--- orphan: true --- # Dell Distribution of Llama Stack ```{toctree} :maxdepth: 2 :hidden: self ``` The `llamastack/distribution-dell` distribution consists of the following provider configurations. | API | Provider(s) | |-----|-------------| | agents | `inline::meta-reference` | | datasetio | `remote::huggingface`, `inline::localfs` | | eval | `inline::meta-reference` | | inference | `remote::tgi`, `inline::sentence-transformers` | | safety | `inline::llama-guard` | | scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` | | telemetry | `inline::meta-reference` | | tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime` | | vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` | You can use this distribution if you have GPUs and want to run an independent TGI or Dell Enterprise Hub container for running inference. ### Environment Variables The following environment variables can be configured: - `DEH_URL`: URL for the Dell inference server (default: `http://0.0.0.0:8181`) - `DEH_SAFETY_URL`: URL for the Dell safety inference server (default: `http://0.0.0.0:8282`) - `CHROMA_URL`: URL for the Chroma server (default: `http://localhost:6601`) - `INFERENCE_MODEL`: Inference model loaded into the TGI server (default: `meta-llama/Llama-3.2-3B-Instruct`) - `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`) ## Setting up Inference server using Dell Enterprise Hub's custom TGI container. NOTE: This is a placeholder to run inference with TGI. This will be updated to use [Dell Enterprise Hub's containers](https://dell.huggingface.co/authenticated/models) once verified. ```bash export INFERENCE_PORT=8181 export DEH_URL=http://0.0.0.0:$INFERENCE_PORT export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct export CHROMADB_HOST=localhost export CHROMADB_PORT=6601 export CHROMA_URL=http://$CHROMADB_HOST:$CHROMADB_PORT export CUDA_VISIBLE_DEVICES=0 export LLAMA_STACK_PORT=8321 docker run --rm -it \ --pull always \ --network host \ -v $HOME/.cache/huggingface:/data \ -e HF_TOKEN=$HF_TOKEN \ -p $INFERENCE_PORT:$INFERENCE_PORT \ --gpus $CUDA_VISIBLE_DEVICES \ ghcr.io/huggingface/text-generation-inference \ --dtype bfloat16 \ --usage-stats off \ --sharded false \ --cuda-memory-fraction 0.7 \ --model-id $INFERENCE_MODEL \ --port $INFERENCE_PORT --hostname 0.0.0.0 ``` If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like: ```bash export SAFETY_INFERENCE_PORT=8282 export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B export CUDA_VISIBLE_DEVICES=1 docker run --rm -it \ --pull always \ --network host \ -v $HOME/.cache/huggingface:/data \ -e HF_TOKEN=$HF_TOKEN \ -p $SAFETY_INFERENCE_PORT:$SAFETY_INFERENCE_PORT \ --gpus $CUDA_VISIBLE_DEVICES \ ghcr.io/huggingface/text-generation-inference \ --dtype bfloat16 \ --usage-stats off \ --sharded false \ --cuda-memory-fraction 0.7 \ --model-id $SAFETY_MODEL \ --hostname 0.0.0.0 \ --port $SAFETY_INFERENCE_PORT ``` ## Dell distribution relies on ChromaDB for vector database usage You can start a chroma-db easily using docker. ```bash # This is where the indices are persisted mkdir -p $HOME/chromadb podman run --rm -it \ --network host \ --name chromadb \ -v $HOME/chromadb:/chroma/chroma \ -e IS_PERSISTENT=TRUE \ chromadb/chroma:latest \ --port $CHROMADB_PORT \ --host $CHROMADB_HOST ``` ## Running Llama Stack Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image. ### Via Docker This method allows you to get started quickly without having to build the distribution code. ```bash docker run -it \ --pull always \ --network host \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -v $HOME/.llama:/root/.llama \ # NOTE: mount the llama-stack / llama-model directories if testing local changes else not needed -v /home/hjshah/git/llama-stack:/app/llama-stack-source -v /home/hjshah/git/llama-models:/app/llama-models-source \ # localhost/distribution-dell:dev if building / testing locally llamastack/distribution-dell\ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env DEH_URL=$DEH_URL \ --env CHROMA_URL=$CHROMA_URL ``` If you are using Llama Stack Safety / Shield APIs, use: ```bash # You need a local checkout of llama-stack to run this, get it using # git clone https://github.com/meta-llama/llama-stack.git cd /path/to/llama-stack export SAFETY_INFERENCE_PORT=8282 export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B docker run \ -it \ --pull always \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -v $HOME/.llama:/root/.llama \ -v ./llama_stack/templates/tgi/run-with-safety.yaml:/root/my-run.yaml \ llamastack/distribution-dell \ --yaml-config /root/my-run.yaml \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env DEH_URL=$DEH_URL \ --env SAFETY_MODEL=$SAFETY_MODEL \ --env DEH_SAFETY_URL=$DEH_SAFETY_URL \ --env CHROMA_URL=$CHROMA_URL ``` ### Via Conda Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available. ```bash llama stack build --template dell --image-type conda llama stack run dell --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env DEH_URL=$DEH_URL \ --env CHROMA_URL=$CHROMA_URL ``` If you are using Llama Stack Safety / Shield APIs, use: ```bash llama stack run ./run-with-safety.yaml \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env DEH_URL=$DEH_URL \ --env SAFETY_MODEL=$SAFETY_MODEL \ --env DEH_SAFETY_URL=$DEH_SAFETY_URL \ --env CHROMA_URL=$CHROMA_URL ```