# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import time import unicodedata import pytest from ..test_cases.test_case import TestCase def _normalize_text(text: str) -> str: """ Normalize Unicode text by removing diacritical marks for comparison. The test case streaming_01 expects the answer "Sol" for the question "What's the name of the Sun in latin?", but the model is returning "sōl" (with a macron over the 'o'), which is the correct Latin spelling. The test is failing because it's doing a simple case-insensitive string search for "sol" but the actual response contains the diacritical mark. """ return unicodedata.normalize("NFD", text).encode("ascii", "ignore").decode("ascii").lower() def provider_from_model(client_with_models, model_id): models = {m.identifier: m for m in client_with_models.models.list()} models.update({m.provider_resource_id: m for m in client_with_models.models.list()}) provider_id = models[model_id].provider_id providers = {p.provider_id: p for p in client_with_models.providers.list()} return providers[provider_id] def skip_if_model_doesnt_support_openai_completion(client_with_models, model_id): provider = provider_from_model(client_with_models, model_id) if provider.provider_type in ( "inline::meta-reference", "inline::sentence-transformers", "inline::vllm", "remote::bedrock", "remote::databricks", # Technically Nvidia does support OpenAI completions, but none of their hosted models # support both completions and chat completions endpoint and all the Llama models are # just chat completions "remote::nvidia", "remote::runpod", "remote::sambanova", "remote::vertexai", # {"error":{"message":"Unknown request URL: GET /openai/v1/completions. Please check the URL for typos, # or see the docs at https://console.groq.com/docs/","type":"invalid_request_error","code":"unknown_url"}} "remote::groq", "remote::gemini", # https://generativelanguage.googleapis.com/v1beta/openai/completions -> 404 "remote::anthropic", # at least claude-3-{5,7}-{haiku,sonnet}-* / claude-{sonnet,opus}-4-* are not supported "remote::azure", # {'error': {'code': 'OperationNotSupported', 'message': 'The completion operation # does not work with the specified model, gpt-5-mini. Please choose different model and try # again. You can learn more about which models can be used with each operation here: # https://go.microsoft.com/fwlink/?linkid=2197993.'}}"} "remote::watsonx", # return 404 when hitting the /openai/v1 endpoint ): pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support OpenAI completions.") def skip_if_model_doesnt_support_suffix(client_with_models, model_id): # To test `fim` ( fill in the middle ) completion, we need to use a model that supports suffix. # Use this to specifically test this API functionality. # pytest -sv --stack-config="inference=starter" \ # tests/integration/inference/test_openai_completion.py \ # --text-model qwen2.5-coder:1.5b \ # -k test_openai_completion_non_streaming_suffix if model_id != "qwen2.5-coder:1.5b": pytest.skip(f"Suffix is not supported for the model: {model_id}.") provider = provider_from_model(client_with_models, model_id) if provider.provider_type != "remote::ollama": pytest.skip(f"Provider {provider.provider_type} doesn't support suffix.") def skip_if_doesnt_support_n(client_with_models, model_id): provider = provider_from_model(client_with_models, model_id) if provider.provider_type in ( "remote::sambanova", "remote::ollama", # https://console.groq.com/docs/openai#currently-unsupported-openai-features # -> Error code: 400 - {'error': {'message': "'n' : number must be at most 1", 'type': 'invalid_request_error'}} "remote::groq", # Error code: 400 - [{'error': {'code': 400, 'message': 'Only one candidate can be specified in the # current model', 'status': 'INVALID_ARGUMENT'}}] "remote::gemini", # https://docs.anthropic.com/en/api/openai-sdk#simple-fields "remote::anthropic", "remote::vertexai", # Error code: 400 - [{'error': {'code': 400, 'message': 'Unable to submit request because candidateCount must be 1 but # the entered value was 2. Update the candidateCount value and try again.', 'status': 'INVALID_ARGUMENT'} "remote::tgi", # TGI ignores n param silently "remote::together", # `n` > 1 is not supported when streaming tokens. Please disable `stream` # Error code 400 - {'message': '"n" > 1 is not currently supported', 'type': 'invalid_request_error', 'param': 'n', 'code': 'wrong_api_format'} "remote::cerebras", "remote::databricks", # Bad request: parameter "n" must be equal to 1 for streaming mode ): pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support n param.") def skip_if_model_doesnt_support_openai_chat_completion(client_with_models, model_id): provider = provider_from_model(client_with_models, model_id) if provider.provider_type in ( "inline::meta-reference", "inline::sentence-transformers", "inline::vllm", "remote::bedrock", "remote::databricks", "remote::cerebras", "remote::runpod", "remote::watsonx", # watsonx returns 404 when hitting the /openai/v1 endpoint ): pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support OpenAI chat completions.") def skip_if_provider_isnt_vllm(client_with_models, model_id): provider = provider_from_model(client_with_models, model_id) if provider.provider_type != "remote::vllm": pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support vllm extra_body parameters.") def skip_if_provider_isnt_openai(client_with_models, model_id): provider = provider_from_model(client_with_models, model_id) if provider.provider_type != "remote::openai": pytest.skip( f"Model {model_id} hosted by {provider.provider_type} doesn't support chat completion calls with base64 encoded files." ) @pytest.mark.parametrize( "test_case", [ "inference:completion:sanity", ], ) def test_openai_completion_non_streaming(llama_stack_client, client_with_models, text_model_id, test_case): skip_if_model_doesnt_support_openai_completion(client_with_models, text_model_id) tc = TestCase(test_case) # ollama needs more verbose prompting for some reason here... prompt = "Respond to this question and explain your answer. " + tc["content"] response = llama_stack_client.completions.create( model=text_model_id, prompt=prompt, stream=False, ) assert len(response.choices) > 0 choice = response.choices[0] assert len(choice.text) > 10 @pytest.mark.parametrize( "test_case", [ "inference:completion:suffix", ], ) def test_openai_completion_non_streaming_suffix(llama_stack_client, client_with_models, text_model_id, test_case): skip_if_model_doesnt_support_openai_completion(client_with_models, text_model_id) skip_if_model_doesnt_support_suffix(client_with_models, text_model_id) tc = TestCase(test_case) # ollama needs more verbose prompting for some reason here... response = llama_stack_client.completions.create( model=text_model_id, prompt=tc["content"], stream=False, suffix=tc["suffix"], max_tokens=10, ) assert len(response.choices) > 0 choice = response.choices[0] assert len(choice.text) > 5 normalized_text = _normalize_text(choice.text) assert "france" in normalized_text @pytest.mark.parametrize( "test_case", [ "inference:completion:sanity", ], ) def test_openai_completion_streaming(llama_stack_client, client_with_models, text_model_id, test_case): skip_if_model_doesnt_support_openai_completion(client_with_models, text_model_id) tc = TestCase(test_case) # ollama needs more verbose prompting for some reason here... prompt = "Respond to this question and explain your answer. " + tc["content"] response = llama_stack_client.completions.create( model=text_model_id, prompt=prompt, stream=True, max_tokens=50, ) streamed_content = [chunk.choices[0].text or "" for chunk in response] content_str = "".join(streamed_content).lower().strip() assert len(content_str) > 10 @pytest.mark.parametrize( "prompt_logprobs", [ 1, 0, ], ) def test_openai_completion_prompt_logprobs(llama_stack_client, client_with_models, text_model_id, prompt_logprobs): skip_if_provider_isnt_vllm(client_with_models, text_model_id) prompt = "Hello, world!" response = llama_stack_client.completions.create( model=text_model_id, prompt=prompt, stream=False, prompt_logprobs=prompt_logprobs, ) assert len(response.choices) > 0 choice = response.choices[0] assert len(choice.prompt_logprobs) > 0 def test_openai_completion_guided_choice(llama_stack_client, client_with_models, text_model_id): skip_if_provider_isnt_vllm(client_with_models, text_model_id) prompt = "I am feeling really sad today." response = llama_stack_client.completions.create( model=text_model_id, prompt=prompt, stream=False, guided_choice=["joy", "sadness"], ) assert len(response.choices) > 0 choice = response.choices[0] assert choice.text in ["joy", "sadness"] # Run the chat-completion tests with both the OpenAI client and the LlamaStack client @pytest.mark.parametrize( "test_case", [ "inference:chat_completion:non_streaming_01", "inference:chat_completion:non_streaming_02", ], ) def test_openai_chat_completion_non_streaming(compat_client, client_with_models, text_model_id, test_case): skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id) tc = TestCase(test_case) question = tc["question"] expected = tc["expected"] response = compat_client.chat.completions.create( model=text_model_id, messages=[ { "role": "user", "content": question, } ], stream=False, ) message_content = response.choices[0].message.content.lower().strip() assert len(message_content) > 0 normalized_expected = _normalize_text(expected) normalized_content = _normalize_text(message_content) assert normalized_expected in normalized_content @pytest.mark.parametrize( "test_case", [ "inference:chat_completion:streaming_01", "inference:chat_completion:streaming_02", ], ) def test_openai_chat_completion_streaming(compat_client, client_with_models, text_model_id, test_case): skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id) tc = TestCase(test_case) question = tc["question"] expected = tc["expected"] response = compat_client.chat.completions.create( model=text_model_id, messages=[{"role": "user", "content": question}], stream=True, timeout=120, # Increase timeout to 2 minutes for large conversation history ) streamed_content = [] for chunk in response: # On some providers like Azure, the choices are empty on the first chunk, so we need to check for that if chunk.choices and len(chunk.choices) > 0 and chunk.choices[0].delta.content: streamed_content.append(chunk.choices[0].delta.content.lower().strip()) assert len(streamed_content) > 0 normalized_expected = _normalize_text(expected) normalized_content = _normalize_text("".join(streamed_content)) assert normalized_expected in normalized_content @pytest.mark.parametrize( "test_case", [ "inference:chat_completion:streaming_01", "inference:chat_completion:streaming_02", ], ) def test_openai_chat_completion_streaming_with_n(compat_client, client_with_models, text_model_id, test_case): skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id) skip_if_doesnt_support_n(client_with_models, text_model_id) tc = TestCase(test_case) question = tc["question"] expected = tc["expected"] response = compat_client.chat.completions.create( model=text_model_id, messages=[{"role": "user", "content": question}], stream=True, timeout=120, # Increase timeout to 2 minutes for large conversation history, n=2, ) streamed_content = {} for chunk in response: for choice in chunk.choices: if choice.delta.content: streamed_content[choice.index] = ( streamed_content.get(choice.index, "") + choice.delta.content.lower().strip() ) assert len(streamed_content) == 2 normalized_expected = _normalize_text(expected) for i, content in streamed_content.items(): normalized_content = _normalize_text(content) assert normalized_expected in normalized_content, ( f"Choice {i}: Expected {normalized_expected} in {normalized_content}" ) @pytest.mark.parametrize( "stream", [ True, False, ], ) def test_inference_store(compat_client, client_with_models, text_model_id, stream): skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id) client = compat_client # make a chat completion message = "Hello, world!" response = client.chat.completions.create( model=text_model_id, messages=[ { "role": "user", "content": message, } ], stream=stream, ) if stream: # accumulate the streamed content content = "" response_id = None for chunk in response: if response_id is None and chunk.id: response_id = chunk.id if chunk.choices and len(chunk.choices) > 0 and chunk.choices[0].delta.content: content += chunk.choices[0].delta.content else: response_id = response.id content = response.choices[0].message.content tries = 0 while tries < 10: responses = client.chat.completions.list(limit=1000) if response_id in [r.id for r in responses.data]: break else: tries += 1 time.sleep(0.1) assert tries < 10, f"Response {response_id} not found after 1 second" retrieved_response = client.chat.completions.retrieve(response_id) assert retrieved_response.id == response_id assert retrieved_response.choices[0].message.content == content, retrieved_response input_content = ( getattr(retrieved_response.input_messages[0], "content", None) or retrieved_response.input_messages[0]["content"] ) assert input_content == message, retrieved_response @pytest.mark.parametrize( "stream", [ True, False, ], ) def test_inference_store_tool_calls(compat_client, client_with_models, text_model_id, stream): skip_if_model_doesnt_support_openai_chat_completion(client_with_models, text_model_id) client = compat_client # make a chat completion message = "What's the weather in Tokyo? Use the get_weather function to get the weather." response = client.chat.completions.create( model=text_model_id, messages=[ { "role": "user", "content": message, } ], stream=stream, tools=[ { "type": "function", "function": { "name": "get_weather", "description": "Get the weather in a given city", "parameters": { "type": "object", "properties": { "city": {"type": "string", "description": "The city to get the weather for"}, }, }, }, } ], ) if stream: # accumulate the streamed content content = "" response_id = None for chunk in response: if response_id is None and chunk.id: response_id = chunk.id if chunk.choices and len(chunk.choices) > 0: if delta := chunk.choices[0].delta: if delta.content: content += delta.content else: response_id = response.id content = response.choices[0].message.content # wait for the response to be stored tries = 0 while tries < 10: responses = client.chat.completions.list(limit=1000) if response_id in [r.id for r in responses.data]: break else: tries += 1 time.sleep(0.1) assert tries < 10, f"Response {response_id} not found after 1 second" responses = client.chat.completions.list(limit=1000) assert response_id in [r.id for r in responses.data] retrieved_response = client.chat.completions.retrieve(response_id) assert retrieved_response.id == response_id input_content = ( getattr(retrieved_response.input_messages[0], "content", None) or retrieved_response.input_messages[0]["content"] ) assert input_content == message, retrieved_response tool_calls = retrieved_response.choices[0].message.tool_calls # sometimes model doesn't output tool calls, but we still want to test that the tool was called if tool_calls: # because we test with small models, just check that we retrieved # a tool call with a name and arguments string, but ignore contents assert len(tool_calls) == 1 assert tool_calls[0].function.name assert tool_calls[0].function.arguments else: # failed tool call parses show up as a message with content, so ensure # that the retrieve response content matches the original request assert retrieved_response.choices[0].message.content == content def test_openai_chat_completion_non_streaming_with_file(openai_client, client_with_models, text_model_id): skip_if_provider_isnt_openai(client_with_models, text_model_id) # Hardcoded base64-encoded PDF with "Hello World" text pdf_base64 = "JVBERi0xLjQKMSAwIG9iago8PAovVHlwZSAvQ2F0YWxvZwovUGFnZXMgMiAwIFIKPj4KZW5kb2JqCjIgMCBvYmoKPDwKL1R5cGUgL1BhZ2VzCi9LaWRzIFszIDAgUl0KL0NvdW50IDEKPD4KZW5kb2JqCjMgMCBvYmoKPDwKL1R5cGUgL1BhZ2UKL1BhcmVudCAyIDAgUgovTWVkaWFCb3ggWzAgMCA2MTIgNzkyXQovQ29udGVudHMgNCAwIFIKL1Jlc291cmNlcyA8PAovRm9udCA8PAovRjEgPDwKL1R5cGUgL0ZvbnQKL1N1YnR5cGUgL1R5cGUxCi9CYXNlRm9udCAvSGVsdmV0aWNhCj4+Cj4+Cj4+Cj4+CmVuZG9iago0IDAgb2JqCjw8Ci9MZW5ndGggNDQKPj4Kc3RyZWFtCkJUCi9GMSAxMiBUZgoxMDAgNzUwIFRkCihIZWxsbyBXb3JsZCkgVGoKRVQKZW5kc3RyZWFtCmVuZG9iagp4cmVmCjAgNQowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMDkgMDAwMDAgbiAKMDAwMDAwMDA1OCAwMDAwMCBuIAowMDAwMDAwMTE1IDAwMDAwIG4gCjAwMDAwMDAzMTUgMDAwMDAgbiAKdHJhaWxlcgo8PAovU2l6ZSA1Ci9Sb290IDEgMCBSCj4+CnN0YXJ0eHJlZgo0MDkKJSVFT0Y=" response = openai_client.chat.completions.create( model=text_model_id, messages=[ { "role": "user", "content": "Describe what you see in this PDF file.", }, { "role": "user", "content": [ { "type": "file", "file": { "filename": "my-temp-hello-world-pdf", "file_data": f"data:application/pdf;base64,{pdf_base64}", }, } ], }, ], stream=False, ) message_content = response.choices[0].message.content.lower().strip() normalized_content = _normalize_text(message_content) assert "hello world" in normalized_content