# Quick Start In this guide, we'll walk through how you can use the Llama Stack (server and client SDK ) to test a simple RAG agent. A Llama Stack agent is a simple autonomous system that can perform tasks by combining a Llama model for reasoning with tools (e.g., RAG, web search, code execution, etc.) for taking actions. In Llama Stack, we provide a server exposing multiple APIs. These APIs are backed by implementations from different providers. For this guide, we will use [Ollama](https://ollama.com/) as the inference provider. ### 1. Start Ollama ```bash ollama run llama3.2:3b-instruct-fp16 --keepalive 60m ``` By default, Ollama keeps the model loaded in memory for 5 minutes which can be too short. We set the `--keepalive` flag to 60 minutes to ensure the model remains loaded for sometime. NOTE: If you do not have ollama, you can install it from [here](https://ollama.ai/docs/installation). ### 2. Start the Llama Stack server Llama Stack is based on a client-server architecture. It consists of a server which can be configured very flexibly so you can mix-and-match various providers for its individual API components -- beyond Inference, these include Memory, Agents, Telemetry, Evals and so forth. To get started quickly, we provide various Docker images for the server component that work with different inference providers out of the box. For this guide, we will use `llamastack/distribution-ollama` as the Docker image. Lets setup some environment variables that we will use in the rest of the guide. ```bash INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" LLAMA_STACK_PORT=8321 ``` You can start the server using the following command: ```bash docker run -it \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -v ~/.llama:/root/.llama \ llamastack/distribution-ollama \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env OLLAMA_URL=http://host.docker.internal:11434 ``` Configuration for this is available at `distributions/ollama/run.yaml`. ### 3. Use the Llama Stack client SDK You can interact with the Llama Stack server using various client SDKs. We will use the Python SDK which you can install using the following command. Note that you must be using Python 3.10 or newer: ```bash yes | conda create -n stack-client python=3.10 conda activate stack-client pip install llama-stack-client ``` Let's use the `llama-stack-client` CLI to check the connectivity to the server. ```bash llama-stack-client configure --endpoint http://localhost:$LLAMA_STACK_PORT llama-stack-client models list ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┓ ┃ identifier ┃ provider_id ┃ provider_resource_id ┃ metadata ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━┩ │ meta-llama/Llama-3.2-3B-Instruct │ ollama │ llama3.2:3b-instruct-fp16 │ │ └──────────────────────────────────┴─────────────┴───────────────────────────┴──────────┘ ``` You can test basic Llama inference completion using the CLI too. ```bash llama-stack-client \ inference chat-completion \ --message "hello, what model are you?" ``` Here is a simple example to perform chat completions using Python instead of the CLI. ```python import os from llama_stack_client import LlamaStackClient client = LlamaStackClient(base_url=f"http://localhost:{os.environ['LLAMA_STACK_PORT']}") # List available models models = client.models.list() print("--- Available models: ---") for m in models: print(f"- {m.identifier}") print() response = client.inference.chat_completion( model_id=os.environ["INFERENCE_MODEL"], messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Write a haiku about coding"} ] ) print(response.completion_message.content) ``` ### 4. Your first RAG agent Here is an example of a simple RAG agent that uses the Llama Stack client SDK. ```python import os from termcolor import cprint from llama_stack_client.lib.agents.agent import Agent from llama_stack_client.lib.agents.event_logger import EventLogger from llama_stack_client.types.agent_create_params import AgentConfig from llama_stack_client.types.tool_runtime import DocumentParam as Document from llama_stack_client import LlamaStackClient # Define the client and point it to the server URL client = LlamaStackClient(base_url=f"http://localhost:{os.environ['LLAMA_STACK_PORT']}") # Define the documents to be used for RAG urls = ["chat.rst", "llama3.rst", "datasets.rst", "lora_finetune.rst"] documents = [ Document( document_id=f"num-{i}", content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}", mime_type="text/plain", metadata={}, ) for i, url in enumerate(urls) ] # Register a vector database vector_db_id = "test-vector-db" client.vector_dbs.register( vector_db_id=vector_db_id, embedding_model="all-MiniLM-L6-v2", embedding_dimension=384, ) # Insert the documents into the vector database client.tool_runtime.rag_tool.insert( documents=documents, vector_db_id=vector_db_id, chunk_size_in_tokens=512, ) # Create an agent agent_config = AgentConfig( # Define the inference model to use model=os.environ["INFERENCE_MODEL"], # Define instructions for the agent ( aka system prompt) instructions="You are a helpful assistant", # Enable session persistence enable_session_persistence=False, # Define tools available to the agent toolgroups = [ { "name": "builtin::rag", "args" : { "vector_db_ids": [vector_db_id], } } ], ) # Create an agent session rag_agent = Agent(client, agent_config) session_id = rag_agent.create_session("test-session") # Define a user prompts user_prompts = [ "What are the top 5 topics that were explained? Only list succinct bullet points.", ] # Run the agent loop by calling the `create_turn` method for prompt in user_prompts: cprint(f'User> {prompt}', 'green') response = rag_agent.create_turn( messages=[{"role": "user", "content": prompt}], session_id=session_id, ) for log in EventLogger().log(response): log.print() ``` ## Next Steps - Learn more about Llama Stack [Concepts](../concepts/index.md) - Learn how to [Build Llama Stacks](../distributions/index.md) - See [References](../references/index.md) for more details about the llama CLI and Python SDK - For example applications and more detailed tutorials, visit our [llama-stack-apps](https://github.com/meta-llama/llama-stack-apps/tree/main/examples) repository.