# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import logging from typing import AsyncGenerator from llama_models.llama3.api.chat_format import ChatFormat from llama_models.llama3.api.datatypes import Message from llama_models.llama3.api.tokenizer import Tokenizer from llama_models.sku_list import all_registered_models from openai import OpenAI from llama_stack.apis.inference import * # noqa: F403 from llama_stack.providers.datatypes import ModelsProtocolPrivate from llama_stack.providers.utils.inference.model_registry import ( build_model_alias, ModelRegistryHelper, ) from llama_stack.providers.utils.inference.openai_compat import ( get_sampling_options, process_chat_completion_response, process_chat_completion_stream_response, ) from llama_stack.providers.utils.inference.prompt_adapter import ( chat_completion_request_to_prompt, completion_request_to_prompt, content_has_media, convert_message_to_dict, request_has_media, ) from .config import VLLMInferenceAdapterConfig log = logging.getLogger(__name__) def build_model_aliases(): return [ build_model_alias( model.huggingface_repo, model.descriptor(), ) for model in all_registered_models() if model.huggingface_repo ] class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate): def __init__(self, config: VLLMInferenceAdapterConfig) -> None: self.register_helper = ModelRegistryHelper(build_model_aliases()) self.config = config self.formatter = ChatFormat(Tokenizer.get_instance()) self.client = None async def initialize(self) -> None: log.info(f"Initializing VLLM client with base_url={self.config.url}") self.client = OpenAI(base_url=self.config.url, api_key=self.config.api_token) async def shutdown(self) -> None: pass async def unregister_model(self, model_id: str) -> None: pass async def completion( self, model_id: str, content: InterleavedTextMedia, sampling_params: Optional[SamplingParams] = SamplingParams(), response_format: Optional[ResponseFormat] = None, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> Union[CompletionResponse, CompletionResponseStreamChunk]: raise NotImplementedError() async def chat_completion( self, model_id: str, messages: List[Message], sampling_params: Optional[SamplingParams] = SamplingParams(), response_format: Optional[ResponseFormat] = None, tools: Optional[List[ToolDefinition]] = None, tool_choice: Optional[ToolChoice] = ToolChoice.auto, tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json, stream: Optional[bool] = False, logprobs: Optional[LogProbConfig] = None, ) -> AsyncGenerator: model = await self.model_store.get_model(model_id) request = ChatCompletionRequest( model=model.provider_resource_id, messages=messages, sampling_params=sampling_params, tools=tools or [], tool_choice=tool_choice, tool_prompt_format=tool_prompt_format, stream=stream, logprobs=logprobs, response_format=response_format, ) if stream: return self._stream_chat_completion(request, self.client) else: return await self._nonstream_chat_completion(request, self.client) async def _nonstream_chat_completion( self, request: ChatCompletionRequest, client: OpenAI ) -> ChatCompletionResponse: params = await self._get_params(request) if "messages" in params: r = client.chat.completions.create(**params) else: r = client.completions.create(**params) return process_chat_completion_response(r, self.formatter) async def _stream_chat_completion( self, request: ChatCompletionRequest, client: OpenAI ) -> AsyncGenerator: params = await self._get_params(request) # TODO: Can we use client.completions.acreate() or maybe there is another way to directly create an async # generator so this wrapper is not necessary? async def _to_async_generator(): if "messages" in params: s = client.chat.completions.create(**params) else: s = client.completions.create(**params) for chunk in s: yield chunk stream = _to_async_generator() async for chunk in process_chat_completion_stream_response( stream, self.formatter ): yield chunk async def register_model(self, model: Model) -> Model: model = await self.register_helper.register_model(model) res = self.client.models.list() available_models = [m.id for m in res] if model.provider_resource_id not in available_models: raise ValueError( f"Model {model.provider_resource_id} is not being served by vLLM. " f"Available models: {', '.join(available_models)}" ) return model async def _get_params( self, request: Union[ChatCompletionRequest, CompletionRequest] ) -> dict: options = get_sampling_options(request.sampling_params) if "max_tokens" not in options: options["max_tokens"] = self.config.max_tokens input_dict = {} media_present = request_has_media(request) if isinstance(request, ChatCompletionRequest): if media_present: # vllm does not seem to work well with image urls, so we download the images input_dict["messages"] = [ await convert_message_to_dict(m, download=True) for m in request.messages ] else: input_dict["prompt"] = chat_completion_request_to_prompt( request, self.register_helper.get_llama_model(request.model), self.formatter, ) else: assert ( not media_present ), "Together does not support media for Completion requests" input_dict["prompt"] = completion_request_to_prompt( request, self.register_helper.get_llama_model(request.model), self.formatter, ) if fmt := request.response_format: if fmt.type == ResponseFormatType.json_schema.value: input_dict["extra_body"] = { "guided_json": request.response_format.json_schema } elif fmt.type == ResponseFormatType.grammar.value: raise NotImplementedError("Grammar response format not supported yet") else: raise ValueError(f"Unknown response format {fmt.type}") return { "model": request.model, **input_dict, "stream": request.stream, **options, } async def embeddings( self, model_id: str, contents: List[InterleavedTextMedia], ) -> EmbeddingsResponse: model = await self.model_store.get_model(model_id) kwargs = {} assert model.model_type == ModelType.embedding assert model.metadata.get("embedding_dimensions") kwargs["dimensions"] = model.metadata.get("embedding_dimensions") assert all( not content_has_media(content) for content in contents ), "VLLM does not support media for embeddings" response = self.client.embeddings.create( model=model.provider_resource_id, input=[interleaved_text_media_as_str(content) for content in contents], **kwargs, ) embeddings = [data.embedding for data in response.data] return EmbeddingsResponse(embeddings=embeddings)