# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import pytest from llama_stack_client import BadRequestError from llama_stack_client.types import Document @pytest.fixture(scope="function") def client_with_empty_registry(client_with_models): def clear_registry(): vector_dbs = [vector_db.identifier for vector_db in client_with_models.vector_dbs.list()] for vector_db_id in vector_dbs: client_with_models.vector_dbs.unregister(vector_db_id=vector_db_id) clear_registry() try: client_with_models.toolgroups.register(toolgroup_id="builtin::rag", provider_id="rag-runtime") except Exception: pass yield client_with_models clear_registry() @pytest.fixture(scope="session") def sample_documents(): return [ Document( document_id="test-doc-1", content="Python is a high-level programming language.", metadata={"category": "programming", "difficulty": "beginner"}, ), Document( document_id="test-doc-2", content="Machine learning is a subset of artificial intelligence.", metadata={"category": "AI", "difficulty": "advanced"}, ), Document( document_id="test-doc-3", content="Data structures are fundamental to computer science.", metadata={"category": "computer science", "difficulty": "intermediate"}, ), Document( document_id="test-doc-4", content="Neural networks are inspired by biological neural networks.", metadata={"category": "AI", "difficulty": "advanced"}, ), ] def assert_valid_chunk_response(response): assert len(response.chunks) > 0 assert len(response.scores) > 0 assert len(response.chunks) == len(response.scores) for chunk in response.chunks: assert isinstance(chunk.content, str) def assert_valid_text_response(response): assert len(response.content) > 0 assert all(isinstance(chunk.text, str) for chunk in response.content) def test_vector_db_insert_inline_and_query( client_with_empty_registry, sample_documents, embedding_model_id, embedding_dimension ): vector_db_name = "test_vector_db" vector_db = client_with_empty_registry.vector_dbs.register( vector_db_id=vector_db_name, embedding_model=embedding_model_id, embedding_dimension=embedding_dimension, ) vector_db_id = vector_db.identifier client_with_empty_registry.tool_runtime.rag_tool.insert( documents=sample_documents, chunk_size_in_tokens=512, vector_db_id=vector_db_id, ) # Query with a direct match query1 = "programming language" response1 = client_with_empty_registry.vector_io.query( vector_db_id=vector_db_id, query=query1, ) assert_valid_chunk_response(response1) assert any("Python" in chunk.content for chunk in response1.chunks) # Query with semantic similarity query2 = "AI and brain-inspired computing" response2 = client_with_empty_registry.vector_io.query( vector_db_id=vector_db_id, query=query2, ) assert_valid_chunk_response(response2) assert any("neural networks" in chunk.content.lower() for chunk in response2.chunks) # Query with limit on number of results (max_chunks=2) query3 = "computer" response3 = client_with_empty_registry.vector_io.query( vector_db_id=vector_db_id, query=query3, params={"max_chunks": 2}, ) assert_valid_chunk_response(response3) assert len(response3.chunks) <= 2 # Query with threshold on similarity score query4 = "computer" response4 = client_with_empty_registry.vector_io.query( vector_db_id=vector_db_id, query=query4, params={"score_threshold": 0.01}, ) assert_valid_chunk_response(response4) assert all(score >= 0.01 for score in response4.scores) def test_vector_db_insert_from_url_and_query( client_with_empty_registry, sample_documents, embedding_model_id, embedding_dimension ): providers = [p for p in client_with_empty_registry.providers.list() if p.api == "vector_io"] assert len(providers) > 0 vector_db_id = "test_vector_db" client_with_empty_registry.vector_dbs.register( vector_db_id=vector_db_id, embedding_model=embedding_model_id, embedding_dimension=embedding_dimension, ) # list to check memory bank is successfully registered available_vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()] # VectorDB is being migrated to VectorStore, so the ID will be different # Just check that at least one vector DB was registered assert len(available_vector_dbs) > 0 # Use the actual registered vector_db_id for subsequent operations actual_vector_db_id = available_vector_dbs[0] urls = [ "memory_optimizations.rst", "chat.rst", "llama3.rst", ] documents = [ Document( document_id=f"num-{i}", content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}", mime_type="text/plain", metadata={}, ) for i, url in enumerate(urls) ] client_with_empty_registry.tool_runtime.rag_tool.insert( documents=documents, vector_db_id=actual_vector_db_id, chunk_size_in_tokens=512, ) # Query for the name of method response1 = client_with_empty_registry.vector_io.query( vector_db_id=actual_vector_db_id, query="What's the name of the fine-tunning method used?", ) assert_valid_chunk_response(response1) assert any("lora" in chunk.content.lower() for chunk in response1.chunks) # Query for the name of model response2 = client_with_empty_registry.vector_io.query( vector_db_id=actual_vector_db_id, query="Which Llama model is mentioned?", ) assert_valid_chunk_response(response2) assert any("llama2" in chunk.content.lower() for chunk in response2.chunks) def test_rag_tool_openai_apis(client_with_empty_registry, embedding_model_id, embedding_dimension): vector_db_id = "test_openai_vector_db" client_with_empty_registry.vector_dbs.register( vector_db_id=vector_db_id, embedding_model=embedding_model_id, embedding_dimension=embedding_dimension, ) available_vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()] actual_vector_db_id = available_vector_dbs[0] # different document formats that should work with OpenAI APIs documents = [ Document( document_id="text-doc", content="This is a plain text document about machine learning algorithms.", metadata={"type": "text", "category": "AI"}, ), Document( document_id="url-doc", content="https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/chat.rst", mime_type="text/plain", metadata={"type": "url", "source": "pytorch"}, ), Document( document_id="data-url-doc", content="data:text/plain;base64,VGhpcyBpcyBhIGRhdGEgVVJMIGRvY3VtZW50IGFib3V0IGRlZXAgbGVhcm5pbmcu", # "This is a data URL document about deep learning." metadata={"type": "data_url", "encoding": "base64"}, ), ] client_with_empty_registry.tool_runtime.rag_tool.insert( documents=documents, vector_db_id=actual_vector_db_id, chunk_size_in_tokens=256, ) files_list = client_with_empty_registry.files.list() assert len(files_list.data) >= len(documents), ( f"Expected at least {len(documents)} files, got {len(files_list.data)}" ) vector_store_files = client_with_empty_registry.vector_io.openai_list_files_in_vector_store( vector_store_id=actual_vector_db_id ) assert len(vector_store_files.data) >= len(documents), f"Expected at least {len(documents)} files in vector store" response = client_with_empty_registry.tool_runtime.rag_tool.query( vector_db_ids=[actual_vector_db_id], content="Tell me about machine learning and deep learning", ) assert_valid_text_response(response) content_text = " ".join([chunk.text for chunk in response.content]).lower() assert "machine learning" in content_text or "deep learning" in content_text def test_rag_tool_exception_handling(client_with_empty_registry, embedding_model_id, embedding_dimension): vector_db_id = "test_exception_handling" client_with_empty_registry.vector_dbs.register( vector_db_id=vector_db_id, embedding_model=embedding_model_id, embedding_dimension=embedding_dimension, ) available_vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()] actual_vector_db_id = available_vector_dbs[0] documents = [ Document( document_id="valid-doc", content="This is a valid document that should be processed successfully.", metadata={"status": "valid"}, ), Document( document_id="invalid-url-doc", content="https://nonexistent-domain-12345.com/invalid.txt", metadata={"status": "invalid_url"}, ), Document( document_id="another-valid-doc", content="This is another valid document for testing resilience.", metadata={"status": "valid"}, ), ] client_with_empty_registry.tool_runtime.rag_tool.insert( documents=documents, vector_db_id=actual_vector_db_id, chunk_size_in_tokens=256, ) response = client_with_empty_registry.tool_runtime.rag_tool.query( vector_db_ids=[actual_vector_db_id], content="valid document", ) assert_valid_text_response(response) content_text = " ".join([chunk.text for chunk in response.content]).lower() assert "valid document" in content_text def test_rag_tool_insert_and_query(client_with_empty_registry, embedding_model_id, embedding_dimension): providers = [p for p in client_with_empty_registry.providers.list() if p.api == "vector_io"] assert len(providers) > 0 vector_db_id = "test_vector_db" client_with_empty_registry.vector_dbs.register( vector_db_id=vector_db_id, embedding_model=embedding_model_id, embedding_dimension=embedding_dimension, ) available_vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()] # VectorDB is being migrated to VectorStore, so the ID will be different # Just check that at least one vector DB was registered assert len(available_vector_dbs) > 0 # Use the actual registered vector_db_id for subsequent operations actual_vector_db_id = available_vector_dbs[0] urls = [ "memory_optimizations.rst", "chat.rst", "llama3.rst", ] documents = [ Document( document_id=f"num-{i}", content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}", mime_type="text/plain", metadata={"author": "llama", "source": url}, ) for i, url in enumerate(urls) ] client_with_empty_registry.tool_runtime.rag_tool.insert( documents=documents, vector_db_id=actual_vector_db_id, chunk_size_in_tokens=512, ) response_with_metadata = client_with_empty_registry.tool_runtime.rag_tool.query( vector_db_ids=[actual_vector_db_id], content="What is the name of the method used for fine-tuning?", ) assert_valid_text_response(response_with_metadata) assert any("metadata:" in chunk.text.lower() for chunk in response_with_metadata.content) response_without_metadata = client_with_empty_registry.tool_runtime.rag_tool.query( vector_db_ids=[actual_vector_db_id], content="What is the name of the method used for fine-tuning?", query_config={ "include_metadata_in_content": True, "chunk_template": "Result {index}\nContent: {chunk.content}\n", }, ) assert_valid_text_response(response_without_metadata) assert not any("metadata:" in chunk.text.lower() for chunk in response_without_metadata.content) with pytest.raises((ValueError, BadRequestError)): client_with_empty_registry.tool_runtime.rag_tool.query( vector_db_ids=[actual_vector_db_id], content="What is the name of the method used for fine-tuning?", query_config={ "chunk_template": "This should raise a ValueError because it is missing the proper template variables", }, ) def test_rag_tool_query_generation(client_with_empty_registry, embedding_model_id, embedding_dimension): vector_db_id = "test_query_generation_db" client_with_empty_registry.vector_dbs.register( vector_db_id=vector_db_id, embedding_model=embedding_model_id, embedding_dimension=embedding_dimension, ) available_vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()] actual_vector_db_id = available_vector_dbs[0] documents = [ Document( document_id="ai-doc", content="Artificial intelligence and machine learning are transforming technology.", metadata={"category": "AI"}, ), Document( document_id="banana-doc", content="Don't bring a banana to a knife fight.", metadata={"category": "wisdom"}, ), ] client_with_empty_registry.tool_runtime.rag_tool.insert( documents=documents, vector_db_id=actual_vector_db_id, chunk_size_in_tokens=256, ) response = client_with_empty_registry.tool_runtime.rag_tool.query( vector_db_ids=[actual_vector_db_id], content="Tell me about AI", ) assert_valid_text_response(response) content_text = " ".join([chunk.text for chunk in response.content]).lower() assert "artificial intelligence" in content_text or "machine learning" in content_text def test_rag_tool_pdf_data_url_handling(client_with_empty_registry, embedding_model_id, embedding_dimension): vector_db_id = "test_pdf_data_url_db" client_with_empty_registry.vector_dbs.register( vector_db_id=vector_db_id, embedding_model=embedding_model_id, embedding_dimension=embedding_dimension, ) available_vector_dbs = [vector_db.identifier for vector_db in client_with_empty_registry.vector_dbs.list()] actual_vector_db_id = available_vector_dbs[0] sample_pdf = b"%PDF-1.3\n3 0 obj\n<>\nendobj\n4 0 obj\n<>\nstream\nx\x9c\x15\xcc1\x0e\x820\x18@\xe1\x9dS\xbcM]jk$\xd5\xd5(\x83!\x86\xa1\x17\xf8\xa3\xa5`LIh+\xd7W\xc6\xf7\r\xef\xc0\xbd\xd2\xaa\xb6,\xd5\xc5\xb1o\x0c\xa6VZ\xe3znn%\xf3o\xab\xb1\xe7\xa3:Y\xdc\x8bm\xeb\xf3&1\xc8\xd7\xd3\x97\xc82\xe6\x81\x87\xe42\xcb\x87Vb(\x12<\xdd<=}Jc\x0cL\x91\xee\xda$\xb5\xc3\xbd\xd7\xe9\x0f\x8d\x97 $\nendstream\nendobj\n1 0 obj\n<>\nendobj\n5 0 obj\n<>\nendobj\n2 0 obj\n<<\n/ProcSet [/PDF /Text /ImageB /ImageC /ImageI]\n/Font <<\n/F1 5 0 R\n>>\n/XObject <<\n>>\n>>\nendobj\n6 0 obj\n<<\n/Producer (PyFPDF 1.7.2 http://pyfpdf.googlecode.com/)\n/Title (This is a sample title.)\n/Author (Llama Stack Developers)\n/CreationDate (D:20250312165548)\n>>\nendobj\n7 0 obj\n<<\n/Type /Catalog\n/Pages 1 0 R\n/OpenAction [3 0 R /FitH null]\n/PageLayout /OneColumn\n>>\nendobj\nxref\n0 8\n0000000000 65535 f \n0000000272 00000 n \n0000000455 00000 n \n0000000009 00000 n \n0000000087 00000 n \n0000000359 00000 n \n0000000559 00000 n \n0000000734 00000 n \ntrailer\n<<\n/Size 8\n/Root 7 0 R\n/Info 6 0 R\n>>\nstartxref\n837\n%%EOF\n" import base64 pdf_base64 = base64.b64encode(sample_pdf).decode("utf-8") pdf_data_url = f"data:application/pdf;base64,{pdf_base64}" documents = [ Document( document_id="test-pdf-data-url", content=pdf_data_url, metadata={"type": "pdf", "source": "data_url"}, ), ] client_with_empty_registry.tool_runtime.rag_tool.insert( documents=documents, vector_db_id=actual_vector_db_id, chunk_size_in_tokens=256, ) files_list = client_with_empty_registry.files.list() assert len(files_list.data) >= 1, "PDF should have been uploaded to Files API" pdf_file = None for file in files_list.data: if file.filename and "test-pdf-data-url" in file.filename: pdf_file = file break assert pdf_file is not None, "PDF file should be found in Files API" assert pdf_file.bytes == len(sample_pdf), f"File size should match original PDF ({len(sample_pdf)} bytes)" file_content = client_with_empty_registry.files.retrieve_content(pdf_file.id) assert file_content.startswith(b"%PDF-"), "Retrieved file should be a valid PDF" vector_store_files = client_with_empty_registry.vector_io.openai_list_files_in_vector_store( vector_store_id=actual_vector_db_id ) assert len(vector_store_files.data) >= 1, "PDF should be attached to vector store" response = client_with_empty_registry.tool_runtime.rag_tool.query( vector_db_ids=[actual_vector_db_id], content="sample title", ) assert_valid_text_response(response) content_text = " ".join([chunk.text for chunk in response.content]).lower() assert "sample title" in content_text or "title" in content_text