# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from typing import AsyncGenerator, List, Optional from openai import AsyncOpenAI, BadRequestError from llama_stack.apis.common.content_types import ( InterleavedContent, InterleavedContentItem, TextContentItem, ) from llama_stack.apis.inference import ( ChatCompletionRequest, CompletionRequest, EmbeddingsResponse, EmbeddingTaskType, Inference, LogProbConfig, Message, ResponseFormat, SamplingParams, TextTruncation, ToolChoice, ToolConfig, ToolDefinition, ToolPromptFormat, ) from llama_stack.apis.models import Model from llama_stack.log import get_logger from llama_stack.providers.datatypes import ModelsProtocolPrivate from llama_stack.providers.utils.inference.model_registry import ( ModelRegistryHelper, ) from llama_stack.providers.utils.inference.openai_compat import ( convert_openai_chat_completion_choice, convert_openai_chat_completion_stream, ) from .models import model_entries from .openai_utils import ( convert_chat_completion_request, convert_completion_request, convert_openai_completion_choice, convert_openai_completion_stream, ) logger = get_logger(name=__name__, category="inference") class RamalamaInferenceAdapter(Inference, ModelsProtocolPrivate): def __init__(self, url: str) -> None: self.register_helper = ModelRegistryHelper(model_entries) self.url = url async def initialize(self) -> None: logger.info(f"checking connectivity to Ramalama at `{self.url}`...") self.client = AsyncOpenAI(base_url=self.url, api_key="NO KEY") async def shutdown(self) -> None: pass async def unregister_model(self, model_id: str) -> None: pass async def completion( self, model_id: str, content: InterleavedContent, sampling_params: Optional[SamplingParams] = None, response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() model = await self.model_store.get_model(model_id) request = convert_completion_request( request=CompletionRequest( model=model.provider_resource_id, content=content, sampling_params=sampling_params, response_format=response_format, stream=stream, logprobs=logprobs, ) ) response = await self.client.completions.create(**request) if stream: return convert_openai_completion_stream(response) else: # we pass n=1 to get only one completion return convert_openai_completion_choice(response.choices[0]) async def chat_completion( self, model_id: str, messages: List[Message], sampling_params: Optional[SamplingParams] = None, response_format: Optional[ResponseFormat] = None, tools: Optional[List[ToolDefinition]] = None, tool_choice: Optional[ToolChoice] = ToolChoice.auto, tool_prompt_format: Optional[ToolPromptFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, tool_config: Optional[ToolConfig] = None, ) -> AsyncGenerator: if sampling_params is None: sampling_params = SamplingParams() model = await self.model_store.get_model(model_id) request = await convert_chat_completion_request( request=ChatCompletionRequest( model=model.provider_resource_id, messages=messages, sampling_params=sampling_params, tools=tools or [], stream=stream, logprobs=logprobs, response_format=response_format, tool_config=tool_config, ), n=1, ) s = await self.client.chat.completions.create(**request) if stream: return convert_openai_chat_completion_stream(s, enable_incremental_tool_calls=False) else: # we pass n=1 to get only one completion return convert_openai_chat_completion_choice(s.choices[0]) async def embeddings( self, model_id: str, contents: List[str] | List[InterleavedContentItem], text_truncation: Optional[TextTruncation] = TextTruncation.none, output_dimension: Optional[int] = None, task_type: Optional[EmbeddingTaskType] = None, ) -> EmbeddingsResponse: flat_contents = [content.text if isinstance(content, TextContentItem) else content for content in contents] input = [content.text if isinstance(content, TextContentItem) else content for content in flat_contents] model = self.get_provider_model_id(model_id) extra_body = {} if text_truncation is not None: text_truncation_options = { TextTruncation.none: "NONE", TextTruncation.end: "END", TextTruncation.start: "START", } extra_body["truncate"] = text_truncation_options[text_truncation] if output_dimension is not None: extra_body["dimensions"] = output_dimension if task_type is not None: task_type_options = { EmbeddingTaskType.document: "passage", EmbeddingTaskType.query: "query", } extra_body["input_type"] = task_type_options[task_type] try: response = await self._client.embeddings.create( model=model, input=input, extra_body=extra_body, ) except BadRequestError as e: raise ValueError(f"Failed to get embeddings: {e}") from e return EmbeddingsResponse(embeddings=[embedding.embedding for embedding in response.data]) async def register_model(self, model: Model) -> Model: model = await self.register_helper.register_model(model) res = await self.client.models.list() available_models = [m.id async for m in res] if model.provider_resource_id not in available_models: raise ValueError( f"Model {model.provider_resource_id} is not being served by vLLM. " f"Available models: {', '.join(available_models)}" ) return model