# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from typing import AsyncGenerator, List, Optional, Union from ibm_watson_machine_learning.foundation_models import Model from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams from llama_stack.apis.common.content_types import InterleavedContent, InterleavedContentItem from llama_stack.apis.inference import ( ChatCompletionRequest, ChatCompletionResponse, CompletionRequest, EmbeddingsResponse, EmbeddingTaskType, Inference, LogProbConfig, Message, ResponseFormat, SamplingParams, TextTruncation, ToolChoice, ToolConfig, ToolDefinition, ToolPromptFormat, ) from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper from llama_stack.providers.utils.inference.openai_compat import ( OpenAICompatCompletionChoice, OpenAICompatCompletionResponse, process_chat_completion_response, process_chat_completion_stream_response, process_completion_response, process_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, completion_request_to_prompt, request_has_media, ) from . import WatsonXConfig from .models import MODEL_ENTRIES class WatsonXInferenceAdapter(Inference, ModelRegistryHelper): def __init__(self, config: WatsonXConfig) -> None: ModelRegistryHelper.__init__(self, MODEL_ENTRIES) print(f"Initializing watsonx InferenceAdapter({config.url})...") self._config = config self._project_id = self._config.project_id async def initialize(self) -> None: pass async def shutdown(self) -> None: pass async def completion( self, model_id: str, content: InterleavedContent, sampling_params: Optional[SamplingParams] = None, response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() model = await self.model_store.get_model(model_id) request = CompletionRequest( model=model.provider_resource_id, content=content, sampling_params=sampling_params, response_format=response_format, stream=stream, logprobs=logprobs, ) if stream: return self._stream_completion(request) else: return await self._nonstream_completion(request) def _get_client(self, model_id) -> Model: config_api_key = self._config.api_key.get_secret_value() if self._config.api_key else None config_url = self._config.url project_id = self._config.project_id credentials = {"url": config_url, "apikey": config_api_key} return Model(model_id=model_id, credentials=credentials, project_id=project_id) async def _nonstream_completion(self, request: CompletionRequest) -> ChatCompletionResponse: params = await self._get_params(request) r = self._get_client(request.model).generate(**params) choices = [] if "results" in r: for result in r["results"]: choice = OpenAICompatCompletionChoice( finish_reason=result["stop_reason"] if result["stop_reason"] else None, text=result["generated_text"], ) choices.append(choice) response = OpenAICompatCompletionResponse( choices=choices, ) return process_completion_response(response) async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator: params = await self._get_params(request) async def _generate_and_convert_to_openai_compat(): s = self._get_client(request.model).generate_text_stream(**params) for chunk in s: choice = OpenAICompatCompletionChoice( finish_reason=None, text=chunk, ) yield OpenAICompatCompletionResponse( choices=[choice], ) stream = _generate_and_convert_to_openai_compat() async for chunk in process_completion_stream_response(stream): yield chunk async def chat_completion( self, model_id: str, messages: List[Message], sampling_params: Optional[SamplingParams] = None, tools: Optional[List[ToolDefinition]] = None, tool_choice: Optional[ToolChoice] = ToolChoice.auto, tool_prompt_format: Optional[ToolPromptFormat] = None, response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, tool_config: Optional[ToolConfig] = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() model = await self.model_store.get_model(model_id) request = ChatCompletionRequest( model=model.provider_resource_id, messages=messages, sampling_params=sampling_params, tools=tools or [], response_format=response_format, stream=stream, logprobs=logprobs, tool_config=tool_config, ) if stream: return self._stream_chat_completion(request) else: return await self._nonstream_chat_completion(request) async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse: params = await self._get_params(request) r = self._get_client(request.model).generate(**params) choices = [] if "results" in r: for result in r["results"]: choice = OpenAICompatCompletionChoice( finish_reason=result["stop_reason"] if result["stop_reason"] else None, text=result["generated_text"], ) choices.append(choice) response = OpenAICompatCompletionResponse( choices=choices, ) return process_chat_completion_response(response, request) async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator: params = await self._get_params(request) model_id = request.model # if we shift to TogetherAsyncClient, we won't need this wrapper async def _to_async_generator(): s = self._get_client(model_id).generate_text_stream(**params) for chunk in s: choice = OpenAICompatCompletionChoice( finish_reason=None, text=chunk, ) yield OpenAICompatCompletionResponse( choices=[choice], ) stream = _to_async_generator() async for chunk in process_chat_completion_stream_response(stream, request): yield chunk async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict: input_dict = {"params": {}} media_present = request_has_media(request) llama_model = self.get_llama_model(request.model) if isinstance(request, ChatCompletionRequest): input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model) else: assert not media_present, "Together does not support media for Completion requests" input_dict["prompt"] = await completion_request_to_prompt(request) if request.sampling_params: if request.sampling_params.strategy: input_dict["params"][GenParams.DECODING_METHOD] = request.sampling_params.strategy.type if request.sampling_params.max_tokens: input_dict["params"][GenParams.MAX_NEW_TOKENS] = request.sampling_params.max_tokens if request.sampling_params.repetition_penalty: input_dict["params"][GenParams.REPETITION_PENALTY] = request.sampling_params.repetition_penalty if request.sampling_params.additional_params.get("top_p"): input_dict["params"][GenParams.TOP_P] = request.sampling_params.additional_params["top_p"] if request.sampling_params.additional_params.get("top_k"): input_dict["params"][GenParams.TOP_K] = request.sampling_params.additional_params["top_k"] if request.sampling_params.additional_params.get("temperature"): input_dict["params"][GenParams.TEMPERATURE] = request.sampling_params.additional_params["temperature"] if request.sampling_params.additional_params.get("length_penalty"): input_dict["params"][GenParams.LENGTH_PENALTY] = request.sampling_params.additional_params[ "length_penalty" ] if request.sampling_params.additional_params.get("random_seed"): input_dict["params"][GenParams.RANDOM_SEED] = request.sampling_params.additional_params["random_seed"] if request.sampling_params.additional_params.get("min_new_tokens"): input_dict["params"][GenParams.MIN_NEW_TOKENS] = request.sampling_params.additional_params[ "min_new_tokens" ] if request.sampling_params.additional_params.get("stop_sequences"): input_dict["params"][GenParams.STOP_SEQUENCES] = request.sampling_params.additional_params[ "stop_sequences" ] if request.sampling_params.additional_params.get("time_limit"): input_dict["params"][GenParams.TIME_LIMIT] = request.sampling_params.additional_params["time_limit"] if request.sampling_params.additional_params.get("truncate_input_tokens"): input_dict["params"][GenParams.TRUNCATE_INPUT_TOKENS] = request.sampling_params.additional_params[ "truncate_input_tokens" ] if request.sampling_params.additional_params.get("return_options"): input_dict["params"][GenParams.RETURN_OPTIONS] = request.sampling_params.additional_params[ "return_options" ] params = { **input_dict, } return params async def embeddings( self, model_id: str, contents: List[str] | List[InterleavedContentItem], text_truncation: Optional[TextTruncation] = TextTruncation.none, output_dimension: Optional[int] = None, task_type: Optional[EmbeddingTaskType] = None, ) -> EmbeddingsResponse: pass