# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from collections.abc import AsyncGenerator from openai import OpenAI from llama_stack.apis.inference import * from llama_stack.apis.inference import OpenAIEmbeddingsResponse from llama_stack.apis.models import Model, ModelType from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper from llama_stack.providers.utils.inference.openai_compat import ( OpenAIChatCompletionToLlamaStackMixin, OpenAICompletionToLlamaStackMixin, get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, process_completion_response, process_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( completion_request_to_prompt, interleaved_content_as_str, ) from .config import RunpodImplConfig MODEL_ENTRIES = [] class RunpodInferenceAdapter( ModelRegistryHelper, Inference, OpenAIChatCompletionToLlamaStackMixin, OpenAICompletionToLlamaStackMixin, ): """ Adapter for RunPod's OpenAI-compatible API endpoints. Supports VLLM for serverless endpoint self-hosted or public endpoints. Can work with any runpod endpoints that support OpenAI-compatible API """ def __init__(self, config: RunpodImplConfig) -> None: ModelRegistryHelper.__init__(self, MODEL_ENTRIES) self.config = config async def initialize(self) -> None: pass async def shutdown(self) -> None: pass async def register_model(self, model: Model) -> Model: """ Register any model with the runpod provider_id. Pass-through registration - accepts any model string that the RunPod endpoint serves. No static model validation since RunPod endpoints can serve arbitrary vLLM models. YAML Configuration Example: models: - metadata: {} model_id: runpod/qwen/qwen3-8b model_type: llm provider_id: runpod provider_model_id: qwen/qwen3-8b - metadata: {} model_id: runpod/deepcogito/cogito-v2-preview-llama-70B model_type: llm provider_id: runpod provider_model_id: deepcogito/cogito-v2-preview-llama-70B The provider strips 'runpod/' prefix before API calls: "runpod/qwen/qwen3-8b" -> "qwen/qwen3-8b" """ if model.provider_id == "runpod": logger.info( f"Registering model: {model.identifier} -> {model.provider_resource_id}" ) return model return await super().register_model(model) async def completion( self, model_id: str, content: InterleavedContent, sampling_params: SamplingParams | None = None, response_format: ResponseFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() request = CompletionRequest( model=model_id, content=content, sampling_params=sampling_params, response_format=response_format, stream=stream, logprobs=logprobs, ) client = OpenAI(base_url=self.config.url, api_key=self.config.api_token) if stream: return self._stream_completion(request, client) else: return await self._nonstream_completion(request, client) async def chat_completion( self, model_id: str, messages: list[Message], sampling_params: SamplingParams | None = None, response_format: ResponseFormat | None = None, tools: list[ToolDefinition] | None = None, tool_choice: ToolChoice | None = ToolChoice.auto, tool_prompt_format: ToolPromptFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, tool_config: ToolConfig | None = None, ) -> AsyncGenerator: """Process chat completion requests using RunPod's OpenAI-compatible API.""" if sampling_params is None: sampling_params = SamplingParams() request = ChatCompletionRequest( model=model_id, messages=messages, sampling_params=sampling_params, tools=tools or [], stream=stream, logprobs=logprobs, tool_config=tool_config, ) client = OpenAI(base_url=self.config.url, api_key=self.config.api_token) if stream: return self._stream_chat_completion(request, client) else: return await self._nonstream_chat_completion(request, client) async def _nonstream_chat_completion( self, request: ChatCompletionRequest, client: OpenAI ) -> ChatCompletionResponse: params = await self._get_chat_params(request) r = client.chat.completions.create(**params) return process_chat_completion_response(r, request) async def _stream_chat_completion( self, request: ChatCompletionRequest, client: OpenAI ) -> AsyncGenerator: params = await self._get_chat_params(request) async def _to_async_generator(): s = client.chat.completions.create(**params) for chunk in s: yield chunk stream = _to_async_generator() async for chunk in process_chat_completion_stream_response(stream, request): yield chunk async def _get_chat_params(self, request: ChatCompletionRequest) -> dict: """Convert Llama Stack request to RunPod API parameters.""" messages = [ {"role": msg.role, "content": msg.content} for msg in request.messages ] # Resolve model_id to provider_resource_id model_obj = await self.model_store.get_model(request.model) model = model_obj.provider_resource_id or request.model if model.startswith("runpod/"): model = model.replace("runpod/", "", 1) params = { "model": model, "messages": messages, "stream": request.stream, **get_sampling_options(request.sampling_params), } if request.stream: params["stream_options"] = {"include_usage": True} return params async def _nonstream_completion( self, request: CompletionRequest, client: OpenAI ) -> CompletionResponse: params = await self._get_completion_params(request) r = client.completions.create(**params) return process_completion_response(r) async def _stream_completion( self, request: CompletionRequest, client: OpenAI ) -> AsyncGenerator: params = await self._get_completion_params(request) async def _to_async_generator(): s = client.completions.create(**params) for chunk in s: yield chunk stream = _to_async_generator() async for chunk in process_completion_stream_response(stream): yield chunk async def _get_completion_params(self, request: CompletionRequest) -> dict: # Resolve model_id to provider_resource_id model_obj = await self.model_store.get_model(request.model) model = model_obj.provider_resource_id or request.model if model.startswith("runpod/"): model = model.replace("runpod/", "", 1) params = { "model": model, "prompt": completion_request_to_prompt(request), "stream": request.stream, **get_sampling_options(request.sampling_params), } if request.stream: params["stream_options"] = {"include_usage": True} return params async def embeddings( self, model_id: str, contents: list[str] | list[InterleavedContentItem], text_truncation: TextTruncation | None = TextTruncation.none, output_dimension: int | None = None, task_type: EmbeddingTaskType | None = None, ) -> EmbeddingsResponse: # Resolve model_id to provider_resource_id model_obj = await self.model_store.get_model(model_id) model = model_obj.provider_resource_id or model_id if model.startswith("runpod/"): model = model.replace("runpod/", "", 1) client = OpenAI(base_url=self.config.url, api_key=self.config.api_token) kwargs = {} if output_dimension: kwargs["dimensions"] = output_dimension response = client.embeddings.create( model=model, input=[interleaved_content_as_str(content) for content in contents], **kwargs, ) embeddings = [data.embedding for data in response.data] return EmbeddingsResponse(embeddings=embeddings) async def openai_embeddings( self, model: str, input: str | list[str], encoding_format: str | None = "float", dimensions: int | None = None, user: str | None = None, ) -> OpenAIEmbeddingsResponse: # Resolve model_id to provider_resource_id model_obj = await self.model_store.get_model(model) model_stripped = model_obj.provider_resource_id or model if model_stripped.startswith("runpod/"): model_stripped = model_stripped.replace("runpod/", "", 1) client = OpenAI(base_url=self.config.url, api_key=self.config.api_token) response = client.embeddings.create( model=model_stripped, input=input, encoding_format=encoding_format, dimensions=dimensions, user=user, ) return response