# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from collections.abc import AsyncGenerator from openai import AsyncOpenAI from together import AsyncTogether from together.constants import BASE_URL from llama_stack.apis.inference import ( ChatCompletionRequest, ChatCompletionResponse, Inference, LogProbConfig, Message, OpenAIEmbeddingsResponse, ResponseFormat, ResponseFormatType, SamplingParams, ToolChoice, ToolConfig, ToolDefinition, ToolPromptFormat, ) from llama_stack.apis.inference.inference import OpenAIEmbeddingUsage from llama_stack.apis.models import Model, ModelType from llama_stack.core.request_headers import NeedsRequestProviderData from llama_stack.log import get_logger from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper from llama_stack.providers.utils.inference.openai_compat import ( convert_message_to_openai_dict, get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, ) from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, request_has_media, ) from .config import TogetherImplConfig logger = get_logger(name=__name__, category="inference::together") class TogetherInferenceAdapter(OpenAIMixin, ModelRegistryHelper, Inference, NeedsRequestProviderData): embedding_model_metadata = { "togethercomputer/m2-bert-80M-32k-retrieval": {"embedding_dimension": 768, "context_length": 32768}, "BAAI/bge-large-en-v1.5": {"embedding_dimension": 1024, "context_length": 512}, "BAAI/bge-base-en-v1.5": {"embedding_dimension": 768, "context_length": 512}, "Alibaba-NLP/gte-modernbert-base": {"embedding_dimension": 768, "context_length": 8192}, "intfloat/multilingual-e5-large-instruct": {"embedding_dimension": 1024, "context_length": 512}, } def __init__(self, config: TogetherImplConfig) -> None: ModelRegistryHelper.__init__(self) self.config = config self.allowed_models = config.allowed_models self._model_cache: dict[str, Model] = {} def get_api_key(self): return self.config.api_key.get_secret_value() def get_base_url(self): return BASE_URL async def initialize(self) -> None: pass async def shutdown(self) -> None: pass def _get_client(self) -> AsyncTogether: together_api_key = None config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None if config_api_key: together_api_key = config_api_key else: provider_data = self.get_request_provider_data() if provider_data is None or not provider_data.together_api_key: raise ValueError( 'Pass Together API Key in the header X-LlamaStack-Provider-Data as { "together_api_key": }' ) together_api_key = provider_data.together_api_key return AsyncTogether(api_key=together_api_key) def _get_openai_client(self) -> AsyncOpenAI: together_client = self._get_client().client return AsyncOpenAI( base_url=together_client.base_url, api_key=together_client.api_key, ) def _build_options( self, sampling_params: SamplingParams | None, logprobs: LogProbConfig | None, fmt: ResponseFormat, ) -> dict: options = get_sampling_options(sampling_params) if fmt: if fmt.type == ResponseFormatType.json_schema.value: options["response_format"] = { "type": "json_object", "schema": fmt.json_schema, } elif fmt.type == ResponseFormatType.grammar.value: raise NotImplementedError("Grammar response format not supported yet") else: raise ValueError(f"Unknown response format {fmt.type}") if logprobs and logprobs.top_k: if logprobs.top_k != 1: raise ValueError( f"Unsupported value: Together only supports logprobs top_k=1. {logprobs.top_k} was provided", ) options["logprobs"] = 1 return options async def chat_completion( self, model_id: str, messages: list[Message], sampling_params: SamplingParams | None = None, tools: list[ToolDefinition] | None = None, tool_choice: ToolChoice | None = ToolChoice.auto, tool_prompt_format: ToolPromptFormat | None = None, response_format: ResponseFormat | None = None, stream: bool | None = False, logprobs: LogProbConfig | None = None, tool_config: ToolConfig | None = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() model = await self.model_store.get_model(model_id) request = ChatCompletionRequest( model=model.provider_resource_id, messages=messages, sampling_params=sampling_params, tools=tools or [], response_format=response_format, stream=stream, logprobs=logprobs, tool_config=tool_config, ) if stream: return self._stream_chat_completion(request) else: return await self._nonstream_chat_completion(request) async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse: params = await self._get_params(request) client = self._get_client() if "messages" in params: r = await client.chat.completions.create(**params) else: r = await client.completions.create(**params) return process_chat_completion_response(r, request) async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator: params = await self._get_params(request) client = self._get_client() if "messages" in params: stream = await client.chat.completions.create(**params) else: stream = await client.completions.create(**params) async for chunk in process_chat_completion_stream_response(stream, request): yield chunk async def _get_params(self, request: ChatCompletionRequest) -> dict: input_dict = {} media_present = request_has_media(request) llama_model = self.get_llama_model(request.model) if media_present or not llama_model: input_dict["messages"] = [await convert_message_to_openai_dict(m) for m in request.messages] else: input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model) params = { "model": request.model, **input_dict, "stream": request.stream, **self._build_options(request.sampling_params, request.logprobs, request.response_format), } logger.debug(f"params to together: {params}") return params async def list_models(self) -> list[Model] | None: self._model_cache = {} # Together's /v1/models is not compatible with OpenAI's /v1/models. Together support ticket #13355 -> will not fix, use Together's own client for m in await self._get_client().models.list(): if m.type == "embedding": if m.id not in self.embedding_model_metadata: logger.warning(f"Unknown embedding dimension for model {m.id}, skipping.") continue metadata = self.embedding_model_metadata[m.id] self._model_cache[m.id] = Model( provider_id=self.__provider_id__, provider_resource_id=m.id, identifier=m.id, model_type=ModelType.embedding, metadata=metadata, ) else: self._model_cache[m.id] = Model( provider_id=self.__provider_id__, provider_resource_id=m.id, identifier=m.id, model_type=ModelType.llm, ) return self._model_cache.values() async def should_refresh_models(self) -> bool: return True async def check_model_availability(self, model): return model in self._model_cache async def openai_embeddings( self, model: str, input: str | list[str], encoding_format: str | None = "float", dimensions: int | None = None, user: str | None = None, ) -> OpenAIEmbeddingsResponse: """ Together's OpenAI-compatible embeddings endpoint is not compatible with the standard OpenAI embeddings endpoint. The endpoint - - not all models return usage information - does not support user param, returns 400 Unrecognized request arguments supplied: user - does not support dimensions param, returns 400 Unrecognized request arguments supplied: dimensions """ # Together support ticket #13332 -> will not fix if user is not None: raise ValueError("Together's embeddings endpoint does not support user param.") # Together support ticket #13333 -> escalated if dimensions is not None: raise ValueError("Together's embeddings endpoint does not support dimensions param.") response = await self.client.embeddings.create( model=await self._get_provider_model_id(model), input=input, encoding_format=encoding_format, ) response.model = model # return the user the same model id they provided, avoid exposing the provider model id # Together support ticket #13330 -> escalated # - togethercomputer/m2-bert-80M-32k-retrieval *does not* return usage information if not hasattr(response, "usage") or response.usage is None: logger.warning( f"Together's embedding endpoint for {model} did not return usage information, substituting -1s." ) response.usage = OpenAIEmbeddingUsage(prompt_tokens=-1, total_tokens=-1) return response