# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from .datatypes import * # noqa: F403 from typing import Optional, Protocol from llama_models.llama3.api.datatypes import ToolDefinition, ToolPromptFormat # this dependency is annoying and we need a forked up version anyway from llama_models.schema_utils import webmethod @json_schema_type class CompletionRequest(BaseModel): model: str content: InterleavedTextMedia sampling_params: Optional[SamplingParams] = SamplingParams() stream: Optional[bool] = False logprobs: Optional[LogProbConfig] = None @json_schema_type class CompletionResponse(BaseModel): completion_message: CompletionMessage logprobs: Optional[List[TokenLogProbs]] = None @json_schema_type class CompletionResponseStreamChunk(BaseModel): """streamed completion response.""" delta: str stop_reason: Optional[StopReason] = None logprobs: Optional[List[TokenLogProbs]] = None @json_schema_type class BatchCompletionRequest(BaseModel): model: str content_batch: List[InterleavedTextMedia] sampling_params: Optional[SamplingParams] = SamplingParams() logprobs: Optional[LogProbConfig] = None @json_schema_type class BatchCompletionResponse(BaseModel): completion_message_batch: List[CompletionMessage] @json_schema_type class ChatCompletionRequest(BaseModel): model: str messages: List[Message] sampling_params: Optional[SamplingParams] = SamplingParams() # zero-shot tool definitions as input to the model tools: Optional[List[ToolDefinition]] = Field(default_factory=list) tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto) tool_prompt_format: Optional[ToolPromptFormat] = Field( default=ToolPromptFormat.json ) stream: Optional[bool] = False logprobs: Optional[LogProbConfig] = None @json_schema_type class ChatCompletionResponseStreamChunk(BaseModel): """SSE-stream of these events.""" event: ChatCompletionResponseEvent @json_schema_type class ChatCompletionResponse(BaseModel): completion_message: CompletionMessage logprobs: Optional[List[TokenLogProbs]] = None @json_schema_type class BatchChatCompletionRequest(BaseModel): model: str messages_batch: List[List[Message]] sampling_params: Optional[SamplingParams] = SamplingParams() # zero-shot tool definitions as input to the model tools: Optional[List[ToolDefinition]] = Field(default_factory=list) tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto) tool_prompt_format: Optional[ToolPromptFormat] = Field( default=ToolPromptFormat.json ) logprobs: Optional[LogProbConfig] = None @json_schema_type class BatchChatCompletionResponse(BaseModel): completion_message_batch: List[CompletionMessage] @json_schema_type class EmbeddingsResponse(BaseModel): embeddings: List[List[float]] class Inference(Protocol): @webmethod(route="/inference/completion") async def completion( self, request: CompletionRequest, ) -> Union[CompletionResponse, CompletionResponseStreamChunk]: ... @webmethod(route="/inference/chat_completion") async def chat_completion( self, request: ChatCompletionRequest, ) -> Union[ChatCompletionResponse, ChatCompletionResponseStreamChunk]: ... @webmethod(route="/inference/embeddings") async def embeddings( self, model: str, contents: List[InterleavedTextMedia], ) -> EmbeddingsResponse: ... @webmethod(route="/inference/batch_completion") async def batch_completion( self, request: BatchCompletionRequest, ) -> BatchCompletionResponse: ... @webmethod(route="/inference/batch_chat_completion") async def batch_chat_completion( self, request: BatchChatCompletionRequest, ) -> BatchChatCompletionResponse: ...