# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from enum import Enum from typing import List, Literal, Optional, Protocol, Union from llama_models.schema_utils import json_schema_type, webmethod from pydantic import BaseModel, Field from typing_extensions import Annotated from llama_models.llama3.api.datatypes import * # noqa: F403 class LogProbConfig(BaseModel): top_k: Optional[int] = 0 @json_schema_type class QuantizationType(Enum): bf16 = "bf16" fp8 = "fp8" @json_schema_type class Fp8QuantizationConfig(BaseModel): type: Literal[QuantizationType.fp8.value] = QuantizationType.fp8.value @json_schema_type class Bf16QuantizationConfig(BaseModel): type: Literal[QuantizationType.bf16.value] = QuantizationType.bf16.value QuantizationConfig = Annotated[ Union[Bf16QuantizationConfig, Fp8QuantizationConfig], Field(discriminator="type"), ] @json_schema_type class ChatCompletionResponseEventType(Enum): start = "start" complete = "complete" progress = "progress" @json_schema_type class ToolCallParseStatus(Enum): started = "started" in_progress = "in_progress" failure = "failure" success = "success" @json_schema_type class ToolCallDelta(BaseModel): content: Union[str, ToolCall] parse_status: ToolCallParseStatus @json_schema_type class ChatCompletionResponseEvent(BaseModel): """Chat completion response event.""" event_type: ChatCompletionResponseEventType delta: Union[str, ToolCallDelta] logprobs: Optional[List[TokenLogProbs]] = None stop_reason: Optional[StopReason] = None @json_schema_type class CompletionRequest(BaseModel): model: str content: InterleavedTextMedia sampling_params: Optional[SamplingParams] = SamplingParams() stream: Optional[bool] = False logprobs: Optional[LogProbConfig] = None @json_schema_type class CompletionResponse(BaseModel): """Completion response.""" completion_message: CompletionMessage logprobs: Optional[List[TokenLogProbs]] = None @json_schema_type class CompletionResponseStreamChunk(BaseModel): """streamed completion response.""" delta: str stop_reason: Optional[StopReason] = None logprobs: Optional[List[TokenLogProbs]] = None @json_schema_type class BatchCompletionRequest(BaseModel): model: str content_batch: List[InterleavedTextMedia] sampling_params: Optional[SamplingParams] = SamplingParams() logprobs: Optional[LogProbConfig] = None @json_schema_type class BatchCompletionResponse(BaseModel): """Batch completion response.""" completion_message_batch: List[CompletionMessage] @json_schema_type class ChatCompletionRequest(BaseModel): model: str messages: List[Message] sampling_params: Optional[SamplingParams] = SamplingParams() # zero-shot tool definitions as input to the model tools: Optional[List[ToolDefinition]] = Field(default_factory=list) tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto) tool_prompt_format: Optional[ToolPromptFormat] = Field( default=ToolPromptFormat.json ) stream: Optional[bool] = False logprobs: Optional[LogProbConfig] = None @json_schema_type class ChatCompletionResponseStreamChunk(BaseModel): """SSE-stream of these events.""" event: ChatCompletionResponseEvent @json_schema_type class ChatCompletionResponse(BaseModel): """Chat completion response.""" completion_message: CompletionMessage logprobs: Optional[List[TokenLogProbs]] = None @json_schema_type class BatchChatCompletionRequest(BaseModel): model: str messages_batch: List[List[Message]] sampling_params: Optional[SamplingParams] = SamplingParams() # zero-shot tool definitions as input to the model tools: Optional[List[ToolDefinition]] = Field(default_factory=list) tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto) tool_prompt_format: Optional[ToolPromptFormat] = Field( default=ToolPromptFormat.json ) logprobs: Optional[LogProbConfig] = None @json_schema_type class BatchChatCompletionResponse(BaseModel): completion_message_batch: List[CompletionMessage] @json_schema_type class EmbeddingsResponse(BaseModel): embeddings: List[List[float]] class Inference(Protocol): @webmethod(route="/inference/completion") async def completion( self, model: str, content: InterleavedTextMedia, sampling_params: Optional[SamplingParams] = SamplingParams(), stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> Union[CompletionResponse, CompletionResponseStreamChunk]: ... @webmethod(route="/inference/chat_completion") async def chat_completion( self, model: str, messages: List[Message], sampling_params: Optional[SamplingParams] = SamplingParams(), # zero-shot tool definitions as input to the model tools: Optional[List[ToolDefinition]] = None, tool_choice: Optional[ToolChoice] = ToolChoice.auto, tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> Union[ChatCompletionResponse, ChatCompletionResponseStreamChunk]: ... @webmethod(route="/inference/embeddings") async def embeddings( self, model: str, contents: List[InterleavedTextMedia], ) -> EmbeddingsResponse: ...