# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import os import warnings from unittest.mock import patch import pytest from llama_stack.apis.post_training.post_training import ( DataConfig, DatasetFormat, LoraFinetuningConfig, OptimizerConfig, OptimizerType, QATFinetuningConfig, TrainingConfig, ) from llama_stack.distribution.library_client import convert_pydantic_to_json_value from llama_stack.providers.remote.post_training.nvidia.post_training import ( ListNvidiaPostTrainingJobs, NvidiaPostTrainingAdapter, NvidiaPostTrainingConfig, NvidiaPostTrainingJob, NvidiaPostTrainingJobStatusResponse, ) @pytest.fixture def nvidia_post_training_adapter(): """Fixture to create and configure the NVIDIA post training adapter.""" os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test" # needed for nemo customizer config = NvidiaPostTrainingConfig(customizer_url=os.environ["NVIDIA_CUSTOMIZER_URL"], api_key=None) adapter = NvidiaPostTrainingAdapter(config) with patch.object(adapter, "_make_request") as mock_make_request: yield adapter, mock_make_request def _assert_request(mock_call, expected_method, expected_path, expected_params=None, expected_json=None): """Helper method to verify request details in mock calls.""" call_args = mock_call.call_args if expected_method and expected_path: if isinstance(call_args[0], tuple) and len(call_args[0]) == 2: assert call_args[0] == (expected_method, expected_path) else: assert call_args[1]["method"] == expected_method assert call_args[1]["path"] == expected_path if expected_params: assert call_args[1]["params"] == expected_params if expected_json: for key, value in expected_json.items(): assert call_args[1]["json"][key] == value async def test_supervised_fine_tune(nvidia_post_training_adapter): """Test the supervised fine-tuning API call.""" adapter, mock_make_request = nvidia_post_training_adapter mock_make_request.return_value = { "id": "cust-JGTaMbJMdqjJU8WbQdN9Q2", "created_at": "2024-12-09T04:06:28.542884", "updated_at": "2024-12-09T04:06:28.542884", "config": { "schema_version": "1.0", "id": "af783f5b-d985-4e5b-bbb7-f9eec39cc0b1", "created_at": "2024-12-09T04:06:28.542657", "updated_at": "2024-12-09T04:06:28.569837", "custom_fields": {}, "name": "meta-llama/Llama-3.1-8B-Instruct", "base_model": "meta-llama/Llama-3.1-8B-Instruct", "model_path": "llama-3_1-8b-instruct", "training_types": [], "finetuning_types": ["lora"], "precision": "bf16", "num_gpus": 4, "num_nodes": 1, "micro_batch_size": 1, "tensor_parallel_size": 1, "max_seq_length": 4096, }, "dataset": { "schema_version": "1.0", "id": "dataset-XU4pvGzr5tvawnbVxeJMTb", "created_at": "2024-12-09T04:06:28.542657", "updated_at": "2024-12-09T04:06:28.542660", "custom_fields": {}, "name": "sample-basic-test", "version_id": "main", "version_tags": [], }, "hyperparameters": { "finetuning_type": "lora", "training_type": "sft", "batch_size": 16, "epochs": 2, "learning_rate": 0.0001, "lora": {"alpha": 16}, }, "output_model": "default/job-1234", "status": "created", "project": "default", "custom_fields": {}, "ownership": {"created_by": "me", "access_policies": {}}, } algorithm_config = LoraFinetuningConfig( type="LoRA", apply_lora_to_mlp=True, apply_lora_to_output=True, alpha=16, rank=16, lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"], ) data_config = DataConfig( dataset_id="sample-basic-test", batch_size=16, shuffle=False, data_format=DatasetFormat.instruct ) optimizer_config = OptimizerConfig( optimizer_type=OptimizerType.adam, lr=0.0001, weight_decay=0.01, num_warmup_steps=100, ) training_config = TrainingConfig( n_epochs=2, data_config=data_config, optimizer_config=optimizer_config, ) with warnings.catch_warnings(record=True): warnings.simplefilter("always") training_job = await adapter.supervised_fine_tune( job_uuid="1234", model="meta/llama-3.2-1b-instruct@v1.0.0+L40", checkpoint_dir="", algorithm_config=algorithm_config, training_config=convert_pydantic_to_json_value(training_config), logger_config={}, hyperparam_search_config={}, ) # check the output is a PostTrainingJob assert isinstance(training_job, NvidiaPostTrainingJob) assert training_job.job_uuid == "cust-JGTaMbJMdqjJU8WbQdN9Q2" mock_make_request.assert_called_once() _assert_request( mock_make_request, "POST", "/v1/customization/jobs", expected_json={ "config": "meta/llama-3.2-1b-instruct@v1.0.0+L40", "dataset": {"name": "sample-basic-test", "namespace": "default"}, "hyperparameters": { "training_type": "sft", "finetuning_type": "lora", "epochs": 2, "batch_size": 16, "learning_rate": 0.0001, "weight_decay": 0.01, "lora": {"alpha": 16}, }, }, ) async def test_supervised_fine_tune_with_qat(nvidia_post_training_adapter): """Test that QAT configuration raises NotImplementedError.""" adapter, mock_make_request = nvidia_post_training_adapter algorithm_config = QATFinetuningConfig(type="QAT", quantizer_name="quantizer_name", group_size=1) data_config = DataConfig( dataset_id="sample-basic-test", batch_size=16, shuffle=False, data_format=DatasetFormat.instruct ) optimizer_config = OptimizerConfig( optimizer_type=OptimizerType.adam, lr=0.0001, weight_decay=0.01, num_warmup_steps=100, ) training_config = TrainingConfig( n_epochs=2, data_config=data_config, optimizer_config=optimizer_config, ) # This will raise NotImplementedError since QAT is not supported with pytest.raises(NotImplementedError): await adapter.supervised_fine_tune( job_uuid="1234", model="meta/llama-3.2-1b-instruct@v1.0.0+L40", checkpoint_dir="", algorithm_config=algorithm_config, training_config=convert_pydantic_to_json_value(training_config), logger_config={}, hyperparam_search_config={}, ) async def test_get_training_job_status(nvidia_post_training_adapter): """Test getting training job status with different statuses.""" adapter, mock_make_request = nvidia_post_training_adapter customizer_status_to_job_status = [ ("running", "in_progress"), ("completed", "completed"), ("failed", "failed"), ("cancelled", "cancelled"), ("pending", "scheduled"), ("unknown", "scheduled"), ] for customizer_status, expected_status in customizer_status_to_job_status: mock_make_request.return_value = { "created_at": "2024-12-09T04:06:28.580220", "updated_at": "2024-12-09T04:21:19.852832", "status": customizer_status, "steps_completed": 1210, "epochs_completed": 2, "percentage_done": 100.0, "best_epoch": 2, "train_loss": 1.718016266822815, "val_loss": 1.8661999702453613, } job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2" status = await adapter.get_training_job_status(job_uuid=job_id) assert isinstance(status, NvidiaPostTrainingJobStatusResponse) assert status.status.value == expected_status # Note: The response object inherits extra fields via ConfigDict(extra="allow") # So these attributes should be accessible using getattr with defaults assert getattr(status, "steps_completed", None) == 1210 assert getattr(status, "epochs_completed", None) == 2 assert getattr(status, "percentage_done", None) == 100.0 assert getattr(status, "best_epoch", None) == 2 assert getattr(status, "train_loss", None) == 1.718016266822815 assert getattr(status, "val_loss", None) == 1.8661999702453613 _assert_request( mock_make_request, "GET", f"/v1/customization/jobs/{job_id}/status", expected_params={"job_id": job_id}, ) mock_make_request.reset_mock() async def test_get_training_jobs(nvidia_post_training_adapter): """Test getting list of training jobs.""" adapter, mock_make_request = nvidia_post_training_adapter job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2" mock_make_request.return_value = { "data": [ { "id": job_id, "created_at": "2024-12-09T04:06:28.542884", "updated_at": "2024-12-09T04:21:19.852832", "config": { "name": "meta-llama/Llama-3.1-8B-Instruct", "base_model": "meta-llama/Llama-3.1-8B-Instruct", }, "dataset": {"name": "default/sample-basic-test"}, "hyperparameters": { "finetuning_type": "lora", "training_type": "sft", "batch_size": 16, "epochs": 2, "learning_rate": 0.0001, "lora": {"adapter_dim": 16, "adapter_dropout": 0.1}, }, "output_model": "default/job-1234", "status": "completed", "project": "default", } ] } jobs = await adapter.get_training_jobs() assert isinstance(jobs, ListNvidiaPostTrainingJobs) assert len(jobs.data) == 1 job = jobs.data[0] assert job.job_uuid == job_id assert job.status.value == "completed" mock_make_request.assert_called_once() _assert_request( mock_make_request, "GET", "/v1/customization/jobs", expected_params={"page": 1, "page_size": 10, "sort": "created_at"}, ) async def test_cancel_training_job(nvidia_post_training_adapter): """Test canceling a training job.""" adapter, mock_make_request = nvidia_post_training_adapter mock_make_request.return_value = {} # Empty response for successful cancellation job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2" result = await adapter.cancel_training_job(job_uuid=job_id) assert result is None mock_make_request.assert_called_once() _assert_request( mock_make_request, "POST", f"/v1/customization/jobs/{job_id}/cancel", expected_params={"job_id": job_id}, )