{ "cells": [ { "cell_type": "markdown", "id": "923343b0-d4bd-4361-b8d4-dd29f86a0fbd", "metadata": {}, "source": [ "## Getting Started with LlamaStack Vision API\n", "\n", "Before you begin, please ensure Llama Stack is installed and set up by following the [Getting Started Guide](https://llama-stack.readthedocs.io/en/latest/getting_started/index.html).\n", "\n", "Let's import the necessary packages" ] }, { "cell_type": "code", "execution_count": 1, "id": "eae04594-49f9-43af-bb42-9df114d9ddd6", "metadata": {}, "outputs": [], "source": [ "import asyncio\n", "import base64\n", "import mimetypes\n", "from llama_stack_client import LlamaStackClient\n", "from llama_stack_client.lib.inference.event_logger import EventLogger\n", "from llama_stack_client.types import UserMessage\n", "from termcolor import cprint" ] }, { "cell_type": "markdown", "id": "143837c6-1072-4015-8297-514712704087", "metadata": {}, "source": [ "## Configuration\n", "Set up your connection parameters:" ] }, { "cell_type": "code", "execution_count": 2, "id": "1d293479-9dde-4b68-94ab-d0c4c61ab08c", "metadata": {}, "outputs": [], "source": [ "HOST = \"localhost\" # Replace with your host\n", "PORT = 5000 # Replace with your port" ] }, { "cell_type": "markdown", "id": "51984856-dfc7-4226-817a-1d44853e6661", "metadata": {}, "source": [ "## Helper Functions\n", "Let's create some utility functions to handle image processing and API interaction:" ] }, { "cell_type": "code", "execution_count": 3, "id": "8e65aae0-3ef0-4084-8c59-273a89ac9510", "metadata": {}, "outputs": [], "source": [ "import base64\n", "import mimetypes\n", "from termcolor import cprint\n", "from llama_stack_client.lib.inference.event_logger import EventLogger\n", "\n", "def encode_image_to_data_url(file_path: str) -> str:\n", " \"\"\"\n", " Encode an image file to a data URL.\n", "\n", " Args:\n", " file_path (str): Path to the image file\n", "\n", " Returns:\n", " str: Data URL string\n", " \"\"\"\n", " mime_type, _ = mimetypes.guess_type(file_path)\n", " if mime_type is None:\n", " raise ValueError(\"Could not determine MIME type of the file\")\n", "\n", " with open(file_path, \"rb\") as image_file:\n", " encoded_string = base64.b64encode(image_file.read()).decode(\"utf-8\")\n", "\n", " return f\"data:{mime_type};base64,{encoded_string}\"\n", "\n", "async def process_image(client, image_path: str, stream: bool = True):\n", " \"\"\"\n", " Process an image through the LlamaStack Vision API.\n", "\n", " Args:\n", " client (LlamaStackClient): Initialized client\n", " image_path (str): Path to image file\n", " stream (bool): Whether to stream the response\n", " \"\"\"\n", " data_url = encode_image_to_data_url(image_path)\n", "\n", " message = {\n", " \"role\": \"user\",\n", " \"content\": [\n", " {\"image\": {\"uri\": data_url}},\n", " \"Describe what is in this image.\"\n", " ]\n", " }\n", "\n", " cprint(\"User> Sending image for analysis...\", \"green\")\n", " response = client.inference.chat_completion(\n", " messages=[message],\n", " model=\"Llama3.2-11B-Vision-Instruct\",\n", " stream=stream,\n", " )\n", "\n", " if not stream:\n", " cprint(f\"> Response: {response}\", \"cyan\")\n", " else:\n", " async for log in EventLogger().log(response):\n", " log.print()\n" ] }, { "cell_type": "markdown", "id": "8073b673-e730-4557-8980-fd8b7ea11975", "metadata": {}, "source": [ "## Chat with Image\n", "\n", "Now let's put it all together:" ] }, { "cell_type": "code", "execution_count": 6, "id": "64d36476-95d7-49f9-a548-312cf8d8c49e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[32mUser> Sending image for analysis...\u001b[0m\n", "\u001b[36mAssistant> \u001b[0m\u001b[33mThe\u001b[0m\u001b[33m image\u001b[0m\u001b[33m features\u001b[0m\u001b[33m a\u001b[0m\u001b[33m simple\u001b[0m\u001b[33m,\u001b[0m\u001b[33m mon\u001b[0m\u001b[33moch\u001b[0m\u001b[33mromatic\u001b[0m\u001b[33m line\u001b[0m\u001b[33m drawing\u001b[0m\u001b[33m of\u001b[0m\u001b[33m a\u001b[0m\u001b[33m llama\u001b[0m\u001b[33m,\u001b[0m\u001b[33m with\u001b[0m\u001b[33m the\u001b[0m\u001b[33m words\u001b[0m\u001b[33m \"\u001b[0m\u001b[33mLL\u001b[0m\u001b[33mAMA\u001b[0m\u001b[33m STACK\u001b[0m\u001b[33m\"\u001b[0m\u001b[33m written\u001b[0m\u001b[33m above\u001b[0m\u001b[33m it\u001b[0m\u001b[33m.\u001b[0m\u001b[33m The\u001b[0m\u001b[33m llama\u001b[0m\u001b[33m is\u001b[0m\u001b[33m depicted\u001b[0m\u001b[33m in\u001b[0m\u001b[33m a\u001b[0m\u001b[33m cartoon\u001b[0m\u001b[33mish\u001b[0m\u001b[33m style\u001b[0m\u001b[33m,\u001b[0m\u001b[33m with\u001b[0m\u001b[33m a\u001b[0m\u001b[33m large\u001b[0m\u001b[33m body\u001b[0m\u001b[33m and\u001b[0m\u001b[33m a\u001b[0m\u001b[33m long\u001b[0m\u001b[33m neck\u001b[0m\u001b[33m.\u001b[0m\u001b[33m It\u001b[0m\u001b[33m has\u001b[0m\u001b[33m a\u001b[0m\u001b[33m distinctive\u001b[0m\u001b[33m head\u001b[0m\u001b[33m shape\u001b[0m\u001b[33m,\u001b[0m\u001b[33m with\u001b[0m\u001b[33m a\u001b[0m\u001b[33m small\u001b[0m\u001b[33m circle\u001b[0m\u001b[33m for\u001b[0m\u001b[33m the\u001b[0m\u001b[33m eye\u001b[0m\u001b[33m and\u001b[0m\u001b[33m a\u001b[0m\u001b[33m curved\u001b[0m\u001b[33m line\u001b[0m\u001b[33m for\u001b[0m\u001b[33m the\u001b[0m\u001b[33m mouth\u001b[0m\u001b[33m.\u001b[0m\u001b[33m The\u001b[0m\u001b[33m llama\u001b[0m\u001b[33m's\u001b[0m\u001b[33m body\u001b[0m\u001b[33m is\u001b[0m\u001b[33m composed\u001b[0m\u001b[33m of\u001b[0m\u001b[33m several\u001b[0m\u001b[33m rounded\u001b[0m\u001b[33m shapes\u001b[0m\u001b[33m,\u001b[0m\u001b[33m giving\u001b[0m\u001b[33m it\u001b[0m\u001b[33m a\u001b[0m\u001b[33m soft\u001b[0m\u001b[33m and\u001b[0m\u001b[33m cudd\u001b[0m\u001b[33mly\u001b[0m\u001b[33m appearance\u001b[0m\u001b[33m.\n", "\n", "\u001b[0m\u001b[33mThe\u001b[0m\u001b[33m words\u001b[0m\u001b[33m \"\u001b[0m\u001b[33mLL\u001b[0m\u001b[33mAMA\u001b[0m\u001b[33m STACK\u001b[0m\u001b[33m\"\u001b[0m\u001b[33m are\u001b[0m\u001b[33m written\u001b[0m\u001b[33m in\u001b[0m\u001b[33m a\u001b[0m\u001b[33m playful\u001b[0m\u001b[33m,\u001b[0m\u001b[33m handwritten\u001b[0m\u001b[33m font\u001b[0m\u001b[33m above\u001b[0m\u001b[33m the\u001b[0m\u001b[33m llama\u001b[0m\u001b[33m's\u001b[0m\u001b[33m head\u001b[0m\u001b[33m.\u001b[0m\u001b[33m The\u001b[0m\u001b[33m text\u001b[0m\u001b[33m is\u001b[0m\u001b[33m also\u001b[0m\u001b[33m in\u001b[0m\u001b[33m a\u001b[0m\u001b[33m mon\u001b[0m\u001b[33moch\u001b[0m\u001b[33mromatic\u001b[0m\u001b[33m color\u001b[0m\u001b[33m scheme\u001b[0m\u001b[33m,\u001b[0m\u001b[33m matching\u001b[0m\u001b[33m the\u001b[0m\u001b[33m llama\u001b[0m\u001b[33m's\u001b[0m\u001b[33m outline\u001b[0m\u001b[33m.\u001b[0m\u001b[33m The\u001b[0m\u001b[33m background\u001b[0m\u001b[33m of\u001b[0m\u001b[33m the\u001b[0m\u001b[33m image\u001b[0m\u001b[33m is\u001b[0m\u001b[33m a\u001b[0m\u001b[33m solid\u001b[0m\u001b[33m black\u001b[0m\u001b[33m color\u001b[0m\u001b[33m,\u001b[0m\u001b[33m which\u001b[0m\u001b[33m provides\u001b[0m\u001b[33m a\u001b[0m\u001b[33m clean\u001b[0m\u001b[33m and\u001b[0m\u001b[33m simple\u001b[0m\u001b[33m contrast\u001b[0m\u001b[33m to\u001b[0m\u001b[33m the\u001b[0m\u001b[33m llama\u001b[0m\u001b[33m's\u001b[0m\u001b[33m design\u001b[0m\u001b[33m.\n", "\n", "\u001b[0m\u001b[33mOverall\u001b[0m\u001b[33m,\u001b[0m\u001b[33m the\u001b[0m\u001b[33m image\u001b[0m\u001b[33m appears\u001b[0m\u001b[33m to\u001b[0m\u001b[33m be\u001b[0m\u001b[33m a\u001b[0m\u001b[33m logo\u001b[0m\u001b[33m or\u001b[0m\u001b[33m icon\u001b[0m\u001b[33m for\u001b[0m\u001b[33m a\u001b[0m\u001b[33m brand\u001b[0m\u001b[33m or\u001b[0m\u001b[33m product\u001b[0m\u001b[33m called\u001b[0m\u001b[33m \"\u001b[0m\u001b[33mL\u001b[0m\u001b[33mlama\u001b[0m\u001b[33m Stack\u001b[0m\u001b[33m.\"\u001b[0m\u001b[33m The\u001b[0m\u001b[33m use\u001b[0m\u001b[33m of\u001b[0m\u001b[33m a\u001b[0m\u001b[33m cartoon\u001b[0m\u001b[33m llama\u001b[0m\u001b[33m and\u001b[0m\u001b[33m a\u001b[0m\u001b[33m playful\u001b[0m\u001b[33m font\u001b[0m\u001b[33m suggests\u001b[0m\u001b[33m a\u001b[0m\u001b[33m l\u001b[0m\u001b[33migh\u001b[0m\u001b[33mthe\u001b[0m\u001b[33mart\u001b[0m\u001b[33med\u001b[0m\u001b[33m and\u001b[0m\u001b[33m humorous\u001b[0m\u001b[33m tone\u001b[0m\u001b[33m,\u001b[0m\u001b[33m while\u001b[0m\u001b[33m the\u001b[0m\u001b[33m mon\u001b[0m\u001b[33moch\u001b[0m\u001b[33mromatic\u001b[0m\u001b[33m color\u001b[0m\u001b[33m scheme\u001b[0m\u001b[33m gives\u001b[0m\u001b[33m the\u001b[0m\u001b[33m image\u001b[0m\u001b[33m a\u001b[0m\u001b[33m clean\u001b[0m\u001b[33m and\u001b[0m\u001b[33m modern\u001b[0m\u001b[33m feel\u001b[0m\u001b[33m.\u001b[0m\u001b[97m\u001b[0m\n" ] } ], "source": [ "# [Cell 5] - Initialize client and process image\n", "async def main():\n", " # Initialize client\n", " client = LlamaStackClient(\n", " base_url=f\"http://{HOST}:{PORT}\",\n", " )\n", "\n", " # Process image\n", " await process_image(client, \"../_static/llama-stack-logo.png\")\n", "\n", "\n", "\n", "# Execute the main function\n", "await main()" ] }, { "cell_type": "markdown", "id": "9b39efb4", "metadata": {}, "source": [ "Thanks for checking out this notebook! \n", "\n", "The next one in the series will teach you one of the favorite applications of Large Language Models: [Tool Calling](./03_Tool_Calling101.ipynb). Enjoy!" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.15" } }, "nbformat": 4, "nbformat_minor": 5 }