# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. """Telemetry tests verifying @trace_protocol decorator format using in-memory exporter.""" import json import os import pytest pytestmark = pytest.mark.skipif( os.environ.get("LLAMA_STACK_TEST_STACK_CONFIG_TYPE") == "server", reason="In-memory telemetry tests only work in library_client mode (server mode runs in separate process)", ) def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_model_id): """Verify streaming adds chunk_count and __type__=async_generator.""" stream = llama_stack_client.chat.completions.create( model=text_model_id, messages=[{"role": "user", "content": "Test trace openai 1"}], stream=True, ) chunks = list(stream) assert len(chunks) > 0 spans = mock_otlp_collector.get_spans() assert len(spans) > 0 chunk_count = None for span in spans: if span.attributes.get("__type__") == "async_generator": chunk_count = span.attributes.get("chunk_count") if chunk_count: chunk_count = int(chunk_count) break assert chunk_count is not None assert chunk_count == len(chunks) def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client, text_model_id): """Comprehensive validation of telemetry data format including spans and metrics.""" response = llama_stack_client.chat.completions.create( model=text_model_id, messages=[{"role": "user", "content": "Test trace openai with temperature 0.7"}], temperature=0.7, max_tokens=100, stream=False, ) # Handle both dict and Pydantic model for usage # This occurs due to the replay system returning a dict for usage, but the client returning a Pydantic model # TODO: Fix this by making the replay system return a Pydantic model for usage usage = response.usage if isinstance(response.usage, dict) else response.usage.model_dump() assert usage.get("prompt_tokens") and usage["prompt_tokens"] > 0 assert usage.get("completion_tokens") and usage["completion_tokens"] > 0 assert usage.get("total_tokens") and usage["total_tokens"] > 0 # Verify spans spans = mock_otlp_collector.get_spans() assert len(spans) == 5 # we only need this captured one time logged_model_id = None for span in spans: attrs = span.attributes assert attrs is not None # Root span is created manually by tracing middleware, not by @trace_protocol decorator is_root_span = attrs.get("__root__") is True if is_root_span: # Root spans have different attributes assert attrs.get("__location__") in ["library_client", "server"] else: # Non-root spans are created by @trace_protocol decorator assert attrs.get("__autotraced__") assert attrs.get("__class__") and attrs.get("__method__") assert attrs.get("__type__") in ["async", "sync", "async_generator"] args = json.loads(attrs["__args__"]) if "model_id" in args: logged_model_id = args["model_id"] assert logged_model_id is not None assert logged_model_id == text_model_id # TODO: re-enable this once metrics get fixed """ # Verify token usage metrics in response metrics = mock_otlp_collector.get_metrics() assert metrics for metric in metrics: assert metric.name in ["completion_tokens", "total_tokens", "prompt_tokens"] assert metric.unit == "tokens" assert metric.data.data_points and len(metric.data.data_points) == 1 match metric.name: case "completion_tokens": assert metric.data.data_points[0].value == usage["completion_tokens"] case "total_tokens": assert metric.data.data_points[0].value == usage["total_tokens"] case "prompt_tokens": assert metric.data.data_points[0].value == usage["prompt_tokens" """