{ "request": { "method": "POST", "url": "http://localhost:11434/api/generate", "headers": {}, "body": { "model": "llama3.2:3b-instruct-fp16", "raw": true, "prompt": "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nTest metrics generation 0<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", "options": { "temperature": 0.0 }, "stream": false }, "endpoint": "/api/generate", "model": "llama3.2:3b-instruct-fp16" }, "response": { "body": { "__type__": "ollama._types.GenerateResponse", "__data__": { "model": "llama3.2:3b-instruct-fp16", "created_at": "2025-08-11T15:51:12.918723Z", "done": true, "done_reason": "stop", "total_duration": 8868987792, "load_duration": 2793275292, "prompt_eval_count": 21, "prompt_eval_duration": 250000000, "eval_count": 344, "eval_duration": 5823000000, "response": "Here are some common test metrics used to evaluate the performance of a system:\n\n1. **Accuracy**: The proportion of correct predictions or classifications out of total predictions made.\n2. **Precision**: The ratio of true positives (correctly predicted instances) to the sum of true positives and false positives (incorrectly predicted instances).\n3. **Recall**: The ratio of true positives to the sum of true positives and false negatives (missed instances).\n4. **F1-score**: The harmonic mean of precision and recall, providing a balanced measure of both.\n5. **Mean Squared Error (MSE)**: The average squared difference between predicted and actual values.\n6. **Mean Absolute Error (MAE)**: The average absolute difference between predicted and actual values.\n7. **Root Mean Squared Percentage Error (RMSPE)**: The square root of the mean of the squared percentage differences between predicted and actual values.\n8. **Coefficient of Determination (R-squared, R2)**: Measures how well a model fits the data, with higher values indicating better fit.\n9. **Mean Absolute Percentage Error (MAPE)**: The average absolute percentage difference between predicted and actual values.\n10. **Normalized Mean Squared Error (NMSE)**: Similar to MSE, but normalized by the mean of the actual values.\n\nThese metrics can be used for various types of data, including:\n\n* Regression problems (e.g., predicting continuous values)\n* Classification problems (e.g., predicting categorical labels)\n* Time series forecasting\n* Clustering and dimensionality reduction\n\nWhen choosing a metric, consider the specific problem you're trying to solve, the type of data, and the desired level of precision.", "thinking": null, "context": null } }, "is_streaming": false } }