# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. """Telemetry tests verifying @trace_protocol decorator format across stack modes.""" import json def _span_attributes(span): attrs = getattr(span, "attributes", None) if attrs is None: return {} # ReadableSpan.attributes acts like a mapping try: return dict(attrs.items()) # type: ignore[attr-defined] except AttributeError: try: return dict(attrs) except TypeError: return attrs def _span_attr(span, key): attrs = _span_attributes(span) return attrs.get(key) def _span_trace_id(span): context = getattr(span, "context", None) if context and getattr(context, "trace_id", None) is not None: return f"{context.trace_id:032x}" return getattr(span, "trace_id", None) def _span_has_message(span, text: str) -> bool: args = _span_attr(span, "__args__") if not args or not isinstance(args, str): return False return text in args def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_model_id): """Verify streaming adds chunk_count and __type__=async_generator.""" mock_otlp_collector.clear() stream = llama_stack_client.chat.completions.create( model=text_model_id, messages=[{"role": "user", "content": "Test trace openai 1"}], stream=True, ) chunks = list(stream) assert len(chunks) > 0 spans = mock_otlp_collector.get_spans(expected_count=5) assert len(spans) > 0 async_generator_span = next( ( span for span in reversed(spans) if _span_attr(span, "__type__") == "async_generator" and _span_attr(span, "chunk_count") and _span_has_message(span, "Test trace openai 1") ), None, ) assert async_generator_span is not None raw_chunk_count = _span_attr(async_generator_span, "chunk_count") assert raw_chunk_count is not None chunk_count = int(raw_chunk_count) assert chunk_count == len(chunks) def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client, text_model_id): """Comprehensive validation of telemetry data format including spans and metrics.""" mock_otlp_collector.clear() response = llama_stack_client.chat.completions.create( model=text_model_id, messages=[{"role": "user", "content": "Test trace openai with temperature 0.7"}], temperature=0.7, max_tokens=100, stream=False, ) # Handle both dict and Pydantic model for usage # This occurs due to the replay system returning a dict for usage, but the client returning a Pydantic model # TODO: Fix this by making the replay system return a Pydantic model for usage usage = response.usage if isinstance(response.usage, dict) else response.usage.model_dump() assert usage.get("prompt_tokens") and usage["prompt_tokens"] > 0 assert usage.get("completion_tokens") and usage["completion_tokens"] > 0 assert usage.get("total_tokens") and usage["total_tokens"] > 0 # Verify spans spans = mock_otlp_collector.get_spans(expected_count=7) target_span = next( (span for span in reversed(spans) if _span_has_message(span, "Test trace openai with temperature 0.7")), None, ) assert target_span is not None trace_id = _span_trace_id(target_span) assert trace_id is not None spans = [span for span in spans if _span_trace_id(span) == trace_id] spans = [span for span in spans if _span_attr(span, "__root__") or _span_attr(span, "__autotraced__")] assert len(spans) >= 4 # Collect all model_ids found in spans logged_model_ids = [] for span in spans: attrs = _span_attributes(span) assert attrs is not None # Root span is created manually by tracing middleware, not by @trace_protocol decorator is_root_span = attrs.get("__root__") is True if is_root_span: assert attrs.get("__location__") in ["library_client", "server"] continue assert attrs.get("__autotraced__") assert attrs.get("__class__") and attrs.get("__method__") assert attrs.get("__type__") in ["async", "sync", "async_generator"] args_field = attrs.get("__args__") if args_field: args = json.loads(args_field) if "model_id" in args: logged_model_ids.append(args["model_id"]) # At least one span should capture the fully qualified model ID assert text_model_id in logged_model_ids, f"Expected to find {text_model_id} in spans, but got {logged_model_ids}" # TODO: re-enable this once metrics get fixed """ # Verify token usage metrics in response metrics = mock_otlp_collector.get_metrics() assert metrics for metric in metrics: assert metric.name in ["completion_tokens", "total_tokens", "prompt_tokens"] assert metric.unit == "tokens" assert metric.data.data_points and len(metric.data.data_points) == 1 match metric.name: case "completion_tokens": assert metric.data.data_points[0].value == usage["completion_tokens"] case "total_tokens": assert metric.data.data_points[0].value == usage["total_tokens"] case "prompt_tokens": assert metric.data.data_points[0].value == usage["prompt_tokens" """