# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from typing import AsyncGenerator from llama_models.llama3.api.chat_format import ChatFormat from llama_models.llama3.api.datatypes import Message from llama_models.llama3.api.tokenizer import Tokenizer from openai import OpenAI from llama_stack.apis.inference import * # noqa: F403 from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper from llama_stack.providers.utils.inference.openai_compat import ( get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, ) from .config import DatabricksImplConfig DATABRICKS_SUPPORTED_MODELS = { "Llama3.1-70B-Instruct": "databricks-meta-llama-3-1-70b-instruct", "Llama3.1-405B-Instruct": "databricks-meta-llama-3-1-405b-instruct", } class DatabricksInferenceAdapter(ModelRegistryHelper, Inference): def __init__(self, config: DatabricksImplConfig) -> None: ModelRegistryHelper.__init__( self, stack_to_provider_models_map=DATABRICKS_SUPPORTED_MODELS ) self.config = config self.formatter = ChatFormat(Tokenizer.get_instance()) async def initialize(self) -> None: return async def shutdown(self) -> None: pass def completion( self, model: str, content: InterleavedTextMedia, sampling_params: Optional[SamplingParams] = SamplingParams(), stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: raise NotImplementedError() def chat_completion( self, model: str, messages: List[Message], sampling_params: Optional[SamplingParams] = SamplingParams(), tools: Optional[List[ToolDefinition]] = None, tool_choice: Optional[ToolChoice] = ToolChoice.auto, tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: request = ChatCompletionRequest( model=model, messages=messages, sampling_params=sampling_params, tools=tools or [], tool_choice=tool_choice, tool_prompt_format=tool_prompt_format, stream=stream, logprobs=logprobs, ) client = OpenAI(base_url=self.config.url, api_key=self.config.api_token) if stream: return self._stream_chat_completion(request, client) else: return self._nonstream_chat_completion(request, client) async def _nonstream_chat_completion( self, request: ChatCompletionRequest, client: OpenAI ) -> ChatCompletionResponse: params = self._get_params(request) r = client.completions.create(**params) return process_chat_completion_response(request, r, self.formatter) async def _stream_chat_completion( self, request: ChatCompletionRequest, client: OpenAI ) -> AsyncGenerator: params = self._get_params(request) async def _to_async_generator(): s = client.completions.create(**params) for chunk in s: yield chunk stream = _to_async_generator() async for chunk in process_chat_completion_stream_response( request, stream, self.formatter ): yield chunk def _get_params(self, request: ChatCompletionRequest) -> dict: return { "model": self.map_to_provider_model(request.model), "prompt": chat_completion_request_to_prompt(request, self.formatter), "stream": request.stream, **get_sampling_options(request), } async def embeddings( self, model: str, contents: List[InterleavedTextMedia], ) -> EmbeddingsResponse: raise NotImplementedError()