# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # top-level folder for each specific model found within the models/ directory at # the top-level of this source tree. import json import os import sys import time from collections.abc import Callable, Generator from pathlib import Path import torch import torch.nn.functional as F from fairscale.nn.model_parallel.initialize import ( initialize_model_parallel, model_parallel_is_initialized, ) from termcolor import cprint from ..checkpoint import maybe_reshard_state_dict from ..datatypes import GenerationResult, QuantizationMode, RawContent, RawMessage, ToolPromptFormat from .args import ModelArgs from .chat_format import ChatFormat, LLMInput from .model import Transformer from .multimodal.model import CrossAttentionTransformer from .tokenizer import Tokenizer class Llama3: @staticmethod def build( ckpt_dir: str, max_seq_len: int, max_batch_size: int, world_size: int | None = None, quantization_mode: QuantizationMode | None = None, seed: int = 1, device: str = "cuda", ): device = torch.device(device) if ( device.type == "cuda" and not torch.cuda.is_available() or device.type == "xpu" and not torch.xpu.is_available() ): raise RuntimeError(f"PyTorch backend for {device.type} device type is not available") if not torch.distributed.is_initialized(): if device.type == "cuda": torch.distributed.init_process_group("nccl") else: torch.distributed.init_process_group("gloo") if not model_parallel_is_initialized(): if world_size is None: world_size = int(os.environ.get("WORLD_SIZE", 1)) initialize_model_parallel(world_size) local_rank = int(os.environ.get("LOCAL_RANK", 0)) if device.type == "cuda": torch.cuda.set_device(local_rank) elif device.type == "xpu": torch.xpu.set_device(local_rank) torch.manual_seed(seed) if local_rank > 0: sys.stdout = open(os.devnull, "w") start_time = time.time() ckpt_paths = sorted(Path(ckpt_dir).glob("*.pth")) assert len(ckpt_paths) > 0, f"no checkpoint files found in {ckpt_dir}" print(f"Loading a checkpoint (shards={len(ckpt_paths)}, current-mp-size={world_size})") with open(Path(ckpt_dir) / "params.json") as f: params = json.loads(f.read()) model_args: ModelArgs = ModelArgs( max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params, ) tokenizer = Tokenizer.get_instance() state_dict = maybe_reshard_state_dict( ckpt_paths, n_kv_heads=model_args.n_kv_heads if model_args.n_kv_heads else model_args.n_heads, ) assert model_args.vocab_size == tokenizer.n_words def build_model(): if model_args.vision_chunk_size > 0: model = CrossAttentionTransformer(model_args) model.setup_cache(model_args.max_batch_size, device=device, dtype=torch.get_default_dtype()) else: model = Transformer(model_args) return model if quantization_mode == QuantizationMode.fp8_mixed or quantization_mode == QuantizationMode.int4_mixed: from .quantization.loader import convert_to_quantized_model torch.set_default_tensor_type(torch.BFloat16Tensor) model = build_model() print("Loading state dict...") model.load_state_dict(state_dict, strict=False) print("Done...") model = convert_to_quantized_model(model, ckpt_dir, quantization_mode, device=device) torch.set_default_device(device) else: print(f"Setting default device to {device}") if device.type == "cuda": if torch.cuda.is_bf16_supported(): torch.set_default_tensor_type(torch.cuda.BFloat16Tensor) else: torch.set_default_tensor_type(torch.cuda.Float16Tensor) elif device.type == "xpu": if torch.xpu.is_bf16_supported(): torch.set_default_tensor_type(torch.xpu.BFloat16Tensor) else: torch.set_default_tensor_type(torch.xpu.Float16Tensor) model = build_model() print("Loading state dict...") model.load_state_dict(state_dict, strict=True) model.to(device) print("Done...") print(f"Loaded in {time.time() - start_time:.2f} seconds") return Llama3(model, tokenizer, model_args) def __init__( self, model: Transformer | CrossAttentionTransformer, tokenizer: Tokenizer, args: ModelArgs, ): self.args = args self.model = model self.tokenizer = tokenizer self.formatter = ChatFormat(tokenizer) @torch.inference_mode() def generate( self, llm_inputs: list[LLMInput], temperature: float = 0.6, top_p: float = 0.9, max_gen_len: int | None = None, logprobs: bool = False, echo: bool = False, print_model_input: bool = False, logits_processor: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] | None = None, ) -> Generator[list[GenerationResult], None, None]: if max_gen_len is None or max_gen_len == 0 or max_gen_len >= self.args.max_seq_len: max_gen_len = self.args.max_seq_len - 1 params = self.model.params print_model_input = print_model_input or os.environ.get("LLAMA_MODELS_DEBUG", "0") == "1" if print_model_input: for inp in llm_inputs: tokens_to_print = [self.formatter.vision_token if t == 128256 else t for t in inp.tokens] cprint( "Input to model:\n" + self.tokenizer.decode(tokens_to_print) + "\n", "red", file=sys.stderr, ) prompt_tokens = [inp.tokens for inp in llm_inputs] bsz = len(llm_inputs) assert bsz <= params.max_batch_size, (bsz, params.max_batch_size) min_prompt_len = min(len(t) for t in prompt_tokens) max_prompt_len = max(len(t) for t in prompt_tokens) if max_prompt_len >= params.max_seq_len: cprint( f"Out of token budget {max_prompt_len} vs {params.max_seq_len}", color="red", file=sys.stderr, ) return total_len = min(max_gen_len + max_prompt_len, params.max_seq_len) pad_id = self.tokenizer.pad_id tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long) for k, t in enumerate(prompt_tokens): tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long) if logprobs: token_logprobs = torch.zeros_like(tokens, dtype=torch.float) is_vision = not isinstance(self.model, Transformer) if is_vision: images = [inp.vision.images if inp.vision is not None else [] for inp in llm_inputs] mask = [inp.vision.mask if inp.vision is not None else [] for inp in llm_inputs] xattn_caches, cross_attention_masks, full_text_row_masked_out_mask = self.model.compute_vision_tokens_masks( batch_images=images, batch_masks=mask, total_len=total_len, device=tokens.device, ) eos_reached = torch.tensor([False] * bsz) input_text_mask = tokens != pad_id if echo: for i in range(max_prompt_len): results = [] for j, t in enumerate(tokens[:, i]): results.append( GenerationResult( token=t.item(), text=self.tokenizer.decode([t.item()]), source="input", logprobs=(token_logprobs[j, i : i + 1].tolist() if logprobs else None), batch_idx=j, finished=False, ignore_token=t.item() == pad_id, ) ) yield results stop_tokens = torch.tensor(self.tokenizer.stop_tokens) prev_pos = 0 for cur_pos in range(min_prompt_len, total_len): if is_vision: position_ids = torch.arange(prev_pos, cur_pos, dtype=torch.long) text_only_inference = all(inp.vision is None for inp in llm_inputs) logits = self.model.forward( position_ids, tokens, cross_attention_masks, full_text_row_masked_out_mask, xattn_caches, text_only_inference, ) else: logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos) if logits_processor is not None: logits = logits_processor(tokens[:, :cur_pos], logits) if temperature > 0: probs = torch.softmax(logits[:, -1] / temperature, dim=-1) next_token = sample_top_p(probs, top_p) else: next_token = torch.argmax(logits[:, -1], dim=-1) next_token = next_token.reshape(-1) # only replace token if prompt has already been generated next_token = torch.where(input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token) tokens[:, cur_pos] = next_token target = tokens[:, prev_pos + 1 : cur_pos + 1] if is_vision: # the logits space (num_classes) is designed to never contain a media_token # however our input token stream does contain them. we need to nuke them here # or else the CUDA kernels will crash with an illegal memory access vision_tokens = [self.tokenizer.special_tokens["<|image|>"], 128256] masks = [target.eq(t) for t in vision_tokens] if len(masks) > 1: mask = torch.logical_or(*masks) else: mask = masks[0] target[mask] = 0 if logprobs: token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy( input=logits.transpose(1, 2), target=target, reduction="none", ignore_index=pad_id, ) eos_reached |= (~input_text_mask[:, cur_pos]) & (torch.isin(next_token, stop_tokens)) results = [] for idx, t in enumerate(next_token): results.append( GenerationResult( token=t.item(), text=self.tokenizer.decode([t.item()]), source="output", logprobs=(token_logprobs[idx, cur_pos : cur_pos + 1].tolist() if logprobs else None), batch_idx=idx, finished=eos_reached[idx].item(), ignore_token=cur_pos < len(prompt_tokens[idx]), ) ) yield results prev_pos = cur_pos if all(eos_reached): break def completion( self, contents: list[RawContent], temperature: float = 0.6, top_p: float = 0.9, max_gen_len: int | None = None, logprobs: bool = False, echo: bool = False, ) -> Generator[list[GenerationResult], None, None]: model_inputs = [self.formatter.encode_content(c) for c in contents] for result in self.generate( model_inputs=model_inputs, temperature=temperature, top_p=top_p, max_gen_len=max_gen_len, logprobs=logprobs, echo=echo, ): yield result if all(r.finished for r in result): break def chat_completion( self, messages_batch: list[list[RawMessage]], temperature: float = 0.6, top_p: float = 0.9, max_gen_len: int | None = None, logprobs: bool = False, tool_prompt_format: ToolPromptFormat = ToolPromptFormat.json, echo: bool = False, ) -> Generator[list[GenerationResult], None, None]: model_inputs = [self.formatter.encode_dialog_prompt(messages) for messages in messages_batch] for result in self.generate( model_inputs=model_inputs, temperature=temperature, top_p=top_p, max_gen_len=max_gen_len, logprobs=logprobs, echo=echo, ): yield result if all(r.finished for r in result): break def sample_top_p(probs, p): """ Perform top-p (nucleus) sampling on a probability distribution. Args: probs (torch.Tensor): Probability distribution tensor. p (float): Probability threshold for top-p sampling. Returns: torch.Tensor: Sampled token indices. Note: Top-p sampling selects the smallest set of tokens whose cumulative probability mass exceeds the threshold p. The distribution is renormalized based on the selected tokens. """ probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) probs_sum = torch.cumsum(probs_sort, dim=-1) mask = probs_sum - probs_sort > p probs_sort[mask] = 0.0 probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) next_token = torch.multinomial(probs_sort, num_samples=1) next_token = torch.gather(probs_idx, -1, next_token) return next_token