZqV9BOqv9k8q2jfCLGi7tzYJ43ZP1wKxknOrOXM1dLRuyVru+vV/jZCxFVSh7NJXPo342+N/Gf7L3/BFnwxpWg6YR4j8b29xeXF810UNva6jK0EZCbSN7QxygHPAc888/wAq5pQnxj4q4mClejSSTS2bXd+p4GMrYqWGq1ot2ilFer8z4J+B+o2nh+yktV1iS1jNu0d5Mznagx8xDDnJ5AOK/ofJlSwlFQjoloTlEYLDKMG3b8zc1jVx4zSfUkthPHNOu043GNI+4BOQx7Dv1r1q8va1L3PSlUdV+z6GV4/iXRCrnToR9ssYjcSWwDL5pbg+xwOQaxxSaSt1MsXONJLlXkdNfappWt+G5LNrm1yFjhuHkAEmHQYYewYf+PVpB04QbkxNyqRs1v1OLsLfVPDoksr8FHtXMkkYlPzKc5dGOMcYOOnoK46lWyslYxVF076nK+IL/Tb/AF2bSoPFkyQyyZsWlf8AdD0PXj3HvXzOOrQjUcXLc8XF16Mq0qCqtX27FfS9OutLnbSNVCqH4S4Qgxyrycg9MA1lhYVIq0gw+GqYeny1N+5PF5kdxFJATtKbWcHBc+lPEWSBWjNHo3hfwHrfxF0SLwjoWmxXcl64WOOW6SBUHJLmSRlVQByckYxXx+fzp0sulOeljPMKMsRhHGKPan8CeB/hz4I0jwp4d8SDUdWS5muNeFkimwgdkiVI4Zc5mYbW3uPkJxtLDk/iOaYiliaicGVgsNWw8ORtfIzbt1MR9q8uPxHa7op2jDzSG79DXTL4UjFq8tDRjmYDa4FYtK5a9zUgvrfeu5eBioehUkpxM7e8T7T0z1q4tW2OSzhIg1KxW9h3oPnA4NbU60oPQqpGNeFihpt/cWE3lOeAe9U29zlo81KpZnQxXqS2pZWxleRWTi5M7pVexlaPJu1YqP71dlOKjE5ItzqG1e5DE81yzlqd1RWjYz7eLzJmz0qZPsYwSiXkZY0wQaEuppGV2U7lyxwT9PahS1Odr3xkYBOWGPrTavsavSIyQc+npVJGE73IwXyQVOKt2Kg02OkUNHkjipUrMqsnyEVs+3lTn0rSS7nPFSkz2X9kf/hnzTvH1vr3x48T30MccoFlp1ip/evngufTOK2wssNGpeozPEUYuN29j92f2aLjTZvg/puoaTGwtJola2Ruuzt+lfWqKdJK2h4DqRqS0O1mvYXmjVm3t3wv3RT5dS7OKHXcixRCDzCI8ZYAYJNaXsiObmZVtpIWgnlm3fMP3UAbv2OO1S5LlG03K/Q5jXdJ8Q6dbXKx60hadNzIwBES+gHc1yyu9Ewm4ykjz3xobTw5Ml5MGnmNqRBGTg7yfvNgVpCXK+UI1JP3Ujh/HV3Pda3Z3N5aFV02386JnuAsMx4yNg5OKKsIqd5ChBuMn3Od+JeuW15qP20WkOI5IXk2jO8kjAHv7U1acrE0m4opeIdTt/FsUlnc6PIBCuWeMFADx971rqXLB2E4u1yhrJsdRktLPTgrslvz/pGPwI71q62trGXs/duePfHZkjiln0OWaK5hiBDwzEqCDyCP4abqXWgKKjufMPxB1rTPHmn3sGpQtFqkf8TjG/HWsJOetzOdm7Hzf4sEsIubabIKsRya8rGyfsWjTDRj7ZHCXfzKQp/GvBop6XPok4pFdgwjIPpWlVozdmtCumCp9Kxd0zSm/dM2/Ubi2eh61Sdjlrx0Z0sIzGM9MdaJfxDtrNuq7Fu3Y8A1fQdNMsM2zD7eg6VDSkTL4xmXnOO30qVTUTpjqiSOIqucc5qpMwmrMsRNuBX8qwcWmdEErDHiaKUSqK0Wxz1U1O5oWbfaLbk8445oudEGpR1BR5HLfjWUk27mbqK9j2n4IfBPxlpuoad448f6fa6J4euQktvqOqeIZLPepOFdYbeQTTg9AoGDnkivXwOBxVGpGpOyi+pyVqtOpTfK9UfuX/wS4i8NaR8HZE8I+FrrS9PMuQl3btEZzjmUK7O6qe25ia+rowjGCcdT5jHtyhyt3Z9E+HL861qlzJbKPKifEkjLxx2HrVKTbskccpxjStIta94a1LxHALSEpbWxf940nzM656Adq2VKVTZWRlTr0aLblqzSh0+w0LSBZ2m2OOKPqi1pOmoUrJnJ9YniK92crpfhbU/F1y2oahG0VkkmUW5HMv4dhXnUcJVru728z16mIpYeHLu/IoeNvh34m1RbhNJ8VfY/NXaDa26hYkHb+dW8JJP4rehtTxlJU0lHXzONsPhx4ttfCVzFpfjloIlbaJsqZJpPcgcD+dZRpRjTfLIU6kJVPeieN+MvA+ua/wCOFgXWb/Xri0tiZ4ZLgRRQ4HLYUda8mpTftN7ndTqRjG7VjmdH8UWnw+sPEHgYfDy71mK9T7TZ3M8uWZyQTGXz0z+YqsPVlRco2uGJcqvK1pY6X4R+MfBunX0FhrVgmlatZwug0vygjxgrnepICnOfXtXpYatGq7NWsclSE2rp3OI8NfFLUPjB8V/EvgfT/Flpq0OnQIPJWVGnjl5+Rg3C4x2NS61KeIlFdDtdD2VJTkjhfHHhn4oweIJtJ1jxxd/Z4T8tnb20cjRjPIcNncPSoaknowbpzVoo8u/aH07xdomhXWm6hc2E9ltE1rDc2TRPn1XHANW3NQaOhRhFaLU+ej4jn1WwWO1sWtiqkeUW278dRnFcSbZvSXVnLeObzdI5RJFjLDa7Nk8/wmtacrPU6ott3RleIHa3+HU5OG36lFkheMAHrV4r3qWh3QahY4rXtAnksZ4rHSrwRzRhleynOxj/ALQPSvMqQkqdkPnbd7Hn2r+FdV0ohrzTZIlxw8mM/nXg1VUhO7ISd9UZnktuBL+wJqXNtFNKKHohPy5+lZu4qbSkTRAiMg/nVRdjWorq4lgxF4YyeNw5rpXwmFNpSO0sBts0B9K5JnbzaFmNGZgT+lZLQVN6iXlsdnXkUKSuXNXRVSMxjJ5rRpMzhLlE3gN92jlRTlzDnXcuDWcrJktWdxqKqe9UtUO7ktC3p9wlldw3jWkc6xSqzQTFtkgBztbaQcH2OaiajZq5pTgk02rn1B+xr+2tdfBT463vi3wL8P8Awzp+o+KNEOjW95LA0UOhlv8AltG7yOxHdix5x6V89jMkxGKqUZYeu4ygpJ82t+ZNN+ttmenUo4XN5RoVo2jdOye9ujPbvgn4I8R+HNLvtV8c380l3A8st1cFDsvix3CZCfmdHzkHvmv6m8L6mGp8K0qdHSNL3Xp1W+m/+Z9RCtTxFNKla23pYi0q71iPxxd+N11dTM0DxWwSDi3yCO4wG54xnH4V+pww9CcLTiVVowpUoxeqer377P8Apq33Hz98d/h9rnizXdQsNJ1G7lFzbQ2lxuG7e4fMkhx/dUd+5rhzDDU8bONKN+ifye5y4lKc9Fa5yfjqaXwlZi8e9eO0tikE08zlfNROigd8kjpXu160cNQvJ2Ud76BKUaVC03ojz6H4g+EPiJPqOtxaytpNC3lx2cRUyQRE8AKxzuYn3ODmsMHj6eMourCSfzOOhjadSnGEXd9TjNSn09ftWm6XYXsdvp9wHvIBd+YLonlImOOOevWvQhXjVdr6K1/M3VRU5czGfFLxtqupxXOnaiscJS1jCJbAYtWVc+SMY5Pf3PtWsp3v2LnX9pTUjzTVIr298fQ6PduY9M1GyUMwkzypzycYzya8bEyn9aqTb932cn80rnkQp1JZmnPWLPp7/gspqOneKfiN4b+GvhzS9Q0rw54V8G6VpelR3d2wN1HbKyeb5HCoN7MUkGd6sSDjFfgHgtl6zCjj8xqy/eTqyb8tTz1g6uOy2UajteTZ8b6V4J1PSri90os0jKqsy5x5it91QO/rX71TwH1aLXMaYLBVMInBMm8N+INN0mTUZ7i3KXUdzmwQNvMbBsKfxGRmnTrppq+prhq8Y1ZJ79i4gujrGoahdSr5ZGZbC4cPlcfeH97HqORXRKuorU3lTc53voYXirXJ9Ov553he4sJowIzGO6jgn2B5ryMbNwk3J3izgx+Lng/etp5GP4v8TeJvF1rbSWVwhggRVmz1wPrzjHavNrYutUivZ7HiY7E4zGUovD7dSr4h8Mqmhw3k3kXMAXdCI2JYnurY5HrXHicPzwu1c2rZanh41Ki5rak/hlZZbY6Y8ksKTIDGlwMqPc56fWu7CpRpqJthm6sOVFq5iXTZEsb8ESH7lzE4YN9Mf0rCtFKXvbETouFRXZ7N8DrO01Tw7JJdWiERkFc9Q3rzX5rx/VjLLYwjpqejyr6ud1zGojUbeOBX4+4cr1OPm5ZWILtx3PWs5pXNHqiGyTMgPHJ70SbsiFZMvv8A6vA7VDZpUS5bojSbzFKNUXZlB2ZRvYOpH4U0n1KqU7oqwylG2Mf1qtHscivGRDqNgl0hliGGropms4Rmroq2V/Nbh4ZTjjjNbSXU55e5uO8OSiTVS+7+OtU/3bOfDybr2Ojum3Ftv/668+Wkj1JoqwLtkJxjNNK7Ja90nfJOAOMUS0QkrIpTKxfg8dzUoLJaiYAGB+taLRGTldkMr7ODn3zS5riauxkLmQn6U76FRikyZ8CHkdulZ3HUehBAoJ24xWnvNXOVSfQ9n/Zb/Z3uPij4o0/xRqWu6Xb6ZFfpE8T3am5d8ghVjzu59a9fK8DCrNVKr0OTHzqxpNRW5+8/wp0hPCHww0fw7bxlBBZooXv0r6WrUUnaOx4lCi4x13No3lvaxlZtq7cs7E5qZTUUbTTtYxrK91zxxrHk2CiHT4QQ94f4j6D8qwbqSafRiVOMfee5sDRdL0+0mslaSS4lOPNkc5Kj0qlGNipVLtHMX6WGmM7QQSyEphpLiQnyz2qVBX0RLlzLU87vNS0/xF47fUNRi3Q21uUlLH5Semc0U03UckLl9xLzPMPi5p3hy6ube6DyRXCXAK3QlJhCKfugdxRJJyvJ6G8qnsoOJw41z7bq896LyFo3v1FkbhCELDGTz0FZwn+9ck9DKEPdWhq+L7XXL6J3tbxoJBzE0K/upsfwj3rvUrszcoxVjmrqwSXSr7xLcR3S3saBZYdhV4j6+9azpqcTOUmny2PNPijqP/CReHbnxDpM/wBnvoEAfdjbKOnNOmo3M25LQ+RfH3iCJ5LmW5hUXAJ3+X/C3rRUXM7GUtzxXxfOZbWe6dssT3714+MtGkzqw0OeukjgpJWMmST+NeSlHkVj3XpoNmfdGa55xdxTi4rUqCQgEUNWWpdJrlM27kJRiTxmlLQwxLtF2OpgYeUoB6ino56ndOyqst2xPfjnvTk1FFxSJZZlAIY/hWakjln8Q61w2OgpTmddJLlLRxjJHXvUc6IqrXQWIAdsZ70pTQ6LHuN0fTpSUtC6seZC2Nw0E23OOKuKuYw0Vi3OGZgeOabcUjRU0tTsvgZ4W0PX/H+mzeJ7fWraKK7QxarpemPdguDxEVzgZOBkAkGunDV37Rb2ucGLdKNOSWj7n9Bn/BNq0lsv2erV7nSbzSzPIxFnqTSNcKCeN5k+bJ64PTOBX2FCopU03pc+UrKd7vU+jLOaO2aPS9LhVELZYbep712JbRRh7JOLqTLmvanJZwBIVO88ACqr1JRSijloUPazcnsQWLvBYG81N97Yzs9KlOFOHNN3NJxh7XlponD3GoafvcNbIeenOK39o6lK+yMuXkra6s5XxpcNBoM95cav9isAhU7SGZz7d8mvOqqpJaOyPVozhz8qV5Hm0ngz4g23g24vNOvxp0U7F7eC4+aVR/eOe5rBYZ+y1dkzaVRPEJSRh/C6+svh1ompav4ruRcandRStLc3KgAjIGSR2rCCo0YWkVjKrrSSW1zzzwZ8QPBHjz4meKWV5DZWcKLAbi3MUVyO/lM4AkxyMjNZYRwq1W9kDjW5I8pl+FNG1Xxd471691HSLPUNPb5LeCVzHNChHBJb72Pbiu2lC05KxrVlTpU0upb8dfDfwb4OEjf8IjaWV/c2ZkW80S3KSFgM5Yr/ADq6mHo3vZXI9tXqJK55dHqGtfE/R/tlncQCOzR4pZjcIkznJ+RmzncMd6wj+Bbi6OvU8d+JNvrdrp7WLy3V4GJESXTLKsvBymV6Hr1q3eKsdUG5/EeA6e1lY6y9vqFv9ljMjFbW8DJg9wDggA1585RhLQ7Wmo6HD+NpbOS9nWzlJUS/KhlztA7H/GqpyvudVLmsUdfszc/DK9mKlTDewszBc461tVkvZHXSi2zzLxXJqzqNU0WeOW22bZmtZiCD/tL2rysUqk6d47Ft8jOVvr25uF/fSMzDu5NeCubZjjapqzOYMzA5/SttEiXq7CtvQbsc9cVNkyUlzWJojlD+orNw1NKr0IbJyNQO71FdUV7pzq3MdtYMTZpz2rkraM7FpEuQsSw+lYbjhZC3YbZub04xTUWaSqaaFASjJ6+/FaONjGzkxwBb5ie9RKaWxrFKIkqysMKR7VmndkzaYkUbA5brV2layIi5dCdAx4VuKnks9TaLla7NHw5qVxoet2erW9xLA1vcI/nQY8xBnkrnjOM9a0oaVL9jKdSSlofoh8C/jDrvx18I63rl3a6kZoIIYrS81jUmu57qKNNqO7HAQADiNQAoGO1f0D4YUIUMmqKmrJzb+8+jyirGnh0oRSSfTuZ3i26tvC+jQR2zYkjRpZmkf/WuT0A7DtX6tSjUkm5S9D2XOdV3OL8TLbroGp6/rlwtvcXR+WOMbBtPJC06lGnKDirq6tdO33Nar1M6lSSnzI+YfjL8TNZuvB3irxH8NdJvLnxv4bvtHk8ESNFDJp8T/asTmZJARK2NgUEYGST2r8w8T81xVGphMvjf2da6k09dNl8z4Ti/EZi1To4Vaybv6HzP4b+Gmo+OPG3irxb8Q9Qli1RI5LnWZbaPyUFyRubZGmMYPQAdTxX0vC2TUcPl0ad2klrudXD+XOTUZ35ra69RLv4MfEHwvNep4c8ZSQpbW0NzcLcPuLPu4jAPJbByf/rV9T/Z08M3yVH6M9yeBxSi/ZVPvKWi6h49vNXvn17wjL9jgi824urfnzXX+I5/z2rfDvGKcpVIad0Y0J5h7Zwrx91bM7z4Tt4U8UX2h6PcIt7dnVNPSYqQrMWuAjJjqMk9q5M1xNKGRYiSlqoS8uh3yrUPYzcXay/E+lf+Cwn2bxZ+1t46m/sSW1g0J7PRbRZZQwiCwhxGMADC5LA47mvxr6PuGVPg6tVa+Obd+t7nLlapPJovd9/M+Hri5WLUUu7+8dz5p+zzxjGwxk7VI7/Wv2ypiac7dv8AIyniI0+juc14J1u61bxLqeszaRCgeUoytFnykHGVHP6V4mBrRnXlK3U+WyrEVMZiak5q2poeO7zTtDuUsRCsFw1kWgSJshuMhsj19K6MbiqVO6j8Vj3Mbi6WDai9ZPZHKS3fijxbdwzXkywW0YUtBFjanbdjrznmvFg8RjK16m3Y8OnHG5hW5qrtHsXJ9JvPCojsrqOIi4YNDI7bgGOeVx7dq7Xh40ZJdzp9l9RrKHRlq+jgs1j1SaPytqorKoIWQd2APGM5rSUYxTkz0cTPko83Qoarq9kmqf6HcBZ5IQ/kwygIvBJzjjB9K4J4mEZ8qZ4lLHxp1nCMtWuhW8g317DcSSt5mS+xSCiH6fT1xXBiazm7I6KktFJvU+j/AIC2TDwZKXUIpwCvQivznjlKOFhfudVKpKULGtqB1bTbkSWASaHPzwsACfxr8wSpVL3djlrQrxnzR2HyEzjzAuMjoTyPauNu0rHZBxcRLQbDg9+lN7EzVi15wIIYYGKiS1LtzUyFSVc4OOeDTtoYp2Yk3zcDFQ2buWhn3cJU7gSCO9CTbOSokRRzsTjJzW0W4qyHBNFXVrKRojPF1A5xWiquTSZFZRaM/wAKTlNRPmHkPjFdUqcnC62PNoyaraHWzzAuQp4rkaitz1veluLDEWw7Gp54o0ukPk+UbV6etRJ3MnLsV5FJGSKUdx83ukQwCR09aubdjBaMikQSnGPrWabRal0ESNY+nStUu5Ll7wkjkjBPShRdyZST0I41BlygHNbN8kQglE+oP+CVPwZX4q/tYaNdzWDyxaOTcyOM7FI4GfWurK+edR9jlx1dKNj9wY45Yo1iVACBt3HoBX1CVlqeQ5dihdw6bqF+lpNdt9mhOZFReHPoTWEk5ysCbauar6xZWdu1pY26xQKAAgGAPrWySskiKl3a5h+IteS4mFrb3hQ7cmQIR+tXboQoW1ZyPir/AISB7X7VNdyxQs6osIIJYZ61lVUoaJm8I80dEc74vuNC0+0lt4byeBhCTIoXLOe+KOeMFYVvZq9tTxv4rJceI7zSvCWkTyxQEGUxuoLyrjJz6VjUfPNRME/ecjO1qPRLPTrbTNVMTaXNHtdZECskpIA5rqjGKjaxvBcsH3Mvxe954avovD8upRPZ5Q2+6f7vfGTWqXI7HA3GUuZIzPEOqPpVo95dSOLeVSsiLKCw/wARWzlymqT3Z4d4rsNQ8PW2o69oupvLbuzFo2OQN3ZgegNSnbUmpUjI+UfiTcZ1a4u4Y9kcjHeg9aicm2YPXQ8r8ZTm3tHOMruyPSvOxsH7Bs9DARtUOY1i70aXT4o7KItct80so4Vf9nFefGMfZ3Z6dWf71GTLI+zBP41jJI0mnKFyq8hUHFZz1RNHVWM6didwI/Ss5IwxDsrHVWh3IueOKzm7VDuqX9qy/bjpg8VNSbaHCTTsOeHc+N1ZxkXJKRat18tcEfnVON9TOLadkT7FZSAf0rLVM6GrrUIAAQPzpuLZjZxkXFjV0wcVCumbqSK89r5Mm9K6YNtGTdndF+xR7rZBBC0ssjBUiRSzMT2AHU1LpynKyVw5pNH0j+yX+zl8XLXxzaz+N/BGs6HAu27sY9T8WnRYLpgQUEkJHmSqf9gA+/Ne7l+XYiHvTWnm7Hm4icKsWk1c/cf9jC51y6+FVnda7FZrLgCQ2KERLgfdQk5YDpubk45r6CDlGKX3nhV/ZuLSZ7T4buYJL6WYfO68Fh0rohJrU5MRH9xZMt6jd4k82SNRg9D1ArN1HKV2YUqSUeVMdp8raiiyCHZGp6sOtdEIe0V2tDmrr2Umr3ZR13WBfMNJt3wjNgmPkn/CsKmIVaXs47HVhcPKn+8ktTj/ABpo9xqF1H9uvY44LTDKX+ZYx6/7Te1Y1tGuyPTpOnGle2rOE8W3mu+PfFUHg3wXJNFaPMovLmYgPIOuBnucH2Argkq2IqWhsW5xpU3N6s88/aX0q71rxDH8P9C01/Ke2WC4dZSCqGRQxI9+eK5sTzuo6a1SDDRtF1JrqRfEfwO2q6/DpelaWtzHo8lukMEcYVV+XLY29e5rrjTcpqy0R0UFy07LqQeMfiF4W+Hk0mteMWhgivNLCLbxxsrhzjG0jqT2rplWoQfvPyOWnS9tPl7Hn/jT4nS/GCeR/DOna7bwWFr5c9hcXAt5FQjqhOCQRXHVqc8nZPUitRdGXvLfqfL/AMNPAmh/Dn4l654L0831ql9dG9VZb+S4jG5slmO75Wz2rHD0VCbTuelDmqUlN9De+Onhy00jw2/jHwdq01rd2rFb8ycqT67T1z6gV6M4OULxY4z5nZI8U0nxHJ4nlZr6VZfNjYbjCGDt9SPlPpXnSalubwi9jy/xpdefqUkrzhtp2iUxBWI9Gx3FXSg0jvpqwrR/bvAGp6eF3o7xZ3cAjJ5PpXROlHkep2UubmPIPGNtq2lS/wBnTebGiE7A4QnHbDjlh9a8XFVHShyxYVVrscxP8w3n8TXip+8FNt6MrjIyffmrexE9wbBUnH4elZOVmJbjYZFUnLUOTNp3cSO1k3X+Fxk10QnaOpzKKU9TtrBiLNcjnFclSXM7nfpylqKYLgg81EI31Jih80gkTDHjqKptI1ULIqvGAxrO9zOUrux2v7OPwQ8RftK/HDw58C/CV/bWt/4ivhbxXV2SIoRglnbHOABWVecaFLnl3S7avRHLia31ei5tXsZvxc+G/iD4MfEzXfhV4uhEep+H9VmsbxR0Z42K7h6qcZB9CKqhONSF0bQkqkFJbNXOegUvyR16c1rKXY2iuVXLVvEGwFGSahJyYpTdzSs9KeZ0Vc5J6YrRRey3M3vc+8P2QPD0mmfs8xC3zbGS9/0uXy8F164OfUAgV/RHA+ExdHI4KHuttXdr6X1XzWnlufVZW1GjZrVlvxJ8M7rXbtvib8Tta07wz4M0xsW99rF0bdbmQHgRqAWmI44UHrX0eccW5RkK5MRU959Op3TzTAYX925XkeL/ALVmuaZq+naprtrf+JNM0HTLtbNLu88Mmxe+u2UGOztYJW8yV3HJcqFUHJOSAebCcZPMpww1ChP3rcrSeresbet1Y8jEZsuV0oU3zp2s/XXoeLabZS/Dz4bH4t/EzSVtQ1nLLp+ng5827JBjyB94J3PTdmvRxOVVc8VDEY9fwtYpdzOhhq2Km6lbS2x5r8DdO1YLqnirVoy82t3cjqZYOOQDuPHB9M96+zynDPCYVX3k7noZdgJUaTlJFrxxYnSNVk3yhpb9DJcnJYxxqTtGB0ySMmuuScqtjtrVUkrEuttp2mXzaS8C/Z7q0AncfK052Fjn+6gPf0NdtPkjD3npqaQqRjHm6nQ/sT+HfAl3+1j8PdY174a6brkkfiEXNpb3N3JawXVzGwdN7orFQpUHGGz6HOK/NfFPB1v9QMdicPG0+R2a691/W1zxcXhI4+lKF3FvrFXf3Fv9srXdB8a/FrxH4o8LeOL/AF/w94y1W61jT9Y1Wy8qS9YuYpQig4McbIYwcdu9fn3gZNx4XqYGvFQqUmlKCd7XV1f1NsHh54fAxpS6f1958zeI7ewg+228PleVC7ENOuNzAAlV+g4z6mv2Ks4yjJRT08vy7+qOWtytWbR57od1DbapqF3o05t5rX97AJWzngZ47814OHpS9rNR0aPm6FSn7apGjo0yW20rVPEk03irUXV7rzNx2gERqCBjGOnNbxwbnL2k9zoo4Kripe2r/EX9OtBpupnTIMQ3LBVSdk3pz7HhcgcfU100afIz1KMIQdupzHjyfxBomvRQ69GZbWGUbRGmNvpxXlY2tXhXi5L3T5zNljo42DqxvDyNLxU63PhuTV948mSLFtyMKe6+3ripxmJisO3Fnp4qUHgXZ9DkNBeO9nMsUCyTYyxJ+9gcjP8AWvDpzXLz9T57AQgn7S3vG/osDfacmIlmIKnnLc9BW0XzTuzs5pTkfTvwWVYfA8hXKjcAFA+7x0r854+nzUoLzPUppQomjqGHJyP0r8us2yed3KwLAMuM/Sh2iKMXcRAY+vUdqiTQ5O48OMdeD15rPmLjNKJE7kSY3fjRzXMdG7jt/Gf8iqULq45S1K93NEq/vGHtk0+R9DO6KDOPM+Tn1NappbgovqThmaMoy9RUNxvdF2gt2Yuk2LR627r0z+ddHtn7M4W7VrxR2EFleX8wt7KzeZ8fcjQk1zWlN6anROtGC942PBfgLxL441k+HvD+lSyXSj549hytbUMLVrT5YoyniacVe4urfDvxloniVvCWqeH7mO+DYEJiJJqsRQqUZ8jWptGpCUOa+hT8Q+DPEvhq+Ona5otxbSldyrJCQSKcsPVpL3kVzRnG6Zmz6VqaIZH024CAcsYjj+VT7Go43swtGxVA2/KDz9Olc7VmZtqIxuOnI681ukuXUlRcncjkjeTqMc9RS5ktinCKe4+CAhtoHTuayqNy0B6bn6y/8EO/hZ4d0D4Raj8T4ikt7fXBjMw52Afw19XleHhSwqkeBiG6tZn3ZDJNPKqXMmE6geteluZKLSsW5b2ztLfzRaAZ+6u3Ofes0lfQpeTKc1m1y7XNxlFHzFMYB9qttLclmTrWoedeRubXCiP93GE4yO5pKpzSBNKNmc54i1yK71OO4Aje4Vwqq8Ywo7kZqJxlJ6jTnay2OE+LQvILCW5tlW13YEboQXmckYUCs5xt1Fe+h5zLpDLrs2rXr7r+2tQJrgyYAJ/gA9aUIKVW7Woocqicp8QXvfFeoRaPceHzBCIRM0sT4yy8jg9K7JXggcjB8VaZrJie68QQtJN5A+xxkAgY6moSnNXsZuEYoral5Wr6E8V5C0UixqiqhG0ntz2rWC5tzGU7M8K8Yatf6JLqKgzuwZluI5FBDg+o7H3rVK7sZyTeqPl34iXLS6vO0I2qxPXt7VzVIuLuU1ZHlvjS6IslgPXdjBNeZj5NUbG+DcvanIXKPsJUV5UKslpc9eEeZkMqARYGcjsaJOTZpKpaNio6ksQPWiWiIptWK1xGOp69+KINLc5qzcrnSQSqsK4IqOW87s9Oo7Tdi9bzZT0x61MoRW5lJtO5IkmX5ajlikbQldaFmLkctmocrMTlystRmMDaxH1qGtQ55DhIkbZAHtTs+o0pNk0bu/KDHqcVL5YmkYdyYQmRfnPNRKdti3yxRa0NNes9Vhu/DUtzHfW7iW3ms2YSRMvO4Ecrj17U41ZJ3Rm5pLQ9N+ACeLrn4gJqWv6bq2u6tcBk066kvmuBbzlhiV13Zc/ewNw/TFdeFxE/brmlf1OXFP8Ac8z0P32/YB/4SFP2btKXWzcSXIgCzG4djIzDgltxJz+Nfdw9n7BKPU+LqSlKs10Pe9CWDS7YKIT5jkEnGCSannsrGVWNSfXQdqM/2u4W3sbYu7N85I7etTH36iSRpSi4U3KTLGtyx6dpDRtOIvkwcfyrpxc/Z0eVaHNhY+0xHO1exy1rZBbmDTkuzbtcHdJBndKU9T/dFcFGikktrnp1K7ndpXt9xhfEnUbaOYxWYwifLErnjPdj60q3KtCqCnypyep554Q13xXpuv3WraEII2aUl9QvlyUTB3CPjA47n1qYSlGN46WOiVKk9ZO9+hxVr4k0Tx38V7zxT9qMhiEUOx35kw26Rh07DGa4qc6dfEuTWptXg40FEg17xRZeMrHU7uzjuXjivViP2KNguN2Cdw6/LxW06sXdJGLvTSj1PMPiNq8nxF1qHR/DRuzZWEZghM8SvFLjkDPIDdRmsIv21T3XoKgnBXe7J/APh7RgI3122FvdQKwliu73Mg4/1f8AtIe3pXoxgnY6ZvV31R5Z8TvBniHQPizp/ibSfC0mnabPbMkr2cYdX543+2KyrXhUT6FRrQ9m4oz/ANofRtcs/hsl5rWoGCWXdLbOsZ/ejsGA5PHrWdeo+TQVGabdkfK+orr1gTqs+WilIJnsRuhI9GzyprjWmsjthJWt1OL8WzNNPIUCsC331bO89ifet6U1c76Cb3JtLlhj8KX8k2xV+Tdv6Lz39q2qNuGh1qfI7Hlvjr4feMLCeXV4dNlu9Of5kubaTzEQe4HSvm8bSqqTa1QSjKTucbI46dPqK8xJ3JvYh4J4X8a1knYS03AIQeP5day5bobXUelqrDp+VQm0zRakMFt5d+NqHrjNdMUuUxqqzOus3JtkXHGOM1jNWN6fw6lhOWyelZx0RcXYtWdlPqN3FY2xHmTSBEJOAM0oUqlWooR3ZUpSloj6H0T4G/s923w9ttK1Rry58QE7rzUI5f3an+6o9K+srZLgMJhleV52OlYSimm5X7k37MXhKP4BftSaR43W9WXTksbr7BentKYztXjvmvyPxAwWLxnD8sJRvec4pW9TCrBRnFrbUj/aW+Cvi340eGW/aK0+eS/8T2928Hi7TgC0k0Wf3V0vrhcKw9ga+gy/Czy3CxwsYaRS89ep2VYSxeFjVjG04qzS7dzyrwV8B/HHjbxBaeGtB0WWa5uJFUR7Dnk17mGy7EYypGFNXueXVquNN9z6n+HX7Angm+u9Q8LeNfBmtNftDHHpt3pTjfHcAfOrxtwwz7g19hDIMEuaNaDja2vnb7jtw2AVelGftEu9zovC/wCwP8J/D2rK2t6zqEnlqG3vCAEYHlHUnr9M19bgeFMmoTg1Fyur3e19NP67HqU8vgk58t16nsPg7wb4Ha6t/h1pBjWzhVp7qQoSlraRgtJM/U5wOB64FfX4vNcHkOT1K0rxkrKK/rrsbYivPBYRzWj2SXU+JP2l/Bnxp/am+IF38bvib4vbSvA+gtcx+A/B8M+0RQQlUimZAAQ7khgcZY5Pavx2nwbxNn1KWPxElH2jveTu+W/wpdN+2p4lPJsVVre2lK6l08/M4LTPhlb+IvHWmeANF86XTPCMASJbqUnzLxjukkZicbixOT9PSv23IOHaVGvThH4aSV+l2e1gcqUq0Vf4dzT+NWgTa2UEjGS0soI7YQJFuRBGSSij+8T+dfpVJUrWPdxFOKppbNGDqeq5sG0G302KGO0RJ5tOJy0H3gZZOwI7VsqsZTsnojKhOT9y+551qPjL7N43v9ZNpE8JtvKtIJx1UjGT/OpqVbT1Qq8VGFjh7f4nHxNrl7Lq2kzjT9OTyFuvOAMwB/1YyOmMdPSscNVnKUk17qPIw+IrVK0oyjZI2fhb4u1DS/iz4V8VLNJbRLrdsQFwpiiNwq7gc5UlWI49K8viOlUx3DuNox+1SnZdE7O3mehT/dVFOGln+Z3H7c37Td5+0X8RtZ0D4R/Dqx0fwT8EFOhiPT7fy2tbVrjyg8pBw2+fv15575/l7wKyiHAE+bNsU54nM3zPmd9Ur2XayPnsPi8M51Uqt3Fu619D5o8aawms28csd2UhE/LseWO3k4HUV/U+Nq0HFcrdl/kbVnelzb3PONEk1WTxRctdQR/Mo3DGCQBjA98V4OCbeIl2Z8xhKNajjpuS3PVfDdzp+jSS3sNomxrPMTt8yluAd3sccjtmvb0jFtn2UORU07GBFdXGuapqM8wWGPelvvdcgICFV/qM5zXj+1nVlJrY8fD1a2InOS72K3iVYr66ma7u/NnS5SJ2ByjFVIL+vYfnWcqUqifMd1eEHRlzu7RX0rS9M8W6BLpd5fLbPZKX+/8AIcAkAjuevWvKxlOFSCp31R5NGnDGxlRbOF0ixu7fUZ7dGT5HwY4xhW57V5dCk1JroeJOjUoSlFdGdXoUnkXsMJB3CT5AwwN3ofau32cWmkdWGhKTPpv4RSCb4eyXLhYy8/3EP3eK/N+PlCFCmvM9v2LjRu2XZg8jkFvpX5TOaWxz2UWRSr5Y5GM+tZpSbBtormYFz8wyKc4uxEndAkqnqevQ1k4szTsMmbDctz2qowBt2K17qCWVs88gwFXPNbwSbsD0jdmPovhv4i+PdPufEfhvRJbmxtT+9kjGdor0I0F7N2R5ssQ+a62JdMe6ZxbywP5gONmMnP0rzakbz0OiniFyXbPQ/AX7PXxe+Is0aeGvBl3Isn3ZHjIX9a66WXYqrG6RjUx1GLPcvhh/wSb+PPiW5F5r8kGnoxBxgk4rsoZJiKj992OCvmcIO0UfUP7OH/BM/RfhNqMureJrtdRuHXH71BhfpXuYTK6OE1epwVcXWxMtT2HwH+yH8MvA/iebxZougQJdTnMjBBXXSoU6dVzRftJuFja1T9nP4e6v4mTxTe+G7Z7uMZWUxjNFahTqTUmtSlXqez5SPxN+zb8N/Gd0mo+I/B9rNMgCqzRDOK2lGEo6oIVqkFYzNZ/Zd+EF/bvpU/gWyVGTbxCM1MIQSs1oU69W+55be/8ABMz4G6jqVzIND2eaDgoOBXn1Mvwrq8ziTUxVZzvc8T+K3/BIrVo7yW6+HOvhQeVhmFebisq9prS0OmnmdWK2PPtc/wCCVHxr0nw1Jrq+INP82MZMM7bB+dcEsoxUYXTRtTzJ1KnLYtfsp/8ABMzxP8a/iVb6N408VRWWg2d1H/a+oxIUgkXq0STNjcxAx8oOM1wYqWAwWGcp1f3vRW923W8r9PR37o9mnhcTVoupKLsui3+4/Tb9mbUPhjoOr+JPgx8JfBNroGmeEHht7e2th/rwUB805Azn17813cK5hUxdKqpWsnpZ/iPPMseBw1Gf86u9LfI9isrxGTEcuCOHY84r6hyTeh8u02mLPqEl7N5sSkhRhnbgfhUq7dwjvqUr/Wrqd5QYiyJHhELdfpQ4ybLkk0Yc3iWKO9lnu7abf5AwjIdnHvUr93LUI03KJzvi++8P3iLLfSpb22zeRbvh2Pp7CpnVTeppTtCFoo8s8c2virUbiO70VQFgUzWltM5cuBzz6VLUnqjJyjL3banF6Na+Jzp934o1fRihdpX+ztLu3SYOOvUhea1w8ZSk2zWpCEbRE8PJd3thDq+qTxuJ8eeXcDaMn5QOeTXRZ7tnJNqMrHM+PvF8enXO+2CJJdQuLe0Z9xAzg/TjNCqJaInl5jgPFOv6ulhejT+FeQbkVsgcc/TBrWNzPl1SaPE/iXq2szefcTXg88RhDIo4IP8AepubiyvdjufO/jqeWFp45Bkq/wAzZ6VlUve7Oe/MzyXxxraG/EafOsUirMy9F3ZxmvJxycqTR3YNWnzGVc3C44JPFeZSpO1meynZFVpS2WY9+lVO0bIxqK5AJF8wg0ptuAqC5nYhmZST8tc0m0h1YRi9S9b3EzIo9q67LnNpXdRstLeXIX92prKTVxTUpO5Yt7i7Iy47ccVm4tuyJVRx2LUEl8wyin6Y61XJTjuO1STuy9DDd8eYp+mKylOP2TaNktS/a24cjIOa5pTZrz6F+G0m84Wyws0jcCMLlj+FRrJ6ImVTlWp2Xhz4KeNfEXg28+INrZxppFjOIbm6kkxtkPRMdcmumGErTg5paI554mCqqHVn0n+z5+zne+DPhVZfEm/8IXCXeqW16oup9PMyiQqghRk/ucuW49K9OjhZU6Clbc4JVPa1nDmPVPhH+xP4Ma4tPip4o8Kr4c1GwuFnuG0m6b7FecElvKPIcknC9MdK1pYOlKXPKPK/IynXqv3Iu6fc/Vz9lxNOHwWsG0u2uI4io2+dCY3YdRkHoP8AGvp8PBexvY8bF0rzs3bZ6eX9a+R6Na35dfJVhnILEr+lNx1I92WqNuK4s9PsPtMqhTiuqHLSp3Z51T2lStyROe1Sa71e8jkhni3K24M54j9/c1yVG6s+ZnoxpRo0mrf8Ey7S7tbbXJ5DcB1VSbm9l4MhHbPYewrOMouQ17tK1vkcTezTeL9cuNcvrVf7KsTuLhsCZs8getZOCnU53sdMIVI0o3tzaX/U5H4ieOvDMVwV+zFbUcmKInCHjhj2HHapqyi1psbKFSR5RYeL/DepfGSw0jQH895YWWS4Ns0MOzocMwGTXFGvSjXiox9ToeHksO5zKnijXde1HxHdfD7wl4ru9MtJFkhtYdIjRo3lyT+9bB6gYB45qq3PKbUXZGHs41LVLanCeHf2bfEfwT8FXXxW8HXup/2RDfs+s6Bc3DMPOY/vJVLnK5646cdKKGGVD34/M6nKlP3Z7l268F6D48DeKvCusSiTYpt42Ynyw3pj7w6j15r0ZRjKPNEyVRxlyyRj65rHiLQrJtOvtHu50AMcwllMOxhzvj3fe9emK4qs52s2U6UG7nAeJbbV/iTocFsuvXa3UVu/lNeOAMew6H6VnJK24KNpaI+c9Su9a8D3F3Y6zZW8gQMs1xFGTE3X76AfL9a5HUs3c6ormWh5n4vkiur6S5tkhRWOf3J+R+K2pNc2h20+aOjFs0jn8FavAQrg2oOMd8967nKPsz0IU+azZ4xrlxremXTRreTwKw5SKf5SPbBr5rF+4+aL1CT1sjCmkZst1z15rkj3YuTlQRO8XXvUTTlsEbSJFl3Hd69KycZJBJNEgdun9KlRe5PtLbAny3AJ79hXRHRakPmqSN6wnkaBQTwBWNRxW51RhZGjbo7YUn8qxlOKdjRKKNLSwbW5S4HVDmnTquFRSRpFpfCekeDNZOqLHbpetGx6ljXrRxKrRu3qXGavqfS3wG+Fs+ueGYNZvLBL+PTtUilKOPklUHlS3UAjivqMo4anmOXxxUoqXLJOz8j0sJgPrmGlz6du56Vo+nP4d+K0uv8AhzwfcabaSsXjtX+eLYfvIc19BVyKMM8XJh52lG6drwWys+zd9Doo4GrTwlr3e3meia38IPA2sQQeL/hzAND1VwWuEjh+fee6n0r3J8NUKUPcn7F7t6aelzzqOWzhXarxTj6lyy+GvxA8MzRt4n169heQearzjy2/3vU1ll2EyyVZ06WKdZ/Lf5Hrwhls43oJP01En03SLkvG920txI/MzMSWP19a+npYGrHDx5tHF9OxvBy5bWsjzz4mfEf4ceBPEl1+z9brqiajr8Bmu/FkYeO0v9hDy6VHOeCyDa7pkFhxyBXwuGzCHE3GFShj6nuUpXUeazbWt2uup50aftMXF4m6drxi7feeH/EbxCbPRYSl7bP9rvpLiSJBxFbxkmOP8Tj8u1ftawsZU04vS+q8kv8AM9GhQlKb51sed/Dq90WC0n1C/s5Zr27mkuJkEfBfjbnPUDg4r2cHShDBq27PUpUpUo+6jnvinrgjw9pcqrWcUknnZwZnGSSe3HQfQV0WSTZjUlKejPNr670y9tb+e3tJlOqQRRXkso3PIMfdHTcT+gNZ0KT5ua4lNRl7qOF+JAii1K4fSLJbeRr0LYW5cM8shGwE/wB4IOSQPWsMRVkna+pnWm5tIoa54a06y0zTtMtbnz3MTPPLsLLKT/rJfQkdj712wSVBQW5VanGFGxz3iR309rLXJYo4THAzxJHFkosRDRkjsDg+pJNGHw3t67oS2lGSfzWh49ScnL2SbV9bn2z+1d4Gbwt+yJ4r1PwF8MPh/pNn8Z/h0PE2r3WnI/8Aak89pJHJGzbiVCOHlfagUBgpOScj/OfLpynx9TeKxFWc8vxMqME7ez5ZN/itEr367dfKw2V4bE4TG4lRcZxvbs9NdO90fmp4f05NV8FNq1zE7K8G1UOcqD/Fx74r+78PB1MFKpJbjy+UquXKpNboxdK0p76/gC3Iij8wr9o6lJMcE+3FLDUktTlgm5czO20+C21DwncWMKkyxEmW0H3zKOroPwBIrodR1INI9aFX2tJxiYmiywadaXVvMsTSSQEqZGz5gJGcehHpUYWlCMHcyw0JUaVplqXTbW4sLnUIBEwlt0kLq2WGMguR254I/GitVi0+XYK/v07oxNJs7Q39yEdYpo4flSIj95xwV7H6ZrwMTGPM+54+G5I1Zcu5yEGnzrfzfaZXMiynOCMqc9civLw9WEU11PH5pOrJTfU6Tw1YySX6pOxeQAEMP4x2rrbcoaHsYZKDTZ9QeBEg0rwDbRDCqzEjBr8q8QObmpR+Z11a8px5Ue5fD79kPTLTRLb4lftZ/GLT/hX4Zuoln0+zvrN7vX9XiPO6005PnCntLMUTnI3Cvx/E5hHn9nh4ucu61S9WeRicb7D3aUeaX4Hq/wCzZ4b/AGNPil421jwx8EfhR4nkisLJGXWfHeqQXFxfcnc4toYglspHYMx969DLZZhQqN10tVojvwVOtiIylWs7fgbnxY/Y7+Dniq0mfSdGj02+wQr242jP0r3OSNaOqCry2tE+O/jB8HfE3wh1drbUoWktS2IrhRwR7159bDSg7x2OSEpOVpHHxOswBY5HauWUlHRHUkkiHWtIu9ZsjpmmwPJNN8qJGuSSaVDmnWSObFytRaZ9P/sB/sh/H7+zzp2raSbbSrwZkEikFlPqK+wwuCqp+9sz5761GlBxPtD4X/8ABML4LeHtVXxLrPh9bm7kbc29MqDXbDBYSnK6Wpwyq1Zn0J4a+D3hDw1BHZaPocFskYABjiHSulcnQSi27M6ax8OxxSeVEhHocdKWiK5EXl8KBn2zjhupobvoVH3WW/8AhBooVD7CVI604pLc2EtfCsBl4XHsw60pW6EpkyeE4GkwYwvbBqtOUFvZkVz4LspCXMPzDjg9acZJoFK7tYrf8ILBaHz3URovzFpTtGPqa561alCdmylh51JI8/8AF2oWi6zcwaZOkixIcSqMjP1rj9s5y93Y6p4KcKEnGylbS+1z5n/br+Jes6Tq/gvwVFY3y6Rca7bP4imtbR3MlsSSUBUY5wFxnPzV4md5k05YSEXzct792foHDPCtF5as1xFRK8lFLe2j1foe+u0/xCksfHN94bPhvwjo/lt4f8PwqImkCR48yYA8564/Ovm3w/iM2wcpYl8mlor/ADYUMwpZROWHpz9o53Up/wCS8j0r4IeOdK+PVnr/AMTtL8F2WlXNqxsFe1Oz7SsJxub1615eSOvlOdVvaxjG0Uvddk13s+pwZnQoYPD0MNGtKrCevvbxbNfTluXujbh1jQ8uA2S1fq0HGpFTT0Z8pVw3sJOLWxdvri6063ZZkCQq3EQIJI966L6HEtxlvKk98JVKLGI8F/WnexT0WpU1u7tpIvs8MW0hQVUKDkDrWTlKUirpQtE53xJbaD/ZrahJpC+bOoRSRnJz3qJxp321ElUat0OC8Ua3ai/W4s4ljFvAYjOr/KxNJXvoiFHlOKmmvdEWaWeZpY0ciJCMrh1wTVRcqY6k3I8/1DTpNP0/UFhupUEkonhCjA68fhmk+Z7swau1c5TXdLuvERk1FrJknhgJjkBzkH+KtaS5mXy6HD2+pXXmz2MilHjlw+88Mf8A69a3adhySSPI/jDrUdu11p0EBjldjj6DqKqybuzmUXUZ84fEnX7fR9KudTncDyUYypIevWpupPXoRUlGktNzx3wVZ6zqNle65qyuYtVOZEI+4gPyEfSvFxeJ563u7Hs5bhJey56nUtXelzWe1JY2UFd0bspw49R61ytShq+p3VGmtCrJGUUgdPeuapO7IkouJS8shyVPU03P3bE0VZkV3uRCDWSs2Z4l3TOisYYxEgAHSnVcnN2OmVoyaZdiji+bcgxjpis1GT3Jck3ZEsESO33Bj1rVtQRUYpas6jQNGjurEGCwaeaS4WKNEGcZBP8ASuVynORcqsYLU0/DHgHxJ4kvLSztdHkVLy6MMcxQ4j+YKSw9BkVcMNVqz5UjmliYwpuT2Ppj4df8E/vFHirX20DWNEgWG10wRQahZhlM0zcq7epBOK9fD5JOUvePOrZlGEU4n0R+zH/wS01vwZqll4w8cwWl/qdjMzW8kkA2uhAG1l5BIxwfevTwuT08O7y1Zy4jHus7JaM9++GX/BPfwvoOmap4cv8ASFNpq+o/bZYCvyFwcgmu6OEpxul1OedepdM910H4AeEvDmn2mh3GkQtCEUQ28qfLwKuaUfdZEZSbumbt38DdI13SW0x4UtJFB+yzwIuYiOhGRzULDxqqz0NoVnSndnqXw+0m98N+ErfR7/V5LqSCLBuHG0yNjHQcDiu+K5YctzmruNSfMtDQ0+9FvJ9mZ0VRy3zc/iazT7GVNN6Gpf6vZyWYkW5BjT7zMeB9PU1nVq8y8jSjQcKjutSnqJa00RtQnSQQMSVjjX55T2ArCrJxhzNWRrFxdTkbu/yOMu9D+IPjfybi+ik07SLds/ZGUb5APU55zXOvaPllH5pr/h7/AHGiWGo3V7yIPiVrem6DpMejwWoht4IwdscRyD3J9TWs5qNKzQUXed5M82stNsvENpf67JatHp6EyZuCUa4k7Zz90duPc1zRqTnFytojarKNOo+R3u/69PQ8c/aC8W+D9F0u98Y6tYNFa6VEZ2trZyu5VGSeOQD0A71zV6kYL2rWiKpuT92+55P+z/4T+Lnxp1Ob48aZ4rufDT3tsj6HoltGFWK3ByGkQ53OfWnSofW260JNLTTY6q1TD0YKK17n0F4rtXn+EWox6/4r1S5u57Z/7ajtgZEnjxhwycEHnqK6varD0Wk2zzYc0q/5HjHwK03wfD8KbW+8C+P7tbdwyWFmzsJ0wxGcSDkZHTrxWFKrCtStGVmddec1Vs4mPpPhnxn4s8S3Evjv4i3GoacspS3eSAKYSOOcckiqpU5xlec9C3zRV7WG/FbwMfh34UXxLHqNtqFrGTIqWtwHeJ+zY4OO+DW1WLjG8dUCrRlKyPlbxv4wt/GGuT6ylpFbSyIUla2GFbPQsD0z3Hqa4OWLbuddKLjoeT+KLXyNVc29uIdxIkiQYUkdTjsfWtlT5VZHoU2oq0ixo10X8O6jEsoDGxPTvzW7/h3Z0Nya0PGPFAsZbktDFPHLn5xIMLn1FfO4xwuXCy3MjYFGSa4YzuFST5QLKON3Wqc7GUbkkQUHPHvmoc7lSTHFg3yjpReyHGGt2SQrGkoYtnA55rPn5inaJv6Ja3mobYbK1eVz/DGhJ/SofvaIFPQ7LRPhR8RdUQNZeD9QcHoRbN/hTjhcTVdoU2/kVFt6pHpHw1/ZF+Iniy8SXW9OksrYDLlxhsV9Tk3B+ZZlVUqq5Y+Z2UcLVqu+x9FeA/2IvCkD26abHc3cjAK7SIQu761+mYTgjJMLFSqrmPTo4GFFOVRn1b8EP2X38K+HLnTLTUdNa8+RYtCe62yXRP8Ad45I4q8ZxNw5w/ReHkrU1ukVic8weEceaEuT+ZLRep1mmal4D8En7JrukR6nfgc2UkWFgwT8ue+OnvXymL4l4q4oxH1Xh9KhQtrUqJ3/AO3djhqYrF468cPeMX1K3iL4p33iRDFpHh2x06NMAx2duAwA9/Wva4f4DhhVKpmONqYmct1Jvl87K+hvg8pjR96tUcmzn9Zt/EPi++jm1jVbu+ZlCp5znA9gT/KvtsFlWUZNTtRgoXZ7uGp0MLTtCCiiGz8IXOnGRmeF/KkBdFZcoPfNevCvVVGVO/ut3+7+mKpVp1HZaM8a+L/hbQ/Hvwj8X/sv+LtYa0ebxnNrmk+IcbbrSbl4VltZ4XB5TeCjKR91mr8Sznw94gqcYQz3I6q5ub34z0VrdH5u255eMwE8VivrEG+ZRSWvb1Pn608Oa74j0iyufiJBFa67a2XlatbQSBoXccGVD3Rsbh6A1/Q2SPE4jAwli4ctW2qvdH0OCqOnhoqovf6mfq1/p1vpcNzHBFEgLJFDE43zEdWPcA+tfQxXu2RdSt+8cTxn48eIxaxST2dhFJ54dbW0TOJHx29QPWsJ88YW3ZyYm3LdbmObS60HwTBpl0pN8LHzwY15jldckZ9MCtIQcad5ble9CjZ7nn7W+pX+pf8ACW3kCQz29jusklbCxQ87nz3c4OB1rjdObqc7Oe0k+dso2GoWhu5td1pflSJNsDHDfZiDtXgdGPftXo2koczNKVRufNUenY5rVLbV55Lm7FyEtzpRjX5AVTduIVv6VnTxFSFVTWnQc6LjJTWx3nxm/aM0TRfAHgTwzqHjuLX/ABH4m8J6ZodjpMbOW0ezE0sM28DG3fywwT1z2r+U8z4Soy4yzCUqPsaUKrq8z055tRd0fn2NzbF4XiP6olaFTkt89Hoj52a4hsdNbQdMu2aCO8MLHeQdiEgH9BX9H5fWp1MBTS7I+gpSkqahBe6m19xVGjBLq7ltZAIJSFulV/m9VYfQ1qqSUmo7Mn6o+ZtbPc0fBvhLVNC1F7e1uTM8q70zKQJD6oeMHFcyoSozdupeDorBtqLvc6C807TmZtNubdRNGytMk0eOD0bOPv8AUY712ulGVPU7pyU42sYt/JpyNNoFvbGDaSqlnBaI4yzLjqPXNeVXppRaicV1L3F0OVjuNN0m/wDtWoytDbxqcPu53fSvFnGMJXnokeFO2HrtydonO6fGWvprmJ9rNKW2Oedue4PevNo06U4OpB3TZ4sKVqjlfdnWeFGSbUIzCSQXwHz931roVVQStqe/gqUn8R9QfD/XfEHg+003UfD91FbXEFpujuDbpI8LsTh03AhWA6NjI6gg81+M+ItaWKzGFFbJanbiFaaSJNd1TVvEGqT67rurXV/f3D7rm+vbhpZpW9WdySx+pr4OjCGHjaCsjhlTpxfMehfsifG+6+BPxaj1xW3W2pQm0ugx6Ang/nXXR9+qpSMfrE6Eny7M+7/BUEHj5DqET5Wf5lIPrXsRcWrIV5PVFb4h/staR8TdCuNH1G1WQtGQhYcg1TceRxCcrI+O9Q/4J3/GM/Es+DvD+nlrSST5Llxwi5rxPqFarWtHY5quMVGGu59u/sn/APBLbwL8MYIPEHjO3Go6mwBLTICEPsK+qwOWUcLFNq7PAr4utXlrsfW3h74c6LoEEdtY6ekaIBwigD6V6bq8uiOdQ5tzo7bQ1yFWMKM1n8UrlN8hcPh4QurJEDkd61toNSVy/Z6DbGPfFGQw68Vk4sHNSWg6bTMOSUz2HHNXzRSEkr67ktvaOf8AR5SQnsKnm6lSY86DlvMSXhfuseKHLQUW0VdYm0awRZLrX7GJycMHuFBP4ZpwvI2jCpPocl8SfijZeEYPsPhgQXt28YJlUbkX8qyrXpp23OqFFxabPHPEfjLxf4mulm1vUrm4DZzDkrGv4CvNmmveep6VKnCO25DpKTRTjbEDHICCDmoi5xltozblclcl134aaJ8V/HPhiy8Tndp/hdpNTu4PKG2Q4KoGPruPHtmtMRRjXqQ/u6s78Nj5YPKK1Pmd5tKK6eb8jY+NGtvceFbp7WMR24hYxqBhVUKcCtWqNSPPB6NXPNpqcY2e5b/4J0z2kn7N76j4sj+yNqE94+mSIv8ArlM5C7gB1Yd6/P8APMso0pV8VVbTlG0Wtfe0smuh6mIrYiv9XjSV3H4l5a6nq3i3wvfWUhntF+x3Cou6LHEpxnIPb6V3ZRncsLJYbGK2isc1SlHHU7wd99f0Zyyx6gLtYdQuZpWCkuHUhfxNfaU5pxvF3R4c6Psb33HXmtXV7cbbeJLe2hjIkmTv/sgVtCV9zJqMjK1zxINFijSSSUyiMskJjJYj1PpSnPlHycu5z+peJzqFxDYx3G9Jk86ZZDgYpJWehN3Z2OY8ZJbR2bxXTxwOF3wRx8KVyCSw9fSrjNO5fJy6s5/xf4rsl0m4lm8pFNuNxbjaAMDt61NS81oZ3d/I4jV9ehstBY/ZAxWwC4BzgkZFOMdLMzSblaxxehR+I7nQJbmWfZO0LfKjfwg5H/6q1p+4XOCi7I808WX9/b3N5NKgWSSMSFF6g+vtVSkrmfs7K7PFfjT4nhnZ76bi4UAnI68daxdRtkVJqMbJanzB49lvPi341h8C6TG2GfzdUljUkRQg8lvTPSuXFYxYei316GWBwk8bjFT+81fiHYn4fQReHrTyy4iUqpT5WiYda8enOTjzyPq8wp1cKlSVrr8jzxpmAzI7FRnaGYkD6VEp1amj2OGKjF3W5BPKfLDA9uKfsl1JdT3iitx83zevpWkqK5TSDSGXb7ozXLazZjX+BnRwOIkCk1ry3dzZy9pK5ailZ2GRgd6iUlFFxilqzZ8MaRqPiXXLXw7olqZ7u7lEcMajJYk1zxjOtPlW5NWvGlG7PqL9m34B+O/DHxWs/DF/4Rna+t7iG42XNtlEIPIPHIINe1g8vqUcQuZXPLxGIhWpXTP0H+En7BPgo+LG8fzeG1tZ7gZawXPkqTgtgdByM19EsNRU+e2p5Uq9WcOR7H034E+CHhrw7dC307SoiQo3CTnBre66IyUbLU9AsPCFnaFoJLeMLjLj1qG+5SSvc2bHw6jZMdqojVeC69Pxp26hJssnQjMyxTRBzDkowXp9KHS5tSFdal620ksA7KE+bBJHWm4KJbvJ3ZYVJmDxxMuehfrTcrqxGmzMyHwzrepav9pOrbIIgdtiItokc93bqR7DFYS5mtDoTpU6e2p0Fp4b06C7S91y93+V/q7NOIgevI7/AI1MaajLmqP5HO8VVceWlHfr1IvFPjm0jQkxL8vywiMbiPcCscRX53tp0LpYZU1ruzibzxNqfibV4rbVdVlsNPhYFl25ZvqO1TTftJLmdkdbpQhSvFalPxnrvhaLUFUX5ljDgfZjGd0nua3nKkndO6MqdKpJe9oef/EvXNRii8q0to0CnzLezcDYo6/MO/0rirTlNcqR0KME9D5a/aLufEnjTVNN+GtpqV3HqvijV48wWFmqgQRkMxdhjYNo4wD1x715uIjaKpXak3pb+tDswsI87qvS2t/M+h/gb4V0nR9W0xLfRDbtboLIObgKQyjH3Txtr16K5GklsclaKmmbmp+IfDHhLxZrdr401uBZ/skxtUvtqwp8pzl1HTpzzWXNSUmp7GM4ycE6avY+T/gd468NfEnSPE9v4ciS+02y8TXUFleQja8XJIKleqhicVzYWEa1OVmdc7qa0szk7qy+NNlqN1oF74vtb+zNyZbVyhimRuylhwW7e9dKpzpxcW7o6lyTs7HOyaY9vqV2dT1C9t7uQfvrSYkoR3O3PI915HpXP7RJtdTWUEo2SPEfix4XtfDer3GoaQpQSoXCKpdH9QTnJHv1HcVzSlJSKoysrSPH9U1SGeRzEHBMmTukyAfStozkjrUW3qXvCMkV7pt1ZmMjfaupGehrupXqU7WOlbWRz938M/Dtzqi/8LM8bQeFrTYDFLFA15JKp7iNW6/lXm5hlslHnlJIPeascL4s0Lw1putTWng7xRLq9gp/c3lxYG2d/wDgBZsfnXzrp8srJ3G1yrUyxYTHnbxmtPZX6kO8dRxtZh+7Xv3pKk4gm5Mki0u727unNZVLs01SPXf2d/2WLn4opJ4w8baodN0C0bBZf9Zct/dT/GvXyvKHil7SppEqlh5V3d6I+l/A1r8MfhfZtpfw/wDClpb5+9dXMQklYY6biK+qpUcBhF+7gvVnoKhRhb3Tq/Dfi7xFq9xFaafL8pUgLEo49BxXr5dUxNatFUkuW2/5HpYWipOyjZH0H8APgX8V/ijLCdD8PPLEoAnu7rEUC/7zHj8q9yvntLLKagnz1ErW0XzZnmeZZflcWqs9ey1f3HpXiH4Z+LvArDQL+9sD5ecvplyrhcepzXh06ud8TOUZVfZQT+y9fwPPwuZUMe+aEXbzVjMstLU3n9oXiiTyVyJTcEuP8K9zDcKZdQoqNWPtH1ctT0qf1l81PlSh08++li3pvhHUvE0k2raWkphg+/I8BYMT6nvXuUo4TA0+RK1uiR0Sq4fCqMajSb6Gnqvwh16ztleG9sbd2gM08klwFG32B71vTzSgpqlyu712Maec4Pmsk3rbYy01a7awGj6PcgRxsWaYQjdu74OK9iOGpzaqTV+up6kI3n7Sf3GNqWgC2g/tOS6SVwjO6ySFcnH8eeMV6N6ThtpY1p1VKra1jxL4zajLrXxHSSylt7eG98PRM8lu29NysRyfxxXJl9Gsqk7aKWwqnLz2jc8b+KFppyBbhZJoDCDmWN8iQj+HHHBr6+m4cqezOqlGy5tzzPx3eWXiPTpNT8N2TRNYRCK6SaUBy+TuyP4R6CpjVcnuYSqOTet+1jxjw/4o1vxjr1/rPiXThbTWUos9LgkzsWPIDSDH8XXmlCU6lZt6JGWFU603OrpbYi8feJdRW8a2swJXgi22ioP+PhkBX8EA7+1b1pNU36GuIasmcheTSpoVi9xe+ZZqrm6df+WmSAVUdcZwM98VnRs0mzCMJpczd0c/42nvXtl0+GeOCWFI1u1SM7VTf8sY+oPT1p4mtNLlRhXklC61NK+s0aKayN2wlnhjS3kGDyQckjGAw7LzRCneDu2bc05wUdj6N/Zc8Q/sC/s6/scah+2D8cPhZpPiL4h6N4ivvDNgdXtvPZY5bYyWrJGflR1LORJ1GDX8i+NWC454i8SqeRYCo6WFnCE3NaP3ZK+v3aHzeIwuChmbxWKlyqCVpLe99Efn/wCD4oLjT7vU7qRQrMZAgA5Dtyueelf0vk0IU8JGMpXcUl9ysb4CpB4b3dVds2rT7NPrR0e3tmhKwf6U2BluPvDIxx1r2lKKnodcZKUlFC6kZGaMWclxDLY2TOJlPB5+V+Oma5sTXitOprVoqKvExdU8f6r4phudPu7hROoXfdlQN5XuT1PpXEsZKtTcEzghjI1oTpx0a6nGPFNDdvfNdy7A5MoVuT/tAntXiV5Sg27s+eq06lGo5KT8z0P9jr9m7x9+1n+1h4L+CPw7k0651K/1QXTvrk6ra+TD+9kMgz84CqflHLdK/PePM5ocO8O1sbiHLlSe2+uiOWUKbxdKU/ejFpyT6q+2hmfHvTLbQf2jvHmjQ6vFqq23i29Q30Gn/ZVlImbLLD/yzXOQF9BVcEY2eN4XwtRQ5eaEXa/NbRdepVWCo5hVjbS9189STwnFbnUIWTCgyjfGOtfXKg3oejRq1Hsj6atrT/iQ2N0tuVDW4VWxgMBwcH2NfhvGVVSz2a7JI7J883dlaUfLkgg18qmpM5Kidys7SRSB42wykEEdjVpPdMy5Ln3N/wAE9fjbbeJ9GXw7q14q3dmQrLI3LD1r0cNUVuVGkpQVPzPsfw9YXeqXiy6dGCGPJA4r0adGc5XR51XEwpx1PUfBvw0t4ZV1S5tozNgfMV5r1qFBQdzw8VX9o7nZ2WhShiEiAVR2reV2Y3Rq6foc96CkEeNvJIHWoUGy7pK5P9kFqvlyx4ZehPenaxlJqQAySTIqjtyQKpSGl1POP21/jZa/s4/s8ah8Rb/w5qmoW8l7b2NxJpN4IJLJZ3Eazl8HYqsVBOO4rHFVJwoN01dm2E9+ukmk+h5P4c/b/wDiNZxW/h1PgjNdrBAsf29pjdzEgYBcb4wxPBzmuenOr7O9jtngVWfMpak3iX9qX9oDVoftllca1oMLPhlh8A2o49nkv3P47aVSdZK92vkZQwVpWkvx/wCAYB+JXxr8Sws99rvjPWcEBoorq0tck/7KwPj86xhUqT0V2ztoYSlGeyNPRY9ajuI38QeAvGdq+NxnupLm5Vf+/WmP+hralLEKVuU65x5VZWf9eo3x/wCM/EOhXCS6J4uhgiZSNt/4Z1cuPqwsEArSusSmvZzUX56fiTF0qlL+FO/lb/M4rTPjreXk8iTeJfDMhtwC4vY760BJ9DPbKDx2HPtXj1MRi4vWUGr23Oig8Pd80Kmn9256N4Rk+IXieC2m0X4RazrEcmGWfRVV4SOuVMhjyPcZBrqUsylFKULrpZr8NTmr5jlUE0qjT84tfodHrPip/CNubHWfg94/hu7iXddTDwpJMpVRhUJiY5A5+tdUcaqdNwlTd+v9XOWGKpVLNTTXTf8AyPK/jj8bfCV74avLK50fxlpqPaOolv8AwBqcMSZHVpGh2IBj7xOBnrWFb2OIlGTTTXTY7aNVOldPc9v/AGW49K1H9mXwXqmixItjPosM1ui9DGy5B/I5rnjCFai1NXTvob1qlSliG1o0dwPFF94UvbzU9Ss21TT7u1KtAzcxEDG4E9Pwr5XNMhlCpLEYZc11rFvy3XoawxGHxkYUW/ZTi7qSWj8mV9et9A1Cwh1fwdfm7gktlkkhZiXtyTjBHfniscrzb6hJUpNuFtU94s6p4WpjIyhiIqM7vll0kcNr9/eW6siIWkibcARtUHnrX3dHFU8RBSp6o+fq4SeGqclRHKatr15dYiktZ55LpT51xEcFAB90Z6VurSWpLgp7mElzDok9w9wXa4W14SQlljXsMjvSaUfeM5QS1PPr7XfEviXUZsRiaMTYWTBBwP7wPRR+tZ05O7uN6LU534h32q3sjaHp1rLdsrp9qaJcqq7h1NTUrpPlQqVF1G30F8XXkKWX2XywG8pGVFPLHgYIraMmS6aizA1fWV0TbZXMIjW5tyRsGAp961ulqY8jk7nkPxB1a3jmeR7lTIYSJPw6Coi1Udr2FPZW1PDbP4cfED9pj4w23wd+FdgLrVNQI8xmbEdtEPvTSH+FFBzn8K87NszwmT4V168rLou7OnBZVWzCpyrRdX2Mv4qafafsRS+If2eYvDIl1XVkI1zxRPErNeOpHyxHJKRLjp3r5TLMauJJrGQbUVpY++q5dh+E8P7OpDm9rG6nbf0PnLxt4wufEepG+u5dxWNUj3HOFAwBX0NSHRbHxuJxLrzczmnu0YfvZePTNOMNEjKGzbKl74k0mxjPnXIOe2a3p4WrWlaKOLEYmnSepFpmoW+q5ltAdvY0sTSlh/dZvg5qqudkk+FUoTXEo8zHiKis0jobL99iRx1FTUqcqsjrjaOh0vgrwR4r+IOuxeGfBmhz6hfSqTHb265bAGSfpWFKnOtPlgtSK1anSjeTPpb9jT/gn547+Nur2Xifwp4ou9OvtL1QJqkMlo0b25U8gEjk+4r38Bljupt2a3PFxWMVnFq5+x/wm/Z503TrWzu9ZsFutQt7dIpLt1HmPgYyTX0Emlojzop2PZvDnhKzguRbXCBY0Tg55H1qVqJux0+n6JYTwu9kgOzGCFGavlQ7suR6U93bsL6MhgcLIMYIqHqxuyehoWujz2FkUt5VaNhzg9aFexlKpCUrMjismLovmhj3Ut0raCbRpKSjG7G6/NqEVsun6Na7ru4ilFvKyZijdVyC5HQE4pVISlojD2mvoZq61bGIwRMrSo5T5ByGGQxrJ8nLZPU6I05pXkbGm3EdtALgFWG3OH6k5ojKEVdhVUnpF6GTql1qWr3E7aFeW6SKp2NMp2KfWuaq5VPgKpqEUlJXKWk3Vto5RtZuo570tmVVjyCB6VMXGK13NcRTcknHRGdf315rGoyRaPpkQeT5mYwDCD1yeppqcpPQUH7vvHN2miX+tXk2orEvlRSeUt20eGuH5yF9hjrWbkpu+lnojedox5VueWfFm81iPUX0tb4AQsWdtoJbHYtg/lXPUlKm7M0p0owXNI4T4Q/C3X/if4yvPjpqHiddGjs5PsehIqA7mBOXZWBzluOMcCuejD6zU9vKVrbGuJreyh7CMbo6jwD47s7jWdds/F+oWR13wxOI5rixB8mRX5ztP3WOfwrrhWhUlJPeJx1ZLlioJtM+b/jDrT/tPfEOfQ9PiurXTNAMlpdA3BA1GRsck8ZH4815/tVjJOK0SOuivY0td2b3w4+FUnwO1zUdMtYJrHTdW06GTZDDhYLleN3H4V1Yek6E2u50SUZUlJ7m5rNjFe3V/FrNnuExXdKj8iX+Fxn15z9a6ql5XRkqjWiPLNXufDV1NdeG/HsVzCYyUt78sBJbkdCD6Z7HmuCajB+8jW073Pmn9pS1134Y6y+n3ztdwXMfm2V6sm+G6TnDxnOA3rjHvXPUhVir9DqpU6Klzq9356aeXT9TxefVTewbykSF2374024z2IrWlTd9WdkItl/wTdG3v2VNpBBVgfcYNejSkoqx0xklJWOI8Z6ZcaRr1zCHjbLkmOQguo9vavCzCjU9o5N3QVUo1NepjySBlwT1ryYfFoUo8yuyNCc5AA/Ct21bUjlUmTRqgJdhWE56WKaS0R1nwd+GXjT44fELT/hn8O9GN7qV/LgDOI4Yxy0srHhEUcljwAK0wuHniqqhA5qtaMEe3eFZfFGh6vdfClNSg1G00e7a2ivdNBaGZlOCyccjOcHvX3WApOdNYfp3PYw/NGCitT1nwd8DfFutaottqxmsoCAzG4gKuy+uD2r148OYmeM+O8F5WZ6uEwvtVzzWh9aeGfg38B/hp4D02z8Hpcaj4gaEvqF1cxgRoSPuqO5r28PQnhJOjCKjFI4qeIzKtiZxnFQprbuzWg1/xVBpX9kvqlxFp/3msUmKKMey9aWE4ay+vUlWrx5+Z316Gscvwspqq4Jy77lfw54YttSvrjUdMjy0hLzYlbaeOQBmvbhlmDy13oRST7HrVaqjBRkvwN+28EaFJDcXtvqMsTtGF+zruYs3t2rWvRrVIqML69exz0sXiVUUFFNdwurr4h3WlvoGjSXiaanzRyw2/JI+9zx0rrhDCYeXNVabZcaGAo1fa1UnNmV9nW9tjJPrt1Mkg/drdkqffA9K9KhdK6Ss9jpVZvSMEvQdGWjtgobYF+8okxkZ4rWn7XEQtNW32fn380bypycSh4tj1jxFpkth4b1CC1uZnj8ozJvEiqwLoe3K5H41GaU6iwE1F2bsTTgrS5k36Hj3xk0Dw7pniGe801Bauq7UjTgFP7o9s+tetlrfsYLrY3UXGCvqz5y+K/iS+vpprC3eFVuH/ci5OCADgnOM+vSvd5JShZC9pOEbdDgTZzaTZGHSYQkNxe5upWl3POwGcBeuPcgD8qIqlT0S1DlpwXM92cXr8MaRAxxCR5oZpGCrtRXJPQ9wMZz61LlquXqY1W3rFnlcfijV7+5liutEvRK0jW08xt28uKAd1boNw4rmxEql0pHFByqytJPQpr4s0GWxa8lNsRHPmVTPuWCOP7sf4nnjvU05RUbpo1q1oRpuzMy+vlvbGa4e5W3e7P22UZyUQH5ck9/QVr7aFrtnJTjzq7NJdVEdpHfXkaFLmAiy3HBiIUgyvz1pxrt13bWLX3ef+X6nqudKNNR6nrv/AAS98N+FPjj8U/HXwD+JnwitviBpep+EJNd0rw1cS+Uh1CxIeJkbPysys6nthsEV/OH0msxzLIeHcDmmX4l4eaqxpymle0J6fcfOYtYacpRrP3ZNb7bny9+0xpXw10X9qjx14b+AF1eReD7bxA50eDUbKS3mtUbG6Bo2yQEfcgPOQoI619j4aYjN8dwpha2YTUqrSvJdfM8zC1OXEToU3ov1ONKa4gOoWd7JsT9zcS+Wd6gkg5GOR71+iqpU5XJS8mdjqVY1FaRRmg8T2+q/Z7nVPLAQokwYgOuMhT6Yry6k61SpqzKX1z2zjKWhX0/Q7uOC4nBZEdN027kvk4O39DSow9nFoxo4aVFvle5Slt9SR5rC9H3TkTKBn8fbpxSqOVnFmEoVVJxqbHS/s9w63pP7RPgq88PalBZXyeJ7VLO6lumhTe0gVd8icqpJwSOxr8+4+oUKvDeKWIjzwUW2rXv6HDDF0ctx9PESV4xabS6rsL8X9I8eWfxy8ZJ8SbCax8Qf8JPeDVLO8Vlkjk81ichiWxzkEk8YPNHBbwFPh/DxwUk6fKuW3axtKr/bGZVsXFcsZybSfRE3gmGKTW7a3V2VmnAZxxu596+yrTfs207M9Om6dBrmPffgl4hTUPh7NYyXBlEl7PLiRi32ecSYwuRwGTIIHGVWv594hi6+KrVZb3/A4qWKnVqOK2uat5Kc7V6nrXz1OOly3eT1IAoAyR1olO+gpNRR9I/sIfss/Gfx/wCNrTx14aeWw0+OQeY5U4mX0r18vwdWXv8AQ8TG4lc9on65fCj4bDw9oMUGpqHlWMB2Pc19JRhKCseZVbq6S2O+06yOV8mPIU4xiulPUyatojVih8pyrx43DkGm2RJIsaRcy2TukK4LZAJpK/QlydrDLuC4kctKBg85xScWVFPqSQRGTGyEB8YBNJRRocd8ePhr4u+KXwj8T/Djw7qmnrL4g0S5sfK1K282Ji6ELlfUHBB7HmhUud8re5jT9nOpGTT0fpsfB/wh8Y674m1VrnWYvJumZY7q2Jx5U0Y8mVD7iRGFcbnaVu2h9TClCCue1afICIt1sjADqyZP0zWjcnuYTd3Y6vwhauZWWSABG5HsOOh604Ra1sROLXU7aCWWOIDa/wAi4GWJyDWvPKKvYwvucr8R/PKENNJnbheT6VzYuS5bHVhJS5jz2C9ubdipuH5O0KWNfOVnHm5W9X+J9HCUuXRnT/Dg+F4v7Q1jVdOs7y7EOLSK5thgjIDPkEHIz71WFwuHUZSmteh52YRrVnFJ6LcwfETaRqWqtEmjWyvHGSWUY3HHvVKlSctFqXBcsEkjxP8Aaf1ZtH8H3T28awTnS7hEjViQcxkAYzzkkV38jp0HK1mkTCnLE4uml3sfbX7OvgweBv2a/CHgmSPa2leHbOBlH+zCo/nTw1NQw0U9zDNqsFjppbXt+hsvdRXFq0LBcKCrBq6FqjzJJKVmcXfeGtc8J6u/izwLf+TMxRp4CMpMFbcFIry8ZkeFxq5oq0u/c9ehmtRUfq9dc1Pp3XTQ5DxN+0ELA6pF8T/AU8kl1qKyWc2mjaIojjcCO4B5rwZYHNcrlJ0veV7/AC7Hs4eOX472dGnU5YqNmpa3fe5o+J/CHiC68P2nijw0y3ujXdr9ohl04qzhB1VlHK+9elhOIqNTljWXK3/w2vY8avgKMK0qVGXvRdrNW+57M898W3ss12LPRS0UixEv5wAIOMfN7+1e7GrGUU4u557oVqLvWi0YGjxvbaXcW9td+e4nJ1CVx1P90VLqc+iCcfaapaHJeGPEF/Dca9fRRi3t5rjYjk5LAdetcUKkouUpbI6YxhFKC3OV8dvJHfx60lzjDEGNerjtxXa69krnO4Ru7nGePvFzXdsLmRwjbNzgnuOla3nbm6GSpup7sUYXhb9mL4r/AB8Nx4gupV8M+E7aN5r7xDqY8tpEXlhBG3MjEcA429Oa+WznizBZVCUab5qi6H0WUcM1sVXjCtFq7XTv37I8W/aO/bV+COjeAL/9nT9lL4ZapoPky+Ve+PU1HytR1EjhhIygNtzkbQQB2ryMtyTM87xFPMc1a5Vqobry02Pq8zzbL+EqVbA4SbnVkkm4pKMX5N6tnyRr82oXdu1zfandXcvQzXly0rcnJOWJPWvuo08NhqLVKKivJH5ficwx2YVF7eo5W2u72ObvEmdtqygYrhdVSlqa06M27soS6HNeEobkgN2FbxxMaaukFWlK1kyjdeB9Od900hYg87jV08xrRvYw+o06rvPoaumWdlpVl5UAAAHYVyVJVa8+aTNFGFFWRUZ/tExI+7nrRW/dJpMzjBSep3ng/R4dS1y0t7u1uZbRp1W4FmuZNmedo9a4KUXVaTOqo3COm5+gH/BPz/gmd4k1D4qxfFKfxRfxaHG+7TUUGGV4zziTHWvq8uyuNCXtG9DwMZinV9xLU/Vn4S/BDw74Jt0stB0WK3cyZcoADI3qSOtevKy0icSVviPUdG0y2tbrf5YiKHJUj71QlqVJ3RvtYLdyGa0iX5sBmK8GiW5DdjRtIbG0iVHXaDw3l9z70nJLQXvdC5E0YBt0QgN90keveqSctBO7d2SppyaSFvmnZxjBXOQKJQ9m7maqOvLksWpbaynh3R4VmHJUc10RcHG6JSqRlZnAftEan4o8K/B+/vPDVvcyymSNJZbeJ3lhiZgHkVE+ZioOQB+PGa8PP6mJWXSVFtN21W6V9WetlMcLVzBe1tono9m7aI5P4V/E/U/iDdajbz3tvq9rpV/b2VvdJaqsjMIFeUkqefmYjBGeK83IsTjsSp+2qc8U0k7Wf4G+Y0aGH5PZxcZSTbV3bfTQ7XULvUL+9FlYwyocFQm3AOfevcqXlLliefC7jds0rHRZ9JsgJ3jWVuS8hB2/h0reNH2Ss2Q6ylPRGVq/hux8VeaBHcNJjBu3fylHsMc4rmrU4yeh3wqOnFc1vTdnJa58MNH8JaLLeRfEHVrcshL7bsshJPQZ/LiuKtRUI35rFqvPn0hoJpPj2e3063tL4LJaW6YW3aIxtIMdc1dKt+75U9jlqxvJ23OB1uCw+JvjmDwnaabBaee7NNDAdwWMnAyeOTWaUa1dU/vN4xnGm53uN8R/D3V/hNplxpngjU4YYIZMfIwLxvz9xc/MenaqqUlQbjB6C9pGu/eWp87+Knn8K+Or3T7LVpLpdeRn1y6uXSO9kyucKg5wMEZwccZxmvOjKdOq4xe+53UlTnFK2q27C/B34UW2g6LeR6zbXQt7x5b6yvZgZGj25Pzeh+tdeDoKLbZriEnNO52tzPDq2rXOq2+pfbbKTQ1eTHO1hjJI7HHP4V2TUnPmicrnNxtY8+uNY8NeKItVsW1Yf2nZjyriESY3oAWV1HsDXP7ZO/cpRdOKkz5q+IXinxB4n1G/sbSybEMzQT6hKDslAA6ZHpjB6157qzqTsdVJcmrPB/H/AIKk1dB5/iK7WKPLQebcNJCjA/MChPAJPUUnzt2ud1OEZz5mcNc6RLZwvG9m6qRzhdwB/vBh1FdNJt7nVLTYm8MzTGfyJNquvAYcZrqp8vMrkxbUjL+MFxE/iQyYQymJd5xk9Pfoa8/NJSpy0NqkW0mcVJgHqeeleHBO9wU3JWHxEA5eqlrohOdtjtPgH8H7n4+/F7RvhXB4rsdDi1GR2u9X1GTEVrBGheRsfxNtU4Uck4FTCnHVyeiJ5KtTSK1Pse0v/wBmX9l3wtqHw88E6Jq0lhqNsYNa1+K68nUb9O58zBCITn5F4wec15dDO8ZRxPNh4pRXfqe1HLsHhqS+sXbZ1f7K/gz4TXljN4s8D6NqD6aWJs21dAXjOfUY3kevvX6RwnTzfiDEJTg4U073Wn4m1KnCdRRpX5T3MwaVrly/9qxzTzOFDzq5BCjoo9BX7Osqapcqk159T1qcJ4dJU7JI6K20f+wIYdWlitViui0drE91ulUqOsg6gV8tiJ1KuZ+xptvu7djm5aOKqyg20476aa9ix4s8LappnhNPFF1rVrKbl/8Aj3hlBIX3HavosFVquu6HLpbcvC4qnVxf1eMHp1Nf4JR6R5iSeJZPs1i8DmYock8dOh4riz6rUw2X2p251bToZ5wqsIv2OskyO/8AEVlpuogWnia42IzG3iWPaFTOBnI+b/PFfOYbPOJc1awlFRptLWTV9PIxi604csYrme5V1TxXqM8EMF1q9zCq5aIqdu/PqOlfSZbw1PC8tbEYiVSSbfZam1GgqdXmqJNmbqJ+z3J+1RqTBHiMxNuMmf4j7/yr6ujCHsUoux6MFzK6e4aOY5dW+3aoBJbogKxA/f8Ar7UVYYp0UqDV+5tXVSVLkpvUj8aanePo0reCfCNzqF4ZFaHT7O6Ebld3zbWIPQc89cGvMz6VWhlUpOeun5mEabw9FynPXzPEPiY9vPNe6tJPMzx5Pzjkeo4r6PAVL0Iy8kaRU5ySPm34i2Fnq2pu1nGsc0gkFv8AONyN+PQetey6jkrRN37z5Tx/xNb/ABE0C/NpfPHfQzRASX0IwwDE9+gAHGatRafM9UcuIpzpLmucudWu9RF7YQz+YLVWRTG5KBQcBQTjOetVeLs0ZUpupqGpX13baVLoMmtTJFPZ+ZOlufvnHC+2P61lOpKSsayqKGq1PPV+G3gu8vri2OmQOJNjFFPBJ+/IxPXH8645QovRxOX2FKoruKOV8Q/Dq2tnt00m8u4mlR1EL3W4FFOQ7ZPT2rmeA52uRtHPiMNFpezbRQ8Sp8QbKVpE1MXkUFv5hLpjMRGP0rolQxOHfNF3Vr6nLUoY+mvaKd0j6B/4IrQ+PoP+ChHhSw02C5t3v9L1S0muIUDM0LWrtuOSMAYHvxwD0r8F+kTgMXmfhBjn7LmnTlTkrK+007/cfPY2piPY89WOkWUv29PhXD8S/D95+2b4av4Jr7StVTSvGsloDJBqDNLLFBeLMW+aQ+Vh1woBIA+7k/M+GXGFTB4vC8P4pNOdNTg3o9Em01/wT3s5yilgaFDM6LtzKPMvlufL6xX98GOnXQEbDcisuTKQMkN61/QdSpUqtypPT8zhtUq+9F6GNfS39/etMbpMK5/cIMjOMZI7DiuOnCvUq8zZinVqTblLQvXsN2IngtXJmtLT5wRkKCc9e4Pb0zXdWThTutzasqsoNweqMiWSVo3llfdceUA5XnjHBPr6GuJzU43k9Tz1Kbj771KN48ryfa7biWLa48tiuCOSOOnrXm4ynTrU5Kyd1Z+aODEUlVk3DW259HT+G7//AIKH6fBrumaxb2PxQ0XQEh0qK9ljjTxnZ2y7WSaZiAt/CoCgtxMmz7pALfz/ABx8/DbGunJN4OpNt9fZOT6L+R/+Su/QirVjGrzUnbT3U+vdP0PF/C2m6s2rCz1K3nsr2xmaOS0kQpJC65DKykcEEdDX7TSx1PHYONalPmi1dNPR6eR14OtVx1NTasfTWmeA7PTvgw/iXwvIf+EjsdRtLq809VAW+00Aq7IcDMsbkMV6srN/dr80z7D4Z1qkXK0t7GM6VWGKjKG3UfIElUTqMBhnB7V8JJq9kerOzV0ekfsx/s9+K/jt8QLLSdL0aaSxEwN1cBDsAB6Zr0suwFSvVUmvdPHxmKVNcqep+zX7Pnwg0v4WeDLLw3oumpH5EShio64FfZKNOnHlijwZOUpXZ65p1rbm1MZyZD1UdBQrWJ5m3Zo09EIt5lheLLYOPrSi3cUotkt3HdS3W2RCRnjFXZt6kaCzWz2+JGP0ANU/dRctEP3yXMf73gY61PM5CjJ31It9xgJE3A9BU3sbbajIlmgnS7dj8jBuTmtF7upL1i0j8+v2iLKP4F/tp+J/DpQQadrlxF4j0kkbUMN1kTqP924SQ/8AAxXPXhCFTTZnsYCnUrYWKk9tD1PQtS0mXTDqa3yNA2CX3DC57fgaj2iijV0nSk02dx4Wu7a4tY5rMKwLAqynjBFKneWpyVZtvQ64anbhAtwyxqihd5BwvPU4Hat1poZOpPkulscb8TdVtp5ZrexvIpljkaITQsSkpGRuU9wa5MRFvSR2YNtpSta5wO4LFudAW659zXh1uSOslsfQUW9Dfj1fxhrlr/wqDwV8Mbm51HQLU6lqetvF9mijt5l3FFmORK4C524q8Oq2NpunBW5Xv6njYvF0cJXnWlJ+9olvt+RwXwn8Sal8XHvNTj8A654du01qXT9N03xDJGk16ikf6Su04CNg4JxxzWjwjhjrJ3sreWtjSliva4fnkrI80+LOkt47+Mvhb4ZXbB5b7XLeCSNfmDBZg8gz6bEfmuzGyisDJS3ei9b/APDnZh6lq6qLaOp+hehXdrCBpsWBH5SooPQADAFZQVkkeTOTnNyfcwNZjj0LVJLy5Qy2znkZ+6fU1q/dVzKpPmWhTu9YkuofNtrRTCPuNE3Nax5ZxuRF3Vmc94v8M6DrSG41a1RUkQrzyc0pSg9Gbwm07Hgvjb4KePvDd8PFPw08dalpywsSkEF4wVxnJUr0wa8XE5HlmKSc6d+9nZ/f/wAA9vC57jMMuVWmu0kmcJ4o/bS8e+EvCV/4X+IPwL0zWNUkvPMj8T2+5JUTPIIHDY5r5+PD2Y5ff6tV0vdc17ry3selSzHKcZjoVcXzwglZwVnF+euqHf8ADWH7Imk/Cyy8RN8ZHtNWupimoaBeWLJJHIeN5PcZrlhm+dUJOFWk5yTeysrd73OupgcoxuOnGm406P2Zc2r8rFnVPGP7Mfhvw0tvr/7VfhqxW9086jCunW8t3J8xP7lsYCv7E104fiLF1a3s3R5U02tG9eifY1pcPUknKEJNJ2blKEVbutW2vkeOeK/2s/2MLbQ7G/bxv4z1m/jusappUOnRW0TxZxujmJYg47FfxrHFZpxHUoQ9hR9++qeit5P/AIBq8qyCniaka1eCgl7rTcnfzVkrfM43xD/wUr+AXw5v5p/gH+y2NUuvLxbXvj+9+2vbvn7yIoCenBH406eW8V4+o3XrqnBrZav79DF4zhvBUUuaVSS/kXIn6t8z+6x8s/Gj45fGv4/+Mb3xh4v8a6tbC8mLCwgvXWCJW/5Zqi4AXtjHavcyzh7KcrVlTU59ZS1bfc8HOOL81xtZwoSlTpLRRT6ebVrnEHwz9gjLKMhThiT196+lcW1dHydWUpvmb1MzxJZqNLkjgUEKRyK568P3bCh7tXXY5GVNrFWNebBWR6fPcVRtXrxWVW7JV07sq3u6TIAyOxzVU2luaOcUtCtJDM0PlkEe9bSqxT0OflUrsgjh8tcFqlpTd2Yzm7M/Rn/glZ/wTv1D4r6zafF34haUE8OqUl061lZxM8gPUggDafxBr3MqwHLL2klpbQwzjFONeUKZ+wvw7+G+jeHrW3sdP0pbWOEgBE4AAGOlezNJRsjxqaa1Z6TpWjPayhrK23RplhKV61ny2CUlY39KgW7D3U6KwBIbIxRzIhyb0NCP+0fsn/EkSJgvVM4+tQ3K/uktQT9409Pt4mi8x4gZQOV7ZrROPLe2pNVtaLYs21wl4ptpoSjilGrzaMxnCdJ8yehMGgjiMM0GV7ZOauUtLSKtKU04vURIbWJBLAvA7A0U1CLuhynUbtIfNLFLbt50I2kEFX6HinVanHYyVOXNozyxPA+h+E5L0eH9Nit4r3UfP8i3ULGrCNUGMdOFHT1rzqOFhQptRVr6no1alWtUi6jbsrGzpOp3UFs7IUj+b5m3Zc+2fpW0W07msacbLQjGralKyhYk2ryZpiCQfXPT8ql1JSeiFOnFO5Dpvi7TfEl9J4a0S9jv5oji5O7IQ+mBwal1YzfJF3ZtCi6cPaTVjVl8LaHpU7aprub6VVGyFm/dp/wH1qpUKdP3p6sxdetiIezg+WP5nNfEG90HWQbTVfDkTM8fyxBsFR7jsK5JxVTRxHCEqXU8r8LeD73wl4mv/GHhTR7mWJrQrNLFlhGw6AFuv4VFHCOlUdSK0OmpWdWiqb0Zw/jHU/Hty0t3Z6c15qRimmtrdTnymxgMR6jNZS9ok9Ls0pul8MnY8i8XeDn8C/FDTPH3j3XbZby4tE028nupMKskpyowe+eNx9cVmqapVIylu1uddJv2ThTXU+o/hafCHhiCG38aIJmWxleRpkxGFAwe2DyePY17OHlRpP3jzq0atSXus+c9T1n4U3fivXvFOga6+mI8TpbpHI32dGTuyEAYPc46GvKqYilUnKUHZI3qucYqLWx4L8Ov2jPBvjPUddhh8MQ3Ot6ZqskF7IqMkNwOm+J+4I7Vx08TCcWuvkdM4TlQXY81h1DWNNOr6ANSZtPvdRcxQSEFrdnztHPPFZQag20bRpuSSPAvEev6tpt21jrENxHd2d1IgkgTdHImfvYB9OorP2ltWeirJKKMl9SNzcMonSMbc4Riv4gGuuhNS1NLNLUlsY5J7hElm3At1POR9a9OnCLaKgk2cf8AE+7F34mdTNG5iQIGUYJA9R614+cVIuqoLobVbtKKOXLBn5FeQm+UycXFEinB2E59KSlccLbFm3EplSaN2RkbKuhKkH2I6VjKcn73Q3dlGx9C/s3+EfHX7RXiO00zxbr13c6Fp4AnebkED+AGvquFeFa3EWLUpq1NGmHhiMdWUOZuKPvLw14e0bQNFttC0K2SCztkCRWyDrgdTX9E4HLMLlmHjSoqyR9bh8LGhDlSO10Hw15Vl9uEkLzbSQFIKwAd29/avJzLMKlOuqNM5MRikqvskmRTaILC6mluJhMjpv3Acn6Z6CuzBYKlRXOluejh25UuXualh4r0LR7RZtRskuk2/wCpkPGexauvE4epVd07I5atCtJtRfK+5oWHxOsPEelLFPodtFBBE6CPTwqY9CWI5A4r4DMstx2YY1Uack4dWtTz54SopumpNt9WchEmrSXsk9zqlxeSONkUTKuI17YAHJ96+pyrIsPlknU53JtJanp0KFOlDRa9yl4quIHhfT9ddjsjxJhymPYehr6CNONSOmx00qbcroZp9/HZxCPTEl2zj5zcNuY/TNddOhBKzOhpX1FbX1M8UUKlWXgpvAGKIUYUIKMFZG/LHlOq+F1h4317xxa6f4VYQ3ju2yaG6CrEhU7mcsMDjPH5V8P4i8T5DwjwtUxWZySTWi6t9EjycXKlRwtWeNiuRPS13daW6LW/RXXmfP8A8RNOfRta1rw2+sRSfZruaKWWFsqzbzznvz6V7vCOYwzbI8NiqWkZwjJejSH7R1eWpFWTWx8y+MYdR8Pa3OJ4UuQ4dYrmIFiuTzuHavtYRgmmdi51Hscl401K41VhabwkIt1EZd/lAA5Z1A6ZzxU1HZGeJcZU7NnhnhiHxXrvxDutViu7ay0fTyY7WJn2LezE8scjoK5qHPOq5t+6eDhaeKnjJSk2oEPi7xFqFkmoWOoQrDcrMGnVWyzxDODu7Lj+VViK8YppHXXqKndbnNp4+0x57xIEjdUtVVRE4OVxk85rCNSlKL1TDD4mFaHuO9jBt/Hml33iS+mu5w8EVsscBR8DHQ8/U4rejiaTm7M53jac6ji2aet6xDrmqXP2CQJAumiL5emAOTU1qrqzbvpY63Uo1aPLc+6v+CTH7Jtvfa1bftvfHq8vNC8F2ME2j+Co7AlJ9VvnjaMzNjBEIyQPUn25/PuMMfUxmX4im1fDxp2mkr3t+p81ia2KxWMdLDJWjZtd0eB/tz/tcfBnwR+ynJ/wT2/Z4ksdRefxP9p8VajbaZgxeRNI6wtIQGL72PTIOOtfzn4a8I8R8QcbLijNIunSpQ5aMdNU+tl5d9TTiHNoY+UcOm7pWt0S8130Pjuw8RWNnp1vqcUA82Esoj8w424wxx2PpX9ZYSvhnhE1pK+xzYWpTlho1L7XW/6FCTWbfzbpYUXy7lARJnlJh+PfmuatiKUeaz3LdSnOT9ns/wAyTT/Ect4jbJgk4CpI+R8xHOD7EcVOHqqpS1d2bUqsatPlTs1v/XmUbu9BuZrjToBsYcHbnHPP4Vw1Irnbi9DgqckKrlHVD0itri4EsroI2jOAp7+n51h7Snz26GtKphpSbeiaZ61+xJpF1rnxk0rQ9J+H1jrs3habUPFOpR6neTxWZ061snklhnaA7kR3SP5gCQQMZ6H8U8W40MJkknOvKnOs40o8qi5JzklzRUtG0r6dj5yUVLFRw97ayd0rtK3Q9Q/bJ1bw/wCNf2sn8c6Fp1taya34W0fUNWtLchkhvJrVXZMhVzhSgzyT1JzwI8HMFjcu4MeEqyclCrOMW93FP1fU+gw1L2cuXyR0+nyiDTNJe2kwZLbYCoHBz61rxHDmzG7WtiMQ17eyPVv2fv2Ivih8bfG9rC+mNb6M8ge4u2P3lz0FfP4fKa9Wum1aJwYzHKnDlhufq3+z3+zn4H+Cvhe00Hw3o0MbxIBJMIwGY+tfWxiqMFCCPn0pTd5bntGgwWoVosbSq55pK5NR30JtAvIluZVaTgE1m7h71zb0F47q9YqxAH8ZrSlq7sUYqMGi1rGpQwt5MRXd2I5rZys7GD+IqwW13d4d3OPSk9dzVK6uyymlzuBEJADjkE1OlxO6Y8aPLEvmG4XIAyAetEktzaLUkVb66eaby/KAIXHAxmhu60Glrc+Of+Ct3w7ibSvh18colVH0vWpPD+qTf9Ot4u6Mn2WaNcf79c9anKpFWZ6GCxnspOna9zJ/Zo8L6LYeDdYu9EfxRrGhXlzGJdQ1+1hWC2utih44NjFjGWz8zVpRw0VTctbGdXEVq9dRqWTX5HrngxbayT7LDblUjXEe1ahWUrI1lSVrtna6TIJ2E0UQQl+RjAHvWsJW1OdxR558Rmmm1O5klyzCQ7iR35rmxTc22elhkoJHIwT6dZzLd6vFPNbWqNNdw2o/eSogLFFHdjjA9zXz2KUo03Jq7XTueo3VdNqm7PubPxH+Jvhbw1pGk+H7Px9qtrqviANLb+B4lSecIRlY224Z3C4zkkL6VhmGa0cPhVSTcZbtWPEwOHnVxbUouVuv528irpi6bZ3Mmr6vY6hfpFBGE0/VmCtCcYYEptOOen0Fe1ltp4ZTm7ndilGM2qN1E8t+FtlH47/b08OXEVuixafpV/qaLGMJG+0RooHp+8bFGYxVVU6ae8vyJo1XClNb7H2PZX6yXSqx2SocOh71o42OV6RbLfiCSGOJjcQq8MqhTmk30OX4tEcX4i8Kan4Rtl17wncfbLRsvPaliSnuK2jBKnaJcailLkktTCh8VWXiaPzJpgFR8vEx5BHUYrGUU3ctRnTMnxpq0lzZx2FpKAkr/u4o1wSPc01JOy7mlOWtjhPH3hHQo9FabXNMhMnKQIyj5z9P8a0lScfidy0k3vc+VfjD+yp4f8U6s1yunIjMhJ479q4K+HfNcavKokkfPmqfs0SWNxfWsLyCOObDjqc5I4rOjhly3S3OqrVcU4t/iZMPwOlh1J9DvCGZk3wlhwwodJ8xz86a8iDVPhjYaE8F3JGCj/LuzkKe9ehCnaKOepUcXoZPiex0XTmECKMs5IlUjij2Svc5qs7nDeL5I5Q1tYLwM5kA+9WsbGHtFs0cvIn7nY3OR0P8XNKqvdLw6c66M298OWsymRVKHHXtmvKqwvG0EezKMI6GNqmi31ivmtA/l9n2nFcbVSEfeRzyqRehmlSW5HFTdWuZJNsZKSqFePatYRTV2OScdCnvG7btNKr7q0NPZpn9P37PnwU0f4ZeC7PRdOtlhjs4VSNCecAdB7e1ffvlhoj5rETlKs2z1Wy0UyTB7OEqxh+YtyGHpXNLVmfPdHT6LcXOl2JgEhcSR8lsAg+mDScnYykrmvp+nMg+zvLtMg3Lk+tQvMuLS942bWCOzTzzPGoUYKqBzWl4wRhOaqPlSJsusZmtolO7H3RSXvPRBBJytJkyWkcxWaWMh8ZyDV8iRlUm4XSeg6SNwNjWwZccHNXzJrYUJa3TsJHGxx5cYUjtmoive0KlLe7I9YuQIhFNJ5ZJ4BIw1ayld2YsPF3vHU5K7kO0oYAcPlW29zWM5JKx6HNaVyu1nFdj7HDGrurAydAoOe/vXPd9ClOn9oy9UiDo6XyMY4925XkAVh+HQVjLezOmEpTV1oWvDF7oGkRiLQdGt7fcu+d4QAWOP14p0YQhL3UkZVlVn8crnO+LfiNZG4lHntGOQjMRkc/e/wAKKsoy6msYS5FE5Ntcn8QX5jaU2lhE4N1OZBvmHcZ7muWNROVug6kfZ+9a5znxJ+KxtYzo+mXf2e0UOLOBJtp24+8xzyT/AFpVcUmuRPQunCMpXseUfs5/F7WvFvx18U2onPl2WhRILhAWAmdmBGT3xissvrJ4io49joxODcKMZeZ0Hx78MeF5tTS28b6XHqMaxr9vtLmMMspPTIbg9fwIqsTzwn7yuXTqyjTtHQ47xZZ694S0GXQLfxRd39jBCJ7CK4uN7xwsRmMseWA4GD2rGFOUU+Z3CE3KSbVjyL4veL9J8P6bc6b4os7C1u7+Em3ubeIqFjzwgwcEnAJzXLiIKmrNmsYSnLRXRx3gTxr8OvC3hy803UdPtb21urMkXdrDseF/Uj2+ppQnB0uXoarnqStseOxajZ63qd4NLuhJL5rMrB/llA6ZPY1jBKTZtN8tkeTX1vqOqeI7y11a3k8xpSY9pB3D15PJ9u9TzJTsdFFNRuZOqyWNq0lts3SqcbXi2nH9DXZSlFLQ0b1E09cukittOdxXtmvTptaNGkFJnP8Axt0CHSPGARI5Y5Z7OKeVJYtv31yCPUEYINfO5rKnLE3i9ep0VLxSOKIVTuP6V58btnNNuTHwkudzDjsaJvlLglFHUfDTwLq3xE8W2nhbR4S8lxKA20fdXPWuzJsrr5tjlRh8wk5TahHdn6L/AAY+DVl8K/Ctr4X02AJKoBmwPmdu+a/prJMqpZVgI0aejVrv8z7HK8PDD0NPme0yeCtR8L+HItY12I20Vz9w4IYj2rprY+E1KnTd2azxlNtqm7tCeHteOt6d5Nnpf2e2t90YRm5c9CW9a8/AZX+9datq2cWFoSdd1Zyu90PS6vZr/wAiRgImGUbPXFe/KHLtse1GPLTv1Gz+Fm8UzLY+WQshJlSOQYVcck5xXFjMQqOGkpbPoRUqRhFy6oSRtK0uxXTfDkyyxQJsLbcBj6muXKsLGhRvGNrnLFuc7tWZQn1Mwyh0AWR1+Zg+M4/lXsOjSfvJa9TopRlezM+62zhXmRGkZi22Rdw+uD3rWMGrWOuNo6FC71+9MhitFRY432tufaR69OTXbCmrXKklzWIdHGra34ktdF8L6LHd3F/OILdY8s0khIA+vWuLH43D5bhKmLxDtTpptv0NHUpYWm61Z2jHVnfWnj6PwR+1/wCFv2Q/CWvyfZdLsjffES/t7bzJbq8kULBaIx6KpJPQ9vev4N4ghmPi9lWb8VY9SlhqMnDD01ppB6yts7/10PFw855rlGKzCpFNpfu03ZKKer+48F+K1hbaJ448Q6fJ5iNaaxcIsF4gV4z5h5YADn8B1r+t/CfHxzDgHLsSla9KKt2srHpzm66hUjazS222+f5ngfxViL7r6CJoRHLvlSF/mkGevPSv1CCbV7lVHKS5VqeY+JbOyupwBazmMwkxhDhnBJyOO3vVWvuczScfeOA8Z61pWk6ra6HY6dHHNcgpbxTw7nnwM8Mf4Qa5q1SKkox3OHFYinTkqSvd7HlXxB8Kaz4uu7q71PWJY1WIwFYMIWc5woA6jg1w18O6y5bnm4jBTxiab0OU0v4MaLp2mI73s0cjJiWLzyGJLY2n3P6Cop5fhqMbI4MHlVPBXjFvzI/Efws0jRrWaCKGIx2ThElWY/vZGPb1x69K2eCoqF0dmJwdP2S5I2NU+H59G0qfSxuDNb7WyDkkgMDk9sGtXT9lBrujSlgpwon6afAb9o7wb+0d/wAEufDnw8ljMC+FNPbSNbXS4mmm0+7V18qZ4kGQrddwr5GnClKNSg/t3T9D1Mgw2G+s+1g/eas07LZHyn+2X/wTakfwvN+038G9Cm0fxHHZC68deCHhaUz5xt1K2TG5YpchiuMqzYr8cwnEGb8D8RPJ8zj+4lrRqNaNPZPpoup8fUy2pi86nUwvdp9nY+Q/jB+zn8dfhnPFP4y+F+q6Vc3EHnLbm2LxzxHGZEK5BUZGfQ8Hmv0LBcQ5XnFT2uFrLmvZpdyc0y/E4fCuvCNrOzS1HaH+z34n8V2Gh2mh2t1qOueJrhf7H8N2MOZ50DhPOdiNsMZJwHbuD6VrxLmeCyDBxxOMqxhB66vXtovPoclHByqqEY806lTVQitdN230R7cf+Cb/AMH7iYP4i/bk+HvgHWfmGoeDrq9udauLTYCXZp7SERk4A+UZ69a/M4+JuKjWaw2ArThpaekU77WvY+lqcKYirVi8K+VyV3FSjK1tXu09Fq9Cuv7Bf7M2nXVvFP8A8FMPDE6XkTG3Om/D/VJgyg4Y8qoAHJPfAq63iDnzg5U8rqad5wRi+FMfKCkqnxXtotbb9RmsfsR/ADwRFaeIvGP7bclz4f1FmGnX2gfDq5Zr5BklYzNIiK52nCsa8p+JHEVebo4fLb1FupVYq33Juxy/6q5jpF4iKctNl/mb9t8Wvgh+xz4Y8U2n7IWp6jrknjaeyabVtejgluzpUGHuLGeIL+43yDlcncjgZ4OPlsZhM445z2hXzumqSoOVqcebl55aRlGTfvWWzezPIzXL4ZKqdLm5pS1bW/p5Hl+rfEjXvix8Qdb+L/imSEap4h1d767jtYBGkZdt2xFXhVUYAUdAK/f8kyLAZHkdPBUG1yW+fVtv7r97nfg6U/YqS7dT6R+GXwu8Y/FbwJplr4K0uSa+W78uIheFyAQSa+Jz6P1nHtU9zDMF7JprqfrJ+wr8FPG3wz+FFlY/EC4jlvlhG7YuMe1ZQhOlTSk9T5WrJzkz6O0SKzgYecAeOF96NQ1Rbt7uH7S7EYXstDkkZTiri6HDJdamVt8KpPzfSoVnIuDvA6q9uLfTbUW1uAJCOStbQ905pvWxnCzubh1mkfr61LvcqKT1NK1jaGPy47gEjrzUtNq5V2QXWj6/dzCa1uxGnUk1i4SbNoum1dofDa3llEDd3ok4z61aTW4o1KdSKcNmC24vZtysM46niqSVhN6HiX/BSfwZF4r/AGHfH8Jh3zaRYQ6vbbeSr2syTZ/JTSk6nK4wFSbjXi13sfGn7PVnqnibW7aDwrqDRXWoQZga71kQW4k2gqGj7g4ODxyawlGTWsrHuqpCl7043+Wp9SfDDU9Yv9Eg1bUIkXZuiuXSQbFkjHzfMfbJ+lOg5T6nHia9NyvE9N8Nw6ZMj3C67YTeTEssiQ3qM+G+6QmcnqDx1rshTTejOCWI/ectjyzxZqcOqfaby0uAQt26MVbPPvXHiPdUme1QhK65jM+GOow2/wAQn1q+tYrq00XS5b25hlg8wO7fIgI785/Kvm8dmP1HFU3JcyfSzb7Lbz+49iVF1KDipWb87HkfgX4hePPilf8Ain4x3PhFfDzQ317p/gi6j0rF0XVW3Xm9gSm48L0BCgd+fNwGVVcTjKuLnNSi1e3Z6af1qebUqxkoxlG1nZaPXfV/0vvO90K51uP4f6fJ4gvpLvU7m2VtYupmzLPNt3FiR3JzX1mHUaeHSsc0m1PdtHKfsfObv9qbxD4ma3ymnaCYUuDyp3XCKVH02H86wxNWjUxFGPLqru/fa33fqdeFUKeHqTb1dkfXHivTGuwNT0jiVED/AC9GBrsq2lHQ4Izv7rQ2x14ajALHVGCsI8OhHfsa5IfFaRzzjJSunoYmsXt94Su2cyu9q4xuU5H0NdXvQ+E3hyT23OT8aeDNG8ZImpaHqraXf5wk0LfIc+o6GnKFOove3Hep8MtjzzxI/jL4d60l54002W8hVSIryzXcgX1IzkGp5IxKioW91nNah8VPC/jHVDcT67CIIjiKKRgCWHsabnKUjOTUHYTwLo+k/EP4nRaBHNDLbxRS3uoyq3yw20S7mLEdBwBn1Ir5zizOKGQ5FVxk371rRXdvY9HLqUqmKg5rS6/M+YtVvY38Vy63ZaXNNZvczNHLG3y+WWOMjvxXo4B1HhKTl8Tim/VmOZRpfW5pbczOR8b6vp2oaqjQRzWzWsuIGKYYqf6V6CgnucbqRirROG8Uy3GryR26IJmY7pFdMA4+lNy5Ymcry1ZxHivwnqFsRNcW7OjNlFY8JWMptqzMJxdzifEsMUEpgwAqnjHQ8VKlZmLg7nIs011PHFaoCzSkYx2rbldSyOrDzjCaOs8M+Boru/jfUweCP3eP6V7GDy2EY3kelK9XY6n4hWHh3TPCckd1Ywqu0hQy81eKwtCVF3iFShGEUfPOqWUdvI9xbL+7Lcewr4SpFLEOC2JilGJh3d2yk4PFdPLy0yZtyIoZg3zN1zWFSLa0FOcYM/rMTTTZIAiZIAeQZ4AFfeVU3Jo+ZrP98/U19Ge502T7XqEWVc74SFJ/CudNo537zOk07zNQm+2CxwD9xWXGaaTepUUtmba215OiXSWeNv8ACRzRKMr6IfPCDcWzRlgsbq3DABnUcqDjJpuCmjni6sJeRZgbZEpYbTjhDVxaitQa1YXKXFxA1tJHtRxgsGwayqc1WNiUqcJcyepFZ2X9m2i2dqzsoOSXck0qcJUopQ1FVrxrTcpaFgRyErtOea6o06m5z+0gyv4pjt10lprtAxUfKAe9XOOl5G2DqNVbR2OK1BnjhBzIm48gGuaaVtT0eV312MLVdTS0szFaWkmJWyxRt2/n07VyOp9mJrGMVNO+pztzrqzRTCSeWS7CcW5ACoOvJ7//AF6yqTdrLc7lG2j2Mu3v9e0zzrvUL20in8jlpZfL8tT2C9zWdKVSMtRTlCo+WKZh3EOjzI974j1QTqfnEKDJb3zWdbVe8xtyvZI848c+MNQ1WGSLR7PZaoTtRyQuPb1NcVSdSWqWhUILq7s4XWJ9U8RXVsvlfZLe1t2WNMYEnHU+9SoucfQ66fLTjqdH8HrLTPhzb/a9CtTHc61cpH5oXdvfPzEnt7ZrbCJYTXa7IrupX22Rc+MfiywttZvI9Ui+1rNMIXWZ+Ru43e2DjH1rTE14876mdG1OK6s8W8afHDwR4Q1GVPFXiqKws1ke3vLq4fCxOchPXAO3v1wa4/rFOL96VhyjOS91HzTr7+Mfit45f4gXHjaS6t1DR6c1kytaGPOAzLgjJ9a86KnWquTldHdQTVO1hJ7e4EUlre6lJCkP+tiht9sbH1U4/wDrGu3WMLFy0ehgan4g8JeHLC6FtcW6zSxlreZUKkH1Ix+lZR5Neh0U0pbo8gmk1bUpHa7nJLuWBVMbWzxg9s04QTe5ry30RnahBev5kV1MzurBd8gIJPXBrpjGxUaaRY0SRWv0WReduMk9fxruoSfMlY1U+XY2v2ivDw8SfDfQfjHpczSvp7jQfEsO7cYJFBa2lPorx5Ue6e9fNZhCdPHyT2YSlFrR6nisibmyTx9azclFWRn8KJbVHllEUaksxwqjqayhGVWaildsHJJH2f8AsG/AjU/DwXx5r1gYpZcGITLgheuRX7XwPkFTLKP1isrSZ6WV4Zyftam/Q+q/Cdzqk2sS61JACIXxGpH3jX6YqinCz2Z9PUtClyrqdl448Yat8QoLbSNTv/NaCNV8pFAWJR9K8/DYOhSqS5Diw+DpYeblBbkT22leH9F8h5ljt1Qne2fnPevWpJylyrY9BJRvZXZn6bdya55U+mqXTf8AIAh55xjBraoo0ldvQ3ilKDudLIYvBpez1DS0e8voTFNbyWpcopH3s9iBnmvmMfUwuN/dN8qb3PNqzlUmnFuyfRnGzaFcaJcxXNnHdJb3RP2CK4QBZADycemfWu7LuWrUlGlNuKSXl6nVGrGvdLdbjPEGm2qayl7FczSSNEBNBwY1f2r2aMZU99TqoQdNe8UdY1RIUedr6OFE+XezAE57e9dsZO1rG8oc7ujJeSG+nQwQdeBERtAB6sxJqZTlRjz6s6KTUr+R3/7OutT+GfFWsfFe6kht9A8BaNLcTsq/8fN66kRRL64wW/Aetfz19IjiKpg+FqeR4Sb+sYySjZb8p4ueUpYrDRwqu5VZW9IrVs8J/ZO8VeMZ/FPif9pnVWkj13xHrMl1bz3I3sih/lPTpjGB7V9X4ccI4XA8Exy2cbU/ZuNrdWtWCjSq/wCzW/dpctttNi7+1Tbnwv8AFTWLnUdRe9fU/I1Dzpl+d/OjWTJUfdGScDr61XhBThl/Cs8sev1epOHnbmuvwZvg5qWDjGEbKN192h86/EK8ttTv5sN5i+WDKQuFjx3PrX7NGUfZ7nXFOMTzDULy/wBS1CW0tHIsj+5NwDiS4OPuj0H6VtZOmmcsoybOD1LSfN8VSa5bLEZLAiO3Lckdm2k9h3PeubmXNZIweGhGpzyd2jlfGmq6Xpni0yXRKTxwloVjQ7RMAcNXNOqufUwqVXT2R5f4w8YeW0H2u+ljdrkm5h2FftOT1B9Md/euGWISmk9jxsXWqQrR3Vyfxlca34ouLApcsltCIpEtwoARAcAZ7kZrTESlUsovRHdVVWdONn1Oj8ea1BHbtG1y7tHaoGMTkApt2tyOc9K0rSapNXe1vv8AM7qtdQotx3OK8IfFD4jfCnxg/ij4L/EfUNA1E+WLiXTZSqSL12un3WA75FeDiMPSr1LRdpdz5S8qtVujPlke7fBb/grp8cvhp8X7bxl+0XZT+L9FjExurPR5/sMtw+wBDJt4ZFZUYrxnbXw3HPBlXiPLVQ5kpJ/Fa7sjqq5xjcJSVPERTS2lFWfzPUfE/wDwU/0DUf2c9Etfgrp+qz+OxHqttd+J9ctop47exvJYpZLSJj8ycxpk46opzkcfnOW+HWc086+szqqGHXK0oaNuKtdncoPMaMq6fuStb1Xc+W/HvxT+JmrfBG68IeENRFlLYyTSeKbayhjS51Cwd1dMSqocwxOATEDtGd2OtfXYnh6jUzqGKx8nUSSUbu6j8trnk4uniMJR5qWjW7W7Xr+h4NHLpDxOOrSruTLk8/pX13s8LSfKoryPAqSp1JO3XzYhtFtZDcNbFEZcFg5Byf6VlVjRt8KsU8HKEOaz+9ktgiljbySMdwyUEhwfQ0JYNWi4rmt5XOnCr3WqmvzPQfgj4PGq6b498QrHHN/ZfhR52DIWG55FjByOB97vXw/FmLjRzPA0lp7Sol92pwVlGVZot/DOV7nTIbYMpAKY4HY5PPriv0dp1FofSYKsvZKKV9D9Ev8AghMPDc8+veFJ9RkFzea3NJBNf3hkIdCAEUN90bT0r80xDSzivTe62PArRqzcr9Gz9dtB0qfTrdbeWUttxyB1rCc9TypJc2h0nh2TT4rvde491pxd0Q1poReJrq3jnLWoKg9NtN2uYRT59R/gmx1IF79pOAMj6VEYa3OhySjZGgbi9vL7CqeDjGOMU2rHI4K9zTniulgWNX+qqKFvqaR5UX9OjmWNXnLZ+nWrdrETXUs3d9KseFDAY6etQmmiqbdyK1WW5wbhSFxnmk7FpNPUnvoLRtMkghl2SFfvL2pRumO2p538ZdFGu/Anxv4UuAZlvvCOowMH/iLW71cGk7M1ovlqRdup+ff7Hvw01DxT4X0rxDceMbC2sLrw+iS6Vf6Ct2skpQYlVycq/YHnbk461y+xlJ8ylY9LErl11+TPpH4LeCZ/CcQtPEGrrqUjXEjrmDEaBhjbsbtjI+lFDDSpO7dzkqpTaaR7f4ZsdEnjFjb6VDh5Iz5qQKjR7AQmMddoYgDBwCe1dtGlCLukYSjed2eUfEDTtHttV1e3tZBDKsvmNFwd55BcDjqR6VjWw6kmtmenTqVZRjZXRzula9Z/DbS9W1C7t3nuUuLSPVIV+UpCUL7WPYYYE56d6/Ocfi1Uz+U6LbVHS3fuetKKlRUZOz8zL8Kar4asNMu9C8BaLq8GlPfCQnViT5jbchY+zR4b5WXgg8E19hk1f6xQqOEXGMnez6v+rnJiqVSi1zal/wARadLDoUl9Y2YeU2js8US87iSAPYnAH41vWXJF8pxzTUb3Oa/4J+6L4wn1PXY/iFo8Om63HpUa32mwSB1geS6mk8vcOCwXaDjuPavIcZxzGMJ7pGkXH6oprZs+j49Wm0xRYl2MTn91I3b2r1Y1LoyUebYra9ax3rSX+mPmRFG5PeiynIycuWdmYVxr99C66XqtuGt5yW+c44HbmtXLljexclFao53UbKG5nkl8HaudsR3y274OP61hGLnLQTqykuWxyWv/ABJ1Tw5LKmuQGW2lfakcnKqMc5zVzqezMnBLU4HxJYfCj4o60dLj0yz+0Kha4uIAFMI78j1qaVWFSVrFxvLU57SLfwj8Evhh8QvD/wAOjdPr3jG1isG1BpS32eyDHzVQk/Luyc49vSvi+KeE8TxLnGDbny4elLmnH+ZrZHqYTHwpU+ad+aO36fceY2Wk+F/DtoqlIvLe32xxmTkPjuK+5Spwb5TyqjlOXM92c9faBoN3ezzX8qG4jQBXLfLg9s1rFprQydkzifGUHh+0uWlsZk862OGiLAZHXj1qJKPUmc7nkvxC+JelsZ7fTnV3xkoeqEVzyjKWxCbUbs8k8Qa5NfmSUsTufIAHSrjTimYNyk7HN3F1qFrcLc2infA+4g9xV+1VGSkdOHpvn1O58MfFvSLOz+03zhJwoJV+xr6DA4pYj3Voe1TqQgtTkviP8Vr7x3fCxsm224b5sGsM5rQw9BtPU46lf20uVGHLEj2/lEDgdK/P1U/eOTOunSbjqYOr6GTF50PJHUCulV19o5qzlFaIxgdhKsOR1BrSLjucEm7M/rZ0iSDWJ7h3cYUEBW9uwr7ed5TZ42ITVR+pv6ZBPOVaa1ICjCqjdB71zpamUbNnQWWfKADbju42vyKbvsaI1rWa4LiWOY4x0JqoppBOEHGzRc8yGxjF0YNzucbV6k0SqKnE5Pfm+S+iJuZ3EroSc8DPT61zybk9RxXIrElzI+0IelbRUrGD5egzDKuS2OOtdKglG5ytqUh8IDKCkxPPJpp3jeMiuVLdFLxk6tZpFIPfBP61lVm3JI7cBBRTkcLrDqcLCWZVU4LNwzd+lYz96DO9u8bI8s8TXXivwzczT6ReuGus+ZCWzGfQe2K86UJU9Yvc76dGnVV30MS48QXGkW/23UxMmAQxEZIJ9ff2qZVY01qinFSVjh9f8V6VLei/1vV4vJ8zeUuDxGB3YHqa4ZVYOV7nSpWjyxRTb4q+HfiH4tfRfCmoJKbNAsdnbqBjtlznn14rX2kK8kodDOScYptNF3XYHkke51fVbbbbx7ZIcYSI/h1PNX7J9WKFNX0MC7vvDhWZ1glmeb92HBOfdscYH061N1TXKlctScZanj3xF17xHDqTx6T49vrVNPcTQRWKlQrr0b5hznuDXnSU5S53JpI3U0k7Lc8g8XftgeLdSudesfHnh97y58mOXS9R0uLarzI33ZlPvg5FYV8TJuUmr3K+rNRTgc94O+Dl/wCMLm58R/ECw8691OAzby26JiR9wBugow1B1I3qIcZpK0TWX4N614MtLi00uyFnFCFZbWIfLjrk46fypxo+zl7uiOtOMYjLzw9PpEhl1p4UiNsWd50JhIwSC39081cvPQ5nJt6HgGv+HtYl1y68QJq7XNnPIQscc/mRJ/8AW965V71RtO51UG3G1jK1EJY2kqRxHmPdBnkY7rmuukrHZokYMlzNewlHnLHAJYZzx2Oa6I3UrXCne5NZApMYmTfHjJIHT3FejSlHmsjX2Tb0LJ+IOj+BvG3/AAhXiu8T/hGfGlmNN1tM58ok/ubkDs0Um1h7ZHeuDPcPyU41brucsa8KNflmtzz7xN4Q1Xwb4hvvCWuptu9NuGinA6Ng8MPUEYIPoa+Z54z1RtUTT1Pb/wBjT9nu08Za2njjxVamSytWykTDAOB1561+p8B8NTxNWGMqw5o3+5WevnrZfO/Q7cvwP1qXPPZbH2d4b+IGnf2va+HLfT40ggUIsEacqvTk1+z4ilCqnTS6H0MKEaStFbHpP9k3VtceRo1q7ySIDFGF6DHJrhg6eHgoXtbQcqkIRTmyLQNG1GJ3kv4cFv8AWgH9K9GMYcqkjspzg46FvWZLSS2Vb5EJC48lm+VVreDlb3TWmhV13+xbZYLG3SJcBoyp9ORmoqUZVrqQSSUThdej8b67ql5qKeJbyGa9XZKDN8vl/wA8/Svk63Cc8di1VqVGorojzv7OnVrc/NaK6G74bF1omippM9w9zLGoAmuCXdR9T0Ht3r63D4KhgqahSPSiorRGfdvqElxPLZnaka8s6nOT3xXdBK12bqLbKWoNDcLHNc6Uk8akFFmHGQeTj+tNxbWhtT59rmfrk9lp6p9m1oS3czhYrO0TKs7HCrkjrk1lUnGhRdWtK0I6s0cFGV7adfI1/wBqnxEPhZ8OfDn7HHhfXo4/FOpzrq3i+S0YNIrNjcjZ5AVcKPp+f8mZHUxvid40yzKlKUKOBfuSS+3FrueZhubFOpmMm0pe7TX93v8AMx9LtrbQ9Gt9C0URx20EIVQxxg46H0zX9eUMNDDU/Zw2SNqOHSld6mb+1JHpN34X8OeJdNXd9t0GGK+uGDs0lxCWjcBm+8FUIOMj3r8T8OcTCHF+eYGD2qxl98VsRTUqbqwmtU9PR6nytrmoGyubqQRM1q7Yllk4IH09a/dIQSiOE5cq5tzjNR1hYLi6bQoPuoTaSgA9R2Hb3reEk1YKs7o4bTr+dri9ZtLglhhsytxK4Pzuc8fUVnyRs2zi5KrfNJnA+M9e0vVtXOoG2EsMEQS5nQ/dcnhR615lSalUMakoqGqPN/Ed0ni7xwugRgXN1HGAzeT9wE8EccYrgjS9vXcO2p506lPF13R6x1L+oCPQ9QW1vX3GHS8Ro7gjecYxjryfzrslBQlYbnKnXUWw8QNc317fRoiwrLpoZozyGfaM/Q1lWd4NHXiVejyLdnHR6LLYQDz5kMtxPsnlUcqhGV49/wClccaFo3W7PNw+CjQp80nqyjq9qxe4+1b2miXYXK8Od2On0rWalJNzeoV1GcG5aln4Z6zaeGvEaaNqEyppeqsI2L8rbSnG1/pk4NfNV6Lo1r3919Dz8BiZ4XFexb9yf4M9K0We78NeLYZ9PRLTUrSaSIMyApiRSjKyHqjKzZHTmuTHUaeLw7p1Ntz6OvQhWhKlU6qx4NqHh1tI12+0C7hAuLC6eNgSQBhuMcfdxWdPlrUk+qPiKdOilKm170WOW1mhZ4rkghk+UP8Ax040+X3WFN11JxlsS2SBCCBwchJB/KlCmpyu9kaRhUjueq/s2i/n0T4k6HFO8dvP4GkuLqFYwxlEMyHBzzj5s8EdB2r8748jCGNy6s1qqqS8rnM8FUrV1Lmtbp330f56dV2Mj4cW++1SKXqcEbWIJI5/Cv0hzUocu3o7fkfR4Gl7KNz3z9hj4g6toVp4kfwxdTWl9pfioTW80b8jIBxnPQ46V8J7H23FsuqcTzJTjLEziu5+737IXxstfjP8FdL8XXjhr4W4S9UdpAMGscXhZYfENPY+bx65cS0jvb+5i89XVip6lQelYIwhe2pR1XUHYeYoPHU+tSxcnv3Nnwff6i+nMDNtBHGaUJDm1HRG5pgmBL+ZwOcmqSuZrYt6fc3M918xz2JIppJE7PU1NSu7u10+WawhV5Y4yY489Tis5yaj7pfIqkrNnFfCHxB8WfG93eXfj/w/HpsUNyyWsaSlt8YPDHjjPpXPRlXaftFY3nRpUfhdz0WZo7aLYDk98GtrmPOm7GdfzCOHEUZ3N1FNaPUtJGffWMepaPe2Nwo23NlNCy+u5CP60+W+ncFNQ97sfnz+xDq1nafDDQ9NdJZJI7MWu2Lna8ZKnPHXK1ph6UlDU7q1WdazaPoPQbsPeCN5SAWOCTzmt/dWhEYOx6n4BlE9xEdg+/yCfve9UpWd0c1V3i7nnd/o/wAObrxN4i+JXiLwxg+GfEiw3GrLqzSvdS+QJFszbjCxx/vAc4JYjr0x8NxDnGN9rPCUoPW1pLV69Ldj3MK3h1HlqX5o35bba737nlXw68Uan4m8KeJ/EHiO2W4v9X12a6SO5UqNgwqqQcHbtAWvCwGW4unndJ0/ehFe9dbt7nVN/WI3et317Gx4T0xYNNtVtVaOJH329vJKZPsse7AiBJJAUHaBngV+jzvKba0OKu4qTSjZdhnjrxENN0K6+ySGIvFIQ7NgALk/4Vx1bdCIOMrmZ/wT7uZLU+I51iKvAbQzHcSZWYSSMef9+uF0lLNJNfyodSSeEgl3Z9Ba/Ja3AkeA7opF34Xqp713OKTsjOGhzlzqeoaNbJqNlL5gX7y/3x7+9Q24O6MakU3qGpXqfE/SUutPVWMI2tGnDKfTiq+sRqRsJK0tTzzxFqN58ONQl1CeLCyqTcKTyvGMmsruDvEc3GS0POb7x7onjyT7Dp2pw3CwZeeQt1xU3UpWZmk46PUwr/QNHstRuY/C1wLe5uIgbiTdxjrj8q2pQhF6GzcfQ8z+IHiR/CZFtb6gt59pjMcQByR6mh1OxzznzSsjxzxFpviS5v0EfiSdZWl3JkEBB/dqIRbbuKnKXNuc/qdz44t3utMv9XJVvmTjofeuhXgtBuD5rtnnXiK28TAyvd63K1zu3Bg3UVi5p7mdRJHFatbvNLJK5Pnj7zf3ql1Eloc9p21OW1gm1ZmcYzyAaIyNIRUUUNIna+lmMij5hjGarERTpnZhnzVNCfVfCNre27POuCqZLDiscNUqUnozuqwjJaoxILK3sMxwhTz1HeuPH4irWk+Z3FRoU1JND9zMmBXlxUUzslZIikcbNhWrabORpSepha3pClGniHI5qozl8LOWdC+x/WnYWEGnwjysrJIRggZJFfoc17zPnKzbqv1NjTLaK2JmIf5u27PNc2zMoq89DaiaAooCNG55x61ad9S2aEFzHbwoxTcz8Ih6k0TkoxDyLdhBqVq3mXZV2c5xkAKK5kpJ3MZqlNaMvw7MbxFgntn+tbxjfVo56kmla45wd5YqcAc1aqpOxjytq5C06ynEkZC/zpSqKro1oTGk4a9SW2uICREkR46cVUKtFPlii5U6jjdsw/iHIGEaGQjAzgd6zqe/UudeCVqTOSluIsbd7ow4YkDn25pNt6HU99DH1zSbC4mhWO2ZgjbpAU4J61zypu5tSlyJnP8Ai600gqzagqA7PkCgFUHbj1rKpGnfUuEubRnmXjfwH4a1zTJLu9s0jQPgLjlyecn1rjlRhe9jppqUJXvofP3jr4U3J1lrjw/NNb3QuNlk9hIYpWJOMll6GuPEU1Jrk0fkejGpTcbbrzPQPAv7OHjfwboi6v8AFX4g6prtzLyLS7vMrbrjhcAfMenX3rtoYV04XqSbZjVxHNNKnFIwfF/hmyke4g0HVNZa7CYmS2QlYUHJ2nHYDrXNiY03rdoXJWmvhVjyB/g/4h8Zakvn+ONXubOJ2LW87rGAOeGKjk8dM15vsufVSbQ1JQVrakLfBzQbHw3/AGzqEMa+d50kQbnMaL1/PFdNKEVA2p1L1OVmp8C9QS08JW+leK4P9IW3kWxdk4dHztJz6HFdVB+7qOtZSvFFH4o+M9N+Ht7caxrs0iWu9re/iiTcy71GGAHXDZNY1uWjLVEcs3Gx5T8QNT1LxxYyaJNf2t1FboUhurNwxnhPIEgz6flXJUhKcrSOmnBwR49a+DLPwrKYbWOSzidmBiEg498Hgj2qYUYUdUdkVaN2YGuaZNZLc2ryJcRySb1+zPxn+8B29xVOpLmCE3N6HMTWyQ7k2BZMBj83DCuim3I3s4q6LFgR5yqqcA9Cfzr0aXKrK+ppGT5XcrfEL4W6Trm3xL4p8beENJ06Q+WEuy0+pyEdSkSZK+xbANcuMneo4tq34nlV4OpWUrljTYLT44+NNHtLZpJJrO0isbi6kTD3ccXyxyOOzbMD8BXNkOTyzPNI0Vqr6nq1FHEVYQifa3w08LaP4I0O38M6dAu5YhvG3viv6ey/BUsswSo0ktEfWYWgqFNJHRWVtB4a1BLuK0Tz3wBnoK9KjTVRK9lfft/XyOipG6bR3l/L4judJgv7TVJLOWQYYw9QPT2r56pgOfFtvYwjQpzl7yui1Z3V3oWkqzSs6sQ8js5y/rmvVcYqNl0OqMYr3Ymhd/2Xqmnx65e7ogQf3W3JY9q5oV5QnboEJyb5YlSSwkaMyz6XdhWG6APH2Hc1vQrUatSXJU5n20djeXK7K6fcqanqOk6bYRXuozw2kXLBpWwTj1rsjCdVWKUVZ8pn6Rqtxr0cmoWUq5ZTtkIxhfX2pz5absR7JU5Ixbi81RPMgtLsSx44LDJds10Q5XC7OuN3K7M26u767mkeW6aIbcFs4Bx7VWjVtjWMlCZ2X7MegnX/AI2aLNeCE6f4dhl1jUWkGdyxLmPdng5cr+Vfh/jzxXPhHw8r1KFTlrVfdhfv5Hm5nUbwVSMb81S0V89/wPHz4i/4W98avGHx9vLkq+r6lJBYXbwBWEETlcKD1DEEj2NT4C8KYrLPDmn9am4YjEXqSmklK8rdWn26pryPRjQp0IU6UVdQSj9xt6vqR+y7LcmNCw+SXjcc8Mea/dsS/Y4apUk9Ipt/JFwcYzSO8/bLtdPi+C/hKGHxfpGrTeFY4rC/j0iBYYtNM8Xm+TIAfnmJwxbjIYcV/HXhdxfVxXibiXUSUcQpcrSt8Mml6vTVniZfSUliavs5Rc5X953vbS67LyPh3x/BDLDfOZyYyCYwRxnHGK/sGlzSpyble/4f15nSppRseR6B4ovbaO6uWmc3fmGMebFtUjphR/Wqi7QS7GMXyO8kZ2vXc9rodxp9qQr+ZmW4xwxPJ/D+dPnTj7wV60XTstzyOLSNZsEu5J7kGQzM6pKMIsh+6qjuf5V59WDk27nk0qFWUnKTG+GvDN94Lvp9duGW51O5RjcysASpxwo96dGHsE5dSo4aGGk5rWT3Obu5oT4ktri9YSPbptUOOsjEHB9xXBKq1X5medaP1yMpdDf8R61ZXlw8QsookMbSQIFwJl6ud31H6Vu3dHrVqsVC5zs17BfX2ovHEuJniRYyuSgGByPpnmlTqRjJo89V3UvfoYmowQsbmeQyYVgwc8fvVHzj8ea56uJp3k2yZyg4v+tTkmimvZJUuN+CCEUN2HINeK/aV230PnnTqSquUj034a+LbXxHYrpGsXL/ANuWaqqzO5P2yAABcZ/jUAfUe+a8r2FdSkpao9nA4qeIfs5fEip8fvBk1nrFp8RrNJmivEWDUWdOBOq/KT6ZXHPtXmUavsq7hc5M3y+pRxSxSWkt/U4d4orlGRZi+QFUA/db0r04yVV2TOdLTQq2sM0jG3lVo2Unhjgmt3NU42e5th4VJP39D1j9luG3XV/HGp39xcQWVr8OdSa9mtPvgMEVFJPGGcqv41+b8e11OGDhFJylXhyp+t39yMZTdSo7dFf8TD8HahFZ6T/a14oAiUmMnBOcdSK/QVSpVmrr4dfR2Omnip8j5Nj0r9i/xQli3iPzp12vqMUkmF7kf/Wr5qpThhOLaS/mgzgwlGTxEm+rP1Q/4Jg/tA2XhrxfP8MdRvDFZantktJGPy+YeqjPSunOcPKbdRLREZhls6rdS599aiGgcOhB6fMR1r5ByufPPlSsUJbs3kqIEyC2DgUJajWx0mlultb+QyhSFHJFbwSSMJJ3NXTXldstwCOMVErtidS2xpW08NjG0siDg8ZpO/KKylZP1DQ9YfV55HH3RwDXPGTbNWrGr9pFpBsRR747mt0roJ3aGiZ7ltwx78VLdjOMU5X6lS8uA8uwbiAOSKlfEbOzK9/dpboiJwpcA56n2q3daoqMb7n5o/s13V54c8Q+LvC9hqRhm0PxvrFonzkBY0u5ePrtIrXD1G6Tv3PaqwjGEVboe2/BrxjceIbY3V1cRmaHUZoOufungn3xShK7OTEyUFaJ9E/Du6jM8JJDFk4yvb1FdEVY8itds5H4oSWlleyW+gaFBHLf3Uc+pFY8fapEBCyuO7BcAZB4FebPCUqmI9py+8z0cMqkYat26HnWoWN3dvNNDpyTgxMRHDhJF2/MSB3FTG3M7npxfJFal7Rzb3ly0aQPbK1sj4cYIbg+nQ/1roSlu3c5asalbRPZ/wBf5Hk/xW8URXWiSRG6VY4pJYpDnGCD3/KuNSTu2bVLRXKlqdd/wT11a1N94wWWyWDN1aRSRE5Ab7Pnj881zx5VmEvQqWHdLBRb3uz2xJLjwhrs/wDarJJYTn9zJ2UnsfSuybS2OKVRTXuvVbmZ4s05iXvtKdktZD+8AIxg9xWL5uRtLUqm1OSU9jJuNY8EfB3wPfeI/DF3d6hqF66mSZ50Ecch6gDPBr5KjjcdWzN0mrI9XGYShRw3Mnp0PGD4o1zxBFLceJbhnuLxHZlbkIuf8K+ppx5VZnjtJrQ5/wAe+A/DZ0SC+0BhZ3U0m3zITtLHPcd61lShJXHFWvoec+JLPx74cuZb0auPKwIljOBvXuWNVyKMdGRU99HH3MWqX+sSX94RM0PEZCghM9SDXO0rmcYnP6vo8k9/9hm1IkQnc0wPG6tYxbRajGK1OV1+K0m1F4Irl/tIXLSHow9KbT6hKV9EcF4iuNIjuJIZnxG4OHbjYwrCSTehm5Jbnl3ifxDYW88itIrSITwP4qXs5JamM5pPQ4XVdUur+QvMeSeFx2rWNJJ6mSU5kWhXa2t+YGYAOeTVziuTQ3wNRU61mbfifWRBp/kx8NIMYBrjvKMXI9mpzX0OWDbW2ntXlt892wcrLQVb+3U+UT83riuWVKSlcFVdRWIZpFJ3KfrWsWr2KUJWK904e2dPUGhJKqmPlkz+sq0g12C8WR9PhNsvLv5g3D8PpX31epKNRp7HyFZp1Glvc17azRhJNYXrum3dgLioS57NMmMZKOpaQeWIznzGxyXyCKtWi7MlX1uTaXfTalqBuUtmMFv8sJUck9zWM25O5pCKtdnQ28eJPMaVyc8B26UQV2ZTkmrWRqWyxC3M8p2qoy2a6XZQuzyqjlz2RBFczzKZmtiqs3yAnkj1rjhKb962h1ezgklfXqEzKDvZcexrWM0tzFQbe4kE80vyxJgbutaRlzfCjRw5fiZzfxKlaFgGBAC9RWjVmdGGTdPQ5SCWGRDPcW+4RRkqrA4LdiaxlJROu6iZk0fiLxFqn2KDd5SriZ0wFHtzXDJVZTv0LfJY4/xytxYXL29tFvByryuvIx6DvWE072RVFpq7ONvtUslmj0OzZvtRQ485MhSRyxzUXa91HS4ycXJ7Gp8GvAmiXPjg6i8ouotMjzKWiBEkzdCPXFdGHpw5+boZ1JVHTsdj470q813Uf7Js3TzJTlsR8Rr7+9Ks5Tk4xNKc4QhdnAfEDwPouk6a9hFIbi4l+Rmh/j/2R/jWNSnzRUWXGrKT0R5F498D6foHh94LCaOByhSYK3C7uo68muOrQhTp8tzaLcp3PJvFPiO98T+FNP0W2eC0nvr6Sy02ytjvYWkWPMlb0yePxFccXKUVGJqouFRnTa14Z0fR/B9pYX8ZDyoqQSltrqwyNvPQ5xx716E0oRSKhJp6nEfFLw9aPomoi6tRM32UxmRxz5u0ldwPQ4FclWKBXUz5A8Dabc6Rqt3caXcvBcyXLtcQkkLLzyMdjXA7qo7HqRilqze1bXdOcSWl9ZyPEg2tkENG3vXRKVoWY276I4TxPYRTXHnWc3mxnpJna/8Aj+dc8Vcqyic/dWRMpDtIqDpuwxB+orvo6I1vdXDTTtuQx5IOMkGvRopykmy1JtWOI+KtpFN47urlbdFc7cSLIDkY/SvKzBRjinLqYSpJSuz3X9gb4e3Wo+I5vF13A32aBflZl7+1fe+GuAq4jMJYiS91dT0Mtpe1xKl0PpDV/Fw0jWVFxMEDtiIbDub2r9vlJQk3J3XofTynCE7M9T8KWmmXmhJ4k8QwhHUAxQtwT781p7VydobGrm5L3VfU1F1KeTTZJ1A253Jz2ry5Tn9alTcdEk7/AH6FTWtkaEl4upaR/as8PmxeTsxj5Fb1JqcTi8PgqXNVlZGEEqMruRz+t+Pm0yxt28CmDWNQkJR7eQlYrUf3s45r8xx+N4j4jxjwuApuFHrLy8jgxEsRi5Onh9PMj0aHxjIG1Hxb4ukvrlskIPkihH93Ar7nhrhSlw8pOVWVST6y/wArs68vwUsIr1ZNsqanYReLNQRdSaJ4oyFEKjOTX1spuEdD1/a8tPlSG+NdYt/C+ktp1tJGJDjzCAQCOw9/pXNTvOd2Rq5Jswb28h0+3guZrpvOePdJEuFEantivQo+8tDdNuyRnXniRL2/aKztERvLCxktuC5HA9zVyjaDtuauFtzrPAPj258DfDD4jXuiFpNbu9MtNOs3RCzr527cxx/q0GAcnjiv48+kbgsVxTxnkHD0P4cp88vOzWhz1abr1acXtFt/M81sGs/COkWmhaY4keCFUhZuQGA5P49c1/X2X4F4DK44fD2ThGyvtorL5Hpuneau9DY+GmlN45+JPh3w9dAS/wBoazBE5c7QytIuQB2HX614HiLmdXJvDvMcbtOFGTuu/Kzlxk/q9GpUj9lNnX/Erx9r37QniT9qD4K3+haBbN8M2sJNAi0S3WKZ7dIwxkucEmR8kgNgYGBX8JcHZfheHMDw1xJRk28ROSqc0rr3paaHz2VYpYWNOnKbftG93fVpPTtqfEGqeKFW0S01yNA0qjyNy/I2Ofzr/QvDYmKgrvfbsd1VckrSOB8YaTP4r1AxwAWyJxGkceCR1ZuOgrsc4yIqc1S1jhPF/imezS8iktndIlXbvPHy8Aj1xWFSpGKOSspRVzjx4ltr2KK61FRJbxQsYpFPzNITyfrz+FcUaic/IijLrLYoeKfFkIvbqHz4obxAkkUEZ+VQM/NnucVjiKnNLl2M6+I10OHs9UXU/F4WKcOpk82aUngFuMn8K4aShUr2T0R4kKyxOMsuh0F1ZWN/JPci8eOCCJIsMf8AVxMcbwfXqce9d9Wzi0j3XTjOkZ9hb2lm90qyss+1trbv4kG7cfqOlYrlirHJUjGjflOanE1oGiurgNFI4mbuIXz3+o/nXkVYtVGjyVGoptN6MqamsFvcTXOxFXcPKfPGcj+YFCaorU7JU4RTbRV+2QQyhoN6qZQ1tIj4KMvbNYfWk24W0Z5bnyV24m+vxd8Uaxoc2i+ItVOo2k6LHcQSjL8DCurHkEYFeTicuwsn7ZaO52PMKtSg4VHdPoctM89uGSPDoxxHPnG4eh5/zitsPFKLuebGFWn73Qcl2pzIsilguS5PX25qakFLqb1KsqiTj0Pa/DdvpXwt/ZD1C3ubyAeKvirIJY7VnAe10K0kIViD/wA97gHA4JWH3r8czKtiM843p8sf9nwn2v5qkt//AAFfmckI1E7SW6ueXaJeqsBhMWwgEMB0U+9fsODSgufvqejhH7lrHYfs638tkPErmQBlltiGX6sK+QzetJcWYNN68sxYapCNeUfM+s/gfrX7ROv/AGbV/wBmqaxvNe0xlkfR70gfaQvPynqDXuYv2sqTS0NMdXgqbaR+xP7NfxK8ZfFH4G6J4q+JHhWXRfEBtFTVtMuCN0MoGGGR1Ge9fIYmnCnPQ+IqRakzudCRQ7XEyDG75ciuTdhzWibojkuZA8fAHXFbJ2ISctS1Jqi6TZvfXcgWGFSWZj2qZzSVxOBT+GnxP0f4o21xdaM4lt4pWjEingkHBrClWVZXRrycu61R2dtNp+lWpEQC45LGq0itjKd5O6YlpqkWoxs9u+4Zx04pqV0U276ssiT7EgcnqOaLJoqyRUnvw0h2gZPUAdKnqN6mXqt87X8UCw5jRw0kj9Bz0rRRbWgN9j81/AN/Pp/7RXxl06NzGkfxR1MCRByiysGz6Y+b9a68HQjG9+56CdWVGM+tj0/4N6hpWmeNvGfhnTL8XMGneIwsd0zcsHhU5HbrU1HFVHFdBeynKnGU1a59RfDOfzBFCABlF2+qisveepxVlGKOS8X+I7DxBc3Wp2jTyJDezWccs0e0yCIlGcdPl3A4OOcZFc8oyWrOyil7JWZw2nSXH7y8eYAhiihTggdvzFVGMdzqcWoli9uZ5JJok8+4mS1JREYAiNFy3zHHIGMDrxx0ranCU2+Xo/I56tXDwtRmmlO+qT/NbPXTVPtseZeO9A0mysB4itp0uItSma5+zEkeW65DCRCMjJwR7ZrzsNKVbEVIzjy8r+89LE0qVOnFKV2/wOm/YFtm1Sy+IJnZY7l9btjbsuB8ywDA/LiojSi8ZORjiK1qMILoe8w6hBr9hL4c1+HaSCJVZeQexFVKSWhxu25x0Wo6l4M1FvCfie4EsEpIsblvusnoe2aypwbndv8Ar8i3G8Lo5Lxr8MvAdtqMutzy3MU8o3ACYmIsOjFelJ4elGpz21MJOtOPLfQ8o8Walq3hq1ubzXNNaNHJSK9hGUKZ6/7NXJcu5cVyK5laF4m0nxfbDUNI1WO6trKMCORGzl+/A6U4zi1ZMxlVtIx/iBa2OpWX9jJdFxJHvnkLfdP1qHdvcnnb3PK/EPgvU9Lae10nVJEjG1kTeTvz3qowi9bmqmzznWNM8X28d1M2qu+XxKm3tRzSg7IJtTOC1+y8cpem6/tJ96D5ABwy1M3KWphOJxWu2Gt3cMtze37M8hAkUHioTs9THllc4zWNLFtIzM+Tzv3NyDT53IFT97U5m9uIVkKRNuZehBraEWtzZ26GfcH7MDMzfMORzWt9Dgb5J3RfmvWvbSKWVskLjrXn45PlcUe7hputBNlCSQsSVNeQptROtwjE87+LnjbUfB91DPZsSCeVzXsZVh6eNUozPAzbM54JrkRY8A/GHTfEgFreSBJsY2k1WPymWGhzQ1R05Tm0cZ7stzsgq3WDG2VYda+arVJRvc9ty5Xc/rG1bwToPivUba41kXZNmd8SwXjxoxx/EFPzfjX6DiMPSr1nKZ8kqkqUm11N6Gw0/TrYPGxiUY/dZP3RTtGEbIzUpTVyD7R4l1m5RtFvbaG1DEXkc8JLsuONjZ4/GoftPskxhC95HQ6Yw01UtlYgr0Hrx1otcmbi7I1rZ5X5ON27nC9quOhEopIv6hdMbdLKI8nBkJ6Y9KVecpRUEcFKleq5vboJNeuArHC4HT1oc2lY3hRiroiv7pwihRhmHGTWUpsdKjHmfYn043DRglcDvmumjKpbRHPiOSMrXOW8dzSXVxIhXKquOR0rVyu9Tuox5KCscTf3v9mSSIlwQXGY1PQfhXPNqLNYQcrOSMPVPFMlpaS6fFe8uS0h2gZP19K5G5NPU6VHXY5TSdWm8671PWLoTGOPbbrIo2qe/FRRVpNsqUVJpLRFK50QeIJDLp0Ku7Lh1SPaxz1OewFOSckzSU4wjY6n4O6CNF0fU54f3gtSFjO0/KxzkZ9ff3rWlTtSvcxqyc5pIzPEXie/tJHs45gHugWlmAwFQds/0rGU1DTqXGmoxuzzX4h+Ozpk4LSkXMiFLeOM/Mq45OO1cdWraVludVJqWyPBPjn8Tri00W4vJbgpa2sZeXLYyB1JP6VyVJXvKR1U5JK1jzT9mzT59XVPiJdAmS4keSMSgnyk3Bti56ZHJxWeFSUuc2cdW2e0fGzUNJm8PpNYXZJuoVm3kFvLbdx05xwRx0rsxcrQ0MqUOaoeP+OPFGpatoMxvLgiLje55boRhgfvL2/GuRTco2NPZ3lofNsyXS69c2twiqY5N684LJnhvwrkfKpvU67vl1M/Xtcur3UGjku0yY8eepyJB6N/jSfvF0/huzkNTvbgXEllBb7nJyx3Y3e/1qI3T0N4r2hlMrHdv+WTbnZuGT/jXo029ik7KzLWmRGSdXdCrBs4Hau+m43T1NEklci8TfDe+1/4mWNtZxAJqcStNsYNjHBPPSvOq4Sti82jQjtK3QzkpSmktbn2J8J9E0DwR4StPDWkQrHHGo8x8cyPX9CcOUsJluEhhqS9X5n0GAoqilbc6+18GWWpavb6/qVuHCPlI8A8/SvrrQlF3PXnTjJqTN7xVo93riB7C4uF3MAsYPAA7YFYwkqcrLY6ZqLguVWOhuJRp3hyOyuQMiHBG07mP0rjnJTqt9CFHllzHH+NfiukWn2vww8Oam7yTHddQWqZcD3/ALor4THSrZ1mqwcY/u1uzxK37/Fezgm3+BZ0PTk8OaYloGEcwG5wZM/ma/QsDgqWAw0adNaI96jRVGCSXqYfxX8eT+EPDUbaba/aby8mWO3gjBJyT1ra0ZzSsKs5U9UbHhW21Gw0qJLmRxdTIGmeRjiPIyeaqpOLRtJJannXxw+IM/hO8j1RdPn1RYZhDZWVqhJnmJwCfYdc14mZZpDA+zppe9LoebmGJqUEnFXb6G8j6nqOkxz6woS4+zq8wfpGSM49yK+iw6tCy3aPXoqUaMXJGdcarY2JijspcTNxGVXLE/3iO3tWsYSjJXNpTjVgnY2vAWl2mhfArx18SNX8TLbXGs+LLHTbW0Sf95PHDAzsHGDhMt04zX8t8U4yrmX0kcswcYXhQozk/K7seb7epLN40YxdrXv0OIl1tQZZ4ovnl6TOu4kf7K9q/q6nFOV0e/7Pnud5+zG9uf2hvA2nSQJJLLrsUkgcguxBzyMjpX5X4+Yl4XwhzW27pNfeeXmE5U8vru/RnMfs9/EXT9O/4LJfGj4RXmnWTxfEPTNS0+61A3OX3xxRvGhUDAwFIAxnvk1/K2AymX/EruW5w4JywtWnO7ve3PZ+h87KlKphKc4rWm4y9dkfOnxJ8OWYW/8ACOqyRNJZX8kOyOUMflYjII+ma/tPJcdh82yLD4qk7xnCLVvNH02YUOWs13PItQ1bWfC11NDPMZLST5Dfbf3ir0w2fbvXpUZTS948fEN4a6ucn4iuNI1mS7uhGjWyjAYTbti+49SazqTUupwuqpR1PO9Ukv8ASbOcQ2asjROY4HHCknggdu1ZuKirkNuxxF/ql6Y5JJrITXcoVJ3PXb/dFcOIqSSslqebVnNvQo3EUUge2s5PsisdwkB5f/Z965qMfe00MlThD4NLm9BpWpWFvHJLqeIDBhQ2CG9iPX+VdU/adzvoSq8vxGTqGk6qzzNJqLhpFBuGB4Uj7ozXDV572TOfEUatTaW5Vv8ASL2e5klvL7MkcSgBejL6n1FcrhJTu5XM1hXDWUtURalpCSQyWcku5dqlXDZEn/161xTXJysqcozpuDM++sbRyLfzEGUGSP4WHTI9a82VpK0TCpTouDS0ZTVnVDGIQsyfMSR/rB6gVzudRp855lBy5rSWq/EYFkvSbmB9oP30Tpj1pUn7TWL0OucJVIXjp5FqG2hgtVMiEKQB0yW5xge56VGLaoUG27JLc541IUleWiPTFiufE1r8Sh460IjxFoml6aun26NhdJtIdq+QMdCFI3D1znnNflUZPC4jAzw0v3NSc3Jv7Tez/wAjHB4hYqWJn1VvkuxwOjaisqkTuGDAh379OOa/WcK+a8WXh8RNNxR03wa1drNvEiMoC4tTuDdPnYc8818zndOnT4lwUnv735GOFp1fr0uZnvXwE+LV58J/HVl4rW8uIrMOvnyWdyY3xnnnt9a+grQVem4I9WpS9rNwklY/VL9j+y+LXxJ8Z6f8WfCHxUvrzwbPaYm0m6dJcPxg7xz618bmuAnSq3bPKxtGlhYOEo6n2PFKFRVU4xgYxg1510j5/luzTTUYoYwWJztGc9qm91qLlaK+safD4k0mfSbqZhHOhDHOOKLRe5rF2ewz4VeBNB+FfhpfD/h+JUiDEgL6k5JpQhGmmoiqz5pbHSXsi31qYJZtu4euKHFvRhBJPYs+HYLDwzozyXFwCq/MWc0StTV7kVVGo7WK+k+L7bxMrXFswZdxClT1xU0ZxnFyRfLJblme6t4LhY/vu/B46USavYq2hn+IJpYWEDuCMg4U1pKUoxshxVkfnAJrew/a7+OOmqEMbeOjOB/fD2kDgcVvgXVnKXN3PTjOlUw0JQd1ub3wdkgg+KPjMyW01jDPf2lwjCNv3swhI8oknkDA5A6EVrVpfv25PQWIqtxhF7WPrz4P6jfz6FLf3yr50VsSF9McDvxik5wjBs8qopOqkjnfG13Le3jNPIQduRxgHI9q4W3J3Z6dKKirM5CzBN0cMowwyAOuBTg7M3laUNBdRt2ubIyNbj52P3umPWlKa5Wwpy5fdZ5v8TJZYtLZbiUozozKM/fGcd/ahTikwnF6Ski/+xvf3OlaB47uLBCrQa3aScZ6GFa4YScq9RrQyqQclFn0LqDP4y8Np4o8OupvoIx58K8F629nzNMx5JRdnsc9NeJ4+0R9E1q22SocDecPEf7wNXotzW/LFcqOGju9S03X5PBnj2/RlIIsLpj8sg9/ek7ydmZ1Xy6ox/Fs1tortZ6rbfaNMzgOo3Lj39q53Lk0aJcVUSuebeOPgl8MtbsDd+BNYk0W6u2IaTT59gZj3Kjg01SpSVzKbi9GjynxR8Gvjn8P2n/4RzxPDr1oBhkvchs4yPmHX8qznBr4Tkc+aTS0sec614/+KNvDJFrHgq6guYnBklDAqcf3a0pJ9Tqimkctf/Gq6zcPqulzwLKMM7QnqPwpzcYszcmtDide+N2nXz+ed0LwDam+IhZKzvKTsZ+0bkef+LPiBcancyT6GgDEfOoXgH0qlTUd2Kc5N2RyOo3WqaoWe8mIZ+GVe1UlCPQUYzluZF1Els6xqpLkEHPXNat+5c1domVqLSvIY5CQexz0qVtc55U7y0Lmk+ZNYGMn7vSuDFyco3R6GDqRj7pC8gRyK8lKXIelN80TyX9oLZcTwRjrn0r3siTjKTZ8fn8Jc0VY87Fhf6JImp27kY5BFfQurCrF0zz6VKvhEqsD1f4QfFGLVol0rU5gsoIAJPWvk84yepG86ex9HQzenWSi3qf2SabbC1RhIrZYbkKkZz6V9ZJLmZ5uJb9o/UkuTcyT73Ifeu0byDiuaUVIUG1sWppDpVisWEWSTBzGvOPpWsY2VmO8ZLQn0yTfsE0o3EjnHJ9qTVhWSdmb1lOIkMjcBckhuf1pRundkTSlLlW4QXUcitMU4bJb5u1Q5JaiqU3FpII763mk8tRkbsAk1k6iehXspxjdjbq5JvUgjBIA5OOKy3nZFQgvZOTNSFtsG8vjHc16UJOMDyJrmqHIeJTG99JK64KrwprK+lz2IpqlE5PX9Ls7+yaV5lilIxH853KOe1RKMZfEa05Nas8u1qSWC++xTTFCnIcjl/rmuZySTibJSqO6MK9u0tBLJbwy5YEEBgxdvXHHFY3cZGsrSaXQb4f8d614f8Ny2GpX6R39zIzzSswykfpzT9vCEPeerD2EXO9tjudJ8XaXZ/CyGKzlaNXZprlpJMNITxz6/SrU5SppJmVrV7o4DUPEtjrtzLc3cjN9hVS0TNhQT91B68/zrnqyXNq9jSonZRR4x8UtXkg1ee+u1Mk0zFHkU52dMIv58ntXnOT59TqguSGh82ftDX9/48k/sazRotKjkSOcA4+0sT936D9a5ak5VXboddFRUuZ7nafBCzTQPAkGnPNtlmtfNtee6ghh+QFdVFqNOx0zcampc8UXurxao890jG3SBQYV+6jZHzL7GlWU5NERlFR0RyXxBEJ0O8vhJtjuIfNhRe3PP447Vy1G4RHTdtz5n+K2q3VpPHf6VdKZbZwELZCyRsOhrik23c6HH3Tk5pr5oGnulwz8goMjHf8AH2rRORdON0Unh1GaX7ZazJIrD7rHBX862ppM6tIxIZ/LRv38S7tvUN0rup2uYfFIsaNK3nD1DcZ7/jXfTguZM6Iw5mevfAnx9FN4lvfhzrvhvT28yOOex1OWD9/HjIZQ47H0Ne3lee4bKMd7HE0041LKMmtU/UqjPlxPKe8aLDY6fZLftaN5Yb9xu6MfWv0vKEo13VlJci217n0+Hpubumde2qx2tmi/Kk4j3MVHQelfXqfvpLS518/NotkVvDGr6zqs26K+AQMSdpI2/U1tVUYxTTuaRkop3Rs2+pz/AGiSXULjzHUbQG6H1rlkrQdkKcm2omd5Oh6NdS6tZ6dDFLKvzTbcFvxrTDUIR1hHVmlOEab5krMgu9TsL2QMZGdEG55SuB9Peu3llGOprz2SsUob6113VmvEtllSzH7osnesJ6GiuJqer3t1IljNKTLK+GhUdR7ntW1OMPZ3ZHNy6nn2i6Vr6fFLUfGXjDVo2s7WIRaFpir8ob+KQ46nt+FeHTyqdfNXiquqWxwYXCYr+0JV6r93oaWu6zNNHKJpm8xjlYgeXPqfQV9JKL5bns87lIyLk2ttbtrGoam0cFuQbuVDlpT/AM804/D8ac8RKUVZakVVGnETTtY8H6n+zrZ3Ol+J7q91fXfiDdv9ikfbFZwwwhFQLuwzHdkntnpX8rZBiszzX6RWMc6aVKhQUb9W5O/yOCjXrvM9V7ttCC0l07S5WIlWW9C/vMnKjHqfQfrX9a0oU4u6Wtlc968ou93Y7X9lbUvElr+0h4Z1XwnYrf6t9qd7W1mbajnYw2gkHaPfH4V+Q+P1GjPwozJTk0pR31dtlov0+ZzYqlhMRhZwxUuWnbVrp+Vz5w+JHxEg+Af/AAV3Xx7BpsulyeHvGFtc65ZzSbg/nELcMzNy25XbqT0z3xXwHg9lUeOfoyV8jg+dzpVOXTrG7j+R5uJqKtH2NF3jKFlbS+mjOn/4KFeF7P4cftxeKJJtYs54dYaPULWO0hEUdqsqq3lnBILkFXPTh1PQiu/6OHEP9teHNHCYqPLXwrdOS8k7X/C3yMqWMp4zAU5Qldw9yet2pJJ2fZ2adnrZp7M8a8Sar4P1e4eyuraKZZPlibaM8dSa/fJe9J2fu9NAnCFSOp4r46+GutW9/LP4XmH2KOQvJbRsP3jHkDA/OvPqYRt80WeZUwk41Lp6HEan4ouleWx1W2SG5kIcbhkADg8/QUozcfdkY1Z2dpGQpsLtp47SGNVWP5JQAQB3A9TXDUjzyuc9SKktEZ9zoVle3sc7TKqQR740PG0+rDsKujCFzKEadRpdUW9Rt3a2htpJ2UFlIfBBZD1OOwqMQ+iZ0OhOKV+pDqzQWhd4SUZkDIM5DqCfmP4fzrllAcoNRuzE8QgwSia3Zo4lC/OpyShx1/GsXBKV2eXiatpK70Mu9LRucMUMiGTZnK5ByCfTipq04y3E0krorvHBdzGUny5DGCmTnp39zXGowjN2OPnU61upVSK4BKXB5jXci55HPUVnV5Zx1NVCU1eXQV7lixl2HpgnOMe9YQlGDdhPEpPQ7j9nnTIZvFF/8V/E+nrNoHgG0GpXMUn3Lq+Y7LK254O6XDkf3I2r8943zStXpQyvDStUrvl06R+0/u09WeFVnUxGJcX8Mdfn0JfgfNqHiDxZ4sh1K8mluvEHh2/mvZScvNJgyknJ7msOJ6NPLcpwrpq0aU4L9DfK6apV5xX2k7nGaJbKLUG4H7s8Ag9PrX2+FxU56vY7KcY05cxp+GUnFh4jvbTUvsr21tbuyhcrMA/Kkge9eHmyqVeI8GpK++vbQwhXlLFyXY7v4V+OLTxbaHQNUKASKFBPJ/WvsPZKELo9bDOVde7ufan/AASZ/ak+Lf7PHxbk+Gepa5Z3PhC7nRJLa5ucSwlzhXQdxmvms6oVa8VNdDHOIQ9h7+6P2Q03Uo9Rjjv4nBjdAyH2NfLqPc+P5n0H3l8TMRGxPHrQ1oXF3Ra017iRMzTbRj7oqbalJpM0rZ58hcFVPbPWtNLDkm0XftigrDHjgdRzSe5Ck0RaxFPdQfZ5pGaJuCmeCKyqJt2ZrpuXNDg07SLMRW9qqDb26URioqyQTm72I7rWEM21FAYr94nrSe4km0ZesXdw9yGkYBdvb61o02jW+mh+evjFGs/22fjKqYH2jxHZOgJ7vp8GP1Felgly83qd1Cj/ALPG52k+ozQ+NNL8RXd3czvrMhN+0gIEVxGu0KMcEFRmtMZFyV0OFOnGna2x9K/Da6f/AIRK9DlpD9k3M4GCFLA/kP5Vw1IRjByZi4J1FYyfFcWoWklvLcwoFvbcTWrbwcoSVB68ZNcbnG1yoyUk7dDm9QtdQsZ7i0jSJbqKZVZZj8u0N83I77c496uDbnZla1KSlB7kWtxWUoiu0ilQ2yyi12SHG18Z3IeGIwcE9MmtISVOk4SV7spU5tt31Z5z8W9G8RSWi6hY6E81sls0izQHeqRBgrM5GdnJHX1HrXPVjOC90pyoyaTdpW+fyOr/AOCflvY3cfj6yvlXyrjUbVCScnPkDk151CfPiqkTXEVYxowS3O6XxBqPwf8AiJH4Z1NjHp+oPttrovwWJ6HPArvquMFHlXr6nKpwlHUf8ZNE8XaHMvj3wwVmgVv9JgQ5Lp/eHvTcfaQTTMFUlNtW9DI16Hwf8T/h5/xMLlC0oxBOhHmQP7dxg1EZJaSKvJo8f17xJ4l+Ejw+HPi3OLnSp322WqoDtK9ll4wDRVilFS3uZOlJvQreJ/hjpXiLw4fEHg/X2tmjffbiKbK5PfFZ8sHGyYppxWp5X4q1n4/eCbq4stUtDd2aKJGmiU5IxXO+aDOZ2ucWvx3tdUuhca/pbxRyRmNhLCQNwq4ykaJNJNo4XVfGvg/xJNc2KGHzYn4UqMdeaGnfUJTRwfikeDrdmdraCWHnMfG5DRz2MmlJnB6m3hOzkcWgTyn5Y55B9Kzvzamiajscdrmp6VJdSJYRksBgNt4raFluZuq7mEfNuHa8uE5A9Kuc9LISblqZdysjgylfvHjFRZvQuCJtJl2AfL1BBrOVLmhYmNT2dQqXT5uWWvJrQdK57UJuUU0eVfGxozqcCE8k17OTTnKEj5vPKt6kUzNfRo7vTAjKMFfSuhVGqmhacXhkjDg8M6lp+orcaZKUIPBBxXpRxtF0HCqeDLBVlW5qZ/bDbR3c9qbtFACdGc9quo25M9avd1HbuO0NNSXVGvJnYRr83lhePrWVOMlMTaVOw+6ubi/1Bpln4JwSqZFaXTZFPmirGno5cbfLKkBv4V7+9JWlsdDbUdjTu711UW8pLqoy6rj5j6VE5WdmYU4WnzDftgu4i1vaBf7wL9qyqS5tjp9lyv3pE+lzRISqwZAXk4xzWSuuhnXjLuSG7a5mVfL+6M9KtXk9ifZ8kHqaRuI/siq67Tj5U7mu5uPJY8uNOXtXY43VZyb6VZJgqkHCv3rKyR6ig7I53WJ9Pil8+dG2MpGVOCB61jUsPmblaJyfivwhpHjWza30G2dpEQ7irEj6k1yVVzxtE6IOVJ2Z5Tc3Xij4dauttqMUUwLbBLJFnYCaiClD4jrUYzRtNoGi3Ok3OtauEkugmFjMY3ck8kAcE9hQ6dL4pGVSUubl2sc7rMPiLwl4YnTXLBdm0y2sKkgopHG4etZqpKnBtozTjKWjPPPh942W80G7l121ubRmumESSEZZRk72OeP/AK9c0armndWudUnd2toedeOdYm1HUbixt5pZ5WJ+WNchAe49h+ua5qsYrQ7KdJRjc8u+JZTw/awwQ5KwKHlSZxmSY8AZ4z17dK55KUVZGiXUs/DLT7uLwcIp9Vle6tySs2MmJs5IGOnatcPScI3bLs5S1LvjDxNruoWhvLm13Ep8k8ZyJNvXI9D3or1GEVGLsjyfXPG/iLVNCurr7Cn2aJdjQxTbymD1x1Fcrs43ZryxZ478QLyTVmeWGJJIJUUEIeVxxnHrSXIzopRd9TBtXltbV7c7EfHyjqHHqQeho5Y3Nm9bIrXbSEIxUCVuoUYDfStI2CV7WM7Ub427tEy5lPVH5C110e4o6bE+gzTJdAOw2sM8Pmu2lUfPynVBrqe2fAf4NeKviX8QRe+Gr77I+n6RPcyySkAOI4y+3J6kjj8a7s1y3+0+Gq/s03UgnKKW94psKVOVapPkV5Wue/w/tGfDH9orQbW68AW1nYDQLBdPm0uKHy5lmj4kkkU8kls8+mMV6nhFndWrlKy7H6V1qut16mnDWMp1oSU9Kjb0bGT6jqdzrUNjBb5UwhWk21+40+d1Euh9TB8jN+0vNO0Gye1QbWGC4IxXXKEpy0OhJtanK+OPjD4c8NX6wTShppOILKLl3J9q5JzhF8hy168ac7dQspNW8XC21LWJprG0TDJbjgn612UXLD8rpnoK8qabLF/fSXcy6TpTMTghYkXPHqfSuiFRvWW5M4pTTuP0iabR7KaKeZ1ZRhSV53VlXlztFxkovU5zR9T1PxLqF1dwyg+WSpZiRx9e9dCcYU7BUVpX6FK/1JD4hNrFdfaY0XEyJ1Zuyg+lYyqWg2uhpGcpbIZe3Onw6kza0TboEIaPqznHTFU6jlTumHvRdzlvGurtL4bmuLqVLRFQtBAOMgHqwHf60RioJzT6G2IqQq0/e0sM0m8u/BXwc8LaPqmlW8N5HZ3upo8EgeS5S5nOx8jpwnSv5x8KqEsV4g8Q5wv3keeMFbf3VdpX89DycAnVq86baV/vKVlqMaFZlkMl3Iv73d0QdhX9RxhCM4yW7Wp7sOecLydkj039lLXfDXg79pvwpq3jnxc2m6fZvNc3N8suAwVC20kHhT07da/IPpE/WX4S4+OHjzSaSSXm7HPiqWKxOFq0sNDmlJNWPkX9tLVb/wAS/wDBRfx1dWd1ut7wxXEUs4KeWjoCrYxyenBPQ5ya+a+iTi54Dwyw2HSTalKMvK619fwPOqOeDxNKm9JKMT6P/wCChlzq/wC0J+wz8L/2rTNaRnQoYtP1uWwGJCij7NL5g3YyJFRyQTw3TufwrgbE/wDELvpFZpw5Vk1SxMnJJ7Lm1X5s6ZYWlHCVqcZPR+0+T3Piq/sPEPhsxavDbx32kmE7JoG+ZFPXgdT/AI1/c1ZOglyr3VseSnObvHVDrfxtorW0qeHbkSoFcsZQAUBAB4/vHpRSmpQujpnKnOCdzl/GHhXw54jhlu3soYRHbYk2dWc/dQe/rXFUjCUrSOCrRjfU8v1L4W69ZXF19g1N4YoF3th/lX/ZHvXi4jDOU7wlY8vEYCdR2hNowtO0TxZY313cee8hmAK+d94D146VyRjiaV7O5w0MLicDKTcr37jYvFOpKJFu9MlZUBjlndSy7c9q5lXxM5e9FlU8fUrNpxenUp33i2TVfMdgoLJ5a7wRsUenpmtXXk1sbvGOcOUz9V8S3V6wLWTH9yFEfTGOQfzrmliZ1JbHk4jEVKs9IlJjq99KHlGF8rYQTyPw71NWtUbLhOrU0G3mnavcNDmQpKkeUZP4hXK4Tlrcmtg6zamnqSpamdWlkJE4PKjvWbvUVnozSC+sK0nZof5ZiCs8LPKzBEjTkyOThQB3JJArDFVI4em5yeyMa9Sjhqd5bnp/xsjX4R+ENL/Zo0+RUvtMk/tLx1MP+W2sSqP9HPqttFtixz85lI61+e8PUZ5rmNXOKv2vdp36RXX/ALeevpY86EXCFlvu33f/AADD/ZgU3/x207SJEdvtmn30JAU85t3/ACFdnHHucOVG18LhL/yZCwLk81jTSve/5HKpM0NttztMcpVlz3BNfW5dSU6FOd+if4Ho4i9OmaHgy8TSrmLXViEkN00kV1E2MSoDgr164rKrCGPxk3HSVPVM5sBUi/fa30FuIrPwF8QVfTpHNndgTWRm4IU9vw6V7GEdask6m7LjXqYXGcltGfSfwnOleJr/AEvV5rtY7+0njl0+5i7lWB2HnnNcmYU2qUoHfXhKvB3P3S+CXii61f4U6Fqt4rLNLYRlg3HO0V8BqnZo+WlQdJ8p1A1HbiVzyW609UHKaOn6jI7NISMg8Y6U1ZESi1qjUstQRpBGJd0mOcniiLuy0nyj01EW1yZJSOB603KxnJXF/t2O8lCowwByqjNRLXU0gna7LjXLIioxAXHSqViZNuRXilso7gzyuzFuFXP3azaNVblsUdW1VWdtx4C4DHjvWjl7o4wcVqfBfxnijs/23/iQnnBGu5NJnGSOT9ijA/8AQa7svbnKa80dkajqUopdDc+IeqSJoGlX1siwvaalBKGY4yHOCN2enWvTrxhGgdOFw0qsuVs+nf2cJIvE+nXFnqd5AtrHYzPdNOcAIFyo25BbJwMA14mMnL6u3E8zEVfq7t8Tv0K3xFu59ZnS/wBd0uC31KR4MyW0GIjEsRjVgOApCjoB39hnnoxc6Kc3f/I6I06dC6graXfm2cvObq3uHtIWMsRBdmV85Zc8/kTWsoqErJmmHqSqUuVLzt/XYpeJbs2+kz6lDG85it2k2Lkl8ckADqaEueolJ6PqaQg+bR6nH+MrW4tbHW7XT9Qumtb9zstWGwmIKGYui/7QzgngAVjOMI42caDbX+W5koVK2Hg60VzK479h3X47TTvHcowmNbt8KeufIXrXBR5FiKltzavh0qcGe0eONI074v8AgybTLp1NzEN9rNjBRxyOfrXZzRa1Vzl9kov1OS+EHxTvdfs7r4f+MLkLrWiqYri3PAmToHAPUEVzKo6cuVl1IKC0OF+LHgfxv4D8XW3jrwCGubBJDJqWig8MOpKehpVE/iREqkXTIPEPxm+F/wAYLOPwRq0UTm6XbcWFwuGh7EYPSkqinozmVZnkHxH/AGfPij8M9MfU/gf8QJm01nP/ABJ7xt4QZ/hPUCqp0FF6PQhyurs4zWf2lviPo9vJo3j7w8yPHbiJ3C5B96K3PfYzd27o5aTVdA13TDc6dHbyF23SKwBKj2pQV9S4q61OJ8beE/DVyzPplmsbImWKjlqmbsxvkZw2q+DNIk3T3Mg8xhzufGPrUtNrQh8qZxXiQ+CtFG+6uYSxGWjRgSTUqnUS2HOUUjir26i1KQzWsIit0blsYNdEKWilc5tZdCpGh1BmWEYiUHBB61NSEos2SSVigsIlgaNgA0bHirUZN3LgrIqwAxSFEXgN0qpK0jnavUuVNSlC3pIGB15rxsfC1mezRl7p5F8V7mO+8UQwRtnaea9bKISjhpM+Zzr3sVFFsAQ2scYXnHSrp025tnVGP7tIt2FpG0ZZ4wcjPSuGupc1rndhaEJRuz+x1pknXy5Z34wQsfIr6WpD947nlyTU22alrIYdPa7e2dCifKD0Ip2sjmqTU5WMW0DzXTSl518w/u0jfisbWdzopxUVdnUaM08VrmdQ4VclVJ4PvTSa1Co3eyIJLnzBLN5jtg4ITpj0rJ2kiqaukWbO4uZrXyrewMSMfmYpklR/n9awcpXslob8tFVOdvU0LNmtrXzrhQTjO3Iq0uRanPXtOpaI+0vLq5iJEfDZ2rH1FWpTcdBzhCD1ZM1y8REM0wXA9cmqjJvRmfs4vVI5zxGkI1NrwIJCgBEbnGDVttmruopHI+I2h1jelwyqXUgBH+6PpWc7LcmKcZXSMjRNWvImOheGY1wPlnfGD36mojKM4+6dDi370jJ8eeGdP1OJ7ae7ea4aP5l3gIp9c03CC0bCE5djzK3XXvhx4gtzrql9FFwJZXU7ioHTPqK4pxVOV3sFSDqU7rcveN/iFZeJ7ea7hkWaO6BEbgggDnDH2ArOpLnWmxdKmkrtHjPjS5vToV40NvmOCIRWxHG+Zj984HPT2rhqTnyto2ULSWp4B4o8cfFmGa507TNLtYpIo2M1wzsu7HI5HJPt+FccJVpq7O+Kp2V2eY6foXxV8fePotT8WeIS0MJPkW8cexEPbI7n61ivazqq70OhJTR6loF/4g8N2dxYWyJJFcxkpLu2mGZeoP1r0EmohOS2RmeLtc17UtEB+1xW91CMT26dVf8Avj2Nc1VNhJQUlY8v1LRyfMvLedorlmxOI+/ufUVi4Nm0Umclrunx6dbyaldQxPan5peCQp9ahpJmyqKKPP8AV9Z0vVnkt9EleYq5/epGRtGenI5pqDetyoe+rxRlTNrUkcitrSn5ujWxG0Dt/wDXrVO2lh8km9WUpJJEIeX5txw3U7j6100Ggvy7FzR9RtdKvob29UyQxzK00an5iueQMjvXo0YKWiZooyldJ2PoX4O+LZ7/AFS6n8P+IEWzmuG/s+3kYrJHAekbY64AA96+r4TweLo15+1mpRlp56nZhMLKNTmkztPD3wi8DaR8SdR+LGiaMYNd1iNY7+WCUrDJtGASg+XPvjNfYZNwXkmV5l9couXNrZX0V97GmBynAYTFyrxWrO2trxoF2xO7yKfm8sbi35dBX37nBJO9kfR04uettDN8R6hcecYGvwqzDCJn7p967IVXZpGvPFe6U/C3gDwxp+qzeIrh11O/OCskq58segPauKFJc7lIqFKnCfM1qaWuapHDKwExjwuTnnnsAK6VFs0clN6OxS8OzX9mk17LOEeTnzDne1VUULJIEmVrjxLLq+oS6PZy7ljU+a6nJH1pypxhH3i6cG5FLQ/FWlz6de6bZIirEzCSYnqwrGUlN6dCqk1yuNjifhs/i7UNQ1bxP4l2WdrHdbNMVR8zD++fXvXLh41nOUpu6OfCwrWlOe3Q29a1uGzR73yUa6YExzTnJA9ea9LD0HVvE6KtSVlI4fUtN8TfE+90zwF4eVUk1vUEs3uXfAG9xljk84FeRn2Y0sjySvjJ7QhJ/gS7Vmp223Lut614Atddk0Lw7rNzKdFu5tG1WOcl1RoZWELR46IYyCeOua/H/Ar6x/ZmLxNWKUa9T2ia39625WHf7qXKrK5j3GspZXFxcq2IRuKoBgzt2HfAr+hasZt3pvRdH1/y/E78PKKjafU9N/Yz1G9g/an8PXd14b0/XZri0uTLpmpFUjij8v72T1I6gY5r8c+khHk8GcwnzcrfLr21XYcYfWIzp87p6brf+mfJH7Quuah8Wf8AgpN4+utVvbTQPD9lJDDf3t7YkrarjIcRrkyN1IHfivjvo1062T+H1FYePtG05b9T5jHTxcc+lCPvRpwir93ufXn7JWi/Dj9oX9iL4rfAeDW9W1e28JTPe6YbrT2tZLqK8h8s7YFcgqJItwDEcn1r8h+k3QzLI/EbKOJKVNQnXSjJ9nCSe/p1PdyvNZLFRo8t41k4NtLTt+bPgLwJrmt6LZ3T6vrdxPbaCnkX+kpagSK4fazHBPyjAzX9k5BmVLNMno4+EnKMoRbVtLta9Xf1/A+TpzqYTHVaKu+R2ZDqmj+D/GiN4l8N6glneu37nyWyHye69vxr1YzpV0uXRnoWpYpc9M5vXr3xJ4Mt0tdbstlqlxua+2Z3nu1efi5ypR7nLiq8qUG5lSLxpp3id5YLOeN4ApCIp4IHVzn+tcMKsauzOehXhUjzoh1u8hd1g02GNXv1WOMkZIX+Jq6oypvRE1asa0uXuV9YtdMRIPDkMMalWO4qeSuOWPTmlU5LKMTuo4WEKfLYxdX0PQ3RHtbEKrAY3c7TnAJ9zyfwrirwXY5K1GnfRGN4g0XSLe5MKKBEWKrIOcDA5+meK8/2K5tjndKDfkZt3apDdOjR7Cg2Mw7HsfxzUVMOmzixFCNKV1sVr37XK7M6lNq/KOwHt6VMKO9wUptalSaWLTohe310qoBkszfeNYVVRp6yZw1atHD+9N2PSf2ZdL0zw7o2rftkeO7WM6H4QuPsfgjT7pRjW/ETLmLCn70VspE8hxjIjU/fr8w4xzOpmGKp5Hg2+arrNr7FPrfs5fCvK7Pno1f7SxLqf8u47eb/AOAeX6v4hnu57rxDr2ovcXFzM811NM+WlkYlix9ckk19Zg8NTwVCKWkYqyR04nEUcJT5pP0R0X7I2u6on7T3hTX5AI4n1NbaOOToVkUoc/8AfVePxXh6uK4Vx9aW3s9F6NP9DiyD6xVzhYytpHWyKnjC1m0HxF4i0qcKDYapcpwOm2RgK9HI8UqmR0aqejgn+B9HmCf1epJPa5U8Oxy3vhGJG+/E7ORj15yK68vfsG6st5HLl1GMMsg3u3cv+KIRrfgOLVRc+Zd6ROMIcf6tuuO9dtOc4VZSTev4HVjKMKlJVk9Y20PT/gFrq634afTYLgLMqkwuh2nP862qvmak9j0qdSM6UZJn6a/8EfP2ndSfwVqPw/8Ai78RGlaxuiunW9/J80SdgCeor5fOaFOnU5oLQ4Mxw/MuZI++ItTtb23F1ZXCyRPysinINeApc2x89J8pq6XeRxxbGbGR0z1p2tqZ3uzRsLq0QtJDJnPUtT5rLQtSurCype39wIrduN3zN7VF7lJK5oxLpejR48xWfGSc96aT6kXkyvqGtoxG1gPQ5olEcacmU3vJWmEhG1dufrUJWZsoqxleItQv7m90qz8N2aTeZqKjWp7qXYltZhWLumAS0mQoC8DnJPFXNOVrDSbvzbdD4u/agmms/wBsnxBe2tjxd6FpEmLh9u8iN0HbjO2vRyyUfaT+R10aPLQiXvHinxR4R1Cwt4RbLBsItd5JUgZ4PXrXZimpUGkdmFfsnaTvc+kP2b/CUUvwyvvHGq6VE2m6qtnptvczylmiuIyszEpjIBwuGxwRXhZnVlHDKmoX5mlfseNCCrZmoc9nG7faw/4h3kGovb6bPeSxxQ3JeYwSMCQrHZ0KnHqM4wSDkdVT6K+3kdMVX9nOUkubVLrpf06r7n16nKrbz6ZPLAuoecUjMxPmhgokwQuR6bgNvbvVUqM/ed7pf1+pdOop04yUbEs07yWiQ3AVo1JKjA6nvWntKns1Dpf8zRavY4jxtqV5ZXt9Bau6i1svtEkg4AVjsUZxySTjA5xn0rz1JvNZQTsoq9/X/M6GnHDxb+03YrfsQ6ZPrel/EKwhk+f+0bdwe4JgU8+9c+DnCeJq+pljG404WPYPAniFNKtZ7bUn2TWrlWDNyfeupQlF3ZxOTepyvxj8DXHinWI/iB8Np1ttfs4slozhbhf7jeoqaqVSOm5pJ6WZzHwz/aHTxXqF54c8eWkul61bOI5ra6OAevzKejA4rODlu1ocEp20ZyXxW+AXhT4leKn8deE9UbStXtFPk3FscLMfRuxodJT1izKSerR5nffG34qfC24bw98UPDN26eaNl9axmSNl9SRnH+eaVN1Iz5Qg5zpp2t5PdC+NvGHwu+KGk3epxzWrubRRvRxnPvXROcZaCi7ux5B4t+AGoWdtLqvw98YCESwhhCGBAJ9qdKEe5pVkkrI8o13wh8cbRitx4igMUYxlV/KsJx993OSUZLVnH+IvAvxIubwW+r+K3TzVy3lcbvSikrbmqp3jdmTP8MNJ0VBeavdtI+3c7Svu5HatHUmo8q2EouT1Zz1+R4gvBZaGpFsDiTANaQi1FO50LljHQ0LfToNNi8lgAVGOBVNXRjfU59IC+rTRyR7RjI96znN7Iy55c25XubcwymQeuR71ndyHTfvGB46vl07y7grgOvNclak6iud1OtGlrLY8cvRLrfi83O0lVbrivWpSWHwljxFTnjsw5n8KOia2MrhBxj1rBVPduezWgoaIvW0SxQkE/wAPpXnzk3V1NaScKTP7CdOMV5cLBpTMvzDexbGfavqZa1GjyqnNGbv3Zd8S3psbdNJM3GOGJyRWVR8uiOKycrmfpd0skxhsjI3lgFnOcUo66nVb3dTpxc/2boD3I/5bHkKDk1M5tR0CUZc6S2M6y1C4vVwqRxxxvy5X5h9B61zSemptThymtpdxcyT7lllMYXcQ4I3fgBU05SbZVX2bjsW1vo51ZFGxmyAaU530MqlNxdxdCmiFw2npdEPIhy6VVGV04pjrRfs1O2iGB7O1lKXKNt8w7CTlnP8AhRBKErM0mpzV12+4z7uz1C61K48y0Kq8BMe4ZNbxvzES5HBO55d4mhK3zWkjOUdj5rr8pHtk9qxqpsuEowQ7TotQuLA6N4XuoRknzcIW/M96zpOzsmTOo73ZgX3h3xFpeqJda5qzSWqODNaRIFBPbJ5qasJqV+bQ6IzXJoh3iHX/AA/4h0pglhbtKvyxIz7kiXoWPHXH86znJyjqRKFlqeAeIPAPjOz1m4vvhusclrOz+dZTDEVy+PUcrj1Fc0qNSa/dGkJOpZT6HHn4pW2sLc6Pf2bWGq2Uqx3GmTAYQjjcrdHHoRz681k9Ycr0Z2SpRjZ9DJ1vwrJcW8ai7SN5pBLdTyZIUHPpnJ9KxdJwp2CMovoYmm+ErFNUtrlrSKEPdYBPGNuACwqIU0mjf2iSsil8QvFXhi30rURp1urXZuwhsoo8jzARuIPocH860nVULmkYN2cjwzx/4Z+Kus6lcaro2p22nSooW2C7n3D0YHBPHauKrGrUd0ypKLmo9DjdS+Gf7S8LJqer+OdNtVkzieCwyXA9SW9e1TTcoSs2OoklaBzms/C74hahbKfEvxEmuI1fLxW0ax98klQMkVNWUm7JmlCE5RtIy77wxcWIWSTUra8K/wCqZ7fCsB2YgDn601KTjY7FBRjoZV/Gt3O0TWKRyADHlswUGs1e4LUwbyQPMYZ5DEy8BdxOf/rV20YW1QSSS1KmsXCW9nGofeXl6Y6gV6OGu5hGd5HYfDnxLJol1FqEEu1QoPynrX0+AxH1aopI7o1JRtY+lrXxdrGs/Do3Hg14/t1wm2FnXIVyMZPtX6RDFVMTgH7GVm+p10asnG52Xw81XXfg/wDD9bbxXeW9/rlzbk3dxJACEB67RzisaeQYrFQjOtWl7uva5TjiJvmk9O1zhNM1/VfH2pzXFvZPDaLIUEsikFiTyRX0eFx804xpp22O2jObsrbHUwa+thA3h7TIArpjdMT8zH0r15x5Y87O2c20lIxJtQuk1byr+5Es8n8JI2xitI1PaQuhwemg3XPE40G3mlknCyyREQR5q4KM5bnT7Rp2RR0fUBoHhK91O+Bkup4SzArzk9BU4mpNrToaQlGlBz6nPeB4bzRfA0+s+KE+zrczSSyrnBwfujmuajGSi3JnNRk1Rc5dyLTPE0Wp6aL+4Hylj9mjGMAepNaU0/vB1vaU7JlTR1PxC8bx6LdXhtrGAZvr7+GJB1xxyfaqr1PY0XyayN1FpcsjovB2vBvjBoSeEI2W1sb4RaZbwv5ct3JnBb/eboK+B8Ua9LD+HeOq15cq5Gr+uhrQlGNfkfwnjfhrWY77xN8RvEDWaaMJvE8oOllxI0TR8MWPZyQSevWvC8E8NOjwlC8+aNk1K1r6HHh1fm5b2v8AqO0fxM/iLUU1iz8qQqpSzgkPCgdZGx+lftVFqdW9z1MPNSn73Q9Y/wCCfOpSa1+2jp6ww2jPFp93G8t6WIkbysnCggH6c/Q1+KfSfrxj4IZjo0lOmr7XvJbB7dxc2m7W6ep8ufFzxFN4i/a/+K91qtxJOq+Jz5qrbbFby0CKxXaOg4Ax3710/RswFPC+GOG5E7Wu+u/nr3PIw1OtWzHEObdrx/BaHvX/AATL+IngfSf2uIfAHxD0yym8L+OdIl0y7j1i2DxPPERcWpZQwO4SRjHXBIPFfL/S7yXMMb4df2nlbkquEndWspckvdkvuevQvH0KVWi6cI83JKNRXS0cHzJpO6umrrqmk1qeS/GjS7L4NftGePNNudJiSx8RCHWdDlHmbWt5/nXakvznHOVYDB4Iru+jtnks24AhQqSvUovkls9Vvtp92hyVpKWZSxEXeNWKlqrPVdVpZ+W55n4t8AeHvE9zJ4j+FobSdWW2je5tJGAg1CQcsBj/AFZ6c9OcV+x1sPKnVk0mrL5P9fw66dQr5eqtP22GdpdV3OP07xPqXi+W5h8V2TwtpreV/ZlyeS/ckHqO+a8uni3Vm1JWPHo15YhtVVZroUfEfgPQtQ1FWskXTpWh+e5t2272IzgjptxTnTpz20N6+Ho1IcsdGcdaWnxC0fUp7n+yDqaWcOBcW/ZB3x2ryJvFUK17cyPDpvF4KpepHmsV4/iTpZaabVc211K2D9oQjC9OM1qsfy/GrHfTzqhNNt8r8yteeNdBvLt7e3v4DAmZMvJwSBgfl/Wrlj6clrJBPMMNK651b1MjV/HujXE0l8LqHCw+XFAOQfcivN/tShGo9Tx/7bwKk25r0MKXx7Pc747exaUSYw5XrjjFZ1sbWmrwRy183daDjSp3v1Kz6x4t1Fv9GiWFW+8epAryZ18wnpscFStm9ZW+FHZfs6fss+L/ANqr4r2/w8t/ESWFhawNqHinxDenFpoemRYM11KemFX7q9WYqo5NfI8S5xHh7AyxNZuc3pCC3lJ7Jfq+hwLLauLxHsqlRt7vyRr/ALW/x0+H/j3xrY/Dj9n/AEm5g+Hfgi0OmeDLCVQHmUHM1/OR1mnkzIx7ZCjhRXm8JZbisHTljMYubFVnzTa2XaK8orQ1xmZ4WhKNDAJy5VZdr9WeUQ6Zd39wJ9WlDOPuxgfKor7yjhalWfNV+4WEy2viantsXq+iOq+HWqx+D/HugeIGdYxaazayhioycSqfauzO6CqcO4qg/tU5L8GexWdLDK7djvv2y/DD+C/jj4+0raUMuvyCNZE2k7yHP86/NPD3MFmHBeHlfXlS+7Q6s3oyjlrktpWscP4duZLW3eAMvEfAx94elfp2EpU/q6RMLqioLoifw5c+ZFeWkSK6zQsGSUlQw75PNdHuxasU+f2LgjT+B+rf2fczQ28pYQtkKwweD2+lRiItJRNMBUpex5H0Z9e/sl+FNE+IPxVsLLUneIasvkTT29wVKvjKtlea8PMG1QaktC8diXGi+Q/YLwJpK+CvB+neHmnaVIYVXe7ZJ46k18o5Qi9D5fldTVnSDUomCJK/G3Kle9Q3zGkYpaM0LfUIbS23SMQcZAzTbViZOzsXNJ8R3Ez7QwXd0xUx3HG5ca4hlnEty2UB55rbdlLYpzmxvdS86O4IRTwu6oqq70KUrIXVdWCKY1cFQuABzUcut2EW2zHfVDG/kxhVLDH1H0olOK93qaRioo+Tf2w9PP8Aw1TNcQWaO0vhHTnUOOPkkmBPtijLGo4irqd1PnVAPD1/Dq0199uuS6m1jaIINoxt64+te3ScJOSv0M/ZuDTaPbP2f76x0z4ZX/imW6nF5cav/ZemWqXRMEUMcKPNKydPMJZFB6gA15OJj7XHutF7aWHUxEvbxw0ErWcm7a76K5d1PUVaMm4uFd5CcblHOc1Ttaz3KhGUdL3MFZYUundlUbchfLbIY46/oKGlsdKjZcsiy8jtam4aKQqjKu4ISoZs4B9CcHArGpGKXNroKlBSqWvqcb8VdTt10+REVEYR/wCkN03sBgdTzjnH1NFZR9m3Favf5HNTVSrWuul0l0JP2BNZiN/8RYHkUbdTs1UAdW+yoea8bLqaWJqMzxnO3FPt+p1nxR0XxTZNLrenzRxOuSBtwJB7+9etV5nHQwi4RXvE/wAN/Ey2dgt68hl8+P8Aebh9xj2rmpX6jqS5locJ+0P8OvCPxEktSVW11Rmxa3VudrofXI5pSjFuxyODcrni/iS1/aT+AFy0V3HL4j04MH8+L5JEXGRxjDfhVRozUHK2v9dDFcjbir6ev4d/kZvh79qnwt44vbrSPFMggdUKNaajFtPPs1Y+1960hPlerPPPE3wy8B+I/HP23wNqv2ZmX/SILSf9059SBxVcsJbCpq7sUNd8H+JdA1UQQ6tdv5ibXSGXgY7A11qnyw0OiSSVjkfFUfivQrSW/wBTlEahP3cUj8tj61ytWMJXWiPPNc8W+IfEciG3sSjwryWGN1FPmubU3ZWZxHjT/hJrjULfTNTuTGLggsi9e1apNpt9DmlSn7TU0rbRbfRrIJuMbd8jlqamrG8uWOhTkvLe8laGOLcynnPalzysc6k27IyPEFtJZajDqCn5WO2SpkpWI5Wp6lfVIkI3AjaRxiroxu9TdxUVc5Px3YPqGhNhQWibPviiUYRlqVCmq2557bWVvbuXWMAt1NcjnKcvI7aMaVNaFtERSGArOdRvRGdSUZskfBIJPGOa55yvqjWFRQjdn9iWlpFYTLBaoJptvzSMM4GP0r7OVlJo8PESlzP1MLW7r7XqZUzEEHayD+LnoBWDabsZUmi/pMt7HJ5AKRpuwYkGSfrUqLubPe9jovEssNtY28D5JRAxUt1rKt7uhMHKU2Z9pfwzgIkQyr5UeX8o/wATWL99HVqlobegX4dbm9ZVbC7ThQBn0oi1AmpBy5V5jlv4bqdUClVxhugz9e+KzT5maVKfLDuypLqKaFrVrOiCOGWYRABSc5OBVQcac0TFOtSlFu73NTWL02F1HMlv5szSYBYcIM9q0qtRne2pNCHtKbT0Rn+LNUu9J1OO6Q/dUDJc8jHNE5SjLUzpUoexUOhw/wAQvDt7420htW0ZRAZAQVi5xjvSqTjKGh00acaUkmedW2va34CgSwnEsodwDcb8tuJ6sR0GKw0ikkRWjGtU00Kmva54g1e6W4tkCWpBAkZt5lfphRj5s81EnNPVnVTUFCyMDxT4J8T2OlPdXupfZ5JRiGLyxuI+nqamtTk4aMpOPNZov6R4t8NaV8PTeWl9G12yfZpIgvMLgHcPcnjmt6UoKhdbmE4T9v5Hz/8AFD4Z6b4rgawS1E2o6jJwF5YE5x9McGvNrRi3Z9TvhJuOux5X4i8D/Fz4Dstp4b8Tvq1uHBk03WWMiKVySFc/Mv45HtXFOMqSdjGoozemhF8PvirrXxNTUtS8Q+CZtNhS4kiijeQSeY+Mb0x0XOBVUZTqay0NYRcUrmp4h0zwnpzBDf2+62EQujuwwduSGPZgPXritJqMXY7ovmVkUZfEnw9jLpf65Y3EZkGJWnXfnnHeub2sLvUz1jK7PP8AVviVoEhvNGHiS2nigmZFt1nRg4bpgnnIrnlua3drs8j8Z6xrtprEkaTJcWRB8pnwWQemanks73OiMpKN0cpqEttL8slkELLndGSA1VoaQuzH1VYxCbiZLiLb1+cEY6flUSumJPXc566ngnmOw7wOF2jt/Su6gmjSetMwvEd2s+pJawOcQLxkdDXq0UooilJKRreGdTI/0cycEYx0w1d1OTvY64zUVc92/Z3+IU9hBcaJdkYQFod7dPev0HhSuo3pVGdOEk5ybO7i8S6lqkEt3fz7kY8KxyTX6NR5eW3RnuU4JrYsSa9Jp1tC/wBwEEiFBwfriumNOnFpI6IuPJZDPDOumXULrWb63QSuNsCE9Pesc4qexwfkc1eo0m2zL0nxXo9/4uutLfLiyAadkUkFz2JrxcpzL65S5IO9jLCV/bScY9CO91O01jVlvNTiKrA+IVZPvfQV9NSpyUdj06bkkk9yS81dvtjLLHmNgNgfv+FE4waaNb2Zx3xV8VS3tsLHWrtYYiwMke7aoUevoK4LtUlzWX5HNja8fg2RJ8JIdI+MUOpQ+ENTg/sjRIx/at8CREjf88w3QmvKr57Qw+KjhafvTfRGeGq4efuQd7bs1Nf8b+HND0qTwz4TkaGxP+tQjLTsO/rXtUMA1VdaTd2lo9kehKSlFcy2NH9lfxjpyfGv/hNNZmhitfCui3moxQCRwsbrCVRmYKcfMwyK/EvpIYuthfDV4SK97EVYU0lrdN3fbojgxNaUH7nbc+f/AIZ6iuvaNq1yniptWstR1e5vL3WDGyi4ldixVQ3JAY7Qcc7c9MV9r4V4WdDhilRceRJWt6I7MFWpfVU4S5vP1/yK+la7Y/Dewu9L/tIzajczMtogXpuP8R7YGPpiv0ejFUW0mVGpUpS5X12Pdv8AgmyUsP2t/D+h26wXDz6TqMk9wsuxixgJJyWXOPrX4n9KmpyeBuLhH+em9r686O7DwVCErv8Aq58ifF3UrDQv2mPibfzap5sCeJ5zudyxkIPAyCc+nWva+j1en4X4WdTRqK02PPr4mNPE1ql+35Gr8HJLe48SL8U5dRt7bWbGdLnQLJgx8h0IIfg9TjNfqOPyXCcT5ficHj1enXg4cr2V1uedgqtSrUdafyPpX/go/qfgf9of4d+Fv2tPhfcxpqWnabDa+IoDbsZpVbKTRsyxrHmGZQ2wMzCOUNgLgn+FfAeGdeE/iFjeEcyuozqSUdVZJawe7dpLrZK6PVxGGnVwSrNO8NfWN/U+RdHkRr1LprqSUJmSZyxC7jng+tf3RVVTES55yblfV9359zy6Nao1eOiL3jyz8IeK9BTVNYgNtqEcJWyvbNx5rOeBuHQj2NeXi8JCbutzLExo1vi+LueXalqPiXwpdrZeLbUCQZliuYmJWZdnf+6fY15rp4mlPlcb7v7jw1UxNKVq606Mfp2vxRWYVL2RVnHm3e2T7wzwvvW1FQ5b3O5uDhpqUvEWn6FqKTCfTo8RqFCkAliei5PYd6VSNKfxJM89rDzn7yOf1jwL4RS6hX+y4gXwHAUcZHWsKmDwrj8KLqZfgalv3aM/UPA+k2dss9lpkZR0JJZRlSDjmvOhgMJGrdROOWU4CKvCCIZdFsIpTHbwLtCfOMfd/GuurRpqLUbG6pU6MdEL4T8DeMPHvjHTPhv8PNEOpa3rV4tppdjCOXkY4yT2UDkk8AAk18zm2Kw2UYKpjMVJRhBXf9fkjxMVWrzkqVFXk9F/meq/tHfETwx8EfhnL+wx+z14ggvVkuUn+LfjqwbnXtQTpYwv1+xwNkAA4d8se1fmmVZbjOIsxWc4yDS/5dQf2Yv7T/vNfcefjaE6UHgcPK9/4k+7/lXkjwaxsLbTrcpaRgBR8wPev0mhhIUYaI1wGXwoRSgiwiJbneUDKy5VQ1dtKHs3d7Hr1GsM1ZbnPX80uveJbbR1dvJjuFe7mhXJVQQTj3615Ga4udWToUVd2Z8viZyx+ZRoR2T1Psf/AIKXeH/gHqmkeHPEvwD17WbmSCyhu9SfX4gkmprcQRyfaI1UYVUIaMqST8mc84H4V4Vzz/DYvEYTMoxUHJqKj9mzej13e59BjquLxeEkpO6hLT00/rofMXhy4S+hwTt44Ir+iaFNQpLUMParQWpf8OTMmpOgALOCojY4B4xUSmr2jqdMeRzaKvw61Sez8S3WnuF3JOR+8ODgeh+nauhVlUm1NnBlNPmxVSnJ7M+mf2ffib/wrbxvpviJCFiguopllUkY5+YcexryccvaQcbH0FShCVNpn7TeB/iPpvjbwPp2uWNysyXFmjK6NnJIFfD1IqMuU+UqpU6jRsaZrFzDJ5ckoAxxmotZGEpGpa6vPc3yxzS8D7oBpPTUWm50VtqdjaFYbdcyEZNKL1KatqP1LXIoVEbfMzdqtSRKepRbWfs4BWEKzDiiU49DZJdTzz9pz9o2L9nDwhofiiXweutz65qjWsVqbrySsaoWd84PTgfjXhZ7nSyXDxqcvM29rnflmCeY4p0U7WVziPCn7fvwO8RTpF4lGoeG536rexebF/32mcD64rz8FxjleJ0rJ0357Hsz4WzKEW42kcr8ctd0v4i/Hix8d/DXxVotzZJ4TjtTq39pIginEsjbcMeuCK9bDZzlscS+WpGzXcyeSY6OFtOm99jP8A/Db4pai0Wm6RaaZdTXUKqt7/bKebOWySCpfCKoGAMCvRwmYUIVHNVE07dUVWwrhCMalNxt5P8A4b8D1T4YeHPiLpGh3HgOL4c311dWOrTXLSaZbeewieMAvL5bME/1Z69cUpZlgYVqkItuzve3T7zCvg5KUcRNpJpLXT87Ca54hfT7Zn1OxurdgQWe5tHXYDwAcjjNckc3wKfK56+emnQSwOJT91XRkw+OtCuZgtvqMPynLAjH1rZY7DysozRtLBYhfZZrweInubKRrOd2iQbpNjfLx0J59/1q3jKaT10MnhasZXaszzj4zasz6C9wImXYC3Ldj0JHp/jXDiKiqQ52x0ornasR/sP3t+2q/EZ7CRUY6rZMg/vD7JEP8/Wsspmva1EmcmNjBKPc9L+I/i7xNLs8OC3WS9ul2QRoPmHqa9ic+V67nlN8zsY+kjXfhzPPoHia5x+580k8YPpWbukXNckb2PNdW8SeO/H3i8eOPDGw6XozlXhUE+Yw6n6CsFFupdGCUqjSaNKw+Ntt481P+zNVuBE0Y2yRSNg9cdK73K8TSdoxOK8dfBPwB8QtQ1H7bptq5RSBIiAEe+RXJKEaidjjcebY8Ng+EGv/AAW8aTQeEYLi9gu1Mgj3lioH1rJU3Bl07Q0ILj4x3+nyzTeINNntpVcjy5UJAxXTGo5KxNSrZnEaj4x1D4iXb6tfyO9rE/7uIr1rNJJkpuaMh76PT9ReVkC7uEQjp6V0cqtoN/u0cxdWEvizxO+uzRLm2wqJ079a5oxlzWKjVTNHT9NF3fyJfKGCdYz1A9a6XGMUROPNqc61vDca9cS2IIjjYBo260uaJhTk77EfjDTUk0iQsgBGGBU5NV7ttTaas0zCiAm09GbH3eDmsqTVyudSWpk6kLSMmW4P7o8Sj0FZ4ulOpTfLuKFWSlZIp6L+z1Y/EW6bUfC/xT8N6fDyzQ6pe+UV9s15NLF+yg4VIu5UasXVa5kcV4m8OxeGNYm0hfENlfmFtrT2UhZCR6E9aqDctbG0uR7MzBL6EVtGmlqzOUKklof2DaHd3trFc3TycspAOOfpX1Lb5pHDX1m0u7OcEepSarJIb6OCBjjBX5j6n2rnd1uTTioq7Oq8MQhryM2jEREjcX+8/vj0qouUnYpzRZ8RX8dxrDxxFQUTClxgLiuWo1KegUlz6kUckt80azg+Qemw9fespSleyOhWgjoNLvLJ7MwQ2ZRAckfxEVXMuVXCTfNe45r23EWILJTvP3XHJ/PtWcpx1VjRxlJc1zE8Q3XibWtasrTSrB544ryN5djBUjUNknNZVPbSa5VfUuhGhSjJylbQ67xTp6JZSXksMkrKN21eSMfSuypCd3Jt6/gcGGrpz5LmNePbeKPD6anBC5knQ7Qy/d2jB/lUq01e+5vKLpTaOS+G2vFfDer6T5SyXFlftE4VSWAZQwFc14Rb6tG1Z+/F9Di/iN4E8Q6xHcSaZpk4iuMeamMDOMdPSmoyfTQxjUhza7nD6Dp+qfCTVRc+LhfXoDf6M0sh8q0GRg46AZ65qpQVJXep0e15o2j0NHxLqmr+MdWjs9Oud01/JstnPzEju/sMVhNznNK+rFGcXG/Y5740WGl+HtMi8I6BboyWyfO+35nl/icn61c6iUORdAp3qSbZxHwluIfDd1qXxA+KEgh8wLBoLKmF3KAWJznk9M+lY06fLJ1KvyCuqlVKFN2ta/ye3z2/I5DxlcWXj7xJ/Zy3kT2l5JIrXCyAqGbgZOevU1y1v3lSzejNqd4wu1qVpvA3hlbe30HTkSKK3heBLgryJQPmz7EgHNdCglHlOiLcdWec+M7K40C9vbDVL4S5xLs2DbPGDnccckjjn2rgrU3zG0KnNpE4bxr8PfD+r2323TVQvE4MkZUE5I+8PXIwfwrB04I3SkldnCa14O06C0eW1tbTz48s37sL5hB7+jdaxquyNI+8ee+I9SstKu9wYeRKu11D5CMc+nT1pRvY6NFE8+vfHWj6hdT2FuWivYJyvlXWVDj+8h6MKpJx3MadTmnypFS+mur6UG+tcY+9iU4zRzRudM4RjqzP1KeDSrR7yQ7CoxHx94+ldEakrJmc5pRscl9tuFvt0/zFhuJHPNelQk5K/Yzox980Yr8WOoo5YMsw4cN3HqK64VmpHY1zaHf+C/EMlpPDewNt3DDEN1FfSZZiZQqwktDqhUVDY9di8RGDTLa7tkUBxwzyYDNX7PgasKlCLaPapYhOmnct3/iJLK3WW/vYzLKuREDwK9FVKa6HS/dV0Lp1zqB083NkDHnBMs5PAryMzjVx0PYw2ZyVIyqqy2Jor7T7KJ9P0iIAz/Pd3HeQ9+a6MsymhgadorU6aMY0oJRWpnx6zHd62S0ey3iTGC3OfrXpzlUilZnXHkfxFaHxDJf6+bO3jNxIqkRRxAkj8qwrVI0sNz1JWXcU2r2OJ+LPw51n4leLofh9d6otnYFRLrdwz8rD1KqR0YjivnamLqYuHJQ95X6/8A8mvRWMly3sjZ1rVvCfhfwTZfCH4R6SND8NWSAtEpCyXUo+9LI/Uk/jXZlOR4TAy9va9Tuztp0qOF9yCsvzOf0zTdW1RJJbC/8AKhX5XuZjw/09q+hpYitzNxdnax0xozxHodN4e8Mad/wqv4gafNrUlnYDwpO+rX1oyrcvGuGKRg/MxYgDqOK/BvH+daOVZbOEVKUcRFJPa70u/QjGYWi8PKNSTt+J5D8FZFg+DOi2FvP5Qe33r3OP8cV+pcITVLLqVOo0m03+F7F4ak1gIqDtsY+u6zqWueKls9D0SW4S1jL3t7JF+6tgOuMfeb2r6F1pOurLTqViKz9tH3dFuz2D/glj4n8K+Pf26tC0O80uO/07+yb6CQy5jM8pgPGWKjP41+OfSNrut4QZg6WnK4P58y/I46GbVK2In7CTXL/meJfHrwvpGl/tp/EXw1exbbeHWWlWyuX3lcgHG4MQcfX0qfo55jLH+HWG59dDsrezlmk4Td/dT/A4bxhYHSidR8NSuYGcsUAKkkZz9BX7nONWVPmotrXbVbf18/Q4sbRnTjeCPp//AIJqfFzVPiz8JPHf7GHiia21LT9XhXUYtF1ERebHGf3dzdwvIDukgjPmCIAbwp5B5r+MPpI5BSybiLLeNaKlCtH3JzV2rrWEZJW0k/d5unZ7DwWLlOgnGn7SqpKNnJxXJJrmezu0tUravS6vdfMPibSNe+B/xG1f4a65qCiTR7h4VniYBL2A8xyoQTlXQqRz/FzX9J8DcX0OLOH6GYUZWco2lHtK2qfUxxMVgsbPCTVraq/bdFG31d9Vv21QM2+F9lnaSDkc/ePrX1cbc3Mzk96VT3jSutRg8W3MPhVrOOVJTm4LbcSMOq5bgccVjinH2bvt/Wh0zlCdN8yuuxxGvfCeOzluL/wb4kFhHGdstrcjcFkYE4HsAO3Ar56thnF/up2fY8mvl8oq9CfK30exxuo3fjDSZUi1TTS8KSh3niYsGXpkjrXnyrYuhJKoro8Tlx9Kr+9XurqjR03VxrEgvokZ/MkBjPoFzzg/SuiOLVSJ7EcXCpFKGtyre6qFvni80eUR8qbu+c80lWj7XlM4125crK11qSPO+4hUMZ3HrngZrrqVqNODlNg+V/Gx3hf4oeOvhraaxF4Lni0u81y0+xz6zD/x+RWbD54Ym/5ZCQcMw+Yr8uQCc/B5plkc+xsJ4h3pQd1Ho30bXWx5ydaDnyxUebr1t/wTmbCFI4B5ICbWHuT717PJGnG0FYxp0uaCUdCZWBxDHgsUwTjhTmtqckoHTOaow5Y7mZr+vz+d/wAI9o4We4bKs6crHk14+OzCpOXsKGrPlc0zetOo8Jh/el3XQt6BodtoloYyS0z/ADSuw+8a6svwkcO+ep8TO3LcF9Uhd6ye7PrjxnPZfFv4Kjw3PpUEGoeBvhlot/okTqIjcxMJPtPHJlPzA5PQdOlfgssXDJeIIV6TvCvXnGb6Jp2S8jfJqFT2uI5neKd7fI+UdJf7Lfnyk2xuxKD2NfvOHqza5ZbdDdXoV+RbMtWFzHBqZkySBICpB5x604p+1ZvhtJ6j7kRnxjM5gETBwTMvRgfWtXGz5gWIhTxTaWp618Pb6K7iFjvT5hiQSdzjg/jWFRNLmZ6H1iU9T9Vv+CYnimHWv2e7XSmZxNpUjQziWTd37e1fG49Qhimkj5/Gwl9YbtufQtzrdtaXuJWAzwu6uCUkzlSZatdRuZpxdxx4jA5JHBqbtjUL7mp4f8Rrc3zXc0gEcY4z2qnaw5rQdpniO78TeIJZbBF+zw9weprFScpEwp8uy3LV7q0LXQWWcF1HQchTVSTUbo1d5Qtsz5Y/4KPeO4fEHxH8O+CrUfutB0NpZvm486dv5hVH51+c8aVnVxdOkvsq7+Z9hwhQajUqvrofNV9qM8dyLNIw6SRZ+YgDjjrXx1OSVTlaufoVGUuRnV+Fb621maHR7XwrBBJaWknmy7cibPRieelexSUKr+C1i4c+7dznfEmnWRivvsrssyFCPKcrzj2Oa6I04K6aJre+l3O28K6noeh/Cu6sIPEHibS9diZ2vbrS/EC20F5p8iBG/ds6yXNwGfhM7doOeM1x4io6UpKndSe9m9Uc9SnWnVXNGMoJdVd3OW1XV103V7+Hw14v8U3GkkxizXxHqKtdELgASKh2jvgDoBXPQpSlFSqK0vmL3pK8kMa+vYWcS38wabkkzMQAV9jmujVPVmnLy+9Y9V+FGpytoNpCZnZigDbnJzkn1PPSvosqlGULPofMZrNubsdh8XPEk2oeEJJbqchhYhVIXGQOP6V9POUPq7PlYqftx37FmttpFv8AEDUC+EF1ZSZZsZxap/hTyqrCLn6/ocOYXUkutv1PS/h34iMN3P8AEbxcwE87sthG4GY17GvYpvnXv9zjp0+W5hfELVrv41eJ5LHw/qXlosGy7vUP3D6Zq6kuZ6Dqp8ljjLfxNF8FrePwNeTh/NkKxSMTmZieT704x5dzGKdrmR8U/hfaXAj8VeDrqOHUHhEkoj9+1Opy8um4qqckcF4H+K3iXwXrt5pHi1Bm4B8qbadpOOhrlp8ykYRVuo7QvjLBL41i8QzbGjDyWxJ6Z/8A1Vqp825nflVznPHOoeGfFWpXd9ay20sdsSZVjxnJ7VKlG9kVNwktDzvSLm10O8v7KztlfzBvjR0FaKF3c0pLlRkXNhpd3dG9vlWKIgszluQfStdEjHETs9Tz+TxFLca5ep4e09p4McyJ0LexrBRnJ+6c8Jc7sjQsLTxHqcPmwx+S8gwXY8mtZQfKrnXGPLEx7fR5/DeuyW8t2ZTM2ZQWyQf8KzlCzuc0f3dQ0dZWzlspEliYeYnGR7VWria1Xzx0OK0q0lmgmiimGYmI2n0rNNRlqZU433MLxNEPss0W3qhyB61cpNK6OlJJnj82jGK6kEV9cR7nPCuRWEMQ7PmSZzPAQc+a5esrGGxt/wDWO5P3mdsmuKpUdWrc76GHhGPuiNjfjt9a6Hbl1LrSdNaH9gU149hAyMdpxlee/vXv1vdk0ePNt1n6mTbtamQy3Nw/kNzIe7H0+lRFJ6suV2rI6zwciTSNdwQrFEiExkPk496tySM+S0Xcz7q+t5LuVBH87t+8nl9PQV58ppvQ2owZZsdRjheaYW+SqYVSMn6j0p3Rta8kjR0XUoprQiNXjjA+fPGW9T61hOTtuaSgky1Y2cd2xffMYE5YudokP19Ky5HPUpScY+ZU8e6w9joMj2gkgiRc+Xangke/erlNKNnp6GdGlGNS71fmdNcahJdeHbe5RHWOWzRtyvycrnmu6crw0Wll6nHQopVXfV3Zz3gK7ujFqtppV407xTZ8mccxow5wcetccbu6R241Rlytqxxum2VzpXjjUri8uFjkkizDp9qoUSMp+8zDqcGlGhBTvJjnC9KPVDj49vNNvZIJD/rWyzbuFOcY6da15nAhUKersc749ew8bR3WmQwtGoiPnz+YCT7dOtTGtGo7MpU4xStueK2K+O/2fvHP9uWEsuq6fPamOWxuJxusQf8AlpGzdD6g1xyozVZOCNp0/aQUVoyTR9f0j4y6n5vh/WFuIZJCJp05EIGS2/0I96KS9rOy+ZEEqWj3Mb4reItK17Tbi30SBDa24NjpqtwrRr/rJj9T3qcTUc7pbGiTjLle58wR+Ftdvvipp+oaXrM0NtbXIIhgkKxuM4yyjr9a8yNJyxCktkehCKUfeR63qZvLe+mhtp9twtzujVuiN/gwrunU5ZEqMWeZ/HjTf7V1Wzt5ZpofIjIBhJV4gRjgj+GuKrWcnyroaQSitDwrxjpnj/Rr+507SPiDc/Ph1SRVZRtHGDjoe3esaUb31OjmcoWaPOLzxj8TNO1qaPWvGDTWtz3kth+6kHQ8e9FSlDdvUVKi9ylrVnfXfmXOtzpI8gDFk4Vsenoaxc2nY62tbnN3egWsrGSWBTk/umyMY+vY05yb0CVuUq3n2fSLaW8vp/Jt4jmRiCcD0xULVmV5crb6HHat4hXxNfrMk6tbQki3UgjIPc+9dlOm0mjJSdSzRn316i6nHAImwifM2f513YdNQNpWjKxcvba1vrZBdtt2MGjkGcg/UcV6ENEVFNanT+FrpRCIsnG3GD1z6124Oty6M1i3NnonhrUVvrOKfUpS0NkciHOea/XOG8XLEYfl7Hs4JJr0Ne28UaNrurqzOJDEc+SpzsHua+rdOVtT0lJyVmbOo+JxcyJamfEarwitjIA71pSUYvQaTWxW1PX7VdOR5IAkCA7nzyxq6U7t3ZpN8qucxY+MX8U+IBoPhKNGaLhyj8AnjqeM1lVqU6UW5O6RjGu6s7djv/EFjJ8J/hVrukfCG+g1P4iahCAl1KQ0enI3XBP8WDX4XxRxJmmd8X08tw0XDDxd7X37Xdv0PHx2KrYip7HDv30efeHdL1vwx4Qt9G13XGv9ZmXzNXuBzl+pBPfnPFfrmX0o4RRTVrnq4eFSnhYqW/U5u5g8R+I719P060klcHBXGEHP8TdhXrUsSpy5UyJ069aqlA6SaxfQ7dFv9ZikuEj/ANSmTFFgdsdT1rvpwu1Y9ylB4ei43M2x8dTaH8MviF43drRo08My2qXF3GJHSSQhR5aMMZIBHPSvxDx1qxrUsrwUVdyrcz/7dPPxdTlw1S7d7HnfgDUp9N+DulrKwWVbBCu05PIGa/TOHYN5ZTT0aSsbYOUvqcG+xoReJ2sdOh06yYRrsMkzBMb8+vr+NfU6Kokhyqt2SO2/Ye8T23gn9vL4aeO/7Ntl8/Vzp+6eQiI+cjoC4+6PmYc81+beNWVSzLwrzWnH/n3f/wABdziVCk6r5U1ftueVftgTa34d/bo+KC+MNUsbjUJNTVg2ly74VUjgKcDgDjGBXxf0cKmCpeH1FYdNJWWuj8zor06FHOJuUndwi1fc5Kx8UCc7LqN2tzBtiYgZOc5zmv6Hp1pq9tP61N705xV3uQ+C9R8QfB74rad8bvhvdCG+0C6S6i4yt0uMNE4PBVkLKQcghjXxvFvB+B40yHE5Vi17lWLs+07e6/k7Hj14SpVvaUv+HPpL9qLwr8M/jP4dT456V4Is9Q0bSPC8Wr+DI7i9lhk1vTs7LuzuHi2sHspSwXDFivXgDP8AGnhjnmYeHvEiyvGyfNOq6VeL2hL7FRa7TVnta/e9j2auGee5TKtUhyzpfDK+rXnp02Pi671LXriNrjwuba1+2TMYrJQ7xwLkkKHcliACBkkniv7TqvGTjajI+QxGGzF008PNNvubfwznOl6reWHxKntbcx6fKdGkEDGKW8wCA/dcjIB9SDXxvGGK4qw2Ew0MFRU/fip27X1ZdOtmGGpv26Ta7GXd61exx3VndlI4JX3CJMnYSQSmScnr1NfYOlKcOaUbN9NdPLW7+82lUqtJsguNXivbyK0iIUuxF1Iqg5A4C/Tk/nXI6cZS5WKok4NPqY+t+ERqF3Lf6fO9rdMGIaAhAEGOoHXiuDFYGlJ3jo/I8CtlSq1eeEnH0M9rnVvD90ZLvR7DUxFCCqXMJAdc5ydpGa8XEUcXRTcZGqqV8DdySnp1RR1TxFqvi9ll1CG0t7aMkpZ6farFEvuQOWP1JNedQpzqu9SVzlWIxOMnz1Hp2WxQjhIMgLhj0Ar0aMo07pHQq8eVp7kF5e6bosIlvLpUXqqA/Nn6VjisXh6C1epzVcyweBpXqz+XUxbvW9X8QE2uh2zW1u3DzEfM1efLEYrHvkpKy7nzWIzLH5xP2WGjywfU09B0e30mBorcEztyzkZLV6ODytYfVfF3PUyzK4YaPIvi6s1bG2vdU1C20bTofMuby4S3gjUZLyOwVR+ZFVmWIp4PDVK03ZRTbforndiJ/V9EfVvxV8ZaZ4C/bdsPAdwBHpOh6XZ+D76NfuyxR2ywStnp98t2r8DyfAvOvDueNcbVHVlWj/4E2n91jfJakY4acv52z5l+IfhObwB8R9S8IXUZVtL1SW32nrt3EofyxX7Bw3mEcyyujiH1S+85ajlKsm+jsYFlexz6i8kR/wCWuCpr3IVE6kok4Wcp4hxRPqU0lt4x/eONssCkrnqKr2sVPlNnTaxtn1R3XgjxAmnaglvdMuwqFZt3UHoaKzVSNonrU6KjE/Qz/gl78V7jw/qWp+GxG7QXG2RpVfKZx6etfHZtTUKikkcuYcipq59pza5pN/cJqVxL8i89e9eK7tXPDdQ3/CvjrTdehe0twioq4z64rNTSkaJ6XL6DTtQglsdMm2tjnBwTTb5iJy5nYi8Nazb+E7ebT4zh2zncefxpU0oz0KVuXQW21SBrhpjJudiCctxW75uUtRvHU+Ufjb8OviR8YfjT4w8ReCPC1zrcWnXiW93DpBW4ntkSIHMkKEyKuP4iuOetfkPETnVziqrbH3HD88Ph8BDnkk5N7njd1o4ub7+y9b06ePbER8/7kg9erDjpXj0KPtaqUZK/qkfYwqRjHlZ1fwl0u6HiKW0tbGW6dNMknaKykMzJCgLO7HHAAySTxXcpSpTs9Wl01JdX2MVKeibsVtVaybUJpoYisdxAhVmHO4Hjnjr/AFrojVnUOm19WWdRut9nHamyjYRuMlgA3OM8jqBirknFbGSnLboc1cRxQ30kwVMsrBpfU5yOvXr+tc0pSXQaippsq3FwXkdmOxS3APQ4FZ1FYylK3unpXwv1Q/YrKBXxtcZJP6V7eV1OWC0PncwpOrUsn1Oz+K05m+FL3EjIWAfyxuz36V7uLquOD5jxqaksTyNGN8CdavdMttf0nTLZGudWubFYolPDYt1yT6AVhkNWVRzsefnEIw5Wes6n8KfFmvxWx8T+PZY7cAMbaxjwgH93NfZUYShZtnjKrDlsi7qup+EvhloH9maEvkRIcTbmG+Vj61tOyOd1W6nLIx9Vh8Ka94akvfEFklzPIubZ24eH3FaQUeWzIc1T1R5b4L1jxBHqNzZXchuI45tkTFvmZM8Zrm5ZKT7EynKaNDUtB0vxbevpWqWiQy78xnbzWtNp6GXLoeY/Fn4W3ngpZJ9KKzW0s29niP3PU1jKGjZHs5Mq6d4asr/SBc6bGiIsYL7R/rB3J9amMYy2NlBKJi6/4Rj+1NqdqnO3KhT1x2rVtoxnJo8g8XXV14u8QHwv4bkeFFlzfBv4R3FYc7Uk0c8lKo7F9dPs/CWinRtBs1Z1jwW7sTXTRvE6YQUIkuk2GqR6b512PLQRszc1tUTFFy5jkFXW5r6fUI7BXhR9qsvLMPWsoxu9QqRTehoDVrG5QWkzDfjDJKMH8KJTSdkYqVtDjtZtTpet+fbApHNnORWcmpLUhTk5GLr7BkOCM85OKxmrF8zbVmeX6wgF2+0fxmuBaTaPUopSp2KfmNjYex6+tb+zgtSofu9Bm0Y8wseKzrTaXKjOs11P65dXv/tDmOSQFVlGUbjP419HX1qM8apdzdvMnjltr/U0L20UbINiRYO1fckVEU2yYuUJanV6dssNBnCKsZlXbG4blz3PPQUVJOMbGjaumYMAjgheUxSSADCSsON2ew71yRSaOqm0omnZ3D2m6S6ZYyE3SE8lh6GiT5HqJuz01G6DrY8RXTX9qy+W85SNdmAQOprjvzyvc3s1ub2q6rHZw+dLOdip8ikYH5Vc58quKLXLdHN3Ok+PvirayL4Wlgs7NMr9vuSQgI9APvGsqSr1byg7W6le2wuHqqdTV9kdf4bguV8Fw6Be6vHe3Omxrb3VzbrhZWCjnHbtXdTTlSSctV+Jy1pxWJ54qyZk+AtcsPDPjC60iVw76n8iPzwVBIBz7E/lWNOp7OpZ9TXER+s0F/ddznfjJZ61aXH/AAkOj2rJdQSGSIwsBvA7E46GicqnLztG2HcZWg3ocrLfaL438LN4m8MMyF2zqNrNLmW2nGcqw7dePrxRTca1N8j9dR1oulUUGclovjzT9BjubbUIY0kjmD+XJncSOckHryKxsqab6h7KTaZk+J/EEuv6QdPtbdHvtXb5P3eWQHufSk6klG3Vm0Y637HgHxX+FnxV+DlvqUvwf+Jc+kahqsDLqMDxK8Nwe4KH7pxwGXBFReVK/Lo2UoU5yUmtijoXig6/4Dgis9Lu7bVYoksZrCch/KYDMkg55U9QepzXHKo3olqapxlNnO3kcema39qsG8l4h5Ks4yjHAwT7HkZ96cZO9jV3tY2NQ8Y6SNOR5H2yJDsmllfOHHKgnuD2NKTijNyvocF8RvF+laxryajpki3Nt9nCzgv80EmOVbuv8ulck2pSNYRaieW+NbeGNvMs7t2kC5tZuoZf7pz3FJRUep0Qfc4PXtPtNYEq3sTC82BmwMc+vuMVMouTNZyklZI46SaUCa3a2AYHY4YZDio5YxYru2pzPjbxh4P8IID4g1iOzckhLQtvd/oo5qlTnPZE1KsIO8jhtR8W6p4uLOJxHYhsQwJGQZFzwWzVwpRhLUw551X7uwllYrLIHWPjPJA5GK6la1joUVTjoYcc8+teIrq7iMeyJtkeD98DrXUkqaJi1Undm1ICbf7Osm9HXBXd901tSnc2ctLIs+H9SniVBIwbyzjcK7KVotM1opxd2dzoWsPanKEMkiZwTxmvvuGMb7PEcnRnq4apyyLun3n2BWvpDHaw7sybByR71+mus3BHotxkrp6mf4N8Z/8ACzfF93Z6LIv2DTEPmzLn539K5lOr7S3QmOJU6rjDZHdX91Bd6ZHpc8iiKMfvEB6Z/rXVzqOiN4y5jKsb/RfB0cp0uKODfu3u6cvxTnTlUiOUVCXuKx5Z4B8FeMrn426t41m8XXkml3KDFuLhlXjJ/wDrYrwaeVYbD4uWKkry2R4GHy/EQzKdectGal+njnx742e3k1VtI8PWz5nkSTbJOe4BNebV+sYzFpRlods3KpV9mnob+reIrXSdMfSfD8kkdhEMks/zSn1z3r6/CU4YejaOrR6arexShE56a/u/ElxGIpQlvFGfMAYncD3rrU6nMrbdR3qTW5Y+IOqeINI/Zq8VXGjaZK6X+p2WlT3RCFLUSA8hDySRkZHSvw3xS+qZhxrleElL3oxlK2vddjkxcqi5ad9Wc14h1bQ/Cfhy10mO5jVbeFI43I4wFGQB71+tYJ06EIQS2R6U8UsPSUDMvfF1odStoySVeHJXbgZxxz6Yr3FWvJHJGbdS70Ov+Aeu3Fz+0l4AvYXt/ItvFdm0IuG+SVzMow3H3ea+a4/5sVwPmNH7Loy/J3OyMo05qWvyMP8A4K66Cfhj+354m1iC8tbhb/D3gs7gusRzjO0/cXsB6DrX8+fRtzGrLg2UWmo05W1XT9TyeKZypY7DY+75ZQs/k+p5Lp2tWkuhSyCbz3kQuAjDcPYe3+Nf1PQxEKsL82jKhi4TpqpB3RbtPE62vh6RbiZJIhsLBj169fYVo8c6VNwUtNH6tXt+bOhypSp899j6d/4JbeN7P43adrv7K2o6fHc6nbPca14LvbloRDbwNEy6nayNIyny5IgCAmTu5xjJH8P/AEmcnlkec0eLsK7Uq1qdaKvdzTXs5JJWun1fTzOfLs9pZdmVO9KVSM5cj5bWirN80rtO10o+6m7yWlrtfK/jrwxc/Cv4p+IfhjqKMW0a/lhgeWFoy8RbMThW5wVKn/Gv6Y8OOJYcScK4fG9XFJ+qVn8yZSp4bGVKEns7r0eqMp9dOoCZrh9pC8tsyQR3r7lVVGLfU5qr5tLmNeXNw9w1jLG7uuZWm5/eoOSa46lR1OpyTrqGjJtIuo31WSWGBGZUykanOeOtcUWoyu2aUL1W0yzfa3CIWjs4UV4IQHDcltx5I9sUSqwcrNmdWpGnsU7y9tLeWNxKpMUuHMvQKw6H27e2K48W4yWwqk4Sjexy/ixtH8L6tO6XKQwuN/lbs9fT1FfL4iVPC1WtvI8DGSoZbVbnJK+tjl5fEOq6zIYPD1syqes7jn8K4qksVX/hKyPnK2Px2Mny4WFk+pPp/gcySC/1adp5CRkue9b4fJ+aXNVd2dGFyDml7TEO7N3+z4rWMRQwAYwMgf5zX0eFwsKaulsfSU8LTpWUEPhtbdJkl3gRhPmOelXW5YTTexvKdKlJSTPdP+Cb3w103x38dbr40eJreUeEfhbpkuv6vem2LwNdRA/ZoWYAgbpdp+imvw7xe4iWCyFZbQlfEYuSpRV9bSfvO3lG587i8RGupyi3orfN6HlXxH8c6t48+IWqePry5zd3uqzXjShyTvaTfuyfwr7bh/JqWWZDQwEY2jGHL+B6cIrD0KUIv4Tc/aJnXxJdaL8ULeQyf8JJoomu5mx/x+QNtkXPsMfhivP4QoyweJxOBmlFU37q8u/zFRwKwql77mnzTvJ3ercrLbRXtFdEktTybwkJJx9qfozEvk19TGcnUdjjyio6kXO3U1/GJgjv9O1GEBw8ZRufQ1bi1JNizSrKjjaU+5vaUltf2Ud89ysUkGAo/vCtJuVPY+gp14+yTPrL/gn/AHGr6t8SdNsrOIywsuy5CTmMkdj7187m1S1PVHFjeapTvY/QfU7aOztpNL0+6dQI8Krvknivm3rdHlWtqzV+Gz3GmaOYY5t8zcEBueamNOzdxSk5aHT+HLi58NK95ql8WkLE4JyFzSfusS93Qv6RdW+tyyXdw5Ck/fXgVaSLi9Ste6wkN59mt5WAVgM/jVqWpo1KWl7HyH8Tjbt8evGWqxDbc/2sAJosrJjylGAy81+TcQKFfPayeyt+R+pZLyUsngkr/I86X4heMtN1y+sU8U3rQrgLFPJ5iDjurZr4/FUaUK37tWfc9mhUTldG9pfxn16wjmtrnSdMuVu7cxXDi08lpIywYqWTBIzXZSr18PpCd00en7ChX5faR2Fv/i9oBlS41Tw1LFiPbGlrc5VB2GGrrp5g4L3ofcc2JpJT0Y2L4oeA7hyNUuNTgRypaRbVZGX6DI/nW08yhK7ady6WEpyV+YhfxV8HLjUzFb+PdWjjbOJbjRcHHbgOayeKpS1uyK2GnGPutFTWPEXwvspyJvGuo/MpyRozevbLCrjiaNR6NnLHD141LSsvU3/DXjjwrbxW0fhrWri6dX3E3sUUAUc+rsw/KqWd4XCR5XcdbJquJakmjV8Y/FCXUdAi03UZreC0tEYXEcCvO8pOONx2hQfUE9BUy4nlXh7Nqy+85v8AVxUpOpF3aNf9lXXYrn416vb3kqi3i0i0kjR3wyZjx0PqB1zX2nB841I1G99D4fiTDSp14u2lj3zxz8QI764i0jSpxHGE2ja2FUe3vX291F2R8g21Kxw3xS8KLcaDHqk87gxrvQyP1YHhiM1lKHW4p+6rnNT6j4y/4R6PV7i9t7mCRdjJAcOo9MVcJNRtcxjC7uef+LfHnhzwfDcXEOrTQXkbZMb9v/r1NWWtiXW5dEjD+EHx9l8Q3d42q363E0jskc5Y5UfjWcJcuzuYufvG9qPxRjjSTTbiZZISCjhjuBNbR5bamnM3CyOU8FeK5rLxBdeG5pgI8l4MHAZT2rWCURxjJq7ZZ8e/EzQ/B/hS5aeRfNQ5CFuR7Cone17aEvk2Z454P0Hxfrs1z48vv3AupMwwBMHb2z71NKlz63OeEJSnc39NicedJdQhpMgEN2rrilFG7kloTeIFvFUwRx7V2KEQYG6pndq5M3yxM4wjS5431FBE0w4VR8oPao3V2RFq2ph/E+10e6SHUrGNUuI5MHYcbq52tdAlFS1OM8V6ms1ksluSHTG5GNaU6TkQ30Ry+p3xmtS+AMjn61FaNpEKx57qLl7mRz/ePWvNf8Q9Gi5KKKTvlemD9a0qKyOyDu2RSkiJh1yKwauzkxMrpn9bK35jnuXmt9zKMoCc49819TWV6jPNqu1Rov8AhlZtUuUdCYrfOZcjBc96VOOupDabsb+t6tBLei3tIWkW3j+QSJgMawrNylY1cHGKszLe6mlvDLczn5esS9AfYVyt8u51U+VQI9fezlZbBElDyjChW5bPUk1hVmp6G1OF3zGvHJYeDLeyt7iNQkVszDeeje9YztCKTJqTcm+U5i/1rVfir4xs/BOg3ZS4uTuu2Vc+RCD8zH09Priua9TEVFSgVHlp0nWmtj1XxRBpfhrQIdB0S5Zba2gCJGhGGIHLZ9TXZWpOi7Rk7JWtpa/fa9/nY5cNJ1E6jWr/ACOT+DWrzz6n4h8Padp0077YZ2BfI3NuU/T7o/Wng6j5nTjFseMVOnyTk7GJ46v9R8JeI4/EOp2j2IsLqJ4lwMSLvAfODn7pNXiFGn70laxtGKqU/d1uema3r2isPtVzp8U6m2JSR26kjgYrr9qm7NXVjkhRqW0dj521/wAe6L8JvHF94oHh+RLPWfLj1ae2yEtduQJnTYcgZHzZGAOc9uBThhp6LRnfChOrBcz1Rk/GPTbLVo49W0a+W+v5lMts9tEAjoeVJI7Y4z+NS71Ho7sXNLW2x5l8CfiFLY+Ntdu/iw0WjXlmgXSUkuQftEY6upbjPbAqaUJc7dR2ZclNwUUw8ea23im8l8QK7bHl2Wasud2c/OTVyXNHnb9CouUY2bPH9X13xd4C8fP4p8FavBeFLZl1S0mTdHLuHyqTjg8kgjmsHyQk2tX1NKcFOKk2c1Z/HHwT4li/sLxK50bV3nylpcABSo64fpg4+vNc7afkdTjJq62HeNfEngG007+z9T8QWFpHd2pa1e7ulUXIA3YU56g8A+9ZycH1Of2tOMrX2PK9S1bwZr2oi50nWLSGa4iCSEXiE3G3p908+lc0knqjtpXqrm6HPa3rNj4e86HW32W0smDPMNu0juCcA9uRW0aU3uaRSbdlb5HnXxG+Knw78JTm6vfGVmzLnyGiuQ0j4/h2KST1qakHGTUSpSjBas8U8R/Fb4qeOr+eHwwsGkaXK2BdLATPIP73zAbfyq/ZUadT4lLzV7fikzg58TW02QzRPhrp2n3SX+rCS6u5Vy97cyeY5OPU/wAqirUk9Is6aVJy+PUsvGL+Tyd67l+SIhcDA9aiN1udahCC0INW1eHw3oN7q7ZLLERGo6ljx0ropuLlc5cRKUINpHL+EJYTYI0YyCd5JblWPWuvR7lUOb2WvU1prt/tRtptuGG6JwO/vWtKVtEXCVpO5Na3EazbkUoso5GeN1dcHfc6velsb2mauWjVMLwMg5619LklRU8TFnXSukN8RXkmvRHSl1YW0Tr87Jnp6mv2TDVoSppnSp9GangXXPCXw08DXUOgkjGTNcA8yP3oxE7L3WbJQp0XykPw78a6p4kFx4h8QwtFaq/7qMjHHY81FKTvuThqlaXvWZoXXiGLWdSFxPcOsag+XCB94V0udSPU7J1ZTklcZZ61c3F+6L+5hUcBV5rgxbcqepnWck9DnV1678SeJpba71DNtA3/AB6w4+Y+/pXmYSCjUa6nPh6cp1m3qcz8WfilYaLfDR9MVp5nxFBbr0DE4x7mvXa9j7999DpzDERw1JdZPY6zRnOjaVZvq1ssVw0AaSPd3I6tmuqF58rZ10ptUl3Zj/EbWrex8GaXc6vCWl1TXWmsit7tURxLgsydCckivxrOq8s18SqdODTjRhZ6d3fczqV4Rr04t3Zy+mWUOu6x/wAJh4tvdllbOGtrOQ584/Sv1rDUJJ+0kzadGFSfPUehifErxlaa1eKtqPsNojKpdByFJxhRnJ7CtcViUldM8/G4mnTgkzs/A2qSaR8RvBpd0tYv7csFV7tN0aL5yfMwyO1GdQjV4exUWr3pS0/7dZ0SryhUgo3u2tFv8jsf+C1LaVY/te6jbaNPp00ctlgpZ2DxFyTj5y33jnP0r+YPo11W+HMbTlF6S6tPr07HHxZOc8Bh1JWcovTd7ny7b+F/Evw60uDUoL77XazQZu4u9tu7fSv6OwuGr4Oaad4P8DwMHlOOyrDxqKblF6tdi/by6FrDRvc3jsSg/dBvkfHqewxXs8tKors9+hKhUhe51nwW8V+HvA3xc8OeJ/FEFzF4fttSEGuxaddNDNJp8p8u4CsuCMxs2DmviuP8oxOf8HYrD4aEfbRjKVPmSklKOsXZ6dLnFi/aYet7XDuzR7n/AMFX/AcXiPWbn9qP4feDpNKt/D2sDw/rWjrdi4f+z9gfT753HzMJIiMM3XI5r+YfAHiarw5iI5FjK3tPbRdSMrcq9pe1SCW14vojsznL3HKKOcRd5w92ovLufIOi+J7DWF8+K48wSsQRvxj61/W9PNY4uTfNd9T5/C5rh8Yr05IsSXJlc2X2obZBtkbrtXr+H4VXtlsmdvtqadmtTOubOeGR7rRrt7a4hH+tV8nk9D68VzVacaqbjLVDqQbhz0pcsjPvtT8UFmu/skLF0AdEyM49fevKrvG3vA4KssfUd1FMzdUu/Ger/vEtIocKAcEndip9nmWIjrocld5vUh7kVELTwm2uz+fr0xlnAwFfoAOwrHDZROrieeu7szo5P9dre0xcuaZq2GkxWTLbgCPZnIC+1e+8NTpwtax6X1RUZKOyRP8A2jGkAuoY9zWzDz0xncvrXLdRXOum5nOuvZ88Ffl3K93dTajdpDotu9y8zhbe2gQu7M3RQo5JrStiadHDSxDajTja7bSte7/JMzjiZVrKlq+iW56Hp/wp8L/CULq37RGk3Opa60PnWHw3t52tiFwGR7+UDcinP+qT5yDyy1+PZxxnjc/ruhkzUKC0dfe/R8i627vTyZVfK3Ti6mK+J7QT/M0PHP7ffx+8ffByT9nXwvc+H/Anw/ecvP4P8F6BFZRXLbiQbiVQZrkjpmRycVllHhrkU8zhm+LlKviY/DOrJyt/hWy+SR4WHwkpVPaSdvJHlF009nYs93cpLEiDay8Yr9MdqMXzbI9dxmqfNPZHZ6XqKeLv2Z9U0oQ+ZdeFtYi1C0IUHFvOPKmBPoDsNfM5m54HiPDYpfBWi4v1Wq/C5VSqp4eLj2seaeG4pYWIYDCk5CnqK9zCtJOTPNyWEoUnGWjL+v2t5qOkFLWHebZ/NLJ1A705yUmdWY4N4qjzR3jqXfAN+NShFjcEEOMDPBFbTqwlTTsb5dKnOldn0F+xl4y1Dwf8SbW0+1bWjn5bJBx7eteDmNL28dEdmInT9kfo1PqV7qFrFd2l4SJkXbIOpzXzNSChJo8KS5nZHQ+CvEcvh2FzcXBeRODuHQ1i9TNx5WasPiSXWb5p751WDOchiM0pQY0nuzptH8U2sts0GmuBEv3zv5FKnfYvl1MyTxrZS6stnbtufcA3PXmtrSjonua6HzL43kll+MvjG5t5MSf24dhPIztHWvyXN1GGb1mz9DyKtKOGppM8s8UWkw8ZaoGuQNrgMOAO3518lWnBptb3PpqUY+0bJZYzaSfZWYZTGSpz27GlHmkj0IVWnYzPEE+FAyR8vJxW8Gm7EYi/Lcypb15otzthhjBHpz1q5Nt67k0W7GbeXkgkODx7/StYQ0uyK09ChqGpTXEeJZ2cKuPnbOM1vCC3R5sqkpb9DovAt9DbXjXWw5ZY49xGNrZ7fhXkZnTcoJI9LCVowqHoWtySHw/PIyjy2VDjPPPWvDozbqKB9BaPsuZ9jp/gxpY8T+M/Et9pusJZ3ul6ZZ29vk4M48vLFvU81+28E0VLDzntbQ/G+MMRKWNjTiuh1dnH8TtPvDquoWS3SR5Ktz09a+3e9j4uSaZznjX4yaprVwmgJcS21x0JckKPpmlUSS1FzXSuMg8bXPhOALe3pmMirsKtkZ+lRTtzBJPoac6/D3xfp/8AbOsRxmRm28xD8TW1SnFq5hOnGZ4z4z8I6R4X8TT6v4EugYCGEqLwPrx0rk5LvQ5pR5XZnW/Di306aFI7i3S485N0u45w1dCp6XN6Ka1KPxN8PzWcbaxpF4kU0LfuWUY49DW8Iq2pU23ojy7wJo+v/F7x61rrpY29k/7yMtxI2c81jUnJvliR7GMn7zPafFw0vwzZR6fYxI4RQNoH3TitYR5VoavkgjzyQalqU9zc6fEME53Uc13Y4pNtmF4nfxHNOklwW+VsMUPI9M1FSTvYHeW5javqes3zrZ3mUZTlTvzUXbVjJp3MHWL/AFCDUII9Rb93ng56mhtJ6GkW5aGd4wubKWIi2Qq+OT2NdMLKA6zUI6HFajfMISp4xnP1rlqvU5Iye5yN++WYg8kmvKWtVnu4eC9kUlyecVvVV4lxfKxsygqWJHTiue9jkrRbTZ/V9dXxe02QwzfO3yykfePpX1NZ+8zgqt+1kdF4KvZriXc0IDIoVUP3SB1/Csot3Iive2NM6lNNeXV2qZkeQI0oHAUdl+tcknzTbOrl2TK0OoSHVpJIrQKI/lHy5P4e9ZJc0mbVIKMEWGuJIZ/Kd44guCzkbnz6VOilcqElFFzVNO0bXLI2OtS77ZoioxxIx/mKwq8tX3WW1JTTWxD8DfDfhz4bafres6RbOt5qF7sluJp2kl2KOF+boPYetXg6aowcorVl4t+05IPZFLxx46u7u4fF4Am0/KxAx/8AXrGquWbk38ghBJWI/wBl2HxPqPiHxN8RJLgw6bHGmn2iRkYuZh8zvn0XIUe+70rpy+Lc5VU9LW0M8dTp2hRkrvcufE86H4qtW8Hy6eZdQvcx25ZizSyN0TnP1z2qqii04X1d9+/b+tPkbUH7F87+FbkniLSfFHgKx0jw34h2tfy2sMCyRMXWSQDbge9YSlWjaEtzNYihWbqQehc+JvgSy0TwFL4euzDcX1+N+ouU6gj7n+6K6KlJUoKL3ZhRxE8VKU1ouh8a+BfiLY/s3fEKT4M+OtQZPD/ia9kXwtrdzMSLSdjn7Flhwh5KHoPu+lcPt4Yf3V1OidByXNHdbnYfHHwN4J+JGky+GrnSYpoIoFUyunJJ/i3D606jVSPvGtKpJU9D5i+JWn/tB/BW2eD4fa9B4g0yzicafp2p7tkZHTEg+bHTrk1xT9pB+67olL2lXcb8EPizonxD8GWmn+JdfT/hMIUZ/Eulzrsc3HdlD4LRgAKpH8NVRjJx5up1SiqcbJFL4sfDHQvFenm6vtLg814mcxxoMAH/ADxSmuaLT3ZcZS9m0eA/GP8AZo8G6syre6bFcfZLdBELtd6w55wu7p+lcUqUqSbuYxoc0rs4Jv2X/BQZbaDw9DZzRIS4VcFhj+EjBFEUzvUHGMVHRJ6nI6t+z7p2n3l3bXF9dXcMePLt725eWMBuMbXJA/KrVWd9Tb3U/wCmV7b4KeEdGvfP0/w/bxSNFkHYACfY/nWlaTkjL2cKj2Lupab4b0GwbVtXvYbS2V9ryTEAKPQ/571zU5NOw5ctGnd7HFat8Rk8SyGw8AWUzacshM2pzoVLAY4jU9uvNaumlHnk/l/X9aHHSxcqk7QWncvWFot1CjtP97BjcDv6GpVSysjscmzmfGmoJrOunQbcxtFZtunkRuDIR0qqc3ESq+1fK9iHTdMttOvTMrbFZCdhGQrdsj0rr997Gim9kU0vbyW6b7eyMxbon3cf0reCcVdkwpylK7NeJYZYSqZDxnIIPb3rSNSTeh0urFOxPaXygBFcFWPBHUV7+X1OSomdMZe8jkPFll8YdQ8UfZPCN3bR2TLmWSTHC1+q4DETlBWehNaniXVXs3odh4cg0PR9Fi0fxFqKSzSNmV3cBWNetCrd+8eh7ekqdma+q69o66OLaxCRwK2CIzy9bwkmbxrrkSRVfV7fT4X1ydV4ixFEpzj61bqJvU0motX6lDwjr+tX9ld6tfqIpJg3kxRn7q1xV5Sa5YnFTqVJXciHwtPb+EtC1LU7O1E945Zri5n+7Hn09TWFHnpyvI68O5005Hn/AMPXPinx6/i/UwJbXTZS1mrDAkkPfpzXVCUqtV32OTCy+u4z2tX4Y7HoGs+IbnWdRLSXCiS5fYVUc7jwBXW5ypJ1JSShGLurddLO/kr6eZ69SalJtbs53486rYzfGTR/hlHLdxjwxpg86KeMFTK/LEDP/wBfB7dK/FOC3DMM+xGZOSftJPla7LSx5NGp7bG3mnFxvpp0e+nff87PQx9b1qFnZTesqAYCDqvHQe9ftCqQn8bsj0K1dONzj/DNp/wsj4hQ6ZH/AMgzR28/UbjqMj7qZ+teVhoPG4yMIfBDc+WlKrnWaKMP4cHqz034Ua5BrH7Uvw/057iNbYeMLDdLJym0TrjcPTijjbEVaXCmPdFXaozdl1tFnr1k546EOl+h3H/BXDxbH48/bdu/GEXi211fT5rm8t4Psli1vDbtBcFHjVWdySGBBIwMg1/Pv0ZcFKhkOIo1KPs5vkk03dvmV0/n+R6We4L2FTARmn8D376Hk9lqun3EHlghopowJiYwxkAH3Tnt/jX9Pumr2Wnc6ZTfJyy1R574p8Na7od1LrOhW/naY7ndGB80Pfp6D2rlxFCtTj7SnrHsfK4/D47DTc6KvB/gaPhTXrbXNMewE+9vL9B075rowOJvTun/AMN1LwNZV4Wvdn2t+y94w0D9o79k3XPAmvaFc6p4jsLCPwx4umEnA0o7jpuovlhuNvJ+5ZiCdm3+7X8I+LOQ1uB/EOlXw01ToTk69Ff37r2lNaacy1SutfU+ryRwxEp4WcbwqLkl2Xnqfn7q3gWw0PUb3Qps22p6fdyW80kBwm9GKk479OvfNf1tkEMvz7KqWLp3i5xT07s/Oa+QYGlWlTptxnFtXRV/sjxrYl5oJoruN1J5OxiB3r06uUZlhnelLnXnuaU8tzWj76kpr7mSDxINPIj1S2a2kLDKTKfm4656da82tjnh5qNaLiwq5pRoPkqpwfmXtMuobiyExIYmbjaeucjP0rtwmIpTpcya3O3A4mNSN463GrIltJNbBlyg3Bieh9a7aVeL5oLod/PHVdhk11arErp1Oc4PTilOvSjJdzzalZUpKTepf8CeAfir8cfGlt8NPgz4B1PxP4gvAz22l6PatLKyqMu5x91AoJLEgADJNeRnmd4PLMK62IqKEVu2zkxuJr4pKNNXfkd6vwo+CnwCvI7j9pr4inWPElrMou/h74KkSbYA3zRXd9kxRsRxti8wjuQeK/Na/F3EWdfu8joqFN6e2qJ2fnGGjfk3Zep6EMLhsupKWNqe818Mf1MrxX+0Pa3N83/DO3ws8O/D+KOYSWxtQ9xqAIxgi6lJbPAPy45zW+B4MxeYxdTNMZPESe8G+WHpyrR/O5ngcbOEbYFRi11a1Ou8F+IdY/aW+EvjfxJ8adXvNZ8deFWs7jS9eu3XzJLB90UkEzAZdQdm0k5GSOh4+H4hwMuEOIcBhsvioYaspKVNLRSTTTXbrc82vmOLqYhSxDvK9nstz55s45LfU5eFMYc4wOoJr9qy+M4xSZKUvbNrYPFd40FilkiKDMwKkN2rqxcXy8ncrMsXCnh1SjvI7f4C3sFrqtx4b1aQ/Ydd02bT7lQOu9TsP4Ng15HFOGliMmjKHxUmpL5b/gFCLcFF6o4mKC60u6k0+7iCSWszQzoeoIOKMHWdenFx2aOWo5Ua7S0sXpbqfSp4r+zfKMfXgn3rt9hJSv0PQo1JRamthb21Fg48UaDH+4cj7VAv/LNj3+hrSUYQdmRWpWrc9LbqelfCHxCy+K7DW7dl3EgP83GR0NcOMlCNF8p3ulTdO5+g3wW+N9n4q0iDTppE8yEKjRg8gjuK+NqqfOeXiJU4vQ9MS4+1v9qS5KxuCAc9ayscim+pei1/dZGxibdj5Scc/wD16TTTF7S70L+iW9/oumSTR3eVlByu7pn+VWopamyk7WHeC7VItWS/nlDkybt5PQA1M2jOcuXV6HjFi8etfE7xvdyxjMetTMjMMgEYA/z71+Q5w/8AhUqu5+h5JG+Egzy7xGDL4s1MuQWFwoIB47V8o7KL9T6zDSipakN40qzeWzdDj9K2TThY7lrPQzfErsFRV4Ixgn6UqEnz6BWfcyN7CErjAKg5rotd3Zin2My/LB2PGRgVqpIxrTMyYHzMuQAcADHeuuEeaF0cuiV0dFoVzLb6UqscRtdCRc4zhRzXl4mEnNo0oO2vmegXWqxal4IJWQZghRWAHXqa+cgqkcYk13PsYcssLp2M7RfidB8O/Fuq3kNpPL9rt7ZmeEFtuIxkH/Cv2XgrESnl8rbXPxfjh+yxyiux33w5/astr/UG0m6uWkEq7TDITu6fTivuqbgnqz4KNVN3kO8V+IPAOo6uZpp1hCKSOQcGtJy5kaOrTitDiIPBJ8Uao15aeKWkQHMMKSjaPw71NONtTWnPnhqZviW917RJv7KuZbhdxGJEfgf4V0v4dTmk+WRxmu32veHLiVo7t5Y7hDuUnua5JSUXoYOLlK50nwL8di5mWzu02Or/AHWPJrVT5kayqODsdf4zvrpoZmDYhIOc+tarVaEOpyq5zf7P58uXU7yEqsjTNhz1xWKpckuZjiqlRXLXxM8bWtnI9rDOWcnknnn2ro5ko3ComtznPCPxChtY54Cw3Mudr8VlS95spRUVcxvEfxBNrfToJl/erviJ6Y9DVVoN7HLKraZytlr13rutvfXEqxxjop6ZqadJPUScp7lfxxej7HEUO4RuCCrfpVShGLCVRwaUTI1PVYbmzEXKnZwWo5rRM5SlV0Zw+s3bYYbs4JBzXJVd0Qo+9ZHPTyMwJJ/GuOMNbs+iorlopFfzSi/1NaVFoQmrkbT/ALsg/lXM0YVmkj+qrVNctbeD/iYXzyhWB2K2PLX09zX1FbSbPOq39rI63wFLbi2kuoW80bN67mwFHYVjpytmblaL5dzQ0jUUm0xniXenmsVbHG4nk5rjTVrnRGbbSaH6LcsnmSoDLNn5So4X8ad4xib1E3Pcp2q6nrviE2dtMLeOP5rm67c9vrXIrzk7M3ioxjzSOgaOOzCafbxgCY7RKx+d/Vgf4R704qPNZCnLZlPwvoet6hfXGhWDfZ411RkvZnUs0SZAwuPvbsHBHTFVBzcuRdx4ipQgvbNapaP1tp+Rs6x8H/Cfh6WWaa7V2nAKxzjzpBzlhhsgcdD2rSrhYQbb6mdGtUq2fb5G/wCF9A0L4c/DLSvDMcZSGCN5plc4Ls5LnJHUkk8+9XRhDD4eMEZ1q06+JnNb7HL/AAhs9J1f4ya144W4SaDQNMSO13PuQXE2SzAAdlAX1+9V0VF1pTfRfiZYz20sLCntzPX0RyPxY+NUvh/4g6Z411u8Y2djqaNJGbdjuUHDMMjGADmuCrWUaqqN7M66GEo+wcEzW8c/EBvF9wZbHUkuEnUSLLEfk8k87s9DkVcpzqvmb3/IIUo04Witjwz4mfC7wr8bvH9n4cutOiurPR0ad9yK2JMcH8OTXKqXt6/dIFU5KbUup8z/ABFsv2m/2dPHs2neFNVbxZ4ZkbzP7F1K4KTW4DZIim5LDGRtbI9xUVYOh7sdh3gqehsL+198IfH1tH4TsJn03xDb3WZvD+sWnlyEE4yN2BIoxxjNRKajVtHVLr0f3/qRTnPmvY4L4wfs9eD/AImTanrqO9rqUDolleWn7uSOR/4kZeQOe1Eqjvod6nPluzwbxB40/am+Dqy6BPrNv4rsokAR75THcIqtkKZVHzYHqO/WuSpVqWukROrJKyONvf22fi1b6pquqeIvgYZrMwQiGK3vh5pCsN7Elcfd5HuKyjzykrsuhOvzPmWhV8d/tf3szKNF+EGpOu0LBLcTopZCCecdCD0Ndkqd477Hc5xS2ZwPib4+/GLU0GqaP8KkW4a1Ec0F9efJnI5yq5IxXIlBz95kSxFotQj95l3fxI+PWuMY9P8AD2laWzQAMFV5m+o3EAH8K6o+xcNDGNTETm3aw20+FfiDxZff2t8QtUudSlQbgsgAjjbj+AcZrGcnTvymkqcqllJnRWfh/ToFiig2rsG3cqYTjqCKwbdjdU401ZIx/H/iGw8BaDNfkI8052WdoHB3yE4BAx2zk06dKrUi3FaLcxq1IUo3l12OG8KWUyWwaWRXmdt9wxxlmPJNdMKd/eHh/hVy54mvrbSLqyzJ5ZuCUzjgkdua3UtBVJqnNWK0sq2sv2wWytG4xPHn/wAeFapc3U61LniWoYoMi6t5j5Tfclx+hrpXLDQzWkiKeQw3H38DIJKr0r0cNO7R0qTurHE/E7/hYVt4xs28PasIrC5XEuT2r9IyiUqkE0/UwxkMd7WLpP3XuWPEVpYazbxac+sFXgUbpVOMmvqWqcoWudkYxqwUWzU0WzSO3SG41eQQRDO5zkt9PSoVqfU6oxVLRM1z4gsBHHb26KyYI8t25b3NaRmjb2yfUz9V8WXGnv8AYrGFBJKgCsGxtBrSKi2FSXLLQTxv4lfS/A/2PYxLKWZmP3ie9TUcWtzdxfsG79Dk/hVr9zcaQYdMtwBEx3ykfKuetPC1FHY5MtXNTfY9E+EnjHwj4c8Zt428bxCfSdBt3uprdmP7+UA7E/FsflXx3iTmuKwPDE6GF/i1moLyUtG/kjtniIUJOV9l+J47H421nxf411z4m+JryQTajcvJbLJj93GTkKPwwK8fgLLoYHL1FaKC09er+Z42FnieeVWtu9vQqWqa/wDEzxLD4Q8PzLCZD/pNwekEfdifWvs6tWviWqVN7Car4+t9Xg7Lqz0BLPw58PtF/wCEB8GZwx/027P37hz1Yn0r38voxw1Llhu9z6XDYPDZXh1TpL18/U5c6f4k8F+JIPiPouoW850m6juUDMVbdG4Ycjp0rpr4H65GdOTThOMov5po8LFYXGUcQ8TB6LU99/4KKtrHj3T/AAb8aLW2mXw0YEOjuNJjhtzFeRrO7o6ud2J/MQl8Esp9Mn+UfBeWH4X4txeSya9s3JS95tpwk1FWa092zVrqzR9Fm9aliMPSxLjJezly3bTUk4p3Vm9Lu2tndPS1m/n+3nkjsfLSRGSZgFCqThR1Nf1YnNz1PPqV+en7hbuNQVVlt43YIig8nrjrUYptwtdpabeT/XqbQqtU7M878Rf2h4d8TSXvhuHck0fmSWqnqM8kYr5avWxOExzlRV0+h8NjHiMszNywy5k1do98/wCCePxRuvCX7UGjacsmnwr4hKQmx1pCbS5uI2EkdvcLkZSQjZznG4Gvznxk4djxRwlOq4yVSkm4uNlKN9G16LU9vKc3p1Ma8PWbhGqnto1JLQT/AIKceFvDukfHw/tAeBPDSaX4Y8fPJdLpAtGgGj6hG225s/LYAoFbDKehVgRXzfgRnMqOSyyPH1OethbatqXPHeMrq6b79mjjzFVcpxEalRtxmrXe9139Tw601a01QidrpBGqfc3df/rV/SCq08XU5ua0excMZHEzvF6I9u/Yl1H4c6xqXjrwl44j8PhNX8LGE3Wv2azG3gV98piLgiOQhVAYYIz161+WeJc6qhhqtHmlyzV4x63018jD2OGxrlKouZq2h4XceB9KjvrtvDOqz20MdyyRBH3KQGwDz7c/jXr4TJViKMakJOLaV15mKyajBc+Hm4eRn3vhvWreSYw6x5zqMyFlGDg12zyjFYWm5Rq3fmbwweNhBv2t35or/wBkeIp7rbIiBVjJIUHkVzU8HjpVbyehjPL8ZXq3k1axvfBXwJ8Q/FPxEsdD8J+JbnSbnVZDbS3FrctCRAQTJuIIJXaCSPavCzvCwp5dUxOOs4R1s11MsBDG4bEcym430duqMGz0u2vEluIZfm3t87LncM9TXqYTAU/YKy1Kq4SOIqOo2QtpYjl37fLKcknuPWur2DptaWOerT9lG0Va3U9V/ZpdtS0v4k+GCzSG9+HlzKI1hDmRoJopM88jChjwa/P/ABBVKFbLcQ941kr/AOJNHj14Va1anr9pXPM5bOJ3C+Zgqu4sOc/WvtqNeMd+h9FVh7O9uhgZl1vW2lEeY4sqhDVjTxDrVHLojwcGpY7GSqP4VsdRYTf2eqTQz+WyEMrqPmDCutpVYtT2eh7iTU7I0PjFbbfE1l41jgkW28Q2CTs8mP3koG1yMdiRXzWSzWFVTDS+xKy9N0Ga0uRxqpaS0fqc9a3sJB0+7cbX4XnpX0VKvfRnJhKj5uRl/SLo6bI1jdpvhl+V1xw61q7SVj2l+6jy9y/4S1O48JeJIofmNlNKDDL0289PauOdCOvMzi5aqqOL2Pr/AOCfiPQtMuoZ7fWomu54xJtST+fbNfL433W3Yirh5pXsfRmieM21W0S2tnX7ik4boe9eNduWhwuUb2JPEniDU/DyC6t5W8wDJB71UpWM5r3boj0b4s6x4isnjtkdZB1YcBqhOzvcVPmvdnafDz4iafFaeZq0ojkiceZE5681o3fYtyU24taHl/gLWkuPFfjO9C5hutafzArc7C4/+tX5Pm1P/hRrWf8AVz9HyScfYRjFaHn2oulx438QQy7lC3gEIA4JyuM183jKcIRs2fTYaK57Fe6YNdMrLyJPWuOk/cZ6UdJmf4lKeaoLen4cVtQledjLEOzMZn+QnsMdK6UtyYO5lX85887m4Pc10RilHQ48RJJlCZwQBg5AyMnit6dkjnVRvQ2rG7lfT7ez25CwEgbgeSea4K9uds7aMGtGdJot+/2S600ybhNYgge615NamnOM10Z7eFrW5ot7o6/9n+Tw/eN4puNfto5zvt44vNUEgLEuSPzH51+s8EYfly+T6X/U/HeM8Uq2buL7flb/ADM7x74K8EC9GseFlZbtMl1UY/lX21SK0sj46bg1schHruh6jaz2UzrHeEYIbr+dSnfQil7zaOZm13WPBepm4s9QlWPjDB8qBW9NRSJxLnT2Op8O/ESHxmT/AGyI94jK+YD96tKkbx0LpVI1InM3WqQzeIW0q5cmMDKBuSPauFxd7CU3e1hljdNpfiS1lsiVUSlWbpmtOVxjoZ1lzas7Hxl4vd9JKeZjbGQVz1reLfKFNKWhzfgjxZceFtEYI2WuHY7h2zWNJOc9TplOMYqxn3093q94dRvCWw3Hpz6101FpYxbdRamRrUM+j6gNVsJhL8nzRhutKDS0Iq1Ixja5yF7qWp69MWMZRUkIVW9M0TlzOyORLnYqy6tZTFtjJkcYOaKSszolJRhoZ+r3eqXtwkc0hUZ+YUVPeehxqLkynrOpOqhRIRt4GaaV42aG5ODscveXjyo7FuSeBXFiHyvQ6sNSUql2Z7u0ny1l0uerOpZWI5cICDyfWpndwOdVPeIfMV0O8iuWSaLqpW1P6ltUkh+1/wBo21gZ+QMOeHb255xX1Va3O7nnVm/aNeZ2dpNcW3hP7La3KrcXYwWA6euDXHUvy2RlGCc7mn58kGlQ6LaRFYYUAK95D3J9K5pxsrHVSi43kTT6je2Glt5SeXAoxsRcBiffr+NZtS6G0eWpPUd4P0zWDDJPdxRPc3B/dW0Y+RB2J9WqKdNxvfc1xMqfJyW0LuhapfG91O4eOW5isrY/bNkJJjYA45xwR6fhTgr1JO2xzzUY8qT32Oj+HJuvC3hD+37iErf6s5m/eLhkQjC5HrtA61pTUaNPmluy6vPUfK9kcl428f8A2KznvY3IuipCksSxb+6uO/auWpUXxdTWgpSkkny2Ol8WaxqlxoVmdThuYnFgmQ6sFT5Bnr1PX3rfEcsIqTvovMmlGkm7O7bOQ/Zp1+31v4seKNFOnz2ul2+ixSyzSFlFxOXYFfQgAZx71yYatVqYmUfs2KzOm44SnJfFcy/2gZtD8a3DeA9G0qa7muWWOEF8wIQGBCAgDJySx56CnV5a37uJyUlKn78meFfDfxTrXwOvtZ+AvxLt7yG00+Mah4fuLaFpTHbY/eQMuSzBC28egbAwABTqSdGPs7bL+uvz+Z21KsZpSh8zq/gb8QPBl7Fq9/4c1q3v1nkMQntJ/McbjjDAcqfY9KnL5xasmGJpy5E5I574ti3/AOEge3vCkdvERG0jDLb2BBp1oSU3czpRUl72x80eDvh94H+N37RfxB+F3iyyUyL4RtLrRbhothSaKV/MMbjndgoeK5IpSlZnYqUacVLoYOqS/GL9nfWL5/G2n3fiTRWjBh1W1OZoo1Pyh4xw+P7y89Mg1U6M/ivuKpJJ+6Zeg6p4a+MPg6Lxno+rQ3aS3xN3FECWhlY4Mci4yg/3hXHySfu9iOeDaT3OQ1fQdEtWvhd2NvbpHGygoAUx75/zzVRikd8LtJIo+LvAvhOTw3ba9G1uLW7hWVH2jELHhlPtlSR6Vs5NKxEqqU2jCvPDNmLAWSaeJTISdwTO5VH3gw69a55RXY1puLRzN94RgfUFjtQmYYQ6pIRyf7pP9KiN+hopRWxHNJ4ZOYWvIrOTG6Xz5Bt3A98HIPv0ok31KvpdnI+KPEmktdeRot9BecFnRMuF+rKRRTgpsy9qpNy7Hit3Z3vjfxCfF+pXW6WIsmnJz5cMYPYHue5rqm+VcsdEcqh9alzS2Wx2Xh7QNQ8Q2k8mm2zC8tIS9xFEg+ZB1bnrRFux3+7GGhzfj/TLnxP4Xk+xyZuLVhPbllxgrzinBw9prsYukqsbrdE/hG8s/EGgQX6rjzIwWK9j0OatKXMONWLjoFsP7K1FtMuciOXmJhnbV7TuEJPmsQayzJMEdwCOBJ2Ye9ephHdanTdxZxnxmuns9DtNUWWRSkmG8scEV99kWIioOJvOpy0Ls4vwvd3d3cnUb+4l8leYwwHzH8a+lpzlPVHHTqpz02NWXX9Z1S+WC3vmDtxGsZGF+vrWnvM66jlJGzpstn4bw+q6gZrgnLK5zk1v7WNOI6UvZv3mJpniG18Sa4zxAzKj/K4UhRVxra6HYqiluM+NetlLCG0tFdZCgVSGxkmlVU5JSi7MMZiJrD8sOpX8P6kmjeG00TTwoO0G4b/a9K6aSVOCOrDSVLCqKNay1Wz0HRJLKSJZ5LhfNmt5xlXA5ANfN5xhKGcc1Cor21XqjmxLcXFpX1PM/G3iy3tFaa1tEVZyWitbccF2P3QPQVxYX2eBwSo0zgzrHwwzXKrt7JHVfC3T9Q8G+FJtb1ePyL7Us7hnDKnUDrX1WWYWdGgpz+JndlUJ0MNzVfikMh8QXd3qcl8uDtHyvIB/KvUpzSdrnoxq87u+hG1/ceKfENl4QgbiWTfdhRnKDk5zWcsS6uMp0YvZpv5GWOqfWasMPH1foe5eOrTX/jN+xtqtnFcxte/Da7ENgrXTmZbN2M0cQiHyBQfO+Y92A96/AuOJ0OEvGWjjYR5YY2PNskuaNot33u9NDslh1jcoxGGpr3ormXyPnTwd4vD2qXxYFmTBJOQvBzx61+/4bH0a1PmXU8bLqlKvhYt7jj4hdzLGnO4EAhuM96zxNaDgzb6zBOUfuM3wxfPrnjC5uZI1EdrCI/nH3vUV5OVuOIxkqnZHz2XSnjM0qVZbR0Oov/C1xqN4dd0u6a3vYLlJbGeJtrJKmCrD3BGa9OtgqOO541FeMk4td09Drx2UU8U+dO0r3R9ZftX+M/id+15+yVoHxg8QvPr1rLpzXGsybF8rSdXsiIbiNUABzNCVkyCe3FfxHwvhMD4aeKlfLZWpzhUtbVupSqaxbf8Adem3zPqqeGweZ5S41aXvpXv6aP8AU+IdQ+H1o0S3PhjWEXzl3CItnPt7V/ZdaNOqubCTs3rY+TxWUU6bvhJWutjO0LVdU8FazLZ63Y7PPjaMytnDg8H8PavPhCWH93GQvrvueXgq9bLMS1i479TcsNTgQzWoYKJSSu1vujIOfyrtwmIhGbjE96hOEru+hG+pnZuAyJojuIPU56munGYnnjbuTWxMUrIbPqhW8aIEDMQGB2xXBRxCdZxNKNaN2jd+FEz3XibW/EQufs9v4e8K6jfNMHKN5phMEC++Zpoxjvk5r5fjPEU8Rh6WDS/iVIKy7KSk/lZO55lSp7TFPleiTf6HJaOJLG1JVgrIny8deO9fRUKVSjF+TOqnTXs7McHe7C2su0bFPzAevTNdc4e0SuRNKpaMtkdp+y9q1n4a+NekrqNyFstZhudGviXxiO7haHk9uWU/hX5nx9ljxPD9SpBXlTlGovWDT/Q8epTpwvO2x554wtdQ0HWLrwnLE0V/BcyQXUb5zEUYqwOe/FdtPERxWGpypO/Ok9PMyx2MWIao0fil+BDpun/2VGsZCvG3fHf3r2MLhpUIWexpQoSy6j7Pe5cKJMGST7+PvEda75wcqdos7Fd09Xqb+o26eJ/gks9rcmW40TUit1AwyYIpB8kqY6KWyrA99p718hXisPnC51b2kd+7Q6dR43CSoyW3U4fSWtb7Md0AJY+DXv4a1SPLLdHnUpw5uTaSNezeSXFjdKHAwY5AeQP8K64UlCTZ61OpKUOWW5pWlzBLAba5wyqcdehz1rnrKdzeEIvWW56T8DvA3xBbxNDq9v4oZNJWVXZVk+9joD614OOkuVxkcmIxtZKUFsfS+m/E6bw5qCOZgFOB1wPrXzU5KnojxXBuVz0yHxXH420nziwb9394Go1bNtbWNvwVfaDpFjgGJpEPO89KfsubUp6Iz9ZvLTUNcFxazBQzgsEbg1tbliYtPoYfwuvvsni7xJZJ8iteBmcnIzkV+Y53SccbUkup+j8PcqwqXmctpd2L/VvEeoSSBpBqQ+bGP4gK+LzO8ZJdz6zCLnqshvsm6YAjPmHJrjpyTpne3y1LGZ4tUiWPOcY5rbCyTZz4u/MmjJnA8lgDnsD26V1qVpNCpv3TE1NC5Z93GOgPSuqnNtHLXs3ZlE20jyYDh4mP3n7+1ae0VrI53FQdzorXypJoPKjCZgC4AwMeteXOMnFtnZGq5SSRuaIgGp2saf8ALSCRCD3wprhxE+WhJvo1+Z7OEpXxMU1umO+HviN9Eh8SWzMfmvV3ZHTEaiv2PgufPlumzPyHi9Qhms4+f6FO18UG11A6gl23luSDkc/iK+zmopo+IlNJ2Rx3iPwlda1rs2rWl4wVUySj4yPpQoQehUWoK5jXOuxW2kzWd9mY9Fc84PpUqCgyKtSVRWMHwfq+p20rwQE7C5MYY9s9KJ1YRVkyKUKkNzu/Dvw91vWzJr1zdBJdvyrnFcsJylqd0aa36mPcXGq6bPLDqMLBoZ8q2eDW85KJy1r35WGo+Kf7UR0ySDhRzUyrWixU6UxIb8PdRgkiONQMY4ooTvqjaaSVnudBFrWlTQLbnbhgR8vUV1pcxjBvkOJ1aK807Xp7hblmiZPkUnIFKUVHU5XTk5FPRIZmuJLy7YBQThWrHVy0OiKjBW6jNU1G5DyPbwPIEH30jJC/U1006fLo2tTNwc9kZZv4rmJ7mR1JHT5qxlGSm0jn5rOyOR1vV43u3iTHA4x2reK0uxxpykzKkm+TdIea83Ecsquh62FhyQIUkAyc8/Wpkiakm5aFe8uT91epPWnZcuoWSd2VjJiM7mHSso0+aWpjiK3MtD+n7T7fxLfzRvea9FFbFw625QFtgHr/AIV7lWEpVXcxxFlNnpHh3UIdQkhUyEwKgBQphm/DsKym1AzirmiL0vcGOztXchsjjhvc+1cr11O+K9wTWtdaxtjd3XzT5yofov8Au+9ZynybhSjFyNLwfcnV7M2+ps9sCu5JfNCqp/2iRyT27Z/Okr9dBV7RknFXsd34Xa70Pw2oudVuC8yl5yXAaQdgxAHQYFaOc4Qeu5MoQbTscN8QfirPpdpcy3TswcYiPfA4GPrXnVa0o3v1NlCUtEVvhh4A8fa/qdr448a6ZbaHpYUi1TUJP9IlLdH2fwj0JNa4WjOo1UqKyCrUgqbUNWez+N9S8OaJ4anttVeOQyxACNXG7tjH+NepX9nGm1I83DwnOspLoeOXl1C6alrfhu0lt7O3hIu7lSEMiKMlQSeTgZ4ziuHncbzgtD03Vg5ezvqVP2bNXsviFaXXx9uLQSaTYNLaeF3DSHz3BKyS4bCkAgqCBzzye0QVOdKNWNnu7q91razvppa+nR6u+iyxMIRl7LqcH+1Pdx2nizw58U7fQVRBqiW0rzSonnwzkwsNoAL8uSTz07YrnxdScEp8u4sOuROKd3ueG/FL4IX/AOyhrK/ED4RwxW95Z2yy+JLYDEeoyyfOyPjqy5wrdqwp0vq81JbHdUrOvQvIr/Dn4qWv7VXh/wASeN/Aek3a6V4YjM3iu7vLZ4Y9OlRd3lGSQBXcgnAXJ6V304SxN5x2RxLE0qKUG9X0MGytIPCDN8S7OM/2jMzXiKY/mMHA8okY+8v8645JP3up1zjUmrNG1r/ijRvEnhq3vrXT8afdxK9t56AqYpEyV9ip4/D6VlJy3b0LhR0s0fJ2t/ArUfDPjrxB8RPg74oudHv1uVMNxZKTFcZPAli5V1PfIyBnnvXPKN5e6GJpU4axZkeGvGD/ABYWYfEy0FtqtvcGC8gszshZuSZNuf4sLx2JpRjeV2a4WTitTnviBeeOvh49lp3gbXLafQdUnKXen3UXmxq4JUsueVPYgGrvrYdWlUqSvE5248X/ABS0LTDZHwXbXlom9hHY3LxOhPUISWGOPb09KmUtVFHRR5YR94dY+J7fxfpks8GqnTLyBFLaRqdokmATzk4+bP1q5QfLZmtoSXMc94m1jTdduCraQlrdsm2S4tpN0M6kc5BHH0rncZ3dzP2jktDjvGrjwdop0jRXiW6vi0bCEYMcZ6vgcc1K1djCporGH4Hso4pj4f1VdpKZtpiMK4x0+tdUueT5pf1Y66PLGnZFrxfcXnhfS7mezvJLS8VhDHJDJgyo3BXPetaceY5py1s0VdOgeOzRiNodNrMwz+frUclttDqptJWOa8IGbwj4n1DwtJIBCZTPbA9CjdRz710VKiZ5ybhXkjpfEWnC6sQyEgH5oXzyD1xWNObvoejTt1MO4vXvrARzRYkiGOe5r08JdGrqJHE/Fe6u/wDhEVMX3I5csrDivs8hcXUaZnWU50jzS+1CS8SOK4utid/KOMivsKVaF9zjVRRkuZk+h6/Y2FwzW8pyi485n6ewrWeIhGNjvjWhFXTGpq76pe7bi6Hl7/mYsckVy87bMKdRzneR1NprkdmY7XSAIoyw3Hby34120pKMbs6ZVHKXulnx5PDftCbkGRmQAZXke9KdWpJcqOucoumomF4ZPiLUPEcdrdeJYY7GHLypJGFG0DOCfXsK5ZwrQjzqV/IMBg8VPE3lU93sWrXWtU8S+K7lRAUtxbOWl2nakY4LE9hXJm+PWXZe5qVpy0XncwzDG/VKzi1p0OS0SSC98aS6qIF8uyJSyVjkZ/vc1jkdKrVqKpWXQnBU6eLzKWIkvhWh1Wsa3qC2+17rfI4J5OT+FfV4nERpqyZ6lTESUnZFGxu3NhIqOVZc+Y5fqaxw9f7Tehz0KkXd9t9Sz8IL9m8Q6t4luYTMscfkxHdx708qcp4qpiWrrb+vQ5cjxc8bj69ZvRaI+jv2HtXuPF3jPxd8FbPxENMl8U+H/tNs7Isn2iSxbz2twCD80sXmxj/e6jqPxL6Q2GjHL8Dnfs/aLDzcHrblVRcqk7W+GVn8uux9HlePjgceqs482yt87P8AM+UPHPhK90H4na94R8KXcsFna37tawXsOxxGxJAYZO0jOPwr7bguvmGccP0Z865lFXs7p/M+SxeCzDD5xiMNQkoxvzJeT1MxdR1nRMNqensvlufnVSyk9/wr6arXxGHhy1ov5HNKtiMK060duq1Lvw7lmufMuPlVryYs+RjAq8iUlFy7muTVl7OUusmz0MaysS21yCEUDK5P3iAQa+ndWnF32PecUkrs+mv+CeM/h74rfDP4n/DPxD4oEMejeRrmmaI8h2XomU21zGqdGYhkbGR931r+P/pGxnl/FeW5rg6N3Wi6c52Xu8jUotv70enkeOpLEyovWL06WV/+CfHCaVqngnxrrfhnVHdX0a/lt1jlXBUKxxx9MV+68DYqeY5ZTxnNdOK/I+boYetRx1aFR/A2vl0F1C5s9aPl3UImj2kMuO/HP5191z0qsbVNjepOhXXLVV0c34i0XU/Dduuo6TL50cj+WlsTk5PpXzuOoQwTVWk9H0PGx8a2XwVTD+8npYksn8UWcS/2ppgthL8olY7lUf3T6Vy1q2JteUbHNRq4yMv38OW/UvWpSJ5fNCSNtwcnrnvXTgqkeWTb1PVoTp8zTd2b97fp4X+CUsMUKfbvGmtJHE6DDDT7L5n+qyXDp+Nua+bqyWY8Sxa1jQV/+3pf5L8zw8e5Uq0ZR+0/wX/B/I5+0vFkjmWRArBQGyPu+1fc05KpTbR71Oq61K4+a7gghkeVVUxQ/ezjms3VjFNs5/rEYN83Qo2FxN5SzQErIPnVlfBzngg+tebjIqthnGS0kmn6PQ5qqjOmvM9E+M/h9fiZ4Wsv2ofD8JkuLmVNM8ewxxfLZ6iq4iuSeyXCLu/66I47ivzbhvmyvHzyqra0bum2947tfL/InD4JRqfWYr1/zPOHmht4ZJJJwy4wPrX31SpSpQbbN8ZOlCDlJ3I9OvLbU3/0Ny7McFQcke9a0a1OrC6Zz4SVPGK6eh0vwajN/fa/4au7aVhNYuspGSNu0kFvoQD+FfG57ioc0JPRwlo/XoduS4im8RVodUcTqWmTWUh1O0UloWKzqVxnBr3VVfIqi3OHMMDUg3WorVbos2WopqCC4to/mUc4ODXXSr+0tYrBVoVFzM1g7lBc7cK42yKvr61vUlGJ6CU5u/Q9U+COtX1vZM7XTbUxiP15r5rMuWs/Myrqmlc77xVc6jcWQvbbftUfLXzVWlY86TW523wU+KsVxpx0eW42SKu1lY8k1jCUr6nJOvZ2Zs65ruuWdwbqyvGUtzgdMVu5uJpFya1E0Xx/eteIZbsiQMMN60m2zPneqOt+BN1FqvjHxBqGqSLHFFG0k0lwcJkDK49ycV8RnsIKs7adz73h+NqJl+CglzZ+Irhf+WupZT3G8V+ZZ3XUa6R+g5dGPzZJcx7rp8KOH5PrXn0qi9m0dM4fvLmX4xjw0YAOSveunBNznyxOfGLlsYzRF7dgeBkYrockrmdP4DI1KAlcFM8HOPSumlNM5Ky94p29qJLhZhGSFHT+EV089oszqJN2NuOJhewrGMZC8Yrgcl7OTZ004XqROs0WwSPVdPlCKVSGXcx6/dOce3rXgYipKdGovNHuwTp4mn6MxIYraz1/xBo11cgPcMksYI7tGpBr9w8PuSeTqfm19x+J8awks7nF+TONutE1a1kuI7u7XC5KKT1r7pqKuz47lUZalWwe/ttSMX2iQKUw6nnrXP7ZqVkbTfNHQd4k8EskFtO/yLcnKHoDTxF6cLswpzcZWOot/wBn5INHt720vIwzpuyHBPNc9HCzqpM3q30aM/UbPxT4SlFrciTAGF2rnP5V0SoPDP3rfeVSlVe6uVtRt9V1qyMcWi3MsjdStsxrCrVhTV2zSVGb95xZj2Pws+Il1NusvBeouucj/RyMfnXn1Mbh+s0aRp15K0abOgtPgd8VJVDf8InLEDyxmODWlPMcHSi/fHSy/GV5tKNvUvv+zV8SdQjUxta2jt0ZnJxVrPcBHudayPFtboLb9kTxbK4k8ReO0ZRw8Vrb8j8T0rgxWfRf8OJU+Hq07NzOksf2f9M8P22zTbSKdwMGa8DOSfp0rzpZzjWrJ2XkdmHyjD0mur8y/p2jeP8Aw9aXGm6bqdtHBOv762XTIypX3yvNZuqq7UpN39T1oQdCHLFK3oedeNP2crXxeJL37Y+nXEpJM9talU+pWvRw+aVcKrbnz+KynD4hupHRnnsn7IWoWlwZLv4ixOnqlkd2PxNbTzqrU2icMMpqp2lPQiuf2bPDMCZuvGN/KO/l2yqD+dTTxleTu0b/AFGEV8TIh8FPhzYYSdtTnIGTumC/yFOri8TLayM1gqKd22T23wx+GJLCDw0zsgGfPuWJrmdbFzVuYt4XDdiyvgTwLalRD4SsDn++hb+Zpr6zfWTJeFw6V1E/fRfEFnZ6+ohtTOXYKIhJk78dT9PSvuK2k2eRWUpVHzaanfeC9Q/tq9kuUUBI48TOy4UKOw9e1ctS7ehXNCKsbLarcQq5W5LFz/AvRff0Fcs5WR0qMWkZGs6tHdazaaYlhJcgNvMcacADnn0FcdWfvIunRsnqejeENJW/0+HVNcV0kEm9bO1ePYFycFhnIAx6Z5rSPNJczJdSPNyr9Sbxx42trS1lRigQKQwRuMdAPelN2u2xcnMmmcP8EdPf4z/EqfWruHfoPhsgySkgpc3RPyw/8B6ke49ajDUfa1Od2cTabVGmu7Pc/iPpf9paQb1w+bRleYoPvqOq49B/SvQqxTin2OClXam0lozh9b1fSPEGswWus3MVnEy7lhkkG6TA4XPQGuOdp1fedjTnqwhdLUreI9C1/wCIqnwh4QgEFgFCaheIgEMEJ+8FPQsRngeuTW8Y+0fKtjl9o3Nye5iSfEX4b+G/A1r8H/h7LHaWXhaP+zGst2DCYwQXIHc43Z75zWPNBw9lTVrG9OM51OefU+Wf2u/i34H8I+ALi88UaTqV5cKQmlPbZlEcySIY2CBd3D7cndwDnB6VxVOSMeWR2KlVnLkps+gdR8Hw/EnQjr/ieFpNJgH2qZOhv7hlyI/91c8/TFdlSHNDma0X4nPK9KPsz4i/ac+GXjbwl4lmvPhZ42vdL0nVNXjmvPCRunOm3twMBGlhVgCw4wfYelcFWq6KcabdmbUKdKM1OSu0QeJfjhqHhLSp/Cvxm8M3Xh3U5I2MN/Cxns5FKj5Qx5jz6EY9KxlUUY8rNq1Z1GrHzh+z38X5vC3xm1fwj4r+K06+E/E95v0lZpc22n33YMSf3aSjjPTI96e8EkV7ScIXb0Ppi+sbDw0lxaWKjelsrXWyXcuwhwHGM8Etwfb8qhBRk4p6lqoqkVY8f134USXfjy8v9JeVI7mYfvUH8YXd27jHb0qKukdAi2noY2o+CNY8Q6Suma0gV9MzKSiH94wY5bHY1hGEmdsZNbFKOex0qKNLC7ie3ETtLGFy6S5HzEehG7NWqbg7i1buzjPGWmm21WPWIFEcb4Pn2wyFBPQjuP5Zp1JvsTKbbscv451PQfB2hSeJdeCiApmBIWDGeXOAgX3/AK0op1GrBUapLU8Q8D+IPFXi7xpfz+OEEU15IZNOjUZWKEcCP8O/1reoqUZLkRy4d1K83zo73VbGK2skWZD5IOQ+3DIc9j2qU77HoaQjY4v4zalrtlpem3U0kd1ZWt6JJpFGXUH1Iq6M7TscOKVXmi+iOp0oQ6noqXtqCyyKGwp6HHWocldo9GHIoXRgeOdMSaxh160wL3T3/eow5eI9aE0cGIjeXMiaw1dzZBLvmN13QyHp9DU/CzalJsw9QliS7dhF8so5APQ16WHk0jrVra7nNeOVk1HwZf2ixebtTdgDkV9BlVVxrWZtJp0nE+eZ5Lp7nZ9qfYTgoDyPavqIScal0z5CrQnCtzc912NW2vrK2KWyR7pe46ivQhJX1PYeLo04KEVdksmokXAaRFGOgPc1v7WEVa46NZSlY6jTdbts25LbihA+RflH4/0q6c3LZnqU5U4zSZf8a6s4lR2k2nblBniuxJwhc2xVRxgpWMJNTijAB3hGHzSA4DGkpR5bMrD4hcq1Lei+NJYlv9KScpb3No3mQgZafaMhM54GRn8K+U4rwzxdGk4Ru4yR5WbqWJiuRXaZyXhrUGh1V45oCiO2QlerltdYetyW0M8rnVpYuUZaJmpr2tzRlrqRN2PlWPPU13Y7FRVO63OzMsQqUHrqa8OgXt74bj04asbTzEDzsseTk8/hW+EwVbEUopysmdtLLKmIy9U/act92aGn3Wn+CPDy6TYQb4clpJpCCzsepPoK9eVWjlmFVOCuurN6FPC5JhFRpa9W+5f+GHxAn8JfEfRfHmi6y9lJYanHKbyEZaOMttc47/KTx3r5XizBYbP+E8Zg/Zqp7SDaXeSV1+RpQxdOliIVFqrnf/t2eBvCnw9/aO1DVfBHiR9b8Pa1bpNpWuXUUkb3wGMyYkA+UluMAcY4HSvyvwEzjF4nIZYfGwVOrDeCa922y0b17/mVnmKqzxdPEyp8nPFKz3ujyWG9tWAt5GWSMsS25ck1+/KrSkuVu69DzqNaEpcsnci8E6VDctqElq3lKjkRMOnPavLwtlKbg7K+hngsEnUqThtcXxNqOoaft03ULYxiJf3Mg5D985r0K/Nb3isZVqR9x6eZ6r+wV8WPAHgP9pDSE+JVtbnQfEUEmkX088e4WUsmDbXZ9RFOsb49FNflni5k1XPODak8Jd1aL5ko7yVvej/28ro5MDDD1cRFV4KfvRaT/mi1KL9U1ddmb/8AwUI+EXin4RfG281fxbPa38niSPzX1rT1c2l1MnymSN2VQQ4w2AOOa+M8DOK8Fi8mqYKC5OTaMviiuzV3sfUZnyU6v1mSt7Rarsz5zs9Qk3SlxkSOVUgV+yU8Y6kpXd1c+ReJTqO3oWNKubnXdcjxCTDYLx8uQZDU4eTx2N/uwNcHUeOxt38NP8zbvFi80W7QlTKCLlGwRkdVOfXmvflQp2s9nuepiYRlfmV0znZdG1u41610HwxZmc6tcpbWMW7JWV2CqD7ZNfMZmv7LpyxEXanb7j5t0a+Dq+5rGWi8jT+Jeq/2h4tXSfDQW50nQbFNK0ZmYjzI4ifMmGenmytJL/20x2rx8oo4qhhPayV51HzP9F8lZBi6Vd1FyLmSVkc1/b6WE6wXVq0RUFWEi8N75717scfKklGasbUcbTw9PkqJpjNW1NdUCtczgnA2gYwwHc0qtdVrO55WLq/WPebL9pcBraJ4lwChAP8AerqdWnKkk+zPdoKMqEbne+FfFbeA7u88M3qu+ka1Ypba5YGQhZ0yGBOD95GwynsRXwMcLHM5uu1edJvkl+aNqGIVCo4NaM43xz4R/wCET1AxR3H2uwm+azuR91kPIz6EDrXt4fFOtG1VepGIjSW6umZNlYWmn3AvdNYDoSAa6o0EpqVPRHFy08PK9FWPpT9m39lvxrbpJ8YNP+Juk6VrWveHLxtH8IS2bTS31m8DoXmkBC2wkAbZnLHAOACDX5RxdxBgKePdGdFygpxvK+id1062PErYidLMZV6asvzZ518avg4nw18PeGfit4f1r+2PCPjKCQW+oNHslsNSh2i8066TnZNEzBh2kjkRx1IH2GWZtGrJ0Z6Sj+MejR6GCz6nVryjVVjzOTTI7e4N5pOGjkGXQHpX0dCk1LnjsaVKCp1va0HdPoW7KUKpQEEuTlMda7pNTidqnOtGy0Oz+EfiuGya4sLooWHILnBA715GOUHruwVB3u2e/aDqGk6v4QwpVl2ny27mvj8VNyqNR2MpVYJ2seY6vqN94T106lpZ2kPyvqM1y3lHQ8nFuLnoek+FPi1aeLtOWymbEy8EDvXXKFne+xVCU5R94q6nrbaffhkkPytnB7VPPfQh3uzb+Gfii4udVubl2kJmO1Iyx2ZyOT618hnSi6slY+yyWrOlRSTPSvh1mXR9SkeJd7Xjcj6j/CvxziCnKGMs2fo+UVPavma1X6jpbf8AflmHO45FcVOcIxPZcZSdyl4n0+W8hTAyQnBzXTQrqL1FiaPtIaGTLZPEhBjA4HB9a29opNmUKHLEzLuxeUgMnatoVbHPOjd3IYdMfzR8gGB1I4NbuuuXcxnTvI1bLTCLuGXryO3WvPrV7wkjqpU71I6HbQaVIbyznRMbIHVhgdwa8GNdck4vq0e+qPvxk1sjL139nT4k+PfE914p8NX+m21jJBAm+7udrllQA4UfhX7HwFmlKhkPLL+Zn47x3l+LxWdt0UrcsSdf2MvE11cCbXviZYquOFt4mbHsa+wqZ3T5nyJ2PkVkGKn8ckjbg/ZQ8H6deC71DxLc3UgUDEUIXPvyawedS5rqJ3UeH4KPvTubF38GvhfPbwwappf2tLYfujPcEAH3ApYnPMRUp2bSR2UsowcFrG7NWPRvDunQLaWGkWqKqYRRGG4/GuFY7EP7bOhYDDxd1BCkxyZVbdQy8ASWsY5+uOazliKst5M6lRhBaJCfZLvcFjmCtn5kCqv8hR7bm+LUGrFiDSdfvMrba3MdoywVsYH1rmajzXsS+a2hUvdD1+aPjVrl1LYJEpUjH1BFXzwXQdGMlrcyb3wj46+2FrLxEwhIASO5Yuw9fmUKD9MUoShe8kaVVNxdmVT4M8eyMS2uxDJw6qrZ/nxW8pUHE50q3LYjk8L+K7SUTX2tRPAPvRyK/wAvv8vU/SolUp2skVRpSjdtlJfDVxq08otfEksyx5AKRSoPzIFEKsY6NGs6btuUdT+ES6mFP/CRXKGXIYPMy/iBW0q8bbHLUoc8bHPXXwCvgzvpnjJJCFGUknbp6GlTxMb+8jz54KcXozE1r4H+LLOMRzRSyLksGhmbkD65Fd8MXTaF9SqtbGHqHwo8Zx27XFv4a1CYrJtYTMh47Ywcn8qJYin3MamGqR6GLf8Ag7xlYqHuvDV0m4H5hbNjGe5xg1UK9FrVnOqUm9TOhhurclJraRCv3hKmP503OMvdTLnNQjsft3f3emtqRvSpWGJ8yuhIyfQnr2r7urG83c+crczqNHpPwn126v8ARJ70wBSeEDJwqdse9ctSairEOk0zotEvIL+4neOImJDiRgDgEcc+tcLbk7nXyuMU7iXWtixIgs4zuIPmS4wxH+0TwBUWSd7Fxu48rdzrPBup6dqmhNqcFtJd3CxujtasTGPmOGwBzxxnIHFaRUeW/UTTpzXNotDivEHh3xd8WNZ/4RTwk32K2XAvNS2/u7aMnk8kZbGcAd68+oninKF2u2nW/XVW0vrrrpbquiFOnSSatZdD6M+HPgvwB8LfAdj4M8CQRyWdkmfPLbnmlPLSsf75OSSea9fDUaWHoqEDyq9WpVqOUlYh1/XriRhbW8as75CITx7k+tVPXRGMIpO55V8cPDHgm30+PSbbWlsNc1SdIYVik3NKWYblCc7flycjAFcWJpU5RSTs2ddGpXqysk2kO8SeOYvhd4Ug8A/DqUadaWkOJHyDgj78smRySc8VK5sPFQTshTpWquUkfF/7S0PxQOrT/FT4Q3csN20jJ592mU1ORztAkXuMnj07VjbVyp9/vO+jycjvsuh0njjwlrHwQ+Gsmi/EDU5tY17UNM+267ff2jLDEJdu8wpCGKCMAlSuPnwNxOKqcPZxafU0oRc6ilHT1sfQGq/FbTvE/wAO9O1DwxNALVdMhe1iU/KWlQMDx171vVqxdJI5a1P96zwH42adaNcaTYqhnubO+t3uZJG+WRzKrN+QxXBOn7WSSYJ6WtqdZ+1f8MPDXi2Z4bpbZgbcMRJEMDEYbbn3Na4ihGMTOCbjex8Z/wDDNPw/0f47aPZaxpCJp3iBpNJuIpF+Tz/LMkLHt/CV59a4rSjPlNv3koNX0KnxM/Y/i0XUJ9M8GeMdb0m3ug0Qis9SlSNdpztChsL0HT1rqpQ5Lt9TelBRWx5RdeDf2kPg1qXleFvivcXttbXAkSLUIRcKhHAfLfNyOpz3rGvh6N/dZp7JX0N34HeHvij8QfF1/wCOfHfi4yXBzGqE7IEI5K4GcEnj0+lYxjZ2ZXtJU1ypnY+NfhLZNq7apo+oB5I4Fa4tsYKHPp/EPQ06suxoqjktTzH4k+L/AA94C05m1uQsCXBtcfvDL2Vcdc1i02rEVKsYHhLaZ4g8da2niXxShSOAFbGzB+W3Q9Mjux7mtKT0sSqc6s7vYu694LeOwTVrK0IuLF/NQoeoHUfjzVOSXuo7YxjSVy34o1GG+8Jx3tnmQyqpCsOme2alKTJu6iujFTTtPvbFrDUId8MsRSSJ/Q9TRGk27l/FBqRg+Bry58Ma3dfD26nDpbjzLI+ZzLAT/MdK6q1ODSlCNjgpc1KpySZ116lte2rROoYEYJKgOP8A61ZRsjqaU0cdDILSWfQrwEmMloSTw6n0NN8zd2a0Yrl0MnVLmFoHtCxz1jc8YPpXdh5WlY0lFJmLLeRtZXFpcFseW2dvXp+te1hFL2yZUPj1PnfXro2uuT/Yjty5yWHPWvrWvZSufP5jWjRqNQRRW423AaNzuPVu9awrO1jghKWrTG3dyxmV5JCw3etZKKlUu2c1GtKNe8mddpfiGGO0t5L/AJii/wBXGo6V7EJUqMbn08KtJuMpO1zU8RajFqkCahFDhQMYccCtKtWTp3T0PaxMVPDpxeiMfTNbfUZ/Jis3lVRhpZBhV/CsaVdvRRPKwuNfNZRbS0uXNZuILuNNOhS3McDFhLDFtZ8+ppVIznfmOuXtK2sXoZOj3kbatPNJGMQpxkd64sG3PESnfRHNQrv6xOb+ygM5u9ZtoJl3OZN5XsB711TpQq14J+p537zGY+EZPrc6u8124ljBC7MDAjzzj1Ne1HEzUEorl9f+AfbPEumuRHP6prN3qUo0bSn+0SyDD9wv1ryMTip1/wBxSvJnzOY5iq0/YUPek+2yLHgZTBBqPhe/TFzGvm20g9uorfI04e1wmI+Kzt8zy8trV41Z4Wq/eWqPpT9tS+n+PP7Onw4+L8HjSO6vodEg09NISw8tNPMGYpQJB8rlyEfBORzjiv5s8PqNThvjnG5NGlyqVST53K7lzax06W27H2uZYStm3D0KtNWmndNvps/xPlGfUdc8O3baZqaZYLyyZI/H0r+hKlfE5XiJUqz5vQ+KVXFZZVcMRr6Ha+BZY9O8PZSVC8x3OwOe/SvUy/38MpRe+p9FluJh9WVne5r609veRtBNCHhEQOxl65/lXs0aiqS5JbHdOrBx5ZK9zkb3whfwyfb/AAzdkMD8kRPQ56g9ulc+Iy+lL36D7q3TzPJr5biaf73Dy1Wtj7G8I/tCaJ+1N+zRJ+zh8SvCGl3EEMcT2fie5MtxrmnamAVUK5Y4t2IA2AYIftgV/MeYZPT4X4jqYvCrkm5XasknF9+56zjDPqXNKq4ytZxvon39T411t73wlpupaFqtgovra/MLhk5jkRip/Ov2TD5gllbqRXx2a8j5GvXnhMDUUo+/e33E3g1prOwADhZpGMjnH519BlFHlwt38T1Z2ZMp08NdvV6s1LuVLi1F55p3M5Cnuw559zk166SlC9z2VUc43E8N+KR4U1iLUzEvmiF4rZ3UZiaRNhkHuqsxB7HFfMcU01VyqOHvZOS07pHDiq3s3GPVkN9aRR61c2Tw+QokzEhGCo6rXRhlFvl7bGjklWafQr30NjJam2voANr4dHTgc5yD2/8Ar111XTlS9/8AIyrVack+dX+Ryt/oA1bVZU0JFh2r+7QN8rn0rwalJ1pyeH0t+J5E8HHEzbwytb8Ta+HFpceJNesvDrwMsiXAE8ZU/Io5Yn2wDTeJdLLqlWorOC19TDB46VWXsp6OJv8AjacS61cXVuQFZz+7A6DP6Vw8OwnSwSs9ZbndKUnC7Md/GlpFZDw5rZM1nI/RRlkY9xXdjMIqdqylZdfMqOLjTXJVe5mahoGoaNIJrV/tFlLysi+lFGulC6d0Yzpzg7xd0z7A+Bvj6y1jwBo3jbUvE6WN3Yz2Whs0tpJ9nbYhwrygbQdirx359K/IeM8phKnikrt3vZarr1/LuebjvYUm9Xd9EcH+0RL8JtT8B/EKTSo7u+uH1KxvrCbTNQ/0G3vFd4Zy8XRmZdw3DpiubhGhnKxGEcnanFSjK695pq8denfzPOp4etiHzy0a301fY+ePDk8jHEblRjBz0r9lhOMFyo+qy9UqdNXNKWAQyqyyAseoFRKpK77HZKdOnK6NK68F3d7p/wDa+k3XlzKPneOTkj6V506nPUOLFVqs7qOiPYvh5r0Nh4TtdP8AtILLGBISR1r5/Epe0dkedD2kyXUdGj10TXKNwgzzXOqMou7HKnd6oxNLEOg6gJoZgrKcsNwFCvJ2MpT6RLniDxfaufMkuoxxnG4c1u6fJG5DqxhE9F+Cf2XUdNh1AK8g8wkCOIkk5r4rM5J15N9T6TKavNTi77M9g+F0IPhy9lZMM94+ARyOe9fjPFdVrMLI/WuHo3wzky5Lbbp2DDBzycV4SqtI+iikQXFqXUk4JGAeOtaKq27lJJuxW/s2E/MY1bjuKPbyTNFGJC+hW5bPkLz7VbxMu5MqUZdB0egWvAa2AJFS8TN9TF4aF9jS0zQIRKv7gYBGB6GuariHy6s6KVGMXsdXpOk7sBuw649q8irXUXoejpyna+HdEnaxXy7aMoc5LMf5V+tcFu+Rp92z814hlzZlL5Fz/hFb+aTe1xbRxj5n80tvPsCD9K+uvC58/wAk76Esuh6a8uWhQxrgMQxPP064pN8uxUKd9y3oejeChqCt4i0q8ltf4hpU0ayk+3m5FcmJqYrlvRtc1jT10KY0SCK8uZZdKjW0EubNWlDSGPPBkxgA+uKujOq0nU3KqJLYgvtHtfOQXGmQ8rkCIcdO9dLqcxi276jR4c0+cP5ekknHJXOMf41l7RoyaTdyF/CSRjEULwq3PLYDelVztlOEbalabwzPHiZ4Z1VD8xaTgnPX8qG+4WtEgXw7fRlnkgdNzfJumJIAoukiEhk2iXcSmUXCjP35POPfsatTuPUoTaLMg/1+Bj5185ifXNPmCXvRsV5RHIotGuUJyGUyTSDGB04OKE7PQcX7tmZ1xZAIZLhArEEbWkc5H51uncyejKkqSrF5VtY23JH7x4txzz361EldmU1cz3tdelTa8WcsD5kAIB9Rknj8qcHZWLV2tChdreNvke0WTAICyg5A9OoJ65reKizGSkyhNLrDRrLBbzDYh8qIXDLgenJI7elKUV0MpprYy77xZd3l4umXlvCs6q7GGfT8kqDwS7qqn2wfwqbxg9DnlH3bPU/SzVvE+n63OtmbkQjcu8IxwFHXJBPWv1CrKKm2mfHSvGbbPVvhFr8sXw+uLuOJUjknYREAnKjgYz7VyTjeLbMlUcqnkdXouo3z2CxSeXAijeVJ2hj7+prLVRO614lfVrm1uv8AkItLJ5nDxdFc+lcztzalUZOKvY6TwfqWlzunhrD29nI4Vo7SQhQ3oAFYsxHAAHUjmhxjOVugqsptcyWpe8VeI7TwU7aDplyEgMw2W8Uu7JPXe2BlhnB7cVNWpCl7qFSTa5jU1rxxc6FFBqOn3TIIVUyS7vvnr5YA5Oe/1qpTtqmZSlztqS90h+M/x+8N/Dv4f/8ACW210z3moosenRwxl5AzDnaq5JKjdn0IFOtiIQp8y1bOahQnUrcnY8s+BXhPx/4w1Y/H34nW9xp1ogceF9Hum/fzs2QbuUfw8ZCg88kms6NOok5z27HsaUabgma83h+b4reNX0ae/a10HTMza3dA8zMeViz6k043xVSz2OedRRVt7nKfH7V9BvtT8P6FpsNvY6XBr1nGn2mby42VZlJ3E8DOMZPHNKVSFKSj5hQpctNtkX7ZOnSfEjQbu8l8PSaY9tcNbwXEk243EeDwflGVA5Dc8HA4xW0+WeslsPD80dU7o8X+BvxJ8aQfCSaxh0m1lfwpO1pcWk85XdbqfMgZDzglTtye9c060JKyRdVRjPfVmVq/x40H4tapei10bVNOl09GluItTRY42nAQrGkgbD4OOnp+Fc0HzT1NadKUPeZ0uv8A7VXhjW9ZfTfF2mX+n6lPZR20tjqKj7PKMNGzRSdGY5BxnOK1qxhOV5N2tt0FytX0PIv2pxr3xOsrWb4fSTac2gzQX1ndsSS19EQVP+7uA47jNKPRroZ0qSqbo67wL8R7T42eA5vEt0r22qx3CJq9mzAGyvQoEi467Tjep7g96mFR12dEZwirM888eXGnzWrWbORqCHCHjDj+IZ/EfnUunaWrE5TlHYwvg00Utp4k0A2MCS2199psyxKO0ZVVmjyPRgGHuKykoqVkKnBv4iDxn4hSztTONTkMsbARSD72zP3Tj04rKcfeNrciPALpX+KnjTUda1tGb+yX+zws6bccZLnPUnpmlOhWpVOWomn2YQ5Kr0HBNHkD6fcuiSFgI2Y8Yzgg+nNXyWXunRG0FynM6r8UNN0ue78O2tnDqc6xkARTYVTjpuHfrVezsrsmo7ppHmPhn4m3c4n0O+09omtrwzx2gffvi/iQdOcHI+mKThUlK6ehx0KkuZq2h2+i3FjqNqJ7dxcK4LodnVfT2qlJuWh6Ckkcv8VvDt/ax2njjS023mly5+U43wn7wPtXRFOouQ4sTRlUaqLob+kaxF4m0uK+tpwzSxh0cEDHtXL1NYy5onP+InIn8yeMbo8jIHJHr7Vo2rG1OTUbHL65a/Zl+120izQuOcH7hrpw9Rc1jTnVzKYtKGWRwr4/duRweK9qjJ8ysZyqOMro8H8dQyHXbn7UgRvOOSgxmvp5qpPlbPncXWnVqONjAicQS5xwT3qIVOWWpMX7OOgT38SSgDGQelOVdp3PKqKSq3ZpaFqss14qyxpsToXGQvvit8PinXnboerhsdDm5Fsu52OkaoviGyksltFEEPAlK43GvapuM1ZrQ+my7GSxiacfdXUY/wBmija0hiCIFIO3Hze1dtP2UVpojsxcqUaaULGbdymxiYui+YT8qDqTXkZhiuSLV9Tx8RjPYUXFLU15Pg98WfD3w0h+LOvfDPXLXw7fXv2eDXbnTJI7SaU8iNJGADH6VxYGpRo4dtSTb31OHB4ilCjKHNee7V9TH0qw1HTtauZNZsJ7S7jVdtvdwGN1BGQdrYIyOa1weMWIrSqqSdtEPLKr+szrTeq0RHr9/NFHi3k/eyHaF9SavGYyThyRerKzbMq0o8lN6vQ09L02Dw/pi2aBWuJ13TysPmB9Aa9zLqdLBYVqXxS3Z6mX4Snl+Ba3nLVsj0T7ReeMINQtoCYbZGW7mA42kfrXDThVxOcQq0l7sU+Znk4ecq2dQrQXuR+Jn058C9b1n4gfsV+IfhbF4hvbzTtM1i4kn0KzsY2W1aVMw3s0zLuVFcbNoIGZe/b+b+NqGHyfxKhjo04xnUUXGpKTvKztKEY3s21re3T7/u8hdDHZfKkn7yU0te7utO68vn0PmvR1imgFxexrNJMpDs6A4r+lMJQVaKqTV3Neq2ufJYXlq0256t6Mm0HSbzw7cu9hOs1rIhLwN1QeorSngq2Blam/d7Dy/K8RgqzlGV4PoaN9rvnzCWNsK8JVV9cV6FGrFT0OueKjTqpIjfVFsY1i3H96nDDsSDXWlyUmk3r19TprYqrGKt1P0S/4IkaT8N3/AGevjP8AEzxT4T8C+Ir3SZLKCTSPEUXl3hgl2/v7afPyumxiFxyeMgE1/H30hc+x2UcV0MHRg5RxVCUFOzlySTTUlbaV0le+zas02jxadKX9p8zfxJPeyutz4s/a3tPBGs/tH+MX8JBv7Mn1QyQGQlmBIGc5759OPev27wswmMxnAWFWYK9Tl1fe2x7FXC0a0LT3PKri7OlSuYVzGdwD7cbTX38aEsO79DjlGphb3WlhDrcUdqoeUeUIsls8f55q3iKdGHNUegU6vLTvN+7a5Y06KS+8ISa9J8smpXf2e1Xji3iwzn/gTlOf9k181Cs82xsnvCOiMKUvrGGdbu7L0Qy/1F5reG/kuTLdDKlpG5YDp+QGK9ilRjFJrdFSi/ZqSepk3uo6tr12LaytGywAkY5xXDmGJnWfs6a1OGvVq16ns6a9S/8A2DLocy2upRGI7cghuvHXNZYaMqLSkd1JvCJJnefAbwddaxdeOvizazpHbeEPDMct1IvQyXFxHbovPBJ3t+Rr5Di/MIvEUMGnrXnbTtFOT/I8yNOOMzWUoK+mpw3inXWvJJpo2wSSdxPOOn8q+lwdWGEpJJ7I9LFzoUE7vYzfhxYHxT4pNja2r3Eqo0kaRwmRsKCWOACcAc+gxmvGzjN5zwM6UOrR8zRxMMRiW5/I7O68NeLNPuC+leE9TvLCY7R5NjI4B9sCvKwGZOlh/wB49D2I1ZxcUk2j6r/Zo0zQ2/Zd0D4ZePPAmsLayfEDUNZvBbeH57hpilqsUMU0YTcqZDEY65NfHZnmGLxOMr0sPdxko7NLZ9G/Jnz+a5TmNbNoVsNTlLl6LRanD/tK/siftOeLLbwtofwy+FsutWMPg+Cylu9NthaIiLcSSpFKJdhaRA+0kg4AUAkAVvw5mlDBOvOvGUHKbdpO/RK6s3ZO3l3tdnsfU81fM40JXlvdnG+F/wDgmd+2lfbI5vhrYafuGSb/AF63XA9wrE19GuLMHCV1d/I76OBzenD+F+J3Ojf8Ek/2ib0LJ4j8deEtLTvtu5bhlOf9lAP1rLFcZUVC1ODZ0wyvM6jvKy+Z6L4Q/wCCVTaZCE8VfHkvlfmTS9Ixn15djXlvi2tJaU7HWsnxMvinb5HXaP8A8ExPgbYvm/8AHHi29zyViukhGfoFryq2fY2c+ZJI7aOQYRK8pNs7HQf2GP2dtD4i0DVbtX4IvdZkYH6gEVnUzvH1I6yOtZRl8X8N/VnQWf7JP7PFpJiL4QaW744eZWkx+JNefPH41u/OzaGW4CCt7JG/pvwD+F+hZudH+EeioEXDSrpcZA9yWFJ43GVo2c2aLBYSEdKa+427HQNEghUQaVbWsP8AD5EESj9BXG4ye7ZVOhQi9IpfI8Y/shNF1DWLERhR/acu3nrnmvyvim/9rNeR9vksfZ4axSdUKiQknkYPr9a8LVOx7lO1yFihztHOfyrVJ2NGhjRdSij39KXMhwsIts5IIUg+uetJyRrGSRYtrAO3XjHbtWU6iSNbNrQ1dMsyjD93yOBxXBWqXRUeVHQWaRW8e58Y9c150pObCVRROz8GSDWtETUIsRqsrog8/htpxX7hwjReHyGlGW+v5n5pmtV1swnI1HtIMEyx/KvcS9T/AIV9E3fY86/cqS6ho8c0VvcXEcc0pYwRySkNLgZOB3xTm2+hKlFEN5qFiUN3LYKU3cylhuX2qNXqNy6lNr1TAJIo3JXpiQtjnvxzQ07EpyZZe8cWlxaxzTxuJ41j8yIbZ1wS0mQcgA4ABwSc+lRFzTsnoyuVct2Vr6/lu7i2u725Dy2sskloYpJIxGzrtYlYyA/HQOCBngVoqEl719yHayRBNq8nyq8spHVj8oHr2NbKCMG7MrzapluUlZSMAvKQAf8ACm4qxfM3EqzzqQX3oN2eTJkjnuB1qLaEIhkuGRQn9oAN1Lxwk55/IVSso6kNtMq6hI4C/ap7lQ5VdyL94t9B0qJzildEyneNiFtCjuyrQu4ypyGcgY+vHb0oV0ydWipd+H7ZQXismcoSPMLOcfn2rdNpDUJPVFGewZkxa2isMn5AS3X6dPxqebqS9dCre6WLVC0+lNGqrl3LlQPrkgfjRHV3TGpcu43QpfDPiC5uvI1u1iFjArzyXd1tXB6LHhSZmP8AdjDEd8VM68qcuU2Si1cnvdO0g3QtVt7ySMx71kgsHKOCNwwxC889OCO4zWyqSa2JqRXKPTTreaDyxoWsybjyIhCvbp+8bIrnfPUla5ySclTeh9maHZSa3qVvJZ2qxWbuA8UTBjIeOSew4FfrMqb5rM/PKkp1Lvuer2etWPh3RRY2ibnjcCOLfje2OgHoK56snayNqNK7Oj0bU7u100XWohJJyMsrfdBPYD2rGU2o2Ou0djOn1a+1TUhDGfkiGZWx90egrjbfNoOMIwW50ei3F/YgandxCPaMxMgA8sD0H94+tVDmbu0bXi1oZEWs6D4r8Z2ugarfMhF7ETGl4sTmLDF2XIJlYEINi4Pz+1Y8sKtW0uhhUlOC02PQPGdiNP0Y6zrbiKIsY0EeMW45+XGTtJAP159K0qxtvsJOLfLE8dt/EOieI/GunfDnwLp6pJe3Bl1O/I3ypbKct8x+7uxjiuejSjOdoouUpR949J+JnxLOj6azW0bJDDbKkUW7BCgfKoHY131qkaUeUzoweIiqquk11/yML4b3eryeEIl1SCaP7Vei4ugsTNmR87AzYPAUEn0AJrJT5o2iiq1qHmfNX7ZfjJfHviDRPhH4W8Qiy1nWNdWwvdOkLCa2VH3STR4GCoRWyeNrLjncueaVOOIpyTkk10e716afPW2z62TKTqSd7aM9Y+Knjawl0bTtC0+RZdPtbOGC1t5nIMjAfMzd+eM10QTUeW5NNtXPG/FvjPw1+zr4N1/x14tu47e21KNo9Rl2k7EVgqMVHoc8dcVqqcVsNt813ujI8DWun+LdAvNV8L6pbarYNeG4eWJiyPC+0Eg44bbvOOoOM4zXFKE0/d1OyNVTSdjZ8d+D/CXivwZfeFNUPmXNrAJrK6Y/Og69c/wtjmtadmrMbc07o3/hTDo/jr4AWGpPBCdUimay1BlcMrSRKwbj/aA3D6GrbpqNhydnseEeMp5/g18SZviJaRlrfVI1h1a2jJRZFVsLLjn5lGRn0NcyrU6Sate+39ehnKmk73OA+P8A471HxBqdp4U+D1tHLr+ou81m7fNBZWvBa4kI/hGcKDyzfTNRKsqjBYiKkoJHmOip8Tvg0iQ6d4zn1aRJnuGuNVG8zyOf3gyOg+UcdAMelZRgnWuzodJqGjKusfG3xz8RpGsrPwy1nfPf+XdzS3GYkYjJYAcnrkCtq75k5dRr95CxyvifUIfg1p8eoWt7JIivIJbUnLag247s+ueeawo3nuKNJUYu+xzup+L/ABJ8Q7E32iWT6ZZXEoMhkbMhP932HStXJ0Z3SujOM51tUQWfhfTPD+hTagbiO3MT7pGY4J9WJrnlN3vc29q3HVHBaek/ir4g3uq6baNDZPEn2SQj/WMv8Y/Q1sm2kcc1ed0tzsNO1rxB4RuEGp2H2i0Ay01lw4PdmXoffFJQcVoaL2ravsdDpHjrwj4qsZba31COWO4Upg5wp6FSDyD7VPtGnytG0MRGqnFHGeHWu/B/iW48FXbjy9xlsTu4dDztFWuWSuiYwdPdmtrmoWl/E8T71P8AEGXlTj+XvQ11R07RZwd5MYriSHzNrfxRj7rL6iuilH3rmNNyk9SlLcbI2Ct8uDhhXuUF70SnBylY8R8WSSXWt3TPeeaqykBmHIr6WviFCPLE8etKNOtKzvYp6V4a1vxHMbXQ9Eubx1XJFvAWwPXgV5FfGU8N/FdjhUpVJaK5Ss9AutQup4obKdhaqXugkZJjAPOfStaNSOJaXQ5ZR+tVOSKem5JZ6lBFKI7KyAiJwzvyTXr061LBNKKudFGpSoVPcjdeZ3Gn3F3e2BTSNJnmZIDJJBZwlyqDq5x0HvXbUx9GlRU6suVPbzPqJZnQw+FUrKK7H058Kv8Agnb4S1P9mIftKfHv4wXWlT6sw/4RjwToFmGurlMZ86eaT5Yk6DABJr82zrxHw9GU6GFa54y5bP8AF6f5n57jeKZ18S6VN7M9x/ZQ/ZK8DfDLwLa67o3gjTLrxnqAYrqeu2wvDaxN0Kq42q+OhAzmvyHOeMc9zbGOEajUNrLS54eNz/FYiuoRlyxXbr8zt/Cn7PHjPxR4lttS8fzya/c2E73FgviEk2GmIhBUiJvkXAHYZya4v7UzOvQdCnJwVtXe3r1PMeYOg7Qdm92t2fL3xe/Yd/bA/a0/aT8UfGHUvEukDS73UhGninX79ILdokAWNVCknAUYAx2r9MyzivJuG8ppUlNuSjstW2ffLF4ChRpzjXTbitLNu55V+1d+x/4R/ZTn0HU5f2pvBfjjUr+RlvdE8OibztPYD7zl1Clc8dR9K9/hPi6XEePcp4acIx6yVk/Q6MtxtPEY2FWrFqKfVWPIr69k1S/TR9PGWmY5frsXuc1+sRjVxNT2cXv+R9TXq1MZV+r0ftdfI2NQ1Gw0nTotI0uELDD98EfM7HqSe9e/GVDC0uSG3U7pqhhqHsKS0W/n5nu3/BOy++IfiHW/iR8L/Ayxmy17wct5ryTX7QKlpaTxyySAKp8xgDkKcDvkYr+ePHCjktCtl2ZYhe9Co4wtG/vTVknqrJ919zFkFb6tmkVCCnzNbu1k7ptaO7120v3R4OYIdP1jUdJSQGK01KeJGXuA7AGv23h3FxnkdGpPdxX3kUaKo1asX0k/zL2kXA+1uJmyu0Dt8wrujWlXm4neq2iRmeJbf7Nr8ZtISFlJMYHasK0Xh6sXfc8/FYVU8TGQ++bfHFp+cux5IXlV7ms8Ti5yapQb1Lr14tKl3Pbv2UPBOgfFnS/iZ8ErG7ube7vvAUuq+HLyKYxM17YSJNtYDlg0ZkGP9kHtX5P4y4yOTSyjNIJSpQq+yndK/LUur+qbXXbQxzKaw0ISo3cdm35o8u8dJo1j4purbRr53too4UaWUgNJIIl8wkZOMvuPWv1PhyrTp5VT5dI2v231PUiqare5K8bLfTp8zlrieK+V7RD5oPPloCxP5V6+KxlKFF3krHHi69NpweppaD8EPiL4ohii07wFrd7bbWEUVtpkrlzn+LC8DNfA4/G4Wo7VKyUeiujylgatVe+3yrodpH+zB+1L4i0/T9M0L9mjxgRY2IiUDQpY1J3ElssAD161pl2aZNgaFvbK78xxlV5I04U5aeRteHf+CcH7cHia+gnf4FT2ESMSTqmq2tvkdOQ0mf0rmxvGuU0q0Wqidu3UqrhM0qVYNU2kvM9J8P8A/BI/9qZ42m17WPCekRAAuDqjTFQemfLQ/wA68LEcf4VtypU219x6FLAY2V9ErnTQ/wDBIHxTqqJD4m/aJ02EHomnaLLM4HsWK+vpXm1+Oa04/u6f4hDI8bWnapOyPS/Bv/BOv4d+DPgvrPwJT4l65PpfiPU7a+8RX1tYQwXV61vu8mLzXDhI0Ls21Rkk5J4FfKVs0li84p5jWhedNNRV3Zc279Wejh+HsPhouKk7vd7P0JvDP/BL/wDZR8PHzG8D32qMh2mXW9XlmByOpRSq/pWmL4hzWvL4+VeRS4dyty5ppy9Wz074Z/s4+APg1eWurfC7wfo2g39rC6WuqaTpMCXcaSKVceeF8wqykggt0JFcbx+Lqw5ak20XTybL6ErwpJHXWui6hDaCCGZQoO5kWBVI46kbeKiWJk42uehChGP2V9xI+i6vNIjnUGfPeGbGT7jt+VZKTg7p/idLv2JbLwcZS0r2tzhny6GNuvqOamrO6uyYvni32LVv4XjZt5F3tXIUC3JxjtyORSUkZWbdmXrPw/4lUNst1lt1kUkTWYx9CaTqXg2ldIHQqWuZfje78ceHrnRYfCvwJXxJbX4caxe22vJZS2JLAKVidSHAGT94UoVKPs5OcrPp5mFaGJjNOnG8eup1kfwzsp4BMLu6ty5AIlG/GccZXgkc8e3Wub2knudsY+5fYS2+GV5FcSKskE8IwbZoUdJNvferZAIPofyqvapA4Nxuh0nghLKY2U29JCpIDSAA/wD1qHUhawcs0LF4SSXKDT4JgTgiYbh09+DWTqOOxaV9xknhB0fy4bWKEZwVWIYP0o9pKT0YJanhfjbwL8Vr7xF4j1rwt8LdU1jw9b3wjutT0m3817KXAyJFHRSDkGvls94d+v4j29Gf7xLWLOzBZ7DB1XQqLR/ecg3hi6uLMzRarcQDOTHcRqrL9c18VKnUpVHGpFXR9Xh68p01OL0Ma/8ADXiOAbotc4YcHaDS+sYdW5oGspVZL4jIudN8YKfl8QgAf7ArojXwKX8MzTxC+0JBpPi5+nirafeMUSrYL/n1+I1VxKekjR0/wz47MgMXjCPB6ZiFcdXE4C2tH8TT2uPtpNfcdn4X+FPxi1mYfY7l7hUj3t5dmS23+9j0968fE5jk1OPvKz9TKpUxsFzTn+B6V8Dv2dfif8T/AB7YaR4U8UaPNPGRcNHfXdtCi7DuKt5rYPTkd658PVjiq/ssPS9/dczstPN2R52OzGVCg515Plemib/I6Lx5d6kfHWtf8JBe2jXTai7Xj2EUUMBfofLWH5AuR2HPWv2bhzMJ5hlcatS3Ns0rW/A+dnThTaUL2tpe9/xOPufil8MrPxsnw4l8YWkniQ2ZuotHjhlLeUASWZwNq8epzXuN1lH2ij7t7XOGWJw0cQqLl776BfeNYhCYIZAiyZwscucc9+Mgf41u2+W66nSuVoyI9dupm8mxsotpBZpPKJXoSOaTaSuc9ZJPcrS+KYZmY3N3NCyKUxGdqkj8OnvWidlcyjPXQiXxDbSBTHMzHG5jlmDfyzQ3HdGt2lqxZdSkcsTGwbnCsflxjnBNK6J3IReRM4CkA4JHTco6468iqTSdzNq7LNqJrtiLaCZ2zhfLXI/Wpck9h8yjoXk0PXLj5YdHlUg5JckDPbgdO1LmsL4h8/hb4jT2kkmmafYQyyQFLe9N0UaFu0gwCCRwcEEHuKUoue5zTjKZp2yfEKG009dX1Dw/c31jZ/ZjqM9rvadcEB3jPyBsHtxWX1Z05Pl2HCCtZlOLw7rUlzKx8R28judzJDaqFU49AOB7VsoNrc25YtWNXwH4OS98ZWS+JdM1HUdHtbyO58QQWNi0kpsY3VrhlVME4j3dO9RVqclN36diU3ZqO/QwvFXhjQ7XxPc6jIt3PZXd1JLp9q1zPBbxQM58tRDuGMLgfPluOSaVKKdLVv57kVaMou8txsPh7RZLhrjTvCtpAxBDGKJcnHvXRCmrWQLV7EjW9xt8sREbcjoFBGOtUtHexteVtyo9rcHfMbVXPUq2euP1rVTsiJXa0HLYXDMbg6WmckAqw/pWfNzTuZTUnTZ638PPiTc6ZfxwQl4ZYxmZZ24Y46qeOfzr9RnWlKR+eTSVRqJ6h4T8Uy6jdx3uoeUWllHljf8AdGeTj8azqS7GvOkj1K01q2vLApYDakLcnacbvf1rmnGUlcmNSK0FsNUFvPiYlrh2yIgM592NRGMVudc0pQJfE/jK8gQzEqcqdrKflB6cVFWXUmEXeyOV+BYtL/4hXnxS1p43GjxNb6TJJJuO98eYwHIBAGB35NcuHvKq9BVFra5oeNfjn47+IHjnTvBXgnRTqz6fObmS1t18uGMgZWS5k+6AGC5GMsN3UkmuipO8rR3Qo04RbjDS53/hbR/Anw2tdW8Vm1gOsXlhHEkix9HLB5MFe2WkA/2QorppctKm21qN05KyTM/UtX0Txv4q0q38L6ZaSzW1wk+pxSRyFIbXy/3hmZwBu3Z2lckdc8DGE1TrK63TWnl1/rzM3KoouLZhfH34w3FrPqeleDLmK30+bT1gSOVNpVQoVZODgPlTgjoCa55zfM1HsYxhJr3mfBfgnVviK37Xuv8AxI8b+Ik1C607w40fh9bxyG82Q/vWZjyW2qo9amhTTjK79466PNFNI9S8FeO9RvPN17x1qETSyXXk2FpahsKAGYsWPTp1rane2pU1yy9Sz4Z8I2/7S3xKfSfEYRvDvhKM32qRP/qry8b5oYDnqFILkH0HrROtyzsjWMOWPM0c58Uf2cr3wTrlz8QvhL49utC1CVjmztZD5N3kEhXiOVZeBngHHQ1EZWu2y5Soxhd7ni/jf9tnxZ4EuZoPjNpK6VcmKOFtZ0+Jmt513fMGTqhbIHce9cvPUV2tzOlXjduW3Q9b/ZI+Omn2/guXN0kkeog/a4kJJinZvlYjqCR3x3qYOrUjfYdSqqj90rftJ62NQ0+4tTlpGAWLavV3O0AZ68/zqGp81kVzqMG5I86/Zm0e20PVvH+jXsqTa2JLKCF2AZkthESY1B6fPvOK0VGcXdnLRlGpUbtsJ448MiC7EtyP3PziRDD8zPweM9uv6UndSudzq+7Y8we98M6HqvibWWZfs1pLbTpE6fPIrhlC49yBk+mah1bzaM6dSSkedeJheeMLmXVNVaK4upTmGKMfLbqOiD0681tBJPc0dWpJuPQZpgfwfLNNeNDHaRxEzpcNtRSO9XOnJ+6inJUYO+hw+q+J4PixrFzY6OSmkW7lmBZv9Mbj5R/sDj61zunKD11ZxUK31mpZaJfidhoulWMOiTWnlpFNbL5tq2eBgfMp9sD9K6VFLRHbWaUPQr6TqWmeJImk0zUUkkc5Ko/Q+1JSS0Iw84ybSMK50238Pa619BDHHHcvtvIgmMt2es6nccacKUuZi/EW2a80eHU7fC3NgweCWMnkDqPyrWjT55WN6yVSCcehl3Hie51vRY9TtLhTIqD5SevqDVuioPVmUqmmpympaobllljHltuPykjKnuPoa6aSgOg5X2NPwz8Ovid8QbK71LwB8O9a1uHTlDX8+laZLPFbAnGZGUEIPc4rpnicJhmnWqKL6Xdr/wCZtUqKNl3Nzwb+x14ZW4k8RfEi5kvLmb5jplr8kcZ7bm6k185mHE+Jr1HToK0e5H9kU4TdSpu+h6Npvhm18K2i2PgrTbfTIVTaUtogpPsTjJ/GvJdWWI/iSbOmGEpRXuxseMfFL9jvWtd1G88SfDnxE9lc3rFruwkciOUnk4YdM+hr6PAcSfU4KnNbdUeViMj5G6lCVmzxnxJ8Gfib4EuF07xD4Fv4yZNqTW0RlWQ5wACvrX0mEzXB5hrGe254mIwuKwcL1IO3dan6L/8ABP8A/Zx/4V7+zN4jtvFPg0P4n8b2yLIZYB9osrIMNsKqRkM/JI9x6V+M+JHF0cwzyGDwUueFLa2nvd9H/mfJZ5jKuIrU6UJbaux6J8SvhL8SW8HWWt+JPCOoaBoNs8NpoVrrUItpLjawU7ImwzAdeBg8HPNfJU6FfDwlUxF+Z6/eeLRoJxlVs1vumvLr+fXdaGN8cPihf/DmKGy06T7JcWdvE9sHbDXcnGEQDqcmtckpvMMY4w05evcmlg4YibTkk7X6/wCR5B8YP2mfjXo2nX3h258OX1xPqtrtfZqUZgtd3/PZmI5/2RX2GByPDVcVL28tt7p3v/Xc9DBZZRnW97X+vmfKvjX4pftT+JbeXwfd+NbyPSbRdqxaXI4gb/ZGwAGvu8syjhmlW5+Rc3d7/ifS0ctw1KS5Eubv1OYi/Zx+M+sWn9rXHw48S3b3A3wXMWlTOZPfOOa+2gsooQ5J14xbWlj3lk1fFU3qzd+H37M/7TivLcwfs++MZpGG1Jv7CmA2/UgV7OX8Q5ThIy9rWjzdHc9PKHicBGXPTk5bXsdVZ/sRftheItXWwsf2fPECzTqWjjvEjhLKCMkb3HAJGfqPWli+K8np0XJVk1s2rvf+vwG8TWrYlUIxanJNqL0bSsm0uybSb6XXdHuP7FX7G37UPwU+Nl1rvxX+Gg0fRNR8L6lo9/Nc6lC5ja4gKxhkjdmPzhexxX5P4l4vBcTcOwpYGSlWpVYTS2fuy138j0MswmYYfHRnKm1brfzGW/8AwS01zXvFmpa34h+OMGkrqFzJNDp2neGJZ235+ZAzui5zk9cV3ZVxjHAZbToSb5orVWZtj8ozWtmNStTmuWTudz8MP+CSfwx8WPNZ6p8c/E9xqVmoN7oUOiQWV3ACc7tsjPlSOjLkVvivEPH0IKeFhzXPJxWX8Sxm1Rs7dz0jSP8AgjZ8At1vqOp6d451UqdoSfxHBCOvX93HnOBXj4vxA4sxUOZRgvvMMTkPHeNUWqtOC03u2SaJ/wAEWf2arDUL3VPEXjTxjOs0xa101bmONrWI9IzIUzJjn5sAmoocfZ9Cn7/Lzdz6PAcO1KUU8VU559baI7v4bf8ABN39lb4QeIYPFHg/wXq41S3ikjjvrrxDOzFHUo4wpUYZSQRjvXlZnxBjc9wzw2PUZwunZrqndP7z2/7JwlrON15m7ov7Dn7LmjXRu9M/Z38KeaT80lxp4uDu7kmTNVV4hzWVPkVRpLTTQ6FhMPHXkR2+ifCDwX4Z2w+HPhv4fsgCSDY6Jbpj8QgNck8yx9aNp1G/mw+r0G78prNo8iKy3LTQRbSNyoQqf98Akjp2riu76mjUehTn8DNdzmdbhroBTsaOZirD3DYI69CKvn6DUEtbDE+H8KMc2JxIOCGyo59TUyaeoOTZEPhzAHluxHIJppB5kglYlsH6jFJSS3JVO7A+BL0gFo5WjVcKwkPfPHQ8f57UnOTVjZR5SGb4fSSuo07VLxYwFwrW6uvXJLMq5I7Zq6c7L3gm1JJomtPCV8+3ZAkka4LhUOM5BGM9DxmnKSlqY620L2l+GL9jLLDov2nyAqh0hP3WIz2yvIzxmuapXdNWHCmnLUv2ngqyvrqS18QaPNaRTYFvdwWu9o1XqSM8jrWUq0mrm0Y8pLa+D59C1BriG80qa0kiQQwjRQGLdC5Z2O4HJ4A4rKHNJttm/PDlulqJH8PdNjuTdFAGaMgCO5cIx91BwO3UV0ym+SyZzevU6fQvAPwu1PTLuyufiD/YGuWUCyj+0rO4e2u42D4EUqK4MmVAIIHWuKMsVKpK80kuncTqyo1Yr2LlF9U1p8mUNQ8H+JND8IS+JtO8Max4gRIpvs9lpFsHubyRFyERHKYLZGC20c1nRqYipWjCUXFPr0HjalPD0W0m/wA/8i7o+hXsmh6fqWr+FtQ0Se8t1nbS9btvLntSwyYpApZQynI4JFejJyi3F6mFBqpRUlf0ZqL4bW4Bu4poArsC3lhct7Y54pOXM7mkryb0A+GIZ5MW1tE69XaKIncB7gcfjWdWXK9GOKi4kE2gRxvI0ejuV2ZUyNu/Dp/QCphU10G2tjPu7OK1g+03luDD56oHtbZn3M2dqgICcnHT61nicVSw8F7Vq7dl89hyjJwc1tFXZwXwZ+MngP8AaA8Dt4+8EPNFBDq89jPaXymOWOSNtpDIeRxzg+taVfaUKzpTVmrP5P0OTL8VSxsOeHRnzr8RoPilafEbxP4k+GHxd1Xw/bDUmg1KLR45WFzGRgqwBCgdOT6VnWqQda7WrW97HGqdac5zir9Ds/2WP2d2+Kmiaxba9eaVql4Y3MVx4g8bQ2PlYGQ+wckexzya+OzfDSljL0qijpdqy1+bPey6tUo4RcybV7aXZwXjHwf4d8J30mhtb2jyxM0cjxa3LKMqSODtwV44NeN9QxlW1SNWNn09096jiaUFy1Iv53Odgj8JTwGYxpsXhtt7I3I/CuadDHQdr3+SO6hi8BUTvbTzZJC3w1ijBvJpFDL/AM/DY/CocM0vaCX3ImpXyqGrkXNO134L2U6tefaJAq5CtfOoyPoKmeFz+pH3Ul8l/mQsbk0mk7/ez1C4+IH7MGkfDfwbf+HPiB4hbxVql3eTeJIbK7uBDp1puCxRFsYkZsbsDoCK5MVkeaQo+0jKE207wcErNPR3v11v2PPo411sbONeNqK+F3u330PPdL0wad4gujaeLL2W1urxpbSW50+48yRSfX5e3HFb1OevRgp0kpJWdmrDowVBySm3Fu6vudTqOsavo149xpHhu6miuI1EksrEAOB0AfkEjmvteClUp4apSfR7Hl5tU5akXFdDA1jXPEV9Itw2ixwyldjzKYw5XP3SwGcV9xGg7XaPFb53zNakcUetsQryQx/KfvuW5P05q3GSL5kt2Rnw9NPK0114mY72G5YkYg47cnFJQXVEz9nLUfD4c0SBxPLqkrMcg/vEj/xq9loK6juaNtH4atypVvMJGSrXRbp9KjkbM5VOZlqGfTo4w9tocTjcMuynIz25o5L6hC7JJdcu9p8rR7dCFwpRM9fcVtCiupbdi/aav4mYPtnULkCFVtypOBzu9PStHCCWhzTWu5oW1x4iaZ3klBZUYHzEJ5xgHGR0NYSRV2SpZ3cpDzxJkrlwgwpbHJAJ4+lODaKTdhw0eVMbbXcCD94jH5jmrbstCXqWItHVlZJYuucAyEY7YBFRzaFwauRXXhBdUUCa0SVScDczkr9cnAojKxray0GQeD4rGXNkiB3UhlWM5I6EHOcjB/Wrk1IyqRjP3WJa6BHo1mILTSmgiV/ljUEj36jI5rNTsiEkkSMjJCXksFOW5If5T7fpT5rj6AlmZ51t4bKczuPkEdu8gOBk8jI4qJT11HBNiS6Xq0482OILwWcNY8k/XIrWHLzIpxbgztvE2n6Nd3KQoiRGFQ0khYkAjnr3+lfq9aykz80rScZM0vBlzqOqLLe2BKqSUjmljKcf3voK53Z6nOpc0j2Xwn4nXT/DkOjWuoAxxJmRygLu3dif5VhKaasjppws7i6R4jS9uHuRIkIX7+Xwx+v+FZxXLqdjcZaGL428R3muQtDBJMjMhSNgR8i56qv0rkrylU901jKK0RnWt14pFtp3wy8Cxf2bHOSr3GPMlAPLHGPmc8n+6O5rWlHktGJnOKWr6np2nQeGvhR4TbwrZkqJfmuoLaXdJcv3eaXqxPp0HQV2OMIRutDFQU7xlszg/iP8ZrzTIbjUGmt7e2gty0ru2fIUD2HU+g5rlc30N6s4wVkdR4C1q68I/B+3utRili1LXoxfatLM+1grcxRnngBcceprVt04+ZjBvmbseA/H/wCL76QBPJcPLJIwjtLdSMyyscKMeueg9K5JuV7vcKjSMT4gfCXQ/DHgXTb/AMaTyDU5UNzqc0aneWcZ2ZHOBwMVc04pITnUgfMPxZ8aftEL4xs7T4S+JFSXVbmSeS3vrFJY47aMfMyqABGFLABRjrXPzODa7gpy5nKW7PUf2EvjF4h8HaV4g+G/xO8SS3ustqDajLeTxBPtcLAKflz1TGBjoD71VKmrNyM4Yiam4y1R6/q/xFk1m1u5DeJIjzbrPYQcR7QvT65496XxN6nZGN43Z4H+1D4X0vxdpV9p19YwThYgjNgfe3Kf0pOLV2Z1ouUeVl34y/CG88CaLbeJPAF3Lpeq2umRTSAjC/6tThx0ZSMnJ6bqlVabSb0Ip4eST5mcL8DvH/xZ/aS1+fxtrNrBZ6X4ZZ4rWBZCf7TvkADSk/3EPQdz+FNXjK8QhKeIlrokXfCeq6n8Kv2hLafXdXlkm1zT2ikd22hLqJ2ZRuHUkMw59K65tShe2p0qKoyvtctfH74022jaddapr1zkByQ0bHdK+cBVGTuY5xXDKFSozWc/ZQ52eAWPhD4lanq0vxG8TeIJdOW+iCR6OgBRIQcqJBjl8HPtVxoqEbW1MI4epOr7WT+RB4u8QWHhBTrVrY3DBVY/ZIVLs4UfMf8APrURpOdRKJ23hTXNYyfhV8M/F/7Rnw81f9ozxZZXcXgHw7rkdg2mxkqbi7cFxHI3O3Kq3BrjzrNnlmPpZbRX72or3eyR8/iK1XE1o0qafK2/6/rY0dN0PT72Q6lpFskEIO2O3QghVHTp9K2SqprmevU9qnTjQglFFP4ha5DoXh17eGdo5tVmW2jIXoCcMw+i5rojJcyUtjLEKbikupjXmkzaeYr7QpxG9sEWIrwSuO/r/wDXqfcvua0qU6TuaGs6k2ueH/O8ryr+3BLof4vf6VtBPcqvCPIuUoaNrw1OxFvKQ0cqlfn6j1Fbp8quhU6/u2RyLuPC+r3GizEfZ52MkDg8Z9KtpT6HHzzVTUytSV7w77KMtdE+WiAffY9BWlL2cVzT0SO9OcoaI+3f2SfjT8Q/hv8AD/TfAFtfLoOo2FmY5Z9EXy1mDHJFwAB5pOcZbNfmWe4ShjsTOs3d3012KjP2ibe6Wh1HirwhF45uLnxDomkQWd+qh57eE4S967nRSMK3fA4PbFeVgsTVpv2dV3WyZvhcbUnifZ1PhsrPz/qxw8uh2jqXEZBJwy7eVI9a92nUtoj2ZQSWg2HQYxJ5Lbpc5ztx/ShS5J+/dr+vI55Qluej/s6Wvw28F+Jl8f8Ajm9sXurRimmafdLvWFiObhlxglR90Hvz2r5jPcVmM0qGETs92fG8T4vGVaX1bDxbT3Z7x8Fv2i/2fvAfx/0K88I6ve+JbiC9a7ubC40j9zIxOSzyH5QFzwK+cweGxGW5jDGOOkej6nyNPLKuHiq9SNmvM+VP+Cmvxg+M3xo/4KNeGtS17xDJqdqdR86y09XK21vaZGFjUHA24B/GvssuxSzbIcdicUveu0vL0OWUo1cJVqVJO/RG14o/Z6+J/wC0r8fbHSPBnhuG8k0W3EdvNfybLayU/ekZsYLAZPtXk8P4qhluE5VpffueZg6k1gJRjH3v60uc1+2P+z5b+FtZs/hF8CvA2sa/pdm4k8X67aIbgS3pHKeZwBznC+nNfSZXxJl9LFVJVqqSn8MXq/8Ag+tj6XInhYYiPt5q7Wxu/s7/ALCn7T/xv8X6XdW37PE+gWUcRTSINcihsopYYgN02Cct1BLnuwz1Fe1RzDD4qq1R97ZX6LsvXR+p9o82yLCZhClOUfaSTcY6XajZNpbtK6Tfmr7o9P8AGHw41H4J2l9d/FD4kaBBHonyz21hrRlMT9TtC8YxxxxnjrXh4/OcDTrxpSlzTeyWrO+jxpkvO4O6t5Fvwbp/hn4h+FrLxV4a119U0/UAJLeWOZmVl+ueKhVlJuKVmujWtz6zD4jD4qkqlH4Wa6eAbZtQaGzk2DP+qlm4z67jXRGakrM6YyjGWm4H4Zanrem39hL4Wmu7m4OdP1ZtZe2WxIzhyiKfNGSDg+nWnQqxjJ6nR7GU5Kd0rfiXNA+AHj3UNRszZeLvC9osdtbw3Ok3llPPaTTCIJNcLL5vmxb3BfaGwpbgADFVCdOEm5Xlr1t92ltv67mGLourFRi7PujpLf4KeP7HU4bnV/EPhmS606fGl6jYXlxHPbRHIeMSAN5ikHbhsjFVUxDirwJoUpw5rt9jqNT+G2kHUHvdBuXMYAeGKW4LvESOR5gRNwB77R9K5PaN30Ol3SsX9M0vUdPiEU+pSzDgPDcZkXjGOo/lSctCYrU3oF0fUE8uRjbOOu9S8bfQ4yoqYycZXZq5K1x8Ph4Ah0izGRkmEAofqetaOto9TO/OW4dA0mQFXjZSv/PIZJ745/wqOdj5WtBs2g2EoKJAwZcjJyAfrV8yKVkiGXwwm4TCxYkdTjBJ/wAKUn2J5rif2HaCMM1gFcZbEi47dT6UX0JUW2SDQoZE/wCPJcnOCTnA7/hTT1NrcoSeE3kP+j6e+A37wRIcd/yptu5Ld0R/8I5bSxrNNp00TRn54570RlvfYBzjjv1olLQS1A+FbedCfsKLsOHEcqtk89cnrWd1Fk8liO8+HemaneW98+q3UEsAJi+yaxNbJIM/8tEjYK/0YHFTUipFK1yW68C3DurzLFdFQd7NN83PbknPr2/SjljGOhFSSeiC08JQWQwlhHb7ozsWXhl59en86hNPY1px5Y6kyeHopVDOEnkL7kIYNjg8nApz5bak3TZY/sa4t1W3ZZQACWBxgHPqOaUJPmuaxWhY0/T555UZYpWXeTu2FizDpwDRV13M5y6M05vCWvtajVpYriK2aPc0nzFY1Jx83HAJ6VlCpyuyI9rSvy31K154efRXFtqMd2kr4YCdSjAEbhyBnbj1HNKT5tLiVWL+F3RFe2iatZC2RL+2kgkWS3uLDVZIJAw5z8jDzF/2WBHqKHGcot3JUeeW5Ve48UXnnm4l85pZSSzR7SfQ1VOHKrI6rRVjMsofjZZ602p23xAkhhi1SC8stPs7cRLC0Ksq54O9sM2SeOelZVcBRq14Vajd4u9lp/TCpCklJJbq2p5xr37Pfxjt/FZ8WeFdXsLK3e5mvdTtbPTMvczFeHAQqA3GDnrnrXPhsG8LUk4Tdn3d2edOL57pW9D5d8XaT8SPB/gu/fxt8RZfDmoanrtw0/ho3Drc3CszeXOy7SgXG3jeeSa+hy/BYDEYtuqum7/Q4IVMZh8M4xnJJu7V9HbZ9tDn/hr8PvE2oW1ymm/GHV9OlkhZpJZL2ONGx23EHmvUrZFkeLqXqU07Cw2Pxqi405tW13sF34R+KMQZpfirq924jKlDqaHI9Puk9K4a3B/DkpaUEjR5rmdVW5m0IbWK10+SHUbTX5Lh23JcReJvLQgdQUER4/HNXHhHJrXUEvkCzjFQVtbnP3aeJrQLI9veSx8ITJr0uPocY5qP9UMqb3t8kZzzbHSXNYXT9X1y1vmiv/Dc01vg7d2tXRHGcDh8UpcHZVOTSm0uj5UVSz/EUVZxv82ewfs7+OND8cfEHS/Avxe8RDwfoENncG11ldTuyPNABjR3Zm2KSOwrzqHh1kHt5VK7bi99EjnzHinNakIxp6dDr/hJonxL/aY+Oj+APCS3d9a/PDp/iLX3lgsoo42kJla6n+TbtC4wSSTgDnFfM5nwlChiVhsq1u9L6WXzPfwXEtOOXvEY9uTSS7v5HI/Ez4vRaZ8P/FPwlN1N/wAJXp3j2GOK1gtTNbzQW8VzDNIlwg2MpZ0K4PzDkVrgsHmWR5o4zs4OOtn9roVPE0s0pQxEbrfRpo890rSPitrcgl+zTRg9CUx/+qvajj61So09uhg4NrRHRaV8L/iBdkNfXsq8Z+VuPzxxXQqzdNX3MvYSeqRtw/BXW5IkS5knct1VZcge/UVmq0myoUmknJGhB8C57cJO6KVzgs7579+4rpjiIJalyhGWxp2Pw4s1AKuM4IJGNrYHTNNYiD2Zg6LuXovBtsuMRNkckKpIPHTJHIp+1SKjCSLMfhi1tojiGRHDbWVkYDHr0PIGabru+hPLdlj+y7OR/JSeEScbIzIA5HXPvVe0JcGnqiYadcF9hjB4y24ckiq5ieRix2REZtwq8Zwduc1PNYVnsPNjCowqMzEHeDJggZ5H5UNtkyuiR9NhlAe1tpRjGFlcbhn8uKSbSCFyGTTFR1IsVxySVnbBNPme5tzLlLdo9vIlwtq0imzkiim8yFowXkUsoQsB5uAOSm4LkA4JFZe39/lZmqsXLl6iExAFZLaYy5z5jxnHP0x2q3ZrQTvzCSfZVQFbVMMc/NkgDPTrx/8AXpIfKQTskcZWKziAdcEqzE4PGTjpVdSoqyK+pwves91d3U0TJFtVLedwhIHOfm69+K3pKKkkaN3RcivbC71y3u7398IeIoi3yq2OWbnn9a/VJNTlc/L6ztN+p6BZT3eu6a9jYwhYrZN1w5UKo9uamVNyJhCzKfgvXzDq8y61rU1vaxg+XDCwUlvVua4ZLkluaRq8nQ6O01CyWwY6RPLcxl98kqoRxn35P1NJyurXNXLmVzL1rxrpEU4vZBEogJWNi2SPUkj/ACK56koRlqax0SIPht8c4Lc6h41sUDXc0RjtpGGVjtwcEpz1Y962pVVCPNuVJqasQr8RfEfil21HUbn7JAScAnBI9/U+1TzubbFNqKSRn+CPL+PnxDTw5aQv/wAIj4ZuFn8QXoU4vrhTlLYHvg8t7YFaUqac/IiyXvSOm+PPx+0SzF1brqAhWFfnuJsMoOMLHEgPzN0H0NKVSDm1fRBGLndo+ePgjMfjF8Yj8RPFKrH4c8JnzbaO4nH7+6JIG4f3gASAfWsFGXtubo1f+v8Ag+uxVNc7aZ2fx9+J0fiEybbgSpKSkcrN8qkkA4A6kHC81VV63ewqtotRR59+zJ4ct/FN5rfxE1nXoLWC51T+y9NmuoH2R2UI/ftkZwTIevOdvA9FDmkrp7HJHmleVhPE974N8OfEOPxrDo4uF0268uRQcefA+BKzcfKPm+nFTUldK2htRpSn0NH4n6DpWj6zd+IvhN4hgZYJ1gntJn+XeY1l2cn5TtdeR1zWMXGLdnc75v2dP3jwz4k/tEaM6QaZ4kUWskVysuprL0VEYZcH+IE+nNWqt21Y5YVYu7tsd1q3xM8e/tQ+EpNatLG60nQ7jTYra1guHK3N3DGTghScRqcn3IPPapjRalzSXy/rQ6Pb+2VkrFP9nTVbH4TeILn4V6xHHbLdSSzaJO0eFZjgvH/vZGR61dacYdBtxpxsc3+08t1eaH51nctFdW8sc1pOAVeKRWJySeQDkfnWVOcpta6HLNuR5b8JP+Ej+OPjCT4k+NpIhY6dfNbaHp2/908q/wCsnbtnOcUVPerckTXC+0rycqm3RHX+JNXmuryWEMoeQoqtsHbIwB6Vo5vl1O6bsrdTG8INpMWoX3iLVrZpfIkFrFbvGDuwPnPNKDVzCnJ3budJ4K+Jml+DNP8AEHwd0jVhY+BfH99ZnW4guUs7uFjsugf4SAxVsdQfbFeDnuVLEzhmCV61FPl812JkvbTj9mzH/G79l74sfs/eKYox4XvtU0LVlafRdV02Bpo72Ic7025yMY/OpynO8Jj6fvNRmt0+jOqap06vLe7eyPB/F3g34v8AjAxeIL34U+JYrKCULYldEn2EdS+7b9Pzr2ZY3LaMGpVY8ze10cKqqVT3tPI1YVEmh2l/dSAMpEMiMMEMMjv3zgVeHinq9T0KzvDmQ3VY1ZT5abZFU4KDJwfWuj3pOyRxzUpOyRwz3N5omrvBJGY4Z23IWB6/XtScqdN3bHCk4K7HeKYF1qwxvzPCdysBzn3pOtJsqTgle2p1v7Mek+FNe8aSa54ptvtUel6c8y2azBXM+QisOOxOefSvA4ixOJjg1TpP4nr6HBjcbLD0eaKv6HqOrW/xM+Husp4ztVa104tkX6SpIHUnDArnJIH8OM189LE4VQVOsn936nHh8TXjWVTWEX18j2fV/jV+zn4I07VIpPjHfeIVstDhu9LFho0tuX1FiN1u6OAQi8neODivEli69aMaNODUW21qrX+8vMM8yjL6tTlm6iUbppdTwPxp+0p4jkuZdTs9E0S0lvPmjM94HYk9CY1PGfTFevhXXqR5Wnp1UXb73octHjPHYiEYqEYp9b3fzRH8MfiP8UfHWqS2/iPxFDbRW0W57C1tDA5zgjJbn8q668VOF4bd7p/kexSzLF17wlPb5HaNPfSX8Gn2sI+0XbiOD58l2PGTnrXm4nEU6FFyeluphVxEaUHUmfTfwjtPCvwR0M6h4nsLeb7LD9o1GW4XHnYGSueuK+TlUqyqc9W7b2T63PjcTi62LrKUtl0PM/BNt8L/ANoTxB8Qv2s5HFvd6e5g8I6WX3Q+WCA3JGRzzn0rrzCdfC0lgY+5F+9K3meXj8TCo/ZU7RT/AAKfwR/a3/aj/aGnl+Bnwd+Edl4cis73yPEniO1uQY0QHk7l5lOOgPcirzrLsFluX05VsS3dXjBKzfqThaU8TJUqf4H1h8XPjn+zf/wS0+DsN9qNxB4o8WataebY6G53gTkZMku4csSep4Havncvy/F4/EQWGnCo5r3t7U/J3S970bR2VatLBv2claS28z4a8W/8FS/2jvjf4ofxB4o+KV7Dby2cv/Ek0oHybK3I5HHfHftX188hr4WnaLd/h5m7XuraI86pVxNSak5a2fyOU+DWk+Mf28PiVHbRG8i+G3h6UNrUxYr/AGhJ18rceWJ789678LkkeH8PzSSeIns/5V3/AMj67hfJfr9ROavCO/mfbOleG/DnhHSItC8HaOmk6fBGsdrYwYVQOgxjpThHkTe7e77n61Tpwo01CmrLsOtJ4Reva3whFwDtgt5CS59xjrRKpG6SOynVjTdnq2dd4H8LeJL5J/Emm+EtRubKFGF1c3Vufs0OByctwKmrOlGPxWbLnj6NOnaT2Oz8DwaTrNutppd+s8d2oe3lEIAbsQrAE4B9DWf1mndpy+EeHzHC4iPuvRnSN4LsVWMGCKcLIV80OG2kdQT61p7Xnaa1OqhUjVhzQd0Ph8MWby7IYSABkRsw5x+H8qr2ivZGko63HXHhSKbYxtWyG/do/IXPoaNHuQ32K1z4QnJ8pI5Qy5+Vz3p84a7EMGm6tpMm61EqEN0XOP8A69F4sm3U1INdmeIR3lvbsxbcZGwpIzyMj1qXFrYd5LZlxJ45JBFbW0sUjgBRuEinPcY5xVa2stzSKbiXktJYgyNYqGziTc5XPPPFa6X0MGmnuOXQLRQSti6hjtCh8k/Wm3boWpW6jv8AhHLMAP8AZiGxySSB71FhuorEj6GCuyANgcsrPjNaW0CMvIlTR1Y4VEOV4Jwdw980JtMPQBoNrGR5WmQgNguVjGSahq7uO7aJV0BZCfLs0znlcA/jVPVAm3oRvoEsYzJaq/Ygp3qWlYm6uH/CPsgybePBByWjxn2PFRCGpcpNFdvDUFxC2zTosdAsJG7HofT61NSJNN6jhpsOigR3V21vE0Jcn5pd4XJICqpOcduprPmlA25mloF78OfCfi/yNWa1iMkhD29xG81rInXBK5DKfwyKlS59TmnUbkrorx/Bq60/T57bTPGviW3triMx3EEevysrjOcBXJ4pyip6GfsoOV7fgSTeDPFk1wkJ8dapeMiKgS/VJsKowEJK5wB71P1ead0zVRjBWjEY/g/xcl1Ffbba4VGxO1taqrSJjkEHqe/BHf1qY0qyfc0puFzQuLfTIo4GZN0zRb5kNuVWBySNmT1OOcjjmuhR25i7yk3dWHRw2kkW1fnZhyRH+Oc4quaysDXcqyaPpctw1tbWTvO5Pzg4UgAk9Ezn8aiV0tUQ5Qa8/UxfEvw98N+LLZ7HxH4TstRjxt8u8tQ4x1PXJrnlKT2uVfnVmec6n+wr+zhcie7t/h9PpzysN0ml3M0IJ68bD+ldFHF4qikoSY3hcNUjdwRg3v7CPwuu49ln4r8WW8WCyxNe+av5So1d8s3xvLo9TFYDCbctvmY2p/8ABOjwXcoXtvHWrKmMEPpdlnnqP9QKqnnWNUfesZPLMG9k0ZN3/wAEzfC92qxzfE/V9kfKAaVafN/5B9zWX9rY7V3RMsqwSW7K8P8AwS6+FyOJJ/iP4p27ThLWWO3Ujv8A6uMUoZtj+Xc5amTYWcr6mpYf8Evv2dohi8m8S3uOsd7rtxtJ+isBUVc1zSpHldSy9Ap5JgYSvy3Oktv+CfXwOgt1tYfDqzwx4EcF/eTSKMdMB2YcZ9K4lLEc15Tuz26FHCUKfLGCS9DpNF/ZU8CaTCIdJ07ToVjAUxx7iqZ/2VwBVSpRcdTSeJjJWsreRqR/s/eF7CeOCS0gk3H97JGWP0xk4IrFU/e1OV1G37q0Ih8CDFOBJc6S0BPy+XaOjBeeuXxXROELaCinfUhvvgzpMgMdnaWxlGQzsWGBxj+KnGKsUtEZt58EfEttMmoaJbWEtqTiQSztnn0656DFc9X2kfhRmlFy1ZdufhakFvZ3N62mO08Je6htjLFJaODjafMQpJkcgofrinTlUsr2JgrzkpRfkyCP4d6NFAxmurmOckjy2gXGO/JwDgVor33NVGNth118OPDkEhitNbM74XdHcXaQ7SckjB6/nVKTUjju/aWsZsvhrSI5vK+zQ9yC8u9vw9O1buUrG71Ww0eE4pmINnGwx8gVsluvYjPvT55Iz5ebQlsfhlq2oz28ejeGGne9uVht1R4l3uxAAZnICn/eIqJYiFN2ZE4KFJzb0RjjQILhmj/suS3dZXjkiuCokUoSrZ2FgeR1BII71pGXNsYcqkrohk8PWQ3GSwcH+EAkDj69q0TsioxaIX061jAWWxwOuGY4B/HpRuJq+hHcAJGsckSYTICtyB645o5ddSuTQqA2kaF5LWLoSGGOR+Ap2I5dRHWwkUv5O0A8Iq4J9smhpIbS6ELW+jSXESJt8xiFj+YAgk9Onek3bUaTtZDL63tY5HWWyjiZFIkDgK2fTHTua1pTbqL1CXNtY860LxJDqusLpFmU88/vWiL8/U1+tygoM/LYqbfvanpWman/AGPaR6d9vBg2lpFDD5m9Tn+VTOorWNEnfQtT+Hn8T6RJdW8qW7bPljeQgynPAYY6VwVINq6GnfQlsdMuvB2hf2l4tEbTvnZaxOyxxJjAI+tc8vhs9zWXvQSijh/GC/25HJZWmnMyyxHcqZXapB3Z5yPr7VzVdUPlbRwvhPxPJ4Nkkt5obfykTZFasWKxKOF3YxvbGDgcc81TlypIS5k7nQeBX+If7SPiGTwf4JlNnp9gwXX9e24isUPJjUngyHHTtWuGjUqyeuhorP32eqeOviT4G/Z4+HyfDf4ZgqRAYwRId0zZJaQ88sxOSep4qq9aMfcW5zSh7XEOor9Fa+ml+n5vr8j5K+InjzXPGWsW+lzXLJcXk6wxJHMd0kjnAxzkHnnHQVxRUp3j3Oh1FSsj0L4j3l18JvBNp8KPhxZww3sMQku7iaIOssxUFnIByQMkc+ldUeem+RK36mNWpJO8Tx74kXfxR8ZWd/BY/Fw2aW9vHbx6XpmmpDI7lAztvOSRk5GMH8aXvyfLcxSdWScmeIfCPxd8TvC+lXvw/t/iFrcB0W7dhC052lX3MJMHqcn862hRcJOSdhUqdaN4p6Gp4v8AAXxl8a+G5NSv/izqklhLOUZUu1VnlwrsHxglcFDzwe3Q1hJ8tRnalKjRTbPafgn8VdT+Lfwj/wCER15YoNX8LzG0AtlJE8DKWVySSWIUYDMSflHPFKNG0bPcxWIVSajJ6vT+vuPOPi94Gs9P8RaDqV9bieBNXgS4SU8qGcDnPXqDQo+zlzG7g6Svc+xR4e0SPw9byWGmW9hF9i8uK3kwJ5kTO5wy8Fc8gejCrhWdXV7m8b6dzxv47f2XqNpMbGVklguVe0vB8rwspJB/2fX6VM4KSZnUhKSucV8QfihB41+D154i1ZY4dU02IwatGGziRVBDD0DAZrOdGdKSi2tQekLo5/8AZ+gW0+D2hag8LRQTWrTKXBC+ZIWO4nsMc5NVOMYTs0dOHVT2epznin4u+EtI1ySPS521a6hyFgtFLJ5n+2/QUTpztoxYmpaOjOV0rxN8QNfmXRdN0ZLFYZWea7uHypkbJY+/Yc0lanT13OehCrze9sbkfhyOxs5LW61GeeRgwnU4COCByBWHPKcrnW3Hpue5/AL/AIKC/Fv4EeApvhJrF4mtaOthPb+Hr+9gSSfRTNtDiNnBO07VGPavmsz4boYrFRrYWfI3ZyXRtHHHCU5YpVpfGk0n1SdrpPs7K/oj1z9iP/gqz4K/ZP8ABMng74kfC3xH4onvEnWN52tru0g3ncXjiEatETxxuPTBrxMx4azWderUw/spKcWveTum1a6d91v/AMA0rYTEayXvWOA/Zu8ffsJfGD9qTxRqP7TOmPovhbxNcNPYQzziJrRmPPoEbOTjPfrxUV6fEGT5XhoU3KfJpNxs218zmc8XCnGnO+r6FbUvg5+wh8Qf2/vD3wP+HHjbXk+F91dLb6x4gsbxGfzXGFVXJYKuc8+nSuvDcRZlhcnlisZzRd+q95R72RhKtWSum1bqHjj/AIJVQa/+1T4g/Zu+Ffxq0aCOwhuL+wuNf1WJnnsogzbkK8ElRxnv1xXHLj+lTwX1hU3Ujzct0mvQupj1TShOV2zK8KfsBfBW0An8R+MNb8QTxgCeCCRbSDcOo3DLEV3/AOsmPxUYukuW+p7dHLvaJSk3qd3pnwO+DHgOOWXwl4E0/RYjEfMu7iEkle4ad+tcVXOIyrclSb11S3/FKx2xwODp071Eku7POfjJr/wPv/CTeAb6407UL7UpyNLn09mK21yvzIdxAGciuXF4/GVbfV1pDWX+HZnz3EWeZSst+qU2pSbtddPmeHeAvC3xf/aU8Ua/4Y8JtAde0PTJJLhZWCtcQQrkjngt16dTXXWWU8P4ajWrp+yqP7m/0PhMmyzH5vjKlOjTvZXOh+AXj74J/AjxFYS6/wDBew8e+JY7ac6+viy6e3t7EspCGHZz5iN827nkDHqOjELGYqt7Wq7YXaMIN3mvOS1VxYSustqqcqSnLVWeyOx8BeN9a/aM1a9+IXxB+Lltf3VjYtG15fRxQvHDEMLESgAYgALzzxXzlVYfhWKoYbDOMZPRJt3b663PYwuOre15pa36En7L6aH8XfiTqHjvWfEFrbaDou620mWaUqksw+83GTx0rHP61TCqhg5+7Op70m7+6umye5xZtmcKuK+rw7HrvxwitPiJ8P7vTPDuszokVk8e/wC1fLcEd07/AJ1z+1cq1Ke/Jbftc8uVZy5VHRo82/Zp8fT/AAv+GY8FaxpaSed5sclvJbHv1z9cZzXVmWMUMxqVeXm5lZeXoebKlOpWlJq56B+wN4b8Ga38ZvEfxm0LTrbR/B/gS2kv9VltHIi1HU8ZjtyQcM2eT1rzOIauaUMspe0fNUfw83SP/BPbyXC81ZypxsoavzPh79r79oHxd+0p+0HrHizWrpo7eXUZFtoXkYJbxBuAAegr9I4XybD5LksWknOSu7dWz5/F4ipiq8q0u+hf/ZW+FPxH+OXxLutP8KyXGn+DtKtgvi/WrZhGRbk/NGjMOXboMc81rnOOy3LMJBYlKVabvTi+/d+SPUyrL3mNaMJ37vyR+kHwn8JeDPAPhCHwr8KfDsmhaFbx7rXTpphJLKOpklfAyT1NeK5SnWlUnJuUu7vby6H7blmFpYTDqlSVkjs4NSuLoxRXwQqw2pGLc5H4+lTJTT3TR6lNx6bml4d+Aem/HjV38Lpqs1k+nxm71HW7NgjWSLyFZu2fSvGz/MY5ZgVUpyTm+nXQ+dzjMHTnyQ3R2+ry+INT+CmpfC74b6/ql8qrNPqGoTTCC1giWLYi5481yQzbRkkkegrxctxsMTh6c5ytUu5Wb3Xz/p9NTzMPT9rhF7z9pJttNpLlSW347/I5f9mVfDfwi+DWn3njDxElmNB0+RYDqkxR57lsDLBjnbkk/hWWJq0JTqVp1rufb8jLDV8tw9CCm2kk7Wbd3brqVv2TPiJoU+rXXwn+GguNXtYb+4vtV8S6ldskd5eTyFvItgclyM9Bxg9a6/7ZnhFTjL3+ayUYrVLuysh4j+o4j6hSpymu+lte1306+ul3c9313U7bwfqT6N4nnh07UFiL/ZLuVfMx1yBnpivoYVoVG1s1vfofexzXC15+zvaS3XUXw9478Ja3JLp+m61DNOkPnMEdSygcnj0xRKquVPmOmhjMNWk4wabXmWfCvjXwF48tp7rwn4ls9Sit7o2t1JayqxSUdFOD15H51bkouzOnD1qGITdOSlbe3Q2ZtLQQZ+yEqR3GSD+NXBt7l6zRSm0e3OD/AGejkfxheffIockLljFamH4o0G3nsybDw/CNSjIW0v47hk2jnKyJyJAfbBHrWU4VLc0ZWGoSavfQpa/qGsXdnYafqV5Gk9i7i1ntlZd0br80LBmPyhsEHrnvWNClWo4nnlO6OeOH5Zt3uOsJ/ENpiK3vrhiCAykZ5/wr1faKS902jBTdkjRstc1/azNOmxQWlkYAKp7liegx/KnGV9AUY3sbXgnxFofjbQY/EPhzVrPULOSRkS8tJRJG5QkMAwODggjijnu2hOacbpm+bMMmEhHXDbc5U+lUmrXMnJj104j5RbsM/ex9e9LfYfM+gqaLDIpYQBSRx89DRfO0TPpc9vERFZCcg9DKAfzNErpaExabuxz2aKzbgRlflEuDgYHHFC0QTdxPsFpcAs1tHvwP3oXawP1qJKT2GtEK+gzKBgo8bcjY6huD1OMGh3QNqWhQuvD1ow81ki3NnO5NrenUc1KjzFLzG22iXtrys7/eG0KSf/105RjHVFpq5O0moWgUSW6sN/KBMfrR0HpYhlvZCJGa1hGc7x0PtnH8xRB2M+R3IXa2u3El18owfl83IP4Grlqim5IieCwRmdpHXggbTyPb2FZclhpyluVZLm/kgWysdTvfs8bGQwmQ7EOMZPpWnLUqJqKulq/LzIjTp81+pRuLhXZpQ7M54LM5BY47H/8AXXE2nsdNox0KjSvBmWIgYblTyM/Tv+NUr2uEW2itcNM6CRrdMs3JjYjOcZPFE5aD5rMiMd0ckXEmc/MW6H2qVa5XMpDHDqGIRpNow2JWXA46e1OVrCmlazIP7QglQSWieYpbgG5Zsjoe9OE9NDOMZN2GPqt1IpIhkACnByeOB703Zm3LYryXeoF8qWLEbQRwe3p0qeW7uJ3sMNxqD8i8kC8ZIIB9x71onoZODfUfDcy7QVu2x1JyeePzoTV9AUEtyVbuRyQZGyWwTyB/9endMCMzz7toDFjjAJIHvzRd9CJXHHUri2hZfKmAUD7uAWOemT0pStLUyepLMReKFuZGHykgFuB0I5H8qqysVzNlRNK02aX7RPczQk7trxTscggjgE4oajY0jPTVHL+IfhZqE+sPqsHxj1toTIsjWL2sJRSM8A7c9yOvesI0ZqbfMc0qd23Yvw+HZnjkIne5yuDNMMnJ+nSuq035lpvlsMg02ewS7eS3gaWS4VrS68x1EMIUAxmPo2Wyd2c4OKyeGrSrqaqadi+aKjYqT6XcrEqJewINx3+XCeSfUZwK2dNN6mMm7aGbNp1zGFEmpMRkDCLjv7DvWitFEXdypd6eVbJug5xht0h/XFNMq3MjPujYQKGuLhE/i37srjj16f8A16bmkYyjy7mZca54eiUn7arFjtXy2DF+ODxT5k1cuKctinJrekthl8+Rh1KR4z3Izjmo532M5KSZXuNZtZyETRZc7dw33RVj+A9OMUm5SJcZplVtSf7K1jJ4asbgyRkSJdgybx33A/55pOLfU0p3UipJPNaxyvYaFptqWYu3kWyjccdTx1rppRtNFybsz5+ufiKkVxHD4ciH2+6ZY4RFzLO5Iwi9etfrc047n5K3GjUsex+G/h78WdN0Ea3411uyF8QCumRREvbKRkB27t9Kx5E9WzN13J6noXwdC3F//a3iq+DRIoMVtCpAZwepJ6inzwStcpy5ranTfEHU4dfinvnjVYmVWOAAHI6KPyFctSlOo9EdtKyhfoeZ69ftFBPdxskUs0a+YxAUk+nuMcVj7Cb6Gl4vY8h8cW+p+M9TXwx4d1Q2UtwMNNBGu6NTjLD3/rWbwspPYJQlJbHq3h/xBpfwm+HEXw48O3EENtZhZrq0FzvmuJiSTPO2Ms7HJ/8A1VtOcqUNXr1+f+Zm4xjBQkeMfEbx5careTahrF6qxbiyBcAge5zx0rz9ZO9732GpwjHVnnvwW8SW/if4pT/EuSBZtK8MkpZMh+SW6fAz6YQc59TXpYbDyg+ZmkFzrmWptwfGKLUPiDqFzr80b77craSNNvIPIyevJ9D2repRlOXMc9R+8efeK9T1K21tPElhqUn2cNkbFI2tg4BH+P8ASuZ0505XsTHmpPmOXk0m7l8TQfETRptqTxNb6ujcAox4Y/Q/oTWFSTqND9pKXvHSeGtSk8RacZJrySCS3lka4WGL5ZHGQePfgZ9hVqHJG/UlVVN2Om/Z51238JfHlrS4jjEXiHSZIlhbjmP5lyMfewTzXNJudRJHXRUYassfHSa3udIupZmMZs7qOYFhkrh1JHv0HNaP2luU6Y8tW6Wp6brPxGu9Qi3tdlFS2TaS+BjaMj8a1hSm1ypGllBnBfEPxX9sae2YosNzCHYD+8FI/Pk/nUKLp3uRWrRirHlfwxh0n4kfFDxJpviEEeENC0qPUPGDxkjzFRtsdsG7PM7LGCOcEntXDjadeqouPUjA0/azk5bI0/F2t2WtaMljdqsNsuDb6XbsUgt06BNo+9gYHPpXZSjONPllc6K0lFW2OE1iCDRJ430mOJXaaNbWDywBuz97j0GTzWFeck9DmpxdSWhuNqEJEnmyhpGk3SNgZZjySaajOWr6nVVbS1IpdTgaUJcFWbBxtOMjtU+zcFexnBKTKV7MzROWlLZPK9+OlSpyhFpdToUdLWF8I+I0t5rpLiXPlyKYznJAx0x3rGakoNo0oVIxbitzqVvtFu4990sL7+gaIcf4VkoVVI7ORw1LWmW3hhIjCNMsJS+N37sDp0P1rOdKtLSSvfyM4Uot35Uz0H9mL9nTRPj78e9L8HaILTTJWVrrVtfuLt1FjYQgvM7PnIULnjoSa+e4kzajw1kNWtOnzX0jG28nt/w5xY2ng6VGUpQVz0r9pP8AaQ8Mz+IJvC//AAT++E0mr6LpQNpceO/FUhMdxIgwzQRNgEdcE9ewr85ytYilRVTP6/JKWqpw3Se12j5TMeLa+GpRjTX4XPnDxn4U+N+q2954z/aM+Kt2unpGsk1rczCOOMHlVSMcLnHGOSK+pw+dYKrbDZZQTb0va7+97eqt26nyOYZnmOOi+eo7W1OF+DvgyL9obxvf/EzVtW/sD4ceANhl1WQlUMzgiNBx8zsecele1m81w9lkMHTh7TF4jp5Lf5FZVl31hqKdox1bZueKPAWlNpV1rvwj8aalcTWu+VtW0+0Nv5as2NzlBuwSQMucciubAV8a6ns8VQTgkuZaySWi66LV9t2j6SthqWCw3Nhar5n1Wn3Hn2qaPJr2iyahd3MkmvaagW+ljywuIsdWPtmvTli/q2JUIpKlLZdmfPwrqjBRb5mt2+pofB3RvhZqs4sdft9Xj0RFafV4NLmZPMX+MsOOM55PYivMzavmdHWm4uo9IuSvbtb5HLXxNSXvQsmz2v4S/Cb4ZeLdSuNY+DCa/pngTTrgHUI4rYkTyuDhHk5Ck7T7/KfQ18zjs4xeCUIZvGNStLrezSW9tPx2VzzqVNvF805LnaPQPj/+0P8AA79mbw//AGYLvTNc8STWbW+l+H4DvitS4wGlc/xc98VOU5VmWe4jnoR5aOt29dP1Z6eGoKrLmm9j5f8AhT4O8YfEq38S+DviH4i1rSfELaj9osmSVlWFe6ArwV7DBr67NswweW1aGJwtOFSly2fdvuXWxtKmlGk1qj7N+FXi/wCDHwN+BWo/AJdJu5YtM0KS/j0qzjO/WdWkXajycZZQSehP4dK/PswxWIzTEutXT5ajtzXsoJbfcj67C5xluAyv97C75Xou9up+ePjv9mP4+2FnffEj4m2iaDpkkwlkNw4EjBySqqgOTX63l/FHD85QwWCftJpW8tPM/OqWNw0JKEabbfdaHTfs4fCn4ja74bvvGC/GG68LeFoJRvZJSiXMg6fLwCeB1rm4izTLcJiIUPqqq13+C9T0JZlHCy5KafN1PdvCOs/GrwlqmkS+KPip4ql0XUtPlu7HULaJYLSdI2MaMJJEJdPMVgSoIJjcEgivmq2OUoyjRoxi00mm25a+S/z66I+my/iWrSpPnk3y6WT1vbS+j8nbqu257v8ABj9tBvhZ8Er7/hbeoJ4i8UG5xoz3VuUMqE/IQcA4IK84xiuavinWmoUItW3fRW3NY8byVF02rvoz1PS/2jdSutB0L9jX4Z+IoND8e/EV/tvjfxA0asukWp+ZQCwwWA6D8TXy+WYDFZ7iXi8XZYeMrK/V38uhGAnUxyVKc7Sm7tvojzDXvgDYfBf4zaje/Ez9qLW/G3w+imiC6va+JPs8Nvcg9HeH5fvZxjvxXrZy402sLltOHtLtNxje68r3OfNZ4TC4qK9u5RXmZn7SvwL/AGd9V8daRF8OPjX4q1TUdWjWay8Pr4ninjmDjGJh5jlT35APeuHBVM4wWDtKjFxevM4K61t02fk+lns0d+LWWw9hKhq2rpX39V0/p9TrPDH7K2l/ss6bbfGH4jftS/2dN4fmTUrTwQNe3+a4BKowwCM4445reWNqYijbD0I+0lpzcu3ma1qGFwkFiZ1bNaqKepL4Qn0X9sD4lP8AtW/tWeI76W8vQf8AhGvCOk3jQPDAD0dFwW3YGc8EGvDzjNcyw2J/s7AR91/xJ21fo3seDh6v9qZp9YrtqL7bne+JtT/Zd8Z+JNQbVrdvD2p6jY/Zrn+wfE32a9ECjoQpG3gfXjA9KMFhMyXJSw7+FOXv2t7qb3lo3ZaK929Em2kfRyxvD9Cna0k2raN3+Z2X7CHwv/Z2+D1nqGmfs4+K5JbSUS3Umga3qBklvbzoGWRjy33R/wABFRjuK87y2ssXmVLnTstFZJfI9Lh/H4XLas6mEd1KOsZPd9DpP2bPi58X9W17xx8Sv2mNLm8NQy6mNP0Hw9fTBYo0TgGM4wzM3OfoK63xZgJZhCjRnzQcU27Pd9D0uG88xM8ZXr4u8YvaLvZeh6xH8UdKsUmS+04CUxJNhG2lo275HXFfRYbHYWq3yb+h9dTzjCV0+Um0bxf4b8fMt74fsAEt4zHMsvLmXJBOOoAxiut1G1d6I76VejUhoxms6JP5UiXkQO5NyhVAOOx5z7U6cufS935HRFNQuloU/Dlzp+kpcy+JdPm1EWVld3QH2+G3Fw6JuSJ5nwIlP8TnOBzU18TLARUpK669Dgx1XEU6V6PxX6nyd8Ufg3/wUS/az8R3em+P9LtvhZ4HtZ0Wc3F2BYWyeZ1CRlptUkwRgPsjyeRiuihjMG5JRd2+i3fz6fK79D5NzzbGV5Uqit530tY+zv2dfhb8Nvg18LNE+Cng+0nstG067ka61262vdX1xM5eW4eCMKsKsxJEUYCoCAB0rRV0oOpJKKTS1evlu7vbV6+bu1f0suw9bLsO6cG5W2u/1Oqmla2u57FFdTFK0ZZxt3gE4bBHQ9a3w9eGIXus+hp05zpKbW6I0urgLsZiVAxhmGDXX7KfYyvHoyRHtJR8yqpYdQ3QU/Yz7BzjhFH94sCpHTfkfWj2M+zBSGyJBMeCAcYGGzQ6M30HzEZjkBy0YcEdG7Co9jJdw5kKsbcmRQB2w1HsZ9ilIa7wjIdUYkcBj0o9jLsPmuNV4t2Y/lyOqvjpUOjLsx30HbbqRSDLwecFsih0pbal80SKRH4YxpwPugDGalUpxe34Fb6laWz3ks0KnIxhl6f40pz5dzTklFXex4l8fPGH7buk/E2Dwl+zX+y1b+KtCGji6vvEN1clVjl3OGgC5GSAFOO+6sHTqVqTlSl719rXPJxeNq0qyhBKz63R852PhH/gvN8evH/lada2nw+0y43tbJqFtBaWsKr821wyvLM21T8oAI4JPWvQw9DL7ezqtuXXW33f0zz44vMqbk9l0as/vPq34M2Px6Hw10y0+PP9mah4sgjYatdeHbNltG5O3aCOuMDPc815LdCnUbpP3fM9zCOvLDr27Tl5HSnQNY4zpbqWGT5p6+3NZe1jJaM74030RUm8O62JQzXMEGQdxJY/oOKlSctg9lJ6pMbHoi3AZ28Tc5+aNI8Ac+9dCoVN9TJzcXtYdJ4YtGhZ5dRuHLZbCHHH1xWU2lKzZUanN0K7ab4dtNzW/nDLN8s9wcgg+g7VpCE5arYJuUWPNpYu+UtVLN1bkntyfWlJcj94lVU3uRvb2EQHmW+1AMcYBoi1L4WaKM5apEMt1YWwf7LsdjIYwSgwg/vE9z9K2VCpfVEO6ZV+2WO4uiRFuhYgDPT862VCXZkN6jjPPISYrMH5chQB8o/ClKm4LUS1ZEJLxoCIbYYUYBZxgkdiT+VEKc5r3RzhOC1RXtb/AF0xtHe3dtD5iEMkQDDHbBIFV9XqdUzntrdhDFaxo8Zuz0wTv+8etDoztsXFpvQhupNFteLq8Ve/zSYx9KXspPZFNyXQyb/xT4asic6hG2B8x35yf61aw872aG7qOxly/EbS0RmjunJOCdq+3bNW6E+lzmc+xQvvHUlxI0lhYMzbcbjgZGf/ANdSsPNO9tfQXMZ0mteKbuNvLtII1bliRknIo9jNuzJ51czpm8V3HEusNEScERKoI/OtFQl1TK8yF9KaYSvc69dyNn5w9wcZ+i+1J03HoV7VRWpTudF02H5ZYlfKnJcE8dO/tWXNG4tKivEgj/sOzRg1uY1TGNigDp2/GrUZS2RPPyuxTuta0a3yjw7yQSRIafsalrWE3cqXPi+1CHZbxnOSORkCrVGpbYlszLnxvKzkKI1GM70weeuP6U/Y1OwJ2ZQuPGRkZxHKoZz820YzVU6coSvYcp8qbP/Z", + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": { + "image/jpeg": { + "height": 256, + "width": 256 + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "!curl -O https://raw.githubusercontent.com/meta-llama/llama-models/refs/heads/main/Llama_Repo.jpeg\n", + "\n", + "from IPython.display import Image\n", + "Image(\"Llama_Repo.jpeg\", width=256, height=256)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "e1450ecc", + "metadata": {}, + "outputs": [], + "source": [ + "import base64\n", + "def encode_image(image_path):\n", + " with open(image_path, \"rb\") as image_file:\n", + " base64_string = base64.b64encode(image_file.read()).decode(\"utf-8\")\n", + " base64_url = f\"data:image/png;base64,{base64_string}\"\n", + " return base64_url" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "d7914894", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The image features three llamas, each with a distinct color. The llama on the left is white, the middle one is purple, and the one on the right is also white but wears a blue party hat.\n", + "\n", + "To determine the number of different colors present, we can count the unique hues:\n", + "\n", + "1. White (two llamas)\n", + "2. Purple (one llama)\n", + "3. Blue (party hat)\n", + "\n", + "Therefore, there are 3 different colors visible in the image: white, purple, and blue.\n" + ] + } + ], + "source": [ + "response = client.chat.completions.create(\n", + " messages=[\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": [\n", + " {\n", + " \"type\": \"image\",\n", + " \"image\": {\n", + " \"url\": {\n", + " \"uri\": encode_image(\"Llama_Repo.jpeg\")\n", + " }\n", + " }\n", + " },\n", + " {\n", + " \"type\": \"text\",\n", + " \"text\": \"How many different colors are those llamas? What are those colors?\",\n", + " }\n", + " ]\n", + " }\n", + " ],\n", + " model=model_id,\n", + " stream=False,\n", + ")\n", + "\n", + "print(response.choices[0].message.content)" + ] + }, + { + "cell_type": "markdown", + "id": "8cf0d555", + "metadata": { + "id": "8cf0d555" + }, + "source": [ + "### 2.4 Have a conversation\n", + "\n", + "Maintaining a conversation history allows the model to retain context from previous interactions. Use a list to accumulate messages, enabling continuity throughout the chat session." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "3fdf9df6", + "metadata": { + "id": "3fdf9df6" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[36m> Response: The most famous Prime Minister of England during World War 2 was Winston Churchill. He served as the Prime Minister of the United Kingdom from 1940 to 1945, and again from 1951 to 1955. Churchill is widely regarded as one of the greatest wartime leaders in history, known for his leadership, oratory skills, and unwavering resolve during the war.\n", + "\n", + "Churchill played a crucial role in rallying the British people during the war, and his speeches, such as the \"We shall fight on the beaches\" and \"Their finest hour\" speeches, are still remembered and celebrated today. He worked closely with other Allied leaders, including US President Franklin D. Roosevelt and Soviet leader Joseph Stalin, to coordinate the war effort and ultimately secure the defeat of Nazi Germany.\n", + "\n", + "Churchill's leadership and legacy have endured long after the war, and he remains one of the most iconic and influential figures in British history.\u001b[0m\n", + "\u001b[36m> Response: Winston Churchill was known for his many memorable quotes, but one of his most famous is:\n", + "\n", + "**\"We shall fight on the beaches, we shall fight on the landing grounds, we shall fight in the fields and in the streets, we shall fight in the hills; we shall never surrender.\"**\n", + "\n", + "This quote is from his speech to the House of Commons on June 4, 1940, during the early stages of World War II, when Nazi Germany was threatening to invade Britain. The speech is known as the \"We Shall Fight on the Beaches\" speech, and it's considered one of the greatest speeches of the 20th century.\n", + "\n", + "However, if I had to pick a single, even more concise quote, it would be:\n", + "\n", + "**\"Blood, toil, tears, and sweat.\"**\n", + "\n", + "This was the opening phrase of his first speech as Prime Minister to the House of Commons on May 13, 1940, in which he said:\n", + "\n", + "\"I say to the House as I said to those who have joined this Government, I have nothing to offer but blood, toil, tears, and sweat. We have before us an ordeal of the most grievous kind.\"\n", + "\n", + "This quote has become synonymous with Churchill's leadership and resolve during the war.\u001b[0m\n" + ] + } + ], + "source": [ + "from termcolor import cprint\n", + "\n", + "questions = [\n", + " \"Who was the most famous PM of England during world war 2 ?\",\n", + " \"What was his most famous quote ?\"\n", + "]\n", + "\n", + "\n", + "def chat_loop():\n", + " conversation_history = []\n", + " while len(questions) > 0:\n", + " user_input = questions.pop(0)\n", + " if user_input.lower() in [\"exit\", \"quit\", \"bye\"]:\n", + " cprint(\"Ending conversation. Goodbye!\", \"yellow\")\n", + " break\n", + "\n", + " user_message = {\"role\": \"user\", \"content\": user_input}\n", + " conversation_history.append(user_message)\n", + "\n", + " response = client.chat.completions.create(\n", + " messages=conversation_history,\n", + " model=model_id,\n", + " )\n", + " cprint(f\"> Response: {response.choices[0].message.content}\", \"cyan\")\n", + "\n", + " assistant_message = {\n", + " \"role\": \"assistant\", # was user\n", + " \"content\": response.choices[0].message.content,\n", + " \"stop_reason\": response.choices[0].finish_reason,\n", + " }\n", + " conversation_history.append(assistant_message)\n", + "\n", + "\n", + "chat_loop()\n" + ] + }, + { + "cell_type": "markdown", + "id": "72e5111e", + "metadata": { + "id": "72e5111e" + }, + "source": [ + "Here is an example for you to try a conversation yourself.\n", + "Remember to type `quit` or `exit` after you are done chatting." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "9496f75c", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9496f75c", + "outputId": "7d93a4cf-a5d4-4741-b6eb-6bce3a27ff66" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[36m> Response: Hello! How are you today? Is there something I can help you with or would you like to chat?\u001b[0m\n", + "\u001b[33mEnding conversation. Goodbye!\u001b[0m\n" + ] + } + ], + "source": [ + "# NBVAL_SKIP\n", + "from termcolor import cprint\n", + "\n", + "def chat_loop():\n", + " conversation_history = []\n", + " while True:\n", + " user_input = input(\"User> \")\n", + " if user_input.lower() in [\"exit\", \"quit\", \"bye\"]:\n", + " cprint(\"Ending conversation. Goodbye!\", \"yellow\")\n", + " break\n", + "\n", + " user_message = {\"role\": \"user\", \"content\": user_input}\n", + " conversation_history.append(user_message)\n", + "\n", + " response = client.chat.completions.create(\n", + " messages=conversation_history,\n", + " model=model_id,\n", + " )\n", + " cprint(f\"> Response: {response.choices[0].message.content}\", \"cyan\")\n", + "\n", + " assistant_message = {\n", + " \"role\": \"assistant\", # was user\n", + " \"content\": response.choices[0].message.content,\n", + " \"stop_reason\": response.choices[0].finish_reason,\n", + " }\n", + " conversation_history.append(assistant_message)\n", + "\n", + "\n", + "chat_loop()\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "l4", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.16" + } + }, + "nbformat": 4, + "nbformat_minor": 5 } diff --git a/docs/getting_started_llama_api.ipynb b/docs/getting_started_llama_api.ipynb index 7680c4a0c..8cfe90942 100644 --- a/docs/getting_started_llama_api.ipynb +++ b/docs/getting_started_llama_api.ipynb @@ -1,909 +1,910 @@ { - "cells": [ - { - "cell_type": "markdown", - "id": "c1e7571c", - "metadata": { - "id": "c1e7571c" - }, - "source": [ - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb)\n", - "\n", - "# Getting Started with Llama 4 in Llama Stack\n", - "\n", - "\"drawing\"\n", - "\n", - "[Llama Stack](https://github.com/meta-llama/llama-stack) defines and standardizes the set of core building blocks needed to bring generative AI applications to market. These building blocks are presented in the form of interoperable APIs with a broad set of Service Providers providing their implementations.\n", - "\n", - "Read more about the project here: https://llamastack.github.io/latest/\n", - "\n", - "In this guide, we will showcase how you can get started with using Llama 4 in Llama Stack.\n", - "\n", - "**💡 Quick Start Option:** If you want a simpler and faster way to test out Llama Stack, check out the [quick_start.ipynb](quick_start.ipynb) notebook instead. It provides a streamlined experience for getting up and running in just a few steps.\n" - ] - }, - { - "cell_type": "markdown", - "id": "4CV1Q19BDMVw", - "metadata": { - "id": "4CV1Q19BDMVw" - }, - "source": [ - "## 1. Getting started with Llama Stack" - ] - }, - { - "cell_type": "markdown", - "id": "K4AvfUAJZOeS", - "metadata": { - "id": "K4AvfUAJZOeS" - }, - "source": [ - "### 1.1. Create Llama API account\n", - "\n", - "In this showcase, we will use [Llama API](https://llama.developer.meta.com/) as the inference provider. So, you would first get an API key from Llama API if you don't have one already.\n", - "\n", - "\n", - "\n", - "> **Note:** Set the API Key in the Secrets of this notebook\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "oDUB7M_qe-Gs", - "metadata": { - "id": "oDUB7M_qe-Gs" - }, - "source": [ - "### 1.2. Setup and Running a Llama Stack server\n", - "\n", - "Llama Stack is architected as a collection of APIs that provide developers with the building blocks to build AI applications. \n", - "\n", - "Llama stack is typically available as a server with an endpoint that you can make calls to. Partners like Together and Fireworks offer their own Llama Stack compatible endpoints.\n", - "\n", - "In this showcase, we will start a Llama Stack server that is running locally.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "J2kGed0R5PSf", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "collapsed": true, - "id": "J2kGed0R5PSf", - "outputId": "2478ea60-8d35-48a1-b011-f233831740c5" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: uv in /opt/homebrew/Caskroom/miniconda/base/envs/l4/lib/python3.10/site-packages (0.6.12)\n", - "\u001b[2mUsing Python 3.10.16 environment at: /opt/homebrew/Caskroom/miniconda/base/envs/l4\u001b[0m\n", - "\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 83ms\u001b[0m\u001b[0m\n", - "Environment '/Users/erichuang/projects/internal-llama-stack/.venv' already exists, re-using it.\n", - "Virtual environment /Users/erichuang/projects/internal-llama-stack/.venv is already active\n", - "\u001b[2mUsing Python 3.11.11 environment at: /Users/erichuang/projects/internal-llama-stack/.venv\u001b[0m\n", - "\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 387ms\u001b[0m\u001b[0m\n", - "Installing pip dependencies\n", - "\u001b[2mUsing Python 3.11.11 environment at: /Users/erichuang/projects/internal-llama-stack/.venv\u001b[0m\n", - "\u001b[2K\u001b[2mResolved \u001b[1m123 packages\u001b[0m \u001b[2min 1.13s\u001b[0m\u001b[0m \u001b[0m\n", - "\u001b[2K\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6) \n", - "\u001b[2K\u001b[1A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)-----\u001b[0m\u001b[0m 0 B/9.53 KiB \u001b[1A\n", - "\u001b[2K\u001b[1A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)-\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB \u001b[1A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2K\u001b[2A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 0 B/44.00 KiB \u001b[2A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2K\u001b[2A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[2A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m\u001b[2m------------------------------\u001b[0m\u001b[0m 0 B/34.43 KiB\n", - "\u001b[2K\u001b[3A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[3A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", - "\u001b[2K\u001b[3A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[3A\n", - "\u001b[2meval-type-backport\u001b[0m \u001b[32m\u001b[2m------------------------------\u001b[0m\u001b[0m 0 B/5.69 KiB\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", - "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[4A\n", - "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", - "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[4A\n", - "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2K\u001b[5A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 0 B/85.81 KiB \u001b[5A\n", - "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2K\u001b[5A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB \u001b[5A\n", - "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[6A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 0 B/3.08 MiB \u001b[6A\n", - "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[6A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.91 KiB/3.08 MiB \u001b[6A\n", - "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m---------------------------\u001b[2m---\u001b[0m\u001b[0m 30.83 KiB/34.43 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[6A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.91 KiB/3.08 MiB \u001b[6A\n", - "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 34.43 KiB/34.43 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[6A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.91 KiB/3.08 MiB \u001b[6A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 34.43 KiB/34.43 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[5A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.91 KiB/3.08 MiB \u001b[5A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtabulate \u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 34.43 KiB/34.43 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[5A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 30.91 KiB/3.08 MiB \u001b[5A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 30.91 KiB/3.08 MiB \u001b[4A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 46.91 KiB/3.08 MiB \u001b[4A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 62.91 KiB/3.08 MiB \u001b[4A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 78.91 KiB/3.08 MiB \u001b[4A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 94.91 KiB/3.08 MiB \u001b[4A\n", - "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", - "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------------\u001b[2m------------------\u001b[0m\u001b[0m 32.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 2.62 MiB/3.08 MiB \u001b[4A\n", - "\u001b[2mtyper \u001b[0m \u001b[32m----------------------\u001b[2m--------\u001b[0m\u001b[0m 30.88 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------------\u001b[2m------------------\u001b[0m\u001b[0m 32.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[3A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)----\u001b[0m\u001b[0m 2.62 MiB/3.08 MiB \u001b[3A\n", - "\u001b[2mtyper \u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 44.00 KiB/44.00 KiB\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------------\u001b[2m------------------\u001b[0m\u001b[0m 32.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[3A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)----\u001b[0m\u001b[0m 2.62 MiB/3.08 MiB \u001b[3A\n", - "\u001b[2mtogether \u001b[0m \u001b[32m------------\u001b[2m------------------\u001b[0m\u001b[0m 32.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[2A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)2m--\u001b[0m\u001b[0m 2.80 MiB/3.08 MiB \u001b[2A\n", - "\u001b[2mtogether \u001b[0m \u001b[32m-----------------\u001b[2m-------------\u001b[0m\u001b[0m 48.00 KiB/85.81 KiB\n", - "\u001b[2K\u001b[2A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)2m--\u001b[0m\u001b[0m 2.81 MiB/3.08 MiB \u001b[2A\n", - "\u001b[2K\u001b[1A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)----\u001b[0m\u001b[0m 48.00 KiB/85.81 KiB \u001b[1A\n", - "\u001b[2K\u001b[1A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)2m--\u001b[0m\u001b[0m 80.00 KiB/85.81 KiB \u001b[1A\n", - "\u001b[2K\u001b[2mPrepared \u001b[1m6 packages\u001b[0m \u001b[2min 365ms\u001b[0m\u001b[0m \u001b[1A\n", - "\u001b[2K\u001b[2mInstalled \u001b[1m6 packages\u001b[0m \u001b[2min 50ms\u001b[0m\u001b[0m \u001b[0m\n", - " \u001b[32m+\u001b[39m \u001b[1meval-type-backport\u001b[0m\u001b[2m==0.2.2\u001b[0m\n", - " \u001b[32m+\u001b[39m \u001b[1mfaiss-cpu\u001b[0m\u001b[2m==1.10.0\u001b[0m\n", - " \u001b[32m+\u001b[39m \u001b[1mshellingham\u001b[0m\u001b[2m==1.5.4\u001b[0m\n", - " \u001b[32m+\u001b[39m \u001b[1mtabulate\u001b[0m\u001b[2m==0.9.0\u001b[0m\n", - " \u001b[32m+\u001b[39m \u001b[1mtogether\u001b[0m\u001b[2m==1.5.5\u001b[0m\n", - " \u001b[32m+\u001b[39m \u001b[1mtyper\u001b[0m\u001b[2m==0.15.2\u001b[0m\n", - "torch torchvision --index-url https://download.pytorch.org/whl/cpu\n", - "\u001b[2mUsing Python 3.11.11 environment at: /Users/erichuang/projects/internal-llama-stack/.venv\u001b[0m\n", - "\u001b[2mAudited \u001b[1m2 packages\u001b[0m \u001b[2min 32ms\u001b[0m\u001b[0m\n", - "sentence-transformers --no-deps\n", - "\u001b[2mUsing Python 3.11.11 environment at: /Users/erichuang/projects/internal-llama-stack/.venv\u001b[0m\n", - "\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 63ms\u001b[0m\u001b[0m\n", - "\u001b[32mBuild Successful!\u001b[0m\n" - ] - } - ], - "source": [ - "import os\n", - "import subprocess\n", - "import time\n", - "\n", - "!pip install uv\n", - "!uv pip install requests\n", - "\n", - "if \"UV_SYSTEM_PYTHON\" in os.environ:\n", - " del os.environ[\"UV_SYSTEM_PYTHON\"]\n", - "\n", - "# this command installs all the dependencies needed for the llama stack server\n", - "!uv run --with llama-stack llama stack build --distro llama_api\n", - "\n", - "def run_llama_stack_server_background():\n", - " log_file = open(\"llama_stack_server.log\", \"w\")\n", - " process = subprocess.Popen(\n", - " \"uv run --with llama-stack llama stack run llama_api\",\n", - " shell=True,\n", - " stdout=log_file,\n", - " stderr=log_file,\n", - " text=True\n", - " )\n", - "\n", - " print(f\"Starting Llama Stack server with PID: {process.pid}\")\n", - " return process\n", - "\n", - "def wait_for_server_to_start():\n", - " import requests\n", - " from requests.exceptions import ConnectionError\n", - " import time\n", - "\n", - " url = \"http://0.0.0.0:8321/v1/health\"\n", - " max_retries = 30\n", - " retry_interval = 1\n", - "\n", - " print(\"Waiting for server to start\", end=\"\")\n", - " for _ in range(max_retries):\n", - " try:\n", - " response = requests.get(url)\n", - " if response.status_code == 200:\n", - " print(\"\\nServer is ready!\")\n", - " return True\n", - " except ConnectionError:\n", - " print(\".\", end=\"\", flush=True)\n", - " time.sleep(retry_interval)\n", - "\n", - " print(\"\\nServer failed to start after\", max_retries * retry_interval, \"seconds\")\n", - " return False\n", - "\n", - "\n", - "# use this helper if needed to kill the server\n", - "def kill_llama_stack_server():\n", - " # Kill any existing llama stack server processes\n", - " os.system(\"ps aux | grep -v grep | grep llama_stack.core.server.server | awk '{print $2}' | xargs kill -9\")\n" - ] - }, - { - "cell_type": "markdown", - "id": "c40e9efd", - "metadata": {}, - "source": [ - "### 1.3 Starting the Llama Stack Server" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f779283d", - "metadata": {}, - "outputs": [], - "source": [ - "server_process = run_llama_stack_server_background()\n", - "assert wait_for_server_to_start()" - ] - }, - { - "cell_type": "markdown", - "id": "90eb721b", - "metadata": {}, - "source": [ - "### 1.4 Install and Configure the Client\n", - "\n", - "Now that we have our Llama Stack server running locally, we need to install the client package to interact with it. The `llama-stack-client` provides a simple Python interface to access all the functionality of Llama Stack, including:\n", - "\n", - "- Chat Completions ( text and multimodal )\n", - "- Safety Shields \n", - "- Agent capabilities with tools like web search, RAG with Telemetry\n", - "- Evaluation and scoring frameworks\n", - "\n", - "The client handles all the API communication with our local server, making it easy to integrate Llama Stack's capabilities into your applications.\n", - "\n", - "In the next cells, we'll:\n", - "\n", - "1. Install the client package\n", - "2. Set up API keys for external services (Together AI and Tavily Search)\n", - "3. Initialize the client to connect to our local server\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "2e68e32a", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[2mUsing Python 3.10.16 environment at: /opt/homebrew/Caskroom/miniconda/base/envs/stack\u001b[0m\n", - "\u001b[2K\u001b[2mResolved \u001b[1m31 packages\u001b[0m \u001b[2min 284ms\u001b[0m\u001b[0m \u001b[0m\n", - "\u001b[2mAudited \u001b[1m31 packages\u001b[0m \u001b[2min 0.04ms\u001b[0m\u001b[0m\n" - ] - } - ], - "source": [ - "!pip install -U llama-stack-client" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "E1UFuJC570Tk", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000, - "referenced_widgets": [ - "75307e3dee604d30aa44713e6e293e64", - "5ce87402a79342af995df41ac3940d55", - "fbbcc19886cc43b38424fbb184162c61", - "29212208db6b432eb4f708cd64258954", - "50dd8994a4cf486ebbec5ffd4322992a", - "f9b768c703494dd198f2978aff4892e8", - "1231b9e4cab34c33a38bee63543f1e75", - "754deb3970604d48a522bc9f021ad945", - "f6ecca7a1a8340fbbe056235a2714fc3", - "ef4f63fe9d8f4683a9d20becb6e4e2cb", - "7508f10c13634e7aa682cfb29c48d9e7", - "26f1430ca7cb4ad5b1b8df1ffdbd32a9", - "7cd2d9c9ea7b4d70902ffaff33033078", - "101288236cff40b8bb9dbad80dbbc7ee", - "d5c9977838a249eeab6ef628279b8155", - "d032d1e7b4b54ba28ac83c1a12b23876", - "321fce57c158432abeae496ae8a947aa", - "3ebe00201bdb4e119e3b74f684a58345", - "0f8bab6b8ed04774b386fe952aae66f1", - "cfcb6e456c354d99be91f161552f3376", - "61bd0d490c0e4c04a331cf9ce6b7d38f", - "7d8653fca29f4df3a7487733ff9db60b", - "943f8fcb66614353a51f32f8344b6122", - "0e695245b97c4bbc85e349fda3dc07b9", - "bb0d168c41f540b8ae42239d3938483a", - "87700a80125348f28c4f249bdf8b0a8d", - "8902c3622da540e496ed5b1524bd01ca", - "90432ec1c24b4607a935c94e130cd68d", - "464147b149824f20afc727751a702fc7", - "67e37a088be64a2ba786ca923b1017dd", - "98786f52ef5345b0b9164b9c1f2b8e18", - "0e1b9910a77d4b7fa69cb8926e6547d7", - "0b276315be4345be83da1e03905c8495", - "e11f8c3891284e07bd2572257afd5e1b", - "ee18d96394994d01b49d5b03b3d9a019", - "844b06df5749441fab6f61656ce581a9", - "e1c6b9a20e074f17aeba976b24e80c65", - "c690da8daa1e4f9ea73bcacdd92e8a6d", - "d0b161ae25c441e8b3caf7a3d88c1b05", - "47cf4b6b835d43388576a2abf4cc54f8", - "03bbebd659e64b5d9c29a73570c34854", - "b68e5097d2504d2cbd7e19aa1aac3a04", - "22a665deff88477b9372c0350c4c572b", - "5e535ed2b83e496ab57b1c80b615ab0c", - "d9de065c7f81443e98ddf066c7b5bd54", - "1e836106837c4ac7a11b36e700c46b64", - "55591e8179084fcfa3a61c8bd8d09dcb", - "de1ef93c41364eda9b4b111231057348", - "23b0b2f4f82c4a21846e91d7cea91da5", - "9e4d0fbb51284a7487c495c7b95a293d", - "b0f8cf1f79e04b5fb47a810f2c81bd7e", - "0c359bc4c94c46acbc9094354a15c33d", - "59d0b59b6c2248508d0601ff13878d33", - "891cb726d45c4fef8f2c74a56df5532b", - "fa39189070334939aea5fa4a7de5ec8b", - "f0e107dd6d54483aa367da0e337a97cd", - "861a00796f55470e85d94733eeee9a5f", - "5459633eb6e94ec391d13fcf67425726", - "b7b7467ece304ffbbd352b9b96a03aad", - "9dece059f1204e29b106fca9e191ddb3", - "e2e49c25d6fc4592b317e94cfabc2e5e", - "76d37a48a73946bab2821f097cf2605f", - "8e81ae00681347cb906b392c3656a64a", - "74bedc38b7da4e8a83b0c892d7aa59b5", - "d1e67c28b4664e8098dce8f5e80b8779", - "abe6cf39b784436993fcbe92221c31a3", - "d021a18ab70b4c7e8aec43932a124c36", - "72e7c092fb054b7ea0dcd2782b5d8a7d", - "8b1ea80221174fae943d5c9f997dfb57", - "f8073d625f80415dbf712cee434f6e3a", - "5f6014ba13fa4a659b9eb1b5f83599a7", - "327ff8f5292d47afbfebd3beea187739", - "988cac4341b646079fc73719f3f88ad7", - "900a4dac08f540dfb35c29f63236a12c", - "1e6009b9b0684b8fbaa379ea96f111ee", - "541b9b4e74614e2cb855bb90f03df538", - "ff256b2275f740ed82bca4f43b4d6fd2", - "3703041a499c426bb427ee008c81cde5", - "4b22bbacb995425fb32a2368f3685a92", - "49a66eeb9ef74de5ab8904fd90eb7558", - "08f9d125018b41c582a0fa1e234315f9", - "736c770230644894b85dbc34bd8f1d52", - "b67cbbf32f844a19b219be612d5038c9", - "774b513d64524ac7823a2cf13efa8d41", - "1e56da93bcf64ff490416d2b66cd3dc0", - "b7e35038ce344110b785753b655130f5", - "5472af91737446f4a4a2d92a3f684a45", - "9fb4368802da4a5a8101ba200d98403a", - "2e713bcc372e48b2a006558db4d1df68", - "1a277abd5ea44253bc6894bef258b52b", - "b3eedd82e7da4ce8b3ded70e49a2afd0", - "6f5c18cb8002471f8b3764effee37324", - "3bebac362b344e8d9103c5011613f1ea", - "670905a55b19458da69f83c8bcd511d1", - "ff54451a48394faaaa9d8cdb690d0718", - "36b5bc19b2d0407f8ab28ff0da2ce12d", - "879e48d9a9e04183903d94ffe98313d2", - "abce503d70594c2ca9afdc47847c125b", - "028e291ee53947bbbbc4bfb68c695f5f", - "a530662719374c95a9bef12e59e28c85", - "bffc0f4b12f141398535990709fd4f2c", - "04804c74e1dd43449d5f758cf5d0ba5e", - "95a506c3007c4525b01ee4e1600d671b", - "a0d6b0caeb2340fe96c8f5569e3d3ae4", - "30798f87a8b848d783fdacd71af5dc04", - "07ce54c75e76488ba4019a20b3707061", - "f023175de68445f98a6b01bb40ccdc6d", - "7389b79a0ff44cd68c7866995d728023", - "8e2b70ffe4eb4974bd6393fcc1292267", - "13eee164dc534424acb9dc9ee37a9465", - "722a7fe16af3422585a20c651345cfa4", - "f5596c1c9c4d42f3bc171961f9582eff", - "85d66e615b5742e78657b1e60c75fc72", - "731c02dc5dd446c3b22765575148e256", - "254ce460ce244c99a5afe39d5d51f6b7", - "4cf1dc345ace4da59f978f661487f975", - "8f30fca71bf24e5ca26e17c2321f893c", - "dd85d37dd1d14c7ea4592f8e11b2d2c8", - "3cb06377e4454f009d6b2aa7aa6ff0a9", - "4502477db4d948e693012364c2dcb370", - "52fe404ec9c14db2a7279b4c154eef3d" - ] - }, - "collapsed": true, - "id": "E1UFuJC570Tk", - "outputId": "aebb69d4-c167-4de5-eb8a-dd19dd538f63" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Not in Google Colab environment\n" - ] - } - ], - "source": [ - "import os\n", - "\n", - "try:\n", - " from google.colab import userdata\n", - " os.environ['LLAMA_API_KEY'] = userdata.get('LLAMA_API_KEY')\n", - "except ImportError:\n", - " print(\"Not in Google Colab environment\")\n", - "\n", - "for key in ['LLAMA_API_KEY']:\n", - " try:\n", - " api_key = os.environ[key]\n", - " if not api_key:\n", - " raise ValueError(f\"{key} environment variable is empty\")\n", - " except KeyError:\n", - " api_key = input(f\"{key} environment variable is not set. Please enter your API key: \")\n", - " os.environ[key] = api_key\n", - "\n", - "from llama_stack_client import LlamaStackClient\n", - "\n", - "client = LlamaStackClient(\n", - " base_url=\"http://0.0.0.0:8321\",\n", - " provider_data = {\n", - " \"llama_api_key\": os.environ['LLAMA_API_KEY']\n", - " }\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "635a7a6f", - "metadata": {}, - "source": [ - "Now that we have completed the setup and configuration, let's start exploring the capabilities of Llama 4!\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "id": "0fc75d73", - "metadata": {}, - "source": [ - "## 2. Running Llama 4" - ] - }, - { - "cell_type": "markdown", - "id": "7dacaa2d-94e9-42e9-82a0-73522dfc7010", - "metadata": { - "id": "7dacaa2d-94e9-42e9-82a0-73522dfc7010" - }, - "source": [ - "### 2.1 Check available models\n", - "\n", - "All the models available are programmatically accessible via the client." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "ruO9jQna_t_S", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "collapsed": true, - "id": "ruO9jQna_t_S", - "outputId": "ab1722a7-62ab-43bb-9cab-4e45bf62068a" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Available models:\n", - "- Llama-3.1-8B-Instruct\n", - "- meta-llama/Llama-3.1-8B-Instruct\n", - "- Llama-3.2-11B-Vision-Instruct\n", - "- meta-llama/Llama-3.2-11B-Vision-Instruct\n", - "- Llama-3.3-70B-Instruct\n", - "- meta-llama/Llama-3.3-70B-Instruct\n", - "- Llama-4-Maverick-17B-128E-Instruct-FP8\n", - "- meta-llama/Llama-4-Maverick-17B-128E-Instruct\n", - "- all-MiniLM-L6-v2\n" - ] - } - ], - "source": [ - "from rich.pretty import pprint\n", - "\n", - "print(\"Available models:\")\n", - "for m in client.models.list():\n", - " print(f\"- {m.identifier}\")\n" - ] - }, - { - "cell_type": "markdown", - "id": "86366383", - "metadata": { - "id": "86366383" - }, - "source": [ - "### 2.2 Run a simple chat completion with one of the models\n", - "\n", - "We will test the client by doing a simple chat completion." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "77c29dba", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "77c29dba", - "outputId": "4857974f-4c70-4bc4-f90a-6ae49dc9c41e" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Here is a two-sentence poem about a llama:\n", - "\n", - "With soft fur and gentle eyes, the llama roams with gentle surprise, a peaceful presence in the Andean skies. Its calm demeanor and soft humming song bring serenity to all who belong.\n" - ] - } - ], - "source": [ - "# TODO: update this with a vision model\n", - "model_id = \"meta-llama/Llama-4-Maverick-17B-128E-Instruct\"\n", - "\n", - "response = client.chat.completions.create(\n", - " model=model_id,\n", - " messages=[\n", - " {\"role\": \"system\", \"content\": \"You are a friendly assistant.\"},\n", - " {\"role\": \"user\", \"content\": \"Write a two-sentence poem about llama.\"},\n", - " ],\n", - ")\n", - "\n", - "print(response.choices[0].message.content)\n" - ] - }, - { - "cell_type": "markdown", - "id": "7737cd41", - "metadata": {}, - "source": [ - "### 2.3 Running multimodal inference" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "e7b1baa7", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - "100 275k 100 275k 0 0 847k 0 --:--:-- --:--:-- --:--:-- 845k--:--:-- --:--:-- 0\n" - ] - }, - { - "data": { - "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4QmWaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA0LjQuMC1FeGl2MiI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiIHhtbG5zOmlwdGNFeHQ9Imh0dHA6Ly9pcHRjLm9yZy9zdGQvSXB0YzR4bXBFeHQvMjAwOC0wMi0yOS8iIGlwdGNFeHQ6RGlnaXRhbFNvdXJjZVR5cGU9InRyYWluZWRBbGdvcml0aG1pY01lZGlhIi8+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94cGFja2V0IGVuZD0idyI/Pv/bAEMAAgEBAQEBAgEBAQICAgICBAMCAgICBQQEAwQGBQYGBgUGBgYHCQgGBwkHBgYICwgJCgoKCgoGCAsMCwoMCQoKCv/bAEMBAgICAgICBQMDBQoHBgcKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCv/AABEIAwADAAMBEQACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APxxgtYgAAtfLxrVGkfVe3qvqXILSMDOwUSqzLVWrbcmht4mfG0GpdSfcqNao+pI9tEvzKgNT7SfcbrVF1LumwROmcVnOpPuaQrVWtyxBbRiXIXP4VDqTLjWq33J/IjLY2A1Dqz7l+2q33B4o1b7n5U/aTtuL29VdS1p1sj5+X8aznUmVCvVfUstCgOAtR7SZft6vcIIo/MOVoc5gq9W+5dsYkL52/jUSnM1hXqX3LEsCk8rwKlVJ9zSVap3IvsqHkoB+FN1J9yPa1X1ITaIWYADkelTOpNDVaqnueEfF21ji8WMNoxu5r67KKtWVA+PzXEVXidzuvhbDaSWUQSLoBXn5jRn7S8z38BWq+xVmemxQqsK4TtxXiuTTsj0/bVUtxfIUuAV7/lSc523E61W+5JqUCC2UbeamE5t2Q6leqorUrw26sgG0UnUnfcI1qltxViUttA/Gp9pMr21RdQuLZCu4qM+lONSb0uEqtVK9ySSyF3YFQoOBR7WaluQ61Vx0ZV0uAwxmIjGDitJTk9TOlXqrqXLS1BnL7azlUkkbwr1b7kd2P3u0j2ojOdgliKqluP8hPLBIGcVHtJX3NPbVLbiGJScBRSdSY/b1e5JHbocfL1qXUn3KVap3LFvbp5g+XuKl1Jle3qrqbSxqZF46ADpXRCU3RbM5Yir7TcsxwJn7o/KuSVSfc3Ver3J0iUjoKh1J9y1XqdxkkKZ4Wlzy7h7ep3IzBGP4R+VHPIPb1O5FPGozhaanJ9ROvUXUjiRTxsGPpTc5i9vV7kbIok6VSnK24e3q33C7CCPGB04pKpLuKVerbcjto1I3Y+tDqTYo16vckeJSfujFLnnuV7er3GiJCQABT55tbi9vU7kkkKmLIWpU5jdepbcgghViRj9K055mca9V9R/2RNhJWiNSV9wdeq+pRitF+0k46H0rWVSXLuYxrVFPctXMaBMFR0rLnkdEq9VdSBYEbkDjvxR7SXcSrVO49IE6EfjUOpJ63LVep3GvHHu+7UupJLcft6j6ixQpnO2p9pN9S1WqdyRoF24I61KnO+5brVO5DHBH5vC/pWvtJ2Od1avNudJ4ShjE2Qo69axlUnfc0hXqqVrieMbaNroEr39K0p1J2M69eqpWuUtVt4z4clXA+4ePwqHVmp3G69WNHRnyv4ttIl8cXCmMf6yvuMHXqPBp3PicTiKrxb1Om0K2jUIdnp2rmqSqT6nrYWtPld2d34fgjMakJXj1p1E9zup1aqe5uRwx/3RXO6k+50+2qW3LlpbxkjC9azlUn3LjWqdzQggjBB2/Soc5s0daqupfECeVnaAPWp55sp1a1hIbeMoTihzmnuJVqvcqLErzMAPxxVc8jNV6re5FJaoJOB071ftJ23EqtW+40W0ZVuB0qXOdx+1q66mfYWMP28sE7+lbe1nynJCtV9puab2y78bahznbc6nWq9wmt0EX3e1R7SfcbrVe5FYWyNNkKOtN1JdxQrVb7jdThTzApWmpza0FVr1U7XIbuGMWnKinGc7ilWqqF7mPbxIZSNvfmtXKZhCvVfUvQ2yEcLn3rNzmjZVqvchliQvwtNVJkurV7kZt0xkLVe0mL2lXuV5YRu+5Ve0n3E6lW9rkUkSjkpRzzZLqVV1IZY1IO0Cr5pcl2Eas7XbPof/AIJ8+HEW/wDEnidlwdsFpG//AH07fzFf0F4I4BfV8VipbNqP4H8O/SrzqpXzjBYFPSEHJ/N2R+gXwH0yL/hWOvXEvzFlAXNfuc604VoRi9Ln8aYyk69KvVf2FG33nyr8f9EimvrtWT+Jq4s1qSnFn6LwljasaUHc+Iv2gPA8VxHdKEOSpIxX5LncZ6rof09wjnFWEoO5yXg7UDrXhW1vJzmSJTDOWP8AEhx/LBr8AzOjLCZlUg9r3Xof1dk2Z18Zl0W5Xa0LEsCE9B7VlGcrHoOtV7jWtYzHnaKaqTF7WrbcpNbR+ZwBxWvPUsZqtWvucn8UrdBZqdo+telldaftLXPJzbEVVHc4W2to/MXC817rrTfU8mlWnzJtnd+FoUa2A29Bya8bEuo5Xue/Rq1GrxehrG3jJwFFcLqzXU19vV7lS5tkEhG38K2hVmzGVWt3IpbVBHnaPzrVOo+o1Uq23KciR9NnzfwkVTpubvIMRUnGGhv2i7wDntXO6dOGjNXSpqTVy/Ase3aWrnnZbEaJkkATfjcMH0qXsEVdk1yVRMhhShe5pKKvZFrRdpTDnAPvWddJbMulGFi0NqTHa3TvWW6HsyZAhwxYVN7HRCEZLzI7qQKSY8Y+tXBJoUqT6l7RzmLJYdOazqxSejKpQp/MnlaJWO5xn61KuW6TvoRW84MxXitGrRJjBKRpaafmyxwO1YVLWNYxgtS1JyRgjpUKw0k5akbsqrk8/hVKzdjV00tSC3dDKd3p3rapStFM57S9oeE/GotN4yMcWNuetfXZVKNPDLufL5jQtiLyO8+FFvHDpsZB5wOa8XMqlSrVZ7eAcY0bHpEDO8CknjHGa8V+47M9KXK4qw5FYyAn8eKTasQtZWZPqkZ+yKw5xUUpJSNp000itao5i+YYAHHHNXKK6mduV2EYfOc8+vFQkjSEOZXY+7+W33L1Fa04LmM5dhdJufMiKYGSO9OrSUdUaUow6kMkc0U8hEfHfiiFpKxlOnGN3EtWNxCM7h1GKyrQtsVRlHqVrwM1xvQdT6VVN2iN01J3JimIvfHpWcoxi7gm3oNRDnLDn6VNk2aWsieNegx3olCKBPUnjIR1Y9jWdkNtI07WdJphgiuhK1OxinzVS+pVSe+a5XGx1bD1bPVcn6VLVtykmxCpPRf0qWkPlsMKknG3mhxSVws2yK5t5yMqn40RcS1TbY23tLhjwvP0rbliQ4yTegraReNICqnGeeKpRp9xKMmWJ/Dd3JFvzjHtXPGUVLRmvsnIhg0r7P8Au2lJb6VvyQtdshxcdESf2PNJznAPcCsZNKWhoqMmiMaPcK+Bzirjytak+ybZLJpcnlc+npWX2tCnRlYrxaXODkc/hW9lZXOfk5W0NlQwxnzODg4GKapXehbilEzIGllvCFXODyfSt6lLk+I5owu7ot3lrOYxx+lZqMTaMefRkUVpcAhSuSe1S4wNXTstBy2twDtaL9KzlGCWhVOk5A1hcsSFTj1xWas9yZwlFiJZXgbHlkfhV8lNFxg2iV7C7EeRH+OKxaV7BZ8xWSKaOXEi85rpVOPKTKCjK50vhFR52PzrlqwtqghZz1H+MIx9oAUd6KTj1CvGPPqUNTjzoEoYfwH+VNqLejKcIOmfL3im1eTxzckAf6w4/OvtMFGP1NXPjMVCh9bdmdVoFg+E3Edq58RKMY+6ztpQvojtNHtxFGCrYwK8erNvRnq0lBKzNe3jyeSPyrnlY1ajfQtwoBgZFSrGtOMWy9bEkgggCqjBLUupBQRcyBEV3D6UWT0LjNONhFnjSIgtj04qZwSepFRKCKUMgaVhu6mnKEUtyKcFJXFmxnCGhRsyE+WepAkyorZOcjvVummbPlaKmmTg3xJ9ac6bS0OKMH7XQ05WDZcMP8KlQN9b6kM1wPL2hucdKHSinqVJRtuN02QF8k/pWcox0dyqVLuR6nMhmwGHvWkIwtuc87upZkN1IhtvvdO1aJxTOicUqdjKhaMyli9aNpvRnFRbvZIuwSxrHwwI9TUSipHY6aauQNIXkySOe9Hs42OeyTaCQlD7UlCI4pSe5Wc7nwT9Dir5Ioc4JK5Hc/d4bOPatoxMYz5SmJcngj86VS3LsW/fWp9cfsMaOLH4VtqG3DX+qTPz3ChVH8jX9Q+D2GlR4RU39ucn+n6H+cX0jcbHE+IlaCf8OMI/hf8AU+3vgzbywfDDU8ZAkzxjrxX6dVilXppn89uUZYDF2fRHzR8cbDdqFy23qTXPmMFys+h4Xq2oxPkf45aP5bSSFMqwPavz3N8LCcWf0NwriINJXPAPBtwNK8Sat4WlOFkYXVsPXsw/lX4fxhlsKU4YiPoz+suBsV7bDOnfdfkbU5Cnrz6V8dTacrXPuYxUpWIzcRxoWaQAe5rVPWxdflhHUoyXFuZt0cynJ6ZroV+XVGFCopSstTlvilIn9nBmIwK68upSdbQ8vOIKyscJZedPKoRRjI5r6OUKdJXkzy6dJaXPQPDSxRWi+c2OPpXzuKqy9o7bHuYdQpI1AYiTtkH4Vwtu5cVGUtyjcn98SzD2rqp3gjphTjErX2q6dYxZurhV7YJrohCrU+BHBiKtOFWzZDbXFrdfvLd1ZT6Cs66qxXK0ac9OS5pHXWfhV1jUGftXFVxMXK56EsHeTdy7H4WIPFz+RrJ11bYyWEcnuTxeEgW3G4P4GlKukrpFrB2ejJn8JBhtE5NZQxL7G6waa1ZNaeFni4ExA9Qa1nVhKJmsHJS0ZbTwuuc+cScda5/aK50fVNNyxbeGCx+ab9aznVS2COHaejFuPCYZsJN7GiFfubexbjqT2nhlowFWUj1IrSpWp8uxgsLJO9y3/wAInG/Lzc4rjVexuqEu5EvhJVfKyc9q6IV7rUU8N5k8Hh5oiCHPvzTnUhJWsZxw0l1LI0iToZDXPJxR0Rw73uMbQpSCBKfxqfapHR7LQaugSwHeRnIrZ11OFjOVFx2PO/GXwM1DxPrx1OO62rnoK9LCZrHD0uVo+dxmVVsRW5uY6fwd8OZvDtqI5p87R3rOvjadWVzqwuDnSjys6OC1ZIhHnIHeuWo4Se56EKMrWJ4Ik3KSnQdqyaS6m8aSW5PIiXEflOvSsrcrvc0UF1GxWUKHBWtHUTREqcbjnsbUSfMmD1GazjNpXNlGKWhDe3WlWMX+kkYx0NaU5TqStE463JF6odok2magCbaAAHoRVV5zjo2bYdUpLQ000qAgl4wfauSFWVzpdKFtiS30jTUOPJyamrVm+pKoQ6IedK08Hd9nFKlUa6mrpwUbWJYtN04rt8pevcVdSUpLcinShzbEqaDpzHcUXB74rFTcTaVOmyaPQNLA6D6EVLnKRmqdIevh7SmGCBU88l1L9jSkTQ6BpcB3IRVRrS2uJUKUXoWItMsM8sPzpSqNLc0jSp3LCadpqDO7rWPPJlctNCSWtgOg5xVJu25FoX2GpBaKf4cGpnK/U0Sh2FkgtCMFFIrNSsyrwS0INlohyBj0rp9ppqZPlfQXzIs/KfxHFR7VRZPKr6Djl1y05xVKvT/lK5JLZkUltETuZ8n1qpV01YFFX1Ii0UXCseOxNLmiDlYT7ZCvXnNHMQpa3Ip9RiAw2OParhYtziyu+rWqNuxjjFdCszgqTakQXF9b3g2bRk+1aJcqumEZqWjKwFtYP5yJ1PNaRftNGy3aEbpEU/iSxUlWTk8dK0jh1JnH9YfNsSW2t2JILYHHWoqUY9DqWJioki63ZFuxx6Cs1h09yaeLvJjm8QabGucDntQ8PFuyKq4rsiNPE2nvkrEPxq3hVsFPF2Wor+JLIjAUAVLwKT3JlX5myOe8guo98Sjgfw9qToSS0IeIWxq+DZiZNpGea4qseWVjow8efVljxkzLcAkY5FZw1VhYlOMyhqbr/wAI/Kcj7nrVUqTcrMqzdJ2Pl/xQks3j2ZYyV+evucPCNPAbnx1bCSnjXqdp4a0m5MYLuRwO9eLiK9NaW1PXo4VwW50tnDcQrhZMj1rklKDjqdUKMpbM0YvtAHJNZRlTN/q8l1JohdNyHPtUyqQj0NorlHT3l9aJvDZqY1oSdrCrKTjuV7XxHfXjGNWxjjNdU/ZUkclOck7DrjUr+Pjfk4qYToSepVV1KmxENRv4FEzn6VTlRY4TnCNipP4zeF2Lg/L1rspYeE1c82riKvO9B1t4rS4bdnr09qdSgoHXSxEWtWKviCGCffn8azcOaFrGsasU7jLjx1ZwPiacAHtmrp4SVTaJyYjFKEhbbxSt+NlrJke1Z4ikqK1Rvh60aivcu22oXSDAb6nFcDdJnV7aUXoNmurmSQMzZI6VUVGxm4SlLmEuHupYSA5GRWbqQjKzNW5WsZyW13HMW80nJ69q19tTa0RjKm4LmRK8t2nrx2xRGUGtWTGU2V2uL5TuOQPcVsnTtuVaS6EbarO3yljke1HKkYKfJO5Vu9VvIR5pQkemaqHI5WbLq1HyMypPFV3cu0cUbZB5yetetDCxpw5mzyY4i83Ysx39+bbzMAcZ61xVYU+bc1+tVJrY+/v2UNEOjfBTw5byLh5LETPx3di39a/sTgXCQwPCmFpJfZT+/U/y18VcxlmfHWY1273qSS9FofYXwwtmi+F07KSFcN+Py19LiV/tUEfmNG/9k4qTe7t+B85/GiwElzO2MfMcVnj43iexw3XfJFHy/wDGPQEuLWVSnQHjFfF5hC6aP3PhnF8lSJ8mfEO3/wCEc8XW2ux4QRSFXP8Astwa/LeIculisLUp/P7j+neDs3lh5wce5Fe6vcOzKs2OevtX5bRo04S94/ao1KjlzIz9Qju7m2JF4RjqPWuqjOjTqJuNzLEOdeHKVdG03UIJxcS3e5Sfu1WMr0qmkYmOHpTodRPGOkXmswC3jBAx3pYOosOm2bVqbxEe5g2XgTVrdgxJ46HFdTzCnUdmeQsJXU2bVvpup2wVc5x2xUTlQcb9TupUK83YuRLfBcFSCe9cLdK53woThqQXlnf3ERCEjjitHUpRtcqftEjlta8LazdTbnZnXPAr0sNj8PTjY8ivg61eTdjQ0DTb7TVzcK2MdKmtXoVfebOaFKvHc9atcBA27qPWvlHB31Pra0p+0aLcKDjDjrUVJ6WQoSadi1Eg/v8A6VHtNLGimTRoBwT2qOaxfO2Txrzgt+lVz3Qc7RKoUdHFQ5K4c82ToRxuNQ5IuMpImQLjk0uYvnZLGwU5Bx+VRJ3BTZOrgjJP5GkrFqUujHBwBwfzrRNInm11HKynvQ5pGkXF7DhIucZH1qG29Sm5WGPNtPWr5boqnK+4Rzh85b6VPK4suUmWISMfeHtSaSZg7ykN3HJBlH0ptpI0jRas7jti7QWcH2rL2rYno9BokgXgYP41Sk2TzNjhND1bHPTk0pK61HzMeskb8KePrWfNYHqOEKu4Zjx9KUqlkXDUzfEnh+LUovLB5xwQK1oYiVN3KqUFVjYf4P8AD95pShJGyvrV16kaupy0aFSlN9jqIY1Y/vH49K5Jy5dEd8WupL5NmvLyL+JrLnm0bxSkCrZOdqyrx70RUmwqRUUEiWiHHnD6VquexNNRb3HRvbE7TcD86xqcyKmoomSK3b/lv+tY88kQoxfUebeMni4/Wj2ja1G4We49LRCRib9aFJIpU49ST7GoH+t49zQ53D2aJY7VM5Mw/Opchqmhz20WMCcfnQ6jtZh7OPcjMKA/64fnScx8iAQxscecKlzGqavuI9rGOso/Omqg3CKIXhiBx5oq+e6I5EKI0UYDfjmk5lcqGvGp5z+tHOZuFxnkRnqw/E0nNjVJMhkhgzgsB+NUpsUqaQz7LaP8pkX8TR7SSEoRZDdabYEYLrn2NVGtU7l+wiykbOJJQY5x+ddCqVOpyyw+ug99OjmXbJKv51lPFST0NY0boqSeHLKST5pV/Oqjiq0tmafVKbjqTL4dsNv+tXH1pe2rLqc31WLeoLoWnqcGZfzo+sVktxvB046jbjQdMCZ80ZqFi619zSFCmyFdL0iIbHkHPvW8a1fmvczqYamnoVNafRrGJWEn611UnWrysc1WMYosaTc28to0kWMY4ya3k3B2uKnRTV7G34P+a8O0cZrmr1EzuoRjFk3jbcs4BPGe9Z0mc+LSc0Z18N3h+UNz8v8ASuiL982ikqWp86a3bxjx5KZCCS3H519NRU3gtWfI1sQnjmoo7nw+HMYRHxwOoryKyhHdanrUY1Jam7bqIiBI4+mK4KtVNWOxTUdiyvK53j24qITWzKTqMhvdXj06PzJcYrphS9s7IitNU43ZDp/ie01omKOQHBxWVfCTwr1McNX+suxoWtjbROCzJk89Kz9pKUdTrqUILUsta2knG9eenFczquLsghGCGy2ds67PNT6YputKLD2cXIy7vwvZyyljKnI7100sdVSsCwcZXYtt4Vs41wJkqni6j3ucksHaTHP4WsZThpxz1rKWNqR0RrDDR5TN1T4f6fctn7Qv410Uc2xFPYp5dSq7ljSfC9ppagLcJx0FTUxdWu7yMFg40Z6M0VW2U5LrjFYTqPY6FCC1ZFLdWcLckEe1aU7yKdSK2K/9s2TsYt2PrRUpVIasyTu9R2bdyCJhU020tTeShKGhKkMDn5nGampUeyMI04jZLS2YY81eahTkU1Eoz6ZbiTargfjXXCo0tTGdKMxz6LBJDsaZcYrJ4i0roPYJxsZn/CK2cM5cTrya7Y46pOKXYxngKaV0OutJtkjEUEoJdgoA9ScVdKpLE1owitZNL72cGNorBYGpXk9Ixb+5Nn6M/CzTBpXhTS9JRSFtrGKMLj0QCv7qyqisNgqNH+WKX3I/yJ4jxDxOZ16z3lKT+9tn018PraWL4fN3Romxkd8V24lp4mK6nxmH9pLAYmT2ueD/ABdsvMeZv9o0Y2LcT1uH6nLynzf8T9LEsMyleoOK+UxlJSufsuR1+WUT5I+OPhkzi4XbzyVr4bMocsmf0TwnilFxbZyfhGzj1rQorqQgyxExTexHH8sV+F59CrgsznBbPVH9KZNi6eOwCfVaMnvvDzPEyQybSRwc159HFSi7S1PR+rqexR03w/qEU2J7jcF6c131cThnC6WpnDB1FN3ZuQWSYG8Z2jnivPlXvsdcYRoaWHSwwL8rLxWcJSTvchQjUldGdcXFnDdiJkH0A611yjWnS5k9DOpUjTmoomNtA3KqMYzjFcfNJHbS1jdhHawLkNj6YpOc5aJinCDI5tPimY4Ax24q4qoiXyQgVJNORA3HQdK1qPkhZHOsPGUtStD8W7BQNoTn1NdkcsnVepxwzWGImy9B8V9NCB5FQY965p5ZK9kOeY0obFiP4v6P/EU/Os3llQxWbUyaL4uaMy53pzSeWVGbRzSla5Ivxf0c8F19uaHllQl5tTeg9fjDpP8AeWoeWVB/2tBEsXxn0sfxLSeV1RrNYMmX4z6X1ytR/ZdUr+1KZIvxl07HG2h5ZV7lLNIWFT4zaavULS/s2oNZpAd/wurTC2zcuT2NH9m1TSGPjN36E9v8WrOc4QqfTApPL6iOn+0aUVZEo+J8G7n8iKby+pylfX1KFxk/xQh2HOPbitKOBlcini7vUqt8WIIuuPyraeX3Z1xxcEhg+N+mISskwBPqapZZKTtY8/EZnCFayIn+NOklsi8GD1BarllnLpJHXRx3MrtliP4xae6DF0v/AH1Xn1MtfNZI56uYxU7Eq/FfTiNz3S/99VP9nzQ1mUIokX4taSOTdL+dJ4Cpcn+0qbJI/i1pYwwuV/76qHgJlrMItEg+MGnIc/a1/wC+ql5dMHmUYu5HL8X9Pc5+2D/vqtaeXyTKjmysCfGmyhPyz5/Gtp4OytYzeapsk/4XbHIfllGPrXK8A2y4Y/mY4/ErVL+Fri2yVHcVVPAJO0jaOZSTsisnxRukJ82Vht64Jrs/s+nBGk8wTjqLL8arUKEa55z/AHqUctb1ZyUsx5p2Q+D4x2rjcLnj/erCtlyex3zx8Iw1ZYj+NVoP+Xsf99Vyf2XJvRHFDM1zEg+N1ooyLz/x6tFlNTsaVc1gpWCL49Whk8tLvPr81XLJuSN5GlHMeZ3Lf/C7YP8An7/DdXO8rcn7qLqZktkOX42W68tef+PULKZvoRHMPMa/xwgH/L2P++qiWWOL2IeZq+40fG23Jz9rH/fQpf2a+w/7SQo+NsI63Y/76o/suTD+0ra3Eb44Rnpdj8TR/Zj7E/2onuxv/C7EY8Xa+/zU/wCzGCzJdxR8bGbhbkE+zUPK2DzPzA/GaUrkz/8Aj1X/AGVIP7RklcjHxiJPM/8A49R/ZbbCOZ6kNx8YIwebsD/gVP8Asxp6oKmZruRD4txvyLwYH+1Tjlt3sFPMU5bjZPi5CFy12P8AvqrlliXQdXM1GVrjI/izBIcC54PvQsva6EQzHme4+X4swRD5bsfi1KeWN62NJZiodSu/xbhd932vHPrVQy9R2RLzh8th6fFlMcXo/FqcsvUyP7SW4rfFmNFybwf99VEsqjYHmXdiJ8XoWOPtX61m8simOGaa6Edx8ULdut9jP+1XdSy9ON7HbDGqpHUoah48t9RQK2pA47ZrSnhnSnexwVputOxu+HvHMRshB5gOAOc1yYjDzcmdscTTpU+W56h8LrsakDMORnINebVoSi3c1w9d1GXPHgK3QyO/NEXFLQMQpc9zMvyV0GR06bK1i1zXZsoTq0T5r8Uaxa2XjmaW5lAAb1r63DOUsHaJ8riPZYXFNvc2rD4laTCAkVwhz15rknldaory2O6jjY1UaUXxN07GTcL+dedUy1xlZBUx1OE7JkyfFPTApAuUP40QyyftLI6aWLS1ZT1Lx/p2pIYjcA59DXcsDOj7yHWxNOcbFPS/FOn6TMXjmHJ9ac6E8T8RhQrwormNX/hY9twTcjjoc1xVMByuyM55ipPckh+JNtzm6Hv81Zf2c29i6WOjJ7g/xLtf+fofnTeXOL1QVMdGEtxv/CybRz/x9Dj3p08A1LY0pZom7XGn4j2yk/6WOP8AarepgJKOxWIxsIxvcVPiXblsC7B/4FXK8v7o5o5ir7iy/Ea1bBa7H/fVOOB5XdI6HmkYIj/4WJadftgP/Aq1eFdrWOeWZRmxr/EO16faV/76qHgX2JePiRt45tZutwPb5quODkmXSx0WyGbxfZg7luQD6g1rLDTvYdbFwtoFv48hU4N0PzrKWCdtDCGNu7XJW+IMC8C5X/vqp+o69y3jYrqIfiHB3uR/31VfUH2E8dHuNHxAtXODdL+BoeBdiFjot6MlPju02Y+1qM/7VCwVnsbfXow6ld/HlmrYW6BP+9XSsI1HY1ji3W3Nz4Z6hF4r+JPh7w+swdrzWLePZnORvBP6V6fDOVVMbxHhaaWjnH8z47xJzqGW8D4+qnqqUvxVj9OvC8QQIingYAxX9q0ocskj/JrHzcm2z6I8GQBPAoBx80TfxEdvSqxD/wBrifPUFfLaz831PFPilbLJ5yg9GPatsTG8DuyWdnE+eviLpxdX445r5jFRV2frmT1rNWPmT416BhpJVTjntXxWbwitT9x4XxMpJI8G07WU8I+ILzTbhsQXQEkeTwHHX9P5V+ScV4RYnkqQWq0P6d4Nx1KnQcJvdfkaE3j7SRgSXKj2zXykMsrPofXLHQc3y6kR+IWkRkhZ1P5VNTLqiVjup4iDV2LF8Q9OZ/8AXr+dEMrqbEYjFU1TbEu/Hlgy7hKvHcV0wyySdjzoY+F7Gc/jXT7iUSblJHTmtKmEdOPKjf21NvmY/wD4T2JTsYrisll6lFs1ljFy6CP4/iYfLjgVH9nKLOOGMftNWQN8QIkyGYZI7U54F8tjpr4pSV0NTx5By8jDPYetZzwFSqvdRzVcypw0uVYPg/clV3XBBxXbHMVTm1Y4o5U8PUety5/wqOVItxuCePWn9eg+gPLvaMavwmlYZ8+sXjlcz/sppksfwolxhZx+dWsZBGiyuRIPhHOeftA/E1lUx8U9A/sqVyZfhFMMYuB9c0ljoNFrKpEyfCOccC4H0zR9ep3L/sqRKPhJKBua5H51lPHxTBZVIsR/CGYpvFwMfWiGPg9zVZY7E0HwakkGTdis6mZRi9EEcslfctQfBFXGftq5HvXM80lfY6P7NaVkdF4R+FNjYO3nurketTWxrqRReGy/37M25Phzo8khxGoP0rFY2SjY9iGCpRjYY3wy0lsKUU/hUQx0kafU6S6EN18LNDMDlo14B6U62PqK1mL6vSTPAfixpCaJr7Wtq+F3dq+lyms61HmZ8tmtKHtdEM8O+Cb3WYBNECeOuTWtaqlLVnHThVlojdt/hZq7cAt7cmuaWJpRR0wwNabuWF+E2sk4Dv8AmaFjKNjR5bVkia3+D+qSSYaZhzyCTXLPMKavYiGX1L2aNGH4L6kwCrcN+ZrGOPhe7O2GXTlsSL8D9WLcTn863/tCg0W8sk0WIPgTqUjY881yvMqakQssqIlT4A6mz4Nw2D71U80pcmiG8sm0WrP4DX6XAR52wD61zf2jFk/UKsXZHWzeDofCujCC4TJZcg1j9YdasmjseHeGp3kU7HwFBfaLPdvHhipIOK1rYlxq2Zlh0qtNuxxVn8HbnVbl5hIdu4966pYxpWRbwPuc0VqX1+BFx9xZTk+5qFjOXVmccDUqSsxw+At4OBKffmkszhzHX/ZUbDZPgDqrgmO4IxWzzWnFXsZ1cr0ukSaN8AtVubryi546nNclXMeaN0c0MJNS5TZb9nHVTjErfTmojmajE7qOWTnLUcv7N2rEEl3/AFrSnmkWjq/smwz/AIZy1MEhmb6ZNRVzKPQ5p5S29Bsv7OuoJzvb9aiGZx6lRyh21K8n7PmqJ92Vv1roWY02hyyrQik+BOqIMbz+ZrmqZiovQ4Xl0lKyEX4Gap/AM8+9OnmMZPU0/s6aWwi/BjXEfy1Sqnj6aZvHK5WFf4M+JFPEZxXSsfQcSnl0trDT8GPEL8FSKyjmNGMiY5TNasjb4F61K2ZC35GrnmVLl0B5U5O1gb4CascBWYfnWVHM4Ju4LJ5JkU/wG1iD/WSN+tb1cypuN0c2IyqUZXJYvgPqjw5jlbPWuenmUPaWZrTyqVrkY+BGuF9rSN+ddU8zo2LllMp7Cy/ALWVGTK2KlZjRcdDN5PPlGD4F6mp2mds+nNcn9qxUrE08pm9yNvgfq+/Hmt14Ga7FmVFwuazyp2sPPwP1ZV3LIc98VySzKClYVHKHcWH4Has7Zd2NU82gqbsbzy2UdEB+BuqxuW3n9axWbprUUsBOMLo1vDnwr1SC4AnkOwHmnVzCm4X6nFHCVnPU9w+GeippNusCcAAA14dbESqT0PfweG9mg+IBAuwpHGfzopXuPGJRaRQuIRJoEgH9w1MpSWprSlakfIHxk0u4/wCE3uPKlPLcAfWvusjqx+qK6PiM1g6+L5SnoHg/ULsAhmOevNd1fEX0Rzxpzh7qN6H4a6rPjaX6eprlniacI6lrCVKkrlqz+EOsSNy78+5rl/tCEZXsezSwUpRL0Xwa1gHKyN+dbSzGlKOo44GXMPb4Oa8xwJGNZ08worQK2AqWshR8HdazteR/zqa2OptXRzPKqjkPPwZ1hgBHM/PXk1lQzGnfU6KeVTiRv8GdcQ7TO351vVx1JxuYYjLKnNdDm+DWsFPluG59656WYQ9psXTyqe5A/wAF9eX/AJbsfXmu6eYUXEqtlk5xtcIPg3rTMVE7ZHUZNcDzCHY4f7MqxGyfCPXPM8syP+ZrqljaKp3N3llScRW+D2uAZEr5+tRSx1BuzCOU1ENPwk1xOS7/AJmtpYuhYmWV1G9Bf+FU60FyHf8AM1lDHUeazLWV1Yif8Ku1lhy7/nWs8ZQKeXVHoMf4W6wOVL/nRHF0GjCWWVb6DG+F+s55Z/zNX9bw/kCyyqRSfDDWMcO/51LxdFomWW1H1GD4YayPmEj/AJ0oYui5WMv7Nq30I5fhrrgGA75+pro+sYffQqWW1N7jI/hjrynczuc+prGpjaLdkS6FWMeVHq/7EXww1af9qPwzPfszw2LT3bg9AUjbH6kV9v4c1KWI4qowir8t5fcj8W8d69TLfD3Ecz1qOMF83r+CP038NZEiA+ozxX9QQ5nM/wA68ak4s+h/DKSDwbGGUoDB1KdaKyviEz5yjKUcBUi9L3PG/iPHvkmP+0cGunEK8DpyiVlE8K8d2RbfuODz0r5nFx95n6nlNWzR8+/GPRo5YHO3nnPFfG5pT54s/ZOGMU4VEfK/xV8LecZGVtrIcoRX5tmUHKLjY/oTh/MFDlb2PPl8Maq0p3F2APFfKfW4yVkz9SeCkoc8epZTwlqUowIWyelSpxerZzQp15SsmypqfhzV9HXz50YD61o8RSlK0WddfCVPZ6szjcSzuFEjD15rSM+U4IRhT1bO2+Gnguz1/D3MuDu7niuLESnfU6aFqy0Opu/A2jWk/ksgJBxmuCeIlsmehToJblKXwto8WSEH0zW1KcpPVmlXCwdmitdeFdINuZ/LXPoT0q5zmp6EypKNKxz11oUGSqKMfWtIYh00eNPCqcj1aWEGNdpIryaSi56n0mN5vatItwWRNvhieR1rCpNc1kaUYXRLFpmUOemKwnNJmjppFi00v5sGs5Vi1CLRKdKy4HT8Kl1bgoRuTx6QAPmH4VPtbGns0tSSHStpyFHPtUOqi4xW5LJpvTcMc+lJTu9SVFKRdttOH2bGB07Cl7TlZq4xSuT21iCmB/KspTdyIxTLlpYbcjH6UKcWbQo3RYFksPzAd+SKHO6sgUPZyLENup4x6c1lzNHRGVx0luG4ZeQO1EZe8bNaFe+URwOT/drWpHntYwad9D5p+N0Bl8TFkx96vr8lpyjQ1Pk80nGNbU6n4W2bx6Uuecis8fJe0sbYTllC6PQbGyHloxXqPSvAq1L6HtUrKyNa3sEEZLDPFc3tJLQ3nFRVyGxtl+2lSc5PTFU6bavc56UeeRs21pGkw+QY78VE9EdtOPLI04LONlPyAenFYc7RpJWdwtrUCc7RxUPuQpRehZFuFk2gde9DbaFdOVhFtD5wkznB4q4pA6VpmL4zszfkRYGABxXRhfclc58dT54WHTmDRfCzq525j4461o2qtax56p+xoPoY3gJxeQuwXhiTzV4h+zWp3YBynT1OkSAJNnaPauCVS+x2wUYy1LTQbeq9elYXludVtCWO3/ck5xxQp8zszFtK9yz4WtVN3uA5D8mumy5DippOsdStkuThc/hXFOT2PYilEnSxymOOlTBu5p0KlzZ7JOneqm1YxcrSsVrq1JTOMYrNM0eqK5twU5WtoOyJaujOvLYAkH0p2uzit74WVsGX5k7UW5Tq5E1oOj09ftBfYMZ61m5NoItXsWprBNowg6dxTjN2NHErfYVB4GPpUNu5HOrjktAWzt/CqbfLY0S1uSLbIGHFRDVlNWINbtFMOSMcd67IK+h5+Jb6kGmwAwnI7VnJcrN6NlAlS1AlyOv0rOUrlRmnIsPaqyYb05ojJpGs1pcotaJ5nAH5Vm02zOla9hJbRGIGzHPpWik0rXHNWkRtaKAQAOawb1KTUVcWO12jn8TU6sPdmx72qMhOPxFVFWd0KpG0SpDbKsjEKPxrodmtTlpwi2dX4UiJcL7VlJRTOymrGZ8RE23gx61rRaR5mNbdQqEH/hH5f9w9fpSnqx03+6PlD4sxtN49kCjjca+2yam1gj5HG1IQxl2bPg3TnRVI79qvEzib0nGo7nf6NYZiHGa8atNJ2O+mkdLoulqSGK8n1FcE5I9LDs11tYoziSMe3y1hKc7WuaSkoyLljYRTcmMYx6VjzSizog1NCSaZEZSPKX8q0lUdiG0pE1tpMO7mJRjsRWSk0zoWupDf6dEH/wBSv/fNdLcpQOaqJDpsBXIgU/UVz3aZpTalHQlbTLcpgwr0/u1rGbtuElYg07SYBcljEvX+7UO9jGCUpahd6TbC4O2FfyFaOb5bFNqEgk0yEAful57YFZxbT0LTUxl3pUCxgiFc/StfaSa3Mp2gyOPS7fZkxL+VZ3d7mqScSIaXAW5hUD6VUqjfUyVrjZdJtgM+UuO/FOM5dGXZEEulW4GPLX8qpVJdyJJFdtPtySphXgd1q1KTW5hNJakDafb7uEXHcYqVKSe44KMtSOfS4Uw4jGP92t+eTjuRW90rSW0ajoOv92lST1dzl5E5HqX7FOlJP8Zr3UhF/wAeejMA2Ohd1H8ga/ZvBfCwq8QV67XwU7fNv/gH8ufSlxrp8N4PCp/HUb/8BX/BPtLwvFmZAfUYr+m6TXMj+Asc9Gz6H0NHbweqySbituAoPGBSnriLpHztNyngJuTvbZeR498QIw0swzkZOc111fhsdOVy0jY8V8b2gJcjv0yK+excdT9Jyupojw/4nafHJHLuXse1fK5hC8WfqWR15RlGzPmT4p6YFuJVVOue1fnuNwkuds/e8gxadJXZzHhaL7bogYRqXgkMTkr0x0/TFflOb4Z4HM5Rvo9Uf0FkePhjMriusdGaNtaBpQrqMA/3a4ZVLLRnq0qcd7GX8TLS3OkZCgZXpVYTm9vcyxn8PU8sttLd5SQeCfSvp6fK1dniSwsKlNu56D8N9PlsogVlIPXGa4cdWjJWNcBhpUzoLi0nuZCXkOSeua8SpKy0PTlCXQrXWnMCFHUVpGs1Y6acW0QS6VJLAVOcEVusRdainTbVjJutEaFG5p+0jKokcFSiqcj0W2tTKFFeepcsmezWpc9Vl7aqbYwgyPUVk31OeMnCROkWEz2rGqzafM1ctWUfPK+nNc8iYbkoi/ffMPpU30Lt7xOEbbhl461LlqarYlii5Ax3oS5i0rK464g55HGacU0yGW4IyLXB9Kyne5bTcSazhJTntUSbuVTWhbtYyXwB6VUFodsI2iTXSEHHr6VRhUXvD7VCV5HYVE7WOinFOI8qfMxjGRWcfiNraFTVVC2r+wrp6Iwe7R80/GVwfEmCON9faZN/u58NnbaxFjtfhfGG0uMY7V5eYNqqztwEf3aPQ7CD92gK4x0rwZXctT36EE9zUtoT5e1hgEdTTejOirFKBWhtWS8HycHrW104WOej7s9DYskWSXjqK46rtojpablc1IUDR5AxWFmzRqTQWsRWdjircVymFveJljZpSB6d6zbsaQScx7RFQWxj2FXDc65WSuZN1ZNd3Dbuv0rV1OVHJUXMzH8VaJfahbLZiUhcYwK0oVUpXOerRlVjylvwb4fGkWnkuO3TFRXcqsrs0w9KVHQ0po9knPGPWslE1TtO5YYboQSKmavodq1iSIMwt8o6Vza3OepdJl3wgu66wwH3q6EpclzloL96deIeeRiuaex6kiykAKgFQPSpje5rDUoahEQ5GPrmqZjONpFV0JiyRzioBNlQodprWGxstjMvYzvbjqKq9mcMviF09CqgEelEm7HZTs4lgQlLkntXO2zF6SLU0ZaMEgcdaqDudMNUVJYtrHjtVnPU0mJbrk8jtik1c6I6of5ahge49BUU7ph1INdXdF97jvXXA4sYivpyARbcdqyk2VS0pEgGLjBHfis+hK0mWZF3RcjHHWneyO56w0M8g+ZtwPxrNNnND4wljZeMY+tDkbVfIbsJGMdRWWtzJJsQKwHPpVJF0/iHsn7pgfTmtkVW2K1uuZmBHANa6NHNSXvM6bwsCsgUjnHWsLO52KOhlfElh9sX6itaWjPJxy98qbQfD8v+4f5VM22wh/BZ8qfE9B/wnkn+8f5193lF1gT4jHJ/XDpfBsBaNOPpXHinJyuehhl7p3+kW5EeMYFeNWbvqepBHUaDBgKNoPNcc2dlLY2G0sSDIH41ldm0oc2pZsLHy02FRj6VL3NoLlQS2xE2SPxos7Gbs5XJII1HJxzQlLqdMG3oRaha7hyO3StuZNWIqr3SO0iG3bj2rF3UjOk7MsC3JiOB0HBrWLujWpqivYxf6QcevNKzsc1O/tBbi3xcMxHSh7GlZWYySEswAH1pR3CjuF9DiEDHb0ptkV/iIYocp0qQhflI/s+HzjtzQZPcWa3+XcV59aqJo20VZbbPLL+NNPUzV2yq0J3HK4Hat47DqRsis0Z3kgYwemKdtSKbfNYbdxHyxheMVd7JmldNRM94TnHSqjNxWhyQ+I9x/YX0fGpeItcdPvNbwK303Mf5iv6C8EcJL6vi8S+sox+5X/U/ib6VOYc+a4HBp/DCUv8AwJ2/Q+sPCiD7VGT/AHhX79SV5H8X49/u2fRGnrCvg9JIZA3+iqGIA4PpUa/WOXzPGUYLLHKD6anjfj1N0shB53HtXfU1joGVu0UePeNbZiXyO57V4eKifouWTVkeN/EKzaSKUFcj1xXy+Nje5+kZNU5ZRPm74s6U6ysxQEc44r47MaVkz9q4fxCaSR5j4Kkaz8U3uhSnCXcPmxAnjevX9D+lfknFuGk4xrr7Ls/mfvXB2M990X9pfidHHAVkwR3718epNn6NSRz/AMUYyNMAzjivayxpz1MMbZ0Tg9LiTeBXsVNDwIStdHoPhO3Cwqy/pXiYiq+Zo9bBq7NgRorFj0rz6kpnfPkTsQXS+Y544HfFEbJGVOfLOyFjtwbcEp+YojP3rHXNGbqNp5kb4H4CuiM7VEctWCcrs7DT4sRg+1c0nqehL+Ix93G3mhQ2OayjqcT0kaFtGTbAHj3rKpds63ZwRZs4sHkZHasZGcYpMsRwkyEkc1F9C+XUkWE7jxxU7s05SSOMbh9eK1Xuo6OX3B1wpzyPShNHO1rYuW8f+jZ29RWFR6nRyrlJrRP3XI/OsZbkRLFgnz5I71onyxO1bBesVcqRx9KSd9TnavMs2SkR/MOe1TJtnQmox0Gyj95j9KI/EaPYraqA1pJ/unit3eyMHq2fMnxnDf8ACVY/26+0yXTDHw2cx/2g7z4Wqf7Jjbj7ory8xv7Zo9LL43pqx6LYRsY1LH3rxpLlZ9FSjFJGjNKbW2zg8jrisdJTsiqy9x6lC2kuruXgFeeDW8rUk4y3OSknubmj20kMeZDk+prkqe/LQ64SvubNqh8pge561m5cpvzJIIQFlYGocm0cz+JksKGSfkcZ6g0krm1BLmuWLyMLDtHBI9K1iXWujNtE3St259auUbq5MWm7kOpWrGcMc8GiKSRFSXLInt4QsY54Heoc+hvSXMrkV+mx844BzTT6mNWPJK4+JzJFjHGOKUtjejJNWJohi3Yk965pfEKstGX/AAaM3fvu61vF+4cdBfvTsiv7wcfWuWpqeoy1Gg2YpRNoKxR1SFuT+RFORlWWqKCjdCcjp3rPqQiqEBJGK0baRvsjLu1YSsMd6Iyu9TlcLu5JZRgN8xxmrfY0jO2haljO/IHGBUOOg+XmdywV+QHHWpjozeCSKV2PLwGPb86blqYVY3lcZaksMBeKTlY1pqyJGBDgEY5pRG1qQa2v7jkdAOa3g9Tlrq7sVtOUhMkcVckhNWpgxxcYOOvSs1EiKvI0PLBgyR2rGejO9L3TPlUrJ9elEFpqYNJMV1DJz7Up6Ie5EEIO3AqUluaxS5RMH7pXn6UX1M425xw5jY4PA70+bU1qrQq2WXuGGO/et3JKKOSkrSudT4bTEorJvU6k1bQxPiSh+0qSckHmtqVtTx8YnzkMMYfw9J/1z/pWbumaUo3os+WPijAV8fSZP8Z/nX3eVzX1KyPkcxgvrdzpvBkeETA9K4sRpJs6MPax6FpEY2g4rxqrdz04JHTaLEVAJXvya5JnXTR0NrEWQj2rM7IomWMRDgjp3oB3ZHNC0h3oOnWq5+UpU1a7CGAxMN3pWTcm7F8ySHTRrJ8v48VaVlcStKOpVaF4ZOcYOMcUrqWphJWehaWL9ycnPHNOL1sauzgU7EA3ZX/arpS0MqaXMTXaATEleMc1jJq5piFsRxxiSTb78cUk7EUVqM1CPAI29BUJ3JrayI4IjtB21fQcFaBG0YLsMfnUmSSbFmjIXJXtWiRrUjaJXZPk3EChL3jGCTkU5IcA5HTpgVurIuqroolD5hB9RxV3Oek1zjrpD5IyOMVLkjorfCZ5j559e9KL0OGLPpL9irRxa+BLrUNuDdalIc47KFFf1b4OYV0uEfaW+Ocn92n6H+eH0ksd9a8QalP/AJ9whH8L/qfR3hS3H2yIE/xCv1yiveR/L+Pk/Zs+jtNSyl8KwosCBltMHYuN3Hf3rmqKUcS2n1M6UaE8rVoq6i726+p4r45T/SZdw7ng16cneJ5uXNcqPJvGNsWD89+K8fEpXPvMtnax5L44ssrKNvUHtXzeMhe5+hZVV2Pnz4saTujdivrmvk8wp3R+wcO4i0kjwPxA8mi+ILfWYRg20wJ916EflX59nWFWJoTpPqj9pyXGPDVYVI9Hc68sjv5iNlWGVPqDyK/JIrlbi+h+40aiqQU47NHNfEx92nDPp6V6uXztU0OXHu2HZw2lDLjPrXuVHeLPCpp2PR/CMObda+frRam2z3cDG7NeWDa3C/WuSb1OqtG0xi2oI3HnNRuOlBXuOFudhT2pKXLI62tDPu4AVJxWvP76ZyYle47HSWOfJB9qmXxHZLSpIffg7gR3706Nupyte9c0NPQtbAOayruz0NU1Yt24/vCuRvuOJYgX5v61D2LsSouH96RoSeX/ABgdetDk27Gy1iNkRmb5RwfWmmzO1nc0LdCbYAelZT0epXNdEttGQm2odxxRZsY9pJbrVWlY3c1siG5fdckdxTUHYasW7YnAJGOKcvdQS0QyVf3vGfeoT1NW7orako+ySY/u810LZEdz5o+NSL/wlO7/AG/619nk3+7nw+c/xzuvhYpbSUwP4R1ry8xX71no5Z8CPSNMXKJlegrxqklFHvqVkjRubZpbfB9OBXGn7xTXOhuk2ojdV2cbueOtbtXWocisbSQBQdq8duKyk0loNKxes1/dEGuaVylZsBDumJZc8dKpK61LlT0uSQxhZwh4FO6SsFJqMh+ozI0e0cYoTkzSu7rQoWGTcEMO/StJcyRFCKTLGrQAgOorFSbdiMQve0IoR+6yOlLVM0oP3Srqe7yySOR7U1J3HXjfYgsJpSgVyOnFVOTWhFKUYF+Mny2TvWfK73NKvvRujR8Ggi7wf79dCj+7OOlpVO18vLHmuSex63YsxFVUZHPp61EdzoS0Kt+m6Mj07CiSZnUimZYTaSDUnMtyFkw5AXjvVTeh0vSJmXKgSnNZxu2c8gto2lYqPrXQ5KMdRwhY0VgULlhyVrBtyZrJpbEkcYKYI+uab91ChJlPVLRVUMByD2pRZUtRlnEAMKOKfLcy5tQuFIYqD9TVQvsaxdyvqoJgyR/COK2ppp3OXEO0irZ5WLAPWrk7F6cgwlWnAb161HOrGMW+fQ1UB+zDjnHWueTu9D0UvcM6dSZCaqOiOa92IAxXB/E1nJXHKIIoGC3pxSadjSm9BrRNnn9KhExi+ck8jEBHtxxU3szZlOwjCXBPbNdkVzQRyzVlodN4c5lABqXZF0dTG+Jhxc5963oL3tDz8w0kkV7Xnw9Jj+4f5VlWlqVTf7lnyz8VXH/CfP8A7x/nX2WVP/Yz47MZXxdjpvBAzEmPascS9Tpw2yPRNGHy4AGcDFeLV3PThudXpMfy9M5xXJI76aN6zUqpwPpmpZ1pIeIN7YYdfWplK2iLaWyHiMKMe9ZxjKpLlirvsJu2h33w+/ZX+PXxSu7GHwX8MtTnXUifsV3LbmOF1BGX3tgbRkZIr6nB8G8TY2CnTw7UW1q9EEcLiq13GDsjQ+OH7J/xW+CuoJJ4g8HXMGn3l79l0qWSQPJduMLlUHzYZgdvHQivQzjgjOspofWJRvTbtdO+p2vLcVQpc0tbbtHmWuaReaPdy6dqdnJBc20zRTwTJteN1OGVgehBBBFfFTjKE3FqzR58rLchXHkfUUr2dxLYoaejfb2z/errg7xM4O1SxZv4yXbnqa5m9TWuhdPgJP8A9am07E0UkR6gm+Ug+tQiJWlIYkexPmX9K2lsXJWiQRp5kp3fhWaMI/EFyu0cjBArS9jevpAqzKdhAP19qIvU5ofEV3U7CdvWqk3c1nsZ6xu8x9DVp+6YRjyyuSXMY8rGO3OalO5pValAzZIwuSK0iklocG6PrT9ljSv7P+FelKVwZkeVsjrucn/Cv7R8OsK8FwdhKbW8eb73c/y98Zsw/tDxAzGqv+fjj/4Dp+h7l4Qh36hEB/fGOK+6pr3kfhuYStSZ9Cp5ceiIRbbQ1sM7DxkDqa4226u/UnnjHLVJRtePQ8Z8dwv9skJIzk8gV6k17p5uWS9xHlvi22B38da8nERPuMvnseWeNLQssnHUda8HFQbR93ldTVHhnxN0wyRyBh69q+Wx0bH6tkVflkrHzv4/0kJcSrs4Oe1fD4+DU7n7JlddypxH+C746l4fiDH95bEwyZ9un6Yr8jzuh9UzKfLs9UfuXDeL+sZaoveOny6Gd8SY/wDiVjvWeXSvV1PWxqXsTiNGX96oPrX0M9Inh09T03wen7hcj6V4OIvzM97AGvcqRwRzXC22zpr/ABBBEWizisnLlbFSaQjJtUgjvxxU36s7I2ZQnjyCSOh7CrlK5y4hWize09MRDPpV1L8x01NJsddOCo45HtVUk0rmKSaNHTCTa9O1Z10hW0LtooLYNcctjSO5bijy/K/hU3drHQ0h7AbxzUttCvYlkX5QSMZFQneRrH4RChMYyK1joiaj7F225g+7xWM3eQQi5Ilt9oHHNEYmzVtCSOXbnd09RWqaQpe5qQKVec89+tNy0Kppz1ZegXGB3A5Nc85XRrOPujZgWf8ArSi9RxINQj3Wkh/2a6L7Catc+ZvjaCviccfx/wBa+0yZ/wCznwuc3+sHc/CbLaVH9BXmZimqrPSyxfu0enWKhLZVK4OK8GpK7se02tjTs1EkRDL9Kwsr3NYSaRNp9uBNnHGetOVV2sPmbZpupYkYx0rBu5qotk0W6HK4x0oauGzJUQEh8U3JctkbT+G5HGHkmPrntUx+GzMqceeZLcW2SFkOPrWkUVUg1Ipoqx3O0DBz1rbRolS1si5cgSRAMB061yy+IucFYgiQKDkAccZon8JcVaNyG+VZNyMBzis4pha8ioIBCgyuOPzroUUtTKpFJ6E9kQ5K/wA6cnZFwi5o1PCw23xwMfPVRleNjnUbVjtkyG6fWuSpueolZIsquFAH51mtzdP3SCQBoyMdqp6ol6oy7hDFKeOvesznatIheMbScHpSk7s2voZVxHvmIFVB2MZJouaZpdxcTJBbQs7t91VBJP4Unebt1FdQV2eofAn9lr4p/H7xRpXh3wXobeXqdw0S6hP8sEQRlDszdMLuGfrX0uRcJZvnic6UbQW8mNU61WnKpH4URfG39m34mfs/eNr3wV498PTwy2czLHciE+VcIGIEiN0KnHBrfOuEM3yafvw5oPaS1Xf5M7pYOpCnGotYvqjz3VLJjHkj6ZFfJNOErM55qxStYmQYI5703K6MYx1GXaEOc/rV09maJWdynq7ZhCjriuqiuY566TZTswfLxU1JWY4Jcuo0Rf6SGYkc9KzXvIm/v6GurHyNnTjvWcklqdkW3EpMPn5HHrWSZztNO4MpUEnv2qm1Y3klyjeRgd/Wjczp3HFCVzxU6JnQl7w9RiNl9PWspK8hVNEUoIyZ2PfdXZDSJzXvG50nhtMSgiom9UaUlZGJ8To/34B5wa1otanlY+7mV7YAeG5c/wDPOsJ35iqd/YM+V/imP+K/fjPzH+dfdZSn9SPjsbF/Wm2dV4HBEKfhXNiXqzuwy0R6Joa5+Ujj1rx6q1PUprU6/SV+QZHUDmuKZ3Q0Ogso8g4HpmsZao6FbqPKqJdh4J6ipUerLv2Po39h34NeDdXk1T40/EHSrfUNO8PTwrDYXhxDI7N8zN6hVDMB3IA96/oDwd4UwmJpTzPERTeqjdXtZbn0GTYGFRurUTd9Fbv3Pp4/8FFba61P7JodraWul6ezLbRWduixxuoISJemMkZav22eW4BR5bt38+p9JTyjDUab523J73Z5F8Xf2+tO+I/xF8M6dqniOzbxhbTSz2WuXUBuTYXMvyiQRsdpkUH5SQdpIPWvNznDYCjlUsLRtFtaeVjz8fDA/Vng6N1B291abdDwX4//AA9+FvgA6pptz4p1LUPE3niTETpLHDubLPdSgsDNLywjU/KCM85FfydxHlmHweKqONRylffp5r1Pj3GHs23Fxs2rO3R2T0b0e6623Seh4+02ID0r5eMJPcwjK6KOlsXvmz/ertjHlgQo/vLl/VF27sDvXI2uYusx+mL+63kfjTcrBR1TK1wrPOc1KZk/iHyoViOPSqlK5rN+6VoY8NkjvQc8dHcbdKSpP05oT1LqvmKkiEr05qo7mcNyGdcREdPWnJalTM5AQ/A59cV0QWhLRJdEmLBHIFCirky0izKulba2D1FVFc0uXucFaapUXN9E39x9s/BrRjpPgrStOC/6qxiBHvtBNf3hktJYbKqFJL4YRX3JH+RfF+N+u55icQ/tzm/vkz1fwXATfxEDHzivZpu8j85zKX7po99haJtJjjIH+qAbI9jXHKMva3Xc9DDwpSy6MZLXlseP/EG1EV/IFPGTjjFetfmijwsC1FuK6M8v8UW+Sx6H0rzcRE+wwM7WPM/GNqy7yRjPt1rwsTE+3y2pqjxn4iad5gclfXpXzWMgnc/S8mrWaPnz4maT5czsydSe1fG5jR1P2LIsRzwszi/AU4svEt5o8jYW6i8yIHpvXr+hP5V+X8V4W9ONZfZdn8z9m4NxiVZ0n9pfiiT4jMDpmD2r5vAfxlY+6xz/AHBw2igfaBn1r6Ccm1Y8Wgrtnp/g07rdPTvXiYu6bPeweht3EIk4HT1ry1LU6J3lIWBCsRXHSqlFbjceWJEELhgtZt2NqL0KV7GV4FOLuzDEu6ZuWuFjBLdq2qS947K3xMYzBnAxyema0pv3dTmjF81zX0yM/ZjgVzVZ3ZvKOly1ZKd+AO/XFc71Qobl6IEEnHPrUtWN2mP8os2SetZy0ElckKFkAOMipWkjZaIWRCEAH4U9WzNq5ZiUiEAk+9VFO51RhamPUhE47Hir23Mk0ndlaS5aRmRW4Jwah33sTf2tQs2sAiGW56Go1kb35VYuwHcc4qJq2hb+Ajk5fG7OP0pQ+IcdGR3qj7NISOdhrp6IGtWfM3xzXHinP+3X2WS/7ufD5yv353XwhTOlJj0rzcyb9qz0cr1gkenW6nyE6fd614E/iPbkrI1dPGLfGPxrFgloWNLXMzFl70nFjp6yNCJS0+GxT5bHfBKxJeDYMjtii1zmraSJLVzJD8opTjrY6YWnALMH7V5bLxmptaOoQiozF1qZoRwuOetKDuTiE+hRso5bqdtxrSpOUFZGVOK5rsv3ERVQo7Vild3ZpJ3ZEUbGQKc9jWXwaFSVGaTB6Y61MWkjKEmQ3kEoXAOPrTU9SmuYn0WAKx388dxQ7thGXLoanh9f+JmQBxuFWtEcsZXr2O1GMgdOnNc82z1X8KLKjMZBH4Vk7otPQgVcjkdKE20KL1M/U4irkYqrEVFaRWXmIgmoadynojLlhZbv0BNaxi0jKTvsdn8NNO8Zafr1l4p8Lz3NlJYXkbxarDGcW0oOVJboDnsetehltCt7ZVafR7i9j7f3JLQ/S/4WeK/+Ed/Y9/s7w1o9nYeLtSa51C6udPgCLeoWHnsoHEZY4YqoA7gV/VHC6XJTqOK5OXVW+13Pq8swtOji4VJNOmkly+fR+ZyHw9+P+meMX0zSfilJbarY6fvt9Vt9QtUlEwIZUiYsN2xSQcgggnuK+srYOhicPVhyr3tl+Z3YuFOaqQjHl5trfn2u9jwv9rX9mr9nvRfDdz4p+GfxjsbjxEIVu7vw3a2Rjt41b76ROTyVPQelfjfGvh3TxWHr4/BYd0eTW117yXW3Q8itgauIpSqex9morrJO/n/X3HycsKhskc5r+dkpbHgxaILyMM/I61vBWiVN2VzMv4mlj5bgVtSk07M5qkk0VIsQLhzjPetZxTM0pNCS6pplpIDJIM+hNP2b6ImFenCfLI1La6iv7TzISMY6iuWqpKVj0IzhylQqfN254rKxLs4j3XII+maGrBe6K5RgwHbtVpaChoTKCUwPx9qylpI0hJuY+NMRsO+Kyk9TSrblKdqhM7D34rrhfl1OWC0Ol8NgeeAQOOtZyepvFaGN8TYwbkfUVtRWp5WOj7xUiTHhyUH+5/Spl8RVOP7lnyt8UAf+E9fP94/zr7nKn/sR8hmH+8nV+BlxEmB3FcmJvqdOGPRtDTaBxxxzXi1XuerCyOr0lfl247DGa45O7OqGp0dgcIQBk46VLVjqhFtEogXzNxPGe/asas3yNI2jZH1L4LupPBf7I8mhy2fkz3d1DcW534aczFl6d8BQB/vGv6/8OcHiMFwlQjBPmkvz2Ps8LWVDBUXDzbPn3x74/wBL+C+iXOr6r5iW+iWsq29tGQfteqSkEKR325JNd+Oxry3mjNOLV9LdW9dO99/M83NM6q0sPKpzXb0R81fBfxX4s8XfGaDXvFF9MXa6af8Adv8AOF68A9+mBXzjxteVOdao/Q+OwuPxFXE+1kz6C+J+u+ItcaFbqOGyslzJDo9qDtjPeWQnmSVupZifQYAxX4HxDja+NxbTVld6L8zR1J1puUnds5NpN8ZxxXza3OhRUUQaOcX/AOI610WvC5zpv2hqaoNzEY4rz3uy56k+mxAWxGKbWhUFywuVHTMuSO9OKbVibXkPnB2ciiUbFNakDRkHp1q4pJEzSRFMu4HP4VDfvEW90qSDjOK0huRH4iG5UiMkDim9y6mxnpGd/I963j8JDauLcJmIg/kaUXqKTWxBpmmtqOr2WnKCTcXUaY+rCvVyPCvHZ5h8P/NOK/FHynGOOWWcLYzFP7FKb/8AJWfdvgyyWGBLdBwihQPoMV/dtKKhHl7H+QmaVXKbk+p6H4Ih8vU4mwMqwPSuyilzHyOPqWhc9se7W8s9wCq7KPurwK5eRxlZHq1MbDEUOZKzaPK/iDGXuHkY7juOTnJr01pBHz2AquU3fe55f4mt9xdc1wV1c+xwU7JHm/iy23K4Zs49a8TEK59ngJ2aPJ/HNgGVzt49u1eBioJo/Qsqq6o8J+J2kGRGJTpntXyOZR0aP1fIcVyHiesvPoWuwavGCDbzBjjuO4/LNfBZlhfrOHnSfVH6vkWMdCvCpF7NGh8SJYpNP82I5RxuQg9Qea/OcDCUa3K+mh+xY2onQUls9ThNJl2zj3NfSKmlHU87CwlO7PU/AvNogPpXz2NSUme/hlqdD5ZfOa8mWjOlx94Ux7IyO1aSehVaNooht1GCzVjJhRWhUvkGCSKE7GdePus17eAPAB0yOtazl+8Oup8bQ1LfEmAOe3FbJc0TKrGy0NvTeISD0x61z1YpO5MG2tSa0B8wjPesm0kXH4i6GC8r+IrNts3lK5JDyCSO/asp7hElQMZMY6VLRVwlGcL3z+VXAuMbO5ZC4gwBz3rbZHVJ+4Ub+/EK+TEcnPQVmtXqcE25OyJdHtJJCJpR17VMmtkdEFyRv1L04Mb4UHoM1UdgTuyzaYVcEZxWFTc6ErxImB8056npRAq3UbdAtbuP9jrXT0Qktz5o+O6lPEoOP46+yybTDs+IzuyrHc/B4Z0pDj+GvLzL+Kzuyr4UenW4P2dM/wB3pXhVNGe9NaI1NPObchelYp6hTSZZsSIpTvPBParlJ8ug/djLQsRzfvOuKhzk1qbUql3qOu58x5JJ4qU22KvFt3JtEvk2FZCD2FObaNcPKMYliBc3JZSDUSnJQsVdc1yHVna5baPXnNRG6WpDbnIXTYjC/Hr1rW11cLLnsT3bkjPf3rOUrbETspEYGU4HFQ22dENaZVIKyEkd+lVbQwXxDbwExggZGMgmpimmbok0kFCcjAHetm7IxluX/DYDav8A8CoSbRy02vrB2zJtO4+1YPc9m6ZZQAx9D7VjO4m7EaLhyw/lSg7McGUdVj65yeBWjY6q2ZnxgBCT3pN6kSehRkyLjcRnBq27IzvbY9N/Z8Hiy98faZpvh3xFLpceoyG2kuFAaKcnkRSo3yupxjaQa+k4ZwdbG45U4ysmdlNScLn3H8efiN4R/Z/1r4Y+CPF9mdPa70VpNWh0qQxrDJOSUcLyEQcEg8Y4r+n8lw8aOW6vrZdNjbB4qv7Jyi7q9lf8THl+Hfhy7g1PxTbSW1sIJd0lvG+5W3jPnI2MFCOvpn2492GLXMlbpuevCtUnUjTim2z5E+Lqj4f/ABG1g3mmvPFHZrBYNeXZwzyE/wCrXILADnkVHFeJWD4YxWLm3pBpK+l2dGNxapUpSm9WrHl8gzkHqeeO1fw8m3K7PkqcPduyKZdynJ6dK1NG7qxmXWwSeTx14zVJpHHzRjJpmNr8r2doZD8oKn5iK0Sc1oTVdqbaPLNa1/ULzVjbxzEjeMMK9aMKcaOq1Pnp+0lV5j1bwF5zaGokJ+51PWvIrcqdz28LKdSOpoMmHI965b3kdyXKrCycLnFE2b8vuEDEnAHrUxZjFEkXA5HXtSmjaMfeJ1X5GGOo61hZ3NKiumUYlIuGGOM9a7IbHHF2VjpPC+1p1DHGKie5001oZfxMjUXinI5Irek00edjV76M8bf7Bl7fuz/KsqmkgT/cux8r/FMD/hO2IP8AEa+1yl/7HY+Lx7vijq/Aw/dJ+Fc+KTTudmGWiPR9FUgDjkDnNeLW0PUjsdTpfyjYOvBzXPy6anVSTZ02lwkrlv4h1FYVJdjthex0/gX4W+Pvibrn9i/D/wAKXWrXSjc8NrDu2r6segFellGRZlneIVPCQ5tdexpGjWrS5aaufQfx08Pa5pXiHwr8M9XgntLiHR4DNE0e0QMics3rtG4/Wv7Ty2ksuyGjSmtYxX3o+xkv7PyyLl21Ph39rrxhazeKpLrStNEul2TtHZG6YskDZJe5kXgySsegGcDHpXw2ZYl47EuXT+tT89zDGRrVnbWJ5p+zhrKz/GKzuwHu08wAXEybMfQdh7VhWpQlg5uOyRx4K9WraGx9KeLtNutbjuNW0TSJWt43P2jULhAAzf3FLHn6CvwfNMHWqVJShHrv3PUhFRlynIhMR7n7CvmU7MU5NOxFpKj7cfrzXUpXpkU1zO5rXiF5QpHOeK4HbUp3uXYoxDaZx161V77nS42pGey7mPcZP4UQ0MI6yJJIwIwO9EmazVkQvkDJFZ3Zg1cgeM4we3tS2HbQp3AO4j6VtBmS+Iiuh+54H1FH2hz3KESFnwPrnFbr4SZJXC4TGVIxx6U49zKW5s/CTSv7V+Keg2ZXIF8JHHsuW/pX2/hzhfrfGuEX8rcvuVz8j8csweXeGePnfWUVBf8Ab0kvyPtnwjAWiVuhIr+zYs/yuzGa5meg+Bo1j1WIsuQGGRiuujHmufKY53geuXCSJZvHDgblAHesI6z1PQxLqRwzjS0ujzDxlAwmcSLgjOT616NvdPFwL5XY828SQAFgPfmuCsj7DBzvY878UQHD8Y968bEq6PscDLY8t8YWjkuMYPpXh4hWR91l1RKx454/0sSK4I9eK+Xx1LmTP0jKKzVmeD/EPRyHkUD17V8fWo++freR1lJq5zGoag1z4OjgmfMlu5ibPoOn6fyr4TMMJHD5tLl2lqfsuExLxWVRu9Y6HPaRGRcDnqe1bVLKNrnfhJ80LI9V8CqRapn0r5jHP3me1hkdKhAOT09a8pq7O1R/eDpAfLOfy9aJdhYjZFVMhSFH4VnLciiVb0EIcn60InEP3WbdqAsYU+mK3cFKdy3U5p3RLHAxYELV3UFY1nqjStF2jHr1rmqTuZR1ZPFGF5HXHFZNrlsaJWehYjDN+FZy7G1OPMyeMbEGPyqZWKasOTIP40uli6ceZj5SVIb2raCsKpbmSQXuoLb22Oh7j1pOPMx1alocqM+wt3u5vOkOR2zSlK2gUoWV2bVo4j4xgA9qXLyop6q4skoaXaxFSmTBcxYgzjjgYHNRJq522UYg6rvJHepi/eE2RyD9y4I/h61u37qBM+bPj9GB4iU9Pnr6/JHeiz4XPH++O0+DvOloPYVwZl/FZ6GVaxR6fFkWycfw14NXc+gnblL+mSMIuawSuwpLqWWLI+V9jmtlBNGctZFm3DSgSA9etROFtjppxSRdFtGItpANZxjZ3KrR90ovCIpv3fyjPaupOPLYwiktjT01mCEsefWuWra2h0Qg3uKYFaQu4HXioSuU1yahbg+aexrV/CKGsri3CFyVH51ildiqRfMC5VAGAocFua09NCrMpWXBGPemmrGM42kNeMlBkUXNou8SazQRk56U07mL95k/hjzTq2FXjdXQ2oQuYUqf7+53iQgYJ9OledOTbPWukShty49uMChJtEvXYckWTkg89azejEtGVNUiwmfQU+YqbujIlUqSuKSbZlK9yrMqtIOCfm7V0JLl1KUF0Pev2JI01P46eGtIg0eG5zq0QVYoiVbJAIlUjA4JIYdD9a+w4S9r/asXCLtbex6EJ044WfO9kz1r/gqv47hu/wBqbXrLUPG19pWm6Vbx2V7BprMjXFqkYHkZUHOSAMYxkgngcf0tTpxw+R0HKN/teafcyjajk9Fw66v7zf8A2NviZ4M8beEhpfhS9v5NItQtvHFq7hrqzzwUk6F1zznFdUcU6qi1vYv61L2V1ueBf8FG/CGk2nxS0LXbeNg0Vy9sAE4ZvLznOOnUj61z8Vxni+CMTTau7G9bmng1KerPEWQgbvzr+NZLllY86LtoI8ZaNsA89KcpWQ7KRzmqJcfbS+Mbf8aqFuU4atNxndEeuJHqGkeRs3HaRtxW1FSvcio+enY4fT/h3cxah9rnQ7C2QD2retW5vdTOCGHs/ePQtEhSzsxbxjAC4zXDODR6uHjyxsKfv59aw2NZS1FxuGOMUpNtHUrONiMrhixBJognY53pIIs7ifWqexvB6lmOM+UxwelYydmby+EoRhvtDL2Jrog/dPOUbO50Hh3KzCs5XbOqDRlfEckzISeR610UUtTzcbfmRRU58Pyf9cz/ACrOprKwJf7Oz5b+KKH/AITth/tH+dfa5SrYM+KxqX1k6vwQoWJM9wK58Um2z0MKro9J0FSzDA7V4lXWR6cUdRpCIzDAzjjmsamkTrpJ20OstLeaG0F6I22dFbHDH0rnjTlPRI6veWx9r/sxXsnwW+ANqY7WTTtT1+Vrm5uIn2XN2qYIiB/hjxwfUnjnp/Xnhpw3RyvJIOrFKb95t29ba+X/AANT7nKKGEwODVWtG8n36X2OK/bB+J+v+HdBk0/xKou/Eup2hkcPiY2VsVJSBTjKyEcnngYr188x9LlcaTsvI+U4gzZ1ZOMHaC6dz8rvjLea8PHMt7r1jdz28zlzb3HiBZIxz3jiIKduOor8+k68qq8+zPzrETlVqpR0Rvfs1aZ/xc2xktlQKZQ2xmOMenJr3qlN08BP0PsMuhGjS1Ppn4oaNqutzPrHiWfUZFgCixVohb20K9gqnBbPqBzX8+Z5Kc6sueTtcULSldM4l5n2bX49q+V9xsmV7sdo+ftpfb3rsX8MdF+9Y2ZBvnxjjPGK5GtToULT1Ls/ywBMc4qG+iN6vwFCNDn8aIvU54qzJZh8uPUVbLm7orSYxU8tzJK5E5BzxxQ0S3Z2Kdwu1yCOe1VBaCjG7uQXH+px0oXxEztzFWFArgsPwrqfwkyGTpufHepTsjJrU7r9mfSftvxTS7ZeLSykfnsWG0fzr9c8FsKq/FVSq/sU397aR/Nf0ocw+rcC0sMnrVrL7opv/I+vfCy7YVHpX9VQP83se7yZ6D4BUS6sq+Xu6cYrrofC2fL46LlFJdWeq3Muy1bjnCjAFYxXvHp4ut7LDtLfRHmnjPfJPIzsSQT1rutZHiYN63fU848RR5LE8e1cVY+twb0RwHia2yXB9OleTXjc+twU9rHmfi+zdt4x9Aa8fERS1Z9xl1RKx5N47tFhDGXqc7R6183jU5n6DlNVzaseH/EbSZMtMY8H+7618pi6ahJs/VsgrxUrXPJfESXNjHcRCP5JQG+jCvhc7pqpUjUXTQ/X+Hq8anPRb3V0Z/hmJpZwZSQc8V4+Ik+TQ+tw79jues+D41S2UL0r5/ENvc9vDS5nc6CNcHkDmuE9BbizkCPpgkcVk3dmVd3K6AKpyO9TLcVKNkU7s7lYEfhTtYivbkZs6eDOVc/dIziuiclDQunBQjqaaKgXpjjisYqUncpvm0LECHBIFYyVmSlZlmNdqg+o4rNs0VieCMhsnj6UX0ub0HYlK4OO1ZNhLWQICOetbU1c3hZRC5mEEQkbqOme9Xd3sjnrvl1M4GXUbkAk4Bxirm3TVmtTOhB1JczNe3gW2t9qisEru51TktkT26EoTmpqTLdlGwyBD553NnB7ik9gilBGjDDlTj09KxloaqV0MdMMQSdvrThrIFdu414w0LfQ1tfQo+bP2gSP+EkCgdH/AK19hkelA+Czu/tzsfg4caYn+7XBmb/es9LKvhR6dCGaFVJHSvCqWTPoJr3UXLBtgAP4CoWrNKVlEsXMxjjVs846VpGTeyMqu5b065Vk3EYU9qmcjopfDqWLq/8ALiIB5HSsbXeg6t2jPtLma6u+e5wQa1qNRRz0YtTdzoLRFhiDE9O1c6vLc74tNhNMASM8ZqnKysRVd9CKG5XeTt7+tKUu5NKyepL5yg7mwT2zWXM+hVSVw3oxxgVMpMKbsVr1G3ZUU4MqUL6iwLuiG4cnrTabZnflHRIxkK84PpWiaigiang+zkm1oQxRlmJ4AGSaicnJGUHy1T1fwt8JvHHjW/h0zw74curmSWB5h5UJIEajLOT6DHWtqOBxFf4Y+ZvKvBK7Z2nhn9jv4uaj4Dvfilr+gT6XoNjp5vLi+vIiuIixWFVH8TysMIo5x83Su+lk+IdGVSaskrhHGUFVVJO8n0POLvR9Q0+CC4vdPmt47qMyWzzIV81ASNwz1GQRmvFq0pws2tGbpxlJpPYzNQiyv8/asS2tDEvYSmSBj3rSmr6mUlqVobf7Rdxw93kA+vNaTvojaFrn2F/wTLsLiz/ae8P6FI02nym8Aeyugsq3CLhmA4+TGAQTjPY9a/R+CYSWKknf4e2jLxShPDVYvSyOT/bs1OLxF+1t428QGaKZU1hoVtLpQYud6qWBHK5xn1xX9I4mj/wjUodomuLlGjgqUI62ijK/YW+Kn9na1e+EfEFtp935eom2v9XZjFuKjKR2zHPmoBtwh27e2a8bAxUVfqeAsZXr4lRi32d+x6Z/wUM8JS+NvhLa/FfSrIxxWRjunwg/5YNtk/ONia9eg44ihUwtXVSTv8z6fC02sPKm3qtT5CvYEU5gbcpGQexHUV/H+fZdPLMzq0JL4W7ehwVIcruVmH7sj9a8ezkJNNmZrEMcaiTZzxzjrWtOLTuYYiSiZVvC08md3GeB6V1cySsctO83dFi6tgoGT09a572d2XUiyWygLJmsp1GbUWnEZLGUfAB96werLcR6oSv1oaaRvTkmQy5VuRinF9DOa94IEO4ArVPbQ1ptFyFf3TAkcisJbnRJe6ZpXFyTjjNdFNaWPO57uxu+HTvmHanONkbU9DI+JLbJhn8a3oQ0ODGSXMkUrUh9BkAYH5Dj8qyqRfPYcbyw70Pl74syGD4gsgXPzdq+6yyCWDWp8ViaUpYrU63wDC0kSM/tjNeZjaiTsj28PCMIHpWgrt6DkjgV5L21OqKcpaHUaREVlB7nsa4q1SPModzsh7qse6fszeCPFnxJ+JXh7whpunQSafdXLk3N3biSO1kjUOzc8AlAeDxg19xwLktXNsyhBr3E02ell9H63X5LXS3PoDVvG1lfeK/E3xMu1tpNF8GQJa+H7SPG2S5GVRD+ILkfjX9Z42Ussy+FCNnGST6Nq11buuunVWfY9zO8YsPT9lHoj4B/aj+K3jD4g61eappM2pSrBI5vZ4xta8c53hZGZQq9s8nA4r85x2LjXnJvZH5ZmGNnJqV1ZPW/U+Sbmyjk8RyXMuhNaSSvkp9sMxOT1LZNfP4CKq4nmSObB0fbVue1j2j9mPRzdfE3TrFohtJzKGXcGH07/Svr8wrxo5ZU923LHfvv+P8AwD6ulKUI+R9ReK5fCr2byXPh7U4HLHN7JcRNI5HQBHXKr9K/mjH4qjWqS5oNa73N+RuSaaPLPEcFxHme2zjPfrivFpwUnuYVVJ7Ffw7qW+5IkIXnvXTL3Y2RNGShK7OlhIeTzAQRmuV3PQjKMmXbxv3YGew6Vzyb5hyK0QBxxznrVwiyHHS4XHCbc9q0k7IiT0KzLlcZAx61ClYUdHchcY6n6UORFTVkEybhnb0qoy0CDKt4hC4zz2NVF6mVValeGMj/AD0reUlykxegyRfmOevfFZpuzId7nrn7I+lGXVtY1YpwohhU/iWP8hX9CeBWEdsbin3hFfi3+h/Fn0scz/fZbgk9o1Jv5tRX5M+nvD0QCque1f0NA/hfGSu2ei/DqJ/7TVkYAjGDiu6lb2bPmsU25xt3PSJpsRMkg3cg5HQGsUlzHdiK6hSkpq7PO/F0cstxLMzgjJ4rrs3G7PHwctFc868RRtuYgVx1j63BPY4LxJHjcMg5ry62iPq8E9jzjxarh2igTc+OT2Hua8LE80nofZZe00nJ6HmPizSSGeVjvc/xV42IjpaJ9zl+IvZLRHkHxC0nekhK/WvmsfR91n6Tk2JcWjxTxrpx+zzIF5U5FfEY6hzwaP1vJcV7HEU6iOY8PyYuFXb/ABenSvnZwXsz9RqWnZo9a8IAm3X0IFfM4pu7R7OCtynQxpzzXnT0R6Em1qhHQlME9KwvqZ25iq2RnjAq2vdubRVkUbrkNzQ3octfWLPSfh38MNV8ba9Z+GtJmt4Gu5/Igur1ikLSn7se7GNx7CppxniZJodWpGjpLc9m0r/gnV8bvEmkWGqeFLVbs3dnc+dbFCsttfQZL2bj+F2UZQnhq9yllVSUdGcNHHL2tpKx5v8AED4OeMPhbrcuia9YNJGLaK5gvIYyY5oJR8jgkccgqQeQysp5FeZi8JVoS1Wh6vNCaumc+tsV+Ug++a4ZRaHFWY6NTEwyKye1i1oxzEn5QetOMbnQo2V2OQqOv41t8KJjK2rMzWL5pnFvCeSaIrqznnJ1Z2L2k2gt4Azr8xpfEzqiuWNkXWYsnJqZys7IiWjJbVgI/p1rB67myvbUbCrfaDxxmtI/CD6GlbYAOfSsZp3LjJJWIZRmTJ/ECiKszaKdh6RF0Yf7JrYLq582/tD2wi8Qq7f36+vyT+BY+DzqV8RZHV/BmRJNNUIvIXnNcWaRUajbPVyqlPkTPUbRCYgD2WvAqyi9j3ZxaSLFspJwc47Gs76EQdmWdRt1MYPbHWqg22ays0T6QuYwpqZp3Jg2noTX0SlNg/Os4t3Nt2MsLQRuWHQniqlHmWpE1yyujYi5ADd+2aTfKrIqErMV7QOCefzrHmbZ0WcmPh05B0P1JquVvczlBpj3soxycc1KTuUoXiRiBQ3y8U5RVjNXixtzACASKzjudF7K41FWNQCOT7Vra5hbmZLbwkvuxx3qKjSZfKkz2v8AYP8AhNf/ABJ+O+nwWtgbgBm8iLy9weXhUQ54OWYV62W4P6xVSseXip+zi5PY/fL9nb9jD4OfAf4f2Kav4esZ9Qh0EWN/eXMahfLPzOv0JJz6195ChCjBU4K7SsfD4nMq9Wo0nZX0Nrx14B+Anx38Ox/DK5u7P7DbEOlpaIqLwuwbeMBgp2gjle2Dgjo+r81LlnHQinjcRhavtE7yPy1/4KcfADTbPUrbWtM0yDT7ttbbR9D0iFX8xLOGMLb28EAGWZ2LMW6cepr4viGjGKv1vaK8j6/Jca5vls7NXb835nxt8W/hX4k+Emvnwr4y+zQ6msKyXVhFcrJJaEjISUKTsf1U8jvivkJxlTnyy3PpqVRVYc0djg79QY+aum/esNpWKIEZcEgcMM56VrUvZWFHm5j7O/4JoeO/EfhT45+G4tejmuLS7uY44EutNh+ReBlH5kUDOeymv0rgmrUWLcJyesXbsa4nDVMRRmm7aHk/7Z7tD+0Z8Q7m9gY51S5WMY5dfNYKw9SOeK/qWtBLK6Epx0cV8+n56G+Jw7hRpc38qPOP2fvilFofxBl07xLolvquosyLDqdzdGOLTYlwI/KiGFaTGcE85Jr42rWVHEqMHqeHLkp1NXZn6R/Drw58O/jb8AfEHgyFZ2hEDyWw1RcvnaQ6ZKjdkHqABV4epXo4uEqjvfRmkswrxxUXT+F/kfmR4o0OfwhqV14V1D/W6LfPYTEA8qp/dOfQMmB9RX5/4q8MRqwWZ4dbaS/Q9eUVOnoZsigKzetfgSjynPHS9zF8Qyu0Y2np6VVOT5jkxEHLUo6JDJy7Grmww9o6Fq7XBOfxrKUi6tiSzXEfGQKxmrk03YSaM5Pt0pKOtzXm0EjZc4A71UloXCLvchu1QvyOlYRTuObsxsQZmCp0HWttIajpx6l5ExET7dawbuzeU/dsjKkfbcsq+tdULqOpw8t5XN/w0u2QH86iUm2a82lkYPxSl3TKievIr0cOrQOGvTvK7M7Szs0sxtxlfWuStL3zeEkoWR4L8YfBGpx+Lv7cihzCTyfSvpsDjYyw3Ij5XHwqPEXWxseCU2RKG644rGrCN/eNaHNM9K8OWvmBWYDpXl16ii+VHr00ox0Ox0PSri9u44LaFnJYDCjJNcsIOpUUVuy23sj7n/Z48Pa/+y/+yj4v+Mnie0+z3HiEi18MWksYDHCYe4TuAQce9f0/4W8PTy7D+1rKzer/AER9dlGE+rXqS3Suzyn4462fhP8As56B4Lu7xrXUtaaXWNXQW/mybphgDaeM7OhJ4zX02b5hWjNuk9XdfJ6P8D57PMQ5zcoPf9T85fjrqq6rqdxLqLDUEUnbDqmsGBVHYpFGRz7V8BjJU+X3rN+p+eV+RxcJfEeb+FrYNMCkAjySdoYkL+fOK78mw8IrmasexltKpThqfRP7JunrB4uTW5nkKWdoXZ4s5LHgdBXbxTjaeGyKbTvdaeZ7MU5KzPV9bu/t11JeSyvvZiSGV+R7lySa/mXFVlVm5JWudsNFyoxLwCYEFfwrmhdMtpQMG90ya3b7VBxg5wK6ozhf3zkrUXKN4l/w94jJPlT8HOCDUzh2MaVWUHqb73fnxB1IIIrnlA9CFRVBYQQmSOtOOhq+wlwpYD8qcmkibJakfl7F5rJXbIlJFeVG3dO/FaOJnNNkQGQRjqamz3JUbPUrX6ELtHbrThuTKxWjjIGDXRYzaSZE4xJgUnZIhu1z3v8AZE00x+E7m+K/8fF+xB9lAH9a/qjwUwvsuEp1rfHUk/kkkf53fSfx/wBY4+VFP+HRgvm25fqfQeix42Kf5V+wxR/KOKe56H8PVP28DfxgcEda7qHwM+bxTvOOnU9Au5Jfsx3BVAGNmazUVzpp/wDBOnGSlGg3JW8jgfEjBZZSG9eK6G2ebhrtI8/8QpuLHHeuWofU4N7HCeJoQQ20Zry66ufV4KW1zzvxJpxjd3inJ3feU15NWn0R9hgq3Mkmjz3xRal967cY6GvJxEEj6/A1LWZ5V4408Or/AC889q+exkbxPv8AK6zTR4h4z04rcvGy9TXxmLp8tQ/V8sxDdJHB2VkLPWXt8fdkyM+lfIY6Eqc2j9ayjFPFYOEn6Hqvg1f9HTjOQK+RxWsj7DBrQ6GMcEYzzmvNqbHoTGyghC3fFYRV5ELSRSkJCn5eD3rpkrI6GUX+fOBWUkcVZaM/Vr/gmX+zD4H+KllJ4NvILfXNKZgZtMvdJkjktnyfnEpB+YZx1Ar7DKcFh4LXWP6nk5pKpzvpY/Sr4f8A7IfgT4ZQBhqKoxaPzGuZdzMqfcJJ+8y9ATzivedOkp2ijyniOaOpxH7TX/BPf4afEbwxe3mnaTaLHNaXKF4otwMcxDNgDpiQCQD1B9a4sXhoV3ZoFmVWLSvoj8MPjP8ACrxB8IviNr3gTXrIxzaNq0loxYdQMlT+K818Ri8JKhVknsj6zB1Pb01JHHOh278cD1rzpRSlZHoqnFiKuAQ3fpxVaRRu1aNipqOoJAvlxdT2oh77u9jhqOV7Ii0jTpLqYXE46daJytojWnBR1ZtFFBAToOuBSbtEpuzuDKdnHTNYLcEnNktoNoK9qJKViuZbCxL++JPTvVxTsU3cuxsfuoBjsaGkty4xuBj+bJ45rJu70NXJRViS3AyxI4K1d2kZyd3ofNP7SbyP4lWBB0l9fevtMl5YYdyZ8bmkUq3MzsfgtZiLS43xztrxMzrOrWaR7WAmo0UemQ7vLGB26V4/LZanqRfMixaR7+c4FWkmjN6SJ7su8QjBzx0IrWKUVdlKDauyxpqCKPk4z19qxqSc3oP4SWQF5PkGR9KIxUVdlwTvdk0CYOc1Dn2Lm0y5bglh/OspMzjuW/mY/wBKUY31OuD0HrgDIz15rQibaYkgyDg9cUrInmZXeN2YE5H0pSWhWhL5Rxhhz71nGOoNuSGx2hZ9xBwP1qpy5VoWlZGhYaZLqF1HZwIS8rhQoGazhFzlYirJKJ+pn/BCn9jbxhbfFVfjT4stFXQrDRUubGFk+9dSlghPHUIm/wDFa+7yPCOgnVfbT5nzGd4qEMJyLdv8j9Av2lPGMlxFPYPPImnWR2SJE+DPLj7v0FfS0JqGjR8lCDi7tHzN4Z+OGm6L8XLXwkZJprrzFkAadY7eEZyFJYfMfbFdyn7urdjrp0PbPsdX+2h4l+G9jYHxx4hNro988BEmreHXtxqCoyfNturkhbUEcFogZDnjHJHzOaV6CjJN9Pn8j28JTrwlThTg5puz2tHRu71V100u7taWu1+PXx18R+ANa8aXh+HGhWtnYCVsNBdS3MkzZ5eWeU7pXJ5LcCvzrFRoOpenGyPt6blCkoyd2jze7cliG6nrWcYqOoOPcqIBvOG4zxVVLtWIcuV6H0j+wV4zTw58c/CpuPDwnshfKLq7jtkj8vJHLuzBnHsM8npX2PB1Z0syhzaK251QlVq0ZKL1sWv+CnXgu18IftKeNkWJ0jvZRdWeeMkgSKw9iAw+or+tsJF4rIKFR32/I6K9aVbLaU+trHzd8Oohrt8PFHgC4inkivVmt9GuGRbcyYxJMzu4CtwACQcDkYxXxuKhOOK5ovqfG4lS9u5tf5n6s/sP+I/FPi3wRaaf43u9Iv4mO2NbG8huJLbK9GkR8tjpzmuWtO1S8ZbGns4Qj7SDafmfBf7ffgVfh/8AtW6vobyra22uWzI8phVyJEyUYB8DPbPUZ4r6NUaeYYFQqrmjJWaPp43rYaM1+B4xHvk0yC8OCJVIJBJ+YHB6gfyr+XOLshrZDmMotfu5axf6HPUkpXsZur2/nRcDpXydPcxlqippUZRipXjNdErJGdODbO++BH7M/wAYP2qvH7fDT4J+GU1TWFsZbs28l3HAPLjGW+aRguegAzySBV4DA18wrSjS+zuPEOnQp883Zdepx13pWs6Bqd34f1/S5rK+sLl7e9tLhCrwyoxVkYHoQQRSxeGqYStKlVVpIdNU7XTuQSjf36HtXLdJG65Yka4ViFPJqG3IpzSN3wp8IPiJ8R9B8S+KvBnhyS9sfCGlJqXiGeNgPstq0qxCQgnJG5gOOcZPauzC4CviaVSpT2huZ+0purGDestl3MnQdB1rX9VtNA8P6Tc39/fTLDZ2VnCZZp5GOFRFUEsSegHNcHJUrVFCK1YOuqdNzlokX9a8N6/4W1S98N+KdEutO1HT53gvrG9gaKWCVThkdGGVYHqDVyozo1OSaszSM4zgpJ6M5qG1vNQ1hLHT7V5pp5AkMUabmdieAAOpraFGrWmqVKLlJ9FuZq50WjQS28pjlQq6nDKeoI6isuVxk4yVmtzelFHNfEVlNyAWHB5J7V2UeeVlY8/HX51E9Ak/Znfwj+y3eftF/Fb4hW/hqfUokk+H3hCTT3mv/EUAlVJrxgCPstqoLbJWB8xlIUY5r6OHCuPxOAqYpRdoq5nTo4uu5vDwcqcF78tkvLzPnD4iXgu9MLEAjOQe1eVl8HBnj1pKqjK8D2LSyBmGMHiuzGVUlZGuHiken+HrKSUqscZOOuB2ryPZuctTu62R92/8E7v+CfsPxj1RPi78Q7WeHwhpF3Fc2NyxaGS+kC/NFjOCmTye/QV+ycE8I0qVsbi43k/gi/zPbwGDjSn7WprJ/Cv1Z6P+2p4otfjZ+0H4Y+AXh63jj0azuUja3hfEUEURDP0H90Yx71+6RVLLspkpxfNNaWdrO63VtVa6tprZ30s/Yx1V4PCcl9Xqz48/4KFeINP8XeL9Su4/D97PBBH5EOy/FrGkSDaFMjbcKAB0JzX53jMVzVGr7H51meLmo3g7n5yeP5NFuddNpYadpkbh+tncvcOf96Rjgn6V85Upwr4hLQ+XoWr4pXLXhGxuJb/ylO1SuGdu3rX1+W03TjqfWUozS0Wh9Rfs86DqGjeD7nXrQiKWd/KjZSM7B9cV8X4iZhNYeNClKzPRoWlLU6e9e7lXN3cF3J6EV+FzlJy953Oumlcy7hwueMAU20KsrakUW2ViNoINTN3WgUpXVjP1bRDG32iz4I5OKqliLe7PYyxGGT96O47RNfZD9nuOCOMGt5WkrxRw05ypyszorSeOWPcrcEflWEkerGopx0H+ZtJLD6UJ6ag4NvUxb7xhpdte/ZGmUMTggkVpGlOesUc061KE+W+poQz293biWNsgjIrOamnY6HONiB+pAwBSs0jlk22Vrghvx9aSdiLNlc4Ude9bxkmhNOLISBk80pbE1E+U+nv2ZNJGn/DrTxjBl3yEEerH/Cv7R8NMH9S4IwkGtXHm/wDAm2f5Z+OmZrMvEbMKkdUp8q/7dSj+h7No8QyBnmvvIrQ/B8TLQ9A+Hsb/AG0Mq7iAMDFddFrkZ8/Xb9rGy1udxfW+ozQs0RBVVzIfQelKDgpasvGUcVVg5fZW5wfiBQDJ6k1tO3Q5cNrY4PXwxLdiK5Knc+nwmhxHiFclsn8RXnVtWfT4NnCeI4Q7MX/AivNrNH1WDnZJI4DxLbo+8Bfzrx8Qrn1uCm1Y8y8Z2Pyvxxzwa8DFRufc5bVV0eK/EDSzvaUAcE84r5TMKWtz9PybEe7Y811S0MOsRXQHEnB+or4/OYWpqaP1XhfF/vHQfqj0XwbzZoM84A4r8+rzUps/UsGrx1OjOMZC8964JvWx2z3EkT9znFZx1kCWpm3GApH610z1N+5QiJEuGHU1nPY4K8tWj+in/gkzpCxfC3UdXt/CMWn3UFuXjWG584NgZzyeK/R8v5JYazseBnnOq1zp9V+Ndz4w1TULB7q4kmtGxeRKdghBJAyeOTjitqbine55dOMpU7vY9E+GnxA1LRbaKzvLn7bpVxH/ABndtzxzVyipEuKWp8pf8FV/+Cad18X9D1L46/CHTBc3981tPqFvCMtviDqW/FG6+wr5vOcM61G0Vqe3luZOnUjCS0PyU8VfCbxt4YTzNX8PXECO8wUvGePKcK+fTBI6+tfHfV60ZXa2PpvrEHLc5W5geOMrjNYOTlLQ6lO8ShDpfn3Pny/d/lV875bIhQ+0akaJEmyNQMelOPu6shzuxVU8nPNZTd2NXY4KTwBweaUVdmyaiiWCMhTnNaNpoyejBSFk9T6U0rIcE2y/ZWV1eSxWdnbySyyuFjijUszseAABySfSueo25G0p8ur0R6D+z9+zzfftCa5rPgzSPFtrpev2mmyy6DpuoRNjVbuMgvZhh/qZCm4qWGCyheCRXTg8N9Zm4t2fmcWIxUqMo2V0932OQ8O+EvFHiPW5PCWk6FcPq0azCXTmTbKjRIzuhDY+YBG+XqSMAZpOjU9q6dtUdkeSUOa+h8t/H1A/iFbiQH/Xf1r6LAVL0eVHymcyhGrY+rf2G/2RfA37Snw213Wvht8Z5Br3grw7JqHjLwjqeg+XejEhUS2IWVhd26AqZWPlyJnIRgRRLAUasZVJyafZK/p127mVDMnQnySjfsaVl8FPjB8Pfi5pGgt4HS+vYrc69p2UEtnqdhbxtctOjHiSLy4XJB5+VlIDAivGWHrfWVCKvbX5I+khVhVpSjs7foexftV/sa+L9b/ai8XRfAbwBa6f4Zl0O08XIkl/DBZ6RYXsMcyxNK7bEAklMaqTk4AA5Fd1TK6zry5FpucGCx9NUUpu7vb1PmnULe40q9k03VIDDcwNtmibqp9K8iesmj2FUTjdHqv7Nn7JXxW/abtvF2qeAP7PttL8C+FrjXvEmsatcGK3treJGYR7gDmV9pCrjnB6AV6GByyti4ynHRI4MVjqWHqRjLeR5xYyJcIpQY3AH868qoveseiproeo/BT9lb4j/G/4c/EL4teHLiws/D/w30VL/W9R1KYxRyyu4WO0ibGGnYbiF44X3GeqjgK1WhOstIxPOxeZUsNiYUXq5duh57AwJznj61xct1c9KGrLKsGbH5cUm+VHUvdjqDOeq9KlSIVpPUbvKgFh2pttky0Y5HBHPX1FNXY1dkyI0p4U0m1FGsYpLUtw2uAFA696xbu7g2fSv7AX7IHiT4/fES1eHSpJYWmEUaqnVdod29MFQyg/3jXtZZg6lWomlr+h5eMxCpR53sj92fhR4B8Lfsu/BO30WUwQNBAJLwx8B5yoARfYABR7KK+7oQjCKiv6Z8LXrPG4ty6XPm/4z/FvS9XhvI7e6lljgV5Lm4jI2xsckku3yK3uTxXRKcYy1FOm9bHw14b/AGhLH4gftDDw/wCG76H7Bp0hBTTJd4d8/ellwTIcemBWka0pU7LY76FKcaXtD2T9rDRtO8bWdqbP4c6r4w1GK0Urb3O+PTrXj70jE8+/SvnM2um58ik0j2sBKpGzvZH55fGXw3qHh7xTNa6zqWitcsSWstCZWgtR2TK8ZH1NfCV7892fUULKOupwN2mHJ7DvipTui6jvsU4tzSnaep6VTk1EIwW7PSvgx460X4f69Zas2nWjXPnLi4u4WuGHI4VB93616OXZhTwteLjC7v6m6rRpRtFanu37dOj3XjLXtP8Ais267i8SeC8KQ3EdxbYJQZ6ZADc88mv694SxbxOUWTdkrnbhY062G5Xpa58UC28QaRLew+G71LCys7tZpjcQCSG3DYw5Qg8tjp3x7V4GYxcqkvet6nyWYRnGUpJfNH6G/wDBNr4u6tfaLHEmv+EtQhV1Ah0S1hsZh6lgqqzH2JNckI0+V6nHB2pO99e7uYv/AAWa+HL217ovxh0qFo0TZJJIqbiGU8g/hX0eTTlPDSjfY9XLsZKVH2aPh1rvT7PxRczM3lWN4Ulk2RY+8PlkGST1PIFcPFXC+FzzL5Uais3qn2Z6qjy0/e1LOo2E1pJ5M6/eUMhxwwPINfyzmuTYzJMdLDYlWkvxXdGaiuS/cpwwqj8cc15tS7Ri3bY9g+DP7PfjD4j/AAi1P4ofCH4nxQeJtB1tI77wpZXZg1CSxMYYXcIyDMobcGVeRtBr9W8LcFODq1cNU/fytaNk00une/yOvJs4xGXZpyte5JW12+dyr8d7rV5ptE/aJ1vRbW/nnmjg8VW12hMdzfW5G7zQMHE0agk9c7u9dPiPklWhmNLOFS92VlUVtE1uejmWWcuNdS1oz102uVf2ofhb4P8AA66V8bPg1azTfDnx7ZSX/h2OWbzJtIuU/wCPjS5jnLPE+QrHlkKn1r89z3Ko0OTFYdXpz2t37HlxwlWPuVN09X0a6WOz1v8AYa8O3niPwF8Kvhb8VLnV/H/i3QINQ1jQNR0j7Lb6MZIvMxJOWICgYG4juPWvtl4Z8+CU41nGryqXK1dNeq27HZDJsQ8JXxNZqEYfD1cl5W/Ix/hBovxf+BHxU+JHwC8WWUuk3Wq+Abqx161PzpNBHNHKWVh8roQuVYZBzVcJZDicDmuIweNpaTpy1+W6+89ngvA4TFZrH63T5otPlb6SadjW+Ctp4l/ZU/Z38QftieHCp8Xajqf/AAi3wyuwoJsrmQZuL6MH/lqkR2IezSEjkCteGOFaODp1cfiFzWdonHPh2Cqyw+J1jFuTVt0npfyf6Gd8Xfg9478TeALT9oq61u61+8vLW2j+JE10f3+ka1LkeVOWOS8gUP65PPUVrx7wfOcoZrhVa8E5Q7WSu7f19x1ZhgqFbFKNCCp+7dRXWKW6XY5n9kcJ8Nvi8nx18U6I76L4U0u71GC6kg3QvdouyJDng/vHTI6jIryvDTLVDF1c5xVN+whGSjKzs5K10ns2rq6vpdX3PJwWEhXdVVvdSjf11NP4Afs3+IPi/wDDLxT+0D4x8Uw6FoGnXRtrAvbb59Y1WVspaQrkAKM7nkJwi9ieK8rB8L4nOniMfVbjFuUvXr/wCKNOtUxUaVON3L8F3Lmi/AL4E+FPCuoftFeL/iLB4/fRvEraJ4U+Hem6dNHF4r1YeXsxLkSSWilsuFRS4Crkbzj28n4ew2EwNLFV0+dtvlaVktLapu736WVt2KeAlUxzg17iV3K9rPqrW/rqtNZ/2/fiZb+FPibqvhTxtYTap8X/ABT4UsbTxBotxdeZpnga2ECmSGLaFUSBQAkQGyEEqNzHNfouJxuBjh3Qw0bc0LWv5avob0syVPK3gsJ8ErttK115+fn+R8WeJPDPiC++Hk3xEt9LuToEOsjSk1NosRPdeWZPKBPVgg3HHQYz1FfiU8JWw8XOSsr2R8TUhyNqw74daelxaiZmCqMbmPQZrzqic52NKNlG5+gX/BN7/gnVqn7Qk9r8Rvinpcmk+ENKut7TFismrgdEXP8AB6t36Cv1HhPhFTUcZioafZi+vr5Hu4TDR9nGpJa9Eff/AMefij4f+Ffwvl0XwTpdtZ6Zp1qLbT7WIbE34KooHTPQ1+35Tl371Tqf0j6fL6FqnPU3PiLwXe3Wl3fjL4y+Jr+Mta2/9naZMreaGnkXdMygZ56A/QVOfYydT93F+6r2Pnc5xjxFZpNpK58F/tX6wviHU7i5vtAvNUVnZg+sXskFrH77cID+tfm2MTUuj9T89xsrtxR8oTSjUdde1abT440biLTowIk/4EOW+tceXJzr/wCROXUoQndu7Ox+Ffh6fUtQbajO3mBYy3Qljivs6clSpNvSyvc9+nzK7vofVFlpdpomlWuiQwBRbQBSSg5OOfrzX87cWZiswzac+2iPWw3u0xs54ICkV8k7Jm0W+Yzb2JyhO3t0xTvd6lVI8yKmlGUSZZ+M806l4mdNqErGowQDaeQawUWzSpMxdb0XcxubUYYc8V10ZuOkmctWipxulqGha3JE3kT8EHHNbzUbXijmo1JUp2Z0Ec0dyhK45Fc9rnqJqaujxf4ueF/EVv4hXWtMuXARiQmTg17+DxFCnQ5ZRufL5nh6sKqqRep6z+zp8N/iT8Xfsuj6NbqbmciOJdhYufQADJNeJmGNw9BNqN2uh25XSxmMR7t8ZP2YvBPwK+HqzeM/GjHxWzhZNFdCjRDGckGvlMvzTNMyxcn7PlpLTzPfxGDw2GoJqfNPqeAzuqt26etfTwhzM8tyWxUkmLGuhw5YFWuRu5HB6mstZy5V10OfF1Y0cNKb6Jv7lc+xPhFpP9meE9Os+nl2cYIx32gn9TX985Jh1g8nw9BfZhFfckf478XZhLMc6xOJe86k5ffJnpGkR4KjPfrivXWx8FiXoz0DwFGyyMTLs4HzeldVKyi9DwK1nUWtjrbtnitWVJDt28nNCXNMjGSlTp8kXocRrjsSwJ9cH1rR2sLDrVI4TXwxLljXLVdz6fCdDitfQ7myK86rc+mwj0OJ8QJu3ZP415lVan02EaOE8Q27fMpI9q8ysmz6rBzWljzzxbbeasgK84rxMRHU+wy6dmjyHx7p+5H/AHfr2r5/GUudH6Nk9azR5N4hh8sOQvMb7hXy+PwftaMoH6VlOJdDFU6iOz8GsklpHJGflZQQRX5Bif3deUH0P33CKLpqUdmjo5M7RkCuGTvI2ndscwP2fBHaphfmKgmzOkj3IRnjNazdmaSlZMotDtffUSfunDUV7s/or/4I06Vq2mfDjULG68Bx6UskDAk6ms7t8p7ehr9CyuEZ02mjw8+k5VeU8u+JV3Ja/EbXFsbiK21ZLuY2q3LeXb3TKTsjfHoehPrXpThTpux5sqE1TSWx7J+zz8SdM+IHhNLTULZ7DVbdQt9pq27FUkAwwVxwwzyCOKSqRmuVGChJSsz3j4Z+Ozplp/ZlwFeAtsImQhX/ANkhq5p0VN6FTThqjk/2i/8Agn7+z/8AtIeF9Vn0PQbbStZvNNuYTNFGFQNMoBYDpnKr+VctTDUXGUGt/LuXRxdalNPdH4d/t7fsur+yh8YF+FcVw9wttYI8l0y4Esh+9j2FfFZngI4KrFR2Z9dl+NliY3PCChxgdPpXDZR1PX1cdB+W24I/HFZuTZzj0V9oPvU8qZ1QcbD0Q7uD2qkrGc/iJCSowoHTpinZIcVzCRxYYu3FZVaj5bJmnw6GpoWs6zoms2mu+GdVlstRsLqO4sbq2fbJDMjBkdT2IIBrKDknzLdGNaUZwce591f8E+NP0X4h/ts6X+094++H17Za5qUuoDxvFFa7dNF0NNnna8CFDtNwCrsgdAjq+0FXUJ9LlVWjin7TeXfp/XzPncdhamHwMqEZ6/iehfBb9lPTPitrPiP9oCHwxDNfLpFjN4msFiYyQapaXCTpMCOdl5YswDjgvuU85FdcsLOvN1la73M4Y2vTpKF7PbU+If2+P2KP2TfgJ8ZtT8F/G/VfE+lnXbqLUPh/qNhAo0i+t5WYos0xBe34ZQz7W2FWyDxXZhMvhQpt332fQ5LyxFROauluegf8EqJtV+Bnxw8XaX+0RYQN4p8I6XBL4Hu3wZ305+J7WWdI1W9tJ7ec7ZcttZVIAU5CqciqezsnLa/QTw03Fzi/kfcen/soa/rf7Pfxh+F9g8P9o+B/EN23gDVoUDSw6LfW6tNbBhztaKTnsWDGnQwNlKzs7aP818ylXU8VSb+F7rzRp/8ABUbwx4d0/wDYo03wf4U0Sa1ufEHhHS18YXmnwFpLqK1tmSwhxniPziGOM9BnoMaZhUqQw/sqXVamuXqEcQ1L7L0PiH9nz/gn/wCKvFnxLvNF1/xLprQ23w4nsr3xLrOmvEkuqyxeTcHBL5a3mmVN5+Y7R3FeDgcC6tXVWX3nq5ljVyJRv33Prn47/s36V+xR/wAE+tG/Yc+FGtG58V/GLV47zxl4imh8oyaZGA0jspbckKoAADz1GMvX0OIpxw2FWHpOzlu/I8enUq4zGKu9kvXU8X/YV/4JB6x+1B4/1j4neKLG68P/AAu01LiPT9Z1iM26X0gUpHLGpILohJc4wGIC7hk14uV5bTli268OaFn5avZ/Lc7cwzeNHD8lN++fSv7TP7KPgX9njwT8MP2cvhX4Ge9+GPh/Un12bQtSuUS9+JPiDy2Km4LD5LWJf3k00gWOOPgc7AfeeHpwjGnCPuLWx4uBVfFV5Vpy956X7H5C6h5q6xeiY2o23sqkWL7oM7zxG38SehHUYr4DEyiqslE/Q6FqdNJj0AXp1rlV5Gsql42JI14yB1NKzJT6gFBX1PbitVG2rGk5MktbVmk3MMA9qU59Ea25DRt7TBwqg57Vz6yYpS5Uet/s7/ss/ET46+LrXw94Y0G4nAvreO9MMRYwRyOF8wgc7RnNengMtqY2uqadtVfyXfucGKxKow5pbH7rfsWfsreB/wBkT4RWGq6rp8NtqsWhw29/KVGV2FmOPclv0FfbYLCOhTV17zWp8XmWMliqnsoO8U2cD8cv2gb7xlrU001qTpUKMIYZFZowARwQnJY9ePQ9OK9eFLklsRQoKET4x/bB/aAFzpNzYabogltLeIuNOWyggtkbuwW5kCs3uQ3XpUYh05yutDojSVWVo6PzPnX9jOSbxN8Sm1+5tEt5JpdywFIRgZxgeSirxyeBXRCmvYNJ2stPP+t9TrnGTiqa2Pqz9pfw9qfjW1TS9T+IfjC+hSJVTRfDGkuwUY6E8KT7818bndGtKLabt5I97AU1CKtb5nwd8bfBE3gjxE1lJ4U1nSkcnYmtyjznHqVH3a+JmnTdtT3IWlE851BkVDnpRFNsHZlG3OZgR68VrpYhNvQ6nwhq1tourwX80cTbD8onciP/AIHt5Yf7PeunBV1hMRGZvThG92fT7+K9Q+LfwD1H+0ENxcaFMt9Y3A05beOSEjZOkUYAwgQg/hX9G+GmfTxcqlKSt8rJ37LsdtOp77S0Pjn4m6Te+DPiY6rOfslxAIwVTIYEDy2x0OVx19K+kzpSoz97ZnzWYyVFtdWe/wD7CuufEe01eMQ+DNEu7O3ulCXGkQ7L0g/xMiHkj3NeLhcPP2nvbHjQrVKi5X0PuD9qH4Zz/HD9mDVfD+r6NcJe21s81oLyM+YRjnIOcfTNezgcTChimqcrxZ6+XQjTrLsz8gtTE2mWws9QbdPp80lheDBXgE7cnjt/Kvqoz542ep7c4S5+W5teCvEVnqkC+E/EsypjBtbrdkx7sAE+q+3tXyHFXCmD4iwzpSsq0VeL6/PyGoprXYu6h4evtJvjZ3sW1uqspyHB6EHuDX8wZrluMynFyw2JjaS/HzRm6fY1fCdxfaHrVrqOm6lcWDQzKTfWZIlhGeWQ5HzAZrmy/G4rLsXHE0JOMou+mhrCSpp3V2fWut+HPhp+0DomqaP4Q13UdS0DWLU2kep6/Yw299JfRrlZpkiZkDnJwQeR1yeT/VOUZlHjXhNrExV5q0ra+966fkj6jL6lTG5aqVRJPrZtpJ9rnkn7Mnwv8TeIfhv8Xf2U/iK6iDQ4U8Q+Hzeg4jvIz8wjz/z0TKkDrxXwWRcJ4x08Tl+Jp3jF3pvzRhLD14NU3G6T0fkdL+yL4yX42an458L/ABOvbzXIBq9ol/eWFuItQfRoHVfsyyDLIhjzuQHGQMkha/ReE81q4zAynXaWJopwWl1t8r+Ttc9/LIVZ4ZzhJKpT5nHm2vbS6Ou8LaxF4j8Yx/DK88OC5h8Da+um+HdauU/0q48PX8r25tpf72zKOM/d2kZx17MZTqY7EKtLSooe9pprudE4zWKWOvaU4JtLbnWt1/Wpk/Eb4PfE7T/Cfg/9jnSAl2+mfFi4vLbUcHbbxoiSLMT2G0r7ZJ715GHyv2GXUqKl1u35JtorHuOOm8XradNXt63Nz9q3w/4g+FXwgu/hSmtwi8vPG8nirWWugyxarfZhEdsT/EWCsEX1IxXNxJOp9XlUpSbqOybls1s0Y4HD0KlaWPs2/ZqEddl3K/jP9lvxX49+GOv/AA/8J+D7zQD8QPiTDcWmkcyNZ2UUKvIWPCxIZvlZjwAo44xXFgcnw9PI5YXmfLL3rJaXa7X2el/LueEsPSq0VCvUbUYt3S3fRb/15npXxu/Z2n8V2Xg/9nnwl4mXRfBHhbTJH8SeJlvFje91KZ905gUfNJIwGN2MYzkjodaeS1K+XxwdNcsNLpaXQZW8RQo1arXvzaSSW0UtPQ5D49eFvBvwj1TSj8H/AAwniPxhYxJYfC6GG28mw8Jxplnu3fjzbgkl/MkH3+nau3EcO15YeEILVafL0FLB1acL695X1u/0R8uftHfsR/t1a14bl8ZeE/gZaak+qzNe65rtrfyzahrMzN80s0shO4ZJIRQBkmufG5BjYYD2VGMJVI9b2fp/SPn67xDgqSUU1pvZv19Oh8q6wPHek+Fk+DPjW81O1sdF1G4ntvDdyhVYL+ZVSSTZ3dgirk84AFfkeaYXGTr/AFasmnF/D5s+ZxW7j1PvX/gl1/wSu1LxfoVl8Zf2jtPNlokbCS00ZxhroDkeYD/D04r7rhfgmnQccTi43l0j/mdeX4KVlKa17H6FeMvGVrp+l23g3wNZx21hbqIILe1jCqqjgYHA4r9cweEp00pTWx9Xh8M6b5pnzn+2B43tvC/hdzLbSS/2TIRHbyy7jeahL8qIFPPyZz7V3UIww1CcoN+829W3v2u3ZdktF0R0V8QqVByi9WeHfF7xRF8Ovgxpfw+0rTrma7itjPqjW+pGL7RcyfM5IRCeDx+FfB5pi68arimfm+YYmpKo7M/OL9o7xNr15rE8978N7NYBuMc+s3F7OVPsJCo/8dr5TF1qsorZnydao7uz1PE9E0/7dKzyxJG078iFAij2AHSu7J6XK+aW7PVy7BPku92fRH7OngVrbUhrF1EhSwQZR2O0y9uDxwDk1pxdmMcrymfK/flotT3qdN39metXUrO/b6AV/Olecqs25bvU9CEPZRUVsipJJk9OB61yOGh1RimrkF1go2B271jsxPcy7DeLhgP71dXuunsYON53LdxObckHisbq5dVKIQTxXAIHPtRJ2QUdTO1rSWjb7TAORycVVKq+az2Ma1KEndLUbo+ryxuElOMdc1rZDpy5NGaGq6ba61BuZVJI9KaqezdkFeFOsrMn8CePPGvwtjktPC+sS20bnOI2KlT7FSD+Fc2IwWFxkuaotRYaVbA3VN6Mr+IfGHiLxjqjax4k1ie8uXHMtxIWOPatqeGpYelywVkRKrf1KLyiQYB5xWkGxKN1dlcFt2Ofxrpkk4ChqyzpNm2pa3ZWKrkz3KJj6kV2ZBgvr/EGGw6+1UivxR8rx7j1lXCONxW3JSm/nytI+2PCFt5VuiKAAqgD8K/vSCUEkf4/ZlO83c7LSUOV5rdbWPmsQzu/BvmoH+bA47V007cp87inaSZ0d+bhoPJlQHPKkck1UEk7mWIlNRUai87nH66pRmVjyKJnVhmm1Y4rXV+ds1y1NT6TC7I4zXUyWwec159VH0uFkjjNfibexGPcV59VWPpMK1Y4jxFB1+XjFedUV0fT4SWxwHiiDAfK5yK8bExPq8BPVHlfjiyZ0cdueorxa0eh+g5VVSaPH/EVjHHfNGw4bOeK8LFQsz9HwlVeyTNv4XSo+lyWxPz20pQ59DyP0r8a4jwksNmcpdJan7pwjj/r2VqLesdPkdU3zAjNfPySPpprUc6jyOR1FTB+8XFWM2fcMgevTFaztfUGkyq6YXkVnI5Kzsmfuv8A8ERL/UfC2qGy1fR/C1mJzgrZ+IfOnI9QCSPwr7DLKs/aNL8zzs4hpZo0P26fAVppvxj8RaXqWBZ3skjDKcpvyVbH1xX0Ps7xV2cKalSTR5B+zv8AtK/Eb4U67B8KtT1dpI7dDb6ZpWm/6LD5MeR59xO7ARqBgcYFYurTpS5ZdDycTFpuR9t/DH4xSeOPDVpeyxpcW5YJGbK0xGx9pXOX+ozmuuCja6YU1KejPS/DHjiTw9feTPJKtuXG9LmJgyA/hyKmfK1Yv2Op8Af8FtP2WNa+I1xY/ErwVp5vLy2uCJEgQl5bdx19Tg4/CvBzvCxr4PmXxI9zKKkKMnCT3Pyw1LQ7jTJZYrqJkeKYxyK4wQw6g+lfAzk7n0vOraFGZcLjH4UkKSVrjrcjbtIxmh3JTsPZSijAzWkNUUldksVuSC7d/WoqTtojdWS0Ox8A/s7/ABw+LPh+98T/AAr+H13r8GnybbyDSpYprqIAAlvswfzmXBHzBCPetqGX4nFQcoK55+IxdGlLlmz7O8H/AAD/AGZf269f0fSvjN8XZfhz8SdJ8NW9tqP9keDZo7TUoLaLHnTwSRQtDcIo2yOuUOwMCRyfoI5Tg6llWlyysvJXa21S16Ppfa6szwnUxWCVqC54777H1p+w7/wTy+HPwY8PeJrTRf2kF8c+HvEOiG0GradZzQy20vz+TJ+7cAhQzLznAYqSFJFe1hMDg8JR/dyv9xwVsfUxM4txtJGp8Irj4hfsaeI7T4bWVzN9mnvFthpes2Qkiu7AuXC2l1j54xuOLeRi6/wEDCnCEadOSaf/AAx01YLGQvL5PzOq/bd/Yl+HX7Y/wo1jwBdaZZTWes6Q9/4LVrfabK7RS0lsMc4YncBxg5wK9OqqSw7gtnsc9Kr7K0Z9Nz4Q/wCCWfhrUPiDfXfwF8feAp4PEfwnupbLQ5NRuVnmn00BE1DTpHKgtH+8W5t8jISQLklTXzuGhOVe0pXa26aGlesow91NJ/muvz39D9OPA/hzRvhb8QrjQRoYA19rO1uUZ8iULYhCSPTCH8MV70oxi2oxOb2c6lJSSehwv7RmgaXpv7T/AIW8C6vpqXlhd6KNP/s2UB1eNMvuGeBsKrj3b2rCdOC1k9dreRvCMo0nJep3H7NX7OWk+CtJ8Q+JfHdn/as2r+MpNVsBeDdIjlmYyFjyWZyWOe7DHaqwkKWFpWirWMq3Piqiv0Ru2nwT8JeLvjR4i/ah+Nzw6jpOg6Sum6Tp1xDmEJHlpCUb5WLPjC8jgc5zV16FOo1VvfTZdPU2q1fYYaNCmrPqVfgX4s8R/tXfEy/8T69JJYeAvCc3k2Ph2C1EVp5q4Kh2DfvXUcsMbV4A61eGdCVBSg3e7TVtPKzvr56fNnk1KTU7NavrfXz0Pk/9sj9mn9s//god+0nraeFfE1t4S+E8cAsH8TXM7QxNao2GiLFkZkLclE4YnkmvNx1OpiJtRm1FrpofQ08VhMHQjTS5pfqfHvx6/wCCdmj/ALLX2zVvhh48f4lf2azRvr1xoX9l6Boblwgae6uH2XEoydsabsttzu+6fFqZOovmparzOmhmtWp7lZcvVWd2/kYHxG/4JzfE/wCEv7I95+0Z8Wl03w1K2swroCa1rqfafElvJwfslrGpIxuVyXYfKOKxq5R9XwjqS3NKOcxr42NKndq2uh84AEAJj614tup9LBdyW1tQTkg9eKynK7LT1NjSdBvNQkC21s7jeqFlUkAnpUxi5PQzqVVE+vv2Jf8Agmx4o/aT1XWdCtLNxLHp0M1pfXERFtAzEcu+MfgMk+lezl+WVa6do3T69EeTjcxp4S0p6p9D9ev2R/2GfhR+yho8OoaRYxXnieXTIrXVdb2bPNVOcKucKufx9TX2ODwVHCRtBavd9z5HGZlWxnut+70RyH7Tvxjt9T1G7gtL6ddOtIzbmS2Vm3dzgKCck8Z9BXfBR6FUIqnC/U+Ev2iv2kNG0TQrmDUtbluIY3Li2GhXjIMf7IZc8d6upVaXKmd9Jyqx5dUfAvxX+OFp+0H4pGieGfDmhrpTSIjXUGkywXKzhvmU+azEDGORisqPNOo72sjoUW2kuh9I/sQeGlXxdCoi3xRERPu6Y2g/lz+tdrqQlCSjvHT8LnVOlGVOz2Z6l+1h8Rm+zTad4h+Md9Z2xUolvpcV5JImONoVGhT8ya+LzaqneMnZPrrdfc/zO7Bpy0ij4W8X3Wmya5O2l6ld3cTMds9+hWVvcgu2PzNfFVVTU3yO67nvwcpRtY5+9O5SSeaqL0LmuVFeyYeaOf0pN6mVPfU2dNufIukmDgFSCCVyBUuLTumaSk+h9DfAX4hTabqVrqHiC8imtZojb3EV9c7pLuNxtMUUC8AEHrX6bwVmdTLMxjWnPRq2r1+SIbnLXY4z9vb9nq88NeGYdS0Ey4sYfPs7lOs9mG3x546rkxkdsV+85xOGPwMatNvSz0+/8dmZYyjTq0VNannn7L/ivxPrmvWGs+HPE9xp80a+VjS/IsBIM4KyXJwRx1yDmvnMPjG6lqcrNaadn0Pka1R06z00P1V/Z/1LVLnwWlr4h1mK5jmh8uSN9UF6xBGDlgOn6Culxp4f95LRLf8Ar+rb7HpU8Q6qTitT8yf2/fhNc/BL9oTU7fC21hrM3nQSBPl80HKkE+vSvrqVdOUX0Z71LEutTu0eNwJA1yqxyMpjx9mlZCpbAy647nPA/pXs04KcWnv0NoSna0keifDnXdI8UWEPg/xNdGMMSsF6Vy1u+ef95cda+M4w4QwnEWAcZK1VfDK3Xt6Hp0kpwaaN7xV4UuNA14+Hp7aUWcJH2SRUz9oU9JOOCW64zx0r+YMxyvMMsxv1PExaaeiWt/NepyVYSUkpKx7B8BdD8YfDyFNf8SeFr2z0q/gTUNNluflS4WGYJIVGemGce5XA5r9e8LI5jlzxFDERahNKUb9GvyPf4dlzVqtBb2Xy6nvEuteD7PWr/wDsjRbOWXU9HWDzmjHmTWwYMrZ7lWwMj1wetftcJRVRRUlzNX83bR/LX8UfRRwVWUISd/dlfyvtqcR8NfBGh/Cnxz4j8c+BmW1n8R6G8Gp2EkY/0eYZYlcDkMCea58NgcLhqsp8tru7sKdCEJOWu9zE+DXj+C90vxB8Qb5Ior+80+IwEkbt8byJuI7HzNx/Wrr1KdS7hombQlGrJKOqT/NX/I9Y8GarPreoXHjXVjFLKmoyW6XAPJ/cxgnPvgflXncl5cvYeJnGko0odtg+JsfhjWrSwk8dafa3/l2jTrJqFvvRZArBJEXu4b7vYGtqWEjUoqNV3a3duv6XJpe0pp8q07GWvjLxRaaH/wAIxe+KJoUutLji2rIUl8ojHzdlLdcAd66q+AoYjBuhK7Tja+z1Vrq2z9OpnSlS+sc0Y+diZ1TUNTeDU7iK9mtUE9rGGDLaPt4wf721mBPbJreMoqKO181FOMNL7/n+ZpWGmeHX83xN4ytbaGwtomYylQwnQZ3Zz1BORjp1q+dRj7j1/I4cRzXUYPU8i+O3gDxP+0T8VtFm0z4863o2nWejMvh/wt4RtHXMqrujEiJ/q4gAMtgfWvjM0niZ1VGlW5N2+7Z8lmmHUqntY3TW77/M539jb/gm1rviz4pXvx3/AGpb2Rms5x9lgnw5Zl4Er7hhm4yBg1y5Lw/W+uvGY1+0n0v+p5H1PnxSqS18u59ueL/HC30UXhrQEjt7SLCQKh2hVHAz6GvuqVCNJXe57FKlHDR5upi6Sp86aW6vYLa20+Jprq9fkQgHliQevoKK9WFON3u+hnUxUYLmbevQ+SvHXxU0z9ov4+y+KpZlXwr4Slc6dBJLhLu5HG8k/eOR1NcmJxCp4dKL9Tw8dmEKj5Y7WPnf9qf4i31ppt1cabpl0LGJikosxeSbF6AAwKMfia+BzKu8RUcr6t6nwlf2ODpQoUtIxSSXZLY/Pz4keJfD3ibWpVtLHV0nLnbJeXkpA56bZOcfjXgezjOty2Z5vK6uIUYI1fhv4av9T1OG0tIN88kojt1I4Zj3+g6/hX12CdPDUJVJacv+R9fhqcqUE2fVXh/w7beCfDFvotpPGzxLuuGMZzI5+8civxLi7PZ5vj5crXLHY9XCwtdsj/tGOVsM21vQ5r4hu5tOw4yq/wAw4Hes73ClJEcxDIR7VjL4jSUbsp6Oga7MbDvW9m4HO175o6vpAkjJU8gVyqTjLU6ZLnVjKtYHtH9++auVps5nenoXAgul+UA+oouoKxpTs9WZupaMY8zQDkdQBVUqrcjDEK+wzS9SZH8qUnI9a2qQ6nLTnJPUvzxpcLkDr3qYyaOxSi46mdc2MkYLJwK39pGSsYKKvcp+c8XU01ZLQU5SSJEm8wfLyKFKw6SV7nTfBvTTqvxP0e3dcqlz5jD2UE/0r7bw0w/1vjfCq3wty+5M/H/pBY/6h4X41p2c+SH/AIFJX/A+xPCsTC2THYV/aMddz/K3MJJ1GdbpIIZT19QK1R8/iHod34PwInY+gxxXVD4T53FuzRu38khiJZsbR8vNXFK5y1JSnJc5yGtZJZmJJ9aU2ejh3rZHHa6Mlua46h9HhbOxx2uISSa4qiPo8K7JHG68hLnsa4Kp9JhWcZr8R+bA7815tTRH0mFlocJ4kg++MHkV5OIVz6jBT2PNPGNkXDblrx60Ve59tltVK1jyHxnpJW5Mo7GvDxtlufpOVVlUhYpeArz+yfGH2GUgRajFhc/89F5H6Zr804zoOphlXivhP1HgbMPY490G9JaHeyx/PyMV+eQkpWufr8kuUUqdhXpnpRflkWrWuUp4MDcRjHrVyV9TCdSzdim6B+M8j2pygkrs5Jqck2fqD/wSc1fW/CfijStQXxH8M7RWkASIThp355GSCc/jX0+W0bVeZNHHmVKvVv0R+hH7efgqHxTPpHj22tklGo6cIrmWMfLvA6g/lX08ZrlseVh4TUeVs+APi34Ga78Uf29BaJEYNLEsDMpeOS5SUrh1zzjcOPpxzmsKkOZ7CqUk7pdTK+Bv7UXjT4U+Nbrw78RdX1PWtdWQIvk3SxmNTyBGWwttEox9xST/AHu1OhW9lFqo7ihhVD32z7x+D/7Rem+J7TTxqA0yWe6TaVtdTluLnHo2AQD7nimp+1leJz1aqTseqfGvwxPrngW21Tw4k0lxpiC6hNxAAWA5ZG7Hj/8AVWMoLmtIlVJKzifG/wAe/wDgmF8If2orf/hM/hjqyeGNevb9bzULMoDBdnHzBeyE/lmvJxuS0MQ+eGmux3YbNKtF8s9Uj4A+M/7E3x5+Evim68O+Jvh9fWsqPcyoZIvkFtETh9w45XB6183WyuvTm9ND3aOPp1Y6M8gFhNAw82MrnkEjqPWuGVNxdmdimmSKmXAI698USjaJvTTZteH/AAb4p8Swm70bwvqlzZJcLFdX9ppU88Vux6bjGpxx261lTw9Wq/dTYsRXpUVyuVmfaP7NX/BO+L463Gn/ABJk17V/A2uRxxy6frfhzSLiLRdRiUBQ8r7leGQYxInyEHnvmvq6GAhUoczcqT7q363X4Hzs8XTpzSsqq3s/+Br9x9m/BX9hz4jabcQt+07Zaf42vLXyn0fx3osJLuI33JFcMr5YEZUknJU4IINejJ127NqS76HJGtBybpNpvdM9d8Nfs7S/CjV4PHH7LbP4deO4afXfh/eKpsdUViBL5L43RScZUBtmc8DcTWPs3zc8L37EQk2406yuu/X797fl06ntWqaPoHj/AEy3XVNKiaB4ln077TH+8tnHWMnqCp4HpXbTmkioxlTmysNFFno5gsIFMun3iXNmc42sOGH0NRVm1HQU4RmeefBf9k/wJ4J+PPiv9oXT/DUFtqOvxRo/lrtWXBcqzjpvXzXQN/c2jtWVCjBS5+xy1bytDoj1A+AbfUvFa+JbuLdKsh8rJ6cEZ9uGI/GuxVLNnbSvGjZMwfEfwisPF37Q8XxO1S1Vk0XTTFZqx/5aNjJ/ICueonKqZySUFE9Be0MsGPLA2MMY4yRz/OtJdxwSRa8Q/DFvHPhe28InV7jT7JGEt1LaNtleTO75W7H36/lXVFNRTi7Na6dzlnWjGpKctX0NnRfBfw9+HnguHwNoelwWmlW6bRaIDh+5Ld3JOSSckknOayjy01Y4IOtKrzLVnB/En4bfDP4t3MVh46udX1HTbJleLQbW6NtYqB0EuwgN9Ce+MVnUjSlJXOtSxFON6as+r6lfxX+z38GPFg0zWbr4T2msx6MyvothqsZk07T5F6TJb8q8g/vbS3uK3l7kLJGdOE5yu5WffqfDf/BQr9iDTfi/4pb9of8AaF/bE1GO1tlNlp1rfeB5lttKhGTssbVBmSQnADHr1LHivJxmDWIaVSfy30/zO3K8Tyxao0tbtPWzdnbr07W0e6uj8u/iN8K9W8EfEDUPDUWl62tsJmk0yTxBpDWV3c2xyUmaEkldw5Ar4/GwhSqtQeh9vhK061JXWvk7ln4f/CXxH49mtotItGAnnVQSP4S20n8DgfiKwpUXOW2g6uIUYvl3P0l/4J8/8EjfEGvWh1j4saJNp+gTXMV3b3k48q6mxghEjOcDr8ze2AetfTZdkk5JSrLlj26s+dxucRpXUHeX5H6g/Df4beBvhB4StvBXw+8OW+mafaoFjhgTGf8AaY9WY9yea+np0qdOKjBWR8pUqzr1HObuzD+PfxHi8D+Bbv7JcqLu4TywQ3MSnq2B7cD3NEm+ZRRVCLnUu9j85v2qNf1XW7ZtM07X7E2LwkiyvZTs388s0cyNn/ewParahbc9WMVPU/MT9r6H4gadqDtpVpbw3TTLFFdaTqdxGYyxwCCZHDfTg15Uqk5VUlqdkabXwifAvwpM10L+UtNNE3+ukGTLNkbnJPXJJFe3QhK/MehSi4Ru9z7a/Zt8N3Ph7RJdYt9OaSRLfEMQZV8x8dMnAp4utGlSaRaXNKx5D+0T4713SruZfGHwA0xvNLKLjVonlMfPDIUkx+NfnOYYiu5tumrHrYaCmtHsfOV/cJLM0kUSxqxyI0GAvsPavn7XZ69JWIJkMkJYdBV3UQm7lOzIE2Pek+5m1Y1k5HSo55K6N4Jcp2Hwx8b2vgfU01GPV4dPdj81xFame6YeiZ4WvWynGLC101Ll76XZlUcUuW1z7A8M6TH+0J8JJ/B2paS8N5DaPN4eg1GQNcXMZGZo39N4GQP7wFfv3CubvGYN0J3Se192jilUaTjumfnh4m+F8fwu+L118P8AxTotxe6dd3XmabbpqJtYsE8lmA4xgZ+la4nCUMBiPe1TPncZh4puUtz9B/2FvG/hHSNNg0xPGfhrT3QLEtgvitriTI9VC8/ia9PD4iFeNoInCOck4bmt/wAFQPgRZfGH4Vr4y0q3inmsI/8Aj5gXJYA53ZPI5717mXtuLptvU9/DR5qPs9nc/NO60rV9Bv49M1WVZroKrxT2nWQNww46P0BBHavpqUrU7NnoYX2ilaWh0fhHTli1O3ubYNl5PKEanAZ+flHtyMk8k/StHUhXmowu29LefkelGs4LU+mf2fdVvvFdjB4JuTDPLt3W73Vup2PgjCsSMZA9q86eWYWvyynFOS6tLT0Z7GGVKtJe0jdHvfwd1G38C6dq3gq00/QbFLpJA2n3cCXqTmRWEsitMC0MmSThSc+tZTyvDxaSVknfTTf/AIJ9H9QpYlQnLm922qbi9Nk7bq3f7iD4b2V3NCz+K47NZrEvBavCekecr0xhW4BAz61306bUk7eR6l6fwRbs9/U2IIfDevyLNqOmvo88RZAzssigDtuXJZW7ZHHtVRjOau7q19/L0vvuvXVJkYiPs/dXvI888b/svwXtnrHiD4Z3kFhLfxETxSs3kzOf4kYfdJ56+tcVWLaahpc4JYhwSutEanwVsr6PQ9U8PeIbC4sbiyvxN9jl4aYkAFge4yCc0QtGNupg5ynJTZ2vwu8K+E/Geur4h+IF+4js7iW08PabBLua6mUZMm08FFyO3Gee1Z15TTXLpfuVXq4iFK1NX7s6+/8AhR+zRp3il/FPibUdVv8AUoLdYFSe9j8m4Y5LOoC4yvr6niodTMKseWCSR5sa2ZuacIpL0H+H9P8A2YNXvJ9A8I6dcSfaZVW5M16u+RuflVgucc8gde/Ss5wzGEOao0kd/t8xjG85RXy/4J2Wt/s4fDG98K3Wh+Mvhzrk2mTspW2tNVl2lQBtGNoAHfHPU81z0sbXlJqNWN/NHDLHV6s17KrC/mv+Cc54h/Yu+Gev6pL4x8L+OvEmi3DxwpqNi8sYjnhTO2MsoBwMnhcdTmuOcYzxKlVin5o4K9bEc3LOKd+qf6Br+mXOhaSfDugXQksLNB5MglJ85j3w2CTn8q+uwtWkkmlqRCEvtR1ONutQlt7tbZYWkmjbDLu5Mh7VtXdGSUrbHNWnJbs8P/bU/aA1Kys0/Z7+Hc80d1qYRtevLdwChBBMfPXAz+JFeDiKt6nM9+h81jcZZvm36Himta/oXwt8DR2lwNX0yyEZMuojTXlUHHLFk+77kggV89j8e4/u0z5upWv7t9T4l/ad+LOi3N5O3g79oy6m3yESWGnXzRK455J2nJ9uBXz1T2TTl7SzPBxU17SUZLU8N8P2Op+I75rjULye4Yn5rieUu+PqeprTAYSWIb956rfqj1MmwcpTVRo+oP2e/hc3h60Xxjqlr/pLJstYccpH/ia4OMs4WBwX1ak/ee59PKCvY9DuZopSWjllUk8xSdq/B6z5pOWup10bmZqViLhd8cYDD0HWuNTs9TWUVNGSt3Nby+XIMfWtGla6ORRcJal6F1ljOWB44rNJt6m7qK2hFpaYvTtH8XJrouuQypvnqG9KAykbeOhrha947eWzKM+nLMN2MHsRWikooxqWkP0fQry91COytkwztgE1CjKrKyOaU/ZrU+ovgv8Ash6V8bfB58Mr4Qaz1SKImO7IP+kE9MN0H0PWvpMFl1OrSs1ZnlzrVI1eZv3Tyf4z/wDBPr49/DLWJhZ+FLi/gjLFGhjO/A65WlXyrFU37qujVYnD1I3TPI77Q9e8PlbfW9KuLVnB2iaMrnHXGa8qpSlD4lY2jOEo6MgdlZPmHBHOawacXcqMkZ2o2YzhR9DWkJXL5ebcqW4aM7Txg1ra6uYSvCdkelfsx6d9u+JD3hXi1smP0LfL/Wv1zwUwarcU1azXwU397aR/Mn0qcy+r8E4bC31q1k/lCLf5tH1f4ch2wKAf0r+rIbH+cuNleTOn0wfMOK2R4lfY7rwiyrEx8vniuqMfcPnsVpNM1dQmDhmkPPQGrSOWTnUndnKa02GO8+tZzPUw3kchrRyW5rmqH0eGWxyGtDls1xTPocM9DjddUFmHOPWuGqj6LCvQ4/XIgzHnn1rzaqPosJLQ4vxDbk7uPpXmVo3R9JhJWsee+KrTIbI4xwRXk1oo+vwFS1jy3xfpZkVzjvXz+PjdH3+VYjlaOI1PTLuOz/tmxY+dp0olUDqQDmvncbgI4/AVKb7H2eAx/wBSzGnNaXaPRrK7ttUsodTtWzHcRCRCPQivw50p0arpy3Tsf0bQrxxOHjUjs0SmNVGc8Vdrs1TZTuFMgKov4it+ZRRSppvUrvaiIZxk1zTlKorGdRqKZ9O/sD/Eb4L/AAl8QW8l34r8TRX9zLgw20Nu2eeAhaN2DehGPwr3cJjcNFpRumGY0/Zwdz9sPhb4x0f9ob9mV9N0nTtaWfS4RPbya8hM8vHPJAzX1WD9+F2fFYivKFe6Pj743eCZmjmsLVmS6NpO6MkfBbB3jB6Zwp/Ou+K599WdkG17yPBfHHhzxLrI1jxJo8cMeoLotrcSSRA7JYgVSQSAfwlsDB45FcOKpwVpGknUqrlPVv2Kfif4ihuDZaNofiy2lumWKQzW5+yRjPcrxgcHADDHfjFVh8U6cbK6vo/M8+pR96/Y/Qv4M67rFlZDw/4nke4glQrLczuCZM91UKOB74NVK8mxxpKx5/4j0Cf4d+NL7RrUv5PmG809lzh4ycso9wea2pRSj7xnOKOv0fxl4L+Ivha48CfFnw3bavpWoWz203nKPMETjDBX6jr2p1KEK0bNGUJVabvFnyD+2j/wRS0DXdGf4gfseX32y0sNGEX/AAis7/6QroxYMrH73Bx+FeJjcmpyg5RWqR7eBzG0v3p+aXjH4V+L/AHiK58LeK9BubG/tZfKmtrmIqwbPTnqPeviMRGVOTi+h9TSqwnT5oanq/7HXwh/aP1/4sWNh8FPF2v6LNcgm4bSr3VIoSQMr5wsrebI7cjvzgc1vl31qVRezk0v68mcWOnheW9S1/M/VD9n34J/tV6vpUKftGa14Ea0hYpFp/iHw3LJdS88yGaWUS59G2gEHoOlfWr61OP7yd/Jnzt8Hd+zTTPqD4ZeBfBfhC2MPgnUraxLIC9ppd032Z27/I2cCtaVOnB3QqlSTS5lqddPpVtK0ax2aRyL8wKDbye446e1XUnpYhNXuMls5HAxndHJuYY7nrWN76m68yW+09XTzgq4bGT681q0mtRap2L8OnItuqxqqbowCVXqfWlbl2MUlfUmWxaKPAjAPRW6cVKhZ3Zp7VPREE1qiRvIo/1snJzVhJM0bexKWqXUg2og3E/3j6U5Nbsz9qlJx6sstq8yW42y7Sv3kDDkmqVVuNjGVOKlqjD1qeeXzJri7WGEj968j44z0Hfr2rJJRk5J79/60/p7m0KalokW9H8K6fOkVyqvcvnKi4OIsdyF9PfBrX3KkbIzlUcLouaz4I8Q63JGk/in7Paoc/ZILVSregOeMD0xXVBRjGxhDEUqbaUdTkf2i/AHiHWvhpPpHg/Sr2W/MTImo6WLZLyAEYJiaVdsbEcbhyO1Y15yhTfJuZU6vLO7+53t8z8rNT/4J+/Gnxx+0BNpV34Y12S41KEss0viNdXvV+UruuZndduOMgYAz+FfJyyupWxFpt6p9n6H2VLMqOGw6ldR9Fpsffv7Hv8AwTM+HPwF0rQtV8aaLp95q2kWxW3jhVmQSMwZpJNxxI+QMcYH619BgctpYaKc9ZHzGLzSpiVaLsvzPqpY44UAUBVA4A4xXptuTPKbuZ0uvWlzdPaaZtnkh/1rhsJF7saG+U05eSN5HyF+1V8W7G88S3Npp+q6a1pAzENNdbVll6MxJ6dMDtgcVrRoprme53YaDqI+Bf2oLbwf4t+1pqvh/SrlWjO06X4tbc+f4SvHU+9efj5U4ux7VOjaPJFHw3q/gbwnpvjOebw1ot3aXkjG38m41J7gITySoLEDA4BHqelY4Ci5S54nRCHsvU91+AfgAXupWem2ULFYGAHOAzY5J9ea9ufLFKbdmr9dPn3LbcrI+gfjLqOneEPh9H4a0nxPoM10se640q83o+cdVcEYP1r5LN8ddtJr5nZRpPc+M/GmofbtVklme6jcMcwtdmWMfQ5r4qrVi46Sd/wPaoQV9Ec1cOGf5f51hBNnf8KJoxut2qKlyFuZqqUuOBitF8Ipo1oDuXb3IqLLqVC9jT0LU7jR7xb208tZlPyyvEH2e4B71dOpKjPmiPlV7s97/Zn+LGsW/jS0/s2ae4vmlVpWUmWY4P35ZPuxqP7o4r77hjOFQxUWrtv5/ec1eCcX0PRf23/2S/D37SngbUvid8MjDNqliPN1K0szwsuCXK7edjHk46HPrX7RCrgs/wAJy396Oh4uJpc8VGrp28z5r/Yo+L/w++GnjK28Ia7pM1z4mLGE6BoeikujbsZklf6dS2AKeCnRwT+rz0kebLlwknFLU/Tax0bUvjB8Krm01SztLOG5siFsFnSV0yOCxGQD7Zr2aMlQxKnzO3bp69z1sNU95Se5+X3x2+A+t+DvifeaIqPJNNhLZZHKKzox29sDOeT3Ar26+NjKPu7HtyjGUvaK+ptfCr4Bp8RPtEt6IYbgzG10y80u5SW2nkjxu3qMPEDnG8gA89wRWOFxDm9jspKVd8qurLW6PrP9l39kTWtN8VHU/HFqkdnZ2vnywD5MqAVVffI5z3yK7q+Mp0qCUHds+iw3JhaafV6I9X8Wap+zRp1k+r6r4ekTU5RHFcNburRqQDkgsASe3v7VhTp5hUa95WPoaMc4lU5Yyjyea1K2g6h+ztrkjvaeHdRt7G7XdPeXjeUiFRxsBXkHHPPaprrHUVfmRvKOYUKTlKUbrpbcisvCn7KnxH8TXPhnT/G2oWurTIoWT7QPs4IyQQBjGfU1TxePpUudxTj1tucOJxWcU0qnJGUVul8Rg2Om/Drw346Pw+b4n6lb39pZi6vknt1a1kh37SwPfqvINZ1qlWXv8qs9kXW9tKDmoafiTnT9J+J/iHUrL4U65Drd1oblESEqjjg4JVdxwQRxk47VHtPZ006lk2Yfu6dJTq+7ffXY4t7j4n6BYanok15pE0+nSi50+3u5jbyPkqBH5mNuWJJBO0ZXn3JV6iaitU39wpe/JNXs9B1/4W+MfjTxBdw6J4Pu71pbyGLTI/tETpEmCHLMrYTafXrknjpXfTr0acLy0SLl7GhSdSpJrXReR6dpPw48M/sh+DbjxHr6xa34nLmVVkl/caeSM7kU8Fh/exXJ7Svmlqd2qSu7dzgpqtnE24tqH4swP2RP2hfjZ+0j4nu75H1FhdazPBoUmoXyxrNFG2GcRhiApAPzY4x1NaYvA5dhMH7XlSit9NTTEf2ZhcsnVq0+WMfLVn0TN8Q/Aeh+LtQ+FGv3+j3WpWjRSatHaRAtCzY2lyB6/ieDXz8MF7SCr0YtJ6+v9JHg0IVsdRWJpOSVtLvoSX/hX4UaZrlpqfjK1luoFlZ9lpahI3VgfmJYkggehA596cq+Z1KDhh7KXmU6+ZTw0oYayfm7s8D+K/iP4O6BfeIr34daZqW+ELqGkyXOpR7YoAnIaERl1Yuwxk8gZ78d+GebxUHiJLlSfMktb9Nf6/DXyMW8fGnGWIauk727+p+f9uuu6h4q1f4r6tpWr3kEtwSQIt4Bzksdq7lB9u1cFabhWlVUna1uXS3rte/zsfI4vERkrHkH7RP7QdnJp949l8ULnw7JG2BYWzPLGpGeWSbcSPUjPXpXzGNrxq1G+blv0PmMXVmtlfzPiPxRr2t+N/FUr3Or2uo73P8Apltp8cO8Zzk7AK4KVGdapFQfMn1JwuHqYmokke4fs5/B+S+mg1zV7Ui2jO+Eyp/rG/vH2r2MZj6WRYByT97ofoGDwywtJXWp79c/8SyIQy2YeDoWhmyp9wR0Nfh2d5jWxmJlUqa3NpwkzPkmDTFoyxU/d3nJr5qpPmZdO9rDo8OQD+FcVTc6LcqKuqaTFdKWRfm+nWrpTadhTgqkTJImsXKOMYPXFdEmjh9nKMrE+h75rstkZ3VMp2jYqjyxqnRSIUy3FYLVnfN3REu7dwPwquSNtTFRbOu+EVib7xjaQf2bJcI8oEixJuOK6ME4RrK5zYmEXC7P2d/ZV8A/Df4V/BrTfGXiGBMXEY8ozjBHsc1+i0aEXSi0j47G1ayqckWd/cf8Kq8Z3K30FrCsxyUfhlIPY+1digrWZyKNaC3PkP8A4KkfsO+FPGP7Pl78QPhl4fiTVdDuGu5IrSPlkP3wMdR3ryczy2OJw7dNao1wOKqU8Sk3ofkVMkisysCMcEEcg18LNJaPc+tcYqN0RNlk2MBwOKSjyoFN2K0sWDkVvGT5GiXLmlqet/si2BfVdX1JxwDDED+bH+Qr+gPAzCNU8bibbuMV8k3+p/FX0tMwUsVluCT+GE5v/t5pL8mfTmiqQg5/Sv6Dpn8M4l6nRaYmSMmumGp41dnceE0lSIvvwFx1rsSSp6nhYiS59DR1QxuzFRgnvTWxzP3p3OV1rcXYYz9aiZ6mGscjrSkAmuWaPosK9jkdaU85PWuKofQYZo5HW0JLZ/SuKpqfQYZo5HWImLMS1edVR9BhpWRx3iCL7wJrzqx9FhZaHB+JLfcGJ6/SvJxCPqsFO1jznxTZ/eHqOteJiYcyZ9vltVKxyGiW0C+IH068H7q5UowPvXBhEoVuV7M+ix1WbwinDeOpL4Dml0mXUvAl1J++0u5JhB7wscjH0NfkHFmXPBZnKSWjP6A8Ps0Wa5PFN6o6ERSy8nOBXykqii9D79QURJIxEvNZOTlqRJ21Z9cf8ElP+CZWv/t3/FuLxT46sLmz+Gfh+6V9f1LBT7e6nIs4W7s38TD7q57kV7+R5RPH1ueatBfifK55mrw1JwpayPnf4GXQ0/xlaE3l9DvbaRp19DayN7edN8qD3rzMLKNGtdn0uY0quId4n7Af8E5f2iNI8Li18O6udNtmlCpIJPiDFq11IuMfMq5Az7Yr6vC4yMpKMfzPnMXl8KDu3+B6X+098Oo/Dvi1PEOi7G06+DS20pQHajA7l9OMnj3r3aMpx2OWFdLRI+OPjD4Om8HQXGt2GVZ9Huo3hjBKuVJcxnHYgZHqPpWteEZQWpT9pJ+6VfhNc+KdQ0Ia1o2ua/q2qWlqrT2ui5W0hVjkMT5ilRztCgc46E1xRowjK9/68iVGpKGq2Ps/9lfX/G1posD/ABJFlYh41McZO+5P+9kk7q6klYhyU07Ht/xJ0JPHHhGLV9EDrfab+8tjLGdxUdVPqCKycn0MVTu7HlEAgvoV1Owv2gh3/vYT/wAu8oPKn0BrfnkluTKnKOjOo8I+KPEGkSQ3OnXgSFCSbhJiSx4xx6UVKnPFRt8yJJSjZFX4z/s8/s5/td6asXxe8OQw6quPs2u2QEc5YcbnC/e59a8rGZbh8VHVa9zow2Lr4TSMtD518N/8EwPHnwG+NWg6v4V+MWoHw4dUe51W6ttansbZ7VRlYJBC4ck9CQynAOOTXj08lrUKjcJtJ9v6t+B21MwjiqMlKPvPbQ+sv2VPhf8ACrwzrV3ceCdE1nxTqTzM9/4g1QXRtw2fuwyXLM5VcYGDt7969hUaKs1G76mcpVuT3tF8j6Lh0rSpVCnQoIpm+80Y2kk9e3X3qZtR6GLu+pbW0kRDBLHJgHCuTytc0m07MEr6jorfcojmcbgTySKEmzWLfQnfS2v7T7CUaME/6z0rZJtco+ZU3zXuXL+50vw3pfkwp5siL3OTW1SpSpQsZQp1MTO70RUu9aSPSotQupFaCQYJIwY29DWLqq1yI00qzhHdfiQ2k1vdSsyyhkQZIB49qj2kVudjhJRLfiLVJbbTorW1jJLABI8clj0qJylKyRy0oQdVzkatsmk+E9KSS8G5yBvcrlmNdjlHD0rs5K3tMXUtDYo3HiDwFq+px6fe28DXcjDy0mhG4nGfzArCFfD1qij1NIUsVRpcyehPq+laNaSjVZp5UcALEpuCqA9sDpXVOEKUbhSqVJvlRnapqkUagC9nZimGQ3ZCqe3I5/HFRSq233No4d3baMfXfA6eN9BfRdL8WXNtOTmVBfM/HcZ7jn9e1aVKUa0ddiZNU/flHU0fhZ8KfDPwqsmg0eECSQDzp95LSn1bPelTowpR0OSvVlW06HXXF/a2URurudUT1Jra3NscsITnLlijn7nxkviTUH8P+HoS5HE8zZCqveqaVKN2dbpRw8bzep5D+018fNJ8F+Gp/h54BuVM7qUvbmFh+KKT3PQnt0qqFCVR88vuM6cJVp8z2Pgn43/FvWLezklk0jVEUghiNEhvVznuFOcV1VJKCsz3qMYQp2Z8EftQ/G7wDeNJpU+maA2qXG5YbabwjdWFxJz1VlIUHvzXjVowcr7nVTlGkrp3ZyPwt0jMUE5mdriQeXBvJJ9S3PPtXoYKFo2RulPdn118CvCGk+G9Ph8V+LtXjskYB4JJ0Yjd6nArLMqyjTak9Tow1PmbbOE/ao13Vm1N/EEGi+HtdsZRtkuIgZMejZVgyH618BmLkpcySkj16UeZW2Pn2a8S4dpYoBErHiNWJC+3PNfOtKUrpWPRpR01KrZeRV71stEaTdi6BiA4HWuaoyofCZrkiYkAda0jsRJdTSsCWQM3pUyNKdrFwA554z1PrTjyy0YSR03hLxTr0US6HYa0mlWBYG7eFMNKPQ7fmc+1dWHr4m/s4PlXUxqSUFfsfWf7L/xqh8EarZaNpiNIsq7JdPcb5JkYfM03ZRjtniv1LhfNI4SrCEW30svzZ5OMl7dWd0cb/wAFAP2HYNN1NP2ovgppd7LpTuJNf0jRtQNtM4xkp5iqSoznnHI4r9mp4fCZtB1Z354p2s7XdtOj2e66rS63POnTniLpaTW11f8AyPQv+CfHx10nUvCNnoeqWdvpNnMpSx0xr5neUA4OQ3zSNnqTwOmDT5KFWiqV7ytaSZpSquPuXfMvItftzfBSHxJdR+JbTT0VF2ExhcZUHoQOn09K9ClRpvDcqdrH0GFqt0FHVu5ofsgv4M8S6hc+HNB+C+lJNa3YTUtSgDRpEEHJdwojkfIONhwB2PBPM6nK5cjafRW3PbowftZJJq2l9Gm/K39eZ9D/ABh8ceFdJ8A6nqOnXAtrS6titjcBMlygJbJHUE4HTvRl+HxM8YlUe2tj2MuwddV4KprKO6/LQ83+Dfws+Efijwxf+LNH8Kalq+ryyK13F9r8to2yfuDGVAznpivZxdbEwcU3GMXs9z6CrisTh68VOpGEH1av+pxPxL/Z1+FnxBtNQttd8R+PdFvbyPdHYafqLSW9yw6GQjA2juSOMdaU1i1Dli48j36fh+R04p4qVO1KacNLu9vw1ueY65+x344/Zn1+z1qDU9avtMvNMe2XU7SP7cs8kmfJXahUpyQNxJAHPPSssM8NNWoN3Ss1J267r5f128fCVVWqPlk79b6WPV/CP7AGtfETT4tZ+LXiWXRHbS4rSO30e8G5LcHLB8dzheQegI5q62MoQTUVeRVfNsNSXu3nPr2PY/A3w+/Zy+B1/Hpfwu8OQW+u3KSQHWonWCWcxrjL/LhskcsQck5OSa8mVPFVm6k0kt7HlcuaYxurXSUNLxt/l/w5m/EL4RfAHx14p03xbdXuppLrmhTWdzZrGktjcRFds+VI2oygllbIZWwy8gYKUMROMlJL3X3szanHM4wlCaTUZXWrT7r18+jWjOl8T+HvhZ8KvhxHpfg/wPsg1a2jt7HbcN9su0CEkyggEKozzk5B5xW+G+s4mu+d3tvpp/wRYR5ljcZzVJ3lFu6S91drPqcv8HvBOr/ERPEvjX40eBoL7wzPfpbaFp+qqYZJoRxJKxUNhfvY45GM4zkPG4ucZxoYeVnZ3aV9ei6FYvHYjDxVDAySqde2/wA/l+h6zow/Z78C6J/wifgSK28J2kVqXjvbGWKRn3BsxpySMfkTj0rzI0s4qPnrLn8tkeFVw+f4mXta69r/AHbOKXmz43/aY/ad8M/Db4pWHwr/AGf7G3E+s6qs/iHWdTfNxqDLHku8rHhQDtC9ATxgCvewtGo0pYh+/ayXRI9PD0qs5qeJfvPRJbJHYeIPjBbfELwGfCmt61JpsGq6VI97qz6iYmsX6IYlCnfk44ODz0NdSwM6MpSPSrwpUsPJ0r81rLQ+Xfifo8nwI+CT+GNR8bHVvFHiqdoX1SG5Z/Os4y3lM+7Hl5BVOBjCZwSTnzquIjgoyhVk9b20vbT5dd+2+ux+f4rEVaLkm7tnznrvizTvDGhnWbnxRHo1zHGUvJ9Cu2ukYDOBLlAVx7p+Jr5vEVYSf8Sx8Hi8VUk0qsbPsn+un5HyN+0b8VLrxlqjJB4n8P6/5r7VlsYWWYA9CQyqVPqMn2r5+tCpXq2TT/M8tUZ1attVc1P2avgBc+JrxNU1iJktkYMwcYMp9Bntmu2tVw+SYTmb1PuMqwMMNTU5bn0tDbW2g240y1gktmjGECKFx7YPUV+PZ7ndfGYiSmevzOcrplG5ncBmRcZ+8q8V8bVquUiprmIrVd7ZbgGuaU7KyCK5S0FUKMisndluSY6NQzbSeBVLbQaTG6pp8E1uzMoBx1FNOSkOULq6MPRMxXxjxgBuuK6+VOJ5/J++0OjkJcEEdetYNJM9BK0dRkYxw3pxnvRLUzcktj0P9nabWj8QrJNDldZGmABjAJ6+h611ZfD9/e5wYxOVJn64eKdF1Txh+xfFHcySLc2Q/esPlYcDnjpX6EpynSjc+IxHOq9mfMfwu+JvxZ+H+qC30rXRqFkGwbe5f5l9q9GGHk4pp6GanPmaZ9TfBn49+HviDZy+HNf05YGlj8q7sZsbZARg/WlGPIrWInB7JHwv/wAFJv8AgllqHgm7vvjf8ALI3ekTu0+oaVAMtCTySoH8q+bzHIfaKValv2PYyvGVL+yrM/Py5SWGZkmQq6sQyMMEHuDXyDdpcr3R78rLYgbBbAHWtbJIlRcme7/sk6S0Phy7viP9fqB5/wB1QP61/U3gtRjS4PlU6zqyf3JI/wA+PpS4tVOPlQT/AIdGC++8v1Pf9HGAFDV+vQWlz+TMRrdnR6WOQT17V001qeLXZ2vhgHy9ytxx8prutaFjw8Q/eRo6mSFb5cDNT0MLXkcrrB3FhgjGeazmelhrLQ5LWR94GuaZ9Bh2lY5PWVXJOK5Jps9/DS0OS1qPBY5riqRZ9BhpbHKaxEBuOK8+qme/hpnIa7ADuGa8+rFn0OGmcXr9soLK1ebVp3PpMJUehwHiOyDFmx0rycTTsfW4Oq0ked+JLd7O9W8txh0fNeTVpezkpH2OBkqtNwlsxfGRTQ9a0P4qwj9xdKLPVABx6An9Pyr5HjjBxxuGjVgfbeHmdvKMbPCN6J3+TPV9L+FF/wCPND8MX3wZN54s1HxALmK90PStNkefTLqGYxmKQgYIZdkgfIGHwelfkU8sxarQhTTlzLp01P3ijnWGq0pTm7Jba7n2v+xZ/wAEKvHfxAv7Txl+1vrR0HSAyyDwrpU4e8uR12yyj5Yge4XLe4r6jAcLTVpYr7jwsbn8qqcaC+Z+qsMXgD9lj4DLoHw58MWejaRpNmLfR9KsowibsYHH8TE8knJJ5NfWxjTowVOmrI+clG6lKTuz+ae0CSAIyAr6MOtfkk07n69VmlNo+i/2M/jVqHhHx1p3hXw7oWi6Tbu4Nze2Xh9ry+m56KeSD9SBXo5XWdOpqr+iuz5/MYOem5+wng/xFoHxZ+GkXg3VLkw3DWwaxXUbpPtWcfeMaklM+lfaUMTCpa2nqeGsPKDUmnb0Pnj4sfDe60+8k8Ka+pjdeLeZlyAV+5knsfu59DXU58+jO26i+Y+SPHvg7Wfgz4v1DxTpWuTozy2EU9hNdPFZmLyyomIQgsSQqhOm4t3HPHO8PQzrzvDlXU+qv2VfiLq+rCyt9W8LapZXUZAe603wsyynPZp7kkAe6itMPVclo7o8+NRwXvRPuv4YeI9INksBV4pXGHFxfCSVvXcBxzXSoyhqg9opvQ4n4weCl8F62/jDSYs6Vf5+3wbDwem7HqKz509/118v6/yOh/vIWe5z9npt/ZzRXdpdQPYyAeVJnAZT6+9aRlbU5pRcDqNL0jRIDDdRXkqsM7dpyrGtE4sh3bPUPhUJSUT7Sq7uTDcqDyfXgilKSitDOybPV5pte0d7aytdLVobgZZ44kEfPryCfoBXDVqcz3saJRcerNeHRmnQTQyQiU8EJHgcf0rhklNtxdzolOMNJIsrplwg3GIlv7ymtIU2lqSqkG7JkV7YRPGNzhXxjIHNFSMbGlOtyu1tAt70woIJOBjBZqmNRpWG6aqPnRg+IYdQikc20ZkUj5FC5zXNVvzanfScHBdznWg123kMJDJYXrskiuoxCx4BBPXntWKm0rPY0lCE1zL4ka/wusbyW5u31wstvZXDKskjf61vfgcD9TSwsZznepsjix9dqKUN2ehQSQTsJIbcMB0baP517y9m1oj56fPHRsr3+iz6ldLNNMiqp+6Rk1nUpubV9jpoYmFOPLa7CHw/o+nzCez0mFZR0lCZb861pUqUXdJIVWvWmtXoS3WnWOpwi21TT4riLcG2TRhgCOh57061OFSNnqYU8RUpSvF2Zkaj8LPBV6HfyZrUucs1vdun9cVzfV6aPTpZni+S2/yMqw8B+HvBuqf2vY+Ob4AH57a4nSRX9umf1rqpRUdEjP6zWre7KK+Wg3VvHNpGxc3KcScLmtXBJamsaairnLeLviRHdXK2wv8AoAc+/pzwOvWqpRvsaQ5IaRRyvxO+PGgeCvCMvh7wreh725T/AEmdAQXyDlVIBwo6bvyq/q0py55Pboc2JpuVW7Pjn4u/FzRrY3WpX6TiTZiS4t43YKATgEqN2OvQd6cpQpy5ranRRjy2fQ+Jf2nv2pvCNpbzpb/EuCIzK223t/El/AykeqiDg/U1zVKsaiutPU9ONGM1dHx/4bg1z4leLX8R6rreoXUJlP2U6hdyTlEz8zBn56VzRp+0qabG1CmubVaH1P8Ast/CabxX4gi1q/hZNOt/lR2UAKi9z9a9NNYSk5s7rKcrI9Y+L/xO8FaRG3hLUNUudImRStvIIRLEy+6/xL645r4rM8ypqo1NnXToux8v+Mf9E1qY2ep2sqS5PmabI6xOP909PpXx+Inao+WV0z1aEFymIpDeg9CKxgdySS0GqhMgPr3q2Zy1ZeQgQE46iueotTVKyM90/ebj68U4NtWE7NFy0cDAA49PSlIyWhogbowTgnFTF2Zu02iS0kaGVWRipH8Q4xWi1dzCSaZ6H8J/ijF4K1OKN7n7PDI/74WsRkubps8IvqSfUgCvosmzSeErpXsn26nPVw3O00r/AKH3H+zR8aYL6zubL4hTae2laiq28mjMwZYkIxtd8/PNzkhelfsOSZ3UhJSnPfZLp6+Zx4ig017O/Muv9dDznxz+xn4d/Zc/aZHxw8FS2kXh3XITLFePGzCD+IooXIDk4HT6kDJr7+lVhjZe2XxdUvz/AFMYU1i6ntJNqS3R7X4lNl8T9AtWitx5UiNJOrdWUITu56nODn6161GnXhKDVuW/vX7We3ne2/S57mXUVUbb3PL4YPiBb+LrD4T6ZZ6iuh3KMLWLRpBZtJdMMgyyGNjIACMgEHBwCDzXTisM1FVqckuWzbeu39f8Bn1NGqlyeylGLi022m/dvr1Vm+j/AAex9I/tDfCyz0v4WeCfhdrfii7tI7a236m2lSLHdTIf9cGdjkKFzk5yM5NfPZTjK9bF4nEw3eive34HPk2Mq5ljMdiKTceb3Yt/D2VvV9Cv+yJ+zJo3w8u9V8f2nxV1jVNHvJkbSovEF1HNdQWwACwu2TkBQE6DA6YrrzTM5U8LDCqkufW9k0rvqvnqTnmY4nCZfSy2UOaovilra/dfnueYftVftX/Cn4X+LE0rWfD2lWrWkzR2WpW+Ukw5wwBC8A45564r0sPhZrDxqzqO7WzPbwcKuGwanUrSfMleL20/yPCvhB+04moeMNV09PHGry6b4l1KWOwLurNDax8+Z1wrlQR07gg+nVOh9ZoKK0na1159j0oYvD12uWKly7XVvyPWPEX7ZHw38XeHPEVz4bNtYX4lRLSRbkJPcQxEY39wQCTt56n1rGlg5wa5ne25y4eKgoJz5kr6dE3vY83l+LDeKrq68XaZrEssmkrMomkk2s0T+XKSMd2KhTj19jVcuF9o52u43Sfk7P8AGy+42VWbo2tZdvQdo/7Tuo6Hp8+kL4r1EajHobNa6lpwUpbMCWY+WVIAZSBkj+E0VKFOtKyuk+qtf8br70zopuhiI3qQT8u5o6J+07p3xQ+KlxrPjwRX+kaKEf7LJCskfl+Tt2DA6ksMjJ+Y13SoQjQcaPuvucqbVB06Pu+a3Lp/b/8AE/xI8Z6n8KvBulG8ht9RjgXTjEIFsohGoKhtpCgHnLA/e9AAPKw2EwkK0nd8yMsLh8HRm7R/eLd9X6m74S+DPwk8Xa48+s/GHXNL1q7Q/wBqXFpqjT28L7gVh8rykUocZLADGB1zkd9fE42lrCmpQXyf9f11OvEYnF0acnSjdaabXX3/AIF3UP8AgmZ4u8e/EWH4maNf+H9f0W0+e2ksZGeQtk7iY2O4ccYy3JryZ8QZdCajVTjPzR8zis5yyDUKt4T7NaffsL4T+EujePNUvIfjR4d0fRdJ8PTTWmjDUlNjcNOhVjPwu8g9PMYMAMhQMcdmJzOMf4Db5rXtr/X4F4iToUva0JOTetk7ra1vJenqeW/tbfsr/s8/EvVYda0z43atBbQQKt5cRBP7PgmwRFC0oHmfNhmUqATsbPA58yeHePg/b+7Lp3a7ny2YYatiJ83s2l/X9fLc+Cf+ChX7N/wd+BPh2201dQvdT166tllsLy11Bv8ASI34XypGkxIM8FQuRxxXhZhgcNh6Kkk+b0Pjcdl2IpVOfdPpofNf7Of7NmreJ9Yh1fXrF41eZt+8lsYzknrj8+teVSUMuoSxM3rYvBYWPOpSR9aW3hCLwrocNhpenq6RR48u3yJFAAOSOpHuOK/MM+zTFY+pKXNePRH0XNa3KZ02uifO9EY9HicFs+/OSDXxGIqS+0XRkrlKcxyIWXAPb2ry23zHQldkVqMtjbx6U+XqyJXuWo8kEdulS9io7jvL2MM/hxUK1zpWqHTDMLA+lbrUibaizGsYQL89zurXmdjhoa1tTZnOwY9vWsmzuqfCQJKHB3H6HFLpoc0Gr6m74D1a60fxHa6hZ3LRSRygq6Oykc9cqc1WHlUVdWFVlFRZ+wf7B/izWfij+zbrfhDxNcC4n+yl4H+b5l2/7XNfpuAtUopSPkMXCn9ZTaPjL45ad4m8HeNTPomqzWpMzI6Rnqyk8fiK9GnVcdEeXXi+d8pq/s7/ALVl/wCJJ20mXwv9nGmzkXWq3s21lAOMlj1rfnVRXZFGM1J3PtX4KfFzQfiDpx0CbVUu4bhdvmhQy5PGDnqK5nK6aiXOqlG73Pmn9sf/AIJR/D74satqt58PJYfDPjGXNxbQvxZagMZwP7pNeRiuHKWOTqU/dn+ZFLPp4OdqvvRPzd+J/wCz58W/gh4pl8JfFHwRe6ZcxOQGkhJikH95HHDA18LmVDF5fNwqxat1PqMFmeEx0U6Utz179mi3Wz8AWwOQ0s00mCOxfA/QV/YHhVg54XgXBqSs5Jyf/bzbX4H+Z3j/AJlHNPE7MKtN3jGSgv8AtyKi/wAUz2PRwGQFTX6TGNkfz9iNGdJpSscY59q6aVro8au0dt4XSQxHaOcZ6V2Tdoo8WuryVi9qbbo3ZF6tg+1Sk7aGVru5yusBstuNTKDO6hZPQ5TWc/MCORWE4o97DI5bV1JJxXHO1rHvYey3OX1eAkk471xTTZ7mHmjltagI3Y/I1yVKaPdwsr2OR1u1kbOBx6YrgqxSPocLNHH69psmCWGa8qtsfR4OtE4nxJpgAZ1T65rzKtFydz6bCV02kef+ItL8x2UR5J7ivKxVP3T7HLquq1PRf2Wf2XdT/ansde8F6i0tp4e0aGK51bVgP9U7SBYoI/WWRvlA7AMx4U14sqVKtSlTqq6uepzyo5nTq0pJSafzP2C/Y3+D3w4+Bnge08KfD7wfZ6cscSCeaOIebK+Bl3fqzHuTXHVhhsPFxpwSWy8j9Ty11XSSmz6p8FwidAzHCgZZie1eVOTkz20rR1PJ/i18QbT4rfEVfD2nz50Dw4+biXOFmn9PfFZ0Y+0qp9ATTgz+fG2lKxjBr8lbXNqfq1RJ1WbuieMfGPh60lsfDPiy/wBMjuGBnNjLsLfiOaiNarS0hKyK9jSXvPc+xv2CP2p/BHwGvILO712J9U1N1WZbW3l1bWL9s8LuPyQr7DHvXsYDGWqWTv6as8TMFJ/1ofpNq+naH8evBcerw2xs9WNtvS2uHQzKuOjhc4Pt2r66i3VSb0Z4LqyjKyPln4+/s96h4w0m80PUrCKbVo7YxW1tLDj7XF18ssf4lIDKfXgd6qtytd2U2+W7Pmr4Ya1qvwh+JFxoHjKe2uoFlc2b+ItVvxAi9NpWGUEsp4C4wcDgjNYU6Xs3+JgqbrPVH6F/stfG1bjTbWPUdZktIXIEcUdlHZW7n/pn5jmab8FzXoSnCdNckvkVU5aEWnHY+sF0+18c+GZLC9V5UuIvl8+PGOO2Rn86zjTTfvGUa9ppo8J1vwbdfC7xBJY63cynS5HLWvPywt/gTWrcNkVOr7TU2dG0HWbGRUu50c3EfmxRKSUVex56nFTGLuT6nu/wk+GHiK5sINVv9XS0t5FHlwFV8w/jg4rOpWhB2vuYSVRq8I3a7s9gtPCGnRwwxXlxPdJC26PzyCVPqK5XFNam6xM4RtFWNIRWkcYSGAn6dazl7OK0RzKU3K7ZITGq8KcY7mkqqsaat3MHVVt/tBe3lCMP4S+M1z1ZRvc9CLkoLmRTv762kt0mkVo5EPysVOGH9KTqRUbjw6lN3js/k/x1NR7thoq6pZWnnNEMmPb1HfrV1Jc1LngrmagvrDpzdrnB678XdMug2nXVgXiS4LPE8GCo3f415v1lvWS0R6FHBwpt8rd+56BpDRatYxXrWhhg2ho42OCcjvXs0JxrJStZHi14ewm43ux2pa/NZYttO05rmUjhFwAB7mlVxjhPkhHmZlHDSq+9J2RnreeNLu5Ed5CqRHlorUHeo92z1rkq1MbOVmrLyOylQwVOHMnd93saR0CyihNwLW9dyMmP7W+Sf++v611Qo0ow2f4nLVqOcrXX3EOs69H4W0ZtTvdHvFRB8sa5kbPvtJx9amtiXTp6JhGlCc+VSR5f47/aBntITDcaWlujjMfnRHcy+27FTCdSSUprc7YUFS2PPbr4va5rdz51i10YD952j8qNPXDV30aiUr9DWNJX0L0nxR+HWk6RKPEonubxYi6b7sxBPVl4yR05xzWs5SnJJGFZTlax4J8QfjXFd661ro+q/MpZYoZJCvynHznIGR/9evQw9OKld7l0Vd6nH+KvinNotm+tHxfbYK5uJ5iWP0bA3KvvjFb1ZqLNZRhfU+Tv2pPjxc3Wh3eq+F/iobG7Ct9nk06Rbm3Ydcs4Vin4rivJr1Iyg+WWvp0MOW+x8GX/AIi+MHxm8T3dr488YJe6Zat5jzwW6AMAeSXQAN2xwOtckPaS0vod9CE6kUe8fs7fAfUvF93HJDYvFYIFad3TA8teQn1PU13UJxwv7ySul0fU9VUmoWifSHiHxPoHwk8GRw+DzC8CJtlbZ0bHKuO31rwswzeMrm9LC2kpI+ePiL400rxQZL2zv5o2ZyZNMu18xFP96N+30r4XHVKda7ue5TpRjG5w905YEgfSvMhE66cdCGAMXGelbXshNk0iEMABxU3ZKWpO2RBtHSpaudE/gKOCW49apWRhFlm1LFgR3wM1L2NOW5qKP3RI/IVnezNktBkT4Q5OfYVqjCauSRXcsNyJopWR16SKcEfjW1OTpvmTsTFu1j2D9nLxB4t17xPbWmlXkdtBb4E2p3rqsduvXjPC/RRkmvqMkxeMr11GDt5s58RVhShZJtn6IfDa68M/Fb4fTfC/UNQTVYWUNa3bg/LNjhlzyBniv3bIsSnTjO+255cp1HNVLWaMrwp4LvNIuLnS9VW4e7VjHKz3G4EKGwuCflHr+HoK+9VWnGhHl2PYy6m/bOpBb7726/Lrv169Do/hX8E/GE3iPS/FOhadqU2pWloPs2rS28Sae0hGGmHzBmI7dR83T04MRj8LDDSo4mon/Nb4n8lornvYnMMtw0JwxE1brFX5vTY9D+KnwV+BniDxRY3/AMT9c1fXNaRCPKstRMflErh8KCCQehx2PNeVgM2zeOHlDB0404d2iMlzziNYOcMBShSo93G99dLswte0zwCIJ/CfguS9jv2AaC3v7Y+XGoHyoJV4ByO+SM+mK9OisdGKrV7OPk9fPQ9qNfNElWxKTgt3F6vzs/0Pgn9tb9mv9pX40/FSDwe/wC1g6kzD7JrWm2hktbleeXdcqSMjLHb+GK65YzAvDe7VSj5uzXyMMRisLjUlSqKKXVu33o1fDH/BIf8Aas0nRLLxj488d+GPB0qQyRateXtxsZEPyhoooVCg7MHBPJPOKxee4C6hSbnLlS91K1193zerbu3cwlmODeJUcLUdSb3UI6fojzz4ufsyfss/DXw3e6La/Ebxf4il0a/Zn1QSrbwPdTCMSNGB85BCIBnjcv1rooUlJc9T3ZyW3l/TO9YCdCCqVE4zl57evQ5T9nmX4o2HxJk+H+q+E9Xu/DN/YmDTtTTRpCJFIYjzHVOWGc5OSRxngY87BYKthcXUjOTcJa6vb79vRaddyY1505clV7bHqfww/Ze+OPxD+Kj+AvBmkaxOZPDK3WoWcFt9mLOrusQkMgHGAQM9Qc4r0MVXwuBgqtaraL210uarHYXDUlXryUY6pN7dDu9X/wCCZP7ZfjG4NtpXgVPC9tbWqQQPO8O66ZiAxk2HkKCTuOTkAdOh/b2VTo2dZaLSy/P+n2OWtnuScrSxKv5K52/wc/4If+Jvh1JqdtqnxfkSx1pd2q2sknmSyTlOTHIoQrkjPfsOeteFRz3BYWTdO7bPMhxRkeErudJTlzW3f39upwHjP9iX9l79m3WNR0r40ftJeO0t2IuLxV8qEwgZ2qk7DfkntGRkY3Doa+hhicRLBOsuXlls5PXT8v1PVnWzLMsE6lBJU20029dPPdLXbr8j3r/gn78UPB/xLN/D+zpY3tt4T01Atxr+raz5tzdsDgnr8vA9s9uK8vOMPSpUKdSu1OU1olZ/et187d9jhzONH6opYv35bJW0ubP/AAUS/bF/ZN+FvwzfRPijBp3iG8e0eKDRZjme5l7YYNuBzxn3rz8BgcVQvVqy5IP+tjy8syzFYPmr15ckW9En+Fj4F8F/BzwB+0hZar4h/Z/8Z6pDqM1mG1PwB4g1eSSFDtJiEEiYDbSc7eG4xk4xXvQw8a0nNSdmreX3G0518Vo3aKe9tTzb4o/Az4s/DXwtceDvF/g208Ya9r7lHbWtPMy6AVIw9qpz5Y27huPBxzXHmGDlhKPNF86b69DyMzwFOtP2qvZdupgT+CxpHhGez014YioYXckIESzN/EybQAFBAx27CvybivFyqU3ThpffsedSpKmko3su5y8eo6rYWkdhdTSPGgDQGfPmxH1VuuPxr8prValNcrPRjGLjoiHVddnv18m7CyEEESyRgy/TfjJH1rza2Jq1VZmfsUqnMiorGUjHA9a5LXZ0qSiOiG1uap7Ca5tSe1JaTjFYSZMVqTSrzkj8MVKudUVYdIhaBjnt1rZSJmrxMmxX/iZEf7XWtvsnDBctQ09QQjnPb0rByTO+VmjMEsqtyPqM1poonFKNpXLWn6hLa3KTwSbXRsq4HSnGXLNSQKMZKx+j3/BIv49apD4iPhXxFNdzQXKeUs1wFC4Ix0Br7DKsd7yi7niZtQhCnzI6H9vH4TXOieNb1Le3CxzObi2lC8Z619RRi1ufP+2hJXR8d+IfCt/fa/bXVlI4SCbzL2wjOBJIOhIyPlJ61c78yOarKpLY+j/2V/inqmhTRHXtBuDqstwFg0/ToyY4kHd+OPqfwrZVIQV2jklGUlZn2t4ts7n4tfCZdbs4PI1fSo/MhY/eKjquauniXCfuo5q+E9rBxZ41r19oHxA8OHw78TNAttUtihVXuIlZ4T0yp6jmvfpYbDYyKVeKafc+Ixrx2DUnh5uMl2PnbxB+yPa6Zqclt8MNUtY8OTDY3cixKwJJAVzwOvfFfteUY7CYXLoQjG0YpJW1SSP4S4pynNXxHXpVXzylKT973Xq77vR/gc/c+GfFHgfXG8M+NNAudMvkUN9nuo8b0PR0PR1PZlJBr38Li8Pi4c1KSa8j8+zrK8bltTkxEHF+ZvaNF+8BFejSTufI4hnofhTSZ1tv7QSQBQMEHvXRWmo+4ctGhVmnWjsnYs61axLG7w9C+QCOlKk5O1zlxNKMZ3hscjqtqZJGVvw4rWpojaleNjmNV0u6Zz5cJb3ArinJN2PXoVYpWuVPBfgGbx74/wBK8Fhmi/tC/ihlkC58tGYBnx7Lk/hXl5liFgMJOu1flTaXc+nyfCzzHHUcNB61JKN97Xdr/Iyf2gPhWPhf8R9a8LaVLNdabZanNb2GoSR4FxGp4bPTO0gnHrWGW4uOY4CnXkrSkk2u1z6LH4CeVZpWwjfMqcnFStZSSej+aPKtV06cyEFCc8jiitbY68NUVtDJTwhqmvSyW+nWTyukRkZUTJCgZJrzqkU3Y9SGK9lYk+Ff7L/xj/aF8YjwJ8KPA9zqd9jdOxAjhto+8ksr4WNR6k142Z1aGX0+evLl/U+xyHA47OKqp4OPM326er2XzPZdc/4I+23hWxutM8efHPRNX8SvYO1l4c8NXqwxC4wNqyX1wvl9TyFU9MZGc15NLMqVeCqexlyd3/lufWV8pxOXVFS9vT9r/LdvT10V/vPkL4ufsK/tR/CaWSLxr8BvEdsgDFbmGyNzA47MssW5GHuDXkYnFUqzagz3qdSrhKlqiaS8nY+lv2YvA8/wM+GvhP4Xyad5V7eTf234oHlHe93KMQxtxyI4sADsXf1ryq8/ZJRtruz6rh+k8xx312/urSKt/W592/BrRZdRu4YYk8tnAkMMgwQD3IPT8a8vFUoykp3tfXT7tf8AJ+T7H7DhIcsOaRq/H79oCx8HaRL8NfAWopJqEq+XqF7GwK26nrz615lSTnpHY6k3XduiPnXV/if4X0LSjoM/ixoIsMzogGZZD1YsWHJrpockIWR0K8absj8fbUgxqSeor8akrzP1Gp/FZpWyKwHH1qGtCE2dP8Ote8Q+HdejXw34wt/D7TNifVJkOY078qC34DrTw1SdKr7rtc4cXS9pFPdn3h+yT+1d4K+E5s9B8N+JL/xFqepMAsl3ITd6pJ3fYTttrdeTvbGfrX0+ExatpO7/ABPMrYSUEnJWPuLPg/4s6JHNrF5bReIprVZYoYJ/mTHKtwPl574r36U4Tkjiqr2afstW+/f9PuPlz9r/APY48QeInjvtO0iBrtVa5nuokx58iHckqYGA4+bcO/BHOaK04yTj1Hz14cqgly2d+9+lvxvsedfsh+K/FHhTxdf3Pj/VjZ39hdmOXULo+deSJgYESn7i9Rxgmpwn7id2ziqN1Z33ufpP+z18SrvxxaxixxFbAANJNP5k8h7ByThSeuxckd66pVOew/YqlC7PSPih4I0jxXocmn3KxyzeX+8AXOyko3Zk530R4t4Y0PxCdYu/CGoM6x25SSG7RiGVFPAx35PT3raTUV6HTStHVn1J8IfD3igQRXd7p1xcQCMAS3swQ/VUHSvOlySdwnUjBtbHp8cUMEQx1785rVcqieZVqSk9CHfulxHZtjuw4rCVJylZIiE2viYy8+yWsYaZmT3BNY1YRoxPQoynUdlqcz4iGk6ihM7ucHCyRygEn8xXnSrQbPVoxqxVkvwM3QfCfim9uStnrUclju/eC9G7A9gDz1ojh8RXfubBiMVh6EFzr3vI7nRtLOkWpgt7nzh/dYbQPYV6dDDTw0bbnhV8ZHEyvazK0ujaTPd/a73w1AZP+erxq1P6vSqSvKBo69WNO0Zlq5Z3hMNpEGJ4HOAPr7VvUpe5ywRxQnLnvIZa2dzp0eY4lllfmRy+PwHtWNOhKlra7OqVWNXS9kS3uqXOmwrJHpM9xlgH8gBtvvjNbzlKEb8tzJQVaXKpJepYW/t0txdXr/ZwennMAaUq9OC97T1M/Yz57LUR9T08R7mu1ZGHDZyMU+elON76FKhUlK1jwH43eK/Dll4zlj8P6Vb38S2zS37SYJVsgYUtz36DvXLBR9o0tj1aVOooKM9znH+Eo+ItmPEHw+1kG7WPcdJvXO0cfw9q9SFGHs9zVVPY+7P7zyb4ht4p8GWF1beMtISHUIFby4XjEQf05Y/N09qqK5OplN9U9z5NuPG/iY+IJ9UfU1vnklZxDeWyRMCTjy+m51xjBJwM+9d9OTSsOmlBtnnnx0/aB0mysyuv3raNeEFYoJHMaMcdNzjaPTBGK561WKvcOZXuz4O+JVze/Er4mL/wjpFreGbfJd6ZI1uUTPDSCM7HJ55B59K8qVBVXodeGoOT5kz3v9mD9lPUvErC+1iKW30YRB2MikG5Ktk59QSAcV1Qn9WptHs06ShDQ9+8YeNNB+GejDTvD1kIoLaIGSGIbXYD+Iep9a+fx2ZKW5cbx1SPnf4m/Fs+KNXGueGNSa2lf5ZQnKXC+jr0zXzWOxEZR5ou56GFXM7rQ4uW7aeQyuACxyyqMAfQV4Mvfk2etFOW4p3SDA/PFaJWRt5CW4Mb5I69vSpkZO1yaQncO/HWs73dgWjFaTMJyB0zQ3Y2lrEz0lYydO/FHNoZRi0zQtVJOT69qhybNuaNzSBJhC47dal7lKQwAqMgdferUiZJESoS+H7/AJVs/eWhg3Z6HZfCTwz8QPHviq38P+DpFjSH57m9up1htLFO8skjfKoHqefTJr2MnwuZYrEpYd2t1btbzOWvyw3Wp98/ss+J/BHwwji0vwPqsniK7YqL3xTOjCGZ+628TclAf425PoBX7pw7haUKfIpcz6silRlUV5Hs3hzwx8cvGfxy1GD4XeEliSaBHl1i4QiFd4wwHTtnI75r7zEYjKsHl0XjJ3S6LfQ9hYrKcuwvtMZOy7LdnsOg/slfFfR7CKDx/wDF86iFsAkYicwmGfPLqFwPu5Xp36V4P+teV1p/7Ph7a9r3Rwx4vySU+bC4azvu1e6+ep4l8aP2CPHuveLD4r8LftGXui3VsCwhe2Vomc9ywXLc4z6j0r6ClxHQrU0pUW42eisvT8en5bn11Di9V6UVGm4ra0ba+qZ5D8Qvg5+2P8Nkn1Xxd4eh8a6asW6TUfBN0RdbfVomwQcc5GemK9rLMwy6vQnzz5JRXuxkvid0rdtrv5WNqfENG75k1fSzVv6+RheGP2+dc+F+heV4c+Nt5GLcmG78O69ZeVd257HLE5IPGABmjEZVlmLrL21FXet0ehWw2Q5lBSrYdNrr1+djz342/td+O/jx4XdvC/xRtrrXoVdZrC4ukMN0mSURSMbjk+gNaU8FhsNeFGKUfLcbp4fD0fZZZDld3p8u+579+xR+wDqGmeF4/wBpD9oXwlp2veONUdbxrGeFUgs4+qhYV+QEDPRcV8/iMwoRrfV4ya6X3/E+YxGZQoWwk6jUtnLfXtdnulp+0teaPNdeFtN02ySSF/NjNlaKRhRloFBGQ2Bgj8qipkFGo1VnJ7W1f4nHV4bpYicaknJp6av8f1Om8LfG7RbCabxPpdxFJrdzYtPfMLVUVolB2qHHOVJxg881wYrI5V4qlJfu07LVvXroc2IyGpUhHD1F+6T93Vt36trz8jybXP2u/H3ijxjqei2+qzrEXt4bdlGVd3JLomOpAHJ7bvavYw+TZfhYql7LWKu3+n9d0ev/AGHlWDpR5aabX9I9E8BfGLSPHXi6x8Eya0L9tOKfaro4H+kZ+4M9cHg/WvMxWA+r4edbl5W9l5HnYjLo4bCVa6jyt9PI+ef+CgPwe/YN+Jnxk0hv2qvGfis3FwCE8MeH7orBcuvBMwXHQcA+hrKnTzDE4OMaUI22Te9jvwWKzZ5XChRUVFd29fl1PHP2jPHf7Sun/D6P4Df8E2v2S7bwN4TaMJJ4k12SGJ5APuy7clye43DjrXp4XKMdCmpuoue33DeEzHEWhOalLdX+Fei73W+583eB/wDgjv8Ata+P9ZT4m/Hr4qpq2qzXSvFcSXBcKCecevsOlVTyqrF2xFbmZyvLMTRrc1etzWPpz4c/8E+viX8M4biy03xLPHJaSRXLQG7MFvG6kjzZNo/eSAFsA8DOPWvUws6FBpRno/xPVjXw0MPyc2j6Lqz0e21Szk0rUtR+Olql7pCQpbT6kloDM5Hyg7j2HJPbFdNeEZUnGn6s4amHjy8tHffc+OvjF4b8Alpofh7K8Phe3vH+z35s/Il1hgxKQwRj/lmgIXI4PWvxHjHkqT5oR5Ka6d2u3kfOewrxk5VHdtv5a/pt5niHjJ5b/UTbR2eLiNP+PeEcW6DszdzjtX47j8R7So0kXCeljm3RW5I44wfQ15L1Oq11cFIQZI78jNK1jmk9RytuGc/Sm9jWnqiezJzz2PQ1zyV2Nx5WXJAQc4PQZqVozSD0BFBgYNT1uVN6GTaJ/wATIgD+Ku2K904Y6zNi8VWTBGTgda5JJpnXZ2Ma6QRnIUdeK2itNTKduUrxTES4U556VTdonLC6mepfsveNvEfg34taZq+j62LVY51MrSzlExnvXdltWUa3NfY4syp+0p2sfrp8UNI8OftK/Ay18SaBqlte6jZWg89rZw2Tiv0ChifawXLqfHulOjKzR+dnxr8Pa94T1warp0r29yshhm3Icbs/xY7Hn869BWcbvcHSk3sdp8APi/8AErSERtflSK0f5GgaI+bdgHorBevsSOO9VBOWxnKMOdI+/wD9l74gWfi7SktrbTHtkZdsiSDOcjoatxUNR1aaSucJ8Q/AGp+GPG+paVMUWETGS3x3Rua9XL605Rsz5jOaNOU+aGzOQ1XwvaXCSQlC0ipuj74PcV9vk2YVKD9nfRn4H4h8NYTH0fbuCc11sZWpeArb4leFpPCWoEfaYkZ9IunOTazYyACeitjaw6EHPUCvqcNi3h8Qqq+fmfhOZZBHMsG8O1qvh8n29GeN+EEuLi4NrexGOaGUxzxnqrg4I/A1+j0ZxcVJa3P57zPDSwlWUXuj1nwP4W1jWZvJsInkjQZYKOlTi8VRoQvLRnFlOBxmZYjkoptLV2N7V/h9eXELtaIXCjLY7GualmNKHxaHr43h3EVE5UdbHOap8EviLLYtrlr4K1Ga2BH72O0Yg/jil/beWSqezdaPN2ujKjwtxR7D2qwdRx7qLt+R9HfsffBa3+HngfWNW+Lfww0i8m1WHbYRamgMypggg5B2A9c9a/IeOuJKdbHU4YOvKKhvyvRv5H9beB/hZXweTYnFZ9l9Ocq1uRVFeSVvPb8y/on7Onwjl8Y2PjnwVpkWk6tpcLQ3WlSgMLpSTh427kDA9eK+fnxfj8ZhZYbES5oyd0+3qff4Hwf4fyvM6WZYKl7OVJNShunfqvNB4D+Fvwf8RXN/4S+L/gqDU7eS5na0g1GP7krIqByRzjH5EA1zZhnWYYSEZ4Wo4uyvy9kfTZbwNkOZUpUcww6qLmlJKS2bSV9Pl9xwnh39hD4M+A7TUL/xz8OE8Wa7e3brpVnbF0tLODayoWwfmbkH3wM104zjXMsfOPsansqcUuZ6czfU+QyXwYyPIqVT69B4itNvkXNJQiumzu2dP8E/gN8EP2RNA1zVbnwFpuveLbuyka6WaESW1jBgKsPzZySSAfWuXMM8x2czj7zjTjbbRt93Y+l4Y4CyXhSFSUqUZ15J/F7yiv5dfxOT8U+PfGvxc8PeJNVv/h0lsukLEnhyy0CxEEUqsuAXRMb9pJxnp+lelhKOFw1WnD2l+bWTk7/mcWKWY4yhXl7Br2elNQjZfcrXPC/GPwy/aL8daleD/hE723gtbGNYYbqwKLM7EfKrDjOCOuOlfZ08fk2Ew7vVi0+lz8izXIeOc2xUn9XlGMYq3u2u+yfcT4QeGP2+fgv460Tw74U1i/s7K/V7fUNO1y2820hJJwDyflK7TnjBJ4718rj8VkeMc5WW+jW7/LU+w4a4f4yyuthlTlN8ytUjNe6ndqy1d1y2d7J3uraXfuf7EX7MVp4a+LniX44ftCXVpcf8I/PLPcMUDQLLztC54OOcfhXx+ZYuUr8h++5Jkby+leSvbf1PP/2wP+CmPjnxH4o8S+A/hRoel6Rp+oW8ds+sG0U3NrbKT8u7HDvnOOwxXiUVOc9WfQSjKSXZnzhpXxD1bwpZfa7r7POJ/mlvL+TPmE/3uOK9GmlTNvZ8sPdOC+N/xNs7rTZJLnw9FMskR3T6feLtx7jPOK2U09UHJPlsfntaOSiivyN/Gz9SqfxWa9iCVAbr2FY1JWRMbcxfiOTgdRWNubc1tGOp1fw5+IfiL4d30s/g42NpfXpVJNUu4t/kqD97H8WOoXpnHpXXgsRPCNqOzOLFU1WScdz60/Zt/ao0f4ZtDeN4gv8AVJdQmHnS3c6i+164B5Z2Jxa2qenU9OSePco49Q0i9X07v9DkqYFJ3l95+gfwi+OWhfEi0k0fxXHaTXDWKy6jabP3dhE33QcjKsewPOBnAr2KE3OXvv5djx8RG7tE8u/aY/Ye0XxskXxI+FU6ie2kD27+UXZSMnEikYdPrXrOFOtT8zmjFU3aSepx/wAA/Fnxm8GaxD4J8T+PLqxvIrh8lYAqxREgYt0B2Bm7ttz06UqceV2b2M6s+eKitj7q+EXjfRb7SYvDVreMJVQPetNLvfkZ+dj1Y56Vs9tDgVlLUt+N/h7NLfWuoaHaxzXxn3BGPXJyM+wrlnTcVe7On23Q9p+FWmeIl0xTei5Z14lubqUqmfREHUe5/WuaNJzlzMydWKW9zt0tFQ73kd29SeB+FdMaME7nJOrrogMqxgmV8AdSTWzkkYtOTuMTWtOJ8szh+3AyK46uIw70ep2UaNZq6INS0fwtMEfUtFgJmYKu6POTXFKhhE7yjudcMRio6Rk9A07w3oOiyu+l6etuX+8sLEKfw6Zr0KNClS1grHJicdWrx5Zu9i2qsvANdd09TjgluR3V3FBFvkk7gDJ7k1x1cRCGiZ0UsPVquyJfLdSFLflXVF3iZ2s2mKsiscoxcE4GKx9rC+hWttEJNeXEU3k21pvYdWaQAVlOrK9kjalSVuabscF8YdK8TaOy+MrKym1C1Tm8s4pCzx9MFV/iGQM15WKw96ntHqezgMRRqfuXp2fczLfU/H/xG0uK08PWJ0bTVCiW6uzhpVxyR3/Tn2xXfh6blSd9NunQK0cPh6nNe7LP/CpfChsZ0W0uNav7iPaZ4EWNFPqGACjH41s03U5tPkkvy0MoV2neWi8yLQfgn4p8NxRapa3saTw8rbJMx+XrgMQOfwrthKCerMquJoTnZakmvad4C+M+kSeCvil4bVrgMYzM6hJIT2YE4I5+vWonCXMnAwqU5ppweh8B/tyf8E7vHPwdvLr4m/Dj7X4jsnwyqtwUAVc7UmIV9oGeGUdeoNdlOrzR952ZrTat7zPza/aY8E+NPGvi5NCv9Oa4luxiHQLqJZZCV6STzkABR/dABPA5qfY1a75b62vrpt6/09kddCg6jWh2/wCzb+yJ4Y+Gmgrr/jKNfOkk33KmHaC5yAMEcICeO1cs6tPDxtLc+jwuHVNWR6F42+Ndj4VgntdEj8uG2l+z28IARd5AO0noCB0PevExuYQTdmayjZ2XU+fviR8Wr7W0Ux3odo2YpOPveafvKQeQuPXjjivj8bjE6Titzoo4eUZ36Hl1rcb9RaZQB5jEsF6Zrzowfsk7nTSpfvTbhYt1NZqKR6raii/bJ8mWHQc0pOxKbbFaMK+NtTqy5R0uI4JwMdqlJGcbXJfLVYCCOcd6iSdzZ7GcExMcLxn8qtLuZ8xftHweRS5bCSRfjYlAp7dDWT3NYu7JJVwORjt9aVrhNWRXGS3zfke1dENEZx5WyawjK3kb7EkCyBvKldvLYg8ZAPP411YatXo1E4v8TRuKV2j6e/Zh+It2dVQa/JqlsFKbJ4IVMUpyP3Y6eWuOpx+PcfsnBGZOGJjTnF66X6a9vT+r7HLPmm0oOzv0/rrt/kfrF+yvc654X+Ecvxb8ZyNaWRgK6Xp/mBsqCQHJxk7uw5xX2fE0sLisyhl2FXNLTml+nyPmuIIQx2Y08voK705meYfEj9p/XtV1O7v4tTeNVlASLldwxuO3PXHA98kdjj6nL+H8FhacYcuttz7LBZfgcDQjSVO9upufDT4x2HxBQWc1wUuo3wZSQDjGRuHoeOma5sfl/wBVfNTV4hUw1NOUqW3b/Il13xDLoGrNLZhY2LbX56k5+QkdVPY0UKUK0LT1NY0lVpqM9V0OM+JX7Ov7Pv7QEsOt+LfBNg1zLEVW+jhCOWGMxS8d+zda2oY3G4OfKveS6Pt5HXgsbi8A3FLmS6P80YXhL9ir9kr4cPBq1t8HIZNQspjLDMEDgsTgvtAx5nT3rrq5lj60bRklD0Oz+1cyqz/dSjFPys1/Xc7jxvd+Ko9OvNV8P3M9jqphIt7Yltk8AyAUz3GRxWGGeHdRU5pSj1fZnnwdGTUJRU4LVvqpeZ498MrD4ifEzRr240Lw/NP4i0HUm8y5gh/fXCbiFdl65I/nXqZlicLgK37ydoPa+x7DxeCo071Z8sXor6I95+FX7GXxRmudWvfEzWlla3mlvHZQsdx82QfMzLjjoK+RxnF+WxUI07ys9bHyObcZZTRcFRbk09bdkcde/wDBPnxt8O9EXxNdePbCXWoYbiOysGciNpZWAR9x6Yz6dz1rb/W/CY3EuNKlKzWrNaXGWW4zEclOEuXe7PA9S+IXhH9gTw9deJvib4+0TU9ftLOaLQtMtbhQZHLNI91M5+9IWzgckKFXqa68RW+tUXbmServfotlf9N35np4jGxzGl7Ne7Hdt6Xstv63PgDTvif42/bQ/attvE99qt9DKbnbZyyW3ysGYmSb5zzg4VQBjn250ymVfGYuLStCK6iw1eGM5Iw05NPVd3r6dP8Ag/pJ4E+F0Xhu9tvh+qNJNcsDcSS3JmkmUKMvK2BlmxjaOAK+vqYqHsue+yPclP2NL2yb0PSviV4usvhstvZQWcL3YC22lQRyAmSRmCmTB4wCQBXjYelPFwnU1stX6HlqTxMHO+j3/wAjyP49/tKaBotjJ4APiELp0EoGt3aSDzL662lmijOQCq4OTwB9KwoxVOoqtV2eyueYsVRoydeXp6I+YvCH7auo/FnxXNptnd28XhDTZhamGO4iuEvZTyYkG7DkDjjnOc4xXq0qlOVRx0bstU007q+6/Fbp6OzNcJi8Pi7zi9L2u9DS/aN+Dt/4/wBKX4r+E/E15YWcCBLvSJbEtc6aMAeXbouFOe7ZwDnnivzHjnIZY6PteaUFH4rK7XfS61+a9TDHSpqHuWlbqno/M+UPEV5bafcz+H9GtSJTkSxpNvkb/amkHAPcqpP1r+e8YqVCbpQ1/rqeQuWbuc5LbhV2Aj3IHH/6q8m7UtTug2U7oPGhCjHFJy5hTjfUXTkd0+ZvpmolJoVNqJetlCOeO/X0qdSpPmZdxvyDjtg0ramkEG0iJsjtWi1Y6i0MmxXOpHP96uqN+Q4aTvOxqXw2qee1Y21O9rQyr11I2Y4qJS1OVvUpQJ++znoeoqviViJrl1RftZGjlB80pgj5gcVLi11M7RkfeH/BN79rjwd8PLy2+HOo+IHne9ITyPJbYM9iT1r67KMfQw8FG+p5WZYSThzxWx7b+2T+z3Y+KLCfxn4SjBgvId0yxrnaeoPFfUQc6j5k9GfNSrTfunyhY634q8JNbaxFYx3DW8vk30NxgLEw6S84HSvSjFxhdbkRgotuSuz7Z/Yy+J2vazpsN0qQRWpwySRpzJ7n6+gzTjzyV2cFerzppI9p/aF0Wa90+y8XQBmdY9s+F7e9a0a6pVLLqefUw/tqTPE7spFMJQxGVJJPcV9TgqyhNNn57n+CdWhKI7wjpcq3cc6ngsCDj3r66NdSjdH4RUwXsqzVupxGjfs4fFP4m/tD+KtI+Gfg+W9tob5Z5rofJBEZVD4LnAzz0HNfW0OJMtynKaVTFzs2tFu3bTY/B814E4h4q4ixOGyrDyqSUnd7RSeqvJ6I+mPhz+xBrHgG2XVvij8W9N0ZAwaW2spgzYHUMxxXy+Z+ImGxV4YXDuXnLRH6Rwb9HDN8vrrE5rmMaPVwpu79Gz0Xwr+z1+zL431B7Twn4wvtRuY5M3P2K9yAR644HNfIVuOM9ptxnGKVux+4YPwR4Br4jnpSqNrVtS0Z6zNpOneC9Gj0q78RRpp8EOwWzwqztjuSe9fB47M267q7SfY/astyOhhMPDD0leEVZJnAeMtM8CeIr17izvNRuGbO8C4CgDGMCvKnjJz3d0z3KOW31tscxZeDJnuLcWmhTiNCfJuTdk7TnqR2ohiJxskbrCUGvP0I/GUN9feIE0/UbJEn+7BdxL98getdEsdUfut6GM8FQhK8SzN8UdZ+GekQ6MlxDLPdwlo3kQF1UcHmlzSsc/1JOXNY8u0fQ/GHxB8dXunadZ+XYW0Il1e9nY7Oecf7R9qv+0MRD3Kb6FUsjw0m51FudOl74mhddK8K2TWsEA2ieODa0+O+3OWrGFfEVpa6s9RYLCYeCUYpBrmj+Ok8NSajrN7qBg6ut2vkhcdMZ7V2Qcox1ZwV6VOpKyicZoOpeGNb1SO98T+Mr6IRnAaVyRuHA5Brop4unQSd7nLLBR2sTXujat4i8O3Hw80LVFvdNubwzXEFiSpfv87NyST1JPStak415XTsdNLDyjSaSvc+G/jp8GNe8E2fihB4Y1CaW41Qy3OpNDI0fmOflijbHzEAAYHSnBRimoX+486cJU5cr3PlT4yfHh/AljJ4Qvor23vWxE0DWTSrLx1GeK56uIjT0loUoSk9Fdngmqx6nrs76jq9/Lbw5JW1tZChcf7Xp9BXk4rOKdCbp0pXV91/wT38Dlzkuaoji7FdwUewxXyEnaZ9fVbVVmxauBgj04rGUVJDpr3jQtSzD5hgD9Kh2idE1dEu4yHCj61LlFo54u0jc8F+KNQ8E66nifTbWCa+t0P2Rrpd6wyfwvtPBKnkZ4ziqw9b6tV57akVoyqKyPb/AIYftgeIvhz4Lh8I6H5uq6tqmsC61KW8lJbU7on5WnbP+pj4IjH3iOTjg+xQziUY6K829v8ANnDHK1Oau9D7l/Z6/bztm1C08PXWuW9xFp0aprutMvy3t+wB+zW6D74XnOK9ynmUo1VG+iWr8+xGKwsE3da30R9EXnw8+E37S+jW2uaa0Gn38sbyRojbZGIP30YHgAg/XPtz7dGSrQ82fNYhVoV1ytctndW1vpZ3vstbqzvdaq2ub8Fvhj45+Cni0aRftcapaTXTy2ZWPkyNtG6RuWY4UAemPrXSpTjHlvorkLCurqlqz608A+G5PEILNZSOZCPtEkU4Vx6nOeB9K55vnerIlHke56tpOlR6ZZRWEJcpEMKZJCx/EnJNRzpHFUauW/KYc4pORKsytc25YFQgJ7BuhqottF8qsJaGVVAmtzGe6jn+VT7qWqHOXLomWZZRGASSBkc4pSlCEbsiEZTZmavr+l6Tuku7gbgMkZ6VhUx0V7sFdm9LBzra9Dnf+FtWJ1EWBkhUSH9zKvOfwrnWIxNlztK50wwdJO2rMfxt47mW5EocBbdwWOcADgk/lmuWpJyk31R3U40qC5Vuz0S8v7e309dRBHzopQE9SRwK9epV9lQu/wCmeJSoyxFexnX/AIq0/SbCe8Z122qiNEDfekIziuKOJjG9umi9Ts9goySfXX5HM6p8QrXQmhh1Bxd6ldNvhgU5EIxnn0IFbUoSqPvLyNnSp4h25fdTMkeNr7xZjTrC8kQSb0lu5UXypHIwqcjkAnt6Vz2ctDeVOnCaktkdD4B+H09tp0Vx4r1dtQlVQFQArCvHZCe/XnpnjFelTpxilfVnLi8XduMFY6vUda0zw3pj6jqVxHBbRLkseB+FVOUY7nmRg6suVbnj3in9qc6r4qt/BHgs28Etycvd3EoJii5+fb/D7Z/Ko9pHoepRw1CjC83dnivxZ/ab8M6L42/s/wAHa82o/ZZAL2SOFpSZB1djtIyecLnPsK6aEnUV+hfJOauejfD/APaD+HPjPw3LpfimG4l85GBkuJmjByMbSqDA/WrnCbq3jsRJS5lY+G/2pdA+Gnhzx7qHiLwpo0YunJd4SwExxnGN6KXHvV4qvGlSu9z6DAr3Ez5R+JPxwt4Eks0ujudXV4pMjaD1VgO3oecV8bjsxd2etSU+XlR4V4v8fXmoQ/Y/P3qGb93Iu5tp6hjwGyOjDkYr5qvjJzOmFFRZyF3eyXD+ZJwQMKCckL2BPfHqea4aknNnoQjzIztMdzeleuXzW9NWhqYyly1NDqbaMhQD1PtXNJnUnzGjbsFHPfr71hKTZUXYVuQc+lPm0N3rEgabBwBnn0pJvqYJWZO7EwEjNK5u9Y6GfHKVlKkd6q7sYKLT1LdsQG5FZSk2NtNaF+zcuQpPNIun8RPcAgZI7U0+xtUV4lVZT94N7VvHbU5krFzRoftuoR2K2RuJJW+SFSMsfbPFdOGk5Vko7lShSkrVFdeZ9Z/sYfCn4ifEb4g6T4cj8BXawSTqs0lzp0Yj25GSS3oPQiv1/hKFaniFVrR5YwTexP1vD0bzk7KJ+mf7UPi+bwp4OtPhxoFvCltYWKRohlEaNIF4U9x9QDX3/C2D9pVqY2es23a/+ep4+Q0YzrTxdR6zbt6HxD8R/HDQX15c6lc3DyNKsi7Imba6ncDjGFdcDjGHGcYPX9H9nTcUj6CdeUfdgtjC+GP7SM/hn4kWrw3UUFtOVX7Od20kYBAzn5WB3DnGeBxiuXF+yqQ5I9SqVeNP4kfUmt+PLLXoFmkvQ8dxBjzE43RN9xuO6EgH6V5NLDRpLYcFJU3rfVtffp9yM7wD4y1W8v7/AMDvfObme2EsK7OfMQc4x6lWH5VviI4eMY1pbp/gap+yaqyR28fja/g8Gx+ItM8P3BllP2e7wAVnYnBdUwWBB/j6DGc8GuFUKdXFuEpaLVf1+nUt0I1MS4VJ+6rNb3Xlft/TOaubL4y+LNdtvCNros+pxPeqNMkGpxeZanBO855KqTyCORXWq+TYWnOq58rS10ev/BN6+Jy3BRlWi0tNdHZn118HPgb4V+EsT6lYWKf2rfwxDU7lPlErqPvbc4HJ7V+U51nWJzefLJ+5FvlR+P55xDic0fs7/u03Zf8ABO8u7z7HZyTmMtsTIVeprxKdNSkkfNpSnNJdTwb9oDx7qNndi4i05ZWi2qyMuQm7GOfXr+dfdZHhaEaWr3Pr8uoewpKz3PjX4tfGrTtf1a1sNa1HQtJs/Dyyyatc6vo1rcMYFDLiMyxlmkUgYA25PUnv9PGhRjTcpJtvbVn0DmnSule588J+1P8ACr4z/HXQdT8K6es1r4LikSHVIoYreS63HpNGigJg89uK9fLalCnzRpvf7l5H0mTU6LV07X/A+h/2dfirpGs3N14/1iSGOC3h8uwcvljHubMzen3SeewHrztjIVJR9nB3TPpcS41MMqFPo9fPr/X+Z8+ftEftceGtP8S6l8Qda8QlItKs2i0Ibh0HDSnPGeh+p4rmklgcLGLlfu+vzPnsbjoYag4rQ/NX9oP9rTxN8S9Uu/DnhxJrLSG3GF/7SZZ7wPyxYlQEDdMgE46Yr53G5hisbUdJJWW2u/r2+9nwGLx9Su/Zwlo2c38Kh8afFQh03wTe6dohij8iyWO0ldlBIyqM5XaD1LKCWIAPs8NTx7lGEXyq3QMNUxdVyoU5Wt08/wDhuuvY+n/2etH/AGh/htM2lfEO7u76C4Rlurc2Mr/aEYYKsCrBVI44ANe5UdSngaiq2krP5n0GDw2NoJ+2d16knjfwvJas81l4Rm062D5SyitDFEfeSSQgn6Yr+Ws8w1X6zNQgoq+iSt+LOimte69TiLmXcxeTaOcYXpXyUozcved2dLfYp3Z8xDtHHqRULRlWYmnH5cFfp7Vo1Yz6lvO2XP5mhFx5S5bkEZb8OKhuzLjJD5FOxsnoOKnmLlZoxrBWOpE4/irri/cOCKUKhqXoG8gj6ispNna5XiY11tWY5PHrWerOa3vXIgmFHHXpW0EippS0FDHOGP14q9DkmnF3Ok+GXxF1f4ca6muaG4W4BAVigJ69s9K6cLVdCd0rhUjGrTtI/Sf9jj9q/SvG3hKLwn8WtZtI7q7QJHA9wGdsj07V9rgMxi6a59GfNYvAyoe9FGf+07+zRJBdz+KPCFo1zpc4D3EMR4cdccV7lKtUnK6PInUUpW6mP+z3+0No/hPXYNB1KNbaa0IittLUNvkc+x6/hwBXbKUZqy3OZ0eRO59w6N4x0rxd4ClstVukaZ4g9wA2RHxwv1qYUpQd2cc6ri9DyHxJ4Fv7yN7Wx+7ICRwcha76NaUVZnjYzA/W2xzM3hmyitRod3c3AK+TBbplpHGMAZ98V9Hh82ocqhJ2sfmmZcEY2hOVemlJXPSvhV8DPHeu2c2tfEL4uax4Zs9QYXD+G9AmELE4AxLIOS2ABxXFmed0HJeypptaXep6+UcA+xpOdetKKm+Zxg7L59z1TwB8MfDj3Mmg+H/DUd/bykie81+d7p9vc5fNfI4vHYrES3+7T8j7bB5Ll+Ap8kKaaffX8z1XR/CfhL4TeFJNP8DeHLCxAy2y3hWISOepOB61yV5yp0eaTuz0sLQpc/JCPLHyRxGsr8TNVukuZ/BRuRK/ytE6lQPUkkYrxIwxFWfw3uevGdCn7sZLQ6HQPhRqghS5vLuG0mLZbyEDcehyOtdtPB1OX39GZvG0qTdlc1vEHhPQrPSR9stpJ35wYFClj15xWlSEaaSOWGInUm+XRHlfjjQU8SM0fhVWtbuzQyC1mkIdx/eGainRVWOmhtFtay1R5doHhzXfGvjdLaRC0FtI0YeT7yEgbs/0/GsrVVK0fQ6nUpey5V/XzPYPhZ4A1DTRq1/qFuq2jTERW3lf6zHcjvzXVQw00+aQOtBJQW5b1XVPCvg67FwNJtZdZuXCR7oAFi9ACBjPeumUlzruFT2k6Zi/FbStEu7KE+ONZLjy/MnQTEIoPQH/AArdRko3ORWhr1OG8PeAfhT4jQ3mnaTfzWEbZae4GyIY/u561gqcW/fRUZTaudJfaVCdEk0LwNYvZwSIV82KLDufrVQulyrUuVeOjPjP9tz9jH9rXxRpslz8KbG/1S7MRNk17qH7i3Y9W8s8ZxXo04OULKdmzz60PbSvFH5gftFfBbxz8EvFB8M/FPxBHqOuhfMkKTbxDnqDg4H0618rxFKrg4ezcr3PYyfCJe846HkWo3se4o7dueetfIwqxurbn0U5QUGkcdp7qEU5610SjeZ1Ts6zNWyYuQuOgrNpRiaxSjI0EfauF9K5XrcJzu7ElqSDzzSa00YKFtTQT7vHPHNJpLcqMLoVEljmE8MrIy/ddDgj8aE+XWJTdjq/hr43n8PeMtM1TXtQuW0/TInEFjbnYoyMkDHdz95uuM124XFclVOq9EcFbDyqaRPrb9nv9uu78O3UeseItea1uNRkSFmgG/7DaqQEt7eIHl26BR3OSa+lwOdUpzjzuzemivZHJLK7U27XZ+hnws/aE8K/EOKxtvEesrZ6lNEpigF4rCFWUFUlZTtEnTKj5gTg45r3qWJVZp3t09TxK3ufCv6R9L/s42/ia98RFjA8em20TM00THy5ieFGcfMe/wCFdNSNOlSasrv/AIc8qviPe5UeyXt5babA95ezrFDGpZ3Y4AFYWXLqcDpylLQTT9Y0vWIBdaZqEU0bDIMbZqbp6DcJQHzYdjsPTrWkJRii/eaGTSmG1eaJxuAyPrUVqloNxNaNK81zHO6747t/7NkiJAYRkMV6hx2rzatWpUXLY7YUIwqXTPLbvxZfeLYpIhM4ltp9mGOBIpPAPpSoqKd2dcX71lsblr8DtS1W/s9Xt52sfLcG6W7G/eBg/Lg9eozxXTLC8zujlrYiFKPLe53Nz8LvCGoxtFrlo16ksapLFKcIwHqB6+9b0sNCDvbU85YypJ2Ny60nTtUtVsbq3zErAxgEjaR0wR6U60FNWkrl0sRKjLmi9ThfiX4C1aw06O90SVprS1le4miILSlzk/8AAhnFcv1eKZrHFOcvePlyX4j6pdeKQviiXM1zcMq2qPiWVd3CkA/ImOTXO4SozXPLV+Z68ZxVDRbH1H8LtDvJrGw1W68mcBfkjjQCK2GP4MD5m7Z+vPY91OMEtXc8mtKVrLY6nxB4x0PQJ3h1G6WNYITLKxPAFVKq72sQqUpQuj5V/ae/aztb6eWwsrwR21pljGD0x0/E/wBKzvFO8nqduHo+zjZbnwf8RP2sPFehatq8/hlp5dV1IYaSGTa0UPZQ3RAe59OlXRnKSfLG9j0YUY8vJJWM/wCE3iGfXtRWbxB400m0845+xQtwGPVmYsXZv948+lerTpJy5lp/XmRVjGL00Poj4a+AL3xYGtvhz4ntZdTtiXazkkaN7k4+6BuCn2wPzrplywiiKdKMruWx8u/tLeM/ilpPjO/tPFHhK6t44SVNpfpdOQw4yGWNQPwNfNZrVnHZ3R7eFw9Pk91nyV8QPEia1qUsv2J4SDnDSu+f+++a+Fxdfnk01Y9qlBxicXdzl32lfpXAm2dkIJK5XJOCRz70cqT1NHJRK+j86hg/3uldD0hocDu6h1sHbGfauGb0O+K0LsaNjAHXvWLLsTwRB02n054qJNo2i7IrTwbJsbe/WriuZCmrouQxKbfkDpSlCxKukUWsV80sBx3xVpaDdmixDCOmAPpSaszO2pZs4/nG0fQUO1jeCVy3doAhXHas1uazSM8RkNn161utTnukavhLT59Q1RY7bTLW7IPzC5s/P2j1C9PxNellWHnVxSUY3M6l5LXY+6P+CZPgbwVa/EdPiv8AEi3isNB8NoZzqV1fhRPOBhUVIzsUD+6PSv3nhbK8RHLKrwsG5z0V+i6vyMZ+2hgqiw+spJLVLTzOv/bO/wCCh/wf13xTdR+DtWknleTZHBbywxJt6fPJMdqA+/51+mZXh8Nl2Ep4WVROq33SV/NvRLzuZKvh8BgYUnK7ju0fKvjD4gfGLWluvGyeHdH0TQJwEkvNbmvL23uFzgeWm9IWzn70SkAclsDNVjsRj41/ZJxSTs3dNfenZ+tzlhia2LlaDSWr1svzt9xZ0f4feF/HH/FdfD3x9pcmu2cCNqmjeHtXuTAY0AbeIrh2PLKGKgkDjAGAK4qUsPKrfn5pR1Ip4rnnyt+Wh9EfDv4qx6z4USZIXAtbceYGOcjhZV9sN8w9Aa7PauSu9z6Kn7OUEoprbr1tr+P3bak8/wAY77SfG1l4j065MeoIpkWRYwqlcgOSOn3mQ49z60m6c37KabT8u3n/AF+DNvclFRlt6nfaFren/Fu0u9Mma4e7a4YSyXOvrp8dmBzlJGOCSOcYOewzRzPD+9G/L5R5m/lY9KWMoUqFm2tdUouTf3an1L+xJ+zx4R8AQy/Ek6RDJqN1AFj1k63JemZTnPzNgAfSviOLc0r1p/V+Z2vrFxUf+CfnfGGcyqWwdKT5esXHl9PM+ibe986TchyN+GJr4apDlPgZUrR1LUzxTwOD93GCR2rH3k9DJKUWrHzZ+1nNBDDJJo6i4ZEJmWOQnKhgzkgDsBn8B0619xw+pqj+80PoMG5qC53b+tD8dP2p/EV9cfEvXraOa7GxTOmkt/qZgolcu7dQAGLZ6YXpxX0Pt2oOMnY+ii606SjFXfl6Hzd+z54q1vS/iN4p8NatfjS7jUrEXCXFjKZwM8uwJwZCOeMA8isMDiPY1ZpP0O3BYmtH3UrHsOkftQal4V+Gs/wx0/VpY7rUNMZtVuQp8yzgeXklmx+9faAFGSAa+hpZlCFPl6vc9lY6pGFnfXqfLH7QXxA8e/FjX7nTkR0sNkdvbWiuyiTbn5TgfdXClm7k+1eDisViqs5xg7Rla6u9db7bWTSe+/ofL5lOtXfvHzV481LxffXesaf8Lobme10C08/X9Ys+Ci71QneMbU3sqjHJNfC5lmWInVlTw90o7tH59jsWqVdQcrJuy82cToPxU+Kuk3CJovxG1q2beCoTU5Au7tkFsV5VDG5ipfuqsrvzZVHGV8LJzUmvmfUPwD/bM8VeDrn/AIV/+0bY3DoJgo+2tcW0ikjO4OhUDOc88HOaWOx2bTw84Vqrumly63trd6aaWV9eqsnrb6DAcUV6tNKtO6ez8j6C1CTw9q8MXiHw9etdW06ZiM0pkKg9sljn61+WZnF8/Mm7ee59tgZRrw5o6mdMSxGf0rz4W5T0HDlEeHenHSpauyoO4xCbZST+VU7bEVEoq463ufOJXPNS9CKb5mXLaR1bknNZO8mbe7sXGbdCxPpScWmU9jIsONRb/ertgvcOO3NM1L0BssMj1Nc9Tc6eljFvYWMwYnjPGRSjsZtaDcAAjHPrWy0RFPV6leaUKdx7e9DauY11aQ1Jg5ypzg/lVKStqKmn1Ol+HHiy68KeJbfWIrlkZGH74Elox6r71eHrSo1U29DDFQVSFkj7+/Zx/wCCgnhu38OjTfH/AJSaPCqwxNcyeZJcN0/HNfcYfN6cIxbVkz5Stl1SVT3dz2LxZ8Bvhj8YbGDx58NJ49N1WWPfBLGFDJkZr6SjXhUhdM5K1GdK0JJu/wCHqcVr/if4u/ATQZrXV9Gubq10+Iuvkks95L2LH0rX2ztdo854RzqWRD+zd+2T4l8VeO9O8IeNtP8ALvtSR7m6yPktogQFX68gU41JVJJIiuoUYWsfW3jjwlbSxWmsaVKVlaMS2zr1DDBrp5eV76nJGftI26HZeE4PEHj7To4/D2km6uJgBfeY/wAsTDjJyeB3rzsTShOLUtU+jOmNRQjZ6M9g+Fnw11nwVatJrWti6nkHKRqVSP2HrXKoKMrkuouWzN/X/Cdl4jtfseqxM8ec7Qcc1VSjCvG0x4fFTwrbhuy1aWn9m2C6fp0AjWJNsanoK0cVCFooyc3OpzTe5biZvKC7h5m35vQGsHKTXmKSjfyOU8Z6ld2rC3u7maNmPySwgBcfjXC/aOdpM7acKXs7xOcu4YdW1KC5udNf7VHHm1u45vmc+n0rpjGfLoS1N6dCf4UaTod1rGsTx2SxXsNwEuUx0JHB6VtSoJe/JamdWU0kjuriGz06wCsQo6DjvW05aWIhJuehy+r6D4Vlnilk09JpFcv5m45UnqetZRpxjLmOh1K0o2OK8Q+ALr4yeM44cGLRdOH8S5Sd/RlOCcfka3pu8tdiuVU4XqPU6bxP4X8IeE7GGEWaySom2C2Hyxg+u3oKprne1jNTlNNRWhwPjXx9aeFrZUW5iiupshGAACgfeI9hSjGKYXh1Z5Z4t/an8NeA7e3v/FOrtNLdyt/Z1i0+wSIPvO3PT611U6LqzUYb/d+ehnVqJK0D5j/aI+Af/BO34zaTrX7RHjj4daxcXltbeZd2Gj620IunAPGAePrXl47A0K/vV4XsbUKmNpRtB2PyP/aLv/AnjDxXcW/wR+CkHg/TLSYoBca9cXd0VHdy52DPoK+NxX1KUmsPStbrc96hTxLs61T8Dy+3mKIij07Vkrc7ue3V0qs2LC6WOP5iMkcZrnqroUptl2zmaZiK5px5dCqXvSNC3Vo2BPejRRN6jSZoW5BX5uoxWEnqVBuw8sF5x+FEdQauKknOBn3JquS7HGPLuaehX15a6jbtYXMsUwkAikgYBwT/AHSeAfetKEJe2Si7BO72Prz9mvxvqOj6hp/narp9tqAcBGl1EanqT88hIY8xwnHrg8/WvsMuxU6M1T6/efPY7CWbdtfPY/bX9hDX/EGufAmG/wBdsbmBBcsLVr26EkzptU7nA4Q5/hHSvo6zUuV9Wj42pC2IkkaPxZ+KOlw3jaWurxrb42lc8FvU1iouUkmy6Ur6I4vw18T38PXpa31SF4lYE7GBDL7c10zoO8k7XXmv6fyN+SJ6zo/xH02/sRqkN2jxSRhsKffmuSpCUZOz0NYUYySZlan8RbS2nliSbMXKMN3r901yRgloaTjqkeXeK/G063dxFE7CO6gZkIPPmLUKmti4RlJp2Nf4I+HtQ8T2TeIdNgS9guP3dyDKAFIPP0NdKwyaTZdSpGjvoe6W1uYbeKDyyAigAFt2PxrsTjFaHgYio5X8x2xi9TGetjCEb7Dbq5hsrZnnuUQbeCzYGfrVbvRHQ1CC5pbHzj8Uvipq/wAHNdfUrO+uEkS4WSKzN+1wsqsRkNuORn9M12+zp1Y67+hMYxxK91WPCr630/xH8epPGd9oUUE+rXAkV4cSsmeflUnbHz6152KwlP2ytE+iotxwqhFao+4PCLw+FPAEeu6tqKultZA7BNuRMDhc85bOAT61lUXI+U8zESUqvLFWPkr9pb9o1oI7hYr/AGPdsXmCnoozsX8TzWKkr72O6FKySPhf4r/FfxH4x1eXTtLMk88srN8pyN5B6+uM1x4p1KiVSV93rrq+vrvqn5Psd8KMYR1PhX9sv9rrwp8DLqfwja6m2o6irlbxrOYGSSXuoPICr0LHvwM104alWac4J2XU4K+YQozUVqz5v8N/t2adq+oeXeanqOiSO3E1y7Sw593iw6/Xaa9OGsfj+/8AzNaOY06rvUjZn038Gf2zvjh8KJNO8dWepam2krKktpqkbC5tZMH7yToCcZGMHoeDRCvVd4dHb+r/ANeZ14jERdL93sz658ffFTwd+214IHxc+HPirR28UxQD+39D1e1WRLlgMGWJ2wwJ6lfXpXHnFGE4NUZJtfj95tllWo7KaaR8meNbO/tL6UanotjbSo21m0+43KD7qWJFfnOK9om+aNmfVUo2WjOYuQN24muSEn1OpOyIyoCYxipnOzsRFXepW0lSNR6d+tdbbdEza/eHW2pIYEDtyTXDPY6Y7GjFyoU/hWL0NLuw6NmUcdfpUsrZDZMO2D7VpDQIyb3JZGMUOVHbkUN3NJL3dCpG7ySYIPvxQmkjKKs9ScZTkcYqZSbHO3QsWJ+YAfgalNmtEtXpwmR6VSRpUfuma0p521asjmirjtPvLqzvo57aRRhxvR/uuM9D7VthsXXwleNWm7WNW3FaHs9r8RfFvxX0WDwbqvxV0zwdo8EYQfZ7eS4kI7lY0AUH6mv1vB+IeKlh40YzVKPW27OLE4fEV05KVin8dLP9lv8AYi/Zu1T9rPQLLUPij4h0vWLXTNIj8Vwqlh/aNwsjJJJAuQyosTtg9SADxX1mBzbB1ssni4Xk72TfdnmVsM8Hl9TFTd2tEmaP7EP/AASa+PH/AAWTstR/a+/4KA/tj3nhXwvYeJobC58JQW0VuXiS3hk2RESLFaR7ZUVBsbjnBqM7eY5d7PDYj3+ZKaUdVrfqr327n4vl2f4fOKuJqKrZUpuMnfd2T67KzX9I+V/21fB/7Ln/AAT8/wCCid/8O/2KPi/rmt+BdNe3tr/UpNbW4eO4KKJvLmTasnlvnnGOCOetXCliMHhKWKs4Tle8dbW6Oz1PXyTPHLMpwvemmrO/lr+J9w/safF6D4lanqXgjWZ7dPEFpsmmt4ABHqFs4wl5CD1RlI3r/C2a+pyjMnjJOM37y/E/VaGYR+C51Xi211fR9WutIvVdZ7Fwi5Q/cLZOM/7oyPevo5NeyvfXt/X9anfCs5xvc9v/AOCctho3xF+IGqJ4t0/T5oNI1HdBFrasUVioBMaAbZGI6E4xmvPxuZYijl01Rc9Xb3dH/wAN3ZniK01hJqLlzP8Al/Vn6YaE1jp1kmh6XoSWcEEAkHkqoX8h0r8prSq4io6s58zbtre5+aYmNSpJ1Z1OaTdtSxolyLhDPK4QiThCentU4mLi7IVaHs3yrU3I5Mx5cgD0NcK30POa10PF/wBp/wANaZfeFrq8g0y53wo7Fkg3ByACSc84xkZzivq8hqVPacrktT3cGqlRpNo/Dn/goL4At4PGOo67Y3xkOmQiW6hgz89m+VEgXPOxiTg46jNfTYtuK5Ybn0cUoUU3ujyv9jj4OeBvitHLL4h+LC+FtRMSx6dqU+nPPFJ1ASUrh1B55AOCK4IQlzc6ZzLGVKeyPbvit+xD8cfD3h6HxPB4Z0TW9EthNJPrfhmVLpGI+5IxzujO0k4de/bFelh5Qu+Z2Z1U8xov3XfmPz7/AG3vG8Pwl0qfwnoFwo1a9Xy5riP70MW4/Lnsep/GuDNsdHDYeTh8TVkcOcY9UaSpp6yPmP4mfEnwJ4w8GeCPDng/4WWvh+98N+HJLHxFqtvctI+v3bXtxMLuQEAIwilihAGeIhz0A/N61ODkpLd7nw9qqlLmle708ji1dy3mKa7MNGMJppXZTi2j9GPhRpVv4k+A3hGz8f6Na6lcHQbfz/t9ssjEbf3edwzkJtH4V+bcR5jiK2d1pxk0r2+5H6ZkOW4dZPShVgno3t3baN3TNB0Hw5ZjTvDukw2VsDkQwLhQfYdq+enUqVZXm7nu0MPQwseWkrImKGTAHr1pxasayeg7ouCMcCldmcHZlS+3bMDipTu9S52asJpMRABZc896TTbsjOCUWaMkgTBIx9apKwpNJk6TK0JVD0HNaaM3vzQMywbOpt/vVtF+6cVLWoa17kKSPSuWpqzsmkjLuVDnIXk9aUNzDm0IWQgbm6Vu3ZDiklco3XJI9B1rHmfMZSSlLUZbIAoxgZq1qzOT5WWdxjGc8H0rRQuLkclct6dr11Z3ltI8xaO2k3xxsflB9cVtSm4yXNsjllTUZXR7p8Cf2yfHmh/EXTpNd8VT23h/T23TRBvmnPvXtYbNKka6u7QRzYvDwlSfLHVn3H8H/wBvf4UfHW+m0XVdPhWzMq21ubrGZ3PGEB5Jr6rCZzQrxPDqZdWo0+Y7bx/+x9oOsOfip8JolW9gRDJbxnG9VOce/evRhUcZc6PEqU4124y3Pb/COtLrvgzTI7m38uaKDbN5nVCBjb+dd8Oes1I5VSdJqNj0b9m3wF490vxlL4lu7N7fSJLdxvkfHnscbcL1IHPNGJdCNHlveX5BUhG/Mz3VAF+8RivMcW2ccpaiTSIg3OwAq7qK1JTbGStIIi8adBngdaG+WNzSCc5JM53xN4uXTLBbgAoWYjcWxtPvXBKftNT0I0Y0pe9qjDfWrnxjfwafZ6hbGbYGa3ngZ1xnqSDUpN1NDRqO6Wh2dlptjp0YSC0iRwPmaOPGTXqQjZann16zvZPQlgt7SCZ7iK2jjeTmV1QAtj19aqXmZ87nGxQ8SeJfDthYsdRv4lyMKCec1jzRb7nTh6E+bmZ4340+NOjeEZJJftWYADtwep9/xppczOvnUpWidd8AfjPoHxJ8OyT2nlxzQucxKwJYev1qmuTU56tKpKWoz4wTmL/iZ3LbIoocvID8309qiE+ZluXsqNkfDPx1/aJk8QeKpdJ0mRBFFuE0inIihTr+f61tBtbnLJSmryPlfx14d+MPx2+IVx4+1LENhFGI9L02W6WIiBeBwTkk9cChRnKd0a0acVK6Rl+Ovi7rfwZ+H13B4+hs9CDQukNtewy3CXBx8ucJsyfQmjMa6oU7t6WO7C4etiai6an5+fEzx14j+IWsT6pqt7E5dz5SW0IjTb2+VeMV+dV8dLFV7tWX3H1MMNGEEnrZHCrDwCvpVJrm1OrER1bRbtiSox2GOtS3czpS1samkcOMjvXLUSudkYrc1yegIrGXkZz0lqWoGOBjv0rJq50UknEnGD+I71n1DRSF2kdq6I25SnrqWYY0bAkx178isJ8yY3NLY9s/ZX+D/i34l+OrLwR8MJtRfVLxgNlrqErCLkHc0VsmyIdOZHGfTtXvZdltSfLKnJ67vWx5WOxFKn70lf1P3z+CngS2/Y5/ZF0T4Y+LvF+7VpYWk1G+uHy7zP8ANIRk5O0YH4V9lgqE6k7N6I+Lqfv8RKcVoeA+IPjJ4s+J/wAS7n4G/sZ/AmPxz4qt7RLvW/GHjnUDaaHokchYRl0QGSZztYhFXJ28mrWIw0ZN72dtN7nn1JYihUSS3Plf9rH9rv8AaU/ZL/aGf4P/ABP/AGx/h/4k1TRNEXVvEnhXwv4HNlp+mFnAiszctKzPO67iE4bbgkc4r6PDZZLE4CWNUXGC7rcMLi6bxHs6msntZn2R+x9+0b4P/aJ+CifF74Z3xl06baNQ04vmTT5/4lI6hTyRXi1PZ1NYbHs86jodZq3iEJqDtHelojEVDZ4J7Z9xWHslBXEqrvoc7p82s674hSwFu0siN9w8CXJ7GlSoSnO6RvGUbXufTXwr0DX/AA4i2cXgez0yykjDTSJdDcz44OwA5PqSRXXNU4q1zysTWc20+h3SKNgJFcU3eR5zXcaVZX3Y4oVrmlNWjco65fWtnpzvc26y8fKmOp/KumFOU9nYVVXjtc+Tv2rtWvrK7F7/AGDGjeT8k00YIA3DOeP512R54aHRg8NJr3dD4yvND1i7/aSvbbUPEupMs1xBLbabb3TJCy4JLHB7fr+FckYXq2kfQRrUqWHtfX+v6/rX9J/AHhi08Wfs/Hw1b2v2KKO2aSNknMkkrAE5Ixnk+nPSoxVLkqX6M+fqVr4j2lz8zv2p/GF2niy98NJPPHNuaNBJGUZOxYg/dP8AKvGxsYtSgm15nvYPlqwUj5K/az/ab0r9mH4Mavd6FcJP4mvbGZY5lOfs+RjIPZiTjNc9OEqr5LjxdXkpNo/Kzxp8RPFGj3etXnijw/pWpyeOPDNsYbq+jMr2UbSRyiWBgw2ShomQk5yGcEc19phsxqZXhauHVOLjWhFa9PNed7/M+CqUI5lVp1faSi6U3e2ilurPy1ueaQjfw3YZrzU+WNpHt1JtKyP0C/4Js2/i7wz+zpqY1pHt4ZvEkd5oiykMHheBklyhJVo2KJlSOSua8XievXyulRUVyykub5PY+v4NwscZRrTnrC6XzW/6Ht2lR/B1LuXVbhNT8HayeYtU8LRB7d29ZbYuoPPUqR9K+Zp55HEe7idPNf5H1E8njRqc1J+72OM8XTm51OS4m8QwapI3JvIbV4fM/wB5G6H8/rXkV6tOVT3ZcxtCmznpmJkwag1Ss7DiwEefWsmryCp7pDpXN0Xx/FXXoqZirykdVYgnJPXA6VxVGjshGyNFAygZH/16ysNxsSIuBz+BpaI005RgB8wnH6U76GK0ZNK48vBGKz6mybkiCOFlPmEYNaKN0KomrA5LHgDr1quVWJRLp7MHK4wfU0uRLU1g0noWdRk/d49qm5dT4TN88DBz3pqzORN3Ft9zSZx9aqyLjNXNrScGRQgHX1qowkprl1RrzNnt/jn9lu4/am/4I3/HnTtCt2n1vwVqWneKdPhRcu62qyeao9/KaWv13h9VqmQRoR2lJ/erWPl+JamKVKNFfDK/3n41N+0d8ZG0w+FH+JWtyaW8yytZNqEgiZ1UIrFN2CVUYBPQV9THiLGUKcacpXUNFdK/6/mfkC4ZymE5SjSUW97Lcz/+EkGqyNJq15lgchnPJOa4a2dSx9Vuq72OtZbGlFeyVrH65fsmfAD4lfGv4F+Cf2hfhJ4C8YfD2/8ADcFrb+F/FPjVIo7XWZ9uZYowhEk1u5HBKEAHrXfhq1fETj9TXvLv1PucuqQxVKMZXjZKx+nHwR+Ffg/4u6Vpur/HbQ7bQPFCKE1W3gkE1rcOOrxOACVyv3WAYZ6cV9ZWr5lRh8F3b7j3HXr4WnZrmPqP4c/Ar9nnwhafZvCukxpIrAymINuZsccAcjnNfNYnMs9taWi+R4tfN86jK0Eop+SO/wBK0u10fSb4WekywKIwscs8m/ePxOce3FeFVr1K9eHNNP0VjyqtepiK9Nzmn1aSsSWN5aRoEkuQJIyN+SQPpjNa1Kc27paMwnGq5XS0ZqWupW7Moy+8tjHOD7d+K8+VOSZk6M1d9DjvjzpFrr3ht7B4NSnlKnyo7FtozkZySMAD1NetktaVCrzXil56s6MJJ01dWPx9/b++H8vhb4oxa3rlkLmC4SXT9QdVASW1lLK+eOSCR0PFfZZhiIxcKkNrdj6rAv2mH2ep8M/B03Pwm+IWt+BL3UpP+JdqTQxMD9xNwKEHGSCOfYmvOhiZudi5U1TdrHvXxF/aKm+BngZdHGqtLd64ZEhg84yllk5JIboDk4HboOOK9O/PC8jllSVrO5+an7TXgDxZrni7V9Y1rUZLgag4ubCV87CDkiPpjOK8LG4GvWUo30ex81mOHrVXpuj59tltNP1B4Nf02eVEVkaCKcROGxwclW6HnGOfavlakKdCpatFu3RO342f5HmqlO2js/NX/VHpH7Mf7Onif41eL4LybQrhPC1jcq2t6o0ZEe0fMIFc9ZHxtwOQCW6A1w1szWW4KdW2m3nfoj1cBl8sxxUacVpfV9D7uSOKJFghjWNEQKiIOFAGAB7ACvympUdapKcnq3c/UaUVCKjHZDJdxGPwxXO3qKd7hgouf61UdjaMfc1IZJgAcnkdKGzC9mMKPcMAOlQjeMb6li3tDCw2rj8K0T5YktK43UYZSAUGRUKSuROnfVEtkNtuQx5Ap3cmVzWjYpWGRqZI/vda6Y/DY56Vue5sXwypHtXNO6Z1VHdGZJksAfwpwRmoWRFdzKqbPwOatvQyb5TKndmfgfSpSuNJN3HRvsBbFbLRGNRWlckifepCk4o5luXTk3oxkjup4PH0oTTInTu9ByO7jGTj0xQ3dWZCjFG94G8da74G1uHWtDumiuovlt5c8QA9WA6A4711YSu6VSyObFr2lJxP0x/4JvftzX/j++uvCN2C9jpFtDCbiVsmeQ/eJz1r7nLMWqidtkfGY6hKlNPqfb2jf8I0NRTVXhQRSEPGP4Ax7n1r6fDzUItPqcLtLbc96+GusWOreHt+n6tJfLDIUaeRAo3YGVUDoBXLXjyz2sck4u7uYPxP+KVroKbNI1QJPay5mQ8BsdverpUPa7lUoxSd0R6J8dfDfi7wzJeW12sNzGMPG3UH1xWNXBVE+V7BCk1K7NTw/wDFmxn08LqsZSRRjP8Ae9/5VlKHLGyNZYZ814nI/GDWIrrRJ5rCQyFW3xqoznvggdax9jJGkrLSW52HwmfU7rwhBq+qaetq9zGpjiK4dV960pUknc5qk7QsdADls5rdyPOlK8ixEvOSOtTzX0Oilojhvjl4Yu9a8Mztp9goYIdsi9VOOvH4VnGPv2sdKm0nqfnn8TP2g4rvUdV8AeIbgWer6O/k3EMnHmKSdsgPcEfqKtp7MqE1ubn7H37Sel/D7x/b+D47iNjOFx+9y0rN7fiKbkpJRR2VXGnC01bRan0X+0H4g8R6f8ONQvNXu/s39pzSfZw/G2PZwfzP86z9m4nn1ZRk0uh+W/7Rn7SHhn9mnwNrviK4g+3yWls9xfXCo0hjTdt3MByBuZAPUmtIylJNRWy1Mq1WNFJX3Pyl8fftvftweP5tY+OPhv4t29to9hdIZLWw1W0ElqkrARj7PI3nMBkAkKQDnkVtDLsXOg8TBqUY72auvVb/AIHBSzGH16NCTkpu9vddnb+9bl/E+i/2J/8AgrR8QPHvg67+HX7VvgO28WeFxKLe5vUiTzMlT1VuQec5UjmvJxmaUsPJU665oy/A+ohTrY7llTk4um7+7a0tGrPTbrpbVLW10+b+POj/AAT0jXpPEHwJ8Zve6PeksNJvkZLiyJ/hyfvKO1fK5nhsDCftcLO8e3VHt4PEYiScKq1PMVBaIELnjqK4pO1Sx7NZc0mMtEnZ8Enk1TfunP8AAzc0cHIyefWuealY3jUNSaQqcnj61mou4tZMt2sm/tUTi0dMNFYnO4NjHBrImUSaNyAGxmtY7FwblGxNGrMdwOPTHas5uxtCmk9T6n/Yf/4KC6f+x3CniG1+HMWsa3FcKlpp/kiGzVBgmeTad0szHozcJ1APSvs8t4jw+HwSpVIt9Glp8zxsyy2tjJctKSWqd2r6X1W63Wz6PWz2PRYf2+f2iv2rfjDc+MPir4zmDalEIbHQ9ODJa2EOdwjjUdeQCzk5P5CtKXENacpU6XuwkrPz1v8AojOplWGw1PRXaPDf+Cmv7RHx1/YI/bkt/i38PviX400bQvH/AMMNPuby18IeIH04X7xDyJEd8NhVkjc/L8wL5BGa9vhfE5Vl2bOpj6LrU5K/LdKzto9n/XU/O+I8vxmPotYWpyVF18j5L/an/wCCqPxH/bB+GekfANvh54a8IeEdN1UXlzDotqz32qXZODd3t25M13MQTl3bJzX0+aZ1hatKdLBwlTjN63ley7JWskeXleRzy+ccRiZ89RK17WPvT/ggl8ZvFnwC+NeheA7bXpda0Pxtpch1bRwCxt0jA2zNnjkE89sGvmsLVpxlyNn0NZTqQU1c/VS48W/C3Vr258R+F/FMM1ispD20tzHtBz93cCRkfUGuyUqMp2TuXT51T95nSfDeTSvFUqT+FPCd/foZPklsbfzFjb2lA2r/AMCI+tONSMHbYuU24e8e+/DGD4i2oeHxRpC2tkEAhNzqnn3LH3VV2qP+BsfYVhWfNK6POunJnZgnbg+tckr81yW9Bk2cEg9KE9TemnymbrV7JaabLJDaSTSbSFSIHP1rtoxUnuKpK2qPkb9rLxAdPQ6Rq9pdfZb+2kjlmnf5FkJOAMdM9M13qMqa5uhtSjHEx5NdVZ9P60Pj/wCI2qpo3xe0XxNZQGKS5so7YTDOSQwBUEetcqqU4zUup60MLFUVGP8AVj6osNU+EN14Pk0nx5rutx30triOTQdbkhlhBA7oVG7npXTVjKrT0RxVabcbRR8Z/G79jOy1TWtW8Q/D39onXr13jLpa6yfMc98FjzkY9ea86eApVE3ezKpVKtKGq0PhH9q/9kbx1498Iarp82uKupxWs0cYkY+VOc8bjj5TwOvTnn189YKNOpz32/E6aqeIw8lHqfmX4p8LeI9A8Qz+DvEtpJa32nO0LwXJ27CCeOeMHJIPQ5969enCM4pSdtNLngRoypXbVu5rfDv4KfED4jazFpOgaKBG74m1G7mSG0t1H3nkmchEUDkkmp+p4uvNLlsu/T79h1KtL4U9T9FPhhoHh7wL8JdG8L+FNd/tGwjgH2TUdjIt4qqsZmQMAQjsjugIztcV8TxhiI18fFX0ilFfI/UuFqKw2Ux0s5av1Yl/K0j4c89+a+QSij26tRvQy7oljjp6H1rKKtIIx0MyZwkxJHfpmup3auYTvzCOz+WeKxcuZlVIpoTRlP2gg92rqbfIZRtB6nUWEgEY57AE1xzvc3jK6NCJiRjPPas3oW3oPVyGxmpbuRdiqcPkimk2hpXdyQZYgH0p8tmbQQly4jXjrTvYqrflKsd0WJGO/NF7Ixin1JbacrNnbgetLmNYcqZYvZg8eCegqGyqj0MtsmQknjuKpPQ55WSuOhn2yhBzn3raKtuTFam74dPnXiRZyCRklsBfqfSunDR56ljdNH6j/wDBEvwcLiz8faHfy2GoaPq2jol7bJlkYEMrI+Rg5UkfjX7hlmB/s/hehUe7ndfceFxU1Ty6hOW/M7H5af8ABQf/AIN4fjD8OPjZrXjL9lCDw/4w8BazqTy6fHca9FZz6H5jMTDN5jqNqHgHnIA4rzcywmMq4luCaXkfIYqjD2jnOmry6NtfPdFL9kn/AIJkfszfs7eLLPxd+094psfiR4whuP8AQfAXhtXl0uyl/hlu5Tg3QBwfKTCHu56V7uSZJTdeH1m9m+ivZd91d+V0cdDDYly5eX8f1P1T/Zq8H+PvGVxZfEj4tahDNd6fZRx6JpPkqltYLJxHHHEAFQDHQAACv0ChgqeBpWS3Pq8Nh1CKuj6a+A3g6x8Ra9qeqxWsIh0u5lncLkbpBkJnBHcuce9eVnmMlhqcIX1nZfIWYVJRhFPeTsdN4LvW8WyzXGp3bQ/ZpWChCFAGSNzsMMzemTgVyYyLwkUoK/Ml5/dfRG9an9TheK5r9/06HqvhvUZ7Twrc2l5qRuPsgQmdwRlSAevevksRRhPGRnCNua+h8fjOWrmEHGHLzX0Iku4bvfPaMELSjIb/APXW7pyhZSN1RdNpT6Ict/LBcrJHIWUn5wjYVTnqR26YrN0YyjZqwSipQaSKvj2w1fxbph8G+Hpxm6RlvZJ2wscLggnodx7AfnTwMqOEn7esttrd0c9H91L2ktLbep8E/to/sl/Fbxf4Q1p9M8OarqOm6WxWxuWhBMsfSUIM5I3DepAP5HFfUYjHYXGYdQjP3rbLX7z18NmVOnJQufkD8ct/g74m23iDVLfy7m4t2s9SWRSD9otzgEgjI3JtP4V41KcqTXNue5WmpRUonKRnUPi5eT6xqTh7okyW6sSQgjUYAz046V7GHrqe7OKblUuZnxJ0+38T+HhplrKGaytGk8rHzqWbC4PoCrcf7XtXXOpTVJrqY/V5RSk9jwrxl8DdO8T3E00qmO+itmkDRL/rVAXDY79efqK+XxuBp46eukjzquXxxF57M9a/Y2+F9h8O/A93rV7p8rarqEuwXssx2iAEHy0j6Lk4JPU8V+X8W0auGqQoN3W57vDeXU8IpVHrJ6XPX0YEfMc+lfFTlpY+pbsJMCcDIrKKM95CfwcgjiqlK2hve0SmYS0oXd36k1N9DO2ty9axKnUAHtxTUW9RqRYbCkD8sUSbYPcbNHlASozipiaRtYjiQKj5PatU+xnKKbM7Typ1Nhu71vFysc0E4zsbF7yhGccCsKj1Om+hmyk7chaSlZCumjOmaSR2X26U02c/LdkbxgBSacdyrqJFcByhIU+xq+ZN2FKKmhukqxG16mXMiYyUXqWJypfBNEXyib94jQtGePwzW6lFoiUHJ3HyvlCen4UOKfUynBpHo37LH7RcvwF8Ufa/Iee28zeLSI4M0p4Ga9DLswnh5ctjzcTl8aurP18/Y4+MDfHzwLa6fqsUdtqE6hhbrcBjHnoDg1+k5VfE0eaT1Pj8c44Orax9VeNvjB8GP2OPg3AvxI+IGn6UwiPlLPOGmnmbJOyMZZzk8AA54pVqsXW12PKrVnzJPc+LPh1+2v43/bu+Nmv/AAG/Yt+G0D3Hh11/4Sfxj8Q9QNna6cW5CrZRZuJ5cHOw+WADlmHStqGbUZv3VeK/M5Pr8liVRglffXt/XY8xl/4KZeAP2bP22db/AGN/2gfGmk3Op6NNbxJ4w0Gylt9NuZZEVmgkikeQxMjErv3spx2r2MTyRhFzVuZXS8jtwGMp5hOSg7pO11+J9k+DPjBoHxBkml0XVY5FZsW6RSB8jtjB47V5nLTc2z26vLBK50smi/ELWG8u18N6neJKBmS3gxkfViBn3rKcUjirYik5XbPfPC1vNH4esrOexngaGBUZLjBYEDvtJFYxfKjjxDU9YsvNasGLBSaTscsKepJCpDD61Kepvay0K2safBqGny2FxcFA6H589Kp3vdFJtvRH5H/8Fffh7pvw++I1r8WPCl1+8jP2bWVClN8Z6MfXB5FdNSjUlBTSFFOL8jzr9j+yEPjm3+KWheF9X8SvahWhgs7cykEdRjI5FTCmo+9Y1rTc4KLPXP2tf2s/jh8cdXHw+8PfB7XLKaCArb21/AIDJtXPCscnpXNVVZ35VoNUVGmpSPxb/wCClPxO/aT0PSta8G+M/D+p6NpuvX0EV1LgbJ7aL94IZCDkZl2tjvsHNLDVcRSpTh1l+R5mLhRrYum39m9vU+HHjJIwAR15ojFpanVGLs29D6c/Z28OP4f+EtlJNDsk1G4lvHyOdpwifomf+BV8TnOKVTG8q2irH1+QYeSwjqS+07/LY6i9cRKxAydvWvKi+edj3vZqKuR2jbYgT6VvNNzY5fxWWAh3DC9T1rWMUkKdpM0dOBjO8ilJq1iuRKNy40wdsbgPqayVkzKMrMu2TYAGecVjVZ2JJK7Lm4H5gOtc63BO6HRPtfaacpXWhKbiy7BHuHy/lURabszfnsi3bAh1LH8KrToKNRdD1n9nnxXLovimC0aDVJbaeVBNHpS7mlwQQr+iZAPUDiu/BShGet/kcuK9o4Ple59Y/t0/8E8vH3/BT79hez1j4OaIJPiN8MJ5rnR9BaWP7RqGmTqPtFmrfd81WCyIp4JyP4q+uovmipx3R8HmNJwxKlfc/Ij4Z/8ABKf9tL4k+NG8O+FvgR4ntoYpwuo6prWkPp1tYhW+YzT3G2KMDByS3GPpXowVWvG669TzK8Jxlyt3fbqfqv8AsR/8EytO1j4kR6dpXxmtJbfRNIhsde1Hwfdzb7kMo3wRzFQqJnI3IdzdRgGrnl8K/wC8hUV46OPV+e1vx6+tvQw2JcKCi4623P1I+H37K/wr+D/g+x8HeAPBum21taRKwMtkZXhbHLZbO5snknn1r1KNKlCKsrGTbi7t3Po7wdpS6F4QstOXYGW2UyGOMIGYjJOB05PSuCSUq0n5nJOVtEW0Zy+NvGaqSijNRtqSklRx1rJbsLMikdscjrSsrnQvdgVb+a4GjXFzbo0bLGxBK5PHoK6Icikrigudnwv+3FqXijw/eWUt3pGoXJuoJHmt5W81DH6lQMoR1BHTFejUqJq0NT0aEYxWmrPk34p+ILe18N2ms2d8ZJdOm8+0lYDJ56H3FeVP3WmdCrNvQx/An7RWjeKPF8OizXT3cjQYnZyR5LZySo6fjXXSx0ZaGkaEnSu9D0XxNI6wP4itZmdQgW6jQ8SwkY38dxW75ZNTRzOzXJI8c+Kml2ckk9y0gmBXbMGUESRPnax9xnFc9Rwd2jtpKPKkfEP7V/7JXg7xvrV7dXumGa4SNJbS7t3CTLGeCA3OcHswI57V5OKnNuy2Kq4eGJ33PAvhJ+wNp/i34p2Wl614n1D+yUuwbqzm08JJKgblN6uRyBjP6U8OlKOqPPjk/ta65paemp9o/FjQbPw3r0ekaVZRwWMFpHFZW8Y2pHGihQoHbAFfL8QUrVE4o/RcIlSoqMVokef6jIHbHIHvXyctzdtszZhjJzkd6TkiryM26iBkznvWiqaWHa4m4BCCeaizuQmJpLD7T1/i612aOkiLNysdFpznGMZ49K5KhtTi7GlEcKMfjWL1Ld72FiYBjnn6VXs76j5R/mK7BWz+VLVFqDZOrbDv29e1OzaKTsMlIlODz71i207BdtkJjVMHbz6+tWk2ElZCAkMcA+1aciRktJXCWdmTB4IFYvcubTKsrqOcdTVwV2Yy10CGF5JlVAS7HgVq3eVkKN2z1f4BfA+++Kfiq10+x1HR2lLASQXmqRxvnI42kgmvuOGuHpZliY6rzOmnCE7an66f8EzfhzY/AnxJqPw5bUba5mu9NW4uBAiYjIIG3Kjnr35r9w4gwFPD8OUI000oOx5XGdCM8lpVIprllY4f9s3/AIJy+DPGHi7WvFa3d7anUbsvItlqMkG6Nwcn5CB1wPx68YoyuWX5lhYwrx95K1/Q+fValmOCpylG7Wn3HjfwP/Y08A/B7xFcJpMciz6gZIZ5p2LtKyxtKwdsncFMYPoCv0r6iGDwOEoxlCCutu9/L5X+RvhoNRbgtFv6X/zse4eKvHGhfD9NQspbgGSwvrcJhQPkWHA246jdk+2TURTr8s3s0/zO2im2rLQ9q/ZMu5bX9lbVfiJqMAD6tNN5TZOZEBKKT+Oa+Mzuf1ziKlh4bRsebj6kaub0qUX8Ope+HmgDSNFttfv4Le2a6k+W1YHMhJ5dwOWOM9fWu/H1vbV5UoXduv6K+x3Yit9YqypRba/rY9rR7Sw8JSaxqNrHE00SmQLwG7AV8NapLGqlCTdnofEVISnjVTptuzOTj8WLfo32LZEAQCD2X0Fe88F7N+/qez9RlGS59TO8QeNVtpZGnmDWvlkYi4bpkn+VaQwyjBWVpA8PTjBJrX1L2gfE9G0rztLElzcTWzvFEU4wo6kgZ68fjXBXyxVJpydlfU86vQ9o+yR8ifHNvj3481HW/iP4v8XXY0jS32afZ2UrQpGwz8oGQM8dT0r6bC4TB4ZqlSWr+82p0qcNKcfVn5a/t+aQPjL8P9Y+MGliy/trR9SEuriBlLTwg7fOKp0IzgnuK8zMf39WUo9D1o1lTi1I8K+A98lpbRXUq74vMGXQbuvX8MVxxrclmgjeZw95qd/4c+I+t+G9aKyLbaxmJ8DD28udo64xz+de1GvTqLfodKilLVl46LZnWX8kq5tLopkDny5BnB/SuaE6UqrUXqtzT3eWyRu3PjPwv8O/E1l8N9ZlkiifTI5Vu4gSkM7E4jcAHHy7T9DXy+f8NUs4brc9mkdWCrNVfZpbnXOsUE/lwX0NzGwBjnt3yrD19vpX4zmeBqYDFOlJ3se+6dlqPYq4GK89Re4uVDJX2KQOmOtHI2Q5JMqQsWlBYj2q+SxSd1oaMWCBipbaGklqx0rAYBY8VNmwdmwkcGPPbH50+VoV2mRZDI3PaqgmmN6amZZBYtSLH1rf3rHNGalUNi6lzx3xWU1c2lFrUqTbVT69ay5WKNjOuwIiX6ematRZEnGBntdM7bRWzgkjmd5O5KjgpjHX1rPkdzeGqsNiJiY4HFXZJEVIq4zezyktmo6EKHM9CYYA9PqaqMWWm07CTHMRI/nWiTJqOysULRjBfLcZIKtnPpWkIxjJNmK5pxPpP9kH9sDxt8KfHum6TpXiFtP06SQfbJkjDSSDPTJ6fnX0mU53Vw2I5L+6eRjMpo1Yucldn63fAK3+Cfx/1qx8Y6vY2Os3kZjZ764IlkXBBxuOSv0Br7GNWGJTlHc+OzCCg7NWPwj/AOCwfiX9pP8A4JVf8Fevi5efBPxtqfh+18d6r/wlOj31jK0Zltr4F3CsDztkM0Z/3a2ybMXllaS5FJPRpq6PjsyyPD5z7lSTTV9U2nr6Hx34Y/aK+IvxK+Laap4gt7vxNrfibUkinWRy0s7yOBwepb0rozbN6mYYr2s1Z7WXY9rJsBhcgwaw9JaI/b/9ir4Cftoa3f6d8Rv2drpbKx0WxhtNY/tu+aSy1F0UBzgAkSZ43L6Csabk1zp6npVKrrR11Z+qX7PPi34w+K9Ej07xjoV3p17boq3Esbo9uzd9hcbsfVaVWvGV4uNmck04yseqw/8ACR6SDLeSpcr3OQCPyUCuPnUupslzos2PiS3vGMckTIc45WtOS5jJSg7MstcRH5kJ/KlyFXuRpdm6VlktWVc4+fvV8tluNWTuj5Z/4KIfAPVvj74YvvA2k+A7aVLrTpB9umIHzAZGPevUw1SEaHK3c0jTdk5PRn5J/A74qeMP2c/EN94Cup7iy1DSbqS3ukMhB3KxAIwehGMVxQqKL5ex2OnTlG9juk+OOqa58QLXWNV1WYvMpVbl3JZW65BJ6+9dEZ0+phKStqtDO/a3+Dnw++NXgS+0rULe1u5L2wJuYbiEFpOp+91yOoNarkpx5zn9lTbtNan5Gal+xhqPh7xfrMF1Z38ukaZdIyyIgyIC3zF/YAgZFfK5hjpx5nTjsdWFwvtai9s7RPStlvbW6WlrGqRRIEijQcKqjAA9sCviZ2nJyl1PuocsIqMFZIo3WCD8tc0ny6o7FHmVmR2y4VQfWvRfxswn/FZeQcjjtUO5inaRctldY8gdaxlJHZzKS1IiszTAN2ppqxi48rujXtXMcYOKzcG3cv2mli/aHeMVhJJGlMlMYLZHpUlzehctiUXdjp2q0kRFczsWY9zEc49TmiUopaGiUVoevfssaf4N1nxX5Xie2guo0cCS0fxIdNG3I5dsHzE9QOa3wTjUqchy4mpGMGj9rv8AgmB4Y/s4tLYHTrWztrLda2eikyWrxNgB/NPLt6mvvsFho08I5S3v20sfHZtO1o23PKP21f8Agn34i8b/ALVd7dfCrwHpGnjxXOt3f67/AGULqaPu7xiQlEfcTyF4616FONarR5Yzso7o82MsLGPtZRXO9L9bH0Z+zd+yn4d/Zq8MR6HZDzRbIZr+8kyzzznux6sxJya3jL2Xw63MoytGzO8nuZpExbgtcXUqL5YGOWbFaKp7w1LRM9J3XUF95kxVbVbZY0G7ndnkkY9Md+3Suf3eW/Uys3JtFlVUAMvNY1Ndh8tlqDkk5CmojcIpJEGoahHYwGeVGbb0VFySa2hSU5aMipJxiVfD+s/2xBNHdqAYuX29MelOvBQVosdGNVwV9z5V/bY8ReBfiyup+Btf0i5u5orSQWsVocSKADhh8p7jPH5104ak0ve2OqVGtBp9D80PGEeq6HfXfg6+acwJGwtmmUbyuONw65FZ16atJI6qUuZXe5438DbXUdU8V6i1lfsdRtr13iduC5B+6fY15mEi1UbkejVm3FLufWfhjx7/AG94fjhu4kh8g+XeRMuChbhlPsTyK9j28eSxyRoSctTzTxBqotNRuPDmpTAm3maEsy/eiflT74NcbrqKsdsaLTPONe0eK/migu41Z42ktpj6gjIrgc3OdrHbGk+S9yn4I+G0Hh+Z9XulTfaxPJK7r/AuT/hW9Runbk26nRRp8vvGN8Qg/izw1a+IUJL5ODu7dq8DN6bqxuj2sPVVrM8p1RiHIcFSM5Br42cXfU7+WyujMupAo3HoO/rWagmRzNuxQlkDtyc+lNQS1No2GvGCmM1V9TCr7uw3SGAnPHOec10ST5LWFCa5jo7BQGBJ7VxyjY6YvU1IV4wO3Ws7MvUeI1yOfoa0Tdhc1hsQIm54Prik4iTk2Wzs2bS3albQttxZVEx8wjHWj2a3HGzFaVME559TS5dCZtpkDXcYYAHiq5LoiLTI2mZ8EED0qJUwk0V3ZjLs4xVpKESFrqafhmz07U9bis9TuHjhJy/lXEcb/gZCF/Wu7LKFCrXXtr8vlqzObT91bn3/AP8ABPP9n/RvEc0vj3wp4Xii060T/StZ1S2tnuEYd42jGPx5r+huFssweX041YwfvbX3Z62GpYbD0+acfee3mfZf7FWq2ev/ABt8YS2108g0/RxC0juCzkn7xwBgnFfVcZSlDKcOrbyPI4xk/wCzaMYr7Z71C2ifFHwYl/qjr9p03dFeR9SWHQnnv1/GviputlGN5YfDOzR8RiVUyzGSpQ+GVmj50+Ifibwh8MIb6C7FsGNrdSWEBUfMpCiR5D/fLyk++7619xSnPF8rbfS/y2X9fod9CCSSjonq/m9f+D5nxX8VPjZrnxH8c2+jeGZVl1DUblYrW2CA7neQqigHrx+p9q9GNRUqlqTXuK+traa9dP8APY9GFVYeOi27n6Q+K/EGlfA34NeFv2fNIt0u9Wh0aMvbMuVZkUFy3Hdtx/Cvi8nwNTH4+rmE3aF3qeHlWGqYzHzxU9I3sbPwttdS1Dxelpqls0tzLCslzJvAVM87UUnIUDGeO4680s2r06WCcoOyvp/wfM9rNHRw2XOpGVv66nefHK+1EaPYeEPD1q9xfX048q3h+9sXqx9ACRk8da+byL2NPESxNd2jFb+Z8nklShGtOvWdkuvmQeGPg3rsNolz4h1uNJiAWhgTKjrkEn610YnP6NSdqNN27s6cTnuHU+WlBtd2eefGfSJdJ1z7EsuSf4ANqOPx712YTFKtSTehNPEe2ipI88+EnjnUNT1KPQrZhFCfNtIpC+WiIkb5iD2xg/UivTl7OVJt9DqqUrRbZgfEDwH4v+N96nwV+F81tLcyyyebd3mXgsYhkGeQcEkk8DqSa0qYqjgqDrT6oxnOjRpOUtEz5c/aC/4ILftDfDPQ9W8XfDb416P45l1HSp4tT8K3GniwnuVZDuW3+dldh2VsE465rxKeb4WdOVotfijipZhhfhkmflr8PdD1jwpJceFNf0y7s7/TbqWzv7G5RoZYXjYqyurYKkY6V5sq99EevTk2uZGD8btDuotWj8R2dixH2UWty5bJKggxyn15yufeuvLsTFNqWltEdMIzlJF34dahZNc3PijV49ltbWayXC5++6jp/IV1VcUlJ8p2QlGC16HjV94r1rxFFe+PJ72SK8n16SczdPLBOFH0CgDHtXblkvbU5JmOFrNS55dz6B8Ea3da74Qs9YubyCZjHtkeJNuT74HNfjnGWWzo491ktGfRQxKqxujROpxxsSW/WvjYrTU6FJcpFNq6sNpP0NVZI56jW5GmpJG+4dD3zQ72KpVE2Tr4gVCDn61DSNJyVtBJdfUvnI6cc0WRjGrZh/b4MZXjNDtcc6lncauvqq4BHvTLc1KJVTV4Uut7HgmtFJtWTOOEmpltvEayYBI46c9KmSR3OacdSGfXosgM/P1pJXehy+01sipNq6ODkjGKcrDqaorC8h3fKe/enq0KmnbUet8nWld3BN8w+O9GMGnIueqD7SgfPHPelHYzpS1B7xW5J6e1XZFu1xG1FdhQHOR1pt21Iq8tiksyvLwevYU1PQxpt3NLTpRHOrNj7wyNxAP4ilBp1C60rQsj9Z/+CJGq3PiK7FlY31m0ESrvtrIthPdiepr9GybEUvY2PzvOaLk/mdt/wW8/4JNS/wDBRnSdN8VeD/G9h4S+I3gNXbQNf1CHMF7pso/f2cpweAcujYOCWH8Rx1YylTlTc4q78zyaEeXERnFtNPofDX7DP/BH3Sfh58VofCvhLR/Dt3qyT+X4j8XR3k+pXcEB4kW2AiSC1ZhkDAZ8H73rhhKOIxE+aW39bHqYyGGp2cd33P3I+G/wd8M/CfwTo3gTwXpMVjZWsSxW9kkW4KB1Zs/xHkknua9Op7OPNGC0R5dFSi9WdpLrM2kOLWz095iMDCLisJJNXbNp2TbZbtdcubtzBc6LOmMZ4BrL2d0ncUXfVFXVta/st8/2RIR1ZhFnsalN81h1Yrl5rF/SdZh1O085YXTB6NGRV31M48ttBdVvDb2nnRoTh1z9M1tSV3qWos4T49eHNY8c+F10/R9dfT41HmPcR8McckCujCpQqakzp1JwtE/E3/gp/wDCO3+HXxhX4peDryS606+mEGrSeXteOcfddgCevTOearMYUKb5qbfmddJcsLPc8k0u9m8Q+FnvbG8b7VZkTRbc5OOo/KuClWg2rvQy5ZM6r/hcN7q/hFYbeZVleLa7ydQB1FOpX9ppc0pRk5angPxbvrS10LUZJC0U92whUrwHB6g+tePj6qo0XbqephqEatdJnhl0EtzsIxjjGK+MlGUndH1SstCnJcKxworN0W0wnOUVdEcRICnNd7+NhU/isvISFBHSok7GT3LltN8v1rmkjWMk9xGZllDbcHtWlO1tS525S1FM2MA/WiUlcwj8RftJGUda55anW5KMVYuwkuQCfes3YS95l2JRkYNPdlPQ3fDdp4WvLK7stXnvU1GXy10kxyxJbbt3z+ez8qMdCvfrWtKhTqaSlZkONW91sfUH7I/7Ni3HiKw8WeKPD/ggWsVwrF7jxi0kTgAgF4Y2O9v9npz7V9Bl+DjRlzXizx8ZVk9Eft3+xbpnimD4dJea7qel3Vt5McemtpNj5EUcQ/gUHnAGMZr62Muagle9z5XFTjKWt7ruexStDF/pUwXKKcORyB3pqPKjz2+aVjhfHfiPT4VXS7e5DLOfOm2+44H6D861pxbndo2Ssl2MbwDdpr/jeztxAzi2SW7nkOfkP3UXoR/Fkcg/LW072d2JRfLqeh+I9A/4SWwTT21O4tVW4ilaS1fa5COG259Gxg+oJFYNO1jF1LKyNHK7Aka4AGAKhU1Bag5Sm9BrkgZyAPUUla5cY23M7xPeQnw/OYW2kgKZCMYNXFuMtDaKitzkPhjr0t9a3+m2ciyzyNsVGHQ4wSfb3onGUtWVOolayKuufsnfDHxXBdzeMTd3V3eW7RSzifaI1bsg6DHbvXVHGVVFRSukZe1q8176H55/to/8EqPiJ8JNVvPiv8GdQfxVoKZkvrKLJvLNMHLFFP7xR6jkY6VdWrSqQu1ys66deM9JaHwh8LGudA+Ll9C4aINdkh9mCue5r5+E3HEtM9u/tKSklofTOraEbvSZdas7opd+RmYbCsdyuOhIwAe4r1pRXs+cilNX5Tyf4uSx/wBkxeKLJZJDDGsczk4Yg/3vdTx+VefUfVHZTgndNHO2F8l/Ob9fn3xI5GchiOhB9az9o4q6OynBN8rQnxE8TNF4K1TTtMY+dPYySXLDqq44FX7S+7N50lGm7dDivAV5Nq/wnbeN7QxgkAcj8K5MRHmpvQ6MEpSjdnmniXVLMyNKSFZWxIhOCD64r47EUrzPR9tyqxgXWr2JcqRgg9CaxWGbdkzkeJ12Kb6paM2B0HfNH1axrCuwOpWrJjt9aiVGz0KqYjmjawyyvoYZiycjNVyNLUxpz965qW3iIRjG3jHcVhOmmdixCsWU8WvnCtxUezSRTrOwN4tboG6U+VGXtJtjP+ErkzkPyaVoXNYTcdbiN4smIz5p+hofJsFSrNrQi/4Se5dvlaq9xIVOc1qNfxLcYP7w+4NS3EKs5yREviKYvkHPtVXikYxc2yUa/IBtz17+lJcrLcrsmh1fcdxbJxyM1M2tilN9D6B/Ym+DvxB+Mfi61svBOk2zQNcqLnUL3QlnWIA8hZJcKDj+6Ca/TOC8nxVaUZ2Shve1395ph4OrPm6Lc/VLxFFp/wAFPhXH4A8OWayNHbf6W0Vuu6VyOflH8q/cssoQqVlJv4T3qMFUqe3k7JbGz/wTnXzNH8a+Lk8zHmpaRm4tvKcEAkgjAPVuvpXHxrOM6uHoLrqfKcUt1alGl0bbPT/h/pN5e+NNV0S8vpILLV7ZrVVR8YkwcMPQ8H8xXmZvKEMsp1Iq8oO/yPLzrkjl8KkVeUD4F/bY8XX3gX4g658P/FHiXbfWFuQ9tdOsbGLzAd8IPLlvlGB27cGvcwmPw88LCcPtdlf/AIYdBUp0VUjrzItf8EvP2bdb1z4mn9qL4seH3ttP0qJW8P6fcRbWlkUsFlKnsA2Qe5OawzODqUuWnpKatfy7HVUoueH5V1Psn4u6FaeK9I174oTADUrC3jfTRIQA5DH5OeueOOOeM1OXTq4SdHB01eMr833DoTnhalLDUo3i73Jf+Cdni74gfESTUtd+Ii2S3MCMyxQSCWRA8rKgkkAwWCKMgcDOO1eTxpSoYSlCnBWb+77jyeLf3eFhCMZK767dz6O8W6/oHhG3ufEstskt2kSxYXG8jkqmew5J/OvhMPTniZqleyPiqFNztBv3dzwbxR+0L4tu9Va7OplISDttIH2qi++OSa+lpYDCYena12enCnSbSjEpf8LJ0b4qaS+napfo08g2xSbcbGGec9jXNKdGnUTpvTy8j0VQ5UmjxLTbjxH8P/GesaRJbwPPb3wnikQ7d8Dcsw/IduwHFe5g5U6sXd2HXcqi3Po/4C2fh/4C/Cq9+JvjiGO01zxEWvp4JXG9Yx/q4xxwACD9Wrwsyq/2hilCHwR/PqeVVmq01G+iPm/4p/tdX2vfEVdY/t6LzlZmhjW52C1jG7B478d69OMMJRwyppqzX9XJVGLPgX/gqLZfDX4q+LR+1D8N/s0GsySx2fju0tV2reORtg1AAdGJHlv6nYe5r52tShTblB6HtYKnKnHkex8jXunp4kuxBGWkmP7ry2X5XU9QR09Kqkk3dbnoqEtOx5v428SaO3jd/hH4Xljkt9J3Nq1zCcq8+D+7z3Cjr7/SuyFKp9o2Uoe1stkeX2sU138NdXktoiXtrwSBV7jeQa9rKKVm0+pzShOVGUo9z1X9m2/lu/DU9lNpkscg5znIH5Gvm+NsFCeCbS95HrZZzzpNM7W5V0bp3r8Nc7Ox6iT5bFSRnPGPrzU88SPZu5GiyHkuQal1VYPhYN5ykhRmp503qV8SGIk5b5mqnViloTycuo7bJnAP41DncG0KIpWGAx470e06Bq3oMEbmUJk9elaxm7aClHl1JzBKqZAPPak5NbgmmQeQ7tyfrQ6lkLlW4r2vHf2qed3KVmIISOn596fNKwm7Mb5ZV+px6Gi8mg2FIdPu/hS5n1E/eGpvP3mPNae0sTbkBxL0Gc9yaaqLqNXYyVJFTkke9CqJsTi5DbVGJyWziru3oQ0oo1NOjuLm4itre3eRncARr1Y+laKLT91mM2rH7Lf8EcPB3ibwP8Ppdb1Pwvb6bEbQyRPDHtZzjOWPevv8kpyjR94+SzTklK19T9CPEPgnRPjj8M4re+maGS7sdn2hOvI5B9q9KzhLyPnZpQehz/wh+Afgb9mrwzJZaGql5XLzOBjzG9T6nn+ddtKd4csFZGEr1ZqU9+hsaD4yS+8VyT3w+WGBijHovsPWs69NpK2x0um2kmavhfxidc1qaO3tvkVsBvWsJ0pcmphWk4T5UdVHexOdrZU5xjFRCLirDumh809pGp85lwP7woauNRlIonXdInn+zWl9DuHVUYE1vChKKu0TUXs15lHxZrsWl2yRMoPmH7zcCle0jswlNyjzMwdZum1vwwdOtbP7QLklEXdgq2RgfSt6dua9xyThO1tDwL9oX/glh+zl8YPhzqdv8UvGWp6bfXkLD+1rW6EccDnJX92RhwD68/SsZznVuoxucl6ildPQ/Hz4l/Azxl+yh8XNR+E/i/VbfUUtm36ZrFg+bfUrQk7JkIz1AwR1BBFeXKE6U7M9CjarC55t4g1MaDrEhtFZ7SeTciqfunOf504qUtGXJK+h438f/GF3rHiy0sk+S2hQq2P43I5NeXm0lGml3PYy6yldbnE6pKk6LIT8xX5vqK+bjNt2PoVSsr9TPhUNxjvSrS5YtmUo8zsOQgxrXXo5suf8VluFyy9aiSRjU0ZYgbZ/9espxTWhVPUmRw7YI5pKFkXNSSHszq+FHUdcU4wjYiKRctJnZhk845qZwikbXWxp2b4xnr7VzSiaxi0i9DITwfzqEtbiuW4GhJUXETSLn5kR8Fh6ZqJ8zemoqlSSg9bH35/wTI/Yz1Dxhqdh8R9M8H6XptmZlKX/AIhvJ5+Qeih/LRWHbCsa+myzJ5xala19bs+cx2LhTW/MvI/bfwPosXgTwLp2j/uhKqxo/lgKpdiBx0/LrX2FODhaPY+YclWncx/jp4h1Hwz4Vi1SxQtGJik4H+0MA/nTUkqiv1MIxTqnka+KZ9cZxI+/a6KSueo7Z9OK6qkobXOuEbvVaHp3wM0yBrO98RopkkuWWBZ+cMiegI4GSemc0ndpXIrrkjY79CA+DIMgcLnms5SSOWMFucb8SPitB4eEmkaHeQi9Q4mkYbvK9gO5pRiqj97YjncpWgeX65+0J4lsphJYa9NK4OGhuMbTz7cVpCnTi7M7o4Rzje51WmfGBPG/g+4+0qhlBxP5bDCEdCfbjH41TjTjNpdPmW4NVY01Bu/XTT1/4Fzovgdpmm2Phe58cXKxxveSMBLngRISufxIJ/KsKtZS93ojKulTl7NHiH7VH7X93pNz/wAI94Q1GKHdKI1aSYIp5xuZj0FFHEwpyuEKbtqfJXjT/gpv4r+FXxNfTrTxRaXsqzBWFjdrJFKO4z0Ppiu6riY19+pUcNKo7rZHjn7Vkfwa+IPxY0/40/C7SodC1TWrT7R4j0e1GIJZQebiIdFJz8y9M815eJwtKFZTi9T28FCrGm4N6HH/ABX8Tap4h+COp+H9D8RvZ3YRGjkhB3ooP3hjrg9R6Gum9OeGfc7IUo06t7Hnngnxvd+JPCz6VrsiPcSRBbqNudzY5I968dVOh2wpylK7MLSrjVtDvJdKtJg1uJMxHPIFKVrHXLmTsi9KHvtH1SS4U77qykEf0C9ayi3J3N4xU9JGF8A7lv7Fk04qpEkZRgw4J5612KKdPUqjJRhY4b4neBtS/tGYf2eyAuTlUDD8D1r4zMajpTaS0NYQjVicLP4WmRgsrnjpnivKWKk9i1hIojbQYY+pxjoc0vb1GS6KQ5dEV8FW/EGolWqAqV3YI9F8hs9P60/aTkipUGtizFpm87T+BzWUp2Q4UWTLpAzhhWLrSZuqVmDaZEv3gDx60uebL5LCjTom4Cj8qPftcmw2fTU29BSUmXGBElqo4AGO5q7NomcbMdJZBhlgPbipUmtBxV0QLAsfIGDWlnJXJnFp2Q4QlmBH8qptQVjKzRseFfD2nazq0Vvq2vW2m2wYGS5ukZx/uqigl2PZR1r0MowUcfjI0pS5VfccoNrQ/WD/AIJffsxHRdPt/i34l0TXkt7aAf2Pc67cCES5Ucx2qHbEnoTlj3r+hspwdLLsJyRbbff9EehGdHB4R0qUm5S3XY9M/aE8Sva6hLKZre2mfO15Hznnge4r77JcBTnL2vL7zSV7a2XS59BRpP6rFdD2j9jPSLqH4JR3Woui3Gu6jNcSGNQAyqAo49OBXy3E8k84bW0EkfAcRVm8zbS0gkvvN29ubzwp4l0rVBEqNNrKtveXAKlgh+nHb1qZezxWDqQetodvmY+ypYnD1abbd1+hr/tOfBL4d+Ldd0/xvrfgXSr6+KeWl1d2quwYcrye1eFw3i5KMqLbstTyOHsTGFGdGf2XdHCuFt1S0itTGDLtdFTbGqgHr6JxX2cEnG99l/XzPoZTi1zI1PCWsWGpx3GkWBW5gCv9ql8vcHJB+Rc/dUflzXnV8M8K/aOTu3dXd7f10XQh0pX538jo/wBifwtp3h8eJrjTVXbNcxYZYwoP3+nr9a8DjTESr4qipfynh8Z121QhfozzT9qz9omH4X/EXxP4E8WX7WbTTR6hpkkowtzbm3jQhCTyVdGyB615mW06ccOqvr+Z8vQpylRUkrn5p/E3/gvP+yX8JPixP4E8faf4rlhjufLvNS07QWMEYzg8uVLgc8qD04zSnmlCMmmmVQqRhUtLQ+s/hH8a/BPjbwDo/wC0N8H/AB7aeIvA+uu32TULOTPkP3jkU4ZHHdWGQamjNYmLnDY9ZYmnUTUGdf4P8eeGfiH+0Z4O0PUpY2ivZ2jmII2ywpG0h3HqMbcY+tdsMQoUZRhvZjpSfsZN7o5b/goV+3Zo/wDwlcng7wlr1v5cW63jSUrtVcHc2eiqoBJY9OvavMoTWGg02r9dO/r/AF1R40KSTcpbH4tftF/8FatJh+JOp+E/hZJqWsadCxt21iJEVbxw3zNGD83l56E4JHsa4KmMlN2jsjqw2MwkpXcXpsan7K/xY8ZfGHw7411PxRZTw2T+HiiR3U2S7+ahQ4HHBAOK6MLSr1acpy2PXw+JVestCt8U/G6/CnwDc61plyE1S+BtNKBX/VOw+aXH+yMn64r1cso06k7z0SPUxElGnofP/wAEtPlsDLeXErNcXAkeSeQ8uTkkn1J/rXZOfMtDLK6M53T1RZ+Hdump+CfFWlSP9+0lJK9QQ2c124NuFSF3udlenGFKUEbv7K+oi01BrU6hdESDG1icfUiuXP6Cq0GjfJ5qneJ7NeQJ5hGeOvPFfzhjYexxMovuex8TKTxRg4PPHWuZR5h8mhGEG7cR19q0UEkZtXYpjGfu/Q1nKOpUYWG7Bndt47irUFYc4ocLcOen6UKKQlT0Jktk2kEDpzUTSTHGCiymtu5vcIOhrppWtqRNJuxrSaeNn3MHHNRVBU2V2sCp+79KiEU9zTSxG1iScbcetaOMUiIxs7iHTWHJUVLkrWG4pvUY9gQ33c0RloDimgNqqgll/wAah3bI5EiH7KQ+K2ilYUopjhAoPK1E4ohKxHcWylOB+NJLUuxXSAo3oK6VFJGFRo7T4N+AfFnj3xrZ6Z4UmEMvnrmduAgz1rswWHniK6SZ52Lqxp0/M/cr9i74ZeI/hL+zvPLr+tyXk7WOwSPKCMkY/Cv07AYb2NJRPhMRWlXrt2PqXw5qF34P+H2hSw94EEqZ4INdFozk7owhD2l7nnvxI+L19cavdWV9LHbR2zlXaZ9oUfnVKrTp6dBPCy5jqPgR4X1LxBoNx4k1HS3htbzC2L3QIeaPqZdvVVP8OeSOehFc03KU99CHVvLlR6Ja6Xpfha2ee00UuqjJ+zjcx/Dqac5SlHluZNK/NuJ4f8YeGPErtHppYOrcrLHtINZuE6W5FKcajsjkP2jPilZfC/wqXsNPa5v7w+Xbxp6kHkn2rvy3CyxdbXZHNjsXKjFKL1Z84XHxi+J1nD5lncvak/NmAEc+/rXv1o4en5kYOnOpaUpXO5+F37Sc/wAQ9Pk8C/EGdY75B/ol2y43+mfevlsU7V/d2PpqbpQjdHbfBL4gWGpeI59BvNQB/s+Jmdz06gA/rThecHYxrp1HeJ80/wDBRT9uXRNFvr/wrYanGNP02N43kWXHmSlTwPxrSFSFL3UcU/aXtHQ/Hq5/aIuPi14h1KzOsi9g026eSNhJ5ggaTG6IP35AJA4zXm4jkTsd2Ea5bPfqVr+9iMHm323aiGRs9sCs4vodip2ep4h8W4HOn6Vq8nD3Ms0jfi3H6V4mbwcqKfmejlUoqs0zkmmLxYOfZq+fUVF3Z9JKp0IUDp1PPUVnUXtNEccpNXaCBS8a5Pbit5VOSbKnf2raLkTMo4PPfFRKpzLUmV27k8LA9ajncS6bsyUzIhCkHNNTkzWSbQoviHwAMU7uxnya6l6xc5GTw3vWUpvY3i4xNa0dCAAcHPFYNvqVKpctIxzx+NWmkrijZbnZfCie3tPEkM6WFw955q/Y7u3mi/0Vs8sYpFbzeOiit8LOPtkurOXGTtC6P1t/4Jj/ALMnirxN4y0jxr4z17V/EMcRWd7nxDrO54hgEBLVMLHg8DK96+3y/CVaaU3O6XQ+axlXD+zb6+h+mmrXcUGo2OnLcBC8wKpj7wAPFej7T37PqeNSp+65FTxsLVtKVb2382E3kIkTZuGC4ByPT37VpPlULs5oK9Uoaz8IfDuqXaS6fK+nK0u+6is0ULcDHQ5Bx+GKlXep0fWXGOp0sNlaadbJZ2qBI41woHatNWjllOdSQ6L7JLKZ4tjOPlLjkj29qycVcmTex8VfFfxV4y8I/EbWFvNOnvreO+kJNr8zgbjwRnNdUP4aMKUrM5/TPiZovxU1Cfw9oglsNWtYzKun3bxrNcooy2xN25sDrgdK58RGU17srfce7h8QuS80VvAfxkXwp42fRr2ZRaajC8MyycYfB2n8xXNSqONT3mdU3zJOB23xD/aw07wd+zv4f0fT7xY/N0oSSKrfMzFiQv8An1rnr10pJozeFUq7kfmL+3B+3R4Y+Fl7JfeNrxLjWNRBk0zw4sg3bTkCSQZyFrnq1JVJtpWb18kaTdKm+TdnyX4R+NcvxS8bD4pfGHx/pWj2VvgotzdRW8UEQ6KiZyT+GTWkMS6dNczOn2bS5paWPZvg18ZtG+N/xQh1fwjcPLoOnxG0sLmQMPtIJ+ZwD/D6etdeFc8RLnvpt5lUqsLe6dL4sme31i/8Nw3TAwSshCv93J6H2IolJRbgdtKPtXcxrHw+gu2vEkaJ/KCsQPvD1rn9mraHpQTR02m/DaPXLlLu5v4Y7cKGkkHDY71lW54o2jDnOf0TV7HxP4n1KTTlxYRhrazHqigjP4nJqKDctDGjJzrtGB8DreOHWbizOcR3LL+prvgmk0yqN3JpifGnw+1lrM1xFp8hU87hKyj/AAr5HOKDc7xO+g+XQ8svUMjYOcj1NfN8qg9Tv5o2sUZ7IypgjHpVqa6CUVJ6FMpNZNkdO4ptKWpjUi4K5ZtnW4A2EdPTpS8gpTTdidYXjPK8YrKpFHRy2Jgp24PfpkVz9Q1IZbdmyR6c4reNkS5SegQxFSCR75qpWK5UPmiDDaeK59mLmaehEbUghsVtGV0NJyGywkrgrwenFKyuS7xZCtvlssMe1aJ2WhEnzMmtbKa6nW3trd5JHYLHGi7mcnsAKzk25JLccoWjc+jPgb8NvC/wB8R6V4j+MPh2LWPFl00c2i+Cmi80QAnCy3m3Ji5wdmC2AcgZFff5BgHlU4Vq0OactYxWphGT5W0m30S7n63fs0Q/FOb4Dr4s+L8enQ3+oxl7PSdOtkjgs4v4VQADt7V+u4FVKlaEZJp9Tpko/W4UYpqS1k/0PnT9qDUtM07UZLu506I3kinyru4kwoGegr9byqmqdOMj7im5ypxp9D7f/Z4024t/h34UsGhQFPDiSyDP8TjOfevyPOqqniq1RvedvuPyTiGcYVq7v9tL7jl/HkF1e6ysDHdJHOPs6bfuMDktjB9P1zXuYPkjhm+jWp14eXLTUo7W1PVNXTTPin8PZNE1V2WSBUPnICDn+8tfIYf2mU5gqkFo76HzkIvLcxVWG0r6Hlfxj+C/jTWNOu/D/gPxJNaALGGZFyzArgnk4LdOtfTYLNqPs1OqrN317Hv4HHUnFTlvqZ2g+Ebz4feFdQtNQsCTFbGOa9kHDIByTj1OcjvxWtSvDF1afvXZ3+1dStFqW/Rdz1z4M6dH8NfhfF4h1O2itn1K6gLrGMBY2IVc49jn8a+RzibzXNHTp68qf4bnxGcVHmeaOnF3UE7fqc5+1v8As9+Dv2gdBE+saNbXslshWEyJ8yn1Vuo+orPKqiox9jVW+pxYTmpU+SW58FfGP9gXR76zufDN1oc11A6MHjvH+1Q454Mcu4Ee2K9yrhMPjEqfJdW306HU3GppJHzj+xD+z18Uf2QPjj8QP2Y9NQP8OviFoF1rOhW3lsV0vWLWMyMsaYBUSRhsY4+XHbn5+ph/qWIcIX5JfgcUcM6Ff2kb8vU818Bftw3Hgn4xw+KNZ1gN/YUV+i4JQndDJGny84PNeVHF/V67s7pN2dreml3+Z6KqwlTcY9T4v/bm/a08S+IPCt4LO/8AKuPFMklrYeRlStgrYmcZGcO2IgRwQsormr1qtSblJ6s8fGcuHoqhHT/LseA/BP4V3Gr3STz2zmRyGx5eeD25ruwWB9prIxwcJvXufZ/wA0N9Dx4BtUiDanFtRSh+eXGUQn1JGMete/OChhnCO59RgaSpPmaPEf2j/GB8Z+P5NBhJ8vR7doHiY/dnZvnBHYjGK58DVnToOJ2Vr1KvKhnw/s/slooMQCiFunsDXVCMbpHqYWDpQ8yH4GWkl5p3iKc7cNbT/j1r0HONKUX5mE5Oo5FH4Ca7df8ACTb9P1BhEHw9vcJg9eTkDn6U8e1XpOxGX80a59JXd5ZXjhn0+MExjEiE88da/D+IqWDoYqUfZ6vqfS25Xe5Tmso2OVPH8q+PUlFhKbYxdP2dBwD1zScwSuElmAcED60kky3TXLcja1L8LVJWMVoySG0CrlutNo6VqSR2/BBGPas3FMzqRsQWcCm/Kn15rogko7GNNe+bFxb7UB9ulI6eW6K5RCwyMVHMkYNqLGG3Gdw6VLldDu2I8A28j9KhNg2ypJGQ1WQr3I5FwCSPyq7qxVTa5GqhznH40cxjFsSRcNgCle4P4hjjI6dKtRRVV2KsgLMdorW6juYKPc+g/wBhT4T6f408e2s2rvqEq+eoW1tt6I3P8TjgCveyWnCpNSPBzOo4Jn7aeD/Do8PfBu08PramGJxGptxLuOMjvX6FCUYpKSuvu/zPlXDmq3R7T4x0/wArwBaW6KSILVMBfYCppzXO7ijaMpD7v4PeDfGN9p3jK8so2cwRySwSxBo5TtB3Fe7fX8qzkouepn9YcYuJ0Oq+NtG0YixU72GF2pwBSjaTOKFGe6Lejava6ynm2wbg9xSqPSzLnRcCvc+F7eDXk1/T40icn/SEUACQev1qYylOHI2ZNLRo8Y/b++F/xH+JPwpEfwk8RJpetwMxt7l0Dc444717OVYhYecoy6nl42ip1IyfQ/Jb4j3v/Bf/AOBWty6j4ai8D+ONJt3LCw1DSvLkkQfw7lcc/jWeIlipTfLqjuozoUqd4Kx9DfAH9o/W/wBor9nNvjJ4v+Gs/gTxz4W1b+zvG3hZ5cizuQnmJJG38UUqfMp7cjqK48Q3TjeR14Wo2nd3Ob+AH7fkWoSeNprPWFaSPV/7PjRZMsFdAcj9PzrmwWJXNKT6HqUYU7pLdn5Ef8FS/wBvLx1+0B8bLz4E/CXX5Tpun3zR6rqFnId15dZxIoYchFOV4+8Qe2KyUqlSrd9zxsU71nCL0WnqWv2R/Bs/g3w//ZF9E0UZjywYdXHOW980Yujyr31qj2ssoKnB3O48U68968mmWxz5vyyEHotcifKmzaVSPPyo434824g0vQbRRjZGxIFeNmuIfsoxPUy2nZuTOFRcLgD8K+fm+ZnrNSepFIvGTUOTirIjlujQtdI/djB7VrJ3mdNaNqjRKmmOoxsHualpcoo07ssQaW7Hpik7WHKk09CddF3dV7daybd9BwV3YUaKAwOBn61Sk3obuknEtw6ZtA+X9aptGXsrE8doyDI/U0ly3BU3fQvW8L5C5znvU1Gka2ilqevfsxeCtC1nxna6pqmla9Pc28oNsmkTfZdwyCd07fKF45AOelerldGlN3ktTxcfNyTS2P2+/wCCWHgfw9pWnXetaJpOn2w+zAFodWN5cHOP9Y/TPHOO9fb0ORUrRR83mKmqCufWl+lo/ia08yyEkqo5WUsP3Yx1x79KFG8zzqU37Jq5X8Z21zf+GL+2tFBkMJKZOMEc5/St6llTOeCft16kPhjxbb6t4ITVZ5N0lvF5d1g4JYcE+2etTF3eh1SoWqpdCvrfxB0W0hXJBAI46kfhVRTvqZKDUjV8LavZ6vprXNspVQ+COeuBTlH3hVqbUbnyZ+3/APsC6j+0dr0/iDwf4x1vQ5buBRevpFzJF5hAxn5T1rSChOn7OTsebUUoTuldH53/ABN/4IQfEH4BeJ7D9pD4afG/xRbeKvDV/HqelahdXk0hEkbBtrbv4WxtI6EE06eEp03ZNtnVSxFaS5XHQ9H/AGs/iXe+EYpfGCMthPeaHFqtuoUjy3kh3kAez7l/CvHzSlUo4iVKpFxa0aejX3nu4KdqaUjyT4m/tXaJpej6S/ijWI7iDRNBheW3WTlvLgDysQORjmuChJU6kHbmSto7/pY7sQ1TpSml0Pxe+Iur/E79tj46eIvifqM7s9/fPIHkDMltDnEUK+ypgAe3vXs0KTnK0T5alKdesuZ6s9O+Ev7Ba3+p27+InnuyCGIMTCP8TjFROjV9tyt2+X6nfLDpz1dz7i+A3g2x+FcNtbW0aI6YCIhyqgdzXVFfV48qPaw2H/d2R0fipLq1+Jeo6ncxEw6oiTQsV4GQARz715c+b2zbPbw9PlopvcstGkUYeSVVUsPLcfypymki7tMp/EDxhPoXhB9H0d2W91H9yjKeVQj5m/LiuWrea1NK03Cjpuyh8MNOXTEhtk+6AB/+uuijyxVwwVLk1kVfhkRZeONQWMDC3rZU/WutSd2UrKszQ+LtnrKau8i6iskEi/LBcrlGyOlfP5mpPVHbTV9zxzWLaS3u3SSy8jn7g6fhXx1eElNt6HW4uJQk25Cg/jWSLjoQXMQljwVwQODQ52NJxU42McTz2M/yDKk81rBnn8jpzubWm3kV7EAxAOOOaicm3Y7VUi4k0qMhwOlY2Kg0MEy45I59aOZinoKuGOFX6HtSc7kR1FEfOfXpxUqxTjYGTnp1q00jWDWxDMAuPenza6EVb9iONA8gXcOau7UTOKRr+H9M13UdYtLHwvBdPqE0wW1Wyz5pcnjbjnP0pUaWIxNdQoL3+lhVZSjBs/Rf9gX9mi6+GPifSND+JYsbnxTNL9oj8OW9rC9xBkbjLfzgblx1EZYknsK/ofhbJK+CyiDxdrq7+Fc2veW78k3ZdOpvl2GlSw06z0j36/I+9/iTrUf9lf2RcKjrFEFPkttHuBjtX1uVYf8Ae866jyui1iPaw699T4+/aM0/wR4g1KK21fUrgzmZVg0+FSQ5LDHP19K/R8JUqYej7y0sfY0Y1HJSex9//CJBZwQaa8KobTw7axomeV/d9K/Fc1aneS6zf5n49n1pU7p71JP8TzrxhHcXHiSa1RVWV5HBkc9ADkBeOucD8a+owzisIn0sd9JXoxtsdd4J8T29tpk4a6ZGkt1ZwTuVZAcMV455/WvExmElOonbr+HmcOJw0pTi2jqbfVJG1sNd3X7uYoyDbkNx146HNebKivq/urVXOSUILDNRWqubmq2sEskiw+GvtaGEloSq7JST3z/nmvOpzaiuapy6/NHjQqykkp1eXXfW6NXxZoVr4h8Iy6TPpKzJ5astsGxhlwQAe2CBXBhcRLC4r2kZa3epwUKsqOLupfM4zTbnxVpcDwXOnysinLgRl8c9OBzX0FSODr2kpK/3HrP2NWdrq5pH4beH/FkH2rW9DMMk3BAjwenU9cfjiuCeY1cLLlpSukcFSv7Gemp8lftnWEP7MvjzSviP4W8Jx6hLpU5uPLlkVY5oSCJImLH5dyFxwD/SvVoQqZhgnJf1YbcsTQa2ufhl/wAFBj8LvhJ8Q9d8aQeG0fw5f30lza22j+PdLeWXe24QPDn7VGRuZSfKyAPTp8jjqMKM9Hdt7X1OBYp0XyuPkfIfhb4f/Ez9pjx9/wAJ7c+FbgWRKQabZWdq7RW0C8JEgAJ2qO56nLMckmvSyvLK2LXPKOhrRo1MRd1Op9afCP8AZ4ufBcUI1e1eJwxDCeLHzAZwQR/nFfVwoU8PCzVj1sP7KmktzSj8I622prrMAeG5tJyFkgGBuDbkYgd+OP8A9dcjnHmbserTbjqec/tTfCuS0+NDfEyLTVitvFltHe3aImFW9HyzfTcRvx/tGvJnXXtGkjso03GXMc+9pFpWkXl2Twlm4ZcdDg100a1mro6o1Gk7DP2ftNktvDOoyyoM3FrKM5xnKMa2xVe6VjGSlGm5JbnHfBvVrw+JzZ+XADFcENGwG7GTyOlaVJynTvcxwXM6+qPpJ40EcZCKCYxwvTpX4nxTJSzOSZ9Vy3AhgO4Ir5NkirkEGpGnqJcZJ4/SnHc3iyu7MvJ4OfStnqc83qSW0hcEe/FJnRB6EsbHJBFKxNVkGn5bUj35rePwmNP4zdnU7Rnk4/Osps6VsUpbdxJkd6hRvuc04tMYyFSFLdqtRRpCyQ1+BuxxmjlRcloV7gEHcvpzimkjmd0yrKJCMdRVaFuSaI4EbPOcUppdDK+o+RDnJwfeskD3uQzDCYIx61d+xNVoj0/S7/WtRj03S4i80rBUUHvVRU5OxzTnyo++v+CbfwI1TwP4rstU8UI91cvIGS3Ops0cfH9wcZr7bIMC6NnI+YzGrd6o/V7w/Fd6/py2ptViW3MKoFXtkV9Y3qeDK8Z3R61rUX2nTltlIwkSggd+KIwtIzTezNHSbf8AtLwrBaF2Tda+UxXgggY4rOpuzncvZVUzzfXfCvibTZWisonuJUfAY8swzxWEW7Hp2pqHMen+F7W7sNBtra9hWOYRDzETopp2lJ3PJrVFKbaLc0g5ya0howWpz/jPT7/VbNILGzEu1sum7BP0rtockZXk7EVaSqKxiP8ADDwtc6a13rWgSlwuSuQSKudZ83LF3Lw9OnBWauz4v/bF8C6R8Oz4vvPDFm9rZ+M/Dn2DVJNOMX2y28suYrqHeNplj3yDacbgxGelc+Kw1SpQ5m/ka1KcFCPReR+FWo+K7n4Vav4p+C/7HereNviH471e6ltt9xpEyDSy5Km5mLKFWRUIC4+UHDZ4wfFoUcdiqyio2S7dTKriKGGTjTm3J/h6HY/sq/8ABG74qeFtOHiD4jaXJJrl0PMnSLD+XnnaCepz1PTNfW0soqUaXPP4vyOVOCak2fQXjn9lm++FnhOSzutJMKTL5Rd0wd2Ox7nPavLx1KadlqethsYpRsj5rbR5LHVWgn6rJhmPPINfOzk4txZ6FOHO02cp+0HdxtrOnaej58m1yw+teDmcrzSPawSSOCebbHgfhXn01bVnqJc2hTubwLlWfA6Zz0qatuhpzQp7m9DqHyAgZyKH8dgrt+0dizBqCEcHjvms5SlYISdyxHeqOQ4pcztqbSd0SLqTE7Ff8QKV7IyT1uWbeR2IO/I7YqJVDp5rrQsQswOAx/AVLndGMm2yZCx4Gc57VpBqwQTvoXIAVwMk57UTlG5tyK15H1F+yl+zpreoahoviP4uxw22lCUT6YureN1hjjU8iQWqbmP0OCSa+jymlWpyjKXy12PHxU0r8iP24/4J9aR4Z0n4eSQeHrewVQqjfp9rLGjjn+KTl/r0r7Cm4+y0PlMxlOcFc9jum0KP4iQTSeYb97RkT5jt29Tx0zWftLVLI8tOahZbG3IkbI0TJkOpDA+mK3spaMyi2pJnD6Np50i9utGS1KW16GTywPunsaxb5Gek6iluc/qvhDxbP4ji0WxtTGjOB9oxn5R1ye1bJ80WxSlCCvE9O0nSoNE02PTLMfKg+YkfePc1NPm3ZwzrOT1LCwrKNsqAj0IrSdhRcUtTgv2iL7whB4Bv9C1G2hmuLiAqkK4yMjqf/r1eGjUnVT6FqpBM/Hj9s3wN4d1PwmfAvj+21yyGkm4Gg+INEs/tRS1di5tZ7fILqrsxVlORnBBFZZnhXODlJfMqjXdOrzX0Z+a/xf8ACvxh/aj8a3fwu/ZZ0TxVq8d1PJZal4j1LTP7NsY4s7JUUMSXOQVPpyAD24sny/F4uV1H3ToxWYQqL2N9D7U/ZK/4IL/FXwv4AsLOfULSyZtr3T3MZ826kI5OOwJ6Z9q+1p4DB4enZuzPEninQleMTvPHH7E2vfA/On+IIXSOJ8AW6DdK3ORgkGvMxVGCTaZ7eX4v226sebX+nW+hai9vHG6uzbc3CBWUCvHlZM9+jVktjqrqPSNR8Iw6xfRI32OQASFQCUNctZRcT0qVSdrM4/4iWVnYT276dOxtpZ0YKTxwNx+vGa8upeM7I6Hscne3DeIdVOoFQFLbYVI+4g6Vavy2ZMYupO7Oo8HWxS9RV6NtJHvmtqeh3QXKjF8EokPxG1VEHAv2z+ddberOaGtVmj8Zn0ufUHsdV19rMmMFFYHa3HHSvBzCtTinzM9SlGaSseM63a3tlOVnvBPEeY3STIx/Ovk671bvdG03KT1MuRskH865k7mlPUZNIVTcvTNQ4sJvlZThgW5kYOvBNWrg4qcQuLG505xLAuV9q05YNHJKnODL2najHdxiKXg+9YtWZcKj6j7i32negqXF2OiLU9wgYdCOO/FLkdhJWloTOP8A61Q1YptsYq7j0pBFNu5FcwgkDGPwrWmm9RzbejC2tSWGc1U5WQopQPRfgf4S8W6t4rg1DwvrV1pfkv8AvNQs5RC0a9yZWwsYx/FnPoD0r3+FctzDH5pBYeXLrv2+fQTbnI/Wj9hH4PaD8JPh23j+6i+XVWDNfz3DTXGpSY5fc43bffvX9DUaKwtFYOjNye7b2O6vFzisJh23Ldt7I9S1fRNX8bpNDZWjW1pLktI/yZX6+le/hsVRwSXM7yOuFXDZdBe1lzTXRHhnx38FeCvhrbN4o1TVPtd5boDbLv3bCDnjn1r6bBYrEZhBrlskj0aGJq4pXimkfWvwe1ddZurK/knIGqeHLaRWI77OgPc1+ZZnSVOhJL7M2fmObUJxw7VvgmzkviFLNb+L1MirsjumKr0PmY+U/TIz+FevhtcIrdjspOKoLl3aI7XVo7cvK9+JEJka1lzjavHt1Y960VJtbev9eRE1z9DqNA8RSTahHJdxmJoViEfltkAMOuPXPGK82vRUabitb3Oerh0oWXU2f2lfEXxi0z4O/wDCR/BiLzdRtHjnubeJN7ywocuij1xXiZNQyueZSp434XdJ+b2PmKeGoxqzUt1sd98Evij4f+MHw803xzoEoaO8t1M8TDDwTAYeNweVZTkEHmvBzDAVsvxUqNTo3Z913PExMZU6tpK3qdRNFBDL5rsqg9sdTXKnKSsjNczRU1zxFpui2Zubp+gwqqMkn8Kqlh5VJWiXCjOZ8Y/trftCeFPFemy+HNY0O4tmt1LzpPYO5liwc7SB1HHPNfZZdhpYKlZSumd9pRo8sWfjv8SPgn+zz45/bkfxLr/hi01GE+CNYu4UvbZXUSQrCImZWUAsodiCR1rnlg6FfHc0oo8itQXOuZ6s+x/2QIPgb8PdPn0nwxpV01xJpkYkTR9LSCMQuCG33LAhc8/KvJB4x39uo3DCpxdtbGs5V+fl1Vl5nTfEL4c/CTXvC1/rn/CJWssUMyxwO8TF9PbadzySybQz7SQCpz8wGOTXnyrus/elsdNFTp8r1PifxHo+gQeJb+GG5byjKUi24yWBxu75ODXBWqKKsj6rBy54ps8j/aE8Xxa14q1XwYthB9i0fyofNZT5jXGwM+PQDIH4V5FOnKVVzvoepGbcfQ8H+JN5/Z+hDR1/19421hnnbXo0YvmJ5k2dR4KhtfDmg2ttKgzJYzzuvfaE2/1NaVlFaI66qcIKJwHw6isbrxNHqEdnFE3nnbKjg5Gf4hiuqMHOnoY4bljWXmfQJUskZLf8sx/KvxHiqPLm80fRqOtx4QEYxz6mvlOpDWoAdz/KrkkVFK5G/DFiOPftTitDWySKt5IAoGKd9TkqaMbYuGGcdOvFEnY1pXLKOST2IqFIursQ6a//ABMyfeuqPwnNT/iHQykYAPTHUmsZL3jtvoVrmRIxg1N7GNV6FRrhJOMH6jtVXFBajZJQAcjt2obVjUp3E43dPpxSTZzzi7kSSFzn3pOTIaW4oPzZI/OldsmyEdgCMj86aTYa3ILiZSOh/OtY0+5nO7WgaBGs+sxRTXNzErOAWtP9Z+FdNH2fP7xjKlzKx+mf/BLfQNO0+Vb7Tre+JBG6bVLre59wP6V9vlFWnCFoo+ZzJRjPlkfp58GrZdWsNS1QQP8AuduJGH3yPQV9FBp20Pnql4NI7aC8W5shKzDcGwW7VUtNTN6PU1vCWoRrY/ZZTyJSFYDg55rkbfOYVVzamhPbAzqyfKASzOAM/SqskriVTmhY574x+LfFPgv4S+I/GfgjRF1PVtN0S4utM09wSLiZI2ZEOOcEgDjmtaKjOai9jKcJ8ra3SOZ/ZP8Aj5Y/tG/BjRviC1xbx6ncWaHVrGEFTbz4+ZdrEsBnOM1ti6McPWcU7rozKlVVWipbPqj0pbcA7v61gp9Acm2c18UvGtr4X8OTRl5VmkjIRolJIrqwtLmnzPZHTSg0uZn5u/tnfF6+S4ns7qVJLaSNw85GyRW/usp4/GvUdKElfoROVRq58b/sr/HHw/8ACiP4sG1sNDmD61Z3t0LuKMXFw00XkxIhZl3nfEw8vByX6jByZfVo0K7ktP67nPLCxrQk7a/ofYfw0+NXiiy0aLUPETBNQubGGa/kitk+QHlbeNQCqD1GQT1Jp16k69R20QUoQpxUJanjf7X3x2ufiJr6PNdpONOgHlRKqCEud2RtXgkEjJ5ry8TdSaPRp0YqHuKzPgXWpLi+8S3bSRIjNqUmEj+6Bu7e1fJVtcQz2qbl7Fdzyj4xXwvvH9yqtkQqsY59BXz2Yy5sQ0evgo+6cpc5RMjrXFGTasepGSjuc1r1tf3ZZDIygn+E4r0sN7GK95anjY91azfKz0ez0eHYoJ7V5lrzPoK0OWbRPHpMG4LuH51bWgqagi5Bo9qQcn65rmqSd9Dfl7jk0WISZHQds1PvSVhOmmrotxafEFAUj603BEqDLEFgpJ46DpmsnEtwSJo7SMHORnuKtaItJRWhaW3DMqQozFiAqKMkk9sU+W7QnCUtz6i/ZF/YzttJ8Z6d8T/2lp5PDel2jJdWFj/b6x3sxyGDeSm5wPTJX619FluErYeoqlWXpqeVjOSHuwWp+3P7C2s+ENX8DGXwjphsrAIBp8LQyIzxDjexbhifXJr66FnT5ou6PiMdXqVJuJ6wmnawnjkXiaaxs/LbdctKOCemBUqE+a5xy5eS9zakYBgM/Wu6EX1OZao5u61W2bVVaNCGEnA28nmspwbR1wi2kmdMi7wH8vDd+OaINNamVRuN0hUkhaX7P5i+ZtzszyR64pykoszVOyuRXU5s43mZSVRSxAHJxWisxqKtoeAftAfFXQb21mWXT3hdFI3sACwHqa9nD0404bnM0qj0Phv45+MPCPiq0u9OMlylyUPlz2jRllGDkhZFIJHvxxyDW0+WUPeV7F1V7TCundxk9pK2nnZpq+1r6d0zyv8AYj17wreeCNDisLEvJYa5r0D3slggmwmo3BYHawCnAznGDgVpl01Qw1lojGpGXNbc+5LD46ab4a01tK0nWrtLeNRIMLiU55AMr/KOOpHHYClUSxDbRtFXS5jy74o+OvhlrZuPFWvTB5GjJhvLW3e5vRkEbd5H7vOf4RXJiYRhC13byNYpQkmlqfI/xYHgG51Yz6ZaxbsktMyyPK2T3L55ryK8aXPdH0OEqzVNJo87+JfiWWw8P2fhXTbIyXGs3qRWNqpLExqQXdsYwAO/qa82rJ8p68XKVuQz/iR5UDW2iwTGWWODM3pGduMfz/OvN1lM9R0mkmzF0q1WMoWUhV6cVq2mh25WdT4QjH2pTt5G3knpzVwk0bI57wBELv4havP2a/f6da65PRmdOC5ncu/Gy68P3N82l63bRHZENkshOF9M4HAr5vNFRatM76bvojxXX9ITSrhjbXMEkLHKm3n3gV8vWoOLutjWVkzJeT5sdQKzSSRvRI53Owrmk9ya25HpEm64I4+9Td0kFHU3VgilQowyCO9YSm7m9kmZWpaRLat9ptRx6VUZqW5z1aKesRtjqQkHlTcMOOa0SZjG6LMcY370PXtSafU2jPUmJXbyPxNS6aOhpNDl247e1Q0ioWK8p3SfjxWkXZGdSykOR9rAAj396h23ZjrM+iP2VdI8EfD/AEBf2jP2lNRePwhp9z5fhbwjG5WXxJfKeWZR/wAsIyRuc9+Bk5r9C4TrUcrofXMVPlp30Xd9/wDIuFJQblOVkfe3/BOP4w/E/wDa/wDFniL4v+IoZx4d0yRbTTbRNM+z6ZYooG2G3JbMjY+8Soxxyc8fouS5zUxkZzcbRl8Pccs4wWHwUqNL45P5vzbPor4ka/cfZJ7Nrl7e0KbEEEO5nPoq/wBa+4y+jShadry8zpyvD03OM2uaXmz50+M3w98R+IdJku4tNa2UISlzKSZc9ic/dr7fBY2jTsoz18j6aM/e0ex77+yT4rbU/gp4W8RXMonuNFdtPvnUklgjbd3POPrX57nVK2Y1sPf4tUz4HPoWxlWhH7auiX473dtB4qnv7ObNu8QnhcrkEgjP6EitMtjL+z48+60Z5OAjVeEip7rQwNb1+Cd5bmFPKWGCKKEquAA38VdtCNlY7VFwjZFzS/Hxg1GeQymJkktgzk/M59vY1z1cPF7rTUzlGbhqj6E8AeMLCy8HWuua9dqsThw7lDg/N1+lfDZjhalbHypUFrofHY+jOriJQpox/EEegfADX5fi94fhjh8Ma7KreJI7eElYpm2rHd8H5Vx8r4HQgnoa55SqY6n9XrP95D4b/iv8jhjRqYuLpz+OP5Gp4o+MvgOQrHc6vtG3dDcIcrgjO4HvSwmX4pq6SJ5PY+6eU/GT9pC103w9dWvh/XNOntxHnzdRmKgk5OMgZGcdjzivVw+BhRqKpUVn5EKTpS5pH5zftq/tK+HdEsG/sDWbaLVJbdw1zpfieQxnK/cZByM5IOK9L2lotv5DbqSal0Pzif8AaFmsPj/qXiK2uIJH/wCEA1yFD5zMzNJHEqjLZOc4x64rw3mUqWNl2scvsqlSaklsfRHws/ao1nRfCFrc6fZ2dveaaIH1TVbi4knuVhkKoSkchMCheB8sZbDc9DipY2M6fvt+h11JVZUnyRV1/wAMew/Fn9tLSvFOiR6nc+LvDV87QlHm1Ce4nnjOAFIhOyEH0wo69DXR7TDRo+05rCoU6z+K79DwbT9Zm13xRP4y17TLaOxtmWSaeC0VBLkhljRR0ZmAAUfyBrwsbjqMZ2jq+nzPoMthJ6K9j561XV7q/wBR1jxZ4nl2td6pcXLoHyAzuSEB7gDA/CuykuWmj3lBKNjzuKzvfiF43ifYSpkxGo6da66WiuwjQdR6Gudeh1rxH4lmt5R/Z+k2H2G3cHglR8xH1bNdMlCPvMzqVVzycfQ4n4PWuoHxCsioZojISzhOF5749K0hUS9Dpy/Dy51KR9LKCsMKMBlYVBx9K/EOKqiqZvUaPfnK7AzdMDNfJPQyb1FLELz+dBa0K8rtuIB/GtOb3S7qxRumklfYeBQtjLkV7lmxQRqCB25rOzkwcrEyZy2eKd7GjV4lbTyP7SI967KbTicqvGZ0KZL5b8RWNR2OpPS5FeQK4+8ee9ZczuLmvoQpBGqj5RnHXFXZsmasxJIUbjAxUy0JUtCtJaxcEoM9qEmUlcrTKqsBmrjTuZyVnYaAmOn61Xs7AoXIbh15UduvtTTsxONivJ9zceBitE9DCUlHYveBdF1jxD4kh0vQtImvZ5JABFEcd+5HStaGHrVanuowcpPc/W3/AIJyfCbxB4I8HWx1zRYLGYqGUMc7SR6k5zX3mV4atTprmPlMzVN1VJrbY/Qn4Ah7fwbfwyXpuWMpbzCOOnQe1e8k9D5+o26qZof2itvpU8e3aRJ0IrZ2sXNXbHafr0WnsISxHyq3B4zXLUSvoL2aW50w8V2r22T8pzgZ7+/0oW5P1ZJ3RY0nUoJofJuJFA3FUJPB9qbVnoZVac07o4bxn4B034V3V78Xfhr4Qi+1JEW1rTbKIKb6HqzIowPNHJB78jvTqVbw99mEYU27vRnlmn/H3w74qibxL8PvGC31nKx3LFdkSW7A8oy5yrA8EEVrQeHqRST1HKNNvVnEfGP9qTXtL0WW3kv3uVKkeTcWpcdOxrv9nyx902UoqnZO5+d37Ynx/j8ZWNzpVzaTfaYyXRnzDJEBztB43L7EUe09nBqRg2pRUZadT4i8AWfxL8PfEPVPF2p+DkntNUvrEacuosDueATyhsN90E8An8K8XB5vSjjZQT09DXExqTpe4tD6J0H9pr4pz+F7fSdU8D39nDFOzx2sOLhBIwAf5+p3bV+g6V6k8xp25VPRamVKhUlJe7oZHi34tWGg2F9/wkWi3Frc3i+ZY2c0JWTcGz0zkIWzycdBXnYrMqEYe67nsU6Da2PHbXUvOun1O5xvZmlfHTJ5r5+lLnqXZ6UaTSseJa/dy6jr17qMv3prhiOe2a+bx01PESt3PaoWjTVig+HyB1GODXPCNlc2lqrlC6giydwq6k3FaGMaPOtTro73YgxIc47VlzLmtY9SvzObshIdQmmkKjPvVOcYrUyhF3uaFpLJgbnOD1rllNNnRzpGjA5zkt+IqeawKoTpK2QF/GpbbJUtSdJQq/UVPMzZttD1m3jrVRd9CYXvqWYWOQd3Q9abhK1ynOTeiPoH9gL4I+FPip8UYfEF34inSbTrob47i8eaQuCCHhtV5LDIAd228n0r3crp/voqbfc8bMIq7XU/dj9jeW+0zSDo8EdxIjDMtxqt2HupMdyi5CgdMV9fR9mlaGi7Hy2NjCUOaW57lq3mJYySJdCEKhLSEZ2gda61NJHiSvexFBcw3drHeWz745IwysO4x1roi7xIs1NJnFNqztrUdxOwAEozgYPWsOZtM7qkoxVkegShkJZD370U7uJ58neZj+J9Zj8PXFrr9zb/AOjBjDdzqP8AUq2MO3ooYAE9s59a1VP2qaT1FaSnGXTqJ4z8TaRoWhvdXd6i70ypDc49R60qFOdWei0QsVJ0qbS3PjD9qT4teFjpt/GdQeffGylFh2BcggMrA9QecV7MZRpR1PNpqpLbc/Mb9pv4030EMPg/SL6yeebUvsrz6ncAtEXPH3F86QgDJVUIGeetcmIxlOOkWbfvFWje+v8AXojyH9iX41z2Oi69qOibml0LxjrC290mnlHnzM0pJaRwIwFdiMDOQMDJJqcvxMbSVSW/Q6Z+2rVn7NPT/hz6Sg/bL8N6RDAdevI75Cp+xGC7div95XG5grDqCVx6cV6ixNJWUXoa06dSUXocv4q/a+0nV7mWPw3rr3fO7ytT+Rkz/AHi6jr3Fc2NrwcfckdlGDejRyE/j7Wb6Ftd8UX8Wm6XvBeSW7YrKeyqvVyewA718risfBStfU97B4eoo+87JkHhiz8QX3iO68feOIysx/daJZxSHZBbg/Ljoeep9Sa4Z4tTk79D6PDYNUZXZPe2slxdtczJvaQ5JJ5z71jzpu7OuWhZtdODyAytt8tcYA4Jq3NWMuV3sdD4atFWVpwm0BCxOOmBRGqrmvwo5P4PYuL++1A4JlvHKk9/mNdPNzRu2c9GTnJlT43Xj3esy28tjDMVTCiUYYfQ968LMaiTs1c9GmlGN0ePaozRMQIlTjgBQD+NfPVJXlZbGqTluUBLvYbhjnmsJOyN6SaG3TbYyc8is4ybYqi5loM0kgzlipHPpVSk7GdJcstTobeWMKA787RWMnc6ZSTRMHhkG1iCD1FS/ImMkY+saMgYz23GDk4ropVOjJqUlL3kUrbUXgPlynB6c1s7PY423B6k5vGkOVb6ipem50U5uSJYblig/TNYzRvFu42Z2A3Dp9aqNmjOd3K4sEpDguM89+9KUlDUum0ndnpvgWPxP+0p8YNC8C3a7lkgisNPtkQ+VptrGuXdFyAuFDOWPGck5rry5182zWlQd+XRWXRHNjZKtVSvp1/zP1B/4J8/E6Hx94o1T4ffCmJ9N+FHw8g/s/QhFknXLzP769mcgFyzZwOgr+j8Bh6WHwKUYe9ok7W08go4WhHAyr04pym7J22S7HuepXt3qusy6pf6itpaRPtiWNMs3twOK+koQjTpKCV29z3qdCOGoKFOPNJrU8/+M+iXOt2M1rYXC7JASsVuSh6clsjk172VSo0mrqx2UFNQV7pkn7Amu6fa6p4s+EF+wt47hI7izWV8lWYYJ6fLlhn8q8ni6nKHs8TDVxetux8xxHQqKUMQtWnr6HafGb7PceCb7T4yBf6NJ+8GOqucPx6ZOR7NXk4OVXnU38MzwnOVKqmlpI8S8HfFNdU0W50O8vI2uLC9azuieC3B2Ng9scivShUik7dDopzc/eNDTPH1sYDqVzcxurWKRMCeVdHwre5x/Ks5O6u2aVHdWeh2Nn8eb2902Pw0+qStbW7yIYomzuhzuY4yDzgDJ4AzXEo0Pauajr3PNWCi6vtEj3/9lH4j2vxn8A6l4U8Y3FrfId0YsmjBH2ZhgKwxg8dfrXx3EGFVDExrUVbu/M8LPKUMNVjVo6PqfKv7TXjRf2EvG0ngX4zNfzfDi+l8zwx4itImmn01GzmCYAfNGh4BzuAx71lSxVWdB4n2iTi0nG2stHrtay66p3atdXt5Ek61L2iV31PDfiujfG3Qn1v9n740aL4ismUyI+n36SyJ32tBuDKce1bSzt1F7rsa4eEa6sz4w+MP7IXxq8ReKDrty95BIzg3U1npP2ZFXnLF5GWOPsSx465715uJ4jqyrXhpLyVvyKq0FCm9dEfKHje7/ZW+Hfxy0r4TeJ/F+hfaLiwuoNb8T6PfSXsNncs6+THcXCHYy/LhvJBVMjkkGvMoVsWqkq9TVdjCPsakoQi7d2e8+Dv2Yfidqeltr3hnxvpGtaZKqeRdWutW0ttHFzja8bA7f985FZLM6bqNuTSfTTT066+bflY7Fg40na6a7oZrafBn4N3Ij+I3xE0KfU1X5dK8K3I1C9unPRcI7Rx+m5ioA7GprZzKp+6hDRLf7/Pp6W9dTsjhacVGSmvQb4l8f6lB4Cfxv4mtE0e2kV4vDGgxPuNsGXDzyMf9bMVPLHgdAAKWW0qmMxKb2R71Cly4dpKzez7Hzb4p8VXHiK5NtaMVtl/1Yz1r7SUYRajHY15JSaNOyvV+Gfw61H4gTri6aI2+mK3VpnGN2P8AZHP5U4uM6igjfEVVg8M2t3ocl4bB0f4T3LEkTXsoDMTy5Jya3lLm9083D0X7JN9TofgZoZ/t1ZI5GETffXOVI7g1hi6lOjRnVW1u/b+tT6KjenTWh7FdXAWQBRjI4r8Fx05YjEynLds1i+ZiJcAk579/SvPlCxooakjTcYx9aOVWKqKyIfNAYk+tKUbmClqQSj94CTn3pRibxaa0LEMirFyOnfNNqzIt7w6NwQ2DUpXZpK6WhUsWP9pHA79a7IJKJxRl+8szfE205/OsZq7O2zURlxNgjBzmoUEZJ6kLznnHHArSw6juiLzmIwc89aTgmKGqFEuRk/kaFCwTdihcOxfdyKpWQk0xpnVI/mOPxqlqTVbSuilPMWk+Tn2FaKKtqc/tVchmlYoQDRZRG7M1PAeq6zY67FFo+rT2hkcBntpNjH2zV0Kk4VUosxqr3Hofrd/wTk8Ea4ngu31rVZ7tmkUGOTUtQaUucZ6HgV+g5e2qSbe58Zjm3UaXQ/Qv9n5oJfCl0kF4J9spV3Xpn0Fel7W7sePWvzIg1HUrex1ybSbx8eaepGPyrR1E0dTp2ipHN+IdcbTbyaymnYHAKlTwQKzbj1MpN30K3/C17QWkZa7aMn93CAfvepq3KFr3Kg23Yqa18d3Fn9isro/u3CqwPVvWl7RNEzpSk9D2L4T/ABN0b4j+GBPHdIbm2AjvUJ6HHX6GsXNSumcNek41LI+Cv+Ck3/BOn4mWviy9+P8A+xv8QLvwd4jlXzL+0tV32monrmWI8E/7QwfeuR4fm+B2ZFRNwTSuj8t/j1+2p/wVE+DZl0H4hfBjStca3Yg3drqE8Kygdcp7+xrSnPMKStKpp6XNqVakqcm46nyz8Wv+CrP7VeoxS2rfA3QNGuTlftlzp813In08xtp/EGojCeJm/aVG122OaeJ55e7FI8I0X9tj9sDRtc1bXLH4kX8lxrdxHLqEd5p8M8cjINqbY5EKoFHACgCtp4fA0oWsdNKVaM3JS1O68I/tVft4/E6+XTU+LV9pdvI4Eh07T4Ldj24KICK8evTwcHeMb382egsbiKiUItfcfR/hTwjdeA/h4V8S6vd6nrmtOs+p6jqVw008gH3QXckge3SsHGMIXZ30YyS97cz9ZvW03Qbq83cLEQD9aaqKMHJnarxPI5JGkUue/NfL1J887nrUY3sVY5gC27045rdK0DWdk7Fdmy2W6A96wqu6YpS5EdS0UXKgj2Oaxu+Y6pSk3qOtBHGQcd+1aODa1FLfQvwHeeBg96lxikQ009S7a5B5br0rOajYpWb0LcQ5GTj8Kw3NoxsWERGAyuPSk7o0THKAh+XpWlNNu7JfxE0fI2g9TzWsnyq5rA+lf2N9W/aE+KXj7SvAnh/VJfC+iW0aJc3GlaSts97GP4pbkrtiXGcyEkkkY5NfQZfiZVlGFRWR5uOnGMZt7pH7K/sd+LrTwW9t4D8MTwa9eABLq4sbhvs8Xu8jkmRvc9T0UZr66k8JO3s0fn+JliHRftXrd7dr6fhv+h9V30TzWbxggMyEc9B/9atGrqyPOjzXuYng26mn06TTrtwZLeQ7QOMoTxWlPSKNa+rTOE1G7W18QS2pbmCc/eHQA0tIvU2nSbtfqeiWHizS7yyS48zLYxtx1pXdtDGpThCW5Pca5oJj8i8njCSja6SDIIPUGp5mtwacFfoeEftSeK3/AGfNEW/ufDVzqHhW6DGO6tB5kulv12hD9+LuBnI6DIwAfXKlGWuxzypqpGx8D/Gb4/fs/fEC9muLn44eGXitcypb6pqSW8tuwzx5b4ZDz1+vrRXzegqVm9SqWFipX6nwF+2r+27+yb8Kby81nwH4qt/F/jMqws57JhJ9nZs5y4yFznBbOcE9K8mM8XjJpxVovqeolhaFNyqvmk9j5m/YH/4KjWX7Nur+MvB/x7+HUXiLwh47v/tt6kEKtPpt108yMHqNuARnPyjrzWuLwGIqQToys0uvU5cBVVOrJzWjPYfG/wC1/wD8Ey/ER/4SHRPHusadIpLJZx6Vc7hnkjaBtz7156/t2jLl5L/NWPbq1srcOWL1fkzzw/tnfBy71GWx+Cvg/X9fnY/u7zU0FvAvucksfpiitPMeS1SVr9ERTqYSmrrVnpv7P3hXxz8ZPHln4j+Id405hYG2tFyILZf9lfX/AGjzUQoqjTvJ3OzCzq4yqkfRXiaKO61VkhGIoVEcYHoK4PbWkz63llcoHT3kcKFPyjog/nWkavMHs22WbfT1z5iLgdCCe1X7S2g/ZstapeR6B4N1bWpBgR2jhcnuRgCrpyu7owxMuSkzlfhFA9hpUDOvJw7j1zya9KP8MwwqtT9Tnfivqr3uuz/ZoTNGrfKpQ4x/vdsV89j1LmPQj0R5lq0e+UkQeUM/cDZxXjyVjqpqT3KKQFWyV/OuKbbZo5qOgTwF1xjr0qEpJlRtJDILdo3JBxzWiVtzGpFt6FwRyf3jg1nNxvoVGnOSJI0m3cN+FO0W9iuRx3JNzIMSE80+W+xUblHVdIE6GaAYOO1EZpaMmpSUjLtZ5baTypuueM9615brQ5OZ0pWNCOZSodB1HbtS5dNTpp1eYfvJT5jyahKzKk1fUWPAIY8n2okoyMryk7H0H+ylolp48sz8LvhdM2haprFtIfiJ8RNWmWOPSdIzhrK0Gc75R9+T7xB2DA3E/oPAGEwlbHtU1ZpXnJuyS7Iyhga+LxaS+Fb+h+kP7G3jb4DWdtL8AP2fx9osPD9nGLq9ZSrXTEfeGcEj3r9iw2bZVjsRLD4eon7NLY+kqvDKneEl7uyWy/4J7J4pv9J8PaWJNYgWN0/1UKMDz+PU17OCp4mu09F87+nRdPI56Mqteq3Td13OKe81nVbOR/DOixQXDxuVuLkZYg9hj+texGhGnL95PQ9iUKcVzTkcT8MfAfibwV8WpNV8SSu/9tWTQXN3EMbcZIK89Rz69q6cd7OvhLx1sePmLhVo3h0O1+IGt+Kvh/4ohHxGgim0bUoBbS6qsTEyRsvyNNgYRh03Hrx6GvnIexqx/dvZ/wDDnyWKp050eaG/b8z5t+M2haj4E8TalqOjzrJa39sClxEeHkQZjfI/vDinVi1ByicFOtKy5tzg/Cnxy0zxV4du7eG4VLizZRdwBjuWRWLEEdhjvXlyxU5UlrY7m3V96S0Oi8J+Jr7UP+KjtL0RS3xeO0t3l5C55GOvPr71lCspov2sYR5Ue6fsv/tCah8JPEo8YXMIbT5YkiltoH+ZwAdzEHpkg45p4+jDF4Z0n8jzMbgvr1P2fXufVfxn0H4Hfty/Ai/sbC9sdVit4v3oDqz2rlc7W7g4r4aNOrgsR7OotGfKvC4jLcT7KstGfhL+2n/wTRj+Gfiu81f4dape6bJNO6wyWE8kLZ5PVCCOlXWwNJz54bF1KahOL/mdl9zfy0R8E/HT4Q/Gn7U2k6/4/wDEl6gBBjvNVuJUIHqHYiuBwo4duRjPLpTneXU8r0z4E3bTme7jllUNggqRz/WvOrZgmrx2Lp4ZRjaKO68KfAOW4YQx20uwj5kQsc/gOtZ1pxp03MqjgJVZ2sfSvwN/Zw8MeA9KPxC8ehbPS7dN25kAaRwOFUHqc1hhlLFVOWC1Z9XhcupwpKU9Ejgvjv8AGa5+KfiR3tx5enWv7u3tkYbFQHAA9vf1r7vL8NTwMF1fU7Y3c7pbGJ4H8K3euajHAybF3AvI4wEGMkk+mK1rT9mvM7KVJU1eRh/tB+NLXXtTtPCWjSj7Bp42QgHrz8zt7sf0xVYVypxv1Z5OPar1PJFbxnqL6T8OdKtbUH95eAsq9cDvXo4WknK8jZJqlG2x6X8G7i1t/CD6/MpiaJckcDdngV8/xZioYTCOC6o9RSSp8xvp4qguSiqcn0r8ZlCUtRRrJy0NKDUkljBUYzXHN6ncpxSHnUVIwevY1Mr9BN8yIjfEyYU1N2tzJRs9SRHdmDMRU8zLUorYma4AH0pJtsTl74sE4w2eapuxstUV9OuFfUCP9qt4ytE4Iq2INua7Ctg9az5tbnouSsVptRQfKeRziqTucj+Ii+3A5yO1KUtDZpNDftuME/hQmKNo7DZL7A5bH0puRFV3K0l3vOcggUr30JhaOpm6vdyeWQnB7VpTaT1McS26bsUYPGkNlF9lktFLkEFiM16FOEHG7PHjVmpixaq90AQmBjnNYVeVXPRhVujsvhHqsWneKIJx4dTUHEqkQsM55FGHjJ1FYzrV7QaP2W/YLsvHvjD4dWUmqaQlhDIoHljA8pcf56V+h4CH7hJ6HxWIn+9tZu7+4+7PhH4ctfB/hBdLs4VRfMLMwz8x7mulpQehyVoxdkVfin4WfXdM/tDSlH2qA70VerYobSVzak/3bjI8T8deIRrmmmz1J2tLy3+XBOG/+vWMql0cvI0zyjXLjxC5F5bTh/JBVQxwAO5qLu9zSPKloYtn4pM2ryi7ldF2ABi3Ab2pqTUjq5F0Z0vgD4wX/wAPYb2eGaWF7y2MTrnPfhvrW8KkVHXqU6Kvc9p/Z/8A2ltP+NOgXfg3xfFtv7Fdtvc3Q2i6Ttx60cvNH3NyK2Fpxd4bHgn7Y3wg+D3iCeaK402E3MoYFPKUgt71pzqKtM4p4GcldH5cftTfsxfD+0W4uLXR40lIYPIYlwpzwF4rL2tGCbSJhQjBe9HU+aIf2ZtIdSsmi7J+GMqxjO3tnIry604yeu5ccJOqrLQ9C+HXwK8KeALZ/FXiUJb2sI3IHUAyHsAO5rzpTtLfQ9PD4GNCPM0UfEPiKTxRqb6llRFnEaDoF7VjKU6tTyO2KSdzjPinrqx6XHolq2N/MpHpWeYSlGhyo6aFOM58z6Hnk8jKvHT6149NRbPVprQqsx5x/KuqTSQpNN3IDvGd/wCWKxUVN3OWvPmWhvrdSKgGT0qHGPtNT0KqlKbZc0/dJjNTOdloCk+Y0Y9wwfT2rB3YtWy3almPtniplFo0UWnqXY9w7moHdonhV2G0ZxSdi4ptkgjKrmqpu8i7O5Nb7R171rKN0Lmktj3T9lHxf4evfFuj+F/EPjbUGje7WOLwtoVjtfUnP3Y5pAOSc4DEjGevFfQ5ZClOMW+x4+NjXndWP2Z/Y1tZNF8N2baD8M7bTGtDvW2tY/tM1uSMYZz8olOSCc5UZ9Tn6+EYQp2hsz5bF4eg5Rc0m4u6v0equvOza9HbqfYFjPfSaGk19hZjFl8cgGhS7Hl1JRU2oHI6Lr9vpPi4QyuAJ22OxOBz0/WoVVxepuoKpTZjfGrS30LVV1+JT5NypD7ezgd/w/lVO/Pp1NIS9rRXdHBad8SLm1FxpTXIURYdW/vL1rdJRhczlTVRi3nxKbXNTTTtNu2lkBAZWz82fb0965/a8zepo6bULWPYNY8N6J8VvhbN4R1r7Pds9oElXcG2SBeDx0pWTXK9zzJxcJ2Z+Kn/AAUu/wCCXfgzxTrF7eTeHk+07nK/usY69M81x1sPTeqNY3cbH5W/FT9gjSvCWrSwweesYLD92SMEdauOJlTp6O5ssLQSvLc4T/hl7w/DdLYra3TTsPvzOQn51yzxeKqPV2R2U6NOUdi34e/ZW0tr0C608EpzIrAkn2Fa1K9edOykawjQTase5fBn4HWFkYYLTSVGCF+RdrLnuQa89SjTd3uCpSnNJH2n8Gvh/D8PfBj6zdq32mdfLt/MXDEetefi8ZOoz6vKcD7Gld6ssRafJdzl1XdznJHSvPdeN7HvKJMuiyKmQCDgkt61Ua9tiuRDZLEb8bBjHIBraNRyZPKcn8Z9RQaVZeDYGG+8mElwAeiL6/jXdQvJ2PNxiUmoh4YaOxh+Vc+XH90cE/SvZirU9R04pw5Tyz4matcz6pKZZGKFvlilG3zPy718/mLf2TqppU4qL1ZxkGqrfXX2QwmMhgPKccr+PevFlGT3OynzN2SK3xF1238B28LXvy+bjBJ9aqhgnWg2uhw4/F0cHJKT1Zj2nj7TbmMOLgYx/erJ4SpF2aJoYyNTYtW/iS1n5jnUjPauapFwlY7o1YWLi+IrZV4cGseSTZcK8WxV8S23QuACexrXksgqVUoit4gtJG2+eM9jVKErGUKybsi3baksiBdwPuKxqRszqjbcp6tbLIDLGMH2rSlUa0ObEQjNe7uVNOvst5TDpwc1q7WuctH3Z2ZfGQMqQeKzTTZ2zXMtCSBGLH1Papm0OCstTrfB3i/WvD+mN4e8JeHLWbU9RuVjiujHJLO7H5UjRNwX7xzwMk98cV6OXY+vh4So0IJynp1vr6P+vQ58TXlSpycNHbc/RD/gnp8ILH4AftBaV4R8ceILvWvirqmmPN4u23hFp4etdoaKzYAYknOQW/ufd65r9X4LyzCZbUqc0r1XH3l2MMDRrVMHVrbQtt31Prr4oNoltqP2/X75G82UC2tUYEk5756Gv1zL5VJUlGnH5n0GWyqQoqMI7bsj0C50+NcQokiICbiNec+27PQVtXVRySudVeNSpHffY8i+L/jvxjqvjO1tfBGnpFb2Eq3D3UkvCoG5jjIwWcjtXu4XD0aeGfPq2jVYWlTw6U3dvc9T+JfjTwfo/hu2OsTbLm8tkl1PT9QhISQkdTyx3YHTHpzXzeCw2Ir1pJx9xXSaPlquHqV5yTV4rZo8/wDix8N/gjf6bba7outTWcF5AjSWEcp2cjHAbgUKliYNwqLQ8OtQxNNe8vmfNHxe/Y28Kz3Nz4x8EeLJLC4nDBpLSfDynGBlV+91rgxWBo1k3bbXT/gasmNao4KNtDwbxj8Iv2mfBF3D/wAI541muAYmjj8xMsFIOc9NuRkf5FedLJ5022p6Ee2U3Zo4PWfiN+2x4chl0rTtRjtoAdm+RGLKMEHBPbn8c1hPAYuyake3CUFHoan7O/8AwUR/b2/ZO16fVtG8HaXrcF9GYdY0lneNdSQsMlyOQ4XO1hgjPesMVlmIxdLkqfetH8mtUcWMw8cwav02PrS7/bg+AH7UGnw3HjPT7zwdqs5XfpOrIrpEzKQQJV4YbsYPBGa87EYCtTp8qRFPLnCnbc8C+M3wX+DHiMPfab4w0q5jnt55IjHcJlgg3MMZyCFINfHZhRxEXawo5c5Jtx0R4DefAP4TaJd3T6h4ssljR8JiQEncgkXp6rXmUcNiKr0iy6WXUprRnP6z8U/gT8IJE/sfQbnXtQABjjVPLhBIyCzdSM16MMixeIXNN8qPRo5fQoO7R5F8TfjR8TvjLeRi926fZRyFrfTbNNkcQOc7QOM9yx5Ne/gsJSwFpQfvLr1+RjVp03eMVZPp66swtG8HQQlpNVnESJ94sMbffkc11KpKbaW5tQw6ptNlX4mfGvRvCGnt4S8GOkt5OoWTC/8AoRHYHt3rqhh9eaocOZZjTo/u463PMTcXFzexy3ku64lk3ySHue9dEZJz0R5NGM6lRW1PQPEsH2rwTpyGPKpcja3v3/pXpUm022j3qiiqS7nsPw50S0uPBQ0d02iQLJhlx+NflfHuJbqQSN8OnKNmWk8EpFMCpAAPFfncqzkjd0EldGtbeHHSIEEe/NY6J3IjTk9yzH4eLDt0rCU9Tf2dhjaCFc4I4z3qo3krFOkuUlXRV28tg1pZIxcLCHSU3bQR+dCilqXGkmrlmLR4/KP0rGTtIuMbMy7CxC6oUDD73NdNNc0TlqRvUujam01GblueMVnN2OiKcUV5NEi3A7unrSTbGkmIdKjAzxT5SLO4w6ZGOeOadrDlBrUrXOmxZ4bjuKFcIpSITZxrxt5quXqRONiK40q2uF5ORUXlFk8qaMyfwxYrcb3xx04reNSclY5quHg1cc1jbRjYgH5VXKuph7N9Dsvgn4c1zWPGdrbaMSi+cvmyF9oUZ9e1b4apL2qUSZ0ouD5j9qv2NNNvz4L0/RdN1eOWOFV3QWThsnHJZu596/QsDJeyTufI4xqlKyPs7wzcPa+FY7f5lYcKsnXP1roqSe5xQSnJNhp17dTuwHHJyT6UoNtHROMYnJfFb4R6B8RbJ42hEEqrjz4mwc/UVjWhfbcznTvqtz5b+Kn7K/xQ8OpJL4c8R3EiyElYd27P1z7VwVKdSD0ZknJK1SKPBfG2nftFeBo5FeHz2jGUQwHAH17GslPFQ21Omk6Tdle5434m+PvxOsp2t/Emq31oWBMnkwZC/jWMsTWjK8z1vcSSe5lwftBtaahbSwfFHVIJ42Db1vRFtPUEn09qqGOmtbmroa7Xueky/tc6T4xtpLTWdfi1O5sLfM93Bcg7gByzkcV0/wBoOUVpuJ4enZq55t8W9S8K+I7qWOS7QmPaWhkmXbGzYwM+veuKrmEVKxgsts3Jni3i7xX8N/AymXVL2KWXABt4W3FWI/i9ulZ80pu7NJxpUVdLU8v8bfEmXxPfC5uWD2K/8e4iAKRj3WuarTmzL2j6nL3+twMm2xVOTgmLgEV24SlazZLbaucZ4jM95evJOc46Zryc1q3xHKj1MDSU4XMuSwUKSSPyrgpt7nrOEYxsMOnKsWNoB9aKlRnI4JtmdcWQDYHrU+1cUYOlzGyIFEakdaptuoelKym0y5YKSQv5GqlFJXM4wvIvMwVQSPrWd4pilaDuWtNCseDkE0ptNHRTXMrs0EGG6Vhy3M56MnjBGD1FP2asdMV7tyRuBkj061UEkyHoS2yCRsDv6UTbSsNNJHpnwI8cWXg7xXo+lvoFrIt9frDdSW5nhnnViMRyTQxSSpHnGREAxHFenluLrK1OML/mcWNklRer26H60fsBaH+094x0K8+IXxvu4/Bnhqy2x+HPCOlKbeNUPd8jfIzZ5J59SSTX2OBhiGm6rsux8PjvefLDXzZ95fDmyv73Q0leeQRuv3p2yW/D0rsk4vSJ5riqesi3qfw607VZjNJqUiMGDDYgAB9aj6u5bMJYvlVkg+I1ppV/4Sk0TW5Ml48Rz7ejDofatG/ZLUeGlLnclsfM3iiGXQLt7Ka1DuIyiSDJEi56U5O8DpW90YWm3E+m3e+OfZcyj55yThF7YrjaSd0a8kqjVzq/hR8Tta8Iay+rvqaw2ifKySsT9o+ua1p1Ixd2aPDQqrU1vjrongf416XJqumxCO8eHdcWhQFsY4Ycc061SNuVIzlhnCNkrn51/tSfsmWqX01/Y6UssY+aaMRj5l3cjjvXmVLRHSg7aq58v+Mv2aLOfxQ0dpbxpYW8fmoZosMgb1PrXK6q2NfZTb0MST4CXF9rqvBpkg+VRGqRYyR3/SqdVRg7s7aWGlUlax6/4B/Z18P+DbU+JfiJcJaxJ86RsgE0ueRtXvz36V42KxSndJnu4fL4UkpyRd8T/Ejwrc3KoNyQxriCGNRhFH9a81VJVND0qdVU9EjHHxW8MxjybPSrxlz8xENWqcrbm/tEMk+Knh5n2TloBnjzVwB+NVGnO9jRVI23K958RNBjtpb6S4URopLMDw1d1GjOTRnKtCO7POLbV7nxZr0/ia+BXzWAhjP8CA8V6+HgqZ5cZOrV5uh0OkX5b7R5bAKF2klulejOXLA64x7HkXxH1G7i1aaG7tirhyVnRd6uPpXzWLm029zqhDlszjW16W1mN08Y3AHa2MfpXnSfPK5rCooMw/iJeXXxCEcV5ysYGPwohipYe9nuedjMJHGzTZyk/gu5toswXDAj0NbLHOeljCeE9hH3TW8EaLeyyeXJOTg4OTXPXlF6tEYdVZSs2dsvg98gGXHHrXBKrFbI9SGHne4S+BpGXPn4rL293sdLpXRmy+D72CUulyTjoK6PrF42OeeGlT1RZs3utPfbOeM96zdJT1TIjWmtGa0MqzxYJyPap5LG8Jq5Q1CxaB/OhPXuKcddGKtTuuaJNY36uoRmGapU9bmdGpJbmjbleOM+lKSR0crlqfSP/BPfw1oN74w1Xxro6w6j490q1YeBNIupPJtrW78t3OpzyupjCW6rlUcjdIy+mK+s4XwNOdKriotOpHSKb7/a+QqmBdenzuaUVv3fkl5n2H/wTo0HR/BfxW8Q6hffFtfGHim53Tavd2582CB3G5x5xx5jFs8jqDX6LwZleGpyqylW56stZf8ADnbGSrUXSUbRsvzPoDX/AAd4o8UXtxfxfIs0+BfTgr5K9yuBwOvJ7mv1vD4qjg0oxld9tD35YnC0KEYdUtl1LvhPV/DU+qzeCNEjmMcER+03UZGLo45wSefc0q9PEKH1ie76djzsRKvGHtpfLyOb8T6B4d06++03VoUS1mEwmLLtt/fp8zflivTo1qlSmkuv4mvNVlBO+5pfBrXNO/aFsdc8TaHYacul6VMtqur3ESm4u7heCc87VX+7xk9RXkZlP+ycVTpXblJXstkebj50cvcISu5S6LZI5H42eGvhpFr1toqiTXvE19GYtJ0KymJXZnmaXHG7pz0GOK6sJPE14OpUXLTju3+hMKNXE0W5x5YLqzxH4w/sp/EPwei/2T8a77RtUkZAbCzKy29vnsd4Jz68jgU6eHo46LqUZNHi1MuhXd6ex8xfErW/23PBurS+F/DXizSPFpVGWSSK0ZGBwTyykgV59XL8zhJey944KuBnQVo6nzl8Rv2j/wBqjR7r7d4m8AaVK64S5eO4bc4U9NxXnk8D3rz6lbG0Ye/BGMVilLmjG7PH/En7aPxvgkkl1vwfHareT8CKQiW4YDgdjt9/SvKxOYYulFe4d31vE0oa09WZcv7YfiDXmbUvHo/syONtxggUuwQLhF5YEsxyT2AxXHTzWc9KqsP67Tp0+at7pyOofGbxFqAgfSfEF6iRYkLzb0XLLl844wc498DiufF1sG56tdxVMYqkP3bdjL1L46azDJd6bdajOt2giISTdlSqgDIPbFeVHH4OpL91qjyP7SarOC3XQh0n9oTUEjNrf2C3IIAVXj3Z+mf5V1wxFCvE9WnnKaSaHXPx8kkhEOlaWimPkJ5YXaR7Vyv2d7RWh59XN71W4LU53xB8X/GusqVS4aONydwU/MBXdhpRjryhXzPE1KWisZelPGf9Ku41kaQ8yvyc+9XUquRw0ubEz95G27SXRgeYoCpzHz1H1FXQjeR7MYxppHqltai88E29xNuPkTqWxkgjPpXZVqRp3d9js0qQPY/hxPZ3/heC+06WOS3xtV1Pzhh1DDtX5NxvWp1ZU+Vnbh3FrQ2yhLfL+dfn91E6HPoTRodvX6g1LlzArWuOVvX8DQ1ZFuSsJnc2MVCkjNTfMK/yrk8VpdjqbkaDLbgOQKpN21CCZYDtsOScYqbKTNZbGTYf8hQnuGFdELRjZHDTbdbU2Z3CtjPH1rKSV7ndU+EryThnCk8HvTWhzwbvoBIxjcePeplI0krK41zgHtx0p30KlrAz5JR5vXv0NOLuc0bpjZ22jOO1NtGlX4SETqcAeg5zQ4pmNNu5FcjdkZ/HPWnTsmXV+EqpaXN1dJbWcDSyyMFjjVcliegrSS5lY89zaloer/Cr4Ba7b+O7HTvihdz6FBI6M0LTeW0gODjg08PTTrpSY8RTnGk31P2S/ZT8N+F/h78KLR/AUE08oiAiXzcgnHViDz+NfpODhGlh0kj4rFycp+8fVXgP7fJ4Ct5dS2/aXGZdhzg+laSg47s46MZKprsX4p/IsG2tiQthmP06UlLlOyUE6g+CXAIlUKiruOf4j61XxImaKFwbS/8AM1C9iUomVhiK4z71laz7mUotNI8n+IvgrRdf1FtKj0+ExRwl5ZmBOe+PehyTeiNINQjex83/ABS/Zz8J3sTy32hI1zcKfslqkYAYD+I+g+tcdWkqj1RTnKbuj5E/aR/ZZ8PaTNBJFZh5Lw4htIRksO59cCuWWFUeh1Uq85NI+cfFnwAtWjuLrw2Johbz+TcqhKkP74qYQgjaT0uefa54b8QadBJbyavchi21/wB6xO4HI3c++ayrUIN3COIfLa5yV/pV1eTul7IzTp1aRs71pxcUjOpKUmRWltLaMy25/dMcOhP3TWcveYQi3uQ7QrFVG35u1dVFcqLm0tEc9qDPLcuc/wAVfOY93xLZ72BcY0UVdp3EHjHauZtRR01JXY2ZmEZIFZJ8z1CEboyLonBy3PrVNXdjCrJQ1NnBCjmt9Oc0xDaqNFmxcryOM4pVfhNackWpo5ioUHIrlTSFOKeqLulr5SAMaGnKWhdGa2Lxk2vn+dVsya2jJbebJ5ok7RN4P3SQyEkg+vWpgnuZ6tk8JdO9U5RtqP2dz0n9nLVvBmj+L49X8ZePfG+jtHcIunWXgLSVmvdQl6+X5zsqwDA+98x5+7xXq5VUw1NOc216HJi6cuSyjc/T39hL4gav4xia4k1e6hstPiA0+y1DWVvWslYg5kf/AJb3ZJy5PC5wAACK+rwVf65L3W9D4/Ma8cNC0lY/Qz4LappWlxroN/r0X225XKW812HnkIHJI7fTFdseSFSze54teVSpC+rR38uUOK6lK0jkgk1qUtd0O18RWh0+4bYCPvYzipqwdSOh0UaipM8Y+Lf7OHja8t5bzw7qscyYyFztI/SuGUp0t0dtGtSk9T558YaN8V/Az+VqOhQXAjfKnztpb6+tc7qTknY74yptJHnuq/GXWIZbiHxfo1zp0UQYxyPEzgnoMbeBj34rlqVKi3OuEIdGaPgj4+aWyRXun6+0VzBEPKj89WaaQMCXfPTjt0p+0vG99TePLN8rWhP4y8Y6Z4tmZtVQsJrvfMRwo46AjrXBVxElKxSw1No8i8T+GfAghjkNo7vK8gnBAChAcIo/OvPrY5paI6aWDg3qcdr+saZ4feYaDo8EO9/3UtwoJVWG0Afqfqa43XqTv2PRo4eEXscD40S/8WXUk2pas7zK2YVJ3gqM8H0rBpp3Ouo7wscvJ4ctbWHzbqIAx8ATOB3/AJU6d29CYQcVdHJ+K/H/AIF8MMY7/X4HdVP7mA7uffArsjTk9zCWJhGVmcFrXxXXW1ddJtAIGOFlmHH5V0Rpaoj2/MmkZcUmoahIqz38jQqQWt84T64716MLJWRhN8zO30CLy4cL2HY9q76a5TppuPLoaPh9yljdTMhbO7MYbBIq6tROFjppq8tDy3x9fR3mpSCyuCDzkAAMPqD1r5vEtc53taWsefa7KsUohll+bdgbhzXA+W5w1XyVLMhgxEuSa5KiudVNXV2MulBjYjgEcU4e6Y4jZoPBTkXzjPGfSt6qi4XZhg4xc2egRozAPnjAyMV5kknseyrJFnau3aR+NY21I5kVpbUM/PHcVtFpIJO6sZ2p6R9oTIHI74raNTkMXRjJXMWb7bpcuBkr9KG1J3RyShOm7svWOox3ibJGByO9JSdzeNaLVitqFlJay/aIM7T6VspqS1ZnUhy+8i9pGoxSgRyt83ua55xbdyoYi7se+fsm/sifE/8AaFvLzxraeJU8G+CtGjI17xrqybbMDjMCcgyyEZwi55xnANfZcKcLTzepKtUqSpxitLJNSd0mpO6skru6vqkmrO6iU6jr2grvt1PuD9hLV/2ZvDvxtg+CPwOF9eTWOntcX2sXsrLJfhcfvCq/Kinj5SemK/XsqjlOC/2XCu87atf5n0kKapYOdRJKTVmfTXxY1/V30+40KK7aCC5lAkaHBYL/ACFfcZXhaPtI1ZK7ReEo0IRVVxvJI4/9ne70rxF4m8R3cUjXFhpEC2jsQVQsclkT168txkk1257FuhGlHRz/AK3M8yrKNKCjfml+Bwv7WXizxDNpr+GfCkJFzq7eRpdiC3zuc4yAP17CvUyijSpYdzqSV0nq/Tb5nbgqPJRU6mpc8C+EtQ+DPw0s/g94bvorGOOJ73xFfRhjHDI+Wcgkku2TtVeSc5PQ1596dbEe3mrz2RNX2FWo67jdvRI6X4V6d4L+DdjqXju8Rr7xJqroReXyBpI4xnZGD/BjrjtzU46licfUjSWkFvY4MYsXj0qd7QXQ8A8e+MPiD+1z+0SnwC+GuqPbW0JNz4t18crY2xJzgngSP0Ge3Ndsp0cowqTWvREypLB0vdex1Xxs8BfCD4CeBLv7Vdw6fpCQi3iuZ3/f3LkhWYZI3O5PLEgKKqhUniKXM/n5GdWjGdLmnufLS/Dj4V/tReOfFk/gSP7R4S8BW0FvqWqpbMy3V/Lt3KvBBEYbk9Op6AmvHr05Ymsk9lf8NTx4VaCs3F72tZt726dO72S1eiufG8PwMj+M/wAUfEXiqOxkbRrQ3cGmOqFUWG3Us7A+pwff0rkjlf1mpKbV10PRjgqlaq520XRniHiH9nC/+IHxt0bwFaCMrczS32oOpCpFaRAs7kngfIMcnqa+D4unQyXB/Wqj1Wy7voj5XO4wnVjCS6i694F8EeNviJLd6JeRP4L8JaAda8VzQzk5lWZ40tMj+J2EKDqcPntX5tVq5lh8HGpWfNVrv3UndpXa1XRqzdn0afU58HGli6jTuo01d+bWyPJxpF94mmu/HF5tN5qF88pwvAJ+YIPbHA+lfa5bltOlgopbhg8MqsJYmS96TJZNAsrxBLGoCzDBC8FH9a744d01cqNPmlsY95p88d0YpeLpDjfj/WL/AIiuazlN9zF0IczdveRLZrbOfs80YDnknPAPr9K6ISnsEZe2lyWsWY4jbsZ47fIBCyKB0PqK1VKTd2dLVPDr3UamnpIs6H5SC3+r7rz+ldVNxVkY+1lJns/hGNJfCAMhAiSRDkckfNzxWGOX7id9rHsUnF0bI9k0y3trXT4orWONUZAwMSAB8jhuK/A8fOU68uboz1YRUaV0TKQWyOPwrznqQtWShtgyR+tJuxrK0UERDnAxwetS5Noz1kKoHmYAoirmkIai3H3cdPrWkSavxDLYBmJAwcdat7GkWrE4QGNiDxjrWaepcl7pjWTY1c/7/WuuK908+m0qpszk7ySc9sVzydtD0J6xKYT9+Sx4NCbascysmWHO1Bx+VZ8rRbdyJ1JGDx70SZp9kzpU2z9OB0NaR1Rzu0WFyjNHwcHHWp2dipNSjqVIVw/zevFU23sY/AxZsEE+lVFuJcrSiVTJLFOskE7RupyroSCD9RWim73OOEffujvfgxceJ9X8fabGjx6hK9ygUalIZE6jqM104SMp11YyxVaKjeZ+1HwM+y/D/wCGumweIdX0+KeaJDb29muFLEdNo6/Qmv0PDVPZ0UpM+Nr04VZ8/Z33/q59b+AhcyeDLJ5SuWjyx2bRyO4pqTmrnPVnH2mhasra3C3G5SwR87W6dO1SnbctzloyKJ2k4m5VvmeNew+vai9ndmskpLQrazcrHA11LBhCpjiUHpnvzTctDNRclY4vV7iyv9WWzECfZrGHfcyBvvsegNZxknKwnCUI33ueceKp7KdrnWntYlnkb7PACM7Yx94/lxVOS3HaySPn3WPBmn+JdY1bxzqVvEy2ytBp8QiwsSgYB/8A1VzSnKpdlfBFKJ4BD8KWtD4ga/4N2xuEOzjcO31xWNODu7lOpOx4j8XPhMhv7u1tLfcWYyJ8mGBAGR/OipD3QifPvjHQIJnnMQMc8DbZFI5UjviuHkb2OuCTZzUdq5+Z1UZ4MgHDH3rWNNJainU7GIY2W8eJlwFfqKvnsrIVP3nqc9eMBcSE/wDPQivmsQ+avK57uGVoJFYtknjB+tctRaHU9GQzk7MZ5qYm0DIu+MkDvWietzhxWzN6VTsBHpxV3bmdWJTVRsfZuwbGBk96c03AKDRpKwkQDpgVyW5Xqayukyxa/IR1zmtbqxFBXkXHIIz696lF1txLdyW2mipG8TSm1YtxIJACKmOkSpRitS3bW89zdxWNpA0s08ixxRIMlmJwAPqalU51JqMepi6krXPXdE/ZJ+N2k+OdC8OePvAfjexjku1k/sbQ9P3zXcjD5MfMAvGfm7CvawmX4ulPllTbXc560nWotRZ+kX7D3wI174T2Qi8d31n4PjNuqxWU1+jXsaEkiOK23sVfH3pW5b2AAH01BU6KTvY+YxeFqVIRvrufen7MVx8OYbuSx8I2KT3IjYz35YzSf9tJSOWPoOB05rqpWqT5or5ng14uEPf0ev5nrkmfO9a7m7HBHW9hkrlTuYgVtBrluy2mkPktUvLcrdOVjPVQcZHvWFSn7VjUnB6bnB+OPhtoXioSRaJpMbuAd1xJ90H+tcNSlraJ2RlOK98+dPjB8EIHmuIZbeK+kVCWiVQEA9yOgrknDl1Z34ecj5q+I/7PvhmS8e+i0a5tTFGS7QsI4wfYjk/nXNUlC1kjqlUlN6M8A+MV18VfhpZ28nh3xBeTT31x5el6bOwczP3YjsoHP4VwVfdkXHETR5b4y/am+L+jmXRb7QLW4nsyDJINwGTkn9QK5KkU4nVTxE1HzPN/Ef7VXxhnt2mGnWaSC33AeWzHIOSOT1rlhS97c9D6zVjC5zOrfGX4v+IbIX8HiyaKO5XdCIFCDI/hNXOmpoiFapVerOb1DUvE/iG3W+uvEl4Sx4d7pv3b90bnoexq6SjGNjrdSUY6MrLfaxFIIdYcy7RtaVkG9D6N6j3rWLsjlUHLVmrZ2ciuGikAdx8uR8knscdDVxm2W24Rsjf0ZyX+zSRHKkbkYfMn+Irtp1OVWZMLykd/4VRJYRGpywQ4I7iu+nUbR3wp2RN4fuGiguCRIhDMBKBnn3HpU1al46HbTUYux5h8SDaXOoy+ZZp5iA7trAFvevAxLtK7OpXkjyjXoJDqCyeZuTJ2t6VyU5x18zy69O1dMtwuDGNp6DrXJKLuz0VJco2+Yrb468VnGPMzKajIXwNHJ9tkcevGa2rRfKc1Jckz0OFsRjjnbzxXDNWPRu3ElQEnk/jWW4opyYMpGTtFaWsaSjYjQgsdw4+lOWo1oVNSsIbhSGQdOmKSbixSipKzOb1DTbiwcz24JAOSK6o8k15nnVaE6bvEfY6zHcx+TcD25ocHHYiFa+jEkgaKQT25yPak530Z0KmovmR6T4R+OXxWuPDWjfDK98a3s3h3RLiaaw0SeU/ZomlOZDt6ZJ7nkV7+W8T5tgKUaFKfubNW3R34fFOnNqKWvl+p97f8EVfCM2oat42+OR8KWum+ENNg+yf8JBdIFL3Yb95EGbBYAEZ7ZIFfoHCud5diMTKjGny1NDkxGZ05YmNCF3Un0/4B9geObW01iSW3sCNsytIzbMZGPve3Ffs2WQjh7yS1k7vXrZL9Omh9Tg/aKmnU6HKeDXtNAt5PBngi2Kx83F/JtOZJCfujnp616eLbqTVSr8vQjE04c/tKnyOd8Ri4s7qXxM7pd6nKHj02QLuW1VeGcY6ntn2rWnBTtHZDUqtamoR+E5nwbqOo654avNU1qSe6jvLl0SLeVKW6HGT6NI3HHRQea3qQpe15Y9F0/wCAdEKXs56JqxzP7RXxYk8MaO1/ZTI+GaVYIzg3UjZijjT/AGd7dT2Q/hvSjONNyW/X+u5hib0oWXUv/wDBOjwzoug/Cjxh471y9t7iC6vJJNT1QA41ObJB2EgExADYvqOcZNeHm2GliJ0qUoXdTdPt5o56icqdOlFXm/wR418SJR+3L8Ydf8beILtz8O/hsC9xCG2QXl4AQkC44IBxn3NfQ+yjgadPDLXm3NKjVJRpLVo4f4r+PtQ+Df7L9t8LvhEzaa/xB1I/2vqdtHlYLd5QjSDPZQTzxzivHzBQc0qa66WMI4ejGTqTVn0RL8c/hd4c+APwS8LeAvBkhuF1qwaaa7jwcQLAd67gOrN8x9S3oMDqowdXDzlFWUFb1ZrjYuWH5krWPlf9nnwvZ/FMfHDUNNeJtd034Zr/AMI9YzXEUC25edPNcyS/KgUKAc46jmv528aMfi8Ljcmw0k1SqVU5dk+3zstfI+JzClKdTRNng37HHw1uPiP8BPGPw6s7MMbi5XUtXvJDgzGAN5cYbuoJZsdyR6V7WQZPHM8e8VNX5VaK6a9TbIsJRqZRUXVvX5dDh7rwn/Z3hjWLezUmTT5xPFx9wo5BGPpxX1VLBxpUJw6oypKSpSh0RSg8NLqOjya9pik27hWlQZ/dlsH8vQ+2KxVP2qOyOGU6anE57xbpEt/am/to9txbnEh3fxdj+PSuSrhFD3up52LpRUeZbmTaQQ6xpy6nCdkittlQdY27/ga53NfZ3R5ixKrx5oqzW5raJb7ioXJnAKyK/IZf/rdvWh4iVjpoN1H7w6CFEvhb5IdXxu9OehopyfNcxmv3tj3D4cWl1H4NnntbaIzRFZIUnAKmRWyNwP8ACT1rkzfERpYWTPbhScqTPV9HeVNHtorlVEqwASqgwqt3AHYA9B6V+H5nOMsXJx2Z6FP3aCiyaB90nTp1zXmsUdyeQfusH0pSZ0TV4hAgJz196UVciNooczEPg9KuNkVB3ZHdzbY+SOBQpJMira4tlKrgMv48Url0k2ixIQsTtu4xS5rM3a90w9OfzNWOBkb66oytA8uK/fmzJ95ua55yuehJ2RUXe0/PrTi7Iwskyww2pj880m2xppsiYtszUyZcnaOhmyNI8hGO/FaQaSOdx1uOkb93g1nL4h3VykVYScnvW0Niamw9sc1Mr3Jv7lioWUyZzzWsYO2pz+/sjs/g74g8WaN4qtpfCtiZ5PNUMDamRRk98CuihL2U00zmr0VUi+Y/XT9jv4U+M/FGm2Pizxp4rtUlSFXjtim4RjHUK3Q19tgYOcVKTufHY1yb5UtD9APCVv5XhW0jRzJsjwGbjNejKcbaHDGLvqWIPKZmHQytzUR7nVO8V6FHUWgRzED5KAHPHL47VNSRvRT5bszNflt4bFr+5R1xH+6j68+tSn7o4+9Oy2OP8QrLp+iF0QwJdDBJABcnofwpNqK8wuvaaO55/wCP7C006W38M21x5rQW7STSIudgbqSfWlJSclFGbu5czPMUm0S5sb7QhfvHCjKJfNXBILfepx5YRZdTlT0PMfH/AIelXTba38O2wkuYdQkE0XQtEGycf8B70lZmdm5Hlvxs8FfYPF9tqvlRwwXNuWRVOQrf7Xp0qZRu7jipcp8nftGfD4WWvXHifw2oVpCVu7QdMg/yxzWM4a+6PmadjyWaxje0kn8raCvKYxzXPOEky5NI4w7vPdn6hj1qFsdFK1kcpLJ5kj5OMua+dxLSrs96iuSKIOQxBP0rnnqjqtciuGwhI61nHc2ijHu5epJ71o1ocOJtZnSyqWiyB/DWispHfiI3bG28gBHIyKpvQ5Ke9kX7U84B69656ljs5eaOpcjG2Tp3796iLFTXLItM4WLJ9OaHKz0HVQy1cSOAvbnNVJrlCmu5fgz1zg4rJS0NnFNkz7JBskAbI6EVUW73QrJGx4Ij1DS9UXXdFjENysscCam12wa2L5HyLnLNjOAK6qMpqDfM90txScY0nJR2Ptb/AIJ7/DHwx4q8fPrrahcTIZFtL26mu3d5ZFbIjcsx3SnO4wx4xkbm4xXuZbThCvzTk3fufLZniOVJJux+y/wJhsfh14VtdPuXttLsSOGvlSO4nY9PlXAUDoOp+pyT9ZKrSp/Cl8j42NCq48rlKbu9Xa+r20SWmy0vZatu7PUWeOVRJCcg8hh3FaRfNqQoOEmmMfyIv3s54Xpmm2r3ZpFORnXl5LrLmzjk8q3X/WN3Yeg9KwdVzlZbGsaSpLm3Zg6/4kvdVuB4O8FxbQFxc3e35Il+vrSb9p7sTeFDlXtKjOa+IHhXSdA0eOzFqZ5rghLa3ViZLuU929FHWuatSUbJBGq3fseW/Gz4GweGdFjvdfu0kupoy8qL9xB/dA/SonQjTj725th63OtD5fufgoviM6x8XNds8okf2TQYmTHkrzucccFv8K4J024vs327ee/y/wCAd0oRclZnyjrnwli1u61jUp7bCtI8iEDJIEgUZ/EGuL2cYpnY4xjFI831r4RQxXl/o13blZEfz7VynDI1c/sbApOWh5te+CP+EN1i48O6pH5dleSbrKd1z5cv90ntzWU1yG1FuMjE8S6IfC9w08kH+jXgCXcf91+zD2Nc8lK+h3pOSuzNSF5IHguFR5oBiCX/AJ7R+h9xW1KE2veLm4qGhNZw+RCbiCykkgJG9c5MZ9/Qe9dMYqK0OfS2p0WgvDdHJyJE4DMcOvsfUVrB3kXTlY7Xwt5izImQGJ6g8H2r0aXwndF3RWtZriC8vkt5WiZZSybm4B9ff6VniLLY7aKa3PPviHImo6m41bSwjKMtNAMY9G+leFVqc87NG0Xd6nluuzJa3RUjcN2DnvXPFL2iSVzhxTadxum6hFcriMjg8isqkXHc3oSUojdZvhDEVYY470qcLy0OetUVKRpfD6NpN0xPWlVbjGz3OijFNczO/tsAD6V59TU6201oWvLXHTj1qIlwSRHMQAVA4x2olK4VHYrofm3Y70k2ODuhtzyNrcVpZGc20UriFHQqVHTvSjeMrgvejZnOazoTqxntSR64ruVWL+I46lBR95FfTNYFs/2W+cL7vwKwlDmldbGEcQ78rPcPhb+znqtn4Lt/2jvjda3ehfDuO4Q2LNAy3viaUMMWtkmMhGOFe6YCKMHqzYQ+/luS4irSliZxtCGr01ZdHnxeJeFw7vNrfpH1Z95+DNN8T67deFPgDoXwFh+G+i+N/EB8a+M/DuiXrvb2ljAqCxsXcAKZJWXz5AAMhl4GcV9VwNkTr8STx1ROKdpW2W2it0/A+gyDL6WDqutOp7R0YtKTt8T3a7+p9G+P9cstMsLjU7mOWKKNdkiod7MQOEAAr+hcKlNpR3Pew1Kc5csXucJoDeMrzw1dMwfTX1CNoxsTH2O1JyTuHLSH8+fSvRqzpKrG+rRpVwlNVbt81jm/iD4j0PwZ4JvNbuVEawWIit1d/nMQzxn1PU/U1pJyaOGrVknyrY4bwT4u1i5/ZzHjHUJ5li1bzJrt5piJJQAyxQxkcxRhTjj0+mJpUISrt/dbTfd+txUufm5222vu/wCCeIwal4t+OWm+J/i14jVNN0HRCmlae1sxbyYyG824bHIcgOF6YBrulFRqLmdk0Y05TrYl83R9T2D4nfEi8+Ff7E+jeFfAFsbXUNdtA9laqMNFHLhIARzg4O4nrk+wFZ4Kn9ZxrrX0joj0KdKUKsqvyOY/aD8PD9m/9jHwh+zJ4GUvrXijyptZuScyTz3DgFmPr8zNk9K3y6jXxuOnUjq78sf13PKpzqTrTqS2Rw/7RvhnRrj4e+Afh/awJ/aN/IplKNuc2dvIxUtjpGCpYjjcXHYVFGjTqVJxk/hdyqkMTOVnflOu+EHizw9+1X8MJfCV9NDDqHw/SSy1W3nwZri3MLCKZWB+Undk9eeOK46+IrYbF+zptcrfvKzu+1ndW+5/qd0IUJUJRlqz5e/Z8+H3wfsf2vfE/wAL/F2va5pug+I/BF7b694i0i4iUDT1XMkKwSIQ0jnADlgF3EdSDX4F49xxiy7C4rDwUpwnG0Zd27J6bW369ND4rN8JWlVTjK0Nb2Wrs+/bdPTro0ZX/BMXwD4Xv734ntpXhe5j8NadY6hFZaZeXYeXZHG2P3oUB2J+YcYOcCvueCKOLw2SxqV3+8bV7Lv5f13KyrmWXJRTSvoeA6TaaN8QfFWrXWl25gsdS1W6tTFKuCm9fl4/3h0969qveUpu250YelG0mtbnJfDzSbvwpeXVu1os8dncPDeWhHE8J5PHtyR6EV5WHjaXkgpw5YOJz/iyPQ7DxvJ4dETQidCAGY4lhPKsD6rnpUYitT9vyM8qvVpOuqOz/M4HU9FufC3ix/KUCGZisqkfLkdD+NeFiaTpYi62Z87Uws8PjXJbSNjSLZIXDEbRjKjGeP4l96FTdrs93DUbIa9nFFrzqjBELjtkEf8A1qdKHNM5akLVz3/4dabeS+BJXsITLcRJ5nkjgzIOoU+uOleHxK3DCNJ7nuRX+znbaDqNprujQ6pp8u6Nk2sW6hhwQ3oRX41jY8tQnDVfawt2LED+XNjj6VyJXN07S1LkzZjDDpinKJ2aSiFsSRyPpWbTiZS0ERHklwc9fSlewU20xL+2k8vd/SkpK5clzdA0u1K8MMmnZsm8ouxeuoR9nckfw1L0Zsr2Of0hV/tYj/arsirwOCaftdDelCgHAx71zzjZnXb3blAKRKBz161rFKxloySViy8+lJ2Q4qzI5TtjIOKxk9Rt3KOTuL7a0gu5nPREEsuAR/KqktDLXcg3BjnHPpTgrI1l8JBLK5cqp49a1SVrnPdkRQls5wPepcmxNxgd98BNW18+NbTRfDevanaSXNwokNjdCJHGejGunC0XVqpXOGrU0Z+zv7J1r4y0fwBbi+trpHaFVW6ecSM34kdK/QsJQ9nRSZ81iVBM+zPBTXMvgy0acgt5Qy3U1ckoqxx1FGNVWLdrLHvVlGPmxkmpg7mdROzKviCRLd1umt94RTgleM/WlUjc2wycoNGPqiqY47/U1Vj/AAoGxx61lzWVmVZ7I43VFuPEeuR6t4mnEVhZEtBGGxzz1xWfNd++KSVOFoq7Z5/Y31pr2u6t4omhRrS2TyLGAvkSdRn1P1PpU4eo5VHNjp4b2cIwXRdzznxlBay3FzZ2tuA91bhpwi/NGd3Bz6YrWclLQUo2sc54T8NldfvL3xjeLtRm+zSngEAYrOleN7lSjZHB/G+08N+JNfs9Os5II4hGImZGBLdeGA6deDVynd2RldnyT+0B4UOn67c6NLcu11GGEZBGWQcj2OPQ0Qd2VBa33PA/Eek3NhbTNdRYV+pUYGfWs6sbsc9UeYzALNM3puOc5rmlZROihukcXIX+dh/ePJr5StK9dn0tKPuIYmRyTyaxm2zXm1sR3eCuc96UGawMW/BDZNapnn4rW51dt+/hABHTilPSZ6dRxlNplU28sdxuJOM9MVpfmic8oOnqjUsCFQHNYODHGrJlkOWYHP0qnCy0OiNlqWpiDCV5wetYJ+8VuJZJg56elW1damc/dehdjkIIx1pKKTKjO6sSpxyDVt2Whd1FXOq+EFv4B1Px9pVh431qezQ38T+bHC0iJGuWcsqAs5IG1UA5LdRirwdP2tbWVvxOWrUhKm43aZ+mn/BOWx8D+LfiWvxH+G3guziGnxfYrSXVblN1gAcDybSMlLd2xlnkZ5nIJIUcV9tg6Srq9lY8DF04ezvN6n6S/Drws8mqx6z4tuhNOrH5NQcHYM8MBnAJ6gdh+Ir1JQhFJHgJzdC8otSTf52T07rXv3s9D1ZJEdd8LKyEfKV5FbxcXG6PKbanqUtUu4S4hdWJPXArKo0dVGEmrmVeQ6rqgNpbKtrbfxyk/MwrmUpX93Q0hyQlrqyr4WdJdRlh09Fj02wBMkueZ5P/AK1VRqXm0tka4lOMUn8T/AyfCR/4T/4q3fiK6jP2fQ4/Kt1JypkYdfqB/OtIS9rU5l0MsTH2OGUe55/+1JqF1resxeFbeRRJeyrGoXnavp9TXFXl7ary3t/W3zLw9PlpKRwfx50rTPC3w/n8N2mES0tfmTGBuC8/596mUVCmzppuTfkfI3gXwAniTwfqutWkfmRCKR328gZk4H51yU4RnDmO2pJpWPNPiN4bguTZaxa2uPLVQ8qJ99CdpB+hrnq2S0Lg9dDjfiT8KdL8S6Rf6XqZ25g2q4UZjfqj/wD1655U4zjqdClZXR4RpECatb3ngLxgHe90xvKZwoZtuflkxjlT39K50nTfKdEK03omcze+FoNGmfR9TDKkhP2W57A+me1bJycSk3a7I7KGexLCVwssShWkCbgy/wC2O49xWcXJPUdlYv2mm29wwv4JER8g7ojlc+h9q6Ias0gjsPCyl5kUoNysN4HfnrXp0tYnfBNMqSyXC6jeGzu1ikZzhJlASUenNcmKcYt3PSimo6nB+OJrN3m+02LQzKv8DkxZ9Rgd68KvVSbaJcopXPL9cso74iMRgehziuONWXPchxdXRlTTNPisDkg7h3NXWcqiTuZQg6UrGJ4yvpvtAij4+bFaYd21OTFQfNqd38ObYR6WryAZK8GuKrKUqjud9GcVSsdlaElVJ64rlqPU6FexdjUBOT1FS9jW9iJzuOAOe1JJtjcbogbCP07+laqKRnB2ZDdMTkE/gKbuVUtcqsx6n14oSHoo6Fe6iaRSQOvU4q1YyknI679m7xR+z98NPiFP8Qvj18Hr3x2umWRl8OeGUu1gsLrUAw2G+b77QL94onLHg8Zr08urYbD1earG9tkctXCKtScac+SXe19PLzOtn/be+PHif423vx08XXOj6tq19ZCyh0zVNIjm0ywtlIMMNvat+7jjiKqUUDAKgnJJz6dLOsTSxUq0Hq1ZLojqyuf9lU5U4Run33v3utbn0d/wTM+IvxY+NP7WOr/ED4j+NdQ1y6GkS3OpXl9MzIjsVUFR91eBgKBgAADpiv0Hw2r4vF43EyqO6sr+tz0sNi6kaTpR0hbZbH2N460y18T+JbWCA5hjmMzgF1CydAzkDBYDGFNftWFlRwilaNnLfTfZX/TvZdke7QnUjR5r6mV8QtWvbOD/AIRmS8aO2OQR5hSRlHLOxGME9AOM5rpp0KOJjLzXRtfc1qvVO5UJ2fM92fNX7bXjWXWYrDwX4Xs1NzrNzb6bbWLzYLea6q33cHhSSQOg/Gt5Xo0uR6tnHUppNwV7s6D9qvUtL8AfCyx+Gnh6A2MOmWiWZwVLMdi7mUHPOcgcZyPxr0ctwtVUeZs9PB4epTw2rvc+e/jf4o1X4d/BXTvgD4Ms7y2vPFfjJYdfWefdIITsZ0bgZO3cCSODms8V7T3E9ZPRaaeZxYh8knKDbk9nufQfxQn8M3t3Z6veafLFaWFtAwtpJeF2xpHBCpOAvOWOO5A70qU5YKg1LVpPbqzqoRrToOE5XZW/au05PG3x7+1zxg2nhbw7FcxxhcxwkRqF9sgv+ZFcuDxMqWCT2u3+JzUKTw2AXeTZ4r438br4p+I/iL4laZcJLp+g2DeHdBtoY8jeIgJJOmDjceemV+lduFwqlKMlO/M7u19O1yoVXG8bdNzifhlqniP4G/trLF4dv47jTNf8LJaXlldr8kz+WTgleAcknvRioQqVtev6HmR9oscnJe6+w/4GXPhTXtX+LH7R3jSztNKsPh14ZvFv4pHF1b6kzrJGLW4iI3ASMUA2FOVXJIyp/AvGPMeapg8vjFSnUkrau6tJO/rb8PPVeNmuIw9aSg5SjyXelveTTVndPS7T92zulra6dX/gj14wuPiP8O/GfhjVbGOC91HTJ7iEW642RgZCIO6qoCgdgMV+q5FJvLKbm7tWWuvSy+4WWv2+CjzX0aPFfDXw+t28S+INImhSC+07WGa4UptzMJSyPjsHU49MkVriadqsonrqhCldWOb8e+FtJ0v4ga3NbI0FpdSpLHI+VMTEcgn+HqTn2rz5UIQi2efVSU3JHkf7R3hA2+k22sW7L9v0iQL8p+/FwcqR95ST26ZweleDmmHU4KrB6o+dzqjJ041orWLv8jiPFs0Gr+E7HxPCGJLBZWB+6ePzrGVKWJoqoKq4YjDRqpDokCaS0+zMvlBkcD+Neen0pVaLVPQ7aSlOh7pAl0b3UBdsgAfa4ArzleD0PKk5KrY+kfhnBNa+ELW+tomLQ/OVU8lOOR7ivlOK60o0Fc+goTTpI6DR9OisdWn1XSo1Wy1TL3ECcCGcfxAdgw6j1r85zGnCVJVV1NKOFVOq5rZkt5uhcPjgV48bJIVaPK9C3bXAuIMZGAKo0oybViSAiM7SaymXNdSWB/m345zwazSuTTSZNcusoCYz6ZoUWtzR+4ri2gVDnA9xV30HG09US3jD7Mw77azteRc1yxOc0pR/apx/eruhpE82Dcqhuz5HK9+5rCpqd0k1AoEsre+eaqKaRzU7X1HkqF46e9RO5pJohnfdGwyOnFZWdyYu7KZcjB/KuhLQzqMrOy5OePWiSbFTV0QklT6GmlZFytYgkkUPnuetUtTkd72Rc8Oz+F7bXrW58Y6feXWmJKDdW9jKEkde4BOcVceVS1F7JdT2rwj8dv2aPCvim2n8NeEr/T9PEq5tGi8yZv8AtoOa6aFenTqJtDq06Lp2R+oX7FvxdufiL4bhurDT5LfTTEpsrJH3yMPV/T6V99hKjr0U0fG42tGMmj728Pfu/CNsXQKRCOi4wcVo42jqeW6jnV0GW88e0TSdQcjIrKLtudEk72Qy+mN3ahrsDaGyq56+laTfu6jp2pSstznNR+33mo7VsmlSM5k+X5R7e9cm8zoSjGK1OV8bNaXaym8k2Rt8hiTjcM9AKyqOLdgXkcR4x1DSbbWdO8LaREiQcMIpIxmQ1UZWmoouMZSvI4fVdMlm8X3ySq32t4iJMLhQoHA47Vry/vLMirZJGHotzo7aTd6fqczSi1dkMTKAynseaqMUFk4nmHivwXp2rarqV9phdZotplTGC6Hr7ZpOMVIxlFo+Y/2ovDunanq4SOZ5THGf3xyHT0zjrVXitgimj518c2dzpWnXFpcysxwMg45HrWUle4SPIriLZBcusYGFbAbqK46ySizegnzo4R3LgljySa+QqfxGz6mm7QRGchcUaWBayILmT5BmktDoiZF4d2c1TRxYlaNHS2shhC57DmrlC9S511vdm2XI0S6XHf1rRLlRUZKroOiH2RsOCMetYzknsZVI8jLFrPHK4IIz2NLm901o3bLkzlY+RXP10NG0mLaHIO3tWsmlEl6lmBsuST6VlFvmIi+VllTn7mOlW7WNFFz3Oz+EviD/AIRppYvDepaboWq3+6C88UandSMILQj54kiVTgsMgsPmOcAjmu/BY9YaLjFJN9fIc8LzK6Z9Z/s5ftn2Pg7UNB+FnwWOrzpbzbLnxbdaUCbZXIBSxsUIhgJI/wBZIxkb7zNX0WHzpV5QoxT5U97fkv6ueRisPThG9R2P1K+A97P4m0W01bUvEk16AoN3JcTnhyOQgH+tfnGQSBzjpXu8jdO8j42tXbumfT2gPB/YlstnbSQxCIbY5AQwHvmt6NlTPKmnz7jdXeJY8ZIJ7qOawxE1ax14W7Of1i31S8g+w2crwRuR5jtnc/0rhd5LQ9SnGlH3nuF/b/8ACO+FWtox5KCMs5b07k+5rZXpwscvNGpX5iv8IbWTRfh9JrO0yTX1xJPjGCcnCj8gK6KLjChcnGN1sQodjymWKbW/iYdd1CJZI9Lk853zwpGSR7npXFGF566rudjUlT5Yo8u/aXn1bxjp97ZRhUS8jErODyAXII/LFZ1oqZ0Yegk1c8svfCMvgLw1JZaJF5VpLZq06YwHyQeAK5uWMNIm9WMWeX+KPDY8LW8N1qsWbRryS2unA4QSAEP+BNTKFNLVhBrY53x74WtrfTTqcjrLFc6e0czRnpIo4YfzrGfKl7pfMj4/+N/g/XbfXrT4geGr82l3EyoLkEmOZOflk9PxrnnRc1zLobckm7ostaJ4z8NHU9RskjuUUrPCTgFh+hB7EVMZJxOtXhCxxrwpp0gkeSY25OAQMvCfT3Ws5XiQtWaOm6RcQzebBsKt8wlRfvD3AroopN3OqCs1c6bw6pE8Y27Srche9epDSJ2RZk3ckc9xexyzxKrZ4lclD9dvIrzsTKMZM74NWvc828aW9rHNJcNb2zD7p8u4Zj9cZ6V4OIcpNuwVYSlqzjLp1kfgZwPSuaEHe7FFqxBIoEZb8qJzdrES1Oe1e0a+1Ddj7rDrW9FtRsznqQ9od54QIhsljH9zoKyqxle5VGNtzqLEMyKW9K45LU9CMdDQRsR5IOfSspblN2IGVgST69atWSNFqtClNOyyHb696pMwafNqMuHOQzDtzSUkaTs4lYyJxz+FO+hCuKAQCuOo4qHK7HN2WhClsWlOfWrbaWhndI6DwP8AD/xj4+1tPDvgTwjqGtahIMpZaXYvcSkeu1ATj3rpwlDE4qfJRjdmc5yfQ/SP9gP9n/xN+zX8JrzUPHHg7U9G8SeJruOCOHW7JYJmTbu+VdxYKvJ5xnHSv6K4Ay2WAyeUqkbS3l+h7eWUabwntHq1q7a26H0BpGteFI9Ih1O01MX9qZ3WGZSCplAO5/fG0j8K+lqYlyrRTdnJ2X3N2+5M9Ne1mrxVj568X/FKPxj+07bfDy5SU6dFE08Vw7IqN82GYrnLN7ZwM/jX12FpyoYKU47pHRyypUuaT1Z5qDYeMP28Dr+rxyz6R4KjU6Tbrbl3nnlfYJiiZ2og6ueFDZJwM1xV66eIpRqac0fxHgqUquKsnryt6tLZX69ey3b0Wpn/ALVvjSz1vxVNqct5DJBbsGkiDD5CZFVVCn7zliORnA/Ovr8HG2F9n2OzEYiFCkk9Dzjx4ttca23xl1S1M8ulXwMcTjd5t27DLDONxCuq89zxXFUk5u9m+XyMqdC0U3szvv2ofEtx4v8AD8HhfQddNs620VzeQvGkcdnKiblIO75yi4Oe7NgDjnmhh/aturt6mFWusJC6j8zhvhB+0p8TP2iR4ktLTwjbx+G/DEFtpdx4xik8s6vOAGkjYyAAsAOOx2jkYr5/BY2FfOqtCUrRjsr/AH6ep5UKssdipN35I7b7+SIfiJ4StvB+t33hRdUNquraBcanLbJIdlhAoJhhJ6ec5PmMR13DngAfQYTE0niqkYKW3y0/D9fuR6kVKtRTilZdX1/4HQ8z1TU7jxB4jg8aiWSWXSrTTGjkgyuws7Bt3OScH8q7J06dd31urHE1KVrHB/EHQvizpP7O1/otnFp2maH8c/Hsl1LdCRhcXljp0oUjav8AAZGJJ9RX4ZnGBwvEfiHFpX+rR36Xk/8AJHyGZ4SviMwUY3s9z0n/AIJy32mfs/fHDRtOaAW1vJqZ07UDM+NqzwqynHYZDc/h1r9JwmHjRwsqUFtqe3h6Hs8NOEFsVf2tIW+BH7aGtaTpOnpe6ZrELyXUezBkiQZYgY6qnIrWrKL5aj3a/IbhWqU4zn1OT+Jup/C34reJLnTtHuo7Ca/0pI7y3vZgAMxq0dwjYG5CxZfVc/N3rxq9Xn5lcurSpyptJ7I+QfiBL420LWZPh/4hvXmSwkeKzMxyUGclcnqD6dK+frOqm4PY+TxPtlUdKWzM3wrGn/CMaj4eu0HkyjA5z5TdVP8AStcE3DDuDN6dF08ucGuozTtVS60CWydMmPAbH3tw4P1GKSftYO5WBrQdBxKnh1EZhbMQJI35JGQBXnSouLOWGGlKd33Pqn4VgJ4Ks2H30LAkD2H6Gvzjjqs06SR7lOj7Kmjok2LkxoFzyQBjNfmtWpKe7Gpu9itfxiRCcdO9RF2NJx5omdp9/Jb3Plds81pzdGcdNuEzZXDrvQ9RUT1O63Mh0J+bHasb2MovlYsvmgDjgUcybLklIsWKZALdKlybZVOSTsSX/FuwP93tWsUVWfuHP6Sd2rkA/wAVdUfhPOpfxDcnbAx7VjM9CfwGc0h83nrn1pxOOKdxzthB2rOTNJ6IhdhtPH51C3JgUpSQvBroTRFZa3K+ctx+VUKk+g1lJGAOaynI1exTnQpLu7VUW5aHK7qVxwlxwDxVciW7BNyZr+DLPVLnX7WLSbA3UxmXbH5W7PNXS0qR5dTHENcjP2c/4Jv+CPFNj8MbS6vdAbSpbjYJHlB8x19Pm6V9/gq83RVlY+IxVGUqrZ+gWnMIvDsMS5+WIAhh149a6nKUo6nKqXLXM22uEgR/PBPz8A5rOGj1Ozlu9CPU7meRQkZwDwNxxirqXauVTilJ3Ma4UmCS20S+kyAWuJ2bjHcVzJq+jHJu95I4bxcLq8162tdKiSe6ZcncuBGPX3qJQblZBG7jZ7HI+MoJ9I16ze3iW41IsBI7kYT6VfMoTSS1OmlC1J32OL8Za/qVje6hqVjOJLxWRZncDYy5wVHv1qKlWak0jKcJNIwrbR4zFqEmtxpMtzcAO0I+5wCCf6VpTm1oypJQV0cv440QaRdi5F3OIVgGTDjdKvvjk/zFbSsjmnJWPl/492AufE8+pRahLHbiPaGdCEGf6VDklsZqpOWlj5r+M1mlnamKWNi4Q4kHKsvqD/SpcopGjaSPFL1R/Z92/J/dt83euWouZM6MPrUSPOEORj3618hVSU2fSbWEZsZx61LtyhfUr3LAj5elSjoi9TKvE/vHnNWjgxTbudMihowcduK0bXMelWjzNjrWdoJckjk1V04nHFunM0mjW8g+Xriudtpux3XjUQlhEITtb8yKlxbMtYTLsx3KMHmiMUmJN82o+0+XovXrTnFM1abV0WY1w/y8D1qNETF66lmEqoGeeM/SsW22auVibT9H1LxPq1v4e0aBZbq7kEcKyTrGoJ7s7EKoHUkkACtqFKVWXKkZ1KsuXRH03+zFqf7Pvwc8RaX4ZsviU3izxDa3Xm6p9ihdvD+nSkY+eX/l4ZTgEqACRgFh1+nwVbDYJqkrtvp0ufO4pYzFaT+Fa2P2Z/YzgvPG/gWz8VBpYhMcw3NxbiNivTMSZ+QHnaAMAcnJr6q8alG6bUr7W0+8+blHku+h9LafdJcWarCjgRnyyz9Wx3qqT0aZwVoqLv3H3jlcEQbzng+lTVUX0uKkn3sUtUv1jXyrUp55H3z/AA/SuZtLbc7aUG/j2OW8cWQFgF1OeSQuM+SG+aU9hjsKyqRXVnVQtL4VZB4dvNUtPBU+is6x3iRM+ztbofur7ECqjNRo8oYilGVdSR53Np2naLZ3OloknmamzJb75PmkUnJb6/LUc0Y6LqVTqNzt2OU8QeDtMfT55tRYtEZvKBJ6Iq5yfxHXpUThpub+1adonllxpE3xDsJrKGBkdCbayMeeQOc9uMA81hBQe5Tk4u7OI8feEbLV9J1LQ7aMysrpDIMfK79M/l3rKolU2NITvqkec6NpMUfhC/8ACOq27y/2bKCJnHzKR1B9RjIopUVGLuatRck0fOvxO/se2/tXw7JaJd6ereTcLEmXjDA7JB7gnBFclZ3vGLOuM0uh5/pPw21XQfDbW0cMxV7Usqht22QHh1B6Bh1HrmppUZRTuU5pnFadaLqEc1okUuYZCJV3ZZG78HtUcuti1JSWhc03S57XeI5jtUgqynH5g/dNb0YWeh0013Oi8Oxs8ocZIDdxzXpJNQOuKVzldd021eac3FntZtwDmfYT7g4NeRi5xUnc9KnFRPLfEVjcWN1JLIuEY8YlDfyrwa0ua9hSpycr9DBaMu53KRz+dZKokiJWTI7tcJgHtUKSkzOabRmwwAXHmkDk966E+xhTdpanU+GjmMAHnHBqKsrI6YrU66zXYucc4FcUnc617sS1kn5e3vWO5DdxHIA6U9S4Np2KN5HyZAvHtWsVoFRXVyvIxlTaRgds1ErJkQkVhEFfDevFXbmiU9GTqo2gheOxrJqzF01AIpO0Nz7Vt0Iik2amg614g8M6hHrPhvXr7TLuI/Jd6dcvFIB6blIp0MXicHV56EnF+R1Jxhqj7/8A+CdkPjL4ofDPx14z1XWtQ1X7DpSvoaarr8d5di8jUhvk4eIFWO3KjIJwWwTX7fwXxBjnkGJcp3bv112v/lrazfoR9dxOGwsYTkn7RtNxVla+ml3r67721Q//AIJ5eOb/AFD4Y+OvCnivxNFeT+FvF18LdPKcGCO7AmiiO8Ah08xk4yPc9a+i4DzBZ1go1K69+nJrWzd9VfyutO9n8jvyPEVq/PTqRas2vVLZ6PZ7mDqHhrW7v47XvxIKn7BpGlbIlMZCyOxztJx14/DNfrXMlCyeh72Lw79mpJ7kv7Knxh8O638evi98a9S8JPpHh/wD4Nmsdb1W4didRvLtl8qD52CbIghYBQGJk5J4r8o4pxVetxJg8JTb0d7el/n1/D1Pk8RVr18xp0IqzT31u/6/XU8B8SXj/F3xJpvxEFvJCJFW40ywmwG8sllSWReAXcsSo7DHYV+y4GXOo1G7WSaPr6MXOcfa+nkdD+1VJp3h7wvNo9nGmnw2tgH0+WNgz3FyApaVfQl+A3YfhVzxPtaclJ6v+kaVKs6VK6Tev4HC/Ef4qSfE74H6vLoGnyWkvhXQ2ivpJFAkup8/vCxxyeAcdhiuZ0JVYzlzP/hjyqjUoOcr+h3t9470/wCMf7P1r8BPD3g/QH+JOjaOl94U0SJXsrXxbZuoYzbotqi8g5YqTiRRwM1+QZxSxXBvECzOcnVw1bRt/Yfd22sclBYyjiEk3yy1Wv4HkWt+PdX8U/De8WTWzqOs+GbN9N1nVpbWaEz3DgeYNsypIAj4RdyAYBA7Gv2jCVsLUwcpYepGcXtON7PRd7P8D0qMq2KpXcbW3RQ8H6JZ6xoXi3U/tyLZWU0BMglIEkcScH3ySCfbIqacksJUqPt08kehSjCOFUktUupzHwc07WPi2LHxH448yQ+F/Bsn/CLWMc5eC2gSfzS4yCNzsWJx149K+O4ewOFiq2KkveqPdM+SwtOpOrKvNbnYfA+O71TxLq2v67MHuP8AiWpa2oHKyq29jk9wpYk9sj3r1r8s5WTsz0ML7t4ln/goxqqax44tfiRZxtbyf2W1wsvOdkZxu9cMox759jXn4m/1e7duU5MyrKhRt0Wp8ueObnw34x+H1v8AEXwhrQkewmRLq2LbZYoJVO+HjG5AylxnpuI4AArxcTOnUp80Hc8SWJji6anSW255d461G8nvPLvNT+2SJL5YuCcttwCjEjjocV5qblLlOTExmrO9yhaahYyWl0lyPKuAu24jHTrww9u9dM5RpwuU68VQcWZHhK6lmupBBIXeRztQk8ken1FeTTraNnn5TCV5Tlsbmk29uutr5IIBk6HuPQ0pOU02j1Z1VGp7p9S+AkMPgyxYKAhB24+nSvyjjdtYuEX0R6CnzRTNgPnBGeOua/Pp7kJXYrIrRk+3NZ8zN4voYuoWxhm81FGFNbRd0c9eFndGlpt4JYguB0qkh0al1YmjLLKSD161jUSSKkveLT4aMH8qxW5aaJLIEcEZ9eK2shwjqLqLf6OwJ/hq1oXUV4nOaO2dZYf7VdS+A86l/FN+U8Enp3rlm9Tvk9ChtzNn34pK7Rg1ZXHzDjao6dqlprUhtyK0xwuCT7Gqii6asVLxcIT29KE3czra7FSESOQM/pWzehEXYcfl4/PPaspG71RUustJtA+hq6W5zS3EiUZ+Y9a1krmTm+h6Z+zh4O+PXi3xpaW/wh0ebDTqr3ws96xnPqa9DL8FOpNNbGU+VpuXQ/af9lr4MeMPBHhGy1D4s/EW7vL0bCqSTqgLYHAReB6etfa0qMKCtzXPk8TiFKUrK2p9eWMm3w9Ai8fuxtz6Y/WtZSvC5xtr2tzLguN8zuwLBD0rmg/eudNkloQ6rIl0nn3EjKirgIDjdTqy5t9i43iuVGNczokot7DTpHRQMxA5X6k1kleRDi1q2YUPmR6nqep3Vkn2uZQkaKuQiA859OKu1ro1n7sUkjhtUvYtZ+JU89hYuXtYwuWUMoGOo7ZrKMf3zY7yVI5XxnBZal4lm0Bhiz2Ft5ULtkHI/HIqeXmqWE3OnG7MXULmysYb2aGzk8zhZGLfhke9dMIXbMpXmkcR8S9E8WeINK8+1v2msZI1DhV2OvP8LdQfatpwvHVmbhb4jxf4m+CkttE1HS7xpZQkOQtywDgkdR2YGs1ZINIO58UfF2w17R7yezv12QNzDFjjHtnpXNUk3KxnKSnueQa1u+wXYQbR5ZxXNNtRfodeHSVRanmWW5r5Oo7zdz6NO6GsxzzUPYpbleVs5zxzTibwM68wQTnimzkxKVmdRCu6EL7UTdqh6E5WqsbLAT0/HmqTTM6kFNXRNpl60L+S5GP51ryx5djnp1HTnZmqqRyATKOorN3SPQtGaugmYrkJ/KsFJt3ZjKPUmtshee9TKbexakuWxLCziQ5/lUsz1uTmRl+UGqhBNal6S2I7yzS9t/IljDBvlORxRKTi/ddi7RS1PtH/AIJ+/BTwQ3ibSNF8KjxBrtnFdR3N3f8AiKH7Ho1tckgOLW0U5uZh0EjYPByvr9Bl2H9rXi4Kz0u+9jxcfi60abg2+XpbuftX4X13wh8NPBtppBmntL+WPaqSKHkCHpgcgE8YH0zzxX29RRprc+StVrq9rev/AAO+/wDkeo+DWuJ/DcN3PayQ+b86JL97B6ZrKhdtnDiowjPzNG6mjS3PmsQOmR1rao4xptszpXclYx7u/tbCFpLOH95jC8ZJY9h715LmorTc9SNOU2ufYzhot1ZRNrutXCG9k/1Zk6QD14zzTVNqPNPc19rGXuU17q/ExpfD1zdaZPPDNI6S7tzsu0SHnLH0FZVLON0aufvpdTy+e31e5+I2naz5X2gaZZyiFJHwjAbckDuRk8+9cyc/bJotQgqTv1ZzvxR8KG/8RagINcnaBYwr20bkrhumR7dCa1q80noyouKgmkeUaj4L8d+Erye+stVkhOmr+6towfLnj59Oc1yqnUve5TcakdTjtPj8V6r4iutMu2WKBEa5shFkByBkqR1OPSrTqwm7lKKklY8+1S2+LfiCPVNY8KXa2qtYtKmntahopxnDMjDkjI/nxVxdSrB8r1NpxjBKLPNfCHwziuYtY1rxGWs7uYh5nVV6j+Eo2Mj3rCFBpvmNZLkicZ+0NbeDLK5i/sLx7c2xktV863aFovLYdGIwTtz/ABLVzlCPUzg5SlqjxF/B92upPrS6is0x4mkjcBvYn1BHeuSTjJ6HdBK2xp/2U67p54tswOPmH3uPUcGuyjZanVSk9jU8LcyjcMYzwK7ZWcTpi7HKat/ZWp3M+marp7XCBmKlZCrL75AIxXg4mMZTfNsdlNzqaHLX/wAC5dU1jyvD/jzw1aW0i7lk1rxPbwBfrk5/rXnSoKbtTdvUVT2lON2zC+IXwkk+HNrFdzfFLwXrbSMQbfw34hW8kj/3gqgAfjXm1qNSk9Wn6MiFVTlZnG3kqmMKDxjrShGT1NG+ZWRmzysr4TIORz610XcWYOFnqdF4TLtGCx4rGpLmsjohNW0O4tVbyg2ecVjJI6I+9EtpD8ocjisuU0UURXEbAcD6GhWuKyUiC5jwmD6cU3K2w5u6M4ZDEY/MUmZqKirkMp+fnr0+taKVkJNyY/JC7B6VWktSmtLD7cbmG8fjionKyshpcup0XgbwX4q+Ini3TvAvgfSHvtW1S5WCytUIG5j3JPCgDJJPAAJPSrwmEr47ERo0VeTM6k+WNz9If2Sf2XfG/wAAr200nwx4i8OfY7eWK71/W7/VcG+lZSsgjjC7vIiBZF/vklvQV+x5bw/mWTYGOHwicpTd5NrT09Ed8KeH/spwnGcqkr6KOi7anaa34a+G/hTxz4m1nwTp5gsNb1NL3V0ICteTrGI1KDsmFXHc1+lcIcMvJcPJ2fNK7+897KMJVo4aKq/G1/XzOA8d2V/Y+GJ1iaezgvpMy27OGK9W5xwTzz2FfeYefNBaON0rp7+jtpdeV/U9LEOMpWWtjzj4Ox6H4++GfjfwrbWtqNCk8SI+pzxKqrfSop/dFsDKgcEjnAIyBkV41XLKFTOljpaySsjyaUKEsUqzWqZ5V8VItNtzqd74KsWOt6jamPTbWRflto0G1rqXA+XPIRQPlGBzzn6eXPVlanpoexCdRNRltqeZ/F/VfiV468I6ba6+8Q1G20aKzkvQmQZXyWwCMfKgUk9z9KzqUf3ai9Gcbk0lCD66k3jDw5rGj/sQ6v4rhsQBfXd3F4h1xmzLNKzArCMDBZsuzHjGFGDk4Uaro0Jwptp228tmZ432bhUcpNzlrr17u5137K/7O2p/E/xT8KNR8YXkgbTo5bosL97d4rWOEvuLqQYwzDHPGK8DiitRp8I1o1qfMnG1mr7/AKnjYvEVIZcpPS2zPQfDX7N4/ac0Lw78fdE/aJ+Dl83iTTry28U6VLqI0nVriJZjGoukllYSvD5eRcAh3AUEEHdX4Hwl4k4fgTFPK5YKo8LC/NO7lu73t2V909NrHdlma4SEI069Kop2T5ormi7ry/U848M/sj+P9E8B+ONM8V6RPp3hvTJylz4lvbiKCzu7Uq2WgcsRLlfulSdxr9d/4ilwZicudHB1ZS9qn7tndX7prT5nbi62DpWowm7y79jkv2bNY0Cb4WSWeiRRlb7wtfQ2106gLBHDLHGpznriTgHruzzg19BlU6ayiCg9E/zufPYatH2Uacry+JrR20a67LfRbvW2zNDS4fD+k+OL6zhvvK+x2dxcCYjm5Kx+Q0gH90SMfruFeisRFX3Wh6MZUY2drO1zx/8A4KG/GLTJNMsPBtlqSXV7d6bZWs8jR/NEvkKzsMdM78/jXzebYi0PZpt3Pns6r86cbaSPj3RbrVPD9ldW1pfY8lDBcQIcCeJjkfXjP6V4MaUqNHTdHztDmw0LQ6FeKRtVluJrfdgkZhkzllAPt1HA/Koouo5czPQoPnTl3K+t3tnO/wBilljeeNPKWTcR5q+9LF10nys8vGVIe09m3qTeFLRFugs0Pl+UeShwFxkgn1rmUbs76C5KWht6BbJe68kLkKPO3Blz83NauUacblUoJzuz6T8Ha3Dpwj8MG6ZQIFZLa4iChzjlom/iPqOtfinGEa+IzSVRfCj0ZV4KSizdWZGbKPnnivjHa5abTJ42BTb6+1Q0dCtoyrfRCRTkd6pS5SasXOOjM6xungudqZHPetFKyOSnHknqbMbEuGHpnIrKep1vVF2NCUGBjjk1mSkSxqYxn86Z0R0RHfrugb6U+Zslyu7HO6KFXVm3H+KuyCbgea7xq6G9PIMkfrWE0zsb90pucPyOp64qorQm9xGYtk57cUpbAokEzZPseopWsiU0mVLx8Lhj25NQtWTNOTK0TMT/ACrZfCZySiwyWYnH1qZmkZXRVuDsbPqOKIbmE1d3EQFznbkntWzny6BCKserfs1eJv2kNU8X2Hw8+C/ie405JrkGWZWCxxLnlia9LLqmKqSUYOyPPzCrFRatqfsD+zZ8FoNLXSLrxz8W9Q8Sa3EyPLGLwtCj4HZflr7alQppXbuz4utVqVN0faiN5WjRx5PyoB+lOo/dsiYJqdjLsJEJmmaPcwPB9a5oas9CUW4qxFdahJP8iWbHHViOM1Uk5dAhDl6lC+WRbaW1F0kW9cssPJY+lS70yuSnF8yW5xV5p6NdFbae8iIB81m/5bE9selZ/FJO5tJ3hexw13ceIpdeu7HSTFbyxQj7SqLyE9SfXFTGM5VGOmoqPM9Tl9dHiOXUJZCI5IPLZbclOVcA4Y+gFNtxmTVSk7FTQra6awmad3luFP8ApMsvKufQYrrpSbRFSUIqyOPez1C5/tK/029uGEUnFvIPlz3B9RVyu27mNRTa1PE/ipBceJ7u+04XsrTlMhPMx5fspPX6Vm+SO5zprqfH/wAZtF8Qae11p+tt5yR/dcj54/qPSudckmTfmex4RrKMthdqV+7GwDAVlWhFRZ30IpTVzzLaxX5hzmvj6ivJ2PorWImII5x7YotoDK02OuPoaR00loZl65AK9/Sm1c48VLRo6i3lGwY7CrnBN3O3EL3myRJMyEMevQUKFlcVKV1YiuUKNvTtyKamloYYinyu6NDR9TMh2Nge1VNJq6NMLV+yzSlZTyq9u1cbi0zraQsRKnJo5EznvaZPF/fI601BRRtON43RIhBbJ/WqREGkvMnRZpSkNpAZJJHCpGoyWJOABSUOaVhqMm7s+5/+CafgSH4Q+NLb4kfG7wNrd9r1gjSeH7HUb3aYTziMQb8JECNxlcqM4Cq2SR9dlqWG5VOWqPGxkHKUkm1G21tPvP0w/Zr+LOp/FA6b8Sdf0Frm9vrlzbQZ3o5DEDZ0+RRjL8jjjrXtRnUxUG4q7PAxNSlShyLorfM+wzK72Uc8qhTsBYDp0rqg1Shdnzc7zdkVdTv4reAIYt7SttRV6msMTWiqaXcdGMnP0KuoRvBHHDawqhxl5Mcp9PeuWUGkkkepSlGd3JmRqttdanMhliZbaPsRy/1705RcrX2OujKFBNJ3bKPjHWIbfSjaySFVSM7IEPLn8qxxEm1YKVPlfM1v1POPB954euvifY6dH5s9ytnN5wlGEQNjPHTsBU4dU51Ei6tKbouXS5x/jjU/EPhf4maZZ6RozznUZJY9RQDiNOofnrWc3OOISiiopOEl0Wxj+O9esr6PUI7oulza3CPbxZ+UIM7gTjJFaN+8xqD5bv8Ar+tDwP4h/FDUtX8R6jpHg/RblvItxPbahEojNnOVwFBON44zj3rlniFKryxO2jShGIeB/BGjab4Uvr7VvEX2TUbmEGWW2nHmB2+8SnbJ9K64qFON3owqO09jzDxR+zvrMet3Hi7StdOsLNEZGsrm9IJXuecbT7c1x1VJu8XdBKrFrlaPHviFomk6lq39k6naalayJgCPUEMixjHVJBghe3WuRtSbTNILS6PM/E3w1g8L3xTTbVgr8qLvLLg9kcHp7U6dKN3qdkWlHUpzWQhtCv2RoWyN8QkyB7r3rsp2NqaaLHheN2Zjg4G7BxjtXTKSUdDshC+55xruuxl77RtcXyVG5ra8VuQe2cdR9K+dxVS02d/tY0lZHl3iC2nimIm1K1vU/hkh6/jxmvJk5Td7mMmpS1MpUWLJUAE+lYztJjjBSegPl1+Y8GtIPQtxUUV51CgSAfTNXFKT1MZy5om34Rm6KfUUpwsiKaakd9aHMYOe3euSWjPUgrRLyNtQcfhWDYmxkilwaRLIJV+XbjJoKSbKU1vtXdj6EVSTFPTQotF++I9+5rW2lgSJBHu6dqS0QPTclVRGeOT6Y61Di5bEc05bH17+x78DfHnwb0e3+KXi+3htNT8VoIPDnh2IJJqF9bEZYyKTmCA8MxGHZVx0Jz+n8K0YcP4OWLqte0qWSXVK61PSyukqcpzrWWlle+h9YWNva/DLwfY2moQR3ereJtUhiE0nyl8vwFU/dVT0UdMZr9/yynChlyk3dWvf1ProSpwvKLaSW3qP+Mvh7UE1Cz0eyZLRpbo/vS5y54wq4GSTjHtzXt5dVUqTm3qZ4STdN1Gmzzr4xeGtQ1nS5tAtNRNqJ4hHcT2pJwSfmAP97/PFbRc5rQ65ypyp6nDeMfEHhX4BfBO08NeEtCma3ScLZaZA+5765kbaGbA5LOxyx9aI4V8spwV+XVveybS+WrSv3aPJk44X3b6N6epz1t4UHw304z+P4YL7XdUT7TrrvyAx5hs48g4UE4I64z6k11xnywTiz1IwfsLJs8b+MGt31jf6jqOovJPZaPaPLDaQ8RLdPkbhgEM2cDdzjGOgq5OfI2mcelNNxRz9to/xSg/ZKuvhTFLdzWlwIpL6RsyKLicSYJ6847+g9qI04Socq+No5HCdem5T37/kb/7NHxF8Qaj4X1LQfFfiN7bxBo+nvpVzKgUeZEVJLcdjlgfrXlY/D/2tk9TAVVd2Zw1Ye2oPCcuyPkTTvB02i/E7UpvF1rba54g1PxNLp+g6Bb6cWa+mM+IYQgYAoS4yuOfpX5rwvj8uyzKsRUxsopUk1JySdlHWzve589lmM+pYadTFO9nyxjqm/wDgdyL9qTwJ8Wfhx8aJ/wBnL4pPNZeJLCeOTV9Gsr1hbWIaESCFIl+RVUOBtXptrv4e4k4a4+yuGMyzDw/eTl7ygoOyumlFWVm9dF00OTGVvrNWnTi25T1+8n+Fa+PtM8N/2PpfiSSCz1BbuzltoiyLAzxhuMdFYoMEdC1e/hcuq0sPy8zWr7/me3luHxqpcsLaEfg34tfHbxn4r1ldW1GKK4RWYJCmWEIKmRRjkqTGMj1qKMq1XEShUkcuEoYuWJmsQ+uhw/x71zUrv4h32keLLySW9t7kTW0rHdlCgAQgdAAMfSuLHTiqzp72OPGzjPEuh22OJ1W+0jTZ3iurcwwTW/lt8uSDwflP17+hrnhOKXvbMyrqjhVeXUPDVtcalJJE1ssXmW5DvGMEYXIbn1pxpKKbRVGo5rY534gWp07XVslhWRSNs5YdGzgkGvn8dUcaqR4eYRjHFRbW5seEdPlLmKGRvKYclhzwP8/WqoqSOqjVm48tjf8AD0DWmuQqUAxN82Dg49a1nBTVjsox98+lI/D2m614etrS+h5EKtFLFw0Z7Mp7Gvx/iurPD5o7arsepWowqwUWMtWv9On+wahJ5zKMx3Cj/WqOpI7MO/r1r5KrRVdOpSXqjBQnSXLL7zSguBKgdG5x61yKxrCavZjndWXg9etZzTRs3czbpVSfzQuMmrh5nNWaTNLT7gyRgenernHQqk7xNW3PyY7Cua1mdNNEjSqq57jtmmo3Lk+XQpXd0pgdd3JHrWsY2Oebd2YGlBzqjHH8VdcVaJwwd61jcnfDn9a55nfJWgV2IbGDj3NSpK5hHcAQPw70nJHRayKsrEtgHHvmk3c5X8RXuznBqYldSqX42gcd810WM6m46Js8npisqgU2VrpPmCgZ5ogxyQseFGT+taSjfYwu9kej/BvQtDk8VaYo+IV7bzTzr5kGnuUAGejMDXdh6cYTT5rHHWw9Spd2P2e/Yg0H+wdI0218LaTLLBJAv2nUL3kufYnrX2uFpNQVtT5zFU4RmfXV9J/oCxyAnC9TxzXTJNROZr3m0Z2iTIq3G1AWB4IHB9KwpqzudOjSFvLm68lBNhM52gHr79elOc2h2hfQyb2yOozfZdMvApZc3FxjDAc8CsHK7F71rs43X7i2srsX9pbTTMuY1aZ9wCjq1UpRSujVU3JWPM7RPHOq+I5F8LzRQaffMz3c8vMzxggYHoOtc3tKnO+TZnVajThrujG8bWV/FfHSYdXeB2B+WNQC8Y5bPuamcKjnqznU1J3KWy8m0lo9Hu7qyjlIVoZT8zHuRXdQajDQ5525znI/CWtGwuD4c8SXcsSZLqWXer+pBz+XFOcZyegTmno0ePfF3S9cspLiwntEn8+ElpCgR93qMHrWbUmrHI4xTufI/wAXCLjTbyHVTNHfwZVfNGN6896UISkyk47o+ddXnZ7G7D4BCMMCssQ4wjJHbh176seXyq3IJ718Y5XbPeSdiGQkLkDpSAgcB1JB70XszWk9DM1AESZ/OtIvQ48Rd3OhgkCx8ntWk5WkeniE3exDFqI8/Z6nqKevKctKdplwl5gMqRn1rK1zqfLNFcu1lOJAe9bwXNoefUTpT0N/Sbxb2DIxwOlZ1IKJ6NKftIll5ArhP1rlbdzOdrlmEq0fXtxUts2i7xsNjc7uenat9oiirPUuKuU3EgjuMVzylJvQt1EkfRf7EXwu+OniOa+s/BWheM1trpCbm30u1U21+vG2GeQssiRkZY5ZgwXAUnp9Hl2CrVaN6l0eDisWnKVn0P19/Yb0PVNH8MaLpPiKVoXjhjivSq/LCRjFtGSowm7jaAScckdK+kwyVJ6XR8/WhUrxvLqfaWoXSWmnNN5DP8vyoozn2rqxE+Wjfc8WjS5qvLexVikBtlvLm2KNjIUjJWnRjempzRFaChJqLKd1fmfgKVB7lefwrOT9o9Drw9K27K0lxJJdhY7ZmSMfffnb/wDXrH3uZnZyQUNdzk/Fdze6vqT2+kl3fbueY7Rs/PtXLKVTnvHodEYrks18jjIbaxuvH+n6N4VdlSI+brF4V5bH8I+p44q6Eb1El8zepeNB3Wr6Fb4ieIbCPxq7JIrScv8AaJUIWJRxtJ9/61VWpCNT3TKjh6ipuUjhvjHY6Rd6ddHRbRGAtj54RhkhiASD2xXLVqOV2mOHNoeZ6N4Bl0FVtYljuhd2weKCXpIVPQt2P1pUlyyOtT5lqaXjf4Y6LPZ3N7NocduLlI1kuIZ8SRN05PVSP1ror041IkObUjxTxLrnj7wftsI7qK7k02dlS7jRXZ4y3BZWByccHFcCU4mijTk7nkHxP8Y6hD4sW+8UWdkbeVT5MunxZGT2eNgMKe/oafKoy940hfaKPL/HPhe6n2+IPDuojBciXTp3G36hc/rWvLFRujqgrKzOR1WBRbbQzg7vlRsNg+gPpVRWp0xfvaD/AAqGBkBAHyNlcd8VpKzR2wvzI8q8RXT35u7AeWziQ+X9ohzg5PG4cV4eJgnJtnY6Maj8zzXURf2Vy9te26xsOqKBivInTcG2Yzpypu0igy72yBx9axlFPY6KfK1oNuVZV46etNNRCXvaEDlfLw2CKqMrM5KsXFmj4TmUybQM/NxV1Je4aYfc9Gsc/Z1yf4BzXBLVnpRasXVPy8VnJWZnJWYqkEZA/CpHG1yGbIIyKuPKaaIqXDELxx65qnJLYzqWtcoN87jHX2oUlbUiFyXYQvHFF1ctxuSQKRIGBwQeD6UnJrUqLjF3R6L8B4vjP43+Mmh+HPhHrGrN4n1K4+yWU2n3bJOqOpWT5yw2r5e4Mcgbc54rbC4SrmOMhTtzO60euzTX3bmdfE+zpucmfoYPDn/Cxv2g4dSmndvDvw2ixFdTuVhursJhpBjIKp8xJ9cV/TnFPFGG4eyOmqitHRN28uh9TPEToYOnzXTkkdLqOv8Agjx5rVr478HeJbHVtCh07ZoOpWErTRsOUll6Z3ggryM5Nezw7mmBlw7CvRk/YqO7bbsu97tu27d2engq8quEUor3pPVf1oeY/FbUtN8KTPDLMVmdCLSHd8yIfvMfRiO56V9vhbyhfZF1a+iaPO/hlY6F448TT/G7WEsp9O8HYtdDsZLnEK3BGGlIAOSi52j19OtYxpR9qqcHaLXT8FY47fXK7ld/8E5jVdd1H4k+LvttleRRWqXJkWaZM8Kf3ki9OduQpz1NenOlal7j1R3KSpxSOF+Lx0mz1fUbaxtwun3sLRWkdyolKRZ6sAvEjEjB69CMVi1Jwip76X7GVVQcLtPv/Wxl/D290m+1nxZs86aDTNIthqCKjCJZxkoD/tYx7813YXDx9s6jfl+BlGDqPaxx3hCbUPC3xj03xZPd+XZajp/k3NrcwZEgk+XJGOuDnnHAqKtOEuepdKy21vLVaKy+etlZd7J8+IgqFeNRK729D279h/4ffs+6t/wUQsNc8S6Vrx8TeBtBuvFV14uutTtBpOl2VsIlaUQNCCbhyzDe7FUDgj5lFfyH4+4TiDL6LhRqQp4bFyjTUIp+0cpN3d27Wt5ep8rm1P2eMlWUE+eLjZpuzemmvz+R8r+NfEnhj9sn9uj4j/tKxLdQ6drerXV/pN1qscaTtFGoSMMI12gME6gdGHPev2Hwk4Vp8OcLUMO1rT1vaz1PWy/LMN7KNRqzirJ6/h19DF+A+iR+I/DGs2OiajdwSvquz7UkYlChdzFihB2/KCMjgj0r9Ow0XUpS5l1ZvSdqLpxb3vdeXTVPfb8tTjNBu9A0n47WlsmsRodp+3TRHKAMzMoJ6E9CV759q+dnGNLFu71PDq1b412vbQ4T9p7R9dvvinH44msYLiK4tIjqUNg26OORkVm2MOqhia8XF06tbERqJdNTz8whVjjY1acXKK3MvW/Dmkan4ZS1u5bSQzsjRX3RgCTgMM/wng/XPTiu2VCHs7bnTi1GtRUeXcXwVpkltqTxy2aGSOLPlsRteRc8Z7Ajp9a5p03LyMKFPktzaI4a50S6+JXjy+0eNoopXucWkdxOsQzknZliBk4wBnk4FfJ4qpQp1ajqvSJ5FaVPFYipCenLsW9B0zUdJv77Sdf0650/UtOmVLiwuUKSRlcAgg1rhcTSxVO9N3M8NWpVrqOjRv6UyT+IYVtYjH++DASLxz6Z61rVkoxZ61BWkuY+nbSIWWn2cTPndbKQV6Hivxbi67zK/kevUlFyRFdxM7LLDIySI2UdTgqfXNfJ0qtXD1OaDszCooVI8sjKa9msboiQAbjkgDAP+FJp1JcyOLWE7dC9DdrNHuRs/wBKnR7nYpRtuVr+QbCSMEU/hMqq5loWdAuklwo9amU+boTh076m9G2xApHasbNs77pIr3t1sjbnqKpOzsyJy7GK+oySOy4P1rRnLZylch0R3fUyxGPmq+dRiY07Rq6m7cjBYAj8qwcm9zrnJNFU/Kc9j2qlG6M1ZajkbcuccGpkrFc1yrcL8+D+FKKciOXqVbljg89a2jFIxk2pFfODkiqexo0pIRGZW6/XNZyTZhflYyT94QScH3pxiU5tLQQsoOK2tZGafK9Tpvg/p8+q/EXSNEtPPDXeoRp/ozsGJJ6cEVvhYTqV4xic+Lk3h5La/Z2P3f8A2WdGvfDej6NY+INRkEqQKkFsTgjAHavvcP8AuoJSPkJKcqjbPpPU5fL05ULsEIycDJp1ZvlLcdblDQJ1CTIq84yXbPFZ05aFtO6GyML4mGBhKoUhnlJAWpklN6GrXL0szF1TS5rLzb6KWW6mdCIkhPyj3pezjEL3snocrNpWqW8j32pQGyU2bBQG35z1JrJaPU3m7Q93U5CO+gj1m8afMUVpaLDHJFIAS3Xn0pLk579jKVOXIr9WcVrHi3TLrW7vV5bWKO+sdsUcbMBwep56nvWSqJybaInCUHyoyY/FnhrxGbrTD4kadoyAZUmULFJ1wD6V2UZRbdmKpSkrN9Tl/FXj/QvC93O1t4kgN0luQ9nC5Ys2PvZXrVSlZkzpNI+c9W1jxf8AETxNLqSai8caHYsIbD5z97D1MWk9DGdpaWPFf2ipr+Fp7TVwizhTtn8sDd7HPQ10QlfoCioanzTq1s90JYFVQ7Arg8ZNebi4OzN6LcqqSOF1/wAFanoFkdQ1G7slXft8oXamT/vnOa+SdCo27H0Mn7BpSOfnKFMqegqY031LfvLRFZGyCaU42kXCNkZ96yuxNGqRz146M3FEawjd16VXvOWp3Sk3NkNpa7ZSxHGa31cdTkqQtK5Ze7AJjDAAdMUKC2LhVjERs3UeQozUczhKxVWn7SOg7RryWzudhbHrVtpoyw9T2b5WdESsyeah571yNNM63FSdyzbv8gGfpxiocUJ3ixVKgkn+daLYrmcizZXlzY3cNzAyBo5ldDIu5cgg8juKI1IwqKXYfsYzXK+p9L/BT9pXWU+IGp/Ebx54jv8AXNZW/wArFp/iQ6TpNvYRMojZ4ogGnkZvuxryAOh5r6HDZknzJdfM8vEYSjhLRWq2vv8A18z9Cv2Ef2pvir8Yvi3ZaVBYpY2fngxJdnMyx4PK26D9ypH8chGfxr0MPOriPhex4mNrQpJJRP06S58qzVpPmwvJ9eK9tSUaabPl7SnUdiGO/iuIWnRTgE9RVRxEZU+aw6lGUHZmZJqBkl8yG3I+o9654z55XsdNOk4xs2Vb9Jb/AOWa7WJV+/EmTx3zjilOV3vY7aceVaK5gazY3d/DNa6VYG3jZcNJGuWk+p7CuKq3zXivmdkXGik27sy/h9oV3H4vutPsxCTbWoLyBOInbOMnHLYzWmGhKTfKzLF1qcKak+pxPxeOnN4ij8IRwqxuLtftN0snzOM5K4H06VzVqfv8qLpVpOHMcN8c7ay8MWV9dQ5ZTCDHFG2A2NuNx+tc9e1PQ0oRnU3OUn0zxJ4iuLfxCbe6szpkal4RyEY8bWA/hOevrWtFTm1Jl8vs24sxfjH4lVNA1DVdB1ZEvRCokspCcOwH3XPb2NdFW+5EYJP3j5v0SPx78TUmn1qzsrKWeQiSx0+QlgO7L0IJ9q5KUpzWqsdfs7anK/Fv4W3Gn820mohbcbHGoEjIPBBY4OOeKmrBp+RsqsIaI8ym0vyJ5tHvNWDS+Xut4pXJljI6ADA3qfUVlGVtEdEHFq9jldfjvoISNUVIpN3zxxnr/tbSAQfp1rqpNNm0bc2hB4XY7ny2f3L4YHrxXRKN46HWr3R5V4vt9P1yG6ubaI219AxBaMho5lB6sM/Ka8PE2SfM9T04RVl3PMr4yBizsC4+9jpXhzqXloc9WUpaMr27EtyR7Cs22zSilFaj7lcoU7Csm7CcryKlxAfLK4Ge1VCWoTipRLXhEeXdbT/ereSly3OKnUlGpY9LsHXyE/3fyrjdz1qequWzJngn05rLcTbFjcnofxxSaGlqRzseQBigck9ypOd4YfrU6phuVFjUSFgMc1pZtEy93YkL5Gw+lChrca5nqS2ysTjGea0bQRhd6nqX7MX7QvjH9lzx9P8AErwFYWEuqTaTPYQz39v5n2ZZV2s8fo+MgH3NdmWZriMqxPtqUU3br0HUp0asOSav/wAA9+/Z28beO/EXgDxt8SvGmi3zae+itpvh66tVMVvLezyKzxhm+VmKrye3frXZnfEmbcT5ZHLsQ+aUpJRsvPv6HrVsXiZ4N09W21ZX1/zPZv2Vfg1B+zd+zT4c+EZ11rrUmE+qXSzYK7rmRpmUEcBEyq9OTk1/TXBeWPKsgp4er8SWp3YChUo4flPGv2ldR8T+PviB/wAK68GyPPqWqQN9sv2OE0+HOGnkY/dVR0HtX2FfEyjh+SOiS36JHpTo4rFNQWt9C3450bwF8EPhHYfDXTFubmxsrZnuNlwM6jMR87nPGWJ6n8K7cHh3Tp3bO2FN0IKMHojiry60e9awuPC0Miz6ZaxzataltsSLnKxZGTtA28dya7rSfNGb32tucXtZat9Tyl7vUfiV8bNVk1SCGz0vQC9zPIzuv264ZRhAMHARVAxjv7VyurOpilGLdoolUK866lK/Kjcs5tL0fwTrGhW+oQ2s963267ZUCo5yAq79vzNjgcDrXsUrxTdjunONOCSje5xvxivrm78NXus21oirpSwpbNFcBPPEeWLgj5j1I5x6dhXPieWNF26ankZhTfsVdn0D+xlp3wW+KmreNdR+MOl6ve+G9c+E15da9aaFOiNc29uELRXMuVZE3uAqqwV2f5zgCv5Y+klWzSg8mq4VfvHVSh11ex5eZSl/Z0Z0muZyS13+R8Nfs/ahZXer6lpWll7SzuYZ4tPtJpt728BJ8pWbocDA9OK/oHhWWIo4SlSxLvPkje3ex24fEu6gnp066GzqVyvwOOs3uiXkRD3htJZEYgoJAwZgDjgjGOnFe3XqwpRly/ca1KH1ebk9UeGaRZ6LqutapZW+qyre2shmlO8neYomKuD35J/WvkcQ1OblLc+YrVoValSlB7a/NJ/8Ef8AA7xNP8RdSutN8RmNNQhuTJb3E0BKlVTaxxjoV4PB9azy6cq0Jcy1TMcgxU8VRn7RNNP7yl8UNFsLfVIxo8/l21ypQW6rtImALLj1U4ADDtiuzEUrRvE7MfBwlbY19O+yT6B/wlH2QNJbtGZ4EfLPFtILEdcq2f5968+tKbV2Ztxq0zyzWtD+36peag8ccwdzLFIqbS4z1r5yth4Sm3JXufOVMCpVZSkty1p8J1N5Yr+5ZrySJRDcu5dgR0BPcdBWEKMKEfcVghQhTldI3/BllqX9tQWt4xWVZMuFA+Y/0rGb0vI6Yc85pM+ltTtmgsLSJWHy2yEd8HFfjXEtb2uaSXSx7k4ONkVYrkMgdj9c8c18vU1dzmnuQahBbXiFCRnHBFEJuJLaqRsYzXNzpU+xySvrWjjTavE43CpTlqXFuor2EsjZ45qJRexp7SVrEekXD2V4VDcE9KpwXLY0py11OshuBNCrKevWsGuU6U2yO5hWT5T071g5NsbbZTktY0QnaOBTi22VCKVzM0qdV1MxkfxV2Rprl1PNl71fQ2bmTLsGIrGUbPQ7WuWJWeRRjJqomcXfQfG/y479qyqbltW1K9wdxyPXkGrg1FDvoUrmTDbSc0+a+xyy1loQh89R9PeqcjaKstSLzX8z8PSrsrXMXFOQ4YY5PH1qOa2xbUYoAEZtq4zinzSULsyestT6A/Yt8R6N8L/F0HiuTw3Z6jqsp/0RtQK+TbD+/wA969nJZOE3N9TjzCS9kkn9x+of7ANp4++JfxFufid468YfbI2O2ztIExDGvqPWvqaNGbm5yeh8ziV7S3Ktj7T1CWJd0UhJz94Z/KnVkm3Yxpw116mfpVrqQhuGdVWF2wgdgAaxipyRvVcIyVtx2oL9mtVt4tr7xhIox8rn1zWlnFWNKbb99mXrML21u/nyhCqZk2Px9Kl6BfmldHEeLdQnubCNtOs3E0bb1jEpyyD19BXPOKvc0pQnOeux5h8UjoU9re3+oSy2UAtmlvfJJO9uqgY/LAokqbjzSWhrKXuqJwmk/BDwprduvxAvIrmO9udnlQiVtydwSpqY0qdX3rGcaj1T1RY8V+DPA3h/TxosnhWztppXDPbQHaZAepPqa6IuFN2SHPnk7szdT03wjoM0UOl+GbaArAfsl4IN3z9djA+uT+NdjleKSexx1ZTqKzPFPjTqC6prY1EaQEaJwJHt4RG8fHoODWFryuYRcYRsz52/ai1PTLrSnsVZrl1jBEzpiSM+jf41102lHUJS5j5W19ZG0W73OVlRTtcHmvNxTXIztwnL7ZXPJZLSR7rz76dppOzOOcV8pOrUta57dTDRlU5iR1BHA4ojK6OmSdONiBiVyFNZTS5h03eNzMupOSG9eBSabVjmxMkkzcVyYgCa15b1Gdk/4jJbiQQ2eVPJFPmbdkY14y5boy9Pmub24ZSTwa2rtU0kc+GjrqbVv/o8fzcGuS3M7nRKpyuxXnBMoniHA9K6IOK3Ma0eb3om7od8s0QViM9wa55Rd7nXQqJxszRGVAI4HtXPLcuauSW7bsFhyPUVMpMIvk3JC5ZtoH0FOKVrlKd9jX8HTRHxHa2B14aaZ5douFsBcsMjGFTB+Y9Ae2a6MJye2V3Y4MZVai7OzP2N/wCCO/wf1X4bX9lp4EMNlcKJ0t5bYx3sqFSfOumZndmYnhSVAHYEYr7HDctlyanzNem5JuV9vkfptq9xFb2RGRyvTPWvUnLlhqeJQi/aXK2m3MM+niRNxHutVTkpQsFdS9rqQWssGx7oQMMttXcOazptb2NJxkrakOqW+lwAS3s5LKMrAnApTjFayN6M69RWitO5yvibV7xLSRoQ9vCxxtjG3dn+dclRpN20OtUoxjeSb9PMyPhbq1rFoXiBrC/DT3N+qCZlJLEIAQP1ooVqUIz5JdvyFisMvaQclseVeKvGekaZ40fVbvRpyNPh/dSyNlZJCcE/y5rBTUpvTRHbDklSUb7nner+PdD+JOvawNRlh8iziW3hgUEZPADAHGcHHT0rmjOnVrSTKdOULKOp1OkaFPcaXNqmkziEwaeqSkHf5jcdMdc9xXp04xa2Mqj5NGec6v8A2j4j8QXl5rFzZWsiIIpbeUgM3uT1GfQ1k4pzdxpxaszzX4iReEfhPq0viTUtLvI9PAJmuYJNpjyPvA9xn0qZKNJ3RuqjkrRPI/GjfEj4ys3iTwR43t9SsFiJSJ3BYDsGUnJrnk5VPejIEoJ2a1PFfG2geJG1GJ9XtzBd2jneXg2LGc9UdTyD6EVCjJas9GmoQgZXiiWUw5nminfbj7QvJz6ZrSLTZpT3KfhncrvuUDZE4YHp0NdP2Tui1zHmeufYreW7kubOKUZbMcsbcfR0/rXiYik23dHfB87PNdbm0CQM+mwTQuHI8op8gHsTzXh1oR5tFYxrckXpuZkbb3G3p3NJ+7EdJuW4+R/l4/HNcsndkS92YMu9eBxTp7my+EZpJa21D5eQT1rudnA4nFe0PRNKul+zIXbBxxzXDVavoelCUVBF/wC0xFcHv2zWKWpcLORNHPFgb8fnWlhzsiOeeN+BjHamoocZXVijd3K7SBS5UmZStGRWWdSTk9vWnKNglqh0cqM27PA6UJCjK6sX7QBSG459aOWNzXlbO0+C5+FKfEbTb341jU38M203nalaaNGGubxV5ECFiAm84BYngZPNXTdKNRc6ujWFP3ZWdpW0v3Pvf9nv4+a5+298Wf8AhV+heF7TwB8O9A8PXCaDpdowa10ZghCXE4CHz5W9cDr1xnPr4XL8zzjHQq4JOn7NaJK6T7vbW+/daHDKjHBUXUjzVKmjumk27rRX6Wvp8/XptDvl0/wpqOreIb03VxFKdPtJ5I2QXKxfJ5wDKuFbGQAAOeK/q7Kvb4nBUalVWlZc19Ndup+hYei6MKalpdXa9fQ4XU7208JyXms26bLq9K/aZ1hAlfJ4TgcLX0tOEUklubVK3IrLueGfGbxxea343stC0GxW+vJZvNiiktFlSPAwZHU5AVc8Z71bg4w5W7XOOtat+71s+zszM0Pwl4hvptR1iyvra2W1gHmR3IaOS+lYnfN0IEaYwOmSeARkio1/36hrtv0/z/r0N6cKNKShq7fOxxfiHQbJvENnZWGry28c9yTqLO37y5XaSSOgROBnJ9PfGy5Vu7DdepTk77MwPitqqk6fq6S26T3tk8SWMDF1ndflU9BhV657mvQo1bxuRVm5NtHH/FOS28QaT/wjlhZ6pNPe6ekSiC2MnzIv72QBf4M5PoAOvGa8rG1eShNz1uZ5nCjXofu01ovvtr267dlprufUX/BJ/wCGMXxv/Y1+MXg6P4bW3i68k0BNHs9CbU5LH+0pSxnNjNcY+RG8pWYLk4HPv/Hf0oOK1knFHDeGdTk5Zc8ra2jdK7X/AAfmfGY+sp/V6FSXupty8trHwx8IvDVzbfFHU/DeoyJZS6e721zbYaPyJI3JNrzz8rDyvcAc1/TXC+KWIpUq0anMnCLT11urpfp2+R6eEdS3NFX6f16Gv8cfEcOuyroY0xEtb29SLVCyZmTylJyM4x1PPTp1xXs4m9aoqnVHfilVUFC9z59gsr7xB441a/WP7NC83lRRbgBKgO3IPckE181CNatjJvoz5Ghg69bMKlSStrsdh4E0XRY7+XSFuPJv7C7Nqjwj5juXhhjr0Gc8817dKn7OO2x69CKpycEtUQ+NpdR8W31tcvbqJbBzaX6R8bGTkNzjJJz9ex7VlXqSbTaMa8JTndfMy/EutxeA9QtdSgCNdz2aJJZj50uASOVboQQCCDg5ry8XUd3ZGWJqSoKLZyV95GrajM9tbNZl93lo5wI+ckA+me1ecoxnI4nT9vK8djM08T2eqbWgdpd+Ny4GPwPUVlUitjLljzWPQ/h5pjXfi20tN5lJcHLEe3px7V42LUadKTfY68LSfNdo9/1fDkRKMbFCr6HAxX4NmdX22MnLzOyUnKVzHu7K6C/JJt3flXlc13qctWKk9CibS+gk3yyZB9Kc5p6RRgoTpNNsluLaC+t9r9cYBxWcZuMrGytURhXMt3olxkZ255FdMZRlscFeE6cr9C5aalBeFZ4mGe4qW3HRmtCamzptEvVlgEZPPbJrGd3qd10y3O2V5NY21EtGQsQ0bA5HFWlYupK0TG07adWIH96uuCtA4KKvVubF24Vzk9qyem511F7tyn5iu2N/Pakmc8L3sPVwOM8g8ZqKlmdNrIZM+Tk4wTQldCasilcqx579qqNkcstGQAYG3NW7MuMrsay7Gy3GfWnvGxMmlsbvwv8AA9r8UPiJpXgS88daP4Zt9QuRHca7r0/l2tmnUyORzgDt3rKSjT1lsYz9o1dK57J8VfhB/wAE+/gNr9nY2n7Xt38UpYZAdTtfCml/ZYZOP9XHM2/v/F6U6s5upy0Y8y6vY56VScqb9ppLotzsf2FdM/ZT8W/Fe78f/ETw1d2Ghac+7S9FutQMpbGdu8nGTivocihGHNOrrYnFwnOkuVH6yfsR/FPwX8VLe6u/hz4Vh03RbKTy7cRxABse/evoqdd1leOx89WtTly31PcdauDKTGrhDk4OeTSkmyIOyGPLHDpirdyOsQPK7uWNNLlRpBuUmyO/vBZWcconKRFdwUHLt+Hapm7DUXJ6HKapqup6zem4GkOtpF03tteQ+4rOTdtEaRpxg7HHeOptat7We8Hh2eQrGTPEsu3PHC1hUc2r2N4KKdr2PJPGngPxt480xLqbxN/YtvbxebaafaMGdmXnEmeozUVo1Kqsnawc1L4Uru5h+HNF8falpI1T/hPre9uJH2XawxBTHt4yD24qsNGqrvmugmoUXy2LbeDYjAkmqay+qOGDS30lwA9v3Ix9P5V1ShGDV3c5515XtY5T4nXp8PXaSJq9zLpckYZrhrdtqnPBUgcn2Fa0lKpp0OOznd7HkPjfUk1m6up9NuPNmchdkrFTt7fKe9XG19DPk59T5x/aCa/8m4g1GMxXUIwj7MCRfQ1tZWaLcGtD5n1+UHSrt3bO5DggdPavIxkX7FnTRglUieZSoT0bPvXykHfQ+lpW5SIklSPT3reyiiakr7kGA2cHHNYTbvdCpt2MvUB+8yPxqouyOTEJtM6C3haVV5/OtJy5Xc76j/etD9WT/RNiDnFZU5e/qRNtqxV0u2MXse5xW805PcyjBxZcui6x5zzwcik2k9CaqaI7CcyKVZBg053Vma0FeOpaspXtJwRx7VPNdWMU+WrodDazJPAGI7dK5aqaZ6StyKwofB2jr1pQimrmbV2TR5JA9enFOTii4xSPRPgl4v8Ais+uad8MvhfrrabJqGoq093peiwzXwzhdyyFd4Az03KOa7MrjVqYmMVdRvq0rtL8PuujhxKoq8mrux+23/BLLwP/AMKbsY/B3jTXWfxLf/6Tf20t2bmediOZ53JO125OwHC5IGK+yowpUeVbs+fxtWcqTgtmfaeuvLcgwQDdkhTheFrsm+aVjxaMVBJssWFxGjLppPzqgLEDitYyjflRyV0+bm6C3l1bwgF2AIOAKVSpGKsVRhOTMzW57LT7V7tmRZCCd8vb6AdTXFWacbno0E5SSex534i07xX4yaQadLNHBkKZZvlGD3Gelea6VWte7PQjUp0la5yPjqwtfh/oyW1hrjiBSTctCSSznjC8csf61p7OFONkWm5u8kec6/4I8b6pbTX08t1ZWMEG+2tX2+fKBzlsnnJ7VLp1YenY0Sowempy3jzQPDsWpLBrQuN0iqI7qGLy/IlOMZI5696h0eeWpcKihG6Ot8JeEk8JxXSG/vBHcKstwgJkPmNj5165GSPzrvpqFODVznrT9va6OU8UeA9E0jWp5fEkM8JvYmkkuDk7iB8rev4VzVOVSbQS+BI8M1rxB45+LVjqnh7S9Os9Q0yylkjsjv3SyKOCQCP0rOhKvWk+wKmoyT7nkfg3w7YaXfXGlahGILiGYpNBO7WsqoeMqwGCRxWahySs9GehZQV2Y3jj4feN9L1WU2X2m9snjyizTJKCO3OOntVvnivIJTjNnlvjC4RpxZSR+TNu/eRgAKffgDmopy986qSRQ0B8PIoPHlvnHXpXY5Wp3O2nFc9zzfxyz6U8+pCO6jikXBmt3wCf6GvFxNZtM7eaMXoeVaqryO0hnZi/ILPnI968OdWMpXOdRcpe8VIFYfNmlJ8yNFLkehK5Xpx061zWd7F25tSWIgx4PUnrWluUybaYscIE4ZR/GMjFbKXumM22zp7Bpvsq4JHFcc3dnTDmcTRszMQBuJoijppKw+7nngj+UHOKaabsOtfdFa2vbmYnOR7GrlLl0JpaakN5LOXwrHPrWalrqKpFylcRlkSMHr61Ld3YbTcbIitxOXwHIz78U5S5dERFcpt6Hp2ranci0sbeadyMhIYi5x64ANClJnTBSlsdLpulLbyiOVW80Dkuu3H5iu2kocusdToitbH6B/sS+D7v4Yfs6/2nHbyDV/GdyGRQRvNqhwF9geSSeMc1/Q3h5lKo5VCcvim7/wCR62XYROXtZLRHW+OJntp4UvoY2hi2sCpym4HgL7D17mv03CTjObp8rSVnd2s/JdbrR6pbqzetvolFShzX1Z4/8S/EUqC9fm3t1BmU7vmKjPJ9K9RwW8XYlqMKdmeVaR4m0Pw34f1TxjNp0F3q+oxgy3jgBLeBeUQDpzjJJ9ac7/E3oY0owjFzbOG+A+qeK/FvhjxH4x8W38F1HrmvyrJMbsGOO2RSEVduQwJGMDg5PPas8NCcKfO+rKwlaNaDrxuu2n+exy/xgv7600p9W0rS1N1FM5txPPgT7QRhlAyeuQOmAc1dWT5XZiqxk5b6GU+i2PjC21C21TxElwtvpXkW8lqG2xqRmQxZwVzg5c468VvhYyqJ819VYhSk5bbE/wAM/EmufDudtX8JXclrqU2kyRQ/a7USxwWjrsZwXJ/hYktjtkU1g6VSm/aa+Ry1f30Wmz7R+Eesfs6/8E7/ANmzwN8UNa+JPhXUvD2lXd14o1HVtP1DGpeI9WubaSAWcNmpG4Rqyx7nPIUnAwc/5seNuXcb+IPizi8FDD1E3GFGDcEqcaakpOSlvq1018z4tt051KU3JTldarS173v5/wCR+ZmleLrPUPEev/Fe+dLF9Sa7164sIbfy0iaW5LJBgZ2DBHHPAFf3pwnlMOHOG8PhJzbdOnFXfdJI9yjz4XCRirt9TUm1zQviDo97rlloal9Qiht5GuDjdKVIZy30ORnj3r6ya9tRc77ndzL2NzzGztRps26K1gEkWmXU0AbBwckbz6MSMjuK8lUaVKVrruedQqKFVpljQ7a7g8Watqeobkh1i2VbqZxnyZQq4PA4zng96JKSm+XW50U8KozlUb0ZFdXdlbwX9jc3z3L3qgWtzCD56yqco8ik4UcnLZI4rlnrJpqxlUai2uU5HUxrfjOzZPEFnPJqFohI2SAuqrkcenrjj+teZiffg0tzw8Qq2Jg01axgWFy0tjHPPJJGVl2yCRd3zA43MDz+PvXjRqu/mYUKziuWwyPzNQ1D7UCkas4AJGeMY47gVpWqRauJ25rs9V+AmlCfxSJZEC+USwUHJHv9K+Vz2vOGBm/I7qFaMdEeuXjBn4J65FfhNV+87mi1M++lYJkngdQKwgoc2py4huL0Etgl5DsdulKV1LTYdN+1jZleaBraTntWE3d6ByOmyDUbCHU7cq2NwHFOnUcZaDko1I2ZzISbRb3aykDdz716Cj7SFlqzzJKVCemx1Gh3yzoHRhzXO4OGh2Yeupmy04ZQwH1rGUbHXHcazYibPpwaSauVNc0TD06X/ibtj+9XbFLkPOov97Y1b52MhwecVzSZ3VPgKagqwLnr0p2ujCm0idGyPf3qHHqaxlzOw2clcn1qk7IU5WKF07scAc0ouxjKHUjQtncepqucUWouwpBbIY5zSc10KskV7uGORTHJGGB4wRTXvEyWhFZW1vbfJFEqD2FdEpSitDNcu6R63+zD8K/ih8W/HCeG/hXoS3NwR+/u7lv3cI/vH3rqy+jXq1XyvQ83HYuNDU/c/wDYI+Fep/CH4K2vh3X0RL9YQLpoVABbHJ4r6ulalT5bHzvL7WTlY9Xv73ZdYBBYdGPG2nfqdDp2gZGl69qfjLUprmUQ6do2nzbPt08w33LjqEXso9e9KNRSfZImKcZpJXbNi1vdL1yOW70q8iuVQ7ftIPCgccVDlGb0OmcZUtGjH1HXgNRNvYoW8tDuaRePrVboU9YnE+MNagttFcO7zLNPi6HmbduTwKym0tBRi5S1PIvi5qGopqlrpnhuwmtr+7j8i3eBt6ond3PasKi/eqMdLnTQVPku3sc94YsLHwLpVxo+q61ctcRSb2mLcuzHkE+hPeuuEY0Y2M6svaVLs57xp4T8P+M5x4ouftunxQH/AEv7FeMpDdiwB6Up8k2n2FGSiuVK5S0rwx4kis0bxN4ivri0EgXToYWVkWPPDNnkn8a9Cg5ez1ZyV5xeiVjkPjV4P0/VruWztGT7QF3Wt5FgPuA6EA8VVoXFF8sV2Plf42ahc634curLUkb7faEh5H43D1rJ1uUznPlZ8u+IZGTSbuMnHXIHevKxla9GRpRUp1U72POps7TuFfMQeqPo6SkmVy+EI6GtKulhVGVg5CkCsWXR2M2+Yhjx9atK6ObEaJnUQSxxKCPwpzu3Y6qzSqMdK3n5wvBHes4plwSeoyHCtj0PArdtqIRSchbxh5ZJH0rFSlLQzqxc3oQabGd+NuATxVNtJCg/ZysXp4TxJtpxkhV4pao0dGn3oEyOBxU1NUb4eXNuXwPmLGs4KxpJqLJkkCLwMk0pQW4lzyPb/hBYxppulWHw++PnhbQpbxGfxHLbXcmk6hZRYPyy3VxGyzKSAoihViWZTwFJH0eD9jRppQqxXl1Z59Si4ylKWp+p3/BH3wPo5+JN34k0Lx1J4gsY7COGG6vJ2ubiTaPvvIQME56BRj1NexhvZSre7qvM+fxkoQotNWdj9Gb66ERMMFud2eSq/er0KktWkjxIwlJJtlLR57w6hLJfw7EY/usnlqKPNGXvCrKm6a5XqT3V5YfaxHKRvzwKVRwc9S6cKqp3Wxk+LmiWPz2t8oo4BX7x7CuOvNXOrDXUdWcnrNtrF3YG71K4eODPyQLwMD19BXJOU7e9sdMHBNuB5kupWviT4l6Wt6PM07SnaW7dBmLf0CnI+Y1nRqfv0+iNeWcqDvo2L8R7u41i81HxNaaqyQ28RS0MkHDNnjj0HtXVUxEKknJFUqUowUTw3xN408QXnj+7K6ZJcpHoLSTz8GKRxjBAHQjHSuWWJ56zjY6PZKNNd7nRfDL4n6j4z0TVNa8LaiZDbW6lJY4iFSZFAdACODnjPT+dbU5uqtERUjCklFnPfETXvE/i3Vry30C4u5Ly705DPa3g/wBUSPvJnj8Kia97lW5m+VpXPLdG8P8AiTwnLPb65qB+3AtNHNbWgjK46nK4GeenerpS5Gdc5csVY8h+JWs6nq/iNdbl1cNDuKvdKNvmAnrkdD7VnUnFy5i6aco6mD4r8R3PhC1OpWCzuFtyYrhI+GGehA4IrOUpO9janyzZ4t4q1vUfEV4urXUMeZskiNsEZ56fw/Sijbm1OqmruyKujSuyzyoknyWzksOv1/Wuyrb2djrinsjgvEvia10bULi3uLPZNsG6OVN0cox1ZeleLibU4u3U640mldnmHiLU7HUJvtNlpMNpk4byM7WP0PSvEcYS1SM1JyZkxSyGQAH8PWlJRihxjHm1JvLccseM/lXM3d3N1a1kTICNwHpSbbMKiaZNasWkAPQMK1hG61IUU9TqtNQvbICB071lKKuddP4TStQEAJH51EttDWLdyW4jEqYxn+lZpu43vqVURYEwPwIrZQM5aMq3GZJi351LQQd1qOGGix3HXilKALSREgVOPXvRy3HPUu2l5PCd1tMyNjGVYjj6imrpgnKx33wHsNT8d/EXSvB2p6xBaaXLcB9Vvrp1jjtbZfmkkLnHOMgepIr18olHFZlSo1ZWhfVvsd+EblNRm9D9Ffg/45+C/wAY9b1nxGvji10v4cfDrSyNT1K6R40mhVMLBG+COcbjnBbtnNfTcf8AjHS4ejSynIZwjiXbljJSbmrpNRUU1pu+Zx02u9D1cVnn1LCw+rpuTbXTTz7/AHXPK/hn+0/pX7T97Pc+FvDFtp1pdXD23hTS7f7WXCrIYohO1wFUO+BIAmVAYAkHIH7FwLxNmeKyz22bpJpO7V0k/n23Ky3Ma9WjUq4lu0Xfmdldbt6dOmup5R+1JefGg3kPgLRvhFqd3HNNHHf3MkflxzR7vm2S9DnGODX2scwli4Kng5Kdt9Vt30NcVjXiElhmtTlv2iPCGu2Xg3/hALmzi0u4udPWS/s7SIlYS/ypDuJ5IUc168XKdPk1vbXTT79v680ehHBN0E5u+hlL4itvA/w7vfDeleFraA6dDbpbzpDliwyQQPXP867Lqckk7JDUo0YKLbsux5T4a1fxx8QnuZbv7JcxwOTfaqsryGOaZsmIDGNwUgE9s+1ZYZqcnGOyOWnOeKm56pIg1LWJITrWieFdKKXN/wCXZx3KXeCIxgM3+zwDxXVztSko7nXUkqSQ/wAdjT9G0D+yraG7tmsLdmNys3mPcQIMlemRkg5+vanXnJYX3rrl103f6/5nLVlUmnZ6HoWr/wDBN34k/tgfsL+Fvjf8JLDT77xDaeKZ7G3N9eJEyFYhILdkGMR7Ukk8yTgEkZweP5+8QOO8JkXFUaVaLtGKu0tdXoceeYnA43BrCu8a9OPNF2dmr669+lj5M8K6B4u1u2Pg2xuIjb2BNl4kZV3kMsm1o1KE7wCCMqSMc5xX6dldeedYSlOi/caTd9Dy8v58RhoSv0szqvijqNl8L9Mn0ixmWSay05oYLZceU0jFdrf7RGCM+5r6DFt0Ka5HbRq3R7f0vVnr15unhG4rXoeGxXfji2v5tRudQ8y/SQC4jkceXNEx+59B618wsNjVU9rKWvY+Nhh8x9u6nNeSfyseg6L4k1CeyuLLxBaSWVyji5aXO4jYMgKe6kfKR6GvbpTcoNSunufSU6tR3jUWpk6D4U8Sahrs/iG01dF2nDW0ZAXy2ByQCfu4PIrgqU61WrdPQ4nCpKq5X07Gv400QeEtGt/EE0kT3Cf6swhZI5kByCSOhFc+MpxoR5pBUk6cXNbHCeJ9etNduv7esLCCK5lfbcC3H7mRcdfY1484wrPmhuzyZ8tR81MqxOJZ5fIT94p3NkbdhzgkY46VDgoRsZ8rnKx6l8CLq6sNejuLa3iYGPO2a7ESSHByCx6E4r5jiWpSjl0+l0dD5cPTc2erw3NrrHhnT/GGnXkEttqDzRPHHIWa1uIiPMhfIHIDIQRwysD6gfgWIhOjUtLqThcXHExbRn6krsnHcdawhJOaN6kOdFfSGkichuhPOTTqTeyM6LUNGaN3B58ZbuB19awuzduNRGc4aFtp6ClFO5ztOEtSrqmmxanBtZRvA+U11Uq0oMmap1o2MjTLi60a68ifpnvXS7SV9zhcJUJXOostQjnQMhzkc4rCSaPQoVVOJalYfZ2IPY1yy0kbvVGDpBJ1Zs4xurtg24WR58eWFY2bqQBySKya1O6o7wKMkyl9oPGetUn2OON2yxb7iMv+dTJ9DrhFRQy6kIxjvUPY55v3io7DPvUpGqXukZYk8/yrayOSWjFOSnPFZyTT0NoakU2QMqORWtNJvUKmiI4UMhOO/qK0lKysZQSZ6/8Aslw/Ey++Ken+H/APjVdFiluUa/u5rnyo1jBBOfU8VrgpVpV1GDsjhx8KHJqrs/e/9ni6kufhlaf8TD7SBCF+0r0kwPvZr7KnHlgm9zwW41IOO35mt4vg8SfZGk0BIPNHLJP/ABqOorCs6jXuHXSVOXuyM/wFpl34t0n+2fGehxaZbxuRFpUCAhyM/M575rKCqVI3mrIus4YVqNPqdFYtbW2m3ItLBLazT5YYIEABJ71tTXLHTY5ZO8tdWc/rN1fXMjw6ZCFt4o8Ts4ABP1p+/wDI0b5Vc8/8apZ3GsAeT55MXy2pYBQ+OCfWjkUpXZUZy5bI8w8T3Guf2jHqdlPJbXEB2XVzKMxOuQCsY69+tYSvCpc0iqdONmjnviPqGtX+rDTGmtYI7vZEbwphgM9/Srk23qYJqb0Itbt7vSXmmsZPNi8oW95ayuNrn+/mtIJ82goqyszHXwzL4WhKzG6EM5Dxhbvcid+euB2r0YRcI2OWq+Z3OM+JunWWqQyraedb6kmJEHmZDY9CO1Q4t6o5/azsfJ3xk1Swu3vjdS+RfICsqMpAb161M4xBuSV2fMXiyVTY3WAAdxH0rysbD9yzooS/eRZ55OWXI7/SvnqcYn0VOTK8mdmcdaKr1sKbuysMBTmsrGtLYzbw/vtprSOxyV3udIoJjXHBwOabV6h3VYJzZbtIyy/MMAd6bikTBdiVbZfMDAc1lUegKVpWG39qGQcD24rKD1NlG7IrW3IOQMCuhpI5pR94utA7REAZHrWF7SN3BTgN0sPDNjHfvWjvYypv2c7GvIBw4OOPWlHQ6p2tcdDJk+3es5PUqLdrm94DsfAcvi6x1DxrBqsqW82YLbS9PjuWmc8bSJMhc+uD644rfBSw9KupVP0/U83G+0qU2k7H72/8EavDT6F8JbnVo/Ar+HLSVVaHT5pmklZccSSlud5B+nJr7rBVqU6CUdz4zHqrZuT0Z9gx6rdJI6XrL+9P7tEHA+vpXRzSW7B0YezXL0JbzU7GzVW1C7RAnzEk8KPrTdWCkrs4vZyk3yIradc6Nr1z/auj3azgHaXQ5UGnJ05vmhqdC9tQhyVFYq+KtdsbFTcX7RsYh8gI4X6+tcVapG+p0Yem2tDjbuy1H4hsFivlsdPjO6Yxna8nqaxjBYjVvY1p0qeFVoxtdt6d3q38zEv9Gkjg/wCEb8KCFNsh3SJACW54Lfp9ayjFW5b669PP/L79zapPklzHl/xJ+0eF52D2892sEbBoZZtqzykcn0AHT8K56vuaJm0KrqRstDzj4fXHhbTtE1fV9bvZxeyp/pUKpmKzOfuBv4htx6dTU4ZRjFyudco3SuVP2efFes6rpusf8IJJbyWs2rXBaZYGjBhDYyqMPmJ9q6KcZauDv5+Ry4qnFT1ZBOPiKPjZb6pq/hO5s9Iu7MJFfKzI7Sq3WSNsYT6VjJ1XXTlsVRUI0W0P+PkOsxXsWvkWYe2mWN4rKNQsoPRiMDDY/Ouhxad4jUlJanzH+0HpscWmvrS6OqWnm+ZG9vGUVz3JHfntWcqGnM3odNCprynk+pa3qN1aiaGGQqIv3SwE7GB6gr0B96h3tY6bOUrHAeKYktmkubvT3EgciXzPlYc9Djr9fetKUdTthHl0M5bm8h8Ja7qNtLEj/Zkij3HG7c3Y9jgVeKdqOh00klUWh57rlu2s6MLzXFvTPFGFF3GuYtv91mHp6+lePVcqlP3tDZwqTna+hweraTYW8Ujxa/ZysrYWGJ2JI/EV5Cik9GbTpQpx3MyJQp57GiVzkbvqiZWUndnr1rJtG1F6k0eChz1zmoSuwrJbjrQfvymc/MDXTF+6Yw952Ou0sAWq/T8q5qj1O2KtGxeWUBfm9awWrHTauONyiKdzY/GtNAqSsVXnVshTz603LQiK52VwzF/m71ncpQUWSA7VyQc4/Om5FSkuhCZCx+QU1sZqLLVmis4zwD6Csm3GWho5RtY9M+BnwO8cfHj4naB8G/AulNLq2vXixQxPkKidWmkA5CKuWP0rix+YrKcM8RKPNLaKWrb7Cq1YUIOpU0UVdn394+8E/CD4Z6Jafsc/BTTotSsvDfzeLNRkhMh1bUgAXY4yNqHIAIIHTtk/SeAPA888zPEca51F1MTPmhRg0nGEFu46aa9fnc9nJsJKrhPreL3l8K7Lp82cFqOl2U/jbTtH0aL+z3tiJZZLW0DAlTkrjHGRxx69q/rnERoVYqi3aOl7W+757HuRg1C7Scdj5t8d/E/9pL4C/FDx3Z/D3Vk1nw0upW98PC2tRB7e1eYkGa1kJzDIoBPHr718N7DMOF8/nPCK+Hla/wA2ePUwNeliXXjOyXTui54m8Qa142tdNuLu/k8y5VZnmbBYouWcknOOOMnk9q/Xk1UivZO19T31iadCim9b/qcf8TprHULW4ttOu5rWSQSMGnmJM7IpwQFHA6AD19O01JNxt1CXs5xVtNDzXR9F1b4c+HbceH7n7Mbq1lnvI1mDecc5bcQfkDd2POBgUUqbpRfQ5+dRjy09Sj8Itf0TxFDqGt63o09lNb3/AO8gmLIXPZh0JT/JrpoVYSvK1mZUZTqtzkmmtNSl4p8b2mr6ZqV9BOqv9k8q2jfCLGi7tzYJ43ZP1wKxknOrOXM1dLRuyVru+vV/jZCxFVSh7NJXPo342+N/Gf7L3/BFnwxpWg6YR4j8b29xeXF810UNva6jK0EZCbSN7QxygHPAc888/wAq5pQnxj4q4mClejSSTS2bXd+p4GMrYqWGq1ot2ilFer8z4J+B+o2nh+yktV1iS1jNu0d5Mznagx8xDDnJ5AOK/ofJlSwlFQjoloTlEYLDKMG3b8zc1jVx4zSfUkthPHNOu043GNI+4BOQx7Dv1r1q8va1L3PSlUdV+z6GV4/iXRCrnToR9ssYjcSWwDL5pbg+xwOQaxxSaSt1MsXONJLlXkdNfappWt+G5LNrm1yFjhuHkAEmHQYYewYf+PVpB04QbkxNyqRs1v1OLsLfVPDoksr8FHtXMkkYlPzKc5dGOMcYOOnoK46lWyslYxVF076nK+IL/Tb/AF2bSoPFkyQyyZsWlf8AdD0PXj3HvXzOOrQjUcXLc8XF16Mq0qCqtX27FfS9OutLnbSNVCqH4S4Qgxyrycg9MA1lhYVIq0gw+GqYeny1N+5PF5kdxFJATtKbWcHBc+lPEWSBWjNHo3hfwHrfxF0SLwjoWmxXcl64WOOW6SBUHJLmSRlVQByckYxXx+fzp0sulOeljPMKMsRhHGKPan8CeB/hz4I0jwp4d8SDUdWS5muNeFkimwgdkiVI4Zc5mYbW3uPkJxtLDk/iOaYiliaicGVgsNWw8ORtfIzbt1MR9q8uPxHa7op2jDzSG79DXTL4UjFq8tDRjmYDa4FYtK5a9zUgvrfeu5eBioehUkpxM7e8T7T0z1q4tW2OSzhIg1KxW9h3oPnA4NbU60oPQqpGNeFihpt/cWE3lOeAe9U29zlo81KpZnQxXqS2pZWxleRWTi5M7pVexlaPJu1YqP71dlOKjE5ItzqG1e5DE81yzlqd1RWjYz7eLzJmz0qZPsYwSiXkZY0wQaEuppGV2U7lyxwT9PahS1Odr3xkYBOWGPrTavsavSIyQc+npVJGE73IwXyQVOKt2Kg02OkUNHkjipUrMqsnyEVs+3lTn0rSS7nPFSkz2X9kf/hnzTvH1vr3x48T30MccoFlp1ip/evngufTOK2wssNGpeozPEUYuN29j92f2aLjTZvg/puoaTGwtJola2Ruuzt+lfWqKdJK2h4DqRqS0O1mvYXmjVm3t3wv3RT5dS7OKHXcixRCDzCI8ZYAYJNaXsiObmZVtpIWgnlm3fMP3UAbv2OO1S5LlG03K/Q5jXdJ8Q6dbXKx60hadNzIwBES+gHc1yyu9Ewm4ykjz3xobTw5Ml5MGnmNqRBGTg7yfvNgVpCXK+UI1JP3Ujh/HV3Pda3Z3N5aFV02386JnuAsMx4yNg5OKKsIqd5ChBuMn3Od+JeuW15qP20WkOI5IXk2jO8kjAHv7U1acrE0m4opeIdTt/FsUlnc6PIBCuWeMFADx971rqXLB2E4u1yhrJsdRktLPTgrslvz/pGPwI71q62trGXs/duePfHZkjiln0OWaK5hiBDwzEqCDyCP4abqXWgKKjufMPxB1rTPHmn3sGpQtFqkf8TjG/HWsJOetzOdm7Hzf4sEsIubabIKsRya8rGyfsWjTDRj7ZHCXfzKQp/GvBop6XPok4pFdgwjIPpWlVozdmtCumCp9Kxd0zSm/dM2/Ubi2eh61Sdjlrx0Z0sIzGM9MdaJfxDtrNuq7Fu3Y8A1fQdNMsM2zD7eg6VDSkTL4xmXnOO30qVTUTpjqiSOIqucc5qpMwmrMsRNuBX8qwcWmdEErDHiaKUSqK0Wxz1U1O5oWbfaLbk8445oudEGpR1BR5HLfjWUk27mbqK9j2n4IfBPxlpuoad448f6fa6J4euQktvqOqeIZLPepOFdYbeQTTg9AoGDnkivXwOBxVGpGpOyi+pyVqtOpTfK9UfuX/wS4i8NaR8HZE8I+FrrS9PMuQl3btEZzjmUK7O6qe25ia+rowjGCcdT5jHtyhyt3Z9E+HL861qlzJbKPKifEkjLxx2HrVKTbskccpxjStIta94a1LxHALSEpbWxf940nzM656Adq2VKVTZWRlTr0aLblqzSh0+w0LSBZ2m2OOKPqi1pOmoUrJnJ9YniK92crpfhbU/F1y2oahG0VkkmUW5HMv4dhXnUcJVru728z16mIpYeHLu/IoeNvh34m1RbhNJ8VfY/NXaDa26hYkHb+dW8JJP4rehtTxlJU0lHXzONsPhx4ttfCVzFpfjloIlbaJsqZJpPcgcD+dZRpRjTfLIU6kJVPeieN+MvA+ua/wCOFgXWb/Xri0tiZ4ZLgRRQ4HLYUda8mpTftN7ndTqRjG7VjmdH8UWnw+sPEHgYfDy71mK9T7TZ3M8uWZyQTGXz0z+YqsPVlRco2uGJcqvK1pY6X4R+MfBunX0FhrVgmlatZwug0vygjxgrnepICnOfXtXpYatGq7NWsclSE2rp3OI8NfFLUPjB8V/EvgfT/Flpq0OnQIPJWVGnjl5+Rg3C4x2NS61KeIlFdDtdD2VJTkjhfHHhn4oweIJtJ1jxxd/Z4T8tnb20cjRjPIcNncPSoaknowbpzVoo8u/aH07xdomhXWm6hc2E9ltE1rDc2TRPn1XHANW3NQaOhRhFaLU+ej4jn1WwWO1sWtiqkeUW278dRnFcSbZvSXVnLeObzdI5RJFjLDa7Nk8/wmtacrPU6ott3RleIHa3+HU5OG36lFkheMAHrV4r3qWh3QahY4rXtAnksZ4rHSrwRzRhleynOxj/ALQPSvMqQkqdkPnbd7Hn2r+FdV0ohrzTZIlxw8mM/nXg1VUhO7ISd9UZnktuBL+wJqXNtFNKKHohPy5+lZu4qbSkTRAiMg/nVRdjWorq4lgxF4YyeNw5rpXwmFNpSO0sBts0B9K5JnbzaFmNGZgT+lZLQVN6iXlsdnXkUKSuXNXRVSMxjJ5rRpMzhLlE3gN92jlRTlzDnXcuDWcrJktWdxqKqe9UtUO7ktC3p9wlldw3jWkc6xSqzQTFtkgBztbaQcH2OaiajZq5pTgk02rn1B+xr+2tdfBT463vi3wL8P8Awzp+o+KNEOjW95LA0UOhlv8AltG7yOxHdix5x6V89jMkxGKqUZYeu4ygpJ82t+ZNN+ttmenUo4XN5RoVo2jdOye9ujPbvgn4I8R+HNLvtV8c380l3A8st1cFDsvix3CZCfmdHzkHvmv6m8L6mGp8K0qdHSNL3Xp1W+m/+Z9RCtTxFNKla23pYi0q71iPxxd+N11dTM0DxWwSDi3yCO4wG54xnH4V+pww9CcLTiVVowpUoxeqer377P8Apq33Hz98d/h9rnizXdQsNJ1G7lFzbQ2lxuG7e4fMkhx/dUd+5rhzDDU8bONKN+ifye5y4lKc9Fa5yfjqaXwlZi8e9eO0tikE08zlfNROigd8kjpXu160cNQvJ2Ud76BKUaVC03ojz6H4g+EPiJPqOtxaytpNC3lx2cRUyQRE8AKxzuYn3ODmsMHj6eMourCSfzOOhjadSnGEXd9TjNSn09ftWm6XYXsdvp9wHvIBd+YLonlImOOOevWvQhXjVdr6K1/M3VRU5czGfFLxtqupxXOnaiscJS1jCJbAYtWVc+SMY5Pf3PtWsp3v2LnX9pTUjzTVIr298fQ6PduY9M1GyUMwkzypzycYzya8bEyn9aqTb932cn80rnkQp1JZmnPWLPp7/gspqOneKfiN4b+GvhzS9Q0rw54V8G6VpelR3d2wN1HbKyeb5HCoN7MUkGd6sSDjFfgHgtl6zCjj8xqy/eTqyb8tTz1g6uOy2UajteTZ8b6V4J1PSri90os0jKqsy5x5it91QO/rX71TwH1aLXMaYLBVMInBMm8N+INN0mTUZ7i3KXUdzmwQNvMbBsKfxGRmnTrppq+prhq8Y1ZJ79i4gujrGoahdSr5ZGZbC4cPlcfeH97HqORXRKuorU3lTc53voYXirXJ9Ov553he4sJowIzGO6jgn2B5ryMbNwk3J3izgx+Lng/etp5GP4v8TeJvF1rbSWVwhggRVmz1wPrzjHavNrYutUivZ7HiY7E4zGUovD7dSr4h8Mqmhw3k3kXMAXdCI2JYnurY5HrXHicPzwu1c2rZanh41Ki5rak/hlZZbY6Y8ksKTIDGlwMqPc56fWu7CpRpqJthm6sOVFq5iXTZEsb8ESH7lzE4YN9Mf0rCtFKXvbETouFRXZ7N8DrO01Tw7JJdWiERkFc9Q3rzX5rx/VjLLYwjpqejyr6ud1zGojUbeOBX4+4cr1OPm5ZWILtx3PWs5pXNHqiGyTMgPHJ70SbsiFZMvv8A6vA7VDZpUS5bojSbzFKNUXZlB2ZRvYOpH4U0n1KqU7oqwylG2Mf1qtHscivGRDqNgl0hliGGropms4Rmroq2V/Nbh4ZTjjjNbSXU55e5uO8OSiTVS+7+OtU/3bOfDybr2Ojum3Ftv/668+Wkj1JoqwLtkJxjNNK7Ja90nfJOAOMUS0QkrIpTKxfg8dzUoLJaiYAGB+taLRGTldkMr7ODn3zS5riauxkLmQn6U76FRikyZ8CHkdulZ3HUehBAoJ24xWnvNXOVSfQ9n/Zb/Z3uPij4o0/xRqWu6Xb6ZFfpE8T3am5d8ghVjzu59a9fK8DCrNVKr0OTHzqxpNRW5+8/wp0hPCHww0fw7bxlBBZooXv0r6WrUUnaOx4lCi4x13No3lvaxlZtq7cs7E5qZTUUbTTtYxrK91zxxrHk2CiHT4QQ94f4j6D8qwbqSafRiVOMfee5sDRdL0+0mslaSS4lOPNkc5Kj0qlGNipVLtHMX6WGmM7QQSyEphpLiQnyz2qVBX0RLlzLU87vNS0/xF47fUNRi3Q21uUlLH5Semc0U03UckLl9xLzPMPi5p3hy6ube6DyRXCXAK3QlJhCKfugdxRJJyvJ6G8qnsoOJw41z7bq896LyFo3v1FkbhCELDGTz0FZwn+9ck9DKEPdWhq+L7XXL6J3tbxoJBzE0K/upsfwj3rvUrszcoxVjmrqwSXSr7xLcR3S3saBZYdhV4j6+9azpqcTOUmny2PNPijqP/CReHbnxDpM/wBnvoEAfdjbKOnNOmo3M25LQ+RfH3iCJ5LmW5hUXAJ3+X/C3rRUXM7GUtzxXxfOZbWe6dssT3714+MtGkzqw0OeukjgpJWMmST+NeSlHkVj3XpoNmfdGa55xdxTi4rUqCQgEUNWWpdJrlM27kJRiTxmlLQwxLtF2OpgYeUoB6ino56ndOyqst2xPfjnvTk1FFxSJZZlAIY/hWakjln8Q61w2OgpTmddJLlLRxjJHXvUc6IqrXQWIAdsZ70pTQ6LHuN0fTpSUtC6seZC2Nw0E23OOKuKuYw0Vi3OGZgeOabcUjRU0tTsvgZ4W0PX/H+mzeJ7fWraKK7QxarpemPdguDxEVzgZOBkAkGunDV37Rb2ucGLdKNOSWj7n9Bn/BNq0lsv2erV7nSbzSzPIxFnqTSNcKCeN5k+bJ64PTOBX2FCopU03pc+UrKd7vU+jLOaO2aPS9LhVELZYbep712JbRRh7JOLqTLmvanJZwBIVO88ACqr1JRSijloUPazcnsQWLvBYG81N97Yzs9KlOFOHNN3NJxh7XlponD3GoafvcNbIeenOK39o6lK+yMuXkra6s5XxpcNBoM95cav9isAhU7SGZz7d8mvOqqpJaOyPVozhz8qV5Hm0ngz4g23g24vNOvxp0U7F7eC4+aVR/eOe5rBYZ+y1dkzaVRPEJSRh/C6+svh1ompav4ruRcandRStLc3KgAjIGSR2rCCo0YWkVjKrrSSW1zzzwZ8QPBHjz4meKWV5DZWcKLAbi3MUVyO/lM4AkxyMjNZYRwq1W9kDjW5I8pl+FNG1Xxd471691HSLPUNPb5LeCVzHNChHBJb72Pbiu2lC05KxrVlTpU0upb8dfDfwb4OEjf8IjaWV/c2ZkW80S3KSFgM5Yr/ADq6mHo3vZXI9tXqJK55dHqGtfE/R/tlncQCOzR4pZjcIkznJ+RmzncMd6wj+Bbi6OvU8d+JNvrdrp7WLy3V4GJESXTLKsvBymV6Hr1q3eKsdUG5/EeA6e1lY6y9vqFv9ljMjFbW8DJg9wDggA1585RhLQ7Wmo6HD+NpbOS9nWzlJUS/KhlztA7H/GqpyvudVLmsUdfszc/DK9mKlTDewszBc461tVkvZHXSi2zzLxXJqzqNU0WeOW22bZmtZiCD/tL2rysUqk6d47Ft8jOVvr25uF/fSMzDu5NeCubZjjapqzOYMzA5/SttEiXq7CtvQbsc9cVNkyUlzWJojlD+orNw1NKr0IbJyNQO71FdUV7pzq3MdtYMTZpz2rkraM7FpEuQsSw+lYbjhZC3YbZub04xTUWaSqaaFASjJ6+/FaONjGzkxwBb5ie9RKaWxrFKIkqysMKR7VmndkzaYkUbA5brV2layIi5dCdAx4VuKnks9TaLla7NHw5qVxoet2erW9xLA1vcI/nQY8xBnkrnjOM9a0oaVL9jKdSSlofoh8C/jDrvx18I63rl3a6kZoIIYrS81jUmu57qKNNqO7HAQADiNQAoGO1f0D4YUIUMmqKmrJzb+8+jyirGnh0oRSSfTuZ3i26tvC+jQR2zYkjRpZmkf/WuT0A7DtX6tSjUkm5S9D2XOdV3OL8TLbroGp6/rlwtvcXR+WOMbBtPJC06lGnKDirq6tdO33Nar1M6lSSnzI+YfjL8TNZuvB3irxH8NdJvLnxv4bvtHk8ESNFDJp8T/asTmZJARK2NgUEYGST2r8w8T81xVGphMvjf2da6k09dNl8z4Ti/EZi1To4Vaybv6HzP4b+Gmo+OPG3irxb8Q9Qli1RI5LnWZbaPyUFyRubZGmMYPQAdTxX0vC2TUcPl0ad2klrudXD+XOTUZ35ra69RLv4MfEHwvNep4c8ZSQpbW0NzcLcPuLPu4jAPJbByf/rV9T/Z08M3yVH6M9yeBxSi/ZVPvKWi6h49vNXvn17wjL9jgi824urfnzXX+I5/z2rfDvGKcpVIad0Y0J5h7Zwrx91bM7z4Tt4U8UX2h6PcIt7dnVNPSYqQrMWuAjJjqMk9q5M1xNKGRYiSlqoS8uh3yrUPYzcXay/E+lf+Cwn2bxZ+1t46m/sSW1g0J7PRbRZZQwiCwhxGMADC5LA47mvxr6PuGVPg6tVa+Obd+t7nLlapPJovd9/M+Hri5WLUUu7+8dz5p+zzxjGwxk7VI7/Wv2ypiac7dv8AIyniI0+juc14J1u61bxLqeszaRCgeUoytFnykHGVHP6V4mBrRnXlK3U+WyrEVMZiak5q2poeO7zTtDuUsRCsFw1kWgSJshuMhsj19K6MbiqVO6j8Vj3Mbi6WDai9ZPZHKS3fijxbdwzXkywW0YUtBFjanbdjrznmvFg8RjK16m3Y8OnHG5hW5qrtHsXJ9JvPCojsrqOIi4YNDI7bgGOeVx7dq7Xh40ZJdzp9l9RrKHRlq+jgs1j1SaPytqorKoIWQd2APGM5rSUYxTkz0cTPko83Qoarq9kmqf6HcBZ5IQ/kwygIvBJzjjB9K4J4mEZ8qZ4lLHxp1nCMtWuhW8g317DcSSt5mS+xSCiH6fT1xXBiazm7I6KktFJvU+j/AIC2TDwZKXUIpwCvQivznjlKOFhfudVKpKULGtqB1bTbkSWASaHPzwsACfxr8wSpVL3djlrQrxnzR2HyEzjzAuMjoTyPauNu0rHZBxcRLQbDg9+lN7EzVi15wIIYYGKiS1LtzUyFSVc4OOeDTtoYp2Yk3zcDFQ2buWhn3cJU7gSCO9CTbOSokRRzsTjJzW0W4qyHBNFXVrKRojPF1A5xWiquTSZFZRaM/wAKTlNRPmHkPjFdUqcnC62PNoyaraHWzzAuQp4rkaitz1veluLDEWw7Gp54o0ukPk+UbV6etRJ3MnLsV5FJGSKUdx83ukQwCR09aubdjBaMikQSnGPrWabRal0ESNY+nStUu5Ll7wkjkjBPShRdyZST0I41BlygHNbN8kQglE+oP+CVPwZX4q/tYaNdzWDyxaOTcyOM7FI4GfWurK+edR9jlx1dKNj9wY45Yo1iVACBt3HoBX1CVlqeQ5dihdw6bqF+lpNdt9mhOZFReHPoTWEk5ysCbauar6xZWdu1pY26xQKAAgGAPrWySskiKl3a5h+IteS4mFrb3hQ7cmQIR+tXboQoW1ZyPir/AISB7X7VNdyxQs6osIIJYZ61lVUoaJm8I80dEc74vuNC0+0lt4byeBhCTIoXLOe+KOeMFYVvZq9tTxv4rJceI7zSvCWkTyxQEGUxuoLyrjJz6VjUfPNRME/ecjO1qPRLPTrbTNVMTaXNHtdZECskpIA5rqjGKjaxvBcsH3Mvxe954avovD8upRPZ5Q2+6f7vfGTWqXI7HA3GUuZIzPEOqPpVo95dSOLeVSsiLKCw/wARWzlymqT3Z4d4rsNQ8PW2o69oupvLbuzFo2OQN3ZgegNSnbUmpUjI+UfiTcZ1a4u4Y9kcjHeg9aicm2YPXQ8r8ZTm3tHOMruyPSvOxsH7Bs9DARtUOY1i70aXT4o7KItct80so4Vf9nFefGMfZ3Z6dWf71GTLI+zBP41jJI0mnKFyq8hUHFZz1RNHVWM6didwI/Ss5IwxDsrHVWh3IueOKzm7VDuqX9qy/bjpg8VNSbaHCTTsOeHc+N1ZxkXJKRat18tcEfnVON9TOLadkT7FZSAf0rLVM6GrrUIAAQPzpuLZjZxkXFjV0wcVCumbqSK89r5Mm9K6YNtGTdndF+xR7rZBBC0ssjBUiRSzMT2AHU1LpynKyVw5pNH0j+yX+zl8XLXxzaz+N/BGs6HAu27sY9T8WnRYLpgQUEkJHmSqf9gA+/Ne7l+XYiHvTWnm7Hm4icKsWk1c/cf9jC51y6+FVnda7FZrLgCQ2KERLgfdQk5YDpubk45r6CDlGKX3nhV/ZuLSZ7T4buYJL6WYfO68Fh0rohJrU5MRH9xZMt6jd4k82SNRg9D1ArN1HKV2YUqSUeVMdp8raiiyCHZGp6sOtdEIe0V2tDmrr2Umr3ZR13WBfMNJt3wjNgmPkn/CsKmIVaXs47HVhcPKn+8ktTj/ABpo9xqF1H9uvY44LTDKX+ZYx6/7Te1Y1tGuyPTpOnGle2rOE8W3mu+PfFUHg3wXJNFaPMovLmYgPIOuBnucH2Argkq2IqWhsW5xpU3N6s88/aX0q71rxDH8P9C01/Ke2WC4dZSCqGRQxI9+eK5sTzuo6a1SDDRtF1JrqRfEfwO2q6/DpelaWtzHo8lukMEcYVV+XLY29e5rrjTcpqy0R0UFy07LqQeMfiF4W+Hk0mteMWhgivNLCLbxxsrhzjG0jqT2rplWoQfvPyOWnS9tPl7Hn/jT4nS/GCeR/DOna7bwWFr5c9hcXAt5FQjqhOCQRXHVqc8nZPUitRdGXvLfqfL/AMNPAmh/Dn4l654L0831ql9dG9VZb+S4jG5slmO75Wz2rHD0VCbTuelDmqUlN9De+Onhy00jw2/jHwdq01rd2rFb8ycqT67T1z6gV6M4OULxY4z5nZI8U0nxHJ4nlZr6VZfNjYbjCGDt9SPlPpXnSalubwi9jy/xpdefqUkrzhtp2iUxBWI9Gx3FXSg0jvpqwrR/bvAGp6eF3o7xZ3cAjJ5PpXROlHkep2UubmPIPGNtq2lS/wBnTebGiE7A4QnHbDjlh9a8XFVHShyxYVVrscxP8w3n8TXip+8FNt6MrjIyffmrexE9wbBUnH4elZOVmJbjYZFUnLUOTNp3cSO1k3X+Fxk10QnaOpzKKU9TtrBiLNcjnFclSXM7nfpylqKYLgg81EI31Jih80gkTDHjqKptI1ULIqvGAxrO9zOUrux2v7OPwQ8RftK/HDw58C/CV/bWt/4ivhbxXV2SIoRglnbHOABWVecaFLnl3S7avRHLia31ei5tXsZvxc+G/iD4MfEzXfhV4uhEep+H9VmsbxR0Z42K7h6qcZB9CKqhONSF0bQkqkFJbNXOegUvyR16c1rKXY2iuVXLVvEGwFGSahJyYpTdzSs9KeZ0Vc5J6YrRRey3M3vc+8P2QPD0mmfs8xC3zbGS9/0uXy8F164OfUAgV/RHA+ExdHI4KHuttXdr6X1XzWnlufVZW1GjZrVlvxJ8M7rXbtvib8Tta07wz4M0xsW99rF0bdbmQHgRqAWmI44UHrX0eccW5RkK5MRU959Op3TzTAYX925XkeL/ALVmuaZq+naprtrf+JNM0HTLtbNLu88Mmxe+u2UGOztYJW8yV3HJcqFUHJOSAebCcZPMpww1ChP3rcrSeresbet1Y8jEZsuV0oU3zp2s/XXoeLabZS/Dz4bH4t/EzSVtQ1nLLp+ng5827JBjyB94J3PTdmvRxOVVc8VDEY9fwtYpdzOhhq2Km6lbS2x5r8DdO1YLqnirVoy82t3cjqZYOOQDuPHB9M96+zynDPCYVX3k7noZdgJUaTlJFrxxYnSNVk3yhpb9DJcnJYxxqTtGB0ySMmuuScqtjtrVUkrEuttp2mXzaS8C/Z7q0AncfK052Fjn+6gPf0NdtPkjD3npqaQqRjHm6nQ/sT+HfAl3+1j8PdY174a6brkkfiEXNpb3N3JawXVzGwdN7orFQpUHGGz6HOK/NfFPB1v9QMdicPG0+R2a691/W1zxcXhI4+lKF3FvrFXf3Fv9srXdB8a/FrxH4o8LeOL/AF/w94y1W61jT9Y1Wy8qS9YuYpQig4McbIYwcdu9fn3gZNx4XqYGvFQqUmlKCd7XV1f1NsHh54fAxpS6f1958zeI7ewg+228PleVC7ENOuNzAAlV+g4z6mv2Ks4yjJRT08vy7+qOWtytWbR57od1DbapqF3o05t5rX97AJWzngZ47814OHpS9rNR0aPm6FSn7apGjo0yW20rVPEk03irUXV7rzNx2gERqCBjGOnNbxwbnL2k9zoo4Kripe2r/EX9OtBpupnTIMQ3LBVSdk3pz7HhcgcfU100afIz1KMIQdupzHjyfxBomvRQ69GZbWGUbRGmNvpxXlY2tXhXi5L3T5zNljo42DqxvDyNLxU63PhuTV948mSLFtyMKe6+3ripxmJisO3Fnp4qUHgXZ9DkNBeO9nMsUCyTYyxJ+9gcjP8AWvDpzXLz9T57AQgn7S3vG/osDfacmIlmIKnnLc9BW0XzTuzs5pTkfTvwWVYfA8hXKjcAFA+7x0r854+nzUoLzPUppQomjqGHJyP0r8us2yed3KwLAMuM/Sh2iKMXcRAY+vUdqiTQ5O48OMdeD15rPmLjNKJE7kSY3fjRzXMdG7jt/Gf8iqULq45S1K93NEq/vGHtk0+R9DO6KDOPM+Tn1NappbgovqThmaMoy9RUNxvdF2gt2Yuk2LR627r0z+ddHtn7M4W7VrxR2EFleX8wt7KzeZ8fcjQk1zWlN6anROtGC942PBfgLxL441k+HvD+lSyXSj549hytbUMLVrT5YoyniacVe4urfDvxloniVvCWqeH7mO+DYEJiJJqsRQqUZ8jWptGpCUOa+hT8Q+DPEvhq+Ona5otxbSldyrJCQSKcsPVpL3kVzRnG6Zmz6VqaIZH024CAcsYjj+VT7Go43swtGxVA2/KDz9Olc7VmZtqIxuOnI681ukuXUlRcncjkjeTqMc9RS5ktinCKe4+CAhtoHTuayqNy0B6bn6y/8EO/hZ4d0D4Raj8T4ikt7fXBjMw52Afw19XleHhSwqkeBiG6tZn3ZDJNPKqXMmE6geteluZKLSsW5b2ztLfzRaAZ+6u3Ofes0lfQpeTKc1m1y7XNxlFHzFMYB9qttLclmTrWoedeRubXCiP93GE4yO5pKpzSBNKNmc54i1yK71OO4Aje4Vwqq8Ywo7kZqJxlJ6jTnay2OE+LQvILCW5tlW13YEboQXmckYUCs5xt1Fe+h5zLpDLrs2rXr7r+2tQJrgyYAJ/gA9aUIKVW7Woocqicp8QXvfFeoRaPceHzBCIRM0sT4yy8jg9K7JXggcjB8VaZrJie68QQtJN5A+xxkAgY6moSnNXsZuEYoral5Wr6E8V5C0UixqiqhG0ntz2rWC5tzGU7M8K8Yatf6JLqKgzuwZluI5FBDg+o7H3rVK7sZyTeqPl34iXLS6vO0I2qxPXt7VzVIuLuU1ZHlvjS6IslgPXdjBNeZj5NUbG+DcvanIXKPsJUV5UKslpc9eEeZkMqARYGcjsaJOTZpKpaNio6ksQPWiWiIptWK1xGOp69+KINLc5qzcrnSQSqsK4IqOW87s9Oo7Tdi9bzZT0x61MoRW5lJtO5IkmX5ajlikbQldaFmLkctmocrMTlystRmMDaxH1qGtQ55DhIkbZAHtTs+o0pNk0bu/KDHqcVL5YmkYdyYQmRfnPNRKdti3yxRa0NNes9Vhu/DUtzHfW7iW3ms2YSRMvO4Ecrj17U41ZJ3Rm5pLQ9N+ACeLrn4gJqWv6bq2u6tcBk066kvmuBbzlhiV13Zc/ewNw/TFdeFxE/brmlf1OXFP8Ac8z0P32/YB/4SFP2btKXWzcSXIgCzG4djIzDgltxJz+Nfdw9n7BKPU+LqSlKs10Pe9CWDS7YKIT5jkEnGCSannsrGVWNSfXQdqM/2u4W3sbYu7N85I7etTH36iSRpSi4U3KTLGtyx6dpDRtOIvkwcfyrpxc/Z0eVaHNhY+0xHO1exy1rZBbmDTkuzbtcHdJBndKU9T/dFcFGikktrnp1K7ndpXt9xhfEnUbaOYxWYwifLErnjPdj60q3KtCqCnypyep554Q13xXpuv3WraEII2aUl9QvlyUTB3CPjA47n1qYSlGN46WOiVKk9ZO9+hxVr4k0Tx38V7zxT9qMhiEUOx35kw26Rh07DGa4qc6dfEuTWptXg40FEg17xRZeMrHU7uzjuXjivViP2KNguN2Cdw6/LxW06sXdJGLvTSj1PMPiNq8nxF1qHR/DRuzZWEZghM8SvFLjkDPIDdRmsIv21T3XoKgnBXe7J/APh7RgI3122FvdQKwliu73Mg4/1f8AtIe3pXoxgnY6ZvV31R5Z8TvBniHQPizp/ibSfC0mnabPbMkr2cYdX543+2KyrXhUT6FRrQ9m4oz/ANofRtcs/hsl5rWoGCWXdLbOsZ/ejsGA5PHrWdeo+TQVGabdkfK+orr1gTqs+WilIJnsRuhI9GzyprjWmsjthJWt1OL8WzNNPIUCsC331bO89ifet6U1c76Cb3JtLlhj8KX8k2xV+Tdv6Lz39q2qNuGh1qfI7Hlvjr4feMLCeXV4dNlu9Of5kubaTzEQe4HSvm8bSqqTa1QSjKTucbI46dPqK8xJ3JvYh4J4X8a1knYS03AIQeP5day5bobXUelqrDp+VQm0zRakMFt5d+NqHrjNdMUuUxqqzOus3JtkXHGOM1jNWN6fw6lhOWyelZx0RcXYtWdlPqN3FY2xHmTSBEJOAM0oUqlWooR3ZUpSloj6H0T4G/s923w9ttK1Rry58QE7rzUI5f3an+6o9K+srZLgMJhleV52OlYSimm5X7k37MXhKP4BftSaR43W9WXTksbr7BentKYztXjvmvyPxAwWLxnD8sJRvec4pW9TCrBRnFrbUj/aW+Cvi340eGW/aK0+eS/8T2928Hi7TgC0k0Wf3V0vrhcKw9ga+gy/Czy3CxwsYaRS89ep2VYSxeFjVjG04qzS7dzyrwV8B/HHjbxBaeGtB0WWa5uJFUR7Dnk17mGy7EYypGFNXueXVquNN9z6n+HX7Angm+u9Q8LeNfBmtNftDHHpt3pTjfHcAfOrxtwwz7g19hDIMEuaNaDja2vnb7jtw2AVelGftEu9zovC/wCwP8J/D2rK2t6zqEnlqG3vCAEYHlHUnr9M19bgeFMmoTg1Fyur3e19NP67HqU8vgk58t16nsPg7wb4Ha6t/h1pBjWzhVp7qQoSlraRgtJM/U5wOB64FfX4vNcHkOT1K0rxkrKK/rrsbYivPBYRzWj2SXU+JP2l/Bnxp/am+IF38bvib4vbSvA+gtcx+A/B8M+0RQQlUimZAAQ7khgcZY5Pavx2nwbxNn1KWPxElH2jveTu+W/wpdN+2p4lPJsVVre2lK6l08/M4LTPhlb+IvHWmeANF86XTPCMASJbqUnzLxjukkZicbixOT9PSv23IOHaVGvThH4aSV+l2e1gcqUq0Vf4dzT+NWgTa2UEjGS0soI7YQJFuRBGSSij+8T+dfpVJUrWPdxFOKppbNGDqeq5sG0G302KGO0RJ5tOJy0H3gZZOwI7VsqsZTsnojKhOT9y+551qPjL7N43v9ZNpE8JtvKtIJx1UjGT/OpqVbT1Qq8VGFjh7f4nHxNrl7Lq2kzjT9OTyFuvOAMwB/1YyOmMdPSscNVnKUk17qPIw+IrVK0oyjZI2fhb4u1DS/iz4V8VLNJbRLrdsQFwpiiNwq7gc5UlWI49K8viOlUx3DuNox+1SnZdE7O3mehT/dVFOGln+Z3H7c37Td5+0X8RtZ0D4R/Dqx0fwT8EFOhiPT7fy2tbVrjyg8pBw2+fv15575/l7wKyiHAE+bNsU54nM3zPmd9Ur2XayPnsPi8M51Uqt3Fu619D5o8aawms28csd2UhE/LseWO3k4HUV/U+Nq0HFcrdl/kbVnelzb3PONEk1WTxRctdQR/Mo3DGCQBjA98V4OCbeIl2Z8xhKNajjpuS3PVfDdzp+jSS3sNomxrPMTt8yluAd3sccjtmvb0jFtn2UORU07GBFdXGuapqM8wWGPelvvdcgICFV/qM5zXj+1nVlJrY8fD1a2InOS72K3iVYr66ma7u/NnS5SJ2ByjFVIL+vYfnWcqUqifMd1eEHRlzu7RX0rS9M8W6BLpd5fLbPZKX+/8AIcAkAjuevWvKxlOFSCp31R5NGnDGxlRbOF0ixu7fUZ7dGT5HwY4xhW57V5dCk1JroeJOjUoSlFdGdXoUnkXsMJB3CT5AwwN3ofau32cWmkdWGhKTPpv4RSCb4eyXLhYy8/3EP3eK/N+PlCFCmvM9v2LjRu2XZg8jkFvpX5TOaWxz2UWRSr5Y5GM+tZpSbBtormYFz8wyKc4uxEndAkqnqevQ1k4szTsMmbDctz2qowBt2K17qCWVs88gwFXPNbwSbsD0jdmPovhv4i+PdPufEfhvRJbmxtT+9kjGdor0I0F7N2R5ssQ+a62JdMe6ZxbywP5gONmMnP0rzakbz0OiniFyXbPQ/AX7PXxe+Is0aeGvBl3Isn3ZHjIX9a66WXYqrG6RjUx1GLPcvhh/wSb+PPiW5F5r8kGnoxBxgk4rsoZJiKj992OCvmcIO0UfUP7OH/BM/RfhNqMureJrtdRuHXH71BhfpXuYTK6OE1epwVcXWxMtT2HwH+yH8MvA/iebxZougQJdTnMjBBXXSoU6dVzRftJuFja1T9nP4e6v4mTxTe+G7Z7uMZWUxjNFahTqTUmtSlXqez5SPxN+zb8N/Gd0mo+I/B9rNMgCqzRDOK2lGEo6oIVqkFYzNZ/Zd+EF/bvpU/gWyVGTbxCM1MIQSs1oU69W+55be/8ABMz4G6jqVzIND2eaDgoOBXn1Mvwrq8ziTUxVZzvc8T+K3/BIrVo7yW6+HOvhQeVhmFebisq9prS0OmnmdWK2PPtc/wCCVHxr0nw1Jrq+INP82MZMM7bB+dcEsoxUYXTRtTzJ1KnLYtfsp/8ABMzxP8a/iVb6N408VRWWg2d1H/a+oxIUgkXq0STNjcxAx8oOM1wYqWAwWGcp1f3vRW923W8r9PR37o9mnhcTVoupKLsui3+4/Tb9mbUPhjoOr+JPgx8JfBNroGmeEHht7e2th/rwUB805Azn17813cK5hUxdKqpWsnpZ/iPPMseBw1Gf86u9LfI9isrxGTEcuCOHY84r6hyTeh8u02mLPqEl7N5sSkhRhnbgfhUq7dwjvqUr/Wrqd5QYiyJHhELdfpQ4ybLkk0Yc3iWKO9lnu7abf5AwjIdnHvUr93LUI03KJzvi++8P3iLLfSpb22zeRbvh2Pp7CpnVTeppTtCFoo8s8c2virUbiO70VQFgUzWltM5cuBzz6VLUnqjJyjL3banF6Na+Jzp934o1fRihdpX+ztLu3SYOOvUhea1w8ZSk2zWpCEbRE8PJd3thDq+qTxuJ8eeXcDaMn5QOeTXRZ7tnJNqMrHM+PvF8enXO+2CJJdQuLe0Z9xAzg/TjNCqJaInl5jgPFOv6ulhejT+FeQbkVsgcc/TBrWNzPl1SaPE/iXq2szefcTXg88RhDIo4IP8AepubiyvdjufO/jqeWFp45Bkq/wAzZ6VlUve7Oe/MzyXxxraG/EafOsUirMy9F3ZxmvJxycqTR3YNWnzGVc3C44JPFeZSpO1meynZFVpS2WY9+lVO0bIxqK5AJF8wg0ptuAqC5nYhmZST8tc0m0h1YRi9S9b3EzIo9q67LnNpXdRstLeXIX92prKTVxTUpO5Yt7i7Iy47ccVm4tuyJVRx2LUEl8wyin6Y61XJTjuO1STuy9DDd8eYp+mKylOP2TaNktS/a24cjIOa5pTZrz6F+G0m84Wyws0jcCMLlj+FRrJ6ImVTlWp2Xhz4KeNfEXg28+INrZxppFjOIbm6kkxtkPRMdcmumGErTg5paI554mCqqHVn0n+z5+zne+DPhVZfEm/8IXCXeqW16oup9PMyiQqghRk/ucuW49K9OjhZU6Clbc4JVPa1nDmPVPhH+xP4Ma4tPip4o8Kr4c1GwuFnuG0m6b7FecElvKPIcknC9MdK1pYOlKXPKPK/IynXqv3Iu6fc/Vz9lxNOHwWsG0u2uI4io2+dCY3YdRkHoP8AGvp8PBexvY8bF0rzs3bZ6eX9a+R6Na35dfJVhnILEr+lNx1I92WqNuK4s9PsPtMqhTiuqHLSp3Z51T2lStyROe1Sa71e8jkhni3K24M54j9/c1yVG6s+ZnoxpRo0mrf8Ey7S7tbbXJ5DcB1VSbm9l4MhHbPYewrOMouQ17tK1vkcTezTeL9cuNcvrVf7KsTuLhsCZs8getZOCnU53sdMIVI0o3tzaX/U5H4ieOvDMVwV+zFbUcmKInCHjhj2HHapqyi1psbKFSR5RYeL/DepfGSw0jQH895YWWS4Ns0MOzocMwGTXFGvSjXiox9ToeHksO5zKnijXde1HxHdfD7wl4ru9MtJFkhtYdIjRo3lyT+9bB6gYB45qq3PKbUXZGHs41LVLanCeHf2bfEfwT8FXXxW8HXup/2RDfs+s6Bc3DMPOY/vJVLnK5646cdKKGGVD34/M6nKlP3Z7l268F6D48DeKvCusSiTYpt42Ynyw3pj7w6j15r0ZRjKPNEyVRxlyyRj65rHiLQrJtOvtHu50AMcwllMOxhzvj3fe9emK4qs52s2U6UG7nAeJbbV/iTocFsuvXa3UVu/lNeOAMew6H6VnJK24KNpaI+c9Su9a8D3F3Y6zZW8gQMs1xFGTE3X76AfL9a5HUs3c6ormWh5n4vkiur6S5tkhRWOf3J+R+K2pNc2h20+aOjFs0jn8FavAQrg2oOMd8967nKPsz0IU+azZ4xrlxremXTRreTwKw5SKf5SPbBr5rF+4+aL1CT1sjCmkZst1z15rkj3YuTlQRO8XXvUTTlsEbSJFl3Hd69KycZJBJNEgdun9KlRe5PtLbAny3AJ79hXRHRakPmqSN6wnkaBQTwBWNRxW51RhZGjbo7YUn8qxlOKdjRKKNLSwbW5S4HVDmnTquFRSRpFpfCekeDNZOqLHbpetGx6ljXrRxKrRu3qXGavqfS3wG+Fs+ueGYNZvLBL+PTtUilKOPklUHlS3UAjivqMo4anmOXxxUoqXLJOz8j0sJgPrmGlz6du56Vo+nP4d+K0uv8AhzwfcabaSsXjtX+eLYfvIc19BVyKMM8XJh52lG6drwWys+zd9Doo4GrTwlr3e3meia38IPA2sQQeL/hzAND1VwWuEjh+fee6n0r3J8NUKUPcn7F7t6aelzzqOWzhXarxTj6lyy+GvxA8MzRt4n169heQearzjy2/3vU1ll2EyyVZ06WKdZ/Lf5Hrwhls43oJP01En03SLkvG920txI/MzMSWP19a+npYGrHDx5tHF9OxvBy5bWsjzz4mfEf4ceBPEl1+z9brqiajr8Bmu/FkYeO0v9hDy6VHOeCyDa7pkFhxyBXwuGzCHE3GFShj6nuUpXUeazbWt2uup50aftMXF4m6drxi7feeH/EbxCbPRYSl7bP9rvpLiSJBxFbxkmOP8Tj8u1ftawsZU04vS+q8kv8AM9GhQlKb51sed/Dq90WC0n1C/s5Zr27mkuJkEfBfjbnPUDg4r2cHShDBq27PUpUpUo+6jnvinrgjw9pcqrWcUknnZwZnGSSe3HQfQV0WSTZjUlKejPNr670y9tb+e3tJlOqQRRXkso3PIMfdHTcT+gNZ0KT5ua4lNRl7qOF+JAii1K4fSLJbeRr0LYW5cM8shGwE/wB4IOSQPWsMRVkna+pnWm5tIoa54a06y0zTtMtbnz3MTPPLsLLKT/rJfQkdj712wSVBQW5VanGFGxz3iR309rLXJYo4THAzxJHFkosRDRkjsDg+pJNGHw3t67oS2lGSfzWh49ScnL2SbV9bn2z+1d4Gbwt+yJ4r1PwF8MPh/pNn8Z/h0PE2r3WnI/8Aak89pJHJGzbiVCOHlfagUBgpOScj/OfLpynx9TeKxFWc8vxMqME7ez5ZN/itEr367dfKw2V4bE4TG4lRcZxvbs9NdO90fmp4f05NV8FNq1zE7K8G1UOcqD/Fx74r+78PB1MFKpJbjy+UquXKpNboxdK0p76/gC3Iij8wr9o6lJMcE+3FLDUktTlgm5czO20+C21DwncWMKkyxEmW0H3zKOroPwBIrodR1INI9aFX2tJxiYmiywadaXVvMsTSSQEqZGz5gJGcehHpUYWlCMHcyw0JUaVplqXTbW4sLnUIBEwlt0kLq2WGMguR254I/GitVi0+XYK/v07oxNJs7Q39yEdYpo4flSIj95xwV7H6ZrwMTGPM+54+G5I1Zcu5yEGnzrfzfaZXMiynOCMqc9civLw9WEU11PH5pOrJTfU6Tw1YySX6pOxeQAEMP4x2rrbcoaHsYZKDTZ9QeBEg0rwDbRDCqzEjBr8q8QObmpR+Z11a8px5Ue5fD79kPTLTRLb4lftZ/GLT/hX4Zuoln0+zvrN7vX9XiPO6005PnCntLMUTnI3Cvx/E5hHn9nh4ucu61S9WeRicb7D3aUeaX4Hq/wCzZ4b/AGNPil421jwx8EfhR4nkisLJGXWfHeqQXFxfcnc4toYglspHYMx969DLZZhQqN10tVojvwVOtiIylWs7fgbnxY/Y7+Dniq0mfSdGj02+wQr242jP0r3OSNaOqCry2tE+O/jB8HfE3wh1drbUoWktS2IrhRwR7159bDSg7x2OSEpOVpHHxOswBY5HauWUlHRHUkkiHWtIu9ZsjpmmwPJNN8qJGuSSaVDmnWSObFytRaZ9P/sB/sh/H7+zzp2raSbbSrwZkEikFlPqK+wwuCqp+9sz5761GlBxPtD4X/8ABML4LeHtVXxLrPh9bm7kbc29MqDXbDBYSnK6Wpwyq1Zn0J4a+D3hDw1BHZaPocFskYABjiHSulcnQSi27M6ax8OxxSeVEhHocdKWiK5EXl8KBn2zjhupobvoVH3WW/8AhBooVD7CVI604pLc2EtfCsBl4XHsw60pW6EpkyeE4GkwYwvbBqtOUFvZkVz4LspCXMPzDjg9acZJoFK7tYrf8ILBaHz3URovzFpTtGPqa561alCdmylh51JI8/8AF2oWi6zcwaZOkixIcSqMjP1rj9s5y93Y6p4KcKEnGylbS+1z5n/br+Jes6Tq/gvwVFY3y6Rca7bP4imtbR3MlsSSUBUY5wFxnPzV4md5k05YSEXzct792foHDPCtF5as1xFRK8lFLe2j1foe+u0/xCksfHN94bPhvwjo/lt4f8PwqImkCR48yYA8564/Ovm3w/iM2wcpYl8mlor/ADYUMwpZROWHpz9o53Up/wCS8j0r4IeOdK+PVnr/AMTtL8F2WlXNqxsFe1Oz7SsJxub1615eSOvlOdVvaxjG0Uvddk13s+pwZnQoYPD0MNGtKrCevvbxbNfTluXujbh1jQ8uA2S1fq0HGpFTT0Z8pVw3sJOLWxdvri6063ZZkCQq3EQIJI966L6HEtxlvKk98JVKLGI8F/WnexT0WpU1u7tpIvs8MW0hQVUKDkDrWTlKUirpQtE53xJbaD/ZrahJpC+bOoRSRnJz3qJxp321ElUat0OC8Ua3ai/W4s4ljFvAYjOr/KxNJXvoiFHlOKmmvdEWaWeZpY0ciJCMrh1wTVRcqY6k3I8/1DTpNP0/UFhupUEkonhCjA68fhmk+Z7swau1c5TXdLuvERk1FrJknhgJjkBzkH+KtaS5mXy6HD2+pXXmz2MilHjlw+88Mf8A69a3adhySSPI/jDrUdu11p0EBjldjj6DqKqybuzmUXUZ84fEnX7fR9KudTncDyUYypIevWpupPXoRUlGktNzx3wVZ6zqNle65qyuYtVOZEI+4gPyEfSvFxeJ563u7Hs5bhJey56nUtXelzWe1JY2UFd0bspw49R61ytShq+p3VGmtCrJGUUgdPeuapO7IkouJS8shyVPU03P3bE0VZkV3uRCDWSs2Z4l3TOisYYxEgAHSnVcnN2OmVoyaZdiji+bcgxjpis1GT3Jck3ZEsESO33Bj1rVtQRUYpas6jQNGjurEGCwaeaS4WKNEGcZBP8ASuVynORcqsYLU0/DHgHxJ4kvLSztdHkVLy6MMcxQ4j+YKSw9BkVcMNVqz5UjmliYwpuT2Ppj4df8E/vFHirX20DWNEgWG10wRQahZhlM0zcq7epBOK9fD5JOUvePOrZlGEU4n0R+zH/wS01vwZqll4w8cwWl/qdjMzW8kkA2uhAG1l5BIxwfevTwuT08O7y1Zy4jHus7JaM9++GX/BPfwvoOmap4cv8ASFNpq+o/bZYCvyFwcgmu6OEpxul1OedepdM910H4AeEvDmn2mh3GkQtCEUQ28qfLwKuaUfdZEZSbumbt38DdI13SW0x4UtJFB+yzwIuYiOhGRzULDxqqz0NoVnSndnqXw+0m98N+ErfR7/V5LqSCLBuHG0yNjHQcDiu+K5YctzmruNSfMtDQ0+9FvJ9mZ0VRy3zc/iazT7GVNN6Gpf6vZyWYkW5BjT7zMeB9PU1nVq8y8jSjQcKjutSnqJa00RtQnSQQMSVjjX55T2ArCrJxhzNWRrFxdTkbu/yOMu9D+IPjfybi+ik07SLds/ZGUb5APU55zXOvaPllH5pr/h7/AHGiWGo3V7yIPiVrem6DpMejwWoht4IwdscRyD3J9TWs5qNKzQUXed5M82stNsvENpf67JatHp6EyZuCUa4k7Zz90duPc1zRqTnFytojarKNOo+R3u/69PQ8c/aC8W+D9F0u98Y6tYNFa6VEZ2trZyu5VGSeOQD0A71zV6kYL2rWiKpuT92+55P+z/4T+Lnxp1Ob48aZ4rufDT3tsj6HoltGFWK3ByGkQ53OfWnSofW260JNLTTY6q1TD0YKK17n0F4rtXn+EWox6/4r1S5u57Z/7ajtgZEnjxhwycEHnqK6varD0Wk2zzYc0q/5HjHwK03wfD8KbW+8C+P7tbdwyWFmzsJ0wxGcSDkZHTrxWFKrCtStGVmddec1Vs4mPpPhnxn4s8S3Evjv4i3GoacspS3eSAKYSOOcckiqpU5xlec9C3zRV7WG/FbwMfh34UXxLHqNtqFrGTIqWtwHeJ+zY4OO+DW1WLjG8dUCrRlKyPlbxv4wt/GGuT6ylpFbSyIUla2GFbPQsD0z3Hqa4OWLbuddKLjoeT+KLXyNVc29uIdxIkiQYUkdTjsfWtlT5VZHoU2oq0ixo10X8O6jEsoDGxPTvzW7/h3Z0Nya0PGPFAsZbktDFPHLn5xIMLn1FfO4xwuXCy3MjYFGSa4YzuFST5QLKON3Wqc7GUbkkQUHPHvmoc7lSTHFg3yjpReyHGGt2SQrGkoYtnA55rPn5inaJv6Ja3mobYbK1eVz/DGhJ/SofvaIFPQ7LRPhR8RdUQNZeD9QcHoRbN/hTjhcTVdoU2/kVFt6pHpHw1/ZF+Iniy8SXW9OksrYDLlxhsV9Tk3B+ZZlVUqq5Y+Z2UcLVqu+x9FeA/2IvCkD26abHc3cjAK7SIQu761+mYTgjJMLFSqrmPTo4GFFOVRn1b8EP2X38K+HLnTLTUdNa8+RYtCe62yXRP8Ad45I4q8ZxNw5w/ReHkrU1ukVic8weEceaEuT+ZLRep1mmal4D8En7JrukR6nfgc2UkWFgwT8ue+OnvXymL4l4q4oxH1Xh9KhQtrUqJ3/AO3djhqYrF468cPeMX1K3iL4p33iRDFpHh2x06NMAx2duAwA9/Wva4f4DhhVKpmONqYmct1Jvl87K+hvg8pjR96tUcmzn9Zt/EPi++jm1jVbu+ZlCp5znA9gT/KvtsFlWUZNTtRgoXZ7uGp0MLTtCCiiGz8IXOnGRmeF/KkBdFZcoPfNevCvVVGVO/ut3+7+mKpVp1HZaM8a+L/hbQ/Hvwj8X/sv+LtYa0ebxnNrmk+IcbbrSbl4VltZ4XB5TeCjKR91mr8Sznw94gqcYQz3I6q5ub34z0VrdH5u255eMwE8VivrEG+ZRSWvb1Pn608Oa74j0iyufiJBFa67a2XlatbQSBoXccGVD3Rsbh6A1/Q2SPE4jAwli4ctW2qvdH0OCqOnhoqovf6mfq1/p1vpcNzHBFEgLJFDE43zEdWPcA+tfQxXu2RdSt+8cTxn48eIxaxST2dhFJ54dbW0TOJHx29QPWsJ88YW3ZyYm3LdbmObS60HwTBpl0pN8LHzwY15jldckZ9MCtIQcad5ble9CjZ7nn7W+pX+pf8ACW3kCQz29jusklbCxQ87nz3c4OB1rjdObqc7Oe0k+dso2GoWhu5td1pflSJNsDHDfZiDtXgdGPftXo2koczNKVRufNUenY5rVLbV55Lm7FyEtzpRjX5AVTduIVv6VnTxFSFVTWnQc6LjJTWx3nxm/aM0TRfAHgTwzqHjuLX/ABH4m8J6ZodjpMbOW0ezE0sM28DG3fywwT1z2r+U8z4Soy4yzCUqPsaUKrq8z055tRd0fn2NzbF4XiP6olaFTkt89Hoj52a4hsdNbQdMu2aCO8MLHeQdiEgH9BX9H5fWp1MBTS7I+gpSkqahBe6m19xVGjBLq7ltZAIJSFulV/m9VYfQ1qqSUmo7Mn6o+ZtbPc0fBvhLVNC1F7e1uTM8q70zKQJD6oeMHFcyoSozdupeDorBtqLvc6C807TmZtNubdRNGytMk0eOD0bOPv8AUY712ulGVPU7pyU42sYt/JpyNNoFvbGDaSqlnBaI4yzLjqPXNeVXppRaicV1L3F0OVjuNN0m/wDtWoytDbxqcPu53fSvFnGMJXnokeFO2HrtydonO6fGWvprmJ9rNKW2Oedue4PevNo06U4OpB3TZ4sKVqjlfdnWeFGSbUIzCSQXwHz931roVVQStqe/gqUn8R9QfD/XfEHg+003UfD91FbXEFpujuDbpI8LsTh03AhWA6NjI6gg81+M+ItaWKzGFFbJanbiFaaSJNd1TVvEGqT67rurXV/f3D7rm+vbhpZpW9WdySx+pr4OjCGHjaCsjhlTpxfMehfsifG+6+BPxaj1xW3W2pQm0ugx6Ang/nXXR9+qpSMfrE6Eny7M+7/BUEHj5DqET5Wf5lIPrXsRcWrIV5PVFb4h/staR8TdCuNH1G1WQtGQhYcg1TceRxCcrI+O9Q/4J3/GM/Es+DvD+nlrSST5Llxwi5rxPqFarWtHY5quMVGGu59u/sn/APBLbwL8MYIPEHjO3Go6mwBLTICEPsK+qwOWUcLFNq7PAr4utXlrsfW3h74c6LoEEdtY6ekaIBwigD6V6bq8uiOdQ5tzo7bQ1yFWMKM1n8UrlN8hcPh4QurJEDkd61toNSVy/Z6DbGPfFGQw68Vk4sHNSWg6bTMOSUz2HHNXzRSEkr67ktvaOf8AR5SQnsKnm6lSY86DlvMSXhfuseKHLQUW0VdYm0awRZLrX7GJycMHuFBP4ZpwvI2jCpPocl8SfijZeEYPsPhgQXt28YJlUbkX8qyrXpp23OqFFxabPHPEfjLxf4mulm1vUrm4DZzDkrGv4CvNmmveep6VKnCO25DpKTRTjbEDHICCDmoi5xltozblclcl134aaJ8V/HPhiy8Tndp/hdpNTu4PKG2Q4KoGPruPHtmtMRRjXqQ/u6s78Nj5YPKK1Pmd5tKK6eb8jY+NGtvceFbp7WMR24hYxqBhVUKcCtWqNSPPB6NXPNpqcY2e5b/4J0z2kn7N76j4sj+yNqE94+mSIv8ArlM5C7gB1Yd6/P8APMso0pV8VVbTlG0Wtfe0smuh6mIrYiv9XjSV3H4l5a6nq3i3wvfWUhntF+x3Cou6LHEpxnIPb6V3ZRncsLJYbGK2isc1SlHHU7wd99f0Zyyx6gLtYdQuZpWCkuHUhfxNfaU5pxvF3R4c6Psb33HXmtXV7cbbeJLe2hjIkmTv/sgVtCV9zJqMjK1zxINFijSSSUyiMskJjJYj1PpSnPlHycu5z+peJzqFxDYx3G9Jk86ZZDgYpJWehN3Z2OY8ZJbR2bxXTxwOF3wRx8KVyCSw9fSrjNO5fJy6s5/xf4rsl0m4lm8pFNuNxbjaAMDt61NS81oZ3d/I4jV9ehstBY/ZAxWwC4BzgkZFOMdLMzSblaxxehR+I7nQJbmWfZO0LfKjfwg5H/6q1p+4XOCi7I808WX9/b3N5NKgWSSMSFF6g+vtVSkrmfs7K7PFfjT4nhnZ76bi4UAnI68daxdRtkVJqMbJanzB49lvPi341h8C6TG2GfzdUljUkRQg8lvTPSuXFYxYei316GWBwk8bjFT+81fiHYn4fQReHrTyy4iUqpT5WiYda8enOTjzyPq8wp1cKlSVrr8jzxpmAzI7FRnaGYkD6VEp1amj2OGKjF3W5BPKfLDA9uKfsl1JdT3iitx83zevpWkqK5TSDSGXb7ozXLazZjX+BnRwOIkCk1ry3dzZy9pK5ailZ2GRgd6iUlFFxilqzZ8MaRqPiXXLXw7olqZ7u7lEcMajJYk1zxjOtPlW5NWvGlG7PqL9m34B+O/DHxWs/DF/4Rna+t7iG42XNtlEIPIPHIINe1g8vqUcQuZXPLxGIhWpXTP0H+En7BPgo+LG8fzeG1tZ7gZawXPkqTgtgdByM19EsNRU+e2p5Uq9WcOR7H034E+CHhrw7dC307SoiQo3CTnBre66IyUbLU9AsPCFnaFoJLeMLjLj1qG+5SSvc2bHw6jZMdqojVeC69Pxp26hJssnQjMyxTRBzDkowXp9KHS5tSFdal620ksA7KE+bBJHWm4KJbvJ3ZYVJmDxxMuehfrTcrqxGmzMyHwzrepav9pOrbIIgdtiItokc93bqR7DFYS5mtDoTpU6e2p0Fp4b06C7S91y93+V/q7NOIgevI7/AI1MaajLmqP5HO8VVceWlHfr1IvFPjm0jQkxL8vywiMbiPcCscRX53tp0LpYZU1ruzibzxNqfibV4rbVdVlsNPhYFl25ZvqO1TTftJLmdkdbpQhSvFalPxnrvhaLUFUX5ljDgfZjGd0nua3nKkndO6MqdKpJe9oef/EvXNRii8q0to0CnzLezcDYo6/MO/0rirTlNcqR0KME9D5a/aLufEnjTVNN+GtpqV3HqvijV48wWFmqgQRkMxdhjYNo4wD1x715uIjaKpXak3pb+tDswsI87qvS2t/M+h/gb4V0nR9W0xLfRDbtboLIObgKQyjH3Txtr16K5GklsclaKmmbmp+IfDHhLxZrdr401uBZ/skxtUvtqwp8pzl1HTpzzWXNSUmp7GM4ycE6avY+T/gd468NfEnSPE9v4ciS+02y8TXUFleQja8XJIKleqhicVzYWEa1OVmdc7qa0szk7qy+NNlqN1oF74vtb+zNyZbVyhimRuylhwW7e9dKpzpxcW7o6lyTs7HOyaY9vqV2dT1C9t7uQfvrSYkoR3O3PI915HpXP7RJtdTWUEo2SPEfix4XtfDer3GoaQpQSoXCKpdH9QTnJHv1HcVzSlJSKoysrSPH9U1SGeRzEHBMmTukyAfStozkjrUW3qXvCMkV7pt1ZmMjfaupGehrupXqU7WOlbWRz938M/Dtzqi/8LM8bQeFrTYDFLFA15JKp7iNW6/lXm5hlslHnlJIPeascL4s0Lw1putTWng7xRLq9gp/c3lxYG2d/wDgBZsfnXzrp8srJ3G1yrUyxYTHnbxmtPZX6kO8dRxtZh+7Xv3pKk4gm5Mki0u727unNZVLs01SPXf2d/2WLn4opJ4w8baodN0C0bBZf9Zct/dT/GvXyvKHil7SppEqlh5V3d6I+l/A1r8MfhfZtpfw/wDClpb5+9dXMQklYY6biK+qpUcBhF+7gvVnoKhRhb3Tq/Dfi7xFq9xFaafL8pUgLEo49BxXr5dUxNatFUkuW2/5HpYWipOyjZH0H8APgX8V/ijLCdD8PPLEoAnu7rEUC/7zHj8q9yvntLLKagnz1ErW0XzZnmeZZflcWqs9ey1f3HpXiH4Z+LvArDQL+9sD5ecvplyrhcepzXh06ud8TOUZVfZQT+y9fwPPwuZUMe+aEXbzVjMstLU3n9oXiiTyVyJTcEuP8K9zDcKZdQoqNWPtH1ctT0qf1l81PlSh08++li3pvhHUvE0k2raWkphg+/I8BYMT6nvXuUo4TA0+RK1uiR0Sq4fCqMajSb6Gnqvwh16ztleG9sbd2gM08klwFG32B71vTzSgpqlyu712Maec4Pmsk3rbYy01a7awGj6PcgRxsWaYQjdu74OK9iOGpzaqTV+up6kI3n7Sf3GNqWgC2g/tOS6SVwjO6ySFcnH8eeMV6N6ThtpY1p1VKra1jxL4zajLrXxHSSylt7eG98PRM8lu29NysRyfxxXJl9Gsqk7aKWwqnLz2jc8b+KFppyBbhZJoDCDmWN8iQj+HHHBr6+m4cqezOqlGy5tzzPx3eWXiPTpNT8N2TRNYRCK6SaUBy+TuyP4R6CpjVcnuYSqOTet+1jxjw/4o1vxjr1/rPiXThbTWUos9LgkzsWPIDSDH8XXmlCU6lZt6JGWFU603OrpbYi8feJdRW8a2swJXgi22ioP+PhkBX8EA7+1b1pNU36GuIasmcheTSpoVi9xe+ZZqrm6df+WmSAVUdcZwM98VnRs0mzCMJpczd0c/42nvXtl0+GeOCWFI1u1SM7VTf8sY+oPT1p4mtNLlRhXklC61NK+s0aKayN2wlnhjS3kGDyQckjGAw7LzRCneDu2bc05wUdj6N/Zc8Q/sC/s6/scah+2D8cPhZpPiL4h6N4ivvDNgdXtvPZY5bYyWrJGflR1LORJ1GDX8i+NWC454i8SqeRYCo6WFnCE3NaP3ZK+v3aHzeIwuChmbxWKlyqCVpLe99Efn/wCD4oLjT7vU7qRQrMZAgA5Dtyueelf0vk0IU8JGMpXcUl9ysb4CpB4b3dVds2rT7NPrR0e3tmhKwf6U2BluPvDIxx1r2lKKnodcZKUlFC6kZGaMWclxDLY2TOJlPB5+V+Oma5sTXitOprVoqKvExdU8f6r4phudPu7hROoXfdlQN5XuT1PpXEsZKtTcEzghjI1oTpx0a6nGPFNDdvfNdy7A5MoVuT/tAntXiV5Sg27s+eq06lGo5KT8z0P9jr9m7x9+1n+1h4L+CPw7k0651K/1QXTvrk6ra+TD+9kMgz84CqflHLdK/PePM5ocO8O1sbiHLlSe2+uiOWUKbxdKU/ejFpyT6q+2hmfHvTLbQf2jvHmjQ6vFqq23i29Q30Gn/ZVlImbLLD/yzXOQF9BVcEY2eN4XwtRQ5eaEXa/NbRdepVWCo5hVjbS9189STwnFbnUIWTCgyjfGOtfXKg3oejRq1Hsj6atrT/iQ2N0tuVDW4VWxgMBwcH2NfhvGVVSz2a7JI7J883dlaUfLkgg18qmpM5Kidys7SRSB42wykEEdjVpPdMy5Ln3N/wAE9fjbbeJ9GXw7q14q3dmQrLI3LD1r0cNUVuVGkpQVPzPsfw9YXeqXiy6dGCGPJA4r0adGc5XR51XEwpx1PUfBvw0t4ZV1S5tozNgfMV5r1qFBQdzw8VX9o7nZ2WhShiEiAVR2reV2Y3Rq6foc96CkEeNvJIHWoUGy7pK5P9kFqvlyx4ZehPenaxlJqQAySTIqjtyQKpSGl1POP21/jZa/s4/s8ah8Rb/w5qmoW8l7b2NxJpN4IJLJZ3Eazl8HYqsVBOO4rHFVJwoN01dm2E9+ukmk+h5P4c/b/wDiNZxW/h1PgjNdrBAsf29pjdzEgYBcb4wxPBzmuenOr7O9jtngVWfMpak3iX9qX9oDVoftllca1oMLPhlh8A2o49nkv3P47aVSdZK92vkZQwVpWkvx/wCAYB+JXxr8Sws99rvjPWcEBoorq0tck/7KwPj86xhUqT0V2ztoYSlGeyNPRY9ajuI38QeAvGdq+NxnupLm5Vf+/WmP+hralLEKVuU65x5VZWf9eo3x/wCM/EOhXCS6J4uhgiZSNt/4Z1cuPqwsEArSusSmvZzUX56fiTF0qlL+FO/lb/M4rTPjreXk8iTeJfDMhtwC4vY760BJ9DPbKDx2HPtXj1MRi4vWUGr23Oig8Pd80Kmn9256N4Rk+IXieC2m0X4RazrEcmGWfRVV4SOuVMhjyPcZBrqUsylFKULrpZr8NTmr5jlUE0qjT84tfodHrPip/CNubHWfg94/hu7iXddTDwpJMpVRhUJiY5A5+tdUcaqdNwlTd+v9XOWGKpVLNTTXTf8AyPK/jj8bfCV74avLK50fxlpqPaOolv8AwBqcMSZHVpGh2IBj7xOBnrWFb2OIlGTTTXTY7aNVOldPc9v/AGW49K1H9mXwXqmixItjPosM1ui9DGy5B/I5rnjCFai1NXTvob1qlSliG1o0dwPFF94UvbzU9Ss21TT7u1KtAzcxEDG4E9Pwr5XNMhlCpLEYZc11rFvy3XoawxGHxkYUW/ZTi7qSWj8mV9et9A1Cwh1fwdfm7gktlkkhZiXtyTjBHfniscrzb6hJUpNuFtU94s6p4WpjIyhiIqM7vll0kcNr9/eW6siIWkibcARtUHnrX3dHFU8RBSp6o+fq4SeGqclRHKatr15dYiktZ55LpT51xEcFAB90Z6VurSWpLgp7mElzDok9w9wXa4W14SQlljXsMjvSaUfeM5QS1PPr7XfEviXUZsRiaMTYWTBBwP7wPRR+tZ05O7uN6LU534h32q3sjaHp1rLdsrp9qaJcqq7h1NTUrpPlQqVF1G30F8XXkKWX2XywG8pGVFPLHgYIraMmS6aizA1fWV0TbZXMIjW5tyRsGAp961ulqY8jk7nkPxB1a3jmeR7lTIYSJPw6Coi1Udr2FPZW1PDbP4cfED9pj4w23wd+FdgLrVNQI8xmbEdtEPvTSH+FFBzn8K87NszwmT4V168rLou7OnBZVWzCpyrRdX2Mv4qafafsRS+If2eYvDIl1XVkI1zxRPErNeOpHyxHJKRLjp3r5TLMauJJrGQbUVpY++q5dh+E8P7OpDm9rG6nbf0PnLxt4wufEepG+u5dxWNUj3HOFAwBX0NSHRbHxuJxLrzczmnu0YfvZePTNOMNEjKGzbKl74k0mxjPnXIOe2a3p4WrWlaKOLEYmnSepFpmoW+q5ltAdvY0sTSlh/dZvg5qqudkk+FUoTXEo8zHiKis0jobL99iRx1FTUqcqsjrjaOh0vgrwR4r+IOuxeGfBmhz6hfSqTHb265bAGSfpWFKnOtPlgtSK1anSjeTPpb9jT/gn547+Nur2Xifwp4ou9OvtL1QJqkMlo0b25U8gEjk+4r38Bljupt2a3PFxWMVnFq5+x/wm/Z503TrWzu9ZsFutQt7dIpLt1HmPgYyTX0Emlojzop2PZvDnhKzguRbXCBY0Tg55H1qVqJux0+n6JYTwu9kgOzGCFGavlQ7suR6U93bsL6MhgcLIMYIqHqxuyehoWujz2FkUt5VaNhzg9aFexlKpCUrMjismLovmhj3Ut0raCbRpKSjG7G6/NqEVsun6Na7ru4ilFvKyZijdVyC5HQE4pVISlojD2mvoZq61bGIwRMrSo5T5ByGGQxrJ8nLZPU6I05pXkbGm3EdtALgFWG3OH6k5ojKEVdhVUnpF6GTql1qWr3E7aFeW6SKp2NMp2KfWuaq5VPgKpqEUlJXKWk3Vto5RtZuo570tmVVjyCB6VMXGK13NcRTcknHRGdf315rGoyRaPpkQeT5mYwDCD1yeppqcpPQUH7vvHN2miX+tXk2orEvlRSeUt20eGuH5yF9hjrWbkpu+lnojedox5VueWfFm81iPUX0tb4AQsWdtoJbHYtg/lXPUlKm7M0p0owXNI4T4Q/C3X/if4yvPjpqHiddGjs5PsehIqA7mBOXZWBzluOMcCuejD6zU9vKVrbGuJreyh7CMbo6jwD47s7jWdds/F+oWR13wxOI5rixB8mRX5ztP3WOfwrrhWhUlJPeJx1ZLlioJtM+b/jDrT/tPfEOfQ9PiurXTNAMlpdA3BA1GRsck8ZH4815/tVjJOK0SOuivY0td2b3w4+FUnwO1zUdMtYJrHTdW06GTZDDhYLleN3H4V1Yek6E2u50SUZUlJ7m5rNjFe3V/FrNnuExXdKj8iX+Fxn15z9a6ql5XRkqjWiPLNXufDV1NdeG/HsVzCYyUt78sBJbkdCD6Z7HmuCajB+8jW073Pmn9pS1134Y6y+n3ztdwXMfm2V6sm+G6TnDxnOA3rjHvXPUhVir9DqpU6Klzq9356aeXT9TxefVTewbykSF2374024z2IrWlTd9WdkItl/wTdG3v2VNpBBVgfcYNejSkoqx0xklJWOI8Z6ZcaRr1zCHjbLkmOQguo9vavCzCjU9o5N3QVUo1NepjySBlwT1ryYfFoUo8yuyNCc5AA/Ct21bUjlUmTRqgJdhWE56WKaS0R1nwd+GXjT44fELT/hn8O9GN7qV/LgDOI4Yxy0srHhEUcljwAK0wuHniqqhA5qtaMEe3eFZfFGh6vdfClNSg1G00e7a2ivdNBaGZlOCyccjOcHvX3WApOdNYfp3PYw/NGCitT1nwd8DfFutaottqxmsoCAzG4gKuy+uD2r148OYmeM+O8F5WZ6uEwvtVzzWh9aeGfg38B/hp4D02z8Hpcaj4gaEvqF1cxgRoSPuqO5r28PQnhJOjCKjFI4qeIzKtiZxnFQprbuzWg1/xVBpX9kvqlxFp/3msUmKKMey9aWE4ay+vUlWrx5+Z316Gscvwspqq4Jy77lfw54YttSvrjUdMjy0hLzYlbaeOQBmvbhlmDy13oRST7HrVaqjBRkvwN+28EaFJDcXtvqMsTtGF+zruYs3t2rWvRrVIqML69exz0sXiVUUFFNdwurr4h3WlvoGjSXiaanzRyw2/JI+9zx0rrhDCYeXNVabZcaGAo1fa1UnNmV9nW9tjJPrt1Mkg/drdkqffA9K9KhdK6Ss9jpVZvSMEvQdGWjtgobYF+8okxkZ4rWn7XEQtNW32fn380bypycSh4tj1jxFpkth4b1CC1uZnj8ozJvEiqwLoe3K5H41GaU6iwE1F2bsTTgrS5k36Hj3xk0Dw7pniGe801Bauq7UjTgFP7o9s+tetlrfsYLrY3UXGCvqz5y+K/iS+vpprC3eFVuH/ci5OCADgnOM+vSvd5JShZC9pOEbdDgTZzaTZGHSYQkNxe5upWl3POwGcBeuPcgD8qIqlT0S1DlpwXM92cXr8MaRAxxCR5oZpGCrtRXJPQ9wMZz61LlquXqY1W3rFnlcfijV7+5liutEvRK0jW08xt28uKAd1boNw4rmxEql0pHFByqytJPQpr4s0GWxa8lNsRHPmVTPuWCOP7sf4nnjvU05RUbpo1q1oRpuzMy+vlvbGa4e5W3e7P22UZyUQH5ck9/QVr7aFrtnJTjzq7NJdVEdpHfXkaFLmAiy3HBiIUgyvz1pxrt13bWLX3ef+X6nqudKNNR6nrv/AAS98N+FPjj8U/HXwD+JnwitviBpep+EJNd0rw1cS+Uh1CxIeJkbPysys6nthsEV/OH0msxzLIeHcDmmX4l4eaqxpymle0J6fcfOYtYacpRrP3ZNb7bny9+0xpXw10X9qjx14b+AF1eReD7bxA50eDUbKS3mtUbG6Bo2yQEfcgPOQoI619j4aYjN8dwpha2YTUqrSvJdfM8zC1OXEToU3ov1ONKa4gOoWd7JsT9zcS+Wd6gkg5GOR71+iqpU5XJS8mdjqVY1FaRRmg8T2+q/Z7nVPLAQokwYgOuMhT6Yry6k61SpqzKX1z2zjKWhX0/Q7uOC4nBZEdN027kvk4O39DSow9nFoxo4aVFvle5Slt9SR5rC9H3TkTKBn8fbpxSqOVnFmEoVVJxqbHS/s9w63pP7RPgq88PalBZXyeJ7VLO6lumhTe0gVd8icqpJwSOxr8+4+oUKvDeKWIjzwUW2rXv6HDDF0ctx9PESV4xabS6rsL8X9I8eWfxy8ZJ8SbCax8Qf8JPeDVLO8Vlkjk81ichiWxzkEk8YPNHBbwFPh/DxwUk6fKuW3axtKr/bGZVsXFcsZybSfRE3gmGKTW7a3V2VmnAZxxu596+yrTfs207M9Om6dBrmPffgl4hTUPh7NYyXBlEl7PLiRi32ecSYwuRwGTIIHGVWv594hi6+KrVZb3/A4qWKnVqOK2uat5Kc7V6nrXz1OOly3eT1IAoAyR1olO+gpNRR9I/sIfss/Gfx/wCNrTx14aeWw0+OQeY5U4mX0r18vwdWXv8AQ8TG4lc9on65fCj4bDw9oMUGpqHlWMB2Pc19JRhKCseZVbq6S2O+06yOV8mPIU4xiulPUyatojVih8pyrx43DkGm2RJIsaRcy2TukK4LZAJpK/QlydrDLuC4kctKBg85xScWVFPqSQRGTGyEB8YBNJRRocd8ePhr4u+KXwj8T/Djw7qmnrL4g0S5sfK1K282Ji6ELlfUHBB7HmhUud8re5jT9nOpGTT0fpsfB/wh8Y674m1VrnWYvJumZY7q2Jx5U0Y8mVD7iRGFcbnaVu2h9TClCCue1afICIt1sjADqyZP0zWjcnuYTd3Y6vwhauZWWSABG5HsOOh604Ra1sROLXU7aCWWOIDa/wAi4GWJyDWvPKKvYwvucr8R/PKENNJnbheT6VzYuS5bHVhJS5jz2C9ubdipuH5O0KWNfOVnHm5W9X+J9HCUuXRnT/Dg+F4v7Q1jVdOs7y7EOLSK5thgjIDPkEHIz71WFwuHUZSmteh52YRrVnFJ6LcwfETaRqWqtEmjWyvHGSWUY3HHvVKlSctFqXBcsEkjxP8Aaf1ZtH8H3T28awTnS7hEjViQcxkAYzzkkV38jp0HK1mkTCnLE4uml3sfbX7OvgweBv2a/CHgmSPa2leHbOBlH+zCo/nTw1NQw0U9zDNqsFjppbXt+hsvdRXFq0LBcKCrBq6FqjzJJKVmcXfeGtc8J6u/izwLf+TMxRp4CMpMFbcFIry8ZkeFxq5oq0u/c9ehmtRUfq9dc1Pp3XTQ5DxN+0ELA6pF8T/AU8kl1qKyWc2mjaIojjcCO4B5rwZYHNcrlJ0veV7/AC7Hs4eOX472dGnU5YqNmpa3fe5o+J/CHiC68P2nijw0y3ujXdr9ohl04qzhB1VlHK+9elhOIqNTljWXK3/w2vY8avgKMK0qVGXvRdrNW+57M898W3ss12LPRS0UixEv5wAIOMfN7+1e7GrGUU4u557oVqLvWi0YGjxvbaXcW9td+e4nJ1CVx1P90VLqc+iCcfaapaHJeGPEF/Dca9fRRi3t5rjYjk5LAdetcUKkouUpbI6YxhFKC3OV8dvJHfx60lzjDEGNerjtxXa69krnO4Ru7nGePvFzXdsLmRwjbNzgnuOla3nbm6GSpup7sUYXhb9mL4r/AB8Nx4gupV8M+E7aN5r7xDqY8tpEXlhBG3MjEcA429Oa+WznizBZVCUab5qi6H0WUcM1sVXjCtFq7XTv37I8W/aO/bV+COjeAL/9nT9lL4ZapoPky+Ve+PU1HytR1EjhhIygNtzkbQQB2ryMtyTM87xFPMc1a5Vqobry02Pq8zzbL+EqVbA4SbnVkkm4pKMX5N6tnyRr82oXdu1zfandXcvQzXly0rcnJOWJPWvuo08NhqLVKKivJH5ficwx2YVF7eo5W2u72ObvEmdtqygYrhdVSlqa06M27soS6HNeEobkgN2FbxxMaaukFWlK1kyjdeB9Od900hYg87jV08xrRvYw+o06rvPoaumWdlpVl5UAAAHYVyVJVa8+aTNFGFFWRUZ/tExI+7nrRW/dJpMzjBSep3ng/R4dS1y0t7u1uZbRp1W4FmuZNmedo9a4KUXVaTOqo3COm5+gH/BPz/gmd4k1D4qxfFKfxRfxaHG+7TUUGGV4zziTHWvq8uyuNCXtG9DwMZinV9xLU/Vn4S/BDw74Jt0stB0WK3cyZcoADI3qSOtevKy0icSVviPUdG0y2tbrf5YiKHJUj71QlqVJ3RvtYLdyGa0iX5sBmK8GiW5DdjRtIbG0iVHXaDw3l9z70nJLQXvdC5E0YBt0QgN90keveqSctBO7d2SppyaSFvmnZxjBXOQKJQ9m7maqOvLksWpbaynh3R4VmHJUc10RcHG6JSqRlZnAftEan4o8K/B+/vPDVvcyymSNJZbeJ3lhiZgHkVE+ZioOQB+PGa8PP6mJWXSVFtN21W6V9WetlMcLVzBe1tono9m7aI5P4V/E/U/iDdajbz3tvq9rpV/b2VvdJaqsjMIFeUkqefmYjBGeK83IsTjsSp+2qc8U0k7Wf4G+Y0aGH5PZxcZSTbV3bfTQ7XULvUL+9FlYwyocFQm3AOfevcqXlLliefC7jds0rHRZ9JsgJ3jWVuS8hB2/h0reNH2Ss2Q6ylPRGVq/hux8VeaBHcNJjBu3fylHsMc4rmrU4yeh3wqOnFc1vTdnJa58MNH8JaLLeRfEHVrcshL7bsshJPQZ/LiuKtRUI35rFqvPn0hoJpPj2e3063tL4LJaW6YW3aIxtIMdc1dKt+75U9jlqxvJ23OB1uCw+JvjmDwnaabBaee7NNDAdwWMnAyeOTWaUa1dU/vN4xnGm53uN8R/D3V/hNplxpngjU4YYIZMfIwLxvz9xc/MenaqqUlQbjB6C9pGu/eWp87+Knn8K+Or3T7LVpLpdeRn1y6uXSO9kyucKg5wMEZwccZxmvOjKdOq4xe+53UlTnFK2q27C/B34UW2g6LeR6zbXQt7x5b6yvZgZGj25Pzeh+tdeDoKLbZriEnNO52tzPDq2rXOq2+pfbbKTQ1eTHO1hjJI7HHP4V2TUnPmicrnNxtY8+uNY8NeKItVsW1Yf2nZjyriESY3oAWV1HsDXP7ZO/cpRdOKkz5q+IXinxB4n1G/sbSybEMzQT6hKDslAA6ZHpjB6157qzqTsdVJcmrPB/H/AIKk1dB5/iK7WKPLQebcNJCjA/MChPAJPUUnzt2ud1OEZz5mcNc6RLZwvG9m6qRzhdwB/vBh1FdNJt7nVLTYm8MzTGfyJNquvAYcZrqp8vMrkxbUjL+MFxE/iQyYQymJd5xk9Pfoa8/NJSpy0NqkW0mcVJgHqeeleHBO9wU3JWHxEA5eqlrohOdtjtPgH8H7n4+/F7RvhXB4rsdDi1GR2u9X1GTEVrBGheRsfxNtU4Uck4FTCnHVyeiJ5KtTSK1Pse0v/wBmX9l3wtqHw88E6Jq0lhqNsYNa1+K68nUb9O58zBCITn5F4wec15dDO8ZRxPNh4pRXfqe1HLsHhqS+sXbZ1f7K/gz4TXljN4s8D6NqD6aWJs21dAXjOfUY3kevvX6RwnTzfiDEJTg4U073Wn4m1KnCdRRpX5T3MwaVrly/9qxzTzOFDzq5BCjoo9BX7Osqapcqk159T1qcJ4dJU7JI6K20f+wIYdWlitViui0drE91ulUqOsg6gV8tiJ1KuZ+xptvu7djm5aOKqyg20476aa9ix4s8LappnhNPFF1rVrKbl/8Aj3hlBIX3HavosFVquu6HLpbcvC4qnVxf1eMHp1Nf4JR6R5iSeJZPs1i8DmYock8dOh4riz6rUw2X2p251bToZ5wqsIv2OskyO/8AEVlpuogWnia42IzG3iWPaFTOBnI+b/PFfOYbPOJc1awlFRptLWTV9PIxi604csYrme5V1TxXqM8EMF1q9zCq5aIqdu/PqOlfSZbw1PC8tbEYiVSSbfZam1GgqdXmqJNmbqJ+z3J+1RqTBHiMxNuMmf4j7/yr6ujCHsUoux6MFzK6e4aOY5dW+3aoBJbogKxA/f8Ar7UVYYp0UqDV+5tXVSVLkpvUj8aanePo0reCfCNzqF4ZFaHT7O6Ebld3zbWIPQc89cGvMz6VWhlUpOeun5mEabw9FynPXzPEPiY9vPNe6tJPMzx5Pzjkeo4r6PAVL0Iy8kaRU5ySPm34i2Fnq2pu1nGsc0gkFv8AONyN+PQetey6jkrRN37z5Tx/xNb/ABE0C/NpfPHfQzRASX0IwwDE9+gAHGatRafM9UcuIpzpLmucudWu9RF7YQz+YLVWRTG5KBQcBQTjOetVeLs0ZUpupqGpX13baVLoMmtTJFPZ+ZOlufvnHC+2P61lOpKSsayqKGq1PPV+G3gu8vri2OmQOJNjFFPBJ+/IxPXH8645QovRxOX2FKoruKOV8Q/Dq2tnt00m8u4mlR1EL3W4FFOQ7ZPT2rmeA52uRtHPiMNFpezbRQ8Sp8QbKVpE1MXkUFv5hLpjMRGP0rolQxOHfNF3Vr6nLUoY+mvaKd0j6B/4IrQ+PoP+ChHhSw02C5t3v9L1S0muIUDM0LWrtuOSMAYHvxwD0r8F+kTgMXmfhBjn7LmnTlTkrK+007/cfPY2piPY89WOkWUv29PhXD8S/D95+2b4av4Jr7StVTSvGsloDJBqDNLLFBeLMW+aQ+Vh1woBIA+7k/M+GXGFTB4vC8P4pNOdNTg3o9Em01/wT3s5yilgaFDM6LtzKPMvlufL6xX98GOnXQEbDcisuTKQMkN61/QdSpUqtypPT8zhtUq+9F6GNfS39/etMbpMK5/cIMjOMZI7DiuOnCvUq8zZinVqTblLQvXsN2IngtXJmtLT5wRkKCc9e4Pb0zXdWThTutzasqsoNweqMiWSVo3llfdceUA5XnjHBPr6GuJzU43k9Tz1Kbj771KN48ryfa7biWLa48tiuCOSOOnrXm4ynTrU5Kyd1Z+aODEUlVk3DW259HT+G7//AIKH6fBrumaxb2PxQ0XQEh0qK9ljjTxnZ2y7WSaZiAt/CoCgtxMmz7pALfz/ABx8/DbGunJN4OpNt9fZOT6L+R/+Su/QirVjGrzUnbT3U+vdP0PF/C2m6s2rCz1K3nsr2xmaOS0kQpJC65DKykcEEdDX7TSx1PHYONalPmi1dNPR6eR14OtVx1NTasfTWmeA7PTvgw/iXwvIf+EjsdRtLq809VAW+00Aq7IcDMsbkMV6srN/dr80z7D4Z1qkXK0t7GM6VWGKjKG3UfIElUTqMBhnB7V8JJq9kerOzV0ekfsx/s9+K/jt8QLLSdL0aaSxEwN1cBDsAB6Zr0suwFSvVUmvdPHxmKVNcqep+zX7Pnwg0v4WeDLLw3oumpH5EShio64FfZKNOnHlijwZOUpXZ65p1rbm1MZyZD1UdBQrWJ5m3Zo09EIt5lheLLYOPrSi3cUotkt3HdS3W2RCRnjFXZt6kaCzWz2+JGP0ANU/dRctEP3yXMf73gY61PM5CjJ31It9xgJE3A9BU3sbbajIlmgnS7dj8jBuTmtF7upL1i0j8+v2iLKP4F/tp+J/DpQQadrlxF4j0kkbUMN1kTqP924SQ/8AAxXPXhCFTTZnsYCnUrYWKk9tD1PQtS0mXTDqa3yNA2CX3DC57fgaj2iijV0nSk02dx4Wu7a4tY5rMKwLAqynjBFKneWpyVZtvQ64anbhAtwyxqihd5BwvPU4Hat1poZOpPkulscb8TdVtp5ZrexvIpljkaITQsSkpGRuU9wa5MRFvSR2YNtpSta5wO4LFudAW659zXh1uSOslsfQUW9Dfj1fxhrlr/wqDwV8Mbm51HQLU6lqetvF9mijt5l3FFmORK4C524q8Oq2NpunBW5Xv6njYvF0cJXnWlJ+9olvt+RwXwn8Sal8XHvNTj8A654du01qXT9N03xDJGk16ikf6Su04CNg4JxxzWjwjhjrJ3sreWtjSliva4fnkrI80+LOkt47+Mvhb4ZXbB5b7XLeCSNfmDBZg8gz6bEfmuzGyisDJS3ei9b/APDnZh6lq6qLaOp+hehXdrCBpsWBH5SooPQADAFZQVkkeTOTnNyfcwNZjj0LVJLy5Qy2znkZ+6fU1q/dVzKpPmWhTu9YkuofNtrRTCPuNE3Nax5ZxuRF3Vmc94v8M6DrSG41a1RUkQrzyc0pSg9Gbwm07Hgvjb4KePvDd8PFPw08dalpywsSkEF4wVxnJUr0wa8XE5HlmKSc6d+9nZ/f/wAA9vC57jMMuVWmu0kmcJ4o/bS8e+EvCV/4X+IPwL0zWNUkvPMj8T2+5JUTPIIHDY5r5+PD2Y5ff6tV0vdc17ry3selSzHKcZjoVcXzwglZwVnF+euqHf8ADWH7Imk/Cyy8RN8ZHtNWupimoaBeWLJJHIeN5PcZrlhm+dUJOFWk5yTeysrd73OupgcoxuOnGm406P2Zc2r8rFnVPGP7Mfhvw0tvr/7VfhqxW9086jCunW8t3J8xP7lsYCv7E104fiLF1a3s3R5U02tG9eifY1pcPUknKEJNJ2blKEVbutW2vkeOeK/2s/2MLbQ7G/bxv4z1m/jusappUOnRW0TxZxujmJYg47FfxrHFZpxHUoQ9hR9++qeit5P/AIBq8qyCniaka1eCgl7rTcnfzVkrfM43xD/wUr+AXw5v5p/gH+y2NUuvLxbXvj+9+2vbvn7yIoCenBH406eW8V4+o3XrqnBrZav79DF4zhvBUUuaVSS/kXIn6t8z+6x8s/Gj45fGv4/+Mb3xh4v8a6tbC8mLCwgvXWCJW/5Zqi4AXtjHavcyzh7KcrVlTU59ZS1bfc8HOOL81xtZwoSlTpLRRT6ebVrnEHwz9gjLKMhThiT196+lcW1dHydWUpvmb1MzxJZqNLkjgUEKRyK568P3bCh7tXXY5GVNrFWNebBWR6fPcVRtXrxWVW7JV07sq3u6TIAyOxzVU2luaOcUtCtJDM0PlkEe9bSqxT0OflUrsgjh8tcFqlpTd2Yzm7M/Rn/glZ/wTv1D4r6zafF34haUE8OqUl061lZxM8gPUggDafxBr3MqwHLL2klpbQwzjFONeUKZ+wvw7+G+jeHrW3sdP0pbWOEgBE4AAGOlezNJRsjxqaa1Z6TpWjPayhrK23RplhKV61ny2CUlY39KgW7D3U6KwBIbIxRzIhyb0NCP+0fsn/EkSJgvVM4+tQ3K/uktQT9409Pt4mi8x4gZQOV7ZrROPLe2pNVtaLYs21wl4ptpoSjilGrzaMxnCdJ8yehMGgjiMM0GV7ZOauUtLSKtKU04vURIbWJBLAvA7A0U1CLuhynUbtIfNLFLbt50I2kEFX6HinVanHYyVOXNozyxPA+h+E5L0eH9Nit4r3UfP8i3ULGrCNUGMdOFHT1rzqOFhQptRVr6no1alWtUi6jbsrGzpOp3UFs7IUj+b5m3Zc+2fpW0W07msacbLQjGralKyhYk2ryZpiCQfXPT8ql1JSeiFOnFO5Dpvi7TfEl9J4a0S9jv5oji5O7IQ+mBwal1YzfJF3ZtCi6cPaTVjVl8LaHpU7aprub6VVGyFm/dp/wH1qpUKdP3p6sxdetiIezg+WP5nNfEG90HWQbTVfDkTM8fyxBsFR7jsK5JxVTRxHCEqXU8r8LeD73wl4mv/GHhTR7mWJrQrNLFlhGw6AFuv4VFHCOlUdSK0OmpWdWiqb0Zw/jHU/Hty0t3Z6c15qRimmtrdTnymxgMR6jNZS9ok9Ls0pul8MnY8i8XeDn8C/FDTPH3j3XbZby4tE028nupMKskpyowe+eNx9cVmqapVIylu1uddJv2ThTXU+o/hafCHhiCG38aIJmWxleRpkxGFAwe2DyePY17OHlRpP3jzq0atSXus+c9T1n4U3fivXvFOga6+mI8TpbpHI32dGTuyEAYPc46GvKqYilUnKUHZI3qucYqLWx4L8Ov2jPBvjPUddhh8MQ3Ot6ZqskF7IqMkNwOm+J+4I7Vx08TCcWuvkdM4TlQXY81h1DWNNOr6ANSZtPvdRcxQSEFrdnztHPPFZQag20bRpuSSPAvEev6tpt21jrENxHd2d1IgkgTdHImfvYB9OorP2ltWeirJKKMl9SNzcMonSMbc4Riv4gGuuhNS1NLNLUlsY5J7hElm3At1POR9a9OnCLaKgk2cf8AE+7F34mdTNG5iQIGUYJA9R614+cVIuqoLobVbtKKOXLBn5FeQm+UycXFEinB2E59KSlccLbFm3EplSaN2RkbKuhKkH2I6VjKcn73Q3dlGx9C/s3+EfHX7RXiO00zxbr13c6Fp4AnebkED+AGvquFeFa3EWLUpq1NGmHhiMdWUOZuKPvLw14e0bQNFttC0K2SCztkCRWyDrgdTX9E4HLMLlmHjSoqyR9bh8LGhDlSO10Hw15Vl9uEkLzbSQFIKwAd29/avJzLMKlOuqNM5MRikqvskmRTaILC6mluJhMjpv3Acn6Z6CuzBYKlRXOluejh25UuXualh4r0LR7RZtRskuk2/wCpkPGexauvE4epVd07I5atCtJtRfK+5oWHxOsPEelLFPodtFBBE6CPTwqY9CWI5A4r4DMstx2YY1Uack4dWtTz54SopumpNt9WchEmrSXsk9zqlxeSONkUTKuI17YAHJ96+pyrIsPlknU53JtJanp0KFOlDRa9yl4quIHhfT9ddjsjxJhymPYehr6CNONSOmx00qbcroZp9/HZxCPTEl2zj5zcNuY/TNddOhBKzOhpX1FbX1M8UUKlWXgpvAGKIUYUIKMFZG/LHlOq+F1h4317xxa6f4VYQ3ju2yaG6CrEhU7mcsMDjPH5V8P4i8T5DwjwtUxWZySTWi6t9EjycXKlRwtWeNiuRPS13daW6LW/RXXmfP8A8RNOfRta1rw2+sRSfZruaKWWFsqzbzznvz6V7vCOYwzbI8NiqWkZwjJejSH7R1eWpFWTWx8y+MYdR8Pa3OJ4UuQ4dYrmIFiuTzuHavtYRgmmdi51Hscl401K41VhabwkIt1EZd/lAA5Z1A6ZzxU1HZGeJcZU7NnhnhiHxXrvxDutViu7ay0fTyY7WJn2LezE8scjoK5qHPOq5t+6eDhaeKnjJSk2oEPi7xFqFkmoWOoQrDcrMGnVWyzxDODu7Lj+VViK8YppHXXqKndbnNp4+0x57xIEjdUtVVRE4OVxk85rCNSlKL1TDD4mFaHuO9jBt/Hml33iS+mu5w8EVsscBR8DHQ8/U4rejiaTm7M53jac6ji2aet6xDrmqXP2CQJAumiL5emAOTU1qrqzbvpY63Uo1aPLc+6v+CTH7Jtvfa1bftvfHq8vNC8F2ME2j+Co7AlJ9VvnjaMzNjBEIyQPUn25/PuMMfUxmX4im1fDxp2mkr3t+p81ia2KxWMdLDJWjZtd0eB/tz/tcfBnwR+ynJ/wT2/Z4ksdRefxP9p8VajbaZgxeRNI6wtIQGL72PTIOOtfzn4a8I8R8QcbLijNIunSpQ5aMdNU+tl5d9TTiHNoY+UcOm7pWt0S8130Pjuw8RWNnp1vqcUA82Esoj8w424wxx2PpX9ZYSvhnhE1pK+xzYWpTlho1L7XW/6FCTWbfzbpYUXy7lARJnlJh+PfmuatiKUeaz3LdSnOT9ns/wAyTT/Ect4jbJgk4CpI+R8xHOD7EcVOHqqpS1d2bUqsatPlTs1v/XmUbu9BuZrjToBsYcHbnHPP4Vw1Irnbi9DgqckKrlHVD0itri4EsroI2jOAp7+n51h7Snz26GtKphpSbeiaZ61+xJpF1rnxk0rQ9J+H1jrs3habUPFOpR6neTxWZ061snklhnaA7kR3SP5gCQQMZ6H8U8W40MJkknOvKnOs40o8qi5JzklzRUtG0r6dj5yUVLFRw97ayd0rtK3Q9Q/bJ1bw/wCNf2sn8c6Fp1taya34W0fUNWtLchkhvJrVXZMhVzhSgzyT1JzwI8HMFjcu4MeEqyclCrOMW93FP1fU+gw1L2cuXyR0+nyiDTNJe2kwZLbYCoHBz61rxHDmzG7WtiMQ17eyPVv2fv2Ivih8bfG9rC+mNb6M8ge4u2P3lz0FfP4fKa9Wum1aJwYzHKnDlhufq3+z3+zn4H+Cvhe00Hw3o0MbxIBJMIwGY+tfWxiqMFCCPn0pTd5bntGgwWoVosbSq55pK5NR30JtAvIluZVaTgE1m7h71zb0F47q9YqxAH8ZrSlq7sUYqMGi1rGpQwt5MRXd2I5rZys7GD+IqwW13d4d3OPSk9dzVK6uyymlzuBEJADjkE1OlxO6Y8aPLEvmG4XIAyAetEktzaLUkVb66eaby/KAIXHAxmhu60Glrc+Of+Ct3w7ibSvh18colVH0vWpPD+qTf9Ot4u6Mn2WaNcf79c9anKpFWZ6GCxnspOna9zJ/Zo8L6LYeDdYu9EfxRrGhXlzGJdQ1+1hWC2utih44NjFjGWz8zVpRw0VTctbGdXEVq9dRqWTX5HrngxbayT7LDblUjXEe1ahWUrI1lSVrtna6TIJ2E0UQQl+RjAHvWsJW1OdxR558Rmmm1O5klyzCQ7iR35rmxTc22elhkoJHIwT6dZzLd6vFPNbWqNNdw2o/eSogLFFHdjjA9zXz2KUo03Jq7XTueo3VdNqm7PubPxH+Jvhbw1pGk+H7Px9qtrqviANLb+B4lSecIRlY224Z3C4zkkL6VhmGa0cPhVSTcZbtWPEwOHnVxbUouVuv528irpi6bZ3Mmr6vY6hfpFBGE0/VmCtCcYYEptOOen0Fe1ltp4ZTm7ndilGM2qN1E8t+FtlH47/b08OXEVuixafpV/qaLGMJG+0RooHp+8bFGYxVVU6ae8vyJo1XClNb7H2PZX6yXSqx2SocOh71o42OV6RbLfiCSGOJjcQq8MqhTmk30OX4tEcX4i8Kan4Rtl17wncfbLRsvPaliSnuK2jBKnaJcailLkktTCh8VWXiaPzJpgFR8vEx5BHUYrGUU3ctRnTMnxpq0lzZx2FpKAkr/u4o1wSPc01JOy7mlOWtjhPH3hHQo9FabXNMhMnKQIyj5z9P8a0lScfidy0k3vc+VfjD+yp4f8U6s1yunIjMhJ479q4K+HfNcavKokkfPmqfs0SWNxfWsLyCOObDjqc5I4rOjhly3S3OqrVcU4t/iZMPwOlh1J9DvCGZk3wlhwwodJ8xz86a8iDVPhjYaE8F3JGCj/LuzkKe9ehCnaKOepUcXoZPiex0XTmECKMs5IlUjij2Svc5qs7nDeL5I5Q1tYLwM5kA+9WsbGHtFs0cvIn7nY3OR0P8XNKqvdLw6c66M298OWsymRVKHHXtmvKqwvG0EezKMI6GNqmi31ivmtA/l9n2nFcbVSEfeRzyqRehmlSW5HFTdWuZJNsZKSqFePatYRTV2OScdCnvG7btNKr7q0NPZpn9P37PnwU0f4ZeC7PRdOtlhjs4VSNCecAdB7e1ffvlhoj5rETlKs2z1Wy0UyTB7OEqxh+YtyGHpXNLVmfPdHT6LcXOl2JgEhcSR8lsAg+mDScnYykrmvp+nMg+zvLtMg3Lk+tQvMuLS942bWCOzTzzPGoUYKqBzWl4wRhOaqPlSJsusZmtolO7H3RSXvPRBBJytJkyWkcxWaWMh8ZyDV8iRlUm4XSeg6SNwNjWwZccHNXzJrYUJa3TsJHGxx5cYUjtmoive0KlLe7I9YuQIhFNJ5ZJ4BIw1ayld2YsPF3vHU5K7kO0oYAcPlW29zWM5JKx6HNaVyu1nFdj7HDGrurAydAoOe/vXPd9ClOn9oy9UiDo6XyMY4925XkAVh+HQVjLezOmEpTV1oWvDF7oGkRiLQdGt7fcu+d4QAWOP14p0YQhL3UkZVlVn8crnO+LfiNZG4lHntGOQjMRkc/e/wAKKsoy6msYS5FE5Ntcn8QX5jaU2lhE4N1OZBvmHcZ7muWNROVug6kfZ+9a5znxJ+KxtYzo+mXf2e0UOLOBJtp24+8xzyT/AFpVcUmuRPQunCMpXseUfs5/F7WvFvx18U2onPl2WhRILhAWAmdmBGT3xissvrJ4io49joxODcKMZeZ0Hx78MeF5tTS28b6XHqMaxr9vtLmMMspPTIbg9fwIqsTzwn7yuXTqyjTtHQ47xZZ694S0GXQLfxRd39jBCJ7CK4uN7xwsRmMseWA4GD2rGFOUU+Z3CE3KSbVjyL4veL9J8P6bc6b4os7C1u7+Em3ubeIqFjzwgwcEnAJzXLiIKmrNmsYSnLRXRx3gTxr8OvC3hy803UdPtb21urMkXdrDseF/Uj2+ppQnB0uXoarnqStseOxajZ63qd4NLuhJL5rMrB/llA6ZPY1jBKTZtN8tkeTX1vqOqeI7y11a3k8xpSY9pB3D15PJ9u9TzJTsdFFNRuZOqyWNq0lts3SqcbXi2nH9DXZSlFLQ0b1E09cukittOdxXtmvTptaNGkFJnP8Axt0CHSPGARI5Y5Z7OKeVJYtv31yCPUEYINfO5rKnLE3i9ep0VLxSOKIVTuP6V58btnNNuTHwkudzDjsaJvlLglFHUfDTwLq3xE8W2nhbR4S8lxKA20fdXPWuzJsrr5tjlRh8wk5TahHdn6L/AAY+DVl8K/Ctr4X02AJKoBmwPmdu+a/prJMqpZVgI0aejVrv8z7HK8PDD0NPme0yeCtR8L+HItY12I20Vz9w4IYj2rprY+E1KnTd2azxlNtqm7tCeHteOt6d5Nnpf2e2t90YRm5c9CW9a8/AZX+9datq2cWFoSdd1Zyu90PS6vZr/wAiRgImGUbPXFe/KHLtse1GPLTv1Gz+Fm8UzLY+WQshJlSOQYVcck5xXFjMQqOGkpbPoRUqRhFy6oSRtK0uxXTfDkyyxQJsLbcBj6muXKsLGhRvGNrnLFuc7tWZQn1Mwyh0AWR1+Zg+M4/lXsOjSfvJa9TopRlezM+62zhXmRGkZi22Rdw+uD3rWMGrWOuNo6FC71+9MhitFRY432tufaR69OTXbCmrXKklzWIdHGra34ktdF8L6LHd3F/OILdY8s0khIA+vWuLH43D5bhKmLxDtTpptv0NHUpYWm61Z2jHVnfWnj6PwR+1/wCFv2Q/CWvyfZdLsjffES/t7bzJbq8kULBaIx6KpJPQ9vev4N4ghmPi9lWb8VY9SlhqMnDD01ppB6yts7/10PFw855rlGKzCpFNpfu03ZKKer+48F+K1hbaJ448Q6fJ5iNaaxcIsF4gV4z5h5YADn8B1r+t/CfHxzDgHLsSla9KKt2srHpzm66hUjazS222+f5ngfxViL7r6CJoRHLvlSF/mkGevPSv1CCbV7lVHKS5VqeY+JbOyupwBazmMwkxhDhnBJyOO3vVWvuczScfeOA8Z61pWk6ra6HY6dHHNcgpbxTw7nnwM8Mf4Qa5q1SKkox3OHFYinTkqSvd7HlXxB8Kaz4uu7q71PWJY1WIwFYMIWc5woA6jg1w18O6y5bnm4jBTxiab0OU0v4MaLp2mI73s0cjJiWLzyGJLY2n3P6Cop5fhqMbI4MHlVPBXjFvzI/Efws0jRrWaCKGIx2ThElWY/vZGPb1x69K2eCoqF0dmJwdP2S5I2NU+H59G0qfSxuDNb7WyDkkgMDk9sGtXT9lBrujSlgpwon6afAb9o7wb+0d/wAEufDnw8ljMC+FNPbSNbXS4mmm0+7V18qZ4kGQrddwr5GnClKNSg/t3T9D1Mgw2G+s+1g/eas07LZHyn+2X/wTakfwvN+038G9Cm0fxHHZC68deCHhaUz5xt1K2TG5YpchiuMqzYr8cwnEGb8D8RPJ8zj+4lrRqNaNPZPpoup8fUy2pi86nUwvdp9nY+Q/jB+zn8dfhnPFP4y+F+q6Vc3EHnLbm2LxzxHGZEK5BUZGfQ8Hmv0LBcQ5XnFT2uFrLmvZpdyc0y/E4fCuvCNrOzS1HaH+z34n8V2Gh2mh2t1qOueJrhf7H8N2MOZ50DhPOdiNsMZJwHbuD6VrxLmeCyDBxxOMqxhB66vXtovPoclHByqqEY806lTVQitdN230R7cf+Cb/AMH7iYP4i/bk+HvgHWfmGoeDrq9udauLTYCXZp7SERk4A+UZ69a/M4+JuKjWaw2ArThpaekU77WvY+lqcKYirVi8K+VyV3FSjK1tXu09Fq9Cuv7Bf7M2nXVvFP8A8FMPDE6XkTG3Om/D/VJgyg4Y8qoAHJPfAq63iDnzg5U8rqad5wRi+FMfKCkqnxXtotbb9RmsfsR/ADwRFaeIvGP7bclz4f1FmGnX2gfDq5Zr5BklYzNIiK52nCsa8p+JHEVebo4fLb1FupVYq33Juxy/6q5jpF4iKctNl/mb9t8Wvgh+xz4Y8U2n7IWp6jrknjaeyabVtejgluzpUGHuLGeIL+43yDlcncjgZ4OPlsZhM445z2hXzumqSoOVqcebl55aRlGTfvWWzezPIzXL4ZKqdLm5pS1bW/p5Hl+rfEjXvix8Qdb+L/imSEap4h1d767jtYBGkZdt2xFXhVUYAUdAK/f8kyLAZHkdPBUG1yW+fVtv7r97nfg6U/YqS7dT6R+GXwu8Y/FbwJplr4K0uSa+W78uIheFyAQSa+Jz6P1nHtU9zDMF7JprqfrJ+wr8FPG3wz+FFlY/EC4jlvlhG7YuMe1ZQhOlTSk9T5WrJzkz6O0SKzgYecAeOF96NQ1Rbt7uH7S7EYXstDkkZTiri6HDJdamVt8KpPzfSoVnIuDvA6q9uLfTbUW1uAJCOStbQ905pvWxnCzubh1mkfr61LvcqKT1NK1jaGPy47gEjrzUtNq5V2QXWj6/dzCa1uxGnUk1i4SbNoum1dofDa3llEDd3ok4z61aTW4o1KdSKcNmC24vZtysM46niqSVhN6HiX/BSfwZF4r/AGHfH8Jh3zaRYQ6vbbeSr2syTZ/JTSk6nK4wFSbjXi13sfGn7PVnqnibW7aDwrqDRXWoQZga71kQW4k2gqGj7g4ODxyawlGTWsrHuqpCl7043+Wp9SfDDU9Yv9Eg1bUIkXZuiuXSQbFkjHzfMfbJ+lOg5T6nHia9NyvE9N8Nw6ZMj3C67YTeTEssiQ3qM+G+6QmcnqDx1rshTTejOCWI/ectjyzxZqcOqfaby0uAQt26MVbPPvXHiPdUme1QhK65jM+GOow2/wAQn1q+tYrq00XS5b25hlg8wO7fIgI785/Kvm8dmP1HFU3JcyfSzb7Lbz+49iVF1KDipWb87HkfgX4hePPilf8Ain4x3PhFfDzQ317p/gi6j0rF0XVW3Xm9gSm48L0BCgd+fNwGVVcTjKuLnNSi1e3Z6af1qebUqxkoxlG1nZaPXfV/0vvO90K51uP4f6fJ4gvpLvU7m2VtYupmzLPNt3FiR3JzX1mHUaeHSsc0m1PdtHKfsfObv9qbxD4ma3ymnaCYUuDyp3XCKVH02H86wxNWjUxFGPLqru/fa33fqdeFUKeHqTb1dkfXHivTGuwNT0jiVED/AC9GBrsq2lHQ4Izv7rQ2x14ajALHVGCsI8OhHfsa5IfFaRzzjJSunoYmsXt94Su2cyu9q4xuU5H0NdXvQ+E3hyT23OT8aeDNG8ZImpaHqraXf5wk0LfIc+o6GnKFOove3Hep8MtjzzxI/jL4d60l54002W8hVSIryzXcgX1IzkGp5IxKioW91nNah8VPC/jHVDcT67CIIjiKKRgCWHsabnKUjOTUHYTwLo+k/EP4nRaBHNDLbxRS3uoyq3yw20S7mLEdBwBn1Ir5zizOKGQ5FVxk371rRXdvY9HLqUqmKg5rS6/M+YtVvY38Vy63ZaXNNZvczNHLG3y+WWOMjvxXo4B1HhKTl8Tim/VmOZRpfW5pbczOR8b6vp2oaqjQRzWzWsuIGKYYqf6V6CgnucbqRirROG8Uy3GryR26IJmY7pFdMA4+lNy5Ymcry1ZxHivwnqFsRNcW7OjNlFY8JWMptqzMJxdzifEsMUEpgwAqnjHQ8VKlZmLg7nIs011PHFaoCzSkYx2rbldSyOrDzjCaOs8M+Boru/jfUweCP3eP6V7GDy2EY3kelK9XY6n4hWHh3TPCckd1Ywqu0hQy81eKwtCVF3iFShGEUfPOqWUdvI9xbL+7Lcewr4SpFLEOC2JilGJh3d2yk4PFdPLy0yZtyIoZg3zN1zWFSLa0FOcYM/rMTTTZIAiZIAeQZ4AFfeVU3Jo+ZrP98/U19Ge502T7XqEWVc74SFJ/CudNo537zOk07zNQm+2CxwD9xWXGaaTepUUtmba215OiXSWeNv8ACRzRKMr6IfPCDcWzRlgsbq3DABnUcqDjJpuCmjni6sJeRZgbZEpYbTjhDVxaitQa1YXKXFxA1tJHtRxgsGwayqc1WNiUqcJcyepFZ2X9m2i2dqzsoOSXck0qcJUopQ1FVrxrTcpaFgRyErtOea6o06m5z+0gyv4pjt10lprtAxUfKAe9XOOl5G2DqNVbR2OK1BnjhBzIm48gGuaaVtT0eV312MLVdTS0szFaWkmJWyxRt2/n07VyOp9mJrGMVNO+pztzrqzRTCSeWS7CcW5ACoOvJ7//AF6yqTdrLc7lG2j2Mu3v9e0zzrvUL20in8jlpZfL8tT2C9zWdKVSMtRTlCo+WKZh3EOjzI974j1QTqfnEKDJb3zWdbVe8xtyvZI848c+MNQ1WGSLR7PZaoTtRyQuPb1NcVSdSWqWhUILq7s4XWJ9U8RXVsvlfZLe1t2WNMYEnHU+9SoucfQ66fLTjqdH8HrLTPhzb/a9CtTHc61cpH5oXdvfPzEnt7ZrbCJYTXa7IrupX22Rc+MfiywttZvI9Ui+1rNMIXWZ+Ru43e2DjH1rTE14876mdG1OK6s8W8afHDwR4Q1GVPFXiqKws1ke3vLq4fCxOchPXAO3v1wa4/rFOL96VhyjOS91HzTr7+Mfit45f4gXHjaS6t1DR6c1kytaGPOAzLgjJ9a86KnWquTldHdQTVO1hJ7e4EUlre6lJCkP+tiht9sbH1U4/wDrGu3WMLFy0ehgan4g8JeHLC6FtcW6zSxlreZUKkH1Ix+lZR5Neh0U0pbo8gmk1bUpHa7nJLuWBVMbWzxg9s04QTe5ry30RnahBev5kV1MzurBd8gIJPXBrpjGxUaaRY0SRWv0WReduMk9fxruoSfMlY1U+XY2v2ivDw8SfDfQfjHpczSvp7jQfEsO7cYJFBa2lPorx5Ue6e9fNZhCdPHyT2YSlFrR6nisibmyTx9azclFWRn8KJbVHllEUaksxwqjqayhGVWaildsHJJH2f8AsG/AjU/DwXx5r1gYpZcGITLgheuRX7XwPkFTLKP1isrSZ6WV4Zyftam/Q+q/Cdzqk2sS61JACIXxGpH3jX6YqinCz2Z9PUtClyrqdl448Yat8QoLbSNTv/NaCNV8pFAWJR9K8/DYOhSqS5Diw+DpYeblBbkT22leH9F8h5ljt1Qne2fnPevWpJylyrY9BJRvZXZn6bdya55U+mqXTf8AIAh55xjBraoo0ldvQ3ilKDudLIYvBpez1DS0e8voTFNbyWpcopH3s9iBnmvmMfUwuN/dN8qb3PNqzlUmnFuyfRnGzaFcaJcxXNnHdJb3RP2CK4QBZADycemfWu7LuWrUlGlNuKSXl6nVGrGvdLdbjPEGm2qayl7FczSSNEBNBwY1f2r2aMZU99TqoQdNe8UdY1RIUedr6OFE+XezAE57e9dsZO1rG8oc7ujJeSG+nQwQdeBERtAB6sxJqZTlRjz6s6KTUr+R3/7OutT+GfFWsfFe6kht9A8BaNLcTsq/8fN66kRRL64wW/Aetfz19IjiKpg+FqeR4Sb+sYySjZb8p4ueUpYrDRwqu5VZW9IrVs8J/ZO8VeMZ/FPif9pnVWkj13xHrMl1bz3I3sih/lPTpjGB7V9X4ccI4XA8Exy2cbU/ZuNrdWtWCjSq/wCzW/dpctttNi7+1Tbnwv8AFTWLnUdRe9fU/I1Dzpl+d/OjWTJUfdGScDr61XhBThl/Cs8sev1epOHnbmuvwZvg5qWDjGEbKN192h86/EK8ttTv5sN5i+WDKQuFjx3PrX7NGUfZ7nXFOMTzDULy/wBS1CW0tHIsj+5NwDiS4OPuj0H6VtZOmmcsoybOD1LSfN8VSa5bLEZLAiO3Lckdm2k9h3PeubmXNZIweGhGpzyd2jlfGmq6Xpni0yXRKTxwloVjQ7RMAcNXNOqufUwqVXT2R5f4w8YeW0H2u+ljdrkm5h2FftOT1B9Md/euGWISmk9jxsXWqQrR3Vyfxlca34ouLApcsltCIpEtwoARAcAZ7kZrTESlUsovRHdVVWdONn1Oj8ea1BHbtG1y7tHaoGMTkApt2tyOc9K0rSapNXe1vv8AM7qtdQotx3OK8IfFD4jfCnxg/ij4L/EfUNA1E+WLiXTZSqSL12un3WA75FeDiMPSr1LRdpdz5S8qtVujPlke7fBb/grp8cvhp8X7bxl+0XZT+L9FjExurPR5/sMtw+wBDJt4ZFZUYrxnbXw3HPBlXiPLVQ5kpJ/Fa7sjqq5xjcJSVPERTS2lFWfzPUfE/wDwU/0DUf2c9Etfgrp+qz+OxHqttd+J9ctop47exvJYpZLSJj8ycxpk46opzkcfnOW+HWc086+szqqGHXK0oaNuKtdncoPMaMq6fuStb1Xc+W/HvxT+JmrfBG68IeENRFlLYyTSeKbayhjS51Cwd1dMSqocwxOATEDtGd2OtfXYnh6jUzqGKx8nUSSUbu6j8trnk4uniMJR5qWjW7W7Xr+h4NHLpDxOOrSruTLk8/pX13s8LSfKoryPAqSp1JO3XzYhtFtZDcNbFEZcFg5Byf6VlVjRt8KsU8HKEOaz+9ktgiljbySMdwyUEhwfQ0JYNWi4rmt5XOnCr3WqmvzPQfgj4PGq6b498QrHHN/ZfhR52DIWG55FjByOB97vXw/FmLjRzPA0lp7Sol92pwVlGVZot/DOV7nTIbYMpAKY4HY5PPriv0dp1FofSYKsvZKKV9D9Ev8AghMPDc8+veFJ9RkFzea3NJBNf3hkIdCAEUN90bT0r80xDSzivTe62PArRqzcr9Gz9dtB0qfTrdbeWUttxyB1rCc9TypJc2h0nh2TT4rvde491pxd0Q1poReJrq3jnLWoKg9NtN2uYRT59R/gmx1IF79pOAMj6VEYa3OhySjZGgbi9vL7CqeDjGOMU2rHI4K9zTniulgWNX+qqKFvqaR5UX9OjmWNXnLZ+nWrdrETXUs3d9KseFDAY6etQmmiqbdyK1WW5wbhSFxnmk7FpNPUnvoLRtMkghl2SFfvL2pRumO2p538ZdFGu/Anxv4UuAZlvvCOowMH/iLW71cGk7M1ovlqRdup+ff7Hvw01DxT4X0rxDceMbC2sLrw+iS6Vf6Ct2skpQYlVycq/YHnbk461y+xlJ8ylY9LErl11+TPpH4LeCZ/CcQtPEGrrqUjXEjrmDEaBhjbsbtjI+lFDDSpO7dzkqpTaaR7f4ZsdEnjFjb6VDh5Iz5qQKjR7AQmMddoYgDBwCe1dtGlCLukYSjed2eUfEDTtHttV1e3tZBDKsvmNFwd55BcDjqR6VjWw6kmtmenTqVZRjZXRzula9Z/DbS9W1C7t3nuUuLSPVIV+UpCUL7WPYYYE56d6/Ocfi1Uz+U6LbVHS3fuetKKlRUZOz8zL8Kar4asNMu9C8BaLq8GlPfCQnViT5jbchY+zR4b5WXgg8E19hk1f6xQqOEXGMnez6v+rnJiqVSi1zal/wARadLDoUl9Y2YeU2js8US87iSAPYnAH41vWXJF8pxzTUb3Oa/4J+6L4wn1PXY/iFo8Om63HpUa32mwSB1geS6mk8vcOCwXaDjuPavIcZxzGMJ7pGkXH6oprZs+j49Wm0xRYl2MTn91I3b2r1Y1LoyUebYra9ax3rSX+mPmRFG5PeiynIycuWdmYVxr99C66XqtuGt5yW+c44HbmtXLljexclFao53UbKG5nkl8HaudsR3y274OP61hGLnLQTqykuWxyWv/ABJ1Tw5LKmuQGW2lfakcnKqMc5zVzqezMnBLU4HxJYfCj4o60dLj0yz+0Kha4uIAFMI78j1qaVWFSVrFxvLU57SLfwj8Evhh8QvD/wAOjdPr3jG1isG1BpS32eyDHzVQk/Luyc49vSvi+KeE8TxLnGDbny4elLmnH+ZrZHqYTHwpU+ad+aO36fceY2Wk+F/DtoqlIvLe32xxmTkPjuK+5Spwb5TyqjlOXM92c9faBoN3ezzX8qG4jQBXLfLg9s1rFprQydkzifGUHh+0uWlsZk862OGiLAZHXj1qJKPUmc7nkvxC+JelsZ7fTnV3xkoeqEVzyjKWxCbUbs8k8Qa5NfmSUsTufIAHSrjTimYNyk7HN3F1qFrcLc2infA+4g9xV+1VGSkdOHpvn1O58MfFvSLOz+03zhJwoJV+xr6DA4pYj3Voe1TqQgtTkviP8Vr7x3fCxsm224b5sGsM5rQw9BtPU46lf20uVGHLEj2/lEDgdK/P1U/eOTOunSbjqYOr6GTF50PJHUCulV19o5qzlFaIxgdhKsOR1BrSLjucEm7M/rZ0iSDWJ7h3cYUEBW9uwr7ed5TZ42ITVR+pv6ZBPOVaa1ICjCqjdB71zpamUbNnQWWfKADbju42vyKbvsaI1rWa4LiWOY4x0JqoppBOEHGzRc8yGxjF0YNzucbV6k0SqKnE5Pfm+S+iJuZ3EroSc8DPT61zybk9RxXIrElzI+0IelbRUrGD5egzDKuS2OOtdKglG5ytqUh8IDKCkxPPJpp3jeMiuVLdFLxk6tZpFIPfBP61lVm3JI7cBBRTkcLrDqcLCWZVU4LNwzd+lYz96DO9u8bI8s8TXXivwzczT6ReuGus+ZCWzGfQe2K86UJU9Yvc76dGnVV30MS48QXGkW/23UxMmAQxEZIJ9ff2qZVY01qinFSVjh9f8V6VLei/1vV4vJ8zeUuDxGB3YHqa4ZVYOV7nSpWjyxRTb4q+HfiH4tfRfCmoJKbNAsdnbqBjtlznn14rX2kK8kodDOScYptNF3XYHkke51fVbbbbx7ZIcYSI/h1PNX7J9WKFNX0MC7vvDhWZ1glmeb92HBOfdscYH061N1TXKlctScZanj3xF17xHDqTx6T49vrVNPcTQRWKlQrr0b5hznuDXnSU5S53JpI3U0k7Lc8g8XftgeLdSudesfHnh97y58mOXS9R0uLarzI33ZlPvg5FYV8TJuUmr3K+rNRTgc94O+Dl/wCMLm58R/ECw8691OAzby26JiR9wBugow1B1I3qIcZpK0TWX4N614MtLi00uyFnFCFZbWIfLjrk46fypxo+zl7uiOtOMYjLzw9PpEhl1p4UiNsWd50JhIwSC39081cvPQ5nJt6HgGv+HtYl1y68QJq7XNnPIQscc/mRJ/8AW965V71RtO51UG3G1jK1EJY2kqRxHmPdBnkY7rmuukrHZokYMlzNewlHnLHAJYZzx2Oa6I3UrXCne5NZApMYmTfHjJIHT3FejSlHmsjX2Tb0LJ+IOj+BvG3/AAhXiu8T/hGfGlmNN1tM58ok/ubkDs0Um1h7ZHeuDPcPyU41brucsa8KNflmtzz7xN4Q1Xwb4hvvCWuptu9NuGinA6Ng8MPUEYIPoa+Z54z1RtUTT1Pb/wBjT9nu08Za2njjxVamSytWykTDAOB1561+p8B8NTxNWGMqw5o3+5WevnrZfO/Q7cvwP1qXPPZbH2d4b+IGnf2va+HLfT40ggUIsEacqvTk1+z4ilCqnTS6H0MKEaStFbHpP9k3VtceRo1q7ySIDFGF6DHJrhg6eHgoXtbQcqkIRTmyLQNG1GJ3kv4cFv8AWgH9K9GMYcqkjspzg46FvWZLSS2Vb5EJC48lm+VVreDlb3TWmhV13+xbZYLG3SJcBoyp9ORmoqUZVrqQSSUThdej8b67ql5qKeJbyGa9XZKDN8vl/wA8/Svk63Cc8di1VqVGorojzv7OnVrc/NaK6G74bF1omippM9w9zLGoAmuCXdR9T0Ht3r63D4KhgqahSPSiorRGfdvqElxPLZnaka8s6nOT3xXdBK12bqLbKWoNDcLHNc6Uk8akFFmHGQeTj+tNxbWhtT59rmfrk9lp6p9m1oS3czhYrO0TKs7HCrkjrk1lUnGhRdWtK0I6s0cFGV7adfI1/wBqnxEPhZ8OfDn7HHhfXo4/FOpzrq3i+S0YNIrNjcjZ5AVcKPp+f8mZHUxvid40yzKlKUKOBfuSS+3FrueZhubFOpmMm0pe7TX93v8AMx9LtrbQ9Gt9C0URx20EIVQxxg46H0zX9eUMNDDU/Zw2SNqOHSld6mb+1JHpN34X8OeJdNXd9t0GGK+uGDs0lxCWjcBm+8FUIOMj3r8T8OcTCHF+eYGD2qxl98VsRTUqbqwmtU9PR6nytrmoGyubqQRM1q7Yllk4IH09a/dIQSiOE5cq5tzjNR1hYLi6bQoPuoTaSgA9R2Hb3reEk1YKs7o4bTr+dri9ZtLglhhsytxK4Pzuc8fUVnyRs2zi5KrfNJnA+M9e0vVtXOoG2EsMEQS5nQ/dcnhR615lSalUMakoqGqPN/Ed0ni7xwugRgXN1HGAzeT9wE8EccYrgjS9vXcO2p506lPF13R6x1L+oCPQ9QW1vX3GHS8Ro7gjecYxjryfzrslBQlYbnKnXUWw8QNc317fRoiwrLpoZozyGfaM/Q1lWd4NHXiVejyLdnHR6LLYQDz5kMtxPsnlUcqhGV49/wClccaFo3W7PNw+CjQp80nqyjq9qxe4+1b2miXYXK8Od2On0rWalJNzeoV1GcG5aln4Z6zaeGvEaaNqEyppeqsI2L8rbSnG1/pk4NfNV6Lo1r3919Dz8BiZ4XFexb9yf4M9K0We78NeLYZ9PRLTUrSaSIMyApiRSjKyHqjKzZHTmuTHUaeLw7p1Ntz6OvQhWhKlU6qx4NqHh1tI12+0C7hAuLC6eNgSQBhuMcfdxWdPlrUk+qPiKdOilKm170WOW1mhZ4rkghk+UP8Ax040+X3WFN11JxlsS2SBCCBwchJB/KlCmpyu9kaRhUjueq/s2i/n0T4k6HFO8dvP4GkuLqFYwxlEMyHBzzj5s8EdB2r8748jCGNy6s1qqqS8rnM8FUrV1Lmtbp330f56dV2Mj4cW++1SKXqcEbWIJI5/Cv0hzUocu3o7fkfR4Gl7KNz3z9hj4g6toVp4kfwxdTWl9pfioTW80b8jIBxnPQ46V8J7H23FsuqcTzJTjLEziu5+737IXxstfjP8FdL8XXjhr4W4S9UdpAMGscXhZYfENPY+bx65cS0jvb+5i89XVip6lQelYIwhe2pR1XUHYeYoPHU+tSxcnv3Nnwff6i+nMDNtBHGaUJDm1HRG5pgmBL+ZwOcmqSuZrYt6fc3M918xz2JIppJE7PU1NSu7u10+WawhV5Y4yY489Tis5yaj7pfIqkrNnFfCHxB8WfG93eXfj/w/HpsUNyyWsaSlt8YPDHjjPpXPRlXaftFY3nRpUfhdz0WZo7aLYDk98GtrmPOm7GdfzCOHEUZ3N1FNaPUtJGffWMepaPe2Nwo23NlNCy+u5CP60+W+ncFNQ97sfnz+xDq1nafDDQ9NdJZJI7MWu2Lna8ZKnPHXK1ph6UlDU7q1WdazaPoPQbsPeCN5SAWOCTzmt/dWhEYOx6n4BlE9xEdg+/yCfve9UpWd0c1V3i7nnd/o/wAObrxN4i+JXiLwxg+GfEiw3GrLqzSvdS+QJFszbjCxx/vAc4JYjr0x8NxDnGN9rPCUoPW1pLV69Ldj3MK3h1HlqX5o35bba737nlXw68Uan4m8KeJ/EHiO2W4v9X12a6SO5UqNgwqqQcHbtAWvCwGW4unndJ0/ehFe9dbt7nVN/WI3et317Gx4T0xYNNtVtVaOJH329vJKZPsse7AiBJJAUHaBngV+jzvKba0OKu4qTSjZdhnjrxENN0K6+ySGIvFIQ7NgALk/4Vx1bdCIOMrmZ/wT7uZLU+I51iKvAbQzHcSZWYSSMef9+uF0lLNJNfyodSSeEgl3Z9Ba/Ja3AkeA7opF34Xqp713OKTsjOGhzlzqeoaNbJqNlL5gX7y/3x7+9Q24O6MakU3qGpXqfE/SUutPVWMI2tGnDKfTiq+sRqRsJK0tTzzxFqN58ONQl1CeLCyqTcKTyvGMmsruDvEc3GS0POb7x7onjyT7Dp2pw3CwZeeQt1xU3UpWZmk46PUwr/QNHstRuY/C1wLe5uIgbiTdxjrj8q2pQhF6GzcfQ8z+IHiR/CZFtb6gt59pjMcQByR6mh1OxzznzSsjxzxFpviS5v0EfiSdZWl3JkEBB/dqIRbbuKnKXNuc/qdz44t3utMv9XJVvmTjofeuhXgtBuD5rtnnXiK28TAyvd63K1zu3Bg3UVi5p7mdRJHFatbvNLJK5Pnj7zf3ql1Eloc9p21OW1gm1ZmcYzyAaIyNIRUUUNIna+lmMij5hjGarERTpnZhnzVNCfVfCNre27POuCqZLDiscNUqUnozuqwjJaoxILK3sMxwhTz1HeuPH4irWk+Z3FRoU1JND9zMmBXlxUUzslZIikcbNhWrabORpSepha3pClGniHI5qozl8LOWdC+x/WnYWEGnwjysrJIRggZJFfoc17zPnKzbqv1NjTLaK2JmIf5u27PNc2zMoq89DaiaAooCNG55x61ad9S2aEFzHbwoxTcz8Ih6k0TkoxDyLdhBqVq3mXZV2c5xkAKK5kpJ3MZqlNaMvw7MbxFgntn+tbxjfVo56kmla45wd5YqcAc1aqpOxjytq5C06ynEkZC/zpSqKro1oTGk4a9SW2uICREkR46cVUKtFPlii5U6jjdsw/iHIGEaGQjAzgd6zqe/UudeCVqTOSluIsbd7ow4YkDn25pNt6HU99DH1zSbC4mhWO2ZgjbpAU4J61zypu5tSlyJnP8Ai600gqzagqA7PkCgFUHbj1rKpGnfUuEubRnmXjfwH4a1zTJLu9s0jQPgLjlyecn1rjlRhe9jppqUJXvofP3jr4U3J1lrjw/NNb3QuNlk9hIYpWJOMll6GuPEU1Jrk0fkejGpTcbbrzPQPAv7OHjfwboi6v8AFX4g6prtzLyLS7vMrbrjhcAfMenX3rtoYV04XqSbZjVxHNNKnFIwfF/hmyke4g0HVNZa7CYmS2QlYUHJ2nHYDrXNiY03rdoXJWmvhVjyB/g/4h8Zakvn+ONXubOJ2LW87rGAOeGKjk8dM15vsufVSbQ1JQVrakLfBzQbHw3/AGzqEMa+d50kQbnMaL1/PFdNKEVA2p1L1OVmp8C9QS08JW+leK4P9IW3kWxdk4dHztJz6HFdVB+7qOtZSvFFH4o+M9N+Ht7caxrs0iWu9re/iiTcy71GGAHXDZNY1uWjLVEcs3Gx5T8QNT1LxxYyaJNf2t1FboUhurNwxnhPIEgz6flXJUhKcrSOmnBwR49a+DLPwrKYbWOSzidmBiEg498Hgj2qYUYUdUdkVaN2YGuaZNZLc2ryJcRySb1+zPxn+8B29xVOpLmCE3N6HMTWyQ7k2BZMBj83DCuim3I3s4q6LFgR5yqqcA9Cfzr0aXKrK+ppGT5XcrfEL4W6Trm3xL4p8beENJ06Q+WEuy0+pyEdSkSZK+xbANcuMneo4tq34nlV4OpWUrljTYLT44+NNHtLZpJJrO0isbi6kTD3ccXyxyOOzbMD8BXNkOTyzPNI0Vqr6nq1FHEVYQifa3w08LaP4I0O38M6dAu5YhvG3viv6ey/BUsswSo0ktEfWYWgqFNJHRWVtB4a1BLuK0Tz3wBnoK9KjTVRK9lfft/XyOipG6bR3l/L4judJgv7TVJLOWQYYw9QPT2r56pgOfFtvYwjQpzl7yui1Z3V3oWkqzSs6sQ8js5y/rmvVcYqNl0OqMYr3Ymhd/2Xqmnx65e7ogQf3W3JY9q5oV5QnboEJyb5YlSSwkaMyz6XdhWG6APH2Hc1vQrUatSXJU5n20djeXK7K6fcqanqOk6bYRXuozw2kXLBpWwTj1rsjCdVWKUVZ8pn6Rqtxr0cmoWUq5ZTtkIxhfX2pz5absR7JU5Ixbi81RPMgtLsSx44LDJds10Q5XC7OuN3K7M26u767mkeW6aIbcFs4Bx7VWjVtjWMlCZ2X7MegnX/AI2aLNeCE6f4dhl1jUWkGdyxLmPdng5cr+Vfh/jzxXPhHw8r1KFTlrVfdhfv5Hm5nUbwVSMb81S0V89/wPHz4i/4W98avGHx9vLkq+r6lJBYXbwBWEETlcKD1DEEj2NT4C8KYrLPDmn9am4YjEXqSmklK8rdWn26pryPRjQp0IU6UVdQSj9xt6vqR+y7LcmNCw+SXjcc8Mea/dsS/Y4apUk9Ipt/JFwcYzSO8/bLtdPi+C/hKGHxfpGrTeFY4rC/j0iBYYtNM8Xm+TIAfnmJwxbjIYcV/HXhdxfVxXibiXUSUcQpcrSt8Mml6vTVniZfSUliavs5Rc5X953vbS67LyPh3x/BDLDfOZyYyCYwRxnHGK/sGlzSpyble/4f15nSppRseR6B4ovbaO6uWmc3fmGMebFtUjphR/Wqi7QS7GMXyO8kZ2vXc9rodxp9qQr+ZmW4xwxPJ/D+dPnTj7wV60XTstzyOLSNZsEu5J7kGQzM6pKMIsh+6qjuf5V59WDk27nk0qFWUnKTG+GvDN94Lvp9duGW51O5RjcysASpxwo96dGHsE5dSo4aGGk5rWT3Obu5oT4ktri9YSPbptUOOsjEHB9xXBKq1X5medaP1yMpdDf8R61ZXlw8QsookMbSQIFwJl6ud31H6Vu3dHrVqsVC5zs17BfX2ovHEuJniRYyuSgGByPpnmlTqRjJo89V3UvfoYmowQsbmeQyYVgwc8fvVHzj8ea56uJp3k2yZyg4v+tTkmimvZJUuN+CCEUN2HINeK/aV230PnnTqSquUj034a+LbXxHYrpGsXL/ANuWaqqzO5P2yAABcZ/jUAfUe+a8r2FdSkpao9nA4qeIfs5fEip8fvBk1nrFp8RrNJmivEWDUWdOBOq/KT6ZXHPtXmUavsq7hc5M3y+pRxSxSWkt/U4d4orlGRZi+QFUA/db0r04yVV2TOdLTQq2sM0jG3lVo2Unhjgmt3NU42e5th4VJP39D1j9luG3XV/HGp39xcQWVr8OdSa9mtPvgMEVFJPGGcqv41+b8e11OGDhFJylXhyp+t39yMZTdSo7dFf8TD8HahFZ6T/a14oAiUmMnBOcdSK/QVSpVmrr4dfR2Omnip8j5Nj0r9i/xQli3iPzp12vqMUkmF7kf/Wr5qpThhOLaS/mgzgwlGTxEm+rP1Q/4Jg/tA2XhrxfP8MdRvDFZantktJGPy+YeqjPSunOcPKbdRLREZhls6rdS599aiGgcOhB6fMR1r5ByufPPlSsUJbs3kqIEyC2DgUJajWx0mlultb+QyhSFHJFbwSSMJJ3NXTXldstwCOMVErtidS2xpW08NjG0siDg8ZpO/KKylZP1DQ9YfV55HH3RwDXPGTbNWrGr9pFpBsRR747mt0roJ3aGiZ7ltwx78VLdjOMU5X6lS8uA8uwbiAOSKlfEbOzK9/dpboiJwpcA56n2q3daoqMb7n5o/s13V54c8Q+LvC9hqRhm0PxvrFonzkBY0u5ePrtIrXD1G6Tv3PaqwjGEVboe2/BrxjceIbY3V1cRmaHUZoOufungn3xShK7OTEyUFaJ9E/Du6jM8JJDFk4yvb1FdEVY8itds5H4oSWlleyW+gaFBHLf3Uc+pFY8fapEBCyuO7BcAZB4FebPCUqmI9py+8z0cMqkYat26HnWoWN3dvNNDpyTgxMRHDhJF2/MSB3FTG3M7npxfJFal7Rzb3ly0aQPbK1sj4cYIbg+nQ/1roSlu3c5asalbRPZ/wBf5Hk/xW8URXWiSRG6VY4pJYpDnGCD3/KuNSTu2bVLRXKlqdd/wT11a1N94wWWyWDN1aRSRE5Ab7Pnj881zx5VmEvQqWHdLBRb3uz2xJLjwhrs/wDarJJYTn9zJ2UnsfSuybS2OKVRTXuvVbmZ4s05iXvtKdktZD+8AIxg9xWL5uRtLUqm1OSU9jJuNY8EfB3wPfeI/DF3d6hqF66mSZ50Ecch6gDPBr5KjjcdWzN0mrI9XGYShRw3Mnp0PGD4o1zxBFLceJbhnuLxHZlbkIuf8K+ppx5VZnjtJrQ5/wAe+A/DZ0SC+0BhZ3U0m3zITtLHPcd61lShJXHFWvoec+JLPx74cuZb0auPKwIljOBvXuWNVyKMdGRU99HH3MWqX+sSX94RM0PEZCghM9SDXO0rmcYnP6vo8k9/9hm1IkQnc0wPG6tYxbRajGK1OV1+K0m1F4Irl/tIXLSHow9KbT6hKV9EcF4iuNIjuJIZnxG4OHbjYwrCSTehm5Jbnl3ifxDYW88itIrSITwP4qXs5JamM5pPQ4XVdUur+QvMeSeFx2rWNJJ6mSU5kWhXa2t+YGYAOeTVziuTQ3wNRU61mbfifWRBp/kx8NIMYBrjvKMXI9mpzX0OWDbW2ntXlt892wcrLQVb+3U+UT83riuWVKSlcFVdRWIZpFJ3KfrWsWr2KUJWK904e2dPUGhJKqmPlkz+sq0g12C8WR9PhNsvLv5g3D8PpX31epKNRp7HyFZp1Glvc17azRhJNYXrum3dgLioS57NMmMZKOpaQeWIznzGxyXyCKtWi7MlX1uTaXfTalqBuUtmMFv8sJUck9zWM25O5pCKtdnQ28eJPMaVyc8B26UQV2ZTkmrWRqWyxC3M8p2qoy2a6XZQuzyqjlz2RBFczzKZmtiqs3yAnkj1rjhKb962h1ezgklfXqEzKDvZcexrWM0tzFQbe4kE80vyxJgbutaRlzfCjRw5fiZzfxKlaFgGBAC9RWjVmdGGTdPQ5SCWGRDPcW+4RRkqrA4LdiaxlJROu6iZk0fiLxFqn2KDd5SriZ0wFHtzXDJVZTv0LfJY4/xytxYXL29tFvByryuvIx6DvWE072RVFpq7ONvtUslmj0OzZvtRQ485MhSRyxzUXa91HS4ycXJ7Gp8GvAmiXPjg6i8ouotMjzKWiBEkzdCPXFdGHpw5+boZ1JVHTsdj470q813Uf7Js3TzJTlsR8Rr7+9Ks5Tk4xNKc4QhdnAfEDwPouk6a9hFIbi4l+Rmh/j/2R/jWNSnzRUWXGrKT0R5F498D6foHh94LCaOByhSYK3C7uo68muOrQhTp8tzaLcp3PJvFPiO98T+FNP0W2eC0nvr6Sy02ytjvYWkWPMlb0yePxFccXKUVGJqouFRnTa14Z0fR/B9pYX8ZDyoqQSltrqwyNvPQ5xx716E0oRSKhJp6nEfFLw9aPomoi6tRM32UxmRxz5u0ldwPQ4FclWKBXUz5A8Dabc6Rqt3caXcvBcyXLtcQkkLLzyMdjXA7qo7HqRilqze1bXdOcSWl9ZyPEg2tkENG3vXRKVoWY276I4TxPYRTXHnWc3mxnpJna/8Aj+dc8Vcqyic/dWRMpDtIqDpuwxB+orvo6I1vdXDTTtuQx5IOMkGvRopykmy1JtWOI+KtpFN47urlbdFc7cSLIDkY/SvKzBRjinLqYSpJSuz3X9gb4e3Wo+I5vF13A32aBflZl7+1fe+GuAq4jMJYiS91dT0Mtpe1xKl0PpDV/Fw0jWVFxMEDtiIbDub2r9vlJQk3J3XofTynCE7M9T8KWmmXmhJ4k8QwhHUAxQtwT781p7VydobGrm5L3VfU1F1KeTTZJ1A253Jz2ry5Tn9alTcdEk7/AH6FTWtkaEl4upaR/as8PmxeTsxj5Fb1JqcTi8PgqXNVlZGEEqMruRz+t+Pm0yxt28CmDWNQkJR7eQlYrUf3s45r8xx+N4j4jxjwuApuFHrLy8jgxEsRi5Onh9PMj0aHxjIG1Hxb4ukvrlskIPkihH93Ar7nhrhSlw8pOVWVST6y/wArs68vwUsIr1ZNsqanYReLNQRdSaJ4oyFEKjOTX1spuEdD1/a8tPlSG+NdYt/C+ktp1tJGJDjzCAQCOw9/pXNTvOd2Rq5Jswb28h0+3guZrpvOePdJEuFEantivQo+8tDdNuyRnXniRL2/aKztERvLCxktuC5HA9zVyjaDtuauFtzrPAPj258DfDD4jXuiFpNbu9MtNOs3RCzr527cxx/q0GAcnjiv48+kbgsVxTxnkHD0P4cp88vOzWhz1abr1acXtFt/M81sGs/COkWmhaY4keCFUhZuQGA5P49c1/X2X4F4DK44fD2ThGyvtorL5Hpuneau9DY+GmlN45+JPh3w9dAS/wBoazBE5c7QytIuQB2HX614HiLmdXJvDvMcbtOFGTuu/Kzlxk/q9GpUj9lNnX/Erx9r37QniT9qD4K3+haBbN8M2sJNAi0S3WKZ7dIwxkucEmR8kgNgYGBX8JcHZfheHMDw1xJRk28ROSqc0rr3paaHz2VYpYWNOnKbftG93fVpPTtqfEGqeKFW0S01yNA0qjyNy/I2Ofzr/QvDYmKgrvfbsd1VckrSOB8YaTP4r1AxwAWyJxGkceCR1ZuOgrsc4yIqc1S1jhPF/imezS8iktndIlXbvPHy8Aj1xWFSpGKOSspRVzjx4ltr2KK61FRJbxQsYpFPzNITyfrz+FcUaic/IijLrLYoeKfFkIvbqHz4obxAkkUEZ+VQM/NnucVjiKnNLl2M6+I10OHs9UXU/F4WKcOpk82aUngFuMn8K4aShUr2T0R4kKyxOMsuh0F1ZWN/JPci8eOCCJIsMf8AVxMcbwfXqce9d9Wzi0j3XTjOkZ9hb2lm90qyss+1trbv4kG7cfqOlYrlirHJUjGjflOanE1oGiurgNFI4mbuIXz3+o/nXkVYtVGjyVGoptN6MqamsFvcTXOxFXcPKfPGcj+YFCaorU7JU4RTbRV+2QQyhoN6qZQ1tIj4KMvbNYfWk24W0Z5bnyV24m+vxd8Uaxoc2i+ItVOo2k6LHcQSjL8DCurHkEYFeTicuwsn7ZaO52PMKtSg4VHdPoctM89uGSPDoxxHPnG4eh5/zitsPFKLuebGFWn73Qcl2pzIsilguS5PX25qakFLqb1KsqiTj0Pa/DdvpXwt/ZD1C3ubyAeKvirIJY7VnAe10K0kIViD/wA97gHA4JWH3r8czKtiM843p8sf9nwn2v5qkt//AAFfmckI1E7SW6ueXaJeqsBhMWwgEMB0U+9fsODSgufvqejhH7lrHYfs638tkPErmQBlltiGX6sK+QzetJcWYNN68sxYapCNeUfM+s/gfrX7ROv/AGbV/wBmqaxvNe0xlkfR70gfaQvPynqDXuYv2sqTS0NMdXgqbaR+xP7NfxK8ZfFH4G6J4q+JHhWXRfEBtFTVtMuCN0MoGGGR1Ge9fIYmnCnPQ+IqRakzudCRQ7XEyDG75ciuTdhzWibojkuZA8fAHXFbJ2ISctS1Jqi6TZvfXcgWGFSWZj2qZzSVxOBT+GnxP0f4o21xdaM4lt4pWjEingkHBrClWVZXRrycu61R2dtNp+lWpEQC45LGq0itjKd5O6YlpqkWoxs9u+4Zx04pqV0U276ssiT7EgcnqOaLJoqyRUnvw0h2gZPUAdKnqN6mXqt87X8UCw5jRw0kj9Bz0rRRbWgN9j81/AN/Pp/7RXxl06NzGkfxR1MCRByiysGz6Y+b9a68HQjG9+56CdWVGM+tj0/4N6hpWmeNvGfhnTL8XMGneIwsd0zcsHhU5HbrU1HFVHFdBeynKnGU1a59RfDOfzBFCABlF2+qisveepxVlGKOS8X+I7DxBc3Wp2jTyJDezWccs0e0yCIlGcdPl3A4OOcZFc8oyWrOyil7JWZw2nSXH7y8eYAhiihTggdvzFVGMdzqcWoli9uZ5JJok8+4mS1JREYAiNFy3zHHIGMDrxx0ranCU2+Xo/I56tXDwtRmmlO+qT/NbPXTVPtseZeO9A0mysB4itp0uItSma5+zEkeW65DCRCMjJwR7ZrzsNKVbEVIzjy8r+89LE0qVOnFKV2/wOm/YFtm1Sy+IJnZY7l9btjbsuB8ywDA/LiojSi8ZORjiK1qMILoe8w6hBr9hL4c1+HaSCJVZeQexFVKSWhxu25x0Wo6l4M1FvCfie4EsEpIsblvusnoe2aypwbndv8Ar8i3G8Lo5Lxr8MvAdtqMutzy3MU8o3ACYmIsOjFelJ4elGpz21MJOtOPLfQ8o8Walq3hq1ubzXNNaNHJSK9hGUKZ6/7NXJcu5cVyK5laF4m0nxfbDUNI1WO6trKMCORGzl+/A6U4zi1ZMxlVtIx/iBa2OpWX9jJdFxJHvnkLfdP1qHdvcnnb3PK/EPgvU9Lae10nVJEjG1kTeTvz3qowi9bmqmzznWNM8X28d1M2qu+XxKm3tRzSg7IJtTOC1+y8cpem6/tJ96D5ABwy1M3KWphOJxWu2Gt3cMtze37M8hAkUHioTs9THllc4zWNLFtIzM+Tzv3NyDT53IFT97U5m9uIVkKRNuZehBraEWtzZ26GfcH7MDMzfMORzWt9Dgb5J3RfmvWvbSKWVskLjrXn45PlcUe7hputBNlCSQsSVNeQptROtwjE87+LnjbUfB91DPZsSCeVzXsZVh6eNUozPAzbM54JrkRY8A/GHTfEgFreSBJsY2k1WPymWGhzQ1R05Tm0cZ7stzsgq3WDG2VYda+arVJRvc9ty5Xc/rG1bwToPivUba41kXZNmd8SwXjxoxx/EFPzfjX6DiMPSr1nKZ8kqkqUm11N6Gw0/TrYPGxiUY/dZP3RTtGEbIzUpTVyD7R4l1m5RtFvbaG1DEXkc8JLsuONjZ4/GoftPskxhC95HQ6Yw01UtlYgr0Hrx1otcmbi7I1rZ5X5ON27nC9quOhEopIv6hdMbdLKI8nBkJ6Y9KVecpRUEcFKleq5vboJNeuArHC4HT1oc2lY3hRiroiv7pwihRhmHGTWUpsdKjHmfYn043DRglcDvmumjKpbRHPiOSMrXOW8dzSXVxIhXKquOR0rVyu9Tuox5KCscTf3v9mSSIlwQXGY1PQfhXPNqLNYQcrOSMPVPFMlpaS6fFe8uS0h2gZP19K5G5NPU6VHXY5TSdWm8671PWLoTGOPbbrIo2qe/FRRVpNsqUVJpLRFK50QeIJDLp0Ku7Lh1SPaxz1OewFOSckzSU4wjY6n4O6CNF0fU54f3gtSFjO0/KxzkZ9ff3rWlTtSvcxqyc5pIzPEXie/tJHs45gHugWlmAwFQds/0rGU1DTqXGmoxuzzX4h+Ozpk4LSkXMiFLeOM/Mq45OO1cdWraVludVJqWyPBPjn8Tri00W4vJbgpa2sZeXLYyB1JP6VyVJXvKR1U5JK1jzT9mzT59XVPiJdAmS4keSMSgnyk3Bti56ZHJxWeFSUuc2cdW2e0fGzUNJm8PpNYXZJuoVm3kFvLbdx05xwRx0rsxcrQ0MqUOaoeP+OPFGpatoMxvLgiLje55boRhgfvL2/GuRTco2NPZ3lofNsyXS69c2twiqY5N684LJnhvwrkfKpvU67vl1M/Xtcur3UGjku0yY8eepyJB6N/jSfvF0/huzkNTvbgXEllBb7nJyx3Y3e/1qI3T0N4r2hlMrHdv+WTbnZuGT/jXo029ik7KzLWmRGSdXdCrBs4Hau+m43T1NEklci8TfDe+1/4mWNtZxAJqcStNsYNjHBPPSvOq4Sti82jQjtK3QzkpSmktbn2J8J9E0DwR4StPDWkQrHHGo8x8cyPX9CcOUsJluEhhqS9X5n0GAoqilbc6+18GWWpavb6/qVuHCPlI8A8/SvrrQlF3PXnTjJqTN7xVo93riB7C4uF3MAsYPAA7YFYwkqcrLY6ZqLguVWOhuJRp3hyOyuQMiHBG07mP0rjnJTqt9CFHllzHH+NfiukWn2vww8Oam7yTHddQWqZcD3/ALor4THSrZ1mqwcY/u1uzxK37/Fezgm3+BZ0PTk8OaYloGEcwG5wZM/ma/QsDgqWAw0adNaI96jRVGCSXqYfxX8eT+EPDUbaba/aby8mWO3gjBJyT1ra0ZzSsKs5U9UbHhW21Gw0qJLmRxdTIGmeRjiPIyeaqpOLRtJJannXxw+IM/hO8j1RdPn1RYZhDZWVqhJnmJwCfYdc14mZZpDA+zppe9LoebmGJqUEnFXb6G8j6nqOkxz6woS4+zq8wfpGSM49yK+iw6tCy3aPXoqUaMXJGdcarY2JijspcTNxGVXLE/3iO3tWsYSjJXNpTjVgnY2vAWl2mhfArx18SNX8TLbXGs+LLHTbW0Sf95PHDAzsHGDhMt04zX8t8U4yrmX0kcswcYXhQozk/K7seb7epLN40YxdrXv0OIl1tQZZ4ovnl6TOu4kf7K9q/q6nFOV0e/7Pnud5+zG9uf2hvA2nSQJJLLrsUkgcguxBzyMjpX5X4+Yl4XwhzW27pNfeeXmE5U8vru/RnMfs9/EXT9O/4LJfGj4RXmnWTxfEPTNS0+61A3OX3xxRvGhUDAwFIAxnvk1/K2AymX/EruW5w4JywtWnO7ve3PZ+h87KlKphKc4rWm4y9dkfOnxJ8OWYW/8ACOqyRNJZX8kOyOUMflYjII+ma/tPJcdh82yLD4qk7xnCLVvNH02YUOWs13PItQ1bWfC11NDPMZLST5Dfbf3ir0w2fbvXpUZTS948fEN4a6ucn4iuNI1mS7uhGjWyjAYTbti+49SazqTUupwuqpR1PO9Ukv8ASbOcQ2asjROY4HHCknggdu1ZuKirkNuxxF/ql6Y5JJrITXcoVJ3PXb/dFcOIqSSslqebVnNvQo3EUUge2s5PsisdwkB5f/Z965qMfe00MlThD4NLm9BpWpWFvHJLqeIDBhQ2CG9iPX+VdU/adzvoSq8vxGTqGk6qzzNJqLhpFBuGB4Uj7ozXDV572TOfEUatTaW5Vv8ASL2e5klvL7MkcSgBejL6n1FcrhJTu5XM1hXDWUtURalpCSQyWcku5dqlXDZEn/161xTXJysqcozpuDM++sbRyLfzEGUGSP4WHTI9a82VpK0TCpTouDS0ZTVnVDGIQsyfMSR/rB6gVzudRp855lBy5rSWq/EYFkvSbmB9oP30Tpj1pUn7TWL0OucJVIXjp5FqG2hgtVMiEKQB0yW5xge56VGLaoUG27JLc541IUleWiPTFiufE1r8Sh460IjxFoml6aun26NhdJtIdq+QMdCFI3D1znnNflUZPC4jAzw0v3NSc3Jv7Tez/wAjHB4hYqWJn1VvkuxwOjaisqkTuGDAh379OOa/WcK+a8WXh8RNNxR03wa1drNvEiMoC4tTuDdPnYc8818zndOnT4lwUnv735GOFp1fr0uZnvXwE+LV58J/HVl4rW8uIrMOvnyWdyY3xnnnt9a+grQVem4I9WpS9rNwklY/VL9j+y+LXxJ8Z6f8WfCHxUvrzwbPaYm0m6dJcPxg7xz618bmuAnSq3bPKxtGlhYOEo6n2PFKFRVU4xgYxg1510j5/luzTTUYoYwWJztGc9qm91qLlaK+safD4k0mfSbqZhHOhDHOOKLRe5rF2ewz4VeBNB+FfhpfD/h+JUiDEgL6k5JpQhGmmoiqz5pbHSXsi31qYJZtu4euKHFvRhBJPYs+HYLDwzozyXFwCq/MWc0StTV7kVVGo7WK+k+L7bxMrXFswZdxClT1xU0ZxnFyRfLJblme6t4LhY/vu/B46USavYq2hn+IJpYWEDuCMg4U1pKUoxshxVkfnAJrew/a7+OOmqEMbeOjOB/fD2kDgcVvgXVnKXN3PTjOlUw0JQd1ub3wdkgg+KPjMyW01jDPf2lwjCNv3swhI8oknkDA5A6EVrVpfv25PQWIqtxhF7WPrz4P6jfz6FLf3yr50VsSF9McDvxik5wjBs8qopOqkjnfG13Le3jNPIQduRxgHI9q4W3J3Z6dKKirM5CzBN0cMowwyAOuBTg7M3laUNBdRt2ubIyNbj52P3umPWlKa5Wwpy5fdZ5v8TJZYtLZbiUozozKM/fGcd/ahTikwnF6Ski/+xvf3OlaB47uLBCrQa3aScZ6GFa4YScq9RrQyqQclFn0LqDP4y8Np4o8OupvoIx58K8F629nzNMx5JRdnsc9NeJ4+0R9E1q22SocDecPEf7wNXotzW/LFcqOGju9S03X5PBnj2/RlIIsLpj8sg9/ek7ydmZ1Xy6ox/Fs1tortZ6rbfaNMzgOo3Lj39q53Lk0aJcVUSuebeOPgl8MtbsDd+BNYk0W6u2IaTT59gZj3Kjg01SpSVzKbi9GjynxR8Gvjn8P2n/4RzxPDr1oBhkvchs4yPmHX8qznBr4Tkc+aTS0sec614/+KNvDJFrHgq6guYnBklDAqcf3a0pJ9Tqimkctf/Gq6zcPqulzwLKMM7QnqPwpzcYszcmtDide+N2nXz+ed0LwDam+IhZKzvKTsZ+0bkef+LPiBcancyT6GgDEfOoXgH0qlTUd2Kc5N2RyOo3WqaoWe8mIZ+GVe1UlCPQUYzluZF1Els6xqpLkEHPXNat+5c1domVqLSvIY5CQexz0qVtc55U7y0Lmk+ZNYGMn7vSuDFyco3R6GDqRj7pC8gRyK8lKXIelN80TyX9oLZcTwRjrn0r3siTjKTZ8fn8Jc0VY87Fhf6JImp27kY5BFfQurCrF0zz6VKvhEqsD1f4QfFGLVol0rU5gsoIAJPWvk84yepG86ex9HQzenWSi3qf2SabbC1RhIrZYbkKkZz6V9ZJLmZ5uJb9o/UkuTcyT73Ifeu0byDiuaUVIUG1sWppDpVisWEWSTBzGvOPpWsY2VmO8ZLQn0yTfsE0o3EjnHJ9qTVhWSdmb1lOIkMjcBckhuf1pRundkTSlLlW4QXUcitMU4bJb5u1Q5JaiqU3FpII763mk8tRkbsAk1k6iehXspxjdjbq5JvUgjBIA5OOKy3nZFQgvZOTNSFtsG8vjHc16UJOMDyJrmqHIeJTG99JK64KrwprK+lz2IpqlE5PX9Ls7+yaV5lilIxH853KOe1RKMZfEa05Nas8u1qSWC++xTTFCnIcjl/rmuZySTibJSqO6MK9u0tBLJbwy5YEEBgxdvXHHFY3cZGsrSaXQb4f8d614f8Ny2GpX6R39zIzzSswykfpzT9vCEPeerD2EXO9tjudJ8XaXZ/CyGKzlaNXZprlpJMNITxz6/SrU5SppJmVrV7o4DUPEtjrtzLc3cjN9hVS0TNhQT91B68/zrnqyXNq9jSonZRR4x8UtXkg1ee+u1Mk0zFHkU52dMIv58ntXnOT59TqguSGh82ftDX9/48k/sazRotKjkSOcA4+0sT936D9a5ak5VXboddFRUuZ7nafBCzTQPAkGnPNtlmtfNtee6ghh+QFdVFqNOx0zcampc8UXurxao890jG3SBQYV+6jZHzL7GlWU5NERlFR0RyXxBEJ0O8vhJtjuIfNhRe3PP447Vy1G4RHTdtz5n+K2q3VpPHf6VdKZbZwELZCyRsOhrik23c6HH3Tk5pr5oGnulwz8goMjHf8AH2rRORdON0Unh1GaX7ZazJIrD7rHBX862ppM6tIxIZ/LRv38S7tvUN0rup2uYfFIsaNK3nD1DcZ7/jXfTguZM6Iw5mevfAnx9FN4lvfhzrvhvT28yOOex1OWD9/HjIZQ47H0Ne3lee4bKMd7HE0041LKMmtU/UqjPlxPKe8aLDY6fZLftaN5Yb9xu6MfWv0vKEo13VlJci217n0+Hpubumde2qx2tmi/Kk4j3MVHQelfXqfvpLS518/NotkVvDGr6zqs26K+AQMSdpI2/U1tVUYxTTuaRkop3Rs2+pz/AGiSXULjzHUbQG6H1rlkrQdkKcm2omd5Oh6NdS6tZ6dDFLKvzTbcFvxrTDUIR1hHVmlOEab5krMgu9TsL2QMZGdEG55SuB9Peu3llGOprz2SsUob6113VmvEtllSzH7osnesJ6GiuJqer3t1IljNKTLK+GhUdR7ntW1OMPZ3ZHNy6nn2i6Vr6fFLUfGXjDVo2s7WIRaFpir8ob+KQ46nt+FeHTyqdfNXiquqWxwYXCYr+0JV6r93oaWu6zNNHKJpm8xjlYgeXPqfQV9JKL5bns87lIyLk2ttbtrGoam0cFuQbuVDlpT/AM804/D8ac8RKUVZakVVGnETTtY8H6n+zrZ3Ol+J7q91fXfiDdv9ikfbFZwwwhFQLuwzHdkntnpX8rZBiszzX6RWMc6aVKhQUb9W5O/yOCjXrvM9V7ttCC0l07S5WIlWW9C/vMnKjHqfQfrX9a0oU4u6Wtlc968ou93Y7X9lbUvElr+0h4Z1XwnYrf6t9qd7W1mbajnYw2gkHaPfH4V+Q+P1GjPwozJTk0pR31dtlov0+ZzYqlhMRhZwxUuWnbVrp+Vz5w+JHxEg+Af/AAV3Xx7BpsulyeHvGFtc65ZzSbg/nELcMzNy25XbqT0z3xXwHg9lUeOfoyV8jg+dzpVOXTrG7j+R5uJqKtH2NF3jKFlbS+mjOn/4KFeF7P4cftxeKJJtYs54dYaPULWO0hEUdqsqq3lnBILkFXPTh1PQiu/6OHEP9teHNHCYqPLXwrdOS8k7X/C3yMqWMp4zAU5Qldw9yet2pJJ2fZ2adnrZp7M8a8Sar4P1e4eyuraKZZPlibaM8dSa/fJe9J2fu9NAnCFSOp4r46+GutW9/LP4XmH2KOQvJbRsP3jHkDA/OvPqYRt80WeZUwk41Lp6HEan4ouleWx1W2SG5kIcbhkADg8/QUozcfdkY1Z2dpGQpsLtp47SGNVWP5JQAQB3A9TXDUjzyuc9SKktEZ9zoVle3sc7TKqQR740PG0+rDsKujCFzKEadRpdUW9Rt3a2htpJ2UFlIfBBZD1OOwqMQ+iZ0OhOKV+pDqzQWhd4SUZkDIM5DqCfmP4fzrllAcoNRuzE8QgwSia3Zo4lC/OpyShx1/GsXBKV2eXiatpK70Mu9LRucMUMiGTZnK5ByCfTipq04y3E0krorvHBdzGUny5DGCmTnp39zXGowjN2OPnU61upVSK4BKXB5jXci55HPUVnV5Zx1NVCU1eXQV7lixl2HpgnOMe9YQlGDdhPEpPQ7j9nnTIZvFF/8V/E+nrNoHgG0GpXMUn3Lq+Y7LK254O6XDkf3I2r8943zStXpQyvDStUrvl06R+0/u09WeFVnUxGJcX8Mdfn0JfgfNqHiDxZ4sh1K8mluvEHh2/mvZScvNJgyknJ7msOJ6NPLcpwrpq0aU4L9DfK6apV5xX2k7nGaJbKLUG4H7s8Ag9PrX2+FxU56vY7KcY05cxp+GUnFh4jvbTUvsr21tbuyhcrMA/Kkge9eHmyqVeI8GpK++vbQwhXlLFyXY7v4V+OLTxbaHQNUKASKFBPJ/WvsPZKELo9bDOVde7ufan/AASZ/ak+Lf7PHxbk+Gepa5Z3PhC7nRJLa5ucSwlzhXQdxmvms6oVa8VNdDHOIQ9h7+6P2Q03Uo9Rjjv4nBjdAyH2NfLqPc+P5n0H3l8TMRGxPHrQ1oXF3Ra017iRMzTbRj7oqbalJpM0rZ58hcFVPbPWtNLDkm0XftigrDHjgdRzSe5Ck0RaxFPdQfZ5pGaJuCmeCKyqJt2ZrpuXNDg07SLMRW9qqDb26URioqyQTm72I7rWEM21FAYr94nrSe4km0ZesXdw9yGkYBdvb61o02jW+mh+evjFGs/22fjKqYH2jxHZOgJ7vp8GP1Felgly83qd1Cj/ALPG52k+ozQ+NNL8RXd3czvrMhN+0gIEVxGu0KMcEFRmtMZFyV0OFOnGna2x9K/Da6f/AIRK9DlpD9k3M4GCFLA/kP5Vw1IRjByZi4J1FYyfFcWoWklvLcwoFvbcTWrbwcoSVB68ZNcbnG1yoyUk7dDm9QtdQsZ7i0jSJbqKZVZZj8u0N83I77c496uDbnZla1KSlB7kWtxWUoiu0ilQ2yyi12SHG18Z3IeGIwcE9MmtISVOk4SV7spU5tt31Z5z8W9G8RSWi6hY6E81sls0izQHeqRBgrM5GdnJHX1HrXPVjOC90pyoyaTdpW+fyOr/AOCflvY3cfj6yvlXyrjUbVCScnPkDk151CfPiqkTXEVYxowS3O6XxBqPwf8AiJH4Z1NjHp+oPttrovwWJ6HPArvquMFHlXr6nKpwlHUf8ZNE8XaHMvj3wwVmgVv9JgQ5Lp/eHvTcfaQTTMFUlNtW9DI16Hwf8T/h5/xMLlC0oxBOhHmQP7dxg1EZJaSKvJo8f17xJ4l+Ejw+HPi3OLnSp322WqoDtK9ll4wDRVilFS3uZOlJvQreJ/hjpXiLw4fEHg/X2tmjffbiKbK5PfFZ8sHGyYppxWp5X4q1n4/eCbq4stUtDd2aKJGmiU5IxXO+aDOZ2ucWvx3tdUuhca/pbxRyRmNhLCQNwq4ykaJNJNo4XVfGvg/xJNc2KGHzYn4UqMdeaGnfUJTRwfikeDrdmdraCWHnMfG5DRz2MmlJnB6m3hOzkcWgTyn5Y55B9Kzvzamiajscdrmp6VJdSJYRksBgNt4raFluZuq7mEfNuHa8uE5A9Kuc9LISblqZdysjgylfvHjFRZvQuCJtJl2AfL1BBrOVLmhYmNT2dQqXT5uWWvJrQdK57UJuUU0eVfGxozqcCE8k17OTTnKEj5vPKt6kUzNfRo7vTAjKMFfSuhVGqmhacXhkjDg8M6lp+orcaZKUIPBBxXpRxtF0HCqeDLBVlW5qZ/bDbR3c9qbtFACdGc9quo25M9avd1HbuO0NNSXVGvJnYRr83lhePrWVOMlMTaVOw+6ubi/1Bpln4JwSqZFaXTZFPmirGno5cbfLKkBv4V7+9JWlsdDbUdjTu711UW8pLqoy6rj5j6VE5WdmYU4WnzDftgu4i1vaBf7wL9qyqS5tjp9lyv3pE+lzRISqwZAXk4xzWSuuhnXjLuSG7a5mVfL+6M9KtXk9ifZ8kHqaRuI/siq67Tj5U7mu5uPJY8uNOXtXY43VZyb6VZJgqkHCv3rKyR6ig7I53WJ9Pil8+dG2MpGVOCB61jUsPmblaJyfivwhpHjWza30G2dpEQ7irEj6k1yVVzxtE6IOVJ2Z5Tc3Xij4dauttqMUUwLbBLJFnYCaiClD4jrUYzRtNoGi3Ok3OtauEkugmFjMY3ck8kAcE9hQ6dL4pGVSUubl2sc7rMPiLwl4YnTXLBdm0y2sKkgopHG4etZqpKnBtozTjKWjPPPh942W80G7l121ubRmumESSEZZRk72OeP/AK9c0armndWudUnd2toedeOdYm1HUbixt5pZ5WJ+WNchAe49h+ua5qsYrQ7KdJRjc8u+JZTw/awwQ5KwKHlSZxmSY8AZ4z17dK55KUVZGiXUs/DLT7uLwcIp9Vle6tySs2MmJs5IGOnatcPScI3bLs5S1LvjDxNruoWhvLm13Ep8k8ZyJNvXI9D3or1GEVGLsjyfXPG/iLVNCurr7Cn2aJdjQxTbymD1x1Fcrs43ZryxZ478QLyTVmeWGJJIJUUEIeVxxnHrSXIzopRd9TBtXltbV7c7EfHyjqHHqQeho5Y3Nm9bIrXbSEIxUCVuoUYDfStI2CV7WM7Ub427tEy5lPVH5C110e4o6bE+gzTJdAOw2sM8Pmu2lUfPynVBrqe2fAf4NeKviX8QRe+Gr77I+n6RPcyySkAOI4y+3J6kjj8a7s1y3+0+Gq/s03UgnKKW94psKVOVapPkV5Wue/w/tGfDH9orQbW68AW1nYDQLBdPm0uKHy5lmj4kkkU8kls8+mMV6nhFndWrlKy7H6V1qut16mnDWMp1oSU9Kjb0bGT6jqdzrUNjBb5UwhWk21+40+d1Euh9TB8jN+0vNO0Gye1QbWGC4IxXXKEpy0OhJtanK+OPjD4c8NX6wTShppOILKLl3J9q5JzhF8hy168ac7dQspNW8XC21LWJprG0TDJbjgn612UXLD8rpnoK8qabLF/fSXcy6TpTMTghYkXPHqfSuiFRvWW5M4pTTuP0iabR7KaKeZ1ZRhSV53VlXlztFxkovU5zR9T1PxLqF1dwyg+WSpZiRx9e9dCcYU7BUVpX6FK/1JD4hNrFdfaY0XEyJ1Zuyg+lYyqWg2uhpGcpbIZe3Onw6kza0TboEIaPqznHTFU6jlTumHvRdzlvGurtL4bmuLqVLRFQtBAOMgHqwHf60RioJzT6G2IqQq0/e0sM0m8u/BXwc8LaPqmlW8N5HZ3upo8EgeS5S5nOx8jpwnSv5x8KqEsV4g8Q5wv3keeMFbf3VdpX89DycAnVq86baV/vKVlqMaFZlkMl3Iv73d0QdhX9RxhCM4yW7Wp7sOecLydkj039lLXfDXg79pvwpq3jnxc2m6fZvNc3N8suAwVC20kHhT07da/IPpE/WX4S4+OHjzSaSSXm7HPiqWKxOFq0sNDmlJNWPkX9tLVb/wAS/wDBRfx1dWd1ut7wxXEUs4KeWjoCrYxyenBPQ5ya+a+iTi54Dwyw2HSTalKMvK619fwPOqOeDxNKm9JKMT6P/wCChlzq/wC0J+wz8L/2rTNaRnQoYtP1uWwGJCij7NL5g3YyJFRyQTw3TufwrgbE/wDELvpFZpw5Vk1SxMnJJ7Lm1X5s6ZYWlHCVqcZPR+0+T3Piq/sPEPhsxavDbx32kmE7JoG+ZFPXgdT/AI1/c1ZOglyr3VseSnObvHVDrfxtorW0qeHbkSoFcsZQAUBAB4/vHpRSmpQujpnKnOCdzl/GHhXw54jhlu3soYRHbYk2dWc/dQe/rXFUjCUrSOCrRjfU8v1L4W69ZXF19g1N4YoF3th/lX/ZHvXi4jDOU7wlY8vEYCdR2hNowtO0TxZY313cee8hmAK+d94D146VyRjiaV7O5w0MLicDKTcr37jYvFOpKJFu9MlZUBjlndSy7c9q5lXxM5e9FlU8fUrNpxenUp33i2TVfMdgoLJ5a7wRsUenpmtXXk1sbvGOcOUz9V8S3V6wLWTH9yFEfTGOQfzrmliZ1JbHk4jEVKs9IlJjq99KHlGF8rYQTyPw71NWtUbLhOrU0G3mnavcNDmQpKkeUZP4hXK4Tlrcmtg6zamnqSpamdWlkJE4PKjvWbvUVnozSC+sK0nZof5ZiCs8LPKzBEjTkyOThQB3JJArDFVI4em5yeyMa9Sjhqd5bnp/xsjX4R+ENL/Zo0+RUvtMk/tLx1MP+W2sSqP9HPqttFtixz85lI61+e8PUZ5rmNXOKv2vdp36RXX/ALeevpY86EXCFlvu33f/AADD/ZgU3/x207SJEdvtmn30JAU85t3/ACFdnHHucOVG18LhL/yZCwLk81jTSve/5HKpM0NttztMcpVlz3BNfW5dSU6FOd+if4Ho4i9OmaHgy8TSrmLXViEkN00kV1E2MSoDgr164rKrCGPxk3HSVPVM5sBUi/fa30FuIrPwF8QVfTpHNndgTWRm4IU9vw6V7GEdask6m7LjXqYXGcltGfSfwnOleJr/AEvV5rtY7+0njl0+5i7lWB2HnnNcmYU2qUoHfXhKvB3P3S+CXii61f4U6Fqt4rLNLYRlg3HO0V8BqnZo+WlQdJ8p1A1HbiVzyW609UHKaOn6jI7NISMg8Y6U1ZESi1qjUstQRpBGJd0mOcniiLuy0nyj01EW1yZJSOB603KxnJXF/t2O8lCowwByqjNRLXU0gna7LjXLIioxAXHSqViZNuRXilso7gzyuzFuFXP3azaNVblsUdW1VWdtx4C4DHjvWjl7o4wcVqfBfxnijs/23/iQnnBGu5NJnGSOT9ijA/8AQa7svbnKa80dkajqUopdDc+IeqSJoGlX1siwvaalBKGY4yHOCN2enWvTrxhGgdOFw0qsuVs+nf2cJIvE+nXFnqd5AtrHYzPdNOcAIFyo25BbJwMA14mMnL6u3E8zEVfq7t8Tv0K3xFu59ZnS/wBd0uC31KR4MyW0GIjEsRjVgOApCjoB39hnnoxc6Kc3f/I6I06dC6graXfm2cvObq3uHtIWMsRBdmV85Zc8/kTWsoqErJmmHqSqUuVLzt/XYpeJbs2+kz6lDG85it2k2Lkl8ckADqaEueolJ6PqaQg+bR6nH+MrW4tbHW7XT9Qumtb9zstWGwmIKGYui/7QzgngAVjOMI42caDbX+W5koVK2Hg60VzK479h3X47TTvHcowmNbt8KeufIXrXBR5FiKltzavh0qcGe0eONI074v8AgybTLp1NzEN9rNjBRxyOfrXZzRa1Vzl9kov1OS+EHxTvdfs7r4f+MLkLrWiqYri3PAmToHAPUEVzKo6cuVl1IKC0OF+LHgfxv4D8XW3jrwCGubBJDJqWig8MOpKehpVE/iREqkXTIPEPxm+F/wAYLOPwRq0UTm6XbcWFwuGh7EYPSkqinozmVZnkHxH/AGfPij8M9MfU/gf8QJm01nP/ABJ7xt4QZ/hPUCqp0FF6PQhyurs4zWf2lviPo9vJo3j7w8yPHbiJ3C5B96K3PfYzd27o5aTVdA13TDc6dHbyF23SKwBKj2pQV9S4q61OJ8beE/DVyzPplmsbImWKjlqmbsxvkZw2q+DNIk3T3Mg8xhzufGPrUtNrQh8qZxXiQ+CtFG+6uYSxGWjRgSTUqnUS2HOUUjir26i1KQzWsIit0blsYNdEKWilc5tZdCpGh1BmWEYiUHBB61NSEos2SSVigsIlgaNgA0bHirUZN3LgrIqwAxSFEXgN0qpK0jnavUuVNSlC3pIGB15rxsfC1mezRl7p5F8V7mO+8UQwRtnaea9bKISjhpM+Zzr3sVFFsAQ2scYXnHSrp025tnVGP7tIt2FpG0ZZ4wcjPSuGupc1rndhaEJRuz+x1pknXy5Z34wQsfIr6WpD947nlyTU22alrIYdPa7e2dCifKD0Ip2sjmqTU5WMW0DzXTSl518w/u0jfisbWdzopxUVdnUaM08VrmdQ4VclVJ4PvTSa1Co3eyIJLnzBLN5jtg4ITpj0rJ2kiqaukWbO4uZrXyrewMSMfmYpklR/n9awcpXslob8tFVOdvU0LNmtrXzrhQTjO3Iq0uRanPXtOpaI+0vLq5iJEfDZ2rH1FWpTcdBzhCD1ZM1y8REM0wXA9cmqjJvRmfs4vVI5zxGkI1NrwIJCgBEbnGDVttmruopHI+I2h1jelwyqXUgBH+6PpWc7LcmKcZXSMjRNWvImOheGY1wPlnfGD36mojKM4+6dDi370jJ8eeGdP1OJ7ae7ea4aP5l3gIp9c03CC0bCE5djzK3XXvhx4gtzrql9FFwJZXU7ioHTPqK4pxVOV3sFSDqU7rcveN/iFZeJ7ea7hkWaO6BEbgggDnDH2ArOpLnWmxdKmkrtHjPjS5vToV40NvmOCIRWxHG+Zj984HPT2rhqTnyto2ULSWp4B4o8cfFmGa507TNLtYpIo2M1wzsu7HI5HJPt+FccJVpq7O+Kp2V2eY6foXxV8fePotT8WeIS0MJPkW8cexEPbI7n61ivazqq70OhJTR6loF/4g8N2dxYWyJJFcxkpLu2mGZeoP1r0EmohOS2RmeLtc17UtEB+1xW91CMT26dVf8Avj2Nc1VNhJQUlY8v1LRyfMvLedorlmxOI+/ufUVi4Nm0Umclrunx6dbyaldQxPan5peCQp9ahpJmyqKKPP8AV9Z0vVnkt9EleYq5/epGRtGenI5pqDetyoe+rxRlTNrUkcitrSn5ujWxG0Dt/wDXrVO2lh8km9WUpJJEIeX5txw3U7j6100Ggvy7FzR9RtdKvob29UyQxzK00an5iueQMjvXo0YKWiZooyldJ2PoX4O+LZ7/AFS6n8P+IEWzmuG/s+3kYrJHAekbY64AA96+r4TweLo15+1mpRlp56nZhMLKNTmkztPD3wi8DaR8SdR+LGiaMYNd1iNY7+WCUrDJtGASg+XPvjNfYZNwXkmV5l9couXNrZX0V97GmBynAYTFyrxWrO2trxoF2xO7yKfm8sbi35dBX37nBJO9kfR04uettDN8R6hcecYGvwqzDCJn7p967IVXZpGvPFe6U/C3gDwxp+qzeIrh11O/OCskq58segPauKFJc7lIqFKnCfM1qaWuapHDKwExjwuTnnnsAK6VFs0clN6OxS8OzX9mk17LOEeTnzDne1VUULJIEmVrjxLLq+oS6PZy7ljU+a6nJH1pypxhH3i6cG5FLQ/FWlz6de6bZIirEzCSYnqwrGUlN6dCqk1yuNjifhs/i7UNQ1bxP4l2WdrHdbNMVR8zD++fXvXLh41nOUpu6OfCwrWlOe3Q29a1uGzR73yUa6YExzTnJA9ea9LD0HVvE6KtSVlI4fUtN8TfE+90zwF4eVUk1vUEs3uXfAG9xljk84FeRn2Y0sjySvjJ7QhJ/gS7Vmp223Lut614Atddk0Lw7rNzKdFu5tG1WOcl1RoZWELR46IYyCeOua/H/Ar6x/ZmLxNWKUa9T2ia39625WHf7qXKrK5j3GspZXFxcq2IRuKoBgzt2HfAr+hasZt3pvRdH1/y/E78PKKjafU9N/Yz1G9g/an8PXd14b0/XZri0uTLpmpFUjij8v72T1I6gY5r8c+khHk8GcwnzcrfLr21XYcYfWIzp87p6brf+mfJH7Quuah8Wf8AgpN4+utVvbTQPD9lJDDf3t7YkrarjIcRrkyN1IHfivjvo1062T+H1FYePtG05b9T5jHTxcc+lCPvRpwir93ufXn7JWi/Dj9oX9iL4rfAeDW9W1e28JTPe6YbrT2tZLqK8h8s7YFcgqJItwDEcn1r8h+k3QzLI/EbKOJKVNQnXSjJ9nCSe/p1PdyvNZLFRo8t41k4NtLTt+bPgLwJrmt6LZ3T6vrdxPbaCnkX+kpagSK4fazHBPyjAzX9k5BmVLNMno4+EnKMoRbVtLta9Xf1/A+TpzqYTHVaKu+R2ZDqmj+D/GiN4l8N6glneu37nyWyHye69vxr1YzpV0uXRnoWpYpc9M5vXr3xJ4Mt0tdbstlqlxua+2Z3nu1efi5ypR7nLiq8qUG5lSLxpp3id5YLOeN4ApCIp4IHVzn+tcMKsauzOehXhUjzoh1u8hd1g02GNXv1WOMkZIX+Jq6oypvRE1asa0uXuV9YtdMRIPDkMMalWO4qeSuOWPTmlU5LKMTuo4WEKfLYxdX0PQ3RHtbEKrAY3c7TnAJ9zyfwrirwXY5K1GnfRGN4g0XSLe5MKKBEWKrIOcDA5+meK8/2K5tjndKDfkZt3apDdOjR7Cg2Mw7HsfxzUVMOmzixFCNKV1sVr37XK7M6lNq/KOwHt6VMKO9wUptalSaWLTohe310qoBkszfeNYVVRp6yZw1atHD+9N2PSf2ZdL0zw7o2rftkeO7WM6H4QuPsfgjT7pRjW/ETLmLCn70VspE8hxjIjU/fr8w4xzOpmGKp5Hg2+arrNr7FPrfs5fCvK7Pno1f7SxLqf8u47eb/AOAeX6v4hnu57rxDr2ovcXFzM811NM+WlkYlix9ckk19Zg8NTwVCKWkYqyR04nEUcJT5pP0R0X7I2u6on7T3hTX5AI4n1NbaOOToVkUoc/8AfVePxXh6uK4Vx9aW3s9F6NP9DiyD6xVzhYytpHWyKnjC1m0HxF4i0qcKDYapcpwOm2RgK9HI8UqmR0aqejgn+B9HmCf1epJPa5U8Oxy3vhGJG+/E7ORj15yK68vfsG6st5HLl1GMMsg3u3cv+KIRrfgOLVRc+Zd6ROMIcf6tuuO9dtOc4VZSTev4HVjKMKlJVk9Y20PT/gFrq634afTYLgLMqkwuh2nP862qvmak9j0qdSM6UZJn6a/8EfP2ndSfwVqPw/8Ai78RGlaxuiunW9/J80SdgCeor5fOaFOnU5oLQ4Mxw/MuZI++ItTtb23F1ZXCyRPysinINeApc2x89J8pq6XeRxxbGbGR0z1p2tqZ3uzRsLq0QtJDJnPUtT5rLQtSurCype39wIrduN3zN7VF7lJK5oxLpejR48xWfGSc96aT6kXkyvqGtoxG1gPQ5olEcacmU3vJWmEhG1dufrUJWZsoqxleItQv7m90qz8N2aTeZqKjWp7qXYltZhWLumAS0mQoC8DnJPFXNOVrDSbvzbdD4u/agmms/wBsnxBe2tjxd6FpEmLh9u8iN0HbjO2vRyyUfaT+R10aPLQiXvHinxR4R1Cwt4RbLBsItd5JUgZ4PXrXZimpUGkdmFfsnaTvc+kP2b/CUUvwyvvHGq6VE2m6qtnptvczylmiuIyszEpjIBwuGxwRXhZnVlHDKmoX5mlfseNCCrZmoc9nG7faw/4h3kGovb6bPeSxxQ3JeYwSMCQrHZ0KnHqM4wSDkdVT6K+3kdMVX9nOUkubVLrpf06r7n16nKrbz6ZPLAuoecUjMxPmhgokwQuR6bgNvbvVUqM/ed7pf1+pdOop04yUbEs07yWiQ3AVo1JKjA6nvWntKns1Dpf8zRavY4jxtqV5ZXt9Bau6i1svtEkg4AVjsUZxySTjA5xn0rz1JvNZQTsoq9/X/M6GnHDxb+03YrfsQ6ZPrel/EKwhk+f+0bdwe4JgU8+9c+DnCeJq+pljG404WPYPAniFNKtZ7bUn2TWrlWDNyfeupQlF3ZxOTepyvxj8DXHinWI/iB8Np1ttfs4slozhbhf7jeoqaqVSOm5pJ6WZzHwz/aHTxXqF54c8eWkul61bOI5ra6OAevzKejA4rODlu1ocEp20ZyXxW+AXhT4leKn8deE9UbStXtFPk3FscLMfRuxodJT1izKSerR5nffG34qfC24bw98UPDN26eaNl9axmSNl9SRnH+eaVN1Iz5Qg5zpp2t5PdC+NvGHwu+KGk3epxzWrubRRvRxnPvXROcZaCi7ux5B4t+AGoWdtLqvw98YCESwhhCGBAJ9qdKEe5pVkkrI8o13wh8cbRitx4igMUYxlV/KsJx993OSUZLVnH+IvAvxIubwW+r+K3TzVy3lcbvSikrbmqp3jdmTP8MNJ0VBeavdtI+3c7Svu5HatHUmo8q2EouT1Zz1+R4gvBZaGpFsDiTANaQi1FO50LljHQ0LfToNNi8lgAVGOBVNXRjfU59IC+rTRyR7RjI96znN7Iy55c25XubcwymQeuR71ndyHTfvGB46vl07y7grgOvNclak6iud1OtGlrLY8cvRLrfi83O0lVbrivWpSWHwljxFTnjsw5n8KOia2MrhBxj1rBVPduezWgoaIvW0SxQkE/wAPpXnzk3V1NaScKTP7CdOMV5cLBpTMvzDexbGfavqZa1GjyqnNGbv3Zd8S3psbdNJM3GOGJyRWVR8uiOKycrmfpd0skxhsjI3lgFnOcUo66nVb3dTpxc/2boD3I/5bHkKDk1M5tR0CUZc6S2M6y1C4vVwqRxxxvy5X5h9B61zSemptThymtpdxcyT7lllMYXcQ4I3fgBU05SbZVX2bjsW1vo51ZFGxmyAaU530MqlNxdxdCmiFw2npdEPIhy6VVGV04pjrRfs1O2iGB7O1lKXKNt8w7CTlnP8AhRBKErM0mpzV12+4z7uz1C61K48y0Kq8BMe4ZNbxvzES5HBO55d4mhK3zWkjOUdj5rr8pHtk9qxqpsuEowQ7TotQuLA6N4XuoRknzcIW/M96zpOzsmTOo73ZgX3h3xFpeqJda5qzSWqODNaRIFBPbJ5qasJqV+bQ6IzXJoh3iHX/AA/4h0pglhbtKvyxIz7kiXoWPHXH86znJyjqRKFlqeAeIPAPjOz1m4vvhusclrOz+dZTDEVy+PUcrj1Fc0qNSa/dGkJOpZT6HHn4pW2sLc6Pf2bWGq2Uqx3GmTAYQjjcrdHHoRz681k9Ycr0Z2SpRjZ9DJ1vwrJcW8ai7SN5pBLdTyZIUHPpnJ9KxdJwp2CMovoYmm+ErFNUtrlrSKEPdYBPGNuACwqIU0mjf2iSsil8QvFXhi30rURp1urXZuwhsoo8jzARuIPocH860nVULmkYN2cjwzx/4Z+Kus6lcaro2p22nSooW2C7n3D0YHBPHauKrGrUd0ypKLmo9DjdS+Gf7S8LJqer+OdNtVkzieCwyXA9SW9e1TTcoSs2OoklaBzms/C74hahbKfEvxEmuI1fLxW0ax98klQMkVNWUm7JmlCE5RtIy77wxcWIWSTUra8K/wCqZ7fCsB2YgDn601KTjY7FBRjoZV/Gt3O0TWKRyADHlswUGs1e4LUwbyQPMYZ5DEy8BdxOf/rV20YW1QSSS1KmsXCW9nGofeXl6Y6gV6OGu5hGd5HYfDnxLJol1FqEEu1QoPynrX0+AxH1aopI7o1JRtY+lrXxdrGs/Do3Hg14/t1wm2FnXIVyMZPtX6RDFVMTgH7GVm+p10asnG52Xw81XXfg/wDD9bbxXeW9/rlzbk3dxJACEB67RzisaeQYrFQjOtWl7uva5TjiJvmk9O1zhNM1/VfH2pzXFvZPDaLIUEsikFiTyRX0eFx804xpp22O2jObsrbHUwa+thA3h7TIArpjdMT8zH0r15x5Y87O2c20lIxJtQuk1byr+5Es8n8JI2xitI1PaQuhwemg3XPE40G3mlknCyyREQR5q4KM5bnT7Rp2RR0fUBoHhK91O+Bkup4SzArzk9BU4mpNrToaQlGlBz6nPeB4bzRfA0+s+KE+zrczSSyrnBwfujmuajGSi3JnNRk1Rc5dyLTPE0Wp6aL+4Hylj9mjGMAepNaU0/vB1vaU7JlTR1PxC8bx6LdXhtrGAZvr7+GJB1xxyfaqr1PY0XyayN1FpcsjovB2vBvjBoSeEI2W1sb4RaZbwv5ct3JnBb/eboK+B8Ua9LD+HeOq15cq5Gr+uhrQlGNfkfwnjfhrWY77xN8RvEDWaaMJvE8oOllxI0TR8MWPZyQSevWvC8E8NOjwlC8+aNk1K1r6HHh1fm5b2v8AqO0fxM/iLUU1iz8qQqpSzgkPCgdZGx+lftVFqdW9z1MPNSn73Q9Y/wCCfOpSa1+2jp6ww2jPFp93G8t6WIkbysnCggH6c/Q1+KfSfrxj4IZjo0lOmr7XvJbB7dxc2m7W6ep8ufFzxFN4i/a/+K91qtxJOq+Jz5qrbbFby0CKxXaOg4Ax3710/RswFPC+GOG5E7Wu+u/nr3PIw1OtWzHEObdrx/BaHvX/AATL+IngfSf2uIfAHxD0yym8L+OdIl0y7j1i2DxPPERcWpZQwO4SRjHXBIPFfL/S7yXMMb4df2nlbkquEndWspckvdkvuevQvH0KVWi6cI83JKNRXS0cHzJpO6umrrqmk1qeS/GjS7L4NftGePNNudJiSx8RCHWdDlHmbWt5/nXakvznHOVYDB4Iru+jtnks24AhQqSvUovkls9Vvtp92hyVpKWZSxEXeNWKlqrPVdVpZ+W55n4t8AeHvE9zJ4j+FobSdWW2je5tJGAg1CQcsBj/AFZ6c9OcV+x1sPKnVk0mrL5P9fw66dQr5eqtP22GdpdV3OP07xPqXi+W5h8V2TwtpreV/ZlyeS/ckHqO+a8uni3Vm1JWPHo15YhtVVZroUfEfgPQtQ1FWskXTpWh+e5t2272IzgjptxTnTpz20N6+Ho1IcsdGcdaWnxC0fUp7n+yDqaWcOBcW/ZB3x2ryJvFUK17cyPDpvF4KpepHmsV4/iTpZaabVc211K2D9oQjC9OM1qsfy/GrHfTzqhNNt8r8yteeNdBvLt7e3v4DAmZMvJwSBgfl/Wrlj6clrJBPMMNK651b1MjV/HujXE0l8LqHCw+XFAOQfcivN/tShGo9Tx/7bwKk25r0MKXx7Pc747exaUSYw5XrjjFZ1sbWmrwRy183daDjSp3v1Kz6x4t1Fv9GiWFW+8epAryZ18wnpscFStm9ZW+FHZfs6fss+L/ANqr4r2/w8t/ESWFhawNqHinxDenFpoemRYM11KemFX7q9WYqo5NfI8S5xHh7AyxNZuc3pCC3lJ7Jfq+hwLLauLxHsqlRt7vyRr/ALW/x0+H/j3xrY/Dj9n/AEm5g+Hfgi0OmeDLCVQHmUHM1/OR1mnkzIx7ZCjhRXm8JZbisHTljMYubFVnzTa2XaK8orQ1xmZ4WhKNDAJy5VZdr9WeUQ6Zd39wJ9WlDOPuxgfKor7yjhalWfNV+4WEy2viantsXq+iOq+HWqx+D/HugeIGdYxaazayhioycSqfauzO6CqcO4qg/tU5L8GexWdLDK7djvv2y/DD+C/jj4+0raUMuvyCNZE2k7yHP86/NPD3MFmHBeHlfXlS+7Q6s3oyjlrktpWscP4duZLW3eAMvEfAx94elfp2EpU/q6RMLqioLoifw5c+ZFeWkSK6zQsGSUlQw75PNdHuxasU+f2LgjT+B+rf2fczQ28pYQtkKwweD2+lRiItJRNMBUpex5H0Z9e/sl+FNE+IPxVsLLUneIasvkTT29wVKvjKtlea8PMG1QaktC8diXGi+Q/YLwJpK+CvB+neHmnaVIYVXe7ZJ46k18o5Qi9D5fldTVnSDUomCJK/G3Kle9Q3zGkYpaM0LfUIbS23SMQcZAzTbViZOzsXNJ8R3Ez7QwXd0xUx3HG5ca4hlnEty2UB55rbdlLYpzmxvdS86O4IRTwu6oqq70KUrIXVdWCKY1cFQuABzUcut2EW2zHfVDG/kxhVLDH1H0olOK93qaRioo+Tf2w9PP8Aw1TNcQWaO0vhHTnUOOPkkmBPtijLGo4irqd1PnVAPD1/Dq0199uuS6m1jaIINoxt64+te3ScJOSv0M/ZuDTaPbP2f76x0z4ZX/imW6nF5cav/ZemWqXRMEUMcKPNKydPMJZFB6gA15OJj7XHutF7aWHUxEvbxw0ErWcm7a76K5d1PUVaMm4uFd5CcblHOc1Ttaz3KhGUdL3MFZYUundlUbchfLbIY46/oKGlsdKjZcsiy8jtam4aKQqjKu4ISoZs4B9CcHArGpGKXNroKlBSqWvqcb8VdTt10+REVEYR/wCkN03sBgdTzjnH1NFZR9m3Favf5HNTVSrWuul0l0JP2BNZiN/8RYHkUbdTs1UAdW+yoea8bLqaWJqMzxnO3FPt+p1nxR0XxTZNLrenzRxOuSBtwJB7+9etV5nHQwi4RXvE/wAN/Ey2dgt68hl8+P8Aebh9xj2rmpX6jqS5locJ+0P8OvCPxEktSVW11Rmxa3VudrofXI5pSjFuxyODcrni/iS1/aT+AFy0V3HL4j04MH8+L5JEXGRxjDfhVRozUHK2v9dDFcjbir6ev4d/kZvh79qnwt44vbrSPFMggdUKNaajFtPPs1Y+1960hPlerPPPE3wy8B+I/HP23wNqv2ZmX/SILSf9059SBxVcsJbCpq7sUNd8H+JdA1UQQ6tdv5ibXSGXgY7A11qnyw0OiSSVjkfFUfivQrSW/wBTlEahP3cUj8tj61ytWMJXWiPPNc8W+IfEciG3sSjwryWGN1FPmubU3ZWZxHjT/hJrjULfTNTuTGLggsi9e1apNpt9DmlSn7TU0rbRbfRrIJuMbd8jlqamrG8uWOhTkvLe8laGOLcynnPalzysc6k27IyPEFtJZajDqCn5WO2SpkpWI5Wp6lfVIkI3AjaRxiroxu9TdxUVc5Px3YPqGhNhQWibPviiUYRlqVCmq2557bWVvbuXWMAt1NcjnKcvI7aMaVNaFtERSGArOdRvRGdSUZskfBIJPGOa55yvqjWFRQjdn9iWlpFYTLBaoJptvzSMM4GP0r7OVlJo8PESlzP1MLW7r7XqZUzEEHayD+LnoBWDabsZUmi/pMt7HJ5AKRpuwYkGSfrUqLubPe9jovEssNtY28D5JRAxUt1rKt7uhMHKU2Z9pfwzgIkQyr5UeX8o/wATWL99HVqlobegX4dbm9ZVbC7ThQBn0oi1AmpBy5V5jlv4bqdUClVxhugz9e+KzT5maVKfLDuypLqKaFrVrOiCOGWYRABSc5OBVQcac0TFOtSlFu73NTWL02F1HMlv5szSYBYcIM9q0qtRne2pNCHtKbT0Rn+LNUu9J1OO6Q/dUDJc8jHNE5SjLUzpUoexUOhw/wAQvDt7420htW0ZRAZAQVi5xjvSqTjKGh00acaUkmedW2va34CgSwnEsodwDcb8tuJ6sR0GKw0ikkRWjGtU00Kmva54g1e6W4tkCWpBAkZt5lfphRj5s81EnNPVnVTUFCyMDxT4J8T2OlPdXupfZ5JRiGLyxuI+nqamtTk4aMpOPNZov6R4t8NaV8PTeWl9G12yfZpIgvMLgHcPcnjmt6UoKhdbmE4T9v5Hz/8AFD4Z6b4rgawS1E2o6jJwF5YE5x9McGvNrRi3Z9TvhJuOux5X4i8D/Fz4Dstp4b8Tvq1uHBk03WWMiKVySFc/Mv45HtXFOMqSdjGoozemhF8PvirrXxNTUtS8Q+CZtNhS4kiijeQSeY+Mb0x0XOBVUZTqay0NYRcUrmp4h0zwnpzBDf2+62EQujuwwduSGPZgPXritJqMXY7ovmVkUZfEnw9jLpf65Y3EZkGJWnXfnnHeub2sLvUz1jK7PP8AVviVoEhvNGHiS2nigmZFt1nRg4bpgnnIrnlua3drs8j8Z6xrtprEkaTJcWRB8pnwWQemanks73OiMpKN0cpqEttL8slkELLndGSA1VoaQuzH1VYxCbiZLiLb1+cEY6flUSumJPXc566ngnmOw7wOF2jt/Su6gmjSetMwvEd2s+pJawOcQLxkdDXq0UooilJKRreGdTI/0cycEYx0w1d1OTvY64zUVc92/Z3+IU9hBcaJdkYQFod7dPev0HhSuo3pVGdOEk5ybO7i8S6lqkEt3fz7kY8KxyTX6NR5eW3RnuU4JrYsSa9Jp1tC/wBwEEiFBwfriumNOnFpI6IuPJZDPDOumXULrWb63QSuNsCE9Pesc4qexwfkc1eo0m2zL0nxXo9/4uutLfLiyAadkUkFz2JrxcpzL65S5IO9jLCV/bScY9CO91O01jVlvNTiKrA+IVZPvfQV9NSpyUdj06bkkk9yS81dvtjLLHmNgNgfv+FE4waaNb2Zx3xV8VS3tsLHWrtYYiwMke7aoUevoK4LtUlzWX5HNja8fg2RJ8JIdI+MUOpQ+ENTg/sjRIx/at8CREjf88w3QmvKr57Qw+KjhafvTfRGeGq4efuQd7bs1Nf8b+HND0qTwz4TkaGxP+tQjLTsO/rXtUMA1VdaTd2lo9kehKSlFcy2NH9lfxjpyfGv/hNNZmhitfCui3moxQCRwsbrCVRmYKcfMwyK/EvpIYuthfDV4SK97EVYU0lrdN3fbojgxNaUH7nbc+f/AIZ6iuvaNq1yniptWstR1e5vL3WDGyi4ldixVQ3JAY7Qcc7c9MV9r4V4WdDhilRceRJWt6I7MFWpfVU4S5vP1/yK+la7Y/Dewu9L/tIzajczMtogXpuP8R7YGPpiv0ejFUW0mVGpUpS5X12Pdv8AgmyUsP2t/D+h26wXDz6TqMk9wsuxixgJJyWXOPrX4n9KmpyeBuLhH+em9r686O7DwVCErv8Aq58ifF3UrDQv2mPibfzap5sCeJ5zudyxkIPAyCc+nWva+j1en4X4WdTRqK02PPr4mNPE1ql+35Gr8HJLe48SL8U5dRt7bWbGdLnQLJgx8h0IIfg9TjNfqOPyXCcT5ficHj1enXg4cr2V1uedgqtSrUdafyPpX/go/qfgf9of4d+Fv2tPhfcxpqWnabDa+IoDbsZpVbKTRsyxrHmGZQ2wMzCOUNgLgn+FfAeGdeE/iFjeEcyuozqSUdVZJawe7dpLrZK6PVxGGnVwSrNO8NfWN/U+RdHkRr1LprqSUJmSZyxC7jng+tf3RVVTES55yblfV9359zy6Nao1eOiL3jyz8IeK9BTVNYgNtqEcJWyvbNx5rOeBuHQj2NeXi8JCbutzLExo1vi+LueXalqPiXwpdrZeLbUCQZliuYmJWZdnf+6fY15rp4mlPlcb7v7jw1UxNKVq606Mfp2vxRWYVL2RVnHm3e2T7wzwvvW1FQ5b3O5uDhpqUvEWn6FqKTCfTo8RqFCkAliei5PYd6VSNKfxJM89rDzn7yOf1jwL4RS6hX+y4gXwHAUcZHWsKmDwrj8KLqZfgalv3aM/UPA+k2dss9lpkZR0JJZRlSDjmvOhgMJGrdROOWU4CKvCCIZdFsIpTHbwLtCfOMfd/GuurRpqLUbG6pU6MdEL4T8DeMPHvjHTPhv8PNEOpa3rV4tppdjCOXkY4yT2UDkk8AAk18zm2Kw2UYKpjMVJRhBXf9fkjxMVWrzkqVFXk9F/meq/tHfETwx8EfhnL+wx+z14ggvVkuUn+LfjqwbnXtQTpYwv1+xwNkAA4d8se1fmmVZbjOIsxWc4yDS/5dQf2Yv7T/vNfcefjaE6UHgcPK9/4k+7/lXkjwaxsLbTrcpaRgBR8wPev0mhhIUYaI1wGXwoRSgiwiJbneUDKy5VQ1dtKHs3d7Hr1GsM1ZbnPX80uveJbbR1dvJjuFe7mhXJVQQTj3615Ga4udWToUVd2Z8viZyx+ZRoR2T1Psf/AIKXeH/gHqmkeHPEvwD17WbmSCyhu9SfX4gkmprcQRyfaI1UYVUIaMqST8mc84H4V4Vzz/DYvEYTMoxUHJqKj9mzej13e59BjquLxeEkpO6hLT00/rofMXhy4S+hwTt44Ir+iaFNQpLUMParQWpf8OTMmpOgALOCojY4B4xUSmr2jqdMeRzaKvw61Sez8S3WnuF3JOR+8ODgeh+nauhVlUm1NnBlNPmxVSnJ7M+mf2ffib/wrbxvpviJCFiguopllUkY5+YcexryccvaQcbH0FShCVNpn7TeB/iPpvjbwPp2uWNysyXFmjK6NnJIFfD1IqMuU+UqpU6jRsaZrFzDJ5ckoAxxmotZGEpGpa6vPc3yxzS8D7oBpPTUWm50VtqdjaFYbdcyEZNKL1KatqP1LXIoVEbfMzdqtSRKepRbWfs4BWEKzDiiU49DZJdTzz9pz9o2L9nDwhofiiXweutz65qjWsVqbrySsaoWd84PTgfjXhZ7nSyXDxqcvM29rnflmCeY4p0U7WVziPCn7fvwO8RTpF4lGoeG536rexebF/32mcD64rz8FxjleJ0rJ0357Hsz4WzKEW42kcr8ctd0v4i/Hix8d/DXxVotzZJ4TjtTq39pIginEsjbcMeuCK9bDZzlscS+WpGzXcyeSY6OFtOm99jP8A/Db4pai0Wm6RaaZdTXUKqt7/bKebOWySCpfCKoGAMCvRwmYUIVHNVE07dUVWwrhCMalNxt5P8A4b8D1T4YeHPiLpGh3HgOL4c311dWOrTXLSaZbeewieMAvL5bME/1Z69cUpZlgYVqkItuzve3T7zCvg5KUcRNpJpLXT87Ca54hfT7Zn1OxurdgQWe5tHXYDwAcjjNckc3wKfK56+emnQSwOJT91XRkw+OtCuZgtvqMPynLAjH1rZY7DysozRtLBYhfZZrweInubKRrOd2iQbpNjfLx0J59/1q3jKaT10MnhasZXaszzj4zasz6C9wImXYC3Ldj0JHp/jXDiKiqQ52x0ornasR/sP3t+2q/EZ7CRUY6rZMg/vD7JEP8/Wsspmva1EmcmNjBKPc9L+I/i7xNLs8OC3WS9ul2QRoPmHqa9ic+V67nlN8zsY+kjXfhzPPoHia5x+580k8YPpWbukXNckb2PNdW8SeO/H3i8eOPDGw6XozlXhUE+Yw6n6CsFFupdGCUqjSaNKw+Ntt481P+zNVuBE0Y2yRSNg9cdK73K8TSdoxOK8dfBPwB8QtQ1H7bptq5RSBIiAEe+RXJKEaidjjcebY8Ng+EGv/AAW8aTQeEYLi9gu1Mgj3lioH1rJU3Bl07Q0ILj4x3+nyzTeINNntpVcjy5UJAxXTGo5KxNSrZnEaj4x1D4iXb6tfyO9rE/7uIr1rNJJkpuaMh76PT9ReVkC7uEQjp6V0cqtoN/u0cxdWEvizxO+uzRLm2wqJ079a5oxlzWKjVTNHT9NF3fyJfKGCdYz1A9a6XGMUROPNqc61vDca9cS2IIjjYBo260uaJhTk77EfjDTUk0iQsgBGGBU5NV7ttTaas0zCiAm09GbH3eDmsqTVyudSWpk6kLSMmW4P7o8Sj0FZ4ulOpTfLuKFWSlZIp6L+z1Y/EW6bUfC/xT8N6fDyzQ6pe+UV9s15NLF+yg4VIu5UasXVa5kcV4m8OxeGNYm0hfENlfmFtrT2UhZCR6E9aqDctbG0uR7MzBL6EVtGmlqzOUKklof2DaHd3trFc3TycspAOOfpX1Lb5pHDX1m0u7OcEepSarJIb6OCBjjBX5j6n2rnd1uTTioq7Oq8MQhryM2jEREjcX+8/vj0qouUnYpzRZ8RX8dxrDxxFQUTClxgLiuWo1KegUlz6kUckt80azg+Qemw9fespSleyOhWgjoNLvLJ7MwQ2ZRAckfxEVXMuVXCTfNe45r23EWILJTvP3XHJ/PtWcpx1VjRxlJc1zE8Q3XibWtasrTSrB544ryN5djBUjUNknNZVPbSa5VfUuhGhSjJylbQ67xTp6JZSXksMkrKN21eSMfSuypCd3Jt6/gcGGrpz5LmNePbeKPD6anBC5knQ7Qy/d2jB/lUq01e+5vKLpTaOS+G2vFfDer6T5SyXFlftE4VSWAZQwFc14Rb6tG1Z+/F9Di/iN4E8Q6xHcSaZpk4iuMeamMDOMdPSmoyfTQxjUhza7nD6Dp+qfCTVRc+LhfXoDf6M0sh8q0GRg46AZ65qpQVJXep0e15o2j0NHxLqmr+MdWjs9Oud01/JstnPzEju/sMVhNznNK+rFGcXG/Y5740WGl+HtMi8I6BboyWyfO+35nl/icn61c6iUORdAp3qSbZxHwluIfDd1qXxA+KEgh8wLBoLKmF3KAWJznk9M+lY06fLJ1KvyCuqlVKFN2ta/ye3z2/I5DxlcWXj7xJ/Zy3kT2l5JIrXCyAqGbgZOevU1y1v3lSzejNqd4wu1qVpvA3hlbe30HTkSKK3heBLgryJQPmz7EgHNdCglHlOiLcdWec+M7K40C9vbDVL4S5xLs2DbPGDnccckjjn2rgrU3zG0KnNpE4bxr8PfD+r2323TVQvE4MkZUE5I+8PXIwfwrB04I3SkldnCa14O06C0eW1tbTz48s37sL5hB7+jdaxquyNI+8ee+I9SstKu9wYeRKu11D5CMc+nT1pRvY6NFE8+vfHWj6hdT2FuWivYJyvlXWVDj+8h6MKpJx3MadTmnypFS+mur6UG+tcY+9iU4zRzRudM4RjqzP1KeDSrR7yQ7CoxHx94+ldEakrJmc5pRscl9tuFvt0/zFhuJHPNelQk5K/Yzox980Yr8WOoo5YMsw4cN3HqK64VmpHY1zaHf+C/EMlpPDewNt3DDEN1FfSZZiZQqwktDqhUVDY9di8RGDTLa7tkUBxwzyYDNX7PgasKlCLaPapYhOmnct3/iJLK3WW/vYzLKuREDwK9FVKa6HS/dV0Lp1zqB083NkDHnBMs5PAryMzjVx0PYw2ZyVIyqqy2Jor7T7KJ9P0iIAz/Pd3HeQ9+a6MsymhgadorU6aMY0oJRWpnx6zHd62S0ey3iTGC3OfrXpzlUilZnXHkfxFaHxDJf6+bO3jNxIqkRRxAkj8qwrVI0sNz1JWXcU2r2OJ+LPw51n4leLofh9d6otnYFRLrdwz8rD1KqR0YjivnamLqYuHJQ95X6/8A8mvRWMly3sjZ1rVvCfhfwTZfCH4R6SND8NWSAtEpCyXUo+9LI/Uk/jXZlOR4TAy9va9Tuztp0qOF9yCsvzOf0zTdW1RJJbC/8AKhX5XuZjw/09q+hpYitzNxdnax0xozxHodN4e8Mad/wqv4gafNrUlnYDwpO+rX1oyrcvGuGKRg/MxYgDqOK/BvH+daOVZbOEVKUcRFJPa70u/QjGYWi8PKNSTt+J5D8FZFg+DOi2FvP5Qe33r3OP8cV+pcITVLLqVOo0m03+F7F4ak1gIqDtsY+u6zqWueKls9D0SW4S1jL3t7JF+6tgOuMfeb2r6F1pOurLTqViKz9tH3dFuz2D/glj4n8K+Pf26tC0O80uO/07+yb6CQy5jM8pgPGWKjP41+OfSNrut4QZg6WnK4P58y/I46GbVK2In7CTXL/meJfHrwvpGl/tp/EXw1exbbeHWWlWyuX3lcgHG4MQcfX0qfo55jLH+HWG59dDsrezlmk4Td/dT/A4bxhYHSidR8NSuYGcsUAKkkZz9BX7nONWVPmotrXbVbf18/Q4sbRnTjeCPp//AIJqfFzVPiz8JPHf7GHiia21LT9XhXUYtF1ERebHGf3dzdwvIDukgjPmCIAbwp5B5r+MPpI5BSybiLLeNaKlCtH3JzV2rrWEZJW0k/d5unZ7DwWLlOgnGn7SqpKNnJxXJJrmezu0tUravS6vdfMPibSNe+B/xG1f4a65qCiTR7h4VniYBL2A8xyoQTlXQqRz/FzX9J8DcX0OLOH6GYUZWco2lHtK2qfUxxMVgsbPCTVraq/bdFG31d9Vv21QM2+F9lnaSDkc/ePrX1cbc3Mzk96VT3jSutRg8W3MPhVrOOVJTm4LbcSMOq5bgccVjinH2bvt/Wh0zlCdN8yuuxxGvfCeOzluL/wb4kFhHGdstrcjcFkYE4HsAO3Ar56thnF/up2fY8mvl8oq9CfK30exxuo3fjDSZUi1TTS8KSh3niYsGXpkjrXnyrYuhJKoro8Tlx9Kr+9XurqjR03VxrEgvokZ/MkBjPoFzzg/SuiOLVSJ7EcXCpFKGtyre6qFvni80eUR8qbu+c80lWj7XlM4125crK11qSPO+4hUMZ3HrngZrrqVqNODlNg+V/Gx3hf4oeOvhraaxF4Lni0u81y0+xz6zD/x+RWbD54Ym/5ZCQcMw+Yr8uQCc/B5plkc+xsJ4h3pQd1Ho30bXWx5ydaDnyxUebr1t/wTmbCFI4B5ICbWHuT717PJGnG0FYxp0uaCUdCZWBxDHgsUwTjhTmtqckoHTOaow5Y7mZr+vz+d/wAI9o4We4bKs6crHk14+OzCpOXsKGrPlc0zetOo8Jh/el3XQt6BodtoloYyS0z/ADSuw+8a6svwkcO+ep8TO3LcF9Uhd6ye7PrjxnPZfFv4Kjw3PpUEGoeBvhlot/okTqIjcxMJPtPHJlPzA5PQdOlfgssXDJeIIV6TvCvXnGb6Jp2S8jfJqFT2uI5neKd7fI+UdJf7Lfnyk2xuxKD2NfvOHqza5ZbdDdXoV+RbMtWFzHBqZkySBICpB5x604p+1ZvhtJ6j7kRnxjM5gETBwTMvRgfWtXGz5gWIhTxTaWp618Pb6K7iFjvT5hiQSdzjg/jWFRNLmZ6H1iU9T9Vv+CYnimHWv2e7XSmZxNpUjQziWTd37e1fG49Qhimkj5/Gwl9YbtufQtzrdtaXuJWAzwu6uCUkzlSZatdRuZpxdxx4jA5JHBqbtjUL7mp4f8Rrc3zXc0gEcY4z2qnaw5rQdpniO78TeIJZbBF+zw9weprFScpEwp8uy3LV7q0LXQWWcF1HQchTVSTUbo1d5Qtsz5Y/4KPeO4fEHxH8O+CrUfutB0NpZvm486dv5hVH51+c8aVnVxdOkvsq7+Z9hwhQajUqvrofNV9qM8dyLNIw6SRZ+YgDjjrXx1OSVTlaufoVGUuRnV+Fb621maHR7XwrBBJaWknmy7cibPRieelexSUKr+C1i4c+7dznfEmnWRivvsrssyFCPKcrzj2Oa6I04K6aJre+l3O28K6noeh/Cu6sIPEHibS9diZ2vbrS/EC20F5p8iBG/ds6yXNwGfhM7doOeM1x4io6UpKndSe9m9Uc9SnWnVXNGMoJdVd3OW1XV103V7+Hw14v8U3GkkxizXxHqKtdELgASKh2jvgDoBXPQpSlFSqK0vmL3pK8kMa+vYWcS38wabkkzMQAV9jmujVPVmnLy+9Y9V+FGpytoNpCZnZigDbnJzkn1PPSvosqlGULPofMZrNubsdh8XPEk2oeEJJbqchhYhVIXGQOP6V9POUPq7PlYqftx37FmttpFv8AEDUC+EF1ZSZZsZxap/hTyqrCLn6/ocOYXUkutv1PS/h34iMN3P8AEbxcwE87sthG4GY17GvYpvnXv9zjp0+W5hfELVrv41eJ5LHw/qXlosGy7vUP3D6Zq6kuZ6Dqp8ljjLfxNF8FrePwNeTh/NkKxSMTmZieT704x5dzGKdrmR8U/hfaXAj8VeDrqOHUHhEkoj9+1Opy8um4qqckcF4H+K3iXwXrt5pHi1Bm4B8qbadpOOhrlp8ykYRVuo7QvjLBL41i8QzbGjDyWxJ6Z/8A1Vqp825nflVznPHOoeGfFWpXd9ay20sdsSZVjxnJ7VKlG9kVNwktDzvSLm10O8v7KztlfzBvjR0FaKF3c0pLlRkXNhpd3dG9vlWKIgszluQfStdEjHETs9Tz+TxFLca5ep4e09p4McyJ0LexrBRnJ+6c8Jc7sjQsLTxHqcPmwx+S8gwXY8mtZQfKrnXGPLEx7fR5/DeuyW8t2ZTM2ZQWyQf8KzlCzuc0f3dQ0dZWzlspEliYeYnGR7VWria1Xzx0OK0q0lmgmiimGYmI2n0rNNRlqZU433MLxNEPss0W3qhyB61cpNK6OlJJnj82jGK6kEV9cR7nPCuRWEMQ7PmSZzPAQc+a5esrGGxt/wDWO5P3mdsmuKpUdWrc76GHhGPuiNjfjt9a6Hbl1LrSdNaH9gU149hAyMdpxlee/vXv1vdk0ePNt1n6mTbtamQy3Nw/kNzIe7H0+lRFJ6suV2rI6zwciTSNdwQrFEiExkPk496tySM+S0Xcz7q+t5LuVBH87t+8nl9PQV58ppvQ2owZZsdRjheaYW+SqYVSMn6j0p3Rta8kjR0XUoprQiNXjjA+fPGW9T61hOTtuaSgky1Y2cd2xffMYE5YudokP19Ky5HPUpScY+ZU8e6w9joMj2gkgiRc+Xangke/erlNKNnp6GdGlGNS71fmdNcahJdeHbe5RHWOWzRtyvycrnmu6crw0Wll6nHQopVXfV3Zz3gK7ujFqtppV407xTZ8mccxow5wcetccbu6R241Rlytqxxum2VzpXjjUri8uFjkkizDp9qoUSMp+8zDqcGlGhBTvJjnC9KPVDj49vNNvZIJD/rWyzbuFOcY6da15nAhUKersc749ew8bR3WmQwtGoiPnz+YCT7dOtTGtGo7MpU4xStueK2K+O/2fvHP9uWEsuq6fPamOWxuJxusQf8AlpGzdD6g1xyozVZOCNp0/aQUVoyTR9f0j4y6n5vh/WFuIZJCJp05EIGS2/0I96KS9rOy+ZEEqWj3Mb4reItK17Tbi30SBDa24NjpqtwrRr/rJj9T3qcTUc7pbGiTjLle58wR+Ftdvvipp+oaXrM0NtbXIIhgkKxuM4yyjr9a8yNJyxCktkehCKUfeR63qZvLe+mhtp9twtzujVuiN/gwrunU5ZEqMWeZ/HjTf7V1Wzt5ZpofIjIBhJV4gRjgj+GuKrWcnyroaQSitDwrxjpnj/Rr+507SPiDc/Ph1SRVZRtHGDjoe3esaUb31OjmcoWaPOLzxj8TNO1qaPWvGDTWtz3kth+6kHQ8e9FSlDdvUVKi9ylrVnfXfmXOtzpI8gDFk4Vsenoaxc2nY62tbnN3egWsrGSWBTk/umyMY+vY05yb0CVuUq3n2fSLaW8vp/Jt4jmRiCcD0xULVmV5crb6HHat4hXxNfrMk6tbQki3UgjIPc+9dlOm0mjJSdSzRn316i6nHAImwifM2f513YdNQNpWjKxcvba1vrZBdtt2MGjkGcg/UcV6ENEVFNanT+FrpRCIsnG3GD1z6124Oty6M1i3NnonhrUVvrOKfUpS0NkciHOea/XOG8XLEYfl7Hs4JJr0Ne28UaNrurqzOJDEc+SpzsHua+rdOVtT0lJyVmbOo+JxcyJamfEarwitjIA71pSUYvQaTWxW1PX7VdOR5IAkCA7nzyxq6U7t3ZpN8qucxY+MX8U+IBoPhKNGaLhyj8AnjqeM1lVqU6UW5O6RjGu6s7djv/EFjJ8J/hVrukfCG+g1P4iahCAl1KQ0enI3XBP8WDX4XxRxJmmd8X08tw0XDDxd7X37Xdv0PHx2KrYip7HDv30efeHdL1vwx4Qt9G13XGv9ZmXzNXuBzl+pBPfnPFfrmX0o4RRTVrnq4eFSnhYqW/U5u5g8R+I719P060klcHBXGEHP8TdhXrUsSpy5UyJ069aqlA6SaxfQ7dFv9ZikuEj/ANSmTFFgdsdT1rvpwu1Y9ylB4ei43M2x8dTaH8MviF43drRo08My2qXF3GJHSSQhR5aMMZIBHPSvxDx1qxrUsrwUVdyrcz/7dPPxdTlw1S7d7HnfgDUp9N+DulrKwWVbBCu05PIGa/TOHYN5ZTT0aSsbYOUvqcG+xoReJ2sdOh06yYRrsMkzBMb8+vr+NfU6Kokhyqt2SO2/Ye8T23gn9vL4aeO/7Ntl8/Vzp+6eQiI+cjoC4+6PmYc81+beNWVSzLwrzWnH/n3f/wABdziVCk6r5U1ftueVftgTa34d/bo+KC+MNUsbjUJNTVg2ly74VUjgKcDgDjGBXxf0cKmCpeH1FYdNJWWuj8zor06FHOJuUndwi1fc5Kx8UCc7LqN2tzBtiYgZOc5zmv6Hp1pq9tP61N705xV3uQ+C9R8QfB74rad8bvhvdCG+0C6S6i4yt0uMNE4PBVkLKQcghjXxvFvB+B40yHE5Vi17lWLs+07e6/k7Hj14SpVvaUv+HPpL9qLwr8M/jP4dT456V4Is9Q0bSPC8Wr+DI7i9lhk1vTs7LuzuHi2sHspSwXDFivXgDP8AGnhjnmYeHvEiyvGyfNOq6VeL2hL7FRa7TVnta/e9j2auGee5TKtUhyzpfDK+rXnp02Pi671LXriNrjwuba1+2TMYrJQ7xwLkkKHcliACBkkniv7TqvGTjajI+QxGGzF008PNNvubfwznOl6reWHxKntbcx6fKdGkEDGKW8wCA/dcjIB9SDXxvGGK4qw2Ew0MFRU/fip27X1ZdOtmGGpv26Ta7GXd61exx3VndlI4JX3CJMnYSQSmScnr1NfYOlKcOaUbN9NdPLW7+82lUqtJsguNXivbyK0iIUuxF1Iqg5A4C/Tk/nXI6cZS5WKok4NPqY+t+ERqF3Lf6fO9rdMGIaAhAEGOoHXiuDFYGlJ3jo/I8CtlSq1eeEnH0M9rnVvD90ZLvR7DUxFCCqXMJAdc5ydpGa8XEUcXRTcZGqqV8DdySnp1RR1TxFqvi9ll1CG0t7aMkpZ6farFEvuQOWP1JNedQpzqu9SVzlWIxOMnz1Hp2WxQjhIMgLhj0Ar0aMo07pHQq8eVp7kF5e6bosIlvLpUXqqA/Nn6VjisXh6C1epzVcyweBpXqz+XUxbvW9X8QE2uh2zW1u3DzEfM1efLEYrHvkpKy7nzWIzLH5xP2WGjywfU09B0e30mBorcEztyzkZLV6ODytYfVfF3PUyzK4YaPIvi6s1bG2vdU1C20bTofMuby4S3gjUZLyOwVR+ZFVmWIp4PDVK03ZRTbforndiJ/V9EfVvxV8ZaZ4C/bdsPAdwBHpOh6XZ+D76NfuyxR2ywStnp98t2r8DyfAvOvDueNcbVHVlWj/4E2n91jfJakY4acv52z5l+IfhObwB8R9S8IXUZVtL1SW32nrt3EofyxX7Bw3mEcyyujiH1S+85ajlKsm+jsYFlexz6i8kR/wCWuCpr3IVE6kok4Wcp4hxRPqU0lt4x/eONssCkrnqKr2sVPlNnTaxtn1R3XgjxAmnaglvdMuwqFZt3UHoaKzVSNonrU6KjE/Qz/gl78V7jw/qWp+GxG7QXG2RpVfKZx6etfHZtTUKikkcuYcipq59pza5pN/cJqVxL8i89e9eK7tXPDdQ3/CvjrTdehe0twioq4z64rNTSkaJ6XL6DTtQglsdMm2tjnBwTTb5iJy5nYi8Nazb+E7ebT4zh2zncefxpU0oz0KVuXQW21SBrhpjJudiCctxW75uUtRvHU+Ufjb8OviR8YfjT4w8ReCPC1zrcWnXiW93DpBW4ntkSIHMkKEyKuP4iuOetfkPETnVziqrbH3HD88Ph8BDnkk5N7njd1o4ub7+y9b06ePbER8/7kg9erDjpXj0KPtaqUZK/qkfYwqRjHlZ1fwl0u6HiKW0tbGW6dNMknaKykMzJCgLO7HHAAySTxXcpSpTs9Wl01JdX2MVKeibsVtVaybUJpoYisdxAhVmHO4Hjnjr/AFrojVnUOm19WWdRut9nHamyjYRuMlgA3OM8jqBirknFbGSnLboc1cRxQ30kwVMsrBpfU5yOvXr+tc0pSXQaippsq3FwXkdmOxS3APQ4FZ1FYylK3unpXwv1Q/YrKBXxtcZJP6V7eV1OWC0PncwpOrUsn1Oz+K05m+FL3EjIWAfyxuz36V7uLquOD5jxqaksTyNGN8CdavdMttf0nTLZGudWubFYolPDYt1yT6AVhkNWVRzsefnEIw5Wes6n8KfFmvxWx8T+PZY7cAMbaxjwgH93NfZUYShZtnjKrDlsi7qup+EvhloH9maEvkRIcTbmG+Vj61tOyOd1W6nLIx9Vh8Ka94akvfEFklzPIubZ24eH3FaQUeWzIc1T1R5b4L1jxBHqNzZXchuI45tkTFvmZM8Zrm5ZKT7EynKaNDUtB0vxbevpWqWiQy78xnbzWtNp6GXLoeY/Fn4W3ngpZJ9KKzW0s29niP3PU1jKGjZHs5Mq6d4asr/SBc6bGiIsYL7R/rB3J9amMYy2NlBKJi6/4Rj+1NqdqnO3KhT1x2rVtoxnJo8g8XXV14u8QHwv4bkeFFlzfBv4R3FYc7Uk0c8lKo7F9dPs/CWinRtBs1Z1jwW7sTXTRvE6YQUIkuk2GqR6b512PLQRszc1tUTFFy5jkFXW5r6fUI7BXhR9qsvLMPWsoxu9QqRTehoDVrG5QWkzDfjDJKMH8KJTSdkYqVtDjtZtTpet+fbApHNnORWcmpLUhTk5GLr7BkOCM85OKxmrF8zbVmeX6wgF2+0fxmuBaTaPUopSp2KfmNjYex6+tb+zgtSofu9Bm0Y8wseKzrTaXKjOs11P65dXv/tDmOSQFVlGUbjP419HX1qM8apdzdvMnjltr/U0L20UbINiRYO1fckVEU2yYuUJanV6dssNBnCKsZlXbG4blz3PPQUVJOMbGjaumYMAjgheUxSSADCSsON2ew71yRSaOqm0omnZ3D2m6S6ZYyE3SE8lh6GiT5HqJuz01G6DrY8RXTX9qy+W85SNdmAQOprjvzyvc3s1ub2q6rHZw+dLOdip8ikYH5Vc58quKLXLdHN3Ok+PvirayL4Wlgs7NMr9vuSQgI9APvGsqSr1byg7W6le2wuHqqdTV9kdf4bguV8Fw6Be6vHe3Omxrb3VzbrhZWCjnHbtXdTTlSSctV+Jy1pxWJ54qyZk+AtcsPDPjC60iVw76n8iPzwVBIBz7E/lWNOp7OpZ9TXER+s0F/ddznfjJZ61aXH/AAkOj2rJdQSGSIwsBvA7E46GicqnLztG2HcZWg3ocrLfaL438LN4m8MMyF2zqNrNLmW2nGcqw7dePrxRTca1N8j9dR1oulUUGclovjzT9BjubbUIY0kjmD+XJncSOckHryKxsqab6h7KTaZk+J/EEuv6QdPtbdHvtXb5P3eWQHufSk6klG3Vm0Y637HgHxX+FnxV+DlvqUvwf+Jc+kahqsDLqMDxK8Nwe4KH7pxwGXBFReVK/Lo2UoU5yUmtijoXig6/4Dgis9Lu7bVYoksZrCch/KYDMkg55U9QepzXHKo3olqapxlNnO3kcema39qsG8l4h5Ks4yjHAwT7HkZ96cZO9jV3tY2NQ8Y6SNOR5H2yJDsmllfOHHKgnuD2NKTijNyvocF8RvF+laxryajpki3Nt9nCzgv80EmOVbuv8ulck2pSNYRaieW+NbeGNvMs7t2kC5tZuoZf7pz3FJRUep0Qfc4PXtPtNYEq3sTC82BmwMc+vuMVMouTNZyklZI46SaUCa3a2AYHY4YZDio5YxYru2pzPjbxh4P8IID4g1iOzckhLQtvd/oo5qlTnPZE1KsIO8jhtR8W6p4uLOJxHYhsQwJGQZFzwWzVwpRhLUw551X7uwllYrLIHWPjPJA5GK6la1joUVTjoYcc8+teIrq7iMeyJtkeD98DrXUkqaJi1Undm1ICbf7Osm9HXBXd901tSnc2ctLIs+H9SniVBIwbyzjcK7KVotM1opxd2dzoWsPanKEMkiZwTxmvvuGMb7PEcnRnq4apyyLun3n2BWvpDHaw7sybByR71+mus3BHotxkrp6mf4N8Z/8ACzfF93Z6LIv2DTEPmzLn539K5lOr7S3QmOJU6rjDZHdX91Bd6ZHpc8iiKMfvEB6Z/rXVzqOiN4y5jKsb/RfB0cp0uKODfu3u6cvxTnTlUiOUVCXuKx5Z4B8FeMrn426t41m8XXkml3KDFuLhlXjJ/wDrYrwaeVYbD4uWKkry2R4GHy/EQzKdectGal+njnx742e3k1VtI8PWz5nkSTbJOe4BNebV+sYzFpRlods3KpV9mnob+reIrXSdMfSfD8kkdhEMks/zSn1z3r6/CU4YejaOrR6arexShE56a/u/ElxGIpQlvFGfMAYncD3rrU6nMrbdR3qTW5Y+IOqeINI/Zq8VXGjaZK6X+p2WlT3RCFLUSA8hDySRkZHSvw3xS+qZhxrleElL3oxlK2vddjkxcqi5ad9Wc14h1bQ/Cfhy10mO5jVbeFI43I4wFGQB71+tYJ06EIQS2R6U8UsPSUDMvfF1odStoySVeHJXbgZxxz6Yr3FWvJHJGbdS70Ov+Aeu3Fz+0l4AvYXt/ItvFdm0IuG+SVzMow3H3ea+a4/5sVwPmNH7Loy/J3OyMo05qWvyMP8A4K66Cfhj+354m1iC8tbhb/D3gs7gusRzjO0/cXsB6DrX8+fRtzGrLg2UWmo05W1XT9TyeKZypY7DY+75ZQs/k+p5Lp2tWkuhSyCbz3kQuAjDcPYe3+Nf1PQxEKsL82jKhi4TpqpB3RbtPE62vh6RbiZJIhsLBj169fYVo8c6VNwUtNH6tXt+bOhypSp899j6d/4JbeN7P43adrv7K2o6fHc6nbPca14LvbloRDbwNEy6nayNIyny5IgCAmTu5xjJH8P/AEmcnlkec0eLsK7Uq1qdaKvdzTXs5JJWun1fTzOfLs9pZdmVO9KVSM5cj5bWirN80rtO10o+6m7yWlrtfK/jrwxc/Cv4p+IfhjqKMW0a/lhgeWFoy8RbMThW5wVKn/Gv6Y8OOJYcScK4fG9XFJ+qVn8yZSp4bGVKEns7r0eqMp9dOoCZrh9pC8tsyQR3r7lVVGLfU5qr5tLmNeXNw9w1jLG7uuZWm5/eoOSa46lR1OpyTrqGjJtIuo31WSWGBGZUykanOeOtcUWoyu2aUL1W0yzfa3CIWjs4UV4IQHDcltx5I9sUSqwcrNmdWpGnsU7y9tLeWNxKpMUuHMvQKw6H27e2K48W4yWwqk4Sjexy/ixtH8L6tO6XKQwuN/lbs9fT1FfL4iVPC1WtvI8DGSoZbVbnJK+tjl5fEOq6zIYPD1syqes7jn8K4qksVX/hKyPnK2Px2Mny4WFk+pPp/gcySC/1adp5CRkue9b4fJ+aXNVd2dGFyDml7TEO7N3+z4rWMRQwAYwMgf5zX0eFwsKaulsfSU8LTpWUEPhtbdJkl3gRhPmOelXW5YTTexvKdKlJSTPdP+Cb3w103x38dbr40eJreUeEfhbpkuv6vem2LwNdRA/ZoWYAgbpdp+imvw7xe4iWCyFZbQlfEYuSpRV9bSfvO3lG587i8RGupyi3orfN6HlXxH8c6t48+IWqePry5zd3uqzXjShyTvaTfuyfwr7bh/JqWWZDQwEY2jGHL+B6cIrD0KUIv4Tc/aJnXxJdaL8ULeQyf8JJoomu5mx/x+QNtkXPsMfhivP4QoyweJxOBmlFU37q8u/zFRwKwql77mnzTvJ3ercrLbRXtFdEktTybwkJJx9qfozEvk19TGcnUdjjyio6kXO3U1/GJgjv9O1GEBw8ZRufQ1bi1JNizSrKjjaU+5vaUltf2Ud89ysUkGAo/vCtJuVPY+gp14+yTPrL/gn/AHGr6t8SdNsrOIywsuy5CTmMkdj7187m1S1PVHFjeapTvY/QfU7aOztpNL0+6dQI8Krvknivm3rdHlWtqzV+Gz3GmaOYY5t8zcEBueamNOzdxSk5aHT+HLi58NK95ql8WkLE4JyFzSfusS93Qv6RdW+tyyXdw5Ck/fXgVaSLi9Ste6wkN59mt5WAVgM/jVqWpo1KWl7HyH8Tjbt8evGWqxDbc/2sAJosrJjylGAy81+TcQKFfPayeyt+R+pZLyUsngkr/I86X4heMtN1y+sU8U3rQrgLFPJ5iDjurZr4/FUaUK37tWfc9mhUTldG9pfxn16wjmtrnSdMuVu7cxXDi08lpIywYqWTBIzXZSr18PpCd00en7ChX5faR2Fv/i9oBlS41Tw1LFiPbGlrc5VB2GGrrp5g4L3ofcc2JpJT0Y2L4oeA7hyNUuNTgRypaRbVZGX6DI/nW08yhK7ady6WEpyV+YhfxV8HLjUzFb+PdWjjbOJbjRcHHbgOayeKpS1uyK2GnGPutFTWPEXwvspyJvGuo/MpyRozevbLCrjiaNR6NnLHD141LSsvU3/DXjjwrbxW0fhrWri6dX3E3sUUAUc+rsw/KqWd4XCR5XcdbJquJakmjV8Y/FCXUdAi03UZreC0tEYXEcCvO8pOONx2hQfUE9BUy4nlXh7Nqy+85v8AVxUpOpF3aNf9lXXYrn416vb3kqi3i0i0kjR3wyZjx0PqB1zX2nB841I1G99D4fiTDSp14u2lj3zxz8QI764i0jSpxHGE2ja2FUe3vX291F2R8g21Kxw3xS8KLcaDHqk87gxrvQyP1YHhiM1lKHW4p+6rnNT6j4y/4R6PV7i9t7mCRdjJAcOo9MVcJNRtcxjC7uef+LfHnhzwfDcXEOrTQXkbZMb9v/r1NWWtiXW5dEjD+EHx9l8Q3d42q363E0jskc5Y5UfjWcJcuzuYufvG9qPxRjjSTTbiZZISCjhjuBNbR5bamnM3CyOU8FeK5rLxBdeG5pgI8l4MHAZT2rWCURxjJq7ZZ8e/EzQ/B/hS5aeRfNQ5CFuR7Cone17aEvk2Z454P0Hxfrs1z48vv3AupMwwBMHb2z71NKlz63OeEJSnc39NicedJdQhpMgEN2rrilFG7kloTeIFvFUwRx7V2KEQYG6pndq5M3yxM4wjS5431FBE0w4VR8oPao3V2RFq2ph/E+10e6SHUrGNUuI5MHYcbq52tdAlFS1OM8V6ms1ksluSHTG5GNaU6TkQ30Ry+p3xmtS+AMjn61FaNpEKx57qLl7mRz/ePWvNf8Q9Gi5KKKTvlemD9a0qKyOyDu2RSkiJh1yKwauzkxMrpn9bK35jnuXmt9zKMoCc49819TWV6jPNqu1Rov8AhlZtUuUdCYrfOZcjBc96VOOupDabsb+t6tBLei3tIWkW3j+QSJgMawrNylY1cHGKszLe6mlvDLczn5esS9AfYVyt8u51U+VQI9fezlZbBElDyjChW5bPUk1hVmp6G1OF3zGvHJYeDLeyt7iNQkVszDeeje9YztCKTJqTcm+U5i/1rVfir4xs/BOg3ZS4uTuu2Vc+RCD8zH09Priua9TEVFSgVHlp0nWmtj1XxRBpfhrQIdB0S5Zba2gCJGhGGIHLZ9TXZWpOi7Rk7JWtpa/fa9/nY5cNJ1E6jWr/ACOT+DWrzz6n4h8Padp0077YZ2BfI3NuU/T7o/Wng6j5nTjFseMVOnyTk7GJ46v9R8JeI4/EOp2j2IsLqJ4lwMSLvAfODn7pNXiFGn70laxtGKqU/d1uema3r2isPtVzp8U6m2JSR26kjgYrr9qm7NXVjkhRqW0dj521/wAe6L8JvHF94oHh+RLPWfLj1ae2yEtduQJnTYcgZHzZGAOc9uBThhp6LRnfChOrBcz1Rk/GPTbLVo49W0a+W+v5lMts9tEAjoeVJI7Y4z+NS71Ho7sXNLW2x5l8CfiFLY+Ntdu/iw0WjXlmgXSUkuQftEY6upbjPbAqaUJc7dR2ZclNwUUw8ea23im8l8QK7bHl2Wasud2c/OTVyXNHnb9CouUY2bPH9X13xd4C8fP4p8FavBeFLZl1S0mTdHLuHyqTjg8kgjmsHyQk2tX1NKcFOKk2c1Z/HHwT4li/sLxK50bV3nylpcABSo64fpg4+vNc7afkdTjJq62HeNfEngG007+z9T8QWFpHd2pa1e7ulUXIA3YU56g8A+9ZycH1Of2tOMrX2PK9S1bwZr2oi50nWLSGa4iCSEXiE3G3p908+lc0knqjtpXqrm6HPa3rNj4e86HW32W0smDPMNu0juCcA9uRW0aU3uaRSbdlb5HnXxG+Knw78JTm6vfGVmzLnyGiuQ0j4/h2KST1qakHGTUSpSjBas8U8R/Fb4qeOr+eHwwsGkaXK2BdLATPIP73zAbfyq/ZUadT4lLzV7fikzg58TW02QzRPhrp2n3SX+rCS6u5Vy97cyeY5OPU/wAqirUk9Is6aVJy+PUsvGL+Tyd67l+SIhcDA9aiN1udahCC0INW1eHw3oN7q7ZLLERGo6ljx0ropuLlc5cRKUINpHL+EJYTYI0YyCd5JblWPWuvR7lUOb2WvU1prt/tRtptuGG6JwO/vWtKVtEXCVpO5Na3EazbkUoso5GeN1dcHfc6velsb2mauWjVMLwMg5619LklRU8TFnXSukN8RXkmvRHSl1YW0Tr87Jnp6mv2TDVoSppnSp9GangXXPCXw08DXUOgkjGTNcA8yP3oxE7L3WbJQp0XykPw78a6p4kFx4h8QwtFaq/7qMjHHY81FKTvuThqlaXvWZoXXiGLWdSFxPcOsag+XCB94V0udSPU7J1ZTklcZZ61c3F+6L+5hUcBV5rgxbcqepnWck9DnV1678SeJpba71DNtA3/AB6w4+Y+/pXmYSCjUa6nPh6cp1m3qcz8WfilYaLfDR9MVp5nxFBbr0DE4x7mvXa9j7999DpzDERw1JdZPY6zRnOjaVZvq1ssVw0AaSPd3I6tmuqF58rZ10ptUl3Zj/EbWrex8GaXc6vCWl1TXWmsit7tURxLgsydCckivxrOq8s18SqdODTjRhZ6d3fczqV4Rr04t3Zy+mWUOu6x/wAJh4tvdllbOGtrOQ584/Sv1rDUJJ+0kzadGFSfPUehifErxlaa1eKtqPsNojKpdByFJxhRnJ7CtcViUldM8/G4mnTgkzs/A2qSaR8RvBpd0tYv7csFV7tN0aL5yfMwyO1GdQjV4exUWr3pS0/7dZ0SryhUgo3u2tFv8jsf+C1LaVY/te6jbaNPp00ctlgpZ2DxFyTj5y33jnP0r+YPo11W+HMbTlF6S6tPr07HHxZOc8Bh1JWcovTd7ny7b+F/Evw60uDUoL77XazQZu4u9tu7fSv6OwuGr4Oaad4P8DwMHlOOyrDxqKblF6tdi/by6FrDRvc3jsSg/dBvkfHqewxXs8tKors9+hKhUhe51nwW8V+HvA3xc8OeJ/FEFzF4fttSEGuxaddNDNJp8p8u4CsuCMxs2DmviuP8oxOf8HYrD4aEfbRjKVPmSklKOsXZ6dLnFi/aYet7XDuzR7n/AMFX/AcXiPWbn9qP4feDpNKt/D2sDw/rWjrdi4f+z9gfT753HzMJIiMM3XI5r+YfAHiarw5iI5FjK3tPbRdSMrcq9pe1SCW14vojsznL3HKKOcRd5w92ovLufIOi+J7DWF8+K48wSsQRvxj61/W9PNY4uTfNd9T5/C5rh8Yr05IsSXJlc2X2obZBtkbrtXr+H4VXtlsmdvtqadmtTOubOeGR7rRrt7a4hH+tV8nk9D68VzVacaqbjLVDqQbhz0pcsjPvtT8UFmu/skLF0AdEyM49fevKrvG3vA4KssfUd1FMzdUu/Ger/vEtIocKAcEndip9nmWIjrocld5vUh7kVELTwm2uz+fr0xlnAwFfoAOwrHDZROrieeu7szo5P9dre0xcuaZq2GkxWTLbgCPZnIC+1e+8NTpwtax6X1RUZKOyRP8A2jGkAuoY9zWzDz0xncvrXLdRXOum5nOuvZ88Ffl3K93dTajdpDotu9y8zhbe2gQu7M3RQo5JrStiadHDSxDajTja7bSte7/JMzjiZVrKlq+iW56Hp/wp8L/CULq37RGk3Opa60PnWHw3t52tiFwGR7+UDcinP+qT5yDyy1+PZxxnjc/ruhkzUKC0dfe/R8i627vTyZVfK3Ti6mK+J7QT/M0PHP7ffx+8ffByT9nXwvc+H/Anw/ecvP4P8F6BFZRXLbiQbiVQZrkjpmRycVllHhrkU8zhm+LlKviY/DOrJyt/hWy+SR4WHwkpVPaSdvJHlF009nYs93cpLEiDay8Yr9MdqMXzbI9dxmqfNPZHZ6XqKeLv2Z9U0oQ+ZdeFtYi1C0IUHFvOPKmBPoDsNfM5m54HiPDYpfBWi4v1Wq/C5VSqp4eLj2seaeG4pYWIYDCk5CnqK9zCtJOTPNyWEoUnGWjL+v2t5qOkFLWHebZ/NLJ1A705yUmdWY4N4qjzR3jqXfAN+NShFjcEEOMDPBFbTqwlTTsb5dKnOldn0F+xl4y1Dwf8SbW0+1bWjn5bJBx7eteDmNL28dEdmInT9kfo1PqV7qFrFd2l4SJkXbIOpzXzNSChJo8KS5nZHQ+CvEcvh2FzcXBeRODuHQ1i9TNx5WasPiSXWb5p751WDOchiM0pQY0nuzptH8U2sts0GmuBEv3zv5FKnfYvl1MyTxrZS6stnbtufcA3PXmtrSjonua6HzL43kll+MvjG5t5MSf24dhPIztHWvyXN1GGb1mz9DyKtKOGppM8s8UWkw8ZaoGuQNrgMOAO3518lWnBptb3PpqUY+0bJZYzaSfZWYZTGSpz27GlHmkj0IVWnYzPEE+FAyR8vJxW8Gm7EYi/Lcypb15otzthhjBHpz1q5Nt67k0W7GbeXkgkODx7/StYQ0uyK09ChqGpTXEeJZ2cKuPnbOM1vCC3R5sqkpb9DovAt9DbXjXWw5ZY49xGNrZ7fhXkZnTcoJI9LCVowqHoWtySHw/PIyjy2VDjPPPWvDozbqKB9BaPsuZ9jp/gxpY8T+M/Et9pusJZ3ul6ZZ29vk4M48vLFvU81+28E0VLDzntbQ/G+MMRKWNjTiuh1dnH8TtPvDquoWS3SR5Ktz09a+3e9j4uSaZznjX4yaprVwmgJcS21x0JckKPpmlUSS1FzXSuMg8bXPhOALe3pmMirsKtkZ+lRTtzBJPoac6/D3xfp/8AbOsRxmRm28xD8TW1SnFq5hOnGZ4z4z8I6R4X8TT6v4EugYCGEqLwPrx0rk5LvQ5pR5XZnW/Di306aFI7i3S485N0u45w1dCp6XN6Ka1KPxN8PzWcbaxpF4kU0LfuWUY49DW8Iq2pU23ojy7wJo+v/F7x61rrpY29k/7yMtxI2c81jUnJvliR7GMn7zPafFw0vwzZR6fYxI4RQNoH3TitYR5VoavkgjzyQalqU9zc6fEME53Uc13Y4pNtmF4nfxHNOklwW+VsMUPI9M1FSTvYHeW5javqes3zrZ3mUZTlTvzUXbVjJp3MHWL/AFCDUII9Rb93ng56mhtJ6GkW5aGd4wubKWIi2Qq+OT2NdMLKA6zUI6HFajfMISp4xnP1rlqvU5Iye5yN++WYg8kmvKWtVnu4eC9kUlyecVvVV4lxfKxsygqWJHTiue9jkrRbTZ/V9dXxe02QwzfO3yykfePpX1NZ+8zgqt+1kdF4KvZriXc0IDIoVUP3SB1/Csot3Iive2NM6lNNeXV2qZkeQI0oHAUdl+tcknzTbOrl2TK0OoSHVpJIrQKI/lHy5P4e9ZJc0mbVIKMEWGuJIZ/Kd44guCzkbnz6VOilcqElFFzVNO0bXLI2OtS77ZoioxxIx/mKwq8tX3WW1JTTWxD8DfDfhz4bafres6RbOt5qF7sluJp2kl2KOF+boPYetXg6aowcorVl4t+05IPZFLxx46u7u4fF4Am0/KxAx/8AXrGquWbk38ghBJWI/wBl2HxPqPiHxN8RJLgw6bHGmn2iRkYuZh8zvn0XIUe+70rpy+Lc5VU9LW0M8dTp2hRkrvcufE86H4qtW8Hy6eZdQvcx25ZizSyN0TnP1z2qqii04X1d9+/b+tPkbUH7F87+FbkniLSfFHgKx0jw34h2tfy2sMCyRMXWSQDbge9YSlWjaEtzNYihWbqQehc+JvgSy0TwFL4euzDcX1+N+ouU6gj7n+6K6KlJUoKL3ZhRxE8VKU1ouh8a+BfiLY/s3fEKT4M+OtQZPD/ia9kXwtrdzMSLSdjn7Flhwh5KHoPu+lcPt4Yf3V1OidByXNHdbnYfHHwN4J+JGky+GrnSYpoIoFUyunJJ/i3D606jVSPvGtKpJU9D5i+JWn/tB/BW2eD4fa9B4g0yzicafp2p7tkZHTEg+bHTrk1xT9pB+67olL2lXcb8EPizonxD8GWmn+JdfT/hMIUZ/Eulzrsc3HdlD4LRgAKpH8NVRjJx5up1SiqcbJFL4sfDHQvFenm6vtLg814mcxxoMAH/ADxSmuaLT3ZcZS9m0eA/GP8AZo8G6syre6bFcfZLdBELtd6w55wu7p+lcUqUqSbuYxoc0rs4Jv2X/BQZbaDw9DZzRIS4VcFhj+EjBFEUzvUHGMVHRJ6nI6t+z7p2n3l3bXF9dXcMePLt725eWMBuMbXJA/KrVWd9Tb3U/wCmV7b4KeEdGvfP0/w/bxSNFkHYACfY/nWlaTkjL2cKj2Lupab4b0GwbVtXvYbS2V9ryTEAKPQ/571zU5NOw5ctGnd7HFat8Rk8SyGw8AWUzacshM2pzoVLAY4jU9uvNaumlHnk/l/X9aHHSxcqk7QWncvWFot1CjtP97BjcDv6GpVSysjscmzmfGmoJrOunQbcxtFZtunkRuDIR0qqc3ESq+1fK9iHTdMttOvTMrbFZCdhGQrdsj0rr997Gim9kU0vbyW6b7eyMxbon3cf0reCcVdkwpylK7NeJYZYSqZDxnIIPb3rSNSTeh0urFOxPaXygBFcFWPBHUV7+X1OSomdMZe8jkPFll8YdQ8UfZPCN3bR2TLmWSTHC1+q4DETlBWehNaniXVXs3odh4cg0PR9Fi0fxFqKSzSNmV3cBWNetCrd+8eh7ekqdma+q69o66OLaxCRwK2CIzy9bwkmbxrrkSRVfV7fT4X1ydV4ixFEpzj61bqJvU0motX6lDwjr+tX9ld6tfqIpJg3kxRn7q1xV5Sa5YnFTqVJXciHwtPb+EtC1LU7O1E945Zri5n+7Hn09TWFHnpyvI68O5005Hn/AMPXPinx6/i/UwJbXTZS1mrDAkkPfpzXVCUqtV32OTCy+u4z2tX4Y7HoGs+IbnWdRLSXCiS5fYVUc7jwBXW5ypJ1JSShGLurddLO/kr6eZ69SalJtbs53486rYzfGTR/hlHLdxjwxpg86KeMFTK/LEDP/wBfB7dK/FOC3DMM+xGZOSftJPla7LSx5NGp7bG3mnFxvpp0e+nff87PQx9b1qFnZTesqAYCDqvHQe9ftCqQn8bsj0K1dONzj/DNp/wsj4hQ6ZH/AMgzR28/UbjqMj7qZ+teVhoPG4yMIfBDc+WlKrnWaKMP4cHqz034Ua5BrH7Uvw/057iNbYeMLDdLJym0TrjcPTijjbEVaXCmPdFXaozdl1tFnr1k546EOl+h3H/BXDxbH48/bdu/GEXi211fT5rm8t4Psli1vDbtBcFHjVWdySGBBIwMg1/Pv0ZcFKhkOIo1KPs5vkk03dvmV0/n+R6We4L2FTARmn8D376Hk9lqun3EHlghopowJiYwxkAH3Tnt/jX9Pumr2Wnc6ZTfJyy1R574p8Na7od1LrOhW/naY7ndGB80Pfp6D2rlxFCtTj7SnrHsfK4/D47DTc6KvB/gaPhTXrbXNMewE+9vL9B075rowOJvTun/AMN1LwNZV4Wvdn2t+y94w0D9o79k3XPAmvaFc6p4jsLCPwx4umEnA0o7jpuovlhuNvJ+5ZiCdm3+7X8I+LOQ1uB/EOlXw01ToTk69Ff37r2lNaacy1SutfU+ryRwxEp4WcbwqLkl2Xnqfn7q3gWw0PUb3Qps22p6fdyW80kBwm9GKk479OvfNf1tkEMvz7KqWLp3i5xT07s/Oa+QYGlWlTptxnFtXRV/sjxrYl5oJoruN1J5OxiB3r06uUZlhnelLnXnuaU8tzWj76kpr7mSDxINPIj1S2a2kLDKTKfm4656da82tjnh5qNaLiwq5pRoPkqpwfmXtMuobiyExIYmbjaeucjP0rtwmIpTpcya3O3A4mNSN463GrIltJNbBlyg3Bieh9a7aVeL5oLod/PHVdhk11arErp1Oc4PTilOvSjJdzzalZUpKTepf8CeAfir8cfGlt8NPgz4B1PxP4gvAz22l6PatLKyqMu5x91AoJLEgADJNeRnmd4PLMK62IqKEVu2zkxuJr4pKNNXfkd6vwo+CnwCvI7j9pr4inWPElrMou/h74KkSbYA3zRXd9kxRsRxti8wjuQeK/Na/F3EWdfu8joqFN6e2qJ2fnGGjfk3Zep6EMLhsupKWNqe818Mf1MrxX+0Pa3N83/DO3ws8O/D+KOYSWxtQ9xqAIxgi6lJbPAPy45zW+B4MxeYxdTNMZPESe8G+WHpyrR/O5ngcbOEbYFRi11a1Ou8F+IdY/aW+EvjfxJ8adXvNZ8deFWs7jS9eu3XzJLB90UkEzAZdQdm0k5GSOh4+H4hwMuEOIcBhsvioYaspKVNLRSTTTXbrc82vmOLqYhSxDvK9nstz55s45LfU5eFMYc4wOoJr9qy+M4xSZKUvbNrYPFd40FilkiKDMwKkN2rqxcXy8ncrMsXCnh1SjvI7f4C3sFrqtx4b1aQ/Ydd02bT7lQOu9TsP4Ng15HFOGliMmjKHxUmpL5b/gFCLcFF6o4mKC60u6k0+7iCSWszQzoeoIOKMHWdenFx2aOWo5Ua7S0sXpbqfSp4r+zfKMfXgn3rt9hJSv0PQo1JRamthb21Fg48UaDH+4cj7VAv/LNj3+hrSUYQdmRWpWrc9LbqelfCHxCy+K7DW7dl3EgP83GR0NcOMlCNF8p3ulTdO5+g3wW+N9n4q0iDTppE8yEKjRg8gjuK+NqqfOeXiJU4vQ9MS4+1v9qS5KxuCAc9ayscim+pei1/dZGxibdj5Scc/wD16TTTF7S70L+iW9/oumSTR3eVlByu7pn+VWopamyk7WHeC7VItWS/nlDkybt5PQA1M2jOcuXV6HjFi8etfE7xvdyxjMetTMjMMgEYA/z71+Q5w/8AhUqu5+h5JG+Egzy7xGDL4s1MuQWFwoIB47V8o7KL9T6zDSipakN40qzeWzdDj9K2TThY7lrPQzfErsFRV4Ixgn6UqEnz6BWfcyN7CErjAKg5rotd3Zin2My/LB2PGRgVqpIxrTMyYHzMuQAcADHeuuEeaF0cuiV0dFoVzLb6UqscRtdCRc4zhRzXl4mEnNo0oO2vmegXWqxal4IJWQZghRWAHXqa+cgqkcYk13PsYcssLp2M7RfidB8O/Fuq3kNpPL9rt7ZmeEFtuIxkH/Cv2XgrESnl8rbXPxfjh+yxyiux33w5/astr/UG0m6uWkEq7TDITu6fTivuqbgnqz4KNVN3kO8V+IPAOo6uZpp1hCKSOQcGtJy5kaOrTitDiIPBJ8Uao15aeKWkQHMMKSjaPw71NONtTWnPnhqZviW917RJv7KuZbhdxGJEfgf4V0v4dTmk+WRxmu32veHLiVo7t5Y7hDuUnua5JSUXoYOLlK50nwL8di5mWzu02Or/AHWPJrVT5kayqODsdf4zvrpoZmDYhIOc+tarVaEOpyq5zf7P58uXU7yEqsjTNhz1xWKpckuZjiqlRXLXxM8bWtnI9rDOWcnknnn2ro5ko3ComtznPCPxChtY54Cw3Mudr8VlS95spRUVcxvEfxBNrfToJl/erviJ6Y9DVVoN7HLKraZytlr13rutvfXEqxxjop6ZqadJPUScp7lfxxej7HEUO4RuCCrfpVShGLCVRwaUTI1PVYbmzEXKnZwWo5rRM5SlV0Zw+s3bYYbs4JBzXJVd0Qo+9ZHPTyMwJJ/GuOMNbs+iorlopFfzSi/1NaVFoQmrkbT/ALsg/lXM0YVmkj+qrVNctbeD/iYXzyhWB2K2PLX09zX1FbSbPOq39rI63wFLbi2kuoW80bN67mwFHYVjpytmblaL5dzQ0jUUm0xniXenmsVbHG4nk5rjTVrnRGbbSaH6LcsnmSoDLNn5So4X8ad4xib1E3Pcp2q6nrviE2dtMLeOP5rm67c9vrXIrzk7M3ioxjzSOgaOOzCafbxgCY7RKx+d/Vgf4R704qPNZCnLZlPwvoet6hfXGhWDfZ411RkvZnUs0SZAwuPvbsHBHTFVBzcuRdx4ipQgvbNapaP1tp+Rs6x8H/Cfh6WWaa7V2nAKxzjzpBzlhhsgcdD2rSrhYQbb6mdGtUq2fb5G/wCF9A0L4c/DLSvDMcZSGCN5plc4Ls5LnJHUkk8+9XRhDD4eMEZ1q06+JnNb7HL/AAhs9J1f4ya144W4SaDQNMSO13PuQXE2SzAAdlAX1+9V0VF1pTfRfiZYz20sLCntzPX0RyPxY+NUvh/4g6Z411u8Y2djqaNJGbdjuUHDMMjGADmuCrWUaqqN7M66GEo+wcEzW8c/EBvF9wZbHUkuEnUSLLEfk8k87s9DkVcpzqvmb3/IIUo04Witjwz4mfC7wr8bvH9n4cutOiurPR0ad9yK2JMcH8OTXKqXt6/dIFU5KbUup8z/ABFsv2m/2dPHs2neFNVbxZ4ZkbzP7F1K4KTW4DZIim5LDGRtbI9xUVYOh7sdh3gqehsL+198IfH1tH4TsJn03xDb3WZvD+sWnlyEE4yN2BIoxxjNRKajVtHVLr0f3/qRTnPmvY4L4wfs9eD/AImTanrqO9rqUDolleWn7uSOR/4kZeQOe1Eqjvod6nPluzwbxB40/am+Dqy6BPrNv4rsokAR75THcIqtkKZVHzYHqO/WuSpVqWukROrJKyONvf22fi1b6pquqeIvgYZrMwQiGK3vh5pCsN7Elcfd5HuKyjzykrsuhOvzPmWhV8d/tf3szKNF+EGpOu0LBLcTopZCCecdCD0Ndkqd477Hc5xS2ZwPib4+/GLU0GqaP8KkW4a1Ec0F9efJnI5yq5IxXIlBz95kSxFotQj95l3fxI+PWuMY9P8AD2laWzQAMFV5m+o3EAH8K6o+xcNDGNTETm3aw20+FfiDxZff2t8QtUudSlQbgsgAjjbj+AcZrGcnTvymkqcqllJnRWfh/ToFiig2rsG3cqYTjqCKwbdjdU401ZIx/H/iGw8BaDNfkI8052WdoHB3yE4BAx2zk06dKrUi3FaLcxq1IUo3l12OG8KWUyWwaWRXmdt9wxxlmPJNdMKd/eHh/hVy54mvrbSLqyzJ5ZuCUzjgkdua3UtBVJqnNWK0sq2sv2wWytG4xPHn/wAeFapc3U61LniWoYoMi6t5j5Tfclx+hrpXLDQzWkiKeQw3H38DIJKr0r0cNO7R0qTurHE/E7/hYVt4xs28PasIrC5XEuT2r9IyiUqkE0/UwxkMd7WLpP3XuWPEVpYazbxac+sFXgUbpVOMmvqWqcoWudkYxqwUWzU0WzSO3SG41eQQRDO5zkt9PSoVqfU6oxVLRM1z4gsBHHb26KyYI8t25b3NaRmjb2yfUz9V8WXGnv8AYrGFBJKgCsGxtBrSKi2FSXLLQTxv4lfS/A/2PYxLKWZmP3ie9TUcWtzdxfsG79Dk/hVr9zcaQYdMtwBEx3ykfKuetPC1FHY5MtXNTfY9E+EnjHwj4c8Zt428bxCfSdBt3uprdmP7+UA7E/FsflXx3iTmuKwPDE6GF/i1moLyUtG/kjtniIUJOV9l+J47H421nxf411z4m+JryQTajcvJbLJj93GTkKPwwK8fgLLoYHL1FaKC09er+Z42FnieeVWtu9vQqWqa/wDEzxLD4Q8PzLCZD/pNwekEfdifWvs6tWviWqVN7Car4+t9Xg7Lqz0BLPw58PtF/wCEB8GZwx/027P37hz1Yn0r38voxw1Llhu9z6XDYPDZXh1TpL18/U5c6f4k8F+JIPiPouoW850m6juUDMVbdG4Ycjp0rpr4H65GdOTThOMov5po8LFYXGUcQ8TB6LU99/4KKtrHj3T/AAb8aLW2mXw0YEOjuNJjhtzFeRrO7o6ud2J/MQl8Esp9Mn+UfBeWH4X4txeSya9s3JS95tpwk1FWa092zVrqzR9Fm9aliMPSxLjJezly3bTUk4p3Vm9Lu2tndPS1m/n+3nkjsfLSRGSZgFCqThR1Nf1YnNz1PPqV+en7hbuNQVVlt43YIig8nrjrUYptwtdpabeT/XqbQqtU7M878Rf2h4d8TSXvhuHck0fmSWqnqM8kYr5avWxOExzlRV0+h8NjHiMszNywy5k1do98/wCCePxRuvCX7UGjacsmnwr4hKQmx1pCbS5uI2EkdvcLkZSQjZznG4Gvznxk4djxRwlOq4yVSkm4uNlKN9G16LU9vKc3p1Ma8PWbhGqnto1JLQT/AIKceFvDukfHw/tAeBPDSaX4Y8fPJdLpAtGgGj6hG225s/LYAoFbDKehVgRXzfgRnMqOSyyPH1OethbatqXPHeMrq6b79mjjzFVcpxEalRtxmrXe9139Tw601a01QidrpBGqfc3df/rV/SCq08XU5ua0excMZHEzvF6I9u/Yl1H4c6xqXjrwl44j8PhNX8LGE3Wv2azG3gV98piLgiOQhVAYYIz161+WeJc6qhhqtHmlyzV4x63018jD2OGxrlKouZq2h4XceB9KjvrtvDOqz20MdyyRBH3KQGwDz7c/jXr4TJViKMakJOLaV15mKyajBc+Hm4eRn3vhvWreSYw6x5zqMyFlGDg12zyjFYWm5Rq3fmbwweNhBv2t35or/wBkeIp7rbIiBVjJIUHkVzU8HjpVbyehjPL8ZXq3k1axvfBXwJ8Q/FPxEsdD8J+JbnSbnVZDbS3FrctCRAQTJuIIJXaCSPavCzvCwp5dUxOOs4R1s11MsBDG4bEcym430duqMGz0u2vEluIZfm3t87LncM9TXqYTAU/YKy1Kq4SOIqOo2QtpYjl37fLKcknuPWur2DptaWOerT9lG0Va3U9V/ZpdtS0v4k+GCzSG9+HlzKI1hDmRoJopM88jChjwa/P/ABBVKFbLcQ941kr/AOJNHj14Va1anr9pXPM5bOJ3C+Zgqu4sOc/WvtqNeMd+h9FVh7O9uhgZl1vW2lEeY4sqhDVjTxDrVHLojwcGpY7GSqP4VsdRYTf2eqTQz+WyEMrqPmDCutpVYtT2eh7iTU7I0PjFbbfE1l41jgkW28Q2CTs8mP3koG1yMdiRXzWSzWFVTDS+xKy9N0Ga0uRxqpaS0fqc9a3sJB0+7cbX4XnpX0VKvfRnJhKj5uRl/SLo6bI1jdpvhl+V1xw61q7SVj2l+6jy9y/4S1O48JeJIofmNlNKDDL0289PauOdCOvMzi5aqqOL2Pr/AOCfiPQtMuoZ7fWomu54xJtST+fbNfL433W3Yirh5pXsfRmieM21W0S2tnX7ik4boe9eNduWhwuUb2JPEniDU/DyC6t5W8wDJB71UpWM5r3boj0b4s6x4isnjtkdZB1YcBqhOzvcVPmvdnafDz4iafFaeZq0ojkiceZE5681o3fYtyU24taHl/gLWkuPFfjO9C5hutafzArc7C4/+tX5Pm1P/hRrWf8AVz9HyScfYRjFaHn2oulx438QQy7lC3gEIA4JyuM183jKcIRs2fTYaK57Fe6YNdMrLyJPWuOk/cZ6UdJmf4lKeaoLen4cVtQledjLEOzMZn+QnsMdK6UtyYO5lX85887m4Pc10RilHQ48RJJlCZwQBg5AyMnit6dkjnVRvQ2rG7lfT7ez25CwEgbgeSea4K9uds7aMGtGdJot+/2S600ybhNYgge615NamnOM10Z7eFrW5ot7o6/9n+Tw/eN4puNfto5zvt44vNUEgLEuSPzH51+s8EYfly+T6X/U/HeM8Uq2buL7flb/ADM7x74K8EC9GseFlZbtMl1UY/lX21SK0sj46bg1schHruh6jaz2UzrHeEYIbr+dSnfQil7zaOZm13WPBepm4s9QlWPjDB8qBW9NRSJxLnT2Op8O/ESHxmT/AGyI94jK+YD96tKkbx0LpVI1InM3WqQzeIW0q5cmMDKBuSPauFxd7CU3e1hljdNpfiS1lsiVUSlWbpmtOVxjoZ1lzas7Hxl4vd9JKeZjbGQVz1reLfKFNKWhzfgjxZceFtEYI2WuHY7h2zWNJOc9TplOMYqxn3093q94dRvCWw3Hpz6101FpYxbdRamRrUM+j6gNVsJhL8nzRhutKDS0Iq1Ixja5yF7qWp69MWMZRUkIVW9M0TlzOyORLnYqy6tZTFtjJkcYOaKSszolJRhoZ+r3eqXtwkc0hUZ+YUVPeehxqLkynrOpOqhRIRt4GaaV42aG5ODscveXjyo7FuSeBXFiHyvQ6sNSUql2Z7u0ny1l0uerOpZWI5cICDyfWpndwOdVPeIfMV0O8iuWSaLqpW1P6ltUkh+1/wBo21gZ+QMOeHb255xX1Va3O7nnVm/aNeZ2dpNcW3hP7La3KrcXYwWA6euDXHUvy2RlGCc7mn58kGlQ6LaRFYYUAK95D3J9K5pxsrHVSi43kTT6je2Glt5SeXAoxsRcBiffr+NZtS6G0eWpPUd4P0zWDDJPdxRPc3B/dW0Y+RB2J9WqKdNxvfc1xMqfJyW0LuhapfG91O4eOW5isrY/bNkJJjYA45xwR6fhTgr1JO2xzzUY8qT32Oj+HJuvC3hD+37iErf6s5m/eLhkQjC5HrtA61pTUaNPmluy6vPUfK9kcl428f8A2KznvY3IuipCksSxb+6uO/auWpUXxdTWgpSkkny2Ol8WaxqlxoVmdThuYnFgmQ6sFT5Bnr1PX3rfEcsIqTvovMmlGkm7O7bOQ/Zp1+31v4seKNFOnz2ul2+ixSyzSFlFxOXYFfQgAZx71yYatVqYmUfs2KzOm44SnJfFcy/2gZtD8a3DeA9G0qa7muWWOEF8wIQGBCAgDJySx56CnV5a37uJyUlKn78meFfDfxTrXwOvtZ+AvxLt7yG00+Mah4fuLaFpTHbY/eQMuSzBC28egbAwABTqSdGPs7bL+uvz+Z21KsZpSh8zq/gb8QPBl7Fq9/4c1q3v1nkMQntJ/McbjjDAcqfY9KnL5xasmGJpy5E5I574ti3/AOEge3vCkdvERG0jDLb2BBp1oSU3czpRUl72x80eDvh94H+N37RfxB+F3iyyUyL4RtLrRbhothSaKV/MMbjndgoeK5IpSlZnYqUacVLoYOqS/GL9nfWL5/G2n3fiTRWjBh1W1OZoo1Pyh4xw+P7y89Mg1U6M/ivuKpJJ+6Zeg6p4a+MPg6Lxno+rQ3aS3xN3FECWhlY4Mci4yg/3hXHySfu9iOeDaT3OQ1fQdEtWvhd2NvbpHGygoAUx75/zzVRikd8LtJIo+LvAvhOTw3ba9G1uLW7hWVH2jELHhlPtlSR6Vs5NKxEqqU2jCvPDNmLAWSaeJTISdwTO5VH3gw69a55RXY1puLRzN94RgfUFjtQmYYQ6pIRyf7pP9KiN+hopRWxHNJ4ZOYWvIrOTG6Xz5Bt3A98HIPv0ok31KvpdnI+KPEmktdeRot9BecFnRMuF+rKRRTgpsy9qpNy7Hit3Z3vjfxCfF+pXW6WIsmnJz5cMYPYHue5rqm+VcsdEcqh9alzS2Wx2Xh7QNQ8Q2k8mm2zC8tIS9xFEg+ZB1bnrRFux3+7GGhzfj/TLnxP4Xk+xyZuLVhPbllxgrzinBw9prsYukqsbrdE/hG8s/EGgQX6rjzIwWK9j0OatKXMONWLjoFsP7K1FtMuciOXmJhnbV7TuEJPmsQayzJMEdwCOBJ2Ye9ephHdanTdxZxnxmuns9DtNUWWRSkmG8scEV99kWIioOJvOpy0Ls4vwvd3d3cnUb+4l8leYwwHzH8a+lpzlPVHHTqpz02NWXX9Z1S+WC3vmDtxGsZGF+vrWnvM66jlJGzpstn4bw+q6gZrgnLK5zk1v7WNOI6UvZv3mJpniG18Sa4zxAzKj/K4UhRVxra6HYqiluM+NetlLCG0tFdZCgVSGxkmlVU5JSi7MMZiJrD8sOpX8P6kmjeG00TTwoO0G4b/a9K6aSVOCOrDSVLCqKNay1Wz0HRJLKSJZ5LhfNmt5xlXA5ANfN5xhKGcc1Cor21XqjmxLcXFpX1PM/G3iy3tFaa1tEVZyWitbccF2P3QPQVxYX2eBwSo0zgzrHwwzXKrt7JHVfC3T9Q8G+FJtb1ePyL7Us7hnDKnUDrX1WWYWdGgpz+JndlUJ0MNzVfikMh8QXd3qcl8uDtHyvIB/KvUpzSdrnoxq87u+hG1/ceKfENl4QgbiWTfdhRnKDk5zWcsS6uMp0YvZpv5GWOqfWasMPH1foe5eOrTX/jN+xtqtnFcxte/Da7ENgrXTmZbN2M0cQiHyBQfO+Y92A96/AuOJ0OEvGWjjYR5YY2PNskuaNot33u9NDslh1jcoxGGpr3ormXyPnTwd4vD2qXxYFmTBJOQvBzx61+/4bH0a1PmXU8bLqlKvhYt7jj4hdzLGnO4EAhuM96zxNaDgzb6zBOUfuM3wxfPrnjC5uZI1EdrCI/nH3vUV5OVuOIxkqnZHz2XSnjM0qVZbR0Oov/C1xqN4dd0u6a3vYLlJbGeJtrJKmCrD3BGa9OtgqOO541FeMk4td09Drx2UU8U+dO0r3R9ZftX+M/id+15+yVoHxg8QvPr1rLpzXGsybF8rSdXsiIbiNUABzNCVkyCe3FfxHwvhMD4aeKlfLZWpzhUtbVupSqaxbf8Adem3zPqqeGweZ5S41aXvpXv6aP8AU+IdQ+H1o0S3PhjWEXzl3CItnPt7V/ZdaNOqubCTs3rY+TxWUU6bvhJWutjO0LVdU8FazLZ63Y7PPjaMytnDg8H8PavPhCWH93GQvrvueXgq9bLMS1i479TcsNTgQzWoYKJSSu1vujIOfyrtwmIhGbjE96hOEru+hG+pnZuAyJojuIPU56munGYnnjbuTWxMUrIbPqhW8aIEDMQGB2xXBRxCdZxNKNaN2jd+FEz3XibW/EQufs9v4e8K6jfNMHKN5phMEC++Zpoxjvk5r5fjPEU8Rh6WDS/iVIKy7KSk/lZO55lSp7TFPleiTf6HJaOJLG1JVgrIny8deO9fRUKVSjF+TOqnTXs7McHe7C2su0bFPzAevTNdc4e0SuRNKpaMtkdp+y9q1n4a+NekrqNyFstZhudGviXxiO7haHk9uWU/hX5nx9ljxPD9SpBXlTlGovWDT/Q8epTpwvO2x554wtdQ0HWLrwnLE0V/BcyQXUb5zEUYqwOe/FdtPERxWGpypO/Ok9PMyx2MWIao0fil+BDpun/2VGsZCvG3fHf3r2MLhpUIWexpQoSy6j7Pe5cKJMGST7+PvEda75wcqdos7Fd09Xqb+o26eJ/gks9rcmW40TUit1AwyYIpB8kqY6KWyrA99p718hXisPnC51b2kd+7Q6dR43CSoyW3U4fSWtb7Md0AJY+DXv4a1SPLLdHnUpw5uTaSNezeSXFjdKHAwY5AeQP8K64UlCTZ61OpKUOWW5pWlzBLAba5wyqcdehz1rnrKdzeEIvWW56T8DvA3xBbxNDq9v4oZNJWVXZVk+9joD614OOkuVxkcmIxtZKUFsfS+m/E6bw5qCOZgFOB1wPrXzU5KnojxXBuVz0yHxXH420nziwb9394Go1bNtbWNvwVfaDpFjgGJpEPO89KfsubUp6Iz9ZvLTUNcFxazBQzgsEbg1tbliYtPoYfwuvvsni7xJZJ8iteBmcnIzkV+Y53SccbUkup+j8PcqwqXmctpd2L/VvEeoSSBpBqQ+bGP4gK+LzO8ZJdz6zCLnqshvsm6YAjPmHJrjpyTpne3y1LGZ4tUiWPOcY5rbCyTZz4u/MmjJnA8lgDnsD26V1qVpNCpv3TE1NC5Z93GOgPSuqnNtHLXs3ZlE20jyYDh4mP3n7+1ae0VrI53FQdzorXypJoPKjCZgC4AwMeteXOMnFtnZGq5SSRuaIgGp2saf8ALSCRCD3wprhxE+WhJvo1+Z7OEpXxMU1umO+HviN9Eh8SWzMfmvV3ZHTEaiv2PgufPlumzPyHi9Qhms4+f6FO18UG11A6gl23luSDkc/iK+zmopo+IlNJ2Rx3iPwlda1rs2rWl4wVUySj4yPpQoQehUWoK5jXOuxW2kzWd9mY9Fc84PpUqCgyKtSVRWMHwfq+p20rwQE7C5MYY9s9KJ1YRVkyKUKkNzu/Dvw91vWzJr1zdBJdvyrnFcsJylqd0aa36mPcXGq6bPLDqMLBoZ8q2eDW85KJy1r35WGo+Kf7UR0ySDhRzUyrWixU6UxIb8PdRgkiONQMY4ooTvqjaaSVnudBFrWlTQLbnbhgR8vUV1pcxjBvkOJ1aK807Xp7hblmiZPkUnIFKUVHU5XTk5FPRIZmuJLy7YBQThWrHVy0OiKjBW6jNU1G5DyPbwPIEH30jJC/U1006fLo2tTNwc9kZZv4rmJ7mR1JHT5qxlGSm0jn5rOyOR1vV43u3iTHA4x2reK0uxxpykzKkm+TdIea83Ecsquh62FhyQIUkAyc8/Wpkiakm5aFe8uT91epPWnZcuoWSd2VjJiM7mHSso0+aWpjiK3MtD+n7T7fxLfzRvea9FFbFw625QFtgHr/AIV7lWEpVXcxxFlNnpHh3UIdQkhUyEwKgBQphm/DsKym1AzirmiL0vcGOztXchsjjhvc+1cr11O+K9wTWtdaxtjd3XzT5yofov8Au+9ZynybhSjFyNLwfcnV7M2+ps9sCu5JfNCqp/2iRyT27Z/Okr9dBV7RknFXsd34Xa70Pw2oudVuC8yl5yXAaQdgxAHQYFaOc4Qeu5MoQbTscN8QfirPpdpcy3TswcYiPfA4GPrXnVa0o3v1NlCUtEVvhh4A8fa/qdr448a6ZbaHpYUi1TUJP9IlLdH2fwj0JNa4WjOo1UqKyCrUgqbUNWez+N9S8OaJ4anttVeOQyxACNXG7tjH+NepX9nGm1I83DwnOspLoeOXl1C6alrfhu0lt7O3hIu7lSEMiKMlQSeTgZ4ziuHncbzgtD03Vg5ezvqVP2bNXsviFaXXx9uLQSaTYNLaeF3DSHz3BKyS4bCkAgqCBzzye0QVOdKNWNnu7q91razvppa+nR6u+iyxMIRl7LqcH+1Pdx2nizw58U7fQVRBqiW0rzSonnwzkwsNoAL8uSTz07YrnxdScEp8u4sOuROKd3ueG/FL4IX/AOyhrK/ED4RwxW95Z2yy+JLYDEeoyyfOyPjqy5wrdqwp0vq81JbHdUrOvQvIr/Dn4qWv7VXh/wASeN/Aek3a6V4YjM3iu7vLZ4Y9OlRd3lGSQBXcgnAXJ6V304SxN5x2RxLE0qKUG9X0MGytIPCDN8S7OM/2jMzXiKY/mMHA8okY+8v8645JP3up1zjUmrNG1r/ijRvEnhq3vrXT8afdxK9t56AqYpEyV9ip4/D6VlJy3b0LhR0s0fJ2t/ArUfDPjrxB8RPg74oudHv1uVMNxZKTFcZPAli5V1PfIyBnnvXPKN5e6GJpU4axZkeGvGD/ABYWYfEy0FtqtvcGC8gszshZuSZNuf4sLx2JpRjeV2a4WTitTnviBeeOvh49lp3gbXLafQdUnKXen3UXmxq4JUsueVPYgGrvrYdWlUqSvE5248X/ABS0LTDZHwXbXlom9hHY3LxOhPUISWGOPb09KmUtVFHRR5YR94dY+J7fxfpks8GqnTLyBFLaRqdokmATzk4+bP1q5QfLZmtoSXMc94m1jTdduCraQlrdsm2S4tpN0M6kc5BHH0rncZ3dzP2jktDjvGrjwdop0jRXiW6vi0bCEYMcZ6vgcc1K1djCporGH4Hso4pj4f1VdpKZtpiMK4x0+tdUueT5pf1Y66PLGnZFrxfcXnhfS7mezvJLS8VhDHJDJgyo3BXPetaceY5py1s0VdOgeOzRiNodNrMwz+frUclttDqptJWOa8IGbwj4n1DwtJIBCZTPbA9CjdRz710VKiZ5ybhXkjpfEWnC6sQyEgH5oXzyD1xWNObvoejTt1MO4vXvrARzRYkiGOe5r08JdGrqJHE/Fe6u/wDhEVMX3I5csrDivs8hcXUaZnWU50jzS+1CS8SOK4utid/KOMivsKVaF9zjVRRkuZk+h6/Y2FwzW8pyi485n6ewrWeIhGNjvjWhFXTGpq76pe7bi6Hl7/mYsckVy87bMKdRzneR1NprkdmY7XSAIoyw3Hby34120pKMbs6ZVHKXulnx5PDftCbkGRmQAZXke9KdWpJcqOucoumomF4ZPiLUPEcdrdeJYY7GHLypJGFG0DOCfXsK5ZwrQjzqV/IMBg8VPE3lU93sWrXWtU8S+K7lRAUtxbOWl2nakY4LE9hXJm+PWXZe5qVpy0XncwzDG/VKzi1p0OS0SSC98aS6qIF8uyJSyVjkZ/vc1jkdKrVqKpWXQnBU6eLzKWIkvhWh1Wsa3qC2+17rfI4J5OT+FfV4nERpqyZ6lTESUnZFGxu3NhIqOVZc+Y5fqaxw9f7Tehz0KkXd9t9Sz8IL9m8Q6t4luYTMscfkxHdx708qcp4qpiWrrb+vQ5cjxc8bj69ZvRaI+jv2HtXuPF3jPxd8FbPxENMl8U+H/tNs7Isn2iSxbz2twCD80sXmxj/e6jqPxL6Q2GjHL8Dnfs/aLDzcHrblVRcqk7W+GVn8uux9HlePjgceqs482yt87P8AM+UPHPhK90H4na94R8KXcsFna37tawXsOxxGxJAYZO0jOPwr7bguvmGccP0Z865lFXs7p/M+SxeCzDD5xiMNQkoxvzJeT1MxdR1nRMNqensvlufnVSyk9/wr6arXxGHhy1ov5HNKtiMK060duq1Lvw7lmufMuPlVryYs+RjAq8iUlFy7muTVl7OUusmz0MaysS21yCEUDK5P3iAQa+ndWnF32PecUkrs+mv+CeM/h74rfDP4n/DPxD4oEMejeRrmmaI8h2XomU21zGqdGYhkbGR931r+P/pGxnl/FeW5rg6N3Wi6c52Xu8jUotv70enkeOpLEyovWL06WV/+CfHCaVqngnxrrfhnVHdX0a/lt1jlXBUKxxx9MV+68DYqeY5ZTxnNdOK/I+boYetRx1aFR/A2vl0F1C5s9aPl3UImj2kMuO/HP5191z0qsbVNjepOhXXLVV0c34i0XU/Dduuo6TL50cj+WlsTk5PpXzuOoQwTVWk9H0PGx8a2XwVTD+8npYksn8UWcS/2ppgthL8olY7lUf3T6Vy1q2JteUbHNRq4yMv38OW/UvWpSJ5fNCSNtwcnrnvXTgqkeWTb1PVoTp8zTd2b97fp4X+CUsMUKfbvGmtJHE6DDDT7L5n+qyXDp+Nua+bqyWY8Sxa1jQV/+3pf5L8zw8e5Uq0ZR+0/wX/B/I5+0vFkjmWRArBQGyPu+1fc05KpTbR71Oq61K4+a7gghkeVVUxQ/ezjms3VjFNs5/rEYN83Qo2FxN5SzQErIPnVlfBzngg+tebjIqthnGS0kmn6PQ5qqjOmvM9E+M/h9fiZ4Wsv2ofD8JkuLmVNM8ewxxfLZ6iq4iuSeyXCLu/66I47ivzbhvmyvHzyqra0bum2947tfL/InD4JRqfWYr1/zPOHmht4ZJJJwy4wPrX31SpSpQbbN8ZOlCDlJ3I9OvLbU3/0Ny7McFQcke9a0a1OrC6Zz4SVPGK6eh0vwajN/fa/4au7aVhNYuspGSNu0kFvoQD+FfG57ioc0JPRwlo/XoduS4im8RVodUcTqWmTWUh1O0UloWKzqVxnBr3VVfIqi3OHMMDUg3WorVbos2WopqCC4to/mUc4ODXXSr+0tYrBVoVFzM1g7lBc7cK42yKvr61vUlGJ6CU5u/Q9U+COtX1vZM7XTbUxiP15r5rMuWs/Myrqmlc77xVc6jcWQvbbftUfLXzVWlY86TW523wU+KsVxpx0eW42SKu1lY8k1jCUr6nJOvZ2Zs65ruuWdwbqyvGUtzgdMVu5uJpFya1E0Xx/eteIZbsiQMMN60m2zPneqOt+BN1FqvjHxBqGqSLHFFG0k0lwcJkDK49ycV8RnsIKs7adz73h+NqJl+CglzZ+Irhf+WupZT3G8V+ZZ3XUa6R+g5dGPzZJcx7rp8KOH5PrXn0qi9m0dM4fvLmX4xjw0YAOSveunBNznyxOfGLlsYzRF7dgeBkYrockrmdP4DI1KAlcFM8HOPSumlNM5Ky94p29qJLhZhGSFHT+EV089oszqJN2NuOJhewrGMZC8Yrgcl7OTZ004XqROs0WwSPVdPlCKVSGXcx6/dOce3rXgYipKdGovNHuwTp4mn6MxIYraz1/xBo11cgPcMksYI7tGpBr9w8PuSeTqfm19x+J8awks7nF+TONutE1a1kuI7u7XC5KKT1r7pqKuz47lUZalWwe/ttSMX2iQKUw6nnrXP7ZqVkbTfNHQd4k8EskFtO/yLcnKHoDTxF6cLswpzcZWOot/wBn5INHt720vIwzpuyHBPNc9HCzqpM3q30aM/UbPxT4SlFrciTAGF2rnP5V0SoPDP3rfeVSlVe6uVtRt9V1qyMcWi3MsjdStsxrCrVhTV2zSVGb95xZj2Pws+Il1NusvBeouucj/RyMfnXn1Mbh+s0aRp15K0abOgtPgd8VJVDf8InLEDyxmODWlPMcHSi/fHSy/GV5tKNvUvv+zV8SdQjUxta2jt0ZnJxVrPcBHudayPFtboLb9kTxbK4k8ReO0ZRw8Vrb8j8T0rgxWfRf8OJU+Hq07NzOksf2f9M8P22zTbSKdwMGa8DOSfp0rzpZzjWrJ2XkdmHyjD0mur8y/p2jeP8Aw9aXGm6bqdtHBOv762XTIypX3yvNZuqq7UpN39T1oQdCHLFK3oedeNP2crXxeJL37Y+nXEpJM9talU+pWvRw+aVcKrbnz+KynD4hupHRnnsn7IWoWlwZLv4ixOnqlkd2PxNbTzqrU2icMMpqp2lPQiuf2bPDMCZuvGN/KO/l2yqD+dTTxleTu0b/AFGEV8TIh8FPhzYYSdtTnIGTumC/yFOri8TLayM1gqKd22T23wx+GJLCDw0zsgGfPuWJrmdbFzVuYt4XDdiyvgTwLalRD4SsDn++hb+Zpr6zfWTJeFw6V1E/fRfEFnZ6+ohtTOXYKIhJk78dT9PSvuK2k2eRWUpVHzaanfeC9Q/tq9kuUUBI48TOy4UKOw9e1ctS7ehXNCKsbLarcQq5W5LFz/AvRff0Fcs5WR0qMWkZGs6tHdazaaYlhJcgNvMcacADnn0FcdWfvIunRsnqejeENJW/0+HVNcV0kEm9bO1ePYFycFhnIAx6Z5rSPNJczJdSPNyr9Sbxx42trS1lRigQKQwRuMdAPelN2u2xcnMmmcP8EdPf4z/EqfWruHfoPhsgySkgpc3RPyw/8B6ke49ajDUfa1Od2cTabVGmu7Pc/iPpf9paQb1w+bRleYoPvqOq49B/SvQqxTin2OClXam0lozh9b1fSPEGswWus3MVnEy7lhkkG6TA4XPQGuOdp1fedjTnqwhdLUreI9C1/wCIqnwh4QgEFgFCaheIgEMEJ+8FPQsRngeuTW8Y+0fKtjl9o3Nye5iSfEX4b+G/A1r8H/h7LHaWXhaP+zGst2DCYwQXIHc43Z75zWPNBw9lTVrG9OM51OefU+Wf2u/i34H8I+ALi88UaTqV5cKQmlPbZlEcySIY2CBd3D7cndwDnB6VxVOSMeWR2KlVnLkps+gdR8Hw/EnQjr/ieFpNJgH2qZOhv7hlyI/91c8/TFdlSHNDma0X4nPK9KPsz4i/ac+GXjbwl4lmvPhZ42vdL0nVNXjmvPCRunOm3twMBGlhVgCw4wfYelcFWq6KcabdmbUKdKM1OSu0QeJfjhqHhLSp/Cvxm8M3Xh3U5I2MN/Cxns5FKj5Qx5jz6EY9KxlUUY8rNq1Z1GrHzh+z38X5vC3xm1fwj4r+K06+E/E95v0lZpc22n33YMSf3aSjjPTI96e8EkV7ScIXb0Ppi+sbDw0lxaWKjelsrXWyXcuwhwHGM8Etwfb8qhBRk4p6lqoqkVY8f134USXfjy8v9JeVI7mYfvUH8YXd27jHb0qKukdAi2noY2o+CNY8Q6Suma0gV9MzKSiH94wY5bHY1hGEmdsZNbFKOex0qKNLC7ie3ETtLGFy6S5HzEehG7NWqbg7i1buzjPGWmm21WPWIFEcb4Pn2wyFBPQjuP5Zp1JvsTKbbscv451PQfB2hSeJdeCiApmBIWDGeXOAgX3/AK0op1GrBUapLU8Q8D+IPFXi7xpfz+OEEU15IZNOjUZWKEcCP8O/1reoqUZLkRy4d1K83zo73VbGK2skWZD5IOQ+3DIc9j2qU77HoaQjY4v4zalrtlpem3U0kd1ZWt6JJpFGXUH1Iq6M7TscOKVXmi+iOp0oQ6noqXtqCyyKGwp6HHWocldo9GHIoXRgeOdMSaxh160wL3T3/eow5eI9aE0cGIjeXMiaw1dzZBLvmN13QyHp9DU/CzalJsw9QliS7dhF8so5APQ16WHk0jrVra7nNeOVk1HwZf2ixebtTdgDkV9BlVVxrWZtJp0nE+eZ5Lp7nZ9qfYTgoDyPavqIScal0z5CrQnCtzc912NW2vrK2KWyR7pe46ivQhJX1PYeLo04KEVdksmokXAaRFGOgPc1v7WEVa46NZSlY6jTdbts25LbihA+RflH4/0q6c3LZnqU5U4zSZf8a6s4lR2k2nblBniuxJwhc2xVRxgpWMJNTijAB3hGHzSA4DGkpR5bMrD4hcq1Lei+NJYlv9KScpb3No3mQgZafaMhM54GRn8K+U4rwzxdGk4Ru4yR5WbqWJiuRXaZyXhrUGh1V45oCiO2QlerltdYetyW0M8rnVpYuUZaJmpr2tzRlrqRN2PlWPPU13Y7FRVO63OzMsQqUHrqa8OgXt74bj04asbTzEDzsseTk8/hW+EwVbEUopysmdtLLKmIy9U/act92aGn3Wn+CPDy6TYQb4clpJpCCzsepPoK9eVWjlmFVOCuurN6FPC5JhFRpa9W+5f+GHxAn8JfEfRfHmi6y9lJYanHKbyEZaOMttc47/KTx3r5XizBYbP+E8Zg/Zqp7SDaXeSV1+RpQxdOliIVFqrnf/t2eBvCnw9/aO1DVfBHiR9b8Pa1bpNpWuXUUkb3wGMyYkA+UluMAcY4HSvyvwEzjF4nIZYfGwVOrDeCa922y0b17/mVnmKqzxdPEyp8nPFKz3ujyWG9tWAt5GWSMsS25ck1+/KrSkuVu69DzqNaEpcsnci8E6VDctqElq3lKjkRMOnPavLwtlKbg7K+hngsEnUqThtcXxNqOoaft03ULYxiJf3Mg5D985r0K/Nb3isZVqR9x6eZ6r+wV8WPAHgP9pDSE+JVtbnQfEUEmkX088e4WUsmDbXZ9RFOsb49FNflni5k1XPODak8Jd1aL5ko7yVvej/28ro5MDDD1cRFV4KfvRaT/mi1KL9U1ddmb/8AwUI+EXin4RfG281fxbPa38niSPzX1rT1c2l1MnymSN2VQQ4w2AOOa+M8DOK8Fi8mqYKC5OTaMviiuzV3sfUZnyU6v1mSt7Rarsz5zs9Qk3SlxkSOVUgV+yU8Y6kpXd1c+ReJTqO3oWNKubnXdcjxCTDYLx8uQZDU4eTx2N/uwNcHUeOxt38NP8zbvFi80W7QlTKCLlGwRkdVOfXmvflQp2s9nuepiYRlfmV0znZdG1u41610HwxZmc6tcpbWMW7JWV2CqD7ZNfMZmv7LpyxEXanb7j5t0a+Dq+5rGWi8jT+Jeq/2h4tXSfDQW50nQbFNK0ZmYjzI4ifMmGenmytJL/20x2rx8oo4qhhPayV51HzP9F8lZBi6Vd1FyLmSVkc1/b6WE6wXVq0RUFWEi8N75717scfKklGasbUcbTw9PkqJpjNW1NdUCtczgnA2gYwwHc0qtdVrO55WLq/WPebL9pcBraJ4lwChAP8AerqdWnKkk+zPdoKMqEbne+FfFbeA7u88M3qu+ka1Ypba5YGQhZ0yGBOD95GwynsRXwMcLHM5uu1edJvkl+aNqGIVCo4NaM43xz4R/wCET1AxR3H2uwm+azuR91kPIz6EDrXt4fFOtG1VepGIjSW6umZNlYWmn3AvdNYDoSAa6o0EpqVPRHFy08PK9FWPpT9m39lvxrbpJ8YNP+Juk6VrWveHLxtH8IS2bTS31m8DoXmkBC2wkAbZnLHAOACDX5RxdxBgKePdGdFygpxvK+id1062PErYidLMZV6asvzZ518avg4nw18PeGfit4f1r+2PCPjKCQW+oNHslsNSh2i8066TnZNEzBh2kjkRx1IH2GWZtGrJ0Z6Sj+MejR6GCz6nVryjVVjzOTTI7e4N5pOGjkGXQHpX0dCk1LnjsaVKCp1va0HdPoW7KUKpQEEuTlMda7pNTidqnOtGy0Oz+EfiuGya4sLooWHILnBA715GOUHruwVB3u2e/aDqGk6v4QwpVl2ny27mvj8VNyqNR2MpVYJ2seY6vqN94T106lpZ2kPyvqM1y3lHQ8nFuLnoek+FPi1aeLtOWymbEy8EDvXXKFne+xVCU5R94q6nrbaffhkkPytnB7VPPfQh3uzb+Gfii4udVubl2kJmO1Iyx2ZyOT618hnSi6slY+yyWrOlRSTPSvh1mXR9SkeJd7Xjcj6j/CvxziCnKGMs2fo+UVPavma1X6jpbf8AflmHO45FcVOcIxPZcZSdyl4n0+W8hTAyQnBzXTQrqL1FiaPtIaGTLZPEhBjA4HB9a29opNmUKHLEzLuxeUgMnatoVbHPOjd3IYdMfzR8gGB1I4NbuuuXcxnTvI1bLTCLuGXryO3WvPrV7wkjqpU71I6HbQaVIbyznRMbIHVhgdwa8GNdck4vq0e+qPvxk1sjL139nT4k+PfE914p8NX+m21jJBAm+7udrllQA4UfhX7HwFmlKhkPLL+Zn47x3l+LxWdt0UrcsSdf2MvE11cCbXviZYquOFt4mbHsa+wqZ3T5nyJ2PkVkGKn8ckjbg/ZQ8H6deC71DxLc3UgUDEUIXPvyawedS5rqJ3UeH4KPvTubF38GvhfPbwwappf2tLYfujPcEAH3ApYnPMRUp2bSR2UsowcFrG7NWPRvDunQLaWGkWqKqYRRGG4/GuFY7EP7bOhYDDxd1BCkxyZVbdQy8ASWsY5+uOazliKst5M6lRhBaJCfZLvcFjmCtn5kCqv8hR7bm+LUGrFiDSdfvMrba3MdoywVsYH1rmajzXsS+a2hUvdD1+aPjVrl1LYJEpUjH1BFXzwXQdGMlrcyb3wj46+2FrLxEwhIASO5Yuw9fmUKD9MUoShe8kaVVNxdmVT4M8eyMS2uxDJw6qrZ/nxW8pUHE50q3LYjk8L+K7SUTX2tRPAPvRyK/wAvv8vU/SolUp2skVRpSjdtlJfDVxq08otfEksyx5AKRSoPzIFEKsY6NGs6btuUdT+ES6mFP/CRXKGXIYPMy/iBW0q8bbHLUoc8bHPXXwCvgzvpnjJJCFGUknbp6GlTxMb+8jz54KcXozE1r4H+LLOMRzRSyLksGhmbkD65Fd8MXTaF9SqtbGHqHwo8Zx27XFv4a1CYrJtYTMh47Ywcn8qJYin3MamGqR6GLf8Ag7xlYqHuvDV0m4H5hbNjGe5xg1UK9FrVnOqUm9TOhhurclJraRCv3hKmP503OMvdTLnNQjsft3f3emtqRvSpWGJ8yuhIyfQnr2r7urG83c+crczqNHpPwn126v8ARJ70wBSeEDJwqdse9ctSairEOk0zotEvIL+4neOImJDiRgDgEcc+tcLbk7nXyuMU7iXWtixIgs4zuIPmS4wxH+0TwBUWSd7Fxu48rdzrPBup6dqmhNqcFtJd3CxujtasTGPmOGwBzxxnIHFaRUeW/UTTpzXNotDivEHh3xd8WNZ/4RTwk32K2XAvNS2/u7aMnk8kZbGcAd68+oninKF2u2nW/XVW0vrrrpbquiFOnSSatZdD6M+HPgvwB8LfAdj4M8CQRyWdkmfPLbnmlPLSsf75OSSea9fDUaWHoqEDyq9WpVqOUlYh1/XriRhbW8as75CITx7k+tVPXRGMIpO55V8cPDHgm30+PSbbWlsNc1SdIYVik3NKWYblCc7flycjAFcWJpU5RSTs2ddGpXqysk2kO8SeOYvhd4Ug8A/DqUadaWkOJHyDgj78smRySc8VK5sPFQTshTpWquUkfF/7S0PxQOrT/FT4Q3csN20jJ592mU1ORztAkXuMnj07VjbVyp9/vO+jycjvsuh0njjwlrHwQ+Gsmi/EDU5tY17UNM+267ff2jLDEJdu8wpCGKCMAlSuPnwNxOKqcPZxafU0oRc6ilHT1sfQGq/FbTvE/wAO9O1DwxNALVdMhe1iU/KWlQMDx171vVqxdJI5a1P96zwH42adaNcaTYqhnubO+t3uZJG+WRzKrN+QxXBOn7WSSYJ6WtqdZ+1f8MPDXi2Z4bpbZgbcMRJEMDEYbbn3Na4ihGMTOCbjex8Z/wDDNPw/0f47aPZaxpCJp3iBpNJuIpF+Tz/LMkLHt/CV59a4rSjPlNv3koNX0KnxM/Y/i0XUJ9M8GeMdb0m3ug0Qis9SlSNdpztChsL0HT1rqpQ5Lt9TelBRWx5RdeDf2kPg1qXleFvivcXttbXAkSLUIRcKhHAfLfNyOpz3rGvh6N/dZp7JX0N34HeHvij8QfF1/wCOfHfi4yXBzGqE7IEI5K4GcEnj0+lYxjZ2ZXtJU1ypnY+NfhLZNq7apo+oB5I4Fa4tsYKHPp/EPQ06suxoqjktTzH4k+L/AA94C05m1uQsCXBtcfvDL2Vcdc1i02rEVKsYHhLaZ4g8da2niXxShSOAFbGzB+W3Q9Mjux7mtKT0sSqc6s7vYu694LeOwTVrK0IuLF/NQoeoHUfjzVOSXuo7YxjSVy34o1GG+8Jx3tnmQyqpCsOme2alKTJu6iujFTTtPvbFrDUId8MsRSSJ/Q9TRGk27l/FBqRg+Bry58Ma3dfD26nDpbjzLI+ZzLAT/MdK6q1ODSlCNjgpc1KpySZ116lte2rROoYEYJKgOP8A61ZRsjqaU0cdDILSWfQrwEmMloSTw6n0NN8zd2a0Yrl0MnVLmFoHtCxz1jc8YPpXdh5WlY0lFJmLLeRtZXFpcFseW2dvXp+te1hFL2yZUPj1PnfXro2uuT/Yjty5yWHPWvrWvZSufP5jWjRqNQRRW423AaNzuPVu9awrO1jghKWrTG3dyxmV5JCw3etZKKlUu2c1GtKNe8mddpfiGGO0t5L/AJii/wBXGo6V7EJUqMbn08KtJuMpO1zU8RajFqkCahFDhQMYccCtKtWTp3T0PaxMVPDpxeiMfTNbfUZ/Jis3lVRhpZBhV/CsaVdvRRPKwuNfNZRbS0uXNZuILuNNOhS3McDFhLDFtZ8+ppVIznfmOuXtK2sXoZOj3kbatPNJGMQpxkd64sG3PESnfRHNQrv6xOb+ygM5u9ZtoJl3OZN5XsB711TpQq14J+p537zGY+EZPrc6u8124ljBC7MDAjzzj1Ne1HEzUEorl9f+AfbPEumuRHP6prN3qUo0bSn+0SyDD9wv1ryMTip1/wBxSvJnzOY5iq0/YUPek+2yLHgZTBBqPhe/TFzGvm20g9uorfI04e1wmI+Kzt8zy8trV41Z4Wq/eWqPpT9tS+n+PP7Onw4+L8HjSO6vodEg09NISw8tNPMGYpQJB8rlyEfBORzjiv5s8PqNThvjnG5NGlyqVST53K7lzax06W27H2uZYStm3D0KtNWmndNvps/xPlGfUdc8O3baZqaZYLyyZI/H0r+hKlfE5XiJUqz5vQ+KVXFZZVcMRr6Ha+BZY9O8PZSVC8x3OwOe/SvUy/38MpRe+p9FluJh9WVne5r609veRtBNCHhEQOxl65/lXs0aiqS5JbHdOrBx5ZK9zkb3whfwyfb/AAzdkMD8kRPQ56g9ulc+Iy+lL36D7q3TzPJr5biaf73Dy1Wtj7G8I/tCaJ+1N+zRJ+zh8SvCGl3EEMcT2fie5MtxrmnamAVUK5Y4t2IA2AYIftgV/MeYZPT4X4jqYvCrkm5XasknF9+56zjDPqXNKq4ytZxvon39T411t73wlpupaFqtgovra/MLhk5jkRip/Ov2TD5gllbqRXx2a8j5GvXnhMDUUo+/e33E3g1prOwADhZpGMjnH519BlFHlwt38T1Z2ZMp08NdvV6s1LuVLi1F55p3M5Cnuw559zk166SlC9z2VUc43E8N+KR4U1iLUzEvmiF4rZ3UZiaRNhkHuqsxB7HFfMcU01VyqOHvZOS07pHDiq3s3GPVkN9aRR61c2Tw+QokzEhGCo6rXRhlFvl7bGjklWafQr30NjJam2voANr4dHTgc5yD2/8Ar111XTlS9/8AIyrVack+dX+Ryt/oA1bVZU0JFh2r+7QN8rn0rwalJ1pyeH0t+J5E8HHEzbwytb8Ta+HFpceJNesvDrwMsiXAE8ZU/Io5Yn2wDTeJdLLqlWorOC19TDB46VWXsp6OJv8AjacS61cXVuQFZz+7A6DP6Vw8OwnSwSs9ZbndKUnC7Md/GlpFZDw5rZM1nI/RRlkY9xXdjMIqdqylZdfMqOLjTXJVe5mahoGoaNIJrV/tFlLysi+lFGulC6d0Yzpzg7xd0z7A+Bvj6y1jwBo3jbUvE6WN3Yz2Whs0tpJ9nbYhwrygbQdirx359K/IeM8phKnikrt3vZarr1/LuebjvYUm9Xd9EcH+0RL8JtT8B/EKTSo7u+uH1KxvrCbTNQ/0G3vFd4Zy8XRmZdw3DpiubhGhnKxGEcnanFSjK695pq8denfzPOp4etiHzy0a301fY+ePDk8jHEblRjBz0r9lhOMFyo+qy9UqdNXNKWAQyqyyAseoFRKpK77HZKdOnK6NK68F3d7p/wDa+k3XlzKPneOTkj6V506nPUOLFVqs7qOiPYvh5r0Nh4TtdP8AtILLGBISR1r5/Epe0dkedD2kyXUdGj10TXKNwgzzXOqMou7HKnd6oxNLEOg6gJoZgrKcsNwFCvJ2MpT6RLniDxfaufMkuoxxnG4c1u6fJG5DqxhE9F+Cf2XUdNh1AK8g8wkCOIkk5r4rM5J15N9T6TKavNTi77M9g+F0IPhy9lZMM94+ARyOe9fjPFdVrMLI/WuHo3wzky5Lbbp2DDBzycV4SqtI+iikQXFqXUk4JGAeOtaKq27lJJuxW/s2E/MY1bjuKPbyTNFGJC+hW5bPkLz7VbxMu5MqUZdB0egWvAa2AJFS8TN9TF4aF9jS0zQIRKv7gYBGB6GuariHy6s6KVGMXsdXpOk7sBuw649q8irXUXoejpyna+HdEnaxXy7aMoc5LMf5V+tcFu+Rp92z814hlzZlL5Fz/hFb+aTe1xbRxj5n80tvPsCD9K+uvC58/wAk76Esuh6a8uWhQxrgMQxPP064pN8uxUKd9y3oejeChqCt4i0q8ltf4hpU0ayk+3m5FcmJqYrlvRtc1jT10KY0SCK8uZZdKjW0EubNWlDSGPPBkxgA+uKujOq0nU3KqJLYgvtHtfOQXGmQ8rkCIcdO9dLqcxi276jR4c0+cP5ekknHJXOMf41l7RoyaTdyF/CSRjEULwq3PLYDelVztlOEbalabwzPHiZ4Z1VD8xaTgnPX8qG+4WtEgXw7fRlnkgdNzfJumJIAoukiEhk2iXcSmUXCjP35POPfsatTuPUoTaLMg/1+Bj5185ifXNPmCXvRsV5RHIotGuUJyGUyTSDGB04OKE7PQcX7tmZ1xZAIZLhArEEbWkc5H51uncyejKkqSrF5VtY23JH7x4txzz361EldmU1cz3tdelTa8WcsD5kAIB9Rknj8qcHZWLV2tChdreNvke0WTAICyg5A9OoJ65reKizGSkyhNLrDRrLBbzDYh8qIXDLgenJI7elKUV0MpprYy77xZd3l4umXlvCs6q7GGfT8kqDwS7qqn2wfwqbxg9DnlH3bPU/SzVvE+n63OtmbkQjcu8IxwFHXJBPWv1CrKKm2mfHSvGbbPVvhFr8sXw+uLuOJUjknYREAnKjgYz7VyTjeLbMlUcqnkdXouo3z2CxSeXAijeVJ2hj7+prLVRO614lfVrm1uv8AkItLJ5nDxdFc+lcztzalUZOKvY6TwfqWlzunhrD29nI4Vo7SQhQ3oAFYsxHAAHUjmhxjOVugqsptcyWpe8VeI7TwU7aDplyEgMw2W8Uu7JPXe2BlhnB7cVNWpCl7qFSTa5jU1rxxc6FFBqOn3TIIVUyS7vvnr5YA5Oe/1qpTtqmZSlztqS90h+M/x+8N/Dv4f/8ACW210z3moosenRwxl5AzDnaq5JKjdn0IFOtiIQp8y1bOahQnUrcnY8s+BXhPx/4w1Y/H34nW9xp1ogceF9Hum/fzs2QbuUfw8ZCg88kms6NOok5z27HsaUabgma83h+b4reNX0ae/a10HTMza3dA8zMeViz6k043xVSz2OedRRVt7nKfH7V9BvtT8P6FpsNvY6XBr1nGn2mby42VZlJ3E8DOMZPHNKVSFKSj5hQpctNtkX7ZOnSfEjQbu8l8PSaY9tcNbwXEk243EeDwflGVA5Dc8HA4xW0+WeslsPD80dU7o8X+BvxJ8aQfCSaxh0m1lfwpO1pcWk85XdbqfMgZDzglTtye9c060JKyRdVRjPfVmVq/x40H4tapei10bVNOl09GluItTRY42nAQrGkgbD4OOnp+Fc0HzT1NadKUPeZ0uv8A7VXhjW9ZfTfF2mX+n6lPZR20tjqKj7PKMNGzRSdGY5BxnOK1qxhOV5N2tt0FytX0PIv2pxr3xOsrWb4fSTac2gzQX1ndsSS19EQVP+7uA47jNKPRroZ0qSqbo67wL8R7T42eA5vEt0r22qx3CJq9mzAGyvQoEi467Tjep7g96mFR12dEZwirM888eXGnzWrWbORqCHCHjDj+IZ/EfnUunaWrE5TlHYwvg00Utp4k0A2MCS2199psyxKO0ZVVmjyPRgGHuKykoqVkKnBv4iDxn4hSztTONTkMsbARSD72zP3Tj04rKcfeNrciPALpX+KnjTUda1tGb+yX+zws6bccZLnPUnpmlOhWpVOWomn2YQ5Kr0HBNHkD6fcuiSFgI2Y8Yzgg+nNXyWXunRG0FynM6r8UNN0ue78O2tnDqc6xkARTYVTjpuHfrVezsrsmo7ppHmPhn4m3c4n0O+09omtrwzx2gffvi/iQdOcHI+mKThUlK6ehx0KkuZq2h2+i3FjqNqJ7dxcK4LodnVfT2qlJuWh6Ckkcv8VvDt/ax2njjS023mly5+U43wn7wPtXRFOouQ4sTRlUaqLob+kaxF4m0uK+tpwzSxh0cEDHtXL1NYy5onP+InIn8yeMbo8jIHJHr7Vo2rG1OTUbHL65a/Zl+120izQuOcH7hrpw9Rc1jTnVzKYtKGWRwr4/duRweK9qjJ8ysZyqOMro8H8dQyHXbn7UgRvOOSgxmvp5qpPlbPncXWnVqONjAicQS5xwT3qIVOWWpMX7OOgT38SSgDGQelOVdp3PKqKSq3ZpaFqss14qyxpsToXGQvvit8PinXnboerhsdDm5Fsu52OkaoviGyksltFEEPAlK43GvapuM1ZrQ+my7GSxiacfdXUY/wBmija0hiCIFIO3Hze1dtP2UVpojsxcqUaaULGbdymxiYui+YT8qDqTXkZhiuSLV9Tx8RjPYUXFLU15Pg98WfD3w0h+LOvfDPXLXw7fXv2eDXbnTJI7SaU8iNJGADH6VxYGpRo4dtSTb31OHB4ilCjKHNee7V9TH0qw1HTtauZNZsJ7S7jVdtvdwGN1BGQdrYIyOa1weMWIrSqqSdtEPLKr+szrTeq0RHr9/NFHi3k/eyHaF9SavGYyThyRerKzbMq0o8lN6vQ09L02Dw/pi2aBWuJ13TysPmB9Aa9zLqdLBYVqXxS3Z6mX4Snl+Ba3nLVsj0T7ReeMINQtoCYbZGW7mA42kfrXDThVxOcQq0l7sU+Znk4ecq2dQrQXuR+Jn058C9b1n4gfsV+IfhbF4hvbzTtM1i4kn0KzsY2W1aVMw3s0zLuVFcbNoIGZe/b+b+NqGHyfxKhjo04xnUUXGpKTvKztKEY3s21re3T7/u8hdDHZfKkn7yU0te7utO68vn0PmvR1imgFxexrNJMpDs6A4r+lMJQVaKqTV3Neq2ufJYXlq0256t6Mm0HSbzw7cu9hOs1rIhLwN1QeorSngq2Blam/d7Dy/K8RgqzlGV4PoaN9rvnzCWNsK8JVV9cV6FGrFT0OueKjTqpIjfVFsY1i3H96nDDsSDXWlyUmk3r19TprYqrGKt1P0S/4IkaT8N3/AGevjP8AEzxT4T8C+Ir3SZLKCTSPEUXl3hgl2/v7afPyumxiFxyeMgE1/H30hc+x2UcV0MHRg5RxVCUFOzlySTTUlbaV0le+zas02jxadKX9p8zfxJPeyutz4s/a3tPBGs/tH+MX8JBv7Mn1QyQGQlmBIGc5759OPev27wswmMxnAWFWYK9Tl1fe2x7FXC0a0LT3PKri7OlSuYVzGdwD7cbTX38aEsO79DjlGphb3WlhDrcUdqoeUeUIsls8f55q3iKdGHNUegU6vLTvN+7a5Y06KS+8ISa9J8smpXf2e1Xji3iwzn/gTlOf9k181Cs82xsnvCOiMKUvrGGdbu7L0Qy/1F5reG/kuTLdDKlpG5YDp+QGK9ilRjFJrdFSi/ZqSepk3uo6tr12LaytGywAkY5xXDmGJnWfs6a1OGvVq16ns6a9S/8A2DLocy2upRGI7cghuvHXNZYaMqLSkd1JvCJJnefAbwddaxdeOvizazpHbeEPDMct1IvQyXFxHbovPBJ3t+Rr5Di/MIvEUMGnrXnbTtFOT/I8yNOOMzWUoK+mpw3inXWvJJpo2wSSdxPOOn8q+lwdWGEpJJ7I9LFzoUE7vYzfhxYHxT4pNja2r3Eqo0kaRwmRsKCWOACcAc+gxmvGzjN5zwM6UOrR8zRxMMRiW5/I7O68NeLNPuC+leE9TvLCY7R5NjI4B9sCvKwGZOlh/wB49D2I1ZxcUk2j6r/Zo0zQ2/Zd0D4ZePPAmsLayfEDUNZvBbeH57hpilqsUMU0YTcqZDEY65NfHZnmGLxOMr0sPdxko7NLZ9G/Jnz+a5TmNbNoVsNTlLl6LRanD/tK/siftOeLLbwtofwy+FsutWMPg+Cylu9NthaIiLcSSpFKJdhaRA+0kg4AUAkAVvw5mlDBOvOvGUHKbdpO/RK6s3ZO3l3tdnsfU81fM40JXlvdnG+F/wDgmd+2lfbI5vhrYafuGSb/AF63XA9wrE19GuLMHCV1d/I76OBzenD+F+J3Ojf8Ek/2ib0LJ4j8deEtLTvtu5bhlOf9lAP1rLFcZUVC1ODZ0wyvM6jvKy+Z6L4Q/wCCVTaZCE8VfHkvlfmTS9Ixn15djXlvi2tJaU7HWsnxMvinb5HXaP8A8ExPgbYvm/8AHHi29zyViukhGfoFryq2fY2c+ZJI7aOQYRK8pNs7HQf2GP2dtD4i0DVbtX4IvdZkYH6gEVnUzvH1I6yOtZRl8X8N/VnQWf7JP7PFpJiL4QaW744eZWkx+JNefPH41u/OzaGW4CCt7JG/pvwD+F+hZudH+EeioEXDSrpcZA9yWFJ43GVo2c2aLBYSEdKa+427HQNEghUQaVbWsP8AD5EESj9BXG4ye7ZVOhQi9IpfI8Y/shNF1DWLERhR/acu3nrnmvyvim/9rNeR9vksfZ4axSdUKiQknkYPr9a8LVOx7lO1yFihztHOfyrVJ2NGhjRdSij39KXMhwsIts5IIUg+uetJyRrGSRYtrAO3XjHbtWU6iSNbNrQ1dMsyjD93yOBxXBWqXRUeVHQWaRW8e58Y9c150pObCVRROz8GSDWtETUIsRqsrog8/htpxX7hwjReHyGlGW+v5n5pmtV1swnI1HtIMEyx/KvcS9T/AIV9E3fY86/cqS6ho8c0VvcXEcc0pYwRySkNLgZOB3xTm2+hKlFEN5qFiUN3LYKU3cylhuX2qNXqNy6lNr1TAJIo3JXpiQtjnvxzQ07EpyZZe8cWlxaxzTxuJ41j8yIbZ1wS0mQcgA4ABwSc+lRFzTsnoyuVct2Vr6/lu7i2u725Dy2sskloYpJIxGzrtYlYyA/HQOCBngVoqEl719yHayRBNq8nyq8spHVj8oHr2NbKCMG7MrzapluUlZSMAvKQAf8ACm4qxfM3EqzzqQX3oN2eTJkjnuB1qLaEIhkuGRQn9oAN1Lxwk55/IVSso6kNtMq6hI4C/ap7lQ5VdyL94t9B0qJzildEyneNiFtCjuyrQu4ypyGcgY+vHb0oV0ydWipd+H7ZQXismcoSPMLOcfn2rdNpDUJPVFGewZkxa2isMn5AS3X6dPxqebqS9dCre6WLVC0+lNGqrl3LlQPrkgfjRHV3TGpcu43QpfDPiC5uvI1u1iFjArzyXd1tXB6LHhSZmP8AdjDEd8VM68qcuU2Si1cnvdO0g3QtVt7ySMx71kgsHKOCNwwxC889OCO4zWyqSa2JqRXKPTTreaDyxoWsybjyIhCvbp+8bIrnfPUla5ySclTeh9maHZSa3qVvJZ2qxWbuA8UTBjIeOSew4FfrMqb5rM/PKkp1Lvuer2etWPh3RRY2ibnjcCOLfje2OgHoK56snayNqNK7Oj0bU7u100XWohJJyMsrfdBPYD2rGU2o2Ou0djOn1a+1TUhDGfkiGZWx90egrjbfNoOMIwW50ei3F/YgandxCPaMxMgA8sD0H94+tVDmbu0bXi1oZEWs6D4r8Z2ugarfMhF7ETGl4sTmLDF2XIJlYEINi4Pz+1Y8sKtW0uhhUlOC02PQPGdiNP0Y6zrbiKIsY0EeMW45+XGTtJAP159K0qxtvsJOLfLE8dt/EOieI/GunfDnwLp6pJe3Bl1O/I3ypbKct8x+7uxjiuejSjOdoouUpR949J+JnxLOj6azW0bJDDbKkUW7BCgfKoHY131qkaUeUzoweIiqquk11/yML4b3eryeEIl1SCaP7Vei4ugsTNmR87AzYPAUEn0AJrJT5o2iiq1qHmfNX7ZfjJfHviDRPhH4W8Qiy1nWNdWwvdOkLCa2VH3STR4GCoRWyeNrLjncueaVOOIpyTkk10e716afPW2z62TKTqSd7aM9Y+Knjawl0bTtC0+RZdPtbOGC1t5nIMjAfMzd+eM10QTUeW5NNtXPG/FvjPw1+zr4N1/x14tu47e21KNo9Rl2k7EVgqMVHoc8dcVqqcVsNt813ujI8DWun+LdAvNV8L6pbarYNeG4eWJiyPC+0Eg44bbvOOoOM4zXFKE0/d1OyNVTSdjZ8d+D/CXivwZfeFNUPmXNrAJrK6Y/Og69c/wtjmtadmrMbc07o3/hTDo/jr4AWGpPBCdUimay1BlcMrSRKwbj/aA3D6GrbpqNhydnseEeMp5/g18SZviJaRlrfVI1h1a2jJRZFVsLLjn5lGRn0NcyrU6Sate+39ehnKmk73OA+P8A471HxBqdp4U+D1tHLr+ou81m7fNBZWvBa4kI/hGcKDyzfTNRKsqjBYiKkoJHmOip8Tvg0iQ6d4zn1aRJnuGuNVG8zyOf3gyOg+UcdAMelZRgnWuzodJqGjKusfG3xz8RpGsrPwy1nfPf+XdzS3GYkYjJYAcnrkCtq75k5dRr95CxyvifUIfg1p8eoWt7JIivIJbUnLag247s+ueeawo3nuKNJUYu+xzup+L/ABJ8Q7E32iWT6ZZXEoMhkbMhP932HStXJ0Z3SujOM51tUQWfhfTPD+hTagbiO3MT7pGY4J9WJrnlN3vc29q3HVHBaek/ir4g3uq6baNDZPEn2SQj/WMv8Y/Q1sm2kcc1ed0tzsNO1rxB4RuEGp2H2i0Ay01lw4PdmXoffFJQcVoaL2ravsdDpHjrwj4qsZba31COWO4Upg5wp6FSDyD7VPtGnytG0MRGqnFHGeHWu/B/iW48FXbjy9xlsTu4dDztFWuWSuiYwdPdmtrmoWl/E8T71P8AEGXlTj+XvQ11R07RZwd5MYriSHzNrfxRj7rL6iuilH3rmNNyk9SlLcbI2Ct8uDhhXuUF70SnBylY8R8WSSXWt3TPeeaqykBmHIr6WviFCPLE8etKNOtKzvYp6V4a1vxHMbXQ9Eubx1XJFvAWwPXgV5FfGU8N/FdjhUpVJaK5Ss9AutQup4obKdhaqXugkZJjAPOfStaNSOJaXQ5ZR+tVOSKem5JZ6lBFKI7KyAiJwzvyTXr061LBNKKudFGpSoVPcjdeZ3Gn3F3e2BTSNJnmZIDJJBZwlyqDq5x0HvXbUx9GlRU6suVPbzPqJZnQw+FUrKK7H058Kv8Agnb4S1P9mIftKfHv4wXWlT6sw/4RjwToFmGurlMZ86eaT5Yk6DABJr82zrxHw9GU6GFa54y5bP8AF6f5n57jeKZ18S6VN7M9x/ZQ/ZK8DfDLwLa67o3gjTLrxnqAYrqeu2wvDaxN0Kq42q+OhAzmvyHOeMc9zbGOEajUNrLS54eNz/FYiuoRlyxXbr8zt/Cn7PHjPxR4lttS8fzya/c2E73FgviEk2GmIhBUiJvkXAHYZya4v7UzOvQdCnJwVtXe3r1PMeYOg7Qdm92t2fL3xe/Yd/bA/a0/aT8UfGHUvEukDS73UhGninX79ILdokAWNVCknAUYAx2r9MyzivJuG8ppUlNuSjstW2ffLF4ChRpzjXTbitLNu55V+1d+x/4R/ZTn0HU5f2pvBfjjUr+RlvdE8OibztPYD7zl1Clc8dR9K9/hPi6XEePcp4acIx6yVk/Q6MtxtPEY2FWrFqKfVWPIr69k1S/TR9PGWmY5frsXuc1+sRjVxNT2cXv+R9TXq1MZV+r0ftdfI2NQ1Gw0nTotI0uELDD98EfM7HqSe9e/GVDC0uSG3U7pqhhqHsKS0W/n5nu3/BOy++IfiHW/iR8L/Ayxmy17wct5ryTX7QKlpaTxyySAKp8xgDkKcDvkYr+ePHCjktCtl2ZYhe9Co4wtG/vTVknqrJ919zFkFb6tmkVCCnzNbu1k7ptaO7120v3R4OYIdP1jUdJSQGK01KeJGXuA7AGv23h3FxnkdGpPdxX3kUaKo1asX0k/zL2kXA+1uJmyu0Dt8wrujWlXm4neq2iRmeJbf7Nr8ZtISFlJMYHasK0Xh6sXfc8/FYVU8TGQ++bfHFp+cux5IXlV7ms8Ti5yapQb1Lr14tKl3Pbv2UPBOgfFnS/iZ8ErG7ube7vvAUuq+HLyKYxM17YSJNtYDlg0ZkGP9kHtX5P4y4yOTSyjNIJSpQq+yndK/LUur+qbXXbQxzKaw0ISo3cdm35o8u8dJo1j4purbRr53too4UaWUgNJIIl8wkZOMvuPWv1PhyrTp5VT5dI2v231PUiqare5K8bLfTp8zlrieK+V7RD5oPPloCxP5V6+KxlKFF3krHHi69NpweppaD8EPiL4ohii07wFrd7bbWEUVtpkrlzn+LC8DNfA4/G4Wo7VKyUeiujylgatVe+3yrodpH+zB+1L4i0/T9M0L9mjxgRY2IiUDQpY1J3ElssAD161pl2aZNgaFvbK78xxlV5I04U5aeRteHf+CcH7cHia+gnf4FT2ESMSTqmq2tvkdOQ0mf0rmxvGuU0q0Wqidu3UqrhM0qVYNU2kvM9J8P8A/BI/9qZ42m17WPCekRAAuDqjTFQemfLQ/wA68LEcf4VtypU219x6FLAY2V9ErnTQ/wDBIHxTqqJD4m/aJ02EHomnaLLM4HsWK+vpXm1+Oa04/u6f4hDI8bWnapOyPS/Bv/BOv4d+DPgvrPwJT4l65PpfiPU7a+8RX1tYQwXV61vu8mLzXDhI0Ls21Rkk5J4FfKVs0li84p5jWhedNNRV3Zc279Wejh+HsPhouKk7vd7P0JvDP/BL/wDZR8PHzG8D32qMh2mXW9XlmByOpRSq/pWmL4hzWvL4+VeRS4dyty5ppy9Wz074Z/s4+APg1eWurfC7wfo2g39rC6WuqaTpMCXcaSKVceeF8wqykggt0JFcbx+Lqw5ak20XTybL6ErwpJHXWui6hDaCCGZQoO5kWBVI46kbeKiWJk42uehChGP2V9xI+i6vNIjnUGfPeGbGT7jt+VZKTg7p/idLv2JbLwcZS0r2tzhny6GNuvqOamrO6uyYvni32LVv4XjZt5F3tXIUC3JxjtyORSUkZWbdmXrPw/4lUNst1lt1kUkTWYx9CaTqXg2ldIHQqWuZfje78ceHrnRYfCvwJXxJbX4caxe22vJZS2JLAKVidSHAGT94UoVKPs5OcrPp5mFaGJjNOnG8eup1kfwzsp4BMLu6ty5AIlG/GccZXgkc8e3Wub2knudsY+5fYS2+GV5FcSKskE8IwbZoUdJNvferZAIPofyqvapA4Nxuh0nghLKY2U29JCpIDSAA/wD1qHUhawcs0LF4SSXKDT4JgTgiYbh09+DWTqOOxaV9xknhB0fy4bWKEZwVWIYP0o9pKT0YJanhfjbwL8Vr7xF4j1rwt8LdU1jw9b3wjutT0m3817KXAyJFHRSDkGvls94d+v4j29Gf7xLWLOzBZ7DB1XQqLR/ecg3hi6uLMzRarcQDOTHcRqrL9c18VKnUpVHGpFXR9Xh68p01OL0Ma/8ADXiOAbotc4YcHaDS+sYdW5oGspVZL4jIudN8YKfl8QgAf7ArojXwKX8MzTxC+0JBpPi5+nirafeMUSrYL/n1+I1VxKekjR0/wz47MgMXjCPB6ZiFcdXE4C2tH8TT2uPtpNfcdn4X+FPxi1mYfY7l7hUj3t5dmS23+9j0968fE5jk1OPvKz9TKpUxsFzTn+B6V8Dv2dfif8T/AB7YaR4U8UaPNPGRcNHfXdtCi7DuKt5rYPTkd658PVjiq/ssPS9/dczstPN2R52OzGVCg515Plemib/I6Lx5d6kfHWtf8JBe2jXTai7Xj2EUUMBfofLWH5AuR2HPWv2bhzMJ5hlcatS3Ns0rW/A+dnThTaUL2tpe9/xOPufil8MrPxsnw4l8YWkniQ2ZuotHjhlLeUASWZwNq8epzXuN1lH2ij7t7XOGWJw0cQqLl776BfeNYhCYIZAiyZwscucc9+Mgf41u2+W66nSuVoyI9dupm8mxsotpBZpPKJXoSOaTaSuc9ZJPcrS+KYZmY3N3NCyKUxGdqkj8OnvWidlcyjPXQiXxDbSBTHMzHG5jlmDfyzQ3HdGt2lqxZdSkcsTGwbnCsflxjnBNK6J3IReRM4CkA4JHTco6468iqTSdzNq7LNqJrtiLaCZ2zhfLXI/Wpck9h8yjoXk0PXLj5YdHlUg5JckDPbgdO1LmsL4h8/hb4jT2kkmmafYQyyQFLe9N0UaFu0gwCCRwcEEHuKUoue5zTjKZp2yfEKG009dX1Dw/c31jZ/ZjqM9rvadcEB3jPyBsHtxWX1Z05Pl2HCCtZlOLw7rUlzKx8R28judzJDaqFU49AOB7VsoNrc25YtWNXwH4OS98ZWS+JdM1HUdHtbyO58QQWNi0kpsY3VrhlVME4j3dO9RVqclN36diU3ZqO/QwvFXhjQ7XxPc6jIt3PZXd1JLp9q1zPBbxQM58tRDuGMLgfPluOSaVKKdLVv57kVaMou8txsPh7RZLhrjTvCtpAxBDGKJcnHvXRCmrWQLV7EjW9xt8sREbcjoFBGOtUtHexteVtyo9rcHfMbVXPUq2euP1rVTsiJXa0HLYXDMbg6WmckAqw/pWfNzTuZTUnTZ638PPiTc6ZfxwQl4ZYxmZZ24Y46qeOfzr9RnWlKR+eTSVRqJ6h4T8Uy6jdx3uoeUWllHljf8AdGeTj8azqS7GvOkj1K01q2vLApYDakLcnacbvf1rmnGUlcmNSK0FsNUFvPiYlrh2yIgM592NRGMVudc0pQJfE/jK8gQzEqcqdrKflB6cVFWXUmEXeyOV+BYtL/4hXnxS1p43GjxNb6TJJJuO98eYwHIBAGB35NcuHvKq9BVFra5oeNfjn47+IHjnTvBXgnRTqz6fObmS1t18uGMgZWS5k+6AGC5GMsN3UkmuipO8rR3Qo04RbjDS53/hbR/Anw2tdW8Vm1gOsXlhHEkix9HLB5MFe2WkA/2QorppctKm21qN05KyTM/UtX0Txv4q0q38L6ZaSzW1wk+pxSRyFIbXy/3hmZwBu3Z2lckdc8DGE1TrK63TWnl1/rzM3KoouLZhfH34w3FrPqeleDLmK30+bT1gSOVNpVQoVZODgPlTgjoCa55zfM1HsYxhJr3mfBfgnVviK37Xuv8AxI8b+Ik1C607w40fh9bxyG82Q/vWZjyW2qo9amhTTjK79466PNFNI9S8FeO9RvPN17x1qETSyXXk2FpahsKAGYsWPTp1rane2pU1yy9Sz4Z8I2/7S3xKfSfEYRvDvhKM32qRP/qry8b5oYDnqFILkH0HrROtyzsjWMOWPM0c58Uf2cr3wTrlz8QvhL49utC1CVjmztZD5N3kEhXiOVZeBngHHQ1EZWu2y5Soxhd7ni/jf9tnxZ4EuZoPjNpK6VcmKOFtZ0+Jmt513fMGTqhbIHce9cvPUV2tzOlXjduW3Q9b/ZI+Omn2/guXN0kkeog/a4kJJinZvlYjqCR3x3qYOrUjfYdSqqj90rftJ62NQ0+4tTlpGAWLavV3O0AZ68/zqGp81kVzqMG5I86/Zm0e20PVvH+jXsqTa2JLKCF2AZkthESY1B6fPvOK0VGcXdnLRlGpUbtsJ448MiC7EtyP3PziRDD8zPweM9uv6UndSudzq+7Y8we98M6HqvibWWZfs1pLbTpE6fPIrhlC49yBk+mah1bzaM6dSSkedeJheeMLmXVNVaK4upTmGKMfLbqOiD0681tBJPc0dWpJuPQZpgfwfLNNeNDHaRxEzpcNtRSO9XOnJ+6inJUYO+hw+q+J4PixrFzY6OSmkW7lmBZv9Mbj5R/sDj61zunKD11ZxUK31mpZaJfidhoulWMOiTWnlpFNbL5tq2eBgfMp9sD9K6VFLRHbWaUPQr6TqWmeJImk0zUUkkc5Ko/Q+1JSS0Iw84ybSMK50238Pa619BDHHHcvtvIgmMt2es6nccacKUuZi/EW2a80eHU7fC3NgweCWMnkDqPyrWjT55WN6yVSCcehl3Hie51vRY9TtLhTIqD5SevqDVuioPVmUqmmpympaobllljHltuPykjKnuPoa6aSgOg5X2NPwz8Ovid8QbK71LwB8O9a1uHTlDX8+laZLPFbAnGZGUEIPc4rpnicJhmnWqKL6Xdr/wCZtUqKNl3Nzwb+x14ZW4k8RfEi5kvLmb5jplr8kcZ7bm6k185mHE+Jr1HToK0e5H9kU4TdSpu+h6Npvhm18K2i2PgrTbfTIVTaUtogpPsTjJ/GvJdWWI/iSbOmGEpRXuxseMfFL9jvWtd1G88SfDnxE9lc3rFruwkciOUnk4YdM+hr6PAcSfU4KnNbdUeViMj5G6lCVmzxnxJ8Gfib4EuF07xD4Fv4yZNqTW0RlWQ5wACvrX0mEzXB5hrGe254mIwuKwcL1IO3dan6L/8ABP8A/Zx/4V7+zN4jtvFPg0P4n8b2yLIZYB9osrIMNsKqRkM/JI9x6V+M+JHF0cwzyGDwUueFLa2nvd9H/mfJZ5jKuIrU6UJbaux6J8SvhL8SW8HWWt+JPCOoaBoNs8NpoVrrUItpLjawU7ImwzAdeBg8HPNfJU6FfDwlUxF+Z6/eeLRoJxlVs1vumvLr+fXdaGN8cPihf/DmKGy06T7JcWdvE9sHbDXcnGEQDqcmtckpvMMY4w05evcmlg4YibTkk7X6/wCR5B8YP2mfjXo2nX3h258OX1xPqtrtfZqUZgtd3/PZmI5/2RX2GByPDVcVL28tt7p3v/Xc9DBZZRnW97X+vmfKvjX4pftT+JbeXwfd+NbyPSbRdqxaXI4gb/ZGwAGvu8syjhmlW5+Rc3d7/ifS0ctw1KS5Eubv1OYi/Zx+M+sWn9rXHw48S3b3A3wXMWlTOZPfOOa+2gsooQ5J14xbWlj3lk1fFU3qzd+H37M/7TivLcwfs++MZpGG1Jv7CmA2/UgV7OX8Q5ThIy9rWjzdHc9PKHicBGXPTk5bXsdVZ/sRftheItXWwsf2fPECzTqWjjvEjhLKCMkb3HAJGfqPWli+K8np0XJVk1s2rvf+vwG8TWrYlUIxanJNqL0bSsm0uybSb6XXdHuP7FX7G37UPwU+Nl1rvxX+Gg0fRNR8L6lo9/Nc6lC5ja4gKxhkjdmPzhexxX5P4l4vBcTcOwpYGSlWpVYTS2fuy138j0MswmYYfHRnKm1brfzGW/8AwS01zXvFmpa34h+OMGkrqFzJNDp2neGJZ235+ZAzui5zk9cV3ZVxjHAZbToSb5orVWZtj8ozWtmNStTmuWTudz8MP+CSfwx8WPNZ6p8c/E9xqVmoN7oUOiQWV3ACc7tsjPlSOjLkVvivEPH0IKeFhzXPJxWX8Sxm1Rs7dz0jSP8AgjZ8At1vqOp6d451UqdoSfxHBCOvX93HnOBXj4vxA4sxUOZRgvvMMTkPHeNUWqtOC03u2SaJ/wAEWf2arDUL3VPEXjTxjOs0xa101bmONrWI9IzIUzJjn5sAmoocfZ9Cn7/Lzdz6PAcO1KUU8VU559baI7v4bf8ABN39lb4QeIYPFHg/wXq41S3ikjjvrrxDOzFHUo4wpUYZSQRjvXlZnxBjc9wzw2PUZwunZrqndP7z2/7JwlrON15m7ov7Dn7LmjXRu9M/Z38KeaT80lxp4uDu7kmTNVV4hzWVPkVRpLTTQ6FhMPHXkR2+ifCDwX4Z2w+HPhv4fsgCSDY6Jbpj8QgNck8yx9aNp1G/mw+r0G78prNo8iKy3LTQRbSNyoQqf98Akjp2riu76mjUehTn8DNdzmdbhroBTsaOZirD3DYI69CKvn6DUEtbDE+H8KMc2JxIOCGyo59TUyaeoOTZEPhzAHluxHIJppB5kglYlsH6jFJSS3JVO7A+BL0gFo5WjVcKwkPfPHQ8f57UnOTVjZR5SGb4fSSuo07VLxYwFwrW6uvXJLMq5I7Zq6c7L3gm1JJomtPCV8+3ZAkka4LhUOM5BGM9DxmnKSlqY620L2l+GL9jLLDov2nyAqh0hP3WIz2yvIzxmuapXdNWHCmnLUv2ngqyvrqS18QaPNaRTYFvdwWu9o1XqSM8jrWUq0mrm0Y8pLa+D59C1BriG80qa0kiQQwjRQGLdC5Z2O4HJ4A4rKHNJttm/PDlulqJH8PdNjuTdFAGaMgCO5cIx91BwO3UV0ym+SyZzevU6fQvAPwu1PTLuyufiD/YGuWUCyj+0rO4e2u42D4EUqK4MmVAIIHWuKMsVKpK80kuncTqyo1Yr2LlF9U1p8mUNQ8H+JND8IS+JtO8Max4gRIpvs9lpFsHubyRFyERHKYLZGC20c1nRqYipWjCUXFPr0HjalPD0W0m/wA/8i7o+hXsmh6fqWr+FtQ0Se8t1nbS9btvLntSwyYpApZQynI4JFejJyi3F6mFBqpRUlf0ZqL4bW4Bu4poArsC3lhct7Y54pOXM7mkryb0A+GIZ5MW1tE69XaKIncB7gcfjWdWXK9GOKi4kE2gRxvI0ejuV2ZUyNu/Dp/QCphU10G2tjPu7OK1g+03luDD56oHtbZn3M2dqgICcnHT61nicVSw8F7Vq7dl89hyjJwc1tFXZwXwZ+MngP8AaA8Dt4+8EPNFBDq89jPaXymOWOSNtpDIeRxzg+taVfaUKzpTVmrP5P0OTL8VSxsOeHRnzr8RoPilafEbxP4k+GHxd1Xw/bDUmg1KLR45WFzGRgqwBCgdOT6VnWqQda7WrW97HGqdac5zir9Ds/2WP2d2+Kmiaxba9eaVql4Y3MVx4g8bQ2PlYGQ+wckexzya+OzfDSljL0qijpdqy1+bPey6tUo4RcybV7aXZwXjHwf4d8J30mhtb2jyxM0cjxa3LKMqSODtwV44NeN9QxlW1SNWNn09096jiaUFy1Iv53Odgj8JTwGYxpsXhtt7I3I/CuadDHQdr3+SO6hi8BUTvbTzZJC3w1ijBvJpFDL/AM/DY/CocM0vaCX3ImpXyqGrkXNO134L2U6tefaJAq5CtfOoyPoKmeFz+pH3Ul8l/mQsbk0mk7/ez1C4+IH7MGkfDfwbf+HPiB4hbxVql3eTeJIbK7uBDp1puCxRFsYkZsbsDoCK5MVkeaQo+0jKE207wcErNPR3v11v2PPo411sbONeNqK+F3u330PPdL0wad4gujaeLL2W1urxpbSW50+48yRSfX5e3HFb1OevRgp0kpJWdmrDowVBySm3Fu6vudTqOsavo149xpHhu6miuI1EksrEAOB0AfkEjmvteClUp4apSfR7Hl5tU5akXFdDA1jXPEV9Itw2ixwyldjzKYw5XP3SwGcV9xGg7XaPFb53zNakcUetsQryQx/KfvuW5P05q3GSL5kt2Rnw9NPK0114mY72G5YkYg47cnFJQXVEz9nLUfD4c0SBxPLqkrMcg/vEj/xq9loK6juaNtH4atypVvMJGSrXRbp9KjkbM5VOZlqGfTo4w9tocTjcMuynIz25o5L6hC7JJdcu9p8rR7dCFwpRM9fcVtCiupbdi/aav4mYPtnULkCFVtypOBzu9PStHCCWhzTWu5oW1x4iaZ3klBZUYHzEJ5xgHGR0NYSRV2SpZ3cpDzxJkrlwgwpbHJAJ4+lODaKTdhw0eVMbbXcCD94jH5jmrbstCXqWItHVlZJYuucAyEY7YBFRzaFwauRXXhBdUUCa0SVScDczkr9cnAojKxray0GQeD4rGXNkiB3UhlWM5I6EHOcjB/Wrk1IyqRjP3WJa6BHo1mILTSmgiV/ljUEj36jI5rNTsiEkkSMjJCXksFOW5If5T7fpT5rj6AlmZ51t4bKczuPkEdu8gOBk8jI4qJT11HBNiS6Xq0482OILwWcNY8k/XIrWHLzIpxbgztvE2n6Nd3KQoiRGFQ0khYkAjnr3+lfq9aykz80rScZM0vBlzqOqLLe2BKqSUjmljKcf3voK53Z6nOpc0j2Xwn4nXT/DkOjWuoAxxJmRygLu3dif5VhKaasjppws7i6R4jS9uHuRIkIX7+Xwx+v+FZxXLqdjcZaGL428R3muQtDBJMjMhSNgR8i56qv0rkrylU901jKK0RnWt14pFtp3wy8Cxf2bHOSr3GPMlAPLHGPmc8n+6O5rWlHktGJnOKWr6np2nQeGvhR4TbwrZkqJfmuoLaXdJcv3eaXqxPp0HQV2OMIRutDFQU7xlszg/iP8ZrzTIbjUGmt7e2gty0ru2fIUD2HU+g5rlc30N6s4wVkdR4C1q68I/B+3utRili1LXoxfatLM+1grcxRnngBcceprVt04+ZjBvmbseA/H/wCL76QBPJcPLJIwjtLdSMyyscKMeueg9K5JuV7vcKjSMT4gfCXQ/DHgXTb/AMaTyDU5UNzqc0aneWcZ2ZHOBwMVc04pITnUgfMPxZ8aftEL4xs7T4S+JFSXVbmSeS3vrFJY47aMfMyqABGFLABRjrXPzODa7gpy5nKW7PUf2EvjF4h8HaV4g+G/xO8SS3ustqDajLeTxBPtcLAKflz1TGBjoD71VKmrNyM4Yiam4y1R6/q/xFk1m1u5DeJIjzbrPYQcR7QvT65496XxN6nZGN43Z4H+1D4X0vxdpV9p19YwThYgjNgfe3Kf0pOLV2Z1ouUeVl34y/CG88CaLbeJPAF3Lpeq2umRTSAjC/6tThx0ZSMnJ6bqlVabSb0Ip4eST5mcL8DvH/xZ/aS1+fxtrNrBZ6X4ZZ4rWBZCf7TvkADSk/3EPQdz+FNXjK8QhKeIlrokXfCeq6n8Kv2hLafXdXlkm1zT2ikd22hLqJ2ZRuHUkMw59K65tShe2p0qKoyvtctfH74022jaddapr1zkByQ0bHdK+cBVGTuY5xXDKFSozWc/ZQ52eAWPhD4lanq0vxG8TeIJdOW+iCR6OgBRIQcqJBjl8HPtVxoqEbW1MI4epOr7WT+RB4u8QWHhBTrVrY3DBVY/ZIVLs4UfMf8APrURpOdRKJ23hTXNYyfhV8M/F/7Rnw81f9ozxZZXcXgHw7rkdg2mxkqbi7cFxHI3O3Kq3BrjzrNnlmPpZbRX72or3eyR8/iK1XE1o0qafK2/6/rY0dN0PT72Q6lpFskEIO2O3QghVHTp9K2SqprmevU9qnTjQglFFP4ha5DoXh17eGdo5tVmW2jIXoCcMw+i5rojJcyUtjLEKbikupjXmkzaeYr7QpxG9sEWIrwSuO/r/wDXqfcvua0qU6TuaGs6k2ueH/O8ryr+3BLof4vf6VtBPcqvCPIuUoaNrw1OxFvKQ0cqlfn6j1Fbp8quhU6/u2RyLuPC+r3GizEfZ52MkDg8Z9KtpT6HHzzVTUytSV7w77KMtdE+WiAffY9BWlL2cVzT0SO9OcoaI+3f2SfjT8Q/hv8AD/TfAFtfLoOo2FmY5Z9EXy1mDHJFwAB5pOcZbNfmWe4ShjsTOs3d3012KjP2ibe6Wh1HirwhF45uLnxDomkQWd+qh57eE4S967nRSMK3fA4PbFeVgsTVpv2dV3WyZvhcbUnifZ1PhsrPz/qxw8uh2jqXEZBJwy7eVI9a92nUtoj2ZQSWg2HQYxJ5Lbpc5ztx/ShS5J+/dr+vI55Qluej/s6Wvw28F+Jl8f8Ajm9sXurRimmafdLvWFiObhlxglR90Hvz2r5jPcVmM0qGETs92fG8T4vGVaX1bDxbT3Z7x8Fv2i/2fvAfx/0K88I6ve+JbiC9a7ubC40j9zIxOSzyH5QFzwK+cweGxGW5jDGOOkej6nyNPLKuHiq9SNmvM+VP+Cmvxg+M3xo/4KNeGtS17xDJqdqdR86y09XK21vaZGFjUHA24B/GvssuxSzbIcdicUveu0vL0OWUo1cJVqVJO/RG14o/Z6+J/wC0r8fbHSPBnhuG8k0W3EdvNfybLayU/ekZsYLAZPtXk8P4qhluE5VpffueZg6k1gJRjH3v60uc1+2P+z5b+FtZs/hF8CvA2sa/pdm4k8X67aIbgS3pHKeZwBznC+nNfSZXxJl9LFVJVqqSn8MXq/8Ag+tj6XInhYYiPt5q7Wxu/s7/ALCn7T/xv8X6XdW37PE+gWUcRTSINcihsopYYgN02Cct1BLnuwz1Fe1RzDD4qq1R97ZX6LsvXR+p9o82yLCZhClOUfaSTcY6XajZNpbtK6Tfmr7o9P8AGHw41H4J2l9d/FD4kaBBHonyz21hrRlMT9TtC8YxxxxnjrXh4/OcDTrxpSlzTeyWrO+jxpkvO4O6t5Fvwbp/hn4h+FrLxV4a119U0/UAJLeWOZmVl+ueKhVlJuKVmujWtz6zD4jD4qkqlH4Wa6eAbZtQaGzk2DP+qlm4z67jXRGakrM6YyjGWm4H4Zanrem39hL4Wmu7m4OdP1ZtZe2WxIzhyiKfNGSDg+nWnQqxjJ6nR7GU5Kd0rfiXNA+AHj3UNRszZeLvC9osdtbw3Ok3llPPaTTCIJNcLL5vmxb3BfaGwpbgADFVCdOEm5Xlr1t92ltv67mGLourFRi7PujpLf4KeP7HU4bnV/EPhmS606fGl6jYXlxHPbRHIeMSAN5ikHbhsjFVUxDirwJoUpw5rt9jqNT+G2kHUHvdBuXMYAeGKW4LvESOR5gRNwB77R9K5PaN30Ol3SsX9M0vUdPiEU+pSzDgPDcZkXjGOo/lSctCYrU3oF0fUE8uRjbOOu9S8bfQ4yoqYycZXZq5K1x8Ph4Ah0izGRkmEAofqetaOto9TO/OW4dA0mQFXjZSv/PIZJ745/wqOdj5WtBs2g2EoKJAwZcjJyAfrV8yKVkiGXwwm4TCxYkdTjBJ/wAKUn2J5rif2HaCMM1gFcZbEi47dT6UX0JUW2SDQoZE/wCPJcnOCTnA7/hTT1NrcoSeE3kP+j6e+A37wRIcd/yptu5Ld0R/8I5bSxrNNp00TRn54570RlvfYBzjjv1olLQS1A+FbedCfsKLsOHEcqtk89cnrWd1Fk8liO8+HemaneW98+q3UEsAJi+yaxNbJIM/8tEjYK/0YHFTUipFK1yW68C3DurzLFdFQd7NN83PbknPr2/SjljGOhFSSeiC08JQWQwlhHb7ozsWXhl59en86hNPY1px5Y6kyeHopVDOEnkL7kIYNjg8nApz5bak3TZY/sa4t1W3ZZQACWBxgHPqOaUJPmuaxWhY0/T555UZYpWXeTu2FizDpwDRV13M5y6M05vCWvtajVpYriK2aPc0nzFY1Jx83HAJ6VlCpyuyI9rSvy31K154efRXFtqMd2kr4YCdSjAEbhyBnbj1HNKT5tLiVWL+F3RFe2iatZC2RL+2kgkWS3uLDVZIJAw5z8jDzF/2WBHqKHGcot3JUeeW5Ve48UXnnm4l85pZSSzR7SfQ1VOHKrI6rRVjMsofjZZ602p23xAkhhi1SC8stPs7cRLC0Ksq54O9sM2SeOelZVcBRq14Vajd4u9lp/TCpCklJJbq2p5xr37Pfxjt/FZ8WeFdXsLK3e5mvdTtbPTMvczFeHAQqA3GDnrnrXPhsG8LUk4Tdn3d2edOL57pW9D5d8XaT8SPB/gu/fxt8RZfDmoanrtw0/ho3Drc3CszeXOy7SgXG3jeeSa+hy/BYDEYtuqum7/Q4IVMZh8M4xnJJu7V9HbZ9tDn/hr8PvE2oW1ymm/GHV9OlkhZpJZL2ONGx23EHmvUrZFkeLqXqU07Cw2Pxqi405tW13sF34R+KMQZpfirq924jKlDqaHI9Puk9K4a3B/DkpaUEjR5rmdVW5m0IbWK10+SHUbTX5Lh23JcReJvLQgdQUER4/HNXHhHJrXUEvkCzjFQVtbnP3aeJrQLI9veSx8ITJr0uPocY5qP9UMqb3t8kZzzbHSXNYXT9X1y1vmiv/Dc01vg7d2tXRHGcDh8UpcHZVOTSm0uj5UVSz/EUVZxv82ewfs7+OND8cfEHS/Avxe8RDwfoENncG11ldTuyPNABjR3Zm2KSOwrzqHh1kHt5VK7bi99EjnzHinNakIxp6dDr/hJonxL/aY+Oj+APCS3d9a/PDp/iLX3lgsoo42kJla6n+TbtC4wSSTgDnFfM5nwlChiVhsq1u9L6WXzPfwXEtOOXvEY9uTSS7v5HI/Ez4vRaZ8P/FPwlN1N/wAJXp3j2GOK1gtTNbzQW8VzDNIlwg2MpZ0K4PzDkVrgsHmWR5o4zs4OOtn9roVPE0s0pQxEbrfRpo890rSPitrcgl+zTRg9CUx/+qvajj61So09uhg4NrRHRaV8L/iBdkNfXsq8Z+VuPzxxXQqzdNX3MvYSeqRtw/BXW5IkS5knct1VZcge/UVmq0myoUmknJGhB8C57cJO6KVzgs7579+4rpjiIJalyhGWxp2Pw4s1AKuM4IJGNrYHTNNYiD2Zg6LuXovBtsuMRNkckKpIPHTJHIp+1SKjCSLMfhi1tojiGRHDbWVkYDHr0PIGabru+hPLdlj+y7OR/JSeEScbIzIA5HXPvVe0JcGnqiYadcF9hjB4y24ckiq5ieRix2REZtwq8Zwduc1PNYVnsPNjCowqMzEHeDJggZ5H5UNtkyuiR9NhlAe1tpRjGFlcbhn8uKSbSCFyGTTFR1IsVxySVnbBNPme5tzLlLdo9vIlwtq0imzkiim8yFowXkUsoQsB5uAOSm4LkA4JFZe39/lZmqsXLl6iExAFZLaYy5z5jxnHP0x2q3ZrQTvzCSfZVQFbVMMc/NkgDPTrx/8AXpIfKQTskcZWKziAdcEqzE4PGTjpVdSoqyK+pwves91d3U0TJFtVLedwhIHOfm69+K3pKKkkaN3RcivbC71y3u7398IeIoi3yq2OWbnn9a/VJNTlc/L6ztN+p6BZT3eu6a9jYwhYrZN1w5UKo9uamVNyJhCzKfgvXzDq8y61rU1vaxg+XDCwUlvVua4ZLkluaRq8nQ6O01CyWwY6RPLcxl98kqoRxn35P1NJyurXNXLmVzL1rxrpEU4vZBEogJWNi2SPUkj/ACK56koRlqax0SIPht8c4Lc6h41sUDXc0RjtpGGVjtwcEpz1Y962pVVCPNuVJqasQr8RfEfil21HUbn7JAScAnBI9/U+1TzubbFNqKSRn+CPL+PnxDTw5aQv/wAIj4ZuFn8QXoU4vrhTlLYHvg8t7YFaUqac/IiyXvSOm+PPx+0SzF1brqAhWFfnuJsMoOMLHEgPzN0H0NKVSDm1fRBGLndo+ePgjMfjF8Yj8RPFKrH4c8JnzbaO4nH7+6JIG4f3gASAfWsFGXtubo1f+v8Ag+uxVNc7aZ2fx9+J0fiEybbgSpKSkcrN8qkkA4A6kHC81VV63ewqtotRR59+zJ4ct/FN5rfxE1nXoLWC51T+y9NmuoH2R2UI/ftkZwTIevOdvA9FDmkrp7HJHmleVhPE974N8OfEOPxrDo4uF0268uRQcefA+BKzcfKPm+nFTUldK2htRpSn0NH4n6DpWj6zd+IvhN4hgZYJ1gntJn+XeY1l2cn5TtdeR1zWMXGLdnc75v2dP3jwz4k/tEaM6QaZ4kUWskVysuprL0VEYZcH+IE+nNWqt21Y5YVYu7tsd1q3xM8e/tQ+EpNatLG60nQ7jTYra1guHK3N3DGTghScRqcn3IPPapjRalzSXy/rQ6Pb+2VkrFP9nTVbH4TeILn4V6xHHbLdSSzaJO0eFZjgvH/vZGR61dacYdBtxpxsc3+08t1eaH51nctFdW8sc1pOAVeKRWJySeQDkfnWVOcpta6HLNuR5b8JP+Ej+OPjCT4k+NpIhY6dfNbaHp2/908q/wCsnbtnOcUVPerckTXC+0rycqm3RHX+JNXmuryWEMoeQoqtsHbIwB6Vo5vl1O6bsrdTG8INpMWoX3iLVrZpfIkFrFbvGDuwPnPNKDVzCnJ3budJ4K+Jml+DNP8AEHwd0jVhY+BfH99ZnW4guUs7uFjsugf4SAxVsdQfbFeDnuVLEzhmCV61FPl812JkvbTj9mzH/G79l74sfs/eKYox4XvtU0LVlafRdV02Bpo72Ic7025yMY/OpynO8Jj6fvNRmt0+jOqap06vLe7eyPB/F3g34v8AjAxeIL34U+JYrKCULYldEn2EdS+7b9Pzr2ZY3LaMGpVY8ze10cKqqVT3tPI1YVEmh2l/dSAMpEMiMMEMMjv3zgVeHinq9T0KzvDmQ3VY1ZT5abZFU4KDJwfWuj3pOyRxzUpOyRwz3N5omrvBJGY4Z23IWB6/XtScqdN3bHCk4K7HeKYF1qwxvzPCdysBzn3pOtJsqTgle2p1v7Mek+FNe8aSa54ptvtUel6c8y2azBXM+QisOOxOefSvA4ixOJjg1TpP4nr6HBjcbLD0eaKv6HqOrW/xM+Husp4ztVa104tkX6SpIHUnDArnJIH8OM189LE4VQVOsn936nHh8TXjWVTWEX18j2fV/jV+zn4I07VIpPjHfeIVstDhu9LFho0tuX1FiN1u6OAQi8neODivEli69aMaNODUW21qrX+8vMM8yjL6tTlm6iUbppdTwPxp+0p4jkuZdTs9E0S0lvPmjM94HYk9CY1PGfTFevhXXqR5Wnp1UXb73octHjPHYiEYqEYp9b3fzRH8MfiP8UfHWqS2/iPxFDbRW0W57C1tDA5zgjJbn8q668VOF4bd7p/kexSzLF17wlPb5HaNPfSX8Gn2sI+0XbiOD58l2PGTnrXm4nEU6FFyeluphVxEaUHUmfTfwjtPCvwR0M6h4nsLeb7LD9o1GW4XHnYGSueuK+TlUqyqc9W7b2T63PjcTi62LrKUtl0PM/BNt8L/ANoTxB8Qv2s5HFvd6e5g8I6WX3Q+WCA3JGRzzn0rrzCdfC0lgY+5F+9K3meXj8TCo/ZU7RT/AAKfwR/a3/aj/aGnl+Bnwd+Edl4cis73yPEniO1uQY0QHk7l5lOOgPcirzrLsFluX05VsS3dXjBKzfqThaU8TJUqf4H1h8XPjn+zf/wS0+DsN9qNxB4o8WataebY6G53gTkZMku4csSep4Havncvy/F4/EQWGnCo5r3t7U/J3S970bR2VatLBv2claS28z4a8W/8FS/2jvjf4ofxB4o+KV7Dby2cv/Ek0oHybK3I5HHfHftX188hr4WnaLd/h5m7XuraI86pVxNSak5a2fyOU+DWk+Mf28PiVHbRG8i+G3h6UNrUxYr/AGhJ18rceWJ789678LkkeH8PzSSeIns/5V3/AMj67hfJfr9ROavCO/mfbOleG/DnhHSItC8HaOmk6fBGsdrYwYVQOgxjpThHkTe7e77n61Tpwo01CmrLsOtJ4Reva3whFwDtgt5CS59xjrRKpG6SOynVjTdnq2dd4H8LeJL5J/Emm+EtRubKFGF1c3Vufs0OByctwKmrOlGPxWbLnj6NOnaT2Oz8DwaTrNutppd+s8d2oe3lEIAbsQrAE4B9DWf1mndpy+EeHzHC4iPuvRnSN4LsVWMGCKcLIV80OG2kdQT61p7Xnaa1OqhUjVhzQd0Ph8MWby7IYSABkRsw5x+H8qr2ivZGko63HXHhSKbYxtWyG/do/IXPoaNHuQ32K1z4QnJ8pI5Qy5+Vz3p84a7EMGm6tpMm61EqEN0XOP8A69F4sm3U1INdmeIR3lvbsxbcZGwpIzyMj1qXFrYd5LZlxJ45JBFbW0sUjgBRuEinPcY5xVa2stzSKbiXktJYgyNYqGziTc5XPPPFa6X0MGmnuOXQLRQSti6hjtCh8k/Wm3boWpW6jv8AhHLMAP8AZiGxySSB71FhuorEj6GCuyANgcsrPjNaW0CMvIlTR1Y4VEOV4Jwdw980JtMPQBoNrGR5WmQgNguVjGSahq7uO7aJV0BZCfLs0znlcA/jVPVAm3oRvoEsYzJaq/Ygp3qWlYm6uH/CPsgybePBByWjxn2PFRCGpcpNFdvDUFxC2zTosdAsJG7HofT61NSJNN6jhpsOigR3V21vE0Jcn5pd4XJICqpOcduprPmlA25mloF78OfCfi/yNWa1iMkhD29xG81rInXBK5DKfwyKlS59TmnUbkrorx/Bq60/T57bTPGviW3triMx3EEevysrjOcBXJ4pyip6GfsoOV7fgSTeDPFk1wkJ8dapeMiKgS/VJsKowEJK5wB71P1ead0zVRjBWjEY/g/xcl1Ffbba4VGxO1taqrSJjkEHqe/BHf1qY0qyfc0puFzQuLfTIo4GZN0zRb5kNuVWBySNmT1OOcjjmuhR25i7yk3dWHRw2kkW1fnZhyRH+Oc4quaysDXcqyaPpctw1tbWTvO5Pzg4UgAk9Ezn8aiV0tUQ5Qa8/UxfEvw98N+LLZ7HxH4TstRjxt8u8tQ4x1PXJrnlKT2uVfnVmec6n+wr+zhcie7t/h9PpzysN0ml3M0IJ68bD+ldFHF4qikoSY3hcNUjdwRg3v7CPwuu49ln4r8WW8WCyxNe+av5So1d8s3xvLo9TFYDCbctvmY2p/8ABOjwXcoXtvHWrKmMEPpdlnnqP9QKqnnWNUfesZPLMG9k0ZN3/wAEzfC92qxzfE/V9kfKAaVafN/5B9zWX9rY7V3RMsqwSW7K8P8AwS6+FyOJJ/iP4p27ThLWWO3Ujv8A6uMUoZtj+Xc5amTYWcr6mpYf8Evv2dohi8m8S3uOsd7rtxtJ+isBUVc1zSpHldSy9Ap5JgYSvy3Oktv+CfXwOgt1tYfDqzwx4EcF/eTSKMdMB2YcZ9K4lLEc15Tuz26FHCUKfLGCS9DpNF/ZU8CaTCIdJ07ToVjAUxx7iqZ/2VwBVSpRcdTSeJjJWsreRqR/s/eF7CeOCS0gk3H97JGWP0xk4IrFU/e1OV1G37q0Ih8CDFOBJc6S0BPy+XaOjBeeuXxXROELaCinfUhvvgzpMgMdnaWxlGQzsWGBxj+KnGKsUtEZt58EfEttMmoaJbWEtqTiQSztnn0656DFc9X2kfhRmlFy1ZdufhakFvZ3N62mO08Je6htjLFJaODjafMQpJkcgofrinTlUsr2JgrzkpRfkyCP4d6NFAxmurmOckjy2gXGO/JwDgVor33NVGNth118OPDkEhitNbM74XdHcXaQ7SckjB6/nVKTUjju/aWsZsvhrSI5vK+zQ9yC8u9vw9O1buUrG71Ww0eE4pmINnGwx8gVsluvYjPvT55Iz5ebQlsfhlq2oz28ejeGGne9uVht1R4l3uxAAZnICn/eIqJYiFN2ZE4KFJzb0RjjQILhmj/suS3dZXjkiuCokUoSrZ2FgeR1BII71pGXNsYcqkrohk8PWQ3GSwcH+EAkDj69q0TsioxaIX061jAWWxwOuGY4B/HpRuJq+hHcAJGsckSYTICtyB645o5ddSuTQqA2kaF5LWLoSGGOR+Ap2I5dRHWwkUv5O0A8Iq4J9smhpIbS6ELW+jSXESJt8xiFj+YAgk9Onek3bUaTtZDL63tY5HWWyjiZFIkDgK2fTHTua1pTbqL1CXNtY860LxJDqusLpFmU88/vWiL8/U1+tygoM/LYqbfvanpWman/AGPaR6d9vBg2lpFDD5m9Tn+VTOorWNEnfQtT+Hn8T6RJdW8qW7bPljeQgynPAYY6VwVINq6GnfQlsdMuvB2hf2l4tEbTvnZaxOyxxJjAI+tc8vhs9zWXvQSijh/GC/25HJZWmnMyyxHcqZXapB3Z5yPr7VzVdUPlbRwvhPxPJ4Nkkt5obfykTZFasWKxKOF3YxvbGDgcc81TlypIS5k7nQeBX+If7SPiGTwf4JlNnp9gwXX9e24isUPJjUngyHHTtWuGjUqyeuhorP32eqeOviT4G/Z4+HyfDf4ZgqRAYwRId0zZJaQ88sxOSep4qq9aMfcW5zSh7XEOor9Fa+ml+n5vr8j5K+InjzXPGWsW+lzXLJcXk6wxJHMd0kjnAxzkHnnHQVxRUp3j3Oh1FSsj0L4j3l18JvBNp8KPhxZww3sMQku7iaIOssxUFnIByQMkc+ldUeem+RK36mNWpJO8Tx74kXfxR8ZWd/BY/Fw2aW9vHbx6XpmmpDI7lAztvOSRk5GMH8aXvyfLcxSdWScmeIfCPxd8TvC+lXvw/t/iFrcB0W7dhC052lX3MJMHqcn862hRcJOSdhUqdaN4p6Gp4v8AAXxl8a+G5NSv/izqklhLOUZUu1VnlwrsHxglcFDzwe3Q1hJ8tRnalKjRTbPafgn8VdT+Lfwj/wCER15YoNX8LzG0AtlJE8DKWVySSWIUYDMSflHPFKNG0bPcxWIVSajJ6vT+vuPOPi94Gs9P8RaDqV9bieBNXgS4SU8qGcDnPXqDQo+zlzG7g6Svc+xR4e0SPw9byWGmW9hF9i8uK3kwJ5kTO5wy8Fc8gejCrhWdXV7m8b6dzxv47f2XqNpMbGVklguVe0vB8rwspJB/2fX6VM4KSZnUhKSucV8QfihB41+D154i1ZY4dU02IwatGGziRVBDD0DAZrOdGdKSi2tQekLo5/8AZ+gW0+D2hag8LRQTWrTKXBC+ZIWO4nsMc5NVOMYTs0dOHVT2epznin4u+EtI1ySPS521a6hyFgtFLJ5n+2/QUTpztoxYmpaOjOV0rxN8QNfmXRdN0ZLFYZWea7uHypkbJY+/Yc0lanT13OehCrze9sbkfhyOxs5LW61GeeRgwnU4COCByBWHPKcrnW3Hpue5/AL/AIKC/Fv4EeApvhJrF4mtaOthPb+Hr+9gSSfRTNtDiNnBO07VGPavmsz4boYrFRrYWfI3ZyXRtHHHCU5YpVpfGk0n1SdrpPs7K/oj1z9iP/gqz4K/ZP8ABMng74kfC3xH4onvEnWN52tru0g3ncXjiEatETxxuPTBrxMx4azWderUw/spKcWveTum1a6d91v/AMA0rYTEayXvWOA/Zu8ffsJfGD9qTxRqP7TOmPovhbxNcNPYQzziJrRmPPoEbOTjPfrxUV6fEGT5XhoU3KfJpNxs218zmc8XCnGnO+r6FbUvg5+wh8Qf2/vD3wP+HHjbXk+F91dLb6x4gsbxGfzXGFVXJYKuc8+nSuvDcRZlhcnlisZzRd+q95R72RhKtWSum1bqHjj/AIJVQa/+1T4g/Zu+Ffxq0aCOwhuL+wuNf1WJnnsogzbkK8ElRxnv1xXHLj+lTwX1hU3Ujzct0mvQupj1TShOV2zK8KfsBfBW0An8R+MNb8QTxgCeCCRbSDcOo3DLEV3/AOsmPxUYukuW+p7dHLvaJSk3qd3pnwO+DHgOOWXwl4E0/RYjEfMu7iEkle4ad+tcVXOIyrclSb11S3/FKx2xwODp071Eku7POfjJr/wPv/CTeAb6407UL7UpyNLn09mK21yvzIdxAGciuXF4/GVbfV1pDWX+HZnz3EWeZSst+qU2pSbtddPmeHeAvC3xf/aU8Ua/4Y8JtAde0PTJJLhZWCtcQQrkjngt16dTXXWWU8P4ajWrp+yqP7m/0PhMmyzH5vjKlOjTvZXOh+AXj74J/AjxFYS6/wDBew8e+JY7ac6+viy6e3t7EspCGHZz5iN827nkDHqOjELGYqt7Wq7YXaMIN3mvOS1VxYSustqqcqSnLVWeyOx8BeN9a/aM1a9+IXxB+Lltf3VjYtG15fRxQvHDEMLESgAYgALzzxXzlVYfhWKoYbDOMZPRJt3b663PYwuOre15pa36En7L6aH8XfiTqHjvWfEFrbaDou620mWaUqksw+83GTx0rHP61TCqhg5+7Op70m7+6umye5xZtmcKuK+rw7HrvxwitPiJ8P7vTPDuszokVk8e/wC1fLcEd07/AJ1z+1cq1Ke/Jbftc8uVZy5VHRo82/Zp8fT/AAv+GY8FaxpaSed5sclvJbHv1z9cZzXVmWMUMxqVeXm5lZeXoebKlOpWlJq56B+wN4b8Ga38ZvEfxm0LTrbR/B/gS2kv9VltHIi1HU8ZjtyQcM2eT1rzOIauaUMspe0fNUfw83SP/BPbyXC81ZypxsoavzPh79r79oHxd+0p+0HrHizWrpo7eXUZFtoXkYJbxBuAAegr9I4XybD5LksWknOSu7dWz5/F4ipiq8q0u+hf/ZW+FPxH+OXxLutP8KyXGn+DtKtgvi/WrZhGRbk/NGjMOXboMc81rnOOy3LMJBYlKVabvTi+/d+SPUyrL3mNaMJ37vyR+kHwn8JeDPAPhCHwr8KfDsmhaFbx7rXTpphJLKOpklfAyT1NeK5SnWlUnJuUu7vby6H7blmFpYTDqlSVkjs4NSuLoxRXwQqw2pGLc5H4+lTJTT3TR6lNx6bml4d+Aem/HjV38Lpqs1k+nxm71HW7NgjWSLyFZu2fSvGz/MY5ZgVUpyTm+nXQ+dzjMHTnyQ3R2+ry+INT+CmpfC74b6/ql8qrNPqGoTTCC1giWLYi5481yQzbRkkkegrxctxsMTh6c5ytUu5Wb3Xz/p9NTzMPT9rhF7z9pJttNpLlSW347/I5f9mVfDfwi+DWn3njDxElmNB0+RYDqkxR57lsDLBjnbkk/hWWJq0JTqVp1rufb8jLDV8tw9CCm2kk7Wbd3brqVv2TPiJoU+rXXwn+GguNXtYb+4vtV8S6ldskd5eTyFvItgclyM9Bxg9a6/7ZnhFTjL3+ayUYrVLuysh4j+o4j6hSpymu+lte1306+ul3c9313U7bwfqT6N4nnh07UFiL/ZLuVfMx1yBnpivoYVoVG1s1vfofexzXC15+zvaS3XUXw9478Ja3JLp+m61DNOkPnMEdSygcnj0xRKquVPmOmhjMNWk4wabXmWfCvjXwF48tp7rwn4ls9Sit7o2t1JayqxSUdFOD15H51bkouzOnD1qGITdOSlbe3Q2ZtLQQZ+yEqR3GSD+NXBt7l6zRSm0e3OD/AGejkfxheffIockLljFamH4o0G3nsybDw/CNSjIW0v47hk2jnKyJyJAfbBHrWU4VLc0ZWGoSavfQpa/qGsXdnYafqV5Gk9i7i1ntlZd0br80LBmPyhsEHrnvWNClWo4nnlO6OeOH5Zt3uOsJ/ENpiK3vrhiCAykZ5/wr1faKS902jBTdkjRstc1/azNOmxQWlkYAKp7liegx/KnGV9AUY3sbXgnxFofjbQY/EPhzVrPULOSRkS8tJRJG5QkMAwODggjijnu2hOacbpm+bMMmEhHXDbc5U+lUmrXMnJj104j5RbsM/ex9e9LfYfM+gqaLDIpYQBSRx89DRfO0TPpc9vERFZCcg9DKAfzNErpaExabuxz2aKzbgRlflEuDgYHHFC0QTdxPsFpcAs1tHvwP3oXawP1qJKT2GtEK+gzKBgo8bcjY6huD1OMGh3QNqWhQuvD1ow81ki3NnO5NrenUc1KjzFLzG22iXtrys7/eG0KSf/105RjHVFpq5O0moWgUSW6sN/KBMfrR0HpYhlvZCJGa1hGc7x0PtnH8xRB2M+R3IXa2u3El18owfl83IP4Grlqim5IieCwRmdpHXggbTyPb2FZclhpyluVZLm/kgWysdTvfs8bGQwmQ7EOMZPpWnLUqJqKulq/LzIjTp81+pRuLhXZpQ7M54LM5BY47H/8AXXE2nsdNox0KjSvBmWIgYblTyM/Tv+NUr2uEW2itcNM6CRrdMs3JjYjOcZPFE5aD5rMiMd0ckXEmc/MW6H2qVa5XMpDHDqGIRpNow2JWXA46e1OVrCmlazIP7QglQSWieYpbgG5Zsjoe9OE9NDOMZN2GPqt1IpIhkACnByeOB703Zm3LYryXeoF8qWLEbQRwe3p0qeW7uJ3sMNxqD8i8kC8ZIIB9x71onoZODfUfDcy7QVu2x1JyeePzoTV9AUEtyVbuRyQZGyWwTyB/9endMCMzz7toDFjjAJIHvzRd9CJXHHUri2hZfKmAUD7uAWOemT0pStLUyepLMReKFuZGHykgFuB0I5H8qqysVzNlRNK02aX7RPczQk7trxTscggjgE4oajY0jPTVHL+IfhZqE+sPqsHxj1toTIsjWL2sJRSM8A7c9yOvesI0ZqbfMc0qd23Yvw+HZnjkIne5yuDNMMnJ+nSuq035lpvlsMg02ewS7eS3gaWS4VrS68x1EMIUAxmPo2Wyd2c4OKyeGrSrqaqadi+aKjYqT6XcrEqJewINx3+XCeSfUZwK2dNN6mMm7aGbNp1zGFEmpMRkDCLjv7DvWitFEXdypd6eVbJug5xht0h/XFNMq3MjPujYQKGuLhE/i37srjj16f8A16bmkYyjy7mZca54eiUn7arFjtXy2DF+ODxT5k1cuKctinJrekthl8+Rh1KR4z3Izjmo532M5KSZXuNZtZyETRZc7dw33RVj+A9OMUm5SJcZplVtSf7K1jJ4asbgyRkSJdgybx33A/55pOLfU0p3UipJPNaxyvYaFptqWYu3kWyjccdTx1rppRtNFybsz5+ufiKkVxHD4ciH2+6ZY4RFzLO5Iwi9etfrc047n5K3GjUsex+G/h78WdN0Ea3411uyF8QCumRREvbKRkB27t9Kx5E9WzN13J6noXwdC3F//a3iq+DRIoMVtCpAZwepJ6inzwStcpy5ranTfEHU4dfinvnjVYmVWOAAHI6KPyFctSlOo9EdtKyhfoeZ69ftFBPdxskUs0a+YxAUk+nuMcVj7Cb6Gl4vY8h8cW+p+M9TXwx4d1Q2UtwMNNBGu6NTjLD3/rWbwspPYJQlJbHq3h/xBpfwm+HEXw48O3EENtZhZrq0FzvmuJiSTPO2Ms7HJ/8A1VtOcqUNXr1+f+Zm4xjBQkeMfEbx5careTahrF6qxbiyBcAge5zx0rz9ZO9732GpwjHVnnvwW8SW/if4pT/EuSBZtK8MkpZMh+SW6fAz6YQc59TXpYbDyg+ZmkFzrmWptwfGKLUPiDqFzr80b77craSNNvIPIyevJ9D2repRlOXMc9R+8efeK9T1K21tPElhqUn2cNkbFI2tg4BH+P8ASuZ0505XsTHmpPmOXk0m7l8TQfETRptqTxNb6ujcAox4Y/Q/oTWFSTqND9pKXvHSeGtSk8RacZJrySCS3lka4WGL5ZHGQePfgZ9hVqHJG/UlVVN2Om/Z51238JfHlrS4jjEXiHSZIlhbjmP5lyMfewTzXNJudRJHXRUYassfHSa3udIupZmMZs7qOYFhkrh1JHv0HNaP2luU6Y8tW6Wp6brPxGu9Qi3tdlFS2TaS+BjaMj8a1hSm1ypGllBnBfEPxX9sae2YosNzCHYD+8FI/Pk/nUKLp3uRWrRirHlfwxh0n4kfFDxJpviEEeENC0qPUPGDxkjzFRtsdsG7PM7LGCOcEntXDjadeqouPUjA0/azk5bI0/F2t2WtaMljdqsNsuDb6XbsUgt06BNo+9gYHPpXZSjONPllc6K0lFW2OE1iCDRJ430mOJXaaNbWDywBuz97j0GTzWFeck9DmpxdSWhuNqEJEnmyhpGk3SNgZZjySaajOWr6nVVbS1IpdTgaUJcFWbBxtOMjtU+zcFexnBKTKV7MzROWlLZPK9+OlSpyhFpdToUdLWF8I+I0t5rpLiXPlyKYznJAx0x3rGakoNo0oVIxbitzqVvtFu4990sL7+gaIcf4VkoVVI7ORw1LWmW3hhIjCNMsJS+N37sDp0P1rOdKtLSSvfyM4Uot35Uz0H9mL9nTRPj78e9L8HaILTTJWVrrVtfuLt1FjYQgvM7PnIULnjoSa+e4kzajw1kNWtOnzX0jG28nt/w5xY2ng6VGUpQVz0r9pP8AaQ8Mz+IJvC//AAT++E0mr6LpQNpceO/FUhMdxIgwzQRNgEdcE9ewr85ytYilRVTP6/JKWqpw3Se12j5TMeLa+GpRjTX4XPnDxn4U+N+q2954z/aM+Kt2unpGsk1rczCOOMHlVSMcLnHGOSK+pw+dYKrbDZZQTb0va7+97eqt26nyOYZnmOOi+eo7W1OF+DvgyL9obxvf/EzVtW/sD4ceANhl1WQlUMzgiNBx8zsecele1m81w9lkMHTh7TF4jp5Lf5FZVl31hqKdox1bZueKPAWlNpV1rvwj8aalcTWu+VtW0+0Nv5as2NzlBuwSQMucciubAV8a6ns8VQTgkuZaySWi66LV9t2j6SthqWCw3Nhar5n1Wn3Hn2qaPJr2iyahd3MkmvaagW+ljywuIsdWPtmvTli/q2JUIpKlLZdmfPwrqjBRb5mt2+pofB3RvhZqs4sdft9Xj0RFafV4NLmZPMX+MsOOM55PYivMzavmdHWm4uo9IuSvbtb5HLXxNSXvQsmz2v4S/Cb4ZeLdSuNY+DCa/pngTTrgHUI4rYkTyuDhHk5Ck7T7/KfQ18zjs4xeCUIZvGNStLrezSW9tPx2VzzqVNvF805LnaPQPj/+0P8AA79mbw//AGYLvTNc8STWbW+l+H4DvitS4wGlc/xc98VOU5VmWe4jnoR5aOt29dP1Z6eGoKrLmm9j5f8AhT4O8YfEq38S+DviH4i1rSfELaj9osmSVlWFe6ArwV7DBr67NswweW1aGJwtOFSly2fdvuXWxtKmlGk1qj7N+FXi/wCDHwN+BWo/AJdJu5YtM0KS/j0qzjO/WdWkXajycZZQSehP4dK/PswxWIzTEutXT5ajtzXsoJbfcj67C5xluAyv97C75Xou9up+ePjv9mP4+2FnffEj4m2iaDpkkwlkNw4EjBySqqgOTX63l/FHD85QwWCftJpW8tPM/OqWNw0JKEabbfdaHTfs4fCn4ja74bvvGC/GG68LeFoJRvZJSiXMg6fLwCeB1rm4izTLcJiIUPqqq13+C9T0JZlHCy5KafN1PdvCOs/GrwlqmkS+KPip4ql0XUtPlu7HULaJYLSdI2MaMJJEJdPMVgSoIJjcEgivmq2OUoyjRoxi00mm25a+S/z66I+my/iWrSpPnk3y6WT1vbS+j8nbqu257v8ABj9tBvhZ8Er7/hbeoJ4i8UG5xoz3VuUMqE/IQcA4IK84xiuavinWmoUItW3fRW3NY8byVF02rvoz1PS/2jdSutB0L9jX4Z+IoND8e/EV/tvjfxA0asukWp+ZQCwwWA6D8TXy+WYDFZ7iXi8XZYeMrK/V38uhGAnUxyVKc7Sm7tvojzDXvgDYfBf4zaje/Ez9qLW/G3w+imiC6va+JPs8Nvcg9HeH5fvZxjvxXrZy402sLltOHtLtNxje68r3OfNZ4TC4qK9u5RXmZn7SvwL/AGd9V8daRF8OPjX4q1TUdWjWay8Pr4ninjmDjGJh5jlT35APeuHBVM4wWDtKjFxevM4K61t02fk+lns0d+LWWw9hKhq2rpX39V0/p9TrPDH7K2l/ss6bbfGH4jftS/2dN4fmTUrTwQNe3+a4BKowwCM4445reWNqYijbD0I+0lpzcu3ma1qGFwkFiZ1bNaqKepL4Qn0X9sD4lP8AtW/tWeI76W8vQf8AhGvCOk3jQPDAD0dFwW3YGc8EGvDzjNcyw2J/s7AR91/xJ21fo3seDh6v9qZp9YrtqL7bne+JtT/Zd8Z+JNQbVrdvD2p6jY/Zrn+wfE32a9ECjoQpG3gfXjA9KMFhMyXJSw7+FOXv2t7qb3lo3ZaK929Em2kfRyxvD9Cna0k2raN3+Z2X7CHwv/Z2+D1nqGmfs4+K5JbSUS3Umga3qBklvbzoGWRjy33R/wABFRjuK87y2ssXmVLnTstFZJfI9Lh/H4XLas6mEd1KOsZPd9DpP2bPi58X9W17xx8Sv2mNLm8NQy6mNP0Hw9fTBYo0TgGM4wzM3OfoK63xZgJZhCjRnzQcU27Pd9D0uG88xM8ZXr4u8YvaLvZeh6xH8UdKsUmS+04CUxJNhG2lo275HXFfRYbHYWq3yb+h9dTzjCV0+Um0bxf4b8fMt74fsAEt4zHMsvLmXJBOOoAxiut1G1d6I76VejUhoxms6JP5UiXkQO5NyhVAOOx5z7U6cufS935HRFNQuloU/Dlzp+kpcy+JdPm1EWVld3QH2+G3Fw6JuSJ5nwIlP8TnOBzU18TLARUpK669Dgx1XEU6V6PxX6nyd8Ufg3/wUS/az8R3em+P9LtvhZ4HtZ0Wc3F2BYWyeZ1CRlptUkwRgPsjyeRiuihjMG5JRd2+i3fz6fK79D5NzzbGV5Uqit530tY+zv2dfhb8Nvg18LNE+Cng+0nstG067ka61262vdX1xM5eW4eCMKsKsxJEUYCoCAB0rRV0oOpJKKTS1evlu7vbV6+bu1f0suw9bLsO6cG5W2u/1Oqmla2u57FFdTFK0ZZxt3gE4bBHQ9a3w9eGIXus+hp05zpKbW6I0urgLsZiVAxhmGDXX7KfYyvHoyRHtJR8yqpYdQ3QU/Yz7BzjhFH94sCpHTfkfWj2M+zBSGyJBMeCAcYGGzQ6M30HzEZjkBy0YcEdG7Co9jJdw5kKsbcmRQB2w1HsZ9ilIa7wjIdUYkcBj0o9jLsPmuNV4t2Y/lyOqvjpUOjLsx30HbbqRSDLwecFsih0pbal80SKRH4YxpwPugDGalUpxe34Fb6laWz3ks0KnIxhl6f40pz5dzTklFXex4l8fPGH7buk/E2Dwl+zX+y1b+KtCGji6vvEN1clVjl3OGgC5GSAFOO+6sHTqVqTlSl719rXPJxeNq0qyhBKz63R852PhH/gvN8evH/lada2nw+0y43tbJqFtBaWsKr821wyvLM21T8oAI4JPWvQw9DL7ezqtuXXW33f0zz44vMqbk9l0as/vPq34M2Px6Hw10y0+PP9mah4sgjYatdeHbNltG5O3aCOuMDPc815LdCnUbpP3fM9zCOvLDr27Tl5HSnQNY4zpbqWGT5p6+3NZe1jJaM74030RUm8O62JQzXMEGQdxJY/oOKlSctg9lJ6pMbHoi3AZ28Tc5+aNI8Ac+9dCoVN9TJzcXtYdJ4YtGhZ5dRuHLZbCHHH1xWU2lKzZUanN0K7ab4dtNzW/nDLN8s9wcgg+g7VpCE5arYJuUWPNpYu+UtVLN1bkntyfWlJcj94lVU3uRvb2EQHmW+1AMcYBoi1L4WaKM5apEMt1YWwf7LsdjIYwSgwg/vE9z9K2VCpfVEO6ZV+2WO4uiRFuhYgDPT862VCXZkN6jjPPISYrMH5chQB8o/ClKm4LUS1ZEJLxoCIbYYUYBZxgkdiT+VEKc5r3RzhOC1RXtb/AF0xtHe3dtD5iEMkQDDHbBIFV9XqdUzntrdhDFaxo8Zuz0wTv+8etDoztsXFpvQhupNFteLq8Ve/zSYx9KXspPZFNyXQyb/xT4asic6hG2B8x35yf61aw872aG7qOxly/EbS0RmjunJOCdq+3bNW6E+lzmc+xQvvHUlxI0lhYMzbcbjgZGf/ANdSsPNO9tfQXMZ0mteKbuNvLtII1bliRknIo9jNuzJ51czpm8V3HEusNEScERKoI/OtFQl1TK8yF9KaYSvc69dyNn5w9wcZ+i+1J03HoV7VRWpTudF02H5ZYlfKnJcE8dO/tWXNG4tKivEgj/sOzRg1uY1TGNigDp2/GrUZS2RPPyuxTuta0a3yjw7yQSRIafsalrWE3cqXPi+1CHZbxnOSORkCrVGpbYlszLnxvKzkKI1GM70weeuP6U/Y1OwJ2ZQuPGRkZxHKoZz820YzVU6coSvYcp8qbP/Z", - "text/plain": [ - "" - ] - }, - "execution_count": 15, - "metadata": { - "image/jpeg": { - "height": 256, - "width": 256 - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "!curl -O https://raw.githubusercontent.com/meta-llama/llama-models/refs/heads/main/Llama_Repo.jpeg\n", - "\n", - "from IPython.display import Image\n", - "Image(\"Llama_Repo.jpeg\", width=256, height=256)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "e1450ecc", - "metadata": {}, - "outputs": [], - "source": [ - "import base64\n", - "def encode_image(image_path):\n", - " with open(image_path, \"rb\") as image_file:\n", - " base64_string = base64.b64encode(image_file.read()).decode(\"utf-8\")\n", - " base64_url = f\"data:image/png;base64,{base64_string}\"\n", - " return base64_url" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "d7914894", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The image features three llamas, each with a distinct color. The llama on the left is white, the middle one is purple, and the one on the right is also white but wears a blue party hat.\n", - "\n", - "To determine the number of different colors present, we can count the unique hues:\n", - "\n", - "1. White (two llamas)\n", - "2. Purple (one llama)\n", - "3. Blue (party hat)\n", - "\n", - "Therefore, there are 3 different colors visible in the image: white, purple, and blue.\n" - ] - } - ], - "source": [ - "response = client.chat.completions.create(\n", - " messages=[\n", - " {\n", - " \"role\": \"user\",\n", - " \"content\": [\n", - " {\n", - " \"type\": \"image\",\n", - " \"image\": {\n", - " \"url\": {\n", - " \"uri\": encode_image(\"Llama_Repo.jpeg\")\n", - " }\n", - " }\n", - " },\n", - " {\n", - " \"type\": \"text\",\n", - " \"text\": \"How many different colors are those llamas? What are those colors?\",\n", - " }\n", - " ]\n", - " }\n", - " ],\n", - " model=model_id,\n", - " stream=False,\n", - ")\n", - "\n", - "print(response.choices[0].message.content)" - ] - }, - { - "cell_type": "markdown", - "id": "8cf0d555", - "metadata": { - "id": "8cf0d555" - }, - "source": [ - "### 2.4 Have a conversation\n", - "\n", - "Maintaining a conversation history allows the model to retain context from previous interactions. Use a list to accumulate messages, enabling continuity throughout the chat session." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "3fdf9df6", - "metadata": { - "id": "3fdf9df6" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[36m> Response: The most famous Prime Minister of England during World War 2 was Winston Churchill. He served as the Prime Minister of the United Kingdom from 1940 to 1945, and again from 1951 to 1955. Churchill is widely regarded as one of the greatest wartime leaders in history, known for his leadership, oratory skills, and unwavering resolve during the war.\n", - "\n", - "Churchill played a crucial role in rallying the British people during the war, and his speeches, such as the \"We shall fight on the beaches\" and \"Their finest hour\" speeches, are still remembered and celebrated today. He worked closely with other Allied leaders, including US President Franklin D. Roosevelt and Soviet leader Joseph Stalin, to coordinate the war effort and ultimately secure the defeat of Nazi Germany.\n", - "\n", - "Churchill's leadership and legacy have endured long after the war, and he remains one of the most iconic and influential figures in British history.\u001b[0m\n", - "\u001b[36m> Response: Winston Churchill was known for his many memorable quotes, but one of his most famous is:\n", - "\n", - "**\"We shall fight on the beaches, we shall fight on the landing grounds, we shall fight in the fields and in the streets, we shall fight in the hills; we shall never surrender.\"**\n", - "\n", - "This quote is from his speech to the House of Commons on June 4, 1940, during the early stages of World War II, when Nazi Germany was threatening to invade Britain. The speech is known as the \"We Shall Fight on the Beaches\" speech, and it's considered one of the greatest speeches of the 20th century.\n", - "\n", - "However, if I had to pick a single, even more concise quote, it would be:\n", - "\n", - "**\"Blood, toil, tears, and sweat.\"**\n", - "\n", - "This was the opening phrase of his first speech as Prime Minister to the House of Commons on May 13, 1940, in which he said:\n", - "\n", - "\"I say to the House as I said to those who have joined this Government, I have nothing to offer but blood, toil, tears, and sweat. We have before us an ordeal of the most grievous kind.\"\n", - "\n", - "This quote has become synonymous with Churchill's leadership and resolve during the war.\u001b[0m\n" - ] - } - ], - "source": [ - "from termcolor import cprint\n", - "\n", - "questions = [\n", - " \"Who was the most famous PM of England during world war 2 ?\",\n", - " \"What was his most famous quote ?\"\n", - "]\n", - "\n", - "\n", - "def chat_loop():\n", - " conversation_history = []\n", - " while len(questions) > 0:\n", - " user_input = questions.pop(0)\n", - " if user_input.lower() in [\"exit\", \"quit\", \"bye\"]:\n", - " cprint(\"Ending conversation. Goodbye!\", \"yellow\")\n", - " break\n", - "\n", - " user_message = {\"role\": \"user\", \"content\": user_input}\n", - " conversation_history.append(user_message)\n", - "\n", - " response = client.chat.completions.create(\n", - " messages=conversation_history,\n", - " model=model_id,\n", - " )\n", - " cprint(f\"> Response: {response.choices[0].message.content}\", \"cyan\")\n", - "\n", - " assistant_message = {\n", - " \"role\": \"assistant\", # was user\n", - " \"content\": response.choices[0].message.content,\n", - " \"stop_reason\": response.choices[0].finish_reason,\n", - " }\n", - " conversation_history.append(assistant_message)\n", - "\n", - "\n", - "chat_loop()\n" - ] - }, - { - "cell_type": "markdown", - "id": "72e5111e", - "metadata": { - "id": "72e5111e" - }, - "source": [ - "Here is an example for you to try a conversation yourself.\n", - "Remember to type `quit` or `exit` after you are done chatting." - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "id": "9496f75c", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "9496f75c", - "outputId": "7d93a4cf-a5d4-4741-b6eb-6bce3a27ff66" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[36m> Response: Hello! How are you today? Is there something I can help you with or would you like to chat?\u001b[0m\n", - "\u001b[33mEnding conversation. Goodbye!\u001b[0m\n" - ] - } - ], - "source": [ - "# NBVAL_SKIP\n", - "from termcolor import cprint\n", - "\n", - "def chat_loop():\n", - " conversation_history = []\n", - " while True:\n", - " user_input = input(\"User> \")\n", - " if user_input.lower() in [\"exit\", \"quit\", \"bye\"]:\n", - " cprint(\"Ending conversation. Goodbye!\", \"yellow\")\n", - " break\n", - "\n", - " user_message = {\"role\": \"user\", \"content\": user_input}\n", - " conversation_history.append(user_message)\n", - "\n", - " response = client.chat.completions.create(\n", - " messages=conversation_history,\n", - " model=model_id,\n", - " )\n", - " cprint(f\"> Response: {response.choices[0].message.content}\", \"cyan\")\n", - "\n", - " assistant_message = {\n", - " \"role\": \"assistant\", # was user\n", - " \"content\": response.choices[0].message.content,\n", - " \"stop_reason\": response.choices[0].finish_reason,\n", - " }\n", - " conversation_history.append(assistant_message)\n", - "\n", - "\n", - "chat_loop()\n" - ] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "gpuType": "T4", - "provenance": [] - }, - "kernelspec": { - "display_name": "l4", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.16" - } + "cells": [ + { + "cell_type": "markdown", + "id": "c1e7571c", + "metadata": { + "id": "c1e7571c" + }, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb)\n", + "\n", + "# Getting Started with Llama 4 in Llama Stack\n", + "\n", + "\"drawing\"\n", + "\n", + "[Llama Stack](https://github.com/meta-llama/llama-stack) defines and standardizes the set of core building blocks needed to bring generative AI applications to market. These building blocks are presented in the form of interoperable APIs with a broad set of Service Providers providing their implementations.\n", + "\n", + "Read more about the project here: https://llamastack.github.io/latest/\n", + "\n", + "In this guide, we will showcase how you can get started with using Llama 4 in Llama Stack.\n", + "\n", + "**💡 Quick Start Option:** If you want a simpler and faster way to test out Llama Stack, check out the [quick_start.ipynb](quick_start.ipynb) notebook instead. It provides a streamlined experience for getting up and running in just a few steps.\n" + ] }, - "nbformat": 4, - "nbformat_minor": 5 + { + "cell_type": "markdown", + "id": "4CV1Q19BDMVw", + "metadata": { + "id": "4CV1Q19BDMVw" + }, + "source": [ + "## 1. Getting started with Llama Stack" + ] + }, + { + "cell_type": "markdown", + "id": "K4AvfUAJZOeS", + "metadata": { + "id": "K4AvfUAJZOeS" + }, + "source": [ + "### 1.1. Create Llama API account\n", + "\n", + "In this showcase, we will use [Llama API](https://llama.developer.meta.com/) as the inference provider. So, you would first get an API key from Llama API if you don't have one already.\n", + "\n", + "\n", + "\n", + "> **Note:** Set the API Key in the Secrets of this notebook\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "oDUB7M_qe-Gs", + "metadata": { + "id": "oDUB7M_qe-Gs" + }, + "source": [ + "### 1.2. Setup and Running a Llama Stack server\n", + "\n", + "Llama Stack is architected as a collection of APIs that provide developers with the building blocks to build AI applications. \n", + "\n", + "Llama stack is typically available as a server with an endpoint that you can make calls to. Partners like Together and Fireworks offer their own Llama Stack compatible endpoints.\n", + "\n", + "In this showcase, we will start a Llama Stack server that is running locally.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "J2kGed0R5PSf", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "collapsed": true, + "id": "J2kGed0R5PSf", + "outputId": "2478ea60-8d35-48a1-b011-f233831740c5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: uv in /opt/homebrew/Caskroom/miniconda/base/envs/l4/lib/python3.10/site-packages (0.6.12)\n", + "\u001b[2mUsing Python 3.10.16 environment at: /opt/homebrew/Caskroom/miniconda/base/envs/l4\u001b[0m\n", + "\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 83ms\u001b[0m\u001b[0m\n", + "Environment '/Users/erichuang/projects/internal-llama-stack/.venv' already exists, re-using it.\n", + "Virtual environment /Users/erichuang/projects/internal-llama-stack/.venv is already active\n", + "\u001b[2mUsing Python 3.11.11 environment at: /Users/erichuang/projects/internal-llama-stack/.venv\u001b[0m\n", + "\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 387ms\u001b[0m\u001b[0m\n", + "Installing pip dependencies\n", + "\u001b[2mUsing Python 3.11.11 environment at: /Users/erichuang/projects/internal-llama-stack/.venv\u001b[0m\n", + "\u001b[2K\u001b[2mResolved \u001b[1m123 packages\u001b[0m \u001b[2min 1.13s\u001b[0m\u001b[0m \u001b[0m\n", + "\u001b[2K\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6) \n", + "\u001b[2K\u001b[1A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)-----\u001b[0m\u001b[0m 0 B/9.53 KiB \u001b[1A\n", + "\u001b[2K\u001b[1A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)-\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB \u001b[1A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2K\u001b[2A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 0 B/44.00 KiB \u001b[2A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2K\u001b[2A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[2A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m\u001b[2m------------------------------\u001b[0m\u001b[0m 0 B/34.43 KiB\n", + "\u001b[2K\u001b[3A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[3A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", + "\u001b[2K\u001b[3A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[3A\n", + "\u001b[2meval-type-backport\u001b[0m \u001b[32m\u001b[2m------------------------------\u001b[0m\u001b[0m 0 B/5.69 KiB\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", + "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[4A\n", + "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", + "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB \u001b[4A\n", + "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2K\u001b[5A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 0 B/85.81 KiB \u001b[5A\n", + "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2K\u001b[5A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB \u001b[5A\n", + "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[6A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 0 B/3.08 MiB \u001b[6A\n", + "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m-------------\u001b[2m-----------------\u001b[0m\u001b[0m 14.83 KiB/34.43 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[6A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.91 KiB/3.08 MiB \u001b[6A\n", + "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m---------------------------\u001b[2m---\u001b[0m\u001b[0m 30.83 KiB/34.43 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[6A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.91 KiB/3.08 MiB \u001b[6A\n", + "\u001b[2meval-type-backport\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 5.69 KiB/5.69 KiB\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 34.43 KiB/34.43 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[6A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.91 KiB/3.08 MiB \u001b[6A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 34.43 KiB/34.43 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[5A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 14.91 KiB/3.08 MiB \u001b[5A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtabulate \u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 34.43 KiB/34.43 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[5A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 30.91 KiB/3.08 MiB \u001b[5A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 30.91 KiB/3.08 MiB \u001b[4A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 46.91 KiB/3.08 MiB \u001b[4A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 62.91 KiB/3.08 MiB \u001b[4A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 78.91 KiB/3.08 MiB \u001b[4A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------\u001b[2m------------------------\u001b[0m\u001b[0m 16.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 94.91 KiB/3.08 MiB \u001b[4A\n", + "\u001b[2mshellingham\u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 9.53 KiB/9.53 KiB\n", + "\u001b[2mtyper \u001b[0m \u001b[32m-----------\u001b[2m-------------------\u001b[0m\u001b[0m 14.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------------\u001b[2m------------------\u001b[0m\u001b[0m 32.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[4A\u001b[37m⠙\u001b[0m \u001b[2mPreparing packages...\u001b[0m (0/6)----\u001b[0m\u001b[0m 2.62 MiB/3.08 MiB \u001b[4A\n", + "\u001b[2mtyper \u001b[0m \u001b[32m----------------------\u001b[2m--------\u001b[0m\u001b[0m 30.88 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------------\u001b[2m------------------\u001b[0m\u001b[0m 32.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[3A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)----\u001b[0m\u001b[0m 2.62 MiB/3.08 MiB \u001b[3A\n", + "\u001b[2mtyper \u001b[0m \u001b[32m------------------------------\u001b[2m\u001b[0m\u001b[0m 44.00 KiB/44.00 KiB\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------------\u001b[2m------------------\u001b[0m\u001b[0m 32.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[3A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)----\u001b[0m\u001b[0m 2.62 MiB/3.08 MiB \u001b[3A\n", + "\u001b[2mtogether \u001b[0m \u001b[32m------------\u001b[2m------------------\u001b[0m\u001b[0m 32.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[2A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)2m--\u001b[0m\u001b[0m 2.80 MiB/3.08 MiB \u001b[2A\n", + "\u001b[2mtogether \u001b[0m \u001b[32m-----------------\u001b[2m-------------\u001b[0m\u001b[0m 48.00 KiB/85.81 KiB\n", + "\u001b[2K\u001b[2A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)2m--\u001b[0m\u001b[0m 2.81 MiB/3.08 MiB \u001b[2A\n", + "\u001b[2K\u001b[1A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)----\u001b[0m\u001b[0m 48.00 KiB/85.81 KiB \u001b[1A\n", + "\u001b[2K\u001b[1A\u001b[37m⠹\u001b[0m \u001b[2mPreparing packages...\u001b[0m (3/6)2m--\u001b[0m\u001b[0m 80.00 KiB/85.81 KiB \u001b[1A\n", + "\u001b[2K\u001b[2mPrepared \u001b[1m6 packages\u001b[0m \u001b[2min 365ms\u001b[0m\u001b[0m \u001b[1A\n", + "\u001b[2K\u001b[2mInstalled \u001b[1m6 packages\u001b[0m \u001b[2min 50ms\u001b[0m\u001b[0m \u001b[0m\n", + " \u001b[32m+\u001b[39m \u001b[1meval-type-backport\u001b[0m\u001b[2m==0.2.2\u001b[0m\n", + " \u001b[32m+\u001b[39m \u001b[1mfaiss-cpu\u001b[0m\u001b[2m==1.10.0\u001b[0m\n", + " \u001b[32m+\u001b[39m \u001b[1mshellingham\u001b[0m\u001b[2m==1.5.4\u001b[0m\n", + " \u001b[32m+\u001b[39m \u001b[1mtabulate\u001b[0m\u001b[2m==0.9.0\u001b[0m\n", + " \u001b[32m+\u001b[39m \u001b[1mtogether\u001b[0m\u001b[2m==1.5.5\u001b[0m\n", + " \u001b[32m+\u001b[39m \u001b[1mtyper\u001b[0m\u001b[2m==0.15.2\u001b[0m\n", + "torch torchvision --index-url https://download.pytorch.org/whl/cpu\n", + "\u001b[2mUsing Python 3.11.11 environment at: /Users/erichuang/projects/internal-llama-stack/.venv\u001b[0m\n", + "\u001b[2mAudited \u001b[1m2 packages\u001b[0m \u001b[2min 32ms\u001b[0m\u001b[0m\n", + "sentence-transformers --no-deps\n", + "\u001b[2mUsing Python 3.11.11 environment at: /Users/erichuang/projects/internal-llama-stack/.venv\u001b[0m\n", + "\u001b[2mAudited \u001b[1m1 package\u001b[0m \u001b[2min 63ms\u001b[0m\u001b[0m\n", + "\u001b[32mBuild Successful!\u001b[0m\n" + ] + } + ], + "source": [ + "import os\n", + "import subprocess\n", + "import time\n", + "\n", + "!pip install uv\n", + "!uv pip install requests\n", + "\n", + "if \"UV_SYSTEM_PYTHON\" in os.environ:\n", + " del os.environ[\"UV_SYSTEM_PYTHON\"]\n", + "\n", + "# this command installs all the dependencies needed for the llama stack server\n", + "!uv run --with llama-stack llama stack list-deps llama_api | xargs -L1 uv pip install\n", + "!uv run --with llama-stack llama stack run llama_api\n", + "\n", + "def run_llama_stack_server_background():\n", + " log_file = open(\"llama_stack_server.log\", \"w\")\n", + " process = subprocess.Popen(\n", + " \"uv run --with llama-stack llama stack run llama_api\",\n", + " shell=True,\n", + " stdout=log_file,\n", + " stderr=log_file,\n", + " text=True\n", + " )\n", + "\n", + " print(f\"Starting Llama Stack server with PID: {process.pid}\")\n", + " return process\n", + "\n", + "def wait_for_server_to_start():\n", + " import requests\n", + " from requests.exceptions import ConnectionError\n", + " import time\n", + "\n", + " url = \"http://0.0.0.0:8321/v1/health\"\n", + " max_retries = 30\n", + " retry_interval = 1\n", + "\n", + " print(\"Waiting for server to start\", end=\"\")\n", + " for _ in range(max_retries):\n", + " try:\n", + " response = requests.get(url)\n", + " if response.status_code == 200:\n", + " print(\"\\nServer is ready!\")\n", + " return True\n", + " except ConnectionError:\n", + " print(\".\", end=\"\", flush=True)\n", + " time.sleep(retry_interval)\n", + "\n", + " print(\"\\nServer failed to start after\", max_retries * retry_interval, \"seconds\")\n", + " return False\n", + "\n", + "\n", + "# use this helper if needed to kill the server\n", + "def kill_llama_stack_server():\n", + " # Kill any existing llama stack server processes\n", + " os.system(\"ps aux | grep -v grep | grep llama_stack.core.server.server | awk '{print $2}' | xargs kill -9\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "c40e9efd", + "metadata": {}, + "source": [ + "### 1.3 Starting the Llama Stack Server" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f779283d", + "metadata": {}, + "outputs": [], + "source": [ + "server_process = run_llama_stack_server_background()\n", + "assert wait_for_server_to_start()" + ] + }, + { + "cell_type": "markdown", + "id": "90eb721b", + "metadata": {}, + "source": [ + "### 1.4 Install and Configure the Client\n", + "\n", + "Now that we have our Llama Stack server running locally, we need to install the client package to interact with it. The `llama-stack-client` provides a simple Python interface to access all the functionality of Llama Stack, including:\n", + "\n", + "- Chat Completions ( text and multimodal )\n", + "- Safety Shields \n", + "- Agent capabilities with tools like web search, RAG with Telemetry\n", + "- Evaluation and scoring frameworks\n", + "\n", + "The client handles all the API communication with our local server, making it easy to integrate Llama Stack's capabilities into your applications.\n", + "\n", + "In the next cells, we'll:\n", + "\n", + "1. Install the client package\n", + "2. Set up API keys for external services (Together AI and Tavily Search)\n", + "3. Initialize the client to connect to our local server\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "2e68e32a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[2mUsing Python 3.10.16 environment at: /opt/homebrew/Caskroom/miniconda/base/envs/stack\u001b[0m\n", + "\u001b[2K\u001b[2mResolved \u001b[1m31 packages\u001b[0m \u001b[2min 284ms\u001b[0m\u001b[0m \u001b[0m\n", + "\u001b[2mAudited \u001b[1m31 packages\u001b[0m \u001b[2min 0.04ms\u001b[0m\u001b[0m\n" + ] + } + ], + "source": [ + "!pip install -U llama-stack-client" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "E1UFuJC570Tk", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000, + "referenced_widgets": [ + "75307e3dee604d30aa44713e6e293e64", + "5ce87402a79342af995df41ac3940d55", + "fbbcc19886cc43b38424fbb184162c61", + "29212208db6b432eb4f708cd64258954", + "50dd8994a4cf486ebbec5ffd4322992a", + "f9b768c703494dd198f2978aff4892e8", + "1231b9e4cab34c33a38bee63543f1e75", + "754deb3970604d48a522bc9f021ad945", + "f6ecca7a1a8340fbbe056235a2714fc3", + "ef4f63fe9d8f4683a9d20becb6e4e2cb", + "7508f10c13634e7aa682cfb29c48d9e7", + "26f1430ca7cb4ad5b1b8df1ffdbd32a9", + "7cd2d9c9ea7b4d70902ffaff33033078", + "101288236cff40b8bb9dbad80dbbc7ee", + "d5c9977838a249eeab6ef628279b8155", + "d032d1e7b4b54ba28ac83c1a12b23876", + "321fce57c158432abeae496ae8a947aa", + "3ebe00201bdb4e119e3b74f684a58345", + "0f8bab6b8ed04774b386fe952aae66f1", + "cfcb6e456c354d99be91f161552f3376", + "61bd0d490c0e4c04a331cf9ce6b7d38f", + "7d8653fca29f4df3a7487733ff9db60b", + "943f8fcb66614353a51f32f8344b6122", + "0e695245b97c4bbc85e349fda3dc07b9", + "bb0d168c41f540b8ae42239d3938483a", + "87700a80125348f28c4f249bdf8b0a8d", + "8902c3622da540e496ed5b1524bd01ca", + "90432ec1c24b4607a935c94e130cd68d", + "464147b149824f20afc727751a702fc7", + "67e37a088be64a2ba786ca923b1017dd", + "98786f52ef5345b0b9164b9c1f2b8e18", + "0e1b9910a77d4b7fa69cb8926e6547d7", + "0b276315be4345be83da1e03905c8495", + "e11f8c3891284e07bd2572257afd5e1b", + "ee18d96394994d01b49d5b03b3d9a019", + "844b06df5749441fab6f61656ce581a9", + "e1c6b9a20e074f17aeba976b24e80c65", + "c690da8daa1e4f9ea73bcacdd92e8a6d", + "d0b161ae25c441e8b3caf7a3d88c1b05", + "47cf4b6b835d43388576a2abf4cc54f8", + "03bbebd659e64b5d9c29a73570c34854", + "b68e5097d2504d2cbd7e19aa1aac3a04", + "22a665deff88477b9372c0350c4c572b", + "5e535ed2b83e496ab57b1c80b615ab0c", + "d9de065c7f81443e98ddf066c7b5bd54", + "1e836106837c4ac7a11b36e700c46b64", + "55591e8179084fcfa3a61c8bd8d09dcb", + "de1ef93c41364eda9b4b111231057348", + "23b0b2f4f82c4a21846e91d7cea91da5", + "9e4d0fbb51284a7487c495c7b95a293d", + "b0f8cf1f79e04b5fb47a810f2c81bd7e", + "0c359bc4c94c46acbc9094354a15c33d", + "59d0b59b6c2248508d0601ff13878d33", + "891cb726d45c4fef8f2c74a56df5532b", + "fa39189070334939aea5fa4a7de5ec8b", + "f0e107dd6d54483aa367da0e337a97cd", + "861a00796f55470e85d94733eeee9a5f", + "5459633eb6e94ec391d13fcf67425726", + "b7b7467ece304ffbbd352b9b96a03aad", + "9dece059f1204e29b106fca9e191ddb3", + "e2e49c25d6fc4592b317e94cfabc2e5e", + "76d37a48a73946bab2821f097cf2605f", + "8e81ae00681347cb906b392c3656a64a", + "74bedc38b7da4e8a83b0c892d7aa59b5", + "d1e67c28b4664e8098dce8f5e80b8779", + "abe6cf39b784436993fcbe92221c31a3", + "d021a18ab70b4c7e8aec43932a124c36", + "72e7c092fb054b7ea0dcd2782b5d8a7d", + "8b1ea80221174fae943d5c9f997dfb57", + "f8073d625f80415dbf712cee434f6e3a", + "5f6014ba13fa4a659b9eb1b5f83599a7", + "327ff8f5292d47afbfebd3beea187739", + "988cac4341b646079fc73719f3f88ad7", + "900a4dac08f540dfb35c29f63236a12c", + "1e6009b9b0684b8fbaa379ea96f111ee", + "541b9b4e74614e2cb855bb90f03df538", + "ff256b2275f740ed82bca4f43b4d6fd2", + "3703041a499c426bb427ee008c81cde5", + "4b22bbacb995425fb32a2368f3685a92", + "49a66eeb9ef74de5ab8904fd90eb7558", + "08f9d125018b41c582a0fa1e234315f9", + "736c770230644894b85dbc34bd8f1d52", + "b67cbbf32f844a19b219be612d5038c9", + "774b513d64524ac7823a2cf13efa8d41", + "1e56da93bcf64ff490416d2b66cd3dc0", + "b7e35038ce344110b785753b655130f5", + "5472af91737446f4a4a2d92a3f684a45", + "9fb4368802da4a5a8101ba200d98403a", + "2e713bcc372e48b2a006558db4d1df68", + "1a277abd5ea44253bc6894bef258b52b", + "b3eedd82e7da4ce8b3ded70e49a2afd0", + "6f5c18cb8002471f8b3764effee37324", + "3bebac362b344e8d9103c5011613f1ea", + "670905a55b19458da69f83c8bcd511d1", + "ff54451a48394faaaa9d8cdb690d0718", + "36b5bc19b2d0407f8ab28ff0da2ce12d", + "879e48d9a9e04183903d94ffe98313d2", + "abce503d70594c2ca9afdc47847c125b", + "028e291ee53947bbbbc4bfb68c695f5f", + "a530662719374c95a9bef12e59e28c85", + "bffc0f4b12f141398535990709fd4f2c", + "04804c74e1dd43449d5f758cf5d0ba5e", + "95a506c3007c4525b01ee4e1600d671b", + "a0d6b0caeb2340fe96c8f5569e3d3ae4", + "30798f87a8b848d783fdacd71af5dc04", + "07ce54c75e76488ba4019a20b3707061", + "f023175de68445f98a6b01bb40ccdc6d", + "7389b79a0ff44cd68c7866995d728023", + "8e2b70ffe4eb4974bd6393fcc1292267", + "13eee164dc534424acb9dc9ee37a9465", + "722a7fe16af3422585a20c651345cfa4", + "f5596c1c9c4d42f3bc171961f9582eff", + "85d66e615b5742e78657b1e60c75fc72", + "731c02dc5dd446c3b22765575148e256", + "254ce460ce244c99a5afe39d5d51f6b7", + "4cf1dc345ace4da59f978f661487f975", + "8f30fca71bf24e5ca26e17c2321f893c", + "dd85d37dd1d14c7ea4592f8e11b2d2c8", + "3cb06377e4454f009d6b2aa7aa6ff0a9", + "4502477db4d948e693012364c2dcb370", + "52fe404ec9c14db2a7279b4c154eef3d" + ] + }, + "collapsed": true, + "id": "E1UFuJC570Tk", + "outputId": "aebb69d4-c167-4de5-eb8a-dd19dd538f63" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Not in Google Colab environment\n" + ] + } + ], + "source": [ + "import os\n", + "\n", + "try:\n", + " from google.colab import userdata\n", + " os.environ['LLAMA_API_KEY'] = userdata.get('LLAMA_API_KEY')\n", + "except ImportError:\n", + " print(\"Not in Google Colab environment\")\n", + "\n", + "for key in ['LLAMA_API_KEY']:\n", + " try:\n", + " api_key = os.environ[key]\n", + " if not api_key:\n", + " raise ValueError(f\"{key} environment variable is empty\")\n", + " except KeyError:\n", + " api_key = input(f\"{key} environment variable is not set. Please enter your API key: \")\n", + " os.environ[key] = api_key\n", + "\n", + "from llama_stack_client import LlamaStackClient\n", + "\n", + "client = LlamaStackClient(\n", + " base_url=\"http://0.0.0.0:8321\",\n", + " provider_data = {\n", + " \"llama_api_key\": os.environ['LLAMA_API_KEY']\n", + " }\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "635a7a6f", + "metadata": {}, + "source": [ + "Now that we have completed the setup and configuration, let's start exploring the capabilities of Llama 4!\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "0fc75d73", + "metadata": {}, + "source": [ + "## 2. Running Llama 4" + ] + }, + { + "cell_type": "markdown", + "id": "7dacaa2d-94e9-42e9-82a0-73522dfc7010", + "metadata": { + "id": "7dacaa2d-94e9-42e9-82a0-73522dfc7010" + }, + "source": [ + "### 2.1 Check available models\n", + "\n", + "All the models available are programmatically accessible via the client." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "ruO9jQna_t_S", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "collapsed": true, + "id": "ruO9jQna_t_S", + "outputId": "ab1722a7-62ab-43bb-9cab-4e45bf62068a" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Available models:\n", + "- Llama-3.1-8B-Instruct\n", + "- meta-llama/Llama-3.1-8B-Instruct\n", + "- Llama-3.2-11B-Vision-Instruct\n", + "- meta-llama/Llama-3.2-11B-Vision-Instruct\n", + "- Llama-3.3-70B-Instruct\n", + "- meta-llama/Llama-3.3-70B-Instruct\n", + "- Llama-4-Maverick-17B-128E-Instruct-FP8\n", + "- meta-llama/Llama-4-Maverick-17B-128E-Instruct\n", + "- all-MiniLM-L6-v2\n" + ] + } + ], + "source": [ + "from rich.pretty import pprint\n", + "\n", + "print(\"Available models:\")\n", + "for m in client.models.list():\n", + " print(f\"- {m.identifier}\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "86366383", + "metadata": { + "id": "86366383" + }, + "source": [ + "### 2.2 Run a simple chat completion with one of the models\n", + "\n", + "We will test the client by doing a simple chat completion." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "77c29dba", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "77c29dba", + "outputId": "4857974f-4c70-4bc4-f90a-6ae49dc9c41e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here is a two-sentence poem about a llama:\n", + "\n", + "With soft fur and gentle eyes, the llama roams with gentle surprise, a peaceful presence in the Andean skies. Its calm demeanor and soft humming song bring serenity to all who belong.\n" + ] + } + ], + "source": [ + "# TODO: update this with a vision model\n", + "model_id = \"meta-llama/Llama-4-Maverick-17B-128E-Instruct\"\n", + "\n", + "response = client.chat.completions.create(\n", + " model=model_id,\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": \"You are a friendly assistant.\"},\n", + " {\"role\": \"user\", \"content\": \"Write a two-sentence poem about llama.\"},\n", + " ],\n", + ")\n", + "\n", + "print(response.choices[0].message.content)\n" + ] + }, + { + "cell_type": "markdown", + "id": "7737cd41", + "metadata": {}, + "source": [ + "### 2.3 Running multimodal inference" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "e7b1baa7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 275k 100 275k 0 0 847k 0 --:--:-- --:--:-- --:--:-- 845k--:--:-- --:--:-- 0\n" + ] + }, + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/4QmWaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA0LjQuMC1FeGl2MiI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiIHhtbG5zOmlwdGNFeHQ9Imh0dHA6Ly9pcHRjLm9yZy9zdGQvSXB0YzR4bXBFeHQvMjAwOC0wMi0yOS8iIGlwdGNFeHQ6RGlnaXRhbFNvdXJjZVR5cGU9InRyYWluZWRBbGdvcml0aG1pY01lZGlhIi8+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94cGFja2V0IGVuZD0idyI/Pv/bAEMAAgEBAQEBAgEBAQICAgICBAMCAgICBQQEAwQGBQYGBgUGBgYHCQgGBwkHBgYICwgJCgoKCgoGCAsMCwoMCQoKCv/bAEMBAgICAgICBQMDBQoHBgcKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCv/AABEIAwADAAMBEQACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/APxxgtYgAAtfLxrVGkfVe3qvqXILSMDOwUSqzLVWrbcmht4mfG0GpdSfcqNao+pI9tEvzKgNT7SfcbrVF1LumwROmcVnOpPuaQrVWtyxBbRiXIXP4VDqTLjWq33J/IjLY2A1Dqz7l+2q33B4o1b7n5U/aTtuL29VdS1p1sj5+X8aznUmVCvVfUstCgOAtR7SZft6vcIIo/MOVoc5gq9W+5dsYkL52/jUSnM1hXqX3LEsCk8rwKlVJ9zSVap3IvsqHkoB+FN1J9yPa1X1ITaIWYADkelTOpNDVaqnueEfF21ji8WMNoxu5r67KKtWVA+PzXEVXidzuvhbDaSWUQSLoBXn5jRn7S8z38BWq+xVmemxQqsK4TtxXiuTTsj0/bVUtxfIUuAV7/lSc523E61W+5JqUCC2UbeamE5t2Q6leqorUrw26sgG0UnUnfcI1qltxViUttA/Gp9pMr21RdQuLZCu4qM+lONSb0uEqtVK9ySSyF3YFQoOBR7WaluQ61Vx0ZV0uAwxmIjGDitJTk9TOlXqrqXLS1BnL7azlUkkbwr1b7kd2P3u0j2ojOdgliKqluP8hPLBIGcVHtJX3NPbVLbiGJScBRSdSY/b1e5JHbocfL1qXUn3KVap3LFvbp5g+XuKl1Jle3qrqbSxqZF46ADpXRCU3RbM5Yir7TcsxwJn7o/KuSVSfc3Ver3J0iUjoKh1J9y1XqdxkkKZ4Wlzy7h7ep3IzBGP4R+VHPIPb1O5FPGozhaanJ9ROvUXUjiRTxsGPpTc5i9vV7kbIok6VSnK24e3q33C7CCPGB04pKpLuKVerbcjto1I3Y+tDqTYo16vckeJSfujFLnnuV7er3GiJCQABT55tbi9vU7kkkKmLIWpU5jdepbcgghViRj9K055mca9V9R/2RNhJWiNSV9wdeq+pRitF+0k46H0rWVSXLuYxrVFPctXMaBMFR0rLnkdEq9VdSBYEbkDjvxR7SXcSrVO49IE6EfjUOpJ63LVep3GvHHu+7UupJLcft6j6ixQpnO2p9pN9S1WqdyRoF24I61KnO+5brVO5DHBH5vC/pWvtJ2Od1avNudJ4ShjE2Qo69axlUnfc0hXqqVrieMbaNroEr39K0p1J2M69eqpWuUtVt4z4clXA+4ePwqHVmp3G69WNHRnyv4ttIl8cXCmMf6yvuMHXqPBp3PicTiKrxb1Om0K2jUIdnp2rmqSqT6nrYWtPld2d34fgjMakJXj1p1E9zup1aqe5uRwx/3RXO6k+50+2qW3LlpbxkjC9azlUn3LjWqdzQggjBB2/Soc5s0daqupfECeVnaAPWp55sp1a1hIbeMoTihzmnuJVqvcqLErzMAPxxVc8jNV6re5FJaoJOB071ftJ23EqtW+40W0ZVuB0qXOdx+1q66mfYWMP28sE7+lbe1nynJCtV9puab2y78bahznbc6nWq9wmt0EX3e1R7SfcbrVe5FYWyNNkKOtN1JdxQrVb7jdThTzApWmpza0FVr1U7XIbuGMWnKinGc7ilWqqF7mPbxIZSNvfmtXKZhCvVfUvQ2yEcLn3rNzmjZVqvchliQvwtNVJkurV7kZt0xkLVe0mL2lXuV5YRu+5Ve0n3E6lW9rkUkSjkpRzzZLqVV1IZY1IO0Cr5pcl2Eas7XbPof/AIJ8+HEW/wDEnidlwdsFpG//AH07fzFf0F4I4BfV8VipbNqP4H8O/SrzqpXzjBYFPSEHJ/N2R+gXwH0yL/hWOvXEvzFlAXNfuc604VoRi9Ln8aYyk69KvVf2FG33nyr8f9EimvrtWT+Jq4s1qSnFn6LwljasaUHc+Iv2gPA8VxHdKEOSpIxX5LncZ6rof09wjnFWEoO5yXg7UDrXhW1vJzmSJTDOWP8AEhx/LBr8AzOjLCZlUg9r3Xof1dk2Z18Zl0W5Xa0LEsCE9B7VlGcrHoOtV7jWtYzHnaKaqTF7WrbcpNbR+ZwBxWvPUsZqtWvucn8UrdBZqdo+telldaftLXPJzbEVVHc4W2to/MXC817rrTfU8mlWnzJtnd+FoUa2A29Bya8bEuo5Xue/Rq1GrxehrG3jJwFFcLqzXU19vV7lS5tkEhG38K2hVmzGVWt3IpbVBHnaPzrVOo+o1Uq23KciR9NnzfwkVTpubvIMRUnGGhv2i7wDntXO6dOGjNXSpqTVy/Ase3aWrnnZbEaJkkATfjcMH0qXsEVdk1yVRMhhShe5pKKvZFrRdpTDnAPvWddJbMulGFi0NqTHa3TvWW6HsyZAhwxYVN7HRCEZLzI7qQKSY8Y+tXBJoUqT6l7RzmLJYdOazqxSejKpQp/MnlaJWO5xn61KuW6TvoRW84MxXitGrRJjBKRpaafmyxwO1YVLWNYxgtS1JyRgjpUKw0k5akbsqrk8/hVKzdjV00tSC3dDKd3p3rapStFM57S9oeE/GotN4yMcWNuetfXZVKNPDLufL5jQtiLyO8+FFvHDpsZB5wOa8XMqlSrVZ7eAcY0bHpEDO8CknjHGa8V+47M9KXK4qw5FYyAn8eKTasQtZWZPqkZ+yKw5xUUpJSNp000itao5i+YYAHHHNXKK6mduV2EYfOc8+vFQkjSEOZXY+7+W33L1Fa04LmM5dhdJufMiKYGSO9OrSUdUaUow6kMkc0U8hEfHfiiFpKxlOnGN3EtWNxCM7h1GKyrQtsVRlHqVrwM1xvQdT6VVN2iN01J3JimIvfHpWcoxi7gm3oNRDnLDn6VNk2aWsieNegx3olCKBPUnjIR1Y9jWdkNtI07WdJphgiuhK1OxinzVS+pVSe+a5XGx1bD1bPVcn6VLVtykmxCpPRf0qWkPlsMKknG3mhxSVws2yK5t5yMqn40RcS1TbY23tLhjwvP0rbliQ4yTegraReNICqnGeeKpRp9xKMmWJ/Dd3JFvzjHtXPGUVLRmvsnIhg0r7P8Au2lJb6VvyQtdshxcdESf2PNJznAPcCsZNKWhoqMmiMaPcK+Bzirjytak+ybZLJpcnlc+npWX2tCnRlYrxaXODkc/hW9lZXOfk5W0NlQwxnzODg4GKapXehbilEzIGllvCFXODyfSt6lLk+I5owu7ot3lrOYxx+lZqMTaMefRkUVpcAhSuSe1S4wNXTstBy2twDtaL9KzlGCWhVOk5A1hcsSFTj1xWas9yZwlFiJZXgbHlkfhV8lNFxg2iV7C7EeRH+OKxaV7BZ8xWSKaOXEi85rpVOPKTKCjK50vhFR52PzrlqwtqghZz1H+MIx9oAUd6KTj1CvGPPqUNTjzoEoYfwH+VNqLejKcIOmfL3im1eTxzckAf6w4/OvtMFGP1NXPjMVCh9bdmdVoFg+E3Edq58RKMY+6ztpQvojtNHtxFGCrYwK8erNvRnq0lBKzNe3jyeSPyrnlY1ajfQtwoBgZFSrGtOMWy9bEkgggCqjBLUupBQRcyBEV3D6UWT0LjNONhFnjSIgtj04qZwSepFRKCKUMgaVhu6mnKEUtyKcFJXFmxnCGhRsyE+WepAkyorZOcjvVummbPlaKmmTg3xJ9ac6bS0OKMH7XQ05WDZcMP8KlQN9b6kM1wPL2hucdKHSinqVJRtuN02QF8k/pWcox0dyqVLuR6nMhmwGHvWkIwtuc87upZkN1IhtvvdO1aJxTOicUqdjKhaMyli9aNpvRnFRbvZIuwSxrHwwI9TUSipHY6aauQNIXkySOe9Hs42OeyTaCQlD7UlCI4pSe5Wc7nwT9Dir5Ioc4JK5Hc/d4bOPatoxMYz5SmJcngj86VS3LsW/fWp9cfsMaOLH4VtqG3DX+qTPz3ChVH8jX9Q+D2GlR4RU39ucn+n6H+cX0jcbHE+IlaCf8OMI/hf8AU+3vgzbywfDDU8ZAkzxjrxX6dVilXppn89uUZYDF2fRHzR8cbDdqFy23qTXPmMFys+h4Xq2oxPkf45aP5bSSFMqwPavz3N8LCcWf0NwriINJXPAPBtwNK8Sat4WlOFkYXVsPXsw/lX4fxhlsKU4YiPoz+suBsV7bDOnfdfkbU5Cnrz6V8dTacrXPuYxUpWIzcRxoWaQAe5rVPWxdflhHUoyXFuZt0cynJ6ZroV+XVGFCopSstTlvilIn9nBmIwK68upSdbQ8vOIKyscJZedPKoRRjI5r6OUKdJXkzy6dJaXPQPDSxRWi+c2OPpXzuKqy9o7bHuYdQpI1AYiTtkH4Vwtu5cVGUtyjcn98SzD2rqp3gjphTjErX2q6dYxZurhV7YJrohCrU+BHBiKtOFWzZDbXFrdfvLd1ZT6Cs66qxXK0ac9OS5pHXWfhV1jUGftXFVxMXK56EsHeTdy7H4WIPFz+RrJ11bYyWEcnuTxeEgW3G4P4GlKukrpFrB2ejJn8JBhtE5NZQxL7G6waa1ZNaeFni4ExA9Qa1nVhKJmsHJS0ZbTwuuc+cScda5/aK50fVNNyxbeGCx+ab9aznVS2COHaejFuPCYZsJN7GiFfubexbjqT2nhlowFWUj1IrSpWp8uxgsLJO9y3/wAInG/Lzc4rjVexuqEu5EvhJVfKyc9q6IV7rUU8N5k8Hh5oiCHPvzTnUhJWsZxw0l1LI0iToZDXPJxR0Rw73uMbQpSCBKfxqfapHR7LQaugSwHeRnIrZ11OFjOVFx2PO/GXwM1DxPrx1OO62rnoK9LCZrHD0uVo+dxmVVsRW5uY6fwd8OZvDtqI5p87R3rOvjadWVzqwuDnSjys6OC1ZIhHnIHeuWo4Se56EKMrWJ4Ik3KSnQdqyaS6m8aSW5PIiXEflOvSsrcrvc0UF1GxWUKHBWtHUTREqcbjnsbUSfMmD1GazjNpXNlGKWhDe3WlWMX+kkYx0NaU5TqStE463JF6odok2magCbaAAHoRVV5zjo2bYdUpLQ000qAgl4wfauSFWVzpdKFtiS30jTUOPJyamrVm+pKoQ6IedK08Hd9nFKlUa6mrpwUbWJYtN04rt8pevcVdSUpLcinShzbEqaDpzHcUXB74rFTcTaVOmyaPQNLA6D6EVLnKRmqdIevh7SmGCBU88l1L9jSkTQ6BpcB3IRVRrS2uJUKUXoWItMsM8sPzpSqNLc0jSp3LCadpqDO7rWPPJlctNCSWtgOg5xVJu25FoX2GpBaKf4cGpnK/U0Sh2FkgtCMFFIrNSsyrwS0INlohyBj0rp9ppqZPlfQXzIs/KfxHFR7VRZPKr6Djl1y05xVKvT/lK5JLZkUltETuZ8n1qpV01YFFX1Ii0UXCseOxNLmiDlYT7ZCvXnNHMQpa3Ip9RiAw2OParhYtziyu+rWqNuxjjFdCszgqTakQXF9b3g2bRk+1aJcqumEZqWjKwFtYP5yJ1PNaRftNGy3aEbpEU/iSxUlWTk8dK0jh1JnH9YfNsSW2t2JILYHHWoqUY9DqWJioki63ZFuxx6Cs1h09yaeLvJjm8QabGucDntQ8PFuyKq4rsiNPE2nvkrEPxq3hVsFPF2Wor+JLIjAUAVLwKT3JlX5myOe8guo98Sjgfw9qToSS0IeIWxq+DZiZNpGea4qseWVjow8efVljxkzLcAkY5FZw1VhYlOMyhqbr/wAI/Kcj7nrVUqTcrMqzdJ2Pl/xQks3j2ZYyV+evucPCNPAbnx1bCSnjXqdp4a0m5MYLuRwO9eLiK9NaW1PXo4VwW50tnDcQrhZMj1rklKDjqdUKMpbM0YvtAHJNZRlTN/q8l1JohdNyHPtUyqQj0NorlHT3l9aJvDZqY1oSdrCrKTjuV7XxHfXjGNWxjjNdU/ZUkclOck7DrjUr+Pjfk4qYToSepVV1KmxENRv4FEzn6VTlRY4TnCNipP4zeF2Lg/L1rspYeE1c82riKvO9B1t4rS4bdnr09qdSgoHXSxEWtWKviCGCffn8azcOaFrGsasU7jLjx1ZwPiacAHtmrp4SVTaJyYjFKEhbbxSt+NlrJke1Z4ikqK1Rvh60aivcu22oXSDAb6nFcDdJnV7aUXoNmurmSQMzZI6VUVGxm4SlLmEuHupYSA5GRWbqQjKzNW5WsZyW13HMW80nJ69q19tTa0RjKm4LmRK8t2nrx2xRGUGtWTGU2V2uL5TuOQPcVsnTtuVaS6EbarO3yljke1HKkYKfJO5Vu9VvIR5pQkemaqHI5WbLq1HyMypPFV3cu0cUbZB5yetetDCxpw5mzyY4i83Ysx39+bbzMAcZ61xVYU+bc1+tVJrY+/v2UNEOjfBTw5byLh5LETPx3di39a/sTgXCQwPCmFpJfZT+/U/y18VcxlmfHWY1273qSS9FofYXwwtmi+F07KSFcN+Py19LiV/tUEfmNG/9k4qTe7t+B85/GiwElzO2MfMcVnj43iexw3XfJFHy/wDGPQEuLWVSnQHjFfF5hC6aP3PhnF8lSJ8mfEO3/wCEc8XW2ux4QRSFXP8Astwa/LeIculisLUp/P7j+neDs3lh5wce5Fe6vcOzKs2OevtX5bRo04S94/ao1KjlzIz9Qju7m2JF4RjqPWuqjOjTqJuNzLEOdeHKVdG03UIJxcS3e5Sfu1WMr0qmkYmOHpTodRPGOkXmswC3jBAx3pYOosOm2bVqbxEe5g2XgTVrdgxJ46HFdTzCnUdmeQsJXU2bVvpup2wVc5x2xUTlQcb9TupUK83YuRLfBcFSCe9cLdK53woThqQXlnf3ERCEjjitHUpRtcqftEjlta8LazdTbnZnXPAr0sNj8PTjY8ivg61eTdjQ0DTb7TVzcK2MdKmtXoVfebOaFKvHc9atcBA27qPWvlHB31Pra0p+0aLcKDjDjrUVJ6WQoSadi1Eg/v8A6VHtNLGimTRoBwT2qOaxfO2Txrzgt+lVz3Qc7RKoUdHFQ5K4c82ToRxuNQ5IuMpImQLjk0uYvnZLGwU5Bx+VRJ3BTZOrgjJP5GkrFqUujHBwBwfzrRNInm11HKynvQ5pGkXF7DhIucZH1qG29Sm5WGPNtPWr5boqnK+4Rzh85b6VPK4suUmWISMfeHtSaSZg7ykN3HJBlH0ptpI0jRas7jti7QWcH2rL2rYno9BokgXgYP41Sk2TzNjhND1bHPTk0pK61HzMeskb8KePrWfNYHqOEKu4Zjx9KUqlkXDUzfEnh+LUovLB5xwQK1oYiVN3KqUFVjYf4P8AD95pShJGyvrV16kaupy0aFSlN9jqIY1Y/vH49K5Jy5dEd8WupL5NmvLyL+JrLnm0bxSkCrZOdqyrx70RUmwqRUUEiWiHHnD6VquexNNRb3HRvbE7TcD86xqcyKmoomSK3b/lv+tY88kQoxfUebeMni4/Wj2ja1G4We49LRCRib9aFJIpU49ST7GoH+t49zQ53D2aJY7VM5Mw/Opchqmhz20WMCcfnQ6jtZh7OPcjMKA/64fnScx8iAQxscecKlzGqavuI9rGOso/Omqg3CKIXhiBx5oq+e6I5EKI0UYDfjmk5lcqGvGp5z+tHOZuFxnkRnqw/E0nNjVJMhkhgzgsB+NUpsUqaQz7LaP8pkX8TR7SSEoRZDdabYEYLrn2NVGtU7l+wiykbOJJQY5x+ddCqVOpyyw+ug99OjmXbJKv51lPFST0NY0boqSeHLKST5pV/Oqjiq0tmafVKbjqTL4dsNv+tXH1pe2rLqc31WLeoLoWnqcGZfzo+sVktxvB046jbjQdMCZ80ZqFi619zSFCmyFdL0iIbHkHPvW8a1fmvczqYamnoVNafRrGJWEn611UnWrysc1WMYosaTc28to0kWMY4ya3k3B2uKnRTV7G34P+a8O0cZrmr1EzuoRjFk3jbcs4BPGe9Z0mc+LSc0Z18N3h+UNz8v8ASuiL982ikqWp86a3bxjx5KZCCS3H519NRU3gtWfI1sQnjmoo7nw+HMYRHxwOoryKyhHdanrUY1Jam7bqIiBI4+mK4KtVNWOxTUdiyvK53j24qITWzKTqMhvdXj06PzJcYrphS9s7IitNU43ZDp/ie01omKOQHBxWVfCTwr1McNX+suxoWtjbROCzJk89Kz9pKUdTrqUILUsta2knG9eenFczquLsghGCGy2ds67PNT6YputKLD2cXIy7vwvZyyljKnI7100sdVSsCwcZXYtt4Vs41wJkqni6j3ucksHaTHP4WsZThpxz1rKWNqR0RrDDR5TN1T4f6fctn7Qv410Uc2xFPYp5dSq7ljSfC9ppagLcJx0FTUxdWu7yMFg40Z6M0VW2U5LrjFYTqPY6FCC1ZFLdWcLckEe1aU7yKdSK2K/9s2TsYt2PrRUpVIasyTu9R2bdyCJhU020tTeShKGhKkMDn5nGampUeyMI04jZLS2YY81eahTkU1Eoz6ZbiTargfjXXCo0tTGdKMxz6LBJDsaZcYrJ4i0roPYJxsZn/CK2cM5cTrya7Y46pOKXYxngKaV0OutJtkjEUEoJdgoA9ScVdKpLE1owitZNL72cGNorBYGpXk9Ixb+5Nn6M/CzTBpXhTS9JRSFtrGKMLj0QCv7qyqisNgqNH+WKX3I/yJ4jxDxOZ16z3lKT+9tn018PraWL4fN3Romxkd8V24lp4mK6nxmH9pLAYmT2ueD/ABdsvMeZv9o0Y2LcT1uH6nLynzf8T9LEsMyleoOK+UxlJSufsuR1+WUT5I+OPhkzi4XbzyVr4bMocsmf0TwnilFxbZyfhGzj1rQorqQgyxExTexHH8sV+F59CrgsznBbPVH9KZNi6eOwCfVaMnvvDzPEyQybSRwc159HFSi7S1PR+rqexR03w/qEU2J7jcF6c131cThnC6WpnDB1FN3ZuQWSYG8Z2jnivPlXvsdcYRoaWHSwwL8rLxWcJSTvchQjUldGdcXFnDdiJkH0A611yjWnS5k9DOpUjTmoomNtA3KqMYzjFcfNJHbS1jdhHawLkNj6YpOc5aJinCDI5tPimY4Ax24q4qoiXyQgVJNORA3HQdK1qPkhZHOsPGUtStD8W7BQNoTn1NdkcsnVepxwzWGImy9B8V9NCB5FQY965p5ZK9kOeY0obFiP4v6P/EU/Os3llQxWbUyaL4uaMy53pzSeWVGbRzSla5Ivxf0c8F19uaHllQl5tTeg9fjDpP8AeWoeWVB/2tBEsXxn0sfxLSeV1RrNYMmX4z6X1ytR/ZdUr+1KZIvxl07HG2h5ZV7lLNIWFT4zaavULS/s2oNZpAd/wurTC2zcuT2NH9m1TSGPjN36E9v8WrOc4QqfTApPL6iOn+0aUVZEo+J8G7n8iKby+pylfX1KFxk/xQh2HOPbitKOBlcini7vUqt8WIIuuPyraeX3Z1xxcEhg+N+mISskwBPqapZZKTtY8/EZnCFayIn+NOklsi8GD1BarllnLpJHXRx3MrtliP4xae6DF0v/AH1Xn1MtfNZI56uYxU7Eq/FfTiNz3S/99VP9nzQ1mUIokX4taSOTdL+dJ4Cpcn+0qbJI/i1pYwwuV/76qHgJlrMItEg+MGnIc/a1/wC+ql5dMHmUYu5HL8X9Pc5+2D/vqtaeXyTKjmysCfGmyhPyz5/Gtp4OytYzeapsk/4XbHIfllGPrXK8A2y4Y/mY4/ErVL+Fri2yVHcVVPAJO0jaOZSTsisnxRukJ82Vht64Jrs/s+nBGk8wTjqLL8arUKEa55z/AHqUctb1ZyUsx5p2Q+D4x2rjcLnj/erCtlyex3zx8Iw1ZYj+NVoP+Xsf99Vyf2XJvRHFDM1zEg+N1ooyLz/x6tFlNTsaVc1gpWCL49Whk8tLvPr81XLJuSN5GlHMeZ3Lf/C7YP8An7/DdXO8rcn7qLqZktkOX42W68tef+PULKZvoRHMPMa/xwgH/L2P++qiWWOL2IeZq+40fG23Jz9rH/fQpf2a+w/7SQo+NsI63Y/76o/suTD+0ra3Eb44Rnpdj8TR/Zj7E/2onuxv/C7EY8Xa+/zU/wCzGCzJdxR8bGbhbkE+zUPK2DzPzA/GaUrkz/8Aj1X/AGVIP7RklcjHxiJPM/8A49R/ZbbCOZ6kNx8YIwebsD/gVP8Asxp6oKmZruRD4txvyLwYH+1Tjlt3sFPMU5bjZPi5CFy12P8AvqrlliXQdXM1GVrjI/izBIcC54PvQsva6EQzHme4+X4swRD5bsfi1KeWN62NJZiodSu/xbhd932vHPrVQy9R2RLzh8th6fFlMcXo/FqcsvUyP7SW4rfFmNFybwf99VEsqjYHmXdiJ8XoWOPtX61m8simOGaa6Edx8ULdut9jP+1XdSy9ON7HbDGqpHUoah48t9RQK2pA47ZrSnhnSnexwVputOxu+HvHMRshB5gOAOc1yYjDzcmdscTTpU+W56h8LrsakDMORnINebVoSi3c1w9d1GXPHgK3QyO/NEXFLQMQpc9zMvyV0GR06bK1i1zXZsoTq0T5r8Uaxa2XjmaW5lAAb1r63DOUsHaJ8riPZYXFNvc2rD4laTCAkVwhz15rknldaory2O6jjY1UaUXxN07GTcL+dedUy1xlZBUx1OE7JkyfFPTApAuUP40QyyftLI6aWLS1ZT1Lx/p2pIYjcA59DXcsDOj7yHWxNOcbFPS/FOn6TMXjmHJ9ac6E8T8RhQrwormNX/hY9twTcjjoc1xVMByuyM55ipPckh+JNtzm6Hv81Zf2c29i6WOjJ7g/xLtf+fofnTeXOL1QVMdGEtxv/CybRz/x9Dj3p08A1LY0pZom7XGn4j2yk/6WOP8AarepgJKOxWIxsIxvcVPiXblsC7B/4FXK8v7o5o5ir7iy/Ea1bBa7H/fVOOB5XdI6HmkYIj/4WJadftgP/Aq1eFdrWOeWZRmxr/EO16faV/76qHgX2JePiRt45tZutwPb5quODkmXSx0WyGbxfZg7luQD6g1rLDTvYdbFwtoFv48hU4N0PzrKWCdtDCGNu7XJW+IMC8C5X/vqp+o69y3jYrqIfiHB3uR/31VfUH2E8dHuNHxAtXODdL+BoeBdiFjot6MlPju02Y+1qM/7VCwVnsbfXow6ld/HlmrYW6BP+9XSsI1HY1ji3W3Nz4Z6hF4r+JPh7w+swdrzWLePZnORvBP6V6fDOVVMbxHhaaWjnH8z47xJzqGW8D4+qnqqUvxVj9OvC8QQIingYAxX9q0ocskj/JrHzcm2z6I8GQBPAoBx80TfxEdvSqxD/wBrifPUFfLaz831PFPilbLJ5yg9GPatsTG8DuyWdnE+eviLpxdX445r5jFRV2frmT1rNWPmT416BhpJVTjntXxWbwitT9x4XxMpJI8G07WU8I+ILzTbhsQXQEkeTwHHX9P5V+ScV4RYnkqQWq0P6d4Nx1KnQcJvdfkaE3j7SRgSXKj2zXykMsrPofXLHQc3y6kR+IWkRkhZ1P5VNTLqiVjup4iDV2LF8Q9OZ/8AXr+dEMrqbEYjFU1TbEu/Hlgy7hKvHcV0wyySdjzoY+F7Gc/jXT7iUSblJHTmtKmEdOPKjf21NvmY/wD4T2JTsYrisll6lFs1ljFy6CP4/iYfLjgVH9nKLOOGMftNWQN8QIkyGYZI7U54F8tjpr4pSV0NTx5By8jDPYetZzwFSqvdRzVcypw0uVYPg/clV3XBBxXbHMVTm1Y4o5U8PUety5/wqOVItxuCePWn9eg+gPLvaMavwmlYZ8+sXjlcz/sppksfwolxhZx+dWsZBGiyuRIPhHOeftA/E1lUx8U9A/sqVyZfhFMMYuB9c0ljoNFrKpEyfCOccC4H0zR9ep3L/sqRKPhJKBua5H51lPHxTBZVIsR/CGYpvFwMfWiGPg9zVZY7E0HwakkGTdis6mZRi9EEcslfctQfBFXGftq5HvXM80lfY6P7NaVkdF4R+FNjYO3nurketTWxrqRReGy/37M25Phzo8khxGoP0rFY2SjY9iGCpRjYY3wy0lsKUU/hUQx0kafU6S6EN18LNDMDlo14B6U62PqK1mL6vSTPAfixpCaJr7Wtq+F3dq+lyms61HmZ8tmtKHtdEM8O+Cb3WYBNECeOuTWtaqlLVnHThVlojdt/hZq7cAt7cmuaWJpRR0wwNabuWF+E2sk4Dv8AmaFjKNjR5bVkia3+D+qSSYaZhzyCTXLPMKavYiGX1L2aNGH4L6kwCrcN+ZrGOPhe7O2GXTlsSL8D9WLcTn863/tCg0W8sk0WIPgTqUjY881yvMqakQssqIlT4A6mz4Nw2D71U80pcmiG8sm0WrP4DX6XAR52wD61zf2jFk/UKsXZHWzeDofCujCC4TJZcg1j9YdasmjseHeGp3kU7HwFBfaLPdvHhipIOK1rYlxq2Zlh0qtNuxxVn8HbnVbl5hIdu4966pYxpWRbwPuc0VqX1+BFx9xZTk+5qFjOXVmccDUqSsxw+At4OBKffmkszhzHX/ZUbDZPgDqrgmO4IxWzzWnFXsZ1cr0ukSaN8AtVubryi546nNclXMeaN0c0MJNS5TZb9nHVTjErfTmojmajE7qOWTnLUcv7N2rEEl3/AFrSnmkWjq/smwz/AIZy1MEhmb6ZNRVzKPQ5p5S29Bsv7OuoJzvb9aiGZx6lRyh21K8n7PmqJ92Vv1roWY02hyyrQik+BOqIMbz+ZrmqZiovQ4Xl0lKyEX4Gap/AM8+9OnmMZPU0/s6aWwi/BjXEfy1Sqnj6aZvHK5WFf4M+JFPEZxXSsfQcSnl0trDT8GPEL8FSKyjmNGMiY5TNasjb4F61K2ZC35GrnmVLl0B5U5O1gb4CascBWYfnWVHM4Ju4LJ5JkU/wG1iD/WSN+tb1cypuN0c2IyqUZXJYvgPqjw5jlbPWuenmUPaWZrTyqVrkY+BGuF9rSN+ddU8zo2LllMp7Cy/ALWVGTK2KlZjRcdDN5PPlGD4F6mp2mds+nNcn9qxUrE08pm9yNvgfq+/Hmt14Ga7FmVFwuazyp2sPPwP1ZV3LIc98VySzKClYVHKHcWH4Has7Zd2NU82gqbsbzy2UdEB+BuqxuW3n9axWbprUUsBOMLo1vDnwr1SC4AnkOwHmnVzCm4X6nFHCVnPU9w+GeippNusCcAAA14dbESqT0PfweG9mg+IBAuwpHGfzopXuPGJRaRQuIRJoEgH9w1MpSWprSlakfIHxk0u4/wCE3uPKlPLcAfWvusjqx+qK6PiM1g6+L5SnoHg/ULsAhmOevNd1fEX0Rzxpzh7qN6H4a6rPjaX6eprlniacI6lrCVKkrlqz+EOsSNy78+5rl/tCEZXsezSwUpRL0Xwa1gHKyN+dbSzGlKOo44GXMPb4Oa8xwJGNZ08worQK2AqWshR8HdazteR/zqa2OptXRzPKqjkPPwZ1hgBHM/PXk1lQzGnfU6KeVTiRv8GdcQ7TO351vVx1JxuYYjLKnNdDm+DWsFPluG59656WYQ9psXTyqe5A/wAF9eX/AJbsfXmu6eYUXEqtlk5xtcIPg3rTMVE7ZHUZNcDzCHY4f7MqxGyfCPXPM8syP+ZrqljaKp3N3llScRW+D2uAZEr5+tRSx1BuzCOU1ENPwk1xOS7/AJmtpYuhYmWV1G9Bf+FU60FyHf8AM1lDHUeazLWV1Yif8Ku1lhy7/nWs8ZQKeXVHoMf4W6wOVL/nRHF0GjCWWVb6DG+F+s55Z/zNX9bw/kCyyqRSfDDWMcO/51LxdFomWW1H1GD4YayPmEj/AJ0oYui5WMv7Nq30I5fhrrgGA75+pro+sYffQqWW1N7jI/hjrynczuc+prGpjaLdkS6FWMeVHq/7EXww1af9qPwzPfszw2LT3bg9AUjbH6kV9v4c1KWI4qowir8t5fcj8W8d69TLfD3Ecz1qOMF83r+CP038NZEiA+ozxX9QQ5nM/wA68ak4s+h/DKSDwbGGUoDB1KdaKyviEz5yjKUcBUi9L3PG/iPHvkmP+0cGunEK8DpyiVlE8K8d2RbfuODz0r5nFx95n6nlNWzR8+/GPRo5YHO3nnPFfG5pT54s/ZOGMU4VEfK/xV8LecZGVtrIcoRX5tmUHKLjY/oTh/MFDlb2PPl8Maq0p3F2APFfKfW4yVkz9SeCkoc8epZTwlqUowIWyelSpxerZzQp15SsmypqfhzV9HXz50YD61o8RSlK0WddfCVPZ6szjcSzuFEjD15rSM+U4IRhT1bO2+Gnguz1/D3MuDu7niuLESnfU6aFqy0Opu/A2jWk/ksgJBxmuCeIlsmehToJblKXwto8WSEH0zW1KcpPVmlXCwdmitdeFdINuZ/LXPoT0q5zmp6EypKNKxz11oUGSqKMfWtIYh00eNPCqcj1aWEGNdpIryaSi56n0mN5vatItwWRNvhieR1rCpNc1kaUYXRLFpmUOemKwnNJmjppFi00v5sGs5Vi1CLRKdKy4HT8Kl1bgoRuTx6QAPmH4VPtbGns0tSSHStpyFHPtUOqi4xW5LJpvTcMc+lJTu9SVFKRdttOH2bGB07Cl7TlZq4xSuT21iCmB/KspTdyIxTLlpYbcjH6UKcWbQo3RYFksPzAd+SKHO6sgUPZyLENup4x6c1lzNHRGVx0luG4ZeQO1EZe8bNaFe+URwOT/drWpHntYwad9D5p+N0Bl8TFkx96vr8lpyjQ1Pk80nGNbU6n4W2bx6Uuecis8fJe0sbYTllC6PQbGyHloxXqPSvAq1L6HtUrKyNa3sEEZLDPFc3tJLQ3nFRVyGxtl+2lSc5PTFU6bavc56UeeRs21pGkw+QY78VE9EdtOPLI04LONlPyAenFYc7RpJWdwtrUCc7RxUPuQpRehZFuFk2gde9DbaFdOVhFtD5wkznB4q4pA6VpmL4zszfkRYGABxXRhfclc58dT54WHTmDRfCzq525j4461o2qtax56p+xoPoY3gJxeQuwXhiTzV4h+zWp3YBynT1OkSAJNnaPauCVS+x2wUYy1LTQbeq9elYXludVtCWO3/ck5xxQp8zszFtK9yz4WtVN3uA5D8mumy5DippOsdStkuThc/hXFOT2PYilEnSxymOOlTBu5p0KlzZ7JOneqm1YxcrSsVrq1JTOMYrNM0eqK5twU5WtoOyJaujOvLYAkH0p2uzit74WVsGX5k7UW5Tq5E1oOj09ftBfYMZ61m5NoItXsWprBNowg6dxTjN2NHErfYVB4GPpUNu5HOrjktAWzt/CqbfLY0S1uSLbIGHFRDVlNWINbtFMOSMcd67IK+h5+Jb6kGmwAwnI7VnJcrN6NlAlS1AlyOv0rOUrlRmnIsPaqyYb05ojJpGs1pcotaJ5nAH5Vm02zOla9hJbRGIGzHPpWik0rXHNWkRtaKAQAOawb1KTUVcWO12jn8TU6sPdmx72qMhOPxFVFWd0KpG0SpDbKsjEKPxrodmtTlpwi2dX4UiJcL7VlJRTOymrGZ8RE23gx61rRaR5mNbdQqEH/hH5f9w9fpSnqx03+6PlD4sxtN49kCjjca+2yam1gj5HG1IQxl2bPg3TnRVI79qvEzib0nGo7nf6NYZiHGa8atNJ2O+mkdLoulqSGK8n1FcE5I9LDs11tYoziSMe3y1hKc7WuaSkoyLljYRTcmMYx6VjzSizog1NCSaZEZSPKX8q0lUdiG0pE1tpMO7mJRjsRWSk0zoWupDf6dEH/wBSv/fNdLcpQOaqJDpsBXIgU/UVz3aZpTalHQlbTLcpgwr0/u1rGbtuElYg07SYBcljEvX+7UO9jGCUpahd6TbC4O2FfyFaOb5bFNqEgk0yEAful57YFZxbT0LTUxl3pUCxgiFc/StfaSa3Mp2gyOPS7fZkxL+VZ3d7mqScSIaXAW5hUD6VUqjfUyVrjZdJtgM+UuO/FOM5dGXZEEulW4GPLX8qpVJdyJJFdtPtySphXgd1q1KTW5hNJakDafb7uEXHcYqVKSe44KMtSOfS4Uw4jGP92t+eTjuRW90rSW0ajoOv92lST1dzl5E5HqX7FOlJP8Zr3UhF/wAeejMA2Ohd1H8ga/ZvBfCwq8QV67XwU7fNv/gH8ufSlxrp8N4PCp/HUb/8BX/BPtLwvFmZAfUYr+m6TXMj+Asc9Gz6H0NHbweqySbituAoPGBSnriLpHztNyngJuTvbZeR498QIw0swzkZOc111fhsdOVy0jY8V8b2gJcjv0yK+excdT9Jyupojw/4nafHJHLuXse1fK5hC8WfqWR15RlGzPmT4p6YFuJVVOue1fnuNwkuds/e8gxadJXZzHhaL7bogYRqXgkMTkr0x0/TFflOb4Z4HM5Rvo9Uf0FkePhjMriusdGaNtaBpQrqMA/3a4ZVLLRnq0qcd7GX8TLS3OkZCgZXpVYTm9vcyxn8PU8sttLd5SQeCfSvp6fK1dniSwsKlNu56D8N9PlsogVlIPXGa4cdWjJWNcBhpUzoLi0nuZCXkOSeua8SpKy0PTlCXQrXWnMCFHUVpGs1Y6acW0QS6VJLAVOcEVusRdainTbVjJutEaFG5p+0jKokcFSiqcj0W2tTKFFeepcsmezWpc9Vl7aqbYwgyPUVk31OeMnCROkWEz2rGqzafM1ctWUfPK+nNc8iYbkoi/ffMPpU30Lt7xOEbbhl461LlqarYlii5Ax3oS5i0rK464g55HGacU0yGW4IyLXB9Kyne5bTcSazhJTntUSbuVTWhbtYyXwB6VUFodsI2iTXSEHHr6VRhUXvD7VCV5HYVE7WOinFOI8qfMxjGRWcfiNraFTVVC2r+wrp6Iwe7R80/GVwfEmCON9faZN/u58NnbaxFjtfhfGG0uMY7V5eYNqqztwEf3aPQ7CD92gK4x0rwZXctT36EE9zUtoT5e1hgEdTTejOirFKBWhtWS8HycHrW104WOej7s9DYskWSXjqK46rtojpablc1IUDR5AxWFmzRqTQWsRWdjircVymFveJljZpSB6d6zbsaQScx7RFQWxj2FXDc65WSuZN1ZNd3Dbuv0rV1OVHJUXMzH8VaJfahbLZiUhcYwK0oVUpXOerRlVjylvwb4fGkWnkuO3TFRXcqsrs0w9KVHQ0po9knPGPWslE1TtO5YYboQSKmavodq1iSIMwt8o6Vza3OepdJl3wgu66wwH3q6EpclzloL96deIeeRiuaex6kiykAKgFQPSpje5rDUoahEQ5GPrmqZjONpFV0JiyRzioBNlQodprWGxstjMvYzvbjqKq9mcMviF09CqgEelEm7HZTs4lgQlLkntXO2zF6SLU0ZaMEgcdaqDudMNUVJYtrHjtVnPU0mJbrk8jtik1c6I6of5ahge49BUU7ph1INdXdF97jvXXA4sYivpyARbcdqyk2VS0pEgGLjBHfis+hK0mWZF3RcjHHWneyO56w0M8g+ZtwPxrNNnND4wljZeMY+tDkbVfIbsJGMdRWWtzJJsQKwHPpVJF0/iHsn7pgfTmtkVW2K1uuZmBHANa6NHNSXvM6bwsCsgUjnHWsLO52KOhlfElh9sX6itaWjPJxy98qbQfD8v+4f5VM22wh/BZ8qfE9B/wnkn+8f5193lF1gT4jHJ/XDpfBsBaNOPpXHinJyuehhl7p3+kW5EeMYFeNWbvqepBHUaDBgKNoPNcc2dlLY2G0sSDIH41ldm0oc2pZsLHy02FRj6VL3NoLlQS2xE2SPxos7Gbs5XJII1HJxzQlLqdMG3oRaha7hyO3StuZNWIqr3SO0iG3bj2rF3UjOk7MsC3JiOB0HBrWLujWpqivYxf6QcevNKzsc1O/tBbi3xcMxHSh7GlZWYySEswAH1pR3CjuF9DiEDHb0ptkV/iIYocp0qQhflI/s+HzjtzQZPcWa3+XcV59aqJo20VZbbPLL+NNPUzV2yq0J3HK4Hat47DqRsis0Z3kgYwemKdtSKbfNYbdxHyxheMVd7JmldNRM94TnHSqjNxWhyQ+I9x/YX0fGpeItcdPvNbwK303Mf5iv6C8EcJL6vi8S+sox+5X/U/ib6VOYc+a4HBp/DCUv8AwJ2/Q+sPCiD7VGT/AHhX79SV5H8X49/u2fRGnrCvg9JIZA3+iqGIA4PpUa/WOXzPGUYLLHKD6anjfj1N0shB53HtXfU1joGVu0UePeNbZiXyO57V4eKifouWTVkeN/EKzaSKUFcj1xXy+Nje5+kZNU5ZRPm74s6U6ysxQEc44r47MaVkz9q4fxCaSR5j4Kkaz8U3uhSnCXcPmxAnjevX9D+lfknFuGk4xrr7Ls/mfvXB2M990X9pfidHHAVkwR3718epNn6NSRz/AMUYyNMAzjivayxpz1MMbZ0Tg9LiTeBXsVNDwIStdHoPhO3Cwqy/pXiYiq+Zo9bBq7NgRorFj0rz6kpnfPkTsQXS+Y544HfFEbJGVOfLOyFjtwbcEp+YojP3rHXNGbqNp5kb4H4CuiM7VEctWCcrs7DT4sRg+1c0nqehL+Ix93G3mhQ2OayjqcT0kaFtGTbAHj3rKpds63ZwRZs4sHkZHasZGcYpMsRwkyEkc1F9C+XUkWE7jxxU7s05SSOMbh9eK1Xuo6OX3B1wpzyPShNHO1rYuW8f+jZ29RWFR6nRyrlJrRP3XI/OsZbkRLFgnz5I71onyxO1bBesVcqRx9KSd9TnavMs2SkR/MOe1TJtnQmox0Gyj95j9KI/EaPYraqA1pJ/unit3eyMHq2fMnxnDf8ACVY/26+0yXTDHw2cx/2g7z4Wqf7Jjbj7ory8xv7Zo9LL43pqx6LYRsY1LH3rxpLlZ9FSjFJGjNKbW2zg8jrisdJTsiqy9x6lC2kuruXgFeeDW8rUk4y3OSknubmj20kMeZDk+prkqe/LQ64SvubNqh8pge561m5cpvzJIIQFlYGocm0cz+JksKGSfkcZ6g0krm1BLmuWLyMLDtHBI9K1iXWujNtE3St259auUbq5MWm7kOpWrGcMc8GiKSRFSXLInt4QsY54Heoc+hvSXMrkV+mx844BzTT6mNWPJK4+JzJFjHGOKUtjejJNWJohi3Yk965pfEKstGX/AAaM3fvu61vF+4cdBfvTsiv7wcfWuWpqeoy1Gg2YpRNoKxR1SFuT+RFORlWWqKCjdCcjp3rPqQiqEBJGK0baRvsjLu1YSsMd6Iyu9TlcLu5JZRgN8xxmrfY0jO2haljO/IHGBUOOg+XmdywV+QHHWpjozeCSKV2PLwGPb86blqYVY3lcZaksMBeKTlY1pqyJGBDgEY5pRG1qQa2v7jkdAOa3g9Tlrq7sVtOUhMkcVckhNWpgxxcYOOvSs1EiKvI0PLBgyR2rGejO9L3TPlUrJ9elEFpqYNJMV1DJz7Up6Ie5EEIO3AqUluaxS5RMH7pXn6UX1M425xw5jY4PA70+bU1qrQq2WXuGGO/et3JKKOSkrSudT4bTEorJvU6k1bQxPiSh+0qSckHmtqVtTx8YnzkMMYfw9J/1z/pWbumaUo3os+WPijAV8fSZP8Z/nX3eVzX1KyPkcxgvrdzpvBkeETA9K4sRpJs6MPax6FpEY2g4rxqrdz04JHTaLEVAJXvya5JnXTR0NrEWQj2rM7IomWMRDgjp3oB3ZHNC0h3oOnWq5+UpU1a7CGAxMN3pWTcm7F8ySHTRrJ8v48VaVlcStKOpVaF4ZOcYOMcUrqWphJWehaWL9ycnPHNOL1sauzgU7EA3ZX/arpS0MqaXMTXaATEleMc1jJq5piFsRxxiSTb78cUk7EUVqM1CPAI29BUJ3JrayI4IjtB21fQcFaBG0YLsMfnUmSSbFmjIXJXtWiRrUjaJXZPk3EChL3jGCTkU5IcA5HTpgVurIuqroolD5hB9RxV3Oek1zjrpD5IyOMVLkjorfCZ5j559e9KL0OGLPpL9irRxa+BLrUNuDdalIc47KFFf1b4OYV0uEfaW+Ocn92n6H+eH0ksd9a8QalP/AJ9whH8L/qfR3hS3H2yIE/xCv1yiveR/L+Pk/Zs+jtNSyl8KwosCBltMHYuN3Hf3rmqKUcS2n1M6UaE8rVoq6i726+p4r45T/SZdw7ng16cneJ5uXNcqPJvGNsWD89+K8fEpXPvMtnax5L44ssrKNvUHtXzeMhe5+hZVV2Pnz4saTujdivrmvk8wp3R+wcO4i0kjwPxA8mi+ILfWYRg20wJ916EflX59nWFWJoTpPqj9pyXGPDVYVI9Hc68sjv5iNlWGVPqDyK/JIrlbi+h+40aiqQU47NHNfEx92nDPp6V6uXztU0OXHu2HZw2lDLjPrXuVHeLPCpp2PR/CMObda+frRam2z3cDG7NeWDa3C/WuSb1OqtG0xi2oI3HnNRuOlBXuOFudhT2pKXLI62tDPu4AVJxWvP76ZyYle47HSWOfJB9qmXxHZLSpIffg7gR3706Nupyte9c0NPQtbAOayruz0NU1Yt24/vCuRvuOJYgX5v61D2LsSouH96RoSeX/ABgdetDk27Gy1iNkRmb5RwfWmmzO1nc0LdCbYAelZT0epXNdEttGQm2odxxRZsY9pJbrVWlY3c1siG5fdckdxTUHYasW7YnAJGOKcvdQS0QyVf3vGfeoT1NW7orako+ySY/u810LZEdz5o+NSL/wlO7/AG/619nk3+7nw+c/xzuvhYpbSUwP4R1ry8xX71no5Z8CPSNMXKJlegrxqklFHvqVkjRubZpbfB9OBXGn7xTXOhuk2ojdV2cbueOtbtXWocisbSQBQdq8duKyk0loNKxes1/dEGuaVylZsBDumJZc8dKpK61LlT0uSQxhZwh4FO6SsFJqMh+ozI0e0cYoTkzSu7rQoWGTcEMO/StJcyRFCKTLGrQAgOorFSbdiMQve0IoR+6yOlLVM0oP3Srqe7yySOR7U1J3HXjfYgsJpSgVyOnFVOTWhFKUYF+Mny2TvWfK73NKvvRujR8Ggi7wf79dCj+7OOlpVO18vLHmuSex63YsxFVUZHPp61EdzoS0Kt+m6Mj07CiSZnUimZYTaSDUnMtyFkw5AXjvVTeh0vSJmXKgSnNZxu2c8gto2lYqPrXQ5KMdRwhY0VgULlhyVrBtyZrJpbEkcYKYI+uab91ChJlPVLRVUMByD2pRZUtRlnEAMKOKfLcy5tQuFIYqD9TVQvsaxdyvqoJgyR/COK2ppp3OXEO0irZ5WLAPWrk7F6cgwlWnAb161HOrGMW+fQ1UB+zDjnHWueTu9D0UvcM6dSZCaqOiOa92IAxXB/E1nJXHKIIoGC3pxSadjSm9BrRNnn9KhExi+ck8jEBHtxxU3szZlOwjCXBPbNdkVzQRyzVlodN4c5lABqXZF0dTG+Jhxc5963oL3tDz8w0kkV7Xnw9Jj+4f5VlWlqVTf7lnyz8VXH/CfP8A7x/nX2WVP/Yz47MZXxdjpvBAzEmPascS9Tpw2yPRNGHy4AGcDFeLV3PThudXpMfy9M5xXJI76aN6zUqpwPpmpZ1pIeIN7YYdfWplK2iLaWyHiMKMe9ZxjKpLlirvsJu2h33w+/ZX+PXxSu7GHwX8MtTnXUifsV3LbmOF1BGX3tgbRkZIr6nB8G8TY2CnTw7UW1q9EEcLiq13GDsjQ+OH7J/xW+CuoJJ4g8HXMGn3l79l0qWSQPJduMLlUHzYZgdvHQivQzjgjOspofWJRvTbtdO+p2vLcVQpc0tbbtHmWuaReaPdy6dqdnJBc20zRTwTJteN1OGVgehBBBFfFTjKE3FqzR58rLchXHkfUUr2dxLYoaejfb2z/errg7xM4O1SxZv4yXbnqa5m9TWuhdPgJP8A9am07E0UkR6gm+Ug+tQiJWlIYkexPmX9K2lsXJWiQRp5kp3fhWaMI/EFyu0cjBArS9jevpAqzKdhAP19qIvU5ofEV3U7CdvWqk3c1nsZ6xu8x9DVp+6YRjyyuSXMY8rGO3OalO5pValAzZIwuSK0iklocG6PrT9ljSv7P+FelKVwZkeVsjrucn/Cv7R8OsK8FwdhKbW8eb73c/y98Zsw/tDxAzGqv+fjj/4Dp+h7l4Qh36hEB/fGOK+6pr3kfhuYStSZ9Cp5ceiIRbbQ1sM7DxkDqa4226u/UnnjHLVJRtePQ8Z8dwv9skJIzk8gV6k17p5uWS9xHlvi22B38da8nERPuMvnseWeNLQssnHUda8HFQbR93ldTVHhnxN0wyRyBh69q+Wx0bH6tkVflkrHzv4/0kJcSrs4Oe1fD4+DU7n7JlddypxH+C746l4fiDH95bEwyZ9un6Yr8jzuh9UzKfLs9UfuXDeL+sZaoveOny6Gd8SY/wDiVjvWeXSvV1PWxqXsTiNGX96oPrX0M9Inh09T03wen7hcj6V4OIvzM97AGvcqRwRzXC22zpr/ABBBEWizisnLlbFSaQjJtUgjvxxU36s7I2ZQnjyCSOh7CrlK5y4hWize09MRDPpV1L8x01NJsddOCo45HtVUk0rmKSaNHTCTa9O1Z10hW0LtooLYNcctjSO5bijy/K/hU3drHQ0h7AbxzUttCvYlkX5QSMZFQneRrH4RChMYyK1joiaj7F225g+7xWM3eQQi5Ilt9oHHNEYmzVtCSOXbnd09RWqaQpe5qQKVec89+tNy0Kppz1ZegXGB3A5Nc85XRrOPujZgWf8ArSi9RxINQj3Wkh/2a6L7Catc+ZvjaCviccfx/wBa+0yZ/wCznwuc3+sHc/CbLaVH9BXmZimqrPSyxfu0enWKhLZVK4OK8GpK7se02tjTs1EkRDL9Kwsr3NYSaRNp9uBNnHGetOVV2sPmbZpupYkYx0rBu5qotk0W6HK4x0oauGzJUQEh8U3JctkbT+G5HGHkmPrntUx+GzMqceeZLcW2SFkOPrWkUVUg1Ipoqx3O0DBz1rbRolS1si5cgSRAMB061yy+IucFYgiQKDkAccZon8JcVaNyG+VZNyMBzis4pha8ioIBCgyuOPzroUUtTKpFJ6E9kQ5K/wA6cnZFwi5o1PCw23xwMfPVRleNjnUbVjtkyG6fWuSpueolZIsquFAH51mtzdP3SCQBoyMdqp6ol6oy7hDFKeOvesznatIheMbScHpSk7s2voZVxHvmIFVB2MZJouaZpdxcTJBbQs7t91VBJP4Unebt1FdQV2eofAn9lr4p/H7xRpXh3wXobeXqdw0S6hP8sEQRlDszdMLuGfrX0uRcJZvnic6UbQW8mNU61WnKpH4URfG39m34mfs/eNr3wV498PTwy2czLHciE+VcIGIEiN0KnHBrfOuEM3yafvw5oPaS1Xf5M7pYOpCnGotYvqjz3VLJjHkj6ZFfJNOErM55qxStYmQYI5703K6MYx1GXaEOc/rV09maJWdynq7ZhCjriuqiuY566TZTswfLxU1JWY4Jcuo0Rf6SGYkc9KzXvIm/v6GurHyNnTjvWcklqdkW3EpMPn5HHrWSZztNO4MpUEnv2qm1Y3klyjeRgd/Wjczp3HFCVzxU6JnQl7w9RiNl9PWspK8hVNEUoIyZ2PfdXZDSJzXvG50nhtMSgiom9UaUlZGJ8To/34B5wa1otanlY+7mV7YAeG5c/wDPOsJ35iqd/YM+V/imP+K/fjPzH+dfdZSn9SPjsbF/Wm2dV4HBEKfhXNiXqzuwy0R6Joa5+Ujj1rx6q1PUprU6/SV+QZHUDmuKZ3Q0Ogso8g4HpmsZao6FbqPKqJdh4J6ipUerLv2Po39h34NeDdXk1T40/EHSrfUNO8PTwrDYXhxDI7N8zN6hVDMB3IA96/oDwd4UwmJpTzPERTeqjdXtZbn0GTYGFRurUTd9Fbv3Pp4/8FFba61P7JodraWul6ezLbRWduixxuoISJemMkZav22eW4BR5bt38+p9JTyjDUab523J73Z5F8Xf2+tO+I/xF8M6dqniOzbxhbTSz2WuXUBuTYXMvyiQRsdpkUH5SQdpIPWvNznDYCjlUsLRtFtaeVjz8fDA/Vng6N1B291abdDwX4//AA9+FvgA6pptz4p1LUPE3niTETpLHDubLPdSgsDNLywjU/KCM85FfydxHlmHweKqONRylffp5r1Pj3GHs23Fxs2rO3R2T0b0e6623Seh4+02ID0r5eMJPcwjK6KOlsXvmz/ertjHlgQo/vLl/VF27sDvXI2uYusx+mL+63kfjTcrBR1TK1wrPOc1KZk/iHyoViOPSqlK5rN+6VoY8NkjvQc8dHcbdKSpP05oT1LqvmKkiEr05qo7mcNyGdcREdPWnJalTM5AQ/A59cV0QWhLRJdEmLBHIFCirky0izKulba2D1FVFc0uXucFaapUXN9E39x9s/BrRjpPgrStOC/6qxiBHvtBNf3hktJYbKqFJL4YRX3JH+RfF+N+u55icQ/tzm/vkz1fwXATfxEDHzivZpu8j85zKX7po99haJtJjjIH+qAbI9jXHKMva3Xc9DDwpSy6MZLXlseP/EG1EV/IFPGTjjFetfmijwsC1FuK6M8v8UW+Sx6H0rzcRE+wwM7WPM/GNqy7yRjPt1rwsTE+3y2pqjxn4iad5gclfXpXzWMgnc/S8mrWaPnz4maT5czsydSe1fG5jR1P2LIsRzwszi/AU4svEt5o8jYW6i8yIHpvXr+hP5V+X8V4W9ONZfZdn8z9m4NxiVZ0n9pfiiT4jMDpmD2r5vAfxlY+6xz/AHBw2igfaBn1r6Ccm1Y8Wgrtnp/g07rdPTvXiYu6bPeweht3EIk4HT1ry1LU6J3lIWBCsRXHSqlFbjceWJEELhgtZt2NqL0KV7GV4FOLuzDEu6ZuWuFjBLdq2qS947K3xMYzBnAxyema0pv3dTmjF81zX0yM/ZjgVzVZ3ZvKOly1ZKd+AO/XFc71Qobl6IEEnHPrUtWN2mP8os2SetZy0ElckKFkAOMipWkjZaIWRCEAH4U9WzNq5ZiUiEAk+9VFO51RhamPUhE47Hir23Mk0ndlaS5aRmRW4Jwah33sTf2tQs2sAiGW56Go1kb35VYuwHcc4qJq2hb+Ajk5fG7OP0pQ+IcdGR3qj7NISOdhrp6IGtWfM3xzXHinP+3X2WS/7ufD5yv353XwhTOlJj0rzcyb9qz0cr1gkenW6nyE6fd614E/iPbkrI1dPGLfGPxrFgloWNLXMzFl70nFjp6yNCJS0+GxT5bHfBKxJeDYMjtii1zmraSJLVzJD8opTjrY6YWnALMH7V5bLxmptaOoQiozF1qZoRwuOetKDuTiE+hRso5bqdtxrSpOUFZGVOK5rsv3ERVQo7Vild3ZpJ3ZEUbGQKc9jWXwaFSVGaTB6Y61MWkjKEmQ3kEoXAOPrTU9SmuYn0WAKx388dxQ7thGXLoanh9f+JmQBxuFWtEcsZXr2O1GMgdOnNc82z1X8KLKjMZBH4Vk7otPQgVcjkdKE20KL1M/U4irkYqrEVFaRWXmIgmoadynojLlhZbv0BNaxi0jKTvsdn8NNO8Zafr1l4p8Lz3NlJYXkbxarDGcW0oOVJboDnsetehltCt7ZVafR7i9j7f3JLQ/S/4WeK/+Ed/Y9/s7w1o9nYeLtSa51C6udPgCLeoWHnsoHEZY4YqoA7gV/VHC6XJTqOK5OXVW+13Pq8swtOji4VJNOmkly+fR+ZyHw9+P+meMX0zSfilJbarY6fvt9Vt9QtUlEwIZUiYsN2xSQcgggnuK+srYOhicPVhyr3tl+Z3YuFOaqQjHl5trfn2u9jwv9rX9mr9nvRfDdz4p+GfxjsbjxEIVu7vw3a2Rjt41b76ROTyVPQelfjfGvh3TxWHr4/BYd0eTW117yXW3Q8itgauIpSqex9morrJO/n/X3HycsKhskc5r+dkpbHgxaILyMM/I61vBWiVN2VzMv4mlj5bgVtSk07M5qkk0VIsQLhzjPetZxTM0pNCS6pplpIDJIM+hNP2b6ImFenCfLI1La6iv7TzISMY6iuWqpKVj0IzhylQqfN254rKxLs4j3XII+maGrBe6K5RgwHbtVpaChoTKCUwPx9qylpI0hJuY+NMRsO+Kyk9TSrblKdqhM7D34rrhfl1OWC0Ol8NgeeAQOOtZyepvFaGN8TYwbkfUVtRWp5WOj7xUiTHhyUH+5/Spl8RVOP7lnyt8UAf+E9fP94/zr7nKn/sR8hmH+8nV+BlxEmB3FcmJvqdOGPRtDTaBxxxzXi1XuerCyOr0lfl247DGa45O7OqGp0dgcIQBk46VLVjqhFtEogXzNxPGe/asas3yNI2jZH1L4LupPBf7I8mhy2fkz3d1DcW534aczFl6d8BQB/vGv6/8OcHiMFwlQjBPmkvz2Ps8LWVDBUXDzbPn3x74/wBL+C+iXOr6r5iW+iWsq29tGQfteqSkEKR325JNd+Oxry3mjNOLV9LdW9dO99/M83NM6q0sPKpzXb0R81fBfxX4s8XfGaDXvFF9MXa6af8Adv8AOF68A9+mBXzjxteVOdao/Q+OwuPxFXE+1kz6C+J+u+ItcaFbqOGyslzJDo9qDtjPeWQnmSVupZifQYAxX4HxDja+NxbTVld6L8zR1J1puUnds5NpN8ZxxXza3OhRUUQaOcX/AOI610WvC5zpv2hqaoNzEY4rz3uy56k+mxAWxGKbWhUFywuVHTMuSO9OKbVibXkPnB2ciiUbFNakDRkHp1q4pJEzSRFMu4HP4VDfvEW90qSDjOK0huRH4iG5UiMkDim9y6mxnpGd/I963j8JDauLcJmIg/kaUXqKTWxBpmmtqOr2WnKCTcXUaY+rCvVyPCvHZ5h8P/NOK/FHynGOOWWcLYzFP7FKb/8AJWfdvgyyWGBLdBwihQPoMV/dtKKhHl7H+QmaVXKbk+p6H4Ih8vU4mwMqwPSuyilzHyOPqWhc9se7W8s9wCq7KPurwK5eRxlZHq1MbDEUOZKzaPK/iDGXuHkY7juOTnJr01pBHz2AquU3fe55f4mt9xdc1wV1c+xwU7JHm/iy23K4Zs49a8TEK59ngJ2aPJ/HNgGVzt49u1eBioJo/Qsqq6o8J+J2kGRGJTpntXyOZR0aP1fIcVyHiesvPoWuwavGCDbzBjjuO4/LNfBZlhfrOHnSfVH6vkWMdCvCpF7NGh8SJYpNP82I5RxuQg9Qea/OcDCUa3K+mh+xY2onQUls9ThNJl2zj3NfSKmlHU87CwlO7PU/AvNogPpXz2NSUme/hlqdD5ZfOa8mWjOlx94Ux7IyO1aSehVaNooht1GCzVjJhRWhUvkGCSKE7GdePus17eAPAB0yOtazl+8Oup8bQ1LfEmAOe3FbJc0TKrGy0NvTeISD0x61z1YpO5MG2tSa0B8wjPesm0kXH4i6GC8r+IrNts3lK5JDyCSO/asp7hElQMZMY6VLRVwlGcL3z+VXAuMbO5ZC4gwBz3rbZHVJ+4Ub+/EK+TEcnPQVmtXqcE25OyJdHtJJCJpR17VMmtkdEFyRv1L04Mb4UHoM1UdgTuyzaYVcEZxWFTc6ErxImB8056npRAq3UbdAtbuP9jrXT0Qktz5o+O6lPEoOP46+yybTDs+IzuyrHc/B4Z0pDj+GvLzL+Kzuyr4UenW4P2dM/wB3pXhVNGe9NaI1NPObchelYp6hTSZZsSIpTvPBParlJ8ug/djLQsRzfvOuKhzk1qbUql3qOu58x5JJ4qU22KvFt3JtEvk2FZCD2FObaNcPKMYliBc3JZSDUSnJQsVdc1yHVna5baPXnNRG6WpDbnIXTYjC/Hr1rW11cLLnsT3bkjPf3rOUrbETspEYGU4HFQ22dENaZVIKyEkd+lVbQwXxDbwExggZGMgmpimmbok0kFCcjAHetm7IxluX/DYDav8A8CoSbRy02vrB2zJtO4+1YPc9m6ZZQAx9D7VjO4m7EaLhyw/lSg7McGUdVj65yeBWjY6q2ZnxgBCT3pN6kSehRkyLjcRnBq27IzvbY9N/Z8Hiy98faZpvh3xFLpceoyG2kuFAaKcnkRSo3yupxjaQa+k4ZwdbG45U4ysmdlNScLn3H8efiN4R/Z/1r4Y+CPF9mdPa70VpNWh0qQxrDJOSUcLyEQcEg8Y4r+n8lw8aOW6vrZdNjbB4qv7Jyi7q9lf8THl+Hfhy7g1PxTbSW1sIJd0lvG+5W3jPnI2MFCOvpn2492GLXMlbpuevCtUnUjTim2z5E+Lqj4f/ABG1g3mmvPFHZrBYNeXZwzyE/wCrXILADnkVHFeJWD4YxWLm3pBpK+l2dGNxapUpSm9WrHl8gzkHqeeO1fw8m3K7PkqcPduyKZdynJ6dK1NG7qxmXWwSeTx14zVJpHHzRjJpmNr8r2doZD8oKn5iK0Sc1oTVdqbaPLNa1/ULzVjbxzEjeMMK9aMKcaOq1Pnp+0lV5j1bwF5zaGokJ+51PWvIrcqdz28LKdSOpoMmHI965b3kdyXKrCycLnFE2b8vuEDEnAHrUxZjFEkXA5HXtSmjaMfeJ1X5GGOo61hZ3NKiumUYlIuGGOM9a7IbHHF2VjpPC+1p1DHGKie5001oZfxMjUXinI5Irek00edjV76M8bf7Bl7fuz/KsqmkgT/cux8r/FMD/hO2IP8AEa+1yl/7HY+Lx7vijq/Aw/dJ+Fc+KTTudmGWiPR9FUgDjkDnNeLW0PUjsdTpfyjYOvBzXPy6anVSTZ02lwkrlv4h1FYVJdjthex0/gX4W+Pvibrn9i/D/wAKXWrXSjc8NrDu2r6segFellGRZlneIVPCQ5tdexpGjWrS5aaufQfx08Pa5pXiHwr8M9XgntLiHR4DNE0e0QMics3rtG4/Wv7Ty2ksuyGjSmtYxX3o+xkv7PyyLl21Ph39rrxhazeKpLrStNEul2TtHZG6YskDZJe5kXgySsegGcDHpXw2ZYl47EuXT+tT89zDGRrVnbWJ5p+zhrKz/GKzuwHu08wAXEybMfQdh7VhWpQlg5uOyRx4K9WraGx9KeLtNutbjuNW0TSJWt43P2jULhAAzf3FLHn6CvwfNMHWqVJShHrv3PUhFRlynIhMR7n7CvmU7MU5NOxFpKj7cfrzXUpXpkU1zO5rXiF5QpHOeK4HbUp3uXYoxDaZx161V77nS42pGey7mPcZP4UQ0MI6yJJIwIwO9EmazVkQvkDJFZ3Zg1cgeM4we3tS2HbQp3AO4j6VtBmS+Iiuh+54H1FH2hz3KESFnwPrnFbr4SZJXC4TGVIxx6U49zKW5s/CTSv7V+Keg2ZXIF8JHHsuW/pX2/hzhfrfGuEX8rcvuVz8j8csweXeGePnfWUVBf8Ab0kvyPtnwjAWiVuhIr+zYs/yuzGa5meg+Bo1j1WIsuQGGRiuujHmufKY53geuXCSJZvHDgblAHesI6z1PQxLqRwzjS0ujzDxlAwmcSLgjOT616NvdPFwL5XY828SQAFgPfmuCsj7DBzvY878UQHD8Y968bEq6PscDLY8t8YWjkuMYPpXh4hWR91l1RKx454/0sSK4I9eK+Xx1LmTP0jKKzVmeD/EPRyHkUD17V8fWo++freR1lJq5zGoag1z4OjgmfMlu5ibPoOn6fyr4TMMJHD5tLl2lqfsuExLxWVRu9Y6HPaRGRcDnqe1bVLKNrnfhJ80LI9V8CqRapn0r5jHP3me1hkdKhAOT09a8pq7O1R/eDpAfLOfy9aJdhYjZFVMhSFH4VnLciiVb0EIcn60InEP3WbdqAsYU+mK3cFKdy3U5p3RLHAxYELV3UFY1nqjStF2jHr1rmqTuZR1ZPFGF5HXHFZNrlsaJWehYjDN+FZy7G1OPMyeMbEGPyqZWKasOTIP40uli6ceZj5SVIb2raCsKpbmSQXuoLb22Oh7j1pOPMx1alocqM+wt3u5vOkOR2zSlK2gUoWV2bVo4j4xgA9qXLyop6q4skoaXaxFSmTBcxYgzjjgYHNRJq522UYg6rvJHepi/eE2RyD9y4I/h61u37qBM+bPj9GB4iU9Pnr6/JHeiz4XPH++O0+DvOloPYVwZl/FZ6GVaxR6fFkWycfw14NXc+gnblL+mSMIuawSuwpLqWWLI+V9jmtlBNGctZFm3DSgSA9etROFtjppxSRdFtGItpANZxjZ3KrR90ovCIpv3fyjPaupOPLYwiktjT01mCEsefWuWra2h0Qg3uKYFaQu4HXioSuU1yahbg+aexrV/CKGsri3CFyVH51ildiqRfMC5VAGAocFua09NCrMpWXBGPemmrGM42kNeMlBkUXNou8SazQRk56U07mL95k/hjzTq2FXjdXQ2oQuYUqf7+53iQgYJ9OledOTbPWukShty49uMChJtEvXYckWTkg89azejEtGVNUiwmfQU+YqbujIlUqSuKSbZlK9yrMqtIOCfm7V0JLl1KUF0Pev2JI01P46eGtIg0eG5zq0QVYoiVbJAIlUjA4JIYdD9a+w4S9r/asXCLtbex6EJ044WfO9kz1r/gqv47hu/wBqbXrLUPG19pWm6Vbx2V7BprMjXFqkYHkZUHOSAMYxkgngcf0tTpxw+R0HKN/teafcyjajk9Fw66v7zf8A2NviZ4M8beEhpfhS9v5NItQtvHFq7hrqzzwUk6F1zznFdUcU6qi1vYv61L2V1ueBf8FG/CGk2nxS0LXbeNg0Vy9sAE4ZvLznOOnUj61z8Vxni+CMTTau7G9bmng1KerPEWQgbvzr+NZLllY86LtoI8ZaNsA89KcpWQ7KRzmqJcfbS+Mbf8aqFuU4atNxndEeuJHqGkeRs3HaRtxW1FSvcio+enY4fT/h3cxah9rnQ7C2QD2retW5vdTOCGHs/ePQtEhSzsxbxjAC4zXDODR6uHjyxsKfv59aw2NZS1FxuGOMUpNtHUrONiMrhixBJognY53pIIs7ifWqexvB6lmOM+UxwelYydmby+EoRhvtDL2Jrog/dPOUbO50Hh3KzCs5XbOqDRlfEckzISeR610UUtTzcbfmRRU58Pyf9cz/ACrOprKwJf7Oz5b+KKH/AITth/tH+dfa5SrYM+KxqX1k6vwQoWJM9wK58Um2z0MKro9J0FSzDA7V4lXWR6cUdRpCIzDAzjjmsamkTrpJ20OstLeaG0F6I22dFbHDH0rnjTlPRI6veWx9r/sxXsnwW+ANqY7WTTtT1+Vrm5uIn2XN2qYIiB/hjxwfUnjnp/Xnhpw3RyvJIOrFKb95t29ba+X/AANT7nKKGEwODVWtG8n36X2OK/bB+J+v+HdBk0/xKou/Eup2hkcPiY2VsVJSBTjKyEcnngYr188x9LlcaTsvI+U4gzZ1ZOMHaC6dz8rvjLea8PHMt7r1jdz28zlzb3HiBZIxz3jiIKduOor8+k68qq8+zPzrETlVqpR0Rvfs1aZ/xc2xktlQKZQ2xmOMenJr3qlN08BP0PsMuhGjS1Ppn4oaNqutzPrHiWfUZFgCixVohb20K9gqnBbPqBzX8+Z5Kc6sueTtcULSldM4l5n2bX49q+V9xsmV7sdo+ftpfb3rsX8MdF+9Y2ZBvnxjjPGK5GtToULT1Ls/ywBMc4qG+iN6vwFCNDn8aIvU54qzJZh8uPUVbLm7orSYxU8tzJK5E5BzxxQ0S3Z2Kdwu1yCOe1VBaCjG7uQXH+px0oXxEztzFWFArgsPwrqfwkyGTpufHepTsjJrU7r9mfSftvxTS7ZeLSykfnsWG0fzr9c8FsKq/FVSq/sU397aR/Nf0ocw+rcC0sMnrVrL7opv/I+vfCy7YVHpX9VQP83se7yZ6D4BUS6sq+Xu6cYrrofC2fL46LlFJdWeq3Muy1bjnCjAFYxXvHp4ut7LDtLfRHmnjPfJPIzsSQT1rutZHiYN63fU848RR5LE8e1cVY+twb0RwHia2yXB9OleTXjc+twU9rHmfi+zdt4x9Aa8fERS1Z9xl1RKx5N47tFhDGXqc7R6183jU5n6DlNVzaseH/EbSZMtMY8H+7618pi6ahJs/VsgrxUrXPJfESXNjHcRCP5JQG+jCvhc7pqpUjUXTQ/X+Hq8anPRb3V0Z/hmJpZwZSQc8V4+Ik+TQ+tw79jues+D41S2UL0r5/ENvc9vDS5nc6CNcHkDmuE9BbizkCPpgkcVk3dmVd3K6AKpyO9TLcVKNkU7s7lYEfhTtYivbkZs6eDOVc/dIziuiclDQunBQjqaaKgXpjjisYqUncpvm0LECHBIFYyVmSlZlmNdqg+o4rNs0VieCMhsnj6UX0ub0HYlK4OO1ZNhLWQICOetbU1c3hZRC5mEEQkbqOme9Xd3sjnrvl1M4GXUbkAk4Bxirm3TVmtTOhB1JczNe3gW2t9qisEru51TktkT26EoTmpqTLdlGwyBD553NnB7ik9gilBGjDDlTj09KxloaqV0MdMMQSdvrThrIFdu414w0LfQ1tfQo+bP2gSP+EkCgdH/AK19hkelA+Czu/tzsfg4caYn+7XBmb/es9LKvhR6dCGaFVJHSvCqWTPoJr3UXLBtgAP4CoWrNKVlEsXMxjjVs846VpGTeyMqu5b065Vk3EYU9qmcjopfDqWLq/8ALiIB5HSsbXeg6t2jPtLma6u+e5wQa1qNRRz0YtTdzoLRFhiDE9O1c6vLc74tNhNMASM8ZqnKysRVd9CKG5XeTt7+tKUu5NKyepL5yg7mwT2zWXM+hVSVw3oxxgVMpMKbsVr1G3ZUU4MqUL6iwLuiG4cnrTabZnflHRIxkK84PpWiaigiang+zkm1oQxRlmJ4AGSaicnJGUHy1T1fwt8JvHHjW/h0zw74curmSWB5h5UJIEajLOT6DHWtqOBxFf4Y+ZvKvBK7Z2nhn9jv4uaj4Dvfilr+gT6XoNjp5vLi+vIiuIixWFVH8TysMIo5x83Su+lk+IdGVSaskrhHGUFVVJO8n0POLvR9Q0+CC4vdPmt47qMyWzzIV81ASNwz1GQRmvFq0pws2tGbpxlJpPYzNQiyv8/asS2tDEvYSmSBj3rSmr6mUlqVobf7Rdxw93kA+vNaTvojaFrn2F/wTLsLiz/ae8P6FI02nym8Aeyugsq3CLhmA4+TGAQTjPY9a/R+CYSWKknf4e2jLxShPDVYvSyOT/bs1OLxF+1t428QGaKZU1hoVtLpQYud6qWBHK5xn1xX9I4mj/wjUodomuLlGjgqUI62ijK/YW+Kn9na1e+EfEFtp935eom2v9XZjFuKjKR2zHPmoBtwh27e2a8bAxUVfqeAsZXr4lRi32d+x6Z/wUM8JS+NvhLa/FfSrIxxWRjunwg/5YNtk/ONia9eg44ihUwtXVSTv8z6fC02sPKm3qtT5CvYEU5gbcpGQexHUV/H+fZdPLMzq0JL4W7ehwVIcruVmH7sj9a8ezkJNNmZrEMcaiTZzxzjrWtOLTuYYiSiZVvC08md3GeB6V1cySsctO83dFi6tgoGT09a572d2XUiyWygLJmsp1GbUWnEZLGUfAB96werLcR6oSv1oaaRvTkmQy5VuRinF9DOa94IEO4ArVPbQ1ptFyFf3TAkcisJbnRJe6ZpXFyTjjNdFNaWPO57uxu+HTvmHanONkbU9DI+JLbJhn8a3oQ0ODGSXMkUrUh9BkAYH5Dj8qyqRfPYcbyw70Pl74syGD4gsgXPzdq+6yyCWDWp8ViaUpYrU63wDC0kSM/tjNeZjaiTsj28PCMIHpWgrt6DkjgV5L21OqKcpaHUaREVlB7nsa4q1SPModzsh7qse6fszeCPFnxJ+JXh7whpunQSafdXLk3N3biSO1kjUOzc8AlAeDxg19xwLktXNsyhBr3E02ell9H63X5LXS3PoDVvG1lfeK/E3xMu1tpNF8GQJa+H7SPG2S5GVRD+ILkfjX9Z42Ussy+FCNnGST6Nq11buuunVWfY9zO8YsPT9lHoj4B/aj+K3jD4g61eappM2pSrBI5vZ4xta8c53hZGZQq9s8nA4r85x2LjXnJvZH5ZmGNnJqV1ZPW/U+Sbmyjk8RyXMuhNaSSvkp9sMxOT1LZNfP4CKq4nmSObB0fbVue1j2j9mPRzdfE3TrFohtJzKGXcGH07/Svr8wrxo5ZU923LHfvv+P8AwD6ulKUI+R9ReK5fCr2byXPh7U4HLHN7JcRNI5HQBHXKr9K/mjH4qjWqS5oNa73N+RuSaaPLPEcFxHme2zjPfrivFpwUnuYVVJ7Ffw7qW+5IkIXnvXTL3Y2RNGShK7OlhIeTzAQRmuV3PQjKMmXbxv3YGew6Vzyb5hyK0QBxxznrVwiyHHS4XHCbc9q0k7IiT0KzLlcZAx61ClYUdHchcY6n6UORFTVkEybhnb0qoy0CDKt4hC4zz2NVF6mVValeGMj/AD0reUlykxegyRfmOevfFZpuzId7nrn7I+lGXVtY1YpwohhU/iWP8hX9CeBWEdsbin3hFfi3+h/Fn0scz/fZbgk9o1Jv5tRX5M+nvD0QCque1f0NA/hfGSu2ei/DqJ/7TVkYAjGDiu6lb2bPmsU25xt3PSJpsRMkg3cg5HQGsUlzHdiK6hSkpq7PO/F0cstxLMzgjJ4rrs3G7PHwctFc868RRtuYgVx1j63BPY4LxJHjcMg5ry62iPq8E9jzjxarh2igTc+OT2Hua8LE80nofZZe00nJ6HmPizSSGeVjvc/xV42IjpaJ9zl+IvZLRHkHxC0nekhK/WvmsfR91n6Tk2JcWjxTxrpx+zzIF5U5FfEY6hzwaP1vJcV7HEU6iOY8PyYuFXb/ABenSvnZwXsz9RqWnZo9a8IAm3X0IFfM4pu7R7OCtynQxpzzXnT0R6Em1qhHQlME9KwvqZ25iq2RnjAq2vdubRVkUbrkNzQ3octfWLPSfh38MNV8ba9Z+GtJmt4Gu5/Igur1ikLSn7se7GNx7CppxniZJodWpGjpLc9m0r/gnV8bvEmkWGqeFLVbs3dnc+dbFCsttfQZL2bj+F2UZQnhq9yllVSUdGcNHHL2tpKx5v8AED4OeMPhbrcuia9YNJGLaK5gvIYyY5oJR8jgkccgqQeQysp5FeZi8JVoS1Wh6vNCaumc+tsV+Ug++a4ZRaHFWY6NTEwyKye1i1oxzEn5QetOMbnQo2V2OQqOv41t8KJjK2rMzWL5pnFvCeSaIrqznnJ1Z2L2k2gt4Azr8xpfEzqiuWNkXWYsnJqZys7IiWjJbVgI/p1rB67myvbUbCrfaDxxmtI/CD6GlbYAOfSsZp3LjJJWIZRmTJ/ECiKszaKdh6RF0Yf7JrYLq582/tD2wi8Qq7f36+vyT+BY+DzqV8RZHV/BmRJNNUIvIXnNcWaRUajbPVyqlPkTPUbRCYgD2WvAqyi9j3ZxaSLFspJwc47Gs76EQdmWdRt1MYPbHWqg22ays0T6QuYwpqZp3Jg2noTX0SlNg/Os4t3Nt2MsLQRuWHQniqlHmWpE1yyujYi5ADd+2aTfKrIqErMV7QOCefzrHmbZ0WcmPh05B0P1JquVvczlBpj3soxycc1KTuUoXiRiBQ3y8U5RVjNXixtzACASKzjudF7K41FWNQCOT7Vra5hbmZLbwkvuxx3qKjSZfKkz2v8AYP8AhNf/ABJ+O+nwWtgbgBm8iLy9weXhUQ54OWYV62W4P6xVSseXip+zi5PY/fL9nb9jD4OfAf4f2Kav4esZ9Qh0EWN/eXMahfLPzOv0JJz6195ChCjBU4K7SsfD4nMq9Wo0nZX0Nrx14B+Anx38Ox/DK5u7P7DbEOlpaIqLwuwbeMBgp2gjle2Dgjo+r81LlnHQinjcRhavtE7yPy1/4KcfADTbPUrbWtM0yDT7ttbbR9D0iFX8xLOGMLb28EAGWZ2LMW6cepr4viGjGKv1vaK8j6/Jca5vls7NXb835nxt8W/hX4k+Emvnwr4y+zQ6msKyXVhFcrJJaEjISUKTsf1U8jvivkJxlTnyy3PpqVRVYc0djg79QY+aum/esNpWKIEZcEgcMM56VrUvZWFHm5j7O/4JoeO/EfhT45+G4tejmuLS7uY44EutNh+ReBlH5kUDOeymv0rgmrUWLcJyesXbsa4nDVMRRmm7aHk/7Z7tD+0Z8Q7m9gY51S5WMY5dfNYKw9SOeK/qWtBLK6Epx0cV8+n56G+Jw7hRpc38qPOP2fvilFofxBl07xLolvquosyLDqdzdGOLTYlwI/KiGFaTGcE85Jr42rWVHEqMHqeHLkp1NXZn6R/Drw58O/jb8AfEHgyFZ2hEDyWw1RcvnaQ6ZKjdkHqABV4epXo4uEqjvfRmkswrxxUXT+F/kfmR4o0OfwhqV14V1D/W6LfPYTEA8qp/dOfQMmB9RX5/4q8MRqwWZ4dbaS/Q9eUVOnoZsigKzetfgSjynPHS9zF8Qyu0Y2np6VVOT5jkxEHLUo6JDJy7Grmww9o6Fq7XBOfxrKUi6tiSzXEfGQKxmrk03YSaM5Pt0pKOtzXm0EjZc4A71UloXCLvchu1QvyOlYRTuObsxsQZmCp0HWttIajpx6l5ExET7dawbuzeU/dsjKkfbcsq+tdULqOpw8t5XN/w0u2QH86iUm2a82lkYPxSl3TKievIr0cOrQOGvTvK7M7Szs0sxtxlfWuStL3zeEkoWR4L8YfBGpx+Lv7cihzCTyfSvpsDjYyw3Ij5XHwqPEXWxseCU2RKG644rGrCN/eNaHNM9K8OWvmBWYDpXl16ii+VHr00ox0Ox0PSri9u44LaFnJYDCjJNcsIOpUUVuy23sj7n/Z48Pa/+y/+yj4v+Mnie0+z3HiEi18MWksYDHCYe4TuAQce9f0/4W8PTy7D+1rKzer/AER9dlGE+rXqS3Suzyn4462fhP8As56B4Lu7xrXUtaaXWNXQW/mybphgDaeM7OhJ4zX02b5hWjNuk9XdfJ6P8D57PMQ5zcoPf9T85fjrqq6rqdxLqLDUEUnbDqmsGBVHYpFGRz7V8BjJU+X3rN+p+eV+RxcJfEeb+FrYNMCkAjySdoYkL+fOK78mw8IrmasexltKpThqfRP7JunrB4uTW5nkKWdoXZ4s5LHgdBXbxTjaeGyKbTvdaeZ7MU5KzPV9bu/t11JeSyvvZiSGV+R7lySa/mXFVlVm5JWudsNFyoxLwCYEFfwrmhdMtpQMG90ya3b7VBxg5wK6ozhf3zkrUXKN4l/w94jJPlT8HOCDUzh2MaVWUHqb73fnxB1IIIrnlA9CFRVBYQQmSOtOOhq+wlwpYD8qcmkibJakfl7F5rJXbIlJFeVG3dO/FaOJnNNkQGQRjqamz3JUbPUrX6ELtHbrThuTKxWjjIGDXRYzaSZE4xJgUnZIhu1z3v8AZE00x+E7m+K/8fF+xB9lAH9a/qjwUwvsuEp1rfHUk/kkkf53fSfx/wBY4+VFP+HRgvm25fqfQeix42Kf5V+wxR/KOKe56H8PVP28DfxgcEda7qHwM+bxTvOOnU9Au5Jfsx3BVAGNmazUVzpp/wDBOnGSlGg3JW8jgfEjBZZSG9eK6G2ebhrtI8/8QpuLHHeuWofU4N7HCeJoQQ20Zry66ufV4KW1zzvxJpxjd3inJ3feU15NWn0R9hgq3Mkmjz3xRal967cY6GvJxEEj6/A1LWZ5V4408Or/AC889q+exkbxPv8AK6zTR4h4z04rcvGy9TXxmLp8tQ/V8sxDdJHB2VkLPWXt8fdkyM+lfIY6Eqc2j9ayjFPFYOEn6Hqvg1f9HTjOQK+RxWsj7DBrQ6GMcEYzzmvNqbHoTGyghC3fFYRV5ELSRSkJCn5eD3rpkrI6GUX+fOBWUkcVZaM/Vr/gmX+zD4H+KllJ4NvILfXNKZgZtMvdJkjktnyfnEpB+YZx1Ar7DKcFh4LXWP6nk5pKpzvpY/Sr4f8A7IfgT4ZQBhqKoxaPzGuZdzMqfcJJ+8y9ATzivedOkp2ijyniOaOpxH7TX/BPf4afEbwxe3mnaTaLHNaXKF4otwMcxDNgDpiQCQD1B9a4sXhoV3ZoFmVWLSvoj8MPjP8ACrxB8IviNr3gTXrIxzaNq0loxYdQMlT+K818Ri8JKhVknsj6zB1Pb01JHHOh278cD1rzpRSlZHoqnFiKuAQ3fpxVaRRu1aNipqOoJAvlxdT2oh77u9jhqOV7Ii0jTpLqYXE46daJytojWnBR1ZtFFBAToOuBSbtEpuzuDKdnHTNYLcEnNktoNoK9qJKViuZbCxL++JPTvVxTsU3cuxsfuoBjsaGkty4xuBj+bJ45rJu70NXJRViS3AyxI4K1d2kZyd3ofNP7SbyP4lWBB0l9fevtMl5YYdyZ8bmkUq3MzsfgtZiLS43xztrxMzrOrWaR7WAmo0UemQ7vLGB26V4/LZanqRfMixaR7+c4FWkmjN6SJ7su8QjBzx0IrWKUVdlKDauyxpqCKPk4z19qxqSc3oP4SWQF5PkGR9KIxUVdlwTvdk0CYOc1Dn2Lm0y5bglh/OspMzjuW/mY/wBKUY31OuD0HrgDIz15rQibaYkgyDg9cUrInmZXeN2YE5H0pSWhWhL5Rxhhz71nGOoNuSGx2hZ9xBwP1qpy5VoWlZGhYaZLqF1HZwIS8rhQoGazhFzlYirJKJ+pn/BCn9jbxhbfFVfjT4stFXQrDRUubGFk+9dSlghPHUIm/wDFa+7yPCOgnVfbT5nzGd4qEMJyLdv8j9Av2lPGMlxFPYPPImnWR2SJE+DPLj7v0FfS0JqGjR8lCDi7tHzN4Z+OGm6L8XLXwkZJprrzFkAadY7eEZyFJYfMfbFdyn7urdjrp0PbPsdX+2h4l+G9jYHxx4hNro988BEmreHXtxqCoyfNturkhbUEcFogZDnjHJHzOaV6CjJN9Pn8j28JTrwlThTg5puz2tHRu71V100u7taWu1+PXx18R+ANa8aXh+HGhWtnYCVsNBdS3MkzZ5eWeU7pXJ5LcCvzrFRoOpenGyPt6blCkoyd2jze7cliG6nrWcYqOoOPcqIBvOG4zxVVLtWIcuV6H0j+wV4zTw58c/CpuPDwnshfKLq7jtkj8vJHLuzBnHsM8npX2PB1Z0syhzaK251QlVq0ZKL1sWv+CnXgu18IftKeNkWJ0jvZRdWeeMkgSKw9iAw+or+tsJF4rIKFR32/I6K9aVbLaU+trHzd8Oohrt8PFHgC4inkivVmt9GuGRbcyYxJMzu4CtwACQcDkYxXxuKhOOK5ovqfG4lS9u5tf5n6s/sP+I/FPi3wRaaf43u9Iv4mO2NbG8huJLbK9GkR8tjpzmuWtO1S8ZbGns4Qj7SDafmfBf7ffgVfh/8AtW6vobyra22uWzI8phVyJEyUYB8DPbPUZ4r6NUaeYYFQqrmjJWaPp43rYaM1+B4xHvk0yC8OCJVIJBJ+YHB6gfyr+XOLshrZDmMotfu5axf6HPUkpXsZur2/nRcDpXydPcxlqippUZRipXjNdErJGdODbO++BH7M/wAYP2qvH7fDT4J+GU1TWFsZbs28l3HAPLjGW+aRguegAzySBV4DA18wrSjS+zuPEOnQp883Zdepx13pWs6Bqd34f1/S5rK+sLl7e9tLhCrwyoxVkYHoQQRSxeGqYStKlVVpIdNU7XTuQSjf36HtXLdJG65Yka4ViFPJqG3IpzSN3wp8IPiJ8R9B8S+KvBnhyS9sfCGlJqXiGeNgPstq0qxCQgnJG5gOOcZPauzC4CviaVSpT2huZ+0purGDestl3MnQdB1rX9VtNA8P6Tc39/fTLDZ2VnCZZp5GOFRFUEsSegHNcHJUrVFCK1YOuqdNzlokX9a8N6/4W1S98N+KdEutO1HT53gvrG9gaKWCVThkdGGVYHqDVyozo1OSaszSM4zgpJ6M5qG1vNQ1hLHT7V5pp5AkMUabmdieAAOpraFGrWmqVKLlJ9FuZq50WjQS28pjlQq6nDKeoI6isuVxk4yVmtzelFHNfEVlNyAWHB5J7V2UeeVlY8/HX51E9Ak/Znfwj+y3eftF/Fb4hW/hqfUokk+H3hCTT3mv/EUAlVJrxgCPstqoLbJWB8xlIUY5r6OHCuPxOAqYpRdoq5nTo4uu5vDwcqcF78tkvLzPnD4iXgu9MLEAjOQe1eVl8HBnj1pKqjK8D2LSyBmGMHiuzGVUlZGuHiken+HrKSUqscZOOuB2ryPZuctTu62R92/8E7v+CfsPxj1RPi78Q7WeHwhpF3Fc2NyxaGS+kC/NFjOCmTye/QV+ycE8I0qVsbi43k/gi/zPbwGDjSn7WprJ/Cv1Z6P+2p4otfjZ+0H4Y+AXh63jj0azuUja3hfEUEURDP0H90Yx71+6RVLLspkpxfNNaWdrO63VtVa6tprZ30s/Yx1V4PCcl9Xqz48/4KFeINP8XeL9Su4/D97PBBH5EOy/FrGkSDaFMjbcKAB0JzX53jMVzVGr7H51meLmo3g7n5yeP5NFuddNpYadpkbh+tncvcOf96Rjgn6V85Upwr4hLQ+XoWr4pXLXhGxuJb/ylO1SuGdu3rX1+W03TjqfWUozS0Wh9Rfs86DqGjeD7nXrQiKWd/KjZSM7B9cV8X4iZhNYeNClKzPRoWlLU6e9e7lXN3cF3J6EV+FzlJy953Oumlcy7hwueMAU20KsrakUW2ViNoINTN3WgUpXVjP1bRDG32iz4I5OKqliLe7PYyxGGT96O47RNfZD9nuOCOMGt5WkrxRw05ypyszorSeOWPcrcEflWEkerGopx0H+ZtJLD6UJ6ag4NvUxb7xhpdte/ZGmUMTggkVpGlOesUc061KE+W+poQz293biWNsgjIrOamnY6HONiB+pAwBSs0jlk22Vrghvx9aSdiLNlc4Ude9bxkmhNOLISBk80pbE1E+U+nv2ZNJGn/DrTxjBl3yEEerH/Cv7R8NMH9S4IwkGtXHm/wDAm2f5Z+OmZrMvEbMKkdUp8q/7dSj+h7No8QyBnmvvIrQ/B8TLQ9A+Hsb/AG0Mq7iAMDFddFrkZ8/Xb9rGy1udxfW+ozQs0RBVVzIfQelKDgpasvGUcVVg5fZW5wfiBQDJ6k1tO3Q5cNrY4PXwxLdiK5Knc+nwmhxHiFclsn8RXnVtWfT4NnCeI4Q7MX/AivNrNH1WDnZJI4DxLbo+8Bfzrx8Qrn1uCm1Y8y8Z2Pyvxxzwa8DFRufc5bVV0eK/EDSzvaUAcE84r5TMKWtz9PybEe7Y811S0MOsRXQHEnB+or4/OYWpqaP1XhfF/vHQfqj0XwbzZoM84A4r8+rzUps/UsGrx1OjOMZC8964JvWx2z3EkT9znFZx1kCWpm3GApH610z1N+5QiJEuGHU1nPY4K8tWj+in/gkzpCxfC3UdXt/CMWn3UFuXjWG584NgZzyeK/R8v5JYazseBnnOq1zp9V+Ndz4w1TULB7q4kmtGxeRKdghBJAyeOTjitqbine55dOMpU7vY9E+GnxA1LRbaKzvLn7bpVxH/ABndtzxzVyipEuKWp8pf8FV/+Cad18X9D1L46/CHTBc3981tPqFvCMtviDqW/FG6+wr5vOcM61G0Vqe3luZOnUjCS0PyU8VfCbxt4YTzNX8PXECO8wUvGePKcK+fTBI6+tfHfV60ZXa2PpvrEHLc5W5geOMrjNYOTlLQ6lO8ShDpfn3Pny/d/lV875bIhQ+0akaJEmyNQMelOPu6shzuxVU8nPNZTd2NXY4KTwBweaUVdmyaiiWCMhTnNaNpoyejBSFk9T6U0rIcE2y/ZWV1eSxWdnbySyyuFjijUszseAABySfSueo25G0p8ur0R6D+z9+zzfftCa5rPgzSPFtrpev2mmyy6DpuoRNjVbuMgvZhh/qZCm4qWGCyheCRXTg8N9Zm4t2fmcWIxUqMo2V0932OQ8O+EvFHiPW5PCWk6FcPq0azCXTmTbKjRIzuhDY+YBG+XqSMAZpOjU9q6dtUdkeSUOa+h8t/H1A/iFbiQH/Xf1r6LAVL0eVHymcyhGrY+rf2G/2RfA37Snw213Wvht8Z5Br3grw7JqHjLwjqeg+XejEhUS2IWVhd26AqZWPlyJnIRgRRLAUasZVJyafZK/p127mVDMnQnySjfsaVl8FPjB8Pfi5pGgt4HS+vYrc69p2UEtnqdhbxtctOjHiSLy4XJB5+VlIDAivGWHrfWVCKvbX5I+khVhVpSjs7foexftV/sa+L9b/ai8XRfAbwBa6f4Zl0O08XIkl/DBZ6RYXsMcyxNK7bEAklMaqTk4AA5Fd1TK6zry5FpucGCx9NUUpu7vb1PmnULe40q9k03VIDDcwNtmibqp9K8iesmj2FUTjdHqv7Nn7JXxW/abtvF2qeAP7PttL8C+FrjXvEmsatcGK3treJGYR7gDmV9pCrjnB6AV6GByyti4ynHRI4MVjqWHqRjLeR5xYyJcIpQY3AH868qoveseiproeo/BT9lb4j/G/4c/EL4teHLiws/D/w30VL/W9R1KYxRyyu4WO0ibGGnYbiF44X3GeqjgK1WhOstIxPOxeZUsNiYUXq5duh57AwJznj61xct1c9KGrLKsGbH5cUm+VHUvdjqDOeq9KlSIVpPUbvKgFh2pttky0Y5HBHPX1FNXY1dkyI0p4U0m1FGsYpLUtw2uAFA696xbu7g2fSv7AX7IHiT4/fES1eHSpJYWmEUaqnVdod29MFQyg/3jXtZZg6lWomlr+h5eMxCpR53sj92fhR4B8Lfsu/BO30WUwQNBAJLwx8B5yoARfYABR7KK+7oQjCKiv6Z8LXrPG4ty6XPm/4z/FvS9XhvI7e6lljgV5Lm4jI2xsckku3yK3uTxXRKcYy1FOm9bHw14b/AGhLH4gftDDw/wCG76H7Bp0hBTTJd4d8/ellwTIcemBWka0pU7LY76FKcaXtD2T9rDRtO8bWdqbP4c6r4w1GK0Urb3O+PTrXj70jE8+/SvnM2um58ik0j2sBKpGzvZH55fGXw3qHh7xTNa6zqWitcsSWstCZWgtR2TK8ZH1NfCV7892fUULKOupwN2mHJ7DvipTui6jvsU4tzSnaep6VTk1EIwW7PSvgx460X4f69Zas2nWjXPnLi4u4WuGHI4VB93616OXZhTwteLjC7v6m6rRpRtFanu37dOj3XjLXtP8Ais267i8SeC8KQ3EdxbYJQZ6ZADc88mv694SxbxOUWTdkrnbhY062G5Xpa58UC28QaRLew+G71LCys7tZpjcQCSG3DYw5Qg8tjp3x7V4GYxcqkvet6nyWYRnGUpJfNH6G/wDBNr4u6tfaLHEmv+EtQhV1Ah0S1hsZh6lgqqzH2JNckI0+V6nHB2pO99e7uYv/AAWa+HL217ovxh0qFo0TZJJIqbiGU8g/hX0eTTlPDSjfY9XLsZKVH2aPh1rvT7PxRczM3lWN4Ulk2RY+8PlkGST1PIFcPFXC+FzzL5Uais3qn2Z6qjy0/e1LOo2E1pJ5M6/eUMhxwwPINfyzmuTYzJMdLDYlWkvxXdGaiuS/cpwwqj8cc15tS7Ri3bY9g+DP7PfjD4j/AAi1P4ofCH4nxQeJtB1tI77wpZXZg1CSxMYYXcIyDMobcGVeRtBr9W8LcFODq1cNU/fytaNk00une/yOvJs4xGXZpyte5JW12+dyr8d7rV5ptE/aJ1vRbW/nnmjg8VW12hMdzfW5G7zQMHE0agk9c7u9dPiPklWhmNLOFS92VlUVtE1uejmWWcuNdS1oz102uVf2ofhb4P8AA66V8bPg1azTfDnx7ZSX/h2OWbzJtIuU/wCPjS5jnLPE+QrHlkKn1r89z3Ko0OTFYdXpz2t37HlxwlWPuVN09X0a6WOz1v8AYa8O3niPwF8Kvhb8VLnV/H/i3QINQ1jQNR0j7Lb6MZIvMxJOWICgYG4juPWvtl4Z8+CU41nGryqXK1dNeq27HZDJsQ8JXxNZqEYfD1cl5W/Ix/hBovxf+BHxU+JHwC8WWUuk3Wq+Abqx161PzpNBHNHKWVh8roQuVYZBzVcJZDicDmuIweNpaTpy1+W6+89ngvA4TFZrH63T5otPlb6SadjW+Ctp4l/ZU/Z38QftieHCp8Xajqf/AAi3wyuwoJsrmQZuL6MH/lqkR2IezSEjkCteGOFaODp1cfiFzWdonHPh2Cqyw+J1jFuTVt0npfyf6Gd8Xfg9478TeALT9oq61u61+8vLW2j+JE10f3+ka1LkeVOWOS8gUP65PPUVrx7wfOcoZrhVa8E5Q7WSu7f19x1ZhgqFbFKNCCp+7dRXWKW6XY5n9kcJ8Nvi8nx18U6I76L4U0u71GC6kg3QvdouyJDng/vHTI6jIryvDTLVDF1c5xVN+whGSjKzs5K10ns2rq6vpdX3PJwWEhXdVVvdSjf11NP4Afs3+IPi/wDDLxT+0D4x8Uw6FoGnXRtrAvbb59Y1WVspaQrkAKM7nkJwi9ieK8rB8L4nOniMfVbjFuUvXr/wCKNOtUxUaVON3L8F3Lmi/AL4E+FPCuoftFeL/iLB4/fRvEraJ4U+Hem6dNHF4r1YeXsxLkSSWilsuFRS4Crkbzj28n4ew2EwNLFV0+dtvlaVktLapu736WVt2KeAlUxzg17iV3K9rPqrW/rqtNZ/2/fiZb+FPibqvhTxtYTap8X/ABT4UsbTxBotxdeZpnga2ECmSGLaFUSBQAkQGyEEqNzHNfouJxuBjh3Qw0bc0LWv5avob0syVPK3gsJ8ErttK115+fn+R8WeJPDPiC++Hk3xEt9LuToEOsjSk1NosRPdeWZPKBPVgg3HHQYz1FfiU8JWw8XOSsr2R8TUhyNqw74daelxaiZmCqMbmPQZrzqic52NKNlG5+gX/BN7/gnVqn7Qk9r8Rvinpcmk+ENKut7TFismrgdEXP8AB6t36Cv1HhPhFTUcZioafZi+vr5Hu4TDR9nGpJa9Eff/AMefij4f+Ffwvl0XwTpdtZ6Zp1qLbT7WIbE34KooHTPQ1+35Tl371Tqf0j6fL6FqnPU3PiLwXe3Wl3fjL4y+Jr+Mta2/9naZMreaGnkXdMygZ56A/QVOfYydT93F+6r2Pnc5xjxFZpNpK58F/tX6wviHU7i5vtAvNUVnZg+sXskFrH77cID+tfm2MTUuj9T89xsrtxR8oTSjUdde1abT440biLTowIk/4EOW+tceXJzr/wCROXUoQndu7Ox+Ffh6fUtQbajO3mBYy3Qljivs6clSpNvSyvc9+nzK7vofVFlpdpomlWuiQwBRbQBSSg5OOfrzX87cWZiswzac+2iPWw3u0xs54ICkV8k7Jm0W+Yzb2JyhO3t0xTvd6lVI8yKmlGUSZZ+M806l4mdNqErGowQDaeQawUWzSpMxdb0XcxubUYYc8V10ZuOkmctWipxulqGha3JE3kT8EHHNbzUbXijmo1JUp2Z0Ec0dyhK45Fc9rnqJqaujxf4ueF/EVv4hXWtMuXARiQmTg17+DxFCnQ5ZRufL5nh6sKqqRep6z+zp8N/iT8Xfsuj6NbqbmciOJdhYufQADJNeJmGNw9BNqN2uh25XSxmMR7t8ZP2YvBPwK+HqzeM/GjHxWzhZNFdCjRDGckGvlMvzTNMyxcn7PlpLTzPfxGDw2GoJqfNPqeAzuqt26etfTwhzM8tyWxUkmLGuhw5YFWuRu5HB6mstZy5V10OfF1Y0cNKb6Jv7lc+xPhFpP9meE9Os+nl2cYIx32gn9TX985Jh1g8nw9BfZhFfckf478XZhLMc6xOJe86k5ffJnpGkR4KjPfrivXWx8FiXoz0DwFGyyMTLs4HzeldVKyi9DwK1nUWtjrbtnitWVJDt28nNCXNMjGSlTp8kXocRrjsSwJ9cH1rR2sLDrVI4TXwxLljXLVdz6fCdDitfQ7myK86rc+mwj0OJ8QJu3ZP415lVan02EaOE8Q27fMpI9q8ysmz6rBzWljzzxbbeasgK84rxMRHU+wy6dmjyHx7p+5H/AHfr2r5/GUudH6Nk9azR5N4hh8sOQvMb7hXy+PwftaMoH6VlOJdDFU6iOz8GsklpHJGflZQQRX5Bif3deUH0P33CKLpqUdmjo5M7RkCuGTvI2ndscwP2fBHaphfmKgmzOkj3IRnjNazdmaSlZMotDtffUSfunDUV7s/or/4I06Vq2mfDjULG68Bx6UskDAk6ms7t8p7ehr9CyuEZ02mjw8+k5VeU8u+JV3Ja/EbXFsbiK21ZLuY2q3LeXb3TKTsjfHoehPrXpThTpux5sqE1TSWx7J+zz8SdM+IHhNLTULZ7DVbdQt9pq27FUkAwwVxwwzyCOKSqRmuVGChJSsz3j4Z+Ozplp/ZlwFeAtsImQhX/ANkhq5p0VN6FTThqjk/2i/8Agn7+z/8AtIeF9Vn0PQbbStZvNNuYTNFGFQNMoBYDpnKr+VctTDUXGUGt/LuXRxdalNPdH4d/t7fsur+yh8YF+FcVw9wttYI8l0y4Esh+9j2FfFZngI4KrFR2Z9dl+NliY3PCChxgdPpXDZR1PX1cdB+W24I/HFZuTZzj0V9oPvU8qZ1QcbD0Q7uD2qkrGc/iJCSowoHTpinZIcVzCRxYYu3FZVaj5bJmnw6GpoWs6zoms2mu+GdVlstRsLqO4sbq2fbJDMjBkdT2IIBrKDknzLdGNaUZwce591f8E+NP0X4h/ts6X+094++H17Za5qUuoDxvFFa7dNF0NNnna8CFDtNwCrsgdAjq+0FXUJ9LlVWjin7TeXfp/XzPncdhamHwMqEZ6/iehfBb9lPTPitrPiP9oCHwxDNfLpFjN4msFiYyQapaXCTpMCOdl5YswDjgvuU85FdcsLOvN1la73M4Y2vTpKF7PbU+If2+P2KP2TfgJ8ZtT8F/G/VfE+lnXbqLUPh/qNhAo0i+t5WYos0xBe34ZQz7W2FWyDxXZhMvhQpt332fQ5LyxFROauluegf8EqJtV+Bnxw8XaX+0RYQN4p8I6XBL4Hu3wZ305+J7WWdI1W9tJ7ec7ZcttZVIAU5CqciqezsnLa/QTw03Fzi/kfcen/soa/rf7Pfxh+F9g8P9o+B/EN23gDVoUDSw6LfW6tNbBhztaKTnsWDGnQwNlKzs7aP818ylXU8VSb+F7rzRp/8ABUbwx4d0/wDYo03wf4U0Sa1ufEHhHS18YXmnwFpLqK1tmSwhxniPziGOM9BnoMaZhUqQw/sqXVamuXqEcQ1L7L0PiH9nz/gn/wCKvFnxLvNF1/xLprQ23w4nsr3xLrOmvEkuqyxeTcHBL5a3mmVN5+Y7R3FeDgcC6tXVWX3nq5ljVyJRv33Prn47/s36V+xR/wAE+tG/Yc+FGtG58V/GLV47zxl4imh8oyaZGA0jspbckKoAADz1GMvX0OIpxw2FWHpOzlu/I8enUq4zGKu9kvXU8X/YV/4JB6x+1B4/1j4neKLG68P/AAu01LiPT9Z1iM26X0gUpHLGpILohJc4wGIC7hk14uV5bTli268OaFn5avZ/Lc7cwzeNHD8lN++fSv7TP7KPgX9njwT8MP2cvhX4Ge9+GPh/Un12bQtSuUS9+JPiDy2Km4LD5LWJf3k00gWOOPgc7AfeeHpwjGnCPuLWx4uBVfFV5Vpy956X7H5C6h5q6xeiY2o23sqkWL7oM7zxG38SehHUYr4DEyiqslE/Q6FqdNJj0AXp1rlV5Gsql42JI14yB1NKzJT6gFBX1PbitVG2rGk5MktbVmk3MMA9qU59Ea25DRt7TBwqg57Vz6yYpS5Uet/s7/ss/ET46+LrXw94Y0G4nAvreO9MMRYwRyOF8wgc7RnNengMtqY2uqadtVfyXfucGKxKow5pbH7rfsWfsreB/wBkT4RWGq6rp8NtqsWhw29/KVGV2FmOPclv0FfbYLCOhTV17zWp8XmWMliqnsoO8U2cD8cv2gb7xlrU001qTpUKMIYZFZowARwQnJY9ePQ9OK9eFLklsRQoKET4x/bB/aAFzpNzYabogltLeIuNOWyggtkbuwW5kCs3uQ3XpUYh05yutDojSVWVo6PzPnX9jOSbxN8Sm1+5tEt5JpdywFIRgZxgeSirxyeBXRCmvYNJ2stPP+t9TrnGTiqa2Pqz9pfw9qfjW1TS9T+IfjC+hSJVTRfDGkuwUY6E8KT7818bndGtKLabt5I97AU1CKtb5nwd8bfBE3gjxE1lJ4U1nSkcnYmtyjznHqVH3a+JmnTdtT3IWlE851BkVDnpRFNsHZlG3OZgR68VrpYhNvQ6nwhq1tourwX80cTbD8onciP/AIHt5Yf7PeunBV1hMRGZvThG92fT7+K9Q+LfwD1H+0ENxcaFMt9Y3A05beOSEjZOkUYAwgQg/hX9G+GmfTxcqlKSt8rJ37LsdtOp77S0Pjn4m6Te+DPiY6rOfslxAIwVTIYEDy2x0OVx19K+kzpSoz97ZnzWYyVFtdWe/wD7CuufEe01eMQ+DNEu7O3ulCXGkQ7L0g/xMiHkj3NeLhcPP2nvbHjQrVKi5X0PuD9qH4Zz/HD9mDVfD+r6NcJe21s81oLyM+YRjnIOcfTNezgcTChimqcrxZ6+XQjTrLsz8gtTE2mWws9QbdPp80lheDBXgE7cnjt/Kvqoz542ep7c4S5+W5teCvEVnqkC+E/EsypjBtbrdkx7sAE+q+3tXyHFXCmD4iwzpSsq0VeL6/PyGoprXYu6h4evtJvjZ3sW1uqspyHB6EHuDX8wZrluMynFyw2JjaS/HzRm6fY1fCdxfaHrVrqOm6lcWDQzKTfWZIlhGeWQ5HzAZrmy/G4rLsXHE0JOMou+mhrCSpp3V2fWut+HPhp+0DomqaP4Q13UdS0DWLU2kep6/Yw299JfRrlZpkiZkDnJwQeR1yeT/VOUZlHjXhNrExV5q0ra+966fkj6jL6lTG5aqVRJPrZtpJ9rnkn7Mnwv8TeIfhv8Xf2U/iK6iDQ4U8Q+Hzeg4jvIz8wjz/z0TKkDrxXwWRcJ4x08Tl+Jp3jF3pvzRhLD14NU3G6T0fkdL+yL4yX42an458L/ABOvbzXIBq9ol/eWFuItQfRoHVfsyyDLIhjzuQHGQMkha/ReE81q4zAynXaWJopwWl1t8r+Ttc9/LIVZ4ZzhJKpT5nHm2vbS6Ou8LaxF4j8Yx/DK88OC5h8Da+um+HdauU/0q48PX8r25tpf72zKOM/d2kZx17MZTqY7EKtLSooe9pprudE4zWKWOvaU4JtLbnWt1/Wpk/Eb4PfE7T/Cfg/9jnSAl2+mfFi4vLbUcHbbxoiSLMT2G0r7ZJ715GHyv2GXUqKl1u35JtorHuOOm8XradNXt63Nz9q3w/4g+FXwgu/hSmtwi8vPG8nirWWugyxarfZhEdsT/EWCsEX1IxXNxJOp9XlUpSbqOybls1s0Y4HD0KlaWPs2/ZqEddl3K/jP9lvxX49+GOv/AA/8J+D7zQD8QPiTDcWmkcyNZ2UUKvIWPCxIZvlZjwAo44xXFgcnw9PI5YXmfLL3rJaXa7X2el/LueEsPSq0VCvUbUYt3S3fRb/15npXxu/Z2n8V2Xg/9nnwl4mXRfBHhbTJH8SeJlvFje91KZ905gUfNJIwGN2MYzkjodaeS1K+XxwdNcsNLpaXQZW8RQo1arXvzaSSW0UtPQ5D49eFvBvwj1TSj8H/AAwniPxhYxJYfC6GG28mw8Jxplnu3fjzbgkl/MkH3+nau3EcO15YeEILVafL0FLB1acL695X1u/0R8uftHfsR/t1a14bl8ZeE/gZaak+qzNe65rtrfyzahrMzN80s0shO4ZJIRQBkmufG5BjYYD2VGMJVI9b2fp/SPn67xDgqSUU1pvZv19Oh8q6wPHek+Fk+DPjW81O1sdF1G4ntvDdyhVYL+ZVSSTZ3dgirk84AFfkeaYXGTr/AFasmnF/D5s+ZxW7j1PvX/gl1/wSu1LxfoVl8Zf2jtPNlokbCS00ZxhroDkeYD/D04r7rhfgmnQccTi43l0j/mdeX4KVlKa17H6FeMvGVrp+l23g3wNZx21hbqIILe1jCqqjgYHA4r9cweEp00pTWx9Xh8M6b5pnzn+2B43tvC/hdzLbSS/2TIRHbyy7jeahL8qIFPPyZz7V3UIww1CcoN+829W3v2u3ZdktF0R0V8QqVByi9WeHfF7xRF8Ovgxpfw+0rTrma7itjPqjW+pGL7RcyfM5IRCeDx+FfB5pi68arimfm+YYmpKo7M/OL9o7xNr15rE8978N7NYBuMc+s3F7OVPsJCo/8dr5TF1qsorZnydao7uz1PE9E0/7dKzyxJG078iFAij2AHSu7J6XK+aW7PVy7BPku92fRH7OngVrbUhrF1EhSwQZR2O0y9uDxwDk1pxdmMcrymfK/flotT3qdN39metXUrO/b6AV/Olecqs25bvU9CEPZRUVsipJJk9OB61yOGh1RimrkF1go2B271jsxPcy7DeLhgP71dXuunsYON53LdxObckHisbq5dVKIQTxXAIHPtRJ2QUdTO1rSWjb7TAORycVVKq+az2Ma1KEndLUbo+ryxuElOMdc1rZDpy5NGaGq6ba61BuZVJI9KaqezdkFeFOsrMn8CePPGvwtjktPC+sS20bnOI2KlT7FSD+Fc2IwWFxkuaotRYaVbA3VN6Mr+IfGHiLxjqjax4k1ie8uXHMtxIWOPatqeGpYelywVkRKrf1KLyiQYB5xWkGxKN1dlcFt2Ofxrpkk4ChqyzpNm2pa3ZWKrkz3KJj6kV2ZBgvr/EGGw6+1UivxR8rx7j1lXCONxW3JSm/nytI+2PCFt5VuiKAAqgD8K/vSCUEkf4/ZlO83c7LSUOV5rdbWPmsQzu/BvmoH+bA47V007cp87inaSZ0d+bhoPJlQHPKkck1UEk7mWIlNRUai87nH66pRmVjyKJnVhmm1Y4rXV+ds1y1NT6TC7I4zXUyWwec159VH0uFkjjNfibexGPcV59VWPpMK1Y4jxFB1+XjFedUV0fT4SWxwHiiDAfK5yK8bExPq8BPVHlfjiyZ0cdueorxa0eh+g5VVSaPH/EVjHHfNGw4bOeK8LFQsz9HwlVeyTNv4XSo+lyWxPz20pQ59DyP0r8a4jwksNmcpdJan7pwjj/r2VqLesdPkdU3zAjNfPySPpprUc6jyOR1FTB+8XFWM2fcMgevTFaztfUGkyq6YXkVnI5Kzsmfuv8A8ERL/UfC2qGy1fR/C1mJzgrZ+IfOnI9QCSPwr7DLKs/aNL8zzs4hpZo0P26fAVppvxj8RaXqWBZ3skjDKcpvyVbH1xX0Ps7xV2cKalSTR5B+zv8AtK/Eb4U67B8KtT1dpI7dDb6ZpWm/6LD5MeR59xO7ARqBgcYFYurTpS5ZdDycTFpuR9t/DH4xSeOPDVpeyxpcW5YJGbK0xGx9pXOX+ozmuuCja6YU1KejPS/DHjiTw9feTPJKtuXG9LmJgyA/hyKmfK1Yv2Op8Af8FtP2WNa+I1xY/ErwVp5vLy2uCJEgQl5bdx19Tg4/CvBzvCxr4PmXxI9zKKkKMnCT3Pyw1LQ7jTJZYrqJkeKYxyK4wQw6g+lfAzk7n0vOraFGZcLjH4UkKSVrjrcjbtIxmh3JTsPZSijAzWkNUUldksVuSC7d/WoqTtojdWS0Ox8A/s7/ABw+LPh+98T/AAr+H13r8GnybbyDSpYprqIAAlvswfzmXBHzBCPetqGX4nFQcoK55+IxdGlLlmz7O8H/AAD/AGZf269f0fSvjN8XZfhz8SdJ8NW9tqP9keDZo7TUoLaLHnTwSRQtDcIo2yOuUOwMCRyfoI5Tg6llWlyysvJXa21S16Ppfa6szwnUxWCVqC54777H1p+w7/wTy+HPwY8PeJrTRf2kF8c+HvEOiG0GradZzQy20vz+TJ+7cAhQzLznAYqSFJFe1hMDg8JR/dyv9xwVsfUxM4txtJGp8Irj4hfsaeI7T4bWVzN9mnvFthpes2Qkiu7AuXC2l1j54xuOLeRi6/wEDCnCEadOSaf/AAx01YLGQvL5PzOq/bd/Yl+HX7Y/wo1jwBdaZZTWes6Q9/4LVrfabK7RS0lsMc4YncBxg5wK9OqqSw7gtnsc9Kr7K0Z9Nz4Q/wCCWfhrUPiDfXfwF8feAp4PEfwnupbLQ5NRuVnmn00BE1DTpHKgtH+8W5t8jISQLklTXzuGhOVe0pXa26aGlesow91NJ/muvz39D9OPA/hzRvhb8QrjQRoYA19rO1uUZ8iULYhCSPTCH8MV70oxi2oxOb2c6lJSSehwv7RmgaXpv7T/AIW8C6vpqXlhd6KNP/s2UB1eNMvuGeBsKrj3b2rCdOC1k9dreRvCMo0nJep3H7NX7OWk+CtJ8Q+JfHdn/as2r+MpNVsBeDdIjlmYyFjyWZyWOe7DHaqwkKWFpWirWMq3Piqiv0Ru2nwT8JeLvjR4i/ah+Nzw6jpOg6Sum6Tp1xDmEJHlpCUb5WLPjC8jgc5zV16FOo1VvfTZdPU2q1fYYaNCmrPqVfgX4s8R/tXfEy/8T69JJYeAvCc3k2Ph2C1EVp5q4Kh2DfvXUcsMbV4A61eGdCVBSg3e7TVtPKzvr56fNnk1KTU7NavrfXz0Pk/9sj9mn9s//god+0nraeFfE1t4S+E8cAsH8TXM7QxNao2GiLFkZkLclE4YnkmvNx1OpiJtRm1FrpofQ08VhMHQjTS5pfqfHvx6/wCCdmj/ALLX2zVvhh48f4lf2azRvr1xoX9l6Boblwgae6uH2XEoydsabsttzu+6fFqZOovmparzOmhmtWp7lZcvVWd2/kYHxG/4JzfE/wCEv7I95+0Z8Wl03w1K2swroCa1rqfafElvJwfslrGpIxuVyXYfKOKxq5R9XwjqS3NKOcxr42NKndq2uh84AEAJj614tup9LBdyW1tQTkg9eKynK7LT1NjSdBvNQkC21s7jeqFlUkAnpUxi5PQzqVVE+vv2Jf8Agmx4o/aT1XWdCtLNxLHp0M1pfXERFtAzEcu+MfgMk+lezl+WVa6do3T69EeTjcxp4S0p6p9D9ev2R/2GfhR+yho8OoaRYxXnieXTIrXVdb2bPNVOcKucKufx9TX2ODwVHCRtBavd9z5HGZlWxnut+70RyH7Tvxjt9T1G7gtL6ddOtIzbmS2Vm3dzgKCck8Z9BXfBR6FUIqnC/U+Ev2iv2kNG0TQrmDUtbluIY3Li2GhXjIMf7IZc8d6upVaXKmd9Jyqx5dUfAvxX+OFp+0H4pGieGfDmhrpTSIjXUGkywXKzhvmU+azEDGORisqPNOo72sjoUW2kuh9I/sQeGlXxdCoi3xRERPu6Y2g/lz+tdrqQlCSjvHT8LnVOlGVOz2Z6l+1h8Rm+zTad4h+Md9Z2xUolvpcV5JImONoVGhT8ya+LzaqneMnZPrrdfc/zO7Bpy0ij4W8X3Wmya5O2l6ld3cTMds9+hWVvcgu2PzNfFVVTU3yO67nvwcpRtY5+9O5SSeaqL0LmuVFeyYeaOf0pN6mVPfU2dNufIukmDgFSCCVyBUuLTumaSk+h9DfAX4hTabqVrqHiC8imtZojb3EV9c7pLuNxtMUUC8AEHrX6bwVmdTLMxjWnPRq2r1+SIbnLXY4z9vb9nq88NeGYdS0Ey4sYfPs7lOs9mG3x546rkxkdsV+85xOGPwMatNvSz0+/8dmZYyjTq0VNannn7L/ivxPrmvWGs+HPE9xp80a+VjS/IsBIM4KyXJwRx1yDmvnMPjG6lqcrNaadn0Pka1R06z00P1V/Z/1LVLnwWlr4h1mK5jmh8uSN9UF6xBGDlgOn6Culxp4f95LRLf8Ar+rb7HpU8Q6qTitT8yf2/fhNc/BL9oTU7fC21hrM3nQSBPl80HKkE+vSvrqVdOUX0Z71LEutTu0eNwJA1yqxyMpjx9mlZCpbAy647nPA/pXs04KcWnv0NoSna0keifDnXdI8UWEPg/xNdGMMSsF6Vy1u+ef95cda+M4w4QwnEWAcZK1VfDK3Xt6Hp0kpwaaN7xV4UuNA14+Hp7aUWcJH2SRUz9oU9JOOCW64zx0r+YMxyvMMsxv1PExaaeiWt/NepyVYSUkpKx7B8BdD8YfDyFNf8SeFr2z0q/gTUNNluflS4WGYJIVGemGce5XA5r9e8LI5jlzxFDERahNKUb9GvyPf4dlzVqtBb2Xy6nvEuteD7PWr/wDsjRbOWXU9HWDzmjHmTWwYMrZ7lWwMj1wetftcJRVRRUlzNX83bR/LX8UfRRwVWUISd/dlfyvtqcR8NfBGh/Cnxz4j8c+BmW1n8R6G8Gp2EkY/0eYZYlcDkMCea58NgcLhqsp8tru7sKdCEJOWu9zE+DXj+C90vxB8Qb5Ior+80+IwEkbt8byJuI7HzNx/Wrr1KdS7hombQlGrJKOqT/NX/I9Y8GarPreoXHjXVjFLKmoyW6XAPJ/cxgnPvgflXncl5cvYeJnGko0odtg+JsfhjWrSwk8dafa3/l2jTrJqFvvRZArBJEXu4b7vYGtqWEjUoqNV3a3duv6XJpe0pp8q07GWvjLxRaaH/wAIxe+KJoUutLji2rIUl8ojHzdlLdcAd66q+AoYjBuhK7Tja+z1Vrq2z9OpnSlS+sc0Y+diZ1TUNTeDU7iK9mtUE9rGGDLaPt4wf721mBPbJreMoqKO181FOMNL7/n+ZpWGmeHX83xN4ytbaGwtomYylQwnQZ3Zz1BORjp1q+dRj7j1/I4cRzXUYPU8i+O3gDxP+0T8VtFm0z4863o2nWejMvh/wt4RtHXMqrujEiJ/q4gAMtgfWvjM0niZ1VGlW5N2+7Z8lmmHUqntY3TW77/M539jb/gm1rviz4pXvx3/AGpb2Rms5x9lgnw5Zl4Er7hhm4yBg1y5Lw/W+uvGY1+0n0v+p5H1PnxSqS18u59ueL/HC30UXhrQEjt7SLCQKh2hVHAz6GvuqVCNJXe57FKlHDR5upi6Sp86aW6vYLa20+Jprq9fkQgHliQevoKK9WFON3u+hnUxUYLmbevQ+SvHXxU0z9ov4+y+KpZlXwr4Slc6dBJLhLu5HG8k/eOR1NcmJxCp4dKL9Tw8dmEKj5Y7WPnf9qf4i31ppt1cabpl0LGJikosxeSbF6AAwKMfia+BzKu8RUcr6t6nwlf2ODpQoUtIxSSXZLY/Pz4keJfD3ibWpVtLHV0nLnbJeXkpA56bZOcfjXgezjOty2Z5vK6uIUYI1fhv4av9T1OG0tIN88kojt1I4Zj3+g6/hX12CdPDUJVJacv+R9fhqcqUE2fVXh/w7beCfDFvotpPGzxLuuGMZzI5+8civxLi7PZ5vj5crXLHY9XCwtdsj/tGOVsM21vQ5r4hu5tOw4yq/wAw4Hes73ClJEcxDIR7VjL4jSUbsp6Oga7MbDvW9m4HO175o6vpAkjJU8gVyqTjLU6ZLnVjKtYHtH9++auVps5nenoXAgul+UA+oouoKxpTs9WZupaMY8zQDkdQBVUqrcjDEK+wzS9SZH8qUnI9a2qQ6nLTnJPUvzxpcLkDr3qYyaOxSi46mdc2MkYLJwK39pGSsYKKvcp+c8XU01ZLQU5SSJEm8wfLyKFKw6SV7nTfBvTTqvxP0e3dcqlz5jD2UE/0r7bw0w/1vjfCq3wty+5M/H/pBY/6h4X41p2c+SH/AIFJX/A+xPCsTC2THYV/aMddz/K3MJJ1GdbpIIZT19QK1R8/iHod34PwInY+gxxXVD4T53FuzRu38khiJZsbR8vNXFK5y1JSnJc5yGtZJZmJJ9aU2ejh3rZHHa6Mlua46h9HhbOxx2uISSa4qiPo8K7JHG68hLnsa4Kp9JhWcZr8R+bA7815tTRH0mFlocJ4kg++MHkV5OIVz6jBT2PNPGNkXDblrx60Ve59tltVK1jyHxnpJW5Mo7GvDxtlufpOVVlUhYpeArz+yfGH2GUgRajFhc/89F5H6Zr804zoOphlXivhP1HgbMPY490G9JaHeyx/PyMV+eQkpWufr8kuUUqdhXpnpRflkWrWuUp4MDcRjHrVyV9TCdSzdim6B+M8j2pygkrs5Jqck2fqD/wSc1fW/CfijStQXxH8M7RWkASIThp355GSCc/jX0+W0bVeZNHHmVKvVv0R+hH7efgqHxTPpHj22tklGo6cIrmWMfLvA6g/lX08ZrlseVh4TUeVs+APi34Ga78Uf29BaJEYNLEsDMpeOS5SUrh1zzjcOPpxzmsKkOZ7CqUk7pdTK+Bv7UXjT4U+Nbrw78RdX1PWtdWQIvk3SxmNTyBGWwttEox9xST/AHu1OhW9lFqo7ihhVD32z7x+D/7Rem+J7TTxqA0yWe6TaVtdTluLnHo2AQD7nimp+1leJz1aqTseqfGvwxPrngW21Tw4k0lxpiC6hNxAAWA5ZG7Hj/8AVWMoLmtIlVJKzifG/wAe/wDgmF8If2orf/hM/hjqyeGNevb9bzULMoDBdnHzBeyE/lmvJxuS0MQ+eGmux3YbNKtF8s9Uj4A+M/7E3x5+Evim68O+Jvh9fWsqPcyoZIvkFtETh9w45XB6183WyuvTm9ND3aOPp1Y6M8gFhNAw82MrnkEjqPWuGVNxdmdimmSKmXAI698USjaJvTTZteH/AAb4p8Swm70bwvqlzZJcLFdX9ppU88Vux6bjGpxx261lTw9Wq/dTYsRXpUVyuVmfaP7NX/BO+L463Gn/ABJk17V/A2uRxxy6frfhzSLiLRdRiUBQ8r7leGQYxInyEHnvmvq6GAhUoczcqT7q363X4Hzs8XTpzSsqq3s/+Br9x9m/BX9hz4jabcQt+07Zaf42vLXyn0fx3osJLuI33JFcMr5YEZUknJU4IINejJ127NqS76HJGtBybpNpvdM9d8Nfs7S/CjV4PHH7LbP4deO4afXfh/eKpsdUViBL5L43RScZUBtmc8DcTWPs3zc8L37EQk2406yuu/X797fl06ntWqaPoHj/AEy3XVNKiaB4ln077TH+8tnHWMnqCp4HpXbTmkioxlTmysNFFno5gsIFMun3iXNmc42sOGH0NRVm1HQU4RmeefBf9k/wJ4J+PPiv9oXT/DUFtqOvxRo/lrtWXBcqzjpvXzXQN/c2jtWVCjBS5+xy1bytDoj1A+AbfUvFa+JbuLdKsh8rJ6cEZ9uGI/GuxVLNnbSvGjZMwfEfwisPF37Q8XxO1S1Vk0XTTFZqx/5aNjJ/ICueonKqZySUFE9Be0MsGPLA2MMY4yRz/OtJdxwSRa8Q/DFvHPhe28InV7jT7JGEt1LaNtleTO75W7H36/lXVFNRTi7Na6dzlnWjGpKctX0NnRfBfw9+HnguHwNoelwWmlW6bRaIDh+5Ld3JOSSckknOayjy01Y4IOtKrzLVnB/En4bfDP4t3MVh46udX1HTbJleLQbW6NtYqB0EuwgN9Ce+MVnUjSlJXOtSxFON6as+r6lfxX+z38GPFg0zWbr4T2msx6MyvothqsZk07T5F6TJb8q8g/vbS3uK3l7kLJGdOE5yu5WffqfDf/BQr9iDTfi/4pb9of8AaF/bE1GO1tlNlp1rfeB5lttKhGTssbVBmSQnADHr1LHivJxmDWIaVSfy30/zO3K8Tyxao0tbtPWzdnbr07W0e6uj8u/iN8K9W8EfEDUPDUWl62tsJmk0yTxBpDWV3c2xyUmaEkldw5Ar4/GwhSqtQeh9vhK061JXWvk7ln4f/CXxH49mtotItGAnnVQSP4S20n8DgfiKwpUXOW2g6uIUYvl3P0l/4J8/8EjfEGvWh1j4saJNp+gTXMV3b3k48q6mxghEjOcDr8ze2AetfTZdkk5JSrLlj26s+dxucRpXUHeX5H6g/Df4beBvhB4StvBXw+8OW+mafaoFjhgTGf8AaY9WY9yea+np0qdOKjBWR8pUqzr1HObuzD+PfxHi8D+Bbv7JcqLu4TywQ3MSnq2B7cD3NEm+ZRRVCLnUu9j85v2qNf1XW7ZtM07X7E2LwkiyvZTs388s0cyNn/ewParahbc9WMVPU/MT9r6H4gadqDtpVpbw3TTLFFdaTqdxGYyxwCCZHDfTg15Uqk5VUlqdkabXwifAvwpM10L+UtNNE3+ukGTLNkbnJPXJJFe3QhK/MehSi4Ru9z7a/Zt8N3Ph7RJdYt9OaSRLfEMQZV8x8dMnAp4utGlSaRaXNKx5D+0T4713SruZfGHwA0xvNLKLjVonlMfPDIUkx+NfnOYYiu5tumrHrYaCmtHsfOV/cJLM0kUSxqxyI0GAvsPavn7XZ69JWIJkMkJYdBV3UQm7lOzIE2Pek+5m1Y1k5HSo55K6N4Jcp2Hwx8b2vgfU01GPV4dPdj81xFame6YeiZ4WvWynGLC101Ll76XZlUcUuW1z7A8M6TH+0J8JJ/B2paS8N5DaPN4eg1GQNcXMZGZo39N4GQP7wFfv3CubvGYN0J3Se192jilUaTjumfnh4m+F8fwu+L118P8AxTotxe6dd3XmabbpqJtYsE8lmA4xgZ+la4nCUMBiPe1TPncZh4puUtz9B/2FvG/hHSNNg0xPGfhrT3QLEtgvitriTI9VC8/ia9PD4iFeNoInCOck4bmt/wAFQPgRZfGH4Vr4y0q3inmsI/8Aj5gXJYA53ZPI5717mXtuLptvU9/DR5qPs9nc/NO60rV9Bv49M1WVZroKrxT2nWQNww46P0BBHavpqUrU7NnoYX2ilaWh0fhHTli1O3ubYNl5PKEanAZ+flHtyMk8k/StHUhXmowu29LefkelGs4LU+mf2fdVvvFdjB4JuTDPLt3W73Vup2PgjCsSMZA9q86eWYWvyynFOS6tLT0Z7GGVKtJe0jdHvfwd1G38C6dq3gq00/QbFLpJA2n3cCXqTmRWEsitMC0MmSThSc+tZTyvDxaSVknfTTf/AIJ9H9QpYlQnLm922qbi9Nk7bq3f7iD4b2V3NCz+K47NZrEvBavCekecr0xhW4BAz61306bUk7eR6l6fwRbs9/U2IIfDevyLNqOmvo88RZAzssigDtuXJZW7ZHHtVRjOau7q19/L0vvuvXVJkYiPs/dXvI888b/svwXtnrHiD4Z3kFhLfxETxSs3kzOf4kYfdJ56+tcVWLaahpc4JYhwSutEanwVsr6PQ9U8PeIbC4sbiyvxN9jl4aYkAFge4yCc0QtGNupg5ynJTZ2vwu8K+E/Geur4h+IF+4js7iW08PabBLua6mUZMm08FFyO3Gee1Z15TTXLpfuVXq4iFK1NX7s6+/8AhR+zRp3il/FPibUdVv8AUoLdYFSe9j8m4Y5LOoC4yvr6niodTMKseWCSR5sa2ZuacIpL0H+H9P8A2YNXvJ9A8I6dcSfaZVW5M16u+RuflVgucc8gde/Ss5wzGEOao0kd/t8xjG85RXy/4J2Wt/s4fDG98K3Wh+Mvhzrk2mTspW2tNVl2lQBtGNoAHfHPU81z0sbXlJqNWN/NHDLHV6s17KrC/mv+Cc54h/Yu+Gev6pL4x8L+OvEmi3DxwpqNi8sYjnhTO2MsoBwMnhcdTmuOcYzxKlVin5o4K9bEc3LOKd+qf6Br+mXOhaSfDugXQksLNB5MglJ85j3w2CTn8q+uwtWkkmlqRCEvtR1ONutQlt7tbZYWkmjbDLu5Mh7VtXdGSUrbHNWnJbs8P/bU/aA1Kys0/Z7+Hc80d1qYRtevLdwChBBMfPXAz+JFeDiKt6nM9+h81jcZZvm36Himta/oXwt8DR2lwNX0yyEZMuojTXlUHHLFk+77kggV89j8e4/u0z5upWv7t9T4l/ad+LOi3N5O3g79oy6m3yESWGnXzRK455J2nJ9uBXz1T2TTl7SzPBxU17SUZLU8N8P2Op+I75rjULye4Yn5rieUu+PqeprTAYSWIb956rfqj1MmwcpTVRo+oP2e/hc3h60Xxjqlr/pLJstYccpH/ia4OMs4WBwX1ak/ee59PKCvY9DuZopSWjllUk8xSdq/B6z5pOWup10bmZqViLhd8cYDD0HWuNTs9TWUVNGSt3Nby+XIMfWtGla6ORRcJal6F1ljOWB44rNJt6m7qK2hFpaYvTtH8XJrouuQypvnqG9KAykbeOhrha947eWzKM+nLMN2MHsRWikooxqWkP0fQry91COytkwztgE1CjKrKyOaU/ZrU+ovgv8Ash6V8bfB58Mr4Qaz1SKImO7IP+kE9MN0H0PWvpMFl1OrSs1ZnlzrVI1eZv3Tyf4z/wDBPr49/DLWJhZ+FLi/gjLFGhjO/A65WlXyrFU37qujVYnD1I3TPI77Q9e8PlbfW9KuLVnB2iaMrnHXGa8qpSlD4lY2jOEo6MgdlZPmHBHOawacXcqMkZ2o2YzhR9DWkJXL5ebcqW4aM7Txg1ra6uYSvCdkelfsx6d9u+JD3hXi1smP0LfL/Wv1zwUwarcU1azXwU397aR/Mn0qcy+r8E4bC31q1k/lCLf5tH1f4ch2wKAf0r+rIbH+cuNleTOn0wfMOK2R4lfY7rwiyrEx8vniuqMfcPnsVpNM1dQmDhmkPPQGrSOWTnUndnKa02GO8+tZzPUw3kchrRyW5rmqH0eGWxyGtDls1xTPocM9DjddUFmHOPWuGqj6LCvQ4/XIgzHnn1rzaqPosJLQ4vxDbk7uPpXmVo3R9JhJWsee+KrTIbI4xwRXk1oo+vwFS1jy3xfpZkVzjvXz+PjdH3+VYjlaOI1PTLuOz/tmxY+dp0olUDqQDmvncbgI4/AVKb7H2eAx/wBSzGnNaXaPRrK7ttUsodTtWzHcRCRCPQivw50p0arpy3Tsf0bQrxxOHjUjs0SmNVGc8Vdrs1TZTuFMgKov4it+ZRRSppvUrvaiIZxk1zTlKorGdRqKZ9O/sD/Eb4L/AAl8QW8l34r8TRX9zLgw20Nu2eeAhaN2DehGPwr3cJjcNFpRumGY0/Zwdz9sPhb4x0f9ob9mV9N0nTtaWfS4RPbya8hM8vHPJAzX1WD9+F2fFYivKFe6Pj743eCZmjmsLVmS6NpO6MkfBbB3jB6Zwp/Ou+K599WdkG17yPBfHHhzxLrI1jxJo8cMeoLotrcSSRA7JYgVSQSAfwlsDB45FcOKpwVpGknUqrlPVv2Kfif4ihuDZaNofiy2lumWKQzW5+yRjPcrxgcHADDHfjFVh8U6cbK6vo/M8+pR96/Y/Qv4M67rFlZDw/4nke4glQrLczuCZM91UKOB74NVK8mxxpKx5/4j0Cf4d+NL7RrUv5PmG809lzh4ycso9wea2pRSj7xnOKOv0fxl4L+Ivha48CfFnw3bavpWoWz203nKPMETjDBX6jr2p1KEK0bNGUJVabvFnyD+2j/wRS0DXdGf4gfseX32y0sNGEX/AAis7/6QroxYMrH73Bx+FeJjcmpyg5RWqR7eBzG0v3p+aXjH4V+L/AHiK58LeK9BubG/tZfKmtrmIqwbPTnqPeviMRGVOTi+h9TSqwnT5oanq/7HXwh/aP1/4sWNh8FPF2v6LNcgm4bSr3VIoSQMr5wsrebI7cjvzgc1vl31qVRezk0v68mcWOnheW9S1/M/VD9n34J/tV6vpUKftGa14Ea0hYpFp/iHw3LJdS88yGaWUS59G2gEHoOlfWr61OP7yd/Jnzt8Hd+zTTPqD4ZeBfBfhC2MPgnUraxLIC9ppd032Z27/I2cCtaVOnB3QqlSTS5lqddPpVtK0ax2aRyL8wKDbye446e1XUnpYhNXuMls5HAxndHJuYY7nrWN76m68yW+09XTzgq4bGT681q0mtRap2L8OnItuqxqqbowCVXqfWlbl2MUlfUmWxaKPAjAPRW6cVKhZ3Zp7VPREE1qiRvIo/1snJzVhJM0bexKWqXUg2og3E/3j6U5Nbsz9qlJx6sstq8yW42y7Sv3kDDkmqVVuNjGVOKlqjD1qeeXzJri7WGEj968j44z0Hfr2rJJRk5J79/60/p7m0KalokW9H8K6fOkVyqvcvnKi4OIsdyF9PfBrX3KkbIzlUcLouaz4I8Q63JGk/in7Paoc/ZILVSregOeMD0xXVBRjGxhDEUqbaUdTkf2i/AHiHWvhpPpHg/Sr2W/MTImo6WLZLyAEYJiaVdsbEcbhyO1Y15yhTfJuZU6vLO7+53t8z8rNT/4J+/Gnxx+0BNpV34Y12S41KEss0viNdXvV+UruuZndduOMgYAz+FfJyyupWxFpt6p9n6H2VLMqOGw6ldR9Fpsffv7Hv8AwTM+HPwF0rQtV8aaLp95q2kWxW3jhVmQSMwZpJNxxI+QMcYH619BgctpYaKc9ZHzGLzSpiVaLsvzPqpY44UAUBVA4A4xXptuTPKbuZ0uvWlzdPaaZtnkh/1rhsJF7saG+U05eSN5HyF+1V8W7G88S3Npp+q6a1pAzENNdbVll6MxJ6dMDtgcVrRoprme53YaDqI+Bf2oLbwf4t+1pqvh/SrlWjO06X4tbc+f4SvHU+9efj5U4ux7VOjaPJFHw3q/gbwnpvjOebw1ot3aXkjG38m41J7gITySoLEDA4BHqelY4Ci5S54nRCHsvU91+AfgAXupWem2ULFYGAHOAzY5J9ea9ufLFKbdmr9dPn3LbcrI+gfjLqOneEPh9H4a0nxPoM10se640q83o+cdVcEYP1r5LN8ddtJr5nZRpPc+M/GmofbtVklme6jcMcwtdmWMfQ5r4qrVi46Sd/wPaoQV9Ec1cOGf5f51hBNnf8KJoxut2qKlyFuZqqUuOBitF8Ipo1oDuXb3IqLLqVC9jT0LU7jR7xb208tZlPyyvEH2e4B71dOpKjPmiPlV7s97/Zn+LGsW/jS0/s2ae4vmlVpWUmWY4P35ZPuxqP7o4r77hjOFQxUWrtv5/ec1eCcX0PRf23/2S/D37SngbUvid8MjDNqliPN1K0szwsuCXK7edjHk46HPrX7RCrgs/wAJy396Oh4uJpc8VGrp28z5r/Yo+L/w++GnjK28Ia7pM1z4mLGE6BoeikujbsZklf6dS2AKeCnRwT+rz0kebLlwknFLU/Tax0bUvjB8Krm01SztLOG5siFsFnSV0yOCxGQD7Zr2aMlQxKnzO3bp69z1sNU95Se5+X3x2+A+t+DvifeaIqPJNNhLZZHKKzox29sDOeT3Ar26+NjKPu7HtyjGUvaK+ptfCr4Bp8RPtEt6IYbgzG10y80u5SW2nkjxu3qMPEDnG8gA89wRWOFxDm9jspKVd8qurLW6PrP9l39kTWtN8VHU/HFqkdnZ2vnywD5MqAVVffI5z3yK7q+Mp0qCUHds+iw3JhaafV6I9X8Wap+zRp1k+r6r4ekTU5RHFcNburRqQDkgsASe3v7VhTp5hUa95WPoaMc4lU5Yyjyea1K2g6h+ztrkjvaeHdRt7G7XdPeXjeUiFRxsBXkHHPPaprrHUVfmRvKOYUKTlKUbrpbcisvCn7KnxH8TXPhnT/G2oWurTIoWT7QPs4IyQQBjGfU1TxePpUudxTj1tucOJxWcU0qnJGUVul8Rg2Om/Drw346Pw+b4n6lb39pZi6vknt1a1kh37SwPfqvINZ1qlWXv8qs9kXW9tKDmoafiTnT9J+J/iHUrL4U65Drd1oblESEqjjg4JVdxwQRxk47VHtPZ006lk2Yfu6dJTq+7ffXY4t7j4n6BYanok15pE0+nSi50+3u5jbyPkqBH5mNuWJJBO0ZXn3JV6iaitU39wpe/JNXs9B1/4W+MfjTxBdw6J4Pu71pbyGLTI/tETpEmCHLMrYTafXrknjpXfTr0acLy0SLl7GhSdSpJrXReR6dpPw48M/sh+DbjxHr6xa34nLmVVkl/caeSM7kU8Fh/exXJ7Svmlqd2qSu7dzgpqtnE24tqH4swP2RP2hfjZ+0j4nu75H1FhdazPBoUmoXyxrNFG2GcRhiApAPzY4x1NaYvA5dhMH7XlSit9NTTEf2ZhcsnVq0+WMfLVn0TN8Q/Aeh+LtQ+FGv3+j3WpWjRSatHaRAtCzY2lyB6/ieDXz8MF7SCr0YtJ6+v9JHg0IVsdRWJpOSVtLvoSX/hX4UaZrlpqfjK1luoFlZ9lpahI3VgfmJYkggehA596cq+Z1KDhh7KXmU6+ZTw0oYayfm7s8D+K/iP4O6BfeIr34daZqW+ELqGkyXOpR7YoAnIaERl1Yuwxk8gZ78d+GebxUHiJLlSfMktb9Nf6/DXyMW8fGnGWIauk727+p+f9uuu6h4q1f4r6tpWr3kEtwSQIt4Bzksdq7lB9u1cFabhWlVUna1uXS3rte/zsfI4vERkrHkH7RP7QdnJp949l8ULnw7JG2BYWzPLGpGeWSbcSPUjPXpXzGNrxq1G+blv0PmMXVmtlfzPiPxRr2t+N/FUr3Or2uo73P8Apltp8cO8Zzk7AK4KVGdapFQfMn1JwuHqYmokke4fs5/B+S+mg1zV7Ui2jO+Eyp/rG/vH2r2MZj6WRYByT97ofoGDwywtJXWp79c/8SyIQy2YeDoWhmyp9wR0Nfh2d5jWxmJlUqa3NpwkzPkmDTFoyxU/d3nJr5qpPmZdO9rDo8OQD+FcVTc6LcqKuqaTFdKWRfm+nWrpTadhTgqkTJImsXKOMYPXFdEmjh9nKMrE+h75rstkZ3VMp2jYqjyxqnRSIUy3FYLVnfN3REu7dwPwquSNtTFRbOu+EVib7xjaQf2bJcI8oEixJuOK6ME4RrK5zYmEXC7P2d/ZV8A/Df4V/BrTfGXiGBMXEY8ozjBHsc1+i0aEXSi0j47G1ayqckWd/cf8Kq8Z3K30FrCsxyUfhlIPY+1digrWZyKNaC3PkP8A4KkfsO+FPGP7Pl78QPhl4fiTVdDuGu5IrSPlkP3wMdR3ryczy2OJw7dNao1wOKqU8Sk3ofkVMkisysCMcEEcg18LNJaPc+tcYqN0RNlk2MBwOKSjyoFN2K0sWDkVvGT5GiXLmlqet/si2BfVdX1JxwDDED+bH+Qr+gPAzCNU8bibbuMV8k3+p/FX0tMwUsVluCT+GE5v/t5pL8mfTmiqQg5/Sv6Dpn8M4l6nRaYmSMmumGp41dnceE0lSIvvwFx1rsSSp6nhYiS59DR1QxuzFRgnvTWxzP3p3OV1rcXYYz9aiZ6mGscjrSkAmuWaPosK9jkdaU85PWuKofQYZo5HW0JLZ/SuKpqfQYZo5HWImLMS1edVR9BhpWRx3iCL7wJrzqx9FhZaHB+JLfcGJ6/SvJxCPqsFO1jznxTZ/eHqOteJiYcyZ9vltVKxyGiW0C+IH068H7q5UowPvXBhEoVuV7M+ix1WbwinDeOpL4Dml0mXUvAl1J++0u5JhB7wscjH0NfkHFmXPBZnKSWjP6A8Ps0Wa5PFN6o6ERSy8nOBXykqii9D79QURJIxEvNZOTlqRJ21Z9cf8ElP+CZWv/t3/FuLxT46sLmz+Gfh+6V9f1LBT7e6nIs4W7s38TD7q57kV7+R5RPH1ueatBfifK55mrw1JwpayPnf4GXQ0/xlaE3l9DvbaRp19DayN7edN8qD3rzMLKNGtdn0uY0quId4n7Af8E5f2iNI8Li18O6udNtmlCpIJPiDFq11IuMfMq5Az7Yr6vC4yMpKMfzPnMXl8KDu3+B6X+098Oo/Dvi1PEOi7G06+DS20pQHajA7l9OMnj3r3aMpx2OWFdLRI+OPjD4Om8HQXGt2GVZ9Huo3hjBKuVJcxnHYgZHqPpWteEZQWpT9pJ+6VfhNc+KdQ0Ia1o2ua/q2qWlqrT2ui5W0hVjkMT5ilRztCgc46E1xRowjK9/68iVGpKGq2Ps/9lfX/G1posD/ABJFlYh41McZO+5P+9kk7q6klYhyU07Ht/xJ0JPHHhGLV9EDrfab+8tjLGdxUdVPqCKycn0MVTu7HlEAgvoV1Owv2gh3/vYT/wAu8oPKn0BrfnkluTKnKOjOo8I+KPEGkSQ3OnXgSFCSbhJiSx4xx6UVKnPFRt8yJJSjZFX4z/s8/s5/td6asXxe8OQw6quPs2u2QEc5YcbnC/e59a8rGZbh8VHVa9zow2Lr4TSMtD518N/8EwPHnwG+NWg6v4V+MWoHw4dUe51W6ttansbZ7VRlYJBC4ck9CQynAOOTXj08lrUKjcJtJ9v6t+B21MwjiqMlKPvPbQ+sv2VPhf8ACrwzrV3ceCdE1nxTqTzM9/4g1QXRtw2fuwyXLM5VcYGDt7969hUaKs1G76mcpVuT3tF8j6Lh0rSpVCnQoIpm+80Y2kk9e3X3qZtR6GLu+pbW0kRDBLHJgHCuTytc0m07MEr6jorfcojmcbgTySKEmzWLfQnfS2v7T7CUaME/6z0rZJtco+ZU3zXuXL+50vw3pfkwp5siL3OTW1SpSpQsZQp1MTO70RUu9aSPSotQupFaCQYJIwY29DWLqq1yI00qzhHdfiQ2k1vdSsyyhkQZIB49qj2kVudjhJRLfiLVJbbTorW1jJLABI8clj0qJylKyRy0oQdVzkatsmk+E9KSS8G5yBvcrlmNdjlHD0rs5K3tMXUtDYo3HiDwFq+px6fe28DXcjDy0mhG4nGfzArCFfD1qij1NIUsVRpcyehPq+laNaSjVZp5UcALEpuCqA9sDpXVOEKUbhSqVJvlRnapqkUagC9nZimGQ3ZCqe3I5/HFRSq233No4d3baMfXfA6eN9BfRdL8WXNtOTmVBfM/HcZ7jn9e1aVKUa0ddiZNU/flHU0fhZ8KfDPwqsmg0eECSQDzp95LSn1bPelTowpR0OSvVlW06HXXF/a2URurudUT1Jra3NscsITnLlijn7nxkviTUH8P+HoS5HE8zZCqveqaVKN2dbpRw8bzep5D+018fNJ8F+Gp/h54BuVM7qUvbmFh+KKT3PQnt0qqFCVR88vuM6cJVp8z2Pgn43/FvWLezklk0jVEUghiNEhvVznuFOcV1VJKCsz3qMYQp2Z8EftQ/G7wDeNJpU+maA2qXG5YbabwjdWFxJz1VlIUHvzXjVowcr7nVTlGkrp3ZyPwt0jMUE5mdriQeXBvJJ9S3PPtXoYKFo2RulPdn118CvCGk+G9Ph8V+LtXjskYB4JJ0Yjd6nArLMqyjTak9Tow1PmbbOE/ao13Vm1N/EEGi+HtdsZRtkuIgZMejZVgyH618BmLkpcySkj16UeZW2Pn2a8S4dpYoBErHiNWJC+3PNfOtKUrpWPRpR01KrZeRV71stEaTdi6BiA4HWuaoyofCZrkiYkAda0jsRJdTSsCWQM3pUyNKdrFwA554z1PrTjyy0YSR03hLxTr0US6HYa0mlWBYG7eFMNKPQ7fmc+1dWHr4m/s4PlXUxqSUFfsfWf7L/xqh8EarZaNpiNIsq7JdPcb5JkYfM03ZRjtniv1LhfNI4SrCEW30svzZ5OMl7dWd0cb/wAFAP2HYNN1NP2ovgppd7LpTuJNf0jRtQNtM4xkp5iqSoznnHI4r9mp4fCZtB1Z354p2s7XdtOj2e66rS63POnTniLpaTW11f8AyPQv+CfHx10nUvCNnoeqWdvpNnMpSx0xr5neUA4OQ3zSNnqTwOmDT5KFWiqV7ytaSZpSquPuXfMvItftzfBSHxJdR+JbTT0VF2ExhcZUHoQOn09K9ClRpvDcqdrH0GFqt0FHVu5ofsgv4M8S6hc+HNB+C+lJNa3YTUtSgDRpEEHJdwojkfIONhwB2PBPM6nK5cjafRW3PbowftZJJq2l9Gm/K39eZ9D/ABh8ceFdJ8A6nqOnXAtrS6titjcBMlygJbJHUE4HTvRl+HxM8YlUe2tj2MuwddV4KprKO6/LQ83+Dfws+Efijwxf+LNH8Kalq+ryyK13F9r8to2yfuDGVAznpivZxdbEwcU3GMXs9z6CrisTh68VOpGEH1av+pxPxL/Z1+FnxBtNQttd8R+PdFvbyPdHYafqLSW9yw6GQjA2juSOMdaU1i1Dli48j36fh+R04p4qVO1KacNLu9vw1ueY65+x344/Zn1+z1qDU9avtMvNMe2XU7SP7cs8kmfJXahUpyQNxJAHPPSssM8NNWoN3Ss1J267r5f128fCVVWqPlk79b6WPV/CP7AGtfETT4tZ+LXiWXRHbS4rSO30e8G5LcHLB8dzheQegI5q62MoQTUVeRVfNsNSXu3nPr2PY/A3w+/Zy+B1/Hpfwu8OQW+u3KSQHWonWCWcxrjL/LhskcsQck5OSa8mVPFVm6k0kt7HlcuaYxurXSUNLxt/l/w5m/EL4RfAHx14p03xbdXuppLrmhTWdzZrGktjcRFds+VI2oygllbIZWwy8gYKUMROMlJL3X3szanHM4wlCaTUZXWrT7r18+jWjOl8T+HvhZ8KvhxHpfg/wPsg1a2jt7HbcN9su0CEkyggEKozzk5B5xW+G+s4mu+d3tvpp/wRYR5ljcZzVJ3lFu6S91drPqcv8HvBOr/ERPEvjX40eBoL7wzPfpbaFp+qqYZJoRxJKxUNhfvY45GM4zkPG4ucZxoYeVnZ3aV9ei6FYvHYjDxVDAySqde2/wA/l+h6zow/Z78C6J/wifgSK28J2kVqXjvbGWKRn3BsxpySMfkTj0rzI0s4qPnrLn8tkeFVw+f4mXta69r/AHbOKXmz43/aY/ad8M/Db4pWHwr/AGf7G3E+s6qs/iHWdTfNxqDLHku8rHhQDtC9ATxgCvewtGo0pYh+/ayXRI9PD0qs5qeJfvPRJbJHYeIPjBbfELwGfCmt61JpsGq6VI97qz6iYmsX6IYlCnfk44ODz0NdSwM6MpSPSrwpUsPJ0r81rLQ+Xfifo8nwI+CT+GNR8bHVvFHiqdoX1SG5Z/Os4y3lM+7Hl5BVOBjCZwSTnzquIjgoyhVk9b20vbT5dd+2+ux+f4rEVaLkm7tnznrvizTvDGhnWbnxRHo1zHGUvJ9Cu2ukYDOBLlAVx7p+Jr5vEVYSf8Sx8Hi8VUk0qsbPsn+un5HyN+0b8VLrxlqjJB4n8P6/5r7VlsYWWYA9CQyqVPqMn2r5+tCpXq2TT/M8tUZ1attVc1P2avgBc+JrxNU1iJktkYMwcYMp9Bntmu2tVw+SYTmb1PuMqwMMNTU5bn0tDbW2g240y1gktmjGECKFx7YPUV+PZ7ndfGYiSmevzOcrplG5ncBmRcZ+8q8V8bVquUiprmIrVd7ZbgGuaU7KyCK5S0FUKMisndluSY6NQzbSeBVLbQaTG6pp8E1uzMoBx1FNOSkOULq6MPRMxXxjxgBuuK6+VOJ5/J++0OjkJcEEdetYNJM9BK0dRkYxw3pxnvRLUzcktj0P9nabWj8QrJNDldZGmABjAJ6+h611ZfD9/e5wYxOVJn64eKdF1Txh+xfFHcySLc2Q/esPlYcDnjpX6EpynSjc+IxHOq9mfMfwu+JvxZ+H+qC30rXRqFkGwbe5f5l9q9GGHk4pp6GanPmaZ9TfBn49+HviDZy+HNf05YGlj8q7sZsbZARg/WlGPIrWInB7JHwv/wAFJv8AgllqHgm7vvjf8ALI3ekTu0+oaVAMtCTySoH8q+bzHIfaKValv2PYyvGVL+yrM/Py5SWGZkmQq6sQyMMEHuDXyDdpcr3R78rLYgbBbAHWtbJIlRcme7/sk6S0Phy7viP9fqB5/wB1QP61/U3gtRjS4PlU6zqyf3JI/wA+PpS4tVOPlQT/AIdGC++8v1Pf9HGAFDV+vQWlz+TMRrdnR6WOQT17V001qeLXZ2vhgHy9ytxx8prutaFjw8Q/eRo6mSFb5cDNT0MLXkcrrB3FhgjGeazmelhrLQ5LWR94GuaZ9Bh2lY5PWVXJOK5Jps9/DS0OS1qPBY5riqRZ9BhpbHKaxEBuOK8+qme/hpnIa7ADuGa8+rFn0OGmcXr9soLK1ebVp3PpMJUehwHiOyDFmx0rycTTsfW4Oq0ked+JLd7O9W8txh0fNeTVpezkpH2OBkqtNwlsxfGRTQ9a0P4qwj9xdKLPVABx6An9Pyr5HjjBxxuGjVgfbeHmdvKMbPCN6J3+TPV9L+FF/wCPND8MX3wZN54s1HxALmK90PStNkefTLqGYxmKQgYIZdkgfIGHwelfkU8sxarQhTTlzLp01P3ijnWGq0pTm7Jba7n2v+xZ/wAEKvHfxAv7Txl+1vrR0HSAyyDwrpU4e8uR12yyj5Yge4XLe4r6jAcLTVpYr7jwsbn8qqcaC+Z+qsMXgD9lj4DLoHw58MWejaRpNmLfR9KsowibsYHH8TE8knJJ5NfWxjTowVOmrI+clG6lKTuz+ae0CSAIyAr6MOtfkk07n69VmlNo+i/2M/jVqHhHx1p3hXw7oWi6Tbu4Nze2Xh9ry+m56KeSD9SBXo5XWdOpqr+iuz5/MYOem5+wng/xFoHxZ+GkXg3VLkw3DWwaxXUbpPtWcfeMaklM+lfaUMTCpa2nqeGsPKDUmnb0Pnj4sfDe60+8k8Ka+pjdeLeZlyAV+5knsfu59DXU58+jO26i+Y+SPHvg7Wfgz4v1DxTpWuTozy2EU9hNdPFZmLyyomIQgsSQqhOm4t3HPHO8PQzrzvDlXU+qv2VfiLq+rCyt9W8LapZXUZAe603wsyynPZp7kkAe6itMPVclo7o8+NRwXvRPuv4YeI9INksBV4pXGHFxfCSVvXcBxzXSoyhqg9opvQ4n4weCl8F62/jDSYs6Vf5+3wbDwem7HqKz509/118v6/yOh/vIWe5z9npt/ZzRXdpdQPYyAeVJnAZT6+9aRlbU5pRcDqNL0jRIDDdRXkqsM7dpyrGtE4sh3bPUPhUJSUT7Sq7uTDcqDyfXgilKSitDOybPV5pte0d7aytdLVobgZZ44kEfPryCfoBXDVqcz3saJRcerNeHRmnQTQyQiU8EJHgcf0rhklNtxdzolOMNJIsrplwg3GIlv7ymtIU2lqSqkG7JkV7YRPGNzhXxjIHNFSMbGlOtyu1tAt70woIJOBjBZqmNRpWG6aqPnRg+IYdQikc20ZkUj5FC5zXNVvzanfScHBdznWg123kMJDJYXrskiuoxCx4BBPXntWKm0rPY0lCE1zL4ka/wusbyW5u31wstvZXDKskjf61vfgcD9TSwsZznepsjix9dqKUN2ehQSQTsJIbcMB0baP517y9m1oj56fPHRsr3+iz6ldLNNMiqp+6Rk1nUpubV9jpoYmFOPLa7CHw/o+nzCez0mFZR0lCZb861pUqUXdJIVWvWmtXoS3WnWOpwi21TT4riLcG2TRhgCOh57061OFSNnqYU8RUpSvF2Zkaj8LPBV6HfyZrUucs1vdun9cVzfV6aPTpZni+S2/yMqw8B+HvBuqf2vY+Ob4AH57a4nSRX9umf1rqpRUdEjP6zWre7KK+Wg3VvHNpGxc3KcScLmtXBJamsaairnLeLviRHdXK2wv8AoAc+/pzwOvWqpRvsaQ5IaRRyvxO+PGgeCvCMvh7wreh725T/AEmdAQXyDlVIBwo6bvyq/q0py55Pboc2JpuVW7Pjn4u/FzRrY3WpX6TiTZiS4t43YKATgEqN2OvQd6cpQpy5ranRRjy2fQ+Jf2nv2pvCNpbzpb/EuCIzK223t/El/AykeqiDg/U1zVKsaiutPU9ONGM1dHx/4bg1z4leLX8R6rreoXUJlP2U6hdyTlEz8zBn56VzRp+0qabG1CmubVaH1P8Ast/CabxX4gi1q/hZNOt/lR2UAKi9z9a9NNYSk5s7rKcrI9Y+L/xO8FaRG3hLUNUudImRStvIIRLEy+6/xL645r4rM8ypqo1NnXToux8v+Mf9E1qY2ep2sqS5PmabI6xOP909PpXx+Inao+WV0z1aEFymIpDeg9CKxgdySS0GqhMgPr3q2Zy1ZeQgQE46iueotTVKyM90/ebj68U4NtWE7NFy0cDAA49PSlIyWhogbowTgnFTF2Zu02iS0kaGVWRipH8Q4xWi1dzCSaZ6H8J/ijF4K1OKN7n7PDI/74WsRkubps8IvqSfUgCvosmzSeErpXsn26nPVw3O00r/AKH3H+zR8aYL6zubL4hTae2laiq28mjMwZYkIxtd8/PNzkhelfsOSZ3UhJSnPfZLp6+Zx4ig017O/Muv9dDznxz+xn4d/Zc/aZHxw8FS2kXh3XITLFePGzCD+IooXIDk4HT6kDJr7+lVhjZe2XxdUvz/AFMYU1i6ntJNqS3R7X4lNl8T9AtWitx5UiNJOrdWUITu56nODn6161GnXhKDVuW/vX7We3ne2/S57mXUVUbb3PL4YPiBb+LrD4T6ZZ6iuh3KMLWLRpBZtJdMMgyyGNjIACMgEHBwCDzXTisM1FVqckuWzbeu39f8Bn1NGqlyeylGLi022m/dvr1Vm+j/AAex9I/tDfCyz0v4WeCfhdrfii7tI7a236m2lSLHdTIf9cGdjkKFzk5yM5NfPZTjK9bF4nEw3eive34HPk2Mq5ljMdiKTceb3Yt/D2VvV9Cv+yJ+zJo3w8u9V8f2nxV1jVNHvJkbSovEF1HNdQWwACwu2TkBQE6DA6YrrzTM5U8LDCqkufW9k0rvqvnqTnmY4nCZfSy2UOaovilra/dfnueYftVftX/Cn4X+LE0rWfD2lWrWkzR2WpW+Ukw5wwBC8A45564r0sPhZrDxqzqO7WzPbwcKuGwanUrSfMleL20/yPCvhB+04moeMNV09PHGry6b4l1KWOwLurNDax8+Z1wrlQR07gg+nVOh9ZoKK0na1159j0oYvD12uWKly7XVvyPWPEX7ZHw38XeHPEVz4bNtYX4lRLSRbkJPcQxEY39wQCTt56n1rGlg5wa5ne25y4eKgoJz5kr6dE3vY83l+LDeKrq68XaZrEssmkrMomkk2s0T+XKSMd2KhTj19jVcuF9o52u43Sfk7P8AGy+42VWbo2tZdvQdo/7Tuo6Hp8+kL4r1EajHobNa6lpwUpbMCWY+WVIAZSBkj+E0VKFOtKyuk+qtf8br70zopuhiI3qQT8u5o6J+07p3xQ+KlxrPjwRX+kaKEf7LJCskfl+Tt2DA6ksMjJ+Y13SoQjQcaPuvucqbVB06Pu+a3Lp/b/8AE/xI8Z6n8KvBulG8ht9RjgXTjEIFsohGoKhtpCgHnLA/e9AAPKw2EwkK0nd8yMsLh8HRm7R/eLd9X6m74S+DPwk8Xa48+s/GHXNL1q7Q/wBqXFpqjT28L7gVh8rykUocZLADGB1zkd9fE42lrCmpQXyf9f11OvEYnF0acnSjdaabXX3/AIF3UP8AgmZ4u8e/EWH4maNf+H9f0W0+e2ksZGeQtk7iY2O4ccYy3JryZ8QZdCajVTjPzR8zis5yyDUKt4T7NaffsL4T+EujePNUvIfjR4d0fRdJ8PTTWmjDUlNjcNOhVjPwu8g9PMYMAMhQMcdmJzOMf4Db5rXtr/X4F4iToUva0JOTetk7ra1vJenqeW/tbfsr/s8/EvVYda0z43atBbQQKt5cRBP7PgmwRFC0oHmfNhmUqATsbPA58yeHePg/b+7Lp3a7ny2YYatiJ83s2l/X9fLc+Cf+ChX7N/wd+BPh2201dQvdT166tllsLy11Bv8ASI34XypGkxIM8FQuRxxXhZhgcNh6Kkk+b0Pjcdl2IpVOfdPpofNf7Of7NmreJ9Yh1fXrF41eZt+8lsYzknrj8+teVSUMuoSxM3rYvBYWPOpSR9aW3hCLwrocNhpenq6RR48u3yJFAAOSOpHuOK/MM+zTFY+pKXNePRH0XNa3KZ02uifO9EY9HicFs+/OSDXxGIqS+0XRkrlKcxyIWXAPb2ry23zHQldkVqMtjbx6U+XqyJXuWo8kEdulS9io7jvL2MM/hxUK1zpWqHTDMLA+lbrUibaizGsYQL89zurXmdjhoa1tTZnOwY9vWsmzuqfCQJKHB3H6HFLpoc0Gr6m74D1a60fxHa6hZ3LRSRygq6Oykc9cqc1WHlUVdWFVlFRZ+wf7B/izWfij+zbrfhDxNcC4n+yl4H+b5l2/7XNfpuAtUopSPkMXCn9ZTaPjL45ad4m8HeNTPomqzWpMzI6Rnqyk8fiK9GnVcdEeXXi+d8pq/s7/ALVl/wCJJ20mXwv9nGmzkXWq3s21lAOMlj1rfnVRXZFGM1J3PtX4KfFzQfiDpx0CbVUu4bhdvmhQy5PGDnqK5nK6aiXOqlG73Pmn9sf/AIJR/D74satqt58PJYfDPjGXNxbQvxZagMZwP7pNeRiuHKWOTqU/dn+ZFLPp4OdqvvRPzd+J/wCz58W/gh4pl8JfFHwRe6ZcxOQGkhJikH95HHDA18LmVDF5fNwqxat1PqMFmeEx0U6Utz179mi3Wz8AWwOQ0s00mCOxfA/QV/YHhVg54XgXBqSs5Jyf/bzbX4H+Z3j/AJlHNPE7MKtN3jGSgv8AtyKi/wAUz2PRwGQFTX6TGNkfz9iNGdJpSscY59q6aVro8au0dt4XSQxHaOcZ6V2Tdoo8WuryVi9qbbo3ZF6tg+1Sk7aGVru5yusBstuNTKDO6hZPQ5TWc/MCORWE4o97DI5bV1JJxXHO1rHvYey3OX1eAkk471xTTZ7mHmjltagI3Y/I1yVKaPdwsr2OR1u1kbOBx6YrgqxSPocLNHH69psmCWGa8qtsfR4OtE4nxJpgAZ1T65rzKtFydz6bCV02kef+ItL8x2UR5J7ivKxVP3T7HLquq1PRf2Wf2XdT/ansde8F6i0tp4e0aGK51bVgP9U7SBYoI/WWRvlA7AMx4U14sqVKtSlTqq6uepzyo5nTq0pJSafzP2C/Y3+D3w4+Bnge08KfD7wfZ6cscSCeaOIebK+Bl3fqzHuTXHVhhsPFxpwSWy8j9Ty11XSSmz6p8FwidAzHCgZZie1eVOTkz20rR1PJ/i18QbT4rfEVfD2nz50Dw4+biXOFmn9PfFZ0Y+0qp9ATTgz+fG2lKxjBr8lbXNqfq1RJ1WbuieMfGPh60lsfDPiy/wBMjuGBnNjLsLfiOaiNarS0hKyK9jSXvPc+xv2CP2p/BHwGvILO712J9U1N1WZbW3l1bWL9s8LuPyQr7DHvXsYDGWqWTv6as8TMFJ/1ofpNq+naH8evBcerw2xs9WNtvS2uHQzKuOjhc4Pt2r66i3VSb0Z4LqyjKyPln4+/s96h4w0m80PUrCKbVo7YxW1tLDj7XF18ssf4lIDKfXgd6qtytd2U2+W7Pmr4Ya1qvwh+JFxoHjKe2uoFlc2b+ItVvxAi9NpWGUEsp4C4wcDgjNYU6Xs3+JgqbrPVH6F/stfG1bjTbWPUdZktIXIEcUdlHZW7n/pn5jmab8FzXoSnCdNckvkVU5aEWnHY+sF0+18c+GZLC9V5UuIvl8+PGOO2Rn86zjTTfvGUa9ppo8J1vwbdfC7xBJY63cynS5HLWvPywt/gTWrcNkVOr7TU2dG0HWbGRUu50c3EfmxRKSUVex56nFTGLuT6nu/wk+GHiK5sINVv9XS0t5FHlwFV8w/jg4rOpWhB2vuYSVRq8I3a7s9gtPCGnRwwxXlxPdJC26PzyCVPqK5XFNam6xM4RtFWNIRWkcYSGAn6dazl7OK0RzKU3K7ZITGq8KcY7mkqqsaat3MHVVt/tBe3lCMP4S+M1z1ZRvc9CLkoLmRTv762kt0mkVo5EPysVOGH9KTqRUbjw6lN3js/k/x1NR7thoq6pZWnnNEMmPb1HfrV1Jc1LngrmagvrDpzdrnB678XdMug2nXVgXiS4LPE8GCo3f415v1lvWS0R6FHBwpt8rd+56BpDRatYxXrWhhg2ho42OCcjvXs0JxrJStZHi14ewm43ux2pa/NZYttO05rmUjhFwAB7mlVxjhPkhHmZlHDSq+9J2RnreeNLu5Ed5CqRHlorUHeo92z1rkq1MbOVmrLyOylQwVOHMnd93saR0CyihNwLW9dyMmP7W+Sf++v611Qo0ow2f4nLVqOcrXX3EOs69H4W0ZtTvdHvFRB8sa5kbPvtJx9amtiXTp6JhGlCc+VSR5f47/aBntITDcaWlujjMfnRHcy+27FTCdSSUprc7YUFS2PPbr4va5rdz51i10YD952j8qNPXDV30aiUr9DWNJX0L0nxR+HWk6RKPEonubxYi6b7sxBPVl4yR05xzWs5SnJJGFZTlax4J8QfjXFd661ro+q/MpZYoZJCvynHznIGR/9evQw9OKld7l0Vd6nH+KvinNotm+tHxfbYK5uJ5iWP0bA3KvvjFb1ZqLNZRhfU+Tv2pPjxc3Wh3eq+F/iobG7Ct9nk06Rbm3Ydcs4Vin4rivJr1Iyg+WWvp0MOW+x8GX/AIi+MHxm8T3dr488YJe6Zat5jzwW6AMAeSXQAN2xwOtckPaS0vod9CE6kUe8fs7fAfUvF93HJDYvFYIFad3TA8teQn1PU13UJxwv7ySul0fU9VUmoWifSHiHxPoHwk8GRw+DzC8CJtlbZ0bHKuO31rwswzeMrm9LC2kpI+ePiL400rxQZL2zv5o2ZyZNMu18xFP96N+30r4XHVKda7ue5TpRjG5w905YEgfSvMhE66cdCGAMXGelbXshNk0iEMABxU3ZKWpO2RBtHSpaudE/gKOCW49apWRhFlm1LFgR3wM1L2NOW5qKP3RI/IVnezNktBkT4Q5OfYVqjCauSRXcsNyJopWR16SKcEfjW1OTpvmTsTFu1j2D9nLxB4t17xPbWmlXkdtBb4E2p3rqsduvXjPC/RRkmvqMkxeMr11GDt5s58RVhShZJtn6IfDa68M/Fb4fTfC/UNQTVYWUNa3bg/LNjhlzyBniv3bIsSnTjO+255cp1HNVLWaMrwp4LvNIuLnS9VW4e7VjHKz3G4EKGwuCflHr+HoK+9VWnGhHl2PYy6m/bOpBb7726/Lrv169Do/hX8E/GE3iPS/FOhadqU2pWloPs2rS28Sae0hGGmHzBmI7dR83T04MRj8LDDSo4mon/Nb4n8lornvYnMMtw0JwxE1brFX5vTY9D+KnwV+BniDxRY3/AMT9c1fXNaRCPKstRMflErh8KCCQehx2PNeVgM2zeOHlDB0404d2iMlzziNYOcMBShSo93G99dLswte0zwCIJ/CfguS9jv2AaC3v7Y+XGoHyoJV4ByO+SM+mK9OisdGKrV7OPk9fPQ9qNfNElWxKTgt3F6vzs/0Pgn9tb9mv9pX40/FSDwe/wC1g6kzD7JrWm2hktbleeXdcqSMjLHb+GK65YzAvDe7VSj5uzXyMMRisLjUlSqKKXVu33o1fDH/BIf8Aas0nRLLxj488d+GPB0qQyRateXtxsZEPyhoooVCg7MHBPJPOKxee4C6hSbnLlS91K1193zerbu3cwlmODeJUcLUdSb3UI6fojzz4ufsyfss/DXw3e6La/Ebxf4il0a/Zn1QSrbwPdTCMSNGB85BCIBnjcv1rooUlJc9T3ZyW3l/TO9YCdCCqVE4zl57evQ5T9nmX4o2HxJk+H+q+E9Xu/DN/YmDTtTTRpCJFIYjzHVOWGc5OSRxngY87BYKthcXUjOTcJa6vb79vRaddyY1505clV7bHqfww/Ze+OPxD+Kj+AvBmkaxOZPDK3WoWcFt9mLOrusQkMgHGAQM9Qc4r0MVXwuBgqtaraL210uarHYXDUlXryUY6pN7dDu9X/wCCZP7ZfjG4NtpXgVPC9tbWqQQPO8O66ZiAxk2HkKCTuOTkAdOh/b2VTo2dZaLSy/P+n2OWtnuScrSxKv5K52/wc/4If+Jvh1JqdtqnxfkSx1pd2q2sknmSyTlOTHIoQrkjPfsOeteFRz3BYWTdO7bPMhxRkeErudJTlzW3f39upwHjP9iX9l79m3WNR0r40ftJeO0t2IuLxV8qEwgZ2qk7DfkntGRkY3Doa+hhicRLBOsuXlls5PXT8v1PVnWzLMsE6lBJU20029dPPdLXbr8j3r/gn78UPB/xLN/D+zpY3tt4T01Atxr+raz5tzdsDgnr8vA9s9uK8vOMPSpUKdSu1OU1olZ/et187d9jhzONH6opYv35bJW0ubP/AAUS/bF/ZN+FvwzfRPijBp3iG8e0eKDRZjme5l7YYNuBzxn3rz8BgcVQvVqy5IP+tjy8syzFYPmr15ckW9En+Fj4F8F/BzwB+0hZar4h/Z/8Z6pDqM1mG1PwB4g1eSSFDtJiEEiYDbSc7eG4xk4xXvQw8a0nNSdmreX3G0518Vo3aKe9tTzb4o/Az4s/DXwtceDvF/g208Ya9r7lHbWtPMy6AVIw9qpz5Y27huPBxzXHmGDlhKPNF86b69DyMzwFOtP2qvZdupgT+CxpHhGez014YioYXckIESzN/EybQAFBAx27CvybivFyqU3ThpffsedSpKmko3su5y8eo6rYWkdhdTSPGgDQGfPmxH1VuuPxr8prValNcrPRjGLjoiHVddnv18m7CyEEESyRgy/TfjJH1rza2Jq1VZmfsUqnMiorGUjHA9a5LXZ0qSiOiG1uap7Ca5tSe1JaTjFYSZMVqTSrzkj8MVKudUVYdIhaBjnt1rZSJmrxMmxX/iZEf7XWtvsnDBctQ09QQjnPb0rByTO+VmjMEsqtyPqM1poonFKNpXLWn6hLa3KTwSbXRsq4HSnGXLNSQKMZKx+j3/BIv49apD4iPhXxFNdzQXKeUs1wFC4Ix0Br7DKsd7yi7niZtQhCnzI6H9vH4TXOieNb1Le3CxzObi2lC8Z619RRi1ufP+2hJXR8d+IfCt/fa/bXVlI4SCbzL2wjOBJIOhIyPlJ61c78yOarKpLY+j/2V/inqmhTRHXtBuDqstwFg0/ToyY4kHd+OPqfwrZVIQV2jklGUlZn2t4ts7n4tfCZdbs4PI1fSo/MhY/eKjquauniXCfuo5q+E9rBxZ41r19oHxA8OHw78TNAttUtihVXuIlZ4T0yp6jmvfpYbDYyKVeKafc+Ixrx2DUnh5uMl2PnbxB+yPa6Zqclt8MNUtY8OTDY3cixKwJJAVzwOvfFfteUY7CYXLoQjG0YpJW1SSP4S4pynNXxHXpVXzylKT973Xq77vR/gc/c+GfFHgfXG8M+NNAudMvkUN9nuo8b0PR0PR1PZlJBr38Li8Pi4c1KSa8j8+zrK8bltTkxEHF+ZvaNF+8BFejSTufI4hnofhTSZ1tv7QSQBQMEHvXRWmo+4ctGhVmnWjsnYs61axLG7w9C+QCOlKk5O1zlxNKMZ3hscjqtqZJGVvw4rWpojaleNjmNV0u6Zz5cJb3ArinJN2PXoVYpWuVPBfgGbx74/wBK8Fhmi/tC/ihlkC58tGYBnx7Lk/hXl5liFgMJOu1flTaXc+nyfCzzHHUcNB61JKN97Xdr/Iyf2gPhWPhf8R9a8LaVLNdabZanNb2GoSR4FxGp4bPTO0gnHrWGW4uOY4CnXkrSkk2u1z6LH4CeVZpWwjfMqcnFStZSSej+aPKtV06cyEFCc8jiitbY68NUVtDJTwhqmvSyW+nWTyukRkZUTJCgZJrzqkU3Y9SGK9lYk+Ff7L/xj/aF8YjwJ8KPA9zqd9jdOxAjhto+8ksr4WNR6k142Z1aGX0+evLl/U+xyHA47OKqp4OPM326er2XzPZdc/4I+23hWxutM8efHPRNX8SvYO1l4c8NXqwxC4wNqyX1wvl9TyFU9MZGc15NLMqVeCqexlyd3/lufWV8pxOXVFS9vT9r/LdvT10V/vPkL4ufsK/tR/CaWSLxr8BvEdsgDFbmGyNzA47MssW5GHuDXkYnFUqzagz3qdSrhKlqiaS8nY+lv2YvA8/wM+GvhP4Xyad5V7eTf234oHlHe93KMQxtxyI4sADsXf1ryq8/ZJRtruz6rh+k8xx312/urSKt/W592/BrRZdRu4YYk8tnAkMMgwQD3IPT8a8vFUoykp3tfXT7tf8AJ+T7H7DhIcsOaRq/H79oCx8HaRL8NfAWopJqEq+XqF7GwK26nrz615lSTnpHY6k3XduiPnXV/if4X0LSjoM/ixoIsMzogGZZD1YsWHJrpockIWR0K8absj8fbUgxqSeor8akrzP1Gp/FZpWyKwHH1qGtCE2dP8Ote8Q+HdejXw34wt/D7TNifVJkOY078qC34DrTw1SdKr7rtc4cXS9pFPdn3h+yT+1d4K+E5s9B8N+JL/xFqepMAsl3ITd6pJ3fYTttrdeTvbGfrX0+ExatpO7/ABPMrYSUEnJWPuLPg/4s6JHNrF5bReIprVZYoYJ/mTHKtwPl574r36U4Tkjiqr2afstW+/f9PuPlz9r/APY48QeInjvtO0iBrtVa5nuokx58iHckqYGA4+bcO/BHOaK04yTj1Hz14cqgly2d+9+lvxvsedfsh+K/FHhTxdf3Pj/VjZ39hdmOXULo+deSJgYESn7i9Rxgmpwn7id2ziqN1Z33ufpP+z18SrvxxaxixxFbAANJNP5k8h7ByThSeuxckd66pVOew/YqlC7PSPih4I0jxXocmn3KxyzeX+8AXOyko3Zk530R4t4Y0PxCdYu/CGoM6x25SSG7RiGVFPAx35PT3raTUV6HTStHVn1J8IfD3igQRXd7p1xcQCMAS3swQ/VUHSvOlySdwnUjBtbHp8cUMEQx1785rVcqieZVqSk9CHfulxHZtjuw4rCVJylZIiE2viYy8+yWsYaZmT3BNY1YRoxPQoynUdlqcz4iGk6ihM7ucHCyRygEn8xXnSrQbPVoxqxVkvwM3QfCfim9uStnrUclju/eC9G7A9gDz1ojh8RXfubBiMVh6EFzr3vI7nRtLOkWpgt7nzh/dYbQPYV6dDDTw0bbnhV8ZHEyvazK0ujaTPd/a73w1AZP+erxq1P6vSqSvKBo69WNO0Zlq5Z3hMNpEGJ4HOAPr7VvUpe5ywRxQnLnvIZa2dzp0eY4lllfmRy+PwHtWNOhKlra7OqVWNXS9kS3uqXOmwrJHpM9xlgH8gBtvvjNbzlKEb8tzJQVaXKpJepYW/t0txdXr/ZwennMAaUq9OC97T1M/Yz57LUR9T08R7mu1ZGHDZyMU+elON76FKhUlK1jwH43eK/Dll4zlj8P6Vb38S2zS37SYJVsgYUtz36DvXLBR9o0tj1aVOooKM9znH+Eo+ItmPEHw+1kG7WPcdJvXO0cfw9q9SFGHs9zVVPY+7P7zyb4ht4p8GWF1beMtISHUIFby4XjEQf05Y/N09qqK5OplN9U9z5NuPG/iY+IJ9UfU1vnklZxDeWyRMCTjy+m51xjBJwM+9d9OTSsOmlBtnnnx0/aB0mysyuv3raNeEFYoJHMaMcdNzjaPTBGK561WKvcOZXuz4O+JVze/Er4mL/wjpFreGbfJd6ZI1uUTPDSCM7HJ55B59K8qVBVXodeGoOT5kz3v9mD9lPUvErC+1iKW30YRB2MikG5Ktk59QSAcV1Qn9WptHs06ShDQ9+8YeNNB+GejDTvD1kIoLaIGSGIbXYD+Iep9a+fx2ZKW5cbx1SPnf4m/Fs+KNXGueGNSa2lf5ZQnKXC+jr0zXzWOxEZR5ou56GFXM7rQ4uW7aeQyuACxyyqMAfQV4Mvfk2etFOW4p3SDA/PFaJWRt5CW4Mb5I69vSpkZO1yaQncO/HWs73dgWjFaTMJyB0zQ3Y2lrEz0lYydO/FHNoZRi0zQtVJOT69qhybNuaNzSBJhC47dal7lKQwAqMgdferUiZJESoS+H7/AJVs/eWhg3Z6HZfCTwz8QPHviq38P+DpFjSH57m9up1htLFO8skjfKoHqefTJr2MnwuZYrEpYd2t1btbzOWvyw3Wp98/ss+J/BHwwji0vwPqsniK7YqL3xTOjCGZ+628TclAf425PoBX7pw7haUKfIpcz6silRlUV5Hs3hzwx8cvGfxy1GD4XeEliSaBHl1i4QiFd4wwHTtnI75r7zEYjKsHl0XjJ3S6LfQ9hYrKcuwvtMZOy7LdnsOg/slfFfR7CKDx/wDF86iFsAkYicwmGfPLqFwPu5Xp36V4P+teV1p/7Ph7a9r3Rwx4vySU+bC4azvu1e6+ep4l8aP2CPHuveLD4r8LftGXui3VsCwhe2Vomc9ywXLc4z6j0r6ClxHQrU0pUW42eisvT8en5bn11Di9V6UVGm4ra0ba+qZ5D8Qvg5+2P8Nkn1Xxd4eh8a6asW6TUfBN0RdbfVomwQcc5GemK9rLMwy6vQnzz5JRXuxkvid0rdtrv5WNqfENG75k1fSzVv6+RheGP2+dc+F+heV4c+Nt5GLcmG78O69ZeVd257HLE5IPGABmjEZVlmLrL21FXet0ehWw2Q5lBSrYdNrr1+djz342/td+O/jx4XdvC/xRtrrXoVdZrC4ukMN0mSURSMbjk+gNaU8FhsNeFGKUfLcbp4fD0fZZZDld3p8u+579+xR+wDqGmeF4/wBpD9oXwlp2veONUdbxrGeFUgs4+qhYV+QEDPRcV8/iMwoRrfV4ya6X3/E+YxGZQoWwk6jUtnLfXtdnulp+0teaPNdeFtN02ySSF/NjNlaKRhRloFBGQ2Bgj8qipkFGo1VnJ7W1f4nHV4bpYicaknJp6av8f1Om8LfG7RbCabxPpdxFJrdzYtPfMLVUVolB2qHHOVJxg881wYrI5V4qlJfu07LVvXroc2IyGpUhHD1F+6T93Vt36trz8jybXP2u/H3ijxjqei2+qzrEXt4bdlGVd3JLomOpAHJ7bvavYw+TZfhYql7LWKu3+n9d0ev/AGHlWDpR5aabX9I9E8BfGLSPHXi6x8Eya0L9tOKfaro4H+kZ+4M9cHg/WvMxWA+r4edbl5W9l5HnYjLo4bCVa6jyt9PI+ef+CgPwe/YN+Jnxk0hv2qvGfis3FwCE8MeH7orBcuvBMwXHQcA+hrKnTzDE4OMaUI22Te9jvwWKzZ5XChRUVFd29fl1PHP2jPHf7Sun/D6P4Df8E2v2S7bwN4TaMJJ4k12SGJ5APuy7clye43DjrXp4XKMdCmpuoue33DeEzHEWhOalLdX+Fei73W+583eB/wDgjv8Ata+P9ZT4m/Hr4qpq2qzXSvFcSXBcKCecevsOlVTyqrF2xFbmZyvLMTRrc1etzWPpz4c/8E+viX8M4biy03xLPHJaSRXLQG7MFvG6kjzZNo/eSAFsA8DOPWvUws6FBpRno/xPVjXw0MPyc2j6Lqz0e21Szk0rUtR+Olql7pCQpbT6kloDM5Hyg7j2HJPbFdNeEZUnGn6s4amHjy8tHffc+OvjF4b8Alpofh7K8Phe3vH+z35s/Il1hgxKQwRj/lmgIXI4PWvxHjHkqT5oR5Ka6d2u3kfOewrxk5VHdtv5a/pt5niHjJ5b/UTbR2eLiNP+PeEcW6DszdzjtX47j8R7So0kXCeljm3RW5I44wfQ15L1Oq11cFIQZI78jNK1jmk9RytuGc/Sm9jWnqiezJzz2PQ1zyV2Nx5WXJAQc4PQZqVozSD0BFBgYNT1uVN6GTaJ/wATIgD+Ku2K904Y6zNi8VWTBGTgda5JJpnXZ2Ma6QRnIUdeK2itNTKduUrxTES4U556VTdonLC6mepfsveNvEfg34taZq+j62LVY51MrSzlExnvXdltWUa3NfY4syp+0p2sfrp8UNI8OftK/Ay18SaBqlte6jZWg89rZw2Tiv0ChifawXLqfHulOjKzR+dnxr8Pa94T1warp0r29yshhm3Icbs/xY7Hn869BWcbvcHSk3sdp8APi/8AErSERtflSK0f5GgaI+bdgHorBevsSOO9VBOWxnKMOdI+/wD9l74gWfi7SktrbTHtkZdsiSDOcjoatxUNR1aaSucJ8Q/AGp+GPG+paVMUWETGS3x3Rua9XL605Rsz5jOaNOU+aGzOQ1XwvaXCSQlC0ipuj74PcV9vk2YVKD9nfRn4H4h8NYTH0fbuCc11sZWpeArb4leFpPCWoEfaYkZ9IunOTazYyACeitjaw6EHPUCvqcNi3h8Qqq+fmfhOZZBHMsG8O1qvh8n29GeN+EEuLi4NrexGOaGUxzxnqrg4I/A1+j0ZxcVJa3P57zPDSwlWUXuj1nwP4W1jWZvJsInkjQZYKOlTi8VRoQvLRnFlOBxmZYjkoptLV2N7V/h9eXELtaIXCjLY7GualmNKHxaHr43h3EVE5UdbHOap8EviLLYtrlr4K1Ga2BH72O0Yg/jil/beWSqezdaPN2ujKjwtxR7D2qwdRx7qLt+R9HfsffBa3+HngfWNW+Lfww0i8m1WHbYRamgMypggg5B2A9c9a/IeOuJKdbHU4YOvKKhvyvRv5H9beB/hZXweTYnFZ9l9Ocq1uRVFeSVvPb8y/on7Onwjl8Y2PjnwVpkWk6tpcLQ3WlSgMLpSTh427kDA9eK+fnxfj8ZhZYbES5oyd0+3qff4Hwf4fyvM6WZYKl7OVJNShunfqvNB4D+Fvwf8RXN/4S+L/gqDU7eS5na0g1GP7krIqByRzjH5EA1zZhnWYYSEZ4Wo4uyvy9kfTZbwNkOZUpUcww6qLmlJKS2bSV9Pl9xwnh39hD4M+A7TUL/xz8OE8Wa7e3brpVnbF0tLODayoWwfmbkH3wM104zjXMsfOPsansqcUuZ6czfU+QyXwYyPIqVT69B4itNvkXNJQiumzu2dP8E/gN8EP2RNA1zVbnwFpuveLbuyka6WaESW1jBgKsPzZySSAfWuXMM8x2czj7zjTjbbRt93Y+l4Y4CyXhSFSUqUZ15J/F7yiv5dfxOT8U+PfGvxc8PeJNVv/h0lsukLEnhyy0CxEEUqsuAXRMb9pJxnp+lelhKOFw1WnD2l+bWTk7/mcWKWY4yhXl7Br2elNQjZfcrXPC/GPwy/aL8daleD/hE723gtbGNYYbqwKLM7EfKrDjOCOuOlfZ08fk2Ew7vVi0+lz8izXIeOc2xUn9XlGMYq3u2u+yfcT4QeGP2+fgv460Tw74U1i/s7K/V7fUNO1y2820hJJwDyflK7TnjBJ4718rj8VkeMc5WW+jW7/LU+w4a4f4yyuthlTlN8ytUjNe6ndqy1d1y2d7J3uraXfuf7EX7MVp4a+LniX44ftCXVpcf8I/PLPcMUDQLLztC54OOcfhXx+ZYuUr8h++5Jkby+leSvbf1PP/2wP+CmPjnxH4o8S+A/hRoel6Rp+oW8ds+sG0U3NrbKT8u7HDvnOOwxXiUVOc9WfQSjKSXZnzhpXxD1bwpZfa7r7POJ/mlvL+TPmE/3uOK9GmlTNvZ8sPdOC+N/xNs7rTZJLnw9FMskR3T6feLtx7jPOK2U09UHJPlsfntaOSiivyN/Gz9SqfxWa9iCVAbr2FY1JWRMbcxfiOTgdRWNubc1tGOp1fw5+IfiL4d30s/g42NpfXpVJNUu4t/kqD97H8WOoXpnHpXXgsRPCNqOzOLFU1WScdz60/Zt/ao0f4ZtDeN4gv8AVJdQmHnS3c6i+164B5Z2Jxa2qenU9OSePco49Q0i9X07v9DkqYFJ3l95+gfwi+OWhfEi0k0fxXHaTXDWKy6jabP3dhE33QcjKsewPOBnAr2KE3OXvv5djx8RG7tE8u/aY/Ye0XxskXxI+FU6ie2kD27+UXZSMnEikYdPrXrOFOtT8zmjFU3aSepx/wAA/Fnxm8GaxD4J8T+PLqxvIrh8lYAqxREgYt0B2Bm7ttz06UqceV2b2M6s+eKitj7q+EXjfRb7SYvDVreMJVQPetNLvfkZ+dj1Y56Vs9tDgVlLUt+N/h7NLfWuoaHaxzXxn3BGPXJyM+wrlnTcVe7On23Q9p+FWmeIl0xTei5Z14lubqUqmfREHUe5/WuaNJzlzMydWKW9zt0tFQ73kd29SeB+FdMaME7nJOrrogMqxgmV8AdSTWzkkYtOTuMTWtOJ8szh+3AyK46uIw70ep2UaNZq6INS0fwtMEfUtFgJmYKu6POTXFKhhE7yjudcMRio6Rk9A07w3oOiyu+l6etuX+8sLEKfw6Zr0KNClS1grHJicdWrx5Zu9i2qsvANdd09TjgluR3V3FBFvkk7gDJ7k1x1cRCGiZ0UsPVquyJfLdSFLflXVF3iZ2s2mKsiscoxcE4GKx9rC+hWttEJNeXEU3k21pvYdWaQAVlOrK9kjalSVuabscF8YdK8TaOy+MrKym1C1Tm8s4pCzx9MFV/iGQM15WKw96ntHqezgMRRqfuXp2fczLfU/H/xG0uK08PWJ0bTVCiW6uzhpVxyR3/Tn2xXfh6blSd9NunQK0cPh6nNe7LP/CpfChsZ0W0uNav7iPaZ4EWNFPqGACjH41s03U5tPkkvy0MoV2neWi8yLQfgn4p8NxRapa3saTw8rbJMx+XrgMQOfwrthKCerMquJoTnZakmvad4C+M+kSeCvil4bVrgMYzM6hJIT2YE4I5+vWonCXMnAwqU5ppweh8B/tyf8E7vHPwdvLr4m/Dj7X4jsnwyqtwUAVc7UmIV9oGeGUdeoNdlOrzR952ZrTat7zPza/aY8E+NPGvi5NCv9Oa4luxiHQLqJZZCV6STzkABR/dABPA5qfY1a75b62vrpt6/09kddCg6jWh2/wCzb+yJ4Y+Gmgrr/jKNfOkk33KmHaC5yAMEcICeO1cs6tPDxtLc+jwuHVNWR6F42+Ndj4VgntdEj8uG2l+z28IARd5AO0noCB0PevExuYQTdmayjZ2XU+fviR8Wr7W0Ux3odo2YpOPveafvKQeQuPXjjivj8bjE6Titzoo4eUZ36Hl1rcb9RaZQB5jEsF6Zrzowfsk7nTSpfvTbhYt1NZqKR6raii/bJ8mWHQc0pOxKbbFaMK+NtTqy5R0uI4JwMdqlJGcbXJfLVYCCOcd6iSdzZ7GcExMcLxn8qtLuZ8xftHweRS5bCSRfjYlAp7dDWT3NYu7JJVwORjt9aVrhNWRXGS3zfke1dENEZx5WyawjK3kb7EkCyBvKldvLYg8ZAPP411YatXo1E4v8TRuKV2j6e/Zh+It2dVQa/JqlsFKbJ4IVMUpyP3Y6eWuOpx+PcfsnBGZOGJjTnF66X6a9vT+r7HLPmm0oOzv0/rrt/kfrF+yvc654X+Ecvxb8ZyNaWRgK6Xp/mBsqCQHJxk7uw5xX2fE0sLisyhl2FXNLTml+nyPmuIIQx2Y08voK705meYfEj9p/XtV1O7v4tTeNVlASLldwxuO3PXHA98kdjj6nL+H8FhacYcuttz7LBZfgcDQjSVO9upufDT4x2HxBQWc1wUuo3wZSQDjGRuHoeOma5sfl/wBVfNTV4hUw1NOUqW3b/Il13xDLoGrNLZhY2LbX56k5+QkdVPY0UKUK0LT1NY0lVpqM9V0OM+JX7Ov7Pv7QEsOt+LfBNg1zLEVW+jhCOWGMxS8d+zda2oY3G4OfKveS6Pt5HXgsbi8A3FLmS6P80YXhL9ir9kr4cPBq1t8HIZNQspjLDMEDgsTgvtAx5nT3rrq5lj60bRklD0Oz+1cyqz/dSjFPys1/Xc7jxvd+Ko9OvNV8P3M9jqphIt7Yltk8AyAUz3GRxWGGeHdRU5pSj1fZnnwdGTUJRU4LVvqpeZ498MrD4ifEzRr240Lw/NP4i0HUm8y5gh/fXCbiFdl65I/nXqZlicLgK37ydoPa+x7DxeCo071Z8sXor6I95+FX7GXxRmudWvfEzWlla3mlvHZQsdx82QfMzLjjoK+RxnF+WxUI07ys9bHyObcZZTRcFRbk09bdkcde/wDBPnxt8O9EXxNdePbCXWoYbiOysGciNpZWAR9x6Yz6dz1rb/W/CY3EuNKlKzWrNaXGWW4zEclOEuXe7PA9S+IXhH9gTw9deJvib4+0TU9ftLOaLQtMtbhQZHLNI91M5+9IWzgckKFXqa68RW+tUXbmServfotlf9N35np4jGxzGl7Ne7Hdt6Xstv63PgDTvif42/bQ/attvE99qt9DKbnbZyyW3ysGYmSb5zzg4VQBjn250ymVfGYuLStCK6iw1eGM5Iw05NPVd3r6dP8Ag/pJ4E+F0Xhu9tvh+qNJNcsDcSS3JmkmUKMvK2BlmxjaOAK+vqYqHsue+yPclP2NL2yb0PSviV4usvhstvZQWcL3YC22lQRyAmSRmCmTB4wCQBXjYelPFwnU1stX6HlqTxMHO+j3/wAjyP49/tKaBotjJ4APiELp0EoGt3aSDzL662lmijOQCq4OTwB9KwoxVOoqtV2eyueYsVRoydeXp6I+YvCH7auo/FnxXNptnd28XhDTZhamGO4iuEvZTyYkG7DkDjjnOc4xXq0qlOVRx0bstU007q+6/Fbp6OzNcJi8Pi7zi9L2u9DS/aN+Dt/4/wBKX4r+E/E15YWcCBLvSJbEtc6aMAeXbouFOe7ZwDnnivzHjnIZY6PteaUFH4rK7XfS61+a9TDHSpqHuWlbqno/M+UPEV5bafcz+H9GtSJTkSxpNvkb/amkHAPcqpP1r+e8YqVCbpQ1/rqeQuWbuc5LbhV2Aj3IHH/6q8m7UtTug2U7oPGhCjHFJy5hTjfUXTkd0+ZvpmolJoVNqJetlCOeO/X0qdSpPmZdxvyDjtg0ramkEG0iJsjtWi1Y6i0MmxXOpHP96uqN+Q4aTvOxqXw2qee1Y21O9rQyr11I2Y4qJS1OVvUpQJ++znoeoqviViJrl1RftZGjlB80pgj5gcVLi11M7RkfeH/BN79rjwd8PLy2+HOo+IHne9ITyPJbYM9iT1r67KMfQw8FG+p5WZYSThzxWx7b+2T+z3Y+KLCfxn4SjBgvId0yxrnaeoPFfUQc6j5k9GfNSrTfunyhY634q8JNbaxFYx3DW8vk30NxgLEw6S84HSvSjFxhdbkRgotuSuz7Z/Yy+J2vazpsN0qQRWpwySRpzJ7n6+gzTjzyV2cFerzppI9p/aF0Wa90+y8XQBmdY9s+F7e9a0a6pVLLqefUw/tqTPE7spFMJQxGVJJPcV9TgqyhNNn57n+CdWhKI7wjpcq3cc6ngsCDj3r66NdSjdH4RUwXsqzVupxGjfs4fFP4m/tD+KtI+Gfg+W9tob5Z5rofJBEZVD4LnAzz0HNfW0OJMtynKaVTFzs2tFu3bTY/B814E4h4q4ixOGyrDyqSUnd7RSeqvJ6I+mPhz+xBrHgG2XVvij8W9N0ZAwaW2spgzYHUMxxXy+Z+ImGxV4YXDuXnLRH6Rwb9HDN8vrrE5rmMaPVwpu79Gz0Xwr+z1+zL431B7Twn4wvtRuY5M3P2K9yAR644HNfIVuOM9ptxnGKVux+4YPwR4Br4jnpSqNrVtS0Z6zNpOneC9Gj0q78RRpp8EOwWzwqztjuSe9fB47M267q7SfY/astyOhhMPDD0leEVZJnAeMtM8CeIr17izvNRuGbO8C4CgDGMCvKnjJz3d0z3KOW31tscxZeDJnuLcWmhTiNCfJuTdk7TnqR2ohiJxskbrCUGvP0I/GUN9feIE0/UbJEn+7BdxL98getdEsdUfut6GM8FQhK8SzN8UdZ+GekQ6MlxDLPdwlo3kQF1UcHmlzSsc/1JOXNY8u0fQ/GHxB8dXunadZ+XYW0Il1e9nY7Oecf7R9qv+0MRD3Kb6FUsjw0m51FudOl74mhddK8K2TWsEA2ieODa0+O+3OWrGFfEVpa6s9RYLCYeCUYpBrmj+Ok8NSajrN7qBg6ut2vkhcdMZ7V2Qcox1ZwV6VOpKyicZoOpeGNb1SO98T+Mr6IRnAaVyRuHA5Brop4unQSd7nLLBR2sTXujat4i8O3Hw80LVFvdNubwzXEFiSpfv87NyST1JPStak415XTsdNLDyjSaSvc+G/jp8GNe8E2fihB4Y1CaW41Qy3OpNDI0fmOflijbHzEAAYHSnBRimoX+486cJU5cr3PlT4yfHh/AljJ4Qvor23vWxE0DWTSrLx1GeK56uIjT0loUoSk9Fdngmqx6nrs76jq9/Lbw5JW1tZChcf7Xp9BXk4rOKdCbp0pXV91/wT38Dlzkuaoji7FdwUewxXyEnaZ9fVbVVmxauBgj04rGUVJDpr3jQtSzD5hgD9Kh2idE1dEu4yHCj61LlFo54u0jc8F+KNQ8E66nifTbWCa+t0P2Rrpd6wyfwvtPBKnkZ4ziqw9b6tV57akVoyqKyPb/AIYftgeIvhz4Lh8I6H5uq6tqmsC61KW8lJbU7on5WnbP+pj4IjH3iOTjg+xQziUY6K829v8ANnDHK1Oau9D7l/Z6/bztm1C08PXWuW9xFp0aprutMvy3t+wB+zW6D74XnOK9ynmUo1VG+iWr8+xGKwsE3da30R9EXnw8+E37S+jW2uaa0Gn38sbyRojbZGIP30YHgAg/XPtz7dGSrQ82fNYhVoV1ytctndW1vpZ3vstbqzvdaq2ub8Fvhj45+Cni0aRftcapaTXTy2ZWPkyNtG6RuWY4UAemPrXSpTjHlvorkLCurqlqz608A+G5PEILNZSOZCPtEkU4Vx6nOeB9K55vnerIlHke56tpOlR6ZZRWEJcpEMKZJCx/EnJNRzpHFUauW/KYc4pORKsytc25YFQgJ7BuhqottF8qsJaGVVAmtzGe6jn+VT7qWqHOXLomWZZRGASSBkc4pSlCEbsiEZTZmavr+l6Tuku7gbgMkZ6VhUx0V7sFdm9LBzra9Dnf+FtWJ1EWBkhUSH9zKvOfwrnWIxNlztK50wwdJO2rMfxt47mW5EocBbdwWOcADgk/lmuWpJyk31R3U40qC5Vuz0S8v7e309dRBHzopQE9SRwK9epV9lQu/wCmeJSoyxFexnX/AIq0/SbCe8Z122qiNEDfekIziuKOJjG9umi9Ts9goySfXX5HM6p8QrXQmhh1Bxd6ldNvhgU5EIxnn0IFbUoSqPvLyNnSp4h25fdTMkeNr7xZjTrC8kQSb0lu5UXypHIwqcjkAnt6Vz2ctDeVOnCaktkdD4B+H09tp0Vx4r1dtQlVQFQArCvHZCe/XnpnjFelTpxilfVnLi8XduMFY6vUda0zw3pj6jqVxHBbRLkseB+FVOUY7nmRg6suVbnj3in9qc6r4qt/BHgs28Etycvd3EoJii5+fb/D7Z/Ko9pHoepRw1CjC83dnivxZ/ab8M6L42/s/wAHa82o/ZZAL2SOFpSZB1djtIyecLnPsK6aEnUV+hfJOauejfD/APaD+HPjPw3LpfimG4l85GBkuJmjByMbSqDA/WrnCbq3jsRJS5lY+G/2pdA+Gnhzx7qHiLwpo0YunJd4SwExxnGN6KXHvV4qvGlSu9z6DAr3Ez5R+JPxwt4Eks0ujudXV4pMjaD1VgO3oecV8bjsxd2etSU+XlR4V4v8fXmoQ/Y/P3qGb93Iu5tp6hjwGyOjDkYr5qvjJzOmFFRZyF3eyXD+ZJwQMKCckL2BPfHqea4aknNnoQjzIztMdzeleuXzW9NWhqYyly1NDqbaMhQD1PtXNJnUnzGjbsFHPfr71hKTZUXYVuQc+lPm0N3rEgabBwBnn0pJvqYJWZO7EwEjNK5u9Y6GfHKVlKkd6q7sYKLT1LdsQG5FZSk2NtNaF+zcuQpPNIun8RPcAgZI7U0+xtUV4lVZT94N7VvHbU5krFzRoftuoR2K2RuJJW+SFSMsfbPFdOGk5Vko7lShSkrVFdeZ9Z/sYfCn4ifEb4g6T4cj8BXawSTqs0lzp0Yj25GSS3oPQiv1/hKFaniFVrR5YwTexP1vD0bzk7KJ+mf7UPi+bwp4OtPhxoFvCltYWKRohlEaNIF4U9x9QDX3/C2D9pVqY2es23a/+ep4+Q0YzrTxdR6zbt6HxD8R/HDQX15c6lc3DyNKsi7Imba6ncDjGFdcDjGHGcYPX9H9nTcUj6CdeUfdgtjC+GP7SM/hn4kWrw3UUFtOVX7Od20kYBAzn5WB3DnGeBxiuXF+yqQ5I9SqVeNP4kfUmt+PLLXoFmkvQ8dxBjzE43RN9xuO6EgH6V5NLDRpLYcFJU3rfVtffp9yM7wD4y1W8v7/AMDvfObme2EsK7OfMQc4x6lWH5VviI4eMY1pbp/gap+yaqyR28fja/g8Gx+ItM8P3BllP2e7wAVnYnBdUwWBB/j6DGc8GuFUKdXFuEpaLVf1+nUt0I1MS4VJ+6rNb3Xlft/TOaubL4y+LNdtvCNros+pxPeqNMkGpxeZanBO855KqTyCORXWq+TYWnOq58rS10ev/BN6+Jy3BRlWi0tNdHZn118HPgb4V+EsT6lYWKf2rfwxDU7lPlErqPvbc4HJ7V+U51nWJzefLJ+5FvlR+P55xDic0fs7/u03Zf8ABO8u7z7HZyTmMtsTIVeprxKdNSkkfNpSnNJdTwb9oDx7qNndi4i05ZWi2qyMuQm7GOfXr+dfdZHhaEaWr3Pr8uoewpKz3PjX4tfGrTtf1a1sNa1HQtJs/Dyyyatc6vo1rcMYFDLiMyxlmkUgYA25PUnv9PGhRjTcpJtvbVn0DmnSule588J+1P8ACr4z/HXQdT8K6es1r4LikSHVIoYreS63HpNGigJg89uK9fLalCnzRpvf7l5H0mTU6LV07X/A+h/2dfirpGs3N14/1iSGOC3h8uwcvljHubMzen3SeewHrztjIVJR9nB3TPpcS41MMqFPo9fPr/X+Z8+ftEftceGtP8S6l8Qda8QlItKs2i0Ibh0HDSnPGeh+p4rmklgcLGLlfu+vzPnsbjoYag4rQ/NX9oP9rTxN8S9Uu/DnhxJrLSG3GF/7SZZ7wPyxYlQEDdMgE46Yr53G5hisbUdJJWW2u/r2+9nwGLx9Su/Zwlo2c38Kh8afFQh03wTe6dohij8iyWO0ldlBIyqM5XaD1LKCWIAPs8NTx7lGEXyq3QMNUxdVyoU5Wt08/wDhuuvY+n/2etH/AGh/htM2lfEO7u76C4Rlurc2Mr/aEYYKsCrBVI44ANe5UdSngaiq2krP5n0GDw2NoJ+2d16knjfwvJas81l4Rm062D5SyitDFEfeSSQgn6Yr+Ws8w1X6zNQgoq+iSt+LOimte69TiLmXcxeTaOcYXpXyUozcved2dLfYp3Z8xDtHHqRULRlWYmnH5cFfp7Vo1Yz6lvO2XP5mhFx5S5bkEZb8OKhuzLjJD5FOxsnoOKnmLlZoxrBWOpE4/irri/cOCKUKhqXoG8gj6ispNna5XiY11tWY5PHrWerOa3vXIgmFHHXpW0EippS0FDHOGP14q9DkmnF3Ok+GXxF1f4ca6muaG4W4BAVigJ69s9K6cLVdCd0rhUjGrTtI/Sf9jj9q/SvG3hKLwn8WtZtI7q7QJHA9wGdsj07V9rgMxi6a59GfNYvAyoe9FGf+07+zRJBdz+KPCFo1zpc4D3EMR4cdccV7lKtUnK6PInUUpW6mP+z3+0No/hPXYNB1KNbaa0IittLUNvkc+x6/hwBXbKUZqy3OZ0eRO59w6N4x0rxd4ClstVukaZ4g9wA2RHxwv1qYUpQd2cc6ri9DyHxJ4Fv7yN7Wx+7ICRwcha76NaUVZnjYzA/W2xzM3hmyitRod3c3AK+TBbplpHGMAZ98V9Hh82ocqhJ2sfmmZcEY2hOVemlJXPSvhV8DPHeu2c2tfEL4uax4Zs9QYXD+G9AmELE4AxLIOS2ABxXFmed0HJeypptaXep6+UcA+xpOdetKKm+Zxg7L59z1TwB8MfDj3Mmg+H/DUd/bykie81+d7p9vc5fNfI4vHYrES3+7T8j7bB5Ll+Ap8kKaaffX8z1XR/CfhL4TeFJNP8DeHLCxAy2y3hWISOepOB61yV5yp0eaTuz0sLQpc/JCPLHyRxGsr8TNVukuZ/BRuRK/ytE6lQPUkkYrxIwxFWfw3uevGdCn7sZLQ6HQPhRqghS5vLuG0mLZbyEDcehyOtdtPB1OX39GZvG0qTdlc1vEHhPQrPSR9stpJ35wYFClj15xWlSEaaSOWGInUm+XRHlfjjQU8SM0fhVWtbuzQyC1mkIdx/eGainRVWOmhtFtay1R5doHhzXfGvjdLaRC0FtI0YeT7yEgbs/0/GsrVVK0fQ6nUpey5V/XzPYPhZ4A1DTRq1/qFuq2jTERW3lf6zHcjvzXVQw00+aQOtBJQW5b1XVPCvg67FwNJtZdZuXCR7oAFi9ACBjPeumUlzruFT2k6Zi/FbStEu7KE+ONZLjy/MnQTEIoPQH/AArdRko3ORWhr1OG8PeAfhT4jQ3mnaTfzWEbZae4GyIY/u561gqcW/fRUZTaudJfaVCdEk0LwNYvZwSIV82KLDufrVQulyrUuVeOjPjP9tz9jH9rXxRpslz8KbG/1S7MRNk17qH7i3Y9W8s8ZxXo04OULKdmzz60PbSvFH5gftFfBbxz8EvFB8M/FPxBHqOuhfMkKTbxDnqDg4H0618rxFKrg4ezcr3PYyfCJe846HkWo3se4o7dueetfIwqxurbn0U5QUGkcdp7qEU5610SjeZ1Ts6zNWyYuQuOgrNpRiaxSjI0EfauF9K5XrcJzu7ElqSDzzSa00YKFtTQT7vHPHNJpLcqMLoVEljmE8MrIy/ddDgj8aE+XWJTdjq/hr43n8PeMtM1TXtQuW0/TInEFjbnYoyMkDHdz95uuM124XFclVOq9EcFbDyqaRPrb9nv9uu78O3UeseItea1uNRkSFmgG/7DaqQEt7eIHl26BR3OSa+lwOdUpzjzuzemivZHJLK7U27XZ+hnws/aE8K/EOKxtvEesrZ6lNEpigF4rCFWUFUlZTtEnTKj5gTg45r3qWJVZp3t09TxK3ufCv6R9L/s42/ia98RFjA8em20TM00THy5ieFGcfMe/wCFdNSNOlSasrv/AIc8qviPe5UeyXt5babA95ezrFDGpZ3Y4AFYWXLqcDpylLQTT9Y0vWIBdaZqEU0bDIMbZqbp6DcJQHzYdjsPTrWkJRii/eaGTSmG1eaJxuAyPrUVqloNxNaNK81zHO6747t/7NkiJAYRkMV6hx2rzatWpUXLY7YUIwqXTPLbvxZfeLYpIhM4ltp9mGOBIpPAPpSoqKd2dcX71lsblr8DtS1W/s9Xt52sfLcG6W7G/eBg/Lg9eozxXTLC8zujlrYiFKPLe53Nz8LvCGoxtFrlo16ksapLFKcIwHqB6+9b0sNCDvbU85YypJ2Ny60nTtUtVsbq3zErAxgEjaR0wR6U60FNWkrl0sRKjLmi9ThfiX4C1aw06O90SVprS1le4miILSlzk/8AAhnFcv1eKZrHFOcvePlyX4j6pdeKQviiXM1zcMq2qPiWVd3CkA/ImOTXO4SozXPLV+Z68ZxVDRbH1H8LtDvJrGw1W68mcBfkjjQCK2GP4MD5m7Z+vPY91OMEtXc8mtKVrLY6nxB4x0PQJ3h1G6WNYITLKxPAFVKq72sQqUpQuj5V/ae/aztb6eWwsrwR21pljGD0x0/E/wBKzvFO8nqduHo+zjZbnwf8RP2sPFehatq8/hlp5dV1IYaSGTa0UPZQ3RAe59OlXRnKSfLG9j0YUY8vJJWM/wCE3iGfXtRWbxB400m0845+xQtwGPVmYsXZv948+lerTpJy5lp/XmRVjGL00Poj4a+AL3xYGtvhz4ntZdTtiXazkkaN7k4+6BuCn2wPzrplywiiKdKMruWx8u/tLeM/ilpPjO/tPFHhK6t44SVNpfpdOQw4yGWNQPwNfNZrVnHZ3R7eFw9Pk91nyV8QPEia1qUsv2J4SDnDSu+f+++a+Fxdfnk01Y9qlBxicXdzl32lfpXAm2dkIJK5XJOCRz70cqT1NHJRK+j86hg/3uldD0hocDu6h1sHbGfauGb0O+K0LsaNjAHXvWLLsTwRB02n054qJNo2i7IrTwbJsbe/WriuZCmrouQxKbfkDpSlCxKukUWsV80sBx3xVpaDdmixDCOmAPpSaszO2pZs4/nG0fQUO1jeCVy3doAhXHas1uazSM8RkNn161utTnukavhLT59Q1RY7bTLW7IPzC5s/P2j1C9PxNellWHnVxSUY3M6l5LXY+6P+CZPgbwVa/EdPiv8AEi3isNB8NoZzqV1fhRPOBhUVIzsUD+6PSv3nhbK8RHLKrwsG5z0V+i6vyMZ+2hgqiw+spJLVLTzOv/bO/wCCh/wf13xTdR+DtWknleTZHBbywxJt6fPJMdqA+/51+mZXh8Nl2Ep4WVROq33SV/NvRLzuZKvh8BgYUnK7ju0fKvjD4gfGLWluvGyeHdH0TQJwEkvNbmvL23uFzgeWm9IWzn70SkAclsDNVjsRj41/ZJxSTs3dNfenZ+tzlhia2LlaDSWr1svzt9xZ0f4feF/HH/FdfD3x9pcmu2cCNqmjeHtXuTAY0AbeIrh2PLKGKgkDjAGAK4qUsPKrfn5pR1Ip4rnnyt+Wh9EfDv4qx6z4USZIXAtbceYGOcjhZV9sN8w9Aa7PauSu9z6Kn7OUEoprbr1tr+P3bak8/wAY77SfG1l4j065MeoIpkWRYwqlcgOSOn3mQ49z60m6c37KabT8u3n/AF+DNvclFRlt6nfaFren/Fu0u9Mma4e7a4YSyXOvrp8dmBzlJGOCSOcYOewzRzPD+9G/L5R5m/lY9KWMoUqFm2tdUouTf3an1L+xJ+zx4R8AQy/Ek6RDJqN1AFj1k63JemZTnPzNgAfSviOLc0r1p/V+Z2vrFxUf+CfnfGGcyqWwdKT5esXHl9PM+ibe986TchyN+GJr4apDlPgZUrR1LUzxTwOD93GCR2rH3k9DJKUWrHzZ+1nNBDDJJo6i4ZEJmWOQnKhgzkgDsBn8B0619xw+pqj+80PoMG5qC53b+tD8dP2p/EV9cfEvXraOa7GxTOmkt/qZgolcu7dQAGLZ6YXpxX0Pt2oOMnY+ii606SjFXfl6Hzd+z54q1vS/iN4p8NatfjS7jUrEXCXFjKZwM8uwJwZCOeMA8isMDiPY1ZpP0O3BYmtH3UrHsOkftQal4V+Gs/wx0/VpY7rUNMZtVuQp8yzgeXklmx+9faAFGSAa+hpZlCFPl6vc9lY6pGFnfXqfLH7QXxA8e/FjX7nTkR0sNkdvbWiuyiTbn5TgfdXClm7k+1eDisViqs5xg7Rla6u9db7bWTSe+/ofL5lOtXfvHzV481LxffXesaf8Lobme10C08/X9Ys+Ci71QneMbU3sqjHJNfC5lmWInVlTw90o7tH59jsWqVdQcrJuy82cToPxU+Kuk3CJovxG1q2beCoTU5Au7tkFsV5VDG5ipfuqsrvzZVHGV8LJzUmvmfUPwD/bM8VeDrn/AIV/+0bY3DoJgo+2tcW0ikjO4OhUDOc88HOaWOx2bTw84Vqrumly63trd6aaWV9eqsnrb6DAcUV6tNKtO6ez8j6C1CTw9q8MXiHw9etdW06ZiM0pkKg9sljn61+WZnF8/Mm7ee59tgZRrw5o6mdMSxGf0rz4W5T0HDlEeHenHSpauyoO4xCbZST+VU7bEVEoq463ufOJXPNS9CKb5mXLaR1bknNZO8mbe7sXGbdCxPpScWmU9jIsONRb/ertgvcOO3NM1L0BssMj1Nc9Tc6eljFvYWMwYnjPGRSjsZtaDcAAjHPrWy0RFPV6leaUKdx7e9DauY11aQ1Jg5ypzg/lVKStqKmn1Ol+HHiy68KeJbfWIrlkZGH74Elox6r71eHrSo1U29DDFQVSFkj7+/Zx/wCCgnhu38OjTfH/AJSaPCqwxNcyeZJcN0/HNfcYfN6cIxbVkz5Stl1SVT3dz2LxZ8Bvhj8YbGDx58NJ49N1WWPfBLGFDJkZr6SjXhUhdM5K1GdK0JJu/wCHqcVr/if4u/ATQZrXV9Gubq10+Iuvkks95L2LH0rX2ztdo854RzqWRD+zd+2T4l8VeO9O8IeNtP8ALvtSR7m6yPktogQFX68gU41JVJJIiuoUYWsfW3jjwlbSxWmsaVKVlaMS2zr1DDBrp5eV76nJGftI26HZeE4PEHj7To4/D2km6uJgBfeY/wAsTDjJyeB3rzsTShOLUtU+jOmNRQjZ6M9g+Fnw11nwVatJrWti6nkHKRqVSP2HrXKoKMrkuouWzN/X/Cdl4jtfseqxM8ec7Qcc1VSjCvG0x4fFTwrbhuy1aWn9m2C6fp0AjWJNsanoK0cVCFooyc3OpzTe5biZvKC7h5m35vQGsHKTXmKSjfyOU8Z6ld2rC3u7maNmPySwgBcfjXC/aOdpM7acKXs7xOcu4YdW1KC5udNf7VHHm1u45vmc+n0rpjGfLoS1N6dCf4UaTod1rGsTx2SxXsNwEuUx0JHB6VtSoJe/JamdWU0kjuriGz06wCsQo6DjvW05aWIhJuehy+r6D4Vlnilk09JpFcv5m45UnqetZRpxjLmOh1K0o2OK8Q+ALr4yeM44cGLRdOH8S5Sd/RlOCcfka3pu8tdiuVU4XqPU6bxP4X8IeE7GGEWaySom2C2Hyxg+u3oKprne1jNTlNNRWhwPjXx9aeFrZUW5iiupshGAACgfeI9hSjGKYXh1Z5Z4t/an8NeA7e3v/FOrtNLdyt/Z1i0+wSIPvO3PT611U6LqzUYb/d+ehnVqJK0D5j/aI+Af/BO34zaTrX7RHjj4daxcXltbeZd2Gj620IunAPGAePrXl47A0K/vV4XsbUKmNpRtB2PyP/aLv/AnjDxXcW/wR+CkHg/TLSYoBca9cXd0VHdy52DPoK+NxX1KUmsPStbrc96hTxLs61T8Dy+3mKIij07Vkrc7ue3V0qs2LC6WOP5iMkcZrnqroUptl2zmaZiK5px5dCqXvSNC3Vo2BPejRRN6jSZoW5BX5uoxWEnqVBuw8sF5x+FEdQauKknOBn3JquS7HGPLuaehX15a6jbtYXMsUwkAikgYBwT/AHSeAfetKEJe2Si7BO72Prz9mvxvqOj6hp/narp9tqAcBGl1EanqT88hIY8xwnHrg8/WvsMuxU6M1T6/efPY7CWbdtfPY/bX9hDX/EGufAmG/wBdsbmBBcsLVr26EkzptU7nA4Q5/hHSvo6zUuV9Wj42pC2IkkaPxZ+KOlw3jaWurxrb42lc8FvU1iouUkmy6Ur6I4vw18T38PXpa31SF4lYE7GBDL7c10zoO8k7XXmv6fyN+SJ6zo/xH02/sRqkN2jxSRhsKffmuSpCUZOz0NYUYySZlan8RbS2nliSbMXKMN3r901yRgloaTjqkeXeK/G063dxFE7CO6gZkIPPmLUKmti4RlJp2Nf4I+HtQ8T2TeIdNgS9guP3dyDKAFIPP0NdKwyaTZdSpGjvoe6W1uYbeKDyyAigAFt2PxrsTjFaHgYio5X8x2xi9TGetjCEb7Dbq5hsrZnnuUQbeCzYGfrVbvRHQ1CC5pbHzj8Uvipq/wAHNdfUrO+uEkS4WSKzN+1wsqsRkNuORn9M12+zp1Y67+hMYxxK91WPCr630/xH8epPGd9oUUE+rXAkV4cSsmeflUnbHz6152KwlP2ytE+iotxwqhFao+4PCLw+FPAEeu6tqKultZA7BNuRMDhc85bOAT61lUXI+U8zESUqvLFWPkr9pb9o1oI7hYr/AGPdsXmCnoozsX8TzWKkr72O6FKySPhf4r/FfxH4x1eXTtLMk88srN8pyN5B6+uM1x4p1KiVSV93rrq+vrvqn5Psd8KMYR1PhX9sv9rrwp8DLqfwja6m2o6irlbxrOYGSSXuoPICr0LHvwM104alWac4J2XU4K+YQozUVqz5v8N/t2adq+oeXeanqOiSO3E1y7Sw593iw6/Xaa9OGsfj+/8AzNaOY06rvUjZn038Gf2zvjh8KJNO8dWepam2krKktpqkbC5tZMH7yToCcZGMHoeDRCvVd4dHb+r/ANeZ14jERdL93sz658ffFTwd+214IHxc+HPirR28UxQD+39D1e1WRLlgMGWJ2wwJ6lfXpXHnFGE4NUZJtfj95tllWo7KaaR8meNbO/tL6UanotjbSo21m0+43KD7qWJFfnOK9om+aNmfVUo2WjOYuQN24muSEn1OpOyIyoCYxipnOzsRFXepW0lSNR6d+tdbbdEza/eHW2pIYEDtyTXDPY6Y7GjFyoU/hWL0NLuw6NmUcdfpUsrZDZMO2D7VpDQIyb3JZGMUOVHbkUN3NJL3dCpG7ySYIPvxQmkjKKs9ScZTkcYqZSbHO3QsWJ+YAfgalNmtEtXpwmR6VSRpUfuma0p521asjmirjtPvLqzvo57aRRhxvR/uuM9D7VthsXXwleNWm7WNW3FaHs9r8RfFvxX0WDwbqvxV0zwdo8EYQfZ7eS4kI7lY0AUH6mv1vB+IeKlh40YzVKPW27OLE4fEV05KVin8dLP9lv8AYi/Zu1T9rPQLLUPij4h0vWLXTNIj8Vwqlh/aNwsjJJJAuQyosTtg9SADxX1mBzbB1ssni4Xk72TfdnmVsM8Hl9TFTd2tEmaP7EP/AASa+PH/AAWTstR/a+/4KA/tj3nhXwvYeJobC58JQW0VuXiS3hk2RESLFaR7ZUVBsbjnBqM7eY5d7PDYj3+ZKaUdVrfqr327n4vl2f4fOKuJqKrZUpuMnfd2T67KzX9I+V/21fB/7Ln/AAT8/wCCid/8O/2KPi/rmt+BdNe3tr/UpNbW4eO4KKJvLmTasnlvnnGOCOetXCliMHhKWKs4Tle8dbW6Oz1PXyTPHLMpwvemmrO/lr+J9w/safF6D4lanqXgjWZ7dPEFpsmmt4ABHqFs4wl5CD1RlI3r/C2a+pyjMnjJOM37y/E/VaGYR+C51Xi211fR9WutIvVdZ7Fwi5Q/cLZOM/7oyPevo5NeyvfXt/X9anfCs5xvc9v/AOCctho3xF+IGqJ4t0/T5oNI1HdBFrasUVioBMaAbZGI6E4xmvPxuZYijl01Rc9Xb3dH/wAN3ZniK01hJqLlzP8Al/Vn6YaE1jp1kmh6XoSWcEEAkHkqoX8h0r8prSq4io6s58zbtre5+aYmNSpJ1Z1OaTdtSxolyLhDPK4QiThCentU4mLi7IVaHs3yrU3I5Mx5cgD0NcK30POa10PF/wBp/wANaZfeFrq8g0y53wo7Fkg3ByACSc84xkZzivq8hqVPacrktT3cGqlRpNo/Dn/goL4At4PGOo67Y3xkOmQiW6hgz89m+VEgXPOxiTg46jNfTYtuK5Ybn0cUoUU3ujyv9jj4OeBvitHLL4h+LC+FtRMSx6dqU+nPPFJ1ASUrh1B55AOCK4IQlzc6ZzLGVKeyPbvit+xD8cfD3h6HxPB4Z0TW9EthNJPrfhmVLpGI+5IxzujO0k4de/bFelh5Qu+Z2Z1U8xov3XfmPz7/AG3vG8Pwl0qfwnoFwo1a9Xy5riP70MW4/Lnsep/GuDNsdHDYeTh8TVkcOcY9UaSpp6yPmP4mfEnwJ4w8GeCPDng/4WWvh+98N+HJLHxFqtvctI+v3bXtxMLuQEAIwilihAGeIhz0A/N61ODkpLd7nw9qqlLmle708ji1dy3mKa7MNGMJppXZTi2j9GPhRpVv4k+A3hGz8f6Na6lcHQbfz/t9ssjEbf3edwzkJtH4V+bcR5jiK2d1pxk0r2+5H6ZkOW4dZPShVgno3t3baN3TNB0Hw5ZjTvDukw2VsDkQwLhQfYdq+enUqVZXm7nu0MPQwseWkrImKGTAHr1pxasayeg7ouCMcCldmcHZlS+3bMDipTu9S52asJpMRABZc896TTbsjOCUWaMkgTBIx9apKwpNJk6TK0JVD0HNaaM3vzQMywbOpt/vVtF+6cVLWoa17kKSPSuWpqzsmkjLuVDnIXk9aUNzDm0IWQgbm6Vu3ZDiklco3XJI9B1rHmfMZSSlLUZbIAoxgZq1qzOT5WWdxjGc8H0rRQuLkclct6dr11Z3ltI8xaO2k3xxsflB9cVtSm4yXNsjllTUZXR7p8Cf2yfHmh/EXTpNd8VT23h/T23TRBvmnPvXtYbNKka6u7QRzYvDwlSfLHVn3H8H/wBvf4UfHW+m0XVdPhWzMq21ubrGZ3PGEB5Jr6rCZzQrxPDqZdWo0+Y7bx/+x9oOsOfip8JolW9gRDJbxnG9VOce/evRhUcZc6PEqU4124y3Pb/COtLrvgzTI7m38uaKDbN5nVCBjb+dd8Oes1I5VSdJqNj0b9m3wF490vxlL4lu7N7fSJLdxvkfHnscbcL1IHPNGJdCNHlveX5BUhG/Mz3VAF+8RivMcW2ccpaiTSIg3OwAq7qK1JTbGStIIi8adBngdaG+WNzSCc5JM53xN4uXTLBbgAoWYjcWxtPvXBKftNT0I0Y0pe9qjDfWrnxjfwafZ6hbGbYGa3ngZ1xnqSDUpN1NDRqO6Wh2dlptjp0YSC0iRwPmaOPGTXqQjZann16zvZPQlgt7SCZ7iK2jjeTmV1QAtj19aqXmZ87nGxQ8SeJfDthYsdRv4lyMKCec1jzRb7nTh6E+bmZ4340+NOjeEZJJftWYADtwep9/xppczOvnUpWidd8AfjPoHxJ8OyT2nlxzQucxKwJYev1qmuTU56tKpKWoz4wTmL/iZ3LbIoocvID8309qiE+ZluXsqNkfDPx1/aJk8QeKpdJ0mRBFFuE0inIihTr+f61tBtbnLJSmryPlfx14d+MPx2+IVx4+1LENhFGI9L02W6WIiBeBwTkk9cChRnKd0a0acVK6Rl+Ovi7rfwZ+H13B4+hs9CDQukNtewy3CXBx8ucJsyfQmjMa6oU7t6WO7C4etiai6an5+fEzx14j+IWsT6pqt7E5dz5SW0IjTb2+VeMV+dV8dLFV7tWX3H1MMNGEEnrZHCrDwCvpVJrm1OrER1bRbtiSox2GOtS3czpS1samkcOMjvXLUSudkYrc1yegIrGXkZz0lqWoGOBjv0rJq50UknEnGD+I71n1DRSF2kdq6I25SnrqWYY0bAkx178isJ8yY3NLY9s/ZX+D/i34l+OrLwR8MJtRfVLxgNlrqErCLkHc0VsmyIdOZHGfTtXvZdltSfLKnJ67vWx5WOxFKn70lf1P3z+CngS2/Y5/ZF0T4Y+LvF+7VpYWk1G+uHy7zP8ANIRk5O0YH4V9lgqE6k7N6I+Lqfv8RKcVoeA+IPjJ4s+J/wAS7n4G/sZ/AmPxz4qt7RLvW/GHjnUDaaHokchYRl0QGSZztYhFXJ28mrWIw0ZN72dtN7nn1JYihUSS3Plf9rH9rv8AaU/ZL/aGf4P/ABP/AGx/h/4k1TRNEXVvEnhXwv4HNlp+mFnAiszctKzPO67iE4bbgkc4r6PDZZLE4CWNUXGC7rcMLi6bxHs6msntZn2R+x9+0b4P/aJ+CifF74Z3xl06baNQ04vmTT5/4lI6hTyRXi1PZ1NYbHs86jodZq3iEJqDtHelojEVDZ4J7Z9xWHslBXEqrvoc7p82s674hSwFu0siN9w8CXJ7GlSoSnO6RvGUbXufTXwr0DX/AA4i2cXgez0yykjDTSJdDcz44OwA5PqSRXXNU4q1zysTWc20+h3SKNgJFcU3eR5zXcaVZX3Y4oVrmlNWjco65fWtnpzvc26y8fKmOp/KumFOU9nYVVXjtc+Tv2rtWvrK7F7/AGDGjeT8k00YIA3DOeP512R54aHRg8NJr3dD4yvND1i7/aSvbbUPEupMs1xBLbabb3TJCy4JLHB7fr+FckYXq2kfQRrUqWHtfX+v6/rX9J/AHhi08Wfs/Hw1b2v2KKO2aSNknMkkrAE5Ixnk+nPSoxVLkqX6M+fqVr4j2lz8zv2p/GF2niy98NJPPHNuaNBJGUZOxYg/dP8AKvGxsYtSgm15nvYPlqwUj5K/az/ab0r9mH4Mavd6FcJP4mvbGZY5lOfs+RjIPZiTjNc9OEqr5LjxdXkpNo/Kzxp8RPFGj3etXnijw/pWpyeOPDNsYbq+jMr2UbSRyiWBgw2ShomQk5yGcEc19phsxqZXhauHVOLjWhFa9PNed7/M+CqUI5lVp1faSi6U3e2ilurPy1ueaQjfw3YZrzU+WNpHt1JtKyP0C/4Js2/i7wz+zpqY1pHt4ZvEkd5oiykMHheBklyhJVo2KJlSOSua8XievXyulRUVyykub5PY+v4NwscZRrTnrC6XzW/6Ht2lR/B1LuXVbhNT8HayeYtU8LRB7d29ZbYuoPPUqR9K+Zp55HEe7idPNf5H1E8njRqc1J+72OM8XTm51OS4m8QwapI3JvIbV4fM/wB5G6H8/rXkV6tOVT3ZcxtCmznpmJkwag1Ss7DiwEefWsmryCp7pDpXN0Xx/FXXoqZirykdVYgnJPXA6VxVGjshGyNFAygZH/16ysNxsSIuBz+BpaI005RgB8wnH6U76GK0ZNK48vBGKz6mybkiCOFlPmEYNaKN0KomrA5LHgDr1quVWJRLp7MHK4wfU0uRLU1g0noWdRk/d49qm5dT4TN88DBz3pqzORN3Ft9zSZx9aqyLjNXNrScGRQgHX1qowkprl1RrzNnt/jn9lu4/am/4I3/HnTtCt2n1vwVqWneKdPhRcu62qyeao9/KaWv13h9VqmQRoR2lJ/erWPl+JamKVKNFfDK/3n41N+0d8ZG0w+FH+JWtyaW8yytZNqEgiZ1UIrFN2CVUYBPQV9THiLGUKcacpXUNFdK/6/mfkC4ZymE5SjSUW97Lcz/+EkGqyNJq15lgchnPJOa4a2dSx9Vuq72OtZbGlFeyVrH65fsmfAD4lfGv4F+Cf2hfhJ4C8YfD2/8ADcFrb+F/FPjVIo7XWZ9uZYowhEk1u5HBKEAHrXfhq1fETj9TXvLv1PucuqQxVKMZXjZKx+nHwR+Ffg/4u6Vpur/HbQ7bQPFCKE1W3gkE1rcOOrxOACVyv3WAYZ6cV9ZWr5lRh8F3b7j3HXr4WnZrmPqP4c/Ar9nnwhafZvCukxpIrAymINuZsccAcjnNfNYnMs9taWi+R4tfN86jK0Eop+SO/wBK0u10fSb4WekywKIwscs8m/ePxOce3FeFVr1K9eHNNP0VjyqtepiK9Nzmn1aSsSWN5aRoEkuQJIyN+SQPpjNa1Kc27paMwnGq5XS0ZqWupW7Moy+8tjHOD7d+K8+VOSZk6M1d9DjvjzpFrr3ht7B4NSnlKnyo7FtozkZySMAD1NetktaVCrzXil56s6MJJ01dWPx9/b++H8vhb4oxa3rlkLmC4SXT9QdVASW1lLK+eOSCR0PFfZZhiIxcKkNrdj6rAv2mH2ep8M/B03Pwm+IWt+BL3UpP+JdqTQxMD9xNwKEHGSCOfYmvOhiZudi5U1TdrHvXxF/aKm+BngZdHGqtLd64ZEhg84yllk5JIboDk4HboOOK9O/PC8jllSVrO5+an7TXgDxZrni7V9Y1rUZLgag4ubCV87CDkiPpjOK8LG4GvWUo30ex81mOHrVXpuj59tltNP1B4Nf02eVEVkaCKcROGxwclW6HnGOfavlakKdCpatFu3RO342f5HmqlO2js/NX/VHpH7Mf7Onif41eL4LybQrhPC1jcq2t6o0ZEe0fMIFc9ZHxtwOQCW6A1w1szWW4KdW2m3nfoj1cBl8sxxUacVpfV9D7uSOKJFghjWNEQKiIOFAGAB7ACvympUdapKcnq3c/UaUVCKjHZDJdxGPwxXO3qKd7hgouf61UdjaMfc1IZJgAcnkdKGzC9mMKPcMAOlQjeMb6li3tDCw2rj8K0T5YktK43UYZSAUGRUKSuROnfVEtkNtuQx5Ap3cmVzWjYpWGRqZI/vda6Y/DY56Vue5sXwypHtXNO6Z1VHdGZJksAfwpwRmoWRFdzKqbPwOatvQyb5TKndmfgfSpSuNJN3HRvsBbFbLRGNRWlckifepCk4o5luXTk3oxkjup4PH0oTTInTu9ByO7jGTj0xQ3dWZCjFG94G8da74G1uHWtDumiuovlt5c8QA9WA6A4711YSu6VSyObFr2lJxP0x/4JvftzX/j++uvCN2C9jpFtDCbiVsmeQ/eJz1r7nLMWqidtkfGY6hKlNPqfb2jf8I0NRTVXhQRSEPGP4Ax7n1r6fDzUItPqcLtLbc96+GusWOreHt+n6tJfLDIUaeRAo3YGVUDoBXLXjyz2sck4u7uYPxP+KVroKbNI1QJPay5mQ8BsdverpUPa7lUoxSd0R6J8dfDfi7wzJeW12sNzGMPG3UH1xWNXBVE+V7BCk1K7NTw/wDFmxn08LqsZSRRjP8Ae9/5VlKHLGyNZYZ814nI/GDWIrrRJ5rCQyFW3xqoznvggdax9jJGkrLSW52HwmfU7rwhBq+qaetq9zGpjiK4dV960pUknc5qk7QsdADls5rdyPOlK8ixEvOSOtTzX0Oilojhvjl4Yu9a8Mztp9goYIdsi9VOOvH4VnGPv2sdKm0nqfnn8TP2g4rvUdV8AeIbgWer6O/k3EMnHmKSdsgPcEfqKtp7MqE1ubn7H37Sel/D7x/b+D47iNjOFx+9y0rN7fiKbkpJRR2VXGnC01bRan0X+0H4g8R6f8ONQvNXu/s39pzSfZw/G2PZwfzP86z9m4nn1ZRk0uh+W/7Rn7SHhn9mnwNrviK4g+3yWls9xfXCo0hjTdt3MByBuZAPUmtIylJNRWy1Mq1WNFJX3Pyl8fftvftweP5tY+OPhv4t29to9hdIZLWw1W0ElqkrARj7PI3nMBkAkKQDnkVtDLsXOg8TBqUY72auvVb/AIHBSzGH16NCTkpu9vddnb+9bl/E+i/2J/8AgrR8QPHvg67+HX7VvgO28WeFxKLe5vUiTzMlT1VuQec5UjmvJxmaUsPJU665oy/A+ohTrY7llTk4um7+7a0tGrPTbrpbVLW10+b+POj/AAT0jXpPEHwJ8Zve6PeksNJvkZLiyJ/hyfvKO1fK5nhsDCftcLO8e3VHt4PEYiScKq1PMVBaIELnjqK4pO1Sx7NZc0mMtEnZ8Enk1TfunP8AAzc0cHIyefWuealY3jUNSaQqcnj61mou4tZMt2sm/tUTi0dMNFYnO4NjHBrImUSaNyAGxmtY7FwblGxNGrMdwOPTHas5uxtCmk9T6n/Yf/4KC6f+x3CniG1+HMWsa3FcKlpp/kiGzVBgmeTad0szHozcJ1APSvs8t4jw+HwSpVIt9Glp8zxsyy2tjJctKSWqd2r6X1W63Wz6PWz2PRYf2+f2iv2rfjDc+MPir4zmDalEIbHQ9ODJa2EOdwjjUdeQCzk5P5CtKXENacpU6XuwkrPz1v8AojOplWGw1PRXaPDf+Cmv7RHx1/YI/bkt/i38PviX400bQvH/AMMNPuby18IeIH04X7xDyJEd8NhVkjc/L8wL5BGa9vhfE5Vl2bOpj6LrU5K/LdKzto9n/XU/O+I8vxmPotYWpyVF18j5L/an/wCCqPxH/bB+GekfANvh54a8IeEdN1UXlzDotqz32qXZODd3t25M13MQTl3bJzX0+aZ1hatKdLBwlTjN63ley7JWskeXleRzy+ccRiZ89RK17WPvT/ggl8ZvFnwC+NeheA7bXpda0Pxtpch1bRwCxt0jA2zNnjkE89sGvmsLVpxlyNn0NZTqQU1c/VS48W/C3Vr258R+F/FMM1ispD20tzHtBz93cCRkfUGuyUqMp2TuXT51T95nSfDeTSvFUqT+FPCd/foZPklsbfzFjb2lA2r/AMCI+tONSMHbYuU24e8e+/DGD4i2oeHxRpC2tkEAhNzqnn3LH3VV2qP+BsfYVhWfNK6POunJnZgnbg+tckr81yW9Bk2cEg9KE9TemnymbrV7JaabLJDaSTSbSFSIHP1rtoxUnuKpK2qPkb9rLxAdPQ6Rq9pdfZb+2kjlmnf5FkJOAMdM9M13qMqa5uhtSjHEx5NdVZ9P60Pj/wCI2qpo3xe0XxNZQGKS5so7YTDOSQwBUEetcqqU4zUup60MLFUVGP8AVj6osNU+EN14Pk0nx5rutx30triOTQdbkhlhBA7oVG7npXTVjKrT0RxVabcbRR8Z/G79jOy1TWtW8Q/D39onXr13jLpa6yfMc98FjzkY9ea86eApVE3ezKpVKtKGq0PhH9q/9kbx1498Iarp82uKupxWs0cYkY+VOc8bjj5TwOvTnn189YKNOpz32/E6aqeIw8lHqfmX4p8LeI9A8Qz+DvEtpJa32nO0LwXJ27CCeOeMHJIPQ5969enCM4pSdtNLngRoypXbVu5rfDv4KfED4jazFpOgaKBG74m1G7mSG0t1H3nkmchEUDkkmp+p4uvNLlsu/T79h1KtL4U9T9FPhhoHh7wL8JdG8L+FNd/tGwjgH2TUdjIt4qqsZmQMAQjsjugIztcV8TxhiI18fFX0ilFfI/UuFqKw2Ux0s5av1Yl/K0j4c89+a+QSij26tRvQy7oljjp6H1rKKtIIx0MyZwkxJHfpmup3auYTvzCOz+WeKxcuZlVIpoTRlP2gg92rqbfIZRtB6nUWEgEY57AE1xzvc3jK6NCJiRjPPas3oW3oPVyGxmpbuRdiqcPkimk2hpXdyQZYgH0p8tmbQQly4jXjrTvYqrflKsd0WJGO/NF7Ixin1JbacrNnbgetLmNYcqZYvZg8eCegqGyqj0MtsmQknjuKpPQ55WSuOhn2yhBzn3raKtuTFam74dPnXiRZyCRklsBfqfSunDR56ljdNH6j/wDBEvwcLiz8faHfy2GoaPq2jol7bJlkYEMrI+Rg5UkfjX7hlmB/s/hehUe7ndfceFxU1Ty6hOW/M7H5af8ABQf/AIN4fjD8OPjZrXjL9lCDw/4w8BazqTy6fHca9FZz6H5jMTDN5jqNqHgHnIA4rzcywmMq4luCaXkfIYqjD2jnOmry6NtfPdFL9kn/AIJkfszfs7eLLPxd+094psfiR4whuP8AQfAXhtXl0uyl/hlu5Tg3QBwfKTCHu56V7uSZJTdeH1m9m+ivZd91d+V0cdDDYly5eX8f1P1T/Zq8H+PvGVxZfEj4tahDNd6fZRx6JpPkqltYLJxHHHEAFQDHQAACv0ChgqeBpWS3Pq8Nh1CKuj6a+A3g6x8Ra9qeqxWsIh0u5lncLkbpBkJnBHcuce9eVnmMlhqcIX1nZfIWYVJRhFPeTsdN4LvW8WyzXGp3bQ/ZpWChCFAGSNzsMMzemTgVyYyLwkUoK/Ml5/dfRG9an9TheK5r9/06HqvhvUZ7Twrc2l5qRuPsgQmdwRlSAevevksRRhPGRnCNua+h8fjOWrmEHGHLzX0Iku4bvfPaMELSjIb/APXW7pyhZSN1RdNpT6Ict/LBcrJHIWUn5wjYVTnqR26YrN0YyjZqwSipQaSKvj2w1fxbph8G+Hpxm6RlvZJ2wscLggnodx7AfnTwMqOEn7esttrd0c9H91L2ktLbep8E/to/sl/Fbxf4Q1p9M8OarqOm6WxWxuWhBMsfSUIM5I3DepAP5HFfUYjHYXGYdQjP3rbLX7z18NmVOnJQufkD8ct/g74m23iDVLfy7m4t2s9SWRSD9otzgEgjI3JtP4V41KcqTXNue5WmpRUonKRnUPi5eT6xqTh7okyW6sSQgjUYAz046V7GHrqe7OKblUuZnxJ0+38T+HhplrKGaytGk8rHzqWbC4PoCrcf7XtXXOpTVJrqY/V5RSk9jwrxl8DdO8T3E00qmO+itmkDRL/rVAXDY79efqK+XxuBp46eukjzquXxxF57M9a/Y2+F9h8O/A93rV7p8rarqEuwXssx2iAEHy0j6Lk4JPU8V+X8W0auGqQoN3W57vDeXU8IpVHrJ6XPX0YEfMc+lfFTlpY+pbsJMCcDIrKKM95CfwcgjiqlK2hve0SmYS0oXd36k1N9DO2ty9axKnUAHtxTUW9RqRYbCkD8sUSbYPcbNHlASozipiaRtYjiQKj5PatU+xnKKbM7Typ1Nhu71vFysc0E4zsbF7yhGccCsKj1Om+hmyk7chaSlZCumjOmaSR2X26U02c/LdkbxgBSacdyrqJFcByhIU+xq+ZN2FKKmhukqxG16mXMiYyUXqWJypfBNEXyib94jQtGePwzW6lFoiUHJ3HyvlCen4UOKfUynBpHo37LH7RcvwF8Ufa/Iee28zeLSI4M0p4Ga9DLswnh5ctjzcTl8aurP18/Y4+MDfHzwLa6fqsUdtqE6hhbrcBjHnoDg1+k5VfE0eaT1Pj8c44Orax9VeNvjB8GP2OPg3AvxI+IGn6UwiPlLPOGmnmbJOyMZZzk8AA54pVqsXW12PKrVnzJPc+LPh1+2v43/bu+Nmv/AAG/Yt+G0D3Hh11/4Sfxj8Q9QNna6cW5CrZRZuJ5cHOw+WADlmHStqGbUZv3VeK/M5Pr8liVRglffXt/XY8xl/4KZeAP2bP22db/AGN/2gfGmk3Op6NNbxJ4w0Gylt9NuZZEVmgkikeQxMjErv3spx2r2MTyRhFzVuZXS8jtwGMp5hOSg7pO11+J9k+DPjBoHxBkml0XVY5FZsW6RSB8jtjB47V5nLTc2z26vLBK50smi/ELWG8u18N6neJKBmS3gxkfViBn3rKcUjirYik5XbPfPC1vNH4esrOexngaGBUZLjBYEDvtJFYxfKjjxDU9YsvNasGLBSaTscsKepJCpDD61Kepvay0K2safBqGny2FxcFA6H589Kp3vdFJtvRH5H/8Fffh7pvw++I1r8WPCl1+8jP2bWVClN8Z6MfXB5FdNSjUlBTSFFOL8jzr9j+yEPjm3+KWheF9X8SvahWhgs7cykEdRjI5FTCmo+9Y1rTc4KLPXP2tf2s/jh8cdXHw+8PfB7XLKaCArb21/AIDJtXPCscnpXNVVZ35VoNUVGmpSPxb/wCClPxO/aT0PSta8G+M/D+p6NpuvX0EV1LgbJ7aL94IZCDkZl2tjvsHNLDVcRSpTh1l+R5mLhRrYum39m9vU+HHjJIwAR15ojFpanVGLs29D6c/Z28OP4f+EtlJNDsk1G4lvHyOdpwifomf+BV8TnOKVTG8q2irH1+QYeSwjqS+07/LY6i9cRKxAydvWvKi+edj3vZqKuR2jbYgT6VvNNzY5fxWWAh3DC9T1rWMUkKdpM0dOBjO8ilJq1iuRKNy40wdsbgPqayVkzKMrMu2TYAGecVjVZ2JJK7Lm4H5gOtc63BO6HRPtfaacpXWhKbiy7BHuHy/lURabszfnsi3bAh1LH8KrToKNRdD1n9nnxXLovimC0aDVJbaeVBNHpS7mlwQQr+iZAPUDiu/BShGet/kcuK9o4Ple59Y/t0/8E8vH3/BT79hez1j4OaIJPiN8MJ5rnR9BaWP7RqGmTqPtFmrfd81WCyIp4JyP4q+uovmipx3R8HmNJwxKlfc/Ij4Z/8ABKf9tL4k+NG8O+FvgR4ntoYpwuo6prWkPp1tYhW+YzT3G2KMDByS3GPpXowVWvG669TzK8Jxlyt3fbqfqv8AsR/8EytO1j4kR6dpXxmtJbfRNIhsde1Hwfdzb7kMo3wRzFQqJnI3IdzdRgGrnl8K/wC8hUV46OPV+e1vx6+tvQw2JcKCi4623P1I+H37K/wr+D/g+x8HeAPBum21taRKwMtkZXhbHLZbO5snknn1r1KNKlCKsrGTbi7t3Po7wdpS6F4QstOXYGW2UyGOMIGYjJOB05PSuCSUq0n5nJOVtEW0Zy+NvGaqSijNRtqSklRx1rJbsLMikdscjrSsrnQvdgVb+a4GjXFzbo0bLGxBK5PHoK6Icikrigudnwv+3FqXijw/eWUt3pGoXJuoJHmt5W81DH6lQMoR1BHTFejUqJq0NT0aEYxWmrPk34p+ILe18N2ms2d8ZJdOm8+0lYDJ56H3FeVP3WmdCrNvQx/An7RWjeKPF8OizXT3cjQYnZyR5LZySo6fjXXSx0ZaGkaEnSu9D0XxNI6wP4itZmdQgW6jQ8SwkY38dxW75ZNTRzOzXJI8c+Kml2ckk9y0gmBXbMGUESRPnax9xnFc9Rwd2jtpKPKkfEP7V/7JXg7xvrV7dXumGa4SNJbS7t3CTLGeCA3OcHswI57V5OKnNuy2Kq4eGJ33PAvhJ+wNp/i34p2Wl614n1D+yUuwbqzm08JJKgblN6uRyBjP6U8OlKOqPPjk/ta65paemp9o/FjQbPw3r0ekaVZRwWMFpHFZW8Y2pHGihQoHbAFfL8QUrVE4o/RcIlSoqMVokef6jIHbHIHvXyctzdtszZhjJzkd6TkiryM26iBkznvWiqaWHa4m4BCCeaizuQmJpLD7T1/i612aOkiLNysdFpznGMZ49K5KhtTi7GlEcKMfjWL1Ld72FiYBjnn6VXs76j5R/mK7BWz+VLVFqDZOrbDv29e1OzaKTsMlIlODz71i207BdtkJjVMHbz6+tWk2ElZCAkMcA+1aciRktJXCWdmTB4IFYvcubTKsrqOcdTVwV2Yy10CGF5JlVAS7HgVq3eVkKN2z1f4BfA+++Kfiq10+x1HR2lLASQXmqRxvnI42kgmvuOGuHpZliY6rzOmnCE7an66f8EzfhzY/AnxJqPw5bUba5mu9NW4uBAiYjIIG3Kjnr35r9w4gwFPD8OUI000oOx5XGdCM8lpVIprllY4f9s3/AIJy+DPGHi7WvFa3d7anUbsvItlqMkG6Nwcn5CB1wPx68YoyuWX5lhYwrx95K1/Q+fValmOCpylG7Wn3HjfwP/Y08A/B7xFcJpMciz6gZIZ5p2LtKyxtKwdsncFMYPoCv0r6iGDwOEoxlCCutu9/L5X+RvhoNRbgtFv6X/zse4eKvHGhfD9NQspbgGSwvrcJhQPkWHA246jdk+2TURTr8s3s0/zO2im2rLQ9q/ZMu5bX9lbVfiJqMAD6tNN5TZOZEBKKT+Oa+Mzuf1ziKlh4bRsebj6kaub0qUX8Ope+HmgDSNFttfv4Le2a6k+W1YHMhJ5dwOWOM9fWu/H1vbV5UoXduv6K+x3Yit9YqypRba/rY9rR7Sw8JSaxqNrHE00SmQLwG7AV8NapLGqlCTdnofEVISnjVTptuzOTj8WLfo32LZEAQCD2X0Fe88F7N+/qez9RlGS59TO8QeNVtpZGnmDWvlkYi4bpkn+VaQwyjBWVpA8PTjBJrX1L2gfE9G0rztLElzcTWzvFEU4wo6kgZ68fjXBXyxVJpydlfU86vQ9o+yR8ifHNvj3481HW/iP4v8XXY0jS32afZ2UrQpGwz8oGQM8dT0r6bC4TB4ZqlSWr+82p0qcNKcfVn5a/t+aQPjL8P9Y+MGliy/trR9SEuriBlLTwg7fOKp0IzgnuK8zMf39WUo9D1o1lTi1I8K+A98lpbRXUq74vMGXQbuvX8MVxxrclmgjeZw95qd/4c+I+t+G9aKyLbaxmJ8DD28udo64xz+de1GvTqLfodKilLVl46LZnWX8kq5tLopkDny5BnB/SuaE6UqrUXqtzT3eWyRu3PjPwv8O/E1l8N9ZlkiifTI5Vu4gSkM7E4jcAHHy7T9DXy+f8NUs4brc9mkdWCrNVfZpbnXOsUE/lwX0NzGwBjnt3yrD19vpX4zmeBqYDFOlJ3se+6dlqPYq4GK89Re4uVDJX2KQOmOtHI2Q5JMqQsWlBYj2q+SxSd1oaMWCBipbaGklqx0rAYBY8VNmwdmwkcGPPbH50+VoV2mRZDI3PaqgmmN6amZZBYtSLH1rf3rHNGalUNi6lzx3xWU1c2lFrUqTbVT69ay5WKNjOuwIiX6ematRZEnGBntdM7bRWzgkjmd5O5KjgpjHX1rPkdzeGqsNiJiY4HFXZJEVIq4zezyktmo6EKHM9CYYA9PqaqMWWm07CTHMRI/nWiTJqOysULRjBfLcZIKtnPpWkIxjJNmK5pxPpP9kH9sDxt8KfHum6TpXiFtP06SQfbJkjDSSDPTJ6fnX0mU53Vw2I5L+6eRjMpo1Yucldn63fAK3+Cfx/1qx8Y6vY2Os3kZjZ764IlkXBBxuOSv0Br7GNWGJTlHc+OzCCg7NWPwj/AOCwfiX9pP8A4JVf8Fevi5efBPxtqfh+18d6r/wlOj31jK0Zltr4F3CsDztkM0Z/3a2ybMXllaS5FJPRpq6PjsyyPD5z7lSTTV9U2nr6Hx34Y/aK+IvxK+Laap4gt7vxNrfibUkinWRy0s7yOBwepb0rozbN6mYYr2s1Z7WXY9rJsBhcgwaw9JaI/b/9ir4Cftoa3f6d8Rv2drpbKx0WxhtNY/tu+aSy1F0UBzgAkSZ43L6Csabk1zp6npVKrrR11Z+qX7PPi34w+K9Ej07xjoV3p17boq3Esbo9uzd9hcbsfVaVWvGV4uNmck04yseqw/8ACR6SDLeSpcr3OQCPyUCuPnUupslzos2PiS3vGMckTIc45WtOS5jJSg7MstcRH5kJ/KlyFXuRpdm6VlktWVc4+fvV8tluNWTuj5Z/4KIfAPVvj74YvvA2k+A7aVLrTpB9umIHzAZGPevUw1SEaHK3c0jTdk5PRn5J/A74qeMP2c/EN94Cup7iy1DSbqS3ukMhB3KxAIwehGMVxQqKL5ex2OnTlG9juk+OOqa58QLXWNV1WYvMpVbl3JZW65BJ6+9dEZ0+phKStqtDO/a3+Dnw++NXgS+0rULe1u5L2wJuYbiEFpOp+91yOoNarkpx5zn9lTbtNan5Gal+xhqPh7xfrMF1Z38ukaZdIyyIgyIC3zF/YAgZFfK5hjpx5nTjsdWFwvtai9s7RPStlvbW6WlrGqRRIEijQcKqjAA9sCviZ2nJyl1PuocsIqMFZIo3WCD8tc0ny6o7FHmVmR2y4VQfWvRfxswn/FZeQcjjtUO5inaRctldY8gdaxlJHZzKS1IiszTAN2ppqxi48rujXtXMcYOKzcG3cv2mli/aHeMVhJJGlMlMYLZHpUlzehctiUXdjp2q0kRFczsWY9zEc49TmiUopaGiUVoevfssaf4N1nxX5Xie2guo0cCS0fxIdNG3I5dsHzE9QOa3wTjUqchy4mpGMGj9rv8AgmB4Y/s4tLYHTrWztrLda2eikyWrxNgB/NPLt6mvvsFho08I5S3v20sfHZtO1o23PKP21f8Agn34i8b/ALVd7dfCrwHpGnjxXOt3f67/AGULqaPu7xiQlEfcTyF4616FONarR5Yzso7o82MsLGPtZRXO9L9bH0Z+zd+yn4d/Zq8MR6HZDzRbIZr+8kyzzznux6sxJya3jL2Xw63MoytGzO8nuZpExbgtcXUqL5YGOWbFaKp7w1LRM9J3XUF95kxVbVbZY0G7ndnkkY9Md+3Suf3eW/Uys3JtFlVUAMvNY1Ndh8tlqDkk5CmojcIpJEGoahHYwGeVGbb0VFySa2hSU5aMipJxiVfD+s/2xBNHdqAYuX29MelOvBQVosdGNVwV9z5V/bY8ReBfiyup+Btf0i5u5orSQWsVocSKADhh8p7jPH5104ak0ve2OqVGtBp9D80PGEeq6HfXfg6+acwJGwtmmUbyuONw65FZ16atJI6qUuZXe5438DbXUdU8V6i1lfsdRtr13iduC5B+6fY15mEi1UbkejVm3FLufWfhjx7/AG94fjhu4kh8g+XeRMuChbhlPsTyK9j28eSxyRoSctTzTxBqotNRuPDmpTAm3maEsy/eiflT74NcbrqKsdsaLTPONe0eK/migu41Z42ktpj6gjIrgc3OdrHbGk+S9yn4I+G0Hh+Z9XulTfaxPJK7r/AuT/hW9Runbk26nRRp8vvGN8Qg/izw1a+IUJL5ODu7dq8DN6bqxuj2sPVVrM8p1RiHIcFSM5Br42cXfU7+WyujMupAo3HoO/rWagmRzNuxQlkDtyc+lNQS1No2GvGCmM1V9TCr7uw3SGAnPHOec10ST5LWFCa5jo7BQGBJ7VxyjY6YvU1IV4wO3Ws7MvUeI1yOfoa0Tdhc1hsQIm54Prik4iTk2Wzs2bS3albQttxZVEx8wjHWj2a3HGzFaVME559TS5dCZtpkDXcYYAHiq5LoiLTI2mZ8EED0qJUwk0V3ZjLs4xVpKESFrqafhmz07U9bis9TuHjhJy/lXEcb/gZCF/Wu7LKFCrXXtr8vlqzObT91bn3/AP8ABPP9n/RvEc0vj3wp4Xii060T/StZ1S2tnuEYd42jGPx5r+huFssweX041YwfvbX3Z62GpYbD0+acfee3mfZf7FWq2ev/ABt8YS2108g0/RxC0juCzkn7xwBgnFfVcZSlDKcOrbyPI4xk/wCzaMYr7Z71C2ifFHwYl/qjr9p03dFeR9SWHQnnv1/GviputlGN5YfDOzR8RiVUyzGSpQ+GVmj50+Ifibwh8MIb6C7FsGNrdSWEBUfMpCiR5D/fLyk++7619xSnPF8rbfS/y2X9fod9CCSSjonq/m9f+D5nxX8VPjZrnxH8c2+jeGZVl1DUblYrW2CA7neQqigHrx+p9q9GNRUqlqTXuK+traa9dP8APY9GFVYeOi27n6Q+K/EGlfA34NeFv2fNIt0u9Wh0aMvbMuVZkUFy3Hdtx/Cvi8nwNTH4+rmE3aF3qeHlWGqYzHzxU9I3sbPwttdS1Dxelpqls0tzLCslzJvAVM87UUnIUDGeO4680s2r06WCcoOyvp/wfM9rNHRw2XOpGVv66nefHK+1EaPYeEPD1q9xfX048q3h+9sXqx9ACRk8da+byL2NPESxNd2jFb+Z8nklShGtOvWdkuvmQeGPg3rsNolz4h1uNJiAWhgTKjrkEn610YnP6NSdqNN27s6cTnuHU+WlBtd2eefGfSJdJ1z7EsuSf4ANqOPx712YTFKtSTehNPEe2ipI88+EnjnUNT1KPQrZhFCfNtIpC+WiIkb5iD2xg/UivTl7OVJt9DqqUrRbZgfEDwH4v+N96nwV+F81tLcyyyebd3mXgsYhkGeQcEkk8DqSa0qYqjgqDrT6oxnOjRpOUtEz5c/aC/4ILftDfDPQ9W8XfDb416P45l1HSp4tT8K3GniwnuVZDuW3+dldh2VsE465rxKeb4WdOVotfijipZhhfhkmflr8PdD1jwpJceFNf0y7s7/TbqWzv7G5RoZYXjYqyurYKkY6V5sq99EevTk2uZGD8btDuotWj8R2dixH2UWty5bJKggxyn15yufeuvLsTFNqWltEdMIzlJF34dahZNc3PijV49ltbWayXC5++6jp/IV1VcUlJ8p2QlGC16HjV94r1rxFFe+PJ72SK8n16SczdPLBOFH0CgDHtXblkvbU5JmOFrNS55dz6B8Ea3da74Qs9YubyCZjHtkeJNuT74HNfjnGWWzo491ktGfRQxKqxujROpxxsSW/WvjYrTU6FJcpFNq6sNpP0NVZI56jW5GmpJG+4dD3zQ72KpVE2Tr4gVCDn61DSNJyVtBJdfUvnI6cc0WRjGrZh/b4MZXjNDtcc6lncauvqq4BHvTLc1KJVTV4Uut7HgmtFJtWTOOEmpltvEayYBI46c9KmSR3OacdSGfXosgM/P1pJXehy+01sipNq6ODkjGKcrDqaorC8h3fKe/enq0KmnbUet8nWld3BN8w+O9GMGnIueqD7SgfPHPelHYzpS1B7xW5J6e1XZFu1xG1FdhQHOR1pt21Iq8tiksyvLwevYU1PQxpt3NLTpRHOrNj7wyNxAP4ilBp1C60rQsj9Z/+CJGq3PiK7FlY31m0ESrvtrIthPdiepr9GybEUvY2PzvOaLk/mdt/wW8/4JNS/wDBRnSdN8VeD/G9h4S+I3gNXbQNf1CHMF7pso/f2cpweAcujYOCWH8Rx1YylTlTc4q78zyaEeXERnFtNPofDX7DP/BH3Sfh58VofCvhLR/Dt3qyT+X4j8XR3k+pXcEB4kW2AiSC1ZhkDAZ8H73rhhKOIxE+aW39bHqYyGGp2cd33P3I+G/wd8M/CfwTo3gTwXpMVjZWsSxW9kkW4KB1Zs/xHkknua9Op7OPNGC0R5dFSi9WdpLrM2kOLWz095iMDCLisJJNXbNp2TbZbtdcubtzBc6LOmMZ4BrL2d0ncUXfVFXVta/st8/2RIR1ZhFnsalN81h1Yrl5rF/SdZh1O085YXTB6NGRV31M48ttBdVvDb2nnRoTh1z9M1tSV3qWos4T49eHNY8c+F10/R9dfT41HmPcR8McckCujCpQqakzp1JwtE/E3/gp/wDCO3+HXxhX4peDryS606+mEGrSeXteOcfddgCevTOearMYUKb5qbfmddJcsLPc8k0u9m8Q+FnvbG8b7VZkTRbc5OOo/KuClWg2rvQy5ZM6r/hcN7q/hFYbeZVleLa7ydQB1FOpX9ppc0pRk5angPxbvrS10LUZJC0U92whUrwHB6g+tePj6qo0XbqephqEatdJnhl0EtzsIxjjGK+MlGUndH1SstCnJcKxworN0W0wnOUVdEcRICnNd7+NhU/isvISFBHSok7GT3LltN8v1rmkjWMk9xGZllDbcHtWlO1tS525S1FM2MA/WiUlcwj8RftJGUda55anW5KMVYuwkuQCfes3YS95l2JRkYNPdlPQ3fDdp4WvLK7stXnvU1GXy10kxyxJbbt3z+ez8qMdCvfrWtKhTqaSlZkONW91sfUH7I/7Ni3HiKw8WeKPD/ggWsVwrF7jxi0kTgAgF4Y2O9v9npz7V9Bl+DjRlzXizx8ZVk9Eft3+xbpnimD4dJea7qel3Vt5McemtpNj5EUcQ/gUHnAGMZr62Muagle9z5XFTjKWt7ruexStDF/pUwXKKcORyB3pqPKjz2+aVjhfHfiPT4VXS7e5DLOfOm2+44H6D861pxbndo2Ssl2MbwDdpr/jeztxAzi2SW7nkOfkP3UXoR/Fkcg/LW072d2JRfLqeh+I9A/4SWwTT21O4tVW4ilaS1fa5COG259Gxg+oJFYNO1jF1LKyNHK7Aka4AGAKhU1Bag5Sm9BrkgZyAPUUla5cY23M7xPeQnw/OYW2kgKZCMYNXFuMtDaKitzkPhjr0t9a3+m2ciyzyNsVGHQ4wSfb3onGUtWVOolayKuufsnfDHxXBdzeMTd3V3eW7RSzifaI1bsg6DHbvXVHGVVFRSukZe1q8176H55/to/8EqPiJ8JNVvPiv8GdQfxVoKZkvrKLJvLNMHLFFP7xR6jkY6VdWrSqQu1ys66deM9JaHwh8LGudA+Ll9C4aINdkh9mCue5r5+E3HEtM9u/tKSklofTOraEbvSZdas7opd+RmYbCsdyuOhIwAe4r1pRXs+cilNX5Tyf4uSx/wBkxeKLJZJDDGsczk4Yg/3vdTx+VefUfVHZTgndNHO2F8l/Ob9fn3xI5GchiOhB9az9o4q6OynBN8rQnxE8TNF4K1TTtMY+dPYySXLDqq44FX7S+7N50lGm7dDivAV5Nq/wnbeN7QxgkAcj8K5MRHmpvQ6MEpSjdnmniXVLMyNKSFZWxIhOCD64r47EUrzPR9tyqxgXWr2JcqRgg9CaxWGbdkzkeJ12Kb6paM2B0HfNH1axrCuwOpWrJjt9aiVGz0KqYjmjawyyvoYZiycjNVyNLUxpz965qW3iIRjG3jHcVhOmmdixCsWU8WvnCtxUezSRTrOwN4tboG6U+VGXtJtjP+ErkzkPyaVoXNYTcdbiN4smIz5p+hofJsFSrNrQi/4Se5dvlaq9xIVOc1qNfxLcYP7w+4NS3EKs5yREviKYvkHPtVXikYxc2yUa/IBtz17+lJcrLcrsmh1fcdxbJxyM1M2tilN9D6B/Ym+DvxB+Mfi61svBOk2zQNcqLnUL3QlnWIA8hZJcKDj+6Ca/TOC8nxVaUZ2Shve1395ph4OrPm6Lc/VLxFFp/wAFPhXH4A8OWayNHbf6W0Vuu6VyOflH8q/cssoQqVlJv4T3qMFUqe3k7JbGz/wTnXzNH8a+Lk8zHmpaRm4tvKcEAkgjAPVuvpXHxrOM6uHoLrqfKcUt1alGl0bbPT/h/pN5e+NNV0S8vpILLV7ZrVVR8YkwcMPQ8H8xXmZvKEMsp1Iq8oO/yPLzrkjl8KkVeUD4F/bY8XX3gX4g658P/FHiXbfWFuQ9tdOsbGLzAd8IPLlvlGB27cGvcwmPw88LCcPtdlf/AIYdBUp0VUjrzItf8EvP2bdb1z4mn9qL4seH3ttP0qJW8P6fcRbWlkUsFlKnsA2Qe5OawzODqUuWnpKatfy7HVUoueH5V1Psn4u6FaeK9I174oTADUrC3jfTRIQA5DH5OeueOOOeM1OXTq4SdHB01eMr833DoTnhalLDUo3i73Jf+Cdni74gfESTUtd+Ii2S3MCMyxQSCWRA8rKgkkAwWCKMgcDOO1eTxpSoYSlCnBWb+77jyeLf3eFhCMZK767dz6O8W6/oHhG3ufEstskt2kSxYXG8jkqmew5J/OvhMPTniZqleyPiqFNztBv3dzwbxR+0L4tu9Va7OplISDttIH2qi++OSa+lpYDCYena12enCnSbSjEpf8LJ0b4qaS+napfo08g2xSbcbGGec9jXNKdGnUTpvTy8j0VQ5UmjxLTbjxH8P/GesaRJbwPPb3wnikQ7d8Dcsw/IduwHFe5g5U6sXd2HXcqi3Po/4C2fh/4C/Cq9+JvjiGO01zxEWvp4JXG9Yx/q4xxwACD9Wrwsyq/2hilCHwR/PqeVVmq01G+iPm/4p/tdX2vfEVdY/t6LzlZmhjW52C1jG7B478d69OMMJRwyppqzX9XJVGLPgX/gqLZfDX4q+LR+1D8N/s0GsySx2fju0tV2reORtg1AAdGJHlv6nYe5r52tShTblB6HtYKnKnHkex8jXunp4kuxBGWkmP7ry2X5XU9QR09Kqkk3dbnoqEtOx5v428SaO3jd/hH4Xljkt9J3Nq1zCcq8+D+7z3Cjr7/SuyFKp9o2Uoe1stkeX2sU138NdXktoiXtrwSBV7jeQa9rKKVm0+pzShOVGUo9z1X9m2/lu/DU9lNpkscg5znIH5Gvm+NsFCeCbS95HrZZzzpNM7W5V0bp3r8Nc7Ox6iT5bFSRnPGPrzU88SPZu5GiyHkuQal1VYPhYN5ykhRmp503qV8SGIk5b5mqnViloTycuo7bJnAP41DncG0KIpWGAx470e06Bq3oMEbmUJk9elaxm7aClHl1JzBKqZAPPak5NbgmmQeQ7tyfrQ6lkLlW4r2vHf2qed3KVmIISOn596fNKwm7Mb5ZV+px6Gi8mg2FIdPu/hS5n1E/eGpvP3mPNae0sTbkBxL0Gc9yaaqLqNXYyVJFTkke9CqJsTi5DbVGJyWziru3oQ0oo1NOjuLm4itre3eRncARr1Y+laKLT91mM2rH7Lf8EcPB3ibwP8Ppdb1Pwvb6bEbQyRPDHtZzjOWPevv8kpyjR94+SzTklK19T9CPEPgnRPjj8M4re+maGS7sdn2hOvI5B9q9KzhLyPnZpQehz/wh+Afgb9mrwzJZaGql5XLzOBjzG9T6nn+ddtKd4csFZGEr1ZqU9+hsaD4yS+8VyT3w+WGBijHovsPWs69NpK2x0um2kmavhfxidc1qaO3tvkVsBvWsJ0pcmphWk4T5UdVHexOdrZU5xjFRCLirDumh809pGp85lwP7woauNRlIonXdInn+zWl9DuHVUYE1vChKKu0TUXs15lHxZrsWl2yRMoPmH7zcCle0jswlNyjzMwdZum1vwwdOtbP7QLklEXdgq2RgfSt6dua9xyThO1tDwL9oX/glh+zl8YPhzqdv8UvGWp6bfXkLD+1rW6EccDnJX92RhwD68/SsZznVuoxucl6ildPQ/Hz4l/Azxl+yh8XNR+E/i/VbfUUtm36ZrFg+bfUrQk7JkIz1AwR1BBFeXKE6U7M9CjarC55t4g1MaDrEhtFZ7SeTciqfunOf504qUtGXJK+h438f/GF3rHiy0sk+S2hQq2P43I5NeXm0lGml3PYy6yldbnE6pKk6LIT8xX5vqK+bjNt2PoVSsr9TPhUNxjvSrS5YtmUo8zsOQgxrXXo5suf8VluFyy9aiSRjU0ZYgbZ/9espxTWhVPUmRw7YI5pKFkXNSSHszq+FHUdcU4wjYiKRctJnZhk845qZwikbXWxp2b4xnr7VzSiaxi0i9DITwfzqEtbiuW4GhJUXETSLn5kR8Fh6ZqJ8zemoqlSSg9bH35/wTI/Yz1Dxhqdh8R9M8H6XptmZlKX/AIhvJ5+Qeih/LRWHbCsa+myzJ5xala19bs+cx2LhTW/MvI/bfwPosXgTwLp2j/uhKqxo/lgKpdiBx0/LrX2FODhaPY+YclWncx/jp4h1Hwz4Vi1SxQtGJik4H+0MA/nTUkqiv1MIxTqnka+KZ9cZxI+/a6KSueo7Z9OK6qkobXOuEbvVaHp3wM0yBrO98RopkkuWWBZ+cMiegI4GSemc0ndpXIrrkjY79CA+DIMgcLnms5SSOWMFucb8SPitB4eEmkaHeQi9Q4mkYbvK9gO5pRiqj97YjncpWgeX65+0J4lsphJYa9NK4OGhuMbTz7cVpCnTi7M7o4Rzje51WmfGBPG/g+4+0qhlBxP5bDCEdCfbjH41TjTjNpdPmW4NVY01Bu/XTT1/4Fzovgdpmm2Phe58cXKxxveSMBLngRISufxIJ/KsKtZS93ojKulTl7NHiH7VH7X93pNz/wAI94Q1GKHdKI1aSYIp5xuZj0FFHEwpyuEKbtqfJXjT/gpv4r+FXxNfTrTxRaXsqzBWFjdrJFKO4z0Ppiu6riY19+pUcNKo7rZHjn7Vkfwa+IPxY0/40/C7SodC1TWrT7R4j0e1GIJZQebiIdFJz8y9M815eJwtKFZTi9T28FCrGm4N6HH/ABX8Tap4h+COp+H9D8RvZ3YRGjkhB3ooP3hjrg9R6Gum9OeGfc7IUo06t7Hnngnxvd+JPCz6VrsiPcSRBbqNudzY5I968dVOh2wpylK7MLSrjVtDvJdKtJg1uJMxHPIFKVrHXLmTsi9KHvtH1SS4U77qykEf0C9ayi3J3N4xU9JGF8A7lv7Fk04qpEkZRgw4J5612KKdPUqjJRhY4b4neBtS/tGYf2eyAuTlUDD8D1r4zMajpTaS0NYQjVicLP4WmRgsrnjpnivKWKk9i1hIojbQYY+pxjoc0vb1GS6KQ5dEV8FW/EGolWqAqV3YI9F8hs9P60/aTkipUGtizFpm87T+BzWUp2Q4UWTLpAzhhWLrSZuqVmDaZEv3gDx60uebL5LCjTom4Cj8qPftcmw2fTU29BSUmXGBElqo4AGO5q7NomcbMdJZBhlgPbipUmtBxV0QLAsfIGDWlnJXJnFp2Q4QlmBH8qptQVjKzRseFfD2nazq0Vvq2vW2m2wYGS5ukZx/uqigl2PZR1r0MowUcfjI0pS5VfccoNrQ/WD/AIJffsxHRdPt/i34l0TXkt7aAf2Pc67cCES5Ucx2qHbEnoTlj3r+hspwdLLsJyRbbff9EehGdHB4R0qUm5S3XY9M/aE8Sva6hLKZre2mfO15Hznnge4r77JcBTnL2vL7zSV7a2XS59BRpP6rFdD2j9jPSLqH4JR3Woui3Gu6jNcSGNQAyqAo49OBXy3E8k84bW0EkfAcRVm8zbS0gkvvN29ubzwp4l0rVBEqNNrKtveXAKlgh+nHb1qZezxWDqQetodvmY+ypYnD1abbd1+hr/tOfBL4d+Ldd0/xvrfgXSr6+KeWl1d2quwYcrye1eFw3i5KMqLbstTyOHsTGFGdGf2XdHCuFt1S0itTGDLtdFTbGqgHr6JxX2cEnG99l/XzPoZTi1zI1PCWsWGpx3GkWBW5gCv9ql8vcHJB+Rc/dUflzXnV8M8K/aOTu3dXd7f10XQh0pX538jo/wBifwtp3h8eJrjTVXbNcxYZYwoP3+nr9a8DjTESr4qipfynh8Z121QhfozzT9qz9omH4X/EXxP4E8WX7WbTTR6hpkkowtzbm3jQhCTyVdGyB615mW06ccOqvr+Z8vQpylRUkrn5p/E3/gvP+yX8JPixP4E8faf4rlhjufLvNS07QWMEYzg8uVLgc8qD04zSnmlCMmmmVQqRhUtLQ+s/hH8a/BPjbwDo/wC0N8H/AB7aeIvA+uu32TULOTPkP3jkU4ZHHdWGQamjNYmLnDY9ZYmnUTUGdf4P8eeGfiH+0Z4O0PUpY2ivZ2jmII2ywpG0h3HqMbcY+tdsMQoUZRhvZjpSfsZN7o5b/goV+3Zo/wDwlcng7wlr1v5cW63jSUrtVcHc2eiqoBJY9OvavMoTWGg02r9dO/r/AF1R40KSTcpbH4tftF/8FatJh+JOp+E/hZJqWsadCxt21iJEVbxw3zNGD83l56E4JHsa4KmMlN2jsjqw2MwkpXcXpsan7K/xY8ZfGHw7411PxRZTw2T+HiiR3U2S7+ahQ4HHBAOK6MLSr1acpy2PXw+JVestCt8U/G6/CnwDc61plyE1S+BtNKBX/VOw+aXH+yMn64r1cso06k7z0SPUxElGnofP/wAEtPlsDLeXErNcXAkeSeQ8uTkkn1J/rXZOfMtDLK6M53T1RZ+Hdump+CfFWlSP9+0lJK9QQ2c124NuFSF3udlenGFKUEbv7K+oi01BrU6hdESDG1icfUiuXP6Cq0GjfJ5qneJ7NeQJ5hGeOvPFfzhjYexxMovuex8TKTxRg4PPHWuZR5h8mhGEG7cR19q0UEkZtXYpjGfu/Q1nKOpUYWG7Bndt47irUFYc4ocLcOen6UKKQlT0Jktk2kEDpzUTSTHGCiymtu5vcIOhrppWtqRNJuxrSaeNn3MHHNRVBU2V2sCp+79KiEU9zTSxG1iScbcetaOMUiIxs7iHTWHJUVLkrWG4pvUY9gQ33c0RloDimgNqqgll/wAah3bI5EiH7KQ+K2ilYUopjhAoPK1E4ohKxHcWylOB+NJLUuxXSAo3oK6VFJGFRo7T4N+AfFnj3xrZ6Z4UmEMvnrmduAgz1rswWHniK6SZ52Lqxp0/M/cr9i74ZeI/hL+zvPLr+tyXk7WOwSPKCMkY/Cv07AYb2NJRPhMRWlXrt2PqXw5qF34P+H2hSw94EEqZ4INdFozk7owhD2l7nnvxI+L19cavdWV9LHbR2zlXaZ9oUfnVKrTp6dBPCy5jqPgR4X1LxBoNx4k1HS3htbzC2L3QIeaPqZdvVVP8OeSOehFc03KU99CHVvLlR6Ja6Xpfha2ee00UuqjJ+zjcx/Dqac5SlHluZNK/NuJ4f8YeGPErtHppYOrcrLHtINZuE6W5FKcajsjkP2jPilZfC/wqXsNPa5v7w+Xbxp6kHkn2rvy3CyxdbXZHNjsXKjFKL1Z84XHxi+J1nD5lncvak/NmAEc+/rXv1o4en5kYOnOpaUpXO5+F37Sc/wAQ9Pk8C/EGdY75B/ol2y43+mfevlsU7V/d2PpqbpQjdHbfBL4gWGpeI59BvNQB/s+Jmdz06gA/rThecHYxrp1HeJ80/wDBRT9uXRNFvr/wrYanGNP02N43kWXHmSlTwPxrSFSFL3UcU/aXtHQ/Hq5/aIuPi14h1KzOsi9g026eSNhJ5ggaTG6IP35AJA4zXm4jkTsd2Ea5bPfqVr+9iMHm323aiGRs9sCs4vodip2ep4h8W4HOn6Vq8nD3Ms0jfi3H6V4mbwcqKfmejlUoqs0zkmmLxYOfZq+fUVF3Z9JKp0IUDp1PPUVnUXtNEccpNXaCBS8a5Pbit5VOSbKnf2raLkTMo4PPfFRKpzLUmV27k8LA9ajncS6bsyUzIhCkHNNTkzWSbQoviHwAMU7uxnya6l6xc5GTw3vWUpvY3i4xNa0dCAAcHPFYNvqVKpctIxzx+NWmkrijZbnZfCie3tPEkM6WFw955q/Y7u3mi/0Vs8sYpFbzeOiit8LOPtkurOXGTtC6P1t/4Jj/ALMnirxN4y0jxr4z17V/EMcRWd7nxDrO54hgEBLVMLHg8DK96+3y/CVaaU3O6XQ+axlXD+zb6+h+mmrXcUGo2OnLcBC8wKpj7wAPFej7T37PqeNSp+65FTxsLVtKVb2382E3kIkTZuGC4ByPT37VpPlULs5oK9Uoaz8IfDuqXaS6fK+nK0u+6is0ULcDHQ5Bx+GKlXep0fWXGOp0sNlaadbJZ2qBI41woHatNWjllOdSQ6L7JLKZ4tjOPlLjkj29qycVcmTex8VfFfxV4y8I/EbWFvNOnvreO+kJNr8zgbjwRnNdUP4aMKUrM5/TPiZovxU1Cfw9oglsNWtYzKun3bxrNcooy2xN25sDrgdK58RGU17srfce7h8QuS80VvAfxkXwp42fRr2ZRaajC8MyycYfB2n8xXNSqONT3mdU3zJOB23xD/aw07wd+zv4f0fT7xY/N0oSSKrfMzFiQv8An1rnr10pJozeFUq7kfmL+3B+3R4Y+Fl7JfeNrxLjWNRBk0zw4sg3bTkCSQZyFrnq1JVJtpWb18kaTdKm+TdnyX4R+NcvxS8bD4pfGHx/pWj2VvgotzdRW8UEQ6KiZyT+GTWkMS6dNczOn2bS5paWPZvg18ZtG+N/xQh1fwjcPLoOnxG0sLmQMPtIJ+ZwD/D6etdeFc8RLnvpt5lUqsLe6dL4sme31i/8Nw3TAwSshCv93J6H2IolJRbgdtKPtXcxrHw+gu2vEkaJ/KCsQPvD1rn9mraHpQTR02m/DaPXLlLu5v4Y7cKGkkHDY71lW54o2jDnOf0TV7HxP4n1KTTlxYRhrazHqigjP4nJqKDctDGjJzrtGB8DreOHWbizOcR3LL+prvgmk0yqN3JpifGnw+1lrM1xFp8hU87hKyj/AAr5HOKDc7xO+g+XQ8svUMjYOcj1NfN8qg9Tv5o2sUZ7IypgjHpVqa6CUVJ6FMpNZNkdO4ptKWpjUi4K5ZtnW4A2EdPTpS8gpTTdidYXjPK8YrKpFHRy2Jgp24PfpkVz9Q1IZbdmyR6c4reNkS5SegQxFSCR75qpWK5UPmiDDaeK59mLmaehEbUghsVtGV0NJyGywkrgrwenFKyuS7xZCtvlssMe1aJ2WhEnzMmtbKa6nW3trd5JHYLHGi7mcnsAKzk25JLccoWjc+jPgb8NvC/wB8R6V4j+MPh2LWPFl00c2i+Cmi80QAnCy3m3Ji5wdmC2AcgZFff5BgHlU4Vq0OactYxWphGT5W0m30S7n63fs0Q/FOb4Dr4s+L8enQ3+oxl7PSdOtkjgs4v4VQADt7V+u4FVKlaEZJp9Tpko/W4UYpqS1k/0PnT9qDUtM07UZLu506I3kinyru4kwoGegr9byqmqdOMj7im5ypxp9D7f/Z4024t/h34UsGhQFPDiSyDP8TjOfevyPOqqniq1RvedvuPyTiGcYVq7v9tL7jl/HkF1e6ysDHdJHOPs6bfuMDktjB9P1zXuYPkjhm+jWp14eXLTUo7W1PVNXTTPin8PZNE1V2WSBUPnICDn+8tfIYf2mU5gqkFo76HzkIvLcxVWG0r6Hlfxj+C/jTWNOu/D/gPxJNaALGGZFyzArgnk4LdOtfTYLNqPs1OqrN317Hv4HHUnFTlvqZ2g+Ebz4feFdQtNQsCTFbGOa9kHDIByTj1OcjvxWtSvDF1afvXZ3+1dStFqW/Rdz1z4M6dH8NfhfF4h1O2itn1K6gLrGMBY2IVc49jn8a+RzibzXNHTp68qf4bnxGcVHmeaOnF3UE7fqc5+1v8As9+Dv2gdBE+saNbXslshWEyJ8yn1Vuo+orPKqiox9jVW+pxYTmpU+SW58FfGP9gXR76zufDN1oc11A6MHjvH+1Q454Mcu4Ee2K9yrhMPjEqfJdW306HU3GppJHzj+xD+z18Uf2QPjj8QP2Y9NQP8OviFoF1rOhW3lsV0vWLWMyMsaYBUSRhsY4+XHbn5+ph/qWIcIX5JfgcUcM6Ff2kb8vU818Bftw3Hgn4xw+KNZ1gN/YUV+i4JQndDJGny84PNeVHF/V67s7pN2dreml3+Z6KqwlTcY9T4v/bm/a08S+IPCt4LO/8AKuPFMklrYeRlStgrYmcZGcO2IgRwQsormr1qtSblJ6s8fGcuHoqhHT/LseA/BP4V3Gr3STz2zmRyGx5eeD25ruwWB9prIxwcJvXufZ/wA0N9Dx4BtUiDanFtRSh+eXGUQn1JGMete/OChhnCO59RgaSpPmaPEf2j/GB8Z+P5NBhJ8vR7doHiY/dnZvnBHYjGK58DVnToOJ2Vr1KvKhnw/s/slooMQCiFunsDXVCMbpHqYWDpQ8yH4GWkl5p3iKc7cNbT/j1r0HONKUX5mE5Oo5FH4Ca7df8ACTb9P1BhEHw9vcJg9eTkDn6U8e1XpOxGX80a59JXd5ZXjhn0+MExjEiE88da/D+IqWDoYqUfZ6vqfS25Xe5Tmso2OVPH8q+PUlFhKbYxdP2dBwD1zScwSuElmAcED60kky3TXLcja1L8LVJWMVoySG0CrlutNo6VqSR2/BBGPas3FMzqRsQWcCm/Kn15rogko7GNNe+bFxb7UB9ulI6eW6K5RCwyMVHMkYNqLGG3Gdw6VLldDu2I8A28j9KhNg2ypJGQ1WQr3I5FwCSPyq7qxVTa5GqhznH40cxjFsSRcNgCle4P4hjjI6dKtRRVV2KsgLMdorW6juYKPc+g/wBhT4T6f408e2s2rvqEq+eoW1tt6I3P8TjgCveyWnCpNSPBzOo4Jn7aeD/Do8PfBu08PramGJxGptxLuOMjvX6FCUYpKSuvu/zPlXDmq3R7T4x0/wArwBaW6KSILVMBfYCppzXO7ijaMpD7v4PeDfGN9p3jK8so2cwRySwSxBo5TtB3Fe7fX8qzkouepn9YcYuJ0Oq+NtG0YixU72GF2pwBSjaTOKFGe6Lejava6ynm2wbg9xSqPSzLnRcCvc+F7eDXk1/T40icn/SEUACQev1qYylOHI2ZNLRo8Y/b++F/xH+JPwpEfwk8RJpetwMxt7l0Dc444717OVYhYecoy6nl42ip1IyfQ/Jb4j3v/Bf/AOBWty6j4ai8D+ONJt3LCw1DSvLkkQfw7lcc/jWeIlipTfLqjuozoUqd4Kx9DfAH9o/W/wBor9nNvjJ4v+Gs/gTxz4W1b+zvG3hZ5cizuQnmJJG38UUqfMp7cjqK48Q3TjeR14Wo2nd3Ob+AH7fkWoSeNprPWFaSPV/7PjRZMsFdAcj9PzrmwWJXNKT6HqUYU7pLdn5Ef8FS/wBvLx1+0B8bLz4E/CXX5Tpun3zR6rqFnId15dZxIoYchFOV4+8Qe2KyUqlSrd9zxsU71nCL0WnqWv2R/Bs/g3w//ZF9E0UZjywYdXHOW980Yujyr31qj2ssoKnB3O48U68968mmWxz5vyyEHotcifKmzaVSPPyo434824g0vQbRRjZGxIFeNmuIfsoxPUy2nZuTOFRcLgD8K+fm+ZnrNSepFIvGTUOTirIjlujQtdI/djB7VrJ3mdNaNqjRKmmOoxsHualpcoo07ssQaW7Hpik7WHKk09CddF3dV7daybd9BwV3YUaKAwOBn61Sk3obuknEtw6ZtA+X9aptGXsrE8doyDI/U0ly3BU3fQvW8L5C5znvU1Gka2ilqevfsxeCtC1nxna6pqmla9Pc28oNsmkTfZdwyCd07fKF45AOelerldGlN3ktTxcfNyTS2P2+/wCCWHgfw9pWnXetaJpOn2w+zAFodWN5cHOP9Y/TPHOO9fb0ORUrRR83mKmqCufWl+lo/ia08yyEkqo5WUsP3Yx1x79KFG8zzqU37Jq5X8Z21zf+GL+2tFBkMJKZOMEc5/St6llTOeCft16kPhjxbb6t4ITVZ5N0lvF5d1g4JYcE+2etTF3eh1SoWqpdCvrfxB0W0hXJBAI46kfhVRTvqZKDUjV8LavZ6vprXNspVQ+COeuBTlH3hVqbUbnyZ+3/APsC6j+0dr0/iDwf4x1vQ5buBRevpFzJF5hAxn5T1rSChOn7OTsebUUoTuldH53/ABN/4IQfEH4BeJ7D9pD4afG/xRbeKvDV/HqelahdXk0hEkbBtrbv4WxtI6EE06eEp03ZNtnVSxFaS5XHQ9H/AGs/iXe+EYpfGCMthPeaHFqtuoUjy3kh3kAez7l/CvHzSlUo4iVKpFxa0aejX3nu4KdqaUjyT4m/tXaJpej6S/ijWI7iDRNBheW3WTlvLgDysQORjmuChJU6kHbmSto7/pY7sQ1TpSml0Pxe+Iur/E79tj46eIvifqM7s9/fPIHkDMltDnEUK+ypgAe3vXs0KTnK0T5alKdesuZ6s9O+Ev7Ba3+p27+InnuyCGIMTCP8TjFROjV9tyt2+X6nfLDpz1dz7i+A3g2x+FcNtbW0aI6YCIhyqgdzXVFfV48qPaw2H/d2R0fipLq1+Jeo6ncxEw6oiTQsV4GQARz715c+b2zbPbw9PlopvcstGkUYeSVVUsPLcfypymki7tMp/EDxhPoXhB9H0d2W91H9yjKeVQj5m/LiuWrea1NK03Cjpuyh8MNOXTEhtk+6AB/+uuijyxVwwVLk1kVfhkRZeONQWMDC3rZU/WutSd2UrKszQ+LtnrKau8i6iskEi/LBcrlGyOlfP5mpPVHbTV9zxzWLaS3u3SSy8jn7g6fhXx1eElNt6HW4uJQk25Cg/jWSLjoQXMQljwVwQODQ52NJxU42McTz2M/yDKk81rBnn8jpzubWm3kV7EAxAOOOaicm3Y7VUi4k0qMhwOlY2Kg0MEy45I59aOZinoKuGOFX6HtSc7kR1FEfOfXpxUqxTjYGTnp1q00jWDWxDMAuPenza6EVb9iONA8gXcOau7UTOKRr+H9M13UdYtLHwvBdPqE0wW1Wyz5pcnjbjnP0pUaWIxNdQoL3+lhVZSjBs/Rf9gX9mi6+GPifSND+JYsbnxTNL9oj8OW9rC9xBkbjLfzgblx1EZYknsK/ofhbJK+CyiDxdrq7+Fc2veW78k3ZdOpvl2GlSw06z0j36/I+9/iTrUf9lf2RcKjrFEFPkttHuBjtX1uVYf8Ae866jyui1iPaw699T4+/aM0/wR4g1KK21fUrgzmZVg0+FSQ5LDHP19K/R8JUqYej7y0sfY0Y1HJSex9//CJBZwQaa8KobTw7axomeV/d9K/Fc1aneS6zf5n49n1pU7p71JP8TzrxhHcXHiSa1RVWV5HBkc9ADkBeOucD8a+owzisIn0sd9JXoxtsdd4J8T29tpk4a6ZGkt1ZwTuVZAcMV455/WvExmElOonbr+HmcOJw0pTi2jqbfVJG1sNd3X7uYoyDbkNx146HNebKivq/urVXOSUILDNRWqubmq2sEskiw+GvtaGEloSq7JST3z/nmvOpzaiuapy6/NHjQqykkp1eXXfW6NXxZoVr4h8Iy6TPpKzJ5astsGxhlwQAe2CBXBhcRLC4r2kZa3epwUKsqOLupfM4zTbnxVpcDwXOnysinLgRl8c9OBzX0FSODr2kpK/3HrP2NWdrq5pH4beH/FkH2rW9DMMk3BAjwenU9cfjiuCeY1cLLlpSukcFSv7Gemp8lftnWEP7MvjzSviP4W8Jx6hLpU5uPLlkVY5oSCJImLH5dyFxwD/SvVoQqZhgnJf1YbcsTQa2ufhl/wAFBj8LvhJ8Q9d8aQeG0fw5f30lza22j+PdLeWXe24QPDn7VGRuZSfKyAPTp8jjqMKM9Hdt7X1OBYp0XyuPkfIfhb4f/Ez9pjx9/wAJ7c+FbgWRKQabZWdq7RW0C8JEgAJ2qO56nLMckmvSyvLK2LXPKOhrRo1MRd1Op9afCP8AZ4ufBcUI1e1eJwxDCeLHzAZwQR/nFfVwoU8PCzVj1sP7KmktzSj8I622prrMAeG5tJyFkgGBuDbkYgd+OP8A9dcjnHmbserTbjqec/tTfCuS0+NDfEyLTVitvFltHe3aImFW9HyzfTcRvx/tGvJnXXtGkjso03GXMc+9pFpWkXl2Twlm4ZcdDg100a1mro6o1Gk7DP2ftNktvDOoyyoM3FrKM5xnKMa2xVe6VjGSlGm5JbnHfBvVrw+JzZ+XADFcENGwG7GTyOlaVJynTvcxwXM6+qPpJ40EcZCKCYxwvTpX4nxTJSzOSZ9Vy3AhgO4Ir5NkirkEGpGnqJcZJ4/SnHc3iyu7MvJ4OfStnqc83qSW0hcEe/FJnRB6EsbHJBFKxNVkGn5bUj35rePwmNP4zdnU7Rnk4/Osps6VsUpbdxJkd6hRvuc04tMYyFSFLdqtRRpCyQ1+BuxxmjlRcloV7gEHcvpzimkjmd0yrKJCMdRVaFuSaI4EbPOcUppdDK+o+RDnJwfeskD3uQzDCYIx61d+xNVoj0/S7/WtRj03S4i80rBUUHvVRU5OxzTnyo++v+CbfwI1TwP4rstU8UI91cvIGS3Ops0cfH9wcZr7bIMC6NnI+YzGrd6o/V7w/Fd6/py2ptViW3MKoFXtkV9Y3qeDK8Z3R61rUX2nTltlIwkSggd+KIwtIzTezNHSbf8AtLwrBaF2Tda+UxXgggY4rOpuzncvZVUzzfXfCvibTZWisonuJUfAY8swzxWEW7Hp2pqHMen+F7W7sNBtra9hWOYRDzETopp2lJ3PJrVFKbaLc0g5ya0howWpz/jPT7/VbNILGzEu1sum7BP0rtockZXk7EVaSqKxiP8ADDwtc6a13rWgSlwuSuQSKudZ83LF3Lw9OnBWauz4v/bF8C6R8Oz4vvPDFm9rZ+M/Dn2DVJNOMX2y28suYrqHeNplj3yDacbgxGelc+Kw1SpQ5m/ka1KcFCPReR+FWo+K7n4Vav4p+C/7HereNviH471e6ltt9xpEyDSy5Km5mLKFWRUIC4+UHDZ4wfFoUcdiqyio2S7dTKriKGGTjTm3J/h6HY/sq/8ABG74qeFtOHiD4jaXJJrl0PMnSLD+XnnaCepz1PTNfW0soqUaXPP4vyOVOCak2fQXjn9lm++FnhOSzutJMKTL5Rd0wd2Ox7nPavLx1KadlqethsYpRsj5rbR5LHVWgn6rJhmPPINfOzk4txZ6FOHO02cp+0HdxtrOnaej58m1yw+teDmcrzSPawSSOCebbHgfhXn01bVnqJc2hTubwLlWfA6Zz0qatuhpzQp7m9DqHyAgZyKH8dgrt+0dizBqCEcHjvms5SlYISdyxHeqOQ4pcztqbSd0SLqTE7Ff8QKV7IyT1uWbeR2IO/I7YqJVDp5rrQsQswOAx/AVLndGMm2yZCx4Gc57VpBqwQTvoXIAVwMk57UTlG5tyK15H1F+yl+zpreoahoviP4uxw22lCUT6YureN1hjjU8iQWqbmP0OCSa+jymlWpyjKXy12PHxU0r8iP24/4J9aR4Z0n4eSQeHrewVQqjfp9rLGjjn+KTl/r0r7Cm4+y0PlMxlOcFc9jum0KP4iQTSeYb97RkT5jt29Tx0zWftLVLI8tOahZbG3IkbI0TJkOpDA+mK3spaMyi2pJnD6Np50i9utGS1KW16GTywPunsaxb5Gek6iluc/qvhDxbP4ji0WxtTGjOB9oxn5R1ye1bJ80WxSlCCvE9O0nSoNE02PTLMfKg+YkfePc1NPm3ZwzrOT1LCwrKNsqAj0IrSdhRcUtTgv2iL7whB4Bv9C1G2hmuLiAqkK4yMjqf/r1eGjUnVT6FqpBM/Hj9s3wN4d1PwmfAvj+21yyGkm4Gg+INEs/tRS1di5tZ7fILqrsxVlORnBBFZZnhXODlJfMqjXdOrzX0Z+a/xf8ACvxh/aj8a3fwu/ZZ0TxVq8d1PJZal4j1LTP7NsY4s7JUUMSXOQVPpyAD24sny/F4uV1H3ToxWYQqL2N9D7U/ZK/4IL/FXwv4AsLOfULSyZtr3T3MZ826kI5OOwJ6Z9q+1p4DB4enZuzPEninQleMTvPHH7E2vfA/On+IIXSOJ8AW6DdK3ORgkGvMxVGCTaZ7eX4v226sebX+nW+hai9vHG6uzbc3CBWUCvHlZM9+jVktjqrqPSNR8Iw6xfRI32OQASFQCUNctZRcT0qVSdrM4/4iWVnYT276dOxtpZ0YKTxwNx+vGa8upeM7I6Hscne3DeIdVOoFQFLbYVI+4g6Vavy2ZMYupO7Oo8HWxS9RV6NtJHvmtqeh3QXKjF8EokPxG1VEHAv2z+ddberOaGtVmj8Zn0ufUHsdV19rMmMFFYHa3HHSvBzCtTinzM9SlGaSseM63a3tlOVnvBPEeY3STIx/Ovk671bvdG03KT1MuRskH865k7mlPUZNIVTcvTNQ4sJvlZThgW5kYOvBNWrg4qcQuLG505xLAuV9q05YNHJKnODL2najHdxiKXg+9YtWZcKj6j7i32negqXF2OiLU9wgYdCOO/FLkdhJWloTOP8A61Q1YptsYq7j0pBFNu5FcwgkDGPwrWmm9RzbejC2tSWGc1U5WQopQPRfgf4S8W6t4rg1DwvrV1pfkv8AvNQs5RC0a9yZWwsYx/FnPoD0r3+FctzDH5pBYeXLrv2+fQTbnI/Wj9hH4PaD8JPh23j+6i+XVWDNfz3DTXGpSY5fc43bffvX9DUaKwtFYOjNye7b2O6vFzisJh23Ldt7I9S1fRNX8bpNDZWjW1pLktI/yZX6+le/hsVRwSXM7yOuFXDZdBe1lzTXRHhnx38FeCvhrbN4o1TVPtd5boDbLv3bCDnjn1r6bBYrEZhBrlskj0aGJq4pXimkfWvwe1ddZurK/knIGqeHLaRWI77OgPc1+ZZnSVOhJL7M2fmObUJxw7VvgmzkviFLNb+L1MirsjumKr0PmY+U/TIz+FevhtcIrdjspOKoLl3aI7XVo7cvK9+JEJka1lzjavHt1Y960VJtbev9eRE1z9DqNA8RSTahHJdxmJoViEfltkAMOuPXPGK82vRUabitb3Oerh0oWXU2f2lfEXxi0z4O/wDCR/BiLzdRtHjnubeJN7ywocuij1xXiZNQyueZSp434XdJ+b2PmKeGoxqzUt1sd98Evij4f+MHw803xzoEoaO8t1M8TDDwTAYeNweVZTkEHmvBzDAVsvxUqNTo3Z913PExMZU6tpK3qdRNFBDL5rsqg9sdTXKnKSsjNczRU1zxFpui2Zubp+gwqqMkn8Kqlh5VJWiXCjOZ8Y/trftCeFPFemy+HNY0O4tmt1LzpPYO5liwc7SB1HHPNfZZdhpYKlZSumd9pRo8sWfjv8SPgn+zz45/bkfxLr/hi01GE+CNYu4UvbZXUSQrCImZWUAsodiCR1rnlg6FfHc0oo8itQXOuZ6s+x/2QIPgb8PdPn0nwxpV01xJpkYkTR9LSCMQuCG33LAhc8/KvJB4x39uo3DCpxdtbGs5V+fl1Vl5nTfEL4c/CTXvC1/rn/CJWssUMyxwO8TF9PbadzySybQz7SQCpz8wGOTXnyrus/elsdNFTp8r1PifxHo+gQeJb+GG5byjKUi24yWBxu75ODXBWqKKsj6rBy54ps8j/aE8Xxa14q1XwYthB9i0fyofNZT5jXGwM+PQDIH4V5FOnKVVzvoepGbcfQ8H+JN5/Z+hDR1/19421hnnbXo0YvmJ5k2dR4KhtfDmg2ttKgzJYzzuvfaE2/1NaVlFaI66qcIKJwHw6isbrxNHqEdnFE3nnbKjg5Gf4hiuqMHOnoY4bljWXmfQJUskZLf8sx/KvxHiqPLm80fRqOtx4QEYxz6mvlOpDWoAdz/KrkkVFK5G/DFiOPftTitDWySKt5IAoGKd9TkqaMbYuGGcdOvFEnY1pXLKOST2IqFIursQ6a//ABMyfeuqPwnNT/iHQykYAPTHUmsZL3jtvoVrmRIxg1N7GNV6FRrhJOMH6jtVXFBajZJQAcjt2obVjUp3E43dPpxSTZzzi7kSSFzn3pOTIaW4oPzZI/OldsmyEdgCMj86aTYa3ILiZSOh/OtY0+5nO7WgaBGs+sxRTXNzErOAWtP9Z+FdNH2fP7xjKlzKx+mf/BLfQNO0+Vb7Tre+JBG6bVLre59wP6V9vlFWnCFoo+ZzJRjPlkfp58GrZdWsNS1QQP8AuduJGH3yPQV9FBp20Pnql4NI7aC8W5shKzDcGwW7VUtNTN6PU1vCWoRrY/ZZTyJSFYDg55rkbfOYVVzamhPbAzqyfKASzOAM/SqskriVTmhY574x+LfFPgv4S+I/GfgjRF1PVtN0S4utM09wSLiZI2ZEOOcEgDjmtaKjOai9jKcJ8ra3SOZ/ZP8Aj5Y/tG/BjRviC1xbx6ncWaHVrGEFTbz4+ZdrEsBnOM1ti6McPWcU7rozKlVVWipbPqj0pbcA7v61gp9Acm2c18UvGtr4X8OTRl5VmkjIRolJIrqwtLmnzPZHTSg0uZn5u/tnfF6+S4ns7qVJLaSNw85GyRW/usp4/GvUdKElfoROVRq58b/sr/HHw/8ACiP4sG1sNDmD61Z3t0LuKMXFw00XkxIhZl3nfEw8vByX6jByZfVo0K7ktP67nPLCxrQk7a/ofYfw0+NXiiy0aLUPETBNQubGGa/kitk+QHlbeNQCqD1GQT1Jp16k69R20QUoQpxUJanjf7X3x2ufiJr6PNdpONOgHlRKqCEud2RtXgkEjJ5ry8TdSaPRp0YqHuKzPgXWpLi+8S3bSRIjNqUmEj+6Bu7e1fJVtcQz2qbl7Fdzyj4xXwvvH9yqtkQqsY59BXz2Yy5sQ0evgo+6cpc5RMjrXFGTasepGSjuc1r1tf3ZZDIygn+E4r0sN7GK95anjY91azfKz0ez0eHYoJ7V5lrzPoK0OWbRPHpMG4LuH51bWgqagi5Bo9qQcn65rmqSd9Dfl7jk0WISZHQds1PvSVhOmmrotxafEFAUj603BEqDLEFgpJ46DpmsnEtwSJo7SMHORnuKtaItJRWhaW3DMqQozFiAqKMkk9sU+W7QnCUtz6i/ZF/YzttJ8Z6d8T/2lp5PDel2jJdWFj/b6x3sxyGDeSm5wPTJX619FluErYeoqlWXpqeVjOSHuwWp+3P7C2s+ENX8DGXwjphsrAIBp8LQyIzxDjexbhifXJr66FnT5ou6PiMdXqVJuJ6wmnawnjkXiaaxs/LbdctKOCemBUqE+a5xy5eS9zakYBgM/Wu6EX1OZao5u61W2bVVaNCGEnA28nmspwbR1wi2kmdMi7wH8vDd+OaINNamVRuN0hUkhaX7P5i+ZtzszyR64pykoszVOyuRXU5s43mZSVRSxAHJxWisxqKtoeAftAfFXQb21mWXT3hdFI3sACwHqa9nD0404bnM0qj0Phv45+MPCPiq0u9OMlylyUPlz2jRllGDkhZFIJHvxxyDW0+WUPeV7F1V7TCundxk9pK2nnZpq+1r6d0zyv8AYj17wreeCNDisLEvJYa5r0D3slggmwmo3BYHawCnAznGDgVpl01Qw1lojGpGXNbc+5LD46ab4a01tK0nWrtLeNRIMLiU55AMr/KOOpHHYClUSxDbRtFXS5jy74o+OvhlrZuPFWvTB5GjJhvLW3e5vRkEbd5H7vOf4RXJiYRhC13byNYpQkmlqfI/xYHgG51Yz6ZaxbsktMyyPK2T3L55ryK8aXPdH0OEqzVNJo87+JfiWWw8P2fhXTbIyXGs3qRWNqpLExqQXdsYwAO/qa82rJ8p68XKVuQz/iR5UDW2iwTGWWODM3pGduMfz/OvN1lM9R0mkmzF0q1WMoWUhV6cVq2mh25WdT4QjH2pTt5G3knpzVwk0bI57wBELv4havP2a/f6da65PRmdOC5ncu/Gy68P3N82l63bRHZENkshOF9M4HAr5vNFRatM76bvojxXX9ITSrhjbXMEkLHKm3n3gV8vWoOLutjWVkzJeT5sdQKzSSRvRI53Owrmk9ya25HpEm64I4+9Td0kFHU3VgilQowyCO9YSm7m9kmZWpaRLat9ptRx6VUZqW5z1aKesRtjqQkHlTcMOOa0SZjG6LMcY370PXtSafU2jPUmJXbyPxNS6aOhpNDl247e1Q0ioWK8p3SfjxWkXZGdSykOR9rAAj396h23ZjrM+iP2VdI8EfD/AEBf2jP2lNRePwhp9z5fhbwjG5WXxJfKeWZR/wAsIyRuc9+Bk5r9C4TrUcrofXMVPlp30Xd9/wDIuFJQblOVkfe3/BOP4w/E/wDa/wDFniL4v+IoZx4d0yRbTTbRNM+z6ZYooG2G3JbMjY+8Soxxyc8fouS5zUxkZzcbRl8Pccs4wWHwUqNL45P5vzbPor4ka/cfZJ7Nrl7e0KbEEEO5nPoq/wBa+4y+jShadry8zpyvD03OM2uaXmz50+M3w98R+IdJku4tNa2UISlzKSZc9ic/dr7fBY2jTsoz18j6aM/e0ex77+yT4rbU/gp4W8RXMonuNFdtPvnUklgjbd3POPrX57nVK2Y1sPf4tUz4HPoWxlWhH7auiX473dtB4qnv7ObNu8QnhcrkEgjP6EitMtjL+z48+60Z5OAjVeEip7rQwNb1+Cd5bmFPKWGCKKEquAA38VdtCNlY7VFwjZFzS/Hxg1GeQymJkktgzk/M59vY1z1cPF7rTUzlGbhqj6E8AeMLCy8HWuua9dqsThw7lDg/N1+lfDZjhalbHypUFrofHY+jOriJQpox/EEegfADX5fi94fhjh8Ma7KreJI7eElYpm2rHd8H5Vx8r4HQgnoa55SqY6n9XrP95D4b/iv8jhjRqYuLpz+OP5Gp4o+MvgOQrHc6vtG3dDcIcrgjO4HvSwmX4pq6SJ5PY+6eU/GT9pC103w9dWvh/XNOntxHnzdRmKgk5OMgZGcdjzivVw+BhRqKpUVn5EKTpS5pH5zftq/tK+HdEsG/sDWbaLVJbdw1zpfieQxnK/cZByM5IOK9L2lotv5DbqSal0Pzif8AaFmsPj/qXiK2uIJH/wCEA1yFD5zMzNJHEqjLZOc4x64rw3mUqWNl2scvsqlSaklsfRHws/ao1nRfCFrc6fZ2dveaaIH1TVbi4knuVhkKoSkchMCheB8sZbDc9DipY2M6fvt+h11JVZUnyRV1/wAMew/Fn9tLSvFOiR6nc+LvDV87QlHm1Ce4nnjOAFIhOyEH0wo69DXR7TDRo+05rCoU6z+K79DwbT9Zm13xRP4y17TLaOxtmWSaeC0VBLkhljRR0ZmAAUfyBrwsbjqMZ2jq+nzPoMthJ6K9j561XV7q/wBR1jxZ4nl2td6pcXLoHyAzuSEB7gDA/CuykuWmj3lBKNjzuKzvfiF43ifYSpkxGo6da66WiuwjQdR6Gudeh1rxH4lmt5R/Z+k2H2G3cHglR8xH1bNdMlCPvMzqVVzycfQ4n4PWuoHxCsioZojISzhOF5749K0hUS9Dpy/Dy51KR9LKCsMKMBlYVBx9K/EOKqiqZvUaPfnK7AzdMDNfJPQyb1FLELz+dBa0K8rtuIB/GtOb3S7qxRumklfYeBQtjLkV7lmxQRqCB25rOzkwcrEyZy2eKd7GjV4lbTyP7SI967KbTicqvGZ0KZL5b8RWNR2OpPS5FeQK4+8ee9ZczuLmvoQpBGqj5RnHXFXZsmasxJIUbjAxUy0JUtCtJaxcEoM9qEmUlcrTKqsBmrjTuZyVnYaAmOn61Xs7AoXIbh15UduvtTTsxONivJ9zceBitE9DCUlHYveBdF1jxD4kh0vQtImvZ5JABFEcd+5HStaGHrVanuowcpPc/W3/AIJyfCbxB4I8HWx1zRYLGYqGUMc7SR6k5zX3mV4atTprmPlMzVN1VJrbY/Qn4Ah7fwbfwyXpuWMpbzCOOnQe1e8k9D5+o26qZof2itvpU8e3aRJ0IrZ2sXNXbHafr0WnsISxHyq3B4zXLUSvoL2aW50w8V2r22T8pzgZ7+/0oW5P1ZJ3RY0nUoJofJuJFA3FUJPB9qbVnoZVac07o4bxn4B034V3V78Xfhr4Qi+1JEW1rTbKIKb6HqzIowPNHJB78jvTqVbw99mEYU27vRnlmn/H3w74qibxL8PvGC31nKx3LFdkSW7A8oy5yrA8EEVrQeHqRST1HKNNvVnEfGP9qTXtL0WW3kv3uVKkeTcWpcdOxrv9nyx902UoqnZO5+d37Ynx/j8ZWNzpVzaTfaYyXRnzDJEBztB43L7EUe09nBqRg2pRUZadT4i8AWfxL8PfEPVPF2p+DkntNUvrEacuosDueATyhsN90E8An8K8XB5vSjjZQT09DXExqTpe4tD6J0H9pr4pz+F7fSdU8D39nDFOzx2sOLhBIwAf5+p3bV+g6V6k8xp25VPRamVKhUlJe7oZHi34tWGg2F9/wkWi3Frc3i+ZY2c0JWTcGz0zkIWzycdBXnYrMqEYe67nsU6Da2PHbXUvOun1O5xvZmlfHTJ5r5+lLnqXZ6UaTSseJa/dy6jr17qMv3prhiOe2a+bx01PESt3PaoWjTVig+HyB1GODXPCNlc2lqrlC6giydwq6k3FaGMaPOtTro73YgxIc47VlzLmtY9SvzObshIdQmmkKjPvVOcYrUyhF3uaFpLJgbnOD1rllNNnRzpGjA5zkt+IqeawKoTpK2QF/GpbbJUtSdJQq/UVPMzZttD1m3jrVRd9CYXvqWYWOQd3Q9abhK1ynOTeiPoH9gL4I+FPip8UYfEF34inSbTrob47i8eaQuCCHhtV5LDIAd228n0r3crp/voqbfc8bMIq7XU/dj9jeW+0zSDo8EdxIjDMtxqt2HupMdyi5CgdMV9fR9mlaGi7Hy2NjCUOaW57lq3mJYySJdCEKhLSEZ2gda61NJHiSvexFBcw3drHeWz745IwysO4x1roi7xIs1NJnFNqztrUdxOwAEozgYPWsOZtM7qkoxVkegShkJZD370U7uJ58neZj+J9Zj8PXFrr9zb/AOjBjDdzqP8AUq2MO3ooYAE9s59a1VP2qaT1FaSnGXTqJ4z8TaRoWhvdXd6i70ypDc49R60qFOdWei0QsVJ0qbS3PjD9qT4teFjpt/GdQeffGylFh2BcggMrA9QecV7MZRpR1PNpqpLbc/Mb9pv4030EMPg/SL6yeebUvsrz6ncAtEXPH3F86QgDJVUIGeetcmIxlOOkWbfvFWje+v8AXojyH9iX41z2Oi69qOibml0LxjrC290mnlHnzM0pJaRwIwFdiMDOQMDJJqcvxMbSVSW/Q6Z+2rVn7NPT/hz6Sg/bL8N6RDAdevI75Cp+xGC7div95XG5grDqCVx6cV6ixNJWUXoa06dSUXocv4q/a+0nV7mWPw3rr3fO7ytT+Rkz/AHi6jr3Fc2NrwcfckdlGDejRyE/j7Wb6Ftd8UX8Wm6XvBeSW7YrKeyqvVyewA718risfBStfU97B4eoo+87JkHhiz8QX3iO68feOIysx/daJZxSHZBbg/Ljoeep9Sa4Z4tTk79D6PDYNUZXZPe2slxdtczJvaQ5JJ5z71jzpu7OuWhZtdODyAytt8tcYA4Jq3NWMuV3sdD4atFWVpwm0BCxOOmBRGqrmvwo5P4PYuL++1A4JlvHKk9/mNdPNzRu2c9GTnJlT43Xj3esy28tjDMVTCiUYYfQ968LMaiTs1c9GmlGN0ePaozRMQIlTjgBQD+NfPVJXlZbGqTluUBLvYbhjnmsJOyN6SaG3TbYyc8is4ybYqi5loM0kgzlipHPpVSk7GdJcstTobeWMKA787RWMnc6ZSTRMHhkG1iCD1FS/ImMkY+saMgYz23GDk4ropVOjJqUlL3kUrbUXgPlynB6c1s7PY423B6k5vGkOVb6ipem50U5uSJYblig/TNYzRvFu42Z2A3Dp9aqNmjOd3K4sEpDguM89+9KUlDUum0ndnpvgWPxP+0p8YNC8C3a7lkgisNPtkQ+VptrGuXdFyAuFDOWPGck5rry5182zWlQd+XRWXRHNjZKtVSvp1/zP1B/4J8/E6Hx94o1T4ffCmJ9N+FHw8g/s/QhFknXLzP769mcgFyzZwOgr+j8Bh6WHwKUYe9ok7W08go4WhHAyr04pym7J22S7HuepXt3qusy6pf6itpaRPtiWNMs3twOK+koQjTpKCV29z3qdCOGoKFOPNJrU8/+M+iXOt2M1rYXC7JASsVuSh6clsjk172VSo0mrqx2UFNQV7pkn7Amu6fa6p4s+EF+wt47hI7izWV8lWYYJ6fLlhn8q8ni6nKHs8TDVxetux8xxHQqKUMQtWnr6HafGb7PceCb7T4yBf6NJ+8GOqucPx6ZOR7NXk4OVXnU38MzwnOVKqmlpI8S8HfFNdU0W50O8vI2uLC9azuieC3B2Ng9scivShUik7dDopzc/eNDTPH1sYDqVzcxurWKRMCeVdHwre5x/Ks5O6u2aVHdWeh2Nn8eb2902Pw0+qStbW7yIYomzuhzuY4yDzgDJ4AzXEo0Pauajr3PNWCi6vtEj3/9lH4j2vxn8A6l4U8Y3FrfId0YsmjBH2ZhgKwxg8dfrXx3EGFVDExrUVbu/M8LPKUMNVjVo6PqfKv7TXjRf2EvG0ngX4zNfzfDi+l8zwx4itImmn01GzmCYAfNGh4BzuAx71lSxVWdB4n2iTi0nG2stHrtay66p3atdXt5Ek61L2iV31PDfiujfG3Qn1v9n740aL4ismUyI+n36SyJ32tBuDKce1bSzt1F7rsa4eEa6sz4w+MP7IXxq8ReKDrty95BIzg3U1npP2ZFXnLF5GWOPsSx465715uJ4jqyrXhpLyVvyKq0FCm9dEfKHje7/ZW+Hfxy0r4TeJ/F+hfaLiwuoNb8T6PfSXsNncs6+THcXCHYy/LhvJBVMjkkGvMoVsWqkq9TVdjCPsakoQi7d2e8+Dv2Yfidqeltr3hnxvpGtaZKqeRdWutW0ttHFzja8bA7f985FZLM6bqNuTSfTTT066+bflY7Fg40na6a7oZrafBn4N3Ij+I3xE0KfU1X5dK8K3I1C9unPRcI7Rx+m5ioA7GprZzKp+6hDRLf7/Pp6W9dTsjhacVGSmvQb4l8f6lB4Cfxv4mtE0e2kV4vDGgxPuNsGXDzyMf9bMVPLHgdAAKWW0qmMxKb2R71Cly4dpKzez7Hzb4p8VXHiK5NtaMVtl/1Yz1r7SUYRajHY15JSaNOyvV+Gfw61H4gTri6aI2+mK3VpnGN2P8AZHP5U4uM6igjfEVVg8M2t3ocl4bB0f4T3LEkTXsoDMTy5Jya3lLm9083D0X7JN9TofgZoZ/t1ZI5GETffXOVI7g1hi6lOjRnVW1u/b+tT6KjenTWh7FdXAWQBRjI4r8Fx05YjEynLds1i+ZiJcAk579/SvPlCxooakjTcYx9aOVWKqKyIfNAYk+tKUbmClqQSj94CTn3pRibxaa0LEMirFyOnfNNqzIt7w6NwQ2DUpXZpK6WhUsWP9pHA79a7IJKJxRl+8szfE205/OsZq7O2zURlxNgjBzmoUEZJ6kLznnHHArSw6juiLzmIwc89aTgmKGqFEuRk/kaFCwTdihcOxfdyKpWQk0xpnVI/mOPxqlqTVbSuilPMWk+Tn2FaKKtqc/tVchmlYoQDRZRG7M1PAeq6zY67FFo+rT2hkcBntpNjH2zV0Kk4VUosxqr3Hofrd/wTk8Ea4ngu31rVZ7tmkUGOTUtQaUucZ6HgV+g5e2qSbe58Zjm3UaXQ/Qv9n5oJfCl0kF4J9spV3Xpn0Fel7W7sePWvzIg1HUrex1ybSbx8eaepGPyrR1E0dTp2ipHN+IdcbTbyaymnYHAKlTwQKzbj1MpN30K3/C17QWkZa7aMn93CAfvepq3KFr3Kg23Yqa18d3Fn9isro/u3CqwPVvWl7RNEzpSk9D2L4T/ABN0b4j+GBPHdIbm2AjvUJ6HHX6GsXNSumcNek41LI+Cv+Ck3/BOn4mWviy9+P8A+xv8QLvwd4jlXzL+0tV32monrmWI8E/7QwfeuR4fm+B2ZFRNwTSuj8t/j1+2p/wVE+DZl0H4hfBjStca3Yg3drqE8Kygdcp7+xrSnPMKStKpp6XNqVakqcm46nyz8Wv+CrP7VeoxS2rfA3QNGuTlftlzp813In08xtp/EGojCeJm/aVG122OaeJ55e7FI8I0X9tj9sDRtc1bXLH4kX8lxrdxHLqEd5p8M8cjINqbY5EKoFHACgCtp4fA0oWsdNKVaM3JS1O68I/tVft4/E6+XTU+LV9pdvI4Eh07T4Ldj24KICK8evTwcHeMb382egsbiKiUItfcfR/hTwjdeA/h4V8S6vd6nrmtOs+p6jqVw008gH3QXckge3SsHGMIXZ30YyS97cz9ZvW03Qbq83cLEQD9aaqKMHJnarxPI5JGkUue/NfL1J887nrUY3sVY5gC27045rdK0DWdk7Fdmy2W6A96wqu6YpS5EdS0UXKgj2Oaxu+Y6pSk3qOtBHGQcd+1aODa1FLfQvwHeeBg96lxikQ009S7a5B5br0rOajYpWb0LcQ5GTj8Kw3NoxsWERGAyuPSk7o0THKAh+XpWlNNu7JfxE0fI2g9TzWsnyq5rA+lf2N9W/aE+KXj7SvAnh/VJfC+iW0aJc3GlaSts97GP4pbkrtiXGcyEkkkY5NfQZfiZVlGFRWR5uOnGMZt7pH7K/sd+LrTwW9t4D8MTwa9eABLq4sbhvs8Xu8jkmRvc9T0UZr66k8JO3s0fn+JliHRftXrd7dr6fhv+h9V30TzWbxggMyEc9B/9atGrqyPOjzXuYng26mn06TTrtwZLeQ7QOMoTxWlPSKNa+rTOE1G7W18QS2pbmCc/eHQA0tIvU2nSbtfqeiWHizS7yyS48zLYxtx1pXdtDGpThCW5Pca5oJj8i8njCSja6SDIIPUGp5mtwacFfoeEftSeK3/AGfNEW/ufDVzqHhW6DGO6tB5kulv12hD9+LuBnI6DIwAfXKlGWuxzypqpGx8D/Gb4/fs/fEC9muLn44eGXitcypb6pqSW8tuwzx5b4ZDz1+vrRXzegqVm9SqWFipX6nwF+2r+27+yb8Kby81nwH4qt/F/jMqws57JhJ9nZs5y4yFznBbOcE9K8mM8XjJpxVovqeolhaFNyqvmk9j5m/YH/4KjWX7Nur+MvB/x7+HUXiLwh47v/tt6kEKtPpt108yMHqNuARnPyjrzWuLwGIqQToys0uvU5cBVVOrJzWjPYfG/wC1/wD8Ey/ER/4SHRPHusadIpLJZx6Vc7hnkjaBtz7156/t2jLl5L/NWPbq1srcOWL1fkzzw/tnfBy71GWx+Cvg/X9fnY/u7zU0FvAvucksfpiitPMeS1SVr9ERTqYSmrrVnpv7P3hXxz8ZPHln4j+Id405hYG2tFyILZf9lfX/AGjzUQoqjTvJ3OzCzq4yqkfRXiaKO61VkhGIoVEcYHoK4PbWkz63llcoHT3kcKFPyjog/nWkavMHs22WbfT1z5iLgdCCe1X7S2g/ZstapeR6B4N1bWpBgR2jhcnuRgCrpyu7owxMuSkzlfhFA9hpUDOvJw7j1zya9KP8MwwqtT9Tnfivqr3uuz/ZoTNGrfKpQ4x/vdsV89j1LmPQj0R5lq0e+UkQeUM/cDZxXjyVjqpqT3KKQFWyV/OuKbbZo5qOgTwF1xjr0qEpJlRtJDILdo3JBxzWiVtzGpFt6FwRyf3jg1nNxvoVGnOSJI0m3cN+FO0W9iuRx3JNzIMSE80+W+xUblHVdIE6GaAYOO1EZpaMmpSUjLtZ5baTypuueM9615brQ5OZ0pWNCOZSodB1HbtS5dNTpp1eYfvJT5jyahKzKk1fUWPAIY8n2okoyMryk7H0H+ylolp48sz8LvhdM2haprFtIfiJ8RNWmWOPSdIzhrK0Gc75R9+T7xB2DA3E/oPAGEwlbHtU1ZpXnJuyS7Iyhga+LxaS+Fb+h+kP7G3jb4DWdtL8AP2fx9osPD9nGLq9ZSrXTEfeGcEj3r9iw2bZVjsRLD4eon7NLY+kqvDKneEl7uyWy/4J7J4pv9J8PaWJNYgWN0/1UKMDz+PU17OCp4mu09F87+nRdPI56Mqteq3Td13OKe81nVbOR/DOixQXDxuVuLkZYg9hj+texGhGnL95PQ9iUKcVzTkcT8MfAfibwV8WpNV8SSu/9tWTQXN3EMbcZIK89Rz69q6cd7OvhLx1sePmLhVo3h0O1+IGt+Kvh/4ohHxGgim0bUoBbS6qsTEyRsvyNNgYRh03Hrx6GvnIexqx/dvZ/wDDnyWKp050eaG/b8z5t+M2haj4E8TalqOjzrJa39sClxEeHkQZjfI/vDinVi1ByicFOtKy5tzg/Cnxy0zxV4du7eG4VLizZRdwBjuWRWLEEdhjvXlyxU5UlrY7m3V96S0Oi8J+Jr7UP+KjtL0RS3xeO0t3l5C55GOvPr71lCspov2sYR5Ue6fsv/tCah8JPEo8YXMIbT5YkiltoH+ZwAdzEHpkg45p4+jDF4Z0n8jzMbgvr1P2fXufVfxn0H4Hfty/Ai/sbC9sdVit4v3oDqz2rlc7W7g4r4aNOrgsR7OotGfKvC4jLcT7KstGfhL+2n/wTRj+Gfiu81f4dape6bJNO6wyWE8kLZ5PVCCOlXWwNJz54bF1KahOL/mdl9zfy0R8E/HT4Q/Gn7U2k6/4/wDEl6gBBjvNVuJUIHqHYiuBwo4duRjPLpTneXU8r0z4E3bTme7jllUNggqRz/WvOrZgmrx2Lp4ZRjaKO68KfAOW4YQx20uwj5kQsc/gOtZ1pxp03MqjgJVZ2sfSvwN/Zw8MeA9KPxC8ehbPS7dN25kAaRwOFUHqc1hhlLFVOWC1Z9XhcupwpKU9Ejgvjv8AGa5+KfiR3tx5enWv7u3tkYbFQHAA9vf1r7vL8NTwMF1fU7Y3c7pbGJ4H8K3euajHAybF3AvI4wEGMkk+mK1rT9mvM7KVJU1eRh/tB+NLXXtTtPCWjSj7Bp42QgHrz8zt7sf0xVYVypxv1Z5OPar1PJFbxnqL6T8OdKtbUH95eAsq9cDvXo4WknK8jZJqlG2x6X8G7i1t/CD6/MpiaJckcDdngV8/xZioYTCOC6o9RSSp8xvp4qguSiqcn0r8ZlCUtRRrJy0NKDUkljBUYzXHN6ncpxSHnUVIwevY1Mr9BN8yIjfEyYU1N2tzJRs9SRHdmDMRU8zLUorYma4AH0pJtsTl74sE4w2eapuxstUV9OuFfUCP9qt4ytE4Iq2INua7Ctg9az5tbnouSsVptRQfKeRziqTucj+Ii+3A5yO1KUtDZpNDftuME/hQmKNo7DZL7A5bH0puRFV3K0l3vOcggUr30JhaOpm6vdyeWQnB7VpTaT1McS26bsUYPGkNlF9lktFLkEFiM16FOEHG7PHjVmpixaq90AQmBjnNYVeVXPRhVujsvhHqsWneKIJx4dTUHEqkQsM55FGHjJ1FYzrV7QaP2W/YLsvHvjD4dWUmqaQlhDIoHljA8pcf56V+h4CH7hJ6HxWIn+9tZu7+4+7PhH4ctfB/hBdLs4VRfMLMwz8x7mulpQehyVoxdkVfin4WfXdM/tDSlH2qA70VerYobSVzak/3bjI8T8deIRrmmmz1J2tLy3+XBOG/+vWMql0cvI0zyjXLjxC5F5bTh/JBVQxwAO5qLu9zSPKloYtn4pM2ryi7ldF2ABi3Ab2pqTUjq5F0Z0vgD4wX/wAPYb2eGaWF7y2MTrnPfhvrW8KkVHXqU6Kvc9p/Z/8A2ltP+NOgXfg3xfFtv7Fdtvc3Q2i6Ttx60cvNH3NyK2Fpxd4bHgn7Y3wg+D3iCeaK402E3MoYFPKUgt71pzqKtM4p4GcldH5cftTfsxfD+0W4uLXR40lIYPIYlwpzwF4rL2tGCbSJhQjBe9HU+aIf2ZtIdSsmi7J+GMqxjO3tnIry604yeu5ccJOqrLQ9C+HXwK8KeALZ/FXiUJb2sI3IHUAyHsAO5rzpTtLfQ9PD4GNCPM0UfEPiKTxRqb6llRFnEaDoF7VjKU6tTyO2KSdzjPinrqx6XHolq2N/MpHpWeYSlGhyo6aFOM58z6Hnk8jKvHT6149NRbPVprQqsx5x/KuqTSQpNN3IDvGd/wCWKxUVN3OWvPmWhvrdSKgGT0qHGPtNT0KqlKbZc0/dJjNTOdloCk+Y0Y9wwfT2rB3YtWy3almPtniplFo0UWnqXY9w7moHdonhV2G0ZxSdi4ptkgjKrmqpu8i7O5Nb7R171rKN0Lmktj3T9lHxf4evfFuj+F/EPjbUGje7WOLwtoVjtfUnP3Y5pAOSc4DEjGevFfQ5ZClOMW+x4+NjXndWP2Z/Y1tZNF8N2baD8M7bTGtDvW2tY/tM1uSMYZz8olOSCc5UZ9Tn6+EYQp2hsz5bF4eg5Rc0m4u6v0equvOza9HbqfYFjPfSaGk19hZjFl8cgGhS7Hl1JRU2oHI6Lr9vpPi4QyuAJ22OxOBz0/WoVVxepuoKpTZjfGrS30LVV1+JT5NypD7ezgd/w/lVO/Pp1NIS9rRXdHBad8SLm1FxpTXIURYdW/vL1rdJRhczlTVRi3nxKbXNTTTtNu2lkBAZWz82fb0965/a8zepo6bULWPYNY8N6J8VvhbN4R1r7Pds9oElXcG2SBeDx0pWTXK9zzJxcJ2Z+Kn/AAUu/wCCXfgzxTrF7eTeHk+07nK/usY69M81x1sPTeqNY3cbH5W/FT9gjSvCWrSwweesYLD92SMEdauOJlTp6O5ssLQSvLc4T/hl7w/DdLYra3TTsPvzOQn51yzxeKqPV2R2U6NOUdi34e/ZW0tr0C608EpzIrAkn2Fa1K9edOykawjQTase5fBn4HWFkYYLTSVGCF+RdrLnuQa89SjTd3uCpSnNJH2n8Gvh/D8PfBj6zdq32mdfLt/MXDEetefi8ZOoz6vKcD7Gld6ssRafJdzl1XdznJHSvPdeN7HvKJMuiyKmQCDgkt61Ua9tiuRDZLEb8bBjHIBraNRyZPKcn8Z9RQaVZeDYGG+8mElwAeiL6/jXdQvJ2PNxiUmoh4YaOxh+Vc+XH90cE/SvZirU9R04pw5Tyz4matcz6pKZZGKFvlilG3zPy718/mLf2TqppU4qL1ZxkGqrfXX2QwmMhgPKccr+PevFlGT3OynzN2SK3xF1238B28LXvy+bjBJ9aqhgnWg2uhw4/F0cHJKT1Zj2nj7TbmMOLgYx/erJ4SpF2aJoYyNTYtW/iS1n5jnUjPauapFwlY7o1YWLi+IrZV4cGseSTZcK8WxV8S23QuACexrXksgqVUoit4gtJG2+eM9jVKErGUKybsi3baksiBdwPuKxqRszqjbcp6tbLIDLGMH2rSlUa0ObEQjNe7uVNOvst5TDpwc1q7WuctH3Z2ZfGQMqQeKzTTZ2zXMtCSBGLH1Papm0OCstTrfB3i/WvD+mN4e8JeHLWbU9RuVjiujHJLO7H5UjRNwX7xzwMk98cV6OXY+vh4So0IJynp1vr6P+vQ58TXlSpycNHbc/RD/gnp8ILH4AftBaV4R8ceILvWvirqmmPN4u23hFp4etdoaKzYAYknOQW/ufd65r9X4LyzCZbUqc0r1XH3l2MMDRrVMHVrbQtt31Prr4oNoltqP2/X75G82UC2tUYEk5756Gv1zL5VJUlGnH5n0GWyqQoqMI7bsj0C50+NcQokiICbiNec+27PQVtXVRySudVeNSpHffY8i+L/jvxjqvjO1tfBGnpFb2Eq3D3UkvCoG5jjIwWcjtXu4XD0aeGfPq2jVYWlTw6U3dvc9T+JfjTwfo/hu2OsTbLm8tkl1PT9QhISQkdTyx3YHTHpzXzeCw2Ir1pJx9xXSaPlquHqV5yTV4rZo8/wDix8N/gjf6bba7outTWcF5AjSWEcp2cjHAbgUKliYNwqLQ8OtQxNNe8vmfNHxe/Y28Kz3Nz4x8EeLJLC4nDBpLSfDynGBlV+91rgxWBo1k3bbXT/gasmNao4KNtDwbxj8Iv2mfBF3D/wAI541muAYmjj8xMsFIOc9NuRkf5FedLJ5022p6Ee2U3Zo4PWfiN+2x4chl0rTtRjtoAdm+RGLKMEHBPbn8c1hPAYuyake3CUFHoan7O/8AwUR/b2/ZO16fVtG8HaXrcF9GYdY0lneNdSQsMlyOQ4XO1hgjPesMVlmIxdLkqfetH8mtUcWMw8cwav02PrS7/bg+AH7UGnw3HjPT7zwdqs5XfpOrIrpEzKQQJV4YbsYPBGa87EYCtTp8qRFPLnCnbc8C+M3wX+DHiMPfab4w0q5jnt55IjHcJlgg3MMZyCFINfHZhRxEXawo5c5Jtx0R4DefAP4TaJd3T6h4ssljR8JiQEncgkXp6rXmUcNiKr0iy6WXUprRnP6z8U/gT8IJE/sfQbnXtQABjjVPLhBIyCzdSM16MMixeIXNN8qPRo5fQoO7R5F8TfjR8TvjLeRi926fZRyFrfTbNNkcQOc7QOM9yx5Ne/gsJSwFpQfvLr1+RjVp03eMVZPp66swtG8HQQlpNVnESJ94sMbffkc11KpKbaW5tQw6ptNlX4mfGvRvCGnt4S8GOkt5OoWTC/8AoRHYHt3rqhh9eaocOZZjTo/u463PMTcXFzexy3ku64lk3ySHue9dEZJz0R5NGM6lRW1PQPEsH2rwTpyGPKpcja3v3/pXpUm022j3qiiqS7nsPw50S0uPBQ0d02iQLJhlx+NflfHuJbqQSN8OnKNmWk8EpFMCpAAPFfncqzkjd0EldGtbeHHSIEEe/NY6J3IjTk9yzH4eLDt0rCU9Tf2dhjaCFc4I4z3qo3krFOkuUlXRV28tg1pZIxcLCHSU3bQR+dCilqXGkmrlmLR4/KP0rGTtIuMbMy7CxC6oUDD73NdNNc0TlqRvUujam01GblueMVnN2OiKcUV5NEi3A7unrSTbGkmIdKjAzxT5SLO4w6ZGOeOadrDlBrUrXOmxZ4bjuKFcIpSITZxrxt5quXqRONiK40q2uF5ORUXlFk8qaMyfwxYrcb3xx04reNSclY5quHg1cc1jbRjYgH5VXKuph7N9Dsvgn4c1zWPGdrbaMSi+cvmyF9oUZ9e1b4apL2qUSZ0ouD5j9qv2NNNvz4L0/RdN1eOWOFV3QWThsnHJZu596/QsDJeyTufI4xqlKyPs7wzcPa+FY7f5lYcKsnXP1roqSe5xQSnJNhp17dTuwHHJyT6UoNtHROMYnJfFb4R6B8RbJ42hEEqrjz4mwc/UVjWhfbcznTvqtz5b+Kn7K/xQ8OpJL4c8R3EiyElYd27P1z7VwVKdSD0ZknJK1SKPBfG2nftFeBo5FeHz2jGUQwHAH17GslPFQ21Omk6Tdle5434m+PvxOsp2t/Emq31oWBMnkwZC/jWMsTWjK8z1vcSSe5lwftBtaahbSwfFHVIJ42Db1vRFtPUEn09qqGOmtbmroa7Xueky/tc6T4xtpLTWdfi1O5sLfM93Bcg7gByzkcV0/wBoOUVpuJ4enZq55t8W9S8K+I7qWOS7QmPaWhkmXbGzYwM+veuKrmEVKxgsts3Jni3i7xX8N/AymXVL2KWXABt4W3FWI/i9ulZ80pu7NJxpUVdLU8v8bfEmXxPfC5uWD2K/8e4iAKRj3WuarTmzL2j6nL3+twMm2xVOTgmLgEV24SlazZLbaucZ4jM95evJOc46Zryc1q3xHKj1MDSU4XMuSwUKSSPyrgpt7nrOEYxsMOnKsWNoB9aKlRnI4JtmdcWQDYHrU+1cUYOlzGyIFEakdaptuoelKym0y5YKSQv5GqlFJXM4wvIvMwVQSPrWd4pilaDuWtNCseDkE0ptNHRTXMrs0EGG6Vhy3M56MnjBGD1FP2asdMV7tyRuBkj061UEkyHoS2yCRsDv6UTbSsNNJHpnwI8cWXg7xXo+lvoFrIt9frDdSW5nhnnViMRyTQxSSpHnGREAxHFenluLrK1OML/mcWNklRer26H60fsBaH+094x0K8+IXxvu4/Bnhqy2x+HPCOlKbeNUPd8jfIzZ5J59SSTX2OBhiGm6rsux8PjvefLDXzZ95fDmyv73Q0leeQRuv3p2yW/D0rsk4vSJ5riqesi3qfw607VZjNJqUiMGDDYgAB9aj6u5bMJYvlVkg+I1ppV/4Sk0TW5Ml48Rz7ejDofatG/ZLUeGlLnclsfM3iiGXQLt7Ka1DuIyiSDJEi56U5O8DpW90YWm3E+m3e+OfZcyj55yThF7YrjaSd0a8kqjVzq/hR8Tta8Iay+rvqaw2ifKySsT9o+ua1p1Ixd2aPDQqrU1vjrongf416XJqumxCO8eHdcWhQFsY4Ycc061SNuVIzlhnCNkrn51/tSfsmWqX01/Y6UssY+aaMRj5l3cjjvXmVLRHSg7aq58v+Mv2aLOfxQ0dpbxpYW8fmoZosMgb1PrXK6q2NfZTb0MST4CXF9rqvBpkg+VRGqRYyR3/SqdVRg7s7aWGlUlax6/4B/Z18P+DbU+JfiJcJaxJ86RsgE0ueRtXvz36V42KxSndJnu4fL4UkpyRd8T/Ejwrc3KoNyQxriCGNRhFH9a81VJVND0qdVU9EjHHxW8MxjybPSrxlz8xENWqcrbm/tEMk+Knh5n2TloBnjzVwB+NVGnO9jRVI23K958RNBjtpb6S4URopLMDw1d1GjOTRnKtCO7POLbV7nxZr0/ia+BXzWAhjP8CA8V6+HgqZ5cZOrV5uh0OkX5b7R5bAKF2klulejOXLA64x7HkXxH1G7i1aaG7tirhyVnRd6uPpXzWLm029zqhDlszjW16W1mN08Y3AHa2MfpXnSfPK5rCooMw/iJeXXxCEcV5ysYGPwohipYe9nuedjMJHGzTZyk/gu5toswXDAj0NbLHOeljCeE9hH3TW8EaLeyyeXJOTg4OTXPXlF6tEYdVZSs2dsvg98gGXHHrXBKrFbI9SGHne4S+BpGXPn4rL293sdLpXRmy+D72CUulyTjoK6PrF42OeeGlT1RZs3utPfbOeM96zdJT1TIjWmtGa0MqzxYJyPap5LG8Jq5Q1CxaB/OhPXuKcddGKtTuuaJNY36uoRmGapU9bmdGpJbmjbleOM+lKSR0crlqfSP/BPfw1oN74w1Xxro6w6j490q1YeBNIupPJtrW78t3OpzyupjCW6rlUcjdIy+mK+s4XwNOdKriotOpHSKb7/a+QqmBdenzuaUVv3fkl5n2H/wTo0HR/BfxW8Q6hffFtfGHim53Tavd2582CB3G5x5xx5jFs8jqDX6LwZleGpyqylW56stZf8ADnbGSrUXSUbRsvzPoDX/AAd4o8UXtxfxfIs0+BfTgr5K9yuBwOvJ7mv1vD4qjg0oxld9tD35YnC0KEYdUtl1LvhPV/DU+qzeCNEjmMcER+03UZGLo45wSefc0q9PEKH1ie76djzsRKvGHtpfLyOb8T6B4d06++03VoUS1mEwmLLtt/fp8zflivTo1qlSmkuv4mvNVlBO+5pfBrXNO/aFsdc8TaHYacul6VMtqur3ESm4u7heCc87VX+7xk9RXkZlP+ycVTpXblJXstkebj50cvcISu5S6LZI5H42eGvhpFr1toqiTXvE19GYtJ0KymJXZnmaXHG7pz0GOK6sJPE14OpUXLTju3+hMKNXE0W5x5YLqzxH4w/sp/EPwei/2T8a77RtUkZAbCzKy29vnsd4Jz68jgU6eHo46LqUZNHi1MuhXd6ex8xfErW/23PBurS+F/DXizSPFpVGWSSK0ZGBwTyykgV59XL8zhJey944KuBnQVo6nzl8Rv2j/wBqjR7r7d4m8AaVK64S5eO4bc4U9NxXnk8D3rz6lbG0Ye/BGMVilLmjG7PH/En7aPxvgkkl1vwfHareT8CKQiW4YDgdjt9/SvKxOYYulFe4d31vE0oa09WZcv7YfiDXmbUvHo/syONtxggUuwQLhF5YEsxyT2AxXHTzWc9KqsP67Tp0+at7pyOofGbxFqAgfSfEF6iRYkLzb0XLLl844wc498DiufF1sG56tdxVMYqkP3bdjL1L46azDJd6bdajOt2giISTdlSqgDIPbFeVHH4OpL91qjyP7SarOC3XQh0n9oTUEjNrf2C3IIAVXj3Z+mf5V1wxFCvE9WnnKaSaHXPx8kkhEOlaWimPkJ5YXaR7Vyv2d7RWh59XN71W4LU53xB8X/GusqVS4aONydwU/MBXdhpRjryhXzPE1KWisZelPGf9Ku41kaQ8yvyc+9XUquRw0ubEz95G27SXRgeYoCpzHz1H1FXQjeR7MYxppHqltai88E29xNuPkTqWxkgjPpXZVqRp3d9js0qQPY/hxPZ3/heC+06WOS3xtV1Pzhh1DDtX5NxvWp1ZU+Vnbh3FrQ2yhLfL+dfn91E6HPoTRodvX6g1LlzArWuOVvX8DQ1ZFuSsJnc2MVCkjNTfMK/yrk8VpdjqbkaDLbgOQKpN21CCZYDtsOScYqbKTNZbGTYf8hQnuGFdELRjZHDTbdbU2Z3CtjPH1rKSV7ndU+EryThnCk8HvTWhzwbvoBIxjcePeplI0krK41zgHtx0p30KlrAz5JR5vXv0NOLuc0bpjZ22jOO1NtGlX4SETqcAeg5zQ4pmNNu5FcjdkZ/HPWnTsmXV+EqpaXN1dJbWcDSyyMFjjVcliegrSS5lY89zaloer/Cr4Ba7b+O7HTvihdz6FBI6M0LTeW0gODjg08PTTrpSY8RTnGk31P2S/ZT8N+F/h78KLR/AUE08oiAiXzcgnHViDz+NfpODhGlh0kj4rFycp+8fVXgP7fJ4Ct5dS2/aXGZdhzg+laSg47s46MZKprsX4p/IsG2tiQthmP06UlLlOyUE6g+CXAIlUKiruOf4j61XxImaKFwbS/8AM1C9iUomVhiK4z71laz7mUotNI8n+IvgrRdf1FtKj0+ExRwl5ZmBOe+PehyTeiNINQjex83/ABS/Zz8J3sTy32hI1zcKfslqkYAYD+I+g+tcdWkqj1RTnKbuj5E/aR/ZZ8PaTNBJFZh5Lw4htIRksO59cCuWWFUeh1Uq85NI+cfFnwAtWjuLrw2Johbz+TcqhKkP74qYQgjaT0uefa54b8QadBJbyavchi21/wB6xO4HI3c++ayrUIN3COIfLa5yV/pV1eTul7IzTp1aRs71pxcUjOpKUmRWltLaMy25/dMcOhP3TWcveYQi3uQ7QrFVG35u1dVFcqLm0tEc9qDPLcuc/wAVfOY93xLZ72BcY0UVdp3EHjHauZtRR01JXY2ZmEZIFZJ8z1CEboyLonBy3PrVNXdjCrJQ1NnBCjmt9Oc0xDaqNFmxcryOM4pVfhNackWpo5ioUHIrlTSFOKeqLulr5SAMaGnKWhdGa2Lxk2vn+dVsya2jJbebJ5ok7RN4P3SQyEkg+vWpgnuZ6tk8JdO9U5RtqP2dz0n9nLVvBmj+L49X8ZePfG+jtHcIunWXgLSVmvdQl6+X5zsqwDA+98x5+7xXq5VUw1NOc216HJi6cuSyjc/T39hL4gav4xia4k1e6hstPiA0+y1DWVvWslYg5kf/AJb3ZJy5PC5wAACK+rwVf65L3W9D4/Ma8cNC0lY/Qz4LappWlxroN/r0X225XKW812HnkIHJI7fTFdseSFSze54teVSpC+rR38uUOK6lK0jkgk1qUtd0O18RWh0+4bYCPvYzipqwdSOh0UaipM8Y+Lf7OHja8t5bzw7qscyYyFztI/SuGUp0t0dtGtSk9T558YaN8V/Az+VqOhQXAjfKnztpb6+tc7qTknY74yptJHnuq/GXWIZbiHxfo1zp0UQYxyPEzgnoMbeBj34rlqVKi3OuEIdGaPgj4+aWyRXun6+0VzBEPKj89WaaQMCXfPTjt0p+0vG99TePLN8rWhP4y8Y6Z4tmZtVQsJrvfMRwo46AjrXBVxElKxSw1No8i8T+GfAghjkNo7vK8gnBAChAcIo/OvPrY5paI6aWDg3qcdr+saZ4feYaDo8EO9/3UtwoJVWG0Afqfqa43XqTv2PRo4eEXscD40S/8WXUk2pas7zK2YVJ3gqM8H0rBpp3Ouo7wscvJ4ctbWHzbqIAx8ATOB3/AJU6d29CYQcVdHJ+K/H/AIF8MMY7/X4HdVP7mA7uffArsjTk9zCWJhGVmcFrXxXXW1ddJtAIGOFlmHH5V0Rpaoj2/MmkZcUmoahIqz38jQqQWt84T64716MLJWRhN8zO30CLy4cL2HY9q76a5TppuPLoaPh9yljdTMhbO7MYbBIq6tROFjppq8tDy3x9fR3mpSCyuCDzkAAMPqD1r5vEtc53taWsefa7KsUohll+bdgbhzXA+W5w1XyVLMhgxEuSa5KiudVNXV2MulBjYjgEcU4e6Y4jZoPBTkXzjPGfSt6qi4XZhg4xc2egRozAPnjAyMV5kknseyrJFnau3aR+NY21I5kVpbUM/PHcVtFpIJO6sZ2p6R9oTIHI74raNTkMXRjJXMWb7bpcuBkr9KG1J3RyShOm7svWOox3ibJGByO9JSdzeNaLVitqFlJay/aIM7T6VspqS1ZnUhy+8i9pGoxSgRyt83ua55xbdyoYi7se+fsm/sifE/8AaFvLzxraeJU8G+CtGjI17xrqybbMDjMCcgyyEZwi55xnANfZcKcLTzepKtUqSpxitLJNSd0mpO6skru6vqkmrO6iU6jr2grvt1PuD9hLV/2ZvDvxtg+CPwOF9eTWOntcX2sXsrLJfhcfvCq/Kinj5SemK/XsqjlOC/2XCu87atf5n0kKapYOdRJKTVmfTXxY1/V30+40KK7aCC5lAkaHBYL/ACFfcZXhaPtI1ZK7ReEo0IRVVxvJI4/9ne70rxF4m8R3cUjXFhpEC2jsQVQsclkT168txkk1257FuhGlHRz/AK3M8yrKNKCjfml+Bwv7WXizxDNpr+GfCkJFzq7eRpdiC3zuc4yAP17CvUyijSpYdzqSV0nq/Tb5nbgqPJRU6mpc8C+EtQ+DPw0s/g94bvorGOOJ73xFfRhjHDI+Wcgkku2TtVeSc5PQ1596dbEe3mrz2RNX2FWo67jdvRI6X4V6d4L+DdjqXju8Rr7xJqroReXyBpI4xnZGD/BjrjtzU46licfUjSWkFvY4MYsXj0qd7QXQ8A8e+MPiD+1z+0SnwC+GuqPbW0JNz4t18crY2xJzgngSP0Ge3Ndsp0cowqTWvREypLB0vdex1Xxs8BfCD4CeBLv7Vdw6fpCQi3iuZ3/f3LkhWYZI3O5PLEgKKqhUniKXM/n5GdWjGdLmnufLS/Dj4V/tReOfFk/gSP7R4S8BW0FvqWqpbMy3V/Lt3KvBBEYbk9Op6AmvHr05Ymsk9lf8NTx4VaCs3F72tZt726dO72S1eiufG8PwMj+M/wAUfEXiqOxkbRrQ3cGmOqFUWG3Us7A+pwff0rkjlf1mpKbV10PRjgqlaq520XRniHiH9nC/+IHxt0bwFaCMrczS32oOpCpFaRAs7kngfIMcnqa+D4unQyXB/Wqj1Wy7voj5XO4wnVjCS6i694F8EeNviJLd6JeRP4L8JaAda8VzQzk5lWZ40tMj+J2EKDqcPntX5tVq5lh8HGpWfNVrv3UndpXa1XRqzdn0afU58HGli6jTuo01d+bWyPJxpF94mmu/HF5tN5qF88pwvAJ+YIPbHA+lfa5bltOlgopbhg8MqsJYmS96TJZNAsrxBLGoCzDBC8FH9a744d01cqNPmlsY95p88d0YpeLpDjfj/WL/AIiuazlN9zF0IczdveRLZrbOfs80YDnknPAPr9K6ISnsEZe2lyWsWY4jbsZ47fIBCyKB0PqK1VKTd2dLVPDr3UamnpIs6H5SC3+r7rz+ldVNxVkY+1lJns/hGNJfCAMhAiSRDkckfNzxWGOX7id9rHsUnF0bI9k0y3trXT4orWONUZAwMSAB8jhuK/A8fOU68uboz1YRUaV0TKQWyOPwrznqQtWShtgyR+tJuxrK0UERDnAxwetS5Noz1kKoHmYAoirmkIai3H3cdPrWkSavxDLYBmJAwcdat7GkWrE4QGNiDxjrWaepcl7pjWTY1c/7/WuuK908+m0qpszk7ySc9sVzydtD0J6xKYT9+Sx4NCbascysmWHO1Bx+VZ8rRbdyJ1JGDx70SZp9kzpU2z9OB0NaR1Rzu0WFyjNHwcHHWp2dipNSjqVIVw/zevFU23sY/AxZsEE+lVFuJcrSiVTJLFOskE7RupyroSCD9RWim73OOEffujvfgxceJ9X8fabGjx6hK9ygUalIZE6jqM104SMp11YyxVaKjeZ+1HwM+y/D/wCGumweIdX0+KeaJDb29muFLEdNo6/Qmv0PDVPZ0UpM+Nr04VZ8/Z33/q59b+AhcyeDLJ5SuWjyx2bRyO4pqTmrnPVnH2mhasra3C3G5SwR87W6dO1SnbctzloyKJ2k4m5VvmeNew+vai9ndmskpLQrazcrHA11LBhCpjiUHpnvzTctDNRclY4vV7iyv9WWzECfZrGHfcyBvvsegNZxknKwnCUI33ueceKp7KdrnWntYlnkb7PACM7Yx94/lxVOS3HaySPn3WPBmn+JdY1bxzqVvEy2ytBp8QiwsSgYB/8A1VzSnKpdlfBFKJ4BD8KWtD4ga/4N2xuEOzjcO31xWNODu7lOpOx4j8XPhMhv7u1tLfcWYyJ8mGBAGR/OipD3QifPvjHQIJnnMQMc8DbZFI5UjviuHkb2OuCTZzUdq5+Z1UZ4MgHDH3rWNNJainU7GIY2W8eJlwFfqKvnsrIVP3nqc9eMBcSE/wDPQivmsQ+avK57uGVoJFYtknjB+tctRaHU9GQzk7MZ5qYm0DIu+MkDvWietzhxWzN6VTsBHpxV3bmdWJTVRsfZuwbGBk96c03AKDRpKwkQDpgVyW5Xqayukyxa/IR1zmtbqxFBXkXHIIz696lF1txLdyW2mipG8TSm1YtxIJACKmOkSpRitS3bW89zdxWNpA0s08ixxRIMlmJwAPqalU51JqMepi6krXPXdE/ZJ+N2k+OdC8OePvAfjexjku1k/sbQ9P3zXcjD5MfMAvGfm7CvawmX4ulPllTbXc560nWotRZ+kX7D3wI174T2Qi8d31n4PjNuqxWU1+jXsaEkiOK23sVfH3pW5b2AAH01BU6KTvY+YxeFqVIRvrufen7MVx8OYbuSx8I2KT3IjYz35YzSf9tJSOWPoOB05rqpWqT5or5ng14uEPf0ev5nrkmfO9a7m7HBHW9hkrlTuYgVtBrluy2mkPktUvLcrdOVjPVQcZHvWFSn7VjUnB6bnB+OPhtoXioSRaJpMbuAd1xJ90H+tcNSlraJ2RlOK98+dPjB8EIHmuIZbeK+kVCWiVQEA9yOgrknDl1Z34ecj5q+I/7PvhmS8e+i0a5tTFGS7QsI4wfYjk/nXNUlC1kjqlUlN6M8A+MV18VfhpZ28nh3xBeTT31x5el6bOwczP3YjsoHP4VwVfdkXHETR5b4y/am+L+jmXRb7QLW4nsyDJINwGTkn9QK5KkU4nVTxE1HzPN/Ef7VXxhnt2mGnWaSC33AeWzHIOSOT1rlhS97c9D6zVjC5zOrfGX4v+IbIX8HiyaKO5XdCIFCDI/hNXOmpoiFapVerOb1DUvE/iG3W+uvEl4Sx4d7pv3b90bnoexq6SjGNjrdSUY6MrLfaxFIIdYcy7RtaVkG9D6N6j3rWLsjlUHLVmrZ2ciuGikAdx8uR8knscdDVxm2W24Rsjf0ZyX+zSRHKkbkYfMn+Irtp1OVWZMLykd/4VRJYRGpywQ4I7iu+nUbR3wp2RN4fuGiguCRIhDMBKBnn3HpU1al46HbTUYux5h8SDaXOoy+ZZp5iA7trAFvevAxLtK7OpXkjyjXoJDqCyeZuTJ2t6VyU5x18zy69O1dMtwuDGNp6DrXJKLuz0VJco2+Yrb468VnGPMzKajIXwNHJ9tkcevGa2rRfKc1Jckz0OFsRjjnbzxXDNWPRu3ElQEnk/jWW4opyYMpGTtFaWsaSjYjQgsdw4+lOWo1oVNSsIbhSGQdOmKSbixSipKzOb1DTbiwcz24JAOSK6o8k15nnVaE6bvEfY6zHcx+TcD25ocHHYiFa+jEkgaKQT25yPak530Z0KmovmR6T4R+OXxWuPDWjfDK98a3s3h3RLiaaw0SeU/ZomlOZDt6ZJ7nkV7+W8T5tgKUaFKfubNW3R34fFOnNqKWvl+p97f8EVfCM2oat42+OR8KWum+ENNg+yf8JBdIFL3Yb95EGbBYAEZ7ZIFfoHCud5diMTKjGny1NDkxGZ05YmNCF3Un0/4B9geObW01iSW3sCNsytIzbMZGPve3Ffs2WQjh7yS1k7vXrZL9Omh9Tg/aKmnU6HKeDXtNAt5PBngi2Kx83F/JtOZJCfujnp616eLbqTVSr8vQjE04c/tKnyOd8Ri4s7qXxM7pd6nKHj02QLuW1VeGcY6ntn2rWnBTtHZDUqtamoR+E5nwbqOo654avNU1qSe6jvLl0SLeVKW6HGT6NI3HHRQea3qQpe15Y9F0/wCAdEKXs56JqxzP7RXxYk8MaO1/ZTI+GaVYIzg3UjZijjT/AGd7dT2Q/hvSjONNyW/X+u5hib0oWXUv/wDBOjwzoug/Cjxh471y9t7iC6vJJNT1QA41ObJB2EgExADYvqOcZNeHm2GliJ0qUoXdTdPt5o56icqdOlFXm/wR418SJR+3L8Ydf8beILtz8O/hsC9xCG2QXl4AQkC44IBxn3NfQ+yjgadPDLXm3NKjVJRpLVo4f4r+PtQ+Df7L9t8LvhEzaa/xB1I/2vqdtHlYLd5QjSDPZQTzxzivHzBQc0qa66WMI4ejGTqTVn0RL8c/hd4c+APwS8LeAvBkhuF1qwaaa7jwcQLAd67gOrN8x9S3oMDqowdXDzlFWUFb1ZrjYuWH5krWPlf9nnwvZ/FMfHDUNNeJtd034Zr/AMI9YzXEUC25edPNcyS/KgUKAc46jmv528aMfi8Ljcmw0k1SqVU5dk+3zstfI+JzClKdTRNng37HHw1uPiP8BPGPw6s7MMbi5XUtXvJDgzGAN5cYbuoJZsdyR6V7WQZPHM8e8VNX5VaK6a9TbIsJRqZRUXVvX5dDh7rwn/Z3hjWLezUmTT5xPFx9wo5BGPpxX1VLBxpUJw6oypKSpSh0RSg8NLqOjya9pik27hWlQZ/dlsH8vQ+2KxVP2qOyOGU6anE57xbpEt/am/to9txbnEh3fxdj+PSuSrhFD3up52LpRUeZbmTaQQ6xpy6nCdkittlQdY27/ga53NfZ3R5ixKrx5oqzW5raJb7ioXJnAKyK/IZf/rdvWh4iVjpoN1H7w6CFEvhb5IdXxu9OehopyfNcxmv3tj3D4cWl1H4NnntbaIzRFZIUnAKmRWyNwP8ACT1rkzfERpYWTPbhScqTPV9HeVNHtorlVEqwASqgwqt3AHYA9B6V+H5nOMsXJx2Z6FP3aCiyaB90nTp1zXmsUdyeQfusH0pSZ0TV4hAgJz196UVciNooczEPg9KuNkVB3ZHdzbY+SOBQpJMira4tlKrgMv48Url0k2ixIQsTtu4xS5rM3a90w9OfzNWOBkb66oytA8uK/fmzJ95ua55yuehJ2RUXe0/PrTi7Iwskyww2pj880m2xppsiYtszUyZcnaOhmyNI8hGO/FaQaSOdx1uOkb93g1nL4h3VykVYScnvW0Niamw9sc1Mr3Jv7lioWUyZzzWsYO2pz+/sjs/g74g8WaN4qtpfCtiZ5PNUMDamRRk98CuihL2U00zmr0VUi+Y/XT9jv4U+M/FGm2Pizxp4rtUlSFXjtim4RjHUK3Q19tgYOcVKTufHY1yb5UtD9APCVv5XhW0jRzJsjwGbjNejKcbaHDGLvqWIPKZmHQytzUR7nVO8V6FHUWgRzED5KAHPHL47VNSRvRT5bszNflt4bFr+5R1xH+6j68+tSn7o4+9Oy2OP8QrLp+iF0QwJdDBJABcnofwpNqK8wuvaaO55/wCP7C006W38M21x5rQW7STSIudgbqSfWlJSclFGbu5czPMUm0S5sb7QhfvHCjKJfNXBILfepx5YRZdTlT0PMfH/AIelXTba38O2wkuYdQkE0XQtEGycf8B70lZmdm5Hlvxs8FfYPF9tqvlRwwXNuWRVOQrf7Xp0qZRu7jipcp8nftGfD4WWvXHifw2oVpCVu7QdMg/yxzWM4a+6PmadjyWaxje0kn8raCvKYxzXPOEky5NI4w7vPdn6hj1qFsdFK1kcpLJ5kj5OMua+dxLSrs96iuSKIOQxBP0rnnqjqtciuGwhI61nHc2ijHu5epJ71o1ocOJtZnSyqWiyB/DWispHfiI3bG28gBHIyKpvQ5Ke9kX7U84B69656ljs5eaOpcjG2Tp3796iLFTXLItM4WLJ9OaHKz0HVQy1cSOAvbnNVJrlCmu5fgz1zg4rJS0NnFNkz7JBskAbI6EVUW73QrJGx4Ij1DS9UXXdFjENysscCam12wa2L5HyLnLNjOAK6qMpqDfM90txScY0nJR2Ptb/AIJ7/DHwx4q8fPrrahcTIZFtL26mu3d5ZFbIjcsx3SnO4wx4xkbm4xXuZbThCvzTk3fufLZniOVJJux+y/wJhsfh14VtdPuXttLsSOGvlSO4nY9PlXAUDoOp+pyT9ZKrSp/Cl8j42NCq48rlKbu9Xa+r20SWmy0vZatu7PUWeOVRJCcg8hh3FaRfNqQoOEmmMfyIv3s54Xpmm2r3ZpFORnXl5LrLmzjk8q3X/WN3Yeg9KwdVzlZbGsaSpLm3Zg6/4kvdVuB4O8FxbQFxc3e35Il+vrSb9p7sTeFDlXtKjOa+IHhXSdA0eOzFqZ5rghLa3ViZLuU929FHWuatSUbJBGq3fseW/Gz4GweGdFjvdfu0kupoy8qL9xB/dA/SonQjTj725th63OtD5fufgoviM6x8XNds8okf2TQYmTHkrzucccFv8K4J024vs327ee/y/wCAd0oRclZnyjrnwli1u61jUp7bCtI8iEDJIEgUZ/EGuL2cYpnY4xjFI831r4RQxXl/o13blZEfz7VynDI1c/sbApOWh5te+CP+EN1i48O6pH5dleSbrKd1z5cv90ntzWU1yG1FuMjE8S6IfC9w08kH+jXgCXcf91+zD2Nc8lK+h3pOSuzNSF5IHguFR5oBiCX/AJ7R+h9xW1KE2veLm4qGhNZw+RCbiCykkgJG9c5MZ9/Qe9dMYqK0OfS2p0WgvDdHJyJE4DMcOvsfUVrB3kXTlY7Xwt5izImQGJ6g8H2r0aXwndF3RWtZriC8vkt5WiZZSybm4B9ff6VniLLY7aKa3PPviHImo6m41bSwjKMtNAMY9G+leFVqc87NG0Xd6nluuzJa3RUjcN2DnvXPFL2iSVzhxTadxum6hFcriMjg8isqkXHc3oSUojdZvhDEVYY470qcLy0OetUVKRpfD6NpN0xPWlVbjGz3OijFNczO/tsAD6V59TU6201oWvLXHTj1qIlwSRHMQAVA4x2olK4VHYrofm3Y70k2ODuhtzyNrcVpZGc20UriFHQqVHTvSjeMrgvejZnOazoTqxntSR64ruVWL+I46lBR95FfTNYFs/2W+cL7vwKwlDmldbGEcQ78rPcPhb+znqtn4Lt/2jvjda3ehfDuO4Q2LNAy3viaUMMWtkmMhGOFe6YCKMHqzYQ+/luS4irSliZxtCGr01ZdHnxeJeFw7vNrfpH1Z95+DNN8T67deFPgDoXwFh+G+i+N/EB8a+M/DuiXrvb2ljAqCxsXcAKZJWXz5AAMhl4GcV9VwNkTr8STx1ROKdpW2W2it0/A+gyDL6WDqutOp7R0YtKTt8T3a7+p9G+P9cstMsLjU7mOWKKNdkiod7MQOEAAr+hcKlNpR3Pew1Kc5csXucJoDeMrzw1dMwfTX1CNoxsTH2O1JyTuHLSH8+fSvRqzpKrG+rRpVwlNVbt81jm/iD4j0PwZ4JvNbuVEawWIit1d/nMQzxn1PU/U1pJyaOGrVknyrY4bwT4u1i5/ZzHjHUJ5li1bzJrt5piJJQAyxQxkcxRhTjj0+mJpUISrt/dbTfd+txUufm5222vu/wCCeIwal4t+OWm+J/i14jVNN0HRCmlae1sxbyYyG824bHIcgOF6YBrulFRqLmdk0Y05TrYl83R9T2D4nfEi8+Ff7E+jeFfAFsbXUNdtA9laqMNFHLhIARzg4O4nrk+wFZ4Kn9ZxrrX0joj0KdKUKsqvyOY/aD8PD9m/9jHwh+zJ4GUvrXijyptZuScyTz3DgFmPr8zNk9K3y6jXxuOnUjq78sf13PKpzqTrTqS2Rw/7RvhnRrj4e+Afh/awJ/aN/IplKNuc2dvIxUtjpGCpYjjcXHYVFGjTqVJxk/hdyqkMTOVnflOu+EHizw9+1X8MJfCV9NDDqHw/SSy1W3nwZri3MLCKZWB+Undk9eeOK46+IrYbF+zptcrfvKzu+1ndW+5/qd0IUJUJRlqz5e/Z8+H3wfsf2vfE/wAL/F2va5pug+I/BF7b694i0i4iUDT1XMkKwSIQ0jnADlgF3EdSDX4F49xxiy7C4rDwUpwnG0Zd27J6bW369ND4rN8JWlVTjK0Nb2Wrs+/bdPTro0ZX/BMXwD4Xv734ntpXhe5j8NadY6hFZaZeXYeXZHG2P3oUB2J+YcYOcCvueCKOLw2SxqV3+8bV7Lv5f13KyrmWXJRTSvoeA6TaaN8QfFWrXWl25gsdS1W6tTFKuCm9fl4/3h0969qveUpu250YelG0mtbnJfDzSbvwpeXVu1os8dncPDeWhHE8J5PHtyR6EV5WHjaXkgpw5YOJz/iyPQ7DxvJ4dETQidCAGY4lhPKsD6rnpUYitT9vyM8qvVpOuqOz/M4HU9FufC3ix/KUCGZisqkfLkdD+NeFiaTpYi62Z87Uws8PjXJbSNjSLZIXDEbRjKjGeP4l96FTdrs93DUbIa9nFFrzqjBELjtkEf8A1qdKHNM5akLVz3/4dabeS+BJXsITLcRJ5nkjgzIOoU+uOleHxK3DCNJ7nuRX+znbaDqNprujQ6pp8u6Nk2sW6hhwQ3oRX41jY8tQnDVfawt2LED+XNjj6VyJXN07S1LkzZjDDpinKJ2aSiFsSRyPpWbTiZS0ERHklwc9fSlewU20xL+2k8vd/SkpK5clzdA0u1K8MMmnZsm8ouxeuoR9nckfw1L0Zsr2Of0hV/tYj/arsirwOCaftdDelCgHAx71zzjZnXb3blAKRKBz161rFKxloySViy8+lJ2Q4qzI5TtjIOKxk9Rt3KOTuL7a0gu5nPREEsuAR/KqktDLXcg3BjnHPpTgrI1l8JBLK5cqp49a1SVrnPdkRQls5wPepcmxNxgd98BNW18+NbTRfDevanaSXNwokNjdCJHGejGunC0XVqpXOGrU0Z+zv7J1r4y0fwBbi+trpHaFVW6ecSM34kdK/QsJQ9nRSZ81iVBM+zPBTXMvgy0acgt5Qy3U1ckoqxx1FGNVWLdrLHvVlGPmxkmpg7mdROzKviCRLd1umt94RTgleM/WlUjc2wycoNGPqiqY47/U1Vj/AAoGxx61lzWVmVZ7I43VFuPEeuR6t4mnEVhZEtBGGxzz1xWfNd++KSVOFoq7Z5/Y31pr2u6t4omhRrS2TyLGAvkSdRn1P1PpU4eo5VHNjp4b2cIwXRdzznxlBay3FzZ2tuA91bhpwi/NGd3Bz6YrWclLQUo2sc54T8NldfvL3xjeLtRm+zSngEAYrOleN7lSjZHB/G+08N+JNfs9Os5II4hGImZGBLdeGA6deDVynd2RldnyT+0B4UOn67c6NLcu11GGEZBGWQcj2OPQ0Qd2VBa33PA/Eek3NhbTNdRYV+pUYGfWs6sbsc9UeYzALNM3puOc5rmlZROihukcXIX+dh/ePJr5StK9dn0tKPuIYmRyTyaxm2zXm1sR3eCuc96UGawMW/BDZNapnn4rW51dt+/hABHTilPSZ6dRxlNplU28sdxuJOM9MVpfmic8oOnqjUsCFQHNYODHGrJlkOWYHP0qnCy0OiNlqWpiDCV5wetYJ+8VuJZJg56elW1damc/dehdjkIIx1pKKTKjO6sSpxyDVt2Whd1FXOq+EFv4B1Px9pVh431qezQ38T+bHC0iJGuWcsqAs5IG1UA5LdRirwdP2tbWVvxOWrUhKm43aZ+mn/BOWx8D+LfiWvxH+G3guziGnxfYrSXVblN1gAcDybSMlLd2xlnkZ5nIJIUcV9tg6Srq9lY8DF04ezvN6n6S/Drws8mqx6z4tuhNOrH5NQcHYM8MBnAJ6gdh+Ir1JQhFJHgJzdC8otSTf52T07rXv3s9D1ZJEdd8LKyEfKV5FbxcXG6PKbanqUtUu4S4hdWJPXArKo0dVGEmrmVeQ6rqgNpbKtrbfxyk/MwrmUpX93Q0hyQlrqyr4WdJdRlh09Fj02wBMkueZ5P/AK1VRqXm0tka4lOMUn8T/AyfCR/4T/4q3fiK6jP2fQ4/Kt1JypkYdfqB/OtIS9rU5l0MsTH2OGUe55/+1JqF1resxeFbeRRJeyrGoXnavp9TXFXl7ary3t/W3zLw9PlpKRwfx50rTPC3w/n8N2mES0tfmTGBuC8/596mUVCmzppuTfkfI3gXwAniTwfqutWkfmRCKR328gZk4H51yU4RnDmO2pJpWPNPiN4bguTZaxa2uPLVQ8qJ99CdpB+hrnq2S0Lg9dDjfiT8KdL8S6Rf6XqZ25g2q4UZjfqj/wD1655U4zjqdClZXR4RpECatb3ngLxgHe90xvKZwoZtuflkxjlT39K50nTfKdEK03omcze+FoNGmfR9TDKkhP2W57A+me1bJycSk3a7I7KGexLCVwssShWkCbgy/wC2O49xWcXJPUdlYv2mm29wwv4JER8g7ojlc+h9q6Ias0gjsPCyl5kUoNysN4HfnrXp0tYnfBNMqSyXC6jeGzu1ikZzhJlASUenNcmKcYt3PSimo6nB+OJrN3m+02LQzKv8DkxZ9Rgd68KvVSbaJcopXPL9cso74iMRgehziuONWXPchxdXRlTTNPisDkg7h3NXWcqiTuZQg6UrGJ4yvpvtAij4+bFaYd21OTFQfNqd38ObYR6WryAZK8GuKrKUqjud9GcVSsdlaElVJ64rlqPU6FexdjUBOT1FS9jW9iJzuOAOe1JJtjcbogbCP07+laqKRnB2ZDdMTkE/gKbuVUtcqsx6n14oSHoo6Fe6iaRSQOvU4q1YyknI679m7xR+z98NPiFP8Qvj18Hr3x2umWRl8OeGUu1gsLrUAw2G+b77QL94onLHg8Zr08urYbD1earG9tkctXCKtScac+SXe19PLzOtn/be+PHif423vx08XXOj6tq19ZCyh0zVNIjm0ywtlIMMNvat+7jjiKqUUDAKgnJJz6dLOsTSxUq0Hq1ZLojqyuf9lU5U4Run33v3utbn0d/wTM+IvxY+NP7WOr/ED4j+NdQ1y6GkS3OpXl9MzIjsVUFR91eBgKBgAADpiv0Hw2r4vF43EyqO6sr+tz0sNi6kaTpR0hbZbH2N460y18T+JbWCA5hjmMzgF1CydAzkDBYDGFNftWFlRwilaNnLfTfZX/TvZdke7QnUjR5r6mV8QtWvbOD/AIRmS8aO2OQR5hSRlHLOxGME9AOM5rpp0KOJjLzXRtfc1qvVO5UJ2fM92fNX7bXjWXWYrDwX4Xs1NzrNzb6bbWLzYLea6q33cHhSSQOg/Gt5Xo0uR6tnHUppNwV7s6D9qvUtL8AfCyx+Gnh6A2MOmWiWZwVLMdi7mUHPOcgcZyPxr0ctwtVUeZs9PB4epTw2rvc+e/jf4o1X4d/BXTvgD4Ms7y2vPFfjJYdfWefdIITsZ0bgZO3cCSODms8V7T3E9ZPRaaeZxYh8knKDbk9nufQfxQn8M3t3Z6veafLFaWFtAwtpJeF2xpHBCpOAvOWOO5A70qU5YKg1LVpPbqzqoRrToOE5XZW/au05PG3x7+1zxg2nhbw7FcxxhcxwkRqF9sgv+ZFcuDxMqWCT2u3+JzUKTw2AXeTZ4r438br4p+I/iL4laZcJLp+g2DeHdBtoY8jeIgJJOmDjceemV+lduFwqlKMlO/M7u19O1yoVXG8bdNzifhlqniP4G/trLF4dv47jTNf8LJaXlldr8kz+WTgleAcknvRioQqVtev6HmR9oscnJe6+w/4GXPhTXtX+LH7R3jSztNKsPh14ZvFv4pHF1b6kzrJGLW4iI3ASMUA2FOVXJIyp/AvGPMeapg8vjFSnUkrau6tJO/rb8PPVeNmuIw9aSg5SjyXelveTTVndPS7T92zulra6dX/gj14wuPiP8O/GfhjVbGOC91HTJ7iEW642RgZCIO6qoCgdgMV+q5FJvLKbm7tWWuvSy+4WWv2+CjzX0aPFfDXw+t28S+INImhSC+07WGa4UptzMJSyPjsHU49MkVriadqsonrqhCldWOb8e+FtJ0v4ga3NbI0FpdSpLHI+VMTEcgn+HqTn2rz5UIQi2efVSU3JHkf7R3hA2+k22sW7L9v0iQL8p+/FwcqR95ST26ZweleDmmHU4KrB6o+dzqjJ041orWLv8jiPFs0Gr+E7HxPCGJLBZWB+6ePzrGVKWJoqoKq4YjDRqpDokCaS0+zMvlBkcD+Neen0pVaLVPQ7aSlOh7pAl0b3UBdsgAfa4ArzleD0PKk5KrY+kfhnBNa+ELW+tomLQ/OVU8lOOR7ivlOK60o0Fc+goTTpI6DR9OisdWn1XSo1Wy1TL3ECcCGcfxAdgw6j1r85zGnCVJVV1NKOFVOq5rZkt5uhcPjgV48bJIVaPK9C3bXAuIMZGAKo0oybViSAiM7SaymXNdSWB/m345zwazSuTTSZNcusoCYz6ZoUWtzR+4ri2gVDnA9xV30HG09US3jD7Mw77azteRc1yxOc0pR/apx/eruhpE82Dcqhuz5HK9+5rCpqd0k1AoEsre+eaqKaRzU7X1HkqF46e9RO5pJohnfdGwyOnFZWdyYu7KZcjB/KuhLQzqMrOy5OePWiSbFTV0QklT6GmlZFytYgkkUPnuetUtTkd72Rc8Oz+F7bXrW58Y6feXWmJKDdW9jKEkde4BOcVceVS1F7JdT2rwj8dv2aPCvim2n8NeEr/T9PEq5tGi8yZv8AtoOa6aFenTqJtDq06Lp2R+oX7FvxdufiL4bhurDT5LfTTEpsrJH3yMPV/T6V99hKjr0U0fG42tGMmj728Pfu/CNsXQKRCOi4wcVo42jqeW6jnV0GW88e0TSdQcjIrKLtudEk72Qy+mN3ahrsDaGyq56+laTfu6jp2pSstznNR+33mo7VsmlSM5k+X5R7e9cm8zoSjGK1OV8bNaXaym8k2Rt8hiTjcM9AKyqOLdgXkcR4x1DSbbWdO8LaREiQcMIpIxmQ1UZWmoouMZSvI4fVdMlm8X3ySq32t4iJMLhQoHA47Vry/vLMirZJGHotzo7aTd6fqczSi1dkMTKAynseaqMUFk4nmHivwXp2rarqV9phdZotplTGC6Hr7ZpOMVIxlFo+Y/2ovDunanq4SOZ5THGf3xyHT0zjrVXitgimj518c2dzpWnXFpcysxwMg45HrWUle4SPIriLZBcusYGFbAbqK46ySizegnzo4R3LgljySa+QqfxGz6mm7QRGchcUaWBayILmT5BmktDoiZF4d2c1TRxYlaNHS2shhC57DmrlC9S511vdm2XI0S6XHf1rRLlRUZKroOiH2RsOCMetYzknsZVI8jLFrPHK4IIz2NLm901o3bLkzlY+RXP10NG0mLaHIO3tWsmlEl6lmBsuST6VlFvmIi+VllTn7mOlW7WNFFz3Oz+EviD/AIRppYvDepaboWq3+6C88UandSMILQj54kiVTgsMgsPmOcAjmu/BY9YaLjFJN9fIc8LzK6Z9Z/s5ftn2Pg7UNB+FnwWOrzpbzbLnxbdaUCbZXIBSxsUIhgJI/wBZIxkb7zNX0WHzpV5QoxT5U97fkv6ueRisPThG9R2P1K+A97P4m0W01bUvEk16AoN3JcTnhyOQgH+tfnGQSBzjpXu8jdO8j42tXbumfT2gPB/YlstnbSQxCIbY5AQwHvmt6NlTPKmnz7jdXeJY8ZIJ7qOawxE1ax14W7Of1i31S8g+w2crwRuR5jtnc/0rhd5LQ9SnGlH3nuF/b/8ACO+FWtox5KCMs5b07k+5rZXpwscvNGpX5iv8IbWTRfh9JrO0yTX1xJPjGCcnCj8gK6KLjChcnGN1sQodjymWKbW/iYdd1CJZI9Lk853zwpGSR7npXFGF566rudjUlT5Yo8u/aXn1bxjp97ZRhUS8jErODyAXII/LFZ1oqZ0Yegk1c8svfCMvgLw1JZaJF5VpLZq06YwHyQeAK5uWMNIm9WMWeX+KPDY8LW8N1qsWbRryS2unA4QSAEP+BNTKFNLVhBrY53x74WtrfTTqcjrLFc6e0czRnpIo4YfzrGfKl7pfMj4/+N/g/XbfXrT4geGr82l3EyoLkEmOZOflk9PxrnnRc1zLobckm7ostaJ4z8NHU9RskjuUUrPCTgFh+hB7EVMZJxOtXhCxxrwpp0gkeSY25OAQMvCfT3Ws5XiQtWaOm6RcQzebBsKt8wlRfvD3AroopN3OqCs1c6bw6pE8Y27Srche9epDSJ2RZk3ckc9xexyzxKrZ4lclD9dvIrzsTKMZM74NWvc828aW9rHNJcNb2zD7p8u4Zj9cZ6V4OIcpNuwVYSlqzjLp1kfgZwPSuaEHe7FFqxBIoEZb8qJzdrES1Oe1e0a+1Ddj7rDrW9FtRsznqQ9od54QIhsljH9zoKyqxle5VGNtzqLEMyKW9K45LU9CMdDQRsR5IOfSspblN2IGVgST69atWSNFqtClNOyyHb696pMwafNqMuHOQzDtzSUkaTs4lYyJxz+FO+hCuKAQCuOo4qHK7HN2WhClsWlOfWrbaWhndI6DwP8AD/xj4+1tPDvgTwjqGtahIMpZaXYvcSkeu1ATj3rpwlDE4qfJRjdmc5yfQ/SP9gP9n/xN+zX8JrzUPHHg7U9G8SeJruOCOHW7JYJmTbu+VdxYKvJ5xnHSv6K4Ay2WAyeUqkbS3l+h7eWUabwntHq1q7a26H0BpGteFI9Ih1O01MX9qZ3WGZSCplAO5/fG0j8K+lqYlyrRTdnJ2X3N2+5M9Ne1mrxVj568X/FKPxj+07bfDy5SU6dFE08Vw7IqN82GYrnLN7ZwM/jX12FpyoYKU47pHRyypUuaT1Z5qDYeMP28Dr+rxyz6R4KjU6Tbrbl3nnlfYJiiZ2og6ueFDZJwM1xV66eIpRqac0fxHgqUquKsnryt6tLZX69ey3b0Wpn/ALVvjSz1vxVNqct5DJBbsGkiDD5CZFVVCn7zliORnA/Ovr8HG2F9n2OzEYiFCkk9Dzjx4ttca23xl1S1M8ulXwMcTjd5t27DLDONxCuq89zxXFUk5u9m+XyMqdC0U3szvv2ofEtx4v8AD8HhfQddNs620VzeQvGkcdnKiblIO75yi4Oe7NgDjnmhh/aturt6mFWusJC6j8zhvhB+0p8TP2iR4ktLTwjbx+G/DEFtpdx4xik8s6vOAGkjYyAAsAOOx2jkYr5/BY2FfOqtCUrRjsr/AH6ep5UKssdipN35I7b7+SIfiJ4StvB+t33hRdUNquraBcanLbJIdlhAoJhhJ6ec5PmMR13DngAfQYTE0niqkYKW3y0/D9fuR6kVKtRTilZdX1/4HQ8z1TU7jxB4jg8aiWSWXSrTTGjkgyuws7Bt3OScH8q7J06dd31urHE1KVrHB/EHQvizpP7O1/otnFp2maH8c/Hsl1LdCRhcXljp0oUjav8AAZGJJ9RX4ZnGBwvEfiHFpX+rR36Xk/8AJHyGZ4SviMwUY3s9z0n/AIJy32mfs/fHDRtOaAW1vJqZ07UDM+NqzwqynHYZDc/h1r9JwmHjRwsqUFtqe3h6Hs8NOEFsVf2tIW+BH7aGtaTpOnpe6ZrELyXUezBkiQZYgY6qnIrWrKL5aj3a/IbhWqU4zn1OT+Jup/C34reJLnTtHuo7Ca/0pI7y3vZgAMxq0dwjYG5CxZfVc/N3rxq9Xn5lcurSpyptJ7I+QfiBL420LWZPh/4hvXmSwkeKzMxyUGclcnqD6dK+frOqm4PY+TxPtlUdKWzM3wrGn/CMaj4eu0HkyjA5z5TdVP8AStcE3DDuDN6dF08ucGuozTtVS60CWydMmPAbH3tw4P1GKSftYO5WBrQdBxKnh1EZhbMQJI35JGQBXnSouLOWGGlKd33Pqn4VgJ4Ks2H30LAkD2H6Gvzjjqs06SR7lOj7Kmjok2LkxoFzyQBjNfmtWpKe7Gpu9itfxiRCcdO9RF2NJx5omdp9/Jb3Plds81pzdGcdNuEzZXDrvQ9RUT1O63Mh0J+bHasb2MovlYsvmgDjgUcybLklIsWKZALdKlybZVOSTsSX/FuwP93tWsUVWfuHP6Sd2rkA/wAVdUfhPOpfxDcnbAx7VjM9CfwGc0h83nrn1pxOOKdxzthB2rOTNJ6IhdhtPH51C3JgUpSQvBroTRFZa3K+ctx+VUKk+g1lJGAOaynI1exTnQpLu7VUW5aHK7qVxwlxwDxVciW7BNyZr+DLPVLnX7WLSbA3UxmXbH5W7PNXS0qR5dTHENcjP2c/4Jv+CPFNj8MbS6vdAbSpbjYJHlB8x19Pm6V9/gq83RVlY+IxVGUqrZ+gWnMIvDsMS5+WIAhh149a6nKUo6nKqXLXM22uEgR/PBPz8A5rOGj1Ozlu9CPU7meRQkZwDwNxxirqXauVTilJ3Ma4UmCS20S+kyAWuJ2bjHcVzJq+jHJu95I4bxcLq8162tdKiSe6ZcncuBGPX3qJQblZBG7jZ7HI+MoJ9I16ze3iW41IsBI7kYT6VfMoTSS1OmlC1J32OL8Za/qVje6hqVjOJLxWRZncDYy5wVHv1qKlWak0jKcJNIwrbR4zFqEmtxpMtzcAO0I+5wCCf6VpTm1oypJQV0cv440QaRdi5F3OIVgGTDjdKvvjk/zFbSsjmnJWPl/492AufE8+pRahLHbiPaGdCEGf6VDklsZqpOWlj5r+M1mlnamKWNi4Q4kHKsvqD/SpcopGjaSPFL1R/Z92/J/dt83euWouZM6MPrUSPOEORj3618hVSU2fSbWEZsZx61LtyhfUr3LAj5elSjoi9TKvE/vHnNWjgxTbudMihowcduK0bXMelWjzNjrWdoJckjk1V04nHFunM0mjW8g+Xriudtpux3XjUQlhEITtb8yKlxbMtYTLsx3KMHmiMUmJN82o+0+XovXrTnFM1abV0WY1w/y8D1qNETF66lmEqoGeeM/SsW22auVibT9H1LxPq1v4e0aBZbq7kEcKyTrGoJ7s7EKoHUkkACtqFKVWXKkZ1KsuXRH03+zFqf7Pvwc8RaX4ZsviU3izxDa3Xm6p9ihdvD+nSkY+eX/l4ZTgEqACRgFh1+nwVbDYJqkrtvp0ufO4pYzFaT+Fa2P2Z/YzgvPG/gWz8VBpYhMcw3NxbiNivTMSZ+QHnaAMAcnJr6q8alG6bUr7W0+8+blHku+h9LafdJcWarCjgRnyyz9Wx3qqT0aZwVoqLv3H3jlcEQbzng+lTVUX0uKkn3sUtUv1jXyrUp55H3z/AA/SuZtLbc7aUG/j2OW8cWQFgF1OeSQuM+SG+aU9hjsKyqRXVnVQtL4VZB4dvNUtPBU+is6x3iRM+ztbofur7ECqjNRo8oYilGVdSR53Np2naLZ3OloknmamzJb75PmkUnJb6/LUc0Y6LqVTqNzt2OU8QeDtMfT55tRYtEZvKBJ6Iq5yfxHXpUThpub+1adonllxpE3xDsJrKGBkdCbayMeeQOc9uMA81hBQe5Tk4u7OI8feEbLV9J1LQ7aMysrpDIMfK79M/l3rKolU2NITvqkec6NpMUfhC/8ACOq27y/2bKCJnHzKR1B9RjIopUVGLuatRck0fOvxO/se2/tXw7JaJd6ereTcLEmXjDA7JB7gnBFclZ3vGLOuM0uh5/pPw21XQfDbW0cMxV7Usqht22QHh1B6Bh1HrmppUZRTuU5pnFadaLqEc1okUuYZCJV3ZZG78HtUcuti1JSWhc03S57XeI5jtUgqynH5g/dNb0YWeh0013Oi8Oxs8ocZIDdxzXpJNQOuKVzldd021eac3FntZtwDmfYT7g4NeRi5xUnc9KnFRPLfEVjcWN1JLIuEY8YlDfyrwa0ua9hSpycr9DBaMu53KRz+dZKokiJWTI7tcJgHtUKSkzOabRmwwAXHmkDk966E+xhTdpanU+GjmMAHnHBqKsrI6YrU66zXYucc4FcUnc617sS1kn5e3vWO5DdxHIA6U9S4Np2KN5HyZAvHtWsVoFRXVyvIxlTaRgds1ErJkQkVhEFfDevFXbmiU9GTqo2gheOxrJqzF01AIpO0Nz7Vt0Iik2amg614g8M6hHrPhvXr7TLuI/Jd6dcvFIB6blIp0MXicHV56EnF+R1Jxhqj7/8A+CdkPjL4ofDPx14z1XWtQ1X7DpSvoaarr8d5di8jUhvk4eIFWO3KjIJwWwTX7fwXxBjnkGJcp3bv112v/lrazfoR9dxOGwsYTkn7RtNxVla+ml3r67721Q//AIJ5eOb/AFD4Y+OvCnivxNFeT+FvF18LdPKcGCO7AmiiO8Ah08xk4yPc9a+i4DzBZ1go1K69+nJrWzd9VfyutO9n8jvyPEVq/PTqRas2vVLZ6PZ7mDqHhrW7v47XvxIKn7BpGlbIlMZCyOxztJx14/DNfrXMlCyeh72Lw79mpJ7kv7Knxh8O638evi98a9S8JPpHh/wD4Nmsdb1W4didRvLtl8qD52CbIghYBQGJk5J4r8o4pxVetxJg8JTb0d7el/n1/D1Pk8RVr18xp0IqzT31u/6/XU8B8SXj/F3xJpvxEFvJCJFW40ywmwG8sllSWReAXcsSo7DHYV+y4GXOo1G7WSaPr6MXOcfa+nkdD+1VJp3h7wvNo9nGmnw2tgH0+WNgz3FyApaVfQl+A3YfhVzxPtaclJ6v+kaVKs6VK6Tev4HC/Ef4qSfE74H6vLoGnyWkvhXQ2ivpJFAkup8/vCxxyeAcdhiuZ0JVYzlzP/hjyqjUoOcr+h3t9470/wCMf7P1r8BPD3g/QH+JOjaOl94U0SJXsrXxbZuoYzbotqi8g5YqTiRRwM1+QZxSxXBvECzOcnVw1bRt/Yfd22sclBYyjiEk3yy1Wv4HkWt+PdX8U/De8WTWzqOs+GbN9N1nVpbWaEz3DgeYNsypIAj4RdyAYBA7Gv2jCVsLUwcpYepGcXtON7PRd7P8D0qMq2KpXcbW3RQ8H6JZ6xoXi3U/tyLZWU0BMglIEkcScH3ySCfbIqacksJUqPt08kehSjCOFUktUupzHwc07WPi2LHxH448yQ+F/Bsn/CLWMc5eC2gSfzS4yCNzsWJx149K+O4ewOFiq2KkveqPdM+SwtOpOrKvNbnYfA+O71TxLq2v67MHuP8AiWpa2oHKyq29jk9wpYk9sj3r1r8s5WTsz0ML7t4ln/goxqqax44tfiRZxtbyf2W1wsvOdkZxu9cMox759jXn4m/1e7duU5MyrKhRt0Wp8ueObnw34x+H1v8AEXwhrQkewmRLq2LbZYoJVO+HjG5AylxnpuI4AArxcTOnUp80Hc8SWJji6anSW255d461G8nvPLvNT+2SJL5YuCcttwCjEjjocV5qblLlOTExmrO9yhaahYyWl0lyPKuAu24jHTrww9u9dM5RpwuU68VQcWZHhK6lmupBBIXeRztQk8ken1FeTTraNnn5TCV5Tlsbmk29uutr5IIBk6HuPQ0pOU02j1Z1VGp7p9S+AkMPgyxYKAhB24+nSvyjjdtYuEX0R6CnzRTNgPnBGeOua/Pp7kJXYrIrRk+3NZ8zN4voYuoWxhm81FGFNbRd0c9eFndGlpt4JYguB0qkh0al1YmjLLKSD161jUSSKkveLT4aMH8qxW5aaJLIEcEZ9eK2shwjqLqLf6OwJ/hq1oXUV4nOaO2dZYf7VdS+A86l/FN+U8Enp3rlm9Tvk9ChtzNn34pK7Rg1ZXHzDjao6dqlprUhtyK0xwuCT7Gqii6asVLxcIT29KE3czra7FSESOQM/pWzehEXYcfl4/PPaspG71RUustJtA+hq6W5zS3EiUZ+Y9a1krmTm+h6Z+zh4O+PXi3xpaW/wh0ebDTqr3ws96xnPqa9DL8FOpNNbGU+VpuXQ/af9lr4MeMPBHhGy1D4s/EW7vL0bCqSTqgLYHAReB6etfa0qMKCtzXPk8TiFKUrK2p9eWMm3w9Ai8fuxtz6Y/WtZSvC5xtr2tzLguN8zuwLBD0rmg/eudNkloQ6rIl0nn3EjKirgIDjdTqy5t9i43iuVGNczokot7DTpHRQMxA5X6k1kleRDi1q2YUPmR6nqep3Vkn2uZQkaKuQiA859OKu1ro1n7sUkjhtUvYtZ+JU89hYuXtYwuWUMoGOo7ZrKMf3zY7yVI5XxnBZal4lm0Bhiz2Ft5ULtkHI/HIqeXmqWE3OnG7MXULmysYb2aGzk8zhZGLfhke9dMIXbMpXmkcR8S9E8WeINK8+1v2msZI1DhV2OvP8LdQfatpwvHVmbhb4jxf4m+CkttE1HS7xpZQkOQtywDgkdR2YGs1ZINIO58UfF2w17R7yezv12QNzDFjjHtnpXNUk3KxnKSnueQa1u+wXYQbR5ZxXNNtRfodeHSVRanmWW5r5Oo7zdz6NO6GsxzzUPYpbleVs5zxzTibwM68wQTnimzkxKVmdRCu6EL7UTdqh6E5WqsbLAT0/HmqTTM6kFNXRNpl60L+S5GP51ryx5djnp1HTnZmqqRyATKOorN3SPQtGaugmYrkJ/KsFJt3ZjKPUmtshee9TKbexakuWxLCziQ5/lUsz1uTmRl+UGqhBNal6S2I7yzS9t/IljDBvlORxRKTi/ddi7RS1PtH/AIJ+/BTwQ3ibSNF8KjxBrtnFdR3N3f8AiKH7Ho1tckgOLW0U5uZh0EjYPByvr9Bl2H9rXi4Kz0u+9jxcfi60abg2+XpbuftX4X13wh8NPBtppBmntL+WPaqSKHkCHpgcgE8YH0zzxX29RRprc+StVrq9rev/AAO+/wDkeo+DWuJ/DcN3PayQ+b86JL97B6ZrKhdtnDiowjPzNG6mjS3PmsQOmR1rao4xptszpXclYx7u/tbCFpLOH95jC8ZJY9h715LmorTc9SNOU2ufYzhot1ZRNrutXCG9k/1Zk6QD14zzTVNqPNPc19rGXuU17q/ExpfD1zdaZPPDNI6S7tzsu0SHnLH0FZVLON0aufvpdTy+e31e5+I2naz5X2gaZZyiFJHwjAbckDuRk8+9cyc/bJotQgqTv1ZzvxR8KG/8RagINcnaBYwr20bkrhumR7dCa1q80noyouKgmkeUaj4L8d+Erye+stVkhOmr+6towfLnj59Oc1yqnUve5TcakdTjtPj8V6r4iutMu2WKBEa5shFkByBkqR1OPSrTqwm7lKKklY8+1S2+LfiCPVNY8KXa2qtYtKmntahopxnDMjDkjI/nxVxdSrB8r1NpxjBKLPNfCHwziuYtY1rxGWs7uYh5nVV6j+Eo2Mj3rCFBpvmNZLkicZ+0NbeDLK5i/sLx7c2xktV863aFovLYdGIwTtz/ABLVzlCPUzg5SlqjxF/B92upPrS6is0x4mkjcBvYn1BHeuSTjJ6HdBK2xp/2U67p54tswOPmH3uPUcGuyjZanVSk9jU8LcyjcMYzwK7ZWcTpi7HKat/ZWp3M+marp7XCBmKlZCrL75AIxXg4mMZTfNsdlNzqaHLX/wAC5dU1jyvD/jzw1aW0i7lk1rxPbwBfrk5/rXnSoKbtTdvUVT2lON2zC+IXwkk+HNrFdzfFLwXrbSMQbfw34hW8kj/3gqgAfjXm1qNSk9Wn6MiFVTlZnG3kqmMKDxjrShGT1NG+ZWRmzysr4TIORz610XcWYOFnqdF4TLtGCx4rGpLmsjohNW0O4tVbyg2ecVjJI6I+9EtpD8ocjisuU0UURXEbAcD6GhWuKyUiC5jwmD6cU3K2w5u6M4ZDEY/MUmZqKirkMp+fnr0+taKVkJNyY/JC7B6VWktSmtLD7cbmG8fjionKyshpcup0XgbwX4q+Ini3TvAvgfSHvtW1S5WCytUIG5j3JPCgDJJPAAJPSrwmEr47ERo0VeTM6k+WNz9If2Sf2XfG/wAAr200nwx4i8OfY7eWK71/W7/VcG+lZSsgjjC7vIiBZF/vklvQV+x5bw/mWTYGOHwicpTd5NrT09Ed8KeH/spwnGcqkr6KOi7anaa34a+G/hTxz4m1nwTp5gsNb1NL3V0ICteTrGI1KDsmFXHc1+lcIcMvJcPJ2fNK7+897KMJVo4aKq/G1/XzOA8d2V/Y+GJ1iaezgvpMy27OGK9W5xwTzz2FfeYefNBaON0rp7+jtpdeV/U9LEOMpWWtjzj4Ox6H4++GfjfwrbWtqNCk8SI+pzxKqrfSop/dFsDKgcEjnAIyBkV41XLKFTOljpaySsjyaUKEsUqzWqZ5V8VItNtzqd74KsWOt6jamPTbWRflto0G1rqXA+XPIRQPlGBzzn6eXPVlanpoexCdRNRltqeZ/F/VfiV468I6ba6+8Q1G20aKzkvQmQZXyWwCMfKgUk9z9KzqUf3ai9Gcbk0lCD66k3jDw5rGj/sQ6v4rhsQBfXd3F4h1xmzLNKzArCMDBZsuzHjGFGDk4Uaro0Jwptp228tmZ432bhUcpNzlrr17u5137K/7O2p/E/xT8KNR8YXkgbTo5bosL97d4rWOEvuLqQYwzDHPGK8DiitRp8I1o1qfMnG1mr7/AKnjYvEVIZcpPS2zPQfDX7N4/ac0Lw78fdE/aJ+Dl83iTTry28U6VLqI0nVriJZjGoukllYSvD5eRcAh3AUEEHdX4Hwl4k4fgTFPK5YKo8LC/NO7lu73t2V909NrHdlma4SEI069Kop2T5ormi7ry/U848M/sj+P9E8B+ONM8V6RPp3hvTJylz4lvbiKCzu7Uq2WgcsRLlfulSdxr9d/4ilwZicudHB1ZS9qn7tndX7prT5nbi62DpWowm7y79jkv2bNY0Cb4WSWeiRRlb7wtfQ2106gLBHDLHGpznriTgHruzzg19BlU6ayiCg9E/zufPYatH2Uacry+JrR20a67LfRbvW2zNDS4fD+k+OL6zhvvK+x2dxcCYjm5Kx+Q0gH90SMfruFeisRFX3Wh6MZUY2drO1zx/8A4KG/GLTJNMsPBtlqSXV7d6bZWs8jR/NEvkKzsMdM78/jXzebYi0PZpt3Pns6r86cbaSPj3RbrVPD9ldW1pfY8lDBcQIcCeJjkfXjP6V4MaUqNHTdHztDmw0LQ6FeKRtVluJrfdgkZhkzllAPt1HA/Koouo5czPQoPnTl3K+t3tnO/wBilljeeNPKWTcR5q+9LF10nys8vGVIe09m3qTeFLRFugs0Pl+UeShwFxkgn1rmUbs76C5KWht6BbJe68kLkKPO3Blz83NauUacblUoJzuz6T8Ha3Dpwj8MG6ZQIFZLa4iChzjlom/iPqOtfinGEa+IzSVRfCj0ZV4KSizdWZGbKPnnivjHa5abTJ42BTb6+1Q0dCtoyrfRCRTkd6pS5SasXOOjM6xungudqZHPetFKyOSnHknqbMbEuGHpnIrKep1vVF2NCUGBjjk1mSkSxqYxn86Z0R0RHfrugb6U+Zslyu7HO6KFXVm3H+KuyCbgea7xq6G9PIMkfrWE0zsb90pucPyOp64qorQm9xGYtk57cUpbAokEzZPseopWsiU0mVLx8Lhj25NQtWTNOTK0TMT/ACrZfCZySiwyWYnH1qZmkZXRVuDsbPqOKIbmE1d3EQFznbkntWzny6BCKserfs1eJv2kNU8X2Hw8+C/ie405JrkGWZWCxxLnlia9LLqmKqSUYOyPPzCrFRatqfsD+zZ8FoNLXSLrxz8W9Q8Sa3EyPLGLwtCj4HZflr7alQppXbuz4utVqVN0faiN5WjRx5PyoB+lOo/dsiYJqdjLsJEJmmaPcwPB9a5oas9CUW4qxFdahJP8iWbHHViOM1Uk5dAhDl6lC+WRbaW1F0kW9cssPJY+lS70yuSnF8yW5xV5p6NdFbae8iIB81m/5bE9selZ/FJO5tJ3hexw13ceIpdeu7HSTFbyxQj7SqLyE9SfXFTGM5VGOmoqPM9Tl9dHiOXUJZCI5IPLZbclOVcA4Y+gFNtxmTVSk7FTQra6awmad3luFP8ApMsvKufQYrrpSbRFSUIqyOPez1C5/tK/029uGEUnFvIPlz3B9RVyu27mNRTa1PE/ipBceJ7u+04XsrTlMhPMx5fspPX6Vm+SO5zprqfH/wAZtF8Qae11p+tt5yR/dcj54/qPSudckmTfmex4RrKMthdqV+7GwDAVlWhFRZ30IpTVzzLaxX5hzmvj6ivJ2PorWImII5x7YotoDK02OuPoaR00loZl65AK9/Sm1c48VLRo6i3lGwY7CrnBN3O3EL3myRJMyEMevQUKFlcVKV1YiuUKNvTtyKamloYYinyu6NDR9TMh2Nge1VNJq6NMLV+yzSlZTyq9u1cbi0zraQsRKnJo5EznvaZPF/fI601BRRtON43RIhBbJ/WqREGkvMnRZpSkNpAZJJHCpGoyWJOABSUOaVhqMm7s+5/+CafgSH4Q+NLb4kfG7wNrd9r1gjSeH7HUb3aYTziMQb8JECNxlcqM4Cq2SR9dlqWG5VOWqPGxkHKUkm1G21tPvP0w/Zr+LOp/FA6b8Sdf0Frm9vrlzbQZ3o5DEDZ0+RRjL8jjjrXtRnUxUG4q7PAxNSlShyLorfM+wzK72Uc8qhTsBYDp0rqg1Shdnzc7zdkVdTv4reAIYt7SttRV6msMTWiqaXcdGMnP0KuoRvBHHDawqhxl5Mcp9PeuWUGkkkepSlGd3JmRqttdanMhliZbaPsRy/1705RcrX2OujKFBNJ3bKPjHWIbfSjaySFVSM7IEPLn8qxxEm1YKVPlfM1v1POPB954euvifY6dH5s9ytnN5wlGEQNjPHTsBU4dU51Ei6tKbouXS5x/jjU/EPhf4maZZ6RozznUZJY9RQDiNOofnrWc3OOISiiopOEl0Wxj+O9esr6PUI7oulza3CPbxZ+UIM7gTjJFaN+8xqD5bv8Ar+tDwP4h/FDUtX8R6jpHg/RblvItxPbahEojNnOVwFBON44zj3rlniFKryxO2jShGIeB/BGjab4Uvr7VvEX2TUbmEGWW2nHmB2+8SnbJ9K64qFON3owqO09jzDxR+zvrMet3Hi7StdOsLNEZGsrm9IJXuecbT7c1x1VJu8XdBKrFrlaPHviFomk6lq39k6naalayJgCPUEMixjHVJBghe3WuRtSbTNILS6PM/E3w1g8L3xTTbVgr8qLvLLg9kcHp7U6dKN3qdkWlHUpzWQhtCv2RoWyN8QkyB7r3rsp2NqaaLHheN2Zjg4G7BxjtXTKSUdDshC+55xruuxl77RtcXyVG5ra8VuQe2cdR9K+dxVS02d/tY0lZHl3iC2nimIm1K1vU/hkh6/jxmvJk5Td7mMmpS1MpUWLJUAE+lYztJjjBSegPl1+Y8GtIPQtxUUV51CgSAfTNXFKT1MZy5om34Rm6KfUUpwsiKaakd9aHMYOe3euSWjPUgrRLyNtQcfhWDYmxkilwaRLIJV+XbjJoKSbKU1vtXdj6EVSTFPTQotF++I9+5rW2lgSJBHu6dqS0QPTclVRGeOT6Y61Di5bEc05bH17+x78DfHnwb0e3+KXi+3htNT8VoIPDnh2IJJqF9bEZYyKTmCA8MxGHZVx0Jz+n8K0YcP4OWLqte0qWSXVK61PSyukqcpzrWWlle+h9YWNva/DLwfY2moQR3ereJtUhiE0nyl8vwFU/dVT0UdMZr9/yynChlyk3dWvf1ProSpwvKLaSW3qP+Mvh7UE1Cz0eyZLRpbo/vS5y54wq4GSTjHtzXt5dVUqTm3qZ4STdN1Gmzzr4xeGtQ1nS5tAtNRNqJ4hHcT2pJwSfmAP97/PFbRc5rQ65ypyp6nDeMfEHhX4BfBO08NeEtCma3ScLZaZA+5765kbaGbA5LOxyx9aI4V8spwV+XVveybS+WrSv3aPJk44X3b6N6epz1t4UHw304z+P4YL7XdUT7TrrvyAx5hs48g4UE4I64z6k11xnywTiz1IwfsLJs8b+MGt31jf6jqOovJPZaPaPLDaQ8RLdPkbhgEM2cDdzjGOgq5OfI2mcelNNxRz9to/xSg/ZKuvhTFLdzWlwIpL6RsyKLicSYJ6847+g9qI04Socq+No5HCdem5T37/kb/7NHxF8Qaj4X1LQfFfiN7bxBo+nvpVzKgUeZEVJLcdjlgfrXlY/D/2tk9TAVVd2Zw1Ye2oPCcuyPkTTvB02i/E7UpvF1rba54g1PxNLp+g6Bb6cWa+mM+IYQgYAoS4yuOfpX5rwvj8uyzKsRUxsopUk1JySdlHWzve589lmM+pYadTFO9nyxjqm/wDgdyL9qTwJ8Wfhx8aJ/wBnL4pPNZeJLCeOTV9Gsr1hbWIaESCFIl+RVUOBtXptrv4e4k4a4+yuGMyzDw/eTl7ygoOyumlFWVm9dF00OTGVvrNWnTi25T1+8n+Fa+PtM8N/2PpfiSSCz1BbuzltoiyLAzxhuMdFYoMEdC1e/hcuq0sPy8zWr7/me3luHxqpcsLaEfg34tfHbxn4r1ldW1GKK4RWYJCmWEIKmRRjkqTGMj1qKMq1XEShUkcuEoYuWJmsQ+uhw/x71zUrv4h32keLLySW9t7kTW0rHdlCgAQgdAAMfSuLHTiqzp72OPGzjPEuh22OJ1W+0jTZ3iurcwwTW/lt8uSDwflP17+hrnhOKXvbMyrqjhVeXUPDVtcalJJE1ssXmW5DvGMEYXIbn1pxpKKbRVGo5rY534gWp07XVslhWRSNs5YdGzgkGvn8dUcaqR4eYRjHFRbW5seEdPlLmKGRvKYclhzwP8/WqoqSOqjVm48tjf8AD0DWmuQqUAxN82Dg49a1nBTVjsox98+lI/D2m614etrS+h5EKtFLFw0Z7Mp7Gvx/iurPD5o7arsepWowqwUWMtWv9On+wahJ5zKMx3Cj/WqOpI7MO/r1r5KrRVdOpSXqjBQnSXLL7zSguBKgdG5x61yKxrCavZjndWXg9etZzTRs3czbpVSfzQuMmrh5nNWaTNLT7gyRgenernHQqk7xNW3PyY7Cua1mdNNEjSqq57jtmmo3Lk+XQpXd0pgdd3JHrWsY2Oebd2YGlBzqjHH8VdcVaJwwd61jcnfDn9a55nfJWgV2IbGDj3NSpK5hHcAQPw70nJHRayKsrEtgHHvmk3c5X8RXuznBqYldSqX42gcd810WM6m46Js8npisqgU2VrpPmCgZ5ogxyQseFGT+taSjfYwu9kej/BvQtDk8VaYo+IV7bzTzr5kGnuUAGejMDXdh6cYTT5rHHWw9Spd2P2e/Yg0H+wdI0218LaTLLBJAv2nUL3kufYnrX2uFpNQVtT5zFU4RmfXV9J/oCxyAnC9TxzXTJNROZr3m0Z2iTIq3G1AWB4IHB9KwpqzudOjSFvLm68lBNhM52gHr79elOc2h2hfQyb2yOozfZdMvApZc3FxjDAc8CsHK7F71rs43X7i2srsX9pbTTMuY1aZ9wCjq1UpRSujVU3JWPM7RPHOq+I5F8LzRQaffMz3c8vMzxggYHoOtc3tKnO+TZnVajThrujG8bWV/FfHSYdXeB2B+WNQC8Y5bPuamcKjnqznU1J3KWy8m0lo9Hu7qyjlIVoZT8zHuRXdQajDQ5525znI/CWtGwuD4c8SXcsSZLqWXer+pBz+XFOcZyegTmno0ePfF3S9cspLiwntEn8+ElpCgR93qMHrWbUmrHI4xTufI/wAXCLjTbyHVTNHfwZVfNGN6896UISkyk47o+ddXnZ7G7D4BCMMCssQ4wjJHbh176seXyq3IJ718Y5XbPeSdiGQkLkDpSAgcB1JB70XszWk9DM1AESZ/OtIvQ48Rd3OhgkCx8ntWk5WkeniE3exDFqI8/Z6nqKevKctKdplwl5gMqRn1rK1zqfLNFcu1lOJAe9bwXNoefUTpT0N/Sbxb2DIxwOlZ1IKJ6NKftIll5ArhP1rlbdzOdrlmEq0fXtxUts2i7xsNjc7uenat9oiirPUuKuU3EgjuMVzylJvQt1EkfRf7EXwu+OniOa+s/BWheM1trpCbm30u1U21+vG2GeQssiRkZY5ZgwXAUnp9Hl2CrVaN6l0eDisWnKVn0P19/Yb0PVNH8MaLpPiKVoXjhjivSq/LCRjFtGSowm7jaAScckdK+kwyVJ6XR8/WhUrxvLqfaWoXSWmnNN5DP8vyoozn2rqxE+Wjfc8WjS5qvLexVikBtlvLm2KNjIUjJWnRjempzRFaChJqLKd1fmfgKVB7lefwrOT9o9Drw9K27K0lxJJdhY7ZmSMfffnb/wDXrH3uZnZyQUNdzk/Fdze6vqT2+kl3fbueY7Rs/PtXLKVTnvHodEYrks18jjIbaxuvH+n6N4VdlSI+brF4V5bH8I+p44q6Eb1El8zepeNB3Wr6Fb4ieIbCPxq7JIrScv8AaJUIWJRxtJ9/61VWpCNT3TKjh6ipuUjhvjHY6Rd6ddHRbRGAtj54RhkhiASD2xXLVqOV2mOHNoeZ6N4Bl0FVtYljuhd2weKCXpIVPQt2P1pUlyyOtT5lqaXjf4Y6LPZ3N7NocduLlI1kuIZ8SRN05PVSP1ror041IkObUjxTxLrnj7wftsI7qK7k02dlS7jRXZ4y3BZWByccHFcCU4mijTk7nkHxP8Y6hD4sW+8UWdkbeVT5MunxZGT2eNgMKe/oafKoy940hfaKPL/HPhe6n2+IPDuojBciXTp3G36hc/rWvLFRujqgrKzOR1WBRbbQzg7vlRsNg+gPpVRWp0xfvaD/AAqGBkBAHyNlcd8VpKzR2wvzI8q8RXT35u7AeWziQ+X9ohzg5PG4cV4eJgnJtnY6Maj8zzXURf2Vy9te26xsOqKBivInTcG2Yzpypu0igy72yBx9axlFPY6KfK1oNuVZV46etNNRCXvaEDlfLw2CKqMrM5KsXFmj4TmUybQM/NxV1Je4aYfc9Gsc/Z1yf4BzXBLVnpRasXVPy8VnJWZnJWYqkEZA/CpHG1yGbIIyKuPKaaIqXDELxx65qnJLYzqWtcoN87jHX2oUlbUiFyXYQvHFF1ctxuSQKRIGBwQeD6UnJrUqLjF3R6L8B4vjP43+Mmh+HPhHrGrN4n1K4+yWU2n3bJOqOpWT5yw2r5e4Mcgbc54rbC4SrmOMhTtzO60euzTX3bmdfE+zpucmfoYPDn/Cxv2g4dSmndvDvw2ixFdTuVhursJhpBjIKp8xJ9cV/TnFPFGG4eyOmqitHRN28uh9TPEToYOnzXTkkdLqOv8Agjx5rVr478HeJbHVtCh07ZoOpWErTRsOUll6Z3ggryM5Nezw7mmBlw7CvRk/YqO7bbsu97tu27d2engq8quEUor3pPVf1oeY/FbUtN8KTPDLMVmdCLSHd8yIfvMfRiO56V9vhbyhfZF1a+iaPO/hlY6F448TT/G7WEsp9O8HYtdDsZLnEK3BGGlIAOSi52j19OtYxpR9qqcHaLXT8FY47fXK7ld/8E5jVdd1H4k+LvttleRRWqXJkWaZM8Kf3ki9OduQpz1NenOlal7j1R3KSpxSOF+Lx0mz1fUbaxtwun3sLRWkdyolKRZ6sAvEjEjB69CMVi1Jwip76X7GVVQcLtPv/Wxl/D290m+1nxZs86aDTNIthqCKjCJZxkoD/tYx7813YXDx9s6jfl+BlGDqPaxx3hCbUPC3xj03xZPd+XZajp/k3NrcwZEgk+XJGOuDnnHAqKtOEuepdKy21vLVaKy+etlZd7J8+IgqFeNRK729D279h/4ffs+6t/wUQsNc8S6Vrx8TeBtBuvFV14uutTtBpOl2VsIlaUQNCCbhyzDe7FUDgj5lFfyH4+4TiDL6LhRqQp4bFyjTUIp+0cpN3d27Wt5ep8rm1P2eMlWUE+eLjZpuzemmvz+R8r+NfEnhj9sn9uj4j/tKxLdQ6drerXV/pN1qscaTtFGoSMMI12gME6gdGHPev2Hwk4Vp8OcLUMO1rT1vaz1PWy/LMN7KNRqzirJ6/h19DF+A+iR+I/DGs2OiajdwSvquz7UkYlChdzFihB2/KCMjgj0r9Ow0XUpS5l1ZvSdqLpxb3vdeXTVPfb8tTjNBu9A0n47WlsmsRodp+3TRHKAMzMoJ6E9CV759q+dnGNLFu71PDq1b412vbQ4T9p7R9dvvinH44msYLiK4tIjqUNg26OORkVm2MOqhia8XF06tbERqJdNTz8whVjjY1acXKK3MvW/Dmkan4ZS1u5bSQzsjRX3RgCTgMM/wng/XPTiu2VCHs7bnTi1GtRUeXcXwVpkltqTxy2aGSOLPlsRteRc8Z7Ajp9a5p03LyMKFPktzaI4a50S6+JXjy+0eNoopXucWkdxOsQzknZliBk4wBnk4FfJ4qpQp1ajqvSJ5FaVPFYipCenLsW9B0zUdJv77Sdf0650/UtOmVLiwuUKSRlcAgg1rhcTSxVO9N3M8NWpVrqOjRv6UyT+IYVtYjH++DASLxz6Z61rVkoxZ61BWkuY+nbSIWWn2cTPndbKQV6Hivxbi67zK/kevUlFyRFdxM7LLDIySI2UdTgqfXNfJ0qtXD1OaDszCooVI8sjKa9msboiQAbjkgDAP+FJp1JcyOLWE7dC9DdrNHuRs/wBKnR7nYpRtuVr+QbCSMEU/hMqq5loWdAuklwo9amU+boTh076m9G2xApHasbNs77pIr3t1sjbnqKpOzsyJy7GK+oySOy4P1rRnLZylch0R3fUyxGPmq+dRiY07Rq6m7cjBYAj8qwcm9zrnJNFU/Kc9j2qlG6M1ZajkbcuccGpkrFc1yrcL8+D+FKKciOXqVbljg89a2jFIxk2pFfODkiqexo0pIRGZW6/XNZyTZhflYyT94QScH3pxiU5tLQQsoOK2tZGafK9Tpvg/p8+q/EXSNEtPPDXeoRp/ozsGJJ6cEVvhYTqV4xic+Lk3h5La/Z2P3f8A2WdGvfDej6NY+INRkEqQKkFsTgjAHavvcP8AuoJSPkJKcqjbPpPU5fL05ULsEIycDJp1ZvlLcdblDQJ1CTIq84yXbPFZ05aFtO6GyML4mGBhKoUhnlJAWpklN6GrXL0szF1TS5rLzb6KWW6mdCIkhPyj3pezjEL3snocrNpWqW8j32pQGyU2bBQG35z1JrJaPU3m7Q93U5CO+gj1m8afMUVpaLDHJFIAS3Xn0pLk579jKVOXIr9WcVrHi3TLrW7vV5bWKO+sdsUcbMBwep56nvWSqJybaInCUHyoyY/FnhrxGbrTD4kadoyAZUmULFJ1wD6V2UZRbdmKpSkrN9Tl/FXj/QvC93O1t4kgN0luQ9nC5Ys2PvZXrVSlZkzpNI+c9W1jxf8AETxNLqSai8caHYsIbD5z97D1MWk9DGdpaWPFf2ipr+Fp7TVwizhTtn8sDd7HPQ10QlfoCioanzTq1s90JYFVQ7Arg8ZNebi4OzN6LcqqSOF1/wAFanoFkdQ1G7slXft8oXamT/vnOa+SdCo27H0Mn7BpSOfnKFMqegqY031LfvLRFZGyCaU42kXCNkZ96yuxNGqRz146M3FEawjd16VXvOWp3Sk3NkNpa7ZSxHGa31cdTkqQtK5Ze7AJjDAAdMUKC2LhVjERs3UeQozUczhKxVWn7SOg7RryWzudhbHrVtpoyw9T2b5WdESsyeah571yNNM63FSdyzbv8gGfpxiocUJ3ixVKgkn+daLYrmcizZXlzY3cNzAyBo5ldDIu5cgg8juKI1IwqKXYfsYzXK+p9L/BT9pXWU+IGp/Ebx54jv8AXNZW/wArFp/iQ6TpNvYRMojZ4ogGnkZvuxryAOh5r6HDZknzJdfM8vEYSjhLRWq2vv8A18z9Cv2Ef2pvir8Yvi3ZaVBYpY2fngxJdnMyx4PK26D9ypH8chGfxr0MPOriPhex4mNrQpJJRP06S58qzVpPmwvJ9eK9tSUaabPl7SnUdiGO/iuIWnRTgE9RVRxEZU+aw6lGUHZmZJqBkl8yG3I+o9654z55XsdNOk4xs2Vb9Jb/AOWa7WJV+/EmTx3zjilOV3vY7aceVaK5gazY3d/DNa6VYG3jZcNJGuWk+p7CuKq3zXivmdkXGik27sy/h9oV3H4vutPsxCTbWoLyBOInbOMnHLYzWmGhKTfKzLF1qcKak+pxPxeOnN4ij8IRwqxuLtftN0snzOM5K4H06VzVqfv8qLpVpOHMcN8c7ay8MWV9dQ5ZTCDHFG2A2NuNx+tc9e1PQ0oRnU3OUn0zxJ4iuLfxCbe6szpkal4RyEY8bWA/hOevrWtFTm1Jl8vs24sxfjH4lVNA1DVdB1ZEvRCokspCcOwH3XPb2NdFW+5EYJP3j5v0SPx78TUmn1qzsrKWeQiSx0+QlgO7L0IJ9q5KUpzWqsdfs7anK/Fv4W3Gn820mohbcbHGoEjIPBBY4OOeKmrBp+RsqsIaI8ym0vyJ5tHvNWDS+Xut4pXJljI6ADA3qfUVlGVtEdEHFq9jldfjvoISNUVIpN3zxxnr/tbSAQfp1rqpNNm0bc2hB4XY7ny2f3L4YHrxXRKN46HWr3R5V4vt9P1yG6ubaI219AxBaMho5lB6sM/Ka8PE2SfM9T04RVl3PMr4yBizsC4+9jpXhzqXloc9WUpaMr27EtyR7Cs22zSilFaj7lcoU7Csm7CcryKlxAfLK4Ge1VCWoTipRLXhEeXdbT/ereSly3OKnUlGpY9LsHXyE/3fyrjdz1qequWzJngn05rLcTbFjcnofxxSaGlqRzseQBigck9ypOd4YfrU6phuVFjUSFgMc1pZtEy93YkL5Gw+lChrca5nqS2ysTjGea0bQRhd6nqX7MX7QvjH9lzx9P8AErwFYWEuqTaTPYQz39v5n2ZZV2s8fo+MgH3NdmWZriMqxPtqUU3br0HUp0asOSav/wAA9+/Z28beO/EXgDxt8SvGmi3zae+itpvh66tVMVvLezyKzxhm+VmKrye3frXZnfEmbcT5ZHLsQ+aUpJRsvPv6HrVsXiZ4N09W21ZX1/zPZv2Vfg1B+zd+zT4c+EZ11rrUmE+qXSzYK7rmRpmUEcBEyq9OTk1/TXBeWPKsgp4er8SWp3YChUo4flPGv2ldR8T+PviB/wAK68GyPPqWqQN9sv2OE0+HOGnkY/dVR0HtX2FfEyjh+SOiS36JHpTo4rFNQWt9C3450bwF8EPhHYfDXTFubmxsrZnuNlwM6jMR87nPGWJ6n8K7cHh3Tp3bO2FN0IKMHojiry60e9awuPC0Miz6ZaxzataltsSLnKxZGTtA28dya7rSfNGb32tucXtZat9Tyl7vUfiV8bNVk1SCGz0vQC9zPIzuv264ZRhAMHARVAxjv7VyurOpilGLdoolUK866lK/Kjcs5tL0fwTrGhW+oQ2s963267ZUCo5yAq79vzNjgcDrXsUrxTdjunONOCSje5xvxivrm78NXus21oirpSwpbNFcBPPEeWLgj5j1I5x6dhXPieWNF26ankZhTfsVdn0D+xlp3wW+KmreNdR+MOl6ve+G9c+E15da9aaFOiNc29uELRXMuVZE3uAqqwV2f5zgCv5Y+klWzSg8mq4VfvHVSh11ex5eZSl/Z0Z0muZyS13+R8Nfs/ahZXer6lpWll7SzuYZ4tPtJpt728BJ8pWbocDA9OK/oHhWWIo4SlSxLvPkje3ex24fEu6gnp066GzqVyvwOOs3uiXkRD3htJZEYgoJAwZgDjgjGOnFe3XqwpRly/ca1KH1ebk9UeGaRZ6LqutapZW+qyre2shmlO8neYomKuD35J/WvkcQ1OblLc+YrVoValSlB7a/NJ/8Ef8AA7xNP8RdSutN8RmNNQhuTJb3E0BKlVTaxxjoV4PB9azy6cq0Jcy1TMcgxU8VRn7RNNP7yl8UNFsLfVIxo8/l21ypQW6rtImALLj1U4ADDtiuzEUrRvE7MfBwlbY19O+yT6B/wlH2QNJbtGZ4EfLPFtILEdcq2f5968+tKbV2Ztxq0zyzWtD+36peag8ccwdzLFIqbS4z1r5yth4Sm3JXufOVMCpVZSkty1p8J1N5Yr+5ZrySJRDcu5dgR0BPcdBWEKMKEfcVghQhTldI3/BllqX9tQWt4xWVZMuFA+Y/0rGb0vI6Yc85pM+ltTtmgsLSJWHy2yEd8HFfjXEtb2uaSXSx7k4ONkVYrkMgdj9c8c18vU1dzmnuQahBbXiFCRnHBFEJuJLaqRsYzXNzpU+xySvrWjjTavE43CpTlqXFuor2EsjZ45qJRexp7SVrEekXD2V4VDcE9KpwXLY0py11OshuBNCrKevWsGuU6U2yO5hWT5T071g5NsbbZTktY0QnaOBTi22VCKVzM0qdV1MxkfxV2Rprl1PNl71fQ2bmTLsGIrGUbPQ7WuWJWeRRjJqomcXfQfG/y479qyqbltW1K9wdxyPXkGrg1FDvoUrmTDbSc0+a+xyy1loQh89R9PeqcjaKstSLzX8z8PSrsrXMXFOQ4YY5PH1qOa2xbUYoAEZtq4zinzSULsyestT6A/Yt8R6N8L/F0HiuTw3Z6jqsp/0RtQK+TbD+/wA969nJZOE3N9TjzCS9kkn9x+of7ANp4++JfxFufid468YfbI2O2ztIExDGvqPWvqaNGbm5yeh8ziV7S3Ktj7T1CWJd0UhJz94Z/KnVkm3Yxpw116mfpVrqQhuGdVWF2wgdgAaxipyRvVcIyVtx2oL9mtVt4tr7xhIox8rn1zWlnFWNKbb99mXrML21u/nyhCqZk2Px9Kl6BfmldHEeLdQnubCNtOs3E0bb1jEpyyD19BXPOKvc0pQnOeux5h8UjoU9re3+oSy2UAtmlvfJJO9uqgY/LAokqbjzSWhrKXuqJwmk/BDwprduvxAvIrmO9udnlQiVtydwSpqY0qdX3rGcaj1T1RY8V+DPA3h/TxosnhWztppXDPbQHaZAepPqa6IuFN2SHPnk7szdT03wjoM0UOl+GbaArAfsl4IN3z9djA+uT+NdjleKSexx1ZTqKzPFPjTqC6prY1EaQEaJwJHt4RG8fHoODWFryuYRcYRsz52/ai1PTLrSnsVZrl1jBEzpiSM+jf41102lHUJS5j5W19ZG0W73OVlRTtcHmvNxTXIztwnL7ZXPJZLSR7rz76dppOzOOcV8pOrUta57dTDRlU5iR1BHA4ojK6OmSdONiBiVyFNZTS5h03eNzMupOSG9eBSabVjmxMkkzcVyYgCa15b1Gdk/4jJbiQQ2eVPJFPmbdkY14y5boy9Pmub24ZSTwa2rtU0kc+GjrqbVv/o8fzcGuS3M7nRKpyuxXnBMoniHA9K6IOK3Ma0eb3om7od8s0QViM9wa55Rd7nXQqJxszRGVAI4HtXPLcuauSW7bsFhyPUVMpMIvk3JC5ZtoH0FOKVrlKd9jX8HTRHxHa2B14aaZ5douFsBcsMjGFTB+Y9Ae2a6MJye2V3Y4MZVai7OzP2N/wCCO/wf1X4bX9lp4EMNlcKJ0t5bYx3sqFSfOumZndmYnhSVAHYEYr7HDctlyanzNem5JuV9vkfptq9xFb2RGRyvTPWvUnLlhqeJQi/aXK2m3MM+niRNxHutVTkpQsFdS9rqQWssGx7oQMMttXcOazptb2NJxkrakOqW+lwAS3s5LKMrAnApTjFayN6M69RWitO5yvibV7xLSRoQ9vCxxtjG3dn+dclRpN20OtUoxjeSb9PMyPhbq1rFoXiBrC/DT3N+qCZlJLEIAQP1ooVqUIz5JdvyFisMvaQclseVeKvGekaZ40fVbvRpyNPh/dSyNlZJCcE/y5rBTUpvTRHbDklSUb7nner+PdD+JOvawNRlh8iziW3hgUEZPADAHGcHHT0rmjOnVrSTKdOULKOp1OkaFPcaXNqmkziEwaeqSkHf5jcdMdc9xXp04xa2Mqj5NGec6v8A2j4j8QXl5rFzZWsiIIpbeUgM3uT1GfQ1k4pzdxpxaszzX4iReEfhPq0viTUtLvI9PAJmuYJNpjyPvA9xn0qZKNJ3RuqjkrRPI/GjfEj4ys3iTwR43t9SsFiJSJ3BYDsGUnJrnk5VPejIEoJ2a1PFfG2geJG1GJ9XtzBd2jneXg2LGc9UdTyD6EVCjJas9GmoQgZXiiWUw5nminfbj7QvJz6ZrSLTZpT3KfhncrvuUDZE4YHp0NdP2Tui1zHmeufYreW7kubOKUZbMcsbcfR0/rXiYik23dHfB87PNdbm0CQM+mwTQuHI8op8gHsTzXh1oR5tFYxrckXpuZkbb3G3p3NJ+7EdJuW4+R/l4/HNcsndkS92YMu9eBxTp7my+EZpJa21D5eQT1rudnA4nFe0PRNKul+zIXbBxxzXDVavoelCUVBF/wC0xFcHv2zWKWpcLORNHPFgb8fnWlhzsiOeeN+BjHamoocZXVijd3K7SBS5UmZStGRWWdSTk9vWnKNglqh0cqM27PA6UJCjK6sX7QBSG459aOWNzXlbO0+C5+FKfEbTb341jU38M203nalaaNGGubxV5ECFiAm84BYngZPNXTdKNRc6ujWFP3ZWdpW0v3Pvf9nv4+a5+298Wf8AhV+heF7TwB8O9A8PXCaDpdowa10ZghCXE4CHz5W9cDr1xnPr4XL8zzjHQq4JOn7NaJK6T7vbW+/daHDKjHBUXUjzVKmjumk27rRX6Wvp8/XptDvl0/wpqOreIb03VxFKdPtJ5I2QXKxfJ5wDKuFbGQAAOeK/q7Kvb4nBUalVWlZc19Ndup+hYei6MKalpdXa9fQ4XU7208JyXms26bLq9K/aZ1hAlfJ4TgcLX0tOEUklubVK3IrLueGfGbxxea343stC0GxW+vJZvNiiktFlSPAwZHU5AVc8Z71bg4w5W7XOOtat+71s+zszM0Pwl4hvptR1iyvra2W1gHmR3IaOS+lYnfN0IEaYwOmSeARkio1/36hrtv0/z/r0N6cKNKShq7fOxxfiHQbJvENnZWGry28c9yTqLO37y5XaSSOgROBnJ9PfGy5Vu7DdepTk77MwPitqqk6fq6S26T3tk8SWMDF1ndflU9BhV657mvQo1bxuRVm5NtHH/FOS28QaT/wjlhZ6pNPe6ekSiC2MnzIv72QBf4M5PoAOvGa8rG1eShNz1uZ5nCjXofu01ovvtr267dlprufUX/BJ/wCGMXxv/Y1+MXg6P4bW3i68k0BNHs9CbU5LH+0pSxnNjNcY+RG8pWYLk4HPv/Hf0oOK1knFHDeGdTk5Zc8ra2jdK7X/AAfmfGY+sp/V6FSXupty8trHwx8IvDVzbfFHU/DeoyJZS6e721zbYaPyJI3JNrzz8rDyvcAc1/TXC+KWIpUq0anMnCLT11urpfp2+R6eEdS3NFX6f16Gv8cfEcOuyroY0xEtb29SLVCyZmTylJyM4x1PPTp1xXs4m9aoqnVHfilVUFC9z59gsr7xB441a/WP7NC83lRRbgBKgO3IPckE181CNatjJvoz5Ghg69bMKlSStrsdh4E0XRY7+XSFuPJv7C7Nqjwj5juXhhjr0Gc8817dKn7OO2x69CKpycEtUQ+NpdR8W31tcvbqJbBzaX6R8bGTkNzjJJz9ex7VlXqSbTaMa8JTndfMy/EutxeA9QtdSgCNdz2aJJZj50uASOVboQQCCDg5ry8XUd3ZGWJqSoKLZyV95GrajM9tbNZl93lo5wI+ckA+me1ecoxnI4nT9vK8djM08T2eqbWgdpd+Ny4GPwPUVlUitjLljzWPQ/h5pjXfi20tN5lJcHLEe3px7V42LUadKTfY68LSfNdo9/1fDkRKMbFCr6HAxX4NmdX22MnLzOyUnKVzHu7K6C/JJt3flXlc13qctWKk9CibS+gk3yyZB9Kc5p6RRgoTpNNsluLaC+t9r9cYBxWcZuMrGytURhXMt3olxkZ255FdMZRlscFeE6cr9C5aalBeFZ4mGe4qW3HRmtCamzptEvVlgEZPPbJrGd3qd10y3O2V5NY21EtGQsQ0bA5HFWlYupK0TG07adWIH96uuCtA4KKvVubF24Vzk9qyem511F7tyn5iu2N/Pakmc8L3sPVwOM8g8ZqKlmdNrIZM+Tk4wTQldCasilcqx579qqNkcstGQAYG3NW7MuMrsay7Gy3GfWnvGxMmlsbvwv8AA9r8UPiJpXgS88daP4Zt9QuRHca7r0/l2tmnUyORzgDt3rKSjT1lsYz9o1dK57J8VfhB/wAE+/gNr9nY2n7Xt38UpYZAdTtfCml/ZYZOP9XHM2/v/F6U6s5upy0Y8y6vY56VScqb9ppLotzsf2FdM/ZT8W/Fe78f/ETw1d2Ghac+7S9FutQMpbGdu8nGTivocihGHNOrrYnFwnOkuVH6yfsR/FPwX8VLe6u/hz4Vh03RbKTy7cRxABse/evoqdd1leOx89WtTly31PcdauDKTGrhDk4OeTSkmyIOyGPLHDpirdyOsQPK7uWNNLlRpBuUmyO/vBZWcconKRFdwUHLt+Hapm7DUXJ6HKapqup6zem4GkOtpF03tteQ+4rOTdtEaRpxg7HHeOptat7We8Hh2eQrGTPEsu3PHC1hUc2r2N4KKdr2PJPGngPxt480xLqbxN/YtvbxebaafaMGdmXnEmeozUVo1Kqsnawc1L4Uru5h+HNF8falpI1T/hPre9uJH2XawxBTHt4yD24qsNGqrvmugmoUXy2LbeDYjAkmqay+qOGDS30lwA9v3Ix9P5V1ShGDV3c5515XtY5T4nXp8PXaSJq9zLpckYZrhrdtqnPBUgcn2Fa0lKpp0OOznd7HkPjfUk1m6up9NuPNmchdkrFTt7fKe9XG19DPk59T5x/aCa/8m4g1GMxXUIwj7MCRfQ1tZWaLcGtD5n1+UHSrt3bO5DggdPavIxkX7FnTRglUieZSoT0bPvXykHfQ+lpW5SIklSPT3reyiiakr7kGA2cHHNYTbvdCpt2MvUB+8yPxqouyOTEJtM6C3haVV5/OtJy5Xc76j/etD9WT/RNiDnFZU5e/qRNtqxV0u2MXse5xW805PcyjBxZcui6x5zzwcik2k9CaqaI7CcyKVZBg053Vma0FeOpaspXtJwRx7VPNdWMU+WrodDazJPAGI7dK5aqaZ6StyKwofB2jr1pQimrmbV2TR5JA9enFOTii4xSPRPgl4v8Ais+uad8MvhfrrabJqGoq093peiwzXwzhdyyFd4Az03KOa7MrjVqYmMVdRvq0rtL8PuujhxKoq8mrux+23/BLLwP/AMKbsY/B3jTXWfxLf/6Tf20t2bmediOZ53JO125OwHC5IGK+yowpUeVbs+fxtWcqTgtmfaeuvLcgwQDdkhTheFrsm+aVjxaMVBJssWFxGjLppPzqgLEDitYyjflRyV0+bm6C3l1bwgF2AIOAKVSpGKsVRhOTMzW57LT7V7tmRZCCd8vb6AdTXFWacbno0E5SSex534i07xX4yaQadLNHBkKZZvlGD3Gelea6VWte7PQjUp0la5yPjqwtfh/oyW1hrjiBSTctCSSznjC8csf61p7OFONkWm5u8kec6/4I8b6pbTX08t1ZWMEG+2tX2+fKBzlsnnJ7VLp1YenY0Sowempy3jzQPDsWpLBrQuN0iqI7qGLy/IlOMZI5696h0eeWpcKihG6Ot8JeEk8JxXSG/vBHcKstwgJkPmNj5165GSPzrvpqFODVznrT9va6OU8UeA9E0jWp5fEkM8JvYmkkuDk7iB8rev4VzVOVSbQS+BI8M1rxB45+LVjqnh7S9Os9Q0yylkjsjv3SyKOCQCP0rOhKvWk+wKmoyT7nkfg3w7YaXfXGlahGILiGYpNBO7WsqoeMqwGCRxWahySs9GehZQV2Y3jj4feN9L1WU2X2m9snjyizTJKCO3OOntVvnivIJTjNnlvjC4RpxZSR+TNu/eRgAKffgDmopy986qSRQ0B8PIoPHlvnHXpXY5Wp3O2nFc9zzfxyz6U8+pCO6jikXBmt3wCf6GvFxNZtM7eaMXoeVaqryO0hnZi/ILPnI968OdWMpXOdRcpe8VIFYfNmlJ8yNFLkehK5Xpx061zWd7F25tSWIgx4PUnrWluUybaYscIE4ZR/GMjFbKXumM22zp7Bpvsq4JHFcc3dnTDmcTRszMQBuJoijppKw+7nngj+UHOKaabsOtfdFa2vbmYnOR7GrlLl0JpaakN5LOXwrHPrWalrqKpFylcRlkSMHr61Ld3YbTcbIitxOXwHIz78U5S5dERFcpt6Hp2ranci0sbeadyMhIYi5x64ANClJnTBSlsdLpulLbyiOVW80Dkuu3H5iu2kocusdToitbH6B/sS+D7v4Yfs6/2nHbyDV/GdyGRQRvNqhwF9geSSeMc1/Q3h5lKo5VCcvim7/wCR62XYROXtZLRHW+OJntp4UvoY2hi2sCpym4HgL7D17mv03CTjObp8rSVnd2s/JdbrR6pbqzetvolFShzX1Z4/8S/EUqC9fm3t1BmU7vmKjPJ9K9RwW8XYlqMKdmeVaR4m0Pw34f1TxjNp0F3q+oxgy3jgBLeBeUQDpzjJJ9ac7/E3oY0owjFzbOG+A+qeK/FvhjxH4x8W38F1HrmvyrJMbsGOO2RSEVduQwJGMDg5PPas8NCcKfO+rKwlaNaDrxuu2n+exy/xgv7600p9W0rS1N1FM5txPPgT7QRhlAyeuQOmAc1dWT5XZiqxk5b6GU+i2PjC21C21TxElwtvpXkW8lqG2xqRmQxZwVzg5c468VvhYyqJ819VYhSk5bbE/wAM/EmufDudtX8JXclrqU2kyRQ/a7USxwWjrsZwXJ/hYktjtkU1g6VSm/aa+Ry1f30Wmz7R+Eesfs6/8E7/ANmzwN8UNa+JPhXUvD2lXd14o1HVtP1DGpeI9WubaSAWcNmpG4Rqyx7nPIUnAwc/5seNuXcb+IPizi8FDD1E3GFGDcEqcaakpOSlvq1018z4tt051KU3JTldarS173v5/wCR+ZmleLrPUPEev/Fe+dLF9Sa7164sIbfy0iaW5LJBgZ2DBHHPAFf3pwnlMOHOG8PhJzbdOnFXfdJI9yjz4XCRirt9TUm1zQviDo97rlloal9Qiht5GuDjdKVIZy30ORnj3r6ya9tRc77ndzL2NzzGztRps26K1gEkWmXU0AbBwckbz6MSMjuK8lUaVKVrruedQqKFVpljQ7a7g8Watqeobkh1i2VbqZxnyZQq4PA4zng96JKSm+XW50U8KozlUb0ZFdXdlbwX9jc3z3L3qgWtzCD56yqco8ik4UcnLZI4rlnrJpqxlUai2uU5HUxrfjOzZPEFnPJqFohI2SAuqrkcenrjj+teZiffg0tzw8Qq2Jg01axgWFy0tjHPPJJGVl2yCRd3zA43MDz+PvXjRqu/mYUKziuWwyPzNQ1D7UCkas4AJGeMY47gVpWqRauJ25rs9V+AmlCfxSJZEC+USwUHJHv9K+Vz2vOGBm/I7qFaMdEeuXjBn4J65FfhNV+87mi1M++lYJkngdQKwgoc2py4huL0Etgl5DsdulKV1LTYdN+1jZleaBraTntWE3d6ByOmyDUbCHU7cq2NwHFOnUcZaDko1I2ZzISbRb3aykDdz716Cj7SFlqzzJKVCemx1Gh3yzoHRhzXO4OGh2Yeupmy04ZQwH1rGUbHXHcazYibPpwaSauVNc0TD06X/ibtj+9XbFLkPOov97Y1b52MhwecVzSZ3VPgKagqwLnr0p2ujCm0idGyPf3qHHqaxlzOw2clcn1qk7IU5WKF07scAc0ouxjKHUjQtncepqucUWouwpBbIY5zSc10KskV7uGORTHJGGB4wRTXvEyWhFZW1vbfJFEqD2FdEpSitDNcu6R63+zD8K/ih8W/HCeG/hXoS3NwR+/u7lv3cI/vH3rqy+jXq1XyvQ83HYuNDU/c/wDYI+Fep/CH4K2vh3X0RL9YQLpoVABbHJ4r6ulalT5bHzvL7WTlY9Xv73ZdYBBYdGPG2nfqdDp2gZGl69qfjLUprmUQ6do2nzbPt08w33LjqEXso9e9KNRSfZImKcZpJXbNi1vdL1yOW70q8iuVQ7ftIPCgccVDlGb0OmcZUtGjH1HXgNRNvYoW8tDuaRePrVboU9YnE+MNagttFcO7zLNPi6HmbduTwKym0tBRi5S1PIvi5qGopqlrpnhuwmtr+7j8i3eBt6ond3PasKi/eqMdLnTQVPku3sc94YsLHwLpVxo+q61ctcRSb2mLcuzHkE+hPeuuEY0Y2M6svaVLs57xp4T8P+M5x4ouftunxQH/AEv7FeMpDdiwB6Up8k2n2FGSiuVK5S0rwx4kis0bxN4ivri0EgXToYWVkWPPDNnkn8a9Cg5ez1ZyV5xeiVjkPjV4P0/VruWztGT7QF3Wt5FgPuA6EA8VVoXFF8sV2Plf42ahc634curLUkb7faEh5H43D1rJ1uUznPlZ8u+IZGTSbuMnHXIHevKxla9GRpRUp1U72POps7TuFfMQeqPo6SkmVy+EI6GtKulhVGVg5CkCsWXR2M2+Yhjx9atK6ObEaJnUQSxxKCPwpzu3Y6qzSqMdK3n5wvBHes4plwSeoyHCtj0PArdtqIRSchbxh5ZJH0rFSlLQzqxc3oQabGd+NuATxVNtJCg/ZysXp4TxJtpxkhV4pao0dGn3oEyOBxU1NUb4eXNuXwPmLGs4KxpJqLJkkCLwMk0pQW4lzyPb/hBYxppulWHw++PnhbQpbxGfxHLbXcmk6hZRYPyy3VxGyzKSAoihViWZTwFJH0eD9jRppQqxXl1Z59Si4ylKWp+p3/BH3wPo5+JN34k0Lx1J4gsY7COGG6vJ2ubiTaPvvIQME56BRj1NexhvZSre7qvM+fxkoQotNWdj9Gb66ERMMFud2eSq/er0KktWkjxIwlJJtlLR57w6hLJfw7EY/usnlqKPNGXvCrKm6a5XqT3V5YfaxHKRvzwKVRwc9S6cKqp3Wxk+LmiWPz2t8oo4BX7x7CuOvNXOrDXUdWcnrNtrF3YG71K4eODPyQLwMD19BXJOU7e9sdMHBNuB5kupWviT4l6Wt6PM07SnaW7dBmLf0CnI+Y1nRqfv0+iNeWcqDvo2L8R7u41i81HxNaaqyQ28RS0MkHDNnjj0HtXVUxEKknJFUqUowUTw3xN408QXnj+7K6ZJcpHoLSTz8GKRxjBAHQjHSuWWJ56zjY6PZKNNd7nRfDL4n6j4z0TVNa8LaiZDbW6lJY4iFSZFAdACODnjPT+dbU5uqtERUjCklFnPfETXvE/i3Vry30C4u5Ly705DPa3g/wBUSPvJnj8Kia97lW5m+VpXPLdG8P8AiTwnLPb65qB+3AtNHNbWgjK46nK4GeenerpS5Gdc5csVY8h+JWs6nq/iNdbl1cNDuKvdKNvmAnrkdD7VnUnFy5i6aco6mD4r8R3PhC1OpWCzuFtyYrhI+GGehA4IrOUpO9janyzZ4t4q1vUfEV4urXUMeZskiNsEZ56fw/Sijbm1OqmruyKujSuyzyoknyWzksOv1/Wuyrb2djrinsjgvEvia10bULi3uLPZNsG6OVN0cox1ZeleLibU4u3U640mldnmHiLU7HUJvtNlpMNpk4byM7WP0PSvEcYS1SM1JyZkxSyGQAH8PWlJRihxjHm1JvLccseM/lXM3d3N1a1kTICNwHpSbbMKiaZNasWkAPQMK1hG61IUU9TqtNQvbICB071lKKuddP4TStQEAJH51EttDWLdyW4jEqYxn+lZpu43vqVURYEwPwIrZQM5aMq3GZJi351LQQd1qOGGix3HXilKALSREgVOPXvRy3HPUu2l5PCd1tMyNjGVYjj6imrpgnKx33wHsNT8d/EXSvB2p6xBaaXLcB9Vvrp1jjtbZfmkkLnHOMgepIr18olHFZlSo1ZWhfVvsd+EblNRm9D9Ffg/45+C/wAY9b1nxGvji10v4cfDrSyNT1K6R40mhVMLBG+COcbjnBbtnNfTcf8AjHS4ejSynIZwjiXbljJSbmrpNRUU1pu+Zx02u9D1cVnn1LCw+rpuTbXTTz7/AHXPK/hn+0/pX7T97Pc+FvDFtp1pdXD23hTS7f7WXCrIYohO1wFUO+BIAmVAYAkHIH7FwLxNmeKyz22bpJpO7V0k/n23Ky3Ma9WjUq4lu0Xfmdldbt6dOmup5R+1JefGg3kPgLRvhFqd3HNNHHf3MkflxzR7vm2S9DnGODX2scwli4Kng5Kdt9Vt30NcVjXiElhmtTlv2iPCGu2Xg3/hALmzi0u4udPWS/s7SIlYS/ypDuJ5IUc168XKdPk1vbXTT79v680ehHBN0E5u+hlL4itvA/w7vfDeleFraA6dDbpbzpDliwyQQPXP867Lqckk7JDUo0YKLbsux5T4a1fxx8QnuZbv7JcxwOTfaqsryGOaZsmIDGNwUgE9s+1ZYZqcnGOyOWnOeKm56pIg1LWJITrWieFdKKXN/wCXZx3KXeCIxgM3+zwDxXVztSko7nXUkqSQ/wAdjT9G0D+yraG7tmsLdmNys3mPcQIMlemRkg5+vanXnJYX3rrl103f6/5nLVlUmnZ6HoWr/wDBN34k/tgfsL+Fvjf8JLDT77xDaeKZ7G3N9eJEyFYhILdkGMR7Ukk8yTgEkZweP5+8QOO8JkXFUaVaLtGKu0tdXoceeYnA43BrCu8a9OPNF2dmr669+lj5M8K6B4u1u2Pg2xuIjb2BNl4kZV3kMsm1o1KE7wCCMqSMc5xX6dldeedYSlOi/caTd9Dy8v58RhoSv0szqvijqNl8L9Mn0ixmWSay05oYLZceU0jFdrf7RGCM+5r6DFt0Ka5HbRq3R7f0vVnr15unhG4rXoeGxXfji2v5tRudQ8y/SQC4jkceXNEx+59B618wsNjVU9rKWvY+Nhh8x9u6nNeSfyseg6L4k1CeyuLLxBaSWVyji5aXO4jYMgKe6kfKR6GvbpTcoNSunufSU6tR3jUWpk6D4U8Sahrs/iG01dF2nDW0ZAXy2ByQCfu4PIrgqU61WrdPQ4nCpKq5X07Gv400QeEtGt/EE0kT3Cf6swhZI5kByCSOhFc+MpxoR5pBUk6cXNbHCeJ9etNduv7esLCCK5lfbcC3H7mRcdfY1484wrPmhuzyZ8tR81MqxOJZ5fIT94p3NkbdhzgkY46VDgoRsZ8rnKx6l8CLq6sNejuLa3iYGPO2a7ESSHByCx6E4r5jiWpSjl0+l0dD5cPTc2erw3NrrHhnT/GGnXkEttqDzRPHHIWa1uIiPMhfIHIDIQRwysD6gfgWIhOjUtLqThcXHExbRn6krsnHcdawhJOaN6kOdFfSGkichuhPOTTqTeyM6LUNGaN3B58ZbuB19awuzduNRGc4aFtp6ClFO5ztOEtSrqmmxanBtZRvA+U11Uq0oMmap1o2MjTLi60a68ifpnvXS7SV9zhcJUJXOostQjnQMhzkc4rCSaPQoVVOJalYfZ2IPY1yy0kbvVGDpBJ1Zs4xurtg24WR58eWFY2bqQBySKya1O6o7wKMkyl9oPGetUn2OON2yxb7iMv+dTJ9DrhFRQy6kIxjvUPY55v3io7DPvUpGqXukZYk8/yrayOSWjFOSnPFZyTT0NoakU2QMqORWtNJvUKmiI4UMhOO/qK0lKysZQSZ6/8Aslw/Ey++Ken+H/APjVdFiluUa/u5rnyo1jBBOfU8VrgpVpV1GDsjhx8KHJqrs/e/9ni6kufhlaf8TD7SBCF+0r0kwPvZr7KnHlgm9zwW41IOO35mt4vg8SfZGk0BIPNHLJP/ABqOorCs6jXuHXSVOXuyM/wFpl34t0n+2fGehxaZbxuRFpUCAhyM/M575rKCqVI3mrIus4YVqNPqdFYtbW2m3ItLBLazT5YYIEABJ71tTXLHTY5ZO8tdWc/rN1fXMjw6ZCFt4o8Ts4ABP1p+/wDI0b5Vc8/8apZ3GsAeT55MXy2pYBQ+OCfWjkUpXZUZy5bI8w8T3Guf2jHqdlPJbXEB2XVzKMxOuQCsY69+tYSvCpc0iqdONmjnviPqGtX+rDTGmtYI7vZEbwphgM9/Srk23qYJqb0Itbt7vSXmmsZPNi8oW95ayuNrn+/mtIJ82goqyszHXwzL4WhKzG6EM5Dxhbvcid+euB2r0YRcI2OWq+Z3OM+JunWWqQyraedb6kmJEHmZDY9CO1Q4t6o5/azsfJ3xk1Swu3vjdS+RfICsqMpAb161M4xBuSV2fMXiyVTY3WAAdxH0rysbD9yzooS/eRZ55OWXI7/SvnqcYn0VOTK8mdmcdaKr1sKbuysMBTmsrGtLYzbw/vtprSOxyV3udIoJjXHBwOabV6h3VYJzZbtIyy/MMAd6bikTBdiVbZfMDAc1lUegKVpWG39qGQcD24rKD1NlG7IrW3IOQMCuhpI5pR94utA7REAZHrWF7SN3BTgN0sPDNjHfvWjvYypv2c7GvIBw4OOPWlHQ6p2tcdDJk+3es5PUqLdrm94DsfAcvi6x1DxrBqsqW82YLbS9PjuWmc8bSJMhc+uD644rfBSw9KupVP0/U83G+0qU2k7H72/8EavDT6F8JbnVo/Ar+HLSVVaHT5pmklZccSSlud5B+nJr7rBVqU6CUdz4zHqrZuT0Z9gx6rdJI6XrL+9P7tEHA+vpXRzSW7B0YezXL0JbzU7GzVW1C7RAnzEk8KPrTdWCkrs4vZyk3yIradc6Nr1z/auj3azgHaXQ5UGnJ05vmhqdC9tQhyVFYq+KtdsbFTcX7RsYh8gI4X6+tcVapG+p0Yem2tDjbuy1H4hsFivlsdPjO6Yxna8nqaxjBYjVvY1p0qeFVoxtdt6d3q38zEv9Gkjg/wCEb8KCFNsh3SJACW54Lfp9ayjFW5b669PP/L79zapPklzHl/xJ+0eF52D2892sEbBoZZtqzykcn0AHT8K56vuaJm0KrqRstDzj4fXHhbTtE1fV9bvZxeyp/pUKpmKzOfuBv4htx6dTU4ZRjFyudco3SuVP2efFes6rpusf8IJJbyWs2rXBaZYGjBhDYyqMPmJ9q6KcZauDv5+Ry4qnFT1ZBOPiKPjZb6pq/hO5s9Iu7MJFfKzI7Sq3WSNsYT6VjJ1XXTlsVRUI0W0P+PkOsxXsWvkWYe2mWN4rKNQsoPRiMDDY/Ouhxad4jUlJanzH+0HpscWmvrS6OqWnm+ZG9vGUVz3JHfntWcqGnM3odNCprynk+pa3qN1aiaGGQqIv3SwE7GB6gr0B96h3tY6bOUrHAeKYktmkubvT3EgciXzPlYc9Djr9fetKUdTthHl0M5bm8h8Ja7qNtLEj/Zkij3HG7c3Y9jgVeKdqOh00klUWh57rlu2s6MLzXFvTPFGFF3GuYtv91mHp6+lePVcqlP3tDZwqTna+hweraTYW8Ujxa/ZysrYWGJ2JI/EV5Cik9GbTpQpx3MyJQp57GiVzkbvqiZWUndnr1rJtG1F6k0eChz1zmoSuwrJbjrQfvymc/MDXTF+6Yw952Ou0sAWq/T8q5qj1O2KtGxeWUBfm9awWrHTauONyiKdzY/GtNAqSsVXnVshTz603LQiK52VwzF/m71ncpQUWSA7VyQc4/Om5FSkuhCZCx+QU1sZqLLVmis4zwD6Csm3GWho5RtY9M+BnwO8cfHj4naB8G/AulNLq2vXixQxPkKidWmkA5CKuWP0rix+YrKcM8RKPNLaKWrb7Cq1YUIOpU0UVdn394+8E/CD4Z6Jafsc/BTTotSsvDfzeLNRkhMh1bUgAXY4yNqHIAIIHTtk/SeAPA888zPEca51F1MTPmhRg0nGEFu46aa9fnc9nJsJKrhPreL3l8K7Lp82cFqOl2U/jbTtH0aL+z3tiJZZLW0DAlTkrjHGRxx69q/rnERoVYqi3aOl7W+757HuRg1C7Scdj5t8d/E/9pL4C/FDx3Z/D3Vk1nw0upW98PC2tRB7e1eYkGa1kJzDIoBPHr718N7DMOF8/nPCK+Hla/wA2ePUwNeliXXjOyXTui54m8Qa142tdNuLu/k8y5VZnmbBYouWcknOOOMnk9q/Xk1UivZO19T31iadCim9b/qcf8TprHULW4ttOu5rWSQSMGnmJM7IpwQFHA6AD19O01JNxt1CXs5xVtNDzXR9F1b4c+HbceH7n7Mbq1lnvI1mDecc5bcQfkDd2POBgUUqbpRfQ5+dRjy09Sj8Itf0TxFDqGt63o09lNb3/AO8gmLIXPZh0JT/JrpoVYSvK1mZUZTqtzkmmtNSl4p8b2mr6ZqV9BOqv9k8q2jfCLGi7tzYJ43ZP1wKxknOrOXM1dLRuyVru+vV/jZCxFVSh7NJXPo342+N/Gf7L3/BFnwxpWg6YR4j8b29xeXF810UNva6jK0EZCbSN7QxygHPAc888/wAq5pQnxj4q4mClejSSTS2bXd+p4GMrYqWGq1ot2ilFer8z4J+B+o2nh+yktV1iS1jNu0d5Mznagx8xDDnJ5AOK/ofJlSwlFQjoloTlEYLDKMG3b8zc1jVx4zSfUkthPHNOu043GNI+4BOQx7Dv1r1q8va1L3PSlUdV+z6GV4/iXRCrnToR9ssYjcSWwDL5pbg+xwOQaxxSaSt1MsXONJLlXkdNfappWt+G5LNrm1yFjhuHkAEmHQYYewYf+PVpB04QbkxNyqRs1v1OLsLfVPDoksr8FHtXMkkYlPzKc5dGOMcYOOnoK46lWyslYxVF076nK+IL/Tb/AF2bSoPFkyQyyZsWlf8AdD0PXj3HvXzOOrQjUcXLc8XF16Mq0qCqtX27FfS9OutLnbSNVCqH4S4Qgxyrycg9MA1lhYVIq0gw+GqYeny1N+5PF5kdxFJATtKbWcHBc+lPEWSBWjNHo3hfwHrfxF0SLwjoWmxXcl64WOOW6SBUHJLmSRlVQByckYxXx+fzp0sulOeljPMKMsRhHGKPan8CeB/hz4I0jwp4d8SDUdWS5muNeFkimwgdkiVI4Zc5mYbW3uPkJxtLDk/iOaYiliaicGVgsNWw8ORtfIzbt1MR9q8uPxHa7op2jDzSG79DXTL4UjFq8tDRjmYDa4FYtK5a9zUgvrfeu5eBioehUkpxM7e8T7T0z1q4tW2OSzhIg1KxW9h3oPnA4NbU60oPQqpGNeFihpt/cWE3lOeAe9U29zlo81KpZnQxXqS2pZWxleRWTi5M7pVexlaPJu1YqP71dlOKjE5ItzqG1e5DE81yzlqd1RWjYz7eLzJmz0qZPsYwSiXkZY0wQaEuppGV2U7lyxwT9PahS1Odr3xkYBOWGPrTavsavSIyQc+npVJGE73IwXyQVOKt2Kg02OkUNHkjipUrMqsnyEVs+3lTn0rSS7nPFSkz2X9kf/hnzTvH1vr3x48T30MccoFlp1ip/evngufTOK2wssNGpeozPEUYuN29j92f2aLjTZvg/puoaTGwtJola2Ruuzt+lfWqKdJK2h4DqRqS0O1mvYXmjVm3t3wv3RT5dS7OKHXcixRCDzCI8ZYAYJNaXsiObmZVtpIWgnlm3fMP3UAbv2OO1S5LlG03K/Q5jXdJ8Q6dbXKx60hadNzIwBES+gHc1yyu9Ewm4ykjz3xobTw5Ml5MGnmNqRBGTg7yfvNgVpCXK+UI1JP3Ujh/HV3Pda3Z3N5aFV02386JnuAsMx4yNg5OKKsIqd5ChBuMn3Od+JeuW15qP20WkOI5IXk2jO8kjAHv7U1acrE0m4opeIdTt/FsUlnc6PIBCuWeMFADx971rqXLB2E4u1yhrJsdRktLPTgrslvz/pGPwI71q62trGXs/duePfHZkjiln0OWaK5hiBDwzEqCDyCP4abqXWgKKjufMPxB1rTPHmn3sGpQtFqkf8TjG/HWsJOetzOdm7Hzf4sEsIubabIKsRya8rGyfsWjTDRj7ZHCXfzKQp/GvBop6XPok4pFdgwjIPpWlVozdmtCumCp9Kxd0zSm/dM2/Ubi2eh61Sdjlrx0Z0sIzGM9MdaJfxDtrNuq7Fu3Y8A1fQdNMsM2zD7eg6VDSkTL4xmXnOO30qVTUTpjqiSOIqucc5qpMwmrMsRNuBX8qwcWmdEErDHiaKUSqK0Wxz1U1O5oWbfaLbk8445oudEGpR1BR5HLfjWUk27mbqK9j2n4IfBPxlpuoad448f6fa6J4euQktvqOqeIZLPepOFdYbeQTTg9AoGDnkivXwOBxVGpGpOyi+pyVqtOpTfK9UfuX/wS4i8NaR8HZE8I+FrrS9PMuQl3btEZzjmUK7O6qe25ia+rowjGCcdT5jHtyhyt3Z9E+HL861qlzJbKPKifEkjLxx2HrVKTbskccpxjStIta94a1LxHALSEpbWxf940nzM656Adq2VKVTZWRlTr0aLblqzSh0+w0LSBZ2m2OOKPqi1pOmoUrJnJ9YniK92crpfhbU/F1y2oahG0VkkmUW5HMv4dhXnUcJVru728z16mIpYeHLu/IoeNvh34m1RbhNJ8VfY/NXaDa26hYkHb+dW8JJP4rehtTxlJU0lHXzONsPhx4ttfCVzFpfjloIlbaJsqZJpPcgcD+dZRpRjTfLIU6kJVPeieN+MvA+ua/wCOFgXWb/Xri0tiZ4ZLgRRQ4HLYUda8mpTftN7ndTqRjG7VjmdH8UWnw+sPEHgYfDy71mK9T7TZ3M8uWZyQTGXz0z+YqsPVlRco2uGJcqvK1pY6X4R+MfBunX0FhrVgmlatZwug0vygjxgrnepICnOfXtXpYatGq7NWsclSE2rp3OI8NfFLUPjB8V/EvgfT/Flpq0OnQIPJWVGnjl5+Rg3C4x2NS61KeIlFdDtdD2VJTkjhfHHhn4oweIJtJ1jxxd/Z4T8tnb20cjRjPIcNncPSoaknowbpzVoo8u/aH07xdomhXWm6hc2E9ltE1rDc2TRPn1XHANW3NQaOhRhFaLU+ej4jn1WwWO1sWtiqkeUW278dRnFcSbZvSXVnLeObzdI5RJFjLDa7Nk8/wmtacrPU6ott3RleIHa3+HU5OG36lFkheMAHrV4r3qWh3QahY4rXtAnksZ4rHSrwRzRhleynOxj/ALQPSvMqQkqdkPnbd7Hn2r+FdV0ohrzTZIlxw8mM/nXg1VUhO7ISd9UZnktuBL+wJqXNtFNKKHohPy5+lZu4qbSkTRAiMg/nVRdjWorq4lgxF4YyeNw5rpXwmFNpSO0sBts0B9K5JnbzaFmNGZgT+lZLQVN6iXlsdnXkUKSuXNXRVSMxjJ5rRpMzhLlE3gN92jlRTlzDnXcuDWcrJktWdxqKqe9UtUO7ktC3p9wlldw3jWkc6xSqzQTFtkgBztbaQcH2OaiajZq5pTgk02rn1B+xr+2tdfBT463vi3wL8P8Awzp+o+KNEOjW95LA0UOhlv8AltG7yOxHdix5x6V89jMkxGKqUZYeu4ygpJ82t+ZNN+ttmenUo4XN5RoVo2jdOye9ujPbvgn4I8R+HNLvtV8c380l3A8st1cFDsvix3CZCfmdHzkHvmv6m8L6mGp8K0qdHSNL3Xp1W+m/+Z9RCtTxFNKla23pYi0q71iPxxd+N11dTM0DxWwSDi3yCO4wG54xnH4V+pww9CcLTiVVowpUoxeqer377P8Apq33Hz98d/h9rnizXdQsNJ1G7lFzbQ2lxuG7e4fMkhx/dUd+5rhzDDU8bONKN+ifye5y4lKc9Fa5yfjqaXwlZi8e9eO0tikE08zlfNROigd8kjpXu160cNQvJ2Ud76BKUaVC03ojz6H4g+EPiJPqOtxaytpNC3lx2cRUyQRE8AKxzuYn3ODmsMHj6eMourCSfzOOhjadSnGEXd9TjNSn09ftWm6XYXsdvp9wHvIBd+YLonlImOOOevWvQhXjVdr6K1/M3VRU5czGfFLxtqupxXOnaiscJS1jCJbAYtWVc+SMY5Pf3PtWsp3v2LnX9pTUjzTVIr298fQ6PduY9M1GyUMwkzypzycYzya8bEyn9aqTb932cn80rnkQp1JZmnPWLPp7/gspqOneKfiN4b+GvhzS9Q0rw54V8G6VpelR3d2wN1HbKyeb5HCoN7MUkGd6sSDjFfgHgtl6zCjj8xqy/eTqyb8tTz1g6uOy2UajteTZ8b6V4J1PSri90os0jKqsy5x5it91QO/rX71TwH1aLXMaYLBVMInBMm8N+INN0mTUZ7i3KXUdzmwQNvMbBsKfxGRmnTrppq+prhq8Y1ZJ79i4gujrGoahdSr5ZGZbC4cPlcfeH97HqORXRKuorU3lTc53voYXirXJ9Ov553he4sJowIzGO6jgn2B5ryMbNwk3J3izgx+Lng/etp5GP4v8TeJvF1rbSWVwhggRVmz1wPrzjHavNrYutUivZ7HiY7E4zGUovD7dSr4h8Mqmhw3k3kXMAXdCI2JYnurY5HrXHicPzwu1c2rZanh41Ki5rak/hlZZbY6Y8ksKTIDGlwMqPc56fWu7CpRpqJthm6sOVFq5iXTZEsb8ESH7lzE4YN9Mf0rCtFKXvbETouFRXZ7N8DrO01Tw7JJdWiERkFc9Q3rzX5rx/VjLLYwjpqejyr6ud1zGojUbeOBX4+4cr1OPm5ZWILtx3PWs5pXNHqiGyTMgPHJ70SbsiFZMvv8A6vA7VDZpUS5bojSbzFKNUXZlB2ZRvYOpH4U0n1KqU7oqwylG2Mf1qtHscivGRDqNgl0hliGGropms4Rmroq2V/Nbh4ZTjjjNbSXU55e5uO8OSiTVS+7+OtU/3bOfDybr2Ojum3Ftv/668+Wkj1JoqwLtkJxjNNK7Ja90nfJOAOMUS0QkrIpTKxfg8dzUoLJaiYAGB+taLRGTldkMr7ODn3zS5riauxkLmQn6U76FRikyZ8CHkdulZ3HUehBAoJ24xWnvNXOVSfQ9n/Zb/Z3uPij4o0/xRqWu6Xb6ZFfpE8T3am5d8ghVjzu59a9fK8DCrNVKr0OTHzqxpNRW5+8/wp0hPCHww0fw7bxlBBZooXv0r6WrUUnaOx4lCi4x13No3lvaxlZtq7cs7E5qZTUUbTTtYxrK91zxxrHk2CiHT4QQ94f4j6D8qwbqSafRiVOMfee5sDRdL0+0mslaSS4lOPNkc5Kj0qlGNipVLtHMX6WGmM7QQSyEphpLiQnyz2qVBX0RLlzLU87vNS0/xF47fUNRi3Q21uUlLH5Semc0U03UckLl9xLzPMPi5p3hy6ube6DyRXCXAK3QlJhCKfugdxRJJyvJ6G8qnsoOJw41z7bq896LyFo3v1FkbhCELDGTz0FZwn+9ck9DKEPdWhq+L7XXL6J3tbxoJBzE0K/upsfwj3rvUrszcoxVjmrqwSXSr7xLcR3S3saBZYdhV4j6+9azpqcTOUmny2PNPijqP/CReHbnxDpM/wBnvoEAfdjbKOnNOmo3M25LQ+RfH3iCJ5LmW5hUXAJ3+X/C3rRUXM7GUtzxXxfOZbWe6dssT3714+MtGkzqw0OeukjgpJWMmST+NeSlHkVj3XpoNmfdGa55xdxTi4rUqCQgEUNWWpdJrlM27kJRiTxmlLQwxLtF2OpgYeUoB6ino56ndOyqst2xPfjnvTk1FFxSJZZlAIY/hWakjln8Q61w2OgpTmddJLlLRxjJHXvUc6IqrXQWIAdsZ70pTQ6LHuN0fTpSUtC6seZC2Nw0E23OOKuKuYw0Vi3OGZgeOabcUjRU0tTsvgZ4W0PX/H+mzeJ7fWraKK7QxarpemPdguDxEVzgZOBkAkGunDV37Rb2ucGLdKNOSWj7n9Bn/BNq0lsv2erV7nSbzSzPIxFnqTSNcKCeN5k+bJ64PTOBX2FCopU03pc+UrKd7vU+jLOaO2aPS9LhVELZYbep712JbRRh7JOLqTLmvanJZwBIVO88ACqr1JRSijloUPazcnsQWLvBYG81N97Yzs9KlOFOHNN3NJxh7XlponD3GoafvcNbIeenOK39o6lK+yMuXkra6s5XxpcNBoM95cav9isAhU7SGZz7d8mvOqqpJaOyPVozhz8qV5Hm0ngz4g23g24vNOvxp0U7F7eC4+aVR/eOe5rBYZ+y1dkzaVRPEJSRh/C6+svh1ompav4ruRcandRStLc3KgAjIGSR2rCCo0YWkVjKrrSSW1zzzwZ8QPBHjz4meKWV5DZWcKLAbi3MUVyO/lM4AkxyMjNZYRwq1W9kDjW5I8pl+FNG1Xxd471691HSLPUNPb5LeCVzHNChHBJb72Pbiu2lC05KxrVlTpU0upb8dfDfwb4OEjf8IjaWV/c2ZkW80S3KSFgM5Yr/ADq6mHo3vZXI9tXqJK55dHqGtfE/R/tlncQCOzR4pZjcIkznJ+RmzncMd6wj+Bbi6OvU8d+JNvrdrp7WLy3V4GJESXTLKsvBymV6Hr1q3eKsdUG5/EeA6e1lY6y9vqFv9ljMjFbW8DJg9wDggA1585RhLQ7Wmo6HD+NpbOS9nWzlJUS/KhlztA7H/GqpyvudVLmsUdfszc/DK9mKlTDewszBc461tVkvZHXSi2zzLxXJqzqNU0WeOW22bZmtZiCD/tL2rysUqk6d47Ft8jOVvr25uF/fSMzDu5NeCubZjjapqzOYMzA5/SttEiXq7CtvQbsc9cVNkyUlzWJojlD+orNw1NKr0IbJyNQO71FdUV7pzq3MdtYMTZpz2rkraM7FpEuQsSw+lYbjhZC3YbZub04xTUWaSqaaFASjJ6+/FaONjGzkxwBb5ie9RKaWxrFKIkqysMKR7VmndkzaYkUbA5brV2layIi5dCdAx4VuKnks9TaLla7NHw5qVxoet2erW9xLA1vcI/nQY8xBnkrnjOM9a0oaVL9jKdSSlofoh8C/jDrvx18I63rl3a6kZoIIYrS81jUmu57qKNNqO7HAQADiNQAoGO1f0D4YUIUMmqKmrJzb+8+jyirGnh0oRSSfTuZ3i26tvC+jQR2zYkjRpZmkf/WuT0A7DtX6tSjUkm5S9D2XOdV3OL8TLbroGp6/rlwtvcXR+WOMbBtPJC06lGnKDirq6tdO33Nar1M6lSSnzI+YfjL8TNZuvB3irxH8NdJvLnxv4bvtHk8ESNFDJp8T/asTmZJARK2NgUEYGST2r8w8T81xVGphMvjf2da6k09dNl8z4Ti/EZi1To4Vaybv6HzP4b+Gmo+OPG3irxb8Q9Qli1RI5LnWZbaPyUFyRubZGmMYPQAdTxX0vC2TUcPl0ad2klrudXD+XOTUZ35ra69RLv4MfEHwvNep4c8ZSQpbW0NzcLcPuLPu4jAPJbByf/rV9T/Z08M3yVH6M9yeBxSi/ZVPvKWi6h49vNXvn17wjL9jgi824urfnzXX+I5/z2rfDvGKcpVIad0Y0J5h7Zwrx91bM7z4Tt4U8UX2h6PcIt7dnVNPSYqQrMWuAjJjqMk9q5M1xNKGRYiSlqoS8uh3yrUPYzcXay/E+lf+Cwn2bxZ+1t46m/sSW1g0J7PRbRZZQwiCwhxGMADC5LA47mvxr6PuGVPg6tVa+Obd+t7nLlapPJovd9/M+Hri5WLUUu7+8dz5p+zzxjGwxk7VI7/Wv2ypiac7dv8AIyniI0+juc14J1u61bxLqeszaRCgeUoytFnykHGVHP6V4mBrRnXlK3U+WyrEVMZiak5q2poeO7zTtDuUsRCsFw1kWgSJshuMhsj19K6MbiqVO6j8Vj3Mbi6WDai9ZPZHKS3fijxbdwzXkywW0YUtBFjanbdjrznmvFg8RjK16m3Y8OnHG5hW5qrtHsXJ9JvPCojsrqOIi4YNDI7bgGOeVx7dq7Xh40ZJdzp9l9RrKHRlq+jgs1j1SaPytqorKoIWQd2APGM5rSUYxTkz0cTPko83Qoarq9kmqf6HcBZ5IQ/kwygIvBJzjjB9K4J4mEZ8qZ4lLHxp1nCMtWuhW8g317DcSSt5mS+xSCiH6fT1xXBiazm7I6KktFJvU+j/AIC2TDwZKXUIpwCvQivznjlKOFhfudVKpKULGtqB1bTbkSWASaHPzwsACfxr8wSpVL3djlrQrxnzR2HyEzjzAuMjoTyPauNu0rHZBxcRLQbDg9+lN7EzVi15wIIYYGKiS1LtzUyFSVc4OOeDTtoYp2Yk3zcDFQ2buWhn3cJU7gSCO9CTbOSokRRzsTjJzW0W4qyHBNFXVrKRojPF1A5xWiquTSZFZRaM/wAKTlNRPmHkPjFdUqcnC62PNoyaraHWzzAuQp4rkaitz1veluLDEWw7Gp54o0ukPk+UbV6etRJ3MnLsV5FJGSKUdx83ukQwCR09aubdjBaMikQSnGPrWabRal0ESNY+nStUu5Ll7wkjkjBPShRdyZST0I41BlygHNbN8kQglE+oP+CVPwZX4q/tYaNdzWDyxaOTcyOM7FI4GfWurK+edR9jlx1dKNj9wY45Yo1iVACBt3HoBX1CVlqeQ5dihdw6bqF+lpNdt9mhOZFReHPoTWEk5ysCbauar6xZWdu1pY26xQKAAgGAPrWySskiKl3a5h+IteS4mFrb3hQ7cmQIR+tXboQoW1ZyPir/AISB7X7VNdyxQs6osIIJYZ61lVUoaJm8I80dEc74vuNC0+0lt4byeBhCTIoXLOe+KOeMFYVvZq9tTxv4rJceI7zSvCWkTyxQEGUxuoLyrjJz6VjUfPNRME/ecjO1qPRLPTrbTNVMTaXNHtdZECskpIA5rqjGKjaxvBcsH3Mvxe954avovD8upRPZ5Q2+6f7vfGTWqXI7HA3GUuZIzPEOqPpVo95dSOLeVSsiLKCw/wARWzlymqT3Z4d4rsNQ8PW2o69oupvLbuzFo2OQN3ZgegNSnbUmpUjI+UfiTcZ1a4u4Y9kcjHeg9aicm2YPXQ8r8ZTm3tHOMruyPSvOxsH7Bs9DARtUOY1i70aXT4o7KItct80so4Vf9nFefGMfZ3Z6dWf71GTLI+zBP41jJI0mnKFyq8hUHFZz1RNHVWM6didwI/Ss5IwxDsrHVWh3IueOKzm7VDuqX9qy/bjpg8VNSbaHCTTsOeHc+N1ZxkXJKRat18tcEfnVON9TOLadkT7FZSAf0rLVM6GrrUIAAQPzpuLZjZxkXFjV0wcVCumbqSK89r5Mm9K6YNtGTdndF+xR7rZBBC0ssjBUiRSzMT2AHU1LpynKyVw5pNH0j+yX+zl8XLXxzaz+N/BGs6HAu27sY9T8WnRYLpgQUEkJHmSqf9gA+/Ne7l+XYiHvTWnm7Hm4icKsWk1c/cf9jC51y6+FVnda7FZrLgCQ2KERLgfdQk5YDpubk45r6CDlGKX3nhV/ZuLSZ7T4buYJL6WYfO68Fh0rohJrU5MRH9xZMt6jd4k82SNRg9D1ArN1HKV2YUqSUeVMdp8raiiyCHZGp6sOtdEIe0V2tDmrr2Umr3ZR13WBfMNJt3wjNgmPkn/CsKmIVaXs47HVhcPKn+8ktTj/ABpo9xqF1H9uvY44LTDKX+ZYx6/7Te1Y1tGuyPTpOnGle2rOE8W3mu+PfFUHg3wXJNFaPMovLmYgPIOuBnucH2Argkq2IqWhsW5xpU3N6s88/aX0q71rxDH8P9C01/Ke2WC4dZSCqGRQxI9+eK5sTzuo6a1SDDRtF1JrqRfEfwO2q6/DpelaWtzHo8lukMEcYVV+XLY29e5rrjTcpqy0R0UFy07LqQeMfiF4W+Hk0mteMWhgivNLCLbxxsrhzjG0jqT2rplWoQfvPyOWnS9tPl7Hn/jT4nS/GCeR/DOna7bwWFr5c9hcXAt5FQjqhOCQRXHVqc8nZPUitRdGXvLfqfL/AMNPAmh/Dn4l654L0831ql9dG9VZb+S4jG5slmO75Wz2rHD0VCbTuelDmqUlN9De+Onhy00jw2/jHwdq01rd2rFb8ycqT67T1z6gV6M4OULxY4z5nZI8U0nxHJ4nlZr6VZfNjYbjCGDt9SPlPpXnSalubwi9jy/xpdefqUkrzhtp2iUxBWI9Gx3FXSg0jvpqwrR/bvAGp6eF3o7xZ3cAjJ5PpXROlHkep2UubmPIPGNtq2lS/wBnTebGiE7A4QnHbDjlh9a8XFVHShyxYVVrscxP8w3n8TXip+8FNt6MrjIyffmrexE9wbBUnH4elZOVmJbjYZFUnLUOTNp3cSO1k3X+Fxk10QnaOpzKKU9TtrBiLNcjnFclSXM7nfpylqKYLgg81EI31Jih80gkTDHjqKptI1ULIqvGAxrO9zOUrux2v7OPwQ8RftK/HDw58C/CV/bWt/4ivhbxXV2SIoRglnbHOABWVecaFLnl3S7avRHLia31ei5tXsZvxc+G/iD4MfEzXfhV4uhEep+H9VmsbxR0Z42K7h6qcZB9CKqhONSF0bQkqkFJbNXOegUvyR16c1rKXY2iuVXLVvEGwFGSahJyYpTdzSs9KeZ0Vc5J6YrRRey3M3vc+8P2QPD0mmfs8xC3zbGS9/0uXy8F164OfUAgV/RHA+ExdHI4KHuttXdr6X1XzWnlufVZW1GjZrVlvxJ8M7rXbtvib8Tta07wz4M0xsW99rF0bdbmQHgRqAWmI44UHrX0eccW5RkK5MRU959Op3TzTAYX925XkeL/ALVmuaZq+naprtrf+JNM0HTLtbNLu88Mmxe+u2UGOztYJW8yV3HJcqFUHJOSAebCcZPMpww1ChP3rcrSeresbet1Y8jEZsuV0oU3zp2s/XXoeLabZS/Dz4bH4t/EzSVtQ1nLLp+ng5827JBjyB94J3PTdmvRxOVVc8VDEY9fwtYpdzOhhq2Km6lbS2x5r8DdO1YLqnirVoy82t3cjqZYOOQDuPHB9M96+zynDPCYVX3k7noZdgJUaTlJFrxxYnSNVk3yhpb9DJcnJYxxqTtGB0ySMmuuScqtjtrVUkrEuttp2mXzaS8C/Z7q0AncfK052Fjn+6gPf0NdtPkjD3npqaQqRjHm6nQ/sT+HfAl3+1j8PdY174a6brkkfiEXNpb3N3JawXVzGwdN7orFQpUHGGz6HOK/NfFPB1v9QMdicPG0+R2a691/W1zxcXhI4+lKF3FvrFXf3Fv9srXdB8a/FrxH4o8LeOL/AF/w94y1W61jT9Y1Wy8qS9YuYpQig4McbIYwcdu9fn3gZNx4XqYGvFQqUmlKCd7XV1f1NsHh54fAxpS6f1958zeI7ewg+228PleVC7ENOuNzAAlV+g4z6mv2Ks4yjJRT08vy7+qOWtytWbR57od1DbapqF3o05t5rX97AJWzngZ47814OHpS9rNR0aPm6FSn7apGjo0yW20rVPEk03irUXV7rzNx2gERqCBjGOnNbxwbnL2k9zoo4Kripe2r/EX9OtBpupnTIMQ3LBVSdk3pz7HhcgcfU100afIz1KMIQdupzHjyfxBomvRQ69GZbWGUbRGmNvpxXlY2tXhXi5L3T5zNljo42DqxvDyNLxU63PhuTV948mSLFtyMKe6+3ripxmJisO3Fnp4qUHgXZ9DkNBeO9nMsUCyTYyxJ+9gcjP8AWvDpzXLz9T57AQgn7S3vG/osDfacmIlmIKnnLc9BW0XzTuzs5pTkfTvwWVYfA8hXKjcAFA+7x0r854+nzUoLzPUppQomjqGHJyP0r8us2yed3KwLAMuM/Sh2iKMXcRAY+vUdqiTQ5O48OMdeD15rPmLjNKJE7kSY3fjRzXMdG7jt/Gf8iqULq45S1K93NEq/vGHtk0+R9DO6KDOPM+Tn1NappbgovqThmaMoy9RUNxvdF2gt2Yuk2LR627r0z+ddHtn7M4W7VrxR2EFleX8wt7KzeZ8fcjQk1zWlN6anROtGC942PBfgLxL441k+HvD+lSyXSj549hytbUMLVrT5YoyniacVe4urfDvxloniVvCWqeH7mO+DYEJiJJqsRQqUZ8jWptGpCUOa+hT8Q+DPEvhq+Ona5otxbSldyrJCQSKcsPVpL3kVzRnG6Zmz6VqaIZH024CAcsYjj+VT7Go43swtGxVA2/KDz9Olc7VmZtqIxuOnI681ukuXUlRcncjkjeTqMc9RS5ktinCKe4+CAhtoHTuayqNy0B6bn6y/8EO/hZ4d0D4Raj8T4ikt7fXBjMw52Afw19XleHhSwqkeBiG6tZn3ZDJNPKqXMmE6geteluZKLSsW5b2ztLfzRaAZ+6u3Ofes0lfQpeTKc1m1y7XNxlFHzFMYB9qttLclmTrWoedeRubXCiP93GE4yO5pKpzSBNKNmc54i1yK71OO4Aje4Vwqq8Ywo7kZqJxlJ6jTnay2OE+LQvILCW5tlW13YEboQXmckYUCs5xt1Fe+h5zLpDLrs2rXr7r+2tQJrgyYAJ/gA9aUIKVW7Woocqicp8QXvfFeoRaPceHzBCIRM0sT4yy8jg9K7JXggcjB8VaZrJie68QQtJN5A+xxkAgY6moSnNXsZuEYoral5Wr6E8V5C0UixqiqhG0ntz2rWC5tzGU7M8K8Yatf6JLqKgzuwZluI5FBDg+o7H3rVK7sZyTeqPl34iXLS6vO0I2qxPXt7VzVIuLuU1ZHlvjS6IslgPXdjBNeZj5NUbG+DcvanIXKPsJUV5UKslpc9eEeZkMqARYGcjsaJOTZpKpaNio6ksQPWiWiIptWK1xGOp69+KINLc5qzcrnSQSqsK4IqOW87s9Oo7Tdi9bzZT0x61MoRW5lJtO5IkmX5ajlikbQldaFmLkctmocrMTlystRmMDaxH1qGtQ55DhIkbZAHtTs+o0pNk0bu/KDHqcVL5YmkYdyYQmRfnPNRKdti3yxRa0NNes9Vhu/DUtzHfW7iW3ms2YSRMvO4Ecrj17U41ZJ3Rm5pLQ9N+ACeLrn4gJqWv6bq2u6tcBk066kvmuBbzlhiV13Zc/ewNw/TFdeFxE/brmlf1OXFP8Ac8z0P32/YB/4SFP2btKXWzcSXIgCzG4djIzDgltxJz+Nfdw9n7BKPU+LqSlKs10Pe9CWDS7YKIT5jkEnGCSannsrGVWNSfXQdqM/2u4W3sbYu7N85I7etTH36iSRpSi4U3KTLGtyx6dpDRtOIvkwcfyrpxc/Z0eVaHNhY+0xHO1exy1rZBbmDTkuzbtcHdJBndKU9T/dFcFGikktrnp1K7ndpXt9xhfEnUbaOYxWYwifLErnjPdj60q3KtCqCnypyep554Q13xXpuv3WraEII2aUl9QvlyUTB3CPjA47n1qYSlGN46WOiVKk9ZO9+hxVr4k0Tx38V7zxT9qMhiEUOx35kw26Rh07DGa4qc6dfEuTWptXg40FEg17xRZeMrHU7uzjuXjivViP2KNguN2Cdw6/LxW06sXdJGLvTSj1PMPiNq8nxF1qHR/DRuzZWEZghM8SvFLjkDPIDdRmsIv21T3XoKgnBXe7J/APh7RgI3122FvdQKwliu73Mg4/1f8AtIe3pXoxgnY6ZvV31R5Z8TvBniHQPizp/ibSfC0mnabPbMkr2cYdX543+2KyrXhUT6FRrQ9m4oz/ANofRtcs/hsl5rWoGCWXdLbOsZ/ejsGA5PHrWdeo+TQVGabdkfK+orr1gTqs+WilIJnsRuhI9GzyprjWmsjthJWt1OL8WzNNPIUCsC331bO89ifet6U1c76Cb3JtLlhj8KX8k2xV+Tdv6Lz39q2qNuGh1qfI7Hlvjr4feMLCeXV4dNlu9Of5kubaTzEQe4HSvm8bSqqTa1QSjKTucbI46dPqK8xJ3JvYh4J4X8a1knYS03AIQeP5day5bobXUelqrDp+VQm0zRakMFt5d+NqHrjNdMUuUxqqzOus3JtkXHGOM1jNWN6fw6lhOWyelZx0RcXYtWdlPqN3FY2xHmTSBEJOAM0oUqlWooR3ZUpSloj6H0T4G/s923w9ttK1Rry58QE7rzUI5f3an+6o9K+srZLgMJhleV52OlYSimm5X7k37MXhKP4BftSaR43W9WXTksbr7BentKYztXjvmvyPxAwWLxnD8sJRvec4pW9TCrBRnFrbUj/aW+Cvi340eGW/aK0+eS/8T2928Hi7TgC0k0Wf3V0vrhcKw9ga+gy/Czy3CxwsYaRS89ep2VYSxeFjVjG04qzS7dzyrwV8B/HHjbxBaeGtB0WWa5uJFUR7Dnk17mGy7EYypGFNXueXVquNN9z6n+HX7Angm+u9Q8LeNfBmtNftDHHpt3pTjfHcAfOrxtwwz7g19hDIMEuaNaDja2vnb7jtw2AVelGftEu9zovC/wCwP8J/D2rK2t6zqEnlqG3vCAEYHlHUnr9M19bgeFMmoTg1Fyur3e19NP67HqU8vgk58t16nsPg7wb4Ha6t/h1pBjWzhVp7qQoSlraRgtJM/U5wOB64FfX4vNcHkOT1K0rxkrKK/rrsbYivPBYRzWj2SXU+JP2l/Bnxp/am+IF38bvib4vbSvA+gtcx+A/B8M+0RQQlUimZAAQ7khgcZY5Pavx2nwbxNn1KWPxElH2jveTu+W/wpdN+2p4lPJsVVre2lK6l08/M4LTPhlb+IvHWmeANF86XTPCMASJbqUnzLxjukkZicbixOT9PSv23IOHaVGvThH4aSV+l2e1gcqUq0Vf4dzT+NWgTa2UEjGS0soI7YQJFuRBGSSij+8T+dfpVJUrWPdxFOKppbNGDqeq5sG0G302KGO0RJ5tOJy0H3gZZOwI7VsqsZTsnojKhOT9y+551qPjL7N43v9ZNpE8JtvKtIJx1UjGT/OpqVbT1Qq8VGFjh7f4nHxNrl7Lq2kzjT9OTyFuvOAMwB/1YyOmMdPSscNVnKUk17qPIw+IrVK0oyjZI2fhb4u1DS/iz4V8VLNJbRLrdsQFwpiiNwq7gc5UlWI49K8viOlUx3DuNox+1SnZdE7O3mehT/dVFOGln+Z3H7c37Td5+0X8RtZ0D4R/Dqx0fwT8EFOhiPT7fy2tbVrjyg8pBw2+fv15575/l7wKyiHAE+bNsU54nM3zPmd9Ur2XayPnsPi8M51Uqt3Fu619D5o8aawms28csd2UhE/LseWO3k4HUV/U+Nq0HFcrdl/kbVnelzb3PONEk1WTxRctdQR/Mo3DGCQBjA98V4OCbeIl2Z8xhKNajjpuS3PVfDdzp+jSS3sNomxrPMTt8yluAd3sccjtmvb0jFtn2UORU07GBFdXGuapqM8wWGPelvvdcgICFV/qM5zXj+1nVlJrY8fD1a2InOS72K3iVYr66ma7u/NnS5SJ2ByjFVIL+vYfnWcqUqifMd1eEHRlzu7RX0rS9M8W6BLpd5fLbPZKX+/8AIcAkAjuevWvKxlOFSCp31R5NGnDGxlRbOF0ixu7fUZ7dGT5HwY4xhW57V5dCk1JroeJOjUoSlFdGdXoUnkXsMJB3CT5AwwN3ofau32cWmkdWGhKTPpv4RSCb4eyXLhYy8/3EP3eK/N+PlCFCmvM9v2LjRu2XZg8jkFvpX5TOaWxz2UWRSr5Y5GM+tZpSbBtormYFz8wyKc4uxEndAkqnqevQ1k4szTsMmbDctz2qowBt2K17qCWVs88gwFXPNbwSbsD0jdmPovhv4i+PdPufEfhvRJbmxtT+9kjGdor0I0F7N2R5ssQ+a62JdMe6ZxbywP5gONmMnP0rzakbz0OiniFyXbPQ/AX7PXxe+Is0aeGvBl3Isn3ZHjIX9a66WXYqrG6RjUx1GLPcvhh/wSb+PPiW5F5r8kGnoxBxgk4rsoZJiKj992OCvmcIO0UfUP7OH/BM/RfhNqMureJrtdRuHXH71BhfpXuYTK6OE1epwVcXWxMtT2HwH+yH8MvA/iebxZougQJdTnMjBBXXSoU6dVzRftJuFja1T9nP4e6v4mTxTe+G7Z7uMZWUxjNFahTqTUmtSlXqez5SPxN+zb8N/Gd0mo+I/B9rNMgCqzRDOK2lGEo6oIVqkFYzNZ/Zd+EF/bvpU/gWyVGTbxCM1MIQSs1oU69W+55be/8ABMz4G6jqVzIND2eaDgoOBXn1Mvwrq8ziTUxVZzvc8T+K3/BIrVo7yW6+HOvhQeVhmFebisq9prS0OmnmdWK2PPtc/wCCVHxr0nw1Jrq+INP82MZMM7bB+dcEsoxUYXTRtTzJ1KnLYtfsp/8ABMzxP8a/iVb6N408VRWWg2d1H/a+oxIUgkXq0STNjcxAx8oOM1wYqWAwWGcp1f3vRW923W8r9PR37o9mnhcTVoupKLsui3+4/Tb9mbUPhjoOr+JPgx8JfBNroGmeEHht7e2th/rwUB805Azn17813cK5hUxdKqpWsnpZ/iPPMseBw1Gf86u9LfI9isrxGTEcuCOHY84r6hyTeh8u02mLPqEl7N5sSkhRhnbgfhUq7dwjvqUr/Wrqd5QYiyJHhELdfpQ4ybLkk0Yc3iWKO9lnu7abf5AwjIdnHvUr93LUI03KJzvi++8P3iLLfSpb22zeRbvh2Pp7CpnVTeppTtCFoo8s8c2virUbiO70VQFgUzWltM5cuBzz6VLUnqjJyjL3banF6Na+Jzp934o1fRihdpX+ztLu3SYOOvUhea1w8ZSk2zWpCEbRE8PJd3thDq+qTxuJ8eeXcDaMn5QOeTXRZ7tnJNqMrHM+PvF8enXO+2CJJdQuLe0Z9xAzg/TjNCqJaInl5jgPFOv6ulhejT+FeQbkVsgcc/TBrWNzPl1SaPE/iXq2szefcTXg88RhDIo4IP8AepubiyvdjufO/jqeWFp45Bkq/wAzZ6VlUve7Oe/MzyXxxraG/EafOsUirMy9F3ZxmvJxycqTR3YNWnzGVc3C44JPFeZSpO1meynZFVpS2WY9+lVO0bIxqK5AJF8wg0ptuAqC5nYhmZST8tc0m0h1YRi9S9b3EzIo9q67LnNpXdRstLeXIX92prKTVxTUpO5Yt7i7Iy47ccVm4tuyJVRx2LUEl8wyin6Y61XJTjuO1STuy9DDd8eYp+mKylOP2TaNktS/a24cjIOa5pTZrz6F+G0m84Wyws0jcCMLlj+FRrJ6ImVTlWp2Xhz4KeNfEXg28+INrZxppFjOIbm6kkxtkPRMdcmumGErTg5paI554mCqqHVn0n+z5+zne+DPhVZfEm/8IXCXeqW16oup9PMyiQqghRk/ucuW49K9OjhZU6Clbc4JVPa1nDmPVPhH+xP4Ma4tPip4o8Kr4c1GwuFnuG0m6b7FecElvKPIcknC9MdK1pYOlKXPKPK/IynXqv3Iu6fc/Vz9lxNOHwWsG0u2uI4io2+dCY3YdRkHoP8AGvp8PBexvY8bF0rzs3bZ6eX9a+R6Na35dfJVhnILEr+lNx1I92WqNuK4s9PsPtMqhTiuqHLSp3Z51T2lStyROe1Sa71e8jkhni3K24M54j9/c1yVG6s+ZnoxpRo0mrf8Ey7S7tbbXJ5DcB1VSbm9l4MhHbPYewrOMouQ17tK1vkcTezTeL9cuNcvrVf7KsTuLhsCZs8getZOCnU53sdMIVI0o3tzaX/U5H4ieOvDMVwV+zFbUcmKInCHjhj2HHapqyi1psbKFSR5RYeL/DepfGSw0jQH895YWWS4Ns0MOzocMwGTXFGvSjXiox9ToeHksO5zKnijXde1HxHdfD7wl4ru9MtJFkhtYdIjRo3lyT+9bB6gYB45qq3PKbUXZGHs41LVLanCeHf2bfEfwT8FXXxW8HXup/2RDfs+s6Bc3DMPOY/vJVLnK5646cdKKGGVD34/M6nKlP3Z7l268F6D48DeKvCusSiTYpt42Ynyw3pj7w6j15r0ZRjKPNEyVRxlyyRj65rHiLQrJtOvtHu50AMcwllMOxhzvj3fe9emK4qs52s2U6UG7nAeJbbV/iTocFsuvXa3UVu/lNeOAMew6H6VnJK24KNpaI+c9Su9a8D3F3Y6zZW8gQMs1xFGTE3X76AfL9a5HUs3c6ormWh5n4vkiur6S5tkhRWOf3J+R+K2pNc2h20+aOjFs0jn8FavAQrg2oOMd8967nKPsz0IU+azZ4xrlxremXTRreTwKw5SKf5SPbBr5rF+4+aL1CT1sjCmkZst1z15rkj3YuTlQRO8XXvUTTlsEbSJFl3Hd69KycZJBJNEgdun9KlRe5PtLbAny3AJ79hXRHRakPmqSN6wnkaBQTwBWNRxW51RhZGjbo7YUn8qxlOKdjRKKNLSwbW5S4HVDmnTquFRSRpFpfCekeDNZOqLHbpetGx6ljXrRxKrRu3qXGavqfS3wG+Fs+ueGYNZvLBL+PTtUilKOPklUHlS3UAjivqMo4anmOXxxUoqXLJOz8j0sJgPrmGlz6du56Vo+nP4d+K0uv8AhzwfcabaSsXjtX+eLYfvIc19BVyKMM8XJh52lG6drwWys+zd9Doo4GrTwlr3e3meia38IPA2sQQeL/hzAND1VwWuEjh+fee6n0r3J8NUKUPcn7F7t6aelzzqOWzhXarxTj6lyy+GvxA8MzRt4n169heQearzjy2/3vU1ll2EyyVZ06WKdZ/Lf5Hrwhls43oJP01En03SLkvG920txI/MzMSWP19a+npYGrHDx5tHF9OxvBy5bWsjzz4mfEf4ceBPEl1+z9brqiajr8Bmu/FkYeO0v9hDy6VHOeCyDa7pkFhxyBXwuGzCHE3GFShj6nuUpXUeazbWt2uup50aftMXF4m6drxi7feeH/EbxCbPRYSl7bP9rvpLiSJBxFbxkmOP8Tj8u1ftawsZU04vS+q8kv8AM9GhQlKb51sed/Dq90WC0n1C/s5Zr27mkuJkEfBfjbnPUDg4r2cHShDBq27PUpUpUo+6jnvinrgjw9pcqrWcUknnZwZnGSSe3HQfQV0WSTZjUlKejPNr670y9tb+e3tJlOqQRRXkso3PIMfdHTcT+gNZ0KT5ua4lNRl7qOF+JAii1K4fSLJbeRr0LYW5cM8shGwE/wB4IOSQPWsMRVkna+pnWm5tIoa54a06y0zTtMtbnz3MTPPLsLLKT/rJfQkdj712wSVBQW5VanGFGxz3iR309rLXJYo4THAzxJHFkosRDRkjsDg+pJNGHw3t67oS2lGSfzWh49ScnL2SbV9bn2z+1d4Gbwt+yJ4r1PwF8MPh/pNn8Z/h0PE2r3WnI/8Aak89pJHJGzbiVCOHlfagUBgpOScj/OfLpynx9TeKxFWc8vxMqME7ez5ZN/itEr367dfKw2V4bE4TG4lRcZxvbs9NdO90fmp4f05NV8FNq1zE7K8G1UOcqD/Fx74r+78PB1MFKpJbjy+UquXKpNboxdK0p76/gC3Iij8wr9o6lJMcE+3FLDUktTlgm5czO20+C21DwncWMKkyxEmW0H3zKOroPwBIrodR1INI9aFX2tJxiYmiywadaXVvMsTSSQEqZGz5gJGcehHpUYWlCMHcyw0JUaVplqXTbW4sLnUIBEwlt0kLq2WGMguR254I/GitVi0+XYK/v07oxNJs7Q39yEdYpo4flSIj95xwV7H6ZrwMTGPM+54+G5I1Zcu5yEGnzrfzfaZXMiynOCMqc9civLw9WEU11PH5pOrJTfU6Tw1YySX6pOxeQAEMP4x2rrbcoaHsYZKDTZ9QeBEg0rwDbRDCqzEjBr8q8QObmpR+Z11a8px5Ue5fD79kPTLTRLb4lftZ/GLT/hX4Zuoln0+zvrN7vX9XiPO6005PnCntLMUTnI3Cvx/E5hHn9nh4ucu61S9WeRicb7D3aUeaX4Hq/wCzZ4b/AGNPil421jwx8EfhR4nkisLJGXWfHeqQXFxfcnc4toYglspHYMx969DLZZhQqN10tVojvwVOtiIylWs7fgbnxY/Y7+Dniq0mfSdGj02+wQr242jP0r3OSNaOqCry2tE+O/jB8HfE3wh1drbUoWktS2IrhRwR7159bDSg7x2OSEpOVpHHxOswBY5HauWUlHRHUkkiHWtIu9ZsjpmmwPJNN8qJGuSSaVDmnWSObFytRaZ9P/sB/sh/H7+zzp2raSbbSrwZkEikFlPqK+wwuCqp+9sz5761GlBxPtD4X/8ABML4LeHtVXxLrPh9bm7kbc29MqDXbDBYSnK6Wpwyq1Zn0J4a+D3hDw1BHZaPocFskYABjiHSulcnQSi27M6ax8OxxSeVEhHocdKWiK5EXl8KBn2zjhupobvoVH3WW/8AhBooVD7CVI604pLc2EtfCsBl4XHsw60pW6EpkyeE4GkwYwvbBqtOUFvZkVz4LspCXMPzDjg9acZJoFK7tYrf8ILBaHz3URovzFpTtGPqa561alCdmylh51JI8/8AF2oWi6zcwaZOkixIcSqMjP1rj9s5y93Y6p4KcKEnGylbS+1z5n/br+Jes6Tq/gvwVFY3y6Rca7bP4imtbR3MlsSSUBUY5wFxnPzV4md5k05YSEXzct792foHDPCtF5as1xFRK8lFLe2j1foe+u0/xCksfHN94bPhvwjo/lt4f8PwqImkCR48yYA8564/Ovm3w/iM2wcpYl8mlor/ADYUMwpZROWHpz9o53Up/wCS8j0r4IeOdK+PVnr/AMTtL8F2WlXNqxsFe1Oz7SsJxub1615eSOvlOdVvaxjG0Uvddk13s+pwZnQoYPD0MNGtKrCevvbxbNfTluXujbh1jQ8uA2S1fq0HGpFTT0Z8pVw3sJOLWxdvri6063ZZkCQq3EQIJI966L6HEtxlvKk98JVKLGI8F/WnexT0WpU1u7tpIvs8MW0hQVUKDkDrWTlKUirpQtE53xJbaD/ZrahJpC+bOoRSRnJz3qJxp321ElUat0OC8Ua3ai/W4s4ljFvAYjOr/KxNJXvoiFHlOKmmvdEWaWeZpY0ciJCMrh1wTVRcqY6k3I8/1DTpNP0/UFhupUEkonhCjA68fhmk+Z7swau1c5TXdLuvERk1FrJknhgJjkBzkH+KtaS5mXy6HD2+pXXmz2MilHjlw+88Mf8A69a3adhySSPI/jDrUdu11p0EBjldjj6DqKqybuzmUXUZ84fEnX7fR9KudTncDyUYypIevWpupPXoRUlGktNzx3wVZ6zqNle65qyuYtVOZEI+4gPyEfSvFxeJ563u7Hs5bhJey56nUtXelzWe1JY2UFd0bspw49R61ytShq+p3VGmtCrJGUUgdPeuapO7IkouJS8shyVPU03P3bE0VZkV3uRCDWSs2Z4l3TOisYYxEgAHSnVcnN2OmVoyaZdiji+bcgxjpis1GT3Jck3ZEsESO33Bj1rVtQRUYpas6jQNGjurEGCwaeaS4WKNEGcZBP8ASuVynORcqsYLU0/DHgHxJ4kvLSztdHkVLy6MMcxQ4j+YKSw9BkVcMNVqz5UjmliYwpuT2Ppj4df8E/vFHirX20DWNEgWG10wRQahZhlM0zcq7epBOK9fD5JOUvePOrZlGEU4n0R+zH/wS01vwZqll4w8cwWl/qdjMzW8kkA2uhAG1l5BIxwfevTwuT08O7y1Zy4jHus7JaM9++GX/BPfwvoOmap4cv8ASFNpq+o/bZYCvyFwcgmu6OEpxul1OedepdM910H4AeEvDmn2mh3GkQtCEUQ28qfLwKuaUfdZEZSbumbt38DdI13SW0x4UtJFB+yzwIuYiOhGRzULDxqqz0NoVnSndnqXw+0m98N+ErfR7/V5LqSCLBuHG0yNjHQcDiu+K5YctzmruNSfMtDQ0+9FvJ9mZ0VRy3zc/iazT7GVNN6Gpf6vZyWYkW5BjT7zMeB9PU1nVq8y8jSjQcKjutSnqJa00RtQnSQQMSVjjX55T2ArCrJxhzNWRrFxdTkbu/yOMu9D+IPjfybi+ik07SLds/ZGUb5APU55zXOvaPllH5pr/h7/AHGiWGo3V7yIPiVrem6DpMejwWoht4IwdscRyD3J9TWs5qNKzQUXed5M82stNsvENpf67JatHp6EyZuCUa4k7Zz90duPc1zRqTnFytojarKNOo+R3u/69PQ8c/aC8W+D9F0u98Y6tYNFa6VEZ2trZyu5VGSeOQD0A71zV6kYL2rWiKpuT92+55P+z/4T+Lnxp1Ob48aZ4rufDT3tsj6HoltGFWK3ByGkQ53OfWnSofW260JNLTTY6q1TD0YKK17n0F4rtXn+EWox6/4r1S5u57Z/7ajtgZEnjxhwycEHnqK6varD0Wk2zzYc0q/5HjHwK03wfD8KbW+8C+P7tbdwyWFmzsJ0wxGcSDkZHTrxWFKrCtStGVmddec1Vs4mPpPhnxn4s8S3Evjv4i3GoacspS3eSAKYSOOcckiqpU5xlec9C3zRV7WG/FbwMfh34UXxLHqNtqFrGTIqWtwHeJ+zY4OO+DW1WLjG8dUCrRlKyPlbxv4wt/GGuT6ylpFbSyIUla2GFbPQsD0z3Hqa4OWLbuddKLjoeT+KLXyNVc29uIdxIkiQYUkdTjsfWtlT5VZHoU2oq0ixo10X8O6jEsoDGxPTvzW7/h3Z0Nya0PGPFAsZbktDFPHLn5xIMLn1FfO4xwuXCy3MjYFGSa4YzuFST5QLKON3Wqc7GUbkkQUHPHvmoc7lSTHFg3yjpReyHGGt2SQrGkoYtnA55rPn5inaJv6Ja3mobYbK1eVz/DGhJ/SofvaIFPQ7LRPhR8RdUQNZeD9QcHoRbN/hTjhcTVdoU2/kVFt6pHpHw1/ZF+Iniy8SXW9OksrYDLlxhsV9Tk3B+ZZlVUqq5Y+Z2UcLVqu+x9FeA/2IvCkD26abHc3cjAK7SIQu761+mYTgjJMLFSqrmPTo4GFFOVRn1b8EP2X38K+HLnTLTUdNa8+RYtCe62yXRP8Ad45I4q8ZxNw5w/ReHkrU1ukVic8weEceaEuT+ZLRep1mmal4D8En7JrukR6nfgc2UkWFgwT8ue+OnvXymL4l4q4oxH1Xh9KhQtrUqJ3/AO3djhqYrF468cPeMX1K3iL4p33iRDFpHh2x06NMAx2duAwA9/Wva4f4DhhVKpmONqYmct1Jvl87K+hvg8pjR96tUcmzn9Zt/EPi++jm1jVbu+ZlCp5znA9gT/KvtsFlWUZNTtRgoXZ7uGp0MLTtCCiiGz8IXOnGRmeF/KkBdFZcoPfNevCvVVGVO/ut3+7+mKpVp1HZaM8a+L/hbQ/Hvwj8X/sv+LtYa0ebxnNrmk+IcbbrSbl4VltZ4XB5TeCjKR91mr8Sznw94gqcYQz3I6q5ub34z0VrdH5u255eMwE8VivrEG+ZRSWvb1Pn608Oa74j0iyufiJBFa67a2XlatbQSBoXccGVD3Rsbh6A1/Q2SPE4jAwli4ctW2qvdH0OCqOnhoqovf6mfq1/p1vpcNzHBFEgLJFDE43zEdWPcA+tfQxXu2RdSt+8cTxn48eIxaxST2dhFJ54dbW0TOJHx29QPWsJ88YW3ZyYm3LdbmObS60HwTBpl0pN8LHzwY15jldckZ9MCtIQcad5ble9CjZ7nn7W+pX+pf8ACW3kCQz29jusklbCxQ87nz3c4OB1rjdObqc7Oe0k+dso2GoWhu5td1pflSJNsDHDfZiDtXgdGPftXo2koczNKVRufNUenY5rVLbV55Lm7FyEtzpRjX5AVTduIVv6VnTxFSFVTWnQc6LjJTWx3nxm/aM0TRfAHgTwzqHjuLX/ABH4m8J6ZodjpMbOW0ezE0sM28DG3fywwT1z2r+U8z4Soy4yzCUqPsaUKrq8z055tRd0fn2NzbF4XiP6olaFTkt89Hoj52a4hsdNbQdMu2aCO8MLHeQdiEgH9BX9H5fWp1MBTS7I+gpSkqahBe6m19xVGjBLq7ltZAIJSFulV/m9VYfQ1qqSUmo7Mn6o+ZtbPc0fBvhLVNC1F7e1uTM8q70zKQJD6oeMHFcyoSozdupeDorBtqLvc6C807TmZtNubdRNGytMk0eOD0bOPv8AUY712ulGVPU7pyU42sYt/JpyNNoFvbGDaSqlnBaI4yzLjqPXNeVXppRaicV1L3F0OVjuNN0m/wDtWoytDbxqcPu53fSvFnGMJXnokeFO2HrtydonO6fGWvprmJ9rNKW2Oedue4PevNo06U4OpB3TZ4sKVqjlfdnWeFGSbUIzCSQXwHz931roVVQStqe/gqUn8R9QfD/XfEHg+003UfD91FbXEFpujuDbpI8LsTh03AhWA6NjI6gg81+M+ItaWKzGFFbJanbiFaaSJNd1TVvEGqT67rurXV/f3D7rm+vbhpZpW9WdySx+pr4OjCGHjaCsjhlTpxfMehfsifG+6+BPxaj1xW3W2pQm0ugx6Ang/nXXR9+qpSMfrE6Eny7M+7/BUEHj5DqET5Wf5lIPrXsRcWrIV5PVFb4h/staR8TdCuNH1G1WQtGQhYcg1TceRxCcrI+O9Q/4J3/GM/Es+DvD+nlrSST5Llxwi5rxPqFarWtHY5quMVGGu59u/sn/APBLbwL8MYIPEHjO3Go6mwBLTICEPsK+qwOWUcLFNq7PAr4utXlrsfW3h74c6LoEEdtY6ekaIBwigD6V6bq8uiOdQ5tzo7bQ1yFWMKM1n8UrlN8hcPh4QurJEDkd61toNSVy/Z6DbGPfFGQw68Vk4sHNSWg6bTMOSUz2HHNXzRSEkr67ktvaOf8AR5SQnsKnm6lSY86DlvMSXhfuseKHLQUW0VdYm0awRZLrX7GJycMHuFBP4ZpwvI2jCpPocl8SfijZeEYPsPhgQXt28YJlUbkX8qyrXpp23OqFFxabPHPEfjLxf4mulm1vUrm4DZzDkrGv4CvNmmveep6VKnCO25DpKTRTjbEDHICCDmoi5xltozblclcl134aaJ8V/HPhiy8Tndp/hdpNTu4PKG2Q4KoGPruPHtmtMRRjXqQ/u6s78Nj5YPKK1Pmd5tKK6eb8jY+NGtvceFbp7WMR24hYxqBhVUKcCtWqNSPPB6NXPNpqcY2e5b/4J0z2kn7N76j4sj+yNqE94+mSIv8ArlM5C7gB1Yd6/P8APMso0pV8VVbTlG0Wtfe0smuh6mIrYiv9XjSV3H4l5a6nq3i3wvfWUhntF+x3Cou6LHEpxnIPb6V3ZRncsLJYbGK2isc1SlHHU7wd99f0Zyyx6gLtYdQuZpWCkuHUhfxNfaU5pxvF3R4c6Psb33HXmtXV7cbbeJLe2hjIkmTv/sgVtCV9zJqMjK1zxINFijSSSUyiMskJjJYj1PpSnPlHycu5z+peJzqFxDYx3G9Jk86ZZDgYpJWehN3Z2OY8ZJbR2bxXTxwOF3wRx8KVyCSw9fSrjNO5fJy6s5/xf4rsl0m4lm8pFNuNxbjaAMDt61NS81oZ3d/I4jV9ehstBY/ZAxWwC4BzgkZFOMdLMzSblaxxehR+I7nQJbmWfZO0LfKjfwg5H/6q1p+4XOCi7I808WX9/b3N5NKgWSSMSFF6g+vtVSkrmfs7K7PFfjT4nhnZ76bi4UAnI68daxdRtkVJqMbJanzB49lvPi341h8C6TG2GfzdUljUkRQg8lvTPSuXFYxYei316GWBwk8bjFT+81fiHYn4fQReHrTyy4iUqpT5WiYda8enOTjzyPq8wp1cKlSVrr8jzxpmAzI7FRnaGYkD6VEp1amj2OGKjF3W5BPKfLDA9uKfsl1JdT3iitx83zevpWkqK5TSDSGXb7ozXLazZjX+BnRwOIkCk1ry3dzZy9pK5ailZ2GRgd6iUlFFxilqzZ8MaRqPiXXLXw7olqZ7u7lEcMajJYk1zxjOtPlW5NWvGlG7PqL9m34B+O/DHxWs/DF/4Rna+t7iG42XNtlEIPIPHIINe1g8vqUcQuZXPLxGIhWpXTP0H+En7BPgo+LG8fzeG1tZ7gZawXPkqTgtgdByM19EsNRU+e2p5Uq9WcOR7H034E+CHhrw7dC307SoiQo3CTnBre66IyUbLU9AsPCFnaFoJLeMLjLj1qG+5SSvc2bHw6jZMdqojVeC69Pxp26hJssnQjMyxTRBzDkowXp9KHS5tSFdal620ksA7KE+bBJHWm4KJbvJ3ZYVJmDxxMuehfrTcrqxGmzMyHwzrepav9pOrbIIgdtiItokc93bqR7DFYS5mtDoTpU6e2p0Fp4b06C7S91y93+V/q7NOIgevI7/AI1MaajLmqP5HO8VVceWlHfr1IvFPjm0jQkxL8vywiMbiPcCscRX53tp0LpYZU1ruzibzxNqfibV4rbVdVlsNPhYFl25ZvqO1TTftJLmdkdbpQhSvFalPxnrvhaLUFUX5ljDgfZjGd0nua3nKkndO6MqdKpJe9oef/EvXNRii8q0to0CnzLezcDYo6/MO/0rirTlNcqR0KME9D5a/aLufEnjTVNN+GtpqV3HqvijV48wWFmqgQRkMxdhjYNo4wD1x715uIjaKpXak3pb+tDswsI87qvS2t/M+h/gb4V0nR9W0xLfRDbtboLIObgKQyjH3Txtr16K5GklsclaKmmbmp+IfDHhLxZrdr401uBZ/skxtUvtqwp8pzl1HTpzzWXNSUmp7GM4ycE6avY+T/gd468NfEnSPE9v4ciS+02y8TXUFleQja8XJIKleqhicVzYWEa1OVmdc7qa0szk7qy+NNlqN1oF74vtb+zNyZbVyhimRuylhwW7e9dKpzpxcW7o6lyTs7HOyaY9vqV2dT1C9t7uQfvrSYkoR3O3PI915HpXP7RJtdTWUEo2SPEfix4XtfDer3GoaQpQSoXCKpdH9QTnJHv1HcVzSlJSKoysrSPH9U1SGeRzEHBMmTukyAfStozkjrUW3qXvCMkV7pt1ZmMjfaupGehrupXqU7WOlbWRz938M/Dtzqi/8LM8bQeFrTYDFLFA15JKp7iNW6/lXm5hlslHnlJIPeascL4s0Lw1putTWng7xRLq9gp/c3lxYG2d/wDgBZsfnXzrp8srJ3G1yrUyxYTHnbxmtPZX6kO8dRxtZh+7Xv3pKk4gm5Mki0u727unNZVLs01SPXf2d/2WLn4opJ4w8baodN0C0bBZf9Zct/dT/GvXyvKHil7SppEqlh5V3d6I+l/A1r8MfhfZtpfw/wDClpb5+9dXMQklYY6biK+qpUcBhF+7gvVnoKhRhb3Tq/Dfi7xFq9xFaafL8pUgLEo49BxXr5dUxNatFUkuW2/5HpYWipOyjZH0H8APgX8V/ijLCdD8PPLEoAnu7rEUC/7zHj8q9yvntLLKagnz1ErW0XzZnmeZZflcWqs9ey1f3HpXiH4Z+LvArDQL+9sD5ecvplyrhcepzXh06ud8TOUZVfZQT+y9fwPPwuZUMe+aEXbzVjMstLU3n9oXiiTyVyJTcEuP8K9zDcKZdQoqNWPtH1ctT0qf1l81PlSh08++li3pvhHUvE0k2raWkphg+/I8BYMT6nvXuUo4TA0+RK1uiR0Sq4fCqMajSb6Gnqvwh16ztleG9sbd2gM08klwFG32B71vTzSgpqlyu712Maec4Pmsk3rbYy01a7awGj6PcgRxsWaYQjdu74OK9iOGpzaqTV+up6kI3n7Sf3GNqWgC2g/tOS6SVwjO6ySFcnH8eeMV6N6ThtpY1p1VKra1jxL4zajLrXxHSSylt7eG98PRM8lu29NysRyfxxXJl9Gsqk7aKWwqnLz2jc8b+KFppyBbhZJoDCDmWN8iQj+HHHBr6+m4cqezOqlGy5tzzPx3eWXiPTpNT8N2TRNYRCK6SaUBy+TuyP4R6CpjVcnuYSqOTet+1jxjw/4o1vxjr1/rPiXThbTWUos9LgkzsWPIDSDH8XXmlCU6lZt6JGWFU603OrpbYi8feJdRW8a2swJXgi22ioP+PhkBX8EA7+1b1pNU36GuIasmcheTSpoVi9xe+ZZqrm6df+WmSAVUdcZwM98VnRs0mzCMJpczd0c/42nvXtl0+GeOCWFI1u1SM7VTf8sY+oPT1p4mtNLlRhXklC61NK+s0aKayN2wlnhjS3kGDyQckjGAw7LzRCneDu2bc05wUdj6N/Zc8Q/sC/s6/scah+2D8cPhZpPiL4h6N4ivvDNgdXtvPZY5bYyWrJGflR1LORJ1GDX8i+NWC454i8SqeRYCo6WFnCE3NaP3ZK+v3aHzeIwuChmbxWKlyqCVpLe99Efn/wCD4oLjT7vU7qRQrMZAgA5Dtyueelf0vk0IU8JGMpXcUl9ysb4CpB4b3dVds2rT7NPrR0e3tmhKwf6U2BluPvDIxx1r2lKKnodcZKUlFC6kZGaMWclxDLY2TOJlPB5+V+Oma5sTXitOprVoqKvExdU8f6r4phudPu7hROoXfdlQN5XuT1PpXEsZKtTcEzghjI1oTpx0a6nGPFNDdvfNdy7A5MoVuT/tAntXiV5Sg27s+eq06lGo5KT8z0P9jr9m7x9+1n+1h4L+CPw7k0651K/1QXTvrk6ra+TD+9kMgz84CqflHLdK/PePM5ocO8O1sbiHLlSe2+uiOWUKbxdKU/ejFpyT6q+2hmfHvTLbQf2jvHmjQ6vFqq23i29Q30Gn/ZVlImbLLD/yzXOQF9BVcEY2eN4XwtRQ5eaEXa/NbRdepVWCo5hVjbS9189STwnFbnUIWTCgyjfGOtfXKg3oejRq1Hsj6atrT/iQ2N0tuVDW4VWxgMBwcH2NfhvGVVSz2a7JI7J883dlaUfLkgg18qmpM5Kidys7SRSB42wykEEdjVpPdMy5Ln3N/wAE9fjbbeJ9GXw7q14q3dmQrLI3LD1r0cNUVuVGkpQVPzPsfw9YXeqXiy6dGCGPJA4r0adGc5XR51XEwpx1PUfBvw0t4ZV1S5tozNgfMV5r1qFBQdzw8VX9o7nZ2WhShiEiAVR2reV2Y3Rq6foc96CkEeNvJIHWoUGy7pK5P9kFqvlyx4ZehPenaxlJqQAySTIqjtyQKpSGl1POP21/jZa/s4/s8ah8Rb/w5qmoW8l7b2NxJpN4IJLJZ3Eazl8HYqsVBOO4rHFVJwoN01dm2E9+ukmk+h5P4c/b/wDiNZxW/h1PgjNdrBAsf29pjdzEgYBcb4wxPBzmuenOr7O9jtngVWfMpak3iX9qX9oDVoftllca1oMLPhlh8A2o49nkv3P47aVSdZK92vkZQwVpWkvx/wCAYB+JXxr8Sws99rvjPWcEBoorq0tck/7KwPj86xhUqT0V2ztoYSlGeyNPRY9ajuI38QeAvGdq+NxnupLm5Vf+/WmP+hralLEKVuU65x5VZWf9eo3x/wCM/EOhXCS6J4uhgiZSNt/4Z1cuPqwsEArSusSmvZzUX56fiTF0qlL+FO/lb/M4rTPjreXk8iTeJfDMhtwC4vY760BJ9DPbKDx2HPtXj1MRi4vWUGr23Oig8Pd80Kmn9256N4Rk+IXieC2m0X4RazrEcmGWfRVV4SOuVMhjyPcZBrqUsylFKULrpZr8NTmr5jlUE0qjT84tfodHrPip/CNubHWfg94/hu7iXddTDwpJMpVRhUJiY5A5+tdUcaqdNwlTd+v9XOWGKpVLNTTXTf8AyPK/jj8bfCV74avLK50fxlpqPaOolv8AwBqcMSZHVpGh2IBj7xOBnrWFb2OIlGTTTXTY7aNVOldPc9v/AGW49K1H9mXwXqmixItjPosM1ui9DGy5B/I5rnjCFai1NXTvob1qlSliG1o0dwPFF94UvbzU9Ss21TT7u1KtAzcxEDG4E9Pwr5XNMhlCpLEYZc11rFvy3XoawxGHxkYUW/ZTi7qSWj8mV9et9A1Cwh1fwdfm7gktlkkhZiXtyTjBHfniscrzb6hJUpNuFtU94s6p4WpjIyhiIqM7vll0kcNr9/eW6siIWkibcARtUHnrX3dHFU8RBSp6o+fq4SeGqclRHKatr15dYiktZ55LpT51xEcFAB90Z6VurSWpLgp7mElzDok9w9wXa4W14SQlljXsMjvSaUfeM5QS1PPr7XfEviXUZsRiaMTYWTBBwP7wPRR+tZ05O7uN6LU534h32q3sjaHp1rLdsrp9qaJcqq7h1NTUrpPlQqVF1G30F8XXkKWX2XywG8pGVFPLHgYIraMmS6aizA1fWV0TbZXMIjW5tyRsGAp961ulqY8jk7nkPxB1a3jmeR7lTIYSJPw6Coi1Udr2FPZW1PDbP4cfED9pj4w23wd+FdgLrVNQI8xmbEdtEPvTSH+FFBzn8K87NszwmT4V168rLou7OnBZVWzCpyrRdX2Mv4qafafsRS+If2eYvDIl1XVkI1zxRPErNeOpHyxHJKRLjp3r5TLMauJJrGQbUVpY++q5dh+E8P7OpDm9rG6nbf0PnLxt4wufEepG+u5dxWNUj3HOFAwBX0NSHRbHxuJxLrzczmnu0YfvZePTNOMNEjKGzbKl74k0mxjPnXIOe2a3p4WrWlaKOLEYmnSepFpmoW+q5ltAdvY0sTSlh/dZvg5qqudkk+FUoTXEo8zHiKis0jobL99iRx1FTUqcqsjrjaOh0vgrwR4r+IOuxeGfBmhz6hfSqTHb265bAGSfpWFKnOtPlgtSK1anSjeTPpb9jT/gn547+Nur2Xifwp4ou9OvtL1QJqkMlo0b25U8gEjk+4r38Bljupt2a3PFxWMVnFq5+x/wm/Z503TrWzu9ZsFutQt7dIpLt1HmPgYyTX0Emlojzop2PZvDnhKzguRbXCBY0Tg55H1qVqJux0+n6JYTwu9kgOzGCFGavlQ7suR6U93bsL6MhgcLIMYIqHqxuyehoWujz2FkUt5VaNhzg9aFexlKpCUrMjismLovmhj3Ut0raCbRpKSjG7G6/NqEVsun6Na7ru4ilFvKyZijdVyC5HQE4pVISlojD2mvoZq61bGIwRMrSo5T5ByGGQxrJ8nLZPU6I05pXkbGm3EdtALgFWG3OH6k5ojKEVdhVUnpF6GTql1qWr3E7aFeW6SKp2NMp2KfWuaq5VPgKpqEUlJXKWk3Vto5RtZuo570tmVVjyCB6VMXGK13NcRTcknHRGdf315rGoyRaPpkQeT5mYwDCD1yeppqcpPQUH7vvHN2miX+tXk2orEvlRSeUt20eGuH5yF9hjrWbkpu+lnojedox5VueWfFm81iPUX0tb4AQsWdtoJbHYtg/lXPUlKm7M0p0owXNI4T4Q/C3X/if4yvPjpqHiddGjs5PsehIqA7mBOXZWBzluOMcCuejD6zU9vKVrbGuJreyh7CMbo6jwD47s7jWdds/F+oWR13wxOI5rixB8mRX5ztP3WOfwrrhWhUlJPeJx1ZLlioJtM+b/jDrT/tPfEOfQ9PiurXTNAMlpdA3BA1GRsck8ZH4815/tVjJOK0SOuivY0td2b3w4+FUnwO1zUdMtYJrHTdW06GTZDDhYLleN3H4V1Yek6E2u50SUZUlJ7m5rNjFe3V/FrNnuExXdKj8iX+Fxn15z9a6ql5XRkqjWiPLNXufDV1NdeG/HsVzCYyUt78sBJbkdCD6Z7HmuCajB+8jW073Pmn9pS1134Y6y+n3ztdwXMfm2V6sm+G6TnDxnOA3rjHvXPUhVir9DqpU6Klzq9356aeXT9TxefVTewbykSF2374024z2IrWlTd9WdkItl/wTdG3v2VNpBBVgfcYNejSkoqx0xklJWOI8Z6ZcaRr1zCHjbLkmOQguo9vavCzCjU9o5N3QVUo1NepjySBlwT1ryYfFoUo8yuyNCc5AA/Ct21bUjlUmTRqgJdhWE56WKaS0R1nwd+GXjT44fELT/hn8O9GN7qV/LgDOI4Yxy0srHhEUcljwAK0wuHniqqhA5qtaMEe3eFZfFGh6vdfClNSg1G00e7a2ivdNBaGZlOCyccjOcHvX3WApOdNYfp3PYw/NGCitT1nwd8DfFutaottqxmsoCAzG4gKuy+uD2r148OYmeM+O8F5WZ6uEwvtVzzWh9aeGfg38B/hp4D02z8Hpcaj4gaEvqF1cxgRoSPuqO5r28PQnhJOjCKjFI4qeIzKtiZxnFQprbuzWg1/xVBpX9kvqlxFp/3msUmKKMey9aWE4ay+vUlWrx5+Z316Gscvwspqq4Jy77lfw54YttSvrjUdMjy0hLzYlbaeOQBmvbhlmDy13oRST7HrVaqjBRkvwN+28EaFJDcXtvqMsTtGF+zruYs3t2rWvRrVIqML69exz0sXiVUUFFNdwurr4h3WlvoGjSXiaanzRyw2/JI+9zx0rrhDCYeXNVabZcaGAo1fa1UnNmV9nW9tjJPrt1Mkg/drdkqffA9K9KhdK6Ss9jpVZvSMEvQdGWjtgobYF+8okxkZ4rWn7XEQtNW32fn380bypycSh4tj1jxFpkth4b1CC1uZnj8ozJvEiqwLoe3K5H41GaU6iwE1F2bsTTgrS5k36Hj3xk0Dw7pniGe801Bauq7UjTgFP7o9s+tetlrfsYLrY3UXGCvqz5y+K/iS+vpprC3eFVuH/ci5OCADgnOM+vSvd5JShZC9pOEbdDgTZzaTZGHSYQkNxe5upWl3POwGcBeuPcgD8qIqlT0S1DlpwXM92cXr8MaRAxxCR5oZpGCrtRXJPQ9wMZz61LlquXqY1W3rFnlcfijV7+5liutEvRK0jW08xt28uKAd1boNw4rmxEql0pHFByqytJPQpr4s0GWxa8lNsRHPmVTPuWCOP7sf4nnjvU05RUbpo1q1oRpuzMy+vlvbGa4e5W3e7P22UZyUQH5ck9/QVr7aFrtnJTjzq7NJdVEdpHfXkaFLmAiy3HBiIUgyvz1pxrt13bWLX3ef+X6nqudKNNR6nrv/AAS98N+FPjj8U/HXwD+JnwitviBpep+EJNd0rw1cS+Uh1CxIeJkbPysys6nthsEV/OH0msxzLIeHcDmmX4l4eaqxpymle0J6fcfOYtYacpRrP3ZNb7bny9+0xpXw10X9qjx14b+AF1eReD7bxA50eDUbKS3mtUbG6Bo2yQEfcgPOQoI619j4aYjN8dwpha2YTUqrSvJdfM8zC1OXEToU3ov1ONKa4gOoWd7JsT9zcS+Wd6gkg5GOR71+iqpU5XJS8mdjqVY1FaRRmg8T2+q/Z7nVPLAQokwYgOuMhT6Yry6k61SpqzKX1z2zjKWhX0/Q7uOC4nBZEdN027kvk4O39DSow9nFoxo4aVFvle5Slt9SR5rC9H3TkTKBn8fbpxSqOVnFmEoVVJxqbHS/s9w63pP7RPgq88PalBZXyeJ7VLO6lumhTe0gVd8icqpJwSOxr8+4+oUKvDeKWIjzwUW2rXv6HDDF0ctx9PESV4xabS6rsL8X9I8eWfxy8ZJ8SbCax8Qf8JPeDVLO8Vlkjk81ichiWxzkEk8YPNHBbwFPh/DxwUk6fKuW3axtKr/bGZVsXFcsZybSfRE3gmGKTW7a3V2VmnAZxxu596+yrTfs207M9Om6dBrmPffgl4hTUPh7NYyXBlEl7PLiRi32ecSYwuRwGTIIHGVWv594hi6+KrVZb3/A4qWKnVqOK2uat5Kc7V6nrXz1OOly3eT1IAoAyR1olO+gpNRR9I/sIfss/Gfx/wCNrTx14aeWw0+OQeY5U4mX0r18vwdWXv8AQ8TG4lc9on65fCj4bDw9oMUGpqHlWMB2Pc19JRhKCseZVbq6S2O+06yOV8mPIU4xiulPUyatojVih8pyrx43DkGm2RJIsaRcy2TukK4LZAJpK/QlydrDLuC4kctKBg85xScWVFPqSQRGTGyEB8YBNJRRocd8ePhr4u+KXwj8T/Djw7qmnrL4g0S5sfK1K282Ji6ELlfUHBB7HmhUud8re5jT9nOpGTT0fpsfB/wh8Y674m1VrnWYvJumZY7q2Jx5U0Y8mVD7iRGFcbnaVu2h9TClCCue1afICIt1sjADqyZP0zWjcnuYTd3Y6vwhauZWWSABG5HsOOh604Ra1sROLXU7aCWWOIDa/wAi4GWJyDWvPKKvYwvucr8R/PKENNJnbheT6VzYuS5bHVhJS5jz2C9ubdipuH5O0KWNfOVnHm5W9X+J9HCUuXRnT/Dg+F4v7Q1jVdOs7y7EOLSK5thgjIDPkEHIz71WFwuHUZSmteh52YRrVnFJ6LcwfETaRqWqtEmjWyvHGSWUY3HHvVKlSctFqXBcsEkjxP8Aaf1ZtH8H3T28awTnS7hEjViQcxkAYzzkkV38jp0HK1mkTCnLE4uml3sfbX7OvgweBv2a/CHgmSPa2leHbOBlH+zCo/nTw1NQw0U9zDNqsFjppbXt+hsvdRXFq0LBcKCrBq6FqjzJJKVmcXfeGtc8J6u/izwLf+TMxRp4CMpMFbcFIry8ZkeFxq5oq0u/c9ehmtRUfq9dc1Pp3XTQ5DxN+0ELA6pF8T/AU8kl1qKyWc2mjaIojjcCO4B5rwZYHNcrlJ0veV7/AC7Hs4eOX472dGnU5YqNmpa3fe5o+J/CHiC68P2nijw0y3ujXdr9ohl04qzhB1VlHK+9elhOIqNTljWXK3/w2vY8avgKMK0qVGXvRdrNW+57M898W3ss12LPRS0UixEv5wAIOMfN7+1e7GrGUU4u557oVqLvWi0YGjxvbaXcW9td+e4nJ1CVx1P90VLqc+iCcfaapaHJeGPEF/Dca9fRRi3t5rjYjk5LAdetcUKkouUpbI6YxhFKC3OV8dvJHfx60lzjDEGNerjtxXa69krnO4Ru7nGePvFzXdsLmRwjbNzgnuOla3nbm6GSpup7sUYXhb9mL4r/AB8Nx4gupV8M+E7aN5r7xDqY8tpEXlhBG3MjEcA429Oa+WznizBZVCUab5qi6H0WUcM1sVXjCtFq7XTv37I8W/aO/bV+COjeAL/9nT9lL4ZapoPky+Ve+PU1HytR1EjhhIygNtzkbQQB2ryMtyTM87xFPMc1a5Vqobry02Pq8zzbL+EqVbA4SbnVkkm4pKMX5N6tnyRr82oXdu1zfandXcvQzXly0rcnJOWJPWvuo08NhqLVKKivJH5ficwx2YVF7eo5W2u72ObvEmdtqygYrhdVSlqa06M27soS6HNeEobkgN2FbxxMaaukFWlK1kyjdeB9Od900hYg87jV08xrRvYw+o06rvPoaumWdlpVl5UAAAHYVyVJVa8+aTNFGFFWRUZ/tExI+7nrRW/dJpMzjBSep3ng/R4dS1y0t7u1uZbRp1W4FmuZNmedo9a4KUXVaTOqo3COm5+gH/BPz/gmd4k1D4qxfFKfxRfxaHG+7TUUGGV4zziTHWvq8uyuNCXtG9DwMZinV9xLU/Vn4S/BDw74Jt0stB0WK3cyZcoADI3qSOtevKy0icSVviPUdG0y2tbrf5YiKHJUj71QlqVJ3RvtYLdyGa0iX5sBmK8GiW5DdjRtIbG0iVHXaDw3l9z70nJLQXvdC5E0YBt0QgN90keveqSctBO7d2SppyaSFvmnZxjBXOQKJQ9m7maqOvLksWpbaynh3R4VmHJUc10RcHG6JSqRlZnAftEan4o8K/B+/vPDVvcyymSNJZbeJ3lhiZgHkVE+ZioOQB+PGa8PP6mJWXSVFtN21W6V9WetlMcLVzBe1tono9m7aI5P4V/E/U/iDdajbz3tvq9rpV/b2VvdJaqsjMIFeUkqefmYjBGeK83IsTjsSp+2qc8U0k7Wf4G+Y0aGH5PZxcZSTbV3bfTQ7XULvUL+9FlYwyocFQm3AOfevcqXlLliefC7jds0rHRZ9JsgJ3jWVuS8hB2/h0reNH2Ss2Q6ylPRGVq/hux8VeaBHcNJjBu3fylHsMc4rmrU4yeh3wqOnFc1vTdnJa58MNH8JaLLeRfEHVrcshL7bsshJPQZ/LiuKtRUI35rFqvPn0hoJpPj2e3063tL4LJaW6YW3aIxtIMdc1dKt+75U9jlqxvJ23OB1uCw+JvjmDwnaabBaee7NNDAdwWMnAyeOTWaUa1dU/vN4xnGm53uN8R/D3V/hNplxpngjU4YYIZMfIwLxvz9xc/MenaqqUlQbjB6C9pGu/eWp87+Knn8K+Or3T7LVpLpdeRn1y6uXSO9kyucKg5wMEZwccZxmvOjKdOq4xe+53UlTnFK2q27C/B34UW2g6LeR6zbXQt7x5b6yvZgZGj25Pzeh+tdeDoKLbZriEnNO52tzPDq2rXOq2+pfbbKTQ1eTHO1hjJI7HHP4V2TUnPmicrnNxtY8+uNY8NeKItVsW1Yf2nZjyriESY3oAWV1HsDXP7ZO/cpRdOKkz5q+IXinxB4n1G/sbSybEMzQT6hKDslAA6ZHpjB6157qzqTsdVJcmrPB/H/AIKk1dB5/iK7WKPLQebcNJCjA/MChPAJPUUnzt2ud1OEZz5mcNc6RLZwvG9m6qRzhdwB/vBh1FdNJt7nVLTYm8MzTGfyJNquvAYcZrqp8vMrkxbUjL+MFxE/iQyYQymJd5xk9Pfoa8/NJSpy0NqkW0mcVJgHqeeleHBO9wU3JWHxEA5eqlrohOdtjtPgH8H7n4+/F7RvhXB4rsdDi1GR2u9X1GTEVrBGheRsfxNtU4Uck4FTCnHVyeiJ5KtTSK1Pse0v/wBmX9l3wtqHw88E6Jq0lhqNsYNa1+K68nUb9O58zBCITn5F4wec15dDO8ZRxPNh4pRXfqe1HLsHhqS+sXbZ1f7K/gz4TXljN4s8D6NqD6aWJs21dAXjOfUY3kevvX6RwnTzfiDEJTg4U073Wn4m1KnCdRRpX5T3MwaVrly/9qxzTzOFDzq5BCjoo9BX7Osqapcqk159T1qcJ4dJU7JI6K20f+wIYdWlitViui0drE91ulUqOsg6gV8tiJ1KuZ+xptvu7djm5aOKqyg20476aa9ix4s8LappnhNPFF1rVrKbl/8Aj3hlBIX3HavosFVquu6HLpbcvC4qnVxf1eMHp1Nf4JR6R5iSeJZPs1i8DmYock8dOh4riz6rUw2X2p251bToZ5wqsIv2OskyO/8AEVlpuogWnia42IzG3iWPaFTOBnI+b/PFfOYbPOJc1awlFRptLWTV9PIxi604csYrme5V1TxXqM8EMF1q9zCq5aIqdu/PqOlfSZbw1PC8tbEYiVSSbfZam1GgqdXmqJNmbqJ+z3J+1RqTBHiMxNuMmf4j7/yr6ujCHsUoux6MFzK6e4aOY5dW+3aoBJbogKxA/f8Ar7UVYYp0UqDV+5tXVSVLkpvUj8aanePo0reCfCNzqF4ZFaHT7O6Ebld3zbWIPQc89cGvMz6VWhlUpOeun5mEabw9FynPXzPEPiY9vPNe6tJPMzx5Pzjkeo4r6PAVL0Iy8kaRU5ySPm34i2Fnq2pu1nGsc0gkFv8AONyN+PQetey6jkrRN37z5Tx/xNb/ABE0C/NpfPHfQzRASX0IwwDE9+gAHGatRafM9UcuIpzpLmucudWu9RF7YQz+YLVWRTG5KBQcBQTjOetVeLs0ZUpupqGpX13baVLoMmtTJFPZ+ZOlufvnHC+2P61lOpKSsayqKGq1PPV+G3gu8vri2OmQOJNjFFPBJ+/IxPXH8645QovRxOX2FKoruKOV8Q/Dq2tnt00m8u4mlR1EL3W4FFOQ7ZPT2rmeA52uRtHPiMNFpezbRQ8Sp8QbKVpE1MXkUFv5hLpjMRGP0rolQxOHfNF3Vr6nLUoY+mvaKd0j6B/4IrQ+PoP+ChHhSw02C5t3v9L1S0muIUDM0LWrtuOSMAYHvxwD0r8F+kTgMXmfhBjn7LmnTlTkrK+007/cfPY2piPY89WOkWUv29PhXD8S/D95+2b4av4Jr7StVTSvGsloDJBqDNLLFBeLMW+aQ+Vh1woBIA+7k/M+GXGFTB4vC8P4pNOdNTg3o9Em01/wT3s5yilgaFDM6LtzKPMvlufL6xX98GOnXQEbDcisuTKQMkN61/QdSpUqtypPT8zhtUq+9F6GNfS39/etMbpMK5/cIMjOMZI7DiuOnCvUq8zZinVqTblLQvXsN2IngtXJmtLT5wRkKCc9e4Pb0zXdWThTutzasqsoNweqMiWSVo3llfdceUA5XnjHBPr6GuJzU43k9Tz1Kbj771KN48ryfa7biWLa48tiuCOSOOnrXm4ynTrU5Kyd1Z+aODEUlVk3DW259HT+G7//AIKH6fBrumaxb2PxQ0XQEh0qK9ljjTxnZ2y7WSaZiAt/CoCgtxMmz7pALfz/ABx8/DbGunJN4OpNt9fZOT6L+R/+Su/QirVjGrzUnbT3U+vdP0PF/C2m6s2rCz1K3nsr2xmaOS0kQpJC65DKykcEEdDX7TSx1PHYONalPmi1dNPR6eR14OtVx1NTasfTWmeA7PTvgw/iXwvIf+EjsdRtLq809VAW+00Aq7IcDMsbkMV6srN/dr80z7D4Z1qkXK0t7GM6VWGKjKG3UfIElUTqMBhnB7V8JJq9kerOzV0ekfsx/s9+K/jt8QLLSdL0aaSxEwN1cBDsAB6Zr0suwFSvVUmvdPHxmKVNcqep+zX7Pnwg0v4WeDLLw3oumpH5EShio64FfZKNOnHlijwZOUpXZ65p1rbm1MZyZD1UdBQrWJ5m3Zo09EIt5lheLLYOPrSi3cUotkt3HdS3W2RCRnjFXZt6kaCzWz2+JGP0ANU/dRctEP3yXMf73gY61PM5CjJ31It9xgJE3A9BU3sbbajIlmgnS7dj8jBuTmtF7upL1i0j8+v2iLKP4F/tp+J/DpQQadrlxF4j0kkbUMN1kTqP924SQ/8AAxXPXhCFTTZnsYCnUrYWKk9tD1PQtS0mXTDqa3yNA2CX3DC57fgaj2iijV0nSk02dx4Wu7a4tY5rMKwLAqynjBFKneWpyVZtvQ64anbhAtwyxqihd5BwvPU4Hat1poZOpPkulscb8TdVtp5ZrexvIpljkaITQsSkpGRuU9wa5MRFvSR2YNtpSta5wO4LFudAW659zXh1uSOslsfQUW9Dfj1fxhrlr/wqDwV8Mbm51HQLU6lqetvF9mijt5l3FFmORK4C524q8Oq2NpunBW5Xv6njYvF0cJXnWlJ+9olvt+RwXwn8Sal8XHvNTj8A654du01qXT9N03xDJGk16ikf6Su04CNg4JxxzWjwjhjrJ3sreWtjSliva4fnkrI80+LOkt47+Mvhb4ZXbB5b7XLeCSNfmDBZg8gz6bEfmuzGyisDJS3ei9b/APDnZh6lq6qLaOp+hehXdrCBpsWBH5SooPQADAFZQVkkeTOTnNyfcwNZjj0LVJLy5Qy2znkZ+6fU1q/dVzKpPmWhTu9YkuofNtrRTCPuNE3Nax5ZxuRF3Vmc94v8M6DrSG41a1RUkQrzyc0pSg9Gbwm07Hgvjb4KePvDd8PFPw08dalpywsSkEF4wVxnJUr0wa8XE5HlmKSc6d+9nZ/f/wAA9vC57jMMuVWmu0kmcJ4o/bS8e+EvCV/4X+IPwL0zWNUkvPMj8T2+5JUTPIIHDY5r5+PD2Y5ff6tV0vdc17ry3selSzHKcZjoVcXzwglZwVnF+euqHf8ADWH7Imk/Cyy8RN8ZHtNWupimoaBeWLJJHIeN5PcZrlhm+dUJOFWk5yTeysrd73OupgcoxuOnGm406P2Zc2r8rFnVPGP7Mfhvw0tvr/7VfhqxW9086jCunW8t3J8xP7lsYCv7E104fiLF1a3s3R5U02tG9eifY1pcPUknKEJNJ2blKEVbutW2vkeOeK/2s/2MLbQ7G/bxv4z1m/jusappUOnRW0TxZxujmJYg47FfxrHFZpxHUoQ9hR9++qeit5P/AIBq8qyCniaka1eCgl7rTcnfzVkrfM43xD/wUr+AXw5v5p/gH+y2NUuvLxbXvj+9+2vbvn7yIoCenBH406eW8V4+o3XrqnBrZav79DF4zhvBUUuaVSS/kXIn6t8z+6x8s/Gj45fGv4/+Mb3xh4v8a6tbC8mLCwgvXWCJW/5Zqi4AXtjHavcyzh7KcrVlTU59ZS1bfc8HOOL81xtZwoSlTpLRRT6ebVrnEHwz9gjLKMhThiT196+lcW1dHydWUpvmb1MzxJZqNLkjgUEKRyK568P3bCh7tXXY5GVNrFWNebBWR6fPcVRtXrxWVW7JV07sq3u6TIAyOxzVU2luaOcUtCtJDM0PlkEe9bSqxT0OflUrsgjh8tcFqlpTd2Yzm7M/Rn/glZ/wTv1D4r6zafF34haUE8OqUl061lZxM8gPUggDafxBr3MqwHLL2klpbQwzjFONeUKZ+wvw7+G+jeHrW3sdP0pbWOEgBE4AAGOlezNJRsjxqaa1Z6TpWjPayhrK23RplhKV61ny2CUlY39KgW7D3U6KwBIbIxRzIhyb0NCP+0fsn/EkSJgvVM4+tQ3K/uktQT9409Pt4mi8x4gZQOV7ZrROPLe2pNVtaLYs21wl4ptpoSjilGrzaMxnCdJ8yehMGgjiMM0GV7ZOauUtLSKtKU04vURIbWJBLAvA7A0U1CLuhynUbtIfNLFLbt50I2kEFX6HinVanHYyVOXNozyxPA+h+E5L0eH9Nit4r3UfP8i3ULGrCNUGMdOFHT1rzqOFhQptRVr6no1alWtUi6jbsrGzpOp3UFs7IUj+b5m3Zc+2fpW0W07msacbLQjGralKyhYk2ryZpiCQfXPT8ql1JSeiFOnFO5Dpvi7TfEl9J4a0S9jv5oji5O7IQ+mBwal1YzfJF3ZtCi6cPaTVjVl8LaHpU7aprub6VVGyFm/dp/wH1qpUKdP3p6sxdetiIezg+WP5nNfEG90HWQbTVfDkTM8fyxBsFR7jsK5JxVTRxHCEqXU8r8LeD73wl4mv/GHhTR7mWJrQrNLFlhGw6AFuv4VFHCOlUdSK0OmpWdWiqb0Zw/jHU/Hty0t3Z6c15qRimmtrdTnymxgMR6jNZS9ok9Ls0pul8MnY8i8XeDn8C/FDTPH3j3XbZby4tE028nupMKskpyowe+eNx9cVmqapVIylu1uddJv2ThTXU+o/hafCHhiCG38aIJmWxleRpkxGFAwe2DyePY17OHlRpP3jzq0atSXus+c9T1n4U3fivXvFOga6+mI8TpbpHI32dGTuyEAYPc46GvKqYilUnKUHZI3qucYqLWx4L8Ov2jPBvjPUddhh8MQ3Ot6ZqskF7IqMkNwOm+J+4I7Vx08TCcWuvkdM4TlQXY81h1DWNNOr6ANSZtPvdRcxQSEFrdnztHPPFZQag20bRpuSSPAvEev6tpt21jrENxHd2d1IgkgTdHImfvYB9OorP2ltWeirJKKMl9SNzcMonSMbc4Riv4gGuuhNS1NLNLUlsY5J7hElm3At1POR9a9OnCLaKgk2cf8AE+7F34mdTNG5iQIGUYJA9R614+cVIuqoLobVbtKKOXLBn5FeQm+UycXFEinB2E59KSlccLbFm3EplSaN2RkbKuhKkH2I6VjKcn73Q3dlGx9C/s3+EfHX7RXiO00zxbr13c6Fp4AnebkED+AGvquFeFa3EWLUpq1NGmHhiMdWUOZuKPvLw14e0bQNFttC0K2SCztkCRWyDrgdTX9E4HLMLlmHjSoqyR9bh8LGhDlSO10Hw15Vl9uEkLzbSQFIKwAd29/avJzLMKlOuqNM5MRikqvskmRTaILC6mluJhMjpv3Acn6Z6CuzBYKlRXOluejh25UuXualh4r0LR7RZtRskuk2/wCpkPGexauvE4epVd07I5atCtJtRfK+5oWHxOsPEelLFPodtFBBE6CPTwqY9CWI5A4r4DMstx2YY1Uack4dWtTz54SopumpNt9WchEmrSXsk9zqlxeSONkUTKuI17YAHJ96+pyrIsPlknU53JtJanp0KFOlDRa9yl4quIHhfT9ddjsjxJhymPYehr6CNONSOmx00qbcroZp9/HZxCPTEl2zj5zcNuY/TNddOhBKzOhpX1FbX1M8UUKlWXgpvAGKIUYUIKMFZG/LHlOq+F1h4317xxa6f4VYQ3ju2yaG6CrEhU7mcsMDjPH5V8P4i8T5DwjwtUxWZySTWi6t9EjycXKlRwtWeNiuRPS13daW6LW/RXXmfP8A8RNOfRta1rw2+sRSfZruaKWWFsqzbzznvz6V7vCOYwzbI8NiqWkZwjJejSH7R1eWpFWTWx8y+MYdR8Pa3OJ4UuQ4dYrmIFiuTzuHavtYRgmmdi51Hscl401K41VhabwkIt1EZd/lAA5Z1A6ZzxU1HZGeJcZU7NnhnhiHxXrvxDutViu7ay0fTyY7WJn2LezE8scjoK5qHPOq5t+6eDhaeKnjJSk2oEPi7xFqFkmoWOoQrDcrMGnVWyzxDODu7Lj+VViK8YppHXXqKndbnNp4+0x57xIEjdUtVVRE4OVxk85rCNSlKL1TDD4mFaHuO9jBt/Hml33iS+mu5w8EVsscBR8DHQ8/U4rejiaTm7M53jac6ji2aet6xDrmqXP2CQJAumiL5emAOTU1qrqzbvpY63Uo1aPLc+6v+CTH7Jtvfa1bftvfHq8vNC8F2ME2j+Co7AlJ9VvnjaMzNjBEIyQPUn25/PuMMfUxmX4im1fDxp2mkr3t+p81ia2KxWMdLDJWjZtd0eB/tz/tcfBnwR+ynJ/wT2/Z4ksdRefxP9p8VajbaZgxeRNI6wtIQGL72PTIOOtfzn4a8I8R8QcbLijNIunSpQ5aMdNU+tl5d9TTiHNoY+UcOm7pWt0S8130Pjuw8RWNnp1vqcUA82Esoj8w424wxx2PpX9ZYSvhnhE1pK+xzYWpTlho1L7XW/6FCTWbfzbpYUXy7lARJnlJh+PfmuatiKUeaz3LdSnOT9ns/wAyTT/Ect4jbJgk4CpI+R8xHOD7EcVOHqqpS1d2bUqsatPlTs1v/XmUbu9BuZrjToBsYcHbnHPP4Vw1Irnbi9DgqckKrlHVD0itri4EsroI2jOAp7+n51h7Snz26GtKphpSbeiaZ61+xJpF1rnxk0rQ9J+H1jrs3habUPFOpR6neTxWZ061snklhnaA7kR3SP5gCQQMZ6H8U8W40MJkknOvKnOs40o8qi5JzklzRUtG0r6dj5yUVLFRw97ayd0rtK3Q9Q/bJ1bw/wCNf2sn8c6Fp1taya34W0fUNWtLchkhvJrVXZMhVzhSgzyT1JzwI8HMFjcu4MeEqyclCrOMW93FP1fU+gw1L2cuXyR0+nyiDTNJe2kwZLbYCoHBz61rxHDmzG7WtiMQ17eyPVv2fv2Ivih8bfG9rC+mNb6M8ge4u2P3lz0FfP4fKa9Wum1aJwYzHKnDlhufq3+z3+zn4H+Cvhe00Hw3o0MbxIBJMIwGY+tfWxiqMFCCPn0pTd5bntGgwWoVosbSq55pK5NR30JtAvIluZVaTgE1m7h71zb0F47q9YqxAH8ZrSlq7sUYqMGi1rGpQwt5MRXd2I5rZys7GD+IqwW13d4d3OPSk9dzVK6uyymlzuBEJADjkE1OlxO6Y8aPLEvmG4XIAyAetEktzaLUkVb66eaby/KAIXHAxmhu60Glrc+Of+Ct3w7ibSvh18colVH0vWpPD+qTf9Ot4u6Mn2WaNcf79c9anKpFWZ6GCxnspOna9zJ/Zo8L6LYeDdYu9EfxRrGhXlzGJdQ1+1hWC2utih44NjFjGWz8zVpRw0VTctbGdXEVq9dRqWTX5HrngxbayT7LDblUjXEe1ahWUrI1lSVrtna6TIJ2E0UQQl+RjAHvWsJW1OdxR558Rmmm1O5klyzCQ7iR35rmxTc22elhkoJHIwT6dZzLd6vFPNbWqNNdw2o/eSogLFFHdjjA9zXz2KUo03Jq7XTueo3VdNqm7PubPxH+Jvhbw1pGk+H7Px9qtrqviANLb+B4lSecIRlY224Z3C4zkkL6VhmGa0cPhVSTcZbtWPEwOHnVxbUouVuv528irpi6bZ3Mmr6vY6hfpFBGE0/VmCtCcYYEptOOen0Fe1ltp4ZTm7ndilGM2qN1E8t+FtlH47/b08OXEVuixafpV/qaLGMJG+0RooHp+8bFGYxVVU6ae8vyJo1XClNb7H2PZX6yXSqx2SocOh71o42OV6RbLfiCSGOJjcQq8MqhTmk30OX4tEcX4i8Kan4Rtl17wncfbLRsvPaliSnuK2jBKnaJcailLkktTCh8VWXiaPzJpgFR8vEx5BHUYrGUU3ctRnTMnxpq0lzZx2FpKAkr/u4o1wSPc01JOy7mlOWtjhPH3hHQo9FabXNMhMnKQIyj5z9P8a0lScfidy0k3vc+VfjD+yp4f8U6s1yunIjMhJ479q4K+HfNcavKokkfPmqfs0SWNxfWsLyCOObDjqc5I4rOjhly3S3OqrVcU4t/iZMPwOlh1J9DvCGZk3wlhwwodJ8xz86a8iDVPhjYaE8F3JGCj/LuzkKe9ehCnaKOepUcXoZPiex0XTmECKMs5IlUjij2Svc5qs7nDeL5I5Q1tYLwM5kA+9WsbGHtFs0cvIn7nY3OR0P8XNKqvdLw6c66M298OWsymRVKHHXtmvKqwvG0EezKMI6GNqmi31ivmtA/l9n2nFcbVSEfeRzyqRehmlSW5HFTdWuZJNsZKSqFePatYRTV2OScdCnvG7btNKr7q0NPZpn9P37PnwU0f4ZeC7PRdOtlhjs4VSNCecAdB7e1ffvlhoj5rETlKs2z1Wy0UyTB7OEqxh+YtyGHpXNLVmfPdHT6LcXOl2JgEhcSR8lsAg+mDScnYykrmvp+nMg+zvLtMg3Lk+tQvMuLS942bWCOzTzzPGoUYKqBzWl4wRhOaqPlSJsusZmtolO7H3RSXvPRBBJytJkyWkcxWaWMh8ZyDV8iRlUm4XSeg6SNwNjWwZccHNXzJrYUJa3TsJHGxx5cYUjtmoive0KlLe7I9YuQIhFNJ5ZJ4BIw1ayld2YsPF3vHU5K7kO0oYAcPlW29zWM5JKx6HNaVyu1nFdj7HDGrurAydAoOe/vXPd9ClOn9oy9UiDo6XyMY4925XkAVh+HQVjLezOmEpTV1oWvDF7oGkRiLQdGt7fcu+d4QAWOP14p0YQhL3UkZVlVn8crnO+LfiNZG4lHntGOQjMRkc/e/wAKKsoy6msYS5FE5Ntcn8QX5jaU2lhE4N1OZBvmHcZ7muWNROVug6kfZ+9a5znxJ+KxtYzo+mXf2e0UOLOBJtp24+8xzyT/AFpVcUmuRPQunCMpXseUfs5/F7WvFvx18U2onPl2WhRILhAWAmdmBGT3xissvrJ4io49joxODcKMZeZ0Hx78MeF5tTS28b6XHqMaxr9vtLmMMspPTIbg9fwIqsTzwn7yuXTqyjTtHQ47xZZ694S0GXQLfxRd39jBCJ7CK4uN7xwsRmMseWA4GD2rGFOUU+Z3CE3KSbVjyL4veL9J8P6bc6b4os7C1u7+Em3ubeIqFjzwgwcEnAJzXLiIKmrNmsYSnLRXRx3gTxr8OvC3hy803UdPtb21urMkXdrDseF/Uj2+ppQnB0uXoarnqStseOxajZ63qd4NLuhJL5rMrB/llA6ZPY1jBKTZtN8tkeTX1vqOqeI7y11a3k8xpSY9pB3D15PJ9u9TzJTsdFFNRuZOqyWNq0lts3SqcbXi2nH9DXZSlFLQ0b1E09cukittOdxXtmvTptaNGkFJnP8Axt0CHSPGARI5Y5Z7OKeVJYtv31yCPUEYINfO5rKnLE3i9ep0VLxSOKIVTuP6V58btnNNuTHwkudzDjsaJvlLglFHUfDTwLq3xE8W2nhbR4S8lxKA20fdXPWuzJsrr5tjlRh8wk5TahHdn6L/AAY+DVl8K/Ctr4X02AJKoBmwPmdu+a/prJMqpZVgI0aejVrv8z7HK8PDD0NPme0yeCtR8L+HItY12I20Vz9w4IYj2rprY+E1KnTd2azxlNtqm7tCeHteOt6d5Nnpf2e2t90YRm5c9CW9a8/AZX+9datq2cWFoSdd1Zyu90PS6vZr/wAiRgImGUbPXFe/KHLtse1GPLTv1Gz+Fm8UzLY+WQshJlSOQYVcck5xXFjMQqOGkpbPoRUqRhFy6oSRtK0uxXTfDkyyxQJsLbcBj6muXKsLGhRvGNrnLFuc7tWZQn1Mwyh0AWR1+Zg+M4/lXsOjSfvJa9TopRlezM+62zhXmRGkZi22Rdw+uD3rWMGrWOuNo6FC71+9MhitFRY432tufaR69OTXbCmrXKklzWIdHGra34ktdF8L6LHd3F/OILdY8s0khIA+vWuLH43D5bhKmLxDtTpptv0NHUpYWm61Z2jHVnfWnj6PwR+1/wCFv2Q/CWvyfZdLsjffES/t7bzJbq8kULBaIx6KpJPQ9vev4N4ghmPi9lWb8VY9SlhqMnDD01ppB6yts7/10PFw855rlGKzCpFNpfu03ZKKer+48F+K1hbaJ448Q6fJ5iNaaxcIsF4gV4z5h5YADn8B1r+t/CfHxzDgHLsSla9KKt2srHpzm66hUjazS222+f5ngfxViL7r6CJoRHLvlSF/mkGevPSv1CCbV7lVHKS5VqeY+JbOyupwBazmMwkxhDhnBJyOO3vVWvuczScfeOA8Z61pWk6ra6HY6dHHNcgpbxTw7nnwM8Mf4Qa5q1SKkox3OHFYinTkqSvd7HlXxB8Kaz4uu7q71PWJY1WIwFYMIWc5woA6jg1w18O6y5bnm4jBTxiab0OU0v4MaLp2mI73s0cjJiWLzyGJLY2n3P6Cop5fhqMbI4MHlVPBXjFvzI/Efws0jRrWaCKGIx2ThElWY/vZGPb1x69K2eCoqF0dmJwdP2S5I2NU+H59G0qfSxuDNb7WyDkkgMDk9sGtXT9lBrujSlgpwon6afAb9o7wb+0d/wAEufDnw8ljMC+FNPbSNbXS4mmm0+7V18qZ4kGQrddwr5GnClKNSg/t3T9D1Mgw2G+s+1g/eas07LZHyn+2X/wTakfwvN+038G9Cm0fxHHZC68deCHhaUz5xt1K2TG5YpchiuMqzYr8cwnEGb8D8RPJ8zj+4lrRqNaNPZPpoup8fUy2pi86nUwvdp9nY+Q/jB+zn8dfhnPFP4y+F+q6Vc3EHnLbm2LxzxHGZEK5BUZGfQ8Hmv0LBcQ5XnFT2uFrLmvZpdyc0y/E4fCuvCNrOzS1HaH+z34n8V2Gh2mh2t1qOueJrhf7H8N2MOZ50DhPOdiNsMZJwHbuD6VrxLmeCyDBxxOMqxhB66vXtovPoclHByqqEY806lTVQitdN230R7cf+Cb/AMH7iYP4i/bk+HvgHWfmGoeDrq9udauLTYCXZp7SERk4A+UZ69a/M4+JuKjWaw2ArThpaekU77WvY+lqcKYirVi8K+VyV3FSjK1tXu09Fq9Cuv7Bf7M2nXVvFP8A8FMPDE6XkTG3Om/D/VJgyg4Y8qoAHJPfAq63iDnzg5U8rqad5wRi+FMfKCkqnxXtotbb9RmsfsR/ADwRFaeIvGP7bclz4f1FmGnX2gfDq5Zr5BklYzNIiK52nCsa8p+JHEVebo4fLb1FupVYq33Juxy/6q5jpF4iKctNl/mb9t8Wvgh+xz4Y8U2n7IWp6jrknjaeyabVtejgluzpUGHuLGeIL+43yDlcncjgZ4OPlsZhM445z2hXzumqSoOVqcebl55aRlGTfvWWzezPIzXL4ZKqdLm5pS1bW/p5Hl+rfEjXvix8Qdb+L/imSEap4h1d767jtYBGkZdt2xFXhVUYAUdAK/f8kyLAZHkdPBUG1yW+fVtv7r97nfg6U/YqS7dT6R+GXwu8Y/FbwJplr4K0uSa+W78uIheFyAQSa+Jz6P1nHtU9zDMF7JprqfrJ+wr8FPG3wz+FFlY/EC4jlvlhG7YuMe1ZQhOlTSk9T5WrJzkz6O0SKzgYecAeOF96NQ1Rbt7uH7S7EYXstDkkZTiri6HDJdamVt8KpPzfSoVnIuDvA6q9uLfTbUW1uAJCOStbQ905pvWxnCzubh1mkfr61LvcqKT1NK1jaGPy47gEjrzUtNq5V2QXWj6/dzCa1uxGnUk1i4SbNoum1dofDa3llEDd3ok4z61aTW4o1KdSKcNmC24vZtysM46niqSVhN6HiX/BSfwZF4r/AGHfH8Jh3zaRYQ6vbbeSr2syTZ/JTSk6nK4wFSbjXi13sfGn7PVnqnibW7aDwrqDRXWoQZga71kQW4k2gqGj7g4ODxyawlGTWsrHuqpCl7043+Wp9SfDDU9Yv9Eg1bUIkXZuiuXSQbFkjHzfMfbJ+lOg5T6nHia9NyvE9N8Nw6ZMj3C67YTeTEssiQ3qM+G+6QmcnqDx1rshTTejOCWI/ectjyzxZqcOqfaby0uAQt26MVbPPvXHiPdUme1QhK65jM+GOow2/wAQn1q+tYrq00XS5b25hlg8wO7fIgI785/Kvm8dmP1HFU3JcyfSzb7Lbz+49iVF1KDipWb87HkfgX4hePPilf8Ain4x3PhFfDzQ317p/gi6j0rF0XVW3Xm9gSm48L0BCgd+fNwGVVcTjKuLnNSi1e3Z6af1qebUqxkoxlG1nZaPXfV/0vvO90K51uP4f6fJ4gvpLvU7m2VtYupmzLPNt3FiR3JzX1mHUaeHSsc0m1PdtHKfsfObv9qbxD4ma3ymnaCYUuDyp3XCKVH02H86wxNWjUxFGPLqru/fa33fqdeFUKeHqTb1dkfXHivTGuwNT0jiVED/AC9GBrsq2lHQ4Izv7rQ2x14ajALHVGCsI8OhHfsa5IfFaRzzjJSunoYmsXt94Su2cyu9q4xuU5H0NdXvQ+E3hyT23OT8aeDNG8ZImpaHqraXf5wk0LfIc+o6GnKFOove3Hep8MtjzzxI/jL4d60l54002W8hVSIryzXcgX1IzkGp5IxKioW91nNah8VPC/jHVDcT67CIIjiKKRgCWHsabnKUjOTUHYTwLo+k/EP4nRaBHNDLbxRS3uoyq3yw20S7mLEdBwBn1Ir5zizOKGQ5FVxk371rRXdvY9HLqUqmKg5rS6/M+YtVvY38Vy63ZaXNNZvczNHLG3y+WWOMjvxXo4B1HhKTl8Tim/VmOZRpfW5pbczOR8b6vp2oaqjQRzWzWsuIGKYYqf6V6CgnucbqRirROG8Uy3GryR26IJmY7pFdMA4+lNy5Ymcry1ZxHivwnqFsRNcW7OjNlFY8JWMptqzMJxdzifEsMUEpgwAqnjHQ8VKlZmLg7nIs011PHFaoCzSkYx2rbldSyOrDzjCaOs8M+Boru/jfUweCP3eP6V7GDy2EY3kelK9XY6n4hWHh3TPCckd1Ywqu0hQy81eKwtCVF3iFShGEUfPOqWUdvI9xbL+7Lcewr4SpFLEOC2JilGJh3d2yk4PFdPLy0yZtyIoZg3zN1zWFSLa0FOcYM/rMTTTZIAiZIAeQZ4AFfeVU3Jo+ZrP98/U19Ge502T7XqEWVc74SFJ/CudNo537zOk07zNQm+2CxwD9xWXGaaTepUUtmba215OiXSWeNv8ACRzRKMr6IfPCDcWzRlgsbq3DABnUcqDjJpuCmjni6sJeRZgbZEpYbTjhDVxaitQa1YXKXFxA1tJHtRxgsGwayqc1WNiUqcJcyepFZ2X9m2i2dqzsoOSXck0qcJUopQ1FVrxrTcpaFgRyErtOea6o06m5z+0gyv4pjt10lprtAxUfKAe9XOOl5G2DqNVbR2OK1BnjhBzIm48gGuaaVtT0eV312MLVdTS0szFaWkmJWyxRt2/n07VyOp9mJrGMVNO+pztzrqzRTCSeWS7CcW5ACoOvJ7//AF6yqTdrLc7lG2j2Mu3v9e0zzrvUL20in8jlpZfL8tT2C9zWdKVSMtRTlCo+WKZh3EOjzI974j1QTqfnEKDJb3zWdbVe8xtyvZI848c+MNQ1WGSLR7PZaoTtRyQuPb1NcVSdSWqWhUILq7s4XWJ9U8RXVsvlfZLe1t2WNMYEnHU+9SoucfQ66fLTjqdH8HrLTPhzb/a9CtTHc61cpH5oXdvfPzEnt7ZrbCJYTXa7IrupX22Rc+MfiywttZvI9Ui+1rNMIXWZ+Ru43e2DjH1rTE14876mdG1OK6s8W8afHDwR4Q1GVPFXiqKws1ke3vLq4fCxOchPXAO3v1wa4/rFOL96VhyjOS91HzTr7+Mfit45f4gXHjaS6t1DR6c1kytaGPOAzLgjJ9a86KnWquTldHdQTVO1hJ7e4EUlre6lJCkP+tiht9sbH1U4/wDrGu3WMLFy0ehgan4g8JeHLC6FtcW6zSxlreZUKkH1Ix+lZR5Neh0U0pbo8gmk1bUpHa7nJLuWBVMbWzxg9s04QTe5ry30RnahBev5kV1MzurBd8gIJPXBrpjGxUaaRY0SRWv0WReduMk9fxruoSfMlY1U+XY2v2ivDw8SfDfQfjHpczSvp7jQfEsO7cYJFBa2lPorx5Ue6e9fNZhCdPHyT2YSlFrR6nisibmyTx9azclFWRn8KJbVHllEUaksxwqjqayhGVWaildsHJJH2f8AsG/AjU/DwXx5r1gYpZcGITLgheuRX7XwPkFTLKP1isrSZ6WV4Zyftam/Q+q/Cdzqk2sS61JACIXxGpH3jX6YqinCz2Z9PUtClyrqdl448Yat8QoLbSNTv/NaCNV8pFAWJR9K8/DYOhSqS5Diw+DpYeblBbkT22leH9F8h5ljt1Qne2fnPevWpJylyrY9BJRvZXZn6bdya55U+mqXTf8AIAh55xjBraoo0ldvQ3ilKDudLIYvBpez1DS0e8voTFNbyWpcopH3s9iBnmvmMfUwuN/dN8qb3PNqzlUmnFuyfRnGzaFcaJcxXNnHdJb3RP2CK4QBZADycemfWu7LuWrUlGlNuKSXl6nVGrGvdLdbjPEGm2qayl7FczSSNEBNBwY1f2r2aMZU99TqoQdNe8UdY1RIUedr6OFE+XezAE57e9dsZO1rG8oc7ujJeSG+nQwQdeBERtAB6sxJqZTlRjz6s6KTUr+R3/7OutT+GfFWsfFe6kht9A8BaNLcTsq/8fN66kRRL64wW/Aetfz19IjiKpg+FqeR4Sb+sYySjZb8p4ueUpYrDRwqu5VZW9IrVs8J/ZO8VeMZ/FPif9pnVWkj13xHrMl1bz3I3sih/lPTpjGB7V9X4ccI4XA8Exy2cbU/ZuNrdWtWCjSq/wCzW/dpctttNi7+1Tbnwv8AFTWLnUdRe9fU/I1Dzpl+d/OjWTJUfdGScDr61XhBThl/Cs8sev1epOHnbmuvwZvg5qWDjGEbKN192h86/EK8ttTv5sN5i+WDKQuFjx3PrX7NGUfZ7nXFOMTzDULy/wBS1CW0tHIsj+5NwDiS4OPuj0H6VtZOmmcsoybOD1LSfN8VSa5bLEZLAiO3Lckdm2k9h3PeubmXNZIweGhGpzyd2jlfGmq6Xpni0yXRKTxwloVjQ7RMAcNXNOqufUwqVXT2R5f4w8YeW0H2u+ljdrkm5h2FftOT1B9Md/euGWISmk9jxsXWqQrR3Vyfxlca34ouLApcsltCIpEtwoARAcAZ7kZrTESlUsovRHdVVWdONn1Oj8ea1BHbtG1y7tHaoGMTkApt2tyOc9K0rSapNXe1vv8AM7qtdQotx3OK8IfFD4jfCnxg/ij4L/EfUNA1E+WLiXTZSqSL12un3WA75FeDiMPSr1LRdpdz5S8qtVujPlke7fBb/grp8cvhp8X7bxl+0XZT+L9FjExurPR5/sMtw+wBDJt4ZFZUYrxnbXw3HPBlXiPLVQ5kpJ/Fa7sjqq5xjcJSVPERTS2lFWfzPUfE/wDwU/0DUf2c9Etfgrp+qz+OxHqttd+J9ctop47exvJYpZLSJj8ycxpk46opzkcfnOW+HWc086+szqqGHXK0oaNuKtdncoPMaMq6fuStb1Xc+W/HvxT+JmrfBG68IeENRFlLYyTSeKbayhjS51Cwd1dMSqocwxOATEDtGd2OtfXYnh6jUzqGKx8nUSSUbu6j8trnk4uniMJR5qWjW7W7Xr+h4NHLpDxOOrSruTLk8/pX13s8LSfKoryPAqSp1JO3XzYhtFtZDcNbFEZcFg5Byf6VlVjRt8KsU8HKEOaz+9ktgiljbySMdwyUEhwfQ0JYNWi4rmt5XOnCr3WqmvzPQfgj4PGq6b498QrHHN/ZfhR52DIWG55FjByOB97vXw/FmLjRzPA0lp7Sol92pwVlGVZot/DOV7nTIbYMpAKY4HY5PPriv0dp1FofSYKsvZKKV9D9Ev8AghMPDc8+veFJ9RkFzea3NJBNf3hkIdCAEUN90bT0r80xDSzivTe62PArRqzcr9Gz9dtB0qfTrdbeWUttxyB1rCc9TypJc2h0nh2TT4rvde491pxd0Q1poReJrq3jnLWoKg9NtN2uYRT59R/gmx1IF79pOAMj6VEYa3OhySjZGgbi9vL7CqeDjGOMU2rHI4K9zTniulgWNX+qqKFvqaR5UX9OjmWNXnLZ+nWrdrETXUs3d9KseFDAY6etQmmiqbdyK1WW5wbhSFxnmk7FpNPUnvoLRtMkghl2SFfvL2pRumO2p538ZdFGu/Anxv4UuAZlvvCOowMH/iLW71cGk7M1ovlqRdup+ff7Hvw01DxT4X0rxDceMbC2sLrw+iS6Vf6Ct2skpQYlVycq/YHnbk461y+xlJ8ylY9LErl11+TPpH4LeCZ/CcQtPEGrrqUjXEjrmDEaBhjbsbtjI+lFDDSpO7dzkqpTaaR7f4ZsdEnjFjb6VDh5Iz5qQKjR7AQmMddoYgDBwCe1dtGlCLukYSjed2eUfEDTtHttV1e3tZBDKsvmNFwd55BcDjqR6VjWw6kmtmenTqVZRjZXRzula9Z/DbS9W1C7t3nuUuLSPVIV+UpCUL7WPYYYE56d6/Ocfi1Uz+U6LbVHS3fuetKKlRUZOz8zL8Kar4asNMu9C8BaLq8GlPfCQnViT5jbchY+zR4b5WXgg8E19hk1f6xQqOEXGMnez6v+rnJiqVSi1zal/wARadLDoUl9Y2YeU2js8US87iSAPYnAH41vWXJF8pxzTUb3Oa/4J+6L4wn1PXY/iFo8Om63HpUa32mwSB1geS6mk8vcOCwXaDjuPavIcZxzGMJ7pGkXH6oprZs+j49Wm0xRYl2MTn91I3b2r1Y1LoyUebYra9ax3rSX+mPmRFG5PeiynIycuWdmYVxr99C66XqtuGt5yW+c44HbmtXLljexclFao53UbKG5nkl8HaudsR3y274OP61hGLnLQTqykuWxyWv/ABJ1Tw5LKmuQGW2lfakcnKqMc5zVzqezMnBLU4HxJYfCj4o60dLj0yz+0Kha4uIAFMI78j1qaVWFSVrFxvLU57SLfwj8Evhh8QvD/wAOjdPr3jG1isG1BpS32eyDHzVQk/Luyc49vSvi+KeE8TxLnGDbny4elLmnH+ZrZHqYTHwpU+ad+aO36fceY2Wk+F/DtoqlIvLe32xxmTkPjuK+5Spwb5TyqjlOXM92c9faBoN3ezzX8qG4jQBXLfLg9s1rFprQydkzifGUHh+0uWlsZk862OGiLAZHXj1qJKPUmc7nkvxC+JelsZ7fTnV3xkoeqEVzyjKWxCbUbs8k8Qa5NfmSUsTufIAHSrjTimYNyk7HN3F1qFrcLc2infA+4g9xV+1VGSkdOHpvn1O58MfFvSLOz+03zhJwoJV+xr6DA4pYj3Voe1TqQgtTkviP8Vr7x3fCxsm224b5sGsM5rQw9BtPU46lf20uVGHLEj2/lEDgdK/P1U/eOTOunSbjqYOr6GTF50PJHUCulV19o5qzlFaIxgdhKsOR1BrSLjucEm7M/rZ0iSDWJ7h3cYUEBW9uwr7ed5TZ42ITVR+pv6ZBPOVaa1ICjCqjdB71zpamUbNnQWWfKADbju42vyKbvsaI1rWa4LiWOY4x0JqoppBOEHGzRc8yGxjF0YNzucbV6k0SqKnE5Pfm+S+iJuZ3EroSc8DPT61zybk9RxXIrElzI+0IelbRUrGD5egzDKuS2OOtdKglG5ytqUh8IDKCkxPPJpp3jeMiuVLdFLxk6tZpFIPfBP61lVm3JI7cBBRTkcLrDqcLCWZVU4LNwzd+lYz96DO9u8bI8s8TXXivwzczT6ReuGus+ZCWzGfQe2K86UJU9Yvc76dGnVV30MS48QXGkW/23UxMmAQxEZIJ9ff2qZVY01qinFSVjh9f8V6VLei/1vV4vJ8zeUuDxGB3YHqa4ZVYOV7nSpWjyxRTb4q+HfiH4tfRfCmoJKbNAsdnbqBjtlznn14rX2kK8kodDOScYptNF3XYHkke51fVbbbbx7ZIcYSI/h1PNX7J9WKFNX0MC7vvDhWZ1glmeb92HBOfdscYH061N1TXKlctScZanj3xF17xHDqTx6T49vrVNPcTQRWKlQrr0b5hznuDXnSU5S53JpI3U0k7Lc8g8XftgeLdSudesfHnh97y58mOXS9R0uLarzI33ZlPvg5FYV8TJuUmr3K+rNRTgc94O+Dl/wCMLm58R/ECw8691OAzby26JiR9wBugow1B1I3qIcZpK0TWX4N614MtLi00uyFnFCFZbWIfLjrk46fypxo+zl7uiOtOMYjLzw9PpEhl1p4UiNsWd50JhIwSC39081cvPQ5nJt6HgGv+HtYl1y68QJq7XNnPIQscc/mRJ/8AW965V71RtO51UG3G1jK1EJY2kqRxHmPdBnkY7rmuukrHZokYMlzNewlHnLHAJYZzx2Oa6I3UrXCne5NZApMYmTfHjJIHT3FejSlHmsjX2Tb0LJ+IOj+BvG3/AAhXiu8T/hGfGlmNN1tM58ok/ubkDs0Um1h7ZHeuDPcPyU41brucsa8KNflmtzz7xN4Q1Xwb4hvvCWuptu9NuGinA6Ng8MPUEYIPoa+Z54z1RtUTT1Pb/wBjT9nu08Za2njjxVamSytWykTDAOB1561+p8B8NTxNWGMqw5o3+5WevnrZfO/Q7cvwP1qXPPZbH2d4b+IGnf2va+HLfT40ggUIsEacqvTk1+z4ilCqnTS6H0MKEaStFbHpP9k3VtceRo1q7ySIDFGF6DHJrhg6eHgoXtbQcqkIRTmyLQNG1GJ3kv4cFv8AWgH9K9GMYcqkjspzg46FvWZLSS2Vb5EJC48lm+VVreDlb3TWmhV13+xbZYLG3SJcBoyp9ORmoqUZVrqQSSUThdej8b67ql5qKeJbyGa9XZKDN8vl/wA8/Svk63Cc8di1VqVGorojzv7OnVrc/NaK6G74bF1omippM9w9zLGoAmuCXdR9T0Ht3r63D4KhgqahSPSiorRGfdvqElxPLZnaka8s6nOT3xXdBK12bqLbKWoNDcLHNc6Uk8akFFmHGQeTj+tNxbWhtT59rmfrk9lp6p9m1oS3czhYrO0TKs7HCrkjrk1lUnGhRdWtK0I6s0cFGV7adfI1/wBqnxEPhZ8OfDn7HHhfXo4/FOpzrq3i+S0YNIrNjcjZ5AVcKPp+f8mZHUxvid40yzKlKUKOBfuSS+3FrueZhubFOpmMm0pe7TX93v8AMx9LtrbQ9Gt9C0URx20EIVQxxg46H0zX9eUMNDDU/Zw2SNqOHSld6mb+1JHpN34X8OeJdNXd9t0GGK+uGDs0lxCWjcBm+8FUIOMj3r8T8OcTCHF+eYGD2qxl98VsRTUqbqwmtU9PR6nytrmoGyubqQRM1q7Yllk4IH09a/dIQSiOE5cq5tzjNR1hYLi6bQoPuoTaSgA9R2Hb3reEk1YKs7o4bTr+dri9ZtLglhhsytxK4Pzuc8fUVnyRs2zi5KrfNJnA+M9e0vVtXOoG2EsMEQS5nQ/dcnhR615lSalUMakoqGqPN/Ed0ni7xwugRgXN1HGAzeT9wE8EccYrgjS9vXcO2p506lPF13R6x1L+oCPQ9QW1vX3GHS8Ro7gjecYxjryfzrslBQlYbnKnXUWw8QNc317fRoiwrLpoZozyGfaM/Q1lWd4NHXiVejyLdnHR6LLYQDz5kMtxPsnlUcqhGV49/wClccaFo3W7PNw+CjQp80nqyjq9qxe4+1b2miXYXK8Od2On0rWalJNzeoV1GcG5aln4Z6zaeGvEaaNqEyppeqsI2L8rbSnG1/pk4NfNV6Lo1r3919Dz8BiZ4XFexb9yf4M9K0We78NeLYZ9PRLTUrSaSIMyApiRSjKyHqjKzZHTmuTHUaeLw7p1Ntz6OvQhWhKlU6qx4NqHh1tI12+0C7hAuLC6eNgSQBhuMcfdxWdPlrUk+qPiKdOilKm170WOW1mhZ4rkghk+UP8Ax040+X3WFN11JxlsS2SBCCBwchJB/KlCmpyu9kaRhUjueq/s2i/n0T4k6HFO8dvP4GkuLqFYwxlEMyHBzzj5s8EdB2r8748jCGNy6s1qqqS8rnM8FUrV1Lmtbp330f56dV2Mj4cW++1SKXqcEbWIJI5/Cv0hzUocu3o7fkfR4Gl7KNz3z9hj4g6toVp4kfwxdTWl9pfioTW80b8jIBxnPQ46V8J7H23FsuqcTzJTjLEziu5+737IXxstfjP8FdL8XXjhr4W4S9UdpAMGscXhZYfENPY+bx65cS0jvb+5i89XVip6lQelYIwhe2pR1XUHYeYoPHU+tSxcnv3Nnwff6i+nMDNtBHGaUJDm1HRG5pgmBL+ZwOcmqSuZrYt6fc3M918xz2JIppJE7PU1NSu7u10+WawhV5Y4yY489Tis5yaj7pfIqkrNnFfCHxB8WfG93eXfj/w/HpsUNyyWsaSlt8YPDHjjPpXPRlXaftFY3nRpUfhdz0WZo7aLYDk98GtrmPOm7GdfzCOHEUZ3N1FNaPUtJGffWMepaPe2Nwo23NlNCy+u5CP60+W+ncFNQ97sfnz+xDq1nafDDQ9NdJZJI7MWu2Lna8ZKnPHXK1ph6UlDU7q1WdazaPoPQbsPeCN5SAWOCTzmt/dWhEYOx6n4BlE9xEdg+/yCfve9UpWd0c1V3i7nnd/o/wAObrxN4i+JXiLwxg+GfEiw3GrLqzSvdS+QJFszbjCxx/vAc4JYjr0x8NxDnGN9rPCUoPW1pLV69Ldj3MK3h1HlqX5o35bba737nlXw68Uan4m8KeJ/EHiO2W4v9X12a6SO5UqNgwqqQcHbtAWvCwGW4unndJ0/ehFe9dbt7nVN/WI3et317Gx4T0xYNNtVtVaOJH329vJKZPsse7AiBJJAUHaBngV+jzvKba0OKu4qTSjZdhnjrxENN0K6+ySGIvFIQ7NgALk/4Vx1bdCIOMrmZ/wT7uZLU+I51iKvAbQzHcSZWYSSMef9+uF0lLNJNfyodSSeEgl3Z9Ba/Ja3AkeA7opF34Xqp713OKTsjOGhzlzqeoaNbJqNlL5gX7y/3x7+9Q24O6MakU3qGpXqfE/SUutPVWMI2tGnDKfTiq+sRqRsJK0tTzzxFqN58ONQl1CeLCyqTcKTyvGMmsruDvEc3GS0POb7x7onjyT7Dp2pw3CwZeeQt1xU3UpWZmk46PUwr/QNHstRuY/C1wLe5uIgbiTdxjrj8q2pQhF6GzcfQ8z+IHiR/CZFtb6gt59pjMcQByR6mh1OxzznzSsjxzxFpviS5v0EfiSdZWl3JkEBB/dqIRbbuKnKXNuc/qdz44t3utMv9XJVvmTjofeuhXgtBuD5rtnnXiK28TAyvd63K1zu3Bg3UVi5p7mdRJHFatbvNLJK5Pnj7zf3ql1Eloc9p21OW1gm1ZmcYzyAaIyNIRUUUNIna+lmMij5hjGarERTpnZhnzVNCfVfCNre27POuCqZLDiscNUqUnozuqwjJaoxILK3sMxwhTz1HeuPH4irWk+Z3FRoU1JND9zMmBXlxUUzslZIikcbNhWrabORpSepha3pClGniHI5qozl8LOWdC+x/WnYWEGnwjysrJIRggZJFfoc17zPnKzbqv1NjTLaK2JmIf5u27PNc2zMoq89DaiaAooCNG55x61ad9S2aEFzHbwoxTcz8Ih6k0TkoxDyLdhBqVq3mXZV2c5xkAKK5kpJ3MZqlNaMvw7MbxFgntn+tbxjfVo56kmla45wd5YqcAc1aqpOxjytq5C06ynEkZC/zpSqKro1oTGk4a9SW2uICREkR46cVUKtFPlii5U6jjdsw/iHIGEaGQjAzgd6zqe/UudeCVqTOSluIsbd7ow4YkDn25pNt6HU99DH1zSbC4mhWO2ZgjbpAU4J61zypu5tSlyJnP8Ai600gqzagqA7PkCgFUHbj1rKpGnfUuEubRnmXjfwH4a1zTJLu9s0jQPgLjlyecn1rjlRhe9jppqUJXvofP3jr4U3J1lrjw/NNb3QuNlk9hIYpWJOMll6GuPEU1Jrk0fkejGpTcbbrzPQPAv7OHjfwboi6v8AFX4g6prtzLyLS7vMrbrjhcAfMenX3rtoYV04XqSbZjVxHNNKnFIwfF/hmyke4g0HVNZa7CYmS2QlYUHJ2nHYDrXNiY03rdoXJWmvhVjyB/g/4h8Zakvn+ONXubOJ2LW87rGAOeGKjk8dM15vsufVSbQ1JQVrakLfBzQbHw3/AGzqEMa+d50kQbnMaL1/PFdNKEVA2p1L1OVmp8C9QS08JW+leK4P9IW3kWxdk4dHztJz6HFdVB+7qOtZSvFFH4o+M9N+Ht7caxrs0iWu9re/iiTcy71GGAHXDZNY1uWjLVEcs3Gx5T8QNT1LxxYyaJNf2t1FboUhurNwxnhPIEgz6flXJUhKcrSOmnBwR49a+DLPwrKYbWOSzidmBiEg498Hgj2qYUYUdUdkVaN2YGuaZNZLc2ryJcRySb1+zPxn+8B29xVOpLmCE3N6HMTWyQ7k2BZMBj83DCuim3I3s4q6LFgR5yqqcA9Cfzr0aXKrK+ppGT5XcrfEL4W6Trm3xL4p8beENJ06Q+WEuy0+pyEdSkSZK+xbANcuMneo4tq34nlV4OpWUrljTYLT44+NNHtLZpJJrO0isbi6kTD3ccXyxyOOzbMD8BXNkOTyzPNI0Vqr6nq1FHEVYQifa3w08LaP4I0O38M6dAu5YhvG3viv6ey/BUsswSo0ktEfWYWgqFNJHRWVtB4a1BLuK0Tz3wBnoK9KjTVRK9lfft/XyOipG6bR3l/L4judJgv7TVJLOWQYYw9QPT2r56pgOfFtvYwjQpzl7yui1Z3V3oWkqzSs6sQ8js5y/rmvVcYqNl0OqMYr3Ymhd/2Xqmnx65e7ogQf3W3JY9q5oV5QnboEJyb5YlSSwkaMyz6XdhWG6APH2Hc1vQrUatSXJU5n20djeXK7K6fcqanqOk6bYRXuozw2kXLBpWwTj1rsjCdVWKUVZ8pn6Rqtxr0cmoWUq5ZTtkIxhfX2pz5absR7JU5Ixbi81RPMgtLsSx44LDJds10Q5XC7OuN3K7M26u767mkeW6aIbcFs4Bx7VWjVtjWMlCZ2X7MegnX/AI2aLNeCE6f4dhl1jUWkGdyxLmPdng5cr+Vfh/jzxXPhHw8r1KFTlrVfdhfv5Hm5nUbwVSMb81S0V89/wPHz4i/4W98avGHx9vLkq+r6lJBYXbwBWEETlcKD1DEEj2NT4C8KYrLPDmn9am4YjEXqSmklK8rdWn26pryPRjQp0IU6UVdQSj9xt6vqR+y7LcmNCw+SXjcc8Mea/dsS/Y4apUk9Ipt/JFwcYzSO8/bLtdPi+C/hKGHxfpGrTeFY4rC/j0iBYYtNM8Xm+TIAfnmJwxbjIYcV/HXhdxfVxXibiXUSUcQpcrSt8Mml6vTVniZfSUliavs5Rc5X953vbS67LyPh3x/BDLDfOZyYyCYwRxnHGK/sGlzSpyble/4f15nSppRseR6B4ovbaO6uWmc3fmGMebFtUjphR/Wqi7QS7GMXyO8kZ2vXc9rodxp9qQr+ZmW4xwxPJ/D+dPnTj7wV60XTstzyOLSNZsEu5J7kGQzM6pKMIsh+6qjuf5V59WDk27nk0qFWUnKTG+GvDN94Lvp9duGW51O5RjcysASpxwo96dGHsE5dSo4aGGk5rWT3Obu5oT4ktri9YSPbptUOOsjEHB9xXBKq1X5medaP1yMpdDf8R61ZXlw8QsookMbSQIFwJl6ud31H6Vu3dHrVqsVC5zs17BfX2ovHEuJniRYyuSgGByPpnmlTqRjJo89V3UvfoYmowQsbmeQyYVgwc8fvVHzj8ea56uJp3k2yZyg4v+tTkmimvZJUuN+CCEUN2HINeK/aV230PnnTqSquUj034a+LbXxHYrpGsXL/ANuWaqqzO5P2yAABcZ/jUAfUe+a8r2FdSkpao9nA4qeIfs5fEip8fvBk1nrFp8RrNJmivEWDUWdOBOq/KT6ZXHPtXmUavsq7hc5M3y+pRxSxSWkt/U4d4orlGRZi+QFUA/db0r04yVV2TOdLTQq2sM0jG3lVo2Unhjgmt3NU42e5th4VJP39D1j9luG3XV/HGp39xcQWVr8OdSa9mtPvgMEVFJPGGcqv41+b8e11OGDhFJylXhyp+t39yMZTdSo7dFf8TD8HahFZ6T/a14oAiUmMnBOcdSK/QVSpVmrr4dfR2Omnip8j5Nj0r9i/xQli3iPzp12vqMUkmF7kf/Wr5qpThhOLaS/mgzgwlGTxEm+rP1Q/4Jg/tA2XhrxfP8MdRvDFZantktJGPy+YeqjPSunOcPKbdRLREZhls6rdS599aiGgcOhB6fMR1r5ByufPPlSsUJbs3kqIEyC2DgUJajWx0mlultb+QyhSFHJFbwSSMJJ3NXTXldstwCOMVErtidS2xpW08NjG0siDg8ZpO/KKylZP1DQ9YfV55HH3RwDXPGTbNWrGr9pFpBsRR747mt0roJ3aGiZ7ltwx78VLdjOMU5X6lS8uA8uwbiAOSKlfEbOzK9/dpboiJwpcA56n2q3daoqMb7n5o/s13V54c8Q+LvC9hqRhm0PxvrFonzkBY0u5ePrtIrXD1G6Tv3PaqwjGEVboe2/BrxjceIbY3V1cRmaHUZoOufungn3xShK7OTEyUFaJ9E/Du6jM8JJDFk4yvb1FdEVY8itds5H4oSWlleyW+gaFBHLf3Uc+pFY8fapEBCyuO7BcAZB4FebPCUqmI9py+8z0cMqkYat26HnWoWN3dvNNDpyTgxMRHDhJF2/MSB3FTG3M7npxfJFal7Rzb3ly0aQPbK1sj4cYIbg+nQ/1roSlu3c5asalbRPZ/wBf5Hk/xW8URXWiSRG6VY4pJYpDnGCD3/KuNSTu2bVLRXKlqdd/wT11a1N94wWWyWDN1aRSRE5Ab7Pnj881zx5VmEvQqWHdLBRb3uz2xJLjwhrs/wDarJJYTn9zJ2UnsfSuybS2OKVRTXuvVbmZ4s05iXvtKdktZD+8AIxg9xWL5uRtLUqm1OSU9jJuNY8EfB3wPfeI/DF3d6hqF66mSZ50Ecch6gDPBr5KjjcdWzN0mrI9XGYShRw3Mnp0PGD4o1zxBFLceJbhnuLxHZlbkIuf8K+ppx5VZnjtJrQ5/wAe+A/DZ0SC+0BhZ3U0m3zITtLHPcd61lShJXHFWvoec+JLPx74cuZb0auPKwIljOBvXuWNVyKMdGRU99HH3MWqX+sSX94RM0PEZCghM9SDXO0rmcYnP6vo8k9/9hm1IkQnc0wPG6tYxbRajGK1OV1+K0m1F4Irl/tIXLSHow9KbT6hKV9EcF4iuNIjuJIZnxG4OHbjYwrCSTehm5Jbnl3ifxDYW88itIrSITwP4qXs5JamM5pPQ4XVdUur+QvMeSeFx2rWNJJ6mSU5kWhXa2t+YGYAOeTVziuTQ3wNRU61mbfifWRBp/kx8NIMYBrjvKMXI9mpzX0OWDbW2ntXlt892wcrLQVb+3U+UT83riuWVKSlcFVdRWIZpFJ3KfrWsWr2KUJWK904e2dPUGhJKqmPlkz+sq0g12C8WR9PhNsvLv5g3D8PpX31epKNRp7HyFZp1Glvc17azRhJNYXrum3dgLioS57NMmMZKOpaQeWIznzGxyXyCKtWi7MlX1uTaXfTalqBuUtmMFv8sJUck9zWM25O5pCKtdnQ28eJPMaVyc8B26UQV2ZTkmrWRqWyxC3M8p2qoy2a6XZQuzyqjlz2RBFczzKZmtiqs3yAnkj1rjhKb962h1ezgklfXqEzKDvZcexrWM0tzFQbe4kE80vyxJgbutaRlzfCjRw5fiZzfxKlaFgGBAC9RWjVmdGGTdPQ5SCWGRDPcW+4RRkqrA4LdiaxlJROu6iZk0fiLxFqn2KDd5SriZ0wFHtzXDJVZTv0LfJY4/xytxYXL29tFvByryuvIx6DvWE072RVFpq7ONvtUslmj0OzZvtRQ485MhSRyxzUXa91HS4ycXJ7Gp8GvAmiXPjg6i8ouotMjzKWiBEkzdCPXFdGHpw5+boZ1JVHTsdj470q813Uf7Js3TzJTlsR8Rr7+9Ks5Tk4xNKc4QhdnAfEDwPouk6a9hFIbi4l+Rmh/j/2R/jWNSnzRUWXGrKT0R5F498D6foHh94LCaOByhSYK3C7uo68muOrQhTp8tzaLcp3PJvFPiO98T+FNP0W2eC0nvr6Sy02ytjvYWkWPMlb0yePxFccXKUVGJqouFRnTa14Z0fR/B9pYX8ZDyoqQSltrqwyNvPQ5xx716E0oRSKhJp6nEfFLw9aPomoi6tRM32UxmRxz5u0ldwPQ4FclWKBXUz5A8Dabc6Rqt3caXcvBcyXLtcQkkLLzyMdjXA7qo7HqRilqze1bXdOcSWl9ZyPEg2tkENG3vXRKVoWY276I4TxPYRTXHnWc3mxnpJna/8Aj+dc8Vcqyic/dWRMpDtIqDpuwxB+orvo6I1vdXDTTtuQx5IOMkGvRopykmy1JtWOI+KtpFN47urlbdFc7cSLIDkY/SvKzBRjinLqYSpJSuz3X9gb4e3Wo+I5vF13A32aBflZl7+1fe+GuAq4jMJYiS91dT0Mtpe1xKl0PpDV/Fw0jWVFxMEDtiIbDub2r9vlJQk3J3XofTynCE7M9T8KWmmXmhJ4k8QwhHUAxQtwT781p7VydobGrm5L3VfU1F1KeTTZJ1A253Jz2ry5Tn9alTcdEk7/AH6FTWtkaEl4upaR/as8PmxeTsxj5Fb1JqcTi8PgqXNVlZGEEqMruRz+t+Pm0yxt28CmDWNQkJR7eQlYrUf3s45r8xx+N4j4jxjwuApuFHrLy8jgxEsRi5Onh9PMj0aHxjIG1Hxb4ukvrlskIPkihH93Ar7nhrhSlw8pOVWVST6y/wArs68vwUsIr1ZNsqanYReLNQRdSaJ4oyFEKjOTX1spuEdD1/a8tPlSG+NdYt/C+ktp1tJGJDjzCAQCOw9/pXNTvOd2Rq5Jswb28h0+3guZrpvOePdJEuFEantivQo+8tDdNuyRnXniRL2/aKztERvLCxktuC5HA9zVyjaDtuauFtzrPAPj258DfDD4jXuiFpNbu9MtNOs3RCzr527cxx/q0GAcnjiv48+kbgsVxTxnkHD0P4cp88vOzWhz1abr1acXtFt/M81sGs/COkWmhaY4keCFUhZuQGA5P49c1/X2X4F4DK44fD2ThGyvtorL5Hpuneau9DY+GmlN45+JPh3w9dAS/wBoazBE5c7QytIuQB2HX614HiLmdXJvDvMcbtOFGTuu/Kzlxk/q9GpUj9lNnX/Erx9r37QniT9qD4K3+haBbN8M2sJNAi0S3WKZ7dIwxkucEmR8kgNgYGBX8JcHZfheHMDw1xJRk28ROSqc0rr3paaHz2VYpYWNOnKbftG93fVpPTtqfEGqeKFW0S01yNA0qjyNy/I2Ofzr/QvDYmKgrvfbsd1VckrSOB8YaTP4r1AxwAWyJxGkceCR1ZuOgrsc4yIqc1S1jhPF/imezS8iktndIlXbvPHy8Aj1xWFSpGKOSspRVzjx4ltr2KK61FRJbxQsYpFPzNITyfrz+FcUaic/IijLrLYoeKfFkIvbqHz4obxAkkUEZ+VQM/NnucVjiKnNLl2M6+I10OHs9UXU/F4WKcOpk82aUngFuMn8K4aShUr2T0R4kKyxOMsuh0F1ZWN/JPci8eOCCJIsMf8AVxMcbwfXqce9d9Wzi0j3XTjOkZ9hb2lm90qyss+1trbv4kG7cfqOlYrlirHJUjGjflOanE1oGiurgNFI4mbuIXz3+o/nXkVYtVGjyVGoptN6MqamsFvcTXOxFXcPKfPGcj+YFCaorU7JU4RTbRV+2QQyhoN6qZQ1tIj4KMvbNYfWk24W0Z5bnyV24m+vxd8Uaxoc2i+ItVOo2k6LHcQSjL8DCurHkEYFeTicuwsn7ZaO52PMKtSg4VHdPoctM89uGSPDoxxHPnG4eh5/zitsPFKLuebGFWn73Qcl2pzIsilguS5PX25qakFLqb1KsqiTj0Pa/DdvpXwt/ZD1C3ubyAeKvirIJY7VnAe10K0kIViD/wA97gHA4JWH3r8czKtiM843p8sf9nwn2v5qkt//AAFfmckI1E7SW6ueXaJeqsBhMWwgEMB0U+9fsODSgufvqejhH7lrHYfs638tkPErmQBlltiGX6sK+QzetJcWYNN68sxYapCNeUfM+s/gfrX7ROv/AGbV/wBmqaxvNe0xlkfR70gfaQvPynqDXuYv2sqTS0NMdXgqbaR+xP7NfxK8ZfFH4G6J4q+JHhWXRfEBtFTVtMuCN0MoGGGR1Ge9fIYmnCnPQ+IqRakzudCRQ7XEyDG75ciuTdhzWibojkuZA8fAHXFbJ2ISctS1Jqi6TZvfXcgWGFSWZj2qZzSVxOBT+GnxP0f4o21xdaM4lt4pWjEingkHBrClWVZXRrycu61R2dtNp+lWpEQC45LGq0itjKd5O6YlpqkWoxs9u+4Zx04pqV0U276ssiT7EgcnqOaLJoqyRUnvw0h2gZPUAdKnqN6mXqt87X8UCw5jRw0kj9Bz0rRRbWgN9j81/AN/Pp/7RXxl06NzGkfxR1MCRByiysGz6Y+b9a68HQjG9+56CdWVGM+tj0/4N6hpWmeNvGfhnTL8XMGneIwsd0zcsHhU5HbrU1HFVHFdBeynKnGU1a59RfDOfzBFCABlF2+qisveepxVlGKOS8X+I7DxBc3Wp2jTyJDezWccs0e0yCIlGcdPl3A4OOcZFc8oyWrOyil7JWZw2nSXH7y8eYAhiihTggdvzFVGMdzqcWoli9uZ5JJok8+4mS1JREYAiNFy3zHHIGMDrxx0ranCU2+Xo/I56tXDwtRmmlO+qT/NbPXTVPtseZeO9A0mysB4itp0uItSma5+zEkeW65DCRCMjJwR7ZrzsNKVbEVIzjy8r+89LE0qVOnFKV2/wOm/YFtm1Sy+IJnZY7l9btjbsuB8ywDA/LiojSi8ZORjiK1qMILoe8w6hBr9hL4c1+HaSCJVZeQexFVKSWhxu25x0Wo6l4M1FvCfie4EsEpIsblvusnoe2aypwbndv8Ar8i3G8Lo5Lxr8MvAdtqMutzy3MU8o3ACYmIsOjFelJ4elGpz21MJOtOPLfQ8o8Walq3hq1ubzXNNaNHJSK9hGUKZ6/7NXJcu5cVyK5laF4m0nxfbDUNI1WO6trKMCORGzl+/A6U4zi1ZMxlVtIx/iBa2OpWX9jJdFxJHvnkLfdP1qHdvcnnb3PK/EPgvU9Lae10nVJEjG1kTeTvz3qowi9bmqmzznWNM8X28d1M2qu+XxKm3tRzSg7IJtTOC1+y8cpem6/tJ96D5ABwy1M3KWphOJxWu2Gt3cMtze37M8hAkUHioTs9THllc4zWNLFtIzM+Tzv3NyDT53IFT97U5m9uIVkKRNuZehBraEWtzZ26GfcH7MDMzfMORzWt9Dgb5J3RfmvWvbSKWVskLjrXn45PlcUe7hputBNlCSQsSVNeQptROtwjE87+LnjbUfB91DPZsSCeVzXsZVh6eNUozPAzbM54JrkRY8A/GHTfEgFreSBJsY2k1WPymWGhzQ1R05Tm0cZ7stzsgq3WDG2VYda+arVJRvc9ty5Xc/rG1bwToPivUba41kXZNmd8SwXjxoxx/EFPzfjX6DiMPSr1nKZ8kqkqUm11N6Gw0/TrYPGxiUY/dZP3RTtGEbIzUpTVyD7R4l1m5RtFvbaG1DEXkc8JLsuONjZ4/GoftPskxhC95HQ6Yw01UtlYgr0Hrx1otcmbi7I1rZ5X5ON27nC9quOhEopIv6hdMbdLKI8nBkJ6Y9KVecpRUEcFKleq5vboJNeuArHC4HT1oc2lY3hRiroiv7pwihRhmHGTWUpsdKjHmfYn043DRglcDvmumjKpbRHPiOSMrXOW8dzSXVxIhXKquOR0rVyu9Tuox5KCscTf3v9mSSIlwQXGY1PQfhXPNqLNYQcrOSMPVPFMlpaS6fFe8uS0h2gZP19K5G5NPU6VHXY5TSdWm8671PWLoTGOPbbrIo2qe/FRRVpNsqUVJpLRFK50QeIJDLp0Ku7Lh1SPaxz1OewFOSckzSU4wjY6n4O6CNF0fU54f3gtSFjO0/KxzkZ9ff3rWlTtSvcxqyc5pIzPEXie/tJHs45gHugWlmAwFQds/0rGU1DTqXGmoxuzzX4h+Ozpk4LSkXMiFLeOM/Mq45OO1cdWraVludVJqWyPBPjn8Tri00W4vJbgpa2sZeXLYyB1JP6VyVJXvKR1U5JK1jzT9mzT59XVPiJdAmS4keSMSgnyk3Bti56ZHJxWeFSUuc2cdW2e0fGzUNJm8PpNYXZJuoVm3kFvLbdx05xwRx0rsxcrQ0MqUOaoeP+OPFGpatoMxvLgiLje55boRhgfvL2/GuRTco2NPZ3lofNsyXS69c2twiqY5N684LJnhvwrkfKpvU67vl1M/Xtcur3UGjku0yY8eepyJB6N/jSfvF0/huzkNTvbgXEllBb7nJyx3Y3e/1qI3T0N4r2hlMrHdv+WTbnZuGT/jXo029ik7KzLWmRGSdXdCrBs4Hau+m43T1NEklci8TfDe+1/4mWNtZxAJqcStNsYNjHBPPSvOq4Sti82jQjtK3QzkpSmktbn2J8J9E0DwR4StPDWkQrHHGo8x8cyPX9CcOUsJluEhhqS9X5n0GAoqilbc6+18GWWpavb6/qVuHCPlI8A8/SvrrQlF3PXnTjJqTN7xVo93riB7C4uF3MAsYPAA7YFYwkqcrLY6ZqLguVWOhuJRp3hyOyuQMiHBG07mP0rjnJTqt9CFHllzHH+NfiukWn2vww8Oam7yTHddQWqZcD3/ALor4THSrZ1mqwcY/u1uzxK37/Fezgm3+BZ0PTk8OaYloGEcwG5wZM/ma/QsDgqWAw0adNaI96jRVGCSXqYfxX8eT+EPDUbaba/aby8mWO3gjBJyT1ra0ZzSsKs5U9UbHhW21Gw0qJLmRxdTIGmeRjiPIyeaqpOLRtJJannXxw+IM/hO8j1RdPn1RYZhDZWVqhJnmJwCfYdc14mZZpDA+zppe9LoebmGJqUEnFXb6G8j6nqOkxz6woS4+zq8wfpGSM49yK+iw6tCy3aPXoqUaMXJGdcarY2JijspcTNxGVXLE/3iO3tWsYSjJXNpTjVgnY2vAWl2mhfArx18SNX8TLbXGs+LLHTbW0Sf95PHDAzsHGDhMt04zX8t8U4yrmX0kcswcYXhQozk/K7seb7epLN40YxdrXv0OIl1tQZZ4ovnl6TOu4kf7K9q/q6nFOV0e/7Pnud5+zG9uf2hvA2nSQJJLLrsUkgcguxBzyMjpX5X4+Yl4XwhzW27pNfeeXmE5U8vru/RnMfs9/EXT9O/4LJfGj4RXmnWTxfEPTNS0+61A3OX3xxRvGhUDAwFIAxnvk1/K2AymX/EruW5w4JywtWnO7ve3PZ+h87KlKphKc4rWm4y9dkfOnxJ8OWYW/8ACOqyRNJZX8kOyOUMflYjII+ma/tPJcdh82yLD4qk7xnCLVvNH02YUOWs13PItQ1bWfC11NDPMZLST5Dfbf3ir0w2fbvXpUZTS948fEN4a6ucn4iuNI1mS7uhGjWyjAYTbti+49SazqTUupwuqpR1PO9Ukv8ASbOcQ2asjROY4HHCknggdu1ZuKirkNuxxF/ql6Y5JJrITXcoVJ3PXb/dFcOIqSSslqebVnNvQo3EUUge2s5PsisdwkB5f/Z965qMfe00MlThD4NLm9BpWpWFvHJLqeIDBhQ2CG9iPX+VdU/adzvoSq8vxGTqGk6qzzNJqLhpFBuGB4Uj7ozXDV572TOfEUatTaW5Vv8ASL2e5klvL7MkcSgBejL6n1FcrhJTu5XM1hXDWUtURalpCSQyWcku5dqlXDZEn/161xTXJysqcozpuDM++sbRyLfzEGUGSP4WHTI9a82VpK0TCpTouDS0ZTVnVDGIQsyfMSR/rB6gVzudRp855lBy5rSWq/EYFkvSbmB9oP30Tpj1pUn7TWL0OucJVIXjp5FqG2hgtVMiEKQB0yW5xge56VGLaoUG27JLc541IUleWiPTFiufE1r8Sh460IjxFoml6aun26NhdJtIdq+QMdCFI3D1znnNflUZPC4jAzw0v3NSc3Jv7Tez/wAjHB4hYqWJn1VvkuxwOjaisqkTuGDAh379OOa/WcK+a8WXh8RNNxR03wa1drNvEiMoC4tTuDdPnYc8818zndOnT4lwUnv735GOFp1fr0uZnvXwE+LV58J/HVl4rW8uIrMOvnyWdyY3xnnnt9a+grQVem4I9WpS9rNwklY/VL9j+y+LXxJ8Z6f8WfCHxUvrzwbPaYm0m6dJcPxg7xz618bmuAnSq3bPKxtGlhYOEo6n2PFKFRVU4xgYxg1510j5/luzTTUYoYwWJztGc9qm91qLlaK+safD4k0mfSbqZhHOhDHOOKLRe5rF2ewz4VeBNB+FfhpfD/h+JUiDEgL6k5JpQhGmmoiqz5pbHSXsi31qYJZtu4euKHFvRhBJPYs+HYLDwzozyXFwCq/MWc0StTV7kVVGo7WK+k+L7bxMrXFswZdxClT1xU0ZxnFyRfLJblme6t4LhY/vu/B46USavYq2hn+IJpYWEDuCMg4U1pKUoxshxVkfnAJrew/a7+OOmqEMbeOjOB/fD2kDgcVvgXVnKXN3PTjOlUw0JQd1ub3wdkgg+KPjMyW01jDPf2lwjCNv3swhI8oknkDA5A6EVrVpfv25PQWIqtxhF7WPrz4P6jfz6FLf3yr50VsSF9McDvxik5wjBs8qopOqkjnfG13Le3jNPIQduRxgHI9q4W3J3Z6dKKirM5CzBN0cMowwyAOuBTg7M3laUNBdRt2ubIyNbj52P3umPWlKa5Wwpy5fdZ5v8TJZYtLZbiUozozKM/fGcd/ahTikwnF6Ski/+xvf3OlaB47uLBCrQa3aScZ6GFa4YScq9RrQyqQclFn0LqDP4y8Np4o8OupvoIx58K8F629nzNMx5JRdnsc9NeJ4+0R9E1q22SocDecPEf7wNXotzW/LFcqOGju9S03X5PBnj2/RlIIsLpj8sg9/ek7ydmZ1Xy6ox/Fs1tortZ6rbfaNMzgOo3Lj39q53Lk0aJcVUSuebeOPgl8MtbsDd+BNYk0W6u2IaTT59gZj3Kjg01SpSVzKbi9GjynxR8Gvjn8P2n/4RzxPDr1oBhkvchs4yPmHX8qznBr4Tkc+aTS0sec614/+KNvDJFrHgq6guYnBklDAqcf3a0pJ9Tqimkctf/Gq6zcPqulzwLKMM7QnqPwpzcYszcmtDide+N2nXz+ed0LwDam+IhZKzvKTsZ+0bkef+LPiBcancyT6GgDEfOoXgH0qlTUd2Kc5N2RyOo3WqaoWe8mIZ+GVe1UlCPQUYzluZF1Els6xqpLkEHPXNat+5c1domVqLSvIY5CQexz0qVtc55U7y0Lmk+ZNYGMn7vSuDFyco3R6GDqRj7pC8gRyK8lKXIelN80TyX9oLZcTwRjrn0r3siTjKTZ8fn8Jc0VY87Fhf6JImp27kY5BFfQurCrF0zz6VKvhEqsD1f4QfFGLVol0rU5gsoIAJPWvk84yepG86ex9HQzenWSi3qf2SabbC1RhIrZYbkKkZz6V9ZJLmZ5uJb9o/UkuTcyT73Ifeu0byDiuaUVIUG1sWppDpVisWEWSTBzGvOPpWsY2VmO8ZLQn0yTfsE0o3EjnHJ9qTVhWSdmb1lOIkMjcBckhuf1pRundkTSlLlW4QXUcitMU4bJb5u1Q5JaiqU3FpII763mk8tRkbsAk1k6iehXspxjdjbq5JvUgjBIA5OOKy3nZFQgvZOTNSFtsG8vjHc16UJOMDyJrmqHIeJTG99JK64KrwprK+lz2IpqlE5PX9Ls7+yaV5lilIxH853KOe1RKMZfEa05Nas8u1qSWC++xTTFCnIcjl/rmuZySTibJSqO6MK9u0tBLJbwy5YEEBgxdvXHHFY3cZGsrSaXQb4f8d614f8Ny2GpX6R39zIzzSswykfpzT9vCEPeerD2EXO9tjudJ8XaXZ/CyGKzlaNXZprlpJMNITxz6/SrU5SppJmVrV7o4DUPEtjrtzLc3cjN9hVS0TNhQT91B68/zrnqyXNq9jSonZRR4x8UtXkg1ee+u1Mk0zFHkU52dMIv58ntXnOT59TqguSGh82ftDX9/48k/sazRotKjkSOcA4+0sT936D9a5ak5VXboddFRUuZ7nafBCzTQPAkGnPNtlmtfNtee6ghh+QFdVFqNOx0zcampc8UXurxao890jG3SBQYV+6jZHzL7GlWU5NERlFR0RyXxBEJ0O8vhJtjuIfNhRe3PP447Vy1G4RHTdtz5n+K2q3VpPHf6VdKZbZwELZCyRsOhrik23c6HH3Tk5pr5oGnulwz8goMjHf8AH2rRORdON0Unh1GaX7ZazJIrD7rHBX862ppM6tIxIZ/LRv38S7tvUN0rup2uYfFIsaNK3nD1DcZ7/jXfTguZM6Iw5mevfAnx9FN4lvfhzrvhvT28yOOex1OWD9/HjIZQ47H0Ne3lee4bKMd7HE0041LKMmtU/UqjPlxPKe8aLDY6fZLftaN5Yb9xu6MfWv0vKEo13VlJci217n0+Hpubumde2qx2tmi/Kk4j3MVHQelfXqfvpLS518/NotkVvDGr6zqs26K+AQMSdpI2/U1tVUYxTTuaRkop3Rs2+pz/AGiSXULjzHUbQG6H1rlkrQdkKcm2omd5Oh6NdS6tZ6dDFLKvzTbcFvxrTDUIR1hHVmlOEab5krMgu9TsL2QMZGdEG55SuB9Peu3llGOprz2SsUob6113VmvEtllSzH7osnesJ6GiuJqer3t1IljNKTLK+GhUdR7ntW1OMPZ3ZHNy6nn2i6Vr6fFLUfGXjDVo2s7WIRaFpir8ob+KQ46nt+FeHTyqdfNXiquqWxwYXCYr+0JV6r93oaWu6zNNHKJpm8xjlYgeXPqfQV9JKL5bns87lIyLk2ttbtrGoam0cFuQbuVDlpT/AM804/D8ac8RKUVZakVVGnETTtY8H6n+zrZ3Ol+J7q91fXfiDdv9ikfbFZwwwhFQLuwzHdkntnpX8rZBiszzX6RWMc6aVKhQUb9W5O/yOCjXrvM9V7ttCC0l07S5WIlWW9C/vMnKjHqfQfrX9a0oU4u6Wtlc968ou93Y7X9lbUvElr+0h4Z1XwnYrf6t9qd7W1mbajnYw2gkHaPfH4V+Q+P1GjPwozJTk0pR31dtlov0+ZzYqlhMRhZwxUuWnbVrp+Vz5w+JHxEg+Af/AAV3Xx7BpsulyeHvGFtc65ZzSbg/nELcMzNy25XbqT0z3xXwHg9lUeOfoyV8jg+dzpVOXTrG7j+R5uJqKtH2NF3jKFlbS+mjOn/4KFeF7P4cftxeKJJtYs54dYaPULWO0hEUdqsqq3lnBILkFXPTh1PQiu/6OHEP9teHNHCYqPLXwrdOS8k7X/C3yMqWMp4zAU5Qldw9yet2pJJ2fZ2adnrZp7M8a8Sar4P1e4eyuraKZZPlibaM8dSa/fJe9J2fu9NAnCFSOp4r46+GutW9/LP4XmH2KOQvJbRsP3jHkDA/OvPqYRt80WeZUwk41Lp6HEan4ouleWx1W2SG5kIcbhkADg8/QUozcfdkY1Z2dpGQpsLtp47SGNVWP5JQAQB3A9TXDUjzyuc9SKktEZ9zoVle3sc7TKqQR740PG0+rDsKujCFzKEadRpdUW9Rt3a2htpJ2UFlIfBBZD1OOwqMQ+iZ0OhOKV+pDqzQWhd4SUZkDIM5DqCfmP4fzrllAcoNRuzE8QgwSia3Zo4lC/OpyShx1/GsXBKV2eXiatpK70Mu9LRucMUMiGTZnK5ByCfTipq04y3E0krorvHBdzGUny5DGCmTnp39zXGowjN2OPnU61upVSK4BKXB5jXci55HPUVnV5Zx1NVCU1eXQV7lixl2HpgnOMe9YQlGDdhPEpPQ7j9nnTIZvFF/8V/E+nrNoHgG0GpXMUn3Lq+Y7LK254O6XDkf3I2r8943zStXpQyvDStUrvl06R+0/u09WeFVnUxGJcX8Mdfn0JfgfNqHiDxZ4sh1K8mluvEHh2/mvZScvNJgyknJ7msOJ6NPLcpwrpq0aU4L9DfK6apV5xX2k7nGaJbKLUG4H7s8Ag9PrX2+FxU56vY7KcY05cxp+GUnFh4jvbTUvsr21tbuyhcrMA/Kkge9eHmyqVeI8GpK++vbQwhXlLFyXY7v4V+OLTxbaHQNUKASKFBPJ/WvsPZKELo9bDOVde7ufan/AASZ/ak+Lf7PHxbk+Gepa5Z3PhC7nRJLa5ucSwlzhXQdxmvms6oVa8VNdDHOIQ9h7+6P2Q03Uo9Rjjv4nBjdAyH2NfLqPc+P5n0H3l8TMRGxPHrQ1oXF3Ra017iRMzTbRj7oqbalJpM0rZ58hcFVPbPWtNLDkm0XftigrDHjgdRzSe5Ck0RaxFPdQfZ5pGaJuCmeCKyqJt2ZrpuXNDg07SLMRW9qqDb26URioqyQTm72I7rWEM21FAYr94nrSe4km0ZesXdw9yGkYBdvb61o02jW+mh+evjFGs/22fjKqYH2jxHZOgJ7vp8GP1Felgly83qd1Cj/ALPG52k+ozQ+NNL8RXd3czvrMhN+0gIEVxGu0KMcEFRmtMZFyV0OFOnGna2x9K/Da6f/AIRK9DlpD9k3M4GCFLA/kP5Vw1IRjByZi4J1FYyfFcWoWklvLcwoFvbcTWrbwcoSVB68ZNcbnG1yoyUk7dDm9QtdQsZ7i0jSJbqKZVZZj8u0N83I77c496uDbnZla1KSlB7kWtxWUoiu0ilQ2yyi12SHG18Z3IeGIwcE9MmtISVOk4SV7spU5tt31Z5z8W9G8RSWi6hY6E81sls0izQHeqRBgrM5GdnJHX1HrXPVjOC90pyoyaTdpW+fyOr/AOCflvY3cfj6yvlXyrjUbVCScnPkDk151CfPiqkTXEVYxowS3O6XxBqPwf8AiJH4Z1NjHp+oPttrovwWJ6HPArvquMFHlXr6nKpwlHUf8ZNE8XaHMvj3wwVmgVv9JgQ5Lp/eHvTcfaQTTMFUlNtW9DI16Hwf8T/h5/xMLlC0oxBOhHmQP7dxg1EZJaSKvJo8f17xJ4l+Ejw+HPi3OLnSp322WqoDtK9ll4wDRVilFS3uZOlJvQreJ/hjpXiLw4fEHg/X2tmjffbiKbK5PfFZ8sHGyYppxWp5X4q1n4/eCbq4stUtDd2aKJGmiU5IxXO+aDOZ2ucWvx3tdUuhca/pbxRyRmNhLCQNwq4ykaJNJNo4XVfGvg/xJNc2KGHzYn4UqMdeaGnfUJTRwfikeDrdmdraCWHnMfG5DRz2MmlJnB6m3hOzkcWgTyn5Y55B9Kzvzamiajscdrmp6VJdSJYRksBgNt4raFluZuq7mEfNuHa8uE5A9Kuc9LISblqZdysjgylfvHjFRZvQuCJtJl2AfL1BBrOVLmhYmNT2dQqXT5uWWvJrQdK57UJuUU0eVfGxozqcCE8k17OTTnKEj5vPKt6kUzNfRo7vTAjKMFfSuhVGqmhacXhkjDg8M6lp+orcaZKUIPBBxXpRxtF0HCqeDLBVlW5qZ/bDbR3c9qbtFACdGc9quo25M9avd1HbuO0NNSXVGvJnYRr83lhePrWVOMlMTaVOw+6ubi/1Bpln4JwSqZFaXTZFPmirGno5cbfLKkBv4V7+9JWlsdDbUdjTu711UW8pLqoy6rj5j6VE5WdmYU4WnzDftgu4i1vaBf7wL9qyqS5tjp9lyv3pE+lzRISqwZAXk4xzWSuuhnXjLuSG7a5mVfL+6M9KtXk9ifZ8kHqaRuI/siq67Tj5U7mu5uPJY8uNOXtXY43VZyb6VZJgqkHCv3rKyR6ig7I53WJ9Pil8+dG2MpGVOCB61jUsPmblaJyfivwhpHjWza30G2dpEQ7irEj6k1yVVzxtE6IOVJ2Z5Tc3Xij4dauttqMUUwLbBLJFnYCaiClD4jrUYzRtNoGi3Ok3OtauEkugmFjMY3ck8kAcE9hQ6dL4pGVSUubl2sc7rMPiLwl4YnTXLBdm0y2sKkgopHG4etZqpKnBtozTjKWjPPPh942W80G7l121ubRmumESSEZZRk72OeP/AK9c0armndWudUnd2toedeOdYm1HUbixt5pZ5WJ+WNchAe49h+ua5qsYrQ7KdJRjc8u+JZTw/awwQ5KwKHlSZxmSY8AZ4z17dK55KUVZGiXUs/DLT7uLwcIp9Vle6tySs2MmJs5IGOnatcPScI3bLs5S1LvjDxNruoWhvLm13Ep8k8ZyJNvXI9D3or1GEVGLsjyfXPG/iLVNCurr7Cn2aJdjQxTbymD1x1Fcrs43ZryxZ478QLyTVmeWGJJIJUUEIeVxxnHrSXIzopRd9TBtXltbV7c7EfHyjqHHqQeho5Y3Nm9bIrXbSEIxUCVuoUYDfStI2CV7WM7Ub427tEy5lPVH5C110e4o6bE+gzTJdAOw2sM8Pmu2lUfPynVBrqe2fAf4NeKviX8QRe+Gr77I+n6RPcyySkAOI4y+3J6kjj8a7s1y3+0+Gq/s03UgnKKW94psKVOVapPkV5Wue/w/tGfDH9orQbW68AW1nYDQLBdPm0uKHy5lmj4kkkU8kls8+mMV6nhFndWrlKy7H6V1qut16mnDWMp1oSU9Kjb0bGT6jqdzrUNjBb5UwhWk21+40+d1Euh9TB8jN+0vNO0Gye1QbWGC4IxXXKEpy0OhJtanK+OPjD4c8NX6wTShppOILKLl3J9q5JzhF8hy168ac7dQspNW8XC21LWJprG0TDJbjgn612UXLD8rpnoK8qabLF/fSXcy6TpTMTghYkXPHqfSuiFRvWW5M4pTTuP0iabR7KaKeZ1ZRhSV53VlXlztFxkovU5zR9T1PxLqF1dwyg+WSpZiRx9e9dCcYU7BUVpX6FK/1JD4hNrFdfaY0XEyJ1Zuyg+lYyqWg2uhpGcpbIZe3Onw6kza0TboEIaPqznHTFU6jlTumHvRdzlvGurtL4bmuLqVLRFQtBAOMgHqwHf60RioJzT6G2IqQq0/e0sM0m8u/BXwc8LaPqmlW8N5HZ3upo8EgeS5S5nOx8jpwnSv5x8KqEsV4g8Q5wv3keeMFbf3VdpX89DycAnVq86baV/vKVlqMaFZlkMl3Iv73d0QdhX9RxhCM4yW7Wp7sOecLydkj039lLXfDXg79pvwpq3jnxc2m6fZvNc3N8suAwVC20kHhT07da/IPpE/WX4S4+OHjzSaSSXm7HPiqWKxOFq0sNDmlJNWPkX9tLVb/wAS/wDBRfx1dWd1ut7wxXEUs4KeWjoCrYxyenBPQ5ya+a+iTi54Dwyw2HSTalKMvK619fwPOqOeDxNKm9JKMT6P/wCChlzq/wC0J+wz8L/2rTNaRnQoYtP1uWwGJCij7NL5g3YyJFRyQTw3TufwrgbE/wDELvpFZpw5Vk1SxMnJJ7Lm1X5s6ZYWlHCVqcZPR+0+T3Piq/sPEPhsxavDbx32kmE7JoG+ZFPXgdT/AI1/c1ZOglyr3VseSnObvHVDrfxtorW0qeHbkSoFcsZQAUBAB4/vHpRSmpQujpnKnOCdzl/GHhXw54jhlu3soYRHbYk2dWc/dQe/rXFUjCUrSOCrRjfU8v1L4W69ZXF19g1N4YoF3th/lX/ZHvXi4jDOU7wlY8vEYCdR2hNowtO0TxZY313cee8hmAK+d94D146VyRjiaV7O5w0MLicDKTcr37jYvFOpKJFu9MlZUBjlndSy7c9q5lXxM5e9FlU8fUrNpxenUp33i2TVfMdgoLJ5a7wRsUenpmtXXk1sbvGOcOUz9V8S3V6wLWTH9yFEfTGOQfzrmliZ1JbHk4jEVKs9IlJjq99KHlGF8rYQTyPw71NWtUbLhOrU0G3mnavcNDmQpKkeUZP4hXK4Tlrcmtg6zamnqSpamdWlkJE4PKjvWbvUVnozSC+sK0nZof5ZiCs8LPKzBEjTkyOThQB3JJArDFVI4em5yeyMa9Sjhqd5bnp/xsjX4R+ENL/Zo0+RUvtMk/tLx1MP+W2sSqP9HPqttFtixz85lI61+e8PUZ5rmNXOKv2vdp36RXX/ALeevpY86EXCFlvu33f/AADD/ZgU3/x207SJEdvtmn30JAU85t3/ACFdnHHucOVG18LhL/yZCwLk81jTSve/5HKpM0NttztMcpVlz3BNfW5dSU6FOd+if4Ho4i9OmaHgy8TSrmLXViEkN00kV1E2MSoDgr164rKrCGPxk3HSVPVM5sBUi/fa30FuIrPwF8QVfTpHNndgTWRm4IU9vw6V7GEdask6m7LjXqYXGcltGfSfwnOleJr/AEvV5rtY7+0njl0+5i7lWB2HnnNcmYU2qUoHfXhKvB3P3S+CXii61f4U6Fqt4rLNLYRlg3HO0V8BqnZo+WlQdJ8p1A1HbiVzyW609UHKaOn6jI7NISMg8Y6U1ZESi1qjUstQRpBGJd0mOcniiLuy0nyj01EW1yZJSOB603KxnJXF/t2O8lCowwByqjNRLXU0gna7LjXLIioxAXHSqViZNuRXilso7gzyuzFuFXP3azaNVblsUdW1VWdtx4C4DHjvWjl7o4wcVqfBfxnijs/23/iQnnBGu5NJnGSOT9ijA/8AQa7svbnKa80dkajqUopdDc+IeqSJoGlX1siwvaalBKGY4yHOCN2enWvTrxhGgdOFw0qsuVs+nf2cJIvE+nXFnqd5AtrHYzPdNOcAIFyo25BbJwMA14mMnL6u3E8zEVfq7t8Tv0K3xFu59ZnS/wBd0uC31KR4MyW0GIjEsRjVgOApCjoB39hnnoxc6Kc3f/I6I06dC6graXfm2cvObq3uHtIWMsRBdmV85Zc8/kTWsoqErJmmHqSqUuVLzt/XYpeJbs2+kz6lDG85it2k2Lkl8ckADqaEueolJ6PqaQg+bR6nH+MrW4tbHW7XT9Qumtb9zstWGwmIKGYui/7QzgngAVjOMI42caDbX+W5koVK2Hg60VzK479h3X47TTvHcowmNbt8KeufIXrXBR5FiKltzavh0qcGe0eONI074v8AgybTLp1NzEN9rNjBRxyOfrXZzRa1Vzl9kov1OS+EHxTvdfs7r4f+MLkLrWiqYri3PAmToHAPUEVzKo6cuVl1IKC0OF+LHgfxv4D8XW3jrwCGubBJDJqWig8MOpKehpVE/iREqkXTIPEPxm+F/wAYLOPwRq0UTm6XbcWFwuGh7EYPSkqinozmVZnkHxH/AGfPij8M9MfU/gf8QJm01nP/ABJ7xt4QZ/hPUCqp0FF6PQhyurs4zWf2lviPo9vJo3j7w8yPHbiJ3C5B96K3PfYzd27o5aTVdA13TDc6dHbyF23SKwBKj2pQV9S4q61OJ8beE/DVyzPplmsbImWKjlqmbsxvkZw2q+DNIk3T3Mg8xhzufGPrUtNrQh8qZxXiQ+CtFG+6uYSxGWjRgSTUqnUS2HOUUjir26i1KQzWsIit0blsYNdEKWilc5tZdCpGh1BmWEYiUHBB61NSEos2SSVigsIlgaNgA0bHirUZN3LgrIqwAxSFEXgN0qpK0jnavUuVNSlC3pIGB15rxsfC1mezRl7p5F8V7mO+8UQwRtnaea9bKISjhpM+Zzr3sVFFsAQ2scYXnHSrp025tnVGP7tIt2FpG0ZZ4wcjPSuGupc1rndhaEJRuz+x1pknXy5Z34wQsfIr6WpD947nlyTU22alrIYdPa7e2dCifKD0Ip2sjmqTU5WMW0DzXTSl518w/u0jfisbWdzopxUVdnUaM08VrmdQ4VclVJ4PvTSa1Co3eyIJLnzBLN5jtg4ITpj0rJ2kiqaukWbO4uZrXyrewMSMfmYpklR/n9awcpXslob8tFVOdvU0LNmtrXzrhQTjO3Iq0uRanPXtOpaI+0vLq5iJEfDZ2rH1FWpTcdBzhCD1ZM1y8REM0wXA9cmqjJvRmfs4vVI5zxGkI1NrwIJCgBEbnGDVttmruopHI+I2h1jelwyqXUgBH+6PpWc7LcmKcZXSMjRNWvImOheGY1wPlnfGD36mojKM4+6dDi370jJ8eeGdP1OJ7ae7ea4aP5l3gIp9c03CC0bCE5djzK3XXvhx4gtzrql9FFwJZXU7ioHTPqK4pxVOV3sFSDqU7rcveN/iFZeJ7ea7hkWaO6BEbgggDnDH2ArOpLnWmxdKmkrtHjPjS5vToV40NvmOCIRWxHG+Zj984HPT2rhqTnyto2ULSWp4B4o8cfFmGa507TNLtYpIo2M1wzsu7HI5HJPt+FccJVpq7O+Kp2V2eY6foXxV8fePotT8WeIS0MJPkW8cexEPbI7n61ivazqq70OhJTR6loF/4g8N2dxYWyJJFcxkpLu2mGZeoP1r0EmohOS2RmeLtc17UtEB+1xW91CMT26dVf8Avj2Nc1VNhJQUlY8v1LRyfMvLedorlmxOI+/ufUVi4Nm0Umclrunx6dbyaldQxPan5peCQp9ahpJmyqKKPP8AV9Z0vVnkt9EleYq5/epGRtGenI5pqDetyoe+rxRlTNrUkcitrSn5ujWxG0Dt/wDXrVO2lh8km9WUpJJEIeX5txw3U7j6100Ggvy7FzR9RtdKvob29UyQxzK00an5iueQMjvXo0YKWiZooyldJ2PoX4O+LZ7/AFS6n8P+IEWzmuG/s+3kYrJHAekbY64AA96+r4TweLo15+1mpRlp56nZhMLKNTmkztPD3wi8DaR8SdR+LGiaMYNd1iNY7+WCUrDJtGASg+XPvjNfYZNwXkmV5l9couXNrZX0V97GmBynAYTFyrxWrO2trxoF2xO7yKfm8sbi35dBX37nBJO9kfR04uettDN8R6hcecYGvwqzDCJn7p967IVXZpGvPFe6U/C3gDwxp+qzeIrh11O/OCskq58segPauKFJc7lIqFKnCfM1qaWuapHDKwExjwuTnnnsAK6VFs0clN6OxS8OzX9mk17LOEeTnzDne1VUULJIEmVrjxLLq+oS6PZy7ljU+a6nJH1pypxhH3i6cG5FLQ/FWlz6de6bZIirEzCSYnqwrGUlN6dCqk1yuNjifhs/i7UNQ1bxP4l2WdrHdbNMVR8zD++fXvXLh41nOUpu6OfCwrWlOe3Q29a1uGzR73yUa6YExzTnJA9ea9LD0HVvE6KtSVlI4fUtN8TfE+90zwF4eVUk1vUEs3uXfAG9xljk84FeRn2Y0sjySvjJ7QhJ/gS7Vmp223Lut614Atddk0Lw7rNzKdFu5tG1WOcl1RoZWELR46IYyCeOua/H/Ar6x/ZmLxNWKUa9T2ia39625WHf7qXKrK5j3GspZXFxcq2IRuKoBgzt2HfAr+hasZt3pvRdH1/y/E78PKKjafU9N/Yz1G9g/an8PXd14b0/XZri0uTLpmpFUjij8v72T1I6gY5r8c+khHk8GcwnzcrfLr21XYcYfWIzp87p6brf+mfJH7Quuah8Wf8AgpN4+utVvbTQPD9lJDDf3t7YkrarjIcRrkyN1IHfivjvo1062T+H1FYePtG05b9T5jHTxcc+lCPvRpwir93ufXn7JWi/Dj9oX9iL4rfAeDW9W1e28JTPe6YbrT2tZLqK8h8s7YFcgqJItwDEcn1r8h+k3QzLI/EbKOJKVNQnXSjJ9nCSe/p1PdyvNZLFRo8t41k4NtLTt+bPgLwJrmt6LZ3T6vrdxPbaCnkX+kpagSK4fazHBPyjAzX9k5BmVLNMno4+EnKMoRbVtLta9Xf1/A+TpzqYTHVaKu+R2ZDqmj+D/GiN4l8N6glneu37nyWyHye69vxr1YzpV0uXRnoWpYpc9M5vXr3xJ4Mt0tdbstlqlxua+2Z3nu1efi5ypR7nLiq8qUG5lSLxpp3id5YLOeN4ApCIp4IHVzn+tcMKsauzOehXhUjzoh1u8hd1g02GNXv1WOMkZIX+Jq6oypvRE1asa0uXuV9YtdMRIPDkMMalWO4qeSuOWPTmlU5LKMTuo4WEKfLYxdX0PQ3RHtbEKrAY3c7TnAJ9zyfwrirwXY5K1GnfRGN4g0XSLe5MKKBEWKrIOcDA5+meK8/2K5tjndKDfkZt3apDdOjR7Cg2Mw7HsfxzUVMOmzixFCNKV1sVr37XK7M6lNq/KOwHt6VMKO9wUptalSaWLTohe310qoBkszfeNYVVRp6yZw1atHD+9N2PSf2ZdL0zw7o2rftkeO7WM6H4QuPsfgjT7pRjW/ETLmLCn70VspE8hxjIjU/fr8w4xzOpmGKp5Hg2+arrNr7FPrfs5fCvK7Pno1f7SxLqf8u47eb/AOAeX6v4hnu57rxDr2ovcXFzM811NM+WlkYlix9ckk19Zg8NTwVCKWkYqyR04nEUcJT5pP0R0X7I2u6on7T3hTX5AI4n1NbaOOToVkUoc/8AfVePxXh6uK4Vx9aW3s9F6NP9DiyD6xVzhYytpHWyKnjC1m0HxF4i0qcKDYapcpwOm2RgK9HI8UqmR0aqejgn+B9HmCf1epJPa5U8Oxy3vhGJG+/E7ORj15yK68vfsG6st5HLl1GMMsg3u3cv+KIRrfgOLVRc+Zd6ROMIcf6tuuO9dtOc4VZSTev4HVjKMKlJVk9Y20PT/gFrq634afTYLgLMqkwuh2nP862qvmak9j0qdSM6UZJn6a/8EfP2ndSfwVqPw/8Ai78RGlaxuiunW9/J80SdgCeor5fOaFOnU5oLQ4Mxw/MuZI++ItTtb23F1ZXCyRPysinINeApc2x89J8pq6XeRxxbGbGR0z1p2tqZ3uzRsLq0QtJDJnPUtT5rLQtSurCype39wIrduN3zN7VF7lJK5oxLpejR48xWfGSc96aT6kXkyvqGtoxG1gPQ5olEcacmU3vJWmEhG1dufrUJWZsoqxleItQv7m90qz8N2aTeZqKjWp7qXYltZhWLumAS0mQoC8DnJPFXNOVrDSbvzbdD4u/agmms/wBsnxBe2tjxd6FpEmLh9u8iN0HbjO2vRyyUfaT+R10aPLQiXvHinxR4R1Cwt4RbLBsItd5JUgZ4PXrXZimpUGkdmFfsnaTvc+kP2b/CUUvwyvvHGq6VE2m6qtnptvczylmiuIyszEpjIBwuGxwRXhZnVlHDKmoX5mlfseNCCrZmoc9nG7faw/4h3kGovb6bPeSxxQ3JeYwSMCQrHZ0KnHqM4wSDkdVT6K+3kdMVX9nOUkubVLrpf06r7n16nKrbz6ZPLAuoecUjMxPmhgokwQuR6bgNvbvVUqM/ed7pf1+pdOop04yUbEs07yWiQ3AVo1JKjA6nvWntKns1Dpf8zRavY4jxtqV5ZXt9Bau6i1svtEkg4AVjsUZxySTjA5xn0rz1JvNZQTsoq9/X/M6GnHDxb+03YrfsQ6ZPrel/EKwhk+f+0bdwe4JgU8+9c+DnCeJq+pljG404WPYPAniFNKtZ7bUn2TWrlWDNyfeupQlF3ZxOTepyvxj8DXHinWI/iB8Np1ttfs4slozhbhf7jeoqaqVSOm5pJ6WZzHwz/aHTxXqF54c8eWkul61bOI5ra6OAevzKejA4rODlu1ocEp20ZyXxW+AXhT4leKn8deE9UbStXtFPk3FscLMfRuxodJT1izKSerR5nffG34qfC24bw98UPDN26eaNl9axmSNl9SRnH+eaVN1Iz5Qg5zpp2t5PdC+NvGHwu+KGk3epxzWrubRRvRxnPvXROcZaCi7ux5B4t+AGoWdtLqvw98YCESwhhCGBAJ9qdKEe5pVkkrI8o13wh8cbRitx4igMUYxlV/KsJx993OSUZLVnH+IvAvxIubwW+r+K3TzVy3lcbvSikrbmqp3jdmTP8MNJ0VBeavdtI+3c7Svu5HatHUmo8q2EouT1Zz1+R4gvBZaGpFsDiTANaQi1FO50LljHQ0LfToNNi8lgAVGOBVNXRjfU59IC+rTRyR7RjI96znN7Iy55c25XubcwymQeuR71ndyHTfvGB46vl07y7grgOvNclak6iud1OtGlrLY8cvRLrfi83O0lVbrivWpSWHwljxFTnjsw5n8KOia2MrhBxj1rBVPduezWgoaIvW0SxQkE/wAPpXnzk3V1NaScKTP7CdOMV5cLBpTMvzDexbGfavqZa1GjyqnNGbv3Zd8S3psbdNJM3GOGJyRWVR8uiOKycrmfpd0skxhsjI3lgFnOcUo66nVb3dTpxc/2boD3I/5bHkKDk1M5tR0CUZc6S2M6y1C4vVwqRxxxvy5X5h9B61zSemptThymtpdxcyT7lllMYXcQ4I3fgBU05SbZVX2bjsW1vo51ZFGxmyAaU530MqlNxdxdCmiFw2npdEPIhy6VVGV04pjrRfs1O2iGB7O1lKXKNt8w7CTlnP8AhRBKErM0mpzV12+4z7uz1C61K48y0Kq8BMe4ZNbxvzES5HBO55d4mhK3zWkjOUdj5rr8pHtk9qxqpsuEowQ7TotQuLA6N4XuoRknzcIW/M96zpOzsmTOo73ZgX3h3xFpeqJda5qzSWqODNaRIFBPbJ5qasJqV+bQ6IzXJoh3iHX/AA/4h0pglhbtKvyxIz7kiXoWPHXH86znJyjqRKFlqeAeIPAPjOz1m4vvhusclrOz+dZTDEVy+PUcrj1Fc0qNSa/dGkJOpZT6HHn4pW2sLc6Pf2bWGq2Uqx3GmTAYQjjcrdHHoRz681k9Ycr0Z2SpRjZ9DJ1vwrJcW8ai7SN5pBLdTyZIUHPpnJ9KxdJwp2CMovoYmm+ErFNUtrlrSKEPdYBPGNuACwqIU0mjf2iSsil8QvFXhi30rURp1urXZuwhsoo8jzARuIPocH860nVULmkYN2cjwzx/4Z+Kus6lcaro2p22nSooW2C7n3D0YHBPHauKrGrUd0ypKLmo9DjdS+Gf7S8LJqer+OdNtVkzieCwyXA9SW9e1TTcoSs2OoklaBzms/C74hahbKfEvxEmuI1fLxW0ax98klQMkVNWUm7JmlCE5RtIy77wxcWIWSTUra8K/wCqZ7fCsB2YgDn601KTjY7FBRjoZV/Gt3O0TWKRyADHlswUGs1e4LUwbyQPMYZ5DEy8BdxOf/rV20YW1QSSS1KmsXCW9nGofeXl6Y6gV6OGu5hGd5HYfDnxLJol1FqEEu1QoPynrX0+AxH1aopI7o1JRtY+lrXxdrGs/Do3Hg14/t1wm2FnXIVyMZPtX6RDFVMTgH7GVm+p10asnG52Xw81XXfg/wDD9bbxXeW9/rlzbk3dxJACEB67RzisaeQYrFQjOtWl7uva5TjiJvmk9O1zhNM1/VfH2pzXFvZPDaLIUEsikFiTyRX0eFx804xpp22O2jObsrbHUwa+thA3h7TIArpjdMT8zH0r15x5Y87O2c20lIxJtQuk1byr+5Es8n8JI2xitI1PaQuhwemg3XPE40G3mlknCyyREQR5q4KM5bnT7Rp2RR0fUBoHhK91O+Bkup4SzArzk9BU4mpNrToaQlGlBz6nPeB4bzRfA0+s+KE+zrczSSyrnBwfujmuajGSi3JnNRk1Rc5dyLTPE0Wp6aL+4Hylj9mjGMAepNaU0/vB1vaU7JlTR1PxC8bx6LdXhtrGAZvr7+GJB1xxyfaqr1PY0XyayN1FpcsjovB2vBvjBoSeEI2W1sb4RaZbwv5ct3JnBb/eboK+B8Ua9LD+HeOq15cq5Gr+uhrQlGNfkfwnjfhrWY77xN8RvEDWaaMJvE8oOllxI0TR8MWPZyQSevWvC8E8NOjwlC8+aNk1K1r6HHh1fm5b2v8AqO0fxM/iLUU1iz8qQqpSzgkPCgdZGx+lftVFqdW9z1MPNSn73Q9Y/wCCfOpSa1+2jp6ww2jPFp93G8t6WIkbysnCggH6c/Q1+KfSfrxj4IZjo0lOmr7XvJbB7dxc2m7W6ep8ufFzxFN4i/a/+K91qtxJOq+Jz5qrbbFby0CKxXaOg4Ax3710/RswFPC+GOG5E7Wu+u/nr3PIw1OtWzHEObdrx/BaHvX/AATL+IngfSf2uIfAHxD0yym8L+OdIl0y7j1i2DxPPERcWpZQwO4SRjHXBIPFfL/S7yXMMb4df2nlbkquEndWspckvdkvuevQvH0KVWi6cI83JKNRXS0cHzJpO6umrrqmk1qeS/GjS7L4NftGePNNudJiSx8RCHWdDlHmbWt5/nXakvznHOVYDB4Iru+jtnks24AhQqSvUovkls9Vvtp92hyVpKWZSxEXeNWKlqrPVdVpZ+W55n4t8AeHvE9zJ4j+FobSdWW2je5tJGAg1CQcsBj/AFZ6c9OcV+x1sPKnVk0mrL5P9fw66dQr5eqtP22GdpdV3OP07xPqXi+W5h8V2TwtpreV/ZlyeS/ckHqO+a8uni3Vm1JWPHo15YhtVVZroUfEfgPQtQ1FWskXTpWh+e5t2272IzgjptxTnTpz20N6+Ho1IcsdGcdaWnxC0fUp7n+yDqaWcOBcW/ZB3x2ryJvFUK17cyPDpvF4KpepHmsV4/iTpZaabVc211K2D9oQjC9OM1qsfy/GrHfTzqhNNt8r8yteeNdBvLt7e3v4DAmZMvJwSBgfl/Wrlj6clrJBPMMNK651b1MjV/HujXE0l8LqHCw+XFAOQfcivN/tShGo9Tx/7bwKk25r0MKXx7Pc747exaUSYw5XrjjFZ1sbWmrwRy183daDjSp3v1Kz6x4t1Fv9GiWFW+8epAryZ18wnpscFStm9ZW+FHZfs6fss+L/ANqr4r2/w8t/ESWFhawNqHinxDenFpoemRYM11KemFX7q9WYqo5NfI8S5xHh7AyxNZuc3pCC3lJ7Jfq+hwLLauLxHsqlRt7vyRr/ALW/x0+H/j3xrY/Dj9n/AEm5g+Hfgi0OmeDLCVQHmUHM1/OR1mnkzIx7ZCjhRXm8JZbisHTljMYubFVnzTa2XaK8orQ1xmZ4WhKNDAJy5VZdr9WeUQ6Zd39wJ9WlDOPuxgfKor7yjhalWfNV+4WEy2viantsXq+iOq+HWqx+D/HugeIGdYxaazayhioycSqfauzO6CqcO4qg/tU5L8GexWdLDK7djvv2y/DD+C/jj4+0raUMuvyCNZE2k7yHP86/NPD3MFmHBeHlfXlS+7Q6s3oyjlrktpWscP4duZLW3eAMvEfAx94elfp2EpU/q6RMLqioLoifw5c+ZFeWkSK6zQsGSUlQw75PNdHuxasU+f2LgjT+B+rf2fczQ28pYQtkKwweD2+lRiItJRNMBUpex5H0Z9e/sl+FNE+IPxVsLLUneIasvkTT29wVKvjKtlea8PMG1QaktC8diXGi+Q/YLwJpK+CvB+neHmnaVIYVXe7ZJ46k18o5Qi9D5fldTVnSDUomCJK/G3Kle9Q3zGkYpaM0LfUIbS23SMQcZAzTbViZOzsXNJ8R3Ez7QwXd0xUx3HG5ca4hlnEty2UB55rbdlLYpzmxvdS86O4IRTwu6oqq70KUrIXVdWCKY1cFQuABzUcut2EW2zHfVDG/kxhVLDH1H0olOK93qaRioo+Tf2w9PP8Aw1TNcQWaO0vhHTnUOOPkkmBPtijLGo4irqd1PnVAPD1/Dq0199uuS6m1jaIINoxt64+te3ScJOSv0M/ZuDTaPbP2f76x0z4ZX/imW6nF5cav/ZemWqXRMEUMcKPNKydPMJZFB6gA15OJj7XHutF7aWHUxEvbxw0ErWcm7a76K5d1PUVaMm4uFd5CcblHOc1Ttaz3KhGUdL3MFZYUundlUbchfLbIY46/oKGlsdKjZcsiy8jtam4aKQqjKu4ISoZs4B9CcHArGpGKXNroKlBSqWvqcb8VdTt10+REVEYR/wCkN03sBgdTzjnH1NFZR9m3Favf5HNTVSrWuul0l0JP2BNZiN/8RYHkUbdTs1UAdW+yoea8bLqaWJqMzxnO3FPt+p1nxR0XxTZNLrenzRxOuSBtwJB7+9etV5nHQwi4RXvE/wAN/Ey2dgt68hl8+P8Aebh9xj2rmpX6jqS5locJ+0P8OvCPxEktSVW11Rmxa3VudrofXI5pSjFuxyODcrni/iS1/aT+AFy0V3HL4j04MH8+L5JEXGRxjDfhVRozUHK2v9dDFcjbir6ev4d/kZvh79qnwt44vbrSPFMggdUKNaajFtPPs1Y+1960hPlerPPPE3wy8B+I/HP23wNqv2ZmX/SILSf9059SBxVcsJbCpq7sUNd8H+JdA1UQQ6tdv5ibXSGXgY7A11qnyw0OiSSVjkfFUfivQrSW/wBTlEahP3cUj8tj61ytWMJXWiPPNc8W+IfEciG3sSjwryWGN1FPmubU3ZWZxHjT/hJrjULfTNTuTGLggsi9e1apNpt9DmlSn7TU0rbRbfRrIJuMbd8jlqamrG8uWOhTkvLe8laGOLcynnPalzysc6k27IyPEFtJZajDqCn5WO2SpkpWI5Wp6lfVIkI3AjaRxiroxu9TdxUVc5Px3YPqGhNhQWibPviiUYRlqVCmq2557bWVvbuXWMAt1NcjnKcvI7aMaVNaFtERSGArOdRvRGdSUZskfBIJPGOa55yvqjWFRQjdn9iWlpFYTLBaoJptvzSMM4GP0r7OVlJo8PESlzP1MLW7r7XqZUzEEHayD+LnoBWDabsZUmi/pMt7HJ5AKRpuwYkGSfrUqLubPe9jovEssNtY28D5JRAxUt1rKt7uhMHKU2Z9pfwzgIkQyr5UeX8o/wATWL99HVqlobegX4dbm9ZVbC7ThQBn0oi1AmpBy5V5jlv4bqdUClVxhugz9e+KzT5maVKfLDuypLqKaFrVrOiCOGWYRABSc5OBVQcac0TFOtSlFu73NTWL02F1HMlv5szSYBYcIM9q0qtRne2pNCHtKbT0Rn+LNUu9J1OO6Q/dUDJc8jHNE5SjLUzpUoexUOhw/wAQvDt7420htW0ZRAZAQVi5xjvSqTjKGh00acaUkmedW2va34CgSwnEsodwDcb8tuJ6sR0GKw0ikkRWjGtU00Kmva54g1e6W4tkCWpBAkZt5lfphRj5s81EnNPVnVTUFCyMDxT4J8T2OlPdXupfZ5JRiGLyxuI+nqamtTk4aMpOPNZov6R4t8NaV8PTeWl9G12yfZpIgvMLgHcPcnjmt6UoKhdbmE4T9v5Hz/8AFD4Z6b4rgawS1E2o6jJwF5YE5x9McGvNrRi3Z9TvhJuOux5X4i8D/Fz4Dstp4b8Tvq1uHBk03WWMiKVySFc/Mv45HtXFOMqSdjGoozemhF8PvirrXxNTUtS8Q+CZtNhS4kiijeQSeY+Mb0x0XOBVUZTqay0NYRcUrmp4h0zwnpzBDf2+62EQujuwwduSGPZgPXritJqMXY7ovmVkUZfEnw9jLpf65Y3EZkGJWnXfnnHeub2sLvUz1jK7PP8AVviVoEhvNGHiS2nigmZFt1nRg4bpgnnIrnlua3drs8j8Z6xrtprEkaTJcWRB8pnwWQemanks73OiMpKN0cpqEttL8slkELLndGSA1VoaQuzH1VYxCbiZLiLb1+cEY6flUSumJPXc566ngnmOw7wOF2jt/Su6gmjSetMwvEd2s+pJawOcQLxkdDXq0UooilJKRreGdTI/0cycEYx0w1d1OTvY64zUVc92/Z3+IU9hBcaJdkYQFod7dPev0HhSuo3pVGdOEk5ybO7i8S6lqkEt3fz7kY8KxyTX6NR5eW3RnuU4JrYsSa9Jp1tC/wBwEEiFBwfriumNOnFpI6IuPJZDPDOumXULrWb63QSuNsCE9Pesc4qexwfkc1eo0m2zL0nxXo9/4uutLfLiyAadkUkFz2JrxcpzL65S5IO9jLCV/bScY9CO91O01jVlvNTiKrA+IVZPvfQV9NSpyUdj06bkkk9yS81dvtjLLHmNgNgfv+FE4waaNb2Zx3xV8VS3tsLHWrtYYiwMke7aoUevoK4LtUlzWX5HNja8fg2RJ8JIdI+MUOpQ+ENTg/sjRIx/at8CREjf88w3QmvKr57Qw+KjhafvTfRGeGq4efuQd7bs1Nf8b+HND0qTwz4TkaGxP+tQjLTsO/rXtUMA1VdaTd2lo9kehKSlFcy2NH9lfxjpyfGv/hNNZmhitfCui3moxQCRwsbrCVRmYKcfMwyK/EvpIYuthfDV4SK97EVYU0lrdN3fbojgxNaUH7nbc+f/AIZ6iuvaNq1yniptWstR1e5vL3WDGyi4ldixVQ3JAY7Qcc7c9MV9r4V4WdDhilRceRJWt6I7MFWpfVU4S5vP1/yK+la7Y/Dewu9L/tIzajczMtogXpuP8R7YGPpiv0ejFUW0mVGpUpS5X12Pdv8AgmyUsP2t/D+h26wXDz6TqMk9wsuxixgJJyWXOPrX4n9KmpyeBuLhH+em9r686O7DwVCErv8Aq58ifF3UrDQv2mPibfzap5sCeJ5zudyxkIPAyCc+nWva+j1en4X4WdTRqK02PPr4mNPE1ql+35Gr8HJLe48SL8U5dRt7bWbGdLnQLJgx8h0IIfg9TjNfqOPyXCcT5ficHj1enXg4cr2V1uedgqtSrUdafyPpX/go/qfgf9of4d+Fv2tPhfcxpqWnabDa+IoDbsZpVbKTRsyxrHmGZQ2wMzCOUNgLgn+FfAeGdeE/iFjeEcyuozqSUdVZJawe7dpLrZK6PVxGGnVwSrNO8NfWN/U+RdHkRr1LprqSUJmSZyxC7jng+tf3RVVTES55yblfV9359zy6Nao1eOiL3jyz8IeK9BTVNYgNtqEcJWyvbNx5rOeBuHQj2NeXi8JCbutzLExo1vi+LueXalqPiXwpdrZeLbUCQZliuYmJWZdnf+6fY15rp4mlPlcb7v7jw1UxNKVq606Mfp2vxRWYVL2RVnHm3e2T7wzwvvW1FQ5b3O5uDhpqUvEWn6FqKTCfTo8RqFCkAliei5PYd6VSNKfxJM89rDzn7yOf1jwL4RS6hX+y4gXwHAUcZHWsKmDwrj8KLqZfgalv3aM/UPA+k2dss9lpkZR0JJZRlSDjmvOhgMJGrdROOWU4CKvCCIZdFsIpTHbwLtCfOMfd/GuurRpqLUbG6pU6MdEL4T8DeMPHvjHTPhv8PNEOpa3rV4tppdjCOXkY4yT2UDkk8AAk18zm2Kw2UYKpjMVJRhBXf9fkjxMVWrzkqVFXk9F/meq/tHfETwx8EfhnL+wx+z14ggvVkuUn+LfjqwbnXtQTpYwv1+xwNkAA4d8se1fmmVZbjOIsxWc4yDS/5dQf2Yv7T/vNfcefjaE6UHgcPK9/4k+7/lXkjwaxsLbTrcpaRgBR8wPev0mhhIUYaI1wGXwoRSgiwiJbneUDKy5VQ1dtKHs3d7Hr1GsM1ZbnPX80uveJbbR1dvJjuFe7mhXJVQQTj3615Ga4udWToUVd2Z8viZyx+ZRoR2T1Psf/AIKXeH/gHqmkeHPEvwD17WbmSCyhu9SfX4gkmprcQRyfaI1UYVUIaMqST8mc84H4V4Vzz/DYvEYTMoxUHJqKj9mzej13e59BjquLxeEkpO6hLT00/rofMXhy4S+hwTt44Ir+iaFNQpLUMParQWpf8OTMmpOgALOCojY4B4xUSmr2jqdMeRzaKvw61Sez8S3WnuF3JOR+8ODgeh+nauhVlUm1NnBlNPmxVSnJ7M+mf2ffib/wrbxvpviJCFiguopllUkY5+YcexryccvaQcbH0FShCVNpn7TeB/iPpvjbwPp2uWNysyXFmjK6NnJIFfD1IqMuU+UqpU6jRsaZrFzDJ5ckoAxxmotZGEpGpa6vPc3yxzS8D7oBpPTUWm50VtqdjaFYbdcyEZNKL1KatqP1LXIoVEbfMzdqtSRKepRbWfs4BWEKzDiiU49DZJdTzz9pz9o2L9nDwhofiiXweutz65qjWsVqbrySsaoWd84PTgfjXhZ7nSyXDxqcvM29rnflmCeY4p0U7WVziPCn7fvwO8RTpF4lGoeG536rexebF/32mcD64rz8FxjleJ0rJ0357Hsz4WzKEW42kcr8ctd0v4i/Hix8d/DXxVotzZJ4TjtTq39pIginEsjbcMeuCK9bDZzlscS+WpGzXcyeSY6OFtOm99jP8A/Db4pai0Wm6RaaZdTXUKqt7/bKebOWySCpfCKoGAMCvRwmYUIVHNVE07dUVWwrhCMalNxt5P8A4b8D1T4YeHPiLpGh3HgOL4c311dWOrTXLSaZbeewieMAvL5bME/1Z69cUpZlgYVqkItuzve3T7zCvg5KUcRNpJpLXT87Ca54hfT7Zn1OxurdgQWe5tHXYDwAcjjNckc3wKfK56+emnQSwOJT91XRkw+OtCuZgtvqMPynLAjH1rZY7DysozRtLBYhfZZrweInubKRrOd2iQbpNjfLx0J59/1q3jKaT10MnhasZXaszzj4zasz6C9wImXYC3Ldj0JHp/jXDiKiqQ52x0ornasR/sP3t+2q/EZ7CRUY6rZMg/vD7JEP8/Wsspmva1EmcmNjBKPc9L+I/i7xNLs8OC3WS9ul2QRoPmHqa9ic+V67nlN8zsY+kjXfhzPPoHia5x+580k8YPpWbukXNckb2PNdW8SeO/H3i8eOPDGw6XozlXhUE+Yw6n6CsFFupdGCUqjSaNKw+Ntt481P+zNVuBE0Y2yRSNg9cdK73K8TSdoxOK8dfBPwB8QtQ1H7bptq5RSBIiAEe+RXJKEaidjjcebY8Ng+EGv/AAW8aTQeEYLi9gu1Mgj3lioH1rJU3Bl07Q0ILj4x3+nyzTeINNntpVcjy5UJAxXTGo5KxNSrZnEaj4x1D4iXb6tfyO9rE/7uIr1rNJJkpuaMh76PT9ReVkC7uEQjp6V0cqtoN/u0cxdWEvizxO+uzRLm2wqJ079a5oxlzWKjVTNHT9NF3fyJfKGCdYz1A9a6XGMUROPNqc61vDca9cS2IIjjYBo260uaJhTk77EfjDTUk0iQsgBGGBU5NV7ttTaas0zCiAm09GbH3eDmsqTVyudSWpk6kLSMmW4P7o8Sj0FZ4ulOpTfLuKFWSlZIp6L+z1Y/EW6bUfC/xT8N6fDyzQ6pe+UV9s15NLF+yg4VIu5UasXVa5kcV4m8OxeGNYm0hfENlfmFtrT2UhZCR6E9aqDctbG0uR7MzBL6EVtGmlqzOUKklof2DaHd3trFc3TycspAOOfpX1Lb5pHDX1m0u7OcEepSarJIb6OCBjjBX5j6n2rnd1uTTioq7Oq8MQhryM2jEREjcX+8/vj0qouUnYpzRZ8RX8dxrDxxFQUTClxgLiuWo1KegUlz6kUckt80azg+Qemw9fespSleyOhWgjoNLvLJ7MwQ2ZRAckfxEVXMuVXCTfNe45r23EWILJTvP3XHJ/PtWcpx1VjRxlJc1zE8Q3XibWtasrTSrB544ryN5djBUjUNknNZVPbSa5VfUuhGhSjJylbQ67xTp6JZSXksMkrKN21eSMfSuypCd3Jt6/gcGGrpz5LmNePbeKPD6anBC5knQ7Qy/d2jB/lUq01e+5vKLpTaOS+G2vFfDer6T5SyXFlftE4VSWAZQwFc14Rb6tG1Z+/F9Di/iN4E8Q6xHcSaZpk4iuMeamMDOMdPSmoyfTQxjUhza7nD6Dp+qfCTVRc+LhfXoDf6M0sh8q0GRg46AZ65qpQVJXep0e15o2j0NHxLqmr+MdWjs9Oud01/JstnPzEju/sMVhNznNK+rFGcXG/Y5740WGl+HtMi8I6BboyWyfO+35nl/icn61c6iUORdAp3qSbZxHwluIfDd1qXxA+KEgh8wLBoLKmF3KAWJznk9M+lY06fLJ1KvyCuqlVKFN2ta/ye3z2/I5DxlcWXj7xJ/Zy3kT2l5JIrXCyAqGbgZOevU1y1v3lSzejNqd4wu1qVpvA3hlbe30HTkSKK3heBLgryJQPmz7EgHNdCglHlOiLcdWec+M7K40C9vbDVL4S5xLs2DbPGDnccckjjn2rgrU3zG0KnNpE4bxr8PfD+r2323TVQvE4MkZUE5I+8PXIwfwrB04I3SkldnCa14O06C0eW1tbTz48s37sL5hB7+jdaxquyNI+8ee+I9SstKu9wYeRKu11D5CMc+nT1pRvY6NFE8+vfHWj6hdT2FuWivYJyvlXWVDj+8h6MKpJx3MadTmnypFS+mur6UG+tcY+9iU4zRzRudM4RjqzP1KeDSrR7yQ7CoxHx94+ldEakrJmc5pRscl9tuFvt0/zFhuJHPNelQk5K/Yzox980Yr8WOoo5YMsw4cN3HqK64VmpHY1zaHf+C/EMlpPDewNt3DDEN1FfSZZiZQqwktDqhUVDY9di8RGDTLa7tkUBxwzyYDNX7PgasKlCLaPapYhOmnct3/iJLK3WW/vYzLKuREDwK9FVKa6HS/dV0Lp1zqB083NkDHnBMs5PAryMzjVx0PYw2ZyVIyqqy2Jor7T7KJ9P0iIAz/Pd3HeQ9+a6MsymhgadorU6aMY0oJRWpnx6zHd62S0ey3iTGC3OfrXpzlUilZnXHkfxFaHxDJf6+bO3jNxIqkRRxAkj8qwrVI0sNz1JWXcU2r2OJ+LPw51n4leLofh9d6otnYFRLrdwz8rD1KqR0YjivnamLqYuHJQ95X6/8A8mvRWMly3sjZ1rVvCfhfwTZfCH4R6SND8NWSAtEpCyXUo+9LI/Uk/jXZlOR4TAy9va9Tuztp0qOF9yCsvzOf0zTdW1RJJbC/8AKhX5XuZjw/09q+hpYitzNxdnax0xozxHodN4e8Mad/wqv4gafNrUlnYDwpO+rX1oyrcvGuGKRg/MxYgDqOK/BvH+daOVZbOEVKUcRFJPa70u/QjGYWi8PKNSTt+J5D8FZFg+DOi2FvP5Qe33r3OP8cV+pcITVLLqVOo0m03+F7F4ak1gIqDtsY+u6zqWueKls9D0SW4S1jL3t7JF+6tgOuMfeb2r6F1pOurLTqViKz9tH3dFuz2D/glj4n8K+Pf26tC0O80uO/07+yb6CQy5jM8pgPGWKjP41+OfSNrut4QZg6WnK4P58y/I46GbVK2In7CTXL/meJfHrwvpGl/tp/EXw1exbbeHWWlWyuX3lcgHG4MQcfX0qfo55jLH+HWG59dDsrezlmk4Td/dT/A4bxhYHSidR8NSuYGcsUAKkkZz9BX7nONWVPmotrXbVbf18/Q4sbRnTjeCPp//AIJqfFzVPiz8JPHf7GHiia21LT9XhXUYtF1ERebHGf3dzdwvIDukgjPmCIAbwp5B5r+MPpI5BSybiLLeNaKlCtH3JzV2rrWEZJW0k/d5unZ7DwWLlOgnGn7SqpKNnJxXJJrmezu0tUravS6vdfMPibSNe+B/xG1f4a65qCiTR7h4VniYBL2A8xyoQTlXQqRz/FzX9J8DcX0OLOH6GYUZWco2lHtK2qfUxxMVgsbPCTVraq/bdFG31d9Vv21QM2+F9lnaSDkc/ePrX1cbc3Mzk96VT3jSutRg8W3MPhVrOOVJTm4LbcSMOq5bgccVjinH2bvt/Wh0zlCdN8yuuxxGvfCeOzluL/wb4kFhHGdstrcjcFkYE4HsAO3Ar56thnF/up2fY8mvl8oq9CfK30exxuo3fjDSZUi1TTS8KSh3niYsGXpkjrXnyrYuhJKoro8Tlx9Kr+9XurqjR03VxrEgvokZ/MkBjPoFzzg/SuiOLVSJ7EcXCpFKGtyre6qFvni80eUR8qbu+c80lWj7XlM4125crK11qSPO+4hUMZ3HrngZrrqVqNODlNg+V/Gx3hf4oeOvhraaxF4Lni0u81y0+xz6zD/x+RWbD54Ym/5ZCQcMw+Yr8uQCc/B5plkc+xsJ4h3pQd1Ho30bXWx5ydaDnyxUebr1t/wTmbCFI4B5ICbWHuT717PJGnG0FYxp0uaCUdCZWBxDHgsUwTjhTmtqckoHTOaow5Y7mZr+vz+d/wAI9o4We4bKs6crHk14+OzCpOXsKGrPlc0zetOo8Jh/el3XQt6BodtoloYyS0z/ADSuw+8a6svwkcO+ep8TO3LcF9Uhd6ye7PrjxnPZfFv4Kjw3PpUEGoeBvhlot/okTqIjcxMJPtPHJlPzA5PQdOlfgssXDJeIIV6TvCvXnGb6Jp2S8jfJqFT2uI5neKd7fI+UdJf7Lfnyk2xuxKD2NfvOHqza5ZbdDdXoV+RbMtWFzHBqZkySBICpB5x604p+1ZvhtJ6j7kRnxjM5gETBwTMvRgfWtXGz5gWIhTxTaWp618Pb6K7iFjvT5hiQSdzjg/jWFRNLmZ6H1iU9T9Vv+CYnimHWv2e7XSmZxNpUjQziWTd37e1fG49Qhimkj5/Gwl9YbtufQtzrdtaXuJWAzwu6uCUkzlSZatdRuZpxdxx4jA5JHBqbtjUL7mp4f8Rrc3zXc0gEcY4z2qnaw5rQdpniO78TeIJZbBF+zw9weprFScpEwp8uy3LV7q0LXQWWcF1HQchTVSTUbo1d5Qtsz5Y/4KPeO4fEHxH8O+CrUfutB0NpZvm486dv5hVH51+c8aVnVxdOkvsq7+Z9hwhQajUqvrofNV9qM8dyLNIw6SRZ+YgDjjrXx1OSVTlaufoVGUuRnV+Fb621maHR7XwrBBJaWknmy7cibPRieelexSUKr+C1i4c+7dznfEmnWRivvsrssyFCPKcrzj2Oa6I04K6aJre+l3O28K6noeh/Cu6sIPEHibS9diZ2vbrS/EC20F5p8iBG/ds6yXNwGfhM7doOeM1x4io6UpKndSe9m9Uc9SnWnVXNGMoJdVd3OW1XV103V7+Hw14v8U3GkkxizXxHqKtdELgASKh2jvgDoBXPQpSlFSqK0vmL3pK8kMa+vYWcS38wabkkzMQAV9jmujVPVmnLy+9Y9V+FGpytoNpCZnZigDbnJzkn1PPSvosqlGULPofMZrNubsdh8XPEk2oeEJJbqchhYhVIXGQOP6V9POUPq7PlYqftx37FmttpFv8AEDUC+EF1ZSZZsZxap/hTyqrCLn6/ocOYXUkutv1PS/h34iMN3P8AEbxcwE87sthG4GY17GvYpvnXv9zjp0+W5hfELVrv41eJ5LHw/qXlosGy7vUP3D6Zq6kuZ6Dqp8ljjLfxNF8FrePwNeTh/NkKxSMTmZieT704x5dzGKdrmR8U/hfaXAj8VeDrqOHUHhEkoj9+1Opy8um4qqckcF4H+K3iXwXrt5pHi1Bm4B8qbadpOOhrlp8ykYRVuo7QvjLBL41i8QzbGjDyWxJ6Z/8A1Vqp825nflVznPHOoeGfFWpXd9ay20sdsSZVjxnJ7VKlG9kVNwktDzvSLm10O8v7KztlfzBvjR0FaKF3c0pLlRkXNhpd3dG9vlWKIgszluQfStdEjHETs9Tz+TxFLca5ep4e09p4McyJ0LexrBRnJ+6c8Jc7sjQsLTxHqcPmwx+S8gwXY8mtZQfKrnXGPLEx7fR5/DeuyW8t2ZTM2ZQWyQf8KzlCzuc0f3dQ0dZWzlspEliYeYnGR7VWria1Xzx0OK0q0lmgmiimGYmI2n0rNNRlqZU433MLxNEPss0W3qhyB61cpNK6OlJJnj82jGK6kEV9cR7nPCuRWEMQ7PmSZzPAQc+a5esrGGxt/wDWO5P3mdsmuKpUdWrc76GHhGPuiNjfjt9a6Hbl1LrSdNaH9gU149hAyMdpxlee/vXv1vdk0ePNt1n6mTbtamQy3Nw/kNzIe7H0+lRFJ6suV2rI6zwciTSNdwQrFEiExkPk496tySM+S0Xcz7q+t5LuVBH87t+8nl9PQV58ppvQ2owZZsdRjheaYW+SqYVSMn6j0p3Rta8kjR0XUoprQiNXjjA+fPGW9T61hOTtuaSgky1Y2cd2xffMYE5YudokP19Ky5HPUpScY+ZU8e6w9joMj2gkgiRc+Xangke/erlNKNnp6GdGlGNS71fmdNcahJdeHbe5RHWOWzRtyvycrnmu6crw0Wll6nHQopVXfV3Zz3gK7ujFqtppV407xTZ8mccxow5wcetccbu6R241Rlytqxxum2VzpXjjUri8uFjkkizDp9qoUSMp+8zDqcGlGhBTvJjnC9KPVDj49vNNvZIJD/rWyzbuFOcY6da15nAhUKersc749ew8bR3WmQwtGoiPnz+YCT7dOtTGtGo7MpU4xStueK2K+O/2fvHP9uWEsuq6fPamOWxuJxusQf8AlpGzdD6g1xyozVZOCNp0/aQUVoyTR9f0j4y6n5vh/WFuIZJCJp05EIGS2/0I96KS9rOy+ZEEqWj3Mb4reItK17Tbi30SBDa24NjpqtwrRr/rJj9T3qcTUc7pbGiTjLle58wR+Ftdvvipp+oaXrM0NtbXIIhgkKxuM4yyjr9a8yNJyxCktkehCKUfeR63qZvLe+mhtp9twtzujVuiN/gwrunU5ZEqMWeZ/HjTf7V1Wzt5ZpofIjIBhJV4gRjgj+GuKrWcnyroaQSitDwrxjpnj/Rr+507SPiDc/Ph1SRVZRtHGDjoe3esaUb31OjmcoWaPOLzxj8TNO1qaPWvGDTWtz3kth+6kHQ8e9FSlDdvUVKi9ylrVnfXfmXOtzpI8gDFk4Vsenoaxc2nY62tbnN3egWsrGSWBTk/umyMY+vY05yb0CVuUq3n2fSLaW8vp/Jt4jmRiCcD0xULVmV5crb6HHat4hXxNfrMk6tbQki3UgjIPc+9dlOm0mjJSdSzRn316i6nHAImwifM2f513YdNQNpWjKxcvba1vrZBdtt2MGjkGcg/UcV6ENEVFNanT+FrpRCIsnG3GD1z6124Oty6M1i3NnonhrUVvrOKfUpS0NkciHOea/XOG8XLEYfl7Hs4JJr0Ne28UaNrurqzOJDEc+SpzsHua+rdOVtT0lJyVmbOo+JxcyJamfEarwitjIA71pSUYvQaTWxW1PX7VdOR5IAkCA7nzyxq6U7t3ZpN8qucxY+MX8U+IBoPhKNGaLhyj8AnjqeM1lVqU6UW5O6RjGu6s7djv/EFjJ8J/hVrukfCG+g1P4iahCAl1KQ0enI3XBP8WDX4XxRxJmmd8X08tw0XDDxd7X37Xdv0PHx2KrYip7HDv30efeHdL1vwx4Qt9G13XGv9ZmXzNXuBzl+pBPfnPFfrmX0o4RRTVrnq4eFSnhYqW/U5u5g8R+I719P060klcHBXGEHP8TdhXrUsSpy5UyJ069aqlA6SaxfQ7dFv9ZikuEj/ANSmTFFgdsdT1rvpwu1Y9ylB4ei43M2x8dTaH8MviF43drRo08My2qXF3GJHSSQhR5aMMZIBHPSvxDx1qxrUsrwUVdyrcz/7dPPxdTlw1S7d7HnfgDUp9N+DulrKwWVbBCu05PIGa/TOHYN5ZTT0aSsbYOUvqcG+xoReJ2sdOh06yYRrsMkzBMb8+vr+NfU6Kokhyqt2SO2/Ye8T23gn9vL4aeO/7Ntl8/Vzp+6eQiI+cjoC4+6PmYc81+beNWVSzLwrzWnH/n3f/wABdziVCk6r5U1ftueVftgTa34d/bo+KC+MNUsbjUJNTVg2ly74VUjgKcDgDjGBXxf0cKmCpeH1FYdNJWWuj8zor06FHOJuUndwi1fc5Kx8UCc7LqN2tzBtiYgZOc5zmv6Hp1pq9tP61N705xV3uQ+C9R8QfB74rad8bvhvdCG+0C6S6i4yt0uMNE4PBVkLKQcghjXxvFvB+B40yHE5Vi17lWLs+07e6/k7Hj14SpVvaUv+HPpL9qLwr8M/jP4dT456V4Is9Q0bSPC8Wr+DI7i9lhk1vTs7LuzuHi2sHspSwXDFivXgDP8AGnhjnmYeHvEiyvGyfNOq6VeL2hL7FRa7TVnta/e9j2auGee5TKtUhyzpfDK+rXnp02Pi671LXriNrjwuba1+2TMYrJQ7xwLkkKHcliACBkkniv7TqvGTjajI+QxGGzF008PNNvubfwznOl6reWHxKntbcx6fKdGkEDGKW8wCA/dcjIB9SDXxvGGK4qw2Ew0MFRU/fip27X1ZdOtmGGpv26Ta7GXd61exx3VndlI4JX3CJMnYSQSmScnr1NfYOlKcOaUbN9NdPLW7+82lUqtJsguNXivbyK0iIUuxF1Iqg5A4C/Tk/nXI6cZS5WKok4NPqY+t+ERqF3Lf6fO9rdMGIaAhAEGOoHXiuDFYGlJ3jo/I8CtlSq1eeEnH0M9rnVvD90ZLvR7DUxFCCqXMJAdc5ydpGa8XEUcXRTcZGqqV8DdySnp1RR1TxFqvi9ll1CG0t7aMkpZ6farFEvuQOWP1JNedQpzqu9SVzlWIxOMnz1Hp2WxQjhIMgLhj0Ar0aMo07pHQq8eVp7kF5e6bosIlvLpUXqqA/Nn6VjisXh6C1epzVcyweBpXqz+XUxbvW9X8QE2uh2zW1u3DzEfM1efLEYrHvkpKy7nzWIzLH5xP2WGjywfU09B0e30mBorcEztyzkZLV6ODytYfVfF3PUyzK4YaPIvi6s1bG2vdU1C20bTofMuby4S3gjUZLyOwVR+ZFVmWIp4PDVK03ZRTbforndiJ/V9EfVvxV8ZaZ4C/bdsPAdwBHpOh6XZ+D76NfuyxR2ywStnp98t2r8DyfAvOvDueNcbVHVlWj/4E2n91jfJakY4acv52z5l+IfhObwB8R9S8IXUZVtL1SW32nrt3EofyxX7Bw3mEcyyujiH1S+85ajlKsm+jsYFlexz6i8kR/wCWuCpr3IVE6kok4Wcp4hxRPqU0lt4x/eONssCkrnqKr2sVPlNnTaxtn1R3XgjxAmnaglvdMuwqFZt3UHoaKzVSNonrU6KjE/Qz/gl78V7jw/qWp+GxG7QXG2RpVfKZx6etfHZtTUKikkcuYcipq59pza5pN/cJqVxL8i89e9eK7tXPDdQ3/CvjrTdehe0twioq4z64rNTSkaJ6XL6DTtQglsdMm2tjnBwTTb5iJy5nYi8Nazb+E7ebT4zh2zncefxpU0oz0KVuXQW21SBrhpjJudiCctxW75uUtRvHU+Ufjb8OviR8YfjT4w8ReCPC1zrcWnXiW93DpBW4ntkSIHMkKEyKuP4iuOetfkPETnVziqrbH3HD88Ph8BDnkk5N7njd1o4ub7+y9b06ePbER8/7kg9erDjpXj0KPtaqUZK/qkfYwqRjHlZ1fwl0u6HiKW0tbGW6dNMknaKykMzJCgLO7HHAAySTxXcpSpTs9Wl01JdX2MVKeibsVtVaybUJpoYisdxAhVmHO4Hjnjr/AFrojVnUOm19WWdRut9nHamyjYRuMlgA3OM8jqBirknFbGSnLboc1cRxQ30kwVMsrBpfU5yOvXr+tc0pSXQaippsq3FwXkdmOxS3APQ4FZ1FYylK3unpXwv1Q/YrKBXxtcZJP6V7eV1OWC0PncwpOrUsn1Oz+K05m+FL3EjIWAfyxuz36V7uLquOD5jxqaksTyNGN8CdavdMttf0nTLZGudWubFYolPDYt1yT6AVhkNWVRzsefnEIw5Wes6n8KfFmvxWx8T+PZY7cAMbaxjwgH93NfZUYShZtnjKrDlsi7qup+EvhloH9maEvkRIcTbmG+Vj61tOyOd1W6nLIx9Vh8Ka94akvfEFklzPIubZ24eH3FaQUeWzIc1T1R5b4L1jxBHqNzZXchuI45tkTFvmZM8Zrm5ZKT7EynKaNDUtB0vxbevpWqWiQy78xnbzWtNp6GXLoeY/Fn4W3ngpZJ9KKzW0s29niP3PU1jKGjZHs5Mq6d4asr/SBc6bGiIsYL7R/rB3J9amMYy2NlBKJi6/4Rj+1NqdqnO3KhT1x2rVtoxnJo8g8XXV14u8QHwv4bkeFFlzfBv4R3FYc7Uk0c8lKo7F9dPs/CWinRtBs1Z1jwW7sTXTRvE6YQUIkuk2GqR6b512PLQRszc1tUTFFy5jkFXW5r6fUI7BXhR9qsvLMPWsoxu9QqRTehoDVrG5QWkzDfjDJKMH8KJTSdkYqVtDjtZtTpet+fbApHNnORWcmpLUhTk5GLr7BkOCM85OKxmrF8zbVmeX6wgF2+0fxmuBaTaPUopSp2KfmNjYex6+tb+zgtSofu9Bm0Y8wseKzrTaXKjOs11P65dXv/tDmOSQFVlGUbjP419HX1qM8apdzdvMnjltr/U0L20UbINiRYO1fckVEU2yYuUJanV6dssNBnCKsZlXbG4blz3PPQUVJOMbGjaumYMAjgheUxSSADCSsON2ew71yRSaOqm0omnZ3D2m6S6ZYyE3SE8lh6GiT5HqJuz01G6DrY8RXTX9qy+W85SNdmAQOprjvzyvc3s1ub2q6rHZw+dLOdip8ikYH5Vc58quKLXLdHN3Ok+PvirayL4Wlgs7NMr9vuSQgI9APvGsqSr1byg7W6le2wuHqqdTV9kdf4bguV8Fw6Be6vHe3Omxrb3VzbrhZWCjnHbtXdTTlSSctV+Jy1pxWJ54qyZk+AtcsPDPjC60iVw76n8iPzwVBIBz7E/lWNOp7OpZ9TXER+s0F/ddznfjJZ61aXH/AAkOj2rJdQSGSIwsBvA7E46GicqnLztG2HcZWg3ocrLfaL438LN4m8MMyF2zqNrNLmW2nGcqw7dePrxRTca1N8j9dR1oulUUGclovjzT9BjubbUIY0kjmD+XJncSOckHryKxsqab6h7KTaZk+J/EEuv6QdPtbdHvtXb5P3eWQHufSk6klG3Vm0Y637HgHxX+FnxV+DlvqUvwf+Jc+kahqsDLqMDxK8Nwe4KH7pxwGXBFReVK/Lo2UoU5yUmtijoXig6/4Dgis9Lu7bVYoksZrCch/KYDMkg55U9QepzXHKo3olqapxlNnO3kcema39qsG8l4h5Ks4yjHAwT7HkZ96cZO9jV3tY2NQ8Y6SNOR5H2yJDsmllfOHHKgnuD2NKTijNyvocF8RvF+laxryajpki3Nt9nCzgv80EmOVbuv8ulck2pSNYRaieW+NbeGNvMs7t2kC5tZuoZf7pz3FJRUep0Qfc4PXtPtNYEq3sTC82BmwMc+vuMVMouTNZyklZI46SaUCa3a2AYHY4YZDio5YxYru2pzPjbxh4P8IID4g1iOzckhLQtvd/oo5qlTnPZE1KsIO8jhtR8W6p4uLOJxHYhsQwJGQZFzwWzVwpRhLUw551X7uwllYrLIHWPjPJA5GK6la1joUVTjoYcc8+teIrq7iMeyJtkeD98DrXUkqaJi1Undm1ICbf7Osm9HXBXd901tSnc2ctLIs+H9SniVBIwbyzjcK7KVotM1opxd2dzoWsPanKEMkiZwTxmvvuGMb7PEcnRnq4apyyLun3n2BWvpDHaw7sybByR71+mus3BHotxkrp6mf4N8Z/8ACzfF93Z6LIv2DTEPmzLn539K5lOr7S3QmOJU6rjDZHdX91Bd6ZHpc8iiKMfvEB6Z/rXVzqOiN4y5jKsb/RfB0cp0uKODfu3u6cvxTnTlUiOUVCXuKx5Z4B8FeMrn426t41m8XXkml3KDFuLhlXjJ/wDrYrwaeVYbD4uWKkry2R4GHy/EQzKdectGal+njnx742e3k1VtI8PWz5nkSTbJOe4BNebV+sYzFpRlods3KpV9mnob+reIrXSdMfSfD8kkdhEMks/zSn1z3r6/CU4YejaOrR6arexShE56a/u/ElxGIpQlvFGfMAYncD3rrU6nMrbdR3qTW5Y+IOqeINI/Zq8VXGjaZK6X+p2WlT3RCFLUSA8hDySRkZHSvw3xS+qZhxrleElL3oxlK2vddjkxcqi5ad9Wc14h1bQ/Cfhy10mO5jVbeFI43I4wFGQB71+tYJ06EIQS2R6U8UsPSUDMvfF1odStoySVeHJXbgZxxz6Yr3FWvJHJGbdS70Ov+Aeu3Fz+0l4AvYXt/ItvFdm0IuG+SVzMow3H3ea+a4/5sVwPmNH7Loy/J3OyMo05qWvyMP8A4K66Cfhj+354m1iC8tbhb/D3gs7gusRzjO0/cXsB6DrX8+fRtzGrLg2UWmo05W1XT9TyeKZypY7DY+75ZQs/k+p5Lp2tWkuhSyCbz3kQuAjDcPYe3+Nf1PQxEKsL82jKhi4TpqpB3RbtPE62vh6RbiZJIhsLBj169fYVo8c6VNwUtNH6tXt+bOhypSp899j6d/4JbeN7P43adrv7K2o6fHc6nbPca14LvbloRDbwNEy6nayNIyny5IgCAmTu5xjJH8P/AEmcnlkec0eLsK7Uq1qdaKvdzTXs5JJWun1fTzOfLs9pZdmVO9KVSM5cj5bWirN80rtO10o+6m7yWlrtfK/jrwxc/Cv4p+IfhjqKMW0a/lhgeWFoy8RbMThW5wVKn/Gv6Y8OOJYcScK4fG9XFJ+qVn8yZSp4bGVKEns7r0eqMp9dOoCZrh9pC8tsyQR3r7lVVGLfU5qr5tLmNeXNw9w1jLG7uuZWm5/eoOSa46lR1OpyTrqGjJtIuo31WSWGBGZUykanOeOtcUWoyu2aUL1W0yzfa3CIWjs4UV4IQHDcltx5I9sUSqwcrNmdWpGnsU7y9tLeWNxKpMUuHMvQKw6H27e2K48W4yWwqk4Sjexy/ixtH8L6tO6XKQwuN/lbs9fT1FfL4iVPC1WtvI8DGSoZbVbnJK+tjl5fEOq6zIYPD1syqes7jn8K4qksVX/hKyPnK2Px2Mny4WFk+pPp/gcySC/1adp5CRkue9b4fJ+aXNVd2dGFyDml7TEO7N3+z4rWMRQwAYwMgf5zX0eFwsKaulsfSU8LTpWUEPhtbdJkl3gRhPmOelXW5YTTexvKdKlJSTPdP+Cb3w103x38dbr40eJreUeEfhbpkuv6vem2LwNdRA/ZoWYAgbpdp+imvw7xe4iWCyFZbQlfEYuSpRV9bSfvO3lG587i8RGupyi3orfN6HlXxH8c6t48+IWqePry5zd3uqzXjShyTvaTfuyfwr7bh/JqWWZDQwEY2jGHL+B6cIrD0KUIv4Tc/aJnXxJdaL8ULeQyf8JJoomu5mx/x+QNtkXPsMfhivP4QoyweJxOBmlFU37q8u/zFRwKwql77mnzTvJ3ercrLbRXtFdEktTybwkJJx9qfozEvk19TGcnUdjjyio6kXO3U1/GJgjv9O1GEBw8ZRufQ1bi1JNizSrKjjaU+5vaUltf2Ud89ysUkGAo/vCtJuVPY+gp14+yTPrL/gn/AHGr6t8SdNsrOIywsuy5CTmMkdj7187m1S1PVHFjeapTvY/QfU7aOztpNL0+6dQI8Krvknivm3rdHlWtqzV+Gz3GmaOYY5t8zcEBueamNOzdxSk5aHT+HLi58NK95ql8WkLE4JyFzSfusS93Qv6RdW+tyyXdw5Ck/fXgVaSLi9Ste6wkN59mt5WAVgM/jVqWpo1KWl7HyH8Tjbt8evGWqxDbc/2sAJosrJjylGAy81+TcQKFfPayeyt+R+pZLyUsngkr/I86X4heMtN1y+sU8U3rQrgLFPJ5iDjurZr4/FUaUK37tWfc9mhUTldG9pfxn16wjmtrnSdMuVu7cxXDi08lpIywYqWTBIzXZSr18PpCd00en7ChX5faR2Fv/i9oBlS41Tw1LFiPbGlrc5VB2GGrrp5g4L3ofcc2JpJT0Y2L4oeA7hyNUuNTgRypaRbVZGX6DI/nW08yhK7ady6WEpyV+YhfxV8HLjUzFb+PdWjjbOJbjRcHHbgOayeKpS1uyK2GnGPutFTWPEXwvspyJvGuo/MpyRozevbLCrjiaNR6NnLHD141LSsvU3/DXjjwrbxW0fhrWri6dX3E3sUUAUc+rsw/KqWd4XCR5XcdbJquJakmjV8Y/FCXUdAi03UZreC0tEYXEcCvO8pOONx2hQfUE9BUy4nlXh7Nqy+85v8AVxUpOpF3aNf9lXXYrn416vb3kqi3i0i0kjR3wyZjx0PqB1zX2nB841I1G99D4fiTDSp14u2lj3zxz8QI764i0jSpxHGE2ja2FUe3vX291F2R8g21Kxw3xS8KLcaDHqk87gxrvQyP1YHhiM1lKHW4p+6rnNT6j4y/4R6PV7i9t7mCRdjJAcOo9MVcJNRtcxjC7uef+LfHnhzwfDcXEOrTQXkbZMb9v/r1NWWtiXW5dEjD+EHx9l8Q3d42q363E0jskc5Y5UfjWcJcuzuYufvG9qPxRjjSTTbiZZISCjhjuBNbR5bamnM3CyOU8FeK5rLxBdeG5pgI8l4MHAZT2rWCURxjJq7ZZ8e/EzQ/B/hS5aeRfNQ5CFuR7Cone17aEvk2Z454P0Hxfrs1z48vv3AupMwwBMHb2z71NKlz63OeEJSnc39NicedJdQhpMgEN2rrilFG7kloTeIFvFUwRx7V2KEQYG6pndq5M3yxM4wjS5431FBE0w4VR8oPao3V2RFq2ph/E+10e6SHUrGNUuI5MHYcbq52tdAlFS1OM8V6ms1ksluSHTG5GNaU6TkQ30Ry+p3xmtS+AMjn61FaNpEKx57qLl7mRz/ePWvNf8Q9Gi5KKKTvlemD9a0qKyOyDu2RSkiJh1yKwauzkxMrpn9bK35jnuXmt9zKMoCc49819TWV6jPNqu1Rov8AhlZtUuUdCYrfOZcjBc96VOOupDabsb+t6tBLei3tIWkW3j+QSJgMawrNylY1cHGKszLe6mlvDLczn5esS9AfYVyt8u51U+VQI9fezlZbBElDyjChW5bPUk1hVmp6G1OF3zGvHJYeDLeyt7iNQkVszDeeje9YztCKTJqTcm+U5i/1rVfir4xs/BOg3ZS4uTuu2Vc+RCD8zH09Priua9TEVFSgVHlp0nWmtj1XxRBpfhrQIdB0S5Zba2gCJGhGGIHLZ9TXZWpOi7Rk7JWtpa/fa9/nY5cNJ1E6jWr/ACOT+DWrzz6n4h8Padp0077YZ2BfI3NuU/T7o/Wng6j5nTjFseMVOnyTk7GJ46v9R8JeI4/EOp2j2IsLqJ4lwMSLvAfODn7pNXiFGn70laxtGKqU/d1uema3r2isPtVzp8U6m2JSR26kjgYrr9qm7NXVjkhRqW0dj521/wAe6L8JvHF94oHh+RLPWfLj1ae2yEtduQJnTYcgZHzZGAOc9uBThhp6LRnfChOrBcz1Rk/GPTbLVo49W0a+W+v5lMts9tEAjoeVJI7Y4z+NS71Ho7sXNLW2x5l8CfiFLY+Ntdu/iw0WjXlmgXSUkuQftEY6upbjPbAqaUJc7dR2ZclNwUUw8ea23im8l8QK7bHl2Wasud2c/OTVyXNHnb9CouUY2bPH9X13xd4C8fP4p8FavBeFLZl1S0mTdHLuHyqTjg8kgjmsHyQk2tX1NKcFOKk2c1Z/HHwT4li/sLxK50bV3nylpcABSo64fpg4+vNc7afkdTjJq62HeNfEngG007+z9T8QWFpHd2pa1e7ulUXIA3YU56g8A+9ZycH1Of2tOMrX2PK9S1bwZr2oi50nWLSGa4iCSEXiE3G3p908+lc0knqjtpXqrm6HPa3rNj4e86HW32W0smDPMNu0juCcA9uRW0aU3uaRSbdlb5HnXxG+Knw78JTm6vfGVmzLnyGiuQ0j4/h2KST1qakHGTUSpSjBas8U8R/Fb4qeOr+eHwwsGkaXK2BdLATPIP73zAbfyq/ZUadT4lLzV7fikzg58TW02QzRPhrp2n3SX+rCS6u5Vy97cyeY5OPU/wAqirUk9Is6aVJy+PUsvGL+Tyd67l+SIhcDA9aiN1udahCC0INW1eHw3oN7q7ZLLERGo6ljx0ropuLlc5cRKUINpHL+EJYTYI0YyCd5JblWPWuvR7lUOb2WvU1prt/tRtptuGG6JwO/vWtKVtEXCVpO5Na3EazbkUoso5GeN1dcHfc6velsb2mauWjVMLwMg5619LklRU8TFnXSukN8RXkmvRHSl1YW0Tr87Jnp6mv2TDVoSppnSp9GangXXPCXw08DXUOgkjGTNcA8yP3oxE7L3WbJQp0XykPw78a6p4kFx4h8QwtFaq/7qMjHHY81FKTvuThqlaXvWZoXXiGLWdSFxPcOsag+XCB94V0udSPU7J1ZTklcZZ61c3F+6L+5hUcBV5rgxbcqepnWck9DnV1678SeJpba71DNtA3/AB6w4+Y+/pXmYSCjUa6nPh6cp1m3qcz8WfilYaLfDR9MVp5nxFBbr0DE4x7mvXa9j7999DpzDERw1JdZPY6zRnOjaVZvq1ssVw0AaSPd3I6tmuqF58rZ10ptUl3Zj/EbWrex8GaXc6vCWl1TXWmsit7tURxLgsydCckivxrOq8s18SqdODTjRhZ6d3fczqV4Rr04t3Zy+mWUOu6x/wAJh4tvdllbOGtrOQ584/Sv1rDUJJ+0kzadGFSfPUehifErxlaa1eKtqPsNojKpdByFJxhRnJ7CtcViUldM8/G4mnTgkzs/A2qSaR8RvBpd0tYv7csFV7tN0aL5yfMwyO1GdQjV4exUWr3pS0/7dZ0SryhUgo3u2tFv8jsf+C1LaVY/te6jbaNPp00ctlgpZ2DxFyTj5y33jnP0r+YPo11W+HMbTlF6S6tPr07HHxZOc8Bh1JWcovTd7ny7b+F/Evw60uDUoL77XazQZu4u9tu7fSv6OwuGr4Oaad4P8DwMHlOOyrDxqKblF6tdi/by6FrDRvc3jsSg/dBvkfHqewxXs8tKors9+hKhUhe51nwW8V+HvA3xc8OeJ/FEFzF4fttSEGuxaddNDNJp8p8u4CsuCMxs2DmviuP8oxOf8HYrD4aEfbRjKVPmSklKOsXZ6dLnFi/aYet7XDuzR7n/AMFX/AcXiPWbn9qP4feDpNKt/D2sDw/rWjrdi4f+z9gfT753HzMJIiMM3XI5r+YfAHiarw5iI5FjK3tPbRdSMrcq9pe1SCW14vojsznL3HKKOcRd5w92ovLufIOi+J7DWF8+K48wSsQRvxj61/W9PNY4uTfNd9T5/C5rh8Yr05IsSXJlc2X2obZBtkbrtXr+H4VXtlsmdvtqadmtTOubOeGR7rRrt7a4hH+tV8nk9D68VzVacaqbjLVDqQbhz0pcsjPvtT8UFmu/skLF0AdEyM49fevKrvG3vA4KssfUd1FMzdUu/Ger/vEtIocKAcEndip9nmWIjrocld5vUh7kVELTwm2uz+fr0xlnAwFfoAOwrHDZROrieeu7szo5P9dre0xcuaZq2GkxWTLbgCPZnIC+1e+8NTpwtax6X1RUZKOyRP8A2jGkAuoY9zWzDz0xncvrXLdRXOum5nOuvZ88Ffl3K93dTajdpDotu9y8zhbe2gQu7M3RQo5JrStiadHDSxDajTja7bSte7/JMzjiZVrKlq+iW56Hp/wp8L/CULq37RGk3Opa60PnWHw3t52tiFwGR7+UDcinP+qT5yDyy1+PZxxnjc/ruhkzUKC0dfe/R8i627vTyZVfK3Ti6mK+J7QT/M0PHP7ffx+8ffByT9nXwvc+H/Anw/ecvP4P8F6BFZRXLbiQbiVQZrkjpmRycVllHhrkU8zhm+LlKviY/DOrJyt/hWy+SR4WHwkpVPaSdvJHlF009nYs93cpLEiDay8Yr9MdqMXzbI9dxmqfNPZHZ6XqKeLv2Z9U0oQ+ZdeFtYi1C0IUHFvOPKmBPoDsNfM5m54HiPDYpfBWi4v1Wq/C5VSqp4eLj2seaeG4pYWIYDCk5CnqK9zCtJOTPNyWEoUnGWjL+v2t5qOkFLWHebZ/NLJ1A705yUmdWY4N4qjzR3jqXfAN+NShFjcEEOMDPBFbTqwlTTsb5dKnOldn0F+xl4y1Dwf8SbW0+1bWjn5bJBx7eteDmNL28dEdmInT9kfo1PqV7qFrFd2l4SJkXbIOpzXzNSChJo8KS5nZHQ+CvEcvh2FzcXBeRODuHQ1i9TNx5WasPiSXWb5p751WDOchiM0pQY0nuzptH8U2sts0GmuBEv3zv5FKnfYvl1MyTxrZS6stnbtufcA3PXmtrSjonua6HzL43kll+MvjG5t5MSf24dhPIztHWvyXN1GGb1mz9DyKtKOGppM8s8UWkw8ZaoGuQNrgMOAO3518lWnBptb3PpqUY+0bJZYzaSfZWYZTGSpz27GlHmkj0IVWnYzPEE+FAyR8vJxW8Gm7EYi/Lcypb15otzthhjBHpz1q5Nt67k0W7GbeXkgkODx7/StYQ0uyK09ChqGpTXEeJZ2cKuPnbOM1vCC3R5sqkpb9DovAt9DbXjXWw5ZY49xGNrZ7fhXkZnTcoJI9LCVowqHoWtySHw/PIyjy2VDjPPPWvDozbqKB9BaPsuZ9jp/gxpY8T+M/Et9pusJZ3ul6ZZ29vk4M48vLFvU81+28E0VLDzntbQ/G+MMRKWNjTiuh1dnH8TtPvDquoWS3SR5Ktz09a+3e9j4uSaZznjX4yaprVwmgJcS21x0JckKPpmlUSS1FzXSuMg8bXPhOALe3pmMirsKtkZ+lRTtzBJPoac6/D3xfp/8AbOsRxmRm28xD8TW1SnFq5hOnGZ4z4z8I6R4X8TT6v4EugYCGEqLwPrx0rk5LvQ5pR5XZnW/Di306aFI7i3S485N0u45w1dCp6XN6Ka1KPxN8PzWcbaxpF4kU0LfuWUY49DW8Iq2pU23ojy7wJo+v/F7x61rrpY29k/7yMtxI2c81jUnJvliR7GMn7zPafFw0vwzZR6fYxI4RQNoH3TitYR5VoavkgjzyQalqU9zc6fEME53Uc13Y4pNtmF4nfxHNOklwW+VsMUPI9M1FSTvYHeW5javqes3zrZ3mUZTlTvzUXbVjJp3MHWL/AFCDUII9Rb93ng56mhtJ6GkW5aGd4wubKWIi2Qq+OT2NdMLKA6zUI6HFajfMISp4xnP1rlqvU5Iye5yN++WYg8kmvKWtVnu4eC9kUlyecVvVV4lxfKxsygqWJHTiue9jkrRbTZ/V9dXxe02QwzfO3yykfePpX1NZ+8zgqt+1kdF4KvZriXc0IDIoVUP3SB1/Csot3Iive2NM6lNNeXV2qZkeQI0oHAUdl+tcknzTbOrl2TK0OoSHVpJIrQKI/lHy5P4e9ZJc0mbVIKMEWGuJIZ/Kd44guCzkbnz6VOilcqElFFzVNO0bXLI2OtS77ZoioxxIx/mKwq8tX3WW1JTTWxD8DfDfhz4bafres6RbOt5qF7sluJp2kl2KOF+boPYetXg6aowcorVl4t+05IPZFLxx46u7u4fF4Am0/KxAx/8AXrGquWbk38ghBJWI/wBl2HxPqPiHxN8RJLgw6bHGmn2iRkYuZh8zvn0XIUe+70rpy+Lc5VU9LW0M8dTp2hRkrvcufE86H4qtW8Hy6eZdQvcx25ZizSyN0TnP1z2qqii04X1d9+/b+tPkbUH7F87+FbkniLSfFHgKx0jw34h2tfy2sMCyRMXWSQDbge9YSlWjaEtzNYihWbqQehc+JvgSy0TwFL4euzDcX1+N+ouU6gj7n+6K6KlJUoKL3ZhRxE8VKU1ouh8a+BfiLY/s3fEKT4M+OtQZPD/ia9kXwtrdzMSLSdjn7Flhwh5KHoPu+lcPt4Yf3V1OidByXNHdbnYfHHwN4J+JGky+GrnSYpoIoFUyunJJ/i3D606jVSPvGtKpJU9D5i+JWn/tB/BW2eD4fa9B4g0yzicafp2p7tkZHTEg+bHTrk1xT9pB+67olL2lXcb8EPizonxD8GWmn+JdfT/hMIUZ/Eulzrsc3HdlD4LRgAKpH8NVRjJx5up1SiqcbJFL4sfDHQvFenm6vtLg814mcxxoMAH/ADxSmuaLT3ZcZS9m0eA/GP8AZo8G6syre6bFcfZLdBELtd6w55wu7p+lcUqUqSbuYxoc0rs4Jv2X/BQZbaDw9DZzRIS4VcFhj+EjBFEUzvUHGMVHRJ6nI6t+z7p2n3l3bXF9dXcMePLt725eWMBuMbXJA/KrVWd9Tb3U/wCmV7b4KeEdGvfP0/w/bxSNFkHYACfY/nWlaTkjL2cKj2Lupab4b0GwbVtXvYbS2V9ryTEAKPQ/571zU5NOw5ctGnd7HFat8Rk8SyGw8AWUzacshM2pzoVLAY4jU9uvNaumlHnk/l/X9aHHSxcqk7QWncvWFot1CjtP97BjcDv6GpVSysjscmzmfGmoJrOunQbcxtFZtunkRuDIR0qqc3ESq+1fK9iHTdMttOvTMrbFZCdhGQrdsj0rr997Gim9kU0vbyW6b7eyMxbon3cf0reCcVdkwpylK7NeJYZYSqZDxnIIPb3rSNSTeh0urFOxPaXygBFcFWPBHUV7+X1OSomdMZe8jkPFll8YdQ8UfZPCN3bR2TLmWSTHC1+q4DETlBWehNaniXVXs3odh4cg0PR9Fi0fxFqKSzSNmV3cBWNetCrd+8eh7ekqdma+q69o66OLaxCRwK2CIzy9bwkmbxrrkSRVfV7fT4X1ydV4ixFEpzj61bqJvU0motX6lDwjr+tX9ld6tfqIpJg3kxRn7q1xV5Sa5YnFTqVJXciHwtPb+EtC1LU7O1E945Zri5n+7Hn09TWFHnpyvI68O5005Hn/AMPXPinx6/i/UwJbXTZS1mrDAkkPfpzXVCUqtV32OTCy+u4z2tX4Y7HoGs+IbnWdRLSXCiS5fYVUc7jwBXW5ypJ1JSShGLurddLO/kr6eZ69SalJtbs53486rYzfGTR/hlHLdxjwxpg86KeMFTK/LEDP/wBfB7dK/FOC3DMM+xGZOSftJPla7LSx5NGp7bG3mnFxvpp0e+nff87PQx9b1qFnZTesqAYCDqvHQe9ftCqQn8bsj0K1dONzj/DNp/wsj4hQ6ZH/AMgzR28/UbjqMj7qZ+teVhoPG4yMIfBDc+WlKrnWaKMP4cHqz034Ua5BrH7Uvw/057iNbYeMLDdLJym0TrjcPTijjbEVaXCmPdFXaozdl1tFnr1k546EOl+h3H/BXDxbH48/bdu/GEXi211fT5rm8t4Psli1vDbtBcFHjVWdySGBBIwMg1/Pv0ZcFKhkOIo1KPs5vkk03dvmV0/n+R6We4L2FTARmn8D376Hk9lqun3EHlghopowJiYwxkAH3Tnt/jX9Pumr2Wnc6ZTfJyy1R574p8Na7od1LrOhW/naY7ndGB80Pfp6D2rlxFCtTj7SnrHsfK4/D47DTc6KvB/gaPhTXrbXNMewE+9vL9B075rowOJvTun/AMN1LwNZV4Wvdn2t+y94w0D9o79k3XPAmvaFc6p4jsLCPwx4umEnA0o7jpuovlhuNvJ+5ZiCdm3+7X8I+LOQ1uB/EOlXw01ToTk69Ff37r2lNaacy1SutfU+ryRwxEp4WcbwqLkl2Xnqfn7q3gWw0PUb3Qps22p6fdyW80kBwm9GKk479OvfNf1tkEMvz7KqWLp3i5xT07s/Oa+QYGlWlTptxnFtXRV/sjxrYl5oJoruN1J5OxiB3r06uUZlhnelLnXnuaU8tzWj76kpr7mSDxINPIj1S2a2kLDKTKfm4656da82tjnh5qNaLiwq5pRoPkqpwfmXtMuobiyExIYmbjaeucjP0rtwmIpTpcya3O3A4mNSN463GrIltJNbBlyg3Bieh9a7aVeL5oLod/PHVdhk11arErp1Oc4PTilOvSjJdzzalZUpKTepf8CeAfir8cfGlt8NPgz4B1PxP4gvAz22l6PatLKyqMu5x91AoJLEgADJNeRnmd4PLMK62IqKEVu2zkxuJr4pKNNXfkd6vwo+CnwCvI7j9pr4inWPElrMou/h74KkSbYA3zRXd9kxRsRxti8wjuQeK/Na/F3EWdfu8joqFN6e2qJ2fnGGjfk3Zep6EMLhsupKWNqe818Mf1MrxX+0Pa3N83/DO3ws8O/D+KOYSWxtQ9xqAIxgi6lJbPAPy45zW+B4MxeYxdTNMZPESe8G+WHpyrR/O5ngcbOEbYFRi11a1Ou8F+IdY/aW+EvjfxJ8adXvNZ8deFWs7jS9eu3XzJLB90UkEzAZdQdm0k5GSOh4+H4hwMuEOIcBhsvioYaspKVNLRSTTTXbrc82vmOLqYhSxDvK9nstz55s45LfU5eFMYc4wOoJr9qy+M4xSZKUvbNrYPFd40FilkiKDMwKkN2rqxcXy8ncrMsXCnh1SjvI7f4C3sFrqtx4b1aQ/Ydd02bT7lQOu9TsP4Ng15HFOGliMmjKHxUmpL5b/gFCLcFF6o4mKC60u6k0+7iCSWszQzoeoIOKMHWdenFx2aOWo5Ua7S0sXpbqfSp4r+zfKMfXgn3rt9hJSv0PQo1JRamthb21Fg48UaDH+4cj7VAv/LNj3+hrSUYQdmRWpWrc9LbqelfCHxCy+K7DW7dl3EgP83GR0NcOMlCNF8p3ulTdO5+g3wW+N9n4q0iDTppE8yEKjRg8gjuK+NqqfOeXiJU4vQ9MS4+1v9qS5KxuCAc9ayscim+pei1/dZGxibdj5Scc/wD16TTTF7S70L+iW9/oumSTR3eVlByu7pn+VWopamyk7WHeC7VItWS/nlDkybt5PQA1M2jOcuXV6HjFi8etfE7xvdyxjMetTMjMMgEYA/z71+Q5w/8AhUqu5+h5JG+Egzy7xGDL4s1MuQWFwoIB47V8o7KL9T6zDSipakN40qzeWzdDj9K2TThY7lrPQzfErsFRV4Ixgn6UqEnz6BWfcyN7CErjAKg5rotd3Zin2My/LB2PGRgVqpIxrTMyYHzMuQAcADHeuuEeaF0cuiV0dFoVzLb6UqscRtdCRc4zhRzXl4mEnNo0oO2vmegXWqxal4IJWQZghRWAHXqa+cgqkcYk13PsYcssLp2M7RfidB8O/Fuq3kNpPL9rt7ZmeEFtuIxkH/Cv2XgrESnl8rbXPxfjh+yxyiux33w5/astr/UG0m6uWkEq7TDITu6fTivuqbgnqz4KNVN3kO8V+IPAOo6uZpp1hCKSOQcGtJy5kaOrTitDiIPBJ8Uao15aeKWkQHMMKSjaPw71NONtTWnPnhqZviW917RJv7KuZbhdxGJEfgf4V0v4dTmk+WRxmu32veHLiVo7t5Y7hDuUnua5JSUXoYOLlK50nwL8di5mWzu02Or/AHWPJrVT5kayqODsdf4zvrpoZmDYhIOc+tarVaEOpyq5zf7P58uXU7yEqsjTNhz1xWKpckuZjiqlRXLXxM8bWtnI9rDOWcnknnn2ro5ko3ComtznPCPxChtY54Cw3Mudr8VlS95spRUVcxvEfxBNrfToJl/erviJ6Y9DVVoN7HLKraZytlr13rutvfXEqxxjop6ZqadJPUScp7lfxxej7HEUO4RuCCrfpVShGLCVRwaUTI1PVYbmzEXKnZwWo5rRM5SlV0Zw+s3bYYbs4JBzXJVd0Qo+9ZHPTyMwJJ/GuOMNbs+iorlopFfzSi/1NaVFoQmrkbT/ALsg/lXM0YVmkj+qrVNctbeD/iYXzyhWB2K2PLX09zX1FbSbPOq39rI63wFLbi2kuoW80bN67mwFHYVjpytmblaL5dzQ0jUUm0xniXenmsVbHG4nk5rjTVrnRGbbSaH6LcsnmSoDLNn5So4X8ad4xib1E3Pcp2q6nrviE2dtMLeOP5rm67c9vrXIrzk7M3ioxjzSOgaOOzCafbxgCY7RKx+d/Vgf4R704qPNZCnLZlPwvoet6hfXGhWDfZ411RkvZnUs0SZAwuPvbsHBHTFVBzcuRdx4ipQgvbNapaP1tp+Rs6x8H/Cfh6WWaa7V2nAKxzjzpBzlhhsgcdD2rSrhYQbb6mdGtUq2fb5G/wCF9A0L4c/DLSvDMcZSGCN5plc4Ls5LnJHUkk8+9XRhDD4eMEZ1q06+JnNb7HL/AAhs9J1f4ya144W4SaDQNMSO13PuQXE2SzAAdlAX1+9V0VF1pTfRfiZYz20sLCntzPX0RyPxY+NUvh/4g6Z411u8Y2djqaNJGbdjuUHDMMjGADmuCrWUaqqN7M66GEo+wcEzW8c/EBvF9wZbHUkuEnUSLLEfk8k87s9DkVcpzqvmb3/IIUo04Witjwz4mfC7wr8bvH9n4cutOiurPR0ad9yK2JMcH8OTXKqXt6/dIFU5KbUup8z/ABFsv2m/2dPHs2neFNVbxZ4ZkbzP7F1K4KTW4DZIim5LDGRtbI9xUVYOh7sdh3gqehsL+198IfH1tH4TsJn03xDb3WZvD+sWnlyEE4yN2BIoxxjNRKajVtHVLr0f3/qRTnPmvY4L4wfs9eD/AImTanrqO9rqUDolleWn7uSOR/4kZeQOe1Eqjvod6nPluzwbxB40/am+Dqy6BPrNv4rsokAR75THcIqtkKZVHzYHqO/WuSpVqWukROrJKyONvf22fi1b6pquqeIvgYZrMwQiGK3vh5pCsN7Elcfd5HuKyjzykrsuhOvzPmWhV8d/tf3szKNF+EGpOu0LBLcTopZCCecdCD0Ndkqd477Hc5xS2ZwPib4+/GLU0GqaP8KkW4a1Ec0F9efJnI5yq5IxXIlBz95kSxFotQj95l3fxI+PWuMY9P8AD2laWzQAMFV5m+o3EAH8K6o+xcNDGNTETm3aw20+FfiDxZff2t8QtUudSlQbgsgAjjbj+AcZrGcnTvymkqcqllJnRWfh/ToFiig2rsG3cqYTjqCKwbdjdU401ZIx/H/iGw8BaDNfkI8052WdoHB3yE4BAx2zk06dKrUi3FaLcxq1IUo3l12OG8KWUyWwaWRXmdt9wxxlmPJNdMKd/eHh/hVy54mvrbSLqyzJ5ZuCUzjgkdua3UtBVJqnNWK0sq2sv2wWytG4xPHn/wAeFapc3U61LniWoYoMi6t5j5Tfclx+hrpXLDQzWkiKeQw3H38DIJKr0r0cNO7R0qTurHE/E7/hYVt4xs28PasIrC5XEuT2r9IyiUqkE0/UwxkMd7WLpP3XuWPEVpYazbxac+sFXgUbpVOMmvqWqcoWudkYxqwUWzU0WzSO3SG41eQQRDO5zkt9PSoVqfU6oxVLRM1z4gsBHHb26KyYI8t25b3NaRmjb2yfUz9V8WXGnv8AYrGFBJKgCsGxtBrSKi2FSXLLQTxv4lfS/A/2PYxLKWZmP3ie9TUcWtzdxfsG79Dk/hVr9zcaQYdMtwBEx3ykfKuetPC1FHY5MtXNTfY9E+EnjHwj4c8Zt428bxCfSdBt3uprdmP7+UA7E/FsflXx3iTmuKwPDE6GF/i1moLyUtG/kjtniIUJOV9l+J47H421nxf411z4m+JryQTajcvJbLJj93GTkKPwwK8fgLLoYHL1FaKC09er+Z42FnieeVWtu9vQqWqa/wDEzxLD4Q8PzLCZD/pNwekEfdifWvs6tWviWqVN7Car4+t9Xg7Lqz0BLPw58PtF/wCEB8GZwx/027P37hz1Yn0r38voxw1Llhu9z6XDYPDZXh1TpL18/U5c6f4k8F+JIPiPouoW850m6juUDMVbdG4Ycjp0rpr4H65GdOTThOMov5po8LFYXGUcQ8TB6LU99/4KKtrHj3T/AAb8aLW2mXw0YEOjuNJjhtzFeRrO7o6ud2J/MQl8Esp9Mn+UfBeWH4X4txeSya9s3JS95tpwk1FWa092zVrqzR9Fm9aliMPSxLjJezly3bTUk4p3Vm9Lu2tndPS1m/n+3nkjsfLSRGSZgFCqThR1Nf1YnNz1PPqV+en7hbuNQVVlt43YIig8nrjrUYptwtdpabeT/XqbQqtU7M878Rf2h4d8TSXvhuHck0fmSWqnqM8kYr5avWxOExzlRV0+h8NjHiMszNywy5k1do98/wCCePxRuvCX7UGjacsmnwr4hKQmx1pCbS5uI2EkdvcLkZSQjZznG4Gvznxk4djxRwlOq4yVSkm4uNlKN9G16LU9vKc3p1Ma8PWbhGqnto1JLQT/AIKceFvDukfHw/tAeBPDSaX4Y8fPJdLpAtGgGj6hG225s/LYAoFbDKehVgRXzfgRnMqOSyyPH1OethbatqXPHeMrq6b79mjjzFVcpxEalRtxmrXe9139Tw601a01QidrpBGqfc3df/rV/SCq08XU5ua0excMZHEzvF6I9u/Yl1H4c6xqXjrwl44j8PhNX8LGE3Wv2azG3gV98piLgiOQhVAYYIz161+WeJc6qhhqtHmlyzV4x63018jD2OGxrlKouZq2h4XceB9KjvrtvDOqz20MdyyRBH3KQGwDz7c/jXr4TJViKMakJOLaV15mKyajBc+Hm4eRn3vhvWreSYw6x5zqMyFlGDg12zyjFYWm5Rq3fmbwweNhBv2t35or/wBkeIp7rbIiBVjJIUHkVzU8HjpVbyehjPL8ZXq3k1axvfBXwJ8Q/FPxEsdD8J+JbnSbnVZDbS3FrctCRAQTJuIIJXaCSPavCzvCwp5dUxOOs4R1s11MsBDG4bEcym430duqMGz0u2vEluIZfm3t87LncM9TXqYTAU/YKy1Kq4SOIqOo2QtpYjl37fLKcknuPWur2DptaWOerT9lG0Va3U9V/ZpdtS0v4k+GCzSG9+HlzKI1hDmRoJopM88jChjwa/P/ABBVKFbLcQ941kr/AOJNHj14Va1anr9pXPM5bOJ3C+Zgqu4sOc/WvtqNeMd+h9FVh7O9uhgZl1vW2lEeY4sqhDVjTxDrVHLojwcGpY7GSqP4VsdRYTf2eqTQz+WyEMrqPmDCutpVYtT2eh7iTU7I0PjFbbfE1l41jgkW28Q2CTs8mP3koG1yMdiRXzWSzWFVTDS+xKy9N0Ga0uRxqpaS0fqc9a3sJB0+7cbX4XnpX0VKvfRnJhKj5uRl/SLo6bI1jdpvhl+V1xw61q7SVj2l+6jy9y/4S1O48JeJIofmNlNKDDL0289PauOdCOvMzi5aqqOL2Pr/AOCfiPQtMuoZ7fWomu54xJtST+fbNfL433W3Yirh5pXsfRmieM21W0S2tnX7ik4boe9eNduWhwuUb2JPEniDU/DyC6t5W8wDJB71UpWM5r3boj0b4s6x4isnjtkdZB1YcBqhOzvcVPmvdnafDz4iafFaeZq0ojkiceZE5681o3fYtyU24taHl/gLWkuPFfjO9C5hutafzArc7C4/+tX5Pm1P/hRrWf8AVz9HyScfYRjFaHn2oulx438QQy7lC3gEIA4JyuM183jKcIRs2fTYaK57Fe6YNdMrLyJPWuOk/cZ6UdJmf4lKeaoLen4cVtQledjLEOzMZn+QnsMdK6UtyYO5lX85887m4Pc10RilHQ48RJJlCZwQBg5AyMnit6dkjnVRvQ2rG7lfT7ez25CwEgbgeSea4K9uds7aMGtGdJot+/2S600ybhNYgge615NamnOM10Z7eFrW5ot7o6/9n+Tw/eN4puNfto5zvt44vNUEgLEuSPzH51+s8EYfly+T6X/U/HeM8Uq2buL7flb/ADM7x74K8EC9GseFlZbtMl1UY/lX21SK0sj46bg1schHruh6jaz2UzrHeEYIbr+dSnfQil7zaOZm13WPBepm4s9QlWPjDB8qBW9NRSJxLnT2Op8O/ESHxmT/AGyI94jK+YD96tKkbx0LpVI1InM3WqQzeIW0q5cmMDKBuSPauFxd7CU3e1hljdNpfiS1lsiVUSlWbpmtOVxjoZ1lzas7Hxl4vd9JKeZjbGQVz1reLfKFNKWhzfgjxZceFtEYI2WuHY7h2zWNJOc9TplOMYqxn3093q94dRvCWw3Hpz6101FpYxbdRamRrUM+j6gNVsJhL8nzRhutKDS0Iq1Ixja5yF7qWp69MWMZRUkIVW9M0TlzOyORLnYqy6tZTFtjJkcYOaKSszolJRhoZ+r3eqXtwkc0hUZ+YUVPeehxqLkynrOpOqhRIRt4GaaV42aG5ODscveXjyo7FuSeBXFiHyvQ6sNSUql2Z7u0ny1l0uerOpZWI5cICDyfWpndwOdVPeIfMV0O8iuWSaLqpW1P6ltUkh+1/wBo21gZ+QMOeHb255xX1Va3O7nnVm/aNeZ2dpNcW3hP7La3KrcXYwWA6euDXHUvy2RlGCc7mn58kGlQ6LaRFYYUAK95D3J9K5pxsrHVSi43kTT6je2Glt5SeXAoxsRcBiffr+NZtS6G0eWpPUd4P0zWDDJPdxRPc3B/dW0Y+RB2J9WqKdNxvfc1xMqfJyW0LuhapfG91O4eOW5isrY/bNkJJjYA45xwR6fhTgr1JO2xzzUY8qT32Oj+HJuvC3hD+37iErf6s5m/eLhkQjC5HrtA61pTUaNPmluy6vPUfK9kcl428f8A2KznvY3IuipCksSxb+6uO/auWpUXxdTWgpSkkny2Ol8WaxqlxoVmdThuYnFgmQ6sFT5Bnr1PX3rfEcsIqTvovMmlGkm7O7bOQ/Zp1+31v4seKNFOnz2ul2+ixSyzSFlFxOXYFfQgAZx71yYatVqYmUfs2KzOm44SnJfFcy/2gZtD8a3DeA9G0qa7muWWOEF8wIQGBCAgDJySx56CnV5a37uJyUlKn78meFfDfxTrXwOvtZ+AvxLt7yG00+Mah4fuLaFpTHbY/eQMuSzBC28egbAwABTqSdGPs7bL+uvz+Z21KsZpSh8zq/gb8QPBl7Fq9/4c1q3v1nkMQntJ/McbjjDAcqfY9KnL5xasmGJpy5E5I574ti3/AOEge3vCkdvERG0jDLb2BBp1oSU3czpRUl72x80eDvh94H+N37RfxB+F3iyyUyL4RtLrRbhothSaKV/MMbjndgoeK5IpSlZnYqUacVLoYOqS/GL9nfWL5/G2n3fiTRWjBh1W1OZoo1Pyh4xw+P7y89Mg1U6M/ivuKpJJ+6Zeg6p4a+MPg6Lxno+rQ3aS3xN3FECWhlY4Mci4yg/3hXHySfu9iOeDaT3OQ1fQdEtWvhd2NvbpHGygoAUx75/zzVRikd8LtJIo+LvAvhOTw3ba9G1uLW7hWVH2jELHhlPtlSR6Vs5NKxEqqU2jCvPDNmLAWSaeJTISdwTO5VH3gw69a55RXY1puLRzN94RgfUFjtQmYYQ6pIRyf7pP9KiN+hopRWxHNJ4ZOYWvIrOTG6Xz5Bt3A98HIPv0ok31KvpdnI+KPEmktdeRot9BecFnRMuF+rKRRTgpsy9qpNy7Hit3Z3vjfxCfF+pXW6WIsmnJz5cMYPYHue5rqm+VcsdEcqh9alzS2Wx2Xh7QNQ8Q2k8mm2zC8tIS9xFEg+ZB1bnrRFux3+7GGhzfj/TLnxP4Xk+xyZuLVhPbllxgrzinBw9prsYukqsbrdE/hG8s/EGgQX6rjzIwWK9j0OatKXMONWLjoFsP7K1FtMuciOXmJhnbV7TuEJPmsQayzJMEdwCOBJ2Ye9ephHdanTdxZxnxmuns9DtNUWWRSkmG8scEV99kWIioOJvOpy0Ls4vwvd3d3cnUb+4l8leYwwHzH8a+lpzlPVHHTqpz02NWXX9Z1S+WC3vmDtxGsZGF+vrWnvM66jlJGzpstn4bw+q6gZrgnLK5zk1v7WNOI6UvZv3mJpniG18Sa4zxAzKj/K4UhRVxra6HYqiluM+NetlLCG0tFdZCgVSGxkmlVU5JSi7MMZiJrD8sOpX8P6kmjeG00TTwoO0G4b/a9K6aSVOCOrDSVLCqKNay1Wz0HRJLKSJZ5LhfNmt5xlXA5ANfN5xhKGcc1Cor21XqjmxLcXFpX1PM/G3iy3tFaa1tEVZyWitbccF2P3QPQVxYX2eBwSo0zgzrHwwzXKrt7JHVfC3T9Q8G+FJtb1ePyL7Us7hnDKnUDrX1WWYWdGgpz+JndlUJ0MNzVfikMh8QXd3qcl8uDtHyvIB/KvUpzSdrnoxq87u+hG1/ceKfENl4QgbiWTfdhRnKDk5zWcsS6uMp0YvZpv5GWOqfWasMPH1foe5eOrTX/jN+xtqtnFcxte/Da7ENgrXTmZbN2M0cQiHyBQfO+Y92A96/AuOJ0OEvGWjjYR5YY2PNskuaNot33u9NDslh1jcoxGGpr3ormXyPnTwd4vD2qXxYFmTBJOQvBzx61+/4bH0a1PmXU8bLqlKvhYt7jj4hdzLGnO4EAhuM96zxNaDgzb6zBOUfuM3wxfPrnjC5uZI1EdrCI/nH3vUV5OVuOIxkqnZHz2XSnjM0qVZbR0Oov/C1xqN4dd0u6a3vYLlJbGeJtrJKmCrD3BGa9OtgqOO541FeMk4td09Drx2UU8U+dO0r3R9ZftX+M/id+15+yVoHxg8QvPr1rLpzXGsybF8rSdXsiIbiNUABzNCVkyCe3FfxHwvhMD4aeKlfLZWpzhUtbVupSqaxbf8Adem3zPqqeGweZ5S41aXvpXv6aP8AU+IdQ+H1o0S3PhjWEXzl3CItnPt7V/ZdaNOqubCTs3rY+TxWUU6bvhJWutjO0LVdU8FazLZ63Y7PPjaMytnDg8H8PavPhCWH93GQvrvueXgq9bLMS1i479TcsNTgQzWoYKJSSu1vujIOfyrtwmIhGbjE96hOEru+hG+pnZuAyJojuIPU56munGYnnjbuTWxMUrIbPqhW8aIEDMQGB2xXBRxCdZxNKNaN2jd+FEz3XibW/EQufs9v4e8K6jfNMHKN5phMEC++Zpoxjvk5r5fjPEU8Rh6WDS/iVIKy7KSk/lZO55lSp7TFPleiTf6HJaOJLG1JVgrIny8deO9fRUKVSjF+TOqnTXs7McHe7C2su0bFPzAevTNdc4e0SuRNKpaMtkdp+y9q1n4a+NekrqNyFstZhudGviXxiO7haHk9uWU/hX5nx9ljxPD9SpBXlTlGovWDT/Q8epTpwvO2x554wtdQ0HWLrwnLE0V/BcyQXUb5zEUYqwOe/FdtPERxWGpypO/Ok9PMyx2MWIao0fil+BDpun/2VGsZCvG3fHf3r2MLhpUIWexpQoSy6j7Pe5cKJMGST7+PvEda75wcqdos7Fd09Xqb+o26eJ/gks9rcmW40TUit1AwyYIpB8kqY6KWyrA99p718hXisPnC51b2kd+7Q6dR43CSoyW3U4fSWtb7Md0AJY+DXv4a1SPLLdHnUpw5uTaSNezeSXFjdKHAwY5AeQP8K64UlCTZ61OpKUOWW5pWlzBLAba5wyqcdehz1rnrKdzeEIvWW56T8DvA3xBbxNDq9v4oZNJWVXZVk+9joD614OOkuVxkcmIxtZKUFsfS+m/E6bw5qCOZgFOB1wPrXzU5KnojxXBuVz0yHxXH420nziwb9394Go1bNtbWNvwVfaDpFjgGJpEPO89KfsubUp6Iz9ZvLTUNcFxazBQzgsEbg1tbliYtPoYfwuvvsni7xJZJ8iteBmcnIzkV+Y53SccbUkup+j8PcqwqXmctpd2L/VvEeoSSBpBqQ+bGP4gK+LzO8ZJdz6zCLnqshvsm6YAjPmHJrjpyTpne3y1LGZ4tUiWPOcY5rbCyTZz4u/MmjJnA8lgDnsD26V1qVpNCpv3TE1NC5Z93GOgPSuqnNtHLXs3ZlE20jyYDh4mP3n7+1ae0VrI53FQdzorXypJoPKjCZgC4AwMeteXOMnFtnZGq5SSRuaIgGp2saf8ALSCRCD3wprhxE+WhJvo1+Z7OEpXxMU1umO+HviN9Eh8SWzMfmvV3ZHTEaiv2PgufPlumzPyHi9Qhms4+f6FO18UG11A6gl23luSDkc/iK+zmopo+IlNJ2Rx3iPwlda1rs2rWl4wVUySj4yPpQoQehUWoK5jXOuxW2kzWd9mY9Fc84PpUqCgyKtSVRWMHwfq+p20rwQE7C5MYY9s9KJ1YRVkyKUKkNzu/Dvw91vWzJr1zdBJdvyrnFcsJylqd0aa36mPcXGq6bPLDqMLBoZ8q2eDW85KJy1r35WGo+Kf7UR0ySDhRzUyrWixU6UxIb8PdRgkiONQMY4ooTvqjaaSVnudBFrWlTQLbnbhgR8vUV1pcxjBvkOJ1aK807Xp7hblmiZPkUnIFKUVHU5XTk5FPRIZmuJLy7YBQThWrHVy0OiKjBW6jNU1G5DyPbwPIEH30jJC/U1006fLo2tTNwc9kZZv4rmJ7mR1JHT5qxlGSm0jn5rOyOR1vV43u3iTHA4x2reK0uxxpykzKkm+TdIea83Ecsquh62FhyQIUkAyc8/Wpkiakm5aFe8uT91epPWnZcuoWSd2VjJiM7mHSso0+aWpjiK3MtD+n7T7fxLfzRvea9FFbFw625QFtgHr/AIV7lWEpVXcxxFlNnpHh3UIdQkhUyEwKgBQphm/DsKym1AzirmiL0vcGOztXchsjjhvc+1cr11O+K9wTWtdaxtjd3XzT5yofov8Au+9ZynybhSjFyNLwfcnV7M2+ps9sCu5JfNCqp/2iRyT27Z/Okr9dBV7RknFXsd34Xa70Pw2oudVuC8yl5yXAaQdgxAHQYFaOc4Qeu5MoQbTscN8QfirPpdpcy3TswcYiPfA4GPrXnVa0o3v1NlCUtEVvhh4A8fa/qdr448a6ZbaHpYUi1TUJP9IlLdH2fwj0JNa4WjOo1UqKyCrUgqbUNWez+N9S8OaJ4anttVeOQyxACNXG7tjH+NepX9nGm1I83DwnOspLoeOXl1C6alrfhu0lt7O3hIu7lSEMiKMlQSeTgZ4ziuHncbzgtD03Vg5ezvqVP2bNXsviFaXXx9uLQSaTYNLaeF3DSHz3BKyS4bCkAgqCBzzye0QVOdKNWNnu7q91razvppa+nR6u+iyxMIRl7LqcH+1Pdx2nizw58U7fQVRBqiW0rzSonnwzkwsNoAL8uSTz07YrnxdScEp8u4sOuROKd3ueG/FL4IX/AOyhrK/ED4RwxW95Z2yy+JLYDEeoyyfOyPjqy5wrdqwp0vq81JbHdUrOvQvIr/Dn4qWv7VXh/wASeN/Aek3a6V4YjM3iu7vLZ4Y9OlRd3lGSQBXcgnAXJ6V304SxN5x2RxLE0qKUG9X0MGytIPCDN8S7OM/2jMzXiKY/mMHA8okY+8v8645JP3up1zjUmrNG1r/ijRvEnhq3vrXT8afdxK9t56AqYpEyV9ip4/D6VlJy3b0LhR0s0fJ2t/ArUfDPjrxB8RPg74oudHv1uVMNxZKTFcZPAli5V1PfIyBnnvXPKN5e6GJpU4axZkeGvGD/ABYWYfEy0FtqtvcGC8gszshZuSZNuf4sLx2JpRjeV2a4WTitTnviBeeOvh49lp3gbXLafQdUnKXen3UXmxq4JUsueVPYgGrvrYdWlUqSvE5248X/ABS0LTDZHwXbXlom9hHY3LxOhPUISWGOPb09KmUtVFHRR5YR94dY+J7fxfpks8GqnTLyBFLaRqdokmATzk4+bP1q5QfLZmtoSXMc94m1jTdduCraQlrdsm2S4tpN0M6kc5BHH0rncZ3dzP2jktDjvGrjwdop0jRXiW6vi0bCEYMcZ6vgcc1K1djCporGH4Hso4pj4f1VdpKZtpiMK4x0+tdUueT5pf1Y66PLGnZFrxfcXnhfS7mezvJLS8VhDHJDJgyo3BXPetaceY5py1s0VdOgeOzRiNodNrMwz+frUclttDqptJWOa8IGbwj4n1DwtJIBCZTPbA9CjdRz710VKiZ5ybhXkjpfEWnC6sQyEgH5oXzyD1xWNObvoejTt1MO4vXvrARzRYkiGOe5r08JdGrqJHE/Fe6u/wDhEVMX3I5csrDivs8hcXUaZnWU50jzS+1CS8SOK4utid/KOMivsKVaF9zjVRRkuZk+h6/Y2FwzW8pyi485n6ewrWeIhGNjvjWhFXTGpq76pe7bi6Hl7/mYsckVy87bMKdRzneR1NprkdmY7XSAIoyw3Hby34120pKMbs6ZVHKXulnx5PDftCbkGRmQAZXke9KdWpJcqOucoumomF4ZPiLUPEcdrdeJYY7GHLypJGFG0DOCfXsK5ZwrQjzqV/IMBg8VPE3lU93sWrXWtU8S+K7lRAUtxbOWl2nakY4LE9hXJm+PWXZe5qVpy0XncwzDG/VKzi1p0OS0SSC98aS6qIF8uyJSyVjkZ/vc1jkdKrVqKpWXQnBU6eLzKWIkvhWh1Wsa3qC2+17rfI4J5OT+FfV4nERpqyZ6lTESUnZFGxu3NhIqOVZc+Y5fqaxw9f7Tehz0KkXd9t9Sz8IL9m8Q6t4luYTMscfkxHdx708qcp4qpiWrrb+vQ5cjxc8bj69ZvRaI+jv2HtXuPF3jPxd8FbPxENMl8U+H/tNs7Isn2iSxbz2twCD80sXmxj/e6jqPxL6Q2GjHL8Dnfs/aLDzcHrblVRcqk7W+GVn8uux9HlePjgceqs482yt87P8AM+UPHPhK90H4na94R8KXcsFna37tawXsOxxGxJAYZO0jOPwr7bguvmGccP0Z865lFXs7p/M+SxeCzDD5xiMNQkoxvzJeT1MxdR1nRMNqensvlufnVSyk9/wr6arXxGHhy1ov5HNKtiMK060duq1Lvw7lmufMuPlVryYs+RjAq8iUlFy7muTVl7OUusmz0MaysS21yCEUDK5P3iAQa+ndWnF32PecUkrs+mv+CeM/h74rfDP4n/DPxD4oEMejeRrmmaI8h2XomU21zGqdGYhkbGR931r+P/pGxnl/FeW5rg6N3Wi6c52Xu8jUotv70enkeOpLEyovWL06WV/+CfHCaVqngnxrrfhnVHdX0a/lt1jlXBUKxxx9MV+68DYqeY5ZTxnNdOK/I+boYetRx1aFR/A2vl0F1C5s9aPl3UImj2kMuO/HP5191z0qsbVNjepOhXXLVV0c34i0XU/Dduuo6TL50cj+WlsTk5PpXzuOoQwTVWk9H0PGx8a2XwVTD+8npYksn8UWcS/2ppgthL8olY7lUf3T6Vy1q2JteUbHNRq4yMv38OW/UvWpSJ5fNCSNtwcnrnvXTgqkeWTb1PVoTp8zTd2b97fp4X+CUsMUKfbvGmtJHE6DDDT7L5n+qyXDp+Nua+bqyWY8Sxa1jQV/+3pf5L8zw8e5Uq0ZR+0/wX/B/I5+0vFkjmWRArBQGyPu+1fc05KpTbR71Oq61K4+a7gghkeVVUxQ/ezjms3VjFNs5/rEYN83Qo2FxN5SzQErIPnVlfBzngg+tebjIqthnGS0kmn6PQ5qqjOmvM9E+M/h9fiZ4Wsv2ofD8JkuLmVNM8ewxxfLZ6iq4iuSeyXCLu/66I47ivzbhvmyvHzyqra0bum2947tfL/InD4JRqfWYr1/zPOHmht4ZJJJwy4wPrX31SpSpQbbN8ZOlCDlJ3I9OvLbU3/0Ny7McFQcke9a0a1OrC6Zz4SVPGK6eh0vwajN/fa/4au7aVhNYuspGSNu0kFvoQD+FfG57ioc0JPRwlo/XoduS4im8RVodUcTqWmTWUh1O0UloWKzqVxnBr3VVfIqi3OHMMDUg3WorVbos2WopqCC4to/mUc4ODXXSr+0tYrBVoVFzM1g7lBc7cK42yKvr61vUlGJ6CU5u/Q9U+COtX1vZM7XTbUxiP15r5rMuWs/Myrqmlc77xVc6jcWQvbbftUfLXzVWlY86TW523wU+KsVxpx0eW42SKu1lY8k1jCUr6nJOvZ2Zs65ruuWdwbqyvGUtzgdMVu5uJpFya1E0Xx/eteIZbsiQMMN60m2zPneqOt+BN1FqvjHxBqGqSLHFFG0k0lwcJkDK49ycV8RnsIKs7adz73h+NqJl+CglzZ+Irhf+WupZT3G8V+ZZ3XUa6R+g5dGPzZJcx7rp8KOH5PrXn0qi9m0dM4fvLmX4xjw0YAOSveunBNznyxOfGLlsYzRF7dgeBkYrockrmdP4DI1KAlcFM8HOPSumlNM5Ky94p29qJLhZhGSFHT+EV089oszqJN2NuOJhewrGMZC8Yrgcl7OTZ004XqROs0WwSPVdPlCKVSGXcx6/dOce3rXgYipKdGovNHuwTp4mn6MxIYraz1/xBo11cgPcMksYI7tGpBr9w8PuSeTqfm19x+J8awks7nF+TONutE1a1kuI7u7XC5KKT1r7pqKuz47lUZalWwe/ttSMX2iQKUw6nnrXP7ZqVkbTfNHQd4k8EskFtO/yLcnKHoDTxF6cLswpzcZWOot/wBn5INHt720vIwzpuyHBPNc9HCzqpM3q30aM/UbPxT4SlFrciTAGF2rnP5V0SoPDP3rfeVSlVe6uVtRt9V1qyMcWi3MsjdStsxrCrVhTV2zSVGb95xZj2Pws+Il1NusvBeouucj/RyMfnXn1Mbh+s0aRp15K0abOgtPgd8VJVDf8InLEDyxmODWlPMcHSi/fHSy/GV5tKNvUvv+zV8SdQjUxta2jt0ZnJxVrPcBHudayPFtboLb9kTxbK4k8ReO0ZRw8Vrb8j8T0rgxWfRf8OJU+Hq07NzOksf2f9M8P22zTbSKdwMGa8DOSfp0rzpZzjWrJ2XkdmHyjD0mur8y/p2jeP8Aw9aXGm6bqdtHBOv762XTIypX3yvNZuqq7UpN39T1oQdCHLFK3oedeNP2crXxeJL37Y+nXEpJM9talU+pWvRw+aVcKrbnz+KynD4hupHRnnsn7IWoWlwZLv4ixOnqlkd2PxNbTzqrU2icMMpqp2lPQiuf2bPDMCZuvGN/KO/l2yqD+dTTxleTu0b/AFGEV8TIh8FPhzYYSdtTnIGTumC/yFOri8TLayM1gqKd22T23wx+GJLCDw0zsgGfPuWJrmdbFzVuYt4XDdiyvgTwLalRD4SsDn++hb+Zpr6zfWTJeFw6V1E/fRfEFnZ6+ohtTOXYKIhJk78dT9PSvuK2k2eRWUpVHzaanfeC9Q/tq9kuUUBI48TOy4UKOw9e1ctS7ehXNCKsbLarcQq5W5LFz/AvRff0Fcs5WR0qMWkZGs6tHdazaaYlhJcgNvMcacADnn0FcdWfvIunRsnqejeENJW/0+HVNcV0kEm9bO1ePYFycFhnIAx6Z5rSPNJczJdSPNyr9Sbxx42trS1lRigQKQwRuMdAPelN2u2xcnMmmcP8EdPf4z/EqfWruHfoPhsgySkgpc3RPyw/8B6ke49ajDUfa1Od2cTabVGmu7Pc/iPpf9paQb1w+bRleYoPvqOq49B/SvQqxTin2OClXam0lozh9b1fSPEGswWus3MVnEy7lhkkG6TA4XPQGuOdp1fedjTnqwhdLUreI9C1/wCIqnwh4QgEFgFCaheIgEMEJ+8FPQsRngeuTW8Y+0fKtjl9o3Nye5iSfEX4b+G/A1r8H/h7LHaWXhaP+zGst2DCYwQXIHc43Z75zWPNBw9lTVrG9OM51OefU+Wf2u/i34H8I+ALi88UaTqV5cKQmlPbZlEcySIY2CBd3D7cndwDnB6VxVOSMeWR2KlVnLkps+gdR8Hw/EnQjr/ieFpNJgH2qZOhv7hlyI/91c8/TFdlSHNDma0X4nPK9KPsz4i/ac+GXjbwl4lmvPhZ42vdL0nVNXjmvPCRunOm3twMBGlhVgCw4wfYelcFWq6KcabdmbUKdKM1OSu0QeJfjhqHhLSp/Cvxm8M3Xh3U5I2MN/Cxns5FKj5Qx5jz6EY9KxlUUY8rNq1Z1GrHzh+z38X5vC3xm1fwj4r+K06+E/E95v0lZpc22n33YMSf3aSjjPTI96e8EkV7ScIXb0Ppi+sbDw0lxaWKjelsrXWyXcuwhwHGM8Etwfb8qhBRk4p6lqoqkVY8f134USXfjy8v9JeVI7mYfvUH8YXd27jHb0qKukdAi2noY2o+CNY8Q6Suma0gV9MzKSiH94wY5bHY1hGEmdsZNbFKOex0qKNLC7ie3ETtLGFy6S5HzEehG7NWqbg7i1buzjPGWmm21WPWIFEcb4Pn2wyFBPQjuP5Zp1JvsTKbbscv451PQfB2hSeJdeCiApmBIWDGeXOAgX3/AK0op1GrBUapLU8Q8D+IPFXi7xpfz+OEEU15IZNOjUZWKEcCP8O/1reoqUZLkRy4d1K83zo73VbGK2skWZD5IOQ+3DIc9j2qU77HoaQjY4v4zalrtlpem3U0kd1ZWt6JJpFGXUH1Iq6M7TscOKVXmi+iOp0oQ6noqXtqCyyKGwp6HHWocldo9GHIoXRgeOdMSaxh160wL3T3/eow5eI9aE0cGIjeXMiaw1dzZBLvmN13QyHp9DU/CzalJsw9QliS7dhF8so5APQ16WHk0jrVra7nNeOVk1HwZf2ixebtTdgDkV9BlVVxrWZtJp0nE+eZ5Lp7nZ9qfYTgoDyPavqIScal0z5CrQnCtzc912NW2vrK2KWyR7pe46ivQhJX1PYeLo04KEVdksmokXAaRFGOgPc1v7WEVa46NZSlY6jTdbts25LbihA+RflH4/0q6c3LZnqU5U4zSZf8a6s4lR2k2nblBniuxJwhc2xVRxgpWMJNTijAB3hGHzSA4DGkpR5bMrD4hcq1Lei+NJYlv9KScpb3No3mQgZafaMhM54GRn8K+U4rwzxdGk4Ru4yR5WbqWJiuRXaZyXhrUGh1V45oCiO2QlerltdYetyW0M8rnVpYuUZaJmpr2tzRlrqRN2PlWPPU13Y7FRVO63OzMsQqUHrqa8OgXt74bj04asbTzEDzsseTk8/hW+EwVbEUopysmdtLLKmIy9U/act92aGn3Wn+CPDy6TYQb4clpJpCCzsepPoK9eVWjlmFVOCuurN6FPC5JhFRpa9W+5f+GHxAn8JfEfRfHmi6y9lJYanHKbyEZaOMttc47/KTx3r5XizBYbP+E8Zg/Zqp7SDaXeSV1+RpQxdOliIVFqrnf/t2eBvCnw9/aO1DVfBHiR9b8Pa1bpNpWuXUUkb3wGMyYkA+UluMAcY4HSvyvwEzjF4nIZYfGwVOrDeCa922y0b17/mVnmKqzxdPEyp8nPFKz3ujyWG9tWAt5GWSMsS25ck1+/KrSkuVu69DzqNaEpcsnci8E6VDctqElq3lKjkRMOnPavLwtlKbg7K+hngsEnUqThtcXxNqOoaft03ULYxiJf3Mg5D985r0K/Nb3isZVqR9x6eZ6r+wV8WPAHgP9pDSE+JVtbnQfEUEmkX088e4WUsmDbXZ9RFOsb49FNflni5k1XPODak8Jd1aL5ko7yVvej/28ro5MDDD1cRFV4KfvRaT/mi1KL9U1ddmb/8AwUI+EXin4RfG281fxbPa38niSPzX1rT1c2l1MnymSN2VQQ4w2AOOa+M8DOK8Fi8mqYKC5OTaMviiuzV3sfUZnyU6v1mSt7Rarsz5zs9Qk3SlxkSOVUgV+yU8Y6kpXd1c+ReJTqO3oWNKubnXdcjxCTDYLx8uQZDU4eTx2N/uwNcHUeOxt38NP8zbvFi80W7QlTKCLlGwRkdVOfXmvflQp2s9nuepiYRlfmV0znZdG1u41610HwxZmc6tcpbWMW7JWV2CqD7ZNfMZmv7LpyxEXanb7j5t0a+Dq+5rGWi8jT+Jeq/2h4tXSfDQW50nQbFNK0ZmYjzI4ifMmGenmytJL/20x2rx8oo4qhhPayV51HzP9F8lZBi6Vd1FyLmSVkc1/b6WE6wXVq0RUFWEi8N75717scfKklGasbUcbTw9PkqJpjNW1NdUCtczgnA2gYwwHc0qtdVrO55WLq/WPebL9pcBraJ4lwChAP8AerqdWnKkk+zPdoKMqEbne+FfFbeA7u88M3qu+ka1Ypba5YGQhZ0yGBOD95GwynsRXwMcLHM5uu1edJvkl+aNqGIVCo4NaM43xz4R/wCET1AxR3H2uwm+azuR91kPIz6EDrXt4fFOtG1VepGIjSW6umZNlYWmn3AvdNYDoSAa6o0EpqVPRHFy08PK9FWPpT9m39lvxrbpJ8YNP+Juk6VrWveHLxtH8IS2bTS31m8DoXmkBC2wkAbZnLHAOACDX5RxdxBgKePdGdFygpxvK+id1062PErYidLMZV6asvzZ518avg4nw18PeGfit4f1r+2PCPjKCQW+oNHslsNSh2i8066TnZNEzBh2kjkRx1IH2GWZtGrJ0Z6Sj+MejR6GCz6nVryjVVjzOTTI7e4N5pOGjkGXQHpX0dCk1LnjsaVKCp1va0HdPoW7KUKpQEEuTlMda7pNTidqnOtGy0Oz+EfiuGya4sLooWHILnBA715GOUHruwVB3u2e/aDqGk6v4QwpVl2ny27mvj8VNyqNR2MpVYJ2seY6vqN94T106lpZ2kPyvqM1y3lHQ8nFuLnoek+FPi1aeLtOWymbEy8EDvXXKFne+xVCU5R94q6nrbaffhkkPytnB7VPPfQh3uzb+Gfii4udVubl2kJmO1Iyx2ZyOT618hnSi6slY+yyWrOlRSTPSvh1mXR9SkeJd7Xjcj6j/CvxziCnKGMs2fo+UVPavma1X6jpbf8AflmHO45FcVOcIxPZcZSdyl4n0+W8hTAyQnBzXTQrqL1FiaPtIaGTLZPEhBjA4HB9a29opNmUKHLEzLuxeUgMnatoVbHPOjd3IYdMfzR8gGB1I4NbuuuXcxnTvI1bLTCLuGXryO3WvPrV7wkjqpU71I6HbQaVIbyznRMbIHVhgdwa8GNdck4vq0e+qPvxk1sjL139nT4k+PfE914p8NX+m21jJBAm+7udrllQA4UfhX7HwFmlKhkPLL+Zn47x3l+LxWdt0UrcsSdf2MvE11cCbXviZYquOFt4mbHsa+wqZ3T5nyJ2PkVkGKn8ckjbg/ZQ8H6deC71DxLc3UgUDEUIXPvyawedS5rqJ3UeH4KPvTubF38GvhfPbwwappf2tLYfujPcEAH3ApYnPMRUp2bSR2UsowcFrG7NWPRvDunQLaWGkWqKqYRRGG4/GuFY7EP7bOhYDDxd1BCkxyZVbdQy8ASWsY5+uOazliKst5M6lRhBaJCfZLvcFjmCtn5kCqv8hR7bm+LUGrFiDSdfvMrba3MdoywVsYH1rmajzXsS+a2hUvdD1+aPjVrl1LYJEpUjH1BFXzwXQdGMlrcyb3wj46+2FrLxEwhIASO5Yuw9fmUKD9MUoShe8kaVVNxdmVT4M8eyMS2uxDJw6qrZ/nxW8pUHE50q3LYjk8L+K7SUTX2tRPAPvRyK/wAvv8vU/SolUp2skVRpSjdtlJfDVxq08otfEksyx5AKRSoPzIFEKsY6NGs6btuUdT+ES6mFP/CRXKGXIYPMy/iBW0q8bbHLUoc8bHPXXwCvgzvpnjJJCFGUknbp6GlTxMb+8jz54KcXozE1r4H+LLOMRzRSyLksGhmbkD65Fd8MXTaF9SqtbGHqHwo8Zx27XFv4a1CYrJtYTMh47Ywcn8qJYin3MamGqR6GLf8Ag7xlYqHuvDV0m4H5hbNjGe5xg1UK9FrVnOqUm9TOhhurclJraRCv3hKmP503OMvdTLnNQjsft3f3emtqRvSpWGJ8yuhIyfQnr2r7urG83c+crczqNHpPwn126v8ARJ70wBSeEDJwqdse9ctSairEOk0zotEvIL+4neOImJDiRgDgEcc+tcLbk7nXyuMU7iXWtixIgs4zuIPmS4wxH+0TwBUWSd7Fxu48rdzrPBup6dqmhNqcFtJd3CxujtasTGPmOGwBzxxnIHFaRUeW/UTTpzXNotDivEHh3xd8WNZ/4RTwk32K2XAvNS2/u7aMnk8kZbGcAd68+oninKF2u2nW/XVW0vrrrpbquiFOnSSatZdD6M+HPgvwB8LfAdj4M8CQRyWdkmfPLbnmlPLSsf75OSSea9fDUaWHoqEDyq9WpVqOUlYh1/XriRhbW8as75CITx7k+tVPXRGMIpO55V8cPDHgm30+PSbbWlsNc1SdIYVik3NKWYblCc7flycjAFcWJpU5RSTs2ddGpXqysk2kO8SeOYvhd4Ug8A/DqUadaWkOJHyDgj78smRySc8VK5sPFQTshTpWquUkfF/7S0PxQOrT/FT4Q3csN20jJ592mU1ORztAkXuMnj07VjbVyp9/vO+jycjvsuh0njjwlrHwQ+Gsmi/EDU5tY17UNM+267ff2jLDEJdu8wpCGKCMAlSuPnwNxOKqcPZxafU0oRc6ilHT1sfQGq/FbTvE/wAO9O1DwxNALVdMhe1iU/KWlQMDx171vVqxdJI5a1P96zwH42adaNcaTYqhnubO+t3uZJG+WRzKrN+QxXBOn7WSSYJ6WtqdZ+1f8MPDXi2Z4bpbZgbcMRJEMDEYbbn3Na4ihGMTOCbjex8Z/wDDNPw/0f47aPZaxpCJp3iBpNJuIpF+Tz/LMkLHt/CV59a4rSjPlNv3koNX0KnxM/Y/i0XUJ9M8GeMdb0m3ug0Qis9SlSNdpztChsL0HT1rqpQ5Lt9TelBRWx5RdeDf2kPg1qXleFvivcXttbXAkSLUIRcKhHAfLfNyOpz3rGvh6N/dZp7JX0N34HeHvij8QfF1/wCOfHfi4yXBzGqE7IEI5K4GcEnj0+lYxjZ2ZXtJU1ypnY+NfhLZNq7apo+oB5I4Fa4tsYKHPp/EPQ06suxoqjktTzH4k+L/AA94C05m1uQsCXBtcfvDL2Vcdc1i02rEVKsYHhLaZ4g8da2niXxShSOAFbGzB+W3Q9Mjux7mtKT0sSqc6s7vYu694LeOwTVrK0IuLF/NQoeoHUfjzVOSXuo7YxjSVy34o1GG+8Jx3tnmQyqpCsOme2alKTJu6iujFTTtPvbFrDUId8MsRSSJ/Q9TRGk27l/FBqRg+Bry58Ma3dfD26nDpbjzLI+ZzLAT/MdK6q1ODSlCNjgpc1KpySZ116lte2rROoYEYJKgOP8A61ZRsjqaU0cdDILSWfQrwEmMloSTw6n0NN8zd2a0Yrl0MnVLmFoHtCxz1jc8YPpXdh5WlY0lFJmLLeRtZXFpcFseW2dvXp+te1hFL2yZUPj1PnfXro2uuT/Yjty5yWHPWvrWvZSufP5jWjRqNQRRW423AaNzuPVu9awrO1jghKWrTG3dyxmV5JCw3etZKKlUu2c1GtKNe8mddpfiGGO0t5L/AJii/wBXGo6V7EJUqMbn08KtJuMpO1zU8RajFqkCahFDhQMYccCtKtWTp3T0PaxMVPDpxeiMfTNbfUZ/Jis3lVRhpZBhV/CsaVdvRRPKwuNfNZRbS0uXNZuILuNNOhS3McDFhLDFtZ8+ppVIznfmOuXtK2sXoZOj3kbatPNJGMQpxkd64sG3PESnfRHNQrv6xOb+ygM5u9ZtoJl3OZN5XsB711TpQq14J+p537zGY+EZPrc6u8124ljBC7MDAjzzj1Ne1HEzUEorl9f+AfbPEumuRHP6prN3qUo0bSn+0SyDD9wv1ryMTip1/wBxSvJnzOY5iq0/YUPek+2yLHgZTBBqPhe/TFzGvm20g9uorfI04e1wmI+Kzt8zy8trV41Z4Wq/eWqPpT9tS+n+PP7Onw4+L8HjSO6vodEg09NISw8tNPMGYpQJB8rlyEfBORzjiv5s8PqNThvjnG5NGlyqVST53K7lzax06W27H2uZYStm3D0KtNWmndNvps/xPlGfUdc8O3baZqaZYLyyZI/H0r+hKlfE5XiJUqz5vQ+KVXFZZVcMRr6Ha+BZY9O8PZSVC8x3OwOe/SvUy/38MpRe+p9FluJh9WVne5r609veRtBNCHhEQOxl65/lXs0aiqS5JbHdOrBx5ZK9zkb3whfwyfb/AAzdkMD8kRPQ56g9ulc+Iy+lL36D7q3TzPJr5biaf73Dy1Wtj7G8I/tCaJ+1N+zRJ+zh8SvCGl3EEMcT2fie5MtxrmnamAVUK5Y4t2IA2AYIftgV/MeYZPT4X4jqYvCrkm5XasknF9+56zjDPqXNKq4ytZxvon39T411t73wlpupaFqtgovra/MLhk5jkRip/Ov2TD5gllbqRXx2a8j5GvXnhMDUUo+/e33E3g1prOwADhZpGMjnH519BlFHlwt38T1Z2ZMp08NdvV6s1LuVLi1F55p3M5Cnuw559zk166SlC9z2VUc43E8N+KR4U1iLUzEvmiF4rZ3UZiaRNhkHuqsxB7HFfMcU01VyqOHvZOS07pHDiq3s3GPVkN9aRR61c2Tw+QokzEhGCo6rXRhlFvl7bGjklWafQr30NjJam2voANr4dHTgc5yD2/8Ar111XTlS9/8AIyrVack+dX+Ryt/oA1bVZU0JFh2r+7QN8rn0rwalJ1pyeH0t+J5E8HHEzbwytb8Ta+HFpceJNesvDrwMsiXAE8ZU/Io5Yn2wDTeJdLLqlWorOC19TDB46VWXsp6OJv8AjacS61cXVuQFZz+7A6DP6Vw8OwnSwSs9ZbndKUnC7Md/GlpFZDw5rZM1nI/RRlkY9xXdjMIqdqylZdfMqOLjTXJVe5mahoGoaNIJrV/tFlLysi+lFGulC6d0Yzpzg7xd0z7A+Bvj6y1jwBo3jbUvE6WN3Yz2Whs0tpJ9nbYhwrygbQdirx359K/IeM8phKnikrt3vZarr1/LuebjvYUm9Xd9EcH+0RL8JtT8B/EKTSo7u+uH1KxvrCbTNQ/0G3vFd4Zy8XRmZdw3DpiubhGhnKxGEcnanFSjK695pq8denfzPOp4etiHzy0a301fY+ePDk8jHEblRjBz0r9lhOMFyo+qy9UqdNXNKWAQyqyyAseoFRKpK77HZKdOnK6NK68F3d7p/wDa+k3XlzKPneOTkj6V506nPUOLFVqs7qOiPYvh5r0Nh4TtdP8AtILLGBISR1r5/Epe0dkedD2kyXUdGj10TXKNwgzzXOqMou7HKnd6oxNLEOg6gJoZgrKcsNwFCvJ2MpT6RLniDxfaufMkuoxxnG4c1u6fJG5DqxhE9F+Cf2XUdNh1AK8g8wkCOIkk5r4rM5J15N9T6TKavNTi77M9g+F0IPhy9lZMM94+ARyOe9fjPFdVrMLI/WuHo3wzky5Lbbp2DDBzycV4SqtI+iikQXFqXUk4JGAeOtaKq27lJJuxW/s2E/MY1bjuKPbyTNFGJC+hW5bPkLz7VbxMu5MqUZdB0egWvAa2AJFS8TN9TF4aF9jS0zQIRKv7gYBGB6GuariHy6s6KVGMXsdXpOk7sBuw649q8irXUXoejpyna+HdEnaxXy7aMoc5LMf5V+tcFu+Rp92z814hlzZlL5Fz/hFb+aTe1xbRxj5n80tvPsCD9K+uvC58/wAk76Esuh6a8uWhQxrgMQxPP064pN8uxUKd9y3oejeChqCt4i0q8ltf4hpU0ayk+3m5FcmJqYrlvRtc1jT10KY0SCK8uZZdKjW0EubNWlDSGPPBkxgA+uKujOq0nU3KqJLYgvtHtfOQXGmQ8rkCIcdO9dLqcxi276jR4c0+cP5ekknHJXOMf41l7RoyaTdyF/CSRjEULwq3PLYDelVztlOEbalabwzPHiZ4Z1VD8xaTgnPX8qG+4WtEgXw7fRlnkgdNzfJumJIAoukiEhk2iXcSmUXCjP35POPfsatTuPUoTaLMg/1+Bj5185ifXNPmCXvRsV5RHIotGuUJyGUyTSDGB04OKE7PQcX7tmZ1xZAIZLhArEEbWkc5H51uncyejKkqSrF5VtY23JH7x4txzz361EldmU1cz3tdelTa8WcsD5kAIB9Rknj8qcHZWLV2tChdreNvke0WTAICyg5A9OoJ65reKizGSkyhNLrDRrLBbzDYh8qIXDLgenJI7elKUV0MpprYy77xZd3l4umXlvCs6q7GGfT8kqDwS7qqn2wfwqbxg9DnlH3bPU/SzVvE+n63OtmbkQjcu8IxwFHXJBPWv1CrKKm2mfHSvGbbPVvhFr8sXw+uLuOJUjknYREAnKjgYz7VyTjeLbMlUcqnkdXouo3z2CxSeXAijeVJ2hj7+prLVRO614lfVrm1uv8AkItLJ5nDxdFc+lcztzalUZOKvY6TwfqWlzunhrD29nI4Vo7SQhQ3oAFYsxHAAHUjmhxjOVugqsptcyWpe8VeI7TwU7aDplyEgMw2W8Uu7JPXe2BlhnB7cVNWpCl7qFSTa5jU1rxxc6FFBqOn3TIIVUyS7vvnr5YA5Oe/1qpTtqmZSlztqS90h+M/x+8N/Dv4f/8ACW210z3moosenRwxl5AzDnaq5JKjdn0IFOtiIQp8y1bOahQnUrcnY8s+BXhPx/4w1Y/H34nW9xp1ogceF9Hum/fzs2QbuUfw8ZCg88kms6NOok5z27HsaUabgma83h+b4reNX0ae/a10HTMza3dA8zMeViz6k043xVSz2OedRRVt7nKfH7V9BvtT8P6FpsNvY6XBr1nGn2mby42VZlJ3E8DOMZPHNKVSFKSj5hQpctNtkX7ZOnSfEjQbu8l8PSaY9tcNbwXEk243EeDwflGVA5Dc8HA4xW0+WeslsPD80dU7o8X+BvxJ8aQfCSaxh0m1lfwpO1pcWk85XdbqfMgZDzglTtye9c060JKyRdVRjPfVmVq/x40H4tapei10bVNOl09GluItTRY42nAQrGkgbD4OOnp+Fc0HzT1NadKUPeZ0uv8A7VXhjW9ZfTfF2mX+n6lPZR20tjqKj7PKMNGzRSdGY5BxnOK1qxhOV5N2tt0FytX0PIv2pxr3xOsrWb4fSTac2gzQX1ndsSS19EQVP+7uA47jNKPRroZ0qSqbo67wL8R7T42eA5vEt0r22qx3CJq9mzAGyvQoEi467Tjep7g96mFR12dEZwirM888eXGnzWrWbORqCHCHjDj+IZ/EfnUunaWrE5TlHYwvg00Utp4k0A2MCS2199psyxKO0ZVVmjyPRgGHuKykoqVkKnBv4iDxn4hSztTONTkMsbARSD72zP3Tj04rKcfeNrciPALpX+KnjTUda1tGb+yX+zws6bccZLnPUnpmlOhWpVOWomn2YQ5Kr0HBNHkD6fcuiSFgI2Y8Yzgg+nNXyWXunRG0FynM6r8UNN0ue78O2tnDqc6xkARTYVTjpuHfrVezsrsmo7ppHmPhn4m3c4n0O+09omtrwzx2gffvi/iQdOcHI+mKThUlK6ehx0KkuZq2h2+i3FjqNqJ7dxcK4LodnVfT2qlJuWh6Ckkcv8VvDt/ax2njjS023mly5+U43wn7wPtXRFOouQ4sTRlUaqLob+kaxF4m0uK+tpwzSxh0cEDHtXL1NYy5onP+InIn8yeMbo8jIHJHr7Vo2rG1OTUbHL65a/Zl+120izQuOcH7hrpw9Rc1jTnVzKYtKGWRwr4/duRweK9qjJ8ysZyqOMro8H8dQyHXbn7UgRvOOSgxmvp5qpPlbPncXWnVqONjAicQS5xwT3qIVOWWpMX7OOgT38SSgDGQelOVdp3PKqKSq3ZpaFqss14qyxpsToXGQvvit8PinXnboerhsdDm5Fsu52OkaoviGyksltFEEPAlK43GvapuM1ZrQ+my7GSxiacfdXUY/wBmija0hiCIFIO3Hze1dtP2UVpojsxcqUaaULGbdymxiYui+YT8qDqTXkZhiuSLV9Tx8RjPYUXFLU15Pg98WfD3w0h+LOvfDPXLXw7fXv2eDXbnTJI7SaU8iNJGADH6VxYGpRo4dtSTb31OHB4ilCjKHNee7V9TH0qw1HTtauZNZsJ7S7jVdtvdwGN1BGQdrYIyOa1weMWIrSqqSdtEPLKr+szrTeq0RHr9/NFHi3k/eyHaF9SavGYyThyRerKzbMq0o8lN6vQ09L02Dw/pi2aBWuJ13TysPmB9Aa9zLqdLBYVqXxS3Z6mX4Snl+Ba3nLVsj0T7ReeMINQtoCYbZGW7mA42kfrXDThVxOcQq0l7sU+Znk4ecq2dQrQXuR+Jn058C9b1n4gfsV+IfhbF4hvbzTtM1i4kn0KzsY2W1aVMw3s0zLuVFcbNoIGZe/b+b+NqGHyfxKhjo04xnUUXGpKTvKztKEY3s21re3T7/u8hdDHZfKkn7yU0te7utO68vn0PmvR1imgFxexrNJMpDs6A4r+lMJQVaKqTV3Neq2ufJYXlq0256t6Mm0HSbzw7cu9hOs1rIhLwN1QeorSngq2Blam/d7Dy/K8RgqzlGV4PoaN9rvnzCWNsK8JVV9cV6FGrFT0OueKjTqpIjfVFsY1i3H96nDDsSDXWlyUmk3r19TprYqrGKt1P0S/4IkaT8N3/AGevjP8AEzxT4T8C+Ir3SZLKCTSPEUXl3hgl2/v7afPyumxiFxyeMgE1/H30hc+x2UcV0MHRg5RxVCUFOzlySTTUlbaV0le+zas02jxadKX9p8zfxJPeyutz4s/a3tPBGs/tH+MX8JBv7Mn1QyQGQlmBIGc5759OPev27wswmMxnAWFWYK9Tl1fe2x7FXC0a0LT3PKri7OlSuYVzGdwD7cbTX38aEsO79DjlGphb3WlhDrcUdqoeUeUIsls8f55q3iKdGHNUegU6vLTvN+7a5Y06KS+8ISa9J8smpXf2e1Xji3iwzn/gTlOf9k181Cs82xsnvCOiMKUvrGGdbu7L0Qy/1F5reG/kuTLdDKlpG5YDp+QGK9ilRjFJrdFSi/ZqSepk3uo6tr12LaytGywAkY5xXDmGJnWfs6a1OGvVq16ns6a9S/8A2DLocy2upRGI7cghuvHXNZYaMqLSkd1JvCJJnefAbwddaxdeOvizazpHbeEPDMct1IvQyXFxHbovPBJ3t+Rr5Di/MIvEUMGnrXnbTtFOT/I8yNOOMzWUoK+mpw3inXWvJJpo2wSSdxPOOn8q+lwdWGEpJJ7I9LFzoUE7vYzfhxYHxT4pNja2r3Eqo0kaRwmRsKCWOACcAc+gxmvGzjN5zwM6UOrR8zRxMMRiW5/I7O68NeLNPuC+leE9TvLCY7R5NjI4B9sCvKwGZOlh/wB49D2I1ZxcUk2j6r/Zo0zQ2/Zd0D4ZePPAmsLayfEDUNZvBbeH57hpilqsUMU0YTcqZDEY65NfHZnmGLxOMr0sPdxko7NLZ9G/Jnz+a5TmNbNoVsNTlLl6LRanD/tK/siftOeLLbwtofwy+FsutWMPg+Cylu9NthaIiLcSSpFKJdhaRA+0kg4AUAkAVvw5mlDBOvOvGUHKbdpO/RK6s3ZO3l3tdnsfU81fM40JXlvdnG+F/wDgmd+2lfbI5vhrYafuGSb/AF63XA9wrE19GuLMHCV1d/I76OBzenD+F+J3Ojf8Ek/2ib0LJ4j8deEtLTvtu5bhlOf9lAP1rLFcZUVC1ODZ0wyvM6jvKy+Z6L4Q/wCCVTaZCE8VfHkvlfmTS9Ixn15djXlvi2tJaU7HWsnxMvinb5HXaP8A8ExPgbYvm/8AHHi29zyViukhGfoFryq2fY2c+ZJI7aOQYRK8pNs7HQf2GP2dtD4i0DVbtX4IvdZkYH6gEVnUzvH1I6yOtZRl8X8N/VnQWf7JP7PFpJiL4QaW744eZWkx+JNefPH41u/OzaGW4CCt7JG/pvwD+F+hZudH+EeioEXDSrpcZA9yWFJ43GVo2c2aLBYSEdKa+427HQNEghUQaVbWsP8AD5EESj9BXG4ye7ZVOhQi9IpfI8Y/shNF1DWLERhR/acu3nrnmvyvim/9rNeR9vksfZ4axSdUKiQknkYPr9a8LVOx7lO1yFihztHOfyrVJ2NGhjRdSij39KXMhwsIts5IIUg+uetJyRrGSRYtrAO3XjHbtWU6iSNbNrQ1dMsyjD93yOBxXBWqXRUeVHQWaRW8e58Y9c150pObCVRROz8GSDWtETUIsRqsrog8/htpxX7hwjReHyGlGW+v5n5pmtV1swnI1HtIMEyx/KvcS9T/AIV9E3fY86/cqS6ho8c0VvcXEcc0pYwRySkNLgZOB3xTm2+hKlFEN5qFiUN3LYKU3cylhuX2qNXqNy6lNr1TAJIo3JXpiQtjnvxzQ07EpyZZe8cWlxaxzTxuJ41j8yIbZ1wS0mQcgA4ABwSc+lRFzTsnoyuVct2Vr6/lu7i2u725Dy2sskloYpJIxGzrtYlYyA/HQOCBngVoqEl719yHayRBNq8nyq8spHVj8oHr2NbKCMG7MrzapluUlZSMAvKQAf8ACm4qxfM3EqzzqQX3oN2eTJkjnuB1qLaEIhkuGRQn9oAN1Lxwk55/IVSso6kNtMq6hI4C/ap7lQ5VdyL94t9B0qJzildEyneNiFtCjuyrQu4ypyGcgY+vHb0oV0ydWipd+H7ZQXismcoSPMLOcfn2rdNpDUJPVFGewZkxa2isMn5AS3X6dPxqebqS9dCre6WLVC0+lNGqrl3LlQPrkgfjRHV3TGpcu43QpfDPiC5uvI1u1iFjArzyXd1tXB6LHhSZmP8AdjDEd8VM68qcuU2Si1cnvdO0g3QtVt7ySMx71kgsHKOCNwwxC889OCO4zWyqSa2JqRXKPTTreaDyxoWsybjyIhCvbp+8bIrnfPUla5ySclTeh9maHZSa3qVvJZ2qxWbuA8UTBjIeOSew4FfrMqb5rM/PKkp1Lvuer2etWPh3RRY2ibnjcCOLfje2OgHoK56snayNqNK7Oj0bU7u100XWohJJyMsrfdBPYD2rGU2o2Ou0djOn1a+1TUhDGfkiGZWx90egrjbfNoOMIwW50ei3F/YgandxCPaMxMgA8sD0H94+tVDmbu0bXi1oZEWs6D4r8Z2ugarfMhF7ETGl4sTmLDF2XIJlYEINi4Pz+1Y8sKtW0uhhUlOC02PQPGdiNP0Y6zrbiKIsY0EeMW45+XGTtJAP159K0qxtvsJOLfLE8dt/EOieI/GunfDnwLp6pJe3Bl1O/I3ypbKct8x+7uxjiuejSjOdoouUpR949J+JnxLOj6azW0bJDDbKkUW7BCgfKoHY131qkaUeUzoweIiqquk11/yML4b3eryeEIl1SCaP7Vei4ugsTNmR87AzYPAUEn0AJrJT5o2iiq1qHmfNX7ZfjJfHviDRPhH4W8Qiy1nWNdWwvdOkLCa2VH3STR4GCoRWyeNrLjncueaVOOIpyTkk10e716afPW2z62TKTqSd7aM9Y+Knjawl0bTtC0+RZdPtbOGC1t5nIMjAfMzd+eM10QTUeW5NNtXPG/FvjPw1+zr4N1/x14tu47e21KNo9Rl2k7EVgqMVHoc8dcVqqcVsNt813ujI8DWun+LdAvNV8L6pbarYNeG4eWJiyPC+0Eg44bbvOOoOM4zXFKE0/d1OyNVTSdjZ8d+D/CXivwZfeFNUPmXNrAJrK6Y/Og69c/wtjmtadmrMbc07o3/hTDo/jr4AWGpPBCdUimay1BlcMrSRKwbj/aA3D6GrbpqNhydnseEeMp5/g18SZviJaRlrfVI1h1a2jJRZFVsLLjn5lGRn0NcyrU6Sate+39ehnKmk73OA+P8A471HxBqdp4U+D1tHLr+ou81m7fNBZWvBa4kI/hGcKDyzfTNRKsqjBYiKkoJHmOip8Tvg0iQ6d4zn1aRJnuGuNVG8zyOf3gyOg+UcdAMelZRgnWuzodJqGjKusfG3xz8RpGsrPwy1nfPf+XdzS3GYkYjJYAcnrkCtq75k5dRr95CxyvifUIfg1p8eoWt7JIivIJbUnLag247s+ueeawo3nuKNJUYu+xzup+L/ABJ8Q7E32iWT6ZZXEoMhkbMhP932HStXJ0Z3SujOM51tUQWfhfTPD+hTagbiO3MT7pGY4J9WJrnlN3vc29q3HVHBaek/ir4g3uq6baNDZPEn2SQj/WMv8Y/Q1sm2kcc1ed0tzsNO1rxB4RuEGp2H2i0Ay01lw4PdmXoffFJQcVoaL2ravsdDpHjrwj4qsZba31COWO4Upg5wp6FSDyD7VPtGnytG0MRGqnFHGeHWu/B/iW48FXbjy9xlsTu4dDztFWuWSuiYwdPdmtrmoWl/E8T71P8AEGXlTj+XvQ11R07RZwd5MYriSHzNrfxRj7rL6iuilH3rmNNyk9SlLcbI2Ct8uDhhXuUF70SnBylY8R8WSSXWt3TPeeaqykBmHIr6WviFCPLE8etKNOtKzvYp6V4a1vxHMbXQ9Eubx1XJFvAWwPXgV5FfGU8N/FdjhUpVJaK5Ss9AutQup4obKdhaqXugkZJjAPOfStaNSOJaXQ5ZR+tVOSKem5JZ6lBFKI7KyAiJwzvyTXr061LBNKKudFGpSoVPcjdeZ3Gn3F3e2BTSNJnmZIDJJBZwlyqDq5x0HvXbUx9GlRU6suVPbzPqJZnQw+FUrKK7H058Kv8Agnb4S1P9mIftKfHv4wXWlT6sw/4RjwToFmGurlMZ86eaT5Yk6DABJr82zrxHw9GU6GFa54y5bP8AF6f5n57jeKZ18S6VN7M9x/ZQ/ZK8DfDLwLa67o3gjTLrxnqAYrqeu2wvDaxN0Kq42q+OhAzmvyHOeMc9zbGOEajUNrLS54eNz/FYiuoRlyxXbr8zt/Cn7PHjPxR4lttS8fzya/c2E73FgviEk2GmIhBUiJvkXAHYZya4v7UzOvQdCnJwVtXe3r1PMeYOg7Qdm92t2fL3xe/Yd/bA/a0/aT8UfGHUvEukDS73UhGninX79ILdokAWNVCknAUYAx2r9MyzivJuG8ppUlNuSjstW2ffLF4ChRpzjXTbitLNu55V+1d+x/4R/ZTn0HU5f2pvBfjjUr+RlvdE8OibztPYD7zl1Clc8dR9K9/hPi6XEePcp4acIx6yVk/Q6MtxtPEY2FWrFqKfVWPIr69k1S/TR9PGWmY5frsXuc1+sRjVxNT2cXv+R9TXq1MZV+r0ftdfI2NQ1Gw0nTotI0uELDD98EfM7HqSe9e/GVDC0uSG3U7pqhhqHsKS0W/n5nu3/BOy++IfiHW/iR8L/Ayxmy17wct5ryTX7QKlpaTxyySAKp8xgDkKcDvkYr+ePHCjktCtl2ZYhe9Co4wtG/vTVknqrJ919zFkFb6tmkVCCnzNbu1k7ptaO7120v3R4OYIdP1jUdJSQGK01KeJGXuA7AGv23h3FxnkdGpPdxX3kUaKo1asX0k/zL2kXA+1uJmyu0Dt8wrujWlXm4neq2iRmeJbf7Nr8ZtISFlJMYHasK0Xh6sXfc8/FYVU8TGQ++bfHFp+cux5IXlV7ms8Ti5yapQb1Lr14tKl3Pbv2UPBOgfFnS/iZ8ErG7ube7vvAUuq+HLyKYxM17YSJNtYDlg0ZkGP9kHtX5P4y4yOTSyjNIJSpQq+yndK/LUur+qbXXbQxzKaw0ISo3cdm35o8u8dJo1j4purbRr53too4UaWUgNJIIl8wkZOMvuPWv1PhyrTp5VT5dI2v231PUiqare5K8bLfTp8zlrieK+V7RD5oPPloCxP5V6+KxlKFF3krHHi69NpweppaD8EPiL4ohii07wFrd7bbWEUVtpkrlzn+LC8DNfA4/G4Wo7VKyUeiujylgatVe+3yrodpH+zB+1L4i0/T9M0L9mjxgRY2IiUDQpY1J3ElssAD161pl2aZNgaFvbK78xxlV5I04U5aeRteHf+CcH7cHia+gnf4FT2ESMSTqmq2tvkdOQ0mf0rmxvGuU0q0Wqidu3UqrhM0qVYNU2kvM9J8P8A/BI/9qZ42m17WPCekRAAuDqjTFQemfLQ/wA68LEcf4VtypU219x6FLAY2V9ErnTQ/wDBIHxTqqJD4m/aJ02EHomnaLLM4HsWK+vpXm1+Oa04/u6f4hDI8bWnapOyPS/Bv/BOv4d+DPgvrPwJT4l65PpfiPU7a+8RX1tYQwXV61vu8mLzXDhI0Ls21Rkk5J4FfKVs0li84p5jWhedNNRV3Zc279Wejh+HsPhouKk7vd7P0JvDP/BL/wDZR8PHzG8D32qMh2mXW9XlmByOpRSq/pWmL4hzWvL4+VeRS4dyty5ppy9Wz074Z/s4+APg1eWurfC7wfo2g39rC6WuqaTpMCXcaSKVceeF8wqykggt0JFcbx+Lqw5ak20XTybL6ErwpJHXWui6hDaCCGZQoO5kWBVI46kbeKiWJk42uehChGP2V9xI+i6vNIjnUGfPeGbGT7jt+VZKTg7p/idLv2JbLwcZS0r2tzhny6GNuvqOamrO6uyYvni32LVv4XjZt5F3tXIUC3JxjtyORSUkZWbdmXrPw/4lUNst1lt1kUkTWYx9CaTqXg2ldIHQqWuZfje78ceHrnRYfCvwJXxJbX4caxe22vJZS2JLAKVidSHAGT94UoVKPs5OcrPp5mFaGJjNOnG8eup1kfwzsp4BMLu6ty5AIlG/GccZXgkc8e3Wub2knudsY+5fYS2+GV5FcSKskE8IwbZoUdJNvferZAIPofyqvapA4Nxuh0nghLKY2U29JCpIDSAA/wD1qHUhawcs0LF4SSXKDT4JgTgiYbh09+DWTqOOxaV9xknhB0fy4bWKEZwVWIYP0o9pKT0YJanhfjbwL8Vr7xF4j1rwt8LdU1jw9b3wjutT0m3817KXAyJFHRSDkGvls94d+v4j29Gf7xLWLOzBZ7DB1XQqLR/ecg3hi6uLMzRarcQDOTHcRqrL9c18VKnUpVHGpFXR9Xh68p01OL0Ma/8ADXiOAbotc4YcHaDS+sYdW5oGspVZL4jIudN8YKfl8QgAf7ArojXwKX8MzTxC+0JBpPi5+nirafeMUSrYL/n1+I1VxKekjR0/wz47MgMXjCPB6ZiFcdXE4C2tH8TT2uPtpNfcdn4X+FPxi1mYfY7l7hUj3t5dmS23+9j0968fE5jk1OPvKz9TKpUxsFzTn+B6V8Dv2dfif8T/AB7YaR4U8UaPNPGRcNHfXdtCi7DuKt5rYPTkd658PVjiq/ssPS9/dczstPN2R52OzGVCg515Plemib/I6Lx5d6kfHWtf8JBe2jXTai7Xj2EUUMBfofLWH5AuR2HPWv2bhzMJ5hlcatS3Ns0rW/A+dnThTaUL2tpe9/xOPufil8MrPxsnw4l8YWkniQ2ZuotHjhlLeUASWZwNq8epzXuN1lH2ij7t7XOGWJw0cQqLl776BfeNYhCYIZAiyZwscucc9+Mgf41u2+W66nSuVoyI9dupm8mxsotpBZpPKJXoSOaTaSuc9ZJPcrS+KYZmY3N3NCyKUxGdqkj8OnvWidlcyjPXQiXxDbSBTHMzHG5jlmDfyzQ3HdGt2lqxZdSkcsTGwbnCsflxjnBNK6J3IReRM4CkA4JHTco6468iqTSdzNq7LNqJrtiLaCZ2zhfLXI/Wpck9h8yjoXk0PXLj5YdHlUg5JckDPbgdO1LmsL4h8/hb4jT2kkmmafYQyyQFLe9N0UaFu0gwCCRwcEEHuKUoue5zTjKZp2yfEKG009dX1Dw/c31jZ/ZjqM9rvadcEB3jPyBsHtxWX1Z05Pl2HCCtZlOLw7rUlzKx8R28judzJDaqFU49AOB7VsoNrc25YtWNXwH4OS98ZWS+JdM1HUdHtbyO58QQWNi0kpsY3VrhlVME4j3dO9RVqclN36diU3ZqO/QwvFXhjQ7XxPc6jIt3PZXd1JLp9q1zPBbxQM58tRDuGMLgfPluOSaVKKdLVv57kVaMou8txsPh7RZLhrjTvCtpAxBDGKJcnHvXRCmrWQLV7EjW9xt8sREbcjoFBGOtUtHexteVtyo9rcHfMbVXPUq2euP1rVTsiJXa0HLYXDMbg6WmckAqw/pWfNzTuZTUnTZ638PPiTc6ZfxwQl4ZYxmZZ24Y46qeOfzr9RnWlKR+eTSVRqJ6h4T8Uy6jdx3uoeUWllHljf8AdGeTj8azqS7GvOkj1K01q2vLApYDakLcnacbvf1rmnGUlcmNSK0FsNUFvPiYlrh2yIgM592NRGMVudc0pQJfE/jK8gQzEqcqdrKflB6cVFWXUmEXeyOV+BYtL/4hXnxS1p43GjxNb6TJJJuO98eYwHIBAGB35NcuHvKq9BVFra5oeNfjn47+IHjnTvBXgnRTqz6fObmS1t18uGMgZWS5k+6AGC5GMsN3UkmuipO8rR3Qo04RbjDS53/hbR/Anw2tdW8Vm1gOsXlhHEkix9HLB5MFe2WkA/2QorppctKm21qN05KyTM/UtX0Txv4q0q38L6ZaSzW1wk+pxSRyFIbXy/3hmZwBu3Z2lckdc8DGE1TrK63TWnl1/rzM3KoouLZhfH34w3FrPqeleDLmK30+bT1gSOVNpVQoVZODgPlTgjoCa55zfM1HsYxhJr3mfBfgnVviK37Xuv8AxI8b+Ik1C607w40fh9bxyG82Q/vWZjyW2qo9amhTTjK79466PNFNI9S8FeO9RvPN17x1qETSyXXk2FpahsKAGYsWPTp1rane2pU1yy9Sz4Z8I2/7S3xKfSfEYRvDvhKM32qRP/qry8b5oYDnqFILkH0HrROtyzsjWMOWPM0c58Uf2cr3wTrlz8QvhL49utC1CVjmztZD5N3kEhXiOVZeBngHHQ1EZWu2y5Soxhd7ni/jf9tnxZ4EuZoPjNpK6VcmKOFtZ0+Jmt513fMGTqhbIHce9cvPUV2tzOlXjduW3Q9b/ZI+Omn2/guXN0kkeog/a4kJJinZvlYjqCR3x3qYOrUjfYdSqqj90rftJ62NQ0+4tTlpGAWLavV3O0AZ68/zqGp81kVzqMG5I86/Zm0e20PVvH+jXsqTa2JLKCF2AZkthESY1B6fPvOK0VGcXdnLRlGpUbtsJ448MiC7EtyP3PziRDD8zPweM9uv6UndSudzq+7Y8we98M6HqvibWWZfs1pLbTpE6fPIrhlC49yBk+mah1bzaM6dSSkedeJheeMLmXVNVaK4upTmGKMfLbqOiD0681tBJPc0dWpJuPQZpgfwfLNNeNDHaRxEzpcNtRSO9XOnJ+6inJUYO+hw+q+J4PixrFzY6OSmkW7lmBZv9Mbj5R/sDj61zunKD11ZxUK31mpZaJfidhoulWMOiTWnlpFNbL5tq2eBgfMp9sD9K6VFLRHbWaUPQr6TqWmeJImk0zUUkkc5Ko/Q+1JSS0Iw84ybSMK50238Pa619BDHHHcvtvIgmMt2es6nccacKUuZi/EW2a80eHU7fC3NgweCWMnkDqPyrWjT55WN6yVSCcehl3Hie51vRY9TtLhTIqD5SevqDVuioPVmUqmmpympaobllljHltuPykjKnuPoa6aSgOg5X2NPwz8Ovid8QbK71LwB8O9a1uHTlDX8+laZLPFbAnGZGUEIPc4rpnicJhmnWqKL6Xdr/wCZtUqKNl3Nzwb+x14ZW4k8RfEi5kvLmb5jplr8kcZ7bm6k185mHE+Jr1HToK0e5H9kU4TdSpu+h6Npvhm18K2i2PgrTbfTIVTaUtogpPsTjJ/GvJdWWI/iSbOmGEpRXuxseMfFL9jvWtd1G88SfDnxE9lc3rFruwkciOUnk4YdM+hr6PAcSfU4KnNbdUeViMj5G6lCVmzxnxJ8Gfib4EuF07xD4Fv4yZNqTW0RlWQ5wACvrX0mEzXB5hrGe254mIwuKwcL1IO3dan6L/8ABP8A/Zx/4V7+zN4jtvFPg0P4n8b2yLIZYB9osrIMNsKqRkM/JI9x6V+M+JHF0cwzyGDwUueFLa2nvd9H/mfJZ5jKuIrU6UJbaux6J8SvhL8SW8HWWt+JPCOoaBoNs8NpoVrrUItpLjawU7ImwzAdeBg8HPNfJU6FfDwlUxF+Z6/eeLRoJxlVs1vumvLr+fXdaGN8cPihf/DmKGy06T7JcWdvE9sHbDXcnGEQDqcmtckpvMMY4w05evcmlg4YibTkk7X6/wCR5B8YP2mfjXo2nX3h258OX1xPqtrtfZqUZgtd3/PZmI5/2RX2GByPDVcVL28tt7p3v/Xc9DBZZRnW97X+vmfKvjX4pftT+JbeXwfd+NbyPSbRdqxaXI4gb/ZGwAGvu8syjhmlW5+Rc3d7/ifS0ctw1KS5Eubv1OYi/Zx+M+sWn9rXHw48S3b3A3wXMWlTOZPfOOa+2gsooQ5J14xbWlj3lk1fFU3qzd+H37M/7TivLcwfs++MZpGG1Jv7CmA2/UgV7OX8Q5ThIy9rWjzdHc9PKHicBGXPTk5bXsdVZ/sRftheItXWwsf2fPECzTqWjjvEjhLKCMkb3HAJGfqPWli+K8np0XJVk1s2rvf+vwG8TWrYlUIxanJNqL0bSsm0uybSb6XXdHuP7FX7G37UPwU+Nl1rvxX+Gg0fRNR8L6lo9/Nc6lC5ja4gKxhkjdmPzhexxX5P4l4vBcTcOwpYGSlWpVYTS2fuy138j0MswmYYfHRnKm1brfzGW/8AwS01zXvFmpa34h+OMGkrqFzJNDp2neGJZ235+ZAzui5zk9cV3ZVxjHAZbToSb5orVWZtj8ozWtmNStTmuWTudz8MP+CSfwx8WPNZ6p8c/E9xqVmoN7oUOiQWV3ACc7tsjPlSOjLkVvivEPH0IKeFhzXPJxWX8Sxm1Rs7dz0jSP8AgjZ8At1vqOp6d451UqdoSfxHBCOvX93HnOBXj4vxA4sxUOZRgvvMMTkPHeNUWqtOC03u2SaJ/wAEWf2arDUL3VPEXjTxjOs0xa101bmONrWI9IzIUzJjn5sAmoocfZ9Cn7/Lzdz6PAcO1KUU8VU559baI7v4bf8ABN39lb4QeIYPFHg/wXq41S3ikjjvrrxDOzFHUo4wpUYZSQRjvXlZnxBjc9wzw2PUZwunZrqndP7z2/7JwlrON15m7ov7Dn7LmjXRu9M/Z38KeaT80lxp4uDu7kmTNVV4hzWVPkVRpLTTQ6FhMPHXkR2+ifCDwX4Z2w+HPhv4fsgCSDY6Jbpj8QgNck8yx9aNp1G/mw+r0G78prNo8iKy3LTQRbSNyoQqf98Akjp2riu76mjUehTn8DNdzmdbhroBTsaOZirD3DYI69CKvn6DUEtbDE+H8KMc2JxIOCGyo59TUyaeoOTZEPhzAHluxHIJppB5kglYlsH6jFJSS3JVO7A+BL0gFo5WjVcKwkPfPHQ8f57UnOTVjZR5SGb4fSSuo07VLxYwFwrW6uvXJLMq5I7Zq6c7L3gm1JJomtPCV8+3ZAkka4LhUOM5BGM9DxmnKSlqY620L2l+GL9jLLDov2nyAqh0hP3WIz2yvIzxmuapXdNWHCmnLUv2ngqyvrqS18QaPNaRTYFvdwWu9o1XqSM8jrWUq0mrm0Y8pLa+D59C1BriG80qa0kiQQwjRQGLdC5Z2O4HJ4A4rKHNJttm/PDlulqJH8PdNjuTdFAGaMgCO5cIx91BwO3UV0ym+SyZzevU6fQvAPwu1PTLuyufiD/YGuWUCyj+0rO4e2u42D4EUqK4MmVAIIHWuKMsVKpK80kuncTqyo1Yr2LlF9U1p8mUNQ8H+JND8IS+JtO8Max4gRIpvs9lpFsHubyRFyERHKYLZGC20c1nRqYipWjCUXFPr0HjalPD0W0m/wA/8i7o+hXsmh6fqWr+FtQ0Se8t1nbS9btvLntSwyYpApZQynI4JFejJyi3F6mFBqpRUlf0ZqL4bW4Bu4poArsC3lhct7Y54pOXM7mkryb0A+GIZ5MW1tE69XaKIncB7gcfjWdWXK9GOKi4kE2gRxvI0ejuV2ZUyNu/Dp/QCphU10G2tjPu7OK1g+03luDD56oHtbZn3M2dqgICcnHT61nicVSw8F7Vq7dl89hyjJwc1tFXZwXwZ+MngP8AaA8Dt4+8EPNFBDq89jPaXymOWOSNtpDIeRxzg+taVfaUKzpTVmrP5P0OTL8VSxsOeHRnzr8RoPilafEbxP4k+GHxd1Xw/bDUmg1KLR45WFzGRgqwBCgdOT6VnWqQda7WrW97HGqdac5zir9Ds/2WP2d2+Kmiaxba9eaVql4Y3MVx4g8bQ2PlYGQ+wckexzya+OzfDSljL0qijpdqy1+bPey6tUo4RcybV7aXZwXjHwf4d8J30mhtb2jyxM0cjxa3LKMqSODtwV44NeN9QxlW1SNWNn09096jiaUFy1Iv53Odgj8JTwGYxpsXhtt7I3I/CuadDHQdr3+SO6hi8BUTvbTzZJC3w1ijBvJpFDL/AM/DY/CocM0vaCX3ImpXyqGrkXNO134L2U6tefaJAq5CtfOoyPoKmeFz+pH3Ul8l/mQsbk0mk7/ez1C4+IH7MGkfDfwbf+HPiB4hbxVql3eTeJIbK7uBDp1puCxRFsYkZsbsDoCK5MVkeaQo+0jKE207wcErNPR3v11v2PPo411sbONeNqK+F3u330PPdL0wad4gujaeLL2W1urxpbSW50+48yRSfX5e3HFb1OevRgp0kpJWdmrDowVBySm3Fu6vudTqOsavo149xpHhu6miuI1EksrEAOB0AfkEjmvteClUp4apSfR7Hl5tU5akXFdDA1jXPEV9Itw2ixwyldjzKYw5XP3SwGcV9xGg7XaPFb53zNakcUetsQryQx/KfvuW5P05q3GSL5kt2Rnw9NPK0114mY72G5YkYg47cnFJQXVEz9nLUfD4c0SBxPLqkrMcg/vEj/xq9loK6juaNtH4atypVvMJGSrXRbp9KjkbM5VOZlqGfTo4w9tocTjcMuynIz25o5L6hC7JJdcu9p8rR7dCFwpRM9fcVtCiupbdi/aav4mYPtnULkCFVtypOBzu9PStHCCWhzTWu5oW1x4iaZ3klBZUYHzEJ5xgHGR0NYSRV2SpZ3cpDzxJkrlwgwpbHJAJ4+lODaKTdhw0eVMbbXcCD94jH5jmrbstCXqWItHVlZJYuucAyEY7YBFRzaFwauRXXhBdUUCa0SVScDczkr9cnAojKxray0GQeD4rGXNkiB3UhlWM5I6EHOcjB/Wrk1IyqRjP3WJa6BHo1mILTSmgiV/ljUEj36jI5rNTsiEkkSMjJCXksFOW5If5T7fpT5rj6AlmZ51t4bKczuPkEdu8gOBk8jI4qJT11HBNiS6Xq0482OILwWcNY8k/XIrWHLzIpxbgztvE2n6Nd3KQoiRGFQ0khYkAjnr3+lfq9aykz80rScZM0vBlzqOqLLe2BKqSUjmljKcf3voK53Z6nOpc0j2Xwn4nXT/DkOjWuoAxxJmRygLu3dif5VhKaasjppws7i6R4jS9uHuRIkIX7+Xwx+v+FZxXLqdjcZaGL428R3muQtDBJMjMhSNgR8i56qv0rkrylU901jKK0RnWt14pFtp3wy8Cxf2bHOSr3GPMlAPLHGPmc8n+6O5rWlHktGJnOKWr6np2nQeGvhR4TbwrZkqJfmuoLaXdJcv3eaXqxPp0HQV2OMIRutDFQU7xlszg/iP8ZrzTIbjUGmt7e2gty0ru2fIUD2HU+g5rlc30N6s4wVkdR4C1q68I/B+3utRili1LXoxfatLM+1grcxRnngBcceprVt04+ZjBvmbseA/H/wCL76QBPJcPLJIwjtLdSMyyscKMeueg9K5JuV7vcKjSMT4gfCXQ/DHgXTb/AMaTyDU5UNzqc0aneWcZ2ZHOBwMVc04pITnUgfMPxZ8aftEL4xs7T4S+JFSXVbmSeS3vrFJY47aMfMyqABGFLABRjrXPzODa7gpy5nKW7PUf2EvjF4h8HaV4g+G/xO8SS3ustqDajLeTxBPtcLAKflz1TGBjoD71VKmrNyM4Yiam4y1R6/q/xFk1m1u5DeJIjzbrPYQcR7QvT65496XxN6nZGN43Z4H+1D4X0vxdpV9p19YwThYgjNgfe3Kf0pOLV2Z1ouUeVl34y/CG88CaLbeJPAF3Lpeq2umRTSAjC/6tThx0ZSMnJ6bqlVabSb0Ip4eST5mcL8DvH/xZ/aS1+fxtrNrBZ6X4ZZ4rWBZCf7TvkADSk/3EPQdz+FNXjK8QhKeIlrokXfCeq6n8Kv2hLafXdXlkm1zT2ikd22hLqJ2ZRuHUkMw59K65tShe2p0qKoyvtctfH74022jaddapr1zkByQ0bHdK+cBVGTuY5xXDKFSozWc/ZQ52eAWPhD4lanq0vxG8TeIJdOW+iCR6OgBRIQcqJBjl8HPtVxoqEbW1MI4epOr7WT+RB4u8QWHhBTrVrY3DBVY/ZIVLs4UfMf8APrURpOdRKJ23hTXNYyfhV8M/F/7Rnw81f9ozxZZXcXgHw7rkdg2mxkqbi7cFxHI3O3Kq3BrjzrNnlmPpZbRX72or3eyR8/iK1XE1o0qafK2/6/rY0dN0PT72Q6lpFskEIO2O3QghVHTp9K2SqprmevU9qnTjQglFFP4ha5DoXh17eGdo5tVmW2jIXoCcMw+i5rojJcyUtjLEKbikupjXmkzaeYr7QpxG9sEWIrwSuO/r/wDXqfcvua0qU6TuaGs6k2ueH/O8ryr+3BLof4vf6VtBPcqvCPIuUoaNrw1OxFvKQ0cqlfn6j1Fbp8quhU6/u2RyLuPC+r3GizEfZ52MkDg8Z9KtpT6HHzzVTUytSV7w77KMtdE+WiAffY9BWlL2cVzT0SO9OcoaI+3f2SfjT8Q/hv8AD/TfAFtfLoOo2FmY5Z9EXy1mDHJFwAB5pOcZbNfmWe4ShjsTOs3d3012KjP2ibe6Wh1HirwhF45uLnxDomkQWd+qh57eE4S967nRSMK3fA4PbFeVgsTVpv2dV3WyZvhcbUnifZ1PhsrPz/qxw8uh2jqXEZBJwy7eVI9a92nUtoj2ZQSWg2HQYxJ5Lbpc5ztx/ShS5J+/dr+vI55Qluej/s6Wvw28F+Jl8f8Ajm9sXurRimmafdLvWFiObhlxglR90Hvz2r5jPcVmM0qGETs92fG8T4vGVaX1bDxbT3Z7x8Fv2i/2fvAfx/0K88I6ve+JbiC9a7ubC40j9zIxOSzyH5QFzwK+cweGxGW5jDGOOkej6nyNPLKuHiq9SNmvM+VP+Cmvxg+M3xo/4KNeGtS17xDJqdqdR86y09XK21vaZGFjUHA24B/GvssuxSzbIcdicUveu0vL0OWUo1cJVqVJO/RG14o/Z6+J/wC0r8fbHSPBnhuG8k0W3EdvNfybLayU/ekZsYLAZPtXk8P4qhluE5VpffueZg6k1gJRjH3v60uc1+2P+z5b+FtZs/hF8CvA2sa/pdm4k8X67aIbgS3pHKeZwBznC+nNfSZXxJl9LFVJVqqSn8MXq/8Ag+tj6XInhYYiPt5q7Wxu/s7/ALCn7T/xv8X6XdW37PE+gWUcRTSINcihsopYYgN02Cct1BLnuwz1Fe1RzDD4qq1R97ZX6LsvXR+p9o82yLCZhClOUfaSTcY6XajZNpbtK6Tfmr7o9P8AGHw41H4J2l9d/FD4kaBBHonyz21hrRlMT9TtC8YxxxxnjrXh4/OcDTrxpSlzTeyWrO+jxpkvO4O6t5Fvwbp/hn4h+FrLxV4a119U0/UAJLeWOZmVl+ueKhVlJuKVmujWtz6zD4jD4qkqlH4Wa6eAbZtQaGzk2DP+qlm4z67jXRGakrM6YyjGWm4H4Zanrem39hL4Wmu7m4OdP1ZtZe2WxIzhyiKfNGSDg+nWnQqxjJ6nR7GU5Kd0rfiXNA+AHj3UNRszZeLvC9osdtbw3Ok3llPPaTTCIJNcLL5vmxb3BfaGwpbgADFVCdOEm5Xlr1t92ltv67mGLourFRi7PujpLf4KeP7HU4bnV/EPhmS606fGl6jYXlxHPbRHIeMSAN5ikHbhsjFVUxDirwJoUpw5rt9jqNT+G2kHUHvdBuXMYAeGKW4LvESOR5gRNwB77R9K5PaN30Ol3SsX9M0vUdPiEU+pSzDgPDcZkXjGOo/lSctCYrU3oF0fUE8uRjbOOu9S8bfQ4yoqYycZXZq5K1x8Ph4Ah0izGRkmEAofqetaOto9TO/OW4dA0mQFXjZSv/PIZJ745/wqOdj5WtBs2g2EoKJAwZcjJyAfrV8yKVkiGXwwm4TCxYkdTjBJ/wAKUn2J5rif2HaCMM1gFcZbEi47dT6UX0JUW2SDQoZE/wCPJcnOCTnA7/hTT1NrcoSeE3kP+j6e+A37wRIcd/yptu5Ld0R/8I5bSxrNNp00TRn54570RlvfYBzjjv1olLQS1A+FbedCfsKLsOHEcqtk89cnrWd1Fk8liO8+HemaneW98+q3UEsAJi+yaxNbJIM/8tEjYK/0YHFTUipFK1yW68C3DurzLFdFQd7NN83PbknPr2/SjljGOhFSSeiC08JQWQwlhHb7ozsWXhl59en86hNPY1px5Y6kyeHopVDOEnkL7kIYNjg8nApz5bak3TZY/sa4t1W3ZZQACWBxgHPqOaUJPmuaxWhY0/T555UZYpWXeTu2FizDpwDRV13M5y6M05vCWvtajVpYriK2aPc0nzFY1Jx83HAJ6VlCpyuyI9rSvy31K154efRXFtqMd2kr4YCdSjAEbhyBnbj1HNKT5tLiVWL+F3RFe2iatZC2RL+2kgkWS3uLDVZIJAw5z8jDzF/2WBHqKHGcot3JUeeW5Ve48UXnnm4l85pZSSzR7SfQ1VOHKrI6rRVjMsofjZZ602p23xAkhhi1SC8stPs7cRLC0Ksq54O9sM2SeOelZVcBRq14Vajd4u9lp/TCpCklJJbq2p5xr37Pfxjt/FZ8WeFdXsLK3e5mvdTtbPTMvczFeHAQqA3GDnrnrXPhsG8LUk4Tdn3d2edOL57pW9D5d8XaT8SPB/gu/fxt8RZfDmoanrtw0/ho3Drc3CszeXOy7SgXG3jeeSa+hy/BYDEYtuqum7/Q4IVMZh8M4xnJJu7V9HbZ9tDn/hr8PvE2oW1ymm/GHV9OlkhZpJZL2ONGx23EHmvUrZFkeLqXqU07Cw2Pxqi405tW13sF34R+KMQZpfirq924jKlDqaHI9Puk9K4a3B/DkpaUEjR5rmdVW5m0IbWK10+SHUbTX5Lh23JcReJvLQgdQUER4/HNXHhHJrXUEvkCzjFQVtbnP3aeJrQLI9veSx8ITJr0uPocY5qP9UMqb3t8kZzzbHSXNYXT9X1y1vmiv/Dc01vg7d2tXRHGcDh8UpcHZVOTSm0uj5UVSz/EUVZxv82ewfs7+OND8cfEHS/Avxe8RDwfoENncG11ldTuyPNABjR3Zm2KSOwrzqHh1kHt5VK7bi99EjnzHinNakIxp6dDr/hJonxL/aY+Oj+APCS3d9a/PDp/iLX3lgsoo42kJla6n+TbtC4wSSTgDnFfM5nwlChiVhsq1u9L6WXzPfwXEtOOXvEY9uTSS7v5HI/Ez4vRaZ8P/FPwlN1N/wAJXp3j2GOK1gtTNbzQW8VzDNIlwg2MpZ0K4PzDkVrgsHmWR5o4zs4OOtn9roVPE0s0pQxEbrfRpo890rSPitrcgl+zTRg9CUx/+qvajj61So09uhg4NrRHRaV8L/iBdkNfXsq8Z+VuPzxxXQqzdNX3MvYSeqRtw/BXW5IkS5knct1VZcge/UVmq0myoUmknJGhB8C57cJO6KVzgs7579+4rpjiIJalyhGWxp2Pw4s1AKuM4IJGNrYHTNNYiD2Zg6LuXovBtsuMRNkckKpIPHTJHIp+1SKjCSLMfhi1tojiGRHDbWVkYDHr0PIGabru+hPLdlj+y7OR/JSeEScbIzIA5HXPvVe0JcGnqiYadcF9hjB4y24ckiq5ieRix2REZtwq8Zwduc1PNYVnsPNjCowqMzEHeDJggZ5H5UNtkyuiR9NhlAe1tpRjGFlcbhn8uKSbSCFyGTTFR1IsVxySVnbBNPme5tzLlLdo9vIlwtq0imzkiim8yFowXkUsoQsB5uAOSm4LkA4JFZe39/lZmqsXLl6iExAFZLaYy5z5jxnHP0x2q3ZrQTvzCSfZVQFbVMMc/NkgDPTrx/8AXpIfKQTskcZWKziAdcEqzE4PGTjpVdSoqyK+pwves91d3U0TJFtVLedwhIHOfm69+K3pKKkkaN3RcivbC71y3u7398IeIoi3yq2OWbnn9a/VJNTlc/L6ztN+p6BZT3eu6a9jYwhYrZN1w5UKo9uamVNyJhCzKfgvXzDq8y61rU1vaxg+XDCwUlvVua4ZLkluaRq8nQ6O01CyWwY6RPLcxl98kqoRxn35P1NJyurXNXLmVzL1rxrpEU4vZBEogJWNi2SPUkj/ACK56koRlqax0SIPht8c4Lc6h41sUDXc0RjtpGGVjtwcEpz1Y962pVVCPNuVJqasQr8RfEfil21HUbn7JAScAnBI9/U+1TzubbFNqKSRn+CPL+PnxDTw5aQv/wAIj4ZuFn8QXoU4vrhTlLYHvg8t7YFaUqac/IiyXvSOm+PPx+0SzF1brqAhWFfnuJsMoOMLHEgPzN0H0NKVSDm1fRBGLndo+ePgjMfjF8Yj8RPFKrH4c8JnzbaO4nH7+6JIG4f3gASAfWsFGXtubo1f+v8Ag+uxVNc7aZ2fx9+J0fiEybbgSpKSkcrN8qkkA4A6kHC81VV63ewqtotRR59+zJ4ct/FN5rfxE1nXoLWC51T+y9NmuoH2R2UI/ftkZwTIevOdvA9FDmkrp7HJHmleVhPE974N8OfEOPxrDo4uF0268uRQcefA+BKzcfKPm+nFTUldK2htRpSn0NH4n6DpWj6zd+IvhN4hgZYJ1gntJn+XeY1l2cn5TtdeR1zWMXGLdnc75v2dP3jwz4k/tEaM6QaZ4kUWskVysuprL0VEYZcH+IE+nNWqt21Y5YVYu7tsd1q3xM8e/tQ+EpNatLG60nQ7jTYra1guHK3N3DGTghScRqcn3IPPapjRalzSXy/rQ6Pb+2VkrFP9nTVbH4TeILn4V6xHHbLdSSzaJO0eFZjgvH/vZGR61dacYdBtxpxsc3+08t1eaH51nctFdW8sc1pOAVeKRWJySeQDkfnWVOcpta6HLNuR5b8JP+Ej+OPjCT4k+NpIhY6dfNbaHp2/908q/wCsnbtnOcUVPerckTXC+0rycqm3RHX+JNXmuryWEMoeQoqtsHbIwB6Vo5vl1O6bsrdTG8INpMWoX3iLVrZpfIkFrFbvGDuwPnPNKDVzCnJ3budJ4K+Jml+DNP8AEHwd0jVhY+BfH99ZnW4guUs7uFjsugf4SAxVsdQfbFeDnuVLEzhmCV61FPl812JkvbTj9mzH/G79l74sfs/eKYox4XvtU0LVlafRdV02Bpo72Ic7025yMY/OpynO8Jj6fvNRmt0+jOqap06vLe7eyPB/F3g34v8AjAxeIL34U+JYrKCULYldEn2EdS+7b9Pzr2ZY3LaMGpVY8ze10cKqqVT3tPI1YVEmh2l/dSAMpEMiMMEMMjv3zgVeHinq9T0KzvDmQ3VY1ZT5abZFU4KDJwfWuj3pOyRxzUpOyRwz3N5omrvBJGY4Z23IWB6/XtScqdN3bHCk4K7HeKYF1qwxvzPCdysBzn3pOtJsqTgle2p1v7Mek+FNe8aSa54ptvtUel6c8y2azBXM+QisOOxOefSvA4ixOJjg1TpP4nr6HBjcbLD0eaKv6HqOrW/xM+Husp4ztVa104tkX6SpIHUnDArnJIH8OM189LE4VQVOsn936nHh8TXjWVTWEX18j2fV/jV+zn4I07VIpPjHfeIVstDhu9LFho0tuX1FiN1u6OAQi8neODivEli69aMaNODUW21qrX+8vMM8yjL6tTlm6iUbppdTwPxp+0p4jkuZdTs9E0S0lvPmjM94HYk9CY1PGfTFevhXXqR5Wnp1UXb73octHjPHYiEYqEYp9b3fzRH8MfiP8UfHWqS2/iPxFDbRW0W57C1tDA5zgjJbn8q668VOF4bd7p/kexSzLF17wlPb5HaNPfSX8Gn2sI+0XbiOD58l2PGTnrXm4nEU6FFyeluphVxEaUHUmfTfwjtPCvwR0M6h4nsLeb7LD9o1GW4XHnYGSueuK+TlUqyqc9W7b2T63PjcTi62LrKUtl0PM/BNt8L/ANoTxB8Qv2s5HFvd6e5g8I6WX3Q+WCA3JGRzzn0rrzCdfC0lgY+5F+9K3meXj8TCo/ZU7RT/AAKfwR/a3/aj/aGnl+Bnwd+Edl4cis73yPEniO1uQY0QHk7l5lOOgPcirzrLsFluX05VsS3dXjBKzfqThaU8TJUqf4H1h8XPjn+zf/wS0+DsN9qNxB4o8WataebY6G53gTkZMku4csSep4Havncvy/F4/EQWGnCo5r3t7U/J3S970bR2VatLBv2claS28z4a8W/8FS/2jvjf4ofxB4o+KV7Dby2cv/Ek0oHybK3I5HHfHftX188hr4WnaLd/h5m7XuraI86pVxNSak5a2fyOU+DWk+Mf28PiVHbRG8i+G3h6UNrUxYr/AGhJ18rceWJ789678LkkeH8PzSSeIns/5V3/AMj67hfJfr9ROavCO/mfbOleG/DnhHSItC8HaOmk6fBGsdrYwYVQOgxjpThHkTe7e77n61Tpwo01CmrLsOtJ4Reva3whFwDtgt5CS59xjrRKpG6SOynVjTdnq2dd4H8LeJL5J/Emm+EtRubKFGF1c3Vufs0OByctwKmrOlGPxWbLnj6NOnaT2Oz8DwaTrNutppd+s8d2oe3lEIAbsQrAE4B9DWf1mndpy+EeHzHC4iPuvRnSN4LsVWMGCKcLIV80OG2kdQT61p7Xnaa1OqhUjVhzQd0Ph8MWby7IYSABkRsw5x+H8qr2ivZGko63HXHhSKbYxtWyG/do/IXPoaNHuQ32K1z4QnJ8pI5Qy5+Vz3p84a7EMGm6tpMm61EqEN0XOP8A69F4sm3U1INdmeIR3lvbsxbcZGwpIzyMj1qXFrYd5LZlxJ45JBFbW0sUjgBRuEinPcY5xVa2stzSKbiXktJYgyNYqGziTc5XPPPFa6X0MGmnuOXQLRQSti6hjtCh8k/Wm3boWpW6jv8AhHLMAP8AZiGxySSB71FhuorEj6GCuyANgcsrPjNaW0CMvIlTR1Y4VEOV4Jwdw980JtMPQBoNrGR5WmQgNguVjGSahq7uO7aJV0BZCfLs0znlcA/jVPVAm3oRvoEsYzJaq/Ygp3qWlYm6uH/CPsgybePBByWjxn2PFRCGpcpNFdvDUFxC2zTosdAsJG7HofT61NSJNN6jhpsOigR3V21vE0Jcn5pd4XJICqpOcduprPmlA25mloF78OfCfi/yNWa1iMkhD29xG81rInXBK5DKfwyKlS59TmnUbkrorx/Bq60/T57bTPGviW3triMx3EEevysrjOcBXJ4pyip6GfsoOV7fgSTeDPFk1wkJ8dapeMiKgS/VJsKowEJK5wB71P1ead0zVRjBWjEY/g/xcl1Ffbba4VGxO1taqrSJjkEHqe/BHf1qY0qyfc0puFzQuLfTIo4GZN0zRb5kNuVWBySNmT1OOcjjmuhR25i7yk3dWHRw2kkW1fnZhyRH+Oc4quaysDXcqyaPpctw1tbWTvO5Pzg4UgAk9Ezn8aiV0tUQ5Qa8/UxfEvw98N+LLZ7HxH4TstRjxt8u8tQ4x1PXJrnlKT2uVfnVmec6n+wr+zhcie7t/h9PpzysN0ml3M0IJ68bD+ldFHF4qikoSY3hcNUjdwRg3v7CPwuu49ln4r8WW8WCyxNe+av5So1d8s3xvLo9TFYDCbctvmY2p/8ABOjwXcoXtvHWrKmMEPpdlnnqP9QKqnnWNUfesZPLMG9k0ZN3/wAEzfC92qxzfE/V9kfKAaVafN/5B9zWX9rY7V3RMsqwSW7K8P8AwS6+FyOJJ/iP4p27ThLWWO3Ujv8A6uMUoZtj+Xc5amTYWcr6mpYf8Evv2dohi8m8S3uOsd7rtxtJ+isBUVc1zSpHldSy9Ap5JgYSvy3Oktv+CfXwOgt1tYfDqzwx4EcF/eTSKMdMB2YcZ9K4lLEc15Tuz26FHCUKfLGCS9DpNF/ZU8CaTCIdJ07ToVjAUxx7iqZ/2VwBVSpRcdTSeJjJWsreRqR/s/eF7CeOCS0gk3H97JGWP0xk4IrFU/e1OV1G37q0Ih8CDFOBJc6S0BPy+XaOjBeeuXxXROELaCinfUhvvgzpMgMdnaWxlGQzsWGBxj+KnGKsUtEZt58EfEttMmoaJbWEtqTiQSztnn0656DFc9X2kfhRmlFy1ZdufhakFvZ3N62mO08Je6htjLFJaODjafMQpJkcgofrinTlUsr2JgrzkpRfkyCP4d6NFAxmurmOckjy2gXGO/JwDgVor33NVGNth118OPDkEhitNbM74XdHcXaQ7SckjB6/nVKTUjju/aWsZsvhrSI5vK+zQ9yC8u9vw9O1buUrG71Ww0eE4pmINnGwx8gVsluvYjPvT55Iz5ebQlsfhlq2oz28ejeGGne9uVht1R4l3uxAAZnICn/eIqJYiFN2ZE4KFJzb0RjjQILhmj/suS3dZXjkiuCokUoSrZ2FgeR1BII71pGXNsYcqkrohk8PWQ3GSwcH+EAkDj69q0TsioxaIX061jAWWxwOuGY4B/HpRuJq+hHcAJGsckSYTICtyB645o5ddSuTQqA2kaF5LWLoSGGOR+Ap2I5dRHWwkUv5O0A8Iq4J9smhpIbS6ELW+jSXESJt8xiFj+YAgk9Onek3bUaTtZDL63tY5HWWyjiZFIkDgK2fTHTua1pTbqL1CXNtY860LxJDqusLpFmU88/vWiL8/U1+tygoM/LYqbfvanpWman/AGPaR6d9vBg2lpFDD5m9Tn+VTOorWNEnfQtT+Hn8T6RJdW8qW7bPljeQgynPAYY6VwVINq6GnfQlsdMuvB2hf2l4tEbTvnZaxOyxxJjAI+tc8vhs9zWXvQSijh/GC/25HJZWmnMyyxHcqZXapB3Z5yPr7VzVdUPlbRwvhPxPJ4Nkkt5obfykTZFasWKxKOF3YxvbGDgcc81TlypIS5k7nQeBX+If7SPiGTwf4JlNnp9gwXX9e24isUPJjUngyHHTtWuGjUqyeuhorP32eqeOviT4G/Z4+HyfDf4ZgqRAYwRId0zZJaQ88sxOSep4qq9aMfcW5zSh7XEOor9Fa+ml+n5vr8j5K+InjzXPGWsW+lzXLJcXk6wxJHMd0kjnAxzkHnnHQVxRUp3j3Oh1FSsj0L4j3l18JvBNp8KPhxZww3sMQku7iaIOssxUFnIByQMkc+ldUeem+RK36mNWpJO8Tx74kXfxR8ZWd/BY/Fw2aW9vHbx6XpmmpDI7lAztvOSRk5GMH8aXvyfLcxSdWScmeIfCPxd8TvC+lXvw/t/iFrcB0W7dhC052lX3MJMHqcn862hRcJOSdhUqdaN4p6Gp4v8AAXxl8a+G5NSv/izqklhLOUZUu1VnlwrsHxglcFDzwe3Q1hJ8tRnalKjRTbPafgn8VdT+Lfwj/wCER15YoNX8LzG0AtlJE8DKWVySSWIUYDMSflHPFKNG0bPcxWIVSajJ6vT+vuPOPi94Gs9P8RaDqV9bieBNXgS4SU8qGcDnPXqDQo+zlzG7g6Svc+xR4e0SPw9byWGmW9hF9i8uK3kwJ5kTO5wy8Fc8gejCrhWdXV7m8b6dzxv47f2XqNpMbGVklguVe0vB8rwspJB/2fX6VM4KSZnUhKSucV8QfihB41+D154i1ZY4dU02IwatGGziRVBDD0DAZrOdGdKSi2tQekLo5/8AZ+gW0+D2hag8LRQTWrTKXBC+ZIWO4nsMc5NVOMYTs0dOHVT2epznin4u+EtI1ySPS521a6hyFgtFLJ5n+2/QUTpztoxYmpaOjOV0rxN8QNfmXRdN0ZLFYZWea7uHypkbJY+/Yc0lanT13OehCrze9sbkfhyOxs5LW61GeeRgwnU4COCByBWHPKcrnW3Hpue5/AL/AIKC/Fv4EeApvhJrF4mtaOthPb+Hr+9gSSfRTNtDiNnBO07VGPavmsz4boYrFRrYWfI3ZyXRtHHHCU5YpVpfGk0n1SdrpPs7K/oj1z9iP/gqz4K/ZP8ABMng74kfC3xH4onvEnWN52tru0g3ncXjiEatETxxuPTBrxMx4azWderUw/spKcWveTum1a6d91v/AMA0rYTEayXvWOA/Zu8ffsJfGD9qTxRqP7TOmPovhbxNcNPYQzziJrRmPPoEbOTjPfrxUV6fEGT5XhoU3KfJpNxs218zmc8XCnGnO+r6FbUvg5+wh8Qf2/vD3wP+HHjbXk+F91dLb6x4gsbxGfzXGFVXJYKuc8+nSuvDcRZlhcnlisZzRd+q95R72RhKtWSum1bqHjj/AIJVQa/+1T4g/Zu+Ffxq0aCOwhuL+wuNf1WJnnsogzbkK8ElRxnv1xXHLj+lTwX1hU3Ujzct0mvQupj1TShOV2zK8KfsBfBW0An8R+MNb8QTxgCeCCRbSDcOo3DLEV3/AOsmPxUYukuW+p7dHLvaJSk3qd3pnwO+DHgOOWXwl4E0/RYjEfMu7iEkle4ad+tcVXOIyrclSb11S3/FKx2xwODp071Eku7POfjJr/wPv/CTeAb6407UL7UpyNLn09mK21yvzIdxAGciuXF4/GVbfV1pDWX+HZnz3EWeZSst+qU2pSbtddPmeHeAvC3xf/aU8Ua/4Y8JtAde0PTJJLhZWCtcQQrkjngt16dTXXWWU8P4ajWrp+yqP7m/0PhMmyzH5vjKlOjTvZXOh+AXj74J/AjxFYS6/wDBew8e+JY7ac6+viy6e3t7EspCGHZz5iN827nkDHqOjELGYqt7Wq7YXaMIN3mvOS1VxYSustqqcqSnLVWeyOx8BeN9a/aM1a9+IXxB+Lltf3VjYtG15fRxQvHDEMLESgAYgALzzxXzlVYfhWKoYbDOMZPRJt3b663PYwuOre15pa36En7L6aH8XfiTqHjvWfEFrbaDou620mWaUqksw+83GTx0rHP61TCqhg5+7Op70m7+6umye5xZtmcKuK+rw7HrvxwitPiJ8P7vTPDuszokVk8e/wC1fLcEd07/AJ1z+1cq1Ke/Jbftc8uVZy5VHRo82/Zp8fT/AAv+GY8FaxpaSed5sclvJbHv1z9cZzXVmWMUMxqVeXm5lZeXoebKlOpWlJq56B+wN4b8Ga38ZvEfxm0LTrbR/B/gS2kv9VltHIi1HU8ZjtyQcM2eT1rzOIauaUMspe0fNUfw83SP/BPbyXC81ZypxsoavzPh79r79oHxd+0p+0HrHizWrpo7eXUZFtoXkYJbxBuAAegr9I4XybD5LksWknOSu7dWz5/F4ipiq8q0u+hf/ZW+FPxH+OXxLutP8KyXGn+DtKtgvi/WrZhGRbk/NGjMOXboMc81rnOOy3LMJBYlKVabvTi+/d+SPUyrL3mNaMJ37vyR+kHwn8JeDPAPhCHwr8KfDsmhaFbx7rXTpphJLKOpklfAyT1NeK5SnWlUnJuUu7vby6H7blmFpYTDqlSVkjs4NSuLoxRXwQqw2pGLc5H4+lTJTT3TR6lNx6bml4d+Aem/HjV38Lpqs1k+nxm71HW7NgjWSLyFZu2fSvGz/MY5ZgVUpyTm+nXQ+dzjMHTnyQ3R2+ry+INT+CmpfC74b6/ql8qrNPqGoTTCC1giWLYi5481yQzbRkkkegrxctxsMTh6c5ytUu5Wb3Xz/p9NTzMPT9rhF7z9pJttNpLlSW347/I5f9mVfDfwi+DWn3njDxElmNB0+RYDqkxR57lsDLBjnbkk/hWWJq0JTqVp1rufb8jLDV8tw9CCm2kk7Wbd3brqVv2TPiJoU+rXXwn+GguNXtYb+4vtV8S6ldskd5eTyFvItgclyM9Bxg9a6/7ZnhFTjL3+ayUYrVLuysh4j+o4j6hSpymu+lte1306+ul3c9313U7bwfqT6N4nnh07UFiL/ZLuVfMx1yBnpivoYVoVG1s1vfofexzXC15+zvaS3XUXw9478Ja3JLp+m61DNOkPnMEdSygcnj0xRKquVPmOmhjMNWk4wabXmWfCvjXwF48tp7rwn4ls9Sit7o2t1JayqxSUdFOD15H51bkouzOnD1qGITdOSlbe3Q2ZtLQQZ+yEqR3GSD+NXBt7l6zRSm0e3OD/AGejkfxheffIockLljFamH4o0G3nsybDw/CNSjIW0v47hk2jnKyJyJAfbBHrWU4VLc0ZWGoSavfQpa/qGsXdnYafqV5Gk9i7i1ntlZd0br80LBmPyhsEHrnvWNClWo4nnlO6OeOH5Zt3uOsJ/ENpiK3vrhiCAykZ5/wr1faKS902jBTdkjRstc1/azNOmxQWlkYAKp7liegx/KnGV9AUY3sbXgnxFofjbQY/EPhzVrPULOSRkS8tJRJG5QkMAwODggjijnu2hOacbpm+bMMmEhHXDbc5U+lUmrXMnJj104j5RbsM/ex9e9LfYfM+gqaLDIpYQBSRx89DRfO0TPpc9vERFZCcg9DKAfzNErpaExabuxz2aKzbgRlflEuDgYHHFC0QTdxPsFpcAs1tHvwP3oXawP1qJKT2GtEK+gzKBgo8bcjY6huD1OMGh3QNqWhQuvD1ow81ki3NnO5NrenUc1KjzFLzG22iXtrys7/eG0KSf/105RjHVFpq5O0moWgUSW6sN/KBMfrR0HpYhlvZCJGa1hGc7x0PtnH8xRB2M+R3IXa2u3El18owfl83IP4Grlqim5IieCwRmdpHXggbTyPb2FZclhpyluVZLm/kgWysdTvfs8bGQwmQ7EOMZPpWnLUqJqKulq/LzIjTp81+pRuLhXZpQ7M54LM5BY47H/8AXXE2nsdNox0KjSvBmWIgYblTyM/Tv+NUr2uEW2itcNM6CRrdMs3JjYjOcZPFE5aD5rMiMd0ckXEmc/MW6H2qVa5XMpDHDqGIRpNow2JWXA46e1OVrCmlazIP7QglQSWieYpbgG5Zsjoe9OE9NDOMZN2GPqt1IpIhkACnByeOB703Zm3LYryXeoF8qWLEbQRwe3p0qeW7uJ3sMNxqD8i8kC8ZIIB9x71onoZODfUfDcy7QVu2x1JyeePzoTV9AUEtyVbuRyQZGyWwTyB/9endMCMzz7toDFjjAJIHvzRd9CJXHHUri2hZfKmAUD7uAWOemT0pStLUyepLMReKFuZGHykgFuB0I5H8qqysVzNlRNK02aX7RPczQk7trxTscggjgE4oajY0jPTVHL+IfhZqE+sPqsHxj1toTIsjWL2sJRSM8A7c9yOvesI0ZqbfMc0qd23Yvw+HZnjkIne5yuDNMMnJ+nSuq035lpvlsMg02ewS7eS3gaWS4VrS68x1EMIUAxmPo2Wyd2c4OKyeGrSrqaqadi+aKjYqT6XcrEqJewINx3+XCeSfUZwK2dNN6mMm7aGbNp1zGFEmpMRkDCLjv7DvWitFEXdypd6eVbJug5xht0h/XFNMq3MjPujYQKGuLhE/i37srjj16f8A16bmkYyjy7mZca54eiUn7arFjtXy2DF+ODxT5k1cuKctinJrekthl8+Rh1KR4z3Izjmo532M5KSZXuNZtZyETRZc7dw33RVj+A9OMUm5SJcZplVtSf7K1jJ4asbgyRkSJdgybx33A/55pOLfU0p3UipJPNaxyvYaFptqWYu3kWyjccdTx1rppRtNFybsz5+ufiKkVxHD4ciH2+6ZY4RFzLO5Iwi9etfrc047n5K3GjUsex+G/h78WdN0Ea3411uyF8QCumRREvbKRkB27t9Kx5E9WzN13J6noXwdC3F//a3iq+DRIoMVtCpAZwepJ6inzwStcpy5ranTfEHU4dfinvnjVYmVWOAAHI6KPyFctSlOo9EdtKyhfoeZ69ftFBPdxskUs0a+YxAUk+nuMcVj7Cb6Gl4vY8h8cW+p+M9TXwx4d1Q2UtwMNNBGu6NTjLD3/rWbwspPYJQlJbHq3h/xBpfwm+HEXw48O3EENtZhZrq0FzvmuJiSTPO2Ms7HJ/8A1VtOcqUNXr1+f+Zm4xjBQkeMfEbx5careTahrF6qxbiyBcAge5zx0rz9ZO9732GpwjHVnnvwW8SW/if4pT/EuSBZtK8MkpZMh+SW6fAz6YQc59TXpYbDyg+ZmkFzrmWptwfGKLUPiDqFzr80b77craSNNvIPIyevJ9D2repRlOXMc9R+8efeK9T1K21tPElhqUn2cNkbFI2tg4BH+P8ASuZ0505XsTHmpPmOXk0m7l8TQfETRptqTxNb6ujcAox4Y/Q/oTWFSTqND9pKXvHSeGtSk8RacZJrySCS3lka4WGL5ZHGQePfgZ9hVqHJG/UlVVN2Om/Z51238JfHlrS4jjEXiHSZIlhbjmP5lyMfewTzXNJudRJHXRUYassfHSa3udIupZmMZs7qOYFhkrh1JHv0HNaP2luU6Y8tW6Wp6brPxGu9Qi3tdlFS2TaS+BjaMj8a1hSm1ypGllBnBfEPxX9sae2YosNzCHYD+8FI/Pk/nUKLp3uRWrRirHlfwxh0n4kfFDxJpviEEeENC0qPUPGDxkjzFRtsdsG7PM7LGCOcEntXDjadeqouPUjA0/azk5bI0/F2t2WtaMljdqsNsuDb6XbsUgt06BNo+9gYHPpXZSjONPllc6K0lFW2OE1iCDRJ430mOJXaaNbWDywBuz97j0GTzWFeck9DmpxdSWhuNqEJEnmyhpGk3SNgZZjySaajOWr6nVVbS1IpdTgaUJcFWbBxtOMjtU+zcFexnBKTKV7MzROWlLZPK9+OlSpyhFpdToUdLWF8I+I0t5rpLiXPlyKYznJAx0x3rGakoNo0oVIxbitzqVvtFu4990sL7+gaIcf4VkoVVI7ORw1LWmW3hhIjCNMsJS+N37sDp0P1rOdKtLSSvfyM4Uot35Uz0H9mL9nTRPj78e9L8HaILTTJWVrrVtfuLt1FjYQgvM7PnIULnjoSa+e4kzajw1kNWtOnzX0jG28nt/w5xY2ng6VGUpQVz0r9pP8AaQ8Mz+IJvC//AAT++E0mr6LpQNpceO/FUhMdxIgwzQRNgEdcE9ewr85ytYilRVTP6/JKWqpw3Se12j5TMeLa+GpRjTX4XPnDxn4U+N+q2954z/aM+Kt2unpGsk1rczCOOMHlVSMcLnHGOSK+pw+dYKrbDZZQTb0va7+97eqt26nyOYZnmOOi+eo7W1OF+DvgyL9obxvf/EzVtW/sD4ceANhl1WQlUMzgiNBx8zsecele1m81w9lkMHTh7TF4jp5Lf5FZVl31hqKdox1bZueKPAWlNpV1rvwj8aalcTWu+VtW0+0Nv5as2NzlBuwSQMucciubAV8a6ns8VQTgkuZaySWi66LV9t2j6SthqWCw3Nhar5n1Wn3Hn2qaPJr2iyahd3MkmvaagW+ljywuIsdWPtmvTli/q2JUIpKlLZdmfPwrqjBRb5mt2+pofB3RvhZqs4sdft9Xj0RFafV4NLmZPMX+MsOOM55PYivMzavmdHWm4uo9IuSvbtb5HLXxNSXvQsmz2v4S/Cb4ZeLdSuNY+DCa/pngTTrgHUI4rYkTyuDhHk5Ck7T7/KfQ18zjs4xeCUIZvGNStLrezSW9tPx2VzzqVNvF805LnaPQPj/+0P8AA79mbw//AGYLvTNc8STWbW+l+H4DvitS4wGlc/xc98VOU5VmWe4jnoR5aOt29dP1Z6eGoKrLmm9j5f8AhT4O8YfEq38S+DviH4i1rSfELaj9osmSVlWFe6ArwV7DBr67NswweW1aGJwtOFSly2fdvuXWxtKmlGk1qj7N+FXi/wCDHwN+BWo/AJdJu5YtM0KS/j0qzjO/WdWkXajycZZQSehP4dK/PswxWIzTEutXT5ajtzXsoJbfcj67C5xluAyv97C75Xou9up+ePjv9mP4+2FnffEj4m2iaDpkkwlkNw4EjBySqqgOTX63l/FHD85QwWCftJpW8tPM/OqWNw0JKEabbfdaHTfs4fCn4ja74bvvGC/GG68LeFoJRvZJSiXMg6fLwCeB1rm4izTLcJiIUPqqq13+C9T0JZlHCy5KafN1PdvCOs/GrwlqmkS+KPip4ql0XUtPlu7HULaJYLSdI2MaMJJEJdPMVgSoIJjcEgivmq2OUoyjRoxi00mm25a+S/z66I+my/iWrSpPnk3y6WT1vbS+j8nbqu257v8ABj9tBvhZ8Er7/hbeoJ4i8UG5xoz3VuUMqE/IQcA4IK84xiuavinWmoUItW3fRW3NY8byVF02rvoz1PS/2jdSutB0L9jX4Z+IoND8e/EV/tvjfxA0asukWp+ZQCwwWA6D8TXy+WYDFZ7iXi8XZYeMrK/V38uhGAnUxyVKc7Sm7tvojzDXvgDYfBf4zaje/Ez9qLW/G3w+imiC6va+JPs8Nvcg9HeH5fvZxjvxXrZy402sLltOHtLtNxje68r3OfNZ4TC4qK9u5RXmZn7SvwL/AGd9V8daRF8OPjX4q1TUdWjWay8Pr4ninjmDjGJh5jlT35APeuHBVM4wWDtKjFxevM4K61t02fk+lns0d+LWWw9hKhq2rpX39V0/p9TrPDH7K2l/ss6bbfGH4jftS/2dN4fmTUrTwQNe3+a4BKowwCM4445reWNqYijbD0I+0lpzcu3ma1qGFwkFiZ1bNaqKepL4Qn0X9sD4lP8AtW/tWeI76W8vQf8AhGvCOk3jQPDAD0dFwW3YGc8EGvDzjNcyw2J/s7AR91/xJ21fo3seDh6v9qZp9YrtqL7bne+JtT/Zd8Z+JNQbVrdvD2p6jY/Zrn+wfE32a9ECjoQpG3gfXjA9KMFhMyXJSw7+FOXv2t7qb3lo3ZaK929Em2kfRyxvD9Cna0k2raN3+Z2X7CHwv/Z2+D1nqGmfs4+K5JbSUS3Umga3qBklvbzoGWRjy33R/wABFRjuK87y2ssXmVLnTstFZJfI9Lh/H4XLas6mEd1KOsZPd9DpP2bPi58X9W17xx8Sv2mNLm8NQy6mNP0Hw9fTBYo0TgGM4wzM3OfoK63xZgJZhCjRnzQcU27Pd9D0uG88xM8ZXr4u8YvaLvZeh6xH8UdKsUmS+04CUxJNhG2lo275HXFfRYbHYWq3yb+h9dTzjCV0+Um0bxf4b8fMt74fsAEt4zHMsvLmXJBOOoAxiut1G1d6I76VejUhoxms6JP5UiXkQO5NyhVAOOx5z7U6cufS935HRFNQuloU/Dlzp+kpcy+JdPm1EWVld3QH2+G3Fw6JuSJ5nwIlP8TnOBzU18TLARUpK669Dgx1XEU6V6PxX6nyd8Ufg3/wUS/az8R3em+P9LtvhZ4HtZ0Wc3F2BYWyeZ1CRlptUkwRgPsjyeRiuihjMG5JRd2+i3fz6fK79D5NzzbGV5Uqit530tY+zv2dfhb8Nvg18LNE+Cng+0nstG067ka61262vdX1xM5eW4eCMKsKsxJEUYCoCAB0rRV0oOpJKKTS1evlu7vbV6+bu1f0suw9bLsO6cG5W2u/1Oqmla2u57FFdTFK0ZZxt3gE4bBHQ9a3w9eGIXus+hp05zpKbW6I0urgLsZiVAxhmGDXX7KfYyvHoyRHtJR8yqpYdQ3QU/Yz7BzjhFH94sCpHTfkfWj2M+zBSGyJBMeCAcYGGzQ6M30HzEZjkBy0YcEdG7Co9jJdw5kKsbcmRQB2w1HsZ9ilIa7wjIdUYkcBj0o9jLsPmuNV4t2Y/lyOqvjpUOjLsx30HbbqRSDLwecFsih0pbal80SKRH4YxpwPugDGalUpxe34Fb6laWz3ks0KnIxhl6f40pz5dzTklFXex4l8fPGH7buk/E2Dwl+zX+y1b+KtCGji6vvEN1clVjl3OGgC5GSAFOO+6sHTqVqTlSl719rXPJxeNq0qyhBKz63R852PhH/gvN8evH/lada2nw+0y43tbJqFtBaWsKr821wyvLM21T8oAI4JPWvQw9DL7ezqtuXXW33f0zz44vMqbk9l0as/vPq34M2Px6Hw10y0+PP9mah4sgjYatdeHbNltG5O3aCOuMDPc815LdCnUbpP3fM9zCOvLDr27Tl5HSnQNY4zpbqWGT5p6+3NZe1jJaM74030RUm8O62JQzXMEGQdxJY/oOKlSctg9lJ6pMbHoi3AZ28Tc5+aNI8Ac+9dCoVN9TJzcXtYdJ4YtGhZ5dRuHLZbCHHH1xWU2lKzZUanN0K7ab4dtNzW/nDLN8s9wcgg+g7VpCE5arYJuUWPNpYu+UtVLN1bkntyfWlJcj94lVU3uRvb2EQHmW+1AMcYBoi1L4WaKM5apEMt1YWwf7LsdjIYwSgwg/vE9z9K2VCpfVEO6ZV+2WO4uiRFuhYgDPT862VCXZkN6jjPPISYrMH5chQB8o/ClKm4LUS1ZEJLxoCIbYYUYBZxgkdiT+VEKc5r3RzhOC1RXtb/AF0xtHe3dtD5iEMkQDDHbBIFV9XqdUzntrdhDFaxo8Zuz0wTv+8etDoztsXFpvQhupNFteLq8Ve/zSYx9KXspPZFNyXQyb/xT4asic6hG2B8x35yf61aw872aG7qOxly/EbS0RmjunJOCdq+3bNW6E+lzmc+xQvvHUlxI0lhYMzbcbjgZGf/ANdSsPNO9tfQXMZ0mteKbuNvLtII1bliRknIo9jNuzJ51czpm8V3HEusNEScERKoI/OtFQl1TK8yF9KaYSvc69dyNn5w9wcZ+i+1J03HoV7VRWpTudF02H5ZYlfKnJcE8dO/tWXNG4tKivEgj/sOzRg1uY1TGNigDp2/GrUZS2RPPyuxTuta0a3yjw7yQSRIafsalrWE3cqXPi+1CHZbxnOSORkCrVGpbYlszLnxvKzkKI1GM70weeuP6U/Y1OwJ2ZQuPGRkZxHKoZz820YzVU6coSvYcp8qbP/Z", + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": { + "image/jpeg": { + "height": 256, + "width": 256 + } + }, + "output_type": "execute_result" + } + ], + "source": [ + "!curl -O https://raw.githubusercontent.com/meta-llama/llama-models/refs/heads/main/Llama_Repo.jpeg\n", + "\n", + "from IPython.display import Image\n", + "Image(\"Llama_Repo.jpeg\", width=256, height=256)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "e1450ecc", + "metadata": {}, + "outputs": [], + "source": [ + "import base64\n", + "def encode_image(image_path):\n", + " with open(image_path, \"rb\") as image_file:\n", + " base64_string = base64.b64encode(image_file.read()).decode(\"utf-8\")\n", + " base64_url = f\"data:image/png;base64,{base64_string}\"\n", + " return base64_url" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "d7914894", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The image features three llamas, each with a distinct color. The llama on the left is white, the middle one is purple, and the one on the right is also white but wears a blue party hat.\n", + "\n", + "To determine the number of different colors present, we can count the unique hues:\n", + "\n", + "1. White (two llamas)\n", + "2. Purple (one llama)\n", + "3. Blue (party hat)\n", + "\n", + "Therefore, there are 3 different colors visible in the image: white, purple, and blue.\n" + ] + } + ], + "source": [ + "response = client.chat.completions.create(\n", + " messages=[\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": [\n", + " {\n", + " \"type\": \"image\",\n", + " \"image\": {\n", + " \"url\": {\n", + " \"uri\": encode_image(\"Llama_Repo.jpeg\")\n", + " }\n", + " }\n", + " },\n", + " {\n", + " \"type\": \"text\",\n", + " \"text\": \"How many different colors are those llamas? What are those colors?\",\n", + " }\n", + " ]\n", + " }\n", + " ],\n", + " model=model_id,\n", + " stream=False,\n", + ")\n", + "\n", + "print(response.choices[0].message.content)" + ] + }, + { + "cell_type": "markdown", + "id": "8cf0d555", + "metadata": { + "id": "8cf0d555" + }, + "source": [ + "### 2.4 Have a conversation\n", + "\n", + "Maintaining a conversation history allows the model to retain context from previous interactions. Use a list to accumulate messages, enabling continuity throughout the chat session." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "3fdf9df6", + "metadata": { + "id": "3fdf9df6" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[36m> Response: The most famous Prime Minister of England during World War 2 was Winston Churchill. He served as the Prime Minister of the United Kingdom from 1940 to 1945, and again from 1951 to 1955. Churchill is widely regarded as one of the greatest wartime leaders in history, known for his leadership, oratory skills, and unwavering resolve during the war.\n", + "\n", + "Churchill played a crucial role in rallying the British people during the war, and his speeches, such as the \"We shall fight on the beaches\" and \"Their finest hour\" speeches, are still remembered and celebrated today. He worked closely with other Allied leaders, including US President Franklin D. Roosevelt and Soviet leader Joseph Stalin, to coordinate the war effort and ultimately secure the defeat of Nazi Germany.\n", + "\n", + "Churchill's leadership and legacy have endured long after the war, and he remains one of the most iconic and influential figures in British history.\u001b[0m\n", + "\u001b[36m> Response: Winston Churchill was known for his many memorable quotes, but one of his most famous is:\n", + "\n", + "**\"We shall fight on the beaches, we shall fight on the landing grounds, we shall fight in the fields and in the streets, we shall fight in the hills; we shall never surrender.\"**\n", + "\n", + "This quote is from his speech to the House of Commons on June 4, 1940, during the early stages of World War II, when Nazi Germany was threatening to invade Britain. The speech is known as the \"We Shall Fight on the Beaches\" speech, and it's considered one of the greatest speeches of the 20th century.\n", + "\n", + "However, if I had to pick a single, even more concise quote, it would be:\n", + "\n", + "**\"Blood, toil, tears, and sweat.\"**\n", + "\n", + "This was the opening phrase of his first speech as Prime Minister to the House of Commons on May 13, 1940, in which he said:\n", + "\n", + "\"I say to the House as I said to those who have joined this Government, I have nothing to offer but blood, toil, tears, and sweat. We have before us an ordeal of the most grievous kind.\"\n", + "\n", + "This quote has become synonymous with Churchill's leadership and resolve during the war.\u001b[0m\n" + ] + } + ], + "source": [ + "from termcolor import cprint\n", + "\n", + "questions = [\n", + " \"Who was the most famous PM of England during world war 2 ?\",\n", + " \"What was his most famous quote ?\"\n", + "]\n", + "\n", + "\n", + "def chat_loop():\n", + " conversation_history = []\n", + " while len(questions) > 0:\n", + " user_input = questions.pop(0)\n", + " if user_input.lower() in [\"exit\", \"quit\", \"bye\"]:\n", + " cprint(\"Ending conversation. Goodbye!\", \"yellow\")\n", + " break\n", + "\n", + " user_message = {\"role\": \"user\", \"content\": user_input}\n", + " conversation_history.append(user_message)\n", + "\n", + " response = client.chat.completions.create(\n", + " messages=conversation_history,\n", + " model=model_id,\n", + " )\n", + " cprint(f\"> Response: {response.choices[0].message.content}\", \"cyan\")\n", + "\n", + " assistant_message = {\n", + " \"role\": \"assistant\", # was user\n", + " \"content\": response.choices[0].message.content,\n", + " \"stop_reason\": response.choices[0].finish_reason,\n", + " }\n", + " conversation_history.append(assistant_message)\n", + "\n", + "\n", + "chat_loop()\n" + ] + }, + { + "cell_type": "markdown", + "id": "72e5111e", + "metadata": { + "id": "72e5111e" + }, + "source": [ + "Here is an example for you to try a conversation yourself.\n", + "Remember to type `quit` or `exit` after you are done chatting." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "9496f75c", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9496f75c", + "outputId": "7d93a4cf-a5d4-4741-b6eb-6bce3a27ff66" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[36m> Response: Hello! How are you today? Is there something I can help you with or would you like to chat?\u001b[0m\n", + "\u001b[33mEnding conversation. Goodbye!\u001b[0m\n" + ] + } + ], + "source": [ + "# NBVAL_SKIP\n", + "from termcolor import cprint\n", + "\n", + "def chat_loop():\n", + " conversation_history = []\n", + " while True:\n", + " user_input = input(\"User> \")\n", + " if user_input.lower() in [\"exit\", \"quit\", \"bye\"]:\n", + " cprint(\"Ending conversation. Goodbye!\", \"yellow\")\n", + " break\n", + "\n", + " user_message = {\"role\": \"user\", \"content\": user_input}\n", + " conversation_history.append(user_message)\n", + "\n", + " response = client.chat.completions.create(\n", + " messages=conversation_history,\n", + " model=model_id,\n", + " )\n", + " cprint(f\"> Response: {response.choices[0].message.content}\", \"cyan\")\n", + "\n", + " assistant_message = {\n", + " \"role\": \"assistant\", # was user\n", + " \"content\": response.choices[0].message.content,\n", + " \"stop_reason\": response.choices[0].finish_reason,\n", + " }\n", + " conversation_history.append(assistant_message)\n", + "\n", + "\n", + "chat_loop()\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "l4", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.16" + } + }, + "nbformat": 4, + "nbformat_minor": 5 } diff --git a/docs/notebooks/Alpha_Llama_Stack_Post_Training.ipynb b/docs/notebooks/Alpha_Llama_Stack_Post_Training.ipynb index 172850912..a397bd3a8 100644 --- a/docs/notebooks/Alpha_Llama_Stack_Post_Training.ipynb +++ b/docs/notebooks/Alpha_Llama_Stack_Post_Training.ipynb @@ -2864,7 +2864,7 @@ } ], "source": [ - "!llama stack build --distro experimental-post-training --image-type venv --image-name __system__" + "!llama stack list-deps experimental-post-training | xargs -L1 uv pip install" ] }, { diff --git a/docs/notebooks/Llama_Stack_Agent_Workflows.ipynb b/docs/notebooks/Llama_Stack_Agent_Workflows.ipynb index 82f8566ba..51604f6d1 100644 --- a/docs/notebooks/Llama_Stack_Agent_Workflows.ipynb +++ b/docs/notebooks/Llama_Stack_Agent_Workflows.ipynb @@ -38,7 +38,7 @@ "source": [ "# NBVAL_SKIP\n", "!pip install -U llama-stack\n", - "!UV_SYSTEM_PYTHON=1 llama stack build --distro fireworks --image-type venv" + "llama stack list-deps fireworks | xargs -L1 uv pip install\n" ] }, { diff --git a/docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb b/docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb index 228f426d5..94af24258 100644 --- a/docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb +++ b/docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb @@ -1,1217 +1,1217 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "hTIfyoGtjoWD" - }, - "source": [ - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb)\n", - "\n", - "# Llama Stack Benchmark Evals\n", - "\n", - "This notebook will walk you through the main sets of APIs we offer with Llama Stack for supporting running benchmark evaluations of your with working examples to explore the possibilities that Llama Stack opens up for you.\n", - "\n", - "Read more about Llama Stack: https://llamastack.github.io/latest/index.html" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "bxs0FJ1ckGa6" - }, - "source": [ - "## 0. Bootstrapping Llama Stack Library\n", - "\n", - "##### 0.1. Prerequisite: Create TogetherAI account\n", - "\n", - "In order to run inference for the llama models, you will need to use an inference provider. Llama stack supports a number of inference [providers](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/remote/inference).\n", - "\n", - "In this showcase, we will use [together.ai](https://www.together.ai/) as the inference provider. So, you would first get an API key from Together if you dont have one already.\n", - "You can also use Fireworks.ai or even Ollama if you would like to.\n", - "\n", - "\n", - "> **Note:** Set the API Key in the Secrets of this notebook as `TOGETHER_API_KEY`" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "id": "O9pGVlPIjpix" - }, - "outputs": [], - "source": [ - "# NBVAL_SKIP\n", - "!pip install -U llama-stack" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "id": "JQpLUSNjlGAM" - }, - "outputs": [], - "source": [ - "# NBVAL_SKIP\n", - "!UV_SYSTEM_PYTHON=1 llama stack build --distro together --image-type venv" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "collapsed": true, - "id": "KkT2qVeTlI-b", - "outputId": "9198fbfc-a126-4409-e2f5-5f5bf5cdf9a7" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Not in Google Colab environment\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning: `bwrap` is not available. Code interpreter tool will not work correctly.\n" - ] - }, - { - "data": { - "text/html": [ - "
Using config together:\n",
-              "
\n" - ], - "text/plain": [ - "Using config \u001b[34mtogether\u001b[0m:\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
apis:\n",
-              "- agents\n",
-              "- datasetio\n",
-              "- eval\n",
-              "- inference\n",
-              "- safety\n",
-              "- scoring\n",
-              "- telemetry\n",
-              "- tool_runtime\n",
-              "- vector_io\n",
-              "benchmarks: []\n",
-              "container_image: null\n",
-              "datasets: []\n",
-              "image_name: together\n",
-              "logging: null\n",
-              "metadata_store:\n",
-              "  db_path: /Users/xiyan/.llama/distributions/together/registry.db\n",
-              "  namespace: null\n",
-              "  type: sqlite\n",
-              "models:\n",
-              "- metadata: {}\n",
-              "  model_id: meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - llm\n",
-              "  provider_id: together\n",
-              "  provider_model_id: meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo\n",
-              "- metadata: {}\n",
-              "  model_id: meta-llama/Llama-3.1-8B-Instruct\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - llm\n",
-              "  provider_id: together\n",
-              "  provider_model_id: meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo\n",
-              "- metadata: {}\n",
-              "  model_id: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - llm\n",
-              "  provider_id: together\n",
-              "  provider_model_id: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo\n",
-              "- metadata: {}\n",
-              "  model_id: meta-llama/Llama-3.1-70B-Instruct\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - llm\n",
-              "  provider_id: together\n",
-              "  provider_model_id: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo\n",
-              "- metadata: {}\n",
-              "  model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - llm\n",
-              "  provider_id: together\n",
-              "  provider_model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo\n",
-              "- metadata: {}\n",
-              "  model_id: meta-llama/Llama-3.1-405B-Instruct-FP8\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - llm\n",
-              "  provider_id: together\n",
-              "  provider_model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo\n",
-              "- metadata: {}\n",
-              "  model_id: meta-llama/Llama-3.2-3B-Instruct-Turbo\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - llm\n",
-              "  provider_id: together\n",
-              "  provider_model_id: meta-llama/Llama-3.2-3B-Instruct-Turbo\n",
-              "- metadata: {}\n",
-              "  model_id: meta-llama/Llama-3.2-3B-Instruct\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - llm\n",
-              "  provider_id: together\n",
-              "  provider_model_id: meta-llama/Llama-3.2-3B-Instruct-Turbo\n",
-              "- metadata: {}\n",
-              "  model_id: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - llm\n",
-              "  provider_id: together\n",
-              "  provider_model_id: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo\n",
-              "- metadata: {}\n",
-              "  model_id: meta-llama/Llama-3.2-11B-Vision-Instruct\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - llm\n",
-              "  provider_id: together\n",
-              "  provider_model_id: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo\n",
-              "- metadata: {}\n",
-              "  model_id: meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - llm\n",
-              "  provider_id: together\n",
-              "  provider_model_id: meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo\n",
-              "- metadata: {}\n",
-              "  model_id: meta-llama/Llama-3.2-90B-Vision-Instruct\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - llm\n",
-              "  provider_id: together\n",
-              "  provider_model_id: meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo\n",
-              "- metadata: {}\n",
-              "  model_id: meta-llama/Llama-3.3-70B-Instruct-Turbo\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - llm\n",
-              "  provider_id: together\n",
-              "  provider_model_id: meta-llama/Llama-3.3-70B-Instruct-Turbo\n",
-              "- metadata: {}\n",
-              "  model_id: meta-llama/Llama-3.3-70B-Instruct\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - llm\n",
-              "  provider_id: together\n",
-              "  provider_model_id: meta-llama/Llama-3.3-70B-Instruct-Turbo\n",
-              "- metadata: {}\n",
-              "  model_id: meta-llama/Meta-Llama-Guard-3-8B\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - llm\n",
-              "  provider_id: together\n",
-              "  provider_model_id: meta-llama/Meta-Llama-Guard-3-8B\n",
-              "- metadata: {}\n",
-              "  model_id: meta-llama/Llama-Guard-3-8B\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - llm\n",
-              "  provider_id: together\n",
-              "  provider_model_id: meta-llama/Meta-Llama-Guard-3-8B\n",
-              "- metadata: {}\n",
-              "  model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - llm\n",
-              "  provider_id: together\n",
-              "  provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo\n",
-              "- metadata: {}\n",
-              "  model_id: meta-llama/Llama-Guard-3-11B-Vision\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - llm\n",
-              "  provider_id: together\n",
-              "  provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo\n",
-              "- metadata:\n",
-              "    context_length: 8192\n",
-              "    embedding_dimension: 768\n",
-              "  model_id: togethercomputer/m2-bert-80M-8k-retrieval\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - embedding\n",
-              "  provider_id: together\n",
-              "  provider_model_id: togethercomputer/m2-bert-80M-8k-retrieval\n",
-              "- metadata:\n",
-              "    context_length: 32768\n",
-              "    embedding_dimension: 768\n",
-              "  model_id: togethercomputer/m2-bert-80M-32k-retrieval\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - embedding\n",
-              "  provider_id: together\n",
-              "  provider_model_id: togethercomputer/m2-bert-80M-32k-retrieval\n",
-              "- metadata:\n",
-              "    embedding_dimension: 384\n",
-              "  model_id: all-MiniLM-L6-v2\n",
-              "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
-              "  - embedding\n",
-              "  provider_id: sentence-transformers\n",
-              "  provider_model_id: null\n",
-              "providers:\n",
-              "  agents:\n",
-              "  - config:\n",
-              "      persistence_store:\n",
-              "        db_path: /Users/xiyan/.llama/distributions/together/agents_store.db\n",
-              "        namespace: null\n",
-              "        type: sqlite\n",
-              "    provider_id: meta-reference\n",
-              "    provider_type: inline::meta-reference\n",
-              "  datasetio:\n",
-              "  - config:\n",
-              "      kvstore:\n",
-              "        db_path: /Users/xiyan/.llama/distributions/together/huggingface_datasetio.db\n",
-              "        namespace: null\n",
-              "        type: sqlite\n",
-              "    provider_id: huggingface\n",
-              "    provider_type: remote::huggingface\n",
-              "  - config:\n",
-              "      kvstore:\n",
-              "        db_path: /Users/xiyan/.llama/distributions/together/localfs_datasetio.db\n",
-              "        namespace: null\n",
-              "        type: sqlite\n",
-              "    provider_id: localfs\n",
-              "    provider_type: inline::localfs\n",
-              "  eval:\n",
-              "  - config:\n",
-              "      kvstore:\n",
-              "        db_path: /Users/xiyan/.llama/distributions/together/meta_reference_eval.db\n",
-              "        namespace: null\n",
-              "        type: sqlite\n",
-              "    provider_id: meta-reference\n",
-              "    provider_type: inline::meta-reference\n",
-              "  inference:\n",
-              "  - config:\n",
-              "      api_key: '********'\n",
-              "      url: https://api.together.xyz/v1\n",
-              "    provider_id: together\n",
-              "    provider_type: remote::together\n",
-              "  - config: {}\n",
-              "    provider_id: sentence-transformers\n",
-              "    provider_type: inline::sentence-transformers\n",
-              "  safety:\n",
-              "  - config:\n",
-              "      excluded_categories: []\n",
-              "    provider_id: llama-guard\n",
-              "    provider_type: inline::llama-guard\n",
-              "  scoring:\n",
-              "  - config: {}\n",
-              "    provider_id: basic\n",
-              "    provider_type: inline::basic\n",
-              "  - config: {}\n",
-              "    provider_id: llm-as-judge\n",
-              "    provider_type: inline::llm-as-judge\n",
-              "  - config:\n",
-              "      openai_api_key: '********'\n",
-              "    provider_id: braintrust\n",
-              "    provider_type: inline::braintrust\n",
-              "  telemetry:\n",
-              "  - config:\n",
-              "      service_name: llama-stack\n",
-              "      sinks: sqlite\n",
-              "      sqlite_db_path: /Users/xiyan/.llama/distributions/together/trace_store.db\n",
-              "    provider_id: meta-reference\n",
-              "    provider_type: inline::meta-reference\n",
-              "  tool_runtime:\n",
-              "  - config:\n",
-              "      api_key: '********'\n",
-              "      max_results: 3\n",
-              "    provider_id: brave-search\n",
-              "    provider_type: remote::brave-search\n",
-              "  - config:\n",
-              "      api_key: '********'\n",
-              "      max_results: 3\n",
-              "    provider_id: tavily-search\n",
-              "    provider_type: remote::tavily-search\n",
-              "  - config: {}\n",
-              "    provider_id: rag-runtime\n",
-              "    provider_type: inline::rag-runtime\n",
-              "  - config: {}\n",
-              "    provider_id: model-context-protocol\n",
-              "    provider_type: remote::model-context-protocol\n",
-              "  - config:\n",
-              "      api_key: '********'\n",
-              "    provider_id: wolfram-alpha\n",
-              "    provider_type: remote::wolfram-alpha\n",
-              "  vector_io:\n",
-              "  - config:\n",
-              "      kvstore:\n",
-              "        db_path: /Users/xiyan/.llama/distributions/together/faiss_store.db\n",
-              "        namespace: null\n",
-              "        type: sqlite\n",
-              "    provider_id: faiss\n",
-              "    provider_type: inline::faiss\n",
-              "scoring_fns: []\n",
-              "server:\n",
-              "  port: 8321\n",
-              "  tls_certfile: null\n",
-              "  tls_keyfile: null\n",
-              "shields:\n",
-              "- params: null\n",
-              "  provider_id: null\n",
-              "  provider_shield_id: null\n",
-              "  shield_id: meta-llama/Llama-Guard-3-8B\n",
-              "tool_groups:\n",
-              "- args: null\n",
-              "  mcp_endpoint: null\n",
-              "  provider_id: tavily-search\n",
-              "  toolgroup_id: builtin::websearch\n",
-              "- args: null\n",
-              "  mcp_endpoint: null\n",
-              "  provider_id: rag-runtime\n",
-              "  toolgroup_id: builtin::rag\n",
-              "- args: null\n",
-              "  mcp_endpoint: null\n",
-              "  provider_id: wolfram-alpha\n",
-              "  toolgroup_id: builtin::wolfram_alpha\n",
-              "vector_dbs: []\n",
-              "version: '2'\n",
-              "\n",
-              "
\n" - ], - "text/plain": [ - "apis:\n", - "- agents\n", - "- datasetio\n", - "- eval\n", - "- inference\n", - "- safety\n", - "- scoring\n", - "- telemetry\n", - "- tool_runtime\n", - "- vector_io\n", - "benchmarks: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", - "container_image: null\n", - "datasets: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", - "image_name: together\n", - "logging: null\n", - "metadata_store:\n", - " db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mregistry.db\u001b[0m\n", - " namespace: null\n", - " type: sqlite\n", - "models:\n", - "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct-Turbo\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - llm\n", - " provider_id: together\n", - " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct-Turbo\n", - "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - llm\n", - " provider_id: together\n", - " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct-Turbo\n", - "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct-Turbo\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - llm\n", - " provider_id: together\n", - " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct-Turbo\n", - "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - llm\n", - " provider_id: together\n", - " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct-Turbo\n", - "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-Turbo\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - llm\n", - " provider_id: together\n", - " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-Turbo\n", - "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-FP8\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - llm\n", - " provider_id: together\n", - " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-Turbo\n", - "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct-Turbo\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - llm\n", - " provider_id: together\n", - " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct-Turbo\n", - "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - llm\n", - " provider_id: together\n", - " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct-Turbo\n", - "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct-Turbo\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - llm\n", - " provider_id: together\n", - " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct-Turbo\n", - "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - llm\n", - " provider_id: together\n", - " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct-Turbo\n", - "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct-Turbo\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - llm\n", - " provider_id: together\n", - " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct-Turbo\n", - "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - llm\n", - " provider_id: together\n", - " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct-Turbo\n", - "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct-Turbo\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - llm\n", - " provider_id: together\n", - " provider_model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct-Turbo\n", - "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - llm\n", - " provider_id: together\n", - " provider_model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct-Turbo\n", - "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " model_id: meta-llama/Meta-Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - llm\n", - " provider_id: together\n", - " provider_model_id: meta-llama/Meta-Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", - "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - llm\n", - " provider_id: together\n", - " provider_model_id: meta-llama/Meta-Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", - "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision-Turbo\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - llm\n", - " provider_id: together\n", - " provider_model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision-Turbo\n", - "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - llm\n", - " provider_id: together\n", - " provider_model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision-Turbo\n", - "- metadata:\n", - " context_length: \u001b[1;36m8192\u001b[0m\n", - " embedding_dimension: \u001b[1;36m768\u001b[0m\n", - " model_id: togethercomputer/m2-bert-80M-8k-retrieval\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - embedding\n", - " provider_id: together\n", - " provider_model_id: togethercomputer/m2-bert-80M-8k-retrieval\n", - "- metadata:\n", - " context_length: \u001b[1;36m32768\u001b[0m\n", - " embedding_dimension: \u001b[1;36m768\u001b[0m\n", - " model_id: togethercomputer/m2-bert-80M-32k-retrieval\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - embedding\n", - " provider_id: together\n", - " provider_model_id: togethercomputer/m2-bert-80M-32k-retrieval\n", - "- metadata:\n", - " embedding_dimension: \u001b[1;36m384\u001b[0m\n", - " model_id: all-MiniLM-L6-v2\n", - " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", - " - embedding\n", - " provider_id: sentence-transformers\n", - " provider_model_id: null\n", - "providers:\n", - " agents:\n", - " - config:\n", - " persistence_store:\n", - " db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95magents_store.db\u001b[0m\n", - " namespace: null\n", - " type: sqlite\n", - " provider_id: meta-reference\n", - " provider_type: inline::meta-reference\n", - " datasetio:\n", - " - config:\n", - " kvstore:\n", - " db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mhuggingface_datasetio.db\u001b[0m\n", - " namespace: null\n", - " type: sqlite\n", - " provider_id: huggingface\n", - " provider_type: remote::huggingface\n", - " - config:\n", - " kvstore:\n", - " db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mlocalfs_datasetio.db\u001b[0m\n", - " namespace: null\n", - " type: sqlite\n", - " provider_id: localfs\n", - " provider_type: inline::localfs\n", - " eval:\n", - " - config:\n", - " kvstore:\n", - " db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mmeta_reference_eval.db\u001b[0m\n", - " namespace: null\n", - " type: sqlite\n", - " provider_id: meta-reference\n", - " provider_type: inline::meta-reference\n", - " inference:\n", - " - config:\n", - " api_key: \u001b[32m'********'\u001b[0m\n", - " url: \u001b[4;94mhttps://api.together.xyz/v1\u001b[0m\n", - " provider_id: together\n", - " provider_type: remote::together\n", - " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " provider_id: sentence-transformers\n", - " provider_type: inline::sentence-transformers\n", - " safety:\n", - " - config:\n", - " excluded_categories: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", - " provider_id: llama-guard\n", - " provider_type: inline::llama-guard\n", - " scoring:\n", - " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " provider_id: basic\n", - " provider_type: inlin\u001b[1;92me::ba\u001b[0msic\n", - " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " provider_id: llm-as-judge\n", - " provider_type: inline::llm-as-judge\n", - " - config:\n", - " openai_api_key: \u001b[32m'********'\u001b[0m\n", - " provider_id: braintrust\n", - " provider_type: inlin\u001b[1;92me::b\u001b[0mraintrust\n", - " telemetry:\n", - " - config:\n", - " service_name: llama-stack\n", - " sinks: sqlite\n", - " sqlite_db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mtrace_store.db\u001b[0m\n", - " provider_id: meta-reference\n", - " provider_type: inline::meta-reference\n", - " tool_runtime:\n", - " - config:\n", - " api_key: \u001b[32m'********'\u001b[0m\n", - " max_results: \u001b[1;36m3\u001b[0m\n", - " provider_id: brave-search\n", - " provider_type: remot\u001b[1;92me::b\u001b[0mrave-search\n", - " - config:\n", - " api_key: \u001b[32m'********'\u001b[0m\n", - " max_results: \u001b[1;36m3\u001b[0m\n", - " provider_id: tavily-search\n", - " provider_type: remote::tavily-search\n", - " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " provider_id: rag-runtime\n", - " provider_type: inline::rag-runtime\n", - " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", - " provider_id: model-context-protocol\n", - " provider_type: remote::model-context-protocol\n", - " - config:\n", - " api_key: \u001b[32m'********'\u001b[0m\n", - " provider_id: wolfram-alpha\n", - " provider_type: remote::wolfram-alpha\n", - " vector_io:\n", - " - config:\n", - " kvstore:\n", - " db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mfaiss_store.db\u001b[0m\n", - " namespace: null\n", - " type: sqlite\n", - " provider_id: faiss\n", - " provider_type: inlin\u001b[1;92me::fa\u001b[0miss\n", - "scoring_fns: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", - "server:\n", - " port: \u001b[1;36m8321\u001b[0m\n", - " tls_certfile: null\n", - " tls_keyfile: null\n", - "shields:\n", - "- params: null\n", - " provider_id: null\n", - " provider_shield_id: null\n", - " shield_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", - "tool_groups:\n", - "- args: null\n", - " mcp_endpoint: null\n", - " provider_id: tavily-search\n", - " toolgroup_id: builtin::websearch\n", - "- args: null\n", - " mcp_endpoint: null\n", - " provider_id: rag-runtime\n", - " toolgroup_id: builtin::rag\n", - "- args: null\n", - " mcp_endpoint: null\n", - " provider_id: wolfram-alpha\n", - " toolgroup_id: builtin::wolfram_alpha\n", - "vector_dbs: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", - "version: \u001b[32m'2'\u001b[0m\n", - "\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import os\n", - "\n", - "try:\n", - " from google.colab import userdata\n", - " os.environ['TOGETHER_API_KEY'] = userdata.get('TOGETHER_API_KEY')\n", - " os.environ['TAVILY_SEARCH_API_KEY'] = userdata.get('TAVILY_SEARCH_API_KEY')\n", - "except ImportError:\n", - " print(\"Not in Google Colab environment\")\n", - "\n", - "from llama_stack.core.library_client import LlamaStackAsLibraryClient\n", - "\n", - "client = LlamaStackAsLibraryClient(\"together\")\n", - "_ = client.initialize()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "qwXHwHq4lS1s" - }, - "source": [ - "## 1. Open Benchmark Model Evaluation\n", - "\n", - "The first example walks you through how to evaluate a model candidate served by Llama Stack on open benchmarks. We will use the following benchmark:\n", - "\n", - "- [MMMU](https://arxiv.org/abs/2311.16502) (A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI)]: Benchmark designed to evaluate multimodal models.\n", - "- [SimpleQA](https://openai.com/index/introducing-simpleqa/): Benchmark designed to access models to answer short, fact-seeking questions." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "dqXLFtcao1oI" - }, - "source": [ - "#### 1.1 Running MMMU\n", - "- We will use a pre-processed MMMU dataset from [llamastack/mmmu](https://huggingface.co/datasets/llamastack/mmmu). The preprocessing code is shown in in this [Github Gist](https://gist.github.com/yanxi0830/118e9c560227d27132a7fd10e2c92840). The dataset is obtained by transforming the original [MMMU/MMMU](https://huggingface.co/datasets/MMMU/MMMU) dataset into correct format by `inference/chat-completion` API." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "TC_IwIAQo4q-" - }, - "outputs": [], - "source": [ - "name = \"llamastack/mmmu\"\n", - "subset = \"Agriculture\"\n", - "split = \"dev\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "id": "DJkmoG2kq1_P" - }, - "outputs": [], - "source": [ - "import datasets\n", - "\n", - "ds = datasets.load_dataset(path=name, name=subset, split=split)\n", - "ds = ds.select_columns([\"chat_completion_input\", \"input_query\", \"expected_answer\"])\n", - "eval_rows = ds.to_pandas().to_dict(orient=\"records\")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "sqBA5LbNq7Xm" - }, - "source": [ - "- **Run Evaluation on Model Candidate**\n", - " - Define a System Prompt\n", - " - Define an EvalCandidate\n", - " - Run evaluate on datasets" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 441 - }, - "collapsed": true, - "id": "1r6qYTp9q5l7", - "outputId": "f1607a9b-c3a3-43cc-928f-0487d0438748" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100%|██████████| 5/5 [00:33<00:00, 6.71s/it]\n" - ] - }, - { - "data": { - "text/html": [ - "
EvaluateResponse(\n",
-              "generations=[\n",
-              "│   │   {\n",
-              "│   │   │   'generated_answer': '**Potato Pests**\\n\\nThe two insects depicted are:\\n\\n* **Colorado Potato Beetle (Leptinotarsa decemlineata)**: Characterized by black and yellow stripes, this beetle is a significant pest of potatoes. It feeds on the leaves and can cause substantial damage to the crop.\\n* **False Potato Beetle (Leptinotarsa juncta)**: Also known as the false Colorado beetle, this species has similar coloring but is not as harmful to potatoes as the Colorado potato beetle.'\n",
-              "│   │   },\n",
-              "│   │   {\n",
-              "│   │   │   'generated_answer': \"The image shows a sunflower leaf with a powdery mildew, which is a fungal disease caused by various species of fungi. The white powdery coating on the leaves is a characteristic symptom of this disease. The leaf also has some black spots, which could be indicative of a secondary infection or another type of disease. However, without more information or a closer examination, it's difficult to determine the exact cause of the black spots.\\n\\nBased on the image alone, we can see at least two types of symptoms: the powdery mildew and the black spots. This suggests that there may be more than one pathogen involved, but it's also possible that the black spots are a result of the same fungal infection causing the powdery mildew.\\n\\nAnswer: B) Two pathogens\"\n",
-              "│   │   },\n",
-              "│   │   {\n",
-              "│   │   │   'generated_answer': 'The symptoms observed, characterized by the massive gum production on the trunks of the grapefruit trees in Cyprus, suggest a physiological or pathological response. Given the absence of visible signs of damage or pests from a higher point on a hillside, and considering the specific nature of the symptom (gum production), we can infer that the cause is more likely related to an internal process within the tree rather than external damage from harvesting. While physiological stress (B) could lead to such symptoms, the primary reason for gum production in trees, especially in citrus species, is typically linked to disease. Among the options provided, fungal gummosis (E) is a condition known to cause gumming in citrus trees, which aligns with the observed symptoms. Therefore, without direct evidence of external damage (harvesting) or confirmation of physiological stress being the primary cause, the most appropriate answer based on the information given is:\\n\\nAnswer: E'\n",
-              "│   │   },\n",
-              "│   │   {'generated_answer': 'Answer: D'},\n",
-              "│   │   {\n",
-              "│   │   │   'generated_answer': \"**Analysis of the Image**\\n\\nThe image provided shows a rhubarb plant with split petioles. To determine the cause of this issue, we need to consider various factors that could lead to such damage.\\n\\n**Possible Causes of Petiole Splitting**\\n\\n*   **Physiological Problems**: Rhubarb plants can experience physiological stress due to environmental factors like extreme temperatures, waterlogging, or nutrient deficiencies. This stress can cause the petioles to split.\\n*   **Phytoplasma Infection**: Phytoplasma is a type of bacteria that can infect plants, including rhubarb. It can cause symptoms such as yellowing leaves, stunted growth, and splitting of petioles.\\n*   **Animal Damage**: Animals like rabbits, deer, or insects can damage rhubarb plants by eating the leaves or stems, which can lead to splitting of the petioles.\\n*   **Bacteria**: Bacterial infections can also cause damage to rhubarb plants, including splitting of the petioles.\\n\\n**Conclusion**\\n\\nBased on the analysis, it is clear that all the options listed (A) Physiological problems, B) Phytoplasma infection, D) Animal damage, and E) Bacteria) could potentially cause the petioles of the rhubarb plant to split. Therefore, there is no single option that would not be a cause for the petioles splitting.\\n\\n**Answer**: C) I don't know and don't want to guess.\"\n",
-              "│   │   }\n",
-              "],\n",
-              "scores={\n",
-              "│   │   'basic::regex_parser_multiple_choice_answer': ScoringResult(\n",
-              "│   │   │   aggregated_results={'accuracy': {'accuracy': 0.2, 'num_correct': 1.0, 'num_total': 5}},\n",
-              "│   │   │   score_rows=[{'score': 0.0}, {'score': 0.0}, {'score': 0.0}, {'score': 1.0}, {'score': 0.0}]\n",
-              "│   │   )\n",
-              "}\n",
-              ")\n",
-              "
\n" - ], - "text/plain": [ - "\u001b[1;35mEvaluateResponse\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mgenerations\u001b[0m=\u001b[1m[\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'**Potato Pests**\\n\\nThe two insects depicted are:\\n\\n* **Colorado Potato Beetle \u001b[0m\u001b[32m(\u001b[0m\u001b[32mLeptinotarsa decemlineata\u001b[0m\u001b[32m)\u001b[0m\u001b[32m**: Characterized by black and yellow stripes, this beetle is a significant pest of potatoes. It feeds on the leaves and can cause substantial damage to the crop.\\n* **False Potato Beetle \u001b[0m\u001b[32m(\u001b[0m\u001b[32mLeptinotarsa juncta\u001b[0m\u001b[32m)\u001b[0m\u001b[32m**: Also known as the false Colorado beetle, this species has similar coloring but is not as harmful to potatoes as the Colorado potato beetle.'\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"The image shows a sunflower leaf with a powdery mildew, which is a fungal disease caused by various species of fungi. The white powdery coating on the leaves is a characteristic symptom of this disease. The leaf also has some black spots, which could be indicative of a secondary infection or another type of disease. However, without more information or a closer examination, it's difficult to determine the exact cause of the black spots.\\n\\nBased on the image alone, we can see at least two types of symptoms: the powdery mildew and the black spots. This suggests that there may be more than one pathogen involved, but it's also possible that the black spots are a result of the same fungal infection causing the powdery mildew.\\n\\nAnswer: B\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Two pathogens\"\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The symptoms observed, characterized by the massive gum production on the trunks of the grapefruit trees in Cyprus, suggest a physiological or pathological response. Given the absence of visible signs of damage or pests from a higher point on a hillside, and considering the specific nature of the symptom \u001b[0m\u001b[32m(\u001b[0m\u001b[32mgum production\u001b[0m\u001b[32m)\u001b[0m\u001b[32m, we can infer that the cause is more likely related to an internal process within the tree rather than external damage from harvesting. While physiological stress \u001b[0m\u001b[32m(\u001b[0m\u001b[32mB\u001b[0m\u001b[32m)\u001b[0m\u001b[32m could lead to such symptoms, the primary reason for gum production in trees, especially in citrus species, is typically linked to disease. Among the options provided, fungal gummosis \u001b[0m\u001b[32m(\u001b[0m\u001b[32mE\u001b[0m\u001b[32m)\u001b[0m\u001b[32m is a condition known to cause gumming in citrus trees, which aligns with the observed symptoms. Therefore, without direct evidence of external damage \u001b[0m\u001b[32m(\u001b[0m\u001b[32mharvesting\u001b[0m\u001b[32m)\u001b[0m\u001b[32m or confirmation of physiological stress being the primary cause, the most appropriate answer based on the information given is:\\n\\nAnswer: E'\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'Answer: D'\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"**Analysis of the Image**\\n\\nThe image provided shows a rhubarb plant with split petioles. To determine the cause of this issue, we need to consider various factors that could lead to such damage.\\n\\n**Possible Causes of Petiole Splitting**\\n\\n* **Physiological Problems**: Rhubarb plants can experience physiological stress due to environmental factors like extreme temperatures, waterlogging, or nutrient deficiencies. This stress can cause the petioles to split.\\n* **Phytoplasma Infection**: Phytoplasma is a type of bacteria that can infect plants, including rhubarb. It can cause symptoms such as yellowing leaves, stunted growth, and splitting of petioles.\\n* **Animal Damage**: Animals like rabbits, deer, or insects can damage rhubarb plants by eating the leaves or stems, which can lead to splitting of the petioles.\\n* **Bacteria**: Bacterial infections can also cause damage to rhubarb plants, including splitting of the petioles.\\n\\n**Conclusion**\\n\\nBased on the analysis, it is clear that all the options listed \u001b[0m\u001b[32m(\u001b[0m\u001b[32mA\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Physiological problems, B\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Phytoplasma infection, D\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Animal damage, and E\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Bacteria\u001b[0m\u001b[32m)\u001b[0m\u001b[32m could potentially cause the petioles of the rhubarb plant to split. Therefore, there is no single option that would not be a cause for the petioles splitting.\\n\\n**Answer**: C\u001b[0m\u001b[32m)\u001b[0m\u001b[32m I don't know and don't want to guess.\"\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m]\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mscores\u001b[0m=\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'basic::regex_parser_multiple_choice_answer'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1;36m0.2\u001b[0m, \u001b[32m'num_correct'\u001b[0m: \u001b[1;36m1.0\u001b[0m, \u001b[32m'num_total'\u001b[0m: \u001b[1;36m5\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m\u001b[1m]\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[1m)\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from rich.pretty import pprint\n", - "from tqdm import tqdm\n", - "\n", - "SYSTEM_PROMPT_TEMPLATE = \"\"\"\n", - "You are an expert in {subject} whose job is to answer questions from the user using images.\n", - "\n", - "First, reason about the correct answer.\n", - "\n", - "Then write the answer in the following format where X is exactly one of A,B,C,D:\n", - "\n", - "Answer: X\n", - "\n", - "Make sure X is one of A,B,C,D.\n", - "\n", - "If you are uncertain of the correct answer, guess the most likely one.\n", - "\"\"\"\n", - "\n", - "system_message = {\n", - " \"role\": \"system\",\n", - " \"content\": SYSTEM_PROMPT_TEMPLATE.format(subject=subset),\n", - "}\n", - "\n", - "client.benchmarks.register(\n", - " benchmark_id=\"meta-reference::mmmu\",\n", - " # Note: we can use any value as `dataset_id` because we'll be using the `evaluate_rows` API which accepts the\n", - " # `input_rows` argument and does not fetch data from the dataset.\n", - " dataset_id=f\"mmmu-{subset}-{split}\",\n", - " # Note: for the same reason as above, we can use any value as `scoring_functions`.\n", - " scoring_functions=[],\n", - ")\n", - "\n", - "response = client.eval.evaluate_rows(\n", - " benchmark_id=\"meta-reference::mmmu\",\n", - " input_rows=eval_rows,\n", - " # Note: Here we define the actual scoring functions.\n", - " scoring_functions=[\"basic::regex_parser_multiple_choice_answer\"],\n", - " benchmark_config={\n", - " \"eval_candidate\": {\n", - " \"type\": \"model\",\n", - " \"model\": \"meta-llama/Llama-3.2-90B-Vision-Instruct\",\n", - " \"sampling_params\": {\n", - " \"strategy\": {\n", - " \"type\": \"top_p\",\n", - " \"temperature\": 1.0,\n", - " \"top_p\": 0.95,\n", - " },\n", - " \"max_tokens\": 4096,\n", - " \"repeat_penalty\": 1.0,\n", - " },\n", - " \"system_message\": system_message,\n", - " },\n", - " },\n", - ")\n", - "pprint(response)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "vYlb9wKzwg-s" - }, - "source": [ - "#### 1.2. Running SimpleQA\n", - "- We will use a pre-processed SimpleQA dataset from [llamastack/evals](https://huggingface.co/datasets/llamastack/evals/viewer/evals__simpleqa) which is obtained by transforming the input query into correct format accepted by `inference/chat-completion` API.\n", - "- Since we will be using this same dataset in our next example for Agentic evaluation, we will register it using the `/datasets` API, and interact with it through `/datasetio` API." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "HXmZf3Ymw-aX" - }, - "outputs": [], - "source": [ - "simpleqa_dataset_id = \"huggingface::simpleqa\"\n", - "\n", - "register_dataset_response = client.datasets.register(\n", - " purpose=\"eval/messages-answer\",\n", - " source={\n", - " \"type\": \"uri\",\n", - " \"uri\": \"huggingface://datasets/llamastack/simpleqa?split=train\",\n", - " },\n", - " dataset_id=simpleqa_dataset_id,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "Gc8azb4Rxr5J" - }, - "outputs": [], - "source": [ - "eval_rows = client.datasets.iterrows(\n", - " dataset_id=simpleqa_dataset_id,\n", - " limit=5,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 506 - }, - "id": "zSYAUnBUyRaG", - "outputId": "038cf42f-4e3c-4053-b3c4-cf16547483dd" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - " 0%| | 0/5 [00:00EvaluateResponse(\n", - "generations=[\n", - "│ │ {'generated_answer': \"I'm not sure who received the IEEE Frank Rosenblatt Award in 2010.\"},\n", - "│ │ {'generated_answer': \"I'm not aware of the information about the 2018 Jerlov Award recipient.\"},\n", - "│ │ {\n", - "│ │ │ 'generated_answer': \"Radcliffe College was a women's liberal arts college in Cambridge, Massachusetts. However, it merged with Harvard University in 1977 and is now known as the Radcliffe Institute for Advanced Study at Harvard University.\"\n", - "│ │ },\n", - "│ │ {'generated_answer': 'I am unable to verify in whose honor the Leipzig 1877 tournament was organized.'},\n", - "│ │ {\n", - "│ │ │ 'generated_answer': \"I am unable to verify what Empress Elizabeth of Austria's favorite sculpture depicted at her villa Achilleion at Corfu, according to Karl Küchler.\"\n", - "│ │ }\n", - "],\n", - "scores={\n", - "│ │ 'llm-as-judge::405b-simpleqa': ScoringResult(\n", - "│ │ │ aggregated_results={'categorical_count': {'categorical_count': {'A': 1, 'C': 4}}},\n", - "│ │ │ score_rows=[\n", - "│ │ │ │ {'score': 'C', 'judge_feedback': 'C'},\n", - "│ │ │ │ {'score': 'C', 'judge_feedback': 'C'},\n", - "│ │ │ │ {'score': 'A', 'judge_feedback': 'A'},\n", - "│ │ │ │ {'score': 'C', 'judge_feedback': 'C'},\n", - "│ │ │ │ {'score': 'C', 'judge_feedback': 'C'}\n", - "│ │ │ ]\n", - "│ │ )\n", - "}\n", - ")\n", - "\n" - ], - "text/plain": [ - "\u001b[1;35mEvaluateResponse\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mgenerations\u001b[0m=\u001b[1m[\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"I'm not sure who received the IEEE Frank Rosenblatt Award in 2010.\"\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"I'm not aware of the information about the 2018 Jerlov Award recipient.\"\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"Radcliffe College was a women's liberal arts college in Cambridge, Massachusetts. However, it merged with Harvard University in 1977 and is now known as the Radcliffe Institute for Advanced Study at Harvard University.\"\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'I am unable to verify in whose honor the Leipzig 1877 tournament was organized.'\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"I am unable to verify what Empress Elizabeth of Austria's favorite sculpture depicted at her villa Achilleion at Corfu, according to Karl Küchler.\"\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m]\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mscores\u001b[0m=\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'llm-as-judge::405b-simpleqa'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'categorical_count'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'categorical_count'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'A'\u001b[0m: \u001b[1;36m1\u001b[0m, \u001b[32m'C'\u001b[0m: \u001b[1;36m4\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'C'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'C'\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'C'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'C'\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'A'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'A'\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'C'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'C'\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'C'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'C'\u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[1m]\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[1m)\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# register 405B as LLM Judge model\n", - "client.models.register(\n", - " model=\"meta-llama/Llama-3.1-405B-Instruct\",\n", - " provider_model_id=\"meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo\",\n", - " provider_id=\"together\",\n", - ")\n", - "\n", - "client.benchmarks.register(\n", - " benchmark_id=\"meta-reference::simpleqa\",\n", - " dataset_id=simpleqa_dataset_id,\n", - " scoring_functions=[\"llm-as-judge::405b-simpleqa\"],\n", - ")\n", - "\n", - "response = client.eval.evaluate_rows(\n", - " benchmark_id=\"meta-reference::simpleqa\",\n", - " input_rows=eval_rows.data,\n", - " scoring_functions=[\"llm-as-judge::405b-simpleqa\"],\n", - " benchmark_config={\n", - " \"eval_candidate\": {\n", - " \"type\": \"model\",\n", - " \"model\": \"meta-llama/Llama-3.2-90B-Vision-Instruct\",\n", - " \"sampling_params\": {\n", - " \"strategy\": {\n", - " \"type\": \"greedy\",\n", - " },\n", - " \"max_tokens\": 4096,\n", - " \"repeat_penalty\": 1.0,\n", - " },\n", - " },\n", - " },\n", - ")\n", - "pprint(response)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "eyziqe_Em6d6" - }, - "source": [ - "## 2. Agentic Evaluation\n", - "\n", - "- In this example, we will demonstrate how to evaluate a agent candidate served by Llama Stack via `/agent` API.\n", - "\n", - "- We will continue to use the SimpleQA dataset we used in previous example.\n", - "\n", - "- Instead of running evaluation on model, we will run the evaluation on a Search Agent with access to search tool. We will define our agent evaluation candidate through `AgentConfig`.\n", - "\n", - "> You will need to set the `TAVILY_SEARCH_API_KEY` in Secrets of this notebook." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 538 - }, - "id": "mxLCsP4MvFqP", - "outputId": "8be2a32f-2a47-4443-8992-0000c23ca678" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "5it [00:06, 1.33s/it]\n" - ] - }, - { - "data": { - "text/html": [ - "
EvaluateResponse(\n",
-              "generations=[\n",
-              "│   │   {\n",
-              "│   │   │   'generated_answer': 'The IEEE Frank Rosenblatt Award was given to Professor John Shawe-Taylor in 2010 for his contributions to the foundations of kernel methods.'\n",
-              "│   │   },\n",
-              "│   │   {\n",
-              "│   │   │   'generated_answer': 'The Jerlov Award is given by The Oceanography Society to recognize outstanding contributions to the field of ocean optics. The 2018 Jerlov Award was awarded to Dr. Kendall L. Carder.'\n",
-              "│   │   },\n",
-              "│   │   {\n",
-              "│   │   │   'generated_answer': \"The women's liberal arts college in Cambridge, Massachusetts is Radcliffe College. However, in 1999, Radcliffe College merged with Harvard University to form the Radcliffe Institute for Advanced Study at Harvard University. The institute is still located in Cambridge, Massachusetts, and is dedicated to supporting women's education and research.\"\n",
-              "│   │   },\n",
-              "│   │   {'generated_answer': 'The Leipzig 1877 tournament was organized in honor of Adolf Anderssen.'},\n",
-              "│   │   {\n",
-              "│   │   │   'generated_answer': \"According to Karl Küchler, Empress Elizabeth of Austria's favorite sculpture, which was made for her villa Achilleion at Corfu, depicted the Dying Achilles.\"\n",
-              "│   │   }\n",
-              "],\n",
-              "scores={\n",
-              "│   │   'llm-as-judge::405b-simpleqa': ScoringResult(\n",
-              "│   │   │   aggregated_results={},\n",
-              "│   │   │   score_rows=[\n",
-              "│   │   │   │   {'score': 'B', 'judge_feedback': 'B'},\n",
-              "│   │   │   │   {'score': 'B', 'judge_feedback': 'B'},\n",
-              "│   │   │   │   {'score': 'A', 'judge_feedback': 'A'},\n",
-              "│   │   │   │   {'score': 'A', 'judge_feedback': 'A'},\n",
-              "│   │   │   │   {'score': 'B', 'judge_feedback': 'B'}\n",
-              "│   │   │   ]\n",
-              "│   │   )\n",
-              "}\n",
-              ")\n",
-              "
\n" - ], - "text/plain": [ - "\u001b[1;35mEvaluateResponse\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mgenerations\u001b[0m=\u001b[1m[\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The IEEE Frank Rosenblatt Award was given to Professor John Shawe-Taylor in 2010 for his contributions to the foundations of kernel methods.'\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The Jerlov Award is given by The Oceanography Society to recognize outstanding contributions to the field of ocean optics. The 2018 Jerlov Award was awarded to Dr. Kendall L. Carder.'\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"The women's liberal arts college in Cambridge, Massachusetts is Radcliffe College. However, in 1999, Radcliffe College merged with Harvard University to form the Radcliffe Institute for Advanced Study at Harvard University. The institute is still located in Cambridge, Massachusetts, and is dedicated to supporting women's education and research.\"\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The Leipzig 1877 tournament was organized in honor of Adolf Anderssen.'\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"According to Karl Küchler, Empress Elizabeth of Austria's favorite sculpture, which was made for her villa Achilleion at Corfu, depicted the Dying Achilles.\"\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m]\u001b[0m,\n", - "\u001b[2;32m│ \u001b[0m\u001b[33mscores\u001b[0m=\u001b[1m{\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[32m'llm-as-judge::405b-simpleqa'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'B'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'B'\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'B'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'B'\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'A'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'A'\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'A'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'A'\u001b[0m\u001b[1m}\u001b[0m,\n", - "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'B'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'B'\u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[2;32m│ │ │ \u001b[0m\u001b[1m]\u001b[0m\n", - "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", - "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", - "\u001b[1m)\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "agent_config = {\n", - " \"model\": \"meta-llama/Llama-3.3-70B-Instruct\",\n", - " \"instructions\": \"You are a helpful assistant that have access to tool to search the web. \",\n", - " \"sampling_params\": {\n", - " \"strategy\": {\n", - " \"type\": \"top_p\",\n", - " \"temperature\": 0.5,\n", - " \"top_p\": 0.9,\n", - " }\n", - " },\n", - " \"toolgroups\": [\n", - " \"builtin::websearch\",\n", - " ],\n", - " \"tool_choice\": \"auto\",\n", - " \"tool_prompt_format\": \"json\",\n", - " \"input_shields\": [],\n", - " \"output_shields\": [],\n", - " \"enable_session_persistence\": False,\n", - "}\n", - "\n", - "response = client.eval.evaluate_rows(\n", - " benchmark_id=\"meta-reference::simpleqa\",\n", - " input_rows=eval_rows.data,\n", - " scoring_functions=[\"llm-as-judge::405b-simpleqa\"],\n", - " benchmark_config={\n", - " \"eval_candidate\": {\n", - " \"type\": \"agent\",\n", - " \"config\": agent_config,\n", - " },\n", - " },\n", - ")\n", - "pprint(response)\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "lxc9-eXYK5Av" - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "colab": { - "collapsed_sections": [ - "bxs0FJ1ckGa6", - "eyziqe_Em6d6" - ], - "provenance": [] - }, - "kernelspec": { - "display_name": "master", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.16" - } + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "hTIfyoGtjoWD" + }, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb)\n", + "\n", + "# Llama Stack Benchmark Evals\n", + "\n", + "This notebook will walk you through the main sets of APIs we offer with Llama Stack for supporting running benchmark evaluations of your with working examples to explore the possibilities that Llama Stack opens up for you.\n", + "\n", + "Read more about Llama Stack: https://llamastack.github.io/latest/index.html" + ] }, - "nbformat": 4, - "nbformat_minor": 0 + { + "cell_type": "markdown", + "metadata": { + "id": "bxs0FJ1ckGa6" + }, + "source": [ + "## 0. Bootstrapping Llama Stack Library\n", + "\n", + "##### 0.1. Prerequisite: Create TogetherAI account\n", + "\n", + "In order to run inference for the llama models, you will need to use an inference provider. Llama stack supports a number of inference [providers](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/remote/inference).\n", + "\n", + "In this showcase, we will use [together.ai](https://www.together.ai/) as the inference provider. So, you would first get an API key from Together if you dont have one already.\n", + "You can also use Fireworks.ai or even Ollama if you would like to.\n", + "\n", + "\n", + "> **Note:** Set the API Key in the Secrets of this notebook as `TOGETHER_API_KEY`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true, + "id": "O9pGVlPIjpix" + }, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "!pip install -U llama-stack" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true, + "id": "JQpLUSNjlGAM" + }, + "outputs": [], + "source": [ + "# NBVAL_SKIP\n", + "!uv run llama stack list-deps together | xargs -L1 uv pip install\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "collapsed": true, + "id": "KkT2qVeTlI-b", + "outputId": "9198fbfc-a126-4409-e2f5-5f5bf5cdf9a7" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Not in Google Colab environment\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning: `bwrap` is not available. Code interpreter tool will not work correctly.\n" + ] + }, + { + "data": { + "text/html": [ + "
Using config together:\n",
+       "
\n" + ], + "text/plain": [ + "Using config \u001b[34mtogether\u001b[0m:\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
apis:\n",
+       "- agents\n",
+       "- datasetio\n",
+       "- eval\n",
+       "- inference\n",
+       "- safety\n",
+       "- scoring\n",
+       "- telemetry\n",
+       "- tool_runtime\n",
+       "- vector_io\n",
+       "benchmarks: []\n",
+       "container_image: null\n",
+       "datasets: []\n",
+       "image_name: together\n",
+       "logging: null\n",
+       "metadata_store:\n",
+       "  db_path: /Users/xiyan/.llama/distributions/together/registry.db\n",
+       "  namespace: null\n",
+       "  type: sqlite\n",
+       "models:\n",
+       "- metadata: {}\n",
+       "  model_id: meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - llm\n",
+       "  provider_id: together\n",
+       "  provider_model_id: meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo\n",
+       "- metadata: {}\n",
+       "  model_id: meta-llama/Llama-3.1-8B-Instruct\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - llm\n",
+       "  provider_id: together\n",
+       "  provider_model_id: meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo\n",
+       "- metadata: {}\n",
+       "  model_id: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - llm\n",
+       "  provider_id: together\n",
+       "  provider_model_id: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo\n",
+       "- metadata: {}\n",
+       "  model_id: meta-llama/Llama-3.1-70B-Instruct\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - llm\n",
+       "  provider_id: together\n",
+       "  provider_model_id: meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo\n",
+       "- metadata: {}\n",
+       "  model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - llm\n",
+       "  provider_id: together\n",
+       "  provider_model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo\n",
+       "- metadata: {}\n",
+       "  model_id: meta-llama/Llama-3.1-405B-Instruct-FP8\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - llm\n",
+       "  provider_id: together\n",
+       "  provider_model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo\n",
+       "- metadata: {}\n",
+       "  model_id: meta-llama/Llama-3.2-3B-Instruct-Turbo\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - llm\n",
+       "  provider_id: together\n",
+       "  provider_model_id: meta-llama/Llama-3.2-3B-Instruct-Turbo\n",
+       "- metadata: {}\n",
+       "  model_id: meta-llama/Llama-3.2-3B-Instruct\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - llm\n",
+       "  provider_id: together\n",
+       "  provider_model_id: meta-llama/Llama-3.2-3B-Instruct-Turbo\n",
+       "- metadata: {}\n",
+       "  model_id: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - llm\n",
+       "  provider_id: together\n",
+       "  provider_model_id: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo\n",
+       "- metadata: {}\n",
+       "  model_id: meta-llama/Llama-3.2-11B-Vision-Instruct\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - llm\n",
+       "  provider_id: together\n",
+       "  provider_model_id: meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo\n",
+       "- metadata: {}\n",
+       "  model_id: meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - llm\n",
+       "  provider_id: together\n",
+       "  provider_model_id: meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo\n",
+       "- metadata: {}\n",
+       "  model_id: meta-llama/Llama-3.2-90B-Vision-Instruct\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - llm\n",
+       "  provider_id: together\n",
+       "  provider_model_id: meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo\n",
+       "- metadata: {}\n",
+       "  model_id: meta-llama/Llama-3.3-70B-Instruct-Turbo\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - llm\n",
+       "  provider_id: together\n",
+       "  provider_model_id: meta-llama/Llama-3.3-70B-Instruct-Turbo\n",
+       "- metadata: {}\n",
+       "  model_id: meta-llama/Llama-3.3-70B-Instruct\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - llm\n",
+       "  provider_id: together\n",
+       "  provider_model_id: meta-llama/Llama-3.3-70B-Instruct-Turbo\n",
+       "- metadata: {}\n",
+       "  model_id: meta-llama/Meta-Llama-Guard-3-8B\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - llm\n",
+       "  provider_id: together\n",
+       "  provider_model_id: meta-llama/Meta-Llama-Guard-3-8B\n",
+       "- metadata: {}\n",
+       "  model_id: meta-llama/Llama-Guard-3-8B\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - llm\n",
+       "  provider_id: together\n",
+       "  provider_model_id: meta-llama/Meta-Llama-Guard-3-8B\n",
+       "- metadata: {}\n",
+       "  model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - llm\n",
+       "  provider_id: together\n",
+       "  provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo\n",
+       "- metadata: {}\n",
+       "  model_id: meta-llama/Llama-Guard-3-11B-Vision\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - llm\n",
+       "  provider_id: together\n",
+       "  provider_model_id: meta-llama/Llama-Guard-3-11B-Vision-Turbo\n",
+       "- metadata:\n",
+       "    context_length: 8192\n",
+       "    embedding_dimension: 768\n",
+       "  model_id: togethercomputer/m2-bert-80M-8k-retrieval\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - embedding\n",
+       "  provider_id: together\n",
+       "  provider_model_id: togethercomputer/m2-bert-80M-8k-retrieval\n",
+       "- metadata:\n",
+       "    context_length: 32768\n",
+       "    embedding_dimension: 768\n",
+       "  model_id: togethercomputer/m2-bert-80M-32k-retrieval\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - embedding\n",
+       "  provider_id: together\n",
+       "  provider_model_id: togethercomputer/m2-bert-80M-32k-retrieval\n",
+       "- metadata:\n",
+       "    embedding_dimension: 384\n",
+       "  model_id: all-MiniLM-L6-v2\n",
+       "  model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
+       "  - embedding\n",
+       "  provider_id: sentence-transformers\n",
+       "  provider_model_id: null\n",
+       "providers:\n",
+       "  agents:\n",
+       "  - config:\n",
+       "      persistence_store:\n",
+       "        db_path: /Users/xiyan/.llama/distributions/together/agents_store.db\n",
+       "        namespace: null\n",
+       "        type: sqlite\n",
+       "    provider_id: meta-reference\n",
+       "    provider_type: inline::meta-reference\n",
+       "  datasetio:\n",
+       "  - config:\n",
+       "      kvstore:\n",
+       "        db_path: /Users/xiyan/.llama/distributions/together/huggingface_datasetio.db\n",
+       "        namespace: null\n",
+       "        type: sqlite\n",
+       "    provider_id: huggingface\n",
+       "    provider_type: remote::huggingface\n",
+       "  - config:\n",
+       "      kvstore:\n",
+       "        db_path: /Users/xiyan/.llama/distributions/together/localfs_datasetio.db\n",
+       "        namespace: null\n",
+       "        type: sqlite\n",
+       "    provider_id: localfs\n",
+       "    provider_type: inline::localfs\n",
+       "  eval:\n",
+       "  - config:\n",
+       "      kvstore:\n",
+       "        db_path: /Users/xiyan/.llama/distributions/together/meta_reference_eval.db\n",
+       "        namespace: null\n",
+       "        type: sqlite\n",
+       "    provider_id: meta-reference\n",
+       "    provider_type: inline::meta-reference\n",
+       "  inference:\n",
+       "  - config:\n",
+       "      api_key: '********'\n",
+       "      url: https://api.together.xyz/v1\n",
+       "    provider_id: together\n",
+       "    provider_type: remote::together\n",
+       "  - config: {}\n",
+       "    provider_id: sentence-transformers\n",
+       "    provider_type: inline::sentence-transformers\n",
+       "  safety:\n",
+       "  - config:\n",
+       "      excluded_categories: []\n",
+       "    provider_id: llama-guard\n",
+       "    provider_type: inline::llama-guard\n",
+       "  scoring:\n",
+       "  - config: {}\n",
+       "    provider_id: basic\n",
+       "    provider_type: inline::basic\n",
+       "  - config: {}\n",
+       "    provider_id: llm-as-judge\n",
+       "    provider_type: inline::llm-as-judge\n",
+       "  - config:\n",
+       "      openai_api_key: '********'\n",
+       "    provider_id: braintrust\n",
+       "    provider_type: inline::braintrust\n",
+       "  telemetry:\n",
+       "  - config:\n",
+       "      service_name: llama-stack\n",
+       "      sinks: sqlite\n",
+       "      sqlite_db_path: /Users/xiyan/.llama/distributions/together/trace_store.db\n",
+       "    provider_id: meta-reference\n",
+       "    provider_type: inline::meta-reference\n",
+       "  tool_runtime:\n",
+       "  - config:\n",
+       "      api_key: '********'\n",
+       "      max_results: 3\n",
+       "    provider_id: brave-search\n",
+       "    provider_type: remote::brave-search\n",
+       "  - config:\n",
+       "      api_key: '********'\n",
+       "      max_results: 3\n",
+       "    provider_id: tavily-search\n",
+       "    provider_type: remote::tavily-search\n",
+       "  - config: {}\n",
+       "    provider_id: rag-runtime\n",
+       "    provider_type: inline::rag-runtime\n",
+       "  - config: {}\n",
+       "    provider_id: model-context-protocol\n",
+       "    provider_type: remote::model-context-protocol\n",
+       "  - config:\n",
+       "      api_key: '********'\n",
+       "    provider_id: wolfram-alpha\n",
+       "    provider_type: remote::wolfram-alpha\n",
+       "  vector_io:\n",
+       "  - config:\n",
+       "      kvstore:\n",
+       "        db_path: /Users/xiyan/.llama/distributions/together/faiss_store.db\n",
+       "        namespace: null\n",
+       "        type: sqlite\n",
+       "    provider_id: faiss\n",
+       "    provider_type: inline::faiss\n",
+       "scoring_fns: []\n",
+       "server:\n",
+       "  port: 8321\n",
+       "  tls_certfile: null\n",
+       "  tls_keyfile: null\n",
+       "shields:\n",
+       "- params: null\n",
+       "  provider_id: null\n",
+       "  provider_shield_id: null\n",
+       "  shield_id: meta-llama/Llama-Guard-3-8B\n",
+       "tool_groups:\n",
+       "- args: null\n",
+       "  mcp_endpoint: null\n",
+       "  provider_id: tavily-search\n",
+       "  toolgroup_id: builtin::websearch\n",
+       "- args: null\n",
+       "  mcp_endpoint: null\n",
+       "  provider_id: rag-runtime\n",
+       "  toolgroup_id: builtin::rag\n",
+       "- args: null\n",
+       "  mcp_endpoint: null\n",
+       "  provider_id: wolfram-alpha\n",
+       "  toolgroup_id: builtin::wolfram_alpha\n",
+       "vector_dbs: []\n",
+       "version: '2'\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "apis:\n", + "- agents\n", + "- datasetio\n", + "- eval\n", + "- inference\n", + "- safety\n", + "- scoring\n", + "- telemetry\n", + "- tool_runtime\n", + "- vector_io\n", + "benchmarks: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", + "container_image: null\n", + "datasets: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", + "image_name: together\n", + "logging: null\n", + "metadata_store:\n", + " db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mregistry.db\u001b[0m\n", + " namespace: null\n", + " type: sqlite\n", + "models:\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-FP8\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Meta-Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Meta-Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision-Turbo\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision-Turbo\n", + "- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - llm\n", + " provider_id: together\n", + " provider_model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision-Turbo\n", + "- metadata:\n", + " context_length: \u001b[1;36m8192\u001b[0m\n", + " embedding_dimension: \u001b[1;36m768\u001b[0m\n", + " model_id: togethercomputer/m2-bert-80M-8k-retrieval\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - embedding\n", + " provider_id: together\n", + " provider_model_id: togethercomputer/m2-bert-80M-8k-retrieval\n", + "- metadata:\n", + " context_length: \u001b[1;36m32768\u001b[0m\n", + " embedding_dimension: \u001b[1;36m768\u001b[0m\n", + " model_id: togethercomputer/m2-bert-80M-32k-retrieval\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - embedding\n", + " provider_id: together\n", + " provider_model_id: togethercomputer/m2-bert-80M-32k-retrieval\n", + "- metadata:\n", + " embedding_dimension: \u001b[1;36m384\u001b[0m\n", + " model_id: all-MiniLM-L6-v2\n", + " model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n", + " - embedding\n", + " provider_id: sentence-transformers\n", + " provider_model_id: null\n", + "providers:\n", + " agents:\n", + " - config:\n", + " persistence_store:\n", + " db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95magents_store.db\u001b[0m\n", + " namespace: null\n", + " type: sqlite\n", + " provider_id: meta-reference\n", + " provider_type: inline::meta-reference\n", + " datasetio:\n", + " - config:\n", + " kvstore:\n", + " db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mhuggingface_datasetio.db\u001b[0m\n", + " namespace: null\n", + " type: sqlite\n", + " provider_id: huggingface\n", + " provider_type: remote::huggingface\n", + " - config:\n", + " kvstore:\n", + " db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mlocalfs_datasetio.db\u001b[0m\n", + " namespace: null\n", + " type: sqlite\n", + " provider_id: localfs\n", + " provider_type: inline::localfs\n", + " eval:\n", + " - config:\n", + " kvstore:\n", + " db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mmeta_reference_eval.db\u001b[0m\n", + " namespace: null\n", + " type: sqlite\n", + " provider_id: meta-reference\n", + " provider_type: inline::meta-reference\n", + " inference:\n", + " - config:\n", + " api_key: \u001b[32m'********'\u001b[0m\n", + " url: \u001b[4;94mhttps://api.together.xyz/v1\u001b[0m\n", + " provider_id: together\n", + " provider_type: remote::together\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: sentence-transformers\n", + " provider_type: inline::sentence-transformers\n", + " safety:\n", + " - config:\n", + " excluded_categories: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", + " provider_id: llama-guard\n", + " provider_type: inline::llama-guard\n", + " scoring:\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: basic\n", + " provider_type: inlin\u001b[1;92me::ba\u001b[0msic\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: llm-as-judge\n", + " provider_type: inline::llm-as-judge\n", + " - config:\n", + " openai_api_key: \u001b[32m'********'\u001b[0m\n", + " provider_id: braintrust\n", + " provider_type: inlin\u001b[1;92me::b\u001b[0mraintrust\n", + " telemetry:\n", + " - config:\n", + " service_name: llama-stack\n", + " sinks: sqlite\n", + " sqlite_db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mtrace_store.db\u001b[0m\n", + " provider_id: meta-reference\n", + " provider_type: inline::meta-reference\n", + " tool_runtime:\n", + " - config:\n", + " api_key: \u001b[32m'********'\u001b[0m\n", + " max_results: \u001b[1;36m3\u001b[0m\n", + " provider_id: brave-search\n", + " provider_type: remot\u001b[1;92me::b\u001b[0mrave-search\n", + " - config:\n", + " api_key: \u001b[32m'********'\u001b[0m\n", + " max_results: \u001b[1;36m3\u001b[0m\n", + " provider_id: tavily-search\n", + " provider_type: remote::tavily-search\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: rag-runtime\n", + " provider_type: inline::rag-runtime\n", + " - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n", + " provider_id: model-context-protocol\n", + " provider_type: remote::model-context-protocol\n", + " - config:\n", + " api_key: \u001b[32m'********'\u001b[0m\n", + " provider_id: wolfram-alpha\n", + " provider_type: remote::wolfram-alpha\n", + " vector_io:\n", + " - config:\n", + " kvstore:\n", + " db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mfaiss_store.db\u001b[0m\n", + " namespace: null\n", + " type: sqlite\n", + " provider_id: faiss\n", + " provider_type: inlin\u001b[1;92me::fa\u001b[0miss\n", + "scoring_fns: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", + "server:\n", + " port: \u001b[1;36m8321\u001b[0m\n", + " tls_certfile: null\n", + " tls_keyfile: null\n", + "shields:\n", + "- params: null\n", + " provider_id: null\n", + " provider_shield_id: null\n", + " shield_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n", + "tool_groups:\n", + "- args: null\n", + " mcp_endpoint: null\n", + " provider_id: tavily-search\n", + " toolgroup_id: builtin::websearch\n", + "- args: null\n", + " mcp_endpoint: null\n", + " provider_id: rag-runtime\n", + " toolgroup_id: builtin::rag\n", + "- args: null\n", + " mcp_endpoint: null\n", + " provider_id: wolfram-alpha\n", + " toolgroup_id: builtin::wolfram_alpha\n", + "vector_dbs: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n", + "version: \u001b[32m'2'\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import os\n", + "\n", + "try:\n", + " from google.colab import userdata\n", + " os.environ['TOGETHER_API_KEY'] = userdata.get('TOGETHER_API_KEY')\n", + " os.environ['TAVILY_SEARCH_API_KEY'] = userdata.get('TAVILY_SEARCH_API_KEY')\n", + "except ImportError:\n", + " print(\"Not in Google Colab environment\")\n", + "\n", + "from llama_stack.core.library_client import LlamaStackAsLibraryClient\n", + "\n", + "client = LlamaStackAsLibraryClient(\"together\")\n", + "_ = client.initialize()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qwXHwHq4lS1s" + }, + "source": [ + "## 1. Open Benchmark Model Evaluation\n", + "\n", + "The first example walks you through how to evaluate a model candidate served by Llama Stack on open benchmarks. We will use the following benchmark:\n", + "\n", + "- [MMMU](https://arxiv.org/abs/2311.16502) (A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI)]: Benchmark designed to evaluate multimodal models.\n", + "- [SimpleQA](https://openai.com/index/introducing-simpleqa/): Benchmark designed to access models to answer short, fact-seeking questions." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dqXLFtcao1oI" + }, + "source": [ + "#### 1.1 Running MMMU\n", + "- We will use a pre-processed MMMU dataset from [llamastack/mmmu](https://huggingface.co/datasets/llamastack/mmmu). The preprocessing code is shown in in this [Github Gist](https://gist.github.com/yanxi0830/118e9c560227d27132a7fd10e2c92840). The dataset is obtained by transforming the original [MMMU/MMMU](https://huggingface.co/datasets/MMMU/MMMU) dataset into correct format by `inference/chat-completion` API." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "TC_IwIAQo4q-" + }, + "outputs": [], + "source": [ + "name = \"llamastack/mmmu\"\n", + "subset = \"Agriculture\"\n", + "split = \"dev\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true, + "id": "DJkmoG2kq1_P" + }, + "outputs": [], + "source": [ + "import datasets\n", + "\n", + "ds = datasets.load_dataset(path=name, name=subset, split=split)\n", + "ds = ds.select_columns([\"chat_completion_input\", \"input_query\", \"expected_answer\"])\n", + "eval_rows = ds.to_pandas().to_dict(orient=\"records\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sqBA5LbNq7Xm" + }, + "source": [ + "- **Run Evaluation on Model Candidate**\n", + " - Define a System Prompt\n", + " - Define an EvalCandidate\n", + " - Run evaluate on datasets" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 441 + }, + "collapsed": true, + "id": "1r6qYTp9q5l7", + "outputId": "f1607a9b-c3a3-43cc-928f-0487d0438748" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 5/5 [00:33<00:00, 6.71s/it]\n" + ] + }, + { + "data": { + "text/html": [ + "
EvaluateResponse(\n",
+       "generations=[\n",
+       "│   │   {\n",
+       "│   │   │   'generated_answer': '**Potato Pests**\\n\\nThe two insects depicted are:\\n\\n* **Colorado Potato Beetle (Leptinotarsa decemlineata)**: Characterized by black and yellow stripes, this beetle is a significant pest of potatoes. It feeds on the leaves and can cause substantial damage to the crop.\\n* **False Potato Beetle (Leptinotarsa juncta)**: Also known as the false Colorado beetle, this species has similar coloring but is not as harmful to potatoes as the Colorado potato beetle.'\n",
+       "│   │   },\n",
+       "│   │   {\n",
+       "│   │   │   'generated_answer': \"The image shows a sunflower leaf with a powdery mildew, which is a fungal disease caused by various species of fungi. The white powdery coating on the leaves is a characteristic symptom of this disease. The leaf also has some black spots, which could be indicative of a secondary infection or another type of disease. However, without more information or a closer examination, it's difficult to determine the exact cause of the black spots.\\n\\nBased on the image alone, we can see at least two types of symptoms: the powdery mildew and the black spots. This suggests that there may be more than one pathogen involved, but it's also possible that the black spots are a result of the same fungal infection causing the powdery mildew.\\n\\nAnswer: B) Two pathogens\"\n",
+       "│   │   },\n",
+       "│   │   {\n",
+       "│   │   │   'generated_answer': 'The symptoms observed, characterized by the massive gum production on the trunks of the grapefruit trees in Cyprus, suggest a physiological or pathological response. Given the absence of visible signs of damage or pests from a higher point on a hillside, and considering the specific nature of the symptom (gum production), we can infer that the cause is more likely related to an internal process within the tree rather than external damage from harvesting. While physiological stress (B) could lead to such symptoms, the primary reason for gum production in trees, especially in citrus species, is typically linked to disease. Among the options provided, fungal gummosis (E) is a condition known to cause gumming in citrus trees, which aligns with the observed symptoms. Therefore, without direct evidence of external damage (harvesting) or confirmation of physiological stress being the primary cause, the most appropriate answer based on the information given is:\\n\\nAnswer: E'\n",
+       "│   │   },\n",
+       "│   │   {'generated_answer': 'Answer: D'},\n",
+       "│   │   {\n",
+       "│   │   │   'generated_answer': \"**Analysis of the Image**\\n\\nThe image provided shows a rhubarb plant with split petioles. To determine the cause of this issue, we need to consider various factors that could lead to such damage.\\n\\n**Possible Causes of Petiole Splitting**\\n\\n*   **Physiological Problems**: Rhubarb plants can experience physiological stress due to environmental factors like extreme temperatures, waterlogging, or nutrient deficiencies. This stress can cause the petioles to split.\\n*   **Phytoplasma Infection**: Phytoplasma is a type of bacteria that can infect plants, including rhubarb. It can cause symptoms such as yellowing leaves, stunted growth, and splitting of petioles.\\n*   **Animal Damage**: Animals like rabbits, deer, or insects can damage rhubarb plants by eating the leaves or stems, which can lead to splitting of the petioles.\\n*   **Bacteria**: Bacterial infections can also cause damage to rhubarb plants, including splitting of the petioles.\\n\\n**Conclusion**\\n\\nBased on the analysis, it is clear that all the options listed (A) Physiological problems, B) Phytoplasma infection, D) Animal damage, and E) Bacteria) could potentially cause the petioles of the rhubarb plant to split. Therefore, there is no single option that would not be a cause for the petioles splitting.\\n\\n**Answer**: C) I don't know and don't want to guess.\"\n",
+       "│   │   }\n",
+       "],\n",
+       "scores={\n",
+       "│   │   'basic::regex_parser_multiple_choice_answer': ScoringResult(\n",
+       "│   │   │   aggregated_results={'accuracy': {'accuracy': 0.2, 'num_correct': 1.0, 'num_total': 5}},\n",
+       "│   │   │   score_rows=[{'score': 0.0}, {'score': 0.0}, {'score': 0.0}, {'score': 1.0}, {'score': 0.0}]\n",
+       "│   │   )\n",
+       "}\n",
+       ")\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mEvaluateResponse\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mgenerations\u001b[0m=\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'**Potato Pests**\\n\\nThe two insects depicted are:\\n\\n* **Colorado Potato Beetle \u001b[0m\u001b[32m(\u001b[0m\u001b[32mLeptinotarsa decemlineata\u001b[0m\u001b[32m)\u001b[0m\u001b[32m**: Characterized by black and yellow stripes, this beetle is a significant pest of potatoes. It feeds on the leaves and can cause substantial damage to the crop.\\n* **False Potato Beetle \u001b[0m\u001b[32m(\u001b[0m\u001b[32mLeptinotarsa juncta\u001b[0m\u001b[32m)\u001b[0m\u001b[32m**: Also known as the false Colorado beetle, this species has similar coloring but is not as harmful to potatoes as the Colorado potato beetle.'\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"The image shows a sunflower leaf with a powdery mildew, which is a fungal disease caused by various species of fungi. The white powdery coating on the leaves is a characteristic symptom of this disease. The leaf also has some black spots, which could be indicative of a secondary infection or another type of disease. However, without more information or a closer examination, it's difficult to determine the exact cause of the black spots.\\n\\nBased on the image alone, we can see at least two types of symptoms: the powdery mildew and the black spots. This suggests that there may be more than one pathogen involved, but it's also possible that the black spots are a result of the same fungal infection causing the powdery mildew.\\n\\nAnswer: B\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Two pathogens\"\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The symptoms observed, characterized by the massive gum production on the trunks of the grapefruit trees in Cyprus, suggest a physiological or pathological response. Given the absence of visible signs of damage or pests from a higher point on a hillside, and considering the specific nature of the symptom \u001b[0m\u001b[32m(\u001b[0m\u001b[32mgum production\u001b[0m\u001b[32m)\u001b[0m\u001b[32m, we can infer that the cause is more likely related to an internal process within the tree rather than external damage from harvesting. While physiological stress \u001b[0m\u001b[32m(\u001b[0m\u001b[32mB\u001b[0m\u001b[32m)\u001b[0m\u001b[32m could lead to such symptoms, the primary reason for gum production in trees, especially in citrus species, is typically linked to disease. Among the options provided, fungal gummosis \u001b[0m\u001b[32m(\u001b[0m\u001b[32mE\u001b[0m\u001b[32m)\u001b[0m\u001b[32m is a condition known to cause gumming in citrus trees, which aligns with the observed symptoms. Therefore, without direct evidence of external damage \u001b[0m\u001b[32m(\u001b[0m\u001b[32mharvesting\u001b[0m\u001b[32m)\u001b[0m\u001b[32m or confirmation of physiological stress being the primary cause, the most appropriate answer based on the information given is:\\n\\nAnswer: E'\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'Answer: D'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"**Analysis of the Image**\\n\\nThe image provided shows a rhubarb plant with split petioles. To determine the cause of this issue, we need to consider various factors that could lead to such damage.\\n\\n**Possible Causes of Petiole Splitting**\\n\\n* **Physiological Problems**: Rhubarb plants can experience physiological stress due to environmental factors like extreme temperatures, waterlogging, or nutrient deficiencies. This stress can cause the petioles to split.\\n* **Phytoplasma Infection**: Phytoplasma is a type of bacteria that can infect plants, including rhubarb. It can cause symptoms such as yellowing leaves, stunted growth, and splitting of petioles.\\n* **Animal Damage**: Animals like rabbits, deer, or insects can damage rhubarb plants by eating the leaves or stems, which can lead to splitting of the petioles.\\n* **Bacteria**: Bacterial infections can also cause damage to rhubarb plants, including splitting of the petioles.\\n\\n**Conclusion**\\n\\nBased on the analysis, it is clear that all the options listed \u001b[0m\u001b[32m(\u001b[0m\u001b[32mA\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Physiological problems, B\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Phytoplasma infection, D\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Animal damage, and E\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Bacteria\u001b[0m\u001b[32m)\u001b[0m\u001b[32m could potentially cause the petioles of the rhubarb plant to split. Therefore, there is no single option that would not be a cause for the petioles splitting.\\n\\n**Answer**: C\u001b[0m\u001b[32m)\u001b[0m\u001b[32m I don't know and don't want to guess.\"\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mscores\u001b[0m=\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'basic::regex_parser_multiple_choice_answer'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1;36m0.2\u001b[0m, \u001b[32m'num_correct'\u001b[0m: \u001b[1;36m1.0\u001b[0m, \u001b[32m'num_total'\u001b[0m: \u001b[1;36m5\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m\u001b[1m]\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from rich.pretty import pprint\n", + "from tqdm import tqdm\n", + "\n", + "SYSTEM_PROMPT_TEMPLATE = \"\"\"\n", + "You are an expert in {subject} whose job is to answer questions from the user using images.\n", + "\n", + "First, reason about the correct answer.\n", + "\n", + "Then write the answer in the following format where X is exactly one of A,B,C,D:\n", + "\n", + "Answer: X\n", + "\n", + "Make sure X is one of A,B,C,D.\n", + "\n", + "If you are uncertain of the correct answer, guess the most likely one.\n", + "\"\"\"\n", + "\n", + "system_message = {\n", + " \"role\": \"system\",\n", + " \"content\": SYSTEM_PROMPT_TEMPLATE.format(subject=subset),\n", + "}\n", + "\n", + "client.benchmarks.register(\n", + " benchmark_id=\"meta-reference::mmmu\",\n", + " # Note: we can use any value as `dataset_id` because we'll be using the `evaluate_rows` API which accepts the\n", + " # `input_rows` argument and does not fetch data from the dataset.\n", + " dataset_id=f\"mmmu-{subset}-{split}\",\n", + " # Note: for the same reason as above, we can use any value as `scoring_functions`.\n", + " scoring_functions=[],\n", + ")\n", + "\n", + "response = client.eval.evaluate_rows(\n", + " benchmark_id=\"meta-reference::mmmu\",\n", + " input_rows=eval_rows,\n", + " # Note: Here we define the actual scoring functions.\n", + " scoring_functions=[\"basic::regex_parser_multiple_choice_answer\"],\n", + " benchmark_config={\n", + " \"eval_candidate\": {\n", + " \"type\": \"model\",\n", + " \"model\": \"meta-llama/Llama-3.2-90B-Vision-Instruct\",\n", + " \"sampling_params\": {\n", + " \"strategy\": {\n", + " \"type\": \"top_p\",\n", + " \"temperature\": 1.0,\n", + " \"top_p\": 0.95,\n", + " },\n", + " \"max_tokens\": 4096,\n", + " \"repeat_penalty\": 1.0,\n", + " },\n", + " \"system_message\": system_message,\n", + " },\n", + " },\n", + ")\n", + "pprint(response)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vYlb9wKzwg-s" + }, + "source": [ + "#### 1.2. Running SimpleQA\n", + "- We will use a pre-processed SimpleQA dataset from [llamastack/evals](https://huggingface.co/datasets/llamastack/evals/viewer/evals__simpleqa) which is obtained by transforming the input query into correct format accepted by `inference/chat-completion` API.\n", + "- Since we will be using this same dataset in our next example for Agentic evaluation, we will register it using the `/datasets` API, and interact with it through `/datasetio` API." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "HXmZf3Ymw-aX" + }, + "outputs": [], + "source": [ + "simpleqa_dataset_id = \"huggingface::simpleqa\"\n", + "\n", + "register_dataset_response = client.datasets.register(\n", + " purpose=\"eval/messages-answer\",\n", + " source={\n", + " \"type\": \"uri\",\n", + " \"uri\": \"huggingface://datasets/llamastack/simpleqa?split=train\",\n", + " },\n", + " dataset_id=simpleqa_dataset_id,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Gc8azb4Rxr5J" + }, + "outputs": [], + "source": [ + "eval_rows = client.datasets.iterrows(\n", + " dataset_id=simpleqa_dataset_id,\n", + " limit=5,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 506 + }, + "id": "zSYAUnBUyRaG", + "outputId": "038cf42f-4e3c-4053-b3c4-cf16547483dd" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 0/5 [00:00EvaluateResponse(\n", + "generations=[\n", + "│ │ {'generated_answer': \"I'm not sure who received the IEEE Frank Rosenblatt Award in 2010.\"},\n", + "│ │ {'generated_answer': \"I'm not aware of the information about the 2018 Jerlov Award recipient.\"},\n", + "│ │ {\n", + "│ │ │ 'generated_answer': \"Radcliffe College was a women's liberal arts college in Cambridge, Massachusetts. However, it merged with Harvard University in 1977 and is now known as the Radcliffe Institute for Advanced Study at Harvard University.\"\n", + "│ │ },\n", + "│ │ {'generated_answer': 'I am unable to verify in whose honor the Leipzig 1877 tournament was organized.'},\n", + "│ │ {\n", + "│ │ │ 'generated_answer': \"I am unable to verify what Empress Elizabeth of Austria's favorite sculpture depicted at her villa Achilleion at Corfu, according to Karl Küchler.\"\n", + "│ │ }\n", + "],\n", + "scores={\n", + "│ │ 'llm-as-judge::405b-simpleqa': ScoringResult(\n", + "│ │ │ aggregated_results={'categorical_count': {'categorical_count': {'A': 1, 'C': 4}}},\n", + "│ │ │ score_rows=[\n", + "│ │ │ │ {'score': 'C', 'judge_feedback': 'C'},\n", + "│ │ │ │ {'score': 'C', 'judge_feedback': 'C'},\n", + "│ │ │ │ {'score': 'A', 'judge_feedback': 'A'},\n", + "│ │ │ │ {'score': 'C', 'judge_feedback': 'C'},\n", + "│ │ │ │ {'score': 'C', 'judge_feedback': 'C'}\n", + "│ │ │ ]\n", + "│ │ )\n", + "}\n", + ")\n", + "\n" + ], + "text/plain": [ + "\u001b[1;35mEvaluateResponse\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mgenerations\u001b[0m=\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"I'm not sure who received the IEEE Frank Rosenblatt Award in 2010.\"\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"I'm not aware of the information about the 2018 Jerlov Award recipient.\"\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"Radcliffe College was a women's liberal arts college in Cambridge, Massachusetts. However, it merged with Harvard University in 1977 and is now known as the Radcliffe Institute for Advanced Study at Harvard University.\"\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'I am unable to verify in whose honor the Leipzig 1877 tournament was organized.'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"I am unable to verify what Empress Elizabeth of Austria's favorite sculpture depicted at her villa Achilleion at Corfu, according to Karl Küchler.\"\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mscores\u001b[0m=\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'llm-as-judge::405b-simpleqa'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'categorical_count'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'categorical_count'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'A'\u001b[0m: \u001b[1;36m1\u001b[0m, \u001b[32m'C'\u001b[0m: \u001b[1;36m4\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'C'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'C'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'C'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'C'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'A'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'A'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'C'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'C'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'C'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'C'\u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[1m]\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# register 405B as LLM Judge model\n", + "client.models.register(\n", + " model=\"meta-llama/Llama-3.1-405B-Instruct\",\n", + " provider_model_id=\"meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo\",\n", + " provider_id=\"together\",\n", + ")\n", + "\n", + "client.benchmarks.register(\n", + " benchmark_id=\"meta-reference::simpleqa\",\n", + " dataset_id=simpleqa_dataset_id,\n", + " scoring_functions=[\"llm-as-judge::405b-simpleqa\"],\n", + ")\n", + "\n", + "response = client.eval.evaluate_rows(\n", + " benchmark_id=\"meta-reference::simpleqa\",\n", + " input_rows=eval_rows.data,\n", + " scoring_functions=[\"llm-as-judge::405b-simpleqa\"],\n", + " benchmark_config={\n", + " \"eval_candidate\": {\n", + " \"type\": \"model\",\n", + " \"model\": \"meta-llama/Llama-3.2-90B-Vision-Instruct\",\n", + " \"sampling_params\": {\n", + " \"strategy\": {\n", + " \"type\": \"greedy\",\n", + " },\n", + " \"max_tokens\": 4096,\n", + " \"repeat_penalty\": 1.0,\n", + " },\n", + " },\n", + " },\n", + ")\n", + "pprint(response)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eyziqe_Em6d6" + }, + "source": [ + "## 2. Agentic Evaluation\n", + "\n", + "- In this example, we will demonstrate how to evaluate a agent candidate served by Llama Stack via `/agent` API.\n", + "\n", + "- We will continue to use the SimpleQA dataset we used in previous example.\n", + "\n", + "- Instead of running evaluation on model, we will run the evaluation on a Search Agent with access to search tool. We will define our agent evaluation candidate through `AgentConfig`.\n", + "\n", + "> You will need to set the `TAVILY_SEARCH_API_KEY` in Secrets of this notebook." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 538 + }, + "id": "mxLCsP4MvFqP", + "outputId": "8be2a32f-2a47-4443-8992-0000c23ca678" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "5it [00:06, 1.33s/it]\n" + ] + }, + { + "data": { + "text/html": [ + "
EvaluateResponse(\n",
+       "generations=[\n",
+       "│   │   {\n",
+       "│   │   │   'generated_answer': 'The IEEE Frank Rosenblatt Award was given to Professor John Shawe-Taylor in 2010 for his contributions to the foundations of kernel methods.'\n",
+       "│   │   },\n",
+       "│   │   {\n",
+       "│   │   │   'generated_answer': 'The Jerlov Award is given by The Oceanography Society to recognize outstanding contributions to the field of ocean optics. The 2018 Jerlov Award was awarded to Dr. Kendall L. Carder.'\n",
+       "│   │   },\n",
+       "│   │   {\n",
+       "│   │   │   'generated_answer': \"The women's liberal arts college in Cambridge, Massachusetts is Radcliffe College. However, in 1999, Radcliffe College merged with Harvard University to form the Radcliffe Institute for Advanced Study at Harvard University. The institute is still located in Cambridge, Massachusetts, and is dedicated to supporting women's education and research.\"\n",
+       "│   │   },\n",
+       "│   │   {'generated_answer': 'The Leipzig 1877 tournament was organized in honor of Adolf Anderssen.'},\n",
+       "│   │   {\n",
+       "│   │   │   'generated_answer': \"According to Karl Küchler, Empress Elizabeth of Austria's favorite sculpture, which was made for her villa Achilleion at Corfu, depicted the Dying Achilles.\"\n",
+       "│   │   }\n",
+       "],\n",
+       "scores={\n",
+       "│   │   'llm-as-judge::405b-simpleqa': ScoringResult(\n",
+       "│   │   │   aggregated_results={},\n",
+       "│   │   │   score_rows=[\n",
+       "│   │   │   │   {'score': 'B', 'judge_feedback': 'B'},\n",
+       "│   │   │   │   {'score': 'B', 'judge_feedback': 'B'},\n",
+       "│   │   │   │   {'score': 'A', 'judge_feedback': 'A'},\n",
+       "│   │   │   │   {'score': 'A', 'judge_feedback': 'A'},\n",
+       "│   │   │   │   {'score': 'B', 'judge_feedback': 'B'}\n",
+       "│   │   │   ]\n",
+       "│   │   )\n",
+       "}\n",
+       ")\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;35mEvaluateResponse\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mgenerations\u001b[0m=\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The IEEE Frank Rosenblatt Award was given to Professor John Shawe-Taylor in 2010 for his contributions to the foundations of kernel methods.'\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The Jerlov Award is given by The Oceanography Society to recognize outstanding contributions to the field of ocean optics. The 2018 Jerlov Award was awarded to Dr. Kendall L. Carder.'\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"The women's liberal arts college in Cambridge, Massachusetts is Radcliffe College. However, in 1999, Radcliffe College merged with Harvard University to form the Radcliffe Institute for Advanced Study at Harvard University. The institute is still located in Cambridge, Massachusetts, and is dedicated to supporting women's education and research.\"\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The Leipzig 1877 tournament was organized in honor of Adolf Anderssen.'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"According to Karl Küchler, Empress Elizabeth of Austria's favorite sculpture, which was made for her villa Achilleion at Corfu, depicted the Dying Achilles.\"\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m]\u001b[0m,\n", + "\u001b[2;32m│ \u001b[0m\u001b[33mscores\u001b[0m=\u001b[1m{\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[32m'llm-as-judge::405b-simpleqa'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'B'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'B'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'B'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'B'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'A'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'A'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'A'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'A'\u001b[0m\u001b[1m}\u001b[0m,\n", + "\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'B'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'B'\u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[2;32m│ │ │ \u001b[0m\u001b[1m]\u001b[0m\n", + "\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n", + "\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n", + "\u001b[1m)\u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "agent_config = {\n", + " \"model\": \"meta-llama/Llama-3.3-70B-Instruct\",\n", + " \"instructions\": \"You are a helpful assistant that have access to tool to search the web. \",\n", + " \"sampling_params\": {\n", + " \"strategy\": {\n", + " \"type\": \"top_p\",\n", + " \"temperature\": 0.5,\n", + " \"top_p\": 0.9,\n", + " }\n", + " },\n", + " \"toolgroups\": [\n", + " \"builtin::websearch\",\n", + " ],\n", + " \"tool_choice\": \"auto\",\n", + " \"tool_prompt_format\": \"json\",\n", + " \"input_shields\": [],\n", + " \"output_shields\": [],\n", + " \"enable_session_persistence\": False,\n", + "}\n", + "\n", + "response = client.eval.evaluate_rows(\n", + " benchmark_id=\"meta-reference::simpleqa\",\n", + " input_rows=eval_rows.data,\n", + " scoring_functions=[\"llm-as-judge::405b-simpleqa\"],\n", + " benchmark_config={\n", + " \"eval_candidate\": {\n", + " \"type\": \"agent\",\n", + " \"config\": agent_config,\n", + " },\n", + " },\n", + ")\n", + "pprint(response)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "lxc9-eXYK5Av" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [ + "bxs0FJ1ckGa6", + "eyziqe_Em6d6" + ], + "provenance": [] + }, + "kernelspec": { + "display_name": "master", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.16" + } + }, + "nbformat": 4, + "nbformat_minor": 0 } diff --git a/docs/notebooks/crewai/Llama_Stack_CrewAI.ipynb b/docs/notebooks/crewai/Llama_Stack_CrewAI.ipynb index 89b49ccb3..5849f2b63 100644 --- a/docs/notebooks/crewai/Llama_Stack_CrewAI.ipynb +++ b/docs/notebooks/crewai/Llama_Stack_CrewAI.ipynb @@ -136,7 +136,8 @@ " \"\"\"Build and run LlamaStack server in one step using --run flag\"\"\"\n", " log_file = open(\"llama_stack_server.log\", \"w\")\n", " process = subprocess.Popen(\n", - " \"uv run --with llama-stack llama stack build --distro starter --image-type venv --run\",\n", + " \"uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install\",\n", + " \"uv run --with llama-stack llama stack run starter\",\n", " shell=True,\n", " stdout=log_file,\n", " stderr=log_file,\n", @@ -172,7 +173,7 @@ "\n", "def kill_llama_stack_server():\n", " # Kill any existing llama stack server processes using pkill command\n", - " os.system(\"pkill -f llama_stack.core.server.server\")" + " os.system(\"pkill -f llama_stack.core.server.server\")\n" ] }, { diff --git a/docs/notebooks/langchain/Llama_Stack_LangChain.ipynb b/docs/notebooks/langchain/Llama_Stack_LangChain.ipynb index d44ac6994..742ac2be5 100644 --- a/docs/notebooks/langchain/Llama_Stack_LangChain.ipynb +++ b/docs/notebooks/langchain/Llama_Stack_LangChain.ipynb @@ -105,7 +105,8 @@ " \"\"\"Build and run LlamaStack server in one step using --run flag\"\"\"\n", " log_file = open(\"llama_stack_server.log\", \"w\")\n", " process = subprocess.Popen(\n", - " \"uv run --with llama-stack llama stack build --distro starter --image-type venv --run\",\n", + " \"uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install\",\n", + " \"uv run --with llama-stack llama stack run starter\",\n", " shell=True,\n", " stdout=log_file,\n", " stderr=log_file,\n", diff --git a/docs/notebooks/nvidia/beginner_e2e/Llama_Stack_NVIDIA_E2E_Flow.ipynb b/docs/notebooks/nvidia/beginner_e2e/Llama_Stack_NVIDIA_E2E_Flow.ipynb index 674b961c7..0ce9c6f5f 100644 --- a/docs/notebooks/nvidia/beginner_e2e/Llama_Stack_NVIDIA_E2E_Flow.ipynb +++ b/docs/notebooks/nvidia/beginner_e2e/Llama_Stack_NVIDIA_E2E_Flow.ipynb @@ -92,7 +92,7 @@ "metadata": {}, "source": [ "```bash\n", - "LLAMA_STACK_DIR=$(pwd) llama stack build --distro nvidia --image-type venv\n", + "uv run --with llama-stack llama stack list-deps nvidia | xargs -L1 uv pip install\n", "```" ] }, diff --git a/docs/notebooks/nvidia/tool_calling/1_data_preparation.ipynb b/docs/notebooks/nvidia/tool_calling/1_data_preparation.ipynb index 5fa5ef26b..fc32380d4 100644 --- a/docs/notebooks/nvidia/tool_calling/1_data_preparation.ipynb +++ b/docs/notebooks/nvidia/tool_calling/1_data_preparation.ipynb @@ -81,7 +81,7 @@ "metadata": {}, "source": [ "```bash\n", - "LLAMA_STACK_DIR=$(pwd) llama stack build --distro nvidia --image-type venv\n", + "uv run --with llama-stack llama stack list-deps nvidia | xargs -L1 uv pip install\n", "```" ] }, diff --git a/docs/quick_start.ipynb b/docs/quick_start.ipynb index eebfd6686..4ddde693f 100644 --- a/docs/quick_start.ipynb +++ b/docs/quick_start.ipynb @@ -1,366 +1,366 @@ { - "cells": [ - { - "cell_type": "markdown", - "id": "c1e7571c", - "metadata": { - "id": "c1e7571c" - }, - "source": [ - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb)\n", - "\n", - "# Llama Stack - Building AI Applications\n", - "\n", - "\"drawing\"\n", - "\n", - "Get started with Llama Stack in minutes!\n", - "\n", - "[Llama Stack](https://github.com/meta-llama/llama-stack) is a stateful service with REST APIs to support the seamless transition of AI applications across different environments. You can build and test using a local server first and deploy to a hosted endpoint for production.\n", - "\n", - "In this guide, we'll walk through how to build a RAG application locally using Llama Stack with [Ollama](https://ollama.com/)\n", - "as the inference [provider](docs/source/providers/index.md#inference) for a Llama Model.\n" - ] - }, - { - "cell_type": "markdown", - "id": "4CV1Q19BDMVw", - "metadata": { - "id": "4CV1Q19BDMVw" - }, - "source": [ - "## Step 1: Install and setup" - ] - }, - { - "cell_type": "markdown", - "id": "K4AvfUAJZOeS", - "metadata": { - "id": "K4AvfUAJZOeS" - }, - "source": [ - "### 1.1. Install uv and test inference with Ollama\n", - "\n", - "We'll install [uv](https://docs.astral.sh/uv/) to setup the Python virtual environment, along with [colab-xterm](https://github.com/InfuseAI/colab-xterm) for running command-line tools, and [Ollama](https://ollama.com/download) as the inference provider." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "7a2d7b85", - "metadata": {}, - "outputs": [], - "source": [ - "%pip install uv llama_stack llama-stack-client\n", - "\n", - "## If running on Collab:\n", - "# !pip install colab-xterm\n", - "# %load_ext colabxterm\n", - "\n", - "!curl https://ollama.ai/install.sh | sh" - ] - }, - { - "cell_type": "markdown", - "id": "39fa584b", - "metadata": {}, - "source": [ - "### 1.2. Test inference with Ollama" - ] - }, - { - "cell_type": "markdown", - "id": "3bf81522", - "metadata": {}, - "source": [ - "We’ll now launch a terminal and run inference on a Llama model with Ollama to verify that the model is working correctly." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a7e8e0f1", - "metadata": {}, - "outputs": [], - "source": [ - "## If running on Colab:\n", - "# %xterm\n", - "\n", - "## To be ran in the terminal:\n", - "# ollama serve &\n", - "# ollama run llama3.2:3b --keepalive 60m" - ] - }, - { - "cell_type": "markdown", - "id": "f3c5f243", - "metadata": {}, - "source": [ - "If successful, you should see the model respond to a prompt.\n", - "\n", - "...\n", - "```\n", - ">>> hi\n", - "Hello! How can I assist you today?\n", - "```" - ] - }, - { - "cell_type": "markdown", - "id": "oDUB7M_qe-Gs", - "metadata": { - "id": "oDUB7M_qe-Gs" - }, - "source": [ - "## Step 2: Run the Llama Stack server\n", - "\n", - "In this showcase, we will start a Llama Stack server that is running locally." - ] - }, - { - "cell_type": "markdown", - "id": "732eadc6", - "metadata": {}, - "source": [ - "### 2.1. Setup the Llama Stack Server" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "J2kGed0R5PSf", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "collapsed": true, - "id": "J2kGed0R5PSf", - "outputId": "2478ea60-8d35-48a1-b011-f233831740c5" - }, - "outputs": [], - "source": [ - "import os\n", - "import subprocess\n", - "\n", - "if \"UV_SYSTEM_PYTHON\" in os.environ:\n", - " del os.environ[\"UV_SYSTEM_PYTHON\"]\n", - "\n", - "# this command installs all the dependencies needed for the llama stack server with the ollama inference provider\n", - "!uv run --with llama-stack llama stack build --distro starter\n", - "\n", - "def run_llama_stack_server_background():\n", - " log_file = open(\"llama_stack_server.log\", \"w\")\n", - " process = subprocess.Popen(\n", - " f\"OLLAMA_URL=http://localhost:11434 uv run --with llama-stack llama stack run starter\n", - " shell=True,\n", - " stdout=log_file,\n", - " stderr=log_file,\n", - " text=True\n", - " )\n", - "\n", - " print(f\"Starting Llama Stack server with PID: {process.pid}\")\n", - " return process\n", - "\n", - "def wait_for_server_to_start():\n", - " import requests\n", - " from requests.exceptions import ConnectionError\n", - " import time\n", - "\n", - " url = \"http://0.0.0.0:8321/v1/health\"\n", - " max_retries = 30\n", - " retry_interval = 1\n", - "\n", - " print(\"Waiting for server to start\", end=\"\")\n", - " for _ in range(max_retries):\n", - " try:\n", - " response = requests.get(url)\n", - " if response.status_code == 200:\n", - " print(\"\\nServer is ready!\")\n", - " return True\n", - " except ConnectionError:\n", - " print(\".\", end=\"\", flush=True)\n", - " time.sleep(retry_interval)\n", - "\n", - " print(\"\\nServer failed to start after\", max_retries * retry_interval, \"seconds\")\n", - " return False\n", - "\n", - "\n", - "# use this helper if needed to kill the server\n", - "def kill_llama_stack_server():\n", - " # Kill any existing llama stack server processes\n", - " os.system(\"ps aux | grep -v grep | grep llama_stack.core.server.server | awk '{print $2}' | xargs kill -9\")\n" - ] - }, - { - "cell_type": "markdown", - "id": "c40e9efd", - "metadata": {}, - "source": [ - "### 2.2. Start the Llama Stack Server" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "f779283d", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Starting Llama Stack server with PID: 787100\n", - "Waiting for server to start\n", - "Server is ready!\n" - ] - } - ], - "source": [ - "server_process = run_llama_stack_server_background()\n", - "assert wait_for_server_to_start()" - ] - }, - { - "cell_type": "markdown", - "id": "28477c03", - "metadata": {}, - "source": [ - "## Step 3: Run the demo" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "7da71011", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "rag_tool> Ingesting document: https://www.paulgraham.com/greatwork.html\n", - "prompt> How do you do great work?\n", - "\u001b[33minference> \u001b[0m\u001b[33m[k\u001b[0m\u001b[33mnowledge\u001b[0m\u001b[33m_search\u001b[0m\u001b[33m(query\u001b[0m\u001b[33m=\"\u001b[0m\u001b[33mWhat\u001b[0m\u001b[33m is\u001b[0m\u001b[33m the\u001b[0m\u001b[33m key\u001b[0m\u001b[33m to\u001b[0m\u001b[33m doing\u001b[0m\u001b[33m great\u001b[0m\u001b[33m work\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[32mtool_execution> Tool:knowledge_search Args:{'query': 'What is the key to doing great work'}\u001b[0m\n", - "\u001b[32mtool_execution> Tool:knowledge_search Response:[TextContentItem(text='knowledge_search tool found 5 chunks:\\nBEGIN of knowledge_search tool results.\\n', type='text'), TextContentItem(text=\"Result 1:\\nDocument_id:docum\\nContent: work. Doing great work means doing something important\\nso well that you expand people's ideas of what's possible. But\\nthere's no threshold for importance. It's a matter of degree, and\\noften hard to judge at the time anyway.\\n\", type='text'), TextContentItem(text=\"Result 2:\\nDocument_id:docum\\nContent: work. Doing great work means doing something important\\nso well that you expand people's ideas of what's possible. But\\nthere's no threshold for importance. It's a matter of degree, and\\noften hard to judge at the time anyway.\\n\", type='text'), TextContentItem(text=\"Result 3:\\nDocument_id:docum\\nContent: work. Doing great work means doing something important\\nso well that you expand people's ideas of what's possible. But\\nthere's no threshold for importance. It's a matter of degree, and\\noften hard to judge at the time anyway.\\n\", type='text'), TextContentItem(text=\"Result 4:\\nDocument_id:docum\\nContent: work. Doing great work means doing something important\\nso well that you expand people's ideas of what's possible. But\\nthere's no threshold for importance. It's a matter of degree, and\\noften hard to judge at the time anyway.\\n\", type='text'), TextContentItem(text=\"Result 5:\\nDocument_id:docum\\nContent: work. Doing great work means doing something important\\nso well that you expand people's ideas of what's possible. But\\nthere's no threshold for importance. It's a matter of degree, and\\noften hard to judge at the time anyway.\\n\", type='text'), TextContentItem(text='END of knowledge_search tool results.\\n', type='text'), TextContentItem(text='The above results were retrieved to help answer the user\\'s query: \"What is the key to doing great work\". Use them as supporting information only in answering this query.\\n', type='text')]\u001b[0m\n", - "\u001b[33minference> \u001b[0m\u001b[33mDoing\u001b[0m\u001b[33m great\u001b[0m\u001b[33m work\u001b[0m\u001b[33m means\u001b[0m\u001b[33m doing\u001b[0m\u001b[33m something\u001b[0m\u001b[33m important\u001b[0m\u001b[33m so\u001b[0m\u001b[33m well\u001b[0m\u001b[33m that\u001b[0m\u001b[33m you\u001b[0m\u001b[33m expand\u001b[0m\u001b[33m people\u001b[0m\u001b[33m's\u001b[0m\u001b[33m ideas\u001b[0m\u001b[33m of\u001b[0m\u001b[33m what\u001b[0m\u001b[33m's\u001b[0m\u001b[33m possible\u001b[0m\u001b[33m.\u001b[0m\u001b[33m However\u001b[0m\u001b[33m,\u001b[0m\u001b[33m there\u001b[0m\u001b[33m's\u001b[0m\u001b[33m no\u001b[0m\u001b[33m threshold\u001b[0m\u001b[33m for\u001b[0m\u001b[33m importance\u001b[0m\u001b[33m,\u001b[0m\u001b[33m and\u001b[0m\u001b[33m it\u001b[0m\u001b[33m's\u001b[0m\u001b[33m often\u001b[0m\u001b[33m hard\u001b[0m\u001b[33m to\u001b[0m\u001b[33m judge\u001b[0m\u001b[33m at\u001b[0m\u001b[33m the\u001b[0m\u001b[33m time\u001b[0m\u001b[33m anyway\u001b[0m\u001b[33m.\u001b[0m\u001b[33m Great\u001b[0m\u001b[33m work\u001b[0m\u001b[33m is\u001b[0m\u001b[33m a\u001b[0m\u001b[33m matter\u001b[0m\u001b[33m of\u001b[0m\u001b[33m degree\u001b[0m\u001b[33m,\u001b[0m\u001b[33m and\u001b[0m\u001b[33m it\u001b[0m\u001b[33m can\u001b[0m\u001b[33m be\u001b[0m\u001b[33m difficult\u001b[0m\u001b[33m to\u001b[0m\u001b[33m determine\u001b[0m\u001b[33m whether\u001b[0m\u001b[33m someone\u001b[0m\u001b[33m has\u001b[0m\u001b[33m done\u001b[0m\u001b[33m great\u001b[0m\u001b[33m work\u001b[0m\u001b[33m until\u001b[0m\u001b[33m after\u001b[0m\u001b[33m the\u001b[0m\u001b[33m fact\u001b[0m\u001b[33m.\u001b[0m\u001b[97m\u001b[0m\n", - "\u001b[30m\u001b[0m" - ] - } - ], - "source": [ - "from llama_stack_client import Agent, AgentEventLogger, RAGDocument, LlamaStackClient\n", - "\n", - "vector_db_id = \"my_demo_vector_db\"\n", - "client = LlamaStackClient(base_url=\"http://0.0.0.0:8321\")\n", - "\n", - "models = client.models.list()\n", - "\n", - "# Select the first ollama and first ollama's embedding model\n", - "model_id = next(m for m in models if m.model_type == \"llm\" and m.provider_id == \"ollama\").identifier\n", - "embedding_model = next(m for m in models if m.model_type == \"embedding\" and m.provider_id == \"ollama\")\n", - "embedding_model_id = embedding_model.identifier\n", - "embedding_dimension = embedding_model.metadata[\"embedding_dimension\"]\n", - "\n", - "_ = client.vector_dbs.register(\n", - " vector_db_id=vector_db_id,\n", - " embedding_model=embedding_model_id,\n", - " embedding_dimension=embedding_dimension,\n", - " provider_id=\"faiss\",\n", - ")\n", - "source = \"https://www.paulgraham.com/greatwork.html\"\n", - "print(\"rag_tool> Ingesting document:\", source)\n", - "document = RAGDocument(\n", - " document_id=\"document_1\",\n", - " content=source,\n", - " mime_type=\"text/html\",\n", - " metadata={},\n", - ")\n", - "client.tool_runtime.rag_tool.insert(\n", - " documents=[document],\n", - " vector_db_id=vector_db_id,\n", - " chunk_size_in_tokens=50,\n", - ")\n", - "agent = Agent(\n", - " client,\n", - " model=model_id,\n", - " instructions=\"You are a helpful assistant\",\n", - " tools=[\n", - " {\n", - " \"name\": \"builtin::rag/knowledge_search\",\n", - " \"args\": {\"vector_db_ids\": [vector_db_id]},\n", - " }\n", - " ],\n", - ")\n", - "\n", - "prompt = \"How do you do great work?\"\n", - "print(\"prompt>\", prompt)\n", - "\n", - "response = agent.create_turn(\n", - " messages=[{\"role\": \"user\", \"content\": prompt}],\n", - " session_id=agent.create_session(\"rag_session\"),\n", - " stream=True,\n", - ")\n", - "\n", - "for log in AgentEventLogger().log(response):\n", - " log.print()" - ] - }, - { - "cell_type": "markdown", - "id": "341aaadf", - "metadata": {}, - "source": [ - "Congratulations! You've successfully built your first RAG application using Llama Stack! 🎉🥳" - ] - }, - { - "cell_type": "markdown", - "id": "e88e1185", - "metadata": {}, - "source": [ - "## Next Steps" - ] - }, - { - "cell_type": "markdown", - "id": "bcb73600", - "metadata": {}, - "source": [ - "Now you're ready to dive deeper into Llama Stack!\n", - "- Explore the [Detailed Tutorial](./detailed_tutorial.md).\n", - "- Try the [Getting Started Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb).\n", - "- Browse more [Notebooks on GitHub](https://github.com/meta-llama/llama-stack/tree/main/docs/notebooks).\n", - "- Learn about Llama Stack [Concepts](../concepts/index.md).\n", - "- Discover how to [Build Llama Stacks](../distributions/index.md).\n", - "- Refer to our [References](../references/index.md) for details on the Llama CLI and Python SDK.\n", - "- Check out the [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repository for example applications and tutorials." - ] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "gpuType": "T4", - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.6" - } + "cells": [ + { + "cell_type": "markdown", + "id": "c1e7571c", + "metadata": { + "id": "c1e7571c" + }, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb)\n", + "\n", + "# Llama Stack - Building AI Applications\n", + "\n", + "\"drawing\"\n", + "\n", + "Get started with Llama Stack in minutes!\n", + "\n", + "[Llama Stack](https://github.com/meta-llama/llama-stack) is a stateful service with REST APIs to support the seamless transition of AI applications across different environments. You can build and test using a local server first and deploy to a hosted endpoint for production.\n", + "\n", + "In this guide, we'll walk through how to build a RAG application locally using Llama Stack with [Ollama](https://ollama.com/)\n", + "as the inference [provider](docs/source/providers/index.md#inference) for a Llama Model.\n" + ] }, - "nbformat": 4, - "nbformat_minor": 5 + { + "cell_type": "markdown", + "id": "4CV1Q19BDMVw", + "metadata": { + "id": "4CV1Q19BDMVw" + }, + "source": [ + "## Step 1: Install and setup" + ] + }, + { + "cell_type": "markdown", + "id": "K4AvfUAJZOeS", + "metadata": { + "id": "K4AvfUAJZOeS" + }, + "source": [ + "### 1.1. Install uv and test inference with Ollama\n", + "\n", + "We'll install [uv](https://docs.astral.sh/uv/) to setup the Python virtual environment, along with [colab-xterm](https://github.com/InfuseAI/colab-xterm) for running command-line tools, and [Ollama](https://ollama.com/download) as the inference provider." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7a2d7b85", + "metadata": {}, + "outputs": [], + "source": [ + "%pip install uv llama_stack llama-stack-client\n", + "\n", + "## If running on Collab:\n", + "# !pip install colab-xterm\n", + "# %load_ext colabxterm\n", + "\n", + "!curl https://ollama.ai/install.sh | sh" + ] + }, + { + "cell_type": "markdown", + "id": "39fa584b", + "metadata": {}, + "source": [ + "### 1.2. Test inference with Ollama" + ] + }, + { + "cell_type": "markdown", + "id": "3bf81522", + "metadata": {}, + "source": [ + "We’ll now launch a terminal and run inference on a Llama model with Ollama to verify that the model is working correctly." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a7e8e0f1", + "metadata": {}, + "outputs": [], + "source": [ + "## If running on Colab:\n", + "# %xterm\n", + "\n", + "## To be ran in the terminal:\n", + "# ollama serve &\n", + "# ollama run llama3.2:3b --keepalive 60m" + ] + }, + { + "cell_type": "markdown", + "id": "f3c5f243", + "metadata": {}, + "source": [ + "If successful, you should see the model respond to a prompt.\n", + "\n", + "...\n", + "```\n", + ">>> hi\n", + "Hello! How can I assist you today?\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "oDUB7M_qe-Gs", + "metadata": { + "id": "oDUB7M_qe-Gs" + }, + "source": [ + "## Step 2: Run the Llama Stack server\n", + "\n", + "In this showcase, we will start a Llama Stack server that is running locally." + ] + }, + { + "cell_type": "markdown", + "id": "732eadc6", + "metadata": {}, + "source": [ + "### 2.1. Setup the Llama Stack Server" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "J2kGed0R5PSf", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "collapsed": true, + "id": "J2kGed0R5PSf", + "outputId": "2478ea60-8d35-48a1-b011-f233831740c5" + }, + "outputs": [], + "source": [ + "import os\n", + "import subprocess\n", + "\n", + "if \"UV_SYSTEM_PYTHON\" in os.environ:\n", + " del os.environ[\"UV_SYSTEM_PYTHON\"]\n", + "\n", + "# this command installs all the dependencies needed for the llama stack server with the ollama inference provider\n", + "!uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install\n", + "\n", + "def run_llama_stack_server_background():\n", + " log_file = open(\"llama_stack_server.log\", \"w\")\n", + " process = subprocess.Popen(\n", + " f\"OLLAMA_URL=http://localhost:11434 uv run --with llama-stack llama stack run starter\n", + " shell=True,\n", + " stdout=log_file,\n", + " stderr=log_file,\n", + " text=True\n", + " )\n", + "\n", + " print(f\"Starting Llama Stack server with PID: {process.pid}\")\n", + " return process\n", + "\n", + "def wait_for_server_to_start():\n", + " import requests\n", + " from requests.exceptions import ConnectionError\n", + " import time\n", + "\n", + " url = \"http://0.0.0.0:8321/v1/health\"\n", + " max_retries = 30\n", + " retry_interval = 1\n", + "\n", + " print(\"Waiting for server to start\", end=\"\")\n", + " for _ in range(max_retries):\n", + " try:\n", + " response = requests.get(url)\n", + " if response.status_code == 200:\n", + " print(\"\\nServer is ready!\")\n", + " return True\n", + " except ConnectionError:\n", + " print(\".\", end=\"\", flush=True)\n", + " time.sleep(retry_interval)\n", + "\n", + " print(\"\\nServer failed to start after\", max_retries * retry_interval, \"seconds\")\n", + " return False\n", + "\n", + "\n", + "# use this helper if needed to kill the server\n", + "def kill_llama_stack_server():\n", + " # Kill any existing llama stack server processes\n", + " os.system(\"ps aux | grep -v grep | grep llama_stack.core.server.server | awk '{print $2}' | xargs kill -9\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "c40e9efd", + "metadata": {}, + "source": [ + "### 2.2. Start the Llama Stack Server" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f779283d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Starting Llama Stack server with PID: 787100\n", + "Waiting for server to start\n", + "Server is ready!\n" + ] + } + ], + "source": [ + "server_process = run_llama_stack_server_background()\n", + "assert wait_for_server_to_start()" + ] + }, + { + "cell_type": "markdown", + "id": "28477c03", + "metadata": {}, + "source": [ + "## Step 3: Run the demo" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "7da71011", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rag_tool> Ingesting document: https://www.paulgraham.com/greatwork.html\n", + "prompt> How do you do great work?\n", + "\u001b[33minference> \u001b[0m\u001b[33m[k\u001b[0m\u001b[33mnowledge\u001b[0m\u001b[33m_search\u001b[0m\u001b[33m(query\u001b[0m\u001b[33m=\"\u001b[0m\u001b[33mWhat\u001b[0m\u001b[33m is\u001b[0m\u001b[33m the\u001b[0m\u001b[33m key\u001b[0m\u001b[33m to\u001b[0m\u001b[33m doing\u001b[0m\u001b[33m great\u001b[0m\u001b[33m work\u001b[0m\u001b[33m\")]\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[32mtool_execution> Tool:knowledge_search Args:{'query': 'What is the key to doing great work'}\u001b[0m\n", + "\u001b[32mtool_execution> Tool:knowledge_search Response:[TextContentItem(text='knowledge_search tool found 5 chunks:\\nBEGIN of knowledge_search tool results.\\n', type='text'), TextContentItem(text=\"Result 1:\\nDocument_id:docum\\nContent: work. Doing great work means doing something important\\nso well that you expand people's ideas of what's possible. But\\nthere's no threshold for importance. It's a matter of degree, and\\noften hard to judge at the time anyway.\\n\", type='text'), TextContentItem(text=\"Result 2:\\nDocument_id:docum\\nContent: work. Doing great work means doing something important\\nso well that you expand people's ideas of what's possible. But\\nthere's no threshold for importance. It's a matter of degree, and\\noften hard to judge at the time anyway.\\n\", type='text'), TextContentItem(text=\"Result 3:\\nDocument_id:docum\\nContent: work. Doing great work means doing something important\\nso well that you expand people's ideas of what's possible. But\\nthere's no threshold for importance. It's a matter of degree, and\\noften hard to judge at the time anyway.\\n\", type='text'), TextContentItem(text=\"Result 4:\\nDocument_id:docum\\nContent: work. Doing great work means doing something important\\nso well that you expand people's ideas of what's possible. But\\nthere's no threshold for importance. It's a matter of degree, and\\noften hard to judge at the time anyway.\\n\", type='text'), TextContentItem(text=\"Result 5:\\nDocument_id:docum\\nContent: work. Doing great work means doing something important\\nso well that you expand people's ideas of what's possible. But\\nthere's no threshold for importance. It's a matter of degree, and\\noften hard to judge at the time anyway.\\n\", type='text'), TextContentItem(text='END of knowledge_search tool results.\\n', type='text'), TextContentItem(text='The above results were retrieved to help answer the user\\'s query: \"What is the key to doing great work\". Use them as supporting information only in answering this query.\\n', type='text')]\u001b[0m\n", + "\u001b[33minference> \u001b[0m\u001b[33mDoing\u001b[0m\u001b[33m great\u001b[0m\u001b[33m work\u001b[0m\u001b[33m means\u001b[0m\u001b[33m doing\u001b[0m\u001b[33m something\u001b[0m\u001b[33m important\u001b[0m\u001b[33m so\u001b[0m\u001b[33m well\u001b[0m\u001b[33m that\u001b[0m\u001b[33m you\u001b[0m\u001b[33m expand\u001b[0m\u001b[33m people\u001b[0m\u001b[33m's\u001b[0m\u001b[33m ideas\u001b[0m\u001b[33m of\u001b[0m\u001b[33m what\u001b[0m\u001b[33m's\u001b[0m\u001b[33m possible\u001b[0m\u001b[33m.\u001b[0m\u001b[33m However\u001b[0m\u001b[33m,\u001b[0m\u001b[33m there\u001b[0m\u001b[33m's\u001b[0m\u001b[33m no\u001b[0m\u001b[33m threshold\u001b[0m\u001b[33m for\u001b[0m\u001b[33m importance\u001b[0m\u001b[33m,\u001b[0m\u001b[33m and\u001b[0m\u001b[33m it\u001b[0m\u001b[33m's\u001b[0m\u001b[33m often\u001b[0m\u001b[33m hard\u001b[0m\u001b[33m to\u001b[0m\u001b[33m judge\u001b[0m\u001b[33m at\u001b[0m\u001b[33m the\u001b[0m\u001b[33m time\u001b[0m\u001b[33m anyway\u001b[0m\u001b[33m.\u001b[0m\u001b[33m Great\u001b[0m\u001b[33m work\u001b[0m\u001b[33m is\u001b[0m\u001b[33m a\u001b[0m\u001b[33m matter\u001b[0m\u001b[33m of\u001b[0m\u001b[33m degree\u001b[0m\u001b[33m,\u001b[0m\u001b[33m and\u001b[0m\u001b[33m it\u001b[0m\u001b[33m can\u001b[0m\u001b[33m be\u001b[0m\u001b[33m difficult\u001b[0m\u001b[33m to\u001b[0m\u001b[33m determine\u001b[0m\u001b[33m whether\u001b[0m\u001b[33m someone\u001b[0m\u001b[33m has\u001b[0m\u001b[33m done\u001b[0m\u001b[33m great\u001b[0m\u001b[33m work\u001b[0m\u001b[33m until\u001b[0m\u001b[33m after\u001b[0m\u001b[33m the\u001b[0m\u001b[33m fact\u001b[0m\u001b[33m.\u001b[0m\u001b[97m\u001b[0m\n", + "\u001b[30m\u001b[0m" + ] + } + ], + "source": [ + "from llama_stack_client import Agent, AgentEventLogger, RAGDocument, LlamaStackClient\n", + "\n", + "vector_db_id = \"my_demo_vector_db\"\n", + "client = LlamaStackClient(base_url=\"http://0.0.0.0:8321\")\n", + "\n", + "models = client.models.list()\n", + "\n", + "# Select the first ollama and first ollama's embedding model\n", + "model_id = next(m for m in models if m.model_type == \"llm\" and m.provider_id == \"ollama\").identifier\n", + "embedding_model = next(m for m in models if m.model_type == \"embedding\" and m.provider_id == \"ollama\")\n", + "embedding_model_id = embedding_model.identifier\n", + "embedding_dimension = embedding_model.metadata[\"embedding_dimension\"]\n", + "\n", + "_ = client.vector_dbs.register(\n", + " vector_db_id=vector_db_id,\n", + " embedding_model=embedding_model_id,\n", + " embedding_dimension=embedding_dimension,\n", + " provider_id=\"faiss\",\n", + ")\n", + "source = \"https://www.paulgraham.com/greatwork.html\"\n", + "print(\"rag_tool> Ingesting document:\", source)\n", + "document = RAGDocument(\n", + " document_id=\"document_1\",\n", + " content=source,\n", + " mime_type=\"text/html\",\n", + " metadata={},\n", + ")\n", + "client.tool_runtime.rag_tool.insert(\n", + " documents=[document],\n", + " vector_db_id=vector_db_id,\n", + " chunk_size_in_tokens=50,\n", + ")\n", + "agent = Agent(\n", + " client,\n", + " model=model_id,\n", + " instructions=\"You are a helpful assistant\",\n", + " tools=[\n", + " {\n", + " \"name\": \"builtin::rag/knowledge_search\",\n", + " \"args\": {\"vector_db_ids\": [vector_db_id]},\n", + " }\n", + " ],\n", + ")\n", + "\n", + "prompt = \"How do you do great work?\"\n", + "print(\"prompt>\", prompt)\n", + "\n", + "response = agent.create_turn(\n", + " messages=[{\"role\": \"user\", \"content\": prompt}],\n", + " session_id=agent.create_session(\"rag_session\"),\n", + " stream=True,\n", + ")\n", + "\n", + "for log in AgentEventLogger().log(response):\n", + " log.print()" + ] + }, + { + "cell_type": "markdown", + "id": "341aaadf", + "metadata": {}, + "source": [ + "Congratulations! You've successfully built your first RAG application using Llama Stack! 🎉🥳" + ] + }, + { + "cell_type": "markdown", + "id": "e88e1185", + "metadata": {}, + "source": [ + "## Next Steps" + ] + }, + { + "cell_type": "markdown", + "id": "bcb73600", + "metadata": {}, + "source": [ + "Now you're ready to dive deeper into Llama Stack!\n", + "- Explore the [Detailed Tutorial](./detailed_tutorial.md).\n", + "- Try the [Getting Started Notebook](https://github.com/meta-llama/llama-stack/blob/main/docs/getting_started.ipynb).\n", + "- Browse more [Notebooks on GitHub](https://github.com/meta-llama/llama-stack/tree/main/docs/notebooks).\n", + "- Learn about Llama Stack [Concepts](../concepts/index.md).\n", + "- Discover how to [Build Llama Stacks](../distributions/index.md).\n", + "- Refer to our [References](../references/index.md) for details on the Llama CLI and Python SDK.\n", + "- Check out the [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repository for example applications and tutorials." + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 } diff --git a/docs/src/pages/index.js b/docs/src/pages/index.js index 1e7f79401..f460d6f27 100644 --- a/docs/src/pages/index.js +++ b/docs/src/pages/index.js @@ -47,11 +47,11 @@ function QuickStart() {
{`# Install uv and start Ollama
 ollama run llama3.2:3b --keepalive 60m
 
+# Install server dependencies
+uv run --with llama-stack llama stack list-deps starter | xargs -L1 uv pip install
+
 # Run Llama Stack server
-OLLAMA_URL=http://localhost:11434 \\
-  uv run --with llama-stack \\
-  llama stack build --distro starter \\
-  --image-type venv --run
+OLLAMA_URL=http://localhost:11434 uv run --with llama-stack llama stack run starter
 
 # Try the Python SDK
 from llama_stack_client import LlamaStackClient
diff --git a/docs/zero_to_hero_guide/README.md b/docs/zero_to_hero_guide/README.md
index 1b643d692..4769bf996 100644
--- a/docs/zero_to_hero_guide/README.md
+++ b/docs/zero_to_hero_guide/README.md
@@ -78,17 +78,14 @@ If you're looking for more specific topics, we have a [Zero to Hero Guide](#next
 
 ## Build, Configure, and Run Llama Stack
 
-1. **Build the Llama Stack**:
-   Build the Llama Stack using the `starter` template:
+1. **Install dependencies**:
    ```bash
-   uv run --with llama-stack llama stack build --distro starter --image-type venv
+   llama stack list-deps starter | xargs -L1 uv pip install
    ```
-   **Expected Output:**
+
+2. **Start the distribution**:
    ```bash
-   ...
-   Build Successful!
-   You can find the newly-built template here: ~/.llama/distributions/starter/starter-run.yaml
-   You can run the new Llama Stack Distro via: uv run --with llama-stack llama stack run starter
+   llama stack run starter
    ```
 
 3. **Set the ENV variables by exporting them to the terminal**:
diff --git a/llama_stack/distributions/meta-reference-gpu/doc_template.md b/llama_stack/distributions/meta-reference-gpu/doc_template.md
index a7e8c2d67..ec4452d81 100644
--- a/llama_stack/distributions/meta-reference-gpu/doc_template.md
+++ b/llama_stack/distributions/meta-reference-gpu/doc_template.md
@@ -70,10 +70,10 @@ docker run \
 
 ### Via venv
 
-Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
+Make sure you have the Llama Stack CLI available.
 
 ```bash
-llama stack build --distro {{ name }} --image-type venv
+llama stack list-deps meta-reference-gpu | xargs -L1 uv pip install
 INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
 llama stack run distributions/{{ name }}/run.yaml \
   --port 8321
diff --git a/llama_stack/distributions/nvidia/doc_template.md b/llama_stack/distributions/nvidia/doc_template.md
index df2b68ef7..40f39e4f3 100644
--- a/llama_stack/distributions/nvidia/doc_template.md
+++ b/llama_stack/distributions/nvidia/doc_template.md
@@ -126,11 +126,11 @@ docker run \
 
 ### Via venv
 
-If you've set up your local development environment, you can also build the image using your local virtual environment.
+If you've set up your local development environment, you can also install the distribution dependencies using your local virtual environment.
 
 ```bash
 INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
-llama stack build --distro nvidia --image-type venv
+llama stack list-deps nvidia | xargs -L1 uv pip install
 NVIDIA_API_KEY=$NVIDIA_API_KEY \
 INFERENCE_MODEL=$INFERENCE_MODEL \
 llama stack run ./run.yaml \

From 9936f33f7e066cef0cd0105a6c440f1ed768d71d Mon Sep 17 00:00:00 2001
From: ehhuang 
Date: Mon, 20 Oct 2025 11:42:57 -0700
Subject: [PATCH 15/41] chore: disable telemetry if otel endpoint isn't set
 (#3859)

# What does this PR do?

removes error:
ConnectionError: HTTPConnectionPool(host='localhost', port=4318): Max
retries exceeded with url: /v1/traces
(Caused by NewConnectionError(': Failed to establish a
         new connection: [Errno 61] Connection refused'))


## Test Plan
uv run llama stack run starter
curl http://localhost:8321/v1/models
observe no error in server logs
---
 .../telemetry/meta_reference/telemetry.py     | 32 +++++++++++--------
 1 file changed, 18 insertions(+), 14 deletions(-)

diff --git a/llama_stack/providers/inline/telemetry/meta_reference/telemetry.py b/llama_stack/providers/inline/telemetry/meta_reference/telemetry.py
index 014b800cc..2a225476b 100644
--- a/llama_stack/providers/inline/telemetry/meta_reference/telemetry.py
+++ b/llama_stack/providers/inline/telemetry/meta_reference/telemetry.py
@@ -4,6 +4,7 @@
 # This source code is licensed under the terms described in the LICENSE file in
 # the root directory of this source tree.
 
+import os
 import threading
 from typing import Any
 
@@ -60,23 +61,26 @@ class TelemetryAdapter(Telemetry):
         # Recreating the telemetry adapter multiple times will result in duplicate span processors.
         # Since the library client can be recreated multiple times in a notebook,
         # the kernel will hold on to the span processor and cause duplicate spans to be written.
-        if _TRACER_PROVIDER is None:
-            provider = TracerProvider()
-            trace.set_tracer_provider(provider)
-            _TRACER_PROVIDER = provider
+        if os.environ.get("OTEL_EXPORTER_OTLP_ENDPOINT"):
+            if _TRACER_PROVIDER is None:
+                provider = TracerProvider()
+                trace.set_tracer_provider(provider)
+                _TRACER_PROVIDER = provider
 
-            # Use single OTLP endpoint for all telemetry signals
+                # Use single OTLP endpoint for all telemetry signals
 
-            # Let OpenTelemetry SDK handle endpoint construction automatically
-            # The SDK will read OTEL_EXPORTER_OTLP_ENDPOINT and construct appropriate URLs
-            # https://opentelemetry.io/docs/languages/sdk-configuration/otlp-exporter
-            span_exporter = OTLPSpanExporter()
-            span_processor = BatchSpanProcessor(span_exporter)
-            trace.get_tracer_provider().add_span_processor(span_processor)
+                # Let OpenTelemetry SDK handle endpoint construction automatically
+                # The SDK will read OTEL_EXPORTER_OTLP_ENDPOINT and construct appropriate URLs
+                # https://opentelemetry.io/docs/languages/sdk-configuration/otlp-exporter
+                span_exporter = OTLPSpanExporter()
+                span_processor = BatchSpanProcessor(span_exporter)
+                trace.get_tracer_provider().add_span_processor(span_processor)
 
-            metric_reader = PeriodicExportingMetricReader(OTLPMetricExporter())
-            metric_provider = MeterProvider(metric_readers=[metric_reader])
-            metrics.set_meter_provider(metric_provider)
+                metric_reader = PeriodicExportingMetricReader(OTLPMetricExporter())
+                metric_provider = MeterProvider(metric_readers=[metric_reader])
+                metrics.set_meter_provider(metric_provider)
+        else:
+            logger.warning("OTEL_EXPORTER_OTLP_ENDPOINT is not set, skipping telemetry")
 
         self.meter = metrics.get_meter(__name__)
         self._lock = _global_lock

From 112a97400561d3dc10820ccd9a5c8f7ae70fbe11 Mon Sep 17 00:00:00 2001
From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com>
Date: Mon, 20 Oct 2025 12:33:44 -0700
Subject: [PATCH 16/41] chore(python-deps): bump ruff from 0.9.10 to 0.14.1
 (#3846)
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit

Bumps [ruff](https://github.com/astral-sh/ruff) from 0.9.10 to 0.14.1.
Release notes

Sourced from ruff's releases.

0.14.1

Release Notes

Released on 2025-10-16.

Preview features

  • [formatter] Remove parentheses around multiple exception types on Python 3.14+ (#20768)
  • [flake8-bugbear] Omit annotation in preview fix for B006 (#20877)
  • [flake8-logging-format] Avoid dropping implicitly concatenated pieces in the G004 fix (#20793)
  • [pydoclint] Implement docstring-extraneous-parameter (DOC102) (#20376)
  • [pyupgrade] Extend UP019 to detect typing_extensions.Text (UP019) (#20825)
  • [pyupgrade] Fix false negative for TypeVar with default argument in non-pep695-generic-class (UP046) (#20660)

Bug fixes

  • Fix false negatives in Truthiness::from_expr for lambdas, generators, and f-strings (#20704)
  • Fix syntax error false positives for escapes and quotes in f-strings (#20867)
  • Fix syntax error false positives on parenthesized context managers (#20846)
  • [fastapi] Fix false positives for path parameters that FastAPI doesn't recognize (FAST003) (#20687)
  • [flake8-pyi] Fix operator precedence by adding parentheses when needed (PYI061) (#20508)
  • [ruff] Suppress diagnostic for f-string interpolations with debug text (RUF010) (#20525)

Rule changes

  • [airflow] Add warning to airflow.datasets.DatasetEvent usage (AIR301) (#20551)
  • [flake8-bugbear] Mark B905 and B912 fixes as unsafe (#20695)
  • Use DiagnosticTag for more rules - changes display in editors (#20758,#20734)

Documentation

  • Update Python compatibility from 3.13 to 3.14 in README.md (#20852)
  • Update lint.flake8-type-checking.quoted-annotations docs (#20765)
  • Update setup instructions for Zed 0.208.0+ (#20902)
  • [flake8-datetimez] Clarify docs for several rules (#20778)
  • Fix typo in RUF015 description (#20873)

Other changes

  • Reduce binary size (#20863)
  • Improved error recovery for unclosed strings (including f- and t-strings) (#20848)

Contributors

... (truncated)

Changelog

Sourced from ruff's changelog.

0.14.1

Released on 2025-10-16.

Preview features

  • [formatter] Remove parentheses around multiple exception types on Python 3.14+ (#20768)
  • [flake8-bugbear] Omit annotation in preview fix for B006 (#20877)
  • [flake8-logging-format] Avoid dropping implicitly concatenated pieces in the G004 fix (#20793)
  • [pydoclint] Implement docstring-extraneous-parameter (DOC102) (#20376)
  • [pyupgrade] Extend UP019 to detect typing_extensions.Text (UP019) (#20825)
  • [pyupgrade] Fix false negative for TypeVar with default argument in non-pep695-generic-class (UP046) (#20660)

Bug fixes

  • Fix false negatives in Truthiness::from_expr for lambdas, generators, and f-strings (#20704)
  • Fix syntax error false positives for escapes and quotes in f-strings (#20867)
  • Fix syntax error false positives on parenthesized context managers (#20846)
  • [fastapi] Fix false positives for path parameters that FastAPI doesn't recognize (FAST003) (#20687)
  • [flake8-pyi] Fix operator precedence by adding parentheses when needed (PYI061) (#20508)
  • [ruff] Suppress diagnostic for f-string interpolations with debug text (RUF010) (#20525)

Rule changes

  • [airflow] Add warning to airflow.datasets.DatasetEvent usage (AIR301) (#20551)
  • [flake8-bugbear] Mark B905 and B912 fixes as unsafe (#20695)
  • Use DiagnosticTag for more rules - changes display in editors (#20758,#20734)

Documentation

  • Update Python compatibility from 3.13 to 3.14 in README.md (#20852)
  • Update lint.flake8-type-checking.quoted-annotations docs (#20765)
  • Update setup instructions for Zed 0.208.0+ (#20902)
  • [flake8-datetimez] Clarify docs for several rules (#20778)
  • Fix typo in RUF015 description (#20873)

Other changes

  • Reduce binary size (#20863)
  • Improved error recovery for unclosed strings (including f- and t-strings) (#20848)

Contributors

... (truncated)

Commits
  • 2bffef5 Bump 0.14.1 (#20925)
  • e64d772 Standardize syntax error construction (#20903)
  • 0369668 [pydoclint] Implement docstring-extraneous-parameter (DOC102) (#20376)
  • 058fc37 [ty] Fix panic 'missing root' when handling completion request (#20917)
  • ec9faa3 [ty] Run file watching tests serial when using nextest (#20918)
  • 7155a62 [ty] Add version hint for failed stdlib attribute accesses (#20909)
  • a67e069 More CI improvements (#20920)
  • 6a1e91c [ty] Check typeshed VERSIONS for parent modules when reporting failed stdlib ...
  • 3db5d59 Don't use codspeed or depot runners in CI jobs on forks (#20894)
  • d23826c [ty] cache Type::is_redundant_with (#20477)
  • Additional commits viewable in compare view

[![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=ruff&package-manager=uv&previous-version=0.9.10&new-version=0.14.1)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) ---
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- uv.lock | 39 ++++++++++++++++++++------------------- 1 file changed, 20 insertions(+), 19 deletions(-) diff --git a/uv.lock b/uv.lock index f9806123d..d6f9d405b 100644 --- a/uv.lock +++ b/uv.lock @@ -4129,27 +4129,28 @@ wheels = [ [[package]] name = "ruff" -version = "0.9.10" +version = "0.14.1" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/20/8e/fafaa6f15c332e73425d9c44ada85360501045d5ab0b81400076aff27cf6/ruff-0.9.10.tar.gz", hash = "sha256:9bacb735d7bada9cfb0f2c227d3658fc443d90a727b47f206fb33f52f3c0eac7", size = 3759776, upload-time = "2025-03-07T15:27:44.363Z" } +sdist = { url = "https://files.pythonhosted.org/packages/9e/58/6ca66896635352812de66f71cdf9ff86b3a4f79071ca5730088c0cd0fc8d/ruff-0.14.1.tar.gz", hash = "sha256:1dd86253060c4772867c61791588627320abcb6ed1577a90ef432ee319729b69", size = 5513429, upload-time = "2025-10-16T18:05:41.766Z" } wheels = [ - { url = "https://files.pythonhosted.org/packages/73/b2/af7c2cc9e438cbc19fafeec4f20bfcd72165460fe75b2b6e9a0958c8c62b/ruff-0.9.10-py3-none-linux_armv6l.whl", hash = "sha256:eb4d25532cfd9fe461acc83498361ec2e2252795b4f40b17e80692814329e42d", size = 10049494, upload-time = "2025-03-07T15:26:51.268Z" }, - { url = "https://files.pythonhosted.org/packages/6d/12/03f6dfa1b95ddd47e6969f0225d60d9d7437c91938a310835feb27927ca0/ruff-0.9.10-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:188a6638dab1aa9bb6228a7302387b2c9954e455fb25d6b4470cb0641d16759d", size = 10853584, upload-time = "2025-03-07T15:26:56.104Z" }, - { url = "https://files.pythonhosted.org/packages/02/49/1c79e0906b6ff551fb0894168763f705bf980864739572b2815ecd3c9df0/ruff-0.9.10-py3-none-macosx_11_0_arm64.whl", hash = "sha256:5284dcac6b9dbc2fcb71fdfc26a217b2ca4ede6ccd57476f52a587451ebe450d", size = 10155692, upload-time = "2025-03-07T15:27:01.385Z" }, - { url = "https://files.pythonhosted.org/packages/5b/01/85e8082e41585e0e1ceb11e41c054e9e36fed45f4b210991052d8a75089f/ruff-0.9.10-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:47678f39fa2a3da62724851107f438c8229a3470f533894b5568a39b40029c0c", size = 10369760, upload-time = "2025-03-07T15:27:04.023Z" }, - { url = "https://files.pythonhosted.org/packages/a1/90/0bc60bd4e5db051f12445046d0c85cc2c617095c0904f1aa81067dc64aea/ruff-0.9.10-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:99713a6e2766b7a17147b309e8c915b32b07a25c9efd12ada79f217c9c778b3e", size = 9912196, upload-time = "2025-03-07T15:27:06.93Z" }, - { url = "https://files.pythonhosted.org/packages/66/ea/0b7e8c42b1ec608033c4d5a02939c82097ddcb0b3e393e4238584b7054ab/ruff-0.9.10-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:524ee184d92f7c7304aa568e2db20f50c32d1d0caa235d8ddf10497566ea1a12", size = 11434985, upload-time = "2025-03-07T15:27:10.082Z" }, - { url = "https://files.pythonhosted.org/packages/d5/86/3171d1eff893db4f91755175a6e1163c5887be1f1e2f4f6c0c59527c2bfd/ruff-0.9.10-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:df92aeac30af821f9acf819fc01b4afc3dfb829d2782884f8739fb52a8119a16", size = 12155842, upload-time = "2025-03-07T15:27:12.727Z" }, - { url = "https://files.pythonhosted.org/packages/89/9e/700ca289f172a38eb0bca752056d0a42637fa17b81649b9331786cb791d7/ruff-0.9.10-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de42e4edc296f520bb84954eb992a07a0ec5a02fecb834498415908469854a52", size = 11613804, upload-time = "2025-03-07T15:27:15.944Z" }, - { url = "https://files.pythonhosted.org/packages/f2/92/648020b3b5db180f41a931a68b1c8575cca3e63cec86fd26807422a0dbad/ruff-0.9.10-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d257f95b65806104b6b1ffca0ea53f4ef98454036df65b1eda3693534813ecd1", size = 13823776, upload-time = "2025-03-07T15:27:18.996Z" }, - { url = "https://files.pythonhosted.org/packages/5e/a6/cc472161cd04d30a09d5c90698696b70c169eeba2c41030344194242db45/ruff-0.9.10-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b60dec7201c0b10d6d11be00e8f2dbb6f40ef1828ee75ed739923799513db24c", size = 11302673, upload-time = "2025-03-07T15:27:21.655Z" }, - { url = "https://files.pythonhosted.org/packages/6c/db/d31c361c4025b1b9102b4d032c70a69adb9ee6fde093f6c3bf29f831c85c/ruff-0.9.10-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:d838b60007da7a39c046fcdd317293d10b845001f38bcb55ba766c3875b01e43", size = 10235358, upload-time = "2025-03-07T15:27:24.72Z" }, - { url = "https://files.pythonhosted.org/packages/d1/86/d6374e24a14d4d93ebe120f45edd82ad7dcf3ef999ffc92b197d81cdc2a5/ruff-0.9.10-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:ccaf903108b899beb8e09a63ffae5869057ab649c1e9231c05ae354ebc62066c", size = 9886177, upload-time = "2025-03-07T15:27:27.282Z" }, - { url = "https://files.pythonhosted.org/packages/00/62/a61691f6eaaac1e945a1f3f59f1eea9a218513139d5b6c2b8f88b43b5b8f/ruff-0.9.10-py3-none-musllinux_1_2_i686.whl", hash = "sha256:f9567d135265d46e59d62dc60c0bfad10e9a6822e231f5b24032dba5a55be6b5", size = 10864747, upload-time = "2025-03-07T15:27:30.637Z" }, - { url = "https://files.pythonhosted.org/packages/ee/94/2c7065e1d92a8a8a46d46d9c3cf07b0aa7e0a1e0153d74baa5e6620b4102/ruff-0.9.10-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:5f202f0d93738c28a89f8ed9eaba01b7be339e5d8d642c994347eaa81c6d75b8", size = 11360441, upload-time = "2025-03-07T15:27:33.356Z" }, - { url = "https://files.pythonhosted.org/packages/a7/8f/1f545ea6f9fcd7bf4368551fb91d2064d8f0577b3079bb3f0ae5779fb773/ruff-0.9.10-py3-none-win32.whl", hash = "sha256:bfb834e87c916521ce46b1788fbb8484966e5113c02df216680102e9eb960029", size = 10247401, upload-time = "2025-03-07T15:27:35.994Z" }, - { url = "https://files.pythonhosted.org/packages/4f/18/fb703603ab108e5c165f52f5b86ee2aa9be43bb781703ec87c66a5f5d604/ruff-0.9.10-py3-none-win_amd64.whl", hash = "sha256:f2160eeef3031bf4b17df74e307d4c5fb689a6f3a26a2de3f7ef4044e3c484f1", size = 11366360, upload-time = "2025-03-07T15:27:38.66Z" }, - { url = "https://files.pythonhosted.org/packages/35/85/338e603dc68e7d9994d5d84f24adbf69bae760ba5efd3e20f5ff2cec18da/ruff-0.9.10-py3-none-win_arm64.whl", hash = "sha256:5fd804c0327a5e5ea26615550e706942f348b197d5475ff34c19733aee4b2e69", size = 10436892, upload-time = "2025-03-07T15:27:41.687Z" }, + { url = "https://files.pythonhosted.org/packages/8d/39/9cc5ab181478d7a18adc1c1e051a84ee02bec94eb9bdfd35643d7c74ca31/ruff-0.14.1-py3-none-linux_armv6l.whl", hash = "sha256:083bfc1f30f4a391ae09c6f4f99d83074416b471775b59288956f5bc18e82f8b", size = 12445415, upload-time = "2025-10-16T18:04:48.227Z" }, + { url = "https://files.pythonhosted.org/packages/ef/2e/1226961855ccd697255988f5a2474890ac7c5863b080b15bd038df820818/ruff-0.14.1-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:f6fa757cd717f791009f7669fefb09121cc5f7d9bd0ef211371fad68c2b8b224", size = 12784267, upload-time = "2025-10-16T18:04:52.515Z" }, + { url = "https://files.pythonhosted.org/packages/c1/ea/fd9e95863124ed159cd0667ec98449ae461de94acda7101f1acb6066da00/ruff-0.14.1-py3-none-macosx_11_0_arm64.whl", hash = "sha256:d6191903d39ac156921398e9c86b7354d15e3c93772e7dbf26c9fcae59ceccd5", size = 11781872, upload-time = "2025-10-16T18:04:55.396Z" }, + { url = "https://files.pythonhosted.org/packages/1e/5a/e890f7338ff537dba4589a5e02c51baa63020acfb7c8cbbaea4831562c96/ruff-0.14.1-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed04f0e04f7a4587244e5c9d7df50e6b5bf2705d75059f409a6421c593a35896", size = 12226558, upload-time = "2025-10-16T18:04:58.166Z" }, + { url = "https://files.pythonhosted.org/packages/a6/7a/8ab5c3377f5bf31e167b73651841217542bcc7aa1c19e83030835cc25204/ruff-0.14.1-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5c9e6cf6cd4acae0febbce29497accd3632fe2025c0c583c8b87e8dbdeae5f61", size = 12187898, upload-time = "2025-10-16T18:05:01.455Z" }, + { url = "https://files.pythonhosted.org/packages/48/8d/ba7c33aa55406955fc124e62c8259791c3d42e3075a71710fdff9375134f/ruff-0.14.1-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a6fa2458527794ecdfbe45f654e42c61f2503a230545a91af839653a0a93dbc6", size = 12939168, upload-time = "2025-10-16T18:05:04.397Z" }, + { url = "https://files.pythonhosted.org/packages/b4/c2/70783f612b50f66d083380e68cbd1696739d88e9b4f6164230375532c637/ruff-0.14.1-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:39f1c392244e338b21d42ab29b8a6392a722c5090032eb49bb4d6defcdb34345", size = 14386942, upload-time = "2025-10-16T18:05:07.102Z" }, + { url = "https://files.pythonhosted.org/packages/48/44/cd7abb9c776b66d332119d67f96acf15830d120f5b884598a36d9d3f4d83/ruff-0.14.1-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7382fa12a26cce1f95070ce450946bec357727aaa428983036362579eadcc5cf", size = 13990622, upload-time = "2025-10-16T18:05:09.882Z" }, + { url = "https://files.pythonhosted.org/packages/eb/56/4259b696db12ac152fe472764b4f78bbdd9b477afd9bc3a6d53c01300b37/ruff-0.14.1-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dd0bf2be3ae8521e1093a487c4aa3b455882f139787770698530d28ed3fbb37c", size = 13431143, upload-time = "2025-10-16T18:05:13.46Z" }, + { url = "https://files.pythonhosted.org/packages/e0/35/266a80d0eb97bd224b3265b9437bd89dde0dcf4faf299db1212e81824e7e/ruff-0.14.1-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cabcaa9ccf8089fb4fdb78d17cc0e28241520f50f4c2e88cb6261ed083d85151", size = 13132844, upload-time = "2025-10-16T18:05:16.1Z" }, + { url = "https://files.pythonhosted.org/packages/65/6e/d31ce218acc11a8d91ef208e002a31acf315061a85132f94f3df7a252b18/ruff-0.14.1-py3-none-manylinux_2_31_riscv64.whl", hash = "sha256:747d583400f6125ec11a4c14d1c8474bf75d8b419ad22a111a537ec1a952d192", size = 13401241, upload-time = "2025-10-16T18:05:19.395Z" }, + { url = "https://files.pythonhosted.org/packages/9f/b5/dbc4221bf0b03774b3b2f0d47f39e848d30664157c15b965a14d890637d2/ruff-0.14.1-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:5a6e74c0efd78515a1d13acbfe6c90f0f5bd822aa56b4a6d43a9ffb2ae6e56cd", size = 12132476, upload-time = "2025-10-16T18:05:22.163Z" }, + { url = "https://files.pythonhosted.org/packages/98/4b/ac99194e790ccd092d6a8b5f341f34b6e597d698e3077c032c502d75ea84/ruff-0.14.1-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:0ea6a864d2fb41a4b6d5b456ed164302a0d96f4daac630aeba829abfb059d020", size = 12139749, upload-time = "2025-10-16T18:05:25.162Z" }, + { url = "https://files.pythonhosted.org/packages/47/26/7df917462c3bb5004e6fdfcc505a49e90bcd8a34c54a051953118c00b53a/ruff-0.14.1-py3-none-musllinux_1_2_i686.whl", hash = "sha256:0826b8764f94229604fa255918d1cc45e583e38c21c203248b0bfc9a0e930be5", size = 12544758, upload-time = "2025-10-16T18:05:28.018Z" }, + { url = "https://files.pythonhosted.org/packages/64/d0/81e7f0648e9764ad9b51dd4be5e5dac3fcfff9602428ccbae288a39c2c22/ruff-0.14.1-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:cbc52160465913a1a3f424c81c62ac8096b6a491468e7d872cb9444a860bc33d", size = 13221811, upload-time = "2025-10-16T18:05:30.707Z" }, + { url = "https://files.pythonhosted.org/packages/c3/07/3c45562c67933cc35f6d5df4ca77dabbcd88fddaca0d6b8371693d29fd56/ruff-0.14.1-py3-none-win32.whl", hash = "sha256:e037ea374aaaff4103240ae79168c0945ae3d5ae8db190603de3b4012bd1def6", size = 12319467, upload-time = "2025-10-16T18:05:33.261Z" }, + { url = "https://files.pythonhosted.org/packages/02/88/0ee4ca507d4aa05f67e292d2e5eb0b3e358fbcfe527554a2eda9ac422d6b/ruff-0.14.1-py3-none-win_amd64.whl", hash = "sha256:59d599cdff9c7f925a017f6f2c256c908b094e55967f93f2821b1439928746a1", size = 13401123, upload-time = "2025-10-16T18:05:35.984Z" }, + { url = "https://files.pythonhosted.org/packages/b8/81/4b6387be7014858d924b843530e1b2a8e531846807516e9bea2ee0936bf7/ruff-0.14.1-py3-none-win_arm64.whl", hash = "sha256:e3b443c4c9f16ae850906b8d0a707b2a4c16f8d2f0a7fe65c475c5886665ce44", size = 12436636, upload-time = "2025-10-16T18:05:38.995Z" }, ] [[package]] From 08cbb69ef7c5f00178f12d90bb50cca8101325a6 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Mon, 20 Oct 2025 12:34:11 -0700 Subject: [PATCH 17/41] chore(python-deps): bump sqlalchemy from 2.0.41 to 2.0.44 (#3848) Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 2.0.41 to 2.0.44.
Release notes

Sourced from sqlalchemy's releases.

2.0.44

Released: October 10, 2025

platform

  • [platform] [bug] Unblocked automatic greenlet installation for Python 3.14 now that there are greenlet wheels on pypi for python 3.14.

orm

  • [orm] [usecase] The way ORM Annotated Declarative interprets Python PEP 695 type aliases in Mapped[] annotations has been refined to expand the lookup scheme. A PEP 695 type can now be resolved based on either its direct presence in _orm.registry.type_annotation_map or its immediate resolved value, as long as a recursive lookup across multiple PEP 695 types is not required for it to resolve. This change reverses part of the restrictions introduced in 2.0.37 as part of #11955, which deprecated (and disallowed in 2.1) the ability to resolve any PEP 695 type that was not explicitly present in _orm.registry.type_annotation_map. Recursive lookups of PEP 695 types remains deprecated in 2.0 and disallowed in version 2.1, as do implicit lookups of NewType types without an entry in _orm.registry.type_annotation_map.

    Additionally, new support has been added for generic PEP 695 aliases that refer to PEP 593 Annotated constructs containing _orm.mapped_column() configurations. See the sections below for examples.

    References: #12829

  • [orm] [bug] Fixed a caching issue where _orm.with_loader_criteria() would incorrectly reuse cached bound parameter values when used with _sql.CompoundSelect constructs such as _sql.union(). The issue was caused by the cache key for compound selects not including the execution options that are part of the _sql.Executable base class, which _orm.with_loader_criteria() uses to apply its criteria dynamically. The fix ensures that compound selects and other executable constructs properly include execution options in their cache key traversal.

    References: #12905

engine

  • [engine] [bug] Implemented initial support for free-threaded Python by adding new tests and reworking the test harness to include Python 3.13t and Python 3.14t in

... (truncated)

Commits

[![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=sqlalchemy&package-manager=uv&previous-version=2.0.41&new-version=2.0.44)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) ---
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- uv.lock | 40 ++++++++++++++++++++-------------------- 1 file changed, 20 insertions(+), 20 deletions(-) diff --git a/uv.lock b/uv.lock index d6f9d405b..7f6e0401b 100644 --- a/uv.lock +++ b/uv.lock @@ -4526,31 +4526,31 @@ wheels = [ [[package]] name = "sqlalchemy" -version = "2.0.41" +version = "2.0.44" source = { registry = "https://pypi.org/simple" } dependencies = [ - { name = "greenlet", marker = "(python_full_version < '3.14' and platform_machine == 'AMD64') or (python_full_version < '3.14' and platform_machine == 'WIN32') or (python_full_version < '3.14' and platform_machine == 'aarch64') or (python_full_version < '3.14' and platform_machine == 'amd64') or (python_full_version < '3.14' and platform_machine == 'ppc64le') or (python_full_version < '3.14' and platform_machine == 'win32') or (python_full_version < '3.14' and platform_machine == 'x86_64')" }, + { name = "greenlet", marker = "platform_machine == 'AMD64' or platform_machine == 'WIN32' or platform_machine == 'aarch64' or platform_machine == 'amd64' or platform_machine == 'ppc64le' or platform_machine == 'win32' or platform_machine == 'x86_64'" }, { name = "typing-extensions" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/63/66/45b165c595ec89aa7dcc2c1cd222ab269bc753f1fc7a1e68f8481bd957bf/sqlalchemy-2.0.41.tar.gz", hash = "sha256:edba70118c4be3c2b1f90754d308d0b79c6fe2c0fdc52d8ddf603916f83f4db9", size = 9689424, upload-time = "2025-05-14T17:10:32.339Z" } +sdist = { url = "https://files.pythonhosted.org/packages/f0/f2/840d7b9496825333f532d2e3976b8eadbf52034178aac53630d09fe6e1ef/sqlalchemy-2.0.44.tar.gz", hash = "sha256:0ae7454e1ab1d780aee69fd2aae7d6b8670a581d8847f2d1e0f7ddfbf47e5a22", size = 9819830, upload-time = "2025-10-10T14:39:12.935Z" } wheels = [ - { url = "https://files.pythonhosted.org/packages/3e/2a/f1f4e068b371154740dd10fb81afb5240d5af4aa0087b88d8b308b5429c2/sqlalchemy-2.0.41-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:81f413674d85cfd0dfcd6512e10e0f33c19c21860342a4890c3a2b59479929f9", size = 2119645, upload-time = "2025-05-14T17:55:24.854Z" }, - { url = "https://files.pythonhosted.org/packages/9b/e8/c664a7e73d36fbfc4730f8cf2bf930444ea87270f2825efbe17bf808b998/sqlalchemy-2.0.41-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:598d9ebc1e796431bbd068e41e4de4dc34312b7aa3292571bb3674a0cb415dd1", size = 2107399, upload-time = "2025-05-14T17:55:28.097Z" }, - { url = "https://files.pythonhosted.org/packages/5c/78/8a9cf6c5e7135540cb682128d091d6afa1b9e48bd049b0d691bf54114f70/sqlalchemy-2.0.41-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a104c5694dfd2d864a6f91b0956eb5d5883234119cb40010115fd45a16da5e70", size = 3293269, upload-time = "2025-05-14T17:50:38.227Z" }, - { url = "https://files.pythonhosted.org/packages/3c/35/f74add3978c20de6323fb11cb5162702670cc7a9420033befb43d8d5b7a4/sqlalchemy-2.0.41-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6145afea51ff0af7f2564a05fa95eb46f542919e6523729663a5d285ecb3cf5e", size = 3303364, upload-time = "2025-05-14T17:51:49.829Z" }, - { url = "https://files.pythonhosted.org/packages/6a/d4/c990f37f52c3f7748ebe98883e2a0f7d038108c2c5a82468d1ff3eec50b7/sqlalchemy-2.0.41-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:b46fa6eae1cd1c20e6e6f44e19984d438b6b2d8616d21d783d150df714f44078", size = 3229072, upload-time = "2025-05-14T17:50:39.774Z" }, - { url = "https://files.pythonhosted.org/packages/15/69/cab11fecc7eb64bc561011be2bd03d065b762d87add52a4ca0aca2e12904/sqlalchemy-2.0.41-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:41836fe661cc98abfae476e14ba1906220f92c4e528771a8a3ae6a151242d2ae", size = 3268074, upload-time = "2025-05-14T17:51:51.736Z" }, - { url = "https://files.pythonhosted.org/packages/5c/ca/0c19ec16858585d37767b167fc9602593f98998a68a798450558239fb04a/sqlalchemy-2.0.41-cp312-cp312-win32.whl", hash = "sha256:a8808d5cf866c781150d36a3c8eb3adccfa41a8105d031bf27e92c251e3969d6", size = 2084514, upload-time = "2025-05-14T17:55:49.915Z" }, - { url = "https://files.pythonhosted.org/packages/7f/23/4c2833d78ff3010a4e17f984c734f52b531a8c9060a50429c9d4b0211be6/sqlalchemy-2.0.41-cp312-cp312-win_amd64.whl", hash = "sha256:5b14e97886199c1f52c14629c11d90c11fbb09e9334fa7bb5f6d068d9ced0ce0", size = 2111557, upload-time = "2025-05-14T17:55:51.349Z" }, - { url = "https://files.pythonhosted.org/packages/d3/ad/2e1c6d4f235a97eeef52d0200d8ddda16f6c4dd70ae5ad88c46963440480/sqlalchemy-2.0.41-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:4eeb195cdedaf17aab6b247894ff2734dcead6c08f748e617bfe05bd5a218443", size = 2115491, upload-time = "2025-05-14T17:55:31.177Z" }, - { url = "https://files.pythonhosted.org/packages/cf/8d/be490e5db8400dacc89056f78a52d44b04fbf75e8439569d5b879623a53b/sqlalchemy-2.0.41-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d4ae769b9c1c7757e4ccce94b0641bc203bbdf43ba7a2413ab2523d8d047d8dc", size = 2102827, upload-time = "2025-05-14T17:55:34.921Z" }, - { url = "https://files.pythonhosted.org/packages/a0/72/c97ad430f0b0e78efaf2791342e13ffeafcbb3c06242f01a3bb8fe44f65d/sqlalchemy-2.0.41-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a62448526dd9ed3e3beedc93df9bb6b55a436ed1474db31a2af13b313a70a7e1", size = 3225224, upload-time = "2025-05-14T17:50:41.418Z" }, - { url = "https://files.pythonhosted.org/packages/5e/51/5ba9ea3246ea068630acf35a6ba0d181e99f1af1afd17e159eac7e8bc2b8/sqlalchemy-2.0.41-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dc56c9788617b8964ad02e8fcfeed4001c1f8ba91a9e1f31483c0dffb207002a", size = 3230045, upload-time = "2025-05-14T17:51:54.722Z" }, - { url = "https://files.pythonhosted.org/packages/78/2f/8c14443b2acea700c62f9b4a8bad9e49fc1b65cfb260edead71fd38e9f19/sqlalchemy-2.0.41-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c153265408d18de4cc5ded1941dcd8315894572cddd3c58df5d5b5705b3fa28d", size = 3159357, upload-time = "2025-05-14T17:50:43.483Z" }, - { url = "https://files.pythonhosted.org/packages/fc/b2/43eacbf6ccc5276d76cea18cb7c3d73e294d6fb21f9ff8b4eef9b42bbfd5/sqlalchemy-2.0.41-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4f67766965996e63bb46cfbf2ce5355fc32d9dd3b8ad7e536a920ff9ee422e23", size = 3197511, upload-time = "2025-05-14T17:51:57.308Z" }, - { url = "https://files.pythonhosted.org/packages/fa/2e/677c17c5d6a004c3c45334ab1dbe7b7deb834430b282b8a0f75ae220c8eb/sqlalchemy-2.0.41-cp313-cp313-win32.whl", hash = "sha256:bfc9064f6658a3d1cadeaa0ba07570b83ce6801a1314985bf98ec9b95d74e15f", size = 2082420, upload-time = "2025-05-14T17:55:52.69Z" }, - { url = "https://files.pythonhosted.org/packages/e9/61/e8c1b9b6307c57157d328dd8b8348ddc4c47ffdf1279365a13b2b98b8049/sqlalchemy-2.0.41-cp313-cp313-win_amd64.whl", hash = "sha256:82ca366a844eb551daff9d2e6e7a9e5e76d2612c8564f58db6c19a726869c1df", size = 2108329, upload-time = "2025-05-14T17:55:54.495Z" }, - { url = "https://files.pythonhosted.org/packages/1c/fc/9ba22f01b5cdacc8f5ed0d22304718d2c758fce3fd49a5372b886a86f37c/sqlalchemy-2.0.41-py3-none-any.whl", hash = "sha256:57df5dc6fdb5ed1a88a1ed2195fd31927e705cad62dedd86b46972752a80f576", size = 1911224, upload-time = "2025-05-14T17:39:42.154Z" }, + { url = "https://files.pythonhosted.org/packages/62/c4/59c7c9b068e6813c898b771204aad36683c96318ed12d4233e1b18762164/sqlalchemy-2.0.44-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:72fea91746b5890f9e5e0997f16cbf3d53550580d76355ba2d998311b17b2250", size = 2139675, upload-time = "2025-10-10T16:03:31.064Z" }, + { url = "https://files.pythonhosted.org/packages/d6/ae/eeb0920537a6f9c5a3708e4a5fc55af25900216bdb4847ec29cfddf3bf3a/sqlalchemy-2.0.44-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:585c0c852a891450edbb1eaca8648408a3cc125f18cf433941fa6babcc359e29", size = 2127726, upload-time = "2025-10-10T16:03:35.934Z" }, + { url = "https://files.pythonhosted.org/packages/d8/d5/2ebbabe0379418eda8041c06b0b551f213576bfe4c2f09d77c06c07c8cc5/sqlalchemy-2.0.44-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b94843a102efa9ac68a7a30cd46df3ff1ed9c658100d30a725d10d9c60a2f44", size = 3327603, upload-time = "2025-10-10T15:35:28.322Z" }, + { url = "https://files.pythonhosted.org/packages/45/e5/5aa65852dadc24b7d8ae75b7efb8d19303ed6ac93482e60c44a585930ea5/sqlalchemy-2.0.44-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:119dc41e7a7defcefc57189cfa0e61b1bf9c228211aba432b53fb71ef367fda1", size = 3337842, upload-time = "2025-10-10T15:43:45.431Z" }, + { url = "https://files.pythonhosted.org/packages/41/92/648f1afd3f20b71e880ca797a960f638d39d243e233a7082c93093c22378/sqlalchemy-2.0.44-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:0765e318ee9179b3718c4fd7ba35c434f4dd20332fbc6857a5e8df17719c24d7", size = 3264558, upload-time = "2025-10-10T15:35:29.93Z" }, + { url = "https://files.pythonhosted.org/packages/40/cf/e27d7ee61a10f74b17740918e23cbc5bc62011b48282170dc4c66da8ec0f/sqlalchemy-2.0.44-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2e7b5b079055e02d06a4308d0481658e4f06bc7ef211567edc8f7d5dce52018d", size = 3301570, upload-time = "2025-10-10T15:43:48.407Z" }, + { url = "https://files.pythonhosted.org/packages/3b/3d/3116a9a7b63e780fb402799b6da227435be878b6846b192f076d2f838654/sqlalchemy-2.0.44-cp312-cp312-win32.whl", hash = "sha256:846541e58b9a81cce7dee8329f352c318de25aa2f2bbe1e31587eb1f057448b4", size = 2103447, upload-time = "2025-10-10T15:03:21.678Z" }, + { url = "https://files.pythonhosted.org/packages/25/83/24690e9dfc241e6ab062df82cc0df7f4231c79ba98b273fa496fb3dd78ed/sqlalchemy-2.0.44-cp312-cp312-win_amd64.whl", hash = "sha256:7cbcb47fd66ab294703e1644f78971f6f2f1126424d2b300678f419aa73c7b6e", size = 2130912, upload-time = "2025-10-10T15:03:24.656Z" }, + { url = "https://files.pythonhosted.org/packages/45/d3/c67077a2249fdb455246e6853166360054c331db4613cda3e31ab1cadbef/sqlalchemy-2.0.44-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:ff486e183d151e51b1d694c7aa1695747599bb00b9f5f604092b54b74c64a8e1", size = 2135479, upload-time = "2025-10-10T16:03:37.671Z" }, + { url = "https://files.pythonhosted.org/packages/2b/91/eabd0688330d6fd114f5f12c4f89b0d02929f525e6bf7ff80aa17ca802af/sqlalchemy-2.0.44-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0b1af8392eb27b372ddb783b317dea0f650241cea5bd29199b22235299ca2e45", size = 2123212, upload-time = "2025-10-10T16:03:41.755Z" }, + { url = "https://files.pythonhosted.org/packages/b0/bb/43e246cfe0e81c018076a16036d9b548c4cc649de241fa27d8d9ca6f85ab/sqlalchemy-2.0.44-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2b61188657e3a2b9ac4e8f04d6cf8e51046e28175f79464c67f2fd35bceb0976", size = 3255353, upload-time = "2025-10-10T15:35:31.221Z" }, + { url = "https://files.pythonhosted.org/packages/b9/96/c6105ed9a880abe346b64d3b6ddef269ddfcab04f7f3d90a0bf3c5a88e82/sqlalchemy-2.0.44-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b87e7b91a5d5973dda5f00cd61ef72ad75a1db73a386b62877d4875a8840959c", size = 3260222, upload-time = "2025-10-10T15:43:50.124Z" }, + { url = "https://files.pythonhosted.org/packages/44/16/1857e35a47155b5ad927272fee81ae49d398959cb749edca6eaa399b582f/sqlalchemy-2.0.44-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:15f3326f7f0b2bfe406ee562e17f43f36e16167af99c4c0df61db668de20002d", size = 3189614, upload-time = "2025-10-10T15:35:32.578Z" }, + { url = "https://files.pythonhosted.org/packages/88/ee/4afb39a8ee4fc786e2d716c20ab87b5b1fb33d4ac4129a1aaa574ae8a585/sqlalchemy-2.0.44-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:1e77faf6ff919aa8cd63f1c4e561cac1d9a454a191bb864d5dd5e545935e5a40", size = 3226248, upload-time = "2025-10-10T15:43:51.862Z" }, + { url = "https://files.pythonhosted.org/packages/32/d5/0e66097fc64fa266f29a7963296b40a80d6a997b7ac13806183700676f86/sqlalchemy-2.0.44-cp313-cp313-win32.whl", hash = "sha256:ee51625c2d51f8baadf2829fae817ad0b66b140573939dd69284d2ba3553ae73", size = 2101275, upload-time = "2025-10-10T15:03:26.096Z" }, + { url = "https://files.pythonhosted.org/packages/03/51/665617fe4f8c6450f42a6d8d69243f9420f5677395572c2fe9d21b493b7b/sqlalchemy-2.0.44-cp313-cp313-win_amd64.whl", hash = "sha256:c1c80faaee1a6c3428cecf40d16a2365bcf56c424c92c2b6f0f9ad204b899e9e", size = 2127901, upload-time = "2025-10-10T15:03:27.548Z" }, + { url = "https://files.pythonhosted.org/packages/9c/5e/6a29fa884d9fb7ddadf6b69490a9d45fded3b38541713010dad16b77d015/sqlalchemy-2.0.44-py3-none-any.whl", hash = "sha256:19de7ca1246fbef9f9d1bff8f1ab25641569df226364a0e40457dc5457c54b05", size = 1928718, upload-time = "2025-10-10T15:29:45.32Z" }, ] [package.optional-dependencies] From 1f38359d95b65638b4b2f7dc41ba628756bd5bee Mon Sep 17 00:00:00 2001 From: Derek Higgins Date: Mon, 20 Oct 2025 20:34:55 +0100 Subject: [PATCH 18/41] fix: nested claims mapping in OAuth2 token validation (#3814) fix: nested claims mapping in OAuth2 token validation The get_attributes_from_claims function was only checking for top-level claim keys, causing token validation to fail when using nested claims like "resource_access.llamastack.roles" (common in Keycloak JWT tokens). Updated the function to support dot notation for traversing nested claim structures. Give precedence to dot notation over literal keys with dots in claims mapping. Added test coverage. Closes: #3812 Signed-off-by: Derek Higgins --- llama_stack/core/server/auth_providers.py | 23 ++++++- tests/unit/server/test_auth.py | 76 +++++++++++++++++++++++ 2 files changed, 96 insertions(+), 3 deletions(-) diff --git a/llama_stack/core/server/auth_providers.py b/llama_stack/core/server/auth_providers.py index 05a21c8d4..0fe5f1558 100644 --- a/llama_stack/core/server/auth_providers.py +++ b/llama_stack/core/server/auth_providers.py @@ -72,13 +72,30 @@ class AuthProvider(ABC): def get_attributes_from_claims(claims: dict[str, str], mapping: dict[str, str]) -> dict[str, list[str]]: attributes: dict[str, list[str]] = {} for claim_key, attribute_key in mapping.items(): - if claim_key not in claims: + # First try dot notation for nested traversal (e.g., "resource_access.llamastack.roles") + # Then fall back to literal key with dots (e.g., "my.dotted.key") + claim: object = claims + keys = claim_key.split(".") + for key in keys: + if isinstance(claim, dict) and key in claim: + claim = claim[key] + else: + claim = None + break + + if claim is None and claim_key in claims: + # Fall back to checking if claim_key exists as a literal key + claim = claims[claim_key] + + if claim is None: continue - claim = claims[claim_key] + if isinstance(claim, list): values = claim - else: + elif isinstance(claim, str): values = claim.split() + else: + continue if attribute_key in attributes: attributes[attribute_key].extend(values) diff --git a/tests/unit/server/test_auth.py b/tests/unit/server/test_auth.py index 04ae89db8..75cbf518b 100644 --- a/tests/unit/server/test_auth.py +++ b/tests/unit/server/test_auth.py @@ -516,6 +516,82 @@ def test_get_attributes_from_claims(): assert set(attributes["teams"]) == {"my-team", "group1", "group2"} assert attributes["namespaces"] == ["my-tenant"] + # Test nested claims with dot notation (e.g., Keycloak resource_access structure) + claims = { + "sub": "user123", + "resource_access": {"llamastack": {"roles": ["inference_max", "admin"]}, "other-client": {"roles": ["viewer"]}}, + "realm_access": {"roles": ["offline_access", "uma_authorization"]}, + } + attributes = get_attributes_from_claims( + claims, {"resource_access.llamastack.roles": "roles", "realm_access.roles": "realm_roles"} + ) + assert set(attributes["roles"]) == {"inference_max", "admin"} + assert set(attributes["realm_roles"]) == {"offline_access", "uma_authorization"} + + # Test that dot notation takes precedence over literal keys with dots + claims = { + "my.dotted.key": "literal-value", + "my": {"dotted": {"key": "nested-value"}}, + } + attributes = get_attributes_from_claims(claims, {"my.dotted.key": "test"}) + assert attributes["test"] == ["nested-value"] + + # Test that literal key works when nested traversal doesn't exist + claims = { + "my.dotted.key": "literal-value", + } + attributes = get_attributes_from_claims(claims, {"my.dotted.key": "test"}) + assert attributes["test"] == ["literal-value"] + + # Test missing nested paths are handled gracefully + claims = { + "sub": "user123", + "resource_access": {"other-client": {"roles": ["viewer"]}}, + } + attributes = get_attributes_from_claims( + claims, + { + "resource_access.llamastack.roles": "roles", # Missing nested path + "resource_access.missing.key": "missing_attr", # Missing nested path + "completely.missing.path": "another_missing", # Completely missing + "sub": "username", # Existing path + }, + ) + # Only the existing claim should be in attributes + assert attributes["username"] == ["user123"] + assert "roles" not in attributes + assert "missing_attr" not in attributes + assert "another_missing" not in attributes + + # Test mixture of flat and nested claims paths + claims = { + "sub": "user456", + "flat_key": "flat-value", + "scope": "read write admin", + "resource_access": {"app1": {"roles": ["role1", "role2"]}, "app2": {"roles": ["role3"]}}, + "groups": ["group1", "group2"], + "metadata": {"tenant": "tenant1", "region": "us-west"}, + } + attributes = get_attributes_from_claims( + claims, + { + "sub": "user_id", # Flat string + "scope": "permissions", # Flat string with spaces + "groups": "teams", # Flat list + "resource_access.app1.roles": "app1_roles", # Nested list + "resource_access.app2.roles": "app2_roles", # Nested list + "metadata.tenant": "tenant", # Nested string + "metadata.region": "region", # Nested string + }, + ) + assert attributes["user_id"] == ["user456"] + assert set(attributes["permissions"]) == {"read", "write", "admin"} + assert set(attributes["teams"]) == {"group1", "group2"} + assert set(attributes["app1_roles"]) == {"role1", "role2"} + assert attributes["app2_roles"] == ["role3"] + assert attributes["tenant"] == ["tenant1"] + assert attributes["region"] == ["us-west"] + # TODO: add more tests for oauth2 token provider From add64e8e2aa0c927f321ab027c22e79e59e958c2 Mon Sep 17 00:00:00 2001 From: Shabana Baig <43451943+s-akhtar-baig@users.noreply.github.com> Date: Mon, 20 Oct 2025 16:10:37 -0400 Subject: [PATCH 19/41] feat: Add instructions parameter in response object (#3741) # Problem The current inline provider appends the user provided instructions to messages as a system prompt, but the returned response object does not contain the instructions field (as specified in the OpenAI responses spec). # What does this PR do? This pull request adds the instruction field to the response object definition and updates the inline provider. It also ensures that instructions from previous response is not carried over to the next response (as specified in the openAI spec). Closes #[3566](https://github.com/llamastack/llama-stack/issues/3566) ## Test Plan - Tested manually for change in model response w.r.t supplied instructions field. - Added unit test to check that the instructions from previous response is not carried over to the next response. - Added integration tests to check instructions parameter in the returned response object. - Added new recordings for the integration tests. --------- Co-authored-by: github-actions[bot] --- docs/static/deprecated-llama-stack-spec.html | 8 + docs/static/deprecated-llama-stack-spec.yaml | 8 + docs/static/llama-stack-spec.html | 8 + docs/static/llama-stack-spec.yaml | 8 + docs/static/stainless-llama-stack-spec.html | 8 + docs/static/stainless-llama-stack-spec.yaml | 8 + llama_stack/apis/agents/openai_responses.py | 2 + .../responses/openai_responses.py | 1 + .../meta_reference/responses/streaming.py | 4 + ...e62998c6882727519858bbd5954307d10a673.json | 3 +- ...f54c271f879db8b5a6ce62848b86a43bc49e4.json | 447 ++ ...aa3de23d22b30f353c8ed7e6cfd033d904e04.json | 888 +++ ...6bb54955fe0b10f5c4102b78e2d428b5ffc7a.json | 3 +- ...2f8402f7c91d15e2240f855cc9b8b4e25352a.json | 256 + ...dee0b99fa1e0b27934de1e6c5d29c03026626.json | 3 +- ...8c34fbb3d0af4cf4307d4363ff570c260287b.json | 3494 ++++++--- ...5b4df3aadc1637a93358a85c5ec2de8338332.json | 442 ++ ...6753617b60a8c33ece637db18061d23086536.json | 6 +- ...f1b1d0e0bd618975cbf4752eb31ada6d2482b.json | 416 ++ ...3f2fbc9d626af08314bd7f5ba69d038ea7c1b.json | 3 +- ...7c5db69585e66f4fde18eaa8bfd4bb4e3d783.json | 5 +- ...af8fb6bbab4f37691fadc08812ce223dfc628.json | 3 +- ...1c594644b2a1387ac3cee7cd434df25e8f22f.json | 442 ++ ...99afa0ff16a609aaa941737e99606961a6a07.json | 1202 ++- ...36b34c42f68bf04b1b2cb74ddf00943c0442d.json | 6 +- ...1daa94c1287acf164cd81ddd51843d05be718.json | 2 +- ...2ae9dca423726834aec8b38420dccb735c050.json | 5 +- ...7d446d91e9837add7e9f4de236627195d41e4.json | 6624 +++++------------ ...47259897598e28037fe5f7c09f6677edd08e9.json | 3 +- ...b487c7128fc28534351deb4662fba31043fa4.json | 3 +- ...41773965dd66b569506b5622b1a797c45f8e4.json | 3 +- ...e9973e2a938cab3db3e1be017bbe8be10edc6.json | 5 +- ...24849cb763c7bb66acf3937b524a539b80366.json | 59 + ...5ae2632ecf543ee440e7d87ea16f8e83461a5.json | 3 +- ...a5809d6fb56f8c9f92d93030f57cba51a1fe2.json | 3 +- ...81efbada34e06f59ddf536149871c64c9a247.json | 442 ++ ...c137813e8db50d0d46395ef9ba98636fa5819.json | 3 +- ...c5e7fc9d41fdaa3eb357f518e0fcaec5ea1e2.json | 59 + ...af51636b480db9cc520614ee4886418776237.json | 3 +- ...5494b8fe0ff707261108305353e4ad980195f.json | 3 +- ...11d4aa54882a124d783a8096fd88adf481065.json | 3 +- ...120a4704dde82acf5ae198982fd62bd103279.json | 3 +- ...7851f102c12946164a563584e6316bd1b6228.json | 3 +- ...9a8eddb2c2aaf826b513fec55dcd70cdf35ea.json | 260 + ...aee0f274fc53b263c25fe5e9e4bc23739f3db.json | 442 ++ ...f2cc9e9481ffae9cff5693b2f669270c9c0a7.json | 5 +- ...5e979c7a298fdbeedec153954ce817da7e3e7.json | 3 +- ...8170e073e49e478658a4b098b3581a703e843.json | 3 +- ...8df864a155017e8d4c5d2e2b2c51e9cfaed5e.json | 3 +- ...28b644e76999ebb2fe8f09bead3dee56a6046.json | 59 + ...d4016aeeaf2bbeeaa5643d9620f5ea484430e.json | 5 +- ...256f81c43a906a0a56684ca97e848f8d6a94c.json | 3 +- ...3a3cee734d69beb7cd6d13a3d3c2c64eca734.json | 5 +- .../agents/test_openai_responses.py | 50 + ...34a95f56931b792d5939f4cebc57-abd54ea0.json | 44 + .../meta_reference/test_openai_responses.py | 63 + 56 files changed, 10032 insertions(+), 5816 deletions(-) create mode 100644 tests/integration/agents/recordings/0940d1521204120ff9687b8ad6bf54c271f879db8b5a6ce62848b86a43bc49e4.json create mode 100644 tests/integration/agents/recordings/0f5443c07d1568fd139b8f3ea0aaa3de23d22b30f353c8ed7e6cfd033d904e04.json create mode 100644 tests/integration/agents/recordings/15b23045b5cdfc49228d58e4a082f8402f7c91d15e2240f855cc9b8b4e25352a.json create mode 100644 tests/integration/agents/recordings/1f0aef7475448c77021b4e321125b4df3aadc1637a93358a85c5ec2de8338332.json create mode 100644 tests/integration/agents/recordings/256d8571909664fc6c925058b2ff1b1d0e0bd618975cbf4752eb31ada6d2482b.json create mode 100644 tests/integration/agents/recordings/45d0aabc502385b4cc23e16706a1c594644b2a1387ac3cee7cd434df25e8f22f.json create mode 100644 tests/integration/agents/recordings/7e794c73bf79604a10482bba03124849cb763c7bb66acf3937b524a539b80366.json create mode 100644 tests/integration/agents/recordings/8c4ec47152697a5b34e44d75af581efbada34e06f59ddf536149871c64c9a247.json create mode 100644 tests/integration/agents/recordings/8fc418c02b8b6fe09238e36fb72c5e7fc9d41fdaa3eb357f518e0fcaec5ea1e2.json create mode 100644 tests/integration/agents/recordings/b3c24a0ab429fb3d7e3680a2a689a8eddb2c2aaf826b513fec55dcd70cdf35ea.json create mode 100644 tests/integration/agents/recordings/b4a47451a2af579b9dfb4a60bacaee0f274fc53b263c25fe5e9e4bc23739f3db.json create mode 100644 tests/integration/agents/recordings/da6fc54bb65dd1f83e577109b8228b644e76999ebb2fe8f09bead3dee56a6046.json create mode 100644 tests/integration/common/recordings/models-64a2277c90f0f42576f60c1030e3a020403d34a95f56931b792d5939f4cebc57-abd54ea0.json diff --git a/docs/static/deprecated-llama-stack-spec.html b/docs/static/deprecated-llama-stack-spec.html index 60a8b9fbd..98ed50c4f 100644 --- a/docs/static/deprecated-llama-stack-spec.html +++ b/docs/static/deprecated-llama-stack-spec.html @@ -9024,6 +9024,10 @@ "$ref": "#/components/schemas/OpenAIResponseUsage", "description": "(Optional) Token usage information for the response" }, + "instructions": { + "type": "string", + "description": "(Optional) System message inserted into the model's context" + }, "input": { "type": "array", "items": { @@ -9901,6 +9905,10 @@ "usage": { "$ref": "#/components/schemas/OpenAIResponseUsage", "description": "(Optional) Token usage information for the response" + }, + "instructions": { + "type": "string", + "description": "(Optional) System message inserted into the model's context" } }, "additionalProperties": false, diff --git a/docs/static/deprecated-llama-stack-spec.yaml b/docs/static/deprecated-llama-stack-spec.yaml index aaa6cd413..99c8dd03e 100644 --- a/docs/static/deprecated-llama-stack-spec.yaml +++ b/docs/static/deprecated-llama-stack-spec.yaml @@ -6734,6 +6734,10 @@ components: $ref: '#/components/schemas/OpenAIResponseUsage' description: >- (Optional) Token usage information for the response + instructions: + type: string + description: >- + (Optional) System message inserted into the model's context input: type: array items: @@ -7403,6 +7407,10 @@ components: $ref: '#/components/schemas/OpenAIResponseUsage' description: >- (Optional) Token usage information for the response + instructions: + type: string + description: >- + (Optional) System message inserted into the model's context additionalProperties: false required: - created_at diff --git a/docs/static/llama-stack-spec.html b/docs/static/llama-stack-spec.html index 413e4f23e..1091a1cb6 100644 --- a/docs/static/llama-stack-spec.html +++ b/docs/static/llama-stack-spec.html @@ -7600,6 +7600,10 @@ "$ref": "#/components/schemas/OpenAIResponseUsage", "description": "(Optional) Token usage information for the response" }, + "instructions": { + "type": "string", + "description": "(Optional) System message inserted into the model's context" + }, "input": { "type": "array", "items": { @@ -8148,6 +8152,10 @@ "usage": { "$ref": "#/components/schemas/OpenAIResponseUsage", "description": "(Optional) Token usage information for the response" + }, + "instructions": { + "type": "string", + "description": "(Optional) System message inserted into the model's context" } }, "additionalProperties": false, diff --git a/docs/static/llama-stack-spec.yaml b/docs/static/llama-stack-spec.yaml index 93e51de6a..6c3702374 100644 --- a/docs/static/llama-stack-spec.yaml +++ b/docs/static/llama-stack-spec.yaml @@ -5815,6 +5815,10 @@ components: $ref: '#/components/schemas/OpenAIResponseUsage' description: >- (Optional) Token usage information for the response + instructions: + type: string + description: >- + (Optional) System message inserted into the model's context input: type: array items: @@ -6218,6 +6222,10 @@ components: $ref: '#/components/schemas/OpenAIResponseUsage' description: >- (Optional) Token usage information for the response + instructions: + type: string + description: >- + (Optional) System message inserted into the model's context additionalProperties: false required: - created_at diff --git a/docs/static/stainless-llama-stack-spec.html b/docs/static/stainless-llama-stack-spec.html index 858f20725..ee0a265d3 100644 --- a/docs/static/stainless-llama-stack-spec.html +++ b/docs/static/stainless-llama-stack-spec.html @@ -9272,6 +9272,10 @@ "$ref": "#/components/schemas/OpenAIResponseUsage", "description": "(Optional) Token usage information for the response" }, + "instructions": { + "type": "string", + "description": "(Optional) System message inserted into the model's context" + }, "input": { "type": "array", "items": { @@ -9820,6 +9824,10 @@ "usage": { "$ref": "#/components/schemas/OpenAIResponseUsage", "description": "(Optional) Token usage information for the response" + }, + "instructions": { + "type": "string", + "description": "(Optional) System message inserted into the model's context" } }, "additionalProperties": false, diff --git a/docs/static/stainless-llama-stack-spec.yaml b/docs/static/stainless-llama-stack-spec.yaml index 886549dbc..eff01931f 100644 --- a/docs/static/stainless-llama-stack-spec.yaml +++ b/docs/static/stainless-llama-stack-spec.yaml @@ -7028,6 +7028,10 @@ components: $ref: '#/components/schemas/OpenAIResponseUsage' description: >- (Optional) Token usage information for the response + instructions: + type: string + description: >- + (Optional) System message inserted into the model's context input: type: array items: @@ -7431,6 +7435,10 @@ components: $ref: '#/components/schemas/OpenAIResponseUsage' description: >- (Optional) Token usage information for the response + instructions: + type: string + description: >- + (Optional) System message inserted into the model's context additionalProperties: false required: - created_at diff --git a/llama_stack/apis/agents/openai_responses.py b/llama_stack/apis/agents/openai_responses.py index 25dc89a6b..821d6a8af 100644 --- a/llama_stack/apis/agents/openai_responses.py +++ b/llama_stack/apis/agents/openai_responses.py @@ -545,6 +545,7 @@ class OpenAIResponseObject(BaseModel): :param tools: (Optional) An array of tools the model may call while generating a response. :param truncation: (Optional) Truncation strategy applied to the response :param usage: (Optional) Token usage information for the response + :param instructions: (Optional) System message inserted into the model's context """ created_at: int @@ -564,6 +565,7 @@ class OpenAIResponseObject(BaseModel): tools: list[OpenAIResponseTool] | None = None truncation: str | None = None usage: OpenAIResponseUsage | None = None + instructions: str | None = None @json_schema_type diff --git a/llama_stack/providers/inline/agents/meta_reference/responses/openai_responses.py b/llama_stack/providers/inline/agents/meta_reference/responses/openai_responses.py index 851e6ef28..2360dafd9 100644 --- a/llama_stack/providers/inline/agents/meta_reference/responses/openai_responses.py +++ b/llama_stack/providers/inline/agents/meta_reference/responses/openai_responses.py @@ -359,6 +359,7 @@ class OpenAIResponsesImpl: tool_executor=self.tool_executor, safety_api=self.safety_api, guardrail_ids=guardrail_ids, + instructions=instructions, ) # Stream the response diff --git a/llama_stack/providers/inline/agents/meta_reference/responses/streaming.py b/llama_stack/providers/inline/agents/meta_reference/responses/streaming.py index caf899cdd..e80ffcdd1 100644 --- a/llama_stack/providers/inline/agents/meta_reference/responses/streaming.py +++ b/llama_stack/providers/inline/agents/meta_reference/responses/streaming.py @@ -110,6 +110,7 @@ class StreamingResponseOrchestrator: text: OpenAIResponseText, max_infer_iters: int, tool_executor, # Will be the tool execution logic from the main class + instructions: str, safety_api, guardrail_ids: list[str] | None = None, ): @@ -133,6 +134,8 @@ class StreamingResponseOrchestrator: self.accumulated_usage: OpenAIResponseUsage | None = None # Track if we've sent a refusal response self.violation_detected = False + # system message that is inserted into the model's context + self.instructions = instructions async def _create_refusal_response(self, violation_message: str) -> OpenAIResponseObjectStream: """Create a refusal response to replace streaming content.""" @@ -176,6 +179,7 @@ class StreamingResponseOrchestrator: tools=self.ctx.available_tools(), error=error, usage=self.accumulated_usage, + instructions=self.instructions, ) async def create_response(self) -> AsyncIterator[OpenAIResponseObjectStream]: diff --git a/tests/integration/agents/recordings/00f8a71ccb939737ed72a289eede62998c6882727519858bbd5954307d10a673.json b/tests/integration/agents/recordings/00f8a71ccb939737ed72a289eede62998c6882727519858bbd5954307d10a673.json index 4d4331740..067b7d254 100644 --- a/tests/integration/agents/recordings/00f8a71ccb939737ed72a289eede62998c6882727519858bbd5954307d10a673.json +++ b/tests/integration/agents/recordings/00f8a71ccb939737ed72a289eede62998c6882727519858bbd5954307d10a673.json @@ -548,5 +548,6 @@ } ], "is_streaming": true - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/0940d1521204120ff9687b8ad6bf54c271f879db8b5a6ce62848b86a43bc49e4.json b/tests/integration/agents/recordings/0940d1521204120ff9687b8ad6bf54c271f879db8b5a6ce62848b86a43bc49e4.json new file mode 100644 index 000000000..aa61b7dbe --- /dev/null +++ b/tests/integration/agents/recordings/0940d1521204120ff9687b8ad6bf54c271f879db8b5a6ce62848b86a43bc49e4.json @@ -0,0 +1,447 @@ +{ + "test_id": "tests/integration/agents/test_agents.py::test_tool_choice_get_boiling_point[ollama/llama3.2:3b-instruct-fp16]", + "request": { + "method": "POST", + "url": "http://0.0.0.0:11434/v1/v1/chat/completions", + "headers": {}, + "body": { + "model": "llama3.2:3b-instruct-fp16", + "messages": [ + { + "role": "system", + "content": "You are a helpful assistant" + }, + { + "role": "user", + "content": "What is the boiling point of the liquid polyjuice in celsius?" + }, + { + "role": "assistant", + "content": "", + "tool_calls": [ + { + "id": "call_5qverjg6", + "type": "function", + "function": { + "name": "get_boiling_point", + "arguments": "{\"celcius\":true,\"liquid_name\":\"polyjuice\"}" + } + } + ] + }, + { + "role": "tool", + "tool_call_id": "call_5qverjg6", + "content": "-100" + } + ], + "max_tokens": 512, + "stream": true, + "temperature": 0.0001, + "tool_choice": { + "type": "function", + "function": { + "name": "get_boiling_point" + } + }, + "tools": [ + { + "type": "function", + "function": { + "name": "get_boiling_point", + "description": "Returns the boiling point of a liquid in Celcius or Fahrenheit.", + "parameters": { + "type": "object", + "properties": { + "liquid_name": { + "type": "string", + "description": "The name of the liquid" + }, + "celcius": { + "type": "boolean", + "description": "Whether to return the boiling point in Celcius" + } + }, + "required": [ + "liquid_name" + ] + } + } + } + ], + "top_p": 0.9 + }, + "endpoint": "/v1/chat/completions", + "model": "llama3.2:3b-instruct-fp16" + }, + "response": { + "body": [ + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0940d1521204", + "choices": [ + { + "delta": { + "content": "The", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0940d1521204", + "choices": [ + { + "delta": { + "content": " boiling", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0940d1521204", + "choices": [ + { + "delta": { + "content": " point", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0940d1521204", + "choices": [ + { + "delta": { + "content": " of", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0940d1521204", + "choices": [ + { + "delta": { + "content": " liquid", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0940d1521204", + "choices": [ + { + "delta": { + "content": " poly", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0940d1521204", + "choices": [ + { + "delta": { + "content": "ju", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0940d1521204", + "choices": [ + { + "delta": { + "content": "ice", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0940d1521204", + "choices": [ + { + "delta": { + "content": " is", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0940d1521204", + "choices": [ + { + "delta": { + "content": " -", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0940d1521204", + "choices": [ + { + "delta": { + "content": "100", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0940d1521204", + "choices": [ + { + "delta": { + "content": "\u00b0C", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0940d1521204", + "choices": [ + { + "delta": { + "content": ".", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0940d1521204", + "choices": [ + { + "delta": { + "content": "", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": "stop", + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + } + ], + "is_streaming": true + }, + "id_normalization_mapping": {} +} diff --git a/tests/integration/agents/recordings/0f5443c07d1568fd139b8f3ea0aaa3de23d22b30f353c8ed7e6cfd033d904e04.json b/tests/integration/agents/recordings/0f5443c07d1568fd139b8f3ea0aaa3de23d22b30f353c8ed7e6cfd033d904e04.json new file mode 100644 index 000000000..3cf297c34 --- /dev/null +++ b/tests/integration/agents/recordings/0f5443c07d1568fd139b8f3ea0aaa3de23d22b30f353c8ed7e6cfd033d904e04.json @@ -0,0 +1,888 @@ +{ + "test_id": "tests/integration/agents/test_openai_responses.py::test_response_with_instructions[txt=ollama/llama3.2:3b-instruct-fp16]", + "request": { + "method": "POST", + "url": "http://0.0.0.0:11434/v1/v1/chat/completions", + "headers": {}, + "body": { + "model": "llama3.2:3b-instruct-fp16", + "messages": [ + { + "role": "system", + "content": "You are a helpful assistant and speak in pirate language." + }, + { + "role": "user", + "content": "What is the capital of France?" + }, + { + "role": "assistant", + "content": "The capital of France is Paris." + } + ], + "stream": true, + "stream_options": { + "include_usage": true + } + }, + "endpoint": "/v1/chat/completions", + "model": "llama3.2:3b-instruct-fp16" + }, + "response": { + "body": [ + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " Yer", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " look", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": "in", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": "'", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " fer", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " a", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " port", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " o", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": "'", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " call", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": ",", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " eh", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": "?", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " That", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " be", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " one", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": "!", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " Yer", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " won", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": "'t", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " go", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " astr", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": "ay", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " with", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " that", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " answer", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": ",", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": " mate", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": "y", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": ".", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [ + { + "delta": { + "content": "", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": "stop", + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-0f5443c07d15", + "choices": [], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": { + "completion_tokens": 32, + "prompt_tokens": 50, + "total_tokens": 82, + "completion_tokens_details": null, + "prompt_tokens_details": null + } + } + } + ], + "is_streaming": true + }, + "id_normalization_mapping": {} +} diff --git a/tests/integration/agents/recordings/13fac3724cd626a119153f60fa56bb54955fe0b10f5c4102b78e2d428b5ffc7a.json b/tests/integration/agents/recordings/13fac3724cd626a119153f60fa56bb54955fe0b10f5c4102b78e2d428b5ffc7a.json index d606edb37..7efea91ba 100644 --- a/tests/integration/agents/recordings/13fac3724cd626a119153f60fa56bb54955fe0b10f5c4102b78e2d428b5ffc7a.json +++ b/tests/integration/agents/recordings/13fac3724cd626a119153f60fa56bb54955fe0b10f5c4102b78e2d428b5ffc7a.json @@ -54,5 +54,6 @@ } }, "is_streaming": false - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/15b23045b5cdfc49228d58e4a082f8402f7c91d15e2240f855cc9b8b4e25352a.json b/tests/integration/agents/recordings/15b23045b5cdfc49228d58e4a082f8402f7c91d15e2240f855cc9b8b4e25352a.json new file mode 100644 index 000000000..b899e0c2d --- /dev/null +++ b/tests/integration/agents/recordings/15b23045b5cdfc49228d58e4a082f8402f7c91d15e2240f855cc9b8b4e25352a.json @@ -0,0 +1,256 @@ +{ + "test_id": "tests/integration/agents/test_openai_responses.py::test_response_with_instructions[txt=ollama/llama3.2:3b-instruct-fp16]", + "request": { + "method": "POST", + "url": "http://0.0.0.0:11434/v1/v1/chat/completions", + "headers": {}, + "body": { + "model": "llama3.2:3b-instruct-fp16", + "messages": [ + { + "role": "user", + "content": "What is the capital of France?" + } + ], + "stream": true, + "stream_options": { + "include_usage": true + } + }, + "endpoint": "/v1/chat/completions", + "model": "llama3.2:3b-instruct-fp16" + }, + "response": { + "body": [ + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-15b23045b5cd", + "choices": [ + { + "delta": { + "content": "The", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-15b23045b5cd", + "choices": [ + { + "delta": { + "content": " capital", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-15b23045b5cd", + "choices": [ + { + "delta": { + "content": " of", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-15b23045b5cd", + "choices": [ + { + "delta": { + "content": " France", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-15b23045b5cd", + "choices": [ + { + "delta": { + "content": " is", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-15b23045b5cd", + "choices": [ + { + "delta": { + "content": " Paris", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-15b23045b5cd", + "choices": [ + { + "delta": { + "content": ".", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-15b23045b5cd", + "choices": [ + { + "delta": { + "content": "", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": "stop", + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-15b23045b5cd", + "choices": [], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": { + "completion_tokens": 8, + "prompt_tokens": 32, + "total_tokens": 40, + "completion_tokens_details": null, + "prompt_tokens_details": null + } + } + } + ], + "is_streaming": true + }, + "id_normalization_mapping": {} +} diff --git a/tests/integration/agents/recordings/1a0d3109cf92111ed4cb061a857dee0b99fa1e0b27934de1e6c5d29c03026626.json b/tests/integration/agents/recordings/1a0d3109cf92111ed4cb061a857dee0b99fa1e0b27934de1e6c5d29c03026626.json index b8b22f51d..407ac0655 100644 --- a/tests/integration/agents/recordings/1a0d3109cf92111ed4cb061a857dee0b99fa1e0b27934de1e6c5d29c03026626.json +++ b/tests/integration/agents/recordings/1a0d3109cf92111ed4cb061a857dee0b99fa1e0b27934de1e6c5d29c03026626.json @@ -54,5 +54,6 @@ } }, "is_streaming": false - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/1adb6f4621eaa9e5d350925c3fc8c34fbb3d0af4cf4307d4363ff570c260287b.json b/tests/integration/agents/recordings/1adb6f4621eaa9e5d350925c3fc8c34fbb3d0af4cf4307d4363ff570c260287b.json index 4d7a1d1e4..241fb6127 100644 --- a/tests/integration/agents/recordings/1adb6f4621eaa9e5d350925c3fc8c34fbb3d0af4cf4307d4363ff570c260287b.json +++ b/tests/integration/agents/recordings/1adb6f4621eaa9e5d350925c3fc8c34fbb3d0af4cf4307d4363ff570c260287b.json @@ -55,7 +55,7 @@ "choices": [ { "delta": { - "content": "'m", + "content": "'d", "function_call": null, "refusal": null, "role": "assistant", @@ -81,7 +81,7 @@ "choices": [ { "delta": { - "content": " not", + "content": " be", "function_call": null, "refusal": null, "role": "assistant", @@ -107,7 +107,7 @@ "choices": [ { "delta": { - "content": " able", + "content": " happy", "function_call": null, "refusal": null, "role": "assistant", @@ -159,7 +159,7 @@ "choices": [ { "delta": { - "content": " provide", + "content": " help", "function_call": null, "refusal": null, "role": "assistant", @@ -185,7 +185,7 @@ "choices": [ { "delta": { - "content": " real", + "content": " you", "function_call": null, "refusal": null, "role": "assistant", @@ -211,7 +211,59 @@ "choices": [ { "delta": { - "content": "-time", + "content": " with", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " current", "function_call": null, "refusal": null, "role": "assistant", @@ -282,6 +334,58 @@ "usage": null } }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " for", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " Tokyo", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, { "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", "__data__": { @@ -393,189 +497,7 @@ "choices": [ { "delta": { - "content": " can", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " tell", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " you", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " that", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " Tokyo", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": ",", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " Japan", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " has", + "content": "'m", "function_call": null, "refusal": null, "role": "assistant", @@ -627,7 +549,7 @@ "choices": [ { "delta": { - "content": " humid", + "content": " large", "function_call": null, "refusal": null, "role": "assistant", @@ -653,7 +575,7 @@ "choices": [ { "delta": { - "content": " subt", + "content": " language", "function_call": null, "refusal": null, "role": "assistant", @@ -679,7 +601,7 @@ "choices": [ { "delta": { - "content": "ropical", + "content": " model", "function_call": null, "refusal": null, "role": "assistant", @@ -705,7 +627,7 @@ "choices": [ { "delta": { - "content": " climate", + "content": ",", "function_call": null, "refusal": null, "role": "assistant", @@ -731,7 +653,7 @@ "choices": [ { "delta": { - "content": " with", + "content": " I", "function_call": null, "refusal": null, "role": "assistant", @@ -757,7 +679,7 @@ "choices": [ { "delta": { - "content": " hot", + "content": " don", "function_call": null, "refusal": null, "role": "assistant", @@ -783,7 +705,7 @@ "choices": [ { "delta": { - "content": " summers", + "content": "'t", "function_call": null, "refusal": null, "role": "assistant", @@ -809,7 +731,7 @@ "choices": [ { "delta": { - "content": " and", + "content": " have", "function_call": null, "refusal": null, "role": "assistant", @@ -835,7 +757,7 @@ "choices": [ { "delta": { - "content": " cold", + "content": " real", "function_call": null, "refusal": null, "role": "assistant", @@ -861,7 +783,7 @@ "choices": [ { "delta": { - "content": " winters", + "content": "-time", "function_call": null, "refusal": null, "role": "assistant", @@ -887,111 +809,7 @@ "choices": [ { "delta": { - "content": ".\n\n", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": "If", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " you", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": "'d", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " like", + "content": " access", "function_call": null, "refusal": null, "role": "assistant", @@ -1043,7 +861,449 @@ "choices": [ { "delta": { - "content": " know", + "content": " current", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " weather", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " conditions", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": ".\n\n", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": "That", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " being", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " said", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": ",", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " I", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " can", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " suggest", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " some", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " ways", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " for", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " you", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " to", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " find", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " out", "function_call": null, "refusal": null, "role": "assistant", @@ -1147,59 +1407,7 @@ "choices": [ { "delta": { - "content": " or", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " forecast", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " for", + "content": " in", "function_call": null, "refusal": null, "role": "assistant", @@ -1251,7 +1459,7 @@ "choices": [ { "delta": { - "content": ",", + "content": ":\n\n", "function_call": null, "refusal": null, "role": "assistant", @@ -1277,7 +1485,7 @@ "choices": [ { "delta": { - "content": " I", + "content": "1", "function_call": null, "refusal": null, "role": "assistant", @@ -1303,7 +1511,7 @@ "choices": [ { "delta": { - "content": " recommend", + "content": ".", "function_call": null, "refusal": null, "role": "assistant", @@ -1329,59 +1537,7 @@ "choices": [ { "delta": { - "content": " checking", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " a", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " reliable", + "content": " Check", "function_call": null, "refusal": null, "role": "assistant", @@ -1433,7 +1589,7 @@ "choices": [ { "delta": { - "content": " source", + "content": " weather", "function_call": null, "refusal": null, "role": "assistant", @@ -1459,7 +1615,7 @@ "choices": [ { "delta": { - "content": " such", + "content": " websites", "function_call": null, "refusal": null, "role": "assistant", @@ -1485,7 +1641,7 @@ "choices": [ { "delta": { - "content": " as", + "content": ":", "function_call": null, "refusal": null, "role": "assistant", @@ -1511,7 +1667,7 @@ "choices": [ { "delta": { - "content": ":\n\n", + "content": " You", "function_call": null, "refusal": null, "role": "assistant", @@ -1537,7 +1693,7 @@ "choices": [ { "delta": { - "content": "*", + "content": " can", "function_call": null, "refusal": null, "role": "assistant", @@ -1563,7 +1719,267 @@ "choices": [ { "delta": { - "content": " The", + "content": " check", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " websites", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " like", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " Acc", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": "u", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": "Weather", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": ",", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " Weather", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": ".com", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": ",", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " or", "function_call": null, "refusal": null, "role": "assistant", @@ -1797,7 +2213,397 @@ "choices": [ { "delta": { - "content": " website", + "content": " for", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " current", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " weather", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " condition", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " and", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " forecast", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " for", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " Tokyo", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": ".\n", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": "2", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": ".", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " Use", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " a", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " mobile", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " app", "function_call": null, "refusal": null, "role": "assistant", @@ -1849,7 +2655,7 @@ "choices": [ { "delta": { - "content": " \n", + "content": " provide", "function_call": null, "refusal": null, "role": "assistant", @@ -2057,7 +2863,7 @@ "choices": [ { "delta": { - "content": "*", + "content": " real", "function_call": null, "refusal": null, "role": "assistant", @@ -2083,7 +2889,7 @@ "choices": [ { "delta": { - "content": " Acc", + "content": "-time", "function_call": null, "refusal": null, "role": "assistant", @@ -2109,7 +2915,7 @@ "choices": [ { "delta": { - "content": "u", + "content": " weather", "function_call": null, "refusal": null, "role": "assistant", @@ -2135,7 +2941,7 @@ "choices": [ { "delta": { - "content": "Weather", + "content": " information", "function_call": null, "refusal": null, "role": "assistant", @@ -2161,7 +2967,7 @@ "choices": [ { "delta": { - "content": ":", + "content": ",", "function_call": null, "refusal": null, "role": "assistant", @@ -2187,7 +2993,7 @@ "choices": [ { "delta": { - "content": " https", + "content": " such", "function_call": null, "refusal": null, "role": "assistant", @@ -2213,189 +3019,7 @@ "choices": [ { "delta": { - "content": "://", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": "www", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": ".acc", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": "u", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": "weather", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": ".com", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": "/\n", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": "*", + "content": " as", "function_call": null, "refusal": null, "role": "assistant", @@ -2466,6 +3090,240 @@ "usage": null } }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " or", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " Weather", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " Underground", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": ".\n", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": "3", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": ".", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " Check", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " social", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " media", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, { "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", "__data__": { @@ -2499,7 +3357,7 @@ "choices": [ { "delta": { - "content": " https", + "content": " You", "function_call": null, "refusal": null, "role": "assistant", @@ -2525,7 +3383,7 @@ "choices": [ { "delta": { - "content": "://", + "content": " can", "function_call": null, "refusal": null, "role": "assistant", @@ -2551,7 +3409,7 @@ "choices": [ { "delta": { - "content": "dark", + "content": " also", "function_call": null, "refusal": null, "role": "assistant", @@ -2577,7 +3435,7 @@ "choices": [ { "delta": { - "content": "sky", + "content": " check", "function_call": null, "refusal": null, "role": "assistant", @@ -2603,7 +3461,7 @@ "choices": [ { "delta": { - "content": ".net", + "content": " social", "function_call": null, "refusal": null, "role": "assistant", @@ -2629,7 +3487,7 @@ "choices": [ { "delta": { - "content": "/\n\n", + "content": " media", "function_call": null, "refusal": null, "role": "assistant", @@ -2655,7 +3513,7 @@ "choices": [ { "delta": { - "content": "Please", + "content": " platforms", "function_call": null, "refusal": null, "role": "assistant", @@ -2681,7 +3539,215 @@ "choices": [ { "delta": { - "content": " keep", + "content": " like", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " Twitter", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " or", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " Facebook", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " for", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " updates", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " on", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " weather", "function_call": null, "refusal": null, "role": "assistant", @@ -2733,7 +3799,85 @@ "choices": [ { "delta": { - "content": " mind", + "content": " Tokyo", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": ".\n\n", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": "Please", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " note", "function_call": null, "refusal": null, "role": "assistant", @@ -2778,6 +3922,578 @@ "usage": null } }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " my", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " knowledge", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " cutoff", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " is", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " December", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " ", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": "202", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": "3", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": ",", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " so", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " I", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " may", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " not", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " have", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " most", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " up", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": "-to", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": "-date", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " information", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " on", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1adb6f4621ea", + "choices": [ + { + "delta": { + "content": " current", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, { "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", "__data__": { @@ -2830,526 +4546,6 @@ "usage": null } }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " can", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " change", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " quickly", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": ",", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " and", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " it", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": "'s", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " always", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " a", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " good", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " idea", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " to", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " check", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " the", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " latest", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " forecast", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " before", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " planning", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " your", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-1adb6f4621ea", - "choices": [ - { - "delta": { - "content": " activities", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, { "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", "__data__": { @@ -3413,9 +4609,9 @@ "service_tier": null, "system_fingerprint": "fp_ollama", "usage": { - "completion_tokens": 131, + "completion_tokens": 176, "prompt_tokens": 32, - "total_tokens": 163, + "total_tokens": 208, "completion_tokens_details": null, "prompt_tokens_details": null } diff --git a/tests/integration/agents/recordings/1f0aef7475448c77021b4e321125b4df3aadc1637a93358a85c5ec2de8338332.json b/tests/integration/agents/recordings/1f0aef7475448c77021b4e321125b4df3aadc1637a93358a85c5ec2de8338332.json new file mode 100644 index 000000000..4c0fa6cce --- /dev/null +++ b/tests/integration/agents/recordings/1f0aef7475448c77021b4e321125b4df3aadc1637a93358a85c5ec2de8338332.json @@ -0,0 +1,442 @@ +{ + "test_id": "tests/integration/agents/test_agents.py::test_create_turn_response[ollama/llama3.2:3b-instruct-fp16-client_tools1]", + "request": { + "method": "POST", + "url": "http://0.0.0.0:11434/v1/v1/chat/completions", + "headers": {}, + "body": { + "model": "llama3.2:3b-instruct-fp16", + "messages": [ + { + "role": "system", + "content": "You are a helpful assistant" + }, + { + "role": "user", + "content": "Call get_boiling_point_with_metadata tool and answer What is the boiling point of polyjuice?" + }, + { + "role": "assistant", + "content": "", + "tool_calls": [ + { + "id": "call_klhbln13", + "type": "function", + "function": { + "name": "get_boiling_point_with_metadata", + "arguments": "{\"celcius\":false,\"liquid_name\":\"polyjuice\"}" + } + } + ] + }, + { + "role": "tool", + "tool_call_id": "call_klhbln13", + "content": "-212" + } + ], + "max_tokens": 512, + "stream": true, + "temperature": 0.0001, + "tool_choice": "auto", + "tools": [ + { + "type": "function", + "function": { + "name": "get_boiling_point_with_metadata", + "description": "Returns the boiling point of a liquid in Celcius or Fahrenheit", + "parameters": { + "type": "object", + "properties": { + "liquid_name": { + "type": "string", + "description": "The name of the liquid" + }, + "celcius": { + "type": "boolean", + "description": "Whether to return the boiling point in Celcius" + } + }, + "required": [ + "liquid_name" + ] + } + } + } + ], + "top_p": 0.9 + }, + "endpoint": "/v1/chat/completions", + "model": "llama3.2:3b-instruct-fp16" + }, + "response": { + "body": [ + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1f0aef747544", + "choices": [ + { + "delta": { + "content": "The", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1f0aef747544", + "choices": [ + { + "delta": { + "content": " boiling", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1f0aef747544", + "choices": [ + { + "delta": { + "content": " point", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1f0aef747544", + "choices": [ + { + "delta": { + "content": " of", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1f0aef747544", + "choices": [ + { + "delta": { + "content": " poly", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1f0aef747544", + "choices": [ + { + "delta": { + "content": "ju", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1f0aef747544", + "choices": [ + { + "delta": { + "content": "ice", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1f0aef747544", + "choices": [ + { + "delta": { + "content": " is", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1f0aef747544", + "choices": [ + { + "delta": { + "content": " -", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1f0aef747544", + "choices": [ + { + "delta": { + "content": "212", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1f0aef747544", + "choices": [ + { + "delta": { + "content": " degrees", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1f0aef747544", + "choices": [ + { + "delta": { + "content": " Celsius", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1f0aef747544", + "choices": [ + { + "delta": { + "content": ".", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-1f0aef747544", + "choices": [ + { + "delta": { + "content": "", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": "stop", + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + } + ], + "is_streaming": true + }, + "id_normalization_mapping": {} +} diff --git a/tests/integration/agents/recordings/2172059863d4d17e7525483102a6753617b60a8c33ece637db18061d23086536.json b/tests/integration/agents/recordings/2172059863d4d17e7525483102a6753617b60a8c33ece637db18061d23086536.json index 992648658..9f9397057 100644 --- a/tests/integration/agents/recordings/2172059863d4d17e7525483102a6753617b60a8c33ece637db18061d23086536.json +++ b/tests/integration/agents/recordings/2172059863d4d17e7525483102a6753617b60a8c33ece637db18061d23086536.json @@ -56,7 +56,7 @@ "tool_calls": [ { "index": 0, - "id": "call_os3xa9go", + "id": "call_6nqo069h", "function": { "arguments": "{\"city\":\"Tokyo\"}", "name": "get_weather" @@ -115,9 +115,9 @@ "service_tier": null, "system_fingerprint": "fp_ollama", "usage": { - "completion_tokens": 15, + "completion_tokens": 18, "prompt_tokens": 179, - "total_tokens": 194, + "total_tokens": 197, "completion_tokens_details": null, "prompt_tokens_details": null } diff --git a/tests/integration/agents/recordings/256d8571909664fc6c925058b2ff1b1d0e0bd618975cbf4752eb31ada6d2482b.json b/tests/integration/agents/recordings/256d8571909664fc6c925058b2ff1b1d0e0bd618975cbf4752eb31ada6d2482b.json new file mode 100644 index 000000000..21d5a0663 --- /dev/null +++ b/tests/integration/agents/recordings/256d8571909664fc6c925058b2ff1b1d0e0bd618975cbf4752eb31ada6d2482b.json @@ -0,0 +1,416 @@ +{ + "test_id": "tests/integration/agents/test_agents.py::test_custom_tool_infinite_loop[ollama/llama3.2:3b-instruct-fp16]", + "request": { + "method": "POST", + "url": "http://0.0.0.0:11434/v1/v1/chat/completions", + "headers": {}, + "body": { + "model": "llama3.2:3b-instruct-fp16", + "messages": [ + { + "role": "system", + "content": "You are a helpful assistant Always respond with tool calls no matter what. " + }, + { + "role": "user", + "content": "Get the boiling point of polyjuice with a tool call." + }, + { + "role": "assistant", + "content": "", + "tool_calls": [ + { + "id": "call_9x4z21g1", + "type": "function", + "function": { + "name": "get_boiling_point", + "arguments": "{\"celcius\":\"true\",\"liquid_name\":\"polyjuice\"}" + } + } + ] + }, + { + "role": "tool", + "tool_call_id": "call_9x4z21g1", + "content": "-100" + } + ], + "max_tokens": 512, + "stream": true, + "temperature": 0.0001, + "tool_choice": "auto", + "tools": [ + { + "type": "function", + "function": { + "name": "get_boiling_point", + "description": "Returns the boiling point of a liquid in Celcius or Fahrenheit.", + "parameters": { + "type": "object", + "properties": { + "liquid_name": { + "type": "string", + "description": "The name of the liquid" + }, + "celcius": { + "type": "boolean", + "description": "Whether to return the boiling point in Celcius" + } + }, + "required": [ + "liquid_name" + ] + } + } + } + ], + "top_p": 0.9 + }, + "endpoint": "/v1/chat/completions", + "model": "llama3.2:3b-instruct-fp16" + }, + "response": { + "body": [ + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-256d85719096", + "choices": [ + { + "delta": { + "content": "The", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-256d85719096", + "choices": [ + { + "delta": { + "content": " boiling", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-256d85719096", + "choices": [ + { + "delta": { + "content": " point", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-256d85719096", + "choices": [ + { + "delta": { + "content": " of", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-256d85719096", + "choices": [ + { + "delta": { + "content": " Poly", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-256d85719096", + "choices": [ + { + "delta": { + "content": "ju", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-256d85719096", + "choices": [ + { + "delta": { + "content": "ice", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-256d85719096", + "choices": [ + { + "delta": { + "content": " is", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-256d85719096", + "choices": [ + { + "delta": { + "content": " -", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-256d85719096", + "choices": [ + { + "delta": { + "content": "100", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-256d85719096", + "choices": [ + { + "delta": { + "content": "\u00b0C", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-256d85719096", + "choices": [ + { + "delta": { + "content": ".", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-256d85719096", + "choices": [ + { + "delta": { + "content": "", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": "stop", + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + } + ], + "is_streaming": true + }, + "id_normalization_mapping": {} +} diff --git a/tests/integration/agents/recordings/292308724331c7172aaf91fe1373f2fbc9d626af08314bd7f5ba69d038ea7c1b.json b/tests/integration/agents/recordings/292308724331c7172aaf91fe1373f2fbc9d626af08314bd7f5ba69d038ea7c1b.json index a94c52c72..9a1781046 100644 --- a/tests/integration/agents/recordings/292308724331c7172aaf91fe1373f2fbc9d626af08314bd7f5ba69d038ea7c1b.json +++ b/tests/integration/agents/recordings/292308724331c7172aaf91fe1373f2fbc9d626af08314bd7f5ba69d038ea7c1b.json @@ -54,5 +54,6 @@ } }, "is_streaming": false - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/36e22908b34c0835037ba7b52477c5db69585e66f4fde18eaa8bfd4bb4e3d783.json b/tests/integration/agents/recordings/36e22908b34c0835037ba7b52477c5db69585e66f4fde18eaa8bfd4bb4e3d783.json index 3699fbc8b..3a1f57ee8 100644 --- a/tests/integration/agents/recordings/36e22908b34c0835037ba7b52477c5db69585e66f4fde18eaa8bfd4bb4e3d783.json +++ b/tests/integration/agents/recordings/36e22908b34c0835037ba7b52477c5db69585e66f4fde18eaa8bfd4bb4e3d783.json @@ -66,7 +66,7 @@ "tool_calls": [ { "index": 0, - "id": "call_ixvkq8fh", + "id": "call_icfpgg5q", "function": { "arguments": "{\"celcius\":true,\"liquid_name\":\"polyjuice\"}", "name": "get_boiling_point" @@ -116,5 +116,6 @@ } ], "is_streaming": true - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/45175e711385e24f62516c3982eaf8fb6bbab4f37691fadc08812ce223dfc628.json b/tests/integration/agents/recordings/45175e711385e24f62516c3982eaf8fb6bbab4f37691fadc08812ce223dfc628.json index 4f001f5bf..0a27ddb7d 100644 --- a/tests/integration/agents/recordings/45175e711385e24f62516c3982eaf8fb6bbab4f37691fadc08812ce223dfc628.json +++ b/tests/integration/agents/recordings/45175e711385e24f62516c3982eaf8fb6bbab4f37691fadc08812ce223dfc628.json @@ -54,5 +54,6 @@ } }, "is_streaming": false - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/45d0aabc502385b4cc23e16706a1c594644b2a1387ac3cee7cd434df25e8f22f.json b/tests/integration/agents/recordings/45d0aabc502385b4cc23e16706a1c594644b2a1387ac3cee7cd434df25e8f22f.json new file mode 100644 index 000000000..bfbbcb87b --- /dev/null +++ b/tests/integration/agents/recordings/45d0aabc502385b4cc23e16706a1c594644b2a1387ac3cee7cd434df25e8f22f.json @@ -0,0 +1,442 @@ +{ + "test_id": "tests/integration/agents/test_agents.py::test_custom_tool[ollama/llama3.2:3b-instruct-fp16]", + "request": { + "method": "POST", + "url": "http://0.0.0.0:11434/v1/v1/chat/completions", + "headers": {}, + "body": { + "model": "llama3.2:3b-instruct-fp16", + "messages": [ + { + "role": "system", + "content": "You are a helpful assistant" + }, + { + "role": "user", + "content": "What is the boiling point of the liquid polyjuice in celsius?" + }, + { + "role": "assistant", + "content": "", + "tool_calls": [ + { + "id": "call_icfpgg5q", + "type": "function", + "function": { + "name": "get_boiling_point", + "arguments": "{\"celcius\":true,\"liquid_name\":\"polyjuice\"}" + } + } + ] + }, + { + "role": "tool", + "tool_call_id": "call_icfpgg5q", + "content": "-100" + } + ], + "max_tokens": 512, + "stream": true, + "temperature": 0.0001, + "tool_choice": "auto", + "tools": [ + { + "type": "function", + "function": { + "name": "get_boiling_point", + "description": "Returns the boiling point of a liquid in Celcius or Fahrenheit.", + "parameters": { + "type": "object", + "properties": { + "liquid_name": { + "type": "string", + "description": "The name of the liquid" + }, + "celcius": { + "type": "boolean", + "description": "Whether to return the boiling point in Celcius" + } + }, + "required": [ + "liquid_name" + ] + } + } + } + ], + "top_p": 0.9 + }, + "endpoint": "/v1/chat/completions", + "model": "llama3.2:3b-instruct-fp16" + }, + "response": { + "body": [ + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-45d0aabc5023", + "choices": [ + { + "delta": { + "content": "The", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-45d0aabc5023", + "choices": [ + { + "delta": { + "content": " boiling", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-45d0aabc5023", + "choices": [ + { + "delta": { + "content": " point", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-45d0aabc5023", + "choices": [ + { + "delta": { + "content": " of", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-45d0aabc5023", + "choices": [ + { + "delta": { + "content": " liquid", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-45d0aabc5023", + "choices": [ + { + "delta": { + "content": " poly", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-45d0aabc5023", + "choices": [ + { + "delta": { + "content": "ju", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-45d0aabc5023", + "choices": [ + { + "delta": { + "content": "ice", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-45d0aabc5023", + "choices": [ + { + "delta": { + "content": " is", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-45d0aabc5023", + "choices": [ + { + "delta": { + "content": " -", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-45d0aabc5023", + "choices": [ + { + "delta": { + "content": "100", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-45d0aabc5023", + "choices": [ + { + "delta": { + "content": "\u00b0C", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-45d0aabc5023", + "choices": [ + { + "delta": { + "content": ".", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-45d0aabc5023", + "choices": [ + { + "delta": { + "content": "", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": "stop", + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + } + ], + "is_streaming": true + }, + "id_normalization_mapping": {} +} diff --git a/tests/integration/agents/recordings/4da32cdf48ae4c3b381e3557edb99afa0ff16a609aaa941737e99606961a6a07.json b/tests/integration/agents/recordings/4da32cdf48ae4c3b381e3557edb99afa0ff16a609aaa941737e99606961a6a07.json index 89fa490c3..755276918 100644 --- a/tests/integration/agents/recordings/4da32cdf48ae4c3b381e3557edb99afa0ff16a609aaa941737e99606961a6a07.json +++ b/tests/integration/agents/recordings/4da32cdf48ae4c3b381e3557edb99afa0ff16a609aaa941737e99606961a6a07.json @@ -45,7 +45,33 @@ "choices": [ { "delta": { - "content": "The", + "content": "Italy", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": "'s", "function_call": null, "refusal": null, "role": "assistant", @@ -90,58 +116,6 @@ "usage": null } }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-4da32cdf48ae", - "choices": [ - { - "delta": { - "content": " of", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-4da32cdf48ae", - "choices": [ - { - "delta": { - "content": " Italy", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, { "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", "__data__": { @@ -194,6 +168,1124 @@ "usage": null } }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " and", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " also", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " seat", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " for", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " EU", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": ",", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " as", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " well", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " it", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " has", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " been", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " for", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " centuries", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " a", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " significant", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " role", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " in", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " international", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " politics", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " with", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " that", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " being", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " also", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " an", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " important", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " location", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " for", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " various", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " historical", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " events", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " such", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " like", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " signing", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " of", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " treaty", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " of", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": " West", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": "ph", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-4da32cdf48ae", + "choices": [ + { + "delta": { + "content": "alia", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, { "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", "__data__": { @@ -257,9 +1349,9 @@ "service_tier": null, "system_fingerprint": "fp_ollama", "usage": { - "completion_tokens": 8, + "completion_tokens": 50, "prompt_tokens": 82, - "total_tokens": 90, + "total_tokens": 132, "completion_tokens_details": null, "prompt_tokens_details": null } diff --git a/tests/integration/agents/recordings/585a2cf2c22b0db155a6a94052836b34c42f68bf04b1b2cb74ddf00943c0442d.json b/tests/integration/agents/recordings/585a2cf2c22b0db155a6a94052836b34c42f68bf04b1b2cb74ddf00943c0442d.json index cac9a6db2..988b270d7 100644 --- a/tests/integration/agents/recordings/585a2cf2c22b0db155a6a94052836b34c42f68bf04b1b2cb74ddf00943c0442d.json +++ b/tests/integration/agents/recordings/585a2cf2c22b0db155a6a94052836b34c42f68bf04b1b2cb74ddf00943c0442d.json @@ -48,7 +48,7 @@ "tool_calls": [ { "index": 0, - "id": "call_lqrdy0rt", + "id": "call_x427af31", "function": { "arguments": "{}", "name": "get_current_time" @@ -107,9 +107,9 @@ "service_tier": null, "system_fingerprint": "fp_ollama", "usage": { - "completion_tokens": 14, + "completion_tokens": 12, "prompt_tokens": 161, - "total_tokens": 175, + "total_tokens": 173, "completion_tokens_details": null, "prompt_tokens_details": null } diff --git a/tests/integration/agents/recordings/5edf2f0b7a9c875e80e4719f71a1daa94c1287acf164cd81ddd51843d05be718.json b/tests/integration/agents/recordings/5edf2f0b7a9c875e80e4719f71a1daa94c1287acf164cd81ddd51843d05be718.json index 49ca098d5..009646e27 100644 --- a/tests/integration/agents/recordings/5edf2f0b7a9c875e80e4719f71a1daa94c1287acf164cd81ddd51843d05be718.json +++ b/tests/integration/agents/recordings/5edf2f0b7a9c875e80e4719f71a1daa94c1287acf164cd81ddd51843d05be718.json @@ -56,7 +56,7 @@ "tool_calls": [ { "index": 0, - "id": "call_4ibtjudr", + "id": "call_wkjhgmpf", "function": { "arguments": "{\"city\":\"Tokyo\"}", "name": "get_weather" diff --git a/tests/integration/agents/recordings/697a25dd7f0ff515f567c883ad72ae9dca423726834aec8b38420dccb735c050.json b/tests/integration/agents/recordings/697a25dd7f0ff515f567c883ad72ae9dca423726834aec8b38420dccb735c050.json index 298e0e3b8..8b8f04ae6 100644 --- a/tests/integration/agents/recordings/697a25dd7f0ff515f567c883ad72ae9dca423726834aec8b38420dccb735c050.json +++ b/tests/integration/agents/recordings/697a25dd7f0ff515f567c883ad72ae9dca423726834aec8b38420dccb735c050.json @@ -66,7 +66,7 @@ "tool_calls": [ { "index": 0, - "id": "call_pojpzwm8", + "id": "call_klhbln13", "function": { "arguments": "{\"celcius\":false,\"liquid_name\":\"polyjuice\"}", "name": "get_boiling_point_with_metadata" @@ -116,5 +116,6 @@ } ], "is_streaming": true - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/6b207540bc67e2b9e6beb091d477d446d91e9837add7e9f4de236627195d41e4.json b/tests/integration/agents/recordings/6b207540bc67e2b9e6beb091d477d446d91e9837add7e9f4de236627195d41e4.json index fc263d5e9..d5d249587 100644 --- a/tests/integration/agents/recordings/6b207540bc67e2b9e6beb091d477d446d91e9837add7e9f4de236627195d41e4.json +++ b/tests/integration/agents/recordings/6b207540bc67e2b9e6beb091d477d446d91e9837add7e9f4de236627195d41e4.json @@ -81,33 +81,7 @@ "choices": [ { "delta": { - "content": " not", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " able", + "content": " happy", "function_call": null, "refusal": null, "role": "assistant", @@ -159,267 +133,7 @@ "choices": [ { "delta": { - "content": " provide", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " real", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "-time", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " weather", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " information", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ".", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " However", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ",", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " I", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " can", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " give", + "content": " help", "function_call": null, "refusal": null, "role": "assistant", @@ -471,7 +185,7 @@ "choices": [ { "delta": { - "content": " an", + "content": " with", "function_call": null, "refusal": null, "role": "assistant", @@ -497,7 +211,7 @@ "choices": [ { "delta": { - "content": " idea", + "content": " your", "function_call": null, "refusal": null, "role": "assistant", @@ -523,553 +237,7 @@ "choices": [ { "delta": { - "content": " of", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " what", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " Tokyo", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "'s", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " typical", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " weather", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " is", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " like", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " during", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " different", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " seasons", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ".\n\n", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "**", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "Spring", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " (", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "March", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " to", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " May", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ")**", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ":", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " Mild", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " temperatures", + "content": " question", "function_call": null, "refusal": null, "role": "assistant", @@ -1121,7 +289,7 @@ "choices": [ { "delta": { - "content": " usually", + "content": " but", "function_call": null, "refusal": null, "role": "assistant", @@ -1147,7 +315,85 @@ "choices": [ { "delta": { - "content": " ranging", + "content": " I", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " need", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " more", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " information", "function_call": null, "refusal": null, "role": "assistant", @@ -1199,7 +445,7 @@ "choices": [ { "delta": { - "content": " ", + "content": " you", "function_call": null, "refusal": null, "role": "assistant", @@ -1225,7 +471,7 @@ "choices": [ { "delta": { - "content": "10", + "content": ".", "function_call": null, "refusal": null, "role": "assistant", @@ -1251,3725 +497,7 @@ "choices": [ { "delta": { - "content": "\u00b0C", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " to", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " ", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "20", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "\u00b0C", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " (", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "50", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "\u00b0F", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " to", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " ", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "68", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "\u00b0F", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ").", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " It", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "'s", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " a", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " great", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " time", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " to", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " visit", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " Tokyo", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " for", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " cherry", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " blossom", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " season", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ".\n\n", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "**", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "Summer", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " (", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "June", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " to", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " August", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ")**", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ":", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " Hot", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " and", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " humid", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ",", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " with", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " temperatures", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " often", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " exceeding", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " ", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "30", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "\u00b0C", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " (", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "86", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "\u00b0F", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ").", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " Summer", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " is", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " rainy", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ",", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " with", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " heavy", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " down", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "p", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "ours", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " during", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " the", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " after", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "no", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "ons", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ".\n\n", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "**", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "Aut", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "umn", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " (", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "September", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " to", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " November", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ")**", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ":", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " Comfort", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "able", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " temperatures", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ",", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " ranging", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " from", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " ", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "10", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "\u00b0C", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " to", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " ", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "20", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "\u00b0C", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " (", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "50", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "\u00b0F", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " to", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " ", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "68", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "\u00b0F", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ").", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " Autumn", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " foliage", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " is", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " a", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " highlight", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " of", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " Tokyo", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "'s", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " scenery", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ".\n\n", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "**", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "Winter", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " (", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "December", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " to", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " February", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ")**", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ":", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " Cold", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " and", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " snowy", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ",", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " with", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " temperatures", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " sometimes", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " dropping", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " below", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " ", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "0", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "\u00b0C", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " (", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "32", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "\u00b0F", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ").", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " Snow", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "fall", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " can", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " be", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " significant", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " in", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " some", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " parts", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " of", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " the", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " city", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": ".\n\n", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": "Please", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " note", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " that", - "function_call": null, - "refusal": null, - "role": "assistant", - "tool_calls": null - }, - "finish_reason": null, - "index": 0, - "logprobs": null - } - ], - "created": 0, - "model": "llama3.2:3b-instruct-fp16", - "object": "chat.completion.chunk", - "service_tier": null, - "system_fingerprint": "fp_ollama", - "usage": null - } - }, - { - "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", - "__data__": { - "id": "rec-6b207540bc67", - "choices": [ - { - "delta": { - "content": " these", + "content": " There", "function_call": null, "refusal": null, "role": "assistant", @@ -5021,7 +549,7 @@ "choices": [ { "delta": { - "content": " general", + "content": " many", "function_call": null, "refusal": null, "role": "assistant", @@ -5047,7 +575,7 @@ "choices": [ { "delta": { - "content": " temperature", + "content": " cities", "function_call": null, "refusal": null, "role": "assistant", @@ -5073,7 +601,33 @@ "choices": [ { "delta": { - "content": " ranges", + "content": " named", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " Tokyo", "function_call": null, "refusal": null, "role": "assistant", @@ -5151,7 +705,7 @@ "choices": [ { "delta": { - "content": " actual", + "content": " each", "function_call": null, "refusal": null, "role": "assistant", @@ -5177,7 +731,7 @@ "choices": [ { "delta": { - "content": " weather", + "content": " one", "function_call": null, "refusal": null, "role": "assistant", @@ -5203,7 +757,7 @@ "choices": [ { "delta": { - "content": " conditions", + "content": " has", "function_call": null, "refusal": null, "role": "assistant", @@ -5229,7 +783,7 @@ "choices": [ { "delta": { - "content": " may", + "content": " a", "function_call": null, "refusal": null, "role": "assistant", @@ -5255,7 +809,7 @@ "choices": [ { "delta": { - "content": " vary", + "content": " different", "function_call": null, "refusal": null, "role": "assistant", @@ -5281,7 +835,7 @@ "choices": [ { "delta": { - "content": " from", + "content": " climate", "function_call": null, "refusal": null, "role": "assistant", @@ -5307,7 +861,319 @@ "choices": [ { "delta": { - "content": " year", + "content": ".\n\n", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": "Could", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " you", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " please", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " tell", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " me", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " which", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " city", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " in", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " Japan", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " you", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " are", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " referring", "function_call": null, "refusal": null, "role": "assistant", @@ -5359,7 +1225,917 @@ "choices": [ { "delta": { - "content": " year", + "content": "?", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " Tokyo", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " itself", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " is", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " not", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " always", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " a", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " good", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " choice", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " as", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " it", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " often", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " gets", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " confused", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " with", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " actual", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " name", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " for", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " large", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " and", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " populous", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " area", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " of", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " K", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": "anto", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " region", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " which", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " includes", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " larger", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " areas", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " surrounding", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " Tokyo", "function_call": null, "refusal": null, "role": "assistant", @@ -5404,6 +2180,708 @@ "usage": null } }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " \n\n", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": "If", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " that", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " does", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " not", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " give", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " us", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " enough", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " grounds", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " then", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " could", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " you", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " provide", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " also", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " what", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " approximate", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " month", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " you", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " want", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " the", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " information", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " about", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " (", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": "for", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " seasonal", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": " changes", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-6b207540bc67", + "choices": [ + { + "delta": { + "content": ")?", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, { "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", "__data__": { @@ -5441,9 +2919,9 @@ "service_tier": null, "system_fingerprint": "fp_ollama", "usage": { - "completion_tokens": 208, + "completion_tokens": 111, "prompt_tokens": 32, - "total_tokens": 240, + "total_tokens": 143, "completion_tokens_details": null, "prompt_tokens_details": null } diff --git a/tests/integration/agents/recordings/6da760645fe224ace4ab628e4f647259897598e28037fe5f7c09f6677edd08e9.json b/tests/integration/agents/recordings/6da760645fe224ace4ab628e4f647259897598e28037fe5f7c09f6677edd08e9.json index 41c4f97ae..a178476e1 100644 --- a/tests/integration/agents/recordings/6da760645fe224ace4ab628e4f647259897598e28037fe5f7c09f6677edd08e9.json +++ b/tests/integration/agents/recordings/6da760645fe224ace4ab628e4f647259897598e28037fe5f7c09f6677edd08e9.json @@ -54,5 +54,6 @@ } }, "is_streaming": false - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/7094319e038424fbec54338c397b487c7128fc28534351deb4662fba31043fa4.json b/tests/integration/agents/recordings/7094319e038424fbec54338c397b487c7128fc28534351deb4662fba31043fa4.json index dce0c2e4d..7f7bf13ca 100644 --- a/tests/integration/agents/recordings/7094319e038424fbec54338c397b487c7128fc28534351deb4662fba31043fa4.json +++ b/tests/integration/agents/recordings/7094319e038424fbec54338c397b487c7128fc28534351deb4662fba31043fa4.json @@ -54,5 +54,6 @@ } }, "is_streaming": false - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/74c26f63592ceedb76eb9623fce41773965dd66b569506b5622b1a797c45f8e4.json b/tests/integration/agents/recordings/74c26f63592ceedb76eb9623fce41773965dd66b569506b5622b1a797c45f8e4.json index d8b125dad..a1464e8c3 100644 --- a/tests/integration/agents/recordings/74c26f63592ceedb76eb9623fce41773965dd66b569506b5622b1a797c45f8e4.json +++ b/tests/integration/agents/recordings/74c26f63592ceedb76eb9623fce41773965dd66b569506b5622b1a797c45f8e4.json @@ -54,5 +54,6 @@ } }, "is_streaming": false - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/7e0d8c4abe407611ceaa99beea2e9973e2a938cab3db3e1be017bbe8be10edc6.json b/tests/integration/agents/recordings/7e0d8c4abe407611ceaa99beea2e9973e2a938cab3db3e1be017bbe8be10edc6.json index e11d38095..665e53245 100644 --- a/tests/integration/agents/recordings/7e0d8c4abe407611ceaa99beea2e9973e2a938cab3db3e1be017bbe8be10edc6.json +++ b/tests/integration/agents/recordings/7e0d8c4abe407611ceaa99beea2e9973e2a938cab3db3e1be017bbe8be10edc6.json @@ -66,7 +66,7 @@ "tool_calls": [ { "index": 0, - "id": "call_rwasjr3y", + "id": "call_zqu5i0ti", "function": { "arguments": "{\"celcius\":null,\"liquid_name\":\"polyjuice\"}", "name": "get_boiling_point" @@ -116,5 +116,6 @@ } ], "is_streaming": true - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/7e794c73bf79604a10482bba03124849cb763c7bb66acf3937b524a539b80366.json b/tests/integration/agents/recordings/7e794c73bf79604a10482bba03124849cb763c7bb66acf3937b524a539b80366.json new file mode 100644 index 000000000..dfae71291 --- /dev/null +++ b/tests/integration/agents/recordings/7e794c73bf79604a10482bba03124849cb763c7bb66acf3937b524a539b80366.json @@ -0,0 +1,59 @@ +{ + "test_id": "tests/integration/agents/test_agents.py::test_tool_choice_required[ollama/llama3.2:3b-instruct-fp16]", + "request": { + "method": "POST", + "url": "http://0.0.0.0:11434/v1/v1/chat/completions", + "headers": {}, + "body": { + "model": "llama-guard3:1b", + "messages": [ + { + "role": "user", + "content": "Task: Check if there is unsafe content in 'Assistant' messages in conversations according our safety policy with the below categories.\n\n\nS1: Violent Crimes.\nS2: Non-Violent Crimes.\nS3: Sex Crimes.\nS4: Child Exploitation.\nS5: Defamation.\nS6: Specialized Advice.\nS7: Privacy.\nS8: Intellectual Property.\nS9: Indiscriminate Weapons.\nS10: Hate.\nS11: Self-Harm.\nS12: Sexual Content.\nS13: Elections.\nS14: Code Interpreter Abuse.\n\n\n\n\nUser: What is the boiling point of the liquid polyjuice in celsius?\n\nAssistant: \n\nTool: -100\n\nAssistant: The boiling point of liquid polyjuice is -100\u00b0C.\n\n\n\nProvide your safety assessment for ONLY THE LAST Assistant message in the above conversation:\n - First line must read 'safe' or 'unsafe'.\n - If unsafe, a second line must include a comma-separated list of violated categories." + } + ], + "stream": false, + "temperature": 0.0 + }, + "endpoint": "/v1/chat/completions", + "model": "llama-guard3:1b" + }, + "response": { + "body": { + "__type__": "openai.types.chat.chat_completion.ChatCompletion", + "__data__": { + "id": "rec-7e794c73bf79", + "choices": [ + { + "finish_reason": "stop", + "index": 0, + "logprobs": null, + "message": { + "content": "safe", + "refusal": null, + "role": "assistant", + "annotations": null, + "audio": null, + "function_call": null, + "tool_calls": null + } + } + ], + "created": 0, + "model": "llama-guard3:1b", + "object": "chat.completion", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": { + "completion_tokens": 2, + "prompt_tokens": 421, + "total_tokens": 423, + "completion_tokens_details": null, + "prompt_tokens_details": null + } + } + }, + "is_streaming": false + }, + "id_normalization_mapping": {} +} diff --git a/tests/integration/agents/recordings/868820c8d798c0d16063d1750a65ae2632ecf543ee440e7d87ea16f8e83461a5.json b/tests/integration/agents/recordings/868820c8d798c0d16063d1750a65ae2632ecf543ee440e7d87ea16f8e83461a5.json index c82ea6394..fa03baf5e 100644 --- a/tests/integration/agents/recordings/868820c8d798c0d16063d1750a65ae2632ecf543ee440e7d87ea16f8e83461a5.json +++ b/tests/integration/agents/recordings/868820c8d798c0d16063d1750a65ae2632ecf543ee440e7d87ea16f8e83461a5.json @@ -54,5 +54,6 @@ } }, "is_streaming": false - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/86e2b939aabb9dfe7ec712a6b20a5809d6fb56f8c9f92d93030f57cba51a1fe2.json b/tests/integration/agents/recordings/86e2b939aabb9dfe7ec712a6b20a5809d6fb56f8c9f92d93030f57cba51a1fe2.json index c33ecca7e..c702a53aa 100644 --- a/tests/integration/agents/recordings/86e2b939aabb9dfe7ec712a6b20a5809d6fb56f8c9f92d93030f57cba51a1fe2.json +++ b/tests/integration/agents/recordings/86e2b939aabb9dfe7ec712a6b20a5809d6fb56f8c9f92d93030f57cba51a1fe2.json @@ -54,5 +54,6 @@ } }, "is_streaming": false - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/8c4ec47152697a5b34e44d75af581efbada34e06f59ddf536149871c64c9a247.json b/tests/integration/agents/recordings/8c4ec47152697a5b34e44d75af581efbada34e06f59ddf536149871c64c9a247.json new file mode 100644 index 000000000..9d391c7c8 --- /dev/null +++ b/tests/integration/agents/recordings/8c4ec47152697a5b34e44d75af581efbada34e06f59ddf536149871c64c9a247.json @@ -0,0 +1,442 @@ +{ + "test_id": "tests/integration/agents/test_agents.py::test_create_turn_response[ollama/llama3.2:3b-instruct-fp16-client_tools0]", + "request": { + "method": "POST", + "url": "http://0.0.0.0:11434/v1/v1/chat/completions", + "headers": {}, + "body": { + "model": "llama3.2:3b-instruct-fp16", + "messages": [ + { + "role": "system", + "content": "You are a helpful assistant" + }, + { + "role": "user", + "content": "Call get_boiling_point tool and answer What is the boiling point of polyjuice?" + }, + { + "role": "assistant", + "content": "", + "tool_calls": [ + { + "id": "call_zqu5i0ti", + "type": "function", + "function": { + "name": "get_boiling_point", + "arguments": "{\"celcius\":null,\"liquid_name\":\"polyjuice\"}" + } + } + ] + }, + { + "role": "tool", + "tool_call_id": "call_zqu5i0ti", + "content": "-212" + } + ], + "max_tokens": 512, + "stream": true, + "temperature": 0.0001, + "tool_choice": "auto", + "tools": [ + { + "type": "function", + "function": { + "name": "get_boiling_point", + "description": "Returns the boiling point of a liquid in Celcius or Fahrenheit.", + "parameters": { + "type": "object", + "properties": { + "liquid_name": { + "type": "string", + "description": "The name of the liquid" + }, + "celcius": { + "type": "boolean", + "description": "Whether to return the boiling point in Celcius" + } + }, + "required": [ + "liquid_name" + ] + } + } + } + ], + "top_p": 0.9 + }, + "endpoint": "/v1/chat/completions", + "model": "llama3.2:3b-instruct-fp16" + }, + "response": { + "body": [ + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-8c4ec4715269", + "choices": [ + { + "delta": { + "content": "The", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-8c4ec4715269", + "choices": [ + { + "delta": { + "content": " boiling", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-8c4ec4715269", + "choices": [ + { + "delta": { + "content": " point", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-8c4ec4715269", + "choices": [ + { + "delta": { + "content": " of", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-8c4ec4715269", + "choices": [ + { + "delta": { + "content": " poly", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-8c4ec4715269", + "choices": [ + { + "delta": { + "content": "ju", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-8c4ec4715269", + "choices": [ + { + "delta": { + "content": "ice", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-8c4ec4715269", + "choices": [ + { + "delta": { + "content": " is", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-8c4ec4715269", + "choices": [ + { + "delta": { + "content": " -", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-8c4ec4715269", + "choices": [ + { + "delta": { + "content": "212", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-8c4ec4715269", + "choices": [ + { + "delta": { + "content": " degrees", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-8c4ec4715269", + "choices": [ + { + "delta": { + "content": " Celsius", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-8c4ec4715269", + "choices": [ + { + "delta": { + "content": ".", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-8c4ec4715269", + "choices": [ + { + "delta": { + "content": "", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": "stop", + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + } + ], + "is_streaming": true + }, + "id_normalization_mapping": {} +} diff --git a/tests/integration/agents/recordings/8ed0947593196c2b2f68035e248c137813e8db50d0d46395ef9ba98636fa5819.json b/tests/integration/agents/recordings/8ed0947593196c2b2f68035e248c137813e8db50d0d46395ef9ba98636fa5819.json index b209de507..15f9b0f96 100644 --- a/tests/integration/agents/recordings/8ed0947593196c2b2f68035e248c137813e8db50d0d46395ef9ba98636fa5819.json +++ b/tests/integration/agents/recordings/8ed0947593196c2b2f68035e248c137813e8db50d0d46395ef9ba98636fa5819.json @@ -54,5 +54,6 @@ } }, "is_streaming": false - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/8fc418c02b8b6fe09238e36fb72c5e7fc9d41fdaa3eb357f518e0fcaec5ea1e2.json b/tests/integration/agents/recordings/8fc418c02b8b6fe09238e36fb72c5e7fc9d41fdaa3eb357f518e0fcaec5ea1e2.json new file mode 100644 index 000000000..70d92b2bf --- /dev/null +++ b/tests/integration/agents/recordings/8fc418c02b8b6fe09238e36fb72c5e7fc9d41fdaa3eb357f518e0fcaec5ea1e2.json @@ -0,0 +1,59 @@ +{ + "test_id": "tests/integration/agents/test_agents.py::test_tool_choice_get_boiling_point[ollama/llama3.2:3b-instruct-fp16]", + "request": { + "method": "POST", + "url": "http://0.0.0.0:11434/v1/v1/chat/completions", + "headers": {}, + "body": { + "model": "llama-guard3:1b", + "messages": [ + { + "role": "user", + "content": "Task: Check if there is unsafe content in 'Assistant' messages in conversations according our safety policy with the below categories.\n\n\nS1: Violent Crimes.\nS2: Non-Violent Crimes.\nS3: Sex Crimes.\nS4: Child Exploitation.\nS5: Defamation.\nS6: Specialized Advice.\nS7: Privacy.\nS8: Intellectual Property.\nS9: Indiscriminate Weapons.\nS10: Hate.\nS11: Self-Harm.\nS12: Sexual Content.\nS13: Elections.\nS14: Code Interpreter Abuse.\n\n\n\n\nUser: What is the boiling point of the liquid polyjuice in celsius?\n\nAssistant: \n\nTool: -100\n\nAssistant: The boiling point of liquid polyjuice is -100\u00b0C.\n\n\n\nProvide your safety assessment for ONLY THE LAST Assistant message in the above conversation:\n - First line must read 'safe' or 'unsafe'.\n - If unsafe, a second line must include a comma-separated list of violated categories." + } + ], + "stream": false, + "temperature": 0.0 + }, + "endpoint": "/v1/chat/completions", + "model": "llama-guard3:1b" + }, + "response": { + "body": { + "__type__": "openai.types.chat.chat_completion.ChatCompletion", + "__data__": { + "id": "rec-8fc418c02b8b", + "choices": [ + { + "finish_reason": "stop", + "index": 0, + "logprobs": null, + "message": { + "content": "safe", + "refusal": null, + "role": "assistant", + "annotations": null, + "audio": null, + "function_call": null, + "tool_calls": null + } + } + ], + "created": 0, + "model": "llama-guard3:1b", + "object": "chat.completion", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": { + "completion_tokens": 2, + "prompt_tokens": 421, + "total_tokens": 423, + "completion_tokens_details": null, + "prompt_tokens_details": null + } + } + }, + "is_streaming": false + }, + "id_normalization_mapping": {} +} diff --git a/tests/integration/agents/recordings/901956b3a51b792f2506d603489af51636b480db9cc520614ee4886418776237.json b/tests/integration/agents/recordings/901956b3a51b792f2506d603489af51636b480db9cc520614ee4886418776237.json index 07b7f8331..16078a8c2 100644 --- a/tests/integration/agents/recordings/901956b3a51b792f2506d603489af51636b480db9cc520614ee4886418776237.json +++ b/tests/integration/agents/recordings/901956b3a51b792f2506d603489af51636b480db9cc520614ee4886418776237.json @@ -54,5 +54,6 @@ } }, "is_streaming": false - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/958f9b74e98bcf41e4988db8ad15494b8fe0ff707261108305353e4ad980195f.json b/tests/integration/agents/recordings/958f9b74e98bcf41e4988db8ad15494b8fe0ff707261108305353e4ad980195f.json index aeb1fe320..ec3117ee3 100644 --- a/tests/integration/agents/recordings/958f9b74e98bcf41e4988db8ad15494b8fe0ff707261108305353e4ad980195f.json +++ b/tests/integration/agents/recordings/958f9b74e98bcf41e4988db8ad15494b8fe0ff707261108305353e4ad980195f.json @@ -1510,5 +1510,6 @@ } ], "is_streaming": true - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/96623a251d6e51ee6ba21c53ca111d4aa54882a124d783a8096fd88adf481065.json b/tests/integration/agents/recordings/96623a251d6e51ee6ba21c53ca111d4aa54882a124d783a8096fd88adf481065.json index 93155e18c..4d8a2a9ce 100644 --- a/tests/integration/agents/recordings/96623a251d6e51ee6ba21c53ca111d4aa54882a124d783a8096fd88adf481065.json +++ b/tests/integration/agents/recordings/96623a251d6e51ee6ba21c53ca111d4aa54882a124d783a8096fd88adf481065.json @@ -54,5 +54,6 @@ } }, "is_streaming": false - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/a702e4bf918e94acd0d76ed753c120a4704dde82acf5ae198982fd62bd103279.json b/tests/integration/agents/recordings/a702e4bf918e94acd0d76ed753c120a4704dde82acf5ae198982fd62bd103279.json index 1903e3d19..5200b2e65 100644 --- a/tests/integration/agents/recordings/a702e4bf918e94acd0d76ed753c120a4704dde82acf5ae198982fd62bd103279.json +++ b/tests/integration/agents/recordings/a702e4bf918e94acd0d76ed753c120a4704dde82acf5ae198982fd62bd103279.json @@ -54,5 +54,6 @@ } }, "is_streaming": false - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/ad3f6a2b4031bcd38026c3c50617851f102c12946164a563584e6316bd1b6228.json b/tests/integration/agents/recordings/ad3f6a2b4031bcd38026c3c50617851f102c12946164a563584e6316bd1b6228.json index d6ec4ea4b..52d599fe0 100644 --- a/tests/integration/agents/recordings/ad3f6a2b4031bcd38026c3c50617851f102c12946164a563584e6316bd1b6228.json +++ b/tests/integration/agents/recordings/ad3f6a2b4031bcd38026c3c50617851f102c12946164a563584e6316bd1b6228.json @@ -54,5 +54,6 @@ } }, "is_streaming": false - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/b3c24a0ab429fb3d7e3680a2a689a8eddb2c2aaf826b513fec55dcd70cdf35ea.json b/tests/integration/agents/recordings/b3c24a0ab429fb3d7e3680a2a689a8eddb2c2aaf826b513fec55dcd70cdf35ea.json new file mode 100644 index 000000000..15a721ef9 --- /dev/null +++ b/tests/integration/agents/recordings/b3c24a0ab429fb3d7e3680a2a689a8eddb2c2aaf826b513fec55dcd70cdf35ea.json @@ -0,0 +1,260 @@ +{ + "test_id": "tests/integration/agents/test_openai_responses.py::test_response_with_instructions[txt=ollama/llama3.2:3b-instruct-fp16]", + "request": { + "method": "POST", + "url": "http://0.0.0.0:11434/v1/v1/chat/completions", + "headers": {}, + "body": { + "model": "llama3.2:3b-instruct-fp16", + "messages": [ + { + "role": "system", + "content": "You are a helpful assistant." + }, + { + "role": "user", + "content": "What is the capital of France?" + } + ], + "stream": true, + "stream_options": { + "include_usage": true + } + }, + "endpoint": "/v1/chat/completions", + "model": "llama3.2:3b-instruct-fp16" + }, + "response": { + "body": [ + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b3c24a0ab429", + "choices": [ + { + "delta": { + "content": "The", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b3c24a0ab429", + "choices": [ + { + "delta": { + "content": " capital", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b3c24a0ab429", + "choices": [ + { + "delta": { + "content": " of", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b3c24a0ab429", + "choices": [ + { + "delta": { + "content": " France", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b3c24a0ab429", + "choices": [ + { + "delta": { + "content": " is", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b3c24a0ab429", + "choices": [ + { + "delta": { + "content": " Paris", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b3c24a0ab429", + "choices": [ + { + "delta": { + "content": ".", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b3c24a0ab429", + "choices": [ + { + "delta": { + "content": "", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": "stop", + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b3c24a0ab429", + "choices": [], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": { + "completion_tokens": 8, + "prompt_tokens": 38, + "total_tokens": 46, + "completion_tokens_details": null, + "prompt_tokens_details": null + } + } + } + ], + "is_streaming": true + }, + "id_normalization_mapping": {} +} diff --git a/tests/integration/agents/recordings/b4a47451a2af579b9dfb4a60bacaee0f274fc53b263c25fe5e9e4bc23739f3db.json b/tests/integration/agents/recordings/b4a47451a2af579b9dfb4a60bacaee0f274fc53b263c25fe5e9e4bc23739f3db.json new file mode 100644 index 000000000..50e14c9fc --- /dev/null +++ b/tests/integration/agents/recordings/b4a47451a2af579b9dfb4a60bacaee0f274fc53b263c25fe5e9e4bc23739f3db.json @@ -0,0 +1,442 @@ +{ + "test_id": "tests/integration/agents/test_agents.py::test_tool_choice_required[ollama/llama3.2:3b-instruct-fp16]", + "request": { + "method": "POST", + "url": "http://0.0.0.0:11434/v1/v1/chat/completions", + "headers": {}, + "body": { + "model": "llama3.2:3b-instruct-fp16", + "messages": [ + { + "role": "system", + "content": "You are a helpful assistant" + }, + { + "role": "user", + "content": "What is the boiling point of the liquid polyjuice in celsius?" + }, + { + "role": "assistant", + "content": "", + "tool_calls": [ + { + "id": "call_z1rt0qb1", + "type": "function", + "function": { + "name": "get_boiling_point", + "arguments": "{\"celcius\":true,\"liquid_name\":\"polyjuice\"}" + } + } + ] + }, + { + "role": "tool", + "tool_call_id": "call_z1rt0qb1", + "content": "-100" + } + ], + "max_tokens": 512, + "stream": true, + "temperature": 0.0001, + "tool_choice": "required", + "tools": [ + { + "type": "function", + "function": { + "name": "get_boiling_point", + "description": "Returns the boiling point of a liquid in Celcius or Fahrenheit.", + "parameters": { + "type": "object", + "properties": { + "liquid_name": { + "type": "string", + "description": "The name of the liquid" + }, + "celcius": { + "type": "boolean", + "description": "Whether to return the boiling point in Celcius" + } + }, + "required": [ + "liquid_name" + ] + } + } + } + ], + "top_p": 0.9 + }, + "endpoint": "/v1/chat/completions", + "model": "llama3.2:3b-instruct-fp16" + }, + "response": { + "body": [ + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b4a47451a2af", + "choices": [ + { + "delta": { + "content": "The", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b4a47451a2af", + "choices": [ + { + "delta": { + "content": " boiling", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b4a47451a2af", + "choices": [ + { + "delta": { + "content": " point", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b4a47451a2af", + "choices": [ + { + "delta": { + "content": " of", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b4a47451a2af", + "choices": [ + { + "delta": { + "content": " liquid", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b4a47451a2af", + "choices": [ + { + "delta": { + "content": " poly", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b4a47451a2af", + "choices": [ + { + "delta": { + "content": "ju", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b4a47451a2af", + "choices": [ + { + "delta": { + "content": "ice", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b4a47451a2af", + "choices": [ + { + "delta": { + "content": " is", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b4a47451a2af", + "choices": [ + { + "delta": { + "content": " -", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b4a47451a2af", + "choices": [ + { + "delta": { + "content": "100", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b4a47451a2af", + "choices": [ + { + "delta": { + "content": "\u00b0C", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b4a47451a2af", + "choices": [ + { + "delta": { + "content": ".", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": null, + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + }, + { + "__type__": "openai.types.chat.chat_completion_chunk.ChatCompletionChunk", + "__data__": { + "id": "rec-b4a47451a2af", + "choices": [ + { + "delta": { + "content": "", + "function_call": null, + "refusal": null, + "role": "assistant", + "tool_calls": null + }, + "finish_reason": "stop", + "index": 0, + "logprobs": null + } + ], + "created": 0, + "model": "llama3.2:3b-instruct-fp16", + "object": "chat.completion.chunk", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": null + } + } + ], + "is_streaming": true + }, + "id_normalization_mapping": {} +} diff --git a/tests/integration/agents/recordings/bcb50763cac6527944653e77df1f2cc9e9481ffae9cff5693b2f669270c9c0a7.json b/tests/integration/agents/recordings/bcb50763cac6527944653e77df1f2cc9e9481ffae9cff5693b2f669270c9c0a7.json index c7ecef75f..4527ab5cd 100644 --- a/tests/integration/agents/recordings/bcb50763cac6527944653e77df1f2cc9e9481ffae9cff5693b2f669270c9c0a7.json +++ b/tests/integration/agents/recordings/bcb50763cac6527944653e77df1f2cc9e9481ffae9cff5693b2f669270c9c0a7.json @@ -66,7 +66,7 @@ "tool_calls": [ { "index": 0, - "id": "call_qryqpevz", + "id": "call_9x4z21g1", "function": { "arguments": "{\"celcius\":\"true\",\"liquid_name\":\"polyjuice\"}", "name": "get_boiling_point" @@ -116,5 +116,6 @@ } ], "is_streaming": true - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/c97c102959ea8c64a43e4c752bf5e979c7a298fdbeedec153954ce817da7e3e7.json b/tests/integration/agents/recordings/c97c102959ea8c64a43e4c752bf5e979c7a298fdbeedec153954ce817da7e3e7.json index e3f54171f..a1332fddb 100644 --- a/tests/integration/agents/recordings/c97c102959ea8c64a43e4c752bf5e979c7a298fdbeedec153954ce817da7e3e7.json +++ b/tests/integration/agents/recordings/c97c102959ea8c64a43e4c752bf5e979c7a298fdbeedec153954ce817da7e3e7.json @@ -54,5 +54,6 @@ } }, "is_streaming": false - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/ca95f47c2896a7ce1536a3cf1a78170e073e49e478658a4b098b3581a703e843.json b/tests/integration/agents/recordings/ca95f47c2896a7ce1536a3cf1a78170e073e49e478658a4b098b3581a703e843.json index 145596d38..64b28de5c 100644 --- a/tests/integration/agents/recordings/ca95f47c2896a7ce1536a3cf1a78170e073e49e478658a4b098b3581a703e843.json +++ b/tests/integration/agents/recordings/ca95f47c2896a7ce1536a3cf1a78170e073e49e478658a4b098b3581a703e843.json @@ -54,5 +54,6 @@ } }, "is_streaming": false - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/d35fc2ef48595f5d0afe8fb617c8df864a155017e8d4c5d2e2b2c51e9cfaed5e.json b/tests/integration/agents/recordings/d35fc2ef48595f5d0afe8fb617c8df864a155017e8d4c5d2e2b2c51e9cfaed5e.json index a333490a4..ae1be7520 100644 --- a/tests/integration/agents/recordings/d35fc2ef48595f5d0afe8fb617c8df864a155017e8d4c5d2e2b2c51e9cfaed5e.json +++ b/tests/integration/agents/recordings/d35fc2ef48595f5d0afe8fb617c8df864a155017e8d4c5d2e2b2c51e9cfaed5e.json @@ -54,5 +54,6 @@ } }, "is_streaming": false - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/da6fc54bb65dd1f83e577109b8228b644e76999ebb2fe8f09bead3dee56a6046.json b/tests/integration/agents/recordings/da6fc54bb65dd1f83e577109b8228b644e76999ebb2fe8f09bead3dee56a6046.json new file mode 100644 index 000000000..f17ae2ae3 --- /dev/null +++ b/tests/integration/agents/recordings/da6fc54bb65dd1f83e577109b8228b644e76999ebb2fe8f09bead3dee56a6046.json @@ -0,0 +1,59 @@ +{ + "test_id": "tests/integration/agents/test_agents.py::test_custom_tool[ollama/llama3.2:3b-instruct-fp16]", + "request": { + "method": "POST", + "url": "http://0.0.0.0:11434/v1/v1/chat/completions", + "headers": {}, + "body": { + "model": "llama-guard3:1b", + "messages": [ + { + "role": "user", + "content": "Task: Check if there is unsafe content in 'Assistant' messages in conversations according our safety policy with the below categories.\n\n\nS1: Violent Crimes.\nS2: Non-Violent Crimes.\nS3: Sex Crimes.\nS4: Child Exploitation.\nS5: Defamation.\nS6: Specialized Advice.\nS7: Privacy.\nS8: Intellectual Property.\nS9: Indiscriminate Weapons.\nS10: Hate.\nS11: Self-Harm.\nS12: Sexual Content.\nS13: Elections.\nS14: Code Interpreter Abuse.\n\n\n\n\nUser: What is the boiling point of the liquid polyjuice in celsius?\n\nAssistant: \n\nTool: -100\n\nAssistant: The boiling point of liquid polyjuice is -100\u00b0C.\n\n\n\nProvide your safety assessment for ONLY THE LAST Assistant message in the above conversation:\n - First line must read 'safe' or 'unsafe'.\n - If unsafe, a second line must include a comma-separated list of violated categories." + } + ], + "stream": false, + "temperature": 0.0 + }, + "endpoint": "/v1/chat/completions", + "model": "llama-guard3:1b" + }, + "response": { + "body": { + "__type__": "openai.types.chat.chat_completion.ChatCompletion", + "__data__": { + "id": "rec-da6fc54bb65d", + "choices": [ + { + "finish_reason": "stop", + "index": 0, + "logprobs": null, + "message": { + "content": "safe", + "refusal": null, + "role": "assistant", + "annotations": null, + "audio": null, + "function_call": null, + "tool_calls": null + } + } + ], + "created": 0, + "model": "llama-guard3:1b", + "object": "chat.completion", + "service_tier": null, + "system_fingerprint": "fp_ollama", + "usage": { + "completion_tokens": 2, + "prompt_tokens": 421, + "total_tokens": 423, + "completion_tokens_details": null, + "prompt_tokens_details": null + } + } + }, + "is_streaming": false + }, + "id_normalization_mapping": {} +} diff --git a/tests/integration/agents/recordings/db5c89b87eba0d129ad9ed17306d4016aeeaf2bbeeaa5643d9620f5ea484430e.json b/tests/integration/agents/recordings/db5c89b87eba0d129ad9ed17306d4016aeeaf2bbeeaa5643d9620f5ea484430e.json index da06f3968..55e71cf27 100644 --- a/tests/integration/agents/recordings/db5c89b87eba0d129ad9ed17306d4016aeeaf2bbeeaa5643d9620f5ea484430e.json +++ b/tests/integration/agents/recordings/db5c89b87eba0d129ad9ed17306d4016aeeaf2bbeeaa5643d9620f5ea484430e.json @@ -71,7 +71,7 @@ "tool_calls": [ { "index": 0, - "id": "call_ur5tbdbt", + "id": "call_5qverjg6", "function": { "arguments": "{\"celcius\":true,\"liquid_name\":\"polyjuice\"}", "name": "get_boiling_point" @@ -121,5 +121,6 @@ } ], "is_streaming": true - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/ed76dd5fdf892c9cc959b2d301a256f81c43a906a0a56684ca97e848f8d6a94c.json b/tests/integration/agents/recordings/ed76dd5fdf892c9cc959b2d301a256f81c43a906a0a56684ca97e848f8d6a94c.json index cb2afc5ed..06d8a4305 100644 --- a/tests/integration/agents/recordings/ed76dd5fdf892c9cc959b2d301a256f81c43a906a0a56684ca97e848f8d6a94c.json +++ b/tests/integration/agents/recordings/ed76dd5fdf892c9cc959b2d301a256f81c43a906a0a56684ca97e848f8d6a94c.json @@ -54,5 +54,6 @@ } }, "is_streaming": false - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/recordings/f85c3c14185386eecd4939eeb6b3a3cee734d69beb7cd6d13a3d3c2c64eca734.json b/tests/integration/agents/recordings/f85c3c14185386eecd4939eeb6b3a3cee734d69beb7cd6d13a3d3c2c64eca734.json index 2e1e9f4e5..dbb70df6c 100644 --- a/tests/integration/agents/recordings/f85c3c14185386eecd4939eeb6b3a3cee734d69beb7cd6d13a3d3c2c64eca734.json +++ b/tests/integration/agents/recordings/f85c3c14185386eecd4939eeb6b3a3cee734d69beb7cd6d13a3d3c2c64eca734.json @@ -66,7 +66,7 @@ "tool_calls": [ { "index": 0, - "id": "call_rq1pcgq7", + "id": "call_z1rt0qb1", "function": { "arguments": "{\"celcius\":true,\"liquid_name\":\"polyjuice\"}", "name": "get_boiling_point" @@ -116,5 +116,6 @@ } ], "is_streaming": true - } + }, + "id_normalization_mapping": {} } diff --git a/tests/integration/agents/test_openai_responses.py b/tests/integration/agents/test_openai_responses.py index 675e2b904..d413d5201 100644 --- a/tests/integration/agents/test_openai_responses.py +++ b/tests/integration/agents/test_openai_responses.py @@ -466,3 +466,53 @@ def test_guardrails_with_tools(compat_client, text_model_id): # Response should be either a function call or a message output_type = response.output[0].type assert output_type in ["function_call", "message"] + + +def test_response_with_instructions(openai_client, client_with_models, text_model_id): + """Test instructions parameter in the responses object.""" + if isinstance(client_with_models, LlamaStackAsLibraryClient): + pytest.skip("OpenAI responses are not supported when testing with library client yet.") + + client = openai_client + + messages = [ + { + "role": "user", + "content": "What is the capital of France?", + } + ] + + # First create a response without instructions parameter + response_w_o_instructions = client.responses.create( + model=text_model_id, + input=messages, + stream=False, + ) + + # Verify we have None in the instructions field + assert response_w_o_instructions.instructions is None + + # Next create a response and pass instructions parameter + instructions = "You are a helpful assistant." + response_with_instructions = client.responses.create( + model=text_model_id, + instructions=instructions, + input=messages, + stream=False, + ) + + # Verify we have a valid instructions field + assert response_with_instructions.instructions == instructions + + # Finally test instructions parameter with a previous response id + instructions2 = "You are a helpful assistant and speak in pirate language." + response_with_instructions2 = client.responses.create( + model=text_model_id, + instructions=instructions2, + input=messages, + previous_response_id=response_with_instructions.id, + stream=False, + ) + + # Verify instructions from previous response was not carried over to the next response + assert response_with_instructions2.instructions == instructions2 diff --git a/tests/integration/common/recordings/models-64a2277c90f0f42576f60c1030e3a020403d34a95f56931b792d5939f4cebc57-abd54ea0.json b/tests/integration/common/recordings/models-64a2277c90f0f42576f60c1030e3a020403d34a95f56931b792d5939f4cebc57-abd54ea0.json new file mode 100644 index 000000000..77e244a01 --- /dev/null +++ b/tests/integration/common/recordings/models-64a2277c90f0f42576f60c1030e3a020403d34a95f56931b792d5939f4cebc57-abd54ea0.json @@ -0,0 +1,44 @@ +{ + "test_id": null, + "request": { + "method": "POST", + "url": "http://0.0.0.0:11434/v1/v1/models", + "headers": {}, + "body": {}, + "endpoint": "/v1/models", + "model": "" + }, + "response": { + "body": [ + { + "__type__": "openai.types.model.Model", + "__data__": { + "id": "llama-guard3:1b", + "created": 1753937098, + "object": "model", + "owned_by": "library" + } + }, + { + "__type__": "openai.types.model.Model", + "__data__": { + "id": "all-minilm:l6-v2", + "created": 1753936935, + "object": "model", + "owned_by": "library" + } + }, + { + "__type__": "openai.types.model.Model", + "__data__": { + "id": "llama3.2:3b-instruct-fp16", + "created": 1753936925, + "object": "model", + "owned_by": "library" + } + } + ], + "is_streaming": false + }, + "id_normalization_mapping": {} +} diff --git a/tests/unit/providers/agents/meta_reference/test_openai_responses.py b/tests/unit/providers/agents/meta_reference/test_openai_responses.py index e93668a62..54c1820fb 100644 --- a/tests/unit/providers/agents/meta_reference/test_openai_responses.py +++ b/tests/unit/providers/agents/meta_reference/test_openai_responses.py @@ -814,6 +814,69 @@ async def test_create_openai_response_with_instructions_and_previous_response( assert sent_messages[3].content == "Which is the largest?" +async def test_create_openai_response_with_previous_response_instructions( + openai_responses_impl, mock_responses_store, mock_inference_api +): + """Test prepending instructions and previous response with instructions.""" + + input_item_message = OpenAIResponseMessage( + id="123", + content="Name some towns in Ireland", + role="user", + ) + response_output_message = OpenAIResponseMessage( + id="123", + content="Galway, Longford, Sligo", + status="completed", + role="assistant", + ) + response = _OpenAIResponseObjectWithInputAndMessages( + created_at=1, + id="resp_123", + model="fake_model", + output=[response_output_message], + status="completed", + text=OpenAIResponseText(format=OpenAIResponseTextFormat(type="text")), + input=[input_item_message], + messages=[ + OpenAIUserMessageParam(content="Name some towns in Ireland"), + OpenAIAssistantMessageParam(content="Galway, Longford, Sligo"), + ], + instructions="You are a helpful assistant.", + ) + mock_responses_store.get_response_object.return_value = response + + model = "meta-llama/Llama-3.1-8B-Instruct" + instructions = "You are a geography expert. Provide concise answers." + + mock_inference_api.openai_chat_completion.return_value = fake_stream() + + # Execute + await openai_responses_impl.create_openai_response( + input="Which is the largest?", model=model, instructions=instructions, previous_response_id="123" + ) + + # Verify + mock_inference_api.openai_chat_completion.assert_called_once() + call_args = mock_inference_api.openai_chat_completion.call_args + params = call_args.args[0] + sent_messages = params.messages + + # Check that instructions were prepended as a system message + # and that the previous response instructions were not carried over + assert len(sent_messages) == 4, sent_messages + assert sent_messages[0].role == "system" + assert sent_messages[0].content == instructions + + # Check the rest of the messages were converted correctly + assert sent_messages[1].role == "user" + assert sent_messages[1].content == "Name some towns in Ireland" + assert sent_messages[2].role == "assistant" + assert sent_messages[2].content == "Galway, Longford, Sligo" + assert sent_messages[3].role == "user" + assert sent_messages[3].content == "Which is the largest?" + + async def test_list_openai_response_input_items_delegation(openai_responses_impl, mock_responses_store): """Test that list_openai_response_input_items properly delegates to responses_store with correct parameters.""" # Setup From 2c43285e226ac5e9f6995fbd0725109e99b28b6b Mon Sep 17 00:00:00 2001 From: Ashwin Bharambe Date: Mon, 20 Oct 2025 13:20:09 -0700 Subject: [PATCH 20/41] feat(stores)!: use backend storage references instead of configs (#3697) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit **This PR changes configurations in a backward incompatible way.** Run configs today repeat full SQLite/Postgres snippets everywhere a store is needed, which means duplicated credentials, extra connection pools, and lots of drift between files. This PR introduces named storage backends so the stack and providers can share a single catalog and reference those backends by name. ## Key Changes - Add `storage.backends` to `StackRunConfig`, register each KV/SQL backend once at startup, and validate that references point to the right family. - Move server stores under `storage.stores` with lightweight references (backend + namespace/table) instead of full configs. - Update every provider/config/doc to use the new reference style; docs/codegen now surface the simplified YAML. ## Migration Before: ```yaml metadata_store: type: sqlite db_path: ~/.llama/distributions/foo/registry.db inference_store: type: postgres host: ${env.POSTGRES_HOST} port: ${env.POSTGRES_PORT} db: ${env.POSTGRES_DB} user: ${env.POSTGRES_USER} password: ${env.POSTGRES_PASSWORD} conversations_store: type: postgres host: ${env.POSTGRES_HOST} port: ${env.POSTGRES_PORT} db: ${env.POSTGRES_DB} user: ${env.POSTGRES_USER} password: ${env.POSTGRES_PASSWORD} ``` After: ```yaml storage: backends: kv_default: type: kv_sqlite db_path: ~/.llama/distributions/foo/kvstore.db sql_default: type: sql_postgres host: ${env.POSTGRES_HOST} port: ${env.POSTGRES_PORT} db: ${env.POSTGRES_DB} user: ${env.POSTGRES_USER} password: ${env.POSTGRES_PASSWORD} stores: metadata: backend: kv_default namespace: registry inference: backend: sql_default table_name: inference_store max_write_queue_size: 10000 num_writers: 4 conversations: backend: sql_default table_name: openai_conversations ``` Provider configs follow the same pattern—for example, a Chroma vector adapter switches from: ```yaml providers: vector_io: - provider_id: chromadb provider_type: remote::chromadb config: url: ${env.CHROMADB_URL} kvstore: type: sqlite db_path: ~/.llama/distributions/foo/chroma.db ``` to: ```yaml providers: vector_io: - provider_id: chromadb provider_type: remote::chromadb config: url: ${env.CHROMADB_URL} persistence: backend: kv_default namespace: vector_io::chroma_remote ``` Once the backends are declared, everything else just points at them, so rotating credentials or swapping to Postgres happens in one place and the stack reuses a single connection pool. --- .../actions/run-and-record-tests/action.yml | 5 +- .github/workflows/integration-auth-tests.yml | 18 ++ .../k8s-benchmark/stack-configmap.yaml | 40 ++- .../k8s-benchmark/stack_run_config.yaml | 39 ++- docs/docs/distributions/configuration.mdx | 30 +- .../distributions/k8s/stack-configmap.yaml | 201 +++++++++---- .../distributions/k8s/stack_run_config.yaml | 39 ++- .../agents/inline_meta-reference.mdx | 18 +- .../providers/batches/inline_reference.mdx | 6 +- .../providers/datasetio/inline_localfs.mdx | 6 +- .../datasetio/remote_huggingface.mdx | 6 +- .../providers/eval/inline_meta-reference.mdx | 6 +- docs/docs/providers/files/inline_localfs.mdx | 6 +- docs/docs/providers/files/remote_s3.mdx | 6 +- .../providers/vector_io/inline_chromadb.mdx | 8 +- .../docs/providers/vector_io/inline_faiss.mdx | 8 +- .../vector_io/inline_meta-reference.mdx | 8 +- .../providers/vector_io/inline_milvus.mdx | 8 +- .../providers/vector_io/inline_qdrant.mdx | 8 +- .../providers/vector_io/inline_sqlite-vec.mdx | 8 +- .../providers/vector_io/inline_sqlite_vec.mdx | 8 +- .../providers/vector_io/remote_chromadb.mdx | 8 +- .../providers/vector_io/remote_milvus.mdx | 8 +- .../providers/vector_io/remote_pgvector.mdx | 8 +- .../providers/vector_io/remote_qdrant.mdx | 8 +- .../providers/vector_io/remote_weaviate.mdx | 8 +- llama_stack/cli/stack/_build.py | 43 ++- llama_stack/cli/stack/utils.py | 23 +- llama_stack/core/configure.py | 31 ++ .../core/conversations/conversations.py | 26 +- llama_stack/core/datatypes.py | 86 +++--- llama_stack/core/prompts/prompts.py | 13 +- llama_stack/core/routers/__init__.py | 13 +- llama_stack/core/server/quota.py | 18 +- llama_stack/core/stack.py | 46 ++- llama_stack/core/storage/__init__.py | 5 + llama_stack/core/storage/datatypes.py | 283 ++++++++++++++++++ llama_stack/core/store/registry.py | 13 +- llama_stack/distributions/ci-tests/run.yaml | 94 +++--- .../distributions/dell/run-with-safety.yaml | 62 ++-- llama_stack/distributions/dell/run.yaml | 62 ++-- .../meta-reference-gpu/run-with-safety.yaml | 62 ++-- .../distributions/meta-reference-gpu/run.yaml | 62 ++-- .../distributions/nvidia/run-with-safety.yaml | 58 ++-- llama_stack/distributions/nvidia/run.yaml | 54 ++-- .../distributions/open-benchmark/run.yaml | 74 +++-- .../postgres-demo/postgres_demo.py | 19 +- .../distributions/postgres-demo/run.yaml | 76 ++--- .../distributions/starter-gpu/run.yaml | 94 +++--- llama_stack/distributions/starter/run.yaml | 94 +++--- llama_stack/distributions/template.py | 76 +++-- llama_stack/distributions/watsonx/run.yaml | 66 ++-- .../inline/agents/meta_reference/agents.py | 4 +- .../inline/agents/meta_reference/config.py | 32 +- .../inline/batches/reference/config.py | 12 +- .../inline/datasetio/localfs/config.py | 15 +- .../inline/eval/meta_reference/config.py | 15 +- .../providers/inline/files/localfs/config.py | 12 +- .../inline/vector_io/chroma/config.py | 12 +- .../inline/vector_io/faiss/config.py | 15 +- .../providers/inline/vector_io/faiss/faiss.py | 2 +- .../inline/vector_io/milvus/config.py | 15 +- .../inline/vector_io/qdrant/config.py | 14 +- .../inline/vector_io/sqlite_vec/config.py | 15 +- .../inline/vector_io/sqlite_vec/sqlite_vec.py | 2 +- .../remote/datasetio/huggingface/config.py | 15 +- .../providers/remote/files/s3/config.py | 12 +- .../remote/vector_io/chroma/chroma.py | 2 +- .../remote/vector_io/chroma/config.py | 12 +- .../remote/vector_io/milvus/config.py | 12 +- .../remote/vector_io/milvus/milvus.py | 2 +- .../remote/vector_io/pgvector/config.py | 17 +- .../remote/vector_io/pgvector/pgvector.py | 2 +- .../remote/vector_io/qdrant/config.py | 15 +- .../remote/vector_io/qdrant/qdrant.py | 4 +- .../remote/vector_io/weaviate/config.py | 17 +- .../remote/vector_io/weaviate/weaviate.py | 4 +- .../utils/inference/inference_store.py | 36 +-- llama_stack/providers/utils/kvstore/config.py | 151 +--------- .../providers/utils/kvstore/kvstore.py | 41 ++- .../utils/responses/responses_store.py | 45 ++- .../utils/sqlstore/authorized_sqlstore.py | 18 +- .../utils/sqlstore/sqlalchemy_sqlstore.py | 2 +- .../providers/utils/sqlstore/sqlstore.py | 114 +++---- scripts/docker.sh | 2 +- tests/external/run-byoa.yaml | 18 ++ tests/integration/fixtures/common.py | 2 +- .../sqlstore/test_authorized_sqlstore.py | 13 +- .../test_persistence_integration.py | 71 +++++ tests/unit/cli/test_stack_config.py | 42 +++ .../unit/conversations/test_conversations.py | 35 ++- tests/unit/core/test_storage_references.py | 84 ++++++ tests/unit/distribution/test_distribution.py | 79 +++-- tests/unit/files/test_files.py | 8 +- tests/unit/prompts/prompts/conftest.py | 33 +- .../agent/test_meta_reference_agent.py | 35 ++- .../meta_reference/test_openai_responses.py | 8 +- tests/unit/providers/batches/conftest.py | 8 +- tests/unit/providers/files/conftest.py | 7 +- tests/unit/providers/vector_io/conftest.py | 14 +- tests/unit/registry/test_registry.py | 16 +- tests/unit/server/test_quota.py | 9 +- tests/unit/server/test_resolver.py | 48 ++- .../utils/inference/test_inference_store.py | 260 ++++++++-------- .../utils/responses/test_responses_store.py | 29 +- 105 files changed, 2290 insertions(+), 1292 deletions(-) create mode 100644 llama_stack/core/storage/__init__.py create mode 100644 llama_stack/core/storage/datatypes.py create mode 100644 tests/integration/test_persistence_integration.py create mode 100644 tests/unit/core/test_storage_references.py diff --git a/.github/actions/run-and-record-tests/action.yml b/.github/actions/run-and-record-tests/action.yml index a5aa31af4..3929df09c 100644 --- a/.github/actions/run-and-record-tests/action.yml +++ b/.github/actions/run-and-record-tests/action.yml @@ -82,11 +82,14 @@ runs: echo "No recording changes" fi - - name: Write inference logs to file + - name: Write docker logs to file if: ${{ always() }} shell: bash run: | sudo docker logs ollama > ollama-${{ inputs.inference-mode }}.log || true + distro_name=$(echo "${{ inputs.stack-config }}" | sed 's/^docker://' | sed 's/^server://') + stack_container_name="llama-stack-test-$distro_name" + sudo docker logs $stack_container_name > docker-${distro_name}-${{ inputs.inference-mode }}.log || true - name: Upload logs if: ${{ always() }} diff --git a/.github/workflows/integration-auth-tests.yml b/.github/workflows/integration-auth-tests.yml index ea3ff2b64..30a8063ea 100644 --- a/.github/workflows/integration-auth-tests.yml +++ b/.github/workflows/integration-auth-tests.yml @@ -73,6 +73,24 @@ jobs: image_name: kube apis: [] providers: {} + storage: + backends: + kv_default: + type: kv_sqlite + db_path: $run_dir/kvstore.db + sql_default: + type: sql_sqlite + db_path: $run_dir/sql_store.db + stores: + metadata: + namespace: registry + backend: kv_default + inference: + table_name: inference_store + backend: sql_default + conversations: + table_name: openai_conversations + backend: sql_default server: port: 8321 EOF diff --git a/benchmarking/k8s-benchmark/stack-configmap.yaml b/benchmarking/k8s-benchmark/stack-configmap.yaml index bb8a48d65..e1ca170f5 100644 --- a/benchmarking/k8s-benchmark/stack-configmap.yaml +++ b/benchmarking/k8s-benchmark/stack-configmap.yaml @@ -98,21 +98,30 @@ data: - provider_id: model-context-protocol provider_type: remote::model-context-protocol config: {} - metadata_store: - type: postgres - host: ${env.POSTGRES_HOST:=localhost} - port: ${env.POSTGRES_PORT:=5432} - db: ${env.POSTGRES_DB:=llamastack} - user: ${env.POSTGRES_USER:=llamastack} - password: ${env.POSTGRES_PASSWORD:=llamastack} - table_name: llamastack_kvstore - inference_store: - type: postgres - host: ${env.POSTGRES_HOST:=localhost} - port: ${env.POSTGRES_PORT:=5432} - db: ${env.POSTGRES_DB:=llamastack} - user: ${env.POSTGRES_USER:=llamastack} - password: ${env.POSTGRES_PASSWORD:=llamastack} + storage: + backends: + kv_default: + type: kv_postgres + host: ${env.POSTGRES_HOST:=localhost} + port: ${env.POSTGRES_PORT:=5432} + db: ${env.POSTGRES_DB:=llamastack} + user: ${env.POSTGRES_USER:=llamastack} + password: ${env.POSTGRES_PASSWORD:=llamastack} + table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore} + sql_default: + type: sql_postgres + host: ${env.POSTGRES_HOST:=localhost} + port: ${env.POSTGRES_PORT:=5432} + db: ${env.POSTGRES_DB:=llamastack} + user: ${env.POSTGRES_USER:=llamastack} + password: ${env.POSTGRES_PASSWORD:=llamastack} + references: + metadata: + backend: kv_default + namespace: registry + inference: + backend: sql_default + table_name: inference_store models: - metadata: embedding_dimension: 768 @@ -137,5 +146,4 @@ data: port: 8323 kind: ConfigMap metadata: - creationTimestamp: null name: llama-stack-config diff --git a/benchmarking/k8s-benchmark/stack_run_config.yaml b/benchmarking/k8s-benchmark/stack_run_config.yaml index e2fbfd7a4..2ccaa21aa 100644 --- a/benchmarking/k8s-benchmark/stack_run_config.yaml +++ b/benchmarking/k8s-benchmark/stack_run_config.yaml @@ -95,21 +95,30 @@ providers: - provider_id: model-context-protocol provider_type: remote::model-context-protocol config: {} -metadata_store: - type: postgres - host: ${env.POSTGRES_HOST:=localhost} - port: ${env.POSTGRES_PORT:=5432} - db: ${env.POSTGRES_DB:=llamastack} - user: ${env.POSTGRES_USER:=llamastack} - password: ${env.POSTGRES_PASSWORD:=llamastack} - table_name: llamastack_kvstore -inference_store: - type: postgres - host: ${env.POSTGRES_HOST:=localhost} - port: ${env.POSTGRES_PORT:=5432} - db: ${env.POSTGRES_DB:=llamastack} - user: ${env.POSTGRES_USER:=llamastack} - password: ${env.POSTGRES_PASSWORD:=llamastack} +storage: + backends: + kv_default: + type: kv_postgres + host: ${env.POSTGRES_HOST:=localhost} + port: ${env.POSTGRES_PORT:=5432} + db: ${env.POSTGRES_DB:=llamastack} + user: ${env.POSTGRES_USER:=llamastack} + password: ${env.POSTGRES_PASSWORD:=llamastack} + table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore} + sql_default: + type: sql_postgres + host: ${env.POSTGRES_HOST:=localhost} + port: ${env.POSTGRES_PORT:=5432} + db: ${env.POSTGRES_DB:=llamastack} + user: ${env.POSTGRES_USER:=llamastack} + password: ${env.POSTGRES_PASSWORD:=llamastack} + references: + metadata: + backend: kv_default + namespace: registry + inference: + backend: sql_default + table_name: inference_store models: - metadata: embedding_dimension: 768 diff --git a/docs/docs/distributions/configuration.mdx b/docs/docs/distributions/configuration.mdx index 81243c97b..bf3156865 100644 --- a/docs/docs/distributions/configuration.mdx +++ b/docs/docs/distributions/configuration.mdx @@ -44,18 +44,32 @@ providers: - provider_id: meta-reference provider_type: inline::meta-reference config: - persistence_store: - type: sqlite - namespace: null - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ollama}/agents_store.db + persistence: + agent_state: + backend: kv_default + namespace: agents + responses: + backend: sql_default + table_name: responses telemetry: - provider_id: meta-reference provider_type: inline::meta-reference config: {} -metadata_store: - namespace: null - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ollama}/registry.db +storage: + backends: + kv_default: + type: kv_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ollama}/kvstore.db + sql_default: + type: sql_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ollama}/sqlstore.db + references: + metadata: + backend: kv_default + namespace: registry + inference: + backend: sql_default + table_name: inference_store models: - metadata: {} model_id: ${env.INFERENCE_MODEL} diff --git a/docs/docs/distributions/k8s/stack-configmap.yaml b/docs/docs/distributions/k8s/stack-configmap.yaml index 3dbb0da97..c71ab05d8 100644 --- a/docs/docs/distributions/k8s/stack-configmap.yaml +++ b/docs/docs/distributions/k8s/stack-configmap.yaml @@ -1,56 +1,155 @@ apiVersion: v1 data: - stack_run_config.yaml: "version: '2'\nimage_name: kubernetes-demo\napis:\n- agents\n- - inference\n- files\n- safety\n- telemetry\n- tool_runtime\n- vector_io\nproviders:\n - \ inference:\n - provider_id: vllm-inference\n provider_type: remote::vllm\n - \ config:\n url: ${env.VLLM_URL:=http://localhost:8000/v1}\n max_tokens: - ${env.VLLM_MAX_TOKENS:=4096}\n api_token: ${env.VLLM_API_TOKEN:=fake}\n tls_verify: - ${env.VLLM_TLS_VERIFY:=true}\n - provider_id: vllm-safety\n provider_type: - remote::vllm\n config:\n url: ${env.VLLM_SAFETY_URL:=http://localhost:8000/v1}\n - \ max_tokens: ${env.VLLM_MAX_TOKENS:=4096}\n api_token: ${env.VLLM_API_TOKEN:=fake}\n - \ tls_verify: ${env.VLLM_TLS_VERIFY:=true}\n - provider_id: sentence-transformers\n - \ provider_type: inline::sentence-transformers\n config: {}\n vector_io:\n - \ - provider_id: ${env.ENABLE_CHROMADB:+chromadb}\n provider_type: remote::chromadb\n - \ config:\n url: ${env.CHROMADB_URL:=}\n kvstore:\n type: postgres\n - \ host: ${env.POSTGRES_HOST:=localhost}\n port: ${env.POSTGRES_PORT:=5432}\n - \ db: ${env.POSTGRES_DB:=llamastack}\n user: ${env.POSTGRES_USER:=llamastack}\n - \ password: ${env.POSTGRES_PASSWORD:=llamastack}\n files:\n - provider_id: - meta-reference-files\n provider_type: inline::localfs\n config:\n storage_dir: - ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files}\n metadata_store:\n - \ type: sqlite\n db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/files_metadata.db - \ \n safety:\n - provider_id: llama-guard\n provider_type: inline::llama-guard\n - \ config:\n excluded_categories: []\n agents:\n - provider_id: meta-reference\n - \ provider_type: inline::meta-reference\n config:\n persistence_store:\n - \ type: postgres\n host: ${env.POSTGRES_HOST:=localhost}\n port: - ${env.POSTGRES_PORT:=5432}\n db: ${env.POSTGRES_DB:=llamastack}\n user: - ${env.POSTGRES_USER:=llamastack}\n password: ${env.POSTGRES_PASSWORD:=llamastack}\n - \ responses_store:\n type: postgres\n host: ${env.POSTGRES_HOST:=localhost}\n - \ port: ${env.POSTGRES_PORT:=5432}\n db: ${env.POSTGRES_DB:=llamastack}\n - \ user: ${env.POSTGRES_USER:=llamastack}\n password: ${env.POSTGRES_PASSWORD:=llamastack}\n - \ telemetry:\n - provider_id: meta-reference\n provider_type: inline::meta-reference\n - \ config:\n service_name: \"${env.OTEL_SERVICE_NAME:=\\u200B}\"\n sinks: - ${env.TELEMETRY_SINKS:=console}\n tool_runtime:\n - provider_id: brave-search\n - \ provider_type: remote::brave-search\n config:\n api_key: ${env.BRAVE_SEARCH_API_KEY:+}\n - \ max_results: 3\n - provider_id: tavily-search\n provider_type: remote::tavily-search\n - \ config:\n api_key: ${env.TAVILY_SEARCH_API_KEY:+}\n max_results: - 3\n - provider_id: rag-runtime\n provider_type: inline::rag-runtime\n config: - {}\n - provider_id: model-context-protocol\n provider_type: remote::model-context-protocol\n - \ config: {}\nmetadata_store:\n type: postgres\n host: ${env.POSTGRES_HOST:=localhost}\n - \ port: ${env.POSTGRES_PORT:=5432}\n db: ${env.POSTGRES_DB:=llamastack}\n user: - ${env.POSTGRES_USER:=llamastack}\n password: ${env.POSTGRES_PASSWORD:=llamastack}\n - \ table_name: llamastack_kvstore\ninference_store:\n type: postgres\n host: - ${env.POSTGRES_HOST:=localhost}\n port: ${env.POSTGRES_PORT:=5432}\n db: ${env.POSTGRES_DB:=llamastack}\n - \ user: ${env.POSTGRES_USER:=llamastack}\n password: ${env.POSTGRES_PASSWORD:=llamastack}\nmodels:\n- - metadata:\n embedding_dimension: 384\n model_id: all-MiniLM-L6-v2\n provider_id: - sentence-transformers\n model_type: embedding\n- metadata: {}\n model_id: ${env.INFERENCE_MODEL}\n - \ provider_id: vllm-inference\n model_type: llm\n- metadata: {}\n model_id: - ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}\n provider_id: vllm-safety\n - \ model_type: llm\nshields:\n- shield_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B}\nvector_dbs: - []\ndatasets: []\nscoring_fns: []\nbenchmarks: []\ntool_groups:\n- toolgroup_id: - builtin::websearch\n provider_id: tavily-search\n- toolgroup_id: builtin::rag\n - \ provider_id: rag-runtime\nserver:\n port: 8321\n auth:\n provider_config:\n - \ type: github_token\n" + stack_run_config.yaml: | + version: '2' + image_name: kubernetes-demo + apis: + - agents + - inference + - files + - safety + - telemetry + - tool_runtime + - vector_io + providers: + inference: + - provider_id: vllm-inference + provider_type: remote::vllm + config: + url: ${env.VLLM_URL:=http://localhost:8000/v1} + max_tokens: ${env.VLLM_MAX_TOKENS:=4096} + api_token: ${env.VLLM_API_TOKEN:=fake} + tls_verify: ${env.VLLM_TLS_VERIFY:=true} + - provider_id: vllm-safety + provider_type: remote::vllm + config: + url: ${env.VLLM_SAFETY_URL:=http://localhost:8000/v1} + max_tokens: ${env.VLLM_MAX_TOKENS:=4096} + api_token: ${env.VLLM_API_TOKEN:=fake} + tls_verify: ${env.VLLM_TLS_VERIFY:=true} + - provider_id: sentence-transformers + provider_type: inline::sentence-transformers + config: {} + vector_io: + - provider_id: ${env.ENABLE_CHROMADB:+chromadb} + provider_type: remote::chromadb + config: + url: ${env.CHROMADB_URL:=} + kvstore: + type: postgres + host: ${env.POSTGRES_HOST:=localhost} + port: ${env.POSTGRES_PORT:=5432} + db: ${env.POSTGRES_DB:=llamastack} + user: ${env.POSTGRES_USER:=llamastack} + password: ${env.POSTGRES_PASSWORD:=llamastack} + files: + - provider_id: meta-reference-files + provider_type: inline::localfs + config: + storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files} + metadata_store: + type: sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/files_metadata.db + safety: + - provider_id: llama-guard + provider_type: inline::llama-guard + config: + excluded_categories: [] + agents: + - provider_id: meta-reference + provider_type: inline::meta-reference + config: + persistence_store: + type: postgres + host: ${env.POSTGRES_HOST:=localhost} + port: ${env.POSTGRES_PORT:=5432} + db: ${env.POSTGRES_DB:=llamastack} + user: ${env.POSTGRES_USER:=llamastack} + password: ${env.POSTGRES_PASSWORD:=llamastack} + responses_store: + type: postgres + host: ${env.POSTGRES_HOST:=localhost} + port: ${env.POSTGRES_PORT:=5432} + db: ${env.POSTGRES_DB:=llamastack} + user: ${env.POSTGRES_USER:=llamastack} + password: ${env.POSTGRES_PASSWORD:=llamastack} + telemetry: + - provider_id: meta-reference + provider_type: inline::meta-reference + config: + service_name: "${env.OTEL_SERVICE_NAME:=\u200B}" + sinks: ${env.TELEMETRY_SINKS:=console} + tool_runtime: + - provider_id: brave-search + provider_type: remote::brave-search + config: + api_key: ${env.BRAVE_SEARCH_API_KEY:+} + max_results: 3 + - provider_id: tavily-search + provider_type: remote::tavily-search + config: + api_key: ${env.TAVILY_SEARCH_API_KEY:+} + max_results: 3 + - provider_id: rag-runtime + provider_type: inline::rag-runtime + config: {} + - provider_id: model-context-protocol + provider_type: remote::model-context-protocol + config: {} + storage: + backends: + kv_default: + type: kv_postgres + host: ${env.POSTGRES_HOST:=localhost} + port: ${env.POSTGRES_PORT:=5432} + db: ${env.POSTGRES_DB:=llamastack} + user: ${env.POSTGRES_USER:=llamastack} + password: ${env.POSTGRES_PASSWORD:=llamastack} + table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore} + sql_default: + type: sql_postgres + host: ${env.POSTGRES_HOST:=localhost} + port: ${env.POSTGRES_PORT:=5432} + db: ${env.POSTGRES_DB:=llamastack} + user: ${env.POSTGRES_USER:=llamastack} + password: ${env.POSTGRES_PASSWORD:=llamastack} + references: + metadata: + backend: kv_default + namespace: registry + inference: + backend: sql_default + table_name: inference_store + models: + - metadata: + embedding_dimension: 768 + model_id: nomic-embed-text-v1.5 + provider_id: sentence-transformers + model_type: embedding + - metadata: {} + model_id: ${env.INFERENCE_MODEL} + provider_id: vllm-inference + model_type: llm + - metadata: {} + model_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B} + provider_id: vllm-safety + model_type: llm + shields: + - shield_id: ${env.SAFETY_MODEL:=meta-llama/Llama-Guard-3-1B} + vector_dbs: [] + datasets: [] + scoring_fns: [] + benchmarks: [] + tool_groups: + - toolgroup_id: builtin::websearch + provider_id: tavily-search + - toolgroup_id: builtin::rag + provider_id: rag-runtime + server: + port: 8321 + auth: + provider_config: + type: github_token kind: ConfigMap metadata: - creationTimestamp: null name: llama-stack-config diff --git a/docs/docs/distributions/k8s/stack_run_config.yaml b/docs/docs/distributions/k8s/stack_run_config.yaml index ee28a1ea8..863565fdf 100644 --- a/docs/docs/distributions/k8s/stack_run_config.yaml +++ b/docs/docs/distributions/k8s/stack_run_config.yaml @@ -93,21 +93,30 @@ providers: - provider_id: model-context-protocol provider_type: remote::model-context-protocol config: {} -metadata_store: - type: postgres - host: ${env.POSTGRES_HOST:=localhost} - port: ${env.POSTGRES_PORT:=5432} - db: ${env.POSTGRES_DB:=llamastack} - user: ${env.POSTGRES_USER:=llamastack} - password: ${env.POSTGRES_PASSWORD:=llamastack} - table_name: llamastack_kvstore -inference_store: - type: postgres - host: ${env.POSTGRES_HOST:=localhost} - port: ${env.POSTGRES_PORT:=5432} - db: ${env.POSTGRES_DB:=llamastack} - user: ${env.POSTGRES_USER:=llamastack} - password: ${env.POSTGRES_PASSWORD:=llamastack} +storage: + backends: + kv_default: + type: kv_postgres + host: ${env.POSTGRES_HOST:=localhost} + port: ${env.POSTGRES_PORT:=5432} + db: ${env.POSTGRES_DB:=llamastack} + user: ${env.POSTGRES_USER:=llamastack} + password: ${env.POSTGRES_PASSWORD:=llamastack} + table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore} + sql_default: + type: sql_postgres + host: ${env.POSTGRES_HOST:=localhost} + port: ${env.POSTGRES_PORT:=5432} + db: ${env.POSTGRES_DB:=llamastack} + user: ${env.POSTGRES_USER:=llamastack} + password: ${env.POSTGRES_PASSWORD:=llamastack} + references: + metadata: + backend: kv_default + namespace: registry + inference: + backend: sql_default + table_name: inference_store models: - metadata: embedding_dimension: 768 diff --git a/docs/docs/providers/agents/inline_meta-reference.mdx b/docs/docs/providers/agents/inline_meta-reference.mdx index fd961745f..fac9b8406 100644 --- a/docs/docs/providers/agents/inline_meta-reference.mdx +++ b/docs/docs/providers/agents/inline_meta-reference.mdx @@ -14,16 +14,18 @@ Meta's reference implementation of an agent system that can use tools, access ve | Field | Type | Required | Default | Description | |-------|------|----------|---------|-------------| -| `persistence_store` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | | -| `responses_store` | `utils.sqlstore.sqlstore.SqliteSqlStoreConfig \| utils.sqlstore.sqlstore.PostgresSqlStoreConfig` | No | sqlite | | +| `persistence` | `` | No | | | ## Sample Configuration ```yaml -persistence_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/agents_store.db -responses_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/responses_store.db +persistence: + agent_state: + namespace: agents + backend: kv_default + responses: + table_name: responses + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 ``` diff --git a/docs/docs/providers/batches/inline_reference.mdx b/docs/docs/providers/batches/inline_reference.mdx index f43800555..45304fbb1 100644 --- a/docs/docs/providers/batches/inline_reference.mdx +++ b/docs/docs/providers/batches/inline_reference.mdx @@ -14,7 +14,7 @@ Reference implementation of batches API with KVStore persistence. | Field | Type | Required | Default | Description | |-------|------|----------|---------|-------------| -| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Configuration for the key-value store backend. | +| `kvstore` | `` | No | | Configuration for the key-value store backend. | | `max_concurrent_batches` | `` | No | 1 | Maximum number of concurrent batches to process simultaneously. | | `max_concurrent_requests_per_batch` | `` | No | 10 | Maximum number of concurrent requests to process per batch. | @@ -22,6 +22,6 @@ Reference implementation of batches API with KVStore persistence. ```yaml kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/batches.db + namespace: batches + backend: kv_default ``` diff --git a/docs/docs/providers/datasetio/inline_localfs.mdx b/docs/docs/providers/datasetio/inline_localfs.mdx index b02a3a3bd..a9363376c 100644 --- a/docs/docs/providers/datasetio/inline_localfs.mdx +++ b/docs/docs/providers/datasetio/inline_localfs.mdx @@ -14,12 +14,12 @@ Local filesystem-based dataset I/O provider for reading and writing datasets to | Field | Type | Required | Default | Description | |-------|------|----------|---------|-------------| -| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | | +| `kvstore` | `` | No | | | ## Sample Configuration ```yaml kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/localfs_datasetio.db + namespace: datasetio::localfs + backend: kv_default ``` diff --git a/docs/docs/providers/datasetio/remote_huggingface.mdx b/docs/docs/providers/datasetio/remote_huggingface.mdx index 82597d999..de3ffaaa6 100644 --- a/docs/docs/providers/datasetio/remote_huggingface.mdx +++ b/docs/docs/providers/datasetio/remote_huggingface.mdx @@ -14,12 +14,12 @@ HuggingFace datasets provider for accessing and managing datasets from the Huggi | Field | Type | Required | Default | Description | |-------|------|----------|---------|-------------| -| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | | +| `kvstore` | `` | No | | | ## Sample Configuration ```yaml kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/huggingface_datasetio.db + namespace: datasetio::huggingface + backend: kv_default ``` diff --git a/docs/docs/providers/eval/inline_meta-reference.mdx b/docs/docs/providers/eval/inline_meta-reference.mdx index b0eb589e0..2c86c18c9 100644 --- a/docs/docs/providers/eval/inline_meta-reference.mdx +++ b/docs/docs/providers/eval/inline_meta-reference.mdx @@ -14,12 +14,12 @@ Meta's reference implementation of evaluation tasks with support for multiple la | Field | Type | Required | Default | Description | |-------|------|----------|---------|-------------| -| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | | +| `kvstore` | `` | No | | | ## Sample Configuration ```yaml kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/meta_reference_eval.db + namespace: eval + backend: kv_default ``` diff --git a/docs/docs/providers/files/inline_localfs.mdx b/docs/docs/providers/files/inline_localfs.mdx index 86d141f93..bff0c4eb9 100644 --- a/docs/docs/providers/files/inline_localfs.mdx +++ b/docs/docs/providers/files/inline_localfs.mdx @@ -15,7 +15,7 @@ Local filesystem-based file storage provider for managing files and documents lo | Field | Type | Required | Default | Description | |-------|------|----------|---------|-------------| | `storage_dir` | `` | No | | Directory to store uploaded files | -| `metadata_store` | `utils.sqlstore.sqlstore.SqliteSqlStoreConfig \| utils.sqlstore.sqlstore.PostgresSqlStoreConfig` | No | sqlite | SQL store configuration for file metadata | +| `metadata_store` | `` | No | | SQL store configuration for file metadata | | `ttl_secs` | `` | No | 31536000 | | ## Sample Configuration @@ -23,6 +23,6 @@ Local filesystem-based file storage provider for managing files and documents lo ```yaml storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/dummy/files} metadata_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/files_metadata.db + table_name: files_metadata + backend: sql_default ``` diff --git a/docs/docs/providers/files/remote_s3.mdx b/docs/docs/providers/files/remote_s3.mdx index 353cedbfb..65cd545c5 100644 --- a/docs/docs/providers/files/remote_s3.mdx +++ b/docs/docs/providers/files/remote_s3.mdx @@ -20,7 +20,7 @@ AWS S3-based file storage provider for scalable cloud file management with metad | `aws_secret_access_key` | `str \| None` | No | | AWS secret access key (optional if using IAM roles) | | `endpoint_url` | `str \| None` | No | | Custom S3 endpoint URL (for MinIO, LocalStack, etc.) | | `auto_create_bucket` | `` | No | False | Automatically create the S3 bucket if it doesn't exist | -| `metadata_store` | `utils.sqlstore.sqlstore.SqliteSqlStoreConfig \| utils.sqlstore.sqlstore.PostgresSqlStoreConfig` | No | sqlite | SQL store configuration for file metadata | +| `metadata_store` | `` | No | | SQL store configuration for file metadata | ## Sample Configuration @@ -32,6 +32,6 @@ aws_secret_access_key: ${env.AWS_SECRET_ACCESS_KEY:=} endpoint_url: ${env.S3_ENDPOINT_URL:=} auto_create_bucket: ${env.S3_AUTO_CREATE_BUCKET:=false} metadata_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/s3_files_metadata.db + table_name: s3_files_metadata + backend: sql_default ``` diff --git a/docs/docs/providers/vector_io/inline_chromadb.mdx b/docs/docs/providers/vector_io/inline_chromadb.mdx index a1858eacc..0be5cd5b3 100644 --- a/docs/docs/providers/vector_io/inline_chromadb.mdx +++ b/docs/docs/providers/vector_io/inline_chromadb.mdx @@ -79,13 +79,13 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti | Field | Type | Required | Default | Description | |-------|------|----------|---------|-------------| | `db_path` | `` | No | | | -| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend | +| `persistence` | `` | No | | Config for KV store backend | ## Sample Configuration ```yaml db_path: ${env.CHROMADB_PATH} -kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/chroma_inline_registry.db +persistence: + namespace: vector_io::chroma + backend: kv_default ``` diff --git a/docs/docs/providers/vector_io/inline_faiss.mdx b/docs/docs/providers/vector_io/inline_faiss.mdx index 03bc2a928..3a1fba055 100644 --- a/docs/docs/providers/vector_io/inline_faiss.mdx +++ b/docs/docs/providers/vector_io/inline_faiss.mdx @@ -95,12 +95,12 @@ more details about Faiss in general. | Field | Type | Required | Default | Description | |-------|------|----------|---------|-------------| -| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | | +| `persistence` | `` | No | | | ## Sample Configuration ```yaml -kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/faiss_store.db +persistence: + namespace: vector_io::faiss + backend: kv_default ``` diff --git a/docs/docs/providers/vector_io/inline_meta-reference.mdx b/docs/docs/providers/vector_io/inline_meta-reference.mdx index bcad86750..17fd40cf5 100644 --- a/docs/docs/providers/vector_io/inline_meta-reference.mdx +++ b/docs/docs/providers/vector_io/inline_meta-reference.mdx @@ -14,14 +14,14 @@ Meta's reference implementation of a vector database. | Field | Type | Required | Default | Description | |-------|------|----------|---------|-------------| -| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | | +| `persistence` | `` | No | | | ## Sample Configuration ```yaml -kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/faiss_store.db +persistence: + namespace: vector_io::faiss + backend: kv_default ``` ## Deprecation Notice diff --git a/docs/docs/providers/vector_io/inline_milvus.mdx b/docs/docs/providers/vector_io/inline_milvus.mdx index 7e6f15c81..6063edab1 100644 --- a/docs/docs/providers/vector_io/inline_milvus.mdx +++ b/docs/docs/providers/vector_io/inline_milvus.mdx @@ -17,14 +17,14 @@ Please refer to the remote provider documentation. | Field | Type | Required | Default | Description | |-------|------|----------|---------|-------------| | `db_path` | `` | No | | | -| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend (SQLite only for now) | +| `persistence` | `` | No | | Config for KV store backend (SQLite only for now) | | `consistency_level` | `` | No | Strong | The consistency level of the Milvus server | ## Sample Configuration ```yaml db_path: ${env.MILVUS_DB_PATH:=~/.llama/dummy}/milvus.db -kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/milvus_registry.db +persistence: + namespace: vector_io::milvus + backend: kv_default ``` diff --git a/docs/docs/providers/vector_io/inline_qdrant.mdx b/docs/docs/providers/vector_io/inline_qdrant.mdx index 5c9ab10f2..057d96761 100644 --- a/docs/docs/providers/vector_io/inline_qdrant.mdx +++ b/docs/docs/providers/vector_io/inline_qdrant.mdx @@ -98,13 +98,13 @@ See the [Qdrant documentation](https://qdrant.tech/documentation/) for more deta | Field | Type | Required | Default | Description | |-------|------|----------|---------|-------------| | `path` | `` | No | | | -| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | | +| `persistence` | `` | No | | | ## Sample Configuration ```yaml path: ${env.QDRANT_PATH:=~/.llama/~/.llama/dummy}/qdrant.db -kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/qdrant_registry.db +persistence: + namespace: vector_io::qdrant + backend: kv_default ``` diff --git a/docs/docs/providers/vector_io/inline_sqlite-vec.mdx b/docs/docs/providers/vector_io/inline_sqlite-vec.mdx index aa6992a56..98a372250 100644 --- a/docs/docs/providers/vector_io/inline_sqlite-vec.mdx +++ b/docs/docs/providers/vector_io/inline_sqlite-vec.mdx @@ -408,13 +408,13 @@ See [sqlite-vec's GitHub repo](https://github.com/asg017/sqlite-vec/tree/main) f | Field | Type | Required | Default | Description | |-------|------|----------|---------|-------------| | `db_path` | `` | No | | Path to the SQLite database file | -| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend (SQLite only for now) | +| `persistence` | `` | No | | Config for KV store backend (SQLite only for now) | ## Sample Configuration ```yaml db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/sqlite_vec.db -kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/sqlite_vec_registry.db +persistence: + namespace: vector_io::sqlite_vec + backend: kv_default ``` diff --git a/docs/docs/providers/vector_io/inline_sqlite_vec.mdx b/docs/docs/providers/vector_io/inline_sqlite_vec.mdx index 7f69f617d..67cbd0021 100644 --- a/docs/docs/providers/vector_io/inline_sqlite_vec.mdx +++ b/docs/docs/providers/vector_io/inline_sqlite_vec.mdx @@ -17,15 +17,15 @@ Please refer to the sqlite-vec provider documentation. | Field | Type | Required | Default | Description | |-------|------|----------|---------|-------------| | `db_path` | `` | No | | Path to the SQLite database file | -| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend (SQLite only for now) | +| `persistence` | `` | No | | Config for KV store backend (SQLite only for now) | ## Sample Configuration ```yaml db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/sqlite_vec.db -kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/sqlite_vec_registry.db +persistence: + namespace: vector_io::sqlite_vec + backend: kv_default ``` ## Deprecation Notice diff --git a/docs/docs/providers/vector_io/remote_chromadb.mdx b/docs/docs/providers/vector_io/remote_chromadb.mdx index 807771003..2aee3eeca 100644 --- a/docs/docs/providers/vector_io/remote_chromadb.mdx +++ b/docs/docs/providers/vector_io/remote_chromadb.mdx @@ -78,13 +78,13 @@ See [Chroma's documentation](https://docs.trychroma.com/docs/overview/introducti | Field | Type | Required | Default | Description | |-------|------|----------|---------|-------------| | `url` | `str \| None` | No | | | -| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend | +| `persistence` | `` | No | | Config for KV store backend | ## Sample Configuration ```yaml url: ${env.CHROMADB_URL} -kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/chroma_remote_registry.db +persistence: + namespace: vector_io::chroma_remote + backend: kv_default ``` diff --git a/docs/docs/providers/vector_io/remote_milvus.mdx b/docs/docs/providers/vector_io/remote_milvus.mdx index 7f7c08122..bf9935d61 100644 --- a/docs/docs/providers/vector_io/remote_milvus.mdx +++ b/docs/docs/providers/vector_io/remote_milvus.mdx @@ -408,7 +408,7 @@ For more details on TLS configuration, refer to the [TLS setup guide](https://mi | `uri` | `` | No | | The URI of the Milvus server | | `token` | `str \| None` | No | | The token of the Milvus server | | `consistency_level` | `` | No | Strong | The consistency level of the Milvus server | -| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | Config for KV store backend | +| `persistence` | `` | No | | Config for KV store backend | | `config` | `dict` | No | `{}` | This configuration allows additional fields to be passed through to the underlying Milvus client. See the [Milvus](https://milvus.io/docs/install-overview.md) documentation for more details about Milvus in general. | :::note @@ -420,7 +420,7 @@ This configuration class accepts additional fields beyond those listed above. Yo ```yaml uri: ${env.MILVUS_ENDPOINT} token: ${env.MILVUS_TOKEN} -kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/milvus_remote_registry.db +persistence: + namespace: vector_io::milvus_remote + backend: kv_default ``` diff --git a/docs/docs/providers/vector_io/remote_pgvector.mdx b/docs/docs/providers/vector_io/remote_pgvector.mdx index d21810c68..cb70f35d1 100644 --- a/docs/docs/providers/vector_io/remote_pgvector.mdx +++ b/docs/docs/providers/vector_io/remote_pgvector.mdx @@ -218,7 +218,7 @@ See [PGVector's documentation](https://github.com/pgvector/pgvector) for more de | `db` | `str \| None` | No | postgres | | | `user` | `str \| None` | No | postgres | | | `password` | `str \| None` | No | mysecretpassword | | -| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig, annotation=NoneType, required=False, default='sqlite', discriminator='type'` | No | | Config for KV store backend (SQLite only for now) | +| `persistence` | `llama_stack.core.storage.datatypes.KVStoreReference \| None` | No | | Config for KV store backend (SQLite only for now) | ## Sample Configuration @@ -228,7 +228,7 @@ port: ${env.PGVECTOR_PORT:=5432} db: ${env.PGVECTOR_DB} user: ${env.PGVECTOR_USER} password: ${env.PGVECTOR_PASSWORD} -kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/pgvector_registry.db +persistence: + namespace: vector_io::pgvector + backend: kv_default ``` diff --git a/docs/docs/providers/vector_io/remote_qdrant.mdx b/docs/docs/providers/vector_io/remote_qdrant.mdx index c44a2b937..dff9642b5 100644 --- a/docs/docs/providers/vector_io/remote_qdrant.mdx +++ b/docs/docs/providers/vector_io/remote_qdrant.mdx @@ -26,13 +26,13 @@ Please refer to the inline provider documentation. | `prefix` | `str \| None` | No | | | | `timeout` | `int \| None` | No | | | | `host` | `str \| None` | No | | | -| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig` | No | sqlite | | +| `persistence` | `` | No | | | ## Sample Configuration ```yaml api_key: ${env.QDRANT_API_KEY:=} -kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/qdrant_registry.db +persistence: + namespace: vector_io::qdrant_remote + backend: kv_default ``` diff --git a/docs/docs/providers/vector_io/remote_weaviate.mdx b/docs/docs/providers/vector_io/remote_weaviate.mdx index 3f1e36422..b809bed2e 100644 --- a/docs/docs/providers/vector_io/remote_weaviate.mdx +++ b/docs/docs/providers/vector_io/remote_weaviate.mdx @@ -75,14 +75,14 @@ See [Weaviate's documentation](https://weaviate.io/developers/weaviate) for more |-------|------|----------|---------|-------------| | `weaviate_api_key` | `str \| None` | No | | The API key for the Weaviate instance | | `weaviate_cluster_url` | `str \| None` | No | localhost:8080 | The URL of the Weaviate cluster | -| `kvstore` | `utils.kvstore.config.RedisKVStoreConfig \| utils.kvstore.config.SqliteKVStoreConfig \| utils.kvstore.config.PostgresKVStoreConfig \| utils.kvstore.config.MongoDBKVStoreConfig, annotation=NoneType, required=False, default='sqlite', discriminator='type'` | No | | Config for KV store backend (SQLite only for now) | +| `persistence` | `llama_stack.core.storage.datatypes.KVStoreReference \| None` | No | | Config for KV store backend (SQLite only for now) | ## Sample Configuration ```yaml weaviate_api_key: null weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080} -kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/weaviate_registry.db +persistence: + namespace: vector_io::weaviate + backend: kv_default ``` diff --git a/llama_stack/cli/stack/_build.py b/llama_stack/cli/stack/_build.py index 471d5cb66..2a30ff394 100644 --- a/llama_stack/cli/stack/_build.py +++ b/llama_stack/cli/stack/_build.py @@ -40,12 +40,20 @@ from llama_stack.core.distribution import get_provider_registry from llama_stack.core.external import load_external_apis from llama_stack.core.resolver import InvalidProviderError from llama_stack.core.stack import replace_env_vars +from llama_stack.core.storage.datatypes import ( + InferenceStoreReference, + KVStoreReference, + ServerStoresConfig, + SqliteKVStoreConfig, + SqliteSqlStoreConfig, + SqlStoreReference, + StorageConfig, +) from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR, EXTERNAL_PROVIDERS_DIR from llama_stack.core.utils.dynamic import instantiate_class_type from llama_stack.core.utils.exec import formulate_run_args, run_command from llama_stack.core.utils.image_types import LlamaStackImageType from llama_stack.providers.datatypes import Api -from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig DISTRIBS_PATH = Path(__file__).parent.parent.parent / "distributions" @@ -286,21 +294,42 @@ def _generate_run_config( Generate a run.yaml template file for user to edit from a build.yaml file """ apis = list(build_config.distribution_spec.providers.keys()) + distro_dir = DISTRIBS_BASE_DIR / image_name + storage = StorageConfig( + backends={ + "kv_default": SqliteKVStoreConfig( + db_path=f"${{env.SQLITE_STORE_DIR:={distro_dir}}}/kvstore.db", + ), + "sql_default": SqliteSqlStoreConfig( + db_path=f"${{env.SQLITE_STORE_DIR:={distro_dir}}}/sql_store.db", + ), + }, + stores=ServerStoresConfig( + metadata=KVStoreReference( + backend="kv_default", + namespace="registry", + ), + inference=InferenceStoreReference( + backend="sql_default", + table_name="inference_store", + ), + conversations=SqlStoreReference( + backend="sql_default", + table_name="openai_conversations", + ), + ), + ) + run_config = StackRunConfig( container_image=(image_name if build_config.image_type == LlamaStackImageType.CONTAINER.value else None), image_name=image_name, apis=apis, providers={}, + storage=storage, external_providers_dir=build_config.external_providers_dir if build_config.external_providers_dir else EXTERNAL_PROVIDERS_DIR, ) - if not run_config.inference_store: - run_config.inference_store = SqliteSqlStoreConfig( - **SqliteSqlStoreConfig.sample_run_config( - __distro_dir__=(DISTRIBS_BASE_DIR / image_name).as_posix(), db_name="inference_store.db" - ) - ) # build providers dict provider_registry = get_provider_registry(build_config) for api in apis: diff --git a/llama_stack/cli/stack/utils.py b/llama_stack/cli/stack/utils.py index 4d4c1b538..cc1ca051b 100644 --- a/llama_stack/cli/stack/utils.py +++ b/llama_stack/cli/stack/utils.py @@ -17,10 +17,19 @@ from llama_stack.core.datatypes import ( BuildConfig, Provider, StackRunConfig, + StorageConfig, ) from llama_stack.core.distribution import get_provider_registry from llama_stack.core.resolver import InvalidProviderError -from llama_stack.core.utils.config_dirs import EXTERNAL_PROVIDERS_DIR +from llama_stack.core.storage.datatypes import ( + InferenceStoreReference, + KVStoreReference, + ServerStoresConfig, + SqliteKVStoreConfig, + SqliteSqlStoreConfig, + SqlStoreReference, +) +from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR, EXTERNAL_PROVIDERS_DIR from llama_stack.core.utils.dynamic import instantiate_class_type from llama_stack.core.utils.image_types import LlamaStackImageType from llama_stack.providers.datatypes import Api @@ -51,11 +60,23 @@ def generate_run_config( Generate a run.yaml template file for user to edit from a build.yaml file """ apis = list(build_config.distribution_spec.providers.keys()) + distro_dir = DISTRIBS_BASE_DIR / image_name run_config = StackRunConfig( container_image=(image_name if build_config.image_type == LlamaStackImageType.CONTAINER.value else None), image_name=image_name, apis=apis, providers={}, + storage=StorageConfig( + backends={ + "kv_default": SqliteKVStoreConfig(db_path=str(distro_dir / "kvstore.db")), + "sql_default": SqliteSqlStoreConfig(db_path=str(distro_dir / "sql_store.db")), + }, + stores=ServerStoresConfig( + metadata=KVStoreReference(backend="kv_default", namespace="registry"), + inference=InferenceStoreReference(backend="sql_default", table_name="inference_store"), + conversations=SqlStoreReference(backend="sql_default", table_name="openai_conversations"), + ), + ), external_providers_dir=build_config.external_providers_dir if build_config.external_providers_dir else EXTERNAL_PROVIDERS_DIR, diff --git a/llama_stack/core/configure.py b/llama_stack/core/configure.py index bfa2c6d71..734839ea9 100644 --- a/llama_stack/core/configure.py +++ b/llama_stack/core/configure.py @@ -159,6 +159,37 @@ def upgrade_from_routing_table( config_dict["apis"] = config_dict["apis_to_serve"] config_dict.pop("apis_to_serve", None) + # Add default storage config if not present + if "storage" not in config_dict: + config_dict["storage"] = { + "backends": { + "kv_default": { + "type": "kv_sqlite", + "db_path": "~/.llama/kvstore.db", + }, + "sql_default": { + "type": "sql_sqlite", + "db_path": "~/.llama/sql_store.db", + }, + }, + "stores": { + "metadata": { + "namespace": "registry", + "backend": "kv_default", + }, + "inference": { + "table_name": "inference_store", + "backend": "sql_default", + "max_write_queue_size": 10000, + "num_writers": 4, + }, + "conversations": { + "table_name": "openai_conversations", + "backend": "sql_default", + }, + }, + } + return config_dict diff --git a/llama_stack/core/conversations/conversations.py b/llama_stack/core/conversations/conversations.py index d2537c7ee..66880ca36 100644 --- a/llama_stack/core/conversations/conversations.py +++ b/llama_stack/core/conversations/conversations.py @@ -4,7 +4,6 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. -import os import secrets import time from typing import Any @@ -21,16 +20,11 @@ from llama_stack.apis.conversations.conversations import ( Conversations, Metadata, ) -from llama_stack.core.datatypes import AccessRule -from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR +from llama_stack.core.datatypes import AccessRule, StackRunConfig from llama_stack.log import get_logger from llama_stack.providers.utils.sqlstore.api import ColumnDefinition, ColumnType from llama_stack.providers.utils.sqlstore.authorized_sqlstore import AuthorizedSqlStore -from llama_stack.providers.utils.sqlstore.sqlstore import ( - SqliteSqlStoreConfig, - SqlStoreConfig, - sqlstore_impl, -) +from llama_stack.providers.utils.sqlstore.sqlstore import sqlstore_impl logger = get_logger(name=__name__, category="openai_conversations") @@ -38,13 +32,11 @@ logger = get_logger(name=__name__, category="openai_conversations") class ConversationServiceConfig(BaseModel): """Configuration for the built-in conversation service. - :param conversations_store: SQL store configuration for conversations (defaults to SQLite) + :param run_config: Stack run configuration for resolving persistence :param policy: Access control rules """ - conversations_store: SqlStoreConfig = SqliteSqlStoreConfig( - db_path=(DISTRIBS_BASE_DIR / "conversations.db").as_posix() - ) + run_config: StackRunConfig policy: list[AccessRule] = [] @@ -63,14 +55,16 @@ class ConversationServiceImpl(Conversations): self.deps = deps self.policy = config.policy - base_sql_store = sqlstore_impl(config.conversations_store) + # Use conversations store reference from run config + conversations_ref = config.run_config.storage.stores.conversations + if not conversations_ref: + raise ValueError("storage.stores.conversations must be configured in run config") + + base_sql_store = sqlstore_impl(conversations_ref) self.sql_store = AuthorizedSqlStore(base_sql_store, self.policy) async def initialize(self) -> None: """Initialize the store and create tables.""" - if isinstance(self.config.conversations_store, SqliteSqlStoreConfig): - os.makedirs(os.path.dirname(self.config.conversations_store.db_path), exist_ok=True) - await self.sql_store.create_table( "openai_conversations", { diff --git a/llama_stack/core/datatypes.py b/llama_stack/core/datatypes.py index 94222d49e..d692da3b3 100644 --- a/llama_stack/core/datatypes.py +++ b/llama_stack/core/datatypes.py @@ -26,9 +26,12 @@ from llama_stack.apis.tools import ToolGroup, ToolGroupInput, ToolRuntime from llama_stack.apis.vector_dbs import VectorDB, VectorDBInput from llama_stack.apis.vector_io import VectorIO from llama_stack.core.access_control.datatypes import AccessRule +from llama_stack.core.storage.datatypes import ( + KVStoreReference, + StorageBackendType, + StorageConfig, +) from llama_stack.providers.datatypes import Api, ProviderSpec -from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig -from llama_stack.providers.utils.sqlstore.sqlstore import SqlStoreConfig LLAMA_STACK_BUILD_CONFIG_VERSION = 2 LLAMA_STACK_RUN_CONFIG_VERSION = 2 @@ -356,7 +359,7 @@ class QuotaPeriod(StrEnum): class QuotaConfig(BaseModel): - kvstore: SqliteKVStoreConfig = Field(description="Config for KV store backend (SQLite only for now)") + kvstore: KVStoreReference = Field(description="Config for KV store backend (SQLite only for now)") anonymous_max_requests: int = Field(default=100, description="Max requests for unauthenticated clients per period") authenticated_max_requests: int = Field( default=1000, description="Max requests for authenticated clients per period" @@ -438,18 +441,6 @@ class ServerConfig(BaseModel): ) -class InferenceStoreConfig(BaseModel): - sql_store_config: SqlStoreConfig - max_write_queue_size: int = Field(default=10000, description="Max queued writes for inference store") - num_writers: int = Field(default=4, description="Number of concurrent background writers") - - -class ResponsesStoreConfig(BaseModel): - sql_store_config: SqlStoreConfig - max_write_queue_size: int = Field(default=10000, description="Max queued writes for responses store") - num_writers: int = Field(default=4, description="Number of concurrent background writers") - - class StackRunConfig(BaseModel): version: int = LLAMA_STACK_RUN_CONFIG_VERSION @@ -476,26 +467,8 @@ One or more providers to use for each API. The same provider_type (e.g., meta-re can be instantiated multiple times (with different configs) if necessary. """, ) - metadata_store: KVStoreConfig | None = Field( - default=None, - description=""" -Configuration for the persistence store used by the distribution registry. If not specified, -a default SQLite store will be used.""", - ) - - inference_store: InferenceStoreConfig | SqlStoreConfig | None = Field( - default=None, - description=""" -Configuration for the persistence store used by the inference API. Can be either a -InferenceStoreConfig (with queue tuning parameters) or a SqlStoreConfig (deprecated). -If not specified, a default SQLite store will be used.""", - ) - - conversations_store: SqlStoreConfig | None = Field( - default=None, - description=""" -Configuration for the persistence store used by the conversations API. -If not specified, a default SQLite store will be used.""", + storage: StorageConfig = Field( + description="Catalog of named storage backends and references available to the stack", ) # registry of "resources" in the distribution @@ -535,6 +508,49 @@ If not specified, a default SQLite store will be used.""", return Path(v) return v + @model_validator(mode="after") + def validate_server_stores(self) -> "StackRunConfig": + backend_map = self.storage.backends + stores = self.storage.stores + kv_backends = { + name + for name, cfg in backend_map.items() + if cfg.type + in { + StorageBackendType.KV_REDIS, + StorageBackendType.KV_SQLITE, + StorageBackendType.KV_POSTGRES, + StorageBackendType.KV_MONGODB, + } + } + sql_backends = { + name + for name, cfg in backend_map.items() + if cfg.type in {StorageBackendType.SQL_SQLITE, StorageBackendType.SQL_POSTGRES} + } + + def _ensure_backend(reference, expected_set, store_name: str) -> None: + if reference is None: + return + backend_name = reference.backend + if backend_name not in backend_map: + raise ValueError( + f"{store_name} references unknown backend '{backend_name}'. " + f"Available backends: {sorted(backend_map)}" + ) + if backend_name not in expected_set: + raise ValueError( + f"{store_name} references backend '{backend_name}' of type " + f"'{backend_map[backend_name].type.value}', but a backend of type " + f"{'kv_*' if expected_set is kv_backends else 'sql_*'} is required." + ) + + _ensure_backend(stores.metadata, kv_backends, "storage.stores.metadata") + _ensure_backend(stores.inference, sql_backends, "storage.stores.inference") + _ensure_backend(stores.conversations, sql_backends, "storage.stores.conversations") + _ensure_backend(stores.responses, sql_backends, "storage.stores.responses") + return self + class BuildConfig(BaseModel): version: int = LLAMA_STACK_BUILD_CONFIG_VERSION diff --git a/llama_stack/core/prompts/prompts.py b/llama_stack/core/prompts/prompts.py index 26e8f5cef..856397ca5 100644 --- a/llama_stack/core/prompts/prompts.py +++ b/llama_stack/core/prompts/prompts.py @@ -11,9 +11,8 @@ from pydantic import BaseModel from llama_stack.apis.prompts import ListPromptsResponse, Prompt, Prompts from llama_stack.core.datatypes import StackRunConfig -from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR +from llama_stack.core.storage.datatypes import KVStoreReference from llama_stack.providers.utils.kvstore import KVStore, kvstore_impl -from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig class PromptServiceConfig(BaseModel): @@ -41,10 +40,12 @@ class PromptServiceImpl(Prompts): self.kvstore: KVStore async def initialize(self) -> None: - kvstore_config = SqliteKVStoreConfig( - db_path=(DISTRIBS_BASE_DIR / self.config.run_config.image_name / "prompts.db").as_posix() - ) - self.kvstore = await kvstore_impl(kvstore_config) + # Use metadata store backend with prompts-specific namespace + metadata_ref = self.config.run_config.storage.stores.metadata + if not metadata_ref: + raise ValueError("storage.stores.metadata must be configured in run config") + prompts_ref = KVStoreReference(namespace="prompts", backend=metadata_ref.backend) + self.kvstore = await kvstore_impl(prompts_ref) def _get_default_key(self, prompt_id: str) -> str: """Get the KVStore key that stores the default version number.""" diff --git a/llama_stack/core/routers/__init__.py b/llama_stack/core/routers/__init__.py index 4463d2460..0573fc2c7 100644 --- a/llama_stack/core/routers/__init__.py +++ b/llama_stack/core/routers/__init__.py @@ -6,7 +6,10 @@ from typing import Any -from llama_stack.core.datatypes import AccessRule, RoutedProtocol +from llama_stack.core.datatypes import ( + AccessRule, + RoutedProtocol, +) from llama_stack.core.stack import StackRunConfig from llama_stack.core.store import DistributionRegistry from llama_stack.providers.datatypes import Api, RoutingTable @@ -76,9 +79,13 @@ async def get_auto_router_impl( api_to_dep_impl[dep_name] = deps[dep_api] # TODO: move pass configs to routers instead - if api == Api.inference and run_config.inference_store: + if api == Api.inference: + inference_ref = run_config.storage.stores.inference + if not inference_ref: + raise ValueError("storage.stores.inference must be configured in run config") + inference_store = InferenceStore( - config=run_config.inference_store, + reference=inference_ref, policy=policy, ) await inference_store.initialize() diff --git a/llama_stack/core/server/quota.py b/llama_stack/core/server/quota.py index 693f224c3..689f0e4c3 100644 --- a/llama_stack/core/server/quota.py +++ b/llama_stack/core/server/quota.py @@ -10,10 +10,10 @@ from datetime import UTC, datetime, timedelta from starlette.types import ASGIApp, Receive, Scope, Send +from llama_stack.core.storage.datatypes import KVStoreReference, StorageBackendType from llama_stack.log import get_logger from llama_stack.providers.utils.kvstore.api import KVStore -from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig -from llama_stack.providers.utils.kvstore.kvstore import kvstore_impl +from llama_stack.providers.utils.kvstore.kvstore import _KVSTORE_BACKENDS, kvstore_impl logger = get_logger(name=__name__, category="core::server") @@ -33,7 +33,7 @@ class QuotaMiddleware: def __init__( self, app: ASGIApp, - kv_config: KVStoreConfig, + kv_config: KVStoreReference, anonymous_max_requests: int, authenticated_max_requests: int, window_seconds: int = 86400, @@ -45,15 +45,15 @@ class QuotaMiddleware: self.authenticated_max_requests = authenticated_max_requests self.window_seconds = window_seconds - if isinstance(self.kv_config, SqliteKVStoreConfig): - logger.warning( - "QuotaMiddleware: Using SQLite backend. Expiry/TTL is not enforced; cleanup is manual. " - f"window_seconds={self.window_seconds}" - ) - async def _get_kv(self) -> KVStore: if self.kv is None: self.kv = await kvstore_impl(self.kv_config) + backend_config = _KVSTORE_BACKENDS.get(self.kv_config.backend) + if backend_config and backend_config.type == StorageBackendType.KV_SQLITE: + logger.warning( + "QuotaMiddleware: Using SQLite backend. Expiry/TTL is not enforced; cleanup is manual. " + f"window_seconds={self.window_seconds}" + ) return self.kv async def __call__(self, scope: Scope, receive: Receive, send: Send): diff --git a/llama_stack/core/stack.py b/llama_stack/core/stack.py index 733b55262..15d0198b1 100644 --- a/llama_stack/core/stack.py +++ b/llama_stack/core/stack.py @@ -42,6 +42,16 @@ from llama_stack.core.prompts.prompts import PromptServiceConfig, PromptServiceI from llama_stack.core.providers import ProviderImpl, ProviderImplConfig from llama_stack.core.resolver import ProviderRegistry, resolve_impls from llama_stack.core.routing_tables.common import CommonRoutingTableImpl +from llama_stack.core.storage.datatypes import ( + InferenceStoreReference, + KVStoreReference, + ServerStoresConfig, + SqliteKVStoreConfig, + SqliteSqlStoreConfig, + SqlStoreReference, + StorageBackendConfig, + StorageConfig, +) from llama_stack.core.store.registry import create_dist_registry from llama_stack.core.utils.dynamic import instantiate_class_type from llama_stack.log import get_logger @@ -329,6 +339,25 @@ def add_internal_implementations(impls: dict[Api, Any], run_config: StackRunConf impls[Api.conversations] = conversations_impl +def _initialize_storage(run_config: StackRunConfig): + kv_backends: dict[str, StorageBackendConfig] = {} + sql_backends: dict[str, StorageBackendConfig] = {} + for backend_name, backend_config in run_config.storage.backends.items(): + type = backend_config.type.value + if type.startswith("kv_"): + kv_backends[backend_name] = backend_config + elif type.startswith("sql_"): + sql_backends[backend_name] = backend_config + else: + raise ValueError(f"Unknown storage backend type: {type}") + + from llama_stack.providers.utils.kvstore.kvstore import register_kvstore_backends + from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends + + register_kvstore_backends(kv_backends) + register_sqlstore_backends(sql_backends) + + class Stack: def __init__(self, run_config: StackRunConfig, provider_registry: ProviderRegistry | None = None): self.run_config = run_config @@ -347,7 +376,11 @@ class Stack: TEST_RECORDING_CONTEXT.__enter__() logger.info(f"API recording enabled: mode={os.environ.get('LLAMA_STACK_TEST_INFERENCE_MODE')}") - dist_registry, _ = await create_dist_registry(self.run_config.metadata_store, self.run_config.image_name) + _initialize_storage(self.run_config) + stores = self.run_config.storage.stores + if not stores.metadata: + raise ValueError("storage.stores.metadata must be configured with a kv_* backend") + dist_registry, _ = await create_dist_registry(stores.metadata, self.run_config.image_name) policy = self.run_config.server.auth.access_policy if self.run_config.server.auth else [] internal_impls = {} @@ -488,5 +521,16 @@ def run_config_from_adhoc_config_spec( image_name="distro-test", apis=list(provider_configs_by_api.keys()), providers=provider_configs_by_api, + storage=StorageConfig( + backends={ + "kv_default": SqliteKVStoreConfig(db_path=f"{distro_dir}/kvstore.db"), + "sql_default": SqliteSqlStoreConfig(db_path=f"{distro_dir}/sql_store.db"), + }, + stores=ServerStoresConfig( + metadata=KVStoreReference(backend="kv_default", namespace="registry"), + inference=InferenceStoreReference(backend="sql_default", table_name="inference_store"), + conversations=SqlStoreReference(backend="sql_default", table_name="openai_conversations"), + ), + ), ) return config diff --git a/llama_stack/core/storage/__init__.py b/llama_stack/core/storage/__init__.py new file mode 100644 index 000000000..756f351d8 --- /dev/null +++ b/llama_stack/core/storage/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. diff --git a/llama_stack/core/storage/datatypes.py b/llama_stack/core/storage/datatypes.py new file mode 100644 index 000000000..9df170e10 --- /dev/null +++ b/llama_stack/core/storage/datatypes.py @@ -0,0 +1,283 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +import re +from abc import abstractmethod +from enum import StrEnum +from pathlib import Path +from typing import Annotated, Literal + +from pydantic import BaseModel, Field, field_validator + + +class StorageBackendType(StrEnum): + KV_REDIS = "kv_redis" + KV_SQLITE = "kv_sqlite" + KV_POSTGRES = "kv_postgres" + KV_MONGODB = "kv_mongodb" + SQL_SQLITE = "sql_sqlite" + SQL_POSTGRES = "sql_postgres" + + +class CommonConfig(BaseModel): + namespace: str | None = Field( + default=None, + description="All keys will be prefixed with this namespace", + ) + + +class RedisKVStoreConfig(CommonConfig): + type: Literal[StorageBackendType.KV_REDIS] = StorageBackendType.KV_REDIS + host: str = "localhost" + port: int = 6379 + + @property + def url(self) -> str: + return f"redis://{self.host}:{self.port}" + + @classmethod + def pip_packages(cls) -> list[str]: + return ["redis"] + + @classmethod + def sample_run_config(cls): + return { + "type": StorageBackendType.KV_REDIS.value, + "host": "${env.REDIS_HOST:=localhost}", + "port": "${env.REDIS_PORT:=6379}", + } + + +class SqliteKVStoreConfig(CommonConfig): + type: Literal[StorageBackendType.KV_SQLITE] = StorageBackendType.KV_SQLITE + db_path: str = Field( + description="File path for the sqlite database", + ) + + @classmethod + def pip_packages(cls) -> list[str]: + return ["aiosqlite"] + + @classmethod + def sample_run_config(cls, __distro_dir__: str, db_name: str = "kvstore.db"): + return { + "type": StorageBackendType.KV_SQLITE.value, + "db_path": "${env.SQLITE_STORE_DIR:=" + __distro_dir__ + "}/" + db_name, + } + + +class PostgresKVStoreConfig(CommonConfig): + type: Literal[StorageBackendType.KV_POSTGRES] = StorageBackendType.KV_POSTGRES + host: str = "localhost" + port: int | str = 5432 + db: str = "llamastack" + user: str + password: str | None = None + ssl_mode: str | None = None + ca_cert_path: str | None = None + table_name: str = "llamastack_kvstore" + + @classmethod + def sample_run_config(cls, table_name: str = "llamastack_kvstore", **kwargs): + return { + "type": StorageBackendType.KV_POSTGRES.value, + "host": "${env.POSTGRES_HOST:=localhost}", + "port": "${env.POSTGRES_PORT:=5432}", + "db": "${env.POSTGRES_DB:=llamastack}", + "user": "${env.POSTGRES_USER:=llamastack}", + "password": "${env.POSTGRES_PASSWORD:=llamastack}", + "table_name": "${env.POSTGRES_TABLE_NAME:=" + table_name + "}", + } + + @classmethod + @field_validator("table_name") + def validate_table_name(cls, v: str) -> str: + # PostgreSQL identifiers rules: + # - Must start with a letter or underscore + # - Can contain letters, numbers, and underscores + # - Maximum length is 63 bytes + pattern = r"^[a-zA-Z_][a-zA-Z0-9_]*$" + if not re.match(pattern, v): + raise ValueError( + "Invalid table name. Must start with letter or underscore and contain only letters, numbers, and underscores" + ) + if len(v) > 63: + raise ValueError("Table name must be less than 63 characters") + return v + + @classmethod + def pip_packages(cls) -> list[str]: + return ["psycopg2-binary"] + + +class MongoDBKVStoreConfig(CommonConfig): + type: Literal[StorageBackendType.KV_MONGODB] = StorageBackendType.KV_MONGODB + host: str = "localhost" + port: int = 27017 + db: str = "llamastack" + user: str | None = None + password: str | None = None + collection_name: str = "llamastack_kvstore" + + @classmethod + def pip_packages(cls) -> list[str]: + return ["pymongo"] + + @classmethod + def sample_run_config(cls, collection_name: str = "llamastack_kvstore"): + return { + "type": StorageBackendType.KV_MONGODB.value, + "host": "${env.MONGODB_HOST:=localhost}", + "port": "${env.MONGODB_PORT:=5432}", + "db": "${env.MONGODB_DB}", + "user": "${env.MONGODB_USER}", + "password": "${env.MONGODB_PASSWORD}", + "collection_name": "${env.MONGODB_COLLECTION_NAME:=" + collection_name + "}", + } + + +class SqlAlchemySqlStoreConfig(BaseModel): + @property + @abstractmethod + def engine_str(self) -> str: ... + + # TODO: move this when we have a better way to specify dependencies with internal APIs + @classmethod + def pip_packages(cls) -> list[str]: + return ["sqlalchemy[asyncio]"] + + +class SqliteSqlStoreConfig(SqlAlchemySqlStoreConfig): + type: Literal[StorageBackendType.SQL_SQLITE] = StorageBackendType.SQL_SQLITE + db_path: str = Field( + description="Database path, e.g. ~/.llama/distributions/ollama/sqlstore.db", + ) + + @property + def engine_str(self) -> str: + return "sqlite+aiosqlite:///" + Path(self.db_path).expanduser().as_posix() + + @classmethod + def sample_run_config(cls, __distro_dir__: str, db_name: str = "sqlstore.db"): + return { + "type": StorageBackendType.SQL_SQLITE.value, + "db_path": "${env.SQLITE_STORE_DIR:=" + __distro_dir__ + "}/" + db_name, + } + + @classmethod + def pip_packages(cls) -> list[str]: + return super().pip_packages() + ["aiosqlite"] + + +class PostgresSqlStoreConfig(SqlAlchemySqlStoreConfig): + type: Literal[StorageBackendType.SQL_POSTGRES] = StorageBackendType.SQL_POSTGRES + host: str = "localhost" + port: int | str = 5432 + db: str = "llamastack" + user: str + password: str | None = None + + @property + def engine_str(self) -> str: + return f"postgresql+asyncpg://{self.user}:{self.password}@{self.host}:{self.port}/{self.db}" + + @classmethod + def pip_packages(cls) -> list[str]: + return super().pip_packages() + ["asyncpg"] + + @classmethod + def sample_run_config(cls, **kwargs): + return { + "type": StorageBackendType.SQL_POSTGRES.value, + "host": "${env.POSTGRES_HOST:=localhost}", + "port": "${env.POSTGRES_PORT:=5432}", + "db": "${env.POSTGRES_DB:=llamastack}", + "user": "${env.POSTGRES_USER:=llamastack}", + "password": "${env.POSTGRES_PASSWORD:=llamastack}", + } + + +# reference = (backend_name, table_name) +class SqlStoreReference(BaseModel): + """A reference to a 'SQL-like' persistent store. A table name must be provided.""" + + table_name: str = Field( + description="Name of the table to use for the SqlStore", + ) + + backend: str = Field( + description="Name of backend from storage.backends", + ) + + +# reference = (backend_name, namespace) +class KVStoreReference(BaseModel): + """A reference to a 'key-value' persistent store. A namespace must be provided.""" + + namespace: str = Field( + description="Key prefix for KVStore backends", + ) + + backend: str = Field( + description="Name of backend from storage.backends", + ) + + +StorageBackendConfig = Annotated[ + RedisKVStoreConfig + | SqliteKVStoreConfig + | PostgresKVStoreConfig + | MongoDBKVStoreConfig + | SqliteSqlStoreConfig + | PostgresSqlStoreConfig, + Field(discriminator="type"), +] + + +class InferenceStoreReference(SqlStoreReference): + """Inference store configuration with queue tuning.""" + + max_write_queue_size: int = Field( + default=10000, + description="Max queued writes for inference store", + ) + num_writers: int = Field( + default=4, + description="Number of concurrent background writers", + ) + + +class ResponsesStoreReference(InferenceStoreReference): + """Responses store configuration with queue tuning.""" + + +class ServerStoresConfig(BaseModel): + metadata: KVStoreReference | None = Field( + default=None, + description="Metadata store configuration (uses KV backend)", + ) + inference: InferenceStoreReference | None = Field( + default=None, + description="Inference store configuration (uses SQL backend)", + ) + conversations: SqlStoreReference | None = Field( + default=None, + description="Conversations store configuration (uses SQL backend)", + ) + responses: ResponsesStoreReference | None = Field( + default=None, + description="Responses store configuration (uses SQL backend)", + ) + + +class StorageConfig(BaseModel): + backends: dict[str, StorageBackendConfig] = Field( + description="Named backend configurations (e.g., 'default', 'cache')", + ) + stores: ServerStoresConfig = Field( + default_factory=lambda: ServerStoresConfig(), + description="Named references to storage backends used by the stack core", + ) diff --git a/llama_stack/core/store/registry.py b/llama_stack/core/store/registry.py index 04581bab5..6ff9e575b 100644 --- a/llama_stack/core/store/registry.py +++ b/llama_stack/core/store/registry.py @@ -11,10 +11,9 @@ from typing import Protocol import pydantic from llama_stack.core.datatypes import RoutableObjectWithProvider -from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR +from llama_stack.core.storage.datatypes import KVStoreReference from llama_stack.log import get_logger from llama_stack.providers.utils.kvstore import KVStore, kvstore_impl -from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig logger = get_logger(__name__, category="core::registry") @@ -191,16 +190,10 @@ class CachedDiskDistributionRegistry(DiskDistributionRegistry): async def create_dist_registry( - metadata_store: KVStoreConfig | None, - image_name: str, + metadata_store: KVStoreReference, image_name: str ) -> tuple[CachedDiskDistributionRegistry, KVStore]: # instantiate kvstore for storing and retrieving distribution metadata - if metadata_store: - dist_kvstore = await kvstore_impl(metadata_store) - else: - dist_kvstore = await kvstore_impl( - SqliteKVStoreConfig(db_path=(DISTRIBS_BASE_DIR / image_name / "kvstore.db").as_posix()) - ) + dist_kvstore = await kvstore_impl(metadata_store) dist_registry = CachedDiskDistributionRegistry(dist_kvstore) await dist_registry.initialize() return dist_registry, dist_kvstore diff --git a/llama_stack/distributions/ci-tests/run.yaml b/llama_stack/distributions/ci-tests/run.yaml index a6a6b7c0d..f9e741474 100644 --- a/llama_stack/distributions/ci-tests/run.yaml +++ b/llama_stack/distributions/ci-tests/run.yaml @@ -93,30 +93,30 @@ providers: - provider_id: faiss provider_type: inline::faiss config: - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/faiss_store.db + persistence: + namespace: vector_io::faiss + backend: kv_default - provider_id: sqlite-vec provider_type: inline::sqlite-vec config: db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/sqlite_vec.db - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/sqlite_vec_registry.db + persistence: + namespace: vector_io::sqlite_vec + backend: kv_default - provider_id: ${env.MILVUS_URL:+milvus} provider_type: inline::milvus config: db_path: ${env.MILVUS_DB_PATH:=~/.llama/distributions/ci-tests}/milvus.db - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/milvus_registry.db + persistence: + namespace: vector_io::milvus + backend: kv_default - provider_id: ${env.CHROMADB_URL:+chromadb} provider_type: remote::chromadb config: url: ${env.CHROMADB_URL:=} - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests/}/chroma_remote_registry.db + persistence: + namespace: vector_io::chroma_remote + backend: kv_default - provider_id: ${env.PGVECTOR_DB:+pgvector} provider_type: remote::pgvector config: @@ -125,17 +125,17 @@ providers: db: ${env.PGVECTOR_DB:=} user: ${env.PGVECTOR_USER:=} password: ${env.PGVECTOR_PASSWORD:=} - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/pgvector_registry.db + persistence: + namespace: vector_io::pgvector + backend: kv_default files: - provider_id: meta-reference-files provider_type: inline::localfs config: storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/ci-tests/files} metadata_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/files_metadata.db + table_name: files_metadata + backend: sql_default safety: - provider_id: llama-guard provider_type: inline::llama-guard @@ -147,12 +147,15 @@ providers: - provider_id: meta-reference provider_type: inline::meta-reference config: - persistence_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/agents_store.db - responses_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/responses_store.db + persistence: + agent_state: + namespace: agents + backend: kv_default + responses: + table_name: responses + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 post_training: - provider_id: torchtune-cpu provider_type: inline::torchtune-cpu @@ -163,21 +166,21 @@ providers: provider_type: inline::meta-reference config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/meta_reference_eval.db + namespace: eval + backend: kv_default datasetio: - provider_id: huggingface provider_type: remote::huggingface config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/huggingface_datasetio.db + namespace: datasetio::huggingface + backend: kv_default - provider_id: localfs provider_type: inline::localfs config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/localfs_datasetio.db + namespace: datasetio::localfs + backend: kv_default scoring: - provider_id: basic provider_type: inline::basic @@ -207,17 +210,28 @@ providers: provider_type: inline::reference config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/batches.db -metadata_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/registry.db -inference_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/inference_store.db -conversations_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/conversations.db + namespace: batches + backend: kv_default +storage: + backends: + kv_default: + type: kv_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/kvstore.db + sql_default: + type: sql_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/ci-tests}/sql_store.db + stores: + metadata: + namespace: registry + backend: kv_default + inference: + table_name: inference_store + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 + conversations: + table_name: openai_conversations + backend: sql_default models: [] shields: - shield_id: llama-guard diff --git a/llama_stack/distributions/dell/run-with-safety.yaml b/llama_stack/distributions/dell/run-with-safety.yaml index 5da3cf511..3130285b9 100644 --- a/llama_stack/distributions/dell/run-with-safety.yaml +++ b/llama_stack/distributions/dell/run-with-safety.yaml @@ -26,9 +26,9 @@ providers: provider_type: remote::chromadb config: url: ${env.CHROMADB_URL:=} - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell/}/chroma_remote_registry.db + persistence: + namespace: vector_io::chroma_remote + backend: kv_default safety: - provider_id: llama-guard provider_type: inline::llama-guard @@ -38,32 +38,35 @@ providers: - provider_id: meta-reference provider_type: inline::meta-reference config: - persistence_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/agents_store.db - responses_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/responses_store.db + persistence: + agent_state: + namespace: agents + backend: kv_default + responses: + table_name: responses + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 eval: - provider_id: meta-reference provider_type: inline::meta-reference config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/meta_reference_eval.db + namespace: eval + backend: kv_default datasetio: - provider_id: huggingface provider_type: remote::huggingface config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/huggingface_datasetio.db + namespace: datasetio::huggingface + backend: kv_default - provider_id: localfs provider_type: inline::localfs config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/localfs_datasetio.db + namespace: datasetio::localfs + backend: kv_default scoring: - provider_id: basic provider_type: inline::basic @@ -86,15 +89,26 @@ providers: max_results: 3 - provider_id: rag-runtime provider_type: inline::rag-runtime -metadata_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/registry.db -inference_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/inference_store.db -conversations_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/conversations.db +storage: + backends: + kv_default: + type: kv_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/kvstore.db + sql_default: + type: sql_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/sql_store.db + stores: + metadata: + namespace: registry + backend: kv_default + inference: + table_name: inference_store + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 + conversations: + table_name: openai_conversations + backend: sql_default models: - metadata: {} model_id: ${env.INFERENCE_MODEL} diff --git a/llama_stack/distributions/dell/run.yaml b/llama_stack/distributions/dell/run.yaml index ac0fdc0fa..af1a96a21 100644 --- a/llama_stack/distributions/dell/run.yaml +++ b/llama_stack/distributions/dell/run.yaml @@ -22,9 +22,9 @@ providers: provider_type: remote::chromadb config: url: ${env.CHROMADB_URL:=} - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell/}/chroma_remote_registry.db + persistence: + namespace: vector_io::chroma_remote + backend: kv_default safety: - provider_id: llama-guard provider_type: inline::llama-guard @@ -34,32 +34,35 @@ providers: - provider_id: meta-reference provider_type: inline::meta-reference config: - persistence_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/agents_store.db - responses_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/responses_store.db + persistence: + agent_state: + namespace: agents + backend: kv_default + responses: + table_name: responses + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 eval: - provider_id: meta-reference provider_type: inline::meta-reference config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/meta_reference_eval.db + namespace: eval + backend: kv_default datasetio: - provider_id: huggingface provider_type: remote::huggingface config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/huggingface_datasetio.db + namespace: datasetio::huggingface + backend: kv_default - provider_id: localfs provider_type: inline::localfs config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/localfs_datasetio.db + namespace: datasetio::localfs + backend: kv_default scoring: - provider_id: basic provider_type: inline::basic @@ -82,15 +85,26 @@ providers: max_results: 3 - provider_id: rag-runtime provider_type: inline::rag-runtime -metadata_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/registry.db -inference_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/inference_store.db -conversations_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/conversations.db +storage: + backends: + kv_default: + type: kv_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/kvstore.db + sql_default: + type: sql_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/dell}/sql_store.db + stores: + metadata: + namespace: registry + backend: kv_default + inference: + table_name: inference_store + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 + conversations: + table_name: openai_conversations + backend: sql_default models: - metadata: {} model_id: ${env.INFERENCE_MODEL} diff --git a/llama_stack/distributions/meta-reference-gpu/run-with-safety.yaml b/llama_stack/distributions/meta-reference-gpu/run-with-safety.yaml index 874c5050f..b43d1ff19 100644 --- a/llama_stack/distributions/meta-reference-gpu/run-with-safety.yaml +++ b/llama_stack/distributions/meta-reference-gpu/run-with-safety.yaml @@ -37,9 +37,9 @@ providers: - provider_id: faiss provider_type: inline::faiss config: - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/faiss_store.db + persistence: + namespace: vector_io::faiss + backend: kv_default safety: - provider_id: llama-guard provider_type: inline::llama-guard @@ -49,32 +49,35 @@ providers: - provider_id: meta-reference provider_type: inline::meta-reference config: - persistence_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/agents_store.db - responses_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/responses_store.db + persistence: + agent_state: + namespace: agents + backend: kv_default + responses: + table_name: responses + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 eval: - provider_id: meta-reference provider_type: inline::meta-reference config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/meta_reference_eval.db + namespace: eval + backend: kv_default datasetio: - provider_id: huggingface provider_type: remote::huggingface config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/huggingface_datasetio.db + namespace: datasetio::huggingface + backend: kv_default - provider_id: localfs provider_type: inline::localfs config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/localfs_datasetio.db + namespace: datasetio::localfs + backend: kv_default scoring: - provider_id: basic provider_type: inline::basic @@ -99,15 +102,26 @@ providers: provider_type: inline::rag-runtime - provider_id: model-context-protocol provider_type: remote::model-context-protocol -metadata_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/registry.db -inference_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/inference_store.db -conversations_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/conversations.db +storage: + backends: + kv_default: + type: kv_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/kvstore.db + sql_default: + type: sql_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/sql_store.db + stores: + metadata: + namespace: registry + backend: kv_default + inference: + table_name: inference_store + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 + conversations: + table_name: openai_conversations + backend: sql_default models: - metadata: {} model_id: ${env.INFERENCE_MODEL} diff --git a/llama_stack/distributions/meta-reference-gpu/run.yaml b/llama_stack/distributions/meta-reference-gpu/run.yaml index 50553d2c7..59e2d8129 100644 --- a/llama_stack/distributions/meta-reference-gpu/run.yaml +++ b/llama_stack/distributions/meta-reference-gpu/run.yaml @@ -27,9 +27,9 @@ providers: - provider_id: faiss provider_type: inline::faiss config: - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/faiss_store.db + persistence: + namespace: vector_io::faiss + backend: kv_default safety: - provider_id: llama-guard provider_type: inline::llama-guard @@ -39,32 +39,35 @@ providers: - provider_id: meta-reference provider_type: inline::meta-reference config: - persistence_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/agents_store.db - responses_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/responses_store.db + persistence: + agent_state: + namespace: agents + backend: kv_default + responses: + table_name: responses + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 eval: - provider_id: meta-reference provider_type: inline::meta-reference config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/meta_reference_eval.db + namespace: eval + backend: kv_default datasetio: - provider_id: huggingface provider_type: remote::huggingface config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/huggingface_datasetio.db + namespace: datasetio::huggingface + backend: kv_default - provider_id: localfs provider_type: inline::localfs config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/localfs_datasetio.db + namespace: datasetio::localfs + backend: kv_default scoring: - provider_id: basic provider_type: inline::basic @@ -89,15 +92,26 @@ providers: provider_type: inline::rag-runtime - provider_id: model-context-protocol provider_type: remote::model-context-protocol -metadata_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/registry.db -inference_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/inference_store.db -conversations_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/conversations.db +storage: + backends: + kv_default: + type: kv_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/kvstore.db + sql_default: + type: sql_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/meta-reference-gpu}/sql_store.db + stores: + metadata: + namespace: registry + backend: kv_default + inference: + table_name: inference_store + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 + conversations: + table_name: openai_conversations + backend: sql_default models: - metadata: {} model_id: ${env.INFERENCE_MODEL} diff --git a/llama_stack/distributions/nvidia/run-with-safety.yaml b/llama_stack/distributions/nvidia/run-with-safety.yaml index e0482f67d..e06787d0b 100644 --- a/llama_stack/distributions/nvidia/run-with-safety.yaml +++ b/llama_stack/distributions/nvidia/run-with-safety.yaml @@ -28,9 +28,9 @@ providers: - provider_id: faiss provider_type: inline::faiss config: - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/faiss_store.db + persistence: + namespace: vector_io::faiss + backend: kv_default safety: - provider_id: nvidia provider_type: remote::nvidia @@ -41,12 +41,15 @@ providers: - provider_id: meta-reference provider_type: inline::meta-reference config: - persistence_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/agents_store.db - responses_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/responses_store.db + persistence: + agent_state: + namespace: agents + backend: kv_default + responses: + table_name: responses + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 eval: - provider_id: nvidia provider_type: remote::nvidia @@ -65,8 +68,8 @@ providers: provider_type: inline::localfs config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/localfs_datasetio.db + namespace: datasetio::localfs + backend: kv_default - provider_id: nvidia provider_type: remote::nvidia config: @@ -86,17 +89,28 @@ providers: config: storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/nvidia/files} metadata_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/files_metadata.db -metadata_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/registry.db -inference_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/inference_store.db -conversations_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/conversations.db + table_name: files_metadata + backend: sql_default +storage: + backends: + kv_default: + type: kv_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/kvstore.db + sql_default: + type: sql_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/sql_store.db + stores: + metadata: + namespace: registry + backend: kv_default + inference: + table_name: inference_store + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 + conversations: + table_name: openai_conversations + backend: sql_default models: - metadata: {} model_id: ${env.INFERENCE_MODEL} diff --git a/llama_stack/distributions/nvidia/run.yaml b/llama_stack/distributions/nvidia/run.yaml index 950782eed..85e0743e4 100644 --- a/llama_stack/distributions/nvidia/run.yaml +++ b/llama_stack/distributions/nvidia/run.yaml @@ -23,9 +23,9 @@ providers: - provider_id: faiss provider_type: inline::faiss config: - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/faiss_store.db + persistence: + namespace: vector_io::faiss + backend: kv_default safety: - provider_id: nvidia provider_type: remote::nvidia @@ -36,12 +36,15 @@ providers: - provider_id: meta-reference provider_type: inline::meta-reference config: - persistence_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/agents_store.db - responses_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/responses_store.db + persistence: + agent_state: + namespace: agents + backend: kv_default + responses: + table_name: responses + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 eval: - provider_id: nvidia provider_type: remote::nvidia @@ -75,17 +78,28 @@ providers: config: storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/nvidia/files} metadata_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/files_metadata.db -metadata_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/registry.db -inference_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/inference_store.db -conversations_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/conversations.db + table_name: files_metadata + backend: sql_default +storage: + backends: + kv_default: + type: kv_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/kvstore.db + sql_default: + type: sql_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/nvidia}/sql_store.db + stores: + metadata: + namespace: registry + backend: kv_default + inference: + table_name: inference_store + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 + conversations: + table_name: openai_conversations + backend: sql_default models: [] shields: [] vector_dbs: [] diff --git a/llama_stack/distributions/open-benchmark/run.yaml b/llama_stack/distributions/open-benchmark/run.yaml index a738887b4..2c6936bfc 100644 --- a/llama_stack/distributions/open-benchmark/run.yaml +++ b/llama_stack/distributions/open-benchmark/run.yaml @@ -39,16 +39,16 @@ providers: provider_type: inline::sqlite-vec config: db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/sqlite_vec.db - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/sqlite_vec_registry.db + persistence: + namespace: vector_io::sqlite_vec + backend: kv_default - provider_id: ${env.ENABLE_CHROMADB:+chromadb} provider_type: remote::chromadb config: url: ${env.CHROMADB_URL:=} - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/chroma_remote_registry.db + persistence: + namespace: vector_io::chroma_remote + backend: kv_default - provider_id: ${env.ENABLE_PGVECTOR:+pgvector} provider_type: remote::pgvector config: @@ -57,9 +57,9 @@ providers: db: ${env.PGVECTOR_DB:=} user: ${env.PGVECTOR_USER:=} password: ${env.PGVECTOR_PASSWORD:=} - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/pgvector_registry.db + persistence: + namespace: vector_io::pgvector + backend: kv_default safety: - provider_id: llama-guard provider_type: inline::llama-guard @@ -69,32 +69,35 @@ providers: - provider_id: meta-reference provider_type: inline::meta-reference config: - persistence_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/agents_store.db - responses_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/responses_store.db + persistence: + agent_state: + namespace: agents + backend: kv_default + responses: + table_name: responses + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 eval: - provider_id: meta-reference provider_type: inline::meta-reference config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/meta_reference_eval.db + namespace: eval + backend: kv_default datasetio: - provider_id: huggingface provider_type: remote::huggingface config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/huggingface_datasetio.db + namespace: datasetio::huggingface + backend: kv_default - provider_id: localfs provider_type: inline::localfs config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/localfs_datasetio.db + namespace: datasetio::localfs + backend: kv_default scoring: - provider_id: basic provider_type: inline::basic @@ -119,15 +122,26 @@ providers: provider_type: inline::rag-runtime - provider_id: model-context-protocol provider_type: remote::model-context-protocol -metadata_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/registry.db -inference_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/inference_store.db -conversations_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/conversations.db +storage: + backends: + kv_default: + type: kv_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/kvstore.db + sql_default: + type: sql_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/open-benchmark}/sql_store.db + stores: + metadata: + namespace: registry + backend: kv_default + inference: + table_name: inference_store + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 + conversations: + table_name: openai_conversations + backend: sql_default models: - metadata: {} model_id: gpt-4o diff --git a/llama_stack/distributions/postgres-demo/postgres_demo.py b/llama_stack/distributions/postgres-demo/postgres_demo.py index 1f3e88b3b..876370ef3 100644 --- a/llama_stack/distributions/postgres-demo/postgres_demo.py +++ b/llama_stack/distributions/postgres-demo/postgres_demo.py @@ -91,7 +91,6 @@ def get_distribution_template() -> DistributionTemplate: "embedding_dimension": 768, }, ) - postgres_config = PostgresSqlStoreConfig.sample_run_config() return DistributionTemplate( name=name, distro_type="self_hosted", @@ -105,22 +104,16 @@ def get_distribution_template() -> DistributionTemplate: provider_overrides={ "inference": inference_providers + [embedding_provider], "vector_io": vector_io_providers, - "agents": [ - Provider( - provider_id="meta-reference", - provider_type="inline::meta-reference", - config=dict( - persistence_store=postgres_config, - responses_store=postgres_config, - ), - ) - ], }, default_models=default_models + [embedding_model], default_tool_groups=default_tool_groups, default_shields=[ShieldInput(shield_id="meta-llama/Llama-Guard-3-8B")], - metadata_store=PostgresKVStoreConfig.sample_run_config(), - inference_store=postgres_config, + storage_backends={ + "kv_default": PostgresKVStoreConfig.sample_run_config( + table_name="llamastack_kvstore", + ), + "sql_default": PostgresSqlStoreConfig.sample_run_config(), + }, ), }, run_config_env_vars={ diff --git a/llama_stack/distributions/postgres-demo/run.yaml b/llama_stack/distributions/postgres-demo/run.yaml index 62faf3f62..9556b1287 100644 --- a/llama_stack/distributions/postgres-demo/run.yaml +++ b/llama_stack/distributions/postgres-demo/run.yaml @@ -22,9 +22,9 @@ providers: provider_type: remote::chromadb config: url: ${env.CHROMADB_URL:=} - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/postgres-demo}/chroma_remote_registry.db + persistence: + namespace: vector_io::chroma_remote + backend: kv_default safety: - provider_id: llama-guard provider_type: inline::llama-guard @@ -34,20 +34,15 @@ providers: - provider_id: meta-reference provider_type: inline::meta-reference config: - persistence_store: - type: postgres - host: ${env.POSTGRES_HOST:=localhost} - port: ${env.POSTGRES_PORT:=5432} - db: ${env.POSTGRES_DB:=llamastack} - user: ${env.POSTGRES_USER:=llamastack} - password: ${env.POSTGRES_PASSWORD:=llamastack} - responses_store: - type: postgres - host: ${env.POSTGRES_HOST:=localhost} - port: ${env.POSTGRES_PORT:=5432} - db: ${env.POSTGRES_DB:=llamastack} - user: ${env.POSTGRES_USER:=llamastack} - password: ${env.POSTGRES_PASSWORD:=llamastack} + persistence: + agent_state: + namespace: agents + backend: kv_default + responses: + table_name: responses + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 tool_runtime: - provider_id: brave-search provider_type: remote::brave-search @@ -63,24 +58,35 @@ providers: provider_type: inline::rag-runtime - provider_id: model-context-protocol provider_type: remote::model-context-protocol -metadata_store: - type: postgres - host: ${env.POSTGRES_HOST:=localhost} - port: ${env.POSTGRES_PORT:=5432} - db: ${env.POSTGRES_DB:=llamastack} - user: ${env.POSTGRES_USER:=llamastack} - password: ${env.POSTGRES_PASSWORD:=llamastack} - table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore} -inference_store: - type: postgres - host: ${env.POSTGRES_HOST:=localhost} - port: ${env.POSTGRES_PORT:=5432} - db: ${env.POSTGRES_DB:=llamastack} - user: ${env.POSTGRES_USER:=llamastack} - password: ${env.POSTGRES_PASSWORD:=llamastack} -conversations_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/postgres-demo}/conversations.db +storage: + backends: + kv_default: + type: kv_postgres + host: ${env.POSTGRES_HOST:=localhost} + port: ${env.POSTGRES_PORT:=5432} + db: ${env.POSTGRES_DB:=llamastack} + user: ${env.POSTGRES_USER:=llamastack} + password: ${env.POSTGRES_PASSWORD:=llamastack} + table_name: ${env.POSTGRES_TABLE_NAME:=llamastack_kvstore} + sql_default: + type: sql_postgres + host: ${env.POSTGRES_HOST:=localhost} + port: ${env.POSTGRES_PORT:=5432} + db: ${env.POSTGRES_DB:=llamastack} + user: ${env.POSTGRES_USER:=llamastack} + password: ${env.POSTGRES_PASSWORD:=llamastack} + stores: + metadata: + namespace: registry + backend: kv_default + inference: + table_name: inference_store + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 + conversations: + table_name: openai_conversations + backend: sql_default models: - metadata: {} model_id: ${env.INFERENCE_MODEL} diff --git a/llama_stack/distributions/starter-gpu/run.yaml b/llama_stack/distributions/starter-gpu/run.yaml index 370d4b516..abfa579a7 100644 --- a/llama_stack/distributions/starter-gpu/run.yaml +++ b/llama_stack/distributions/starter-gpu/run.yaml @@ -93,30 +93,30 @@ providers: - provider_id: faiss provider_type: inline::faiss config: - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/faiss_store.db + persistence: + namespace: vector_io::faiss + backend: kv_default - provider_id: sqlite-vec provider_type: inline::sqlite-vec config: db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/sqlite_vec.db - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/sqlite_vec_registry.db + persistence: + namespace: vector_io::sqlite_vec + backend: kv_default - provider_id: ${env.MILVUS_URL:+milvus} provider_type: inline::milvus config: db_path: ${env.MILVUS_DB_PATH:=~/.llama/distributions/starter-gpu}/milvus.db - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/milvus_registry.db + persistence: + namespace: vector_io::milvus + backend: kv_default - provider_id: ${env.CHROMADB_URL:+chromadb} provider_type: remote::chromadb config: url: ${env.CHROMADB_URL:=} - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu/}/chroma_remote_registry.db + persistence: + namespace: vector_io::chroma_remote + backend: kv_default - provider_id: ${env.PGVECTOR_DB:+pgvector} provider_type: remote::pgvector config: @@ -125,17 +125,17 @@ providers: db: ${env.PGVECTOR_DB:=} user: ${env.PGVECTOR_USER:=} password: ${env.PGVECTOR_PASSWORD:=} - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/pgvector_registry.db + persistence: + namespace: vector_io::pgvector + backend: kv_default files: - provider_id: meta-reference-files provider_type: inline::localfs config: storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter-gpu/files} metadata_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/files_metadata.db + table_name: files_metadata + backend: sql_default safety: - provider_id: llama-guard provider_type: inline::llama-guard @@ -147,12 +147,15 @@ providers: - provider_id: meta-reference provider_type: inline::meta-reference config: - persistence_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/agents_store.db - responses_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/responses_store.db + persistence: + agent_state: + namespace: agents + backend: kv_default + responses: + table_name: responses + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 post_training: - provider_id: huggingface-gpu provider_type: inline::huggingface-gpu @@ -166,21 +169,21 @@ providers: provider_type: inline::meta-reference config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/meta_reference_eval.db + namespace: eval + backend: kv_default datasetio: - provider_id: huggingface provider_type: remote::huggingface config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/huggingface_datasetio.db + namespace: datasetio::huggingface + backend: kv_default - provider_id: localfs provider_type: inline::localfs config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/localfs_datasetio.db + namespace: datasetio::localfs + backend: kv_default scoring: - provider_id: basic provider_type: inline::basic @@ -210,17 +213,28 @@ providers: provider_type: inline::reference config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/batches.db -metadata_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/registry.db -inference_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/inference_store.db -conversations_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/conversations.db + namespace: batches + backend: kv_default +storage: + backends: + kv_default: + type: kv_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/kvstore.db + sql_default: + type: sql_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter-gpu}/sql_store.db + stores: + metadata: + namespace: registry + backend: kv_default + inference: + table_name: inference_store + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 + conversations: + table_name: openai_conversations + backend: sql_default models: [] shields: - shield_id: llama-guard diff --git a/llama_stack/distributions/starter/run.yaml b/llama_stack/distributions/starter/run.yaml index 2f4e7f350..fc58a4afe 100644 --- a/llama_stack/distributions/starter/run.yaml +++ b/llama_stack/distributions/starter/run.yaml @@ -93,30 +93,30 @@ providers: - provider_id: faiss provider_type: inline::faiss config: - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/faiss_store.db + persistence: + namespace: vector_io::faiss + backend: kv_default - provider_id: sqlite-vec provider_type: inline::sqlite-vec config: db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/sqlite_vec.db - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/sqlite_vec_registry.db + persistence: + namespace: vector_io::sqlite_vec + backend: kv_default - provider_id: ${env.MILVUS_URL:+milvus} provider_type: inline::milvus config: db_path: ${env.MILVUS_DB_PATH:=~/.llama/distributions/starter}/milvus.db - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/milvus_registry.db + persistence: + namespace: vector_io::milvus + backend: kv_default - provider_id: ${env.CHROMADB_URL:+chromadb} provider_type: remote::chromadb config: url: ${env.CHROMADB_URL:=} - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter/}/chroma_remote_registry.db + persistence: + namespace: vector_io::chroma_remote + backend: kv_default - provider_id: ${env.PGVECTOR_DB:+pgvector} provider_type: remote::pgvector config: @@ -125,17 +125,17 @@ providers: db: ${env.PGVECTOR_DB:=} user: ${env.PGVECTOR_USER:=} password: ${env.PGVECTOR_PASSWORD:=} - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/pgvector_registry.db + persistence: + namespace: vector_io::pgvector + backend: kv_default files: - provider_id: meta-reference-files provider_type: inline::localfs config: storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/starter/files} metadata_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/files_metadata.db + table_name: files_metadata + backend: sql_default safety: - provider_id: llama-guard provider_type: inline::llama-guard @@ -147,12 +147,15 @@ providers: - provider_id: meta-reference provider_type: inline::meta-reference config: - persistence_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/agents_store.db - responses_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/responses_store.db + persistence: + agent_state: + namespace: agents + backend: kv_default + responses: + table_name: responses + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 post_training: - provider_id: torchtune-cpu provider_type: inline::torchtune-cpu @@ -163,21 +166,21 @@ providers: provider_type: inline::meta-reference config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/meta_reference_eval.db + namespace: eval + backend: kv_default datasetio: - provider_id: huggingface provider_type: remote::huggingface config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/huggingface_datasetio.db + namespace: datasetio::huggingface + backend: kv_default - provider_id: localfs provider_type: inline::localfs config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/localfs_datasetio.db + namespace: datasetio::localfs + backend: kv_default scoring: - provider_id: basic provider_type: inline::basic @@ -207,17 +210,28 @@ providers: provider_type: inline::reference config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/batches.db -metadata_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/registry.db -inference_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/inference_store.db -conversations_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/conversations.db + namespace: batches + backend: kv_default +storage: + backends: + kv_default: + type: kv_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/kvstore.db + sql_default: + type: sql_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/starter}/sql_store.db + stores: + metadata: + namespace: registry + backend: kv_default + inference: + table_name: inference_store + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 + conversations: + table_name: openai_conversations + backend: sql_default models: [] shields: - shield_id: llama-guard diff --git a/llama_stack/distributions/template.py b/llama_stack/distributions/template.py index 807829999..542c7bea9 100644 --- a/llama_stack/distributions/template.py +++ b/llama_stack/distributions/template.py @@ -29,6 +29,12 @@ from llama_stack.core.datatypes import ( ToolGroupInput, ) from llama_stack.core.distribution import get_provider_registry +from llama_stack.core.storage.datatypes import ( + InferenceStoreReference, + KVStoreReference, + SqlStoreReference, + StorageBackendType, +) from llama_stack.core.utils.dynamic import instantiate_class_type from llama_stack.core.utils.image_types import LlamaStackImageType from llama_stack.providers.utils.inference.model_registry import ProviderModelEntry @@ -180,10 +186,9 @@ class RunConfigSettings(BaseModel): default_tool_groups: list[ToolGroupInput] | None = None default_datasets: list[DatasetInput] | None = None default_benchmarks: list[BenchmarkInput] | None = None - metadata_store: dict | None = None - inference_store: dict | None = None - conversations_store: dict | None = None telemetry: TelemetryConfig = Field(default_factory=lambda: TelemetryConfig(enabled=True)) + storage_backends: dict[str, Any] | None = None + storage_stores: dict[str, Any] | None = None def run_config( self, @@ -226,6 +231,37 @@ class RunConfigSettings(BaseModel): # Get unique set of APIs from providers apis = sorted(providers.keys()) + storage_backends = self.storage_backends or { + "kv_default": SqliteKVStoreConfig.sample_run_config( + __distro_dir__=f"~/.llama/distributions/{name}", + db_name="kvstore.db", + ), + "sql_default": SqliteSqlStoreConfig.sample_run_config( + __distro_dir__=f"~/.llama/distributions/{name}", + db_name="sql_store.db", + ), + } + + storage_stores = self.storage_stores or { + "metadata": KVStoreReference( + backend="kv_default", + namespace="registry", + ).model_dump(exclude_none=True), + "inference": InferenceStoreReference( + backend="sql_default", + table_name="inference_store", + ).model_dump(exclude_none=True), + "conversations": SqlStoreReference( + backend="sql_default", + table_name="openai_conversations", + ).model_dump(exclude_none=True), + } + + storage_config = dict( + backends=storage_backends, + stores=storage_stores, + ) + # Return a dict that matches StackRunConfig structure return { "version": LLAMA_STACK_RUN_CONFIG_VERSION, @@ -233,21 +269,7 @@ class RunConfigSettings(BaseModel): "container_image": container_image, "apis": apis, "providers": provider_configs, - "metadata_store": self.metadata_store - or SqliteKVStoreConfig.sample_run_config( - __distro_dir__=f"~/.llama/distributions/{name}", - db_name="registry.db", - ), - "inference_store": self.inference_store - or SqliteSqlStoreConfig.sample_run_config( - __distro_dir__=f"~/.llama/distributions/{name}", - db_name="inference_store.db", - ), - "conversations_store": self.conversations_store - or SqliteSqlStoreConfig.sample_run_config( - __distro_dir__=f"~/.llama/distributions/{name}", - db_name="conversations.db", - ), + "storage": storage_config, "models": [m.model_dump(exclude_none=True) for m in (self.default_models or [])], "shields": [s.model_dump(exclude_none=True) for s in (self.default_shields or [])], "vector_dbs": [], @@ -297,11 +319,15 @@ class DistributionTemplate(BaseModel): # We should have a better way to do this by formalizing the concept of "internal" APIs # and providers, with a way to specify dependencies for them. - if run_config_.get("inference_store"): - additional_pip_packages.extend(get_sql_pip_packages(run_config_["inference_store"])) - - if run_config_.get("metadata_store"): - additional_pip_packages.extend(get_kv_pip_packages(run_config_["metadata_store"])) + storage_cfg = run_config_.get("storage", {}) + for backend_cfg in storage_cfg.get("backends", {}).values(): + store_type = backend_cfg.get("type") + if not store_type: + continue + if str(store_type).startswith("kv_"): + additional_pip_packages.extend(get_kv_pip_packages(backend_cfg)) + elif str(store_type).startswith("sql_"): + additional_pip_packages.extend(get_sql_pip_packages(backend_cfg)) if self.additional_pip_packages: additional_pip_packages.extend(self.additional_pip_packages) @@ -387,11 +413,13 @@ class DistributionTemplate(BaseModel): def enum_representer(dumper, data): return dumper.represent_scalar("tag:yaml.org,2002:str", data.value) - # Register YAML representer for ModelType + # Register YAML representer for enums yaml.add_representer(ModelType, enum_representer) yaml.add_representer(DatasetPurpose, enum_representer) + yaml.add_representer(StorageBackendType, enum_representer) yaml.SafeDumper.add_representer(ModelType, enum_representer) yaml.SafeDumper.add_representer(DatasetPurpose, enum_representer) + yaml.SafeDumper.add_representer(StorageBackendType, enum_representer) for output_dir in [yaml_output_dir, doc_output_dir]: output_dir.mkdir(parents=True, exist_ok=True) diff --git a/llama_stack/distributions/watsonx/run.yaml b/llama_stack/distributions/watsonx/run.yaml index c3db4eeb8..37866cb32 100644 --- a/llama_stack/distributions/watsonx/run.yaml +++ b/llama_stack/distributions/watsonx/run.yaml @@ -22,9 +22,9 @@ providers: - provider_id: faiss provider_type: inline::faiss config: - kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/faiss_store.db + persistence: + namespace: vector_io::faiss + backend: kv_default safety: - provider_id: llama-guard provider_type: inline::llama-guard @@ -34,32 +34,35 @@ providers: - provider_id: meta-reference provider_type: inline::meta-reference config: - persistence_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/agents_store.db - responses_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/responses_store.db + persistence: + agent_state: + namespace: agents + backend: kv_default + responses: + table_name: responses + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 eval: - provider_id: meta-reference provider_type: inline::meta-reference config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/meta_reference_eval.db + namespace: eval + backend: kv_default datasetio: - provider_id: huggingface provider_type: remote::huggingface config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/huggingface_datasetio.db + namespace: datasetio::huggingface + backend: kv_default - provider_id: localfs provider_type: inline::localfs config: kvstore: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/localfs_datasetio.db + namespace: datasetio::localfs + backend: kv_default scoring: - provider_id: basic provider_type: inline::basic @@ -90,17 +93,28 @@ providers: config: storage_dir: ${env.FILES_STORAGE_DIR:=~/.llama/distributions/watsonx/files} metadata_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/files_metadata.db -metadata_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/registry.db -inference_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/inference_store.db -conversations_store: - type: sqlite - db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/conversations.db + table_name: files_metadata + backend: sql_default +storage: + backends: + kv_default: + type: kv_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/kvstore.db + sql_default: + type: sql_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/watsonx}/sql_store.db + stores: + metadata: + namespace: registry + backend: kv_default + inference: + table_name: inference_store + backend: sql_default + max_write_queue_size: 10000 + num_writers: 4 + conversations: + table_name: openai_conversations + backend: sql_default models: [] shields: [] vector_dbs: [] diff --git a/llama_stack/providers/inline/agents/meta_reference/agents.py b/llama_stack/providers/inline/agents/meta_reference/agents.py index 810c063e6..c2f6ea640 100644 --- a/llama_stack/providers/inline/agents/meta_reference/agents.py +++ b/llama_stack/providers/inline/agents/meta_reference/agents.py @@ -83,8 +83,8 @@ class MetaReferenceAgentsImpl(Agents): self.policy = policy async def initialize(self) -> None: - self.persistence_store = await kvstore_impl(self.config.persistence_store) - self.responses_store = ResponsesStore(self.config.responses_store, self.policy) + self.persistence_store = await kvstore_impl(self.config.persistence.agent_state) + self.responses_store = ResponsesStore(self.config.persistence.responses, self.policy) await self.responses_store.initialize() self.openai_responses_impl = OpenAIResponsesImpl( inference_api=self.inference_api, diff --git a/llama_stack/providers/inline/agents/meta_reference/config.py b/llama_stack/providers/inline/agents/meta_reference/config.py index 1c392f29c..a800b426b 100644 --- a/llama_stack/providers/inline/agents/meta_reference/config.py +++ b/llama_stack/providers/inline/agents/meta_reference/config.py @@ -8,24 +8,30 @@ from typing import Any from pydantic import BaseModel -from llama_stack.providers.utils.kvstore import KVStoreConfig -from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig -from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig +from llama_stack.core.storage.datatypes import KVStoreReference, ResponsesStoreReference + + +class AgentPersistenceConfig(BaseModel): + """Nested persistence configuration for agents.""" + + agent_state: KVStoreReference + responses: ResponsesStoreReference class MetaReferenceAgentsImplConfig(BaseModel): - persistence_store: KVStoreConfig - responses_store: SqlStoreConfig + persistence: AgentPersistenceConfig @classmethod def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]: return { - "persistence_store": SqliteKVStoreConfig.sample_run_config( - __distro_dir__=__distro_dir__, - db_name="agents_store.db", - ), - "responses_store": SqliteSqlStoreConfig.sample_run_config( - __distro_dir__=__distro_dir__, - db_name="responses_store.db", - ), + "persistence": { + "agent_state": KVStoreReference( + backend="kv_default", + namespace="agents", + ).model_dump(exclude_none=True), + "responses": ResponsesStoreReference( + backend="sql_default", + table_name="responses", + ).model_dump(exclude_none=True), + } } diff --git a/llama_stack/providers/inline/batches/reference/config.py b/llama_stack/providers/inline/batches/reference/config.py index d8d06868b..f896a897d 100644 --- a/llama_stack/providers/inline/batches/reference/config.py +++ b/llama_stack/providers/inline/batches/reference/config.py @@ -6,13 +6,13 @@ from pydantic import BaseModel, Field -from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig +from llama_stack.core.storage.datatypes import KVStoreReference class ReferenceBatchesImplConfig(BaseModel): """Configuration for the Reference Batches implementation.""" - kvstore: KVStoreConfig = Field( + kvstore: KVStoreReference = Field( description="Configuration for the key-value store backend.", ) @@ -33,8 +33,8 @@ class ReferenceBatchesImplConfig(BaseModel): @classmethod def sample_run_config(cls, __distro_dir__: str) -> dict: return { - "kvstore": SqliteKVStoreConfig.sample_run_config( - __distro_dir__=__distro_dir__, - db_name="batches.db", - ), + "kvstore": KVStoreReference( + backend="kv_default", + namespace="batches", + ).model_dump(exclude_none=True), } diff --git a/llama_stack/providers/inline/datasetio/localfs/config.py b/llama_stack/providers/inline/datasetio/localfs/config.py index b450e8777..6e878df62 100644 --- a/llama_stack/providers/inline/datasetio/localfs/config.py +++ b/llama_stack/providers/inline/datasetio/localfs/config.py @@ -7,20 +7,17 @@ from typing import Any from pydantic import BaseModel -from llama_stack.providers.utils.kvstore.config import ( - KVStoreConfig, - SqliteKVStoreConfig, -) +from llama_stack.core.storage.datatypes import KVStoreReference class LocalFSDatasetIOConfig(BaseModel): - kvstore: KVStoreConfig + kvstore: KVStoreReference @classmethod def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]: return { - "kvstore": SqliteKVStoreConfig.sample_run_config( - __distro_dir__=__distro_dir__, - db_name="localfs_datasetio.db", - ) + "kvstore": KVStoreReference( + backend="kv_default", + namespace="datasetio::localfs", + ).model_dump(exclude_none=True) } diff --git a/llama_stack/providers/inline/eval/meta_reference/config.py b/llama_stack/providers/inline/eval/meta_reference/config.py index 2a4a29998..b496c855e 100644 --- a/llama_stack/providers/inline/eval/meta_reference/config.py +++ b/llama_stack/providers/inline/eval/meta_reference/config.py @@ -7,20 +7,17 @@ from typing import Any from pydantic import BaseModel -from llama_stack.providers.utils.kvstore.config import ( - KVStoreConfig, - SqliteKVStoreConfig, -) +from llama_stack.core.storage.datatypes import KVStoreReference class MetaReferenceEvalConfig(BaseModel): - kvstore: KVStoreConfig + kvstore: KVStoreReference @classmethod def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]: return { - "kvstore": SqliteKVStoreConfig.sample_run_config( - __distro_dir__=__distro_dir__, - db_name="meta_reference_eval.db", - ) + "kvstore": KVStoreReference( + backend="kv_default", + namespace="eval", + ).model_dump(exclude_none=True) } diff --git a/llama_stack/providers/inline/files/localfs/config.py b/llama_stack/providers/inline/files/localfs/config.py index 6c767af8f..0c2dd3b21 100644 --- a/llama_stack/providers/inline/files/localfs/config.py +++ b/llama_stack/providers/inline/files/localfs/config.py @@ -8,14 +8,14 @@ from typing import Any from pydantic import BaseModel, Field -from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig +from llama_stack.core.storage.datatypes import SqlStoreReference class LocalfsFilesImplConfig(BaseModel): storage_dir: str = Field( description="Directory to store uploaded files", ) - metadata_store: SqlStoreConfig = Field( + metadata_store: SqlStoreReference = Field( description="SQL store configuration for file metadata", ) ttl_secs: int = 365 * 24 * 60 * 60 # 1 year @@ -24,8 +24,8 @@ class LocalfsFilesImplConfig(BaseModel): def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]: return { "storage_dir": "${env.FILES_STORAGE_DIR:=" + __distro_dir__ + "/files}", - "metadata_store": SqliteSqlStoreConfig.sample_run_config( - __distro_dir__=__distro_dir__, - db_name="files_metadata.db", - ), + "metadata_store": SqlStoreReference( + backend="sql_default", + table_name="files_metadata", + ).model_dump(exclude_none=True), } diff --git a/llama_stack/providers/inline/vector_io/chroma/config.py b/llama_stack/providers/inline/vector_io/chroma/config.py index a9566f7ff..1798f10de 100644 --- a/llama_stack/providers/inline/vector_io/chroma/config.py +++ b/llama_stack/providers/inline/vector_io/chroma/config.py @@ -8,14 +8,14 @@ from typing import Any from pydantic import BaseModel, Field -from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig +from llama_stack.core.storage.datatypes import KVStoreReference from llama_stack.schema_utils import json_schema_type @json_schema_type class ChromaVectorIOConfig(BaseModel): db_path: str - kvstore: KVStoreConfig = Field(description="Config for KV store backend") + persistence: KVStoreReference = Field(description="Config for KV store backend") @classmethod def sample_run_config( @@ -23,8 +23,8 @@ class ChromaVectorIOConfig(BaseModel): ) -> dict[str, Any]: return { "db_path": db_path, - "kvstore": SqliteKVStoreConfig.sample_run_config( - __distro_dir__=__distro_dir__, - db_name="chroma_inline_registry.db", - ), + "persistence": KVStoreReference( + backend="kv_default", + namespace="vector_io::chroma", + ).model_dump(exclude_none=True), } diff --git a/llama_stack/providers/inline/vector_io/faiss/config.py b/llama_stack/providers/inline/vector_io/faiss/config.py index cbcbb1762..dd7a7aeca 100644 --- a/llama_stack/providers/inline/vector_io/faiss/config.py +++ b/llama_stack/providers/inline/vector_io/faiss/config.py @@ -8,22 +8,19 @@ from typing import Any from pydantic import BaseModel -from llama_stack.providers.utils.kvstore.config import ( - KVStoreConfig, - SqliteKVStoreConfig, -) +from llama_stack.core.storage.datatypes import KVStoreReference from llama_stack.schema_utils import json_schema_type @json_schema_type class FaissVectorIOConfig(BaseModel): - kvstore: KVStoreConfig + persistence: KVStoreReference @classmethod def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]: return { - "kvstore": SqliteKVStoreConfig.sample_run_config( - __distro_dir__=__distro_dir__, - db_name="faiss_store.db", - ) + "persistence": KVStoreReference( + backend="kv_default", + namespace="vector_io::faiss", + ).model_dump(exclude_none=True) } diff --git a/llama_stack/providers/inline/vector_io/faiss/faiss.py b/llama_stack/providers/inline/vector_io/faiss/faiss.py index df0864db8..ff1a6aa4c 100644 --- a/llama_stack/providers/inline/vector_io/faiss/faiss.py +++ b/llama_stack/providers/inline/vector_io/faiss/faiss.py @@ -214,7 +214,7 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr self.cache: dict[str, VectorDBWithIndex] = {} async def initialize(self) -> None: - self.kvstore = await kvstore_impl(self.config.kvstore) + self.kvstore = await kvstore_impl(self.config.persistence) # Load existing banks from kvstore start_key = VECTOR_DBS_PREFIX end_key = f"{VECTOR_DBS_PREFIX}\xff" diff --git a/llama_stack/providers/inline/vector_io/milvus/config.py b/llama_stack/providers/inline/vector_io/milvus/config.py index 8cbd056be..b333b04ea 100644 --- a/llama_stack/providers/inline/vector_io/milvus/config.py +++ b/llama_stack/providers/inline/vector_io/milvus/config.py @@ -8,25 +8,22 @@ from typing import Any from pydantic import BaseModel, Field -from llama_stack.providers.utils.kvstore.config import ( - KVStoreConfig, - SqliteKVStoreConfig, -) +from llama_stack.core.storage.datatypes import KVStoreReference from llama_stack.schema_utils import json_schema_type @json_schema_type class MilvusVectorIOConfig(BaseModel): db_path: str - kvstore: KVStoreConfig = Field(description="Config for KV store backend (SQLite only for now)") + persistence: KVStoreReference = Field(description="Config for KV store backend (SQLite only for now)") consistency_level: str = Field(description="The consistency level of the Milvus server", default="Strong") @classmethod def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]: return { "db_path": "${env.MILVUS_DB_PATH:=" + __distro_dir__ + "}/" + "milvus.db", - "kvstore": SqliteKVStoreConfig.sample_run_config( - __distro_dir__=__distro_dir__, - db_name="milvus_registry.db", - ), + "persistence": KVStoreReference( + backend="kv_default", + namespace="vector_io::milvus", + ).model_dump(exclude_none=True), } diff --git a/llama_stack/providers/inline/vector_io/qdrant/config.py b/llama_stack/providers/inline/vector_io/qdrant/config.py index e15c27ea1..e7ecde7b7 100644 --- a/llama_stack/providers/inline/vector_io/qdrant/config.py +++ b/llama_stack/providers/inline/vector_io/qdrant/config.py @@ -9,23 +9,21 @@ from typing import Any from pydantic import BaseModel -from llama_stack.providers.utils.kvstore.config import ( - KVStoreConfig, - SqliteKVStoreConfig, -) +from llama_stack.core.storage.datatypes import KVStoreReference from llama_stack.schema_utils import json_schema_type @json_schema_type class QdrantVectorIOConfig(BaseModel): path: str - kvstore: KVStoreConfig + persistence: KVStoreReference @classmethod def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]: return { "path": "${env.QDRANT_PATH:=~/.llama/" + __distro_dir__ + "}/" + "qdrant.db", - "kvstore": SqliteKVStoreConfig.sample_run_config( - __distro_dir__=__distro_dir__, db_name="qdrant_registry.db" - ), + "persistence": KVStoreReference( + backend="kv_default", + namespace="vector_io::qdrant", + ).model_dump(exclude_none=True), } diff --git a/llama_stack/providers/inline/vector_io/sqlite_vec/config.py b/llama_stack/providers/inline/vector_io/sqlite_vec/config.py index 525ed4b1f..596f8fc95 100644 --- a/llama_stack/providers/inline/vector_io/sqlite_vec/config.py +++ b/llama_stack/providers/inline/vector_io/sqlite_vec/config.py @@ -8,22 +8,19 @@ from typing import Any from pydantic import BaseModel, Field -from llama_stack.providers.utils.kvstore.config import ( - KVStoreConfig, - SqliteKVStoreConfig, -) +from llama_stack.core.storage.datatypes import KVStoreReference class SQLiteVectorIOConfig(BaseModel): db_path: str = Field(description="Path to the SQLite database file") - kvstore: KVStoreConfig = Field(description="Config for KV store backend (SQLite only for now)") + persistence: KVStoreReference = Field(description="Config for KV store backend (SQLite only for now)") @classmethod def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]: return { "db_path": "${env.SQLITE_STORE_DIR:=" + __distro_dir__ + "}/" + "sqlite_vec.db", - "kvstore": SqliteKVStoreConfig.sample_run_config( - __distro_dir__=__distro_dir__, - db_name="sqlite_vec_registry.db", - ), + "persistence": KVStoreReference( + backend="kv_default", + namespace="vector_io::sqlite_vec", + ).model_dump(exclude_none=True), } diff --git a/llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py b/llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py index 8bc3b04cb..a58aa05b8 100644 --- a/llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py +++ b/llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py @@ -425,7 +425,7 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc self.vector_db_store = None async def initialize(self) -> None: - self.kvstore = await kvstore_impl(self.config.kvstore) + self.kvstore = await kvstore_impl(self.config.persistence) start_key = VECTOR_DBS_PREFIX end_key = f"{VECTOR_DBS_PREFIX}\xff" diff --git a/llama_stack/providers/remote/datasetio/huggingface/config.py b/llama_stack/providers/remote/datasetio/huggingface/config.py index 38f933728..35297cb58 100644 --- a/llama_stack/providers/remote/datasetio/huggingface/config.py +++ b/llama_stack/providers/remote/datasetio/huggingface/config.py @@ -7,20 +7,17 @@ from typing import Any from pydantic import BaseModel -from llama_stack.providers.utils.kvstore.config import ( - KVStoreConfig, - SqliteKVStoreConfig, -) +from llama_stack.core.storage.datatypes import KVStoreReference class HuggingfaceDatasetIOConfig(BaseModel): - kvstore: KVStoreConfig + kvstore: KVStoreReference @classmethod def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]: return { - "kvstore": SqliteKVStoreConfig.sample_run_config( - __distro_dir__=__distro_dir__, - db_name="huggingface_datasetio.db", - ) + "kvstore": KVStoreReference( + backend="kv_default", + namespace="datasetio::huggingface", + ).model_dump(exclude_none=True) } diff --git a/llama_stack/providers/remote/files/s3/config.py b/llama_stack/providers/remote/files/s3/config.py index da20d8668..cd4b1adda 100644 --- a/llama_stack/providers/remote/files/s3/config.py +++ b/llama_stack/providers/remote/files/s3/config.py @@ -8,7 +8,7 @@ from typing import Any from pydantic import BaseModel, Field -from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig +from llama_stack.core.storage.datatypes import SqlStoreReference class S3FilesImplConfig(BaseModel): @@ -24,7 +24,7 @@ class S3FilesImplConfig(BaseModel): auto_create_bucket: bool = Field( default=False, description="Automatically create the S3 bucket if it doesn't exist" ) - metadata_store: SqlStoreConfig = Field(description="SQL store configuration for file metadata") + metadata_store: SqlStoreReference = Field(description="SQL store configuration for file metadata") @classmethod def sample_run_config(cls, __distro_dir__: str) -> dict[str, Any]: @@ -35,8 +35,8 @@ class S3FilesImplConfig(BaseModel): "aws_secret_access_key": "${env.AWS_SECRET_ACCESS_KEY:=}", "endpoint_url": "${env.S3_ENDPOINT_URL:=}", "auto_create_bucket": "${env.S3_AUTO_CREATE_BUCKET:=false}", - "metadata_store": SqliteSqlStoreConfig.sample_run_config( - __distro_dir__=__distro_dir__, - db_name="s3_files_metadata.db", - ), + "metadata_store": SqlStoreReference( + backend="sql_default", + table_name="s3_files_metadata", + ).model_dump(exclude_none=True), } diff --git a/llama_stack/providers/remote/vector_io/chroma/chroma.py b/llama_stack/providers/remote/vector_io/chroma/chroma.py index 5792a83c6..b07207cc6 100644 --- a/llama_stack/providers/remote/vector_io/chroma/chroma.py +++ b/llama_stack/providers/remote/vector_io/chroma/chroma.py @@ -151,7 +151,7 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP self.vector_db_store = None async def initialize(self) -> None: - self.kvstore = await kvstore_impl(self.config.kvstore) + self.kvstore = await kvstore_impl(self.config.persistence) self.vector_db_store = self.kvstore if isinstance(self.config, RemoteChromaVectorIOConfig): diff --git a/llama_stack/providers/remote/vector_io/chroma/config.py b/llama_stack/providers/remote/vector_io/chroma/config.py index a1193905a..209ba90bb 100644 --- a/llama_stack/providers/remote/vector_io/chroma/config.py +++ b/llama_stack/providers/remote/vector_io/chroma/config.py @@ -8,21 +8,21 @@ from typing import Any from pydantic import BaseModel, Field -from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig +from llama_stack.core.storage.datatypes import KVStoreReference from llama_stack.schema_utils import json_schema_type @json_schema_type class ChromaVectorIOConfig(BaseModel): url: str | None - kvstore: KVStoreConfig = Field(description="Config for KV store backend") + persistence: KVStoreReference = Field(description="Config for KV store backend") @classmethod def sample_run_config(cls, __distro_dir__: str, url: str = "${env.CHROMADB_URL}", **kwargs: Any) -> dict[str, Any]: return { "url": url, - "kvstore": SqliteKVStoreConfig.sample_run_config( - __distro_dir__=__distro_dir__, - db_name="chroma_remote_registry.db", - ), + "persistence": KVStoreReference( + backend="kv_default", + namespace="vector_io::chroma_remote", + ).model_dump(exclude_none=True), } diff --git a/llama_stack/providers/remote/vector_io/milvus/config.py b/llama_stack/providers/remote/vector_io/milvus/config.py index 899d3678d..8ff9e1328 100644 --- a/llama_stack/providers/remote/vector_io/milvus/config.py +++ b/llama_stack/providers/remote/vector_io/milvus/config.py @@ -8,7 +8,7 @@ from typing import Any from pydantic import BaseModel, ConfigDict, Field -from llama_stack.providers.utils.kvstore.config import KVStoreConfig, SqliteKVStoreConfig +from llama_stack.core.storage.datatypes import KVStoreReference from llama_stack.schema_utils import json_schema_type @@ -17,7 +17,7 @@ class MilvusVectorIOConfig(BaseModel): uri: str = Field(description="The URI of the Milvus server") token: str | None = Field(description="The token of the Milvus server") consistency_level: str = Field(description="The consistency level of the Milvus server", default="Strong") - kvstore: KVStoreConfig = Field(description="Config for KV store backend") + persistence: KVStoreReference = Field(description="Config for KV store backend") # This configuration allows additional fields to be passed through to the underlying Milvus client. # See the [Milvus](https://milvus.io/docs/install-overview.md) documentation for more details about Milvus in general. @@ -28,8 +28,8 @@ class MilvusVectorIOConfig(BaseModel): return { "uri": "${env.MILVUS_ENDPOINT}", "token": "${env.MILVUS_TOKEN}", - "kvstore": SqliteKVStoreConfig.sample_run_config( - __distro_dir__=__distro_dir__, - db_name="milvus_remote_registry.db", - ), + "persistence": KVStoreReference( + backend="kv_default", + namespace="vector_io::milvus_remote", + ).model_dump(exclude_none=True), } diff --git a/llama_stack/providers/remote/vector_io/milvus/milvus.py b/llama_stack/providers/remote/vector_io/milvus/milvus.py index d7147a7f0..1f689d1a9 100644 --- a/llama_stack/providers/remote/vector_io/milvus/milvus.py +++ b/llama_stack/providers/remote/vector_io/milvus/milvus.py @@ -321,7 +321,7 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP self.metadata_collection_name = "openai_vector_stores_metadata" async def initialize(self) -> None: - self.kvstore = await kvstore_impl(self.config.kvstore) + self.kvstore = await kvstore_impl(self.config.persistence) start_key = VECTOR_DBS_PREFIX end_key = f"{VECTOR_DBS_PREFIX}\xff" stored_vector_dbs = await self.kvstore.values_in_range(start_key, end_key) diff --git a/llama_stack/providers/remote/vector_io/pgvector/config.py b/llama_stack/providers/remote/vector_io/pgvector/config.py index 334cbe5be..d81e524e4 100644 --- a/llama_stack/providers/remote/vector_io/pgvector/config.py +++ b/llama_stack/providers/remote/vector_io/pgvector/config.py @@ -8,10 +8,7 @@ from typing import Any from pydantic import BaseModel, Field -from llama_stack.providers.utils.kvstore.config import ( - KVStoreConfig, - SqliteKVStoreConfig, -) +from llama_stack.core.storage.datatypes import KVStoreReference from llama_stack.schema_utils import json_schema_type @@ -22,7 +19,9 @@ class PGVectorVectorIOConfig(BaseModel): db: str | None = Field(default="postgres") user: str | None = Field(default="postgres") password: str | None = Field(default="mysecretpassword") - kvstore: KVStoreConfig | None = Field(description="Config for KV store backend (SQLite only for now)", default=None) + persistence: KVStoreReference | None = Field( + description="Config for KV store backend (SQLite only for now)", default=None + ) @classmethod def sample_run_config( @@ -41,8 +40,8 @@ class PGVectorVectorIOConfig(BaseModel): "db": db, "user": user, "password": password, - "kvstore": SqliteKVStoreConfig.sample_run_config( - __distro_dir__=__distro_dir__, - db_name="pgvector_registry.db", - ), + "persistence": KVStoreReference( + backend="kv_default", + namespace="vector_io::pgvector", + ).model_dump(exclude_none=True), } diff --git a/llama_stack/providers/remote/vector_io/pgvector/pgvector.py b/llama_stack/providers/remote/vector_io/pgvector/pgvector.py index d55c13103..691cf965c 100644 --- a/llama_stack/providers/remote/vector_io/pgvector/pgvector.py +++ b/llama_stack/providers/remote/vector_io/pgvector/pgvector.py @@ -358,7 +358,7 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco async def initialize(self) -> None: log.info(f"Initializing PGVector memory adapter with config: {self.config}") - self.kvstore = await kvstore_impl(self.config.kvstore) + self.kvstore = await kvstore_impl(self.config.persistence) await self.initialize_openai_vector_stores() try: diff --git a/llama_stack/providers/remote/vector_io/qdrant/config.py b/llama_stack/providers/remote/vector_io/qdrant/config.py index ff5506236..01fbcc5cb 100644 --- a/llama_stack/providers/remote/vector_io/qdrant/config.py +++ b/llama_stack/providers/remote/vector_io/qdrant/config.py @@ -8,10 +8,7 @@ from typing import Any from pydantic import BaseModel -from llama_stack.providers.utils.kvstore.config import ( - KVStoreConfig, - SqliteKVStoreConfig, -) +from llama_stack.core.storage.datatypes import KVStoreReference from llama_stack.schema_utils import json_schema_type @@ -27,14 +24,14 @@ class QdrantVectorIOConfig(BaseModel): prefix: str | None = None timeout: int | None = None host: str | None = None - kvstore: KVStoreConfig + persistence: KVStoreReference @classmethod def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]: return { "api_key": "${env.QDRANT_API_KEY:=}", - "kvstore": SqliteKVStoreConfig.sample_run_config( - __distro_dir__=__distro_dir__, - db_name="qdrant_registry.db", - ), + "persistence": KVStoreReference( + backend="kv_default", + namespace="vector_io::qdrant_remote", + ).model_dump(exclude_none=True), } diff --git a/llama_stack/providers/remote/vector_io/qdrant/qdrant.py b/llama_stack/providers/remote/vector_io/qdrant/qdrant.py index 8b90935cd..eba8333e4 100644 --- a/llama_stack/providers/remote/vector_io/qdrant/qdrant.py +++ b/llama_stack/providers/remote/vector_io/qdrant/qdrant.py @@ -174,9 +174,9 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP self._qdrant_lock = asyncio.Lock() async def initialize(self) -> None: - client_config = self.config.model_dump(exclude_none=True, exclude={"kvstore"}) + client_config = self.config.model_dump(exclude_none=True, exclude={"persistence"}) self.client = AsyncQdrantClient(**client_config) - self.kvstore = await kvstore_impl(self.config.kvstore) + self.kvstore = await kvstore_impl(self.config.persistence) start_key = VECTOR_DBS_PREFIX end_key = f"{VECTOR_DBS_PREFIX}\xff" diff --git a/llama_stack/providers/remote/vector_io/weaviate/config.py b/llama_stack/providers/remote/vector_io/weaviate/config.py index b693e294e..06242c6b4 100644 --- a/llama_stack/providers/remote/vector_io/weaviate/config.py +++ b/llama_stack/providers/remote/vector_io/weaviate/config.py @@ -8,10 +8,7 @@ from typing import Any from pydantic import BaseModel, Field -from llama_stack.providers.utils.kvstore.config import ( - KVStoreConfig, - SqliteKVStoreConfig, -) +from llama_stack.core.storage.datatypes import KVStoreReference from llama_stack.schema_utils import json_schema_type @@ -19,7 +16,9 @@ from llama_stack.schema_utils import json_schema_type class WeaviateVectorIOConfig(BaseModel): weaviate_api_key: str | None = Field(description="The API key for the Weaviate instance", default=None) weaviate_cluster_url: str | None = Field(description="The URL of the Weaviate cluster", default="localhost:8080") - kvstore: KVStoreConfig | None = Field(description="Config for KV store backend (SQLite only for now)", default=None) + persistence: KVStoreReference | None = Field( + description="Config for KV store backend (SQLite only for now)", default=None + ) @classmethod def sample_run_config( @@ -30,8 +29,8 @@ class WeaviateVectorIOConfig(BaseModel): return { "weaviate_api_key": None, "weaviate_cluster_url": "${env.WEAVIATE_CLUSTER_URL:=localhost:8080}", - "kvstore": SqliteKVStoreConfig.sample_run_config( - __distro_dir__=__distro_dir__, - db_name="weaviate_registry.db", - ), + "persistence": KVStoreReference( + backend="kv_default", + namespace="vector_io::weaviate", + ).model_dump(exclude_none=True), } diff --git a/llama_stack/providers/remote/vector_io/weaviate/weaviate.py b/llama_stack/providers/remote/vector_io/weaviate/weaviate.py index d8b11c441..06ffc8706 100644 --- a/llama_stack/providers/remote/vector_io/weaviate/weaviate.py +++ b/llama_stack/providers/remote/vector_io/weaviate/weaviate.py @@ -320,8 +320,8 @@ class WeaviateVectorIOAdapter( async def initialize(self) -> None: """Set up KV store and load existing vector DBs and OpenAI vector stores.""" # Initialize KV store for metadata if configured - if self.config.kvstore is not None: - self.kvstore = await kvstore_impl(self.config.kvstore) + if self.config.persistence is not None: + self.kvstore = await kvstore_impl(self.config.persistence) else: self.kvstore = None log.info("No kvstore configured, registry will not persist across restarts") diff --git a/llama_stack/providers/utils/inference/inference_store.py b/llama_stack/providers/utils/inference/inference_store.py index 901f77c67..8e20bca6b 100644 --- a/llama_stack/providers/utils/inference/inference_store.py +++ b/llama_stack/providers/utils/inference/inference_store.py @@ -15,12 +15,13 @@ from llama_stack.apis.inference import ( OpenAIMessageParam, Order, ) -from llama_stack.core.datatypes import AccessRule, InferenceStoreConfig +from llama_stack.core.datatypes import AccessRule +from llama_stack.core.storage.datatypes import InferenceStoreReference, StorageBackendType from llama_stack.log import get_logger from ..sqlstore.api import ColumnDefinition, ColumnType from ..sqlstore.authorized_sqlstore import AuthorizedSqlStore -from ..sqlstore.sqlstore import SqlStoreConfig, SqlStoreType, sqlstore_impl +from ..sqlstore.sqlstore import _SQLSTORE_BACKENDS, sqlstore_impl logger = get_logger(name=__name__, category="inference") @@ -28,33 +29,32 @@ logger = get_logger(name=__name__, category="inference") class InferenceStore: def __init__( self, - config: InferenceStoreConfig | SqlStoreConfig, + reference: InferenceStoreReference, policy: list[AccessRule], ): - # Handle backward compatibility - if not isinstance(config, InferenceStoreConfig): - # Legacy: SqlStoreConfig passed directly as config - config = InferenceStoreConfig( - sql_store_config=config, - ) - - self.config = config - self.sql_store_config = config.sql_store_config + self.reference = reference self.sql_store = None self.policy = policy - # Disable write queue for SQLite to avoid concurrency issues - self.enable_write_queue = self.sql_store_config.type != SqlStoreType.sqlite - # Async write queue and worker control self._queue: asyncio.Queue[tuple[OpenAIChatCompletion, list[OpenAIMessageParam]]] | None = None self._worker_tasks: list[asyncio.Task[Any]] = [] - self._max_write_queue_size: int = config.max_write_queue_size - self._num_writers: int = max(1, config.num_writers) + self._max_write_queue_size: int = reference.max_write_queue_size + self._num_writers: int = max(1, reference.num_writers) async def initialize(self): """Create the necessary tables if they don't exist.""" - self.sql_store = AuthorizedSqlStore(sqlstore_impl(self.sql_store_config), self.policy) + base_store = sqlstore_impl(self.reference) + self.sql_store = AuthorizedSqlStore(base_store, self.policy) + + # Disable write queue for SQLite to avoid concurrency issues + backend_name = self.reference.backend + backend_config = _SQLSTORE_BACKENDS.get(backend_name) + if backend_config is None: + raise ValueError( + f"Unregistered SQL backend '{backend_name}'. Registered backends: {sorted(_SQLSTORE_BACKENDS)}" + ) + self.enable_write_queue = backend_config.type != StorageBackendType.SQL_SQLITE await self.sql_store.create_table( "chat_completions", { diff --git a/llama_stack/providers/utils/kvstore/config.py b/llama_stack/providers/utils/kvstore/config.py index 7b6a79350..c0582abc4 100644 --- a/llama_stack/providers/utils/kvstore/config.py +++ b/llama_stack/providers/utils/kvstore/config.py @@ -4,143 +4,20 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. -import re -from enum import Enum -from typing import Annotated, Literal +from typing import Annotated -from pydantic import BaseModel, Field, field_validator - -from llama_stack.core.utils.config_dirs import RUNTIME_BASE_DIR - - -class KVStoreType(Enum): - redis = "redis" - sqlite = "sqlite" - postgres = "postgres" - mongodb = "mongodb" - - -class CommonConfig(BaseModel): - namespace: str | None = Field( - default=None, - description="All keys will be prefixed with this namespace", - ) - - -class RedisKVStoreConfig(CommonConfig): - type: Literal["redis"] = KVStoreType.redis.value - host: str = "localhost" - port: int = 6379 - - @property - def url(self) -> str: - return f"redis://{self.host}:{self.port}" - - @classmethod - def pip_packages(cls) -> list[str]: - return ["redis"] - - @classmethod - def sample_run_config(cls): - return { - "type": "redis", - "host": "${env.REDIS_HOST:=localhost}", - "port": "${env.REDIS_PORT:=6379}", - } - - -class SqliteKVStoreConfig(CommonConfig): - type: Literal["sqlite"] = KVStoreType.sqlite.value - db_path: str = Field( - default=(RUNTIME_BASE_DIR / "kvstore.db").as_posix(), - description="File path for the sqlite database", - ) - - @classmethod - def pip_packages(cls) -> list[str]: - return ["aiosqlite"] - - @classmethod - def sample_run_config(cls, __distro_dir__: str, db_name: str = "kvstore.db"): - return { - "type": "sqlite", - "db_path": "${env.SQLITE_STORE_DIR:=" + __distro_dir__ + "}/" + db_name, - } - - -class PostgresKVStoreConfig(CommonConfig): - type: Literal["postgres"] = KVStoreType.postgres.value - host: str = "localhost" - port: int = 5432 - db: str = "llamastack" - user: str - password: str | None = None - ssl_mode: str | None = None - ca_cert_path: str | None = None - table_name: str = "llamastack_kvstore" - - @classmethod - def sample_run_config(cls, table_name: str = "llamastack_kvstore", **kwargs): - return { - "type": "postgres", - "host": "${env.POSTGRES_HOST:=localhost}", - "port": "${env.POSTGRES_PORT:=5432}", - "db": "${env.POSTGRES_DB:=llamastack}", - "user": "${env.POSTGRES_USER:=llamastack}", - "password": "${env.POSTGRES_PASSWORD:=llamastack}", - "table_name": "${env.POSTGRES_TABLE_NAME:=" + table_name + "}", - } - - @classmethod - @field_validator("table_name") - def validate_table_name(cls, v: str) -> str: - # PostgreSQL identifiers rules: - # - Must start with a letter or underscore - # - Can contain letters, numbers, and underscores - # - Maximum length is 63 bytes - pattern = r"^[a-zA-Z_][a-zA-Z0-9_]*$" - if not re.match(pattern, v): - raise ValueError( - "Invalid table name. Must start with letter or underscore and contain only letters, numbers, and underscores" - ) - if len(v) > 63: - raise ValueError("Table name must be less than 63 characters") - return v - - @classmethod - def pip_packages(cls) -> list[str]: - return ["psycopg2-binary"] - - -class MongoDBKVStoreConfig(CommonConfig): - type: Literal["mongodb"] = KVStoreType.mongodb.value - host: str = "localhost" - port: int = 27017 - db: str = "llamastack" - user: str | None = None - password: str | None = None - collection_name: str = "llamastack_kvstore" - - @classmethod - def pip_packages(cls) -> list[str]: - return ["pymongo"] - - @classmethod - def sample_run_config(cls, collection_name: str = "llamastack_kvstore"): - return { - "type": "mongodb", - "host": "${env.MONGODB_HOST:=localhost}", - "port": "${env.MONGODB_PORT:=5432}", - "db": "${env.MONGODB_DB}", - "user": "${env.MONGODB_USER}", - "password": "${env.MONGODB_PASSWORD}", - "collection_name": "${env.MONGODB_COLLECTION_NAME:=" + collection_name + "}", - } +from pydantic import Field +from llama_stack.core.storage.datatypes import ( + MongoDBKVStoreConfig, + PostgresKVStoreConfig, + RedisKVStoreConfig, + SqliteKVStoreConfig, + StorageBackendType, +) KVStoreConfig = Annotated[ - RedisKVStoreConfig | SqliteKVStoreConfig | PostgresKVStoreConfig | MongoDBKVStoreConfig, - Field(discriminator="type", default=KVStoreType.sqlite.value), + RedisKVStoreConfig | SqliteKVStoreConfig | PostgresKVStoreConfig | MongoDBKVStoreConfig, Field(discriminator="type") ] @@ -148,13 +25,13 @@ def get_pip_packages(store_config: dict | KVStoreConfig) -> list[str]: """Get pip packages for KV store config, handling both dict and object cases.""" if isinstance(store_config, dict): store_type = store_config.get("type") - if store_type == "sqlite": + if store_type == StorageBackendType.KV_SQLITE.value: return SqliteKVStoreConfig.pip_packages() - elif store_type == "postgres": + elif store_type == StorageBackendType.KV_POSTGRES.value: return PostgresKVStoreConfig.pip_packages() - elif store_type == "redis": + elif store_type == StorageBackendType.KV_REDIS.value: return RedisKVStoreConfig.pip_packages() - elif store_type == "mongodb": + elif store_type == StorageBackendType.KV_MONGODB.value: return MongoDBKVStoreConfig.pip_packages() else: raise ValueError(f"Unknown KV store type: {store_type}") diff --git a/llama_stack/providers/utils/kvstore/kvstore.py b/llama_stack/providers/utils/kvstore/kvstore.py index 426523d8e..eee51e5d9 100644 --- a/llama_stack/providers/utils/kvstore/kvstore.py +++ b/llama_stack/providers/utils/kvstore/kvstore.py @@ -4,9 +4,17 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +from __future__ import annotations + +from llama_stack.core.storage.datatypes import KVStoreReference, StorageBackendConfig, StorageBackendType from .api import KVStore -from .config import KVStoreConfig, KVStoreType +from .config import KVStoreConfig def kvstore_dependencies(): @@ -44,20 +52,41 @@ class InmemoryKVStoreImpl(KVStore): del self._store[key] -async def kvstore_impl(config: KVStoreConfig) -> KVStore: - if config.type == KVStoreType.redis.value: +_KVSTORE_BACKENDS: dict[str, KVStoreConfig] = {} + + +def register_kvstore_backends(backends: dict[str, StorageBackendConfig]) -> None: + """Register the set of available KV store backends for reference resolution.""" + global _KVSTORE_BACKENDS + + _KVSTORE_BACKENDS.clear() + for name, cfg in backends.items(): + _KVSTORE_BACKENDS[name] = cfg + + +async def kvstore_impl(reference: KVStoreReference) -> KVStore: + backend_name = reference.backend + + backend_config = _KVSTORE_BACKENDS.get(backend_name) + if backend_config is None: + raise ValueError(f"Unknown KVStore backend '{backend_name}'. Registered backends: {sorted(_KVSTORE_BACKENDS)}") + + config = backend_config.model_copy() + config.namespace = reference.namespace + + if config.type == StorageBackendType.KV_REDIS.value: from .redis import RedisKVStoreImpl impl = RedisKVStoreImpl(config) - elif config.type == KVStoreType.sqlite.value: + elif config.type == StorageBackendType.KV_SQLITE.value: from .sqlite import SqliteKVStoreImpl impl = SqliteKVStoreImpl(config) - elif config.type == KVStoreType.postgres.value: + elif config.type == StorageBackendType.KV_POSTGRES.value: from .postgres import PostgresKVStoreImpl impl = PostgresKVStoreImpl(config) - elif config.type == KVStoreType.mongodb.value: + elif config.type == StorageBackendType.KV_MONGODB.value: from .mongodb import MongoDBKVStoreImpl impl = MongoDBKVStoreImpl(config) diff --git a/llama_stack/providers/utils/responses/responses_store.py b/llama_stack/providers/utils/responses/responses_store.py index 36370b492..d5c243252 100644 --- a/llama_stack/providers/utils/responses/responses_store.py +++ b/llama_stack/providers/utils/responses/responses_store.py @@ -18,13 +18,13 @@ from llama_stack.apis.agents.openai_responses import ( OpenAIResponseObjectWithInput, ) from llama_stack.apis.inference import OpenAIMessageParam -from llama_stack.core.datatypes import AccessRule, ResponsesStoreConfig -from llama_stack.core.utils.config_dirs import RUNTIME_BASE_DIR +from llama_stack.core.datatypes import AccessRule +from llama_stack.core.storage.datatypes import ResponsesStoreReference, SqlStoreReference, StorageBackendType from llama_stack.log import get_logger from ..sqlstore.api import ColumnDefinition, ColumnType from ..sqlstore.authorized_sqlstore import AuthorizedSqlStore -from ..sqlstore.sqlstore import SqliteSqlStoreConfig, SqlStoreConfig, SqlStoreType, sqlstore_impl +from ..sqlstore.sqlstore import _SQLSTORE_BACKENDS, sqlstore_impl logger = get_logger(name=__name__, category="openai_responses") @@ -45,39 +45,38 @@ class _OpenAIResponseObjectWithInputAndMessages(OpenAIResponseObjectWithInput): class ResponsesStore: def __init__( self, - config: ResponsesStoreConfig | SqlStoreConfig, + reference: ResponsesStoreReference | SqlStoreReference, policy: list[AccessRule], ): - # Handle backward compatibility - if not isinstance(config, ResponsesStoreConfig): - # Legacy: SqlStoreConfig passed directly as config - config = ResponsesStoreConfig( - sql_store_config=config, - ) + if isinstance(reference, ResponsesStoreReference): + self.reference = reference + else: + self.reference = ResponsesStoreReference(**reference.model_dump()) - self.config = config - self.sql_store_config = config.sql_store_config - if not self.sql_store_config: - self.sql_store_config = SqliteSqlStoreConfig( - db_path=(RUNTIME_BASE_DIR / "sqlstore.db").as_posix(), - ) - self.sql_store = None self.policy = policy - - # Disable write queue for SQLite to avoid concurrency issues - self.enable_write_queue = self.sql_store_config.type != SqlStoreType.sqlite + self.sql_store = None + self.enable_write_queue = True # Async write queue and worker control self._queue: ( asyncio.Queue[tuple[OpenAIResponseObject, list[OpenAIResponseInput], list[OpenAIMessageParam]]] | None ) = None self._worker_tasks: list[asyncio.Task[Any]] = [] - self._max_write_queue_size: int = config.max_write_queue_size - self._num_writers: int = max(1, config.num_writers) + self._max_write_queue_size: int = self.reference.max_write_queue_size + self._num_writers: int = max(1, self.reference.num_writers) async def initialize(self): """Create the necessary tables if they don't exist.""" - self.sql_store = AuthorizedSqlStore(sqlstore_impl(self.sql_store_config), self.policy) + base_store = sqlstore_impl(self.reference) + self.sql_store = AuthorizedSqlStore(base_store, self.policy) + + backend_config = _SQLSTORE_BACKENDS.get(self.reference.backend) + if backend_config is None: + raise ValueError( + f"Unregistered SQL backend '{self.reference.backend}'. Registered backends: {sorted(_SQLSTORE_BACKENDS)}" + ) + if backend_config.type == StorageBackendType.SQL_SQLITE: + self.enable_write_queue = False await self.sql_store.create_table( "openai_responses", { diff --git a/llama_stack/providers/utils/sqlstore/authorized_sqlstore.py b/llama_stack/providers/utils/sqlstore/authorized_sqlstore.py index e1da4db6e..3dfc82677 100644 --- a/llama_stack/providers/utils/sqlstore/authorized_sqlstore.py +++ b/llama_stack/providers/utils/sqlstore/authorized_sqlstore.py @@ -12,10 +12,10 @@ from llama_stack.core.access_control.conditions import ProtectedResource from llama_stack.core.access_control.datatypes import AccessRule, Action, Scope from llama_stack.core.datatypes import User from llama_stack.core.request_headers import get_authenticated_user +from llama_stack.core.storage.datatypes import StorageBackendType from llama_stack.log import get_logger from .api import ColumnDefinition, ColumnType, PaginatedResponse, SqlStore -from .sqlstore import SqlStoreType logger = get_logger(name=__name__, category="providers::utils") @@ -82,8 +82,8 @@ class AuthorizedSqlStore: if not hasattr(self.sql_store, "config"): raise ValueError("SqlStore must have a config attribute to be used with AuthorizedSqlStore") - self.database_type = self.sql_store.config.type - if self.database_type not in [SqlStoreType.postgres, SqlStoreType.sqlite]: + self.database_type = self.sql_store.config.type.value + if self.database_type not in [StorageBackendType.SQL_POSTGRES.value, StorageBackendType.SQL_SQLITE.value]: raise ValueError(f"Unsupported database type: {self.database_type}") def _validate_sql_optimized_policy(self) -> None: @@ -220,9 +220,9 @@ class AuthorizedSqlStore: Returns: SQL expression to extract JSON value """ - if self.database_type == SqlStoreType.postgres: + if self.database_type == StorageBackendType.SQL_POSTGRES.value: return f"{column}->'{path}'" - elif self.database_type == SqlStoreType.sqlite: + elif self.database_type == StorageBackendType.SQL_SQLITE.value: return f"JSON_EXTRACT({column}, '$.{path}')" else: raise ValueError(f"Unsupported database type: {self.database_type}") @@ -237,9 +237,9 @@ class AuthorizedSqlStore: Returns: SQL expression to extract JSON value as text """ - if self.database_type == SqlStoreType.postgres: + if self.database_type == StorageBackendType.SQL_POSTGRES.value: return f"{column}->>'{path}'" - elif self.database_type == SqlStoreType.sqlite: + elif self.database_type == StorageBackendType.SQL_SQLITE.value: return f"JSON_EXTRACT({column}, '$.{path}')" else: raise ValueError(f"Unsupported database type: {self.database_type}") @@ -248,10 +248,10 @@ class AuthorizedSqlStore: """Get the SQL conditions for public access.""" # Public records are records that have no owner_principal or access_attributes conditions = ["owner_principal = ''"] - if self.database_type == SqlStoreType.postgres: + if self.database_type == StorageBackendType.SQL_POSTGRES.value: # Postgres stores JSON null as 'null' conditions.append("access_attributes::text = 'null'") - elif self.database_type == SqlStoreType.sqlite: + elif self.database_type == StorageBackendType.SQL_SQLITE.value: conditions.append("access_attributes = 'null'") else: raise ValueError(f"Unsupported database type: {self.database_type}") diff --git a/llama_stack/providers/utils/sqlstore/sqlalchemy_sqlstore.py b/llama_stack/providers/utils/sqlstore/sqlalchemy_sqlstore.py index 23cd6444e..c1ccd73dd 100644 --- a/llama_stack/providers/utils/sqlstore/sqlalchemy_sqlstore.py +++ b/llama_stack/providers/utils/sqlstore/sqlalchemy_sqlstore.py @@ -26,10 +26,10 @@ from sqlalchemy.ext.asyncio.engine import AsyncEngine from sqlalchemy.sql.elements import ColumnElement from llama_stack.apis.common.responses import PaginatedResponse +from llama_stack.core.storage.datatypes import SqlAlchemySqlStoreConfig from llama_stack.log import get_logger from .api import ColumnDefinition, ColumnType, SqlStore -from .sqlstore import SqlAlchemySqlStoreConfig logger = get_logger(name=__name__, category="providers::utils") diff --git a/llama_stack/providers/utils/sqlstore/sqlstore.py b/llama_stack/providers/utils/sqlstore/sqlstore.py index fc44402ae..31801c4ca 100644 --- a/llama_stack/providers/utils/sqlstore/sqlstore.py +++ b/llama_stack/providers/utils/sqlstore/sqlstore.py @@ -4,90 +4,28 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. -from abc import abstractmethod -from enum import StrEnum -from pathlib import Path -from typing import Annotated, Literal +from typing import Annotated, cast -from pydantic import BaseModel, Field +from pydantic import Field -from llama_stack.core.utils.config_dirs import RUNTIME_BASE_DIR +from llama_stack.core.storage.datatypes import ( + PostgresSqlStoreConfig, + SqliteSqlStoreConfig, + SqlStoreReference, + StorageBackendConfig, + StorageBackendType, +) from .api import SqlStore sql_store_pip_packages = ["sqlalchemy[asyncio]", "aiosqlite", "asyncpg"] - -class SqlStoreType(StrEnum): - sqlite = "sqlite" - postgres = "postgres" - - -class SqlAlchemySqlStoreConfig(BaseModel): - @property - @abstractmethod - def engine_str(self) -> str: ... - - # TODO: move this when we have a better way to specify dependencies with internal APIs - @classmethod - def pip_packages(cls) -> list[str]: - return ["sqlalchemy[asyncio]"] - - -class SqliteSqlStoreConfig(SqlAlchemySqlStoreConfig): - type: Literal[SqlStoreType.sqlite] = SqlStoreType.sqlite - db_path: str = Field( - default=(RUNTIME_BASE_DIR / "sqlstore.db").as_posix(), - description="Database path, e.g. ~/.llama/distributions/ollama/sqlstore.db", - ) - - @property - def engine_str(self) -> str: - return "sqlite+aiosqlite:///" + Path(self.db_path).expanduser().as_posix() - - @classmethod - def sample_run_config(cls, __distro_dir__: str, db_name: str = "sqlstore.db"): - return { - "type": "sqlite", - "db_path": "${env.SQLITE_STORE_DIR:=" + __distro_dir__ + "}/" + db_name, - } - - @classmethod - def pip_packages(cls) -> list[str]: - return super().pip_packages() + ["aiosqlite"] - - -class PostgresSqlStoreConfig(SqlAlchemySqlStoreConfig): - type: Literal[SqlStoreType.postgres] = SqlStoreType.postgres - host: str = "localhost" - port: int = 5432 - db: str = "llamastack" - user: str - password: str | None = None - - @property - def engine_str(self) -> str: - return f"postgresql+asyncpg://{self.user}:{self.password}@{self.host}:{self.port}/{self.db}" - - @classmethod - def pip_packages(cls) -> list[str]: - return super().pip_packages() + ["asyncpg"] - - @classmethod - def sample_run_config(cls, **kwargs): - return { - "type": "postgres", - "host": "${env.POSTGRES_HOST:=localhost}", - "port": "${env.POSTGRES_PORT:=5432}", - "db": "${env.POSTGRES_DB:=llamastack}", - "user": "${env.POSTGRES_USER:=llamastack}", - "password": "${env.POSTGRES_PASSWORD:=llamastack}", - } +_SQLSTORE_BACKENDS: dict[str, StorageBackendConfig] = {} SqlStoreConfig = Annotated[ SqliteSqlStoreConfig | PostgresSqlStoreConfig, - Field(discriminator="type", default=SqlStoreType.sqlite.value), + Field(discriminator="type"), ] @@ -95,9 +33,9 @@ def get_pip_packages(store_config: dict | SqlStoreConfig) -> list[str]: """Get pip packages for SQL store config, handling both dict and object cases.""" if isinstance(store_config, dict): store_type = store_config.get("type") - if store_type == "sqlite": + if store_type == StorageBackendType.SQL_SQLITE.value: return SqliteSqlStoreConfig.pip_packages() - elif store_type == "postgres": + elif store_type == StorageBackendType.SQL_POSTGRES.value: return PostgresSqlStoreConfig.pip_packages() else: raise ValueError(f"Unknown SQL store type: {store_type}") @@ -105,12 +43,28 @@ def get_pip_packages(store_config: dict | SqlStoreConfig) -> list[str]: return store_config.pip_packages() -def sqlstore_impl(config: SqlStoreConfig) -> SqlStore: - if config.type in [SqlStoreType.sqlite, SqlStoreType.postgres]: +def sqlstore_impl(reference: SqlStoreReference) -> SqlStore: + backend_name = reference.backend + + backend_config = _SQLSTORE_BACKENDS.get(backend_name) + if backend_config is None: + raise ValueError( + f"Unknown SQL store backend '{backend_name}'. Registered backends: {sorted(_SQLSTORE_BACKENDS)}" + ) + + if isinstance(backend_config, SqliteSqlStoreConfig | PostgresSqlStoreConfig): from .sqlalchemy_sqlstore import SqlAlchemySqlStoreImpl - impl = SqlAlchemySqlStoreImpl(config) + config = cast(SqliteSqlStoreConfig | PostgresSqlStoreConfig, backend_config).model_copy() + return SqlAlchemySqlStoreImpl(config) else: - raise ValueError(f"Unknown sqlstore type {config.type}") + raise ValueError(f"Unknown sqlstore type {backend_config.type}") - return impl + +def register_sqlstore_backends(backends: dict[str, StorageBackendConfig]) -> None: + """Register the set of available SQL store backends for reference resolution.""" + global _SQLSTORE_BACKENDS + + _SQLSTORE_BACKENDS.clear() + for name, cfg in backends.items(): + _SQLSTORE_BACKENDS[name] = cfg diff --git a/scripts/docker.sh b/scripts/docker.sh index 1ba1d9adf..7a5c3e6e0 100755 --- a/scripts/docker.sh +++ b/scripts/docker.sh @@ -236,7 +236,7 @@ start_container() { echo "=== Starting Docker Container ===" # Get the repo root for volume mount - SCRIPT_DIR=$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd) + SCRIPT_DIR=$(cd "$(dirname "${BASH_SOURCE[0]:-$0}")" && pwd) REPO_ROOT=$(cd "$SCRIPT_DIR/.." && pwd) # Determine the actual image name (may have localhost/ prefix) diff --git a/tests/external/run-byoa.yaml b/tests/external/run-byoa.yaml index 5774ae9da..4d63046c6 100644 --- a/tests/external/run-byoa.yaml +++ b/tests/external/run-byoa.yaml @@ -7,6 +7,24 @@ providers: - provider_id: kaze provider_type: remote::kaze config: {} +storage: + backends: + kv_default: + type: kv_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/external}/kvstore.db + sql_default: + type: sql_sqlite + db_path: ${env.SQLITE_STORE_DIR:=~/.llama/distributions/external}/sql_store.db + stores: + metadata: + namespace: registry + backend: kv_default + inference: + table_name: inference_store + backend: sql_default + conversations: + table_name: openai_conversations + backend: sql_default external_apis_dir: ~/.llama/apis.d external_providers_dir: ~/.llama/providers.d server: diff --git a/tests/integration/fixtures/common.py b/tests/integration/fixtures/common.py index 68a30fc69..eb6840e60 100644 --- a/tests/integration/fixtures/common.py +++ b/tests/integration/fixtures/common.py @@ -238,7 +238,7 @@ def instantiate_llama_stack_client(session): run_config = run_config_from_adhoc_config_spec(config) run_config_file = tempfile.NamedTemporaryFile(delete=False, suffix=".yaml") with open(run_config_file.name, "w") as f: - yaml.dump(run_config.model_dump(), f) + yaml.dump(run_config.model_dump(mode="json"), f) config = run_config_file.name client = LlamaStackAsLibraryClient( diff --git a/tests/integration/providers/utils/sqlstore/test_authorized_sqlstore.py b/tests/integration/providers/utils/sqlstore/test_authorized_sqlstore.py index 98bef0f2c..ad9115756 100644 --- a/tests/integration/providers/utils/sqlstore/test_authorized_sqlstore.py +++ b/tests/integration/providers/utils/sqlstore/test_authorized_sqlstore.py @@ -12,9 +12,15 @@ import pytest from llama_stack.core.access_control.access_control import default_policy from llama_stack.core.datatypes import User +from llama_stack.core.storage.datatypes import SqlStoreReference from llama_stack.providers.utils.sqlstore.api import ColumnType from llama_stack.providers.utils.sqlstore.authorized_sqlstore import AuthorizedSqlStore -from llama_stack.providers.utils.sqlstore.sqlstore import PostgresSqlStoreConfig, SqliteSqlStoreConfig, sqlstore_impl +from llama_stack.providers.utils.sqlstore.sqlstore import ( + PostgresSqlStoreConfig, + SqliteSqlStoreConfig, + register_sqlstore_backends, + sqlstore_impl, +) def get_postgres_config(): @@ -55,8 +61,9 @@ def authorized_store(backend_config): config_func = backend_config config = config_func() - - base_sqlstore = sqlstore_impl(config) + backend_name = f"sql_{type(config).__name__.lower()}" + register_sqlstore_backends({backend_name: config}) + base_sqlstore = sqlstore_impl(SqlStoreReference(backend=backend_name, table_name="authorized_store")) authorized_store = AuthorizedSqlStore(base_sqlstore, default_policy()) yield authorized_store diff --git a/tests/integration/test_persistence_integration.py b/tests/integration/test_persistence_integration.py new file mode 100644 index 000000000..e9b80dc0c --- /dev/null +++ b/tests/integration/test_persistence_integration.py @@ -0,0 +1,71 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +import yaml + +from llama_stack.core.datatypes import StackRunConfig +from llama_stack.core.storage.datatypes import ( + PostgresKVStoreConfig, + PostgresSqlStoreConfig, + SqliteKVStoreConfig, + SqliteSqlStoreConfig, +) + + +def test_starter_distribution_config_loads_and_resolves(): + """Integration: Actual starter config should parse and have correct storage structure.""" + with open("llama_stack/distributions/starter/run.yaml") as f: + config_dict = yaml.safe_load(f) + + config = StackRunConfig(**config_dict) + + # Config should have named backends and explicit store references + assert config.storage is not None + assert "kv_default" in config.storage.backends + assert "sql_default" in config.storage.backends + assert isinstance(config.storage.backends["kv_default"], SqliteKVStoreConfig) + assert isinstance(config.storage.backends["sql_default"], SqliteSqlStoreConfig) + + stores = config.storage.stores + assert stores.metadata is not None + assert stores.metadata.backend == "kv_default" + assert stores.metadata.namespace == "registry" + + assert stores.inference is not None + assert stores.inference.backend == "sql_default" + assert stores.inference.table_name == "inference_store" + assert stores.inference.max_write_queue_size > 0 + assert stores.inference.num_writers > 0 + + assert stores.conversations is not None + assert stores.conversations.backend == "sql_default" + assert stores.conversations.table_name == "openai_conversations" + + +def test_postgres_demo_distribution_config_loads(): + """Integration: Postgres demo should use Postgres backend for all stores.""" + with open("llama_stack/distributions/postgres-demo/run.yaml") as f: + config_dict = yaml.safe_load(f) + + config = StackRunConfig(**config_dict) + + # Should have postgres backend + assert config.storage is not None + assert "kv_default" in config.storage.backends + assert "sql_default" in config.storage.backends + postgres_backend = config.storage.backends["sql_default"] + assert isinstance(postgres_backend, PostgresSqlStoreConfig) + assert postgres_backend.host == "${env.POSTGRES_HOST:=localhost}" + + kv_backend = config.storage.backends["kv_default"] + assert isinstance(kv_backend, PostgresKVStoreConfig) + + stores = config.storage.stores + # Stores target the Postgres backends explicitly + assert stores.metadata is not None + assert stores.metadata.backend == "kv_default" + assert stores.inference is not None + assert stores.inference.backend == "sql_default" diff --git a/tests/unit/cli/test_stack_config.py b/tests/unit/cli/test_stack_config.py index daaf229e5..7b9f3ca0c 100644 --- a/tests/unit/cli/test_stack_config.py +++ b/tests/unit/cli/test_stack_config.py @@ -23,6 +23,27 @@ def config_with_image_name_int(): image_name: 1234 apis_to_serve: [] built_at: {datetime.now().isoformat()} + storage: + backends: + kv_default: + type: kv_sqlite + db_path: /tmp/test_kv.db + sql_default: + type: sql_sqlite + db_path: /tmp/test_sql.db + stores: + metadata: + backend: kv_default + namespace: metadata + inference: + backend: sql_default + table_name: inference + conversations: + backend: sql_default + table_name: conversations + responses: + backend: sql_default + table_name: responses providers: inference: - provider_id: provider1 @@ -54,6 +75,27 @@ def up_to_date_config(): image_name: foo apis_to_serve: [] built_at: {datetime.now().isoformat()} + storage: + backends: + kv_default: + type: kv_sqlite + db_path: /tmp/test_kv.db + sql_default: + type: sql_sqlite + db_path: /tmp/test_sql.db + stores: + metadata: + backend: kv_default + namespace: metadata + inference: + backend: sql_default + table_name: inference + conversations: + backend: sql_default + table_name: conversations + responses: + backend: sql_default + table_name: responses providers: inference: - provider_id: provider1 diff --git a/tests/unit/conversations/test_conversations.py b/tests/unit/conversations/test_conversations.py index 65c3e2333..ff6dd243d 100644 --- a/tests/unit/conversations/test_conversations.py +++ b/tests/unit/conversations/test_conversations.py @@ -20,7 +20,14 @@ from llama_stack.core.conversations.conversations import ( ConversationServiceConfig, ConversationServiceImpl, ) -from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig +from llama_stack.core.datatypes import StackRunConfig +from llama_stack.core.storage.datatypes import ( + ServerStoresConfig, + SqliteSqlStoreConfig, + SqlStoreReference, + StorageConfig, +) +from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends @pytest.fixture @@ -28,7 +35,18 @@ async def service(): with tempfile.TemporaryDirectory() as tmpdir: db_path = Path(tmpdir) / "test_conversations.db" - config = ConversationServiceConfig(conversations_store=SqliteSqlStoreConfig(db_path=str(db_path)), policy=[]) + storage = StorageConfig( + backends={ + "sql_test": SqliteSqlStoreConfig(db_path=str(db_path)), + }, + stores=ServerStoresConfig( + conversations=SqlStoreReference(backend="sql_test", table_name="openai_conversations"), + ), + ) + register_sqlstore_backends({"sql_test": storage.backends["sql_test"]}) + run_config = StackRunConfig(image_name="test", apis=[], providers={}, storage=storage) + + config = ConversationServiceConfig(run_config=run_config, policy=[]) service = ConversationServiceImpl(config, {}) await service.initialize() yield service @@ -121,9 +139,18 @@ async def test_policy_configuration(): AccessRule(forbid=Scope(principal="test_user", actions=[Action.CREATE, Action.READ], resource="*")) ] - config = ConversationServiceConfig( - conversations_store=SqliteSqlStoreConfig(db_path=str(db_path)), policy=restrictive_policy + storage = StorageConfig( + backends={ + "sql_test": SqliteSqlStoreConfig(db_path=str(db_path)), + }, + stores=ServerStoresConfig( + conversations=SqlStoreReference(backend="sql_test", table_name="openai_conversations"), + ), ) + register_sqlstore_backends({"sql_test": storage.backends["sql_test"]}) + run_config = StackRunConfig(image_name="test", apis=[], providers={}, storage=storage) + + config = ConversationServiceConfig(run_config=run_config, policy=restrictive_policy) service = ConversationServiceImpl(config, {}) await service.initialize() diff --git a/tests/unit/core/test_storage_references.py b/tests/unit/core/test_storage_references.py new file mode 100644 index 000000000..7bceba74d --- /dev/null +++ b/tests/unit/core/test_storage_references.py @@ -0,0 +1,84 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +"""Unit tests for storage backend/reference validation.""" + +import pytest +from pydantic import ValidationError + +from llama_stack.core.datatypes import ( + LLAMA_STACK_RUN_CONFIG_VERSION, + StackRunConfig, +) +from llama_stack.core.storage.datatypes import ( + InferenceStoreReference, + KVStoreReference, + ServerStoresConfig, + SqliteKVStoreConfig, + SqliteSqlStoreConfig, + SqlStoreReference, + StorageConfig, +) + + +def _base_run_config(**overrides): + metadata_reference = overrides.pop( + "metadata_reference", + KVStoreReference(backend="kv_default", namespace="registry"), + ) + inference_reference = overrides.pop( + "inference_reference", + InferenceStoreReference(backend="sql_default", table_name="inference"), + ) + conversations_reference = overrides.pop( + "conversations_reference", + SqlStoreReference(backend="sql_default", table_name="conversations"), + ) + storage = overrides.pop( + "storage", + StorageConfig( + backends={ + "kv_default": SqliteKVStoreConfig(db_path="/tmp/kv.db"), + "sql_default": SqliteSqlStoreConfig(db_path="/tmp/sql.db"), + }, + stores=ServerStoresConfig( + metadata=metadata_reference, + inference=inference_reference, + conversations=conversations_reference, + ), + ), + ) + return StackRunConfig( + version=LLAMA_STACK_RUN_CONFIG_VERSION, + image_name="test-distro", + apis=[], + providers={}, + storage=storage, + **overrides, + ) + + +def test_references_require_known_backend(): + with pytest.raises(ValidationError, match="unknown backend 'missing'"): + _base_run_config(metadata_reference=KVStoreReference(backend="missing", namespace="registry")) + + +def test_references_must_match_backend_family(): + with pytest.raises(ValidationError, match="kv_.* is required"): + _base_run_config(metadata_reference=KVStoreReference(backend="sql_default", namespace="registry")) + + with pytest.raises(ValidationError, match="sql_.* is required"): + _base_run_config( + inference_reference=InferenceStoreReference(backend="kv_default", table_name="inference"), + ) + + +def test_valid_configuration_passes_validation(): + config = _base_run_config() + stores = config.storage.stores + assert stores.metadata is not None and stores.metadata.backend == "kv_default" + assert stores.inference is not None and stores.inference.backend == "sql_default" + assert stores.conversations is not None and stores.conversations.backend == "sql_default" diff --git a/tests/unit/distribution/test_distribution.py b/tests/unit/distribution/test_distribution.py index 08a376008..3b0643a13 100644 --- a/tests/unit/distribution/test_distribution.py +++ b/tests/unit/distribution/test_distribution.py @@ -13,6 +13,15 @@ from pydantic import BaseModel, Field, ValidationError from llama_stack.core.datatypes import Api, Provider, StackRunConfig from llama_stack.core.distribution import INTERNAL_APIS, get_provider_registry, providable_apis +from llama_stack.core.storage.datatypes import ( + InferenceStoreReference, + KVStoreReference, + ServerStoresConfig, + SqliteKVStoreConfig, + SqliteSqlStoreConfig, + SqlStoreReference, + StorageConfig, +) from llama_stack.providers.datatypes import ProviderSpec @@ -29,6 +38,32 @@ class SampleConfig(BaseModel): } +def _default_storage() -> StorageConfig: + return StorageConfig( + backends={ + "kv_default": SqliteKVStoreConfig(db_path=":memory:"), + "sql_default": SqliteSqlStoreConfig(db_path=":memory:"), + }, + stores=ServerStoresConfig( + metadata=KVStoreReference(backend="kv_default", namespace="registry"), + inference=InferenceStoreReference(backend="sql_default", table_name="inference_store"), + conversations=SqlStoreReference(backend="sql_default", table_name="conversations"), + ), + ) + + +def make_stack_config(**overrides) -> StackRunConfig: + storage = overrides.pop("storage", _default_storage()) + defaults = dict( + image_name="test_image", + apis=[], + providers={}, + storage=storage, + ) + defaults.update(overrides) + return StackRunConfig(**defaults) + + @pytest.fixture def mock_providers(): """Mock the available_providers function to return test providers.""" @@ -47,8 +82,8 @@ def mock_providers(): @pytest.fixture def base_config(tmp_path): """Create a base StackRunConfig with common settings.""" - return StackRunConfig( - image_name="test_image", + return make_stack_config( + apis=["inference"], providers={ "inference": [ Provider( @@ -222,8 +257,8 @@ class TestProviderRegistry: def test_missing_directory(self, mock_providers): """Test handling of missing external providers directory.""" - config = StackRunConfig( - image_name="test_image", + config = make_stack_config( + apis=["inference"], providers={ "inference": [ Provider( @@ -278,7 +313,6 @@ pip_packages: """Test loading an external provider from a module (success path).""" from types import SimpleNamespace - from llama_stack.core.datatypes import Provider, StackRunConfig from llama_stack.providers.datatypes import Api, ProviderSpec # Simulate a provider module with get_provider_spec @@ -293,7 +327,7 @@ pip_packages: import_module_side_effect = make_import_module_side_effect(external_module=fake_module) with patch("importlib.import_module", side_effect=import_module_side_effect) as mock_import: - config = StackRunConfig( + config = make_stack_config( image_name="test_image", providers={ "inference": [ @@ -317,12 +351,11 @@ pip_packages: def test_external_provider_from_module_not_found(self, mock_providers): """Test handling ModuleNotFoundError for missing provider module.""" - from llama_stack.core.datatypes import Provider, StackRunConfig import_module_side_effect = make_import_module_side_effect(raise_for_external=True) with patch("importlib.import_module", side_effect=import_module_side_effect): - config = StackRunConfig( + config = make_stack_config( image_name="test_image", providers={ "inference": [ @@ -341,12 +374,11 @@ pip_packages: def test_external_provider_from_module_missing_get_provider_spec(self, mock_providers): """Test handling missing get_provider_spec in provider module (should raise ValueError).""" - from llama_stack.core.datatypes import Provider, StackRunConfig import_module_side_effect = make_import_module_side_effect(missing_get_provider_spec=True) with patch("importlib.import_module", side_effect=import_module_side_effect): - config = StackRunConfig( + config = make_stack_config( image_name="test_image", providers={ "inference": [ @@ -399,13 +431,12 @@ class TestGetExternalProvidersFromModule: def test_stackrunconfig_provider_without_module(self, mock_providers): """Test that providers without module attribute are skipped.""" - from llama_stack.core.datatypes import Provider, StackRunConfig from llama_stack.core.distribution import get_external_providers_from_module import_module_side_effect = make_import_module_side_effect() with patch("importlib.import_module", side_effect=import_module_side_effect): - config = StackRunConfig( + config = make_stack_config( image_name="test_image", providers={ "inference": [ @@ -426,7 +457,6 @@ class TestGetExternalProvidersFromModule: """Test provider with module containing version spec (e.g., package==1.0.0).""" from types import SimpleNamespace - from llama_stack.core.datatypes import Provider, StackRunConfig from llama_stack.core.distribution import get_external_providers_from_module from llama_stack.providers.datatypes import ProviderSpec @@ -444,7 +474,7 @@ class TestGetExternalProvidersFromModule: raise ModuleNotFoundError(name) with patch("importlib.import_module", side_effect=import_side_effect): - config = StackRunConfig( + config = make_stack_config( image_name="test_image", providers={ "inference": [ @@ -564,7 +594,6 @@ class TestGetExternalProvidersFromModule: """Test when get_provider_spec returns a list of specs.""" from types import SimpleNamespace - from llama_stack.core.datatypes import Provider, StackRunConfig from llama_stack.core.distribution import get_external_providers_from_module from llama_stack.providers.datatypes import ProviderSpec @@ -589,7 +618,7 @@ class TestGetExternalProvidersFromModule: raise ModuleNotFoundError(name) with patch("importlib.import_module", side_effect=import_side_effect): - config = StackRunConfig( + config = make_stack_config( image_name="test_image", providers={ "inference": [ @@ -613,7 +642,6 @@ class TestGetExternalProvidersFromModule: """Test that list return filters specs by provider_type.""" from types import SimpleNamespace - from llama_stack.core.datatypes import Provider, StackRunConfig from llama_stack.core.distribution import get_external_providers_from_module from llama_stack.providers.datatypes import ProviderSpec @@ -638,7 +666,7 @@ class TestGetExternalProvidersFromModule: raise ModuleNotFoundError(name) with patch("importlib.import_module", side_effect=import_side_effect): - config = StackRunConfig( + config = make_stack_config( image_name="test_image", providers={ "inference": [ @@ -662,7 +690,6 @@ class TestGetExternalProvidersFromModule: """Test that list return adds multiple different provider_types when config requests them.""" from types import SimpleNamespace - from llama_stack.core.datatypes import Provider, StackRunConfig from llama_stack.core.distribution import get_external_providers_from_module from llama_stack.providers.datatypes import ProviderSpec @@ -688,7 +715,7 @@ class TestGetExternalProvidersFromModule: raise ModuleNotFoundError(name) with patch("importlib.import_module", side_effect=import_side_effect): - config = StackRunConfig( + config = make_stack_config( image_name="test_image", providers={ "inference": [ @@ -718,7 +745,6 @@ class TestGetExternalProvidersFromModule: def test_module_not_found_raises_value_error(self, mock_providers): """Test that ModuleNotFoundError raises ValueError with helpful message.""" - from llama_stack.core.datatypes import Provider, StackRunConfig from llama_stack.core.distribution import get_external_providers_from_module def import_side_effect(name): @@ -727,7 +753,7 @@ class TestGetExternalProvidersFromModule: raise ModuleNotFoundError(name) with patch("importlib.import_module", side_effect=import_side_effect): - config = StackRunConfig( + config = make_stack_config( image_name="test_image", providers={ "inference": [ @@ -751,7 +777,6 @@ class TestGetExternalProvidersFromModule: """Test that generic exceptions are properly raised.""" from types import SimpleNamespace - from llama_stack.core.datatypes import Provider, StackRunConfig from llama_stack.core.distribution import get_external_providers_from_module def bad_spec(): @@ -765,7 +790,7 @@ class TestGetExternalProvidersFromModule: raise ModuleNotFoundError(name) with patch("importlib.import_module", side_effect=import_side_effect): - config = StackRunConfig( + config = make_stack_config( image_name="test_image", providers={ "inference": [ @@ -787,10 +812,9 @@ class TestGetExternalProvidersFromModule: def test_empty_provider_list(self, mock_providers): """Test with empty provider list.""" - from llama_stack.core.datatypes import StackRunConfig from llama_stack.core.distribution import get_external_providers_from_module - config = StackRunConfig( + config = make_stack_config( image_name="test_image", providers={}, ) @@ -805,7 +829,6 @@ class TestGetExternalProvidersFromModule: """Test multiple APIs with providers.""" from types import SimpleNamespace - from llama_stack.core.datatypes import Provider, StackRunConfig from llama_stack.core.distribution import get_external_providers_from_module from llama_stack.providers.datatypes import ProviderSpec @@ -830,7 +853,7 @@ class TestGetExternalProvidersFromModule: raise ModuleNotFoundError(name) with patch("importlib.import_module", side_effect=import_side_effect): - config = StackRunConfig( + config = make_stack_config( image_name="test_image", providers={ "inference": [ diff --git a/tests/unit/files/test_files.py b/tests/unit/files/test_files.py index e14e033b9..426e2cf64 100644 --- a/tests/unit/files/test_files.py +++ b/tests/unit/files/test_files.py @@ -11,11 +11,12 @@ from llama_stack.apis.common.errors import ResourceNotFoundError from llama_stack.apis.common.responses import Order from llama_stack.apis.files import OpenAIFilePurpose from llama_stack.core.access_control.access_control import default_policy +from llama_stack.core.storage.datatypes import SqliteSqlStoreConfig, SqlStoreReference from llama_stack.providers.inline.files.localfs import ( LocalfsFilesImpl, LocalfsFilesImplConfig, ) -from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig +from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends class MockUploadFile: @@ -36,8 +37,11 @@ async def files_provider(tmp_path): storage_dir = tmp_path / "files" db_path = tmp_path / "files_metadata.db" + backend_name = "sql_localfs_test" + register_sqlstore_backends({backend_name: SqliteSqlStoreConfig(db_path=db_path.as_posix())}) config = LocalfsFilesImplConfig( - storage_dir=storage_dir.as_posix(), metadata_store=SqliteSqlStoreConfig(db_path=db_path.as_posix()) + storage_dir=storage_dir.as_posix(), + metadata_store=SqlStoreReference(backend=backend_name, table_name="files_metadata"), ) provider = LocalfsFilesImpl(config, default_policy()) diff --git a/tests/unit/prompts/prompts/conftest.py b/tests/unit/prompts/prompts/conftest.py index b2c619e49..fe30e1a77 100644 --- a/tests/unit/prompts/prompts/conftest.py +++ b/tests/unit/prompts/prompts/conftest.py @@ -9,7 +9,16 @@ import random import pytest from llama_stack.core.prompts.prompts import PromptServiceConfig, PromptServiceImpl -from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig +from llama_stack.core.storage.datatypes import ( + InferenceStoreReference, + KVStoreReference, + ServerStoresConfig, + SqliteKVStoreConfig, + SqliteSqlStoreConfig, + SqlStoreReference, + StorageConfig, +) +from llama_stack.providers.utils.kvstore import kvstore_impl, register_kvstore_backends @pytest.fixture @@ -19,12 +28,28 @@ async def temp_prompt_store(tmp_path_factory): db_path = str(temp_dir / f"{unique_id}.db") from llama_stack.core.datatypes import StackRunConfig - from llama_stack.providers.utils.kvstore import kvstore_impl - mock_run_config = StackRunConfig(image_name="test-distribution", apis=[], providers={}) + storage = StorageConfig( + backends={ + "kv_test": SqliteKVStoreConfig(db_path=db_path), + "sql_test": SqliteSqlStoreConfig(db_path=str(temp_dir / f"{unique_id}_sql.db")), + }, + stores=ServerStoresConfig( + metadata=KVStoreReference(backend="kv_test", namespace="registry"), + inference=InferenceStoreReference(backend="sql_test", table_name="inference"), + conversations=SqlStoreReference(backend="sql_test", table_name="conversations"), + ), + ) + mock_run_config = StackRunConfig( + image_name="test-distribution", + apis=[], + providers={}, + storage=storage, + ) config = PromptServiceConfig(run_config=mock_run_config) store = PromptServiceImpl(config, deps={}) - store.kvstore = await kvstore_impl(SqliteKVStoreConfig(db_path=db_path)) + register_kvstore_backends({"kv_test": storage.backends["kv_test"]}) + store.kvstore = await kvstore_impl(KVStoreReference(backend="kv_test", namespace="prompts")) yield store diff --git a/tests/unit/providers/agent/test_meta_reference_agent.py b/tests/unit/providers/agent/test_meta_reference_agent.py index cfb3e1327..dfd9b6d52 100644 --- a/tests/unit/providers/agent/test_meta_reference_agent.py +++ b/tests/unit/providers/agent/test_meta_reference_agent.py @@ -26,6 +26,20 @@ from llama_stack.providers.inline.agents.meta_reference.config import MetaRefere from llama_stack.providers.inline.agents.meta_reference.persistence import AgentInfo +@pytest.fixture(autouse=True) +def setup_backends(tmp_path): + """Register KV and SQL store backends for testing.""" + from llama_stack.core.storage.datatypes import SqliteKVStoreConfig, SqliteSqlStoreConfig + from llama_stack.providers.utils.kvstore.kvstore import register_kvstore_backends + from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends + + kv_path = str(tmp_path / "test_kv.db") + sql_path = str(tmp_path / "test_sql.db") + + register_kvstore_backends({"kv_default": SqliteKVStoreConfig(db_path=kv_path)}) + register_sqlstore_backends({"sql_default": SqliteSqlStoreConfig(db_path=sql_path)}) + + @pytest.fixture def mock_apis(): return { @@ -40,15 +54,20 @@ def mock_apis(): @pytest.fixture def config(tmp_path): + from llama_stack.core.storage.datatypes import KVStoreReference, ResponsesStoreReference + from llama_stack.providers.inline.agents.meta_reference.config import AgentPersistenceConfig + return MetaReferenceAgentsImplConfig( - persistence_store={ - "type": "sqlite", - "db_path": str(tmp_path / "test.db"), - }, - responses_store={ - "type": "sqlite", - "db_path": str(tmp_path / "test.db"), - }, + persistence=AgentPersistenceConfig( + agent_state=KVStoreReference( + backend="kv_default", + namespace="agents", + ), + responses=ResponsesStoreReference( + backend="sql_default", + table_name="responses", + ), + ) ) diff --git a/tests/unit/providers/agents/meta_reference/test_openai_responses.py b/tests/unit/providers/agents/meta_reference/test_openai_responses.py index 54c1820fb..f31ec0c28 100644 --- a/tests/unit/providers/agents/meta_reference/test_openai_responses.py +++ b/tests/unit/providers/agents/meta_reference/test_openai_responses.py @@ -42,7 +42,7 @@ from llama_stack.apis.inference import ( ) from llama_stack.apis.tools.tools import ListToolDefsResponse, ToolDef, ToolGroups, ToolInvocationResult, ToolRuntime from llama_stack.core.access_control.access_control import default_policy -from llama_stack.core.datatypes import ResponsesStoreConfig +from llama_stack.core.storage.datatypes import ResponsesStoreReference, SqliteSqlStoreConfig from llama_stack.providers.inline.agents.meta_reference.responses.openai_responses import ( OpenAIResponsesImpl, ) @@ -50,7 +50,7 @@ from llama_stack.providers.utils.responses.responses_store import ( ResponsesStore, _OpenAIResponseObjectWithInputAndMessages, ) -from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig +from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends from tests.unit.providers.agents.meta_reference.fixtures import load_chat_completion_fixture @@ -917,8 +917,10 @@ async def test_responses_store_list_input_items_logic(): # Create mock store and response store mock_sql_store = AsyncMock() + backend_name = "sql_responses_test" + register_sqlstore_backends({backend_name: SqliteSqlStoreConfig(db_path="mock_db_path")}) responses_store = ResponsesStore( - ResponsesStoreConfig(sql_store_config=SqliteSqlStoreConfig(db_path="mock_db_path")), policy=default_policy() + ResponsesStoreReference(backend=backend_name, table_name="responses"), policy=default_policy() ) responses_store.sql_store = mock_sql_store diff --git a/tests/unit/providers/batches/conftest.py b/tests/unit/providers/batches/conftest.py index df37141b5..d161bf976 100644 --- a/tests/unit/providers/batches/conftest.py +++ b/tests/unit/providers/batches/conftest.py @@ -12,10 +12,10 @@ from unittest.mock import AsyncMock import pytest +from llama_stack.core.storage.datatypes import KVStoreReference, SqliteKVStoreConfig from llama_stack.providers.inline.batches.reference.batches import ReferenceBatchesImpl from llama_stack.providers.inline.batches.reference.config import ReferenceBatchesImplConfig -from llama_stack.providers.utils.kvstore import kvstore_impl -from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig +from llama_stack.providers.utils.kvstore import kvstore_impl, register_kvstore_backends @pytest.fixture @@ -23,8 +23,10 @@ async def provider(): """Create a test provider instance with temporary database.""" with tempfile.TemporaryDirectory() as tmpdir: db_path = Path(tmpdir) / "test_batches.db" + backend_name = "kv_batches_test" kvstore_config = SqliteKVStoreConfig(db_path=str(db_path)) - config = ReferenceBatchesImplConfig(kvstore=kvstore_config) + register_kvstore_backends({backend_name: kvstore_config}) + config = ReferenceBatchesImplConfig(kvstore=KVStoreReference(backend=backend_name, namespace="batches")) # Create kvstore and mock APIs kvstore = await kvstore_impl(config.kvstore) diff --git a/tests/unit/providers/files/conftest.py b/tests/unit/providers/files/conftest.py index 46282e3dc..c64ecc3a3 100644 --- a/tests/unit/providers/files/conftest.py +++ b/tests/unit/providers/files/conftest.py @@ -8,8 +8,9 @@ import boto3 import pytest from moto import mock_aws +from llama_stack.core.storage.datatypes import SqliteSqlStoreConfig, SqlStoreReference from llama_stack.providers.remote.files.s3 import S3FilesImplConfig, get_adapter_impl -from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig +from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends class MockUploadFile: @@ -38,11 +39,13 @@ def sample_text_file2(): def s3_config(tmp_path): db_path = tmp_path / "s3_files_metadata.db" + backend_name = f"sql_s3_{tmp_path.name}" + register_sqlstore_backends({backend_name: SqliteSqlStoreConfig(db_path=db_path.as_posix())}) return S3FilesImplConfig( bucket_name=f"test-bucket-{tmp_path.name}", region="not-a-region", auto_create_bucket=True, - metadata_store=SqliteSqlStoreConfig(db_path=db_path.as_posix()), + metadata_store=SqlStoreReference(backend=backend_name, table_name="s3_files_metadata"), ) diff --git a/tests/unit/providers/vector_io/conftest.py b/tests/unit/providers/vector_io/conftest.py index 8e5c85cf1..6d0367beb 100644 --- a/tests/unit/providers/vector_io/conftest.py +++ b/tests/unit/providers/vector_io/conftest.py @@ -12,13 +12,14 @@ import pytest from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_io import Chunk, ChunkMetadata, QueryChunksResponse +from llama_stack.core.storage.datatypes import KVStoreReference, SqliteKVStoreConfig from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig from llama_stack.providers.inline.vector_io.faiss.faiss import FaissIndex, FaissVectorIOAdapter from llama_stack.providers.inline.vector_io.sqlite_vec import SQLiteVectorIOConfig from llama_stack.providers.inline.vector_io.sqlite_vec.sqlite_vec import SQLiteVecIndex, SQLiteVecVectorIOAdapter from llama_stack.providers.remote.vector_io.pgvector.config import PGVectorVectorIOConfig from llama_stack.providers.remote.vector_io.pgvector.pgvector import PGVectorIndex, PGVectorVectorIOAdapter -from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig +from llama_stack.providers.utils.kvstore import register_kvstore_backends EMBEDDING_DIMENSION = 768 COLLECTION_PREFIX = "test_collection" @@ -112,8 +113,9 @@ async def unique_kvstore_config(tmp_path_factory): unique_id = f"test_kv_{np.random.randint(1e6)}" temp_dir = tmp_path_factory.getbasetemp() db_path = str(temp_dir / f"{unique_id}.db") - - return SqliteKVStoreConfig(db_path=db_path) + backend_name = f"kv_vector_{unique_id}" + register_kvstore_backends({backend_name: SqliteKVStoreConfig(db_path=db_path)}) + return KVStoreReference(backend=backend_name, namespace=f"vector_io::{unique_id}") @pytest.fixture(scope="session") @@ -138,7 +140,7 @@ async def sqlite_vec_vec_index(embedding_dimension, tmp_path_factory): async def sqlite_vec_adapter(sqlite_vec_db_path, unique_kvstore_config, mock_inference_api, embedding_dimension): config = SQLiteVectorIOConfig( db_path=sqlite_vec_db_path, - kvstore=unique_kvstore_config, + persistence=unique_kvstore_config, ) adapter = SQLiteVecVectorIOAdapter( config=config, @@ -177,7 +179,7 @@ async def faiss_vec_index(embedding_dimension): @pytest.fixture async def faiss_vec_adapter(unique_kvstore_config, mock_inference_api, embedding_dimension): config = FaissVectorIOConfig( - kvstore=unique_kvstore_config, + persistence=unique_kvstore_config, ) adapter = FaissVectorIOAdapter( config=config, @@ -253,7 +255,7 @@ async def pgvector_vec_adapter(unique_kvstore_config, mock_inference_api, embedd db="test_db", user="test_user", password="test_password", - kvstore=unique_kvstore_config, + persistence=unique_kvstore_config, ) adapter = PGVectorVectorIOAdapter(config, mock_inference_api, None) diff --git a/tests/unit/registry/test_registry.py b/tests/unit/registry/test_registry.py index e49c9dc77..95022ad33 100644 --- a/tests/unit/registry/test_registry.py +++ b/tests/unit/registry/test_registry.py @@ -10,13 +10,13 @@ import pytest from llama_stack.apis.inference import Model from llama_stack.apis.vector_dbs import VectorDB from llama_stack.core.datatypes import VectorDBWithOwner +from llama_stack.core.storage.datatypes import KVStoreReference, SqliteKVStoreConfig from llama_stack.core.store.registry import ( KEY_FORMAT, CachedDiskDistributionRegistry, DiskDistributionRegistry, ) -from llama_stack.providers.utils.kvstore import kvstore_impl -from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig +from llama_stack.providers.utils.kvstore import kvstore_impl, register_kvstore_backends @pytest.fixture @@ -72,7 +72,11 @@ async def test_cached_registry_initialization(sqlite_kvstore, sample_vector_db, # Test cached version loads from disk db_path = sqlite_kvstore.db_path - cached_registry = CachedDiskDistributionRegistry(await kvstore_impl(SqliteKVStoreConfig(db_path=db_path))) + backend_name = "kv_cached_test" + register_kvstore_backends({backend_name: SqliteKVStoreConfig(db_path=db_path)}) + cached_registry = CachedDiskDistributionRegistry( + await kvstore_impl(KVStoreReference(backend=backend_name, namespace="registry")) + ) await cached_registry.initialize() result_vector_db = await cached_registry.get("vector_db", "test_vector_db") @@ -101,7 +105,11 @@ async def test_cached_registry_updates(cached_disk_dist_registry): # Verify persisted to disk db_path = cached_disk_dist_registry.kvstore.db_path - new_registry = DiskDistributionRegistry(await kvstore_impl(SqliteKVStoreConfig(db_path=db_path))) + backend_name = "kv_cached_new" + register_kvstore_backends({backend_name: SqliteKVStoreConfig(db_path=db_path)}) + new_registry = DiskDistributionRegistry( + await kvstore_impl(KVStoreReference(backend=backend_name, namespace="registry")) + ) await new_registry.initialize() result_vector_db = await new_registry.get("vector_db", "test_vector_db_2") assert result_vector_db is not None diff --git a/tests/unit/server/test_quota.py b/tests/unit/server/test_quota.py index 85acbc66a..16b1772ce 100644 --- a/tests/unit/server/test_quota.py +++ b/tests/unit/server/test_quota.py @@ -4,6 +4,8 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. +from uuid import uuid4 + import pytest from fastapi import FastAPI, Request from fastapi.testclient import TestClient @@ -11,7 +13,8 @@ from starlette.middleware.base import BaseHTTPMiddleware from llama_stack.core.datatypes import QuotaConfig, QuotaPeriod from llama_stack.core.server.quota import QuotaMiddleware -from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig +from llama_stack.core.storage.datatypes import KVStoreReference, SqliteKVStoreConfig +from llama_stack.providers.utils.kvstore import register_kvstore_backends class InjectClientIDMiddleware(BaseHTTPMiddleware): @@ -29,8 +32,10 @@ class InjectClientIDMiddleware(BaseHTTPMiddleware): def build_quota_config(db_path) -> QuotaConfig: + backend_name = f"kv_quota_{uuid4().hex}" + register_kvstore_backends({backend_name: SqliteKVStoreConfig(db_path=str(db_path))}) return QuotaConfig( - kvstore=SqliteKVStoreConfig(db_path=str(db_path)), + kvstore=KVStoreReference(backend=backend_name, namespace="quota"), anonymous_max_requests=1, authenticated_max_requests=2, period=QuotaPeriod.DAY, diff --git a/tests/unit/server/test_resolver.py b/tests/unit/server/test_resolver.py index 1ee1b2f47..b44f12f7e 100644 --- a/tests/unit/server/test_resolver.py +++ b/tests/unit/server/test_resolver.py @@ -12,15 +12,22 @@ from unittest.mock import AsyncMock, MagicMock from pydantic import BaseModel, Field from llama_stack.apis.inference import Inference -from llama_stack.core.datatypes import ( - Api, - Provider, - StackRunConfig, -) +from llama_stack.core.datatypes import Api, Provider, StackRunConfig from llama_stack.core.resolver import resolve_impls from llama_stack.core.routers.inference import InferenceRouter from llama_stack.core.routing_tables.models import ModelsRoutingTable +from llama_stack.core.storage.datatypes import ( + InferenceStoreReference, + KVStoreReference, + ServerStoresConfig, + SqliteKVStoreConfig, + SqliteSqlStoreConfig, + SqlStoreReference, + StorageConfig, +) from llama_stack.providers.datatypes import InlineProviderSpec, ProviderSpec +from llama_stack.providers.utils.kvstore import register_kvstore_backends +from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends def add_protocol_methods(cls: type, protocol: type[Protocol]) -> None: @@ -65,6 +72,35 @@ class SampleImpl: pass +def make_run_config(**overrides) -> StackRunConfig: + storage = overrides.pop( + "storage", + StorageConfig( + backends={ + "kv_default": SqliteKVStoreConfig(db_path=":memory:"), + "sql_default": SqliteSqlStoreConfig(db_path=":memory:"), + }, + stores=ServerStoresConfig( + metadata=KVStoreReference(backend="kv_default", namespace="registry"), + inference=InferenceStoreReference(backend="sql_default", table_name="inference_store"), + conversations=SqlStoreReference(backend="sql_default", table_name="conversations"), + ), + ), + ) + register_kvstore_backends({name: cfg for name, cfg in storage.backends.items() if cfg.type.value.startswith("kv_")}) + register_sqlstore_backends( + {name: cfg for name, cfg in storage.backends.items() if cfg.type.value.startswith("sql_")} + ) + defaults = dict( + image_name="test_image", + apis=[], + providers={}, + storage=storage, + ) + defaults.update(overrides) + return StackRunConfig(**defaults) + + async def test_resolve_impls_basic(): # Create a real provider spec provider_spec = InlineProviderSpec( @@ -78,7 +114,7 @@ async def test_resolve_impls_basic(): # Create provider registry with our provider provider_registry = {Api.inference: {provider_spec.provider_type: provider_spec}} - run_config = StackRunConfig( + run_config = make_run_config( image_name="test_image", providers={ "inference": [ diff --git a/tests/unit/utils/inference/test_inference_store.py b/tests/unit/utils/inference/test_inference_store.py index f6d63490a..d2de1c759 100644 --- a/tests/unit/utils/inference/test_inference_store.py +++ b/tests/unit/utils/inference/test_inference_store.py @@ -5,7 +5,6 @@ # the root directory of this source tree. import time -from tempfile import TemporaryDirectory import pytest @@ -16,8 +15,16 @@ from llama_stack.apis.inference import ( OpenAIUserMessageParam, Order, ) +from llama_stack.core.storage.datatypes import InferenceStoreReference, SqliteSqlStoreConfig from llama_stack.providers.utils.inference.inference_store import InferenceStore -from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig +from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends + + +@pytest.fixture(autouse=True) +def setup_backends(tmp_path): + """Register SQL store backends for testing.""" + db_path = str(tmp_path / "test.db") + register_sqlstore_backends({"sql_default": SqliteSqlStoreConfig(db_path=db_path)}) def create_test_chat_completion( @@ -44,167 +51,162 @@ def create_test_chat_completion( async def test_inference_store_pagination_basic(): """Test basic pagination functionality.""" - with TemporaryDirectory() as tmp_dir: - db_path = tmp_dir + "/test.db" - store = InferenceStore(SqliteSqlStoreConfig(db_path=db_path), policy=[]) - await store.initialize() + reference = InferenceStoreReference(backend="sql_default", table_name="chat_completions") + store = InferenceStore(reference, policy=[]) + await store.initialize() - # Create test data with different timestamps - base_time = int(time.time()) - test_data = [ - ("zebra-task", base_time + 1), - ("apple-job", base_time + 2), - ("moon-work", base_time + 3), - ("banana-run", base_time + 4), - ("car-exec", base_time + 5), - ] + # Create test data with different timestamps + base_time = int(time.time()) + test_data = [ + ("zebra-task", base_time + 1), + ("apple-job", base_time + 2), + ("moon-work", base_time + 3), + ("banana-run", base_time + 4), + ("car-exec", base_time + 5), + ] - # Store test chat completions - for completion_id, timestamp in test_data: - completion = create_test_chat_completion(completion_id, timestamp) - input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")] - await store.store_chat_completion(completion, input_messages) + # Store test chat completions + for completion_id, timestamp in test_data: + completion = create_test_chat_completion(completion_id, timestamp) + input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")] + await store.store_chat_completion(completion, input_messages) - # Wait for all queued writes to complete - await store.flush() + # Wait for all queued writes to complete + await store.flush() - # Test 1: First page with limit=2, descending order (default) - result = await store.list_chat_completions(limit=2, order=Order.desc) - assert len(result.data) == 2 - assert result.data[0].id == "car-exec" # Most recent first - assert result.data[1].id == "banana-run" - assert result.has_more is True - assert result.last_id == "banana-run" + # Test 1: First page with limit=2, descending order (default) + result = await store.list_chat_completions(limit=2, order=Order.desc) + assert len(result.data) == 2 + assert result.data[0].id == "car-exec" # Most recent first + assert result.data[1].id == "banana-run" + assert result.has_more is True + assert result.last_id == "banana-run" - # Test 2: Second page using 'after' parameter - result2 = await store.list_chat_completions(after="banana-run", limit=2, order=Order.desc) - assert len(result2.data) == 2 - assert result2.data[0].id == "moon-work" - assert result2.data[1].id == "apple-job" - assert result2.has_more is True + # Test 2: Second page using 'after' parameter + result2 = await store.list_chat_completions(after="banana-run", limit=2, order=Order.desc) + assert len(result2.data) == 2 + assert result2.data[0].id == "moon-work" + assert result2.data[1].id == "apple-job" + assert result2.has_more is True - # Test 3: Final page - result3 = await store.list_chat_completions(after="apple-job", limit=2, order=Order.desc) - assert len(result3.data) == 1 - assert result3.data[0].id == "zebra-task" - assert result3.has_more is False + # Test 3: Final page + result3 = await store.list_chat_completions(after="apple-job", limit=2, order=Order.desc) + assert len(result3.data) == 1 + assert result3.data[0].id == "zebra-task" + assert result3.has_more is False async def test_inference_store_pagination_ascending(): """Test pagination with ascending order.""" - with TemporaryDirectory() as tmp_dir: - db_path = tmp_dir + "/test.db" - store = InferenceStore(SqliteSqlStoreConfig(db_path=db_path), policy=[]) - await store.initialize() + reference = InferenceStoreReference(backend="sql_default", table_name="chat_completions") + store = InferenceStore(reference, policy=[]) + await store.initialize() - # Create test data - base_time = int(time.time()) - test_data = [ - ("delta-item", base_time + 1), - ("charlie-task", base_time + 2), - ("alpha-work", base_time + 3), - ] + # Create test data + base_time = int(time.time()) + test_data = [ + ("delta-item", base_time + 1), + ("charlie-task", base_time + 2), + ("alpha-work", base_time + 3), + ] - # Store test chat completions - for completion_id, timestamp in test_data: - completion = create_test_chat_completion(completion_id, timestamp) - input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")] - await store.store_chat_completion(completion, input_messages) + # Store test chat completions + for completion_id, timestamp in test_data: + completion = create_test_chat_completion(completion_id, timestamp) + input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")] + await store.store_chat_completion(completion, input_messages) - # Wait for all queued writes to complete - await store.flush() + # Wait for all queued writes to complete + await store.flush() - # Test ascending order pagination - result = await store.list_chat_completions(limit=1, order=Order.asc) - assert len(result.data) == 1 - assert result.data[0].id == "delta-item" # Oldest first - assert result.has_more is True + # Test ascending order pagination + result = await store.list_chat_completions(limit=1, order=Order.asc) + assert len(result.data) == 1 + assert result.data[0].id == "delta-item" # Oldest first + assert result.has_more is True - # Second page with ascending order - result2 = await store.list_chat_completions(after="delta-item", limit=1, order=Order.asc) - assert len(result2.data) == 1 - assert result2.data[0].id == "charlie-task" - assert result2.has_more is True + # Second page with ascending order + result2 = await store.list_chat_completions(after="delta-item", limit=1, order=Order.asc) + assert len(result2.data) == 1 + assert result2.data[0].id == "charlie-task" + assert result2.has_more is True async def test_inference_store_pagination_with_model_filter(): """Test pagination combined with model filtering.""" - with TemporaryDirectory() as tmp_dir: - db_path = tmp_dir + "/test.db" - store = InferenceStore(SqliteSqlStoreConfig(db_path=db_path), policy=[]) - await store.initialize() + reference = InferenceStoreReference(backend="sql_default", table_name="chat_completions") + store = InferenceStore(reference, policy=[]) + await store.initialize() - # Create test data with different models - base_time = int(time.time()) - test_data = [ - ("xyz-task", base_time + 1, "model-a"), - ("def-work", base_time + 2, "model-b"), - ("pqr-job", base_time + 3, "model-a"), - ("abc-run", base_time + 4, "model-b"), - ] + # Create test data with different models + base_time = int(time.time()) + test_data = [ + ("xyz-task", base_time + 1, "model-a"), + ("def-work", base_time + 2, "model-b"), + ("pqr-job", base_time + 3, "model-a"), + ("abc-run", base_time + 4, "model-b"), + ] - # Store test chat completions - for completion_id, timestamp, model in test_data: - completion = create_test_chat_completion(completion_id, timestamp, model) - input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")] - await store.store_chat_completion(completion, input_messages) + # Store test chat completions + for completion_id, timestamp, model in test_data: + completion = create_test_chat_completion(completion_id, timestamp, model) + input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")] + await store.store_chat_completion(completion, input_messages) - # Wait for all queued writes to complete - await store.flush() + # Wait for all queued writes to complete + await store.flush() - # Test pagination with model filter - result = await store.list_chat_completions(limit=1, model="model-a", order=Order.desc) - assert len(result.data) == 1 - assert result.data[0].id == "pqr-job" # Most recent model-a - assert result.data[0].model == "model-a" - assert result.has_more is True + # Test pagination with model filter + result = await store.list_chat_completions(limit=1, model="model-a", order=Order.desc) + assert len(result.data) == 1 + assert result.data[0].id == "pqr-job" # Most recent model-a + assert result.data[0].model == "model-a" + assert result.has_more is True - # Second page with model filter - result2 = await store.list_chat_completions(after="pqr-job", limit=1, model="model-a", order=Order.desc) - assert len(result2.data) == 1 - assert result2.data[0].id == "xyz-task" - assert result2.data[0].model == "model-a" - assert result2.has_more is False + # Second page with model filter + result2 = await store.list_chat_completions(after="pqr-job", limit=1, model="model-a", order=Order.desc) + assert len(result2.data) == 1 + assert result2.data[0].id == "xyz-task" + assert result2.data[0].model == "model-a" + assert result2.has_more is False async def test_inference_store_pagination_invalid_after(): """Test error handling for invalid 'after' parameter.""" - with TemporaryDirectory() as tmp_dir: - db_path = tmp_dir + "/test.db" - store = InferenceStore(SqliteSqlStoreConfig(db_path=db_path), policy=[]) - await store.initialize() + reference = InferenceStoreReference(backend="sql_default", table_name="chat_completions") + store = InferenceStore(reference, policy=[]) + await store.initialize() - # Try to paginate with non-existent ID - with pytest.raises(ValueError, match="Record with id='non-existent' not found in table 'chat_completions'"): - await store.list_chat_completions(after="non-existent", limit=2) + # Try to paginate with non-existent ID + with pytest.raises(ValueError, match="Record with id='non-existent' not found in table 'chat_completions'"): + await store.list_chat_completions(after="non-existent", limit=2) async def test_inference_store_pagination_no_limit(): """Test pagination behavior when no limit is specified.""" - with TemporaryDirectory() as tmp_dir: - db_path = tmp_dir + "/test.db" - store = InferenceStore(SqliteSqlStoreConfig(db_path=db_path), policy=[]) - await store.initialize() + reference = InferenceStoreReference(backend="sql_default", table_name="chat_completions") + store = InferenceStore(reference, policy=[]) + await store.initialize() - # Create test data - base_time = int(time.time()) - test_data = [ - ("omega-first", base_time + 1), - ("beta-second", base_time + 2), - ] + # Create test data + base_time = int(time.time()) + test_data = [ + ("omega-first", base_time + 1), + ("beta-second", base_time + 2), + ] - # Store test chat completions - for completion_id, timestamp in test_data: - completion = create_test_chat_completion(completion_id, timestamp) - input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")] - await store.store_chat_completion(completion, input_messages) + # Store test chat completions + for completion_id, timestamp in test_data: + completion = create_test_chat_completion(completion_id, timestamp) + input_messages = [OpenAIUserMessageParam(role="user", content=f"Test message for {completion_id}")] + await store.store_chat_completion(completion, input_messages) - # Wait for all queued writes to complete - await store.flush() + # Wait for all queued writes to complete + await store.flush() - # Test without limit - result = await store.list_chat_completions(order=Order.desc) - assert len(result.data) == 2 - assert result.data[0].id == "beta-second" # Most recent first - assert result.data[1].id == "omega-first" - assert result.has_more is False + # Test without limit + result = await store.list_chat_completions(order=Order.desc) + assert len(result.data) == 2 + assert result.data[0].id == "beta-second" # Most recent first + assert result.data[1].id == "omega-first" + assert result.has_more is False diff --git a/tests/unit/utils/responses/test_responses_store.py b/tests/unit/utils/responses/test_responses_store.py index c27b5a8e5..34cff3d3f 100644 --- a/tests/unit/utils/responses/test_responses_store.py +++ b/tests/unit/utils/responses/test_responses_store.py @@ -6,6 +6,7 @@ import time from tempfile import TemporaryDirectory +from uuid import uuid4 import pytest @@ -15,8 +16,18 @@ from llama_stack.apis.agents.openai_responses import ( OpenAIResponseObject, ) from llama_stack.apis.inference import OpenAIMessageParam, OpenAIUserMessageParam +from llama_stack.core.storage.datatypes import ResponsesStoreReference, SqliteSqlStoreConfig from llama_stack.providers.utils.responses.responses_store import ResponsesStore -from llama_stack.providers.utils.sqlstore.sqlstore import SqliteSqlStoreConfig +from llama_stack.providers.utils.sqlstore.sqlstore import register_sqlstore_backends + + +def build_store(db_path: str, policy: list | None = None) -> ResponsesStore: + backend_name = f"sql_responses_{uuid4().hex}" + register_sqlstore_backends({backend_name: SqliteSqlStoreConfig(db_path=db_path)}) + return ResponsesStore( + ResponsesStoreReference(backend=backend_name, table_name="responses"), + policy=policy or [], + ) def create_test_response_object( @@ -54,7 +65,7 @@ async def test_responses_store_pagination_basic(): """Test basic pagination functionality for responses store.""" with TemporaryDirectory() as tmp_dir: db_path = tmp_dir + "/test.db" - store = ResponsesStore(SqliteSqlStoreConfig(db_path=db_path), policy=[]) + store = build_store(db_path) await store.initialize() # Create test data with different timestamps @@ -103,7 +114,7 @@ async def test_responses_store_pagination_ascending(): """Test pagination with ascending order.""" with TemporaryDirectory() as tmp_dir: db_path = tmp_dir + "/test.db" - store = ResponsesStore(SqliteSqlStoreConfig(db_path=db_path), policy=[]) + store = build_store(db_path) await store.initialize() # Create test data @@ -141,7 +152,7 @@ async def test_responses_store_pagination_with_model_filter(): """Test pagination combined with model filtering.""" with TemporaryDirectory() as tmp_dir: db_path = tmp_dir + "/test.db" - store = ResponsesStore(SqliteSqlStoreConfig(db_path=db_path), policy=[]) + store = build_store(db_path) await store.initialize() # Create test data with different models @@ -182,7 +193,7 @@ async def test_responses_store_pagination_invalid_after(): """Test error handling for invalid 'after' parameter.""" with TemporaryDirectory() as tmp_dir: db_path = tmp_dir + "/test.db" - store = ResponsesStore(SqliteSqlStoreConfig(db_path=db_path), policy=[]) + store = build_store(db_path) await store.initialize() # Try to paginate with non-existent ID @@ -194,7 +205,7 @@ async def test_responses_store_pagination_no_limit(): """Test pagination behavior when no limit is specified.""" with TemporaryDirectory() as tmp_dir: db_path = tmp_dir + "/test.db" - store = ResponsesStore(SqliteSqlStoreConfig(db_path=db_path), policy=[]) + store = build_store(db_path) await store.initialize() # Create test data @@ -226,7 +237,7 @@ async def test_responses_store_get_response_object(): """Test retrieving a single response object.""" with TemporaryDirectory() as tmp_dir: db_path = tmp_dir + "/test.db" - store = ResponsesStore(SqliteSqlStoreConfig(db_path=db_path), policy=[]) + store = build_store(db_path) await store.initialize() # Store a test response @@ -254,7 +265,7 @@ async def test_responses_store_input_items_pagination(): """Test pagination functionality for input items.""" with TemporaryDirectory() as tmp_dir: db_path = tmp_dir + "/test.db" - store = ResponsesStore(SqliteSqlStoreConfig(db_path=db_path), policy=[]) + store = build_store(db_path) await store.initialize() # Store a test response with many inputs with explicit IDs @@ -335,7 +346,7 @@ async def test_responses_store_input_items_before_pagination(): """Test before pagination functionality for input items.""" with TemporaryDirectory() as tmp_dir: db_path = tmp_dir + "/test.db" - store = ResponsesStore(SqliteSqlStoreConfig(db_path=db_path), policy=[]) + store = build_store(db_path) await store.initialize() # Store a test response with many inputs with explicit IDs From 48581bf651c334ea78d48b1866247020065c5d4b Mon Sep 17 00:00:00 2001 From: Francisco Arceo Date: Mon, 20 Oct 2025 17:22:45 -0400 Subject: [PATCH 21/41] chore: Updating how default embedding model is set in stack (#3818) # What does this PR do? Refactor setting default vector store provider and embedding model to use an optional `vector_stores` config in the `StackRunConfig` and clean up code to do so (had to add back in some pieces of VectorDB). Also added remote Qdrant and Weaviate to starter distro (based on other PR where inference providers were added for UX). New config is simply (default for Starter distro): ```yaml vector_stores: default_provider_id: faiss default_embedding_model: provider_id: sentence-transformers model_id: nomic-ai/nomic-embed-text-v1.5 ``` ## Test Plan CI and Unit tests. --------- Signed-off-by: Francisco Javier Arceo Co-authored-by: Ashwin Bharambe --- .../workflows/integration-vector-io-tests.yml | 4 +- docs/docs/building_applications/rag.mdx | 28 +- llama_stack/apis/datatypes.py | 1 + llama_stack/apis/vector_dbs/vector_dbs.py | 34 +- llama_stack/core/datatypes.py | 25 ++ llama_stack/core/distribution.py | 4 + llama_stack/core/resolver.py | 2 + llama_stack/core/routers/__init__.py | 5 + llama_stack/core/routers/vector_io.py | 40 ++- llama_stack/core/routing_tables/common.py | 3 + llama_stack/core/routing_tables/vector_dbs.py | 323 ++++++++++++++++++ llama_stack/core/stack.py | 64 ++-- llama_stack/distributions/ci-tests/build.yaml | 2 + llama_stack/distributions/ci-tests/run.yaml | 20 ++ .../distributions/starter-gpu/build.yaml | 2 + .../distributions/starter-gpu/run.yaml | 20 ++ llama_stack/distributions/starter/build.yaml | 2 + llama_stack/distributions/starter/run.yaml | 20 ++ llama_stack/distributions/starter/starter.py | 29 ++ llama_stack/distributions/template.py | 9 +- .../sentence_transformers.py | 1 - .../inline/vector_io/chroma/__init__.py | 11 +- .../inline/vector_io/faiss/__init__.py | 7 +- .../providers/inline/vector_io/faiss/faiss.py | 64 +--- .../inline/vector_io/milvus/__init__.py | 7 +- .../inline/vector_io/qdrant/__init__.py | 7 +- .../inline/vector_io/sqlite_vec/__init__.py | 7 +- .../inline/vector_io/sqlite_vec/sqlite_vec.py | 62 +--- .../remote/vector_io/chroma/__init__.py | 7 +- .../remote/vector_io/chroma/chroma.py | 57 +--- .../remote/vector_io/milvus/__init__.py | 8 +- .../remote/vector_io/milvus/milvus.py | 81 +---- .../remote/vector_io/pgvector/__init__.py | 2 +- .../remote/vector_io/pgvector/pgvector.py | 51 +-- .../remote/vector_io/qdrant/__init__.py | 7 +- .../remote/vector_io/qdrant/qdrant.py | 46 +-- .../remote/vector_io/weaviate/__init__.py | 7 +- .../remote/vector_io/weaviate/config.py | 6 +- .../remote/vector_io/weaviate/weaviate.py | 84 +---- .../utils/memory/openai_vector_store_mixin.py | 101 +----- tests/integration/conftest.py | 69 ++++ tests/integration/fixtures/common.py | 8 + .../vector_io/test_openai_vector_stores.py | 155 +++++++-- tests/integration/vector_io/test_vector_io.py | 57 +++- tests/unit/core/test_stack_validation.py | 126 +++---- tests/unit/providers/vector_io/conftest.py | 2 - tests/unit/providers/vector_io/test_faiss.py | 19 +- .../test_vector_io_openai_vector_stores.py | 95 +----- 48 files changed, 973 insertions(+), 818 deletions(-) create mode 100644 llama_stack/core/routing_tables/vector_dbs.py diff --git a/.github/workflows/integration-vector-io-tests.yml b/.github/workflows/integration-vector-io-tests.yml index e9a758873..a6a86b15f 100644 --- a/.github/workflows/integration-vector-io-tests.yml +++ b/.github/workflows/integration-vector-io-tests.yml @@ -169,9 +169,7 @@ jobs: run: | uv run --no-sync \ pytest -sv --stack-config="files=inline::localfs,inference=inline::sentence-transformers,vector_io=${{ matrix.vector-io-provider }}" \ - tests/integration/vector_io \ - --embedding-model inline::sentence-transformers/nomic-ai/nomic-embed-text-v1.5 \ - --embedding-dimension 768 + tests/integration/vector_io - name: Check Storage and Memory Available After Tests if: ${{ always() }} diff --git a/docs/docs/building_applications/rag.mdx b/docs/docs/building_applications/rag.mdx index 8307448be..b1681dc62 100644 --- a/docs/docs/building_applications/rag.mdx +++ b/docs/docs/building_applications/rag.mdx @@ -88,18 +88,19 @@ Llama Stack provides OpenAI-compatible RAG capabilities through: To enable automatic vector store creation without specifying embedding models, configure a default embedding model in your run.yaml like so: ```yaml -models: - - model_id: nomic-ai/nomic-embed-text-v1.5 - provider_id: inline::sentence-transformers - metadata: - embedding_dimension: 768 - default_configured: true +vector_stores: + default_provider_id: faiss + default_embedding_model: + provider_id: sentence-transformers + model_id: nomic-ai/nomic-embed-text-v1.5 ``` With this configuration: -- `client.vector_stores.create()` works without requiring embedding model parameters -- The system automatically uses the default model and its embedding dimension for any newly created vector store -- Only one model can be marked as `default_configured: true` +- `client.vector_stores.create()` works without requiring embedding model or provider parameters +- The system automatically uses the default vector store provider (`faiss`) when multiple providers are available +- The system automatically uses the default embedding model (`sentence-transformers/nomic-ai/nomic-embed-text-v1.5`) for any newly created vector store +- The `default_provider_id` specifies which vector storage backend to use +- The `default_embedding_model` specifies both the inference provider and model for embeddings ## Vector Store Operations @@ -108,14 +109,15 @@ With this configuration: You can create vector stores with automatic or explicit embedding model selection: ```python -# Automatic - uses default configured embedding model +# Automatic - uses default configured embedding model and vector store provider vs = client.vector_stores.create() -# Explicit - specify embedding model when you need a specific one +# Explicit - specify embedding model and/or provider when you need specific ones vs = client.vector_stores.create( extra_body={ - "embedding_model": "nomic-ai/nomic-embed-text-v1.5", - "embedding_dimension": 768 + "provider_id": "faiss", # Optional: specify vector store provider + "embedding_model": "sentence-transformers/nomic-ai/nomic-embed-text-v1.5", + "embedding_dimension": 768 # Optional: will be auto-detected if not provided } ) ``` diff --git a/llama_stack/apis/datatypes.py b/llama_stack/apis/datatypes.py index 8fbf21f3e..5777f3d04 100644 --- a/llama_stack/apis/datatypes.py +++ b/llama_stack/apis/datatypes.py @@ -121,6 +121,7 @@ class Api(Enum, metaclass=DynamicApiMeta): models = "models" shields = "shields" + vector_dbs = "vector_dbs" # only used for routing datasets = "datasets" scoring_functions = "scoring_functions" benchmarks = "benchmarks" diff --git a/llama_stack/apis/vector_dbs/vector_dbs.py b/llama_stack/apis/vector_dbs/vector_dbs.py index 53bf181e9..0368095cb 100644 --- a/llama_stack/apis/vector_dbs/vector_dbs.py +++ b/llama_stack/apis/vector_dbs/vector_dbs.py @@ -4,7 +4,7 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. -from typing import Literal +from typing import Literal, Protocol, runtime_checkable from pydantic import BaseModel @@ -59,3 +59,35 @@ class ListVectorDBsResponse(BaseModel): """ data: list[VectorDB] + + +@runtime_checkable +class VectorDBs(Protocol): + """Internal protocol for vector_dbs routing - no public API endpoints.""" + + async def list_vector_dbs(self) -> ListVectorDBsResponse: + """Internal method to list vector databases.""" + ... + + async def get_vector_db( + self, + vector_db_id: str, + ) -> VectorDB: + """Internal method to get a vector database by ID.""" + ... + + async def register_vector_db( + self, + vector_db_id: str, + embedding_model: str, + embedding_dimension: int | None = 384, + provider_id: str | None = None, + vector_db_name: str | None = None, + provider_vector_db_id: str | None = None, + ) -> VectorDB: + """Internal method to register a vector database.""" + ... + + async def unregister_vector_db(self, vector_db_id: str) -> None: + """Internal method to unregister a vector database.""" + ... diff --git a/llama_stack/core/datatypes.py b/llama_stack/core/datatypes.py index d692da3b3..6d06adb84 100644 --- a/llama_stack/core/datatypes.py +++ b/llama_stack/core/datatypes.py @@ -354,6 +354,26 @@ class AuthenticationRequiredError(Exception): pass +class QualifiedModel(BaseModel): + """A qualified model identifier, consisting of a provider ID and a model ID.""" + + provider_id: str + model_id: str + + +class VectorStoresConfig(BaseModel): + """Configuration for vector stores in the stack.""" + + default_provider_id: str | None = Field( + default=None, + description="ID of the vector_io provider to use as default when multiple providers are available and none is specified.", + ) + default_embedding_model: QualifiedModel | None = Field( + default=None, + description="Default embedding model configuration for vector stores.", + ) + + class QuotaPeriod(StrEnum): DAY = "day" @@ -499,6 +519,11 @@ can be instantiated multiple times (with different configs) if necessary. description="Path to directory containing external API implementations. The APIs code and dependencies must be installed on the system.", ) + vector_stores: VectorStoresConfig | None = Field( + default=None, + description="Configuration for vector stores, including default embedding model", + ) + @field_validator("external_providers_dir") @classmethod def validate_external_providers_dir(cls, v): diff --git a/llama_stack/core/distribution.py b/llama_stack/core/distribution.py index 0e1f672c3..59461f5d6 100644 --- a/llama_stack/core/distribution.py +++ b/llama_stack/core/distribution.py @@ -63,6 +63,10 @@ def builtin_automatically_routed_apis() -> list[AutoRoutedApiInfo]: routing_table_api=Api.tool_groups, router_api=Api.tool_runtime, ), + AutoRoutedApiInfo( + routing_table_api=Api.vector_dbs, + router_api=Api.vector_io, + ), ] diff --git a/llama_stack/core/resolver.py b/llama_stack/core/resolver.py index acd459f99..6e1843870 100644 --- a/llama_stack/core/resolver.py +++ b/llama_stack/core/resolver.py @@ -29,6 +29,7 @@ from llama_stack.apis.scoring_functions import ScoringFunctions from llama_stack.apis.shields import Shields from llama_stack.apis.telemetry import Telemetry from llama_stack.apis.tools import ToolGroups, ToolRuntime +from llama_stack.apis.vector_dbs import VectorDBs from llama_stack.apis.vector_io import VectorIO from llama_stack.apis.version import LLAMA_STACK_API_V1ALPHA from llama_stack.core.client import get_client_impl @@ -81,6 +82,7 @@ def api_protocol_map(external_apis: dict[Api, ExternalApiSpec] | None = None) -> Api.inspect: Inspect, Api.batches: Batches, Api.vector_io: VectorIO, + Api.vector_dbs: VectorDBs, Api.models: Models, Api.safety: Safety, Api.shields: Shields, diff --git a/llama_stack/core/routers/__init__.py b/llama_stack/core/routers/__init__.py index 0573fc2c7..df4df0463 100644 --- a/llama_stack/core/routers/__init__.py +++ b/llama_stack/core/routers/__init__.py @@ -29,6 +29,7 @@ async def get_routing_table_impl( from ..routing_tables.scoring_functions import ScoringFunctionsRoutingTable from ..routing_tables.shields import ShieldsRoutingTable from ..routing_tables.toolgroups import ToolGroupsRoutingTable + from ..routing_tables.vector_dbs import VectorDBsRoutingTable api_to_tables = { "models": ModelsRoutingTable, @@ -37,6 +38,7 @@ async def get_routing_table_impl( "scoring_functions": ScoringFunctionsRoutingTable, "benchmarks": BenchmarksRoutingTable, "tool_groups": ToolGroupsRoutingTable, + "vector_dbs": VectorDBsRoutingTable, } if api.value not in api_to_tables: @@ -91,6 +93,9 @@ async def get_auto_router_impl( await inference_store.initialize() api_to_dep_impl["store"] = inference_store + elif api == Api.vector_io: + api_to_dep_impl["vector_stores_config"] = run_config.vector_stores + impl = api_to_routers[api.value](routing_table, **api_to_dep_impl) await impl.initialize() return impl diff --git a/llama_stack/core/routers/vector_io.py b/llama_stack/core/routers/vector_io.py index f4e871a40..bfc5f7164 100644 --- a/llama_stack/core/routers/vector_io.py +++ b/llama_stack/core/routers/vector_io.py @@ -31,6 +31,7 @@ from llama_stack.apis.vector_io import ( VectorStoreObject, VectorStoreSearchResponsePage, ) +from llama_stack.core.datatypes import VectorStoresConfig from llama_stack.log import get_logger from llama_stack.providers.datatypes import HealthResponse, HealthStatus, RoutingTable @@ -43,9 +44,11 @@ class VectorIORouter(VectorIO): def __init__( self, routing_table: RoutingTable, + vector_stores_config: VectorStoresConfig | None = None, ) -> None: logger.debug("Initializing VectorIORouter") self.routing_table = routing_table + self.vector_stores_config = vector_stores_config async def initialize(self) -> None: logger.debug("VectorIORouter.initialize") @@ -122,6 +125,17 @@ class VectorIORouter(VectorIO): embedding_dimension = extra.get("embedding_dimension") provider_id = extra.get("provider_id") + # Use default embedding model if not specified + if ( + embedding_model is None + and self.vector_stores_config + and self.vector_stores_config.default_embedding_model is not None + ): + # Construct the full model ID with provider prefix + embedding_provider_id = self.vector_stores_config.default_embedding_model.provider_id + model_id = self.vector_stores_config.default_embedding_model.model_id + embedding_model = f"{embedding_provider_id}/{model_id}" + if embedding_model is not None and embedding_dimension is None: embedding_dimension = await self._get_embedding_model_dimension(embedding_model) @@ -132,11 +146,24 @@ class VectorIORouter(VectorIO): raise ValueError("No vector_io providers available") if num_providers > 1: available_providers = list(self.routing_table.impls_by_provider_id.keys()) - raise ValueError( - f"Multiple vector_io providers available. Please specify provider_id in extra_body. " - f"Available providers: {available_providers}" - ) - provider_id = list(self.routing_table.impls_by_provider_id.keys())[0] + # Use default configured provider + if self.vector_stores_config and self.vector_stores_config.default_provider_id: + default_provider = self.vector_stores_config.default_provider_id + if default_provider in available_providers: + provider_id = default_provider + logger.debug(f"Using configured default vector store provider: {provider_id}") + else: + raise ValueError( + f"Configured default vector store provider '{default_provider}' not found. " + f"Available providers: {available_providers}" + ) + else: + raise ValueError( + f"Multiple vector_io providers available. Please specify provider_id in extra_body. " + f"Available providers: {available_providers}" + ) + else: + provider_id = list(self.routing_table.impls_by_provider_id.keys())[0] vector_db_id = f"vs_{uuid.uuid4()}" registered_vector_db = await self.routing_table.register_vector_db( @@ -243,8 +270,7 @@ class VectorIORouter(VectorIO): vector_store_id: str, ) -> VectorStoreDeleteResponse: logger.debug(f"VectorIORouter.openai_delete_vector_store: {vector_store_id}") - provider = await self.routing_table.get_provider_impl(vector_store_id) - return await provider.openai_delete_vector_store(vector_store_id) + return await self.routing_table.openai_delete_vector_store(vector_store_id) async def openai_search_vector_store( self, diff --git a/llama_stack/core/routing_tables/common.py b/llama_stack/core/routing_tables/common.py index 8df0a89a9..087483bb6 100644 --- a/llama_stack/core/routing_tables/common.py +++ b/llama_stack/core/routing_tables/common.py @@ -134,12 +134,15 @@ class CommonRoutingTableImpl(RoutingTable): from .scoring_functions import ScoringFunctionsRoutingTable from .shields import ShieldsRoutingTable from .toolgroups import ToolGroupsRoutingTable + from .vector_dbs import VectorDBsRoutingTable def apiname_object(): if isinstance(self, ModelsRoutingTable): return ("Inference", "model") elif isinstance(self, ShieldsRoutingTable): return ("Safety", "shield") + elif isinstance(self, VectorDBsRoutingTable): + return ("VectorIO", "vector_db") elif isinstance(self, DatasetsRoutingTable): return ("DatasetIO", "dataset") elif isinstance(self, ScoringFunctionsRoutingTable): diff --git a/llama_stack/core/routing_tables/vector_dbs.py b/llama_stack/core/routing_tables/vector_dbs.py new file mode 100644 index 000000000..e87fb61c6 --- /dev/null +++ b/llama_stack/core/routing_tables/vector_dbs.py @@ -0,0 +1,323 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +from typing import Any + +from pydantic import TypeAdapter + +from llama_stack.apis.common.errors import ModelNotFoundError, ModelTypeError +from llama_stack.apis.models import ModelType +from llama_stack.apis.resource import ResourceType + +# Removed VectorDBs import to avoid exposing public API +from llama_stack.apis.vector_io.vector_io import ( + OpenAICreateVectorStoreRequestWithExtraBody, + SearchRankingOptions, + VectorStoreChunkingStrategy, + VectorStoreDeleteResponse, + VectorStoreFileContentsResponse, + VectorStoreFileDeleteResponse, + VectorStoreFileObject, + VectorStoreFileStatus, + VectorStoreObject, + VectorStoreSearchResponsePage, +) +from llama_stack.core.datatypes import ( + VectorDBWithOwner, +) +from llama_stack.log import get_logger + +from .common import CommonRoutingTableImpl, lookup_model + +logger = get_logger(name=__name__, category="core::routing_tables") + + +class VectorDBsRoutingTable(CommonRoutingTableImpl): + """Internal routing table for vector_db operations. + + Does not inherit from VectorDBs to avoid exposing public API endpoints. + Only provides internal routing functionality for VectorIORouter. + """ + + # Internal methods only - no public API exposure + + async def register_vector_db( + self, + vector_db_id: str, + embedding_model: str, + embedding_dimension: int | None = 384, + provider_id: str | None = None, + provider_vector_db_id: str | None = None, + vector_db_name: str | None = None, + ) -> Any: + if provider_id is None: + if len(self.impls_by_provider_id) > 0: + provider_id = list(self.impls_by_provider_id.keys())[0] + if len(self.impls_by_provider_id) > 1: + logger.warning( + f"No provider specified and multiple providers available. Arbitrarily selected the first provider {provider_id}." + ) + else: + raise ValueError("No provider available. Please configure a vector_io provider.") + model = await lookup_model(self, embedding_model) + if model is None: + raise ModelNotFoundError(embedding_model) + if model.model_type != ModelType.embedding: + raise ModelTypeError(embedding_model, model.model_type, ModelType.embedding) + if "embedding_dimension" not in model.metadata: + raise ValueError(f"Model {embedding_model} does not have an embedding dimension") + + try: + provider = self.impls_by_provider_id[provider_id] + except KeyError: + available_providers = list(self.impls_by_provider_id.keys()) + raise ValueError( + f"Provider '{provider_id}' not found in routing table. Available providers: {available_providers}" + ) from None + logger.warning( + "VectorDB is being deprecated in future releases in favor of VectorStore. Please migrate your usage accordingly." + ) + request = OpenAICreateVectorStoreRequestWithExtraBody( + name=vector_db_name or vector_db_id, + embedding_model=embedding_model, + embedding_dimension=model.metadata["embedding_dimension"], + provider_id=provider_id, + provider_vector_db_id=provider_vector_db_id, + ) + vector_store = await provider.openai_create_vector_store(request) + + vector_store_id = vector_store.id + actual_provider_vector_db_id = provider_vector_db_id or vector_store_id + logger.warning( + f"Ignoring vector_db_id {vector_db_id} and using vector_store_id {vector_store_id} instead. Setting VectorDB {vector_db_id} to VectorDB.vector_db_name" + ) + + vector_db_data = { + "identifier": vector_store_id, + "type": ResourceType.vector_db.value, + "provider_id": provider_id, + "provider_resource_id": actual_provider_vector_db_id, + "embedding_model": embedding_model, + "embedding_dimension": model.metadata["embedding_dimension"], + "vector_db_name": vector_store.name, + } + vector_db = TypeAdapter(VectorDBWithOwner).validate_python(vector_db_data) + await self.register_object(vector_db) + return vector_db + + async def openai_retrieve_vector_store( + self, + vector_store_id: str, + ) -> VectorStoreObject: + await self.assert_action_allowed("read", "vector_db", vector_store_id) + provider = await self.get_provider_impl(vector_store_id) + return await provider.openai_retrieve_vector_store(vector_store_id) + + async def openai_update_vector_store( + self, + vector_store_id: str, + name: str | None = None, + expires_after: dict[str, Any] | None = None, + metadata: dict[str, Any] | None = None, + ) -> VectorStoreObject: + await self.assert_action_allowed("update", "vector_db", vector_store_id) + provider = await self.get_provider_impl(vector_store_id) + return await provider.openai_update_vector_store( + vector_store_id=vector_store_id, + name=name, + expires_after=expires_after, + metadata=metadata, + ) + + async def openai_delete_vector_store( + self, + vector_store_id: str, + ) -> VectorStoreDeleteResponse: + await self.assert_action_allowed("delete", "vector_db", vector_store_id) + provider = await self.get_provider_impl(vector_store_id) + result = await provider.openai_delete_vector_store(vector_store_id) + await self.unregister_vector_db(vector_store_id) + return result + + async def unregister_vector_db(self, vector_store_id: str) -> None: + """Remove the vector store from the routing table registry.""" + try: + vector_db_obj = await self.get_object_by_identifier("vector_db", vector_store_id) + if vector_db_obj: + await self.unregister_object(vector_db_obj) + except Exception as e: + # Log the error but don't fail the operation + logger.warning(f"Failed to unregister vector store {vector_store_id} from routing table: {e}") + + async def openai_search_vector_store( + self, + vector_store_id: str, + query: str | list[str], + filters: dict[str, Any] | None = None, + max_num_results: int | None = 10, + ranking_options: SearchRankingOptions | None = None, + rewrite_query: bool | None = False, + search_mode: str | None = "vector", + ) -> VectorStoreSearchResponsePage: + await self.assert_action_allowed("read", "vector_db", vector_store_id) + provider = await self.get_provider_impl(vector_store_id) + return await provider.openai_search_vector_store( + vector_store_id=vector_store_id, + query=query, + filters=filters, + max_num_results=max_num_results, + ranking_options=ranking_options, + rewrite_query=rewrite_query, + search_mode=search_mode, + ) + + async def openai_attach_file_to_vector_store( + self, + vector_store_id: str, + file_id: str, + attributes: dict[str, Any] | None = None, + chunking_strategy: VectorStoreChunkingStrategy | None = None, + ) -> VectorStoreFileObject: + await self.assert_action_allowed("update", "vector_db", vector_store_id) + provider = await self.get_provider_impl(vector_store_id) + return await provider.openai_attach_file_to_vector_store( + vector_store_id=vector_store_id, + file_id=file_id, + attributes=attributes, + chunking_strategy=chunking_strategy, + ) + + async def openai_list_files_in_vector_store( + self, + vector_store_id: str, + limit: int | None = 20, + order: str | None = "desc", + after: str | None = None, + before: str | None = None, + filter: VectorStoreFileStatus | None = None, + ) -> list[VectorStoreFileObject]: + await self.assert_action_allowed("read", "vector_db", vector_store_id) + provider = await self.get_provider_impl(vector_store_id) + return await provider.openai_list_files_in_vector_store( + vector_store_id=vector_store_id, + limit=limit, + order=order, + after=after, + before=before, + filter=filter, + ) + + async def openai_retrieve_vector_store_file( + self, + vector_store_id: str, + file_id: str, + ) -> VectorStoreFileObject: + await self.assert_action_allowed("read", "vector_db", vector_store_id) + provider = await self.get_provider_impl(vector_store_id) + return await provider.openai_retrieve_vector_store_file( + vector_store_id=vector_store_id, + file_id=file_id, + ) + + async def openai_retrieve_vector_store_file_contents( + self, + vector_store_id: str, + file_id: str, + ) -> VectorStoreFileContentsResponse: + await self.assert_action_allowed("read", "vector_db", vector_store_id) + provider = await self.get_provider_impl(vector_store_id) + return await provider.openai_retrieve_vector_store_file_contents( + vector_store_id=vector_store_id, + file_id=file_id, + ) + + async def openai_update_vector_store_file( + self, + vector_store_id: str, + file_id: str, + attributes: dict[str, Any], + ) -> VectorStoreFileObject: + await self.assert_action_allowed("update", "vector_db", vector_store_id) + provider = await self.get_provider_impl(vector_store_id) + return await provider.openai_update_vector_store_file( + vector_store_id=vector_store_id, + file_id=file_id, + attributes=attributes, + ) + + async def openai_delete_vector_store_file( + self, + vector_store_id: str, + file_id: str, + ) -> VectorStoreFileDeleteResponse: + await self.assert_action_allowed("delete", "vector_db", vector_store_id) + provider = await self.get_provider_impl(vector_store_id) + return await provider.openai_delete_vector_store_file( + vector_store_id=vector_store_id, + file_id=file_id, + ) + + async def openai_create_vector_store_file_batch( + self, + vector_store_id: str, + file_ids: list[str], + attributes: dict[str, Any] | None = None, + chunking_strategy: Any | None = None, + ): + await self.assert_action_allowed("update", "vector_db", vector_store_id) + provider = await self.get_provider_impl(vector_store_id) + return await provider.openai_create_vector_store_file_batch( + vector_store_id=vector_store_id, + file_ids=file_ids, + attributes=attributes, + chunking_strategy=chunking_strategy, + ) + + async def openai_retrieve_vector_store_file_batch( + self, + batch_id: str, + vector_store_id: str, + ): + await self.assert_action_allowed("read", "vector_db", vector_store_id) + provider = await self.get_provider_impl(vector_store_id) + return await provider.openai_retrieve_vector_store_file_batch( + batch_id=batch_id, + vector_store_id=vector_store_id, + ) + + async def openai_list_files_in_vector_store_file_batch( + self, + batch_id: str, + vector_store_id: str, + after: str | None = None, + before: str | None = None, + filter: str | None = None, + limit: int | None = 20, + order: str | None = "desc", + ): + await self.assert_action_allowed("read", "vector_db", vector_store_id) + provider = await self.get_provider_impl(vector_store_id) + return await provider.openai_list_files_in_vector_store_file_batch( + batch_id=batch_id, + vector_store_id=vector_store_id, + after=after, + before=before, + filter=filter, + limit=limit, + order=order, + ) + + async def openai_cancel_vector_store_file_batch( + self, + batch_id: str, + vector_store_id: str, + ): + await self.assert_action_allowed("update", "vector_db", vector_store_id) + provider = await self.get_provider_impl(vector_store_id) + return await provider.openai_cancel_vector_store_file_batch( + batch_id=batch_id, + vector_store_id=vector_store_id, + ) diff --git a/llama_stack/core/stack.py b/llama_stack/core/stack.py index 15d0198b1..a2f7babd2 100644 --- a/llama_stack/core/stack.py +++ b/llama_stack/core/stack.py @@ -35,7 +35,7 @@ from llama_stack.apis.telemetry import Telemetry from llama_stack.apis.tools import RAGToolRuntime, ToolGroups, ToolRuntime from llama_stack.apis.vector_io import VectorIO from llama_stack.core.conversations.conversations import ConversationServiceConfig, ConversationServiceImpl -from llama_stack.core.datatypes import Provider, StackRunConfig +from llama_stack.core.datatypes import Provider, StackRunConfig, VectorStoresConfig from llama_stack.core.distribution import get_provider_registry from llama_stack.core.inspect import DistributionInspectConfig, DistributionInspectImpl from llama_stack.core.prompts.prompts import PromptServiceConfig, PromptServiceImpl @@ -108,30 +108,6 @@ REGISTRY_REFRESH_TASK = None TEST_RECORDING_CONTEXT = None -async def validate_default_embedding_model(impls: dict[Api, Any]): - """Validate that at most one embedding model is marked as default.""" - if Api.models not in impls: - return - - models_impl = impls[Api.models] - response = await models_impl.list_models() - models_list = response.data if hasattr(response, "data") else response - - default_embedding_models = [] - for model in models_list: - if model.model_type == "embedding" and model.metadata.get("default_configured") is True: - default_embedding_models.append(model.identifier) - - if len(default_embedding_models) > 1: - raise ValueError( - f"Multiple embedding models marked as default_configured=True: {default_embedding_models}. " - "Only one embedding model can be marked as default." - ) - - if default_embedding_models: - logger.info(f"Default embedding model configured: {default_embedding_models[0]}") - - async def register_resources(run_config: StackRunConfig, impls: dict[Api, Any]): for rsrc, api, register_method, list_method in RESOURCES: objects = getattr(run_config, rsrc) @@ -162,7 +138,41 @@ async def register_resources(run_config: StackRunConfig, impls: dict[Api, Any]): f"{rsrc.capitalize()}: {obj.identifier} served by {obj.provider_id}", ) - await validate_default_embedding_model(impls) + +async def validate_vector_stores_config(vector_stores_config: VectorStoresConfig | None, impls: dict[Api, Any]): + """Validate vector stores configuration.""" + if vector_stores_config is None: + return + + default_embedding_model = vector_stores_config.default_embedding_model + if default_embedding_model is None: + return + + provider_id = default_embedding_model.provider_id + model_id = default_embedding_model.model_id + default_model_id = f"{provider_id}/{model_id}" + + if Api.models not in impls: + raise ValueError(f"Models API is not available but vector_stores config requires model '{default_model_id}'") + + models_impl = impls[Api.models] + response = await models_impl.list_models() + models_list = {m.identifier: m for m in response.data if m.model_type == "embedding"} + + default_model = models_list.get(default_model_id) + if default_model is None: + raise ValueError(f"Embedding model '{default_model_id}' not found. Available embedding models: {models_list}") + + embedding_dimension = default_model.metadata.get("embedding_dimension") + if embedding_dimension is None: + raise ValueError(f"Embedding model '{default_model_id}' is missing 'embedding_dimension' in metadata") + + try: + int(embedding_dimension) + except ValueError as err: + raise ValueError(f"Embedding dimension '{embedding_dimension}' cannot be converted to an integer") from err + + logger.debug(f"Validated default embedding model: {default_model_id} (dimension: {embedding_dimension})") class EnvVarError(Exception): @@ -400,8 +410,8 @@ class Stack: await impls[Api.conversations].initialize() await register_resources(self.run_config, impls) - await refresh_registry_once(impls) + await validate_vector_stores_config(self.run_config.vector_stores, impls) self.impls = impls def create_registry_refresh_task(self): diff --git a/llama_stack/distributions/ci-tests/build.yaml b/llama_stack/distributions/ci-tests/build.yaml index 191d0ae59..c01e415a9 100644 --- a/llama_stack/distributions/ci-tests/build.yaml +++ b/llama_stack/distributions/ci-tests/build.yaml @@ -25,6 +25,8 @@ distribution_spec: - provider_type: inline::milvus - provider_type: remote::chromadb - provider_type: remote::pgvector + - provider_type: remote::qdrant + - provider_type: remote::weaviate files: - provider_type: inline::localfs safety: diff --git a/llama_stack/distributions/ci-tests/run.yaml b/llama_stack/distributions/ci-tests/run.yaml index f9e741474..1653dc9bd 100644 --- a/llama_stack/distributions/ci-tests/run.yaml +++ b/llama_stack/distributions/ci-tests/run.yaml @@ -128,6 +128,21 @@ providers: persistence: namespace: vector_io::pgvector backend: kv_default + - provider_id: ${env.QDRANT_URL:+qdrant} + provider_type: remote::qdrant + config: + api_key: ${env.QDRANT_API_KEY:=} + persistence: + namespace: vector_io::qdrant_remote + backend: kv_default + - provider_id: ${env.WEAVIATE_CLUSTER_URL:+weaviate} + provider_type: remote::weaviate + config: + weaviate_api_key: null + weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080} + persistence: + namespace: vector_io::weaviate + backend: kv_default files: - provider_id: meta-reference-files provider_type: inline::localfs @@ -253,3 +268,8 @@ server: port: 8321 telemetry: enabled: true +vector_stores: + default_provider_id: faiss + default_embedding_model: + provider_id: sentence-transformers + model_id: nomic-ai/nomic-embed-text-v1.5 diff --git a/llama_stack/distributions/starter-gpu/build.yaml b/llama_stack/distributions/starter-gpu/build.yaml index 943c6134d..b2e2a0c85 100644 --- a/llama_stack/distributions/starter-gpu/build.yaml +++ b/llama_stack/distributions/starter-gpu/build.yaml @@ -26,6 +26,8 @@ distribution_spec: - provider_type: inline::milvus - provider_type: remote::chromadb - provider_type: remote::pgvector + - provider_type: remote::qdrant + - provider_type: remote::weaviate files: - provider_type: inline::localfs safety: diff --git a/llama_stack/distributions/starter-gpu/run.yaml b/llama_stack/distributions/starter-gpu/run.yaml index abfa579a7..81f564779 100644 --- a/llama_stack/distributions/starter-gpu/run.yaml +++ b/llama_stack/distributions/starter-gpu/run.yaml @@ -128,6 +128,21 @@ providers: persistence: namespace: vector_io::pgvector backend: kv_default + - provider_id: ${env.QDRANT_URL:+qdrant} + provider_type: remote::qdrant + config: + api_key: ${env.QDRANT_API_KEY:=} + persistence: + namespace: vector_io::qdrant_remote + backend: kv_default + - provider_id: ${env.WEAVIATE_CLUSTER_URL:+weaviate} + provider_type: remote::weaviate + config: + weaviate_api_key: null + weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080} + persistence: + namespace: vector_io::weaviate + backend: kv_default files: - provider_id: meta-reference-files provider_type: inline::localfs @@ -256,3 +271,8 @@ server: port: 8321 telemetry: enabled: true +vector_stores: + default_provider_id: faiss + default_embedding_model: + provider_id: sentence-transformers + model_id: nomic-ai/nomic-embed-text-v1.5 diff --git a/llama_stack/distributions/starter/build.yaml b/llama_stack/distributions/starter/build.yaml index c2719d50d..baa80ef3e 100644 --- a/llama_stack/distributions/starter/build.yaml +++ b/llama_stack/distributions/starter/build.yaml @@ -26,6 +26,8 @@ distribution_spec: - provider_type: inline::milvus - provider_type: remote::chromadb - provider_type: remote::pgvector + - provider_type: remote::qdrant + - provider_type: remote::weaviate files: - provider_type: inline::localfs safety: diff --git a/llama_stack/distributions/starter/run.yaml b/llama_stack/distributions/starter/run.yaml index fc58a4afe..dc611a446 100644 --- a/llama_stack/distributions/starter/run.yaml +++ b/llama_stack/distributions/starter/run.yaml @@ -128,6 +128,21 @@ providers: persistence: namespace: vector_io::pgvector backend: kv_default + - provider_id: ${env.QDRANT_URL:+qdrant} + provider_type: remote::qdrant + config: + api_key: ${env.QDRANT_API_KEY:=} + persistence: + namespace: vector_io::qdrant_remote + backend: kv_default + - provider_id: ${env.WEAVIATE_CLUSTER_URL:+weaviate} + provider_type: remote::weaviate + config: + weaviate_api_key: null + weaviate_cluster_url: ${env.WEAVIATE_CLUSTER_URL:=localhost:8080} + persistence: + namespace: vector_io::weaviate + backend: kv_default files: - provider_id: meta-reference-files provider_type: inline::localfs @@ -253,3 +268,8 @@ server: port: 8321 telemetry: enabled: true +vector_stores: + default_provider_id: faiss + default_embedding_model: + provider_id: sentence-transformers + model_id: nomic-ai/nomic-embed-text-v1.5 diff --git a/llama_stack/distributions/starter/starter.py b/llama_stack/distributions/starter/starter.py index f87ebcc5f..c8c7101a6 100644 --- a/llama_stack/distributions/starter/starter.py +++ b/llama_stack/distributions/starter/starter.py @@ -11,8 +11,10 @@ from llama_stack.core.datatypes import ( BuildProvider, Provider, ProviderSpec, + QualifiedModel, ShieldInput, ToolGroupInput, + VectorStoresConfig, ) from llama_stack.core.utils.dynamic import instantiate_class_type from llama_stack.distributions.template import DistributionTemplate, RunConfigSettings @@ -31,6 +33,8 @@ from llama_stack.providers.remote.vector_io.chroma.config import ChromaVectorIOC from llama_stack.providers.remote.vector_io.pgvector.config import ( PGVectorVectorIOConfig, ) +from llama_stack.providers.remote.vector_io.qdrant.config import QdrantVectorIOConfig +from llama_stack.providers.remote.vector_io.weaviate.config import WeaviateVectorIOConfig from llama_stack.providers.utils.sqlstore.sqlstore import PostgresSqlStoreConfig @@ -113,6 +117,8 @@ def get_distribution_template(name: str = "starter") -> DistributionTemplate: BuildProvider(provider_type="inline::milvus"), BuildProvider(provider_type="remote::chromadb"), BuildProvider(provider_type="remote::pgvector"), + BuildProvider(provider_type="remote::qdrant"), + BuildProvider(provider_type="remote::weaviate"), ], "files": [BuildProvider(provider_type="inline::localfs")], "safety": [ @@ -221,12 +227,35 @@ def get_distribution_template(name: str = "starter") -> DistributionTemplate: password="${env.PGVECTOR_PASSWORD:=}", ), ), + Provider( + provider_id="${env.QDRANT_URL:+qdrant}", + provider_type="remote::qdrant", + config=QdrantVectorIOConfig.sample_run_config( + f"~/.llama/distributions/{name}", + url="${env.QDRANT_URL:=}", + ), + ), + Provider( + provider_id="${env.WEAVIATE_CLUSTER_URL:+weaviate}", + provider_type="remote::weaviate", + config=WeaviateVectorIOConfig.sample_run_config( + f"~/.llama/distributions/{name}", + cluster_url="${env.WEAVIATE_CLUSTER_URL:=}", + ), + ), ], "files": [files_provider], }, default_models=[], default_tool_groups=default_tool_groups, default_shields=default_shields, + vector_stores_config=VectorStoresConfig( + default_provider_id="faiss", + default_embedding_model=QualifiedModel( + provider_id="sentence-transformers", + model_id="nomic-ai/nomic-embed-text-v1.5", + ), + ), ), }, run_config_env_vars={ diff --git a/llama_stack/distributions/template.py b/llama_stack/distributions/template.py index 542c7bea9..daa609388 100644 --- a/llama_stack/distributions/template.py +++ b/llama_stack/distributions/template.py @@ -27,6 +27,7 @@ from llama_stack.core.datatypes import ( ShieldInput, TelemetryConfig, ToolGroupInput, + VectorStoresConfig, ) from llama_stack.core.distribution import get_provider_registry from llama_stack.core.storage.datatypes import ( @@ -186,6 +187,7 @@ class RunConfigSettings(BaseModel): default_tool_groups: list[ToolGroupInput] | None = None default_datasets: list[DatasetInput] | None = None default_benchmarks: list[BenchmarkInput] | None = None + vector_stores_config: VectorStoresConfig | None = None telemetry: TelemetryConfig = Field(default_factory=lambda: TelemetryConfig(enabled=True)) storage_backends: dict[str, Any] | None = None storage_stores: dict[str, Any] | None = None @@ -263,7 +265,7 @@ class RunConfigSettings(BaseModel): ) # Return a dict that matches StackRunConfig structure - return { + config = { "version": LLAMA_STACK_RUN_CONFIG_VERSION, "image_name": name, "container_image": container_image, @@ -283,6 +285,11 @@ class RunConfigSettings(BaseModel): "telemetry": self.telemetry.model_dump(exclude_none=True) if self.telemetry else None, } + if self.vector_stores_config: + config["vector_stores"] = self.vector_stores_config.model_dump(exclude_none=True) + + return config + class DistributionTemplate(BaseModel): """ diff --git a/llama_stack/providers/inline/inference/sentence_transformers/sentence_transformers.py b/llama_stack/providers/inline/inference/sentence_transformers/sentence_transformers.py index 871adcb24..cb72aa13a 100644 --- a/llama_stack/providers/inline/inference/sentence_transformers/sentence_transformers.py +++ b/llama_stack/providers/inline/inference/sentence_transformers/sentence_transformers.py @@ -59,7 +59,6 @@ class SentenceTransformersInferenceImpl( provider_id=self.__provider_id__, metadata={ "embedding_dimension": 768, - "default_configured": True, }, model_type=ModelType.embedding, ), diff --git a/llama_stack/providers/inline/vector_io/chroma/__init__.py b/llama_stack/providers/inline/vector_io/chroma/__init__.py index 09e869c90..575e5ad88 100644 --- a/llama_stack/providers/inline/vector_io/chroma/__init__.py +++ b/llama_stack/providers/inline/vector_io/chroma/__init__.py @@ -12,15 +12,8 @@ from .config import ChromaVectorIOConfig async def get_provider_impl(config: ChromaVectorIOConfig, deps: dict[Api, Any]): - from llama_stack.providers.remote.vector_io.chroma.chroma import ( - ChromaVectorIOAdapter, - ) + from llama_stack.providers.remote.vector_io.chroma.chroma import ChromaVectorIOAdapter - impl = ChromaVectorIOAdapter( - config, - deps[Api.inference], - deps[Api.models], - deps.get(Api.files), - ) + impl = ChromaVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files)) await impl.initialize() return impl diff --git a/llama_stack/providers/inline/vector_io/faiss/__init__.py b/llama_stack/providers/inline/vector_io/faiss/__init__.py index c0f01bc9d..24d1f292a 100644 --- a/llama_stack/providers/inline/vector_io/faiss/__init__.py +++ b/llama_stack/providers/inline/vector_io/faiss/__init__.py @@ -16,11 +16,6 @@ async def get_provider_impl(config: FaissVectorIOConfig, deps: dict[Api, Any]): assert isinstance(config, FaissVectorIOConfig), f"Unexpected config type: {type(config)}" - impl = FaissVectorIOAdapter( - config, - deps[Api.inference], - deps[Api.models], - deps.get(Api.files), - ) + impl = FaissVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files)) await impl.initialize() return impl diff --git a/llama_stack/providers/inline/vector_io/faiss/faiss.py b/llama_stack/providers/inline/vector_io/faiss/faiss.py index ff1a6aa4c..f13eb3e96 100644 --- a/llama_stack/providers/inline/vector_io/faiss/faiss.py +++ b/llama_stack/providers/inline/vector_io/faiss/faiss.py @@ -17,27 +17,14 @@ from numpy.typing import NDArray from llama_stack.apis.common.errors import VectorStoreNotFoundError from llama_stack.apis.files import Files from llama_stack.apis.inference import Inference, InterleavedContent -from llama_stack.apis.models import Models from llama_stack.apis.vector_dbs import VectorDB -from llama_stack.apis.vector_io import ( - Chunk, - QueryChunksResponse, - VectorIO, -) +from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO from llama_stack.log import get_logger -from llama_stack.providers.datatypes import ( - HealthResponse, - HealthStatus, - VectorDBsProtocolPrivate, -) +from llama_stack.providers.datatypes import HealthResponse, HealthStatus, VectorDBsProtocolPrivate from llama_stack.providers.utils.kvstore import kvstore_impl from llama_stack.providers.utils.kvstore.api import KVStore from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin -from llama_stack.providers.utils.memory.vector_store import ( - ChunkForDeletion, - EmbeddingIndex, - VectorDBWithIndex, -) +from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion, EmbeddingIndex, VectorDBWithIndex from .config import FaissVectorIOConfig @@ -155,12 +142,7 @@ class FaissIndex(EmbeddingIndex): await self._save_index() - async def query_vector( - self, - embedding: NDArray, - k: int, - score_threshold: float, - ) -> QueryChunksResponse: + async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse: distances, indices = await asyncio.to_thread(self.index.search, embedding.reshape(1, -1).astype(np.float32), k) chunks = [] scores = [] @@ -175,12 +157,7 @@ class FaissIndex(EmbeddingIndex): return QueryChunksResponse(chunks=chunks, scores=scores) - async def query_keyword( - self, - query_string: str, - k: int, - score_threshold: float, - ) -> QueryChunksResponse: + async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse: raise NotImplementedError( "Keyword search is not supported - underlying DB FAISS does not support this search mode" ) @@ -200,17 +177,10 @@ class FaissIndex(EmbeddingIndex): class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate): - def __init__( - self, - config: FaissVectorIOConfig, - inference_api: Inference, - models_api: Models, - files_api: Files | None, - ) -> None: + def __init__(self, config: FaissVectorIOConfig, inference_api: Inference, files_api: Files | None) -> None: super().__init__(files_api=files_api, kvstore=None) self.config = config self.inference_api = inference_api - self.models_api = models_api self.cache: dict[str, VectorDBWithIndex] = {} async def initialize(self) -> None: @@ -252,17 +222,11 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr except Exception as e: return HealthResponse(status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}") - async def register_vector_db( - self, - vector_db: VectorDB, - ) -> None: + async def register_vector_db(self, vector_db: VectorDB) -> None: assert self.kvstore is not None key = f"{VECTOR_DBS_PREFIX}{vector_db.identifier}" - await self.kvstore.set( - key=key, - value=vector_db.model_dump_json(), - ) + await self.kvstore.set(key=key, value=vector_db.model_dump_json()) # Store in cache self.cache[vector_db.identifier] = VectorDBWithIndex( @@ -285,12 +249,7 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr del self.cache[vector_db_id] await self.kvstore.delete(f"{VECTOR_DBS_PREFIX}{vector_db_id}") - async def insert_chunks( - self, - vector_db_id: str, - chunks: list[Chunk], - ttl_seconds: int | None = None, - ) -> None: + async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None: index = self.cache.get(vector_db_id) if index is None: raise ValueError(f"Vector DB {vector_db_id} not found. found: {self.cache.keys()}") @@ -298,10 +257,7 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr await index.insert_chunks(chunks) async def query_chunks( - self, - vector_db_id: str, - query: InterleavedContent, - params: dict[str, Any] | None = None, + self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None ) -> QueryChunksResponse: index = self.cache.get(vector_db_id) if index is None: diff --git a/llama_stack/providers/inline/vector_io/milvus/__init__.py b/llama_stack/providers/inline/vector_io/milvus/__init__.py index 46a006a91..7dc9c6a33 100644 --- a/llama_stack/providers/inline/vector_io/milvus/__init__.py +++ b/llama_stack/providers/inline/vector_io/milvus/__init__.py @@ -14,11 +14,6 @@ from .config import MilvusVectorIOConfig async def get_provider_impl(config: MilvusVectorIOConfig, deps: dict[Api, Any]): from llama_stack.providers.remote.vector_io.milvus.milvus import MilvusVectorIOAdapter - impl = MilvusVectorIOAdapter( - config, - deps[Api.inference], - deps[Api.models], - deps.get(Api.files), - ) + impl = MilvusVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files)) await impl.initialize() return impl diff --git a/llama_stack/providers/inline/vector_io/qdrant/__init__.py b/llama_stack/providers/inline/vector_io/qdrant/__init__.py index 2863f667c..bef6d50e6 100644 --- a/llama_stack/providers/inline/vector_io/qdrant/__init__.py +++ b/llama_stack/providers/inline/vector_io/qdrant/__init__.py @@ -15,11 +15,6 @@ async def get_provider_impl(config: QdrantVectorIOConfig, deps: dict[Api, Any]): from llama_stack.providers.remote.vector_io.qdrant.qdrant import QdrantVectorIOAdapter assert isinstance(config, QdrantVectorIOConfig), f"Unexpected config type: {type(config)}" - impl = QdrantVectorIOAdapter( - config, - deps[Api.inference], - deps[Api.models], - deps.get(Api.files), - ) + impl = QdrantVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files)) await impl.initialize() return impl diff --git a/llama_stack/providers/inline/vector_io/sqlite_vec/__init__.py b/llama_stack/providers/inline/vector_io/sqlite_vec/__init__.py index 93921fb23..df96e927c 100644 --- a/llama_stack/providers/inline/vector_io/sqlite_vec/__init__.py +++ b/llama_stack/providers/inline/vector_io/sqlite_vec/__init__.py @@ -15,11 +15,6 @@ async def get_provider_impl(config: SQLiteVectorIOConfig, deps: dict[Api, Any]): from .sqlite_vec import SQLiteVecVectorIOAdapter assert isinstance(config, SQLiteVectorIOConfig), f"Unexpected config type: {type(config)}" - impl = SQLiteVecVectorIOAdapter( - config, - deps[Api.inference], - deps[Api.models], - deps.get(Api.files), - ) + impl = SQLiteVecVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files)) await impl.initialize() return impl diff --git a/llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py b/llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py index a58aa05b8..cfe23bde5 100644 --- a/llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py +++ b/llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py @@ -17,13 +17,8 @@ from numpy.typing import NDArray from llama_stack.apis.common.errors import VectorStoreNotFoundError from llama_stack.apis.files import Files from llama_stack.apis.inference import Inference -from llama_stack.apis.models import Models from llama_stack.apis.vector_dbs import VectorDB -from llama_stack.apis.vector_io import ( - Chunk, - QueryChunksResponse, - VectorIO, -) +from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO from llama_stack.log import get_logger from llama_stack.providers.datatypes import VectorDBsProtocolPrivate from llama_stack.providers.utils.kvstore import kvstore_impl @@ -175,32 +170,18 @@ class SQLiteVecIndex(EmbeddingIndex): # Insert vector embeddings embedding_data = [ - ( - ( - chunk.chunk_id, - serialize_vector(emb.tolist()), - ) - ) + ((chunk.chunk_id, serialize_vector(emb.tolist()))) for chunk, emb in zip(batch_chunks, batch_embeddings, strict=True) ] - cur.executemany( - f"INSERT INTO [{self.vector_table}] (id, embedding) VALUES (?, ?);", - embedding_data, - ) + cur.executemany(f"INSERT INTO [{self.vector_table}] (id, embedding) VALUES (?, ?);", embedding_data) # Insert FTS content fts_data = [(chunk.chunk_id, chunk.content) for chunk in batch_chunks] # DELETE existing entries with same IDs (FTS5 doesn't support ON CONFLICT) - cur.executemany( - f"DELETE FROM [{self.fts_table}] WHERE id = ?;", - [(row[0],) for row in fts_data], - ) + cur.executemany(f"DELETE FROM [{self.fts_table}] WHERE id = ?;", [(row[0],) for row in fts_data]) # INSERT new entries - cur.executemany( - f"INSERT INTO [{self.fts_table}] (id, content) VALUES (?, ?);", - fts_data, - ) + cur.executemany(f"INSERT INTO [{self.fts_table}] (id, content) VALUES (?, ?);", fts_data) connection.commit() @@ -216,12 +197,7 @@ class SQLiteVecIndex(EmbeddingIndex): # Run batch insertion in a background thread await asyncio.to_thread(_execute_all_batch_inserts) - async def query_vector( - self, - embedding: NDArray, - k: int, - score_threshold: float, - ) -> QueryChunksResponse: + async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse: """ Performs vector-based search using a virtual table for vector similarity. """ @@ -261,12 +237,7 @@ class SQLiteVecIndex(EmbeddingIndex): scores.append(score) return QueryChunksResponse(chunks=chunks, scores=scores) - async def query_keyword( - self, - query_string: str, - k: int, - score_threshold: float, - ) -> QueryChunksResponse: + async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse: """ Performs keyword-based search using SQLite FTS5 for relevance-ranked full-text search. """ @@ -410,17 +381,10 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc and creates a cache of VectorDBWithIndex instances (each wrapping a SQLiteVecIndex). """ - def __init__( - self, - config, - inference_api: Inference, - models_api: Models, - files_api: Files | None, - ) -> None: + def __init__(self, config, inference_api: Inference, files_api: Files | None) -> None: super().__init__(files_api=files_api, kvstore=None) self.config = config self.inference_api = inference_api - self.models_api = models_api self.cache: dict[str, VectorDBWithIndex] = {} self.vector_db_store = None @@ -433,9 +397,7 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc for db_json in stored_vector_dbs: vector_db = VectorDB.model_validate_json(db_json) index = await SQLiteVecIndex.create( - vector_db.embedding_dimension, - self.config.db_path, - vector_db.identifier, + vector_db.embedding_dimension, self.config.db_path, vector_db.identifier ) self.cache[vector_db.identifier] = VectorDBWithIndex(vector_db, index, self.inference_api) @@ -450,11 +412,7 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc return [v.vector_db for v in self.cache.values()] async def register_vector_db(self, vector_db: VectorDB) -> None: - index = await SQLiteVecIndex.create( - vector_db.embedding_dimension, - self.config.db_path, - vector_db.identifier, - ) + index = await SQLiteVecIndex.create(vector_db.embedding_dimension, self.config.db_path, vector_db.identifier) self.cache[vector_db.identifier] = VectorDBWithIndex(vector_db, index, self.inference_api) async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> VectorDBWithIndex | None: diff --git a/llama_stack/providers/remote/vector_io/chroma/__init__.py b/llama_stack/providers/remote/vector_io/chroma/__init__.py index a6db48c43..e4b77c68d 100644 --- a/llama_stack/providers/remote/vector_io/chroma/__init__.py +++ b/llama_stack/providers/remote/vector_io/chroma/__init__.py @@ -12,11 +12,6 @@ from .config import ChromaVectorIOConfig async def get_adapter_impl(config: ChromaVectorIOConfig, deps: dict[Api, ProviderSpec]): from .chroma import ChromaVectorIOAdapter - impl = ChromaVectorIOAdapter( - config, - deps[Api.inference], - deps[Api.models], - deps.get(Api.files), - ) + impl = ChromaVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files)) await impl.initialize() return impl diff --git a/llama_stack/providers/remote/vector_io/chroma/chroma.py b/llama_stack/providers/remote/vector_io/chroma/chroma.py index b07207cc6..0aa728c32 100644 --- a/llama_stack/providers/remote/vector_io/chroma/chroma.py +++ b/llama_stack/providers/remote/vector_io/chroma/chroma.py @@ -12,24 +12,16 @@ import chromadb from numpy.typing import NDArray from llama_stack.apis.files import Files -from llama_stack.apis.inference import InterleavedContent +from llama_stack.apis.inference import Inference, InterleavedContent from llama_stack.apis.vector_dbs import VectorDB -from llama_stack.apis.vector_io import ( - Chunk, - QueryChunksResponse, - VectorIO, -) +from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO from llama_stack.log import get_logger -from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate +from llama_stack.providers.datatypes import VectorDBsProtocolPrivate from llama_stack.providers.inline.vector_io.chroma import ChromaVectorIOConfig as InlineChromaVectorIOConfig from llama_stack.providers.utils.kvstore import kvstore_impl from llama_stack.providers.utils.kvstore.api import KVStore from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin -from llama_stack.providers.utils.memory.vector_store import ( - ChunkForDeletion, - EmbeddingIndex, - VectorDBWithIndex, -) +from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion, EmbeddingIndex, VectorDBWithIndex from .config import ChromaVectorIOConfig as RemoteChromaVectorIOConfig @@ -68,19 +60,13 @@ class ChromaIndex(EmbeddingIndex): ids = [f"{c.metadata.get('document_id', '')}:{c.chunk_id}" for c in chunks] await maybe_await( - self.collection.add( - documents=[chunk.model_dump_json() for chunk in chunks], - embeddings=embeddings, - ids=ids, - ) + self.collection.add(documents=[chunk.model_dump_json() for chunk in chunks], embeddings=embeddings, ids=ids) ) async def query_vector(self, embedding: NDArray, k: int, score_threshold: float) -> QueryChunksResponse: results = await maybe_await( self.collection.query( - query_embeddings=[embedding.tolist()], - n_results=k, - include=["documents", "distances"], + query_embeddings=[embedding.tolist()], n_results=k, include=["documents", "distances"] ) ) distances = results["distances"][0] @@ -108,12 +94,7 @@ class ChromaIndex(EmbeddingIndex): async def delete(self): await maybe_await(self.client.delete_collection(self.collection.name)) - async def query_keyword( - self, - query_string: str, - k: int, - score_threshold: float, - ) -> QueryChunksResponse: + async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse: raise NotImplementedError("Keyword search is not supported in Chroma") async def delete_chunks(self, chunks_for_deletion: list[ChunkForDeletion]) -> None: @@ -137,15 +118,13 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP def __init__( self, config: RemoteChromaVectorIOConfig | InlineChromaVectorIOConfig, - inference_api: Api.inference, - models_apis: Api.models, + inference_api: Inference, files_api: Files | None, ) -> None: super().__init__(files_api=files_api, kvstore=None) log.info(f"Initializing ChromaVectorIOAdapter with url: {config}") self.config = config self.inference_api = inference_api - self.models_api = models_apis self.client = None self.cache = {} self.vector_db_store = None @@ -172,14 +151,10 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP # Clean up mixin resources (file batch tasks) await super().shutdown() - async def register_vector_db( - self, - vector_db: VectorDB, - ) -> None: + async def register_vector_db(self, vector_db: VectorDB) -> None: collection = await maybe_await( self.client.get_or_create_collection( - name=vector_db.identifier, - metadata={"vector_db": vector_db.model_dump_json()}, + name=vector_db.identifier, metadata={"vector_db": vector_db.model_dump_json()} ) ) self.cache[vector_db.identifier] = VectorDBWithIndex( @@ -194,12 +169,7 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP await self.cache[vector_db_id].index.delete() del self.cache[vector_db_id] - async def insert_chunks( - self, - vector_db_id: str, - chunks: list[Chunk], - ttl_seconds: int | None = None, - ) -> None: + async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None: index = await self._get_and_cache_vector_db_index(vector_db_id) if index is None: raise ValueError(f"Vector DB {vector_db_id} not found in Chroma") @@ -207,10 +177,7 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP await index.insert_chunks(chunks) async def query_chunks( - self, - vector_db_id: str, - query: InterleavedContent, - params: dict[str, Any] | None = None, + self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None ) -> QueryChunksResponse: index = await self._get_and_cache_vector_db_index(vector_db_id) diff --git a/llama_stack/providers/remote/vector_io/milvus/__init__.py b/llama_stack/providers/remote/vector_io/milvus/__init__.py index dc5a642d6..526075bb2 100644 --- a/llama_stack/providers/remote/vector_io/milvus/__init__.py +++ b/llama_stack/providers/remote/vector_io/milvus/__init__.py @@ -13,12 +13,6 @@ async def get_adapter_impl(config: MilvusVectorIOConfig, deps: dict[Api, Provide from .milvus import MilvusVectorIOAdapter assert isinstance(config, MilvusVectorIOConfig), f"Unexpected config type: {type(config)}" - - impl = MilvusVectorIOAdapter( - config, - deps[Api.inference], - deps[Api.models], - deps.get(Api.files), - ) + impl = MilvusVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files)) await impl.initialize() return impl diff --git a/llama_stack/providers/remote/vector_io/milvus/milvus.py b/llama_stack/providers/remote/vector_io/milvus/milvus.py index 1f689d1a9..d7c34163d 100644 --- a/llama_stack/providers/remote/vector_io/milvus/milvus.py +++ b/llama_stack/providers/remote/vector_io/milvus/milvus.py @@ -14,13 +14,8 @@ from pymilvus import AnnSearchRequest, DataType, Function, FunctionType, MilvusC from llama_stack.apis.common.errors import VectorStoreNotFoundError from llama_stack.apis.files import Files from llama_stack.apis.inference import Inference, InterleavedContent -from llama_stack.apis.models import Models from llama_stack.apis.vector_dbs import VectorDB -from llama_stack.apis.vector_io import ( - Chunk, - QueryChunksResponse, - VectorIO, -) +from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO from llama_stack.log import get_logger from llama_stack.providers.datatypes import VectorDBsProtocolPrivate from llama_stack.providers.inline.vector_io.milvus import MilvusVectorIOConfig as InlineMilvusVectorIOConfig @@ -74,46 +69,23 @@ class MilvusIndex(EmbeddingIndex): logger.info(f"Creating new collection {self.collection_name} with nullable sparse field") # Create schema for vector search schema = self.client.create_schema() - schema.add_field( - field_name="chunk_id", - datatype=DataType.VARCHAR, - is_primary=True, - max_length=100, - ) + schema.add_field(field_name="chunk_id", datatype=DataType.VARCHAR, is_primary=True, max_length=100) schema.add_field( field_name="content", datatype=DataType.VARCHAR, max_length=65535, enable_analyzer=True, # Enable text analysis for BM25 ) - schema.add_field( - field_name="vector", - datatype=DataType.FLOAT_VECTOR, - dim=len(embeddings[0]), - ) - schema.add_field( - field_name="chunk_content", - datatype=DataType.JSON, - ) + schema.add_field(field_name="vector", datatype=DataType.FLOAT_VECTOR, dim=len(embeddings[0])) + schema.add_field(field_name="chunk_content", datatype=DataType.JSON) # Add sparse vector field for BM25 (required by the function) - schema.add_field( - field_name="sparse", - datatype=DataType.SPARSE_FLOAT_VECTOR, - ) + schema.add_field(field_name="sparse", datatype=DataType.SPARSE_FLOAT_VECTOR) # Create indexes index_params = self.client.prepare_index_params() - index_params.add_index( - field_name="vector", - index_type="FLAT", - metric_type="COSINE", - ) + index_params.add_index(field_name="vector", index_type="FLAT", metric_type="COSINE") # Add index for sparse field (required by BM25 function) - index_params.add_index( - field_name="sparse", - index_type="SPARSE_INVERTED_INDEX", - metric_type="BM25", - ) + index_params.add_index(field_name="sparse", index_type="SPARSE_INVERTED_INDEX", metric_type="BM25") # Add BM25 function for full-text search bm25_function = Function( @@ -144,11 +116,7 @@ class MilvusIndex(EmbeddingIndex): } ) try: - await asyncio.to_thread( - self.client.insert, - self.collection_name, - data=data, - ) + await asyncio.to_thread(self.client.insert, self.collection_name, data=data) except Exception as e: logger.error(f"Error inserting chunks into Milvus collection {self.collection_name}: {e}") raise e @@ -167,12 +135,7 @@ class MilvusIndex(EmbeddingIndex): scores = [res["distance"] for res in search_res[0]] return QueryChunksResponse(chunks=chunks, scores=scores) - async def query_keyword( - self, - query_string: str, - k: int, - score_threshold: float, - ) -> QueryChunksResponse: + async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse: """ Perform BM25-based keyword search using Milvus's built-in full-text search. """ @@ -210,12 +173,7 @@ class MilvusIndex(EmbeddingIndex): # Fallback to simple text search return await self._fallback_keyword_search(query_string, k, score_threshold) - async def _fallback_keyword_search( - self, - query_string: str, - k: int, - score_threshold: float, - ) -> QueryChunksResponse: + async def _fallback_keyword_search(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse: """ Fallback to simple text search when BM25 search is not available. """ @@ -308,7 +266,6 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP self, config: RemoteMilvusVectorIOConfig | InlineMilvusVectorIOConfig, inference_api: Inference, - models_api: Models, files_api: Files | None, ) -> None: super().__init__(files_api=files_api, kvstore=None) @@ -316,7 +273,6 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP self.cache = {} self.client = None self.inference_api = inference_api - self.models_api = models_api self.vector_db_store = None self.metadata_collection_name = "openai_vector_stores_metadata" @@ -355,10 +311,7 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP # Clean up mixin resources (file batch tasks) await super().shutdown() - async def register_vector_db( - self, - vector_db: VectorDB, - ) -> None: + async def register_vector_db(self, vector_db: VectorDB) -> None: if isinstance(self.config, RemoteMilvusVectorIOConfig): consistency_level = self.config.consistency_level else: @@ -395,12 +348,7 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP await self.cache[vector_db_id].index.delete() del self.cache[vector_db_id] - async def insert_chunks( - self, - vector_db_id: str, - chunks: list[Chunk], - ttl_seconds: int | None = None, - ) -> None: + async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None: index = await self._get_and_cache_vector_db_index(vector_db_id) if not index: raise VectorStoreNotFoundError(vector_db_id) @@ -408,10 +356,7 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP await index.insert_chunks(chunks) async def query_chunks( - self, - vector_db_id: str, - query: InterleavedContent, - params: dict[str, Any] | None = None, + self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None ) -> QueryChunksResponse: index = await self._get_and_cache_vector_db_index(vector_db_id) if not index: diff --git a/llama_stack/providers/remote/vector_io/pgvector/__init__.py b/llama_stack/providers/remote/vector_io/pgvector/__init__.py index bb4079ab5..8086b7650 100644 --- a/llama_stack/providers/remote/vector_io/pgvector/__init__.py +++ b/llama_stack/providers/remote/vector_io/pgvector/__init__.py @@ -12,6 +12,6 @@ from .config import PGVectorVectorIOConfig async def get_adapter_impl(config: PGVectorVectorIOConfig, deps: dict[Api, ProviderSpec]): from .pgvector import PGVectorVectorIOAdapter - impl = PGVectorVectorIOAdapter(config, deps[Api.inference], deps[Api.models], deps.get(Api.files, None)) + impl = PGVectorVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files)) await impl.initialize() return impl diff --git a/llama_stack/providers/remote/vector_io/pgvector/pgvector.py b/llama_stack/providers/remote/vector_io/pgvector/pgvector.py index 691cf965c..703a47843 100644 --- a/llama_stack/providers/remote/vector_io/pgvector/pgvector.py +++ b/llama_stack/providers/remote/vector_io/pgvector/pgvector.py @@ -16,26 +16,15 @@ from pydantic import BaseModel, TypeAdapter from llama_stack.apis.common.errors import VectorStoreNotFoundError from llama_stack.apis.files import Files from llama_stack.apis.inference import Inference, InterleavedContent -from llama_stack.apis.models import Models from llama_stack.apis.vector_dbs import VectorDB -from llama_stack.apis.vector_io import ( - Chunk, - QueryChunksResponse, - VectorIO, -) +from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO from llama_stack.log import get_logger from llama_stack.providers.datatypes import VectorDBsProtocolPrivate -from llama_stack.providers.utils.inference.prompt_adapter import ( - interleaved_content_as_str, -) +from llama_stack.providers.utils.inference.prompt_adapter import interleaved_content_as_str from llama_stack.providers.utils.kvstore import kvstore_impl from llama_stack.providers.utils.kvstore.api import KVStore from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin -from llama_stack.providers.utils.memory.vector_store import ( - ChunkForDeletion, - EmbeddingIndex, - VectorDBWithIndex, -) +from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion, EmbeddingIndex, VectorDBWithIndex from llama_stack.providers.utils.vector_io.vector_utils import WeightedInMemoryAggregator, sanitize_collection_name from .config import PGVectorVectorIOConfig @@ -205,12 +194,7 @@ class PGVectorIndex(EmbeddingIndex): return QueryChunksResponse(chunks=chunks, scores=scores) - async def query_keyword( - self, - query_string: str, - k: int, - score_threshold: float, - ) -> QueryChunksResponse: + async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse: """ Performs keyword-based search using PostgreSQL's full-text search with ts_rank scoring. @@ -317,7 +301,7 @@ class PGVectorIndex(EmbeddingIndex): """Remove a chunk from the PostgreSQL table.""" chunk_ids = [c.chunk_id for c in chunks_for_deletion] with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur: - cur.execute(f"DELETE FROM {self.table_name} WHERE id = ANY(%s)", (chunk_ids,)) + cur.execute(f"DELETE FROM {self.table_name} WHERE id = ANY(%s)", (chunk_ids)) def get_pgvector_search_function(self) -> str: return self.PGVECTOR_DISTANCE_METRIC_TO_SEARCH_FUNCTION[self.distance_metric] @@ -341,16 +325,11 @@ class PGVectorIndex(EmbeddingIndex): class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate): def __init__( - self, - config: PGVectorVectorIOConfig, - inference_api: Inference, - models_api: Models, - files_api: Files | None = None, + self, config: PGVectorVectorIOConfig, inference_api: Inference, files_api: Files | None = None ) -> None: super().__init__(files_api=files_api, kvstore=None) self.config = config self.inference_api = inference_api - self.models_api = models_api self.conn = None self.cache = {} self.vector_db_store = None @@ -407,11 +386,7 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco vector_db=vector_db, dimension=vector_db.embedding_dimension, conn=self.conn, kvstore=self.kvstore ) await pgvector_index.initialize() - index = VectorDBWithIndex( - vector_db, - index=pgvector_index, - inference_api=self.inference_api, - ) + index = VectorDBWithIndex(vector_db, index=pgvector_index, inference_api=self.inference_api) self.cache[vector_db.identifier] = index async def unregister_vector_db(self, vector_db_id: str) -> None: @@ -424,20 +399,12 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco assert self.kvstore is not None await self.kvstore.delete(key=f"{VECTOR_DBS_PREFIX}{vector_db_id}") - async def insert_chunks( - self, - vector_db_id: str, - chunks: list[Chunk], - ttl_seconds: int | None = None, - ) -> None: + async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None: index = await self._get_and_cache_vector_db_index(vector_db_id) await index.insert_chunks(chunks) async def query_chunks( - self, - vector_db_id: str, - query: InterleavedContent, - params: dict[str, Any] | None = None, + self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None ) -> QueryChunksResponse: index = await self._get_and_cache_vector_db_index(vector_db_id) return await index.query_chunks(query, params) diff --git a/llama_stack/providers/remote/vector_io/qdrant/__init__.py b/llama_stack/providers/remote/vector_io/qdrant/__init__.py index c4942fbce..e9527f101 100644 --- a/llama_stack/providers/remote/vector_io/qdrant/__init__.py +++ b/llama_stack/providers/remote/vector_io/qdrant/__init__.py @@ -12,11 +12,6 @@ from .config import QdrantVectorIOConfig async def get_adapter_impl(config: QdrantVectorIOConfig, deps: dict[Api, ProviderSpec]): from .qdrant import QdrantVectorIOAdapter - impl = QdrantVectorIOAdapter( - config, - deps[Api.inference], - deps[Api.models], - deps.get(Api.files), - ) + impl = QdrantVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files)) await impl.initialize() return impl diff --git a/llama_stack/providers/remote/vector_io/qdrant/qdrant.py b/llama_stack/providers/remote/vector_io/qdrant/qdrant.py index eba8333e4..6838d69e9 100644 --- a/llama_stack/providers/remote/vector_io/qdrant/qdrant.py +++ b/llama_stack/providers/remote/vector_io/qdrant/qdrant.py @@ -16,7 +16,6 @@ from qdrant_client.models import PointStruct from llama_stack.apis.common.errors import VectorStoreNotFoundError from llama_stack.apis.files import Files from llama_stack.apis.inference import Inference, InterleavedContent -from llama_stack.apis.models import Models from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_io import ( Chunk, @@ -30,11 +29,7 @@ from llama_stack.providers.datatypes import VectorDBsProtocolPrivate from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig as InlineQdrantVectorIOConfig from llama_stack.providers.utils.kvstore import kvstore_impl from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin -from llama_stack.providers.utils.memory.vector_store import ( - ChunkForDeletion, - EmbeddingIndex, - VectorDBWithIndex, -) +from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion, EmbeddingIndex, VectorDBWithIndex from .config import QdrantVectorIOConfig as RemoteQdrantVectorIOConfig @@ -99,8 +94,7 @@ class QdrantIndex(EmbeddingIndex): chunk_ids = [convert_id(c.chunk_id) for c in chunks_for_deletion] try: await self.client.delete( - collection_name=self.collection_name, - points_selector=models.PointIdsList(points=chunk_ids), + collection_name=self.collection_name, points_selector=models.PointIdsList(points=chunk_ids) ) except Exception as e: log.error(f"Error deleting chunks from Qdrant collection {self.collection_name}: {e}") @@ -133,12 +127,7 @@ class QdrantIndex(EmbeddingIndex): return QueryChunksResponse(chunks=chunks, scores=scores) - async def query_keyword( - self, - query_string: str, - k: int, - score_threshold: float, - ) -> QueryChunksResponse: + async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse: raise NotImplementedError("Keyword search is not supported in Qdrant") async def query_hybrid( @@ -161,7 +150,6 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP self, config: RemoteQdrantVectorIOConfig | InlineQdrantVectorIOConfig, inference_api: Inference, - models_api: Models, files_api: Files | None = None, ) -> None: super().__init__(files_api=files_api, kvstore=None) @@ -169,7 +157,6 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP self.client: AsyncQdrantClient = None self.cache = {} self.inference_api = inference_api - self.models_api = models_api self.vector_db_store = None self._qdrant_lock = asyncio.Lock() @@ -184,11 +171,7 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP for vector_db_data in stored_vector_dbs: vector_db = VectorDB.model_validate_json(vector_db_data) - index = VectorDBWithIndex( - vector_db, - QdrantIndex(self.client, vector_db.identifier), - self.inference_api, - ) + index = VectorDBWithIndex(vector_db, QdrantIndex(self.client, vector_db.identifier), self.inference_api) self.cache[vector_db.identifier] = index self.openai_vector_stores = await self._load_openai_vector_stores() @@ -197,18 +180,13 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP # Clean up mixin resources (file batch tasks) await super().shutdown() - async def register_vector_db( - self, - vector_db: VectorDB, - ) -> None: + async def register_vector_db(self, vector_db: VectorDB) -> None: assert self.kvstore is not None key = f"{VECTOR_DBS_PREFIX}{vector_db.identifier}" await self.kvstore.set(key=key, value=vector_db.model_dump_json()) index = VectorDBWithIndex( - vector_db=vector_db, - index=QdrantIndex(self.client, vector_db.identifier), - inference_api=self.inference_api, + vector_db=vector_db, index=QdrantIndex(self.client, vector_db.identifier), inference_api=self.inference_api ) self.cache[vector_db.identifier] = index @@ -240,12 +218,7 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP self.cache[vector_db_id] = index return index - async def insert_chunks( - self, - vector_db_id: str, - chunks: list[Chunk], - ttl_seconds: int | None = None, - ) -> None: + async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None: index = await self._get_and_cache_vector_db_index(vector_db_id) if not index: raise VectorStoreNotFoundError(vector_db_id) @@ -253,10 +226,7 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP await index.insert_chunks(chunks) async def query_chunks( - self, - vector_db_id: str, - query: InterleavedContent, - params: dict[str, Any] | None = None, + self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None ) -> QueryChunksResponse: index = await self._get_and_cache_vector_db_index(vector_db_id) if not index: diff --git a/llama_stack/providers/remote/vector_io/weaviate/__init__.py b/llama_stack/providers/remote/vector_io/weaviate/__init__.py index 2040dad96..12e11d013 100644 --- a/llama_stack/providers/remote/vector_io/weaviate/__init__.py +++ b/llama_stack/providers/remote/vector_io/weaviate/__init__.py @@ -12,11 +12,6 @@ from .config import WeaviateVectorIOConfig async def get_adapter_impl(config: WeaviateVectorIOConfig, deps: dict[Api, ProviderSpec]): from .weaviate import WeaviateVectorIOAdapter - impl = WeaviateVectorIOAdapter( - config, - deps[Api.inference], - deps[Api.models], - deps.get(Api.files), - ) + impl = WeaviateVectorIOAdapter(config, deps[Api.inference], deps.get(Api.files)) await impl.initialize() return impl diff --git a/llama_stack/providers/remote/vector_io/weaviate/config.py b/llama_stack/providers/remote/vector_io/weaviate/config.py index 06242c6b4..66dbf1fed 100644 --- a/llama_stack/providers/remote/vector_io/weaviate/config.py +++ b/llama_stack/providers/remote/vector_io/weaviate/config.py @@ -21,11 +21,7 @@ class WeaviateVectorIOConfig(BaseModel): ) @classmethod - def sample_run_config( - cls, - __distro_dir__: str, - **kwargs: Any, - ) -> dict[str, Any]: + def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]: return { "weaviate_api_key": None, "weaviate_cluster_url": "${env.WEAVIATE_CLUSTER_URL:=localhost:8080}", diff --git a/llama_stack/providers/remote/vector_io/weaviate/weaviate.py b/llama_stack/providers/remote/vector_io/weaviate/weaviate.py index 06ffc8706..8e7eb7267 100644 --- a/llama_stack/providers/remote/vector_io/weaviate/weaviate.py +++ b/llama_stack/providers/remote/vector_io/weaviate/weaviate.py @@ -16,7 +16,6 @@ from llama_stack.apis.common.content_types import InterleavedContent from llama_stack.apis.common.errors import VectorStoreNotFoundError from llama_stack.apis.files import Files from llama_stack.apis.inference import Inference -from llama_stack.apis.models import Models from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO from llama_stack.core.request_headers import NeedsRequestProviderData @@ -24,9 +23,7 @@ from llama_stack.log import get_logger from llama_stack.providers.datatypes import VectorDBsProtocolPrivate from llama_stack.providers.utils.kvstore import kvstore_impl from llama_stack.providers.utils.kvstore.api import KVStore -from llama_stack.providers.utils.memory.openai_vector_store_mixin import ( - OpenAIVectorStoreMixin, -) +from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin from llama_stack.providers.utils.memory.vector_store import ( RERANKER_TYPE_RRF, ChunkForDeletion, @@ -48,12 +45,7 @@ OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_conten class WeaviateIndex(EmbeddingIndex): - def __init__( - self, - client: weaviate.WeaviateClient, - collection_name: str, - kvstore: KVStore | None = None, - ): + def __init__(self, client: weaviate.WeaviateClient, collection_name: str, kvstore: KVStore | None = None): self.client = client self.collection_name = sanitize_collection_name(collection_name, weaviate_format=True) self.kvstore = kvstore @@ -108,9 +100,7 @@ class WeaviateIndex(EmbeddingIndex): try: results = collection.query.near_vector( - near_vector=embedding.tolist(), - limit=k, - return_metadata=wvc.query.MetadataQuery(distance=True), + near_vector=embedding.tolist(), limit=k, return_metadata=wvc.query.MetadataQuery(distance=True) ) except Exception as e: log.error(f"Weaviate client vector search failed: {e}") @@ -153,12 +143,7 @@ class WeaviateIndex(EmbeddingIndex): collection = self.client.collections.get(sanitized_collection_name) collection.data.delete_many(where=Filter.by_property("id").contains_any(chunk_ids)) - async def query_keyword( - self, - query_string: str, - k: int, - score_threshold: float, - ) -> QueryChunksResponse: + async def query_keyword(self, query_string: str, k: int, score_threshold: float) -> QueryChunksResponse: """ Performs BM25-based keyword search using Weaviate's built-in full-text search. Args: @@ -175,9 +160,7 @@ class WeaviateIndex(EmbeddingIndex): # Perform BM25 keyword search on chunk_content field try: results = collection.query.bm25( - query=query_string, - limit=k, - return_metadata=wvc.query.MetadataQuery(score=True), + query=query_string, limit=k, return_metadata=wvc.query.MetadataQuery(score=True) ) except Exception as e: log.error(f"Weaviate client keyword search failed: {e}") @@ -274,23 +257,11 @@ class WeaviateIndex(EmbeddingIndex): return QueryChunksResponse(chunks=chunks, scores=scores) -class WeaviateVectorIOAdapter( - OpenAIVectorStoreMixin, - VectorIO, - NeedsRequestProviderData, - VectorDBsProtocolPrivate, -): - def __init__( - self, - config: WeaviateVectorIOConfig, - inference_api: Inference, - models_api: Models, - files_api: Files | None, - ) -> None: +class WeaviateVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, NeedsRequestProviderData, VectorDBsProtocolPrivate): + def __init__(self, config: WeaviateVectorIOConfig, inference_api: Inference, files_api: Files | None) -> None: super().__init__(files_api=files_api, kvstore=None) self.config = config self.inference_api = inference_api - self.models_api = models_api self.client_cache = {} self.cache = {} self.vector_db_store = None @@ -301,10 +272,7 @@ class WeaviateVectorIOAdapter( log.info("Using Weaviate locally in container") host, port = self.config.weaviate_cluster_url.split(":") key = "local_test" - client = weaviate.connect_to_local( - host=host, - port=port, - ) + client = weaviate.connect_to_local(host=host, port=port) else: log.info("Using Weaviate remote cluster with URL") key = f"{self.config.weaviate_cluster_url}::{self.config.weaviate_api_key}" @@ -334,15 +302,9 @@ class WeaviateVectorIOAdapter( for raw in stored: vector_db = VectorDB.model_validate_json(raw) client = self._get_client() - idx = WeaviateIndex( - client=client, - collection_name=vector_db.identifier, - kvstore=self.kvstore, - ) + idx = WeaviateIndex(client=client, collection_name=vector_db.identifier, kvstore=self.kvstore) self.cache[vector_db.identifier] = VectorDBWithIndex( - vector_db=vector_db, - index=idx, - inference_api=self.inference_api, + vector_db=vector_db, index=idx, inference_api=self.inference_api ) # Load OpenAI vector stores metadata into cache @@ -354,10 +316,7 @@ class WeaviateVectorIOAdapter( # Clean up mixin resources (file batch tasks) await super().shutdown() - async def register_vector_db( - self, - vector_db: VectorDB, - ) -> None: + async def register_vector_db(self, vector_db: VectorDB) -> None: client = self._get_client() sanitized_collection_name = sanitize_collection_name(vector_db.identifier, weaviate_format=True) # Create collection if it doesn't exist @@ -366,17 +325,12 @@ class WeaviateVectorIOAdapter( name=sanitized_collection_name, vectorizer_config=wvc.config.Configure.Vectorizer.none(), properties=[ - wvc.config.Property( - name="chunk_content", - data_type=wvc.config.DataType.TEXT, - ), + wvc.config.Property(name="chunk_content", data_type=wvc.config.DataType.TEXT), ], ) self.cache[vector_db.identifier] = VectorDBWithIndex( - vector_db, - WeaviateIndex(client=client, collection_name=sanitized_collection_name), - self.inference_api, + vector_db, WeaviateIndex(client=client, collection_name=sanitized_collection_name), self.inference_api ) async def unregister_vector_db(self, vector_db_id: str) -> None: @@ -412,12 +366,7 @@ class WeaviateVectorIOAdapter( self.cache[vector_db_id] = index return index - async def insert_chunks( - self, - vector_db_id: str, - chunks: list[Chunk], - ttl_seconds: int | None = None, - ) -> None: + async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None: index = await self._get_and_cache_vector_db_index(vector_db_id) if not index: raise VectorStoreNotFoundError(vector_db_id) @@ -425,10 +374,7 @@ class WeaviateVectorIOAdapter( await index.insert_chunks(chunks) async def query_chunks( - self, - vector_db_id: str, - query: InterleavedContent, - params: dict[str, Any] | None = None, + self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None ) -> QueryChunksResponse: index = await self._get_and_cache_vector_db_index(vector_db_id) if not index: diff --git a/llama_stack/providers/utils/memory/openai_vector_store_mixin.py b/llama_stack/providers/utils/memory/openai_vector_store_mixin.py index 0e550434e..7806d98c1 100644 --- a/llama_stack/providers/utils/memory/openai_vector_store_mixin.py +++ b/llama_stack/providers/utils/memory/openai_vector_store_mixin.py @@ -17,7 +17,6 @@ from pydantic import TypeAdapter from llama_stack.apis.common.errors import VectorStoreNotFoundError from llama_stack.apis.files import Files, OpenAIFileObject -from llama_stack.apis.models import Model, Models from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_io import ( Chunk, @@ -81,13 +80,14 @@ class OpenAIVectorStoreMixin(ABC): # Implementing classes should call super().__init__() in their __init__ method # to properly initialize the mixin attributes. def __init__( - self, files_api: Files | None = None, kvstore: KVStore | None = None, models_api: Models | None = None + self, + files_api: Files | None = None, + kvstore: KVStore | None = None, ): self.openai_vector_stores: dict[str, dict[str, Any]] = {} self.openai_file_batches: dict[str, dict[str, Any]] = {} self.files_api = files_api self.kvstore = kvstore - self.models_api = models_api self._last_file_batch_cleanup_time = 0 self._file_batch_tasks: dict[str, asyncio.Task[None]] = {} @@ -393,21 +393,7 @@ class OpenAIVectorStoreMixin(ABC): vector_db_id = provider_vector_db_id or generate_object_id("vector_store", lambda: f"vs_{uuid.uuid4()}") if embedding_model is None: - result = await self._get_default_embedding_model_and_dimension() - if result is None: - raise ValueError( - "embedding_model is required in extra_body when creating a vector store. " - "No default embedding model could be determined automatically." - ) - embedding_model, embedding_dimension = result - elif embedding_dimension is None: - # Embedding model was provided but dimension wasn't, look it up - embedding_dimension = await self._get_embedding_dimension_for_model(embedding_model) - if embedding_dimension is None: - raise ValueError( - f"Could not determine embedding dimension for model '{embedding_model}'. " - "Please provide embedding_dimension in extra_body or ensure the model metadata contains embedding_dimension." - ) + raise ValueError("embedding_model is required") if embedding_dimension is None: raise ValueError("Embedding dimension is required") @@ -474,85 +460,6 @@ class OpenAIVectorStoreMixin(ABC): store_info = self.openai_vector_stores[vector_db_id] return VectorStoreObject.model_validate(store_info) - async def _get_embedding_models(self) -> list[Model]: - """Get list of embedding models from the models API.""" - if not self.models_api: - return [] - - models_response = await self.models_api.list_models() - models_list = models_response.data if hasattr(models_response, "data") else models_response - - embedding_models = [] - for model in models_list: - if not isinstance(model, Model): - logger.warning(f"Non-Model object found in models list: {type(model)} - {model}") - continue - if model.model_type == "embedding": - embedding_models.append(model) - - return embedding_models - - async def _get_embedding_dimension_for_model(self, model_id: str) -> int | None: - """Get embedding dimension for a specific model by looking it up in the models API. - - Args: - model_id: The identifier of the embedding model (supports both prefixed and non-prefixed) - - Returns: - The embedding dimension for the model, or None if not found - """ - embedding_models = await self._get_embedding_models() - - for model in embedding_models: - # Check for exact match first - if model.identifier == model_id: - embedding_dimension = model.metadata.get("embedding_dimension") - if embedding_dimension is not None: - return int(embedding_dimension) - else: - logger.warning(f"Model {model_id} found but has no embedding_dimension in metadata") - return None - - # Check for prefixed/unprefixed variations - # If model_id is unprefixed, check if it matches the resource_id - if model.provider_resource_id == model_id: - embedding_dimension = model.metadata.get("embedding_dimension") - if embedding_dimension is not None: - return int(embedding_dimension) - - return None - - async def _get_default_embedding_model_and_dimension(self) -> tuple[str, int] | None: - """Get default embedding model from the models API. - - Looks for embedding models marked with default_configured=True in metadata. - Returns None if no default embedding model is found. - Raises ValueError if multiple defaults are found. - """ - embedding_models = await self._get_embedding_models() - - default_models = [] - for model in embedding_models: - if model.metadata.get("default_configured") is True: - default_models.append(model.identifier) - - if len(default_models) > 1: - raise ValueError( - f"Multiple embedding models marked as default_configured=True: {default_models}. " - "Only one embedding model can be marked as default." - ) - - if default_models: - model_id = default_models[0] - embedding_dimension = await self._get_embedding_dimension_for_model(model_id) - if embedding_dimension is None: - raise ValueError(f"Embedding model '{model_id}' has no embedding_dimension in metadata") - logger.info(f"Using default embedding model: {model_id} with dimension {embedding_dimension}") - return model_id, embedding_dimension - - logger.debug("No default embedding models found") - return None - async def openai_list_vector_stores( self, limit: int | None = 20, diff --git a/tests/integration/conftest.py b/tests/integration/conftest.py index 3137de0de..a258eb1a0 100644 --- a/tests/integration/conftest.py +++ b/tests/integration/conftest.py @@ -317,3 +317,72 @@ def pytest_ignore_collect(path: str, config: pytest.Config) -> bool: if p.is_relative_to(rp): return False return True + + +def get_vector_io_provider_ids(client): + """Get all available vector_io provider IDs.""" + providers = [p for p in client.providers.list() if p.api == "vector_io"] + return [p.provider_id for p in providers] + + +def vector_provider_wrapper(func): + """Decorator to run a test against all available vector_io providers.""" + import functools + import os + + @functools.wraps(func) + def wrapper(*args, **kwargs): + # Get the vector_io_provider_id from the test arguments + import inspect + + sig = inspect.signature(func) + bound_args = sig.bind(*args, **kwargs) + bound_args.apply_defaults() + + vector_io_provider_id = bound_args.arguments.get("vector_io_provider_id") + if not vector_io_provider_id: + pytest.skip("No vector_io_provider_id provided") + + # Get client_with_models to check available providers + client_with_models = bound_args.arguments.get("client_with_models") + if client_with_models: + available_providers = get_vector_io_provider_ids(client_with_models) + if vector_io_provider_id not in available_providers: + pytest.skip(f"Provider '{vector_io_provider_id}' not available. Available: {available_providers}") + + return func(*args, **kwargs) + + # For replay tests, only use providers that are available in ci-tests environment + if os.environ.get("LLAMA_STACK_TEST_INFERENCE_MODE") == "replay": + all_providers = ["faiss", "sqlite-vec"] + else: + # For live tests, try all providers (they'll skip if not available) + all_providers = [ + "faiss", + "sqlite-vec", + "milvus", + "chromadb", + "pgvector", + "weaviate", + "qdrant", + ] + + return pytest.mark.parametrize("vector_io_provider_id", all_providers)(wrapper) + + +@pytest.fixture +def vector_io_provider_id(request, client_with_models): + """Fixture that provides a specific vector_io provider ID, skipping if not available.""" + if hasattr(request, "param"): + requested_provider = request.param + available_providers = get_vector_io_provider_ids(client_with_models) + + if requested_provider not in available_providers: + pytest.skip(f"Provider '{requested_provider}' not available. Available: {available_providers}") + + return requested_provider + else: + provider_ids = get_vector_io_provider_ids(client_with_models) + if not provider_ids: + pytest.skip("No vector_io providers available") + return provider_ids[0] diff --git a/tests/integration/fixtures/common.py b/tests/integration/fixtures/common.py index eb6840e60..ffd49033d 100644 --- a/tests/integration/fixtures/common.py +++ b/tests/integration/fixtures/common.py @@ -21,6 +21,7 @@ from llama_stack_client import LlamaStackClient from openai import OpenAI from llama_stack import LlamaStackAsLibraryClient +from llama_stack.core.datatypes import VectorStoresConfig from llama_stack.core.stack import run_config_from_adhoc_config_spec from llama_stack.env import get_env_or_fail @@ -236,6 +237,13 @@ def instantiate_llama_stack_client(session): if "=" in config: run_config = run_config_from_adhoc_config_spec(config) + + # --stack-config bypasses template so need this to set default embedding model + if "vector_io" in config and "inference" in config: + run_config.vector_stores = VectorStoresConfig( + embedding_model_id="inline::sentence-transformers/nomic-ai/nomic-embed-text-v1.5" + ) + run_config_file = tempfile.NamedTemporaryFile(delete=False, suffix=".yaml") with open(run_config_file.name, "w") as f: yaml.dump(run_config.model_dump(mode="json"), f) diff --git a/tests/integration/vector_io/test_openai_vector_stores.py b/tests/integration/vector_io/test_openai_vector_stores.py index e21b233bc..626faf42d 100644 --- a/tests/integration/vector_io/test_openai_vector_stores.py +++ b/tests/integration/vector_io/test_openai_vector_stores.py @@ -8,14 +8,15 @@ import time from io import BytesIO import pytest -from llama_stack_client import BadRequestError, NotFoundError +from llama_stack_client import BadRequestError from openai import BadRequestError as OpenAIBadRequestError -from openai import NotFoundError as OpenAINotFoundError from llama_stack.apis.vector_io import Chunk from llama_stack.core.library_client import LlamaStackAsLibraryClient from llama_stack.log import get_logger +from ..conftest import vector_provider_wrapper + logger = get_logger(name=__name__, category="vector_io") @@ -133,8 +134,9 @@ def compat_client_with_empty_stores(compat_client): clear_files() +@vector_provider_wrapper def test_openai_create_vector_store( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test creating a vector store using OpenAI API.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -146,6 +148,7 @@ def test_openai_create_vector_store( metadata={"purpose": "testing", "environment": "integration"}, extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -159,14 +162,18 @@ def test_openai_create_vector_store( assert hasattr(vector_store, "created_at") -def test_openai_create_vector_store_default(compat_client_with_empty_stores, client_with_models): +@vector_provider_wrapper +def test_openai_create_vector_store_default(compat_client_with_empty_stores, client_with_models, vector_io_provider_id): skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) - vector_store = compat_client_with_empty_stores.vector_stores.create() + vector_store = compat_client_with_empty_stores.vector_stores.create( + extra_body={"provider_id": vector_io_provider_id} + ) assert vector_store.id +@vector_provider_wrapper def test_openai_list_vector_stores( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test listing vector stores using OpenAI API.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -179,6 +186,7 @@ def test_openai_list_vector_stores( metadata={"type": "test"}, extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) store2 = client.vector_stores.create( @@ -186,6 +194,7 @@ def test_openai_list_vector_stores( metadata={"type": "test"}, extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -206,8 +215,9 @@ def test_openai_list_vector_stores( assert len(limited_response.data) == 1 +@vector_provider_wrapper def test_openai_retrieve_vector_store( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test retrieving a specific vector store using OpenAI API.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -220,6 +230,7 @@ def test_openai_retrieve_vector_store( metadata={"purpose": "retrieval_test"}, extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -233,8 +244,9 @@ def test_openai_retrieve_vector_store( assert retrieved_store.object == "vector_store" +@vector_provider_wrapper def test_openai_update_vector_store( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test modifying a vector store using OpenAI API.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -247,6 +259,7 @@ def test_openai_update_vector_store( metadata={"version": "1.0"}, extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) time.sleep(1) @@ -264,8 +277,9 @@ def test_openai_update_vector_store( assert modified_store.last_active_at > created_store.last_active_at +@vector_provider_wrapper def test_openai_delete_vector_store( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test deleting a vector store using OpenAI API.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -278,6 +292,7 @@ def test_openai_delete_vector_store( metadata={"purpose": "deletion_test"}, extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -294,8 +309,9 @@ def test_openai_delete_vector_store( client.vector_stores.retrieve(vector_store_id=created_store.id) +@vector_provider_wrapper def test_openai_vector_store_search_empty( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test searching an empty vector store using OpenAI API.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -308,6 +324,7 @@ def test_openai_vector_store_search_empty( metadata={"purpose": "search_testing"}, extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -323,8 +340,14 @@ def test_openai_vector_store_search_empty( assert search_response.has_more is False +@vector_provider_wrapper def test_openai_vector_store_with_chunks( - compat_client_with_empty_stores, client_with_models, sample_chunks, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, + client_with_models, + sample_chunks, + embedding_model_id, + embedding_dimension, + vector_io_provider_id, ): """Test vector store functionality with actual chunks using both OpenAI and native APIs.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -338,6 +361,7 @@ def test_openai_vector_store_with_chunks( metadata={"purpose": "chunks_testing"}, extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -380,6 +404,7 @@ def test_openai_vector_store_with_chunks( ("What inspires neural networks?", "doc4", "ai"), ], ) +@vector_provider_wrapper def test_openai_vector_store_search_relevance( compat_client_with_empty_stores, client_with_models, @@ -387,6 +412,7 @@ def test_openai_vector_store_search_relevance( test_case, embedding_model_id, embedding_dimension, + vector_io_provider_id, ): """Test that OpenAI vector store search returns relevant results for different queries.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -402,6 +428,7 @@ def test_openai_vector_store_search_relevance( metadata={"purpose": "relevance_testing"}, extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -430,8 +457,14 @@ def test_openai_vector_store_search_relevance( assert top_result.score > 0 +@vector_provider_wrapper def test_openai_vector_store_search_with_ranking_options( - compat_client_with_empty_stores, client_with_models, sample_chunks, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, + client_with_models, + sample_chunks, + embedding_model_id, + embedding_dimension, + vector_io_provider_id, ): """Test OpenAI vector store search with ranking options.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -445,6 +478,7 @@ def test_openai_vector_store_search_with_ranking_options( metadata={"purpose": "ranking_testing"}, extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -483,8 +517,14 @@ def test_openai_vector_store_search_with_ranking_options( assert result.score >= threshold +@vector_provider_wrapper def test_openai_vector_store_search_with_high_score_filter( - compat_client_with_empty_stores, client_with_models, sample_chunks, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, + client_with_models, + sample_chunks, + embedding_model_id, + embedding_dimension, + vector_io_provider_id, ): """Test that searching with text very similar to a document and high score threshold returns only that document.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -498,6 +538,7 @@ def test_openai_vector_store_search_with_high_score_filter( metadata={"purpose": "high_score_filtering"}, extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -542,8 +583,14 @@ def test_openai_vector_store_search_with_high_score_filter( assert "python" in top_content.lower() or "programming" in top_content.lower() +@vector_provider_wrapper def test_openai_vector_store_search_with_max_num_results( - compat_client_with_empty_stores, client_with_models, sample_chunks, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, + client_with_models, + sample_chunks, + embedding_model_id, + embedding_dimension, + vector_io_provider_id, ): """Test OpenAI vector store search with max_num_results.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -557,6 +604,7 @@ def test_openai_vector_store_search_with_max_num_results( metadata={"purpose": "max_num_results_testing"}, extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -577,8 +625,9 @@ def test_openai_vector_store_search_with_max_num_results( assert len(search_response.data) == 2 +@vector_provider_wrapper def test_openai_vector_store_attach_file( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test OpenAI vector store attach file.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -591,6 +640,7 @@ def test_openai_vector_store_attach_file( name="test_store", extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -637,8 +687,9 @@ def test_openai_vector_store_attach_file( assert "foobazbar" in top_content.lower() +@vector_provider_wrapper def test_openai_vector_store_attach_files_on_creation( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test OpenAI vector store attach files on creation.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -668,6 +719,7 @@ def test_openai_vector_store_attach_files_on_creation( file_ids=file_ids, extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -700,8 +752,9 @@ def test_openai_vector_store_attach_files_on_creation( assert updated_vector_store.file_counts.failed == 0 +@vector_provider_wrapper def test_openai_vector_store_list_files( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test OpenAI vector store list files.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -714,6 +767,7 @@ def test_openai_vector_store_list_files( name="test_store", extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -773,8 +827,9 @@ def test_openai_vector_store_list_files( assert updated_vector_store.file_counts.in_progress == 0 +@vector_provider_wrapper def test_openai_vector_store_list_files_invalid_vector_store( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test OpenAI vector store list files with invalid vector store ID.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -783,14 +838,15 @@ def test_openai_vector_store_list_files_invalid_vector_store( if isinstance(compat_client, LlamaStackAsLibraryClient): errors = ValueError else: - errors = (NotFoundError, OpenAINotFoundError) + errors = (BadRequestError, OpenAIBadRequestError) with pytest.raises(errors): compat_client.vector_stores.files.list(vector_store_id="abc123") +@vector_provider_wrapper def test_openai_vector_store_retrieve_file_contents( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test OpenAI vector store retrieve file contents.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -803,6 +859,7 @@ def test_openai_vector_store_retrieve_file_contents( name="test_store", extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -848,8 +905,9 @@ def test_openai_vector_store_retrieve_file_contents( assert file_contents.attributes == attributes +@vector_provider_wrapper def test_openai_vector_store_delete_file( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test OpenAI vector store delete file.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -862,6 +920,7 @@ def test_openai_vector_store_delete_file( name="test_store", extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -912,8 +971,9 @@ def test_openai_vector_store_delete_file( assert updated_vector_store.file_counts.in_progress == 0 +@vector_provider_wrapper def test_openai_vector_store_delete_file_removes_from_vector_store( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test OpenAI vector store delete file removes from vector store.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -926,6 +986,7 @@ def test_openai_vector_store_delete_file_removes_from_vector_store( name="test_store", extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -962,8 +1023,9 @@ def test_openai_vector_store_delete_file_removes_from_vector_store( assert not search_response.data +@vector_provider_wrapper def test_openai_vector_store_update_file( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test OpenAI vector store update file.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -976,6 +1038,7 @@ def test_openai_vector_store_update_file( name="test_store", extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -1017,8 +1080,9 @@ def test_openai_vector_store_update_file( assert retrieved_file.attributes["foo"] == "baz" +@vector_provider_wrapper def test_create_vector_store_files_duplicate_vector_store_name( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """ This test confirms that client.vector_stores.create() creates a unique ID @@ -1044,6 +1108,7 @@ def test_create_vector_store_files_duplicate_vector_store_name( name="test_store_with_files", extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) assert vector_store.file_counts.completed == 0 @@ -1056,6 +1121,7 @@ def test_create_vector_store_files_duplicate_vector_store_name( name="test_store_with_files", extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -1086,8 +1152,15 @@ def test_create_vector_store_files_duplicate_vector_store_name( @pytest.mark.parametrize("search_mode", ["vector", "keyword", "hybrid"]) +@vector_provider_wrapper def test_openai_vector_store_search_modes( - llama_stack_client, client_with_models, sample_chunks, search_mode, embedding_model_id, embedding_dimension + llama_stack_client, + client_with_models, + sample_chunks, + search_mode, + embedding_model_id, + embedding_dimension, + vector_io_provider_id, ): skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) skip_if_provider_doesnt_support_openai_vector_stores_search(client_with_models, search_mode) @@ -1097,6 +1170,7 @@ def test_openai_vector_store_search_modes( metadata={"purpose": "search_mode_testing"}, extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -1115,8 +1189,9 @@ def test_openai_vector_store_search_modes( assert search_response is not None +@vector_provider_wrapper def test_openai_vector_store_file_batch_create_and_retrieve( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test creating and retrieving a vector store file batch.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -1128,6 +1203,7 @@ def test_openai_vector_store_file_batch_create_and_retrieve( name="batch_test_store", extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -1178,8 +1254,9 @@ def test_openai_vector_store_file_batch_create_and_retrieve( assert retrieved_batch.status == "completed" # Should be completed after processing +@vector_provider_wrapper def test_openai_vector_store_file_batch_list_files( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test listing files in a vector store file batch.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -1191,6 +1268,7 @@ def test_openai_vector_store_file_batch_list_files( name="batch_list_test_store", extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -1271,8 +1349,9 @@ def test_openai_vector_store_file_batch_list_files( assert first_page_ids.isdisjoint(second_page_ids) +@vector_provider_wrapper def test_openai_vector_store_file_batch_cancel( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test cancelling a vector store file batch.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -1284,6 +1363,7 @@ def test_openai_vector_store_file_batch_cancel( name="batch_cancel_test_store", extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -1326,8 +1406,9 @@ def test_openai_vector_store_file_batch_cancel( assert final_batch.status in ["completed", "cancelled"] +@vector_provider_wrapper def test_openai_vector_store_file_batch_retrieve_contents( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test retrieving file contents after file batch processing.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -1339,6 +1420,7 @@ def test_openai_vector_store_file_batch_retrieve_contents( name="batch_contents_test_store", extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -1399,8 +1481,9 @@ def test_openai_vector_store_file_batch_retrieve_contents( assert file_data[i][1].decode("utf-8") in content_text +@vector_provider_wrapper def test_openai_vector_store_file_batch_error_handling( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test error handling for file batch operations.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -1412,6 +1495,7 @@ def test_openai_vector_store_file_batch_error_handling( name="batch_error_test_store", extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -1443,11 +1527,11 @@ def test_openai_vector_store_file_batch_error_handling( batch_id="non_existent_batch_id", ) - # Test operations on non-existent vector store (returns NotFoundError) + # Test operations on non-existent vector store (returns BadRequestError) if isinstance(compat_client, LlamaStackAsLibraryClient): vector_store_errors = ValueError else: - vector_store_errors = (NotFoundError, OpenAINotFoundError) + vector_store_errors = (BadRequestError, OpenAIBadRequestError) with pytest.raises(vector_store_errors): # Should raise an error for non-existent vector store compat_client.vector_stores.file_batches.create( @@ -1456,8 +1540,9 @@ def test_openai_vector_store_file_batch_error_handling( ) +@vector_provider_wrapper def test_openai_vector_store_embedding_config_from_metadata( - compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension + compat_client_with_empty_stores, client_with_models, embedding_model_id, embedding_dimension, vector_io_provider_id ): """Test that embedding configuration works from metadata source.""" skip_if_provider_doesnt_support_openai_vector_stores(client_with_models) @@ -1471,6 +1556,9 @@ def test_openai_vector_store_embedding_config_from_metadata( "embedding_dimension": str(embedding_dimension), "test_source": "metadata", }, + extra_body={ + "provider_id": vector_io_provider_id, + }, ) assert vector_store_metadata is not None @@ -1489,6 +1577,7 @@ def test_openai_vector_store_embedding_config_from_metadata( extra_body={ "embedding_model": embedding_model_id, "embedding_dimension": int(embedding_dimension), # Ensure same type/value + "provider_id": vector_io_provider_id, }, ) diff --git a/tests/integration/vector_io/test_vector_io.py b/tests/integration/vector_io/test_vector_io.py index 653299338..e5ca7a0db 100644 --- a/tests/integration/vector_io/test_vector_io.py +++ b/tests/integration/vector_io/test_vector_io.py @@ -8,6 +8,8 @@ import pytest from llama_stack.apis.vector_io import Chunk +from ..conftest import vector_provider_wrapper + @pytest.fixture(scope="session") def sample_chunks(): @@ -46,12 +48,13 @@ def client_with_empty_registry(client_with_models): clear_registry() -def test_vector_db_retrieve(client_with_empty_registry, embedding_model_id, embedding_dimension): +@vector_provider_wrapper +def test_vector_db_retrieve(client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id): vector_db_name = "test_vector_db" create_response = client_with_empty_registry.vector_stores.create( name=vector_db_name, extra_body={ - "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -65,12 +68,13 @@ def test_vector_db_retrieve(client_with_empty_registry, embedding_model_id, embe assert response.id.startswith("vs_") -def test_vector_db_register(client_with_empty_registry, embedding_model_id, embedding_dimension): +@vector_provider_wrapper +def test_vector_db_register(client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id): vector_db_name = "test_vector_db" response = client_with_empty_registry.vector_stores.create( name=vector_db_name, extra_body={ - "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -100,12 +104,15 @@ def test_vector_db_register(client_with_empty_registry, embedding_model_id, embe ("How does machine learning improve over time?", "doc2"), ], ) -def test_insert_chunks(client_with_empty_registry, embedding_model_id, embedding_dimension, sample_chunks, test_case): +@vector_provider_wrapper +def test_insert_chunks( + client_with_empty_registry, embedding_model_id, embedding_dimension, sample_chunks, test_case, vector_io_provider_id +): vector_db_name = "test_vector_db" create_response = client_with_empty_registry.vector_stores.create( name=vector_db_name, extra_body={ - "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -135,7 +142,10 @@ def test_insert_chunks(client_with_empty_registry, embedding_model_id, embedding assert top_match.metadata["document_id"] == expected_doc_id, f"Query '{query}' should match {expected_doc_id}" -def test_insert_chunks_with_precomputed_embeddings(client_with_empty_registry, embedding_model_id, embedding_dimension): +@vector_provider_wrapper +def test_insert_chunks_with_precomputed_embeddings( + client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id +): vector_io_provider_params_dict = { "inline::milvus": {"score_threshold": -1.0}, "inline::qdrant": {"score_threshold": -1.0}, @@ -145,7 +155,7 @@ def test_insert_chunks_with_precomputed_embeddings(client_with_empty_registry, e register_response = client_with_empty_registry.vector_stores.create( name=vector_db_name, extra_body={ - "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -181,8 +191,9 @@ def test_insert_chunks_with_precomputed_embeddings(client_with_empty_registry, e # expect this test to fail +@vector_provider_wrapper def test_query_returns_valid_object_when_identical_to_embedding_in_vdb( - client_with_empty_registry, embedding_model_id, embedding_dimension + client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id ): vector_io_provider_params_dict = { "inline::milvus": {"score_threshold": 0.0}, @@ -194,6 +205,7 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb( name=vector_db_name, extra_body={ "embedding_model": embedding_model_id, + "provider_id": vector_io_provider_id, }, ) @@ -226,33 +238,44 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb( assert response.chunks[0].metadata["source"] == "precomputed" -def test_auto_extract_embedding_dimension(client_with_empty_registry, embedding_model_id): +@vector_provider_wrapper +def test_auto_extract_embedding_dimension( + client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id +): + # This test specifically tests embedding model override, so we keep embedding_model vs = client_with_empty_registry.vector_stores.create( - name="test_auto_extract", extra_body={"embedding_model": embedding_model_id} + name="test_auto_extract", + extra_body={"embedding_model": embedding_model_id, "provider_id": vector_io_provider_id}, ) assert vs.id is not None -def test_provider_auto_selection_single_provider(client_with_empty_registry, embedding_model_id): +@vector_provider_wrapper +def test_provider_auto_selection_single_provider( + client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id +): providers = [p for p in client_with_empty_registry.providers.list() if p.api == "vector_io"] if len(providers) != 1: pytest.skip(f"Test requires exactly one vector_io provider, found {len(providers)}") - vs = client_with_empty_registry.vector_stores.create( - name="test_auto_provider", extra_body={"embedding_model": embedding_model_id} - ) + # Test that when only one provider is available, it's auto-selected (no provider_id needed) + vs = client_with_empty_registry.vector_stores.create(name="test_auto_provider") assert vs.id is not None -def test_provider_id_override(client_with_empty_registry, embedding_model_id): +@vector_provider_wrapper +def test_provider_id_override( + client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id +): providers = [p for p in client_with_empty_registry.providers.list() if p.api == "vector_io"] if len(providers) != 1: pytest.skip(f"Test requires exactly one vector_io provider, found {len(providers)}") provider_id = providers[0].provider_id + # Test explicit provider_id specification (using default embedding model) vs = client_with_empty_registry.vector_stores.create( - name="test_provider_override", extra_body={"embedding_model": embedding_model_id, "provider_id": provider_id} + name="test_provider_override", extra_body={"provider_id": provider_id} ) assert vs.id is not None assert vs.metadata.get("provider_id") == provider_id diff --git a/tests/unit/core/test_stack_validation.py b/tests/unit/core/test_stack_validation.py index 5fc27e199..fa5348d1c 100644 --- a/tests/unit/core/test_stack_validation.py +++ b/tests/unit/core/test_stack_validation.py @@ -4,90 +4,64 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. -""" -Unit tests for Stack validation functions. -""" +"""Unit tests for Stack validation functions.""" from unittest.mock import AsyncMock import pytest -from llama_stack.apis.models import Model, ModelType -from llama_stack.core.stack import validate_default_embedding_model +from llama_stack.apis.models import ListModelsResponse, Model, ModelType +from llama_stack.core.datatypes import QualifiedModel, StackRunConfig, StorageConfig, VectorStoresConfig +from llama_stack.core.stack import validate_vector_stores_config from llama_stack.providers.datatypes import Api -class TestStackValidation: - """Test Stack validation functions.""" +class TestVectorStoresValidation: + async def test_validate_missing_model(self): + """Test validation fails when model not found.""" + run_config = StackRunConfig( + image_name="test", + providers={}, + storage=StorageConfig(backends={}, stores={}), + vector_stores=VectorStoresConfig( + default_provider_id="faiss", + default_embedding_model=QualifiedModel( + provider_id="p", + model_id="missing", + ), + ), + ) + mock_models = AsyncMock() + mock_models.list_models.return_value = ListModelsResponse(data=[]) - @pytest.mark.parametrize( - "models,should_raise", - [ - ([], False), # No models - ( - [ - Model( - identifier="emb1", - model_type=ModelType.embedding, - metadata={"default_configured": True}, - provider_id="p", - provider_resource_id="emb1", - ) - ], - False, - ), # Single default - ( - [ - Model( - identifier="emb1", - model_type=ModelType.embedding, - metadata={"default_configured": True}, - provider_id="p", - provider_resource_id="emb1", - ), - Model( - identifier="emb2", - model_type=ModelType.embedding, - metadata={"default_configured": True}, - provider_id="p", - provider_resource_id="emb2", - ), - ], - True, - ), # Multiple defaults - ( - [ - Model( - identifier="emb1", - model_type=ModelType.embedding, - metadata={"default_configured": True}, - provider_id="p", - provider_resource_id="emb1", - ), - Model( - identifier="llm1", - model_type=ModelType.llm, - metadata={"default_configured": True}, - provider_id="p", - provider_resource_id="llm1", - ), - ], - False, - ), # Ignores non-embedding - ], - ) - async def test_validate_default_embedding_model(self, models, should_raise): - """Test validation with various model configurations.""" - mock_models_impl = AsyncMock() - mock_models_impl.list_models.return_value = models - impls = {Api.models: mock_models_impl} + with pytest.raises(ValueError, match="not found"): + await validate_vector_stores_config(run_config.vector_stores, {Api.models: mock_models}) - if should_raise: - with pytest.raises(ValueError, match="Multiple embedding models marked as default_configured=True"): - await validate_default_embedding_model(impls) - else: - await validate_default_embedding_model(impls) + async def test_validate_success(self): + """Test validation passes with valid model.""" + run_config = StackRunConfig( + image_name="test", + providers={}, + storage=StorageConfig(backends={}, stores={}), + vector_stores=VectorStoresConfig( + default_provider_id="faiss", + default_embedding_model=QualifiedModel( + provider_id="p", + model_id="valid", + ), + ), + ) + mock_models = AsyncMock() + mock_models.list_models.return_value = ListModelsResponse( + data=[ + Model( + identifier="p/valid", # Must match provider_id/model_id format + model_type=ModelType.embedding, + metadata={"embedding_dimension": 768}, + provider_id="p", + provider_resource_id="valid", + ) + ] + ) - async def test_validate_default_embedding_model_no_models_api(self): - """Test validation when models API is not available.""" - await validate_default_embedding_model({}) + await validate_vector_stores_config(run_config.vector_stores, {Api.models: mock_models}) diff --git a/tests/unit/providers/vector_io/conftest.py b/tests/unit/providers/vector_io/conftest.py index 6d0367beb..c78596018 100644 --- a/tests/unit/providers/vector_io/conftest.py +++ b/tests/unit/providers/vector_io/conftest.py @@ -146,7 +146,6 @@ async def sqlite_vec_adapter(sqlite_vec_db_path, unique_kvstore_config, mock_inf config=config, inference_api=mock_inference_api, files_api=None, - models_api=None, ) collection_id = f"sqlite_test_collection_{np.random.randint(1e6)}" await adapter.initialize() @@ -185,7 +184,6 @@ async def faiss_vec_adapter(unique_kvstore_config, mock_inference_api, embedding config=config, inference_api=mock_inference_api, files_api=None, - models_api=None, ) await adapter.initialize() await adapter.register_vector_db( diff --git a/tests/unit/providers/vector_io/test_faiss.py b/tests/unit/providers/vector_io/test_faiss.py index 76969b711..fa5c5f56b 100644 --- a/tests/unit/providers/vector_io/test_faiss.py +++ b/tests/unit/providers/vector_io/test_faiss.py @@ -11,7 +11,6 @@ import numpy as np import pytest from llama_stack.apis.files import Files -from llama_stack.apis.models import Models from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_io import Chunk, QueryChunksResponse from llama_stack.providers.datatypes import HealthStatus @@ -76,12 +75,6 @@ def mock_files_api(): return mock_api -@pytest.fixture -def mock_models_api(): - mock_api = MagicMock(spec=Models) - return mock_api - - @pytest.fixture def faiss_config(): config = MagicMock(spec=FaissVectorIOConfig) @@ -117,7 +110,7 @@ async def test_faiss_query_vector_returns_infinity_when_query_and_embedding_are_ assert response.chunks[1] == sample_chunks[1] -async def test_health_success(mock_models_api): +async def test_health_success(): """Test that the health check returns OK status when faiss is working correctly.""" # Create a fresh instance of FaissVectorIOAdapter for testing config = MagicMock() @@ -126,9 +119,7 @@ async def test_health_success(mock_models_api): with patch("llama_stack.providers.inline.vector_io.faiss.faiss.faiss.IndexFlatL2") as mock_index_flat: mock_index_flat.return_value = MagicMock() - adapter = FaissVectorIOAdapter( - config=config, inference_api=inference_api, models_api=mock_models_api, files_api=files_api - ) + adapter = FaissVectorIOAdapter(config=config, inference_api=inference_api, files_api=files_api) # Calling the health method directly response = await adapter.health() @@ -142,7 +133,7 @@ async def test_health_success(mock_models_api): mock_index_flat.assert_called_once_with(128) # VECTOR_DIMENSION is 128 -async def test_health_failure(mock_models_api): +async def test_health_failure(): """Test that the health check returns ERROR status when faiss encounters an error.""" # Create a fresh instance of FaissVectorIOAdapter for testing config = MagicMock() @@ -152,9 +143,7 @@ async def test_health_failure(mock_models_api): with patch("llama_stack.providers.inline.vector_io.faiss.faiss.faiss.IndexFlatL2") as mock_index_flat: mock_index_flat.side_effect = Exception("Test error") - adapter = FaissVectorIOAdapter( - config=config, inference_api=inference_api, models_api=mock_models_api, files_api=files_api - ) + adapter = FaissVectorIOAdapter(config=config, inference_api=inference_api, files_api=files_api) # Calling the health method directly response = await adapter.health() diff --git a/tests/unit/providers/vector_io/test_vector_io_openai_vector_stores.py b/tests/unit/providers/vector_io/test_vector_io_openai_vector_stores.py index 32d59c91b..ad55b9336 100644 --- a/tests/unit/providers/vector_io/test_vector_io_openai_vector_stores.py +++ b/tests/unit/providers/vector_io/test_vector_io_openai_vector_stores.py @@ -6,13 +6,12 @@ import json import time -from unittest.mock import AsyncMock, Mock, patch +from unittest.mock import AsyncMock, patch import numpy as np import pytest from llama_stack.apis.common.errors import VectorStoreNotFoundError -from llama_stack.apis.models import Model, ModelType from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_io import ( Chunk, @@ -996,96 +995,6 @@ async def test_max_concurrent_files_per_batch(vector_io_adapter): assert batch.file_counts.in_progress == 8 -async def test_get_default_embedding_model_success(vector_io_adapter): - """Test successful default embedding model detection.""" - # Mock models API with a default model - mock_models_api = Mock() - mock_models_api.list_models = AsyncMock( - return_value=Mock( - data=[ - Model( - identifier="nomic-embed-text-v1.5", - model_type=ModelType.embedding, - provider_id="test-provider", - metadata={ - "embedding_dimension": 768, - "default_configured": True, - }, - ) - ] - ) - ) - - vector_io_adapter.models_api = mock_models_api - result = await vector_io_adapter._get_default_embedding_model_and_dimension() - - assert result is not None - model_id, dimension = result - assert model_id == "nomic-embed-text-v1.5" - assert dimension == 768 - - -async def test_get_default_embedding_model_multiple_defaults_error(vector_io_adapter): - """Test error when multiple models are marked as default.""" - mock_models_api = Mock() - mock_models_api.list_models = AsyncMock( - return_value=Mock( - data=[ - Model( - identifier="model1", - model_type=ModelType.embedding, - provider_id="test-provider", - metadata={"embedding_dimension": 768, "default_configured": True}, - ), - Model( - identifier="model2", - model_type=ModelType.embedding, - provider_id="test-provider", - metadata={"embedding_dimension": 512, "default_configured": True}, - ), - ] - ) - ) - - vector_io_adapter.models_api = mock_models_api - - with pytest.raises(ValueError, match="Multiple embedding models marked as default_configured=True"): - await vector_io_adapter._get_default_embedding_model_and_dimension() - - -async def test_openai_create_vector_store_uses_default_model(vector_io_adapter): - """Test that vector store creation uses default embedding model when none specified.""" - # Mock models API and dependencies - mock_models_api = Mock() - mock_models_api.list_models = AsyncMock( - return_value=Mock( - data=[ - Model( - identifier="default-model", - model_type=ModelType.embedding, - provider_id="test-provider", - metadata={"embedding_dimension": 512, "default_configured": True}, - ) - ] - ) - ) - - vector_io_adapter.models_api = mock_models_api - vector_io_adapter.register_vector_db = AsyncMock() - vector_io_adapter.__provider_id__ = "test-provider" - - # Create vector store without specifying embedding model - params = OpenAICreateVectorStoreRequestWithExtraBody(name="test-store") - result = await vector_io_adapter.openai_create_vector_store(params) - - # Verify the vector store was created with default model - assert result.name == "test-store" - vector_io_adapter.register_vector_db.assert_called_once() - call_args = vector_io_adapter.register_vector_db.call_args[0][0] - assert call_args.embedding_model == "default-model" - assert call_args.embedding_dimension == 512 - - async def test_embedding_config_from_metadata(vector_io_adapter): """Test that embedding configuration is correctly extracted from metadata.""" @@ -1253,5 +1162,5 @@ async def test_embedding_config_required_model_missing(vector_io_adapter): # Test with no embedding model provided params = OpenAICreateVectorStoreRequestWithExtraBody(name="test_store", metadata={}) - with pytest.raises(ValueError, match="embedding_model is required in extra_body when creating a vector store"): + with pytest.raises(ValueError, match="embedding_model is required"): await vector_io_adapter.openai_create_vector_store(params) From 483d53cc37be18460536a27cb2dfdee3b56099bc Mon Sep 17 00:00:00 2001 From: Ashwin Bharambe Date: Mon, 20 Oct 2025 14:32:20 -0700 Subject: [PATCH 22/41] feat(stainless): add stainless source of truth config (#3860) Source of truth for Stainless should be in this repository. This was long due. --- client-sdks/stainless/README.md | 8 + client-sdks/stainless/openapi.stainless.yml | 608 + client-sdks/stainless/openapi.yml | 13653 ++++++++++++++++ .../run_openapi_generator.sh | 2 + 4 files changed, 14271 insertions(+) create mode 100644 client-sdks/stainless/README.md create mode 100644 client-sdks/stainless/openapi.stainless.yml create mode 100644 client-sdks/stainless/openapi.yml diff --git a/client-sdks/stainless/README.md b/client-sdks/stainless/README.md new file mode 100644 index 000000000..5d391f14c --- /dev/null +++ b/client-sdks/stainless/README.md @@ -0,0 +1,8 @@ +These are the source-of-truth configuration files used to generate the Stainless client SDKs via Stainless. + +- `openapi.yml`: this is the OpenAPI specification for the Llama Stack API. +- `openapi.stainless.yml`: this is the Stainless _configuration_ which instructs Stainless how to generate the client SDKs. + +A small side note: notice the `.yml` suffixes since Stainless uses that suffix typically for its configuration files. + +These files go hand-in-hand. As of now, only the `openapi.yml` file is automatically generated using the `run_openapi_generator.sh` script. \ No newline at end of file diff --git a/client-sdks/stainless/openapi.stainless.yml b/client-sdks/stainless/openapi.stainless.yml new file mode 100644 index 000000000..0a5dfc044 --- /dev/null +++ b/client-sdks/stainless/openapi.stainless.yml @@ -0,0 +1,608 @@ +# yaml-language-server: $schema=https://app.stainlessapi.com/config-internal.schema.json + +organization: + # Name of your organization or company, used to determine the name of the client + # and headings. + name: llama-stack-client + docs: https://llama-stack.readthedocs.io/en/latest/ + contact: llamastack@meta.com +security: + - {} + - BearerAuth: [] +security_schemes: + BearerAuth: + type: http + scheme: bearer +# `targets` define the output targets and their customization options, such as +# whether to emit the Node SDK and what it's package name should be. +targets: + node: + package_name: llama-stack-client + production_repo: llamastack/llama-stack-client-typescript + publish: + npm: false + python: + package_name: llama_stack_client + production_repo: llamastack/llama-stack-client-python + options: + use_uv: true + publish: + pypi: true + project_name: llama_stack_client + kotlin: + reverse_domain: com.llama_stack_client.api + production_repo: null + publish: + maven: false + go: + package_name: llama-stack-client + production_repo: llamastack/llama-stack-client-go + options: + enable_v2: true + back_compat_use_shared_package: false + +# `client_settings` define settings for the API client, such as extra constructor +# arguments (used for authentication), retry behavior, idempotency, etc. +client_settings: + default_env_prefix: LLAMA_STACK_CLIENT + opts: + api_key: + type: string + read_env: LLAMA_STACK_CLIENT_API_KEY + auth: { security_scheme: BearerAuth } + nullable: true + +# `environments` are a map of the name of the environment (e.g. "sandbox", +# "production") to the corresponding url to use. +environments: + production: http://any-hosted-llama-stack.com + +# `pagination` defines [pagination schemes] which provides a template to match +# endpoints and generate next-page and auto-pagination helpers in the SDKs. +pagination: + - name: datasets_iterrows + type: offset + request: + dataset_id: + type: string + start_index: + type: integer + x-stainless-pagination-property: + purpose: offset_count_param + limit: + type: integer + response: + data: + type: array + items: + type: object + next_index: + type: integer + x-stainless-pagination-property: + purpose: offset_count_start_field + - name: openai_cursor_page + type: cursor + request: + limit: + type: integer + after: + type: string + x-stainless-pagination-property: + purpose: next_cursor_param + response: + data: + type: array + items: {} + has_more: + type: boolean + last_id: + type: string + x-stainless-pagination-property: + purpose: next_cursor_field +# `resources` define the structure and organziation for your API, such as how +# methods and models are grouped together and accessed. See the [configuration +# guide] for more information. +# +# [configuration guide]: +# https://app.stainlessapi.com/docs/guides/configure#resources +resources: + $shared: + models: + agent_config: AgentConfig + interleaved_content_item: InterleavedContentItem + interleaved_content: InterleavedContent + param_type: ParamType + safety_violation: SafetyViolation + sampling_params: SamplingParams + scoring_result: ScoringResult + message: Message + user_message: UserMessage + completion_message: CompletionMessage + tool_response_message: ToolResponseMessage + system_message: SystemMessage + tool_call: ToolCall + query_result: RAGQueryResult + document: RAGDocument + query_config: RAGQueryConfig + response_format: ResponseFormat + toolgroups: + models: + tool_group: ToolGroup + list_tool_groups_response: ListToolGroupsResponse + methods: + register: post /v1/toolgroups + get: get /v1/toolgroups/{toolgroup_id} + list: get /v1/toolgroups + unregister: delete /v1/toolgroups/{toolgroup_id} + tools: + methods: + get: get /v1/tools/{tool_name} + list: + endpoint: get /v1/tools + paginated: false + + tool_runtime: + models: + tool_def: ToolDef + tool_invocation_result: ToolInvocationResult + methods: + list_tools: + endpoint: get /v1/tool-runtime/list-tools + paginated: false + invoke_tool: post /v1/tool-runtime/invoke + subresources: + rag_tool: + methods: + insert: post /v1/tool-runtime/rag-tool/insert + query: post /v1/tool-runtime/rag-tool/query + + responses: + models: + response_object_stream: OpenAIResponseObjectStream + response_object: OpenAIResponseObject + methods: + create: + type: http + endpoint: post /v1/responses + streaming: + stream_event_model: responses.response_object_stream + param_discriminator: stream + retrieve: get /v1/responses/{response_id} + list: + type: http + endpoint: get /v1/responses + delete: + type: http + endpoint: delete /v1/responses/{response_id} + subresources: + input_items: + methods: + list: + type: http + endpoint: get /v1/responses/{response_id}/input_items + + conversations: + models: + conversation_object: Conversation + methods: + create: + type: http + endpoint: post /v1/conversations + retrieve: get /v1/conversations/{conversation_id} + update: + type: http + endpoint: post /v1/conversations/{conversation_id} + delete: + type: http + endpoint: delete /v1/conversations/{conversation_id} + subresources: + items: + methods: + get: + type: http + endpoint: get /v1/conversations/{conversation_id}/items/{item_id} + list: + type: http + endpoint: get /v1/conversations/{conversation_id}/items + create: + type: http + endpoint: post /v1/conversations/{conversation_id}/items + + datasets: + models: + list_datasets_response: ListDatasetsResponse + methods: + register: post /v1beta/datasets + retrieve: get /v1beta/datasets/{dataset_id} + list: + endpoint: get /v1beta/datasets + paginated: false + unregister: delete /v1beta/datasets/{dataset_id} + iterrows: get /v1beta/datasetio/iterrows/{dataset_id} + appendrows: post /v1beta/datasetio/append-rows/{dataset_id} + + inspect: + models: + healthInfo: HealthInfo + providerInfo: ProviderInfo + routeInfo: RouteInfo + versionInfo: VersionInfo + methods: + health: get /v1/health + version: get /v1/version + + embeddings: + models: + create_embeddings_response: OpenAIEmbeddingsResponse + methods: + create: post /v1/embeddings + + chat: + models: + chat_completion_chunk: OpenAIChatCompletionChunk + subresources: + completions: + methods: + create: + type: http + endpoint: post /v1/chat/completions + streaming: + stream_event_model: chat.chat_completion_chunk + param_discriminator: stream + list: + type: http + endpoint: get /v1/chat/completions + retrieve: + type: http + endpoint: get /v1/chat/completions/{completion_id} + completions: + methods: + create: + type: http + endpoint: post /v1/completions + streaming: + param_discriminator: stream + + vector_io: + models: + queryChunksResponse: QueryChunksResponse + methods: + insert: post /v1/vector-io/insert + query: post /v1/vector-io/query + + vector_stores: + models: + vector_store: VectorStoreObject + list_vector_stores_response: VectorStoreListResponse + vector_store_delete_response: VectorStoreDeleteResponse + vector_store_search_response: VectorStoreSearchResponsePage + methods: + create: post /v1/vector_stores + list: + endpoint: get /v1/vector_stores + retrieve: get /v1/vector_stores/{vector_store_id} + update: post /v1/vector_stores/{vector_store_id} + delete: delete /v1/vector_stores/{vector_store_id} + search: post /v1/vector_stores/{vector_store_id}/search + subresources: + files: + models: + vector_store_file: VectorStoreFileObject + methods: + list: get /v1/vector_stores/{vector_store_id}/files + retrieve: get /v1/vector_stores/{vector_store_id}/files/{file_id} + update: post /v1/vector_stores/{vector_store_id}/files/{file_id} + delete: delete /v1/vector_stores/{vector_store_id}/files/{file_id} + create: post /v1/vector_stores/{vector_store_id}/files + content: get /v1/vector_stores/{vector_store_id}/files/{file_id}/content + file_batches: + models: + vector_store_file_batches: VectorStoreFileBatchObject + list_vector_store_files_in_batch_response: VectorStoreFilesListInBatchResponse + methods: + create: post /v1/vector_stores/{vector_store_id}/file_batches + retrieve: get /v1/vector_stores/{vector_store_id}/file_batches/{batch_id} + list_files: get /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/files + cancel: post /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel + + models: + models: + model: Model + list_models_response: ListModelsResponse + methods: + retrieve: get /v1/models/{model_id} + list: + endpoint: get /v1/models + paginated: false + register: post /v1/models + unregister: delete /v1/models/{model_id} + subresources: + openai: + methods: + list: + endpoint: get /v1/models + paginated: false + + providers: + models: + list_providers_response: ListProvidersResponse + methods: + list: + endpoint: get /v1/providers + paginated: false + retrieve: get /v1/providers/{provider_id} + + routes: + models: + list_routes_response: ListRoutesResponse + methods: + list: + endpoint: get /v1/inspect/routes + paginated: false + + + moderations: + models: + create_response: ModerationObject + methods: + create: post /v1/moderations + + + safety: + models: + run_shield_response: RunShieldResponse + methods: + run_shield: post /v1/safety/run-shield + + + shields: + models: + shield: Shield + list_shields_response: ListShieldsResponse + methods: + retrieve: get /v1/shields/{identifier} + list: + endpoint: get /v1/shields + paginated: false + register: post /v1/shields + delete: delete /v1/shields/{identifier} + + synthetic_data_generation: + models: + syntheticDataGenerationResponse: SyntheticDataGenerationResponse + methods: + generate: post /v1/synthetic-data-generation/generate + + telemetry: + models: + span_with_status: SpanWithStatus + trace: Trace + query_spans_response: QuerySpansResponse + event: Event + query_condition: QueryCondition + methods: + query_traces: + endpoint: post /v1alpha/telemetry/traces + skip_test_reason: 'unsupported query params in java / kotlin' + get_span_tree: post /v1alpha/telemetry/spans/{span_id}/tree + query_spans: + endpoint: post /v1alpha/telemetry/spans + skip_test_reason: 'unsupported query params in java / kotlin' + query_metrics: + endpoint: post /v1alpha/telemetry/metrics/{metric_name} + skip_test_reason: 'unsupported query params in java / kotlin' + # log_event: post /v1alpha/telemetry/events + save_spans_to_dataset: post /v1alpha/telemetry/spans/export + get_span: get /v1alpha/telemetry/traces/{trace_id}/spans/{span_id} + get_trace: get /v1alpha/telemetry/traces/{trace_id} + + scoring: + methods: + score: post /v1/scoring/score + score_batch: post /v1/scoring/score-batch + scoring_functions: + methods: + retrieve: get /v1/scoring-functions/{scoring_fn_id} + list: + endpoint: get /v1/scoring-functions + paginated: false + register: post /v1/scoring-functions + models: + scoring_fn: ScoringFn + scoring_fn_params: ScoringFnParams + list_scoring_functions_response: ListScoringFunctionsResponse + + benchmarks: + methods: + retrieve: get /v1alpha/eval/benchmarks/{benchmark_id} + list: + endpoint: get /v1alpha/eval/benchmarks + paginated: false + register: post /v1alpha/eval/benchmarks + models: + benchmark: Benchmark + list_benchmarks_response: ListBenchmarksResponse + + files: + methods: + create: post /v1/files + list: get /v1/files + retrieve: get /v1/files/{file_id} + delete: delete /v1/files/{file_id} + content: get /v1/files/{file_id}/content + models: + file: OpenAIFileObject + list_files_response: ListOpenAIFileResponse + delete_file_response: OpenAIFileDeleteResponse + + alpha: + subresources: + inference: + methods: + rerank: post /v1alpha/inference/rerank + + post_training: + models: + algorithm_config: AlgorithmConfig + post_training_job: PostTrainingJob + list_post_training_jobs_response: ListPostTrainingJobsResponse + methods: + preference_optimize: post /v1alpha/post-training/preference-optimize + supervised_fine_tune: post /v1alpha/post-training/supervised-fine-tune + subresources: + job: + methods: + artifacts: get /v1alpha/post-training/job/artifacts + cancel: post /v1alpha/post-training/job/cancel + status: get /v1alpha/post-training/job/status + list: + endpoint: get /v1alpha/post-training/jobs + paginated: false + + eval: + methods: + evaluate_rows: post /v1alpha/eval/benchmarks/{benchmark_id}/evaluations + run_eval: post /v1alpha/eval/benchmarks/{benchmark_id}/jobs + evaluate_rows_alpha: post /v1alpha/eval/benchmarks/{benchmark_id}/evaluations + run_eval_alpha: post /v1alpha/eval/benchmarks/{benchmark_id}/jobs + + subresources: + jobs: + methods: + cancel: delete /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id} + status: get /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id} + retrieve: get /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}/result + models: + evaluate_response: EvaluateResponse + benchmark_config: BenchmarkConfig + job: Job + + agents: + methods: + create: post /v1alpha/agents + list: get /v1alpha/agents + retrieve: get /v1alpha/agents/{agent_id} + delete: delete /v1alpha/agents/{agent_id} + models: + inference_step: InferenceStep + tool_execution_step: ToolExecutionStep + tool_response: ToolResponse + shield_call_step: ShieldCallStep + memory_retrieval_step: MemoryRetrievalStep + subresources: + session: + models: + session: Session + methods: + list: get /v1alpha/agents/{agent_id}/sessions + create: post /v1alpha/agents/{agent_id}/session + delete: delete /v1alpha/agents/{agent_id}/session/{session_id} + retrieve: get /v1alpha/agents/{agent_id}/session/{session_id} + steps: + methods: + retrieve: get /v1alpha/agents/{agent_id}/session/{session_id}/turn/{turn_id}/step/{step_id} + turn: + models: + turn: Turn + turn_response_event: AgentTurnResponseEvent + agent_turn_response_stream_chunk: AgentTurnResponseStreamChunk + methods: + create: + type: http + endpoint: post /v1alpha/agents/{agent_id}/session/{session_id}/turn + streaming: + stream_event_model: alpha.agents.turn.agent_turn_response_stream_chunk + param_discriminator: stream + retrieve: get /v1alpha/agents/{agent_id}/session/{session_id}/turn/{turn_id} + resume: + type: http + endpoint: post /v1alpha/agents/{agent_id}/session/{session_id}/turn/{turn_id}/resume + streaming: + stream_event_model: alpha.agents.turn.agent_turn_response_stream_chunk + param_discriminator: stream + + +settings: + license: MIT + unwrap_response_fields: [ data ] + +openapi: + transformations: + - command: renameValue + reason: pydantic reserved name + args: + filter: + only: + - '$.components.schemas.InferenceStep.properties.model_response' + rename: + python: + property_name: 'inference_model_response' + + # - command: renameValue + # reason: pydantic reserved name + # args: + # filter: + # only: + # - '$.components.schemas.Model.properties.model_type' + # rename: + # python: + # property_name: 'type' + - command: mergeObject + reason: Better return_type using enum + args: + target: + - '$.components.schemas' + object: + ReturnType: + additionalProperties: false + properties: + type: + enum: + - string + - number + - boolean + - array + - object + - json + - union + - chat_completion_input + - completion_input + - agent_turn_input + required: + - type + type: object + - command: replaceProperties + reason: Replace return type properties with better model (see above) + args: + filter: + only: + - '$.components.schemas.ScoringFn.properties.return_type' + - '$.components.schemas.RegisterScoringFunctionRequest.properties.return_type' + value: + $ref: '#/components/schemas/ReturnType' + - command: oneOfToAnyOf + reason: Prism (mock server) doesn't like one of our requests as it technically matches multiple variants + - reason: For better names + command: extractToRefs + args: + ref: + target: '$.components.schemas.ToolCallDelta.properties.tool_call' + name: '#/components/schemas/ToolCallOrString' + +# `readme` is used to configure the code snippets that will be rendered in the +# README.md of various SDKs. In particular, you can change the `headline` +# snippet's endpoint and the arguments to call it with. +readme: + example_requests: + default: + type: request + endpoint: post /v1/chat/completions + params: &ref_0 {} + headline: + type: request + endpoint: post /v1/models + params: *ref_0 + pagination: + type: request + endpoint: post /v1/chat/completions + params: {} diff --git a/client-sdks/stainless/openapi.yml b/client-sdks/stainless/openapi.yml new file mode 100644 index 000000000..eff01931f --- /dev/null +++ b/client-sdks/stainless/openapi.yml @@ -0,0 +1,13653 @@ +openapi: 3.1.0 +info: + title: >- + Llama Stack Specification - Stable & Experimental APIs + version: v1 + description: >- + This is the specification of the Llama Stack that provides + a set of endpoints and their corresponding interfaces that are + tailored to + best leverage Llama Models. + + **🔗 COMBINED**: This specification includes both stable production-ready APIs + and experimental pre-release APIs. Use stable APIs for production deployments + and experimental APIs for testing new features. +servers: + - url: http://any-hosted-llama-stack.com +paths: + /v1/chat/completions: + get: + responses: + '200': + description: A ListOpenAIChatCompletionResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/ListOpenAIChatCompletionResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Inference + summary: List chat completions. + description: List chat completions. + parameters: + - name: after + in: query + description: >- + The ID of the last chat completion to return. + required: false + schema: + type: string + - name: limit + in: query + description: >- + The maximum number of chat completions to return. + required: false + schema: + type: integer + - name: model + in: query + description: The model to filter by. + required: false + schema: + type: string + - name: order + in: query + description: >- + The order to sort the chat completions by: "asc" or "desc". Defaults to + "desc". + required: false + schema: + $ref: '#/components/schemas/Order' + deprecated: false + post: + responses: + '200': + description: An OpenAIChatCompletion. + content: + application/json: + schema: + oneOf: + - $ref: '#/components/schemas/OpenAIChatCompletion' + - $ref: '#/components/schemas/OpenAIChatCompletionChunk' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Inference + summary: Create chat completions. + description: >- + Create chat completions. + + Generate an OpenAI-compatible chat completion for the given messages using + the specified model. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/OpenAIChatCompletionRequestWithExtraBody' + required: true + deprecated: false + /v1/chat/completions/{completion_id}: + get: + responses: + '200': + description: A OpenAICompletionWithInputMessages. + content: + application/json: + schema: + $ref: '#/components/schemas/OpenAICompletionWithInputMessages' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Inference + summary: Get chat completion. + description: >- + Get chat completion. + + Describe a chat completion by its ID. + parameters: + - name: completion_id + in: path + description: ID of the chat completion. + required: true + schema: + type: string + deprecated: false + /v1/completions: + post: + responses: + '200': + description: An OpenAICompletion. + content: + application/json: + schema: + $ref: '#/components/schemas/OpenAICompletion' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Inference + summary: Create completion. + description: >- + Create completion. + + Generate an OpenAI-compatible completion for the given prompt using the specified + model. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/OpenAICompletionRequestWithExtraBody' + required: true + deprecated: false + /v1/conversations: + post: + responses: + '200': + description: The created conversation object. + content: + application/json: + schema: + $ref: '#/components/schemas/Conversation' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Conversations + summary: Create a conversation. + description: >- + Create a conversation. + + Create a conversation. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/CreateConversationRequest' + required: true + deprecated: false + /v1/conversations/{conversation_id}: + get: + responses: + '200': + description: The conversation object. + content: + application/json: + schema: + $ref: '#/components/schemas/Conversation' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Conversations + summary: Retrieve a conversation. + description: >- + Retrieve a conversation. + + Get a conversation with the given ID. + parameters: + - name: conversation_id + in: path + description: The conversation identifier. + required: true + schema: + type: string + deprecated: false + post: + responses: + '200': + description: The updated conversation object. + content: + application/json: + schema: + $ref: '#/components/schemas/Conversation' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Conversations + summary: Update a conversation. + description: >- + Update a conversation. + + Update a conversation's metadata with the given ID. + parameters: + - name: conversation_id + in: path + description: The conversation identifier. + required: true + schema: + type: string + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/UpdateConversationRequest' + required: true + deprecated: false + delete: + responses: + '200': + description: The deleted conversation resource. + content: + application/json: + schema: + $ref: '#/components/schemas/ConversationDeletedResource' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Conversations + summary: Delete a conversation. + description: >- + Delete a conversation. + + Delete a conversation with the given ID. + parameters: + - name: conversation_id + in: path + description: The conversation identifier. + required: true + schema: + type: string + deprecated: false + /v1/conversations/{conversation_id}/items: + get: + responses: + '200': + description: List of conversation items. + content: + application/json: + schema: + $ref: '#/components/schemas/ConversationItemList' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Conversations + summary: List items. + description: >- + List items. + + List items in the conversation. + parameters: + - name: conversation_id + in: path + description: The conversation identifier. + required: true + schema: + type: string + - name: after + in: query + description: >- + An item ID to list items after, used in pagination. + required: true + schema: + oneOf: + - type: string + - type: object + title: NotGiven + description: >- + A sentinel singleton class used to distinguish omitted keyword arguments + from those passed in with the value None (which may have different + behavior). + + For example: + + + ```py + + def get(timeout: Union[int, NotGiven, None] = NotGiven()) -> Response: + ... + + + + get(timeout=1) # 1s timeout + + get(timeout=None) # No timeout + + get() # Default timeout behavior, which may not be statically known + at the method definition. + + ``` + - name: include + in: query + description: >- + Specify additional output data to include in the response. + required: true + schema: + oneOf: + - type: array + items: + type: string + enum: + - code_interpreter_call.outputs + - computer_call_output.output.image_url + - file_search_call.results + - message.input_image.image_url + - message.output_text.logprobs + - reasoning.encrypted_content + - type: object + title: NotGiven + description: >- + A sentinel singleton class used to distinguish omitted keyword arguments + from those passed in with the value None (which may have different + behavior). + + For example: + + + ```py + + def get(timeout: Union[int, NotGiven, None] = NotGiven()) -> Response: + ... + + + + get(timeout=1) # 1s timeout + + get(timeout=None) # No timeout + + get() # Default timeout behavior, which may not be statically known + at the method definition. + + ``` + - name: limit + in: query + description: >- + A limit on the number of objects to be returned (1-100, default 20). + required: true + schema: + oneOf: + - type: integer + - type: object + title: NotGiven + description: >- + A sentinel singleton class used to distinguish omitted keyword arguments + from those passed in with the value None (which may have different + behavior). + + For example: + + + ```py + + def get(timeout: Union[int, NotGiven, None] = NotGiven()) -> Response: + ... + + + + get(timeout=1) # 1s timeout + + get(timeout=None) # No timeout + + get() # Default timeout behavior, which may not be statically known + at the method definition. + + ``` + - name: order + in: query + description: >- + The order to return items in (asc or desc, default desc). + required: true + schema: + oneOf: + - type: string + enum: + - asc + - desc + - type: object + title: NotGiven + description: >- + A sentinel singleton class used to distinguish omitted keyword arguments + from those passed in with the value None (which may have different + behavior). + + For example: + + + ```py + + def get(timeout: Union[int, NotGiven, None] = NotGiven()) -> Response: + ... + + + + get(timeout=1) # 1s timeout + + get(timeout=None) # No timeout + + get() # Default timeout behavior, which may not be statically known + at the method definition. + + ``` + deprecated: false + post: + responses: + '200': + description: List of created items. + content: + application/json: + schema: + $ref: '#/components/schemas/ConversationItemList' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Conversations + summary: Create items. + description: >- + Create items. + + Create items in the conversation. + parameters: + - name: conversation_id + in: path + description: The conversation identifier. + required: true + schema: + type: string + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/AddItemsRequest' + required: true + deprecated: false + /v1/conversations/{conversation_id}/items/{item_id}: + get: + responses: + '200': + description: The conversation item. + content: + application/json: + schema: + $ref: '#/components/schemas/ConversationItem' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Conversations + summary: Retrieve an item. + description: >- + Retrieve an item. + + Retrieve a conversation item. + parameters: + - name: conversation_id + in: path + description: The conversation identifier. + required: true + schema: + type: string + - name: item_id + in: path + description: The item identifier. + required: true + schema: + type: string + deprecated: false + delete: + responses: + '200': + description: The deleted item resource. + content: + application/json: + schema: + $ref: '#/components/schemas/ConversationItemDeletedResource' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Conversations + summary: Delete an item. + description: >- + Delete an item. + + Delete a conversation item. + parameters: + - name: conversation_id + in: path + description: The conversation identifier. + required: true + schema: + type: string + - name: item_id + in: path + description: The item identifier. + required: true + schema: + type: string + deprecated: false + /v1/embeddings: + post: + responses: + '200': + description: >- + An OpenAIEmbeddingsResponse containing the embeddings. + content: + application/json: + schema: + $ref: '#/components/schemas/OpenAIEmbeddingsResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Inference + summary: Create embeddings. + description: >- + Create embeddings. + + Generate OpenAI-compatible embeddings for the given input using the specified + model. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/OpenAIEmbeddingsRequestWithExtraBody' + required: true + deprecated: false + /v1/files: + get: + responses: + '200': + description: >- + An ListOpenAIFileResponse containing the list of files. + content: + application/json: + schema: + $ref: '#/components/schemas/ListOpenAIFileResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Files + summary: List files. + description: >- + List files. + + Returns a list of files that belong to the user's organization. + parameters: + - name: after + in: query + description: >- + A cursor for use in pagination. `after` is an object ID that defines your + place in the list. For instance, if you make a list request and receive + 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo + in order to fetch the next page of the list. + required: false + schema: + type: string + - name: limit + in: query + description: >- + A limit on the number of objects to be returned. Limit can range between + 1 and 10,000, and the default is 10,000. + required: false + schema: + type: integer + - name: order + in: query + description: >- + Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + required: false + schema: + $ref: '#/components/schemas/Order' + - name: purpose + in: query + description: >- + Only return files with the given purpose. + required: false + schema: + $ref: '#/components/schemas/OpenAIFilePurpose' + deprecated: false + post: + responses: + '200': + description: >- + An OpenAIFileObject representing the uploaded file. + content: + application/json: + schema: + $ref: '#/components/schemas/OpenAIFileObject' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Files + summary: Upload file. + description: >- + Upload file. + + Upload a file that can be used across various endpoints. + + + The file upload should be a multipart form request with: + + - file: The File object (not file name) to be uploaded. + + - purpose: The intended purpose of the uploaded file. + + - expires_after: Optional form values describing expiration for the file. + parameters: [] + requestBody: + content: + multipart/form-data: + schema: + type: object + properties: + file: + type: string + format: binary + purpose: + $ref: '#/components/schemas/OpenAIFilePurpose' + expires_after: + $ref: '#/components/schemas/ExpiresAfter' + required: + - file + - purpose + required: true + deprecated: false + /v1/files/{file_id}: + get: + responses: + '200': + description: >- + An OpenAIFileObject containing file information. + content: + application/json: + schema: + $ref: '#/components/schemas/OpenAIFileObject' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Files + summary: Retrieve file. + description: >- + Retrieve file. + + Returns information about a specific file. + parameters: + - name: file_id + in: path + description: >- + The ID of the file to use for this request. + required: true + schema: + type: string + deprecated: false + delete: + responses: + '200': + description: >- + An OpenAIFileDeleteResponse indicating successful deletion. + content: + application/json: + schema: + $ref: '#/components/schemas/OpenAIFileDeleteResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Files + summary: Delete file. + description: Delete file. + parameters: + - name: file_id + in: path + description: >- + The ID of the file to use for this request. + required: true + schema: + type: string + deprecated: false + /v1/files/{file_id}/content: + get: + responses: + '200': + description: >- + The raw file content as a binary response. + content: + application/json: + schema: + $ref: '#/components/schemas/Response' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Files + summary: Retrieve file content. + description: >- + Retrieve file content. + + Returns the contents of the specified file. + parameters: + - name: file_id + in: path + description: >- + The ID of the file to use for this request. + required: true + schema: + type: string + deprecated: false + /v1/health: + get: + responses: + '200': + description: >- + Health information indicating if the service is operational. + content: + application/json: + schema: + $ref: '#/components/schemas/HealthInfo' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Inspect + summary: Get health status. + description: >- + Get health status. + + Get the current health status of the service. + parameters: [] + deprecated: false + /v1/inspect/routes: + get: + responses: + '200': + description: >- + Response containing information about all available routes. + content: + application/json: + schema: + $ref: '#/components/schemas/ListRoutesResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Inspect + summary: List routes. + description: >- + List routes. + + List all available API routes with their methods and implementing providers. + parameters: [] + deprecated: false + /v1/models: + get: + responses: + '200': + description: A ListModelsResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/ListModelsResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Models + summary: List all models. + description: List all models. + parameters: [] + deprecated: false + post: + responses: + '200': + description: A Model. + content: + application/json: + schema: + $ref: '#/components/schemas/Model' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Models + summary: Register model. + description: >- + Register model. + + Register a model. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/RegisterModelRequest' + required: true + deprecated: false + /v1/models/{model_id}: + get: + responses: + '200': + description: A Model. + content: + application/json: + schema: + $ref: '#/components/schemas/Model' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Models + summary: Get model. + description: >- + Get model. + + Get a model by its identifier. + parameters: + - name: model_id + in: path + description: The identifier of the model to get. + required: true + schema: + type: string + deprecated: false + delete: + responses: + '200': + description: OK + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Models + summary: Unregister model. + description: >- + Unregister model. + + Unregister a model. + parameters: + - name: model_id + in: path + description: >- + The identifier of the model to unregister. + required: true + schema: + type: string + deprecated: false + /v1/moderations: + post: + responses: + '200': + description: A moderation object. + content: + application/json: + schema: + $ref: '#/components/schemas/ModerationObject' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Safety + summary: Create moderation. + description: >- + Create moderation. + + Classifies if text and/or image inputs are potentially harmful. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/RunModerationRequest' + required: true + deprecated: false + /v1/prompts: + get: + responses: + '200': + description: >- + A ListPromptsResponse containing all prompts. + content: + application/json: + schema: + $ref: '#/components/schemas/ListPromptsResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Prompts + summary: List all prompts. + description: List all prompts. + parameters: [] + deprecated: false + post: + responses: + '200': + description: The created Prompt resource. + content: + application/json: + schema: + $ref: '#/components/schemas/Prompt' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Prompts + summary: Create prompt. + description: >- + Create prompt. + + Create a new prompt. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/CreatePromptRequest' + required: true + deprecated: false + /v1/prompts/{prompt_id}: + get: + responses: + '200': + description: A Prompt resource. + content: + application/json: + schema: + $ref: '#/components/schemas/Prompt' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Prompts + summary: Get prompt. + description: >- + Get prompt. + + Get a prompt by its identifier and optional version. + parameters: + - name: prompt_id + in: path + description: The identifier of the prompt to get. + required: true + schema: + type: string + - name: version + in: query + description: >- + The version of the prompt to get (defaults to latest). + required: false + schema: + type: integer + deprecated: false + post: + responses: + '200': + description: >- + The updated Prompt resource with incremented version. + content: + application/json: + schema: + $ref: '#/components/schemas/Prompt' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Prompts + summary: Update prompt. + description: >- + Update prompt. + + Update an existing prompt (increments version). + parameters: + - name: prompt_id + in: path + description: The identifier of the prompt to update. + required: true + schema: + type: string + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/UpdatePromptRequest' + required: true + deprecated: false + delete: + responses: + '200': + description: OK + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Prompts + summary: Delete prompt. + description: >- + Delete prompt. + + Delete a prompt. + parameters: + - name: prompt_id + in: path + description: The identifier of the prompt to delete. + required: true + schema: + type: string + deprecated: false + /v1/prompts/{prompt_id}/set-default-version: + post: + responses: + '200': + description: >- + The prompt with the specified version now set as default. + content: + application/json: + schema: + $ref: '#/components/schemas/Prompt' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Prompts + summary: Set prompt version. + description: >- + Set prompt version. + + Set which version of a prompt should be the default in get_prompt (latest). + parameters: + - name: prompt_id + in: path + description: The identifier of the prompt. + required: true + schema: + type: string + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/SetDefaultVersionRequest' + required: true + deprecated: false + /v1/prompts/{prompt_id}/versions: + get: + responses: + '200': + description: >- + A ListPromptsResponse containing all versions of the prompt. + content: + application/json: + schema: + $ref: '#/components/schemas/ListPromptsResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Prompts + summary: List prompt versions. + description: >- + List prompt versions. + + List all versions of a specific prompt. + parameters: + - name: prompt_id + in: path + description: >- + The identifier of the prompt to list versions for. + required: true + schema: + type: string + deprecated: false + /v1/providers: + get: + responses: + '200': + description: >- + A ListProvidersResponse containing information about all providers. + content: + application/json: + schema: + $ref: '#/components/schemas/ListProvidersResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Providers + summary: List providers. + description: >- + List providers. + + List all available providers. + parameters: [] + deprecated: false + /v1/providers/{provider_id}: + get: + responses: + '200': + description: >- + A ProviderInfo object containing the provider's details. + content: + application/json: + schema: + $ref: '#/components/schemas/ProviderInfo' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Providers + summary: Get provider. + description: >- + Get provider. + + Get detailed information about a specific provider. + parameters: + - name: provider_id + in: path + description: The ID of the provider to inspect. + required: true + schema: + type: string + deprecated: false + /v1/responses: + get: + responses: + '200': + description: A ListOpenAIResponseObject. + content: + application/json: + schema: + $ref: '#/components/schemas/ListOpenAIResponseObject' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Agents + summary: List all responses. + description: List all responses. + parameters: + - name: after + in: query + description: The ID of the last response to return. + required: false + schema: + type: string + - name: limit + in: query + description: The number of responses to return. + required: false + schema: + type: integer + - name: model + in: query + description: The model to filter responses by. + required: false + schema: + type: string + - name: order + in: query + description: >- + The order to sort responses by when sorted by created_at ('asc' or 'desc'). + required: false + schema: + $ref: '#/components/schemas/Order' + deprecated: false + post: + responses: + '200': + description: An OpenAIResponseObject. + content: + application/json: + schema: + $ref: '#/components/schemas/OpenAIResponseObject' + text/event-stream: + schema: + $ref: '#/components/schemas/OpenAIResponseObjectStream' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Agents + summary: Create a model response. + description: Create a model response. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/CreateOpenaiResponseRequest' + required: true + deprecated: false + x-llama-stack-extra-body-params: + - name: guardrails + schema: + type: array + items: + oneOf: + - type: string + - $ref: '#/components/schemas/ResponseGuardrailSpec' + description: >- + List of guardrails to apply during response generation. Guardrails provide + safety and content moderation. + required: false + /v1/responses/{response_id}: + get: + responses: + '200': + description: An OpenAIResponseObject. + content: + application/json: + schema: + $ref: '#/components/schemas/OpenAIResponseObject' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Agents + summary: Get a model response. + description: Get a model response. + parameters: + - name: response_id + in: path + description: >- + The ID of the OpenAI response to retrieve. + required: true + schema: + type: string + deprecated: false + delete: + responses: + '200': + description: An OpenAIDeleteResponseObject + content: + application/json: + schema: + $ref: '#/components/schemas/OpenAIDeleteResponseObject' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Agents + summary: Delete a response. + description: Delete a response. + parameters: + - name: response_id + in: path + description: The ID of the OpenAI response to delete. + required: true + schema: + type: string + deprecated: false + /v1/responses/{response_id}/input_items: + get: + responses: + '200': + description: An ListOpenAIResponseInputItem. + content: + application/json: + schema: + $ref: '#/components/schemas/ListOpenAIResponseInputItem' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Agents + summary: List input items. + description: List input items. + parameters: + - name: response_id + in: path + description: >- + The ID of the response to retrieve input items for. + required: true + schema: + type: string + - name: after + in: query + description: >- + An item ID to list items after, used for pagination. + required: false + schema: + type: string + - name: before + in: query + description: >- + An item ID to list items before, used for pagination. + required: false + schema: + type: string + - name: include + in: query + description: >- + Additional fields to include in the response. + required: false + schema: + type: array + items: + type: string + - name: limit + in: query + description: >- + A limit on the number of objects to be returned. Limit can range between + 1 and 100, and the default is 20. + required: false + schema: + type: integer + - name: order + in: query + description: >- + The order to return the input items in. Default is desc. + required: false + schema: + $ref: '#/components/schemas/Order' + deprecated: false + /v1/safety/run-shield: + post: + responses: + '200': + description: A RunShieldResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/RunShieldResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Safety + summary: Run shield. + description: >- + Run shield. + + Run a shield. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/RunShieldRequest' + required: true + deprecated: false + /v1/scoring-functions: + get: + responses: + '200': + description: A ListScoringFunctionsResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/ListScoringFunctionsResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - ScoringFunctions + summary: List all scoring functions. + description: List all scoring functions. + parameters: [] + deprecated: false + post: + responses: + '200': + description: OK + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - ScoringFunctions + summary: Register a scoring function. + description: Register a scoring function. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/RegisterScoringFunctionRequest' + required: true + deprecated: false + /v1/scoring-functions/{scoring_fn_id}: + get: + responses: + '200': + description: A ScoringFn. + content: + application/json: + schema: + $ref: '#/components/schemas/ScoringFn' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - ScoringFunctions + summary: Get a scoring function by its ID. + description: Get a scoring function by its ID. + parameters: + - name: scoring_fn_id + in: path + description: The ID of the scoring function to get. + required: true + schema: + type: string + deprecated: false + delete: + responses: + '200': + description: OK + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - ScoringFunctions + summary: Unregister a scoring function. + description: Unregister a scoring function. + parameters: + - name: scoring_fn_id + in: path + description: >- + The ID of the scoring function to unregister. + required: true + schema: + type: string + deprecated: false + /v1/scoring/score: + post: + responses: + '200': + description: >- + A ScoreResponse object containing rows and aggregated results. + content: + application/json: + schema: + $ref: '#/components/schemas/ScoreResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Scoring + summary: Score a list of rows. + description: Score a list of rows. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/ScoreRequest' + required: true + deprecated: false + /v1/scoring/score-batch: + post: + responses: + '200': + description: A ScoreBatchResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/ScoreBatchResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Scoring + summary: Score a batch of rows. + description: Score a batch of rows. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/ScoreBatchRequest' + required: true + deprecated: false + /v1/shields: + get: + responses: + '200': + description: A ListShieldsResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/ListShieldsResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Shields + summary: List all shields. + description: List all shields. + parameters: [] + deprecated: false + post: + responses: + '200': + description: A Shield. + content: + application/json: + schema: + $ref: '#/components/schemas/Shield' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Shields + summary: Register a shield. + description: Register a shield. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/RegisterShieldRequest' + required: true + deprecated: false + /v1/shields/{identifier}: + get: + responses: + '200': + description: A Shield. + content: + application/json: + schema: + $ref: '#/components/schemas/Shield' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Shields + summary: Get a shield by its identifier. + description: Get a shield by its identifier. + parameters: + - name: identifier + in: path + description: The identifier of the shield to get. + required: true + schema: + type: string + deprecated: false + delete: + responses: + '200': + description: OK + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Shields + summary: Unregister a shield. + description: Unregister a shield. + parameters: + - name: identifier + in: path + description: >- + The identifier of the shield to unregister. + required: true + schema: + type: string + deprecated: false + /v1/synthetic-data-generation/generate: + post: + responses: + '200': + description: >- + Response containing filtered synthetic data samples and optional statistics + content: + application/json: + schema: + $ref: '#/components/schemas/SyntheticDataGenerationResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - SyntheticDataGeneration (Coming Soon) + summary: >- + Generate synthetic data based on input dialogs and apply filtering. + description: >- + Generate synthetic data based on input dialogs and apply filtering. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/SyntheticDataGenerateRequest' + required: true + deprecated: false + /v1/tool-runtime/invoke: + post: + responses: + '200': + description: A ToolInvocationResult. + content: + application/json: + schema: + $ref: '#/components/schemas/ToolInvocationResult' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - ToolRuntime + summary: Run a tool with the given arguments. + description: Run a tool with the given arguments. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/InvokeToolRequest' + required: true + deprecated: false + /v1/tool-runtime/list-tools: + get: + responses: + '200': + description: A ListToolDefsResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/ListToolDefsResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - ToolRuntime + summary: List all tools in the runtime. + description: List all tools in the runtime. + parameters: + - name: tool_group_id + in: query + description: >- + The ID of the tool group to list tools for. + required: false + schema: + type: string + - name: mcp_endpoint + in: query + description: >- + The MCP endpoint to use for the tool group. + required: false + schema: + $ref: '#/components/schemas/URL' + deprecated: false + /v1/tool-runtime/rag-tool/insert: + post: + responses: + '200': + description: OK + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - ToolRuntime + summary: >- + Index documents so they can be used by the RAG system. + description: >- + Index documents so they can be used by the RAG system. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/InsertRequest' + required: true + deprecated: false + /v1/tool-runtime/rag-tool/query: + post: + responses: + '200': + description: >- + RAGQueryResult containing the retrieved content and metadata + content: + application/json: + schema: + $ref: '#/components/schemas/RAGQueryResult' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - ToolRuntime + summary: >- + Query the RAG system for context; typically invoked by the agent. + description: >- + Query the RAG system for context; typically invoked by the agent. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/QueryRequest' + required: true + deprecated: false + /v1/toolgroups: + get: + responses: + '200': + description: A ListToolGroupsResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/ListToolGroupsResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - ToolGroups + summary: List tool groups with optional provider. + description: List tool groups with optional provider. + parameters: [] + deprecated: false + post: + responses: + '200': + description: OK + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - ToolGroups + summary: Register a tool group. + description: Register a tool group. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/RegisterToolGroupRequest' + required: true + deprecated: false + /v1/toolgroups/{toolgroup_id}: + get: + responses: + '200': + description: A ToolGroup. + content: + application/json: + schema: + $ref: '#/components/schemas/ToolGroup' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - ToolGroups + summary: Get a tool group by its ID. + description: Get a tool group by its ID. + parameters: + - name: toolgroup_id + in: path + description: The ID of the tool group to get. + required: true + schema: + type: string + deprecated: false + delete: + responses: + '200': + description: OK + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - ToolGroups + summary: Unregister a tool group. + description: Unregister a tool group. + parameters: + - name: toolgroup_id + in: path + description: The ID of the tool group to unregister. + required: true + schema: + type: string + deprecated: false + /v1/tools: + get: + responses: + '200': + description: A ListToolDefsResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/ListToolDefsResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - ToolGroups + summary: List tools with optional tool group. + description: List tools with optional tool group. + parameters: + - name: toolgroup_id + in: query + description: >- + The ID of the tool group to list tools for. + required: false + schema: + type: string + deprecated: false + /v1/tools/{tool_name}: + get: + responses: + '200': + description: A ToolDef. + content: + application/json: + schema: + $ref: '#/components/schemas/ToolDef' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - ToolGroups + summary: Get a tool by its name. + description: Get a tool by its name. + parameters: + - name: tool_name + in: path + description: The name of the tool to get. + required: true + schema: + type: string + deprecated: false + /v1/vector-io/insert: + post: + responses: + '200': + description: OK + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - VectorIO + summary: Insert chunks into a vector database. + description: Insert chunks into a vector database. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/InsertChunksRequest' + required: true + deprecated: false + /v1/vector-io/query: + post: + responses: + '200': + description: A QueryChunksResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/QueryChunksResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - VectorIO + summary: Query chunks from a vector database. + description: Query chunks from a vector database. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/QueryChunksRequest' + required: true + deprecated: false + /v1/vector_stores: + get: + responses: + '200': + description: >- + A VectorStoreListResponse containing the list of vector stores. + content: + application/json: + schema: + $ref: '#/components/schemas/VectorStoreListResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - VectorIO + summary: Returns a list of vector stores. + description: Returns a list of vector stores. + parameters: + - name: limit + in: query + description: >- + A limit on the number of objects to be returned. Limit can range between + 1 and 100, and the default is 20. + required: false + schema: + type: integer + - name: order + in: query + description: >- + Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + required: false + schema: + type: string + - name: after + in: query + description: >- + A cursor for use in pagination. `after` is an object ID that defines your + place in the list. + required: false + schema: + type: string + - name: before + in: query + description: >- + A cursor for use in pagination. `before` is an object ID that defines + your place in the list. + required: false + schema: + type: string + deprecated: false + post: + responses: + '200': + description: >- + A VectorStoreObject representing the created vector store. + content: + application/json: + schema: + $ref: '#/components/schemas/VectorStoreObject' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - VectorIO + summary: Creates a vector store. + description: >- + Creates a vector store. + + Generate an OpenAI-compatible vector store with the given parameters. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/OpenAICreateVectorStoreRequestWithExtraBody' + required: true + deprecated: false + /v1/vector_stores/{vector_store_id}: + get: + responses: + '200': + description: >- + A VectorStoreObject representing the vector store. + content: + application/json: + schema: + $ref: '#/components/schemas/VectorStoreObject' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - VectorIO + summary: Retrieves a vector store. + description: Retrieves a vector store. + parameters: + - name: vector_store_id + in: path + description: The ID of the vector store to retrieve. + required: true + schema: + type: string + deprecated: false + post: + responses: + '200': + description: >- + A VectorStoreObject representing the updated vector store. + content: + application/json: + schema: + $ref: '#/components/schemas/VectorStoreObject' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - VectorIO + summary: Updates a vector store. + description: Updates a vector store. + parameters: + - name: vector_store_id + in: path + description: The ID of the vector store to update. + required: true + schema: + type: string + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/OpenaiUpdateVectorStoreRequest' + required: true + deprecated: false + delete: + responses: + '200': + description: >- + A VectorStoreDeleteResponse indicating the deletion status. + content: + application/json: + schema: + $ref: '#/components/schemas/VectorStoreDeleteResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - VectorIO + summary: Delete a vector store. + description: Delete a vector store. + parameters: + - name: vector_store_id + in: path + description: The ID of the vector store to delete. + required: true + schema: + type: string + deprecated: false + /v1/vector_stores/{vector_store_id}/file_batches: + post: + responses: + '200': + description: >- + A VectorStoreFileBatchObject representing the created file batch. + content: + application/json: + schema: + $ref: '#/components/schemas/VectorStoreFileBatchObject' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - VectorIO + summary: Create a vector store file batch. + description: >- + Create a vector store file batch. + + Generate an OpenAI-compatible vector store file batch for the given vector + store. + parameters: + - name: vector_store_id + in: path + description: >- + The ID of the vector store to create the file batch for. + required: true + schema: + type: string + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/OpenAICreateVectorStoreFileBatchRequestWithExtraBody' + required: true + deprecated: false + /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}: + get: + responses: + '200': + description: >- + A VectorStoreFileBatchObject representing the file batch. + content: + application/json: + schema: + $ref: '#/components/schemas/VectorStoreFileBatchObject' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - VectorIO + summary: Retrieve a vector store file batch. + description: Retrieve a vector store file batch. + parameters: + - name: batch_id + in: path + description: The ID of the file batch to retrieve. + required: true + schema: + type: string + - name: vector_store_id + in: path + description: >- + The ID of the vector store containing the file batch. + required: true + schema: + type: string + deprecated: false + /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel: + post: + responses: + '200': + description: >- + A VectorStoreFileBatchObject representing the cancelled file batch. + content: + application/json: + schema: + $ref: '#/components/schemas/VectorStoreFileBatchObject' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - VectorIO + summary: Cancels a vector store file batch. + description: Cancels a vector store file batch. + parameters: + - name: batch_id + in: path + description: The ID of the file batch to cancel. + required: true + schema: + type: string + - name: vector_store_id + in: path + description: >- + The ID of the vector store containing the file batch. + required: true + schema: + type: string + deprecated: false + /v1/vector_stores/{vector_store_id}/file_batches/{batch_id}/files: + get: + responses: + '200': + description: >- + A VectorStoreFilesListInBatchResponse containing the list of files in + the batch. + content: + application/json: + schema: + $ref: '#/components/schemas/VectorStoreFilesListInBatchResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - VectorIO + summary: >- + Returns a list of vector store files in a batch. + description: >- + Returns a list of vector store files in a batch. + parameters: + - name: batch_id + in: path + description: >- + The ID of the file batch to list files from. + required: true + schema: + type: string + - name: vector_store_id + in: path + description: >- + The ID of the vector store containing the file batch. + required: true + schema: + type: string + - name: after + in: query + description: >- + A cursor for use in pagination. `after` is an object ID that defines your + place in the list. + required: false + schema: + type: string + - name: before + in: query + description: >- + A cursor for use in pagination. `before` is an object ID that defines + your place in the list. + required: false + schema: + type: string + - name: filter + in: query + description: >- + Filter by file status. One of in_progress, completed, failed, cancelled. + required: false + schema: + type: string + - name: limit + in: query + description: >- + A limit on the number of objects to be returned. Limit can range between + 1 and 100, and the default is 20. + required: false + schema: + type: integer + - name: order + in: query + description: >- + Sort order by the `created_at` timestamp of the objects. `asc` for ascending + order and `desc` for descending order. + required: false + schema: + type: string + deprecated: false + /v1/vector_stores/{vector_store_id}/files: + get: + responses: + '200': + description: >- + A VectorStoreListFilesResponse containing the list of files. + content: + application/json: + schema: + $ref: '#/components/schemas/VectorStoreListFilesResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - VectorIO + summary: List files in a vector store. + description: List files in a vector store. + parameters: + - name: vector_store_id + in: path + description: >- + The ID of the vector store to list files from. + required: true + schema: + type: string + - name: limit + in: query + description: >- + (Optional) A limit on the number of objects to be returned. Limit can + range between 1 and 100, and the default is 20. + required: false + schema: + type: integer + - name: order + in: query + description: >- + (Optional) Sort order by the `created_at` timestamp of the objects. `asc` + for ascending order and `desc` for descending order. + required: false + schema: + type: string + - name: after + in: query + description: >- + (Optional) A cursor for use in pagination. `after` is an object ID that + defines your place in the list. + required: false + schema: + type: string + - name: before + in: query + description: >- + (Optional) A cursor for use in pagination. `before` is an object ID that + defines your place in the list. + required: false + schema: + type: string + - name: filter + in: query + description: >- + (Optional) Filter by file status to only return files with the specified + status. + required: false + schema: + $ref: '#/components/schemas/VectorStoreFileStatus' + deprecated: false + post: + responses: + '200': + description: >- + A VectorStoreFileObject representing the attached file. + content: + application/json: + schema: + $ref: '#/components/schemas/VectorStoreFileObject' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - VectorIO + summary: Attach a file to a vector store. + description: Attach a file to a vector store. + parameters: + - name: vector_store_id + in: path + description: >- + The ID of the vector store to attach the file to. + required: true + schema: + type: string + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/OpenaiAttachFileToVectorStoreRequest' + required: true + deprecated: false + /v1/vector_stores/{vector_store_id}/files/{file_id}: + get: + responses: + '200': + description: >- + A VectorStoreFileObject representing the file. + content: + application/json: + schema: + $ref: '#/components/schemas/VectorStoreFileObject' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - VectorIO + summary: Retrieves a vector store file. + description: Retrieves a vector store file. + parameters: + - name: vector_store_id + in: path + description: >- + The ID of the vector store containing the file to retrieve. + required: true + schema: + type: string + - name: file_id + in: path + description: The ID of the file to retrieve. + required: true + schema: + type: string + deprecated: false + post: + responses: + '200': + description: >- + A VectorStoreFileObject representing the updated file. + content: + application/json: + schema: + $ref: '#/components/schemas/VectorStoreFileObject' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - VectorIO + summary: Updates a vector store file. + description: Updates a vector store file. + parameters: + - name: vector_store_id + in: path + description: >- + The ID of the vector store containing the file to update. + required: true + schema: + type: string + - name: file_id + in: path + description: The ID of the file to update. + required: true + schema: + type: string + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/OpenaiUpdateVectorStoreFileRequest' + required: true + deprecated: false + delete: + responses: + '200': + description: >- + A VectorStoreFileDeleteResponse indicating the deletion status. + content: + application/json: + schema: + $ref: '#/components/schemas/VectorStoreFileDeleteResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - VectorIO + summary: Delete a vector store file. + description: Delete a vector store file. + parameters: + - name: vector_store_id + in: path + description: >- + The ID of the vector store containing the file to delete. + required: true + schema: + type: string + - name: file_id + in: path + description: The ID of the file to delete. + required: true + schema: + type: string + deprecated: false + /v1/vector_stores/{vector_store_id}/files/{file_id}/content: + get: + responses: + '200': + description: >- + A list of InterleavedContent representing the file contents. + content: + application/json: + schema: + $ref: '#/components/schemas/VectorStoreFileContentsResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - VectorIO + summary: >- + Retrieves the contents of a vector store file. + description: >- + Retrieves the contents of a vector store file. + parameters: + - name: vector_store_id + in: path + description: >- + The ID of the vector store containing the file to retrieve. + required: true + schema: + type: string + - name: file_id + in: path + description: The ID of the file to retrieve. + required: true + schema: + type: string + deprecated: false + /v1/vector_stores/{vector_store_id}/search: + post: + responses: + '200': + description: >- + A VectorStoreSearchResponse containing the search results. + content: + application/json: + schema: + $ref: '#/components/schemas/VectorStoreSearchResponsePage' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - VectorIO + summary: Search for chunks in a vector store. + description: >- + Search for chunks in a vector store. + + Searches a vector store for relevant chunks based on a query and optional + file attribute filters. + parameters: + - name: vector_store_id + in: path + description: The ID of the vector store to search. + required: true + schema: + type: string + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/OpenaiSearchVectorStoreRequest' + required: true + deprecated: false + /v1/version: + get: + responses: + '200': + description: >- + Version information containing the service version number. + content: + application/json: + schema: + $ref: '#/components/schemas/VersionInfo' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Inspect + summary: Get version. + description: >- + Get version. + + Get the version of the service. + parameters: [] + deprecated: false + /v1beta/datasetio/append-rows/{dataset_id}: + post: + responses: + '200': + description: OK + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - DatasetIO + summary: Append rows to a dataset. + description: Append rows to a dataset. + parameters: + - name: dataset_id + in: path + description: >- + The ID of the dataset to append the rows to. + required: true + schema: + type: string + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/AppendRowsRequest' + required: true + deprecated: false + /v1beta/datasetio/iterrows/{dataset_id}: + get: + responses: + '200': + description: A PaginatedResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/PaginatedResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - DatasetIO + summary: >- + Get a paginated list of rows from a dataset. + description: >- + Get a paginated list of rows from a dataset. + + Uses offset-based pagination where: + + - start_index: The starting index (0-based). If None, starts from beginning. + + - limit: Number of items to return. If None or -1, returns all items. + + + The response includes: + + - data: List of items for the current page. + + - has_more: Whether there are more items available after this set. + parameters: + - name: dataset_id + in: path + description: >- + The ID of the dataset to get the rows from. + required: true + schema: + type: string + - name: start_index + in: query + description: >- + Index into dataset for the first row to get. Get all rows if None. + required: false + schema: + type: integer + - name: limit + in: query + description: The number of rows to get. + required: false + schema: + type: integer + deprecated: false + /v1beta/datasets: + get: + responses: + '200': + description: A ListDatasetsResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/ListDatasetsResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Datasets + summary: List all datasets. + description: List all datasets. + parameters: [] + deprecated: false + post: + responses: + '200': + description: A Dataset. + content: + application/json: + schema: + $ref: '#/components/schemas/Dataset' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Datasets + summary: Register a new dataset. + description: Register a new dataset. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/RegisterDatasetRequest' + required: true + deprecated: false + /v1beta/datasets/{dataset_id}: + get: + responses: + '200': + description: A Dataset. + content: + application/json: + schema: + $ref: '#/components/schemas/Dataset' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Datasets + summary: Get a dataset by its ID. + description: Get a dataset by its ID. + parameters: + - name: dataset_id + in: path + description: The ID of the dataset to get. + required: true + schema: + type: string + deprecated: false + delete: + responses: + '200': + description: OK + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Datasets + summary: Unregister a dataset by its ID. + description: Unregister a dataset by its ID. + parameters: + - name: dataset_id + in: path + description: The ID of the dataset to unregister. + required: true + schema: + type: string + deprecated: false + /v1alpha/agents: + get: + responses: + '200': + description: A PaginatedResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/PaginatedResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Agents + summary: List all agents. + description: List all agents. + parameters: + - name: start_index + in: query + description: The index to start the pagination from. + required: false + schema: + type: integer + - name: limit + in: query + description: The number of agents to return. + required: false + schema: + type: integer + deprecated: false + post: + responses: + '200': + description: >- + An AgentCreateResponse with the agent ID. + content: + application/json: + schema: + $ref: '#/components/schemas/AgentCreateResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Agents + summary: >- + Create an agent with the given configuration. + description: >- + Create an agent with the given configuration. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/CreateAgentRequest' + required: true + deprecated: false + /v1alpha/agents/{agent_id}: + get: + responses: + '200': + description: An Agent of the agent. + content: + application/json: + schema: + $ref: '#/components/schemas/Agent' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Agents + summary: Describe an agent by its ID. + description: Describe an agent by its ID. + parameters: + - name: agent_id + in: path + description: ID of the agent. + required: true + schema: + type: string + deprecated: false + delete: + responses: + '200': + description: OK + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Agents + summary: >- + Delete an agent by its ID and its associated sessions and turns. + description: >- + Delete an agent by its ID and its associated sessions and turns. + parameters: + - name: agent_id + in: path + description: The ID of the agent to delete. + required: true + schema: + type: string + deprecated: false + /v1alpha/agents/{agent_id}/session: + post: + responses: + '200': + description: An AgentSessionCreateResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/AgentSessionCreateResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Agents + summary: Create a new session for an agent. + description: Create a new session for an agent. + parameters: + - name: agent_id + in: path + description: >- + The ID of the agent to create the session for. + required: true + schema: + type: string + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/CreateAgentSessionRequest' + required: true + deprecated: false + /v1alpha/agents/{agent_id}/session/{session_id}: + get: + responses: + '200': + description: A Session. + content: + application/json: + schema: + $ref: '#/components/schemas/Session' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Agents + summary: Retrieve an agent session by its ID. + description: Retrieve an agent session by its ID. + parameters: + - name: session_id + in: path + description: The ID of the session to get. + required: true + schema: + type: string + - name: agent_id + in: path + description: >- + The ID of the agent to get the session for. + required: true + schema: + type: string + - name: turn_ids + in: query + description: >- + (Optional) List of turn IDs to filter the session by. + required: false + schema: + type: array + items: + type: string + deprecated: false + delete: + responses: + '200': + description: OK + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Agents + summary: >- + Delete an agent session by its ID and its associated turns. + description: >- + Delete an agent session by its ID and its associated turns. + parameters: + - name: session_id + in: path + description: The ID of the session to delete. + required: true + schema: + type: string + - name: agent_id + in: path + description: >- + The ID of the agent to delete the session for. + required: true + schema: + type: string + deprecated: false + /v1alpha/agents/{agent_id}/session/{session_id}/turn: + post: + responses: + '200': + description: >- + If stream=False, returns a Turn object. If stream=True, returns an SSE + event stream of AgentTurnResponseStreamChunk. + content: + application/json: + schema: + $ref: '#/components/schemas/Turn' + text/event-stream: + schema: + $ref: '#/components/schemas/AgentTurnResponseStreamChunk' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Agents + summary: Create a new turn for an agent. + description: Create a new turn for an agent. + parameters: + - name: agent_id + in: path + description: >- + The ID of the agent to create the turn for. + required: true + schema: + type: string + - name: session_id + in: path + description: >- + The ID of the session to create the turn for. + required: true + schema: + type: string + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/CreateAgentTurnRequest' + required: true + deprecated: false + /v1alpha/agents/{agent_id}/session/{session_id}/turn/{turn_id}: + get: + responses: + '200': + description: A Turn. + content: + application/json: + schema: + $ref: '#/components/schemas/Turn' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Agents + summary: Retrieve an agent turn by its ID. + description: Retrieve an agent turn by its ID. + parameters: + - name: agent_id + in: path + description: The ID of the agent to get the turn for. + required: true + schema: + type: string + - name: session_id + in: path + description: >- + The ID of the session to get the turn for. + required: true + schema: + type: string + - name: turn_id + in: path + description: The ID of the turn to get. + required: true + schema: + type: string + deprecated: false + /v1alpha/agents/{agent_id}/session/{session_id}/turn/{turn_id}/resume: + post: + responses: + '200': + description: >- + A Turn object if stream is False, otherwise an AsyncIterator of AgentTurnResponseStreamChunk + objects. + content: + application/json: + schema: + $ref: '#/components/schemas/Turn' + text/event-stream: + schema: + $ref: '#/components/schemas/AgentTurnResponseStreamChunk' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Agents + summary: >- + Resume an agent turn with executed tool call responses. + description: >- + Resume an agent turn with executed tool call responses. + + When a Turn has the status `awaiting_input` due to pending input from client + side tool calls, this endpoint can be used to submit the outputs from the + tool calls once they are ready. + parameters: + - name: agent_id + in: path + description: The ID of the agent to resume. + required: true + schema: + type: string + - name: session_id + in: path + description: The ID of the session to resume. + required: true + schema: + type: string + - name: turn_id + in: path + description: The ID of the turn to resume. + required: true + schema: + type: string + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/ResumeAgentTurnRequest' + required: true + deprecated: false + /v1alpha/agents/{agent_id}/session/{session_id}/turn/{turn_id}/step/{step_id}: + get: + responses: + '200': + description: An AgentStepResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/AgentStepResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Agents + summary: Retrieve an agent step by its ID. + description: Retrieve an agent step by its ID. + parameters: + - name: agent_id + in: path + description: The ID of the agent to get the step for. + required: true + schema: + type: string + - name: session_id + in: path + description: >- + The ID of the session to get the step for. + required: true + schema: + type: string + - name: turn_id + in: path + description: The ID of the turn to get the step for. + required: true + schema: + type: string + - name: step_id + in: path + description: The ID of the step to get. + required: true + schema: + type: string + deprecated: false + /v1alpha/agents/{agent_id}/sessions: + get: + responses: + '200': + description: A PaginatedResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/PaginatedResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Agents + summary: List all session(s) of a given agent. + description: List all session(s) of a given agent. + parameters: + - name: agent_id + in: path + description: >- + The ID of the agent to list sessions for. + required: true + schema: + type: string + - name: start_index + in: query + description: The index to start the pagination from. + required: false + schema: + type: integer + - name: limit + in: query + description: The number of sessions to return. + required: false + schema: + type: integer + deprecated: false + /v1alpha/eval/benchmarks: + get: + responses: + '200': + description: A ListBenchmarksResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/ListBenchmarksResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Benchmarks + summary: List all benchmarks. + description: List all benchmarks. + parameters: [] + deprecated: false + post: + responses: + '200': + description: OK + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Benchmarks + summary: Register a benchmark. + description: Register a benchmark. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/RegisterBenchmarkRequest' + required: true + deprecated: false + /v1alpha/eval/benchmarks/{benchmark_id}: + get: + responses: + '200': + description: A Benchmark. + content: + application/json: + schema: + $ref: '#/components/schemas/Benchmark' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Benchmarks + summary: Get a benchmark by its ID. + description: Get a benchmark by its ID. + parameters: + - name: benchmark_id + in: path + description: The ID of the benchmark to get. + required: true + schema: + type: string + deprecated: false + delete: + responses: + '200': + description: OK + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Benchmarks + summary: Unregister a benchmark. + description: Unregister a benchmark. + parameters: + - name: benchmark_id + in: path + description: The ID of the benchmark to unregister. + required: true + schema: + type: string + deprecated: false + /v1alpha/eval/benchmarks/{benchmark_id}/evaluations: + post: + responses: + '200': + description: >- + EvaluateResponse object containing generations and scores. + content: + application/json: + schema: + $ref: '#/components/schemas/EvaluateResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Eval + summary: Evaluate a list of rows on a benchmark. + description: Evaluate a list of rows on a benchmark. + parameters: + - name: benchmark_id + in: path + description: >- + The ID of the benchmark to run the evaluation on. + required: true + schema: + type: string + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/EvaluateRowsRequest' + required: true + deprecated: false + /v1alpha/eval/benchmarks/{benchmark_id}/jobs: + post: + responses: + '200': + description: >- + The job that was created to run the evaluation. + content: + application/json: + schema: + $ref: '#/components/schemas/Job' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Eval + summary: Run an evaluation on a benchmark. + description: Run an evaluation on a benchmark. + parameters: + - name: benchmark_id + in: path + description: >- + The ID of the benchmark to run the evaluation on. + required: true + schema: + type: string + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/RunEvalRequest' + required: true + deprecated: false + /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}: + get: + responses: + '200': + description: The status of the evaluation job. + content: + application/json: + schema: + $ref: '#/components/schemas/Job' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Eval + summary: Get the status of a job. + description: Get the status of a job. + parameters: + - name: benchmark_id + in: path + description: >- + The ID of the benchmark to run the evaluation on. + required: true + schema: + type: string + - name: job_id + in: path + description: The ID of the job to get the status of. + required: true + schema: + type: string + deprecated: false + delete: + responses: + '200': + description: OK + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Eval + summary: Cancel a job. + description: Cancel a job. + parameters: + - name: benchmark_id + in: path + description: >- + The ID of the benchmark to run the evaluation on. + required: true + schema: + type: string + - name: job_id + in: path + description: The ID of the job to cancel. + required: true + schema: + type: string + deprecated: false + /v1alpha/eval/benchmarks/{benchmark_id}/jobs/{job_id}/result: + get: + responses: + '200': + description: The result of the job. + content: + application/json: + schema: + $ref: '#/components/schemas/EvaluateResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Eval + summary: Get the result of a job. + description: Get the result of a job. + parameters: + - name: benchmark_id + in: path + description: >- + The ID of the benchmark to run the evaluation on. + required: true + schema: + type: string + - name: job_id + in: path + description: The ID of the job to get the result of. + required: true + schema: + type: string + deprecated: false + /v1alpha/inference/rerank: + post: + responses: + '200': + description: >- + RerankResponse with indices sorted by relevance score (descending). + content: + application/json: + schema: + $ref: '#/components/schemas/RerankResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - Inference + summary: >- + Rerank a list of documents based on their relevance to a query. + description: >- + Rerank a list of documents based on their relevance to a query. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/RerankRequest' + required: true + deprecated: false + /v1alpha/post-training/job/artifacts: + get: + responses: + '200': + description: A PostTrainingJobArtifactsResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/PostTrainingJobArtifactsResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - PostTraining (Coming Soon) + summary: Get the artifacts of a training job. + description: Get the artifacts of a training job. + parameters: + - name: job_uuid + in: query + description: >- + The UUID of the job to get the artifacts of. + required: true + schema: + type: string + deprecated: false + /v1alpha/post-training/job/cancel: + post: + responses: + '200': + description: OK + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - PostTraining (Coming Soon) + summary: Cancel a training job. + description: Cancel a training job. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/CancelTrainingJobRequest' + required: true + deprecated: false + /v1alpha/post-training/job/status: + get: + responses: + '200': + description: A PostTrainingJobStatusResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/PostTrainingJobStatusResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - PostTraining (Coming Soon) + summary: Get the status of a training job. + description: Get the status of a training job. + parameters: + - name: job_uuid + in: query + description: >- + The UUID of the job to get the status of. + required: true + schema: + type: string + deprecated: false + /v1alpha/post-training/jobs: + get: + responses: + '200': + description: A ListPostTrainingJobsResponse. + content: + application/json: + schema: + $ref: '#/components/schemas/ListPostTrainingJobsResponse' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - PostTraining (Coming Soon) + summary: Get all training jobs. + description: Get all training jobs. + parameters: [] + deprecated: false + /v1alpha/post-training/preference-optimize: + post: + responses: + '200': + description: A PostTrainingJob. + content: + application/json: + schema: + $ref: '#/components/schemas/PostTrainingJob' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - PostTraining (Coming Soon) + summary: Run preference optimization of a model. + description: Run preference optimization of a model. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/PreferenceOptimizeRequest' + required: true + deprecated: false + /v1alpha/post-training/supervised-fine-tune: + post: + responses: + '200': + description: A PostTrainingJob. + content: + application/json: + schema: + $ref: '#/components/schemas/PostTrainingJob' + '400': + $ref: '#/components/responses/BadRequest400' + '429': + $ref: >- + #/components/responses/TooManyRequests429 + '500': + $ref: >- + #/components/responses/InternalServerError500 + default: + $ref: '#/components/responses/DefaultError' + tags: + - PostTraining (Coming Soon) + summary: Run supervised fine-tuning of a model. + description: Run supervised fine-tuning of a model. + parameters: [] + requestBody: + content: + application/json: + schema: + $ref: '#/components/schemas/SupervisedFineTuneRequest' + required: true + deprecated: false +jsonSchemaDialect: >- + https://json-schema.org/draft/2020-12/schema +components: + schemas: + Error: + type: object + properties: + status: + type: integer + description: HTTP status code + title: + type: string + description: >- + Error title, a short summary of the error which is invariant for an error + type + detail: + type: string + description: >- + Error detail, a longer human-readable description of the error + instance: + type: string + description: >- + (Optional) A URL which can be used to retrieve more information about + the specific occurrence of the error + additionalProperties: false + required: + - status + - title + - detail + title: Error + description: >- + Error response from the API. Roughly follows RFC 7807. + Order: + type: string + enum: + - asc + - desc + title: Order + description: Sort order for paginated responses. + ListOpenAIChatCompletionResponse: + type: object + properties: + data: + type: array + items: + type: object + properties: + id: + type: string + description: The ID of the chat completion + choices: + type: array + items: + $ref: '#/components/schemas/OpenAIChoice' + description: List of choices + object: + type: string + const: chat.completion + default: chat.completion + description: >- + The object type, which will be "chat.completion" + created: + type: integer + description: >- + The Unix timestamp in seconds when the chat completion was created + model: + type: string + description: >- + The model that was used to generate the chat completion + usage: + $ref: '#/components/schemas/OpenAIChatCompletionUsage' + description: >- + Token usage information for the completion + input_messages: + type: array + items: + $ref: '#/components/schemas/OpenAIMessageParam' + additionalProperties: false + required: + - id + - choices + - object + - created + - model + - input_messages + title: OpenAICompletionWithInputMessages + description: >- + List of chat completion objects with their input messages + has_more: + type: boolean + description: >- + Whether there are more completions available beyond this list + first_id: + type: string + description: ID of the first completion in this list + last_id: + type: string + description: ID of the last completion in this list + object: + type: string + const: list + default: list + description: >- + Must be "list" to identify this as a list response + additionalProperties: false + required: + - data + - has_more + - first_id + - last_id + - object + title: ListOpenAIChatCompletionResponse + description: >- + Response from listing OpenAI-compatible chat completions. + OpenAIAssistantMessageParam: + type: object + properties: + role: + type: string + const: assistant + default: assistant + description: >- + Must be "assistant" to identify this as the model's response + content: + oneOf: + - type: string + - type: array + items: + $ref: '#/components/schemas/OpenAIChatCompletionContentPartTextParam' + description: The content of the model's response + name: + type: string + description: >- + (Optional) The name of the assistant message participant. + tool_calls: + type: array + items: + $ref: '#/components/schemas/OpenAIChatCompletionToolCall' + description: >- + List of tool calls. Each tool call is an OpenAIChatCompletionToolCall + object. + additionalProperties: false + required: + - role + title: OpenAIAssistantMessageParam + description: >- + A message containing the model's (assistant) response in an OpenAI-compatible + chat completion request. + "OpenAIChatCompletionContentPartImageParam": + type: object + properties: + type: + type: string + const: image_url + default: image_url + description: >- + Must be "image_url" to identify this as image content + image_url: + $ref: '#/components/schemas/OpenAIImageURL' + description: >- + Image URL specification and processing details + additionalProperties: false + required: + - type + - image_url + title: >- + OpenAIChatCompletionContentPartImageParam + description: >- + Image content part for OpenAI-compatible chat completion messages. + OpenAIChatCompletionContentPartParam: + oneOf: + - $ref: '#/components/schemas/OpenAIChatCompletionContentPartTextParam' + - $ref: '#/components/schemas/OpenAIChatCompletionContentPartImageParam' + - $ref: '#/components/schemas/OpenAIFile' + discriminator: + propertyName: type + mapping: + text: '#/components/schemas/OpenAIChatCompletionContentPartTextParam' + image_url: '#/components/schemas/OpenAIChatCompletionContentPartImageParam' + file: '#/components/schemas/OpenAIFile' + OpenAIChatCompletionContentPartTextParam: + type: object + properties: + type: + type: string + const: text + default: text + description: >- + Must be "text" to identify this as text content + text: + type: string + description: The text content of the message + additionalProperties: false + required: + - type + - text + title: OpenAIChatCompletionContentPartTextParam + description: >- + Text content part for OpenAI-compatible chat completion messages. + OpenAIChatCompletionToolCall: + type: object + properties: + index: + type: integer + description: >- + (Optional) Index of the tool call in the list + id: + type: string + description: >- + (Optional) Unique identifier for the tool call + type: + type: string + const: function + default: function + description: >- + Must be "function" to identify this as a function call + function: + $ref: '#/components/schemas/OpenAIChatCompletionToolCallFunction' + description: (Optional) Function call details + additionalProperties: false + required: + - type + title: OpenAIChatCompletionToolCall + description: >- + Tool call specification for OpenAI-compatible chat completion responses. + OpenAIChatCompletionToolCallFunction: + type: object + properties: + name: + type: string + description: (Optional) Name of the function to call + arguments: + type: string + description: >- + (Optional) Arguments to pass to the function as a JSON string + additionalProperties: false + title: OpenAIChatCompletionToolCallFunction + description: >- + Function call details for OpenAI-compatible tool calls. + OpenAIChatCompletionUsage: + type: object + properties: + prompt_tokens: + type: integer + description: Number of tokens in the prompt + completion_tokens: + type: integer + description: Number of tokens in the completion + total_tokens: + type: integer + description: Total tokens used (prompt + completion) + prompt_tokens_details: + type: object + properties: + cached_tokens: + type: integer + description: Number of tokens retrieved from cache + additionalProperties: false + title: >- + OpenAIChatCompletionUsagePromptTokensDetails + description: >- + Token details for prompt tokens in OpenAI chat completion usage. + completion_tokens_details: + type: object + properties: + reasoning_tokens: + type: integer + description: >- + Number of tokens used for reasoning (o1/o3 models) + additionalProperties: false + title: >- + OpenAIChatCompletionUsageCompletionTokensDetails + description: >- + Token details for output tokens in OpenAI chat completion usage. + additionalProperties: false + required: + - prompt_tokens + - completion_tokens + - total_tokens + title: OpenAIChatCompletionUsage + description: >- + Usage information for OpenAI chat completion. + OpenAIChoice: + type: object + properties: + message: + oneOf: + - $ref: '#/components/schemas/OpenAIUserMessageParam' + - $ref: '#/components/schemas/OpenAISystemMessageParam' + - $ref: '#/components/schemas/OpenAIAssistantMessageParam' + - $ref: '#/components/schemas/OpenAIToolMessageParam' + - $ref: '#/components/schemas/OpenAIDeveloperMessageParam' + discriminator: + propertyName: role + mapping: + user: '#/components/schemas/OpenAIUserMessageParam' + system: '#/components/schemas/OpenAISystemMessageParam' + assistant: '#/components/schemas/OpenAIAssistantMessageParam' + tool: '#/components/schemas/OpenAIToolMessageParam' + developer: '#/components/schemas/OpenAIDeveloperMessageParam' + description: The message from the model + finish_reason: + type: string + description: The reason the model stopped generating + index: + type: integer + description: The index of the choice + logprobs: + $ref: '#/components/schemas/OpenAIChoiceLogprobs' + description: >- + (Optional) The log probabilities for the tokens in the message + additionalProperties: false + required: + - message + - finish_reason + - index + title: OpenAIChoice + description: >- + A choice from an OpenAI-compatible chat completion response. + OpenAIChoiceLogprobs: + type: object + properties: + content: + type: array + items: + $ref: '#/components/schemas/OpenAITokenLogProb' + description: >- + (Optional) The log probabilities for the tokens in the message + refusal: + type: array + items: + $ref: '#/components/schemas/OpenAITokenLogProb' + description: >- + (Optional) The log probabilities for the tokens in the message + additionalProperties: false + title: OpenAIChoiceLogprobs + description: >- + The log probabilities for the tokens in the message from an OpenAI-compatible + chat completion response. + OpenAIDeveloperMessageParam: + type: object + properties: + role: + type: string + const: developer + default: developer + description: >- + Must be "developer" to identify this as a developer message + content: + oneOf: + - type: string + - type: array + items: + $ref: '#/components/schemas/OpenAIChatCompletionContentPartTextParam' + description: The content of the developer message + name: + type: string + description: >- + (Optional) The name of the developer message participant. + additionalProperties: false + required: + - role + - content + title: OpenAIDeveloperMessageParam + description: >- + A message from the developer in an OpenAI-compatible chat completion request. + OpenAIFile: + type: object + properties: + type: + type: string + const: file + default: file + file: + $ref: '#/components/schemas/OpenAIFileFile' + additionalProperties: false + required: + - type + - file + title: OpenAIFile + OpenAIFileFile: + type: object + properties: + file_data: + type: string + file_id: + type: string + filename: + type: string + additionalProperties: false + title: OpenAIFileFile + OpenAIImageURL: + type: object + properties: + url: + type: string + description: >- + URL of the image to include in the message + detail: + type: string + description: >- + (Optional) Level of detail for image processing. Can be "low", "high", + or "auto" + additionalProperties: false + required: + - url + title: OpenAIImageURL + description: >- + Image URL specification for OpenAI-compatible chat completion messages. + OpenAIMessageParam: + oneOf: + - $ref: '#/components/schemas/OpenAIUserMessageParam' + - $ref: '#/components/schemas/OpenAISystemMessageParam' + - $ref: '#/components/schemas/OpenAIAssistantMessageParam' + - $ref: '#/components/schemas/OpenAIToolMessageParam' + - $ref: '#/components/schemas/OpenAIDeveloperMessageParam' + discriminator: + propertyName: role + mapping: + user: '#/components/schemas/OpenAIUserMessageParam' + system: '#/components/schemas/OpenAISystemMessageParam' + assistant: '#/components/schemas/OpenAIAssistantMessageParam' + tool: '#/components/schemas/OpenAIToolMessageParam' + developer: '#/components/schemas/OpenAIDeveloperMessageParam' + OpenAISystemMessageParam: + type: object + properties: + role: + type: string + const: system + default: system + description: >- + Must be "system" to identify this as a system message + content: + oneOf: + - type: string + - type: array + items: + $ref: '#/components/schemas/OpenAIChatCompletionContentPartTextParam' + description: >- + The content of the "system prompt". If multiple system messages are provided, + they are concatenated. The underlying Llama Stack code may also add other + system messages (for example, for formatting tool definitions). + name: + type: string + description: >- + (Optional) The name of the system message participant. + additionalProperties: false + required: + - role + - content + title: OpenAISystemMessageParam + description: >- + A system message providing instructions or context to the model. + OpenAITokenLogProb: + type: object + properties: + token: + type: string + bytes: + type: array + items: + type: integer + logprob: + type: number + top_logprobs: + type: array + items: + $ref: '#/components/schemas/OpenAITopLogProb' + additionalProperties: false + required: + - token + - logprob + - top_logprobs + title: OpenAITokenLogProb + description: >- + The log probability for a token from an OpenAI-compatible chat completion + response. + OpenAIToolMessageParam: + type: object + properties: + role: + type: string + const: tool + default: tool + description: >- + Must be "tool" to identify this as a tool response + tool_call_id: + type: string + description: >- + Unique identifier for the tool call this response is for + content: + oneOf: + - type: string + - type: array + items: + $ref: '#/components/schemas/OpenAIChatCompletionContentPartTextParam' + description: The response content from the tool + additionalProperties: false + required: + - role + - tool_call_id + - content + title: OpenAIToolMessageParam + description: >- + A message representing the result of a tool invocation in an OpenAI-compatible + chat completion request. + OpenAITopLogProb: + type: object + properties: + token: + type: string + bytes: + type: array + items: + type: integer + logprob: + type: number + additionalProperties: false + required: + - token + - logprob + title: OpenAITopLogProb + description: >- + The top log probability for a token from an OpenAI-compatible chat completion + response. + OpenAIUserMessageParam: + type: object + properties: + role: + type: string + const: user + default: user + description: >- + Must be "user" to identify this as a user message + content: + oneOf: + - type: string + - type: array + items: + $ref: '#/components/schemas/OpenAIChatCompletionContentPartParam' + description: >- + The content of the message, which can include text and other media + name: + type: string + description: >- + (Optional) The name of the user message participant. + additionalProperties: false + required: + - role + - content + title: OpenAIUserMessageParam + description: >- + A message from the user in an OpenAI-compatible chat completion request. + OpenAIJSONSchema: + type: object + properties: + name: + type: string + description: Name of the schema + description: + type: string + description: (Optional) Description of the schema + strict: + type: boolean + description: >- + (Optional) Whether to enforce strict adherence to the schema + schema: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: (Optional) The JSON schema definition + additionalProperties: false + required: + - name + title: OpenAIJSONSchema + description: >- + JSON schema specification for OpenAI-compatible structured response format. + OpenAIResponseFormatJSONObject: + type: object + properties: + type: + type: string + const: json_object + default: json_object + description: >- + Must be "json_object" to indicate generic JSON object response format + additionalProperties: false + required: + - type + title: OpenAIResponseFormatJSONObject + description: >- + JSON object response format for OpenAI-compatible chat completion requests. + OpenAIResponseFormatJSONSchema: + type: object + properties: + type: + type: string + const: json_schema + default: json_schema + description: >- + Must be "json_schema" to indicate structured JSON response format + json_schema: + $ref: '#/components/schemas/OpenAIJSONSchema' + description: >- + The JSON schema specification for the response + additionalProperties: false + required: + - type + - json_schema + title: OpenAIResponseFormatJSONSchema + description: >- + JSON schema response format for OpenAI-compatible chat completion requests. + OpenAIResponseFormatParam: + oneOf: + - $ref: '#/components/schemas/OpenAIResponseFormatText' + - $ref: '#/components/schemas/OpenAIResponseFormatJSONSchema' + - $ref: '#/components/schemas/OpenAIResponseFormatJSONObject' + discriminator: + propertyName: type + mapping: + text: '#/components/schemas/OpenAIResponseFormatText' + json_schema: '#/components/schemas/OpenAIResponseFormatJSONSchema' + json_object: '#/components/schemas/OpenAIResponseFormatJSONObject' + OpenAIResponseFormatText: + type: object + properties: + type: + type: string + const: text + default: text + description: >- + Must be "text" to indicate plain text response format + additionalProperties: false + required: + - type + title: OpenAIResponseFormatText + description: >- + Text response format for OpenAI-compatible chat completion requests. + OpenAIChatCompletionRequestWithExtraBody: + type: object + properties: + model: + type: string + description: >- + The identifier of the model to use. The model must be registered with + Llama Stack and available via the /models endpoint. + messages: + type: array + items: + $ref: '#/components/schemas/OpenAIMessageParam' + description: List of messages in the conversation. + frequency_penalty: + type: number + description: >- + (Optional) The penalty for repeated tokens. + function_call: + oneOf: + - type: string + - type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: (Optional) The function call to use. + functions: + type: array + items: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: (Optional) List of functions to use. + logit_bias: + type: object + additionalProperties: + type: number + description: (Optional) The logit bias to use. + logprobs: + type: boolean + description: (Optional) The log probabilities to use. + max_completion_tokens: + type: integer + description: >- + (Optional) The maximum number of tokens to generate. + max_tokens: + type: integer + description: >- + (Optional) The maximum number of tokens to generate. + n: + type: integer + description: >- + (Optional) The number of completions to generate. + parallel_tool_calls: + type: boolean + description: >- + (Optional) Whether to parallelize tool calls. + presence_penalty: + type: number + description: >- + (Optional) The penalty for repeated tokens. + response_format: + $ref: '#/components/schemas/OpenAIResponseFormatParam' + description: (Optional) The response format to use. + seed: + type: integer + description: (Optional) The seed to use. + stop: + oneOf: + - type: string + - type: array + items: + type: string + description: (Optional) The stop tokens to use. + stream: + type: boolean + description: >- + (Optional) Whether to stream the response. + stream_options: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: (Optional) The stream options to use. + temperature: + type: number + description: (Optional) The temperature to use. + tool_choice: + oneOf: + - type: string + - type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: (Optional) The tool choice to use. + tools: + type: array + items: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: (Optional) The tools to use. + top_logprobs: + type: integer + description: >- + (Optional) The top log probabilities to use. + top_p: + type: number + description: (Optional) The top p to use. + user: + type: string + description: (Optional) The user to use. + additionalProperties: false + required: + - model + - messages + title: OpenAIChatCompletionRequestWithExtraBody + description: >- + Request parameters for OpenAI-compatible chat completion endpoint. + OpenAIChatCompletion: + type: object + properties: + id: + type: string + description: The ID of the chat completion + choices: + type: array + items: + $ref: '#/components/schemas/OpenAIChoice' + description: List of choices + object: + type: string + const: chat.completion + default: chat.completion + description: >- + The object type, which will be "chat.completion" + created: + type: integer + description: >- + The Unix timestamp in seconds when the chat completion was created + model: + type: string + description: >- + The model that was used to generate the chat completion + usage: + $ref: '#/components/schemas/OpenAIChatCompletionUsage' + description: >- + Token usage information for the completion + additionalProperties: false + required: + - id + - choices + - object + - created + - model + title: OpenAIChatCompletion + description: >- + Response from an OpenAI-compatible chat completion request. + OpenAIChatCompletionChunk: + type: object + properties: + id: + type: string + description: The ID of the chat completion + choices: + type: array + items: + $ref: '#/components/schemas/OpenAIChunkChoice' + description: List of choices + object: + type: string + const: chat.completion.chunk + default: chat.completion.chunk + description: >- + The object type, which will be "chat.completion.chunk" + created: + type: integer + description: >- + The Unix timestamp in seconds when the chat completion was created + model: + type: string + description: >- + The model that was used to generate the chat completion + usage: + $ref: '#/components/schemas/OpenAIChatCompletionUsage' + description: >- + Token usage information (typically included in final chunk with stream_options) + additionalProperties: false + required: + - id + - choices + - object + - created + - model + title: OpenAIChatCompletionChunk + description: >- + Chunk from a streaming response to an OpenAI-compatible chat completion request. + OpenAIChoiceDelta: + type: object + properties: + content: + type: string + description: (Optional) The content of the delta + refusal: + type: string + description: (Optional) The refusal of the delta + role: + type: string + description: (Optional) The role of the delta + tool_calls: + type: array + items: + $ref: '#/components/schemas/OpenAIChatCompletionToolCall' + description: (Optional) The tool calls of the delta + reasoning_content: + type: string + description: >- + (Optional) The reasoning content from the model (non-standard, for o1/o3 + models) + additionalProperties: false + title: OpenAIChoiceDelta + description: >- + A delta from an OpenAI-compatible chat completion streaming response. + OpenAIChunkChoice: + type: object + properties: + delta: + $ref: '#/components/schemas/OpenAIChoiceDelta' + description: The delta from the chunk + finish_reason: + type: string + description: The reason the model stopped generating + index: + type: integer + description: The index of the choice + logprobs: + $ref: '#/components/schemas/OpenAIChoiceLogprobs' + description: >- + (Optional) The log probabilities for the tokens in the message + additionalProperties: false + required: + - delta + - finish_reason + - index + title: OpenAIChunkChoice + description: >- + A chunk choice from an OpenAI-compatible chat completion streaming response. + OpenAICompletionWithInputMessages: + type: object + properties: + id: + type: string + description: The ID of the chat completion + choices: + type: array + items: + $ref: '#/components/schemas/OpenAIChoice' + description: List of choices + object: + type: string + const: chat.completion + default: chat.completion + description: >- + The object type, which will be "chat.completion" + created: + type: integer + description: >- + The Unix timestamp in seconds when the chat completion was created + model: + type: string + description: >- + The model that was used to generate the chat completion + usage: + $ref: '#/components/schemas/OpenAIChatCompletionUsage' + description: >- + Token usage information for the completion + input_messages: + type: array + items: + $ref: '#/components/schemas/OpenAIMessageParam' + additionalProperties: false + required: + - id + - choices + - object + - created + - model + - input_messages + title: OpenAICompletionWithInputMessages + OpenAICompletionRequestWithExtraBody: + type: object + properties: + model: + type: string + description: >- + The identifier of the model to use. The model must be registered with + Llama Stack and available via the /models endpoint. + prompt: + oneOf: + - type: string + - type: array + items: + type: string + - type: array + items: + type: integer + - type: array + items: + type: array + items: + type: integer + description: The prompt to generate a completion for. + best_of: + type: integer + description: >- + (Optional) The number of completions to generate. + echo: + type: boolean + description: (Optional) Whether to echo the prompt. + frequency_penalty: + type: number + description: >- + (Optional) The penalty for repeated tokens. + logit_bias: + type: object + additionalProperties: + type: number + description: (Optional) The logit bias to use. + logprobs: + type: boolean + description: (Optional) The log probabilities to use. + max_tokens: + type: integer + description: >- + (Optional) The maximum number of tokens to generate. + n: + type: integer + description: >- + (Optional) The number of completions to generate. + presence_penalty: + type: number + description: >- + (Optional) The penalty for repeated tokens. + seed: + type: integer + description: (Optional) The seed to use. + stop: + oneOf: + - type: string + - type: array + items: + type: string + description: (Optional) The stop tokens to use. + stream: + type: boolean + description: >- + (Optional) Whether to stream the response. + stream_options: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: (Optional) The stream options to use. + temperature: + type: number + description: (Optional) The temperature to use. + top_p: + type: number + description: (Optional) The top p to use. + user: + type: string + description: (Optional) The user to use. + suffix: + type: string + description: >- + (Optional) The suffix that should be appended to the completion. + additionalProperties: false + required: + - model + - prompt + title: OpenAICompletionRequestWithExtraBody + description: >- + Request parameters for OpenAI-compatible completion endpoint. + OpenAICompletion: + type: object + properties: + id: + type: string + choices: + type: array + items: + $ref: '#/components/schemas/OpenAICompletionChoice' + created: + type: integer + model: + type: string + object: + type: string + const: text_completion + default: text_completion + additionalProperties: false + required: + - id + - choices + - created + - model + - object + title: OpenAICompletion + description: >- + Response from an OpenAI-compatible completion request. + OpenAICompletionChoice: + type: object + properties: + finish_reason: + type: string + text: + type: string + index: + type: integer + logprobs: + $ref: '#/components/schemas/OpenAIChoiceLogprobs' + additionalProperties: false + required: + - finish_reason + - text + - index + title: OpenAICompletionChoice + description: >- + A choice from an OpenAI-compatible completion response. + ConversationItem: + oneOf: + - $ref: '#/components/schemas/OpenAIResponseMessage' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageWebSearchToolCall' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageFileSearchToolCall' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageFunctionToolCall' + - $ref: '#/components/schemas/OpenAIResponseInputFunctionToolCallOutput' + - $ref: '#/components/schemas/OpenAIResponseMCPApprovalRequest' + - $ref: '#/components/schemas/OpenAIResponseMCPApprovalResponse' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageMCPCall' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageMCPListTools' + discriminator: + propertyName: type + mapping: + message: '#/components/schemas/OpenAIResponseMessage' + web_search_call: '#/components/schemas/OpenAIResponseOutputMessageWebSearchToolCall' + file_search_call: '#/components/schemas/OpenAIResponseOutputMessageFileSearchToolCall' + function_call: '#/components/schemas/OpenAIResponseOutputMessageFunctionToolCall' + function_call_output: '#/components/schemas/OpenAIResponseInputFunctionToolCallOutput' + mcp_approval_request: '#/components/schemas/OpenAIResponseMCPApprovalRequest' + mcp_approval_response: '#/components/schemas/OpenAIResponseMCPApprovalResponse' + mcp_call: '#/components/schemas/OpenAIResponseOutputMessageMCPCall' + mcp_list_tools: '#/components/schemas/OpenAIResponseOutputMessageMCPListTools' + OpenAIResponseAnnotationCitation: + type: object + properties: + type: + type: string + const: url_citation + default: url_citation + description: >- + Annotation type identifier, always "url_citation" + end_index: + type: integer + description: >- + End position of the citation span in the content + start_index: + type: integer + description: >- + Start position of the citation span in the content + title: + type: string + description: Title of the referenced web resource + url: + type: string + description: URL of the referenced web resource + additionalProperties: false + required: + - type + - end_index + - start_index + - title + - url + title: OpenAIResponseAnnotationCitation + description: >- + URL citation annotation for referencing external web resources. + "OpenAIResponseAnnotationContainerFileCitation": + type: object + properties: + type: + type: string + const: container_file_citation + default: container_file_citation + container_id: + type: string + end_index: + type: integer + file_id: + type: string + filename: + type: string + start_index: + type: integer + additionalProperties: false + required: + - type + - container_id + - end_index + - file_id + - filename + - start_index + title: >- + OpenAIResponseAnnotationContainerFileCitation + OpenAIResponseAnnotationFileCitation: + type: object + properties: + type: + type: string + const: file_citation + default: file_citation + description: >- + Annotation type identifier, always "file_citation" + file_id: + type: string + description: Unique identifier of the referenced file + filename: + type: string + description: Name of the referenced file + index: + type: integer + description: >- + Position index of the citation within the content + additionalProperties: false + required: + - type + - file_id + - filename + - index + title: OpenAIResponseAnnotationFileCitation + description: >- + File citation annotation for referencing specific files in response content. + OpenAIResponseAnnotationFilePath: + type: object + properties: + type: + type: string + const: file_path + default: file_path + file_id: + type: string + index: + type: integer + additionalProperties: false + required: + - type + - file_id + - index + title: OpenAIResponseAnnotationFilePath + OpenAIResponseAnnotations: + oneOf: + - $ref: '#/components/schemas/OpenAIResponseAnnotationFileCitation' + - $ref: '#/components/schemas/OpenAIResponseAnnotationCitation' + - $ref: '#/components/schemas/OpenAIResponseAnnotationContainerFileCitation' + - $ref: '#/components/schemas/OpenAIResponseAnnotationFilePath' + discriminator: + propertyName: type + mapping: + file_citation: '#/components/schemas/OpenAIResponseAnnotationFileCitation' + url_citation: '#/components/schemas/OpenAIResponseAnnotationCitation' + container_file_citation: '#/components/schemas/OpenAIResponseAnnotationContainerFileCitation' + file_path: '#/components/schemas/OpenAIResponseAnnotationFilePath' + OpenAIResponseContentPartRefusal: + type: object + properties: + type: + type: string + const: refusal + default: refusal + description: >- + Content part type identifier, always "refusal" + refusal: + type: string + description: Refusal text supplied by the model + additionalProperties: false + required: + - type + - refusal + title: OpenAIResponseContentPartRefusal + description: >- + Refusal content within a streamed response part. + "OpenAIResponseInputFunctionToolCallOutput": + type: object + properties: + call_id: + type: string + output: + type: string + type: + type: string + const: function_call_output + default: function_call_output + id: + type: string + status: + type: string + additionalProperties: false + required: + - call_id + - output + - type + title: >- + OpenAIResponseInputFunctionToolCallOutput + description: >- + This represents the output of a function call that gets passed back to the + model. + OpenAIResponseInputMessageContent: + oneOf: + - $ref: '#/components/schemas/OpenAIResponseInputMessageContentText' + - $ref: '#/components/schemas/OpenAIResponseInputMessageContentImage' + discriminator: + propertyName: type + mapping: + input_text: '#/components/schemas/OpenAIResponseInputMessageContentText' + input_image: '#/components/schemas/OpenAIResponseInputMessageContentImage' + OpenAIResponseInputMessageContentImage: + type: object + properties: + detail: + oneOf: + - type: string + const: low + - type: string + const: high + - type: string + const: auto + default: auto + description: >- + Level of detail for image processing, can be "low", "high", or "auto" + type: + type: string + const: input_image + default: input_image + description: >- + Content type identifier, always "input_image" + image_url: + type: string + description: (Optional) URL of the image content + additionalProperties: false + required: + - detail + - type + title: OpenAIResponseInputMessageContentImage + description: >- + Image content for input messages in OpenAI response format. + OpenAIResponseInputMessageContentText: + type: object + properties: + text: + type: string + description: The text content of the input message + type: + type: string + const: input_text + default: input_text + description: >- + Content type identifier, always "input_text" + additionalProperties: false + required: + - text + - type + title: OpenAIResponseInputMessageContentText + description: >- + Text content for input messages in OpenAI response format. + OpenAIResponseMCPApprovalRequest: + type: object + properties: + arguments: + type: string + id: + type: string + name: + type: string + server_label: + type: string + type: + type: string + const: mcp_approval_request + default: mcp_approval_request + additionalProperties: false + required: + - arguments + - id + - name + - server_label + - type + title: OpenAIResponseMCPApprovalRequest + description: >- + A request for human approval of a tool invocation. + OpenAIResponseMCPApprovalResponse: + type: object + properties: + approval_request_id: + type: string + approve: + type: boolean + type: + type: string + const: mcp_approval_response + default: mcp_approval_response + id: + type: string + reason: + type: string + additionalProperties: false + required: + - approval_request_id + - approve + - type + title: OpenAIResponseMCPApprovalResponse + description: A response to an MCP approval request. + OpenAIResponseMessage: + type: object + properties: + content: + oneOf: + - type: string + - type: array + items: + $ref: '#/components/schemas/OpenAIResponseInputMessageContent' + - type: array + items: + $ref: '#/components/schemas/OpenAIResponseOutputMessageContent' + role: + oneOf: + - type: string + const: system + - type: string + const: developer + - type: string + const: user + - type: string + const: assistant + type: + type: string + const: message + default: message + id: + type: string + status: + type: string + additionalProperties: false + required: + - content + - role + - type + title: OpenAIResponseMessage + description: >- + Corresponds to the various Message types in the Responses API. They are all + under one type because the Responses API gives them all the same "type" value, + and there is no way to tell them apart in certain scenarios. + OpenAIResponseOutputMessageContent: + oneOf: + - $ref: '#/components/schemas/OpenAIResponseOutputMessageContentOutputText' + - $ref: '#/components/schemas/OpenAIResponseContentPartRefusal' + discriminator: + propertyName: type + mapping: + output_text: '#/components/schemas/OpenAIResponseOutputMessageContentOutputText' + refusal: '#/components/schemas/OpenAIResponseContentPartRefusal' + "OpenAIResponseOutputMessageContentOutputText": + type: object + properties: + text: + type: string + type: + type: string + const: output_text + default: output_text + annotations: + type: array + items: + $ref: '#/components/schemas/OpenAIResponseAnnotations' + additionalProperties: false + required: + - text + - type + - annotations + title: >- + OpenAIResponseOutputMessageContentOutputText + "OpenAIResponseOutputMessageFileSearchToolCall": + type: object + properties: + id: + type: string + description: Unique identifier for this tool call + queries: + type: array + items: + type: string + description: List of search queries executed + status: + type: string + description: >- + Current status of the file search operation + type: + type: string + const: file_search_call + default: file_search_call + description: >- + Tool call type identifier, always "file_search_call" + results: + type: array + items: + type: object + properties: + attributes: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + (Optional) Key-value attributes associated with the file + file_id: + type: string + description: >- + Unique identifier of the file containing the result + filename: + type: string + description: Name of the file containing the result + score: + type: number + description: >- + Relevance score for this search result (between 0 and 1) + text: + type: string + description: Text content of the search result + additionalProperties: false + required: + - attributes + - file_id + - filename + - score + - text + title: >- + OpenAIResponseOutputMessageFileSearchToolCallResults + description: >- + Search results returned by the file search operation. + description: >- + (Optional) Search results returned by the file search operation + additionalProperties: false + required: + - id + - queries + - status + - type + title: >- + OpenAIResponseOutputMessageFileSearchToolCall + description: >- + File search tool call output message for OpenAI responses. + "OpenAIResponseOutputMessageFunctionToolCall": + type: object + properties: + call_id: + type: string + description: Unique identifier for the function call + name: + type: string + description: Name of the function being called + arguments: + type: string + description: >- + JSON string containing the function arguments + type: + type: string + const: function_call + default: function_call + description: >- + Tool call type identifier, always "function_call" + id: + type: string + description: >- + (Optional) Additional identifier for the tool call + status: + type: string + description: >- + (Optional) Current status of the function call execution + additionalProperties: false + required: + - call_id + - name + - arguments + - type + title: >- + OpenAIResponseOutputMessageFunctionToolCall + description: >- + Function tool call output message for OpenAI responses. + OpenAIResponseOutputMessageMCPCall: + type: object + properties: + id: + type: string + description: Unique identifier for this MCP call + type: + type: string + const: mcp_call + default: mcp_call + description: >- + Tool call type identifier, always "mcp_call" + arguments: + type: string + description: >- + JSON string containing the MCP call arguments + name: + type: string + description: Name of the MCP method being called + server_label: + type: string + description: >- + Label identifying the MCP server handling the call + error: + type: string + description: >- + (Optional) Error message if the MCP call failed + output: + type: string + description: >- + (Optional) Output result from the successful MCP call + additionalProperties: false + required: + - id + - type + - arguments + - name + - server_label + title: OpenAIResponseOutputMessageMCPCall + description: >- + Model Context Protocol (MCP) call output message for OpenAI responses. + OpenAIResponseOutputMessageMCPListTools: + type: object + properties: + id: + type: string + description: >- + Unique identifier for this MCP list tools operation + type: + type: string + const: mcp_list_tools + default: mcp_list_tools + description: >- + Tool call type identifier, always "mcp_list_tools" + server_label: + type: string + description: >- + Label identifying the MCP server providing the tools + tools: + type: array + items: + type: object + properties: + input_schema: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + JSON schema defining the tool's input parameters + name: + type: string + description: Name of the tool + description: + type: string + description: >- + (Optional) Description of what the tool does + additionalProperties: false + required: + - input_schema + - name + title: MCPListToolsTool + description: >- + Tool definition returned by MCP list tools operation. + description: >- + List of available tools provided by the MCP server + additionalProperties: false + required: + - id + - type + - server_label + - tools + title: OpenAIResponseOutputMessageMCPListTools + description: >- + MCP list tools output message containing available tools from an MCP server. + "OpenAIResponseOutputMessageWebSearchToolCall": + type: object + properties: + id: + type: string + description: Unique identifier for this tool call + status: + type: string + description: >- + Current status of the web search operation + type: + type: string + const: web_search_call + default: web_search_call + description: >- + Tool call type identifier, always "web_search_call" + additionalProperties: false + required: + - id + - status + - type + title: >- + OpenAIResponseOutputMessageWebSearchToolCall + description: >- + Web search tool call output message for OpenAI responses. + CreateConversationRequest: + type: object + properties: + items: + type: array + items: + $ref: '#/components/schemas/ConversationItem' + description: >- + Initial items to include in the conversation context. + metadata: + type: object + additionalProperties: + type: string + description: >- + Set of key-value pairs that can be attached to an object. + additionalProperties: false + title: CreateConversationRequest + Conversation: + type: object + properties: + id: + type: string + object: + type: string + const: conversation + default: conversation + created_at: + type: integer + metadata: + type: object + additionalProperties: + type: string + items: + type: array + items: + type: object + title: dict + description: >- + dict() -> new empty dictionary dict(mapping) -> new dictionary initialized + from a mapping object's (key, value) pairs dict(iterable) -> new + dictionary initialized as if via: d = {} for k, v in iterable: d[k] + = v dict(**kwargs) -> new dictionary initialized with the name=value + pairs in the keyword argument list. For example: dict(one=1, two=2) + additionalProperties: false + required: + - id + - object + - created_at + title: Conversation + description: OpenAI-compatible conversation object. + UpdateConversationRequest: + type: object + properties: + metadata: + type: object + additionalProperties: + type: string + description: >- + Set of key-value pairs that can be attached to an object. + additionalProperties: false + required: + - metadata + title: UpdateConversationRequest + ConversationDeletedResource: + type: object + properties: + id: + type: string + object: + type: string + default: conversation.deleted + deleted: + type: boolean + default: true + additionalProperties: false + required: + - id + - object + - deleted + title: ConversationDeletedResource + description: Response for deleted conversation. + ConversationItemList: + type: object + properties: + object: + type: string + default: list + data: + type: array + items: + $ref: '#/components/schemas/ConversationItem' + first_id: + type: string + last_id: + type: string + has_more: + type: boolean + default: false + additionalProperties: false + required: + - object + - data + - has_more + title: ConversationItemList + description: >- + List of conversation items with pagination. + AddItemsRequest: + type: object + properties: + items: + type: array + items: + $ref: '#/components/schemas/ConversationItem' + description: >- + Items to include in the conversation context. + additionalProperties: false + required: + - items + title: AddItemsRequest + ConversationItemDeletedResource: + type: object + properties: + id: + type: string + object: + type: string + default: conversation.item.deleted + deleted: + type: boolean + default: true + additionalProperties: false + required: + - id + - object + - deleted + title: ConversationItemDeletedResource + description: Response for deleted conversation item. + OpenAIEmbeddingsRequestWithExtraBody: + type: object + properties: + model: + type: string + description: >- + The identifier of the model to use. The model must be an embedding model + registered with Llama Stack and available via the /models endpoint. + input: + oneOf: + - type: string + - type: array + items: + type: string + description: >- + Input text to embed, encoded as a string or array of strings. To embed + multiple inputs in a single request, pass an array of strings. + encoding_format: + type: string + default: float + description: >- + (Optional) The format to return the embeddings in. Can be either "float" + or "base64". Defaults to "float". + dimensions: + type: integer + description: >- + (Optional) The number of dimensions the resulting output embeddings should + have. Only supported in text-embedding-3 and later models. + user: + type: string + description: >- + (Optional) A unique identifier representing your end-user, which can help + OpenAI to monitor and detect abuse. + additionalProperties: false + required: + - model + - input + title: OpenAIEmbeddingsRequestWithExtraBody + description: >- + Request parameters for OpenAI-compatible embeddings endpoint. + OpenAIEmbeddingData: + type: object + properties: + object: + type: string + const: embedding + default: embedding + description: >- + The object type, which will be "embedding" + embedding: + oneOf: + - type: array + items: + type: number + - type: string + description: >- + The embedding vector as a list of floats (when encoding_format="float") + or as a base64-encoded string (when encoding_format="base64") + index: + type: integer + description: >- + The index of the embedding in the input list + additionalProperties: false + required: + - object + - embedding + - index + title: OpenAIEmbeddingData + description: >- + A single embedding data object from an OpenAI-compatible embeddings response. + OpenAIEmbeddingUsage: + type: object + properties: + prompt_tokens: + type: integer + description: The number of tokens in the input + total_tokens: + type: integer + description: The total number of tokens used + additionalProperties: false + required: + - prompt_tokens + - total_tokens + title: OpenAIEmbeddingUsage + description: >- + Usage information for an OpenAI-compatible embeddings response. + OpenAIEmbeddingsResponse: + type: object + properties: + object: + type: string + const: list + default: list + description: The object type, which will be "list" + data: + type: array + items: + $ref: '#/components/schemas/OpenAIEmbeddingData' + description: List of embedding data objects + model: + type: string + description: >- + The model that was used to generate the embeddings + usage: + $ref: '#/components/schemas/OpenAIEmbeddingUsage' + description: Usage information + additionalProperties: false + required: + - object + - data + - model + - usage + title: OpenAIEmbeddingsResponse + description: >- + Response from an OpenAI-compatible embeddings request. + OpenAIFilePurpose: + type: string + enum: + - assistants + - batch + title: OpenAIFilePurpose + description: >- + Valid purpose values for OpenAI Files API. + ListOpenAIFileResponse: + type: object + properties: + data: + type: array + items: + $ref: '#/components/schemas/OpenAIFileObject' + description: List of file objects + has_more: + type: boolean + description: >- + Whether there are more files available beyond this page + first_id: + type: string + description: >- + ID of the first file in the list for pagination + last_id: + type: string + description: >- + ID of the last file in the list for pagination + object: + type: string + const: list + default: list + description: The object type, which is always "list" + additionalProperties: false + required: + - data + - has_more + - first_id + - last_id + - object + title: ListOpenAIFileResponse + description: >- + Response for listing files in OpenAI Files API. + OpenAIFileObject: + type: object + properties: + object: + type: string + const: file + default: file + description: The object type, which is always "file" + id: + type: string + description: >- + The file identifier, which can be referenced in the API endpoints + bytes: + type: integer + description: The size of the file, in bytes + created_at: + type: integer + description: >- + The Unix timestamp (in seconds) for when the file was created + expires_at: + type: integer + description: >- + The Unix timestamp (in seconds) for when the file expires + filename: + type: string + description: The name of the file + purpose: + type: string + enum: + - assistants + - batch + description: The intended purpose of the file + additionalProperties: false + required: + - object + - id + - bytes + - created_at + - expires_at + - filename + - purpose + title: OpenAIFileObject + description: >- + OpenAI File object as defined in the OpenAI Files API. + ExpiresAfter: + type: object + properties: + anchor: + type: string + const: created_at + seconds: + type: integer + additionalProperties: false + required: + - anchor + - seconds + title: ExpiresAfter + description: >- + Control expiration of uploaded files. + + Params: + - anchor, must be "created_at" + - seconds, must be int between 3600 and 2592000 (1 hour to 30 days) + OpenAIFileDeleteResponse: + type: object + properties: + id: + type: string + description: The file identifier that was deleted + object: + type: string + const: file + default: file + description: The object type, which is always "file" + deleted: + type: boolean + description: >- + Whether the file was successfully deleted + additionalProperties: false + required: + - id + - object + - deleted + title: OpenAIFileDeleteResponse + description: >- + Response for deleting a file in OpenAI Files API. + Response: + type: object + title: Response + HealthInfo: + type: object + properties: + status: + type: string + enum: + - OK + - Error + - Not Implemented + description: Current health status of the service + additionalProperties: false + required: + - status + title: HealthInfo + description: >- + Health status information for the service. + RouteInfo: + type: object + properties: + route: + type: string + description: The API endpoint path + method: + type: string + description: HTTP method for the route + provider_types: + type: array + items: + type: string + description: >- + List of provider types that implement this route + additionalProperties: false + required: + - route + - method + - provider_types + title: RouteInfo + description: >- + Information about an API route including its path, method, and implementing + providers. + ListRoutesResponse: + type: object + properties: + data: + type: array + items: + $ref: '#/components/schemas/RouteInfo' + description: >- + List of available route information objects + additionalProperties: false + required: + - data + title: ListRoutesResponse + description: >- + Response containing a list of all available API routes. + Model: + type: object + properties: + identifier: + type: string + description: >- + Unique identifier for this resource in llama stack + provider_resource_id: + type: string + description: >- + Unique identifier for this resource in the provider + provider_id: + type: string + description: >- + ID of the provider that owns this resource + type: + type: string + enum: + - model + - shield + - vector_db + - dataset + - scoring_function + - benchmark + - tool + - tool_group + - prompt + const: model + default: model + description: >- + The resource type, always 'model' for model resources + metadata: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: Any additional metadata for this model + model_type: + $ref: '#/components/schemas/ModelType' + default: llm + description: >- + The type of model (LLM or embedding model) + additionalProperties: false + required: + - identifier + - provider_id + - type + - metadata + - model_type + title: Model + description: >- + A model resource representing an AI model registered in Llama Stack. + ModelType: + type: string + enum: + - llm + - embedding + title: ModelType + description: >- + Enumeration of supported model types in Llama Stack. + ListModelsResponse: + type: object + properties: + data: + type: array + items: + $ref: '#/components/schemas/Model' + additionalProperties: false + required: + - data + title: ListModelsResponse + RegisterModelRequest: + type: object + properties: + model_id: + type: string + description: The identifier of the model to register. + provider_model_id: + type: string + description: >- + The identifier of the model in the provider. + provider_id: + type: string + description: The identifier of the provider. + metadata: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: Any additional metadata for this model. + model_type: + $ref: '#/components/schemas/ModelType' + description: The type of model to register. + additionalProperties: false + required: + - model_id + title: RegisterModelRequest + RunModerationRequest: + type: object + properties: + input: + oneOf: + - type: string + - type: array + items: + type: string + description: >- + Input (or inputs) to classify. Can be a single string, an array of strings, + or an array of multi-modal input objects similar to other models. + model: + type: string + description: >- + The content moderation model you would like to use. + additionalProperties: false + required: + - input + - model + title: RunModerationRequest + ModerationObject: + type: object + properties: + id: + type: string + description: >- + The unique identifier for the moderation request. + model: + type: string + description: >- + The model used to generate the moderation results. + results: + type: array + items: + $ref: '#/components/schemas/ModerationObjectResults' + description: A list of moderation objects + additionalProperties: false + required: + - id + - model + - results + title: ModerationObject + description: A moderation object. + ModerationObjectResults: + type: object + properties: + flagged: + type: boolean + description: >- + Whether any of the below categories are flagged. + categories: + type: object + additionalProperties: + type: boolean + description: >- + A list of the categories, and whether they are flagged or not. + category_applied_input_types: + type: object + additionalProperties: + type: array + items: + type: string + description: >- + A list of the categories along with the input type(s) that the score applies + to. + category_scores: + type: object + additionalProperties: + type: number + description: >- + A list of the categories along with their scores as predicted by model. + user_message: + type: string + metadata: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + additionalProperties: false + required: + - flagged + - metadata + title: ModerationObjectResults + description: A moderation object. + Prompt: + type: object + properties: + prompt: + type: string + description: >- + The system prompt text with variable placeholders. Variables are only + supported when using the Responses API. + version: + type: integer + description: >- + Version (integer starting at 1, incremented on save) + prompt_id: + type: string + description: >- + Unique identifier formatted as 'pmpt_<48-digit-hash>' + variables: + type: array + items: + type: string + description: >- + List of prompt variable names that can be used in the prompt template + is_default: + type: boolean + default: false + description: >- + Boolean indicating whether this version is the default version for this + prompt + additionalProperties: false + required: + - version + - prompt_id + - variables + - is_default + title: Prompt + description: >- + A prompt resource representing a stored OpenAI Compatible prompt template + in Llama Stack. + ListPromptsResponse: + type: object + properties: + data: + type: array + items: + $ref: '#/components/schemas/Prompt' + additionalProperties: false + required: + - data + title: ListPromptsResponse + description: Response model to list prompts. + CreatePromptRequest: + type: object + properties: + prompt: + type: string + description: >- + The prompt text content with variable placeholders. + variables: + type: array + items: + type: string + description: >- + List of variable names that can be used in the prompt template. + additionalProperties: false + required: + - prompt + title: CreatePromptRequest + UpdatePromptRequest: + type: object + properties: + prompt: + type: string + description: The updated prompt text content. + version: + type: integer + description: >- + The current version of the prompt being updated. + variables: + type: array + items: + type: string + description: >- + Updated list of variable names that can be used in the prompt template. + set_as_default: + type: boolean + description: >- + Set the new version as the default (default=True). + additionalProperties: false + required: + - prompt + - version + - set_as_default + title: UpdatePromptRequest + SetDefaultVersionRequest: + type: object + properties: + version: + type: integer + description: The version to set as default. + additionalProperties: false + required: + - version + title: SetDefaultVersionRequest + ProviderInfo: + type: object + properties: + api: + type: string + description: The API name this provider implements + provider_id: + type: string + description: Unique identifier for the provider + provider_type: + type: string + description: The type of provider implementation + config: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + Configuration parameters for the provider + health: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: Current health status of the provider + additionalProperties: false + required: + - api + - provider_id + - provider_type + - config + - health + title: ProviderInfo + description: >- + Information about a registered provider including its configuration and health + status. + ListProvidersResponse: + type: object + properties: + data: + type: array + items: + $ref: '#/components/schemas/ProviderInfo' + description: List of provider information objects + additionalProperties: false + required: + - data + title: ListProvidersResponse + description: >- + Response containing a list of all available providers. + ListOpenAIResponseObject: + type: object + properties: + data: + type: array + items: + $ref: '#/components/schemas/OpenAIResponseObjectWithInput' + description: >- + List of response objects with their input context + has_more: + type: boolean + description: >- + Whether there are more results available beyond this page + first_id: + type: string + description: >- + Identifier of the first item in this page + last_id: + type: string + description: Identifier of the last item in this page + object: + type: string + const: list + default: list + description: Object type identifier, always "list" + additionalProperties: false + required: + - data + - has_more + - first_id + - last_id + - object + title: ListOpenAIResponseObject + description: >- + Paginated list of OpenAI response objects with navigation metadata. + OpenAIResponseError: + type: object + properties: + code: + type: string + description: >- + Error code identifying the type of failure + message: + type: string + description: >- + Human-readable error message describing the failure + additionalProperties: false + required: + - code + - message + title: OpenAIResponseError + description: >- + Error details for failed OpenAI response requests. + OpenAIResponseInput: + oneOf: + - $ref: '#/components/schemas/OpenAIResponseOutputMessageWebSearchToolCall' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageFileSearchToolCall' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageFunctionToolCall' + - $ref: '#/components/schemas/OpenAIResponseInputFunctionToolCallOutput' + - $ref: '#/components/schemas/OpenAIResponseMCPApprovalRequest' + - $ref: '#/components/schemas/OpenAIResponseMCPApprovalResponse' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageMCPCall' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageMCPListTools' + - $ref: '#/components/schemas/OpenAIResponseMessage' + OpenAIResponseInputToolFileSearch: + type: object + properties: + type: + type: string + const: file_search + default: file_search + description: >- + Tool type identifier, always "file_search" + vector_store_ids: + type: array + items: + type: string + description: >- + List of vector store identifiers to search within + filters: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + (Optional) Additional filters to apply to the search + max_num_results: + type: integer + default: 10 + description: >- + (Optional) Maximum number of search results to return (1-50) + ranking_options: + type: object + properties: + ranker: + type: string + description: >- + (Optional) Name of the ranking algorithm to use + score_threshold: + type: number + default: 0.0 + description: >- + (Optional) Minimum relevance score threshold for results + additionalProperties: false + description: >- + (Optional) Options for ranking and scoring search results + additionalProperties: false + required: + - type + - vector_store_ids + title: OpenAIResponseInputToolFileSearch + description: >- + File search tool configuration for OpenAI response inputs. + OpenAIResponseInputToolFunction: + type: object + properties: + type: + type: string + const: function + default: function + description: Tool type identifier, always "function" + name: + type: string + description: Name of the function that can be called + description: + type: string + description: >- + (Optional) Description of what the function does + parameters: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + (Optional) JSON schema defining the function's parameters + strict: + type: boolean + description: >- + (Optional) Whether to enforce strict parameter validation + additionalProperties: false + required: + - type + - name + title: OpenAIResponseInputToolFunction + description: >- + Function tool configuration for OpenAI response inputs. + OpenAIResponseInputToolWebSearch: + type: object + properties: + type: + oneOf: + - type: string + const: web_search + - type: string + const: web_search_preview + - type: string + const: web_search_preview_2025_03_11 + default: web_search + description: Web search tool type variant to use + search_context_size: + type: string + default: medium + description: >- + (Optional) Size of search context, must be "low", "medium", or "high" + additionalProperties: false + required: + - type + title: OpenAIResponseInputToolWebSearch + description: >- + Web search tool configuration for OpenAI response inputs. + OpenAIResponseObjectWithInput: + type: object + properties: + created_at: + type: integer + description: >- + Unix timestamp when the response was created + error: + $ref: '#/components/schemas/OpenAIResponseError' + description: >- + (Optional) Error details if the response generation failed + id: + type: string + description: Unique identifier for this response + model: + type: string + description: Model identifier used for generation + object: + type: string + const: response + default: response + description: >- + Object type identifier, always "response" + output: + type: array + items: + $ref: '#/components/schemas/OpenAIResponseOutput' + description: >- + List of generated output items (messages, tool calls, etc.) + parallel_tool_calls: + type: boolean + default: false + description: >- + Whether tool calls can be executed in parallel + previous_response_id: + type: string + description: >- + (Optional) ID of the previous response in a conversation + status: + type: string + description: >- + Current status of the response generation + temperature: + type: number + description: >- + (Optional) Sampling temperature used for generation + text: + $ref: '#/components/schemas/OpenAIResponseText' + description: >- + Text formatting configuration for the response + top_p: + type: number + description: >- + (Optional) Nucleus sampling parameter used for generation + tools: + type: array + items: + $ref: '#/components/schemas/OpenAIResponseTool' + description: >- + (Optional) An array of tools the model may call while generating a response. + truncation: + type: string + description: >- + (Optional) Truncation strategy applied to the response + usage: + $ref: '#/components/schemas/OpenAIResponseUsage' + description: >- + (Optional) Token usage information for the response + instructions: + type: string + description: >- + (Optional) System message inserted into the model's context + input: + type: array + items: + $ref: '#/components/schemas/OpenAIResponseInput' + description: >- + List of input items that led to this response + additionalProperties: false + required: + - created_at + - id + - model + - object + - output + - parallel_tool_calls + - status + - text + - input + title: OpenAIResponseObjectWithInput + description: >- + OpenAI response object extended with input context information. + OpenAIResponseOutput: + oneOf: + - $ref: '#/components/schemas/OpenAIResponseMessage' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageWebSearchToolCall' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageFileSearchToolCall' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageFunctionToolCall' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageMCPCall' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageMCPListTools' + - $ref: '#/components/schemas/OpenAIResponseMCPApprovalRequest' + discriminator: + propertyName: type + mapping: + message: '#/components/schemas/OpenAIResponseMessage' + web_search_call: '#/components/schemas/OpenAIResponseOutputMessageWebSearchToolCall' + file_search_call: '#/components/schemas/OpenAIResponseOutputMessageFileSearchToolCall' + function_call: '#/components/schemas/OpenAIResponseOutputMessageFunctionToolCall' + mcp_call: '#/components/schemas/OpenAIResponseOutputMessageMCPCall' + mcp_list_tools: '#/components/schemas/OpenAIResponseOutputMessageMCPListTools' + mcp_approval_request: '#/components/schemas/OpenAIResponseMCPApprovalRequest' + OpenAIResponseText: + type: object + properties: + format: + type: object + properties: + type: + oneOf: + - type: string + const: text + - type: string + const: json_schema + - type: string + const: json_object + description: >- + Must be "text", "json_schema", or "json_object" to identify the format + type + name: + type: string + description: >- + The name of the response format. Only used for json_schema. + schema: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + The JSON schema the response should conform to. In a Python SDK, this + is often a `pydantic` model. Only used for json_schema. + description: + type: string + description: >- + (Optional) A description of the response format. Only used for json_schema. + strict: + type: boolean + description: >- + (Optional) Whether to strictly enforce the JSON schema. If true, the + response must match the schema exactly. Only used for json_schema. + additionalProperties: false + required: + - type + description: >- + (Optional) Text format configuration specifying output format requirements + additionalProperties: false + title: OpenAIResponseText + description: >- + Text response configuration for OpenAI responses. + OpenAIResponseTool: + oneOf: + - $ref: '#/components/schemas/OpenAIResponseInputToolWebSearch' + - $ref: '#/components/schemas/OpenAIResponseInputToolFileSearch' + - $ref: '#/components/schemas/OpenAIResponseInputToolFunction' + - $ref: '#/components/schemas/OpenAIResponseToolMCP' + discriminator: + propertyName: type + mapping: + web_search: '#/components/schemas/OpenAIResponseInputToolWebSearch' + file_search: '#/components/schemas/OpenAIResponseInputToolFileSearch' + function: '#/components/schemas/OpenAIResponseInputToolFunction' + mcp: '#/components/schemas/OpenAIResponseToolMCP' + OpenAIResponseToolMCP: + type: object + properties: + type: + type: string + const: mcp + default: mcp + description: Tool type identifier, always "mcp" + server_label: + type: string + description: Label to identify this MCP server + allowed_tools: + oneOf: + - type: array + items: + type: string + - type: object + properties: + tool_names: + type: array + items: + type: string + description: >- + (Optional) List of specific tool names that are allowed + additionalProperties: false + title: AllowedToolsFilter + description: >- + Filter configuration for restricting which MCP tools can be used. + description: >- + (Optional) Restriction on which tools can be used from this server + additionalProperties: false + required: + - type + - server_label + title: OpenAIResponseToolMCP + description: >- + Model Context Protocol (MCP) tool configuration for OpenAI response object. + OpenAIResponseUsage: + type: object + properties: + input_tokens: + type: integer + description: Number of tokens in the input + output_tokens: + type: integer + description: Number of tokens in the output + total_tokens: + type: integer + description: Total tokens used (input + output) + input_tokens_details: + type: object + properties: + cached_tokens: + type: integer + description: Number of tokens retrieved from cache + additionalProperties: false + description: Detailed breakdown of input token usage + output_tokens_details: + type: object + properties: + reasoning_tokens: + type: integer + description: >- + Number of tokens used for reasoning (o1/o3 models) + additionalProperties: false + description: Detailed breakdown of output token usage + additionalProperties: false + required: + - input_tokens + - output_tokens + - total_tokens + title: OpenAIResponseUsage + description: Usage information for OpenAI response. + ResponseGuardrailSpec: + type: object + properties: + type: + type: string + description: The type/identifier of the guardrail. + additionalProperties: false + required: + - type + title: ResponseGuardrailSpec + description: >- + Specification for a guardrail to apply during response generation. + OpenAIResponseInputTool: + oneOf: + - $ref: '#/components/schemas/OpenAIResponseInputToolWebSearch' + - $ref: '#/components/schemas/OpenAIResponseInputToolFileSearch' + - $ref: '#/components/schemas/OpenAIResponseInputToolFunction' + - $ref: '#/components/schemas/OpenAIResponseInputToolMCP' + discriminator: + propertyName: type + mapping: + web_search: '#/components/schemas/OpenAIResponseInputToolWebSearch' + file_search: '#/components/schemas/OpenAIResponseInputToolFileSearch' + function: '#/components/schemas/OpenAIResponseInputToolFunction' + mcp: '#/components/schemas/OpenAIResponseInputToolMCP' + OpenAIResponseInputToolMCP: + type: object + properties: + type: + type: string + const: mcp + default: mcp + description: Tool type identifier, always "mcp" + server_label: + type: string + description: Label to identify this MCP server + server_url: + type: string + description: URL endpoint of the MCP server + headers: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + (Optional) HTTP headers to include when connecting to the server + require_approval: + oneOf: + - type: string + const: always + - type: string + const: never + - type: object + properties: + always: + type: array + items: + type: string + description: >- + (Optional) List of tool names that always require approval + never: + type: array + items: + type: string + description: >- + (Optional) List of tool names that never require approval + additionalProperties: false + title: ApprovalFilter + description: >- + Filter configuration for MCP tool approval requirements. + default: never + description: >- + Approval requirement for tool calls ("always", "never", or filter) + allowed_tools: + oneOf: + - type: array + items: + type: string + - type: object + properties: + tool_names: + type: array + items: + type: string + description: >- + (Optional) List of specific tool names that are allowed + additionalProperties: false + title: AllowedToolsFilter + description: >- + Filter configuration for restricting which MCP tools can be used. + description: >- + (Optional) Restriction on which tools can be used from this server + additionalProperties: false + required: + - type + - server_label + - server_url + - require_approval + title: OpenAIResponseInputToolMCP + description: >- + Model Context Protocol (MCP) tool configuration for OpenAI response inputs. + CreateOpenaiResponseRequest: + type: object + properties: + input: + oneOf: + - type: string + - type: array + items: + $ref: '#/components/schemas/OpenAIResponseInput' + description: Input message(s) to create the response. + model: + type: string + description: The underlying LLM used for completions. + instructions: + type: string + previous_response_id: + type: string + description: >- + (Optional) if specified, the new response will be a continuation of the + previous response. This can be used to easily fork-off new responses from + existing responses. + conversation: + type: string + description: >- + (Optional) The ID of a conversation to add the response to. Must begin + with 'conv_'. Input and output messages will be automatically added to + the conversation. + store: + type: boolean + stream: + type: boolean + temperature: + type: number + text: + $ref: '#/components/schemas/OpenAIResponseText' + tools: + type: array + items: + $ref: '#/components/schemas/OpenAIResponseInputTool' + include: + type: array + items: + type: string + description: >- + (Optional) Additional fields to include in the response. + max_infer_iters: + type: integer + additionalProperties: false + required: + - input + - model + title: CreateOpenaiResponseRequest + OpenAIResponseObject: + type: object + properties: + created_at: + type: integer + description: >- + Unix timestamp when the response was created + error: + $ref: '#/components/schemas/OpenAIResponseError' + description: >- + (Optional) Error details if the response generation failed + id: + type: string + description: Unique identifier for this response + model: + type: string + description: Model identifier used for generation + object: + type: string + const: response + default: response + description: >- + Object type identifier, always "response" + output: + type: array + items: + $ref: '#/components/schemas/OpenAIResponseOutput' + description: >- + List of generated output items (messages, tool calls, etc.) + parallel_tool_calls: + type: boolean + default: false + description: >- + Whether tool calls can be executed in parallel + previous_response_id: + type: string + description: >- + (Optional) ID of the previous response in a conversation + status: + type: string + description: >- + Current status of the response generation + temperature: + type: number + description: >- + (Optional) Sampling temperature used for generation + text: + $ref: '#/components/schemas/OpenAIResponseText' + description: >- + Text formatting configuration for the response + top_p: + type: number + description: >- + (Optional) Nucleus sampling parameter used for generation + tools: + type: array + items: + $ref: '#/components/schemas/OpenAIResponseTool' + description: >- + (Optional) An array of tools the model may call while generating a response. + truncation: + type: string + description: >- + (Optional) Truncation strategy applied to the response + usage: + $ref: '#/components/schemas/OpenAIResponseUsage' + description: >- + (Optional) Token usage information for the response + instructions: + type: string + description: >- + (Optional) System message inserted into the model's context + additionalProperties: false + required: + - created_at + - id + - model + - object + - output + - parallel_tool_calls + - status + - text + title: OpenAIResponseObject + description: >- + Complete OpenAI response object containing generation results and metadata. + OpenAIResponseContentPartOutputText: + type: object + properties: + type: + type: string + const: output_text + default: output_text + description: >- + Content part type identifier, always "output_text" + text: + type: string + description: Text emitted for this content part + annotations: + type: array + items: + $ref: '#/components/schemas/OpenAIResponseAnnotations' + description: >- + Structured annotations associated with the text + logprobs: + type: array + items: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: (Optional) Token log probability details + additionalProperties: false + required: + - type + - text + - annotations + title: OpenAIResponseContentPartOutputText + description: >- + Text content within a streamed response part. + "OpenAIResponseContentPartReasoningSummary": + type: object + properties: + type: + type: string + const: summary_text + default: summary_text + description: >- + Content part type identifier, always "summary_text" + text: + type: string + description: Summary text + additionalProperties: false + required: + - type + - text + title: >- + OpenAIResponseContentPartReasoningSummary + description: >- + Reasoning summary part in a streamed response. + OpenAIResponseContentPartReasoningText: + type: object + properties: + type: + type: string + const: reasoning_text + default: reasoning_text + description: >- + Content part type identifier, always "reasoning_text" + text: + type: string + description: Reasoning text supplied by the model + additionalProperties: false + required: + - type + - text + title: OpenAIResponseContentPartReasoningText + description: >- + Reasoning text emitted as part of a streamed response. + OpenAIResponseObjectStream: + oneOf: + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseCreated' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseInProgress' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputItemAdded' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputItemDone' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputTextDelta' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputTextDone' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseWebSearchCallInProgress' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseWebSearchCallSearching' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseWebSearchCallCompleted' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpListToolsInProgress' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpListToolsFailed' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpListToolsCompleted' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallArgumentsDone' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallInProgress' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallFailed' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallCompleted' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseContentPartAdded' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseContentPartDone' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseReasoningTextDelta' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseReasoningTextDone' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseReasoningSummaryPartAdded' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseReasoningSummaryPartDone' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseReasoningSummaryTextDelta' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseReasoningSummaryTextDone' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseRefusalDelta' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseRefusalDone' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputTextAnnotationAdded' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseFileSearchCallInProgress' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseFileSearchCallSearching' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseFileSearchCallCompleted' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseIncomplete' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseFailed' + - $ref: '#/components/schemas/OpenAIResponseObjectStreamResponseCompleted' + discriminator: + propertyName: type + mapping: + response.created: '#/components/schemas/OpenAIResponseObjectStreamResponseCreated' + response.in_progress: '#/components/schemas/OpenAIResponseObjectStreamResponseInProgress' + response.output_item.added: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputItemAdded' + response.output_item.done: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputItemDone' + response.output_text.delta: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputTextDelta' + response.output_text.done: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputTextDone' + response.function_call_arguments.delta: '#/components/schemas/OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta' + response.function_call_arguments.done: '#/components/schemas/OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone' + response.web_search_call.in_progress: '#/components/schemas/OpenAIResponseObjectStreamResponseWebSearchCallInProgress' + response.web_search_call.searching: '#/components/schemas/OpenAIResponseObjectStreamResponseWebSearchCallSearching' + response.web_search_call.completed: '#/components/schemas/OpenAIResponseObjectStreamResponseWebSearchCallCompleted' + response.mcp_list_tools.in_progress: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpListToolsInProgress' + response.mcp_list_tools.failed: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpListToolsFailed' + response.mcp_list_tools.completed: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpListToolsCompleted' + response.mcp_call.arguments.delta: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta' + response.mcp_call.arguments.done: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallArgumentsDone' + response.mcp_call.in_progress: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallInProgress' + response.mcp_call.failed: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallFailed' + response.mcp_call.completed: '#/components/schemas/OpenAIResponseObjectStreamResponseMcpCallCompleted' + response.content_part.added: '#/components/schemas/OpenAIResponseObjectStreamResponseContentPartAdded' + response.content_part.done: '#/components/schemas/OpenAIResponseObjectStreamResponseContentPartDone' + response.reasoning_text.delta: '#/components/schemas/OpenAIResponseObjectStreamResponseReasoningTextDelta' + response.reasoning_text.done: '#/components/schemas/OpenAIResponseObjectStreamResponseReasoningTextDone' + response.reasoning_summary_part.added: '#/components/schemas/OpenAIResponseObjectStreamResponseReasoningSummaryPartAdded' + response.reasoning_summary_part.done: '#/components/schemas/OpenAIResponseObjectStreamResponseReasoningSummaryPartDone' + response.reasoning_summary_text.delta: '#/components/schemas/OpenAIResponseObjectStreamResponseReasoningSummaryTextDelta' + response.reasoning_summary_text.done: '#/components/schemas/OpenAIResponseObjectStreamResponseReasoningSummaryTextDone' + response.refusal.delta: '#/components/schemas/OpenAIResponseObjectStreamResponseRefusalDelta' + response.refusal.done: '#/components/schemas/OpenAIResponseObjectStreamResponseRefusalDone' + response.output_text.annotation.added: '#/components/schemas/OpenAIResponseObjectStreamResponseOutputTextAnnotationAdded' + response.file_search_call.in_progress: '#/components/schemas/OpenAIResponseObjectStreamResponseFileSearchCallInProgress' + response.file_search_call.searching: '#/components/schemas/OpenAIResponseObjectStreamResponseFileSearchCallSearching' + response.file_search_call.completed: '#/components/schemas/OpenAIResponseObjectStreamResponseFileSearchCallCompleted' + response.incomplete: '#/components/schemas/OpenAIResponseObjectStreamResponseIncomplete' + response.failed: '#/components/schemas/OpenAIResponseObjectStreamResponseFailed' + response.completed: '#/components/schemas/OpenAIResponseObjectStreamResponseCompleted' + "OpenAIResponseObjectStreamResponseCompleted": + type: object + properties: + response: + $ref: '#/components/schemas/OpenAIResponseObject' + description: Completed response object + type: + type: string + const: response.completed + default: response.completed + description: >- + Event type identifier, always "response.completed" + additionalProperties: false + required: + - response + - type + title: >- + OpenAIResponseObjectStreamResponseCompleted + description: >- + Streaming event indicating a response has been completed. + "OpenAIResponseObjectStreamResponseContentPartAdded": + type: object + properties: + content_index: + type: integer + description: >- + Index position of the part within the content array + response_id: + type: string + description: >- + Unique identifier of the response containing this content + item_id: + type: string + description: >- + Unique identifier of the output item containing this content part + output_index: + type: integer + description: >- + Index position of the output item in the response + part: + oneOf: + - $ref: '#/components/schemas/OpenAIResponseContentPartOutputText' + - $ref: '#/components/schemas/OpenAIResponseContentPartRefusal' + - $ref: '#/components/schemas/OpenAIResponseContentPartReasoningText' + discriminator: + propertyName: type + mapping: + output_text: '#/components/schemas/OpenAIResponseContentPartOutputText' + refusal: '#/components/schemas/OpenAIResponseContentPartRefusal' + reasoning_text: '#/components/schemas/OpenAIResponseContentPartReasoningText' + description: The content part that was added + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.content_part.added + default: response.content_part.added + description: >- + Event type identifier, always "response.content_part.added" + additionalProperties: false + required: + - content_index + - response_id + - item_id + - output_index + - part + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseContentPartAdded + description: >- + Streaming event for when a new content part is added to a response item. + "OpenAIResponseObjectStreamResponseContentPartDone": + type: object + properties: + content_index: + type: integer + description: >- + Index position of the part within the content array + response_id: + type: string + description: >- + Unique identifier of the response containing this content + item_id: + type: string + description: >- + Unique identifier of the output item containing this content part + output_index: + type: integer + description: >- + Index position of the output item in the response + part: + oneOf: + - $ref: '#/components/schemas/OpenAIResponseContentPartOutputText' + - $ref: '#/components/schemas/OpenAIResponseContentPartRefusal' + - $ref: '#/components/schemas/OpenAIResponseContentPartReasoningText' + discriminator: + propertyName: type + mapping: + output_text: '#/components/schemas/OpenAIResponseContentPartOutputText' + refusal: '#/components/schemas/OpenAIResponseContentPartRefusal' + reasoning_text: '#/components/schemas/OpenAIResponseContentPartReasoningText' + description: The completed content part + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.content_part.done + default: response.content_part.done + description: >- + Event type identifier, always "response.content_part.done" + additionalProperties: false + required: + - content_index + - response_id + - item_id + - output_index + - part + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseContentPartDone + description: >- + Streaming event for when a content part is completed. + "OpenAIResponseObjectStreamResponseCreated": + type: object + properties: + response: + $ref: '#/components/schemas/OpenAIResponseObject' + description: The response object that was created + type: + type: string + const: response.created + default: response.created + description: >- + Event type identifier, always "response.created" + additionalProperties: false + required: + - response + - type + title: >- + OpenAIResponseObjectStreamResponseCreated + description: >- + Streaming event indicating a new response has been created. + OpenAIResponseObjectStreamResponseFailed: + type: object + properties: + response: + $ref: '#/components/schemas/OpenAIResponseObject' + description: Response object describing the failure + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.failed + default: response.failed + description: >- + Event type identifier, always "response.failed" + additionalProperties: false + required: + - response + - sequence_number + - type + title: OpenAIResponseObjectStreamResponseFailed + description: >- + Streaming event emitted when a response fails. + "OpenAIResponseObjectStreamResponseFileSearchCallCompleted": + type: object + properties: + item_id: + type: string + description: >- + Unique identifier of the completed file search call + output_index: + type: integer + description: >- + Index position of the item in the output list + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.file_search_call.completed + default: response.file_search_call.completed + description: >- + Event type identifier, always "response.file_search_call.completed" + additionalProperties: false + required: + - item_id + - output_index + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseFileSearchCallCompleted + description: >- + Streaming event for completed file search calls. + "OpenAIResponseObjectStreamResponseFileSearchCallInProgress": + type: object + properties: + item_id: + type: string + description: >- + Unique identifier of the file search call + output_index: + type: integer + description: >- + Index position of the item in the output list + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.file_search_call.in_progress + default: response.file_search_call.in_progress + description: >- + Event type identifier, always "response.file_search_call.in_progress" + additionalProperties: false + required: + - item_id + - output_index + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseFileSearchCallInProgress + description: >- + Streaming event for file search calls in progress. + "OpenAIResponseObjectStreamResponseFileSearchCallSearching": + type: object + properties: + item_id: + type: string + description: >- + Unique identifier of the file search call + output_index: + type: integer + description: >- + Index position of the item in the output list + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.file_search_call.searching + default: response.file_search_call.searching + description: >- + Event type identifier, always "response.file_search_call.searching" + additionalProperties: false + required: + - item_id + - output_index + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseFileSearchCallSearching + description: >- + Streaming event for file search currently searching. + "OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta": + type: object + properties: + delta: + type: string + description: >- + Incremental function call arguments being added + item_id: + type: string + description: >- + Unique identifier of the function call being updated + output_index: + type: integer + description: >- + Index position of the item in the output list + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.function_call_arguments.delta + default: response.function_call_arguments.delta + description: >- + Event type identifier, always "response.function_call_arguments.delta" + additionalProperties: false + required: + - delta + - item_id + - output_index + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta + description: >- + Streaming event for incremental function call argument updates. + "OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone": + type: object + properties: + arguments: + type: string + description: >- + Final complete arguments JSON string for the function call + item_id: + type: string + description: >- + Unique identifier of the completed function call + output_index: + type: integer + description: >- + Index position of the item in the output list + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.function_call_arguments.done + default: response.function_call_arguments.done + description: >- + Event type identifier, always "response.function_call_arguments.done" + additionalProperties: false + required: + - arguments + - item_id + - output_index + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone + description: >- + Streaming event for when function call arguments are completed. + "OpenAIResponseObjectStreamResponseInProgress": + type: object + properties: + response: + $ref: '#/components/schemas/OpenAIResponseObject' + description: Current response state while in progress + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.in_progress + default: response.in_progress + description: >- + Event type identifier, always "response.in_progress" + additionalProperties: false + required: + - response + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseInProgress + description: >- + Streaming event indicating the response remains in progress. + "OpenAIResponseObjectStreamResponseIncomplete": + type: object + properties: + response: + $ref: '#/components/schemas/OpenAIResponseObject' + description: >- + Response object describing the incomplete state + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.incomplete + default: response.incomplete + description: >- + Event type identifier, always "response.incomplete" + additionalProperties: false + required: + - response + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseIncomplete + description: >- + Streaming event emitted when a response ends in an incomplete state. + "OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta": + type: object + properties: + delta: + type: string + item_id: + type: string + output_index: + type: integer + sequence_number: + type: integer + type: + type: string + const: response.mcp_call.arguments.delta + default: response.mcp_call.arguments.delta + additionalProperties: false + required: + - delta + - item_id + - output_index + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta + "OpenAIResponseObjectStreamResponseMcpCallArgumentsDone": + type: object + properties: + arguments: + type: string + item_id: + type: string + output_index: + type: integer + sequence_number: + type: integer + type: + type: string + const: response.mcp_call.arguments.done + default: response.mcp_call.arguments.done + additionalProperties: false + required: + - arguments + - item_id + - output_index + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseMcpCallArgumentsDone + "OpenAIResponseObjectStreamResponseMcpCallCompleted": + type: object + properties: + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.mcp_call.completed + default: response.mcp_call.completed + description: >- + Event type identifier, always "response.mcp_call.completed" + additionalProperties: false + required: + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseMcpCallCompleted + description: Streaming event for completed MCP calls. + "OpenAIResponseObjectStreamResponseMcpCallFailed": + type: object + properties: + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.mcp_call.failed + default: response.mcp_call.failed + description: >- + Event type identifier, always "response.mcp_call.failed" + additionalProperties: false + required: + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseMcpCallFailed + description: Streaming event for failed MCP calls. + "OpenAIResponseObjectStreamResponseMcpCallInProgress": + type: object + properties: + item_id: + type: string + description: Unique identifier of the MCP call + output_index: + type: integer + description: >- + Index position of the item in the output list + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.mcp_call.in_progress + default: response.mcp_call.in_progress + description: >- + Event type identifier, always "response.mcp_call.in_progress" + additionalProperties: false + required: + - item_id + - output_index + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseMcpCallInProgress + description: >- + Streaming event for MCP calls in progress. + "OpenAIResponseObjectStreamResponseMcpListToolsCompleted": + type: object + properties: + sequence_number: + type: integer + type: + type: string + const: response.mcp_list_tools.completed + default: response.mcp_list_tools.completed + additionalProperties: false + required: + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseMcpListToolsCompleted + "OpenAIResponseObjectStreamResponseMcpListToolsFailed": + type: object + properties: + sequence_number: + type: integer + type: + type: string + const: response.mcp_list_tools.failed + default: response.mcp_list_tools.failed + additionalProperties: false + required: + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseMcpListToolsFailed + "OpenAIResponseObjectStreamResponseMcpListToolsInProgress": + type: object + properties: + sequence_number: + type: integer + type: + type: string + const: response.mcp_list_tools.in_progress + default: response.mcp_list_tools.in_progress + additionalProperties: false + required: + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseMcpListToolsInProgress + "OpenAIResponseObjectStreamResponseOutputItemAdded": + type: object + properties: + response_id: + type: string + description: >- + Unique identifier of the response containing this output + item: + oneOf: + - $ref: '#/components/schemas/OpenAIResponseMessage' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageWebSearchToolCall' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageFileSearchToolCall' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageFunctionToolCall' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageMCPCall' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageMCPListTools' + - $ref: '#/components/schemas/OpenAIResponseMCPApprovalRequest' + discriminator: + propertyName: type + mapping: + message: '#/components/schemas/OpenAIResponseMessage' + web_search_call: '#/components/schemas/OpenAIResponseOutputMessageWebSearchToolCall' + file_search_call: '#/components/schemas/OpenAIResponseOutputMessageFileSearchToolCall' + function_call: '#/components/schemas/OpenAIResponseOutputMessageFunctionToolCall' + mcp_call: '#/components/schemas/OpenAIResponseOutputMessageMCPCall' + mcp_list_tools: '#/components/schemas/OpenAIResponseOutputMessageMCPListTools' + mcp_approval_request: '#/components/schemas/OpenAIResponseMCPApprovalRequest' + description: >- + The output item that was added (message, tool call, etc.) + output_index: + type: integer + description: >- + Index position of this item in the output list + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.output_item.added + default: response.output_item.added + description: >- + Event type identifier, always "response.output_item.added" + additionalProperties: false + required: + - response_id + - item + - output_index + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseOutputItemAdded + description: >- + Streaming event for when a new output item is added to the response. + "OpenAIResponseObjectStreamResponseOutputItemDone": + type: object + properties: + response_id: + type: string + description: >- + Unique identifier of the response containing this output + item: + oneOf: + - $ref: '#/components/schemas/OpenAIResponseMessage' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageWebSearchToolCall' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageFileSearchToolCall' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageFunctionToolCall' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageMCPCall' + - $ref: '#/components/schemas/OpenAIResponseOutputMessageMCPListTools' + - $ref: '#/components/schemas/OpenAIResponseMCPApprovalRequest' + discriminator: + propertyName: type + mapping: + message: '#/components/schemas/OpenAIResponseMessage' + web_search_call: '#/components/schemas/OpenAIResponseOutputMessageWebSearchToolCall' + file_search_call: '#/components/schemas/OpenAIResponseOutputMessageFileSearchToolCall' + function_call: '#/components/schemas/OpenAIResponseOutputMessageFunctionToolCall' + mcp_call: '#/components/schemas/OpenAIResponseOutputMessageMCPCall' + mcp_list_tools: '#/components/schemas/OpenAIResponseOutputMessageMCPListTools' + mcp_approval_request: '#/components/schemas/OpenAIResponseMCPApprovalRequest' + description: >- + The completed output item (message, tool call, etc.) + output_index: + type: integer + description: >- + Index position of this item in the output list + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.output_item.done + default: response.output_item.done + description: >- + Event type identifier, always "response.output_item.done" + additionalProperties: false + required: + - response_id + - item + - output_index + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseOutputItemDone + description: >- + Streaming event for when an output item is completed. + "OpenAIResponseObjectStreamResponseOutputTextAnnotationAdded": + type: object + properties: + item_id: + type: string + description: >- + Unique identifier of the item to which the annotation is being added + output_index: + type: integer + description: >- + Index position of the output item in the response's output array + content_index: + type: integer + description: >- + Index position of the content part within the output item + annotation_index: + type: integer + description: >- + Index of the annotation within the content part + annotation: + oneOf: + - $ref: '#/components/schemas/OpenAIResponseAnnotationFileCitation' + - $ref: '#/components/schemas/OpenAIResponseAnnotationCitation' + - $ref: '#/components/schemas/OpenAIResponseAnnotationContainerFileCitation' + - $ref: '#/components/schemas/OpenAIResponseAnnotationFilePath' + discriminator: + propertyName: type + mapping: + file_citation: '#/components/schemas/OpenAIResponseAnnotationFileCitation' + url_citation: '#/components/schemas/OpenAIResponseAnnotationCitation' + container_file_citation: '#/components/schemas/OpenAIResponseAnnotationContainerFileCitation' + file_path: '#/components/schemas/OpenAIResponseAnnotationFilePath' + description: The annotation object being added + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.output_text.annotation.added + default: response.output_text.annotation.added + description: >- + Event type identifier, always "response.output_text.annotation.added" + additionalProperties: false + required: + - item_id + - output_index + - content_index + - annotation_index + - annotation + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseOutputTextAnnotationAdded + description: >- + Streaming event for when an annotation is added to output text. + "OpenAIResponseObjectStreamResponseOutputTextDelta": + type: object + properties: + content_index: + type: integer + description: Index position within the text content + delta: + type: string + description: Incremental text content being added + item_id: + type: string + description: >- + Unique identifier of the output item being updated + output_index: + type: integer + description: >- + Index position of the item in the output list + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.output_text.delta + default: response.output_text.delta + description: >- + Event type identifier, always "response.output_text.delta" + additionalProperties: false + required: + - content_index + - delta + - item_id + - output_index + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseOutputTextDelta + description: >- + Streaming event for incremental text content updates. + "OpenAIResponseObjectStreamResponseOutputTextDone": + type: object + properties: + content_index: + type: integer + description: Index position within the text content + text: + type: string + description: >- + Final complete text content of the output item + item_id: + type: string + description: >- + Unique identifier of the completed output item + output_index: + type: integer + description: >- + Index position of the item in the output list + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.output_text.done + default: response.output_text.done + description: >- + Event type identifier, always "response.output_text.done" + additionalProperties: false + required: + - content_index + - text + - item_id + - output_index + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseOutputTextDone + description: >- + Streaming event for when text output is completed. + "OpenAIResponseObjectStreamResponseReasoningSummaryPartAdded": + type: object + properties: + item_id: + type: string + description: Unique identifier of the output item + output_index: + type: integer + description: Index position of the output item + part: + $ref: '#/components/schemas/OpenAIResponseContentPartReasoningSummary' + description: The summary part that was added + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + summary_index: + type: integer + description: >- + Index of the summary part within the reasoning summary + type: + type: string + const: response.reasoning_summary_part.added + default: response.reasoning_summary_part.added + description: >- + Event type identifier, always "response.reasoning_summary_part.added" + additionalProperties: false + required: + - item_id + - output_index + - part + - sequence_number + - summary_index + - type + title: >- + OpenAIResponseObjectStreamResponseReasoningSummaryPartAdded + description: >- + Streaming event for when a new reasoning summary part is added. + "OpenAIResponseObjectStreamResponseReasoningSummaryPartDone": + type: object + properties: + item_id: + type: string + description: Unique identifier of the output item + output_index: + type: integer + description: Index position of the output item + part: + $ref: '#/components/schemas/OpenAIResponseContentPartReasoningSummary' + description: The completed summary part + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + summary_index: + type: integer + description: >- + Index of the summary part within the reasoning summary + type: + type: string + const: response.reasoning_summary_part.done + default: response.reasoning_summary_part.done + description: >- + Event type identifier, always "response.reasoning_summary_part.done" + additionalProperties: false + required: + - item_id + - output_index + - part + - sequence_number + - summary_index + - type + title: >- + OpenAIResponseObjectStreamResponseReasoningSummaryPartDone + description: >- + Streaming event for when a reasoning summary part is completed. + "OpenAIResponseObjectStreamResponseReasoningSummaryTextDelta": + type: object + properties: + delta: + type: string + description: Incremental summary text being added + item_id: + type: string + description: Unique identifier of the output item + output_index: + type: integer + description: Index position of the output item + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + summary_index: + type: integer + description: >- + Index of the summary part within the reasoning summary + type: + type: string + const: response.reasoning_summary_text.delta + default: response.reasoning_summary_text.delta + description: >- + Event type identifier, always "response.reasoning_summary_text.delta" + additionalProperties: false + required: + - delta + - item_id + - output_index + - sequence_number + - summary_index + - type + title: >- + OpenAIResponseObjectStreamResponseReasoningSummaryTextDelta + description: >- + Streaming event for incremental reasoning summary text updates. + "OpenAIResponseObjectStreamResponseReasoningSummaryTextDone": + type: object + properties: + text: + type: string + description: Final complete summary text + item_id: + type: string + description: Unique identifier of the output item + output_index: + type: integer + description: Index position of the output item + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + summary_index: + type: integer + description: >- + Index of the summary part within the reasoning summary + type: + type: string + const: response.reasoning_summary_text.done + default: response.reasoning_summary_text.done + description: >- + Event type identifier, always "response.reasoning_summary_text.done" + additionalProperties: false + required: + - text + - item_id + - output_index + - sequence_number + - summary_index + - type + title: >- + OpenAIResponseObjectStreamResponseReasoningSummaryTextDone + description: >- + Streaming event for when reasoning summary text is completed. + "OpenAIResponseObjectStreamResponseReasoningTextDelta": + type: object + properties: + content_index: + type: integer + description: >- + Index position of the reasoning content part + delta: + type: string + description: Incremental reasoning text being added + item_id: + type: string + description: >- + Unique identifier of the output item being updated + output_index: + type: integer + description: >- + Index position of the item in the output list + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.reasoning_text.delta + default: response.reasoning_text.delta + description: >- + Event type identifier, always "response.reasoning_text.delta" + additionalProperties: false + required: + - content_index + - delta + - item_id + - output_index + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseReasoningTextDelta + description: >- + Streaming event for incremental reasoning text updates. + "OpenAIResponseObjectStreamResponseReasoningTextDone": + type: object + properties: + content_index: + type: integer + description: >- + Index position of the reasoning content part + text: + type: string + description: Final complete reasoning text + item_id: + type: string + description: >- + Unique identifier of the completed output item + output_index: + type: integer + description: >- + Index position of the item in the output list + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.reasoning_text.done + default: response.reasoning_text.done + description: >- + Event type identifier, always "response.reasoning_text.done" + additionalProperties: false + required: + - content_index + - text + - item_id + - output_index + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseReasoningTextDone + description: >- + Streaming event for when reasoning text is completed. + "OpenAIResponseObjectStreamResponseRefusalDelta": + type: object + properties: + content_index: + type: integer + description: Index position of the content part + delta: + type: string + description: Incremental refusal text being added + item_id: + type: string + description: Unique identifier of the output item + output_index: + type: integer + description: >- + Index position of the item in the output list + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.refusal.delta + default: response.refusal.delta + description: >- + Event type identifier, always "response.refusal.delta" + additionalProperties: false + required: + - content_index + - delta + - item_id + - output_index + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseRefusalDelta + description: >- + Streaming event for incremental refusal text updates. + "OpenAIResponseObjectStreamResponseRefusalDone": + type: object + properties: + content_index: + type: integer + description: Index position of the content part + refusal: + type: string + description: Final complete refusal text + item_id: + type: string + description: Unique identifier of the output item + output_index: + type: integer + description: >- + Index position of the item in the output list + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.refusal.done + default: response.refusal.done + description: >- + Event type identifier, always "response.refusal.done" + additionalProperties: false + required: + - content_index + - refusal + - item_id + - output_index + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseRefusalDone + description: >- + Streaming event for when refusal text is completed. + "OpenAIResponseObjectStreamResponseWebSearchCallCompleted": + type: object + properties: + item_id: + type: string + description: >- + Unique identifier of the completed web search call + output_index: + type: integer + description: >- + Index position of the item in the output list + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.web_search_call.completed + default: response.web_search_call.completed + description: >- + Event type identifier, always "response.web_search_call.completed" + additionalProperties: false + required: + - item_id + - output_index + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseWebSearchCallCompleted + description: >- + Streaming event for completed web search calls. + "OpenAIResponseObjectStreamResponseWebSearchCallInProgress": + type: object + properties: + item_id: + type: string + description: Unique identifier of the web search call + output_index: + type: integer + description: >- + Index position of the item in the output list + sequence_number: + type: integer + description: >- + Sequential number for ordering streaming events + type: + type: string + const: response.web_search_call.in_progress + default: response.web_search_call.in_progress + description: >- + Event type identifier, always "response.web_search_call.in_progress" + additionalProperties: false + required: + - item_id + - output_index + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseWebSearchCallInProgress + description: >- + Streaming event for web search calls in progress. + "OpenAIResponseObjectStreamResponseWebSearchCallSearching": + type: object + properties: + item_id: + type: string + output_index: + type: integer + sequence_number: + type: integer + type: + type: string + const: response.web_search_call.searching + default: response.web_search_call.searching + additionalProperties: false + required: + - item_id + - output_index + - sequence_number + - type + title: >- + OpenAIResponseObjectStreamResponseWebSearchCallSearching + OpenAIDeleteResponseObject: + type: object + properties: + id: + type: string + description: >- + Unique identifier of the deleted response + object: + type: string + const: response + default: response + description: >- + Object type identifier, always "response" + deleted: + type: boolean + default: true + description: Deletion confirmation flag, always True + additionalProperties: false + required: + - id + - object + - deleted + title: OpenAIDeleteResponseObject + description: >- + Response object confirming deletion of an OpenAI response. + ListOpenAIResponseInputItem: + type: object + properties: + data: + type: array + items: + $ref: '#/components/schemas/OpenAIResponseInput' + description: List of input items + object: + type: string + const: list + default: list + description: Object type identifier, always "list" + additionalProperties: false + required: + - data + - object + title: ListOpenAIResponseInputItem + description: >- + List container for OpenAI response input items. + RunShieldRequest: + type: object + properties: + shield_id: + type: string + description: The identifier of the shield to run. + messages: + type: array + items: + $ref: '#/components/schemas/OpenAIMessageParam' + description: The messages to run the shield on. + params: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: The parameters of the shield. + additionalProperties: false + required: + - shield_id + - messages + - params + title: RunShieldRequest + RunShieldResponse: + type: object + properties: + violation: + $ref: '#/components/schemas/SafetyViolation' + description: >- + (Optional) Safety violation detected by the shield, if any + additionalProperties: false + title: RunShieldResponse + description: Response from running a safety shield. + SafetyViolation: + type: object + properties: + violation_level: + $ref: '#/components/schemas/ViolationLevel' + description: Severity level of the violation + user_message: + type: string + description: >- + (Optional) Message to convey to the user about the violation + metadata: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + Additional metadata including specific violation codes for debugging and + telemetry + additionalProperties: false + required: + - violation_level + - metadata + title: SafetyViolation + description: >- + Details of a safety violation detected by content moderation. + ViolationLevel: + type: string + enum: + - info + - warn + - error + title: ViolationLevel + description: Severity level of a safety violation. + AgentTurnInputType: + type: object + properties: + type: + type: string + const: agent_turn_input + default: agent_turn_input + description: >- + Discriminator type. Always "agent_turn_input" + additionalProperties: false + required: + - type + title: AgentTurnInputType + description: Parameter type for agent turn input. + AggregationFunctionType: + type: string + enum: + - average + - weighted_average + - median + - categorical_count + - accuracy + title: AggregationFunctionType + description: >- + Types of aggregation functions for scoring results. + ArrayType: + type: object + properties: + type: + type: string + const: array + default: array + description: Discriminator type. Always "array" + additionalProperties: false + required: + - type + title: ArrayType + description: Parameter type for array values. + BasicScoringFnParams: + type: object + properties: + type: + $ref: '#/components/schemas/ScoringFnParamsType' + const: basic + default: basic + description: >- + The type of scoring function parameters, always basic + aggregation_functions: + type: array + items: + $ref: '#/components/schemas/AggregationFunctionType' + description: >- + Aggregation functions to apply to the scores of each row + additionalProperties: false + required: + - type + - aggregation_functions + title: BasicScoringFnParams + description: >- + Parameters for basic scoring function configuration. + BooleanType: + type: object + properties: + type: + type: string + const: boolean + default: boolean + description: Discriminator type. Always "boolean" + additionalProperties: false + required: + - type + title: BooleanType + description: Parameter type for boolean values. + ChatCompletionInputType: + type: object + properties: + type: + type: string + const: chat_completion_input + default: chat_completion_input + description: >- + Discriminator type. Always "chat_completion_input" + additionalProperties: false + required: + - type + title: ChatCompletionInputType + description: >- + Parameter type for chat completion input. + CompletionInputType: + type: object + properties: + type: + type: string + const: completion_input + default: completion_input + description: >- + Discriminator type. Always "completion_input" + additionalProperties: false + required: + - type + title: CompletionInputType + description: Parameter type for completion input. + JsonType: + type: object + properties: + type: + type: string + const: json + default: json + description: Discriminator type. Always "json" + additionalProperties: false + required: + - type + title: JsonType + description: Parameter type for JSON values. + LLMAsJudgeScoringFnParams: + type: object + properties: + type: + $ref: '#/components/schemas/ScoringFnParamsType' + const: llm_as_judge + default: llm_as_judge + description: >- + The type of scoring function parameters, always llm_as_judge + judge_model: + type: string + description: >- + Identifier of the LLM model to use as a judge for scoring + prompt_template: + type: string + description: >- + (Optional) Custom prompt template for the judge model + judge_score_regexes: + type: array + items: + type: string + description: >- + Regexes to extract the answer from generated response + aggregation_functions: + type: array + items: + $ref: '#/components/schemas/AggregationFunctionType' + description: >- + Aggregation functions to apply to the scores of each row + additionalProperties: false + required: + - type + - judge_model + - judge_score_regexes + - aggregation_functions + title: LLMAsJudgeScoringFnParams + description: >- + Parameters for LLM-as-judge scoring function configuration. + NumberType: + type: object + properties: + type: + type: string + const: number + default: number + description: Discriminator type. Always "number" + additionalProperties: false + required: + - type + title: NumberType + description: Parameter type for numeric values. + ObjectType: + type: object + properties: + type: + type: string + const: object + default: object + description: Discriminator type. Always "object" + additionalProperties: false + required: + - type + title: ObjectType + description: Parameter type for object values. + RegexParserScoringFnParams: + type: object + properties: + type: + $ref: '#/components/schemas/ScoringFnParamsType' + const: regex_parser + default: regex_parser + description: >- + The type of scoring function parameters, always regex_parser + parsing_regexes: + type: array + items: + type: string + description: >- + Regex to extract the answer from generated response + aggregation_functions: + type: array + items: + $ref: '#/components/schemas/AggregationFunctionType' + description: >- + Aggregation functions to apply to the scores of each row + additionalProperties: false + required: + - type + - parsing_regexes + - aggregation_functions + title: RegexParserScoringFnParams + description: >- + Parameters for regex parser scoring function configuration. + ScoringFn: + type: object + properties: + identifier: + type: string + provider_resource_id: + type: string + provider_id: + type: string + type: + type: string + enum: + - model + - shield + - vector_db + - dataset + - scoring_function + - benchmark + - tool + - tool_group + - prompt + const: scoring_function + default: scoring_function + description: >- + The resource type, always scoring_function + description: + type: string + metadata: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + return_type: + oneOf: + - $ref: '#/components/schemas/StringType' + - $ref: '#/components/schemas/NumberType' + - $ref: '#/components/schemas/BooleanType' + - $ref: '#/components/schemas/ArrayType' + - $ref: '#/components/schemas/ObjectType' + - $ref: '#/components/schemas/JsonType' + - $ref: '#/components/schemas/UnionType' + - $ref: '#/components/schemas/ChatCompletionInputType' + - $ref: '#/components/schemas/CompletionInputType' + - $ref: '#/components/schemas/AgentTurnInputType' + discriminator: + propertyName: type + mapping: + string: '#/components/schemas/StringType' + number: '#/components/schemas/NumberType' + boolean: '#/components/schemas/BooleanType' + array: '#/components/schemas/ArrayType' + object: '#/components/schemas/ObjectType' + json: '#/components/schemas/JsonType' + union: '#/components/schemas/UnionType' + chat_completion_input: '#/components/schemas/ChatCompletionInputType' + completion_input: '#/components/schemas/CompletionInputType' + agent_turn_input: '#/components/schemas/AgentTurnInputType' + params: + $ref: '#/components/schemas/ScoringFnParams' + additionalProperties: false + required: + - identifier + - provider_id + - type + - metadata + - return_type + title: ScoringFn + description: >- + A scoring function resource for evaluating model outputs. + ScoringFnParams: + oneOf: + - $ref: '#/components/schemas/LLMAsJudgeScoringFnParams' + - $ref: '#/components/schemas/RegexParserScoringFnParams' + - $ref: '#/components/schemas/BasicScoringFnParams' + discriminator: + propertyName: type + mapping: + llm_as_judge: '#/components/schemas/LLMAsJudgeScoringFnParams' + regex_parser: '#/components/schemas/RegexParserScoringFnParams' + basic: '#/components/schemas/BasicScoringFnParams' + ScoringFnParamsType: + type: string + enum: + - llm_as_judge + - regex_parser + - basic + title: ScoringFnParamsType + description: >- + Types of scoring function parameter configurations. + StringType: + type: object + properties: + type: + type: string + const: string + default: string + description: Discriminator type. Always "string" + additionalProperties: false + required: + - type + title: StringType + description: Parameter type for string values. + UnionType: + type: object + properties: + type: + type: string + const: union + default: union + description: Discriminator type. Always "union" + additionalProperties: false + required: + - type + title: UnionType + description: Parameter type for union values. + ListScoringFunctionsResponse: + type: object + properties: + data: + type: array + items: + $ref: '#/components/schemas/ScoringFn' + additionalProperties: false + required: + - data + title: ListScoringFunctionsResponse + ParamType: + oneOf: + - $ref: '#/components/schemas/StringType' + - $ref: '#/components/schemas/NumberType' + - $ref: '#/components/schemas/BooleanType' + - $ref: '#/components/schemas/ArrayType' + - $ref: '#/components/schemas/ObjectType' + - $ref: '#/components/schemas/JsonType' + - $ref: '#/components/schemas/UnionType' + - $ref: '#/components/schemas/ChatCompletionInputType' + - $ref: '#/components/schemas/CompletionInputType' + - $ref: '#/components/schemas/AgentTurnInputType' + discriminator: + propertyName: type + mapping: + string: '#/components/schemas/StringType' + number: '#/components/schemas/NumberType' + boolean: '#/components/schemas/BooleanType' + array: '#/components/schemas/ArrayType' + object: '#/components/schemas/ObjectType' + json: '#/components/schemas/JsonType' + union: '#/components/schemas/UnionType' + chat_completion_input: '#/components/schemas/ChatCompletionInputType' + completion_input: '#/components/schemas/CompletionInputType' + agent_turn_input: '#/components/schemas/AgentTurnInputType' + RegisterScoringFunctionRequest: + type: object + properties: + scoring_fn_id: + type: string + description: >- + The ID of the scoring function to register. + description: + type: string + description: The description of the scoring function. + return_type: + $ref: '#/components/schemas/ParamType' + description: The return type of the scoring function. + provider_scoring_fn_id: + type: string + description: >- + The ID of the provider scoring function to use for the scoring function. + provider_id: + type: string + description: >- + The ID of the provider to use for the scoring function. + params: + $ref: '#/components/schemas/ScoringFnParams' + description: >- + The parameters for the scoring function for benchmark eval, these can + be overridden for app eval. + additionalProperties: false + required: + - scoring_fn_id + - description + - return_type + title: RegisterScoringFunctionRequest + ScoreRequest: + type: object + properties: + input_rows: + type: array + items: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: The rows to score. + scoring_functions: + type: object + additionalProperties: + oneOf: + - $ref: '#/components/schemas/ScoringFnParams' + - type: 'null' + description: >- + The scoring functions to use for the scoring. + additionalProperties: false + required: + - input_rows + - scoring_functions + title: ScoreRequest + ScoreResponse: + type: object + properties: + results: + type: object + additionalProperties: + $ref: '#/components/schemas/ScoringResult' + description: >- + A map of scoring function name to ScoringResult. + additionalProperties: false + required: + - results + title: ScoreResponse + description: The response from scoring. + ScoringResult: + type: object + properties: + score_rows: + type: array + items: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + The scoring result for each row. Each row is a map of column name to value. + aggregated_results: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: Map of metric name to aggregated value + additionalProperties: false + required: + - score_rows + - aggregated_results + title: ScoringResult + description: A scoring result for a single row. + ScoreBatchRequest: + type: object + properties: + dataset_id: + type: string + description: The ID of the dataset to score. + scoring_functions: + type: object + additionalProperties: + oneOf: + - $ref: '#/components/schemas/ScoringFnParams' + - type: 'null' + description: >- + The scoring functions to use for the scoring. + save_results_dataset: + type: boolean + description: >- + Whether to save the results to a dataset. + additionalProperties: false + required: + - dataset_id + - scoring_functions + - save_results_dataset + title: ScoreBatchRequest + ScoreBatchResponse: + type: object + properties: + dataset_id: + type: string + description: >- + (Optional) The identifier of the dataset that was scored + results: + type: object + additionalProperties: + $ref: '#/components/schemas/ScoringResult' + description: >- + A map of scoring function name to ScoringResult + additionalProperties: false + required: + - results + title: ScoreBatchResponse + description: >- + Response from batch scoring operations on datasets. + Shield: + type: object + properties: + identifier: + type: string + provider_resource_id: + type: string + provider_id: + type: string + type: + type: string + enum: + - model + - shield + - vector_db + - dataset + - scoring_function + - benchmark + - tool + - tool_group + - prompt + const: shield + default: shield + description: The resource type, always shield + params: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + (Optional) Configuration parameters for the shield + additionalProperties: false + required: + - identifier + - provider_id + - type + title: Shield + description: >- + A safety shield resource that can be used to check content. + ListShieldsResponse: + type: object + properties: + data: + type: array + items: + $ref: '#/components/schemas/Shield' + additionalProperties: false + required: + - data + title: ListShieldsResponse + RegisterShieldRequest: + type: object + properties: + shield_id: + type: string + description: >- + The identifier of the shield to register. + provider_shield_id: + type: string + description: >- + The identifier of the shield in the provider. + provider_id: + type: string + description: The identifier of the provider. + params: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: The parameters of the shield. + additionalProperties: false + required: + - shield_id + title: RegisterShieldRequest + CompletionMessage: + type: object + properties: + role: + type: string + const: assistant + default: assistant + description: >- + Must be "assistant" to identify this as the model's response + content: + $ref: '#/components/schemas/InterleavedContent' + description: The content of the model's response + stop_reason: + type: string + enum: + - end_of_turn + - end_of_message + - out_of_tokens + description: >- + Reason why the model stopped generating. Options are: - `StopReason.end_of_turn`: + The model finished generating the entire response. - `StopReason.end_of_message`: + The model finished generating but generated a partial response -- usually, + a tool call. The user may call the tool and continue the conversation + with the tool's response. - `StopReason.out_of_tokens`: The model ran + out of token budget. + tool_calls: + type: array + items: + $ref: '#/components/schemas/ToolCall' + description: >- + List of tool calls. Each tool call is a ToolCall object. + additionalProperties: false + required: + - role + - content + - stop_reason + title: CompletionMessage + description: >- + A message containing the model's (assistant) response in a chat conversation. + ImageContentItem: + type: object + properties: + type: + type: string + const: image + default: image + description: >- + Discriminator type of the content item. Always "image" + image: + type: object + properties: + url: + $ref: '#/components/schemas/URL' + description: >- + A URL of the image or data URL in the format of data:image/{type};base64,{data}. + Note that URL could have length limits. + data: + type: string + contentEncoding: base64 + description: base64 encoded image data as string + additionalProperties: false + description: >- + Image as a base64 encoded string or an URL + additionalProperties: false + required: + - type + - image + title: ImageContentItem + description: A image content item + InterleavedContent: + oneOf: + - type: string + - $ref: '#/components/schemas/InterleavedContentItem' + - type: array + items: + $ref: '#/components/schemas/InterleavedContentItem' + InterleavedContentItem: + oneOf: + - $ref: '#/components/schemas/ImageContentItem' + - $ref: '#/components/schemas/TextContentItem' + discriminator: + propertyName: type + mapping: + image: '#/components/schemas/ImageContentItem' + text: '#/components/schemas/TextContentItem' + Message: + oneOf: + - $ref: '#/components/schemas/UserMessage' + - $ref: '#/components/schemas/SystemMessage' + - $ref: '#/components/schemas/ToolResponseMessage' + - $ref: '#/components/schemas/CompletionMessage' + discriminator: + propertyName: role + mapping: + user: '#/components/schemas/UserMessage' + system: '#/components/schemas/SystemMessage' + tool: '#/components/schemas/ToolResponseMessage' + assistant: '#/components/schemas/CompletionMessage' + SystemMessage: + type: object + properties: + role: + type: string + const: system + default: system + description: >- + Must be "system" to identify this as a system message + content: + $ref: '#/components/schemas/InterleavedContent' + description: >- + The content of the "system prompt". If multiple system messages are provided, + they are concatenated. The underlying Llama Stack code may also add other + system messages (for example, for formatting tool definitions). + additionalProperties: false + required: + - role + - content + title: SystemMessage + description: >- + A system message providing instructions or context to the model. + TextContentItem: + type: object + properties: + type: + type: string + const: text + default: text + description: >- + Discriminator type of the content item. Always "text" + text: + type: string + description: Text content + additionalProperties: false + required: + - type + - text + title: TextContentItem + description: A text content item + ToolCall: + type: object + properties: + call_id: + type: string + tool_name: + oneOf: + - type: string + enum: + - brave_search + - wolfram_alpha + - photogen + - code_interpreter + title: BuiltinTool + - type: string + arguments: + type: string + additionalProperties: false + required: + - call_id + - tool_name + - arguments + title: ToolCall + ToolResponseMessage: + type: object + properties: + role: + type: string + const: tool + default: tool + description: >- + Must be "tool" to identify this as a tool response + call_id: + type: string + description: >- + Unique identifier for the tool call this response is for + content: + $ref: '#/components/schemas/InterleavedContent' + description: The response content from the tool + additionalProperties: false + required: + - role + - call_id + - content + title: ToolResponseMessage + description: >- + A message representing the result of a tool invocation. + URL: + type: object + properties: + uri: + type: string + description: The URL string pointing to the resource + additionalProperties: false + required: + - uri + title: URL + description: A URL reference to external content. + UserMessage: + type: object + properties: + role: + type: string + const: user + default: user + description: >- + Must be "user" to identify this as a user message + content: + $ref: '#/components/schemas/InterleavedContent' + description: >- + The content of the message, which can include text and other media + context: + $ref: '#/components/schemas/InterleavedContent' + description: >- + (Optional) This field is used internally by Llama Stack to pass RAG context. + This field may be removed in the API in the future. + additionalProperties: false + required: + - role + - content + title: UserMessage + description: >- + A message from the user in a chat conversation. + SyntheticDataGenerateRequest: + type: object + properties: + dialogs: + type: array + items: + $ref: '#/components/schemas/Message' + description: >- + List of conversation messages to use as input for synthetic data generation + filtering_function: + type: string + enum: + - none + - random + - top_k + - top_p + - top_k_top_p + - sigmoid + description: >- + Type of filtering to apply to generated synthetic data samples + model: + type: string + description: >- + (Optional) The identifier of the model to use. The model must be registered + with Llama Stack and available via the /models endpoint + additionalProperties: false + required: + - dialogs + - filtering_function + title: SyntheticDataGenerateRequest + SyntheticDataGenerationResponse: + type: object + properties: + synthetic_data: + type: array + items: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + List of generated synthetic data samples that passed the filtering criteria + statistics: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + (Optional) Statistical information about the generation process and filtering + results + additionalProperties: false + required: + - synthetic_data + title: SyntheticDataGenerationResponse + description: >- + Response from the synthetic data generation. Batch of (prompt, response, score) + tuples that pass the threshold. + InvokeToolRequest: + type: object + properties: + tool_name: + type: string + description: The name of the tool to invoke. + kwargs: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + A dictionary of arguments to pass to the tool. + additionalProperties: false + required: + - tool_name + - kwargs + title: InvokeToolRequest + ToolInvocationResult: + type: object + properties: + content: + $ref: '#/components/schemas/InterleavedContent' + description: >- + (Optional) The output content from the tool execution + error_message: + type: string + description: >- + (Optional) Error message if the tool execution failed + error_code: + type: integer + description: >- + (Optional) Numeric error code if the tool execution failed + metadata: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + (Optional) Additional metadata about the tool execution + additionalProperties: false + title: ToolInvocationResult + description: Result of a tool invocation. + ToolDef: + type: object + properties: + toolgroup_id: + type: string + description: >- + (Optional) ID of the tool group this tool belongs to + name: + type: string + description: Name of the tool + description: + type: string + description: >- + (Optional) Human-readable description of what the tool does + input_schema: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + (Optional) JSON Schema for tool inputs (MCP inputSchema) + output_schema: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + (Optional) JSON Schema for tool outputs (MCP outputSchema) + metadata: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + (Optional) Additional metadata about the tool + additionalProperties: false + required: + - name + title: ToolDef + description: >- + Tool definition used in runtime contexts. + ListToolDefsResponse: + type: object + properties: + data: + type: array + items: + $ref: '#/components/schemas/ToolDef' + description: List of tool definitions + additionalProperties: false + required: + - data + title: ListToolDefsResponse + description: >- + Response containing a list of tool definitions. + RAGDocument: + type: object + properties: + document_id: + type: string + description: The unique identifier for the document. + content: + oneOf: + - type: string + - $ref: '#/components/schemas/InterleavedContentItem' + - type: array + items: + $ref: '#/components/schemas/InterleavedContentItem' + - $ref: '#/components/schemas/URL' + description: The content of the document. + mime_type: + type: string + description: The MIME type of the document. + metadata: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: Additional metadata for the document. + additionalProperties: false + required: + - document_id + - content + - metadata + title: RAGDocument + description: >- + A document to be used for document ingestion in the RAG Tool. + InsertRequest: + type: object + properties: + documents: + type: array + items: + $ref: '#/components/schemas/RAGDocument' + description: >- + List of documents to index in the RAG system + vector_db_id: + type: string + description: >- + ID of the vector database to store the document embeddings + chunk_size_in_tokens: + type: integer + description: >- + (Optional) Size in tokens for document chunking during indexing + additionalProperties: false + required: + - documents + - vector_db_id + - chunk_size_in_tokens + title: InsertRequest + DefaultRAGQueryGeneratorConfig: + type: object + properties: + type: + type: string + const: default + default: default + description: >- + Type of query generator, always 'default' + separator: + type: string + default: ' ' + description: >- + String separator used to join query terms + additionalProperties: false + required: + - type + - separator + title: DefaultRAGQueryGeneratorConfig + description: >- + Configuration for the default RAG query generator. + LLMRAGQueryGeneratorConfig: + type: object + properties: + type: + type: string + const: llm + default: llm + description: Type of query generator, always 'llm' + model: + type: string + description: >- + Name of the language model to use for query generation + template: + type: string + description: >- + Template string for formatting the query generation prompt + additionalProperties: false + required: + - type + - model + - template + title: LLMRAGQueryGeneratorConfig + description: >- + Configuration for the LLM-based RAG query generator. + RAGQueryConfig: + type: object + properties: + query_generator_config: + oneOf: + - $ref: '#/components/schemas/DefaultRAGQueryGeneratorConfig' + - $ref: '#/components/schemas/LLMRAGQueryGeneratorConfig' + discriminator: + propertyName: type + mapping: + default: '#/components/schemas/DefaultRAGQueryGeneratorConfig' + llm: '#/components/schemas/LLMRAGQueryGeneratorConfig' + description: Configuration for the query generator. + max_tokens_in_context: + type: integer + default: 4096 + description: Maximum number of tokens in the context. + max_chunks: + type: integer + default: 5 + description: Maximum number of chunks to retrieve. + chunk_template: + type: string + default: > + Result {index} + + Content: {chunk.content} + + Metadata: {metadata} + description: >- + Template for formatting each retrieved chunk in the context. Available + placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk + content string), {metadata} (chunk metadata dict). Default: "Result {index}\nContent: + {chunk.content}\nMetadata: {metadata}\n" + mode: + $ref: '#/components/schemas/RAGSearchMode' + default: vector + description: >- + Search mode for retrieval—either "vector", "keyword", or "hybrid". Default + "vector". + ranker: + $ref: '#/components/schemas/Ranker' + description: >- + Configuration for the ranker to use in hybrid search. Defaults to RRF + ranker. + additionalProperties: false + required: + - query_generator_config + - max_tokens_in_context + - max_chunks + - chunk_template + title: RAGQueryConfig + description: >- + Configuration for the RAG query generation. + RAGSearchMode: + type: string + enum: + - vector + - keyword + - hybrid + title: RAGSearchMode + description: >- + Search modes for RAG query retrieval: - VECTOR: Uses vector similarity search + for semantic matching - KEYWORD: Uses keyword-based search for exact matching + - HYBRID: Combines both vector and keyword search for better results + RRFRanker: + type: object + properties: + type: + type: string + const: rrf + default: rrf + description: The type of ranker, always "rrf" + impact_factor: + type: number + default: 60.0 + description: >- + The impact factor for RRF scoring. Higher values give more weight to higher-ranked + results. Must be greater than 0 + additionalProperties: false + required: + - type + - impact_factor + title: RRFRanker + description: >- + Reciprocal Rank Fusion (RRF) ranker configuration. + Ranker: + oneOf: + - $ref: '#/components/schemas/RRFRanker' + - $ref: '#/components/schemas/WeightedRanker' + discriminator: + propertyName: type + mapping: + rrf: '#/components/schemas/RRFRanker' + weighted: '#/components/schemas/WeightedRanker' + WeightedRanker: + type: object + properties: + type: + type: string + const: weighted + default: weighted + description: The type of ranker, always "weighted" + alpha: + type: number + default: 0.5 + description: >- + Weight factor between 0 and 1. 0 means only use keyword scores, 1 means + only use vector scores, values in between blend both scores. + additionalProperties: false + required: + - type + - alpha + title: WeightedRanker + description: >- + Weighted ranker configuration that combines vector and keyword scores. + QueryRequest: + type: object + properties: + content: + $ref: '#/components/schemas/InterleavedContent' + description: >- + The query content to search for in the indexed documents + vector_db_ids: + type: array + items: + type: string + description: >- + List of vector database IDs to search within + query_config: + $ref: '#/components/schemas/RAGQueryConfig' + description: >- + (Optional) Configuration parameters for the query operation + additionalProperties: false + required: + - content + - vector_db_ids + title: QueryRequest + RAGQueryResult: + type: object + properties: + content: + $ref: '#/components/schemas/InterleavedContent' + description: >- + (Optional) The retrieved content from the query + metadata: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + Additional metadata about the query result + additionalProperties: false + required: + - metadata + title: RAGQueryResult + description: >- + Result of a RAG query containing retrieved content and metadata. + ToolGroup: + type: object + properties: + identifier: + type: string + provider_resource_id: + type: string + provider_id: + type: string + type: + type: string + enum: + - model + - shield + - vector_db + - dataset + - scoring_function + - benchmark + - tool + - tool_group + - prompt + const: tool_group + default: tool_group + description: Type of resource, always 'tool_group' + mcp_endpoint: + $ref: '#/components/schemas/URL' + description: >- + (Optional) Model Context Protocol endpoint for remote tools + args: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + (Optional) Additional arguments for the tool group + additionalProperties: false + required: + - identifier + - provider_id + - type + title: ToolGroup + description: >- + A group of related tools managed together. + ListToolGroupsResponse: + type: object + properties: + data: + type: array + items: + $ref: '#/components/schemas/ToolGroup' + description: List of tool groups + additionalProperties: false + required: + - data + title: ListToolGroupsResponse + description: >- + Response containing a list of tool groups. + RegisterToolGroupRequest: + type: object + properties: + toolgroup_id: + type: string + description: The ID of the tool group to register. + provider_id: + type: string + description: >- + The ID of the provider to use for the tool group. + mcp_endpoint: + $ref: '#/components/schemas/URL' + description: >- + The MCP endpoint to use for the tool group. + args: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + A dictionary of arguments to pass to the tool group. + additionalProperties: false + required: + - toolgroup_id + - provider_id + title: RegisterToolGroupRequest + Chunk: + type: object + properties: + content: + $ref: '#/components/schemas/InterleavedContent' + description: >- + The content of the chunk, which can be interleaved text, images, or other + types. + metadata: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + Metadata associated with the chunk that will be used in the model context + during inference. + embedding: + type: array + items: + type: number + description: >- + Optional embedding for the chunk. If not provided, it will be computed + later. + stored_chunk_id: + type: string + description: >- + The chunk ID that is stored in the vector database. Used for backend functionality. + chunk_metadata: + $ref: '#/components/schemas/ChunkMetadata' + description: >- + Metadata for the chunk that will NOT be used in the context during inference. + The `chunk_metadata` is required backend functionality. + additionalProperties: false + required: + - content + - metadata + title: Chunk + description: >- + A chunk of content that can be inserted into a vector database. + ChunkMetadata: + type: object + properties: + chunk_id: + type: string + description: >- + The ID of the chunk. If not set, it will be generated based on the document + ID and content. + document_id: + type: string + description: >- + The ID of the document this chunk belongs to. + source: + type: string + description: >- + The source of the content, such as a URL, file path, or other identifier. + created_timestamp: + type: integer + description: >- + An optional timestamp indicating when the chunk was created. + updated_timestamp: + type: integer + description: >- + An optional timestamp indicating when the chunk was last updated. + chunk_window: + type: string + description: >- + The window of the chunk, which can be used to group related chunks together. + chunk_tokenizer: + type: string + description: >- + The tokenizer used to create the chunk. Default is Tiktoken. + chunk_embedding_model: + type: string + description: >- + The embedding model used to create the chunk's embedding. + chunk_embedding_dimension: + type: integer + description: >- + The dimension of the embedding vector for the chunk. + content_token_count: + type: integer + description: >- + The number of tokens in the content of the chunk. + metadata_token_count: + type: integer + description: >- + The number of tokens in the metadata of the chunk. + additionalProperties: false + title: ChunkMetadata + description: >- + `ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional + information about the chunk that will not be used in the context during + inference, but is required for backend functionality. The `ChunkMetadata` is + set during chunk creation in `MemoryToolRuntimeImpl().insert()`and is not + expected to change after. Use `Chunk.metadata` for metadata that will + be used in the context during inference. + InsertChunksRequest: + type: object + properties: + vector_db_id: + type: string + description: >- + The identifier of the vector database to insert the chunks into. + chunks: + type: array + items: + $ref: '#/components/schemas/Chunk' + description: >- + The chunks to insert. Each `Chunk` should contain content which can be + interleaved text, images, or other types. `metadata`: `dict[str, Any]` + and `embedding`: `List[float]` are optional. If `metadata` is provided, + you configure how Llama Stack formats the chunk during generation. If + `embedding` is not provided, it will be computed later. + ttl_seconds: + type: integer + description: The time to live of the chunks. + additionalProperties: false + required: + - vector_db_id + - chunks + title: InsertChunksRequest + QueryChunksRequest: + type: object + properties: + vector_db_id: + type: string + description: >- + The identifier of the vector database to query. + query: + $ref: '#/components/schemas/InterleavedContent' + description: The query to search for. + params: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: The parameters of the query. + additionalProperties: false + required: + - vector_db_id + - query + title: QueryChunksRequest + QueryChunksResponse: + type: object + properties: + chunks: + type: array + items: + $ref: '#/components/schemas/Chunk' + description: >- + List of content chunks returned from the query + scores: + type: array + items: + type: number + description: >- + Relevance scores corresponding to each returned chunk + additionalProperties: false + required: + - chunks + - scores + title: QueryChunksResponse + description: >- + Response from querying chunks in a vector database. + VectorStoreFileCounts: + type: object + properties: + completed: + type: integer + description: >- + Number of files that have been successfully processed + cancelled: + type: integer + description: >- + Number of files that had their processing cancelled + failed: + type: integer + description: Number of files that failed to process + in_progress: + type: integer + description: >- + Number of files currently being processed + total: + type: integer + description: >- + Total number of files in the vector store + additionalProperties: false + required: + - completed + - cancelled + - failed + - in_progress + - total + title: VectorStoreFileCounts + description: >- + File processing status counts for a vector store. + VectorStoreListResponse: + type: object + properties: + object: + type: string + default: list + description: Object type identifier, always "list" + data: + type: array + items: + $ref: '#/components/schemas/VectorStoreObject' + description: List of vector store objects + first_id: + type: string + description: >- + (Optional) ID of the first vector store in the list for pagination + last_id: + type: string + description: >- + (Optional) ID of the last vector store in the list for pagination + has_more: + type: boolean + default: false + description: >- + Whether there are more vector stores available beyond this page + additionalProperties: false + required: + - object + - data + - has_more + title: VectorStoreListResponse + description: Response from listing vector stores. + VectorStoreObject: + type: object + properties: + id: + type: string + description: Unique identifier for the vector store + object: + type: string + default: vector_store + description: >- + Object type identifier, always "vector_store" + created_at: + type: integer + description: >- + Timestamp when the vector store was created + name: + type: string + description: (Optional) Name of the vector store + usage_bytes: + type: integer + default: 0 + description: >- + Storage space used by the vector store in bytes + file_counts: + $ref: '#/components/schemas/VectorStoreFileCounts' + description: >- + File processing status counts for the vector store + status: + type: string + default: completed + description: Current status of the vector store + expires_after: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + (Optional) Expiration policy for the vector store + expires_at: + type: integer + description: >- + (Optional) Timestamp when the vector store will expire + last_active_at: + type: integer + description: >- + (Optional) Timestamp of last activity on the vector store + metadata: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + Set of key-value pairs that can be attached to the vector store + additionalProperties: false + required: + - id + - object + - created_at + - usage_bytes + - file_counts + - status + - metadata + title: VectorStoreObject + description: OpenAI Vector Store object. + "OpenAICreateVectorStoreRequestWithExtraBody": + type: object + properties: + name: + type: string + description: (Optional) A name for the vector store + file_ids: + type: array + items: + type: string + description: >- + List of file IDs to include in the vector store + expires_after: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + (Optional) Expiration policy for the vector store + chunking_strategy: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + (Optional) Strategy for splitting files into chunks + metadata: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + Set of key-value pairs that can be attached to the vector store + additionalProperties: false + title: >- + OpenAICreateVectorStoreRequestWithExtraBody + description: >- + Request to create a vector store with extra_body support. + OpenaiUpdateVectorStoreRequest: + type: object + properties: + name: + type: string + description: The name of the vector store. + expires_after: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + The expiration policy for a vector store. + metadata: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + Set of 16 key-value pairs that can be attached to an object. + additionalProperties: false + title: OpenaiUpdateVectorStoreRequest + VectorStoreDeleteResponse: + type: object + properties: + id: + type: string + description: >- + Unique identifier of the deleted vector store + object: + type: string + default: vector_store.deleted + description: >- + Object type identifier for the deletion response + deleted: + type: boolean + default: true + description: >- + Whether the deletion operation was successful + additionalProperties: false + required: + - id + - object + - deleted + title: VectorStoreDeleteResponse + description: Response from deleting a vector store. + VectorStoreChunkingStrategy: + oneOf: + - $ref: '#/components/schemas/VectorStoreChunkingStrategyAuto' + - $ref: '#/components/schemas/VectorStoreChunkingStrategyStatic' + discriminator: + propertyName: type + mapping: + auto: '#/components/schemas/VectorStoreChunkingStrategyAuto' + static: '#/components/schemas/VectorStoreChunkingStrategyStatic' + VectorStoreChunkingStrategyAuto: + type: object + properties: + type: + type: string + const: auto + default: auto + description: >- + Strategy type, always "auto" for automatic chunking + additionalProperties: false + required: + - type + title: VectorStoreChunkingStrategyAuto + description: >- + Automatic chunking strategy for vector store files. + VectorStoreChunkingStrategyStatic: + type: object + properties: + type: + type: string + const: static + default: static + description: >- + Strategy type, always "static" for static chunking + static: + $ref: '#/components/schemas/VectorStoreChunkingStrategyStaticConfig' + description: >- + Configuration parameters for the static chunking strategy + additionalProperties: false + required: + - type + - static + title: VectorStoreChunkingStrategyStatic + description: >- + Static chunking strategy with configurable parameters. + VectorStoreChunkingStrategyStaticConfig: + type: object + properties: + chunk_overlap_tokens: + type: integer + default: 400 + description: >- + Number of tokens to overlap between adjacent chunks + max_chunk_size_tokens: + type: integer + default: 800 + description: >- + Maximum number of tokens per chunk, must be between 100 and 4096 + additionalProperties: false + required: + - chunk_overlap_tokens + - max_chunk_size_tokens + title: VectorStoreChunkingStrategyStaticConfig + description: >- + Configuration for static chunking strategy. + "OpenAICreateVectorStoreFileBatchRequestWithExtraBody": + type: object + properties: + file_ids: + type: array + items: + type: string + description: >- + A list of File IDs that the vector store should use + attributes: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + (Optional) Key-value attributes to store with the files + chunking_strategy: + $ref: '#/components/schemas/VectorStoreChunkingStrategy' + description: >- + (Optional) The chunking strategy used to chunk the file(s). Defaults to + auto + additionalProperties: false + required: + - file_ids + title: >- + OpenAICreateVectorStoreFileBatchRequestWithExtraBody + description: >- + Request to create a vector store file batch with extra_body support. + VectorStoreFileBatchObject: + type: object + properties: + id: + type: string + description: Unique identifier for the file batch + object: + type: string + default: vector_store.file_batch + description: >- + Object type identifier, always "vector_store.file_batch" + created_at: + type: integer + description: >- + Timestamp when the file batch was created + vector_store_id: + type: string + description: >- + ID of the vector store containing the file batch + status: + $ref: '#/components/schemas/VectorStoreFileStatus' + description: >- + Current processing status of the file batch + file_counts: + $ref: '#/components/schemas/VectorStoreFileCounts' + description: >- + File processing status counts for the batch + additionalProperties: false + required: + - id + - object + - created_at + - vector_store_id + - status + - file_counts + title: VectorStoreFileBatchObject + description: OpenAI Vector Store File Batch object. + VectorStoreFileStatus: + oneOf: + - type: string + const: completed + - type: string + const: in_progress + - type: string + const: cancelled + - type: string + const: failed + VectorStoreFileLastError: + type: object + properties: + code: + oneOf: + - type: string + const: server_error + - type: string + const: rate_limit_exceeded + description: >- + Error code indicating the type of failure + message: + type: string + description: >- + Human-readable error message describing the failure + additionalProperties: false + required: + - code + - message + title: VectorStoreFileLastError + description: >- + Error information for failed vector store file processing. + VectorStoreFileObject: + type: object + properties: + id: + type: string + description: Unique identifier for the file + object: + type: string + default: vector_store.file + description: >- + Object type identifier, always "vector_store.file" + attributes: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + Key-value attributes associated with the file + chunking_strategy: + oneOf: + - $ref: '#/components/schemas/VectorStoreChunkingStrategyAuto' + - $ref: '#/components/schemas/VectorStoreChunkingStrategyStatic' + discriminator: + propertyName: type + mapping: + auto: '#/components/schemas/VectorStoreChunkingStrategyAuto' + static: '#/components/schemas/VectorStoreChunkingStrategyStatic' + description: >- + Strategy used for splitting the file into chunks + created_at: + type: integer + description: >- + Timestamp when the file was added to the vector store + last_error: + $ref: '#/components/schemas/VectorStoreFileLastError' + description: >- + (Optional) Error information if file processing failed + status: + $ref: '#/components/schemas/VectorStoreFileStatus' + description: Current processing status of the file + usage_bytes: + type: integer + default: 0 + description: Storage space used by this file in bytes + vector_store_id: + type: string + description: >- + ID of the vector store containing this file + additionalProperties: false + required: + - id + - object + - attributes + - chunking_strategy + - created_at + - status + - usage_bytes + - vector_store_id + title: VectorStoreFileObject + description: OpenAI Vector Store File object. + VectorStoreFilesListInBatchResponse: + type: object + properties: + object: + type: string + default: list + description: Object type identifier, always "list" + data: + type: array + items: + $ref: '#/components/schemas/VectorStoreFileObject' + description: >- + List of vector store file objects in the batch + first_id: + type: string + description: >- + (Optional) ID of the first file in the list for pagination + last_id: + type: string + description: >- + (Optional) ID of the last file in the list for pagination + has_more: + type: boolean + default: false + description: >- + Whether there are more files available beyond this page + additionalProperties: false + required: + - object + - data + - has_more + title: VectorStoreFilesListInBatchResponse + description: >- + Response from listing files in a vector store file batch. + VectorStoreListFilesResponse: + type: object + properties: + object: + type: string + default: list + description: Object type identifier, always "list" + data: + type: array + items: + $ref: '#/components/schemas/VectorStoreFileObject' + description: List of vector store file objects + first_id: + type: string + description: >- + (Optional) ID of the first file in the list for pagination + last_id: + type: string + description: >- + (Optional) ID of the last file in the list for pagination + has_more: + type: boolean + default: false + description: >- + Whether there are more files available beyond this page + additionalProperties: false + required: + - object + - data + - has_more + title: VectorStoreListFilesResponse + description: >- + Response from listing files in a vector store. + OpenaiAttachFileToVectorStoreRequest: + type: object + properties: + file_id: + type: string + description: >- + The ID of the file to attach to the vector store. + attributes: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + The key-value attributes stored with the file, which can be used for filtering. + chunking_strategy: + $ref: '#/components/schemas/VectorStoreChunkingStrategy' + description: >- + The chunking strategy to use for the file. + additionalProperties: false + required: + - file_id + title: OpenaiAttachFileToVectorStoreRequest + OpenaiUpdateVectorStoreFileRequest: + type: object + properties: + attributes: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + The updated key-value attributes to store with the file. + additionalProperties: false + required: + - attributes + title: OpenaiUpdateVectorStoreFileRequest + VectorStoreFileDeleteResponse: + type: object + properties: + id: + type: string + description: Unique identifier of the deleted file + object: + type: string + default: vector_store.file.deleted + description: >- + Object type identifier for the deletion response + deleted: + type: boolean + default: true + description: >- + Whether the deletion operation was successful + additionalProperties: false + required: + - id + - object + - deleted + title: VectorStoreFileDeleteResponse + description: >- + Response from deleting a vector store file. + VectorStoreContent: + type: object + properties: + type: + type: string + const: text + description: >- + Content type, currently only "text" is supported + text: + type: string + description: The actual text content + additionalProperties: false + required: + - type + - text + title: VectorStoreContent + description: >- + Content item from a vector store file or search result. + VectorStoreFileContentsResponse: + type: object + properties: + file_id: + type: string + description: Unique identifier for the file + filename: + type: string + description: Name of the file + attributes: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + Key-value attributes associated with the file + content: + type: array + items: + $ref: '#/components/schemas/VectorStoreContent' + description: List of content items from the file + additionalProperties: false + required: + - file_id + - filename + - attributes + - content + title: VectorStoreFileContentsResponse + description: >- + Response from retrieving the contents of a vector store file. + OpenaiSearchVectorStoreRequest: + type: object + properties: + query: + oneOf: + - type: string + - type: array + items: + type: string + description: >- + The query string or array for performing the search. + filters: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + Filters based on file attributes to narrow the search results. + max_num_results: + type: integer + description: >- + Maximum number of results to return (1 to 50 inclusive, default 10). + ranking_options: + type: object + properties: + ranker: + type: string + description: >- + (Optional) Name of the ranking algorithm to use + score_threshold: + type: number + default: 0.0 + description: >- + (Optional) Minimum relevance score threshold for results + additionalProperties: false + description: >- + Ranking options for fine-tuning the search results. + rewrite_query: + type: boolean + description: >- + Whether to rewrite the natural language query for vector search (default + false) + search_mode: + type: string + description: >- + The search mode to use - "keyword", "vector", or "hybrid" (default "vector") + additionalProperties: false + required: + - query + title: OpenaiSearchVectorStoreRequest + VectorStoreSearchResponse: + type: object + properties: + file_id: + type: string + description: >- + Unique identifier of the file containing the result + filename: + type: string + description: Name of the file containing the result + score: + type: number + description: Relevance score for this search result + attributes: + type: object + additionalProperties: + oneOf: + - type: string + - type: number + - type: boolean + description: >- + (Optional) Key-value attributes associated with the file + content: + type: array + items: + $ref: '#/components/schemas/VectorStoreContent' + description: >- + List of content items matching the search query + additionalProperties: false + required: + - file_id + - filename + - score + - content + title: VectorStoreSearchResponse + description: Response from searching a vector store. + VectorStoreSearchResponsePage: + type: object + properties: + object: + type: string + default: vector_store.search_results.page + description: >- + Object type identifier for the search results page + search_query: + type: string + description: >- + The original search query that was executed + data: + type: array + items: + $ref: '#/components/schemas/VectorStoreSearchResponse' + description: List of search result objects + has_more: + type: boolean + default: false + description: >- + Whether there are more results available beyond this page + next_page: + type: string + description: >- + (Optional) Token for retrieving the next page of results + additionalProperties: false + required: + - object + - search_query + - data + - has_more + title: VectorStoreSearchResponsePage + description: >- + Paginated response from searching a vector store. + VersionInfo: + type: object + properties: + version: + type: string + description: Version number of the service + additionalProperties: false + required: + - version + title: VersionInfo + description: Version information for the service. + AppendRowsRequest: + type: object + properties: + rows: + type: array + items: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: The rows to append to the dataset. + additionalProperties: false + required: + - rows + title: AppendRowsRequest + PaginatedResponse: + type: object + properties: + data: + type: array + items: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: The list of items for the current page + has_more: + type: boolean + description: >- + Whether there are more items available after this set + url: + type: string + description: The URL for accessing this list + additionalProperties: false + required: + - data + - has_more + title: PaginatedResponse + description: >- + A generic paginated response that follows a simple format. + Dataset: + type: object + properties: + identifier: + type: string + provider_resource_id: + type: string + provider_id: + type: string + type: + type: string + enum: + - model + - shield + - vector_db + - dataset + - scoring_function + - benchmark + - tool + - tool_group + - prompt + const: dataset + default: dataset + description: >- + Type of resource, always 'dataset' for datasets + purpose: + type: string + enum: + - post-training/messages + - eval/question-answer + - eval/messages-answer + description: >- + Purpose of the dataset indicating its intended use + source: + oneOf: + - $ref: '#/components/schemas/URIDataSource' + - $ref: '#/components/schemas/RowsDataSource' + discriminator: + propertyName: type + mapping: + uri: '#/components/schemas/URIDataSource' + rows: '#/components/schemas/RowsDataSource' + description: >- + Data source configuration for the dataset + metadata: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: Additional metadata for the dataset + additionalProperties: false + required: + - identifier + - provider_id + - type + - purpose + - source + - metadata + title: Dataset + description: >- + Dataset resource for storing and accessing training or evaluation data. + RowsDataSource: + type: object + properties: + type: + type: string + const: rows + default: rows + rows: + type: array + items: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + The dataset is stored in rows. E.g. - [ {"messages": [{"role": "user", + "content": "Hello, world!"}, {"role": "assistant", "content": "Hello, + world!"}]} ] + additionalProperties: false + required: + - type + - rows + title: RowsDataSource + description: A dataset stored in rows. + URIDataSource: + type: object + properties: + type: + type: string + const: uri + default: uri + uri: + type: string + description: >- + The dataset can be obtained from a URI. E.g. - "https://mywebsite.com/mydata.jsonl" + - "lsfs://mydata.jsonl" - "data:csv;base64,{base64_content}" + additionalProperties: false + required: + - type + - uri + title: URIDataSource + description: >- + A dataset that can be obtained from a URI. + ListDatasetsResponse: + type: object + properties: + data: + type: array + items: + $ref: '#/components/schemas/Dataset' + description: List of datasets + additionalProperties: false + required: + - data + title: ListDatasetsResponse + description: Response from listing datasets. + DataSource: + oneOf: + - $ref: '#/components/schemas/URIDataSource' + - $ref: '#/components/schemas/RowsDataSource' + discriminator: + propertyName: type + mapping: + uri: '#/components/schemas/URIDataSource' + rows: '#/components/schemas/RowsDataSource' + RegisterDatasetRequest: + type: object + properties: + purpose: + type: string + enum: + - post-training/messages + - eval/question-answer + - eval/messages-answer + description: >- + The purpose of the dataset. One of: - "post-training/messages": The dataset + contains a messages column with list of messages for post-training. { + "messages": [ {"role": "user", "content": "Hello, world!"}, {"role": "assistant", + "content": "Hello, world!"}, ] } - "eval/question-answer": The dataset + contains a question column and an answer column for evaluation. { "question": + "What is the capital of France?", "answer": "Paris" } - "eval/messages-answer": + The dataset contains a messages column with list of messages and an answer + column for evaluation. { "messages": [ {"role": "user", "content": "Hello, + my name is John Doe."}, {"role": "assistant", "content": "Hello, John + Doe. How can I help you today?"}, {"role": "user", "content": "What's + my name?"}, ], "answer": "John Doe" } + source: + $ref: '#/components/schemas/DataSource' + description: >- + The data source of the dataset. Ensure that the data source schema is + compatible with the purpose of the dataset. Examples: - { "type": "uri", + "uri": "https://mywebsite.com/mydata.jsonl" } - { "type": "uri", "uri": + "lsfs://mydata.jsonl" } - { "type": "uri", "uri": "data:csv;base64,{base64_content}" + } - { "type": "uri", "uri": "huggingface://llamastack/simpleqa?split=train" + } - { "type": "rows", "rows": [ { "messages": [ {"role": "user", "content": + "Hello, world!"}, {"role": "assistant", "content": "Hello, world!"}, ] + } ] } + metadata: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + The metadata for the dataset. - E.g. {"description": "My dataset"}. + dataset_id: + type: string + description: >- + The ID of the dataset. If not provided, an ID will be generated. + additionalProperties: false + required: + - purpose + - source + title: RegisterDatasetRequest + AgentConfig: + type: object + properties: + sampling_params: + $ref: '#/components/schemas/SamplingParams' + input_shields: + type: array + items: + type: string + output_shields: + type: array + items: + type: string + toolgroups: + type: array + items: + $ref: '#/components/schemas/AgentTool' + client_tools: + type: array + items: + $ref: '#/components/schemas/ToolDef' + tool_choice: + type: string + enum: + - auto + - required + - none + title: ToolChoice + description: >- + Whether tool use is required or automatic. This is a hint to the model + which may not be followed. It depends on the Instruction Following capabilities + of the model. + deprecated: true + tool_prompt_format: + type: string + enum: + - json + - function_tag + - python_list + title: ToolPromptFormat + description: >- + Prompt format for calling custom / zero shot tools. + deprecated: true + tool_config: + $ref: '#/components/schemas/ToolConfig' + max_infer_iters: + type: integer + default: 10 + model: + type: string + description: >- + The model identifier to use for the agent + instructions: + type: string + description: The system instructions for the agent + name: + type: string + description: >- + Optional name for the agent, used in telemetry and identification + enable_session_persistence: + type: boolean + default: false + description: >- + Optional flag indicating whether session data has to be persisted + response_format: + $ref: '#/components/schemas/ResponseFormat' + description: Optional response format configuration + additionalProperties: false + required: + - model + - instructions + title: AgentConfig + description: Configuration for an agent. + AgentTool: + oneOf: + - type: string + - type: object + properties: + name: + type: string + args: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + additionalProperties: false + required: + - name + - args + title: AgentToolGroupWithArgs + GrammarResponseFormat: + type: object + properties: + type: + type: string + enum: + - json_schema + - grammar + description: >- + Must be "grammar" to identify this format type + const: grammar + default: grammar + bnf: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + The BNF grammar specification the response should conform to + additionalProperties: false + required: + - type + - bnf + title: GrammarResponseFormat + description: >- + Configuration for grammar-guided response generation. + GreedySamplingStrategy: + type: object + properties: + type: + type: string + const: greedy + default: greedy + description: >- + Must be "greedy" to identify this sampling strategy + additionalProperties: false + required: + - type + title: GreedySamplingStrategy + description: >- + Greedy sampling strategy that selects the highest probability token at each + step. + JsonSchemaResponseFormat: + type: object + properties: + type: + type: string + enum: + - json_schema + - grammar + description: >- + Must be "json_schema" to identify this format type + const: json_schema + default: json_schema + json_schema: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + The JSON schema the response should conform to. In a Python SDK, this + is often a `pydantic` model. + additionalProperties: false + required: + - type + - json_schema + title: JsonSchemaResponseFormat + description: >- + Configuration for JSON schema-guided response generation. + ResponseFormat: + oneOf: + - $ref: '#/components/schemas/JsonSchemaResponseFormat' + - $ref: '#/components/schemas/GrammarResponseFormat' + discriminator: + propertyName: type + mapping: + json_schema: '#/components/schemas/JsonSchemaResponseFormat' + grammar: '#/components/schemas/GrammarResponseFormat' + SamplingParams: + type: object + properties: + strategy: + oneOf: + - $ref: '#/components/schemas/GreedySamplingStrategy' + - $ref: '#/components/schemas/TopPSamplingStrategy' + - $ref: '#/components/schemas/TopKSamplingStrategy' + discriminator: + propertyName: type + mapping: + greedy: '#/components/schemas/GreedySamplingStrategy' + top_p: '#/components/schemas/TopPSamplingStrategy' + top_k: '#/components/schemas/TopKSamplingStrategy' + description: The sampling strategy. + max_tokens: + type: integer + default: 0 + description: >- + The maximum number of tokens that can be generated in the completion. + The token count of your prompt plus max_tokens cannot exceed the model's + context length. + repetition_penalty: + type: number + default: 1.0 + description: >- + Number between -2.0 and 2.0. Positive values penalize new tokens based + on whether they appear in the text so far, increasing the model's likelihood + to talk about new topics. + stop: + type: array + items: + type: string + description: >- + Up to 4 sequences where the API will stop generating further tokens. The + returned text will not contain the stop sequence. + additionalProperties: false + required: + - strategy + title: SamplingParams + description: Sampling parameters. + ToolConfig: + type: object + properties: + tool_choice: + oneOf: + - type: string + enum: + - auto + - required + - none + title: ToolChoice + description: >- + Whether tool use is required or automatic. This is a hint to the model + which may not be followed. It depends on the Instruction Following + capabilities of the model. + - type: string + default: auto + description: >- + (Optional) Whether tool use is automatic, required, or none. Can also + specify a tool name to use a specific tool. Defaults to ToolChoice.auto. + tool_prompt_format: + type: string + enum: + - json + - function_tag + - python_list + description: >- + (Optional) Instructs the model how to format tool calls. By default, Llama + Stack will attempt to use a format that is best adapted to the model. + - `ToolPromptFormat.json`: The tool calls are formatted as a JSON object. + - `ToolPromptFormat.function_tag`: The tool calls are enclosed in a + tag. - `ToolPromptFormat.python_list`: The tool calls are output as Python + syntax -- a list of function calls. + system_message_behavior: + type: string + enum: + - append + - replace + description: >- + (Optional) Config for how to override the default system prompt. - `SystemMessageBehavior.append`: + Appends the provided system message to the default system prompt. - `SystemMessageBehavior.replace`: + Replaces the default system prompt with the provided system message. The + system message can include the string '{{function_definitions}}' to indicate + where the function definitions should be inserted. + default: append + additionalProperties: false + title: ToolConfig + description: Configuration for tool use. + TopKSamplingStrategy: + type: object + properties: + type: + type: string + const: top_k + default: top_k + description: >- + Must be "top_k" to identify this sampling strategy + top_k: + type: integer + description: >- + Number of top tokens to consider for sampling. Must be at least 1 + additionalProperties: false + required: + - type + - top_k + title: TopKSamplingStrategy + description: >- + Top-k sampling strategy that restricts sampling to the k most likely tokens. + TopPSamplingStrategy: + type: object + properties: + type: + type: string + const: top_p + default: top_p + description: >- + Must be "top_p" to identify this sampling strategy + temperature: + type: number + description: >- + Controls randomness in sampling. Higher values increase randomness + top_p: + type: number + default: 0.95 + description: >- + Cumulative probability threshold for nucleus sampling. Defaults to 0.95 + additionalProperties: false + required: + - type + title: TopPSamplingStrategy + description: >- + Top-p (nucleus) sampling strategy that samples from the smallest set of tokens + with cumulative probability >= p. + CreateAgentRequest: + type: object + properties: + agent_config: + $ref: '#/components/schemas/AgentConfig' + description: The configuration for the agent. + additionalProperties: false + required: + - agent_config + title: CreateAgentRequest + AgentCreateResponse: + type: object + properties: + agent_id: + type: string + description: Unique identifier for the created agent + additionalProperties: false + required: + - agent_id + title: AgentCreateResponse + description: >- + Response returned when creating a new agent. + Agent: + type: object + properties: + agent_id: + type: string + description: Unique identifier for the agent + agent_config: + $ref: '#/components/schemas/AgentConfig' + description: Configuration settings for the agent + created_at: + type: string + format: date-time + description: Timestamp when the agent was created + additionalProperties: false + required: + - agent_id + - agent_config + - created_at + title: Agent + description: >- + An agent instance with configuration and metadata. + CreateAgentSessionRequest: + type: object + properties: + session_name: + type: string + description: The name of the session to create. + additionalProperties: false + required: + - session_name + title: CreateAgentSessionRequest + AgentSessionCreateResponse: + type: object + properties: + session_id: + type: string + description: >- + Unique identifier for the created session + additionalProperties: false + required: + - session_id + title: AgentSessionCreateResponse + description: >- + Response returned when creating a new agent session. + InferenceStep: + type: object + properties: + turn_id: + type: string + description: The ID of the turn. + step_id: + type: string + description: The ID of the step. + started_at: + type: string + format: date-time + description: The time the step started. + completed_at: + type: string + format: date-time + description: The time the step completed. + step_type: + type: string + enum: + - inference + - tool_execution + - shield_call + - memory_retrieval + title: StepType + description: Type of the step in an agent turn. + const: inference + default: inference + model_response: + $ref: '#/components/schemas/CompletionMessage' + description: The response from the LLM. + additionalProperties: false + required: + - turn_id + - step_id + - step_type + - model_response + title: InferenceStep + description: An inference step in an agent turn. + MemoryRetrievalStep: + type: object + properties: + turn_id: + type: string + description: The ID of the turn. + step_id: + type: string + description: The ID of the step. + started_at: + type: string + format: date-time + description: The time the step started. + completed_at: + type: string + format: date-time + description: The time the step completed. + step_type: + type: string + enum: + - inference + - tool_execution + - shield_call + - memory_retrieval + title: StepType + description: Type of the step in an agent turn. + const: memory_retrieval + default: memory_retrieval + vector_db_ids: + type: string + description: >- + The IDs of the vector databases to retrieve context from. + inserted_context: + $ref: '#/components/schemas/InterleavedContent' + description: >- + The context retrieved from the vector databases. + additionalProperties: false + required: + - turn_id + - step_id + - step_type + - vector_db_ids + - inserted_context + title: MemoryRetrievalStep + description: >- + A memory retrieval step in an agent turn. + Session: + type: object + properties: + session_id: + type: string + description: >- + Unique identifier for the conversation session + session_name: + type: string + description: Human-readable name for the session + turns: + type: array + items: + $ref: '#/components/schemas/Turn' + description: >- + List of all turns that have occurred in this session + started_at: + type: string + format: date-time + description: Timestamp when the session was created + additionalProperties: false + required: + - session_id + - session_name + - turns + - started_at + title: Session + description: >- + A single session of an interaction with an Agentic System. + ShieldCallStep: + type: object + properties: + turn_id: + type: string + description: The ID of the turn. + step_id: + type: string + description: The ID of the step. + started_at: + type: string + format: date-time + description: The time the step started. + completed_at: + type: string + format: date-time + description: The time the step completed. + step_type: + type: string + enum: + - inference + - tool_execution + - shield_call + - memory_retrieval + title: StepType + description: Type of the step in an agent turn. + const: shield_call + default: shield_call + violation: + $ref: '#/components/schemas/SafetyViolation' + description: The violation from the shield call. + additionalProperties: false + required: + - turn_id + - step_id + - step_type + title: ShieldCallStep + description: A shield call step in an agent turn. + ToolExecutionStep: + type: object + properties: + turn_id: + type: string + description: The ID of the turn. + step_id: + type: string + description: The ID of the step. + started_at: + type: string + format: date-time + description: The time the step started. + completed_at: + type: string + format: date-time + description: The time the step completed. + step_type: + type: string + enum: + - inference + - tool_execution + - shield_call + - memory_retrieval + title: StepType + description: Type of the step in an agent turn. + const: tool_execution + default: tool_execution + tool_calls: + type: array + items: + $ref: '#/components/schemas/ToolCall' + description: The tool calls to execute. + tool_responses: + type: array + items: + $ref: '#/components/schemas/ToolResponse' + description: The tool responses from the tool calls. + additionalProperties: false + required: + - turn_id + - step_id + - step_type + - tool_calls + - tool_responses + title: ToolExecutionStep + description: A tool execution step in an agent turn. + ToolResponse: + type: object + properties: + call_id: + type: string + description: >- + Unique identifier for the tool call this response is for + tool_name: + oneOf: + - type: string + enum: + - brave_search + - wolfram_alpha + - photogen + - code_interpreter + title: BuiltinTool + - type: string + description: Name of the tool that was invoked + content: + $ref: '#/components/schemas/InterleavedContent' + description: The response content from the tool + metadata: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + (Optional) Additional metadata about the tool response + additionalProperties: false + required: + - call_id + - tool_name + - content + title: ToolResponse + description: Response from a tool invocation. + Turn: + type: object + properties: + turn_id: + type: string + description: >- + Unique identifier for the turn within a session + session_id: + type: string + description: >- + Unique identifier for the conversation session + input_messages: + type: array + items: + oneOf: + - $ref: '#/components/schemas/UserMessage' + - $ref: '#/components/schemas/ToolResponseMessage' + description: >- + List of messages that initiated this turn + steps: + type: array + items: + oneOf: + - $ref: '#/components/schemas/InferenceStep' + - $ref: '#/components/schemas/ToolExecutionStep' + - $ref: '#/components/schemas/ShieldCallStep' + - $ref: '#/components/schemas/MemoryRetrievalStep' + discriminator: + propertyName: step_type + mapping: + inference: '#/components/schemas/InferenceStep' + tool_execution: '#/components/schemas/ToolExecutionStep' + shield_call: '#/components/schemas/ShieldCallStep' + memory_retrieval: '#/components/schemas/MemoryRetrievalStep' + description: >- + Ordered list of processing steps executed during this turn + output_message: + $ref: '#/components/schemas/CompletionMessage' + description: >- + The model's generated response containing content and metadata + output_attachments: + type: array + items: + type: object + properties: + content: + oneOf: + - type: string + - $ref: '#/components/schemas/InterleavedContentItem' + - type: array + items: + $ref: '#/components/schemas/InterleavedContentItem' + - $ref: '#/components/schemas/URL' + description: The content of the attachment. + mime_type: + type: string + description: The MIME type of the attachment. + additionalProperties: false + required: + - content + - mime_type + title: Attachment + description: An attachment to an agent turn. + description: >- + (Optional) Files or media attached to the agent's response + started_at: + type: string + format: date-time + description: Timestamp when the turn began + completed_at: + type: string + format: date-time + description: >- + (Optional) Timestamp when the turn finished, if completed + additionalProperties: false + required: + - turn_id + - session_id + - input_messages + - steps + - output_message + - started_at + title: Turn + description: >- + A single turn in an interaction with an Agentic System. + CreateAgentTurnRequest: + type: object + properties: + messages: + type: array + items: + oneOf: + - $ref: '#/components/schemas/UserMessage' + - $ref: '#/components/schemas/ToolResponseMessage' + description: List of messages to start the turn with. + stream: + type: boolean + description: >- + (Optional) If True, generate an SSE event stream of the response. Defaults + to False. + documents: + type: array + items: + type: object + properties: + content: + oneOf: + - type: string + - $ref: '#/components/schemas/InterleavedContentItem' + - type: array + items: + $ref: '#/components/schemas/InterleavedContentItem' + - $ref: '#/components/schemas/URL' + description: The content of the document. + mime_type: + type: string + description: The MIME type of the document. + additionalProperties: false + required: + - content + - mime_type + title: Document + description: A document to be used by an agent. + description: >- + (Optional) List of documents to create the turn with. + toolgroups: + type: array + items: + $ref: '#/components/schemas/AgentTool' + description: >- + (Optional) List of toolgroups to create the turn with, will be used in + addition to the agent's config toolgroups for the request. + tool_config: + $ref: '#/components/schemas/ToolConfig' + description: >- + (Optional) The tool configuration to create the turn with, will be used + to override the agent's tool_config. + additionalProperties: false + required: + - messages + title: CreateAgentTurnRequest + AgentTurnResponseEvent: + type: object + properties: + payload: + oneOf: + - $ref: '#/components/schemas/AgentTurnResponseStepStartPayload' + - $ref: '#/components/schemas/AgentTurnResponseStepProgressPayload' + - $ref: '#/components/schemas/AgentTurnResponseStepCompletePayload' + - $ref: '#/components/schemas/AgentTurnResponseTurnStartPayload' + - $ref: '#/components/schemas/AgentTurnResponseTurnCompletePayload' + - $ref: '#/components/schemas/AgentTurnResponseTurnAwaitingInputPayload' + discriminator: + propertyName: event_type + mapping: + step_start: '#/components/schemas/AgentTurnResponseStepStartPayload' + step_progress: '#/components/schemas/AgentTurnResponseStepProgressPayload' + step_complete: '#/components/schemas/AgentTurnResponseStepCompletePayload' + turn_start: '#/components/schemas/AgentTurnResponseTurnStartPayload' + turn_complete: '#/components/schemas/AgentTurnResponseTurnCompletePayload' + turn_awaiting_input: '#/components/schemas/AgentTurnResponseTurnAwaitingInputPayload' + description: >- + Event-specific payload containing event data + additionalProperties: false + required: + - payload + title: AgentTurnResponseEvent + description: >- + An event in an agent turn response stream. + AgentTurnResponseStepCompletePayload: + type: object + properties: + event_type: + type: string + enum: + - step_start + - step_complete + - step_progress + - turn_start + - turn_complete + - turn_awaiting_input + const: step_complete + default: step_complete + description: Type of event being reported + step_type: + type: string + enum: + - inference + - tool_execution + - shield_call + - memory_retrieval + description: Type of step being executed + step_id: + type: string + description: >- + Unique identifier for the step within a turn + step_details: + oneOf: + - $ref: '#/components/schemas/InferenceStep' + - $ref: '#/components/schemas/ToolExecutionStep' + - $ref: '#/components/schemas/ShieldCallStep' + - $ref: '#/components/schemas/MemoryRetrievalStep' + discriminator: + propertyName: step_type + mapping: + inference: '#/components/schemas/InferenceStep' + tool_execution: '#/components/schemas/ToolExecutionStep' + shield_call: '#/components/schemas/ShieldCallStep' + memory_retrieval: '#/components/schemas/MemoryRetrievalStep' + description: Complete details of the executed step + additionalProperties: false + required: + - event_type + - step_type + - step_id + - step_details + title: AgentTurnResponseStepCompletePayload + description: >- + Payload for step completion events in agent turn responses. + AgentTurnResponseStepProgressPayload: + type: object + properties: + event_type: + type: string + enum: + - step_start + - step_complete + - step_progress + - turn_start + - turn_complete + - turn_awaiting_input + const: step_progress + default: step_progress + description: Type of event being reported + step_type: + type: string + enum: + - inference + - tool_execution + - shield_call + - memory_retrieval + description: Type of step being executed + step_id: + type: string + description: >- + Unique identifier for the step within a turn + delta: + oneOf: + - $ref: '#/components/schemas/TextDelta' + - $ref: '#/components/schemas/ImageDelta' + - $ref: '#/components/schemas/ToolCallDelta' + discriminator: + propertyName: type + mapping: + text: '#/components/schemas/TextDelta' + image: '#/components/schemas/ImageDelta' + tool_call: '#/components/schemas/ToolCallDelta' + description: >- + Incremental content changes during step execution + additionalProperties: false + required: + - event_type + - step_type + - step_id + - delta + title: AgentTurnResponseStepProgressPayload + description: >- + Payload for step progress events in agent turn responses. + AgentTurnResponseStepStartPayload: + type: object + properties: + event_type: + type: string + enum: + - step_start + - step_complete + - step_progress + - turn_start + - turn_complete + - turn_awaiting_input + const: step_start + default: step_start + description: Type of event being reported + step_type: + type: string + enum: + - inference + - tool_execution + - shield_call + - memory_retrieval + description: Type of step being executed + step_id: + type: string + description: >- + Unique identifier for the step within a turn + metadata: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + (Optional) Additional metadata for the step + additionalProperties: false + required: + - event_type + - step_type + - step_id + title: AgentTurnResponseStepStartPayload + description: >- + Payload for step start events in agent turn responses. + AgentTurnResponseStreamChunk: + type: object + properties: + event: + $ref: '#/components/schemas/AgentTurnResponseEvent' + description: >- + Individual event in the agent turn response stream + additionalProperties: false + required: + - event + title: AgentTurnResponseStreamChunk + description: Streamed agent turn completion response. + "AgentTurnResponseTurnAwaitingInputPayload": + type: object + properties: + event_type: + type: string + enum: + - step_start + - step_complete + - step_progress + - turn_start + - turn_complete + - turn_awaiting_input + const: turn_awaiting_input + default: turn_awaiting_input + description: Type of event being reported + turn: + $ref: '#/components/schemas/Turn' + description: >- + Turn data when waiting for external tool responses + additionalProperties: false + required: + - event_type + - turn + title: >- + AgentTurnResponseTurnAwaitingInputPayload + description: >- + Payload for turn awaiting input events in agent turn responses. + AgentTurnResponseTurnCompletePayload: + type: object + properties: + event_type: + type: string + enum: + - step_start + - step_complete + - step_progress + - turn_start + - turn_complete + - turn_awaiting_input + const: turn_complete + default: turn_complete + description: Type of event being reported + turn: + $ref: '#/components/schemas/Turn' + description: >- + Complete turn data including all steps and results + additionalProperties: false + required: + - event_type + - turn + title: AgentTurnResponseTurnCompletePayload + description: >- + Payload for turn completion events in agent turn responses. + AgentTurnResponseTurnStartPayload: + type: object + properties: + event_type: + type: string + enum: + - step_start + - step_complete + - step_progress + - turn_start + - turn_complete + - turn_awaiting_input + const: turn_start + default: turn_start + description: Type of event being reported + turn_id: + type: string + description: >- + Unique identifier for the turn within a session + additionalProperties: false + required: + - event_type + - turn_id + title: AgentTurnResponseTurnStartPayload + description: >- + Payload for turn start events in agent turn responses. + ImageDelta: + type: object + properties: + type: + type: string + const: image + default: image + description: >- + Discriminator type of the delta. Always "image" + image: + type: string + contentEncoding: base64 + description: The incremental image data as bytes + additionalProperties: false + required: + - type + - image + title: ImageDelta + description: >- + An image content delta for streaming responses. + TextDelta: + type: object + properties: + type: + type: string + const: text + default: text + description: >- + Discriminator type of the delta. Always "text" + text: + type: string + description: The incremental text content + additionalProperties: false + required: + - type + - text + title: TextDelta + description: >- + A text content delta for streaming responses. + ToolCallDelta: + type: object + properties: + type: + type: string + const: tool_call + default: tool_call + description: >- + Discriminator type of the delta. Always "tool_call" + tool_call: + oneOf: + - type: string + - $ref: '#/components/schemas/ToolCall' + description: >- + Either an in-progress tool call string or the final parsed tool call + parse_status: + type: string + enum: + - started + - in_progress + - failed + - succeeded + description: Current parsing status of the tool call + additionalProperties: false + required: + - type + - tool_call + - parse_status + title: ToolCallDelta + description: >- + A tool call content delta for streaming responses. + ResumeAgentTurnRequest: + type: object + properties: + tool_responses: + type: array + items: + $ref: '#/components/schemas/ToolResponse' + description: >- + The tool call responses to resume the turn with. + stream: + type: boolean + description: Whether to stream the response. + additionalProperties: false + required: + - tool_responses + title: ResumeAgentTurnRequest + AgentStepResponse: + type: object + properties: + step: + oneOf: + - $ref: '#/components/schemas/InferenceStep' + - $ref: '#/components/schemas/ToolExecutionStep' + - $ref: '#/components/schemas/ShieldCallStep' + - $ref: '#/components/schemas/MemoryRetrievalStep' + discriminator: + propertyName: step_type + mapping: + inference: '#/components/schemas/InferenceStep' + tool_execution: '#/components/schemas/ToolExecutionStep' + shield_call: '#/components/schemas/ShieldCallStep' + memory_retrieval: '#/components/schemas/MemoryRetrievalStep' + description: >- + The complete step data and execution details + additionalProperties: false + required: + - step + title: AgentStepResponse + description: >- + Response containing details of a specific agent step. + Benchmark: + type: object + properties: + identifier: + type: string + provider_resource_id: + type: string + provider_id: + type: string + type: + type: string + enum: + - model + - shield + - vector_db + - dataset + - scoring_function + - benchmark + - tool + - tool_group + - prompt + const: benchmark + default: benchmark + description: The resource type, always benchmark + dataset_id: + type: string + description: >- + Identifier of the dataset to use for the benchmark evaluation + scoring_functions: + type: array + items: + type: string + description: >- + List of scoring function identifiers to apply during evaluation + metadata: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: Metadata for this evaluation task + additionalProperties: false + required: + - identifier + - provider_id + - type + - dataset_id + - scoring_functions + - metadata + title: Benchmark + description: >- + A benchmark resource for evaluating model performance. + ListBenchmarksResponse: + type: object + properties: + data: + type: array + items: + $ref: '#/components/schemas/Benchmark' + additionalProperties: false + required: + - data + title: ListBenchmarksResponse + RegisterBenchmarkRequest: + type: object + properties: + benchmark_id: + type: string + description: The ID of the benchmark to register. + dataset_id: + type: string + description: >- + The ID of the dataset to use for the benchmark. + scoring_functions: + type: array + items: + type: string + description: >- + The scoring functions to use for the benchmark. + provider_benchmark_id: + type: string + description: >- + The ID of the provider benchmark to use for the benchmark. + provider_id: + type: string + description: >- + The ID of the provider to use for the benchmark. + metadata: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: The metadata to use for the benchmark. + additionalProperties: false + required: + - benchmark_id + - dataset_id + - scoring_functions + title: RegisterBenchmarkRequest + AgentCandidate: + type: object + properties: + type: + type: string + const: agent + default: agent + config: + $ref: '#/components/schemas/AgentConfig' + description: >- + The configuration for the agent candidate. + additionalProperties: false + required: + - type + - config + title: AgentCandidate + description: An agent candidate for evaluation. + BenchmarkConfig: + type: object + properties: + eval_candidate: + oneOf: + - $ref: '#/components/schemas/ModelCandidate' + - $ref: '#/components/schemas/AgentCandidate' + discriminator: + propertyName: type + mapping: + model: '#/components/schemas/ModelCandidate' + agent: '#/components/schemas/AgentCandidate' + description: The candidate to evaluate. + scoring_params: + type: object + additionalProperties: + $ref: '#/components/schemas/ScoringFnParams' + description: >- + Map between scoring function id and parameters for each scoring function + you want to run + num_examples: + type: integer + description: >- + (Optional) The number of examples to evaluate. If not provided, all examples + in the dataset will be evaluated + additionalProperties: false + required: + - eval_candidate + - scoring_params + title: BenchmarkConfig + description: >- + A benchmark configuration for evaluation. + ModelCandidate: + type: object + properties: + type: + type: string + const: model + default: model + model: + type: string + description: The model ID to evaluate. + sampling_params: + $ref: '#/components/schemas/SamplingParams' + description: The sampling parameters for the model. + system_message: + $ref: '#/components/schemas/SystemMessage' + description: >- + (Optional) The system message providing instructions or context to the + model. + additionalProperties: false + required: + - type + - model + - sampling_params + title: ModelCandidate + description: A model candidate for evaluation. + EvaluateRowsRequest: + type: object + properties: + input_rows: + type: array + items: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: The rows to evaluate. + scoring_functions: + type: array + items: + type: string + description: >- + The scoring functions to use for the evaluation. + benchmark_config: + $ref: '#/components/schemas/BenchmarkConfig' + description: The configuration for the benchmark. + additionalProperties: false + required: + - input_rows + - scoring_functions + - benchmark_config + title: EvaluateRowsRequest + EvaluateResponse: + type: object + properties: + generations: + type: array + items: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: The generations from the evaluation. + scores: + type: object + additionalProperties: + $ref: '#/components/schemas/ScoringResult' + description: The scores from the evaluation. + additionalProperties: false + required: + - generations + - scores + title: EvaluateResponse + description: The response from an evaluation. + RunEvalRequest: + type: object + properties: + benchmark_config: + $ref: '#/components/schemas/BenchmarkConfig' + description: The configuration for the benchmark. + additionalProperties: false + required: + - benchmark_config + title: RunEvalRequest + Job: + type: object + properties: + job_id: + type: string + description: Unique identifier for the job + status: + type: string + enum: + - completed + - in_progress + - failed + - scheduled + - cancelled + description: Current execution status of the job + additionalProperties: false + required: + - job_id + - status + title: Job + description: >- + A job execution instance with status tracking. + RerankRequest: + type: object + properties: + model: + type: string + description: >- + The identifier of the reranking model to use. + query: + oneOf: + - type: string + - $ref: '#/components/schemas/OpenAIChatCompletionContentPartTextParam' + - $ref: '#/components/schemas/OpenAIChatCompletionContentPartImageParam' + description: >- + The search query to rank items against. Can be a string, text content + part, or image content part. The input must not exceed the model's max + input token length. + items: + type: array + items: + oneOf: + - type: string + - $ref: '#/components/schemas/OpenAIChatCompletionContentPartTextParam' + - $ref: '#/components/schemas/OpenAIChatCompletionContentPartImageParam' + description: >- + List of items to rerank. Each item can be a string, text content part, + or image content part. Each input must not exceed the model's max input + token length. + max_num_results: + type: integer + description: >- + (Optional) Maximum number of results to return. Default: returns all. + additionalProperties: false + required: + - model + - query + - items + title: RerankRequest + RerankData: + type: object + properties: + index: + type: integer + description: >- + The original index of the document in the input list + relevance_score: + type: number + description: >- + The relevance score from the model output. Values are inverted when applicable + so that higher scores indicate greater relevance. + additionalProperties: false + required: + - index + - relevance_score + title: RerankData + description: >- + A single rerank result from a reranking response. + RerankResponse: + type: object + properties: + data: + type: array + items: + $ref: '#/components/schemas/RerankData' + description: >- + List of rerank result objects, sorted by relevance score (descending) + additionalProperties: false + required: + - data + title: RerankResponse + description: Response from a reranking request. + Checkpoint: + type: object + properties: + identifier: + type: string + description: Unique identifier for the checkpoint + created_at: + type: string + format: date-time + description: >- + Timestamp when the checkpoint was created + epoch: + type: integer + description: >- + Training epoch when the checkpoint was saved + post_training_job_id: + type: string + description: >- + Identifier of the training job that created this checkpoint + path: + type: string + description: >- + File system path where the checkpoint is stored + training_metrics: + $ref: '#/components/schemas/PostTrainingMetric' + description: >- + (Optional) Training metrics associated with this checkpoint + additionalProperties: false + required: + - identifier + - created_at + - epoch + - post_training_job_id + - path + title: Checkpoint + description: Checkpoint created during training runs. + PostTrainingJobArtifactsResponse: + type: object + properties: + job_uuid: + type: string + description: Unique identifier for the training job + checkpoints: + type: array + items: + $ref: '#/components/schemas/Checkpoint' + description: >- + List of model checkpoints created during training + additionalProperties: false + required: + - job_uuid + - checkpoints + title: PostTrainingJobArtifactsResponse + description: Artifacts of a finetuning job. + PostTrainingMetric: + type: object + properties: + epoch: + type: integer + description: Training epoch number + train_loss: + type: number + description: Loss value on the training dataset + validation_loss: + type: number + description: Loss value on the validation dataset + perplexity: + type: number + description: >- + Perplexity metric indicating model confidence + additionalProperties: false + required: + - epoch + - train_loss + - validation_loss + - perplexity + title: PostTrainingMetric + description: >- + Training metrics captured during post-training jobs. + CancelTrainingJobRequest: + type: object + properties: + job_uuid: + type: string + description: The UUID of the job to cancel. + additionalProperties: false + required: + - job_uuid + title: CancelTrainingJobRequest + PostTrainingJobStatusResponse: + type: object + properties: + job_uuid: + type: string + description: Unique identifier for the training job + status: + type: string + enum: + - completed + - in_progress + - failed + - scheduled + - cancelled + description: Current status of the training job + scheduled_at: + type: string + format: date-time + description: >- + (Optional) Timestamp when the job was scheduled + started_at: + type: string + format: date-time + description: >- + (Optional) Timestamp when the job execution began + completed_at: + type: string + format: date-time + description: >- + (Optional) Timestamp when the job finished, if completed + resources_allocated: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: >- + (Optional) Information about computational resources allocated to the + job + checkpoints: + type: array + items: + $ref: '#/components/schemas/Checkpoint' + description: >- + List of model checkpoints created during training + additionalProperties: false + required: + - job_uuid + - status + - checkpoints + title: PostTrainingJobStatusResponse + description: Status of a finetuning job. + ListPostTrainingJobsResponse: + type: object + properties: + data: + type: array + items: + type: object + properties: + job_uuid: + type: string + additionalProperties: false + required: + - job_uuid + title: PostTrainingJob + additionalProperties: false + required: + - data + title: ListPostTrainingJobsResponse + DPOAlignmentConfig: + type: object + properties: + beta: + type: number + description: Temperature parameter for the DPO loss + loss_type: + $ref: '#/components/schemas/DPOLossType' + default: sigmoid + description: The type of loss function to use for DPO + additionalProperties: false + required: + - beta + - loss_type + title: DPOAlignmentConfig + description: >- + Configuration for Direct Preference Optimization (DPO) alignment. + DPOLossType: + type: string + enum: + - sigmoid + - hinge + - ipo + - kto_pair + title: DPOLossType + DataConfig: + type: object + properties: + dataset_id: + type: string + description: >- + Unique identifier for the training dataset + batch_size: + type: integer + description: Number of samples per training batch + shuffle: + type: boolean + description: >- + Whether to shuffle the dataset during training + data_format: + $ref: '#/components/schemas/DatasetFormat' + description: >- + Format of the dataset (instruct or dialog) + validation_dataset_id: + type: string + description: >- + (Optional) Unique identifier for the validation dataset + packed: + type: boolean + default: false + description: >- + (Optional) Whether to pack multiple samples into a single sequence for + efficiency + train_on_input: + type: boolean + default: false + description: >- + (Optional) Whether to compute loss on input tokens as well as output tokens + additionalProperties: false + required: + - dataset_id + - batch_size + - shuffle + - data_format + title: DataConfig + description: >- + Configuration for training data and data loading. + DatasetFormat: + type: string + enum: + - instruct + - dialog + title: DatasetFormat + description: Format of the training dataset. + EfficiencyConfig: + type: object + properties: + enable_activation_checkpointing: + type: boolean + default: false + description: >- + (Optional) Whether to use activation checkpointing to reduce memory usage + enable_activation_offloading: + type: boolean + default: false + description: >- + (Optional) Whether to offload activations to CPU to save GPU memory + memory_efficient_fsdp_wrap: + type: boolean + default: false + description: >- + (Optional) Whether to use memory-efficient FSDP wrapping + fsdp_cpu_offload: + type: boolean + default: false + description: >- + (Optional) Whether to offload FSDP parameters to CPU + additionalProperties: false + title: EfficiencyConfig + description: >- + Configuration for memory and compute efficiency optimizations. + OptimizerConfig: + type: object + properties: + optimizer_type: + $ref: '#/components/schemas/OptimizerType' + description: >- + Type of optimizer to use (adam, adamw, or sgd) + lr: + type: number + description: Learning rate for the optimizer + weight_decay: + type: number + description: >- + Weight decay coefficient for regularization + num_warmup_steps: + type: integer + description: Number of steps for learning rate warmup + additionalProperties: false + required: + - optimizer_type + - lr + - weight_decay + - num_warmup_steps + title: OptimizerConfig + description: >- + Configuration parameters for the optimization algorithm. + OptimizerType: + type: string + enum: + - adam + - adamw + - sgd + title: OptimizerType + description: >- + Available optimizer algorithms for training. + TrainingConfig: + type: object + properties: + n_epochs: + type: integer + description: Number of training epochs to run + max_steps_per_epoch: + type: integer + default: 1 + description: Maximum number of steps to run per epoch + gradient_accumulation_steps: + type: integer + default: 1 + description: >- + Number of steps to accumulate gradients before updating + max_validation_steps: + type: integer + default: 1 + description: >- + (Optional) Maximum number of validation steps per epoch + data_config: + $ref: '#/components/schemas/DataConfig' + description: >- + (Optional) Configuration for data loading and formatting + optimizer_config: + $ref: '#/components/schemas/OptimizerConfig' + description: >- + (Optional) Configuration for the optimization algorithm + efficiency_config: + $ref: '#/components/schemas/EfficiencyConfig' + description: >- + (Optional) Configuration for memory and compute optimizations + dtype: + type: string + default: bf16 + description: >- + (Optional) Data type for model parameters (bf16, fp16, fp32) + additionalProperties: false + required: + - n_epochs + - max_steps_per_epoch + - gradient_accumulation_steps + title: TrainingConfig + description: >- + Comprehensive configuration for the training process. + PreferenceOptimizeRequest: + type: object + properties: + job_uuid: + type: string + description: The UUID of the job to create. + finetuned_model: + type: string + description: The model to fine-tune. + algorithm_config: + $ref: '#/components/schemas/DPOAlignmentConfig' + description: The algorithm configuration. + training_config: + $ref: '#/components/schemas/TrainingConfig' + description: The training configuration. + hyperparam_search_config: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: The hyperparam search configuration. + logger_config: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: The logger configuration. + additionalProperties: false + required: + - job_uuid + - finetuned_model + - algorithm_config + - training_config + - hyperparam_search_config + - logger_config + title: PreferenceOptimizeRequest + PostTrainingJob: + type: object + properties: + job_uuid: + type: string + additionalProperties: false + required: + - job_uuid + title: PostTrainingJob + AlgorithmConfig: + oneOf: + - $ref: '#/components/schemas/LoraFinetuningConfig' + - $ref: '#/components/schemas/QATFinetuningConfig' + discriminator: + propertyName: type + mapping: + LoRA: '#/components/schemas/LoraFinetuningConfig' + QAT: '#/components/schemas/QATFinetuningConfig' + LoraFinetuningConfig: + type: object + properties: + type: + type: string + const: LoRA + default: LoRA + description: Algorithm type identifier, always "LoRA" + lora_attn_modules: + type: array + items: + type: string + description: >- + List of attention module names to apply LoRA to + apply_lora_to_mlp: + type: boolean + description: Whether to apply LoRA to MLP layers + apply_lora_to_output: + type: boolean + description: >- + Whether to apply LoRA to output projection layers + rank: + type: integer + description: >- + Rank of the LoRA adaptation (lower rank = fewer parameters) + alpha: + type: integer + description: >- + LoRA scaling parameter that controls adaptation strength + use_dora: + type: boolean + default: false + description: >- + (Optional) Whether to use DoRA (Weight-Decomposed Low-Rank Adaptation) + quantize_base: + type: boolean + default: false + description: >- + (Optional) Whether to quantize the base model weights + additionalProperties: false + required: + - type + - lora_attn_modules + - apply_lora_to_mlp + - apply_lora_to_output + - rank + - alpha + title: LoraFinetuningConfig + description: >- + Configuration for Low-Rank Adaptation (LoRA) fine-tuning. + QATFinetuningConfig: + type: object + properties: + type: + type: string + const: QAT + default: QAT + description: Algorithm type identifier, always "QAT" + quantizer_name: + type: string + description: >- + Name of the quantization algorithm to use + group_size: + type: integer + description: Size of groups for grouped quantization + additionalProperties: false + required: + - type + - quantizer_name + - group_size + title: QATFinetuningConfig + description: >- + Configuration for Quantization-Aware Training (QAT) fine-tuning. + SupervisedFineTuneRequest: + type: object + properties: + job_uuid: + type: string + description: The UUID of the job to create. + training_config: + $ref: '#/components/schemas/TrainingConfig' + description: The training configuration. + hyperparam_search_config: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: The hyperparam search configuration. + logger_config: + type: object + additionalProperties: + oneOf: + - type: 'null' + - type: boolean + - type: number + - type: string + - type: array + - type: object + description: The logger configuration. + model: + type: string + description: The model to fine-tune. + checkpoint_dir: + type: string + description: The directory to save checkpoint(s) to. + algorithm_config: + $ref: '#/components/schemas/AlgorithmConfig' + description: The algorithm configuration. + additionalProperties: false + required: + - job_uuid + - training_config + - hyperparam_search_config + - logger_config + title: SupervisedFineTuneRequest + responses: + BadRequest400: + description: The request was invalid or malformed + content: + application/json: + schema: + $ref: '#/components/schemas/Error' + example: + status: 400 + title: Bad Request + detail: The request was invalid or malformed + TooManyRequests429: + description: >- + The client has sent too many requests in a given amount of time + content: + application/json: + schema: + $ref: '#/components/schemas/Error' + example: + status: 429 + title: Too Many Requests + detail: >- + You have exceeded the rate limit. Please try again later. + InternalServerError500: + description: >- + The server encountered an unexpected error + content: + application/json: + schema: + $ref: '#/components/schemas/Error' + example: + status: 500 + title: Internal Server Error + detail: >- + An unexpected error occurred. Our team has been notified. + DefaultError: + description: An unexpected error occurred + content: + application/json: + schema: + $ref: '#/components/schemas/Error' + example: + status: 0 + title: Error + detail: An unexpected error occurred +security: + - Default: [] +tags: + - name: Agents + description: >- + APIs for creating and interacting with agentic systems. + x-displayName: Agents + - name: Benchmarks + description: '' + - name: Conversations + description: >- + Protocol for conversation management operations. + x-displayName: Conversations + - name: DatasetIO + description: '' + - name: Datasets + description: '' + - name: Eval + description: >- + Llama Stack Evaluation API for running evaluations on model and agent candidates. + x-displayName: Evaluations + - name: Files + description: >- + This API is used to upload documents that can be used with other Llama Stack + APIs. + x-displayName: Files + - name: Inference + description: >- + Llama Stack Inference API for generating completions, chat completions, and + embeddings. + + + This API provides the raw interface to the underlying models. Two kinds of models + are supported: + + - LLM models: these models generate "raw" and "chat" (conversational) completions. + + - Embedding models: these models generate embeddings to be used for semantic + search. + x-displayName: Inference + - name: Inspect + description: >- + APIs for inspecting the Llama Stack service, including health status, available + API routes with methods and implementing providers. + x-displayName: Inspect + - name: Models + description: '' + - name: PostTraining (Coming Soon) + description: '' + - name: Prompts + description: >- + Protocol for prompt management operations. + x-displayName: Prompts + - name: Providers + description: >- + Providers API for inspecting, listing, and modifying providers and their configurations. + x-displayName: Providers + - name: Safety + description: OpenAI-compatible Moderations API. + x-displayName: Safety + - name: Scoring + description: '' + - name: ScoringFunctions + description: '' + - name: Shields + description: '' + - name: SyntheticDataGeneration (Coming Soon) + description: '' + - name: ToolGroups + description: '' + - name: ToolRuntime + description: '' + - name: VectorIO + description: '' +x-tagGroups: + - name: Operations + tags: + - Agents + - Benchmarks + - Conversations + - DatasetIO + - Datasets + - Eval + - Files + - Inference + - Inspect + - Models + - PostTraining (Coming Soon) + - Prompts + - Providers + - Safety + - Scoring + - ScoringFunctions + - Shields + - SyntheticDataGeneration (Coming Soon) + - ToolGroups + - ToolRuntime + - VectorIO diff --git a/docs/openapi_generator/run_openapi_generator.sh b/docs/openapi_generator/run_openapi_generator.sh index 45d00d6e7..6cffd42b0 100755 --- a/docs/openapi_generator/run_openapi_generator.sh +++ b/docs/openapi_generator/run_openapi_generator.sh @@ -30,3 +30,5 @@ fi stack_dir=$(dirname $(dirname $THIS_DIR)) PYTHONPATH=$PYTHONPATH:$stack_dir \ python -m docs.openapi_generator.generate $(dirname $THIS_DIR)/static + +cp $stack_dir/docs/static/stainless-llama-stack-spec.yaml $stack_dir/client-sdks/stainless/openapi.yml From 94faec7bc5ebbe80c7c3c6c0c51ac497745f29b6 Mon Sep 17 00:00:00 2001 From: Ashwin Bharambe Date: Mon, 20 Oct 2025 14:52:48 -0700 Subject: [PATCH 23/41] chore(yaml)!: move registered resources to a sub-key (#3861) **NOTE: this is a backwards incompatible change to the run-configs.** A small QOL update, but this will prove useful when I do a rename for "vector_dbs" to "vector_stores" next. Moves all the `models, shields, ...` keys in run-config under a `registered_resources` sub-key. --- llama_stack/core/datatypes.py | 24 +- llama_stack/core/stack.py | 2 +- llama_stack/distributions/ci-tests/run.yaml | 35 +-- .../distributions/dell/run-with-safety.yaml | 51 ++--- llama_stack/distributions/dell/run.yaml | 41 ++-- .../meta-reference-gpu/run-with-safety.yaml | 51 ++--- .../distributions/meta-reference-gpu/run.yaml | 41 ++-- .../distributions/nvidia/run-with-safety.yaml | 39 ++-- llama_stack/distributions/nvidia/run.yaml | 19 +- .../distributions/open-benchmark/run.yaml | 207 +++++++++--------- .../distributions/postgres-demo/run.yaml | 43 ++-- .../distributions/starter-gpu/run.yaml | 35 +-- llama_stack/distributions/starter/run.yaml | 35 +-- llama_stack/distributions/template.py | 16 +- llama_stack/distributions/watsonx/run.yaml | 23 +- 15 files changed, 342 insertions(+), 320 deletions(-) diff --git a/llama_stack/core/datatypes.py b/llama_stack/core/datatypes.py index 6d06adb84..e8cb36a02 100644 --- a/llama_stack/core/datatypes.py +++ b/llama_stack/core/datatypes.py @@ -422,6 +422,18 @@ def process_cors_config(cors_config: bool | CORSConfig | None) -> CORSConfig | N raise ValueError(f"Expected bool or CORSConfig, got {type(cors_config).__name__}") +class RegisteredResources(BaseModel): + """Registry of resources available in the distribution.""" + + models: list[ModelInput] = Field(default_factory=list) + shields: list[ShieldInput] = Field(default_factory=list) + vector_dbs: list[VectorDBInput] = Field(default_factory=list) + datasets: list[DatasetInput] = Field(default_factory=list) + scoring_fns: list[ScoringFnInput] = Field(default_factory=list) + benchmarks: list[BenchmarkInput] = Field(default_factory=list) + tool_groups: list[ToolGroupInput] = Field(default_factory=list) + + class ServerConfig(BaseModel): port: int = Field( default=8321, @@ -491,14 +503,10 @@ can be instantiated multiple times (with different configs) if necessary. description="Catalog of named storage backends and references available to the stack", ) - # registry of "resources" in the distribution - models: list[ModelInput] = Field(default_factory=list) - shields: list[ShieldInput] = Field(default_factory=list) - vector_dbs: list[VectorDBInput] = Field(default_factory=list) - datasets: list[DatasetInput] = Field(default_factory=list) - scoring_fns: list[ScoringFnInput] = Field(default_factory=list) - benchmarks: list[BenchmarkInput] = Field(default_factory=list) - tool_groups: list[ToolGroupInput] = Field(default_factory=list) + registered_resources: RegisteredResources = Field( + default_factory=RegisteredResources, + description="Registry of resources available in the distribution", + ) logging: LoggingConfig | None = Field(default=None, description="Configuration for Llama Stack Logging") diff --git a/llama_stack/core/stack.py b/llama_stack/core/stack.py index a2f7babd2..4cf1d072d 100644 --- a/llama_stack/core/stack.py +++ b/llama_stack/core/stack.py @@ -110,7 +110,7 @@ TEST_RECORDING_CONTEXT = None async def register_resources(run_config: StackRunConfig, impls: dict[Api, Any]): for rsrc, api, register_method, list_method in RESOURCES: - objects = getattr(run_config, rsrc) + objects = getattr(run_config.registered_resources, rsrc) if api not in impls: continue diff --git a/llama_stack/distributions/ci-tests/run.yaml b/llama_stack/distributions/ci-tests/run.yaml index 1653dc9bd..ecf9eed3b 100644 --- a/llama_stack/distributions/ci-tests/run.yaml +++ b/llama_stack/distributions/ci-tests/run.yaml @@ -247,23 +247,24 @@ storage: conversations: table_name: openai_conversations backend: sql_default -models: [] -shields: -- shield_id: llama-guard - provider_id: ${env.SAFETY_MODEL:+llama-guard} - provider_shield_id: ${env.SAFETY_MODEL:=} -- shield_id: code-scanner - provider_id: ${env.CODE_SCANNER_MODEL:+code-scanner} - provider_shield_id: ${env.CODE_SCANNER_MODEL:=} -vector_dbs: [] -datasets: [] -scoring_fns: [] -benchmarks: [] -tool_groups: -- toolgroup_id: builtin::websearch - provider_id: tavily-search -- toolgroup_id: builtin::rag - provider_id: rag-runtime +registered_resources: + models: [] + shields: + - shield_id: llama-guard + provider_id: ${env.SAFETY_MODEL:+llama-guard} + provider_shield_id: ${env.SAFETY_MODEL:=} + - shield_id: code-scanner + provider_id: ${env.CODE_SCANNER_MODEL:+code-scanner} + provider_shield_id: ${env.CODE_SCANNER_MODEL:=} + vector_dbs: [] + datasets: [] + scoring_fns: [] + benchmarks: [] + tool_groups: + - toolgroup_id: builtin::websearch + provider_id: tavily-search + - toolgroup_id: builtin::rag + provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/dell/run-with-safety.yaml b/llama_stack/distributions/dell/run-with-safety.yaml index 3130285b9..2563f2f4b 100644 --- a/llama_stack/distributions/dell/run-with-safety.yaml +++ b/llama_stack/distributions/dell/run-with-safety.yaml @@ -109,31 +109,32 @@ storage: conversations: table_name: openai_conversations backend: sql_default -models: -- metadata: {} - model_id: ${env.INFERENCE_MODEL} - provider_id: tgi0 - model_type: llm -- metadata: {} - model_id: ${env.SAFETY_MODEL} - provider_id: tgi1 - model_type: llm -- metadata: - embedding_dimension: 768 - model_id: nomic-embed-text-v1.5 - provider_id: sentence-transformers - model_type: embedding -shields: -- shield_id: ${env.SAFETY_MODEL} -vector_dbs: [] -datasets: [] -scoring_fns: [] -benchmarks: [] -tool_groups: -- toolgroup_id: builtin::websearch - provider_id: brave-search -- toolgroup_id: builtin::rag - provider_id: rag-runtime +registered_resources: + models: + - metadata: {} + model_id: ${env.INFERENCE_MODEL} + provider_id: tgi0 + model_type: llm + - metadata: {} + model_id: ${env.SAFETY_MODEL} + provider_id: tgi1 + model_type: llm + - metadata: + embedding_dimension: 768 + model_id: nomic-embed-text-v1.5 + provider_id: sentence-transformers + model_type: embedding + shields: + - shield_id: ${env.SAFETY_MODEL} + vector_dbs: [] + datasets: [] + scoring_fns: [] + benchmarks: [] + tool_groups: + - toolgroup_id: builtin::websearch + provider_id: brave-search + - toolgroup_id: builtin::rag + provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/dell/run.yaml b/llama_stack/distributions/dell/run.yaml index af1a96a21..7bada394f 100644 --- a/llama_stack/distributions/dell/run.yaml +++ b/llama_stack/distributions/dell/run.yaml @@ -105,26 +105,27 @@ storage: conversations: table_name: openai_conversations backend: sql_default -models: -- metadata: {} - model_id: ${env.INFERENCE_MODEL} - provider_id: tgi0 - model_type: llm -- metadata: - embedding_dimension: 768 - model_id: nomic-embed-text-v1.5 - provider_id: sentence-transformers - model_type: embedding -shields: [] -vector_dbs: [] -datasets: [] -scoring_fns: [] -benchmarks: [] -tool_groups: -- toolgroup_id: builtin::websearch - provider_id: brave-search -- toolgroup_id: builtin::rag - provider_id: rag-runtime +registered_resources: + models: + - metadata: {} + model_id: ${env.INFERENCE_MODEL} + provider_id: tgi0 + model_type: llm + - metadata: + embedding_dimension: 768 + model_id: nomic-embed-text-v1.5 + provider_id: sentence-transformers + model_type: embedding + shields: [] + vector_dbs: [] + datasets: [] + scoring_fns: [] + benchmarks: [] + tool_groups: + - toolgroup_id: builtin::websearch + provider_id: brave-search + - toolgroup_id: builtin::rag + provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/meta-reference-gpu/run-with-safety.yaml b/llama_stack/distributions/meta-reference-gpu/run-with-safety.yaml index b43d1ff19..01b5db4f9 100644 --- a/llama_stack/distributions/meta-reference-gpu/run-with-safety.yaml +++ b/llama_stack/distributions/meta-reference-gpu/run-with-safety.yaml @@ -122,31 +122,32 @@ storage: conversations: table_name: openai_conversations backend: sql_default -models: -- metadata: {} - model_id: ${env.INFERENCE_MODEL} - provider_id: meta-reference-inference - model_type: llm -- metadata: {} - model_id: ${env.SAFETY_MODEL} - provider_id: meta-reference-safety - model_type: llm -- metadata: - embedding_dimension: 768 - model_id: nomic-embed-text-v1.5 - provider_id: sentence-transformers - model_type: embedding -shields: -- shield_id: ${env.SAFETY_MODEL} -vector_dbs: [] -datasets: [] -scoring_fns: [] -benchmarks: [] -tool_groups: -- toolgroup_id: builtin::websearch - provider_id: tavily-search -- toolgroup_id: builtin::rag - provider_id: rag-runtime +registered_resources: + models: + - metadata: {} + model_id: ${env.INFERENCE_MODEL} + provider_id: meta-reference-inference + model_type: llm + - metadata: {} + model_id: ${env.SAFETY_MODEL} + provider_id: meta-reference-safety + model_type: llm + - metadata: + embedding_dimension: 768 + model_id: nomic-embed-text-v1.5 + provider_id: sentence-transformers + model_type: embedding + shields: + - shield_id: ${env.SAFETY_MODEL} + vector_dbs: [] + datasets: [] + scoring_fns: [] + benchmarks: [] + tool_groups: + - toolgroup_id: builtin::websearch + provider_id: tavily-search + - toolgroup_id: builtin::rag + provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/meta-reference-gpu/run.yaml b/llama_stack/distributions/meta-reference-gpu/run.yaml index 59e2d8129..87c33dde0 100644 --- a/llama_stack/distributions/meta-reference-gpu/run.yaml +++ b/llama_stack/distributions/meta-reference-gpu/run.yaml @@ -112,26 +112,27 @@ storage: conversations: table_name: openai_conversations backend: sql_default -models: -- metadata: {} - model_id: ${env.INFERENCE_MODEL} - provider_id: meta-reference-inference - model_type: llm -- metadata: - embedding_dimension: 768 - model_id: nomic-embed-text-v1.5 - provider_id: sentence-transformers - model_type: embedding -shields: [] -vector_dbs: [] -datasets: [] -scoring_fns: [] -benchmarks: [] -tool_groups: -- toolgroup_id: builtin::websearch - provider_id: tavily-search -- toolgroup_id: builtin::rag - provider_id: rag-runtime +registered_resources: + models: + - metadata: {} + model_id: ${env.INFERENCE_MODEL} + provider_id: meta-reference-inference + model_type: llm + - metadata: + embedding_dimension: 768 + model_id: nomic-embed-text-v1.5 + provider_id: sentence-transformers + model_type: embedding + shields: [] + vector_dbs: [] + datasets: [] + scoring_fns: [] + benchmarks: [] + tool_groups: + - toolgroup_id: builtin::websearch + provider_id: tavily-search + - toolgroup_id: builtin::rag + provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/nvidia/run-with-safety.yaml b/llama_stack/distributions/nvidia/run-with-safety.yaml index e06787d0b..c23d0f9cb 100644 --- a/llama_stack/distributions/nvidia/run-with-safety.yaml +++ b/llama_stack/distributions/nvidia/run-with-safety.yaml @@ -111,25 +111,26 @@ storage: conversations: table_name: openai_conversations backend: sql_default -models: -- metadata: {} - model_id: ${env.INFERENCE_MODEL} - provider_id: nvidia - model_type: llm -- metadata: {} - model_id: ${env.SAFETY_MODEL} - provider_id: nvidia - model_type: llm -shields: -- shield_id: ${env.SAFETY_MODEL} - provider_id: nvidia -vector_dbs: [] -datasets: [] -scoring_fns: [] -benchmarks: [] -tool_groups: -- toolgroup_id: builtin::rag - provider_id: rag-runtime +registered_resources: + models: + - metadata: {} + model_id: ${env.INFERENCE_MODEL} + provider_id: nvidia + model_type: llm + - metadata: {} + model_id: ${env.SAFETY_MODEL} + provider_id: nvidia + model_type: llm + shields: + - shield_id: ${env.SAFETY_MODEL} + provider_id: nvidia + vector_dbs: [] + datasets: [] + scoring_fns: [] + benchmarks: [] + tool_groups: + - toolgroup_id: builtin::rag + provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/nvidia/run.yaml b/llama_stack/distributions/nvidia/run.yaml index 85e0743e4..81e744d53 100644 --- a/llama_stack/distributions/nvidia/run.yaml +++ b/llama_stack/distributions/nvidia/run.yaml @@ -100,15 +100,16 @@ storage: conversations: table_name: openai_conversations backend: sql_default -models: [] -shields: [] -vector_dbs: [] -datasets: [] -scoring_fns: [] -benchmarks: [] -tool_groups: -- toolgroup_id: builtin::rag - provider_id: rag-runtime +registered_resources: + models: [] + shields: [] + vector_dbs: [] + datasets: [] + scoring_fns: [] + benchmarks: [] + tool_groups: + - toolgroup_id: builtin::rag + provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/open-benchmark/run.yaml b/llama_stack/distributions/open-benchmark/run.yaml index 2c6936bfc..4fd0e199b 100644 --- a/llama_stack/distributions/open-benchmark/run.yaml +++ b/llama_stack/distributions/open-benchmark/run.yaml @@ -142,109 +142,110 @@ storage: conversations: table_name: openai_conversations backend: sql_default -models: -- metadata: {} - model_id: gpt-4o - provider_id: openai - provider_model_id: gpt-4o - model_type: llm -- metadata: {} - model_id: claude-3-5-sonnet-latest - provider_id: anthropic - provider_model_id: claude-3-5-sonnet-latest - model_type: llm -- metadata: {} - model_id: gemini/gemini-1.5-flash - provider_id: gemini - provider_model_id: gemini/gemini-1.5-flash - model_type: llm -- metadata: {} - model_id: meta-llama/Llama-3.3-70B-Instruct - provider_id: groq - provider_model_id: groq/llama-3.3-70b-versatile - model_type: llm -- metadata: {} - model_id: meta-llama/Llama-3.1-405B-Instruct - provider_id: together - provider_model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo - model_type: llm -shields: -- shield_id: meta-llama/Llama-Guard-3-8B -vector_dbs: [] -datasets: -- purpose: eval/messages-answer - source: - type: uri - uri: huggingface://datasets/llamastack/simpleqa?split=train - metadata: {} - dataset_id: simpleqa -- purpose: eval/messages-answer - source: - type: uri - uri: huggingface://datasets/llamastack/mmlu_cot?split=test&name=all - metadata: {} - dataset_id: mmlu_cot -- purpose: eval/messages-answer - source: - type: uri - uri: huggingface://datasets/llamastack/gpqa_0shot_cot?split=test&name=gpqa_main - metadata: {} - dataset_id: gpqa_cot -- purpose: eval/messages-answer - source: - type: uri - uri: huggingface://datasets/llamastack/math_500?split=test - metadata: {} - dataset_id: math_500 -- purpose: eval/messages-answer - source: - type: uri - uri: huggingface://datasets/llamastack/IfEval?split=train - metadata: {} - dataset_id: ifeval -- purpose: eval/messages-answer - source: - type: uri - uri: huggingface://datasets/llamastack/docvqa?split=val - metadata: {} - dataset_id: docvqa -scoring_fns: [] -benchmarks: -- dataset_id: simpleqa - scoring_functions: - - llm-as-judge::405b-simpleqa - metadata: {} - benchmark_id: meta-reference-simpleqa -- dataset_id: mmlu_cot - scoring_functions: - - basic::regex_parser_multiple_choice_answer - metadata: {} - benchmark_id: meta-reference-mmlu-cot -- dataset_id: gpqa_cot - scoring_functions: - - basic::regex_parser_multiple_choice_answer - metadata: {} - benchmark_id: meta-reference-gpqa-cot -- dataset_id: math_500 - scoring_functions: - - basic::regex_parser_math_response - metadata: {} - benchmark_id: meta-reference-math-500 -- dataset_id: ifeval - scoring_functions: - - basic::ifeval - metadata: {} - benchmark_id: meta-reference-ifeval -- dataset_id: docvqa - scoring_functions: - - basic::docvqa - metadata: {} - benchmark_id: meta-reference-docvqa -tool_groups: -- toolgroup_id: builtin::websearch - provider_id: tavily-search -- toolgroup_id: builtin::rag - provider_id: rag-runtime +registered_resources: + models: + - metadata: {} + model_id: gpt-4o + provider_id: openai + provider_model_id: gpt-4o + model_type: llm + - metadata: {} + model_id: claude-3-5-sonnet-latest + provider_id: anthropic + provider_model_id: claude-3-5-sonnet-latest + model_type: llm + - metadata: {} + model_id: gemini/gemini-1.5-flash + provider_id: gemini + provider_model_id: gemini/gemini-1.5-flash + model_type: llm + - metadata: {} + model_id: meta-llama/Llama-3.3-70B-Instruct + provider_id: groq + provider_model_id: groq/llama-3.3-70b-versatile + model_type: llm + - metadata: {} + model_id: meta-llama/Llama-3.1-405B-Instruct + provider_id: together + provider_model_id: meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo + model_type: llm + shields: + - shield_id: meta-llama/Llama-Guard-3-8B + vector_dbs: [] + datasets: + - purpose: eval/messages-answer + source: + type: uri + uri: huggingface://datasets/llamastack/simpleqa?split=train + metadata: {} + dataset_id: simpleqa + - purpose: eval/messages-answer + source: + type: uri + uri: huggingface://datasets/llamastack/mmlu_cot?split=test&name=all + metadata: {} + dataset_id: mmlu_cot + - purpose: eval/messages-answer + source: + type: uri + uri: huggingface://datasets/llamastack/gpqa_0shot_cot?split=test&name=gpqa_main + metadata: {} + dataset_id: gpqa_cot + - purpose: eval/messages-answer + source: + type: uri + uri: huggingface://datasets/llamastack/math_500?split=test + metadata: {} + dataset_id: math_500 + - purpose: eval/messages-answer + source: + type: uri + uri: huggingface://datasets/llamastack/IfEval?split=train + metadata: {} + dataset_id: ifeval + - purpose: eval/messages-answer + source: + type: uri + uri: huggingface://datasets/llamastack/docvqa?split=val + metadata: {} + dataset_id: docvqa + scoring_fns: [] + benchmarks: + - dataset_id: simpleqa + scoring_functions: + - llm-as-judge::405b-simpleqa + metadata: {} + benchmark_id: meta-reference-simpleqa + - dataset_id: mmlu_cot + scoring_functions: + - basic::regex_parser_multiple_choice_answer + metadata: {} + benchmark_id: meta-reference-mmlu-cot + - dataset_id: gpqa_cot + scoring_functions: + - basic::regex_parser_multiple_choice_answer + metadata: {} + benchmark_id: meta-reference-gpqa-cot + - dataset_id: math_500 + scoring_functions: + - basic::regex_parser_math_response + metadata: {} + benchmark_id: meta-reference-math-500 + - dataset_id: ifeval + scoring_functions: + - basic::ifeval + metadata: {} + benchmark_id: meta-reference-ifeval + - dataset_id: docvqa + scoring_functions: + - basic::docvqa + metadata: {} + benchmark_id: meta-reference-docvqa + tool_groups: + - toolgroup_id: builtin::websearch + provider_id: tavily-search + - toolgroup_id: builtin::rag + provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/postgres-demo/run.yaml b/llama_stack/distributions/postgres-demo/run.yaml index 9556b1287..0d7ecff48 100644 --- a/llama_stack/distributions/postgres-demo/run.yaml +++ b/llama_stack/distributions/postgres-demo/run.yaml @@ -87,27 +87,28 @@ storage: conversations: table_name: openai_conversations backend: sql_default -models: -- metadata: {} - model_id: ${env.INFERENCE_MODEL} - provider_id: vllm-inference - model_type: llm -- metadata: - embedding_dimension: 768 - model_id: nomic-embed-text-v1.5 - provider_id: sentence-transformers - model_type: embedding -shields: -- shield_id: meta-llama/Llama-Guard-3-8B -vector_dbs: [] -datasets: [] -scoring_fns: [] -benchmarks: [] -tool_groups: -- toolgroup_id: builtin::websearch - provider_id: tavily-search -- toolgroup_id: builtin::rag - provider_id: rag-runtime +registered_resources: + models: + - metadata: {} + model_id: ${env.INFERENCE_MODEL} + provider_id: vllm-inference + model_type: llm + - metadata: + embedding_dimension: 768 + model_id: nomic-embed-text-v1.5 + provider_id: sentence-transformers + model_type: embedding + shields: + - shield_id: meta-llama/Llama-Guard-3-8B + vector_dbs: [] + datasets: [] + scoring_fns: [] + benchmarks: [] + tool_groups: + - toolgroup_id: builtin::websearch + provider_id: tavily-search + - toolgroup_id: builtin::rag + provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/starter-gpu/run.yaml b/llama_stack/distributions/starter-gpu/run.yaml index 81f564779..92483c78e 100644 --- a/llama_stack/distributions/starter-gpu/run.yaml +++ b/llama_stack/distributions/starter-gpu/run.yaml @@ -250,23 +250,24 @@ storage: conversations: table_name: openai_conversations backend: sql_default -models: [] -shields: -- shield_id: llama-guard - provider_id: ${env.SAFETY_MODEL:+llama-guard} - provider_shield_id: ${env.SAFETY_MODEL:=} -- shield_id: code-scanner - provider_id: ${env.CODE_SCANNER_MODEL:+code-scanner} - provider_shield_id: ${env.CODE_SCANNER_MODEL:=} -vector_dbs: [] -datasets: [] -scoring_fns: [] -benchmarks: [] -tool_groups: -- toolgroup_id: builtin::websearch - provider_id: tavily-search -- toolgroup_id: builtin::rag - provider_id: rag-runtime +registered_resources: + models: [] + shields: + - shield_id: llama-guard + provider_id: ${env.SAFETY_MODEL:+llama-guard} + provider_shield_id: ${env.SAFETY_MODEL:=} + - shield_id: code-scanner + provider_id: ${env.CODE_SCANNER_MODEL:+code-scanner} + provider_shield_id: ${env.CODE_SCANNER_MODEL:=} + vector_dbs: [] + datasets: [] + scoring_fns: [] + benchmarks: [] + tool_groups: + - toolgroup_id: builtin::websearch + provider_id: tavily-search + - toolgroup_id: builtin::rag + provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/starter/run.yaml b/llama_stack/distributions/starter/run.yaml index dc611a446..3b9d8f890 100644 --- a/llama_stack/distributions/starter/run.yaml +++ b/llama_stack/distributions/starter/run.yaml @@ -247,23 +247,24 @@ storage: conversations: table_name: openai_conversations backend: sql_default -models: [] -shields: -- shield_id: llama-guard - provider_id: ${env.SAFETY_MODEL:+llama-guard} - provider_shield_id: ${env.SAFETY_MODEL:=} -- shield_id: code-scanner - provider_id: ${env.CODE_SCANNER_MODEL:+code-scanner} - provider_shield_id: ${env.CODE_SCANNER_MODEL:=} -vector_dbs: [] -datasets: [] -scoring_fns: [] -benchmarks: [] -tool_groups: -- toolgroup_id: builtin::websearch - provider_id: tavily-search -- toolgroup_id: builtin::rag - provider_id: rag-runtime +registered_resources: + models: [] + shields: + - shield_id: llama-guard + provider_id: ${env.SAFETY_MODEL:+llama-guard} + provider_shield_id: ${env.SAFETY_MODEL:=} + - shield_id: code-scanner + provider_id: ${env.CODE_SCANNER_MODEL:+code-scanner} + provider_shield_id: ${env.CODE_SCANNER_MODEL:=} + vector_dbs: [] + datasets: [] + scoring_fns: [] + benchmarks: [] + tool_groups: + - toolgroup_id: builtin::websearch + provider_id: tavily-search + - toolgroup_id: builtin::rag + provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/template.py b/llama_stack/distributions/template.py index daa609388..64f21e626 100644 --- a/llama_stack/distributions/template.py +++ b/llama_stack/distributions/template.py @@ -272,13 +272,15 @@ class RunConfigSettings(BaseModel): "apis": apis, "providers": provider_configs, "storage": storage_config, - "models": [m.model_dump(exclude_none=True) for m in (self.default_models or [])], - "shields": [s.model_dump(exclude_none=True) for s in (self.default_shields or [])], - "vector_dbs": [], - "datasets": [d.model_dump(exclude_none=True) for d in (self.default_datasets or [])], - "scoring_fns": [], - "benchmarks": [b.model_dump(exclude_none=True) for b in (self.default_benchmarks or [])], - "tool_groups": [t.model_dump(exclude_none=True) for t in (self.default_tool_groups or [])], + "registered_resources": { + "models": [m.model_dump(exclude_none=True) for m in (self.default_models or [])], + "shields": [s.model_dump(exclude_none=True) for s in (self.default_shields or [])], + "vector_dbs": [], + "datasets": [d.model_dump(exclude_none=True) for d in (self.default_datasets or [])], + "scoring_fns": [], + "benchmarks": [b.model_dump(exclude_none=True) for b in (self.default_benchmarks or [])], + "tool_groups": [t.model_dump(exclude_none=True) for t in (self.default_tool_groups or [])], + }, "server": { "port": 8321, }, diff --git a/llama_stack/distributions/watsonx/run.yaml b/llama_stack/distributions/watsonx/run.yaml index 37866cb32..ca3c8402d 100644 --- a/llama_stack/distributions/watsonx/run.yaml +++ b/llama_stack/distributions/watsonx/run.yaml @@ -115,17 +115,18 @@ storage: conversations: table_name: openai_conversations backend: sql_default -models: [] -shields: [] -vector_dbs: [] -datasets: [] -scoring_fns: [] -benchmarks: [] -tool_groups: -- toolgroup_id: builtin::websearch - provider_id: tavily-search -- toolgroup_id: builtin::rag - provider_id: rag-runtime +registered_resources: + models: [] + shields: [] + vector_dbs: [] + datasets: [] + scoring_fns: [] + benchmarks: [] + tool_groups: + - toolgroup_id: builtin::websearch + provider_id: tavily-search + - toolgroup_id: builtin::rag + provider_id: rag-runtime server: port: 8321 telemetry: From ab2d5febb4fdb384e435d60ba3d41f4af2aa8756 Mon Sep 17 00:00:00 2001 From: ehhuang Date: Mon, 20 Oct 2025 14:56:45 -0700 Subject: [PATCH 24/41] chore: install client first (#3862) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit # What does this PR do? mirrors build_container.sh trying to resolve: 0.105 + [ editable = editable ] 0.105 + [ ! -d /workspace/llama-stack ] 0.105 + uv pip install --no-cache-dir -e /workspace/llama-stack 0.261 Using Python 3.12.12 environment at: /usr/local 0.479 × No solution found when resolving dependencies: 0.479 ╰─▶ Because only llama-stack-client<=0.2.23 is available and 0.479 llama-stack==0.3.0rc4 depends on llama-stack-client>=0.3.0rc4, we can 0.479 conclude that llama-stack==0.3.0rc4 cannot be used. 0.479 And because only llama-stack==0.3.0rc4 is available and you require 0.479 llama-stack, we can conclude that your requirements are unsatisfiable. ------ ## Test Plan --- containers/Containerfile | 21 +++++++++++---------- 1 file changed, 11 insertions(+), 10 deletions(-) diff --git a/containers/Containerfile b/containers/Containerfile index c6e47fa1d..1ddf102af 100644 --- a/containers/Containerfile +++ b/containers/Containerfile @@ -60,6 +60,17 @@ ENV RUN_CONFIG_PATH=${RUN_CONFIG_PATH} # Copy the repository so editable installs and run configurations are available. COPY . /workspace +# Install the client package if it is provided +# NOTE: this is installed before llama-stack since llama-stack depends on llama-stack-client-python +RUN set -eux; \ + if [ -n "$LLAMA_STACK_CLIENT_DIR" ]; then \ + if [ ! -d "$LLAMA_STACK_CLIENT_DIR" ]; then \ + echo "LLAMA_STACK_CLIENT_DIR is set but $LLAMA_STACK_CLIENT_DIR does not exist" >&2; \ + exit 1; \ + fi; \ + uv pip install --no-cache-dir -e "$LLAMA_STACK_CLIENT_DIR"; \ + fi; + # Install llama-stack RUN set -eux; \ if [ "$INSTALL_MODE" = "editable" ]; then \ @@ -83,16 +94,6 @@ RUN set -eux; \ fi; \ fi; -# Install the client package if it is provided -RUN set -eux; \ - if [ -n "$LLAMA_STACK_CLIENT_DIR" ]; then \ - if [ ! -d "$LLAMA_STACK_CLIENT_DIR" ]; then \ - echo "LLAMA_STACK_CLIENT_DIR is set but $LLAMA_STACK_CLIENT_DIR does not exist" >&2; \ - exit 1; \ - fi; \ - uv pip install --no-cache-dir -e "$LLAMA_STACK_CLIENT_DIR"; \ - fi; - # Install the dependencies for the distribution RUN set -eux; \ if [ -z "$DISTRO_NAME" ]; then \ From e7f4ddcc86b9ec5e393b13e3f502de3454781815 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Mon, 20 Oct 2025 14:59:28 -0700 Subject: [PATCH 25/41] chore(github-deps): bump actions/checkout from 4.2.2 to 5.0.0 (#3841) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Bumps [actions/checkout](https://github.com/actions/checkout) from 4.2.2 to 5.0.0.
Release notes

Sourced from actions/checkout's releases.

v5.0.0

What's Changed

⚠️ Minimum Compatible Runner Version

v2.327.1
Release Notes

Make sure your runner is updated to this version or newer to use this release.

Full Changelog: https://github.com/actions/checkout/compare/v4...v5.0.0

v4.3.0

What's Changed

New Contributors

Full Changelog: https://github.com/actions/checkout/compare/v4...v4.3.0

Changelog

Sourced from actions/checkout's changelog.

Changelog

V5.0.0

V4.3.0

v4.2.2

v4.2.1

v4.2.0

v4.1.7

v4.1.6

v4.1.5

v4.1.4

v4.1.3

... (truncated)

Commits

[![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=actions/checkout&package-manager=github_actions&previous-version=4.2.2&new-version=5.0.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) ---
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- .github/workflows/providers-list-deps.yml | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/.github/workflows/providers-list-deps.yml b/.github/workflows/providers-list-deps.yml index df491b680..e30e1e5fb 100644 --- a/.github/workflows/providers-list-deps.yml +++ b/.github/workflows/providers-list-deps.yml @@ -36,7 +36,7 @@ jobs: distros: ${{ steps.set-matrix.outputs.distros }} steps: - name: Checkout repository - uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 + uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0 - name: Generate Distribution List id: set-matrix @@ -55,7 +55,7 @@ jobs: steps: - name: Checkout repository - uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 + uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0 - name: Install dependencies uses: ./.github/actions/setup-runner @@ -79,7 +79,7 @@ jobs: runs-on: ubuntu-latest steps: - name: Checkout repository - uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 + uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0 - name: Install dependencies uses: ./.github/actions/setup-runner @@ -92,7 +92,7 @@ jobs: runs-on: ubuntu-latest steps: - name: Checkout repository - uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2 + uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0 - name: Install dependencies uses: ./.github/actions/setup-runner From 8943335e0b9c60ca7c7395d9652b652a2dcb26f2 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Mon, 20 Oct 2025 14:59:35 -0700 Subject: [PATCH 26/41] chore(github-deps): bump astral-sh/setup-uv from 7.0.0 to 7.1.0 (#3842) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Bumps [astral-sh/setup-uv](https://github.com/astral-sh/setup-uv) from 7.0.0 to 7.1.0.
Release notes

Sourced from astral-sh/setup-uv's releases.

v7.1.0 🌈 Support all the use cases

Changes

Support all the use cases!!! ... well, that we know of.

This release adds support for some use cases that most users don't encounter but are useful for e.g. people running Gitea.

The input resolution-strategy lets you use the lowest possible version of uv from a version range. Useful if you want to test your tool with different versions of uv.

If you use activate-environment the path to the activated venv is now also exposed under the output venv.

Downloaded python installations can now also be uploaded to the GitHub Actions cache backend. Useful if you are running in act and have configured your own backend and don't want to download python again, and again over a slow internet connection.

Finally the path to installed python interpreters is now added to the PATH on Windows.

🚀 Enhancements

🧰 Maintenance

📚 Documentation

⬆️ Dependency updates

Commits

[![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=astral-sh/setup-uv&package-manager=github_actions&previous-version=7.0.0&new-version=7.1.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) ---
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- .github/workflows/python-build-test.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/python-build-test.yml b/.github/workflows/python-build-test.yml index dfa844175..96243285f 100644 --- a/.github/workflows/python-build-test.yml +++ b/.github/workflows/python-build-test.yml @@ -24,7 +24,7 @@ jobs: uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0 - name: Install uv - uses: astral-sh/setup-uv@eb1897b8dc4b5d5bfe39a428a8f2304605e0983c # v7.0.0 + uses: astral-sh/setup-uv@3259c6206f993105e3a61b142c2d97bf4b9ef83d # v7.1.0 with: python-version: ${{ matrix.python-version }} activate-environment: true From 7294385df3d146e282e143aa7a19c54c99ac2a8e Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Mon, 20 Oct 2025 14:59:39 -0700 Subject: [PATCH 27/41] chore(github-deps): bump actions/setup-node from 5.0.0 to 6.0.0 (#3843) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Bumps [actions/setup-node](https://github.com/actions/setup-node) from 5.0.0 to 6.0.0.
Release notes

Sourced from actions/setup-node's releases.

v6.0.0

What's Changed

Breaking Changes

Dependency Upgrades

Full Changelog: https://github.com/actions/setup-node/compare/v5...v6.0.0

Commits

[![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=actions/setup-node&package-manager=github_actions&previous-version=5.0.0&new-version=6.0.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) ---
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- .github/workflows/pre-commit.yml | 2 +- .github/workflows/precommit-trigger.yml | 2 +- .github/workflows/ui-unit-tests.yml | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/.github/workflows/pre-commit.yml b/.github/workflows/pre-commit.yml index b5845be53..0fdd50acc 100644 --- a/.github/workflows/pre-commit.yml +++ b/.github/workflows/pre-commit.yml @@ -37,7 +37,7 @@ jobs: .pre-commit-config.yaml - name: Set up Node.js - uses: actions/setup-node@a0853c24544627f65ddf259abe73b1d18a591444 # v5.0.0 + uses: actions/setup-node@2028fbc5c25fe9cf00d9f06a71cc4710d4507903 # v6.0.0 with: node-version: '20' cache: 'npm' diff --git a/.github/workflows/precommit-trigger.yml b/.github/workflows/precommit-trigger.yml index 0c23b57de..a78b2c3ac 100644 --- a/.github/workflows/precommit-trigger.yml +++ b/.github/workflows/precommit-trigger.yml @@ -141,7 +141,7 @@ jobs: - name: Set up Node.js if: steps.check_author.outputs.authorized == 'true' - uses: actions/setup-node@a0853c24544627f65ddf259abe73b1d18a591444 # v5.0.0 + uses: actions/setup-node@2028fbc5c25fe9cf00d9f06a71cc4710d4507903 # v6.0.0 with: node-version: '20' cache: 'npm' diff --git a/.github/workflows/ui-unit-tests.yml b/.github/workflows/ui-unit-tests.yml index c16f512d1..e8f318b8e 100644 --- a/.github/workflows/ui-unit-tests.yml +++ b/.github/workflows/ui-unit-tests.yml @@ -29,7 +29,7 @@ jobs: uses: actions/checkout@08c6903cd8c0fde910a37f88322edcfb5dd907a8 # v5.0.0 - name: Setup Node.js - uses: actions/setup-node@a0853c24544627f65ddf259abe73b1d18a591444 # v5.0.0 + uses: actions/setup-node@2028fbc5c25fe9cf00d9f06a71cc4710d4507903 # v6.0.0 with: node-version: ${{ matrix.node-version }} cache: 'npm' From 5678c25b9d2790b9697c10af7a83358717186fc8 Mon Sep 17 00:00:00 2001 From: ehhuang Date: Mon, 20 Oct 2025 15:04:57 -0700 Subject: [PATCH 28/41] chore: remove dead code (#3863) # What does this PR do? ## Test Plan --- .../meta_reference/console_span_processor.py | 75 ------------------- 1 file changed, 75 deletions(-) delete mode 100644 llama_stack/providers/inline/telemetry/meta_reference/console_span_processor.py diff --git a/llama_stack/providers/inline/telemetry/meta_reference/console_span_processor.py b/llama_stack/providers/inline/telemetry/meta_reference/console_span_processor.py deleted file mode 100644 index 78e49af94..000000000 --- a/llama_stack/providers/inline/telemetry/meta_reference/console_span_processor.py +++ /dev/null @@ -1,75 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the terms described in the LICENSE file in -# the root directory of this source tree. - -import json -from datetime import UTC, datetime - -from opentelemetry.sdk.trace import ReadableSpan -from opentelemetry.sdk.trace.export import SpanProcessor -from opentelemetry.trace.status import StatusCode - -from llama_stack.log import get_logger - -logger = get_logger(name="console_span_processor", category="telemetry") - - -class ConsoleSpanProcessor(SpanProcessor): - def __init__(self, print_attributes: bool = False): - self.print_attributes = print_attributes - - def on_start(self, span: ReadableSpan, parent_context=None) -> None: - if span.attributes and span.attributes.get("__autotraced__"): - return - - timestamp = datetime.fromtimestamp(span.start_time / 1e9, tz=UTC).strftime("%H:%M:%S.%f")[:-3] - logger.info(f"[dim]{timestamp}[/dim] [bold magenta][START][/bold magenta] [dim]{span.name}[/dim]") - - def on_end(self, span: ReadableSpan) -> None: - timestamp = datetime.fromtimestamp(span.end_time / 1e9, tz=UTC).strftime("%H:%M:%S.%f")[:-3] - span_context = f"[dim]{timestamp}[/dim] [bold magenta][END][/bold magenta] [dim]{span.name}[/dim]" - if span.status.status_code == StatusCode.ERROR: - span_context += " [bold red][ERROR][/bold red]" - elif span.status.status_code != StatusCode.UNSET: - span_context += f" [{span.status.status_code}]" - duration_ms = (span.end_time - span.start_time) / 1e6 - span_context += f" ({duration_ms:.2f}ms)" - logger.info(span_context) - - if self.print_attributes and span.attributes: - for key, value in span.attributes.items(): - if key.startswith("__"): - continue - str_value = str(value) - if len(str_value) > 1000: - str_value = str_value[:997] + "..." - logger.info(f" [dim]{key}[/dim]: {str_value}") - - for event in span.events: - event_time = datetime.fromtimestamp(event.timestamp / 1e9, tz=UTC).strftime("%H:%M:%S.%f")[:-3] - severity = event.attributes.get("severity", "info") - message = event.attributes.get("message", event.name) - if isinstance(message, dict) or isinstance(message, list): - message = json.dumps(message, indent=2) - severity_color = { - "error": "red", - "warn": "yellow", - "info": "white", - "debug": "dim", - }.get(severity, "white") - logger.info(f" {event_time} [bold {severity_color}][{severity.upper()}][/bold {severity_color}] {message}") - if event.attributes: - for key, value in event.attributes.items(): - if key.startswith("__") or key in ["message", "severity"]: - continue - logger.info(f"[dim]{key}[/dim]: {value}") - - def shutdown(self) -> None: - """Shutdown the processor.""" - pass - - def force_flush(self, timeout_millis: float | None = None) -> bool: - """Force flush any pending spans.""" - return True From 5aafce4ff3bf35006a769f9b62a011cd67e5de14 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Mon, 20 Oct 2025 15:10:31 -0700 Subject: [PATCH 29/41] chore(python-deps): bump weaviate-client from 4.16.9 to 4.17.0 (#3844) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Bumps [weaviate-client](https://github.com/weaviate/weaviate-python-client) from 4.16.9 to 4.17.0.
Release notes

Sourced from weaviate-client's releases.

v4.16.10

What's Changed

Full Changelog: https://github.com/weaviate/weaviate-python-client/compare/v4.16.9...v4.16.10

Changelog

Sourced from weaviate-client's changelog.

Version 4.17.0

This minor version includes: - Remove support for Weaviate versions < 1.27. Please update your Weaviate instances - Support for new 1.33 features: - OIDC group support in RBAC - Uncompressed quantizer - ContainsNone and Not filter operators - Add support for verbosity and reasoning effort for generative-openai module - Add alias.exists method - Add multi2vec-aws and text2vec-morph modules - Add support for max_tokens for generative-aws module - Fix weaviate client installation with other packages depending on grpc-health-checking

Version 4.16.10

This patch version includes: - Addition of helper to create an uncompressed quantizer for use when not using default compression - Support for overwrite_alias option to backup create/restore - Support for OIDC groups - Addition of multi2vec-aws and text2vec-morph modules - Support for alias.exists method - Update to weaviate-agents-client dependency for GA release of agents

Commits
  • 7acf5c0 Merge pull request #1838 from weaviate/fix_tests
  • 960559d Remove unneeded version checks
  • 7cc1861 Merge pull request #1837 from weaviate/changelog_417
  • 3e124e9 Small cleanup in version checking
  • e1859f1 Add changelog for 4.17.0
  • 1e71c78 Merge pull request #1827 from weaviate/gen_openai_params
  • 9a4bedf Fix enum selection
  • 033542f Merge pull request #1824 from weaviate/dependabot/pip/pydoclint-0.7.3
  • 158889e Merge pull request #1823 from weaviate/dependabot/pip/polars-gte-0.20.26-and-...
  • 65191bb Merge branch 'dev/1.33'
  • Additional commits viewable in compare view

[![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=weaviate-client&package-manager=uv&previous-version=4.16.9&new-version=4.17.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) ---
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- uv.lock | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/uv.lock b/uv.lock index 7f6e0401b..82965f3c7 100644 --- a/uv.lock +++ b/uv.lock @@ -5231,7 +5231,7 @@ wheels = [ [[package]] name = "weaviate-client" -version = "4.16.9" +version = "4.17.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "authlib" }, @@ -5242,9 +5242,9 @@ dependencies = [ { name = "pydantic" }, { name = "validators" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/f4/e4/6a0b1501645f17a851067fc7bd0d5b53dc9777f2818be9c43debe06eda19/weaviate_client-4.16.9.tar.gz", hash = "sha256:d461071f1ff5ebddd0fc697959628a1d8caa12af1da071401ef25583c3084eba", size = 766390, upload-time = "2025-08-20T15:00:03.924Z" } +sdist = { url = "https://files.pythonhosted.org/packages/bd/0e/e4582b007427187a9fde55fa575db4b766c81929d2b43a3dd8becce50567/weaviate_client-4.17.0.tar.gz", hash = "sha256:731d58d84b0989df4db399b686357ed285fb95971a492ccca8dec90bb2343c51", size = 769019, upload-time = "2025-09-26T11:20:27.381Z" } wheels = [ - { url = "https://files.pythonhosted.org/packages/10/1a/fc66f5f33961351c759d56453d18176849da8f64186c941183bb574b808b/weaviate_client-4.16.9-py3-none-any.whl", hash = "sha256:8b4adabaec0d513edef94c8c1de61c89a86eba3b63a4dc1acdfc9580e80199f4", size = 579098, upload-time = "2025-08-20T15:00:01.882Z" }, + { url = "https://files.pythonhosted.org/packages/5b/c5/2da3a45866da7a935dab8ad07be05dcaee48b3ad4955144583b651929be7/weaviate_client-4.17.0-py3-none-any.whl", hash = "sha256:60e4a355b90537ee1e942ab0b76a94750897a13d9cf13c5a6decbd166d0ca8b5", size = 582763, upload-time = "2025-09-26T11:20:25.864Z" }, ] [[package]] From 6a74894e22dffed64d9393662861a3eebdb6f69f Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Mon, 20 Oct 2025 15:11:11 -0700 Subject: [PATCH 30/41] chore(python-deps): bump fastapi from 0.116.1 to 0.119.0 (#3845) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Bumps [fastapi](https://github.com/fastapi/fastapi) from 0.116.1 to 0.119.0.
Release notes

Sourced from fastapi's releases.

0.119.0

FastAPI now (temporarily) supports both Pydantic v2 models and pydantic.v1 models at the same time in the same app, to make it easier for any FastAPI apps still using Pydantic v1 to gradually but quickly migrate to Pydantic v2.

from fastapi import FastAPI
from pydantic import BaseModel as BaseModelV2
from pydantic.v1 import BaseModel

class Item(BaseModel):
name: str
description: str | None = None

class ItemV2(BaseModelV2):
title: str
summary: str | None = None

app = FastAPI()

@​app.post("/items/", response_model=ItemV2)
def create_item(item: Item):
return {"title": item.name, "summary": item.description}

Adding this feature was a big effort with the main objective of making it easier for the few applications still stuck in Pydantic v1 to migrate to Pydantic v2.

And with this, support for Pydantic v1 is now deprecated and will be removed from FastAPI in a future version soon.

Note: have in mind that the Pydantic team already stopped supporting Pydantic v1 for recent versions of Python, starting with Python 3.14.

You can read in the docs more about how to Migrate from Pydantic v1 to Pydantic v2.

Features

  • ✨ Add support for from pydantic.v1 import BaseModel, mixed Pydantic v1 and v2 models in the same app. PR #14168 by @​tiangolo.

0.118.3

Upgrades

0.118.2

Fixes

Internal

... (truncated)

Commits
  • 2e721e1 🔖 Release version 0.119.0
  • fc7a068 📝 Update release notes
  • 3a3879b 📝 Update release notes
  • d34918a ✨ Add support for from pydantic.v1 import BaseModel, mixed Pydantic v1 and ...
  • 352dbef 🔖 Release version 0.118.3
  • 96e7d6e 📝 Update release notes
  • 3611c3f ⬆️ Add support for Python 3.14 (#14165)
  • 942fce3 🔖 Release version 0.118.2
  • 13b067c 📝 Update release notes
  • 185cecd 🐛 Fix tagged discriminated union not recognized as body field (#12942)
  • Additional commits viewable in compare view

[![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=fastapi&package-manager=uv&previous-version=0.116.1&new-version=0.119.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) ---
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- uv.lock | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/uv.lock b/uv.lock index 82965f3c7..bbc917df5 100644 --- a/uv.lock +++ b/uv.lock @@ -921,16 +921,16 @@ wheels = [ [[package]] name = "fastapi" -version = "0.116.1" +version = "0.119.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "pydantic" }, { name = "starlette" }, { name = "typing-extensions" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/78/d7/6c8b3bfe33eeffa208183ec037fee0cce9f7f024089ab1c5d12ef04bd27c/fastapi-0.116.1.tar.gz", hash = "sha256:ed52cbf946abfd70c5a0dccb24673f0670deeb517a88b3544d03c2a6bf283143", size = 296485, upload-time = "2025-07-11T16:22:32.057Z" } +sdist = { url = "https://files.pythonhosted.org/packages/0a/f9/5c5bcce82a7997cc0eb8c47b7800f862f6b56adc40486ed246e5010d443b/fastapi-0.119.0.tar.gz", hash = "sha256:451082403a2c1f0b99c6bd57c09110ed5463856804c8078d38e5a1f1035dbbb7", size = 336756, upload-time = "2025-10-11T17:13:40.53Z" } wheels = [ - { url = "https://files.pythonhosted.org/packages/e5/47/d63c60f59a59467fda0f93f46335c9d18526d7071f025cb5b89d5353ea42/fastapi-0.116.1-py3-none-any.whl", hash = "sha256:c46ac7c312df840f0c9e220f7964bada936781bc4e2e6eb71f1c4d7553786565", size = 95631, upload-time = "2025-07-11T16:22:30.485Z" }, + { url = "https://files.pythonhosted.org/packages/ce/70/584c4d7cad80f5e833715c0a29962d7c93b4d18eed522a02981a6d1b6ee5/fastapi-0.119.0-py3-none-any.whl", hash = "sha256:90a2e49ed19515320abb864df570dd766be0662c5d577688f1600170f7f73cf2", size = 107095, upload-time = "2025-10-11T17:13:39.048Z" }, ] [[package]] From ec364499f50fcecead5d179c2b344adc5834c9db Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Mon, 20 Oct 2025 15:11:24 -0700 Subject: [PATCH 31/41] chore(ui-deps): bump @tailwindcss/postcss from 4.1.6 to 4.1.14 in /llama_stack/ui (#3850) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Bumps [@tailwindcss/postcss](https://github.com/tailwindlabs/tailwindcss/tree/HEAD/packages/@tailwindcss-postcss) from 4.1.6 to 4.1.14.
Release notes

Sourced from @​tailwindcss/postcss's releases.

v4.1.14

Fixed

  • Handle ' syntax in ClojureScript when extracting classes (#18888)
  • Handle @variant inside @custom-variant (#18885)
  • Merge suggestions when using @utility (#18900)
  • Ensure that file system watchers created when using the CLI are always cleaned up (#18905)
  • Do not generate grid-column utilities when configuring grid-column-start or grid-column-end (#18907)
  • Do not generate grid-row utilities when configuring grid-row-start or grid-row-end (#18907)
  • Prevent duplicate CSS when overwriting a static utility with a theme key (#18056)
  • Show Lightning CSS warnings (if any) when optimizing/minifying (#18918)
  • Use default export condition for @tailwindcss/vite (#18948)
  • Re-throw errors from PostCSS nodes (#18373)
  • Detect classes in markdown inline directives (#18967)
  • Ensure files with only @theme produce no output when built (#18979)
  • Support Maud templates when extracting classes (#18988)
  • Upgrade: Do not migrate variant = 'outline' during upgrades (#18922)
  • Upgrade: Show version mismatch (if any) when running upgrade tool (#19028)
  • Upgrade: Ensure first class inside className is migrated (#19031)
  • Upgrade: Migrate classes inside *ClassName and *Class attributes (#19031)

v4.1.13

Changed

  • Drop warning from browser build (#18731)
  • Drop exact duplicate declarations when emitting CSS (#18809)

Fixed

  • Don't transition visibility when using transition (#18795)
  • Discard matched variants with unknown named values (#18799)
  • Discard matched variants with non-string values (#18799)
  • Show suggestions for known matchVariant values (#18798)
  • Replace deprecated clip with clip-path in sr-only (#18769)
  • Hide internal fields from completions in matchUtilities (#18820)
  • Ignore .vercel folders by default (can be overridden by @source … rules) (#18855)
  • Consider variants starting with @- to be invalid (e.g. @-2xl:flex) (#18869)
  • Do not allow custom variants to start or end with a - or _ (#18867, #18872)
  • Upgrade: Migrate aria theme keys to @custom-variant (#18815)
  • Upgrade: Migrate data theme keys to @custom-variant (#18816)
  • Upgrade: Migrate supports theme keys to @custom-variant (#18817)

v4.1.12

Fixed

  • Don't consider the global important state in @apply (#18404)
  • Add missing suggestions for flex-<number> utilities (#18642)
  • Fix trailing ) from interfering with extraction in Clojure keywords (#18345)
  • Detect classes inside Elixir charlist, word list, and string sigils (#18432)
  • Track source locations through @plugin and @config (#18345)

... (truncated)

Changelog

Sourced from @​tailwindcss/postcss's changelog.

[4.1.14] - 2025-10-01

Fixed

  • Handle ' syntax in ClojureScript when extracting classes (#18888)
  • Handle @variant inside @custom-variant (#18885)
  • Merge suggestions when using @utility (#18900)
  • Ensure that file system watchers created when using the CLI are always cleaned up (#18905)
  • Do not generate grid-column utilities when configuring grid-column-start or grid-column-end (#18907)
  • Do not generate grid-row utilities when configuring grid-row-start or grid-row-end (#18907)
  • Prevent duplicate CSS when overwriting a static utility with a theme key (#18056)
  • Show Lightning CSS warnings (if any) when optimizing/minifying (#18918)
  • Use default export condition for @tailwindcss/vite (#18948)
  • Re-throw errors from PostCSS nodes (#18373)
  • Detect classes in markdown inline directives (#18967)
  • Ensure files with only @theme produce no output when built (#18979)
  • Support Maud templates when extracting classes (#18988)
  • Upgrade: Do not migrate variant = 'outline' during upgrades (#18922)
  • Upgrade: Show version mismatch (if any) when running upgrade tool (#19028)
  • Upgrade: Ensure first class inside className is migrated (#19031)
  • Upgrade: Migrate classes inside *ClassName and *Class attributes (#19031)

[4.1.13] - 2025-09-03

Changed

  • Drop warning from browser build (#18731)
  • Drop exact duplicate declarations when emitting CSS (#18809)

Fixed

  • Don't transition visibility when using transition (#18795)
  • Discard matched variants with unknown named values (#18799)
  • Discard matched variants with non-string values (#18799)
  • Show suggestions for known matchVariant values (#18798)
  • Replace deprecated clip with clip-path in sr-only (#18769)
  • Hide internal fields from completions in matchUtilities (#18820)
  • Ignore .vercel folders by default (can be overridden by @source … rules) (#18855)
  • Consider variants starting with @- to be invalid (e.g. @-2xl:flex) (#18869)
  • Do not allow custom variants to start or end with a - or _ (#18867, #18872)
  • Upgrade: Migrate aria theme keys to @custom-variant (#18815)
  • Upgrade: Migrate data theme keys to @custom-variant (#18816)
  • Upgrade: Migrate supports theme keys to @custom-variant (#18817)

[4.1.12] - 2025-08-13

Fixed

  • Don't consider the global important state in @apply (#18404)
  • Add missing suggestions for flex-<number> utilities (#18642)

... (truncated)

Commits

[![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=@tailwindcss/postcss&package-manager=npm_and_yarn&previous-version=4.1.6&new-version=4.1.14)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) ---
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- llama_stack/ui/package-lock.json | 390 +++++++++++++++++-------------- 1 file changed, 217 insertions(+), 173 deletions(-) diff --git a/llama_stack/ui/package-lock.json b/llama_stack/ui/package-lock.json index c138de535..31a852b30 100644 --- a/llama_stack/ui/package-lock.json +++ b/llama_stack/ui/package-lock.json @@ -2061,6 +2061,17 @@ "@jridgewell/trace-mapping": "^0.3.24" } }, + "node_modules/@jridgewell/remapping": { + "version": "2.3.5", + "resolved": "https://registry.npmjs.org/@jridgewell/remapping/-/remapping-2.3.5.tgz", + "integrity": "sha512-LI9u/+laYG4Ds1TDKSJW2YPrIlcVYOwi2fUC6xB43lueCjgxV4lffOCZCtYFiH6TNOX+tQKXx97T4IKHbhyHEQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jridgewell/gen-mapping": "^0.3.5", + "@jridgewell/trace-mapping": "^0.3.24" + } + }, "node_modules/@jridgewell/resolve-uri": { "version": "3.1.2", "resolved": "https://registry.npmjs.org/@jridgewell/resolve-uri/-/resolve-uri-3.1.2.tgz", @@ -2072,9 +2083,9 @@ } }, "node_modules/@jridgewell/sourcemap-codec": { - "version": "1.5.0", - "resolved": "https://registry.npmjs.org/@jridgewell/sourcemap-codec/-/sourcemap-codec-1.5.0.tgz", - "integrity": "sha512-gv3ZRaISU3fjPAgNsriBRqGWQL6quFx04YMPW/zD8XMLsU32mhCCbfbO6KZFLjvYpCZ8zyDEgqsgf+PwPaM7GQ==", + "version": "1.5.5", + "resolved": "https://registry.npmjs.org/@jridgewell/sourcemap-codec/-/sourcemap-codec-1.5.5.tgz", + "integrity": "sha512-cYQ9310grqxueWbl+WuIUIaiUaDcj7WOq5fVhEljNVgRfOUhY9fy2zTvfoqWsnebh8Sl70VScFbICvJnLKB0Og==", "dev": true, "license": "MIT" }, @@ -3199,61 +3210,54 @@ } }, "node_modules/@tailwindcss/node": { - "version": "4.1.6", - "resolved": "https://registry.npmjs.org/@tailwindcss/node/-/node-4.1.6.tgz", - "integrity": "sha512-ed6zQbgmKsjsVvodAS1q1Ld2BolEuxJOSyyNc+vhkjdmfNUDCmQnlXBfQkHrlzNmslxHsQU/bFmzcEbv4xXsLg==", + "version": "4.1.14", + "resolved": "https://registry.npmjs.org/@tailwindcss/node/-/node-4.1.14.tgz", + "integrity": "sha512-hpz+8vFk3Ic2xssIA3e01R6jkmsAhvkQdXlEbRTk6S10xDAtiQiM3FyvZVGsucefq764euO/b8WUW9ysLdThHw==", "dev": true, "license": "MIT", "dependencies": { - "@ampproject/remapping": "^2.3.0", - "enhanced-resolve": "^5.18.1", - "jiti": "^2.4.2", - "lightningcss": "1.29.2", - "magic-string": "^0.30.17", + "@jridgewell/remapping": "^2.3.4", + "enhanced-resolve": "^5.18.3", + "jiti": "^2.6.0", + "lightningcss": "1.30.1", + "magic-string": "^0.30.19", "source-map-js": "^1.2.1", - "tailwindcss": "4.1.6" + "tailwindcss": "4.1.14" } }, - "node_modules/@tailwindcss/node/node_modules/tailwindcss": { - "version": "4.1.6", - "resolved": "https://registry.npmjs.org/tailwindcss/-/tailwindcss-4.1.6.tgz", - "integrity": "sha512-j0cGLTreM6u4OWzBeLBpycK0WIh8w7kSwcUsQZoGLHZ7xDTdM69lN64AgoIEEwFi0tnhs4wSykUa5YWxAzgFYg==", - "dev": true, - "license": "MIT" - }, "node_modules/@tailwindcss/oxide": { - "version": "4.1.6", - "resolved": "https://registry.npmjs.org/@tailwindcss/oxide/-/oxide-4.1.6.tgz", - "integrity": "sha512-0bpEBQiGx+227fW4G0fLQ8vuvyy5rsB1YIYNapTq3aRsJ9taF3f5cCaovDjN5pUGKKzcpMrZst/mhNaKAPOHOA==", + "version": "4.1.14", + "resolved": "https://registry.npmjs.org/@tailwindcss/oxide/-/oxide-4.1.14.tgz", + "integrity": "sha512-23yx+VUbBwCg2x5XWdB8+1lkPajzLmALEfMb51zZUBYaYVPDQvBSD/WYDqiVyBIo2BZFa3yw1Rpy3G2Jp+K0dw==", "dev": true, "hasInstallScript": true, "license": "MIT", "dependencies": { "detect-libc": "^2.0.4", - "tar": "^7.4.3" + "tar": "^7.5.1" }, "engines": { "node": ">= 10" }, "optionalDependencies": { - "@tailwindcss/oxide-android-arm64": "4.1.6", - "@tailwindcss/oxide-darwin-arm64": "4.1.6", - "@tailwindcss/oxide-darwin-x64": "4.1.6", - "@tailwindcss/oxide-freebsd-x64": "4.1.6", - "@tailwindcss/oxide-linux-arm-gnueabihf": "4.1.6", - "@tailwindcss/oxide-linux-arm64-gnu": "4.1.6", - "@tailwindcss/oxide-linux-arm64-musl": "4.1.6", - "@tailwindcss/oxide-linux-x64-gnu": "4.1.6", - "@tailwindcss/oxide-linux-x64-musl": "4.1.6", - "@tailwindcss/oxide-wasm32-wasi": "4.1.6", - "@tailwindcss/oxide-win32-arm64-msvc": "4.1.6", - "@tailwindcss/oxide-win32-x64-msvc": "4.1.6" + "@tailwindcss/oxide-android-arm64": "4.1.14", + "@tailwindcss/oxide-darwin-arm64": "4.1.14", + "@tailwindcss/oxide-darwin-x64": "4.1.14", + "@tailwindcss/oxide-freebsd-x64": "4.1.14", + "@tailwindcss/oxide-linux-arm-gnueabihf": "4.1.14", + "@tailwindcss/oxide-linux-arm64-gnu": "4.1.14", + "@tailwindcss/oxide-linux-arm64-musl": "4.1.14", + "@tailwindcss/oxide-linux-x64-gnu": "4.1.14", + "@tailwindcss/oxide-linux-x64-musl": "4.1.14", + "@tailwindcss/oxide-wasm32-wasi": "4.1.14", + "@tailwindcss/oxide-win32-arm64-msvc": "4.1.14", + "@tailwindcss/oxide-win32-x64-msvc": "4.1.14" } }, "node_modules/@tailwindcss/oxide-android-arm64": { - "version": "4.1.6", - "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-android-arm64/-/oxide-android-arm64-4.1.6.tgz", - "integrity": "sha512-VHwwPiwXtdIvOvqT/0/FLH/pizTVu78FOnI9jQo64kSAikFSZT7K4pjyzoDpSMaveJTGyAKvDjuhxJxKfmvjiQ==", + "version": "4.1.14", + "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-android-arm64/-/oxide-android-arm64-4.1.14.tgz", + "integrity": "sha512-a94ifZrGwMvbdeAxWoSuGcIl6/DOP5cdxagid7xJv6bwFp3oebp7y2ImYsnZBMTwjn5Ev5xESvS3FFYUGgPODQ==", "cpu": [ "arm64" ], @@ -3268,9 +3272,9 @@ } }, "node_modules/@tailwindcss/oxide-darwin-arm64": { - "version": "4.1.6", - "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-darwin-arm64/-/oxide-darwin-arm64-4.1.6.tgz", - "integrity": "sha512-weINOCcqv1HVBIGptNrk7c6lWgSFFiQMcCpKM4tnVi5x8OY2v1FrV76jwLukfT6pL1hyajc06tyVmZFYXoxvhQ==", + "version": "4.1.14", + "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-darwin-arm64/-/oxide-darwin-arm64-4.1.14.tgz", + "integrity": "sha512-HkFP/CqfSh09xCnrPJA7jud7hij5ahKyWomrC3oiO2U9i0UjP17o9pJbxUN0IJ471GTQQmzwhp0DEcpbp4MZTA==", "cpu": [ "arm64" ], @@ -3285,9 +3289,9 @@ } }, "node_modules/@tailwindcss/oxide-darwin-x64": { - "version": "4.1.6", - "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-darwin-x64/-/oxide-darwin-x64-4.1.6.tgz", - "integrity": "sha512-3FzekhHG0ww1zQjQ1lPoq0wPrAIVXAbUkWdWM8u5BnYFZgb9ja5ejBqyTgjpo5mfy0hFOoMnMuVDI+7CXhXZaQ==", + "version": "4.1.14", + "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-darwin-x64/-/oxide-darwin-x64-4.1.14.tgz", + "integrity": "sha512-eVNaWmCgdLf5iv6Qd3s7JI5SEFBFRtfm6W0mphJYXgvnDEAZ5sZzqmI06bK6xo0IErDHdTA5/t7d4eTfWbWOFw==", "cpu": [ "x64" ], @@ -3302,9 +3306,9 @@ } }, "node_modules/@tailwindcss/oxide-freebsd-x64": { - "version": "4.1.6", - "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-freebsd-x64/-/oxide-freebsd-x64-4.1.6.tgz", - "integrity": "sha512-4m5F5lpkBZhVQJq53oe5XgJ+aFYWdrgkMwViHjRsES3KEu2m1udR21B1I77RUqie0ZYNscFzY1v9aDssMBZ/1w==", + "version": "4.1.14", + "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-freebsd-x64/-/oxide-freebsd-x64-4.1.14.tgz", + "integrity": "sha512-QWLoRXNikEuqtNb0dhQN6wsSVVjX6dmUFzuuiL09ZeXju25dsei2uIPl71y2Ic6QbNBsB4scwBoFnlBfabHkEw==", "cpu": [ "x64" ], @@ -3319,9 +3323,9 @@ } }, "node_modules/@tailwindcss/oxide-linux-arm-gnueabihf": { - "version": "4.1.6", - "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-linux-arm-gnueabihf/-/oxide-linux-arm-gnueabihf-4.1.6.tgz", - "integrity": "sha512-qU0rHnA9P/ZoaDKouU1oGPxPWzDKtIfX7eOGi5jOWJKdxieUJdVV+CxWZOpDWlYTd4N3sFQvcnVLJWJ1cLP5TA==", + "version": "4.1.14", + "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-linux-arm-gnueabihf/-/oxide-linux-arm-gnueabihf-4.1.14.tgz", + "integrity": "sha512-VB4gjQni9+F0VCASU+L8zSIyjrLLsy03sjcR3bM0V2g4SNamo0FakZFKyUQ96ZVwGK4CaJsc9zd/obQy74o0Fw==", "cpu": [ "arm" ], @@ -3336,9 +3340,9 @@ } }, "node_modules/@tailwindcss/oxide-linux-arm64-gnu": { - "version": "4.1.6", - "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-linux-arm64-gnu/-/oxide-linux-arm64-gnu-4.1.6.tgz", - "integrity": "sha512-jXy3TSTrbfgyd3UxPQeXC3wm8DAgmigzar99Km9Sf6L2OFfn/k+u3VqmpgHQw5QNfCpPe43em6Q7V76Wx7ogIQ==", + "version": "4.1.14", + "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-linux-arm64-gnu/-/oxide-linux-arm64-gnu-4.1.14.tgz", + "integrity": "sha512-qaEy0dIZ6d9vyLnmeg24yzA8XuEAD9WjpM5nIM1sUgQ/Zv7cVkharPDQcmm/t/TvXoKo/0knI3me3AGfdx6w1w==", "cpu": [ "arm64" ], @@ -3353,9 +3357,9 @@ } }, "node_modules/@tailwindcss/oxide-linux-arm64-musl": { - "version": "4.1.6", - "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-linux-arm64-musl/-/oxide-linux-arm64-musl-4.1.6.tgz", - "integrity": "sha512-8kjivE5xW0qAQ9HX9reVFmZj3t+VmljDLVRJpVBEoTR+3bKMnvC7iLcoSGNIUJGOZy1mLVq7x/gerVg0T+IsYw==", + "version": "4.1.14", + "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-linux-arm64-musl/-/oxide-linux-arm64-musl-4.1.14.tgz", + "integrity": "sha512-ISZjT44s59O8xKsPEIesiIydMG/sCXoMBCqsphDm/WcbnuWLxxb+GcvSIIA5NjUw6F8Tex7s5/LM2yDy8RqYBQ==", "cpu": [ "arm64" ], @@ -3370,9 +3374,9 @@ } }, "node_modules/@tailwindcss/oxide-linux-x64-gnu": { - "version": "4.1.6", - "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-linux-x64-gnu/-/oxide-linux-x64-gnu-4.1.6.tgz", - "integrity": "sha512-A4spQhwnWVpjWDLXnOW9PSinO2PTKJQNRmL/aIl2U/O+RARls8doDfs6R41+DAXK0ccacvRyDpR46aVQJJCoCg==", + "version": "4.1.14", + "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-linux-x64-gnu/-/oxide-linux-x64-gnu-4.1.14.tgz", + "integrity": "sha512-02c6JhLPJj10L2caH4U0zF8Hji4dOeahmuMl23stk0MU1wfd1OraE7rOloidSF8W5JTHkFdVo/O7uRUJJnUAJg==", "cpu": [ "x64" ], @@ -3387,9 +3391,9 @@ } }, "node_modules/@tailwindcss/oxide-linux-x64-musl": { - "version": "4.1.6", - "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-linux-x64-musl/-/oxide-linux-x64-musl-4.1.6.tgz", - "integrity": "sha512-YRee+6ZqdzgiQAHVSLfl3RYmqeeaWVCk796MhXhLQu2kJu2COHBkqlqsqKYx3p8Hmk5pGCQd2jTAoMWWFeyG2A==", + "version": "4.1.14", + "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-linux-x64-musl/-/oxide-linux-x64-musl-4.1.14.tgz", + "integrity": "sha512-TNGeLiN1XS66kQhxHG/7wMeQDOoL0S33x9BgmydbrWAb9Qw0KYdd8o1ifx4HOGDWhVmJ+Ul+JQ7lyknQFilO3Q==", "cpu": [ "x64" ], @@ -3404,9 +3408,9 @@ } }, "node_modules/@tailwindcss/oxide-wasm32-wasi": { - "version": "4.1.6", - "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-wasm32-wasi/-/oxide-wasm32-wasi-4.1.6.tgz", - "integrity": "sha512-qAp4ooTYrBQ5pk5jgg54/U1rCJ/9FLYOkkQ/nTE+bVMseMfB6O7J8zb19YTpWuu4UdfRf5zzOrNKfl6T64MNrQ==", + "version": "4.1.14", + "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-wasm32-wasi/-/oxide-wasm32-wasi-4.1.14.tgz", + "integrity": "sha512-uZYAsaW/jS/IYkd6EWPJKW/NlPNSkWkBlaeVBi/WsFQNP05/bzkebUL8FH1pdsqx4f2fH/bWFcUABOM9nfiJkQ==", "bundleDependencies": [ "@napi-rs/wasm-runtime", "@emnapi/core", @@ -3422,21 +3426,81 @@ "license": "MIT", "optional": true, "dependencies": { - "@emnapi/core": "^1.4.3", - "@emnapi/runtime": "^1.4.3", - "@emnapi/wasi-threads": "^1.0.2", - "@napi-rs/wasm-runtime": "^0.2.9", - "@tybys/wasm-util": "^0.9.0", - "tslib": "^2.8.0" + "@emnapi/core": "^1.5.0", + "@emnapi/runtime": "^1.5.0", + "@emnapi/wasi-threads": "^1.1.0", + "@napi-rs/wasm-runtime": "^1.0.5", + "@tybys/wasm-util": "^0.10.1", + "tslib": "^2.4.0" }, "engines": { "node": ">=14.0.0" } }, + "node_modules/@tailwindcss/oxide-wasm32-wasi/node_modules/@emnapi/core": { + "version": "1.5.0", + "dev": true, + "inBundle": true, + "license": "MIT", + "optional": true, + "dependencies": { + "@emnapi/wasi-threads": "1.1.0", + "tslib": "^2.4.0" + } + }, + "node_modules/@tailwindcss/oxide-wasm32-wasi/node_modules/@emnapi/runtime": { + "version": "1.5.0", + "dev": true, + "inBundle": true, + "license": "MIT", + "optional": true, + "dependencies": { + "tslib": "^2.4.0" + } + }, + "node_modules/@tailwindcss/oxide-wasm32-wasi/node_modules/@emnapi/wasi-threads": { + "version": "1.1.0", + "dev": true, + "inBundle": true, + "license": "MIT", + "optional": true, + "dependencies": { + "tslib": "^2.4.0" + } + }, + "node_modules/@tailwindcss/oxide-wasm32-wasi/node_modules/@napi-rs/wasm-runtime": { + "version": "1.0.5", + "dev": true, + "inBundle": true, + "license": "MIT", + "optional": true, + "dependencies": { + "@emnapi/core": "^1.5.0", + "@emnapi/runtime": "^1.5.0", + "@tybys/wasm-util": "^0.10.1" + } + }, + "node_modules/@tailwindcss/oxide-wasm32-wasi/node_modules/@tybys/wasm-util": { + "version": "0.10.1", + "dev": true, + "inBundle": true, + "license": "MIT", + "optional": true, + "dependencies": { + "tslib": "^2.4.0" + } + }, + "node_modules/@tailwindcss/oxide-wasm32-wasi/node_modules/tslib": { + "version": "2.8.1", + "dev": true, + "inBundle": true, + "license": "0BSD", + "optional": true + }, "node_modules/@tailwindcss/oxide-win32-arm64-msvc": { - "version": "4.1.6", - "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-win32-arm64-msvc/-/oxide-win32-arm64-msvc-4.1.6.tgz", - "integrity": "sha512-nqpDWk0Xr8ELO/nfRUDjk1pc9wDJ3ObeDdNMHLaymc4PJBWj11gdPCWZFKSK2AVKjJQC7J2EfmSmf47GN7OuLg==", + "version": "4.1.14", + "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-win32-arm64-msvc/-/oxide-win32-arm64-msvc-4.1.14.tgz", + "integrity": "sha512-Az0RnnkcvRqsuoLH2Z4n3JfAef0wElgzHD5Aky/e+0tBUxUhIeIqFBTMNQvmMRSP15fWwmvjBxZ3Q8RhsDnxAA==", "cpu": [ "arm64" ], @@ -3451,9 +3515,9 @@ } }, "node_modules/@tailwindcss/oxide-win32-x64-msvc": { - "version": "4.1.6", - "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-win32-x64-msvc/-/oxide-win32-x64-msvc-4.1.6.tgz", - "integrity": "sha512-5k9xF33xkfKpo9wCvYcegQ21VwIBU1/qEbYlVukfEIyQbEA47uK8AAwS7NVjNE3vHzcmxMYwd0l6L4pPjjm1rQ==", + "version": "4.1.14", + "resolved": "https://registry.npmjs.org/@tailwindcss/oxide-win32-x64-msvc/-/oxide-win32-x64-msvc-4.1.14.tgz", + "integrity": "sha512-ttblVGHgf68kEE4om1n/n44I0yGPkCPbLsqzjvybhpwa6mKKtgFfAzy6btc3HRmuW7nHe0OOrSeNP9sQmmH9XA==", "cpu": [ "x64" ], @@ -3468,26 +3532,19 @@ } }, "node_modules/@tailwindcss/postcss": { - "version": "4.1.6", - "resolved": "https://registry.npmjs.org/@tailwindcss/postcss/-/postcss-4.1.6.tgz", - "integrity": "sha512-ELq+gDMBuRXPJlpE3PEen+1MhnHAQQrh2zF0dI1NXOlEWfr2qWf2CQdr5jl9yANv8RErQaQ2l6nIFO9OSCVq/g==", + "version": "4.1.14", + "resolved": "https://registry.npmjs.org/@tailwindcss/postcss/-/postcss-4.1.14.tgz", + "integrity": "sha512-BdMjIxy7HUNThK87C7BC8I1rE8BVUsfNQSI5siQ4JK3iIa3w0XyVvVL9SXLWO//CtYTcp1v7zci0fYwJOjB+Zg==", "dev": true, "license": "MIT", "dependencies": { "@alloc/quick-lru": "^5.2.0", - "@tailwindcss/node": "4.1.6", - "@tailwindcss/oxide": "4.1.6", + "@tailwindcss/node": "4.1.14", + "@tailwindcss/oxide": "4.1.14", "postcss": "^8.4.41", - "tailwindcss": "4.1.6" + "tailwindcss": "4.1.14" } }, - "node_modules/@tailwindcss/postcss/node_modules/tailwindcss": { - "version": "4.1.6", - "resolved": "https://registry.npmjs.org/tailwindcss/-/tailwindcss-4.1.6.tgz", - "integrity": "sha512-j0cGLTreM6u4OWzBeLBpycK0WIh8w7kSwcUsQZoGLHZ7xDTdM69lN64AgoIEEwFi0tnhs4wSykUa5YWxAzgFYg==", - "dev": true, - "license": "MIT" - }, "node_modules/@testing-library/dom": { "version": "10.4.1", "resolved": "https://registry.npmjs.org/@testing-library/dom/-/dom-10.4.1.tgz", @@ -5850,9 +5907,9 @@ "license": "MIT" }, "node_modules/enhanced-resolve": { - "version": "5.18.1", - "resolved": "https://registry.npmjs.org/enhanced-resolve/-/enhanced-resolve-5.18.1.tgz", - "integrity": "sha512-ZSW3ma5GkcQBIpwZTSRAI8N71Uuwgs93IezB7mf7R60tC8ZbJideoDNKjHn2O9KIlx6rkGTTEk1xUCK2E1Y2Yg==", + "version": "5.18.3", + "resolved": "https://registry.npmjs.org/enhanced-resolve/-/enhanced-resolve-5.18.3.tgz", + "integrity": "sha512-d4lC8xfavMeBjzGr2vECC3fsGXziXZQyJxD868h2M/mBI3PwAuODxAkLkq5HYuvrPYcUtiLzsTo8U3PgX3Ocww==", "dev": true, "license": "MIT", "dependencies": { @@ -9128,9 +9185,9 @@ } }, "node_modules/jiti": { - "version": "2.4.2", - "resolved": "https://registry.npmjs.org/jiti/-/jiti-2.4.2.tgz", - "integrity": "sha512-rg9zJN+G4n2nfJl5MW3BMygZX56zKPNVEYYqq7adpmMh4Jn2QNEwhvQlFy6jPVdcod7txZtKHWnyZiA3a0zP7A==", + "version": "2.6.1", + "resolved": "https://registry.npmjs.org/jiti/-/jiti-2.6.1.tgz", + "integrity": "sha512-ekilCSN1jwRvIbgeg/57YFh8qQDNbwDb9xT/qu2DAHbFFZUicIl4ygVaAvzveMhMVr3LnpSKTNnwt8PoOfmKhQ==", "dev": true, "license": "MIT", "bin": { @@ -9368,9 +9425,9 @@ } }, "node_modules/lightningcss": { - "version": "1.29.2", - "resolved": "https://registry.npmjs.org/lightningcss/-/lightningcss-1.29.2.tgz", - "integrity": "sha512-6b6gd/RUXKaw5keVdSEtqFVdzWnU5jMxTUjA2bVcMNPLwSQ08Sv/UodBVtETLCn7k4S1Ibxwh7k68IwLZPgKaA==", + "version": "1.30.1", + "resolved": "https://registry.npmjs.org/lightningcss/-/lightningcss-1.30.1.tgz", + "integrity": "sha512-xi6IyHML+c9+Q3W0S4fCQJOym42pyurFiJUHEcEyHS0CeKzia4yZDEsLlqOFykxOdHpNy0NmvVO31vcSqAxJCg==", "dev": true, "license": "MPL-2.0", "dependencies": { @@ -9384,22 +9441,22 @@ "url": "https://opencollective.com/parcel" }, "optionalDependencies": { - "lightningcss-darwin-arm64": "1.29.2", - "lightningcss-darwin-x64": "1.29.2", - "lightningcss-freebsd-x64": "1.29.2", - "lightningcss-linux-arm-gnueabihf": "1.29.2", - "lightningcss-linux-arm64-gnu": "1.29.2", - "lightningcss-linux-arm64-musl": "1.29.2", - "lightningcss-linux-x64-gnu": "1.29.2", - "lightningcss-linux-x64-musl": "1.29.2", - "lightningcss-win32-arm64-msvc": "1.29.2", - "lightningcss-win32-x64-msvc": "1.29.2" + "lightningcss-darwin-arm64": "1.30.1", + "lightningcss-darwin-x64": "1.30.1", + "lightningcss-freebsd-x64": "1.30.1", + "lightningcss-linux-arm-gnueabihf": "1.30.1", + "lightningcss-linux-arm64-gnu": "1.30.1", + "lightningcss-linux-arm64-musl": "1.30.1", + "lightningcss-linux-x64-gnu": "1.30.1", + "lightningcss-linux-x64-musl": "1.30.1", + "lightningcss-win32-arm64-msvc": "1.30.1", + "lightningcss-win32-x64-msvc": "1.30.1" } }, "node_modules/lightningcss-darwin-arm64": { - "version": "1.29.2", - "resolved": "https://registry.npmjs.org/lightningcss-darwin-arm64/-/lightningcss-darwin-arm64-1.29.2.tgz", - "integrity": "sha512-cK/eMabSViKn/PG8U/a7aCorpeKLMlK0bQeNHmdb7qUnBkNPnL+oV5DjJUo0kqWsJUapZsM4jCfYItbqBDvlcA==", + "version": "1.30.1", + "resolved": "https://registry.npmjs.org/lightningcss-darwin-arm64/-/lightningcss-darwin-arm64-1.30.1.tgz", + "integrity": "sha512-c8JK7hyE65X1MHMN+Viq9n11RRC7hgin3HhYKhrMyaXflk5GVplZ60IxyoVtzILeKr+xAJwg6zK6sjTBJ0FKYQ==", "cpu": [ "arm64" ], @@ -9418,9 +9475,9 @@ } }, "node_modules/lightningcss-darwin-x64": { - "version": "1.29.2", - "resolved": "https://registry.npmjs.org/lightningcss-darwin-x64/-/lightningcss-darwin-x64-1.29.2.tgz", - "integrity": "sha512-j5qYxamyQw4kDXX5hnnCKMf3mLlHvG44f24Qyi2965/Ycz829MYqjrVg2H8BidybHBp9kom4D7DR5VqCKDXS0w==", + "version": "1.30.1", + "resolved": "https://registry.npmjs.org/lightningcss-darwin-x64/-/lightningcss-darwin-x64-1.30.1.tgz", + "integrity": "sha512-k1EvjakfumAQoTfcXUcHQZhSpLlkAuEkdMBsI/ivWw9hL+7FtilQc0Cy3hrx0AAQrVtQAbMI7YjCgYgvn37PzA==", "cpu": [ "x64" ], @@ -9439,9 +9496,9 @@ } }, "node_modules/lightningcss-freebsd-x64": { - "version": "1.29.2", - "resolved": "https://registry.npmjs.org/lightningcss-freebsd-x64/-/lightningcss-freebsd-x64-1.29.2.tgz", - "integrity": "sha512-wDk7M2tM78Ii8ek9YjnY8MjV5f5JN2qNVO+/0BAGZRvXKtQrBC4/cn4ssQIpKIPP44YXw6gFdpUF+Ps+RGsCwg==", + "version": "1.30.1", + "resolved": "https://registry.npmjs.org/lightningcss-freebsd-x64/-/lightningcss-freebsd-x64-1.30.1.tgz", + "integrity": "sha512-kmW6UGCGg2PcyUE59K5r0kWfKPAVy4SltVeut+umLCFoJ53RdCUWxcRDzO1eTaxf/7Q2H7LTquFHPL5R+Gjyig==", "cpu": [ "x64" ], @@ -9460,9 +9517,9 @@ } }, "node_modules/lightningcss-linux-arm-gnueabihf": { - "version": "1.29.2", - "resolved": "https://registry.npmjs.org/lightningcss-linux-arm-gnueabihf/-/lightningcss-linux-arm-gnueabihf-1.29.2.tgz", - "integrity": "sha512-IRUrOrAF2Z+KExdExe3Rz7NSTuuJ2HvCGlMKoquK5pjvo2JY4Rybr+NrKnq0U0hZnx5AnGsuFHjGnNT14w26sg==", + "version": "1.30.1", + "resolved": "https://registry.npmjs.org/lightningcss-linux-arm-gnueabihf/-/lightningcss-linux-arm-gnueabihf-1.30.1.tgz", + "integrity": "sha512-MjxUShl1v8pit+6D/zSPq9S9dQ2NPFSQwGvxBCYaBYLPlCWuPh9/t1MRS8iUaR8i+a6w7aps+B4N0S1TYP/R+Q==", "cpu": [ "arm" ], @@ -9481,9 +9538,9 @@ } }, "node_modules/lightningcss-linux-arm64-gnu": { - "version": "1.29.2", - "resolved": "https://registry.npmjs.org/lightningcss-linux-arm64-gnu/-/lightningcss-linux-arm64-gnu-1.29.2.tgz", - "integrity": "sha512-KKCpOlmhdjvUTX/mBuaKemp0oeDIBBLFiU5Fnqxh1/DZ4JPZi4evEH7TKoSBFOSOV3J7iEmmBaw/8dpiUvRKlQ==", + "version": "1.30.1", + "resolved": "https://registry.npmjs.org/lightningcss-linux-arm64-gnu/-/lightningcss-linux-arm64-gnu-1.30.1.tgz", + "integrity": "sha512-gB72maP8rmrKsnKYy8XUuXi/4OctJiuQjcuqWNlJQ6jZiWqtPvqFziskH3hnajfvKB27ynbVCucKSm2rkQp4Bw==", "cpu": [ "arm64" ], @@ -9502,9 +9559,9 @@ } }, "node_modules/lightningcss-linux-arm64-musl": { - "version": "1.29.2", - "resolved": "https://registry.npmjs.org/lightningcss-linux-arm64-musl/-/lightningcss-linux-arm64-musl-1.29.2.tgz", - "integrity": "sha512-Q64eM1bPlOOUgxFmoPUefqzY1yV3ctFPE6d/Vt7WzLW4rKTv7MyYNky+FWxRpLkNASTnKQUaiMJ87zNODIrrKQ==", + "version": "1.30.1", + "resolved": "https://registry.npmjs.org/lightningcss-linux-arm64-musl/-/lightningcss-linux-arm64-musl-1.30.1.tgz", + "integrity": "sha512-jmUQVx4331m6LIX+0wUhBbmMX7TCfjF5FoOH6SD1CttzuYlGNVpA7QnrmLxrsub43ClTINfGSYyHe2HWeLl5CQ==", "cpu": [ "arm64" ], @@ -9523,9 +9580,9 @@ } }, "node_modules/lightningcss-linux-x64-gnu": { - "version": "1.29.2", - "resolved": "https://registry.npmjs.org/lightningcss-linux-x64-gnu/-/lightningcss-linux-x64-gnu-1.29.2.tgz", - "integrity": "sha512-0v6idDCPG6epLXtBH/RPkHvYx74CVziHo6TMYga8O2EiQApnUPZsbR9nFNrg2cgBzk1AYqEd95TlrsL7nYABQg==", + "version": "1.30.1", + "resolved": "https://registry.npmjs.org/lightningcss-linux-x64-gnu/-/lightningcss-linux-x64-gnu-1.30.1.tgz", + "integrity": "sha512-piWx3z4wN8J8z3+O5kO74+yr6ze/dKmPnI7vLqfSqI8bccaTGY5xiSGVIJBDd5K5BHlvVLpUB3S2YCfelyJ1bw==", "cpu": [ "x64" ], @@ -9544,9 +9601,9 @@ } }, "node_modules/lightningcss-linux-x64-musl": { - "version": "1.29.2", - "resolved": "https://registry.npmjs.org/lightningcss-linux-x64-musl/-/lightningcss-linux-x64-musl-1.29.2.tgz", - "integrity": "sha512-rMpz2yawkgGT8RULc5S4WiZopVMOFWjiItBT7aSfDX4NQav6M44rhn5hjtkKzB+wMTRlLLqxkeYEtQ3dd9696w==", + "version": "1.30.1", + "resolved": "https://registry.npmjs.org/lightningcss-linux-x64-musl/-/lightningcss-linux-x64-musl-1.30.1.tgz", + "integrity": "sha512-rRomAK7eIkL+tHY0YPxbc5Dra2gXlI63HL+v1Pdi1a3sC+tJTcFrHX+E86sulgAXeI7rSzDYhPSeHHjqFhqfeQ==", "cpu": [ "x64" ], @@ -9565,9 +9622,9 @@ } }, "node_modules/lightningcss-win32-arm64-msvc": { - "version": "1.29.2", - "resolved": "https://registry.npmjs.org/lightningcss-win32-arm64-msvc/-/lightningcss-win32-arm64-msvc-1.29.2.tgz", - "integrity": "sha512-nL7zRW6evGQqYVu/bKGK+zShyz8OVzsCotFgc7judbt6wnB2KbiKKJwBE4SGoDBQ1O94RjW4asrCjQL4i8Fhbw==", + "version": "1.30.1", + "resolved": "https://registry.npmjs.org/lightningcss-win32-arm64-msvc/-/lightningcss-win32-arm64-msvc-1.30.1.tgz", + "integrity": "sha512-mSL4rqPi4iXq5YVqzSsJgMVFENoa4nGTT/GjO2c0Yl9OuQfPsIfncvLrEW6RbbB24WtZ3xP/2CCmI3tNkNV4oA==", "cpu": [ "arm64" ], @@ -9586,9 +9643,9 @@ } }, "node_modules/lightningcss-win32-x64-msvc": { - "version": "1.29.2", - "resolved": "https://registry.npmjs.org/lightningcss-win32-x64-msvc/-/lightningcss-win32-x64-msvc-1.29.2.tgz", - "integrity": "sha512-EdIUW3B2vLuHmv7urfzMI/h2fmlnOQBk1xlsDxkN1tCWKjNFjfLhGxYk8C8mzpSfr+A6jFFIi8fU6LbQGsRWjA==", + "version": "1.30.1", + "resolved": "https://registry.npmjs.org/lightningcss-win32-x64-msvc/-/lightningcss-win32-x64-msvc-1.30.1.tgz", + "integrity": "sha512-PVqXh48wh4T53F/1CCu8PIPCxLzWyCnn/9T5W1Jpmdy5h9Cwd+0YQS6/LwhHXSafuc61/xg9Lv5OrCby6a++jg==", "cpu": [ "x64" ], @@ -9726,13 +9783,13 @@ } }, "node_modules/magic-string": { - "version": "0.30.17", - "resolved": "https://registry.npmjs.org/magic-string/-/magic-string-0.30.17.tgz", - "integrity": "sha512-sNPKHvyjVf7gyjwS4xGTaW/mCnF8wnjtifKBEhxfZ7E/S8tQ0rssrwGNn6q8JH/ohItJfSQp9mBtQYuTlH5QnA==", + "version": "0.30.19", + "resolved": "https://registry.npmjs.org/magic-string/-/magic-string-0.30.19.tgz", + "integrity": "sha512-2N21sPY9Ws53PZvsEpVtNuSW+ScYbQdp4b9qUaL+9QkHUrGFKo56Lg9Emg5s9V/qrtNBmiR01sYhUOwu3H+VOw==", "dev": true, "license": "MIT", "dependencies": { - "@jridgewell/sourcemap-codec": "^1.5.0" + "@jridgewell/sourcemap-codec": "^1.5.5" } }, "node_modules/make-dir": { @@ -10717,9 +10774,9 @@ } }, "node_modules/minizlib": { - "version": "3.0.2", - "resolved": "https://registry.npmjs.org/minizlib/-/minizlib-3.0.2.tgz", - "integrity": "sha512-oG62iEk+CYt5Xj2YqI5Xi9xWUeZhDI8jjQmC5oThVH5JGCTgIjr7ciJDzC7MBzYd//WvR1OTmP5Q38Q8ShQtVA==", + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/minizlib/-/minizlib-3.1.0.tgz", + "integrity": "sha512-KZxYo1BUkWD2TVFLr0MQoM8vUUigWD3LlD83a/75BqC+4qE0Hb1Vo5v1FgcfaNXvfXzr+5EhQ6ing/CaBijTlw==", "dev": true, "license": "MIT", "dependencies": { @@ -10729,22 +10786,6 @@ "node": ">= 18" } }, - "node_modules/mkdirp": { - "version": "3.0.1", - "resolved": "https://registry.npmjs.org/mkdirp/-/mkdirp-3.0.1.tgz", - "integrity": "sha512-+NsyUUAZDmo6YVHzL/stxSu3t9YS1iljliy3BSDrXJ/dkn1KYdmtZODGGjLcc9XLgVVpH4KshHB8XmZgMhaBXg==", - "dev": true, - "license": "MIT", - "bin": { - "mkdirp": "dist/cjs/src/bin.js" - }, - "engines": { - "node": ">=10" - }, - "funding": { - "url": "https://github.com/sponsors/isaacs" - } - }, "node_modules/motion-dom": { "version": "12.23.23", "resolved": "https://registry.npmjs.org/motion-dom/-/motion-dom-12.23.23.tgz", @@ -12989,34 +13030,37 @@ } }, "node_modules/tailwindcss": { - "version": "4.1.13", - "resolved": "https://registry.npmjs.org/tailwindcss/-/tailwindcss-4.1.13.tgz", - "integrity": "sha512-i+zidfmTqtwquj4hMEwdjshYYgMbOrPzb9a0M3ZgNa0JMoZeFC6bxZvO8yr8ozS6ix2SDz0+mvryPeBs2TFE+w==", + "version": "4.1.14", + "resolved": "https://registry.npmjs.org/tailwindcss/-/tailwindcss-4.1.14.tgz", + "integrity": "sha512-b7pCxjGO98LnxVkKjaZSDeNuljC4ueKUddjENJOADtubtdo8llTaJy7HwBMeLNSSo2N5QIAgklslK1+Ir8r6CA==", "dev": true, "license": "MIT" }, "node_modules/tapable": { - "version": "2.2.1", - "resolved": "https://registry.npmjs.org/tapable/-/tapable-2.2.1.tgz", - "integrity": "sha512-GNzQvQTOIP6RyTfE2Qxb8ZVlNmw0n88vp1szwWRimP02mnTsx3Wtn5qRdqY9w2XduFNUgvOwhNnQsjwCp+kqaQ==", + "version": "2.3.0", + "resolved": "https://registry.npmjs.org/tapable/-/tapable-2.3.0.tgz", + "integrity": "sha512-g9ljZiwki/LfxmQADO3dEY1CbpmXT5Hm2fJ+QaGKwSXUylMybePR7/67YW7jOrrvjEgL1Fmz5kzyAjWVWLlucg==", "dev": true, "license": "MIT", "engines": { "node": ">=6" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/webpack" } }, "node_modules/tar": { - "version": "7.4.3", - "resolved": "https://registry.npmjs.org/tar/-/tar-7.4.3.tgz", - "integrity": "sha512-5S7Va8hKfV7W5U6g3aYxXmlPoZVAwUMy9AOKyF2fVuZa2UD3qZjg578OrLRt8PcNN1PleVaL/5/yYATNL0ICUw==", + "version": "7.5.1", + "resolved": "https://registry.npmjs.org/tar/-/tar-7.5.1.tgz", + "integrity": "sha512-nlGpxf+hv0v7GkWBK2V9spgactGOp0qvfWRxUMjqHyzrt3SgwE48DIv/FhqPHJYLHpgW1opq3nERbz5Anq7n1g==", "dev": true, "license": "ISC", "dependencies": { "@isaacs/fs-minipass": "^4.0.0", "chownr": "^3.0.0", "minipass": "^7.1.2", - "minizlib": "^3.0.1", - "mkdirp": "^3.0.1", + "minizlib": "^3.1.0", "yallist": "^5.0.0" }, "engines": { From d9274d199ebb0bc41cdd5cea7e990c90f396985e Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Mon, 20 Oct 2025 15:11:36 -0700 Subject: [PATCH 32/41] chore(ui-deps): bump @types/node from 24.3.0 to 24.8.1 in /llama_stack/ui (#3851) Bumps [@types/node](https://github.com/DefinitelyTyped/DefinitelyTyped/tree/HEAD/types/node) from 24.3.0 to 24.8.1.
Commits

[![Dependabot compatibility score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=@types/node&package-manager=npm_and_yarn&previous-version=24.3.0&new-version=24.8.1)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores) Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) ---
Dependabot commands and options
You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot show ignore conditions` will show all of the ignore conditions of the specified dependency - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
Signed-off-by: dependabot[bot] Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> --- llama_stack/ui/package-lock.json | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/llama_stack/ui/package-lock.json b/llama_stack/ui/package-lock.json index 31a852b30..418b7d63c 100644 --- a/llama_stack/ui/package-lock.json +++ b/llama_stack/ui/package-lock.json @@ -3869,12 +3869,12 @@ "license": "MIT" }, "node_modules/@types/node": { - "version": "24.3.0", - "resolved": "https://registry.npmjs.org/@types/node/-/node-24.3.0.tgz", - "integrity": "sha512-aPTXCrfwnDLj4VvXrm+UUCQjNEvJgNA8s5F1cvwQU+3KNltTOkBm1j30uNLyqqPNe7gE3KFzImYoZEfLhp4Yow==", + "version": "24.8.1", + "resolved": "https://registry.npmjs.org/@types/node/-/node-24.8.1.tgz", + "integrity": "sha512-alv65KGRadQVfVcG69MuB4IzdYVpRwMG/mq8KWOaoOdyY617P5ivaDiMCGOFDWD2sAn5Q0mR3mRtUOgm99hL9Q==", "license": "MIT", "dependencies": { - "undici-types": "~7.10.0" + "undici-types": "~7.14.0" } }, "node_modules/@types/node-fetch": { @@ -13462,9 +13462,9 @@ } }, "node_modules/undici-types": { - "version": "7.10.0", - "resolved": "https://registry.npmjs.org/undici-types/-/undici-types-7.10.0.tgz", - "integrity": "sha512-t5Fy/nfn+14LuOc2KNYg75vZqClpAiqscVvMygNnlsHBFpSXdJaYtXMcdNLpl/Qvc3P2cB3s6lOV51nqsFq4ag==", + "version": "7.14.0", + "resolved": "https://registry.npmjs.org/undici-types/-/undici-types-7.14.0.tgz", + "integrity": "sha512-QQiYxHuyZ9gQUIrmPo3IA+hUl4KYk8uSA7cHrcKd/l3p1OTpZcM0Tbp9x7FAtXdAYhlasd60ncPpgu6ihG6TOA==", "license": "MIT" }, "node_modules/unified": { From b215eb5944c681f6b63030daf17071135b4d6681 Mon Sep 17 00:00:00 2001 From: ehhuang Date: Mon, 20 Oct 2025 15:48:37 -0700 Subject: [PATCH 33/41] chore: skip shutdown if otel_endpoint is not set (#3865) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit # What does this PR do? rid following error when ctrl+c'd server │ /Users/erichuang/projects/lst3/llama_stack/providers/inline/telemetry/meta_reference/telemetry.py:92 in │ │ shutdown │ │ │ │ 89 │ │ pass │ │ 90 │ │ │ 91 │ async def shutdown(self) -> None: │ │ ❱ 92 │ │ trace.get_tracer_provider().force_flush() │ │ 93 │ │ │ 94 │ async def log_event(self, event: Event, ttl_seconds: int = 604800) -> None: │ │ 95 │ │ if isinstance(event, UnstructuredLogEvent): │ ╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────╯ AttributeError: 'ProxyTracerProvider' object has no attribute 'force_flush' ## Test Plan --- .../providers/inline/telemetry/meta_reference/telemetry.py | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/llama_stack/providers/inline/telemetry/meta_reference/telemetry.py b/llama_stack/providers/inline/telemetry/meta_reference/telemetry.py index 2a225476b..b15b1e490 100644 --- a/llama_stack/providers/inline/telemetry/meta_reference/telemetry.py +++ b/llama_stack/providers/inline/telemetry/meta_reference/telemetry.py @@ -79,8 +79,10 @@ class TelemetryAdapter(Telemetry): metric_reader = PeriodicExportingMetricReader(OTLPMetricExporter()) metric_provider = MeterProvider(metric_readers=[metric_reader]) metrics.set_meter_provider(metric_provider) + self.is_otel_endpoint_set = True else: logger.warning("OTEL_EXPORTER_OTLP_ENDPOINT is not set, skipping telemetry") + self.is_otel_endpoint_set = False self.meter = metrics.get_meter(__name__) self._lock = _global_lock @@ -89,7 +91,8 @@ class TelemetryAdapter(Telemetry): pass async def shutdown(self) -> None: - trace.get_tracer_provider().force_flush() + if self.is_otel_endpoint_set: + trace.get_tracer_provider().force_flush() async def log_event(self, event: Event, ttl_seconds: int = 604800) -> None: if isinstance(event, UnstructuredLogEvent): From ffeb86385c25299f22946d81a182948f7141331c Mon Sep 17 00:00:00 2001 From: ehhuang Date: Mon, 20 Oct 2025 16:01:03 -0700 Subject: [PATCH 34/41] chore: fix main (#3868) # What does this PR do? dup entry was added for some reason ## Test Plan --- llama_stack/ui/package-lock.json | 11 ----------- 1 file changed, 11 deletions(-) diff --git a/llama_stack/ui/package-lock.json b/llama_stack/ui/package-lock.json index 418b7d63c..9b22dd8d5 100644 --- a/llama_stack/ui/package-lock.json +++ b/llama_stack/ui/package-lock.json @@ -2061,17 +2061,6 @@ "@jridgewell/trace-mapping": "^0.3.24" } }, - "node_modules/@jridgewell/remapping": { - "version": "2.3.5", - "resolved": "https://registry.npmjs.org/@jridgewell/remapping/-/remapping-2.3.5.tgz", - "integrity": "sha512-LI9u/+laYG4Ds1TDKSJW2YPrIlcVYOwi2fUC6xB43lueCjgxV4lffOCZCtYFiH6TNOX+tQKXx97T4IKHbhyHEQ==", - "dev": true, - "license": "MIT", - "dependencies": { - "@jridgewell/gen-mapping": "^0.3.5", - "@jridgewell/trace-mapping": "^0.3.24" - } - }, "node_modules/@jridgewell/resolve-uri": { "version": "3.1.2", "resolved": "https://registry.npmjs.org/@jridgewell/resolve-uri/-/resolve-uri-3.1.2.tgz", From 407bade359152175786e1003e7c85becfcc9ad4f Mon Sep 17 00:00:00 2001 From: ehhuang Date: Mon, 20 Oct 2025 16:22:48 -0700 Subject: [PATCH 35/41] chore: migrate stack build (#3867) # What does this PR do? Just use editable install here. Not sure about the USE_COPY_NOT_MOUNT that was used in original scripts and if that's needed. ## Test Plan image --- [//]: # (BEGIN SAPLING FOOTER) Stack created with [Sapling](https://sapling-scm.com). Best reviewed with [ReviewStack](https://reviewstack.dev/llamastack/llama-stack/pull/3867). * #3869 * __->__ #3867 --- scripts/docker.sh | 59 +++++++++++++++++++++++++++--------- scripts/integration-tests.sh | 26 +++++++++------- 2 files changed, 59 insertions(+), 26 deletions(-) diff --git a/scripts/docker.sh b/scripts/docker.sh index 7a5c3e6e0..a0690c8a9 100755 --- a/scripts/docker.sh +++ b/scripts/docker.sh @@ -156,6 +156,16 @@ DISTRO=$(echo "$DISTRO" | sed 's/^docker://') CONTAINER_NAME="llama-stack-test-$DISTRO" +should_copy_source() { + if [[ "$USE_COPY_NOT_MOUNT" == "true" ]]; then + return 0 + fi + if [[ "${CI:-false}" == "true" ]] || [[ "${GITHUB_ACTIONS:-false}" == "true" ]]; then + return 0 + fi + return 1 +} + # Function to check if container is running is_container_running() { docker ps --filter "name=^${CONTAINER_NAME}$" --format '{{.Names}}' | grep -q "^${CONTAINER_NAME}$" @@ -183,20 +193,29 @@ stop_container() { build_image() { echo "=== Building Docker Image for distribution: $DISTRO ===" # Get the repo root (parent of scripts directory) - SCRIPT_DIR=$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd) - REPO_ROOT=$(cd "$SCRIPT_DIR/.." && pwd) + local script_dir + script_dir=$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd) + local repo_root + repo_root=$(cd "$script_dir/.." && pwd) - # Determine whether to copy or mount source - # Copy in CI or if explicitly requested, otherwise mount for live development - BUILD_ENV="LLAMA_STACK_DIR=$REPO_ROOT" - if [[ "$USE_COPY_NOT_MOUNT" == "true" ]] || [[ "${CI:-false}" == "true" ]] || [[ "${GITHUB_ACTIONS:-false}" == "true" ]]; then - echo "Copying source into image (USE_COPY_NOT_MOUNT=true, CI=${CI:-false}, GITHUB_ACTIONS=${GITHUB_ACTIONS:-false})" - BUILD_ENV="USE_COPY_NOT_MOUNT=true $BUILD_ENV" - else - echo "Will mount source for live development" + local containerfile="$repo_root/containers/Containerfile" + if [[ ! -f "$containerfile" ]]; then + echo "❌ Containerfile not found at $containerfile" + exit 1 fi - if ! eval "$BUILD_ENV llama stack build --distro '$DISTRO' --image-type container"; then + local build_cmd=( + docker + build + "$repo_root" + -f "$containerfile" + --tag "localhost/distribution-$DISTRO:dev" + --build-arg "DISTRO_NAME=$DISTRO" + --build-arg "INSTALL_MODE=editable" + --build-arg "LLAMA_STACK_DIR=/workspace" + ) + + if ! "${build_cmd[@]}"; then echo "❌ Failed to build Docker image" exit 1 fi @@ -224,7 +243,7 @@ start_container() { # Check if image exists (with or without localhost/ prefix) if ! docker images --format "{{.Repository}}:{{.Tag}}" | grep -q "distribution-$DISTRO:dev$"; then echo "❌ Error: Image distribution-$DISTRO:dev does not exist" - echo "Either build it first without --no-rebuild, or run: llama stack build --distro $DISTRO --image-type container" + echo "Either build it first without --no-rebuild, or run: docker build . -f containers/Containerfile --build-arg DISTRO_NAME=$DISTRO --tag localhost/distribution-$DISTRO:dev" exit 1 fi echo "✅ Found existing image for distribution-$DISTRO:dev" @@ -236,8 +255,10 @@ start_container() { echo "=== Starting Docker Container ===" # Get the repo root for volume mount - SCRIPT_DIR=$(cd "$(dirname "${BASH_SOURCE[0]:-$0}")" && pwd) - REPO_ROOT=$(cd "$SCRIPT_DIR/.." && pwd) + local script_dir + script_dir=$(cd "$(dirname "${BASH_SOURCE[0]:-$0}")" && pwd) + local repo_root + repo_root=$(cd "$script_dir/.." && pwd) # Determine the actual image name (may have localhost/ prefix) IMAGE_NAME=$(docker images --format "{{.Repository}}:{{.Tag}}" | grep "distribution-$DISTRO:dev$" | head -1) @@ -279,10 +300,18 @@ start_container() { NETWORK_MODE="--network host" fi + local source_mount="" + if should_copy_source; then + echo "Source baked into image (no volume mount)" + else + source_mount="-v \"$repo_root\":/workspace" + echo "Mounting $repo_root into /workspace" + fi + docker run -d $NETWORK_MODE --name "$CONTAINER_NAME" \ -p $PORT:$PORT \ $DOCKER_ENV_VARS \ - -v "$REPO_ROOT":/app/llama-stack-source \ + $source_mount \ "$IMAGE_NAME" \ --port $PORT diff --git a/scripts/integration-tests.sh b/scripts/integration-tests.sh index e19a5cc55..daf6ccd1b 100755 --- a/scripts/integration-tests.sh +++ b/scripts/integration-tests.sh @@ -252,19 +252,24 @@ if [[ "$STACK_CONFIG" == *"docker:"* && "$COLLECT_ONLY" == false ]]; then export LLAMA_STACK_PORT=8321 echo "=== Building Docker Image for distribution: $DISTRO ===" - # Set LLAMA_STACK_DIR to repo root - # USE_COPY_NOT_MOUNT copies files into image (for CI), otherwise mounts for live development - BUILD_ENV="LLAMA_STACK_DIR=$ROOT_DIR" - if [[ "${CI:-false}" == "true" ]] || [[ "${GITHUB_ACTIONS:-false}" == "true" ]]; then - echo "CI detected (CI=$CI, GITHUB_ACTIONS=$GITHUB_ACTIONS): copying source into image" - BUILD_ENV="USE_COPY_NOT_MOUNT=true $BUILD_ENV" - else - echo "Local mode: will mount source for live development" + containerfile="$ROOT_DIR/containers/Containerfile" + if [[ ! -f "$containerfile" ]]; then + echo "❌ Containerfile not found at $containerfile" + exit 1 fi - eval "$BUILD_ENV llama stack build --distro '$DISTRO' --image-type container" + build_cmd=( + docker + build + "$ROOT_DIR" + -f "$containerfile" + --tag "localhost/distribution-$DISTRO:dev" + --build-arg "DISTRO_NAME=$DISTRO" + --build-arg "INSTALL_MODE=editable" + --build-arg "LLAMA_STACK_DIR=/workspace" + ) - if [ $? -ne 0 ]; then + if ! "${build_cmd[@]}"; then echo "❌ Failed to build Docker image" exit 1 fi @@ -304,7 +309,6 @@ if [[ "$STACK_CONFIG" == *"docker:"* && "$COLLECT_ONLY" == false ]]; then docker run -d --network host --name "$container_name" \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ $DOCKER_ENV_VARS \ - -v $ROOT_DIR:/app/llama-stack-source \ "$IMAGE_NAME" \ --port $LLAMA_STACK_PORT From 6a13a99e774c3ff1b5630d238ee731584e40e268 Mon Sep 17 00:00:00 2001 From: Charlie Doern Date: Mon, 20 Oct 2025 19:26:06 -0400 Subject: [PATCH 36/41] chore: add `beta` group to stainless (#3866) # What does this PR do? similarly to `alpha:` move `v1beta` routes under a `beta` group so the client will have `client.beta` From what I can tell, the openapi.stainless.yml file is hand written while the openapi.yml file is generated and copied using the shell script so I did this by hand. Signed-off-by: Charlie Doern --- client-sdks/stainless/openapi.stainless.yml | 28 +++++++++++---------- 1 file changed, 15 insertions(+), 13 deletions(-) diff --git a/client-sdks/stainless/openapi.stainless.yml b/client-sdks/stainless/openapi.stainless.yml index 0a5dfc044..9461be996 100644 --- a/client-sdks/stainless/openapi.stainless.yml +++ b/client-sdks/stainless/openapi.stainless.yml @@ -208,19 +208,6 @@ resources: type: http endpoint: post /v1/conversations/{conversation_id}/items - datasets: - models: - list_datasets_response: ListDatasetsResponse - methods: - register: post /v1beta/datasets - retrieve: get /v1beta/datasets/{dataset_id} - list: - endpoint: get /v1beta/datasets - paginated: false - unregister: delete /v1beta/datasets/{dataset_id} - iterrows: get /v1beta/datasetio/iterrows/{dataset_id} - appendrows: post /v1beta/datasetio/append-rows/{dataset_id} - inspect: models: healthInfo: HealthInfo @@ -521,6 +508,21 @@ resources: stream_event_model: alpha.agents.turn.agent_turn_response_stream_chunk param_discriminator: stream + beta: + subresources: + datasets: + models: + list_datasets_response: ListDatasetsResponse + methods: + register: post /v1beta/datasets + retrieve: get /v1beta/datasets/{dataset_id} + list: + endpoint: get /v1beta/datasets + paginated: false + unregister: delete /v1beta/datasets/{dataset_id} + iterrows: get /v1beta/datasetio/iterrows/{dataset_id} + appendrows: post /v1beta/datasetio/append-rows/{dataset_id} + settings: license: MIT From 444f6c88f3e03d553efb1658c72e8c575625ab34 Mon Sep 17 00:00:00 2001 From: ehhuang Date: Mon, 20 Oct 2025 16:28:15 -0700 Subject: [PATCH 37/41] chore: remove build.py (#3869) # What does this PR do? ## Test Plan CI --- llama_stack/cli/stack/_build.py | 519 ------------------ llama_stack/cli/stack/build.py | 106 ---- llama_stack/cli/stack/stack.py | 2 - llama_stack/core/build_container.sh | 410 -------------- llama_stack/core/build_venv.sh | 220 -------- llama_stack/core/library_client.py | 2 +- llama_stack/core/ui/README.md | 2 +- .../distributions/dell/doc_template.md | 2 +- .../remote/datasetio/nvidia/README.md | 2 +- .../remote/inference/nvidia/NVIDIA.md | 2 +- .../remote/inference/nvidia/__init__.py | 2 +- .../remote/post_training/nvidia/README.md | 2 +- .../providers/remote/safety/nvidia/README.md | 2 +- tests/integration/fixtures/common.py | 2 +- tests/unit/distribution/test_build_path.py | 40 -- 15 files changed, 9 insertions(+), 1306 deletions(-) delete mode 100644 llama_stack/cli/stack/_build.py delete mode 100644 llama_stack/cli/stack/build.py delete mode 100755 llama_stack/core/build_container.sh delete mode 100755 llama_stack/core/build_venv.sh delete mode 100644 tests/unit/distribution/test_build_path.py diff --git a/llama_stack/cli/stack/_build.py b/llama_stack/cli/stack/_build.py deleted file mode 100644 index 2a30ff394..000000000 --- a/llama_stack/cli/stack/_build.py +++ /dev/null @@ -1,519 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the terms described in the LICENSE file in -# the root directory of this source tree. - -import argparse -import importlib.resources -import json -import os -import shutil -import sys -import textwrap -from functools import lru_cache -from importlib.abc import Traversable -from pathlib import Path - -import yaml -from prompt_toolkit import prompt -from prompt_toolkit.completion import WordCompleter -from prompt_toolkit.validation import Validator -from termcolor import colored, cprint - -from llama_stack.cli.stack.utils import ImageType -from llama_stack.cli.table import print_table -from llama_stack.core.build import ( - SERVER_DEPENDENCIES, - build_image, - get_provider_dependencies, -) -from llama_stack.core.configure import parse_and_maybe_upgrade_config -from llama_stack.core.datatypes import ( - BuildConfig, - BuildProvider, - DistributionSpec, - Provider, - StackRunConfig, -) -from llama_stack.core.distribution import get_provider_registry -from llama_stack.core.external import load_external_apis -from llama_stack.core.resolver import InvalidProviderError -from llama_stack.core.stack import replace_env_vars -from llama_stack.core.storage.datatypes import ( - InferenceStoreReference, - KVStoreReference, - ServerStoresConfig, - SqliteKVStoreConfig, - SqliteSqlStoreConfig, - SqlStoreReference, - StorageConfig, -) -from llama_stack.core.utils.config_dirs import DISTRIBS_BASE_DIR, EXTERNAL_PROVIDERS_DIR -from llama_stack.core.utils.dynamic import instantiate_class_type -from llama_stack.core.utils.exec import formulate_run_args, run_command -from llama_stack.core.utils.image_types import LlamaStackImageType -from llama_stack.providers.datatypes import Api - -DISTRIBS_PATH = Path(__file__).parent.parent.parent / "distributions" - - -@lru_cache -def available_distros_specs() -> dict[str, BuildConfig]: - import yaml - - distro_specs = {} - for p in DISTRIBS_PATH.rglob("*build.yaml"): - distro_name = p.parent.name - with open(p) as f: - build_config = BuildConfig(**yaml.safe_load(f)) - distro_specs[distro_name] = build_config - return distro_specs - - -def run_stack_build_command(args: argparse.Namespace) -> None: - if args.list_distros: - return _run_distro_list_cmd() - - if args.image_type == ImageType.VENV.value: - current_venv = os.environ.get("VIRTUAL_ENV") - image_name = args.image_name or current_venv - else: - image_name = args.image_name - - if args.template: - cprint( - "The --template argument is deprecated. Please use --distro instead.", - color="red", - file=sys.stderr, - ) - distro_name = args.template - else: - distro_name = args.distribution - - if distro_name: - available_distros = available_distros_specs() - if distro_name not in available_distros: - cprint( - f"Could not find distribution {distro_name}. Please run `llama stack build --list-distros` to check out the available distributions", - color="red", - file=sys.stderr, - ) - sys.exit(1) - build_config = available_distros[distro_name] - if args.image_type: - build_config.image_type = args.image_type - else: - cprint( - f"Please specify a image-type ({' | '.join(e.value for e in ImageType)}) for {distro_name}", - color="red", - file=sys.stderr, - ) - sys.exit(1) - elif args.providers: - provider_list: dict[str, list[BuildProvider]] = dict() - for api_provider in args.providers.split(","): - if "=" not in api_provider: - cprint( - "Could not parse `--providers`. Please ensure the list is in the format api1=provider1,api2=provider2", - color="red", - file=sys.stderr, - ) - sys.exit(1) - api, provider_type = api_provider.split("=") - providers_for_api = get_provider_registry().get(Api(api), None) - if providers_for_api is None: - cprint( - f"{api} is not a valid API.", - color="red", - file=sys.stderr, - ) - sys.exit(1) - if provider_type in providers_for_api: - provider = BuildProvider( - provider_type=provider_type, - module=None, - ) - provider_list.setdefault(api, []).append(provider) - else: - cprint( - f"{provider} is not a valid provider for the {api} API.", - color="red", - file=sys.stderr, - ) - sys.exit(1) - distribution_spec = DistributionSpec( - providers=provider_list, - description=",".join(args.providers), - ) - if not args.image_type: - cprint( - f"Please specify a image-type (container | venv) for {args.template}", - color="red", - file=sys.stderr, - ) - sys.exit(1) - - build_config = BuildConfig(image_type=args.image_type, distribution_spec=distribution_spec) - elif not args.config and not distro_name: - name = prompt( - "> Enter a name for your Llama Stack (e.g. my-local-stack): ", - validator=Validator.from_callable( - lambda x: len(x) > 0, - error_message="Name cannot be empty, please enter a name", - ), - ) - - image_type = prompt( - "> Enter the image type you want your Llama Stack to be built as (use to see options): ", - completer=WordCompleter([e.value for e in ImageType]), - complete_while_typing=True, - validator=Validator.from_callable( - lambda x: x in [e.value for e in ImageType], - error_message="Invalid image type. Use to see options", - ), - ) - - image_name = f"llamastack-{name}" - - cprint( - textwrap.dedent( - """ - Llama Stack is composed of several APIs working together. Let's select - the provider types (implementations) you want to use for these APIs. - """, - ), - color="green", - file=sys.stderr, - ) - - cprint("Tip: use to see options for the providers.\n", color="green", file=sys.stderr) - - providers: dict[str, list[BuildProvider]] = dict() - for api, providers_for_api in get_provider_registry().items(): - available_providers = [x for x in providers_for_api.keys() if x not in ("remote", "remote::sample")] - if not available_providers: - continue - api_provider = prompt( - f"> Enter provider for API {api.value}: ", - completer=WordCompleter(available_providers), - complete_while_typing=True, - validator=Validator.from_callable( - lambda x: x in available_providers, # noqa: B023 - see https://github.com/astral-sh/ruff/issues/7847 - error_message="Invalid provider, use to see options", - ), - ) - - string_providers = api_provider.split(" ") - - for provider in string_providers: - providers.setdefault(api.value, []).append(BuildProvider(provider_type=provider)) - - description = prompt( - "\n > (Optional) Enter a short description for your Llama Stack: ", - default="", - ) - - distribution_spec = DistributionSpec( - providers=providers, - description=description, - ) - - build_config = BuildConfig(image_type=image_type, distribution_spec=distribution_spec) - else: - with open(args.config) as f: - try: - contents = yaml.safe_load(f) - contents = replace_env_vars(contents) - build_config = BuildConfig(**contents) - if args.image_type: - build_config.image_type = args.image_type - except Exception as e: - cprint( - f"Could not parse config file {args.config}: {e}", - color="red", - file=sys.stderr, - ) - sys.exit(1) - - if args.print_deps_only: - print(f"# Dependencies for {distro_name or args.config or image_name}") - normal_deps, special_deps, external_provider_dependencies = get_provider_dependencies(build_config) - normal_deps += SERVER_DEPENDENCIES - print(f"uv pip install {' '.join(normal_deps)}") - for special_dep in special_deps: - print(f"uv pip install {special_dep}") - for external_dep in external_provider_dependencies: - print(f"uv pip install {external_dep}") - return - - try: - run_config = _run_stack_build_command_from_build_config( - build_config, - image_name=image_name, - config_path=args.config, - distro_name=distro_name, - ) - - except (Exception, RuntimeError) as exc: - import traceback - - cprint( - f"Error building stack: {exc}", - color="red", - file=sys.stderr, - ) - cprint("Stack trace:", color="red", file=sys.stderr) - traceback.print_exc() - sys.exit(1) - - if run_config is None: - cprint( - "Run config path is empty", - color="red", - file=sys.stderr, - ) - sys.exit(1) - - if args.run: - config_dict = yaml.safe_load(run_config.read_text()) - config = parse_and_maybe_upgrade_config(config_dict) - if config.external_providers_dir and not config.external_providers_dir.exists(): - config.external_providers_dir.mkdir(exist_ok=True) - run_args = formulate_run_args(args.image_type, image_name or config.image_name) - run_args.extend([str(os.getenv("LLAMA_STACK_PORT", 8321)), "--config", str(run_config)]) - run_command(run_args) - - -def _generate_run_config( - build_config: BuildConfig, - build_dir: Path, - image_name: str, -) -> Path: - """ - Generate a run.yaml template file for user to edit from a build.yaml file - """ - apis = list(build_config.distribution_spec.providers.keys()) - distro_dir = DISTRIBS_BASE_DIR / image_name - storage = StorageConfig( - backends={ - "kv_default": SqliteKVStoreConfig( - db_path=f"${{env.SQLITE_STORE_DIR:={distro_dir}}}/kvstore.db", - ), - "sql_default": SqliteSqlStoreConfig( - db_path=f"${{env.SQLITE_STORE_DIR:={distro_dir}}}/sql_store.db", - ), - }, - stores=ServerStoresConfig( - metadata=KVStoreReference( - backend="kv_default", - namespace="registry", - ), - inference=InferenceStoreReference( - backend="sql_default", - table_name="inference_store", - ), - conversations=SqlStoreReference( - backend="sql_default", - table_name="openai_conversations", - ), - ), - ) - - run_config = StackRunConfig( - container_image=(image_name if build_config.image_type == LlamaStackImageType.CONTAINER.value else None), - image_name=image_name, - apis=apis, - providers={}, - storage=storage, - external_providers_dir=build_config.external_providers_dir - if build_config.external_providers_dir - else EXTERNAL_PROVIDERS_DIR, - ) - # build providers dict - provider_registry = get_provider_registry(build_config) - for api in apis: - run_config.providers[api] = [] - providers = build_config.distribution_spec.providers[api] - - for provider in providers: - pid = provider.provider_type.split("::")[-1] - - p = provider_registry[Api(api)][provider.provider_type] - if p.deprecation_error: - raise InvalidProviderError(p.deprecation_error) - - try: - config_type = instantiate_class_type(provider_registry[Api(api)][provider.provider_type].config_class) - except (ModuleNotFoundError, ValueError) as exc: - # HACK ALERT: - # This code executes after building is done, the import cannot work since the - # package is either available in the venv or container - not available on the host. - # TODO: use a "is_external" flag in ProviderSpec to check if the provider is - # external - cprint( - f"Failed to import provider {provider.provider_type} for API {api} - assuming it's external, skipping: {exc}", - color="yellow", - file=sys.stderr, - ) - # Set config_type to None to avoid UnboundLocalError - config_type = None - - if config_type is not None and hasattr(config_type, "sample_run_config"): - config = config_type.sample_run_config(__distro_dir__=f"~/.llama/distributions/{image_name}") - else: - config = {} - - p_spec = Provider( - provider_id=pid, - provider_type=provider.provider_type, - config=config, - module=provider.module, - ) - run_config.providers[api].append(p_spec) - - run_config_file = build_dir / f"{image_name}-run.yaml" - - with open(run_config_file, "w") as f: - to_write = json.loads(run_config.model_dump_json()) - f.write(yaml.dump(to_write, sort_keys=False)) - - # Only print this message for non-container builds since it will be displayed before the - # container is built - # For non-container builds, the run.yaml is generated at the very end of the build process so it - # makes sense to display this message - if build_config.image_type != LlamaStackImageType.CONTAINER.value: - cprint(f"You can now run your stack with `llama stack run {run_config_file}`", color="green", file=sys.stderr) - return run_config_file - - -def _run_stack_build_command_from_build_config( - build_config: BuildConfig, - image_name: str | None = None, - distro_name: str | None = None, - config_path: str | None = None, -) -> Path | Traversable: - image_name = image_name or build_config.image_name - if build_config.image_type == LlamaStackImageType.CONTAINER.value: - if distro_name: - image_name = f"distribution-{distro_name}" - else: - if not image_name: - raise ValueError("Please specify an image name when building a container image without a template") - else: - if not image_name and os.environ.get("UV_SYSTEM_PYTHON"): - image_name = "__system__" - if not image_name: - raise ValueError("Please specify an image name when building a venv image") - - # At this point, image_name should be guaranteed to be a string - if image_name is None: - raise ValueError("image_name should not be None after validation") - - if distro_name: - build_dir = DISTRIBS_BASE_DIR / distro_name - build_file_path = build_dir / f"{distro_name}-build.yaml" - else: - if image_name is None: - raise ValueError("image_name cannot be None") - build_dir = DISTRIBS_BASE_DIR / image_name - build_file_path = build_dir / f"{image_name}-build.yaml" - - os.makedirs(build_dir, exist_ok=True) - run_config_file = None - # Generate the run.yaml so it can be included in the container image with the proper entrypoint - # Only do this if we're building a container image and we're not using a template - if build_config.image_type == LlamaStackImageType.CONTAINER.value and not distro_name and config_path: - cprint("Generating run.yaml file", color="yellow", file=sys.stderr) - run_config_file = _generate_run_config(build_config, build_dir, image_name) - - with open(build_file_path, "w") as f: - to_write = json.loads(build_config.model_dump_json(exclude_none=True)) - f.write(yaml.dump(to_write, sort_keys=False)) - - # We first install the external APIs so that the build process can use them and discover the - # providers dependencies - if build_config.external_apis_dir: - cprint("Installing external APIs", color="yellow", file=sys.stderr) - external_apis = load_external_apis(build_config) - if external_apis: - # install the external APIs - packages = [] - for _, api_spec in external_apis.items(): - if api_spec.pip_packages: - packages.extend(api_spec.pip_packages) - cprint( - f"Installing {api_spec.name} with pip packages {api_spec.pip_packages}", - color="yellow", - file=sys.stderr, - ) - return_code = run_command(["uv", "pip", "install", *packages]) - if return_code != 0: - packages_str = ", ".join(packages) - raise RuntimeError( - f"Failed to install external APIs packages: {packages_str} (return code: {return_code})" - ) - - return_code = build_image( - build_config, - image_name, - distro_or_config=distro_name or config_path or str(build_file_path), - run_config=run_config_file.as_posix() if run_config_file else None, - ) - if return_code != 0: - raise RuntimeError(f"Failed to build image {image_name}") - - if distro_name: - # copy run.yaml from distribution to build_dir instead of generating it again - distro_path = importlib.resources.files("llama_stack") / f"distributions/{distro_name}/run.yaml" - run_config_file = build_dir / f"{distro_name}-run.yaml" - - with importlib.resources.as_file(distro_path) as path: - shutil.copy(path, run_config_file) - - cprint("Build Successful!", color="green", file=sys.stderr) - cprint(f"You can find the newly-built distribution here: {run_config_file}", color="blue", file=sys.stderr) - if build_config.image_type == LlamaStackImageType.VENV: - cprint( - "You can run the new Llama Stack distro (after activating " - + colored(image_name, "cyan") - + ") via: " - + colored(f"llama stack run {run_config_file}", "blue"), - color="green", - file=sys.stderr, - ) - elif build_config.image_type == LlamaStackImageType.CONTAINER: - cprint( - "You can run the container with: " - + colored( - f"docker run -p 8321:8321 -v ~/.llama:/root/.llama localhost/{image_name} --port 8321", "blue" - ), - color="green", - file=sys.stderr, - ) - return distro_path - else: - return _generate_run_config(build_config, build_dir, image_name) - - -def _run_distro_list_cmd() -> None: - headers = [ - "Distribution Name", - # "Providers", - "Description", - ] - - rows = [] - for distro_name, spec in available_distros_specs().items(): - rows.append( - [ - distro_name, - # json.dumps(spec.distribution_spec.providers, indent=2), - spec.distribution_spec.description, - ] - ) - print_table( - rows, - headers, - separate_rows=True, - ) diff --git a/llama_stack/cli/stack/build.py b/llama_stack/cli/stack/build.py deleted file mode 100644 index cbe8ed881..000000000 --- a/llama_stack/cli/stack/build.py +++ /dev/null @@ -1,106 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the terms described in the LICENSE file in -# the root directory of this source tree. -import argparse -import textwrap - -from llama_stack.cli.stack.utils import ImageType -from llama_stack.cli.subcommand import Subcommand -from llama_stack.log import get_logger - -logger = get_logger(__name__, category="cli") - - -class StackBuild(Subcommand): - def __init__(self, subparsers: argparse._SubParsersAction): - super().__init__() - self.parser = subparsers.add_parser( - "build", - prog="llama stack build", - description="[DEPRECATED] Build a Llama stack container. This command is deprecated and will be removed in a future release. Use `llama stack list-deps ' instead.", - formatter_class=argparse.ArgumentDefaultsHelpFormatter, - ) - self._add_arguments() - self.parser.set_defaults(func=self._run_stack_build_command) - - def _add_arguments(self): - self.parser.add_argument( - "--config", - type=str, - default=None, - help="Path to a config file to use for the build. You can find example configs in llama_stack.cores/**/build.yaml. If this argument is not provided, you will be prompted to enter information interactively", - ) - - self.parser.add_argument( - "--template", - type=str, - default=None, - help="""(deprecated) Name of the example template config to use for build. You may use `llama stack build --list-distros` to check out the available distributions""", - ) - self.parser.add_argument( - "--distro", - "--distribution", - dest="distribution", - type=str, - default=None, - help="""Name of the distribution to use for build. You may use `llama stack build --list-distros` to check out the available distributions""", - ) - - self.parser.add_argument( - "--list-distros", - "--list-distributions", - action="store_true", - dest="list_distros", - default=False, - help="Show the available distributions for building a Llama Stack distribution", - ) - - self.parser.add_argument( - "--image-type", - type=str, - help="Image Type to use for the build. If not specified, will use the image type from the template config.", - choices=[e.value for e in ImageType], - default=None, # no default so we can detect if a user specified --image-type and override image_type in the config - ) - - self.parser.add_argument( - "--image-name", - type=str, - help=textwrap.dedent( - f"""[for image-type={"|".join(e.value for e in ImageType)}] Name of the virtual environment to use for -the build. If not specified, currently active environment will be used if found. - """ - ), - default=None, - ) - self.parser.add_argument( - "--print-deps-only", - default=False, - action="store_true", - help="Print the dependencies for the stack only, without building the stack", - ) - - self.parser.add_argument( - "--run", - action="store_true", - default=False, - help="Run the stack after building using the same image type, name, and other applicable arguments", - ) - self.parser.add_argument( - "--providers", - type=str, - default=None, - help="Build a config for a list of providers and only those providers. This list is formatted like: api1=provider1,api2=provider2. Where there can be multiple providers per API.", - ) - - def _run_stack_build_command(self, args: argparse.Namespace) -> None: - logger.warning( - "The 'llama stack build' command is deprecated and will be removed in a future release. Please use 'llama stack list-deps'" - ) - # always keep implementation completely silo-ed away from CLI so CLI - # can be fast to load and reduces dependencies - from ._build import run_stack_build_command - - return run_stack_build_command(args) diff --git a/llama_stack/cli/stack/stack.py b/llama_stack/cli/stack/stack.py index fd0a4edf5..351da972f 100644 --- a/llama_stack/cli/stack/stack.py +++ b/llama_stack/cli/stack/stack.py @@ -11,7 +11,6 @@ from llama_stack.cli.stack.list_stacks import StackListBuilds from llama_stack.cli.stack.utils import print_subcommand_description from llama_stack.cli.subcommand import Subcommand -from .build import StackBuild from .list_apis import StackListApis from .list_deps import StackListDeps from .list_providers import StackListProviders @@ -41,7 +40,6 @@ class StackParser(Subcommand): # Add sub-commands StackListDeps.create(subparsers) - StackBuild.create(subparsers) StackListApis.create(subparsers) StackListProviders.create(subparsers) StackRun.create(subparsers) diff --git a/llama_stack/core/build_container.sh b/llama_stack/core/build_container.sh deleted file mode 100755 index 03ed846d9..000000000 --- a/llama_stack/core/build_container.sh +++ /dev/null @@ -1,410 +0,0 @@ -#!/usr/bin/env bash - -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the terms described in the LICENSE file in -# the root directory of this source tree. - -LLAMA_STACK_DIR=${LLAMA_STACK_DIR:-} -LLAMA_STACK_CLIENT_DIR=${LLAMA_STACK_CLIENT_DIR:-} - -TEST_PYPI_VERSION=${TEST_PYPI_VERSION:-} -PYPI_VERSION=${PYPI_VERSION:-} -BUILD_PLATFORM=${BUILD_PLATFORM:-} -# This timeout (in seconds) is necessary when installing PyTorch via uv since it's likely to time out -# Reference: https://github.com/astral-sh/uv/pull/1694 -UV_HTTP_TIMEOUT=${UV_HTTP_TIMEOUT:-500} - -# mounting is not supported by docker buildx, so we use COPY instead -USE_COPY_NOT_MOUNT=${USE_COPY_NOT_MOUNT:-} -# Path to the run.yaml file in the container -RUN_CONFIG_PATH=/app/run.yaml - -BUILD_CONTEXT_DIR=$(pwd) - -set -euo pipefail - -# Define color codes -RED='\033[0;31m' -NC='\033[0m' # No Color - -# Usage function -usage() { - echo "Usage: $0 --image-name --container-base --normal-deps [--run-config ] [--external-provider-deps ] [--optional-deps ]" - echo "Example: $0 --image-name llama-stack-img --container-base python:3.12-slim --normal-deps 'numpy pandas' --run-config ./run.yaml --external-provider-deps 'foo' --optional-deps 'bar'" - exit 1 -} - -# Parse arguments -image_name="" -container_base="" -normal_deps="" -external_provider_deps="" -optional_deps="" -run_config="" -distro_or_config="" - -while [[ $# -gt 0 ]]; do - key="$1" - case "$key" in - --image-name) - if [[ -z "$2" || "$2" == --* ]]; then - echo "Error: --image-name requires a string value" >&2 - usage - fi - image_name="$2" - shift 2 - ;; - --container-base) - if [[ -z "$2" || "$2" == --* ]]; then - echo "Error: --container-base requires a string value" >&2 - usage - fi - container_base="$2" - shift 2 - ;; - --normal-deps) - if [[ -z "$2" || "$2" == --* ]]; then - echo "Error: --normal-deps requires a string value" >&2 - usage - fi - normal_deps="$2" - shift 2 - ;; - --external-provider-deps) - if [[ -z "$2" || "$2" == --* ]]; then - echo "Error: --external-provider-deps requires a string value" >&2 - usage - fi - external_provider_deps="$2" - shift 2 - ;; - --optional-deps) - if [[ -z "$2" || "$2" == --* ]]; then - echo "Error: --optional-deps requires a string value" >&2 - usage - fi - optional_deps="$2" - shift 2 - ;; - --run-config) - if [[ -z "$2" || "$2" == --* ]]; then - echo "Error: --run-config requires a string value" >&2 - usage - fi - run_config="$2" - shift 2 - ;; - --distro-or-config) - if [[ -z "$2" || "$2" == --* ]]; then - echo "Error: --distro-or-config requires a string value" >&2 - usage - fi - distro_or_config="$2" - shift 2 - ;; - *) - echo "Unknown option: $1" >&2 - usage - ;; - esac -done - -# Check required arguments -if [[ -z "$image_name" || -z "$container_base" || -z "$normal_deps" ]]; then - echo "Error: --image-name, --container-base, and --normal-deps are required." >&2 - usage -fi - -CONTAINER_BINARY=${CONTAINER_BINARY:-docker} -CONTAINER_OPTS=${CONTAINER_OPTS:---progress=plain} -TEMP_DIR=$(mktemp -d) -SCRIPT_DIR=$(dirname "$(readlink -f "$0")") -source "$SCRIPT_DIR/common.sh" - -add_to_container() { - output_file="$TEMP_DIR/Containerfile" - if [ -t 0 ]; then - printf '%s\n' "$1" >>"$output_file" - else - cat >>"$output_file" - fi -} - -if ! is_command_available "$CONTAINER_BINARY"; then - printf "${RED}Error: ${CONTAINER_BINARY} command not found. Is ${CONTAINER_BINARY} installed and in your PATH?${NC}" >&2 - exit 1 -fi - -if [[ $container_base == *"registry.access.redhat.com/ubi9"* ]]; then - add_to_container << EOF -FROM $container_base -WORKDIR /app - -# We install the Python 3.12 dev headers and build tools so that any -# C-extension wheels (e.g. polyleven, faiss-cpu) can compile successfully. - -RUN dnf -y update && dnf install -y iputils git net-tools wget \ - vim-minimal python3.12 python3.12-pip python3.12-wheel \ - python3.12-setuptools python3.12-devel gcc gcc-c++ make && \ - ln -s /bin/pip3.12 /bin/pip && ln -s /bin/python3.12 /bin/python && dnf clean all - -ENV UV_SYSTEM_PYTHON=1 -RUN pip install uv -EOF -else - add_to_container << EOF -FROM $container_base -WORKDIR /app - -RUN apt-get update && apt-get install -y \ - iputils-ping net-tools iproute2 dnsutils telnet \ - curl wget telnet git\ - procps psmisc lsof \ - traceroute \ - bubblewrap \ - gcc g++ \ - && rm -rf /var/lib/apt/lists/* - -ENV UV_SYSTEM_PYTHON=1 -RUN pip install uv -EOF -fi - -# Add pip dependencies first since llama-stack is what will change most often -# so we can reuse layers. -if [ -n "$normal_deps" ]; then - read -ra pip_args <<< "$normal_deps" - quoted_deps=$(printf " %q" "${pip_args[@]}") - add_to_container << EOF -RUN uv pip install --no-cache $quoted_deps -EOF -fi - -if [ -n "$optional_deps" ]; then - IFS='#' read -ra parts <<<"$optional_deps" - for part in "${parts[@]}"; do - read -ra pip_args <<< "$part" - quoted_deps=$(printf " %q" "${pip_args[@]}") - add_to_container <=')[0].split('<=')[0].split('!=')[0].split('<')[0].split('>')[0] - module = importlib.import_module(f'{package_name}.provider') - spec = module.get_provider_spec() - if hasattr(spec, 'pip_packages') and spec.pip_packages: - if isinstance(spec.pip_packages, (list, tuple)): - print('\n'.join(spec.pip_packages)) -except Exception as e: - print(f'Error getting provider spec for {package_name}: {e}', file=sys.stderr) -PYTHON -EOF - done -fi - -get_python_cmd() { - if is_command_available python; then - echo "python" - elif is_command_available python3; then - echo "python3" - else - echo "Error: Neither python nor python3 is installed. Please install Python to continue." >&2 - exit 1 - fi -} - -if [ -n "$run_config" ]; then - # Copy the run config to the build context since it's an absolute path - cp "$run_config" "$BUILD_CONTEXT_DIR/run.yaml" - - # Parse the run.yaml configuration to identify external provider directories - # If external providers are specified, copy their directory to the container - # and update the configuration to reference the new container path - python_cmd=$(get_python_cmd) - external_providers_dir=$($python_cmd -c "import yaml; config = yaml.safe_load(open('$run_config')); print(config.get('external_providers_dir') or '')") - external_providers_dir=$(eval echo "$external_providers_dir") - if [ -n "$external_providers_dir" ]; then - if [ -d "$external_providers_dir" ]; then - echo "Copying external providers directory: $external_providers_dir" - cp -r "$external_providers_dir" "$BUILD_CONTEXT_DIR/providers.d" - add_to_container << EOF -COPY providers.d /.llama/providers.d -EOF - fi - - # Edit the run.yaml file to change the external_providers_dir to /.llama/providers.d - if [ "$(uname)" = "Darwin" ]; then - sed -i.bak -e 's|external_providers_dir:.*|external_providers_dir: /.llama/providers.d|' "$BUILD_CONTEXT_DIR/run.yaml" - rm -f "$BUILD_CONTEXT_DIR/run.yaml.bak" - else - sed -i 's|external_providers_dir:.*|external_providers_dir: /.llama/providers.d|' "$BUILD_CONTEXT_DIR/run.yaml" - fi - fi - - # Copy run config into docker image - add_to_container << EOF -COPY run.yaml $RUN_CONFIG_PATH -EOF -fi - -stack_mount="/app/llama-stack-source" -client_mount="/app/llama-stack-client-source" - -install_local_package() { - local dir="$1" - local mount_point="$2" - local name="$3" - - if [ ! -d "$dir" ]; then - echo "${RED}Warning: $name is set but directory does not exist: $dir${NC}" >&2 - exit 1 - fi - - if [ "$USE_COPY_NOT_MOUNT" = "true" ]; then - add_to_container << EOF -COPY $dir $mount_point -EOF - fi - add_to_container << EOF -RUN uv pip install --no-cache -e $mount_point -EOF -} - - -if [ -n "$LLAMA_STACK_CLIENT_DIR" ]; then - install_local_package "$LLAMA_STACK_CLIENT_DIR" "$client_mount" "LLAMA_STACK_CLIENT_DIR" -fi - -if [ -n "$LLAMA_STACK_DIR" ]; then - install_local_package "$LLAMA_STACK_DIR" "$stack_mount" "LLAMA_STACK_DIR" -else - if [ -n "$TEST_PYPI_VERSION" ]; then - # these packages are damaged in test-pypi, so install them first - add_to_container << EOF -RUN uv pip install --no-cache fastapi libcst -EOF - add_to_container << EOF -RUN uv pip install --no-cache --extra-index-url https://test.pypi.org/simple/ \ - --index-strategy unsafe-best-match \ - llama-stack==$TEST_PYPI_VERSION - -EOF - else - if [ -n "$PYPI_VERSION" ]; then - SPEC_VERSION="llama-stack==${PYPI_VERSION}" - else - SPEC_VERSION="llama-stack" - fi - add_to_container << EOF -RUN uv pip install --no-cache $SPEC_VERSION -EOF - fi -fi - -# remove uv after installation - add_to_container << EOF -RUN pip uninstall -y uv -EOF - -# If a run config is provided, we use the llama stack CLI -if [[ -n "$run_config" ]]; then - add_to_container << EOF -ENTRYPOINT ["llama", "stack", "run", "$RUN_CONFIG_PATH"] -EOF -elif [[ "$distro_or_config" != *.yaml ]]; then - add_to_container << EOF -ENTRYPOINT ["llama", "stack", "run", "$distro_or_config"] -EOF -fi - -# Add other require item commands genearic to all containers -add_to_container << EOF - -RUN mkdir -p /.llama /.cache && chmod -R g+rw /.llama /.cache && (chmod -R g+rw /app 2>/dev/null || true) -EOF - -printf "Containerfile created successfully in %s/Containerfile\n\n" "$TEMP_DIR" -cat "$TEMP_DIR"/Containerfile -printf "\n" - -# Start building the CLI arguments -CLI_ARGS=() - -# Read CONTAINER_OPTS and put it in an array -read -ra CLI_ARGS <<< "$CONTAINER_OPTS" - -if [ "$USE_COPY_NOT_MOUNT" != "true" ]; then - if [ -n "$LLAMA_STACK_DIR" ]; then - CLI_ARGS+=("-v" "$(readlink -f "$LLAMA_STACK_DIR"):$stack_mount") - fi - if [ -n "$LLAMA_STACK_CLIENT_DIR" ]; then - CLI_ARGS+=("-v" "$(readlink -f "$LLAMA_STACK_CLIENT_DIR"):$client_mount") - fi -fi - -if is_command_available selinuxenabled && selinuxenabled; then - # Disable SELinux labels -- we don't want to relabel the llama-stack source dir - CLI_ARGS+=("--security-opt" "label=disable") -fi - -# Set version tag based on PyPI version -if [ -n "$PYPI_VERSION" ]; then - version_tag="$PYPI_VERSION" -elif [ -n "$TEST_PYPI_VERSION" ]; then - version_tag="test-$TEST_PYPI_VERSION" -elif [[ -n "$LLAMA_STACK_DIR" || -n "$LLAMA_STACK_CLIENT_DIR" ]]; then - version_tag="dev" -else - URL="https://pypi.org/pypi/llama-stack/json" - version_tag=$(curl -s $URL | jq -r '.info.version') -fi - -# Add version tag to image name -image_tag="$image_name:$version_tag" - -# Detect platform architecture -ARCH=$(uname -m) -if [ -n "$BUILD_PLATFORM" ]; then - CLI_ARGS+=("--platform" "$BUILD_PLATFORM") -elif [ "$ARCH" = "arm64" ] || [ "$ARCH" = "aarch64" ]; then - CLI_ARGS+=("--platform" "linux/arm64") -elif [ "$ARCH" = "x86_64" ]; then - CLI_ARGS+=("--platform" "linux/amd64") -else - echo "Unsupported architecture: $ARCH" - exit 1 -fi - -echo "PWD: $(pwd)" -echo "Containerfile: $TEMP_DIR/Containerfile" -set -x - -$CONTAINER_BINARY build \ - "${CLI_ARGS[@]}" \ - -t "$image_tag" \ - -f "$TEMP_DIR/Containerfile" \ - "$BUILD_CONTEXT_DIR" - -# clean up tmp/configs -rm -rf "$BUILD_CONTEXT_DIR/run.yaml" "$TEMP_DIR" -set +x - -echo "Success!" diff --git a/llama_stack/core/build_venv.sh b/llama_stack/core/build_venv.sh deleted file mode 100755 index 04927d71e..000000000 --- a/llama_stack/core/build_venv.sh +++ /dev/null @@ -1,220 +0,0 @@ -#!/bin/bash - -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the terms described in the LICENSE file in -# the root directory of this source tree. - -LLAMA_STACK_DIR=${LLAMA_STACK_DIR:-} -LLAMA_STACK_CLIENT_DIR=${LLAMA_STACK_CLIENT_DIR:-} -TEST_PYPI_VERSION=${TEST_PYPI_VERSION:-} -# This timeout (in seconds) is necessary when installing PyTorch via uv since it's likely to time out -# Reference: https://github.com/astral-sh/uv/pull/1694 -UV_HTTP_TIMEOUT=${UV_HTTP_TIMEOUT:-500} -UV_SYSTEM_PYTHON=${UV_SYSTEM_PYTHON:-} -VIRTUAL_ENV=${VIRTUAL_ENV:-} - -set -euo pipefail - -# Define color codes -RED='\033[0;31m' -NC='\033[0m' # No Color - -SCRIPT_DIR=$(dirname "$(readlink -f "$0")") -source "$SCRIPT_DIR/common.sh" - -# Usage function -usage() { - echo "Usage: $0 --env-name --normal-deps [--external-provider-deps ] [--optional-deps ]" - echo "Example: $0 --env-name mybuild --normal-deps 'numpy pandas scipy' --external-provider-deps 'foo' --optional-deps 'bar'" - exit 1 -} - -# Parse arguments -env_name="" -normal_deps="" -external_provider_deps="" -optional_deps="" - -while [[ $# -gt 0 ]]; do - key="$1" - case "$key" in - --env-name) - if [[ -z "$2" || "$2" == --* ]]; then - echo "Error: --env-name requires a string value" >&2 - usage - fi - env_name="$2" - shift 2 - ;; - --normal-deps) - if [[ -z "$2" || "$2" == --* ]]; then - echo "Error: --normal-deps requires a string value" >&2 - usage - fi - normal_deps="$2" - shift 2 - ;; - --external-provider-deps) - if [[ -z "$2" || "$2" == --* ]]; then - echo "Error: --external-provider-deps requires a string value" >&2 - usage - fi - external_provider_deps="$2" - shift 2 - ;; - --optional-deps) - if [[ -z "$2" || "$2" == --* ]]; then - echo "Error: --optional-deps requires a string value" >&2 - usage - fi - optional_deps="$2" - shift 2 - ;; - *) - echo "Unknown option: $1" >&2 - usage - ;; - esac -done - -# Check required arguments -if [[ -z "$env_name" || -z "$normal_deps" ]]; then - echo "Error: --env-name and --normal-deps are required." >&2 - usage -fi - -if [ -n "$LLAMA_STACK_DIR" ]; then - echo "Using llama-stack-dir=$LLAMA_STACK_DIR" -fi -if [ -n "$LLAMA_STACK_CLIENT_DIR" ]; then - echo "Using llama-stack-client-dir=$LLAMA_STACK_CLIENT_DIR" -fi - -ENVNAME="" - -# pre-run checks to make sure we can proceed with the installation -pre_run_checks() { - local env_name="$1" - - if ! is_command_available uv; then - echo "uv is not installed, trying to install it." - if ! is_command_available pip; then - echo "pip is not installed, cannot automatically install 'uv'." - echo "Follow this link to install it:" - echo "https://docs.astral.sh/uv/getting-started/installation/" - exit 1 - else - pip install uv - fi - fi - - # checking if an environment with the same name already exists - if [ -d "$env_name" ]; then - echo "Environment '$env_name' already exists, re-using it." - fi -} - -run() { - # Use only global variables set by flag parser - if [ -n "$UV_SYSTEM_PYTHON" ] || [ "$env_name" == "__system__" ]; then - echo "Installing dependencies in system Python environment" - export UV_SYSTEM_PYTHON=1 - elif [ "$VIRTUAL_ENV" == "$env_name" ]; then - echo "Virtual environment $env_name is already active" - else - echo "Using virtual environment $env_name" - uv venv "$env_name" - source "$env_name/bin/activate" - fi - - if [ -n "$TEST_PYPI_VERSION" ]; then - uv pip install fastapi libcst - uv pip install --extra-index-url https://test.pypi.org/simple/ \ - --index-strategy unsafe-best-match \ - llama-stack=="$TEST_PYPI_VERSION" \ - $normal_deps - if [ -n "$optional_deps" ]; then - IFS='#' read -ra parts <<<"$optional_deps" - for part in "${parts[@]}"; do - echo "$part" - uv pip install $part - done - fi - if [ -n "$external_provider_deps" ]; then - IFS='#' read -ra parts <<<"$external_provider_deps" - for part in "${parts[@]}"; do - echo "$part" - uv pip install "$part" - done - fi - else - if [ -n "$LLAMA_STACK_DIR" ]; then - # only warn if DIR does not start with "git+" - if [ ! -d "$LLAMA_STACK_DIR" ] && [[ "$LLAMA_STACK_DIR" != git+* ]]; then - printf "${RED}Warning: LLAMA_STACK_DIR is set but directory does not exist: %s${NC}\n" "$LLAMA_STACK_DIR" >&2 - exit 1 - fi - printf "Installing from LLAMA_STACK_DIR: %s\n" "$LLAMA_STACK_DIR" - # editable only if LLAMA_STACK_DIR does not start with "git+" - if [[ "$LLAMA_STACK_DIR" != git+* ]]; then - EDITABLE="-e" - else - EDITABLE="" - fi - uv pip install --no-cache-dir $EDITABLE "$LLAMA_STACK_DIR" - else - uv pip install --no-cache-dir llama-stack - fi - - if [ -n "$LLAMA_STACK_CLIENT_DIR" ]; then - # only warn if DIR does not start with "git+" - if [ ! -d "$LLAMA_STACK_CLIENT_DIR" ] && [[ "$LLAMA_STACK_CLIENT_DIR" != git+* ]]; then - printf "${RED}Warning: LLAMA_STACK_CLIENT_DIR is set but directory does not exist: %s${NC}\n" "$LLAMA_STACK_CLIENT_DIR" >&2 - exit 1 - fi - printf "Installing from LLAMA_STACK_CLIENT_DIR: %s\n" "$LLAMA_STACK_CLIENT_DIR" - # editable only if LLAMA_STACK_CLIENT_DIR does not start with "git+" - if [[ "$LLAMA_STACK_CLIENT_DIR" != git+* ]]; then - EDITABLE="-e" - else - EDITABLE="" - fi - uv pip install --no-cache-dir $EDITABLE "$LLAMA_STACK_CLIENT_DIR" - fi - - printf "Installing pip dependencies\n" - uv pip install $normal_deps - if [ -n "$optional_deps" ]; then - IFS='#' read -ra parts <<<"$optional_deps" - for part in "${parts[@]}"; do - echo "Installing special provider module: $part" - uv pip install $part - done - fi - if [ -n "$external_provider_deps" ]; then - IFS='#' read -ra parts <<<"$external_provider_deps" - for part in "${parts[@]}"; do - echo "Installing external provider module: $part" - uv pip install "$part" - echo "Getting provider spec for module: $part and installing dependencies" - package_name=$(echo "$part" | sed 's/[<>=!].*//') - python3 -c " -import importlib -import sys -try: - module = importlib.import_module(f'$package_name.provider') - spec = module.get_provider_spec() - if hasattr(spec, 'pip_packages') and spec.pip_packages: - print('\\n'.join(spec.pip_packages)) -except Exception as e: - print(f'Error getting provider spec for $package_name: {e}', file=sys.stderr) -" | uv pip install -r - - done - fi - fi -} - -pre_run_checks "$env_name" -run diff --git a/llama_stack/core/library_client.py b/llama_stack/core/library_client.py index 1179075cd..328ca9c6e 100644 --- a/llama_stack/core/library_client.py +++ b/llama_stack/core/library_client.py @@ -278,7 +278,7 @@ class AsyncLlamaStackAsLibraryClient(AsyncLlamaStackClient): else: prefix = "!" if in_notebook() else "" cprint( - f"Please run:\n\n{prefix}llama stack build --distro {self.config_path_or_distro_name} --image-type venv\n\n", + f"Please run:\n\n{prefix}llama stack list-deps {self.config_path_or_distro_name} | xargs -L1 uv pip install\n\n", "yellow", file=sys.stderr, ) diff --git a/llama_stack/core/ui/README.md b/llama_stack/core/ui/README.md index f1d85454b..37f1501c9 100644 --- a/llama_stack/core/ui/README.md +++ b/llama_stack/core/ui/README.md @@ -9,7 +9,7 @@ 1. Start up Llama Stack API server. More details [here](https://llamastack.github.io/latest/getting_started/index.htmll). ``` -llama stack build --distro together --image-type venv +llama stack list-deps together | xargs -L1 uv pip install llama stack run together ``` diff --git a/llama_stack/distributions/dell/doc_template.md b/llama_stack/distributions/dell/doc_template.md index 852e78d0e..4e28673e8 100644 --- a/llama_stack/distributions/dell/doc_template.md +++ b/llama_stack/distributions/dell/doc_template.md @@ -157,7 +157,7 @@ docker run \ Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available. ```bash -llama stack build --distro {{ name }} --image-type conda +llama stack list-deps {{ name }} | xargs -L1 pip install INFERENCE_MODEL=$INFERENCE_MODEL \ DEH_URL=$DEH_URL \ CHROMA_URL=$CHROMA_URL \ diff --git a/llama_stack/providers/remote/datasetio/nvidia/README.md b/llama_stack/providers/remote/datasetio/nvidia/README.md index 74e0895f4..da57d5550 100644 --- a/llama_stack/providers/remote/datasetio/nvidia/README.md +++ b/llama_stack/providers/remote/datasetio/nvidia/README.md @@ -20,7 +20,7 @@ This provider enables dataset management using NVIDIA's NeMo Customizer service. Build the NVIDIA environment: ```bash -llama stack build --distro nvidia --image-type venv +uv run llama stack list-deps nvidia | xargs -L1 uv pip install ``` ### Basic Usage using the LlamaStack Python Client diff --git a/llama_stack/providers/remote/inference/nvidia/NVIDIA.md b/llama_stack/providers/remote/inference/nvidia/NVIDIA.md index 692b9125b..f1a828413 100644 --- a/llama_stack/providers/remote/inference/nvidia/NVIDIA.md +++ b/llama_stack/providers/remote/inference/nvidia/NVIDIA.md @@ -18,7 +18,7 @@ This provider enables running inference using NVIDIA NIM. Build the NVIDIA environment: ```bash -llama stack build --distro nvidia --image-type venv +uv run llama stack list-deps nvidia | xargs -L1 uv pip install ``` ### Basic Usage using the LlamaStack Python Client diff --git a/llama_stack/providers/remote/inference/nvidia/__init__.py b/llama_stack/providers/remote/inference/nvidia/__init__.py index 1869cb748..b4926f33e 100644 --- a/llama_stack/providers/remote/inference/nvidia/__init__.py +++ b/llama_stack/providers/remote/inference/nvidia/__init__.py @@ -10,7 +10,7 @@ from .config import NVIDIAConfig async def get_adapter_impl(config: NVIDIAConfig, _deps) -> Inference: - # import dynamically so `llama stack build` does not fail due to missing dependencies + # import dynamically so `llama stack list-deps` does not fail due to missing dependencies from .nvidia import NVIDIAInferenceAdapter if not isinstance(config, NVIDIAConfig): diff --git a/llama_stack/providers/remote/post_training/nvidia/README.md b/llama_stack/providers/remote/post_training/nvidia/README.md index 9b088a615..789514b1e 100644 --- a/llama_stack/providers/remote/post_training/nvidia/README.md +++ b/llama_stack/providers/remote/post_training/nvidia/README.md @@ -22,7 +22,7 @@ This provider enables fine-tuning of LLMs using NVIDIA's NeMo Customizer service Build the NVIDIA environment: ```bash -llama stack build --distro nvidia --image-type venv +uv run llama stack list-deps nvidia | xargs -L1 uv pip install ``` ### Basic Usage using the LlamaStack Python Client diff --git a/llama_stack/providers/remote/safety/nvidia/README.md b/llama_stack/providers/remote/safety/nvidia/README.md index 784ab464f..e589afe84 100644 --- a/llama_stack/providers/remote/safety/nvidia/README.md +++ b/llama_stack/providers/remote/safety/nvidia/README.md @@ -19,7 +19,7 @@ This provider enables safety checks and guardrails for LLM interactions using NV Build the NVIDIA environment: ```bash -llama stack build --distro nvidia --image-type venv +uv run llama stack list-deps nvidia | xargs -L1 uv pip install ``` ### Basic Usage using the LlamaStack Python Client diff --git a/tests/integration/fixtures/common.py b/tests/integration/fixtures/common.py index ffd49033d..6a9e1f3b2 100644 --- a/tests/integration/fixtures/common.py +++ b/tests/integration/fixtures/common.py @@ -40,7 +40,7 @@ def is_port_available(port: int, host: str = "localhost") -> bool: def start_llama_stack_server(config_name: str) -> subprocess.Popen: """Start a llama stack server with the given config.""" - cmd = f"uv run --with llama-stack llama stack build --distro {config_name} --image-type venv --run" + cmd = f"uv run llama stack run {config_name}" devnull = open(os.devnull, "w") process = subprocess.Popen( shlex.split(cmd), diff --git a/tests/unit/distribution/test_build_path.py b/tests/unit/distribution/test_build_path.py deleted file mode 100644 index 52a71286b..000000000 --- a/tests/unit/distribution/test_build_path.py +++ /dev/null @@ -1,40 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the terms described in the LICENSE file in -# the root directory of this source tree. - -from pathlib import Path - -from llama_stack.cli.stack._build import ( - _run_stack_build_command_from_build_config, -) -from llama_stack.core.datatypes import BuildConfig, DistributionSpec -from llama_stack.core.utils.image_types import LlamaStackImageType - - -def test_container_build_passes_path(monkeypatch, tmp_path): - called_with = {} - - def spy_build_image(build_config, image_name, distro_or_config, run_config=None): - called_with["path"] = distro_or_config - called_with["run_config"] = run_config - return 0 - - monkeypatch.setattr( - "llama_stack.cli.stack._build.build_image", - spy_build_image, - raising=True, - ) - - cfg = BuildConfig( - image_type=LlamaStackImageType.CONTAINER.value, - distribution_spec=DistributionSpec(providers={}, description=""), - ) - - _run_stack_build_command_from_build_config(cfg, image_name="dummy") - - assert "path" in called_with - assert isinstance(called_with["path"], str) - assert Path(called_with["path"]).exists() - assert called_with["run_config"] is None From 122de785c4406d50bbfa4171ef60151ed940a61f Mon Sep 17 00:00:00 2001 From: Ashwin Bharambe Date: Mon, 20 Oct 2025 20:06:16 -0700 Subject: [PATCH 38/41] chore(cleanup)!: kill vector_db references as far as possible (#3864) There should not be "vector db" anywhere. --- client-sdks/stainless/openapi.yml | 12 +- .../llama_stack_client_cli_reference.md | 48 ----- docs/static/deprecated-llama-stack-spec.html | 4 +- docs/static/deprecated-llama-stack-spec.yaml | 4 +- .../static/experimental-llama-stack-spec.html | 4 +- .../static/experimental-llama-stack-spec.yaml | 4 +- docs/static/llama-stack-spec.html | 8 +- docs/static/llama-stack-spec.yaml | 8 +- docs/static/stainless-llama-stack-spec.html | 12 +- docs/static/stainless-llama-stack-spec.yaml | 12 +- llama_stack/apis/datatypes.py | 2 +- llama_stack/apis/resource.py | 4 +- llama_stack/apis/vector_dbs/vector_dbs.py | 93 --------- llama_stack/apis/vector_io/vector_io.py | 11 +- .../{vector_dbs => vector_stores}/__init__.py | 2 +- .../apis/vector_stores/vector_stores.py | 51 +++++ llama_stack/core/access_control/datatypes.py | 6 +- llama_stack/core/datatypes.py | 10 +- llama_stack/core/distribution.py | 2 +- llama_stack/core/resolver.py | 4 +- llama_stack/core/routers/__init__.py | 4 +- llama_stack/core/routers/tool_runtime.py | 12 +- llama_stack/core/routers/vector_io.py | 47 ++--- llama_stack/core/routing_tables/common.py | 12 +- .../{vector_dbs.py => vector_stores.py} | 105 ++++------ llama_stack/core/ui/page/playground/tools.py | 14 +- llama_stack/providers/datatypes.py | 8 +- .../providers/inline/vector_io/faiss/faiss.py | 53 +++-- .../inline/vector_io/sqlite_vec/sqlite_vec.py | 83 ++++---- .../remote/vector_io/chroma/chroma.py | 58 +++--- .../remote/vector_io/milvus/milvus.py | 74 +++---- .../remote/vector_io/pgvector/pgvector.py | 72 +++---- .../remote/vector_io/qdrant/qdrant.py | 96 ++++----- .../remote/vector_io/weaviate/weaviate.py | 70 +++---- .../utils/memory/openai_vector_store_mixin.py | 43 ++-- .../providers/utils/memory/vector_store.py | 18 +- tests/integration/conftest.py | 3 + tests/integration/vector_io/test_vector_io.py | 68 ++++--- tests/unit/core/routers/test_vector_io.py | 2 +- tests/unit/providers/vector_io/conftest.py | 34 ++-- tests/unit/providers/vector_io/test_faiss.py | 18 +- .../test_vector_io_openai_vector_stores.py | 74 +++---- tests/unit/rag/test_rag_query.py | 4 +- tests/unit/rag/test_vector_store.py | 54 ++--- tests/unit/registry/test_registry.py | 192 +++++++++--------- tests/unit/server/test_server.py | 4 +- 46 files changed, 701 insertions(+), 822 deletions(-) delete mode 100644 llama_stack/apis/vector_dbs/vector_dbs.py rename llama_stack/apis/{vector_dbs => vector_stores}/__init__.py (87%) create mode 100644 llama_stack/apis/vector_stores/vector_stores.py rename llama_stack/core/routing_tables/{vector_dbs.py => vector_stores.py} (70%) diff --git a/client-sdks/stainless/openapi.yml b/client-sdks/stainless/openapi.yml index eff01931f..93049a14a 100644 --- a/client-sdks/stainless/openapi.yml +++ b/client-sdks/stainless/openapi.yml @@ -6440,7 +6440,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark @@ -9132,7 +9132,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark @@ -9440,7 +9440,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark @@ -10203,7 +10203,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark @@ -11325,7 +11325,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark @@ -12652,7 +12652,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark diff --git a/docs/docs/references/llama_stack_client_cli_reference.md b/docs/docs/references/llama_stack_client_cli_reference.md index 9bb514a2d..a4321938a 100644 --- a/docs/docs/references/llama_stack_client_cli_reference.md +++ b/docs/docs/references/llama_stack_client_cli_reference.md @@ -32,7 +32,6 @@ Commands: scoring_functions Manage scoring functions. shields Manage safety shield services. toolgroups Manage available tool groups. - vector_dbs Manage vector databases. ``` ### `llama-stack-client configure` @@ -211,53 +210,6 @@ Unregister a model from distribution endpoint llama-stack-client models unregister ``` -## Vector DB Management -Manage vector databases. - - -### `llama-stack-client vector_dbs list` -Show available vector dbs on distribution endpoint -```bash -llama-stack-client vector_dbs list -``` -``` -┏━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ -┃ identifier ┃ provider_id ┃ provider_resource_id ┃ vector_db_type ┃ params ┃ -┡━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩ -│ my_demo_vector_db │ faiss │ my_demo_vector_db │ │ embedding_dimension: 768 │ -│ │ │ │ │ embedding_model: nomic-embed-text-v1.5 │ -│ │ │ │ │ type: vector_db │ -│ │ │ │ │ │ -└──────────────────────────┴─────────────┴──────────────────────────┴────────────────┴───────────────────────────────────┘ -``` - -### `llama-stack-client vector_dbs register` -Create a new vector db -```bash -llama-stack-client vector_dbs register [--provider-id ] [--provider-vector-db-id ] [--embedding-model ] [--embedding-dimension ] -``` - - -Required arguments: -- `VECTOR_DB_ID`: Vector DB ID - -Optional arguments: -- `--provider-id`: Provider ID for the vector db -- `--provider-vector-db-id`: Provider's vector db ID -- `--embedding-model`: Embedding model to use. Default: `nomic-embed-text-v1.5` -- `--embedding-dimension`: Dimension of embeddings. Default: 768 - -### `llama-stack-client vector_dbs unregister` -Delete a vector db -```bash -llama-stack-client vector_dbs unregister -``` - - -Required arguments: -- `VECTOR_DB_ID`: Vector DB ID - - ## Shield Management Manage safety shield services. ### `llama-stack-client shields list` diff --git a/docs/static/deprecated-llama-stack-spec.html b/docs/static/deprecated-llama-stack-spec.html index 98ed50c4f..d920317cf 100644 --- a/docs/static/deprecated-llama-stack-spec.html +++ b/docs/static/deprecated-llama-stack-spec.html @@ -5547,7 +5547,7 @@ "enum": [ "model", "shield", - "vector_db", + "vector_store", "dataset", "scoring_function", "benchmark", @@ -5798,7 +5798,7 @@ "enum": [ "model", "shield", - "vector_db", + "vector_store", "dataset", "scoring_function", "benchmark", diff --git a/docs/static/deprecated-llama-stack-spec.yaml b/docs/static/deprecated-llama-stack-spec.yaml index 99c8dd03e..66b2caeca 100644 --- a/docs/static/deprecated-llama-stack-spec.yaml +++ b/docs/static/deprecated-llama-stack-spec.yaml @@ -4114,7 +4114,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark @@ -4303,7 +4303,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark diff --git a/docs/static/experimental-llama-stack-spec.html b/docs/static/experimental-llama-stack-spec.html index 7d572f89f..ab474180e 100644 --- a/docs/static/experimental-llama-stack-spec.html +++ b/docs/static/experimental-llama-stack-spec.html @@ -1850,7 +1850,7 @@ "enum": [ "model", "shield", - "vector_db", + "vector_store", "dataset", "scoring_function", "benchmark", @@ -3983,7 +3983,7 @@ "enum": [ "model", "shield", - "vector_db", + "vector_store", "dataset", "scoring_function", "benchmark", diff --git a/docs/static/experimental-llama-stack-spec.yaml b/docs/static/experimental-llama-stack-spec.yaml index fee20814c..dd9e43cc5 100644 --- a/docs/static/experimental-llama-stack-spec.yaml +++ b/docs/static/experimental-llama-stack-spec.yaml @@ -1320,7 +1320,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark @@ -2927,7 +2927,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark diff --git a/docs/static/llama-stack-spec.html b/docs/static/llama-stack-spec.html index 1091a1cb6..61deaec1e 100644 --- a/docs/static/llama-stack-spec.html +++ b/docs/static/llama-stack-spec.html @@ -6800,7 +6800,7 @@ "enum": [ "model", "shield", - "vector_db", + "vector_store", "dataset", "scoring_function", "benchmark", @@ -10205,7 +10205,7 @@ "enum": [ "model", "shield", - "vector_db", + "vector_store", "dataset", "scoring_function", "benchmark", @@ -10687,7 +10687,7 @@ "enum": [ "model", "shield", - "vector_db", + "vector_store", "dataset", "scoring_function", "benchmark", @@ -11740,7 +11740,7 @@ "enum": [ "model", "shield", - "vector_db", + "vector_store", "dataset", "scoring_function", "benchmark", diff --git a/docs/static/llama-stack-spec.yaml b/docs/static/llama-stack-spec.yaml index 6c3702374..c6197b36f 100644 --- a/docs/static/llama-stack-spec.yaml +++ b/docs/static/llama-stack-spec.yaml @@ -5227,7 +5227,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark @@ -7919,7 +7919,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark @@ -8227,7 +8227,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark @@ -8990,7 +8990,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark diff --git a/docs/static/stainless-llama-stack-spec.html b/docs/static/stainless-llama-stack-spec.html index ee0a265d3..38122ebc0 100644 --- a/docs/static/stainless-llama-stack-spec.html +++ b/docs/static/stainless-llama-stack-spec.html @@ -8472,7 +8472,7 @@ "enum": [ "model", "shield", - "vector_db", + "vector_store", "dataset", "scoring_function", "benchmark", @@ -11877,7 +11877,7 @@ "enum": [ "model", "shield", - "vector_db", + "vector_store", "dataset", "scoring_function", "benchmark", @@ -12359,7 +12359,7 @@ "enum": [ "model", "shield", - "vector_db", + "vector_store", "dataset", "scoring_function", "benchmark", @@ -13412,7 +13412,7 @@ "enum": [ "model", "shield", - "vector_db", + "vector_store", "dataset", "scoring_function", "benchmark", @@ -14959,7 +14959,7 @@ "enum": [ "model", "shield", - "vector_db", + "vector_store", "dataset", "scoring_function", "benchmark", @@ -16704,7 +16704,7 @@ "enum": [ "model", "shield", - "vector_db", + "vector_store", "dataset", "scoring_function", "benchmark", diff --git a/docs/static/stainless-llama-stack-spec.yaml b/docs/static/stainless-llama-stack-spec.yaml index eff01931f..93049a14a 100644 --- a/docs/static/stainless-llama-stack-spec.yaml +++ b/docs/static/stainless-llama-stack-spec.yaml @@ -6440,7 +6440,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark @@ -9132,7 +9132,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark @@ -9440,7 +9440,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark @@ -10203,7 +10203,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark @@ -11325,7 +11325,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark @@ -12652,7 +12652,7 @@ components: enum: - model - shield - - vector_db + - vector_store - dataset - scoring_function - benchmark diff --git a/llama_stack/apis/datatypes.py b/llama_stack/apis/datatypes.py index 5777f3d04..948ec615f 100644 --- a/llama_stack/apis/datatypes.py +++ b/llama_stack/apis/datatypes.py @@ -121,7 +121,7 @@ class Api(Enum, metaclass=DynamicApiMeta): models = "models" shields = "shields" - vector_dbs = "vector_dbs" # only used for routing + vector_stores = "vector_stores" # only used for routing table datasets = "datasets" scoring_functions = "scoring_functions" benchmarks = "benchmarks" diff --git a/llama_stack/apis/resource.py b/llama_stack/apis/resource.py index 7c4130f7d..dafdb28b0 100644 --- a/llama_stack/apis/resource.py +++ b/llama_stack/apis/resource.py @@ -13,7 +13,7 @@ from pydantic import BaseModel, Field class ResourceType(StrEnum): model = "model" shield = "shield" - vector_db = "vector_db" + vector_store = "vector_store" dataset = "dataset" scoring_function = "scoring_function" benchmark = "benchmark" @@ -34,4 +34,4 @@ class Resource(BaseModel): provider_id: str = Field(description="ID of the provider that owns this resource") - type: ResourceType = Field(description="Type of resource (e.g. 'model', 'shield', 'vector_db', etc.)") + type: ResourceType = Field(description="Type of resource (e.g. 'model', 'shield', 'vector_store', etc.)") diff --git a/llama_stack/apis/vector_dbs/vector_dbs.py b/llama_stack/apis/vector_dbs/vector_dbs.py deleted file mode 100644 index 0368095cb..000000000 --- a/llama_stack/apis/vector_dbs/vector_dbs.py +++ /dev/null @@ -1,93 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the terms described in the LICENSE file in -# the root directory of this source tree. - -from typing import Literal, Protocol, runtime_checkable - -from pydantic import BaseModel - -from llama_stack.apis.resource import Resource, ResourceType -from llama_stack.schema_utils import json_schema_type - - -@json_schema_type -class VectorDB(Resource): - """Vector database resource for storing and querying vector embeddings. - - :param type: Type of resource, always 'vector_db' for vector databases - :param embedding_model: Name of the embedding model to use for vector generation - :param embedding_dimension: Dimension of the embedding vectors - """ - - type: Literal[ResourceType.vector_db] = ResourceType.vector_db - - embedding_model: str - embedding_dimension: int - vector_db_name: str | None = None - - @property - def vector_db_id(self) -> str: - return self.identifier - - @property - def provider_vector_db_id(self) -> str | None: - return self.provider_resource_id - - -class VectorDBInput(BaseModel): - """Input parameters for creating or configuring a vector database. - - :param vector_db_id: Unique identifier for the vector database - :param embedding_model: Name of the embedding model to use for vector generation - :param embedding_dimension: Dimension of the embedding vectors - :param provider_vector_db_id: (Optional) Provider-specific identifier for the vector database - """ - - vector_db_id: str - embedding_model: str - embedding_dimension: int - provider_id: str | None = None - provider_vector_db_id: str | None = None - - -class ListVectorDBsResponse(BaseModel): - """Response from listing vector databases. - - :param data: List of vector databases - """ - - data: list[VectorDB] - - -@runtime_checkable -class VectorDBs(Protocol): - """Internal protocol for vector_dbs routing - no public API endpoints.""" - - async def list_vector_dbs(self) -> ListVectorDBsResponse: - """Internal method to list vector databases.""" - ... - - async def get_vector_db( - self, - vector_db_id: str, - ) -> VectorDB: - """Internal method to get a vector database by ID.""" - ... - - async def register_vector_db( - self, - vector_db_id: str, - embedding_model: str, - embedding_dimension: int | None = 384, - provider_id: str | None = None, - vector_db_name: str | None = None, - provider_vector_db_id: str | None = None, - ) -> VectorDB: - """Internal method to register a vector database.""" - ... - - async def unregister_vector_db(self, vector_db_id: str) -> None: - """Internal method to unregister a vector database.""" - ... diff --git a/llama_stack/apis/vector_io/vector_io.py b/llama_stack/apis/vector_io/vector_io.py index a309c47f9..49e4df039 100644 --- a/llama_stack/apis/vector_io/vector_io.py +++ b/llama_stack/apis/vector_io/vector_io.py @@ -15,7 +15,7 @@ from fastapi import Body from pydantic import BaseModel, Field from llama_stack.apis.inference import InterleavedContent -from llama_stack.apis.vector_dbs import VectorDB +from llama_stack.apis.vector_stores import VectorStore from llama_stack.apis.version import LLAMA_STACK_API_V1 from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol from llama_stack.providers.utils.vector_io.vector_utils import generate_chunk_id @@ -140,6 +140,7 @@ class VectorStoreFileCounts(BaseModel): total: int +# TODO: rename this as OpenAIVectorStore @json_schema_type class VectorStoreObject(BaseModel): """OpenAI Vector Store object. @@ -517,17 +518,18 @@ class OpenAICreateVectorStoreFileBatchRequestWithExtraBody(BaseModel, extra="all chunking_strategy: VectorStoreChunkingStrategy | None = None -class VectorDBStore(Protocol): - def get_vector_db(self, vector_db_id: str) -> VectorDB | None: ... +class VectorStoreTable(Protocol): + def get_vector_store(self, vector_store_id: str) -> VectorStore | None: ... @runtime_checkable @trace_protocol class VectorIO(Protocol): - vector_db_store: VectorDBStore | None = None + vector_store_table: VectorStoreTable | None = None # this will just block now until chunks are inserted, but it should # probably return a Job instance which can be polled for completion + # TODO: rename vector_db_id to vector_store_id once Stainless is working @webmethod(route="/vector-io/insert", method="POST", level=LLAMA_STACK_API_V1) async def insert_chunks( self, @@ -546,6 +548,7 @@ class VectorIO(Protocol): """ ... + # TODO: rename vector_db_id to vector_store_id once Stainless is working @webmethod(route="/vector-io/query", method="POST", level=LLAMA_STACK_API_V1) async def query_chunks( self, diff --git a/llama_stack/apis/vector_dbs/__init__.py b/llama_stack/apis/vector_stores/__init__.py similarity index 87% rename from llama_stack/apis/vector_dbs/__init__.py rename to llama_stack/apis/vector_stores/__init__.py index af34ba9d4..8fc34058a 100644 --- a/llama_stack/apis/vector_dbs/__init__.py +++ b/llama_stack/apis/vector_stores/__init__.py @@ -4,4 +4,4 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. -from .vector_dbs import * +from .vector_stores import * diff --git a/llama_stack/apis/vector_stores/vector_stores.py b/llama_stack/apis/vector_stores/vector_stores.py new file mode 100644 index 000000000..524624028 --- /dev/null +++ b/llama_stack/apis/vector_stores/vector_stores.py @@ -0,0 +1,51 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# All rights reserved. +# +# This source code is licensed under the terms described in the LICENSE file in +# the root directory of this source tree. + +from typing import Literal + +from pydantic import BaseModel + +from llama_stack.apis.resource import Resource, ResourceType + + +# Internal resource type for storing the vector store routing and other information +class VectorStore(Resource): + """Vector database resource for storing and querying vector embeddings. + + :param type: Type of resource, always 'vector_store' for vector stores + :param embedding_model: Name of the embedding model to use for vector generation + :param embedding_dimension: Dimension of the embedding vectors + """ + + type: Literal[ResourceType.vector_store] = ResourceType.vector_store + + embedding_model: str + embedding_dimension: int + vector_store_name: str | None = None + + @property + def vector_store_id(self) -> str: + return self.identifier + + @property + def provider_vector_store_id(self) -> str | None: + return self.provider_resource_id + + +class VectorStoreInput(BaseModel): + """Input parameters for creating or configuring a vector database. + + :param vector_store_id: Unique identifier for the vector store + :param embedding_model: Name of the embedding model to use for vector generation + :param embedding_dimension: Dimension of the embedding vectors + :param provider_vector_store_id: (Optional) Provider-specific identifier for the vector store + """ + + vector_store_id: str + embedding_model: str + embedding_dimension: int + provider_id: str | None = None + provider_vector_store_id: str | None = None diff --git a/llama_stack/core/access_control/datatypes.py b/llama_stack/core/access_control/datatypes.py index c833ed51b..84beb8e15 100644 --- a/llama_stack/core/access_control/datatypes.py +++ b/llama_stack/core/access_control/datatypes.py @@ -41,7 +41,7 @@ class AccessRule(BaseModel): A rule defines a list of action either to permit or to forbid. It may specify a principal or a resource that must match for the rule to take effect. The resource to match should be specified in the form of a type qualified identifier, e.g. - model::my-model or vector_db::some-db, or a wildcard for all resources of a type, + model::my-model or vector_store::some-db, or a wildcard for all resources of a type, e.g. model::*. If the principal or resource are not specified, they will match all requests. @@ -79,9 +79,9 @@ class AccessRule(BaseModel): description: any user has read access to any resource created by a member of their team - forbid: actions: [create, read, delete] - resource: vector_db::* + resource: vector_store::* unless: user with admin in roles - description: only user with admin role can use vector_db resources + description: only user with admin role can use vector_store resources """ diff --git a/llama_stack/core/datatypes.py b/llama_stack/core/datatypes.py index e8cb36a02..5f4775d87 100644 --- a/llama_stack/core/datatypes.py +++ b/llama_stack/core/datatypes.py @@ -23,8 +23,8 @@ from llama_stack.apis.scoring import Scoring from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnInput from llama_stack.apis.shields import Shield, ShieldInput from llama_stack.apis.tools import ToolGroup, ToolGroupInput, ToolRuntime -from llama_stack.apis.vector_dbs import VectorDB, VectorDBInput from llama_stack.apis.vector_io import VectorIO +from llama_stack.apis.vector_stores import VectorStore, VectorStoreInput from llama_stack.core.access_control.datatypes import AccessRule from llama_stack.core.storage.datatypes import ( KVStoreReference, @@ -71,7 +71,7 @@ class ShieldWithOwner(Shield, ResourceWithOwner): pass -class VectorDBWithOwner(VectorDB, ResourceWithOwner): +class VectorStoreWithOwner(VectorStore, ResourceWithOwner): pass @@ -91,12 +91,12 @@ class ToolGroupWithOwner(ToolGroup, ResourceWithOwner): pass -RoutableObject = Model | Shield | VectorDB | Dataset | ScoringFn | Benchmark | ToolGroup +RoutableObject = Model | Shield | VectorStore | Dataset | ScoringFn | Benchmark | ToolGroup RoutableObjectWithProvider = Annotated[ ModelWithOwner | ShieldWithOwner - | VectorDBWithOwner + | VectorStoreWithOwner | DatasetWithOwner | ScoringFnWithOwner | BenchmarkWithOwner @@ -427,7 +427,7 @@ class RegisteredResources(BaseModel): models: list[ModelInput] = Field(default_factory=list) shields: list[ShieldInput] = Field(default_factory=list) - vector_dbs: list[VectorDBInput] = Field(default_factory=list) + vector_stores: list[VectorStoreInput] = Field(default_factory=list) datasets: list[DatasetInput] = Field(default_factory=list) scoring_fns: list[ScoringFnInput] = Field(default_factory=list) benchmarks: list[BenchmarkInput] = Field(default_factory=list) diff --git a/llama_stack/core/distribution.py b/llama_stack/core/distribution.py index 59461f5d6..82cbcf984 100644 --- a/llama_stack/core/distribution.py +++ b/llama_stack/core/distribution.py @@ -64,7 +64,7 @@ def builtin_automatically_routed_apis() -> list[AutoRoutedApiInfo]: router_api=Api.tool_runtime, ), AutoRoutedApiInfo( - routing_table_api=Api.vector_dbs, + routing_table_api=Api.vector_stores, router_api=Api.vector_io, ), ] diff --git a/llama_stack/core/resolver.py b/llama_stack/core/resolver.py index 6e1843870..0b63815ea 100644 --- a/llama_stack/core/resolver.py +++ b/llama_stack/core/resolver.py @@ -29,8 +29,8 @@ from llama_stack.apis.scoring_functions import ScoringFunctions from llama_stack.apis.shields import Shields from llama_stack.apis.telemetry import Telemetry from llama_stack.apis.tools import ToolGroups, ToolRuntime -from llama_stack.apis.vector_dbs import VectorDBs from llama_stack.apis.vector_io import VectorIO +from llama_stack.apis.vector_stores import VectorStore from llama_stack.apis.version import LLAMA_STACK_API_V1ALPHA from llama_stack.core.client import get_client_impl from llama_stack.core.datatypes import ( @@ -82,7 +82,7 @@ def api_protocol_map(external_apis: dict[Api, ExternalApiSpec] | None = None) -> Api.inspect: Inspect, Api.batches: Batches, Api.vector_io: VectorIO, - Api.vector_dbs: VectorDBs, + Api.vector_stores: VectorStore, Api.models: Models, Api.safety: Safety, Api.shields: Shields, diff --git a/llama_stack/core/routers/__init__.py b/llama_stack/core/routers/__init__.py index df4df0463..20c17e59d 100644 --- a/llama_stack/core/routers/__init__.py +++ b/llama_stack/core/routers/__init__.py @@ -29,7 +29,7 @@ async def get_routing_table_impl( from ..routing_tables.scoring_functions import ScoringFunctionsRoutingTable from ..routing_tables.shields import ShieldsRoutingTable from ..routing_tables.toolgroups import ToolGroupsRoutingTable - from ..routing_tables.vector_dbs import VectorDBsRoutingTable + from ..routing_tables.vector_stores import VectorStoresRoutingTable api_to_tables = { "models": ModelsRoutingTable, @@ -38,7 +38,7 @@ async def get_routing_table_impl( "scoring_functions": ScoringFunctionsRoutingTable, "benchmarks": BenchmarksRoutingTable, "tool_groups": ToolGroupsRoutingTable, - "vector_dbs": VectorDBsRoutingTable, + "vector_stores": VectorStoresRoutingTable, } if api.value not in api_to_tables: diff --git a/llama_stack/core/routers/tool_runtime.py b/llama_stack/core/routers/tool_runtime.py index ad82293e5..be4c13905 100644 --- a/llama_stack/core/routers/tool_runtime.py +++ b/llama_stack/core/routers/tool_runtime.py @@ -37,24 +37,24 @@ class ToolRuntimeRouter(ToolRuntime): async def query( self, content: InterleavedContent, - vector_db_ids: list[str], + vector_store_ids: list[str], query_config: RAGQueryConfig | None = None, ) -> RAGQueryResult: - logger.debug(f"ToolRuntimeRouter.RagToolImpl.query: {vector_db_ids}") + logger.debug(f"ToolRuntimeRouter.RagToolImpl.query: {vector_store_ids}") provider = await self.routing_table.get_provider_impl("knowledge_search") - return await provider.query(content, vector_db_ids, query_config) + return await provider.query(content, vector_store_ids, query_config) async def insert( self, documents: list[RAGDocument], - vector_db_id: str, + vector_store_id: str, chunk_size_in_tokens: int = 512, ) -> None: logger.debug( - f"ToolRuntimeRouter.RagToolImpl.insert: {vector_db_id}, {len(documents)} documents, chunk_size={chunk_size_in_tokens}" + f"ToolRuntimeRouter.RagToolImpl.insert: {vector_store_id}, {len(documents)} documents, chunk_size={chunk_size_in_tokens}" ) provider = await self.routing_table.get_provider_impl("insert_into_memory") - return await provider.insert(documents, vector_db_id, chunk_size_in_tokens) + return await provider.insert(documents, vector_store_id, chunk_size_in_tokens) def __init__( self, diff --git a/llama_stack/core/routers/vector_io.py b/llama_stack/core/routers/vector_io.py index bfc5f7164..2b1701dc2 100644 --- a/llama_stack/core/routers/vector_io.py +++ b/llama_stack/core/routers/vector_io.py @@ -71,25 +71,6 @@ class VectorIORouter(VectorIO): raise ValueError(f"Embedding model '{embedding_model_id}' not found or not an embedding model") - async def register_vector_db( - self, - vector_db_id: str, - embedding_model: str, - embedding_dimension: int | None = 384, - provider_id: str | None = None, - vector_db_name: str | None = None, - provider_vector_db_id: str | None = None, - ) -> None: - logger.debug(f"VectorIORouter.register_vector_db: {vector_db_id}, {embedding_model}") - await self.routing_table.register_vector_db( - vector_db_id, - embedding_model, - embedding_dimension, - provider_id, - vector_db_name, - provider_vector_db_id, - ) - async def insert_chunks( self, vector_db_id: str, @@ -165,22 +146,22 @@ class VectorIORouter(VectorIO): else: provider_id = list(self.routing_table.impls_by_provider_id.keys())[0] - vector_db_id = f"vs_{uuid.uuid4()}" - registered_vector_db = await self.routing_table.register_vector_db( - vector_db_id=vector_db_id, + vector_store_id = f"vs_{uuid.uuid4()}" + registered_vector_store = await self.routing_table.register_vector_store( + vector_store_id=vector_store_id, embedding_model=embedding_model, embedding_dimension=embedding_dimension, provider_id=provider_id, - provider_vector_db_id=vector_db_id, - vector_db_name=params.name, + provider_vector_store_id=vector_store_id, + vector_store_name=params.name, ) - provider = await self.routing_table.get_provider_impl(registered_vector_db.identifier) + provider = await self.routing_table.get_provider_impl(registered_vector_store.identifier) - # Update model_extra with registered values so provider uses the already-registered vector_db + # Update model_extra with registered values so provider uses the already-registered vector_store if params.model_extra is None: params.model_extra = {} - params.model_extra["provider_vector_db_id"] = registered_vector_db.provider_resource_id - params.model_extra["provider_id"] = registered_vector_db.provider_id + params.model_extra["provider_vector_store_id"] = registered_vector_store.provider_resource_id + params.model_extra["provider_id"] = registered_vector_store.provider_id if embedding_model is not None: params.model_extra["embedding_model"] = embedding_model if embedding_dimension is not None: @@ -198,15 +179,15 @@ class VectorIORouter(VectorIO): logger.debug(f"VectorIORouter.openai_list_vector_stores: limit={limit}") # Route to default provider for now - could aggregate from all providers in the future # call retrieve on each vector dbs to get list of vector stores - vector_dbs = await self.routing_table.get_all_with_type("vector_db") + vector_stores = await self.routing_table.get_all_with_type("vector_store") all_stores = [] - for vector_db in vector_dbs: + for vector_store in vector_stores: try: - provider = await self.routing_table.get_provider_impl(vector_db.identifier) - vector_store = await provider.openai_retrieve_vector_store(vector_db.identifier) + provider = await self.routing_table.get_provider_impl(vector_store.identifier) + vector_store = await provider.openai_retrieve_vector_store(vector_store.identifier) all_stores.append(vector_store) except Exception as e: - logger.error(f"Error retrieving vector store {vector_db.identifier}: {e}") + logger.error(f"Error retrieving vector store {vector_store.identifier}: {e}") continue # Sort by created_at diff --git a/llama_stack/core/routing_tables/common.py b/llama_stack/core/routing_tables/common.py index 087483bb6..d6faf93c5 100644 --- a/llama_stack/core/routing_tables/common.py +++ b/llama_stack/core/routing_tables/common.py @@ -41,7 +41,7 @@ async def register_object_with_provider(obj: RoutableObject, p: Any) -> Routable elif api == Api.safety: return await p.register_shield(obj) elif api == Api.vector_io: - return await p.register_vector_db(obj) + return await p.register_vector_store(obj) elif api == Api.datasetio: return await p.register_dataset(obj) elif api == Api.scoring: @@ -57,7 +57,7 @@ async def register_object_with_provider(obj: RoutableObject, p: Any) -> Routable async def unregister_object_from_provider(obj: RoutableObject, p: Any) -> None: api = get_impl_api(p) if api == Api.vector_io: - return await p.unregister_vector_db(obj.identifier) + return await p.unregister_vector_store(obj.identifier) elif api == Api.inference: return await p.unregister_model(obj.identifier) elif api == Api.safety: @@ -108,7 +108,7 @@ class CommonRoutingTableImpl(RoutingTable): elif api == Api.safety: p.shield_store = self elif api == Api.vector_io: - p.vector_db_store = self + p.vector_store_store = self elif api == Api.datasetio: p.dataset_store = self elif api == Api.scoring: @@ -134,15 +134,15 @@ class CommonRoutingTableImpl(RoutingTable): from .scoring_functions import ScoringFunctionsRoutingTable from .shields import ShieldsRoutingTable from .toolgroups import ToolGroupsRoutingTable - from .vector_dbs import VectorDBsRoutingTable + from .vector_stores import VectorStoresRoutingTable def apiname_object(): if isinstance(self, ModelsRoutingTable): return ("Inference", "model") elif isinstance(self, ShieldsRoutingTable): return ("Safety", "shield") - elif isinstance(self, VectorDBsRoutingTable): - return ("VectorIO", "vector_db") + elif isinstance(self, VectorStoresRoutingTable): + return ("VectorIO", "vector_store") elif isinstance(self, DatasetsRoutingTable): return ("DatasetIO", "dataset") elif isinstance(self, ScoringFunctionsRoutingTable): diff --git a/llama_stack/core/routing_tables/vector_dbs.py b/llama_stack/core/routing_tables/vector_stores.py similarity index 70% rename from llama_stack/core/routing_tables/vector_dbs.py rename to llama_stack/core/routing_tables/vector_stores.py index e87fb61c6..c6c80a01e 100644 --- a/llama_stack/core/routing_tables/vector_dbs.py +++ b/llama_stack/core/routing_tables/vector_stores.py @@ -6,15 +6,12 @@ from typing import Any -from pydantic import TypeAdapter - from llama_stack.apis.common.errors import ModelNotFoundError, ModelTypeError from llama_stack.apis.models import ModelType from llama_stack.apis.resource import ResourceType -# Removed VectorDBs import to avoid exposing public API +# Removed VectorStores import to avoid exposing public API from llama_stack.apis.vector_io.vector_io import ( - OpenAICreateVectorStoreRequestWithExtraBody, SearchRankingOptions, VectorStoreChunkingStrategy, VectorStoreDeleteResponse, @@ -26,7 +23,7 @@ from llama_stack.apis.vector_io.vector_io import ( VectorStoreSearchResponsePage, ) from llama_stack.core.datatypes import ( - VectorDBWithOwner, + VectorStoreWithOwner, ) from llama_stack.log import get_logger @@ -35,23 +32,23 @@ from .common import CommonRoutingTableImpl, lookup_model logger = get_logger(name=__name__, category="core::routing_tables") -class VectorDBsRoutingTable(CommonRoutingTableImpl): - """Internal routing table for vector_db operations. +class VectorStoresRoutingTable(CommonRoutingTableImpl): + """Internal routing table for vector_store operations. - Does not inherit from VectorDBs to avoid exposing public API endpoints. + Does not inherit from VectorStores to avoid exposing public API endpoints. Only provides internal routing functionality for VectorIORouter. """ # Internal methods only - no public API exposure - async def register_vector_db( + async def register_vector_store( self, - vector_db_id: str, + vector_store_id: str, embedding_model: str, embedding_dimension: int | None = 384, provider_id: str | None = None, - provider_vector_db_id: str | None = None, - vector_db_name: str | None = None, + provider_vector_store_id: str | None = None, + vector_store_name: str | None = None, ) -> Any: if provider_id is None: if len(self.impls_by_provider_id) > 0: @@ -67,52 +64,24 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl): raise ModelNotFoundError(embedding_model) if model.model_type != ModelType.embedding: raise ModelTypeError(embedding_model, model.model_type, ModelType.embedding) - if "embedding_dimension" not in model.metadata: - raise ValueError(f"Model {embedding_model} does not have an embedding dimension") - try: - provider = self.impls_by_provider_id[provider_id] - except KeyError: - available_providers = list(self.impls_by_provider_id.keys()) - raise ValueError( - f"Provider '{provider_id}' not found in routing table. Available providers: {available_providers}" - ) from None - logger.warning( - "VectorDB is being deprecated in future releases in favor of VectorStore. Please migrate your usage accordingly." - ) - request = OpenAICreateVectorStoreRequestWithExtraBody( - name=vector_db_name or vector_db_id, - embedding_model=embedding_model, - embedding_dimension=model.metadata["embedding_dimension"], + vector_store = VectorStoreWithOwner( + identifier=vector_store_id, + type=ResourceType.vector_store.value, provider_id=provider_id, - provider_vector_db_id=provider_vector_db_id, + provider_resource_id=provider_vector_store_id, + embedding_model=embedding_model, + embedding_dimension=embedding_dimension, + vector_store_name=vector_store_name, ) - vector_store = await provider.openai_create_vector_store(request) - - vector_store_id = vector_store.id - actual_provider_vector_db_id = provider_vector_db_id or vector_store_id - logger.warning( - f"Ignoring vector_db_id {vector_db_id} and using vector_store_id {vector_store_id} instead. Setting VectorDB {vector_db_id} to VectorDB.vector_db_name" - ) - - vector_db_data = { - "identifier": vector_store_id, - "type": ResourceType.vector_db.value, - "provider_id": provider_id, - "provider_resource_id": actual_provider_vector_db_id, - "embedding_model": embedding_model, - "embedding_dimension": model.metadata["embedding_dimension"], - "vector_db_name": vector_store.name, - } - vector_db = TypeAdapter(VectorDBWithOwner).validate_python(vector_db_data) - await self.register_object(vector_db) - return vector_db + await self.register_object(vector_store) + return vector_store async def openai_retrieve_vector_store( self, vector_store_id: str, ) -> VectorStoreObject: - await self.assert_action_allowed("read", "vector_db", vector_store_id) + await self.assert_action_allowed("read", "vector_store", vector_store_id) provider = await self.get_provider_impl(vector_store_id) return await provider.openai_retrieve_vector_store(vector_store_id) @@ -123,7 +92,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl): expires_after: dict[str, Any] | None = None, metadata: dict[str, Any] | None = None, ) -> VectorStoreObject: - await self.assert_action_allowed("update", "vector_db", vector_store_id) + await self.assert_action_allowed("update", "vector_store", vector_store_id) provider = await self.get_provider_impl(vector_store_id) return await provider.openai_update_vector_store( vector_store_id=vector_store_id, @@ -136,18 +105,18 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl): self, vector_store_id: str, ) -> VectorStoreDeleteResponse: - await self.assert_action_allowed("delete", "vector_db", vector_store_id) + await self.assert_action_allowed("delete", "vector_store", vector_store_id) provider = await self.get_provider_impl(vector_store_id) result = await provider.openai_delete_vector_store(vector_store_id) - await self.unregister_vector_db(vector_store_id) + await self.unregister_vector_store(vector_store_id) return result - async def unregister_vector_db(self, vector_store_id: str) -> None: + async def unregister_vector_store(self, vector_store_id: str) -> None: """Remove the vector store from the routing table registry.""" try: - vector_db_obj = await self.get_object_by_identifier("vector_db", vector_store_id) - if vector_db_obj: - await self.unregister_object(vector_db_obj) + vector_store_obj = await self.get_object_by_identifier("vector_store", vector_store_id) + if vector_store_obj: + await self.unregister_object(vector_store_obj) except Exception as e: # Log the error but don't fail the operation logger.warning(f"Failed to unregister vector store {vector_store_id} from routing table: {e}") @@ -162,7 +131,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl): rewrite_query: bool | None = False, search_mode: str | None = "vector", ) -> VectorStoreSearchResponsePage: - await self.assert_action_allowed("read", "vector_db", vector_store_id) + await self.assert_action_allowed("read", "vector_store", vector_store_id) provider = await self.get_provider_impl(vector_store_id) return await provider.openai_search_vector_store( vector_store_id=vector_store_id, @@ -181,7 +150,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl): attributes: dict[str, Any] | None = None, chunking_strategy: VectorStoreChunkingStrategy | None = None, ) -> VectorStoreFileObject: - await self.assert_action_allowed("update", "vector_db", vector_store_id) + await self.assert_action_allowed("update", "vector_store", vector_store_id) provider = await self.get_provider_impl(vector_store_id) return await provider.openai_attach_file_to_vector_store( vector_store_id=vector_store_id, @@ -199,7 +168,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl): before: str | None = None, filter: VectorStoreFileStatus | None = None, ) -> list[VectorStoreFileObject]: - await self.assert_action_allowed("read", "vector_db", vector_store_id) + await self.assert_action_allowed("read", "vector_store", vector_store_id) provider = await self.get_provider_impl(vector_store_id) return await provider.openai_list_files_in_vector_store( vector_store_id=vector_store_id, @@ -215,7 +184,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl): vector_store_id: str, file_id: str, ) -> VectorStoreFileObject: - await self.assert_action_allowed("read", "vector_db", vector_store_id) + await self.assert_action_allowed("read", "vector_store", vector_store_id) provider = await self.get_provider_impl(vector_store_id) return await provider.openai_retrieve_vector_store_file( vector_store_id=vector_store_id, @@ -227,7 +196,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl): vector_store_id: str, file_id: str, ) -> VectorStoreFileContentsResponse: - await self.assert_action_allowed("read", "vector_db", vector_store_id) + await self.assert_action_allowed("read", "vector_store", vector_store_id) provider = await self.get_provider_impl(vector_store_id) return await provider.openai_retrieve_vector_store_file_contents( vector_store_id=vector_store_id, @@ -240,7 +209,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl): file_id: str, attributes: dict[str, Any], ) -> VectorStoreFileObject: - await self.assert_action_allowed("update", "vector_db", vector_store_id) + await self.assert_action_allowed("update", "vector_store", vector_store_id) provider = await self.get_provider_impl(vector_store_id) return await provider.openai_update_vector_store_file( vector_store_id=vector_store_id, @@ -253,7 +222,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl): vector_store_id: str, file_id: str, ) -> VectorStoreFileDeleteResponse: - await self.assert_action_allowed("delete", "vector_db", vector_store_id) + await self.assert_action_allowed("delete", "vector_store", vector_store_id) provider = await self.get_provider_impl(vector_store_id) return await provider.openai_delete_vector_store_file( vector_store_id=vector_store_id, @@ -267,7 +236,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl): attributes: dict[str, Any] | None = None, chunking_strategy: Any | None = None, ): - await self.assert_action_allowed("update", "vector_db", vector_store_id) + await self.assert_action_allowed("update", "vector_store", vector_store_id) provider = await self.get_provider_impl(vector_store_id) return await provider.openai_create_vector_store_file_batch( vector_store_id=vector_store_id, @@ -281,7 +250,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl): batch_id: str, vector_store_id: str, ): - await self.assert_action_allowed("read", "vector_db", vector_store_id) + await self.assert_action_allowed("read", "vector_store", vector_store_id) provider = await self.get_provider_impl(vector_store_id) return await provider.openai_retrieve_vector_store_file_batch( batch_id=batch_id, @@ -298,7 +267,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl): limit: int | None = 20, order: str | None = "desc", ): - await self.assert_action_allowed("read", "vector_db", vector_store_id) + await self.assert_action_allowed("read", "vector_store", vector_store_id) provider = await self.get_provider_impl(vector_store_id) return await provider.openai_list_files_in_vector_store_file_batch( batch_id=batch_id, @@ -315,7 +284,7 @@ class VectorDBsRoutingTable(CommonRoutingTableImpl): batch_id: str, vector_store_id: str, ): - await self.assert_action_allowed("update", "vector_db", vector_store_id) + await self.assert_action_allowed("update", "vector_store", vector_store_id) provider = await self.get_provider_impl(vector_store_id) return await provider.openai_cancel_vector_store_file_batch( batch_id=batch_id, diff --git a/llama_stack/core/ui/page/playground/tools.py b/llama_stack/core/ui/page/playground/tools.py index 4ee9d2204..16fd464ee 100644 --- a/llama_stack/core/ui/page/playground/tools.py +++ b/llama_stack/core/ui/page/playground/tools.py @@ -32,7 +32,7 @@ def tool_chat_page(): tool_groups_list = [tool_group.identifier for tool_group in tool_groups] mcp_tools_list = [tool for tool in tool_groups_list if tool.startswith("mcp::")] builtin_tools_list = [tool for tool in tool_groups_list if not tool.startswith("mcp::")] - selected_vector_dbs = [] + selected_vector_stores = [] def reset_agent(): st.session_state.clear() @@ -55,13 +55,13 @@ def tool_chat_page(): ) if "builtin::rag" in toolgroup_selection: - vector_dbs = llama_stack_api.client.vector_dbs.list() or [] - if not vector_dbs: + vector_stores = llama_stack_api.client.vector_stores.list() or [] + if not vector_stores: st.info("No vector databases available for selection.") - vector_dbs = [vector_db.identifier for vector_db in vector_dbs] - selected_vector_dbs = st.multiselect( + vector_stores = [vector_store.identifier for vector_store in vector_stores] + selected_vector_stores = st.multiselect( label="Select Document Collections to use in RAG queries", - options=vector_dbs, + options=vector_stores, on_change=reset_agent, ) @@ -119,7 +119,7 @@ def tool_chat_page(): tool_dict = dict( name="builtin::rag", args={ - "vector_db_ids": list(selected_vector_dbs), + "vector_store_ids": list(selected_vector_stores), }, ) toolgroup_selection[i] = tool_dict diff --git a/llama_stack/providers/datatypes.py b/llama_stack/providers/datatypes.py index c8ff9cecb..9be3edb8e 100644 --- a/llama_stack/providers/datatypes.py +++ b/llama_stack/providers/datatypes.py @@ -17,7 +17,7 @@ from llama_stack.apis.models import Model from llama_stack.apis.scoring_functions import ScoringFn from llama_stack.apis.shields import Shield from llama_stack.apis.tools import ToolGroup -from llama_stack.apis.vector_dbs import VectorDB +from llama_stack.apis.vector_stores import VectorStore from llama_stack.schema_utils import json_schema_type @@ -68,10 +68,10 @@ class ShieldsProtocolPrivate(Protocol): async def unregister_shield(self, identifier: str) -> None: ... -class VectorDBsProtocolPrivate(Protocol): - async def register_vector_db(self, vector_db: VectorDB) -> None: ... +class VectorStoresProtocolPrivate(Protocol): + async def register_vector_store(self, vector_store: VectorStore) -> None: ... - async def unregister_vector_db(self, vector_db_id: str) -> None: ... + async def unregister_vector_store(self, vector_store_id: str) -> None: ... class DatasetsProtocolPrivate(Protocol): diff --git a/llama_stack/providers/inline/vector_io/faiss/faiss.py b/llama_stack/providers/inline/vector_io/faiss/faiss.py index f13eb3e96..5e33d4ca3 100644 --- a/llama_stack/providers/inline/vector_io/faiss/faiss.py +++ b/llama_stack/providers/inline/vector_io/faiss/faiss.py @@ -17,21 +17,21 @@ from numpy.typing import NDArray from llama_stack.apis.common.errors import VectorStoreNotFoundError from llama_stack.apis.files import Files from llama_stack.apis.inference import Inference, InterleavedContent -from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO +from llama_stack.apis.vector_stores import VectorStore from llama_stack.log import get_logger -from llama_stack.providers.datatypes import HealthResponse, HealthStatus, VectorDBsProtocolPrivate +from llama_stack.providers.datatypes import HealthResponse, HealthStatus, VectorStoresProtocolPrivate from llama_stack.providers.utils.kvstore import kvstore_impl from llama_stack.providers.utils.kvstore.api import KVStore from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin -from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion, EmbeddingIndex, VectorDBWithIndex +from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion, EmbeddingIndex, VectorStoreWithIndex from .config import FaissVectorIOConfig logger = get_logger(name=__name__, category="vector_io") VERSION = "v3" -VECTOR_DBS_PREFIX = f"vector_dbs:{VERSION}::" +VECTOR_DBS_PREFIX = f"vector_stores:{VERSION}::" FAISS_INDEX_PREFIX = f"faiss_index:{VERSION}::" OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:{VERSION}::" OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:{VERSION}::" @@ -176,28 +176,28 @@ class FaissIndex(EmbeddingIndex): ) -class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate): +class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtocolPrivate): def __init__(self, config: FaissVectorIOConfig, inference_api: Inference, files_api: Files | None) -> None: super().__init__(files_api=files_api, kvstore=None) self.config = config self.inference_api = inference_api - self.cache: dict[str, VectorDBWithIndex] = {} + self.cache: dict[str, VectorStoreWithIndex] = {} async def initialize(self) -> None: self.kvstore = await kvstore_impl(self.config.persistence) # Load existing banks from kvstore start_key = VECTOR_DBS_PREFIX end_key = f"{VECTOR_DBS_PREFIX}\xff" - stored_vector_dbs = await self.kvstore.values_in_range(start_key, end_key) + stored_vector_stores = await self.kvstore.values_in_range(start_key, end_key) - for vector_db_data in stored_vector_dbs: - vector_db = VectorDB.model_validate_json(vector_db_data) - index = VectorDBWithIndex( - vector_db, - await FaissIndex.create(vector_db.embedding_dimension, self.kvstore, vector_db.identifier), + for vector_store_data in stored_vector_stores: + vector_store = VectorStore.model_validate_json(vector_store_data) + index = VectorStoreWithIndex( + vector_store, + await FaissIndex.create(vector_store.embedding_dimension, self.kvstore, vector_store.identifier), self.inference_api, ) - self.cache[vector_db.identifier] = index + self.cache[vector_store.identifier] = index # Load existing OpenAI vector stores into the in-memory cache await self.initialize_openai_vector_stores() @@ -222,32 +222,31 @@ class FaissVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPr except Exception as e: return HealthResponse(status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}") - async def register_vector_db(self, vector_db: VectorDB) -> None: + async def register_vector_store(self, vector_store: VectorStore) -> None: assert self.kvstore is not None - key = f"{VECTOR_DBS_PREFIX}{vector_db.identifier}" - await self.kvstore.set(key=key, value=vector_db.model_dump_json()) + key = f"{VECTOR_DBS_PREFIX}{vector_store.identifier}" + await self.kvstore.set(key=key, value=vector_store.model_dump_json()) # Store in cache - self.cache[vector_db.identifier] = VectorDBWithIndex( - vector_db=vector_db, - index=await FaissIndex.create(vector_db.embedding_dimension, self.kvstore, vector_db.identifier), + self.cache[vector_store.identifier] = VectorStoreWithIndex( + vector_store=vector_store, + index=await FaissIndex.create(vector_store.embedding_dimension, self.kvstore, vector_store.identifier), inference_api=self.inference_api, ) - async def list_vector_dbs(self) -> list[VectorDB]: - return [i.vector_db for i in self.cache.values()] + async def list_vector_stores(self) -> list[VectorStore]: + return [i.vector_store for i in self.cache.values()] - async def unregister_vector_db(self, vector_db_id: str) -> None: + async def unregister_vector_store(self, vector_store_id: str) -> None: assert self.kvstore is not None - if vector_db_id not in self.cache: - logger.warning(f"Vector DB {vector_db_id} not found") + if vector_store_id not in self.cache: return - await self.cache[vector_db_id].index.delete() - del self.cache[vector_db_id] - await self.kvstore.delete(f"{VECTOR_DBS_PREFIX}{vector_db_id}") + await self.cache[vector_store_id].index.delete() + del self.cache[vector_store_id] + await self.kvstore.delete(f"{VECTOR_DBS_PREFIX}{vector_store_id}") async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None: index = self.cache.get(vector_db_id) diff --git a/llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py b/llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py index cfe23bde5..37294f173 100644 --- a/llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py +++ b/llama_stack/providers/inline/vector_io/sqlite_vec/sqlite_vec.py @@ -17,10 +17,10 @@ from numpy.typing import NDArray from llama_stack.apis.common.errors import VectorStoreNotFoundError from llama_stack.apis.files import Files from llama_stack.apis.inference import Inference -from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO +from llama_stack.apis.vector_stores import VectorStore from llama_stack.log import get_logger -from llama_stack.providers.datatypes import VectorDBsProtocolPrivate +from llama_stack.providers.datatypes import VectorStoresProtocolPrivate from llama_stack.providers.utils.kvstore import kvstore_impl from llama_stack.providers.utils.kvstore.api import KVStore from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin @@ -28,7 +28,7 @@ from llama_stack.providers.utils.memory.vector_store import ( RERANKER_TYPE_RRF, ChunkForDeletion, EmbeddingIndex, - VectorDBWithIndex, + VectorStoreWithIndex, ) from llama_stack.providers.utils.vector_io.vector_utils import WeightedInMemoryAggregator @@ -41,7 +41,7 @@ HYBRID_SEARCH = "hybrid" SEARCH_MODES = {VECTOR_SEARCH, KEYWORD_SEARCH, HYBRID_SEARCH} VERSION = "v3" -VECTOR_DBS_PREFIX = f"vector_dbs:sqlite_vec:{VERSION}::" +VECTOR_DBS_PREFIX = f"vector_stores:sqlite_vec:{VERSION}::" VECTOR_INDEX_PREFIX = f"vector_index:sqlite_vec:{VERSION}::" OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:sqlite_vec:{VERSION}::" OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:sqlite_vec:{VERSION}::" @@ -374,32 +374,32 @@ class SQLiteVecIndex(EmbeddingIndex): await asyncio.to_thread(_delete_chunks) -class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate): +class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtocolPrivate): """ A VectorIO implementation using SQLite + sqlite_vec. - This class handles vector database registration (with metadata stored in a table named `vector_dbs`) - and creates a cache of VectorDBWithIndex instances (each wrapping a SQLiteVecIndex). + This class handles vector database registration (with metadata stored in a table named `vector_stores`) + and creates a cache of VectorStoreWithIndex instances (each wrapping a SQLiteVecIndex). """ def __init__(self, config, inference_api: Inference, files_api: Files | None) -> None: super().__init__(files_api=files_api, kvstore=None) self.config = config self.inference_api = inference_api - self.cache: dict[str, VectorDBWithIndex] = {} - self.vector_db_store = None + self.cache: dict[str, VectorStoreWithIndex] = {} + self.vector_store_table = None async def initialize(self) -> None: self.kvstore = await kvstore_impl(self.config.persistence) start_key = VECTOR_DBS_PREFIX end_key = f"{VECTOR_DBS_PREFIX}\xff" - stored_vector_dbs = await self.kvstore.values_in_range(start_key, end_key) - for db_json in stored_vector_dbs: - vector_db = VectorDB.model_validate_json(db_json) + stored_vector_stores = await self.kvstore.values_in_range(start_key, end_key) + for db_json in stored_vector_stores: + vector_store = VectorStore.model_validate_json(db_json) index = await SQLiteVecIndex.create( - vector_db.embedding_dimension, self.config.db_path, vector_db.identifier + vector_store.embedding_dimension, self.config.db_path, vector_store.identifier ) - self.cache[vector_db.identifier] = VectorDBWithIndex(vector_db, index, self.inference_api) + self.cache[vector_store.identifier] = VectorStoreWithIndex(vector_store, index, self.inference_api) # Load existing OpenAI vector stores into the in-memory cache await self.initialize_openai_vector_stores() @@ -408,63 +408,64 @@ class SQLiteVecVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoc # Clean up mixin resources (file batch tasks) await super().shutdown() - async def list_vector_dbs(self) -> list[VectorDB]: - return [v.vector_db for v in self.cache.values()] + async def list_vector_stores(self) -> list[VectorStore]: + return [v.vector_store for v in self.cache.values()] - async def register_vector_db(self, vector_db: VectorDB) -> None: - index = await SQLiteVecIndex.create(vector_db.embedding_dimension, self.config.db_path, vector_db.identifier) - self.cache[vector_db.identifier] = VectorDBWithIndex(vector_db, index, self.inference_api) + async def register_vector_store(self, vector_store: VectorStore) -> None: + index = await SQLiteVecIndex.create( + vector_store.embedding_dimension, self.config.db_path, vector_store.identifier + ) + self.cache[vector_store.identifier] = VectorStoreWithIndex(vector_store, index, self.inference_api) - async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> VectorDBWithIndex | None: - if vector_db_id in self.cache: - return self.cache[vector_db_id] + async def _get_and_cache_vector_store_index(self, vector_store_id: str) -> VectorStoreWithIndex | None: + if vector_store_id in self.cache: + return self.cache[vector_store_id] - if self.vector_db_store is None: - raise VectorStoreNotFoundError(vector_db_id) + if self.vector_store_table is None: + raise VectorStoreNotFoundError(vector_store_id) - vector_db = self.vector_db_store.get_vector_db(vector_db_id) - if not vector_db: - raise VectorStoreNotFoundError(vector_db_id) + vector_store = self.vector_store_table.get_vector_store(vector_store_id) + if not vector_store: + raise VectorStoreNotFoundError(vector_store_id) - index = VectorDBWithIndex( - vector_db=vector_db, + index = VectorStoreWithIndex( + vector_store=vector_store, index=SQLiteVecIndex( - dimension=vector_db.embedding_dimension, + dimension=vector_store.embedding_dimension, db_path=self.config.db_path, - bank_id=vector_db.identifier, + bank_id=vector_store.identifier, kvstore=self.kvstore, ), inference_api=self.inference_api, ) - self.cache[vector_db_id] = index + self.cache[vector_store_id] = index return index - async def unregister_vector_db(self, vector_db_id: str) -> None: - if vector_db_id not in self.cache: - logger.warning(f"Vector DB {vector_db_id} not found") + async def unregister_vector_store(self, vector_store_id: str) -> None: + if vector_store_id not in self.cache: return - await self.cache[vector_db_id].index.delete() - del self.cache[vector_db_id] + await self.cache[vector_store_id].index.delete() + del self.cache[vector_store_id] async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None: - index = await self._get_and_cache_vector_db_index(vector_db_id) + index = await self._get_and_cache_vector_store_index(vector_db_id) if not index: raise VectorStoreNotFoundError(vector_db_id) - # The VectorDBWithIndex helper is expected to compute embeddings via the inference_api + # The VectorStoreWithIndex helper is expected to compute embeddings via the inference_api # and then call our index's add_chunks. await index.insert_chunks(chunks) async def query_chunks( self, vector_db_id: str, query: Any, params: dict[str, Any] | None = None ) -> QueryChunksResponse: - index = await self._get_and_cache_vector_db_index(vector_db_id) + index = await self._get_and_cache_vector_store_index(vector_db_id) if not index: raise VectorStoreNotFoundError(vector_db_id) return await index.query_chunks(query, params) async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None: """Delete chunks from a sqlite_vec index.""" - index = await self._get_and_cache_vector_db_index(store_id) + index = await self._get_and_cache_vector_store_index(store_id) if not index: raise VectorStoreNotFoundError(store_id) diff --git a/llama_stack/providers/remote/vector_io/chroma/chroma.py b/llama_stack/providers/remote/vector_io/chroma/chroma.py index 0aa728c32..2663ad43e 100644 --- a/llama_stack/providers/remote/vector_io/chroma/chroma.py +++ b/llama_stack/providers/remote/vector_io/chroma/chroma.py @@ -13,15 +13,15 @@ from numpy.typing import NDArray from llama_stack.apis.files import Files from llama_stack.apis.inference import Inference, InterleavedContent -from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO +from llama_stack.apis.vector_stores import VectorStore from llama_stack.log import get_logger -from llama_stack.providers.datatypes import VectorDBsProtocolPrivate +from llama_stack.providers.datatypes import VectorStoresProtocolPrivate from llama_stack.providers.inline.vector_io.chroma import ChromaVectorIOConfig as InlineChromaVectorIOConfig from llama_stack.providers.utils.kvstore import kvstore_impl from llama_stack.providers.utils.kvstore.api import KVStore from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin -from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion, EmbeddingIndex, VectorDBWithIndex +from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion, EmbeddingIndex, VectorStoreWithIndex from .config import ChromaVectorIOConfig as RemoteChromaVectorIOConfig @@ -30,7 +30,7 @@ log = get_logger(name=__name__, category="vector_io::chroma") ChromaClientType = chromadb.api.AsyncClientAPI | chromadb.api.ClientAPI VERSION = "v3" -VECTOR_DBS_PREFIX = f"vector_dbs:chroma:{VERSION}::" +VECTOR_DBS_PREFIX = f"vector_stores:chroma:{VERSION}::" VECTOR_INDEX_PREFIX = f"vector_index:chroma:{VERSION}::" OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:chroma:{VERSION}::" OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:chroma:{VERSION}::" @@ -114,7 +114,7 @@ class ChromaIndex(EmbeddingIndex): raise NotImplementedError("Hybrid search is not supported in Chroma") -class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate): +class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtocolPrivate): def __init__( self, config: RemoteChromaVectorIOConfig | InlineChromaVectorIOConfig, @@ -127,11 +127,11 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP self.inference_api = inference_api self.client = None self.cache = {} - self.vector_db_store = None + self.vector_store_table = None async def initialize(self) -> None: self.kvstore = await kvstore_impl(self.config.persistence) - self.vector_db_store = self.kvstore + self.vector_store_table = self.kvstore if isinstance(self.config, RemoteChromaVectorIOConfig): log.info(f"Connecting to Chroma server at: {self.config.url}") @@ -151,26 +151,26 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP # Clean up mixin resources (file batch tasks) await super().shutdown() - async def register_vector_db(self, vector_db: VectorDB) -> None: + async def register_vector_store(self, vector_store: VectorStore) -> None: collection = await maybe_await( self.client.get_or_create_collection( - name=vector_db.identifier, metadata={"vector_db": vector_db.model_dump_json()} + name=vector_store.identifier, metadata={"vector_store": vector_store.model_dump_json()} ) ) - self.cache[vector_db.identifier] = VectorDBWithIndex( - vector_db, ChromaIndex(self.client, collection), self.inference_api + self.cache[vector_store.identifier] = VectorStoreWithIndex( + vector_store, ChromaIndex(self.client, collection), self.inference_api ) - async def unregister_vector_db(self, vector_db_id: str) -> None: - if vector_db_id not in self.cache: - log.warning(f"Vector DB {vector_db_id} not found") + async def unregister_vector_store(self, vector_store_id: str) -> None: + if vector_store_id not in self.cache: + log.warning(f"Vector DB {vector_store_id} not found") return - await self.cache[vector_db_id].index.delete() - del self.cache[vector_db_id] + await self.cache[vector_store_id].index.delete() + del self.cache[vector_store_id] async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None: - index = await self._get_and_cache_vector_db_index(vector_db_id) + index = await self._get_and_cache_vector_store_index(vector_db_id) if index is None: raise ValueError(f"Vector DB {vector_db_id} not found in Chroma") @@ -179,30 +179,30 @@ class ChromaVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP async def query_chunks( self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None ) -> QueryChunksResponse: - index = await self._get_and_cache_vector_db_index(vector_db_id) + index = await self._get_and_cache_vector_store_index(vector_db_id) if index is None: raise ValueError(f"Vector DB {vector_db_id} not found in Chroma") return await index.query_chunks(query, params) - async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> VectorDBWithIndex: - if vector_db_id in self.cache: - return self.cache[vector_db_id] + async def _get_and_cache_vector_store_index(self, vector_store_id: str) -> VectorStoreWithIndex: + if vector_store_id in self.cache: + return self.cache[vector_store_id] - vector_db = await self.vector_db_store.get_vector_db(vector_db_id) - if not vector_db: - raise ValueError(f"Vector DB {vector_db_id} not found in Llama Stack") - collection = await maybe_await(self.client.get_collection(vector_db_id)) + vector_store = await self.vector_store_table.get_vector_store(vector_store_id) + if not vector_store: + raise ValueError(f"Vector DB {vector_store_id} not found in Llama Stack") + collection = await maybe_await(self.client.get_collection(vector_store_id)) if not collection: - raise ValueError(f"Vector DB {vector_db_id} not found in Chroma") - index = VectorDBWithIndex(vector_db, ChromaIndex(self.client, collection), self.inference_api) - self.cache[vector_db_id] = index + raise ValueError(f"Vector DB {vector_store_id} not found in Chroma") + index = VectorStoreWithIndex(vector_store, ChromaIndex(self.client, collection), self.inference_api) + self.cache[vector_store_id] = index return index async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None: """Delete chunks from a Chroma vector store.""" - index = await self._get_and_cache_vector_db_index(store_id) + index = await self._get_and_cache_vector_store_index(store_id) if not index: raise ValueError(f"Vector DB {store_id} not found") diff --git a/llama_stack/providers/remote/vector_io/milvus/milvus.py b/llama_stack/providers/remote/vector_io/milvus/milvus.py index d7c34163d..cccf13816 100644 --- a/llama_stack/providers/remote/vector_io/milvus/milvus.py +++ b/llama_stack/providers/remote/vector_io/milvus/milvus.py @@ -14,10 +14,10 @@ from pymilvus import AnnSearchRequest, DataType, Function, FunctionType, MilvusC from llama_stack.apis.common.errors import VectorStoreNotFoundError from llama_stack.apis.files import Files from llama_stack.apis.inference import Inference, InterleavedContent -from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO +from llama_stack.apis.vector_stores import VectorStore from llama_stack.log import get_logger -from llama_stack.providers.datatypes import VectorDBsProtocolPrivate +from llama_stack.providers.datatypes import VectorStoresProtocolPrivate from llama_stack.providers.inline.vector_io.milvus import MilvusVectorIOConfig as InlineMilvusVectorIOConfig from llama_stack.providers.utils.kvstore import kvstore_impl from llama_stack.providers.utils.kvstore.api import KVStore @@ -26,7 +26,7 @@ from llama_stack.providers.utils.memory.vector_store import ( RERANKER_TYPE_WEIGHTED, ChunkForDeletion, EmbeddingIndex, - VectorDBWithIndex, + VectorStoreWithIndex, ) from llama_stack.providers.utils.vector_io.vector_utils import sanitize_collection_name @@ -35,7 +35,7 @@ from .config import MilvusVectorIOConfig as RemoteMilvusVectorIOConfig logger = get_logger(name=__name__, category="vector_io::milvus") VERSION = "v3" -VECTOR_DBS_PREFIX = f"vector_dbs:milvus:{VERSION}::" +VECTOR_DBS_PREFIX = f"vector_stores:milvus:{VERSION}::" VECTOR_INDEX_PREFIX = f"vector_index:milvus:{VERSION}::" OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:milvus:{VERSION}::" OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:milvus:{VERSION}::" @@ -261,7 +261,7 @@ class MilvusIndex(EmbeddingIndex): raise -class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate): +class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtocolPrivate): def __init__( self, config: RemoteMilvusVectorIOConfig | InlineMilvusVectorIOConfig, @@ -273,28 +273,28 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP self.cache = {} self.client = None self.inference_api = inference_api - self.vector_db_store = None + self.vector_store_table = None self.metadata_collection_name = "openai_vector_stores_metadata" async def initialize(self) -> None: self.kvstore = await kvstore_impl(self.config.persistence) start_key = VECTOR_DBS_PREFIX end_key = f"{VECTOR_DBS_PREFIX}\xff" - stored_vector_dbs = await self.kvstore.values_in_range(start_key, end_key) + stored_vector_stores = await self.kvstore.values_in_range(start_key, end_key) - for vector_db_data in stored_vector_dbs: - vector_db = VectorDB.model_validate_json(vector_db_data) - index = VectorDBWithIndex( - vector_db, + for vector_store_data in stored_vector_stores: + vector_store = VectorStore.model_validate_json(vector_store_data) + index = VectorStoreWithIndex( + vector_store, index=MilvusIndex( client=self.client, - collection_name=vector_db.identifier, + collection_name=vector_store.identifier, consistency_level=self.config.consistency_level, kvstore=self.kvstore, ), inference_api=self.inference_api, ) - self.cache[vector_db.identifier] = index + self.cache[vector_store.identifier] = index if isinstance(self.config, RemoteMilvusVectorIOConfig): logger.info(f"Connecting to Milvus server at {self.config.uri}") self.client = MilvusClient(**self.config.model_dump(exclude_none=True)) @@ -311,45 +311,45 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP # Clean up mixin resources (file batch tasks) await super().shutdown() - async def register_vector_db(self, vector_db: VectorDB) -> None: + async def register_vector_store(self, vector_store: VectorStore) -> None: if isinstance(self.config, RemoteMilvusVectorIOConfig): consistency_level = self.config.consistency_level else: consistency_level = "Strong" - index = VectorDBWithIndex( - vector_db=vector_db, - index=MilvusIndex(self.client, vector_db.identifier, consistency_level=consistency_level), + index = VectorStoreWithIndex( + vector_store=vector_store, + index=MilvusIndex(self.client, vector_store.identifier, consistency_level=consistency_level), inference_api=self.inference_api, ) - self.cache[vector_db.identifier] = index + self.cache[vector_store.identifier] = index - async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> VectorDBWithIndex | None: - if vector_db_id in self.cache: - return self.cache[vector_db_id] + async def _get_and_cache_vector_store_index(self, vector_store_id: str) -> VectorStoreWithIndex | None: + if vector_store_id in self.cache: + return self.cache[vector_store_id] - if self.vector_db_store is None: - raise VectorStoreNotFoundError(vector_db_id) + if self.vector_store_table is None: + raise VectorStoreNotFoundError(vector_store_id) - vector_db = await self.vector_db_store.get_vector_db(vector_db_id) - if not vector_db: - raise VectorStoreNotFoundError(vector_db_id) + vector_store = await self.vector_store_table.get_vector_store(vector_store_id) + if not vector_store: + raise VectorStoreNotFoundError(vector_store_id) - index = VectorDBWithIndex( - vector_db=vector_db, - index=MilvusIndex(client=self.client, collection_name=vector_db.identifier, kvstore=self.kvstore), + index = VectorStoreWithIndex( + vector_store=vector_store, + index=MilvusIndex(client=self.client, collection_name=vector_store.identifier, kvstore=self.kvstore), inference_api=self.inference_api, ) - self.cache[vector_db_id] = index + self.cache[vector_store_id] = index return index - async def unregister_vector_db(self, vector_db_id: str) -> None: - if vector_db_id in self.cache: - await self.cache[vector_db_id].index.delete() - del self.cache[vector_db_id] + async def unregister_vector_store(self, vector_store_id: str) -> None: + if vector_store_id in self.cache: + await self.cache[vector_store_id].index.delete() + del self.cache[vector_store_id] async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None: - index = await self._get_and_cache_vector_db_index(vector_db_id) + index = await self._get_and_cache_vector_store_index(vector_db_id) if not index: raise VectorStoreNotFoundError(vector_db_id) @@ -358,14 +358,14 @@ class MilvusVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP async def query_chunks( self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None ) -> QueryChunksResponse: - index = await self._get_and_cache_vector_db_index(vector_db_id) + index = await self._get_and_cache_vector_store_index(vector_db_id) if not index: raise VectorStoreNotFoundError(vector_db_id) return await index.query_chunks(query, params) async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None: """Delete a chunk from a milvus vector store.""" - index = await self._get_and_cache_vector_db_index(store_id) + index = await self._get_and_cache_vector_store_index(store_id) if not index: raise VectorStoreNotFoundError(store_id) diff --git a/llama_stack/providers/remote/vector_io/pgvector/pgvector.py b/llama_stack/providers/remote/vector_io/pgvector/pgvector.py index 703a47843..f28bd3cd9 100644 --- a/llama_stack/providers/remote/vector_io/pgvector/pgvector.py +++ b/llama_stack/providers/remote/vector_io/pgvector/pgvector.py @@ -16,15 +16,15 @@ from pydantic import BaseModel, TypeAdapter from llama_stack.apis.common.errors import VectorStoreNotFoundError from llama_stack.apis.files import Files from llama_stack.apis.inference import Inference, InterleavedContent -from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO +from llama_stack.apis.vector_stores import VectorStore from llama_stack.log import get_logger -from llama_stack.providers.datatypes import VectorDBsProtocolPrivate +from llama_stack.providers.datatypes import VectorStoresProtocolPrivate from llama_stack.providers.utils.inference.prompt_adapter import interleaved_content_as_str from llama_stack.providers.utils.kvstore import kvstore_impl from llama_stack.providers.utils.kvstore.api import KVStore from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin -from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion, EmbeddingIndex, VectorDBWithIndex +from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion, EmbeddingIndex, VectorStoreWithIndex from llama_stack.providers.utils.vector_io.vector_utils import WeightedInMemoryAggregator, sanitize_collection_name from .config import PGVectorVectorIOConfig @@ -32,7 +32,7 @@ from .config import PGVectorVectorIOConfig log = get_logger(name=__name__, category="vector_io::pgvector") VERSION = "v3" -VECTOR_DBS_PREFIX = f"vector_dbs:pgvector:{VERSION}::" +VECTOR_DBS_PREFIX = f"vector_stores:pgvector:{VERSION}::" VECTOR_INDEX_PREFIX = f"vector_index:pgvector:{VERSION}::" OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:pgvector:{VERSION}::" OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:pgvector:{VERSION}::" @@ -79,13 +79,13 @@ class PGVectorIndex(EmbeddingIndex): def __init__( self, - vector_db: VectorDB, + vector_store: VectorStore, dimension: int, conn: psycopg2.extensions.connection, kvstore: KVStore | None = None, distance_metric: str = "COSINE", ): - self.vector_db = vector_db + self.vector_store = vector_store self.dimension = dimension self.conn = conn self.kvstore = kvstore @@ -97,9 +97,9 @@ class PGVectorIndex(EmbeddingIndex): try: with self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as cur: # Sanitize the table name by replacing hyphens with underscores - # SQL doesn't allow hyphens in table names, and vector_db.identifier may contain hyphens + # SQL doesn't allow hyphens in table names, and vector_store.identifier may contain hyphens # when created with patterns like "test-vector-db-{uuid4()}" - sanitized_identifier = sanitize_collection_name(self.vector_db.identifier) + sanitized_identifier = sanitize_collection_name(self.vector_store.identifier) self.table_name = f"vs_{sanitized_identifier}" cur.execute( @@ -122,8 +122,8 @@ class PGVectorIndex(EmbeddingIndex): """ ) except Exception as e: - log.exception(f"Error creating PGVectorIndex for vector_db: {self.vector_db.identifier}") - raise RuntimeError(f"Error creating PGVectorIndex for vector_db: {self.vector_db.identifier}") from e + log.exception(f"Error creating PGVectorIndex for vector_store: {self.vector_store.identifier}") + raise RuntimeError(f"Error creating PGVectorIndex for vector_store: {self.vector_store.identifier}") from e async def add_chunks(self, chunks: list[Chunk], embeddings: NDArray): assert len(chunks) == len(embeddings), ( @@ -323,7 +323,7 @@ class PGVectorIndex(EmbeddingIndex): ) -class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate): +class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtocolPrivate): def __init__( self, config: PGVectorVectorIOConfig, inference_api: Inference, files_api: Files | None = None ) -> None: @@ -332,7 +332,7 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco self.inference_api = inference_api self.conn = None self.cache = {} - self.vector_db_store = None + self.vector_store_table = None self.metadata_collection_name = "openai_vector_stores_metadata" async def initialize(self) -> None: @@ -375,59 +375,59 @@ class PGVectorVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtoco # Clean up mixin resources (file batch tasks) await super().shutdown() - async def register_vector_db(self, vector_db: VectorDB) -> None: + async def register_vector_store(self, vector_store: VectorStore) -> None: # Persist vector DB metadata in the KV store assert self.kvstore is not None # Upsert model metadata in Postgres - upsert_models(self.conn, [(vector_db.identifier, vector_db)]) + upsert_models(self.conn, [(vector_store.identifier, vector_store)]) # Create and cache the PGVector index table for the vector DB pgvector_index = PGVectorIndex( - vector_db=vector_db, dimension=vector_db.embedding_dimension, conn=self.conn, kvstore=self.kvstore + vector_store=vector_store, dimension=vector_store.embedding_dimension, conn=self.conn, kvstore=self.kvstore ) await pgvector_index.initialize() - index = VectorDBWithIndex(vector_db, index=pgvector_index, inference_api=self.inference_api) - self.cache[vector_db.identifier] = index + index = VectorStoreWithIndex(vector_store, index=pgvector_index, inference_api=self.inference_api) + self.cache[vector_store.identifier] = index - async def unregister_vector_db(self, vector_db_id: str) -> None: + async def unregister_vector_store(self, vector_store_id: str) -> None: # Remove provider index and cache - if vector_db_id in self.cache: - await self.cache[vector_db_id].index.delete() - del self.cache[vector_db_id] + if vector_store_id in self.cache: + await self.cache[vector_store_id].index.delete() + del self.cache[vector_store_id] # Delete vector DB metadata from KV store assert self.kvstore is not None - await self.kvstore.delete(key=f"{VECTOR_DBS_PREFIX}{vector_db_id}") + await self.kvstore.delete(key=f"{VECTOR_DBS_PREFIX}{vector_store_id}") async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None: - index = await self._get_and_cache_vector_db_index(vector_db_id) + index = await self._get_and_cache_vector_store_index(vector_db_id) await index.insert_chunks(chunks) async def query_chunks( self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None ) -> QueryChunksResponse: - index = await self._get_and_cache_vector_db_index(vector_db_id) + index = await self._get_and_cache_vector_store_index(vector_db_id) return await index.query_chunks(query, params) - async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> VectorDBWithIndex: - if vector_db_id in self.cache: - return self.cache[vector_db_id] + async def _get_and_cache_vector_store_index(self, vector_store_id: str) -> VectorStoreWithIndex: + if vector_store_id in self.cache: + return self.cache[vector_store_id] - if self.vector_db_store is None: - raise VectorStoreNotFoundError(vector_db_id) + if self.vector_store_table is None: + raise VectorStoreNotFoundError(vector_store_id) - vector_db = await self.vector_db_store.get_vector_db(vector_db_id) - if not vector_db: - raise VectorStoreNotFoundError(vector_db_id) + vector_store = await self.vector_store_table.get_vector_store(vector_store_id) + if not vector_store: + raise VectorStoreNotFoundError(vector_store_id) - index = PGVectorIndex(vector_db, vector_db.embedding_dimension, self.conn) + index = PGVectorIndex(vector_store, vector_store.embedding_dimension, self.conn) await index.initialize() - self.cache[vector_db_id] = VectorDBWithIndex(vector_db, index, self.inference_api) - return self.cache[vector_db_id] + self.cache[vector_store_id] = VectorStoreWithIndex(vector_store, index, self.inference_api) + return self.cache[vector_store_id] async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None: """Delete a chunk from a PostgreSQL vector store.""" - index = await self._get_and_cache_vector_db_index(store_id) + index = await self._get_and_cache_vector_store_index(store_id) if not index: raise VectorStoreNotFoundError(store_id) diff --git a/llama_stack/providers/remote/vector_io/qdrant/qdrant.py b/llama_stack/providers/remote/vector_io/qdrant/qdrant.py index 6838d69e9..93d0894a6 100644 --- a/llama_stack/providers/remote/vector_io/qdrant/qdrant.py +++ b/llama_stack/providers/remote/vector_io/qdrant/qdrant.py @@ -16,7 +16,6 @@ from qdrant_client.models import PointStruct from llama_stack.apis.common.errors import VectorStoreNotFoundError from llama_stack.apis.files import Files from llama_stack.apis.inference import Inference, InterleavedContent -from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_io import ( Chunk, QueryChunksResponse, @@ -24,12 +23,13 @@ from llama_stack.apis.vector_io import ( VectorStoreChunkingStrategy, VectorStoreFileObject, ) +from llama_stack.apis.vector_stores import VectorStore from llama_stack.log import get_logger -from llama_stack.providers.datatypes import VectorDBsProtocolPrivate +from llama_stack.providers.datatypes import VectorStoresProtocolPrivate from llama_stack.providers.inline.vector_io.qdrant import QdrantVectorIOConfig as InlineQdrantVectorIOConfig from llama_stack.providers.utils.kvstore import kvstore_impl from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin -from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion, EmbeddingIndex, VectorDBWithIndex +from llama_stack.providers.utils.memory.vector_store import ChunkForDeletion, EmbeddingIndex, VectorStoreWithIndex from .config import QdrantVectorIOConfig as RemoteQdrantVectorIOConfig @@ -38,7 +38,7 @@ CHUNK_ID_KEY = "_chunk_id" # KV store prefixes for vector databases VERSION = "v3" -VECTOR_DBS_PREFIX = f"vector_dbs:qdrant:{VERSION}::" +VECTOR_DBS_PREFIX = f"vector_stores:qdrant:{VERSION}::" def convert_id(_id: str) -> str: @@ -145,7 +145,7 @@ class QdrantIndex(EmbeddingIndex): await self.client.delete_collection(collection_name=self.collection_name) -class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolPrivate): +class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorStoresProtocolPrivate): def __init__( self, config: RemoteQdrantVectorIOConfig | InlineQdrantVectorIOConfig, @@ -157,7 +157,7 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP self.client: AsyncQdrantClient = None self.cache = {} self.inference_api = inference_api - self.vector_db_store = None + self.vector_store_table = None self._qdrant_lock = asyncio.Lock() async def initialize(self) -> None: @@ -167,12 +167,14 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP start_key = VECTOR_DBS_PREFIX end_key = f"{VECTOR_DBS_PREFIX}\xff" - stored_vector_dbs = await self.kvstore.values_in_range(start_key, end_key) + stored_vector_stores = await self.kvstore.values_in_range(start_key, end_key) - for vector_db_data in stored_vector_dbs: - vector_db = VectorDB.model_validate_json(vector_db_data) - index = VectorDBWithIndex(vector_db, QdrantIndex(self.client, vector_db.identifier), self.inference_api) - self.cache[vector_db.identifier] = index + for vector_store_data in stored_vector_stores: + vector_store = VectorStore.model_validate_json(vector_store_data) + index = VectorStoreWithIndex( + vector_store, QdrantIndex(self.client, vector_store.identifier), self.inference_api + ) + self.cache[vector_store.identifier] = index self.openai_vector_stores = await self._load_openai_vector_stores() async def shutdown(self) -> None: @@ -180,46 +182,48 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP # Clean up mixin resources (file batch tasks) await super().shutdown() - async def register_vector_db(self, vector_db: VectorDB) -> None: + async def register_vector_store(self, vector_store: VectorStore) -> None: assert self.kvstore is not None - key = f"{VECTOR_DBS_PREFIX}{vector_db.identifier}" - await self.kvstore.set(key=key, value=vector_db.model_dump_json()) + key = f"{VECTOR_DBS_PREFIX}{vector_store.identifier}" + await self.kvstore.set(key=key, value=vector_store.model_dump_json()) - index = VectorDBWithIndex( - vector_db=vector_db, index=QdrantIndex(self.client, vector_db.identifier), inference_api=self.inference_api - ) - - self.cache[vector_db.identifier] = index - - async def unregister_vector_db(self, vector_db_id: str) -> None: - if vector_db_id in self.cache: - await self.cache[vector_db_id].index.delete() - del self.cache[vector_db_id] - - assert self.kvstore is not None - await self.kvstore.delete(f"{VECTOR_DBS_PREFIX}{vector_db_id}") - - async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> VectorDBWithIndex | None: - if vector_db_id in self.cache: - return self.cache[vector_db_id] - - if self.vector_db_store is None: - raise ValueError(f"Vector DB not found {vector_db_id}") - - vector_db = await self.vector_db_store.get_vector_db(vector_db_id) - if not vector_db: - raise VectorStoreNotFoundError(vector_db_id) - - index = VectorDBWithIndex( - vector_db=vector_db, - index=QdrantIndex(client=self.client, collection_name=vector_db.identifier), + index = VectorStoreWithIndex( + vector_store=vector_store, + index=QdrantIndex(self.client, vector_store.identifier), inference_api=self.inference_api, ) - self.cache[vector_db_id] = index + + self.cache[vector_store.identifier] = index + + async def unregister_vector_store(self, vector_store_id: str) -> None: + if vector_store_id in self.cache: + await self.cache[vector_store_id].index.delete() + del self.cache[vector_store_id] + + assert self.kvstore is not None + await self.kvstore.delete(f"{VECTOR_DBS_PREFIX}{vector_store_id}") + + async def _get_and_cache_vector_store_index(self, vector_store_id: str) -> VectorStoreWithIndex | None: + if vector_store_id in self.cache: + return self.cache[vector_store_id] + + if self.vector_store_table is None: + raise ValueError(f"Vector DB not found {vector_store_id}") + + vector_store = await self.vector_store_table.get_vector_store(vector_store_id) + if not vector_store: + raise VectorStoreNotFoundError(vector_store_id) + + index = VectorStoreWithIndex( + vector_store=vector_store, + index=QdrantIndex(client=self.client, collection_name=vector_store.identifier), + inference_api=self.inference_api, + ) + self.cache[vector_store_id] = index return index async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None: - index = await self._get_and_cache_vector_db_index(vector_db_id) + index = await self._get_and_cache_vector_store_index(vector_db_id) if not index: raise VectorStoreNotFoundError(vector_db_id) @@ -228,7 +232,7 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP async def query_chunks( self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None ) -> QueryChunksResponse: - index = await self._get_and_cache_vector_db_index(vector_db_id) + index = await self._get_and_cache_vector_store_index(vector_db_id) if not index: raise VectorStoreNotFoundError(vector_db_id) @@ -249,7 +253,7 @@ class QdrantVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, VectorDBsProtocolP async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None: """Delete chunks from a Qdrant vector store.""" - index = await self._get_and_cache_vector_db_index(store_id) + index = await self._get_and_cache_vector_store_index(store_id) if not index: raise ValueError(f"Vector DB {store_id} not found") diff --git a/llama_stack/providers/remote/vector_io/weaviate/weaviate.py b/llama_stack/providers/remote/vector_io/weaviate/weaviate.py index 8e7eb7267..66922aa3f 100644 --- a/llama_stack/providers/remote/vector_io/weaviate/weaviate.py +++ b/llama_stack/providers/remote/vector_io/weaviate/weaviate.py @@ -16,11 +16,11 @@ from llama_stack.apis.common.content_types import InterleavedContent from llama_stack.apis.common.errors import VectorStoreNotFoundError from llama_stack.apis.files import Files from llama_stack.apis.inference import Inference -from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO +from llama_stack.apis.vector_stores import VectorStore from llama_stack.core.request_headers import NeedsRequestProviderData from llama_stack.log import get_logger -from llama_stack.providers.datatypes import VectorDBsProtocolPrivate +from llama_stack.providers.datatypes import VectorStoresProtocolPrivate from llama_stack.providers.utils.kvstore import kvstore_impl from llama_stack.providers.utils.kvstore.api import KVStore from llama_stack.providers.utils.memory.openai_vector_store_mixin import OpenAIVectorStoreMixin @@ -28,7 +28,7 @@ from llama_stack.providers.utils.memory.vector_store import ( RERANKER_TYPE_RRF, ChunkForDeletion, EmbeddingIndex, - VectorDBWithIndex, + VectorStoreWithIndex, ) from llama_stack.providers.utils.vector_io.vector_utils import sanitize_collection_name @@ -37,7 +37,7 @@ from .config import WeaviateVectorIOConfig log = get_logger(name=__name__, category="vector_io::weaviate") VERSION = "v3" -VECTOR_DBS_PREFIX = f"vector_dbs:weaviate:{VERSION}::" +VECTOR_DBS_PREFIX = f"vector_stores:weaviate:{VERSION}::" VECTOR_INDEX_PREFIX = f"vector_index:weaviate:{VERSION}::" OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:weaviate:{VERSION}::" OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:weaviate:{VERSION}::" @@ -257,14 +257,14 @@ class WeaviateIndex(EmbeddingIndex): return QueryChunksResponse(chunks=chunks, scores=scores) -class WeaviateVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, NeedsRequestProviderData, VectorDBsProtocolPrivate): +class WeaviateVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, NeedsRequestProviderData, VectorStoresProtocolPrivate): def __init__(self, config: WeaviateVectorIOConfig, inference_api: Inference, files_api: Files | None) -> None: super().__init__(files_api=files_api, kvstore=None) self.config = config self.inference_api = inference_api self.client_cache = {} self.cache = {} - self.vector_db_store = None + self.vector_store_table = None self.metadata_collection_name = "openai_vector_stores_metadata" def _get_client(self) -> weaviate.WeaviateClient: @@ -300,11 +300,11 @@ class WeaviateVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, NeedsRequestProv end_key = f"{VECTOR_DBS_PREFIX}\xff" stored = await self.kvstore.values_in_range(start_key, end_key) for raw in stored: - vector_db = VectorDB.model_validate_json(raw) + vector_store = VectorStore.model_validate_json(raw) client = self._get_client() - idx = WeaviateIndex(client=client, collection_name=vector_db.identifier, kvstore=self.kvstore) - self.cache[vector_db.identifier] = VectorDBWithIndex( - vector_db=vector_db, index=idx, inference_api=self.inference_api + idx = WeaviateIndex(client=client, collection_name=vector_store.identifier, kvstore=self.kvstore) + self.cache[vector_store.identifier] = VectorStoreWithIndex( + vector_store=vector_store, index=idx, inference_api=self.inference_api ) # Load OpenAI vector stores metadata into cache @@ -316,9 +316,9 @@ class WeaviateVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, NeedsRequestProv # Clean up mixin resources (file batch tasks) await super().shutdown() - async def register_vector_db(self, vector_db: VectorDB) -> None: + async def register_vector_store(self, vector_store: VectorStore) -> None: client = self._get_client() - sanitized_collection_name = sanitize_collection_name(vector_db.identifier, weaviate_format=True) + sanitized_collection_name = sanitize_collection_name(vector_store.identifier, weaviate_format=True) # Create collection if it doesn't exist if not client.collections.exists(sanitized_collection_name): client.collections.create( @@ -329,45 +329,45 @@ class WeaviateVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, NeedsRequestProv ], ) - self.cache[vector_db.identifier] = VectorDBWithIndex( - vector_db, WeaviateIndex(client=client, collection_name=sanitized_collection_name), self.inference_api + self.cache[vector_store.identifier] = VectorStoreWithIndex( + vector_store, WeaviateIndex(client=client, collection_name=sanitized_collection_name), self.inference_api ) - async def unregister_vector_db(self, vector_db_id: str) -> None: + async def unregister_vector_store(self, vector_store_id: str) -> None: client = self._get_client() - sanitized_collection_name = sanitize_collection_name(vector_db_id, weaviate_format=True) - if vector_db_id not in self.cache or client.collections.exists(sanitized_collection_name) is False: + sanitized_collection_name = sanitize_collection_name(vector_store_id, weaviate_format=True) + if vector_store_id not in self.cache or client.collections.exists(sanitized_collection_name) is False: return client.collections.delete(sanitized_collection_name) - await self.cache[vector_db_id].index.delete() - del self.cache[vector_db_id] + await self.cache[vector_store_id].index.delete() + del self.cache[vector_store_id] - async def _get_and_cache_vector_db_index(self, vector_db_id: str) -> VectorDBWithIndex | None: - if vector_db_id in self.cache: - return self.cache[vector_db_id] + async def _get_and_cache_vector_store_index(self, vector_store_id: str) -> VectorStoreWithIndex | None: + if vector_store_id in self.cache: + return self.cache[vector_store_id] - if self.vector_db_store is None: - raise VectorStoreNotFoundError(vector_db_id) + if self.vector_store_table is None: + raise VectorStoreNotFoundError(vector_store_id) - vector_db = await self.vector_db_store.get_vector_db(vector_db_id) - if not vector_db: - raise VectorStoreNotFoundError(vector_db_id) + vector_store = await self.vector_store_table.get_vector_store(vector_store_id) + if not vector_store: + raise VectorStoreNotFoundError(vector_store_id) client = self._get_client() - sanitized_collection_name = sanitize_collection_name(vector_db.identifier, weaviate_format=True) + sanitized_collection_name = sanitize_collection_name(vector_store.identifier, weaviate_format=True) if not client.collections.exists(sanitized_collection_name): raise ValueError(f"Collection with name `{sanitized_collection_name}` not found") - index = VectorDBWithIndex( - vector_db=vector_db, - index=WeaviateIndex(client=client, collection_name=vector_db.identifier), + index = VectorStoreWithIndex( + vector_store=vector_store, + index=WeaviateIndex(client=client, collection_name=vector_store.identifier), inference_api=self.inference_api, ) - self.cache[vector_db_id] = index + self.cache[vector_store_id] = index return index async def insert_chunks(self, vector_db_id: str, chunks: list[Chunk], ttl_seconds: int | None = None) -> None: - index = await self._get_and_cache_vector_db_index(vector_db_id) + index = await self._get_and_cache_vector_store_index(vector_db_id) if not index: raise VectorStoreNotFoundError(vector_db_id) @@ -376,14 +376,14 @@ class WeaviateVectorIOAdapter(OpenAIVectorStoreMixin, VectorIO, NeedsRequestProv async def query_chunks( self, vector_db_id: str, query: InterleavedContent, params: dict[str, Any] | None = None ) -> QueryChunksResponse: - index = await self._get_and_cache_vector_db_index(vector_db_id) + index = await self._get_and_cache_vector_store_index(vector_db_id) if not index: raise VectorStoreNotFoundError(vector_db_id) return await index.query_chunks(query, params) async def delete_chunks(self, store_id: str, chunks_for_deletion: list[ChunkForDeletion]) -> None: - index = await self._get_and_cache_vector_db_index(store_id) + index = await self._get_and_cache_vector_store_index(store_id) if not index: raise ValueError(f"Vector DB {store_id} not found") diff --git a/llama_stack/providers/utils/memory/openai_vector_store_mixin.py b/llama_stack/providers/utils/memory/openai_vector_store_mixin.py index 7806d98c1..6629fb965 100644 --- a/llama_stack/providers/utils/memory/openai_vector_store_mixin.py +++ b/llama_stack/providers/utils/memory/openai_vector_store_mixin.py @@ -17,7 +17,6 @@ from pydantic import TypeAdapter from llama_stack.apis.common.errors import VectorStoreNotFoundError from llama_stack.apis.files import Files, OpenAIFileObject -from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_io import ( Chunk, OpenAICreateVectorStoreFileBatchRequestWithExtraBody, @@ -43,6 +42,7 @@ from llama_stack.apis.vector_io import ( VectorStoreSearchResponse, VectorStoreSearchResponsePage, ) +from llama_stack.apis.vector_stores import VectorStore from llama_stack.core.id_generation import generate_object_id from llama_stack.log import get_logger from llama_stack.providers.utils.kvstore.api import KVStore @@ -63,7 +63,7 @@ MAX_CONCURRENT_FILES_PER_BATCH = 3 # Maximum concurrent file processing within FILE_BATCH_CHUNK_SIZE = 10 # Process files in chunks of this size VERSION = "v3" -VECTOR_DBS_PREFIX = f"vector_dbs:{VERSION}::" +VECTOR_DBS_PREFIX = f"vector_stores:{VERSION}::" OPENAI_VECTOR_STORES_PREFIX = f"openai_vector_stores:{VERSION}::" OPENAI_VECTOR_STORES_FILES_PREFIX = f"openai_vector_stores_files:{VERSION}::" OPENAI_VECTOR_STORES_FILES_CONTENTS_PREFIX = f"openai_vector_stores_files_contents:{VERSION}::" @@ -321,12 +321,12 @@ class OpenAIVectorStoreMixin(ABC): pass @abstractmethod - async def register_vector_db(self, vector_db: VectorDB) -> None: + async def register_vector_store(self, vector_store: VectorStore) -> None: """Register a vector database (provider-specific implementation).""" pass @abstractmethod - async def unregister_vector_db(self, vector_db_id: str) -> None: + async def unregister_vector_store(self, vector_store_id: str) -> None: """Unregister a vector database (provider-specific implementation).""" pass @@ -358,7 +358,7 @@ class OpenAIVectorStoreMixin(ABC): extra_body = params.model_extra or {} metadata = params.metadata or {} - provider_vector_db_id = extra_body.get("provider_vector_db_id") + provider_vector_store_id = extra_body.get("provider_vector_store_id") # Use embedding info from metadata if available, otherwise from extra_body if metadata.get("embedding_model"): @@ -389,8 +389,8 @@ class OpenAIVectorStoreMixin(ABC): # use provider_id set by router; fallback to provider's own ID when used directly via --stack-config provider_id = extra_body.get("provider_id") or getattr(self, "__provider_id__", None) - # Derive the canonical vector_db_id (allow override, else generate) - vector_db_id = provider_vector_db_id or generate_object_id("vector_store", lambda: f"vs_{uuid.uuid4()}") + # Derive the canonical vector_store_id (allow override, else generate) + vector_store_id = provider_vector_store_id or generate_object_id("vector_store", lambda: f"vs_{uuid.uuid4()}") if embedding_model is None: raise ValueError("embedding_model is required") @@ -398,19 +398,20 @@ class OpenAIVectorStoreMixin(ABC): if embedding_dimension is None: raise ValueError("Embedding dimension is required") - # Register the VectorDB backing this vector store + # Register the VectorStore backing this vector store if provider_id is None: raise ValueError("Provider ID is required but was not provided") - vector_db = VectorDB( - identifier=vector_db_id, + # call to the provider to create any index, etc. + vector_store = VectorStore( + identifier=vector_store_id, embedding_dimension=embedding_dimension, embedding_model=embedding_model, provider_id=provider_id, - provider_resource_id=vector_db_id, - vector_db_name=params.name, + provider_resource_id=vector_store_id, + vector_store_name=params.name, ) - await self.register_vector_db(vector_db) + await self.register_vector_store(vector_store) # Create OpenAI vector store metadata status = "completed" @@ -424,7 +425,7 @@ class OpenAIVectorStoreMixin(ABC): total=0, ) store_info: dict[str, Any] = { - "id": vector_db_id, + "id": vector_store_id, "object": "vector_store", "created_at": created_at, "name": params.name, @@ -441,23 +442,23 @@ class OpenAIVectorStoreMixin(ABC): # Add provider information to metadata if provided if provider_id: metadata["provider_id"] = provider_id - if provider_vector_db_id: - metadata["provider_vector_db_id"] = provider_vector_db_id + if provider_vector_store_id: + metadata["provider_vector_store_id"] = provider_vector_store_id store_info["metadata"] = metadata # Save to persistent storage (provider-specific) - await self._save_openai_vector_store(vector_db_id, store_info) + await self._save_openai_vector_store(vector_store_id, store_info) # Store in memory cache - self.openai_vector_stores[vector_db_id] = store_info + self.openai_vector_stores[vector_store_id] = store_info # Now that our vector store is created, attach any files that were provided file_ids = params.file_ids or [] - tasks = [self.openai_attach_file_to_vector_store(vector_db_id, file_id) for file_id in file_ids] + tasks = [self.openai_attach_file_to_vector_store(vector_store_id, file_id) for file_id in file_ids] await asyncio.gather(*tasks) # Get the updated store info and return it - store_info = self.openai_vector_stores[vector_db_id] + store_info = self.openai_vector_stores[vector_store_id] return VectorStoreObject.model_validate(store_info) async def openai_list_vector_stores( @@ -567,7 +568,7 @@ class OpenAIVectorStoreMixin(ABC): # Also delete the underlying vector DB try: - await self.unregister_vector_db(vector_store_id) + await self.unregister_vector_store(vector_store_id) except Exception as e: logger.warning(f"Failed to delete underlying vector DB {vector_store_id}: {e}") diff --git a/llama_stack/providers/utils/memory/vector_store.py b/llama_stack/providers/utils/memory/vector_store.py index 0375ecaaa..6c8746e92 100644 --- a/llama_stack/providers/utils/memory/vector_store.py +++ b/llama_stack/providers/utils/memory/vector_store.py @@ -23,8 +23,8 @@ from llama_stack.apis.common.content_types import ( ) from llama_stack.apis.inference import OpenAIEmbeddingsRequestWithExtraBody from llama_stack.apis.tools import RAGDocument -from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_io import Chunk, ChunkMetadata, QueryChunksResponse +from llama_stack.apis.vector_stores import VectorStore from llama_stack.log import get_logger from llama_stack.models.llama.llama3.tokenizer import Tokenizer from llama_stack.providers.datatypes import Api @@ -187,7 +187,7 @@ def make_overlapped_chunks( updated_timestamp=int(time.time()), chunk_window=chunk_window, chunk_tokenizer=default_tokenizer, - chunk_embedding_model=None, # This will be set in `VectorDBWithIndex.insert_chunks` + chunk_embedding_model=None, # This will be set in `VectorStoreWithIndex.insert_chunks` content_token_count=len(toks), metadata_token_count=len(metadata_tokens), ) @@ -255,8 +255,8 @@ class EmbeddingIndex(ABC): @dataclass -class VectorDBWithIndex: - vector_db: VectorDB +class VectorStoreWithIndex: + vector_store: VectorStore index: EmbeddingIndex inference_api: Api.inference @@ -269,14 +269,14 @@ class VectorDBWithIndex: if c.embedding is None: chunks_to_embed.append(c) if c.chunk_metadata: - c.chunk_metadata.chunk_embedding_model = self.vector_db.embedding_model - c.chunk_metadata.chunk_embedding_dimension = self.vector_db.embedding_dimension + c.chunk_metadata.chunk_embedding_model = self.vector_store.embedding_model + c.chunk_metadata.chunk_embedding_dimension = self.vector_store.embedding_dimension else: - _validate_embedding(c.embedding, i, self.vector_db.embedding_dimension) + _validate_embedding(c.embedding, i, self.vector_store.embedding_dimension) if chunks_to_embed: params = OpenAIEmbeddingsRequestWithExtraBody( - model=self.vector_db.embedding_model, + model=self.vector_store.embedding_model, input=[c.content for c in chunks_to_embed], ) resp = await self.inference_api.openai_embeddings(params) @@ -319,7 +319,7 @@ class VectorDBWithIndex: return await self.index.query_keyword(query_string, k, score_threshold) params = OpenAIEmbeddingsRequestWithExtraBody( - model=self.vector_db.embedding_model, + model=self.vector_store.embedding_model, input=[query_string], ) embeddings_response = await self.inference_api.openai_embeddings(params) diff --git a/tests/integration/conftest.py b/tests/integration/conftest.py index a258eb1a0..041d10f10 100644 --- a/tests/integration/conftest.py +++ b/tests/integration/conftest.py @@ -37,6 +37,9 @@ def pytest_sessionstart(session): if "LLAMA_STACK_TEST_INFERENCE_MODE" not in os.environ: os.environ["LLAMA_STACK_TEST_INFERENCE_MODE"] = "replay" + if "LLAMA_STACK_LOGGING" not in os.environ: + os.environ["LLAMA_STACK_LOGGING"] = "all=warning" + if "SQLITE_STORE_DIR" not in os.environ: os.environ["SQLITE_STORE_DIR"] = tempfile.mkdtemp() diff --git a/tests/integration/vector_io/test_vector_io.py b/tests/integration/vector_io/test_vector_io.py index e5ca7a0db..1f67ddb24 100644 --- a/tests/integration/vector_io/test_vector_io.py +++ b/tests/integration/vector_io/test_vector_io.py @@ -49,46 +49,50 @@ def client_with_empty_registry(client_with_models): @vector_provider_wrapper -def test_vector_db_retrieve(client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id): - vector_db_name = "test_vector_db" +def test_vector_store_retrieve( + client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id +): + vector_store_name = "test_vector_store" create_response = client_with_empty_registry.vector_stores.create( - name=vector_db_name, + name=vector_store_name, extra_body={ "provider_id": vector_io_provider_id, }, ) - actual_vector_db_id = create_response.id + actual_vector_store_id = create_response.id # Retrieve the vector store and validate its properties - response = client_with_empty_registry.vector_stores.retrieve(vector_store_id=actual_vector_db_id) + response = client_with_empty_registry.vector_stores.retrieve(vector_store_id=actual_vector_store_id) assert response is not None - assert response.id == actual_vector_db_id - assert response.name == vector_db_name + assert response.id == actual_vector_store_id + assert response.name == vector_store_name assert response.id.startswith("vs_") @vector_provider_wrapper -def test_vector_db_register(client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id): - vector_db_name = "test_vector_db" +def test_vector_store_register( + client_with_empty_registry, embedding_model_id, embedding_dimension, vector_io_provider_id +): + vector_store_name = "test_vector_store" response = client_with_empty_registry.vector_stores.create( - name=vector_db_name, + name=vector_store_name, extra_body={ "provider_id": vector_io_provider_id, }, ) - actual_vector_db_id = response.id - assert actual_vector_db_id.startswith("vs_") - assert actual_vector_db_id != vector_db_name + actual_vector_store_id = response.id + assert actual_vector_store_id.startswith("vs_") + assert actual_vector_store_id != vector_store_name vector_stores = client_with_empty_registry.vector_stores.list() assert len(vector_stores.data) == 1 vector_store = vector_stores.data[0] - assert vector_store.id == actual_vector_db_id - assert vector_store.name == vector_db_name + assert vector_store.id == actual_vector_store_id + assert vector_store.name == vector_store_name - client_with_empty_registry.vector_stores.delete(vector_store_id=actual_vector_db_id) + client_with_empty_registry.vector_stores.delete(vector_store_id=actual_vector_store_id) vector_stores = client_with_empty_registry.vector_stores.list() assert len(vector_stores.data) == 0 @@ -108,23 +112,23 @@ def test_vector_db_register(client_with_empty_registry, embedding_model_id, embe def test_insert_chunks( client_with_empty_registry, embedding_model_id, embedding_dimension, sample_chunks, test_case, vector_io_provider_id ): - vector_db_name = "test_vector_db" + vector_store_name = "test_vector_store" create_response = client_with_empty_registry.vector_stores.create( - name=vector_db_name, + name=vector_store_name, extra_body={ "provider_id": vector_io_provider_id, }, ) - actual_vector_db_id = create_response.id + actual_vector_store_id = create_response.id client_with_empty_registry.vector_io.insert( - vector_db_id=actual_vector_db_id, + vector_db_id=actual_vector_store_id, chunks=sample_chunks, ) response = client_with_empty_registry.vector_io.query( - vector_db_id=actual_vector_db_id, + vector_db_id=actual_vector_store_id, query="What is the capital of France?", ) assert response is not None @@ -133,7 +137,7 @@ def test_insert_chunks( query, expected_doc_id = test_case response = client_with_empty_registry.vector_io.query( - vector_db_id=actual_vector_db_id, + vector_db_id=actual_vector_store_id, query=query, ) assert response is not None @@ -151,15 +155,15 @@ def test_insert_chunks_with_precomputed_embeddings( "inline::qdrant": {"score_threshold": -1.0}, "remote::qdrant": {"score_threshold": -1.0}, } - vector_db_name = "test_precomputed_embeddings_db" + vector_store_name = "test_precomputed_embeddings_db" register_response = client_with_empty_registry.vector_stores.create( - name=vector_db_name, + name=vector_store_name, extra_body={ "provider_id": vector_io_provider_id, }, ) - actual_vector_db_id = register_response.id + actual_vector_store_id = register_response.id chunks_with_embeddings = [ Chunk( @@ -170,13 +174,13 @@ def test_insert_chunks_with_precomputed_embeddings( ] client_with_empty_registry.vector_io.insert( - vector_db_id=actual_vector_db_id, + vector_db_id=actual_vector_store_id, chunks=chunks_with_embeddings, ) provider = [p.provider_id for p in client_with_empty_registry.providers.list() if p.api == "vector_io"][0] response = client_with_empty_registry.vector_io.query( - vector_db_id=actual_vector_db_id, + vector_db_id=actual_vector_store_id, query="precomputed embedding test", params=vector_io_provider_params_dict.get(provider, None), ) @@ -200,16 +204,16 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb( "remote::qdrant": {"score_threshold": 0.0}, "inline::qdrant": {"score_threshold": 0.0}, } - vector_db_name = "test_precomputed_embeddings_db" + vector_store_name = "test_precomputed_embeddings_db" register_response = client_with_empty_registry.vector_stores.create( - name=vector_db_name, + name=vector_store_name, extra_body={ "embedding_model": embedding_model_id, "provider_id": vector_io_provider_id, }, ) - actual_vector_db_id = register_response.id + actual_vector_store_id = register_response.id chunks_with_embeddings = [ Chunk( @@ -220,13 +224,13 @@ def test_query_returns_valid_object_when_identical_to_embedding_in_vdb( ] client_with_empty_registry.vector_io.insert( - vector_db_id=actual_vector_db_id, + vector_db_id=actual_vector_store_id, chunks=chunks_with_embeddings, ) provider = [p.provider_id for p in client_with_empty_registry.providers.list() if p.api == "vector_io"][0] response = client_with_empty_registry.vector_io.query( - vector_db_id=actual_vector_db_id, + vector_db_id=actual_vector_store_id, query="duplicate", params=vector_io_provider_params_dict.get(provider, None), ) diff --git a/tests/unit/core/routers/test_vector_io.py b/tests/unit/core/routers/test_vector_io.py index 997df0d78..dd3246cb3 100644 --- a/tests/unit/core/routers/test_vector_io.py +++ b/tests/unit/core/routers/test_vector_io.py @@ -21,7 +21,7 @@ async def test_single_provider_auto_selection(): Mock(identifier="all-MiniLM-L6-v2", model_type="embedding", metadata={"embedding_dimension": 384}) ] ) - mock_routing_table.register_vector_db = AsyncMock( + mock_routing_table.register_vector_store = AsyncMock( return_value=Mock(identifier="vs_123", provider_id="inline::faiss", provider_resource_id="vs_123") ) mock_routing_table.get_provider_impl = AsyncMock( diff --git a/tests/unit/providers/vector_io/conftest.py b/tests/unit/providers/vector_io/conftest.py index c78596018..2951ca2e5 100644 --- a/tests/unit/providers/vector_io/conftest.py +++ b/tests/unit/providers/vector_io/conftest.py @@ -10,8 +10,8 @@ from unittest.mock import AsyncMock, MagicMock, patch import numpy as np import pytest -from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_io import Chunk, ChunkMetadata, QueryChunksResponse +from llama_stack.apis.vector_stores import VectorStore from llama_stack.core.storage.datatypes import KVStoreReference, SqliteKVStoreConfig from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig from llama_stack.providers.inline.vector_io.faiss.faiss import FaissIndex, FaissVectorIOAdapter @@ -31,7 +31,7 @@ def vector_provider(request): @pytest.fixture -def vector_db_id() -> str: +def vector_store_id() -> str: return f"test-vector-db-{random.randint(1, 100)}" @@ -149,8 +149,8 @@ async def sqlite_vec_adapter(sqlite_vec_db_path, unique_kvstore_config, mock_inf ) collection_id = f"sqlite_test_collection_{np.random.randint(1e6)}" await adapter.initialize() - await adapter.register_vector_db( - VectorDB( + await adapter.register_vector_store( + VectorStore( identifier=collection_id, provider_id="test_provider", embedding_model="test_model", @@ -186,8 +186,8 @@ async def faiss_vec_adapter(unique_kvstore_config, mock_inference_api, embedding files_api=None, ) await adapter.initialize() - await adapter.register_vector_db( - VectorDB( + await adapter.register_vector_store( + VectorStore( identifier=f"faiss_test_collection_{np.random.randint(1e6)}", provider_id="test_provider", embedding_model="test_model", @@ -215,7 +215,7 @@ def mock_psycopg2_connection(): async def pgvector_vec_index(embedding_dimension, mock_psycopg2_connection): connection, cursor = mock_psycopg2_connection - vector_db = VectorDB( + vector_store = VectorStore( identifier="test-vector-db", embedding_model="test-model", embedding_dimension=embedding_dimension, @@ -225,7 +225,7 @@ async def pgvector_vec_index(embedding_dimension, mock_psycopg2_connection): with patch("llama_stack.providers.remote.vector_io.pgvector.pgvector.psycopg2"): with patch("llama_stack.providers.remote.vector_io.pgvector.pgvector.execute_values"): - index = PGVectorIndex(vector_db, embedding_dimension, connection, distance_metric="COSINE") + index = PGVectorIndex(vector_store, embedding_dimension, connection, distance_metric="COSINE") index._test_chunks = [] original_add_chunks = index.add_chunks @@ -281,30 +281,30 @@ async def pgvector_vec_adapter(unique_kvstore_config, mock_inference_api, embedd await adapter.initialize() adapter.conn = mock_conn - async def mock_insert_chunks(vector_db_id, chunks, ttl_seconds=None): - index = await adapter._get_and_cache_vector_db_index(vector_db_id) + async def mock_insert_chunks(vector_store_id, chunks, ttl_seconds=None): + index = await adapter._get_and_cache_vector_store_index(vector_store_id) if not index: - raise ValueError(f"Vector DB {vector_db_id} not found") + raise ValueError(f"Vector DB {vector_store_id} not found") await index.insert_chunks(chunks) adapter.insert_chunks = mock_insert_chunks - async def mock_query_chunks(vector_db_id, query, params=None): - index = await adapter._get_and_cache_vector_db_index(vector_db_id) + async def mock_query_chunks(vector_store_id, query, params=None): + index = await adapter._get_and_cache_vector_store_index(vector_store_id) if not index: - raise ValueError(f"Vector DB {vector_db_id} not found") + raise ValueError(f"Vector DB {vector_store_id} not found") return await index.query_chunks(query, params) adapter.query_chunks = mock_query_chunks - test_vector_db = VectorDB( + test_vector_store = VectorStore( identifier=f"pgvector_test_collection_{random.randint(1, 1_000_000)}", provider_id="test_provider", embedding_model="test_model", embedding_dimension=embedding_dimension, ) - await adapter.register_vector_db(test_vector_db) - adapter.test_collection_id = test_vector_db.identifier + await adapter.register_vector_store(test_vector_store) + adapter.test_collection_id = test_vector_store.identifier yield adapter await adapter.shutdown() diff --git a/tests/unit/providers/vector_io/test_faiss.py b/tests/unit/providers/vector_io/test_faiss.py index fa5c5f56b..7b870d16e 100644 --- a/tests/unit/providers/vector_io/test_faiss.py +++ b/tests/unit/providers/vector_io/test_faiss.py @@ -11,8 +11,8 @@ import numpy as np import pytest from llama_stack.apis.files import Files -from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_io import Chunk, QueryChunksResponse +from llama_stack.apis.vector_stores import VectorStore from llama_stack.providers.datatypes import HealthStatus from llama_stack.providers.inline.vector_io.faiss.config import FaissVectorIOConfig from llama_stack.providers.inline.vector_io.faiss.faiss import ( @@ -43,8 +43,8 @@ def embedding_dimension(): @pytest.fixture -def vector_db_id(): - return "test_vector_db" +def vector_store_id(): + return "test_vector_store" @pytest.fixture @@ -61,12 +61,12 @@ def sample_embeddings(embedding_dimension): @pytest.fixture -def mock_vector_db(vector_db_id, embedding_dimension) -> MagicMock: - mock_vector_db = MagicMock(spec=VectorDB) - mock_vector_db.embedding_model = "mock_embedding_model" - mock_vector_db.identifier = vector_db_id - mock_vector_db.embedding_dimension = embedding_dimension - return mock_vector_db +def mock_vector_store(vector_store_id, embedding_dimension) -> MagicMock: + mock_vector_store = MagicMock(spec=VectorStore) + mock_vector_store.embedding_model = "mock_embedding_model" + mock_vector_store.identifier = vector_store_id + mock_vector_store.embedding_dimension = embedding_dimension + return mock_vector_store @pytest.fixture diff --git a/tests/unit/providers/vector_io/test_vector_io_openai_vector_stores.py b/tests/unit/providers/vector_io/test_vector_io_openai_vector_stores.py index ad55b9336..65d7b7602 100644 --- a/tests/unit/providers/vector_io/test_vector_io_openai_vector_stores.py +++ b/tests/unit/providers/vector_io/test_vector_io_openai_vector_stores.py @@ -12,7 +12,6 @@ import numpy as np import pytest from llama_stack.apis.common.errors import VectorStoreNotFoundError -from llama_stack.apis.vector_dbs import VectorDB from llama_stack.apis.vector_io import ( Chunk, OpenAICreateVectorStoreFileBatchRequestWithExtraBody, @@ -21,6 +20,7 @@ from llama_stack.apis.vector_io import ( VectorStoreChunkingStrategyAuto, VectorStoreFileObject, ) +from llama_stack.apis.vector_stores import VectorStore from llama_stack.providers.inline.vector_io.sqlite_vec.sqlite_vec import VECTOR_DBS_PREFIX # This test is a unit test for the inline VectorIO providers. This should only contain @@ -71,7 +71,7 @@ async def test_chunk_id_conflict(vector_index, sample_chunks, embedding_dimensio async def test_initialize_adapter_with_existing_kvstore(vector_io_adapter): key = f"{VECTOR_DBS_PREFIX}db1" - dummy = VectorDB( + dummy = VectorStore( identifier="foo_db", provider_id="test_provider", embedding_model="test_model", embedding_dimension=128 ) await vector_io_adapter.kvstore.set(key=key, value=json.dumps(dummy.model_dump())) @@ -81,10 +81,10 @@ async def test_initialize_adapter_with_existing_kvstore(vector_io_adapter): async def test_persistence_across_adapter_restarts(vector_io_adapter): await vector_io_adapter.initialize() - dummy = VectorDB( + dummy = VectorStore( identifier="foo_db", provider_id="test_provider", embedding_model="test_model", embedding_dimension=128 ) - await vector_io_adapter.register_vector_db(dummy) + await vector_io_adapter.register_vector_store(dummy) await vector_io_adapter.shutdown() await vector_io_adapter.initialize() @@ -92,15 +92,15 @@ async def test_persistence_across_adapter_restarts(vector_io_adapter): await vector_io_adapter.shutdown() -async def test_register_and_unregister_vector_db(vector_io_adapter): +async def test_register_and_unregister_vector_store(vector_io_adapter): unique_id = f"foo_db_{np.random.randint(1e6)}" - dummy = VectorDB( + dummy = VectorStore( identifier=unique_id, provider_id="test_provider", embedding_model="test_model", embedding_dimension=128 ) - await vector_io_adapter.register_vector_db(dummy) + await vector_io_adapter.register_vector_store(dummy) assert dummy.identifier in vector_io_adapter.cache - await vector_io_adapter.unregister_vector_db(dummy.identifier) + await vector_io_adapter.unregister_vector_store(dummy.identifier) assert dummy.identifier not in vector_io_adapter.cache @@ -121,7 +121,7 @@ async def test_insert_chunks_calls_underlying_index(vector_io_adapter): async def test_insert_chunks_missing_db_raises(vector_io_adapter): - vector_io_adapter._get_and_cache_vector_db_index = AsyncMock(return_value=None) + vector_io_adapter._get_and_cache_vector_store_index = AsyncMock(return_value=None) with pytest.raises(ValueError): await vector_io_adapter.insert_chunks("db_not_exist", []) @@ -170,7 +170,7 @@ async def test_query_chunks_calls_underlying_index_and_returns(vector_io_adapter async def test_query_chunks_missing_db_raises(vector_io_adapter): - vector_io_adapter._get_and_cache_vector_db_index = AsyncMock(return_value=None) + vector_io_adapter._get_and_cache_vector_store_index = AsyncMock(return_value=None) with pytest.raises(ValueError): await vector_io_adapter.query_chunks("db_missing", "q", None) @@ -182,7 +182,7 @@ async def test_save_openai_vector_store(vector_io_adapter): "id": store_id, "name": "Test Store", "description": "A test OpenAI vector store", - "vector_db_id": "test_db", + "vector_store_id": "test_db", "embedding_model": "test_model", } @@ -198,7 +198,7 @@ async def test_update_openai_vector_store(vector_io_adapter): "id": store_id, "name": "Test Store", "description": "A test OpenAI vector store", - "vector_db_id": "test_db", + "vector_store_id": "test_db", "embedding_model": "test_model", } @@ -214,7 +214,7 @@ async def test_delete_openai_vector_store(vector_io_adapter): "id": store_id, "name": "Test Store", "description": "A test OpenAI vector store", - "vector_db_id": "test_db", + "vector_store_id": "test_db", "embedding_model": "test_model", } @@ -229,7 +229,7 @@ async def test_load_openai_vector_stores(vector_io_adapter): "id": store_id, "name": "Test Store", "description": "A test OpenAI vector store", - "vector_db_id": "test_db", + "vector_store_id": "test_db", "embedding_model": "test_model", } @@ -998,8 +998,8 @@ async def test_max_concurrent_files_per_batch(vector_io_adapter): async def test_embedding_config_from_metadata(vector_io_adapter): """Test that embedding configuration is correctly extracted from metadata.""" - # Mock register_vector_db to avoid actual registration - vector_io_adapter.register_vector_db = AsyncMock() + # Mock register_vector_store to avoid actual registration + vector_io_adapter.register_vector_store = AsyncMock() # Set provider_id attribute for the adapter vector_io_adapter.__provider_id__ = "test_provider" @@ -1015,9 +1015,9 @@ async def test_embedding_config_from_metadata(vector_io_adapter): await vector_io_adapter.openai_create_vector_store(params) - # Verify VectorDB was registered with correct embedding config from metadata - vector_io_adapter.register_vector_db.assert_called_once() - call_args = vector_io_adapter.register_vector_db.call_args[0][0] + # Verify VectorStore was registered with correct embedding config from metadata + vector_io_adapter.register_vector_store.assert_called_once() + call_args = vector_io_adapter.register_vector_store.call_args[0][0] assert call_args.embedding_model == "test-embedding-model" assert call_args.embedding_dimension == 512 @@ -1025,8 +1025,8 @@ async def test_embedding_config_from_metadata(vector_io_adapter): async def test_embedding_config_from_extra_body(vector_io_adapter): """Test that embedding configuration is correctly extracted from extra_body when metadata is empty.""" - # Mock register_vector_db to avoid actual registration - vector_io_adapter.register_vector_db = AsyncMock() + # Mock register_vector_store to avoid actual registration + vector_io_adapter.register_vector_store = AsyncMock() # Set provider_id attribute for the adapter vector_io_adapter.__provider_id__ = "test_provider" @@ -1042,9 +1042,9 @@ async def test_embedding_config_from_extra_body(vector_io_adapter): await vector_io_adapter.openai_create_vector_store(params) - # Verify VectorDB was registered with correct embedding config from extra_body - vector_io_adapter.register_vector_db.assert_called_once() - call_args = vector_io_adapter.register_vector_db.call_args[0][0] + # Verify VectorStore was registered with correct embedding config from extra_body + vector_io_adapter.register_vector_store.assert_called_once() + call_args = vector_io_adapter.register_vector_store.call_args[0][0] assert call_args.embedding_model == "extra-body-model" assert call_args.embedding_dimension == 1024 @@ -1052,8 +1052,8 @@ async def test_embedding_config_from_extra_body(vector_io_adapter): async def test_embedding_config_consistency_check_passes(vector_io_adapter): """Test that consistent embedding config in both metadata and extra_body passes validation.""" - # Mock register_vector_db to avoid actual registration - vector_io_adapter.register_vector_db = AsyncMock() + # Mock register_vector_store to avoid actual registration + vector_io_adapter.register_vector_store = AsyncMock() # Set provider_id attribute for the adapter vector_io_adapter.__provider_id__ = "test_provider" @@ -1073,8 +1073,8 @@ async def test_embedding_config_consistency_check_passes(vector_io_adapter): await vector_io_adapter.openai_create_vector_store(params) # Should not raise any error and use metadata config - vector_io_adapter.register_vector_db.assert_called_once() - call_args = vector_io_adapter.register_vector_db.call_args[0][0] + vector_io_adapter.register_vector_store.assert_called_once() + call_args = vector_io_adapter.register_vector_store.call_args[0][0] assert call_args.embedding_model == "consistent-model" assert call_args.embedding_dimension == 768 @@ -1082,8 +1082,8 @@ async def test_embedding_config_consistency_check_passes(vector_io_adapter): async def test_embedding_config_inconsistency_errors(vector_io_adapter): """Test that inconsistent embedding config between metadata and extra_body raises errors.""" - # Mock register_vector_db to avoid actual registration - vector_io_adapter.register_vector_db = AsyncMock() + # Mock register_vector_store to avoid actual registration + vector_io_adapter.register_vector_store = AsyncMock() # Set provider_id attribute for the adapter vector_io_adapter.__provider_id__ = "test_provider" @@ -1104,7 +1104,7 @@ async def test_embedding_config_inconsistency_errors(vector_io_adapter): await vector_io_adapter.openai_create_vector_store(params) # Reset mock for second test - vector_io_adapter.register_vector_db.reset_mock() + vector_io_adapter.register_vector_store.reset_mock() # Test with inconsistent embedding dimension params = OpenAICreateVectorStoreRequestWithExtraBody( @@ -1126,8 +1126,8 @@ async def test_embedding_config_inconsistency_errors(vector_io_adapter): async def test_embedding_config_defaults_when_missing(vector_io_adapter): """Test that embedding dimension defaults to 768 when not provided.""" - # Mock register_vector_db to avoid actual registration - vector_io_adapter.register_vector_db = AsyncMock() + # Mock register_vector_store to avoid actual registration + vector_io_adapter.register_vector_store = AsyncMock() # Set provider_id attribute for the adapter vector_io_adapter.__provider_id__ = "test_provider" @@ -1143,8 +1143,8 @@ async def test_embedding_config_defaults_when_missing(vector_io_adapter): await vector_io_adapter.openai_create_vector_store(params) # Should default to 768 dimensions - vector_io_adapter.register_vector_db.assert_called_once() - call_args = vector_io_adapter.register_vector_db.call_args[0][0] + vector_io_adapter.register_vector_store.assert_called_once() + call_args = vector_io_adapter.register_vector_store.call_args[0][0] assert call_args.embedding_model == "model-without-dimension" assert call_args.embedding_dimension == 768 @@ -1152,8 +1152,8 @@ async def test_embedding_config_defaults_when_missing(vector_io_adapter): async def test_embedding_config_required_model_missing(vector_io_adapter): """Test that missing embedding model raises error.""" - # Mock register_vector_db to avoid actual registration - vector_io_adapter.register_vector_db = AsyncMock() + # Mock register_vector_store to avoid actual registration + vector_io_adapter.register_vector_store = AsyncMock() # Set provider_id attribute for the adapter vector_io_adapter.__provider_id__ = "test_provider" # Mock the default model lookup to return None (no default model available) diff --git a/tests/unit/rag/test_rag_query.py b/tests/unit/rag/test_rag_query.py index a45b66f02..c012bc4f0 100644 --- a/tests/unit/rag/test_rag_query.py +++ b/tests/unit/rag/test_rag_query.py @@ -18,7 +18,7 @@ from llama_stack.providers.inline.tool_runtime.rag.memory import MemoryToolRunti class TestRagQuery: - async def test_query_raises_on_empty_vector_db_ids(self): + async def test_query_raises_on_empty_vector_store_ids(self): rag_tool = MemoryToolRuntimeImpl( config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock(), files_api=MagicMock() ) @@ -82,7 +82,7 @@ class TestRagQuery: with pytest.raises(ValueError): RAGQueryConfig(mode="wrong_mode") - async def test_query_adds_vector_db_id_to_chunk_metadata(self): + async def test_query_adds_vector_store_id_to_chunk_metadata(self): rag_tool = MemoryToolRuntimeImpl( config=MagicMock(), vector_io_api=MagicMock(), diff --git a/tests/unit/rag/test_vector_store.py b/tests/unit/rag/test_vector_store.py index 1e40c98e8..200da5c26 100644 --- a/tests/unit/rag/test_vector_store.py +++ b/tests/unit/rag/test_vector_store.py @@ -21,7 +21,7 @@ from llama_stack.apis.tools import RAGDocument from llama_stack.apis.vector_io import Chunk from llama_stack.providers.utils.memory.vector_store import ( URL, - VectorDBWithIndex, + VectorStoreWithIndex, _validate_embedding, content_from_doc, make_overlapped_chunks, @@ -206,15 +206,15 @@ class TestVectorStore: assert str(excinfo.value.__cause__) == "Cannot convert to string" -class TestVectorDBWithIndex: +class TestVectorStoreWithIndex: async def test_insert_chunks_without_embeddings(self): - mock_vector_db = MagicMock() - mock_vector_db.embedding_model = "test-model without embeddings" + mock_vector_store = MagicMock() + mock_vector_store.embedding_model = "test-model without embeddings" mock_index = AsyncMock() mock_inference_api = AsyncMock() - vector_db_with_index = VectorDBWithIndex( - vector_db=mock_vector_db, index=mock_index, inference_api=mock_inference_api + vector_store_with_index = VectorStoreWithIndex( + vector_store=mock_vector_store, index=mock_index, inference_api=mock_inference_api ) chunks = [ @@ -227,7 +227,7 @@ class TestVectorDBWithIndex: OpenAIEmbeddingData(embedding=[0.4, 0.5, 0.6], index=1), ] - await vector_db_with_index.insert_chunks(chunks) + await vector_store_with_index.insert_chunks(chunks) # Verify openai_embeddings was called with correct params mock_inference_api.openai_embeddings.assert_called_once() @@ -243,14 +243,14 @@ class TestVectorDBWithIndex: assert np.array_equal(args[1], np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32)) async def test_insert_chunks_with_valid_embeddings(self): - mock_vector_db = MagicMock() - mock_vector_db.embedding_model = "test-model with embeddings" - mock_vector_db.embedding_dimension = 3 + mock_vector_store = MagicMock() + mock_vector_store.embedding_model = "test-model with embeddings" + mock_vector_store.embedding_dimension = 3 mock_index = AsyncMock() mock_inference_api = AsyncMock() - vector_db_with_index = VectorDBWithIndex( - vector_db=mock_vector_db, index=mock_index, inference_api=mock_inference_api + vector_store_with_index = VectorStoreWithIndex( + vector_store=mock_vector_store, index=mock_index, inference_api=mock_inference_api ) chunks = [ @@ -258,7 +258,7 @@ class TestVectorDBWithIndex: Chunk(content="Test 2", embedding=[0.4, 0.5, 0.6], metadata={}), ] - await vector_db_with_index.insert_chunks(chunks) + await vector_store_with_index.insert_chunks(chunks) mock_inference_api.openai_embeddings.assert_not_called() mock_index.add_chunks.assert_called_once() @@ -267,14 +267,14 @@ class TestVectorDBWithIndex: assert np.array_equal(args[1], np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32)) async def test_insert_chunks_with_invalid_embeddings(self): - mock_vector_db = MagicMock() - mock_vector_db.embedding_dimension = 3 - mock_vector_db.embedding_model = "test-model with invalid embeddings" + mock_vector_store = MagicMock() + mock_vector_store.embedding_dimension = 3 + mock_vector_store.embedding_model = "test-model with invalid embeddings" mock_index = AsyncMock() mock_inference_api = AsyncMock() - vector_db_with_index = VectorDBWithIndex( - vector_db=mock_vector_db, index=mock_index, inference_api=mock_inference_api + vector_store_with_index = VectorStoreWithIndex( + vector_store=mock_vector_store, index=mock_index, inference_api=mock_inference_api ) # Verify Chunk raises ValueError for invalid embedding type @@ -283,7 +283,7 @@ class TestVectorDBWithIndex: # Verify Chunk raises ValueError for invalid embedding type in insert_chunks (i.e., Chunk errors before insert_chunks is called) with pytest.raises(ValueError, match="Input should be a valid list"): - await vector_db_with_index.insert_chunks( + await vector_store_with_index.insert_chunks( [ Chunk(content="Test 1", embedding=None, metadata={}), Chunk(content="Test 2", embedding="invalid_type", metadata={}), @@ -292,7 +292,7 @@ class TestVectorDBWithIndex: # Verify Chunk raises ValueError for invalid embedding element type in insert_chunks (i.e., Chunk errors before insert_chunks is called) with pytest.raises(ValueError, match=" Input should be a valid number, unable to parse string as a number "): - await vector_db_with_index.insert_chunks( + await vector_store_with_index.insert_chunks( Chunk(content="Test 1", embedding=[0.1, "string", 0.3], metadata={}) ) @@ -300,20 +300,20 @@ class TestVectorDBWithIndex: Chunk(content="Test 1", embedding=[0.1, 0.2, 0.3, 0.4], metadata={}), ] with pytest.raises(ValueError, match="has dimension 4, expected 3"): - await vector_db_with_index.insert_chunks(chunks_wrong_dim) + await vector_store_with_index.insert_chunks(chunks_wrong_dim) mock_inference_api.openai_embeddings.assert_not_called() mock_index.add_chunks.assert_not_called() async def test_insert_chunks_with_partially_precomputed_embeddings(self): - mock_vector_db = MagicMock() - mock_vector_db.embedding_model = "test-model with partial embeddings" - mock_vector_db.embedding_dimension = 3 + mock_vector_store = MagicMock() + mock_vector_store.embedding_model = "test-model with partial embeddings" + mock_vector_store.embedding_dimension = 3 mock_index = AsyncMock() mock_inference_api = AsyncMock() - vector_db_with_index = VectorDBWithIndex( - vector_db=mock_vector_db, index=mock_index, inference_api=mock_inference_api + vector_store_with_index = VectorStoreWithIndex( + vector_store=mock_vector_store, index=mock_index, inference_api=mock_inference_api ) chunks = [ @@ -327,7 +327,7 @@ class TestVectorDBWithIndex: OpenAIEmbeddingData(embedding=[0.3, 0.3, 0.3], index=1), ] - await vector_db_with_index.insert_chunks(chunks) + await vector_store_with_index.insert_chunks(chunks) # Verify openai_embeddings was called with correct params mock_inference_api.openai_embeddings.assert_called_once() diff --git a/tests/unit/registry/test_registry.py b/tests/unit/registry/test_registry.py index 95022ad33..d4c9786d1 100644 --- a/tests/unit/registry/test_registry.py +++ b/tests/unit/registry/test_registry.py @@ -8,8 +8,8 @@ import pytest from llama_stack.apis.inference import Model -from llama_stack.apis.vector_dbs import VectorDB -from llama_stack.core.datatypes import VectorDBWithOwner +from llama_stack.apis.vector_stores import VectorStore +from llama_stack.core.datatypes import VectorStoreWithOwner from llama_stack.core.storage.datatypes import KVStoreReference, SqliteKVStoreConfig from llama_stack.core.store.registry import ( KEY_FORMAT, @@ -20,12 +20,12 @@ from llama_stack.providers.utils.kvstore import kvstore_impl, register_kvstore_b @pytest.fixture -def sample_vector_db(): - return VectorDB( - identifier="test_vector_db", +def sample_vector_store(): + return VectorStore( + identifier="test_vector_store", embedding_model="nomic-embed-text-v1.5", embedding_dimension=768, - provider_resource_id="test_vector_db", + provider_resource_id="test_vector_store", provider_id="test-provider", ) @@ -45,17 +45,17 @@ async def test_registry_initialization(disk_dist_registry): assert result is None -async def test_basic_registration(disk_dist_registry, sample_vector_db, sample_model): - print(f"Registering {sample_vector_db}") - await disk_dist_registry.register(sample_vector_db) +async def test_basic_registration(disk_dist_registry, sample_vector_store, sample_model): + print(f"Registering {sample_vector_store}") + await disk_dist_registry.register(sample_vector_store) print(f"Registering {sample_model}") await disk_dist_registry.register(sample_model) - print("Getting vector_db") - result_vector_db = await disk_dist_registry.get("vector_db", "test_vector_db") - assert result_vector_db is not None - assert result_vector_db.identifier == sample_vector_db.identifier - assert result_vector_db.embedding_model == sample_vector_db.embedding_model - assert result_vector_db.provider_id == sample_vector_db.provider_id + print("Getting vector_store") + result_vector_store = await disk_dist_registry.get("vector_store", "test_vector_store") + assert result_vector_store is not None + assert result_vector_store.identifier == sample_vector_store.identifier + assert result_vector_store.embedding_model == sample_vector_store.embedding_model + assert result_vector_store.provider_id == sample_vector_store.provider_id result_model = await disk_dist_registry.get("model", "test_model") assert result_model is not None @@ -63,11 +63,11 @@ async def test_basic_registration(disk_dist_registry, sample_vector_db, sample_m assert result_model.provider_id == sample_model.provider_id -async def test_cached_registry_initialization(sqlite_kvstore, sample_vector_db, sample_model): +async def test_cached_registry_initialization(sqlite_kvstore, sample_vector_store, sample_model): # First populate the disk registry disk_registry = DiskDistributionRegistry(sqlite_kvstore) await disk_registry.initialize() - await disk_registry.register(sample_vector_db) + await disk_registry.register(sample_vector_store) await disk_registry.register(sample_model) # Test cached version loads from disk @@ -79,29 +79,29 @@ async def test_cached_registry_initialization(sqlite_kvstore, sample_vector_db, ) await cached_registry.initialize() - result_vector_db = await cached_registry.get("vector_db", "test_vector_db") - assert result_vector_db is not None - assert result_vector_db.identifier == sample_vector_db.identifier - assert result_vector_db.embedding_model == sample_vector_db.embedding_model - assert result_vector_db.embedding_dimension == sample_vector_db.embedding_dimension - assert result_vector_db.provider_id == sample_vector_db.provider_id + result_vector_store = await cached_registry.get("vector_store", "test_vector_store") + assert result_vector_store is not None + assert result_vector_store.identifier == sample_vector_store.identifier + assert result_vector_store.embedding_model == sample_vector_store.embedding_model + assert result_vector_store.embedding_dimension == sample_vector_store.embedding_dimension + assert result_vector_store.provider_id == sample_vector_store.provider_id async def test_cached_registry_updates(cached_disk_dist_registry): - new_vector_db = VectorDB( - identifier="test_vector_db_2", + new_vector_store = VectorStore( + identifier="test_vector_store_2", embedding_model="nomic-embed-text-v1.5", embedding_dimension=768, - provider_resource_id="test_vector_db_2", + provider_resource_id="test_vector_store_2", provider_id="baz", ) - await cached_disk_dist_registry.register(new_vector_db) + await cached_disk_dist_registry.register(new_vector_store) # Verify in cache - result_vector_db = await cached_disk_dist_registry.get("vector_db", "test_vector_db_2") - assert result_vector_db is not None - assert result_vector_db.identifier == new_vector_db.identifier - assert result_vector_db.provider_id == new_vector_db.provider_id + result_vector_store = await cached_disk_dist_registry.get("vector_store", "test_vector_store_2") + assert result_vector_store is not None + assert result_vector_store.identifier == new_vector_store.identifier + assert result_vector_store.provider_id == new_vector_store.provider_id # Verify persisted to disk db_path = cached_disk_dist_registry.kvstore.db_path @@ -111,87 +111,89 @@ async def test_cached_registry_updates(cached_disk_dist_registry): await kvstore_impl(KVStoreReference(backend=backend_name, namespace="registry")) ) await new_registry.initialize() - result_vector_db = await new_registry.get("vector_db", "test_vector_db_2") - assert result_vector_db is not None - assert result_vector_db.identifier == new_vector_db.identifier - assert result_vector_db.provider_id == new_vector_db.provider_id + result_vector_store = await new_registry.get("vector_store", "test_vector_store_2") + assert result_vector_store is not None + assert result_vector_store.identifier == new_vector_store.identifier + assert result_vector_store.provider_id == new_vector_store.provider_id async def test_duplicate_provider_registration(cached_disk_dist_registry): - original_vector_db = VectorDB( - identifier="test_vector_db_2", + original_vector_store = VectorStore( + identifier="test_vector_store_2", embedding_model="nomic-embed-text-v1.5", embedding_dimension=768, - provider_resource_id="test_vector_db_2", + provider_resource_id="test_vector_store_2", provider_id="baz", ) - assert await cached_disk_dist_registry.register(original_vector_db) + assert await cached_disk_dist_registry.register(original_vector_store) - duplicate_vector_db = VectorDB( - identifier="test_vector_db_2", + duplicate_vector_store = VectorStore( + identifier="test_vector_store_2", embedding_model="different-model", embedding_dimension=768, - provider_resource_id="test_vector_db_2", + provider_resource_id="test_vector_store_2", provider_id="baz", # Same provider_id ) - with pytest.raises(ValueError, match="Object of type 'vector_db' and identifier 'test_vector_db_2' already exists"): - await cached_disk_dist_registry.register(duplicate_vector_db) + with pytest.raises( + ValueError, match="Object of type 'vector_store' and identifier 'test_vector_store_2' already exists" + ): + await cached_disk_dist_registry.register(duplicate_vector_store) - result = await cached_disk_dist_registry.get("vector_db", "test_vector_db_2") + result = await cached_disk_dist_registry.get("vector_store", "test_vector_store_2") assert result is not None - assert result.embedding_model == original_vector_db.embedding_model # Original values preserved + assert result.embedding_model == original_vector_store.embedding_model # Original values preserved async def test_get_all_objects(cached_disk_dist_registry): # Create multiple test banks # Create multiple test banks - test_vector_dbs = [ - VectorDB( - identifier=f"test_vector_db_{i}", + test_vector_stores = [ + VectorStore( + identifier=f"test_vector_store_{i}", embedding_model="nomic-embed-text-v1.5", embedding_dimension=768, - provider_resource_id=f"test_vector_db_{i}", + provider_resource_id=f"test_vector_store_{i}", provider_id=f"provider_{i}", ) for i in range(3) ] - # Register all vector_dbs - for vector_db in test_vector_dbs: - await cached_disk_dist_registry.register(vector_db) + # Register all vector_stores + for vector_store in test_vector_stores: + await cached_disk_dist_registry.register(vector_store) # Test get_all retrieval all_results = await cached_disk_dist_registry.get_all() assert len(all_results) == 3 - # Verify each vector_db was stored correctly - for original_vector_db in test_vector_dbs: - matching_vector_dbs = [v for v in all_results if v.identifier == original_vector_db.identifier] - assert len(matching_vector_dbs) == 1 - stored_vector_db = matching_vector_dbs[0] - assert stored_vector_db.embedding_model == original_vector_db.embedding_model - assert stored_vector_db.provider_id == original_vector_db.provider_id - assert stored_vector_db.embedding_dimension == original_vector_db.embedding_dimension + # Verify each vector_store was stored correctly + for original_vector_store in test_vector_stores: + matching_vector_stores = [v for v in all_results if v.identifier == original_vector_store.identifier] + assert len(matching_vector_stores) == 1 + stored_vector_store = matching_vector_stores[0] + assert stored_vector_store.embedding_model == original_vector_store.embedding_model + assert stored_vector_store.provider_id == original_vector_store.provider_id + assert stored_vector_store.embedding_dimension == original_vector_store.embedding_dimension async def test_parse_registry_values_error_handling(sqlite_kvstore): - valid_db = VectorDB( - identifier="valid_vector_db", + valid_db = VectorStore( + identifier="valid_vector_store", embedding_model="nomic-embed-text-v1.5", embedding_dimension=768, - provider_resource_id="valid_vector_db", + provider_resource_id="valid_vector_store", provider_id="test-provider", ) await sqlite_kvstore.set( - KEY_FORMAT.format(type="vector_db", identifier="valid_vector_db"), valid_db.model_dump_json() + KEY_FORMAT.format(type="vector_store", identifier="valid_vector_store"), valid_db.model_dump_json() ) - await sqlite_kvstore.set(KEY_FORMAT.format(type="vector_db", identifier="corrupted_json"), "{not valid json") + await sqlite_kvstore.set(KEY_FORMAT.format(type="vector_store", identifier="corrupted_json"), "{not valid json") await sqlite_kvstore.set( - KEY_FORMAT.format(type="vector_db", identifier="missing_fields"), - '{"type": "vector_db", "identifier": "missing_fields"}', + KEY_FORMAT.format(type="vector_store", identifier="missing_fields"), + '{"type": "vector_store", "identifier": "missing_fields"}', ) test_registry = DiskDistributionRegistry(sqlite_kvstore) @@ -202,18 +204,18 @@ async def test_parse_registry_values_error_handling(sqlite_kvstore): # Should have filtered out the invalid entries assert len(all_objects) == 1 - assert all_objects[0].identifier == "valid_vector_db" + assert all_objects[0].identifier == "valid_vector_store" # Check that the get method also handles errors correctly - invalid_obj = await test_registry.get("vector_db", "corrupted_json") + invalid_obj = await test_registry.get("vector_store", "corrupted_json") assert invalid_obj is None - invalid_obj = await test_registry.get("vector_db", "missing_fields") + invalid_obj = await test_registry.get("vector_store", "missing_fields") assert invalid_obj is None async def test_cached_registry_error_handling(sqlite_kvstore): - valid_db = VectorDB( + valid_db = VectorStore( identifier="valid_cached_db", embedding_model="nomic-embed-text-v1.5", embedding_dimension=768, @@ -222,12 +224,12 @@ async def test_cached_registry_error_handling(sqlite_kvstore): ) await sqlite_kvstore.set( - KEY_FORMAT.format(type="vector_db", identifier="valid_cached_db"), valid_db.model_dump_json() + KEY_FORMAT.format(type="vector_store", identifier="valid_cached_db"), valid_db.model_dump_json() ) await sqlite_kvstore.set( - KEY_FORMAT.format(type="vector_db", identifier="invalid_cached_db"), - '{"type": "vector_db", "identifier": "invalid_cached_db", "embedding_model": 12345}', # Should be string + KEY_FORMAT.format(type="vector_store", identifier="invalid_cached_db"), + '{"type": "vector_store", "identifier": "invalid_cached_db", "embedding_model": 12345}', # Should be string ) cached_registry = CachedDiskDistributionRegistry(sqlite_kvstore) @@ -237,63 +239,65 @@ async def test_cached_registry_error_handling(sqlite_kvstore): assert len(all_objects) == 1 assert all_objects[0].identifier == "valid_cached_db" - invalid_obj = await cached_registry.get("vector_db", "invalid_cached_db") + invalid_obj = await cached_registry.get("vector_store", "invalid_cached_db") assert invalid_obj is None async def test_double_registration_identical_objects(disk_dist_registry): """Test that registering identical objects succeeds (idempotent).""" - vector_db = VectorDBWithOwner( - identifier="test_vector_db", + vector_store = VectorStoreWithOwner( + identifier="test_vector_store", embedding_model="all-MiniLM-L6-v2", embedding_dimension=384, - provider_resource_id="test_vector_db", + provider_resource_id="test_vector_store", provider_id="test-provider", ) # First registration should succeed - result1 = await disk_dist_registry.register(vector_db) + result1 = await disk_dist_registry.register(vector_store) assert result1 is True # Second registration of identical object should also succeed (idempotent) - result2 = await disk_dist_registry.register(vector_db) + result2 = await disk_dist_registry.register(vector_store) assert result2 is True # Verify object exists and is unchanged - retrieved = await disk_dist_registry.get("vector_db", "test_vector_db") + retrieved = await disk_dist_registry.get("vector_store", "test_vector_store") assert retrieved is not None - assert retrieved.identifier == vector_db.identifier - assert retrieved.embedding_model == vector_db.embedding_model + assert retrieved.identifier == vector_store.identifier + assert retrieved.embedding_model == vector_store.embedding_model async def test_double_registration_different_objects(disk_dist_registry): """Test that registering different objects with same identifier fails.""" - vector_db1 = VectorDBWithOwner( - identifier="test_vector_db", + vector_store1 = VectorStoreWithOwner( + identifier="test_vector_store", embedding_model="all-MiniLM-L6-v2", embedding_dimension=384, - provider_resource_id="test_vector_db", + provider_resource_id="test_vector_store", provider_id="test-provider", ) - vector_db2 = VectorDBWithOwner( - identifier="test_vector_db", # Same identifier + vector_store2 = VectorStoreWithOwner( + identifier="test_vector_store", # Same identifier embedding_model="different-model", # Different embedding model embedding_dimension=384, - provider_resource_id="test_vector_db", + provider_resource_id="test_vector_store", provider_id="test-provider", ) # First registration should succeed - result1 = await disk_dist_registry.register(vector_db1) + result1 = await disk_dist_registry.register(vector_store1) assert result1 is True # Second registration with different data should fail - with pytest.raises(ValueError, match="Object of type 'vector_db' and identifier 'test_vector_db' already exists"): - await disk_dist_registry.register(vector_db2) + with pytest.raises( + ValueError, match="Object of type 'vector_store' and identifier 'test_vector_store' already exists" + ): + await disk_dist_registry.register(vector_store2) # Verify original object is unchanged - retrieved = await disk_dist_registry.get("vector_db", "test_vector_db") + retrieved = await disk_dist_registry.get("vector_store", "test_vector_store") assert retrieved is not None assert retrieved.embedding_model == "all-MiniLM-L6-v2" # Original value diff --git a/tests/unit/server/test_server.py b/tests/unit/server/test_server.py index f21bbdd67..d6d4f4f23 100644 --- a/tests/unit/server/test_server.py +++ b/tests/unit/server/test_server.py @@ -41,7 +41,7 @@ class TestTranslateException: self.identifier = identifier self.owner = owner - resource = MockResource("vector_db", "test-db") + resource = MockResource("vector_store", "test-db") exc = AccessDeniedError("create", resource, user) result = translate_exception(exc) @@ -49,7 +49,7 @@ class TestTranslateException: assert isinstance(result, HTTPException) assert result.status_code == 403 assert "test-user" in result.detail - assert "vector_db::test-db" in result.detail + assert "vector_store::test-db" in result.detail assert "create" in result.detail assert "roles=['user']" in result.detail assert "teams=['dev']" in result.detail From 5aaf1a8bcae53ae2c25e4e820b0498f2b01e8959 Mon Sep 17 00:00:00 2001 From: Ashwin Bharambe Date: Mon, 20 Oct 2025 22:08:15 -0700 Subject: [PATCH 39/41] fix(ci): improve workflow logging and bot notifications (#3872) ## Summary - Link pre-commit bot comment to workflow run instead of PR for better debugging - Dump docker container logs before removal to ensure logs are actually captured ## Changes 1. **Pre-commit bot**: Changed the initial bot comment to link "pre-commit hooks" text to the actual workflow run URL instead of just having the PR number auto-link 2. **Docker logs**: Moved docker container log dumping from GitHub Actions to the integration-tests.sh script's stop_container() function, ensuring logs are captured before container removal ## Test plan - Pre-commit bot comment will now have a clickable link to the workflow run - Docker container logs will be successfully captured in CI runs --- .github/actions/run-and-record-tests/action.yml | 7 +++---- .github/workflows/precommit-trigger.yml | 2 +- scripts/integration-tests.sh | 2 ++ 3 files changed, 6 insertions(+), 5 deletions(-) diff --git a/.github/actions/run-and-record-tests/action.yml b/.github/actions/run-and-record-tests/action.yml index 3929df09c..ac600d570 100644 --- a/.github/actions/run-and-record-tests/action.yml +++ b/.github/actions/run-and-record-tests/action.yml @@ -86,10 +86,9 @@ runs: if: ${{ always() }} shell: bash run: | - sudo docker logs ollama > ollama-${{ inputs.inference-mode }}.log || true - distro_name=$(echo "${{ inputs.stack-config }}" | sed 's/^docker://' | sed 's/^server://') - stack_container_name="llama-stack-test-$distro_name" - sudo docker logs $stack_container_name > docker-${distro_name}-${{ inputs.inference-mode }}.log || true + # Ollama logs (if ollama container exists) + sudo docker logs ollama > ollama-${{ inputs.inference-mode }}.log 2>&1 || true + # Note: distro container logs are now dumped in integration-tests.sh before container is removed - name: Upload logs if: ${{ always() }} diff --git a/.github/workflows/precommit-trigger.yml b/.github/workflows/precommit-trigger.yml index a78b2c3ac..b05898d29 100644 --- a/.github/workflows/precommit-trigger.yml +++ b/.github/workflows/precommit-trigger.yml @@ -99,7 +99,7 @@ jobs: owner: context.repo.owner, repo: context.repo.repo, issue_number: ${{ steps.check_author.outputs.pr_number }}, - body: `⏳ Running pre-commit hooks on PR #${{ steps.check_author.outputs.pr_number }}...` + body: `⏳ Running [pre-commit hooks](https://github.com/${context.repo.owner}/${context.repo.repo}/actions/runs/${context.runId}) on PR #${{ steps.check_author.outputs.pr_number }}...` }); - name: Checkout PR branch (same-repo) diff --git a/scripts/integration-tests.sh b/scripts/integration-tests.sh index daf6ccd1b..99db89742 100755 --- a/scripts/integration-tests.sh +++ b/scripts/integration-tests.sh @@ -238,6 +238,8 @@ if [[ "$STACK_CONFIG" == *"docker:"* && "$COLLECT_ONLY" == false ]]; then echo "Stopping Docker container..." container_name="llama-stack-test-$DISTRO" if docker ps -a --format '{{.Names}}' | grep -q "^${container_name}$"; then + echo "Dumping container logs before stopping..." + docker logs "$container_name" > "docker-${DISTRO}-${INFERENCE_MODE}.log" 2>&1 || true echo "Stopping and removing container: $container_name" docker stop "$container_name" 2>/dev/null || true docker rm "$container_name" 2>/dev/null || true From 0e96279beee6627e9447aaa8d30a169403046e84 Mon Sep 17 00:00:00 2001 From: Ashwin Bharambe Date: Mon, 20 Oct 2025 22:26:21 -0700 Subject: [PATCH 40/41] chore(cleanup)!: remove tool_runtime.rag_tool (#3871) Kill the `builtin::rag` tool group completely since it is no longer targeted. We use the Responses implementation for knowledge_search which uses the `openai_vector_stores` pathway. --------- Co-authored-by: github-actions[bot] --- client-sdks/stainless/openapi.yml | 331 -------------- .../self_hosted_distro/meta-reference-gpu.md | 2 +- .../self_hosted_distro/nvidia.md | 2 +- .../providers/vector_io/inline_sqlite-vec.mdx | 4 +- .../openapi_generator/pyopenapi/operations.py | 6 - docs/static/llama-stack-spec.html | 423 ------------------ docs/static/llama-stack-spec.yaml | 331 -------------- docs/static/stainless-llama-stack-spec.html | 423 ------------------ docs/static/stainless-llama-stack-spec.yaml | 331 -------------- llama_stack/apis/tools/__init__.py | 1 - llama_stack/apis/tools/rag_tool.py | 218 --------- llama_stack/apis/tools/tools.py | 14 - llama_stack/core/routers/tool_runtime.py | 45 +- llama_stack/core/server/routes.py | 18 - llama_stack/core/stack.py | 3 +- llama_stack/distributions/ci-tests/build.yaml | 1 - llama_stack/distributions/ci-tests/run.yaml | 4 - llama_stack/distributions/dell/build.yaml | 1 - llama_stack/distributions/dell/dell.py | 5 - .../distributions/dell/run-with-safety.yaml | 4 - llama_stack/distributions/dell/run.yaml | 4 - .../meta-reference-gpu/build.yaml | 1 - .../meta-reference-gpu/meta_reference.py | 5 - .../meta-reference-gpu/run-with-safety.yaml | 4 - .../distributions/meta-reference-gpu/run.yaml | 4 - llama_stack/distributions/nvidia/build.yaml | 3 +- llama_stack/distributions/nvidia/nvidia.py | 9 +- .../distributions/nvidia/run-with-safety.yaml | 8 +- llama_stack/distributions/nvidia/run.yaml | 8 +- .../distributions/open-benchmark/build.yaml | 1 - .../open-benchmark/open_benchmark.py | 5 - .../distributions/open-benchmark/run.yaml | 4 - .../distributions/postgres-demo/build.yaml | 1 - .../postgres-demo/postgres_demo.py | 5 - .../distributions/postgres-demo/run.yaml | 4 - .../distributions/starter-gpu/build.yaml | 1 - .../distributions/starter-gpu/run.yaml | 4 - llama_stack/distributions/starter/build.yaml | 1 - llama_stack/distributions/starter/run.yaml | 4 - llama_stack/distributions/starter/starter.py | 5 - llama_stack/distributions/watsonx/build.yaml | 1 - llama_stack/distributions/watsonx/run.yaml | 4 - llama_stack/distributions/watsonx/watsonx.py | 5 - .../providers/inline/tool_runtime/__init__.py | 5 - .../inline/tool_runtime/rag/__init__.py | 19 - .../inline/tool_runtime/rag/config.py | 15 - .../tool_runtime/rag/context_retriever.py | 77 ---- .../inline/tool_runtime/rag/memory.py | 332 -------------- llama_stack/providers/registry/inference.py | 1 + .../providers/registry/tool_runtime.py | 20 - llama_stack/providers/registry/vector_io.py | 2 +- .../providers/utils/memory/vector_store.py | 28 -- .../utils/memory/test_vector_store.py | 169 +------ tests/unit/rag/test_rag_query.py | 138 ------ tests/unit/rag/test_vector_store.py | 67 --- 55 files changed, 17 insertions(+), 3114 deletions(-) delete mode 100644 llama_stack/apis/tools/rag_tool.py delete mode 100644 llama_stack/providers/inline/tool_runtime/__init__.py delete mode 100644 llama_stack/providers/inline/tool_runtime/rag/__init__.py delete mode 100644 llama_stack/providers/inline/tool_runtime/rag/config.py delete mode 100644 llama_stack/providers/inline/tool_runtime/rag/context_retriever.py delete mode 100644 llama_stack/providers/inline/tool_runtime/rag/memory.py delete mode 100644 tests/unit/rag/test_rag_query.py diff --git a/client-sdks/stainless/openapi.yml b/client-sdks/stainless/openapi.yml index 93049a14a..98a309f12 100644 --- a/client-sdks/stainless/openapi.yml +++ b/client-sdks/stainless/openapi.yml @@ -2039,69 +2039,6 @@ paths: schema: $ref: '#/components/schemas/URL' deprecated: false - /v1/tool-runtime/rag-tool/insert: - post: - responses: - '200': - description: OK - '400': - $ref: '#/components/responses/BadRequest400' - '429': - $ref: >- - #/components/responses/TooManyRequests429 - '500': - $ref: >- - #/components/responses/InternalServerError500 - default: - $ref: '#/components/responses/DefaultError' - tags: - - ToolRuntime - summary: >- - Index documents so they can be used by the RAG system. - description: >- - Index documents so they can be used by the RAG system. - parameters: [] - requestBody: - content: - application/json: - schema: - $ref: '#/components/schemas/InsertRequest' - required: true - deprecated: false - /v1/tool-runtime/rag-tool/query: - post: - responses: - '200': - description: >- - RAGQueryResult containing the retrieved content and metadata - content: - application/json: - schema: - $ref: '#/components/schemas/RAGQueryResult' - '400': - $ref: '#/components/responses/BadRequest400' - '429': - $ref: >- - #/components/responses/TooManyRequests429 - '500': - $ref: >- - #/components/responses/InternalServerError500 - default: - $ref: '#/components/responses/DefaultError' - tags: - - ToolRuntime - summary: >- - Query the RAG system for context; typically invoked by the agent. - description: >- - Query the RAG system for context; typically invoked by the agent. - parameters: [] - requestBody: - content: - application/json: - schema: - $ref: '#/components/schemas/QueryRequest' - required: true - deprecated: false /v1/toolgroups: get: responses: @@ -9921,274 +9858,6 @@ components: title: ListToolDefsResponse description: >- Response containing a list of tool definitions. - RAGDocument: - type: object - properties: - document_id: - type: string - description: The unique identifier for the document. - content: - oneOf: - - type: string - - $ref: '#/components/schemas/InterleavedContentItem' - - type: array - items: - $ref: '#/components/schemas/InterleavedContentItem' - - $ref: '#/components/schemas/URL' - description: The content of the document. - mime_type: - type: string - description: The MIME type of the document. - metadata: - type: object - additionalProperties: - oneOf: - - type: 'null' - - type: boolean - - type: number - - type: string - - type: array - - type: object - description: Additional metadata for the document. - additionalProperties: false - required: - - document_id - - content - - metadata - title: RAGDocument - description: >- - A document to be used for document ingestion in the RAG Tool. - InsertRequest: - type: object - properties: - documents: - type: array - items: - $ref: '#/components/schemas/RAGDocument' - description: >- - List of documents to index in the RAG system - vector_db_id: - type: string - description: >- - ID of the vector database to store the document embeddings - chunk_size_in_tokens: - type: integer - description: >- - (Optional) Size in tokens for document chunking during indexing - additionalProperties: false - required: - - documents - - vector_db_id - - chunk_size_in_tokens - title: InsertRequest - DefaultRAGQueryGeneratorConfig: - type: object - properties: - type: - type: string - const: default - default: default - description: >- - Type of query generator, always 'default' - separator: - type: string - default: ' ' - description: >- - String separator used to join query terms - additionalProperties: false - required: - - type - - separator - title: DefaultRAGQueryGeneratorConfig - description: >- - Configuration for the default RAG query generator. - LLMRAGQueryGeneratorConfig: - type: object - properties: - type: - type: string - const: llm - default: llm - description: Type of query generator, always 'llm' - model: - type: string - description: >- - Name of the language model to use for query generation - template: - type: string - description: >- - Template string for formatting the query generation prompt - additionalProperties: false - required: - - type - - model - - template - title: LLMRAGQueryGeneratorConfig - description: >- - Configuration for the LLM-based RAG query generator. - RAGQueryConfig: - type: object - properties: - query_generator_config: - oneOf: - - $ref: '#/components/schemas/DefaultRAGQueryGeneratorConfig' - - $ref: '#/components/schemas/LLMRAGQueryGeneratorConfig' - discriminator: - propertyName: type - mapping: - default: '#/components/schemas/DefaultRAGQueryGeneratorConfig' - llm: '#/components/schemas/LLMRAGQueryGeneratorConfig' - description: Configuration for the query generator. - max_tokens_in_context: - type: integer - default: 4096 - description: Maximum number of tokens in the context. - max_chunks: - type: integer - default: 5 - description: Maximum number of chunks to retrieve. - chunk_template: - type: string - default: > - Result {index} - - Content: {chunk.content} - - Metadata: {metadata} - description: >- - Template for formatting each retrieved chunk in the context. Available - placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk - content string), {metadata} (chunk metadata dict). Default: "Result {index}\nContent: - {chunk.content}\nMetadata: {metadata}\n" - mode: - $ref: '#/components/schemas/RAGSearchMode' - default: vector - description: >- - Search mode for retrieval—either "vector", "keyword", or "hybrid". Default - "vector". - ranker: - $ref: '#/components/schemas/Ranker' - description: >- - Configuration for the ranker to use in hybrid search. Defaults to RRF - ranker. - additionalProperties: false - required: - - query_generator_config - - max_tokens_in_context - - max_chunks - - chunk_template - title: RAGQueryConfig - description: >- - Configuration for the RAG query generation. - RAGSearchMode: - type: string - enum: - - vector - - keyword - - hybrid - title: RAGSearchMode - description: >- - Search modes for RAG query retrieval: - VECTOR: Uses vector similarity search - for semantic matching - KEYWORD: Uses keyword-based search for exact matching - - HYBRID: Combines both vector and keyword search for better results - RRFRanker: - type: object - properties: - type: - type: string - const: rrf - default: rrf - description: The type of ranker, always "rrf" - impact_factor: - type: number - default: 60.0 - description: >- - The impact factor for RRF scoring. Higher values give more weight to higher-ranked - results. Must be greater than 0 - additionalProperties: false - required: - - type - - impact_factor - title: RRFRanker - description: >- - Reciprocal Rank Fusion (RRF) ranker configuration. - Ranker: - oneOf: - - $ref: '#/components/schemas/RRFRanker' - - $ref: '#/components/schemas/WeightedRanker' - discriminator: - propertyName: type - mapping: - rrf: '#/components/schemas/RRFRanker' - weighted: '#/components/schemas/WeightedRanker' - WeightedRanker: - type: object - properties: - type: - type: string - const: weighted - default: weighted - description: The type of ranker, always "weighted" - alpha: - type: number - default: 0.5 - description: >- - Weight factor between 0 and 1. 0 means only use keyword scores, 1 means - only use vector scores, values in between blend both scores. - additionalProperties: false - required: - - type - - alpha - title: WeightedRanker - description: >- - Weighted ranker configuration that combines vector and keyword scores. - QueryRequest: - type: object - properties: - content: - $ref: '#/components/schemas/InterleavedContent' - description: >- - The query content to search for in the indexed documents - vector_db_ids: - type: array - items: - type: string - description: >- - List of vector database IDs to search within - query_config: - $ref: '#/components/schemas/RAGQueryConfig' - description: >- - (Optional) Configuration parameters for the query operation - additionalProperties: false - required: - - content - - vector_db_ids - title: QueryRequest - RAGQueryResult: - type: object - properties: - content: - $ref: '#/components/schemas/InterleavedContent' - description: >- - (Optional) The retrieved content from the query - metadata: - type: object - additionalProperties: - oneOf: - - type: 'null' - - type: boolean - - type: number - - type: string - - type: array - - type: object - description: >- - Additional metadata about the query result - additionalProperties: false - required: - - metadata - title: RAGQueryResult - description: >- - Result of a RAG query containing retrieved content and metadata. ToolGroup: type: object properties: diff --git a/docs/docs/distributions/self_hosted_distro/meta-reference-gpu.md b/docs/docs/distributions/self_hosted_distro/meta-reference-gpu.md index b7134b3e1..666850976 100644 --- a/docs/docs/distributions/self_hosted_distro/meta-reference-gpu.md +++ b/docs/docs/distributions/self_hosted_distro/meta-reference-gpu.md @@ -21,7 +21,7 @@ The `llamastack/distribution-meta-reference-gpu` distribution consists of the fo | inference | `inline::meta-reference` | | safety | `inline::llama-guard` | | scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` | -| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol` | +| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `remote::model-context-protocol` | | vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` | diff --git a/docs/docs/distributions/self_hosted_distro/nvidia.md b/docs/docs/distributions/self_hosted_distro/nvidia.md index 4a7d99ff5..b1de9ddb8 100644 --- a/docs/docs/distributions/self_hosted_distro/nvidia.md +++ b/docs/docs/distributions/self_hosted_distro/nvidia.md @@ -16,7 +16,7 @@ The `llamastack/distribution-nvidia` distribution consists of the following prov | post_training | `remote::nvidia` | | safety | `remote::nvidia` | | scoring | `inline::basic` | -| tool_runtime | `inline::rag-runtime` | +| tool_runtime | | | vector_io | `inline::faiss` | diff --git a/docs/docs/providers/vector_io/inline_sqlite-vec.mdx b/docs/docs/providers/vector_io/inline_sqlite-vec.mdx index 98a372250..459498a59 100644 --- a/docs/docs/providers/vector_io/inline_sqlite-vec.mdx +++ b/docs/docs/providers/vector_io/inline_sqlite-vec.mdx @@ -28,7 +28,7 @@ description: | #### Empirical Example Consider the histogram below in which 10,000 randomly generated strings were inserted - in batches of 100 into both Faiss and sqlite-vec using `client.tool_runtime.rag_tool.insert()`. + in batches of 100 into both Faiss and sqlite-vec. ```{image} ../../../../_static/providers/vector_io/write_time_comparison_sqlite-vec-faiss.png :alt: Comparison of SQLite-Vec and Faiss write times @@ -233,7 +233,7 @@ Datasets that can fit in memory, frequent reads | Faiss | Optimized for speed, i #### Empirical Example Consider the histogram below in which 10,000 randomly generated strings were inserted -in batches of 100 into both Faiss and sqlite-vec using `client.tool_runtime.rag_tool.insert()`. +in batches of 100 into both Faiss and sqlite-vec. ```{image} ../../../../_static/providers/vector_io/write_time_comparison_sqlite-vec-faiss.png :alt: Comparison of SQLite-Vec and Faiss write times diff --git a/docs/openapi_generator/pyopenapi/operations.py b/docs/openapi_generator/pyopenapi/operations.py index 2970d7e53..e5f33f13d 100644 --- a/docs/openapi_generator/pyopenapi/operations.py +++ b/docs/openapi_generator/pyopenapi/operations.py @@ -196,16 +196,10 @@ def _get_endpoint_functions( def _get_defining_class(member_fn: str, derived_cls: type) -> type: "Find the class in which a member function is first defined in a class inheritance hierarchy." - # This import must be dynamic here - from llama_stack.apis.tools import RAGToolRuntime, ToolRuntime - # iterate in reverse member resolution order to find most specific class first for cls in reversed(inspect.getmro(derived_cls)): for name, _ in inspect.getmembers(cls, inspect.isfunction): if name == member_fn: - # HACK ALERT - if cls == RAGToolRuntime: - return ToolRuntime return cls raise ValidationError( diff --git a/docs/static/llama-stack-spec.html b/docs/static/llama-stack-spec.html index 61deaec1e..7dfb2ed13 100644 --- a/docs/static/llama-stack-spec.html +++ b/docs/static/llama-stack-spec.html @@ -2624,89 +2624,6 @@ "deprecated": false } }, - "/v1/tool-runtime/rag-tool/insert": { - "post": { - "responses": { - "200": { - "description": "OK" - }, - "400": { - "$ref": "#/components/responses/BadRequest400" - }, - "429": { - "$ref": "#/components/responses/TooManyRequests429" - }, - "500": { - "$ref": "#/components/responses/InternalServerError500" - }, - "default": { - "$ref": "#/components/responses/DefaultError" - } - }, - "tags": [ - "ToolRuntime" - ], - "summary": "Index documents so they can be used by the RAG system.", - "description": "Index documents so they can be used by the RAG system.", - "parameters": [], - "requestBody": { - "content": { - "application/json": { - "schema": { - "$ref": "#/components/schemas/InsertRequest" - } - } - }, - "required": true - }, - "deprecated": false - } - }, - "/v1/tool-runtime/rag-tool/query": { - "post": { - "responses": { - "200": { - "description": "RAGQueryResult containing the retrieved content and metadata", - "content": { - "application/json": { - "schema": { - "$ref": "#/components/schemas/RAGQueryResult" - } - } - } - }, - "400": { - "$ref": "#/components/responses/BadRequest400" - }, - "429": { - "$ref": "#/components/responses/TooManyRequests429" - }, - "500": { - "$ref": "#/components/responses/InternalServerError500" - }, - "default": { - "$ref": "#/components/responses/DefaultError" - } - }, - "tags": [ - "ToolRuntime" - ], - "summary": "Query the RAG system for context; typically invoked by the agent.", - "description": "Query the RAG system for context; typically invoked by the agent.", - "parameters": [], - "requestBody": { - "content": { - "application/json": { - "schema": { - "$ref": "#/components/schemas/QueryRequest" - } - } - }, - "required": true - }, - "deprecated": false - } - }, "/v1/toolgroups": { "get": { "responses": { @@ -11383,346 +11300,6 @@ "title": "ListToolDefsResponse", "description": "Response containing a list of tool definitions." }, - "RAGDocument": { - "type": "object", - "properties": { - "document_id": { - "type": "string", - "description": "The unique identifier for the document." - }, - "content": { - "oneOf": [ - { - "type": "string" - }, - { - "$ref": "#/components/schemas/InterleavedContentItem" - }, - { - "type": "array", - "items": { - "$ref": "#/components/schemas/InterleavedContentItem" - } - }, - { - "$ref": "#/components/schemas/URL" - } - ], - "description": "The content of the document." - }, - "mime_type": { - "type": "string", - "description": "The MIME type of the document." - }, - "metadata": { - "type": "object", - "additionalProperties": { - "oneOf": [ - { - "type": "null" - }, - { - "type": "boolean" - }, - { - "type": "number" - }, - { - "type": "string" - }, - { - "type": "array" - }, - { - "type": "object" - } - ] - }, - "description": "Additional metadata for the document." - } - }, - "additionalProperties": false, - "required": [ - "document_id", - "content", - "metadata" - ], - "title": "RAGDocument", - "description": "A document to be used for document ingestion in the RAG Tool." - }, - "InsertRequest": { - "type": "object", - "properties": { - "documents": { - "type": "array", - "items": { - "$ref": "#/components/schemas/RAGDocument" - }, - "description": "List of documents to index in the RAG system" - }, - "vector_db_id": { - "type": "string", - "description": "ID of the vector database to store the document embeddings" - }, - "chunk_size_in_tokens": { - "type": "integer", - "description": "(Optional) Size in tokens for document chunking during indexing" - } - }, - "additionalProperties": false, - "required": [ - "documents", - "vector_db_id", - "chunk_size_in_tokens" - ], - "title": "InsertRequest" - }, - "DefaultRAGQueryGeneratorConfig": { - "type": "object", - "properties": { - "type": { - "type": "string", - "const": "default", - "default": "default", - "description": "Type of query generator, always 'default'" - }, - "separator": { - "type": "string", - "default": " ", - "description": "String separator used to join query terms" - } - }, - "additionalProperties": false, - "required": [ - "type", - "separator" - ], - "title": "DefaultRAGQueryGeneratorConfig", - "description": "Configuration for the default RAG query generator." - }, - "LLMRAGQueryGeneratorConfig": { - "type": "object", - "properties": { - "type": { - "type": "string", - "const": "llm", - "default": "llm", - "description": "Type of query generator, always 'llm'" - }, - "model": { - "type": "string", - "description": "Name of the language model to use for query generation" - }, - "template": { - "type": "string", - "description": "Template string for formatting the query generation prompt" - } - }, - "additionalProperties": false, - "required": [ - "type", - "model", - "template" - ], - "title": "LLMRAGQueryGeneratorConfig", - "description": "Configuration for the LLM-based RAG query generator." - }, - "RAGQueryConfig": { - "type": "object", - "properties": { - "query_generator_config": { - "oneOf": [ - { - "$ref": "#/components/schemas/DefaultRAGQueryGeneratorConfig" - }, - { - "$ref": "#/components/schemas/LLMRAGQueryGeneratorConfig" - } - ], - "discriminator": { - "propertyName": "type", - "mapping": { - "default": "#/components/schemas/DefaultRAGQueryGeneratorConfig", - "llm": "#/components/schemas/LLMRAGQueryGeneratorConfig" - } - }, - "description": "Configuration for the query generator." - }, - "max_tokens_in_context": { - "type": "integer", - "default": 4096, - "description": "Maximum number of tokens in the context." - }, - "max_chunks": { - "type": "integer", - "default": 5, - "description": "Maximum number of chunks to retrieve." - }, - "chunk_template": { - "type": "string", - "default": "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n", - "description": "Template for formatting each retrieved chunk in the context. Available placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk content string), {metadata} (chunk metadata dict). Default: \"Result {index}\\nContent: {chunk.content}\\nMetadata: {metadata}\\n\"" - }, - "mode": { - "$ref": "#/components/schemas/RAGSearchMode", - "default": "vector", - "description": "Search mode for retrieval—either \"vector\", \"keyword\", or \"hybrid\". Default \"vector\"." - }, - "ranker": { - "$ref": "#/components/schemas/Ranker", - "description": "Configuration for the ranker to use in hybrid search. Defaults to RRF ranker." - } - }, - "additionalProperties": false, - "required": [ - "query_generator_config", - "max_tokens_in_context", - "max_chunks", - "chunk_template" - ], - "title": "RAGQueryConfig", - "description": "Configuration for the RAG query generation." - }, - "RAGSearchMode": { - "type": "string", - "enum": [ - "vector", - "keyword", - "hybrid" - ], - "title": "RAGSearchMode", - "description": "Search modes for RAG query retrieval: - VECTOR: Uses vector similarity search for semantic matching - KEYWORD: Uses keyword-based search for exact matching - HYBRID: Combines both vector and keyword search for better results" - }, - "RRFRanker": { - "type": "object", - "properties": { - "type": { - "type": "string", - "const": "rrf", - "default": "rrf", - "description": "The type of ranker, always \"rrf\"" - }, - "impact_factor": { - "type": "number", - "default": 60.0, - "description": "The impact factor for RRF scoring. Higher values give more weight to higher-ranked results. Must be greater than 0" - } - }, - "additionalProperties": false, - "required": [ - "type", - "impact_factor" - ], - "title": "RRFRanker", - "description": "Reciprocal Rank Fusion (RRF) ranker configuration." - }, - "Ranker": { - "oneOf": [ - { - "$ref": "#/components/schemas/RRFRanker" - }, - { - "$ref": "#/components/schemas/WeightedRanker" - } - ], - "discriminator": { - "propertyName": "type", - "mapping": { - "rrf": "#/components/schemas/RRFRanker", - "weighted": "#/components/schemas/WeightedRanker" - } - } - }, - "WeightedRanker": { - "type": "object", - "properties": { - "type": { - "type": "string", - "const": "weighted", - "default": "weighted", - "description": "The type of ranker, always \"weighted\"" - }, - "alpha": { - "type": "number", - "default": 0.5, - "description": "Weight factor between 0 and 1. 0 means only use keyword scores, 1 means only use vector scores, values in between blend both scores." - } - }, - "additionalProperties": false, - "required": [ - "type", - "alpha" - ], - "title": "WeightedRanker", - "description": "Weighted ranker configuration that combines vector and keyword scores." - }, - "QueryRequest": { - "type": "object", - "properties": { - "content": { - "$ref": "#/components/schemas/InterleavedContent", - "description": "The query content to search for in the indexed documents" - }, - "vector_db_ids": { - "type": "array", - "items": { - "type": "string" - }, - "description": "List of vector database IDs to search within" - }, - "query_config": { - "$ref": "#/components/schemas/RAGQueryConfig", - "description": "(Optional) Configuration parameters for the query operation" - } - }, - "additionalProperties": false, - "required": [ - "content", - "vector_db_ids" - ], - "title": "QueryRequest" - }, - "RAGQueryResult": { - "type": "object", - "properties": { - "content": { - "$ref": "#/components/schemas/InterleavedContent", - "description": "(Optional) The retrieved content from the query" - }, - "metadata": { - "type": "object", - "additionalProperties": { - "oneOf": [ - { - "type": "null" - }, - { - "type": "boolean" - }, - { - "type": "number" - }, - { - "type": "string" - }, - { - "type": "array" - }, - { - "type": "object" - } - ] - }, - "description": "Additional metadata about the query result" - } - }, - "additionalProperties": false, - "required": [ - "metadata" - ], - "title": "RAGQueryResult", - "description": "Result of a RAG query containing retrieved content and metadata." - }, "ToolGroup": { "type": "object", "properties": { diff --git a/docs/static/llama-stack-spec.yaml b/docs/static/llama-stack-spec.yaml index c6197b36f..1b0fefe55 100644 --- a/docs/static/llama-stack-spec.yaml +++ b/docs/static/llama-stack-spec.yaml @@ -2036,69 +2036,6 @@ paths: schema: $ref: '#/components/schemas/URL' deprecated: false - /v1/tool-runtime/rag-tool/insert: - post: - responses: - '200': - description: OK - '400': - $ref: '#/components/responses/BadRequest400' - '429': - $ref: >- - #/components/responses/TooManyRequests429 - '500': - $ref: >- - #/components/responses/InternalServerError500 - default: - $ref: '#/components/responses/DefaultError' - tags: - - ToolRuntime - summary: >- - Index documents so they can be used by the RAG system. - description: >- - Index documents so they can be used by the RAG system. - parameters: [] - requestBody: - content: - application/json: - schema: - $ref: '#/components/schemas/InsertRequest' - required: true - deprecated: false - /v1/tool-runtime/rag-tool/query: - post: - responses: - '200': - description: >- - RAGQueryResult containing the retrieved content and metadata - content: - application/json: - schema: - $ref: '#/components/schemas/RAGQueryResult' - '400': - $ref: '#/components/responses/BadRequest400' - '429': - $ref: >- - #/components/responses/TooManyRequests429 - '500': - $ref: >- - #/components/responses/InternalServerError500 - default: - $ref: '#/components/responses/DefaultError' - tags: - - ToolRuntime - summary: >- - Query the RAG system for context; typically invoked by the agent. - description: >- - Query the RAG system for context; typically invoked by the agent. - parameters: [] - requestBody: - content: - application/json: - schema: - $ref: '#/components/schemas/QueryRequest' - required: true - deprecated: false /v1/toolgroups: get: responses: @@ -8708,274 +8645,6 @@ components: title: ListToolDefsResponse description: >- Response containing a list of tool definitions. - RAGDocument: - type: object - properties: - document_id: - type: string - description: The unique identifier for the document. - content: - oneOf: - - type: string - - $ref: '#/components/schemas/InterleavedContentItem' - - type: array - items: - $ref: '#/components/schemas/InterleavedContentItem' - - $ref: '#/components/schemas/URL' - description: The content of the document. - mime_type: - type: string - description: The MIME type of the document. - metadata: - type: object - additionalProperties: - oneOf: - - type: 'null' - - type: boolean - - type: number - - type: string - - type: array - - type: object - description: Additional metadata for the document. - additionalProperties: false - required: - - document_id - - content - - metadata - title: RAGDocument - description: >- - A document to be used for document ingestion in the RAG Tool. - InsertRequest: - type: object - properties: - documents: - type: array - items: - $ref: '#/components/schemas/RAGDocument' - description: >- - List of documents to index in the RAG system - vector_db_id: - type: string - description: >- - ID of the vector database to store the document embeddings - chunk_size_in_tokens: - type: integer - description: >- - (Optional) Size in tokens for document chunking during indexing - additionalProperties: false - required: - - documents - - vector_db_id - - chunk_size_in_tokens - title: InsertRequest - DefaultRAGQueryGeneratorConfig: - type: object - properties: - type: - type: string - const: default - default: default - description: >- - Type of query generator, always 'default' - separator: - type: string - default: ' ' - description: >- - String separator used to join query terms - additionalProperties: false - required: - - type - - separator - title: DefaultRAGQueryGeneratorConfig - description: >- - Configuration for the default RAG query generator. - LLMRAGQueryGeneratorConfig: - type: object - properties: - type: - type: string - const: llm - default: llm - description: Type of query generator, always 'llm' - model: - type: string - description: >- - Name of the language model to use for query generation - template: - type: string - description: >- - Template string for formatting the query generation prompt - additionalProperties: false - required: - - type - - model - - template - title: LLMRAGQueryGeneratorConfig - description: >- - Configuration for the LLM-based RAG query generator. - RAGQueryConfig: - type: object - properties: - query_generator_config: - oneOf: - - $ref: '#/components/schemas/DefaultRAGQueryGeneratorConfig' - - $ref: '#/components/schemas/LLMRAGQueryGeneratorConfig' - discriminator: - propertyName: type - mapping: - default: '#/components/schemas/DefaultRAGQueryGeneratorConfig' - llm: '#/components/schemas/LLMRAGQueryGeneratorConfig' - description: Configuration for the query generator. - max_tokens_in_context: - type: integer - default: 4096 - description: Maximum number of tokens in the context. - max_chunks: - type: integer - default: 5 - description: Maximum number of chunks to retrieve. - chunk_template: - type: string - default: > - Result {index} - - Content: {chunk.content} - - Metadata: {metadata} - description: >- - Template for formatting each retrieved chunk in the context. Available - placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk - content string), {metadata} (chunk metadata dict). Default: "Result {index}\nContent: - {chunk.content}\nMetadata: {metadata}\n" - mode: - $ref: '#/components/schemas/RAGSearchMode' - default: vector - description: >- - Search mode for retrieval—either "vector", "keyword", or "hybrid". Default - "vector". - ranker: - $ref: '#/components/schemas/Ranker' - description: >- - Configuration for the ranker to use in hybrid search. Defaults to RRF - ranker. - additionalProperties: false - required: - - query_generator_config - - max_tokens_in_context - - max_chunks - - chunk_template - title: RAGQueryConfig - description: >- - Configuration for the RAG query generation. - RAGSearchMode: - type: string - enum: - - vector - - keyword - - hybrid - title: RAGSearchMode - description: >- - Search modes for RAG query retrieval: - VECTOR: Uses vector similarity search - for semantic matching - KEYWORD: Uses keyword-based search for exact matching - - HYBRID: Combines both vector and keyword search for better results - RRFRanker: - type: object - properties: - type: - type: string - const: rrf - default: rrf - description: The type of ranker, always "rrf" - impact_factor: - type: number - default: 60.0 - description: >- - The impact factor for RRF scoring. Higher values give more weight to higher-ranked - results. Must be greater than 0 - additionalProperties: false - required: - - type - - impact_factor - title: RRFRanker - description: >- - Reciprocal Rank Fusion (RRF) ranker configuration. - Ranker: - oneOf: - - $ref: '#/components/schemas/RRFRanker' - - $ref: '#/components/schemas/WeightedRanker' - discriminator: - propertyName: type - mapping: - rrf: '#/components/schemas/RRFRanker' - weighted: '#/components/schemas/WeightedRanker' - WeightedRanker: - type: object - properties: - type: - type: string - const: weighted - default: weighted - description: The type of ranker, always "weighted" - alpha: - type: number - default: 0.5 - description: >- - Weight factor between 0 and 1. 0 means only use keyword scores, 1 means - only use vector scores, values in between blend both scores. - additionalProperties: false - required: - - type - - alpha - title: WeightedRanker - description: >- - Weighted ranker configuration that combines vector and keyword scores. - QueryRequest: - type: object - properties: - content: - $ref: '#/components/schemas/InterleavedContent' - description: >- - The query content to search for in the indexed documents - vector_db_ids: - type: array - items: - type: string - description: >- - List of vector database IDs to search within - query_config: - $ref: '#/components/schemas/RAGQueryConfig' - description: >- - (Optional) Configuration parameters for the query operation - additionalProperties: false - required: - - content - - vector_db_ids - title: QueryRequest - RAGQueryResult: - type: object - properties: - content: - $ref: '#/components/schemas/InterleavedContent' - description: >- - (Optional) The retrieved content from the query - metadata: - type: object - additionalProperties: - oneOf: - - type: 'null' - - type: boolean - - type: number - - type: string - - type: array - - type: object - description: >- - Additional metadata about the query result - additionalProperties: false - required: - - metadata - title: RAGQueryResult - description: >- - Result of a RAG query containing retrieved content and metadata. ToolGroup: type: object properties: diff --git a/docs/static/stainless-llama-stack-spec.html b/docs/static/stainless-llama-stack-spec.html index 38122ebc0..7930b28e6 100644 --- a/docs/static/stainless-llama-stack-spec.html +++ b/docs/static/stainless-llama-stack-spec.html @@ -2624,89 +2624,6 @@ "deprecated": false } }, - "/v1/tool-runtime/rag-tool/insert": { - "post": { - "responses": { - "200": { - "description": "OK" - }, - "400": { - "$ref": "#/components/responses/BadRequest400" - }, - "429": { - "$ref": "#/components/responses/TooManyRequests429" - }, - "500": { - "$ref": "#/components/responses/InternalServerError500" - }, - "default": { - "$ref": "#/components/responses/DefaultError" - } - }, - "tags": [ - "ToolRuntime" - ], - "summary": "Index documents so they can be used by the RAG system.", - "description": "Index documents so they can be used by the RAG system.", - "parameters": [], - "requestBody": { - "content": { - "application/json": { - "schema": { - "$ref": "#/components/schemas/InsertRequest" - } - } - }, - "required": true - }, - "deprecated": false - } - }, - "/v1/tool-runtime/rag-tool/query": { - "post": { - "responses": { - "200": { - "description": "RAGQueryResult containing the retrieved content and metadata", - "content": { - "application/json": { - "schema": { - "$ref": "#/components/schemas/RAGQueryResult" - } - } - } - }, - "400": { - "$ref": "#/components/responses/BadRequest400" - }, - "429": { - "$ref": "#/components/responses/TooManyRequests429" - }, - "500": { - "$ref": "#/components/responses/InternalServerError500" - }, - "default": { - "$ref": "#/components/responses/DefaultError" - } - }, - "tags": [ - "ToolRuntime" - ], - "summary": "Query the RAG system for context; typically invoked by the agent.", - "description": "Query the RAG system for context; typically invoked by the agent.", - "parameters": [], - "requestBody": { - "content": { - "application/json": { - "schema": { - "$ref": "#/components/schemas/QueryRequest" - } - } - }, - "required": true - }, - "deprecated": false - } - }, "/v1/toolgroups": { "get": { "responses": { @@ -13055,346 +12972,6 @@ "title": "ListToolDefsResponse", "description": "Response containing a list of tool definitions." }, - "RAGDocument": { - "type": "object", - "properties": { - "document_id": { - "type": "string", - "description": "The unique identifier for the document." - }, - "content": { - "oneOf": [ - { - "type": "string" - }, - { - "$ref": "#/components/schemas/InterleavedContentItem" - }, - { - "type": "array", - "items": { - "$ref": "#/components/schemas/InterleavedContentItem" - } - }, - { - "$ref": "#/components/schemas/URL" - } - ], - "description": "The content of the document." - }, - "mime_type": { - "type": "string", - "description": "The MIME type of the document." - }, - "metadata": { - "type": "object", - "additionalProperties": { - "oneOf": [ - { - "type": "null" - }, - { - "type": "boolean" - }, - { - "type": "number" - }, - { - "type": "string" - }, - { - "type": "array" - }, - { - "type": "object" - } - ] - }, - "description": "Additional metadata for the document." - } - }, - "additionalProperties": false, - "required": [ - "document_id", - "content", - "metadata" - ], - "title": "RAGDocument", - "description": "A document to be used for document ingestion in the RAG Tool." - }, - "InsertRequest": { - "type": "object", - "properties": { - "documents": { - "type": "array", - "items": { - "$ref": "#/components/schemas/RAGDocument" - }, - "description": "List of documents to index in the RAG system" - }, - "vector_db_id": { - "type": "string", - "description": "ID of the vector database to store the document embeddings" - }, - "chunk_size_in_tokens": { - "type": "integer", - "description": "(Optional) Size in tokens for document chunking during indexing" - } - }, - "additionalProperties": false, - "required": [ - "documents", - "vector_db_id", - "chunk_size_in_tokens" - ], - "title": "InsertRequest" - }, - "DefaultRAGQueryGeneratorConfig": { - "type": "object", - "properties": { - "type": { - "type": "string", - "const": "default", - "default": "default", - "description": "Type of query generator, always 'default'" - }, - "separator": { - "type": "string", - "default": " ", - "description": "String separator used to join query terms" - } - }, - "additionalProperties": false, - "required": [ - "type", - "separator" - ], - "title": "DefaultRAGQueryGeneratorConfig", - "description": "Configuration for the default RAG query generator." - }, - "LLMRAGQueryGeneratorConfig": { - "type": "object", - "properties": { - "type": { - "type": "string", - "const": "llm", - "default": "llm", - "description": "Type of query generator, always 'llm'" - }, - "model": { - "type": "string", - "description": "Name of the language model to use for query generation" - }, - "template": { - "type": "string", - "description": "Template string for formatting the query generation prompt" - } - }, - "additionalProperties": false, - "required": [ - "type", - "model", - "template" - ], - "title": "LLMRAGQueryGeneratorConfig", - "description": "Configuration for the LLM-based RAG query generator." - }, - "RAGQueryConfig": { - "type": "object", - "properties": { - "query_generator_config": { - "oneOf": [ - { - "$ref": "#/components/schemas/DefaultRAGQueryGeneratorConfig" - }, - { - "$ref": "#/components/schemas/LLMRAGQueryGeneratorConfig" - } - ], - "discriminator": { - "propertyName": "type", - "mapping": { - "default": "#/components/schemas/DefaultRAGQueryGeneratorConfig", - "llm": "#/components/schemas/LLMRAGQueryGeneratorConfig" - } - }, - "description": "Configuration for the query generator." - }, - "max_tokens_in_context": { - "type": "integer", - "default": 4096, - "description": "Maximum number of tokens in the context." - }, - "max_chunks": { - "type": "integer", - "default": 5, - "description": "Maximum number of chunks to retrieve." - }, - "chunk_template": { - "type": "string", - "default": "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n", - "description": "Template for formatting each retrieved chunk in the context. Available placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk content string), {metadata} (chunk metadata dict). Default: \"Result {index}\\nContent: {chunk.content}\\nMetadata: {metadata}\\n\"" - }, - "mode": { - "$ref": "#/components/schemas/RAGSearchMode", - "default": "vector", - "description": "Search mode for retrieval—either \"vector\", \"keyword\", or \"hybrid\". Default \"vector\"." - }, - "ranker": { - "$ref": "#/components/schemas/Ranker", - "description": "Configuration for the ranker to use in hybrid search. Defaults to RRF ranker." - } - }, - "additionalProperties": false, - "required": [ - "query_generator_config", - "max_tokens_in_context", - "max_chunks", - "chunk_template" - ], - "title": "RAGQueryConfig", - "description": "Configuration for the RAG query generation." - }, - "RAGSearchMode": { - "type": "string", - "enum": [ - "vector", - "keyword", - "hybrid" - ], - "title": "RAGSearchMode", - "description": "Search modes for RAG query retrieval: - VECTOR: Uses vector similarity search for semantic matching - KEYWORD: Uses keyword-based search for exact matching - HYBRID: Combines both vector and keyword search for better results" - }, - "RRFRanker": { - "type": "object", - "properties": { - "type": { - "type": "string", - "const": "rrf", - "default": "rrf", - "description": "The type of ranker, always \"rrf\"" - }, - "impact_factor": { - "type": "number", - "default": 60.0, - "description": "The impact factor for RRF scoring. Higher values give more weight to higher-ranked results. Must be greater than 0" - } - }, - "additionalProperties": false, - "required": [ - "type", - "impact_factor" - ], - "title": "RRFRanker", - "description": "Reciprocal Rank Fusion (RRF) ranker configuration." - }, - "Ranker": { - "oneOf": [ - { - "$ref": "#/components/schemas/RRFRanker" - }, - { - "$ref": "#/components/schemas/WeightedRanker" - } - ], - "discriminator": { - "propertyName": "type", - "mapping": { - "rrf": "#/components/schemas/RRFRanker", - "weighted": "#/components/schemas/WeightedRanker" - } - } - }, - "WeightedRanker": { - "type": "object", - "properties": { - "type": { - "type": "string", - "const": "weighted", - "default": "weighted", - "description": "The type of ranker, always \"weighted\"" - }, - "alpha": { - "type": "number", - "default": 0.5, - "description": "Weight factor between 0 and 1. 0 means only use keyword scores, 1 means only use vector scores, values in between blend both scores." - } - }, - "additionalProperties": false, - "required": [ - "type", - "alpha" - ], - "title": "WeightedRanker", - "description": "Weighted ranker configuration that combines vector and keyword scores." - }, - "QueryRequest": { - "type": "object", - "properties": { - "content": { - "$ref": "#/components/schemas/InterleavedContent", - "description": "The query content to search for in the indexed documents" - }, - "vector_db_ids": { - "type": "array", - "items": { - "type": "string" - }, - "description": "List of vector database IDs to search within" - }, - "query_config": { - "$ref": "#/components/schemas/RAGQueryConfig", - "description": "(Optional) Configuration parameters for the query operation" - } - }, - "additionalProperties": false, - "required": [ - "content", - "vector_db_ids" - ], - "title": "QueryRequest" - }, - "RAGQueryResult": { - "type": "object", - "properties": { - "content": { - "$ref": "#/components/schemas/InterleavedContent", - "description": "(Optional) The retrieved content from the query" - }, - "metadata": { - "type": "object", - "additionalProperties": { - "oneOf": [ - { - "type": "null" - }, - { - "type": "boolean" - }, - { - "type": "number" - }, - { - "type": "string" - }, - { - "type": "array" - }, - { - "type": "object" - } - ] - }, - "description": "Additional metadata about the query result" - } - }, - "additionalProperties": false, - "required": [ - "metadata" - ], - "title": "RAGQueryResult", - "description": "Result of a RAG query containing retrieved content and metadata." - }, "ToolGroup": { "type": "object", "properties": { diff --git a/docs/static/stainless-llama-stack-spec.yaml b/docs/static/stainless-llama-stack-spec.yaml index 93049a14a..98a309f12 100644 --- a/docs/static/stainless-llama-stack-spec.yaml +++ b/docs/static/stainless-llama-stack-spec.yaml @@ -2039,69 +2039,6 @@ paths: schema: $ref: '#/components/schemas/URL' deprecated: false - /v1/tool-runtime/rag-tool/insert: - post: - responses: - '200': - description: OK - '400': - $ref: '#/components/responses/BadRequest400' - '429': - $ref: >- - #/components/responses/TooManyRequests429 - '500': - $ref: >- - #/components/responses/InternalServerError500 - default: - $ref: '#/components/responses/DefaultError' - tags: - - ToolRuntime - summary: >- - Index documents so they can be used by the RAG system. - description: >- - Index documents so they can be used by the RAG system. - parameters: [] - requestBody: - content: - application/json: - schema: - $ref: '#/components/schemas/InsertRequest' - required: true - deprecated: false - /v1/tool-runtime/rag-tool/query: - post: - responses: - '200': - description: >- - RAGQueryResult containing the retrieved content and metadata - content: - application/json: - schema: - $ref: '#/components/schemas/RAGQueryResult' - '400': - $ref: '#/components/responses/BadRequest400' - '429': - $ref: >- - #/components/responses/TooManyRequests429 - '500': - $ref: >- - #/components/responses/InternalServerError500 - default: - $ref: '#/components/responses/DefaultError' - tags: - - ToolRuntime - summary: >- - Query the RAG system for context; typically invoked by the agent. - description: >- - Query the RAG system for context; typically invoked by the agent. - parameters: [] - requestBody: - content: - application/json: - schema: - $ref: '#/components/schemas/QueryRequest' - required: true - deprecated: false /v1/toolgroups: get: responses: @@ -9921,274 +9858,6 @@ components: title: ListToolDefsResponse description: >- Response containing a list of tool definitions. - RAGDocument: - type: object - properties: - document_id: - type: string - description: The unique identifier for the document. - content: - oneOf: - - type: string - - $ref: '#/components/schemas/InterleavedContentItem' - - type: array - items: - $ref: '#/components/schemas/InterleavedContentItem' - - $ref: '#/components/schemas/URL' - description: The content of the document. - mime_type: - type: string - description: The MIME type of the document. - metadata: - type: object - additionalProperties: - oneOf: - - type: 'null' - - type: boolean - - type: number - - type: string - - type: array - - type: object - description: Additional metadata for the document. - additionalProperties: false - required: - - document_id - - content - - metadata - title: RAGDocument - description: >- - A document to be used for document ingestion in the RAG Tool. - InsertRequest: - type: object - properties: - documents: - type: array - items: - $ref: '#/components/schemas/RAGDocument' - description: >- - List of documents to index in the RAG system - vector_db_id: - type: string - description: >- - ID of the vector database to store the document embeddings - chunk_size_in_tokens: - type: integer - description: >- - (Optional) Size in tokens for document chunking during indexing - additionalProperties: false - required: - - documents - - vector_db_id - - chunk_size_in_tokens - title: InsertRequest - DefaultRAGQueryGeneratorConfig: - type: object - properties: - type: - type: string - const: default - default: default - description: >- - Type of query generator, always 'default' - separator: - type: string - default: ' ' - description: >- - String separator used to join query terms - additionalProperties: false - required: - - type - - separator - title: DefaultRAGQueryGeneratorConfig - description: >- - Configuration for the default RAG query generator. - LLMRAGQueryGeneratorConfig: - type: object - properties: - type: - type: string - const: llm - default: llm - description: Type of query generator, always 'llm' - model: - type: string - description: >- - Name of the language model to use for query generation - template: - type: string - description: >- - Template string for formatting the query generation prompt - additionalProperties: false - required: - - type - - model - - template - title: LLMRAGQueryGeneratorConfig - description: >- - Configuration for the LLM-based RAG query generator. - RAGQueryConfig: - type: object - properties: - query_generator_config: - oneOf: - - $ref: '#/components/schemas/DefaultRAGQueryGeneratorConfig' - - $ref: '#/components/schemas/LLMRAGQueryGeneratorConfig' - discriminator: - propertyName: type - mapping: - default: '#/components/schemas/DefaultRAGQueryGeneratorConfig' - llm: '#/components/schemas/LLMRAGQueryGeneratorConfig' - description: Configuration for the query generator. - max_tokens_in_context: - type: integer - default: 4096 - description: Maximum number of tokens in the context. - max_chunks: - type: integer - default: 5 - description: Maximum number of chunks to retrieve. - chunk_template: - type: string - default: > - Result {index} - - Content: {chunk.content} - - Metadata: {metadata} - description: >- - Template for formatting each retrieved chunk in the context. Available - placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk - content string), {metadata} (chunk metadata dict). Default: "Result {index}\nContent: - {chunk.content}\nMetadata: {metadata}\n" - mode: - $ref: '#/components/schemas/RAGSearchMode' - default: vector - description: >- - Search mode for retrieval—either "vector", "keyword", or "hybrid". Default - "vector". - ranker: - $ref: '#/components/schemas/Ranker' - description: >- - Configuration for the ranker to use in hybrid search. Defaults to RRF - ranker. - additionalProperties: false - required: - - query_generator_config - - max_tokens_in_context - - max_chunks - - chunk_template - title: RAGQueryConfig - description: >- - Configuration for the RAG query generation. - RAGSearchMode: - type: string - enum: - - vector - - keyword - - hybrid - title: RAGSearchMode - description: >- - Search modes for RAG query retrieval: - VECTOR: Uses vector similarity search - for semantic matching - KEYWORD: Uses keyword-based search for exact matching - - HYBRID: Combines both vector and keyword search for better results - RRFRanker: - type: object - properties: - type: - type: string - const: rrf - default: rrf - description: The type of ranker, always "rrf" - impact_factor: - type: number - default: 60.0 - description: >- - The impact factor for RRF scoring. Higher values give more weight to higher-ranked - results. Must be greater than 0 - additionalProperties: false - required: - - type - - impact_factor - title: RRFRanker - description: >- - Reciprocal Rank Fusion (RRF) ranker configuration. - Ranker: - oneOf: - - $ref: '#/components/schemas/RRFRanker' - - $ref: '#/components/schemas/WeightedRanker' - discriminator: - propertyName: type - mapping: - rrf: '#/components/schemas/RRFRanker' - weighted: '#/components/schemas/WeightedRanker' - WeightedRanker: - type: object - properties: - type: - type: string - const: weighted - default: weighted - description: The type of ranker, always "weighted" - alpha: - type: number - default: 0.5 - description: >- - Weight factor between 0 and 1. 0 means only use keyword scores, 1 means - only use vector scores, values in between blend both scores. - additionalProperties: false - required: - - type - - alpha - title: WeightedRanker - description: >- - Weighted ranker configuration that combines vector and keyword scores. - QueryRequest: - type: object - properties: - content: - $ref: '#/components/schemas/InterleavedContent' - description: >- - The query content to search for in the indexed documents - vector_db_ids: - type: array - items: - type: string - description: >- - List of vector database IDs to search within - query_config: - $ref: '#/components/schemas/RAGQueryConfig' - description: >- - (Optional) Configuration parameters for the query operation - additionalProperties: false - required: - - content - - vector_db_ids - title: QueryRequest - RAGQueryResult: - type: object - properties: - content: - $ref: '#/components/schemas/InterleavedContent' - description: >- - (Optional) The retrieved content from the query - metadata: - type: object - additionalProperties: - oneOf: - - type: 'null' - - type: boolean - - type: number - - type: string - - type: array - - type: object - description: >- - Additional metadata about the query result - additionalProperties: false - required: - - metadata - title: RAGQueryResult - description: >- - Result of a RAG query containing retrieved content and metadata. ToolGroup: type: object properties: diff --git a/llama_stack/apis/tools/__init__.py b/llama_stack/apis/tools/__init__.py index b25310ecf..2908d1c62 100644 --- a/llama_stack/apis/tools/__init__.py +++ b/llama_stack/apis/tools/__init__.py @@ -4,5 +4,4 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. -from .rag_tool import * from .tools import * diff --git a/llama_stack/apis/tools/rag_tool.py b/llama_stack/apis/tools/rag_tool.py deleted file mode 100644 index ed7847e23..000000000 --- a/llama_stack/apis/tools/rag_tool.py +++ /dev/null @@ -1,218 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the terms described in the LICENSE file in -# the root directory of this source tree. - -from enum import Enum, StrEnum -from typing import Annotated, Any, Literal, Protocol - -from pydantic import BaseModel, Field, field_validator -from typing_extensions import runtime_checkable - -from llama_stack.apis.common.content_types import URL, InterleavedContent -from llama_stack.apis.version import LLAMA_STACK_API_V1 -from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol -from llama_stack.schema_utils import json_schema_type, register_schema, webmethod - - -@json_schema_type -class RRFRanker(BaseModel): - """ - Reciprocal Rank Fusion (RRF) ranker configuration. - - :param type: The type of ranker, always "rrf" - :param impact_factor: The impact factor for RRF scoring. Higher values give more weight to higher-ranked results. - Must be greater than 0 - """ - - type: Literal["rrf"] = "rrf" - impact_factor: float = Field(default=60.0, gt=0.0) # default of 60 for optimal performance - - -@json_schema_type -class WeightedRanker(BaseModel): - """ - Weighted ranker configuration that combines vector and keyword scores. - - :param type: The type of ranker, always "weighted" - :param alpha: Weight factor between 0 and 1. - 0 means only use keyword scores, - 1 means only use vector scores, - values in between blend both scores. - """ - - type: Literal["weighted"] = "weighted" - alpha: float = Field( - default=0.5, - ge=0.0, - le=1.0, - description="Weight factor between 0 and 1. 0 means only keyword scores, 1 means only vector scores.", - ) - - -Ranker = Annotated[ - RRFRanker | WeightedRanker, - Field(discriminator="type"), -] -register_schema(Ranker, name="Ranker") - - -@json_schema_type -class RAGDocument(BaseModel): - """ - A document to be used for document ingestion in the RAG Tool. - - :param document_id: The unique identifier for the document. - :param content: The content of the document. - :param mime_type: The MIME type of the document. - :param metadata: Additional metadata for the document. - """ - - document_id: str - content: InterleavedContent | URL - mime_type: str | None = None - metadata: dict[str, Any] = Field(default_factory=dict) - - -@json_schema_type -class RAGQueryResult(BaseModel): - """Result of a RAG query containing retrieved content and metadata. - - :param content: (Optional) The retrieved content from the query - :param metadata: Additional metadata about the query result - """ - - content: InterleavedContent | None = None - metadata: dict[str, Any] = Field(default_factory=dict) - - -@json_schema_type -class RAGQueryGenerator(Enum): - """Types of query generators for RAG systems. - - :cvar default: Default query generator using simple text processing - :cvar llm: LLM-based query generator for enhanced query understanding - :cvar custom: Custom query generator implementation - """ - - default = "default" - llm = "llm" - custom = "custom" - - -@json_schema_type -class RAGSearchMode(StrEnum): - """ - Search modes for RAG query retrieval: - - VECTOR: Uses vector similarity search for semantic matching - - KEYWORD: Uses keyword-based search for exact matching - - HYBRID: Combines both vector and keyword search for better results - """ - - VECTOR = "vector" - KEYWORD = "keyword" - HYBRID = "hybrid" - - -@json_schema_type -class DefaultRAGQueryGeneratorConfig(BaseModel): - """Configuration for the default RAG query generator. - - :param type: Type of query generator, always 'default' - :param separator: String separator used to join query terms - """ - - type: Literal["default"] = "default" - separator: str = " " - - -@json_schema_type -class LLMRAGQueryGeneratorConfig(BaseModel): - """Configuration for the LLM-based RAG query generator. - - :param type: Type of query generator, always 'llm' - :param model: Name of the language model to use for query generation - :param template: Template string for formatting the query generation prompt - """ - - type: Literal["llm"] = "llm" - model: str - template: str - - -RAGQueryGeneratorConfig = Annotated[ - DefaultRAGQueryGeneratorConfig | LLMRAGQueryGeneratorConfig, - Field(discriminator="type"), -] -register_schema(RAGQueryGeneratorConfig, name="RAGQueryGeneratorConfig") - - -@json_schema_type -class RAGQueryConfig(BaseModel): - """ - Configuration for the RAG query generation. - - :param query_generator_config: Configuration for the query generator. - :param max_tokens_in_context: Maximum number of tokens in the context. - :param max_chunks: Maximum number of chunks to retrieve. - :param chunk_template: Template for formatting each retrieved chunk in the context. - Available placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk content string), {metadata} (chunk metadata dict). - Default: "Result {index}\\nContent: {chunk.content}\\nMetadata: {metadata}\\n" - :param mode: Search mode for retrieval—either "vector", "keyword", or "hybrid". Default "vector". - :param ranker: Configuration for the ranker to use in hybrid search. Defaults to RRF ranker. - """ - - # This config defines how a query is generated using the messages - # for memory bank retrieval. - query_generator_config: RAGQueryGeneratorConfig = Field(default=DefaultRAGQueryGeneratorConfig()) - max_tokens_in_context: int = 4096 - max_chunks: int = 5 - chunk_template: str = "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n" - mode: RAGSearchMode | None = RAGSearchMode.VECTOR - ranker: Ranker | None = Field(default=None) # Only used for hybrid mode - - @field_validator("chunk_template") - def validate_chunk_template(cls, v: str) -> str: - if "{chunk.content}" not in v: - raise ValueError("chunk_template must contain {chunk.content}") - if "{index}" not in v: - raise ValueError("chunk_template must contain {index}") - if len(v) == 0: - raise ValueError("chunk_template must not be empty") - return v - - -@runtime_checkable -@trace_protocol -class RAGToolRuntime(Protocol): - @webmethod(route="/tool-runtime/rag-tool/insert", method="POST", level=LLAMA_STACK_API_V1) - async def insert( - self, - documents: list[RAGDocument], - vector_db_id: str, - chunk_size_in_tokens: int = 512, - ) -> None: - """Index documents so they can be used by the RAG system. - - :param documents: List of documents to index in the RAG system - :param vector_db_id: ID of the vector database to store the document embeddings - :param chunk_size_in_tokens: (Optional) Size in tokens for document chunking during indexing - """ - ... - - @webmethod(route="/tool-runtime/rag-tool/query", method="POST", level=LLAMA_STACK_API_V1) - async def query( - self, - content: InterleavedContent, - vector_db_ids: list[str], - query_config: RAGQueryConfig | None = None, - ) -> RAGQueryResult: - """Query the RAG system for context; typically invoked by the agent. - - :param content: The query content to search for in the indexed documents - :param vector_db_ids: List of vector database IDs to search within - :param query_config: (Optional) Configuration parameters for the query operation - :returns: RAGQueryResult containing the retrieved content and metadata - """ - ... diff --git a/llama_stack/apis/tools/tools.py b/llama_stack/apis/tools/tools.py index b6a1a2543..feac0d33e 100644 --- a/llama_stack/apis/tools/tools.py +++ b/llama_stack/apis/tools/tools.py @@ -4,7 +4,6 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. -from enum import Enum from typing import Any, Literal, Protocol from pydantic import BaseModel @@ -16,8 +15,6 @@ from llama_stack.apis.version import LLAMA_STACK_API_V1 from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol from llama_stack.schema_utils import json_schema_type, webmethod -from .rag_tool import RAGToolRuntime - @json_schema_type class ToolDef(BaseModel): @@ -181,22 +178,11 @@ class ToolGroups(Protocol): ... -class SpecialToolGroup(Enum): - """Special tool groups with predefined functionality. - - :cvar rag_tool: Retrieval-Augmented Generation tool group for document search and retrieval - """ - - rag_tool = "rag_tool" - - @runtime_checkable @trace_protocol class ToolRuntime(Protocol): tool_store: ToolStore | None = None - rag_tool: RAGToolRuntime | None = None - # TODO: This needs to be renamed once OPEN API generator name conflict issue is fixed. @webmethod(route="/tool-runtime/list-tools", method="GET", level=LLAMA_STACK_API_V1) async def list_runtime_tools( diff --git a/llama_stack/core/routers/tool_runtime.py b/llama_stack/core/routers/tool_runtime.py index be4c13905..7c5bb25c6 100644 --- a/llama_stack/core/routers/tool_runtime.py +++ b/llama_stack/core/routers/tool_runtime.py @@ -8,16 +8,8 @@ from typing import Any from llama_stack.apis.common.content_types import ( URL, - InterleavedContent, -) -from llama_stack.apis.tools import ( - ListToolDefsResponse, - RAGDocument, - RAGQueryConfig, - RAGQueryResult, - RAGToolRuntime, - ToolRuntime, ) +from llama_stack.apis.tools import ListToolDefsResponse, ToolRuntime from llama_stack.log import get_logger from ..routing_tables.toolgroups import ToolGroupsRoutingTable @@ -26,36 +18,6 @@ logger = get_logger(name=__name__, category="core::routers") class ToolRuntimeRouter(ToolRuntime): - class RagToolImpl(RAGToolRuntime): - def __init__( - self, - routing_table: ToolGroupsRoutingTable, - ) -> None: - logger.debug("Initializing ToolRuntimeRouter.RagToolImpl") - self.routing_table = routing_table - - async def query( - self, - content: InterleavedContent, - vector_store_ids: list[str], - query_config: RAGQueryConfig | None = None, - ) -> RAGQueryResult: - logger.debug(f"ToolRuntimeRouter.RagToolImpl.query: {vector_store_ids}") - provider = await self.routing_table.get_provider_impl("knowledge_search") - return await provider.query(content, vector_store_ids, query_config) - - async def insert( - self, - documents: list[RAGDocument], - vector_store_id: str, - chunk_size_in_tokens: int = 512, - ) -> None: - logger.debug( - f"ToolRuntimeRouter.RagToolImpl.insert: {vector_store_id}, {len(documents)} documents, chunk_size={chunk_size_in_tokens}" - ) - provider = await self.routing_table.get_provider_impl("insert_into_memory") - return await provider.insert(documents, vector_store_id, chunk_size_in_tokens) - def __init__( self, routing_table: ToolGroupsRoutingTable, @@ -63,11 +25,6 @@ class ToolRuntimeRouter(ToolRuntime): logger.debug("Initializing ToolRuntimeRouter") self.routing_table = routing_table - # HACK ALERT this should be in sync with "get_all_api_endpoints()" - self.rag_tool = self.RagToolImpl(routing_table) - for method in ("query", "insert"): - setattr(self, f"rag_tool.{method}", getattr(self.rag_tool, method)) - async def initialize(self) -> None: logger.debug("ToolRuntimeRouter.initialize") pass diff --git a/llama_stack/core/server/routes.py b/llama_stack/core/server/routes.py index 4970d0bf8..ed76ea86f 100644 --- a/llama_stack/core/server/routes.py +++ b/llama_stack/core/server/routes.py @@ -13,7 +13,6 @@ from aiohttp import hdrs from starlette.routing import Route from llama_stack.apis.datatypes import Api, ExternalApiSpec -from llama_stack.apis.tools import RAGToolRuntime, SpecialToolGroup from llama_stack.core.resolver import api_protocol_map from llama_stack.schema_utils import WebMethod @@ -25,33 +24,16 @@ RouteImpls = dict[str, PathImpl] RouteMatch = tuple[EndpointFunc, PathParams, str, WebMethod] -def toolgroup_protocol_map(): - return { - SpecialToolGroup.rag_tool: RAGToolRuntime, - } - - def get_all_api_routes( external_apis: dict[Api, ExternalApiSpec] | None = None, ) -> dict[Api, list[tuple[Route, WebMethod]]]: apis = {} protocols = api_protocol_map(external_apis) - toolgroup_protocols = toolgroup_protocol_map() for api, protocol in protocols.items(): routes = [] protocol_methods = inspect.getmembers(protocol, predicate=inspect.isfunction) - # HACK ALERT - if api == Api.tool_runtime: - for tool_group in SpecialToolGroup: - sub_protocol = toolgroup_protocols[tool_group] - sub_protocol_methods = inspect.getmembers(sub_protocol, predicate=inspect.isfunction) - for name, method in sub_protocol_methods: - if not hasattr(method, "__webmethod__"): - continue - protocol_methods.append((f"{tool_group.value}.{name}", method)) - for name, method in protocol_methods: # Get all webmethods for this method (supports multiple decorators) webmethods = getattr(method, "__webmethods__", []) diff --git a/llama_stack/core/stack.py b/llama_stack/core/stack.py index 4cf1d072d..49100b4bc 100644 --- a/llama_stack/core/stack.py +++ b/llama_stack/core/stack.py @@ -32,7 +32,7 @@ from llama_stack.apis.scoring_functions import ScoringFunctions from llama_stack.apis.shields import Shields from llama_stack.apis.synthetic_data_generation import SyntheticDataGeneration from llama_stack.apis.telemetry import Telemetry -from llama_stack.apis.tools import RAGToolRuntime, ToolGroups, ToolRuntime +from llama_stack.apis.tools import ToolGroups, ToolRuntime from llama_stack.apis.vector_io import VectorIO from llama_stack.core.conversations.conversations import ConversationServiceConfig, ConversationServiceImpl from llama_stack.core.datatypes import Provider, StackRunConfig, VectorStoresConfig @@ -80,7 +80,6 @@ class LlamaStack( Inspect, ToolGroups, ToolRuntime, - RAGToolRuntime, Files, Prompts, Conversations, diff --git a/llama_stack/distributions/ci-tests/build.yaml b/llama_stack/distributions/ci-tests/build.yaml index c01e415a9..3cf43de15 100644 --- a/llama_stack/distributions/ci-tests/build.yaml +++ b/llama_stack/distributions/ci-tests/build.yaml @@ -48,7 +48,6 @@ distribution_spec: tool_runtime: - provider_type: remote::brave-search - provider_type: remote::tavily-search - - provider_type: inline::rag-runtime - provider_type: remote::model-context-protocol batches: - provider_type: inline::reference diff --git a/llama_stack/distributions/ci-tests/run.yaml b/llama_stack/distributions/ci-tests/run.yaml index ecf9eed3b..f403527fc 100644 --- a/llama_stack/distributions/ci-tests/run.yaml +++ b/llama_stack/distributions/ci-tests/run.yaml @@ -216,8 +216,6 @@ providers: config: api_key: ${env.TAVILY_SEARCH_API_KEY:=} max_results: 3 - - provider_id: rag-runtime - provider_type: inline::rag-runtime - provider_id: model-context-protocol provider_type: remote::model-context-protocol batches: @@ -263,8 +261,6 @@ registered_resources: tool_groups: - toolgroup_id: builtin::websearch provider_id: tavily-search - - toolgroup_id: builtin::rag - provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/dell/build.yaml b/llama_stack/distributions/dell/build.yaml index 7bc26ca9e..0275a47a1 100644 --- a/llama_stack/distributions/dell/build.yaml +++ b/llama_stack/distributions/dell/build.yaml @@ -26,7 +26,6 @@ distribution_spec: tool_runtime: - provider_type: remote::brave-search - provider_type: remote::tavily-search - - provider_type: inline::rag-runtime image_type: venv additional_pip_packages: - aiosqlite diff --git a/llama_stack/distributions/dell/dell.py b/llama_stack/distributions/dell/dell.py index 88e72688f..708ba0b10 100644 --- a/llama_stack/distributions/dell/dell.py +++ b/llama_stack/distributions/dell/dell.py @@ -45,7 +45,6 @@ def get_distribution_template() -> DistributionTemplate: "tool_runtime": [ BuildProvider(provider_type="remote::brave-search"), BuildProvider(provider_type="remote::tavily-search"), - BuildProvider(provider_type="inline::rag-runtime"), ], } name = "dell" @@ -98,10 +97,6 @@ def get_distribution_template() -> DistributionTemplate: toolgroup_id="builtin::websearch", provider_id="brave-search", ), - ToolGroupInput( - toolgroup_id="builtin::rag", - provider_id="rag-runtime", - ), ] return DistributionTemplate( diff --git a/llama_stack/distributions/dell/run-with-safety.yaml b/llama_stack/distributions/dell/run-with-safety.yaml index 2563f2f4b..062c50e2b 100644 --- a/llama_stack/distributions/dell/run-with-safety.yaml +++ b/llama_stack/distributions/dell/run-with-safety.yaml @@ -87,8 +87,6 @@ providers: config: api_key: ${env.TAVILY_SEARCH_API_KEY:=} max_results: 3 - - provider_id: rag-runtime - provider_type: inline::rag-runtime storage: backends: kv_default: @@ -133,8 +131,6 @@ registered_resources: tool_groups: - toolgroup_id: builtin::websearch provider_id: brave-search - - toolgroup_id: builtin::rag - provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/dell/run.yaml b/llama_stack/distributions/dell/run.yaml index 7bada394f..42e0658bd 100644 --- a/llama_stack/distributions/dell/run.yaml +++ b/llama_stack/distributions/dell/run.yaml @@ -83,8 +83,6 @@ providers: config: api_key: ${env.TAVILY_SEARCH_API_KEY:=} max_results: 3 - - provider_id: rag-runtime - provider_type: inline::rag-runtime storage: backends: kv_default: @@ -124,8 +122,6 @@ registered_resources: tool_groups: - toolgroup_id: builtin::websearch provider_id: brave-search - - toolgroup_id: builtin::rag - provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/meta-reference-gpu/build.yaml b/llama_stack/distributions/meta-reference-gpu/build.yaml index 1513742a7..74da29bb8 100644 --- a/llama_stack/distributions/meta-reference-gpu/build.yaml +++ b/llama_stack/distributions/meta-reference-gpu/build.yaml @@ -24,7 +24,6 @@ distribution_spec: tool_runtime: - provider_type: remote::brave-search - provider_type: remote::tavily-search - - provider_type: inline::rag-runtime - provider_type: remote::model-context-protocol image_type: venv additional_pip_packages: diff --git a/llama_stack/distributions/meta-reference-gpu/meta_reference.py b/llama_stack/distributions/meta-reference-gpu/meta_reference.py index 4e4ddef33..aa66d43a0 100644 --- a/llama_stack/distributions/meta-reference-gpu/meta_reference.py +++ b/llama_stack/distributions/meta-reference-gpu/meta_reference.py @@ -47,7 +47,6 @@ def get_distribution_template() -> DistributionTemplate: "tool_runtime": [ BuildProvider(provider_type="remote::brave-search"), BuildProvider(provider_type="remote::tavily-search"), - BuildProvider(provider_type="inline::rag-runtime"), BuildProvider(provider_type="remote::model-context-protocol"), ], } @@ -92,10 +91,6 @@ def get_distribution_template() -> DistributionTemplate: toolgroup_id="builtin::websearch", provider_id="tavily-search", ), - ToolGroupInput( - toolgroup_id="builtin::rag", - provider_id="rag-runtime", - ), ] return DistributionTemplate( diff --git a/llama_stack/distributions/meta-reference-gpu/run-with-safety.yaml b/llama_stack/distributions/meta-reference-gpu/run-with-safety.yaml index 01b5db4f9..6e74201db 100644 --- a/llama_stack/distributions/meta-reference-gpu/run-with-safety.yaml +++ b/llama_stack/distributions/meta-reference-gpu/run-with-safety.yaml @@ -98,8 +98,6 @@ providers: config: api_key: ${env.TAVILY_SEARCH_API_KEY:=} max_results: 3 - - provider_id: rag-runtime - provider_type: inline::rag-runtime - provider_id: model-context-protocol provider_type: remote::model-context-protocol storage: @@ -146,8 +144,6 @@ registered_resources: tool_groups: - toolgroup_id: builtin::websearch provider_id: tavily-search - - toolgroup_id: builtin::rag - provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/meta-reference-gpu/run.yaml b/llama_stack/distributions/meta-reference-gpu/run.yaml index 87c33dde0..92934ca74 100644 --- a/llama_stack/distributions/meta-reference-gpu/run.yaml +++ b/llama_stack/distributions/meta-reference-gpu/run.yaml @@ -88,8 +88,6 @@ providers: config: api_key: ${env.TAVILY_SEARCH_API_KEY:=} max_results: 3 - - provider_id: rag-runtime - provider_type: inline::rag-runtime - provider_id: model-context-protocol provider_type: remote::model-context-protocol storage: @@ -131,8 +129,6 @@ registered_resources: tool_groups: - toolgroup_id: builtin::websearch provider_id: tavily-search - - toolgroup_id: builtin::rag - provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/nvidia/build.yaml b/llama_stack/distributions/nvidia/build.yaml index 8ddd12439..3412ea15b 100644 --- a/llama_stack/distributions/nvidia/build.yaml +++ b/llama_stack/distributions/nvidia/build.yaml @@ -19,8 +19,7 @@ distribution_spec: - provider_type: remote::nvidia scoring: - provider_type: inline::basic - tool_runtime: - - provider_type: inline::rag-runtime + tool_runtime: [] files: - provider_type: inline::localfs image_type: venv diff --git a/llama_stack/distributions/nvidia/nvidia.py b/llama_stack/distributions/nvidia/nvidia.py index a92a2e6f8..889f83aa5 100644 --- a/llama_stack/distributions/nvidia/nvidia.py +++ b/llama_stack/distributions/nvidia/nvidia.py @@ -28,7 +28,7 @@ def get_distribution_template(name: str = "nvidia") -> DistributionTemplate: BuildProvider(provider_type="remote::nvidia"), ], "scoring": [BuildProvider(provider_type="inline::basic")], - "tool_runtime": [BuildProvider(provider_type="inline::rag-runtime")], + "tool_runtime": [], "files": [BuildProvider(provider_type="inline::localfs")], } @@ -66,12 +66,7 @@ def get_distribution_template(name: str = "nvidia") -> DistributionTemplate: provider_id="nvidia", ) - default_tool_groups = [ - ToolGroupInput( - toolgroup_id="builtin::rag", - provider_id="rag-runtime", - ), - ] + default_tool_groups: list[ToolGroupInput] = [] return DistributionTemplate( name=name, diff --git a/llama_stack/distributions/nvidia/run-with-safety.yaml b/llama_stack/distributions/nvidia/run-with-safety.yaml index c23d0f9cb..dca29ed2a 100644 --- a/llama_stack/distributions/nvidia/run-with-safety.yaml +++ b/llama_stack/distributions/nvidia/run-with-safety.yaml @@ -80,9 +80,7 @@ providers: scoring: - provider_id: basic provider_type: inline::basic - tool_runtime: - - provider_id: rag-runtime - provider_type: inline::rag-runtime + tool_runtime: [] files: - provider_id: meta-reference-files provider_type: inline::localfs @@ -128,9 +126,7 @@ registered_resources: datasets: [] scoring_fns: [] benchmarks: [] - tool_groups: - - toolgroup_id: builtin::rag - provider_id: rag-runtime + tool_groups: [] server: port: 8321 telemetry: diff --git a/llama_stack/distributions/nvidia/run.yaml b/llama_stack/distributions/nvidia/run.yaml index 81e744d53..e35d9c44c 100644 --- a/llama_stack/distributions/nvidia/run.yaml +++ b/llama_stack/distributions/nvidia/run.yaml @@ -69,9 +69,7 @@ providers: scoring: - provider_id: basic provider_type: inline::basic - tool_runtime: - - provider_id: rag-runtime - provider_type: inline::rag-runtime + tool_runtime: [] files: - provider_id: meta-reference-files provider_type: inline::localfs @@ -107,9 +105,7 @@ registered_resources: datasets: [] scoring_fns: [] benchmarks: [] - tool_groups: - - toolgroup_id: builtin::rag - provider_id: rag-runtime + tool_groups: [] server: port: 8321 telemetry: diff --git a/llama_stack/distributions/open-benchmark/build.yaml b/llama_stack/distributions/open-benchmark/build.yaml index 05acd98e3..9fc0e9eb0 100644 --- a/llama_stack/distributions/open-benchmark/build.yaml +++ b/llama_stack/distributions/open-benchmark/build.yaml @@ -28,7 +28,6 @@ distribution_spec: tool_runtime: - provider_type: remote::brave-search - provider_type: remote::tavily-search - - provider_type: inline::rag-runtime - provider_type: remote::model-context-protocol image_type: venv additional_pip_packages: diff --git a/llama_stack/distributions/open-benchmark/open_benchmark.py b/llama_stack/distributions/open-benchmark/open_benchmark.py index 2b7760894..cceec74fd 100644 --- a/llama_stack/distributions/open-benchmark/open_benchmark.py +++ b/llama_stack/distributions/open-benchmark/open_benchmark.py @@ -118,7 +118,6 @@ def get_distribution_template() -> DistributionTemplate: "tool_runtime": [ BuildProvider(provider_type="remote::brave-search"), BuildProvider(provider_type="remote::tavily-search"), - BuildProvider(provider_type="inline::rag-runtime"), BuildProvider(provider_type="remote::model-context-protocol"), ], } @@ -154,10 +153,6 @@ def get_distribution_template() -> DistributionTemplate: toolgroup_id="builtin::websearch", provider_id="tavily-search", ), - ToolGroupInput( - toolgroup_id="builtin::rag", - provider_id="rag-runtime", - ), ] models, _ = get_model_registry(available_models) diff --git a/llama_stack/distributions/open-benchmark/run.yaml b/llama_stack/distributions/open-benchmark/run.yaml index 4fd0e199b..8f63e4417 100644 --- a/llama_stack/distributions/open-benchmark/run.yaml +++ b/llama_stack/distributions/open-benchmark/run.yaml @@ -118,8 +118,6 @@ providers: config: api_key: ${env.TAVILY_SEARCH_API_KEY:=} max_results: 3 - - provider_id: rag-runtime - provider_type: inline::rag-runtime - provider_id: model-context-protocol provider_type: remote::model-context-protocol storage: @@ -244,8 +242,6 @@ registered_resources: tool_groups: - toolgroup_id: builtin::websearch provider_id: tavily-search - - toolgroup_id: builtin::rag - provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/postgres-demo/build.yaml b/llama_stack/distributions/postgres-demo/build.yaml index 063dc3999..99b4edeb3 100644 --- a/llama_stack/distributions/postgres-demo/build.yaml +++ b/llama_stack/distributions/postgres-demo/build.yaml @@ -14,7 +14,6 @@ distribution_spec: tool_runtime: - provider_type: remote::brave-search - provider_type: remote::tavily-search - - provider_type: inline::rag-runtime - provider_type: remote::model-context-protocol image_type: venv additional_pip_packages: diff --git a/llama_stack/distributions/postgres-demo/postgres_demo.py b/llama_stack/distributions/postgres-demo/postgres_demo.py index 876370ef3..9f8d35cb1 100644 --- a/llama_stack/distributions/postgres-demo/postgres_demo.py +++ b/llama_stack/distributions/postgres-demo/postgres_demo.py @@ -45,7 +45,6 @@ def get_distribution_template() -> DistributionTemplate: "tool_runtime": [ BuildProvider(provider_type="remote::brave-search"), BuildProvider(provider_type="remote::tavily-search"), - BuildProvider(provider_type="inline::rag-runtime"), BuildProvider(provider_type="remote::model-context-protocol"), ], } @@ -66,10 +65,6 @@ def get_distribution_template() -> DistributionTemplate: toolgroup_id="builtin::websearch", provider_id="tavily-search", ), - ToolGroupInput( - toolgroup_id="builtin::rag", - provider_id="rag-runtime", - ), ] default_models = [ diff --git a/llama_stack/distributions/postgres-demo/run.yaml b/llama_stack/distributions/postgres-demo/run.yaml index 0d7ecff48..67222969c 100644 --- a/llama_stack/distributions/postgres-demo/run.yaml +++ b/llama_stack/distributions/postgres-demo/run.yaml @@ -54,8 +54,6 @@ providers: config: api_key: ${env.TAVILY_SEARCH_API_KEY:=} max_results: 3 - - provider_id: rag-runtime - provider_type: inline::rag-runtime - provider_id: model-context-protocol provider_type: remote::model-context-protocol storage: @@ -107,8 +105,6 @@ registered_resources: tool_groups: - toolgroup_id: builtin::websearch provider_id: tavily-search - - toolgroup_id: builtin::rag - provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/starter-gpu/build.yaml b/llama_stack/distributions/starter-gpu/build.yaml index b2e2a0c85..678d7995d 100644 --- a/llama_stack/distributions/starter-gpu/build.yaml +++ b/llama_stack/distributions/starter-gpu/build.yaml @@ -49,7 +49,6 @@ distribution_spec: tool_runtime: - provider_type: remote::brave-search - provider_type: remote::tavily-search - - provider_type: inline::rag-runtime - provider_type: remote::model-context-protocol batches: - provider_type: inline::reference diff --git a/llama_stack/distributions/starter-gpu/run.yaml b/llama_stack/distributions/starter-gpu/run.yaml index 92483c78e..4764dc02c 100644 --- a/llama_stack/distributions/starter-gpu/run.yaml +++ b/llama_stack/distributions/starter-gpu/run.yaml @@ -219,8 +219,6 @@ providers: config: api_key: ${env.TAVILY_SEARCH_API_KEY:=} max_results: 3 - - provider_id: rag-runtime - provider_type: inline::rag-runtime - provider_id: model-context-protocol provider_type: remote::model-context-protocol batches: @@ -266,8 +264,6 @@ registered_resources: tool_groups: - toolgroup_id: builtin::websearch provider_id: tavily-search - - toolgroup_id: builtin::rag - provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/starter/build.yaml b/llama_stack/distributions/starter/build.yaml index baa80ef3e..e6cd3c688 100644 --- a/llama_stack/distributions/starter/build.yaml +++ b/llama_stack/distributions/starter/build.yaml @@ -49,7 +49,6 @@ distribution_spec: tool_runtime: - provider_type: remote::brave-search - provider_type: remote::tavily-search - - provider_type: inline::rag-runtime - provider_type: remote::model-context-protocol batches: - provider_type: inline::reference diff --git a/llama_stack/distributions/starter/run.yaml b/llama_stack/distributions/starter/run.yaml index 3b9d8f890..88358501e 100644 --- a/llama_stack/distributions/starter/run.yaml +++ b/llama_stack/distributions/starter/run.yaml @@ -216,8 +216,6 @@ providers: config: api_key: ${env.TAVILY_SEARCH_API_KEY:=} max_results: 3 - - provider_id: rag-runtime - provider_type: inline::rag-runtime - provider_id: model-context-protocol provider_type: remote::model-context-protocol batches: @@ -263,8 +261,6 @@ registered_resources: tool_groups: - toolgroup_id: builtin::websearch provider_id: tavily-search - - toolgroup_id: builtin::rag - provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/starter/starter.py b/llama_stack/distributions/starter/starter.py index c8c7101a6..bad6279bd 100644 --- a/llama_stack/distributions/starter/starter.py +++ b/llama_stack/distributions/starter/starter.py @@ -140,7 +140,6 @@ def get_distribution_template(name: str = "starter") -> DistributionTemplate: "tool_runtime": [ BuildProvider(provider_type="remote::brave-search"), BuildProvider(provider_type="remote::tavily-search"), - BuildProvider(provider_type="inline::rag-runtime"), BuildProvider(provider_type="remote::model-context-protocol"), ], "batches": [ @@ -162,10 +161,6 @@ def get_distribution_template(name: str = "starter") -> DistributionTemplate: toolgroup_id="builtin::websearch", provider_id="tavily-search", ), - ToolGroupInput( - toolgroup_id="builtin::rag", - provider_id="rag-runtime", - ), ] default_shields = [ # if the diff --git a/llama_stack/distributions/watsonx/build.yaml b/llama_stack/distributions/watsonx/build.yaml index dba1a94e2..d2c396085 100644 --- a/llama_stack/distributions/watsonx/build.yaml +++ b/llama_stack/distributions/watsonx/build.yaml @@ -23,7 +23,6 @@ distribution_spec: tool_runtime: - provider_type: remote::brave-search - provider_type: remote::tavily-search - - provider_type: inline::rag-runtime - provider_type: remote::model-context-protocol files: - provider_type: inline::localfs diff --git a/llama_stack/distributions/watsonx/run.yaml b/llama_stack/distributions/watsonx/run.yaml index ca3c8402d..ddc7e095f 100644 --- a/llama_stack/distributions/watsonx/run.yaml +++ b/llama_stack/distributions/watsonx/run.yaml @@ -83,8 +83,6 @@ providers: config: api_key: ${env.TAVILY_SEARCH_API_KEY:=} max_results: 3 - - provider_id: rag-runtime - provider_type: inline::rag-runtime - provider_id: model-context-protocol provider_type: remote::model-context-protocol files: @@ -125,8 +123,6 @@ registered_resources: tool_groups: - toolgroup_id: builtin::websearch provider_id: tavily-search - - toolgroup_id: builtin::rag - provider_id: rag-runtime server: port: 8321 telemetry: diff --git a/llama_stack/distributions/watsonx/watsonx.py b/llama_stack/distributions/watsonx/watsonx.py index d79aea872..b16f76fcb 100644 --- a/llama_stack/distributions/watsonx/watsonx.py +++ b/llama_stack/distributions/watsonx/watsonx.py @@ -33,7 +33,6 @@ def get_distribution_template(name: str = "watsonx") -> DistributionTemplate: "tool_runtime": [ BuildProvider(provider_type="remote::brave-search"), BuildProvider(provider_type="remote::tavily-search"), - BuildProvider(provider_type="inline::rag-runtime"), BuildProvider(provider_type="remote::model-context-protocol"), ], "files": [BuildProvider(provider_type="inline::localfs")], @@ -50,10 +49,6 @@ def get_distribution_template(name: str = "watsonx") -> DistributionTemplate: toolgroup_id="builtin::websearch", provider_id="tavily-search", ), - ToolGroupInput( - toolgroup_id="builtin::rag", - provider_id="rag-runtime", - ), ] files_provider = Provider( diff --git a/llama_stack/providers/inline/tool_runtime/__init__.py b/llama_stack/providers/inline/tool_runtime/__init__.py deleted file mode 100644 index 756f351d8..000000000 --- a/llama_stack/providers/inline/tool_runtime/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the terms described in the LICENSE file in -# the root directory of this source tree. diff --git a/llama_stack/providers/inline/tool_runtime/rag/__init__.py b/llama_stack/providers/inline/tool_runtime/rag/__init__.py deleted file mode 100644 index f9a7e7b89..000000000 --- a/llama_stack/providers/inline/tool_runtime/rag/__init__.py +++ /dev/null @@ -1,19 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the terms described in the LICENSE file in -# the root directory of this source tree. - -from typing import Any - -from llama_stack.providers.datatypes import Api - -from .config import RagToolRuntimeConfig - - -async def get_provider_impl(config: RagToolRuntimeConfig, deps: dict[Api, Any]): - from .memory import MemoryToolRuntimeImpl - - impl = MemoryToolRuntimeImpl(config, deps[Api.vector_io], deps[Api.inference], deps[Api.files]) - await impl.initialize() - return impl diff --git a/llama_stack/providers/inline/tool_runtime/rag/config.py b/llama_stack/providers/inline/tool_runtime/rag/config.py deleted file mode 100644 index 43ba78e65..000000000 --- a/llama_stack/providers/inline/tool_runtime/rag/config.py +++ /dev/null @@ -1,15 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the terms described in the LICENSE file in -# the root directory of this source tree. - -from typing import Any - -from pydantic import BaseModel - - -class RagToolRuntimeConfig(BaseModel): - @classmethod - def sample_run_config(cls, __distro_dir__: str, **kwargs: Any) -> dict[str, Any]: - return {} diff --git a/llama_stack/providers/inline/tool_runtime/rag/context_retriever.py b/llama_stack/providers/inline/tool_runtime/rag/context_retriever.py deleted file mode 100644 index 14cbec49d..000000000 --- a/llama_stack/providers/inline/tool_runtime/rag/context_retriever.py +++ /dev/null @@ -1,77 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the terms described in the LICENSE file in -# the root directory of this source tree. - - -from jinja2 import Template - -from llama_stack.apis.common.content_types import InterleavedContent -from llama_stack.apis.inference import OpenAIChatCompletionRequestWithExtraBody, OpenAIUserMessageParam -from llama_stack.apis.tools.rag_tool import ( - DefaultRAGQueryGeneratorConfig, - LLMRAGQueryGeneratorConfig, - RAGQueryGenerator, - RAGQueryGeneratorConfig, -) -from llama_stack.providers.utils.inference.prompt_adapter import ( - interleaved_content_as_str, -) - - -async def generate_rag_query( - config: RAGQueryGeneratorConfig, - content: InterleavedContent, - **kwargs, -): - """ - Generates a query that will be used for - retrieving relevant information from the memory bank. - """ - if config.type == RAGQueryGenerator.default.value: - query = await default_rag_query_generator(config, content, **kwargs) - elif config.type == RAGQueryGenerator.llm.value: - query = await llm_rag_query_generator(config, content, **kwargs) - else: - raise NotImplementedError(f"Unsupported memory query generator {config.type}") - return query - - -async def default_rag_query_generator( - config: DefaultRAGQueryGeneratorConfig, - content: InterleavedContent, - **kwargs, -): - return interleaved_content_as_str(content, sep=config.separator) - - -async def llm_rag_query_generator( - config: LLMRAGQueryGeneratorConfig, - content: InterleavedContent, - **kwargs, -): - assert "inference_api" in kwargs, "LLMRAGQueryGenerator needs inference_api" - inference_api = kwargs["inference_api"] - - messages = [] - if isinstance(content, list): - messages = [interleaved_content_as_str(m) for m in content] - else: - messages = [interleaved_content_as_str(content)] - - template = Template(config.template) - rendered_content: str = template.render({"messages": messages}) - - model = config.model - message = OpenAIUserMessageParam(content=rendered_content) - params = OpenAIChatCompletionRequestWithExtraBody( - model=model, - messages=[message], - stream=False, - ) - response = await inference_api.openai_chat_completion(params) - - query = response.choices[0].message.content - - return query diff --git a/llama_stack/providers/inline/tool_runtime/rag/memory.py b/llama_stack/providers/inline/tool_runtime/rag/memory.py deleted file mode 100644 index dc3dfbbca..000000000 --- a/llama_stack/providers/inline/tool_runtime/rag/memory.py +++ /dev/null @@ -1,332 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the terms described in the LICENSE file in -# the root directory of this source tree. - -import asyncio -import base64 -import io -import mimetypes -from typing import Any - -import httpx -from fastapi import UploadFile -from pydantic import TypeAdapter - -from llama_stack.apis.common.content_types import ( - URL, - InterleavedContent, - InterleavedContentItem, - TextContentItem, -) -from llama_stack.apis.files import Files, OpenAIFilePurpose -from llama_stack.apis.inference import Inference -from llama_stack.apis.tools import ( - ListToolDefsResponse, - RAGDocument, - RAGQueryConfig, - RAGQueryResult, - RAGToolRuntime, - ToolDef, - ToolGroup, - ToolInvocationResult, - ToolRuntime, -) -from llama_stack.apis.vector_io import ( - QueryChunksResponse, - VectorIO, - VectorStoreChunkingStrategyStatic, - VectorStoreChunkingStrategyStaticConfig, -) -from llama_stack.log import get_logger -from llama_stack.providers.datatypes import ToolGroupsProtocolPrivate -from llama_stack.providers.utils.inference.prompt_adapter import interleaved_content_as_str -from llama_stack.providers.utils.memory.vector_store import parse_data_url - -from .config import RagToolRuntimeConfig -from .context_retriever import generate_rag_query - -log = get_logger(name=__name__, category="tool_runtime") - - -async def raw_data_from_doc(doc: RAGDocument) -> tuple[bytes, str]: - """Get raw binary data and mime type from a RAGDocument for file upload.""" - if isinstance(doc.content, URL): - if doc.content.uri.startswith("data:"): - parts = parse_data_url(doc.content.uri) - mime_type = parts["mimetype"] - data = parts["data"] - - if parts["is_base64"]: - file_data = base64.b64decode(data) - else: - file_data = data.encode("utf-8") - - return file_data, mime_type - else: - async with httpx.AsyncClient() as client: - r = await client.get(doc.content.uri) - r.raise_for_status() - mime_type = r.headers.get("content-type", "application/octet-stream") - return r.content, mime_type - else: - if isinstance(doc.content, str): - content_str = doc.content - else: - content_str = interleaved_content_as_str(doc.content) - - if content_str.startswith("data:"): - parts = parse_data_url(content_str) - mime_type = parts["mimetype"] - data = parts["data"] - - if parts["is_base64"]: - file_data = base64.b64decode(data) - else: - file_data = data.encode("utf-8") - - return file_data, mime_type - else: - return content_str.encode("utf-8"), "text/plain" - - -class MemoryToolRuntimeImpl(ToolGroupsProtocolPrivate, ToolRuntime, RAGToolRuntime): - def __init__( - self, - config: RagToolRuntimeConfig, - vector_io_api: VectorIO, - inference_api: Inference, - files_api: Files, - ): - self.config = config - self.vector_io_api = vector_io_api - self.inference_api = inference_api - self.files_api = files_api - - async def initialize(self): - pass - - async def shutdown(self): - pass - - async def register_toolgroup(self, toolgroup: ToolGroup) -> None: - pass - - async def unregister_toolgroup(self, toolgroup_id: str) -> None: - return - - async def insert( - self, - documents: list[RAGDocument], - vector_db_id: str, - chunk_size_in_tokens: int = 512, - ) -> None: - if not documents: - return - - for doc in documents: - try: - try: - file_data, mime_type = await raw_data_from_doc(doc) - except Exception as e: - log.error(f"Failed to extract content from document {doc.document_id}: {e}") - continue - - file_extension = mimetypes.guess_extension(mime_type) or ".txt" - filename = doc.metadata.get("filename", f"{doc.document_id}{file_extension}") - - file_obj = io.BytesIO(file_data) - file_obj.name = filename - - upload_file = UploadFile(file=file_obj, filename=filename) - - try: - created_file = await self.files_api.openai_upload_file( - file=upload_file, purpose=OpenAIFilePurpose.ASSISTANTS - ) - except Exception as e: - log.error(f"Failed to upload file for document {doc.document_id}: {e}") - continue - - chunking_strategy = VectorStoreChunkingStrategyStatic( - static=VectorStoreChunkingStrategyStaticConfig( - max_chunk_size_tokens=chunk_size_in_tokens, - chunk_overlap_tokens=chunk_size_in_tokens // 4, - ) - ) - - try: - await self.vector_io_api.openai_attach_file_to_vector_store( - vector_store_id=vector_db_id, - file_id=created_file.id, - attributes=doc.metadata, - chunking_strategy=chunking_strategy, - ) - except Exception as e: - log.error( - f"Failed to attach file {created_file.id} to vector store {vector_db_id} for document {doc.document_id}: {e}" - ) - continue - - except Exception as e: - log.error(f"Unexpected error processing document {doc.document_id}: {e}") - continue - - async def query( - self, - content: InterleavedContent, - vector_db_ids: list[str], - query_config: RAGQueryConfig | None = None, - ) -> RAGQueryResult: - if not vector_db_ids: - raise ValueError( - "No vector DBs were provided to the knowledge search tool. Please provide at least one vector DB ID." - ) - - query_config = query_config or RAGQueryConfig() - query = await generate_rag_query( - query_config.query_generator_config, - content, - inference_api=self.inference_api, - ) - tasks = [ - self.vector_io_api.query_chunks( - vector_db_id=vector_db_id, - query=query, - params={ - "mode": query_config.mode, - "max_chunks": query_config.max_chunks, - "score_threshold": 0.0, - "ranker": query_config.ranker, - }, - ) - for vector_db_id in vector_db_ids - ] - results: list[QueryChunksResponse] = await asyncio.gather(*tasks) - - chunks = [] - scores = [] - - for vector_db_id, result in zip(vector_db_ids, results, strict=False): - for chunk, score in zip(result.chunks, result.scores, strict=False): - if not hasattr(chunk, "metadata") or chunk.metadata is None: - chunk.metadata = {} - chunk.metadata["vector_db_id"] = vector_db_id - - chunks.append(chunk) - scores.append(score) - - if not chunks: - return RAGQueryResult(content=None) - - # sort by score - chunks, scores = zip(*sorted(zip(chunks, scores, strict=False), key=lambda x: x[1], reverse=True), strict=False) # type: ignore - chunks = chunks[: query_config.max_chunks] - - tokens = 0 - picked: list[InterleavedContentItem] = [ - TextContentItem( - text=f"knowledge_search tool found {len(chunks)} chunks:\nBEGIN of knowledge_search tool results.\n" - ) - ] - for i, chunk in enumerate(chunks): - metadata = chunk.metadata - tokens += metadata.get("token_count", 0) - tokens += metadata.get("metadata_token_count", 0) - - if tokens > query_config.max_tokens_in_context: - log.error( - f"Using {len(picked)} chunks; reached max tokens in context: {tokens}", - ) - break - - # Add useful keys from chunk_metadata to metadata and remove some from metadata - chunk_metadata_keys_to_include_from_context = [ - "chunk_id", - "document_id", - "source", - ] - metadata_keys_to_exclude_from_context = [ - "token_count", - "metadata_token_count", - "vector_db_id", - ] - metadata_for_context = {} - for k in chunk_metadata_keys_to_include_from_context: - metadata_for_context[k] = getattr(chunk.chunk_metadata, k) - for k in metadata: - if k not in metadata_keys_to_exclude_from_context: - metadata_for_context[k] = metadata[k] - - text_content = query_config.chunk_template.format(index=i + 1, chunk=chunk, metadata=metadata_for_context) - picked.append(TextContentItem(text=text_content)) - - picked.append(TextContentItem(text="END of knowledge_search tool results.\n")) - picked.append( - TextContentItem( - text=f'The above results were retrieved to help answer the user\'s query: "{interleaved_content_as_str(content)}". Use them as supporting information only in answering this query.\n', - ) - ) - - return RAGQueryResult( - content=picked, - metadata={ - "document_ids": [c.document_id for c in chunks[: len(picked)]], - "chunks": [c.content for c in chunks[: len(picked)]], - "scores": scores[: len(picked)], - "vector_db_ids": [c.metadata["vector_db_id"] for c in chunks[: len(picked)]], - }, - ) - - async def list_runtime_tools( - self, tool_group_id: str | None = None, mcp_endpoint: URL | None = None - ) -> ListToolDefsResponse: - # Parameters are not listed since these methods are not yet invoked automatically - # by the LLM. The method is only implemented so things like /tools can list without - # encountering fatals. - return ListToolDefsResponse( - data=[ - ToolDef( - name="insert_into_memory", - description="Insert documents into memory", - ), - ToolDef( - name="knowledge_search", - description="Search for information in a database.", - input_schema={ - "type": "object", - "properties": { - "query": { - "type": "string", - "description": "The query to search for. Can be a natural language sentence or keywords.", - } - }, - "required": ["query"], - }, - ), - ] - ) - - async def invoke_tool(self, tool_name: str, kwargs: dict[str, Any]) -> ToolInvocationResult: - vector_db_ids = kwargs.get("vector_db_ids", []) - query_config = kwargs.get("query_config") - if query_config: - query_config = TypeAdapter(RAGQueryConfig).validate_python(query_config) - else: - query_config = RAGQueryConfig() - - query = kwargs["query"] - result = await self.query( - content=query, - vector_db_ids=vector_db_ids, - query_config=query_config, - ) - - return ToolInvocationResult( - content=result.content or [], - metadata={ - **(result.metadata or {}), - "citation_files": getattr(result, "citation_files", None), - }, - ) diff --git a/llama_stack/providers/registry/inference.py b/llama_stack/providers/registry/inference.py index 35afb296d..2e52e2d12 100644 --- a/llama_stack/providers/registry/inference.py +++ b/llama_stack/providers/registry/inference.py @@ -42,6 +42,7 @@ def available_providers() -> list[ProviderSpec]: # CrossEncoder depends on torchao.quantization pip_packages=[ "torch torchvision torchao>=0.12.0 --extra-index-url https://download.pytorch.org/whl/cpu", + "numpy tqdm transformers", "sentence-transformers --no-deps", # required by some SentenceTransformers architectures for tensor rearrange/merge ops "einops", diff --git a/llama_stack/providers/registry/tool_runtime.py b/llama_stack/providers/registry/tool_runtime.py index 39dc7fccd..514d9d0a0 100644 --- a/llama_stack/providers/registry/tool_runtime.py +++ b/llama_stack/providers/registry/tool_runtime.py @@ -7,33 +7,13 @@ from llama_stack.providers.datatypes import ( Api, - InlineProviderSpec, ProviderSpec, RemoteProviderSpec, ) -from llama_stack.providers.registry.vector_io import DEFAULT_VECTOR_IO_DEPS def available_providers() -> list[ProviderSpec]: return [ - InlineProviderSpec( - api=Api.tool_runtime, - provider_type="inline::rag-runtime", - pip_packages=DEFAULT_VECTOR_IO_DEPS - + [ - "tqdm", - "numpy", - "scikit-learn", - "scipy", - "nltk", - "sentencepiece", - "transformers", - ], - module="llama_stack.providers.inline.tool_runtime.rag", - config_class="llama_stack.providers.inline.tool_runtime.rag.config.RagToolRuntimeConfig", - api_dependencies=[Api.vector_io, Api.inference, Api.files], - description="RAG (Retrieval-Augmented Generation) tool runtime for document ingestion, chunking, and semantic search.", - ), RemoteProviderSpec( api=Api.tool_runtime, adapter_type="brave-search", diff --git a/llama_stack/providers/registry/vector_io.py b/llama_stack/providers/registry/vector_io.py index ff3b8486f..db81ea35d 100644 --- a/llama_stack/providers/registry/vector_io.py +++ b/llama_stack/providers/registry/vector_io.py @@ -119,7 +119,7 @@ Datasets that can fit in memory, frequent reads | Faiss | Optimized for speed, i #### Empirical Example Consider the histogram below in which 10,000 randomly generated strings were inserted -in batches of 100 into both Faiss and sqlite-vec using `client.tool_runtime.rag_tool.insert()`. +in batches of 100 into both Faiss and sqlite-vec. ```{image} ../../../../_static/providers/vector_io/write_time_comparison_sqlite-vec-faiss.png :alt: Comparison of SQLite-Vec and Faiss write times diff --git a/llama_stack/providers/utils/memory/vector_store.py b/llama_stack/providers/utils/memory/vector_store.py index 6c8746e92..9e9c9a08a 100644 --- a/llama_stack/providers/utils/memory/vector_store.py +++ b/llama_stack/providers/utils/memory/vector_store.py @@ -12,17 +12,14 @@ from dataclasses import dataclass from typing import Any from urllib.parse import unquote -import httpx import numpy as np from numpy.typing import NDArray from pydantic import BaseModel from llama_stack.apis.common.content_types import ( - URL, InterleavedContent, ) from llama_stack.apis.inference import OpenAIEmbeddingsRequestWithExtraBody -from llama_stack.apis.tools import RAGDocument from llama_stack.apis.vector_io import Chunk, ChunkMetadata, QueryChunksResponse from llama_stack.apis.vector_stores import VectorStore from llama_stack.log import get_logger @@ -129,31 +126,6 @@ def content_from_data_and_mime_type(data: bytes | str, mime_type: str | None, en return "" -async def content_from_doc(doc: RAGDocument) -> str: - if isinstance(doc.content, URL): - if doc.content.uri.startswith("data:"): - return content_from_data(doc.content.uri) - async with httpx.AsyncClient() as client: - r = await client.get(doc.content.uri) - if doc.mime_type == "application/pdf": - return parse_pdf(r.content) - return r.text - elif isinstance(doc.content, str): - pattern = re.compile("^(https?://|file://|data:)") - if pattern.match(doc.content): - if doc.content.startswith("data:"): - return content_from_data(doc.content) - async with httpx.AsyncClient() as client: - r = await client.get(doc.content) - if doc.mime_type == "application/pdf": - return parse_pdf(r.content) - return r.text - return doc.content - else: - # will raise ValueError if the content is not List[InterleavedContent] or InterleavedContent - return interleaved_content_as_str(doc.content) - - def make_overlapped_chunks( document_id: str, text: str, window_len: int, overlap_len: int, metadata: dict[str, Any] ) -> list[Chunk]: diff --git a/tests/unit/providers/utils/memory/test_vector_store.py b/tests/unit/providers/utils/memory/test_vector_store.py index 590bdd1d2..3a5cd5bf7 100644 --- a/tests/unit/providers/utils/memory/test_vector_store.py +++ b/tests/unit/providers/utils/memory/test_vector_store.py @@ -4,138 +4,11 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. -from unittest.mock import AsyncMock, MagicMock, patch +from unittest.mock import patch import pytest -from llama_stack.apis.common.content_types import URL, TextContentItem -from llama_stack.apis.tools import RAGDocument -from llama_stack.providers.utils.memory.vector_store import content_from_data_and_mime_type, content_from_doc - - -async def test_content_from_doc_with_url(): - """Test extracting content from RAGDocument with URL content.""" - mock_url = URL(uri="https://example.com") - mock_doc = RAGDocument(document_id="foo", content=mock_url) - - mock_response = MagicMock() - mock_response.text = "Sample content from URL" - - with patch("httpx.AsyncClient") as mock_client: - mock_instance = AsyncMock() - mock_instance.get.return_value = mock_response - mock_client.return_value.__aenter__.return_value = mock_instance - - result = await content_from_doc(mock_doc) - - assert result == "Sample content from URL" - mock_instance.get.assert_called_once_with(mock_url.uri) - - -async def test_content_from_doc_with_pdf_url(): - """Test extracting content from RAGDocument with URL pointing to a PDF.""" - mock_url = URL(uri="https://example.com/document.pdf") - mock_doc = RAGDocument(document_id="foo", content=mock_url, mime_type="application/pdf") - - mock_response = MagicMock() - mock_response.content = b"PDF binary data" - - with ( - patch("httpx.AsyncClient") as mock_client, - patch("llama_stack.providers.utils.memory.vector_store.parse_pdf") as mock_parse_pdf, - ): - mock_instance = AsyncMock() - mock_instance.get.return_value = mock_response - mock_client.return_value.__aenter__.return_value = mock_instance - mock_parse_pdf.return_value = "Extracted PDF content" - - result = await content_from_doc(mock_doc) - - assert result == "Extracted PDF content" - mock_instance.get.assert_called_once_with(mock_url.uri) - mock_parse_pdf.assert_called_once_with(b"PDF binary data") - - -async def test_content_from_doc_with_data_url(): - """Test extracting content from RAGDocument with data URL content.""" - data_url = "data:text/plain;base64,SGVsbG8gV29ybGQ=" # "Hello World" base64 encoded - mock_url = URL(uri=data_url) - mock_doc = RAGDocument(document_id="foo", content=mock_url) - - with patch("llama_stack.providers.utils.memory.vector_store.content_from_data") as mock_content_from_data: - mock_content_from_data.return_value = "Hello World" - - result = await content_from_doc(mock_doc) - - assert result == "Hello World" - mock_content_from_data.assert_called_once_with(data_url) - - -async def test_content_from_doc_with_string(): - """Test extracting content from RAGDocument with string content.""" - content_string = "This is plain text content" - mock_doc = RAGDocument(document_id="foo", content=content_string) - - result = await content_from_doc(mock_doc) - - assert result == content_string - - -async def test_content_from_doc_with_string_url(): - """Test extracting content from RAGDocument with string URL content.""" - url_string = "https://example.com" - mock_doc = RAGDocument(document_id="foo", content=url_string) - - mock_response = MagicMock() - mock_response.text = "Sample content from URL string" - - with patch("httpx.AsyncClient") as mock_client: - mock_instance = AsyncMock() - mock_instance.get.return_value = mock_response - mock_client.return_value.__aenter__.return_value = mock_instance - - result = await content_from_doc(mock_doc) - - assert result == "Sample content from URL string" - mock_instance.get.assert_called_once_with(url_string) - - -async def test_content_from_doc_with_string_pdf_url(): - """Test extracting content from RAGDocument with string URL pointing to a PDF.""" - url_string = "https://example.com/document.pdf" - mock_doc = RAGDocument(document_id="foo", content=url_string, mime_type="application/pdf") - - mock_response = MagicMock() - mock_response.content = b"PDF binary data" - - with ( - patch("httpx.AsyncClient") as mock_client, - patch("llama_stack.providers.utils.memory.vector_store.parse_pdf") as mock_parse_pdf, - ): - mock_instance = AsyncMock() - mock_instance.get.return_value = mock_response - mock_client.return_value.__aenter__.return_value = mock_instance - mock_parse_pdf.return_value = "Extracted PDF content from string URL" - - result = await content_from_doc(mock_doc) - - assert result == "Extracted PDF content from string URL" - mock_instance.get.assert_called_once_with(url_string) - mock_parse_pdf.assert_called_once_with(b"PDF binary data") - - -async def test_content_from_doc_with_interleaved_content(): - """Test extracting content from RAGDocument with InterleavedContent (the new case added in the commit).""" - interleaved_content = [TextContentItem(text="First item"), TextContentItem(text="Second item")] - mock_doc = RAGDocument(document_id="foo", content=interleaved_content) - - with patch("llama_stack.providers.utils.memory.vector_store.interleaved_content_as_str") as mock_interleaved: - mock_interleaved.return_value = "First item\nSecond item" - - result = await content_from_doc(mock_doc) - - assert result == "First item\nSecond item" - mock_interleaved.assert_called_once_with(interleaved_content) +from llama_stack.providers.utils.memory.vector_store import content_from_data_and_mime_type def test_content_from_data_and_mime_type_success_utf8(): @@ -178,41 +51,3 @@ def test_content_from_data_and_mime_type_both_encodings_fail(): # Should raise an exception instead of returning empty string with pytest.raises(UnicodeDecodeError): content_from_data_and_mime_type(data, mime_type) - - -async def test_memory_tool_error_handling(): - """Test that memory tool handles various failures gracefully without crashing.""" - from llama_stack.providers.inline.tool_runtime.rag.config import RagToolRuntimeConfig - from llama_stack.providers.inline.tool_runtime.rag.memory import MemoryToolRuntimeImpl - - config = RagToolRuntimeConfig() - memory_tool = MemoryToolRuntimeImpl( - config=config, - vector_io_api=AsyncMock(), - inference_api=AsyncMock(), - files_api=AsyncMock(), - ) - - docs = [ - RAGDocument(document_id="good_doc", content="Good content", metadata={}), - RAGDocument(document_id="bad_url_doc", content=URL(uri="https://bad.url"), metadata={}), - RAGDocument(document_id="another_good_doc", content="Another good content", metadata={}), - ] - - mock_file1 = MagicMock() - mock_file1.id = "file_good1" - mock_file2 = MagicMock() - mock_file2.id = "file_good2" - memory_tool.files_api.openai_upload_file.side_effect = [mock_file1, mock_file2] - - with patch("httpx.AsyncClient") as mock_client: - mock_instance = AsyncMock() - mock_instance.get.side_effect = Exception("Bad URL") - mock_client.return_value.__aenter__.return_value = mock_instance - - # won't raise exception despite one document failing - await memory_tool.insert(docs, "vector_store_123") - - # processed 2 documents successfully, skipped 1 - assert memory_tool.files_api.openai_upload_file.call_count == 2 - assert memory_tool.vector_io_api.openai_attach_file_to_vector_store.call_count == 2 diff --git a/tests/unit/rag/test_rag_query.py b/tests/unit/rag/test_rag_query.py deleted file mode 100644 index c012bc4f0..000000000 --- a/tests/unit/rag/test_rag_query.py +++ /dev/null @@ -1,138 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the terms described in the LICENSE file in -# the root directory of this source tree. - -from unittest.mock import AsyncMock, MagicMock - -import pytest - -from llama_stack.apis.tools.rag_tool import RAGQueryConfig -from llama_stack.apis.vector_io import ( - Chunk, - ChunkMetadata, - QueryChunksResponse, -) -from llama_stack.providers.inline.tool_runtime.rag.memory import MemoryToolRuntimeImpl - - -class TestRagQuery: - async def test_query_raises_on_empty_vector_store_ids(self): - rag_tool = MemoryToolRuntimeImpl( - config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock(), files_api=MagicMock() - ) - with pytest.raises(ValueError): - await rag_tool.query(content=MagicMock(), vector_db_ids=[]) - - async def test_query_chunk_metadata_handling(self): - rag_tool = MemoryToolRuntimeImpl( - config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock(), files_api=MagicMock() - ) - content = "test query content" - vector_db_ids = ["db1"] - - chunk_metadata = ChunkMetadata( - document_id="doc1", - chunk_id="chunk1", - source="test_source", - metadata_token_count=5, - ) - interleaved_content = MagicMock() - chunk = Chunk( - content=interleaved_content, - metadata={ - "key1": "value1", - "token_count": 10, - "metadata_token_count": 5, - # Note this is inserted into `metadata` during MemoryToolRuntimeImpl().insert() - "document_id": "doc1", - }, - stored_chunk_id="chunk1", - chunk_metadata=chunk_metadata, - ) - - query_response = QueryChunksResponse(chunks=[chunk], scores=[1.0]) - - rag_tool.vector_io_api.query_chunks = AsyncMock(return_value=query_response) - result = await rag_tool.query(content=content, vector_db_ids=vector_db_ids) - - assert result is not None - expected_metadata_string = ( - "Metadata: {'chunk_id': 'chunk1', 'document_id': 'doc1', 'source': 'test_source', 'key1': 'value1'}" - ) - assert expected_metadata_string in result.content[1].text - assert result.content is not None - - async def test_query_raises_incorrect_mode(self): - with pytest.raises(ValueError): - RAGQueryConfig(mode="invalid_mode") - - async def test_query_accepts_valid_modes(self): - default_config = RAGQueryConfig() # Test default (vector) - assert default_config.mode == "vector" - vector_config = RAGQueryConfig(mode="vector") # Test vector - assert vector_config.mode == "vector" - keyword_config = RAGQueryConfig(mode="keyword") # Test keyword - assert keyword_config.mode == "keyword" - hybrid_config = RAGQueryConfig(mode="hybrid") # Test hybrid - assert hybrid_config.mode == "hybrid" - - # Test that invalid mode raises an error - with pytest.raises(ValueError): - RAGQueryConfig(mode="wrong_mode") - - async def test_query_adds_vector_store_id_to_chunk_metadata(self): - rag_tool = MemoryToolRuntimeImpl( - config=MagicMock(), - vector_io_api=MagicMock(), - inference_api=MagicMock(), - files_api=MagicMock(), - ) - - vector_db_ids = ["db1", "db2"] - - # Fake chunks from each DB - chunk_metadata1 = ChunkMetadata( - document_id="doc1", - chunk_id="chunk1", - source="test_source1", - metadata_token_count=5, - ) - chunk1 = Chunk( - content="chunk from db1", - metadata={"vector_db_id": "db1", "document_id": "doc1"}, - stored_chunk_id="c1", - chunk_metadata=chunk_metadata1, - ) - - chunk_metadata2 = ChunkMetadata( - document_id="doc2", - chunk_id="chunk2", - source="test_source2", - metadata_token_count=5, - ) - chunk2 = Chunk( - content="chunk from db2", - metadata={"vector_db_id": "db2", "document_id": "doc2"}, - stored_chunk_id="c2", - chunk_metadata=chunk_metadata2, - ) - - rag_tool.vector_io_api.query_chunks = AsyncMock( - side_effect=[ - QueryChunksResponse(chunks=[chunk1], scores=[0.9]), - QueryChunksResponse(chunks=[chunk2], scores=[0.8]), - ] - ) - - result = await rag_tool.query(content="test", vector_db_ids=vector_db_ids) - returned_chunks = result.metadata["chunks"] - returned_scores = result.metadata["scores"] - returned_doc_ids = result.metadata["document_ids"] - returned_vector_db_ids = result.metadata["vector_db_ids"] - - assert returned_chunks == ["chunk from db1", "chunk from db2"] - assert returned_scores == (0.9, 0.8) - assert returned_doc_ids == ["doc1", "doc2"] - assert returned_vector_db_ids == ["db1", "db2"] diff --git a/tests/unit/rag/test_vector_store.py b/tests/unit/rag/test_vector_store.py index 200da5c26..e185b83e7 100644 --- a/tests/unit/rag/test_vector_store.py +++ b/tests/unit/rag/test_vector_store.py @@ -4,10 +4,6 @@ # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. -import base64 -import mimetypes -import os -from pathlib import Path from unittest.mock import AsyncMock, MagicMock import numpy as np @@ -17,37 +13,13 @@ from llama_stack.apis.inference.inference import ( OpenAIEmbeddingData, OpenAIEmbeddingsRequestWithExtraBody, ) -from llama_stack.apis.tools import RAGDocument from llama_stack.apis.vector_io import Chunk from llama_stack.providers.utils.memory.vector_store import ( - URL, VectorStoreWithIndex, _validate_embedding, - content_from_doc, make_overlapped_chunks, ) -DUMMY_PDF_PATH = Path(os.path.abspath(__file__)).parent / "fixtures" / "dummy.pdf" -# Depending on the machine, this can get parsed a couple of ways -DUMMY_PDF_TEXT_CHOICES = ["Dummy PDF file", "Dumm y PDF file"] - - -def read_file(file_path: str) -> bytes: - with open(file_path, "rb") as file: - return file.read() - - -def data_url_from_file(file_path: str) -> str: - with open(file_path, "rb") as file: - file_content = file.read() - - base64_content = base64.b64encode(file_content).decode("utf-8") - mime_type, _ = mimetypes.guess_type(file_path) - - data_url = f"data:{mime_type};base64,{base64_content}" - - return data_url - class TestChunk: def test_chunk(self): @@ -116,45 +88,6 @@ class TestValidateEmbedding: class TestVectorStore: - async def test_returns_content_from_pdf_data_uri(self): - data_uri = data_url_from_file(DUMMY_PDF_PATH) - doc = RAGDocument( - document_id="dummy", - content=data_uri, - mime_type="application/pdf", - metadata={}, - ) - content = await content_from_doc(doc) - assert content in DUMMY_PDF_TEXT_CHOICES - - @pytest.mark.allow_network - async def test_downloads_pdf_and_returns_content(self): - # Using GitHub to host the PDF file - url = "https://raw.githubusercontent.com/meta-llama/llama-stack/da035d69cfca915318eaf485770a467ca3c2a238/llama_stack/providers/tests/memory/fixtures/dummy.pdf" - doc = RAGDocument( - document_id="dummy", - content=url, - mime_type="application/pdf", - metadata={}, - ) - content = await content_from_doc(doc) - assert content in DUMMY_PDF_TEXT_CHOICES - - @pytest.mark.allow_network - async def test_downloads_pdf_and_returns_content_with_url_object(self): - # Using GitHub to host the PDF file - url = "https://raw.githubusercontent.com/meta-llama/llama-stack/da035d69cfca915318eaf485770a467ca3c2a238/llama_stack/providers/tests/memory/fixtures/dummy.pdf" - doc = RAGDocument( - document_id="dummy", - content=URL( - uri=url, - ), - mime_type="application/pdf", - metadata={}, - ) - content = await content_from_doc(doc) - assert content in DUMMY_PDF_TEXT_CHOICES - @pytest.mark.parametrize( "window_len, overlap_len, expected_chunks", [ From 9191005ca122b3945d239536be48b8b807832b03 Mon Sep 17 00:00:00 2001 From: Ashwin Bharambe Date: Mon, 20 Oct 2025 22:28:55 -0700 Subject: [PATCH 41/41] fix(ci): dump server/container logs when tests fail (#3873) Output last 100 lines of server.log or docker container logs when integration tests fail to aid debugging. --- scripts/integration-tests.sh | 15 +++++++++++++++ 1 file changed, 15 insertions(+) diff --git a/scripts/integration-tests.sh b/scripts/integration-tests.sh index 99db89742..93739052b 100755 --- a/scripts/integration-tests.sh +++ b/scripts/integration-tests.sh @@ -410,6 +410,21 @@ elif [ $exit_code -eq 5 ]; then echo "⚠️ No tests collected (pattern matched no tests)" else echo "❌ Tests failed" + echo "" + echo "=== Dumping last 100 lines of logs for debugging ===" + + # Output server or container logs based on stack config + if [[ "$STACK_CONFIG" == *"server:"* && -f "server.log" ]]; then + echo "--- Last 100 lines of server.log ---" + tail -100 server.log + elif [[ "$STACK_CONFIG" == *"docker:"* ]]; then + docker_log_file="docker-${DISTRO}-${INFERENCE_MODE}.log" + if [[ -f "$docker_log_file" ]]; then + echo "--- Last 100 lines of $docker_log_file ---" + tail -100 "$docker_log_file" + fi + fi + exit 1 fi