# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from __future__ import annotations # for forward references import hashlib import json import os import sqlite3 from collections.abc import Generator from contextlib import contextmanager from enum import StrEnum from pathlib import Path from typing import Any, Literal, cast from llama_stack.log import get_logger logger = get_logger(__name__, category="testing") # Global state for the recording system _current_mode: str | None = None _current_storage: ResponseStorage | None = None _original_methods: dict[str, Any] = {} from openai.types.completion_choice import CompletionChoice # update the "finish_reason" field, since its type definition is wrong (no None is accepted) CompletionChoice.model_fields["finish_reason"].annotation = Literal["stop", "length", "content_filter"] | None CompletionChoice.model_rebuild() class InferenceMode(StrEnum): LIVE = "live" RECORD = "record" REPLAY = "replay" def normalize_request(method: str, url: str, headers: dict[str, Any], body: dict[str, Any]) -> str: """Create a normalized hash of the request for consistent matching.""" # Extract just the endpoint path from urllib.parse import urlparse parsed = urlparse(url) normalized = {"method": method.upper(), "endpoint": parsed.path, "body": body} # Create hash - sort_keys=True ensures deterministic ordering normalized_json = json.dumps(normalized, sort_keys=True) return hashlib.sha256(normalized_json.encode()).hexdigest() def get_inference_mode() -> InferenceMode: return InferenceMode(os.environ.get("LLAMA_STACK_TEST_INFERENCE_MODE", "live").lower()) def setup_inference_recording(): """ Returns a context manager that can be used to record or replay inference requests. This is to be used in tests to increase their reliability and reduce reliance on expensive, external services. Currently, this is only supported for OpenAI and Ollama clients. These should cover the vast majority of use cases. Calls to the /models endpoint are not currently trapped. We probably need to add support for this. Two environment variables are required: - LLAMA_STACK_TEST_INFERENCE_MODE: The mode to run in. Must be 'live', 'record', or 'replay'. - LLAMA_STACK_TEST_RECORDING_DIR: The directory to store the recordings in. The recordings are stored in a SQLite database and a JSON file for each request. The SQLite database is used to quickly find the correct recording for a given request. The JSON files are used to store the request and response bodies. """ mode = get_inference_mode() if mode not in InferenceMode: raise ValueError(f"Invalid LLAMA_STACK_TEST_INFERENCE_MODE: {mode}. Must be 'live', 'record', or 'replay'") if mode == InferenceMode.LIVE: return None if "LLAMA_STACK_TEST_RECORDING_DIR" not in os.environ: raise ValueError("LLAMA_STACK_TEST_RECORDING_DIR must be set for recording or replaying") storage_dir = os.environ["LLAMA_STACK_TEST_RECORDING_DIR"] return inference_recording(mode=mode, storage_dir=storage_dir) def _serialize_response(response: Any) -> Any: if hasattr(response, "model_dump"): data = response.model_dump(mode="json") return { "__type__": f"{response.__class__.__module__}.{response.__class__.__qualname__}", "__data__": data, } elif hasattr(response, "__dict__"): return dict(response.__dict__) else: return response def _deserialize_response(data: dict[str, Any]) -> Any: # Check if this is a serialized Pydantic model with type information if isinstance(data, dict) and "__type__" in data and "__data__" in data: try: # Import the original class and reconstruct the object module_path, class_name = data["__type__"].rsplit(".", 1) module = __import__(module_path, fromlist=[class_name]) cls = getattr(module, class_name) if not hasattr(cls, "model_validate"): raise ValueError(f"Pydantic class {cls} does not support model_validate?") return cls.model_validate(data["__data__"]) except (ImportError, AttributeError, TypeError, ValueError) as e: logger.warning(f"Failed to deserialize object of type {data['__type__']}: {e}") return data["__data__"] return data class ResponseStorage: """Handles SQLite index + JSON file storage/retrieval for inference recordings.""" def __init__(self, test_dir: Path): self.test_dir = test_dir self.responses_dir = self.test_dir / "responses" self.db_path = self.test_dir / "index.sqlite" self._ensure_directories() self._init_database() def _ensure_directories(self): self.test_dir.mkdir(parents=True, exist_ok=True) self.responses_dir.mkdir(exist_ok=True) def _init_database(self): with sqlite3.connect(self.db_path) as conn: conn.execute(""" CREATE TABLE IF NOT EXISTS recordings ( request_hash TEXT PRIMARY KEY, response_file TEXT, endpoint TEXT, model TEXT, timestamp TEXT, is_streaming BOOLEAN ) """) def store_recording(self, request_hash: str, request: dict[str, Any], response: dict[str, Any]): """Store a request/response pair.""" # Generate unique response filename response_file = f"{request_hash[:12]}.json" response_path = self.responses_dir / response_file # Serialize response body if needed serialized_response = dict(response) if "body" in serialized_response: if isinstance(serialized_response["body"], list): # Handle streaming responses (list of chunks) serialized_response["body"] = [_serialize_response(chunk) for chunk in serialized_response["body"]] else: # Handle single response serialized_response["body"] = _serialize_response(serialized_response["body"]) # Save response to JSON file with open(response_path, "w") as f: json.dump({"request": request, "response": serialized_response}, f, indent=2) f.write("\n") f.flush() # Update SQLite index with sqlite3.connect(self.db_path) as conn: conn.execute( """ INSERT OR REPLACE INTO recordings (request_hash, response_file, endpoint, model, timestamp, is_streaming) VALUES (?, ?, ?, ?, datetime('now'), ?) """, ( request_hash, response_file, request.get("endpoint", ""), request.get("model", ""), response.get("is_streaming", False), ), ) def find_recording(self, request_hash: str) -> dict[str, Any] | None: """Find a recorded response by request hash.""" with sqlite3.connect(self.db_path) as conn: result = conn.execute( "SELECT response_file FROM recordings WHERE request_hash = ?", (request_hash,) ).fetchone() if not result: return None response_file = result[0] response_path = self.responses_dir / response_file if not response_path.exists(): return None with open(response_path) as f: data = json.load(f) # Deserialize response body if needed if "response" in data and "body" in data["response"]: if isinstance(data["response"]["body"], list): # Handle streaming responses data["response"]["body"] = [_deserialize_response(chunk) for chunk in data["response"]["body"]] else: # Handle single response data["response"]["body"] = _deserialize_response(data["response"]["body"]) return cast(dict[str, Any], data) async def _patched_inference_method(original_method, self, client_type, endpoint, *args, **kwargs): global _current_mode, _current_storage if _current_mode == InferenceMode.LIVE or _current_storage is None: # Normal operation return await original_method(self, *args, **kwargs) # Get base URL based on client type if client_type == "openai": base_url = str(self._client.base_url) elif client_type == "ollama": # Get base URL from the client (Ollama client uses host attribute) base_url = getattr(self, "host", "http://localhost:11434") if not base_url.startswith("http"): base_url = f"http://{base_url}" else: raise ValueError(f"Unknown client type: {client_type}") url = base_url.rstrip("/") + endpoint # Normalize request for matching method = "POST" headers = {} body = kwargs request_hash = normalize_request(method, url, headers, body) if _current_mode == InferenceMode.REPLAY: recording = _current_storage.find_recording(request_hash) if recording: response_body = recording["response"]["body"] if recording["response"].get("is_streaming", False): async def replay_stream(): for chunk in response_body: yield chunk return replay_stream() else: return response_body else: raise RuntimeError( f"No recorded response found for request hash: {request_hash}\n" f"Endpoint: {endpoint}\n" f"Model: {body.get('model', 'unknown')}\n" f"To record this response, run with LLAMA_STACK_INFERENCE_MODE=record" ) elif _current_mode == InferenceMode.RECORD: response = await original_method(self, *args, **kwargs) request_data = { "method": method, "url": url, "headers": headers, "body": body, "endpoint": endpoint, "model": body.get("model", ""), } # Determine if this is a streaming request based on request parameters is_streaming = body.get("stream", False) if is_streaming: # For streaming responses, we need to collect all chunks immediately before yielding # This ensures the recording is saved even if the generator isn't fully consumed chunks = [] async for chunk in response: chunks.append(chunk) # Store the recording immediately response_data = {"body": chunks, "is_streaming": True} _current_storage.store_recording(request_hash, request_data, response_data) # Return a generator that replays the stored chunks async def replay_recorded_stream(): for chunk in chunks: yield chunk return replay_recorded_stream() else: response_data = {"body": response, "is_streaming": False} _current_storage.store_recording(request_hash, request_data, response_data) return response else: raise AssertionError(f"Invalid mode: {_current_mode}") def patch_inference_clients(): """Install monkey patches for OpenAI client methods and Ollama AsyncClient methods.""" global _original_methods from ollama import AsyncClient as OllamaAsyncClient from openai.resources.chat.completions import AsyncCompletions as AsyncChatCompletions from openai.resources.completions import AsyncCompletions from openai.resources.embeddings import AsyncEmbeddings # Store original methods for both OpenAI and Ollama clients _original_methods = { "chat_completions_create": AsyncChatCompletions.create, "completions_create": AsyncCompletions.create, "embeddings_create": AsyncEmbeddings.create, "ollama_generate": OllamaAsyncClient.generate, "ollama_chat": OllamaAsyncClient.chat, "ollama_embed": OllamaAsyncClient.embed, "ollama_ps": OllamaAsyncClient.ps, "ollama_pull": OllamaAsyncClient.pull, "ollama_list": OllamaAsyncClient.list, } # Create patched methods for OpenAI client async def patched_chat_completions_create(self, *args, **kwargs): return await _patched_inference_method( _original_methods["chat_completions_create"], self, "openai", "/v1/chat/completions", *args, **kwargs ) async def patched_completions_create(self, *args, **kwargs): return await _patched_inference_method( _original_methods["completions_create"], self, "openai", "/v1/completions", *args, **kwargs ) async def patched_embeddings_create(self, *args, **kwargs): return await _patched_inference_method( _original_methods["embeddings_create"], self, "openai", "/v1/embeddings", *args, **kwargs ) # Apply OpenAI patches AsyncChatCompletions.create = patched_chat_completions_create AsyncCompletions.create = patched_completions_create AsyncEmbeddings.create = patched_embeddings_create # Create patched methods for Ollama client async def patched_ollama_generate(self, *args, **kwargs): return await _patched_inference_method( _original_methods["ollama_generate"], self, "ollama", "/api/generate", *args, **kwargs ) async def patched_ollama_chat(self, *args, **kwargs): return await _patched_inference_method( _original_methods["ollama_chat"], self, "ollama", "/api/chat", *args, **kwargs ) async def patched_ollama_embed(self, *args, **kwargs): return await _patched_inference_method( _original_methods["ollama_embed"], self, "ollama", "/api/embeddings", *args, **kwargs ) async def patched_ollama_ps(self, *args, **kwargs): return await _patched_inference_method( _original_methods["ollama_ps"], self, "ollama", "/api/ps", *args, **kwargs ) async def patched_ollama_pull(self, *args, **kwargs): return await _patched_inference_method( _original_methods["ollama_pull"], self, "ollama", "/api/pull", *args, **kwargs ) async def patched_ollama_list(self, *args, **kwargs): return await _patched_inference_method( _original_methods["ollama_list"], self, "ollama", "/api/tags", *args, **kwargs ) # Apply Ollama patches OllamaAsyncClient.generate = patched_ollama_generate OllamaAsyncClient.chat = patched_ollama_chat OllamaAsyncClient.embed = patched_ollama_embed OllamaAsyncClient.ps = patched_ollama_ps OllamaAsyncClient.pull = patched_ollama_pull OllamaAsyncClient.list = patched_ollama_list def unpatch_inference_clients(): """Remove monkey patches and restore original OpenAI and Ollama client methods.""" global _original_methods if not _original_methods: return # Import here to avoid circular imports from ollama import AsyncClient as OllamaAsyncClient from openai.resources.chat.completions import AsyncCompletions as AsyncChatCompletions from openai.resources.completions import AsyncCompletions from openai.resources.embeddings import AsyncEmbeddings # Restore OpenAI client methods AsyncChatCompletions.create = _original_methods["chat_completions_create"] AsyncCompletions.create = _original_methods["completions_create"] AsyncEmbeddings.create = _original_methods["embeddings_create"] # Restore Ollama client methods if they were patched OllamaAsyncClient.generate = _original_methods["ollama_generate"] OllamaAsyncClient.chat = _original_methods["ollama_chat"] OllamaAsyncClient.embed = _original_methods["ollama_embed"] OllamaAsyncClient.ps = _original_methods["ollama_ps"] OllamaAsyncClient.pull = _original_methods["ollama_pull"] OllamaAsyncClient.list = _original_methods["ollama_list"] _original_methods.clear() @contextmanager def inference_recording(mode: str = "live", storage_dir: str | Path | None = None) -> Generator[None, None, None]: """Context manager for inference recording/replaying.""" global _current_mode, _current_storage # Set defaults if storage_dir is None: storage_dir_path = Path.home() / ".llama" / "recordings" else: storage_dir_path = Path(storage_dir) # Store previous state prev_mode = _current_mode prev_storage = _current_storage try: _current_mode = mode if mode in ["record", "replay"]: _current_storage = ResponseStorage(storage_dir_path) patch_inference_clients() yield finally: # Restore previous state if mode in ["record", "replay"]: unpatch_inference_clients() _current_mode = prev_mode _current_storage = prev_storage