# NOTE: this template does not really do any fancy node mapping or affinity declarations # so the inference and safety models may land on the same GPU node apiVersion: v1 kind: PersistentVolumeClaim metadata: name: vllm-models spec: accessModes: - ReadWriteOnce volumeMode: Filesystem storageClassName: gp2 resources: requests: storage: 50Gi --- apiVersion: apps/v1 kind: Deployment metadata: name: vllm-server spec: replicas: 1 selector: matchLabels: app.kubernetes.io/name: vllm template: metadata: labels: app.kubernetes.io/name: vllm spec: containers: - name: vllm image: vllm/vllm-openai:latest command: ["/bin/sh", "-c"] args: - "vllm serve ${INFERENCE_MODEL} --dtype float16 --enforce-eager --max-model-len 4096 --gpu-memory-utilization 0.5" env: - name: HUGGING_FACE_HUB_TOKEN valueFrom: secretKeyRef: name: hf-token-secret key: token ports: - containerPort: 8000 volumeMounts: - name: llama-storage mountPath: /root/.cache/huggingface volumes: - name: llama-storage persistentVolumeClaim: claimName: vllm-models