# TGI Distribution The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations. {{ providers_table }} You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference. {% if run_config_env_vars %} ### Environment Variables The following environment variables can be configured: {% for var, (default_value, description) in run_config_env_vars.items() %} - `{{ var }}`: {{ description }} (default: `{{ default_value }}`) {% endfor %} {% endif %} ## Setting up TGI server Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint. Here is a sample script to start a TGI server locally via Docker: ```bash export TGI_INFERENCE_PORT=8080 export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct export CUDA_VISIBLE_DEVICES=0 docker run --rm -it \ -v $HOME/.cache/huggingface:/data \ -p $TGI_INFERENCE_PORT:$TGI_INFERENCE_PORT \ --gpus $CUDA_VISIBLE_DEVICES \ ghcr.io/huggingface/text-generation-inference:2.3.1 \ --dtype bfloat16 \ --usage-stats off \ --sharded false \ --cuda-memory-fraction 0.7 \ --model-id $INFERENCE_MODEL \ --port $TGI_INFERENCE_PORT ``` If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like: ```bash export TGI_SAFETY_PORT=8081 export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B export CUDA_VISIBLE_DEVICES=1 docker run --rm -it \ -v $HOME/.cache/huggingface:/data \ -p $TGI_SAFETY_PORT:$TGI_SAFETY_PORT \ --gpus $CUDA_VISIBLE_DEVICES \ ghcr.io/huggingface/text-generation-inference:2.3.1 \ --dtype bfloat16 \ --usage-stats off \ --sharded false \ --model-id $SAFETY_MODEL \ --port $TGI_SAFETY_PORT ``` ## Running Llama Stack with TGI as the inference provider Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image. ### Via Docker This method allows you to get started quickly without having to build the distribution code. ```bash LLAMA_STACK_PORT=5001 docker run \ --network host \ -it \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -v ./run.yaml:/root/my-run.yaml \ llamastack/distribution-{{ name }} \ /root/my-run.yaml \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env TGI_URL=http://host.docker.internal:$TGI_INFERENCE_PORT ``` If you are using Llama Stack Safety / Shield APIs, use: ```bash docker run \ --network host \ -it \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -v ./run-with-safety.yaml:/root/my-run.yaml \ llamastack/distribution-{{ name }} \ /root/my-run.yaml \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env TGI_URL=http://host.docker.internal:$TGI_INFERENCE_PORT \ --env SAFETY_MODEL=$SAFETY_MODEL \ --env TGI_SAFETY_URL=http://host.docker.internal:$TGI_SAFETY_PORT ``` ### Via Conda Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available. ```bash llama stack build --template {{ name }} --image-type conda llama stack run ./run.yaml --port 5001 --env INFERENCE_MODEL=$INFERENCE_MODEL --env TGI_URL=http://127.0.0.1:$TGI_INFERENCE_PORT ``` If you are using Llama Stack Safety / Shield APIs, use: ```bash llama stack run ./run-with-safety.yaml --port 5001 --env INFERENCE_MODEL=$INFERENCE_MODEL --env TGI_URL=http://127.0.0.1:$TGI_INFERENCE_PORT --env SAFETY_MODEL=$SAFETY_MODEL --env TGI_SAFETY_URL=http://127.0.0.1:$TGI_SAFETY_PORT ```