# Llama CLI Reference The `llama` CLI tool helps you setup and use the Llama Stack. It should be available on your path after installing the `llama-stack` package. ## Installation You have two ways to install Llama Stack: 1. **Install as a package**: You can install the repository directly from [PyPI](https://pypi.org/project/llama-stack/) by running the following command: ```bash pip install llama-stack ``` 2. **Install from source**: If you prefer to install from the source code, follow these steps: ```bash mkdir -p ~/local cd ~/local git clone git@github.com:meta-llama/llama-stack.git conda create -n myenv python=3.10 conda activate myenv cd llama-stack $CONDA_PREFIX/bin/pip install -e . ## `llama` subcommands 1. `download`: `llama` cli tools supports downloading the model from Meta or Hugging Face. 2. `model`: Lists available models and their properties. 3. `stack`: Allows you to build and run a Llama Stack server. You can read more about this [here](../distribution_dev/building_distro.md). ### Sample Usage ``` llama --help ```
usage: llama [-h] {download,model,stack} ...

Welcome to the Llama CLI

options:
  -h, --help            show this help message and exit

subcommands:
  {download,model,stack}
## Downloading models You first need to have models downloaded locally. To download any model you need the **Model Descriptor**. This can be obtained by running the command ``` llama model list ``` You should see a table like this:
+----------------------------------+------------------------------------------+----------------+
| Model Descriptor                 | Hugging Face Repo                        | Context Length |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-8B                      | meta-llama/Llama-3.1-8B                  | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-70B                     | meta-llama/Llama-3.1-70B                 | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B:bf16-mp8           | meta-llama/Llama-3.1-405B                | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B                    | meta-llama/Llama-3.1-405B-FP8            | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B:bf16-mp16          | meta-llama/Llama-3.1-405B                | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-8B-Instruct             | meta-llama/Llama-3.1-8B-Instruct         | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-70B-Instruct            | meta-llama/Llama-3.1-70B-Instruct        | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B-Instruct:bf16-mp8  | meta-llama/Llama-3.1-405B-Instruct       | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B-Instruct           | meta-llama/Llama-3.1-405B-Instruct-FP8   | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B-Instruct:bf16-mp16 | meta-llama/Llama-3.1-405B-Instruct       | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-1B                      | meta-llama/Llama-3.2-1B                  | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-3B                      | meta-llama/Llama-3.2-3B                  | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-11B-Vision              | meta-llama/Llama-3.2-11B-Vision          | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-90B-Vision              | meta-llama/Llama-3.2-90B-Vision          | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-1B-Instruct             | meta-llama/Llama-3.2-1B-Instruct         | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-3B-Instruct             | meta-llama/Llama-3.2-3B-Instruct         | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-11B-Vision-Instruct     | meta-llama/Llama-3.2-11B-Vision-Instruct | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-90B-Vision-Instruct     | meta-llama/Llama-3.2-90B-Vision-Instruct | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-11B-Vision         | meta-llama/Llama-Guard-3-11B-Vision      | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-1B:int4-mp1        | meta-llama/Llama-Guard-3-1B-INT4         | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-1B                 | meta-llama/Llama-Guard-3-1B              | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-8B                 | meta-llama/Llama-Guard-3-8B              | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-8B:int8-mp1        | meta-llama/Llama-Guard-3-8B-INT8         | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Prompt-Guard-86M                 | meta-llama/Prompt-Guard-86M              | 128K           |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-2-8B                 | meta-llama/Llama-Guard-2-8B              | 4K             |
+----------------------------------+------------------------------------------+----------------+
To download models, you can use the llama download command. #### Downloading from [Meta](https://llama.meta.com/llama-downloads/) Here is an example download command to get the 3B-Instruct/11B-Vision-Instruct model. You will need META_URL which can be obtained from [here](https://llama.meta.com/docs/getting_the_models/meta/) Download the required checkpoints using the following commands: ```bash # download the 8B model, this can be run on a single GPU llama download --source meta --model-id Llama3.2-3B-Instruct --meta-url META_URL # you can also get the 70B model, this will require 8 GPUs however llama download --source meta --model-id Llama3.2-11B-Vision-Instruct --meta-url META_URL # llama-agents have safety enabled by default. For this, you will need # safety models -- Llama-Guard and Prompt-Guard llama download --source meta --model-id Prompt-Guard-86M --meta-url META_URL llama download --source meta --model-id Llama-Guard-3-1B --meta-url META_URL ``` #### Downloading from [Hugging Face](https://huggingface.co/meta-llama) Essentially, the same commands above work, just replace `--source meta` with `--source huggingface`. ```bash llama download --source huggingface --model-id Llama3.1-8B-Instruct --hf-token llama download --source huggingface --model-id Llama3.1-70B-Instruct --hf-token llama download --source huggingface --model-id Llama-Guard-3-1B --ignore-patterns *original* llama download --source huggingface --model-id Prompt-Guard-86M --ignore-patterns *original* ``` **Important:** Set your environment variable `HF_TOKEN` or pass in `--hf-token` to the command to validate your access. You can find your token at [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens). > **Tip:** Default for `llama download` is to run with `--ignore-patterns *.safetensors` since we use the `.pth` files in the `original` folder. For Llama Guard and Prompt Guard, however, we need safetensors. Hence, please run with `--ignore-patterns original` so that safetensors are downloaded and `.pth` files are ignored. ## Understand the models The `llama model` command helps you explore the model’s interface. 1. `download`: Download the model from different sources. (meta, huggingface) 2. `list`: Lists all the models available for download with hardware requirements to deploy the models. 3. `prompt-format`: Show llama model message formats. 4. `describe`: Describes all the properties of the model. ### Sample Usage `llama model ` ``` llama model --help ```
usage: llama model [-h] {download,list,prompt-format,describe} ...

Work with llama models

options:
  -h, --help            show this help message and exit

model_subcommands:
  {download,list,prompt-format,describe}
You can use the describe command to know more about a model: ``` llama model describe -m Llama3.2-3B-Instruct ``` ### Describe
+-----------------------------+----------------------------------+
| Model                       | Llama3.2-3B-Instruct             |
+-----------------------------+----------------------------------+
| Hugging Face ID             | meta-llama/Llama-3.2-3B-Instruct |
+-----------------------------+----------------------------------+
| Description                 | Llama 3.2 3b instruct model      |
+-----------------------------+----------------------------------+
| Context Length              | 128K tokens                      |
+-----------------------------+----------------------------------+
| Weights format              | bf16                             |
+-----------------------------+----------------------------------+
| Model params.json           | {                                |
|                             |     "dim": 3072,                 |
|                             |     "n_layers": 28,              |
|                             |     "n_heads": 24,               |
|                             |     "n_kv_heads": 8,             |
|                             |     "vocab_size": 128256,        |
|                             |     "ffn_dim_multiplier": 1.0,   |
|                             |     "multiple_of": 256,          |
|                             |     "norm_eps": 1e-05,           |
|                             |     "rope_theta": 500000.0,      |
|                             |     "use_scaled_rope": true      |
|                             | }                                |
+-----------------------------+----------------------------------+
| Recommended sampling params | {                                |
|                             |     "strategy": "top_p",         |
|                             |     "temperature": 1.0,          |
|                             |     "top_p": 0.9,                |
|                             |     "top_k": 0                   |
|                             | }                                |
+-----------------------------+----------------------------------+
### Prompt Format You can even run `llama model prompt-format` see all of the templates and their tokens: ``` llama model prompt-format -m Llama3.2-3B-Instruct ``` ![alt text](../resources/prompt-format.png) You will be shown a Markdown formatted description of the model interface and how prompts / messages are formatted for various scenarios. **NOTE**: Outputs in terminal are color printed to show special tokens.