# Integration Testing Guide Integration tests verify complete workflows across different providers using Llama Stack's record-replay system. ## Quick Start ```bash # Run all integration tests with existing recordings LLAMA_STACK_TEST_INFERENCE_MODE=replay \ LLAMA_STACK_TEST_RECORDING_DIR=tests/integration/recordings \ uv run --group test \ pytest -sv tests/integration/ --stack-config=starter ``` ## Configuration Options You can see all options with: ```bash cd tests/integration # this will show a long list of options, look for "Custom options:" pytest --help ``` Here are the most important options: - `--stack-config`: specify the stack config to use. You have four ways to point to a stack: - **`server:`** - automatically start a server with the given config (e.g., `server:starter`). This provides one-step testing by auto-starting the server if the port is available, or reusing an existing server if already running. - **`server::`** - same as above but with a custom port (e.g., `server:starter:8322`) - a URL which points to a Llama Stack distribution server - a distribution name (e.g., `starter`) or a path to a `run.yaml` file - a comma-separated list of api=provider pairs, e.g. `inference=ollama,safety=llama-guard,agents=meta-reference`. This is most useful for testing a single API surface. - `--env`: set environment variables, e.g. --env KEY=value. this is a utility option to set environment variables required by various providers. Model parameters can be influenced by the following options: - `--text-model`: comma-separated list of text models. - `--vision-model`: comma-separated list of vision models. - `--embedding-model`: comma-separated list of embedding models. - `--safety-shield`: comma-separated list of safety shields. - `--judge-model`: comma-separated list of judge models. - `--embedding-dimension`: output dimensionality of the embedding model to use for testing. Default: 384 Each of these are comma-separated lists and can be used to generate multiple parameter combinations. Note that tests will be skipped if no model is specified. ## Examples ### Testing against a Server Run all text inference tests by auto-starting a server with the `starter` config: ```bash OLLAMA_URL=http://localhost:11434 \ pytest -s -v tests/integration/inference/test_text_inference.py \ --stack-config=server:starter \ --text-model=ollama/llama3.2:3b-instruct-fp16 \ --embedding-model=sentence-transformers/all-MiniLM-L6-v2 ``` Run tests with auto-server startup on a custom port: ```bash OLLAMA_URL=http://localhost:11434 \ pytest -s -v tests/integration/inference/ \ --stack-config=server:starter:8322 \ --text-model=ollama/llama3.2:3b-instruct-fp16 \ --embedding-model=sentence-transformers/all-MiniLM-L6-v2 ``` ### Testing with Library Client The library client constructs the Stack "in-process" instead of using a server. This is useful during the iterative development process since you don't need to constantly start and stop servers. You can do this by simply using `--stack-config=starter` instead of `--stack-config=server:starter`. ### Using ad-hoc distributions Sometimes, you may want to make up a distribution on the fly. This is useful for testing a single provider or a single API or a small combination of providers. You can do so by specifying a comma-separated list of api=provider pairs to the `--stack-config` option, e.g. `inference=remote::ollama,safety=inline::llama-guard,agents=inline::meta-reference`. ```bash pytest -s -v tests/integration/inference/ \ --stack-config=inference=remote::ollama,safety=inline::llama-guard,agents=inline::meta-reference \ --text-model=$TEXT_MODELS \ --vision-model=$VISION_MODELS \ --embedding-model=$EMBEDDING_MODELS ``` Another example: Running Vector IO tests for embedding models: ```bash pytest -s -v tests/integration/vector_io/ \ --stack-config=inference=inline::sentence-transformers,vector_io=inline::sqlite-vec \ --embedding-model=sentence-transformers/all-MiniLM-L6-v2 ``` ## Recording Modes The testing system supports three modes controlled by environment variables: ### LIVE Mode (Default) Tests make real API calls: ```bash LLAMA_STACK_TEST_INFERENCE_MODE=live pytest tests/integration/ ``` ### RECORD Mode Captures API interactions for later replay: ```bash LLAMA_STACK_TEST_INFERENCE_MODE=record \ LLAMA_STACK_TEST_RECORDING_DIR=tests/integration/recordings \ pytest tests/integration/inference/test_new_feature.py ``` ### REPLAY Mode Uses cached responses instead of making API calls: ```bash LLAMA_STACK_TEST_INFERENCE_MODE=replay \ LLAMA_STACK_TEST_RECORDING_DIR=tests/integration/recordings \ pytest tests/integration/ ``` Note that right now you must specify the recording directory. This is because different tests use different recording directories and we don't (yet) have a fool-proof way to map a test to a recording directory. We are working on this. ## Managing Recordings ### Viewing Recordings ```bash # See what's recorded sqlite3 recordings/index.sqlite "SELECT endpoint, model, timestamp FROM recordings;" # Inspect specific response cat recordings/responses/abc123.json | jq '.' ``` ### Re-recording Tests #### Remote Re-recording (Recommended) Use the automated workflow script for easier re-recording: ```bash ./scripts/github/schedule-record-workflow.sh --test-subdirs "inference,agents" ``` See the [main testing guide](../README.md#remote-re-recording-recommended) for full details. #### Local Re-recording ```bash # Re-record specific tests LLAMA_STACK_TEST_INFERENCE_MODE=record \ LLAMA_STACK_TEST_RECORDING_DIR=tests/integration/recordings \ pytest -s -v --stack-config=server:starter tests/integration/inference/test_modified.py ``` Note that when re-recording tests, you must use a Stack pointing to a server (i.e., `server:starter`). This subtlety exists because the set of tests run in server are a superset of the set of tests run in the library client. ## Writing Tests ### Basic Test Pattern ```python def test_basic_completion(llama_stack_client, text_model_id): response = llama_stack_client.inference.completion( model_id=text_model_id, content=CompletionMessage(role="user", content="Hello"), ) # Test structure, not AI output quality assert response.completion_message is not None assert isinstance(response.completion_message.content, str) assert len(response.completion_message.content) > 0 ``` ### Provider-Specific Tests ```python def test_asymmetric_embeddings(llama_stack_client, embedding_model_id): if embedding_model_id not in MODELS_SUPPORTING_TASK_TYPE: pytest.skip(f"Model {embedding_model_id} doesn't support task types") query_response = llama_stack_client.inference.embeddings( model_id=embedding_model_id, contents=["What is machine learning?"], task_type="query", ) assert query_response.embeddings is not None ```