# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import logging import warnings from collections.abc import AsyncIterator from openai import APIConnectionError, BadRequestError, AsyncOpenAI from llama_stack.apis.common.content_types import ( InterleavedContent, InterleavedContentItem, TextContentItem, ) from llama_stack.apis.inference import ( ChatCompletionRequest, ChatCompletionResponse, ChatCompletionResponseStreamChunk, CompletionRequest, CompletionResponse, CompletionResponseStreamChunk, EmbeddingsResponse, EmbeddingTaskType, Inference, LogProbConfig, Message, ModelStore, ResponseFormat, SamplingParams, TextTruncation, ToolChoice, ToolConfig, ) from llama_stack.apis.models import Model, ModelType from llama_stack.models.llama.datatypes import ToolDefinition, ToolPromptFormat from llama_stack.providers.datatypes import ( HealthResponse, HealthStatus, ModelsProtocolPrivate, ) from llama_stack.providers.utils.inference.model_registry import ( ModelRegistryHelper, ) from llama_stack.providers.utils.inference.openai_compat import ( convert_openai_chat_completion_choice, convert_openai_chat_completion_stream, ) from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin from llama_stack.providers.utils.inference.prompt_adapter import content_has_media from . import NVIDIAConfig from .models import MODEL_ENTRIES from .openai_utils import ( convert_chat_completion_request, convert_completion_request, convert_openai_completion_choice, convert_openai_completion_stream, ) from .utils import _is_nvidia_hosted logger = logging.getLogger(__name__) class NVIDIAInferenceAdapter(OpenAIMixin, Inference, ModelRegistryHelper, ModelsProtocolPrivate): """ NVIDIA Inference Adapter for Llama Stack. Note: The inheritance order is important here. OpenAIMixin must come before ModelRegistryHelper to ensure that OpenAIMixin.check_model_availability() is used instead of ModelRegistryHelper.check_model_availability(). It also must come before Inference to ensure that OpenAIMixin methods are available in the Inference interface. - OpenAIMixin.check_model_availability() queries the NVIDIA API to check if a model exists - ModelRegistryHelper.check_model_availability() just returns False and shows a warning """ # automatically set by the resolver when instantiating the provider __provider_id__: str model_store: ModelStore | None = None def __init__(self, config: NVIDIAConfig) -> None: # TODO(mf): filter by available models ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES) logger.info(f"Initializing NVIDIAInferenceAdapter({config.url})...") if _is_nvidia_hosted(config): if not config.api_key: raise RuntimeError( "API key is required for hosted NVIDIA NIM. Either provide an API key or use a self-hosted NIM." ) # elif self._config.api_key: # # we don't raise this warning because a user may have deployed their # self-hosted NIM with an API key requirement. # # warnings.warn( # "API key is not required for self-hosted NVIDIA NIM. " # "Consider removing the api_key from the configuration." # ) self._config = config self._client = None def get_api_key(self) -> str: """ Get the API key for OpenAI mixin. :return: The NVIDIA API key """ return self._config.api_key.get_secret_value() if self._config.api_key else "NO KEY" def get_base_url(self) -> str: """ Get the base URL for OpenAI mixin. :return: The NVIDIA API base URL """ return f"{self._config.url}/v1" if self._config.append_api_version else self._config.url @property def client(self): """ Get the OpenAI client. :return: The OpenAI client """ self._lazy_initialize_client() return self._client def _lazy_initialize_client(self): """ Initialize the OpenAI client if it hasn't been initialized yet. """ if self._client is not None: return logger.info(f"Initializing NVIDIA client with base_url={self.get_base_url()}") self._client = AsyncOpenAI( base_url=self.get_base_url(), api_key=self.get_api_key(), ) async def initialize(self) -> None: """ Initialize the NVIDIA adapter. """ if not self._config.url: raise ValueError( "You must provide a URL in run.yaml (or via the NVIDIA_BASE_URL environment variable) to use NVIDIA NIM." ) async def should_refresh_models(self) -> bool: """ Determine if models should be refreshed. :return: True if models should be refreshed, False otherwise """ # Always refresh models to ensure we have the latest available models return True async def list_models(self) -> list[Model] | None: """ List all models available from the NVIDIA API. :return: A list of available models """ self._lazy_initialize_client() models = [] try: async for m in self.client.models.list(): # Determine model type based on model ID or capabilities # This is a simple heuristic and might need refinement model_type = ModelType.llm if "embed" in m.id.lower(): model_type = ModelType.embedding models.append( Model( identifier=m.id, provider_resource_id=m.id, provider_id=self.__provider_id__, metadata={}, model_type=model_type, ) ) return models except Exception as e: logger.warning(f"Failed to list models from NVIDIA API: {e}") return None async def register_model(self, model: Model) -> Model: """ Register a model with the NVIDIA adapter. :param model: The model to register :return: The registered model """ self._lazy_initialize_client() try: # First try to register using the static model entries model = await ModelRegistryHelper.register_model(self, model) except ValueError: pass # Ignore statically unknown model, will check live listing try: # Check if the model is available on the NVIDIA server available_models = [m.id async for m in self.client.models.list()] if model.provider_resource_id not in available_models: raise ValueError( f"Model {model.provider_resource_id} is not being served by NVIDIA NIM. " f"Available models: {', '.join(available_models)}" ) except APIConnectionError as e: raise ValueError( f"Failed to connect to NVIDIA NIM at {self._config.url}. Please check if NVIDIA NIM is running and accessible at that URL." ) from e return model async def unregister_model(self, model_id: str) -> None: """ Unregister a model from the NVIDIA adapter. :param model_id: The ID of the model to unregister """ pass async def health(self) -> HealthResponse: """ Performs a health check by verifying connectivity to the remote NVIDIA NIM server. This method is used by the Provider API to verify that the service is running correctly. :return: A HealthResponse object indicating the health status """ try: client = AsyncOpenAI( base_url=self.get_base_url(), api_key=self.get_api_key(), ) if self._client is None else self._client _ = [m async for m in client.models.list()] # Ensure the client is initialized return HealthResponse(status=HealthStatus.OK) except Exception as e: return HealthResponse(status=HealthStatus.ERROR, message=f"Health check failed: {str(e)}") async def _get_model(self, model_id: str) -> Model: """ Get a model by ID. :param model_id: The ID of the model to get :return: The model """ if not self.model_store: raise ValueError("Model store not set") return await self.model_store.get_model(model_id) async def shutdown(self) -> None: """ Shutdown the NVIDIA adapter. """ pass async def completion( self, model_id: str, content: InterleavedContent, sampling_params: SamplingParams | None = None, response_format: ResponseFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, suffix: str | None = None, ) -> CompletionResponse | AsyncIterator[CompletionResponseStreamChunk]: if sampling_params is None: sampling_params = SamplingParams() if content_has_media(content): raise NotImplementedError("Media is not supported") # ToDo: check health of NeMo endpoints and enable this # removing this health check as NeMo customizer endpoint health check is returning 404 # await check_health(self._config) # this raises errors self._lazy_initialize_client() provider_model_id = await self._get_provider_model_id(model_id) request = convert_completion_request( request=CompletionRequest( model=provider_model_id, content=content, sampling_params=sampling_params, response_format=response_format, stream=stream, logprobs=logprobs, suffix=suffix, ), n=1, ) try: response = await self.client.completions.create(**request) except APIConnectionError as e: raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e if stream: return convert_openai_completion_stream(response) else: # we pass n=1 to get only one completion return convert_openai_completion_choice(response.choices[0]) async def embeddings( self, model_id: str, contents: list[str] | list[InterleavedContentItem], text_truncation: TextTruncation | None = TextTruncation.none, output_dimension: int | None = None, task_type: EmbeddingTaskType | None = None, ) -> EmbeddingsResponse: if any(content_has_media(content) for content in contents): raise NotImplementedError("Media is not supported") # # Llama Stack: contents = list[str] | list[InterleavedContentItem] # -> # OpenAI: input = str | list[str] # # we can ignore str and always pass list[str] to OpenAI # self._lazy_initialize_client() flat_contents = [content.text if isinstance(content, TextContentItem) else content for content in contents] input = [content.text if isinstance(content, TextContentItem) else content for content in flat_contents] provider_model_id = await self._get_provider_model_id(model_id) extra_body = {} if text_truncation is not None: text_truncation_options = { TextTruncation.none: "NONE", TextTruncation.end: "END", TextTruncation.start: "START", } extra_body["truncate"] = text_truncation_options[text_truncation] if output_dimension is not None: extra_body["dimensions"] = output_dimension if task_type is not None: task_type_options = { EmbeddingTaskType.document: "passage", EmbeddingTaskType.query: "query", } extra_body["input_type"] = task_type_options[task_type] try: response = await self.client.embeddings.create( model=provider_model_id, input=input, extra_body=extra_body, ) except BadRequestError as e: raise ValueError(f"Failed to get embeddings: {e}") from e # # OpenAI: CreateEmbeddingResponse(data=[Embedding(embedding=list[float], ...)], ...) # -> # Llama Stack: EmbeddingsResponse(embeddings=list[list[float]]) # return EmbeddingsResponse(embeddings=[embedding.embedding for embedding in response.data]) async def chat_completion( self, model_id: str, messages: list[Message], sampling_params: SamplingParams | None = None, response_format: ResponseFormat | None = None, tools: list[ToolDefinition] | None = None, tool_choice: ToolChoice | None = ToolChoice.auto, tool_prompt_format: ToolPromptFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, tool_config: ToolConfig | None = None, ) -> ChatCompletionResponse | AsyncIterator[ChatCompletionResponseStreamChunk]: if sampling_params is None: sampling_params = SamplingParams() if tool_prompt_format: warnings.warn("tool_prompt_format is not supported by NVIDIA NIM, ignoring", stacklevel=2) # await check_health(self._config) # this raises errors self._lazy_initialize_client() provider_model_id = await self._get_provider_model_id(model_id) request = await convert_chat_completion_request( request=ChatCompletionRequest( model=provider_model_id, messages=messages, sampling_params=sampling_params, response_format=response_format, tools=tools, stream=stream, logprobs=logprobs, tool_config=tool_config, ), n=1, ) try: response = await self.client.chat.completions.create(**request) except APIConnectionError as e: raise ConnectionError(f"Failed to connect to NVIDIA NIM at {self._config.url}: {e}") from e if stream: return convert_openai_chat_completion_stream(response, enable_incremental_tool_calls=False) else: # we pass n=1 to get only one completion return convert_openai_chat_completion_choice(response.choices[0])