# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from typing import AsyncGenerator, List, Optional from llama_stack_client import LlamaStackClient from llama_stack.apis.common.content_types import InterleavedContent from llama_stack.apis.inference import ( EmbeddingsResponse, Inference, LogProbConfig, Message, ResponseFormat, SamplingParams, ToolChoice, ToolConfig, ToolDefinition, ToolPromptFormat, ) from llama_stack.apis.models import Model from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper from .config import PassthroughImplConfig class PassthroughInferenceAdapter(Inference): def __init__(self, config: PassthroughImplConfig) -> None: ModelRegistryHelper.__init__(self, []) self.config = config async def initialize(self) -> None: pass async def shutdown(self) -> None: pass async def unregister_model(self, model_id: str) -> None: pass async def register_model(self, model: Model) -> Model: return model def _get_client(self) -> LlamaStackClient: passthrough_url = None passthrough_api_key = None provider_data = None if self.config.url is not None: passthrough_url = self.config.url else: provider_data = self.get_request_provider_data() if provider_data is None or not provider_data.passthrough_url: raise ValueError( 'Pass url of the passthrough endpoint in the header X-LlamaStack-Provider-Data as { "passthrough_url": }' ) passthrough_url = provider_data.passthrough_url if self.config.api_key is not None: passthrough_api_key = self.config.api_key.get_secret_value() else: provider_data = self.get_request_provider_data() if provider_data is None or not provider_data.passthrough_api_key: raise ValueError( 'Pass API Key for the passthrough endpoint in the header X-LlamaStack-Provider-Data as { "passthrough_api_key": }' ) passthrough_api_key = provider_data.passthrough_api_key return LlamaStackClient( base_url=passthrough_url, api_key=passthrough_api_key, provider_data=provider_data, ) async def completion( self, model_id: str, content: InterleavedContent, sampling_params: Optional[SamplingParams] = SamplingParams(), response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: client = self._get_client() model = await self.model_store.get_model(model_id) params = { "model_id": model.provider_resource_id, "content": content, "sampling_params": sampling_params, "response_format": response_format, "stream": stream, "logprobs": logprobs, } params = {key: value for key, value in params.items() if value is not None} # only pass through the not None params return client.inference.completion(**params) async def chat_completion( self, model_id: str, messages: List[Message], sampling_params: Optional[SamplingParams] = SamplingParams(), tools: Optional[List[ToolDefinition]] = None, tool_choice: Optional[ToolChoice] = ToolChoice.auto, tool_prompt_format: Optional[ToolPromptFormat] = None, response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, tool_config: Optional[ToolConfig] = None, ) -> AsyncGenerator: client = self._get_client() model = await self.model_store.get_model(model_id) params = { "model_id": model.provider_resource_id, "messages": messages, "sampling_params": sampling_params, "tools": tools, "tool_choice": tool_choice, "tool_prompt_format": tool_prompt_format, "response_format": response_format, "stream": stream, "logprobs": logprobs, } params = {key: value for key, value in params.items() if value is not None} # only pass through the not None params return client.inference.chat_completion(**params) async def embeddings( self, model_id: str, contents: List[InterleavedContent], ) -> EmbeddingsResponse: client = self._get_client() model = await self.model_store.get_model(model_id) return client.inference.embeddings( model_id=model.provider_resource_id, contents=contents, )