openapi: 3.1.0 info: title: OpenAI API description: The OpenAI REST API. Please see https://platform.openai.com/docs/api-reference for more details. version: 2.3.0 termsOfService: https://openai.com/policies/terms-of-use contact: name: OpenAI Support url: https://help.openai.com/ license: name: MIT url: https://github.com/openai/openai-openapi/blob/master/LICENSE servers: - url: https://api.openai.com/v1 security: - ApiKeyAuth: [] tags: - name: Assistants description: Build Assistants that can call models and use tools. - name: Audio description: Turn audio into text or text into audio. - name: Chat description: Given a list of messages comprising a conversation, the model will return a response. - name: Conversations description: Manage conversations and conversation items. - name: Completions description: >- Given a prompt, the model will return one or more predicted completions, and can also return the probabilities of alternative tokens at each position. - name: Embeddings description: >- Get a vector representation of a given input that can be easily consumed by machine learning models and algorithms. - name: Evals description: Manage and run evals in the OpenAI platform. - name: Fine-tuning description: Manage fine-tuning jobs to tailor a model to your specific training data. - name: Graders description: Manage and run graders in the OpenAI platform. - name: Batch description: Create large batches of API requests to run asynchronously. - name: Files description: Files are used to upload documents that can be used with features like Assistants and Fine-tuning. - name: Uploads description: Use Uploads to upload large files in multiple parts. - name: Images description: Given a prompt and/or an input image, the model will generate a new image. - name: Models description: List and describe the various models available in the API. - name: Moderations description: Given text and/or image inputs, classifies if those inputs are potentially harmful. - name: Audit Logs description: List user actions and configuration changes within this organization. paths: /assistants: get: operationId: listAssistants tags: - Assistants summary: List assistants parameters: - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - name: order in: query description: > Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order. schema: type: string default: desc enum: - asc - desc - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. schema: type: string - name: before in: query description: > A cursor for use in pagination. `before` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, starting with obj_foo, your subsequent call can include before=obj_foo in order to fetch the previous page of the list. schema: type: string responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ListAssistantsResponse' x-oaiMeta: name: List assistants group: assistants beta: true returns: A list of [assistant](https://platform.openai.com/docs/api-reference/assistants/object) objects. examples: response: | { "object": "list", "data": [ { "id": "asst_abc123", "object": "assistant", "created_at": 1698982736, "name": "Coding Tutor", "description": null, "model": "gpt-4o", "instructions": "You are a helpful assistant designed to make me better at coding!", "tools": [], "tool_resources": {}, "metadata": {}, "top_p": 1.0, "temperature": 1.0, "response_format": "auto" }, { "id": "asst_abc456", "object": "assistant", "created_at": 1698982718, "name": "My Assistant", "description": null, "model": "gpt-4o", "instructions": "You are a helpful assistant designed to make me better at coding!", "tools": [], "tool_resources": {}, "metadata": {}, "top_p": 1.0, "temperature": 1.0, "response_format": "auto" }, { "id": "asst_abc789", "object": "assistant", "created_at": 1698982643, "name": null, "description": null, "model": "gpt-4o", "instructions": null, "tools": [], "tool_resources": {}, "metadata": {}, "top_p": 1.0, "temperature": 1.0, "response_format": "auto" } ], "first_id": "asst_abc123", "last_id": "asst_abc789", "has_more": false } request: curl: | curl "https://api.openai.com/v1/assistants?order=desc&limit=20" \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "OpenAI-Beta: assistants=v2" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.beta.assistants.list() page = page.data[0] print(page.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const assistant of client.beta.assistants.list()) { console.log(assistant.id); } go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.Beta.Assistants.List(context.TODO(), openai.BetaAssistantListParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.assistants.AssistantListPage; import com.openai.models.beta.assistants.AssistantListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); AssistantListPage page = client.beta().assistants().list(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.beta.assistants.list puts(page) description: Returns a list of assistants. post: operationId: createAssistant tags: - Assistants summary: Create assistant requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CreateAssistantRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/AssistantObject' x-oaiMeta: name: Create assistant group: assistants beta: true returns: An [assistant](https://platform.openai.com/docs/api-reference/assistants/object) object. examples: - title: Code Interpreter request: curl: | curl "https://api.openai.com/v1/assistants" \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "OpenAI-Beta: assistants=v2" \ -d '{ "instructions": "You are a personal math tutor. When asked a question, write and run Python code to answer the question.", "name": "Math Tutor", "tools": [{"type": "code_interpreter"}], "model": "gpt-4o" }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) assistant = client.beta.assistants.create( model="gpt-4o", ) print(assistant.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const assistant = await client.beta.assistants.create({ model: 'gpt-4o' }); console.log(assistant.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/shared" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) assistant, err := client.Beta.Assistants.New(context.TODO(), openai.BetaAssistantNewParams{ Model: shared.ChatModelGPT5_1, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", assistant.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.ChatModel; import com.openai.models.beta.assistants.Assistant; import com.openai.models.beta.assistants.AssistantCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); AssistantCreateParams params = AssistantCreateParams.builder() .model(ChatModel.GPT_5_1) .build(); Assistant assistant = client.beta().assistants().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") assistant = openai.beta.assistants.create(model: :"gpt-5.1") puts(assistant) response: | { "id": "asst_abc123", "object": "assistant", "created_at": 1698984975, "name": "Math Tutor", "description": null, "model": "gpt-4o", "instructions": "You are a personal math tutor. When asked a question, write and run Python code to answer the question.", "tools": [ { "type": "code_interpreter" } ], "metadata": {}, "top_p": 1.0, "temperature": 1.0, "response_format": "auto" } - title: Files request: curl: | curl https://api.openai.com/v1/assistants \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "OpenAI-Beta: assistants=v2" \ -d '{ "instructions": "You are an HR bot, and you have access to files to answer employee questions about company policies.", "tools": [{"type": "file_search"}], "tool_resources": {"file_search": {"vector_store_ids": ["vs_123"]}}, "model": "gpt-4o" }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) assistant = client.beta.assistants.create( model="gpt-4o", ) print(assistant.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const assistant = await client.beta.assistants.create({ model: 'gpt-4o' }); console.log(assistant.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/shared" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) assistant, err := client.Beta.Assistants.New(context.TODO(), openai.BetaAssistantNewParams{ Model: shared.ChatModelGPT5_1, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", assistant.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.ChatModel; import com.openai.models.beta.assistants.Assistant; import com.openai.models.beta.assistants.AssistantCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); AssistantCreateParams params = AssistantCreateParams.builder() .model(ChatModel.GPT_5_1) .build(); Assistant assistant = client.beta().assistants().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") assistant = openai.beta.assistants.create(model: :"gpt-5.1") puts(assistant) response: | { "id": "asst_abc123", "object": "assistant", "created_at": 1699009403, "name": "HR Helper", "description": null, "model": "gpt-4o", "instructions": "You are an HR bot, and you have access to files to answer employee questions about company policies.", "tools": [ { "type": "file_search" } ], "tool_resources": { "file_search": { "vector_store_ids": ["vs_123"] } }, "metadata": {}, "top_p": 1.0, "temperature": 1.0, "response_format": "auto" } description: Create an assistant with a model and instructions. /assistants/{assistant_id}: get: operationId: getAssistant tags: - Assistants summary: Retrieve assistant parameters: - in: path name: assistant_id required: true schema: type: string description: The ID of the assistant to retrieve. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/AssistantObject' x-oaiMeta: name: Retrieve assistant group: assistants beta: true returns: >- The [assistant](https://platform.openai.com/docs/api-reference/assistants/object) object matching the specified ID. examples: response: | { "id": "asst_abc123", "object": "assistant", "created_at": 1699009709, "name": "HR Helper", "description": null, "model": "gpt-4o", "instructions": "You are an HR bot, and you have access to files to answer employee questions about company policies.", "tools": [ { "type": "file_search" } ], "metadata": {}, "top_p": 1.0, "temperature": 1.0, "response_format": "auto" } request: curl: | curl https://api.openai.com/v1/assistants/asst_abc123 \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "OpenAI-Beta: assistants=v2" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) assistant = client.beta.assistants.retrieve( "assistant_id", ) print(assistant.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const assistant = await client.beta.assistants.retrieve('assistant_id'); console.log(assistant.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) assistant, err := client.Beta.Assistants.Get(context.TODO(), "assistant_id") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", assistant.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.assistants.Assistant; import com.openai.models.beta.assistants.AssistantRetrieveParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Assistant assistant = client.beta().assistants().retrieve("assistant_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") assistant = openai.beta.assistants.retrieve("assistant_id") puts(assistant) description: Retrieves an assistant. post: operationId: modifyAssistant tags: - Assistants summary: Modify assistant parameters: - in: path name: assistant_id required: true schema: type: string description: The ID of the assistant to modify. requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/ModifyAssistantRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/AssistantObject' x-oaiMeta: name: Modify assistant group: assistants beta: true returns: The modified [assistant](https://platform.openai.com/docs/api-reference/assistants/object) object. examples: response: | { "id": "asst_123", "object": "assistant", "created_at": 1699009709, "name": "HR Helper", "description": null, "model": "gpt-4o", "instructions": "You are an HR bot, and you have access to files to answer employee questions about company policies. Always response with info from either of the files.", "tools": [ { "type": "file_search" } ], "tool_resources": { "file_search": { "vector_store_ids": [] } }, "metadata": {}, "top_p": 1.0, "temperature": 1.0, "response_format": "auto" } request: curl: | curl https://api.openai.com/v1/assistants/asst_abc123 \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "OpenAI-Beta: assistants=v2" \ -d '{ "instructions": "You are an HR bot, and you have access to files to answer employee questions about company policies. Always response with info from either of the files.", "tools": [{"type": "file_search"}], "model": "gpt-4o" }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) assistant = client.beta.assistants.update( assistant_id="assistant_id", ) print(assistant.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const assistant = await client.beta.assistants.update('assistant_id'); console.log(assistant.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) assistant, err := client.Beta.Assistants.Update( context.TODO(), "assistant_id", openai.BetaAssistantUpdateParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", assistant.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.assistants.Assistant; import com.openai.models.beta.assistants.AssistantUpdateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Assistant assistant = client.beta().assistants().update("assistant_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") assistant = openai.beta.assistants.update("assistant_id") puts(assistant) description: Modifies an assistant. delete: operationId: deleteAssistant tags: - Assistants summary: Delete assistant parameters: - in: path name: assistant_id required: true schema: type: string description: The ID of the assistant to delete. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/DeleteAssistantResponse' x-oaiMeta: name: Delete assistant group: assistants beta: true returns: Deletion status examples: response: | { "id": "asst_abc123", "object": "assistant.deleted", "deleted": true } request: curl: | curl https://api.openai.com/v1/assistants/asst_abc123 \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "OpenAI-Beta: assistants=v2" \ -X DELETE python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) assistant_deleted = client.beta.assistants.delete( "assistant_id", ) print(assistant_deleted.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const assistantDeleted = await client.beta.assistants.delete('assistant_id'); console.log(assistantDeleted.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) assistantDeleted, err := client.Beta.Assistants.Delete(context.TODO(), "assistant_id") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", assistantDeleted.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.assistants.AssistantDeleteParams; import com.openai.models.beta.assistants.AssistantDeleted; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); AssistantDeleted assistantDeleted = client.beta().assistants().delete("assistant_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") assistant_deleted = openai.beta.assistants.delete("assistant_id") puts(assistant_deleted) description: Delete an assistant. /audio/speech: post: operationId: createSpeech tags: - Audio summary: Create speech requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CreateSpeechRequest' responses: '200': description: OK headers: Transfer-Encoding: schema: type: string description: chunked content: application/octet-stream: schema: type: string format: binary text/event-stream: schema: $ref: '#/components/schemas/CreateSpeechResponseStreamEvent' x-oaiMeta: name: Create speech group: audio returns: >- The audio file content or a [stream of audio events](https://platform.openai.com/docs/api-reference/audio/speech-audio-delta-event). examples: - title: Default request: curl: | curl https://api.openai.com/v1/audio/speech \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{ "model": "gpt-4o-mini-tts", "input": "The quick brown fox jumped over the lazy dog.", "voice": "alloy" }' \ --output speech.mp3 python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) speech = client.audio.speech.create( input="input", model="string", voice="ash", ) print(speech) content = speech.read() print(content) javascript: | import fs from "fs"; import path from "path"; import OpenAI from "openai"; const openai = new OpenAI(); const speechFile = path.resolve("./speech.mp3"); async function main() { const mp3 = await openai.audio.speech.create({ model: "gpt-4o-mini-tts", voice: "alloy", input: "Today is a wonderful day to build something people love!", }); console.log(speechFile); const buffer = Buffer.from(await mp3.arrayBuffer()); await fs.promises.writeFile(speechFile, buffer); } main(); csharp: | using System; using System.IO; using OpenAI.Audio; AudioClient client = new( model: "gpt-4o-mini-tts", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); BinaryData speech = client.GenerateSpeech( text: "The quick brown fox jumped over the lazy dog.", voice: GeneratedSpeechVoice.Alloy ); using FileStream stream = File.OpenWrite("speech.mp3"); speech.ToStream().CopyTo(stream); node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const speech = await client.audio.speech.create({ input: 'input', model: 'string', voice: 'ash' }); console.log(speech); const content = await speech.blob(); console.log(content); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) speech, err := client.Audio.Speech.New(context.TODO(), openai.AudioSpeechNewParams{ Input: "input", Model: openai.SpeechModelTTS1, Voice: openai.AudioSpeechNewParamsVoiceAlloy, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", speech) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.core.http.HttpResponse; import com.openai.models.audio.speech.SpeechCreateParams; import com.openai.models.audio.speech.SpeechModel; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); SpeechCreateParams params = SpeechCreateParams.builder() .input("input") .model(SpeechModel.TTS_1) .voice(SpeechCreateParams.Voice.ALLOY) .build(); HttpResponse speech = client.audio().speech().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") speech = openai.audio.speech.create(input: "input", model: :"tts-1", voice: :alloy) puts(speech) - title: SSE Stream Format request: curl: | curl https://api.openai.com/v1/audio/speech \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{ "model": "gpt-4o-mini-tts", "input": "The quick brown fox jumped over the lazy dog.", "voice": "alloy", "stream_format": "sse" }' node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const speech = await client.audio.speech.create({ input: 'input', model: 'string', voice: 'ash' }); console.log(speech); const content = await speech.blob(); console.log(content); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) speech = client.audio.speech.create( input="input", model="string", voice="ash", ) print(speech) content = speech.read() print(content) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) speech, err := client.Audio.Speech.New(context.TODO(), openai.AudioSpeechNewParams{ Input: "input", Model: openai.SpeechModelTTS1, Voice: openai.AudioSpeechNewParamsVoiceAlloy, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", speech) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.core.http.HttpResponse; import com.openai.models.audio.speech.SpeechCreateParams; import com.openai.models.audio.speech.SpeechModel; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); SpeechCreateParams params = SpeechCreateParams.builder() .input("input") .model(SpeechModel.TTS_1) .voice(SpeechCreateParams.Voice.ALLOY) .build(); HttpResponse speech = client.audio().speech().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") speech = openai.audio.speech.create(input: "input", model: :"tts-1", voice: :alloy) puts(speech) description: Generates audio from the input text. /audio/transcriptions: post: operationId: createTranscription tags: - Audio summary: Create transcription requestBody: required: true content: multipart/form-data: schema: $ref: '#/components/schemas/CreateTranscriptionRequest' responses: '200': description: OK content: application/json: schema: anyOf: - $ref: '#/components/schemas/CreateTranscriptionResponseJson' - $ref: '#/components/schemas/CreateTranscriptionResponseDiarizedJson' x-stainless-skip: - go - $ref: '#/components/schemas/CreateTranscriptionResponseVerboseJson' discriminator: propertyName: task text/event-stream: schema: $ref: '#/components/schemas/CreateTranscriptionResponseStreamEvent' x-oaiMeta: name: Create transcription group: audio returns: >- The [transcription object](https://platform.openai.com/docs/api-reference/audio/json-object), a [diarized transcription object](https://platform.openai.com/docs/api-reference/audio/diarized-json-object), a [verbose transcription object](https://platform.openai.com/docs/api-reference/audio/verbose-json-object), or a [stream of transcript events](https://platform.openai.com/docs/api-reference/audio/transcript-text-delta-event). examples: - title: Default request: curl: | curl https://api.openai.com/v1/audio/transcriptions \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: multipart/form-data" \ -F file="@/path/to/file/audio.mp3" \ -F model="gpt-4o-transcribe" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) transcription = client.audio.transcriptions.create( file=b"raw file contents", model="gpt-4o-transcribe", ) print(transcription) javascript: | import fs from "fs"; import OpenAI from "openai"; const openai = new OpenAI(); async function main() { const transcription = await openai.audio.transcriptions.create({ file: fs.createReadStream("audio.mp3"), model: "gpt-4o-transcribe", }); console.log(transcription.text); } main(); csharp: | using System; using OpenAI.Audio; string audioFilePath = "audio.mp3"; AudioClient client = new( model: "gpt-4o-transcribe", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); AudioTranscription transcription = client.TranscribeAudio(audioFilePath); Console.WriteLine($"{transcription.Text}"); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const transcription = await client.audio.transcriptions.create({ file: fs.createReadStream('speech.mp3'), model: 'gpt-4o-transcribe', }); console.log(transcription); go: | package main import ( "bytes" "context" "fmt" "io" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) transcription, err := client.Audio.Transcriptions.New(context.TODO(), openai.AudioTranscriptionNewParams{ File: io.Reader(bytes.NewBuffer([]byte("some file contents"))), Model: openai.AudioModelWhisper1, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", transcription) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.audio.AudioModel; import com.openai.models.audio.transcriptions.TranscriptionCreateParams; import com.openai.models.audio.transcriptions.TranscriptionCreateResponse; import java.io.ByteArrayInputStream; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); TranscriptionCreateParams params = TranscriptionCreateParams.builder() .file(ByteArrayInputStream("some content".getBytes())) .model(AudioModel.WHISPER_1) .build(); TranscriptionCreateResponse transcription = client.audio().transcriptions().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") transcription = openai.audio.transcriptions.create(file: Pathname(__FILE__), model: :"whisper-1") puts(transcription) response: | { "text": "Imagine the wildest idea that you've ever had, and you're curious about how it might scale to something that's a 100, a 1,000 times bigger. This is a place where you can get to do that.", "usage": { "type": "tokens", "input_tokens": 14, "input_token_details": { "text_tokens": 0, "audio_tokens": 14 }, "output_tokens": 45, "total_tokens": 59 } } - title: Diarization request: curl: | curl https://api.openai.com/v1/audio/transcriptions \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: multipart/form-data" \ -F file="@/path/to/file/meeting.wav" \ -F model="gpt-4o-transcribe-diarize" \ -F response_format="diarized_json" \ -F chunking_strategy=auto \ -F 'known_speaker_names[]=agent' \ -F 'known_speaker_references[]=data:audio/wav;base64,AAA...' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) transcription = client.audio.transcriptions.create( file=b"raw file contents", model="gpt-4o-transcribe", ) print(transcription) javascript: | import fs from "fs"; import OpenAI from "openai"; const openai = new OpenAI(); const speakerRef = fs.readFileSync("agent.wav").toString("base64"); const transcript = await openai.audio.transcriptions.create({ file: fs.createReadStream("meeting.wav"), model: "gpt-4o-transcribe-diarize", response_format: "diarized_json", chunking_strategy: "auto", extra_body: { known_speaker_names: ["agent"], known_speaker_references: [`data:audio/wav;base64,${speakerRef}`], }, }); console.log(transcript.segments); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const transcription = await client.audio.transcriptions.create({ file: fs.createReadStream('speech.mp3'), model: 'gpt-4o-transcribe', }); console.log(transcription); go: | package main import ( "bytes" "context" "fmt" "io" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) transcription, err := client.Audio.Transcriptions.New(context.TODO(), openai.AudioTranscriptionNewParams{ File: io.Reader(bytes.NewBuffer([]byte("some file contents"))), Model: openai.AudioModelWhisper1, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", transcription) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.audio.AudioModel; import com.openai.models.audio.transcriptions.TranscriptionCreateParams; import com.openai.models.audio.transcriptions.TranscriptionCreateResponse; import java.io.ByteArrayInputStream; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); TranscriptionCreateParams params = TranscriptionCreateParams.builder() .file(ByteArrayInputStream("some content".getBytes())) .model(AudioModel.WHISPER_1) .build(); TranscriptionCreateResponse transcription = client.audio().transcriptions().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") transcription = openai.audio.transcriptions.create(file: Pathname(__FILE__), model: :"whisper-1") puts(transcription) response: | { "task": "transcribe", "duration": 27.4, "text": "Agent: Thanks for calling OpenAI support.\nA: Hi, I'm trying to enable diarization.\nAgent: Happy to walk you through the steps.", "segments": [ { "type": "transcript.text.segment", "id": "seg_001", "start": 0.0, "end": 4.7, "text": "Thanks for calling OpenAI support.", "speaker": "agent" }, { "type": "transcript.text.segment", "id": "seg_002", "start": 4.7, "end": 11.8, "text": "Hi, I'm trying to enable diarization.", "speaker": "A" }, { "type": "transcript.text.segment", "id": "seg_003", "start": 12.1, "end": 18.5, "text": "Happy to walk you through the steps.", "speaker": "agent" } ], "usage": { "type": "duration", "seconds": 27 } } - title: Streaming request: curl: | curl https://api.openai.com/v1/audio/transcriptions \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: multipart/form-data" \ -F file="@/path/to/file/audio.mp3" \ -F model="gpt-4o-mini-transcribe" \ -F stream=true python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) transcription = client.audio.transcriptions.create( file=b"raw file contents", model="gpt-4o-transcribe", ) print(transcription) javascript: | import fs from "fs"; import OpenAI from "openai"; const openai = new OpenAI(); const stream = await openai.audio.transcriptions.create({ file: fs.createReadStream("audio.mp3"), model: "gpt-4o-mini-transcribe", stream: true, }); for await (const event of stream) { console.log(event); } node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const transcription = await client.audio.transcriptions.create({ file: fs.createReadStream('speech.mp3'), model: 'gpt-4o-transcribe', }); console.log(transcription); go: | package main import ( "bytes" "context" "fmt" "io" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) transcription, err := client.Audio.Transcriptions.New(context.TODO(), openai.AudioTranscriptionNewParams{ File: io.Reader(bytes.NewBuffer([]byte("some file contents"))), Model: openai.AudioModelWhisper1, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", transcription) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.audio.AudioModel; import com.openai.models.audio.transcriptions.TranscriptionCreateParams; import com.openai.models.audio.transcriptions.TranscriptionCreateResponse; import java.io.ByteArrayInputStream; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); TranscriptionCreateParams params = TranscriptionCreateParams.builder() .file(ByteArrayInputStream("some content".getBytes())) .model(AudioModel.WHISPER_1) .build(); TranscriptionCreateResponse transcription = client.audio().transcriptions().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") transcription = openai.audio.transcriptions.create(file: Pathname(__FILE__), model: :"whisper-1") puts(transcription) response: > data: {"type":"transcript.text.delta","delta":"I","logprobs":[{"token":"I","logprob":-0.00007588794,"bytes":[73]}]} data: {"type":"transcript.text.delta","delta":" see","logprobs":[{"token":" see","logprob":-3.1281633e-7,"bytes":[32,115,101,101]}]} data: {"type":"transcript.text.delta","delta":" skies","logprobs":[{"token":" skies","logprob":-2.3392786e-6,"bytes":[32,115,107,105,101,115]}]} data: {"type":"transcript.text.delta","delta":" of","logprobs":[{"token":" of","logprob":-3.1281633e-7,"bytes":[32,111,102]}]} data: {"type":"transcript.text.delta","delta":" blue","logprobs":[{"token":" blue","logprob":-1.0280384e-6,"bytes":[32,98,108,117,101]}]} data: {"type":"transcript.text.delta","delta":" and","logprobs":[{"token":" and","logprob":-0.0005108566,"bytes":[32,97,110,100]}]} data: {"type":"transcript.text.delta","delta":" clouds","logprobs":[{"token":" clouds","logprob":-1.9361265e-7,"bytes":[32,99,108,111,117,100,115]}]} data: {"type":"transcript.text.delta","delta":" of","logprobs":[{"token":" of","logprob":-1.9361265e-7,"bytes":[32,111,102]}]} data: {"type":"transcript.text.delta","delta":" white","logprobs":[{"token":" white","logprob":-7.89631e-7,"bytes":[32,119,104,105,116,101]}]} data: {"type":"transcript.text.delta","delta":",","logprobs":[{"token":",","logprob":-0.0014890312,"bytes":[44]}]} data: {"type":"transcript.text.delta","delta":" the","logprobs":[{"token":" the","logprob":-0.0110956915,"bytes":[32,116,104,101]}]} data: {"type":"transcript.text.delta","delta":" bright","logprobs":[{"token":" bright","logprob":0.0,"bytes":[32,98,114,105,103,104,116]}]} data: {"type":"transcript.text.delta","delta":" blessed","logprobs":[{"token":" blessed","logprob":-0.000045848617,"bytes":[32,98,108,101,115,115,101,100]}]} data: {"type":"transcript.text.delta","delta":" days","logprobs":[{"token":" days","logprob":-0.000010802739,"bytes":[32,100,97,121,115]}]} data: {"type":"transcript.text.delta","delta":",","logprobs":[{"token":",","logprob":-0.00001700133,"bytes":[44]}]} data: {"type":"transcript.text.delta","delta":" the","logprobs":[{"token":" the","logprob":-0.0000118755715,"bytes":[32,116,104,101]}]} data: {"type":"transcript.text.delta","delta":" dark","logprobs":[{"token":" dark","logprob":-5.5122365e-7,"bytes":[32,100,97,114,107]}]} data: {"type":"transcript.text.delta","delta":" sacred","logprobs":[{"token":" sacred","logprob":-5.4385737e-6,"bytes":[32,115,97,99,114,101,100]}]} data: {"type":"transcript.text.delta","delta":" nights","logprobs":[{"token":" nights","logprob":-4.00813e-6,"bytes":[32,110,105,103,104,116,115]}]} data: {"type":"transcript.text.delta","delta":",","logprobs":[{"token":",","logprob":-0.0036910512,"bytes":[44]}]} data: {"type":"transcript.text.delta","delta":" and","logprobs":[{"token":" and","logprob":-0.0031903093,"bytes":[32,97,110,100]}]} data: {"type":"transcript.text.delta","delta":" I","logprobs":[{"token":" I","logprob":-1.504853e-6,"bytes":[32,73]}]} data: {"type":"transcript.text.delta","delta":" think","logprobs":[{"token":" think","logprob":-4.3202e-7,"bytes":[32,116,104,105,110,107]}]} data: {"type":"transcript.text.delta","delta":" to","logprobs":[{"token":" to","logprob":-1.9361265e-7,"bytes":[32,116,111]}]} data: {"type":"transcript.text.delta","delta":" myself","logprobs":[{"token":" myself","logprob":-1.7432603e-6,"bytes":[32,109,121,115,101,108,102]}]} data: {"type":"transcript.text.delta","delta":",","logprobs":[{"token":",","logprob":-0.29254505,"bytes":[44]}]} data: {"type":"transcript.text.delta","delta":" what","logprobs":[{"token":" what","logprob":-0.016815351,"bytes":[32,119,104,97,116]}]} data: {"type":"transcript.text.delta","delta":" a","logprobs":[{"token":" a","logprob":-3.1281633e-7,"bytes":[32,97]}]} data: {"type":"transcript.text.delta","delta":" wonderful","logprobs":[{"token":" wonderful","logprob":-2.1008714e-6,"bytes":[32,119,111,110,100,101,114,102,117,108]}]} data: {"type":"transcript.text.delta","delta":" world","logprobs":[{"token":" world","logprob":-8.180258e-6,"bytes":[32,119,111,114,108,100]}]} data: {"type":"transcript.text.delta","delta":".","logprobs":[{"token":".","logprob":-0.014231676,"bytes":[46]}]} data: {"type":"transcript.text.done","text":"I see skies of blue and clouds of white, the bright blessed days, the dark sacred nights, and I think to myself, what a wonderful world.","logprobs":[{"token":"I","logprob":-0.00007588794,"bytes":[73]},{"token":" see","logprob":-3.1281633e-7,"bytes":[32,115,101,101]},{"token":" skies","logprob":-2.3392786e-6,"bytes":[32,115,107,105,101,115]},{"token":" of","logprob":-3.1281633e-7,"bytes":[32,111,102]},{"token":" blue","logprob":-1.0280384e-6,"bytes":[32,98,108,117,101]},{"token":" and","logprob":-0.0005108566,"bytes":[32,97,110,100]},{"token":" clouds","logprob":-1.9361265e-7,"bytes":[32,99,108,111,117,100,115]},{"token":" of","logprob":-1.9361265e-7,"bytes":[32,111,102]},{"token":" white","logprob":-7.89631e-7,"bytes":[32,119,104,105,116,101]},{"token":",","logprob":-0.0014890312,"bytes":[44]},{"token":" the","logprob":-0.0110956915,"bytes":[32,116,104,101]},{"token":" bright","logprob":0.0,"bytes":[32,98,114,105,103,104,116]},{"token":" blessed","logprob":-0.000045848617,"bytes":[32,98,108,101,115,115,101,100]},{"token":" days","logprob":-0.000010802739,"bytes":[32,100,97,121,115]},{"token":",","logprob":-0.00001700133,"bytes":[44]},{"token":" the","logprob":-0.0000118755715,"bytes":[32,116,104,101]},{"token":" dark","logprob":-5.5122365e-7,"bytes":[32,100,97,114,107]},{"token":" sacred","logprob":-5.4385737e-6,"bytes":[32,115,97,99,114,101,100]},{"token":" nights","logprob":-4.00813e-6,"bytes":[32,110,105,103,104,116,115]},{"token":",","logprob":-0.0036910512,"bytes":[44]},{"token":" and","logprob":-0.0031903093,"bytes":[32,97,110,100]},{"token":" I","logprob":-1.504853e-6,"bytes":[32,73]},{"token":" think","logprob":-4.3202e-7,"bytes":[32,116,104,105,110,107]},{"token":" to","logprob":-1.9361265e-7,"bytes":[32,116,111]},{"token":" myself","logprob":-1.7432603e-6,"bytes":[32,109,121,115,101,108,102]},{"token":",","logprob":-0.29254505,"bytes":[44]},{"token":" what","logprob":-0.016815351,"bytes":[32,119,104,97,116]},{"token":" a","logprob":-3.1281633e-7,"bytes":[32,97]},{"token":" wonderful","logprob":-2.1008714e-6,"bytes":[32,119,111,110,100,101,114,102,117,108]},{"token":" world","logprob":-8.180258e-6,"bytes":[32,119,111,114,108,100]},{"token":".","logprob":-0.014231676,"bytes":[46]}],"usage":{"input_tokens":14,"input_token_details":{"text_tokens":0,"audio_tokens":14},"output_tokens":45,"total_tokens":59}} - title: Logprobs request: curl: | curl https://api.openai.com/v1/audio/transcriptions \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: multipart/form-data" \ -F file="@/path/to/file/audio.mp3" \ -F "include[]=logprobs" \ -F model="gpt-4o-transcribe" \ -F response_format="json" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) transcription = client.audio.transcriptions.create( file=b"raw file contents", model="gpt-4o-transcribe", ) print(transcription) javascript: | import fs from "fs"; import OpenAI from "openai"; const openai = new OpenAI(); async function main() { const transcription = await openai.audio.transcriptions.create({ file: fs.createReadStream("audio.mp3"), model: "gpt-4o-transcribe", response_format: "json", include: ["logprobs"] }); console.log(transcription); } main(); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const transcription = await client.audio.transcriptions.create({ file: fs.createReadStream('speech.mp3'), model: 'gpt-4o-transcribe', }); console.log(transcription); go: | package main import ( "bytes" "context" "fmt" "io" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) transcription, err := client.Audio.Transcriptions.New(context.TODO(), openai.AudioTranscriptionNewParams{ File: io.Reader(bytes.NewBuffer([]byte("some file contents"))), Model: openai.AudioModelWhisper1, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", transcription) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.audio.AudioModel; import com.openai.models.audio.transcriptions.TranscriptionCreateParams; import com.openai.models.audio.transcriptions.TranscriptionCreateResponse; import java.io.ByteArrayInputStream; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); TranscriptionCreateParams params = TranscriptionCreateParams.builder() .file(ByteArrayInputStream("some content".getBytes())) .model(AudioModel.WHISPER_1) .build(); TranscriptionCreateResponse transcription = client.audio().transcriptions().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") transcription = openai.audio.transcriptions.create(file: Pathname(__FILE__), model: :"whisper-1") puts(transcription) response: | { "text": "Hey, my knee is hurting and I want to see the doctor tomorrow ideally.", "logprobs": [ { "token": "Hey", "logprob": -1.0415299, "bytes": [72, 101, 121] }, { "token": ",", "logprob": -9.805982e-5, "bytes": [44] }, { "token": " my", "logprob": -0.00229799, "bytes": [32, 109, 121] }, { "token": " knee", "logprob": -4.7159858e-5, "bytes": [32, 107, 110, 101, 101] }, { "token": " is", "logprob": -0.043909557, "bytes": [32, 105, 115] }, { "token": " hurting", "logprob": -1.1041146e-5, "bytes": [32, 104, 117, 114, 116, 105, 110, 103] }, { "token": " and", "logprob": -0.011076359, "bytes": [32, 97, 110, 100] }, { "token": " I", "logprob": -5.3193703e-6, "bytes": [32, 73] }, { "token": " want", "logprob": -0.0017156356, "bytes": [32, 119, 97, 110, 116] }, { "token": " to", "logprob": -7.89631e-7, "bytes": [32, 116, 111] }, { "token": " see", "logprob": -5.5122365e-7, "bytes": [32, 115, 101, 101] }, { "token": " the", "logprob": -0.0040786397, "bytes": [32, 116, 104, 101] }, { "token": " doctor", "logprob": -2.3392786e-6, "bytes": [32, 100, 111, 99, 116, 111, 114] }, { "token": " tomorrow", "logprob": -7.89631e-7, "bytes": [32, 116, 111, 109, 111, 114, 114, 111, 119] }, { "token": " ideally", "logprob": -0.5800861, "bytes": [32, 105, 100, 101, 97, 108, 108, 121] }, { "token": ".", "logprob": -0.00011093382, "bytes": [46] } ], "usage": { "type": "tokens", "input_tokens": 14, "input_token_details": { "text_tokens": 0, "audio_tokens": 14 }, "output_tokens": 45, "total_tokens": 59 } } - title: Word timestamps request: curl: | curl https://api.openai.com/v1/audio/transcriptions \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: multipart/form-data" \ -F file="@/path/to/file/audio.mp3" \ -F "timestamp_granularities[]=word" \ -F model="whisper-1" \ -F response_format="verbose_json" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) transcription = client.audio.transcriptions.create( file=b"raw file contents", model="gpt-4o-transcribe", ) print(transcription) javascript: | import fs from "fs"; import OpenAI from "openai"; const openai = new OpenAI(); async function main() { const transcription = await openai.audio.transcriptions.create({ file: fs.createReadStream("audio.mp3"), model: "whisper-1", response_format: "verbose_json", timestamp_granularities: ["word"] }); console.log(transcription.text); } main(); csharp: | using System; using OpenAI.Audio; string audioFilePath = "audio.mp3"; AudioClient client = new( model: "whisper-1", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); AudioTranscriptionOptions options = new() { ResponseFormat = AudioTranscriptionFormat.Verbose, TimestampGranularities = AudioTimestampGranularities.Word, }; AudioTranscription transcription = client.TranscribeAudio(audioFilePath, options); Console.WriteLine($"{transcription.Text}"); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const transcription = await client.audio.transcriptions.create({ file: fs.createReadStream('speech.mp3'), model: 'gpt-4o-transcribe', }); console.log(transcription); go: | package main import ( "bytes" "context" "fmt" "io" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) transcription, err := client.Audio.Transcriptions.New(context.TODO(), openai.AudioTranscriptionNewParams{ File: io.Reader(bytes.NewBuffer([]byte("some file contents"))), Model: openai.AudioModelWhisper1, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", transcription) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.audio.AudioModel; import com.openai.models.audio.transcriptions.TranscriptionCreateParams; import com.openai.models.audio.transcriptions.TranscriptionCreateResponse; import java.io.ByteArrayInputStream; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); TranscriptionCreateParams params = TranscriptionCreateParams.builder() .file(ByteArrayInputStream("some content".getBytes())) .model(AudioModel.WHISPER_1) .build(); TranscriptionCreateResponse transcription = client.audio().transcriptions().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") transcription = openai.audio.transcriptions.create(file: Pathname(__FILE__), model: :"whisper-1") puts(transcription) response: | { "task": "transcribe", "language": "english", "duration": 8.470000267028809, "text": "The beach was a popular spot on a hot summer day. People were swimming in the ocean, building sandcastles, and playing beach volleyball.", "words": [ { "word": "The", "start": 0.0, "end": 0.23999999463558197 }, ... { "word": "volleyball", "start": 7.400000095367432, "end": 7.900000095367432 } ], "usage": { "type": "duration", "seconds": 9 } } - title: Segment timestamps request: curl: | curl https://api.openai.com/v1/audio/transcriptions \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: multipart/form-data" \ -F file="@/path/to/file/audio.mp3" \ -F "timestamp_granularities[]=segment" \ -F model="whisper-1" \ -F response_format="verbose_json" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) transcription = client.audio.transcriptions.create( file=b"raw file contents", model="gpt-4o-transcribe", ) print(transcription) javascript: | import fs from "fs"; import OpenAI from "openai"; const openai = new OpenAI(); async function main() { const transcription = await openai.audio.transcriptions.create({ file: fs.createReadStream("audio.mp3"), model: "whisper-1", response_format: "verbose_json", timestamp_granularities: ["segment"] }); console.log(transcription.text); } main(); csharp: | using System; using OpenAI.Audio; string audioFilePath = "audio.mp3"; AudioClient client = new( model: "whisper-1", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); AudioTranscriptionOptions options = new() { ResponseFormat = AudioTranscriptionFormat.Verbose, TimestampGranularities = AudioTimestampGranularities.Segment, }; AudioTranscription transcription = client.TranscribeAudio(audioFilePath, options); Console.WriteLine($"{transcription.Text}"); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const transcription = await client.audio.transcriptions.create({ file: fs.createReadStream('speech.mp3'), model: 'gpt-4o-transcribe', }); console.log(transcription); go: | package main import ( "bytes" "context" "fmt" "io" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) transcription, err := client.Audio.Transcriptions.New(context.TODO(), openai.AudioTranscriptionNewParams{ File: io.Reader(bytes.NewBuffer([]byte("some file contents"))), Model: openai.AudioModelWhisper1, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", transcription) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.audio.AudioModel; import com.openai.models.audio.transcriptions.TranscriptionCreateParams; import com.openai.models.audio.transcriptions.TranscriptionCreateResponse; import java.io.ByteArrayInputStream; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); TranscriptionCreateParams params = TranscriptionCreateParams.builder() .file(ByteArrayInputStream("some content".getBytes())) .model(AudioModel.WHISPER_1) .build(); TranscriptionCreateResponse transcription = client.audio().transcriptions().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") transcription = openai.audio.transcriptions.create(file: Pathname(__FILE__), model: :"whisper-1") puts(transcription) response: | { "task": "transcribe", "language": "english", "duration": 8.470000267028809, "text": "The beach was a popular spot on a hot summer day. People were swimming in the ocean, building sandcastles, and playing beach volleyball.", "segments": [ { "id": 0, "seek": 0, "start": 0.0, "end": 3.319999933242798, "text": " The beach was a popular spot on a hot summer day.", "tokens": [ 50364, 440, 7534, 390, 257, 3743, 4008, 322, 257, 2368, 4266, 786, 13, 50530 ], "temperature": 0.0, "avg_logprob": -0.2860786020755768, "compression_ratio": 1.2363636493682861, "no_speech_prob": 0.00985979475080967 }, ... ], "usage": { "type": "duration", "seconds": 9 } } description: Transcribes audio into the input language. /audio/translations: post: operationId: createTranslation tags: - Audio summary: Create translation requestBody: required: true content: multipart/form-data: schema: $ref: '#/components/schemas/CreateTranslationRequest' responses: '200': description: OK content: application/json: schema: anyOf: - $ref: '#/components/schemas/CreateTranslationResponseJson' - $ref: '#/components/schemas/CreateTranslationResponseVerboseJson' x-stainless-skip: - go x-oaiMeta: name: Create translation group: audio returns: The translated text. examples: response: | { "text": "Hello, my name is Wolfgang and I come from Germany. Where are you heading today?" } request: curl: | curl https://api.openai.com/v1/audio/translations \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: multipart/form-data" \ -F file="@/path/to/file/german.m4a" \ -F model="whisper-1" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) translation = client.audio.translations.create( file=b"raw file contents", model="whisper-1", ) print(translation) javascript: | import fs from "fs"; import OpenAI from "openai"; const openai = new OpenAI(); async function main() { const translation = await openai.audio.translations.create({ file: fs.createReadStream("speech.mp3"), model: "whisper-1", }); console.log(translation.text); } main(); csharp: | using System; using OpenAI.Audio; string audioFilePath = "audio.mp3"; AudioClient client = new( model: "whisper-1", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); AudioTranscription transcription = client.TranscribeAudio(audioFilePath); Console.WriteLine($"{transcription.Text}"); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const translation = await client.audio.translations.create({ file: fs.createReadStream('speech.mp3'), model: 'whisper-1', }); console.log(translation); go: | package main import ( "bytes" "context" "fmt" "io" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) translation, err := client.Audio.Translations.New(context.TODO(), openai.AudioTranslationNewParams{ File: io.Reader(bytes.NewBuffer([]byte("some file contents"))), Model: openai.AudioModelWhisper1, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", translation) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.audio.AudioModel; import com.openai.models.audio.translations.TranslationCreateParams; import com.openai.models.audio.translations.TranslationCreateResponse; import java.io.ByteArrayInputStream; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); TranslationCreateParams params = TranslationCreateParams.builder() .file(ByteArrayInputStream("some content".getBytes())) .model(AudioModel.WHISPER_1) .build(); TranslationCreateResponse translation = client.audio().translations().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") translation = openai.audio.translations.create(file: Pathname(__FILE__), model: :"whisper-1") puts(translation) description: Translates audio into English. /batches: post: summary: Create batch operationId: createBatch tags: - Batch requestBody: required: true content: application/json: schema: type: object required: - input_file_id - endpoint - completion_window properties: input_file_id: type: string description: > The ID of an uploaded file that contains requests for the new batch. See [upload file](https://platform.openai.com/docs/api-reference/files/create) for how to upload a file. Your input file must be formatted as a [JSONL file](https://platform.openai.com/docs/api-reference/batch/request-input), and must be uploaded with the purpose `batch`. The file can contain up to 50,000 requests, and can be up to 200 MB in size. endpoint: type: string enum: - /v1/responses - /v1/chat/completions - /v1/embeddings - /v1/completions - /v1/moderations description: >- The endpoint to be used for all requests in the batch. Currently `/v1/responses`, `/v1/chat/completions`, `/v1/embeddings`, `/v1/completions`, and `/v1/moderations` are supported. Note that `/v1/embeddings` batches are also restricted to a maximum of 50,000 embedding inputs across all requests in the batch. completion_window: type: string enum: - 24h description: >- The time frame within which the batch should be processed. Currently only `24h` is supported. metadata: $ref: '#/components/schemas/Metadata' output_expires_after: $ref: '#/components/schemas/BatchFileExpirationAfter' responses: '200': description: Batch created successfully. content: application/json: schema: $ref: '#/components/schemas/Batch' x-oaiMeta: name: Create batch group: batch returns: The created [Batch](https://platform.openai.com/docs/api-reference/batch/object) object. examples: response: | { "id": "batch_abc123", "object": "batch", "endpoint": "/v1/chat/completions", "errors": null, "input_file_id": "file-abc123", "completion_window": "24h", "status": "validating", "output_file_id": null, "error_file_id": null, "created_at": 1711471533, "in_progress_at": null, "expires_at": null, "finalizing_at": null, "completed_at": null, "failed_at": null, "expired_at": null, "cancelling_at": null, "cancelled_at": null, "request_counts": { "total": 0, "completed": 0, "failed": 0 }, "metadata": { "customer_id": "user_123456789", "batch_description": "Nightly eval job", } } request: curl: | curl https://api.openai.com/v1/batches \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{ "input_file_id": "file-abc123", "endpoint": "/v1/chat/completions", "completion_window": "24h" }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) batch = client.batches.create( completion_window="24h", endpoint="/v1/responses", input_file_id="input_file_id", ) print(batch.id) node: | import OpenAI from "openai"; const openai = new OpenAI(); async function main() { const batch = await openai.batches.create({ input_file_id: "file-abc123", endpoint: "/v1/chat/completions", completion_window: "24h" }); console.log(batch); } main(); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const batch = await client.batches.create({ completion_window: '24h', endpoint: '/v1/responses', input_file_id: 'input_file_id', }); console.log(batch.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) batch, err := client.Batches.New(context.TODO(), openai.BatchNewParams{ CompletionWindow: openai.BatchNewParamsCompletionWindow24h, Endpoint: openai.BatchNewParamsEndpointV1Responses, InputFileID: "input_file_id", }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", batch.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.batches.Batch; import com.openai.models.batches.BatchCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); BatchCreateParams params = BatchCreateParams.builder() .completionWindow(BatchCreateParams.CompletionWindow._24H) .endpoint(BatchCreateParams.Endpoint.V1_RESPONSES) .inputFileId("input_file_id") .build(); Batch batch = client.batches().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") batch = openai.batches.create( completion_window: :"24h", endpoint: :"/v1/responses", input_file_id: "input_file_id" ) puts(batch) description: Creates and executes a batch from an uploaded file of requests get: operationId: listBatches tags: - Batch summary: List batch parameters: - in: query name: after required: false schema: type: string description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 responses: '200': description: Batch listed successfully. content: application/json: schema: $ref: '#/components/schemas/ListBatchesResponse' x-oaiMeta: name: List batch group: batch returns: A list of paginated [Batch](https://platform.openai.com/docs/api-reference/batch/object) objects. examples: response: | { "object": "list", "data": [ { "id": "batch_abc123", "object": "batch", "endpoint": "/v1/chat/completions", "errors": null, "input_file_id": "file-abc123", "completion_window": "24h", "status": "completed", "output_file_id": "file-cvaTdG", "error_file_id": "file-HOWS94", "created_at": 1711471533, "in_progress_at": 1711471538, "expires_at": 1711557933, "finalizing_at": 1711493133, "completed_at": 1711493163, "failed_at": null, "expired_at": null, "cancelling_at": null, "cancelled_at": null, "request_counts": { "total": 100, "completed": 95, "failed": 5 }, "metadata": { "customer_id": "user_123456789", "batch_description": "Nightly job", } }, { ... }, ], "first_id": "batch_abc123", "last_id": "batch_abc456", "has_more": true } request: curl: | curl https://api.openai.com/v1/batches?limit=2 \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.batches.list() page = page.data[0] print(page.id) node: | import OpenAI from "openai"; const openai = new OpenAI(); async function main() { const list = await openai.batches.list(); for await (const batch of list) { console.log(batch); } } main(); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const batch of client.batches.list()) { console.log(batch.id); } go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.Batches.List(context.TODO(), openai.BatchListParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.batches.BatchListPage; import com.openai.models.batches.BatchListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); BatchListPage page = client.batches().list(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.batches.list puts(page) description: List your organization's batches. /batches/{batch_id}: get: operationId: retrieveBatch tags: - Batch summary: Retrieve batch parameters: - in: path name: batch_id required: true schema: type: string description: The ID of the batch to retrieve. responses: '200': description: Batch retrieved successfully. content: application/json: schema: $ref: '#/components/schemas/Batch' x-oaiMeta: name: Retrieve batch group: batch returns: >- The [Batch](https://platform.openai.com/docs/api-reference/batch/object) object matching the specified ID. examples: response: | { "id": "batch_abc123", "object": "batch", "endpoint": "/v1/completions", "errors": null, "input_file_id": "file-abc123", "completion_window": "24h", "status": "completed", "output_file_id": "file-cvaTdG", "error_file_id": "file-HOWS94", "created_at": 1711471533, "in_progress_at": 1711471538, "expires_at": 1711557933, "finalizing_at": 1711493133, "completed_at": 1711493163, "failed_at": null, "expired_at": null, "cancelling_at": null, "cancelled_at": null, "request_counts": { "total": 100, "completed": 95, "failed": 5 }, "metadata": { "customer_id": "user_123456789", "batch_description": "Nightly eval job", } } request: curl: | curl https://api.openai.com/v1/batches/batch_abc123 \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) batch = client.batches.retrieve( "batch_id", ) print(batch.id) node: | import OpenAI from "openai"; const openai = new OpenAI(); async function main() { const batch = await openai.batches.retrieve("batch_abc123"); console.log(batch); } main(); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const batch = await client.batches.retrieve('batch_id'); console.log(batch.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) batch, err := client.Batches.Get(context.TODO(), "batch_id") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", batch.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.batches.Batch; import com.openai.models.batches.BatchRetrieveParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Batch batch = client.batches().retrieve("batch_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") batch = openai.batches.retrieve("batch_id") puts(batch) description: Retrieves a batch. /batches/{batch_id}/cancel: post: operationId: cancelBatch tags: - Batch summary: Cancel batch parameters: - in: path name: batch_id required: true schema: type: string description: The ID of the batch to cancel. responses: '200': description: Batch is cancelling. Returns the cancelling batch's details. content: application/json: schema: $ref: '#/components/schemas/Batch' x-oaiMeta: name: Cancel batch group: batch returns: >- The [Batch](https://platform.openai.com/docs/api-reference/batch/object) object matching the specified ID. examples: response: | { "id": "batch_abc123", "object": "batch", "endpoint": "/v1/chat/completions", "errors": null, "input_file_id": "file-abc123", "completion_window": "24h", "status": "cancelling", "output_file_id": null, "error_file_id": null, "created_at": 1711471533, "in_progress_at": 1711471538, "expires_at": 1711557933, "finalizing_at": null, "completed_at": null, "failed_at": null, "expired_at": null, "cancelling_at": 1711475133, "cancelled_at": null, "request_counts": { "total": 100, "completed": 23, "failed": 1 }, "metadata": { "customer_id": "user_123456789", "batch_description": "Nightly eval job", } } request: curl: | curl https://api.openai.com/v1/batches/batch_abc123/cancel \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -X POST python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) batch = client.batches.cancel( "batch_id", ) print(batch.id) node: | import OpenAI from "openai"; const openai = new OpenAI(); async function main() { const batch = await openai.batches.cancel("batch_abc123"); console.log(batch); } main(); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const batch = await client.batches.cancel('batch_id'); console.log(batch.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) batch, err := client.Batches.Cancel(context.TODO(), "batch_id") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", batch.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.batches.Batch; import com.openai.models.batches.BatchCancelParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Batch batch = client.batches().cancel("batch_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") batch = openai.batches.cancel("batch_id") puts(batch) description: >- Cancels an in-progress batch. The batch will be in status `cancelling` for up to 10 minutes, before changing to `cancelled`, where it will have partial results (if any) available in the output file. /chat/completions: get: operationId: listChatCompletions tags: - Chat summary: List Chat Completions parameters: - name: model in: query description: The model used to generate the Chat Completions. required: false schema: type: string - name: metadata in: query description: | A list of metadata keys to filter the Chat Completions by. Example: `metadata[key1]=value1&metadata[key2]=value2` required: false schema: $ref: '#/components/schemas/Metadata' - name: after in: query description: Identifier for the last chat completion from the previous pagination request. required: false schema: type: string - name: limit in: query description: Number of Chat Completions to retrieve. required: false schema: type: integer default: 20 - name: order in: query description: >- Sort order for Chat Completions by timestamp. Use `asc` for ascending order or `desc` for descending order. Defaults to `asc`. required: false schema: type: string enum: - asc - desc default: asc responses: '200': description: A list of Chat Completions content: application/json: schema: $ref: '#/components/schemas/ChatCompletionList' x-oaiMeta: name: List Chat Completions group: chat returns: >- A list of [Chat Completions](https://platform.openai.com/docs/api-reference/chat/list-object) matching the specified filters. path: list examples: response: | { "object": "list", "data": [ { "object": "chat.completion", "id": "chatcmpl-AyPNinnUqUDYo9SAdA52NobMflmj2", "model": "gpt-4.1-2025-04-14", "created": 1738960610, "request_id": "req_ded8ab984ec4bf840f37566c1011c417", "tool_choice": null, "usage": { "total_tokens": 31, "completion_tokens": 18, "prompt_tokens": 13 }, "seed": 4944116822809979520, "top_p": 1.0, "temperature": 1.0, "presence_penalty": 0.0, "frequency_penalty": 0.0, "system_fingerprint": "fp_50cad350e4", "input_user": null, "service_tier": "default", "tools": null, "metadata": {}, "choices": [ { "index": 0, "message": { "content": "Mind of circuits hum, \nLearning patterns in silence— \nFuture's quiet spark.", "role": "assistant", "tool_calls": null, "function_call": null }, "finish_reason": "stop", "logprobs": null } ], "response_format": null } ], "first_id": "chatcmpl-AyPNinnUqUDYo9SAdA52NobMflmj2", "last_id": "chatcmpl-AyPNinnUqUDYo9SAdA52NobMflmj2", "has_more": false } request: curl: | curl https://api.openai.com/v1/chat/completions \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.chat.completions.list() page = page.data[0] print(page.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const chatCompletion of client.chat.completions.list()) { console.log(chatCompletion.id); } go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.Chat.Completions.List(context.TODO(), openai.ChatCompletionListParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.chat.completions.ChatCompletionListPage; import com.openai.models.chat.completions.ChatCompletionListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ChatCompletionListPage page = client.chat().completions().list(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.chat.completions.list puts(page) description: | List stored Chat Completions. Only Chat Completions that have been stored with the `store` parameter set to `true` will be returned. post: operationId: createChatCompletion tags: - Chat summary: Create chat completion requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CreateChatCompletionRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/CreateChatCompletionResponse' text/event-stream: schema: $ref: '#/components/schemas/CreateChatCompletionStreamResponse' x-oaiMeta: name: Create chat completion group: chat returns: > Returns a [chat completion](https://platform.openai.com/docs/api-reference/chat/object) object, or a streamed sequence of [chat completion chunk](https://platform.openai.com/docs/api-reference/chat/streaming) objects if the request is streamed. path: create examples: - title: Default request: curl: | curl https://api.openai.com/v1/chat/completions \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "VAR_chat_model_id", "messages": [ { "role": "developer", "content": "You are a helpful assistant." }, { "role": "user", "content": "Hello!" } ] }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) chat_completion = client.chat.completions.create( messages=[{ "content": "string", "role": "developer", }], model="gpt-4o", ) print(chat_completion) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const chatCompletion = await client.chat.completions.create({ messages: [{ content: 'string', role: 'developer' }], model: 'gpt-4o', }); console.log(chatCompletion); csharp: | using System; using System.Collections.Generic; using OpenAI.Chat; ChatClient client = new( model: "gpt-4.1", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); List messages = [ new SystemChatMessage("You are a helpful assistant."), new UserChatMessage("Hello!") ]; ChatCompletion completion = client.CompleteChat(messages); Console.WriteLine(completion.Content[0].Text); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/shared" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) chatCompletion, err := client.Chat.Completions.New(context.TODO(), openai.ChatCompletionNewParams{ Messages: []openai.ChatCompletionMessageParamUnion{openai.ChatCompletionMessageParamUnion{ OfDeveloper: &openai.ChatCompletionDeveloperMessageParam{ Content: openai.ChatCompletionDeveloperMessageParamContentUnion{ OfString: openai.String("string"), }, }, }}, Model: shared.ChatModelGPT5_1, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", chatCompletion) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.ChatModel; import com.openai.models.chat.completions.ChatCompletion; import com.openai.models.chat.completions.ChatCompletionCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ChatCompletionCreateParams params = ChatCompletionCreateParams.builder() .addDeveloperMessage("string") .model(ChatModel.GPT_5_1) .build(); ChatCompletion chatCompletion = client.chat().completions().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") chat_completion = openai.chat.completions.create(messages: [{content: "string", role: :developer}], model: :"gpt-5.1") puts(chat_completion) response: | { "id": "chatcmpl-B9MBs8CjcvOU2jLn4n570S5qMJKcT", "object": "chat.completion", "created": 1741569952, "model": "gpt-4.1-2025-04-14", "choices": [ { "index": 0, "message": { "role": "assistant", "content": "Hello! How can I assist you today?", "refusal": null, "annotations": [] }, "logprobs": null, "finish_reason": "stop" } ], "usage": { "prompt_tokens": 19, "completion_tokens": 10, "total_tokens": 29, "prompt_tokens_details": { "cached_tokens": 0, "audio_tokens": 0 }, "completion_tokens_details": { "reasoning_tokens": 0, "audio_tokens": 0, "accepted_prediction_tokens": 0, "rejected_prediction_tokens": 0 } }, "service_tier": "default" } - title: Image input request: curl: | curl https://api.openai.com/v1/chat/completions \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "gpt-4.1", "messages": [ { "role": "user", "content": [ { "type": "text", "text": "What is in this image?" }, { "type": "image_url", "image_url": { "url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" } } ] } ], "max_tokens": 300 }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) chat_completion = client.chat.completions.create( messages=[{ "content": "string", "role": "developer", }], model="gpt-4o", ) print(chat_completion) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const chatCompletion = await client.chat.completions.create({ messages: [{ content: 'string', role: 'developer' }], model: 'gpt-4o', }); console.log(chatCompletion); csharp: | using System; using System.Collections.Generic; using OpenAI.Chat; ChatClient client = new( model: "gpt-4.1", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); List messages = [ new UserChatMessage( [ ChatMessageContentPart.CreateTextPart("What's in this image?"), ChatMessageContentPart.CreateImagePart(new Uri("https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg")) ]) ]; ChatCompletion completion = client.CompleteChat(messages); Console.WriteLine(completion.Content[0].Text); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/shared" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) chatCompletion, err := client.Chat.Completions.New(context.TODO(), openai.ChatCompletionNewParams{ Messages: []openai.ChatCompletionMessageParamUnion{openai.ChatCompletionMessageParamUnion{ OfDeveloper: &openai.ChatCompletionDeveloperMessageParam{ Content: openai.ChatCompletionDeveloperMessageParamContentUnion{ OfString: openai.String("string"), }, }, }}, Model: shared.ChatModelGPT5_1, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", chatCompletion) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.ChatModel; import com.openai.models.chat.completions.ChatCompletion; import com.openai.models.chat.completions.ChatCompletionCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ChatCompletionCreateParams params = ChatCompletionCreateParams.builder() .addDeveloperMessage("string") .model(ChatModel.GPT_5_1) .build(); ChatCompletion chatCompletion = client.chat().completions().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") chat_completion = openai.chat.completions.create(messages: [{content: "string", role: :developer}], model: :"gpt-5.1") puts(chat_completion) response: | { "id": "chatcmpl-B9MHDbslfkBeAs8l4bebGdFOJ6PeG", "object": "chat.completion", "created": 1741570283, "model": "gpt-4.1-2025-04-14", "choices": [ { "index": 0, "message": { "role": "assistant", "content": "The image shows a wooden boardwalk path running through a lush green field or meadow. The sky is bright blue with some scattered clouds, giving the scene a serene and peaceful atmosphere. Trees and shrubs are visible in the background.", "refusal": null, "annotations": [] }, "logprobs": null, "finish_reason": "stop" } ], "usage": { "prompt_tokens": 1117, "completion_tokens": 46, "total_tokens": 1163, "prompt_tokens_details": { "cached_tokens": 0, "audio_tokens": 0 }, "completion_tokens_details": { "reasoning_tokens": 0, "audio_tokens": 0, "accepted_prediction_tokens": 0, "rejected_prediction_tokens": 0 } }, "service_tier": "default" } - title: Streaming request: curl: | curl https://api.openai.com/v1/chat/completions \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "VAR_chat_model_id", "messages": [ { "role": "developer", "content": "You are a helpful assistant." }, { "role": "user", "content": "Hello!" } ], "stream": true }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) chat_completion = client.chat.completions.create( messages=[{ "content": "string", "role": "developer", }], model="gpt-4o", ) print(chat_completion) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const chatCompletion = await client.chat.completions.create({ messages: [{ content: 'string', role: 'developer' }], model: 'gpt-4o', }); console.log(chatCompletion); csharp: > using System; using System.ClientModel; using System.Collections.Generic; using System.Threading.Tasks; using OpenAI.Chat; ChatClient client = new( model: "gpt-4.1", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); List messages = [ new SystemChatMessage("You are a helpful assistant."), new UserChatMessage("Hello!") ]; AsyncCollectionResult completionUpdates = client.CompleteChatStreamingAsync(messages); await foreach (StreamingChatCompletionUpdate completionUpdate in completionUpdates) { if (completionUpdate.ContentUpdate.Count > 0) { Console.Write(completionUpdate.ContentUpdate[0].Text); } } go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/shared" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) chatCompletion, err := client.Chat.Completions.New(context.TODO(), openai.ChatCompletionNewParams{ Messages: []openai.ChatCompletionMessageParamUnion{openai.ChatCompletionMessageParamUnion{ OfDeveloper: &openai.ChatCompletionDeveloperMessageParam{ Content: openai.ChatCompletionDeveloperMessageParamContentUnion{ OfString: openai.String("string"), }, }, }}, Model: shared.ChatModelGPT5_1, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", chatCompletion) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.ChatModel; import com.openai.models.chat.completions.ChatCompletion; import com.openai.models.chat.completions.ChatCompletionCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ChatCompletionCreateParams params = ChatCompletionCreateParams.builder() .addDeveloperMessage("string") .model(ChatModel.GPT_5_1) .build(); ChatCompletion chatCompletion = client.chat().completions().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") chat_completion = openai.chat.completions.create(messages: [{content: "string", role: :developer}], model: :"gpt-5.1") puts(chat_completion) response: > {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"gpt-4o-mini", "system_fingerprint": "fp_44709d6fcb", "choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]} {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"gpt-4o-mini", "system_fingerprint": "fp_44709d6fcb", "choices":[{"index":0,"delta":{"content":"Hello"},"logprobs":null,"finish_reason":null}]} .... {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"gpt-4o-mini", "system_fingerprint": "fp_44709d6fcb", "choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]} - title: Functions request: curl: | curl https://api.openai.com/v1/chat/completions \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "gpt-4.1", "messages": [ { "role": "user", "content": "What is the weather like in Boston today?" } ], "tools": [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": ["celsius", "fahrenheit"] } }, "required": ["location"] } } } ], "tool_choice": "auto" }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) chat_completion = client.chat.completions.create( messages=[{ "content": "string", "role": "developer", }], model="gpt-4o", ) print(chat_completion) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const chatCompletion = await client.chat.completions.create({ messages: [{ content: 'string', role: 'developer' }], model: 'gpt-4o', }); console.log(chatCompletion); csharp: | using System; using System.Collections.Generic; using OpenAI.Chat; ChatClient client = new( model: "gpt-4.1", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); ChatTool getCurrentWeatherTool = ChatTool.CreateFunctionTool( functionName: "get_current_weather", functionDescription: "Get the current weather in a given location", functionParameters: BinaryData.FromString(""" { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": [ "celsius", "fahrenheit" ] } }, "required": [ "location" ] } """) ); List messages = [ new UserChatMessage("What's the weather like in Boston today?"), ]; ChatCompletionOptions options = new() { Tools = { getCurrentWeatherTool }, ToolChoice = ChatToolChoice.CreateAutoChoice(), }; ChatCompletion completion = client.CompleteChat(messages, options); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/shared" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) chatCompletion, err := client.Chat.Completions.New(context.TODO(), openai.ChatCompletionNewParams{ Messages: []openai.ChatCompletionMessageParamUnion{openai.ChatCompletionMessageParamUnion{ OfDeveloper: &openai.ChatCompletionDeveloperMessageParam{ Content: openai.ChatCompletionDeveloperMessageParamContentUnion{ OfString: openai.String("string"), }, }, }}, Model: shared.ChatModelGPT5_1, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", chatCompletion) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.ChatModel; import com.openai.models.chat.completions.ChatCompletion; import com.openai.models.chat.completions.ChatCompletionCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ChatCompletionCreateParams params = ChatCompletionCreateParams.builder() .addDeveloperMessage("string") .model(ChatModel.GPT_5_1) .build(); ChatCompletion chatCompletion = client.chat().completions().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") chat_completion = openai.chat.completions.create(messages: [{content: "string", role: :developer}], model: :"gpt-5.1") puts(chat_completion) response: | { "id": "chatcmpl-abc123", "object": "chat.completion", "created": 1699896916, "model": "gpt-4o-mini", "choices": [ { "index": 0, "message": { "role": "assistant", "content": null, "tool_calls": [ { "id": "call_abc123", "type": "function", "function": { "name": "get_current_weather", "arguments": "{\n\"location\": \"Boston, MA\"\n}" } } ] }, "logprobs": null, "finish_reason": "tool_calls" } ], "usage": { "prompt_tokens": 82, "completion_tokens": 17, "total_tokens": 99, "completion_tokens_details": { "reasoning_tokens": 0, "accepted_prediction_tokens": 0, "rejected_prediction_tokens": 0 } } } - title: Logprobs request: curl: | curl https://api.openai.com/v1/chat/completions \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "VAR_chat_model_id", "messages": [ { "role": "user", "content": "Hello!" } ], "logprobs": true, "top_logprobs": 2 }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) chat_completion = client.chat.completions.create( messages=[{ "content": "string", "role": "developer", }], model="gpt-4o", ) print(chat_completion) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const chatCompletion = await client.chat.completions.create({ messages: [{ content: 'string', role: 'developer' }], model: 'gpt-4o', }); console.log(chatCompletion); csharp: | using System; using System.Collections.Generic; using OpenAI.Chat; ChatClient client = new( model: "gpt-4.1", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); List messages = [ new UserChatMessage("Hello!") ]; ChatCompletionOptions options = new() { IncludeLogProbabilities = true, TopLogProbabilityCount = 2 }; ChatCompletion completion = client.CompleteChat(messages, options); Console.WriteLine(completion.Content[0].Text); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/shared" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) chatCompletion, err := client.Chat.Completions.New(context.TODO(), openai.ChatCompletionNewParams{ Messages: []openai.ChatCompletionMessageParamUnion{openai.ChatCompletionMessageParamUnion{ OfDeveloper: &openai.ChatCompletionDeveloperMessageParam{ Content: openai.ChatCompletionDeveloperMessageParamContentUnion{ OfString: openai.String("string"), }, }, }}, Model: shared.ChatModelGPT5_1, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", chatCompletion) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.ChatModel; import com.openai.models.chat.completions.ChatCompletion; import com.openai.models.chat.completions.ChatCompletionCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ChatCompletionCreateParams params = ChatCompletionCreateParams.builder() .addDeveloperMessage("string") .model(ChatModel.GPT_5_1) .build(); ChatCompletion chatCompletion = client.chat().completions().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") chat_completion = openai.chat.completions.create(messages: [{content: "string", role: :developer}], model: :"gpt-5.1") puts(chat_completion) response: | { "id": "chatcmpl-123", "object": "chat.completion", "created": 1702685778, "model": "gpt-4o-mini", "choices": [ { "index": 0, "message": { "role": "assistant", "content": "Hello! How can I assist you today?" }, "logprobs": { "content": [ { "token": "Hello", "logprob": -0.31725305, "bytes": [72, 101, 108, 108, 111], "top_logprobs": [ { "token": "Hello", "logprob": -0.31725305, "bytes": [72, 101, 108, 108, 111] }, { "token": "Hi", "logprob": -1.3190403, "bytes": [72, 105] } ] }, { "token": "!", "logprob": -0.02380986, "bytes": [ 33 ], "top_logprobs": [ { "token": "!", "logprob": -0.02380986, "bytes": [33] }, { "token": " there", "logprob": -3.787621, "bytes": [32, 116, 104, 101, 114, 101] } ] }, { "token": " How", "logprob": -0.000054669687, "bytes": [32, 72, 111, 119], "top_logprobs": [ { "token": " How", "logprob": -0.000054669687, "bytes": [32, 72, 111, 119] }, { "token": "<|end|>", "logprob": -10.953937, "bytes": null } ] }, { "token": " can", "logprob": -0.015801601, "bytes": [32, 99, 97, 110], "top_logprobs": [ { "token": " can", "logprob": -0.015801601, "bytes": [32, 99, 97, 110] }, { "token": " may", "logprob": -4.161023, "bytes": [32, 109, 97, 121] } ] }, { "token": " I", "logprob": -3.7697225e-6, "bytes": [ 32, 73 ], "top_logprobs": [ { "token": " I", "logprob": -3.7697225e-6, "bytes": [32, 73] }, { "token": " assist", "logprob": -13.596657, "bytes": [32, 97, 115, 115, 105, 115, 116] } ] }, { "token": " assist", "logprob": -0.04571125, "bytes": [32, 97, 115, 115, 105, 115, 116], "top_logprobs": [ { "token": " assist", "logprob": -0.04571125, "bytes": [32, 97, 115, 115, 105, 115, 116] }, { "token": " help", "logprob": -3.1089056, "bytes": [32, 104, 101, 108, 112] } ] }, { "token": " you", "logprob": -5.4385737e-6, "bytes": [32, 121, 111, 117], "top_logprobs": [ { "token": " you", "logprob": -5.4385737e-6, "bytes": [32, 121, 111, 117] }, { "token": " today", "logprob": -12.807695, "bytes": [32, 116, 111, 100, 97, 121] } ] }, { "token": " today", "logprob": -0.0040071653, "bytes": [32, 116, 111, 100, 97, 121], "top_logprobs": [ { "token": " today", "logprob": -0.0040071653, "bytes": [32, 116, 111, 100, 97, 121] }, { "token": "?", "logprob": -5.5247097, "bytes": [63] } ] }, { "token": "?", "logprob": -0.0008108172, "bytes": [63], "top_logprobs": [ { "token": "?", "logprob": -0.0008108172, "bytes": [63] }, { "token": "?\n", "logprob": -7.184561, "bytes": [63, 10] } ] } ] }, "finish_reason": "stop" } ], "usage": { "prompt_tokens": 9, "completion_tokens": 9, "total_tokens": 18, "completion_tokens_details": { "reasoning_tokens": 0, "accepted_prediction_tokens": 0, "rejected_prediction_tokens": 0 } }, "system_fingerprint": null } description: > **Starting a new project?** We recommend trying [Responses](https://platform.openai.com/docs/api-reference/responses) to take advantage of the latest OpenAI platform features. Compare [Chat Completions with Responses](https://platform.openai.com/docs/guides/responses-vs-chat-completions?api-mode=responses). --- Creates a model response for the given chat conversation. Learn more in the [text generation](https://platform.openai.com/docs/guides/text-generation), [vision](https://platform.openai.com/docs/guides/vision), and [audio](https://platform.openai.com/docs/guides/audio) guides. Parameter support can differ depending on the model used to generate the response, particularly for newer reasoning models. Parameters that are only supported for reasoning models are noted below. For the current state of unsupported parameters in reasoning models, [refer to the reasoning guide](https://platform.openai.com/docs/guides/reasoning). /chat/completions/{completion_id}: get: operationId: getChatCompletion tags: - Chat summary: Get chat completion parameters: - in: path name: completion_id required: true schema: type: string description: The ID of the chat completion to retrieve. responses: '200': description: A chat completion content: application/json: schema: $ref: '#/components/schemas/CreateChatCompletionResponse' x-oaiMeta: name: Get chat completion group: chat returns: >- The [ChatCompletion](https://platform.openai.com/docs/api-reference/chat/object) object matching the specified ID. examples: response: | { "object": "chat.completion", "id": "chatcmpl-abc123", "model": "gpt-4o-2024-08-06", "created": 1738960610, "request_id": "req_ded8ab984ec4bf840f37566c1011c417", "tool_choice": null, "usage": { "total_tokens": 31, "completion_tokens": 18, "prompt_tokens": 13 }, "seed": 4944116822809979520, "top_p": 1.0, "temperature": 1.0, "presence_penalty": 0.0, "frequency_penalty": 0.0, "system_fingerprint": "fp_50cad350e4", "input_user": null, "service_tier": "default", "tools": null, "metadata": {}, "choices": [ { "index": 0, "message": { "content": "Mind of circuits hum, \nLearning patterns in silence— \nFuture's quiet spark.", "role": "assistant", "tool_calls": null, "function_call": null }, "finish_reason": "stop", "logprobs": null } ], "response_format": null } request: curl: | curl https://api.openai.com/v1/chat/completions/chatcmpl-abc123 \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) chat_completion = client.chat.completions.retrieve( "completion_id", ) print(chat_completion.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const chatCompletion = await client.chat.completions.retrieve('completion_id'); console.log(chatCompletion.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) chatCompletion, err := client.Chat.Completions.Get(context.TODO(), "completion_id") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", chatCompletion.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.chat.completions.ChatCompletion; import com.openai.models.chat.completions.ChatCompletionRetrieveParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ChatCompletion chatCompletion = client.chat().completions().retrieve("completion_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") chat_completion = openai.chat.completions.retrieve("completion_id") puts(chat_completion) description: | Get a stored chat completion. Only Chat Completions that have been created with the `store` parameter set to `true` will be returned. post: operationId: updateChatCompletion tags: - Chat summary: Update chat completion parameters: - in: path name: completion_id required: true schema: type: string description: The ID of the chat completion to update. requestBody: required: true content: application/json: schema: type: object required: - metadata properties: metadata: $ref: '#/components/schemas/Metadata' responses: '200': description: A chat completion content: application/json: schema: $ref: '#/components/schemas/CreateChatCompletionResponse' x-oaiMeta: name: Update chat completion group: chat returns: >- The [ChatCompletion](https://platform.openai.com/docs/api-reference/chat/object) object matching the specified ID. examples: response: | { "object": "chat.completion", "id": "chatcmpl-AyPNinnUqUDYo9SAdA52NobMflmj2", "model": "gpt-4o-2024-08-06", "created": 1738960610, "request_id": "req_ded8ab984ec4bf840f37566c1011c417", "tool_choice": null, "usage": { "total_tokens": 31, "completion_tokens": 18, "prompt_tokens": 13 }, "seed": 4944116822809979520, "top_p": 1.0, "temperature": 1.0, "presence_penalty": 0.0, "frequency_penalty": 0.0, "system_fingerprint": "fp_50cad350e4", "input_user": null, "service_tier": "default", "tools": null, "metadata": { "foo": "bar" }, "choices": [ { "index": 0, "message": { "content": "Mind of circuits hum, \nLearning patterns in silence— \nFuture's quiet spark.", "role": "assistant", "tool_calls": null, "function_call": null }, "finish_reason": "stop", "logprobs": null } ], "response_format": null } request: curl: | curl -X POST https://api.openai.com/v1/chat/completions/chat_abc123 \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{"metadata": {"foo": "bar"}}' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) chat_completion = client.chat.completions.update( completion_id="completion_id", metadata={ "foo": "string" }, ) print(chat_completion.id) node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const chatCompletion = await client.chat.completions.update('completion_id', { metadata: { foo: 'string' } }); console.log(chatCompletion.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/shared" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) chatCompletion, err := client.Chat.Completions.Update( context.TODO(), "completion_id", openai.ChatCompletionUpdateParams{ Metadata: shared.Metadata{ "foo": "string", }, }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", chatCompletion.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.core.JsonValue; import com.openai.models.chat.completions.ChatCompletion; import com.openai.models.chat.completions.ChatCompletionUpdateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ChatCompletionUpdateParams params = ChatCompletionUpdateParams.builder() .completionId("completion_id") .metadata(ChatCompletionUpdateParams.Metadata.builder() .putAdditionalProperty("foo", JsonValue.from("string")) .build()) .build(); ChatCompletion chatCompletion = client.chat().completions().update(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") chat_completion = openai.chat.completions.update("completion_id", metadata: {foo: "string"}) puts(chat_completion) description: | Modify a stored chat completion. Only Chat Completions that have been created with the `store` parameter set to `true` can be modified. Currently, the only supported modification is to update the `metadata` field. delete: operationId: deleteChatCompletion tags: - Chat summary: Delete chat completion parameters: - in: path name: completion_id required: true schema: type: string description: The ID of the chat completion to delete. responses: '200': description: The chat completion was deleted successfully. content: application/json: schema: $ref: '#/components/schemas/ChatCompletionDeleted' x-oaiMeta: name: Delete chat completion group: chat returns: A deletion confirmation object. examples: response: | { "object": "chat.completion.deleted", "id": "chatcmpl-AyPNinnUqUDYo9SAdA52NobMflmj2", "deleted": true } request: curl: | curl -X DELETE https://api.openai.com/v1/chat/completions/chat_abc123 \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) chat_completion_deleted = client.chat.completions.delete( "completion_id", ) print(chat_completion_deleted.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const chatCompletionDeleted = await client.chat.completions.delete('completion_id'); console.log(chatCompletionDeleted.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) chatCompletionDeleted, err := client.Chat.Completions.Delete(context.TODO(), "completion_id") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", chatCompletionDeleted.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.chat.completions.ChatCompletionDeleteParams; import com.openai.models.chat.completions.ChatCompletionDeleted; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ChatCompletionDeleted chatCompletionDeleted = client.chat().completions().delete("completion_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") chat_completion_deleted = openai.chat.completions.delete("completion_id") puts(chat_completion_deleted) description: | Delete a stored chat completion. Only Chat Completions that have been created with the `store` parameter set to `true` can be deleted. /chat/completions/{completion_id}/messages: get: operationId: getChatCompletionMessages tags: - Chat summary: Get chat messages parameters: - in: path name: completion_id required: true schema: type: string description: The ID of the chat completion to retrieve messages from. - name: after in: query description: Identifier for the last message from the previous pagination request. required: false schema: type: string - name: limit in: query description: Number of messages to retrieve. required: false schema: type: integer default: 20 - name: order in: query description: >- Sort order for messages by timestamp. Use `asc` for ascending order or `desc` for descending order. Defaults to `asc`. required: false schema: type: string enum: - asc - desc default: asc responses: '200': description: A list of messages content: application/json: schema: $ref: '#/components/schemas/ChatCompletionMessageList' x-oaiMeta: name: Get chat messages group: chat returns: >- A list of [messages](https://platform.openai.com/docs/api-reference/chat/message-list) for the specified chat completion. examples: response: | { "object": "list", "data": [ { "id": "chatcmpl-AyPNinnUqUDYo9SAdA52NobMflmj2-0", "role": "user", "content": "write a haiku about ai", "name": null, "content_parts": null } ], "first_id": "chatcmpl-AyPNinnUqUDYo9SAdA52NobMflmj2-0", "last_id": "chatcmpl-AyPNinnUqUDYo9SAdA52NobMflmj2-0", "has_more": false } request: curl: | curl https://api.openai.com/v1/chat/completions/chat_abc123/messages \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.chat.completions.messages.list( completion_id="completion_id", ) page = page.data[0] print(page) node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const chatCompletionStoreMessage of client.chat.completions.messages.list('completion_id')) { console.log(chatCompletionStoreMessage); } go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.Chat.Completions.Messages.List( context.TODO(), "completion_id", openai.ChatCompletionMessageListParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.chat.completions.messages.MessageListPage; import com.openai.models.chat.completions.messages.MessageListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); MessageListPage page = client.chat().completions().messages().list("completion_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.chat.completions.messages.list("completion_id") puts(page) description: | Get the messages in a stored chat completion. Only Chat Completions that have been created with the `store` parameter set to `true` will be returned. /completions: post: operationId: createCompletion tags: - Completions summary: Create completion requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CreateCompletionRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/CreateCompletionResponse' x-oaiMeta: name: Create completion group: completions returns: > Returns a [completion](https://platform.openai.com/docs/api-reference/completions/object) object, or a sequence of completion objects if the request is streamed. legacy: true examples: - title: No streaming request: curl: | curl https://api.openai.com/v1/completions \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "VAR_completion_model_id", "prompt": "Say this is a test", "max_tokens": 7, "temperature": 0 }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) completion = client.completions.create( model="string", prompt="This is a test.", ) print(completion) node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const completion = await client.completions.create({ model: 'string', prompt: 'This is a test.' }); console.log(completion); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) completion, err := client.Completions.New(context.TODO(), openai.CompletionNewParams{ Model: openai.CompletionNewParamsModelGPT3_5TurboInstruct, Prompt: openai.CompletionNewParamsPromptUnion{ OfString: openai.String("This is a test."), }, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", completion) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.completions.Completion; import com.openai.models.completions.CompletionCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); CompletionCreateParams params = CompletionCreateParams.builder() .model(CompletionCreateParams.Model.GPT_3_5_TURBO_INSTRUCT) .prompt("This is a test.") .build(); Completion completion = client.completions().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") completion = openai.completions.create(model: :"gpt-3.5-turbo-instruct", prompt: "This is a test.") puts(completion) response: | { "id": "cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7", "object": "text_completion", "created": 1589478378, "model": "VAR_completion_model_id", "system_fingerprint": "fp_44709d6fcb", "choices": [ { "text": "\n\nThis is indeed a test", "index": 0, "logprobs": null, "finish_reason": "length" } ], "usage": { "prompt_tokens": 5, "completion_tokens": 7, "total_tokens": 12 } } - title: Streaming request: curl: | curl https://api.openai.com/v1/completions \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "VAR_completion_model_id", "prompt": "Say this is a test", "max_tokens": 7, "temperature": 0, "stream": true }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) completion = client.completions.create( model="string", prompt="This is a test.", ) print(completion) node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const completion = await client.completions.create({ model: 'string', prompt: 'This is a test.' }); console.log(completion); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) completion, err := client.Completions.New(context.TODO(), openai.CompletionNewParams{ Model: openai.CompletionNewParamsModelGPT3_5TurboInstruct, Prompt: openai.CompletionNewParamsPromptUnion{ OfString: openai.String("This is a test."), }, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", completion) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.completions.Completion; import com.openai.models.completions.CompletionCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); CompletionCreateParams params = CompletionCreateParams.builder() .model(CompletionCreateParams.Model.GPT_3_5_TURBO_INSTRUCT) .prompt("This is a test.") .build(); Completion completion = client.completions().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") completion = openai.completions.create(model: :"gpt-3.5-turbo-instruct", prompt: "This is a test.") puts(completion) response: | { "id": "cmpl-7iA7iJjj8V2zOkCGvWF2hAkDWBQZe", "object": "text_completion", "created": 1690759702, "choices": [ { "text": "This", "index": 0, "logprobs": null, "finish_reason": null } ], "model": "gpt-3.5-turbo-instruct" "system_fingerprint": "fp_44709d6fcb", } description: Creates a completion for the provided prompt and parameters. /containers: get: summary: List containers description: List Containers operationId: ListContainers parameters: - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - name: order in: query description: > Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order. schema: type: string default: desc enum: - asc - desc - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. schema: type: string responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/ContainerListResource' x-oaiMeta: name: List containers group: containers returns: a list of [container](https://platform.openai.com/docs/api-reference/containers/object) objects. path: get examples: response: | { "object": "list", "data": [ { "id": "cntr_682dfebaacac8198bbfe9c2474fb6f4a085685cbe3cb5863", "object": "container", "created_at": 1747844794, "status": "running", "expires_after": { "anchor": "last_active_at", "minutes": 20 }, "last_active_at": 1747844794, "name": "My Container" } ], "first_id": "container_123", "last_id": "container_123", "has_more": false } request: curl: | curl https://api.openai.com/v1/containers \ -H "Authorization: Bearer $OPENAI_API_KEY" node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const containerListResponse of client.containers.list()) { console.log(containerListResponse.id); } python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.containers.list() page = page.data[0] print(page.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.Containers.List(context.TODO(), openai.ContainerListParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.containers.ContainerListPage; import com.openai.models.containers.ContainerListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ContainerListPage page = client.containers().list(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.containers.list puts(page) post: summary: Create container description: Create Container operationId: CreateContainer parameters: [] requestBody: content: application/json: schema: $ref: '#/components/schemas/CreateContainerBody' responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/ContainerResource' x-oaiMeta: name: Create container group: containers returns: The created [container](https://platform.openai.com/docs/api-reference/containers/object) object. path: post examples: response: | { "id": "cntr_682e30645a488191b6363a0cbefc0f0a025ec61b66250591", "object": "container", "created_at": 1747857508, "status": "running", "expires_after": { "anchor": "last_active_at", "minutes": 20 }, "last_active_at": 1747857508, "name": "My Container" } request: curl: | curl https://api.openai.com/v1/containers \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{ "name": "My Container" }' node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const container = await client.containers.create({ name: 'name' }); console.log(container.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) container = client.containers.create( name="name", ) print(container.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) container, err := client.Containers.New(context.TODO(), openai.ContainerNewParams{ Name: "name", }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", container.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.containers.ContainerCreateParams; import com.openai.models.containers.ContainerCreateResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ContainerCreateParams params = ContainerCreateParams.builder() .name("name") .build(); ContainerCreateResponse container = client.containers().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") container = openai.containers.create(name: "name") puts(container) /containers/{container_id}: get: summary: Retrieve container description: Retrieve Container operationId: RetrieveContainer parameters: - name: container_id in: path required: true schema: type: string responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/ContainerResource' x-oaiMeta: name: Retrieve container group: containers returns: The [container](https://platform.openai.com/docs/api-reference/containers/object) object. path: get examples: response: | { "id": "cntr_682dfebaacac8198bbfe9c2474fb6f4a085685cbe3cb5863", "object": "container", "created_at": 1747844794, "status": "running", "expires_after": { "anchor": "last_active_at", "minutes": 20 }, "last_active_at": 1747844794, "name": "My Container" } request: curl: > curl https://api.openai.com/v1/containers/cntr_682dfebaacac8198bbfe9c2474fb6f4a085685cbe3cb5863 \ -H "Authorization: Bearer $OPENAI_API_KEY" node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const container = await client.containers.retrieve('container_id'); console.log(container.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) container = client.containers.retrieve( "container_id", ) print(container.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) container, err := client.Containers.Get(context.TODO(), "container_id") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", container.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.containers.ContainerRetrieveParams; import com.openai.models.containers.ContainerRetrieveResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ContainerRetrieveResponse container = client.containers().retrieve("container_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") container = openai.containers.retrieve("container_id") puts(container) delete: operationId: DeleteContainer summary: Delete a container description: Delete Container parameters: - name: container_id in: path description: The ID of the container to delete. required: true schema: type: string responses: '200': description: OK x-oaiMeta: name: Delete a container group: containers returns: Deletion Status path: delete examples: response: | { "id": "cntr_682dfebaacac8198bbfe9c2474fb6f4a085685cbe3cb5863", "object": "container.deleted", "deleted": true } request: curl: > curl -X DELETE https://api.openai.com/v1/containers/cntr_682dfebaacac8198bbfe9c2474fb6f4a085685cbe3cb5863 \ -H "Authorization: Bearer $OPENAI_API_KEY" node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); await client.containers.delete('container_id'); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) client.containers.delete( "container_id", ) go: | package main import ( "context" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) err := client.Containers.Delete(context.TODO(), "container_id") if err != nil { panic(err.Error()) } } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.containers.ContainerDeleteParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); client.containers().delete("container_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") result = openai.containers.delete("container_id") puts(result) /containers/{container_id}/files: post: summary: Create container file description: > Create a Container File You can send either a multipart/form-data request with the raw file content, or a JSON request with a file ID. operationId: CreateContainerFile parameters: - name: container_id in: path required: true schema: type: string requestBody: required: true content: multipart/form-data: schema: $ref: '#/components/schemas/CreateContainerFileBody' responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/ContainerFileResource' x-oaiMeta: name: Create container file group: containers returns: >- The created [container file](https://platform.openai.com/docs/api-reference/container-files/object) object. path: post examples: response: | { "id": "cfile_682e0e8a43c88191a7978f477a09bdf5", "object": "container.file", "created_at": 1747848842, "bytes": 880, "container_id": "cntr_682e0e7318108198aa783fd921ff305e08e78805b9fdbb04", "path": "/mnt/data/88e12fa445d32636f190a0b33daed6cb-tsconfig.json", "source": "user" } request: curl: > curl https://api.openai.com/v1/containers/cntr_682e0e7318108198aa783fd921ff305e08e78805b9fdbb04/files \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -F file="@example.txt" node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const file = await client.containers.files.create('container_id'); console.log(file.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) file = client.containers.files.create( container_id="container_id", ) print(file.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) file, err := client.Containers.Files.New( context.TODO(), "container_id", openai.ContainerFileNewParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", file.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.containers.files.FileCreateParams; import com.openai.models.containers.files.FileCreateResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FileCreateResponse file = client.containers().files().create("container_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") file = openai.containers.files.create("container_id") puts(file) get: summary: List container files description: List Container files operationId: ListContainerFiles parameters: - name: container_id in: path required: true schema: type: string - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - name: order in: query description: > Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order. schema: type: string default: desc enum: - asc - desc - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. schema: type: string responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/ContainerFileListResource' x-oaiMeta: name: List container files group: containers returns: >- a list of [container file](https://platform.openai.com/docs/api-reference/container-files/object) objects. path: get examples: response: | { "object": "list", "data": [ { "id": "cfile_682e0e8a43c88191a7978f477a09bdf5", "object": "container.file", "created_at": 1747848842, "bytes": 880, "container_id": "cntr_682e0e7318108198aa783fd921ff305e08e78805b9fdbb04", "path": "/mnt/data/88e12fa445d32636f190a0b33daed6cb-tsconfig.json", "source": "user" } ], "first_id": "cfile_682e0e8a43c88191a7978f477a09bdf5", "has_more": false, "last_id": "cfile_682e0e8a43c88191a7978f477a09bdf5" } request: curl: > curl https://api.openai.com/v1/containers/cntr_682e0e7318108198aa783fd921ff305e08e78805b9fdbb04/files \ -H "Authorization: Bearer $OPENAI_API_KEY" node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const fileListResponse of client.containers.files.list('container_id')) { console.log(fileListResponse.id); } python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.containers.files.list( container_id="container_id", ) page = page.data[0] print(page.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.Containers.Files.List( context.TODO(), "container_id", openai.ContainerFileListParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.containers.files.FileListPage; import com.openai.models.containers.files.FileListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FileListPage page = client.containers().files().list("container_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.containers.files.list("container_id") puts(page) /containers/{container_id}/files/{file_id}: get: summary: Retrieve container file description: Retrieve Container File operationId: RetrieveContainerFile parameters: - name: container_id in: path required: true schema: type: string - name: file_id in: path required: true schema: type: string responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/ContainerFileResource' x-oaiMeta: name: Retrieve container file group: containers returns: The [container file](https://platform.openai.com/docs/api-reference/container-files/object) object. path: get examples: response: | { "id": "cfile_682e0e8a43c88191a7978f477a09bdf5", "object": "container.file", "created_at": 1747848842, "bytes": 880, "container_id": "cntr_682e0e7318108198aa783fd921ff305e08e78805b9fdbb04", "path": "/mnt/data/88e12fa445d32636f190a0b33daed6cb-tsconfig.json", "source": "user" } request: curl: | curl https://api.openai.com/v1/containers/container_123/files/file_456 \ -H "Authorization: Bearer $OPENAI_API_KEY" node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const file = await client.containers.files.retrieve('file_id', { container_id: 'container_id' }); console.log(file.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) file = client.containers.files.retrieve( file_id="file_id", container_id="container_id", ) print(file.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) file, err := client.Containers.Files.Get( context.TODO(), "container_id", "file_id", ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", file.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.containers.files.FileRetrieveParams; import com.openai.models.containers.files.FileRetrieveResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FileRetrieveParams params = FileRetrieveParams.builder() .containerId("container_id") .fileId("file_id") .build(); FileRetrieveResponse file = client.containers().files().retrieve(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") file = openai.containers.files.retrieve("file_id", container_id: "container_id") puts(file) delete: operationId: DeleteContainerFile summary: Delete a container file description: Delete Container File parameters: - name: container_id in: path required: true schema: type: string - name: file_id in: path required: true schema: type: string responses: '200': description: OK x-oaiMeta: name: Delete a container file group: containers returns: Deletion Status path: delete examples: response: | { "id": "cfile_682e0e8a43c88191a7978f477a09bdf5", "object": "container.file.deleted", "deleted": true } request: curl: > curl -X DELETE https://api.openai.com/v1/containers/cntr_682dfebaacac8198bbfe9c2474fb6f4a085685cbe3cb5863/files/cfile_682e0e8a43c88191a7978f477a09bdf5 \ -H "Authorization: Bearer $OPENAI_API_KEY" node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); await client.containers.files.delete('file_id', { container_id: 'container_id' }); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) client.containers.files.delete( file_id="file_id", container_id="container_id", ) go: | package main import ( "context" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) err := client.Containers.Files.Delete( context.TODO(), "container_id", "file_id", ) if err != nil { panic(err.Error()) } } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.containers.files.FileDeleteParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FileDeleteParams params = FileDeleteParams.builder() .containerId("container_id") .fileId("file_id") .build(); client.containers().files().delete(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") result = openai.containers.files.delete("file_id", container_id: "container_id") puts(result) /containers/{container_id}/files/{file_id}/content: get: summary: Retrieve container file content description: Retrieve Container File Content operationId: RetrieveContainerFileContent parameters: - name: container_id in: path required: true schema: type: string - name: file_id in: path required: true schema: type: string responses: '200': description: Success x-oaiMeta: name: Retrieve container file content group: containers returns: The contents of the container file. path: get examples: response: | request: curl: | curl https://api.openai.com/v1/containers/container_123/files/cfile_456/content \ -H "Authorization: Bearer $OPENAI_API_KEY" node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const content = await client.containers.files.content.retrieve('file_id', { container_id: 'container_id' }); console.log(content); const data = await content.blob(); console.log(data); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) content = client.containers.files.content.retrieve( file_id="file_id", container_id="container_id", ) print(content) data = content.read() print(data) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) content, err := client.Containers.Files.Content.Get( context.TODO(), "container_id", "file_id", ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", content) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.core.http.HttpResponse; import com.openai.models.containers.files.content.ContentRetrieveParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ContentRetrieveParams params = ContentRetrieveParams.builder() .containerId("container_id") .fileId("file_id") .build(); HttpResponse content = client.containers().files().content().retrieve(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") content = openai.containers.files.content.retrieve("file_id", container_id: "container_id") puts(content) /conversations/{conversation_id}/items: post: operationId: createConversationItems tags: - Conversations summary: Create items parameters: - in: path name: conversation_id required: true schema: type: string example: conv_123 description: The ID of the conversation to add the item to. - name: include in: query required: false schema: type: array items: $ref: '#/components/schemas/IncludeEnum' description: > Additional fields to include in the response. See the `include` parameter for [listing Conversation items above](https://platform.openai.com/docs/api-reference/conversations/list-items#conversations_list_items-include) for more information. requestBody: required: true content: application/json: schema: properties: items: type: array description: | The items to add to the conversation. You may add up to 20 items at a time. items: $ref: '#/components/schemas/InputItem' maxItems: 20 required: - items responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ConversationItemList' x-oaiMeta: name: Create items group: conversations returns: > Returns the list of added [items](https://platform.openai.com/docs/api-reference/conversations/list-items-object). path: create-item examples: - title: Add a user message to a conversation request: curl: | curl https://api.openai.com/v1/conversations/conv_123/items \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "items": [ { "type": "message", "role": "user", "content": [ {"type": "input_text", "text": "Hello!"} ] }, { "type": "message", "role": "user", "content": [ {"type": "input_text", "text": "How are you?"} ] } ] }' javascript: | import OpenAI from "openai"; const client = new OpenAI(); const items = await client.conversations.items.create( "conv_123", { items: [ { type: "message", role: "user", content: [{ type: "input_text", text: "Hello!" }], }, { type: "message", role: "user", content: [{ type: "input_text", text: "How are you?" }], }, ], } ); console.log(items.data); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) conversation_item_list = client.conversations.items.create( conversation_id="conv_123", items=[{ "content": "string", "role": "user", "type": "message", }], ) print(conversation_item_list.first_id) csharp: | using System; using System.Collections.Generic; using OpenAI.Conversations; OpenAIConversationClient client = new( apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); ConversationItemList created = client.ConversationItems.Create( conversationId: "conv_123", new CreateConversationItemsOptions { Items = new List { new ConversationMessage { Role = "user", Content = { new ConversationInputText { Text = "Hello!" } } }, new ConversationMessage { Role = "user", Content = { new ConversationInputText { Text = "How are you?" } } } } } ); Console.WriteLine(created.Data.Count); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const conversationItemList = await client.conversations.items.create('conv_123', { items: [{ content: 'string', role: 'user', type: 'message' }], }); console.log(conversationItemList.first_id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/conversations" "github.com/openai/openai-go/option" "github.com/openai/openai-go/responses" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) conversationItemList, err := client.Conversations.Items.New( context.TODO(), "conv_123", conversations.ItemNewParams{ Items: []responses.ResponseInputItemUnionParam{responses.ResponseInputItemUnionParam{ OfMessage: &responses.EasyInputMessageParam{ Content: responses.EasyInputMessageContentUnionParam{ OfString: openai.String("string"), }, Role: responses.EasyInputMessageRoleUser, Type: responses.EasyInputMessageTypeMessage, }, }}, }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", conversationItemList.FirstID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.conversations.items.ConversationItemList; import com.openai.models.conversations.items.ItemCreateParams; import com.openai.models.responses.EasyInputMessage; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ItemCreateParams params = ItemCreateParams.builder() .conversationId("conv_123") .addItem(EasyInputMessage.builder() .content("string") .role(EasyInputMessage.Role.USER) .type(EasyInputMessage.Type.MESSAGE) .build()) .build(); ConversationItemList conversationItemList = client.conversations().items().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") conversation_item_list = openai.conversations.items.create("conv_123", items: [{content: "string", role: :user, type: :message}]) puts(conversation_item_list) response: | { "object": "list", "data": [ { "type": "message", "id": "msg_abc", "status": "completed", "role": "user", "content": [ {"type": "input_text", "text": "Hello!"} ] }, { "type": "message", "id": "msg_def", "status": "completed", "role": "user", "content": [ {"type": "input_text", "text": "How are you?"} ] } ], "first_id": "msg_abc", "last_id": "msg_def", "has_more": false } description: Create items in a conversation with the given ID. get: operationId: listConversationItems tags: - Conversations summary: List items parameters: - in: path name: conversation_id required: true schema: type: string example: conv_123 description: The ID of the conversation to list items for. - name: limit in: query description: | A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - in: query name: order schema: type: string enum: - asc - desc description: | The order to return the input items in. Default is `desc`. - `asc`: Return the input items in ascending order. - `desc`: Return the input items in descending order. - in: query name: after schema: type: string description: | An item ID to list items after, used in pagination. - name: include in: query required: false schema: type: array items: $ref: '#/components/schemas/IncludeEnum' description: >- Specify additional output data to include in the model response. Currently supported values are: - `web_search_call.action.sources`: Include the sources of the web search tool call. - `code_interpreter_call.outputs`: Includes the outputs of python code execution in code interpreter tool call items. - `computer_call_output.output.image_url`: Include image urls from the computer call output. - `file_search_call.results`: Include the search results of the file search tool call. - `message.input_image.image_url`: Include image urls from the input message. - `message.output_text.logprobs`: Include logprobs with assistant messages. - `reasoning.encrypted_content`: Includes an encrypted version of reasoning tokens in reasoning item outputs. This enables reasoning items to be used in multi-turn conversations when using the Responses API statelessly (like when the `store` parameter is set to `false`, or when an organization is enrolled in the zero data retention program). responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ConversationItemList' x-oaiMeta: name: List items group: conversations returns: > Returns a [list object](https://platform.openai.com/docs/api-reference/conversations/list-items-object) containing Conversation items. path: list-items examples: - title: List items in a conversation request: curl: | curl "https://api.openai.com/v1/conversations/conv_123/items?limit=10" \ -H "Authorization: Bearer $OPENAI_API_KEY" javascript: | import OpenAI from "openai"; const client = new OpenAI(); const items = await client.conversations.items.list("conv_123", { limit: 10 }); console.log(items.data); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.conversations.items.list( conversation_id="conv_123", ) page = page.data[0] print(page) csharp: | using System; using OpenAI.Conversations; OpenAIConversationClient client = new( apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); ConversationItemList items = client.ConversationItems.List( conversationId: "conv_123", new ListConversationItemsOptions { Limit = 10 } ); Console.WriteLine(items.Data.Count); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const conversationItem of client.conversations.items.list('conv_123')) { console.log(conversationItem); } go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/conversations" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.Conversations.Items.List( context.TODO(), "conv_123", conversations.ItemListParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.conversations.items.ItemListPage; import com.openai.models.conversations.items.ItemListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ItemListPage page = client.conversations().items().list("conv_123"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.conversations.items.list("conv_123") puts(page) response: | { "object": "list", "data": [ { "type": "message", "id": "msg_abc", "status": "completed", "role": "user", "content": [ {"type": "input_text", "text": "Hello!"} ] } ], "first_id": "msg_abc", "last_id": "msg_abc", "has_more": false } description: List all items for a conversation with the given ID. /conversations/{conversation_id}/items/{item_id}: get: operationId: getConversationItem tags: - Conversations summary: Retrieve an item parameters: - in: path name: conversation_id required: true schema: type: string example: conv_123 description: The ID of the conversation that contains the item. - in: path name: item_id required: true schema: type: string example: msg_abc description: The ID of the item to retrieve. - name: include in: query required: false schema: type: array items: $ref: '#/components/schemas/IncludeEnum' description: > Additional fields to include in the response. See the `include` parameter for [listing Conversation items above](https://platform.openai.com/docs/api-reference/conversations/list-items#conversations_list_items-include) for more information. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ConversationItem' x-oaiMeta: name: Retrieve an item group: conversations returns: > Returns a [Conversation Item](https://platform.openai.com/docs/api-reference/conversations/item-object). path: get-item examples: - title: Retrieve an item request: curl: | curl https://api.openai.com/v1/conversations/conv_123/items/msg_abc \ -H "Authorization: Bearer $OPENAI_API_KEY" javascript: | import OpenAI from "openai"; const client = new OpenAI(); const item = await client.conversations.items.retrieve( "conv_123", "msg_abc" ); console.log(item); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) conversation_item = client.conversations.items.retrieve( item_id="msg_abc", conversation_id="conv_123", ) print(conversation_item) csharp: | using System; using OpenAI.Conversations; OpenAIConversationClient client = new( apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); ConversationItem item = client.ConversationItems.Get( conversationId: "conv_123", itemId: "msg_abc" ); Console.WriteLine(item.Id); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const conversationItem = await client.conversations.items.retrieve('msg_abc', { conversation_id: 'conv_123', }); console.log(conversationItem); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/conversations" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) conversationItem, err := client.Conversations.Items.Get( context.TODO(), "conv_123", "msg_abc", conversations.ItemGetParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", conversationItem) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.conversations.items.ConversationItem; import com.openai.models.conversations.items.ItemRetrieveParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ItemRetrieveParams params = ItemRetrieveParams.builder() .conversationId("conv_123") .itemId("msg_abc") .build(); ConversationItem conversationItem = client.conversations().items().retrieve(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") conversation_item = openai.conversations.items.retrieve("msg_abc", conversation_id: "conv_123") puts(conversation_item) response: | { "type": "message", "id": "msg_abc", "status": "completed", "role": "user", "content": [ {"type": "input_text", "text": "Hello!"} ] } description: Get a single item from a conversation with the given IDs. delete: operationId: deleteConversationItem tags: - Conversations summary: Delete an item parameters: - in: path name: conversation_id required: true schema: type: string example: conv_123 description: The ID of the conversation that contains the item. - in: path name: item_id required: true schema: type: string example: msg_abc description: The ID of the item to delete. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ConversationResource' x-oaiMeta: name: Delete an item group: conversations returns: > Returns the updated [Conversation](https://platform.openai.com/docs/api-reference/conversations/object) object. path: delete-item examples: - title: Delete an item request: curl: | curl -X DELETE https://api.openai.com/v1/conversations/conv_123/items/msg_abc \ -H "Authorization: Bearer $OPENAI_API_KEY" javascript: | import OpenAI from "openai"; const client = new OpenAI(); const conversation = await client.conversations.items.delete( "conv_123", "msg_abc" ); console.log(conversation); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) conversation = client.conversations.items.delete( item_id="msg_abc", conversation_id="conv_123", ) print(conversation.id) csharp: | using System; using OpenAI.Conversations; OpenAIConversationClient client = new( apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); Conversation conversation = client.ConversationItems.Delete( conversationId: "conv_123", itemId: "msg_abc" ); Console.WriteLine(conversation.Id); node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const conversation = await client.conversations.items.delete('msg_abc', { conversation_id: 'conv_123' }); console.log(conversation.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) conversation, err := client.Conversations.Items.Delete( context.TODO(), "conv_123", "msg_abc", ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", conversation.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.conversations.Conversation; import com.openai.models.conversations.items.ItemDeleteParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ItemDeleteParams params = ItemDeleteParams.builder() .conversationId("conv_123") .itemId("msg_abc") .build(); Conversation conversation = client.conversations().items().delete(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") conversation = openai.conversations.items.delete("msg_abc", conversation_id: "conv_123") puts(conversation) response: | { "id": "conv_123", "object": "conversation", "created_at": 1741900000, "metadata": {"topic": "demo"} } description: Delete an item from a conversation with the given IDs. /embeddings: post: operationId: createEmbedding tags: - Embeddings summary: Create embeddings requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CreateEmbeddingRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/CreateEmbeddingResponse' x-oaiMeta: name: Create embeddings group: embeddings returns: A list of [embedding](https://platform.openai.com/docs/api-reference/embeddings/object) objects. examples: response: | { "object": "list", "data": [ { "object": "embedding", "embedding": [ 0.0023064255, -0.009327292, .... (1536 floats total for ada-002) -0.0028842222, ], "index": 0 } ], "model": "text-embedding-ada-002", "usage": { "prompt_tokens": 8, "total_tokens": 8 } } request: curl: | curl https://api.openai.com/v1/embeddings \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{ "input": "The food was delicious and the waiter...", "model": "text-embedding-ada-002", "encoding_format": "float" }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) create_embedding_response = client.embeddings.create( input="The quick brown fox jumped over the lazy dog", model="text-embedding-3-small", ) print(create_embedding_response.data) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const createEmbeddingResponse = await client.embeddings.create({ input: 'The quick brown fox jumped over the lazy dog', model: 'text-embedding-3-small', }); console.log(createEmbeddingResponse.data); csharp: > using System; using OpenAI.Embeddings; EmbeddingClient client = new( model: "text-embedding-3-small", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); OpenAIEmbedding embedding = client.GenerateEmbedding(input: "The quick brown fox jumped over the lazy dog"); ReadOnlyMemory vector = embedding.ToFloats(); for (int i = 0; i < vector.Length; i++) { Console.WriteLine($" [{i,4}] = {vector.Span[i]}"); } go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) createEmbeddingResponse, err := client.Embeddings.New(context.TODO(), openai.EmbeddingNewParams{ Input: openai.EmbeddingNewParamsInputUnion{ OfString: openai.String("The quick brown fox jumped over the lazy dog"), }, Model: openai.EmbeddingModelTextEmbeddingAda002, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", createEmbeddingResponse.Data) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.embeddings.CreateEmbeddingResponse; import com.openai.models.embeddings.EmbeddingCreateParams; import com.openai.models.embeddings.EmbeddingModel; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); EmbeddingCreateParams params = EmbeddingCreateParams.builder() .input("The quick brown fox jumped over the lazy dog") .model(EmbeddingModel.TEXT_EMBEDDING_ADA_002) .build(); CreateEmbeddingResponse createEmbeddingResponse = client.embeddings().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") create_embedding_response = openai.embeddings.create( input: "The quick brown fox jumped over the lazy dog", model: :"text-embedding-ada-002" ) puts(create_embedding_response) description: Creates an embedding vector representing the input text. /evals: get: operationId: listEvals tags: - Evals summary: List evals parameters: - name: after in: query description: Identifier for the last eval from the previous pagination request. required: false schema: type: string - name: limit in: query description: Number of evals to retrieve. required: false schema: type: integer default: 20 - name: order in: query description: Sort order for evals by timestamp. Use `asc` for ascending order or `desc` for descending order. required: false schema: type: string enum: - asc - desc default: asc - name: order_by in: query description: | Evals can be ordered by creation time or last updated time. Use `created_at` for creation time or `updated_at` for last updated time. required: false schema: type: string enum: - created_at - updated_at default: created_at responses: '200': description: A list of evals content: application/json: schema: $ref: '#/components/schemas/EvalList' x-oaiMeta: name: List evals group: evals returns: >- A list of [evals](https://platform.openai.com/docs/api-reference/evals/object) matching the specified filters. path: list examples: response: | { "object": "list", "data": [ { "id": "eval_67abd54d9b0081909a86353f6fb9317a", "object": "eval", "data_source_config": { "type": "stored_completions", "metadata": { "usecase": "push_notifications_summarizer" }, "schema": { "type": "object", "properties": { "item": { "type": "object" }, "sample": { "type": "object" } }, "required": [ "item", "sample" ] } }, "testing_criteria": [ { "name": "Push Notification Summary Grader", "id": "Push Notification Summary Grader-9b876f24-4762-4be9-aff4-db7a9b31c673", "type": "label_model", "model": "o3-mini", "input": [ { "type": "message", "role": "developer", "content": { "type": "input_text", "text": "\nLabel the following push notification summary as either correct or incorrect.\nThe push notification and the summary will be provided below.\nA good push notificiation summary is concise and snappy.\nIf it is good, then label it as correct, if not, then incorrect.\n" } }, { "type": "message", "role": "user", "content": { "type": "input_text", "text": "\nPush notifications: {{item.input}}\nSummary: {{sample.output_text}}\n" } } ], "passing_labels": [ "correct" ], "labels": [ "correct", "incorrect" ], "sampling_params": null } ], "name": "Push Notification Summary Grader", "created_at": 1739314509, "metadata": { "description": "A stored completions eval for push notification summaries" } } ], "first_id": "eval_67abd54d9b0081909a86353f6fb9317a", "last_id": "eval_67aa884cf6688190b58f657d4441c8b7", "has_more": true } request: curl: | curl https://api.openai.com/v1/evals?limit=1 \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.evals.list() page = page.data[0] print(page.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const evalListResponse of client.evals.list()) { console.log(evalListResponse.id); } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.evals.EvalListPage; import com.openai.models.evals.EvalListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); EvalListPage page = client.evals().list(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.evals.list puts(page) description: | List evaluations for a project. post: operationId: createEval tags: - Evals summary: Create eval requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CreateEvalRequest' responses: '201': description: OK content: application/json: schema: $ref: '#/components/schemas/Eval' x-oaiMeta: name: Create eval group: evals returns: The created [Eval](https://platform.openai.com/docs/api-reference/evals/object) object. path: post examples: response: | { "object": "eval", "id": "eval_67b7fa9a81a88190ab4aa417e397ea21", "data_source_config": { "type": "stored_completions", "metadata": { "usecase": "chatbot" }, "schema": { "type": "object", "properties": { "item": { "type": "object" }, "sample": { "type": "object" } }, "required": [ "item", "sample" ] }, "testing_criteria": [ { "name": "Example label grader", "type": "label_model", "model": "o3-mini", "input": [ { "type": "message", "role": "developer", "content": { "type": "input_text", "text": "Classify the sentiment of the following statement as one of positive, neutral, or negative" } }, { "type": "message", "role": "user", "content": { "type": "input_text", "text": "Statement: {{item.input}}" } } ], "passing_labels": [ "positive" ], "labels": [ "positive", "neutral", "negative" ] } ], "name": "Sentiment", "created_at": 1740110490, "metadata": { "description": "An eval for sentiment analysis" } } request: curl: | curl https://api.openai.com/v1/evals \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{ "name": "Sentiment", "data_source_config": { "type": "stored_completions", "metadata": { "usecase": "chatbot" } }, "testing_criteria": [ { "type": "label_model", "model": "o3-mini", "input": [ { "role": "developer", "content": "Classify the sentiment of the following statement as one of 'positive', 'neutral', or 'negative'" }, { "role": "user", "content": "Statement: {{item.input}}" } ], "passing_labels": [ "positive" ], "labels": [ "positive", "neutral", "negative" ], "name": "Example label grader" } ] }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) eval = client.evals.create( data_source_config={ "item_schema": { "foo": "bar" }, "type": "custom", }, testing_criteria=[{ "input": [{ "content": "content", "role": "role", }], "labels": ["string"], "model": "model", "name": "name", "passing_labels": ["string"], "type": "label_model", }], ) print(eval.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const _eval = await client.evals.create({ data_source_config: { item_schema: { foo: 'bar' }, type: 'custom' }, testing_criteria: [ { input: [{ content: 'content', role: 'role' }], labels: ['string'], model: 'model', name: 'name', passing_labels: ['string'], type: 'label_model', }, ], }); console.log(_eval.id); java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.core.JsonValue; import com.openai.models.evals.EvalCreateParams; import com.openai.models.evals.EvalCreateResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); EvalCreateParams params = EvalCreateParams.builder() .customDataSourceConfig(EvalCreateParams.DataSourceConfig.Custom.ItemSchema.builder() .putAdditionalProperty("foo", JsonValue.from("bar")) .build()) .addTestingCriterion(EvalCreateParams.TestingCriterion.LabelModel.builder() .addInput(EvalCreateParams.TestingCriterion.LabelModel.Input.SimpleInputMessage.builder() .content("content") .role("role") .build()) .addLabel("string") .model("model") .name("name") .addPassingLabel("string") .build()) .build(); EvalCreateResponse eval = client.evals().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") eval_ = openai.evals.create( data_source_config: {item_schema: {foo: "bar"}, type: :custom}, testing_criteria: [ { input: [{content: "content", role: "role"}], labels: ["string"], model: "model", name: "name", passing_labels: ["string"], type: :label_model } ] ) puts(eval_) description: > Create the structure of an evaluation that can be used to test a model's performance. An evaluation is a set of testing criteria and the config for a data source, which dictates the schema of the data used in the evaluation. After creating an evaluation, you can run it on different models and model parameters. We support several types of graders and datasources. For more information, see the [Evals guide](https://platform.openai.com/docs/guides/evals). /evals/{eval_id}: get: operationId: getEval tags: - Evals summary: Get an eval parameters: - name: eval_id in: path required: true schema: type: string description: The ID of the evaluation to retrieve. responses: '200': description: The evaluation content: application/json: schema: $ref: '#/components/schemas/Eval' x-oaiMeta: name: Get an eval group: evals returns: >- The [Eval](https://platform.openai.com/docs/api-reference/evals/object) object matching the specified ID. path: get examples: response: | { "object": "eval", "id": "eval_67abd54d9b0081909a86353f6fb9317a", "data_source_config": { "type": "custom", "schema": { "type": "object", "properties": { "item": { "type": "object", "properties": { "input": { "type": "string" }, "ground_truth": { "type": "string" } }, "required": [ "input", "ground_truth" ] } }, "required": [ "item" ] } }, "testing_criteria": [ { "name": "String check", "id": "String check-2eaf2d8d-d649-4335-8148-9535a7ca73c2", "type": "string_check", "input": "{{item.input}}", "reference": "{{item.ground_truth}}", "operation": "eq" } ], "name": "External Data Eval", "created_at": 1739314509, "metadata": {}, } request: curl: | curl https://api.openai.com/v1/evals/eval_67abd54d9b0081909a86353f6fb9317a \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) eval = client.evals.retrieve( "eval_id", ) print(eval.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const _eval = await client.evals.retrieve('eval_id'); console.log(_eval.id); java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.evals.EvalRetrieveParams; import com.openai.models.evals.EvalRetrieveResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); EvalRetrieveResponse eval = client.evals().retrieve("eval_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") eval_ = openai.evals.retrieve("eval_id") puts(eval_) description: | Get an evaluation by ID. post: operationId: updateEval tags: - Evals summary: Update an eval parameters: - name: eval_id in: path required: true schema: type: string description: The ID of the evaluation to update. requestBody: description: Request to update an evaluation required: true content: application/json: schema: type: object properties: name: type: string description: Rename the evaluation. metadata: $ref: '#/components/schemas/Metadata' responses: '200': description: The updated evaluation content: application/json: schema: $ref: '#/components/schemas/Eval' x-oaiMeta: name: Update an eval group: evals returns: >- The [Eval](https://platform.openai.com/docs/api-reference/evals/object) object matching the updated version. path: update examples: response: | { "object": "eval", "id": "eval_67abd54d9b0081909a86353f6fb9317a", "data_source_config": { "type": "custom", "schema": { "type": "object", "properties": { "item": { "type": "object", "properties": { "input": { "type": "string" }, "ground_truth": { "type": "string" } }, "required": [ "input", "ground_truth" ] } }, "required": [ "item" ] } }, "testing_criteria": [ { "name": "String check", "id": "String check-2eaf2d8d-d649-4335-8148-9535a7ca73c2", "type": "string_check", "input": "{{item.input}}", "reference": "{{item.ground_truth}}", "operation": "eq" } ], "name": "Updated Eval", "created_at": 1739314509, "metadata": {"description": "Updated description"}, } request: curl: | curl https://api.openai.com/v1/evals/eval_67abd54d9b0081909a86353f6fb9317a \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{"name": "Updated Eval", "metadata": {"description": "Updated description"}}' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) eval = client.evals.update( eval_id="eval_id", ) print(eval.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const _eval = await client.evals.update('eval_id'); console.log(_eval.id); java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.evals.EvalUpdateParams; import com.openai.models.evals.EvalUpdateResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); EvalUpdateResponse eval = client.evals().update("eval_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") eval_ = openai.evals.update("eval_id") puts(eval_) description: | Update certain properties of an evaluation. delete: operationId: deleteEval tags: - Evals summary: Delete an eval parameters: - name: eval_id in: path required: true schema: type: string description: The ID of the evaluation to delete. responses: '200': description: Successfully deleted the evaluation. content: application/json: schema: type: object properties: object: type: string example: eval.deleted deleted: type: boolean example: true eval_id: type: string example: eval_abc123 required: - object - deleted - eval_id '404': description: Evaluation not found. content: application/json: schema: $ref: '#/components/schemas/Error' x-oaiMeta: name: Delete an eval group: evals returns: A deletion confirmation object. examples: response: | { "object": "eval.deleted", "deleted": true, "eval_id": "eval_abc123" } request: curl: | curl https://api.openai.com/v1/evals/eval_abc123 \ -X DELETE \ -H "Authorization: Bearer $OPENAI_API_KEY" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) eval = client.evals.delete( "eval_id", ) print(eval.eval_id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const _eval = await client.evals.delete('eval_id'); console.log(_eval.eval_id); java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.evals.EvalDeleteParams; import com.openai.models.evals.EvalDeleteResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); EvalDeleteResponse eval = client.evals().delete("eval_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") eval_ = openai.evals.delete("eval_id") puts(eval_) description: | Delete an evaluation. /evals/{eval_id}/runs: get: operationId: getEvalRuns tags: - Evals summary: Get eval runs parameters: - name: eval_id in: path required: true schema: type: string description: The ID of the evaluation to retrieve runs for. - name: after in: query description: Identifier for the last run from the previous pagination request. required: false schema: type: string - name: limit in: query description: Number of runs to retrieve. required: false schema: type: integer default: 20 - name: order in: query description: >- Sort order for runs by timestamp. Use `asc` for ascending order or `desc` for descending order. Defaults to `asc`. required: false schema: type: string enum: - asc - desc default: asc - name: status in: query description: Filter runs by status. One of `queued` | `in_progress` | `failed` | `completed` | `canceled`. required: false schema: type: string enum: - queued - in_progress - completed - canceled - failed responses: '200': description: A list of runs for the evaluation content: application/json: schema: $ref: '#/components/schemas/EvalRunList' x-oaiMeta: name: Get eval runs group: evals returns: >- A list of [EvalRun](https://platform.openai.com/docs/api-reference/evals/run-object) objects matching the specified ID. path: get-runs examples: response: | { "object": "list", "data": [ { "object": "eval.run", "id": "evalrun_67e0c7d31560819090d60c0780591042", "eval_id": "eval_67e0c726d560819083f19a957c4c640b", "report_url": "https://platform.openai.com/evaluations/eval_67e0c726d560819083f19a957c4c640b", "status": "completed", "model": "o3-mini", "name": "bulk_with_negative_examples_o3-mini", "created_at": 1742784467, "result_counts": { "total": 1, "errored": 0, "failed": 0, "passed": 1 }, "per_model_usage": [ { "model_name": "o3-mini", "invocation_count": 1, "prompt_tokens": 563, "completion_tokens": 874, "total_tokens": 1437, "cached_tokens": 0 } ], "per_testing_criteria_results": [ { "testing_criteria": "Push Notification Summary Grader-1808cd0b-eeec-4e0b-a519-337e79f4f5d1", "passed": 1, "failed": 0 } ], "data_source": { "type": "completions", "source": { "type": "file_content", "content": [ { "item": { "notifications": "\n- New message from Sarah: \"Can you call me later?\"\n- Your package has been delivered!\n- Flash sale: 20% off electronics for the next 2 hours!\n" } } ] }, "input_messages": { "type": "template", "template": [ { "type": "message", "role": "developer", "content": { "type": "input_text", "text": "\n\n\n\nYou are a helpful assistant that takes in an array of push notifications and returns a collapsed summary of them.\nThe push notification will be provided as follows:\n\n...notificationlist...\n\n\nYou should return just the summary and nothing else.\n\n\nYou should return a summary that is concise and snappy.\n\n\nHere is an example of a good summary:\n\n- Traffic alert: Accident reported on Main Street.- Package out for delivery: Expected by 5 PM.- New friend suggestion: Connect with Emma.\n\n\nTraffic alert, package expected by 5pm, suggestion for new friend (Emily).\n\n\n\nHere is an example of a bad summary:\n\n- Traffic alert: Accident reported on Main Street.- Package out for delivery: Expected by 5 PM.- New friend suggestion: Connect with Emma.\n\n\nTraffic alert reported on main street. You have a package that will arrive by 5pm, Emily is a new friend suggested for you.\n\n" } }, { "type": "message", "role": "user", "content": { "type": "input_text", "text": "{{item.notifications}}" } } ] }, "model": "o3-mini", "sampling_params": null }, "error": null, "metadata": {} } ], "first_id": "evalrun_67e0c7d31560819090d60c0780591042", "last_id": "evalrun_67e0c7d31560819090d60c0780591042", "has_more": true } request: curl: | curl https://api.openai.com/v1/evals/egroup_67abd54d9b0081909a86353f6fb9317a/runs \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.evals.runs.list( eval_id="eval_id", ) page = page.data[0] print(page.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const runListResponse of client.evals.runs.list('eval_id')) { console.log(runListResponse.id); } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.evals.runs.RunListPage; import com.openai.models.evals.runs.RunListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); RunListPage page = client.evals().runs().list("eval_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.evals.runs.list("eval_id") puts(page) description: | Get a list of runs for an evaluation. post: operationId: createEvalRun tags: - Evals summary: Create eval run parameters: - in: path name: eval_id required: true schema: type: string description: The ID of the evaluation to create a run for. requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CreateEvalRunRequest' responses: '201': description: Successfully created a run for the evaluation content: application/json: schema: $ref: '#/components/schemas/EvalRun' '400': description: Bad request (for example, missing eval object) content: application/json: schema: $ref: '#/components/schemas/Error' x-oaiMeta: name: Create eval run group: evals returns: >- The [EvalRun](https://platform.openai.com/docs/api-reference/evals/run-object) object matching the specified ID. examples: response: | { "object": "eval.run", "id": "evalrun_67e57965b480819094274e3a32235e4c", "eval_id": "eval_67e579652b548190aaa83ada4b125f47", "report_url": "https://platform.openai.com/evaluations/eval_67e579652b548190aaa83ada4b125f47&run_id=evalrun_67e57965b480819094274e3a32235e4c", "status": "queued", "model": "gpt-4o-mini", "name": "gpt-4o-mini", "created_at": 1743092069, "result_counts": { "total": 0, "errored": 0, "failed": 0, "passed": 0 }, "per_model_usage": null, "per_testing_criteria_results": null, "data_source": { "type": "completions", "source": { "type": "file_content", "content": [ { "item": { "input": "Tech Company Launches Advanced Artificial Intelligence Platform", "ground_truth": "Technology" } } ] }, "input_messages": { "type": "template", "template": [ { "type": "message", "role": "developer", "content": { "type": "input_text", "text": "Categorize a given news headline into one of the following topics: Technology, Markets, World, Business, or Sports.\n\n# Steps\n\n1. Analyze the content of the news headline to understand its primary focus.\n2. Extract the subject matter, identifying any key indicators or keywords.\n3. Use the identified indicators to determine the most suitable category out of the five options: Technology, Markets, World, Business, or Sports.\n4. Ensure only one category is selected per headline.\n\n# Output Format\n\nRespond with the chosen category as a single word. For instance: \"Technology\", \"Markets\", \"World\", \"Business\", or \"Sports\".\n\n# Examples\n\n**Input**: \"Apple Unveils New iPhone Model, Featuring Advanced AI Features\" \n**Output**: \"Technology\"\n\n**Input**: \"Global Stocks Mixed as Investors Await Central Bank Decisions\" \n**Output**: \"Markets\"\n\n**Input**: \"War in Ukraine: Latest Updates on Negotiation Status\" \n**Output**: \"World\"\n\n**Input**: \"Microsoft in Talks to Acquire Gaming Company for $2 Billion\" \n**Output**: \"Business\"\n\n**Input**: \"Manchester United Secures Win in Premier League Football Match\" \n**Output**: \"Sports\" \n\n# Notes\n\n- If the headline appears to fit into more than one category, choose the most dominant theme.\n- Keywords or phrases such as \"stocks\", \"company acquisition\", \"match\", or technological brands can be good indicators for classification.\n" } }, { "type": "message", "role": "user", "content": { "type": "input_text", "text": "{{item.input}}" } } ] }, "model": "gpt-4o-mini", "sampling_params": { "seed": 42, "temperature": 1.0, "top_p": 1.0, "max_completions_tokens": 2048 } }, "error": null, "metadata": {} } request: curl: | curl https://api.openai.com/v1/evals/eval_67e579652b548190aaa83ada4b125f47/runs \ -X POST \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{"name":"gpt-4o-mini","data_source":{"type":"completions","input_messages":{"type":"template","template":[{"role":"developer","content":"Categorize a given news headline into one of the following topics: Technology, Markets, World, Business, or Sports.\n\n# Steps\n\n1. Analyze the content of the news headline to understand its primary focus.\n2. Extract the subject matter, identifying any key indicators or keywords.\n3. Use the identified indicators to determine the most suitable category out of the five options: Technology, Markets, World, Business, or Sports.\n4. Ensure only one category is selected per headline.\n\n# Output Format\n\nRespond with the chosen category as a single word. For instance: \"Technology\", \"Markets\", \"World\", \"Business\", or \"Sports\".\n\n# Examples\n\n**Input**: \"Apple Unveils New iPhone Model, Featuring Advanced AI Features\" \n**Output**: \"Technology\"\n\n**Input**: \"Global Stocks Mixed as Investors Await Central Bank Decisions\" \n**Output**: \"Markets\"\n\n**Input**: \"War in Ukraine: Latest Updates on Negotiation Status\" \n**Output**: \"World\"\n\n**Input**: \"Microsoft in Talks to Acquire Gaming Company for $2 Billion\" \n**Output**: \"Business\"\n\n**Input**: \"Manchester United Secures Win in Premier League Football Match\" \n**Output**: \"Sports\" \n\n# Notes\n\n- If the headline appears to fit into more than one category, choose the most dominant theme.\n- Keywords or phrases such as \"stocks\", \"company acquisition\", \"match\", or technological brands can be good indicators for classification.\n"} , {"role":"user","content":"{{item.input}}"}]} ,"sampling_params":{"temperature":1,"max_completions_tokens":2048,"top_p":1,"seed":42},"model":"gpt-4o-mini","source":{"type":"file_content","content":[{"item":{"input":"Tech Company Launches Advanced Artificial Intelligence Platform","ground_truth":"Technology"}}]}}' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) run = client.evals.runs.create( eval_id="eval_id", data_source={ "source": { "content": [{ "item": { "foo": "bar" } }], "type": "file_content", }, "type": "jsonl", }, ) print(run.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const run = await client.evals.runs.create('eval_id', { data_source: { source: { content: [{ item: { foo: 'bar' } }], type: 'file_content' }, type: 'jsonl' }, }); console.log(run.id); java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.core.JsonValue; import com.openai.models.evals.runs.CreateEvalJsonlRunDataSource; import com.openai.models.evals.runs.RunCreateParams; import com.openai.models.evals.runs.RunCreateResponse; import java.util.List; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); RunCreateParams params = RunCreateParams.builder() .evalId("eval_id") .dataSource(CreateEvalJsonlRunDataSource.builder() .fileContentSource(List.of(CreateEvalJsonlRunDataSource.Source.FileContent.Content.builder() .item(CreateEvalJsonlRunDataSource.Source.FileContent.Content.Item.builder() .putAdditionalProperty("foo", JsonValue.from("bar")) .build()) .build())) .build()) .build(); RunCreateResponse run = client.evals().runs().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") run = openai.evals.runs.create( "eval_id", data_source: {source: {content: [{item: {foo: "bar"}}], type: :file_content}, type: :jsonl} ) puts(run) description: > Kicks off a new run for a given evaluation, specifying the data source, and what model configuration to use to test. The datasource will be validated against the schema specified in the config of the evaluation. /evals/{eval_id}/runs/{run_id}: get: operationId: getEvalRun tags: - Evals summary: Get an eval run parameters: - name: eval_id in: path required: true schema: type: string description: The ID of the evaluation to retrieve runs for. - name: run_id in: path required: true schema: type: string description: The ID of the run to retrieve. responses: '200': description: The evaluation run content: application/json: schema: $ref: '#/components/schemas/EvalRun' x-oaiMeta: name: Get an eval run group: evals returns: >- The [EvalRun](https://platform.openai.com/docs/api-reference/evals/run-object) object matching the specified ID. path: get examples: response: | { "object": "eval.run", "id": "evalrun_67abd54d60ec8190832b46859da808f7", "eval_id": "eval_67abd54d9b0081909a86353f6fb9317a", "report_url": "https://platform.openai.com/evaluations/eval_67abd54d9b0081909a86353f6fb9317a?run_id=evalrun_67abd54d60ec8190832b46859da808f7", "status": "queued", "model": "gpt-4o-mini", "name": "gpt-4o-mini", "created_at": 1743092069, "result_counts": { "total": 0, "errored": 0, "failed": 0, "passed": 0 }, "per_model_usage": null, "per_testing_criteria_results": null, "data_source": { "type": "completions", "source": { "type": "file_content", "content": [ { "item": { "input": "Tech Company Launches Advanced Artificial Intelligence Platform", "ground_truth": "Technology" } }, { "item": { "input": "Central Bank Increases Interest Rates Amid Inflation Concerns", "ground_truth": "Markets" } }, { "item": { "input": "International Summit Addresses Climate Change Strategies", "ground_truth": "World" } }, { "item": { "input": "Major Retailer Reports Record-Breaking Holiday Sales", "ground_truth": "Business" } }, { "item": { "input": "National Team Qualifies for World Championship Finals", "ground_truth": "Sports" } }, { "item": { "input": "Stock Markets Rally After Positive Economic Data Released", "ground_truth": "Markets" } }, { "item": { "input": "Global Manufacturer Announces Merger with Competitor", "ground_truth": "Business" } }, { "item": { "input": "Breakthrough in Renewable Energy Technology Unveiled", "ground_truth": "Technology" } }, { "item": { "input": "World Leaders Sign Historic Climate Agreement", "ground_truth": "World" } }, { "item": { "input": "Professional Athlete Sets New Record in Championship Event", "ground_truth": "Sports" } }, { "item": { "input": "Financial Institutions Adapt to New Regulatory Requirements", "ground_truth": "Business" } }, { "item": { "input": "Tech Conference Showcases Advances in Artificial Intelligence", "ground_truth": "Technology" } }, { "item": { "input": "Global Markets Respond to Oil Price Fluctuations", "ground_truth": "Markets" } }, { "item": { "input": "International Cooperation Strengthened Through New Treaty", "ground_truth": "World" } }, { "item": { "input": "Sports League Announces Revised Schedule for Upcoming Season", "ground_truth": "Sports" } } ] }, "input_messages": { "type": "template", "template": [ { "type": "message", "role": "developer", "content": { "type": "input_text", "text": "Categorize a given news headline into one of the following topics: Technology, Markets, World, Business, or Sports.\n\n# Steps\n\n1. Analyze the content of the news headline to understand its primary focus.\n2. Extract the subject matter, identifying any key indicators or keywords.\n3. Use the identified indicators to determine the most suitable category out of the five options: Technology, Markets, World, Business, or Sports.\n4. Ensure only one category is selected per headline.\n\n# Output Format\n\nRespond with the chosen category as a single word. For instance: \"Technology\", \"Markets\", \"World\", \"Business\", or \"Sports\".\n\n# Examples\n\n**Input**: \"Apple Unveils New iPhone Model, Featuring Advanced AI Features\" \n**Output**: \"Technology\"\n\n**Input**: \"Global Stocks Mixed as Investors Await Central Bank Decisions\" \n**Output**: \"Markets\"\n\n**Input**: \"War in Ukraine: Latest Updates on Negotiation Status\" \n**Output**: \"World\"\n\n**Input**: \"Microsoft in Talks to Acquire Gaming Company for $2 Billion\" \n**Output**: \"Business\"\n\n**Input**: \"Manchester United Secures Win in Premier League Football Match\" \n**Output**: \"Sports\" \n\n# Notes\n\n- If the headline appears to fit into more than one category, choose the most dominant theme.\n- Keywords or phrases such as \"stocks\", \"company acquisition\", \"match\", or technological brands can be good indicators for classification.\n" } }, { "type": "message", "role": "user", "content": { "type": "input_text", "text": "{{item.input}}" } } ] }, "model": "gpt-4o-mini", "sampling_params": { "seed": 42, "temperature": 1.0, "top_p": 1.0, "max_completions_tokens": 2048 } }, "error": null, "metadata": {} } request: curl: > curl https://api.openai.com/v1/evals/eval_67abd54d9b0081909a86353f6fb9317a/runs/evalrun_67abd54d60ec8190832b46859da808f7 \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) run = client.evals.runs.retrieve( run_id="run_id", eval_id="eval_id", ) print(run.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const run = await client.evals.runs.retrieve('run_id', { eval_id: 'eval_id' }); console.log(run.id); java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.evals.runs.RunRetrieveParams; import com.openai.models.evals.runs.RunRetrieveResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); RunRetrieveParams params = RunRetrieveParams.builder() .evalId("eval_id") .runId("run_id") .build(); RunRetrieveResponse run = client.evals().runs().retrieve(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") run = openai.evals.runs.retrieve("run_id", eval_id: "eval_id") puts(run) description: | Get an evaluation run by ID. post: operationId: cancelEvalRun tags: - Evals summary: Cancel eval run parameters: - name: eval_id in: path required: true schema: type: string description: The ID of the evaluation whose run you want to cancel. - name: run_id in: path required: true schema: type: string description: The ID of the run to cancel. responses: '200': description: The canceled eval run object content: application/json: schema: $ref: '#/components/schemas/EvalRun' x-oaiMeta: name: Cancel eval run group: evals returns: >- The updated [EvalRun](https://platform.openai.com/docs/api-reference/evals/run-object) object reflecting that the run is canceled. path: post examples: response: | { "object": "eval.run", "id": "evalrun_67abd54d60ec8190832b46859da808f7", "eval_id": "eval_67abd54d9b0081909a86353f6fb9317a", "report_url": "https://platform.openai.com/evaluations/eval_67abd54d9b0081909a86353f6fb9317a?run_id=evalrun_67abd54d60ec8190832b46859da808f7", "status": "canceled", "model": "gpt-4o-mini", "name": "gpt-4o-mini", "created_at": 1743092069, "result_counts": { "total": 0, "errored": 0, "failed": 0, "passed": 0 }, "per_model_usage": null, "per_testing_criteria_results": null, "data_source": { "type": "completions", "source": { "type": "file_content", "content": [ { "item": { "input": "Tech Company Launches Advanced Artificial Intelligence Platform", "ground_truth": "Technology" } }, { "item": { "input": "Central Bank Increases Interest Rates Amid Inflation Concerns", "ground_truth": "Markets" } }, { "item": { "input": "International Summit Addresses Climate Change Strategies", "ground_truth": "World" } }, { "item": { "input": "Major Retailer Reports Record-Breaking Holiday Sales", "ground_truth": "Business" } }, { "item": { "input": "National Team Qualifies for World Championship Finals", "ground_truth": "Sports" } }, { "item": { "input": "Stock Markets Rally After Positive Economic Data Released", "ground_truth": "Markets" } }, { "item": { "input": "Global Manufacturer Announces Merger with Competitor", "ground_truth": "Business" } }, { "item": { "input": "Breakthrough in Renewable Energy Technology Unveiled", "ground_truth": "Technology" } }, { "item": { "input": "World Leaders Sign Historic Climate Agreement", "ground_truth": "World" } }, { "item": { "input": "Professional Athlete Sets New Record in Championship Event", "ground_truth": "Sports" } }, { "item": { "input": "Financial Institutions Adapt to New Regulatory Requirements", "ground_truth": "Business" } }, { "item": { "input": "Tech Conference Showcases Advances in Artificial Intelligence", "ground_truth": "Technology" } }, { "item": { "input": "Global Markets Respond to Oil Price Fluctuations", "ground_truth": "Markets" } }, { "item": { "input": "International Cooperation Strengthened Through New Treaty", "ground_truth": "World" } }, { "item": { "input": "Sports League Announces Revised Schedule for Upcoming Season", "ground_truth": "Sports" } } ] }, "input_messages": { "type": "template", "template": [ { "type": "message", "role": "developer", "content": { "type": "input_text", "text": "Categorize a given news headline into one of the following topics: Technology, Markets, World, Business, or Sports.\n\n# Steps\n\n1. Analyze the content of the news headline to understand its primary focus.\n2. Extract the subject matter, identifying any key indicators or keywords.\n3. Use the identified indicators to determine the most suitable category out of the five options: Technology, Markets, World, Business, or Sports.\n4. Ensure only one category is selected per headline.\n\n# Output Format\n\nRespond with the chosen category as a single word. For instance: \"Technology\", \"Markets\", \"World\", \"Business\", or \"Sports\".\n\n# Examples\n\n**Input**: \"Apple Unveils New iPhone Model, Featuring Advanced AI Features\" \n**Output**: \"Technology\"\n\n**Input**: \"Global Stocks Mixed as Investors Await Central Bank Decisions\" \n**Output**: \"Markets\"\n\n**Input**: \"War in Ukraine: Latest Updates on Negotiation Status\" \n**Output**: \"World\"\n\n**Input**: \"Microsoft in Talks to Acquire Gaming Company for $2 Billion\" \n**Output**: \"Business\"\n\n**Input**: \"Manchester United Secures Win in Premier League Football Match\" \n**Output**: \"Sports\" \n\n# Notes\n\n- If the headline appears to fit into more than one category, choose the most dominant theme.\n- Keywords or phrases such as \"stocks\", \"company acquisition\", \"match\", or technological brands can be good indicators for classification.\n" } }, { "type": "message", "role": "user", "content": { "type": "input_text", "text": "{{item.input}}" } } ] }, "model": "gpt-4o-mini", "sampling_params": { "seed": 42, "temperature": 1.0, "top_p": 1.0, "max_completions_tokens": 2048 } }, "error": null, "metadata": {} } request: curl: > curl https://api.openai.com/v1/evals/eval_67abd54d9b0081909a86353f6fb9317a/runs/evalrun_67abd54d60ec8190832b46859da808f7/cancel \ -X POST \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) response = client.evals.runs.cancel( run_id="run_id", eval_id="eval_id", ) print(response.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const response = await client.evals.runs.cancel('run_id', { eval_id: 'eval_id' }); console.log(response.id); java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.evals.runs.RunCancelParams; import com.openai.models.evals.runs.RunCancelResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); RunCancelParams params = RunCancelParams.builder() .evalId("eval_id") .runId("run_id") .build(); RunCancelResponse response = client.evals().runs().cancel(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") response = openai.evals.runs.cancel("run_id", eval_id: "eval_id") puts(response) description: | Cancel an ongoing evaluation run. delete: operationId: deleteEvalRun tags: - Evals summary: Delete eval run parameters: - name: eval_id in: path required: true schema: type: string description: The ID of the evaluation to delete the run from. - name: run_id in: path required: true schema: type: string description: The ID of the run to delete. responses: '200': description: Successfully deleted the eval run content: application/json: schema: type: object properties: object: type: string example: eval.run.deleted deleted: type: boolean example: true run_id: type: string example: evalrun_677469f564d48190807532a852da3afb '404': description: Run not found content: application/json: schema: $ref: '#/components/schemas/Error' x-oaiMeta: name: Delete eval run group: evals returns: An object containing the status of the delete operation. path: delete examples: response: | { "object": "eval.run.deleted", "deleted": true, "run_id": "evalrun_abc456" } request: curl: | curl https://api.openai.com/v1/evals/eval_123abc/runs/evalrun_abc456 \ -X DELETE \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) run = client.evals.runs.delete( run_id="run_id", eval_id="eval_id", ) print(run.run_id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const run = await client.evals.runs.delete('run_id', { eval_id: 'eval_id' }); console.log(run.run_id); java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.evals.runs.RunDeleteParams; import com.openai.models.evals.runs.RunDeleteResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); RunDeleteParams params = RunDeleteParams.builder() .evalId("eval_id") .runId("run_id") .build(); RunDeleteResponse run = client.evals().runs().delete(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") run = openai.evals.runs.delete("run_id", eval_id: "eval_id") puts(run) description: | Delete an eval run. /evals/{eval_id}/runs/{run_id}/output_items: get: operationId: getEvalRunOutputItems tags: - Evals summary: Get eval run output items parameters: - name: eval_id in: path required: true schema: type: string description: The ID of the evaluation to retrieve runs for. - name: run_id in: path required: true schema: type: string description: The ID of the run to retrieve output items for. - name: after in: query description: Identifier for the last output item from the previous pagination request. required: false schema: type: string - name: limit in: query description: Number of output items to retrieve. required: false schema: type: integer default: 20 - name: status in: query description: | Filter output items by status. Use `failed` to filter by failed output items or `pass` to filter by passed output items. required: false schema: type: string enum: - fail - pass - name: order in: query description: >- Sort order for output items by timestamp. Use `asc` for ascending order or `desc` for descending order. Defaults to `asc`. required: false schema: type: string enum: - asc - desc default: asc responses: '200': description: A list of output items for the evaluation run content: application/json: schema: $ref: '#/components/schemas/EvalRunOutputItemList' x-oaiMeta: name: Get eval run output items group: evals returns: >- A list of [EvalRunOutputItem](https://platform.openai.com/docs/api-reference/evals/run-output-item-object) objects matching the specified ID. path: get examples: response: | { "object": "list", "data": [ { "object": "eval.run.output_item", "id": "outputitem_67e5796c28e081909917bf79f6e6214d", "created_at": 1743092076, "run_id": "evalrun_67abd54d60ec8190832b46859da808f7", "eval_id": "eval_67abd54d9b0081909a86353f6fb9317a", "status": "pass", "datasource_item_id": 5, "datasource_item": { "input": "Stock Markets Rally After Positive Economic Data Released", "ground_truth": "Markets" }, "results": [ { "name": "String check-a2486074-d803-4445-b431-ad2262e85d47", "sample": null, "passed": true, "score": 1.0 } ], "sample": { "input": [ { "role": "developer", "content": "Categorize a given news headline into one of the following topics: Technology, Markets, World, Business, or Sports.\n\n# Steps\n\n1. Analyze the content of the news headline to understand its primary focus.\n2. Extract the subject matter, identifying any key indicators or keywords.\n3. Use the identified indicators to determine the most suitable category out of the five options: Technology, Markets, World, Business, or Sports.\n4. Ensure only one category is selected per headline.\n\n# Output Format\n\nRespond with the chosen category as a single word. For instance: \"Technology\", \"Markets\", \"World\", \"Business\", or \"Sports\".\n\n# Examples\n\n**Input**: \"Apple Unveils New iPhone Model, Featuring Advanced AI Features\" \n**Output**: \"Technology\"\n\n**Input**: \"Global Stocks Mixed as Investors Await Central Bank Decisions\" \n**Output**: \"Markets\"\n\n**Input**: \"War in Ukraine: Latest Updates on Negotiation Status\" \n**Output**: \"World\"\n\n**Input**: \"Microsoft in Talks to Acquire Gaming Company for $2 Billion\" \n**Output**: \"Business\"\n\n**Input**: \"Manchester United Secures Win in Premier League Football Match\" \n**Output**: \"Sports\" \n\n# Notes\n\n- If the headline appears to fit into more than one category, choose the most dominant theme.\n- Keywords or phrases such as \"stocks\", \"company acquisition\", \"match\", or technological brands can be good indicators for classification.\n", "tool_call_id": null, "tool_calls": null, "function_call": null }, { "role": "user", "content": "Stock Markets Rally After Positive Economic Data Released", "tool_call_id": null, "tool_calls": null, "function_call": null } ], "output": [ { "role": "assistant", "content": "Markets", "tool_call_id": null, "tool_calls": null, "function_call": null } ], "finish_reason": "stop", "model": "gpt-4o-mini-2024-07-18", "usage": { "total_tokens": 325, "completion_tokens": 2, "prompt_tokens": 323, "cached_tokens": 0 }, "error": null, "temperature": 1.0, "max_completion_tokens": 2048, "top_p": 1.0, "seed": 42 } } ], "first_id": "outputitem_67e5796c28e081909917bf79f6e6214d", "last_id": "outputitem_67e5796c28e081909917bf79f6e6214d", "has_more": true } request: curl: > curl https://api.openai.com/v1/evals/egroup_67abd54d9b0081909a86353f6fb9317a/runs/erun_67abd54d60ec8190832b46859da808f7/output_items \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.evals.runs.output_items.list( run_id="run_id", eval_id="eval_id", ) page = page.data[0] print(page.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const outputItemListResponse of client.evals.runs.outputItems.list('run_id', { eval_id: 'eval_id', })) { console.log(outputItemListResponse.id); } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.evals.runs.outputitems.OutputItemListPage; import com.openai.models.evals.runs.outputitems.OutputItemListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); OutputItemListParams params = OutputItemListParams.builder() .evalId("eval_id") .runId("run_id") .build(); OutputItemListPage page = client.evals().runs().outputItems().list(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.evals.runs.output_items.list("run_id", eval_id: "eval_id") puts(page) description: | Get a list of output items for an evaluation run. /evals/{eval_id}/runs/{run_id}/output_items/{output_item_id}: get: operationId: getEvalRunOutputItem tags: - Evals summary: Get an output item of an eval run parameters: - name: eval_id in: path required: true schema: type: string description: The ID of the evaluation to retrieve runs for. - name: run_id in: path required: true schema: type: string description: The ID of the run to retrieve. - name: output_item_id in: path required: true schema: type: string description: The ID of the output item to retrieve. responses: '200': description: The evaluation run output item content: application/json: schema: $ref: '#/components/schemas/EvalRunOutputItem' x-oaiMeta: name: Get an output item of an eval run group: evals returns: >- The [EvalRunOutputItem](https://platform.openai.com/docs/api-reference/evals/run-output-item-object) object matching the specified ID. path: get examples: response: | { "object": "eval.run.output_item", "id": "outputitem_67e5796c28e081909917bf79f6e6214d", "created_at": 1743092076, "run_id": "evalrun_67abd54d60ec8190832b46859da808f7", "eval_id": "eval_67abd54d9b0081909a86353f6fb9317a", "status": "pass", "datasource_item_id": 5, "datasource_item": { "input": "Stock Markets Rally After Positive Economic Data Released", "ground_truth": "Markets" }, "results": [ { "name": "String check-a2486074-d803-4445-b431-ad2262e85d47", "sample": null, "passed": true, "score": 1.0 } ], "sample": { "input": [ { "role": "developer", "content": "Categorize a given news headline into one of the following topics: Technology, Markets, World, Business, or Sports.\n\n# Steps\n\n1. Analyze the content of the news headline to understand its primary focus.\n2. Extract the subject matter, identifying any key indicators or keywords.\n3. Use the identified indicators to determine the most suitable category out of the five options: Technology, Markets, World, Business, or Sports.\n4. Ensure only one category is selected per headline.\n\n# Output Format\n\nRespond with the chosen category as a single word. For instance: \"Technology\", \"Markets\", \"World\", \"Business\", or \"Sports\".\n\n# Examples\n\n**Input**: \"Apple Unveils New iPhone Model, Featuring Advanced AI Features\" \n**Output**: \"Technology\"\n\n**Input**: \"Global Stocks Mixed as Investors Await Central Bank Decisions\" \n**Output**: \"Markets\"\n\n**Input**: \"War in Ukraine: Latest Updates on Negotiation Status\" \n**Output**: \"World\"\n\n**Input**: \"Microsoft in Talks to Acquire Gaming Company for $2 Billion\" \n**Output**: \"Business\"\n\n**Input**: \"Manchester United Secures Win in Premier League Football Match\" \n**Output**: \"Sports\" \n\n# Notes\n\n- If the headline appears to fit into more than one category, choose the most dominant theme.\n- Keywords or phrases such as \"stocks\", \"company acquisition\", \"match\", or technological brands can be good indicators for classification.\n", "tool_call_id": null, "tool_calls": null, "function_call": null }, { "role": "user", "content": "Stock Markets Rally After Positive Economic Data Released", "tool_call_id": null, "tool_calls": null, "function_call": null } ], "output": [ { "role": "assistant", "content": "Markets", "tool_call_id": null, "tool_calls": null, "function_call": null } ], "finish_reason": "stop", "model": "gpt-4o-mini-2024-07-18", "usage": { "total_tokens": 325, "completion_tokens": 2, "prompt_tokens": 323, "cached_tokens": 0 }, "error": null, "temperature": 1.0, "max_completion_tokens": 2048, "top_p": 1.0, "seed": 42 } } request: curl: > curl https://api.openai.com/v1/evals/eval_67abd54d9b0081909a86353f6fb9317a/runs/evalrun_67abd54d60ec8190832b46859da808f7/output_items/outputitem_67abd55eb6548190bb580745d5644a33 \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) output_item = client.evals.runs.output_items.retrieve( output_item_id="output_item_id", eval_id="eval_id", run_id="run_id", ) print(output_item.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const outputItem = await client.evals.runs.outputItems.retrieve('output_item_id', { eval_id: 'eval_id', run_id: 'run_id', }); console.log(outputItem.id); java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.evals.runs.outputitems.OutputItemRetrieveParams; import com.openai.models.evals.runs.outputitems.OutputItemRetrieveResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); OutputItemRetrieveParams params = OutputItemRetrieveParams.builder() .evalId("eval_id") .runId("run_id") .outputItemId("output_item_id") .build(); OutputItemRetrieveResponse outputItem = client.evals().runs().outputItems().retrieve(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") output_item = openai.evals.runs.output_items.retrieve("output_item_id", eval_id: "eval_id", run_id: "run_id") puts(output_item) description: | Get an evaluation run output item by ID. /files: get: operationId: listFiles tags: - Files summary: List files parameters: - in: query name: purpose required: false schema: type: string description: Only return files with the given purpose. - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 10,000, and the default is 10,000. required: false schema: type: integer default: 10000 - name: order in: query description: > Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order. schema: type: string default: desc enum: - asc - desc - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. schema: type: string responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ListFilesResponse' x-oaiMeta: name: List files group: files returns: A list of [File](https://platform.openai.com/docs/api-reference/files/object) objects. examples: response: | { "object": "list", "data": [ { "id": "file-abc123", "object": "file", "bytes": 175, "created_at": 1613677385, "expires_at": 1677614202, "filename": "salesOverview.pdf", "purpose": "assistants", }, { "id": "file-abc456", "object": "file", "bytes": 140, "created_at": 1613779121, "expires_at": 1677614202, "filename": "puppy.jsonl", "purpose": "fine-tune", } ], "first_id": "file-abc123", "last_id": "file-abc456", "has_more": false } request: curl: | curl https://api.openai.com/v1/files \ -H "Authorization: Bearer $OPENAI_API_KEY" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.files.list() page = page.data[0] print(page) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const fileObject of client.files.list()) { console.log(fileObject); } go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.Files.List(context.TODO(), openai.FileListParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.files.FileListPage; import com.openai.models.files.FileListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FileListPage page = client.files().list(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.files.list puts(page) description: Returns a list of files. post: operationId: createFile tags: - Files summary: Upload file requestBody: required: true content: multipart/form-data: schema: $ref: '#/components/schemas/CreateFileRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/OpenAIFile' x-oaiMeta: name: Upload file group: files returns: The uploaded [File](https://platform.openai.com/docs/api-reference/files/object) object. examples: response: | { "id": "file-abc123", "object": "file", "bytes": 120000, "created_at": 1677610602, "expires_at": 1677614202, "filename": "mydata.jsonl", "purpose": "fine-tune", } request: curl: | curl https://api.openai.com/v1/files \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -F purpose="fine-tune" \ -F file="@mydata.jsonl" -F expires_after[anchor]="created_at" -F expires_after[seconds]=2592000 python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) file_object = client.files.create( file=b"raw file contents", purpose="assistants", ) print(file_object.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const fileObject = await client.files.create({ file: fs.createReadStream('fine-tune.jsonl'), purpose: 'assistants', }); console.log(fileObject.id); go: | package main import ( "bytes" "context" "fmt" "io" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) fileObject, err := client.Files.New(context.TODO(), openai.FileNewParams{ File: io.Reader(bytes.NewBuffer([]byte("some file contents"))), Purpose: openai.FilePurposeAssistants, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", fileObject.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.files.FileCreateParams; import com.openai.models.files.FileObject; import com.openai.models.files.FilePurpose; import java.io.ByteArrayInputStream; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FileCreateParams params = FileCreateParams.builder() .file(ByteArrayInputStream("some content".getBytes())) .purpose(FilePurpose.ASSISTANTS) .build(); FileObject fileObject = client.files().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") file_object = openai.files.create(file: Pathname(__FILE__), purpose: :assistants) puts(file_object) description: | Upload a file that can be used across various endpoints. Individual files can be up to 512 MB, and the size of all files uploaded by one organization can be up to 1 TB. - The Assistants API supports files up to 2 million tokens and of specific file types. See the [Assistants Tools guide](https://platform.openai.com/docs/assistants/tools) for details. - The Fine-tuning API only supports `.jsonl` files. The input also has certain required formats for fine-tuning [chat](https://platform.openai.com/docs/api-reference/fine-tuning/chat-input) or [completions](https://platform.openai.com/docs/api-reference/fine-tuning/completions-input) models. - The Batch API only supports `.jsonl` files up to 200 MB in size. The input also has a specific required [format](https://platform.openai.com/docs/api-reference/batch/request-input). Please [contact us](https://help.openai.com/) if you need to increase these storage limits. /files/{file_id}: delete: operationId: deleteFile tags: - Files summary: Delete file parameters: - in: path name: file_id required: true schema: type: string description: The ID of the file to use for this request. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/DeleteFileResponse' x-oaiMeta: name: Delete file group: files returns: Deletion status. examples: response: | { "id": "file-abc123", "object": "file", "deleted": true } request: curl: | curl https://api.openai.com/v1/files/file-abc123 \ -X DELETE \ -H "Authorization: Bearer $OPENAI_API_KEY" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) file_deleted = client.files.delete( "file_id", ) print(file_deleted.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const fileDeleted = await client.files.delete('file_id'); console.log(fileDeleted.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) fileDeleted, err := client.Files.Delete(context.TODO(), "file_id") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", fileDeleted.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.files.FileDeleteParams; import com.openai.models.files.FileDeleted; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FileDeleted fileDeleted = client.files().delete("file_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") file_deleted = openai.files.delete("file_id") puts(file_deleted) description: Delete a file and remove it from all vector stores. get: operationId: retrieveFile tags: - Files summary: Retrieve file parameters: - in: path name: file_id required: true schema: type: string description: The ID of the file to use for this request. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/OpenAIFile' x-oaiMeta: name: Retrieve file group: files returns: >- The [File](https://platform.openai.com/docs/api-reference/files/object) object matching the specified ID. examples: response: | { "id": "file-abc123", "object": "file", "bytes": 120000, "created_at": 1677610602, "expires_at": 1677614202, "filename": "mydata.jsonl", "purpose": "fine-tune", } request: curl: | curl https://api.openai.com/v1/files/file-abc123 \ -H "Authorization: Bearer $OPENAI_API_KEY" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) file_object = client.files.retrieve( "file_id", ) print(file_object.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const fileObject = await client.files.retrieve('file_id'); console.log(fileObject.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) fileObject, err := client.Files.Get(context.TODO(), "file_id") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", fileObject.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.files.FileObject; import com.openai.models.files.FileRetrieveParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FileObject fileObject = client.files().retrieve("file_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") file_object = openai.files.retrieve("file_id") puts(file_object) description: Returns information about a specific file. /files/{file_id}/content: get: operationId: downloadFile tags: - Files summary: Retrieve file content parameters: - in: path name: file_id required: true schema: type: string description: The ID of the file to use for this request. responses: '200': description: OK content: application/json: schema: type: string x-oaiMeta: name: Retrieve file content group: files returns: The file content. examples: response: '' request: curl: | curl https://api.openai.com/v1/files/file-abc123/content \ -H "Authorization: Bearer $OPENAI_API_KEY" > file.jsonl python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) response = client.files.content( "file_id", ) print(response) content = response.read() print(content) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const response = await client.files.content('file_id'); console.log(response); const content = await response.blob(); console.log(content); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) response, err := client.Files.Content(context.TODO(), "file_id") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", response) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.core.http.HttpResponse; import com.openai.models.files.FileContentParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); HttpResponse response = client.files().content("file_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") response = openai.files.content("file_id") puts(response) description: Returns the contents of the specified file. /fine_tuning/alpha/graders/run: post: operationId: runGrader tags: - Fine-tuning summary: Run grader requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/RunGraderRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/RunGraderResponse' x-oaiMeta: name: Run grader beta: true group: graders returns: The results from the grader run. examples: response: | { "reward": 1.0, "metadata": { "name": "Example score model grader", "type": "score_model", "errors": { "formula_parse_error": false, "sample_parse_error": false, "truncated_observation_error": false, "unresponsive_reward_error": false, "invalid_variable_error": false, "other_error": false, "python_grader_server_error": false, "python_grader_server_error_type": null, "python_grader_runtime_error": false, "python_grader_runtime_error_details": null, "model_grader_server_error": false, "model_grader_refusal_error": false, "model_grader_parse_error": false, "model_grader_server_error_details": null }, "execution_time": 4.365238428115845, "scores": {}, "token_usage": { "prompt_tokens": 190, "total_tokens": 324, "completion_tokens": 134, "cached_tokens": 0 }, "sampled_model_name": "gpt-4o-2024-08-06" }, "sub_rewards": {}, "model_grader_token_usage_per_model": { "gpt-4o-2024-08-06": { "prompt_tokens": 190, "total_tokens": 324, "completion_tokens": 134, "cached_tokens": 0 } } } request: curl: > curl -X POST https://api.openai.com/v1/fine_tuning/alpha/graders/run \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "grader": { "type": "score_model", "name": "Example score model grader", "input": [ { "role": "user", "content": "Score how close the reference answer is to the model answer. Score 1.0 if they are the same and 0.0 if they are different. Return just a floating point score\n\nReference answer: {{item.reference_answer}}\n\nModel answer: {{sample.output_text}}" } ], "model": "gpt-4o-2024-08-06", "sampling_params": { "temperature": 1, "top_p": 1, "seed": 42 } }, "item": { "reference_answer": "fuzzy wuzzy was a bear" }, "model_sample": "fuzzy wuzzy was a bear" }' node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const response = await client.fineTuning.alpha.graders.run({ grader: { input: 'input', name: 'name', operation: 'eq', reference: 'reference', type: 'string_check' }, model_sample: 'model_sample', }); console.log(response.metadata); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) response = client.fine_tuning.alpha.graders.run( grader={ "input": "input", "name": "name", "operation": "eq", "reference": "reference", "type": "string_check", }, model_sample="model_sample", ) print(response.metadata) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) response, err := client.FineTuning.Alpha.Graders.Run(context.TODO(), openai.FineTuningAlphaGraderRunParams{ Grader: openai.FineTuningAlphaGraderRunParamsGraderUnion{ OfStringCheck: &openai.StringCheckGraderParam{ Input: "input", Name: "name", Operation: openai.StringCheckGraderOperationEq, Reference: "reference", }, }, ModelSample: "model_sample", }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", response.Metadata) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.finetuning.alpha.graders.GraderRunParams; import com.openai.models.finetuning.alpha.graders.GraderRunResponse; import com.openai.models.graders.gradermodels.StringCheckGrader; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); GraderRunParams params = GraderRunParams.builder() .grader(StringCheckGrader.builder() .input("input") .name("name") .operation(StringCheckGrader.Operation.EQ) .reference("reference") .build()) .modelSample("model_sample") .build(); GraderRunResponse response = client.fineTuning().alpha().graders().run(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") response = openai.fine_tuning.alpha.graders.run( grader: {input: "input", name: "name", operation: :eq, reference: "reference", type: :string_check}, model_sample: "model_sample" ) puts(response) description: | Run a grader. /fine_tuning/alpha/graders/validate: post: operationId: validateGrader tags: - Fine-tuning summary: Validate grader requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/ValidateGraderRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ValidateGraderResponse' x-oaiMeta: name: Validate grader beta: true group: graders returns: The validated grader object. examples: response: | { "grader": { "type": "string_check", "name": "Example string check grader", "input": "{{sample.output_text}}", "reference": "{{item.label}}", "operation": "eq" } } request: curl: | curl https://api.openai.com/v1/fine_tuning/alpha/graders/validate \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{ "grader": { "type": "string_check", "name": "Example string check grader", "input": "{{sample.output_text}}", "reference": "{{item.label}}", "operation": "eq" } }' node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const response = await client.fineTuning.alpha.graders.validate({ grader: { input: 'input', name: 'name', operation: 'eq', reference: 'reference', type: 'string_check' }, }); console.log(response.grader); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) response = client.fine_tuning.alpha.graders.validate( grader={ "input": "input", "name": "name", "operation": "eq", "reference": "reference", "type": "string_check", }, ) print(response.grader) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) response, err := client.FineTuning.Alpha.Graders.Validate(context.TODO(), openai.FineTuningAlphaGraderValidateParams{ Grader: openai.FineTuningAlphaGraderValidateParamsGraderUnion{ OfStringCheckGrader: &openai.StringCheckGraderParam{ Input: "input", Name: "name", Operation: openai.StringCheckGraderOperationEq, Reference: "reference", }, }, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", response.Grader) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.finetuning.alpha.graders.GraderValidateParams; import com.openai.models.finetuning.alpha.graders.GraderValidateResponse; import com.openai.models.graders.gradermodels.StringCheckGrader; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); GraderValidateParams params = GraderValidateParams.builder() .grader(StringCheckGrader.builder() .input("input") .name("name") .operation(StringCheckGrader.Operation.EQ) .reference("reference") .build()) .build(); GraderValidateResponse response = client.fineTuning().alpha().graders().validate(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") response = openai.fine_tuning.alpha.graders.validate( grader: {input: "input", name: "name", operation: :eq, reference: "reference", type: :string_check} ) puts(response) description: | Validate a grader. /fine_tuning/checkpoints/{fine_tuned_model_checkpoint}/permissions: get: operationId: listFineTuningCheckpointPermissions tags: - Fine-tuning summary: List checkpoint permissions parameters: - in: path name: fine_tuned_model_checkpoint required: true schema: type: string example: ft-AF1WoRqd3aJAHsqc9NY7iL8F description: | The ID of the fine-tuned model checkpoint to get permissions for. - name: project_id in: query description: The ID of the project to get permissions for. required: false schema: type: string - name: after in: query description: Identifier for the last permission ID from the previous pagination request. required: false schema: type: string - name: limit in: query description: Number of permissions to retrieve. required: false schema: type: integer default: 10 - name: order in: query description: The order in which to retrieve permissions. required: false schema: type: string enum: - ascending - descending default: descending responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ListFineTuningCheckpointPermissionResponse' x-oaiMeta: name: List checkpoint permissions group: fine-tuning returns: >- A list of fine-tuned model checkpoint [permission objects](https://platform.openai.com/docs/api-reference/fine-tuning/permission-object) for a fine-tuned model checkpoint. examples: response: | { "object": "list", "data": [ { "object": "checkpoint.permission", "id": "cp_zc4Q7MP6XxulcVzj4MZdwsAB", "created_at": 1721764867, "project_id": "proj_abGMw1llN8IrBb6SvvY5A1iH" }, { "object": "checkpoint.permission", "id": "cp_enQCFmOTGj3syEpYVhBRLTSy", "created_at": 1721764800, "project_id": "proj_iqGMw1llN8IrBb6SvvY5A1oF" }, ], "first_id": "cp_zc4Q7MP6XxulcVzj4MZdwsAB", "last_id": "cp_enQCFmOTGj3syEpYVhBRLTSy", "has_more": false } request: curl: > curl https://api.openai.com/v1/fine_tuning/checkpoints/ft:gpt-4o-mini-2024-07-18:org:weather:B7R9VjQd/permissions \ -H "Authorization: Bearer $OPENAI_API_KEY" node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const permission = await client.fineTuning.checkpoints.permissions.retrieve('ft-AF1WoRqd3aJAHsqc9NY7iL8F'); console.log(permission.first_id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) permission = client.fine_tuning.checkpoints.permissions.retrieve( fine_tuned_model_checkpoint="ft-AF1WoRqd3aJAHsqc9NY7iL8F", ) print(permission.first_id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) permission, err := client.FineTuning.Checkpoints.Permissions.Get( context.TODO(), "ft-AF1WoRqd3aJAHsqc9NY7iL8F", openai.FineTuningCheckpointPermissionGetParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", permission.FirstID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.finetuning.checkpoints.permissions.PermissionRetrieveParams; import com.openai.models.finetuning.checkpoints.permissions.PermissionRetrieveResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); PermissionRetrieveResponse permission = client.fineTuning().checkpoints().permissions().retrieve("ft-AF1WoRqd3aJAHsqc9NY7iL8F"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") permission = openai.fine_tuning.checkpoints.permissions.retrieve("ft-AF1WoRqd3aJAHsqc9NY7iL8F") puts(permission) description: | **NOTE:** This endpoint requires an [admin API key](../admin-api-keys). Organization owners can use this endpoint to view all permissions for a fine-tuned model checkpoint. post: operationId: createFineTuningCheckpointPermission tags: - Fine-tuning summary: Create checkpoint permissions parameters: - in: path name: fine_tuned_model_checkpoint required: true schema: type: string example: ft:gpt-4o-mini-2024-07-18:org:weather:B7R9VjQd description: | The ID of the fine-tuned model checkpoint to create a permission for. requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CreateFineTuningCheckpointPermissionRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ListFineTuningCheckpointPermissionResponse' x-oaiMeta: name: Create checkpoint permissions group: fine-tuning returns: >- A list of fine-tuned model checkpoint [permission objects](https://platform.openai.com/docs/api-reference/fine-tuning/permission-object) for a fine-tuned model checkpoint. examples: response: | { "object": "list", "data": [ { "object": "checkpoint.permission", "id": "cp_zc4Q7MP6XxulcVzj4MZdwsAB", "created_at": 1721764867, "project_id": "proj_abGMw1llN8IrBb6SvvY5A1iH" } ], "first_id": "cp_zc4Q7MP6XxulcVzj4MZdwsAB", "last_id": "cp_zc4Q7MP6XxulcVzj4MZdwsAB", "has_more": false } request: curl: > curl https://api.openai.com/v1/fine_tuning/checkpoints/ft:gpt-4o-mini-2024-07-18:org:weather:B7R9VjQd/permissions \ -H "Authorization: Bearer $OPENAI_API_KEY" -d '{"project_ids": ["proj_abGMw1llN8IrBb6SvvY5A1iH"]}' node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const permissionCreateResponse of client.fineTuning.checkpoints.permissions.create( 'ft:gpt-4o-mini-2024-07-18:org:weather:B7R9VjQd', { project_ids: ['string'] }, )) { console.log(permissionCreateResponse.id); } python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.fine_tuning.checkpoints.permissions.create( fine_tuned_model_checkpoint="ft:gpt-4o-mini-2024-07-18:org:weather:B7R9VjQd", project_ids=["string"], ) page = page.data[0] print(page.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.FineTuning.Checkpoints.Permissions.New( context.TODO(), "ft:gpt-4o-mini-2024-07-18:org:weather:B7R9VjQd", openai.FineTuningCheckpointPermissionNewParams{ ProjectIDs: []string{"string"}, }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.finetuning.checkpoints.permissions.PermissionCreatePage; import com.openai.models.finetuning.checkpoints.permissions.PermissionCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); PermissionCreateParams params = PermissionCreateParams.builder() .fineTunedModelCheckpoint("ft:gpt-4o-mini-2024-07-18:org:weather:B7R9VjQd") .addProjectId("string") .build(); PermissionCreatePage page = client.fineTuning().checkpoints().permissions().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.fine_tuning.checkpoints.permissions.create( "ft:gpt-4o-mini-2024-07-18:org:weather:B7R9VjQd", project_ids: ["string"] ) puts(page) description: | **NOTE:** Calling this endpoint requires an [admin API key](../admin-api-keys). This enables organization owners to share fine-tuned models with other projects in their organization. /fine_tuning/checkpoints/{fine_tuned_model_checkpoint}/permissions/{permission_id}: delete: operationId: deleteFineTuningCheckpointPermission tags: - Fine-tuning summary: Delete checkpoint permission parameters: - in: path name: fine_tuned_model_checkpoint required: true schema: type: string example: ft:gpt-4o-mini-2024-07-18:org:weather:B7R9VjQd description: | The ID of the fine-tuned model checkpoint to delete a permission for. - in: path name: permission_id required: true schema: type: string example: cp_zc4Q7MP6XxulcVzj4MZdwsAB description: | The ID of the fine-tuned model checkpoint permission to delete. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/DeleteFineTuningCheckpointPermissionResponse' x-oaiMeta: name: Delete checkpoint permission group: fine-tuning returns: >- The deletion status of the fine-tuned model checkpoint [permission object](https://platform.openai.com/docs/api-reference/fine-tuning/permission-object). examples: response: | { "object": "checkpoint.permission", "id": "cp_zc4Q7MP6XxulcVzj4MZdwsAB", "deleted": true } request: curl: > curl https://api.openai.com/v1/fine_tuning/checkpoints/ft:gpt-4o-mini-2024-07-18:org:weather:B7R9VjQd/permissions/cp_zc4Q7MP6XxulcVzj4MZdwsAB \ -H "Authorization: Bearer $OPENAI_API_KEY" node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const permission = await client.fineTuning.checkpoints.permissions.delete('cp_zc4Q7MP6XxulcVzj4MZdwsAB', { fine_tuned_model_checkpoint: 'ft:gpt-4o-mini-2024-07-18:org:weather:B7R9VjQd', }); console.log(permission.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) permission = client.fine_tuning.checkpoints.permissions.delete( permission_id="cp_zc4Q7MP6XxulcVzj4MZdwsAB", fine_tuned_model_checkpoint="ft:gpt-4o-mini-2024-07-18:org:weather:B7R9VjQd", ) print(permission.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) permission, err := client.FineTuning.Checkpoints.Permissions.Delete( context.TODO(), "ft:gpt-4o-mini-2024-07-18:org:weather:B7R9VjQd", "cp_zc4Q7MP6XxulcVzj4MZdwsAB", ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", permission.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.finetuning.checkpoints.permissions.PermissionDeleteParams; import com.openai.models.finetuning.checkpoints.permissions.PermissionDeleteResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); PermissionDeleteParams params = PermissionDeleteParams.builder() .fineTunedModelCheckpoint("ft:gpt-4o-mini-2024-07-18:org:weather:B7R9VjQd") .permissionId("cp_zc4Q7MP6XxulcVzj4MZdwsAB") .build(); PermissionDeleteResponse permission = client.fineTuning().checkpoints().permissions().delete(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") permission = openai.fine_tuning.checkpoints.permissions.delete( "cp_zc4Q7MP6XxulcVzj4MZdwsAB", fine_tuned_model_checkpoint: "ft:gpt-4o-mini-2024-07-18:org:weather:B7R9VjQd" ) puts(permission) description: | **NOTE:** This endpoint requires an [admin API key](../admin-api-keys). Organization owners can use this endpoint to delete a permission for a fine-tuned model checkpoint. /fine_tuning/jobs: post: operationId: createFineTuningJob tags: - Fine-tuning summary: Create fine-tuning job requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CreateFineTuningJobRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/FineTuningJob' x-oaiMeta: name: Create fine-tuning job group: fine-tuning returns: A [fine-tuning.job](https://platform.openai.com/docs/api-reference/fine-tuning/object) object. examples: - title: Default request: curl: | curl https://api.openai.com/v1/fine_tuning/jobs \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "training_file": "file-BK7bzQj3FfZFXr7DbL6xJwfo", "model": "gpt-4o-mini" }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) fine_tuning_job = client.fine_tuning.jobs.create( model="gpt-4o-mini", training_file="file-abc123", ) print(fine_tuning_job.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const fineTuningJob = await client.fineTuning.jobs.create({ model: 'gpt-4o-mini', training_file: 'file-abc123', }); console.log(fineTuningJob.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) fineTuningJob, err := client.FineTuning.Jobs.New(context.TODO(), openai.FineTuningJobNewParams{ Model: openai.FineTuningJobNewParamsModelBabbage002, TrainingFile: "file-abc123", }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", fineTuningJob.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.finetuning.jobs.FineTuningJob; import com.openai.models.finetuning.jobs.JobCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); JobCreateParams params = JobCreateParams.builder() .model(JobCreateParams.Model.BABBAGE_002) .trainingFile("file-abc123") .build(); FineTuningJob fineTuningJob = client.fineTuning().jobs().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") fine_tuning_job = openai.fine_tuning.jobs.create(model: :"babbage-002", training_file: "file-abc123") puts(fine_tuning_job) response: | { "object": "fine_tuning.job", "id": "ftjob-abc123", "model": "gpt-4o-mini-2024-07-18", "created_at": 1721764800, "fine_tuned_model": null, "organization_id": "org-123", "result_files": [], "status": "queued", "validation_file": null, "training_file": "file-abc123", "method": { "type": "supervised", "supervised": { "hyperparameters": { "batch_size": "auto", "learning_rate_multiplier": "auto", "n_epochs": "auto", } } }, "metadata": null } - title: Epochs request: curl: | curl https://api.openai.com/v1/fine_tuning/jobs \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "training_file": "file-abc123", "model": "gpt-4o-mini", "method": { "type": "supervised", "supervised": { "hyperparameters": { "n_epochs": 2 } } } }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) fine_tuning_job = client.fine_tuning.jobs.create( model="gpt-4o-mini", training_file="file-abc123", ) print(fine_tuning_job.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const fineTuningJob = await client.fineTuning.jobs.create({ model: 'gpt-4o-mini', training_file: 'file-abc123', }); console.log(fineTuningJob.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) fineTuningJob, err := client.FineTuning.Jobs.New(context.TODO(), openai.FineTuningJobNewParams{ Model: openai.FineTuningJobNewParamsModelBabbage002, TrainingFile: "file-abc123", }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", fineTuningJob.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.finetuning.jobs.FineTuningJob; import com.openai.models.finetuning.jobs.JobCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); JobCreateParams params = JobCreateParams.builder() .model(JobCreateParams.Model.BABBAGE_002) .trainingFile("file-abc123") .build(); FineTuningJob fineTuningJob = client.fineTuning().jobs().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") fine_tuning_job = openai.fine_tuning.jobs.create(model: :"babbage-002", training_file: "file-abc123") puts(fine_tuning_job) response: | { "object": "fine_tuning.job", "id": "ftjob-abc123", "model": "gpt-4o-mini", "created_at": 1721764800, "fine_tuned_model": null, "organization_id": "org-123", "result_files": [], "status": "queued", "validation_file": null, "training_file": "file-abc123", "hyperparameters": { "batch_size": "auto", "learning_rate_multiplier": "auto", "n_epochs": 2 }, "method": { "type": "supervised", "supervised": { "hyperparameters": { "batch_size": "auto", "learning_rate_multiplier": "auto", "n_epochs": 2 } } }, "metadata": null, "error": { "code": null, "message": null, "param": null }, "finished_at": null, "seed": 683058546, "trained_tokens": null, "estimated_finish": null, "integrations": [], "user_provided_suffix": null, "usage_metrics": null, "shared_with_openai": false } - title: DPO request: curl: | curl https://api.openai.com/v1/fine_tuning/jobs \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "training_file": "file-abc123", "validation_file": "file-abc123", "model": "gpt-4o-mini", "method": { "type": "dpo", "dpo": { "hyperparameters": { "beta": 0.1 } } } }' node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const fineTuningJob = await client.fineTuning.jobs.create({ model: 'gpt-4o-mini', training_file: 'file-abc123', }); console.log(fineTuningJob.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) fine_tuning_job = client.fine_tuning.jobs.create( model="gpt-4o-mini", training_file="file-abc123", ) print(fine_tuning_job.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) fineTuningJob, err := client.FineTuning.Jobs.New(context.TODO(), openai.FineTuningJobNewParams{ Model: openai.FineTuningJobNewParamsModelBabbage002, TrainingFile: "file-abc123", }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", fineTuningJob.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.finetuning.jobs.FineTuningJob; import com.openai.models.finetuning.jobs.JobCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); JobCreateParams params = JobCreateParams.builder() .model(JobCreateParams.Model.BABBAGE_002) .trainingFile("file-abc123") .build(); FineTuningJob fineTuningJob = client.fineTuning().jobs().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") fine_tuning_job = openai.fine_tuning.jobs.create(model: :"babbage-002", training_file: "file-abc123") puts(fine_tuning_job) python: | from openai import OpenAI from openai.types.fine_tuning import DpoMethod, DpoHyperparameters client = OpenAI() client.fine_tuning.jobs.create( training_file="file-abc", validation_file="file-123", model="gpt-4o-mini", method={ "type": "dpo", "dpo": DpoMethod( hyperparameters=DpoHyperparameters(beta=0.1) ) } ) response: | { "object": "fine_tuning.job", "id": "ftjob-abc", "model": "gpt-4o-mini", "created_at": 1746130590, "fine_tuned_model": null, "organization_id": "org-abc", "result_files": [], "status": "queued", "validation_file": "file-123", "training_file": "file-abc", "method": { "type": "dpo", "dpo": { "hyperparameters": { "beta": 0.1, "batch_size": "auto", "learning_rate_multiplier": "auto", "n_epochs": "auto" } } }, "metadata": null, "error": { "code": null, "message": null, "param": null }, "finished_at": null, "hyperparameters": null, "seed": 1036326793, "estimated_finish": null, "integrations": [], "user_provided_suffix": null, "usage_metrics": null, "shared_with_openai": false } - title: Reinforcement request: curl: | curl https://api.openai.com/v1/fine_tuning/jobs \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "training_file": "file-abc", "validation_file": "file-123", "model": "o4-mini", "method": { "type": "reinforcement", "reinforcement": { "grader": { "type": "string_check", "name": "Example string check grader", "input": "{{sample.output_text}}", "reference": "{{item.label}}", "operation": "eq" }, "hyperparameters": { "reasoning_effort": "medium" } } } }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) fine_tuning_job = client.fine_tuning.jobs.create( model="gpt-4o-mini", training_file="file-abc123", ) print(fine_tuning_job.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const fineTuningJob = await client.fineTuning.jobs.create({ model: 'gpt-4o-mini', training_file: 'file-abc123', }); console.log(fineTuningJob.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) fineTuningJob, err := client.FineTuning.Jobs.New(context.TODO(), openai.FineTuningJobNewParams{ Model: openai.FineTuningJobNewParamsModelBabbage002, TrainingFile: "file-abc123", }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", fineTuningJob.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.finetuning.jobs.FineTuningJob; import com.openai.models.finetuning.jobs.JobCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); JobCreateParams params = JobCreateParams.builder() .model(JobCreateParams.Model.BABBAGE_002) .trainingFile("file-abc123") .build(); FineTuningJob fineTuningJob = client.fineTuning().jobs().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") fine_tuning_job = openai.fine_tuning.jobs.create(model: :"babbage-002", training_file: "file-abc123") puts(fine_tuning_job) response: | { "object": "fine_tuning.job", "id": "ftjob-abc123", "model": "o4-mini", "created_at": 1721764800, "finished_at": null, "fine_tuned_model": null, "organization_id": "org-123", "result_files": [], "status": "validating_files", "validation_file": "file-123", "training_file": "file-abc", "trained_tokens": null, "error": {}, "user_provided_suffix": null, "seed": 950189191, "estimated_finish": null, "integrations": [], "method": { "type": "reinforcement", "reinforcement": { "hyperparameters": { "batch_size": "auto", "learning_rate_multiplier": "auto", "n_epochs": "auto", "eval_interval": "auto", "eval_samples": "auto", "compute_multiplier": "auto", "reasoning_effort": "medium" }, "grader": { "type": "string_check", "name": "Example string check grader", "input": "{{sample.output_text}}", "reference": "{{item.label}}", "operation": "eq" }, "response_format": null } }, "metadata": null, "usage_metrics": null, "shared_with_openai": false } - title: Validation file request: curl: | curl https://api.openai.com/v1/fine_tuning/jobs \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "training_file": "file-abc123", "validation_file": "file-abc123", "model": "gpt-4o-mini" }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) fine_tuning_job = client.fine_tuning.jobs.create( model="gpt-4o-mini", training_file="file-abc123", ) print(fine_tuning_job.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const fineTuningJob = await client.fineTuning.jobs.create({ model: 'gpt-4o-mini', training_file: 'file-abc123', }); console.log(fineTuningJob.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) fineTuningJob, err := client.FineTuning.Jobs.New(context.TODO(), openai.FineTuningJobNewParams{ Model: openai.FineTuningJobNewParamsModelBabbage002, TrainingFile: "file-abc123", }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", fineTuningJob.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.finetuning.jobs.FineTuningJob; import com.openai.models.finetuning.jobs.JobCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); JobCreateParams params = JobCreateParams.builder() .model(JobCreateParams.Model.BABBAGE_002) .trainingFile("file-abc123") .build(); FineTuningJob fineTuningJob = client.fineTuning().jobs().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") fine_tuning_job = openai.fine_tuning.jobs.create(model: :"babbage-002", training_file: "file-abc123") puts(fine_tuning_job) response: | { "object": "fine_tuning.job", "id": "ftjob-abc123", "model": "gpt-4o-mini-2024-07-18", "created_at": 1721764800, "fine_tuned_model": null, "organization_id": "org-123", "result_files": [], "status": "queued", "validation_file": "file-abc123", "training_file": "file-abc123", "method": { "type": "supervised", "supervised": { "hyperparameters": { "batch_size": "auto", "learning_rate_multiplier": "auto", "n_epochs": "auto", } } }, "metadata": null } - title: W&B Integration request: curl: | curl https://api.openai.com/v1/fine_tuning/jobs \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "training_file": "file-abc123", "validation_file": "file-abc123", "model": "gpt-4o-mini", "integrations": [ { "type": "wandb", "wandb": { "project": "my-wandb-project", "name": "ft-run-display-name" "tags": [ "first-experiment", "v2" ] } } ] }' node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const fineTuningJob = await client.fineTuning.jobs.create({ model: 'gpt-4o-mini', training_file: 'file-abc123', }); console.log(fineTuningJob.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) fine_tuning_job = client.fine_tuning.jobs.create( model="gpt-4o-mini", training_file="file-abc123", ) print(fine_tuning_job.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) fineTuningJob, err := client.FineTuning.Jobs.New(context.TODO(), openai.FineTuningJobNewParams{ Model: openai.FineTuningJobNewParamsModelBabbage002, TrainingFile: "file-abc123", }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", fineTuningJob.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.finetuning.jobs.FineTuningJob; import com.openai.models.finetuning.jobs.JobCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); JobCreateParams params = JobCreateParams.builder() .model(JobCreateParams.Model.BABBAGE_002) .trainingFile("file-abc123") .build(); FineTuningJob fineTuningJob = client.fineTuning().jobs().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") fine_tuning_job = openai.fine_tuning.jobs.create(model: :"babbage-002", training_file: "file-abc123") puts(fine_tuning_job) response: | { "object": "fine_tuning.job", "id": "ftjob-abc123", "model": "gpt-4o-mini-2024-07-18", "created_at": 1721764800, "fine_tuned_model": null, "organization_id": "org-123", "result_files": [], "status": "queued", "validation_file": "file-abc123", "training_file": "file-abc123", "integrations": [ { "type": "wandb", "wandb": { "project": "my-wandb-project", "entity": None, "run_id": "ftjob-abc123" } } ], "method": { "type": "supervised", "supervised": { "hyperparameters": { "batch_size": "auto", "learning_rate_multiplier": "auto", "n_epochs": "auto", } } }, "metadata": null } description: > Creates a fine-tuning job which begins the process of creating a new model from a given dataset. Response includes details of the enqueued job including job status and the name of the fine-tuned models once complete. [Learn more about fine-tuning](https://platform.openai.com/docs/guides/model-optimization) get: operationId: listPaginatedFineTuningJobs tags: - Fine-tuning summary: List fine-tuning jobs parameters: - name: after in: query description: Identifier for the last job from the previous pagination request. required: false schema: type: string - name: limit in: query description: Number of fine-tuning jobs to retrieve. required: false schema: type: integer default: 20 - in: query name: metadata required: false schema: type: object nullable: true additionalProperties: type: string style: deepObject explode: true description: > Optional metadata filter. To filter, use the syntax `metadata[k]=v`. Alternatively, set `metadata=null` to indicate no metadata. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ListPaginatedFineTuningJobsResponse' x-oaiMeta: name: List fine-tuning jobs group: fine-tuning returns: >- A list of paginated [fine-tuning job](https://platform.openai.com/docs/api-reference/fine-tuning/object) objects. examples: response: | { "object": "list", "data": [ { "object": "fine_tuning.job", "id": "ftjob-abc123", "model": "gpt-4o-mini-2024-07-18", "created_at": 1721764800, "fine_tuned_model": null, "organization_id": "org-123", "result_files": [], "status": "queued", "validation_file": null, "training_file": "file-abc123", "metadata": { "key": "value" } }, { ... }, { ... } ], "has_more": true } request: curl: | curl https://api.openai.com/v1/fine_tuning/jobs?limit=2&metadata[key]=value \ -H "Authorization: Bearer $OPENAI_API_KEY" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.fine_tuning.jobs.list() page = page.data[0] print(page.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const fineTuningJob of client.fineTuning.jobs.list()) { console.log(fineTuningJob.id); } go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.FineTuning.Jobs.List(context.TODO(), openai.FineTuningJobListParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.finetuning.jobs.JobListPage; import com.openai.models.finetuning.jobs.JobListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); JobListPage page = client.fineTuning().jobs().list(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.fine_tuning.jobs.list puts(page) description: | List your organization's fine-tuning jobs /fine_tuning/jobs/{fine_tuning_job_id}: get: operationId: retrieveFineTuningJob tags: - Fine-tuning summary: Retrieve fine-tuning job parameters: - in: path name: fine_tuning_job_id required: true schema: type: string example: ft-AF1WoRqd3aJAHsqc9NY7iL8F description: | The ID of the fine-tuning job. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/FineTuningJob' x-oaiMeta: name: Retrieve fine-tuning job group: fine-tuning returns: >- The [fine-tuning](https://platform.openai.com/docs/api-reference/fine-tuning/object) object with the given ID. examples: response: | { "object": "fine_tuning.job", "id": "ftjob-abc123", "model": "davinci-002", "created_at": 1692661014, "finished_at": 1692661190, "fine_tuned_model": "ft:davinci-002:my-org:custom_suffix:7q8mpxmy", "organization_id": "org-123", "result_files": [ "file-abc123" ], "status": "succeeded", "validation_file": null, "training_file": "file-abc123", "hyperparameters": { "n_epochs": 4, "batch_size": 1, "learning_rate_multiplier": 1.0 }, "trained_tokens": 5768, "integrations": [], "seed": 0, "estimated_finish": 0, "method": { "type": "supervised", "supervised": { "hyperparameters": { "n_epochs": 4, "batch_size": 1, "learning_rate_multiplier": 1.0 } } } } request: curl: | curl https://api.openai.com/v1/fine_tuning/jobs/ft-AF1WoRqd3aJAHsqc9NY7iL8F \ -H "Authorization: Bearer $OPENAI_API_KEY" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) fine_tuning_job = client.fine_tuning.jobs.retrieve( "ft-AF1WoRqd3aJAHsqc9NY7iL8F", ) print(fine_tuning_job.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const fineTuningJob = await client.fineTuning.jobs.retrieve('ft-AF1WoRqd3aJAHsqc9NY7iL8F'); console.log(fineTuningJob.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) fineTuningJob, err := client.FineTuning.Jobs.Get(context.TODO(), "ft-AF1WoRqd3aJAHsqc9NY7iL8F") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", fineTuningJob.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.finetuning.jobs.FineTuningJob; import com.openai.models.finetuning.jobs.JobRetrieveParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FineTuningJob fineTuningJob = client.fineTuning().jobs().retrieve("ft-AF1WoRqd3aJAHsqc9NY7iL8F"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") fine_tuning_job = openai.fine_tuning.jobs.retrieve("ft-AF1WoRqd3aJAHsqc9NY7iL8F") puts(fine_tuning_job) description: | Get info about a fine-tuning job. [Learn more about fine-tuning](https://platform.openai.com/docs/guides/model-optimization) /fine_tuning/jobs/{fine_tuning_job_id}/cancel: post: operationId: cancelFineTuningJob tags: - Fine-tuning summary: Cancel fine-tuning parameters: - in: path name: fine_tuning_job_id required: true schema: type: string example: ft-AF1WoRqd3aJAHsqc9NY7iL8F description: | The ID of the fine-tuning job to cancel. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/FineTuningJob' x-oaiMeta: name: Cancel fine-tuning group: fine-tuning returns: >- The cancelled [fine-tuning](https://platform.openai.com/docs/api-reference/fine-tuning/object) object. examples: response: | { "object": "fine_tuning.job", "id": "ftjob-abc123", "model": "gpt-4o-mini-2024-07-18", "created_at": 1721764800, "fine_tuned_model": null, "organization_id": "org-123", "result_files": [], "status": "cancelled", "validation_file": "file-abc123", "training_file": "file-abc123" } request: curl: | curl -X POST https://api.openai.com/v1/fine_tuning/jobs/ftjob-abc123/cancel \ -H "Authorization: Bearer $OPENAI_API_KEY" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) fine_tuning_job = client.fine_tuning.jobs.cancel( "ft-AF1WoRqd3aJAHsqc9NY7iL8F", ) print(fine_tuning_job.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const fineTuningJob = await client.fineTuning.jobs.cancel('ft-AF1WoRqd3aJAHsqc9NY7iL8F'); console.log(fineTuningJob.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) fineTuningJob, err := client.FineTuning.Jobs.Cancel(context.TODO(), "ft-AF1WoRqd3aJAHsqc9NY7iL8F") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", fineTuningJob.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.finetuning.jobs.FineTuningJob; import com.openai.models.finetuning.jobs.JobCancelParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FineTuningJob fineTuningJob = client.fineTuning().jobs().cancel("ft-AF1WoRqd3aJAHsqc9NY7iL8F"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") fine_tuning_job = openai.fine_tuning.jobs.cancel("ft-AF1WoRqd3aJAHsqc9NY7iL8F") puts(fine_tuning_job) description: | Immediately cancel a fine-tune job. /fine_tuning/jobs/{fine_tuning_job_id}/checkpoints: get: operationId: listFineTuningJobCheckpoints tags: - Fine-tuning summary: List fine-tuning checkpoints parameters: - in: path name: fine_tuning_job_id required: true schema: type: string example: ft-AF1WoRqd3aJAHsqc9NY7iL8F description: | The ID of the fine-tuning job to get checkpoints for. - name: after in: query description: Identifier for the last checkpoint ID from the previous pagination request. required: false schema: type: string - name: limit in: query description: Number of checkpoints to retrieve. required: false schema: type: integer default: 10 responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ListFineTuningJobCheckpointsResponse' x-oaiMeta: name: List fine-tuning checkpoints group: fine-tuning returns: >- A list of fine-tuning [checkpoint objects](https://platform.openai.com/docs/api-reference/fine-tuning/checkpoint-object) for a fine-tuning job. examples: response: | { "object": "list", "data": [ { "object": "fine_tuning.job.checkpoint", "id": "ftckpt_zc4Q7MP6XxulcVzj4MZdwsAB", "created_at": 1721764867, "fine_tuned_model_checkpoint": "ft:gpt-4o-mini-2024-07-18:my-org:custom-suffix:96olL566:ckpt-step-2000", "metrics": { "full_valid_loss": 0.134, "full_valid_mean_token_accuracy": 0.874 }, "fine_tuning_job_id": "ftjob-abc123", "step_number": 2000 }, { "object": "fine_tuning.job.checkpoint", "id": "ftckpt_enQCFmOTGj3syEpYVhBRLTSy", "created_at": 1721764800, "fine_tuned_model_checkpoint": "ft:gpt-4o-mini-2024-07-18:my-org:custom-suffix:7q8mpxmy:ckpt-step-1000", "metrics": { "full_valid_loss": 0.167, "full_valid_mean_token_accuracy": 0.781 }, "fine_tuning_job_id": "ftjob-abc123", "step_number": 1000 } ], "first_id": "ftckpt_zc4Q7MP6XxulcVzj4MZdwsAB", "last_id": "ftckpt_enQCFmOTGj3syEpYVhBRLTSy", "has_more": true } request: curl: | curl https://api.openai.com/v1/fine_tuning/jobs/ftjob-abc123/checkpoints \ -H "Authorization: Bearer $OPENAI_API_KEY" node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const fineTuningJobCheckpoint of client.fineTuning.jobs.checkpoints.list( 'ft-AF1WoRqd3aJAHsqc9NY7iL8F', )) { console.log(fineTuningJobCheckpoint.id); } python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.fine_tuning.jobs.checkpoints.list( fine_tuning_job_id="ft-AF1WoRqd3aJAHsqc9NY7iL8F", ) page = page.data[0] print(page.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.FineTuning.Jobs.Checkpoints.List( context.TODO(), "ft-AF1WoRqd3aJAHsqc9NY7iL8F", openai.FineTuningJobCheckpointListParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.finetuning.jobs.checkpoints.CheckpointListPage; import com.openai.models.finetuning.jobs.checkpoints.CheckpointListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); CheckpointListPage page = client.fineTuning().jobs().checkpoints().list("ft-AF1WoRqd3aJAHsqc9NY7iL8F"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.fine_tuning.jobs.checkpoints.list("ft-AF1WoRqd3aJAHsqc9NY7iL8F") puts(page) description: | List checkpoints for a fine-tuning job. /fine_tuning/jobs/{fine_tuning_job_id}/events: get: operationId: listFineTuningEvents tags: - Fine-tuning summary: List fine-tuning events parameters: - in: path name: fine_tuning_job_id required: true schema: type: string example: ft-AF1WoRqd3aJAHsqc9NY7iL8F description: | The ID of the fine-tuning job to get events for. - name: after in: query description: Identifier for the last event from the previous pagination request. required: false schema: type: string - name: limit in: query description: Number of events to retrieve. required: false schema: type: integer default: 20 responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ListFineTuningJobEventsResponse' x-oaiMeta: name: List fine-tuning events group: fine-tuning returns: A list of fine-tuning event objects. examples: response: | { "object": "list", "data": [ { "object": "fine_tuning.job.event", "id": "ft-event-ddTJfwuMVpfLXseO0Am0Gqjm", "created_at": 1721764800, "level": "info", "message": "Fine tuning job successfully completed", "data": null, "type": "message" }, { "object": "fine_tuning.job.event", "id": "ft-event-tyiGuB72evQncpH87xe505Sv", "created_at": 1721764800, "level": "info", "message": "New fine-tuned model created: ft:gpt-4o-mini:openai::7p4lURel", "data": null, "type": "message" } ], "has_more": true } request: curl: | curl https://api.openai.com/v1/fine_tuning/jobs/ftjob-abc123/events \ -H "Authorization: Bearer $OPENAI_API_KEY" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.fine_tuning.jobs.list_events( fine_tuning_job_id="ft-AF1WoRqd3aJAHsqc9NY7iL8F", ) page = page.data[0] print(page.id) node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const fineTuningJobEvent of client.fineTuning.jobs.listEvents('ft-AF1WoRqd3aJAHsqc9NY7iL8F')) { console.log(fineTuningJobEvent.id); } go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.FineTuning.Jobs.ListEvents( context.TODO(), "ft-AF1WoRqd3aJAHsqc9NY7iL8F", openai.FineTuningJobListEventsParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.finetuning.jobs.JobListEventsPage; import com.openai.models.finetuning.jobs.JobListEventsParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); JobListEventsPage page = client.fineTuning().jobs().listEvents("ft-AF1WoRqd3aJAHsqc9NY7iL8F"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.fine_tuning.jobs.list_events("ft-AF1WoRqd3aJAHsqc9NY7iL8F") puts(page) description: | Get status updates for a fine-tuning job. /fine_tuning/jobs/{fine_tuning_job_id}/pause: post: operationId: pauseFineTuningJob tags: - Fine-tuning summary: Pause fine-tuning parameters: - in: path name: fine_tuning_job_id required: true schema: type: string example: ft-AF1WoRqd3aJAHsqc9NY7iL8F description: | The ID of the fine-tuning job to pause. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/FineTuningJob' x-oaiMeta: name: Pause fine-tuning group: fine-tuning returns: The paused [fine-tuning](https://platform.openai.com/docs/api-reference/fine-tuning/object) object. examples: response: | { "object": "fine_tuning.job", "id": "ftjob-abc123", "model": "gpt-4o-mini-2024-07-18", "created_at": 1721764800, "fine_tuned_model": null, "organization_id": "org-123", "result_files": [], "status": "paused", "validation_file": "file-abc123", "training_file": "file-abc123" } request: curl: | curl -X POST https://api.openai.com/v1/fine_tuning/jobs/ftjob-abc123/pause \ -H "Authorization: Bearer $OPENAI_API_KEY" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) fine_tuning_job = client.fine_tuning.jobs.pause( "ft-AF1WoRqd3aJAHsqc9NY7iL8F", ) print(fine_tuning_job.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const fineTuningJob = await client.fineTuning.jobs.pause('ft-AF1WoRqd3aJAHsqc9NY7iL8F'); console.log(fineTuningJob.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) fineTuningJob, err := client.FineTuning.Jobs.Pause(context.TODO(), "ft-AF1WoRqd3aJAHsqc9NY7iL8F") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", fineTuningJob.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.finetuning.jobs.FineTuningJob; import com.openai.models.finetuning.jobs.JobPauseParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FineTuningJob fineTuningJob = client.fineTuning().jobs().pause("ft-AF1WoRqd3aJAHsqc9NY7iL8F"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") fine_tuning_job = openai.fine_tuning.jobs.pause("ft-AF1WoRqd3aJAHsqc9NY7iL8F") puts(fine_tuning_job) description: | Pause a fine-tune job. /fine_tuning/jobs/{fine_tuning_job_id}/resume: post: operationId: resumeFineTuningJob tags: - Fine-tuning summary: Resume fine-tuning parameters: - in: path name: fine_tuning_job_id required: true schema: type: string example: ft-AF1WoRqd3aJAHsqc9NY7iL8F description: | The ID of the fine-tuning job to resume. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/FineTuningJob' x-oaiMeta: name: Resume fine-tuning group: fine-tuning returns: The resumed [fine-tuning](https://platform.openai.com/docs/api-reference/fine-tuning/object) object. examples: response: | { "object": "fine_tuning.job", "id": "ftjob-abc123", "model": "gpt-4o-mini-2024-07-18", "created_at": 1721764800, "fine_tuned_model": null, "organization_id": "org-123", "result_files": [], "status": "queued", "validation_file": "file-abc123", "training_file": "file-abc123" } request: curl: | curl -X POST https://api.openai.com/v1/fine_tuning/jobs/ftjob-abc123/resume \ -H "Authorization: Bearer $OPENAI_API_KEY" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) fine_tuning_job = client.fine_tuning.jobs.resume( "ft-AF1WoRqd3aJAHsqc9NY7iL8F", ) print(fine_tuning_job.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const fineTuningJob = await client.fineTuning.jobs.resume('ft-AF1WoRqd3aJAHsqc9NY7iL8F'); console.log(fineTuningJob.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) fineTuningJob, err := client.FineTuning.Jobs.Resume(context.TODO(), "ft-AF1WoRqd3aJAHsqc9NY7iL8F") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", fineTuningJob.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.finetuning.jobs.FineTuningJob; import com.openai.models.finetuning.jobs.JobResumeParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FineTuningJob fineTuningJob = client.fineTuning().jobs().resume("ft-AF1WoRqd3aJAHsqc9NY7iL8F"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") fine_tuning_job = openai.fine_tuning.jobs.resume("ft-AF1WoRqd3aJAHsqc9NY7iL8F") puts(fine_tuning_job) description: | Resume a fine-tune job. /images/edits: post: operationId: createImageEdit tags: - Images summary: Create image edit requestBody: required: true content: multipart/form-data: schema: $ref: '#/components/schemas/CreateImageEditRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ImagesResponse' text/event-stream: schema: $ref: '#/components/schemas/ImageEditStreamEvent' x-oaiMeta: name: Create image edit group: images returns: Returns an [image](https://platform.openai.com/docs/api-reference/images/object) object. examples: - title: Edit image request: curl: | curl -s -D >(grep -i x-request-id >&2) \ -o >(jq -r '.data[0].b64_json' | base64 --decode > gift-basket.png) \ -X POST "https://api.openai.com/v1/images/edits" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -F "model=gpt-image-1" \ -F "image[]=@body-lotion.png" \ -F "image[]=@bath-bomb.png" \ -F "image[]=@incense-kit.png" \ -F "image[]=@soap.png" \ -F 'prompt=Create a lovely gift basket with these four items in it' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) images_response = client.images.edit( image=b"raw file contents", prompt="A cute baby sea otter wearing a beret", ) print(images_response) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const imagesResponse = await client.images.edit({ image: fs.createReadStream('path/to/file'), prompt: 'A cute baby sea otter wearing a beret', }); console.log(imagesResponse); go: | package main import ( "bytes" "context" "fmt" "io" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) imagesResponse, err := client.Images.Edit(context.TODO(), openai.ImageEditParams{ Image: openai.ImageEditParamsImageUnion{ OfFile: io.Reader(bytes.NewBuffer([]byte("some file contents"))), }, Prompt: "A cute baby sea otter wearing a beret", }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", imagesResponse) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.images.ImageEditParams; import com.openai.models.images.ImagesResponse; import java.io.ByteArrayInputStream; import java.io.InputStream; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ImageEditParams params = ImageEditParams.builder() .image(ByteArrayInputStream("some content".getBytes())) .prompt("A cute baby sea otter wearing a beret") .build(); ImagesResponse imagesResponse = client.images().edit(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") images_response = openai.images.edit(image: Pathname(__FILE__), prompt: "A cute baby sea otter wearing a beret") puts(images_response) - title: Streaming request: curl: | curl -s -N -X POST "https://api.openai.com/v1/images/edits" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -F "model=gpt-image-1" \ -F "image[]=@body-lotion.png" \ -F "image[]=@bath-bomb.png" \ -F "image[]=@incense-kit.png" \ -F "image[]=@soap.png" \ -F 'prompt=Create a lovely gift basket with these four items in it' \ -F "stream=true" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) images_response = client.images.edit( image=b"raw file contents", prompt="A cute baby sea otter wearing a beret", ) print(images_response) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const imagesResponse = await client.images.edit({ image: fs.createReadStream('path/to/file'), prompt: 'A cute baby sea otter wearing a beret', }); console.log(imagesResponse); go: | package main import ( "bytes" "context" "fmt" "io" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) imagesResponse, err := client.Images.Edit(context.TODO(), openai.ImageEditParams{ Image: openai.ImageEditParamsImageUnion{ OfFile: io.Reader(bytes.NewBuffer([]byte("some file contents"))), }, Prompt: "A cute baby sea otter wearing a beret", }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", imagesResponse) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.images.ImageEditParams; import com.openai.models.images.ImagesResponse; import java.io.ByteArrayInputStream; import java.io.InputStream; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ImageEditParams params = ImageEditParams.builder() .image(ByteArrayInputStream("some content".getBytes())) .prompt("A cute baby sea otter wearing a beret") .build(); ImagesResponse imagesResponse = client.images().edit(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") images_response = openai.images.edit(image: Pathname(__FILE__), prompt: "A cute baby sea otter wearing a beret") puts(images_response) response: > event: image_edit.partial_image data: {"type":"image_edit.partial_image","b64_json":"...","partial_image_index":0} event: image_edit.completed data: {"type":"image_edit.completed","b64_json":"...","usage":{"total_tokens":100,"input_tokens":50,"output_tokens":50,"input_tokens_details":{"text_tokens":10,"image_tokens":40}}} description: >- Creates an edited or extended image given one or more source images and a prompt. This endpoint only supports `gpt-image-1` and `dall-e-2`. /images/generations: post: operationId: createImage tags: - Images summary: Create image requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CreateImageRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ImagesResponse' text/event-stream: schema: $ref: '#/components/schemas/ImageGenStreamEvent' x-oaiMeta: name: Create image group: images returns: Returns an [image](https://platform.openai.com/docs/api-reference/images/object) object. examples: - title: Generate image request: curl: | curl https://api.openai.com/v1/images/generations \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "gpt-image-1", "prompt": "A cute baby sea otter", "n": 1, "size": "1024x1024" }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) images_response = client.images.generate( prompt="A cute baby sea otter", ) print(images_response) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const imagesResponse = await client.images.generate({ prompt: 'A cute baby sea otter' }); console.log(imagesResponse); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) imagesResponse, err := client.Images.Generate(context.TODO(), openai.ImageGenerateParams{ Prompt: "A cute baby sea otter", }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", imagesResponse) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.images.ImageGenerateParams; import com.openai.models.images.ImagesResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ImageGenerateParams params = ImageGenerateParams.builder() .prompt("A cute baby sea otter") .build(); ImagesResponse imagesResponse = client.images().generate(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") images_response = openai.images.generate(prompt: "A cute baby sea otter") puts(images_response) response: | { "created": 1713833628, "data": [ { "b64_json": "..." } ], "usage": { "total_tokens": 100, "input_tokens": 50, "output_tokens": 50, "input_tokens_details": { "text_tokens": 10, "image_tokens": 40 } } } - title: Streaming request: curl: | curl https://api.openai.com/v1/images/generations \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "gpt-image-1", "prompt": "A cute baby sea otter", "n": 1, "size": "1024x1024", "stream": true }' \ --no-buffer python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) images_response = client.images.generate( prompt="A cute baby sea otter", ) print(images_response) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const imagesResponse = await client.images.generate({ prompt: 'A cute baby sea otter' }); console.log(imagesResponse); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) imagesResponse, err := client.Images.Generate(context.TODO(), openai.ImageGenerateParams{ Prompt: "A cute baby sea otter", }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", imagesResponse) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.images.ImageGenerateParams; import com.openai.models.images.ImagesResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ImageGenerateParams params = ImageGenerateParams.builder() .prompt("A cute baby sea otter") .build(); ImagesResponse imagesResponse = client.images().generate(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") images_response = openai.images.generate(prompt: "A cute baby sea otter") puts(images_response) response: > event: image_generation.partial_image data: {"type":"image_generation.partial_image","b64_json":"...","partial_image_index":0} event: image_generation.completed data: {"type":"image_generation.completed","b64_json":"...","usage":{"total_tokens":100,"input_tokens":50,"output_tokens":50,"input_tokens_details":{"text_tokens":10,"image_tokens":40}}} description: | Creates an image given a prompt. [Learn more](https://platform.openai.com/docs/guides/images). /images/variations: post: operationId: createImageVariation tags: - Images summary: Create image variation requestBody: required: true content: multipart/form-data: schema: $ref: '#/components/schemas/CreateImageVariationRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ImagesResponse' x-oaiMeta: name: Create image variation group: images returns: Returns a list of [image](https://platform.openai.com/docs/api-reference/images/object) objects. examples: response: | { "created": 1589478378, "data": [ { "url": "https://..." }, { "url": "https://..." } ] } request: curl: | curl https://api.openai.com/v1/images/variations \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -F image="@otter.png" \ -F n=2 \ -F size="1024x1024" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) images_response = client.images.create_variation( image=b"raw file contents", ) print(images_response.created) node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const imagesResponse = await client.images.createVariation({ image: fs.createReadStream('otter.png') }); console.log(imagesResponse.created); csharp: | using System; using OpenAI.Images; ImageClient client = new( model: "dall-e-2", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); GeneratedImage image = client.GenerateImageVariation(imageFilePath: "otter.png"); Console.WriteLine(image.ImageUri); go: | package main import ( "bytes" "context" "fmt" "io" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) imagesResponse, err := client.Images.NewVariation(context.TODO(), openai.ImageNewVariationParams{ Image: io.Reader(bytes.NewBuffer([]byte("some file contents"))), }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", imagesResponse.Created) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.images.ImageCreateVariationParams; import com.openai.models.images.ImagesResponse; import java.io.ByteArrayInputStream; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ImageCreateVariationParams params = ImageCreateVariationParams.builder() .image(ByteArrayInputStream("some content".getBytes())) .build(); ImagesResponse imagesResponse = client.images().createVariation(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") images_response = openai.images.create_variation(image: Pathname(__FILE__)) puts(images_response) description: Creates a variation of a given image. This endpoint only supports `dall-e-2`. /models: get: operationId: listModels tags: - Models summary: List models responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ListModelsResponse' x-oaiMeta: name: List models group: models returns: A list of [model](https://platform.openai.com/docs/api-reference/models/object) objects. examples: response: | { "object": "list", "data": [ { "id": "model-id-0", "object": "model", "created": 1686935002, "owned_by": "organization-owner" }, { "id": "model-id-1", "object": "model", "created": 1686935002, "owned_by": "organization-owner", }, { "id": "model-id-2", "object": "model", "created": 1686935002, "owned_by": "openai" }, ], "object": "list" } request: curl: | curl https://api.openai.com/v1/models \ -H "Authorization: Bearer $OPENAI_API_KEY" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.models.list() page = page.data[0] print(page.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const model of client.models.list()) { console.log(model.id); } csharp: | using System; using OpenAI.Models; OpenAIModelClient client = new( apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); foreach (var model in client.GetModels().Value) { Console.WriteLine(model.Id); } go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.Models.List(context.TODO()) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.models.ModelListPage; import com.openai.models.models.ModelListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ModelListPage page = client.models().list(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.models.list puts(page) description: >- Lists the currently available models, and provides basic information about each one such as the owner and availability. /models/{model}: get: operationId: retrieveModel tags: - Models summary: Retrieve model parameters: - in: path name: model required: true schema: type: string example: gpt-4o-mini description: The ID of the model to use for this request responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/Model' x-oaiMeta: name: Retrieve model group: models returns: >- The [model](https://platform.openai.com/docs/api-reference/models/object) object matching the specified ID. examples: response: | { "id": "VAR_chat_model_id", "object": "model", "created": 1686935002, "owned_by": "openai" } request: curl: | curl https://api.openai.com/v1/models/VAR_chat_model_id \ -H "Authorization: Bearer $OPENAI_API_KEY" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) model = client.models.retrieve( "gpt-4o-mini", ) print(model.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const model = await client.models.retrieve('gpt-4o-mini'); console.log(model.id); csharp: | using System; using System.ClientModel; using OpenAI.Models; OpenAIModelClient client = new( apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); ClientResult model = client.GetModel("babbage-002"); Console.WriteLine(model.Value.Id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) model, err := client.Models.Get(context.TODO(), "gpt-4o-mini") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", model.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.models.Model; import com.openai.models.models.ModelRetrieveParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Model model = client.models().retrieve("gpt-4o-mini"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") model = openai.models.retrieve("gpt-4o-mini") puts(model) description: >- Retrieves a model instance, providing basic information about the model such as the owner and permissioning. delete: operationId: deleteModel tags: - Models summary: Delete a fine-tuned model parameters: - in: path name: model required: true schema: type: string example: ft:gpt-4o-mini:acemeco:suffix:abc123 description: The model to delete responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/DeleteModelResponse' x-oaiMeta: name: Delete a fine-tuned model group: models returns: Deletion status. examples: response: | { "id": "ft:gpt-4o-mini:acemeco:suffix:abc123", "object": "model", "deleted": true } request: curl: | curl https://api.openai.com/v1/models/ft:gpt-4o-mini:acemeco:suffix:abc123 \ -X DELETE \ -H "Authorization: Bearer $OPENAI_API_KEY" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) model_deleted = client.models.delete( "ft:gpt-4o-mini:acemeco:suffix:abc123", ) print(model_deleted.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const modelDeleted = await client.models.delete('ft:gpt-4o-mini:acemeco:suffix:abc123'); console.log(modelDeleted.id); csharp: | using System; using System.ClientModel; using OpenAI.Models; OpenAIModelClient client = new( apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); ClientResult success = client.DeleteModel("ft:gpt-4o-mini:acemeco:suffix:abc123"); Console.WriteLine(success); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) modelDeleted, err := client.Models.Delete(context.TODO(), "ft:gpt-4o-mini:acemeco:suffix:abc123") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", modelDeleted.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.models.ModelDeleteParams; import com.openai.models.models.ModelDeleted; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ModelDeleted modelDeleted = client.models().delete("ft:gpt-4o-mini:acemeco:suffix:abc123"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") model_deleted = openai.models.delete("ft:gpt-4o-mini:acemeco:suffix:abc123") puts(model_deleted) description: Delete a fine-tuned model. You must have the Owner role in your organization to delete a model. /moderations: post: operationId: createModeration tags: - Moderations summary: Create moderation requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CreateModerationRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/CreateModerationResponse' x-oaiMeta: name: Create moderation group: moderations returns: A [moderation](https://platform.openai.com/docs/api-reference/moderations/object) object. examples: - title: Single string request: curl: | curl https://api.openai.com/v1/moderations \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "input": "I want to kill them." }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) moderation = client.moderations.create( input="I want to kill them.", ) print(moderation.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const moderation = await client.moderations.create({ input: 'I want to kill them.' }); console.log(moderation.id); csharp: | using System; using System.ClientModel; using OpenAI.Moderations; ModerationClient client = new( model: "omni-moderation-latest", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); ClientResult moderation = client.ClassifyText("I want to kill them."); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) moderation, err := client.Moderations.New(context.TODO(), openai.ModerationNewParams{ Input: openai.ModerationNewParamsInputUnion{ OfString: openai.String("I want to kill them."), }, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", moderation.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.moderations.ModerationCreateParams; import com.openai.models.moderations.ModerationCreateResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ModerationCreateParams params = ModerationCreateParams.builder() .input("I want to kill them.") .build(); ModerationCreateResponse moderation = client.moderations().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") moderation = openai.moderations.create(input: "I want to kill them.") puts(moderation) response: | { "id": "modr-AB8CjOTu2jiq12hp1AQPfeqFWaORR", "model": "text-moderation-007", "results": [ { "flagged": true, "categories": { "sexual": false, "hate": false, "harassment": true, "self-harm": false, "sexual/minors": false, "hate/threatening": false, "violence/graphic": false, "self-harm/intent": false, "self-harm/instructions": false, "harassment/threatening": true, "violence": true }, "category_scores": { "sexual": 0.000011726012417057063, "hate": 0.22706663608551025, "harassment": 0.5215635299682617, "self-harm": 2.227119921371923e-6, "sexual/minors": 7.107352217872176e-8, "hate/threatening": 0.023547329008579254, "violence/graphic": 0.00003391829886822961, "self-harm/intent": 1.646940972932498e-6, "self-harm/instructions": 1.1198755256458526e-9, "harassment/threatening": 0.5694745779037476, "violence": 0.9971134662628174 } } ] } - title: Image and text request: curl: | curl https://api.openai.com/v1/moderations \ -X POST \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "omni-moderation-latest", "input": [ { "type": "text", "text": "...text to classify goes here..." }, { "type": "image_url", "image_url": { "url": "https://example.com/image.png" } } ] }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) moderation = client.moderations.create( input="I want to kill them.", ) print(moderation.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const moderation = await client.moderations.create({ input: 'I want to kill them.' }); console.log(moderation.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) moderation, err := client.Moderations.New(context.TODO(), openai.ModerationNewParams{ Input: openai.ModerationNewParamsInputUnion{ OfString: openai.String("I want to kill them."), }, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", moderation.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.moderations.ModerationCreateParams; import com.openai.models.moderations.ModerationCreateResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ModerationCreateParams params = ModerationCreateParams.builder() .input("I want to kill them.") .build(); ModerationCreateResponse moderation = client.moderations().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") moderation = openai.moderations.create(input: "I want to kill them.") puts(moderation) response: | { "id": "modr-0d9740456c391e43c445bf0f010940c7", "model": "omni-moderation-latest", "results": [ { "flagged": true, "categories": { "harassment": true, "harassment/threatening": true, "sexual": false, "hate": false, "hate/threatening": false, "illicit": false, "illicit/violent": false, "self-harm/intent": false, "self-harm/instructions": false, "self-harm": false, "sexual/minors": false, "violence": true, "violence/graphic": true }, "category_scores": { "harassment": 0.8189693396524255, "harassment/threatening": 0.804985420696006, "sexual": 1.573112165348997e-6, "hate": 0.007562942636942845, "hate/threatening": 0.004208854591835476, "illicit": 0.030535955153511665, "illicit/violent": 0.008925306722380033, "self-harm/intent": 0.00023023930975076432, "self-harm/instructions": 0.0002293869201073356, "self-harm": 0.012598046106750154, "sexual/minors": 2.212566909570261e-8, "violence": 0.9999992735124786, "violence/graphic": 0.843064871157054 }, "category_applied_input_types": { "harassment": [ "text" ], "harassment/threatening": [ "text" ], "sexual": [ "text", "image" ], "hate": [ "text" ], "hate/threatening": [ "text" ], "illicit": [ "text" ], "illicit/violent": [ "text" ], "self-harm/intent": [ "text", "image" ], "self-harm/instructions": [ "text", "image" ], "self-harm": [ "text", "image" ], "sexual/minors": [ "text" ], "violence": [ "text", "image" ], "violence/graphic": [ "text", "image" ] } } ] } description: | Classifies if text and/or image inputs are potentially harmful. Learn more in the [moderation guide](https://platform.openai.com/docs/guides/moderation). /organization/admin_api_keys: get: summary: List all organization and project API keys. operationId: admin-api-keys-list description: List organization API keys parameters: - in: query name: after required: false schema: type: string nullable: true description: Return keys with IDs that come after this ID in the pagination order. - in: query name: order required: false schema: type: string enum: - asc - desc default: asc description: Order results by creation time, ascending or descending. - in: query name: limit required: false schema: type: integer default: 20 description: Maximum number of keys to return. responses: '200': description: A list of organization API keys. content: application/json: schema: $ref: '#/components/schemas/ApiKeyList' x-oaiMeta: name: List all organization and project API keys. group: administration returns: A list of admin and project API key objects. examples: response: | { "object": "list", "data": [ { "object": "organization.admin_api_key", "id": "key_abc", "name": "Main Admin Key", "redacted_value": "sk-admin...def", "created_at": 1711471533, "last_used_at": 1711471534, "owner": { "type": "service_account", "object": "organization.service_account", "id": "sa_456", "name": "My Service Account", "created_at": 1711471533, "role": "member" } } ], "first_id": "key_abc", "last_id": "key_abc", "has_more": false } request: curl: | curl https://api.openai.com/v1/organization/admin_api_keys?after=key_abc&limit=20 \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" post: summary: Create admin API key operationId: admin-api-keys-create description: Create an organization admin API key requestBody: required: true content: application/json: schema: type: object required: - name properties: name: type: string example: New Admin Key responses: '200': description: The newly created admin API key. content: application/json: schema: $ref: '#/components/schemas/AdminApiKey' x-oaiMeta: name: Create admin API key group: administration returns: >- The created [AdminApiKey](https://platform.openai.com/docs/api-reference/admin-api-keys/object) object. examples: response: | { "object": "organization.admin_api_key", "id": "key_xyz", "name": "New Admin Key", "redacted_value": "sk-admin...xyz", "created_at": 1711471533, "last_used_at": 1711471534, "owner": { "type": "user", "object": "organization.user", "id": "user_123", "name": "John Doe", "created_at": 1711471533, "role": "owner" }, "value": "sk-admin-1234abcd" } request: curl: | curl -X POST https://api.openai.com/v1/organization/admin_api_keys \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" \ -d '{ "name": "New Admin Key" }' /organization/admin_api_keys/{key_id}: get: summary: Retrieve admin API key operationId: admin-api-keys-get description: Retrieve a single organization API key parameters: - in: path name: key_id required: true schema: type: string description: The ID of the API key. responses: '200': description: Details of the requested API key. content: application/json: schema: $ref: '#/components/schemas/AdminApiKey' x-oaiMeta: name: Retrieve admin API key group: administration returns: >- The requested [AdminApiKey](https://platform.openai.com/docs/api-reference/admin-api-keys/object) object. examples: response: | { "object": "organization.admin_api_key", "id": "key_abc", "name": "Main Admin Key", "redacted_value": "sk-admin...xyz", "created_at": 1711471533, "last_used_at": 1711471534, "owner": { "type": "user", "object": "organization.user", "id": "user_123", "name": "John Doe", "created_at": 1711471533, "role": "owner" } } request: curl: | curl https://api.openai.com/v1/organization/admin_api_keys/key_abc \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" delete: summary: Delete admin API key operationId: admin-api-keys-delete description: Delete an organization admin API key parameters: - in: path name: key_id required: true schema: type: string description: The ID of the API key to be deleted. responses: '200': description: Confirmation that the API key was deleted. content: application/json: schema: type: object properties: id: type: string example: key_abc object: type: string example: organization.admin_api_key.deleted deleted: type: boolean example: true x-oaiMeta: name: Delete admin API key group: administration returns: A confirmation object indicating the key was deleted. examples: response: | { "id": "key_abc", "object": "organization.admin_api_key.deleted", "deleted": true } request: curl: | curl -X DELETE https://api.openai.com/v1/organization/admin_api_keys/key_abc \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" /organization/audit_logs: get: summary: List audit logs operationId: list-audit-logs tags: - Audit Logs parameters: - name: effective_at in: query description: Return only events whose `effective_at` (Unix seconds) is in this range. required: false schema: type: object properties: gt: type: integer description: Return only events whose `effective_at` (Unix seconds) is greater than this value. gte: type: integer description: >- Return only events whose `effective_at` (Unix seconds) is greater than or equal to this value. lt: type: integer description: Return only events whose `effective_at` (Unix seconds) is less than this value. lte: type: integer description: Return only events whose `effective_at` (Unix seconds) is less than or equal to this value. - name: project_ids[] in: query description: Return only events for these projects. required: false schema: type: array items: type: string - name: event_types[] in: query description: >- Return only events with a `type` in one of these values. For example, `project.created`. For all options, see the documentation for the [audit log object](https://platform.openai.com/docs/api-reference/audit-logs/object). required: false schema: type: array items: $ref: '#/components/schemas/AuditLogEventType' - name: actor_ids[] in: query description: >- Return only events performed by these actors. Can be a user ID, a service account ID, or an api key tracking ID. required: false schema: type: array items: type: string - name: actor_emails[] in: query description: Return only events performed by users with these emails. required: false schema: type: array items: type: string - name: resource_ids[] in: query description: Return only events performed on these targets. For example, a project ID updated. required: false schema: type: array items: type: string - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. schema: type: string - name: before in: query description: > A cursor for use in pagination. `before` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, starting with obj_foo, your subsequent call can include before=obj_foo in order to fetch the previous page of the list. schema: type: string responses: '200': description: Audit logs listed successfully. content: application/json: schema: $ref: '#/components/schemas/ListAuditLogsResponse' x-oaiMeta: name: List audit logs group: audit-logs returns: >- A list of paginated [Audit Log](https://platform.openai.com/docs/api-reference/audit-logs/object) objects. examples: response: | { "object": "list", "data": [ { "id": "audit_log-xxx_yyyymmdd", "type": "project.archived", "effective_at": 1722461446, "actor": { "type": "api_key", "api_key": { "type": "user", "user": { "id": "user-xxx", "email": "user@example.com" } } }, "project.archived": { "id": "proj_abc" }, }, { "id": "audit_log-yyy__20240101", "type": "api_key.updated", "effective_at": 1720804190, "actor": { "type": "session", "session": { "user": { "id": "user-xxx", "email": "user@example.com" }, "ip_address": "127.0.0.1", "user_agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36", "ja3": "a497151ce4338a12c4418c44d375173e", "ja4": "q13d0313h3_55b375c5d22e_c7319ce65786", "ip_address_details": { "country": "US", "city": "San Francisco", "region": "California", "region_code": "CA", "asn": "1234", "latitude": "37.77490", "longitude": "-122.41940" } } }, "api_key.updated": { "id": "key_xxxx", "data": { "scopes": ["resource_2.operation_2"] } }, } ], "first_id": "audit_log-xxx__20240101", "last_id": "audit_log_yyy__20240101", "has_more": true } request: curl: | curl https://api.openai.com/v1/organization/audit_logs \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: List user actions and configuration changes within this organization. /organization/certificates: get: summary: List organization certificates operationId: listOrganizationCertificates tags: - Certificates parameters: - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. required: false schema: type: string - name: order in: query description: > Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order. schema: type: string default: desc enum: - asc - desc responses: '200': description: Certificates listed successfully. content: application/json: schema: $ref: '#/components/schemas/ListCertificatesResponse' x-oaiMeta: name: List organization certificates group: administration returns: A list of [Certificate](https://platform.openai.com/docs/api-reference/certificates/object) objects. examples: request: curl: | curl https://api.openai.com/v1/organization/certificates \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" response: | { "object": "list", "data": [ { "object": "organization.certificate", "id": "cert_abc", "name": "My Example Certificate", "active": true, "created_at": 1234567, "certificate_details": { "valid_at": 12345667, "expires_at": 12345678 } }, ], "first_id": "cert_abc", "last_id": "cert_abc", "has_more": false } description: List uploaded certificates for this organization. post: summary: Upload certificate operationId: uploadCertificate tags: - Certificates requestBody: description: The certificate upload payload. required: true content: application/json: schema: $ref: '#/components/schemas/UploadCertificateRequest' responses: '200': description: Certificate uploaded successfully. content: application/json: schema: $ref: '#/components/schemas/Certificate' x-oaiMeta: name: Upload certificate group: administration returns: A single [Certificate](https://platform.openai.com/docs/api-reference/certificates/object) object. examples: request: curl: | curl -X POST https://api.openai.com/v1/organization/certificates \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" \ -d '{ "name": "My Example Certificate", "certificate": "-----BEGIN CERTIFICATE-----\\nMIIDeT...\\n-----END CERTIFICATE-----" }' response: | { "object": "certificate", "id": "cert_abc", "name": "My Example Certificate", "created_at": 1234567, "certificate_details": { "valid_at": 12345667, "expires_at": 12345678 } } description: | Upload a certificate to the organization. This does **not** automatically activate the certificate. Organizations can upload up to 50 certificates. /organization/certificates/activate: post: summary: Activate certificates for organization operationId: activateOrganizationCertificates tags: - Certificates requestBody: description: The certificate activation payload. required: true content: application/json: schema: $ref: '#/components/schemas/ToggleCertificatesRequest' responses: '200': description: Certificates activated successfully. content: application/json: schema: $ref: '#/components/schemas/ListCertificatesResponse' x-oaiMeta: name: Activate certificates for organization group: administration returns: >- A list of [Certificate](https://platform.openai.com/docs/api-reference/certificates/object) objects that were activated. examples: request: curl: | curl https://api.openai.com/v1/organization/certificates/activate \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" \ -d '{ "data": ["cert_abc", "cert_def"] }' response: | { "object": "organization.certificate.activation", "data": [ { "object": "organization.certificate", "id": "cert_abc", "name": "My Example Certificate", "active": true, "created_at": 1234567, "certificate_details": { "valid_at": 12345667, "expires_at": 12345678 } }, { "object": "organization.certificate", "id": "cert_def", "name": "My Example Certificate 2", "active": true, "created_at": 1234567, "certificate_details": { "valid_at": 12345667, "expires_at": 12345678 } }, ], } description: | Activate certificates at the organization level. You can atomically and idempotently activate up to 10 certificates at a time. /organization/certificates/deactivate: post: summary: Deactivate certificates for organization operationId: deactivateOrganizationCertificates tags: - Certificates requestBody: description: The certificate deactivation payload. required: true content: application/json: schema: $ref: '#/components/schemas/ToggleCertificatesRequest' responses: '200': description: Certificates deactivated successfully. content: application/json: schema: $ref: '#/components/schemas/ListCertificatesResponse' x-oaiMeta: name: Deactivate certificates for organization group: administration returns: >- A list of [Certificate](https://platform.openai.com/docs/api-reference/certificates/object) objects that were deactivated. examples: request: curl: | curl https://api.openai.com/v1/organization/certificates/deactivate \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" \ -d '{ "data": ["cert_abc", "cert_def"] }' response: | { "object": "organization.certificate.deactivation", "data": [ { "object": "organization.certificate", "id": "cert_abc", "name": "My Example Certificate", "active": false, "created_at": 1234567, "certificate_details": { "valid_at": 12345667, "expires_at": 12345678 } }, { "object": "organization.certificate", "id": "cert_def", "name": "My Example Certificate 2", "active": false, "created_at": 1234567, "certificate_details": { "valid_at": 12345667, "expires_at": 12345678 } }, ], } description: | Deactivate certificates at the organization level. You can atomically and idempotently deactivate up to 10 certificates at a time. /organization/certificates/{certificate_id}: get: summary: Get certificate operationId: getCertificate tags: - Certificates parameters: - name: certificate_id in: path description: Unique ID of the certificate to retrieve. required: true schema: type: string - name: include in: query description: >- A list of additional fields to include in the response. Currently the only supported value is `content` to fetch the PEM content of the certificate. required: false schema: type: array items: type: string enum: - content responses: '200': description: Certificate retrieved successfully. content: application/json: schema: $ref: '#/components/schemas/Certificate' x-oaiMeta: name: Get certificate group: administration returns: A single [Certificate](https://platform.openai.com/docs/api-reference/certificates/object) object. examples: request: curl: | curl "https://api.openai.com/v1/organization/certificates/cert_abc?include[]=content" \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" response: | { "object": "certificate", "id": "cert_abc", "name": "My Example Certificate", "created_at": 1234567, "certificate_details": { "valid_at": 1234567, "expires_at": 12345678, "content": "-----BEGIN CERTIFICATE-----MIIDeT...-----END CERTIFICATE-----" } } description: | Get a certificate that has been uploaded to the organization. You can get a certificate regardless of whether it is active or not. post: summary: Modify certificate operationId: modifyCertificate tags: - Certificates requestBody: description: The certificate modification payload. required: true content: application/json: schema: $ref: '#/components/schemas/ModifyCertificateRequest' responses: '200': description: Certificate modified successfully. content: application/json: schema: $ref: '#/components/schemas/Certificate' x-oaiMeta: name: Modify certificate group: administration returns: >- The updated [Certificate](https://platform.openai.com/docs/api-reference/certificates/object) object. examples: request: curl: | curl -X POST https://api.openai.com/v1/organization/certificates/cert_abc \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" \ -d '{ "name": "Renamed Certificate" }' response: | { "object": "certificate", "id": "cert_abc", "name": "Renamed Certificate", "created_at": 1234567, "certificate_details": { "valid_at": 12345667, "expires_at": 12345678 } } description: | Modify a certificate. Note that only the name can be modified. delete: summary: Delete certificate operationId: deleteCertificate tags: - Certificates responses: '200': description: Certificate deleted successfully. content: application/json: schema: $ref: '#/components/schemas/DeleteCertificateResponse' x-oaiMeta: name: Delete certificate group: administration returns: A confirmation object indicating the certificate was deleted. examples: request: curl: | curl -X DELETE https://api.openai.com/v1/organization/certificates/cert_abc \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" response: | { "object": "certificate.deleted", "id": "cert_abc" } description: | Delete a certificate from the organization. The certificate must be inactive for the organization and all projects. /organization/costs: get: summary: Costs operationId: usage-costs tags: - Usage parameters: - name: start_time in: query description: Start time (Unix seconds) of the query time range, inclusive. required: true schema: type: integer - name: end_time in: query description: End time (Unix seconds) of the query time range, exclusive. required: false schema: type: integer - name: bucket_width in: query description: Width of each time bucket in response. Currently only `1d` is supported, default to `1d`. required: false schema: type: string enum: - 1d default: 1d - name: project_ids in: query description: Return only costs for these projects. required: false schema: type: array items: type: string - name: group_by in: query description: >- Group the costs by the specified fields. Support fields include `project_id`, `line_item` and any combination of them. required: false schema: type: array items: type: string enum: - project_id - line_item - name: limit in: query description: > A limit on the number of buckets to be returned. Limit can range between 1 and 180, and the default is 7. required: false schema: type: integer default: 7 - name: page in: query description: A cursor for use in pagination. Corresponding to the `next_page` field from the previous response. schema: type: string responses: '200': description: Costs data retrieved successfully. content: application/json: schema: $ref: '#/components/schemas/UsageResponse' x-oaiMeta: name: Costs group: usage-costs returns: >- A list of paginated, time bucketed [Costs](https://platform.openai.com/docs/api-reference/usage/costs_object) objects. examples: response: | { "object": "page", "data": [ { "object": "bucket", "start_time": 1730419200, "end_time": 1730505600, "results": [ { "object": "organization.costs.result", "amount": { "value": 0.06, "currency": "usd" }, "line_item": null, "project_id": null } ] } ], "has_more": false, "next_page": null } request: curl: | curl "https://api.openai.com/v1/organization/costs?start_time=1730419200&limit=1" \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Get costs details for the organization. /organization/invites: get: summary: List invites operationId: list-invites tags: - Invites parameters: - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. required: false schema: type: string responses: '200': description: Invites listed successfully. content: application/json: schema: $ref: '#/components/schemas/InviteListResponse' x-oaiMeta: name: List invites group: administration returns: A list of [Invite](https://platform.openai.com/docs/api-reference/invite/object) objects. examples: response: | { "object": "list", "data": [ { "object": "organization.invite", "id": "invite-abc", "email": "user@example.com", "role": "owner", "status": "accepted", "invited_at": 1711471533, "expires_at": 1711471533, "accepted_at": 1711471533 } ], "first_id": "invite-abc", "last_id": "invite-abc", "has_more": false } request: curl: | curl https://api.openai.com/v1/organization/invites?after=invite-abc&limit=20 \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Returns a list of invites in the organization. post: summary: Create invite operationId: inviteUser tags: - Invites requestBody: description: The invite request payload. required: true content: application/json: schema: $ref: '#/components/schemas/InviteRequest' responses: '200': description: User invited successfully. content: application/json: schema: $ref: '#/components/schemas/Invite' x-oaiMeta: name: Create invite group: administration returns: The created [Invite](https://platform.openai.com/docs/api-reference/invite/object) object. examples: response: | { "object": "organization.invite", "id": "invite-def", "email": "anotheruser@example.com", "role": "reader", "status": "pending", "invited_at": 1711471533, "expires_at": 1711471533, "accepted_at": null, "projects": [ { "id": "project-xyz", "role": "member" }, { "id": "project-abc", "role": "owner" } ] } request: curl: | curl -X POST https://api.openai.com/v1/organization/invites \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" \ -d '{ "email": "anotheruser@example.com", "role": "reader", "projects": [ { "id": "project-xyz", "role": "member" }, { "id": "project-abc", "role": "owner" } ] }' description: >- Create an invite for a user to the organization. The invite must be accepted by the user before they have access to the organization. /organization/invites/{invite_id}: get: summary: Retrieve invite operationId: retrieve-invite tags: - Invites parameters: - in: path name: invite_id required: true schema: type: string description: The ID of the invite to retrieve. responses: '200': description: Invite retrieved successfully. content: application/json: schema: $ref: '#/components/schemas/Invite' x-oaiMeta: name: Retrieve invite group: administration returns: >- The [Invite](https://platform.openai.com/docs/api-reference/invite/object) object matching the specified ID. examples: response: | { "object": "organization.invite", "id": "invite-abc", "email": "user@example.com", "role": "owner", "status": "accepted", "invited_at": 1711471533, "expires_at": 1711471533, "accepted_at": 1711471533 } request: curl: | curl https://api.openai.com/v1/organization/invites/invite-abc \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Retrieves an invite. delete: summary: Delete invite operationId: delete-invite tags: - Invites parameters: - in: path name: invite_id required: true schema: type: string description: The ID of the invite to delete. responses: '200': description: Invite deleted successfully. content: application/json: schema: $ref: '#/components/schemas/InviteDeleteResponse' x-oaiMeta: name: Delete invite group: administration returns: Confirmation that the invite has been deleted examples: response: | { "object": "organization.invite.deleted", "id": "invite-abc", "deleted": true } request: curl: | curl -X DELETE https://api.openai.com/v1/organization/invites/invite-abc \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Delete an invite. If the invite has already been accepted, it cannot be deleted. /organization/projects: get: summary: List projects operationId: list-projects tags: - Projects parameters: - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. required: false schema: type: string - name: include_archived in: query schema: type: boolean default: false description: >- If `true` returns all projects including those that have been `archived`. Archived projects are not included by default. responses: '200': description: Projects listed successfully. content: application/json: schema: $ref: '#/components/schemas/ProjectListResponse' x-oaiMeta: name: List projects group: administration returns: A list of [Project](https://platform.openai.com/docs/api-reference/projects/object) objects. examples: response: | { "object": "list", "data": [ { "id": "proj_abc", "object": "organization.project", "name": "Project example", "created_at": 1711471533, "archived_at": null, "status": "active" } ], "first_id": "proj-abc", "last_id": "proj-xyz", "has_more": false } request: curl: > curl https://api.openai.com/v1/organization/projects?after=proj_abc&limit=20&include_archived=false \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Returns a list of projects. post: summary: Create project operationId: create-project tags: - Projects requestBody: description: The project create request payload. required: true content: application/json: schema: $ref: '#/components/schemas/ProjectCreateRequest' responses: '200': description: Project created successfully. content: application/json: schema: $ref: '#/components/schemas/Project' x-oaiMeta: name: Create project group: administration returns: The created [Project](https://platform.openai.com/docs/api-reference/projects/object) object. examples: response: | { "id": "proj_abc", "object": "organization.project", "name": "Project ABC", "created_at": 1711471533, "archived_at": null, "status": "active" } request: curl: | curl -X POST https://api.openai.com/v1/organization/projects \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" \ -d '{ "name": "Project ABC" }' description: Create a new project in the organization. Projects can be created and archived, but cannot be deleted. /organization/projects/{project_id}: get: summary: Retrieve project operationId: retrieve-project tags: - Projects parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string responses: '200': description: Project retrieved successfully. content: application/json: schema: $ref: '#/components/schemas/Project' x-oaiMeta: name: Retrieve project group: administration description: Retrieve a project. returns: >- The [Project](https://platform.openai.com/docs/api-reference/projects/object) object matching the specified ID. examples: response: | { "id": "proj_abc", "object": "organization.project", "name": "Project example", "created_at": 1711471533, "archived_at": null, "status": "active" } request: curl: | curl https://api.openai.com/v1/organization/projects/proj_abc \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Retrieves a project. post: summary: Modify project operationId: modify-project tags: - Projects parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string requestBody: description: The project update request payload. required: true content: application/json: schema: $ref: '#/components/schemas/ProjectUpdateRequest' responses: '200': description: Project updated successfully. content: application/json: schema: $ref: '#/components/schemas/Project' '400': description: Error response when updating the default project. content: application/json: schema: $ref: '#/components/schemas/ErrorResponse' x-oaiMeta: name: Modify project group: administration returns: The updated [Project](https://platform.openai.com/docs/api-reference/projects/object) object. examples: response: '' request: curl: | curl -X POST https://api.openai.com/v1/organization/projects/proj_abc \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" \ -d '{ "name": "Project DEF" }' description: Modifies a project in the organization. /organization/projects/{project_id}/api_keys: get: summary: List project API keys operationId: list-project-api-keys tags: - Projects parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. required: false schema: type: string responses: '200': description: Project API keys listed successfully. content: application/json: schema: $ref: '#/components/schemas/ProjectApiKeyListResponse' x-oaiMeta: name: List project API keys group: administration returns: >- A list of [ProjectApiKey](https://platform.openai.com/docs/api-reference/project-api-keys/object) objects. examples: response: | { "object": "list", "data": [ { "object": "organization.project.api_key", "redacted_value": "sk-abc...def", "name": "My API Key", "created_at": 1711471533, "last_used_at": 1711471534, "id": "key_abc", "owner": { "type": "user", "user": { "object": "organization.project.user", "id": "user_abc", "name": "First Last", "email": "user@example.com", "role": "owner", "added_at": 1711471533 } } } ], "first_id": "key_abc", "last_id": "key_xyz", "has_more": false } request: curl: | curl https://api.openai.com/v1/organization/projects/proj_abc/api_keys?after=key_abc&limit=20 \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Returns a list of API keys in the project. /organization/projects/{project_id}/api_keys/{key_id}: get: summary: Retrieve project API key operationId: retrieve-project-api-key tags: - Projects parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string - name: key_id in: path description: The ID of the API key. required: true schema: type: string responses: '200': description: Project API key retrieved successfully. content: application/json: schema: $ref: '#/components/schemas/ProjectApiKey' x-oaiMeta: name: Retrieve project API key group: administration returns: >- The [ProjectApiKey](https://platform.openai.com/docs/api-reference/project-api-keys/object) object matching the specified ID. examples: response: | { "object": "organization.project.api_key", "redacted_value": "sk-abc...def", "name": "My API Key", "created_at": 1711471533, "last_used_at": 1711471534, "id": "key_abc", "owner": { "type": "user", "user": { "object": "organization.project.user", "id": "user_abc", "name": "First Last", "email": "user@example.com", "role": "owner", "added_at": 1711471533 } } } request: curl: | curl https://api.openai.com/v1/organization/projects/proj_abc/api_keys/key_abc \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Retrieves an API key in the project. delete: summary: Delete project API key operationId: delete-project-api-key tags: - Projects parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string - name: key_id in: path description: The ID of the API key. required: true schema: type: string responses: '200': description: Project API key deleted successfully. content: application/json: schema: $ref: '#/components/schemas/ProjectApiKeyDeleteResponse' '400': description: Error response for various conditions. content: application/json: schema: $ref: '#/components/schemas/ErrorResponse' x-oaiMeta: name: Delete project API key group: administration returns: Confirmation of the key's deletion or an error if the key belonged to a service account examples: response: | { "object": "organization.project.api_key.deleted", "id": "key_abc", "deleted": true } request: curl: | curl -X DELETE https://api.openai.com/v1/organization/projects/proj_abc/api_keys/key_abc \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Deletes an API key from the project. /organization/projects/{project_id}/archive: post: summary: Archive project operationId: archive-project tags: - Projects parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string responses: '200': description: Project archived successfully. content: application/json: schema: $ref: '#/components/schemas/Project' x-oaiMeta: name: Archive project group: administration returns: The archived [Project](https://platform.openai.com/docs/api-reference/projects/object) object. examples: response: | { "id": "proj_abc", "object": "organization.project", "name": "Project DEF", "created_at": 1711471533, "archived_at": 1711471533, "status": "archived" } request: curl: | curl -X POST https://api.openai.com/v1/organization/projects/proj_abc/archive \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Archives a project in the organization. Archived projects cannot be used or updated. /organization/projects/{project_id}/certificates: get: summary: List project certificates operationId: listProjectCertificates tags: - Certificates parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. required: false schema: type: string - name: order in: query description: > Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order. schema: type: string default: desc enum: - asc - desc responses: '200': description: Certificates listed successfully. content: application/json: schema: $ref: '#/components/schemas/ListCertificatesResponse' x-oaiMeta: name: List project certificates group: administration returns: A list of [Certificate](https://platform.openai.com/docs/api-reference/certificates/object) objects. examples: request: curl: | curl https://api.openai.com/v1/organization/projects/proj_abc/certificates \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" response: | { "object": "list", "data": [ { "object": "organization.project.certificate", "id": "cert_abc", "name": "My Example Certificate", "active": true, "created_at": 1234567, "certificate_details": { "valid_at": 12345667, "expires_at": 12345678 } }, ], "first_id": "cert_abc", "last_id": "cert_abc", "has_more": false } description: List certificates for this project. /organization/projects/{project_id}/certificates/activate: post: summary: Activate certificates for project operationId: activateProjectCertificates tags: - Certificates parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string requestBody: description: The certificate activation payload. required: true content: application/json: schema: $ref: '#/components/schemas/ToggleCertificatesRequest' responses: '200': description: Certificates activated successfully. content: application/json: schema: $ref: '#/components/schemas/ListCertificatesResponse' x-oaiMeta: name: Activate certificates for project group: administration returns: >- A list of [Certificate](https://platform.openai.com/docs/api-reference/certificates/object) objects that were activated. examples: request: curl: | curl https://api.openai.com/v1/organization/projects/proj_abc/certificates/activate \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" \ -d '{ "data": ["cert_abc", "cert_def"] }' response: | { "object": "organization.project.certificate.activation", "data": [ { "object": "organization.project.certificate", "id": "cert_abc", "name": "My Example Certificate", "active": true, "created_at": 1234567, "certificate_details": { "valid_at": 12345667, "expires_at": 12345678 } }, { "object": "organization.project.certificate", "id": "cert_def", "name": "My Example Certificate 2", "active": true, "created_at": 1234567, "certificate_details": { "valid_at": 12345667, "expires_at": 12345678 } }, ], } description: | Activate certificates at the project level. You can atomically and idempotently activate up to 10 certificates at a time. /organization/projects/{project_id}/certificates/deactivate: post: summary: Deactivate certificates for project operationId: deactivateProjectCertificates tags: - Certificates parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string requestBody: description: The certificate deactivation payload. required: true content: application/json: schema: $ref: '#/components/schemas/ToggleCertificatesRequest' responses: '200': description: Certificates deactivated successfully. content: application/json: schema: $ref: '#/components/schemas/ListCertificatesResponse' x-oaiMeta: name: Deactivate certificates for project group: administration returns: >- A list of [Certificate](https://platform.openai.com/docs/api-reference/certificates/object) objects that were deactivated. examples: request: curl: | curl https://api.openai.com/v1/organization/projects/proj_abc/certificates/deactivate \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" \ -d '{ "data": ["cert_abc", "cert_def"] }' response: | { "object": "organization.project.certificate.deactivation", "data": [ { "object": "organization.project.certificate", "id": "cert_abc", "name": "My Example Certificate", "active": false, "created_at": 1234567, "certificate_details": { "valid_at": 12345667, "expires_at": 12345678 } }, { "object": "organization.project.certificate", "id": "cert_def", "name": "My Example Certificate 2", "active": false, "created_at": 1234567, "certificate_details": { "valid_at": 12345667, "expires_at": 12345678 } }, ], } description: | Deactivate certificates at the project level. You can atomically and idempotently deactivate up to 10 certificates at a time. /organization/projects/{project_id}/rate_limits: get: summary: List project rate limits operationId: list-project-rate-limits tags: - Projects parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string - name: limit in: query description: | A limit on the number of objects to be returned. The default is 100. required: false schema: type: integer default: 100 - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. required: false schema: type: string - name: before in: query description: > A cursor for use in pagination. `before` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, beginning with obj_foo, your subsequent call can include before=obj_foo in order to fetch the previous page of the list. required: false schema: type: string responses: '200': description: Project rate limits listed successfully. content: application/json: schema: $ref: '#/components/schemas/ProjectRateLimitListResponse' x-oaiMeta: name: List project rate limits group: administration returns: >- A list of [ProjectRateLimit](https://platform.openai.com/docs/api-reference/project-rate-limits/object) objects. examples: response: | { "object": "list", "data": [ { "object": "project.rate_limit", "id": "rl-ada", "model": "ada", "max_requests_per_1_minute": 600, "max_tokens_per_1_minute": 150000, "max_images_per_1_minute": 10 } ], "first_id": "rl-ada", "last_id": "rl-ada", "has_more": false } request: curl: > curl https://api.openai.com/v1/organization/projects/proj_abc/rate_limits?after=rl_xxx&limit=20 \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" error_response: | { "code": 404, "message": "The project {project_id} was not found" } description: Returns the rate limits per model for a project. /organization/projects/{project_id}/rate_limits/{rate_limit_id}: post: summary: Modify project rate limit operationId: update-project-rate-limits tags: - Projects parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string - name: rate_limit_id in: path description: The ID of the rate limit. required: true schema: type: string requestBody: description: The project rate limit update request payload. required: true content: application/json: schema: $ref: '#/components/schemas/ProjectRateLimitUpdateRequest' responses: '200': description: Project rate limit updated successfully. content: application/json: schema: $ref: '#/components/schemas/ProjectRateLimit' '400': description: Error response for various conditions. content: application/json: schema: $ref: '#/components/schemas/ErrorResponse' x-oaiMeta: name: Modify project rate limit group: administration returns: >- The updated [ProjectRateLimit](https://platform.openai.com/docs/api-reference/project-rate-limits/object) object. examples: response: | { "object": "project.rate_limit", "id": "rl-ada", "model": "ada", "max_requests_per_1_minute": 600, "max_tokens_per_1_minute": 150000, "max_images_per_1_minute": 10 } request: curl: | curl -X POST https://api.openai.com/v1/organization/projects/proj_abc/rate_limits/rl_xxx \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" \ -d '{ "max_requests_per_1_minute": 500 }' error_response: | { "code": 404, "message": "The project {project_id} was not found" } description: Updates a project rate limit. /organization/projects/{project_id}/service_accounts: get: summary: List project service accounts operationId: list-project-service-accounts tags: - Projects parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. required: false schema: type: string responses: '200': description: Project service accounts listed successfully. content: application/json: schema: $ref: '#/components/schemas/ProjectServiceAccountListResponse' '400': description: Error response when project is archived. content: application/json: schema: $ref: '#/components/schemas/ErrorResponse' x-oaiMeta: name: List project service accounts group: administration returns: >- A list of [ProjectServiceAccount](https://platform.openai.com/docs/api-reference/project-service-accounts/object) objects. examples: response: | { "object": "list", "data": [ { "object": "organization.project.service_account", "id": "svc_acct_abc", "name": "Service Account", "role": "owner", "created_at": 1711471533 } ], "first_id": "svc_acct_abc", "last_id": "svc_acct_xyz", "has_more": false } request: curl: > curl https://api.openai.com/v1/organization/projects/proj_abc/service_accounts?after=custom_id&limit=20 \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Returns a list of service accounts in the project. post: summary: Create project service account operationId: create-project-service-account tags: - Projects parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string requestBody: description: The project service account create request payload. required: true content: application/json: schema: $ref: '#/components/schemas/ProjectServiceAccountCreateRequest' responses: '200': description: Project service account created successfully. content: application/json: schema: $ref: '#/components/schemas/ProjectServiceAccountCreateResponse' '400': description: Error response when project is archived. content: application/json: schema: $ref: '#/components/schemas/ErrorResponse' x-oaiMeta: name: Create project service account group: administration returns: >- The created [ProjectServiceAccount](https://platform.openai.com/docs/api-reference/project-service-accounts/object) object. examples: response: | { "object": "organization.project.service_account", "id": "svc_acct_abc", "name": "Production App", "role": "member", "created_at": 1711471533, "api_key": { "object": "organization.project.service_account.api_key", "value": "sk-abcdefghijklmnop123", "name": "Secret Key", "created_at": 1711471533, "id": "key_abc" } } request: curl: | curl -X POST https://api.openai.com/v1/organization/projects/proj_abc/service_accounts \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" \ -d '{ "name": "Production App" }' description: >- Creates a new service account in the project. This also returns an unredacted API key for the service account. /organization/projects/{project_id}/service_accounts/{service_account_id}: get: summary: Retrieve project service account operationId: retrieve-project-service-account tags: - Projects parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string - name: service_account_id in: path description: The ID of the service account. required: true schema: type: string responses: '200': description: Project service account retrieved successfully. content: application/json: schema: $ref: '#/components/schemas/ProjectServiceAccount' x-oaiMeta: name: Retrieve project service account group: administration returns: >- The [ProjectServiceAccount](https://platform.openai.com/docs/api-reference/project-service-accounts/object) object matching the specified ID. examples: response: | { "object": "organization.project.service_account", "id": "svc_acct_abc", "name": "Service Account", "role": "owner", "created_at": 1711471533 } request: curl: | curl https://api.openai.com/v1/organization/projects/proj_abc/service_accounts/svc_acct_abc \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Retrieves a service account in the project. delete: summary: Delete project service account operationId: delete-project-service-account tags: - Projects parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string - name: service_account_id in: path description: The ID of the service account. required: true schema: type: string responses: '200': description: Project service account deleted successfully. content: application/json: schema: $ref: '#/components/schemas/ProjectServiceAccountDeleteResponse' x-oaiMeta: name: Delete project service account group: administration returns: >- Confirmation of service account being deleted, or an error in case of an archived project, which has no service accounts examples: response: | { "object": "organization.project.service_account.deleted", "id": "svc_acct_abc", "deleted": true } request: curl: > curl -X DELETE https://api.openai.com/v1/organization/projects/proj_abc/service_accounts/svc_acct_abc \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Deletes a service account from the project. /organization/projects/{project_id}/users: get: summary: List project users operationId: list-project-users tags: - Projects parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. required: false schema: type: string responses: '200': description: Project users listed successfully. content: application/json: schema: $ref: '#/components/schemas/ProjectUserListResponse' '400': description: Error response when project is archived. content: application/json: schema: $ref: '#/components/schemas/ErrorResponse' x-oaiMeta: name: List project users group: administration returns: >- A list of [ProjectUser](https://platform.openai.com/docs/api-reference/project-users/object) objects. examples: response: | { "object": "list", "data": [ { "object": "organization.project.user", "id": "user_abc", "name": "First Last", "email": "user@example.com", "role": "owner", "added_at": 1711471533 } ], "first_id": "user-abc", "last_id": "user-xyz", "has_more": false } request: curl: | curl https://api.openai.com/v1/organization/projects/proj_abc/users?after=user_abc&limit=20 \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Returns a list of users in the project. post: summary: Create project user operationId: create-project-user parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string tags: - Projects requestBody: description: The project user create request payload. required: true content: application/json: schema: $ref: '#/components/schemas/ProjectUserCreateRequest' responses: '200': description: User added to project successfully. content: application/json: schema: $ref: '#/components/schemas/ProjectUser' '400': description: Error response for various conditions. content: application/json: schema: $ref: '#/components/schemas/ErrorResponse' x-oaiMeta: name: Create project user group: administration returns: >- The created [ProjectUser](https://platform.openai.com/docs/api-reference/project-users/object) object. examples: response: | { "object": "organization.project.user", "id": "user_abc", "email": "user@example.com", "role": "owner", "added_at": 1711471533 } request: curl: | curl -X POST https://api.openai.com/v1/organization/projects/proj_abc/users \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" \ -d '{ "user_id": "user_abc", "role": "member" }' description: >- Adds a user to the project. Users must already be members of the organization to be added to a project. /organization/projects/{project_id}/users/{user_id}: get: summary: Retrieve project user operationId: retrieve-project-user tags: - Projects parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string - name: user_id in: path description: The ID of the user. required: true schema: type: string responses: '200': description: Project user retrieved successfully. content: application/json: schema: $ref: '#/components/schemas/ProjectUser' x-oaiMeta: name: Retrieve project user group: administration returns: >- The [ProjectUser](https://platform.openai.com/docs/api-reference/project-users/object) object matching the specified ID. examples: response: | { "object": "organization.project.user", "id": "user_abc", "name": "First Last", "email": "user@example.com", "role": "owner", "added_at": 1711471533 } request: curl: | curl https://api.openai.com/v1/organization/projects/proj_abc/users/user_abc \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Retrieves a user in the project. post: summary: Modify project user operationId: modify-project-user tags: - Projects parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string - name: user_id in: path description: The ID of the user. required: true schema: type: string requestBody: description: The project user update request payload. required: true content: application/json: schema: $ref: '#/components/schemas/ProjectUserUpdateRequest' responses: '200': description: Project user's role updated successfully. content: application/json: schema: $ref: '#/components/schemas/ProjectUser' '400': description: Error response for various conditions. content: application/json: schema: $ref: '#/components/schemas/ErrorResponse' x-oaiMeta: name: Modify project user group: administration returns: >- The updated [ProjectUser](https://platform.openai.com/docs/api-reference/project-users/object) object. examples: response: | { "object": "organization.project.user", "id": "user_abc", "name": "First Last", "email": "user@example.com", "role": "owner", "added_at": 1711471533 } request: curl: | curl -X POST https://api.openai.com/v1/organization/projects/proj_abc/users/user_abc \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" \ -d '{ "role": "owner" }' description: Modifies a user's role in the project. delete: summary: Delete project user operationId: delete-project-user tags: - Projects parameters: - name: project_id in: path description: The ID of the project. required: true schema: type: string - name: user_id in: path description: The ID of the user. required: true schema: type: string responses: '200': description: Project user deleted successfully. content: application/json: schema: $ref: '#/components/schemas/ProjectUserDeleteResponse' '400': description: Error response for various conditions. content: application/json: schema: $ref: '#/components/schemas/ErrorResponse' x-oaiMeta: name: Delete project user group: administration returns: >- Confirmation that project has been deleted or an error in case of an archived project, which has no users examples: response: | { "object": "organization.project.user.deleted", "id": "user_abc", "deleted": true } request: curl: | curl -X DELETE https://api.openai.com/v1/organization/projects/proj_abc/users/user_abc \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Deletes a user from the project. /organization/usage/audio_speeches: get: summary: Audio speeches operationId: usage-audio-speeches tags: - Usage parameters: - name: start_time in: query description: Start time (Unix seconds) of the query time range, inclusive. required: true schema: type: integer - name: end_time in: query description: End time (Unix seconds) of the query time range, exclusive. required: false schema: type: integer - name: bucket_width in: query description: >- Width of each time bucket in response. Currently `1m`, `1h` and `1d` are supported, default to `1d`. required: false schema: type: string enum: - 1m - 1h - 1d default: 1d - name: project_ids in: query description: Return only usage for these projects. required: false schema: type: array items: type: string - name: user_ids in: query description: Return only usage for these users. required: false schema: type: array items: type: string - name: api_key_ids in: query description: Return only usage for these API keys. required: false schema: type: array items: type: string - name: models in: query description: Return only usage for these models. required: false schema: type: array items: type: string - name: group_by in: query description: >- Group the usage data by the specified fields. Support fields include `project_id`, `user_id`, `api_key_id`, `model` or any combination of them. required: false schema: type: array items: type: string enum: - project_id - user_id - api_key_id - model - name: limit in: query description: | Specifies the number of buckets to return. - `bucket_width=1d`: default: 7, max: 31 - `bucket_width=1h`: default: 24, max: 168 - `bucket_width=1m`: default: 60, max: 1440 required: false schema: type: integer - name: page in: query description: A cursor for use in pagination. Corresponding to the `next_page` field from the previous response. schema: type: string responses: '200': description: Usage data retrieved successfully. content: application/json: schema: $ref: '#/components/schemas/UsageResponse' x-oaiMeta: name: Audio speeches group: usage-audio-speeches returns: >- A list of paginated, time bucketed [Audio speeches usage](https://platform.openai.com/docs/api-reference/usage/audio_speeches_object) objects. examples: response: | { "object": "page", "data": [ { "object": "bucket", "start_time": 1730419200, "end_time": 1730505600, "results": [ { "object": "organization.usage.audio_speeches.result", "characters": 45, "num_model_requests": 1, "project_id": null, "user_id": null, "api_key_id": null, "model": null } ] } ], "has_more": false, "next_page": null } request: curl: > curl "https://api.openai.com/v1/organization/usage/audio_speeches?start_time=1730419200&limit=1" \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Get audio speeches usage details for the organization. /organization/usage/audio_transcriptions: get: summary: Audio transcriptions operationId: usage-audio-transcriptions tags: - Usage parameters: - name: start_time in: query description: Start time (Unix seconds) of the query time range, inclusive. required: true schema: type: integer - name: end_time in: query description: End time (Unix seconds) of the query time range, exclusive. required: false schema: type: integer - name: bucket_width in: query description: >- Width of each time bucket in response. Currently `1m`, `1h` and `1d` are supported, default to `1d`. required: false schema: type: string enum: - 1m - 1h - 1d default: 1d - name: project_ids in: query description: Return only usage for these projects. required: false schema: type: array items: type: string - name: user_ids in: query description: Return only usage for these users. required: false schema: type: array items: type: string - name: api_key_ids in: query description: Return only usage for these API keys. required: false schema: type: array items: type: string - name: models in: query description: Return only usage for these models. required: false schema: type: array items: type: string - name: group_by in: query description: >- Group the usage data by the specified fields. Support fields include `project_id`, `user_id`, `api_key_id`, `model` or any combination of them. required: false schema: type: array items: type: string enum: - project_id - user_id - api_key_id - model - name: limit in: query description: | Specifies the number of buckets to return. - `bucket_width=1d`: default: 7, max: 31 - `bucket_width=1h`: default: 24, max: 168 - `bucket_width=1m`: default: 60, max: 1440 required: false schema: type: integer - name: page in: query description: A cursor for use in pagination. Corresponding to the `next_page` field from the previous response. schema: type: string responses: '200': description: Usage data retrieved successfully. content: application/json: schema: $ref: '#/components/schemas/UsageResponse' x-oaiMeta: name: Audio transcriptions group: usage-audio-transcriptions returns: >- A list of paginated, time bucketed [Audio transcriptions usage](https://platform.openai.com/docs/api-reference/usage/audio_transcriptions_object) objects. examples: response: | { "object": "page", "data": [ { "object": "bucket", "start_time": 1730419200, "end_time": 1730505600, "results": [ { "object": "organization.usage.audio_transcriptions.result", "seconds": 20, "num_model_requests": 1, "project_id": null, "user_id": null, "api_key_id": null, "model": null } ] } ], "has_more": false, "next_page": null } request: curl: > curl "https://api.openai.com/v1/organization/usage/audio_transcriptions?start_time=1730419200&limit=1" \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Get audio transcriptions usage details for the organization. /organization/usage/code_interpreter_sessions: get: summary: Code interpreter sessions operationId: usage-code-interpreter-sessions tags: - Usage parameters: - name: start_time in: query description: Start time (Unix seconds) of the query time range, inclusive. required: true schema: type: integer - name: end_time in: query description: End time (Unix seconds) of the query time range, exclusive. required: false schema: type: integer - name: bucket_width in: query description: >- Width of each time bucket in response. Currently `1m`, `1h` and `1d` are supported, default to `1d`. required: false schema: type: string enum: - 1m - 1h - 1d default: 1d - name: project_ids in: query description: Return only usage for these projects. required: false schema: type: array items: type: string - name: group_by in: query description: Group the usage data by the specified fields. Support fields include `project_id`. required: false schema: type: array items: type: string enum: - project_id - name: limit in: query description: | Specifies the number of buckets to return. - `bucket_width=1d`: default: 7, max: 31 - `bucket_width=1h`: default: 24, max: 168 - `bucket_width=1m`: default: 60, max: 1440 required: false schema: type: integer - name: page in: query description: A cursor for use in pagination. Corresponding to the `next_page` field from the previous response. schema: type: string responses: '200': description: Usage data retrieved successfully. content: application/json: schema: $ref: '#/components/schemas/UsageResponse' x-oaiMeta: name: Code interpreter sessions group: usage-code-interpreter-sessions returns: >- A list of paginated, time bucketed [Code interpreter sessions usage](https://platform.openai.com/docs/api-reference/usage/code_interpreter_sessions_object) objects. examples: response: | { "object": "page", "data": [ { "object": "bucket", "start_time": 1730419200, "end_time": 1730505600, "results": [ { "object": "organization.usage.code_interpreter_sessions.result", "num_sessions": 1, "project_id": null } ] } ], "has_more": false, "next_page": null } request: curl: > curl "https://api.openai.com/v1/organization/usage/code_interpreter_sessions?start_time=1730419200&limit=1" \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Get code interpreter sessions usage details for the organization. /organization/usage/completions: get: summary: Completions operationId: usage-completions tags: - Usage parameters: - name: start_time in: query description: Start time (Unix seconds) of the query time range, inclusive. required: true schema: type: integer - name: end_time in: query description: End time (Unix seconds) of the query time range, exclusive. required: false schema: type: integer - name: bucket_width in: query description: >- Width of each time bucket in response. Currently `1m`, `1h` and `1d` are supported, default to `1d`. required: false schema: type: string enum: - 1m - 1h - 1d default: 1d - name: project_ids in: query description: Return only usage for these projects. required: false schema: type: array items: type: string - name: user_ids in: query description: Return only usage for these users. required: false schema: type: array items: type: string - name: api_key_ids in: query description: Return only usage for these API keys. required: false schema: type: array items: type: string - name: models in: query description: Return only usage for these models. required: false schema: type: array items: type: string - name: batch in: query description: > If `true`, return batch jobs only. If `false`, return non-batch jobs only. By default, return both. required: false schema: type: boolean - name: group_by in: query description: >- Group the usage data by the specified fields. Support fields include `project_id`, `user_id`, `api_key_id`, `model`, `batch`, `service_tier` or any combination of them. required: false schema: type: array items: type: string enum: - project_id - user_id - api_key_id - model - batch - service_tier - name: limit in: query description: | Specifies the number of buckets to return. - `bucket_width=1d`: default: 7, max: 31 - `bucket_width=1h`: default: 24, max: 168 - `bucket_width=1m`: default: 60, max: 1440 required: false schema: type: integer - name: page in: query description: A cursor for use in pagination. Corresponding to the `next_page` field from the previous response. schema: type: string responses: '200': description: Usage data retrieved successfully. content: application/json: schema: $ref: '#/components/schemas/UsageResponse' x-oaiMeta: name: Completions group: usage-completions returns: >- A list of paginated, time bucketed [Completions usage](https://platform.openai.com/docs/api-reference/usage/completions_object) objects. examples: response: | { "object": "page", "data": [ { "object": "bucket", "start_time": 1730419200, "end_time": 1730505600, "results": [ { "object": "organization.usage.completions.result", "input_tokens": 1000, "output_tokens": 500, "input_cached_tokens": 800, "input_audio_tokens": 0, "output_audio_tokens": 0, "num_model_requests": 5, "project_id": null, "user_id": null, "api_key_id": null, "model": null, "batch": null, "service_tier": null } ] } ], "has_more": true, "next_page": "page_AAAAAGdGxdEiJdKOAAAAAGcqsYA=" } request: curl: | curl "https://api.openai.com/v1/organization/usage/completions?start_time=1730419200&limit=1" \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Get completions usage details for the organization. /organization/usage/embeddings: get: summary: Embeddings operationId: usage-embeddings tags: - Usage parameters: - name: start_time in: query description: Start time (Unix seconds) of the query time range, inclusive. required: true schema: type: integer - name: end_time in: query description: End time (Unix seconds) of the query time range, exclusive. required: false schema: type: integer - name: bucket_width in: query description: >- Width of each time bucket in response. Currently `1m`, `1h` and `1d` are supported, default to `1d`. required: false schema: type: string enum: - 1m - 1h - 1d default: 1d - name: project_ids in: query description: Return only usage for these projects. required: false schema: type: array items: type: string - name: user_ids in: query description: Return only usage for these users. required: false schema: type: array items: type: string - name: api_key_ids in: query description: Return only usage for these API keys. required: false schema: type: array items: type: string - name: models in: query description: Return only usage for these models. required: false schema: type: array items: type: string - name: group_by in: query description: >- Group the usage data by the specified fields. Support fields include `project_id`, `user_id`, `api_key_id`, `model` or any combination of them. required: false schema: type: array items: type: string enum: - project_id - user_id - api_key_id - model - name: limit in: query description: | Specifies the number of buckets to return. - `bucket_width=1d`: default: 7, max: 31 - `bucket_width=1h`: default: 24, max: 168 - `bucket_width=1m`: default: 60, max: 1440 required: false schema: type: integer - name: page in: query description: A cursor for use in pagination. Corresponding to the `next_page` field from the previous response. schema: type: string responses: '200': description: Usage data retrieved successfully. content: application/json: schema: $ref: '#/components/schemas/UsageResponse' x-oaiMeta: name: Embeddings group: usage-embeddings returns: >- A list of paginated, time bucketed [Embeddings usage](https://platform.openai.com/docs/api-reference/usage/embeddings_object) objects. examples: response: | { "object": "page", "data": [ { "object": "bucket", "start_time": 1730419200, "end_time": 1730505600, "results": [ { "object": "organization.usage.embeddings.result", "input_tokens": 16, "num_model_requests": 2, "project_id": null, "user_id": null, "api_key_id": null, "model": null } ] } ], "has_more": false, "next_page": null } request: curl: | curl "https://api.openai.com/v1/organization/usage/embeddings?start_time=1730419200&limit=1" \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Get embeddings usage details for the organization. /organization/usage/images: get: summary: Images operationId: usage-images tags: - Usage parameters: - name: start_time in: query description: Start time (Unix seconds) of the query time range, inclusive. required: true schema: type: integer - name: end_time in: query description: End time (Unix seconds) of the query time range, exclusive. required: false schema: type: integer - name: bucket_width in: query description: >- Width of each time bucket in response. Currently `1m`, `1h` and `1d` are supported, default to `1d`. required: false schema: type: string enum: - 1m - 1h - 1d default: 1d - name: sources in: query description: >- Return only usages for these sources. Possible values are `image.generation`, `image.edit`, `image.variation` or any combination of them. required: false schema: type: array items: type: string enum: - image.generation - image.edit - image.variation - name: sizes in: query description: >- Return only usages for these image sizes. Possible values are `256x256`, `512x512`, `1024x1024`, `1792x1792`, `1024x1792` or any combination of them. required: false schema: type: array items: type: string enum: - 256x256 - 512x512 - 1024x1024 - 1792x1792 - 1024x1792 - name: project_ids in: query description: Return only usage for these projects. required: false schema: type: array items: type: string - name: user_ids in: query description: Return only usage for these users. required: false schema: type: array items: type: string - name: api_key_ids in: query description: Return only usage for these API keys. required: false schema: type: array items: type: string - name: models in: query description: Return only usage for these models. required: false schema: type: array items: type: string - name: group_by in: query description: >- Group the usage data by the specified fields. Support fields include `project_id`, `user_id`, `api_key_id`, `model`, `size`, `source` or any combination of them. required: false schema: type: array items: type: string enum: - project_id - user_id - api_key_id - model - size - source - name: limit in: query description: | Specifies the number of buckets to return. - `bucket_width=1d`: default: 7, max: 31 - `bucket_width=1h`: default: 24, max: 168 - `bucket_width=1m`: default: 60, max: 1440 required: false schema: type: integer - name: page in: query description: A cursor for use in pagination. Corresponding to the `next_page` field from the previous response. schema: type: string responses: '200': description: Usage data retrieved successfully. content: application/json: schema: $ref: '#/components/schemas/UsageResponse' x-oaiMeta: name: Images group: usage-images returns: >- A list of paginated, time bucketed [Images usage](https://platform.openai.com/docs/api-reference/usage/images_object) objects. examples: response: | { "object": "page", "data": [ { "object": "bucket", "start_time": 1730419200, "end_time": 1730505600, "results": [ { "object": "organization.usage.images.result", "images": 2, "num_model_requests": 2, "size": null, "source": null, "project_id": null, "user_id": null, "api_key_id": null, "model": null } ] } ], "has_more": false, "next_page": null } request: curl: | curl "https://api.openai.com/v1/organization/usage/images?start_time=1730419200&limit=1" \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Get images usage details for the organization. /organization/usage/moderations: get: summary: Moderations operationId: usage-moderations tags: - Usage parameters: - name: start_time in: query description: Start time (Unix seconds) of the query time range, inclusive. required: true schema: type: integer - name: end_time in: query description: End time (Unix seconds) of the query time range, exclusive. required: false schema: type: integer - name: bucket_width in: query description: >- Width of each time bucket in response. Currently `1m`, `1h` and `1d` are supported, default to `1d`. required: false schema: type: string enum: - 1m - 1h - 1d default: 1d - name: project_ids in: query description: Return only usage for these projects. required: false schema: type: array items: type: string - name: user_ids in: query description: Return only usage for these users. required: false schema: type: array items: type: string - name: api_key_ids in: query description: Return only usage for these API keys. required: false schema: type: array items: type: string - name: models in: query description: Return only usage for these models. required: false schema: type: array items: type: string - name: group_by in: query description: >- Group the usage data by the specified fields. Support fields include `project_id`, `user_id`, `api_key_id`, `model` or any combination of them. required: false schema: type: array items: type: string enum: - project_id - user_id - api_key_id - model - name: limit in: query description: | Specifies the number of buckets to return. - `bucket_width=1d`: default: 7, max: 31 - `bucket_width=1h`: default: 24, max: 168 - `bucket_width=1m`: default: 60, max: 1440 required: false schema: type: integer - name: page in: query description: A cursor for use in pagination. Corresponding to the `next_page` field from the previous response. schema: type: string responses: '200': description: Usage data retrieved successfully. content: application/json: schema: $ref: '#/components/schemas/UsageResponse' x-oaiMeta: name: Moderations group: usage-moderations returns: >- A list of paginated, time bucketed [Moderations usage](https://platform.openai.com/docs/api-reference/usage/moderations_object) objects. examples: response: | { "object": "page", "data": [ { "object": "bucket", "start_time": 1730419200, "end_time": 1730505600, "results": [ { "object": "organization.usage.moderations.result", "input_tokens": 16, "num_model_requests": 2, "project_id": null, "user_id": null, "api_key_id": null, "model": null } ] } ], "has_more": false, "next_page": null } request: curl: | curl "https://api.openai.com/v1/organization/usage/moderations?start_time=1730419200&limit=1" \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Get moderations usage details for the organization. /organization/usage/vector_stores: get: summary: Vector stores operationId: usage-vector-stores tags: - Usage parameters: - name: start_time in: query description: Start time (Unix seconds) of the query time range, inclusive. required: true schema: type: integer - name: end_time in: query description: End time (Unix seconds) of the query time range, exclusive. required: false schema: type: integer - name: bucket_width in: query description: >- Width of each time bucket in response. Currently `1m`, `1h` and `1d` are supported, default to `1d`. required: false schema: type: string enum: - 1m - 1h - 1d default: 1d - name: project_ids in: query description: Return only usage for these projects. required: false schema: type: array items: type: string - name: group_by in: query description: Group the usage data by the specified fields. Support fields include `project_id`. required: false schema: type: array items: type: string enum: - project_id - name: limit in: query description: | Specifies the number of buckets to return. - `bucket_width=1d`: default: 7, max: 31 - `bucket_width=1h`: default: 24, max: 168 - `bucket_width=1m`: default: 60, max: 1440 required: false schema: type: integer - name: page in: query description: A cursor for use in pagination. Corresponding to the `next_page` field from the previous response. schema: type: string responses: '200': description: Usage data retrieved successfully. content: application/json: schema: $ref: '#/components/schemas/UsageResponse' x-oaiMeta: name: Vector stores group: usage-vector-stores returns: >- A list of paginated, time bucketed [Vector stores usage](https://platform.openai.com/docs/api-reference/usage/vector_stores_object) objects. examples: response: | { "object": "page", "data": [ { "object": "bucket", "start_time": 1730419200, "end_time": 1730505600, "results": [ { "object": "organization.usage.vector_stores.result", "usage_bytes": 1024, "project_id": null } ] } ], "has_more": false, "next_page": null } request: curl: > curl "https://api.openai.com/v1/organization/usage/vector_stores?start_time=1730419200&limit=1" \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Get vector stores usage details for the organization. /organization/users: get: summary: List users operationId: list-users tags: - Users parameters: - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. required: false schema: type: string - name: emails in: query description: Filter by the email address of users. required: false schema: type: array items: type: string responses: '200': description: Users listed successfully. content: application/json: schema: $ref: '#/components/schemas/UserListResponse' x-oaiMeta: name: List users group: administration returns: A list of [User](https://platform.openai.com/docs/api-reference/users/object) objects. examples: response: | { "object": "list", "data": [ { "object": "organization.user", "id": "user_abc", "name": "First Last", "email": "user@example.com", "role": "owner", "added_at": 1711471533 } ], "first_id": "user-abc", "last_id": "user-xyz", "has_more": false } request: curl: | curl https://api.openai.com/v1/organization/users?after=user_abc&limit=20 \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Lists all of the users in the organization. /organization/users/{user_id}: get: summary: Retrieve user operationId: retrieve-user tags: - Users parameters: - name: user_id in: path description: The ID of the user. required: true schema: type: string responses: '200': description: User retrieved successfully. content: application/json: schema: $ref: '#/components/schemas/User' x-oaiMeta: name: Retrieve user group: administration returns: >- The [User](https://platform.openai.com/docs/api-reference/users/object) object matching the specified ID. examples: response: | { "object": "organization.user", "id": "user_abc", "name": "First Last", "email": "user@example.com", "role": "owner", "added_at": 1711471533 } request: curl: | curl https://api.openai.com/v1/organization/users/user_abc \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Retrieves a user by their identifier. post: summary: Modify user operationId: modify-user tags: - Users parameters: - name: user_id in: path description: The ID of the user. required: true schema: type: string requestBody: description: The new user role to modify. This must be one of `owner` or `member`. required: true content: application/json: schema: $ref: '#/components/schemas/UserRoleUpdateRequest' responses: '200': description: User role updated successfully. content: application/json: schema: $ref: '#/components/schemas/User' x-oaiMeta: name: Modify user group: administration returns: The updated [User](https://platform.openai.com/docs/api-reference/users/object) object. examples: response: | { "object": "organization.user", "id": "user_abc", "name": "First Last", "email": "user@example.com", "role": "owner", "added_at": 1711471533 } request: curl: | curl -X POST https://api.openai.com/v1/organization/users/user_abc \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" \ -d '{ "role": "owner" }' description: Modifies a user's role in the organization. delete: summary: Delete user operationId: delete-user tags: - Users parameters: - name: user_id in: path description: The ID of the user. required: true schema: type: string responses: '200': description: User deleted successfully. content: application/json: schema: $ref: '#/components/schemas/UserDeleteResponse' x-oaiMeta: name: Delete user group: administration returns: Confirmation of the deleted user examples: response: | { "object": "organization.user.deleted", "id": "user_abc", "deleted": true } request: curl: | curl -X DELETE https://api.openai.com/v1/organization/users/user_abc \ -H "Authorization: Bearer $OPENAI_ADMIN_KEY" \ -H "Content-Type: application/json" description: Deletes a user from the organization. /realtime/calls: post: summary: Create call operationId: create-realtime-call tags: - Realtime requestBody: required: true content: multipart/form-data: schema: $ref: '#/components/schemas/RealtimeCallCreateRequest' encoding: sdp: contentType: application/sdp session: contentType: application/json application/sdp: schema: type: string description: |- WebRTC SDP offer. Use this variant when you have previously created an ephemeral **session token** and are authenticating the request with it. Realtime session parameters will be retrieved from the session token. responses: '201': description: Realtime call created successfully. headers: Location: description: Relative URL containing the call ID for subsequent control requests. schema: type: string content: application/sdp: schema: type: string description: SDP answer produced by OpenAI for the peer connection. x-oaiMeta: name: Create call group: realtime returns: |- Returns `201 Created` with the SDP answer in the response body. The `Location` response header includes the call ID for follow-up requests, e.g., establishing a monitoring WebSocket or hanging up the call. examples: response: >- v=0 o=- 4227147428 1719357865 IN IP4 127.0.0.1 s=- c=IN IP4 0.0.0.0 t=0 0 a=group:BUNDLE 0 1 a=msid-semantic:WMS * a=fingerprint:sha-256 CA:92:52:51:B4:91:3B:34:DD:9C:0B:FB:76:19:7E:3B:F1:21:0F:32:2C:38:01:72:5D:3F:78:C7:5F:8B:C7:36 m=audio 9 UDP/TLS/RTP/SAVPF 111 0 8 a=mid:0 a=ice-ufrag:kZ2qkHXX/u11 a=ice-pwd:uoD16Di5OGx3VbqgA3ymjEQV2kwiOjw6 a=setup:active a=rtcp-mux a=rtpmap:111 opus/48000/2 a=candidate:993865896 1 udp 2130706431 4.155.146.196 3478 typ host ufrag kZ2qkHXX/u11 a=candidate:1432411780 1 tcp 1671430143 4.155.146.196 443 typ host tcptype passive ufrag kZ2qkHXX/u11 m=application 9 UDP/DTLS/SCTP webrtc-datachannel a=mid:1 a=sctp-port:5000 request: curl: |- curl -X POST https://api.openai.com/v1/realtime/calls \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -F "sdp=- The identifier for the call provided in the [`realtime.call.incoming`](https://platform.openai.com/docs/api-reference/webhook-events/realtime/call/incoming) webhook. requestBody: required: true description: Session configuration to apply before the caller is bridged to the model. content: application/json: schema: $ref: '#/components/schemas/RealtimeSessionCreateRequestGA' responses: '200': description: Call accepted successfully. x-oaiMeta: name: Accept call group: realtime-calls returns: |- Returns `200 OK` once OpenAI starts ringing the SIP leg with the supplied session configuration. examples: response: '' request: curl: |- curl -X POST https://api.openai.com/v1/realtime/calls/$CALL_ID/accept \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{ "type": "realtime", "model": "gpt-realtime", "instructions": "You are Alex, a friendly concierge for Example Corp.", }' node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); await client.realtime.calls.accept('call_id', { type: 'realtime' }); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) client.realtime.calls.accept( call_id="call_id", type="realtime", ) go: | package main import ( "context" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/realtime" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) err := client.Realtime.Calls.Accept( context.TODO(), "call_id", realtime.CallAcceptParams{ RealtimeSessionCreateRequest: realtime.RealtimeSessionCreateRequestParam{ }, }, ) if err != nil { panic(err.Error()) } } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.realtime.RealtimeSessionCreateRequest; import com.openai.models.realtime.calls.CallAcceptParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); CallAcceptParams params = CallAcceptParams.builder() .callId("call_id") .realtimeSessionCreateRequest(RealtimeSessionCreateRequest.builder().build()) .build(); client.realtime().calls().accept(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") result = openai.realtime.calls.accept("call_id", type: :realtime) puts(result) description: |- Accept an incoming SIP call and configure the realtime session that will handle it. /realtime/calls/{call_id}/hangup: post: summary: Hang up call operationId: hangup-realtime-call tags: - Realtime parameters: - in: path name: call_id required: true schema: type: string description: >- The identifier for the call. For SIP calls, use the value provided in the [`realtime.call.incoming`](https://platform.openai.com/docs/api-reference/webhook-events/realtime/call/incoming) webhook. For WebRTC sessions, reuse the call ID returned in the `Location` header when creating the call with [`POST /v1/realtime/calls`](https://platform.openai.com/docs/api-reference/realtime/create-call). responses: '200': description: Call hangup initiated successfully. x-oaiMeta: name: Hang up call group: realtime-calls returns: Returns `200 OK` when OpenAI begins terminating the realtime call. examples: response: '' request: curl: |- curl -X POST https://api.openai.com/v1/realtime/calls/$CALL_ID/hangup \ -H "Authorization: Bearer $OPENAI_API_KEY" node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); await client.realtime.calls.hangup('call_id'); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) client.realtime.calls.hangup( "call_id", ) go: | package main import ( "context" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) err := client.Realtime.Calls.Hangup(context.TODO(), "call_id") if err != nil { panic(err.Error()) } } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.realtime.calls.CallHangupParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); client.realtime().calls().hangup("call_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") result = openai.realtime.calls.hangup("call_id") puts(result) description: |- End an active Realtime API call, whether it was initiated over SIP or WebRTC. /realtime/calls/{call_id}/refer: post: summary: Refer call operationId: refer-realtime-call tags: - Realtime parameters: - in: path name: call_id required: true schema: type: string description: >- The identifier for the call provided in the [`realtime.call.incoming`](https://platform.openai.com/docs/api-reference/webhook-events/realtime/call/incoming) webhook. requestBody: required: true description: Destination URI for the REFER request. content: application/json: schema: $ref: '#/components/schemas/RealtimeCallReferRequest' responses: '200': description: Call referred successfully. x-oaiMeta: name: Refer call group: realtime-calls returns: Returns `200 OK` once the REFER is handed off to your SIP provider. examples: response: '' request: curl: |- curl -X POST https://api.openai.com/v1/realtime/calls/$CALL_ID/refer \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{"target_uri": "tel:+14155550123"}' node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); await client.realtime.calls.refer('call_id', { target_uri: 'tel:+14155550123' }); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) client.realtime.calls.refer( call_id="call_id", target_uri="tel:+14155550123", ) go: | package main import ( "context" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/realtime" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) err := client.Realtime.Calls.Refer( context.TODO(), "call_id", realtime.CallReferParams{ TargetUri: "tel:+14155550123", }, ) if err != nil { panic(err.Error()) } } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.realtime.calls.CallReferParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); CallReferParams params = CallReferParams.builder() .callId("call_id") .targetUri("tel:+14155550123") .build(); client.realtime().calls().refer(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") result = openai.realtime.calls.refer("call_id", target_uri: "tel:+14155550123") puts(result) description: Transfer an active SIP call to a new destination using the SIP REFER verb. /realtime/calls/{call_id}/reject: post: summary: Reject call operationId: reject-realtime-call tags: - Realtime parameters: - in: path name: call_id required: true schema: type: string description: >- The identifier for the call provided in the [`realtime.call.incoming`](https://platform.openai.com/docs/api-reference/webhook-events/realtime/call/incoming) webhook. requestBody: required: false description: |- Provide an optional SIP status code. When omitted the API responds with `603 Decline`. content: application/json: schema: $ref: '#/components/schemas/RealtimeCallRejectRequest' responses: '200': description: Call rejected successfully. x-oaiMeta: name: Reject call group: realtime-calls returns: Returns `200 OK` after OpenAI sends the SIP status code to the caller. examples: response: '' request: curl: |- curl -X POST https://api.openai.com/v1/realtime/calls/$CALL_ID/reject \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{"status_code": 486}' node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); await client.realtime.calls.reject('call_id'); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) client.realtime.calls.reject( call_id="call_id", ) go: | package main import ( "context" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/realtime" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) err := client.Realtime.Calls.Reject( context.TODO(), "call_id", realtime.CallRejectParams{ }, ) if err != nil { panic(err.Error()) } } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.realtime.calls.CallRejectParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); client.realtime().calls().reject("call_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") result = openai.realtime.calls.reject("call_id") puts(result) description: Decline an incoming SIP call by returning a SIP status code to the caller. /realtime/client_secrets: post: summary: Create client secret operationId: create-realtime-client-secret tags: - Realtime requestBody: description: Create a client secret with the given session configuration. required: true content: application/json: schema: $ref: '#/components/schemas/RealtimeCreateClientSecretRequest' responses: '200': description: Client secret created successfully. content: application/json: schema: $ref: '#/components/schemas/RealtimeCreateClientSecretResponse' x-oaiMeta: name: Create client secret group: realtime returns: >- The created client secret and the effective session object. The client secret is a string that looks like `ek_1234`. examples: response: | { "value": "ek_68af296e8e408191a1120ab6383263c2", "expires_at": 1756310470, "session": { "type": "realtime", "object": "realtime.session", "id": "sess_C9CiUVUzUzYIssh3ELY1d", "model": "gpt-realtime", "output_modalities": [ "audio" ], "instructions": "You are a friendly assistant.", "tools": [], "tool_choice": "auto", "max_output_tokens": "inf", "tracing": null, "truncation": "auto", "prompt": null, "expires_at": 0, "audio": { "input": { "format": { "type": "audio/pcm", "rate": 24000 }, "transcription": null, "noise_reduction": null, "turn_detection": { "type": "server_vad", } }, "output": { "format": { "type": "audio/pcm", "rate": 24000 }, "voice": "alloy", "speed": 1.0 } }, "include": null } } request: curl: | curl -X POST https://api.openai.com/v1/realtime/client_secrets \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{ "expires_after": { "anchor": "created_at", "seconds": 600 }, "session": { "type": "realtime", "model": "gpt-realtime", "instructions": "You are a friendly assistant." } }' node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const clientSecret = await client.realtime.clientSecrets.create(); console.log(clientSecret.expires_at); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) client_secret = client.realtime.client_secrets.create() print(client_secret.expires_at) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/realtime" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) clientSecret, err := client.Realtime.ClientSecrets.New(context.TODO(), realtime.ClientSecretNewParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", clientSecret.ExpiresAt) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.realtime.clientsecrets.ClientSecretCreateParams; import com.openai.models.realtime.clientsecrets.ClientSecretCreateResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ClientSecretCreateResponse clientSecret = client.realtime().clientSecrets().create(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") client_secret = openai.realtime.client_secrets.create puts(client_secret) description: | Create a Realtime client secret with an associated session configuration. /realtime/sessions: post: summary: Create session operationId: create-realtime-session tags: - Realtime requestBody: description: Create an ephemeral API key with the given session configuration. required: true content: application/json: schema: $ref: '#/components/schemas/RealtimeSessionCreateRequest' responses: '200': description: Session created successfully. content: application/json: schema: $ref: '#/components/schemas/RealtimeSessionCreateResponse' x-oaiMeta: name: Create session group: realtime returns: The created Realtime session object, plus an ephemeral key examples: request: curl: | curl -X POST https://api.openai.com/v1/realtime/sessions \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{ "model": "gpt-realtime", "modalities": ["audio", "text"], "instructions": "You are a friendly assistant." }' response: | { "id": "sess_001", "object": "realtime.session", "model": "gpt-realtime-2025-08-25", "modalities": ["audio", "text"], "instructions": "You are a friendly assistant.", "voice": "alloy", "input_audio_format": "pcm16", "output_audio_format": "pcm16", "input_audio_transcription": { "model": "whisper-1" }, "turn_detection": null, "tools": [], "tool_choice": "none", "temperature": 0.7, "max_response_output_tokens": 200, "speed": 1.1, "tracing": "auto", "client_secret": { "value": "ek_abc123", "expires_at": 1234567890 } } description: | Create an ephemeral API token for use in client-side applications with the Realtime API. Can be configured with the same session parameters as the `session.update` client event. It responds with a session object, plus a `client_secret` key which contains a usable ephemeral API token that can be used to authenticate browser clients for the Realtime API. /realtime/transcription_sessions: post: summary: Create transcription session operationId: create-realtime-transcription-session tags: - Realtime requestBody: description: Create an ephemeral API key with the given session configuration. required: true content: application/json: schema: $ref: '#/components/schemas/RealtimeTranscriptionSessionCreateRequest' responses: '200': description: Session created successfully. content: application/json: schema: $ref: '#/components/schemas/RealtimeTranscriptionSessionCreateResponse' x-oaiMeta: name: Create transcription session group: realtime returns: >- The created [Realtime transcription session object](https://platform.openai.com/docs/api-reference/realtime-sessions/transcription_session_object), plus an ephemeral key examples: request: curl: | curl -X POST https://api.openai.com/v1/realtime/transcription_sessions \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{}' response: | { "id": "sess_BBwZc7cFV3XizEyKGDCGL", "object": "realtime.transcription_session", "modalities": ["audio", "text"], "turn_detection": { "type": "server_vad", "threshold": 0.5, "prefix_padding_ms": 300, "silence_duration_ms": 200 }, "input_audio_format": "pcm16", "input_audio_transcription": { "model": "gpt-4o-transcribe", "language": null, "prompt": "" }, "client_secret": null } description: | Create an ephemeral API token for use in client-side applications with the Realtime API specifically for realtime transcriptions. Can be configured with the same session parameters as the `transcription_session.update` client event. It responds with a session object, plus a `client_secret` key which contains a usable ephemeral API token that can be used to authenticate browser clients for the Realtime API. /responses: post: operationId: createResponse tags: - Responses summary: Create a model response requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CreateResponse' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/Response' text/event-stream: schema: $ref: '#/components/schemas/ResponseStreamEvent' x-oaiMeta: name: Create a model response group: responses returns: | Returns a [Response](https://platform.openai.com/docs/api-reference/responses/object) object. path: create examples: - title: Text input request: curl: | curl https://api.openai.com/v1/responses \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "gpt-4.1", "input": "Tell me a three sentence bedtime story about a unicorn." }' javascript: | import OpenAI from "openai"; const openai = new OpenAI(); const response = await openai.responses.create({ model: "gpt-4.1", input: "Tell me a three sentence bedtime story about a unicorn." }); console.log(response); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) response = client.responses.create() print(response.id) csharp: > using System; using OpenAI.Responses; OpenAIResponseClient client = new( model: "gpt-4.1", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); OpenAIResponse response = client.CreateResponse("Tell me a three sentence bedtime story about a unicorn."); Console.WriteLine(response.GetOutputText()); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const response = await client.responses.create(); console.log(response.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/responses" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) response, err := client.Responses.New(context.TODO(), responses.ResponseNewParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", response.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.responses.Response; import com.openai.models.responses.ResponseCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Response response = client.responses().create(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") response = openai.responses.create puts(response) response: | { "id": "resp_67ccd2bed1ec8190b14f964abc0542670bb6a6b452d3795b", "object": "response", "created_at": 1741476542, "status": "completed", "error": null, "incomplete_details": null, "instructions": null, "max_output_tokens": null, "model": "gpt-4.1-2025-04-14", "output": [ { "type": "message", "id": "msg_67ccd2bf17f0819081ff3bb2cf6508e60bb6a6b452d3795b", "status": "completed", "role": "assistant", "content": [ { "type": "output_text", "text": "In a peaceful grove beneath a silver moon, a unicorn named Lumina discovered a hidden pool that reflected the stars. As she dipped her horn into the water, the pool began to shimmer, revealing a pathway to a magical realm of endless night skies. Filled with wonder, Lumina whispered a wish for all who dream to find their own hidden magic, and as she glanced back, her hoofprints sparkled like stardust.", "annotations": [] } ] } ], "parallel_tool_calls": true, "previous_response_id": null, "reasoning": { "effort": null, "summary": null }, "store": true, "temperature": 1.0, "text": { "format": { "type": "text" } }, "tool_choice": "auto", "tools": [], "top_p": 1.0, "truncation": "disabled", "usage": { "input_tokens": 36, "input_tokens_details": { "cached_tokens": 0 }, "output_tokens": 87, "output_tokens_details": { "reasoning_tokens": 0 }, "total_tokens": 123 }, "user": null, "metadata": {} } - title: Image input request: curl: | curl https://api.openai.com/v1/responses \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "gpt-4.1", "input": [ { "role": "user", "content": [ {"type": "input_text", "text": "what is in this image?"}, { "type": "input_image", "image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" } ] } ] }' javascript: | import OpenAI from "openai"; const openai = new OpenAI(); const response = await openai.responses.create({ model: "gpt-4.1", input: [ { role: "user", content: [ { type: "input_text", text: "what is in this image?" }, { type: "input_image", image_url: "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg", }, ], }, ], }); console.log(response); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) response = client.responses.create() print(response.id) csharp: | using System; using System.Collections.Generic; using OpenAI.Responses; OpenAIResponseClient client = new( model: "gpt-4.1", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); List inputItems = [ ResponseItem.CreateUserMessageItem( [ ResponseContentPart.CreateInputTextPart("What is in this image?"), ResponseContentPart.CreateInputImagePart(new Uri("https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg")) ] ) ]; OpenAIResponse response = client.CreateResponse(inputItems); Console.WriteLine(response.GetOutputText()); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const response = await client.responses.create(); console.log(response.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/responses" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) response, err := client.Responses.New(context.TODO(), responses.ResponseNewParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", response.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.responses.Response; import com.openai.models.responses.ResponseCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Response response = client.responses().create(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") response = openai.responses.create puts(response) response: | { "id": "resp_67ccd3a9da748190baa7f1570fe91ac604becb25c45c1d41", "object": "response", "created_at": 1741476777, "status": "completed", "error": null, "incomplete_details": null, "instructions": null, "max_output_tokens": null, "model": "gpt-4.1-2025-04-14", "output": [ { "type": "message", "id": "msg_67ccd3acc8d48190a77525dc6de64b4104becb25c45c1d41", "status": "completed", "role": "assistant", "content": [ { "type": "output_text", "text": "The image depicts a scenic landscape with a wooden boardwalk or pathway leading through lush, green grass under a blue sky with some clouds. The setting suggests a peaceful natural area, possibly a park or nature reserve. There are trees and shrubs in the background.", "annotations": [] } ] } ], "parallel_tool_calls": true, "previous_response_id": null, "reasoning": { "effort": null, "summary": null }, "store": true, "temperature": 1.0, "text": { "format": { "type": "text" } }, "tool_choice": "auto", "tools": [], "top_p": 1.0, "truncation": "disabled", "usage": { "input_tokens": 328, "input_tokens_details": { "cached_tokens": 0 }, "output_tokens": 52, "output_tokens_details": { "reasoning_tokens": 0 }, "total_tokens": 380 }, "user": null, "metadata": {} } - title: File input request: curl: | curl https://api.openai.com/v1/responses \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "gpt-4.1", "input": [ { "role": "user", "content": [ {"type": "input_text", "text": "what is in this file?"}, { "type": "input_file", "file_url": "https://www.berkshirehathaway.com/letters/2024ltr.pdf" } ] } ] }' javascript: | import OpenAI from "openai"; const openai = new OpenAI(); const response = await openai.responses.create({ model: "gpt-4.1", input: [ { role: "user", content: [ { type: "input_text", text: "what is in this file?" }, { type: "input_file", file_url: "https://www.berkshirehathaway.com/letters/2024ltr.pdf", }, ], }, ], }); console.log(response); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) response = client.responses.create() print(response.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const response = await client.responses.create(); console.log(response.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/responses" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) response, err := client.Responses.New(context.TODO(), responses.ResponseNewParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", response.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.responses.Response; import com.openai.models.responses.ResponseCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Response response = client.responses().create(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") response = openai.responses.create puts(response) response: | { "id": "resp_686eef60237881a2bd1180bb8b13de430e34c516d176ff86", "object": "response", "created_at": 1752100704, "status": "completed", "background": false, "error": null, "incomplete_details": null, "instructions": null, "max_output_tokens": null, "max_tool_calls": null, "model": "gpt-4.1-2025-04-14", "output": [ { "id": "msg_686eef60d3e081a29283bdcbc4322fd90e34c516d176ff86", "type": "message", "status": "completed", "content": [ { "type": "output_text", "annotations": [], "logprobs": [], "text": "The file seems to contain excerpts from a letter to the shareholders of Berkshire Hathaway Inc., likely written by Warren Buffett. It covers several topics:\n\n1. **Communication Philosophy**: Buffett emphasizes the importance of transparency and candidness in reporting mistakes and successes to shareholders.\n\n2. **Mistakes and Learnings**: The letter acknowledges past mistakes in business assessments and management hires, highlighting the importance of correcting errors promptly.\n\n3. **CEO Succession**: Mention of Greg Abel stepping in as the new CEO and continuing the tradition of honest communication.\n\n4. **Pete Liegl Story**: A detailed account of acquiring Forest River and the relationship with its founder, highlighting trust and effective business decisions.\n\n5. **2024 Performance**: Overview of business performance, particularly in insurance and investment activities, with a focus on GEICO's improvement.\n\n6. **Tax Contributions**: Discussion of significant tax payments to the U.S. Treasury, credited to shareholders' reinvestments.\n\n7. **Investment Strategy**: A breakdown of Berkshire\u2019s investments in both controlled subsidiaries and marketable equities, along with a focus on long-term holding strategies.\n\n8. **American Capitalism**: Reflections on America\u2019s economic development and Berkshire\u2019s role within it.\n\n9. **Property-Casualty Insurance**: Insights into the P/C insurance business model and its challenges and benefits.\n\n10. **Japanese Investments**: Information about Berkshire\u2019s investments in Japanese companies and future plans.\n\n11. **Annual Meeting**: Details about the upcoming annual gathering in Omaha, including schedule changes and new book releases.\n\n12. **Personal Anecdotes**: Light-hearted stories about family and interactions, conveying Buffett's personable approach.\n\n13. **Financial Performance Data**: Tables comparing Berkshire\u2019s annual performance to the S&P 500, showing impressive long-term gains.\n\nOverall, the letter reinforces Berkshire Hathaway's commitment to transparency, investment in both its businesses and the wider economy, and emphasizes strong leadership and prudent financial management." } ], "role": "assistant" } ], "parallel_tool_calls": true, "previous_response_id": null, "reasoning": { "effort": null, "summary": null }, "service_tier": "default", "store": true, "temperature": 1.0, "text": { "format": { "type": "text" } }, "tool_choice": "auto", "tools": [], "top_logprobs": 0, "top_p": 1.0, "truncation": "disabled", "usage": { "input_tokens": 8438, "input_tokens_details": { "cached_tokens": 0 }, "output_tokens": 398, "output_tokens_details": { "reasoning_tokens": 0 }, "total_tokens": 8836 }, "user": null, "metadata": {} } - title: Web search request: curl: | curl https://api.openai.com/v1/responses \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "gpt-4.1", "tools": [{ "type": "web_search_preview" }], "input": "What was a positive news story from today?" }' javascript: | import OpenAI from "openai"; const openai = new OpenAI(); const response = await openai.responses.create({ model: "gpt-4.1", tools: [{ type: "web_search_preview" }], input: "What was a positive news story from today?", }); console.log(response); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) response = client.responses.create() print(response.id) csharp: | using System; using OpenAI.Responses; OpenAIResponseClient client = new( model: "gpt-4.1", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); string userInputText = "What was a positive news story from today?"; ResponseCreationOptions options = new() { Tools = { ResponseTool.CreateWebSearchTool() }, }; OpenAIResponse response = client.CreateResponse(userInputText, options); Console.WriteLine(response.GetOutputText()); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const response = await client.responses.create(); console.log(response.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/responses" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) response, err := client.Responses.New(context.TODO(), responses.ResponseNewParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", response.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.responses.Response; import com.openai.models.responses.ResponseCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Response response = client.responses().create(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") response = openai.responses.create puts(response) response: | { "id": "resp_67ccf18ef5fc8190b16dbee19bc54e5f087bb177ab789d5c", "object": "response", "created_at": 1741484430, "status": "completed", "error": null, "incomplete_details": null, "instructions": null, "max_output_tokens": null, "model": "gpt-4.1-2025-04-14", "output": [ { "type": "web_search_call", "id": "ws_67ccf18f64008190a39b619f4c8455ef087bb177ab789d5c", "status": "completed" }, { "type": "message", "id": "msg_67ccf190ca3881909d433c50b1f6357e087bb177ab789d5c", "status": "completed", "role": "assistant", "content": [ { "type": "output_text", "text": "As of today, March 9, 2025, one notable positive news story...", "annotations": [ { "type": "url_citation", "start_index": 442, "end_index": 557, "url": "https://.../?utm_source=chatgpt.com", "title": "..." }, { "type": "url_citation", "start_index": 962, "end_index": 1077, "url": "https://.../?utm_source=chatgpt.com", "title": "..." }, { "type": "url_citation", "start_index": 1336, "end_index": 1451, "url": "https://.../?utm_source=chatgpt.com", "title": "..." } ] } ] } ], "parallel_tool_calls": true, "previous_response_id": null, "reasoning": { "effort": null, "summary": null }, "store": true, "temperature": 1.0, "text": { "format": { "type": "text" } }, "tool_choice": "auto", "tools": [ { "type": "web_search_preview", "domains": [], "search_context_size": "medium", "user_location": { "type": "approximate", "city": null, "country": "US", "region": null, "timezone": null } } ], "top_p": 1.0, "truncation": "disabled", "usage": { "input_tokens": 328, "input_tokens_details": { "cached_tokens": 0 }, "output_tokens": 356, "output_tokens_details": { "reasoning_tokens": 0 }, "total_tokens": 684 }, "user": null, "metadata": {} } - title: File search request: curl: | curl https://api.openai.com/v1/responses \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "gpt-4.1", "tools": [{ "type": "file_search", "vector_store_ids": ["vs_1234567890"], "max_num_results": 20 }], "input": "What are the attributes of an ancient brown dragon?" }' javascript: | import OpenAI from "openai"; const openai = new OpenAI(); const response = await openai.responses.create({ model: "gpt-4.1", tools: [{ type: "file_search", vector_store_ids: ["vs_1234567890"], max_num_results: 20 }], input: "What are the attributes of an ancient brown dragon?", }); console.log(response); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) response = client.responses.create() print(response.id) csharp: | using System; using OpenAI.Responses; OpenAIResponseClient client = new( model: "gpt-4.1", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); string userInputText = "What are the attributes of an ancient brown dragon?"; ResponseCreationOptions options = new() { Tools = { ResponseTool.CreateFileSearchTool( vectorStoreIds: ["vs_1234567890"], maxResultCount: 20 ) }, }; OpenAIResponse response = client.CreateResponse(userInputText, options); Console.WriteLine(response.GetOutputText()); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const response = await client.responses.create(); console.log(response.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/responses" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) response, err := client.Responses.New(context.TODO(), responses.ResponseNewParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", response.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.responses.Response; import com.openai.models.responses.ResponseCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Response response = client.responses().create(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") response = openai.responses.create puts(response) response: | { "id": "resp_67ccf4c55fc48190b71bd0463ad3306d09504fb6872380d7", "object": "response", "created_at": 1741485253, "status": "completed", "error": null, "incomplete_details": null, "instructions": null, "max_output_tokens": null, "model": "gpt-4.1-2025-04-14", "output": [ { "type": "file_search_call", "id": "fs_67ccf4c63cd08190887ef6464ba5681609504fb6872380d7", "status": "completed", "queries": [ "attributes of an ancient brown dragon" ], "results": null }, { "type": "message", "id": "msg_67ccf4c93e5c81909d595b369351a9d309504fb6872380d7", "status": "completed", "role": "assistant", "content": [ { "type": "output_text", "text": "The attributes of an ancient brown dragon include...", "annotations": [ { "type": "file_citation", "index": 320, "file_id": "file-4wDz5b167pAf72nx1h9eiN", "filename": "dragons.pdf" }, { "type": "file_citation", "index": 576, "file_id": "file-4wDz5b167pAf72nx1h9eiN", "filename": "dragons.pdf" }, { "type": "file_citation", "index": 815, "file_id": "file-4wDz5b167pAf72nx1h9eiN", "filename": "dragons.pdf" }, { "type": "file_citation", "index": 815, "file_id": "file-4wDz5b167pAf72nx1h9eiN", "filename": "dragons.pdf" }, { "type": "file_citation", "index": 1030, "file_id": "file-4wDz5b167pAf72nx1h9eiN", "filename": "dragons.pdf" }, { "type": "file_citation", "index": 1030, "file_id": "file-4wDz5b167pAf72nx1h9eiN", "filename": "dragons.pdf" }, { "type": "file_citation", "index": 1156, "file_id": "file-4wDz5b167pAf72nx1h9eiN", "filename": "dragons.pdf" }, { "type": "file_citation", "index": 1225, "file_id": "file-4wDz5b167pAf72nx1h9eiN", "filename": "dragons.pdf" } ] } ] } ], "parallel_tool_calls": true, "previous_response_id": null, "reasoning": { "effort": null, "summary": null }, "store": true, "temperature": 1.0, "text": { "format": { "type": "text" } }, "tool_choice": "auto", "tools": [ { "type": "file_search", "filters": null, "max_num_results": 20, "ranking_options": { "ranker": "auto", "score_threshold": 0.0 }, "vector_store_ids": [ "vs_1234567890" ] } ], "top_p": 1.0, "truncation": "disabled", "usage": { "input_tokens": 18307, "input_tokens_details": { "cached_tokens": 0 }, "output_tokens": 348, "output_tokens_details": { "reasoning_tokens": 0 }, "total_tokens": 18655 }, "user": null, "metadata": {} } - title: Streaming request: curl: | curl https://api.openai.com/v1/responses \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "gpt-4.1", "instructions": "You are a helpful assistant.", "input": "Hello!", "stream": true }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) response = client.responses.create() print(response.id) javascript: | import OpenAI from "openai"; const openai = new OpenAI(); const response = await openai.responses.create({ model: "gpt-4.1", instructions: "You are a helpful assistant.", input: "Hello!", stream: true, }); for await (const event of response) { console.log(event); } csharp: > using System; using System.ClientModel; using System.Threading.Tasks; using OpenAI.Responses; OpenAIResponseClient client = new( model: "gpt-4.1", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); string userInputText = "Hello!"; ResponseCreationOptions options = new() { Instructions = "You are a helpful assistant.", }; AsyncCollectionResult responseUpdates = client.CreateResponseStreamingAsync(userInputText, options); await foreach (StreamingResponseUpdate responseUpdate in responseUpdates) { if (responseUpdate is StreamingResponseOutputTextDeltaUpdate outputTextDeltaUpdate) { Console.Write(outputTextDeltaUpdate.Delta); } } node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const response = await client.responses.create(); console.log(response.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/responses" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) response, err := client.Responses.New(context.TODO(), responses.ResponseNewParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", response.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.responses.Response; import com.openai.models.responses.ResponseCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Response response = client.responses().create(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") response = openai.responses.create puts(response) response: > event: response.created data: {"type":"response.created","response":{"id":"resp_67c9fdcecf488190bdd9a0409de3a1ec07b8b0ad4e5eb654","object":"response","created_at":1741290958,"status":"in_progress","error":null,"incomplete_details":null,"instructions":"You are a helpful assistant.","max_output_tokens":null,"model":"gpt-4.1-2025-04-14","output":[],"parallel_tool_calls":true,"previous_response_id":null,"reasoning":{"effort":null,"summary":null},"store":true,"temperature":1.0,"text":{"format":{"type":"text"}},"tool_choice":"auto","tools":[],"top_p":1.0,"truncation":"disabled","usage":null,"user":null,"metadata":{}}} event: response.in_progress data: {"type":"response.in_progress","response":{"id":"resp_67c9fdcecf488190bdd9a0409de3a1ec07b8b0ad4e5eb654","object":"response","created_at":1741290958,"status":"in_progress","error":null,"incomplete_details":null,"instructions":"You are a helpful assistant.","max_output_tokens":null,"model":"gpt-4.1-2025-04-14","output":[],"parallel_tool_calls":true,"previous_response_id":null,"reasoning":{"effort":null,"summary":null},"store":true,"temperature":1.0,"text":{"format":{"type":"text"}},"tool_choice":"auto","tools":[],"top_p":1.0,"truncation":"disabled","usage":null,"user":null,"metadata":{}}} event: response.output_item.added data: {"type":"response.output_item.added","output_index":0,"item":{"id":"msg_67c9fdcf37fc8190ba82116e33fb28c507b8b0ad4e5eb654","type":"message","status":"in_progress","role":"assistant","content":[]}} event: response.content_part.added data: {"type":"response.content_part.added","item_id":"msg_67c9fdcf37fc8190ba82116e33fb28c507b8b0ad4e5eb654","output_index":0,"content_index":0,"part":{"type":"output_text","text":"","annotations":[]}} event: response.output_text.delta data: {"type":"response.output_text.delta","item_id":"msg_67c9fdcf37fc8190ba82116e33fb28c507b8b0ad4e5eb654","output_index":0,"content_index":0,"delta":"Hi"} ... event: response.output_text.done data: {"type":"response.output_text.done","item_id":"msg_67c9fdcf37fc8190ba82116e33fb28c507b8b0ad4e5eb654","output_index":0,"content_index":0,"text":"Hi there! How can I assist you today?"} event: response.content_part.done data: {"type":"response.content_part.done","item_id":"msg_67c9fdcf37fc8190ba82116e33fb28c507b8b0ad4e5eb654","output_index":0,"content_index":0,"part":{"type":"output_text","text":"Hi there! How can I assist you today?","annotations":[]}} event: response.output_item.done data: {"type":"response.output_item.done","output_index":0,"item":{"id":"msg_67c9fdcf37fc8190ba82116e33fb28c507b8b0ad4e5eb654","type":"message","status":"completed","role":"assistant","content":[{"type":"output_text","text":"Hi there! How can I assist you today?","annotations":[]}]}} event: response.completed data: {"type":"response.completed","response":{"id":"resp_67c9fdcecf488190bdd9a0409de3a1ec07b8b0ad4e5eb654","object":"response","created_at":1741290958,"status":"completed","error":null,"incomplete_details":null,"instructions":"You are a helpful assistant.","max_output_tokens":null,"model":"gpt-4.1-2025-04-14","output":[{"id":"msg_67c9fdcf37fc8190ba82116e33fb28c507b8b0ad4e5eb654","type":"message","status":"completed","role":"assistant","content":[{"type":"output_text","text":"Hi there! How can I assist you today?","annotations":[]}]}],"parallel_tool_calls":true,"previous_response_id":null,"reasoning":{"effort":null,"summary":null},"store":true,"temperature":1.0,"text":{"format":{"type":"text"}},"tool_choice":"auto","tools":[],"top_p":1.0,"truncation":"disabled","usage":{"input_tokens":37,"output_tokens":11,"output_tokens_details":{"reasoning_tokens":0},"total_tokens":48},"user":null,"metadata":{}}} - title: Functions request: curl: | curl https://api.openai.com/v1/responses \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "gpt-4.1", "input": "What is the weather like in Boston today?", "tools": [ { "type": "function", "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": ["celsius", "fahrenheit"] } }, "required": ["location", "unit"] } } ], "tool_choice": "auto" }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) response = client.responses.create() print(response.id) javascript: | import OpenAI from "openai"; const openai = new OpenAI(); const tools = [ { type: "function", name: "get_current_weather", description: "Get the current weather in a given location", parameters: { type: "object", properties: { location: { type: "string", description: "The city and state, e.g. San Francisco, CA", }, unit: { type: "string", enum: ["celsius", "fahrenheit"] }, }, required: ["location", "unit"], }, }, ]; const response = await openai.responses.create({ model: "gpt-4.1", tools: tools, input: "What is the weather like in Boston today?", tool_choice: "auto", }); console.log(response); csharp: | using System; using OpenAI.Responses; OpenAIResponseClient client = new( model: "gpt-4.1", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); ResponseTool getCurrentWeatherFunctionTool = ResponseTool.CreateFunctionTool( functionName: "get_current_weather", functionDescription: "Get the current weather in a given location", functionParameters: BinaryData.FromString(""" { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA" }, "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]} }, "required": ["location", "unit"] } """ ) ); string userInputText = "What is the weather like in Boston today?"; ResponseCreationOptions options = new() { Tools = { getCurrentWeatherFunctionTool }, ToolChoice = ResponseToolChoice.CreateAutoChoice(), }; OpenAIResponse response = client.CreateResponse(userInputText, options); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const response = await client.responses.create(); console.log(response.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/responses" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) response, err := client.Responses.New(context.TODO(), responses.ResponseNewParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", response.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.responses.Response; import com.openai.models.responses.ResponseCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Response response = client.responses().create(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") response = openai.responses.create puts(response) response: | { "id": "resp_67ca09c5efe0819096d0511c92b8c890096610f474011cc0", "object": "response", "created_at": 1741294021, "status": "completed", "error": null, "incomplete_details": null, "instructions": null, "max_output_tokens": null, "model": "gpt-4.1-2025-04-14", "output": [ { "type": "function_call", "id": "fc_67ca09c6bedc8190a7abfec07b1a1332096610f474011cc0", "call_id": "call_unLAR8MvFNptuiZK6K6HCy5k", "name": "get_current_weather", "arguments": "{\"location\":\"Boston, MA\",\"unit\":\"celsius\"}", "status": "completed" } ], "parallel_tool_calls": true, "previous_response_id": null, "reasoning": { "effort": null, "summary": null }, "store": true, "temperature": 1.0, "text": { "format": { "type": "text" } }, "tool_choice": "auto", "tools": [ { "type": "function", "description": "Get the current weather in a given location", "name": "get_current_weather", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": [ "celsius", "fahrenheit" ] } }, "required": [ "location", "unit" ] }, "strict": true } ], "top_p": 1.0, "truncation": "disabled", "usage": { "input_tokens": 291, "output_tokens": 23, "output_tokens_details": { "reasoning_tokens": 0 }, "total_tokens": 314 }, "user": null, "metadata": {} } - title: Reasoning request: curl: | curl https://api.openai.com/v1/responses \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "o3-mini", "input": "How much wood would a woodchuck chuck?", "reasoning": { "effort": "high" } }' javascript: | import OpenAI from "openai"; const openai = new OpenAI(); const response = await openai.responses.create({ model: "o3-mini", input: "How much wood would a woodchuck chuck?", reasoning: { effort: "high" } }); console.log(response); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) response = client.responses.create() print(response.id) csharp: | using System; using OpenAI.Responses; OpenAIResponseClient client = new( model: "o3-mini", apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); string userInputText = "How much wood would a woodchuck chuck?"; ResponseCreationOptions options = new() { ReasoningOptions = new() { ReasoningEffortLevel = ResponseReasoningEffortLevel.High, }, }; OpenAIResponse response = client.CreateResponse(userInputText, options); Console.WriteLine(response.GetOutputText()); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const response = await client.responses.create(); console.log(response.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/responses" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) response, err := client.Responses.New(context.TODO(), responses.ResponseNewParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", response.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.responses.Response; import com.openai.models.responses.ResponseCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Response response = client.responses().create(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") response = openai.responses.create puts(response) response: | { "id": "resp_67ccd7eca01881908ff0b5146584e408072912b2993db808", "object": "response", "created_at": 1741477868, "status": "completed", "error": null, "incomplete_details": null, "instructions": null, "max_output_tokens": null, "model": "o1-2024-12-17", "output": [ { "type": "message", "id": "msg_67ccd7f7b5848190a6f3e95d809f6b44072912b2993db808", "status": "completed", "role": "assistant", "content": [ { "type": "output_text", "text": "The classic tongue twister...", "annotations": [] } ] } ], "parallel_tool_calls": true, "previous_response_id": null, "reasoning": { "effort": "high", "summary": null }, "store": true, "temperature": 1.0, "text": { "format": { "type": "text" } }, "tool_choice": "auto", "tools": [], "top_p": 1.0, "truncation": "disabled", "usage": { "input_tokens": 81, "input_tokens_details": { "cached_tokens": 0 }, "output_tokens": 1035, "output_tokens_details": { "reasoning_tokens": 832 }, "total_tokens": 1116 }, "user": null, "metadata": {} } description: > Creates a model response. Provide [text](https://platform.openai.com/docs/guides/text) or [image](https://platform.openai.com/docs/guides/images) inputs to generate [text](https://platform.openai.com/docs/guides/text) or [JSON](https://platform.openai.com/docs/guides/structured-outputs) outputs. Have the model call your own [custom code](https://platform.openai.com/docs/guides/function-calling) or use built-in [tools](https://platform.openai.com/docs/guides/tools) like [web search](https://platform.openai.com/docs/guides/tools-web-search) or [file search](https://platform.openai.com/docs/guides/tools-file-search) to use your own data as input for the model's response. /responses/{response_id}: get: operationId: getResponse tags: - Responses summary: Get a model response parameters: - in: path name: response_id required: true schema: type: string example: resp_677efb5139a88190b512bc3fef8e535d description: The ID of the response to retrieve. - in: query name: include schema: type: array items: $ref: '#/components/schemas/IncludeEnum' description: | Additional fields to include in the response. See the `include` parameter for Response creation above for more information. - in: query name: stream schema: type: boolean description: > If set to true, the model response data will be streamed to the client as it is generated using [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). See the [Streaming section below](https://platform.openai.com/docs/api-reference/responses-streaming) for more information. - in: query name: starting_after schema: type: integer description: | The sequence number of the event after which to start streaming. - in: query name: include_obfuscation schema: type: boolean description: | When true, stream obfuscation will be enabled. Stream obfuscation adds random characters to an `obfuscation` field on streaming delta events to normalize payload sizes as a mitigation to certain side-channel attacks. These obfuscation fields are included by default, but add a small amount of overhead to the data stream. You can set `include_obfuscation` to false to optimize for bandwidth if you trust the network links between your application and the OpenAI API. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/Response' x-oaiMeta: name: Get a model response group: responses returns: | The [Response](https://platform.openai.com/docs/api-reference/responses/object) object matching the specified ID. examples: response: | { "id": "resp_67cb71b351908190a308f3859487620d06981a8637e6bc44", "object": "response", "created_at": 1741386163, "status": "completed", "error": null, "incomplete_details": null, "instructions": null, "max_output_tokens": null, "model": "gpt-4o-2024-08-06", "output": [ { "type": "message", "id": "msg_67cb71b3c2b0819084d481baaaf148f206981a8637e6bc44", "status": "completed", "role": "assistant", "content": [ { "type": "output_text", "text": "Silent circuits hum, \nThoughts emerge in data streams— \nDigital dawn breaks.", "annotations": [] } ] } ], "parallel_tool_calls": true, "previous_response_id": null, "reasoning": { "effort": null, "summary": null }, "store": true, "temperature": 1.0, "text": { "format": { "type": "text" } }, "tool_choice": "auto", "tools": [], "top_p": 1.0, "truncation": "disabled", "usage": { "input_tokens": 32, "input_tokens_details": { "cached_tokens": 0 }, "output_tokens": 18, "output_tokens_details": { "reasoning_tokens": 0 }, "total_tokens": 50 }, "user": null, "metadata": {} } request: curl: | curl https://api.openai.com/v1/responses/resp_123 \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" javascript: | import OpenAI from "openai"; const client = new OpenAI(); const response = await client.responses.retrieve("resp_123"); console.log(response); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) response = client.responses.retrieve( response_id="resp_677efb5139a88190b512bc3fef8e535d", ) print(response.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const response = await client.responses.retrieve('resp_677efb5139a88190b512bc3fef8e535d'); console.log(response.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/responses" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) response, err := client.Responses.Get( context.TODO(), "resp_677efb5139a88190b512bc3fef8e535d", responses.ResponseGetParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", response.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.responses.Response; import com.openai.models.responses.ResponseRetrieveParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Response response = client.responses().retrieve("resp_677efb5139a88190b512bc3fef8e535d"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") response = openai.responses.retrieve("resp_677efb5139a88190b512bc3fef8e535d") puts(response) description: | Retrieves a model response with the given ID. delete: operationId: deleteResponse tags: - Responses summary: Delete a model response parameters: - in: path name: response_id required: true schema: type: string example: resp_677efb5139a88190b512bc3fef8e535d description: The ID of the response to delete. responses: '200': description: OK '404': description: Not Found content: application/json: schema: $ref: '#/components/schemas/Error' x-oaiMeta: name: Delete a model response group: responses returns: | A success message. examples: response: | { "id": "resp_6786a1bec27481909a17d673315b29f6", "object": "response", "deleted": true } request: curl: | curl -X DELETE https://api.openai.com/v1/responses/resp_123 \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" javascript: | import OpenAI from "openai"; const client = new OpenAI(); const response = await client.responses.delete("resp_123"); console.log(response); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) client.responses.delete( "resp_677efb5139a88190b512bc3fef8e535d", ) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); await client.responses.delete('resp_677efb5139a88190b512bc3fef8e535d'); go: | package main import ( "context" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) err := client.Responses.Delete(context.TODO(), "resp_677efb5139a88190b512bc3fef8e535d") if err != nil { panic(err.Error()) } } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.responses.ResponseDeleteParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); client.responses().delete("resp_677efb5139a88190b512bc3fef8e535d"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") result = openai.responses.delete("resp_677efb5139a88190b512bc3fef8e535d") puts(result) description: | Deletes a model response with the given ID. /responses/{response_id}/cancel: post: operationId: cancelResponse tags: - Responses summary: Cancel a response parameters: - in: path name: response_id required: true schema: type: string example: resp_677efb5139a88190b512bc3fef8e535d description: The ID of the response to cancel. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/Response' '404': description: Not Found content: application/json: schema: $ref: '#/components/schemas/Error' x-oaiMeta: name: Cancel a response group: responses returns: | A [Response](https://platform.openai.com/docs/api-reference/responses/object) object. examples: response: | { "id": "resp_67cb71b351908190a308f3859487620d06981a8637e6bc44", "object": "response", "created_at": 1741386163, "status": "completed", "error": null, "incomplete_details": null, "instructions": null, "max_output_tokens": null, "model": "gpt-4o-2024-08-06", "output": [ { "type": "message", "id": "msg_67cb71b3c2b0819084d481baaaf148f206981a8637e6bc44", "status": "completed", "role": "assistant", "content": [ { "type": "output_text", "text": "Silent circuits hum, \nThoughts emerge in data streams— \nDigital dawn breaks.", "annotations": [] } ] } ], "parallel_tool_calls": true, "previous_response_id": null, "reasoning": { "effort": null, "summary": null }, "store": true, "temperature": 1.0, "text": { "format": { "type": "text" } }, "tool_choice": "auto", "tools": [], "top_p": 1.0, "truncation": "disabled", "usage": { "input_tokens": 32, "input_tokens_details": { "cached_tokens": 0 }, "output_tokens": 18, "output_tokens_details": { "reasoning_tokens": 0 }, "total_tokens": 50 }, "user": null, "metadata": {} } request: curl: | curl -X POST https://api.openai.com/v1/responses/resp_123/cancel \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" javascript: | import OpenAI from "openai"; const client = new OpenAI(); const response = await client.responses.cancel("resp_123"); console.log(response); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) response = client.responses.cancel( "resp_677efb5139a88190b512bc3fef8e535d", ) print(response.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const response = await client.responses.cancel('resp_677efb5139a88190b512bc3fef8e535d'); console.log(response.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) response, err := client.Responses.Cancel(context.TODO(), "resp_677efb5139a88190b512bc3fef8e535d") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", response.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.responses.Response; import com.openai.models.responses.ResponseCancelParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Response response = client.responses().cancel("resp_677efb5139a88190b512bc3fef8e535d"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") response = openai.responses.cancel("resp_677efb5139a88190b512bc3fef8e535d") puts(response) description: | Cancels a model response with the given ID. Only responses created with the `background` parameter set to `true` can be cancelled. [Learn more](https://platform.openai.com/docs/guides/background). /responses/{response_id}/input_items: get: operationId: listInputItems tags: - Responses summary: List input items parameters: - in: path name: response_id required: true schema: type: string description: The ID of the response to retrieve input items for. - name: limit in: query description: | A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - in: query name: order schema: type: string enum: - asc - desc description: | The order to return the input items in. Default is `desc`. - `asc`: Return the input items in ascending order. - `desc`: Return the input items in descending order. - in: query name: after schema: type: string description: | An item ID to list items after, used in pagination. - in: query name: include schema: type: array items: $ref: '#/components/schemas/IncludeEnum' description: | Additional fields to include in the response. See the `include` parameter for Response creation above for more information. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ResponseItemList' x-oaiMeta: name: List input items group: responses returns: A list of input item objects. examples: response: | { "object": "list", "data": [ { "id": "msg_abc123", "type": "message", "role": "user", "content": [ { "type": "input_text", "text": "Tell me a three sentence bedtime story about a unicorn." } ] } ], "first_id": "msg_abc123", "last_id": "msg_abc123", "has_more": false } request: curl: | curl https://api.openai.com/v1/responses/resp_abc123/input_items \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" javascript: | import OpenAI from "openai"; const client = new OpenAI(); const response = await client.responses.inputItems.list("resp_123"); console.log(response.data); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.responses.input_items.list( response_id="response_id", ) page = page.data[0] print(page) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const responseItem of client.responses.inputItems.list('response_id')) { console.log(responseItem); } go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/responses" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.Responses.InputItems.List( context.TODO(), "response_id", responses.InputItemListParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.responses.inputitems.InputItemListPage; import com.openai.models.responses.inputitems.InputItemListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); InputItemListPage page = client.responses().inputItems().list("response_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.responses.input_items.list("response_id") puts(page) description: Returns a list of input items for a given response. /threads: post: operationId: createThread tags: - Assistants summary: Create thread requestBody: content: application/json: schema: $ref: '#/components/schemas/CreateThreadRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ThreadObject' x-oaiMeta: name: Create thread group: threads beta: true returns: A [thread](https://platform.openai.com/docs/api-reference/threads) object. examples: - title: Empty request: curl: | curl https://api.openai.com/v1/threads \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "OpenAI-Beta: assistants=v2" \ -d '' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) thread = client.beta.threads.create() print(thread.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const thread = await client.beta.threads.create(); console.log(thread.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) thread, err := client.Beta.Threads.New(context.TODO(), openai.BetaThreadNewParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", thread.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.Thread; import com.openai.models.beta.threads.ThreadCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Thread thread = client.beta().threads().create(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") thread = openai.beta.threads.create puts(thread) response: | { "id": "thread_abc123", "object": "thread", "created_at": 1699012949, "metadata": {}, "tool_resources": {} } - title: Messages request: curl: | curl https://api.openai.com/v1/threads \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "OpenAI-Beta: assistants=v2" \ -d '{ "messages": [{ "role": "user", "content": "Hello, what is AI?" }, { "role": "user", "content": "How does AI work? Explain it in simple terms." }] }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) thread = client.beta.threads.create() print(thread.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const thread = await client.beta.threads.create(); console.log(thread.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) thread, err := client.Beta.Threads.New(context.TODO(), openai.BetaThreadNewParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", thread.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.Thread; import com.openai.models.beta.threads.ThreadCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Thread thread = client.beta().threads().create(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") thread = openai.beta.threads.create puts(thread) response: | { "id": "thread_abc123", "object": "thread", "created_at": 1699014083, "metadata": {}, "tool_resources": {} } description: Create a thread. /threads/runs: post: operationId: createThreadAndRun tags: - Assistants summary: Create thread and run requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CreateThreadAndRunRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/RunObject' x-oaiMeta: name: Create thread and run group: threads beta: true returns: A [run](https://platform.openai.com/docs/api-reference/runs/object) object. examples: - title: Default request: curl: | curl https://api.openai.com/v1/threads/runs \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" \ -d '{ "assistant_id": "asst_abc123", "thread": { "messages": [ {"role": "user", "content": "Explain deep learning to a 5 year old."} ] } }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) run = client.beta.threads.create_and_run( assistant_id="assistant_id", ) print(run.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const run = await client.beta.threads.createAndRun({ assistant_id: 'assistant_id' }); console.log(run.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) run, err := client.Beta.Threads.NewAndRun(context.TODO(), openai.BetaThreadNewAndRunParams{ AssistantID: "assistant_id", }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", run.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.ThreadCreateAndRunParams; import com.openai.models.beta.threads.runs.Run; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ThreadCreateAndRunParams params = ThreadCreateAndRunParams.builder() .assistantId("assistant_id") .build(); Run run = client.beta().threads().createAndRun(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") run = openai.beta.threads.create_and_run(assistant_id: "assistant_id") puts(run) response: | { "id": "run_abc123", "object": "thread.run", "created_at": 1699076792, "assistant_id": "asst_abc123", "thread_id": "thread_abc123", "status": "queued", "started_at": null, "expires_at": 1699077392, "cancelled_at": null, "failed_at": null, "completed_at": null, "required_action": null, "last_error": null, "model": "gpt-4o", "instructions": "You are a helpful assistant.", "tools": [], "tool_resources": {}, "metadata": {}, "temperature": 1.0, "top_p": 1.0, "max_completion_tokens": null, "max_prompt_tokens": null, "truncation_strategy": { "type": "auto", "last_messages": null }, "incomplete_details": null, "usage": null, "response_format": "auto", "tool_choice": "auto", "parallel_tool_calls": true } - title: Streaming request: curl: | curl https://api.openai.com/v1/threads/runs \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" \ -d '{ "assistant_id": "asst_123", "thread": { "messages": [ {"role": "user", "content": "Hello"} ] }, "stream": true }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) run = client.beta.threads.create_and_run( assistant_id="assistant_id", ) print(run.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const run = await client.beta.threads.createAndRun({ assistant_id: 'assistant_id' }); console.log(run.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) run, err := client.Beta.Threads.NewAndRun(context.TODO(), openai.BetaThreadNewAndRunParams{ AssistantID: "assistant_id", }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", run.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.ThreadCreateAndRunParams; import com.openai.models.beta.threads.runs.Run; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ThreadCreateAndRunParams params = ThreadCreateAndRunParams.builder() .assistantId("assistant_id") .build(); Run run = client.beta().threads().createAndRun(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") run = openai.beta.threads.create_and_run(assistant_id: "assistant_id") puts(run) response: > event: thread.created data: {"id":"thread_123","object":"thread","created_at":1710348075,"metadata":{}} event: thread.run.created data: {"id":"run_123","object":"thread.run","created_at":1710348075,"assistant_id":"asst_123","thread_id":"thread_123","status":"queued","started_at":null,"expires_at":1710348675,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4o","instructions":null,"tools":[],"tool_resources":{},"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto","parallel_tool_calls":true} event: thread.run.queued data: {"id":"run_123","object":"thread.run","created_at":1710348075,"assistant_id":"asst_123","thread_id":"thread_123","status":"queued","started_at":null,"expires_at":1710348675,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4o","instructions":null,"tools":[],"tool_resources":{},"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto","parallel_tool_calls":true} event: thread.run.in_progress data: {"id":"run_123","object":"thread.run","created_at":1710348075,"assistant_id":"asst_123","thread_id":"thread_123","status":"in_progress","started_at":null,"expires_at":1710348675,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4o","instructions":null,"tools":[],"tool_resources":{},"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto","parallel_tool_calls":true} event: thread.run.step.created data: {"id":"step_001","object":"thread.run.step","created_at":1710348076,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710348675,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_001"}},"usage":null} event: thread.run.step.in_progress data: {"id":"step_001","object":"thread.run.step","created_at":1710348076,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710348675,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_001"}},"usage":null} event: thread.message.created data: {"id":"msg_001","object":"thread.message","created_at":1710348076,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"in_progress","incomplete_details":null,"incomplete_at":null,"completed_at":null,"role":"assistant","content":[], "metadata":{}} event: thread.message.in_progress data: {"id":"msg_001","object":"thread.message","created_at":1710348076,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"in_progress","incomplete_details":null,"incomplete_at":null,"completed_at":null,"role":"assistant","content":[], "metadata":{}} event: thread.message.delta data: {"id":"msg_001","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":"Hello","annotations":[]}}]}} ... event: thread.message.delta data: {"id":"msg_001","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":" today"}}]}} event: thread.message.delta data: {"id":"msg_001","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":"?"}}]}} event: thread.message.completed data: {"id":"msg_001","object":"thread.message","created_at":1710348076,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"completed","incomplete_details":null,"incomplete_at":null,"completed_at":1710348077,"role":"assistant","content":[{"type":"text","text":{"value":"Hello! How can I assist you today?","annotations":[]}}], "metadata":{}} event: thread.run.step.completed data: {"id":"step_001","object":"thread.run.step","created_at":1710348076,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"completed","cancelled_at":null,"completed_at":1710348077,"expires_at":1710348675,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_001"}},"usage":{"prompt_tokens":20,"completion_tokens":11,"total_tokens":31}} event: thread.run.completed {"id":"run_123","object":"thread.run","created_at":1710348076,"assistant_id":"asst_123","thread_id":"thread_123","status":"completed","started_at":1713226836,"expires_at":null,"cancelled_at":null,"failed_at":null,"completed_at":1713226837,"required_action":null,"last_error":null,"model":"gpt-4o","instructions":null,"tools":[],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":{"prompt_tokens":345,"completion_tokens":11,"total_tokens":356},"response_format":"auto","tool_choice":"auto","parallel_tool_calls":true} event: done data: [DONE] - title: Streaming with Functions request: curl: | curl https://api.openai.com/v1/threads/runs \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" \ -d '{ "assistant_id": "asst_abc123", "thread": { "messages": [ {"role": "user", "content": "What is the weather like in San Francisco?"} ] }, "tools": [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": ["celsius", "fahrenheit"] } }, "required": ["location"] } } } ], "stream": true }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) run = client.beta.threads.create_and_run( assistant_id="assistant_id", ) print(run.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const run = await client.beta.threads.createAndRun({ assistant_id: 'assistant_id' }); console.log(run.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) run, err := client.Beta.Threads.NewAndRun(context.TODO(), openai.BetaThreadNewAndRunParams{ AssistantID: "assistant_id", }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", run.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.ThreadCreateAndRunParams; import com.openai.models.beta.threads.runs.Run; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ThreadCreateAndRunParams params = ThreadCreateAndRunParams.builder() .assistantId("assistant_id") .build(); Run run = client.beta().threads().createAndRun(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") run = openai.beta.threads.create_and_run(assistant_id: "assistant_id") puts(run) response: > event: thread.created data: {"id":"thread_123","object":"thread","created_at":1710351818,"metadata":{}} event: thread.run.created data: {"id":"run_123","object":"thread.run","created_at":1710351818,"assistant_id":"asst_123","thread_id":"thread_123","status":"queued","started_at":null,"expires_at":1710352418,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4o","instructions":null,"tools":[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather in a given location","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","enum":["celsius","fahrenheit"]}},"required":["location"]}}}],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto","parallel_tool_calls":true}} event: thread.run.queued data: {"id":"run_123","object":"thread.run","created_at":1710351818,"assistant_id":"asst_123","thread_id":"thread_123","status":"queued","started_at":null,"expires_at":1710352418,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4o","instructions":null,"tools":[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather in a given location","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","enum":["celsius","fahrenheit"]}},"required":["location"]}}}],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto","parallel_tool_calls":true}} event: thread.run.in_progress data: {"id":"run_123","object":"thread.run","created_at":1710351818,"assistant_id":"asst_123","thread_id":"thread_123","status":"in_progress","started_at":1710351818,"expires_at":1710352418,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4o","instructions":null,"tools":[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather in a given location","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","enum":["celsius","fahrenheit"]}},"required":["location"]}}}],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto","parallel_tool_calls":true}} event: thread.run.step.created data: {"id":"step_001","object":"thread.run.step","created_at":1710351819,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"tool_calls","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710352418,"failed_at":null,"last_error":null,"step_details":{"type":"tool_calls","tool_calls":[]},"usage":null} event: thread.run.step.in_progress data: {"id":"step_001","object":"thread.run.step","created_at":1710351819,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"tool_calls","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710352418,"failed_at":null,"last_error":null,"step_details":{"type":"tool_calls","tool_calls":[]},"usage":null} event: thread.run.step.delta data: {"id":"step_001","object":"thread.run.step.delta","delta":{"step_details":{"type":"tool_calls","tool_calls":[{"index":0,"id":"call_XXNp8YGaFrjrSjgqxtC8JJ1B","type":"function","function":{"name":"get_current_weather","arguments":"","output":null}}]}}} event: thread.run.step.delta data: {"id":"step_001","object":"thread.run.step.delta","delta":{"step_details":{"type":"tool_calls","tool_calls":[{"index":0,"type":"function","function":{"arguments":"{\""}}]}}} event: thread.run.step.delta data: {"id":"step_001","object":"thread.run.step.delta","delta":{"step_details":{"type":"tool_calls","tool_calls":[{"index":0,"type":"function","function":{"arguments":"location"}}]}}} ... event: thread.run.step.delta data: {"id":"step_001","object":"thread.run.step.delta","delta":{"step_details":{"type":"tool_calls","tool_calls":[{"index":0,"type":"function","function":{"arguments":"ahrenheit"}}]}}} event: thread.run.step.delta data: {"id":"step_001","object":"thread.run.step.delta","delta":{"step_details":{"type":"tool_calls","tool_calls":[{"index":0,"type":"function","function":{"arguments":"\"}"}}]}}} event: thread.run.requires_action data: {"id":"run_123","object":"thread.run","created_at":1710351818,"assistant_id":"asst_123","thread_id":"thread_123","status":"requires_action","started_at":1710351818,"expires_at":1710352418,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":{"type":"submit_tool_outputs","submit_tool_outputs":{"tool_calls":[{"id":"call_XXNp8YGaFrjrSjgqxtC8JJ1B","type":"function","function":{"name":"get_current_weather","arguments":"{\"location\":\"San Francisco, CA\",\"unit\":\"fahrenheit\"}"}}]}},"last_error":null,"model":"gpt-4o","instructions":null,"tools":[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather in a given location","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","enum":["celsius","fahrenheit"]}},"required":["location"]}}}],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":{"prompt_tokens":345,"completion_tokens":11,"total_tokens":356},"response_format":"auto","tool_choice":"auto","parallel_tool_calls":true}} event: done data: [DONE] description: Create a thread and run it in one request. /threads/{thread_id}: get: operationId: getThread tags: - Assistants summary: Retrieve thread parameters: - in: path name: thread_id required: true schema: type: string description: The ID of the thread to retrieve. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ThreadObject' x-oaiMeta: name: Retrieve thread group: threads beta: true returns: >- The [thread](https://platform.openai.com/docs/api-reference/threads/object) object matching the specified ID. examples: response: | { "id": "thread_abc123", "object": "thread", "created_at": 1699014083, "metadata": {}, "tool_resources": { "code_interpreter": { "file_ids": [] } } } request: curl: | curl https://api.openai.com/v1/threads/thread_abc123 \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "OpenAI-Beta: assistants=v2" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) thread = client.beta.threads.retrieve( "thread_id", ) print(thread.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const thread = await client.beta.threads.retrieve('thread_id'); console.log(thread.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) thread, err := client.Beta.Threads.Get(context.TODO(), "thread_id") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", thread.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.Thread; import com.openai.models.beta.threads.ThreadRetrieveParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Thread thread = client.beta().threads().retrieve("thread_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") thread = openai.beta.threads.retrieve("thread_id") puts(thread) description: Retrieves a thread. post: operationId: modifyThread tags: - Assistants summary: Modify thread parameters: - in: path name: thread_id required: true schema: type: string description: The ID of the thread to modify. Only the `metadata` can be modified. requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/ModifyThreadRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ThreadObject' x-oaiMeta: name: Modify thread group: threads beta: true returns: >- The modified [thread](https://platform.openai.com/docs/api-reference/threads/object) object matching the specified ID. examples: response: | { "id": "thread_abc123", "object": "thread", "created_at": 1699014083, "metadata": { "modified": "true", "user": "abc123" }, "tool_resources": {} } request: curl: | curl https://api.openai.com/v1/threads/thread_abc123 \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "OpenAI-Beta: assistants=v2" \ -d '{ "metadata": { "modified": "true", "user": "abc123" } }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) thread = client.beta.threads.update( thread_id="thread_id", ) print(thread.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const thread = await client.beta.threads.update('thread_id'); console.log(thread.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) thread, err := client.Beta.Threads.Update( context.TODO(), "thread_id", openai.BetaThreadUpdateParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", thread.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.Thread; import com.openai.models.beta.threads.ThreadUpdateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Thread thread = client.beta().threads().update("thread_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") thread = openai.beta.threads.update("thread_id") puts(thread) description: Modifies a thread. delete: operationId: deleteThread tags: - Assistants summary: Delete thread parameters: - in: path name: thread_id required: true schema: type: string description: The ID of the thread to delete. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/DeleteThreadResponse' x-oaiMeta: name: Delete thread group: threads beta: true returns: Deletion status examples: response: | { "id": "thread_abc123", "object": "thread.deleted", "deleted": true } request: curl: | curl https://api.openai.com/v1/threads/thread_abc123 \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "OpenAI-Beta: assistants=v2" \ -X DELETE python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) thread_deleted = client.beta.threads.delete( "thread_id", ) print(thread_deleted.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const threadDeleted = await client.beta.threads.delete('thread_id'); console.log(threadDeleted.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) threadDeleted, err := client.Beta.Threads.Delete(context.TODO(), "thread_id") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", threadDeleted.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.ThreadDeleteParams; import com.openai.models.beta.threads.ThreadDeleted; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ThreadDeleted threadDeleted = client.beta().threads().delete("thread_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") thread_deleted = openai.beta.threads.delete("thread_id") puts(thread_deleted) description: Delete a thread. /threads/{thread_id}/messages: get: operationId: listMessages tags: - Assistants summary: List messages parameters: - in: path name: thread_id required: true schema: type: string description: >- The ID of the [thread](https://platform.openai.com/docs/api-reference/threads) the messages belong to. - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - name: order in: query description: > Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order. schema: type: string default: desc enum: - asc - desc - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. schema: type: string - name: before in: query description: > A cursor for use in pagination. `before` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, starting with obj_foo, your subsequent call can include before=obj_foo in order to fetch the previous page of the list. schema: type: string - name: run_id in: query description: | Filter messages by the run ID that generated them. schema: type: string responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ListMessagesResponse' x-oaiMeta: name: List messages group: threads beta: true returns: A list of [message](https://platform.openai.com/docs/api-reference/messages) objects. examples: response: | { "object": "list", "data": [ { "id": "msg_abc123", "object": "thread.message", "created_at": 1699016383, "assistant_id": null, "thread_id": "thread_abc123", "run_id": null, "role": "user", "content": [ { "type": "text", "text": { "value": "How does AI work? Explain it in simple terms.", "annotations": [] } } ], "attachments": [], "metadata": {} }, { "id": "msg_abc456", "object": "thread.message", "created_at": 1699016383, "assistant_id": null, "thread_id": "thread_abc123", "run_id": null, "role": "user", "content": [ { "type": "text", "text": { "value": "Hello, what is AI?", "annotations": [] } } ], "attachments": [], "metadata": {} } ], "first_id": "msg_abc123", "last_id": "msg_abc456", "has_more": false } request: curl: | curl https://api.openai.com/v1/threads/thread_abc123/messages \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "OpenAI-Beta: assistants=v2" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.beta.threads.messages.list( thread_id="thread_id", ) page = page.data[0] print(page.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const message of client.beta.threads.messages.list('thread_id')) { console.log(message.id); } go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.Beta.Threads.Messages.List( context.TODO(), "thread_id", openai.BetaThreadMessageListParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.messages.MessageListPage; import com.openai.models.beta.threads.messages.MessageListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); MessageListPage page = client.beta().threads().messages().list("thread_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.beta.threads.messages.list("thread_id") puts(page) description: Returns a list of messages for a given thread. post: operationId: createMessage tags: - Assistants summary: Create message parameters: - in: path name: thread_id required: true schema: type: string description: >- The ID of the [thread](https://platform.openai.com/docs/api-reference/threads) to create a message for. requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CreateMessageRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/MessageObject' x-oaiMeta: name: Create message group: threads beta: true returns: A [message](https://platform.openai.com/docs/api-reference/messages/object) object. examples: response: | { "id": "msg_abc123", "object": "thread.message", "created_at": 1713226573, "assistant_id": null, "thread_id": "thread_abc123", "run_id": null, "role": "user", "content": [ { "type": "text", "text": { "value": "How does AI work? Explain it in simple terms.", "annotations": [] } } ], "attachments": [], "metadata": {} } request: curl: | curl https://api.openai.com/v1/threads/thread_abc123/messages \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "OpenAI-Beta: assistants=v2" \ -d '{ "role": "user", "content": "How does AI work? Explain it in simple terms." }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) message = client.beta.threads.messages.create( thread_id="thread_id", content="string", role="user", ) print(message.id) node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const message = await client.beta.threads.messages.create('thread_id', { content: 'string', role: 'user' }); console.log(message.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) message, err := client.Beta.Threads.Messages.New( context.TODO(), "thread_id", openai.BetaThreadMessageNewParams{ Content: openai.BetaThreadMessageNewParamsContentUnion{ OfString: openai.String("string"), }, Role: openai.BetaThreadMessageNewParamsRoleUser, }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", message.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.messages.Message; import com.openai.models.beta.threads.messages.MessageCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); MessageCreateParams params = MessageCreateParams.builder() .threadId("thread_id") .content("string") .role(MessageCreateParams.Role.USER) .build(); Message message = client.beta().threads().messages().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") message = openai.beta.threads.messages.create("thread_id", content: "string", role: :user) puts(message) description: Create a message. /threads/{thread_id}/messages/{message_id}: get: operationId: getMessage tags: - Assistants summary: Retrieve message parameters: - in: path name: thread_id required: true schema: type: string description: >- The ID of the [thread](https://platform.openai.com/docs/api-reference/threads) to which this message belongs. - in: path name: message_id required: true schema: type: string description: The ID of the message to retrieve. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/MessageObject' x-oaiMeta: name: Retrieve message group: threads beta: true returns: >- The [message](https://platform.openai.com/docs/api-reference/messages/object) object matching the specified ID. examples: response: | { "id": "msg_abc123", "object": "thread.message", "created_at": 1699017614, "assistant_id": null, "thread_id": "thread_abc123", "run_id": null, "role": "user", "content": [ { "type": "text", "text": { "value": "How does AI work? Explain it in simple terms.", "annotations": [] } } ], "attachments": [], "metadata": {} } request: curl: | curl https://api.openai.com/v1/threads/thread_abc123/messages/msg_abc123 \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "OpenAI-Beta: assistants=v2" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) message = client.beta.threads.messages.retrieve( message_id="message_id", thread_id="thread_id", ) print(message.id) node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const message = await client.beta.threads.messages.retrieve('message_id', { thread_id: 'thread_id' }); console.log(message.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) message, err := client.Beta.Threads.Messages.Get( context.TODO(), "thread_id", "message_id", ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", message.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.messages.Message; import com.openai.models.beta.threads.messages.MessageRetrieveParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); MessageRetrieveParams params = MessageRetrieveParams.builder() .threadId("thread_id") .messageId("message_id") .build(); Message message = client.beta().threads().messages().retrieve(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") message = openai.beta.threads.messages.retrieve("message_id", thread_id: "thread_id") puts(message) description: Retrieve a message. post: operationId: modifyMessage tags: - Assistants summary: Modify message parameters: - in: path name: thread_id required: true schema: type: string description: The ID of the thread to which this message belongs. - in: path name: message_id required: true schema: type: string description: The ID of the message to modify. requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/ModifyMessageRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/MessageObject' x-oaiMeta: name: Modify message group: threads beta: true returns: The modified [message](https://platform.openai.com/docs/api-reference/messages/object) object. examples: response: | { "id": "msg_abc123", "object": "thread.message", "created_at": 1699017614, "assistant_id": null, "thread_id": "thread_abc123", "run_id": null, "role": "user", "content": [ { "type": "text", "text": { "value": "How does AI work? Explain it in simple terms.", "annotations": [] } } ], "file_ids": [], "metadata": { "modified": "true", "user": "abc123" } } request: curl: | curl https://api.openai.com/v1/threads/thread_abc123/messages/msg_abc123 \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "OpenAI-Beta: assistants=v2" \ -d '{ "metadata": { "modified": "true", "user": "abc123" } }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) message = client.beta.threads.messages.update( message_id="message_id", thread_id="thread_id", ) print(message.id) node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const message = await client.beta.threads.messages.update('message_id', { thread_id: 'thread_id' }); console.log(message.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) message, err := client.Beta.Threads.Messages.Update( context.TODO(), "thread_id", "message_id", openai.BetaThreadMessageUpdateParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", message.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.messages.Message; import com.openai.models.beta.threads.messages.MessageUpdateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); MessageUpdateParams params = MessageUpdateParams.builder() .threadId("thread_id") .messageId("message_id") .build(); Message message = client.beta().threads().messages().update(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") message = openai.beta.threads.messages.update("message_id", thread_id: "thread_id") puts(message) description: Modifies a message. delete: operationId: deleteMessage tags: - Assistants summary: Delete message parameters: - in: path name: thread_id required: true schema: type: string description: The ID of the thread to which this message belongs. - in: path name: message_id required: true schema: type: string description: The ID of the message to delete. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/DeleteMessageResponse' x-oaiMeta: name: Delete message group: threads beta: true returns: Deletion status examples: response: | { "id": "msg_abc123", "object": "thread.message.deleted", "deleted": true } request: curl: | curl -X DELETE https://api.openai.com/v1/threads/thread_abc123/messages/msg_abc123 \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "OpenAI-Beta: assistants=v2" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) message_deleted = client.beta.threads.messages.delete( message_id="message_id", thread_id="thread_id", ) print(message_deleted.id) node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const messageDeleted = await client.beta.threads.messages.delete('message_id', { thread_id: 'thread_id' }); console.log(messageDeleted.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) messageDeleted, err := client.Beta.Threads.Messages.Delete( context.TODO(), "thread_id", "message_id", ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", messageDeleted.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.messages.MessageDeleteParams; import com.openai.models.beta.threads.messages.MessageDeleted; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); MessageDeleteParams params = MessageDeleteParams.builder() .threadId("thread_id") .messageId("message_id") .build(); MessageDeleted messageDeleted = client.beta().threads().messages().delete(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") message_deleted = openai.beta.threads.messages.delete("message_id", thread_id: "thread_id") puts(message_deleted) description: Deletes a message. /threads/{thread_id}/runs: get: operationId: listRuns tags: - Assistants summary: List runs parameters: - name: thread_id in: path required: true schema: type: string description: The ID of the thread the run belongs to. - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - name: order in: query description: > Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order. schema: type: string default: desc enum: - asc - desc - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. schema: type: string - name: before in: query description: > A cursor for use in pagination. `before` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, starting with obj_foo, your subsequent call can include before=obj_foo in order to fetch the previous page of the list. schema: type: string responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ListRunsResponse' x-oaiMeta: name: List runs group: threads beta: true returns: A list of [run](https://platform.openai.com/docs/api-reference/runs/object) objects. examples: response: | { "object": "list", "data": [ { "id": "run_abc123", "object": "thread.run", "created_at": 1699075072, "assistant_id": "asst_abc123", "thread_id": "thread_abc123", "status": "completed", "started_at": 1699075072, "expires_at": null, "cancelled_at": null, "failed_at": null, "completed_at": 1699075073, "last_error": null, "model": "gpt-4o", "instructions": null, "incomplete_details": null, "tools": [ { "type": "code_interpreter" } ], "tool_resources": { "code_interpreter": { "file_ids": [ "file-abc123", "file-abc456" ] } }, "metadata": {}, "usage": { "prompt_tokens": 123, "completion_tokens": 456, "total_tokens": 579 }, "temperature": 1.0, "top_p": 1.0, "max_prompt_tokens": 1000, "max_completion_tokens": 1000, "truncation_strategy": { "type": "auto", "last_messages": null }, "response_format": "auto", "tool_choice": "auto", "parallel_tool_calls": true }, { "id": "run_abc456", "object": "thread.run", "created_at": 1699063290, "assistant_id": "asst_abc123", "thread_id": "thread_abc123", "status": "completed", "started_at": 1699063290, "expires_at": null, "cancelled_at": null, "failed_at": null, "completed_at": 1699063291, "last_error": null, "model": "gpt-4o", "instructions": null, "incomplete_details": null, "tools": [ { "type": "code_interpreter" } ], "tool_resources": { "code_interpreter": { "file_ids": [ "file-abc123", "file-abc456" ] } }, "metadata": {}, "usage": { "prompt_tokens": 123, "completion_tokens": 456, "total_tokens": 579 }, "temperature": 1.0, "top_p": 1.0, "max_prompt_tokens": 1000, "max_completion_tokens": 1000, "truncation_strategy": { "type": "auto", "last_messages": null }, "response_format": "auto", "tool_choice": "auto", "parallel_tool_calls": true } ], "first_id": "run_abc123", "last_id": "run_abc456", "has_more": false } request: curl: | curl https://api.openai.com/v1/threads/thread_abc123/runs \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.beta.threads.runs.list( thread_id="thread_id", ) page = page.data[0] print(page.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const run of client.beta.threads.runs.list('thread_id')) { console.log(run.id); } go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.Beta.Threads.Runs.List( context.TODO(), "thread_id", openai.BetaThreadRunListParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.runs.RunListPage; import com.openai.models.beta.threads.runs.RunListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); RunListPage page = client.beta().threads().runs().list("thread_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.beta.threads.runs.list("thread_id") puts(page) description: Returns a list of runs belonging to a thread. post: operationId: createRun tags: - Assistants summary: Create run parameters: - in: path name: thread_id required: true schema: type: string description: The ID of the thread to run. - name: include[] in: query description: > A list of additional fields to include in the response. Currently the only supported value is `step_details.tool_calls[*].file_search.results[*].content` to fetch the file search result content. See the [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) for more information. schema: type: array items: type: string enum: - step_details.tool_calls[*].file_search.results[*].content requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CreateRunRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/RunObject' x-oaiMeta: name: Create run group: threads beta: true returns: A [run](https://platform.openai.com/docs/api-reference/runs/object) object. examples: - title: Default request: curl: | curl https://api.openai.com/v1/threads/thread_abc123/runs \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" \ -d '{ "assistant_id": "asst_abc123" }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) run = client.beta.threads.runs.create( thread_id="thread_id", assistant_id="assistant_id", ) print(run.id) node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const run = await client.beta.threads.runs.create('thread_id', { assistant_id: 'assistant_id' }); console.log(run.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) run, err := client.Beta.Threads.Runs.New( context.TODO(), "thread_id", openai.BetaThreadRunNewParams{ AssistantID: "assistant_id", }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", run.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.runs.Run; import com.openai.models.beta.threads.runs.RunCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); RunCreateParams params = RunCreateParams.builder() .threadId("thread_id") .assistantId("assistant_id") .build(); Run run = client.beta().threads().runs().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") run = openai.beta.threads.runs.create("thread_id", assistant_id: "assistant_id") puts(run) response: | { "id": "run_abc123", "object": "thread.run", "created_at": 1699063290, "assistant_id": "asst_abc123", "thread_id": "thread_abc123", "status": "queued", "started_at": 1699063290, "expires_at": null, "cancelled_at": null, "failed_at": null, "completed_at": 1699063291, "last_error": null, "model": "gpt-4o", "instructions": null, "incomplete_details": null, "tools": [ { "type": "code_interpreter" } ], "metadata": {}, "usage": null, "temperature": 1.0, "top_p": 1.0, "max_prompt_tokens": 1000, "max_completion_tokens": 1000, "truncation_strategy": { "type": "auto", "last_messages": null }, "response_format": "auto", "tool_choice": "auto", "parallel_tool_calls": true } - title: Streaming request: curl: | curl https://api.openai.com/v1/threads/thread_123/runs \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" \ -d '{ "assistant_id": "asst_123", "stream": true }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) run = client.beta.threads.runs.create( thread_id="thread_id", assistant_id="assistant_id", ) print(run.id) node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const run = await client.beta.threads.runs.create('thread_id', { assistant_id: 'assistant_id' }); console.log(run.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) run, err := client.Beta.Threads.Runs.New( context.TODO(), "thread_id", openai.BetaThreadRunNewParams{ AssistantID: "assistant_id", }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", run.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.runs.Run; import com.openai.models.beta.threads.runs.RunCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); RunCreateParams params = RunCreateParams.builder() .threadId("thread_id") .assistantId("assistant_id") .build(); Run run = client.beta().threads().runs().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") run = openai.beta.threads.runs.create("thread_id", assistant_id: "assistant_id") puts(run) response: > event: thread.run.created data: {"id":"run_123","object":"thread.run","created_at":1710330640,"assistant_id":"asst_123","thread_id":"thread_123","status":"queued","started_at":null,"expires_at":1710331240,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4o","instructions":null,"tools":[],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto","parallel_tool_calls":true}} event: thread.run.queued data: {"id":"run_123","object":"thread.run","created_at":1710330640,"assistant_id":"asst_123","thread_id":"thread_123","status":"queued","started_at":null,"expires_at":1710331240,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4o","instructions":null,"tools":[],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto","parallel_tool_calls":true}} event: thread.run.in_progress data: {"id":"run_123","object":"thread.run","created_at":1710330640,"assistant_id":"asst_123","thread_id":"thread_123","status":"in_progress","started_at":1710330641,"expires_at":1710331240,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4o","instructions":null,"tools":[],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto","parallel_tool_calls":true}} event: thread.run.step.created data: {"id":"step_001","object":"thread.run.step","created_at":1710330641,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710331240,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_001"}},"usage":null} event: thread.run.step.in_progress data: {"id":"step_001","object":"thread.run.step","created_at":1710330641,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710331240,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_001"}},"usage":null} event: thread.message.created data: {"id":"msg_001","object":"thread.message","created_at":1710330641,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"in_progress","incomplete_details":null,"incomplete_at":null,"completed_at":null,"role":"assistant","content":[],"metadata":{}} event: thread.message.in_progress data: {"id":"msg_001","object":"thread.message","created_at":1710330641,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"in_progress","incomplete_details":null,"incomplete_at":null,"completed_at":null,"role":"assistant","content":[],"metadata":{}} event: thread.message.delta data: {"id":"msg_001","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":"Hello","annotations":[]}}]}} ... event: thread.message.delta data: {"id":"msg_001","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":" today"}}]}} event: thread.message.delta data: {"id":"msg_001","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":"?"}}]}} event: thread.message.completed data: {"id":"msg_001","object":"thread.message","created_at":1710330641,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"completed","incomplete_details":null,"incomplete_at":null,"completed_at":1710330642,"role":"assistant","content":[{"type":"text","text":{"value":"Hello! How can I assist you today?","annotations":[]}}],"metadata":{}} event: thread.run.step.completed data: {"id":"step_001","object":"thread.run.step","created_at":1710330641,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"completed","cancelled_at":null,"completed_at":1710330642,"expires_at":1710331240,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_001"}},"usage":{"prompt_tokens":20,"completion_tokens":11,"total_tokens":31}} event: thread.run.completed data: {"id":"run_123","object":"thread.run","created_at":1710330640,"assistant_id":"asst_123","thread_id":"thread_123","status":"completed","started_at":1710330641,"expires_at":null,"cancelled_at":null,"failed_at":null,"completed_at":1710330642,"required_action":null,"last_error":null,"model":"gpt-4o","instructions":null,"tools":[],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":{"prompt_tokens":20,"completion_tokens":11,"total_tokens":31},"response_format":"auto","tool_choice":"auto","parallel_tool_calls":true}} event: done data: [DONE] - title: Streaming with Functions request: curl: | curl https://api.openai.com/v1/threads/thread_abc123/runs \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" \ -d '{ "assistant_id": "asst_abc123", "tools": [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": ["celsius", "fahrenheit"] } }, "required": ["location"] } } } ], "stream": true }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) run = client.beta.threads.runs.create( thread_id="thread_id", assistant_id="assistant_id", ) print(run.id) node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const run = await client.beta.threads.runs.create('thread_id', { assistant_id: 'assistant_id' }); console.log(run.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) run, err := client.Beta.Threads.Runs.New( context.TODO(), "thread_id", openai.BetaThreadRunNewParams{ AssistantID: "assistant_id", }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", run.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.runs.Run; import com.openai.models.beta.threads.runs.RunCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); RunCreateParams params = RunCreateParams.builder() .threadId("thread_id") .assistantId("assistant_id") .build(); Run run = client.beta().threads().runs().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") run = openai.beta.threads.runs.create("thread_id", assistant_id: "assistant_id") puts(run) response: > event: thread.run.created data: {"id":"run_123","object":"thread.run","created_at":1710348075,"assistant_id":"asst_123","thread_id":"thread_123","status":"queued","started_at":null,"expires_at":1710348675,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4o","instructions":null,"tools":[],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto","parallel_tool_calls":true}} event: thread.run.queued data: {"id":"run_123","object":"thread.run","created_at":1710348075,"assistant_id":"asst_123","thread_id":"thread_123","status":"queued","started_at":null,"expires_at":1710348675,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4o","instructions":null,"tools":[],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto","parallel_tool_calls":true}} event: thread.run.in_progress data: {"id":"run_123","object":"thread.run","created_at":1710348075,"assistant_id":"asst_123","thread_id":"thread_123","status":"in_progress","started_at":1710348075,"expires_at":1710348675,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4o","instructions":null,"tools":[],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto","parallel_tool_calls":true}} event: thread.run.step.created data: {"id":"step_001","object":"thread.run.step","created_at":1710348076,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710348675,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_001"}},"usage":null} event: thread.run.step.in_progress data: {"id":"step_001","object":"thread.run.step","created_at":1710348076,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710348675,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_001"}},"usage":null} event: thread.message.created data: {"id":"msg_001","object":"thread.message","created_at":1710348076,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"in_progress","incomplete_details":null,"incomplete_at":null,"completed_at":null,"role":"assistant","content":[],"metadata":{}} event: thread.message.in_progress data: {"id":"msg_001","object":"thread.message","created_at":1710348076,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"in_progress","incomplete_details":null,"incomplete_at":null,"completed_at":null,"role":"assistant","content":[],"metadata":{}} event: thread.message.delta data: {"id":"msg_001","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":"Hello","annotations":[]}}]}} ... event: thread.message.delta data: {"id":"msg_001","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":" today"}}]}} event: thread.message.delta data: {"id":"msg_001","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":"?"}}]}} event: thread.message.completed data: {"id":"msg_001","object":"thread.message","created_at":1710348076,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"completed","incomplete_details":null,"incomplete_at":null,"completed_at":1710348077,"role":"assistant","content":[{"type":"text","text":{"value":"Hello! How can I assist you today?","annotations":[]}}],"metadata":{}} event: thread.run.step.completed data: {"id":"step_001","object":"thread.run.step","created_at":1710348076,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"completed","cancelled_at":null,"completed_at":1710348077,"expires_at":1710348675,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_001"}},"usage":{"prompt_tokens":20,"completion_tokens":11,"total_tokens":31}} event: thread.run.completed data: {"id":"run_123","object":"thread.run","created_at":1710348075,"assistant_id":"asst_123","thread_id":"thread_123","status":"completed","started_at":1710348075,"expires_at":null,"cancelled_at":null,"failed_at":null,"completed_at":1710348077,"required_action":null,"last_error":null,"model":"gpt-4o","instructions":null,"tools":[],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":{"prompt_tokens":20,"completion_tokens":11,"total_tokens":31},"response_format":"auto","tool_choice":"auto","parallel_tool_calls":true}} event: done data: [DONE] description: Create a run. /threads/{thread_id}/runs/{run_id}: get: operationId: getRun tags: - Assistants summary: Retrieve run parameters: - in: path name: thread_id required: true schema: type: string description: The ID of the [thread](https://platform.openai.com/docs/api-reference/threads) that was run. - in: path name: run_id required: true schema: type: string description: The ID of the run to retrieve. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/RunObject' x-oaiMeta: name: Retrieve run group: threads beta: true returns: >- The [run](https://platform.openai.com/docs/api-reference/runs/object) object matching the specified ID. examples: response: | { "id": "run_abc123", "object": "thread.run", "created_at": 1699075072, "assistant_id": "asst_abc123", "thread_id": "thread_abc123", "status": "completed", "started_at": 1699075072, "expires_at": null, "cancelled_at": null, "failed_at": null, "completed_at": 1699075073, "last_error": null, "model": "gpt-4o", "instructions": null, "incomplete_details": null, "tools": [ { "type": "code_interpreter" } ], "metadata": {}, "usage": { "prompt_tokens": 123, "completion_tokens": 456, "total_tokens": 579 }, "temperature": 1.0, "top_p": 1.0, "max_prompt_tokens": 1000, "max_completion_tokens": 1000, "truncation_strategy": { "type": "auto", "last_messages": null }, "response_format": "auto", "tool_choice": "auto", "parallel_tool_calls": true } request: curl: | curl https://api.openai.com/v1/threads/thread_abc123/runs/run_abc123 \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "OpenAI-Beta: assistants=v2" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) run = client.beta.threads.runs.retrieve( run_id="run_id", thread_id="thread_id", ) print(run.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const run = await client.beta.threads.runs.retrieve('run_id', { thread_id: 'thread_id' }); console.log(run.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) run, err := client.Beta.Threads.Runs.Get( context.TODO(), "thread_id", "run_id", ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", run.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.runs.Run; import com.openai.models.beta.threads.runs.RunRetrieveParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); RunRetrieveParams params = RunRetrieveParams.builder() .threadId("thread_id") .runId("run_id") .build(); Run run = client.beta().threads().runs().retrieve(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") run = openai.beta.threads.runs.retrieve("run_id", thread_id: "thread_id") puts(run) description: Retrieves a run. post: operationId: modifyRun tags: - Assistants summary: Modify run parameters: - in: path name: thread_id required: true schema: type: string description: The ID of the [thread](https://platform.openai.com/docs/api-reference/threads) that was run. - in: path name: run_id required: true schema: type: string description: The ID of the run to modify. requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/ModifyRunRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/RunObject' x-oaiMeta: name: Modify run group: threads beta: true returns: >- The modified [run](https://platform.openai.com/docs/api-reference/runs/object) object matching the specified ID. examples: response: | { "id": "run_abc123", "object": "thread.run", "created_at": 1699075072, "assistant_id": "asst_abc123", "thread_id": "thread_abc123", "status": "completed", "started_at": 1699075072, "expires_at": null, "cancelled_at": null, "failed_at": null, "completed_at": 1699075073, "last_error": null, "model": "gpt-4o", "instructions": null, "incomplete_details": null, "tools": [ { "type": "code_interpreter" } ], "tool_resources": { "code_interpreter": { "file_ids": [ "file-abc123", "file-abc456" ] } }, "metadata": { "user_id": "user_abc123" }, "usage": { "prompt_tokens": 123, "completion_tokens": 456, "total_tokens": 579 }, "temperature": 1.0, "top_p": 1.0, "max_prompt_tokens": 1000, "max_completion_tokens": 1000, "truncation_strategy": { "type": "auto", "last_messages": null }, "response_format": "auto", "tool_choice": "auto", "parallel_tool_calls": true } request: curl: | curl https://api.openai.com/v1/threads/thread_abc123/runs/run_abc123 \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" \ -d '{ "metadata": { "user_id": "user_abc123" } }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) run = client.beta.threads.runs.update( run_id="run_id", thread_id="thread_id", ) print(run.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const run = await client.beta.threads.runs.update('run_id', { thread_id: 'thread_id' }); console.log(run.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) run, err := client.Beta.Threads.Runs.Update( context.TODO(), "thread_id", "run_id", openai.BetaThreadRunUpdateParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", run.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.runs.Run; import com.openai.models.beta.threads.runs.RunUpdateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); RunUpdateParams params = RunUpdateParams.builder() .threadId("thread_id") .runId("run_id") .build(); Run run = client.beta().threads().runs().update(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") run = openai.beta.threads.runs.update("run_id", thread_id: "thread_id") puts(run) description: Modifies a run. /threads/{thread_id}/runs/{run_id}/cancel: post: operationId: cancelRun tags: - Assistants summary: Cancel a run parameters: - in: path name: thread_id required: true schema: type: string description: The ID of the thread to which this run belongs. - in: path name: run_id required: true schema: type: string description: The ID of the run to cancel. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/RunObject' x-oaiMeta: name: Cancel a run group: threads beta: true returns: >- The modified [run](https://platform.openai.com/docs/api-reference/runs/object) object matching the specified ID. examples: response: | { "id": "run_abc123", "object": "thread.run", "created_at": 1699076126, "assistant_id": "asst_abc123", "thread_id": "thread_abc123", "status": "cancelling", "started_at": 1699076126, "expires_at": 1699076726, "cancelled_at": null, "failed_at": null, "completed_at": null, "last_error": null, "model": "gpt-4o", "instructions": "You summarize books.", "tools": [ { "type": "file_search" } ], "tool_resources": { "file_search": { "vector_store_ids": ["vs_123"] } }, "metadata": {}, "usage": null, "temperature": 1.0, "top_p": 1.0, "response_format": "auto", "tool_choice": "auto", "parallel_tool_calls": true } request: curl: | curl https://api.openai.com/v1/threads/thread_abc123/runs/run_abc123/cancel \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "OpenAI-Beta: assistants=v2" \ -X POST python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) run = client.beta.threads.runs.cancel( run_id="run_id", thread_id="thread_id", ) print(run.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const run = await client.beta.threads.runs.cancel('run_id', { thread_id: 'thread_id' }); console.log(run.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) run, err := client.Beta.Threads.Runs.Cancel( context.TODO(), "thread_id", "run_id", ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", run.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.runs.Run; import com.openai.models.beta.threads.runs.RunCancelParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); RunCancelParams params = RunCancelParams.builder() .threadId("thread_id") .runId("run_id") .build(); Run run = client.beta().threads().runs().cancel(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") run = openai.beta.threads.runs.cancel("run_id", thread_id: "thread_id") puts(run) description: Cancels a run that is `in_progress`. /threads/{thread_id}/runs/{run_id}/steps: get: operationId: listRunSteps tags: - Assistants summary: List run steps parameters: - name: thread_id in: path required: true schema: type: string description: The ID of the thread the run and run steps belong to. - name: run_id in: path required: true schema: type: string description: The ID of the run the run steps belong to. - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - name: order in: query description: > Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order. schema: type: string default: desc enum: - asc - desc - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. schema: type: string - name: before in: query description: > A cursor for use in pagination. `before` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, starting with obj_foo, your subsequent call can include before=obj_foo in order to fetch the previous page of the list. schema: type: string - name: include[] in: query description: > A list of additional fields to include in the response. Currently the only supported value is `step_details.tool_calls[*].file_search.results[*].content` to fetch the file search result content. See the [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) for more information. schema: type: array items: type: string enum: - step_details.tool_calls[*].file_search.results[*].content responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ListRunStepsResponse' x-oaiMeta: name: List run steps group: threads beta: true returns: A list of [run step](https://platform.openai.com/docs/api-reference/run-steps/step-object) objects. examples: response: | { "object": "list", "data": [ { "id": "step_abc123", "object": "thread.run.step", "created_at": 1699063291, "run_id": "run_abc123", "assistant_id": "asst_abc123", "thread_id": "thread_abc123", "type": "message_creation", "status": "completed", "cancelled_at": null, "completed_at": 1699063291, "expired_at": null, "failed_at": null, "last_error": null, "step_details": { "type": "message_creation", "message_creation": { "message_id": "msg_abc123" } }, "usage": { "prompt_tokens": 123, "completion_tokens": 456, "total_tokens": 579 } } ], "first_id": "step_abc123", "last_id": "step_abc456", "has_more": false } request: curl: | curl https://api.openai.com/v1/threads/thread_abc123/runs/run_abc123/steps \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.beta.threads.runs.steps.list( run_id="run_id", thread_id="thread_id", ) page = page.data[0] print(page.id) node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const runStep of client.beta.threads.runs.steps.list('run_id', { thread_id: 'thread_id' })) { console.log(runStep.id); } go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.Beta.Threads.Runs.Steps.List( context.TODO(), "thread_id", "run_id", openai.BetaThreadRunStepListParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.runs.steps.StepListPage; import com.openai.models.beta.threads.runs.steps.StepListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); StepListParams params = StepListParams.builder() .threadId("thread_id") .runId("run_id") .build(); StepListPage page = client.beta().threads().runs().steps().list(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.beta.threads.runs.steps.list("run_id", thread_id: "thread_id") puts(page) description: Returns a list of run steps belonging to a run. /threads/{thread_id}/runs/{run_id}/steps/{step_id}: get: operationId: getRunStep tags: - Assistants summary: Retrieve run step parameters: - in: path name: thread_id required: true schema: type: string description: The ID of the thread to which the run and run step belongs. - in: path name: run_id required: true schema: type: string description: The ID of the run to which the run step belongs. - in: path name: step_id required: true schema: type: string description: The ID of the run step to retrieve. - name: include[] in: query description: > A list of additional fields to include in the response. Currently the only supported value is `step_details.tool_calls[*].file_search.results[*].content` to fetch the file search result content. See the [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) for more information. schema: type: array items: type: string enum: - step_details.tool_calls[*].file_search.results[*].content responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/RunStepObject' x-oaiMeta: name: Retrieve run step group: threads beta: true returns: >- The [run step](https://platform.openai.com/docs/api-reference/run-steps/step-object) object matching the specified ID. examples: response: | { "id": "step_abc123", "object": "thread.run.step", "created_at": 1699063291, "run_id": "run_abc123", "assistant_id": "asst_abc123", "thread_id": "thread_abc123", "type": "message_creation", "status": "completed", "cancelled_at": null, "completed_at": 1699063291, "expired_at": null, "failed_at": null, "last_error": null, "step_details": { "type": "message_creation", "message_creation": { "message_id": "msg_abc123" } }, "usage": { "prompt_tokens": 123, "completion_tokens": 456, "total_tokens": 579 } } request: curl: | curl https://api.openai.com/v1/threads/thread_abc123/runs/run_abc123/steps/step_abc123 \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) run_step = client.beta.threads.runs.steps.retrieve( step_id="step_id", thread_id="thread_id", run_id="run_id", ) print(run_step.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const runStep = await client.beta.threads.runs.steps.retrieve('step_id', { thread_id: 'thread_id', run_id: 'run_id', }); console.log(runStep.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) runStep, err := client.Beta.Threads.Runs.Steps.Get( context.TODO(), "thread_id", "run_id", "step_id", openai.BetaThreadRunStepGetParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", runStep.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.runs.steps.RunStep; import com.openai.models.beta.threads.runs.steps.StepRetrieveParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); StepRetrieveParams params = StepRetrieveParams.builder() .threadId("thread_id") .runId("run_id") .stepId("step_id") .build(); RunStep runStep = client.beta().threads().runs().steps().retrieve(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") run_step = openai.beta.threads.runs.steps.retrieve("step_id", thread_id: "thread_id", run_id: "run_id") puts(run_step) description: Retrieves a run step. /threads/{thread_id}/runs/{run_id}/submit_tool_outputs: post: operationId: submitToolOuputsToRun tags: - Assistants summary: Submit tool outputs to run parameters: - in: path name: thread_id required: true schema: type: string description: >- The ID of the [thread](https://platform.openai.com/docs/api-reference/threads) to which this run belongs. - in: path name: run_id required: true schema: type: string description: The ID of the run that requires the tool output submission. requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/SubmitToolOutputsRunRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/RunObject' x-oaiMeta: name: Submit tool outputs to run group: threads beta: true returns: >- The modified [run](https://platform.openai.com/docs/api-reference/runs/object) object matching the specified ID. examples: - title: Default request: curl: | curl https://api.openai.com/v1/threads/thread_123/runs/run_123/submit_tool_outputs \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" \ -d '{ "tool_outputs": [ { "tool_call_id": "call_001", "output": "70 degrees and sunny." } ] }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) run = client.beta.threads.runs.submit_tool_outputs( run_id="run_id", thread_id="thread_id", tool_outputs=[{}], ) print(run.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const run = await client.beta.threads.runs.submitToolOutputs('run_id', { thread_id: 'thread_id', tool_outputs: [{}], }); console.log(run.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) run, err := client.Beta.Threads.Runs.SubmitToolOutputs( context.TODO(), "thread_id", "run_id", openai.BetaThreadRunSubmitToolOutputsParams{ ToolOutputs: []openai.BetaThreadRunSubmitToolOutputsParamsToolOutput{openai.BetaThreadRunSubmitToolOutputsParamsToolOutput{ }}, }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", run.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.runs.Run; import com.openai.models.beta.threads.runs.RunSubmitToolOutputsParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); RunSubmitToolOutputsParams params = RunSubmitToolOutputsParams.builder() .threadId("thread_id") .runId("run_id") .addToolOutput(RunSubmitToolOutputsParams.ToolOutput.builder().build()) .build(); Run run = client.beta().threads().runs().submitToolOutputs(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") run = openai.beta.threads.runs.submit_tool_outputs("run_id", thread_id: "thread_id", tool_outputs: [{}]) puts(run) response: | { "id": "run_123", "object": "thread.run", "created_at": 1699075592, "assistant_id": "asst_123", "thread_id": "thread_123", "status": "queued", "started_at": 1699075592, "expires_at": 1699076192, "cancelled_at": null, "failed_at": null, "completed_at": null, "last_error": null, "model": "gpt-4o", "instructions": null, "tools": [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": ["celsius", "fahrenheit"] } }, "required": ["location"] } } } ], "metadata": {}, "usage": null, "temperature": 1.0, "top_p": 1.0, "max_prompt_tokens": 1000, "max_completion_tokens": 1000, "truncation_strategy": { "type": "auto", "last_messages": null }, "response_format": "auto", "tool_choice": "auto", "parallel_tool_calls": true } - title: Streaming request: curl: | curl https://api.openai.com/v1/threads/thread_123/runs/run_123/submit_tool_outputs \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" \ -d '{ "tool_outputs": [ { "tool_call_id": "call_001", "output": "70 degrees and sunny." } ], "stream": true }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) run = client.beta.threads.runs.submit_tool_outputs( run_id="run_id", thread_id="thread_id", tool_outputs=[{}], ) print(run.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const run = await client.beta.threads.runs.submitToolOutputs('run_id', { thread_id: 'thread_id', tool_outputs: [{}], }); console.log(run.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) run, err := client.Beta.Threads.Runs.SubmitToolOutputs( context.TODO(), "thread_id", "run_id", openai.BetaThreadRunSubmitToolOutputsParams{ ToolOutputs: []openai.BetaThreadRunSubmitToolOutputsParamsToolOutput{openai.BetaThreadRunSubmitToolOutputsParamsToolOutput{ }}, }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", run.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.threads.runs.Run; import com.openai.models.beta.threads.runs.RunSubmitToolOutputsParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); RunSubmitToolOutputsParams params = RunSubmitToolOutputsParams.builder() .threadId("thread_id") .runId("run_id") .addToolOutput(RunSubmitToolOutputsParams.ToolOutput.builder().build()) .build(); Run run = client.beta().threads().runs().submitToolOutputs(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") run = openai.beta.threads.runs.submit_tool_outputs("run_id", thread_id: "thread_id", tool_outputs: [{}]) puts(run) response: > event: thread.run.step.completed data: {"id":"step_001","object":"thread.run.step","created_at":1710352449,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"tool_calls","status":"completed","cancelled_at":null,"completed_at":1710352475,"expires_at":1710353047,"failed_at":null,"last_error":null,"step_details":{"type":"tool_calls","tool_calls":[{"id":"call_iWr0kQ2EaYMaxNdl0v3KYkx7","type":"function","function":{"name":"get_current_weather","arguments":"{\"location\":\"San Francisco, CA\",\"unit\":\"fahrenheit\"}","output":"70 degrees and sunny."}}]},"usage":{"prompt_tokens":291,"completion_tokens":24,"total_tokens":315}} event: thread.run.queued data: {"id":"run_123","object":"thread.run","created_at":1710352447,"assistant_id":"asst_123","thread_id":"thread_123","status":"queued","started_at":1710352448,"expires_at":1710353047,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4o","instructions":null,"tools":[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather in a given location","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","enum":["celsius","fahrenheit"]}},"required":["location"]}}}],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto","parallel_tool_calls":true}} event: thread.run.in_progress data: {"id":"run_123","object":"thread.run","created_at":1710352447,"assistant_id":"asst_123","thread_id":"thread_123","status":"in_progress","started_at":1710352475,"expires_at":1710353047,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4o","instructions":null,"tools":[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather in a given location","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","enum":["celsius","fahrenheit"]}},"required":["location"]}}}],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto","parallel_tool_calls":true}} event: thread.run.step.created data: {"id":"step_002","object":"thread.run.step","created_at":1710352476,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710353047,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_002"}},"usage":null} event: thread.run.step.in_progress data: {"id":"step_002","object":"thread.run.step","created_at":1710352476,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710353047,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_002"}},"usage":null} event: thread.message.created data: {"id":"msg_002","object":"thread.message","created_at":1710352476,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"in_progress","incomplete_details":null,"incomplete_at":null,"completed_at":null,"role":"assistant","content":[],"metadata":{}} event: thread.message.in_progress data: {"id":"msg_002","object":"thread.message","created_at":1710352476,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"in_progress","incomplete_details":null,"incomplete_at":null,"completed_at":null,"role":"assistant","content":[],"metadata":{}} event: thread.message.delta data: {"id":"msg_002","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":"The","annotations":[]}}]}} event: thread.message.delta data: {"id":"msg_002","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":" current"}}]}} event: thread.message.delta data: {"id":"msg_002","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":" weather"}}]}} ... event: thread.message.delta data: {"id":"msg_002","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":" sunny"}}]}} event: thread.message.delta data: {"id":"msg_002","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":"."}}]}} event: thread.message.completed data: {"id":"msg_002","object":"thread.message","created_at":1710352476,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"completed","incomplete_details":null,"incomplete_at":null,"completed_at":1710352477,"role":"assistant","content":[{"type":"text","text":{"value":"The current weather in San Francisco, CA is 70 degrees Fahrenheit and sunny.","annotations":[]}}],"metadata":{}} event: thread.run.step.completed data: {"id":"step_002","object":"thread.run.step","created_at":1710352476,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"completed","cancelled_at":null,"completed_at":1710352477,"expires_at":1710353047,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_002"}},"usage":{"prompt_tokens":329,"completion_tokens":18,"total_tokens":347}} event: thread.run.completed data: {"id":"run_123","object":"thread.run","created_at":1710352447,"assistant_id":"asst_123","thread_id":"thread_123","status":"completed","started_at":1710352475,"expires_at":null,"cancelled_at":null,"failed_at":null,"completed_at":1710352477,"required_action":null,"last_error":null,"model":"gpt-4o","instructions":null,"tools":[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather in a given location","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","enum":["celsius","fahrenheit"]}},"required":["location"]}}}],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":{"prompt_tokens":20,"completion_tokens":11,"total_tokens":31},"response_format":"auto","tool_choice":"auto","parallel_tool_calls":true}} event: done data: [DONE] description: > When a run has the `status: "requires_action"` and `required_action.type` is `submit_tool_outputs`, this endpoint can be used to submit the outputs from the tool calls once they're all completed. All outputs must be submitted in a single request. /uploads: post: operationId: createUpload tags: - Uploads summary: Create upload requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CreateUploadRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/Upload' x-oaiMeta: name: Create upload group: uploads returns: >- The [Upload](https://platform.openai.com/docs/api-reference/uploads/object) object with status `pending`. examples: response: | { "id": "upload_abc123", "object": "upload", "bytes": 2147483648, "created_at": 1719184911, "filename": "training_examples.jsonl", "purpose": "fine-tune", "status": "pending", "expires_at": 1719127296 } request: curl: | curl https://api.openai.com/v1/uploads \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "purpose": "fine-tune", "filename": "training_examples.jsonl", "bytes": 2147483648, "mime_type": "text/jsonl", "expires_after": { "anchor": "created_at", "seconds": 3600 } }' node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const upload = await client.uploads.create({ bytes: 0, filename: 'filename', mime_type: 'mime_type', purpose: 'assistants', }); console.log(upload.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) upload = client.uploads.create( bytes=0, filename="filename", mime_type="mime_type", purpose="assistants", ) print(upload.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) upload, err := client.Uploads.New(context.TODO(), openai.UploadNewParams{ Bytes: 0, Filename: "filename", MimeType: "mime_type", Purpose: openai.FilePurposeAssistants, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", upload.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.files.FilePurpose; import com.openai.models.uploads.Upload; import com.openai.models.uploads.UploadCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); UploadCreateParams params = UploadCreateParams.builder() .bytes(0L) .filename("filename") .mimeType("mime_type") .purpose(FilePurpose.ASSISTANTS) .build(); Upload upload = client.uploads().create(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") upload = openai.uploads.create(bytes: 0, filename: "filename", mime_type: "mime_type", purpose: :assistants) puts(upload) description: > Creates an intermediate [Upload](https://platform.openai.com/docs/api-reference/uploads/object) object that you can add [Parts](https://platform.openai.com/docs/api-reference/uploads/part-object) to. Currently, an Upload can accept at most 8 GB in total and expires after an hour after you create it. Once you complete the Upload, we will create a [File](https://platform.openai.com/docs/api-reference/files/object) object that contains all the parts you uploaded. This File is usable in the rest of our platform as a regular File object. For certain `purpose` values, the correct `mime_type` must be specified. Please refer to documentation for the [supported MIME types for your use case](https://platform.openai.com/docs/assistants/tools/file-search#supported-files). For guidance on the proper filename extensions for each purpose, please follow the documentation on [creating a File](https://platform.openai.com/docs/api-reference/files/create). /uploads/{upload_id}/cancel: post: operationId: cancelUpload tags: - Uploads summary: Cancel upload parameters: - in: path name: upload_id required: true schema: type: string example: upload_abc123 description: | The ID of the Upload. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/Upload' x-oaiMeta: name: Cancel upload group: uploads returns: >- The [Upload](https://platform.openai.com/docs/api-reference/uploads/object) object with status `cancelled`. examples: response: | { "id": "upload_abc123", "object": "upload", "bytes": 2147483648, "created_at": 1719184911, "filename": "training_examples.jsonl", "purpose": "fine-tune", "status": "cancelled", "expires_at": 1719127296 } request: curl: | curl https://api.openai.com/v1/uploads/upload_abc123/cancel node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const upload = await client.uploads.cancel('upload_abc123'); console.log(upload.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) upload = client.uploads.cancel( "upload_abc123", ) print(upload.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) upload, err := client.Uploads.Cancel(context.TODO(), "upload_abc123") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", upload.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.uploads.Upload; import com.openai.models.uploads.UploadCancelParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Upload upload = client.uploads().cancel("upload_abc123"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") upload = openai.uploads.cancel("upload_abc123") puts(upload) description: | Cancels the Upload. No Parts may be added after an Upload is cancelled. /uploads/{upload_id}/complete: post: operationId: completeUpload tags: - Uploads summary: Complete upload parameters: - in: path name: upload_id required: true schema: type: string example: upload_abc123 description: | The ID of the Upload. requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CompleteUploadRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/Upload' x-oaiMeta: name: Complete upload group: uploads returns: >- The [Upload](https://platform.openai.com/docs/api-reference/uploads/object) object with status `completed` with an additional `file` property containing the created usable File object. examples: response: | { "id": "upload_abc123", "object": "upload", "bytes": 2147483648, "created_at": 1719184911, "filename": "training_examples.jsonl", "purpose": "fine-tune", "status": "completed", "expires_at": 1719127296, "file": { "id": "file-xyz321", "object": "file", "bytes": 2147483648, "created_at": 1719186911, "expires_at": 1719127296, "filename": "training_examples.jsonl", "purpose": "fine-tune", } } request: curl: | curl https://api.openai.com/v1/uploads/upload_abc123/complete -d '{ "part_ids": ["part_def456", "part_ghi789"] }' node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const upload = await client.uploads.complete('upload_abc123', { part_ids: ['string'] }); console.log(upload.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) upload = client.uploads.complete( upload_id="upload_abc123", part_ids=["string"], ) print(upload.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) upload, err := client.Uploads.Complete( context.TODO(), "upload_abc123", openai.UploadCompleteParams{ PartIDs: []string{"string"}, }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", upload.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.uploads.Upload; import com.openai.models.uploads.UploadCompleteParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); UploadCompleteParams params = UploadCompleteParams.builder() .uploadId("upload_abc123") .addPartId("string") .build(); Upload upload = client.uploads().complete(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") upload = openai.uploads.complete("upload_abc123", part_ids: ["string"]) puts(upload) description: > Completes the [Upload](https://platform.openai.com/docs/api-reference/uploads/object). Within the returned Upload object, there is a nested [File](https://platform.openai.com/docs/api-reference/files/object) object that is ready to use in the rest of the platform. You can specify the order of the Parts by passing in an ordered list of the Part IDs. The number of bytes uploaded upon completion must match the number of bytes initially specified when creating the Upload object. No Parts may be added after an Upload is completed. /uploads/{upload_id}/parts: post: operationId: addUploadPart tags: - Uploads summary: Add upload part parameters: - in: path name: upload_id required: true schema: type: string example: upload_abc123 description: | The ID of the Upload. requestBody: required: true content: multipart/form-data: schema: $ref: '#/components/schemas/AddUploadPartRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/UploadPart' x-oaiMeta: name: Add upload part group: uploads returns: The upload [Part](https://platform.openai.com/docs/api-reference/uploads/part-object) object. examples: response: | { "id": "part_def456", "object": "upload.part", "created_at": 1719185911, "upload_id": "upload_abc123" } request: curl: | curl https://api.openai.com/v1/uploads/upload_abc123/parts -F data="aHR0cHM6Ly9hcGkub3BlbmFpLmNvbS92MS91cGxvYWRz..." node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const uploadPart = await client.uploads.parts.create('upload_abc123', { data: fs.createReadStream('path/to/file'), }); console.log(uploadPart.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) upload_part = client.uploads.parts.create( upload_id="upload_abc123", data=b"raw file contents", ) print(upload_part.id) go: | package main import ( "bytes" "context" "fmt" "io" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) uploadPart, err := client.Uploads.Parts.New( context.TODO(), "upload_abc123", openai.UploadPartNewParams{ Data: io.Reader(bytes.NewBuffer([]byte("some file contents"))), }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", uploadPart.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.uploads.parts.PartCreateParams; import com.openai.models.uploads.parts.UploadPart; import java.io.ByteArrayInputStream; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); PartCreateParams params = PartCreateParams.builder() .uploadId("upload_abc123") .data(ByteArrayInputStream("some content".getBytes())) .build(); UploadPart uploadPart = client.uploads().parts().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") upload_part = openai.uploads.parts.create("upload_abc123", data: Pathname(__FILE__)) puts(upload_part) description: > Adds a [Part](https://platform.openai.com/docs/api-reference/uploads/part-object) to an [Upload](https://platform.openai.com/docs/api-reference/uploads/object) object. A Part represents a chunk of bytes from the file you are trying to upload. Each Part can be at most 64 MB, and you can add Parts until you hit the Upload maximum of 8 GB. It is possible to add multiple Parts in parallel. You can decide the intended order of the Parts when you [complete the Upload](https://platform.openai.com/docs/api-reference/uploads/complete). /vector_stores: get: operationId: listVectorStores tags: - Vector stores summary: List vector stores parameters: - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - name: order in: query description: > Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order. schema: type: string default: desc enum: - asc - desc - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. schema: type: string - name: before in: query description: > A cursor for use in pagination. `before` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, starting with obj_foo, your subsequent call can include before=obj_foo in order to fetch the previous page of the list. schema: type: string responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ListVectorStoresResponse' x-oaiMeta: name: List vector stores group: vector_stores returns: >- A list of [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) objects. examples: response: | { "object": "list", "data": [ { "id": "vs_abc123", "object": "vector_store", "created_at": 1699061776, "name": "Support FAQ", "description": "Contains commonly asked questions and answers, organized by topic.", "bytes": 139920, "file_counts": { "in_progress": 0, "completed": 3, "failed": 0, "cancelled": 0, "total": 3 } }, { "id": "vs_abc456", "object": "vector_store", "created_at": 1699061776, "name": "Support FAQ v2", "description": null, "bytes": 139920, "file_counts": { "in_progress": 0, "completed": 3, "failed": 0, "cancelled": 0, "total": 3 } } ], "first_id": "vs_abc123", "last_id": "vs_abc456", "has_more": false } request: curl: | curl https://api.openai.com/v1/vector_stores \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.vector_stores.list() page = page.data[0] print(page.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const vectorStore of client.vectorStores.list()) { console.log(vectorStore.id); } go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.VectorStores.List(context.TODO(), openai.VectorStoreListParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.vectorstores.VectorStoreListPage; import com.openai.models.vectorstores.VectorStoreListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); VectorStoreListPage page = client.vectorStores().list(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.vector_stores.list puts(page) description: Returns a list of vector stores. post: operationId: createVectorStore tags: - Vector stores summary: Create vector store requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CreateVectorStoreRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/VectorStoreObject' x-oaiMeta: name: Create vector store group: vector_stores returns: A [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) object. examples: response: | { "id": "vs_abc123", "object": "vector_store", "created_at": 1699061776, "name": "Support FAQ", "description": "Contains commonly asked questions and answers, organized by topic.", "bytes": 139920, "file_counts": { "in_progress": 0, "completed": 3, "failed": 0, "cancelled": 0, "total": 3 } } request: curl: | curl https://api.openai.com/v1/vector_stores \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" \ -d '{ "name": "Support FAQ" }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) vector_store = client.vector_stores.create() print(vector_store.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const vectorStore = await client.vectorStores.create(); console.log(vectorStore.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) vectorStore, err := client.VectorStores.New(context.TODO(), openai.VectorStoreNewParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", vectorStore.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.vectorstores.VectorStore; import com.openai.models.vectorstores.VectorStoreCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); VectorStore vectorStore = client.vectorStores().create(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") vector_store = openai.vector_stores.create puts(vector_store) description: Create a vector store. /vector_stores/{vector_store_id}: get: operationId: getVectorStore tags: - Vector stores summary: Retrieve vector store parameters: - in: path name: vector_store_id required: true schema: type: string description: The ID of the vector store to retrieve. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/VectorStoreObject' x-oaiMeta: name: Retrieve vector store group: vector_stores returns: >- The [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) object matching the specified ID. examples: response: | { "id": "vs_abc123", "object": "vector_store", "created_at": 1699061776 } request: curl: | curl https://api.openai.com/v1/vector_stores/vs_abc123 \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) vector_store = client.vector_stores.retrieve( "vector_store_id", ) print(vector_store.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const vectorStore = await client.vectorStores.retrieve('vector_store_id'); console.log(vectorStore.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) vectorStore, err := client.VectorStores.Get(context.TODO(), "vector_store_id") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", vectorStore.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.vectorstores.VectorStore; import com.openai.models.vectorstores.VectorStoreRetrieveParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); VectorStore vectorStore = client.vectorStores().retrieve("vector_store_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") vector_store = openai.vector_stores.retrieve("vector_store_id") puts(vector_store) description: Retrieves a vector store. post: operationId: modifyVectorStore tags: - Vector stores summary: Modify vector store parameters: - in: path name: vector_store_id required: true schema: type: string description: The ID of the vector store to modify. requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/UpdateVectorStoreRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/VectorStoreObject' x-oaiMeta: name: Modify vector store group: vector_stores returns: >- The modified [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) object. examples: response: | { "id": "vs_abc123", "object": "vector_store", "created_at": 1699061776, "name": "Support FAQ", "description": "Contains commonly asked questions and answers, organized by topic.", "bytes": 139920, "file_counts": { "in_progress": 0, "completed": 3, "failed": 0, "cancelled": 0, "total": 3 } } request: curl: | curl https://api.openai.com/v1/vector_stores/vs_abc123 \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" -d '{ "name": "Support FAQ" }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) vector_store = client.vector_stores.update( vector_store_id="vector_store_id", ) print(vector_store.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const vectorStore = await client.vectorStores.update('vector_store_id'); console.log(vectorStore.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) vectorStore, err := client.VectorStores.Update( context.TODO(), "vector_store_id", openai.VectorStoreUpdateParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", vectorStore.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.vectorstores.VectorStore; import com.openai.models.vectorstores.VectorStoreUpdateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); VectorStore vectorStore = client.vectorStores().update("vector_store_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") vector_store = openai.vector_stores.update("vector_store_id") puts(vector_store) description: Modifies a vector store. delete: operationId: deleteVectorStore tags: - Vector stores summary: Delete vector store parameters: - in: path name: vector_store_id required: true schema: type: string description: The ID of the vector store to delete. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/DeleteVectorStoreResponse' x-oaiMeta: name: Delete vector store group: vector_stores returns: Deletion status examples: response: | { id: "vs_abc123", object: "vector_store.deleted", deleted: true } request: curl: | curl https://api.openai.com/v1/vector_stores/vs_abc123 \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" \ -X DELETE python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) vector_store_deleted = client.vector_stores.delete( "vector_store_id", ) print(vector_store_deleted.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const vectorStoreDeleted = await client.vectorStores.delete('vector_store_id'); console.log(vectorStoreDeleted.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) vectorStoreDeleted, err := client.VectorStores.Delete(context.TODO(), "vector_store_id") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", vectorStoreDeleted.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.vectorstores.VectorStoreDeleteParams; import com.openai.models.vectorstores.VectorStoreDeleted; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); VectorStoreDeleted vectorStoreDeleted = client.vectorStores().delete("vector_store_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") vector_store_deleted = openai.vector_stores.delete("vector_store_id") puts(vector_store_deleted) description: Delete a vector store. /vector_stores/{vector_store_id}/file_batches: post: operationId: createVectorStoreFileBatch tags: - Vector stores summary: Create vector store file batch parameters: - in: path name: vector_store_id required: true schema: type: string example: vs_abc123 description: | The ID of the vector store for which to create a File Batch. requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CreateVectorStoreFileBatchRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/VectorStoreFileBatchObject' x-oaiMeta: name: Create vector store file batch group: vector_stores returns: >- A [vector store file batch](https://platform.openai.com/docs/api-reference/vector-stores-file-batches/batch-object) object. examples: response: | { "id": "vsfb_abc123", "object": "vector_store.file_batch", "created_at": 1699061776, "vector_store_id": "vs_abc123", "status": "in_progress", "file_counts": { "in_progress": 1, "completed": 1, "failed": 0, "cancelled": 0, "total": 0, } } request: curl: | curl https://api.openai.com/v1/vector_stores/vs_abc123/file_batches \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json \ -H "OpenAI-Beta: assistants=v2" \ -d '{ "files": [ { "file_id": "file-abc123", "attributes": {"category": "finance"} }, { "file_id": "file-abc456", "chunking_strategy": { "type": "static", "max_chunk_size_tokens": 1200, "chunk_overlap_tokens": 200 } } ] }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) vector_store_file_batch = client.vector_stores.file_batches.create( vector_store_id="vs_abc123", ) print(vector_store_file_batch.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const vectorStoreFileBatch = await client.vectorStores.fileBatches.create('vs_abc123'); console.log(vectorStoreFileBatch.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) vectorStoreFileBatch, err := client.VectorStores.FileBatches.New( context.TODO(), "vs_abc123", openai.VectorStoreFileBatchNewParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", vectorStoreFileBatch.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.vectorstores.filebatches.FileBatchCreateParams; import com.openai.models.vectorstores.filebatches.VectorStoreFileBatch; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); VectorStoreFileBatch vectorStoreFileBatch = client.vectorStores().fileBatches().create("vs_abc123"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") vector_store_file_batch = openai.vector_stores.file_batches.create("vs_abc123") puts(vector_store_file_batch) description: Create a vector store file batch. /vector_stores/{vector_store_id}/file_batches/{batch_id}: get: operationId: getVectorStoreFileBatch tags: - Vector stores summary: Retrieve vector store file batch parameters: - in: path name: vector_store_id required: true schema: type: string example: vs_abc123 description: The ID of the vector store that the file batch belongs to. - in: path name: batch_id required: true schema: type: string example: vsfb_abc123 description: The ID of the file batch being retrieved. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/VectorStoreFileBatchObject' x-oaiMeta: name: Retrieve vector store file batch group: vector_stores returns: >- The [vector store file batch](https://platform.openai.com/docs/api-reference/vector-stores-file-batches/batch-object) object. examples: response: | { "id": "vsfb_abc123", "object": "vector_store.file_batch", "created_at": 1699061776, "vector_store_id": "vs_abc123", "status": "in_progress", "file_counts": { "in_progress": 1, "completed": 1, "failed": 0, "cancelled": 0, "total": 0, } } request: curl: | curl https://api.openai.com/v1/vector_stores/vs_abc123/files_batches/vsfb_abc123 \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) vector_store_file_batch = client.vector_stores.file_batches.retrieve( batch_id="vsfb_abc123", vector_store_id="vs_abc123", ) print(vector_store_file_batch.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const vectorStoreFileBatch = await client.vectorStores.fileBatches.retrieve('vsfb_abc123', { vector_store_id: 'vs_abc123', }); console.log(vectorStoreFileBatch.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) vectorStoreFileBatch, err := client.VectorStores.FileBatches.Get( context.TODO(), "vs_abc123", "vsfb_abc123", ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", vectorStoreFileBatch.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.vectorstores.filebatches.FileBatchRetrieveParams; import com.openai.models.vectorstores.filebatches.VectorStoreFileBatch; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FileBatchRetrieveParams params = FileBatchRetrieveParams.builder() .vectorStoreId("vs_abc123") .batchId("vsfb_abc123") .build(); VectorStoreFileBatch vectorStoreFileBatch = client.vectorStores().fileBatches().retrieve(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") vector_store_file_batch = openai.vector_stores.file_batches.retrieve("vsfb_abc123", vector_store_id: "vs_abc123") puts(vector_store_file_batch) description: Retrieves a vector store file batch. /vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel: post: operationId: cancelVectorStoreFileBatch tags: - Vector stores summary: Cancel vector store file batch parameters: - in: path name: vector_store_id required: true schema: type: string description: The ID of the vector store that the file batch belongs to. - in: path name: batch_id required: true schema: type: string description: The ID of the file batch to cancel. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/VectorStoreFileBatchObject' x-oaiMeta: name: Cancel vector store file batch group: vector_stores returns: The modified vector store file batch object. examples: response: | { "id": "vsfb_abc123", "object": "vector_store.file_batch", "created_at": 1699061776, "vector_store_id": "vs_abc123", "status": "in_progress", "file_counts": { "in_progress": 12, "completed": 3, "failed": 0, "cancelled": 0, "total": 15, } } request: curl: | curl https://api.openai.com/v1/vector_stores/vs_abc123/files_batches/vsfb_abc123/cancel \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" \ -X POST python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) vector_store_file_batch = client.vector_stores.file_batches.cancel( batch_id="batch_id", vector_store_id="vector_store_id", ) print(vector_store_file_batch.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const vectorStoreFileBatch = await client.vectorStores.fileBatches.cancel('batch_id', { vector_store_id: 'vector_store_id', }); console.log(vectorStoreFileBatch.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) vectorStoreFileBatch, err := client.VectorStores.FileBatches.Cancel( context.TODO(), "vector_store_id", "batch_id", ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", vectorStoreFileBatch.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.vectorstores.filebatches.FileBatchCancelParams; import com.openai.models.vectorstores.filebatches.VectorStoreFileBatch; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FileBatchCancelParams params = FileBatchCancelParams.builder() .vectorStoreId("vector_store_id") .batchId("batch_id") .build(); VectorStoreFileBatch vectorStoreFileBatch = client.vectorStores().fileBatches().cancel(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") vector_store_file_batch = openai.vector_stores.file_batches.cancel("batch_id", vector_store_id: "vector_store_id") puts(vector_store_file_batch) description: >- Cancel a vector store file batch. This attempts to cancel the processing of files in this batch as soon as possible. /vector_stores/{vector_store_id}/file_batches/{batch_id}/files: get: operationId: listFilesInVectorStoreBatch tags: - Vector stores summary: List vector store files in a batch parameters: - name: vector_store_id in: path description: The ID of the vector store that the files belong to. required: true schema: type: string - name: batch_id in: path description: The ID of the file batch that the files belong to. required: true schema: type: string - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - name: order in: query description: > Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order. schema: type: string default: desc enum: - asc - desc - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. schema: type: string - name: before in: query description: > A cursor for use in pagination. `before` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, starting with obj_foo, your subsequent call can include before=obj_foo in order to fetch the previous page of the list. schema: type: string - name: filter in: query description: Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`. schema: type: string enum: - in_progress - completed - failed - cancelled responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ListVectorStoreFilesResponse' x-oaiMeta: name: List vector store files in a batch group: vector_stores returns: >- A list of [vector store file](https://platform.openai.com/docs/api-reference/vector-stores-files/file-object) objects. examples: response: | { "object": "list", "data": [ { "id": "file-abc123", "object": "vector_store.file", "created_at": 1699061776, "vector_store_id": "vs_abc123" }, { "id": "file-abc456", "object": "vector_store.file", "created_at": 1699061776, "vector_store_id": "vs_abc123" } ], "first_id": "file-abc123", "last_id": "file-abc456", "has_more": false } request: curl: | curl https://api.openai.com/v1/vector_stores/vs_abc123/files_batches/vsfb_abc123/files \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.vector_stores.file_batches.list_files( batch_id="batch_id", vector_store_id="vector_store_id", ) page = page.data[0] print(page.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const vectorStoreFile of client.vectorStores.fileBatches.listFiles('batch_id', { vector_store_id: 'vector_store_id', })) { console.log(vectorStoreFile.id); } go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.VectorStores.FileBatches.ListFiles( context.TODO(), "vector_store_id", "batch_id", openai.VectorStoreFileBatchListFilesParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.vectorstores.filebatches.FileBatchListFilesPage; import com.openai.models.vectorstores.filebatches.FileBatchListFilesParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FileBatchListFilesParams params = FileBatchListFilesParams.builder() .vectorStoreId("vector_store_id") .batchId("batch_id") .build(); FileBatchListFilesPage page = client.vectorStores().fileBatches().listFiles(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.vector_stores.file_batches.list_files("batch_id", vector_store_id: "vector_store_id") puts(page) description: Returns a list of vector store files in a batch. /vector_stores/{vector_store_id}/files: get: operationId: listVectorStoreFiles tags: - Vector stores summary: List vector store files parameters: - name: vector_store_id in: path description: The ID of the vector store that the files belong to. required: true schema: type: string - name: limit in: query description: > A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20. required: false schema: type: integer default: 20 - name: order in: query description: > Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order. schema: type: string default: desc enum: - asc - desc - name: after in: query description: > A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list. schema: type: string - name: before in: query description: > A cursor for use in pagination. `before` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, starting with obj_foo, your subsequent call can include before=obj_foo in order to fetch the previous page of the list. schema: type: string - name: filter in: query description: Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`. schema: type: string enum: - in_progress - completed - failed - cancelled responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/ListVectorStoreFilesResponse' x-oaiMeta: name: List vector store files group: vector_stores returns: >- A list of [vector store file](https://platform.openai.com/docs/api-reference/vector-stores-files/file-object) objects. examples: response: | { "object": "list", "data": [ { "id": "file-abc123", "object": "vector_store.file", "created_at": 1699061776, "vector_store_id": "vs_abc123" }, { "id": "file-abc456", "object": "vector_store.file", "created_at": 1699061776, "vector_store_id": "vs_abc123" } ], "first_id": "file-abc123", "last_id": "file-abc456", "has_more": false } request: curl: | curl https://api.openai.com/v1/vector_stores/vs_abc123/files \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.vector_stores.files.list( vector_store_id="vector_store_id", ) page = page.data[0] print(page.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const vectorStoreFile of client.vectorStores.files.list('vector_store_id')) { console.log(vectorStoreFile.id); } go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.VectorStores.Files.List( context.TODO(), "vector_store_id", openai.VectorStoreFileListParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.vectorstores.files.FileListPage; import com.openai.models.vectorstores.files.FileListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FileListPage page = client.vectorStores().files().list("vector_store_id"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.vector_stores.files.list("vector_store_id") puts(page) description: Returns a list of vector store files. post: operationId: createVectorStoreFile tags: - Vector stores summary: Create vector store file parameters: - in: path name: vector_store_id required: true schema: type: string example: vs_abc123 description: | The ID of the vector store for which to create a File. requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/CreateVectorStoreFileRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/VectorStoreFileObject' x-oaiMeta: name: Create vector store file group: vector_stores returns: >- A [vector store file](https://platform.openai.com/docs/api-reference/vector-stores-files/file-object) object. examples: response: | { "id": "file-abc123", "object": "vector_store.file", "created_at": 1699061776, "usage_bytes": 1234, "vector_store_id": "vs_abcd", "status": "completed", "last_error": null } request: curl: | curl https://api.openai.com/v1/vector_stores/vs_abc123/files \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" \ -d '{ "file_id": "file-abc123" }' python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) vector_store_file = client.vector_stores.files.create( vector_store_id="vs_abc123", file_id="file_id", ) print(vector_store_file.id) node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const vectorStoreFile = await client.vectorStores.files.create('vs_abc123', { file_id: 'file_id' }); console.log(vectorStoreFile.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) vectorStoreFile, err := client.VectorStores.Files.New( context.TODO(), "vs_abc123", openai.VectorStoreFileNewParams{ FileID: "file_id", }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", vectorStoreFile.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.vectorstores.files.FileCreateParams; import com.openai.models.vectorstores.files.VectorStoreFile; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FileCreateParams params = FileCreateParams.builder() .vectorStoreId("vs_abc123") .fileId("file_id") .build(); VectorStoreFile vectorStoreFile = client.vectorStores().files().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") vector_store_file = openai.vector_stores.files.create("vs_abc123", file_id: "file_id") puts(vector_store_file) description: >- Create a vector store file by attaching a [File](https://platform.openai.com/docs/api-reference/files) to a [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object). /vector_stores/{vector_store_id}/files/{file_id}: get: operationId: getVectorStoreFile tags: - Vector stores summary: Retrieve vector store file parameters: - in: path name: vector_store_id required: true schema: type: string example: vs_abc123 description: The ID of the vector store that the file belongs to. - in: path name: file_id required: true schema: type: string example: file-abc123 description: The ID of the file being retrieved. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/VectorStoreFileObject' x-oaiMeta: name: Retrieve vector store file group: vector_stores returns: >- The [vector store file](https://platform.openai.com/docs/api-reference/vector-stores-files/file-object) object. examples: response: | { "id": "file-abc123", "object": "vector_store.file", "created_at": 1699061776, "vector_store_id": "vs_abcd", "status": "completed", "last_error": null } request: curl: | curl https://api.openai.com/v1/vector_stores/vs_abc123/files/file-abc123 \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) vector_store_file = client.vector_stores.files.retrieve( file_id="file-abc123", vector_store_id="vs_abc123", ) print(vector_store_file.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const vectorStoreFile = await client.vectorStores.files.retrieve('file-abc123', { vector_store_id: 'vs_abc123', }); console.log(vectorStoreFile.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) vectorStoreFile, err := client.VectorStores.Files.Get( context.TODO(), "vs_abc123", "file-abc123", ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", vectorStoreFile.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.vectorstores.files.FileRetrieveParams; import com.openai.models.vectorstores.files.VectorStoreFile; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FileRetrieveParams params = FileRetrieveParams.builder() .vectorStoreId("vs_abc123") .fileId("file-abc123") .build(); VectorStoreFile vectorStoreFile = client.vectorStores().files().retrieve(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") vector_store_file = openai.vector_stores.files.retrieve("file-abc123", vector_store_id: "vs_abc123") puts(vector_store_file) description: Retrieves a vector store file. delete: operationId: deleteVectorStoreFile tags: - Vector stores summary: Delete vector store file parameters: - in: path name: vector_store_id required: true schema: type: string description: The ID of the vector store that the file belongs to. - in: path name: file_id required: true schema: type: string description: The ID of the file to delete. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/DeleteVectorStoreFileResponse' x-oaiMeta: name: Delete vector store file group: vector_stores returns: Deletion status examples: response: | { id: "file-abc123", object: "vector_store.file.deleted", deleted: true } request: curl: | curl https://api.openai.com/v1/vector_stores/vs_abc123/files/file-abc123 \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -H "OpenAI-Beta: assistants=v2" \ -X DELETE python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) vector_store_file_deleted = client.vector_stores.files.delete( file_id="file_id", vector_store_id="vector_store_id", ) print(vector_store_file_deleted.id) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const vectorStoreFileDeleted = await client.vectorStores.files.delete('file_id', { vector_store_id: 'vector_store_id', }); console.log(vectorStoreFileDeleted.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) vectorStoreFileDeleted, err := client.VectorStores.Files.Delete( context.TODO(), "vector_store_id", "file_id", ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", vectorStoreFileDeleted.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.vectorstores.files.FileDeleteParams; import com.openai.models.vectorstores.files.VectorStoreFileDeleted; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FileDeleteParams params = FileDeleteParams.builder() .vectorStoreId("vector_store_id") .fileId("file_id") .build(); VectorStoreFileDeleted vectorStoreFileDeleted = client.vectorStores().files().delete(params); } } ruby: >- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") vector_store_file_deleted = openai.vector_stores.files.delete("file_id", vector_store_id: "vector_store_id") puts(vector_store_file_deleted) description: >- Delete a vector store file. This will remove the file from the vector store but the file itself will not be deleted. To delete the file, use the [delete file](https://platform.openai.com/docs/api-reference/files/delete) endpoint. post: operationId: updateVectorStoreFileAttributes tags: - Vector stores summary: Update vector store file attributes parameters: - in: path name: vector_store_id required: true schema: type: string example: vs_abc123 description: The ID of the vector store the file belongs to. - in: path name: file_id required: true schema: type: string example: file-abc123 description: The ID of the file to update attributes. requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/UpdateVectorStoreFileAttributesRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/VectorStoreFileObject' x-oaiMeta: name: Update vector store file attributes group: vector_stores returns: >- The updated [vector store file](https://platform.openai.com/docs/api-reference/vector-stores-files/file-object) object. examples: response: | { "id": "file-abc123", "object": "vector_store.file", "usage_bytes": 1234, "created_at": 1699061776, "vector_store_id": "vs_abcd", "status": "completed", "last_error": null, "chunking_strategy": {...}, "attributes": {"key1": "value1", "key2": 2} } request: curl: | curl https://api.openai.com/v1/vector_stores/{vector_store_id}/files/{file_id} \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{"attributes": {"key1": "value1", "key2": 2}}' node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const vectorStoreFile = await client.vectorStores.files.update('file-abc123', { vector_store_id: 'vs_abc123', attributes: { foo: 'string' }, }); console.log(vectorStoreFile.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) vector_store_file = client.vector_stores.files.update( file_id="file-abc123", vector_store_id="vs_abc123", attributes={ "foo": "string" }, ) print(vector_store_file.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) vectorStoreFile, err := client.VectorStores.Files.Update( context.TODO(), "vs_abc123", "file-abc123", openai.VectorStoreFileUpdateParams{ Attributes: map[string]openai.VectorStoreFileUpdateParamsAttributeUnion{ "foo": openai.VectorStoreFileUpdateParamsAttributeUnion{ OfString: openai.String("string"), }, }, }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", vectorStoreFile.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.core.JsonValue; import com.openai.models.vectorstores.files.FileUpdateParams; import com.openai.models.vectorstores.files.VectorStoreFile; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FileUpdateParams params = FileUpdateParams.builder() .vectorStoreId("vs_abc123") .fileId("file-abc123") .attributes(FileUpdateParams.Attributes.builder() .putAdditionalProperty("foo", JsonValue.from("string")) .build()) .build(); VectorStoreFile vectorStoreFile = client.vectorStores().files().update(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") vector_store_file = openai.vector_stores.files.update( "file-abc123", vector_store_id: "vs_abc123", attributes: {foo: "string"} ) puts(vector_store_file) description: Update attributes on a vector store file. /vector_stores/{vector_store_id}/files/{file_id}/content: get: operationId: retrieveVectorStoreFileContent tags: - Vector stores summary: Retrieve vector store file content parameters: - in: path name: vector_store_id required: true schema: type: string example: vs_abc123 description: The ID of the vector store. - in: path name: file_id required: true schema: type: string example: file-abc123 description: The ID of the file within the vector store. responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/VectorStoreFileContentResponse' x-oaiMeta: name: Retrieve vector store file content group: vector_stores returns: The parsed contents of the specified vector store file. examples: response: | { "file_id": "file-abc123", "filename": "example.txt", "attributes": {"key": "value"}, "content": [ {"type": "text", "text": "..."}, ... ] } request: curl: | curl \ https://api.openai.com/v1/vector_stores/vs_abc123/files/file-abc123/content \ -H "Authorization: Bearer $OPENAI_API_KEY" node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const fileContentResponse of client.vectorStores.files.content('file-abc123', { vector_store_id: 'vs_abc123', })) { console.log(fileContentResponse.text); } python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.vector_stores.files.content( file_id="file-abc123", vector_store_id="vs_abc123", ) page = page.data[0] print(page.text) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.VectorStores.Files.Content( context.TODO(), "vs_abc123", "file-abc123", ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.vectorstores.files.FileContentPage; import com.openai.models.vectorstores.files.FileContentParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); FileContentParams params = FileContentParams.builder() .vectorStoreId("vs_abc123") .fileId("file-abc123") .build(); FileContentPage page = client.vectorStores().files().content(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.vector_stores.files.content("file-abc123", vector_store_id: "vs_abc123") puts(page) description: Retrieve the parsed contents of a vector store file. /vector_stores/{vector_store_id}/search: post: operationId: searchVectorStore tags: - Vector stores summary: Search vector store parameters: - in: path name: vector_store_id required: true schema: type: string example: vs_abc123 description: The ID of the vector store to search. requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/VectorStoreSearchRequest' responses: '200': description: OK content: application/json: schema: $ref: '#/components/schemas/VectorStoreSearchResultsPage' x-oaiMeta: name: Search vector store group: vector_stores returns: A page of search results from the vector store. examples: response: | { "object": "vector_store.search_results.page", "search_query": "What is the return policy?", "data": [ { "file_id": "file_123", "filename": "document.pdf", "score": 0.95, "attributes": { "author": "John Doe", "date": "2023-01-01" }, "content": [ { "type": "text", "text": "Relevant chunk" } ] }, { "file_id": "file_456", "filename": "notes.txt", "score": 0.89, "attributes": { "author": "Jane Smith", "date": "2023-01-02" }, "content": [ { "type": "text", "text": "Sample text content from the vector store." } ] } ], "has_more": false, "next_page": null } request: curl: | curl -X POST \ https://api.openai.com/v1/vector_stores/vs_abc123/search \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{"query": "What is the return policy?", "filters": {...}}' node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const vectorStoreSearchResponse of client.vectorStores.search('vs_abc123', { query: 'string' })) { console.log(vectorStoreSearchResponse.file_id); } python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.vector_stores.search( vector_store_id="vs_abc123", query="string", ) page = page.data[0] print(page.file_id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.VectorStores.Search( context.TODO(), "vs_abc123", openai.VectorStoreSearchParams{ Query: openai.VectorStoreSearchParamsQueryUnion{ OfString: openai.String("string"), }, }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.vectorstores.VectorStoreSearchPage; import com.openai.models.vectorstores.VectorStoreSearchParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); VectorStoreSearchParams params = VectorStoreSearchParams.builder() .vectorStoreId("vs_abc123") .query("string") .build(); VectorStoreSearchPage page = client.vectorStores().search(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.vector_stores.search("vs_abc123", query: "string") puts(page) description: Search a vector store for relevant chunks based on a query and file attributes filter. /conversations: post: tags: - Conversations summary: Create a conversation description: Create a conversation. operationId: createConversation parameters: [] requestBody: content: application/json: schema: $ref: '#/components/schemas/CreateConversationBody' responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/ConversationResource' x-oaiMeta: name: Create a conversation group: conversations returns: > Returns a [Conversation](https://platform.openai.com/docs/api-reference/conversations/object) object. path: create examples: - title: Create a conversation. request: curl: | curl https://api.openai.com/v1/conversations \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "metadata": {"topic": "demo"}, "items": [ { "type": "message", "role": "user", "content": "Hello!" } ] }' javascript: | import OpenAI from "openai"; const client = new OpenAI(); const conversation = await client.conversations.create({ metadata: { topic: "demo" }, items: [ { type: "message", role: "user", content: "Hello!" } ], }); console.log(conversation); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) conversation = client.conversations.create() print(conversation.id) csharp: | using System; using System.Collections.Generic; using OpenAI.Conversations; OpenAIConversationClient client = new( apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); Conversation conversation = client.CreateConversation( new CreateConversationOptions { Metadata = new Dictionary { { "topic", "demo" } }, Items = { new ConversationMessageInput { Role = "user", Content = "Hello!", } } } ); Console.WriteLine(conversation.Id); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const conversation = await client.conversations.create(); console.log(conversation.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/conversations" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) conversation, err := client.Conversations.New(context.TODO(), conversations.ConversationNewParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", conversation.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.conversations.Conversation; import com.openai.models.conversations.ConversationCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Conversation conversation = client.conversations().create(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") conversation = openai.conversations.create puts(conversation) response: | { "id": "conv_123", "object": "conversation", "created_at": 1741900000, "metadata": {"topic": "demo"} } /conversations/{conversation_id}: get: tags: - Conversations summary: Retrieve a conversation description: Get a conversation operationId: getConversation parameters: - name: conversation_id in: path description: The ID of the conversation to retrieve. required: true schema: example: conv_123 type: string responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/ConversationResource' x-oaiMeta: name: Retrieve a conversation group: conversations returns: > Returns a [Conversation](https://platform.openai.com/docs/api-reference/conversations/object) object. path: retrieve examples: - title: Retrieve a conversation request: curl: | curl https://api.openai.com/v1/conversations/conv_123 \ -H "Authorization: Bearer $OPENAI_API_KEY" javascript: | import OpenAI from "openai"; const client = new OpenAI(); const conversation = await client.conversations.retrieve("conv_123"); console.log(conversation); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) conversation = client.conversations.retrieve( "conv_123", ) print(conversation.id) csharp: | using System; using OpenAI.Conversations; OpenAIConversationClient client = new( apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); Conversation conversation = client.GetConversation("conv_123"); Console.WriteLine(conversation.Id); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const conversation = await client.conversations.retrieve('conv_123'); console.log(conversation.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) conversation, err := client.Conversations.Get(context.TODO(), "conv_123") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", conversation.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.conversations.Conversation; import com.openai.models.conversations.ConversationRetrieveParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Conversation conversation = client.conversations().retrieve("conv_123"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") conversation = openai.conversations.retrieve("conv_123") puts(conversation) response: | { "id": "conv_123", "object": "conversation", "created_at": 1741900000, "metadata": {"topic": "demo"} } delete: tags: - Conversations summary: Delete a conversation description: Delete a conversation. Items in the conversation will not be deleted. operationId: deleteConversation parameters: - name: conversation_id in: path description: The ID of the conversation to delete. required: true schema: example: conv_123 type: string responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/DeletedConversationResource' x-oaiMeta: name: Delete a conversation group: conversations returns: | A success message. path: delete examples: - title: Delete a conversation request: curl: | curl -X DELETE https://api.openai.com/v1/conversations/conv_123 \ -H "Authorization: Bearer $OPENAI_API_KEY" javascript: | import OpenAI from "openai"; const client = new OpenAI(); const deleted = await client.conversations.delete("conv_123"); console.log(deleted); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) conversation_deleted_resource = client.conversations.delete( "conv_123", ) print(conversation_deleted_resource.id) csharp: | using System; using OpenAI.Conversations; OpenAIConversationClient client = new( apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); DeletedConversation deleted = client.DeleteConversation("conv_123"); Console.WriteLine(deleted.Id); node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const conversationDeletedResource = await client.conversations.delete('conv_123'); console.log(conversationDeletedResource.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) conversationDeletedResource, err := client.Conversations.Delete(context.TODO(), "conv_123") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", conversationDeletedResource.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.conversations.ConversationDeleteParams; import com.openai.models.conversations.ConversationDeletedResource; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ConversationDeletedResource conversationDeletedResource = client.conversations().delete("conv_123"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") conversation_deleted_resource = openai.conversations.delete("conv_123") puts(conversation_deleted_resource) response: | { "id": "conv_123", "object": "conversation.deleted", "deleted": true } post: tags: - Conversations summary: Update a conversation description: Update a conversation operationId: updateConversation parameters: - name: conversation_id in: path description: The ID of the conversation to update. required: true schema: example: conv_123 type: string requestBody: content: application/json: schema: $ref: '#/components/schemas/UpdateConversationBody' responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/ConversationResource' x-oaiMeta: name: Update a conversation group: conversations returns: > Returns the updated [Conversation](https://platform.openai.com/docs/api-reference/conversations/object) object. path: update examples: - title: Update conversation metadata request: curl: | curl https://api.openai.com/v1/conversations/conv_123 \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "metadata": {"topic": "project-x"} }' javascript: | import OpenAI from "openai"; const client = new OpenAI(); const updated = await client.conversations.update( "conv_123", { metadata: { topic: "project-x" } } ); console.log(updated); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) conversation = client.conversations.update( conversation_id="conv_123", metadata={ "foo": "string" }, ) print(conversation.id) csharp: | using System; using System.Collections.Generic; using OpenAI.Conversations; OpenAIConversationClient client = new( apiKey: Environment.GetEnvironmentVariable("OPENAI_API_KEY") ); Conversation updated = client.UpdateConversation( conversationId: "conv_123", new UpdateConversationOptions { Metadata = new Dictionary { { "topic", "project-x" } } } ); Console.WriteLine(updated.Id); node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const conversation = await client.conversations.update('conv_123', { metadata: { foo: 'string' } }); console.log(conversation.id); go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/conversations" "github.com/openai/openai-go/option" "github.com/openai/openai-go/shared" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) conversation, err := client.Conversations.Update( context.TODO(), "conv_123", conversations.ConversationUpdateParams{ Metadata: shared.Metadata{ "foo": "string", }, }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", conversation.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.core.JsonValue; import com.openai.models.conversations.Conversation; import com.openai.models.conversations.ConversationUpdateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ConversationUpdateParams params = ConversationUpdateParams.builder() .conversationId("conv_123") .metadata(ConversationUpdateParams.Metadata.builder() .putAdditionalProperty("foo", JsonValue.from("string")) .build()) .build(); Conversation conversation = client.conversations().update(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") conversation = openai.conversations.update("conv_123", metadata: {foo: "string"}) puts(conversation) response: | { "id": "conv_123", "object": "conversation", "created_at": 1741900000, "metadata": {"topic": "project-x"} } /videos: post: tags: - Videos summary: Create video description: Create a video operationId: createVideo parameters: [] requestBody: content: multipart/form-data: schema: $ref: '#/components/schemas/CreateVideoBody' application/json: schema: $ref: '#/components/schemas/CreateVideoBody' responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/VideoResource' x-oaiMeta: name: Create video group: videos path: create returns: Returns the newly created [video job](https://platform.openai.com/docs/api-reference/videos/object). examples: - title: Create a video render request: curl: | curl https://api.openai.com/v1/videos \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -F "model=sora-2" \ -F "prompt=A calico cat playing a piano on stage" javascript: | import OpenAI from 'openai'; const openai = new OpenAI(); const video = await openai.videos.create({ prompt: 'A calico cat playing a piano on stage' }); console.log(video.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) video = client.videos.create( prompt="x", ) print(video.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) video, err := client.Videos.New(context.TODO(), openai.VideoNewParams{ Prompt: "x", }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", video.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.videos.Video; import com.openai.models.videos.VideoCreateParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); VideoCreateParams params = VideoCreateParams.builder() .prompt("x") .build(); Video video = client.videos().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") video = openai.videos.create(prompt: "x") puts(video) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const video = await client.videos.create({ prompt: 'x' }); console.log(video.id); response: | { "id": "video_123", "object": "video", "model": "sora-2", "status": "queued", "progress": 0, "created_at": 1712697600, "size": "1024x1808", "seconds": "8", "quality": "standard" } get: tags: - Videos summary: List videos description: List videos operationId: ListVideos parameters: - name: limit in: query description: Number of items to retrieve required: false schema: type: integer minimum: 0 maximum: 100 - name: order in: query description: Sort order of results by timestamp. Use `asc` for ascending order or `desc` for descending order. required: false schema: $ref: '#/components/schemas/OrderEnum' - name: after in: query description: Identifier for the last item from the previous pagination request required: false schema: description: Identifier for the last item from the previous pagination request type: string responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/VideoListResource' x-oaiMeta: name: List videos group: videos path: list returns: >- Returns a paginated list of [video jobs](https://platform.openai.com/docs/api-reference/videos/object) for the organization. examples: - title: List recent videos request: curl: | curl https://api.openai.com/v1/videos \ -H "Authorization: Bearer $OPENAI_API_KEY" javascript: | import OpenAI from 'openai'; const openai = new OpenAI(); // Automatically fetches more pages as needed. for await (const video of openai.videos.list()) { console.log(video.id); } python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.videos.list() page = page.data[0] print(page.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.Videos.List(context.TODO(), openai.VideoListParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.videos.VideoListPage; import com.openai.models.videos.VideoListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); VideoListPage page = client.videos().list(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.videos.list puts(page) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const video of client.videos.list()) { console.log(video.id); } response: | { "data": [ { "id": "video_123", "object": "video", "model": "sora-2", "status": "completed" } ], "object": "list" } /videos/{video_id}: get: tags: - Videos summary: Retrieve video description: Retrieve a video operationId: GetVideo parameters: - name: video_id in: path description: The identifier of the video to retrieve. required: true schema: example: video_123 type: string responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/VideoResource' x-oaiMeta: name: Retrieve video group: videos path: retrieve returns: >- Returns the [video job](https://platform.openai.com/docs/api-reference/videos/object) matching the provided identifier. examples: response: '' request: node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const video = await client.videos.retrieve('video_123'); console.log(video.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) video = client.videos.retrieve( "video_123", ) print(video.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) video, err := client.Videos.Get(context.TODO(), "video_123") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", video.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.videos.Video; import com.openai.models.videos.VideoRetrieveParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); Video video = client.videos().retrieve("video_123"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") video = openai.videos.retrieve("video_123") puts(video) delete: tags: - Videos summary: Delete video description: Delete a video operationId: DeleteVideo parameters: - name: video_id in: path description: The identifier of the video to delete. required: true schema: example: video_123 type: string responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/DeletedVideoResource' x-oaiMeta: name: Delete video group: videos path: delete returns: Returns the deleted video job metadata. examples: response: '' request: node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const video = await client.videos.delete('video_123'); console.log(video.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) video = client.videos.delete( "video_123", ) print(video.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) video, err := client.Videos.Delete(context.TODO(), "video_123") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", video.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.videos.VideoDeleteParams; import com.openai.models.videos.VideoDeleteResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); VideoDeleteResponse video = client.videos().delete("video_123"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") video = openai.videos.delete("video_123") puts(video) /videos/{video_id}/content: get: tags: - Videos summary: Retrieve video content description: Download video content operationId: RetrieveVideoContent parameters: - name: video_id in: path description: The identifier of the video whose media to download. required: true schema: example: video_123 type: string - name: variant in: query description: Which downloadable asset to return. Defaults to the MP4 video. required: false schema: $ref: '#/components/schemas/VideoContentVariant' responses: '200': description: The video bytes or preview asset that matches the requested variant. content: video/mp4: schema: type: string format: binary image/webp: schema: type: string format: binary application/json: schema: type: string x-oaiMeta: name: Retrieve video content group: videos path: content returns: Streams the rendered video content for the specified video job. examples: response: '' request: node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const response = await client.videos.downloadContent('video_123'); console.log(response); const content = await response.blob(); console.log(content); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) response = client.videos.download_content( video_id="video_123", ) print(response) content = response.read() print(content) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) response, err := client.Videos.DownloadContent( context.TODO(), "video_123", openai.VideoDownloadContentParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", response) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.core.http.HttpResponse; import com.openai.models.videos.VideoDownloadContentParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); HttpResponse response = client.videos().downloadContent("video_123"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") response = openai.videos.download_content("video_123") puts(response) /videos/{video_id}/remix: post: tags: - Videos summary: Remix video description: Create a video remix operationId: CreateVideoRemix parameters: - name: video_id in: path description: The identifier of the completed video to remix. required: true schema: example: video_123 type: string requestBody: content: multipart/form-data: schema: $ref: '#/components/schemas/CreateVideoRemixBody' application/json: schema: $ref: '#/components/schemas/CreateVideoRemixBody' responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/VideoResource' x-oaiMeta: name: Remix video group: videos path: remix returns: >- Creates a remix of the specified [video job](https://platform.openai.com/docs/api-reference/videos/object) using the provided prompt. examples: - title: Remix a generated video request: curl: | curl -X POST https://api.openai.com/v1/videos/video_123/remix \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "Content-Type: application/json" \ -d '{ "prompt": "Extend the scene with the cat taking a bow to the cheering audience" }' javascript: > import OpenAI from 'openai'; const client = new OpenAI(); const video = await client.videos.remix('video_123', { prompt: 'Extend the scene with the cat taking a bow to the cheering audience' }); console.log(video.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) video = client.videos.remix( video_id="video_123", prompt="x", ) print(video.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) video, err := client.Videos.Remix( context.TODO(), "video_123", openai.VideoRemixParams{ Prompt: "x", }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", video.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.videos.Video; import com.openai.models.videos.VideoRemixParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); VideoRemixParams params = VideoRemixParams.builder() .videoId("video_123") .prompt("x") .build(); Video video = client.videos().remix(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") video = openai.videos.remix("video_123", prompt: "x") puts(video) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const video = await client.videos.remix('video_123', { prompt: 'x' }); console.log(video.id); response: | { "id": "video_456", "object": "video", "model": "sora-2", "status": "queued", "progress": 0, "created_at": 1712698600, "size": "720x1280", "seconds": "8", "remixed_from_video_id": "video_123" } /responses/input_tokens: post: summary: Get input token counts description: Get input token counts operationId: Getinputtokencounts parameters: [] requestBody: content: application/json: schema: $ref: '#/components/schemas/TokenCountsBody' application/x-www-form-urlencoded: schema: $ref: '#/components/schemas/TokenCountsBody' responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/TokenCountsResource' x-oaiMeta: name: Get input token counts group: responses returns: | The input token counts. ```json { object: "response.input_tokens" input_tokens: 123 } ``` examples: response: | { "object": "response.input_tokens", "input_tokens": 11 } request: curl: | curl -X POST https://api.openai.com/v1/responses/input_tokens \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -d '{ "model": "gpt-5", "input": "Tell me a joke." }' node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const response = await client.responses.inputTokens.count(); console.log(response.input_tokens); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) response = client.responses.input_tokens.count() print(response.input_tokens) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" "github.com/openai/openai-go/responses" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) response, err := client.Responses.InputTokens.Count(context.TODO(), responses.InputTokenCountParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", response.InputTokens) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.responses.inputtokens.InputTokenCountParams; import com.openai.models.responses.inputtokens.InputTokenCountResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); InputTokenCountResponse response = client.responses().inputTokens().count(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") response = openai.responses.input_tokens.count puts(response) /chatkit/sessions/{session_id}/cancel: post: summary: Cancel chat session description: Cancel a ChatKit session operationId: CancelChatSessionMethod parameters: - name: session_id in: path description: Unique identifier for the ChatKit session to cancel. required: true schema: example: cksess_123 type: string responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/ChatSessionResource' x-oaiMeta: name: Cancel chat session group: chatkit beta: true path: cancel-session returns: >- Returns the chat session after it has been cancelled. Cancelling prevents new requests from using the issued client secret. examples: - title: Cancel a ChatKit session by ID request: curl: | curl -X POST \ https://api.openai.com/v1/chatkit/sessions/cksess_123/cancel \ -H "OpenAI-Beta: chatkit_beta=v1" \ -H "Authorization: Bearer $OPENAI_API_KEY" javascript: | import OpenAI from 'openai'; const client = new OpenAI(); const chatSession = await client.beta.chatkit.sessions.cancel('cksess_123'); console.log(chatSession.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) chat_session = client.beta.chatkit.sessions.cancel( "cksess_123", ) print(chat_session.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) chatSession, err := client.Beta.ChatKit.Sessions.Cancel(context.TODO(), "cksess_123") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", chatSession.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.chatkit.sessions.SessionCancelParams; import com.openai.models.beta.chatkit.threads.ChatSession; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ChatSession chatSession = client.beta().chatkit().sessions().cancel("cksess_123"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") chat_session = openai.beta.chatkit.sessions.cancel("cksess_123") puts(chat_session) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const chatSession = await client.beta.chatkit.sessions.cancel('cksess_123'); console.log(chatSession.id); response: | { "id": "cksess_123", "object": "chatkit.session", "workflow": { "id": "workflow_alpha", "version": "1" }, "scope": { "customer_id": "cust_456" }, "max_requests_per_1_minute": 30, "ttl_seconds": 900, "status": "cancelled", "cancelled_at": 1712345678 } /chatkit/sessions: post: summary: Create ChatKit session description: Create a ChatKit session operationId: CreateChatSessionMethod parameters: [] requestBody: content: application/json: schema: $ref: '#/components/schemas/CreateChatSessionBody' responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/ChatSessionResource' x-oaiMeta: name: Create ChatKit session group: chatkit beta: true path: sessions/create returns: >- Returns a [ChatKit session](https://platform.openai.com/docs/api-reference/chatkit/sessions/object) object. examples: - title: Create a scoped session request: curl: | curl https://api.openai.com/v1/chatkit/sessions \ -H "Content-Type: application/json" \ -H "Authorization: Bearer $OPENAI_API_KEY" \ -H "OpenAI-Beta: chatkit_beta=v1" \ -d '{ "workflow": { "id": "workflow_alpha", "version": "2024-10-01" }, "scope": { "project": "alpha", "environment": "staging" }, "expires_after": 1800, "max_requests_per_1_minute": 60, "max_requests_per_session": 500 }' javascript: > import OpenAI from 'openai'; const client = new OpenAI(); const chatSession = await client.beta.chatkit.sessions.create({ user: 'user', workflow: { id: 'id' } }); console.log(chatSession.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) chat_session = client.beta.chatkit.sessions.create( user="x", workflow={ "id": "id" }, ) print(chat_session.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) chatSession, err := client.Beta.ChatKit.Sessions.New(context.TODO(), openai.BetaChatKitSessionNewParams{ User: "x", Workflow: openai.ChatSessionWorkflowParam{ ID: "id", }, }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", chatSession.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.chatkit.sessions.SessionCreateParams; import com.openai.models.beta.chatkit.threads.ChatSession; import com.openai.models.beta.chatkit.threads.ChatSessionWorkflowParam; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); SessionCreateParams params = SessionCreateParams.builder() .user("x") .workflow(ChatSessionWorkflowParam.builder() .id("id") .build()) .build(); ChatSession chatSession = client.beta().chatkit().sessions().create(params); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") chat_session = openai.beta.chatkit.sessions.create(user: "x", workflow: {id: "id"}) puts(chat_session) node.js: >- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const chatSession = await client.beta.chatkit.sessions.create({ user: 'x', workflow: { id: 'id' } }); console.log(chatSession.id); response: | { "client_secret": "chatkit_token_123", "expires_after": 1800, "workflow": { "id": "workflow_alpha", "version": "2024-10-01" }, "scope": { "project": "alpha", "environment": "staging" }, "max_requests_per_1_minute": 60, "max_requests_per_session": 500, "status": "active" } /chatkit/threads/{thread_id}/items: get: summary: List ChatKit thread items description: List ChatKit thread items operationId: ListThreadItemsMethod parameters: - name: thread_id in: path description: Identifier of the ChatKit thread whose items are requested. required: true schema: example: cthr_123 type: string - name: limit in: query description: Maximum number of thread items to return. Defaults to 20. required: false schema: type: integer minimum: 0 maximum: 100 - name: order in: query description: Sort order for results by creation time. Defaults to `desc`. required: false schema: $ref: '#/components/schemas/OrderEnum' - name: after in: query description: List items created after this thread item ID. Defaults to null for the first page. required: false schema: description: List items created after this thread item ID. Defaults to null for the first page. type: string - name: before in: query description: List items created before this thread item ID. Defaults to null for the newest results. required: false schema: description: List items created before this thread item ID. Defaults to null for the newest results. type: string responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/ThreadItemListResource' x-oaiMeta: name: List ChatKit thread items group: chatkit beta: true path: threads/list-items returns: >- Returns a [list of thread items](https://platform.openai.com/docs/api-reference/chatkit/threads/item-list) for the specified thread. examples: - title: Retrieve items for a thread request: curl: | curl "https://api.openai.com/v1/chatkit/threads/cthr_abc123/items?limit=3" \ -H "OpenAI-Beta: chatkit_beta=v1" \ -H "Authorization: Bearer $OPENAI_API_KEY" javascript: | import OpenAI from 'openai'; const client = new OpenAI(); // Automatically fetches more pages as needed. for await (const thread of client.beta.chatkit.threads.listItems('cthr_123')) { console.log(thread); } python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.beta.chatkit.threads.list_items( thread_id="cthr_123", ) page = page.data[0] print(page) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.Beta.ChatKit.Threads.ListItems( context.TODO(), "cthr_123", openai.BetaChatKitThreadListItemsParams{ }, ) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.chatkit.threads.ThreadListItemsPage; import com.openai.models.beta.chatkit.threads.ThreadListItemsParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ThreadListItemsPage page = client.beta().chatkit().threads().listItems("cthr_123"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.beta.chatkit.threads.list_items("cthr_123") puts(page) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const thread of client.beta.chatkit.threads.listItems('cthr_123')) { console.log(thread); } response: | { "data": [ { "id": "cthi_user_001", "object": "chatkit.thread_item", "type": "user_message", "content": [ { "type": "input_text", "text": "I need help debugging an onboarding issue." } ], "attachments": [] }, { "id": "cthi_assistant_002", "object": "chatkit.thread_item", "type": "assistant_message", "content": [ { "type": "output_text", "text": "Let's start by confirming the workflow version you deployed." } ] } ], "has_more": false, "object": "list" } /chatkit/threads/{thread_id}: get: summary: Retrieve ChatKit thread description: Retrieve a ChatKit thread operationId: GetThreadMethod parameters: - name: thread_id in: path description: Identifier of the ChatKit thread to retrieve. required: true schema: example: cthr_123 type: string responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/ThreadResource' x-oaiMeta: name: Retrieve ChatKit thread group: chatkit beta: true path: threads/retrieve returns: Returns a [Thread](https://platform.openai.com/docs/api-reference/chatkit/threads/object) object. examples: - title: Retrieve a thread by ID request: curl: | curl https://api.openai.com/v1/chatkit/threads/cthr_abc123 \ -H "OpenAI-Beta: chatkit_beta=v1" \ -H "Authorization: Bearer $OPENAI_API_KEY" javascript: | import OpenAI from 'openai'; const client = new OpenAI(); const chatkitThread = await client.beta.chatkit.threads.retrieve('cthr_123'); console.log(chatkitThread.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) chatkit_thread = client.beta.chatkit.threads.retrieve( "cthr_123", ) print(chatkit_thread.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) chatkitThread, err := client.Beta.ChatKit.Threads.Get(context.TODO(), "cthr_123") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", chatkitThread.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.chatkit.threads.ChatKitThread; import com.openai.models.beta.chatkit.threads.ThreadRetrieveParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ChatKitThread chatkitThread = client.beta().chatkit().threads().retrieve("cthr_123"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") chatkit_thread = openai.beta.chatkit.threads.retrieve("cthr_123") puts(chatkit_thread) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const chatkitThread = await client.beta.chatkit.threads.retrieve('cthr_123'); console.log(chatkitThread.id); response: | { "id": "cthr_abc123", "object": "chatkit.thread", "title": "Customer escalation", "items": { "data": [ { "id": "cthi_user_001", "object": "chatkit.thread_item", "type": "user_message", "content": [ { "type": "input_text", "text": "I need help debugging an onboarding issue." } ], "attachments": [] }, { "id": "cthi_assistant_002", "object": "chatkit.thread_item", "type": "assistant_message", "content": [ { "type": "output_text", "text": "Let's start by confirming the workflow version you deployed." } ] } ], "has_more": false } } delete: summary: Delete ChatKit thread description: Delete a ChatKit thread operationId: DeleteThreadMethod parameters: - name: thread_id in: path description: Identifier of the ChatKit thread to delete. required: true schema: example: cthr_123 type: string responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/DeletedThreadResource' x-oaiMeta: beta: true examples: response: '' request: node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); const thread = await client.beta.chatkit.threads.delete('cthr_123'); console.log(thread.id); python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) thread = client.beta.chatkit.threads.delete( "cthr_123", ) print(thread.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) thread, err := client.Beta.ChatKit.Threads.Delete(context.TODO(), "cthr_123") if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", thread.ID) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.chatkit.threads.ThreadDeleteParams; import com.openai.models.beta.chatkit.threads.ThreadDeleteResponse; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ThreadDeleteResponse thread = client.beta().chatkit().threads().delete("cthr_123"); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") thread = openai.beta.chatkit.threads.delete("cthr_123") puts(thread) name: Delete ChatKit thread group: chatkit path: threads/delete returns: Returns a confirmation object for the deleted thread. /chatkit/threads: get: summary: List ChatKit threads description: List ChatKit threads operationId: ListThreadsMethod parameters: - name: limit in: query description: Maximum number of thread items to return. Defaults to 20. required: false schema: type: integer minimum: 0 maximum: 100 - name: order in: query description: Sort order for results by creation time. Defaults to `desc`. required: false schema: $ref: '#/components/schemas/OrderEnum' - name: after in: query description: List items created after this thread item ID. Defaults to null for the first page. required: false schema: description: List items created after this thread item ID. Defaults to null for the first page. type: string - name: before in: query description: List items created before this thread item ID. Defaults to null for the newest results. required: false schema: description: List items created before this thread item ID. Defaults to null for the newest results. type: string - name: user in: query description: Filter threads that belong to this user identifier. Defaults to null to return all users. required: false schema: description: Filter threads that belong to this user identifier. Defaults to null to return all users. type: string minLength: 1 maxLength: 512 responses: '200': description: Success content: application/json: schema: $ref: '#/components/schemas/ThreadListResource' x-oaiMeta: name: List ChatKit threads group: chatkit beta: true path: list-threads returns: Returns a paginated list of ChatKit threads accessible to the request scope. examples: - title: List recent threads request: curl: | curl "https://api.openai.com/v1/chatkit/threads?limit=2&order=desc" \ -H "OpenAI-Beta: chatkit_beta=v1" \ -H "Authorization: Bearer $OPENAI_API_KEY" javascript: | import OpenAI from 'openai'; const client = new OpenAI(); // Automatically fetches more pages as needed. for await (const chatkitThread of client.beta.chatkit.threads.list()) { console.log(chatkitThread.id); } python: |- from openai import OpenAI client = OpenAI( api_key="My API Key", ) page = client.beta.chatkit.threads.list() page = page.data[0] print(page.id) go: | package main import ( "context" "fmt" "github.com/openai/openai-go" "github.com/openai/openai-go/option" ) func main() { client := openai.NewClient( option.WithAPIKey("My API Key"), ) page, err := client.Beta.ChatKit.Threads.List(context.TODO(), openai.BetaChatKitThreadListParams{ }) if err != nil { panic(err.Error()) } fmt.Printf("%+v\n", page) } java: |- package com.openai.example; import com.openai.client.OpenAIClient; import com.openai.client.okhttp.OpenAIOkHttpClient; import com.openai.models.beta.chatkit.threads.ThreadListPage; import com.openai.models.beta.chatkit.threads.ThreadListParams; public final class Main { private Main() {} public static void main(String[] args) { OpenAIClient client = OpenAIOkHttpClient.fromEnv(); ThreadListPage page = client.beta().chatkit().threads().list(); } } ruby: |- require "openai" openai = OpenAI::Client.new(api_key: "My API Key") page = openai.beta.chatkit.threads.list puts(page) node.js: |- import OpenAI from 'openai'; const client = new OpenAI({ apiKey: 'My API Key', }); // Automatically fetches more pages as needed. for await (const chatkitThread of client.beta.chatkit.threads.list()) { console.log(chatkitThread.id); } response: | { "data": [ { "id": "cthr_abc123", "object": "chatkit.thread", "title": "Customer escalation" }, { "id": "cthr_def456", "object": "chatkit.thread", "title": "Demo feedback" } ], "has_more": false, "object": "list" } webhooks: batch_cancelled: post: requestBody: description: The event payload sent by the API. content: application/json: schema: $ref: '#/components/schemas/WebhookBatchCancelled' responses: '200': description: | Return a 200 status code to acknowledge receipt of the event. Non-200 status codes will be retried. batch_completed: post: requestBody: description: The event payload sent by the API. content: application/json: schema: $ref: '#/components/schemas/WebhookBatchCompleted' responses: '200': description: | Return a 200 status code to acknowledge receipt of the event. Non-200 status codes will be retried. batch_expired: post: requestBody: description: The event payload sent by the API. content: application/json: schema: $ref: '#/components/schemas/WebhookBatchExpired' responses: '200': description: | Return a 200 status code to acknowledge receipt of the event. Non-200 status codes will be retried. batch_failed: post: requestBody: description: The event payload sent by the API. content: application/json: schema: $ref: '#/components/schemas/WebhookBatchFailed' responses: '200': description: | Return a 200 status code to acknowledge receipt of the event. Non-200 status codes will be retried. eval_run_canceled: post: requestBody: description: The event payload sent by the API. content: application/json: schema: $ref: '#/components/schemas/WebhookEvalRunCanceled' responses: '200': description: | Return a 200 status code to acknowledge receipt of the event. Non-200 status codes will be retried. eval_run_failed: post: requestBody: description: The event payload sent by the API. content: application/json: schema: $ref: '#/components/schemas/WebhookEvalRunFailed' responses: '200': description: | Return a 200 status code to acknowledge receipt of the event. Non-200 status codes will be retried. eval_run_succeeded: post: requestBody: description: The event payload sent by the API. content: application/json: schema: $ref: '#/components/schemas/WebhookEvalRunSucceeded' responses: '200': description: | Return a 200 status code to acknowledge receipt of the event. Non-200 status codes will be retried. fine_tuning_job_cancelled: post: requestBody: description: The event payload sent by the API. content: application/json: schema: $ref: '#/components/schemas/WebhookFineTuningJobCancelled' responses: '200': description: | Return a 200 status code to acknowledge receipt of the event. Non-200 status codes will be retried. fine_tuning_job_failed: post: requestBody: description: The event payload sent by the API. content: application/json: schema: $ref: '#/components/schemas/WebhookFineTuningJobFailed' responses: '200': description: | Return a 200 status code to acknowledge receipt of the event. Non-200 status codes will be retried. fine_tuning_job_succeeded: post: requestBody: description: The event payload sent by the API. content: application/json: schema: $ref: '#/components/schemas/WebhookFineTuningJobSucceeded' responses: '200': description: | Return a 200 status code to acknowledge receipt of the event. Non-200 status codes will be retried. realtime_call_incoming: post: requestBody: description: The event payload sent by the API. content: application/json: schema: $ref: '#/components/schemas/WebhookRealtimeCallIncoming' responses: '200': description: | Return a 200 status code to acknowledge receipt of the event. Non-200 status codes will be retried. response_cancelled: post: requestBody: description: The event payload sent by the API. content: application/json: schema: $ref: '#/components/schemas/WebhookResponseCancelled' responses: '200': description: | Return a 200 status code to acknowledge receipt of the event. Non-200 status codes will be retried. response_completed: post: requestBody: description: The event payload sent by the API. content: application/json: schema: $ref: '#/components/schemas/WebhookResponseCompleted' responses: '200': description: | Return a 200 status code to acknowledge receipt of the event. Non-200 status codes will be retried. response_failed: post: requestBody: description: The event payload sent by the API. content: application/json: schema: $ref: '#/components/schemas/WebhookResponseFailed' responses: '200': description: | Return a 200 status code to acknowledge receipt of the event. Non-200 status codes will be retried. response_incomplete: post: requestBody: description: The event payload sent by the API. content: application/json: schema: $ref: '#/components/schemas/WebhookResponseIncomplete' responses: '200': description: | Return a 200 status code to acknowledge receipt of the event. Non-200 status codes will be retried. components: schemas: AddUploadPartRequest: type: object additionalProperties: false properties: data: description: | The chunk of bytes for this Part. type: string format: binary required: - data AdminApiKey: type: object description: Represents an individual Admin API key in an org. properties: object: type: string example: organization.admin_api_key description: The object type, which is always `organization.admin_api_key` x-stainless-const: true id: type: string example: key_abc description: The identifier, which can be referenced in API endpoints name: type: string example: Administration Key description: The name of the API key redacted_value: type: string example: sk-admin...def description: The redacted value of the API key value: type: string example: sk-admin-1234abcd description: The value of the API key. Only shown on create. created_at: type: integer format: int64 example: 1711471533 description: The Unix timestamp (in seconds) of when the API key was created last_used_at: anyOf: - type: integer format: int64 example: 1711471534 description: The Unix timestamp (in seconds) of when the API key was last used - type: 'null' owner: type: object properties: type: type: string example: user description: Always `user` object: type: string example: organization.user description: The object type, which is always organization.user id: type: string example: sa_456 description: The identifier, which can be referenced in API endpoints name: type: string example: My Service Account description: The name of the user created_at: type: integer format: int64 example: 1711471533 description: The Unix timestamp (in seconds) of when the user was created role: type: string example: owner description: Always `owner` required: - object - redacted_value - name - created_at - last_used_at - id - owner x-oaiMeta: name: The admin API key object example: | { "object": "organization.admin_api_key", "id": "key_abc", "name": "Main Admin Key", "redacted_value": "sk-admin...xyz", "created_at": 1711471533, "last_used_at": 1711471534, "owner": { "type": "user", "object": "organization.user", "id": "user_123", "name": "John Doe", "created_at": 1711471533, "role": "owner" } } ApiKeyList: type: object properties: object: type: string example: list data: type: array items: $ref: '#/components/schemas/AdminApiKey' has_more: type: boolean example: false first_id: type: string example: key_abc last_id: type: string example: key_xyz AssistantObject: type: object title: Assistant description: Represents an `assistant` that can call the model and use tools. properties: id: description: The identifier, which can be referenced in API endpoints. type: string object: description: The object type, which is always `assistant`. type: string enum: - assistant x-stainless-const: true created_at: description: The Unix timestamp (in seconds) for when the assistant was created. type: integer name: anyOf: - description: | The name of the assistant. The maximum length is 256 characters. type: string maxLength: 256 - type: 'null' description: anyOf: - description: | The description of the assistant. The maximum length is 512 characters. type: string maxLength: 512 - type: 'null' model: description: > ID of the model to use. You can use the [List models](https://platform.openai.com/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](https://platform.openai.com/docs/models) for descriptions of them. type: string instructions: anyOf: - description: | The system instructions that the assistant uses. The maximum length is 256,000 characters. type: string maxLength: 256000 - type: 'null' tools: description: > A list of tool enabled on the assistant. There can be a maximum of 128 tools per assistant. Tools can be of types `code_interpreter`, `file_search`, or `function`. default: [] type: array maxItems: 128 items: $ref: '#/components/schemas/AssistantTool' tool_resources: anyOf: - type: object description: > A set of resources that are used by the assistant's tools. The resources are specific to the type of tool. For example, the `code_interpreter` tool requires a list of file IDs, while the `file_search` tool requires a list of vector store IDs. properties: code_interpreter: type: object properties: file_ids: type: array description: > A list of [file](https://platform.openai.com/docs/api-reference/files) IDs made available to the `code_interpreter`` tool. There can be a maximum of 20 files associated with the tool. default: [] maxItems: 20 items: type: string file_search: type: object properties: vector_store_ids: type: array description: > The ID of the [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) attached to this assistant. There can be a maximum of 1 vector store attached to the assistant. maxItems: 1 items: type: string - type: 'null' metadata: $ref: '#/components/schemas/Metadata' temperature: anyOf: - description: > What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. type: number minimum: 0 maximum: 2 default: 1 example: 1 - type: 'null' top_p: anyOf: - type: number minimum: 0 maximum: 1 default: 1 example: 1 description: > An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. - type: 'null' response_format: anyOf: - $ref: '#/components/schemas/AssistantsApiResponseFormatOption' - type: 'null' required: - id - object - created_at - name - description - model - instructions - tools - metadata x-oaiMeta: name: The assistant object beta: true example: | { "id": "asst_abc123", "object": "assistant", "created_at": 1698984975, "name": "Math Tutor", "description": null, "model": "gpt-4o", "instructions": "You are a personal math tutor. When asked a question, write and run Python code to answer the question.", "tools": [ { "type": "code_interpreter" } ], "metadata": {}, "top_p": 1.0, "temperature": 1.0, "response_format": "auto" } AssistantStreamEvent: description: > Represents an event emitted when streaming a Run. Each event in a server-sent events stream has an `event` and `data` property: ``` event: thread.created data: {"id": "thread_123", "object": "thread", ...} ``` We emit events whenever a new object is created, transitions to a new state, or is being streamed in parts (deltas). For example, we emit `thread.run.created` when a new run is created, `thread.run.completed` when a run completes, and so on. When an Assistant chooses to create a message during a run, we emit a `thread.message.created event`, a `thread.message.in_progress` event, many `thread.message.delta` events, and finally a `thread.message.completed` event. We may add additional events over time, so we recommend handling unknown events gracefully in your code. See the [Assistants API quickstart](https://platform.openai.com/docs/assistants/overview) to learn how to integrate the Assistants API with streaming. x-oaiMeta: name: Assistant stream events beta: true anyOf: - $ref: '#/components/schemas/ThreadStreamEvent' - $ref: '#/components/schemas/RunStreamEvent' - $ref: '#/components/schemas/RunStepStreamEvent' - $ref: '#/components/schemas/MessageStreamEvent' - $ref: '#/components/schemas/ErrorEvent' x-stainless-variantName: error_event discriminator: propertyName: event AssistantSupportedModels: type: string enum: - gpt-5 - gpt-5-mini - gpt-5-nano - gpt-5-2025-08-07 - gpt-5-mini-2025-08-07 - gpt-5-nano-2025-08-07 - gpt-4.1 - gpt-4.1-mini - gpt-4.1-nano - gpt-4.1-2025-04-14 - gpt-4.1-mini-2025-04-14 - gpt-4.1-nano-2025-04-14 - o3-mini - o3-mini-2025-01-31 - o1 - o1-2024-12-17 - gpt-4o - gpt-4o-2024-11-20 - gpt-4o-2024-08-06 - gpt-4o-2024-05-13 - gpt-4o-mini - gpt-4o-mini-2024-07-18 - gpt-4.5-preview - gpt-4.5-preview-2025-02-27 - gpt-4-turbo - gpt-4-turbo-2024-04-09 - gpt-4-0125-preview - gpt-4-turbo-preview - gpt-4-1106-preview - gpt-4-vision-preview - gpt-4 - gpt-4-0314 - gpt-4-0613 - gpt-4-32k - gpt-4-32k-0314 - gpt-4-32k-0613 - gpt-3.5-turbo - gpt-3.5-turbo-16k - gpt-3.5-turbo-0613 - gpt-3.5-turbo-1106 - gpt-3.5-turbo-0125 - gpt-3.5-turbo-16k-0613 AssistantToolsCode: type: object title: Code interpreter tool properties: type: type: string description: 'The type of tool being defined: `code_interpreter`' enum: - code_interpreter x-stainless-const: true required: - type AssistantToolsFileSearch: type: object title: FileSearch tool properties: type: type: string description: 'The type of tool being defined: `file_search`' enum: - file_search x-stainless-const: true file_search: type: object description: Overrides for the file search tool. properties: max_num_results: type: integer minimum: 1 maximum: 50 description: > The maximum number of results the file search tool should output. The default is 20 for `gpt-4*` models and 5 for `gpt-3.5-turbo`. This number should be between 1 and 50 inclusive. Note that the file search tool may output fewer than `max_num_results` results. See the [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) for more information. ranking_options: $ref: '#/components/schemas/FileSearchRankingOptions' required: - type AssistantToolsFileSearchTypeOnly: type: object title: AssistantToolsFileSearchTypeOnly properties: type: type: string description: 'The type of tool being defined: `file_search`' enum: - file_search x-stainless-const: true required: - type AssistantToolsFunction: type: object title: Function tool properties: type: type: string description: 'The type of tool being defined: `function`' enum: - function x-stainless-const: true function: $ref: '#/components/schemas/FunctionObject' required: - type - function AssistantsApiResponseFormatOption: description: > Specifies the format that the model must output. Compatible with [GPT-4o](https://platform.openai.com/docs/models#gpt-4o), [GPT-4 Turbo](https://platform.openai.com/docs/models#gpt-4-turbo-and-gpt-4), and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`. Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured Outputs which ensures the model will match your supplied JSON schema. Learn more in the [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). Setting to `{ "type": "json_object" }` enables JSON mode, which ensures the message the model generates is valid JSON. **Important:** when using JSON mode, you **must** also instruct the model to produce JSON yourself via a system or user message. Without this, the model may generate an unending stream of whitespace until the generation reaches the token limit, resulting in a long-running and seemingly "stuck" request. Also note that the message content may be partially cut off if `finish_reason="length"`, which indicates the generation exceeded `max_tokens` or the conversation exceeded the max context length. anyOf: - type: string description: | `auto` is the default value enum: - auto x-stainless-const: true - $ref: '#/components/schemas/ResponseFormatText' - $ref: '#/components/schemas/ResponseFormatJsonObject' - $ref: '#/components/schemas/ResponseFormatJsonSchema' AssistantsApiToolChoiceOption: description: > Controls which (if any) tool is called by the model. `none` means the model will not call any tools and instead generates a message. `auto` is the default value and means the model can pick between generating a message or calling one or more tools. `required` means the model must call one or more tools before responding to the user. Specifying a particular tool like `{"type": "file_search"}` or `{"type": "function", "function": {"name": "my_function"}}` forces the model to call that tool. anyOf: - type: string description: > `none` means the model will not call any tools and instead generates a message. `auto` means the model can pick between generating a message or calling one or more tools. `required` means the model must call one or more tools before responding to the user. enum: - none - auto - required title: Auto - $ref: '#/components/schemas/AssistantsNamedToolChoice' AssistantsNamedToolChoice: type: object description: Specifies a tool the model should use. Use to force the model to call a specific tool. properties: type: type: string enum: - function - code_interpreter - file_search description: The type of the tool. If type is `function`, the function name must be set function: type: object properties: name: type: string description: The name of the function to call. required: - name required: - type AudioResponseFormat: description: > The format of the output, in one of these options: `json`, `text`, `srt`, `verbose_json`, `vtt`, or `diarized_json`. For `gpt-4o-transcribe` and `gpt-4o-mini-transcribe`, the only supported format is `json`. For `gpt-4o-transcribe-diarize`, the supported formats are `json`, `text`, and `diarized_json`, with `diarized_json` required to receive speaker annotations. type: string enum: - json - text - srt - verbose_json - vtt - diarized_json default: json AudioTranscription: type: object properties: model: type: string description: > The model to use for transcription. Current options are `whisper-1`, `gpt-4o-mini-transcribe`, `gpt-4o-transcribe`, and `gpt-4o-transcribe-diarize`. Use `gpt-4o-transcribe-diarize` when you need diarization with speaker labels. enum: - whisper-1 - gpt-4o-mini-transcribe - gpt-4o-transcribe - gpt-4o-transcribe-diarize language: type: string description: | The language of the input audio. Supplying the input language in [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) (e.g. `en`) format will improve accuracy and latency. prompt: type: string description: > An optional text to guide the model's style or continue a previous audio segment. For `whisper-1`, the [prompt is a list of keywords](https://platform.openai.com/docs/guides/speech-to-text#prompting). For `gpt-4o-transcribe` models (excluding `gpt-4o-transcribe-diarize`), the prompt is a free text string, for example "expect words related to technology". AuditLog: type: object description: A log of a user action or configuration change within this organization. properties: id: type: string description: The ID of this log. type: $ref: '#/components/schemas/AuditLogEventType' effective_at: type: integer description: The Unix timestamp (in seconds) of the event. project: type: object description: >- The project that the action was scoped to. Absent for actions not scoped to projects. Note that any admin actions taken via Admin API keys are associated with the default project. properties: id: type: string description: The project ID. name: type: string description: The project title. actor: $ref: '#/components/schemas/AuditLogActor' api_key.created: type: object description: The details for events with this `type`. properties: id: type: string description: The tracking ID of the API key. data: type: object description: The payload used to create the API key. properties: scopes: type: array items: type: string description: A list of scopes allowed for the API key, e.g. `["api.model.request"]` api_key.updated: type: object description: The details for events with this `type`. properties: id: type: string description: The tracking ID of the API key. changes_requested: type: object description: The payload used to update the API key. properties: scopes: type: array items: type: string description: A list of scopes allowed for the API key, e.g. `["api.model.request"]` api_key.deleted: type: object description: The details for events with this `type`. properties: id: type: string description: The tracking ID of the API key. checkpoint.permission.created: type: object description: The project and fine-tuned model checkpoint that the checkpoint permission was created for. properties: id: type: string description: The ID of the checkpoint permission. data: type: object description: The payload used to create the checkpoint permission. properties: project_id: type: string description: The ID of the project that the checkpoint permission was created for. fine_tuned_model_checkpoint: type: string description: The ID of the fine-tuned model checkpoint. checkpoint.permission.deleted: type: object description: The details for events with this `type`. properties: id: type: string description: The ID of the checkpoint permission. external_key.registered: type: object description: The details for events with this `type`. properties: id: type: string description: The ID of the external key configuration. data: type: object description: The configuration for the external key. external_key.removed: type: object description: The details for events with this `type`. properties: id: type: string description: The ID of the external key configuration. group.created: type: object description: The details for events with this `type`. properties: id: type: string description: The ID of the group. data: type: object description: Information about the created group. properties: group_name: type: string description: The group name. group.updated: type: object description: The details for events with this `type`. properties: id: type: string description: The ID of the group. changes_requested: type: object description: The payload used to update the group. properties: group_name: type: string description: The updated group name. group.deleted: type: object description: The details for events with this `type`. properties: id: type: string description: The ID of the group. scim.enabled: type: object description: The details for events with this `type`. properties: id: type: string description: The ID of the SCIM was enabled for. scim.disabled: type: object description: The details for events with this `type`. properties: id: type: string description: The ID of the SCIM was disabled for. invite.sent: type: object description: The details for events with this `type`. properties: id: type: string description: The ID of the invite. data: type: object description: The payload used to create the invite. properties: email: type: string description: The email invited to the organization. role: type: string description: The role the email was invited to be. Is either `owner` or `member`. invite.accepted: type: object description: The details for events with this `type`. properties: id: type: string description: The ID of the invite. invite.deleted: type: object description: The details for events with this `type`. properties: id: type: string description: The ID of the invite. ip_allowlist.created: type: object description: The details for events with this `type`. properties: id: type: string description: The ID of the IP allowlist configuration. name: type: string description: The name of the IP allowlist configuration. allowed_ips: type: array description: The IP addresses or CIDR ranges included in the configuration. items: type: string ip_allowlist.updated: type: object description: The details for events with this `type`. properties: id: type: string description: The ID of the IP allowlist configuration. allowed_ips: type: array description: The updated set of IP addresses or CIDR ranges in the configuration. items: type: string ip_allowlist.deleted: type: object description: The details for events with this `type`. properties: id: type: string description: The ID of the IP allowlist configuration. name: type: string description: The name of the IP allowlist configuration. allowed_ips: type: array description: The IP addresses or CIDR ranges that were in the configuration. items: type: string ip_allowlist.config.activated: type: object description: The details for events with this `type`. properties: configs: type: array description: The configurations that were activated. items: type: object properties: id: type: string description: The ID of the IP allowlist configuration. name: type: string description: The name of the IP allowlist configuration. ip_allowlist.config.deactivated: type: object description: The details for events with this `type`. properties: configs: type: array description: The configurations that were deactivated. items: type: object properties: id: type: string description: The ID of the IP allowlist configuration. name: type: string description: The name of the IP allowlist configuration. login.succeeded: type: object description: This event has no additional fields beyond the standard audit log attributes. login.failed: type: object description: The details for events with this `type`. properties: error_code: type: string description: The error code of the failure. error_message: type: string description: The error message of the failure. logout.succeeded: type: object description: This event has no additional fields beyond the standard audit log attributes. logout.failed: type: object description: The details for events with this `type`. properties: error_code: type: string description: The error code of the failure. error_message: type: string description: The error message of the failure. organization.updated: type: object description: The details for events with this `type`. properties: id: type: string description: The organization ID. changes_requested: type: object description: The payload used to update the organization settings. properties: title: type: string description: The organization title. description: type: string description: The organization description. name: type: string description: The organization name. threads_ui_visibility: type: string description: >- Visibility of the threads page which shows messages created with the Assistants API and Playground. One of `ANY_ROLE`, `OWNERS`, or `NONE`. usage_dashboard_visibility: type: string description: >- Visibility of the usage dashboard which shows activity and costs for your organization. One of `ANY_ROLE` or `OWNERS`. api_call_logging: type: string description: >- How your organization logs data from supported API calls. One of `disabled`, `enabled_per_call`, `enabled_for_all_projects`, or `enabled_for_selected_projects` api_call_logging_project_ids: type: string description: The list of project ids if api_call_logging is set to `enabled_for_selected_projects` project.created: type: object description: The details for events with this `type`. properties: id: type: string description: The project ID. data: type: object description: The payload used to create the project. properties: name: type: string description: The project name. title: type: string description: The title of the project as seen on the dashboard. project.updated: type: object description: The details for events with this `type`. properties: id: type: string description: The project ID. changes_requested: type: object description: The payload used to update the project. properties: title: type: string description: The title of the project as seen on the dashboard. project.archived: type: object description: The details for events with this `type`. properties: id: type: string description: The project ID. project.deleted: type: object description: The details for events with this `type`. properties: id: type: string description: The project ID. rate_limit.updated: type: object description: The details for events with this `type`. properties: id: type: string description: The rate limit ID changes_requested: type: object description: The payload used to update the rate limits. properties: max_requests_per_1_minute: type: integer description: The maximum requests per minute. max_tokens_per_1_minute: type: integer description: The maximum tokens per minute. max_images_per_1_minute: type: integer description: The maximum images per minute. Only relevant for certain models. max_audio_megabytes_per_1_minute: type: integer description: The maximum audio megabytes per minute. Only relevant for certain models. max_requests_per_1_day: type: integer description: The maximum requests per day. Only relevant for certain models. batch_1_day_max_input_tokens: type: integer description: The maximum batch input tokens per day. Only relevant for certain models. rate_limit.deleted: type: object description: The details for events with this `type`. properties: id: type: string description: The rate limit ID role.created: type: object description: The details for events with this `type`. properties: id: type: string description: The role ID. role_name: type: string description: The name of the role. permissions: type: array items: type: string description: The permissions granted by the role. resource_type: type: string description: The type of resource the role belongs to. resource_id: type: string description: The resource the role is scoped to. role.updated: type: object description: The details for events with this `type`. properties: id: type: string description: The role ID. changes_requested: type: object description: The payload used to update the role. properties: role_name: type: string description: The updated role name, when provided. resource_id: type: string description: The resource the role is scoped to. resource_type: type: string description: The type of resource the role belongs to. permissions_added: type: array items: type: string description: The permissions added to the role. permissions_removed: type: array items: type: string description: The permissions removed from the role. description: type: string description: The updated role description, when provided. metadata: type: object description: Additional metadata stored on the role. role.deleted: type: object description: The details for events with this `type`. properties: id: type: string description: The role ID. role.assignment.created: type: object description: The details for events with this `type`. properties: id: type: string description: The identifier of the role assignment. principal_id: type: string description: The principal (user or group) that received the role. principal_type: type: string description: The type of principal (user or group) that received the role. resource_id: type: string description: The resource the role assignment is scoped to. resource_type: type: string description: The type of resource the role assignment is scoped to. role.assignment.deleted: type: object description: The details for events with this `type`. properties: id: type: string description: The identifier of the role assignment. principal_id: type: string description: The principal (user or group) that had the role removed. principal_type: type: string description: The type of principal (user or group) that had the role removed. resource_id: type: string description: The resource the role assignment was scoped to. resource_type: type: string description: The type of resource the role assignment was scoped to. service_account.created: type: object description: The details for events with this `type`. properties: id: type: string description: The service account ID. data: type: object description: The payload used to create the service account. properties: role: type: string description: The role of the service account. Is either `owner` or `member`. service_account.updated: type: object description: The details for events with this `type`. properties: id: type: string description: The service account ID. changes_requested: type: object description: The payload used to updated the service account. properties: role: type: string description: The role of the service account. Is either `owner` or `member`. service_account.deleted: type: object description: The details for events with this `type`. properties: id: type: string description: The service account ID. user.added: type: object description: The details for events with this `type`. properties: id: type: string description: The user ID. data: type: object description: The payload used to add the user to the project. properties: role: type: string description: The role of the user. Is either `owner` or `member`. user.updated: type: object description: The details for events with this `type`. properties: id: type: string description: The project ID. changes_requested: type: object description: The payload used to update the user. properties: role: type: string description: The role of the user. Is either `owner` or `member`. user.deleted: type: object description: The details for events with this `type`. properties: id: type: string description: The user ID. certificate.created: type: object description: The details for events with this `type`. properties: id: type: string description: The certificate ID. name: type: string description: The name of the certificate. certificate.updated: type: object description: The details for events with this `type`. properties: id: type: string description: The certificate ID. name: type: string description: The name of the certificate. certificate.deleted: type: object description: The details for events with this `type`. properties: id: type: string description: The certificate ID. name: type: string description: The name of the certificate. certificate: type: string description: The certificate content in PEM format. certificates.activated: type: object description: The details for events with this `type`. properties: certificates: type: array items: type: object properties: id: type: string description: The certificate ID. name: type: string description: The name of the certificate. certificates.deactivated: type: object description: The details for events with this `type`. properties: certificates: type: array items: type: object properties: id: type: string description: The certificate ID. name: type: string description: The name of the certificate. required: - id - type - effective_at - actor x-oaiMeta: name: The audit log object example: | { "id": "req_xxx_20240101", "type": "api_key.created", "effective_at": 1720804090, "actor": { "type": "session", "session": { "user": { "id": "user-xxx", "email": "user@example.com" }, "ip_address": "127.0.0.1", "user_agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36" } }, "api_key.created": { "id": "key_xxxx", "data": { "scopes": ["resource.operation"] } } } AuditLogActor: type: object description: The actor who performed the audit logged action. properties: type: type: string description: The type of actor. Is either `session` or `api_key`. enum: - session - api_key session: $ref: '#/components/schemas/AuditLogActorSession' api_key: $ref: '#/components/schemas/AuditLogActorApiKey' AuditLogActorApiKey: type: object description: The API Key used to perform the audit logged action. properties: id: type: string description: The tracking id of the API key. type: type: string description: The type of API key. Can be either `user` or `service_account`. enum: - user - service_account user: $ref: '#/components/schemas/AuditLogActorUser' service_account: $ref: '#/components/schemas/AuditLogActorServiceAccount' AuditLogActorServiceAccount: type: object description: The service account that performed the audit logged action. properties: id: type: string description: The service account id. AuditLogActorSession: type: object description: The session in which the audit logged action was performed. properties: user: $ref: '#/components/schemas/AuditLogActorUser' ip_address: type: string description: The IP address from which the action was performed. AuditLogActorUser: type: object description: The user who performed the audit logged action. properties: id: type: string description: The user id. email: type: string description: The user email. AuditLogEventType: type: string description: The event type. enum: - api_key.created - api_key.updated - api_key.deleted - certificate.created - certificate.updated - certificate.deleted - certificates.activated - certificates.deactivated - checkpoint.permission.created - checkpoint.permission.deleted - external_key.registered - external_key.removed - group.created - group.updated - group.deleted - invite.sent - invite.accepted - invite.deleted - ip_allowlist.created - ip_allowlist.updated - ip_allowlist.deleted - ip_allowlist.config.activated - ip_allowlist.config.deactivated - login.succeeded - login.failed - logout.succeeded - logout.failed - organization.updated - project.created - project.updated - project.archived - project.deleted - rate_limit.updated - rate_limit.deleted - resource.deleted - role.created - role.updated - role.deleted - role.assignment.created - role.assignment.deleted - scim.enabled - scim.disabled - service_account.created - service_account.updated - service_account.deleted - user.added - user.updated - user.deleted AutoChunkingStrategyRequestParam: type: object title: Auto Chunking Strategy description: >- The default strategy. This strategy currently uses a `max_chunk_size_tokens` of `800` and `chunk_overlap_tokens` of `400`. additionalProperties: false properties: type: type: string description: Always `auto`. enum: - auto x-stainless-const: true required: - type Batch: type: object properties: id: type: string object: type: string enum: - batch description: The object type, which is always `batch`. x-stainless-const: true endpoint: type: string description: The OpenAI API endpoint used by the batch. model: type: string description: | Model ID used to process the batch, like `gpt-5-2025-08-07`. OpenAI offers a wide range of models with different capabilities, performance characteristics, and price points. Refer to the [model guide](https://platform.openai.com/docs/models) to browse and compare available models. errors: type: object properties: object: type: string description: The object type, which is always `list`. data: type: array items: $ref: '#/components/schemas/BatchError' input_file_id: type: string description: The ID of the input file for the batch. completion_window: type: string description: The time frame within which the batch should be processed. status: type: string description: The current status of the batch. enum: - validating - failed - in_progress - finalizing - completed - expired - cancelling - cancelled output_file_id: type: string description: The ID of the file containing the outputs of successfully executed requests. error_file_id: type: string description: The ID of the file containing the outputs of requests with errors. created_at: type: integer description: The Unix timestamp (in seconds) for when the batch was created. in_progress_at: type: integer description: The Unix timestamp (in seconds) for when the batch started processing. expires_at: type: integer description: The Unix timestamp (in seconds) for when the batch will expire. finalizing_at: type: integer description: The Unix timestamp (in seconds) for when the batch started finalizing. completed_at: type: integer description: The Unix timestamp (in seconds) for when the batch was completed. failed_at: type: integer description: The Unix timestamp (in seconds) for when the batch failed. expired_at: type: integer description: The Unix timestamp (in seconds) for when the batch expired. cancelling_at: type: integer description: The Unix timestamp (in seconds) for when the batch started cancelling. cancelled_at: type: integer description: The Unix timestamp (in seconds) for when the batch was cancelled. request_counts: $ref: '#/components/schemas/BatchRequestCounts' usage: type: object description: | Represents token usage details including input tokens, output tokens, a breakdown of output tokens, and the total tokens used. Only populated on batches created after September 7, 2025. properties: input_tokens: type: integer description: The number of input tokens. input_tokens_details: type: object description: A detailed breakdown of the input tokens. properties: cached_tokens: type: integer description: | The number of tokens that were retrieved from the cache. [More on prompt caching](https://platform.openai.com/docs/guides/prompt-caching). required: - cached_tokens output_tokens: type: integer description: The number of output tokens. output_tokens_details: type: object description: A detailed breakdown of the output tokens. properties: reasoning_tokens: type: integer description: The number of reasoning tokens. required: - reasoning_tokens total_tokens: type: integer description: The total number of tokens used. required: - input_tokens - input_tokens_details - output_tokens - output_tokens_details - total_tokens metadata: $ref: '#/components/schemas/Metadata' required: - id - object - endpoint - input_file_id - completion_window - status - created_at x-oaiMeta: name: The batch object example: | { "id": "batch_abc123", "object": "batch", "endpoint": "/v1/completions", "model": "gpt-5-2025-08-07", "errors": null, "input_file_id": "file-abc123", "completion_window": "24h", "status": "completed", "output_file_id": "file-cvaTdG", "error_file_id": "file-HOWS94", "created_at": 1711471533, "in_progress_at": 1711471538, "expires_at": 1711557933, "finalizing_at": 1711493133, "completed_at": 1711493163, "failed_at": null, "expired_at": null, "cancelling_at": null, "cancelled_at": null, "request_counts": { "total": 100, "completed": 95, "failed": 5 }, "usage": { "input_tokens": 1500, "input_tokens_details": { "cached_tokens": 1024 }, "output_tokens": 500, "output_tokens_details": { "reasoning_tokens": 300 }, "total_tokens": 2000 }, "metadata": { "customer_id": "user_123456789", "batch_description": "Nightly eval job", } } BatchFileExpirationAfter: type: object title: File expiration policy description: The expiration policy for the output and/or error file that are generated for a batch. properties: anchor: description: >- Anchor timestamp after which the expiration policy applies. Supported anchors: `created_at`. Note that the anchor is the file creation time, not the time the batch is created. type: string enum: - created_at x-stainless-const: true seconds: description: >- The number of seconds after the anchor time that the file will expire. Must be between 3600 (1 hour) and 2592000 (30 days). type: integer minimum: 3600 maximum: 2592000 required: - anchor - seconds BatchRequestInput: type: object description: The per-line object of the batch input file properties: custom_id: type: string description: >- A developer-provided per-request id that will be used to match outputs to inputs. Must be unique for each request in a batch. method: type: string enum: - POST description: The HTTP method to be used for the request. Currently only `POST` is supported. x-stainless-const: true url: type: string description: >- The OpenAI API relative URL to be used for the request. Currently `/v1/responses`, `/v1/chat/completions`, `/v1/embeddings`, `/v1/completions`, and `/v1/moderations` are supported. x-oaiMeta: name: The request input object example: > {"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "gpt-4o-mini", "messages": [{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "What is 2+2?"}]}} BatchRequestOutput: type: object description: The per-line object of the batch output and error files properties: id: type: string custom_id: type: string description: A developer-provided per-request id that will be used to match outputs to inputs. response: anyOf: - type: object properties: status_code: type: integer description: The HTTP status code of the response request_id: type: string description: >- An unique identifier for the OpenAI API request. Please include this request ID when contacting support. body: type: object x-oaiTypeLabel: map description: The JSON body of the response - type: 'null' error: anyOf: - type: object description: >- For requests that failed with a non-HTTP error, this will contain more information on the cause of the failure. properties: code: type: string description: | A machine-readable error code. Possible values: - `batch_expired`: The request could not be executed before the completion window ended. - `batch_cancelled`: The batch was cancelled before this request executed. - `request_timeout`: The underlying call to the model timed out. message: type: string description: A human-readable error message. - type: 'null' x-oaiMeta: name: The request output object example: > {"id": "batch_req_wnaDys", "custom_id": "request-2", "response": {"status_code": 200, "request_id": "req_c187b3", "body": {"id": "chatcmpl-9758Iw", "object": "chat.completion", "created": 1711475054, "model": "gpt-4o-mini", "choices": [{"index": 0, "message": {"role": "assistant", "content": "2 + 2 equals 4."}, "finish_reason": "stop"}], "usage": {"prompt_tokens": 24, "completion_tokens": 15, "total_tokens": 39}, "system_fingerprint": null}}, "error": null} Certificate: type: object description: Represents an individual `certificate` uploaded to the organization. properties: object: type: string enum: - certificate - organization.certificate - organization.project.certificate description: > The object type. - If creating, updating, or getting a specific certificate, the object type is `certificate`. - If listing, activating, or deactivating certificates for the organization, the object type is `organization.certificate`. - If listing, activating, or deactivating certificates for a project, the object type is `organization.project.certificate`. x-stainless-const: true id: type: string description: The identifier, which can be referenced in API endpoints name: type: string description: The name of the certificate. created_at: type: integer description: The Unix timestamp (in seconds) of when the certificate was uploaded. certificate_details: type: object properties: valid_at: type: integer description: The Unix timestamp (in seconds) of when the certificate becomes valid. expires_at: type: integer description: The Unix timestamp (in seconds) of when the certificate expires. content: type: string description: The content of the certificate in PEM format. active: type: boolean description: >- Whether the certificate is currently active at the specified scope. Not returned when getting details for a specific certificate. required: - object - id - name - created_at - certificate_details x-oaiMeta: name: The certificate object example: | { "object": "certificate", "id": "cert_abc", "name": "My Certificate", "created_at": 1234567, "certificate_details": { "valid_at": 1234567, "expires_at": 12345678, "content": "-----BEGIN CERTIFICATE----- MIIGAjCCA...6znFlOW+ -----END CERTIFICATE-----" } } ChatCompletionAllowedTools: type: object title: Allowed tools description: | Constrains the tools available to the model to a pre-defined set. properties: mode: type: string enum: - auto - required description: | Constrains the tools available to the model to a pre-defined set. `auto` allows the model to pick from among the allowed tools and generate a message. `required` requires the model to call one or more of the allowed tools. tools: type: array description: | A list of tool definitions that the model should be allowed to call. For the Chat Completions API, the list of tool definitions might look like: ```json [ { "type": "function", "function": { "name": "get_weather" } }, { "type": "function", "function": { "name": "get_time" } } ] ``` items: type: object x-oaiExpandable: false description: | A tool definition that the model should be allowed to call. additionalProperties: true required: - mode - tools ChatCompletionAllowedToolsChoice: type: object title: Allowed tools description: | Constrains the tools available to the model to a pre-defined set. properties: type: type: string enum: - allowed_tools description: Allowed tool configuration type. Always `allowed_tools`. x-stainless-const: true allowed_tools: $ref: '#/components/schemas/ChatCompletionAllowedTools' required: - type - allowed_tools ChatCompletionDeleted: type: object properties: object: type: string description: The type of object being deleted. enum: - chat.completion.deleted x-stainless-const: true id: type: string description: The ID of the chat completion that was deleted. deleted: type: boolean description: Whether the chat completion was deleted. required: - object - id - deleted ChatCompletionFunctionCallOption: type: object description: | Specifying a particular function via `{"name": "my_function"}` forces the model to call that function. properties: name: type: string description: The name of the function to call. required: - name x-stainless-variantName: function_call_option ChatCompletionFunctions: type: object deprecated: true properties: description: type: string description: >- A description of what the function does, used by the model to choose when and how to call the function. name: type: string description: >- The name of the function to be called. Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length of 64. parameters: $ref: '#/components/schemas/FunctionParameters' required: - name ChatCompletionList: type: object title: ChatCompletionList description: | An object representing a list of Chat Completions. properties: object: type: string enum: - list default: list description: | The type of this object. It is always set to "list". x-stainless-const: true data: type: array description: | An array of chat completion objects. items: $ref: '#/components/schemas/CreateChatCompletionResponse' first_id: type: string description: The identifier of the first chat completion in the data array. last_id: type: string description: The identifier of the last chat completion in the data array. has_more: type: boolean description: Indicates whether there are more Chat Completions available. required: - object - data - first_id - last_id - has_more x-oaiMeta: name: The chat completion list object group: chat example: | { "object": "list", "data": [ { "object": "chat.completion", "id": "chatcmpl-AyPNinnUqUDYo9SAdA52NobMflmj2", "model": "gpt-4o-2024-08-06", "created": 1738960610, "request_id": "req_ded8ab984ec4bf840f37566c1011c417", "tool_choice": null, "usage": { "total_tokens": 31, "completion_tokens": 18, "prompt_tokens": 13 }, "seed": 4944116822809979520, "top_p": 1.0, "temperature": 1.0, "presence_penalty": 0.0, "frequency_penalty": 0.0, "system_fingerprint": "fp_50cad350e4", "input_user": null, "service_tier": "default", "tools": null, "metadata": {}, "choices": [ { "index": 0, "message": { "content": "Mind of circuits hum, \nLearning patterns in silence— \nFuture's quiet spark.", "role": "assistant", "tool_calls": null, "function_call": null }, "finish_reason": "stop", "logprobs": null } ], "response_format": null } ], "first_id": "chatcmpl-AyPNinnUqUDYo9SAdA52NobMflmj2", "last_id": "chatcmpl-AyPNinnUqUDYo9SAdA52NobMflmj2", "has_more": false } ChatCompletionMessageCustomToolCall: type: object title: Custom tool call description: | A call to a custom tool created by the model. properties: id: type: string description: The ID of the tool call. type: type: string enum: - custom description: The type of the tool. Always `custom`. x-stainless-const: true custom: type: object description: The custom tool that the model called. properties: name: type: string description: The name of the custom tool to call. input: type: string description: The input for the custom tool call generated by the model. required: - name - input required: - id - type - custom ChatCompletionMessageList: type: object title: ChatCompletionMessageList description: | An object representing a list of chat completion messages. properties: object: type: string enum: - list default: list description: | The type of this object. It is always set to "list". x-stainless-const: true data: type: array description: | An array of chat completion message objects. items: allOf: - $ref: '#/components/schemas/ChatCompletionResponseMessage' - type: object required: - id properties: id: type: string description: The identifier of the chat message. content_parts: anyOf: - type: array description: > If a content parts array was provided, this is an array of `text` and `image_url` parts. Otherwise, null. items: anyOf: - $ref: '#/components/schemas/ChatCompletionRequestMessageContentPartText' - $ref: '#/components/schemas/ChatCompletionRequestMessageContentPartImage' - type: 'null' first_id: type: string description: The identifier of the first chat message in the data array. last_id: type: string description: The identifier of the last chat message in the data array. has_more: type: boolean description: Indicates whether there are more chat messages available. required: - object - data - first_id - last_id - has_more x-oaiMeta: name: The chat completion message list object group: chat example: | { "object": "list", "data": [ { "id": "chatcmpl-AyPNinnUqUDYo9SAdA52NobMflmj2-0", "role": "user", "content": "write a haiku about ai", "name": null, "content_parts": null } ], "first_id": "chatcmpl-AyPNinnUqUDYo9SAdA52NobMflmj2-0", "last_id": "chatcmpl-AyPNinnUqUDYo9SAdA52NobMflmj2-0", "has_more": false } ChatCompletionMessageToolCall: type: object title: Function tool call description: | A call to a function tool created by the model. properties: id: type: string description: The ID of the tool call. type: type: string enum: - function description: The type of the tool. Currently, only `function` is supported. x-stainless-const: true function: type: object description: The function that the model called. properties: name: type: string description: The name of the function to call. arguments: type: string description: >- The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function. required: - name - arguments required: - id - type - function ChatCompletionMessageToolCallChunk: type: object properties: index: type: integer id: type: string description: The ID of the tool call. type: type: string enum: - function description: The type of the tool. Currently, only `function` is supported. x-stainless-const: true function: type: object properties: name: type: string description: The name of the function to call. arguments: type: string description: >- The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function. required: - index ChatCompletionMessageToolCalls: type: array description: The tool calls generated by the model, such as function calls. items: discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/ChatCompletionMessageToolCall' - $ref: '#/components/schemas/ChatCompletionMessageCustomToolCall' x-stainless-naming: python: model_name: chat_completion_message_tool_call_union param_model_name: chat_completion_message_tool_call_union_param x-stainless-go-variant-constructor: skip ChatCompletionModalities: anyOf: - type: array description: > Output types that you would like the model to generate for this request. Most models are capable of generating text, which is the default: `["text"]` The `gpt-4o-audio-preview` model can also be used to [generate audio](https://platform.openai.com/docs/guides/audio). To request that this model generate both text and audio responses, you can use: `["text", "audio"]` items: type: string enum: - text - audio - type: 'null' ChatCompletionNamedToolChoice: type: object title: Function tool choice description: Specifies a tool the model should use. Use to force the model to call a specific function. properties: type: type: string enum: - function description: For function calling, the type is always `function`. x-stainless-const: true function: type: object properties: name: type: string description: The name of the function to call. required: - name required: - type - function ChatCompletionNamedToolChoiceCustom: type: object title: Custom tool choice description: Specifies a tool the model should use. Use to force the model to call a specific custom tool. properties: type: type: string enum: - custom description: For custom tool calling, the type is always `custom`. x-stainless-const: true custom: type: object properties: name: type: string description: The name of the custom tool to call. required: - name required: - type - custom ChatCompletionRequestAssistantMessage: type: object title: Assistant message description: | Messages sent by the model in response to user messages. properties: content: anyOf: - description: > The contents of the assistant message. Required unless `tool_calls` or `function_call` is specified. anyOf: - type: string description: The contents of the assistant message. title: Text content - type: array description: >- An array of content parts with a defined type. Can be one or more of type `text`, or exactly one of type `refusal`. title: Array of content parts items: $ref: '#/components/schemas/ChatCompletionRequestAssistantMessageContentPart' minItems: 1 - type: 'null' refusal: anyOf: - type: string description: The refusal message by the assistant. - type: 'null' role: type: string enum: - assistant description: The role of the messages author, in this case `assistant`. x-stainless-const: true name: type: string description: >- An optional name for the participant. Provides the model information to differentiate between participants of the same role. audio: anyOf: - type: object description: | Data about a previous audio response from the model. [Learn more](https://platform.openai.com/docs/guides/audio). required: - id properties: id: type: string description: | Unique identifier for a previous audio response from the model. - type: 'null' tool_calls: $ref: '#/components/schemas/ChatCompletionMessageToolCalls' function_call: anyOf: - type: object deprecated: true description: >- Deprecated and replaced by `tool_calls`. The name and arguments of a function that should be called, as generated by the model. properties: arguments: type: string description: >- The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function. name: type: string description: The name of the function to call. required: - arguments - name - type: 'null' required: - role x-stainless-soft-required: - content ChatCompletionRequestAssistantMessageContentPart: discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/ChatCompletionRequestMessageContentPartText' - $ref: '#/components/schemas/ChatCompletionRequestMessageContentPartRefusal' ChatCompletionRequestDeveloperMessage: type: object title: Developer message description: | Developer-provided instructions that the model should follow, regardless of messages sent by the user. With o1 models and newer, `developer` messages replace the previous `system` messages. properties: content: description: The contents of the developer message. anyOf: - type: string description: The contents of the developer message. title: Text content - type: array description: >- An array of content parts with a defined type. For developer messages, only type `text` is supported. title: Array of content parts items: $ref: '#/components/schemas/ChatCompletionRequestMessageContentPartText' minItems: 1 role: type: string enum: - developer description: The role of the messages author, in this case `developer`. x-stainless-const: true name: type: string description: >- An optional name for the participant. Provides the model information to differentiate between participants of the same role. required: - content - role x-stainless-naming: go: variant_constructor: DeveloperMessage ChatCompletionRequestFunctionMessage: type: object title: Function message deprecated: true properties: role: type: string enum: - function description: The role of the messages author, in this case `function`. x-stainless-const: true content: anyOf: - type: string description: The contents of the function message. - type: 'null' name: type: string description: The name of the function to call. required: - role - content - name ChatCompletionRequestMessage: discriminator: propertyName: role anyOf: - $ref: '#/components/schemas/ChatCompletionRequestDeveloperMessage' - $ref: '#/components/schemas/ChatCompletionRequestSystemMessage' - $ref: '#/components/schemas/ChatCompletionRequestUserMessage' - $ref: '#/components/schemas/ChatCompletionRequestAssistantMessage' - $ref: '#/components/schemas/ChatCompletionRequestToolMessage' - $ref: '#/components/schemas/ChatCompletionRequestFunctionMessage' ChatCompletionRequestMessageContentPartAudio: type: object title: Audio content part description: | Learn about [audio inputs](https://platform.openai.com/docs/guides/audio). properties: type: type: string enum: - input_audio description: The type of the content part. Always `input_audio`. x-stainless-const: true input_audio: type: object properties: data: type: string description: Base64 encoded audio data. format: type: string enum: - wav - mp3 description: | The format of the encoded audio data. Currently supports "wav" and "mp3". required: - data - format required: - type - input_audio x-stainless-naming: go: variant_constructor: InputAudioContentPart ChatCompletionRequestMessageContentPartFile: type: object title: File content part description: | Learn about [file inputs](https://platform.openai.com/docs/guides/text) for text generation. properties: type: type: string enum: - file description: The type of the content part. Always `file`. x-stainless-const: true file: type: object properties: filename: type: string description: | The name of the file, used when passing the file to the model as a string. file_data: type: string description: | The base64 encoded file data, used when passing the file to the model as a string. file_id: type: string description: | The ID of an uploaded file to use as input. x-stainless-naming: java: type_name: FileObject kotlin: type_name: FileObject required: - type - file x-stainless-naming: go: variant_constructor: FileContentPart ChatCompletionRequestMessageContentPartImage: type: object title: Image content part description: | Learn about [image inputs](https://platform.openai.com/docs/guides/vision). properties: type: type: string enum: - image_url description: The type of the content part. x-stainless-const: true image_url: type: object properties: url: type: string description: Either a URL of the image or the base64 encoded image data. format: uri detail: type: string description: >- Specifies the detail level of the image. Learn more in the [Vision guide](https://platform.openai.com/docs/guides/vision#low-or-high-fidelity-image-understanding). enum: - auto - low - high default: auto required: - url required: - type - image_url x-stainless-naming: go: variant_constructor: ImageContentPart ChatCompletionRequestMessageContentPartRefusal: type: object title: Refusal content part properties: type: type: string enum: - refusal description: The type of the content part. x-stainless-const: true refusal: type: string description: The refusal message generated by the model. required: - type - refusal ChatCompletionRequestMessageContentPartText: type: object title: Text content part description: | Learn about [text inputs](https://platform.openai.com/docs/guides/text-generation). properties: type: type: string enum: - text description: The type of the content part. x-stainless-const: true text: type: string description: The text content. required: - type - text x-stainless-naming: go: variant_constructor: TextContentPart ChatCompletionRequestSystemMessage: type: object title: System message description: | Developer-provided instructions that the model should follow, regardless of messages sent by the user. With o1 models and newer, use `developer` messages for this purpose instead. properties: content: description: The contents of the system message. anyOf: - type: string description: The contents of the system message. title: Text content - type: array description: >- An array of content parts with a defined type. For system messages, only type `text` is supported. title: Array of content parts items: $ref: '#/components/schemas/ChatCompletionRequestSystemMessageContentPart' minItems: 1 role: type: string enum: - system description: The role of the messages author, in this case `system`. x-stainless-const: true name: type: string description: >- An optional name for the participant. Provides the model information to differentiate between participants of the same role. required: - content - role x-stainless-naming: go: variant_constructor: SystemMessage ChatCompletionRequestSystemMessageContentPart: anyOf: - $ref: '#/components/schemas/ChatCompletionRequestMessageContentPartText' ChatCompletionRequestToolMessage: type: object title: Tool message properties: role: type: string enum: - tool description: The role of the messages author, in this case `tool`. x-stainless-const: true content: description: The contents of the tool message. anyOf: - type: string description: The contents of the tool message. title: Text content - type: array description: >- An array of content parts with a defined type. For tool messages, only type `text` is supported. title: Array of content parts items: $ref: '#/components/schemas/ChatCompletionRequestToolMessageContentPart' minItems: 1 tool_call_id: type: string description: Tool call that this message is responding to. required: - role - content - tool_call_id x-stainless-naming: go: variant_constructor: ToolMessage ChatCompletionRequestToolMessageContentPart: anyOf: - $ref: '#/components/schemas/ChatCompletionRequestMessageContentPartText' ChatCompletionRequestUserMessage: type: object title: User message description: | Messages sent by an end user, containing prompts or additional context information. properties: content: description: | The contents of the user message. anyOf: - type: string description: The text contents of the message. title: Text content - type: array description: >- An array of content parts with a defined type. Supported options differ based on the [model](https://platform.openai.com/docs/models) being used to generate the response. Can contain text, image, or audio inputs. title: Array of content parts items: $ref: '#/components/schemas/ChatCompletionRequestUserMessageContentPart' minItems: 1 role: type: string enum: - user description: The role of the messages author, in this case `user`. x-stainless-const: true name: type: string description: >- An optional name for the participant. Provides the model information to differentiate between participants of the same role. required: - content - role x-stainless-naming: go: variant_constructor: UserMessage ChatCompletionRequestUserMessageContentPart: anyOf: - $ref: '#/components/schemas/ChatCompletionRequestMessageContentPartText' - $ref: '#/components/schemas/ChatCompletionRequestMessageContentPartImage' - $ref: '#/components/schemas/ChatCompletionRequestMessageContentPartAudio' - $ref: '#/components/schemas/ChatCompletionRequestMessageContentPartFile' discriminator: propertyName: type ChatCompletionResponseMessage: type: object description: A chat completion message generated by the model. properties: content: anyOf: - type: string description: The contents of the message. - type: 'null' refusal: anyOf: - type: string description: The refusal message generated by the model. - type: 'null' tool_calls: $ref: '#/components/schemas/ChatCompletionMessageToolCalls' annotations: type: array description: | Annotations for the message, when applicable, as when using the [web search tool](https://platform.openai.com/docs/guides/tools-web-search?api-mode=chat). items: type: object description: | A URL citation when using web search. required: - type - url_citation properties: type: type: string description: The type of the URL citation. Always `url_citation`. enum: - url_citation x-stainless-const: true url_citation: type: object description: A URL citation when using web search. required: - end_index - start_index - url - title properties: end_index: type: integer description: The index of the last character of the URL citation in the message. start_index: type: integer description: The index of the first character of the URL citation in the message. url: type: string description: The URL of the web resource. title: type: string description: The title of the web resource. role: type: string enum: - assistant description: The role of the author of this message. x-stainless-const: true function_call: type: object deprecated: true description: >- Deprecated and replaced by `tool_calls`. The name and arguments of a function that should be called, as generated by the model. properties: arguments: type: string description: >- The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function. name: type: string description: The name of the function to call. required: - name - arguments audio: anyOf: - type: object description: > If the audio output modality is requested, this object contains data about the audio response from the model. [Learn more](https://platform.openai.com/docs/guides/audio). required: - id - expires_at - data - transcript properties: id: type: string description: Unique identifier for this audio response. expires_at: type: integer description: | The Unix timestamp (in seconds) for when this audio response will no longer be accessible on the server for use in multi-turn conversations. data: type: string description: | Base64 encoded audio bytes generated by the model, in the format specified in the request. transcript: type: string description: Transcript of the audio generated by the model. - type: 'null' required: - role - content - refusal ChatCompletionRole: type: string description: The role of the author of a message enum: - developer - system - user - assistant - tool - function ChatCompletionStreamOptions: anyOf: - description: | Options for streaming response. Only set this when you set `stream: true`. type: object properties: include_usage: type: boolean description: | If set, an additional chunk will be streamed before the `data: [DONE]` message. The `usage` field on this chunk shows the token usage statistics for the entire request, and the `choices` field will always be an empty array. All other chunks will also include a `usage` field, but with a null value. **NOTE:** If the stream is interrupted, you may not receive the final usage chunk which contains the total token usage for the request. include_obfuscation: type: boolean description: | When true, stream obfuscation will be enabled. Stream obfuscation adds random characters to an `obfuscation` field on streaming delta events to normalize payload sizes as a mitigation to certain side-channel attacks. These obfuscation fields are included by default, but add a small amount of overhead to the data stream. You can set `include_obfuscation` to false to optimize for bandwidth if you trust the network links between your application and the OpenAI API. - type: 'null' ChatCompletionStreamResponseDelta: type: object description: A chat completion delta generated by streamed model responses. properties: content: anyOf: - type: string description: The contents of the chunk message. - type: 'null' function_call: deprecated: true type: object description: >- Deprecated and replaced by `tool_calls`. The name and arguments of a function that should be called, as generated by the model. properties: arguments: type: string description: >- The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function. name: type: string description: The name of the function to call. tool_calls: type: array items: $ref: '#/components/schemas/ChatCompletionMessageToolCallChunk' role: type: string enum: - developer - system - user - assistant - tool description: The role of the author of this message. refusal: anyOf: - type: string description: The refusal message generated by the model. - type: 'null' ChatCompletionTokenLogprob: type: object properties: token: description: The token. type: string logprob: description: >- The log probability of this token, if it is within the top 20 most likely tokens. Otherwise, the value `-9999.0` is used to signify that the token is very unlikely. type: number bytes: anyOf: - description: >- A list of integers representing the UTF-8 bytes representation of the token. Useful in instances where characters are represented by multiple tokens and their byte representations must be combined to generate the correct text representation. Can be `null` if there is no bytes representation for the token. type: array items: type: integer - type: 'null' top_logprobs: description: >- List of the most likely tokens and their log probability, at this token position. In rare cases, there may be fewer than the number of requested `top_logprobs` returned. type: array items: type: object properties: token: description: The token. type: string logprob: description: >- The log probability of this token, if it is within the top 20 most likely tokens. Otherwise, the value `-9999.0` is used to signify that the token is very unlikely. type: number bytes: anyOf: - description: >- A list of integers representing the UTF-8 bytes representation of the token. Useful in instances where characters are represented by multiple tokens and their byte representations must be combined to generate the correct text representation. Can be `null` if there is no bytes representation for the token. type: array items: type: integer - type: 'null' required: - token - logprob - bytes required: - token - logprob - bytes - top_logprobs ChatCompletionTool: type: object title: Function tool description: | A function tool that can be used to generate a response. properties: type: type: string enum: - function description: The type of the tool. Currently, only `function` is supported. x-stainless-const: true function: $ref: '#/components/schemas/FunctionObject' required: - type - function ChatCompletionToolChoiceOption: description: > Controls which (if any) tool is called by the model. `none` means the model will not call any tool and instead generates a message. `auto` means the model can pick between generating a message or calling one or more tools. `required` means the model must call one or more tools. Specifying a particular tool via `{"type": "function", "function": {"name": "my_function"}}` forces the model to call that tool. `none` is the default when no tools are present. `auto` is the default if tools are present. anyOf: - type: string title: Auto description: > `none` means the model will not call any tool and instead generates a message. `auto` means the model can pick between generating a message or calling one or more tools. `required` means the model must call one or more tools. enum: - none - auto - required - $ref: '#/components/schemas/ChatCompletionAllowedToolsChoice' - $ref: '#/components/schemas/ChatCompletionNamedToolChoice' - $ref: '#/components/schemas/ChatCompletionNamedToolChoiceCustom' x-stainless-go-variant-constructor: naming: tool_choice_option_{variant} ChunkingStrategyRequestParam: type: object description: >- The chunking strategy used to chunk the file(s). If not set, will use the `auto` strategy. Only applicable if `file_ids` is non-empty. anyOf: - $ref: '#/components/schemas/AutoChunkingStrategyRequestParam' - $ref: '#/components/schemas/StaticChunkingStrategyRequestParam' discriminator: propertyName: type CodeInterpreterFileOutput: type: object title: Code interpreter file output description: | The output of a code interpreter tool call that is a file. properties: type: type: string enum: - files description: | The type of the code interpreter file output. Always `files`. x-stainless-const: true files: type: array items: type: object properties: mime_type: type: string description: | The MIME type of the file. file_id: type: string description: | The ID of the file. required: - mime_type - file_id required: - type - files CodeInterpreterTextOutput: type: object title: Code interpreter text output description: | The output of a code interpreter tool call that is text. properties: type: type: string enum: - logs description: | The type of the code interpreter text output. Always `logs`. x-stainless-const: true logs: type: string description: | The logs of the code interpreter tool call. required: - type - logs CodeInterpreterTool: type: object title: Code interpreter description: | A tool that runs Python code to help generate a response to a prompt. properties: type: type: string enum: - code_interpreter description: | The type of the code interpreter tool. Always `code_interpreter`. x-stainless-const: true container: description: | The code interpreter container. Can be a container ID or an object that specifies uploaded file IDs to make available to your code. anyOf: - type: string description: The container ID. - $ref: '#/components/schemas/CodeInterpreterContainerAuto' required: - type - container CodeInterpreterToolCall: type: object title: Code interpreter tool call description: | A tool call to run code. properties: type: type: string enum: - code_interpreter_call default: code_interpreter_call x-stainless-const: true description: | The type of the code interpreter tool call. Always `code_interpreter_call`. id: type: string description: | The unique ID of the code interpreter tool call. status: type: string enum: - in_progress - completed - incomplete - interpreting - failed description: > The status of the code interpreter tool call. Valid values are `in_progress`, `completed`, `incomplete`, `interpreting`, and `failed`. container_id: type: string description: | The ID of the container used to run the code. code: anyOf: - type: string description: | The code to run, or null if not available. - type: 'null' outputs: anyOf: - type: array items: discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/CodeInterpreterOutputLogs' - $ref: '#/components/schemas/CodeInterpreterOutputImage' discriminator: propertyName: type description: | The outputs generated by the code interpreter, such as logs or images. Can be null if no outputs are available. - type: 'null' required: - type - id - status - container_id - code - outputs ComparisonFilter: type: object additionalProperties: false title: Comparison Filter description: > A filter used to compare a specified attribute key to a given value using a defined comparison operation. properties: type: type: string default: eq enum: - eq - ne - gt - gte - lt - lte description: | Specifies the comparison operator: `eq`, `ne`, `gt`, `gte`, `lt`, `lte`, `in`, `nin`. - `eq`: equals - `ne`: not equal - `gt`: greater than - `gte`: greater than or equal - `lt`: less than - `lte`: less than or equal - `in`: in - `nin`: not in key: type: string description: The key to compare against the value. value: description: The value to compare against the attribute key; supports string, number, or boolean types. anyOf: - type: string - type: number - type: boolean - type: array items: $ref: '#/components/schemas/ComparisonFilterValueItems' required: - type - key - value x-oaiMeta: name: ComparisonFilter CompleteUploadRequest: type: object additionalProperties: false properties: part_ids: type: array description: | The ordered list of Part IDs. items: type: string md5: description: > The optional md5 checksum for the file contents to verify if the bytes uploaded matches what you expect. type: string required: - part_ids CompletionUsage: type: object description: Usage statistics for the completion request. properties: completion_tokens: type: integer default: 0 description: Number of tokens in the generated completion. prompt_tokens: type: integer default: 0 description: Number of tokens in the prompt. total_tokens: type: integer default: 0 description: Total number of tokens used in the request (prompt + completion). completion_tokens_details: type: object description: Breakdown of tokens used in a completion. properties: accepted_prediction_tokens: type: integer default: 0 description: | When using Predicted Outputs, the number of tokens in the prediction that appeared in the completion. audio_tokens: type: integer default: 0 description: Audio input tokens generated by the model. reasoning_tokens: type: integer default: 0 description: Tokens generated by the model for reasoning. rejected_prediction_tokens: type: integer default: 0 description: | When using Predicted Outputs, the number of tokens in the prediction that did not appear in the completion. However, like reasoning tokens, these tokens are still counted in the total completion tokens for purposes of billing, output, and context window limits. prompt_tokens_details: type: object description: Breakdown of tokens used in the prompt. properties: audio_tokens: type: integer default: 0 description: Audio input tokens present in the prompt. cached_tokens: type: integer default: 0 description: Cached tokens present in the prompt. required: - prompt_tokens - completion_tokens - total_tokens CompoundFilter: $recursiveAnchor: true type: object additionalProperties: false title: Compound Filter description: Combine multiple filters using `and` or `or`. properties: type: type: string description: 'Type of operation: `and` or `or`.' enum: - and - or filters: type: array description: Array of filters to combine. Items can be `ComparisonFilter` or `CompoundFilter`. items: discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/ComparisonFilter' - $recursiveRef: '#' required: - type - filters x-oaiMeta: name: CompoundFilter ComputerAction: discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/ClickParam' - $ref: '#/components/schemas/DoubleClickAction' - $ref: '#/components/schemas/Drag' - $ref: '#/components/schemas/KeyPressAction' - $ref: '#/components/schemas/Move' - $ref: '#/components/schemas/Screenshot' - $ref: '#/components/schemas/Scroll' - $ref: '#/components/schemas/Type' - $ref: '#/components/schemas/Wait' ComputerScreenshotImage: type: object description: | A computer screenshot image used with the computer use tool. properties: type: type: string enum: - computer_screenshot default: computer_screenshot description: | Specifies the event type. For a computer screenshot, this property is always set to `computer_screenshot`. x-stainless-const: true image_url: type: string description: The URL of the screenshot image. file_id: type: string description: The identifier of an uploaded file that contains the screenshot. required: - type ComputerToolCall: type: object title: Computer tool call description: | A tool call to a computer use tool. See the [computer use guide](https://platform.openai.com/docs/guides/tools-computer-use) for more information. properties: type: type: string description: The type of the computer call. Always `computer_call`. enum: - computer_call default: computer_call id: type: string description: The unique ID of the computer call. call_id: type: string description: | An identifier used when responding to the tool call with output. action: $ref: '#/components/schemas/ComputerAction' pending_safety_checks: type: array items: $ref: '#/components/schemas/ComputerCallSafetyCheckParam' description: | The pending safety checks for the computer call. status: type: string description: | The status of the item. One of `in_progress`, `completed`, or `incomplete`. Populated when items are returned via API. enum: - in_progress - completed - incomplete required: - type - id - action - call_id - pending_safety_checks - status ComputerToolCallOutput: type: object title: Computer tool call output description: | The output of a computer tool call. properties: type: type: string description: | The type of the computer tool call output. Always `computer_call_output`. enum: - computer_call_output default: computer_call_output x-stainless-const: true id: type: string description: | The ID of the computer tool call output. call_id: type: string description: | The ID of the computer tool call that produced the output. acknowledged_safety_checks: type: array description: | The safety checks reported by the API that have been acknowledged by the developer. items: $ref: '#/components/schemas/ComputerCallSafetyCheckParam' output: $ref: '#/components/schemas/ComputerScreenshotImage' status: type: string description: | The status of the message input. One of `in_progress`, `completed`, or `incomplete`. Populated when input items are returned via API. enum: - in_progress - completed - incomplete required: - type - call_id - output ComputerToolCallOutputResource: allOf: - $ref: '#/components/schemas/ComputerToolCallOutput' - type: object properties: id: type: string description: | The unique ID of the computer call tool output. required: - id ContainerFileListResource: type: object properties: object: description: The type of object returned, must be 'list'. const: list data: type: array description: A list of container files. items: $ref: '#/components/schemas/ContainerFileResource' first_id: type: string description: The ID of the first file in the list. last_id: type: string description: The ID of the last file in the list. has_more: type: boolean description: Whether there are more files available. required: - object - data - first_id - last_id - has_more ContainerFileResource: type: object title: The container file object properties: id: type: string description: Unique identifier for the file. object: type: string description: The type of this object (`container.file`). const: container.file container_id: type: string description: The container this file belongs to. created_at: type: integer description: Unix timestamp (in seconds) when the file was created. bytes: type: integer description: Size of the file in bytes. path: type: string description: Path of the file in the container. source: type: string description: Source of the file (e.g., `user`, `assistant`). required: - id - object - created_at - bytes - container_id - path - source x-oaiMeta: name: The container file object example: | { "id": "cfile_682e0e8a43c88191a7978f477a09bdf5", "object": "container.file", "created_at": 1747848842, "bytes": 880, "container_id": "cntr_682e0e7318108198aa783fd921ff305e08e78805b9fdbb04", "path": "/mnt/data/88e12fa445d32636f190a0b33daed6cb-tsconfig.json", "source": "user" } ContainerListResource: type: object properties: object: description: The type of object returned, must be 'list'. const: list data: type: array description: A list of containers. items: $ref: '#/components/schemas/ContainerResource' first_id: type: string description: The ID of the first container in the list. last_id: type: string description: The ID of the last container in the list. has_more: type: boolean description: Whether there are more containers available. required: - object - data - first_id - last_id - has_more ContainerResource: type: object title: The container object properties: id: type: string description: Unique identifier for the container. object: type: string description: The type of this object. name: type: string description: Name of the container. created_at: type: integer description: Unix timestamp (in seconds) when the container was created. status: type: string description: Status of the container (e.g., active, deleted). expires_after: type: object description: | The container will expire after this time period. The anchor is the reference point for the expiration. The minutes is the number of minutes after the anchor before the container expires. properties: anchor: type: string description: The reference point for the expiration. enum: - last_active_at minutes: type: integer description: The number of minutes after the anchor before the container expires. required: - id - object - name - created_at - status - id - name - created_at - status x-oaiMeta: name: The container object example: | { "id": "cntr_682dfebaacac8198bbfe9c2474fb6f4a085685cbe3cb5863", "object": "container", "created_at": 1747844794, "status": "running", "expires_after": { "anchor": "last_active_at", "minutes": 20 }, "last_active_at": 1747844794, "name": "My Container" } Content: description: | Multi-modal input and output contents. anyOf: - title: Input content types $ref: '#/components/schemas/InputContent' - title: Output content types $ref: '#/components/schemas/OutputContent' Conversation: title: The conversation object allOf: - $ref: '#/components/schemas/ConversationResource' x-oaiMeta: name: The conversation object group: conversations ConversationItem: title: Conversation item description: >- A single item within a conversation. The set of possible types are the same as the `output` type of a [Response object](https://platform.openai.com/docs/api-reference/responses/object#responses/object-output). discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/Message' - $ref: '#/components/schemas/FunctionToolCallResource' - $ref: '#/components/schemas/FunctionToolCallOutputResource' - $ref: '#/components/schemas/FileSearchToolCall' - $ref: '#/components/schemas/WebSearchToolCall' - $ref: '#/components/schemas/ImageGenToolCall' - $ref: '#/components/schemas/ComputerToolCall' - $ref: '#/components/schemas/ComputerToolCallOutputResource' - $ref: '#/components/schemas/ReasoningItem' - $ref: '#/components/schemas/CodeInterpreterToolCall' - $ref: '#/components/schemas/LocalShellToolCall' - $ref: '#/components/schemas/LocalShellToolCallOutput' - $ref: '#/components/schemas/FunctionShellCall' - $ref: '#/components/schemas/FunctionShellCallOutput' - $ref: '#/components/schemas/ApplyPatchToolCall' - $ref: '#/components/schemas/ApplyPatchToolCallOutput' - $ref: '#/components/schemas/MCPListTools' - $ref: '#/components/schemas/MCPApprovalRequest' - $ref: '#/components/schemas/MCPApprovalResponseResource' - $ref: '#/components/schemas/MCPToolCall' - $ref: '#/components/schemas/CustomToolCall' - $ref: '#/components/schemas/CustomToolCallOutput' ConversationItemList: type: object title: The conversation item list description: A list of Conversation items. properties: object: description: The type of object returned, must be `list`. x-stainless-const: true const: list data: type: array description: A list of conversation items. items: $ref: '#/components/schemas/ConversationItem' has_more: type: boolean description: Whether there are more items available. first_id: type: string description: The ID of the first item in the list. last_id: type: string description: The ID of the last item in the list. required: - object - data - has_more - first_id - last_id x-oaiMeta: name: The item list group: conversations ConversationParam: description: > The conversation that this response belongs to. Items from this conversation are prepended to `input_items` for this response request. Input items and output items from this response are automatically added to this conversation after this response completes. anyOf: - type: string title: Conversation ID description: | The unique ID of the conversation. - $ref: '#/components/schemas/ConversationParam-2' CostsResult: type: object description: The aggregated costs details of the specific time bucket. properties: object: type: string enum: - organization.costs.result x-stainless-const: true amount: type: object description: The monetary value in its associated currency. properties: value: type: number description: The numeric value of the cost. currency: type: string description: Lowercase ISO-4217 currency e.g. "usd" line_item: anyOf: - type: string description: When `group_by=line_item`, this field provides the line item of the grouped costs result. - type: 'null' project_id: anyOf: - type: string description: When `group_by=project_id`, this field provides the project ID of the grouped costs result. - type: 'null' required: - object x-oaiMeta: name: Costs object example: | { "object": "organization.costs.result", "amount": { "value": 0.06, "currency": "usd" }, "line_item": "Image models", "project_id": "proj_abc" } CreateAssistantRequest: type: object additionalProperties: false properties: model: description: > ID of the model to use. You can use the [List models](https://platform.openai.com/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](https://platform.openai.com/docs/models) for descriptions of them. example: gpt-4o anyOf: - type: string - $ref: '#/components/schemas/AssistantSupportedModels' x-oaiTypeLabel: string name: anyOf: - description: | The name of the assistant. The maximum length is 256 characters. type: string maxLength: 256 - type: 'null' description: anyOf: - description: | The description of the assistant. The maximum length is 512 characters. type: string maxLength: 512 - type: 'null' instructions: anyOf: - description: | The system instructions that the assistant uses. The maximum length is 256,000 characters. type: string maxLength: 256000 - type: 'null' reasoning_effort: $ref: '#/components/schemas/ReasoningEffort' tools: description: > A list of tool enabled on the assistant. There can be a maximum of 128 tools per assistant. Tools can be of types `code_interpreter`, `file_search`, or `function`. default: [] type: array maxItems: 128 items: $ref: '#/components/schemas/AssistantTool' tool_resources: anyOf: - type: object description: > A set of resources that are used by the assistant's tools. The resources are specific to the type of tool. For example, the `code_interpreter` tool requires a list of file IDs, while the `file_search` tool requires a list of vector store IDs. properties: code_interpreter: type: object properties: file_ids: type: array description: > A list of [file](https://platform.openai.com/docs/api-reference/files) IDs made available to the `code_interpreter` tool. There can be a maximum of 20 files associated with the tool. default: [] maxItems: 20 items: type: string file_search: type: object properties: vector_store_ids: type: array description: > The [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) attached to this assistant. There can be a maximum of 1 vector store attached to the assistant. maxItems: 1 items: type: string vector_stores: type: array description: > A helper to create a [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) with file_ids and attach it to this assistant. There can be a maximum of 1 vector store attached to the assistant. maxItems: 1 items: type: object properties: file_ids: type: array description: > A list of [file](https://platform.openai.com/docs/api-reference/files) IDs to add to the vector store. There can be a maximum of 10000 files in a vector store. maxItems: 10000 items: type: string chunking_strategy: type: object description: >- The chunking strategy used to chunk the file(s). If not set, will use the `auto` strategy. anyOf: - type: object title: Auto Chunking Strategy description: >- The default strategy. This strategy currently uses a `max_chunk_size_tokens` of `800` and `chunk_overlap_tokens` of `400`. additionalProperties: false properties: type: type: string description: Always `auto`. enum: - auto x-stainless-const: true required: - type - type: object title: Static Chunking Strategy additionalProperties: false properties: type: type: string description: Always `static`. enum: - static x-stainless-const: true static: type: object additionalProperties: false properties: max_chunk_size_tokens: type: integer minimum: 100 maximum: 4096 description: >- The maximum number of tokens in each chunk. The default value is `800`. The minimum value is `100` and the maximum value is `4096`. chunk_overlap_tokens: type: integer description: > The number of tokens that overlap between chunks. The default value is `400`. Note that the overlap must not exceed half of `max_chunk_size_tokens`. required: - max_chunk_size_tokens - chunk_overlap_tokens required: - type - static discriminator: propertyName: type metadata: $ref: '#/components/schemas/Metadata' anyOf: - required: - vector_store_ids - required: - vector_stores - type: 'null' metadata: $ref: '#/components/schemas/Metadata' temperature: anyOf: - description: > What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. type: number minimum: 0 maximum: 2 default: 1 example: 1 - type: 'null' top_p: anyOf: - type: number minimum: 0 maximum: 1 default: 1 example: 1 description: > An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. - type: 'null' response_format: anyOf: - $ref: '#/components/schemas/AssistantsApiResponseFormatOption' - type: 'null' required: - model CreateChatCompletionRequest: allOf: - $ref: '#/components/schemas/CreateModelResponseProperties' - type: object properties: messages: description: > A list of messages comprising the conversation so far. Depending on the [model](https://platform.openai.com/docs/models) you use, different message types (modalities) are supported, like [text](https://platform.openai.com/docs/guides/text-generation), [images](https://platform.openai.com/docs/guides/vision), and [audio](https://platform.openai.com/docs/guides/audio). type: array minItems: 1 items: $ref: '#/components/schemas/ChatCompletionRequestMessage' model: description: > Model ID used to generate the response, like `gpt-4o` or `o3`. OpenAI offers a wide range of models with different capabilities, performance characteristics, and price points. Refer to the [model guide](https://platform.openai.com/docs/models) to browse and compare available models. $ref: '#/components/schemas/ModelIdsShared' modalities: $ref: '#/components/schemas/ResponseModalities' verbosity: $ref: '#/components/schemas/Verbosity' reasoning_effort: $ref: '#/components/schemas/ReasoningEffort' max_completion_tokens: description: > An upper bound for the number of tokens that can be generated for a completion, including visible output tokens and [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). type: integer nullable: true frequency_penalty: type: number default: 0 minimum: -2 maximum: 2 nullable: true description: | Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim. presence_penalty: type: number default: 0 minimum: -2 maximum: 2 nullable: true description: | Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics. web_search_options: type: object title: Web search description: > This tool searches the web for relevant results to use in a response. Learn more about the [web search tool](https://platform.openai.com/docs/guides/tools-web-search?api-mode=chat). properties: user_location: type: object nullable: true required: - type - approximate description: | Approximate location parameters for the search. properties: type: type: string description: | The type of location approximation. Always `approximate`. enum: - approximate x-stainless-const: true approximate: $ref: '#/components/schemas/WebSearchLocation' search_context_size: $ref: '#/components/schemas/WebSearchContextSize' top_logprobs: description: | An integer between 0 and 20 specifying the number of most likely tokens to return at each token position, each with an associated log probability. `logprobs` must be set to `true` if this parameter is used. type: integer minimum: 0 maximum: 20 nullable: true response_format: description: | An object specifying the format that the model must output. Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured Outputs which ensures the model will match your supplied JSON schema. Learn more in the [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). Setting to `{ "type": "json_object" }` enables the older JSON mode, which ensures the message the model generates is valid JSON. Using `json_schema` is preferred for models that support it. discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/ResponseFormatText' - $ref: '#/components/schemas/ResponseFormatJsonSchema' - $ref: '#/components/schemas/ResponseFormatJsonObject' audio: type: object nullable: true description: | Parameters for audio output. Required when audio output is requested with `modalities: ["audio"]`. [Learn more](https://platform.openai.com/docs/guides/audio). required: - voice - format properties: voice: $ref: '#/components/schemas/VoiceIdsShared' description: | The voice the model uses to respond. Supported voices are `alloy`, `ash`, `ballad`, `coral`, `echo`, `fable`, `nova`, `onyx`, `sage`, and `shimmer`. format: type: string enum: - wav - aac - mp3 - flac - opus - pcm16 description: | Specifies the output audio format. Must be one of `wav`, `mp3`, `flac`, `opus`, or `pcm16`. store: type: boolean default: false nullable: true description: | Whether or not to store the output of this chat completion request for use in our [model distillation](https://platform.openai.com/docs/guides/distillation) or [evals](https://platform.openai.com/docs/guides/evals) products. Supports text and image inputs. Note: image inputs over 8MB will be dropped. stream: description: > If set to true, the model response data will be streamed to the client as it is generated using [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). See the [Streaming section below](https://platform.openai.com/docs/api-reference/chat/streaming) for more information, along with the [streaming responses](https://platform.openai.com/docs/guides/streaming-responses) guide for more information on how to handle the streaming events. type: boolean nullable: true default: false stop: $ref: '#/components/schemas/StopConfiguration' logit_bias: type: object x-oaiTypeLabel: map default: null nullable: true additionalProperties: type: integer description: | Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token. logprobs: description: | Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each output token returned in the `content` of `message`. type: boolean default: false nullable: true max_tokens: description: | The maximum number of [tokens](/tokenizer) that can be generated in the chat completion. This value can be used to control [costs](https://openai.com/api/pricing/) for text generated via API. This value is now deprecated in favor of `max_completion_tokens`, and is not compatible with [o-series models](https://platform.openai.com/docs/guides/reasoning). type: integer nullable: true deprecated: true 'n': type: integer minimum: 1 maximum: 128 default: 1 example: 1 nullable: true description: >- How many chat completion choices to generate for each input message. Note that you will be charged based on the number of generated tokens across all of the choices. Keep `n` as `1` to minimize costs. prediction: nullable: true description: > Configuration for a [Predicted Output](https://platform.openai.com/docs/guides/predicted-outputs), which can greatly improve response times when large parts of the model response are known ahead of time. This is most common when you are regenerating a file with only minor changes to most of the content. anyOf: - $ref: '#/components/schemas/PredictionContent' discriminator: propertyName: type seed: type: integer minimum: -9223372036854776000 maximum: 9223372036854776000 nullable: true deprecated: true description: > This feature is in Beta. If specified, our system will make a best effort to sample deterministically, such that repeated requests with the same `seed` and parameters should return the same result. Determinism is not guaranteed, and you should refer to the `system_fingerprint` response parameter to monitor changes in the backend. x-oaiMeta: beta: true stream_options: $ref: '#/components/schemas/ChatCompletionStreamOptions' tools: type: array description: | A list of tools the model may call. You can provide either [custom tools](https://platform.openai.com/docs/guides/function-calling#custom-tools) or [function tools](https://platform.openai.com/docs/guides/function-calling). items: anyOf: - $ref: '#/components/schemas/ChatCompletionTool' - $ref: '#/components/schemas/CustomToolChatCompletions' x-stainless-naming: python: model_name: chat_completion_tool_union param_model_name: chat_completion_tool_union_param discriminator: propertyName: type x-stainless-go-variant-constructor: naming: chat_completion_{variant}_tool tool_choice: $ref: '#/components/schemas/ChatCompletionToolChoiceOption' parallel_tool_calls: $ref: '#/components/schemas/ParallelToolCalls' function_call: deprecated: true description: | Deprecated in favor of `tool_choice`. Controls which (if any) function is called by the model. `none` means the model will not call a function and instead generates a message. `auto` means the model can pick between generating a message or calling a function. Specifying a particular function via `{"name": "my_function"}` forces the model to call that function. `none` is the default when no functions are present. `auto` is the default if functions are present. anyOf: - type: string description: > `none` means the model will not call a function and instead generates a message. `auto` means the model can pick between generating a message or calling a function. enum: - none - auto title: function call mode - $ref: '#/components/schemas/ChatCompletionFunctionCallOption' functions: deprecated: true description: | Deprecated in favor of `tools`. A list of functions the model may generate JSON inputs for. type: array minItems: 1 maxItems: 128 items: $ref: '#/components/schemas/ChatCompletionFunctions' required: - model - messages CreateChatCompletionResponse: type: object description: Represents a chat completion response returned by model, based on the provided input. properties: id: type: string description: A unique identifier for the chat completion. choices: type: array description: A list of chat completion choices. Can be more than one if `n` is greater than 1. items: type: object required: - finish_reason - index - message - logprobs properties: finish_reason: type: string description: > The reason the model stopped generating tokens. This will be `stop` if the model hit a natural stop point or a provided stop sequence, `length` if the maximum number of tokens specified in the request was reached, `content_filter` if content was omitted due to a flag from our content filters, `tool_calls` if the model called a tool, or `function_call` (deprecated) if the model called a function. enum: - stop - length - tool_calls - content_filter - function_call index: type: integer description: The index of the choice in the list of choices. message: $ref: '#/components/schemas/ChatCompletionResponseMessage' logprobs: anyOf: - description: Log probability information for the choice. type: object properties: content: anyOf: - description: A list of message content tokens with log probability information. type: array items: $ref: '#/components/schemas/ChatCompletionTokenLogprob' - type: 'null' refusal: anyOf: - description: A list of message refusal tokens with log probability information. type: array items: $ref: '#/components/schemas/ChatCompletionTokenLogprob' - type: 'null' required: - content - refusal - type: 'null' created: type: integer description: The Unix timestamp (in seconds) of when the chat completion was created. model: type: string description: The model used for the chat completion. service_tier: $ref: '#/components/schemas/ServiceTier' system_fingerprint: type: string deprecated: true description: > This fingerprint represents the backend configuration that the model runs with. Can be used in conjunction with the `seed` request parameter to understand when backend changes have been made that might impact determinism. object: type: string description: The object type, which is always `chat.completion`. enum: - chat.completion x-stainless-const: true usage: $ref: '#/components/schemas/CompletionUsage' required: - choices - created - id - model - object x-oaiMeta: name: The chat completion object group: chat example: | { "id": "chatcmpl-B9MHDbslfkBeAs8l4bebGdFOJ6PeG", "object": "chat.completion", "created": 1741570283, "model": "gpt-4o-2024-08-06", "choices": [ { "index": 0, "message": { "role": "assistant", "content": "The image shows a wooden boardwalk path running through a lush green field or meadow. The sky is bright blue with some scattered clouds, giving the scene a serene and peaceful atmosphere. Trees and shrubs are visible in the background.", "refusal": null, "annotations": [] }, "logprobs": null, "finish_reason": "stop" } ], "usage": { "prompt_tokens": 1117, "completion_tokens": 46, "total_tokens": 1163, "prompt_tokens_details": { "cached_tokens": 0, "audio_tokens": 0 }, "completion_tokens_details": { "reasoning_tokens": 0, "audio_tokens": 0, "accepted_prediction_tokens": 0, "rejected_prediction_tokens": 0 } }, "service_tier": "default", "system_fingerprint": "fp_fc9f1d7035" } CreateChatCompletionStreamResponse: type: object description: | Represents a streamed chunk of a chat completion response returned by the model, based on the provided input. [Learn more](https://platform.openai.com/docs/guides/streaming-responses). properties: id: type: string description: A unique identifier for the chat completion. Each chunk has the same ID. choices: type: array description: > A list of chat completion choices. Can contain more than one elements if `n` is greater than 1. Can also be empty for the last chunk if you set `stream_options: {"include_usage": true}`. items: type: object required: - delta - finish_reason - index properties: delta: $ref: '#/components/schemas/ChatCompletionStreamResponseDelta' logprobs: description: Log probability information for the choice. type: object nullable: true properties: content: description: A list of message content tokens with log probability information. type: array items: $ref: '#/components/schemas/ChatCompletionTokenLogprob' nullable: true refusal: description: A list of message refusal tokens with log probability information. type: array items: $ref: '#/components/schemas/ChatCompletionTokenLogprob' nullable: true required: - content - refusal finish_reason: type: string description: > The reason the model stopped generating tokens. This will be `stop` if the model hit a natural stop point or a provided stop sequence, `length` if the maximum number of tokens specified in the request was reached, `content_filter` if content was omitted due to a flag from our content filters, `tool_calls` if the model called a tool, or `function_call` (deprecated) if the model called a function. enum: - stop - length - tool_calls - content_filter - function_call nullable: true index: type: integer description: The index of the choice in the list of choices. created: type: integer description: >- The Unix timestamp (in seconds) of when the chat completion was created. Each chunk has the same timestamp. model: type: string description: The model to generate the completion. service_tier: $ref: '#/components/schemas/ServiceTier' system_fingerprint: type: string deprecated: true description: > This fingerprint represents the backend configuration that the model runs with. Can be used in conjunction with the `seed` request parameter to understand when backend changes have been made that might impact determinism. object: type: string description: The object type, which is always `chat.completion.chunk`. enum: - chat.completion.chunk x-stainless-const: true usage: $ref: '#/components/schemas/CompletionUsage' nullable: true description: | An optional field that will only be present when you set `stream_options: {"include_usage": true}` in your request. When present, it contains a null value **except for the last chunk** which contains the token usage statistics for the entire request. **NOTE:** If the stream is interrupted or cancelled, you may not receive the final usage chunk which contains the total token usage for the request. required: - choices - created - id - model - object x-oaiMeta: name: The chat completion chunk object group: chat example: > {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"gpt-4o-mini", "system_fingerprint": "fp_44709d6fcb", "choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]} {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"gpt-4o-mini", "system_fingerprint": "fp_44709d6fcb", "choices":[{"index":0,"delta":{"content":"Hello"},"logprobs":null,"finish_reason":null}]} .... {"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"gpt-4o-mini", "system_fingerprint": "fp_44709d6fcb", "choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]} CreateCompletionRequest: type: object properties: model: description: > ID of the model to use. You can use the [List models](https://platform.openai.com/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](https://platform.openai.com/docs/models) for descriptions of them. anyOf: - type: string - type: string enum: - gpt-3.5-turbo-instruct - davinci-002 - babbage-002 title: Preset x-oaiTypeLabel: string prompt: description: > The prompt(s) to generate completions for, encoded as a string, array of strings, array of tokens, or array of token arrays. Note that <|endoftext|> is the document separator that the model sees during training, so if a prompt is not specified the model will generate as if from the beginning of a new document. nullable: true anyOf: - type: string default: '' example: This is a test. - type: array items: type: string default: '' example: This is a test. title: Array of strings - type: array minItems: 1 items: type: integer title: Array of tokens - type: array minItems: 1 items: type: array minItems: 1 items: type: integer title: Array of token arrays best_of: type: integer default: 1 minimum: 0 maximum: 20 nullable: true description: > Generates `best_of` completions server-side and returns the "best" (the one with the highest log probability per token). Results cannot be streamed. When used with `n`, `best_of` controls the number of candidate completions and `n` specifies how many to return – `best_of` must be greater than `n`. **Note:** Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`. echo: type: boolean default: false nullable: true description: | Echo back the prompt in addition to the completion frequency_penalty: type: number default: 0 minimum: -2 maximum: 2 nullable: true description: > Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim. [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation) logit_bias: type: object x-oaiTypeLabel: map default: null nullable: true additionalProperties: type: integer description: > Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens (specified by their token ID in the GPT tokenizer) to an associated bias value from -100 to 100. You can use this [tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token. As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token from being generated. logprobs: type: integer minimum: 0 maximum: 5 default: null nullable: true description: > Include the log probabilities on the `logprobs` most likely output tokens, as well the chosen tokens. For example, if `logprobs` is 5, the API will return a list of the 5 most likely tokens. The API will always return the `logprob` of the sampled token, so there may be up to `logprobs+1` elements in the response. The maximum value for `logprobs` is 5. max_tokens: type: integer minimum: 0 default: 16 example: 16 nullable: true description: > The maximum number of [tokens](/tokenizer) that can be generated in the completion. The token count of your prompt plus `max_tokens` cannot exceed the model's context length. [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) for counting tokens. 'n': type: integer minimum: 1 maximum: 128 default: 1 example: 1 nullable: true description: > How many completions to generate for each prompt. **Note:** Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`. presence_penalty: type: number default: 0 minimum: -2 maximum: 2 nullable: true description: > Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics. [See more information about frequency and presence penalties.](https://platform.openai.com/docs/guides/text-generation) seed: type: integer format: int64 nullable: true description: > If specified, our system will make a best effort to sample deterministically, such that repeated requests with the same `seed` and parameters should return the same result. Determinism is not guaranteed, and you should refer to the `system_fingerprint` response parameter to monitor changes in the backend. stop: $ref: '#/components/schemas/StopConfiguration' stream: description: > Whether to stream back partial progress. If set, tokens will be sent as data-only [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format) as they become available, with the stream terminated by a `data: [DONE]` message. [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions). type: boolean nullable: true default: false stream_options: $ref: '#/components/schemas/ChatCompletionStreamOptions' suffix: description: | The suffix that comes after a completion of inserted text. This parameter is only supported for `gpt-3.5-turbo-instruct`. default: null nullable: true type: string example: test. temperature: type: number minimum: 0 maximum: 2 default: 1 example: 1 nullable: true description: > What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both. top_p: type: number minimum: 0 maximum: 1 default: 1 example: 1 nullable: true description: > An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or `temperature` but not both. user: type: string example: user-1234 description: > A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). required: - model - prompt CreateCompletionResponse: type: object description: > Represents a completion response from the API. Note: both the streamed and non-streamed response objects share the same shape (unlike the chat endpoint). properties: id: type: string description: A unique identifier for the completion. choices: type: array description: The list of completion choices the model generated for the input prompt. items: type: object required: - finish_reason - index - logprobs - text properties: finish_reason: type: string description: > The reason the model stopped generating tokens. This will be `stop` if the model hit a natural stop point or a provided stop sequence, `length` if the maximum number of tokens specified in the request was reached, or `content_filter` if content was omitted due to a flag from our content filters. enum: - stop - length - content_filter index: type: integer logprobs: anyOf: - type: object properties: text_offset: type: array items: type: integer token_logprobs: type: array items: type: number tokens: type: array items: type: string top_logprobs: type: array items: type: object additionalProperties: type: number - type: 'null' text: type: string created: type: integer description: The Unix timestamp (in seconds) of when the completion was created. model: type: string description: The model used for completion. system_fingerprint: type: string description: > This fingerprint represents the backend configuration that the model runs with. Can be used in conjunction with the `seed` request parameter to understand when backend changes have been made that might impact determinism. object: type: string description: The object type, which is always "text_completion" enum: - text_completion x-stainless-const: true usage: $ref: '#/components/schemas/CompletionUsage' required: - id - object - created - model - choices x-oaiMeta: name: The completion object legacy: true example: | { "id": "cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7", "object": "text_completion", "created": 1589478378, "model": "gpt-4-turbo", "choices": [ { "text": "\n\nThis is indeed a test", "index": 0, "logprobs": null, "finish_reason": "length" } ], "usage": { "prompt_tokens": 5, "completion_tokens": 7, "total_tokens": 12 } } CreateContainerBody: type: object properties: name: type: string description: Name of the container to create. file_ids: type: array description: IDs of files to copy to the container. items: type: string expires_after: type: object description: Container expiration time in seconds relative to the 'anchor' time. properties: anchor: type: string enum: - last_active_at description: Time anchor for the expiration time. Currently only 'last_active_at' is supported. minutes: type: integer required: - anchor - minutes required: - name CreateContainerFileBody: type: object properties: file_id: type: string description: Name of the file to create. file: description: | The File object (not file name) to be uploaded. type: string format: binary required: [] CreateEmbeddingRequest: type: object additionalProperties: false properties: input: description: > Input text to embed, encoded as a string or array of tokens. To embed multiple inputs in a single request, pass an array of strings or array of token arrays. The input must not exceed the max input tokens for the model (8192 tokens for all embedding models), cannot be an empty string, and any array must be 2048 dimensions or less. [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) for counting tokens. In addition to the per-input token limit, all embedding models enforce a maximum of 300,000 tokens summed across all inputs in a single request. example: The quick brown fox jumped over the lazy dog anyOf: - type: string title: string description: The string that will be turned into an embedding. default: '' example: This is a test. - type: array title: Array of strings description: The array of strings that will be turned into an embedding. minItems: 1 maxItems: 2048 items: type: string default: '' example: '[''This is a test.'']' - type: array title: Array of tokens description: The array of integers that will be turned into an embedding. minItems: 1 maxItems: 2048 items: type: integer - type: array title: Array of token arrays description: The array of arrays containing integers that will be turned into an embedding. minItems: 1 maxItems: 2048 items: type: array minItems: 1 items: type: integer model: description: > ID of the model to use. You can use the [List models](https://platform.openai.com/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](https://platform.openai.com/docs/models) for descriptions of them. example: text-embedding-3-small anyOf: - type: string - type: string enum: - text-embedding-ada-002 - text-embedding-3-small - text-embedding-3-large x-stainless-nominal: false x-oaiTypeLabel: string encoding_format: description: >- The format to return the embeddings in. Can be either `float` or [`base64`](https://pypi.org/project/pybase64/). example: float default: float type: string enum: - float - base64 dimensions: description: > The number of dimensions the resulting output embeddings should have. Only supported in `text-embedding-3` and later models. type: integer minimum: 1 user: type: string example: user-1234 description: > A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). required: - model - input CreateEmbeddingResponse: type: object properties: data: type: array description: The list of embeddings generated by the model. items: $ref: '#/components/schemas/Embedding' model: type: string description: The name of the model used to generate the embedding. object: type: string description: The object type, which is always "list". enum: - list x-stainless-const: true usage: type: object description: The usage information for the request. properties: prompt_tokens: type: integer description: The number of tokens used by the prompt. total_tokens: type: integer description: The total number of tokens used by the request. required: - prompt_tokens - total_tokens required: - object - model - data - usage CreateEvalCompletionsRunDataSource: type: object title: CompletionsRunDataSource description: | A CompletionsRunDataSource object describing a model sampling configuration. properties: type: type: string enum: - completions default: completions description: The type of run data source. Always `completions`. input_messages: description: >- Used when sampling from a model. Dictates the structure of the messages passed into the model. Can either be a reference to a prebuilt trajectory (ie, `item.input_trajectory`), or a template with variable references to the `item` namespace. anyOf: - type: object title: TemplateInputMessages properties: type: type: string enum: - template description: The type of input messages. Always `template`. template: type: array description: >- A list of chat messages forming the prompt or context. May include variable references to the `item` namespace, ie {{item.name}}. items: anyOf: - $ref: '#/components/schemas/EasyInputMessage' - $ref: '#/components/schemas/EvalItem' required: - type - template - type: object title: ItemReferenceInputMessages properties: type: type: string enum: - item_reference description: The type of input messages. Always `item_reference`. item_reference: type: string description: A reference to a variable in the `item` namespace. Ie, "item.input_trajectory" required: - type - item_reference discriminator: propertyName: type sampling_params: type: object properties: reasoning_effort: $ref: '#/components/schemas/ReasoningEffort' temperature: type: number description: A higher temperature increases randomness in the outputs. default: 1 max_completion_tokens: type: integer description: The maximum number of tokens in the generated output. top_p: type: number description: An alternative to temperature for nucleus sampling; 1.0 includes all tokens. default: 1 seed: type: integer description: A seed value to initialize the randomness, during sampling. default: 42 response_format: description: | An object specifying the format that the model must output. Setting to `{ "type": "json_schema", "json_schema": {...} }` enables Structured Outputs which ensures the model will match your supplied JSON schema. Learn more in the [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). Setting to `{ "type": "json_object" }` enables the older JSON mode, which ensures the message the model generates is valid JSON. Using `json_schema` is preferred for models that support it. anyOf: - $ref: '#/components/schemas/ResponseFormatText' - $ref: '#/components/schemas/ResponseFormatJsonSchema' - $ref: '#/components/schemas/ResponseFormatJsonObject' tools: type: array description: > A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of functions the model may generate JSON inputs for. A max of 128 functions are supported. items: $ref: '#/components/schemas/ChatCompletionTool' model: type: string description: The name of the model to use for generating completions (e.g. "o3-mini"). source: description: Determines what populates the `item` namespace in this run's data source. anyOf: - $ref: '#/components/schemas/EvalJsonlFileContentSource' - $ref: '#/components/schemas/EvalJsonlFileIdSource' - $ref: '#/components/schemas/EvalStoredCompletionsSource' discriminator: propertyName: type required: - type - source x-oaiMeta: name: The completions data source object used to configure an individual run group: eval runs example: | { "name": "gpt-4o-mini-2024-07-18", "data_source": { "type": "completions", "input_messages": { "type": "item_reference", "item_reference": "item.input" }, "model": "gpt-4o-mini-2024-07-18", "source": { "type": "stored_completions", "model": "gpt-4o-mini-2024-07-18" } } } CreateEvalCustomDataSourceConfig: type: object title: CustomDataSourceConfig description: > A CustomDataSourceConfig object that defines the schema for the data source used for the evaluation runs. This schema is used to define the shape of the data that will be: - Used to define your testing criteria and - What data is required when creating a run properties: type: type: string enum: - custom default: custom description: The type of data source. Always `custom`. x-stainless-const: true item_schema: type: object description: The json schema for each row in the data source. additionalProperties: true include_sample_schema: type: boolean default: false description: >- Whether the eval should expect you to populate the sample namespace (ie, by generating responses off of your data source) required: - item_schema - type x-oaiMeta: name: The eval file data source config object group: evals example: | { "type": "custom", "item_schema": { "type": "object", "properties": { "name": {"type": "string"}, "age": {"type": "integer"} }, "required": ["name", "age"] }, "include_sample_schema": true } CreateEvalItem: title: CreateEvalItem description: >- A chat message that makes up the prompt or context. May include variable references to the `item` namespace, ie {{item.name}}. type: object x-oaiMeta: name: The chat message object used to configure an individual run anyOf: - type: object title: SimpleInputMessage properties: role: type: string description: The role of the message (e.g. "system", "assistant", "user"). content: type: string description: The content of the message. required: - role - content - $ref: '#/components/schemas/EvalItem' CreateEvalJsonlRunDataSource: type: object title: JsonlRunDataSource description: | A JsonlRunDataSource object with that specifies a JSONL file that matches the eval properties: type: type: string enum: - jsonl default: jsonl description: The type of data source. Always `jsonl`. x-stainless-const: true source: description: Determines what populates the `item` namespace in the data source. anyOf: - $ref: '#/components/schemas/EvalJsonlFileContentSource' - $ref: '#/components/schemas/EvalJsonlFileIdSource' discriminator: propertyName: type required: - type - source x-oaiMeta: name: The file data source object for the eval run configuration group: evals example: | { "type": "jsonl", "source": { "type": "file_id", "id": "file-9GYS6xbkWgWhmE7VoLUWFg" } } CreateEvalLabelModelGrader: type: object title: LabelModelGrader description: | A LabelModelGrader object which uses a model to assign labels to each item in the evaluation. properties: type: description: The object type, which is always `label_model`. type: string enum: - label_model x-stainless-const: true name: type: string description: The name of the grader. model: type: string description: The model to use for the evaluation. Must support structured outputs. input: type: array description: >- A list of chat messages forming the prompt or context. May include variable references to the `item` namespace, ie {{item.name}}. items: $ref: '#/components/schemas/CreateEvalItem' labels: type: array items: type: string description: The labels to classify to each item in the evaluation. passing_labels: type: array items: type: string description: The labels that indicate a passing result. Must be a subset of labels. required: - type - model - input - passing_labels - labels - name x-oaiMeta: name: The eval label model grader object group: evals example: | { "type": "label_model", "model": "gpt-4o-2024-08-06", "input": [ { "role": "system", "content": "Classify the sentiment of the following statement as one of 'positive', 'neutral', or 'negative'" }, { "role": "user", "content": "Statement: {{item.response}}" } ], "passing_labels": ["positive"], "labels": ["positive", "neutral", "negative"], "name": "Sentiment label grader" } CreateEvalLogsDataSourceConfig: type: object title: LogsDataSourceConfig description: | A data source config which specifies the metadata property of your logs query. This is usually metadata like `usecase=chatbot` or `prompt-version=v2`, etc. properties: type: type: string enum: - logs default: logs description: The type of data source. Always `logs`. x-stainless-const: true metadata: type: object description: Metadata filters for the logs data source. additionalProperties: true required: - type x-oaiMeta: name: The logs data source object for evals group: evals example: | { "type": "logs", "metadata": { "use_case": "customer_support_agent" } } CreateEvalRequest: type: object title: CreateEvalRequest properties: name: type: string description: The name of the evaluation. metadata: $ref: '#/components/schemas/Metadata' data_source_config: type: object description: >- The configuration for the data source used for the evaluation runs. Dictates the schema of the data used in the evaluation. anyOf: - $ref: '#/components/schemas/CreateEvalCustomDataSourceConfig' - $ref: '#/components/schemas/CreateEvalLogsDataSourceConfig' - $ref: '#/components/schemas/CreateEvalStoredCompletionsDataSourceConfig' discriminator: propertyName: type testing_criteria: type: array description: >- A list of graders for all eval runs in this group. Graders can reference variables in the data source using double curly braces notation, like `{{item.variable_name}}`. To reference the model's output, use the `sample` namespace (ie, `{{sample.output_text}}`). items: anyOf: - $ref: '#/components/schemas/CreateEvalLabelModelGrader' - $ref: '#/components/schemas/EvalGraderStringCheck' - $ref: '#/components/schemas/EvalGraderTextSimilarity' - $ref: '#/components/schemas/EvalGraderPython' - $ref: '#/components/schemas/EvalGraderScoreModel' discriminator: propertyName: type required: - data_source_config - testing_criteria CreateEvalResponsesRunDataSource: type: object title: CreateEvalResponsesRunDataSource description: | A ResponsesRunDataSource object describing a model sampling configuration. properties: type: type: string enum: - responses default: responses description: The type of run data source. Always `responses`. input_messages: description: >- Used when sampling from a model. Dictates the structure of the messages passed into the model. Can either be a reference to a prebuilt trajectory (ie, `item.input_trajectory`), or a template with variable references to the `item` namespace. anyOf: - type: object title: InputMessagesTemplate properties: type: type: string enum: - template description: The type of input messages. Always `template`. template: type: array description: >- A list of chat messages forming the prompt or context. May include variable references to the `item` namespace, ie {{item.name}}. items: anyOf: - type: object title: ChatMessage properties: role: type: string description: The role of the message (e.g. "system", "assistant", "user"). content: type: string description: The content of the message. required: - role - content - $ref: '#/components/schemas/EvalItem' required: - type - template - type: object title: InputMessagesItemReference properties: type: type: string enum: - item_reference description: The type of input messages. Always `item_reference`. item_reference: type: string description: A reference to a variable in the `item` namespace. Ie, "item.name" required: - type - item_reference discriminator: propertyName: type sampling_params: type: object properties: reasoning_effort: $ref: '#/components/schemas/ReasoningEffort' temperature: type: number description: A higher temperature increases randomness in the outputs. default: 1 max_completion_tokens: type: integer description: The maximum number of tokens in the generated output. top_p: type: number description: An alternative to temperature for nucleus sampling; 1.0 includes all tokens. default: 1 seed: type: integer description: A seed value to initialize the randomness, during sampling. default: 42 tools: type: array description: | An array of tools the model may call while generating a response. You can specify which tool to use by setting the `tool_choice` parameter. The two categories of tools you can provide the model are: - **Built-in tools**: Tools that are provided by OpenAI that extend the model's capabilities, like [web search](https://platform.openai.com/docs/guides/tools-web-search) or [file search](https://platform.openai.com/docs/guides/tools-file-search). Learn more about [built-in tools](https://platform.openai.com/docs/guides/tools). - **Function calls (custom tools)**: Functions that are defined by you, enabling the model to call your own code. Learn more about [function calling](https://platform.openai.com/docs/guides/function-calling). items: $ref: '#/components/schemas/Tool' text: type: object description: | Configuration options for a text response from the model. Can be plain text or structured JSON data. Learn more: - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) - [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs) properties: format: $ref: '#/components/schemas/TextResponseFormatConfiguration' model: type: string description: The name of the model to use for generating completions (e.g. "o3-mini"). source: description: Determines what populates the `item` namespace in this run's data source. anyOf: - $ref: '#/components/schemas/EvalJsonlFileContentSource' - $ref: '#/components/schemas/EvalJsonlFileIdSource' - $ref: '#/components/schemas/EvalResponsesSource' discriminator: propertyName: type required: - type - source x-oaiMeta: name: The completions data source object used to configure an individual run group: eval runs example: | { "name": "gpt-4o-mini-2024-07-18", "data_source": { "type": "responses", "input_messages": { "type": "item_reference", "item_reference": "item.input" }, "model": "gpt-4o-mini-2024-07-18", "source": { "type": "responses", "model": "gpt-4o-mini-2024-07-18" } } } CreateEvalRunRequest: type: object title: CreateEvalRunRequest properties: name: type: string description: The name of the run. metadata: $ref: '#/components/schemas/Metadata' data_source: type: object description: Details about the run's data source. anyOf: - $ref: '#/components/schemas/CreateEvalJsonlRunDataSource' - $ref: '#/components/schemas/CreateEvalCompletionsRunDataSource' - $ref: '#/components/schemas/CreateEvalResponsesRunDataSource' required: - data_source CreateEvalStoredCompletionsDataSourceConfig: type: object title: StoredCompletionsDataSourceConfig description: | Deprecated in favor of LogsDataSourceConfig. properties: type: type: string enum: - stored_completions default: stored_completions description: The type of data source. Always `stored_completions`. x-stainless-const: true metadata: type: object description: Metadata filters for the stored completions data source. additionalProperties: true required: - type deprecated: true x-oaiMeta: name: The stored completions data source object for evals group: evals example: | { "type": "stored_completions", "metadata": { "use_case": "customer_support_agent" } } CreateFileRequest: type: object additionalProperties: false properties: file: description: | The File object (not file name) to be uploaded. type: string format: binary x-oaiMeta: exampleFilePath: fine-tune.jsonl purpose: $ref: '#/components/schemas/FilePurpose' expires_after: $ref: '#/components/schemas/FileExpirationAfter' required: - file - purpose CreateFineTuningCheckpointPermissionRequest: type: object additionalProperties: false properties: project_ids: type: array description: The project identifiers to grant access to. items: type: string required: - project_ids CreateFineTuningJobRequest: type: object properties: model: description: > The name of the model to fine-tune. You can select one of the [supported models](https://platform.openai.com/docs/guides/fine-tuning#which-models-can-be-fine-tuned). example: gpt-4o-mini anyOf: - type: string - type: string enum: - babbage-002 - davinci-002 - gpt-3.5-turbo - gpt-4o-mini title: Preset x-oaiTypeLabel: string training_file: description: > The ID of an uploaded file that contains training data. See [upload file](https://platform.openai.com/docs/api-reference/files/create) for how to upload a file. Your dataset must be formatted as a JSONL file. Additionally, you must upload your file with the purpose `fine-tune`. The contents of the file should differ depending on if the model uses the [chat](https://platform.openai.com/docs/api-reference/fine-tuning/chat-input), [completions](https://platform.openai.com/docs/api-reference/fine-tuning/completions-input) format, or if the fine-tuning method uses the [preference](https://platform.openai.com/docs/api-reference/fine-tuning/preference-input) format. See the [fine-tuning guide](https://platform.openai.com/docs/guides/model-optimization) for more details. type: string example: file-abc123 hyperparameters: type: object description: > The hyperparameters used for the fine-tuning job. This value is now deprecated in favor of `method`, and should be passed in under the `method` parameter. properties: batch_size: description: | Number of examples in each batch. A larger batch size means that model parameters are updated less frequently, but with lower variance. default: auto anyOf: - type: string enum: - auto x-stainless-const: true title: Auto - type: integer minimum: 1 maximum: 256 learning_rate_multiplier: description: | Scaling factor for the learning rate. A smaller learning rate may be useful to avoid overfitting. anyOf: - type: string enum: - auto x-stainless-const: true title: Auto - type: number minimum: 0 exclusiveMinimum: true n_epochs: description: | The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset. default: auto anyOf: - type: string enum: - auto x-stainless-const: true title: Auto - type: integer minimum: 1 maximum: 50 deprecated: true suffix: description: > A string of up to 64 characters that will be added to your fine-tuned model name. For example, a `suffix` of "custom-model-name" would produce a model name like `ft:gpt-4o-mini:openai:custom-model-name:7p4lURel`. type: string minLength: 1 maxLength: 64 default: null nullable: true validation_file: description: > The ID of an uploaded file that contains validation data. If you provide this file, the data is used to generate validation metrics periodically during fine-tuning. These metrics can be viewed in the fine-tuning results file. The same data should not be present in both train and validation files. Your dataset must be formatted as a JSONL file. You must upload your file with the purpose `fine-tune`. See the [fine-tuning guide](https://platform.openai.com/docs/guides/model-optimization) for more details. type: string nullable: true example: file-abc123 integrations: type: array description: A list of integrations to enable for your fine-tuning job. nullable: true items: type: object required: - type - wandb properties: type: description: > The type of integration to enable. Currently, only "wandb" (Weights and Biases) is supported. anyOf: - type: string enum: - wandb x-stainless-const: true wandb: type: object description: > The settings for your integration with Weights and Biases. This payload specifies the project that metrics will be sent to. Optionally, you can set an explicit display name for your run, add tags to your run, and set a default entity (team, username, etc) to be associated with your run. required: - project properties: project: description: | The name of the project that the new run will be created under. type: string example: my-wandb-project name: description: | A display name to set for the run. If not set, we will use the Job ID as the name. nullable: true type: string entity: description: > The entity to use for the run. This allows you to set the team or username of the WandB user that you would like associated with the run. If not set, the default entity for the registered WandB API key is used. nullable: true type: string tags: description: > A list of tags to be attached to the newly created run. These tags are passed through directly to WandB. Some default tags are generated by OpenAI: "openai/finetune", "openai/{base-model}", "openai/{ftjob-abcdef}". type: array items: type: string example: custom-tag seed: description: > The seed controls the reproducibility of the job. Passing in the same seed and job parameters should produce the same results, but may differ in rare cases. If a seed is not specified, one will be generated for you. type: integer nullable: true minimum: 0 maximum: 2147483647 example: 42 method: $ref: '#/components/schemas/FineTuneMethod' metadata: $ref: '#/components/schemas/Metadata' required: - model - training_file CreateImageEditRequest: type: object properties: image: anyOf: - type: string format: binary - type: array maxItems: 16 items: type: string format: binary description: | The image(s) to edit. Must be a supported image file or an array of images. For `gpt-image-1`, each image should be a `png`, `webp`, or `jpg` file less than 50MB. You can provide up to 16 images. For `dall-e-2`, you can only provide one image, and it should be a square `png` file less than 4MB. x-oaiMeta: exampleFilePath: otter.png prompt: description: >- A text description of the desired image(s). The maximum length is 1000 characters for `dall-e-2`, and 32000 characters for `gpt-image-1`. type: string example: A cute baby sea otter wearing a beret mask: description: >- An additional image whose fully transparent areas (e.g. where alpha is zero) indicate where `image` should be edited. If there are multiple images provided, the mask will be applied on the first image. Must be a valid PNG file, less than 4MB, and have the same dimensions as `image`. type: string format: binary x-oaiMeta: exampleFilePath: mask.png background: type: string enum: - transparent - opaque - auto default: auto example: transparent nullable: true description: | Allows to set transparency for the background of the generated image(s). This parameter is only supported for `gpt-image-1`. Must be one of `transparent`, `opaque` or `auto` (default value). When `auto` is used, the model will automatically determine the best background for the image. If `transparent`, the output format needs to support transparency, so it should be set to either `png` (default value) or `webp`. model: anyOf: - type: string - type: string enum: - dall-e-2 - gpt-image-1 - gpt-image-1-mini x-stainless-const: true x-oaiTypeLabel: string nullable: true description: >- The model to use for image generation. Only `dall-e-2` and `gpt-image-1` are supported. Defaults to `dall-e-2` unless a parameter specific to `gpt-image-1` is used. 'n': type: integer minimum: 1 maximum: 10 default: 1 example: 1 nullable: true description: The number of images to generate. Must be between 1 and 10. size: type: string enum: - 256x256 - 512x512 - 1024x1024 - 1536x1024 - 1024x1536 - auto default: 1024x1024 example: 1024x1024 nullable: true description: >- The size of the generated images. Must be one of `1024x1024`, `1536x1024` (landscape), `1024x1536` (portrait), or `auto` (default value) for `gpt-image-1`, and one of `256x256`, `512x512`, or `1024x1024` for `dall-e-2`. response_format: type: string enum: - url - b64_json default: url example: url nullable: true description: >- The format in which the generated images are returned. Must be one of `url` or `b64_json`. URLs are only valid for 60 minutes after the image has been generated. This parameter is only supported for `dall-e-2`, as `gpt-image-1` will always return base64-encoded images. output_format: type: string enum: - png - jpeg - webp default: png example: png nullable: true description: | The format in which the generated images are returned. This parameter is only supported for `gpt-image-1`. Must be one of `png`, `jpeg`, or `webp`. The default value is `png`. output_compression: type: integer default: 100 example: 100 nullable: true description: | The compression level (0-100%) for the generated images. This parameter is only supported for `gpt-image-1` with the `webp` or `jpeg` output formats, and defaults to 100. user: type: string example: user-1234 description: > A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). input_fidelity: anyOf: - $ref: '#/components/schemas/InputFidelity' - type: 'null' stream: type: boolean default: false example: false nullable: true description: > Edit the image in streaming mode. Defaults to `false`. See the [Image generation guide](https://platform.openai.com/docs/guides/image-generation) for more information. partial_images: $ref: '#/components/schemas/PartialImages' quality: type: string enum: - standard - low - medium - high - auto default: auto example: high nullable: true description: > The quality of the image that will be generated. `high`, `medium` and `low` are only supported for `gpt-image-1`. `dall-e-2` only supports `standard` quality. Defaults to `auto`. required: - prompt - image CreateImageRequest: type: object properties: prompt: description: >- A text description of the desired image(s). The maximum length is 32000 characters for `gpt-image-1`, 1000 characters for `dall-e-2` and 4000 characters for `dall-e-3`. type: string example: A cute baby sea otter model: anyOf: - type: string - type: string enum: - dall-e-2 - dall-e-3 - gpt-image-1 - gpt-image-1-mini x-stainless-nominal: false x-oaiTypeLabel: string nullable: true description: >- The model to use for image generation. One of `dall-e-2`, `dall-e-3`, or `gpt-image-1`. Defaults to `dall-e-2` unless a parameter specific to `gpt-image-1` is used. 'n': type: integer minimum: 1 maximum: 10 default: 1 example: 1 nullable: true description: >- The number of images to generate. Must be between 1 and 10. For `dall-e-3`, only `n=1` is supported. quality: type: string enum: - standard - hd - low - medium - high - auto default: auto example: medium nullable: true description: | The quality of the image that will be generated. - `auto` (default value) will automatically select the best quality for the given model. - `high`, `medium` and `low` are supported for `gpt-image-1`. - `hd` and `standard` are supported for `dall-e-3`. - `standard` is the only option for `dall-e-2`. response_format: type: string enum: - url - b64_json default: url example: url nullable: true description: >- The format in which generated images with `dall-e-2` and `dall-e-3` are returned. Must be one of `url` or `b64_json`. URLs are only valid for 60 minutes after the image has been generated. This parameter isn't supported for `gpt-image-1` which will always return base64-encoded images. output_format: type: string enum: - png - jpeg - webp default: png example: png nullable: true description: >- The format in which the generated images are returned. This parameter is only supported for `gpt-image-1`. Must be one of `png`, `jpeg`, or `webp`. output_compression: type: integer default: 100 example: 100 nullable: true description: >- The compression level (0-100%) for the generated images. This parameter is only supported for `gpt-image-1` with the `webp` or `jpeg` output formats, and defaults to 100. stream: type: boolean default: false example: false nullable: true description: > Generate the image in streaming mode. Defaults to `false`. See the [Image generation guide](https://platform.openai.com/docs/guides/image-generation) for more information. This parameter is only supported for `gpt-image-1`. partial_images: $ref: '#/components/schemas/PartialImages' size: type: string enum: - auto - 1024x1024 - 1536x1024 - 1024x1536 - 256x256 - 512x512 - 1792x1024 - 1024x1792 default: auto example: 1024x1024 nullable: true description: >- The size of the generated images. Must be one of `1024x1024`, `1536x1024` (landscape), `1024x1536` (portrait), or `auto` (default value) for `gpt-image-1`, one of `256x256`, `512x512`, or `1024x1024` for `dall-e-2`, and one of `1024x1024`, `1792x1024`, or `1024x1792` for `dall-e-3`. moderation: type: string enum: - low - auto default: auto example: low nullable: true description: >- Control the content-moderation level for images generated by `gpt-image-1`. Must be either `low` for less restrictive filtering or `auto` (default value). background: type: string enum: - transparent - opaque - auto default: auto example: transparent nullable: true description: | Allows to set transparency for the background of the generated image(s). This parameter is only supported for `gpt-image-1`. Must be one of `transparent`, `opaque` or `auto` (default value). When `auto` is used, the model will automatically determine the best background for the image. If `transparent`, the output format needs to support transparency, so it should be set to either `png` (default value) or `webp`. style: type: string enum: - vivid - natural default: vivid example: vivid nullable: true description: >- The style of the generated images. This parameter is only supported for `dall-e-3`. Must be one of `vivid` or `natural`. Vivid causes the model to lean towards generating hyper-real and dramatic images. Natural causes the model to produce more natural, less hyper-real looking images. user: type: string example: user-1234 description: > A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). required: - prompt CreateImageVariationRequest: type: object properties: image: description: >- The image to use as the basis for the variation(s). Must be a valid PNG file, less than 4MB, and square. type: string format: binary x-oaiMeta: exampleFilePath: otter.png model: anyOf: - type: string - type: string enum: - dall-e-2 x-stainless-const: true x-oaiTypeLabel: string nullable: true description: The model to use for image generation. Only `dall-e-2` is supported at this time. 'n': type: integer minimum: 1 maximum: 10 default: 1 example: 1 nullable: true description: The number of images to generate. Must be between 1 and 10. response_format: type: string enum: - url - b64_json default: url example: url nullable: true description: >- The format in which the generated images are returned. Must be one of `url` or `b64_json`. URLs are only valid for 60 minutes after the image has been generated. size: type: string enum: - 256x256 - 512x512 - 1024x1024 default: 1024x1024 example: 1024x1024 nullable: true description: The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024`. user: type: string example: user-1234 description: > A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids). required: - image CreateMessageRequest: type: object additionalProperties: false required: - role - content properties: role: type: string enum: - user - assistant description: > The role of the entity that is creating the message. Allowed values include: - `user`: Indicates the message is sent by an actual user and should be used in most cases to represent user-generated messages. - `assistant`: Indicates the message is generated by the assistant. Use this value to insert messages from the assistant into the conversation. content: anyOf: - type: string description: The text contents of the message. title: Text content - type: array description: >- An array of content parts with a defined type, each can be of type `text` or images can be passed with `image_url` or `image_file`. Image types are only supported on [Vision-compatible models](https://platform.openai.com/docs/models). title: Array of content parts items: anyOf: - $ref: '#/components/schemas/MessageContentImageFileObject' - $ref: '#/components/schemas/MessageContentImageUrlObject' - $ref: '#/components/schemas/MessageRequestContentTextObject' discriminator: propertyName: type minItems: 1 attachments: anyOf: - type: array items: type: object properties: file_id: type: string description: The ID of the file to attach to the message. tools: description: The tools to add this file to. type: array items: anyOf: - $ref: '#/components/schemas/AssistantToolsCode' - $ref: '#/components/schemas/AssistantToolsFileSearchTypeOnly' discriminator: propertyName: type description: A list of files attached to the message, and the tools they should be added to. required: - file_id - tools - type: 'null' metadata: $ref: '#/components/schemas/Metadata' CreateModelResponseProperties: allOf: - $ref: '#/components/schemas/ModelResponseProperties' - type: object properties: top_logprobs: description: | An integer between 0 and 20 specifying the number of most likely tokens to return at each token position, each with an associated log probability. type: integer minimum: 0 maximum: 20 CreateModerationRequest: type: object properties: input: description: | Input (or inputs) to classify. Can be a single string, an array of strings, or an array of multi-modal input objects similar to other models. anyOf: - type: string description: A string of text to classify for moderation. default: '' example: I want to kill them. - type: array description: An array of strings to classify for moderation. items: type: string default: '' example: I want to kill them. - type: array description: An array of multi-modal inputs to the moderation model. items: anyOf: - $ref: '#/components/schemas/ModerationImageURLInput' - $ref: '#/components/schemas/ModerationTextInput' discriminator: propertyName: type title: Moderation Multi Modal Array model: description: | The content moderation model you would like to use. Learn more in [the moderation guide](https://platform.openai.com/docs/guides/moderation), and learn about available models [here](https://platform.openai.com/docs/models#moderation). nullable: false anyOf: - type: string - type: string enum: - omni-moderation-latest - omni-moderation-2024-09-26 - text-moderation-latest - text-moderation-stable x-stainless-nominal: false x-oaiTypeLabel: string required: - input CreateModerationResponse: type: object description: Represents if a given text input is potentially harmful. properties: id: type: string description: The unique identifier for the moderation request. model: type: string description: The model used to generate the moderation results. results: type: array description: A list of moderation objects. items: type: object properties: flagged: type: boolean description: Whether any of the below categories are flagged. categories: type: object description: A list of the categories, and whether they are flagged or not. properties: hate: type: boolean description: >- Content that expresses, incites, or promotes hate based on race, gender, ethnicity, religion, nationality, sexual orientation, disability status, or caste. Hateful content aimed at non-protected groups (e.g., chess players) is harassment. hate/threatening: type: boolean description: >- Hateful content that also includes violence or serious harm towards the targeted group based on race, gender, ethnicity, religion, nationality, sexual orientation, disability status, or caste. harassment: type: boolean description: Content that expresses, incites, or promotes harassing language towards any target. harassment/threatening: type: boolean description: Harassment content that also includes violence or serious harm towards any target. illicit: anyOf: - type: boolean description: >- Content that includes instructions or advice that facilitate the planning or execution of wrongdoing, or that gives advice or instruction on how to commit illicit acts. For example, "how to shoplift" would fit this category. - type: 'null' illicit/violent: anyOf: - type: boolean description: >- Content that includes instructions or advice that facilitate the planning or execution of wrongdoing that also includes violence, or that gives advice or instruction on the procurement of any weapon. - type: 'null' self-harm: type: boolean description: >- Content that promotes, encourages, or depicts acts of self-harm, such as suicide, cutting, and eating disorders. self-harm/intent: type: boolean description: >- Content where the speaker expresses that they are engaging or intend to engage in acts of self-harm, such as suicide, cutting, and eating disorders. self-harm/instructions: type: boolean description: >- Content that encourages performing acts of self-harm, such as suicide, cutting, and eating disorders, or that gives instructions or advice on how to commit such acts. sexual: type: boolean description: >- Content meant to arouse sexual excitement, such as the description of sexual activity, or that promotes sexual services (excluding sex education and wellness). sexual/minors: type: boolean description: Sexual content that includes an individual who is under 18 years old. violence: type: boolean description: Content that depicts death, violence, or physical injury. violence/graphic: type: boolean description: Content that depicts death, violence, or physical injury in graphic detail. required: - hate - hate/threatening - harassment - harassment/threatening - illicit - illicit/violent - self-harm - self-harm/intent - self-harm/instructions - sexual - sexual/minors - violence - violence/graphic category_scores: type: object description: A list of the categories along with their scores as predicted by model. properties: hate: type: number description: The score for the category 'hate'. hate/threatening: type: number description: The score for the category 'hate/threatening'. harassment: type: number description: The score for the category 'harassment'. harassment/threatening: type: number description: The score for the category 'harassment/threatening'. illicit: type: number description: The score for the category 'illicit'. illicit/violent: type: number description: The score for the category 'illicit/violent'. self-harm: type: number description: The score for the category 'self-harm'. self-harm/intent: type: number description: The score for the category 'self-harm/intent'. self-harm/instructions: type: number description: The score for the category 'self-harm/instructions'. sexual: type: number description: The score for the category 'sexual'. sexual/minors: type: number description: The score for the category 'sexual/minors'. violence: type: number description: The score for the category 'violence'. violence/graphic: type: number description: The score for the category 'violence/graphic'. required: - hate - hate/threatening - harassment - harassment/threatening - illicit - illicit/violent - self-harm - self-harm/intent - self-harm/instructions - sexual - sexual/minors - violence - violence/graphic category_applied_input_types: type: object description: A list of the categories along with the input type(s) that the score applies to. properties: hate: type: array description: The applied input type(s) for the category 'hate'. items: type: string enum: - text x-stainless-const: true hate/threatening: type: array description: The applied input type(s) for the category 'hate/threatening'. items: type: string enum: - text x-stainless-const: true harassment: type: array description: The applied input type(s) for the category 'harassment'. items: type: string enum: - text x-stainless-const: true harassment/threatening: type: array description: The applied input type(s) for the category 'harassment/threatening'. items: type: string enum: - text x-stainless-const: true illicit: type: array description: The applied input type(s) for the category 'illicit'. items: type: string enum: - text x-stainless-const: true illicit/violent: type: array description: The applied input type(s) for the category 'illicit/violent'. items: type: string enum: - text x-stainless-const: true self-harm: type: array description: The applied input type(s) for the category 'self-harm'. items: type: string enum: - text - image self-harm/intent: type: array description: The applied input type(s) for the category 'self-harm/intent'. items: type: string enum: - text - image self-harm/instructions: type: array description: The applied input type(s) for the category 'self-harm/instructions'. items: type: string enum: - text - image sexual: type: array description: The applied input type(s) for the category 'sexual'. items: type: string enum: - text - image sexual/minors: type: array description: The applied input type(s) for the category 'sexual/minors'. items: type: string enum: - text x-stainless-const: true violence: type: array description: The applied input type(s) for the category 'violence'. items: type: string enum: - text - image violence/graphic: type: array description: The applied input type(s) for the category 'violence/graphic'. items: type: string enum: - text - image required: - hate - hate/threatening - harassment - harassment/threatening - illicit - illicit/violent - self-harm - self-harm/intent - self-harm/instructions - sexual - sexual/minors - violence - violence/graphic required: - flagged - categories - category_scores - category_applied_input_types required: - id - model - results x-oaiMeta: name: The moderation object example: | { "id": "modr-0d9740456c391e43c445bf0f010940c7", "model": "omni-moderation-latest", "results": [ { "flagged": true, "categories": { "harassment": true, "harassment/threatening": true, "sexual": false, "hate": false, "hate/threatening": false, "illicit": false, "illicit/violent": false, "self-harm/intent": false, "self-harm/instructions": false, "self-harm": false, "sexual/minors": false, "violence": true, "violence/graphic": true }, "category_scores": { "harassment": 0.8189693396524255, "harassment/threatening": 0.804985420696006, "sexual": 1.573112165348997e-6, "hate": 0.007562942636942845, "hate/threatening": 0.004208854591835476, "illicit": 0.030535955153511665, "illicit/violent": 0.008925306722380033, "self-harm/intent": 0.00023023930975076432, "self-harm/instructions": 0.0002293869201073356, "self-harm": 0.012598046106750154, "sexual/minors": 2.212566909570261e-8, "violence": 0.9999992735124786, "violence/graphic": 0.843064871157054 }, "category_applied_input_types": { "harassment": [ "text" ], "harassment/threatening": [ "text" ], "sexual": [ "text", "image" ], "hate": [ "text" ], "hate/threatening": [ "text" ], "illicit": [ "text" ], "illicit/violent": [ "text" ], "self-harm/intent": [ "text", "image" ], "self-harm/instructions": [ "text", "image" ], "self-harm": [ "text", "image" ], "sexual/minors": [ "text" ], "violence": [ "text", "image" ], "violence/graphic": [ "text", "image" ] } } ] } CreateResponse: allOf: - $ref: '#/components/schemas/CreateModelResponseProperties' - $ref: '#/components/schemas/ResponseProperties' - type: object properties: input: $ref: '#/components/schemas/InputParam' include: anyOf: - type: array description: >- Specify additional output data to include in the model response. Currently supported values are: - `web_search_call.action.sources`: Include the sources of the web search tool call. - `code_interpreter_call.outputs`: Includes the outputs of python code execution in code interpreter tool call items. - `computer_call_output.output.image_url`: Include image urls from the computer call output. - `file_search_call.results`: Include the search results of the file search tool call. - `message.input_image.image_url`: Include image urls from the input message. - `message.output_text.logprobs`: Include logprobs with assistant messages. - `reasoning.encrypted_content`: Includes an encrypted version of reasoning tokens in reasoning item outputs. This enables reasoning items to be used in multi-turn conversations when using the Responses API statelessly (like when the `store` parameter is set to `false`, or when an organization is enrolled in the zero data retention program). items: $ref: '#/components/schemas/IncludeEnum' - type: 'null' parallel_tool_calls: anyOf: - type: boolean description: | Whether to allow the model to run tool calls in parallel. default: true - type: 'null' store: anyOf: - type: boolean description: | Whether to store the generated model response for later retrieval via API. default: true - type: 'null' instructions: anyOf: - type: string description: | A system (or developer) message inserted into the model's context. When using along with `previous_response_id`, the instructions from a previous response will not be carried over to the next response. This makes it simple to swap out system (or developer) messages in new responses. - type: 'null' stream: anyOf: - description: > If set to true, the model response data will be streamed to the client as it is generated using [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). See the [Streaming section below](https://platform.openai.com/docs/api-reference/responses-streaming) for more information. type: boolean default: false - type: 'null' stream_options: $ref: '#/components/schemas/ResponseStreamOptions' conversation: anyOf: - $ref: '#/components/schemas/ConversationParam' - type: 'null' CreateRunRequest: type: object additionalProperties: false properties: assistant_id: description: >- The ID of the [assistant](https://platform.openai.com/docs/api-reference/assistants) to use to execute this run. type: string model: description: >- The ID of the [Model](https://platform.openai.com/docs/api-reference/models) to be used to execute this run. If a value is provided here, it will override the model associated with the assistant. If not, the model associated with the assistant will be used. anyOf: - type: string - $ref: '#/components/schemas/AssistantSupportedModels' x-oaiTypeLabel: string nullable: true reasoning_effort: $ref: '#/components/schemas/ReasoningEffort' instructions: description: >- Overrides the [instructions](https://platform.openai.com/docs/api-reference/assistants/createAssistant) of the assistant. This is useful for modifying the behavior on a per-run basis. type: string nullable: true additional_instructions: description: >- Appends additional instructions at the end of the instructions for the run. This is useful for modifying the behavior on a per-run basis without overriding other instructions. type: string nullable: true additional_messages: description: Adds additional messages to the thread before creating the run. type: array items: $ref: '#/components/schemas/CreateMessageRequest' nullable: true tools: description: >- Override the tools the assistant can use for this run. This is useful for modifying the behavior on a per-run basis. nullable: true type: array maxItems: 20 items: $ref: '#/components/schemas/AssistantTool' metadata: $ref: '#/components/schemas/Metadata' temperature: type: number minimum: 0 maximum: 2 default: 1 example: 1 nullable: true description: > What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. top_p: type: number minimum: 0 maximum: 1 default: 1 example: 1 nullable: true description: > An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. stream: type: boolean nullable: true description: > If `true`, returns a stream of events that happen during the Run as server-sent events, terminating when the Run enters a terminal state with a `data: [DONE]` message. max_prompt_tokens: type: integer nullable: true description: > The maximum number of prompt tokens that may be used over the course of the run. The run will make a best effort to use only the number of prompt tokens specified, across multiple turns of the run. If the run exceeds the number of prompt tokens specified, the run will end with status `incomplete`. See `incomplete_details` for more info. minimum: 256 max_completion_tokens: type: integer nullable: true description: > The maximum number of completion tokens that may be used over the course of the run. The run will make a best effort to use only the number of completion tokens specified, across multiple turns of the run. If the run exceeds the number of completion tokens specified, the run will end with status `incomplete`. See `incomplete_details` for more info. minimum: 256 truncation_strategy: allOf: - $ref: '#/components/schemas/TruncationObject' - nullable: true tool_choice: allOf: - $ref: '#/components/schemas/AssistantsApiToolChoiceOption' - nullable: true parallel_tool_calls: $ref: '#/components/schemas/ParallelToolCalls' response_format: $ref: '#/components/schemas/AssistantsApiResponseFormatOption' nullable: true required: &ref_0 - assistant_id CreateSpeechRequest: type: object additionalProperties: false properties: model: description: > One of the available [TTS models](https://platform.openai.com/docs/models#tts): `tts-1`, `tts-1-hd` or `gpt-4o-mini-tts`. anyOf: - type: string - type: string enum: - tts-1 - tts-1-hd - gpt-4o-mini-tts x-stainless-nominal: false x-oaiTypeLabel: string input: type: string description: The text to generate audio for. The maximum length is 4096 characters. maxLength: 4096 instructions: type: string description: >- Control the voice of your generated audio with additional instructions. Does not work with `tts-1` or `tts-1-hd`. maxLength: 4096 voice: description: >- The voice to use when generating the audio. Supported voices are `alloy`, `ash`, `ballad`, `coral`, `echo`, `fable`, `onyx`, `nova`, `sage`, `shimmer`, and `verse`. Previews of the voices are available in the [Text to speech guide](https://platform.openai.com/docs/guides/text-to-speech#voice-options). $ref: '#/components/schemas/VoiceIdsShared' response_format: description: The format to audio in. Supported formats are `mp3`, `opus`, `aac`, `flac`, `wav`, and `pcm`. default: mp3 type: string enum: - mp3 - opus - aac - flac - wav - pcm speed: description: The speed of the generated audio. Select a value from `0.25` to `4.0`. `1.0` is the default. type: number default: 1 minimum: 0.25 maximum: 4 stream_format: description: >- The format to stream the audio in. Supported formats are `sse` and `audio`. `sse` is not supported for `tts-1` or `tts-1-hd`. type: string default: audio enum: - sse - audio required: - model - input - voice CreateSpeechResponseStreamEvent: anyOf: - $ref: '#/components/schemas/SpeechAudioDeltaEvent' - $ref: '#/components/schemas/SpeechAudioDoneEvent' discriminator: propertyName: type CreateThreadAndRunRequest: type: object additionalProperties: false properties: assistant_id: description: >- The ID of the [assistant](https://platform.openai.com/docs/api-reference/assistants) to use to execute this run. type: string thread: $ref: '#/components/schemas/CreateThreadRequest' model: description: >- The ID of the [Model](https://platform.openai.com/docs/api-reference/models) to be used to execute this run. If a value is provided here, it will override the model associated with the assistant. If not, the model associated with the assistant will be used. anyOf: - type: string - type: string enum: - gpt-5 - gpt-5-mini - gpt-5-nano - gpt-5-2025-08-07 - gpt-5-mini-2025-08-07 - gpt-5-nano-2025-08-07 - gpt-4.1 - gpt-4.1-mini - gpt-4.1-nano - gpt-4.1-2025-04-14 - gpt-4.1-mini-2025-04-14 - gpt-4.1-nano-2025-04-14 - gpt-4o - gpt-4o-2024-11-20 - gpt-4o-2024-08-06 - gpt-4o-2024-05-13 - gpt-4o-mini - gpt-4o-mini-2024-07-18 - gpt-4.5-preview - gpt-4.5-preview-2025-02-27 - gpt-4-turbo - gpt-4-turbo-2024-04-09 - gpt-4-0125-preview - gpt-4-turbo-preview - gpt-4-1106-preview - gpt-4-vision-preview - gpt-4 - gpt-4-0314 - gpt-4-0613 - gpt-4-32k - gpt-4-32k-0314 - gpt-4-32k-0613 - gpt-3.5-turbo - gpt-3.5-turbo-16k - gpt-3.5-turbo-0613 - gpt-3.5-turbo-1106 - gpt-3.5-turbo-0125 - gpt-3.5-turbo-16k-0613 x-oaiTypeLabel: string nullable: true instructions: description: >- Override the default system message of the assistant. This is useful for modifying the behavior on a per-run basis. type: string nullable: true tools: description: >- Override the tools the assistant can use for this run. This is useful for modifying the behavior on a per-run basis. nullable: true type: array maxItems: 20 items: $ref: '#/components/schemas/AssistantTool' tool_resources: type: object description: > A set of resources that are used by the assistant's tools. The resources are specific to the type of tool. For example, the `code_interpreter` tool requires a list of file IDs, while the `file_search` tool requires a list of vector store IDs. properties: code_interpreter: type: object properties: file_ids: type: array description: > A list of [file](https://platform.openai.com/docs/api-reference/files) IDs made available to the `code_interpreter` tool. There can be a maximum of 20 files associated with the tool. default: [] maxItems: 20 items: type: string file_search: type: object properties: vector_store_ids: type: array description: > The ID of the [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) attached to this assistant. There can be a maximum of 1 vector store attached to the assistant. maxItems: 1 items: type: string nullable: true metadata: $ref: '#/components/schemas/Metadata' temperature: type: number minimum: 0 maximum: 2 default: 1 example: 1 nullable: true description: > What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. top_p: type: number minimum: 0 maximum: 1 default: 1 example: 1 nullable: true description: > An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. stream: type: boolean nullable: true description: > If `true`, returns a stream of events that happen during the Run as server-sent events, terminating when the Run enters a terminal state with a `data: [DONE]` message. max_prompt_tokens: type: integer nullable: true description: > The maximum number of prompt tokens that may be used over the course of the run. The run will make a best effort to use only the number of prompt tokens specified, across multiple turns of the run. If the run exceeds the number of prompt tokens specified, the run will end with status `incomplete`. See `incomplete_details` for more info. minimum: 256 max_completion_tokens: type: integer nullable: true description: > The maximum number of completion tokens that may be used over the course of the run. The run will make a best effort to use only the number of completion tokens specified, across multiple turns of the run. If the run exceeds the number of completion tokens specified, the run will end with status `incomplete`. See `incomplete_details` for more info. minimum: 256 truncation_strategy: allOf: - $ref: '#/components/schemas/TruncationObject' - nullable: true tool_choice: allOf: - $ref: '#/components/schemas/AssistantsApiToolChoiceOption' - nullable: true parallel_tool_calls: $ref: '#/components/schemas/ParallelToolCalls' response_format: $ref: '#/components/schemas/AssistantsApiResponseFormatOption' nullable: true required: *ref_0 CreateThreadRequest: type: object description: | Options to create a new thread. If no thread is provided when running a request, an empty thread will be created. additionalProperties: false properties: messages: description: >- A list of [messages](https://platform.openai.com/docs/api-reference/messages) to start the thread with. type: array items: $ref: '#/components/schemas/CreateMessageRequest' tool_resources: anyOf: - type: object description: > A set of resources that are made available to the assistant's tools in this thread. The resources are specific to the type of tool. For example, the `code_interpreter` tool requires a list of file IDs, while the `file_search` tool requires a list of vector store IDs. properties: code_interpreter: type: object properties: file_ids: type: array description: > A list of [file](https://platform.openai.com/docs/api-reference/files) IDs made available to the `code_interpreter` tool. There can be a maximum of 20 files associated with the tool. default: [] maxItems: 20 items: type: string file_search: type: object properties: vector_store_ids: type: array description: > The [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) attached to this thread. There can be a maximum of 1 vector store attached to the thread. maxItems: 1 items: type: string vector_stores: type: array description: > A helper to create a [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) with file_ids and attach it to this thread. There can be a maximum of 1 vector store attached to the thread. maxItems: 1 items: type: object properties: file_ids: type: array description: > A list of [file](https://platform.openai.com/docs/api-reference/files) IDs to add to the vector store. There can be a maximum of 10000 files in a vector store. maxItems: 10000 items: type: string chunking_strategy: type: object description: >- The chunking strategy used to chunk the file(s). If not set, will use the `auto` strategy. anyOf: - type: object title: Auto Chunking Strategy description: >- The default strategy. This strategy currently uses a `max_chunk_size_tokens` of `800` and `chunk_overlap_tokens` of `400`. additionalProperties: false properties: type: type: string description: Always `auto`. enum: - auto x-stainless-const: true required: - type - type: object title: Static Chunking Strategy additionalProperties: false properties: type: type: string description: Always `static`. enum: - static x-stainless-const: true static: type: object additionalProperties: false properties: max_chunk_size_tokens: type: integer minimum: 100 maximum: 4096 description: >- The maximum number of tokens in each chunk. The default value is `800`. The minimum value is `100` and the maximum value is `4096`. chunk_overlap_tokens: type: integer description: > The number of tokens that overlap between chunks. The default value is `400`. Note that the overlap must not exceed half of `max_chunk_size_tokens`. required: - max_chunk_size_tokens - chunk_overlap_tokens required: - type - static discriminator: propertyName: type metadata: $ref: '#/components/schemas/Metadata' anyOf: - required: - vector_store_ids - required: - vector_stores - type: 'null' metadata: $ref: '#/components/schemas/Metadata' CreateTranscriptionRequest: type: object additionalProperties: false properties: file: description: > The audio file object (not file name) to transcribe, in one of these formats: flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm. type: string x-oaiTypeLabel: file format: binary x-oaiMeta: exampleFilePath: speech.mp3 model: description: > ID of the model to use. The options are `gpt-4o-transcribe`, `gpt-4o-mini-transcribe`, `whisper-1` (which is powered by our open source Whisper V2 model), and `gpt-4o-transcribe-diarize`. example: gpt-4o-transcribe anyOf: - type: string - type: string enum: - whisper-1 - gpt-4o-transcribe - gpt-4o-mini-transcribe - gpt-4o-transcribe-diarize x-stainless-const: true x-stainless-nominal: false x-oaiTypeLabel: string language: description: > The language of the input audio. Supplying the input language in [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) (e.g. `en`) format will improve accuracy and latency. type: string prompt: description: > An optional text to guide the model's style or continue a previous audio segment. The [prompt](https://platform.openai.com/docs/guides/speech-to-text#prompting) should match the audio language. This field is not supported when using `gpt-4o-transcribe-diarize`. type: string response_format: $ref: '#/components/schemas/AudioResponseFormat' temperature: description: > The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use [log probability](https://en.wikipedia.org/wiki/Log_probability) to automatically increase the temperature until certain thresholds are hit. type: number default: 0 include: description: > Additional information to include in the transcription response. `logprobs` will return the log probabilities of the tokens in the response to understand the model's confidence in the transcription. `logprobs` only works with response_format set to `json` and only with the models `gpt-4o-transcribe` and `gpt-4o-mini-transcribe`. This field is not supported when using `gpt-4o-transcribe-diarize`. type: array items: $ref: '#/components/schemas/TranscriptionInclude' timestamp_granularities: description: > The timestamp granularities to populate for this transcription. `response_format` must be set `verbose_json` to use timestamp granularities. Either or both of these options are supported: `word`, or `segment`. Note: There is no additional latency for segment timestamps, but generating word timestamps incurs additional latency. This option is not available for `gpt-4o-transcribe-diarize`. type: array items: type: string enum: - word - segment default: - segment stream: anyOf: - description: > If set to true, the model response data will be streamed to the client as it is generated using [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format). See the [Streaming section of the Speech-to-Text guide](https://platform.openai.com/docs/guides/speech-to-text?lang=curl#streaming-transcriptions) for more information. Note: Streaming is not supported for the `whisper-1` model and will be ignored. type: boolean default: false - type: 'null' chunking_strategy: $ref: '#/components/schemas/TranscriptionChunkingStrategy' known_speaker_names: description: > Optional list of speaker names that correspond to the audio samples provided in `known_speaker_references[]`. Each entry should be a short identifier (for example `customer` or `agent`). Up to 4 speakers are supported. type: array maxItems: 4 items: type: string known_speaker_references: description: > Optional list of audio samples (as [data URLs](https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URLs)) that contain known speaker references matching `known_speaker_names[]`. Each sample must be between 2 and 10 seconds, and can use any of the same input audio formats supported by `file`. type: array maxItems: 4 items: type: string required: - file - model CreateTranscriptionResponseDiarizedJson: type: object description: > Represents a diarized transcription response returned by the model, including the combined transcript and speaker-segment annotations. properties: task: type: string description: The type of task that was run. Always `transcribe`. enum: - transcribe x-stainless-const: true duration: type: number description: Duration of the input audio in seconds. text: type: string description: The concatenated transcript text for the entire audio input. segments: type: array description: Segments of the transcript annotated with timestamps and speaker labels. items: $ref: '#/components/schemas/TranscriptionDiarizedSegment' usage: type: object description: Token or duration usage statistics for the request. discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/TranscriptTextUsageTokens' title: Token Usage - $ref: '#/components/schemas/TranscriptTextUsageDuration' title: Duration Usage required: - task - duration - text - segments x-oaiMeta: name: The transcription object (Diarized JSON) group: audio example: | { "task": "transcribe", "duration": 42.7, "text": "Agent: Thanks for calling OpenAI support.\nCustomer: Hi, I need help with diarization.", "segments": [ { "type": "transcript.text.segment", "id": "seg_001", "start": 0.0, "end": 5.2, "text": "Thanks for calling OpenAI support.", "speaker": "agent" }, { "type": "transcript.text.segment", "id": "seg_002", "start": 5.2, "end": 12.8, "text": "Hi, I need help with diarization.", "speaker": "A" } ], "usage": { "type": "duration", "seconds": 43 } } CreateTranscriptionResponseJson: type: object description: Represents a transcription response returned by model, based on the provided input. properties: text: type: string description: The transcribed text. logprobs: type: array optional: true description: > The log probabilities of the tokens in the transcription. Only returned with the models `gpt-4o-transcribe` and `gpt-4o-mini-transcribe` if `logprobs` is added to the `include` array. items: type: object properties: token: type: string description: The token in the transcription. logprob: type: number description: The log probability of the token. bytes: type: array items: type: number description: The bytes of the token. usage: type: object description: Token usage statistics for the request. anyOf: - $ref: '#/components/schemas/TranscriptTextUsageTokens' title: Token Usage - $ref: '#/components/schemas/TranscriptTextUsageDuration' title: Duration Usage discriminator: propertyName: type required: - text x-oaiMeta: name: The transcription object (JSON) group: audio example: | { "text": "Imagine the wildest idea that you've ever had, and you're curious about how it might scale to something that's a 100, a 1,000 times bigger. This is a place where you can get to do that.", "usage": { "type": "tokens", "input_tokens": 14, "input_token_details": { "text_tokens": 10, "audio_tokens": 4 }, "output_tokens": 101, "total_tokens": 115 } } CreateTranscriptionResponseStreamEvent: anyOf: - $ref: '#/components/schemas/TranscriptTextSegmentEvent' - $ref: '#/components/schemas/TranscriptTextDeltaEvent' - $ref: '#/components/schemas/TranscriptTextDoneEvent' discriminator: propertyName: type CreateTranscriptionResponseVerboseJson: type: object description: Represents a verbose json transcription response returned by model, based on the provided input. properties: language: type: string description: The language of the input audio. duration: type: number description: The duration of the input audio. text: type: string description: The transcribed text. words: type: array description: Extracted words and their corresponding timestamps. items: $ref: '#/components/schemas/TranscriptionWord' segments: type: array description: Segments of the transcribed text and their corresponding details. items: $ref: '#/components/schemas/TranscriptionSegment' usage: $ref: '#/components/schemas/TranscriptTextUsageDuration' required: - language - duration - text x-oaiMeta: name: The transcription object (Verbose JSON) group: audio example: | { "task": "transcribe", "language": "english", "duration": 8.470000267028809, "text": "The beach was a popular spot on a hot summer day. People were swimming in the ocean, building sandcastles, and playing beach volleyball.", "segments": [ { "id": 0, "seek": 0, "start": 0.0, "end": 3.319999933242798, "text": " The beach was a popular spot on a hot summer day.", "tokens": [ 50364, 440, 7534, 390, 257, 3743, 4008, 322, 257, 2368, 4266, 786, 13, 50530 ], "temperature": 0.0, "avg_logprob": -0.2860786020755768, "compression_ratio": 1.2363636493682861, "no_speech_prob": 0.00985979475080967 }, ... ], "usage": { "type": "duration", "seconds": 9 } } CreateTranslationRequest: type: object additionalProperties: false properties: file: description: > The audio file object (not file name) translate, in one of these formats: flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm. type: string x-oaiTypeLabel: file format: binary x-oaiMeta: exampleFilePath: speech.mp3 model: description: > ID of the model to use. Only `whisper-1` (which is powered by our open source Whisper V2 model) is currently available. example: whisper-1 anyOf: - type: string - type: string enum: - whisper-1 x-stainless-const: true x-oaiTypeLabel: string prompt: description: > An optional text to guide the model's style or continue a previous audio segment. The [prompt](https://platform.openai.com/docs/guides/speech-to-text#prompting) should be in English. type: string response_format: description: > The format of the output, in one of these options: `json`, `text`, `srt`, `verbose_json`, or `vtt`. type: string enum: - json - text - srt - verbose_json - vtt default: json temperature: description: > The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use [log probability](https://en.wikipedia.org/wiki/Log_probability) to automatically increase the temperature until certain thresholds are hit. type: number default: 0 required: - file - model CreateTranslationResponseJson: type: object properties: text: type: string required: - text CreateTranslationResponseVerboseJson: type: object properties: language: type: string description: The language of the output translation (always `english`). duration: type: number description: The duration of the input audio. text: type: string description: The translated text. segments: type: array description: Segments of the translated text and their corresponding details. items: $ref: '#/components/schemas/TranscriptionSegment' required: - language - duration - text CreateUploadRequest: type: object additionalProperties: false properties: filename: description: | The name of the file to upload. type: string purpose: description: > The intended purpose of the uploaded file. See the [documentation on File purposes](https://platform.openai.com/docs/api-reference/files/create#files-create-purpose). type: string enum: - assistants - batch - fine-tune - vision bytes: description: | The number of bytes in the file you are uploading. type: integer mime_type: description: > The MIME type of the file. This must fall within the supported MIME types for your file purpose. See the supported MIME types for assistants and vision. type: string expires_after: $ref: '#/components/schemas/FileExpirationAfter' required: - filename - purpose - bytes - mime_type CreateVectorStoreFileBatchRequest: type: object additionalProperties: false properties: file_ids: description: >- A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that the vector store should use. Useful for tools like `file_search` that can access files. If `attributes` or `chunking_strategy` are provided, they will be applied to all files in the batch. Mutually exclusive with `files`. type: array minItems: 1 maxItems: 500 items: type: string files: description: >- A list of objects that each include a `file_id` plus optional `attributes` or `chunking_strategy`. Use this when you need to override metadata for specific files. The global `attributes` or `chunking_strategy` will be ignored and must be specified for each file. Mutually exclusive with `file_ids`. type: array minItems: 1 maxItems: 500 items: $ref: '#/components/schemas/CreateVectorStoreFileRequest' chunking_strategy: $ref: '#/components/schemas/ChunkingStrategyRequestParam' attributes: $ref: '#/components/schemas/VectorStoreFileAttributes' CreateVectorStoreFileRequest: type: object additionalProperties: false properties: file_id: description: >- A [File](https://platform.openai.com/docs/api-reference/files) ID that the vector store should use. Useful for tools like `file_search` that can access files. type: string chunking_strategy: $ref: '#/components/schemas/ChunkingStrategyRequestParam' attributes: $ref: '#/components/schemas/VectorStoreFileAttributes' required: - file_id CreateVectorStoreRequest: type: object additionalProperties: false properties: file_ids: description: >- A list of [File](https://platform.openai.com/docs/api-reference/files) IDs that the vector store should use. Useful for tools like `file_search` that can access files. type: array maxItems: 500 items: type: string name: description: The name of the vector store. type: string description: description: A description for the vector store. Can be used to describe the vector store's purpose. type: string expires_after: $ref: '#/components/schemas/VectorStoreExpirationAfter' chunking_strategy: $ref: '#/components/schemas/ChunkingStrategyRequestParam' metadata: $ref: '#/components/schemas/Metadata' CustomToolCall: type: object title: Custom tool call description: | A call to a custom tool created by the model. properties: type: type: string enum: - custom_tool_call x-stainless-const: true description: | The type of the custom tool call. Always `custom_tool_call`. id: type: string description: | The unique ID of the custom tool call in the OpenAI platform. call_id: type: string description: | An identifier used to map this custom tool call to a tool call output. name: type: string description: | The name of the custom tool being called. input: type: string description: | The input for the custom tool call generated by the model. required: - type - call_id - name - input CustomToolCallOutput: type: object title: Custom tool call output description: | The output of a custom tool call from your code, being sent back to the model. properties: type: type: string enum: - custom_tool_call_output x-stainless-const: true description: | The type of the custom tool call output. Always `custom_tool_call_output`. id: type: string description: | The unique ID of the custom tool call output in the OpenAI platform. call_id: type: string description: | The call ID, used to map this custom tool call output to a custom tool call. output: description: | The output from the custom tool call generated by your code. Can be a string or an list of output content. anyOf: - type: string description: | A string of the output of the custom tool call. title: string output - type: array items: $ref: '#/components/schemas/FunctionAndCustomToolCallOutput' title: output content list description: | Text, image, or file output of the custom tool call. required: - type - call_id - output CustomToolChatCompletions: type: object title: Custom tool description: | A custom tool that processes input using a specified format. properties: type: type: string enum: - custom description: The type of the custom tool. Always `custom`. x-stainless-const: true custom: type: object title: Custom tool properties description: | Properties of the custom tool. properties: name: type: string description: The name of the custom tool, used to identify it in tool calls. description: type: string description: | Optional description of the custom tool, used to provide more context. format: description: | The input format for the custom tool. Default is unconstrained text. anyOf: - type: object title: Text format description: Unconstrained free-form text. properties: type: type: string enum: - text description: Unconstrained text format. Always `text`. x-stainless-const: true required: - type additionalProperties: false - type: object title: Grammar format description: A grammar defined by the user. properties: type: type: string enum: - grammar description: Grammar format. Always `grammar`. x-stainless-const: true grammar: type: object title: Grammar format description: Your chosen grammar. properties: definition: type: string description: The grammar definition. syntax: type: string description: The syntax of the grammar definition. One of `lark` or `regex`. enum: - lark - regex required: - definition - syntax required: - type - grammar additionalProperties: false discriminator: propertyName: type required: - name required: - type - custom DeleteAssistantResponse: type: object properties: id: type: string deleted: type: boolean object: type: string enum: - assistant.deleted x-stainless-const: true required: - id - object - deleted DeleteCertificateResponse: type: object properties: object: description: The object type, must be `certificate.deleted`. x-stainless-const: true const: certificate.deleted id: type: string description: The ID of the certificate that was deleted. required: - object - id DeleteFileResponse: type: object properties: id: type: string object: type: string enum: - file x-stainless-const: true deleted: type: boolean required: - id - object - deleted DeleteFineTuningCheckpointPermissionResponse: type: object properties: id: type: string description: The ID of the fine-tuned model checkpoint permission that was deleted. object: type: string description: The object type, which is always "checkpoint.permission". enum: - checkpoint.permission x-stainless-const: true deleted: type: boolean description: Whether the fine-tuned model checkpoint permission was successfully deleted. required: - id - object - deleted DeleteMessageResponse: type: object properties: id: type: string deleted: type: boolean object: type: string enum: - thread.message.deleted x-stainless-const: true required: - id - object - deleted DeleteModelResponse: type: object properties: id: type: string deleted: type: boolean object: type: string required: - id - object - deleted DeleteThreadResponse: type: object properties: id: type: string deleted: type: boolean object: type: string enum: - thread.deleted x-stainless-const: true required: - id - object - deleted DeleteVectorStoreFileResponse: type: object properties: id: type: string deleted: type: boolean object: type: string enum: - vector_store.file.deleted x-stainless-const: true required: - id - object - deleted DeleteVectorStoreResponse: type: object properties: id: type: string deleted: type: boolean object: type: string enum: - vector_store.deleted x-stainless-const: true required: - id - object - deleted DeletedConversation: title: The deleted conversation object allOf: - $ref: '#/components/schemas/DeletedConversationResource' x-oaiMeta: name: The deleted conversation object group: conversations DoneEvent: type: object properties: event: type: string enum: - done x-stainless-const: true data: type: string enum: - '[DONE]' x-stainless-const: true required: - event - data description: Occurs when a stream ends. x-oaiMeta: dataDescription: '`data` is `[DONE]`' Drag: type: object title: Drag description: | A drag action. properties: type: type: string enum: - drag default: drag description: | Specifies the event type. For a drag action, this property is always set to `drag`. x-stainless-const: true path: type: array description: > An array of coordinates representing the path of the drag action. Coordinates will appear as an array of objects, eg ``` [ { x: 100, y: 200 }, { x: 200, y: 300 } ] ``` items: $ref: '#/components/schemas/DragPoint' required: - type - path EasyInputMessage: type: object title: Input message description: | A message input to the model with a role indicating instruction following hierarchy. Instructions given with the `developer` or `system` role take precedence over instructions given with the `user` role. Messages with the `assistant` role are presumed to have been generated by the model in previous interactions. properties: role: type: string description: | The role of the message input. One of `user`, `assistant`, `system`, or `developer`. enum: - user - assistant - system - developer content: description: | Text, image, or audio input to the model, used to generate a response. Can also contain previous assistant responses. anyOf: - type: string title: Text input description: | A text input to the model. - $ref: '#/components/schemas/InputMessageContentList' type: type: string description: | The type of the message input. Always `message`. enum: - message x-stainless-const: true required: - role - content Embedding: type: object description: | Represents an embedding vector returned by embedding endpoint. properties: index: type: integer description: The index of the embedding in the list of embeddings. embedding: type: array description: > The embedding vector, which is a list of floats. The length of vector depends on the model as listed in the [embedding guide](https://platform.openai.com/docs/guides/embeddings). items: type: number format: float object: type: string description: The object type, which is always "embedding". enum: - embedding x-stainless-const: true required: - index - object - embedding x-oaiMeta: name: The embedding object example: | { "object": "embedding", "embedding": [ 0.0023064255, -0.009327292, .... (1536 floats total for ada-002) -0.0028842222, ], "index": 0 } Error: type: object properties: code: anyOf: - type: string - type: 'null' message: type: string param: anyOf: - type: string - type: 'null' type: type: string required: - type - message - param - code ErrorEvent: type: object properties: event: type: string enum: - error x-stainless-const: true data: $ref: '#/components/schemas/Error' required: - event - data description: >- Occurs when an [error](https://platform.openai.com/docs/guides/error-codes#api-errors) occurs. This can happen due to an internal server error or a timeout. x-oaiMeta: dataDescription: '`data` is an [error](/docs/guides/error-codes#api-errors)' ErrorResponse: type: object properties: error: $ref: '#/components/schemas/Error' required: - error Eval: type: object title: Eval description: | An Eval object with a data source config and testing criteria. An Eval represents a task to be done for your LLM integration. Like: - Improve the quality of my chatbot - See how well my chatbot handles customer support - Check if o4-mini is better at my usecase than gpt-4o properties: object: type: string enum: - eval default: eval description: The object type. x-stainless-const: true id: type: string description: Unique identifier for the evaluation. name: type: string description: The name of the evaluation. example: Chatbot effectiveness Evaluation data_source_config: type: object description: Configuration of data sources used in runs of the evaluation. anyOf: - $ref: '#/components/schemas/EvalCustomDataSourceConfig' - $ref: '#/components/schemas/EvalLogsDataSourceConfig' - $ref: '#/components/schemas/EvalStoredCompletionsDataSourceConfig' discriminator: propertyName: type testing_criteria: description: A list of testing criteria. type: array items: anyOf: - $ref: '#/components/schemas/EvalGraderLabelModel' - $ref: '#/components/schemas/EvalGraderStringCheck' - $ref: '#/components/schemas/EvalGraderTextSimilarity' - $ref: '#/components/schemas/EvalGraderPython' - $ref: '#/components/schemas/EvalGraderScoreModel' created_at: type: integer description: The Unix timestamp (in seconds) for when the eval was created. metadata: $ref: '#/components/schemas/Metadata' required: - id - data_source_config - object - testing_criteria - name - created_at - metadata x-oaiMeta: name: The eval object group: evals example: | { "object": "eval", "id": "eval_67abd54d9b0081909a86353f6fb9317a", "data_source_config": { "type": "custom", "item_schema": { "type": "object", "properties": { "label": {"type": "string"}, }, "required": ["label"] }, "include_sample_schema": true }, "testing_criteria": [ { "name": "My string check grader", "type": "string_check", "input": "{{sample.output_text}}", "reference": "{{item.label}}", "operation": "eq", } ], "name": "External Data Eval", "created_at": 1739314509, "metadata": { "test": "synthetics", } } EvalApiError: type: object title: EvalApiError description: | An object representing an error response from the Eval API. properties: code: type: string description: The error code. message: type: string description: The error message. required: - code - message x-oaiMeta: name: The API error object group: evals example: | { "code": "internal_error", "message": "The eval run failed due to an internal error." } EvalCustomDataSourceConfig: type: object title: CustomDataSourceConfig description: | A CustomDataSourceConfig which specifies the schema of your `item` and optionally `sample` namespaces. The response schema defines the shape of the data that will be: - Used to define your testing criteria and - What data is required when creating a run properties: type: type: string enum: - custom default: custom description: The type of data source. Always `custom`. x-stainless-const: true schema: type: object description: | The json schema for the run data source items. Learn how to build JSON schemas [here](https://json-schema.org/). additionalProperties: true required: - type - schema x-oaiMeta: name: The eval custom data source config object group: evals example: | { "type": "custom", "schema": { "type": "object", "properties": { "item": { "type": "object", "properties": { "label": {"type": "string"}, }, "required": ["label"] } }, "required": ["item"] } } EvalGraderLabelModel: type: object title: LabelModelGrader allOf: - $ref: '#/components/schemas/GraderLabelModel' EvalGraderPython: type: object title: EvalGraderPython allOf: - $ref: '#/components/schemas/GraderPython' - type: object properties: pass_threshold: type: number description: The threshold for the score. x-oaiMeta: name: Eval Python Grader group: graders example: | { "type": "python", "name": "Example python grader", "image_tag": "2025-05-08", "source": """ def grade(sample: dict, item: dict) -> float: \""" Returns 1.0 if `output_text` equals `label`, otherwise 0.0. \""" output = sample.get("output_text") label = item.get("label") return 1.0 if output == label else 0.0 """, "pass_threshold": 0.8 } EvalGraderScoreModel: type: object title: EvalGraderScoreModel allOf: - $ref: '#/components/schemas/GraderScoreModel' - type: object properties: pass_threshold: type: number description: The threshold for the score. EvalGraderStringCheck: type: object title: StringCheckGrader allOf: - $ref: '#/components/schemas/GraderStringCheck' EvalGraderTextSimilarity: type: object title: EvalGraderTextSimilarity allOf: - $ref: '#/components/schemas/GraderTextSimilarity' - type: object properties: pass_threshold: type: number description: The threshold for the score. required: - pass_threshold x-oaiMeta: name: Text Similarity Grader group: graders example: | { "type": "text_similarity", "name": "Example text similarity grader", "input": "{{sample.output_text}}", "reference": "{{item.label}}", "pass_threshold": 0.8, "evaluation_metric": "fuzzy_match" } EvalItem: type: object title: EvalItem description: | A message input to the model with a role indicating instruction following hierarchy. Instructions given with the `developer` or `system` role take precedence over instructions given with the `user` role. Messages with the `assistant` role are presumed to have been generated by the model in previous interactions. properties: role: type: string description: | The role of the message input. One of `user`, `assistant`, `system`, or `developer`. enum: - user - assistant - system - developer content: description: | Inputs to the model - can contain template strings. anyOf: - type: string title: Text input description: | A text input to the model. - $ref: '#/components/schemas/InputTextContent' - type: object title: Output text description: | A text output from the model. properties: type: type: string description: | The type of the output text. Always `output_text`. enum: - output_text x-stainless-const: true text: type: string description: | The text output from the model. required: - type - text - type: object title: Input image description: | An image input to the model. properties: type: type: string description: | The type of the image input. Always `input_image`. enum: - input_image x-stainless-const: true image_url: type: string description: | The URL of the image input. detail: type: string description: > The detail level of the image to be sent to the model. One of `high`, `low`, or `auto`. Defaults to `auto`. required: - type - image_url - $ref: '#/components/schemas/InputAudio' - type: array title: An array of Input text, Input image, and Input audio description: > A list of inputs, each of which may be either an input text, input image, or input audio object. type: type: string description: | The type of the message input. Always `message`. enum: - message x-stainless-const: true required: - role - content EvalJsonlFileContentSource: type: object title: EvalJsonlFileContentSource properties: type: type: string enum: - file_content default: file_content description: The type of jsonl source. Always `file_content`. x-stainless-const: true content: type: array items: type: object properties: item: type: object additionalProperties: true sample: type: object additionalProperties: true required: - item description: The content of the jsonl file. required: - type - content EvalJsonlFileIdSource: type: object title: EvalJsonlFileIdSource properties: type: type: string enum: - file_id default: file_id description: The type of jsonl source. Always `file_id`. x-stainless-const: true id: type: string description: The identifier of the file. required: - type - id EvalList: type: object title: EvalList description: | An object representing a list of evals. properties: object: type: string enum: - list default: list description: | The type of this object. It is always set to "list". x-stainless-const: true data: type: array description: | An array of eval objects. items: $ref: '#/components/schemas/Eval' first_id: type: string description: The identifier of the first eval in the data array. last_id: type: string description: The identifier of the last eval in the data array. has_more: type: boolean description: Indicates whether there are more evals available. required: - object - data - first_id - last_id - has_more x-oaiMeta: name: The eval list object group: evals example: | { "object": "list", "data": [ { "object": "eval", "id": "eval_67abd54d9b0081909a86353f6fb9317a", "data_source_config": { "type": "custom", "schema": { "type": "object", "properties": { "item": { "type": "object", "properties": { "input": { "type": "string" }, "ground_truth": { "type": "string" } }, "required": [ "input", "ground_truth" ] } }, "required": [ "item" ] } }, "testing_criteria": [ { "name": "String check", "id": "String check-2eaf2d8d-d649-4335-8148-9535a7ca73c2", "type": "string_check", "input": "{{item.input}}", "reference": "{{item.ground_truth}}", "operation": "eq" } ], "name": "External Data Eval", "created_at": 1739314509, "metadata": {}, } ], "first_id": "eval_67abd54d9b0081909a86353f6fb9317a", "last_id": "eval_67abd54d9b0081909a86353f6fb9317a", "has_more": true } EvalLogsDataSourceConfig: type: object title: LogsDataSourceConfig description: > A LogsDataSourceConfig which specifies the metadata property of your logs query. This is usually metadata like `usecase=chatbot` or `prompt-version=v2`, etc. The schema returned by this data source config is used to defined what variables are available in your evals. `item` and `sample` are both defined when using this data source config. properties: type: type: string enum: - logs default: logs description: The type of data source. Always `logs`. x-stainless-const: true metadata: $ref: '#/components/schemas/Metadata' schema: type: object description: | The json schema for the run data source items. Learn how to build JSON schemas [here](https://json-schema.org/). additionalProperties: true required: - type - schema x-oaiMeta: name: The logs data source object for evals group: evals example: | { "type": "logs", "metadata": { "language": "english" }, "schema": { "type": "object", "properties": { "item": { "type": "object" }, "sample": { "type": "object" } }, "required": [ "item", "sample" } } EvalResponsesSource: type: object title: EvalResponsesSource description: | A EvalResponsesSource object describing a run data source configuration. properties: type: type: string enum: - responses description: The type of run data source. Always `responses`. metadata: anyOf: - type: object description: Metadata filter for the responses. This is a query parameter used to select responses. - type: 'null' model: anyOf: - type: string description: >- The name of the model to find responses for. This is a query parameter used to select responses. - type: 'null' instructions_search: anyOf: - type: string description: >- Optional string to search the 'instructions' field. This is a query parameter used to select responses. - type: 'null' created_after: anyOf: - type: integer minimum: 0 description: >- Only include items created after this timestamp (inclusive). This is a query parameter used to select responses. - type: 'null' created_before: anyOf: - type: integer minimum: 0 description: >- Only include items created before this timestamp (inclusive). This is a query parameter used to select responses. - type: 'null' reasoning_effort: anyOf: - $ref: '#/components/schemas/ReasoningEffort' description: Optional reasoning effort parameter. This is a query parameter used to select responses. - type: 'null' temperature: anyOf: - type: number description: Sampling temperature. This is a query parameter used to select responses. - type: 'null' top_p: anyOf: - type: number description: Nucleus sampling parameter. This is a query parameter used to select responses. - type: 'null' users: anyOf: - type: array items: type: string description: List of user identifiers. This is a query parameter used to select responses. - type: 'null' tools: anyOf: - type: array items: type: string description: List of tool names. This is a query parameter used to select responses. - type: 'null' required: - type x-oaiMeta: name: The run data source object used to configure an individual run group: eval runs example: | { "type": "responses", "model": "gpt-4o-mini-2024-07-18", "temperature": 0.7, "top_p": 1.0, "users": ["user1", "user2"], "tools": ["tool1", "tool2"], "instructions_search": "You are a coding assistant" } EvalRun: type: object title: EvalRun description: | A schema representing an evaluation run. properties: object: type: string enum: - eval.run default: eval.run description: The type of the object. Always "eval.run". x-stainless-const: true id: type: string description: Unique identifier for the evaluation run. eval_id: type: string description: The identifier of the associated evaluation. status: type: string description: The status of the evaluation run. model: type: string description: The model that is evaluated, if applicable. name: type: string description: The name of the evaluation run. created_at: type: integer description: Unix timestamp (in seconds) when the evaluation run was created. report_url: type: string description: The URL to the rendered evaluation run report on the UI dashboard. result_counts: type: object description: Counters summarizing the outcomes of the evaluation run. properties: total: type: integer description: Total number of executed output items. errored: type: integer description: Number of output items that resulted in an error. failed: type: integer description: Number of output items that failed to pass the evaluation. passed: type: integer description: Number of output items that passed the evaluation. required: - total - errored - failed - passed per_model_usage: type: array description: Usage statistics for each model during the evaluation run. items: type: object properties: model_name: type: string description: The name of the model. x-stainless-naming: python: property_name: run_model_name invocation_count: type: integer description: The number of invocations. prompt_tokens: type: integer description: The number of prompt tokens used. completion_tokens: type: integer description: The number of completion tokens generated. total_tokens: type: integer description: The total number of tokens used. cached_tokens: type: integer description: The number of tokens retrieved from cache. required: - model_name - invocation_count - prompt_tokens - completion_tokens - total_tokens - cached_tokens per_testing_criteria_results: type: array description: Results per testing criteria applied during the evaluation run. items: type: object properties: testing_criteria: type: string description: A description of the testing criteria. passed: type: integer description: Number of tests passed for this criteria. failed: type: integer description: Number of tests failed for this criteria. required: - testing_criteria - passed - failed data_source: type: object description: Information about the run's data source. anyOf: - $ref: '#/components/schemas/CreateEvalJsonlRunDataSource' - $ref: '#/components/schemas/CreateEvalCompletionsRunDataSource' - $ref: '#/components/schemas/CreateEvalResponsesRunDataSource' discriminator: propertyName: type metadata: $ref: '#/components/schemas/Metadata' error: $ref: '#/components/schemas/EvalApiError' required: - object - id - eval_id - status - model - name - created_at - report_url - result_counts - per_model_usage - per_testing_criteria_results - data_source - metadata - error x-oaiMeta: name: The eval run object group: evals example: | { "object": "eval.run", "id": "evalrun_67e57965b480819094274e3a32235e4c", "eval_id": "eval_67e579652b548190aaa83ada4b125f47", "report_url": "https://platform.openai.com/evaluations/eval_67e579652b548190aaa83ada4b125f47?run_id=evalrun_67e57965b480819094274e3a32235e4c", "status": "queued", "model": "gpt-4o-mini", "name": "gpt-4o-mini", "created_at": 1743092069, "result_counts": { "total": 0, "errored": 0, "failed": 0, "passed": 0 }, "per_model_usage": null, "per_testing_criteria_results": null, "data_source": { "type": "completions", "source": { "type": "file_content", "content": [ { "item": { "input": "Tech Company Launches Advanced Artificial Intelligence Platform", "ground_truth": "Technology" } }, { "item": { "input": "Central Bank Increases Interest Rates Amid Inflation Concerns", "ground_truth": "Markets" } }, { "item": { "input": "International Summit Addresses Climate Change Strategies", "ground_truth": "World" } }, { "item": { "input": "Major Retailer Reports Record-Breaking Holiday Sales", "ground_truth": "Business" } }, { "item": { "input": "National Team Qualifies for World Championship Finals", "ground_truth": "Sports" } }, { "item": { "input": "Stock Markets Rally After Positive Economic Data Released", "ground_truth": "Markets" } }, { "item": { "input": "Global Manufacturer Announces Merger with Competitor", "ground_truth": "Business" } }, { "item": { "input": "Breakthrough in Renewable Energy Technology Unveiled", "ground_truth": "Technology" } }, { "item": { "input": "World Leaders Sign Historic Climate Agreement", "ground_truth": "World" } }, { "item": { "input": "Professional Athlete Sets New Record in Championship Event", "ground_truth": "Sports" } }, { "item": { "input": "Financial Institutions Adapt to New Regulatory Requirements", "ground_truth": "Business" } }, { "item": { "input": "Tech Conference Showcases Advances in Artificial Intelligence", "ground_truth": "Technology" } }, { "item": { "input": "Global Markets Respond to Oil Price Fluctuations", "ground_truth": "Markets" } }, { "item": { "input": "International Cooperation Strengthened Through New Treaty", "ground_truth": "World" } }, { "item": { "input": "Sports League Announces Revised Schedule for Upcoming Season", "ground_truth": "Sports" } } ] }, "input_messages": { "type": "template", "template": [ { "type": "message", "role": "developer", "content": { "type": "input_text", "text": "Categorize a given news headline into one of the following topics: Technology, Markets, World, Business, or Sports.\n\n# Steps\n\n1. Analyze the content of the news headline to understand its primary focus.\n2. Extract the subject matter, identifying any key indicators or keywords.\n3. Use the identified indicators to determine the most suitable category out of the five options: Technology, Markets, World, Business, or Sports.\n4. Ensure only one category is selected per headline.\n\n# Output Format\n\nRespond with the chosen category as a single word. For instance: \"Technology\", \"Markets\", \"World\", \"Business\", or \"Sports\".\n\n# Examples\n\n**Input**: \"Apple Unveils New iPhone Model, Featuring Advanced AI Features\" \n**Output**: \"Technology\"\n\n**Input**: \"Global Stocks Mixed as Investors Await Central Bank Decisions\" \n**Output**: \"Markets\"\n\n**Input**: \"War in Ukraine: Latest Updates on Negotiation Status\" \n**Output**: \"World\"\n\n**Input**: \"Microsoft in Talks to Acquire Gaming Company for $2 Billion\" \n**Output**: \"Business\"\n\n**Input**: \"Manchester United Secures Win in Premier League Football Match\" \n**Output**: \"Sports\" \n\n# Notes\n\n- If the headline appears to fit into more than one category, choose the most dominant theme.\n- Keywords or phrases such as \"stocks\", \"company acquisition\", \"match\", or technological brands can be good indicators for classification.\n" } }, { "type": "message", "role": "user", "content": { "type": "input_text", "text": "{{item.input}}" } } ] }, "model": "gpt-4o-mini", "sampling_params": { "seed": 42, "temperature": 1.0, "top_p": 1.0, "max_completions_tokens": 2048 } }, "error": null, "metadata": {} } EvalRunList: type: object title: EvalRunList description: | An object representing a list of runs for an evaluation. properties: object: type: string enum: - list default: list description: | The type of this object. It is always set to "list". x-stainless-const: true data: type: array description: | An array of eval run objects. items: $ref: '#/components/schemas/EvalRun' first_id: type: string description: The identifier of the first eval run in the data array. last_id: type: string description: The identifier of the last eval run in the data array. has_more: type: boolean description: Indicates whether there are more evals available. required: - object - data - first_id - last_id - has_more x-oaiMeta: name: The eval run list object group: evals example: | { "object": "list", "data": [ { "object": "eval.run", "id": "evalrun_67b7fbdad46c819092f6fe7a14189620", "eval_id": "eval_67b7fa9a81a88190ab4aa417e397ea21", "report_url": "https://platform.openai.com/evaluations/eval_67b7fa9a81a88190ab4aa417e397ea21?run_id=evalrun_67b7fbdad46c819092f6fe7a14189620", "status": "completed", "model": "o3-mini", "name": "Academic Assistant", "created_at": 1740110812, "result_counts": { "total": 171, "errored": 0, "failed": 80, "passed": 91 }, "per_model_usage": null, "per_testing_criteria_results": [ { "testing_criteria": "String check grader", "passed": 91, "failed": 80 } ], "run_data_source": { "type": "completions", "template_messages": [ { "type": "message", "role": "system", "content": { "type": "input_text", "text": "You are a helpful assistant." } }, { "type": "message", "role": "user", "content": { "type": "input_text", "text": "Hello, can you help me with my homework?" } } ], "datasource_reference": null, "model": "o3-mini", "max_completion_tokens": null, "seed": null, "temperature": null, "top_p": null }, "error": null, "metadata": {"test": "synthetics"} } ], "first_id": "evalrun_67abd54d60ec8190832b46859da808f7", "last_id": "evalrun_67abd54d60ec8190832b46859da808f7", "has_more": false } EvalRunOutputItem: type: object title: EvalRunOutputItem description: | A schema representing an evaluation run output item. properties: object: type: string enum: - eval.run.output_item default: eval.run.output_item description: The type of the object. Always "eval.run.output_item". x-stainless-const: true id: type: string description: Unique identifier for the evaluation run output item. run_id: type: string description: The identifier of the evaluation run associated with this output item. eval_id: type: string description: The identifier of the evaluation group. created_at: type: integer description: Unix timestamp (in seconds) when the evaluation run was created. status: type: string description: The status of the evaluation run. datasource_item_id: type: integer description: The identifier for the data source item. datasource_item: type: object description: Details of the input data source item. additionalProperties: true results: type: array description: A list of grader results for this output item. items: $ref: '#/components/schemas/EvalRunOutputItemResult' sample: type: object description: A sample containing the input and output of the evaluation run. properties: input: type: array description: An array of input messages. items: type: object description: An input message. properties: role: type: string description: The role of the message sender (e.g., system, user, developer). content: type: string description: The content of the message. required: - role - content output: type: array description: An array of output messages. items: type: object properties: role: type: string description: The role of the message (e.g. "system", "assistant", "user"). content: type: string description: The content of the message. finish_reason: type: string description: The reason why the sample generation was finished. model: type: string description: The model used for generating the sample. usage: type: object description: Token usage details for the sample. properties: total_tokens: type: integer description: The total number of tokens used. completion_tokens: type: integer description: The number of completion tokens generated. prompt_tokens: type: integer description: The number of prompt tokens used. cached_tokens: type: integer description: The number of tokens retrieved from cache. required: - total_tokens - completion_tokens - prompt_tokens - cached_tokens error: $ref: '#/components/schemas/EvalApiError' temperature: type: number description: The sampling temperature used. max_completion_tokens: type: integer description: The maximum number of tokens allowed for completion. top_p: type: number description: The top_p value used for sampling. seed: type: integer description: The seed used for generating the sample. required: - input - output - finish_reason - model - usage - error - temperature - max_completion_tokens - top_p - seed required: - object - id - run_id - eval_id - created_at - status - datasource_item_id - datasource_item - results - sample x-oaiMeta: name: The eval run output item object group: evals example: | { "object": "eval.run.output_item", "id": "outputitem_67abd55eb6548190bb580745d5644a33", "run_id": "evalrun_67abd54d60ec8190832b46859da808f7", "eval_id": "eval_67abd54d9b0081909a86353f6fb9317a", "created_at": 1739314509, "status": "pass", "datasource_item_id": 137, "datasource_item": { "teacher": "To grade essays, I only check for style, content, and grammar.", "student": "I am a student who is trying to write the best essay." }, "results": [ { "name": "String Check Grader", "type": "string-check-grader", "score": 1.0, "passed": true, } ], "sample": { "input": [ { "role": "system", "content": "You are an evaluator bot..." }, { "role": "user", "content": "You are assessing..." } ], "output": [ { "role": "assistant", "content": "The rubric is not clear nor concise." } ], "finish_reason": "stop", "model": "gpt-4o-2024-08-06", "usage": { "total_tokens": 521, "completion_tokens": 2, "prompt_tokens": 519, "cached_tokens": 0 }, "error": null, "temperature": 1.0, "max_completion_tokens": 2048, "top_p": 1.0, "seed": 42 } } EvalRunOutputItemList: type: object title: EvalRunOutputItemList description: | An object representing a list of output items for an evaluation run. properties: object: type: string enum: - list default: list description: | The type of this object. It is always set to "list". x-stainless-const: true data: type: array description: | An array of eval run output item objects. items: $ref: '#/components/schemas/EvalRunOutputItem' first_id: type: string description: The identifier of the first eval run output item in the data array. last_id: type: string description: The identifier of the last eval run output item in the data array. has_more: type: boolean description: Indicates whether there are more eval run output items available. required: - object - data - first_id - last_id - has_more x-oaiMeta: name: The eval run output item list object group: evals example: | { "object": "list", "data": [ { "object": "eval.run.output_item", "id": "outputitem_67abd55eb6548190bb580745d5644a33", "run_id": "evalrun_67abd54d60ec8190832b46859da808f7", "eval_id": "eval_67abd54d9b0081909a86353f6fb9317a", "created_at": 1739314509, "status": "pass", "datasource_item_id": 137, "datasource_item": { "teacher": "To grade essays, I only check for style, content, and grammar.", "student": "I am a student who is trying to write the best essay." }, "results": [ { "name": "String Check Grader", "type": "string-check-grader", "score": 1.0, "passed": true, } ], "sample": { "input": [ { "role": "system", "content": "You are an evaluator bot..." }, { "role": "user", "content": "You are assessing..." } ], "output": [ { "role": "assistant", "content": "The rubric is not clear nor concise." } ], "finish_reason": "stop", "model": "gpt-4o-2024-08-06", "usage": { "total_tokens": 521, "completion_tokens": 2, "prompt_tokens": 519, "cached_tokens": 0 }, "error": null, "temperature": 1.0, "max_completion_tokens": 2048, "top_p": 1.0, "seed": 42 } }, ], "first_id": "outputitem_67abd55eb6548190bb580745d5644a33", "last_id": "outputitem_67abd55eb6548190bb580745d5644a33", "has_more": false } EvalRunOutputItemResult: type: object title: EvalRunOutputItemResult description: | A single grader result for an evaluation run output item. properties: name: type: string description: The name of the grader. type: type: string description: The grader type (for example, "string-check-grader"). score: type: number description: The numeric score produced by the grader. passed: type: boolean description: Whether the grader considered the output a pass. sample: anyOf: - type: object additionalProperties: true - type: 'null' description: Optional sample or intermediate data produced by the grader. additionalProperties: true required: - name - score - passed EvalStoredCompletionsDataSourceConfig: type: object title: StoredCompletionsDataSourceConfig description: | Deprecated in favor of LogsDataSourceConfig. properties: type: type: string enum: - stored_completions default: stored_completions description: The type of data source. Always `stored_completions`. x-stainless-const: true metadata: $ref: '#/components/schemas/Metadata' schema: type: object description: | The json schema for the run data source items. Learn how to build JSON schemas [here](https://json-schema.org/). additionalProperties: true required: - type - schema deprecated: true x-oaiMeta: name: The stored completions data source object for evals group: evals example: | { "type": "stored_completions", "metadata": { "language": "english" }, "schema": { "type": "object", "properties": { "item": { "type": "object" }, "sample": { "type": "object" } }, "required": [ "item", "sample" } } EvalStoredCompletionsSource: type: object title: StoredCompletionsRunDataSource description: | A StoredCompletionsRunDataSource configuration describing a set of filters properties: type: type: string enum: - stored_completions default: stored_completions description: The type of source. Always `stored_completions`. x-stainless-const: true metadata: $ref: '#/components/schemas/Metadata' model: anyOf: - type: string description: An optional model to filter by (e.g., 'gpt-4o'). - type: 'null' created_after: anyOf: - type: integer description: An optional Unix timestamp to filter items created after this time. - type: 'null' created_before: anyOf: - type: integer description: An optional Unix timestamp to filter items created before this time. - type: 'null' limit: anyOf: - type: integer description: An optional maximum number of items to return. - type: 'null' required: - type x-oaiMeta: name: The stored completions data source object used to configure an individual run group: eval runs example: | { "type": "stored_completions", "model": "gpt-4o", "created_after": 1668124800, "created_before": 1668124900, "limit": 100, "metadata": {} } FileExpirationAfter: type: object title: File expiration policy description: >- The expiration policy for a file. By default, files with `purpose=batch` expire after 30 days and all other files are persisted until they are manually deleted. properties: anchor: description: 'Anchor timestamp after which the expiration policy applies. Supported anchors: `created_at`.' type: string enum: - created_at x-stainless-const: true seconds: description: >- The number of seconds after the anchor time that the file will expire. Must be between 3600 (1 hour) and 2592000 (30 days). type: integer minimum: 3600 maximum: 2592000 required: - anchor - seconds FilePath: type: object title: File path description: | A path to a file. properties: type: type: string description: | The type of the file path. Always `file_path`. enum: - file_path x-stainless-const: true file_id: type: string description: | The ID of the file. index: type: integer description: | The index of the file in the list of files. required: - type - file_id - index FileSearchRanker: type: string description: The ranker to use for the file search. If not specified will use the `auto` ranker. enum: - auto - default_2024_08_21 FileSearchRankingOptions: title: File search tool call ranking options type: object description: > The ranking options for the file search. If not specified, the file search tool will use the `auto` ranker and a score_threshold of 0. See the [file search tool documentation](https://platform.openai.com/docs/assistants/tools/file-search#customizing-file-search-settings) for more information. properties: ranker: $ref: '#/components/schemas/FileSearchRanker' score_threshold: type: number description: >- The score threshold for the file search. All values must be a floating point number between 0 and 1. minimum: 0 maximum: 1 required: - score_threshold FileSearchToolCall: type: object title: File search tool call description: | The results of a file search tool call. See the [file search guide](https://platform.openai.com/docs/guides/tools-file-search) for more information. properties: id: type: string description: | The unique ID of the file search tool call. type: type: string enum: - file_search_call description: | The type of the file search tool call. Always `file_search_call`. x-stainless-const: true status: type: string description: | The status of the file search tool call. One of `in_progress`, `searching`, `incomplete` or `failed`, enum: - in_progress - searching - completed - incomplete - failed queries: type: array items: type: string description: | The queries used to search for files. results: anyOf: - type: array description: | The results of the file search tool call. items: type: object properties: file_id: type: string description: | The unique ID of the file. text: type: string description: | The text that was retrieved from the file. filename: type: string description: | The name of the file. attributes: $ref: '#/components/schemas/VectorStoreFileAttributes' score: type: number format: float description: | The relevance score of the file - a value between 0 and 1. - type: 'null' required: - id - type - status - queries FineTuneChatCompletionRequestAssistantMessage: allOf: - type: object title: Assistant message deprecated: false properties: weight: type: integer enum: - 0 - 1 description: Controls whether the assistant message is trained against (0 or 1) - $ref: '#/components/schemas/ChatCompletionRequestAssistantMessage' required: - role FineTuneChatRequestInput: type: object description: | The per-line training example of a fine-tuning input file for chat models using the supervised method. Input messages may contain text or image content only. Audio and file input messages are not currently supported for fine-tuning. properties: messages: type: array minItems: 1 items: anyOf: - $ref: '#/components/schemas/ChatCompletionRequestSystemMessage' - $ref: '#/components/schemas/ChatCompletionRequestUserMessage' - $ref: '#/components/schemas/FineTuneChatCompletionRequestAssistantMessage' - $ref: '#/components/schemas/ChatCompletionRequestToolMessage' - $ref: '#/components/schemas/ChatCompletionRequestFunctionMessage' tools: type: array description: A list of tools the model may generate JSON inputs for. items: $ref: '#/components/schemas/ChatCompletionTool' parallel_tool_calls: $ref: '#/components/schemas/ParallelToolCalls' functions: deprecated: true description: A list of functions the model may generate JSON inputs for. type: array minItems: 1 maxItems: 128 items: $ref: '#/components/schemas/ChatCompletionFunctions' x-oaiMeta: name: Training format for chat models using the supervised method example: | { "messages": [ { "role": "user", "content": "What is the weather in San Francisco?" }, { "role": "assistant", "tool_calls": [ { "id": "call_id", "type": "function", "function": { "name": "get_current_weather", "arguments": "{\"location\": \"San Francisco, USA\", \"format\": \"celsius\"}" } } ] } ], "parallel_tool_calls": false, "tools": [ { "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and country, eg. San Francisco, USA" }, "format": { "type": "string", "enum": ["celsius", "fahrenheit"] } }, "required": ["location", "format"] } } } ] } FineTuneDPOHyperparameters: type: object description: The hyperparameters used for the DPO fine-tuning job. properties: beta: description: > The beta value for the DPO method. A higher beta value will increase the weight of the penalty between the policy and reference model. anyOf: - type: string enum: - auto x-stainless-const: true - type: number minimum: 0 maximum: 2 exclusiveMinimum: true batch_size: description: > Number of examples in each batch. A larger batch size means that model parameters are updated less frequently, but with lower variance. default: auto anyOf: - type: string enum: - auto x-stainless-const: true - type: integer minimum: 1 maximum: 256 learning_rate_multiplier: description: | Scaling factor for the learning rate. A smaller learning rate may be useful to avoid overfitting. anyOf: - type: string enum: - auto x-stainless-const: true - type: number minimum: 0 exclusiveMinimum: true n_epochs: description: > The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset. default: auto anyOf: - type: string enum: - auto x-stainless-const: true - type: integer minimum: 1 maximum: 50 FineTuneDPOMethod: type: object description: Configuration for the DPO fine-tuning method. properties: hyperparameters: $ref: '#/components/schemas/FineTuneDPOHyperparameters' FineTuneMethod: type: object description: The method used for fine-tuning. properties: type: type: string description: The type of method. Is either `supervised`, `dpo`, or `reinforcement`. enum: - supervised - dpo - reinforcement supervised: $ref: '#/components/schemas/FineTuneSupervisedMethod' dpo: $ref: '#/components/schemas/FineTuneDPOMethod' reinforcement: $ref: '#/components/schemas/FineTuneReinforcementMethod' required: - type FineTunePreferenceRequestInput: type: object description: | The per-line training example of a fine-tuning input file for chat models using the dpo method. Input messages may contain text or image content only. Audio and file input messages are not currently supported for fine-tuning. properties: input: type: object properties: messages: type: array minItems: 1 items: anyOf: - $ref: '#/components/schemas/ChatCompletionRequestSystemMessage' - $ref: '#/components/schemas/ChatCompletionRequestUserMessage' - $ref: '#/components/schemas/FineTuneChatCompletionRequestAssistantMessage' - $ref: '#/components/schemas/ChatCompletionRequestToolMessage' - $ref: '#/components/schemas/ChatCompletionRequestFunctionMessage' tools: type: array description: A list of tools the model may generate JSON inputs for. items: $ref: '#/components/schemas/ChatCompletionTool' parallel_tool_calls: $ref: '#/components/schemas/ParallelToolCalls' preferred_output: type: array description: The preferred completion message for the output. maxItems: 1 items: anyOf: - $ref: '#/components/schemas/ChatCompletionRequestAssistantMessage' non_preferred_output: type: array description: The non-preferred completion message for the output. maxItems: 1 items: anyOf: - $ref: '#/components/schemas/ChatCompletionRequestAssistantMessage' x-oaiMeta: name: Training format for chat models using the preference method example: | { "input": { "messages": [ { "role": "user", "content": "What is the weather in San Francisco?" } ] }, "preferred_output": [ { "role": "assistant", "content": "The weather in San Francisco is 70 degrees Fahrenheit." } ], "non_preferred_output": [ { "role": "assistant", "content": "The weather in San Francisco is 21 degrees Celsius." } ] } FineTuneReinforcementHyperparameters: type: object description: The hyperparameters used for the reinforcement fine-tuning job. properties: batch_size: description: > Number of examples in each batch. A larger batch size means that model parameters are updated less frequently, but with lower variance. default: auto anyOf: - type: string enum: - auto x-stainless-const: true - type: integer minimum: 1 maximum: 256 learning_rate_multiplier: description: | Scaling factor for the learning rate. A smaller learning rate may be useful to avoid overfitting. anyOf: - type: string enum: - auto x-stainless-const: true - type: number minimum: 0 exclusiveMinimum: true n_epochs: description: > The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset. default: auto anyOf: - type: string enum: - auto x-stainless-const: true - type: integer minimum: 1 maximum: 50 reasoning_effort: description: | Level of reasoning effort. type: string enum: - default - low - medium - high default: default compute_multiplier: description: | Multiplier on amount of compute used for exploring search space during training. anyOf: - type: string enum: - auto x-stainless-const: true - type: number minimum: 0.00001 maximum: 10 exclusiveMinimum: true eval_interval: description: | The number of training steps between evaluation runs. default: auto anyOf: - type: string enum: - auto x-stainless-const: true - type: integer minimum: 1 eval_samples: description: | Number of evaluation samples to generate per training step. default: auto anyOf: - type: string enum: - auto x-stainless-const: true - type: integer minimum: 1 FineTuneReinforcementMethod: type: object description: Configuration for the reinforcement fine-tuning method. properties: grader: type: object description: The grader used for the fine-tuning job. anyOf: - $ref: '#/components/schemas/GraderStringCheck' - $ref: '#/components/schemas/GraderTextSimilarity' - $ref: '#/components/schemas/GraderPython' - $ref: '#/components/schemas/GraderScoreModel' - $ref: '#/components/schemas/GraderMulti' hyperparameters: $ref: '#/components/schemas/FineTuneReinforcementHyperparameters' required: - grader FineTuneReinforcementRequestInput: type: object unevaluatedProperties: true description: > Per-line training example for reinforcement fine-tuning. Note that `messages` and `tools` are the only reserved keywords. Any other arbitrary key-value data can be included on training datapoints and will be available to reference during grading under the `{{ item.XXX }}` template variable. Input messages may contain text or image content only. Audio and file input messages are not currently supported for fine-tuning. required: - messages properties: messages: type: array minItems: 1 items: anyOf: - $ref: '#/components/schemas/ChatCompletionRequestDeveloperMessage' - $ref: '#/components/schemas/ChatCompletionRequestUserMessage' - $ref: '#/components/schemas/FineTuneChatCompletionRequestAssistantMessage' - $ref: '#/components/schemas/ChatCompletionRequestToolMessage' tools: type: array description: A list of tools the model may generate JSON inputs for. items: $ref: '#/components/schemas/ChatCompletionTool' x-oaiMeta: name: Training format for reasoning models using the reinforcement method example: | { "messages": [ { "role": "user", "content": "Your task is to take a chemical in SMILES format and predict the number of hydrobond bond donors and acceptors according to Lipinkski's rule. CCN(CC)CCC(=O)c1sc(N)nc1C" }, ], # Any other JSON data can be inserted into an example and referenced during RFT grading "reference_answer": { "donor_bond_counts": 5, "acceptor_bond_counts": 7 } } FineTuneSupervisedHyperparameters: type: object description: The hyperparameters used for the fine-tuning job. properties: batch_size: description: > Number of examples in each batch. A larger batch size means that model parameters are updated less frequently, but with lower variance. default: auto anyOf: - type: string enum: - auto x-stainless-const: true - type: integer minimum: 1 maximum: 256 learning_rate_multiplier: description: | Scaling factor for the learning rate. A smaller learning rate may be useful to avoid overfitting. anyOf: - type: string enum: - auto x-stainless-const: true - type: number minimum: 0 exclusiveMinimum: true n_epochs: description: > The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset. default: auto anyOf: - type: string enum: - auto x-stainless-const: true - type: integer minimum: 1 maximum: 50 FineTuneSupervisedMethod: type: object description: Configuration for the supervised fine-tuning method. properties: hyperparameters: $ref: '#/components/schemas/FineTuneSupervisedHyperparameters' FineTuningCheckpointPermission: type: object title: FineTuningCheckpointPermission description: | The `checkpoint.permission` object represents a permission for a fine-tuned model checkpoint. properties: id: type: string description: The permission identifier, which can be referenced in the API endpoints. created_at: type: integer description: The Unix timestamp (in seconds) for when the permission was created. project_id: type: string description: The project identifier that the permission is for. object: type: string description: The object type, which is always "checkpoint.permission". enum: - checkpoint.permission x-stainless-const: true required: - created_at - id - object - project_id x-oaiMeta: name: The fine-tuned model checkpoint permission object example: | { "object": "checkpoint.permission", "id": "cp_zc4Q7MP6XxulcVzj4MZdwsAB", "created_at": 1712211699, "project_id": "proj_abGMw1llN8IrBb6SvvY5A1iH" } FineTuningIntegration: type: object title: Fine-Tuning Job Integration required: - type - wandb properties: type: type: string description: The type of the integration being enabled for the fine-tuning job enum: - wandb x-stainless-const: true wandb: type: object description: | The settings for your integration with Weights and Biases. This payload specifies the project that metrics will be sent to. Optionally, you can set an explicit display name for your run, add tags to your run, and set a default entity (team, username, etc) to be associated with your run. required: - project properties: project: description: | The name of the project that the new run will be created under. type: string example: my-wandb-project name: anyOf: - description: | A display name to set for the run. If not set, we will use the Job ID as the name. type: string - type: 'null' entity: anyOf: - description: > The entity to use for the run. This allows you to set the team or username of the WandB user that you would like associated with the run. If not set, the default entity for the registered WandB API key is used. type: string - type: 'null' tags: description: > A list of tags to be attached to the newly created run. These tags are passed through directly to WandB. Some default tags are generated by OpenAI: "openai/finetune", "openai/{base-model}", "openai/{ftjob-abcdef}". type: array items: type: string example: custom-tag FineTuningJob: type: object title: FineTuningJob description: | The `fine_tuning.job` object represents a fine-tuning job that has been created through the API. properties: id: type: string description: The object identifier, which can be referenced in the API endpoints. created_at: type: integer description: The Unix timestamp (in seconds) for when the fine-tuning job was created. error: anyOf: - type: object description: >- For fine-tuning jobs that have `failed`, this will contain more information on the cause of the failure. properties: code: type: string description: A machine-readable error code. message: type: string description: A human-readable error message. param: anyOf: - type: string description: >- The parameter that was invalid, usually `training_file` or `validation_file`. This field will be null if the failure was not parameter-specific. - type: 'null' required: - code - message - param - type: 'null' fine_tuned_model: anyOf: - type: string description: >- The name of the fine-tuned model that is being created. The value will be null if the fine-tuning job is still running. - type: 'null' finished_at: anyOf: - type: integer description: >- The Unix timestamp (in seconds) for when the fine-tuning job was finished. The value will be null if the fine-tuning job is still running. - type: 'null' hyperparameters: type: object description: >- The hyperparameters used for the fine-tuning job. This value will only be returned when running `supervised` jobs. properties: batch_size: anyOf: - description: | Number of examples in each batch. A larger batch size means that model parameters are updated less frequently, but with lower variance. default: auto anyOf: - type: string enum: - auto x-stainless-const: true - type: integer minimum: 1 maximum: 256 title: Auto - type: 'null' title: Manual learning_rate_multiplier: description: | Scaling factor for the learning rate. A smaller learning rate may be useful to avoid overfitting. anyOf: - type: string enum: - auto x-stainless-const: true title: Auto - type: number minimum: 0 exclusiveMinimum: true n_epochs: description: | The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset. default: auto anyOf: - type: string enum: - auto x-stainless-const: true title: Auto - type: integer minimum: 1 maximum: 50 model: type: string description: The base model that is being fine-tuned. object: type: string description: The object type, which is always "fine_tuning.job". enum: - fine_tuning.job x-stainless-const: true organization_id: type: string description: The organization that owns the fine-tuning job. result_files: type: array description: >- The compiled results file ID(s) for the fine-tuning job. You can retrieve the results with the [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents). items: type: string example: file-abc123 status: type: string description: >- The current status of the fine-tuning job, which can be either `validating_files`, `queued`, `running`, `succeeded`, `failed`, or `cancelled`. enum: - validating_files - queued - running - succeeded - failed - cancelled trained_tokens: anyOf: - type: integer description: >- The total number of billable tokens processed by this fine-tuning job. The value will be null if the fine-tuning job is still running. - type: 'null' training_file: type: string description: >- The file ID used for training. You can retrieve the training data with the [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents). validation_file: anyOf: - type: string description: >- The file ID used for validation. You can retrieve the validation results with the [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents). - type: 'null' integrations: anyOf: - type: array description: A list of integrations to enable for this fine-tuning job. maxItems: 5 items: anyOf: - $ref: '#/components/schemas/FineTuningIntegration' discriminator: propertyName: type - type: 'null' seed: type: integer description: The seed used for the fine-tuning job. estimated_finish: anyOf: - type: integer description: >- The Unix timestamp (in seconds) for when the fine-tuning job is estimated to finish. The value will be null if the fine-tuning job is not running. - type: 'null' method: $ref: '#/components/schemas/FineTuneMethod' metadata: $ref: '#/components/schemas/Metadata' required: - created_at - error - finished_at - fine_tuned_model - hyperparameters - id - model - object - organization_id - result_files - status - trained_tokens - training_file - validation_file - seed x-oaiMeta: name: The fine-tuning job object example: | { "object": "fine_tuning.job", "id": "ftjob-abc123", "model": "davinci-002", "created_at": 1692661014, "finished_at": 1692661190, "fine_tuned_model": "ft:davinci-002:my-org:custom_suffix:7q8mpxmy", "organization_id": "org-123", "result_files": [ "file-abc123" ], "status": "succeeded", "validation_file": null, "training_file": "file-abc123", "hyperparameters": { "n_epochs": 4, "batch_size": 1, "learning_rate_multiplier": 1.0 }, "trained_tokens": 5768, "integrations": [], "seed": 0, "estimated_finish": 0, "method": { "type": "supervised", "supervised": { "hyperparameters": { "n_epochs": 4, "batch_size": 1, "learning_rate_multiplier": 1.0 } } }, "metadata": { "key": "value" } } FineTuningJobCheckpoint: type: object title: FineTuningJobCheckpoint description: > The `fine_tuning.job.checkpoint` object represents a model checkpoint for a fine-tuning job that is ready to use. properties: id: type: string description: The checkpoint identifier, which can be referenced in the API endpoints. created_at: type: integer description: The Unix timestamp (in seconds) for when the checkpoint was created. fine_tuned_model_checkpoint: type: string description: The name of the fine-tuned checkpoint model that is created. step_number: type: integer description: The step number that the checkpoint was created at. metrics: type: object description: Metrics at the step number during the fine-tuning job. properties: step: type: number train_loss: type: number train_mean_token_accuracy: type: number valid_loss: type: number valid_mean_token_accuracy: type: number full_valid_loss: type: number full_valid_mean_token_accuracy: type: number fine_tuning_job_id: type: string description: The name of the fine-tuning job that this checkpoint was created from. object: type: string description: The object type, which is always "fine_tuning.job.checkpoint". enum: - fine_tuning.job.checkpoint x-stainless-const: true required: - created_at - fine_tuning_job_id - fine_tuned_model_checkpoint - id - metrics - object - step_number x-oaiMeta: name: The fine-tuning job checkpoint object example: | { "object": "fine_tuning.job.checkpoint", "id": "ftckpt_qtZ5Gyk4BLq1SfLFWp3RtO3P", "created_at": 1712211699, "fine_tuned_model_checkpoint": "ft:gpt-4o-mini-2024-07-18:my-org:custom_suffix:9ABel2dg:ckpt-step-88", "fine_tuning_job_id": "ftjob-fpbNQ3H1GrMehXRf8cO97xTN", "metrics": { "step": 88, "train_loss": 0.478, "train_mean_token_accuracy": 0.924, "valid_loss": 10.112, "valid_mean_token_accuracy": 0.145, "full_valid_loss": 0.567, "full_valid_mean_token_accuracy": 0.944 }, "step_number": 88 } FineTuningJobEvent: type: object description: Fine-tuning job event object properties: object: type: string description: The object type, which is always "fine_tuning.job.event". enum: - fine_tuning.job.event x-stainless-const: true id: type: string description: The object identifier. created_at: type: integer description: The Unix timestamp (in seconds) for when the fine-tuning job was created. level: type: string description: The log level of the event. enum: - info - warn - error message: type: string description: The message of the event. type: type: string description: The type of event. enum: - message - metrics data: type: object description: The data associated with the event. required: - id - object - created_at - level - message x-oaiMeta: name: The fine-tuning job event object example: | { "object": "fine_tuning.job.event", "id": "ftevent-abc123" "created_at": 1677610602, "level": "info", "message": "Created fine-tuning job", "data": {}, "type": "message" } FunctionAndCustomToolCallOutput: discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/InputTextContent' - $ref: '#/components/schemas/InputImageContent' - $ref: '#/components/schemas/InputFileContent' FunctionObject: type: object properties: description: type: string description: >- A description of what the function does, used by the model to choose when and how to call the function. name: type: string description: >- The name of the function to be called. Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length of 64. parameters: $ref: '#/components/schemas/FunctionParameters' strict: anyOf: - type: boolean default: false description: >- Whether to enable strict schema adherence when generating the function call. If set to true, the model will follow the exact schema defined in the `parameters` field. Only a subset of JSON Schema is supported when `strict` is `true`. Learn more about Structured Outputs in the [function calling guide](https://platform.openai.com/docs/guides/function-calling). - type: 'null' required: - name FunctionParameters: type: object description: >- The parameters the functions accepts, described as a JSON Schema object. See the [guide](https://platform.openai.com/docs/guides/function-calling) for examples, and the [JSON Schema reference](https://json-schema.org/understanding-json-schema/) for documentation about the format. Omitting `parameters` defines a function with an empty parameter list. additionalProperties: true FunctionToolCall: type: object title: Function tool call description: > A tool call to run a function. See the [function calling guide](https://platform.openai.com/docs/guides/function-calling) for more information. properties: id: type: string description: | The unique ID of the function tool call. type: type: string enum: - function_call description: | The type of the function tool call. Always `function_call`. x-stainless-const: true call_id: type: string description: | The unique ID of the function tool call generated by the model. name: type: string description: | The name of the function to run. arguments: type: string description: | A JSON string of the arguments to pass to the function. status: type: string description: | The status of the item. One of `in_progress`, `completed`, or `incomplete`. Populated when items are returned via API. enum: - in_progress - completed - incomplete required: - type - call_id - name - arguments FunctionToolCallOutput: type: object title: Function tool call output description: | The output of a function tool call. properties: id: type: string description: | The unique ID of the function tool call output. Populated when this item is returned via API. type: type: string enum: - function_call_output description: | The type of the function tool call output. Always `function_call_output`. x-stainless-const: true call_id: type: string description: | The unique ID of the function tool call generated by the model. output: description: | The output from the function call generated by your code. Can be a string or an list of output content. anyOf: - type: string description: | A string of the output of the function call. title: string output - type: array items: $ref: '#/components/schemas/FunctionAndCustomToolCallOutput' title: output content list description: | Text, image, or file output of the function call. status: type: string description: | The status of the item. One of `in_progress`, `completed`, or `incomplete`. Populated when items are returned via API. enum: - in_progress - completed - incomplete required: - type - call_id - output FunctionToolCallOutputResource: allOf: - $ref: '#/components/schemas/FunctionToolCallOutput' - type: object properties: id: type: string description: | The unique ID of the function call tool output. required: - id FunctionToolCallResource: allOf: - $ref: '#/components/schemas/FunctionToolCall' - type: object properties: id: type: string description: | The unique ID of the function tool call. required: - id GraderLabelModel: type: object title: LabelModelGrader description: | A LabelModelGrader object which uses a model to assign labels to each item in the evaluation. properties: type: description: The object type, which is always `label_model`. type: string enum: - label_model x-stainless-const: true name: type: string description: The name of the grader. model: type: string description: The model to use for the evaluation. Must support structured outputs. input: type: array items: $ref: '#/components/schemas/EvalItem' labels: type: array items: type: string description: The labels to assign to each item in the evaluation. passing_labels: type: array items: type: string description: The labels that indicate a passing result. Must be a subset of labels. required: - type - model - input - passing_labels - labels - name x-oaiMeta: name: Label Model Grader group: graders example: | { "name": "First label grader", "type": "label_model", "model": "gpt-4o-2024-08-06", "input": [ { "type": "message", "role": "system", "content": { "type": "input_text", "text": "Classify the sentiment of the following statement as one of positive, neutral, or negative" } }, { "type": "message", "role": "user", "content": { "type": "input_text", "text": "Statement: {{item.response}}" } } ], "passing_labels": [ "positive" ], "labels": [ "positive", "neutral", "negative" ] } GraderMulti: type: object title: MultiGrader description: A MultiGrader object combines the output of multiple graders to produce a single score. properties: type: type: string enum: - multi default: multi description: The object type, which is always `multi`. x-stainless-const: true name: type: string description: The name of the grader. graders: anyOf: - $ref: '#/components/schemas/GraderStringCheck' - $ref: '#/components/schemas/GraderTextSimilarity' - $ref: '#/components/schemas/GraderPython' - $ref: '#/components/schemas/GraderScoreModel' - $ref: '#/components/schemas/GraderLabelModel' calculate_output: type: string description: A formula to calculate the output based on grader results. required: - name - type - graders - calculate_output x-oaiMeta: name: Multi Grader group: graders example: | { "type": "multi", "name": "example multi grader", "graders": [ { "type": "text_similarity", "name": "example text similarity grader", "input": "The graded text", "reference": "The reference text", "evaluation_metric": "fuzzy_match" }, { "type": "string_check", "name": "Example string check grader", "input": "{{sample.output_text}}", "reference": "{{item.label}}", "operation": "eq" } ], "calculate_output": "0.5 * text_similarity_score + 0.5 * string_check_score)" } GraderPython: type: object title: PythonGrader description: | A PythonGrader object that runs a python script on the input. properties: type: type: string enum: - python description: The object type, which is always `python`. x-stainless-const: true name: type: string description: The name of the grader. source: type: string description: The source code of the python script. image_tag: type: string description: The image tag to use for the python script. required: - type - name - source x-oaiMeta: name: Python Grader group: graders example: | { "type": "python", "name": "Example python grader", "image_tag": "2025-05-08", "source": """ def grade(sample: dict, item: dict) -> float: \""" Returns 1.0 if `output_text` equals `label`, otherwise 0.0. \""" output = sample.get("output_text") label = item.get("label") return 1.0 if output == label else 0.0 """, } GraderScoreModel: type: object title: ScoreModelGrader description: | A ScoreModelGrader object that uses a model to assign a score to the input. properties: type: type: string enum: - score_model description: The object type, which is always `score_model`. x-stainless-const: true name: type: string description: The name of the grader. model: type: string description: The model to use for the evaluation. sampling_params: type: object description: The sampling parameters for the model. properties: seed: anyOf: - type: integer description: | A seed value to initialize the randomness, during sampling. - type: 'null' top_p: anyOf: - type: number default: 1 example: 1 description: | An alternative to temperature for nucleus sampling; 1.0 includes all tokens. - type: 'null' temperature: anyOf: - type: number description: | A higher temperature increases randomness in the outputs. - type: 'null' max_completions_tokens: anyOf: - type: integer minimum: 1 description: | The maximum number of tokens the grader model may generate in its response. - type: 'null' reasoning_effort: $ref: '#/components/schemas/ReasoningEffort' input: type: array items: $ref: '#/components/schemas/EvalItem' description: The input text. This may include template strings. range: type: array items: type: number min_items: 2 max_items: 2 description: The range of the score. Defaults to `[0, 1]`. required: - type - name - input - model x-oaiMeta: name: Score Model Grader group: graders example: | { "type": "score_model", "name": "Example score model grader", "input": [ { "role": "user", "content": ( "Score how close the reference answer is to the model answer. Score 1.0 if they are the same and 0.0 if they are different." " Return just a floating point score\n\n" " Reference answer: {{item.label}}\n\n" " Model answer: {{sample.output_text}}" ), } ], "model": "o4-mini-2025-04-16", "sampling_params": { "temperature": 1, "top_p": 1, "seed": 42, "max_completions_tokens": 32768, "reasoning_effort": "medium" }, } GraderStringCheck: type: object title: StringCheckGrader description: > A StringCheckGrader object that performs a string comparison between input and reference using a specified operation. properties: type: type: string enum: - string_check description: The object type, which is always `string_check`. x-stainless-const: true name: type: string description: The name of the grader. input: type: string description: The input text. This may include template strings. reference: type: string description: The reference text. This may include template strings. operation: type: string enum: - eq - ne - like - ilike description: The string check operation to perform. One of `eq`, `ne`, `like`, or `ilike`. required: - type - name - input - reference - operation x-oaiMeta: name: String Check Grader group: graders example: | { "type": "string_check", "name": "Example string check grader", "input": "{{sample.output_text}}", "reference": "{{item.label}}", "operation": "eq" } GraderTextSimilarity: type: object title: TextSimilarityGrader description: | A TextSimilarityGrader object which grades text based on similarity metrics. properties: type: type: string enum: - text_similarity default: text_similarity description: The type of grader. x-stainless-const: true name: type: string description: The name of the grader. input: type: string description: The text being graded. reference: type: string description: The text being graded against. evaluation_metric: type: string enum: - cosine - fuzzy_match - bleu - gleu - meteor - rouge_1 - rouge_2 - rouge_3 - rouge_4 - rouge_5 - rouge_l description: | The evaluation metric to use. One of `cosine`, `fuzzy_match`, `bleu`, `gleu`, `meteor`, `rouge_1`, `rouge_2`, `rouge_3`, `rouge_4`, `rouge_5`, or `rouge_l`. required: - type - name - input - reference - evaluation_metric x-oaiMeta: name: Text Similarity Grader group: graders example: | { "type": "text_similarity", "name": "Example text similarity grader", "input": "{{sample.output_text}}", "reference": "{{item.label}}", "evaluation_metric": "fuzzy_match" } Image: type: object description: Represents the content or the URL of an image generated by the OpenAI API. properties: b64_json: type: string description: >- The base64-encoded JSON of the generated image. Default value for `gpt-image-1`, and only present if `response_format` is set to `b64_json` for `dall-e-2` and `dall-e-3`. url: type: string description: >- When using `dall-e-2` or `dall-e-3`, the URL of the generated image if `response_format` is set to `url` (default value). Unsupported for `gpt-image-1`. revised_prompt: type: string description: For `dall-e-3` only, the revised prompt that was used to generate the image. ImageEditCompletedEvent: type: object description: | Emitted when image editing has completed and the final image is available. properties: type: type: string description: | The type of the event. Always `image_edit.completed`. enum: - image_edit.completed x-stainless-const: true b64_json: type: string description: | Base64-encoded final edited image data, suitable for rendering as an image. created_at: type: integer description: | The Unix timestamp when the event was created. size: type: string description: | The size of the edited image. enum: - 1024x1024 - 1024x1536 - 1536x1024 - auto quality: type: string description: | The quality setting for the edited image. enum: - low - medium - high - auto background: type: string description: | The background setting for the edited image. enum: - transparent - opaque - auto output_format: type: string description: | The output format for the edited image. enum: - png - webp - jpeg usage: $ref: '#/components/schemas/ImagesUsage' required: - type - b64_json - created_at - size - quality - background - output_format - usage x-oaiMeta: name: image_edit.completed group: images example: | { "type": "image_edit.completed", "b64_json": "...", "created_at": 1620000000, "size": "1024x1024", "quality": "high", "background": "transparent", "output_format": "png", "usage": { "total_tokens": 100, "input_tokens": 50, "output_tokens": 50, "input_tokens_details": { "text_tokens": 10, "image_tokens": 40 } } } ImageEditPartialImageEvent: type: object description: | Emitted when a partial image is available during image editing streaming. properties: type: type: string description: | The type of the event. Always `image_edit.partial_image`. enum: - image_edit.partial_image x-stainless-const: true b64_json: type: string description: | Base64-encoded partial image data, suitable for rendering as an image. created_at: type: integer description: | The Unix timestamp when the event was created. size: type: string description: | The size of the requested edited image. enum: - 1024x1024 - 1024x1536 - 1536x1024 - auto quality: type: string description: | The quality setting for the requested edited image. enum: - low - medium - high - auto background: type: string description: | The background setting for the requested edited image. enum: - transparent - opaque - auto output_format: type: string description: | The output format for the requested edited image. enum: - png - webp - jpeg partial_image_index: type: integer description: | 0-based index for the partial image (streaming). required: - type - b64_json - created_at - size - quality - background - output_format - partial_image_index x-oaiMeta: name: image_edit.partial_image group: images example: | { "type": "image_edit.partial_image", "b64_json": "...", "created_at": 1620000000, "size": "1024x1024", "quality": "high", "background": "transparent", "output_format": "png", "partial_image_index": 0 } ImageEditStreamEvent: anyOf: - $ref: '#/components/schemas/ImageEditPartialImageEvent' - $ref: '#/components/schemas/ImageEditCompletedEvent' discriminator: propertyName: type ImageGenCompletedEvent: type: object description: | Emitted when image generation has completed and the final image is available. properties: type: type: string description: | The type of the event. Always `image_generation.completed`. enum: - image_generation.completed x-stainless-const: true b64_json: type: string description: | Base64-encoded image data, suitable for rendering as an image. created_at: type: integer description: | The Unix timestamp when the event was created. size: type: string description: | The size of the generated image. enum: - 1024x1024 - 1024x1536 - 1536x1024 - auto quality: type: string description: | The quality setting for the generated image. enum: - low - medium - high - auto background: type: string description: | The background setting for the generated image. enum: - transparent - opaque - auto output_format: type: string description: | The output format for the generated image. enum: - png - webp - jpeg usage: $ref: '#/components/schemas/ImagesUsage' required: - type - b64_json - created_at - size - quality - background - output_format - usage x-oaiMeta: name: image_generation.completed group: images example: | { "type": "image_generation.completed", "b64_json": "...", "created_at": 1620000000, "size": "1024x1024", "quality": "high", "background": "transparent", "output_format": "png", "usage": { "total_tokens": 100, "input_tokens": 50, "output_tokens": 50, "input_tokens_details": { "text_tokens": 10, "image_tokens": 40 } } } ImageGenPartialImageEvent: type: object description: | Emitted when a partial image is available during image generation streaming. properties: type: type: string description: | The type of the event. Always `image_generation.partial_image`. enum: - image_generation.partial_image x-stainless-const: true b64_json: type: string description: | Base64-encoded partial image data, suitable for rendering as an image. created_at: type: integer description: | The Unix timestamp when the event was created. size: type: string description: | The size of the requested image. enum: - 1024x1024 - 1024x1536 - 1536x1024 - auto quality: type: string description: | The quality setting for the requested image. enum: - low - medium - high - auto background: type: string description: | The background setting for the requested image. enum: - transparent - opaque - auto output_format: type: string description: | The output format for the requested image. enum: - png - webp - jpeg partial_image_index: type: integer description: | 0-based index for the partial image (streaming). required: - type - b64_json - created_at - size - quality - background - output_format - partial_image_index x-oaiMeta: name: image_generation.partial_image group: images example: | { "type": "image_generation.partial_image", "b64_json": "...", "created_at": 1620000000, "size": "1024x1024", "quality": "high", "background": "transparent", "output_format": "png", "partial_image_index": 0 } ImageGenStreamEvent: anyOf: - $ref: '#/components/schemas/ImageGenPartialImageEvent' - $ref: '#/components/schemas/ImageGenCompletedEvent' discriminator: propertyName: type ImageGenTool: type: object title: Image generation tool description: | A tool that generates images using a model like `gpt-image-1`. properties: type: type: string enum: - image_generation description: | The type of the image generation tool. Always `image_generation`. x-stainless-const: true model: type: string enum: - gpt-image-1 - gpt-image-1-mini description: | The image generation model to use. Default: `gpt-image-1`. default: gpt-image-1 quality: type: string enum: - low - medium - high - auto description: | The quality of the generated image. One of `low`, `medium`, `high`, or `auto`. Default: `auto`. default: auto size: type: string enum: - 1024x1024 - 1024x1536 - 1536x1024 - auto description: | The size of the generated image. One of `1024x1024`, `1024x1536`, `1536x1024`, or `auto`. Default: `auto`. default: auto output_format: type: string enum: - png - webp - jpeg description: | The output format of the generated image. One of `png`, `webp`, or `jpeg`. Default: `png`. default: png output_compression: type: integer minimum: 0 maximum: 100 description: | Compression level for the output image. Default: 100. default: 100 moderation: type: string enum: - auto - low description: | Moderation level for the generated image. Default: `auto`. default: auto background: type: string enum: - transparent - opaque - auto description: | Background type for the generated image. One of `transparent`, `opaque`, or `auto`. Default: `auto`. default: auto input_fidelity: anyOf: - $ref: '#/components/schemas/InputFidelity' - type: 'null' input_image_mask: type: object description: | Optional mask for inpainting. Contains `image_url` (string, optional) and `file_id` (string, optional). properties: image_url: type: string description: | Base64-encoded mask image. file_id: type: string description: | File ID for the mask image. required: [] additionalProperties: false partial_images: type: integer minimum: 0 maximum: 3 description: | Number of partial images to generate in streaming mode, from 0 (default value) to 3. default: 0 required: - type ImageGenToolCall: type: object title: Image generation call description: | An image generation request made by the model. properties: type: type: string enum: - image_generation_call description: | The type of the image generation call. Always `image_generation_call`. x-stainless-const: true id: type: string description: | The unique ID of the image generation call. status: type: string enum: - in_progress - completed - generating - failed description: | The status of the image generation call. result: anyOf: - type: string description: | The generated image encoded in base64. - type: 'null' required: - type - id - status - result ImagesResponse: type: object title: Image generation response description: The response from the image generation endpoint. properties: created: type: integer description: The Unix timestamp (in seconds) of when the image was created. data: type: array description: The list of generated images. items: $ref: '#/components/schemas/Image' background: type: string description: The background parameter used for the image generation. Either `transparent` or `opaque`. enum: - transparent - opaque output_format: type: string description: The output format of the image generation. Either `png`, `webp`, or `jpeg`. enum: - png - webp - jpeg size: type: string description: The size of the image generated. Either `1024x1024`, `1024x1536`, or `1536x1024`. enum: - 1024x1024 - 1024x1536 - 1536x1024 quality: type: string description: The quality of the image generated. Either `low`, `medium`, or `high`. enum: - low - medium - high usage: $ref: '#/components/schemas/ImageGenUsage' required: - created x-oaiMeta: name: The image generation response group: images example: | { "created": 1713833628, "data": [ { "b64_json": "..." } ], "background": "transparent", "output_format": "png", "size": "1024x1024", "quality": "high", "usage": { "total_tokens": 100, "input_tokens": 50, "output_tokens": 50, "input_tokens_details": { "text_tokens": 10, "image_tokens": 40 } } } ImagesUsage: type: object description: | For `gpt-image-1` only, the token usage information for the image generation. required: - total_tokens - input_tokens - output_tokens - input_tokens_details properties: total_tokens: type: integer description: | The total number of tokens (images and text) used for the image generation. input_tokens: type: integer description: The number of tokens (images and text) in the input prompt. output_tokens: type: integer description: The number of image tokens in the output image. input_tokens_details: type: object description: The input tokens detailed information for the image generation. required: - text_tokens - image_tokens properties: text_tokens: type: integer description: The number of text tokens in the input prompt. image_tokens: type: integer description: The number of image tokens in the input prompt. InputAudio: type: object title: Input audio description: | An audio input to the model. properties: type: type: string description: | The type of the input item. Always `input_audio`. enum: - input_audio x-stainless-const: true input_audio: type: object properties: data: type: string description: | Base64-encoded audio data. format: type: string description: | The format of the audio data. Currently supported formats are `mp3` and `wav`. enum: - mp3 - wav required: - data - format required: - type - input_audio InputContent: discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/InputTextContent' - $ref: '#/components/schemas/InputImageContent' - $ref: '#/components/schemas/InputFileContent' InputItem: discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/EasyInputMessage' - type: object title: Item description: | An item representing part of the context for the response to be generated by the model. Can contain text, images, and audio inputs, as well as previous assistant responses and tool call outputs. $ref: '#/components/schemas/Item' - $ref: '#/components/schemas/ItemReferenceParam' InputMessage: type: object title: Input message description: | A message input to the model with a role indicating instruction following hierarchy. Instructions given with the `developer` or `system` role take precedence over instructions given with the `user` role. properties: type: type: string description: | The type of the message input. Always set to `message`. enum: - message x-stainless-const: true role: type: string description: | The role of the message input. One of `user`, `system`, or `developer`. enum: - user - system - developer status: type: string description: | The status of item. One of `in_progress`, `completed`, or `incomplete`. Populated when items are returned via API. enum: - in_progress - completed - incomplete content: $ref: '#/components/schemas/InputMessageContentList' required: - role - content InputMessageContentList: type: array title: Input item content list description: | A list of one or many input items to the model, containing different content types. items: $ref: '#/components/schemas/InputContent' InputMessageResource: allOf: - $ref: '#/components/schemas/InputMessage' - type: object properties: id: type: string description: | The unique ID of the message input. required: - id InputParam: description: | Text, image, or file inputs to the model, used to generate a response. Learn more: - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) - [Image inputs](https://platform.openai.com/docs/guides/images) - [File inputs](https://platform.openai.com/docs/guides/pdf-files) - [Conversation state](https://platform.openai.com/docs/guides/conversation-state) - [Function calling](https://platform.openai.com/docs/guides/function-calling) anyOf: - type: string title: Text input description: | A text input to the model, equivalent to a text input with the `user` role. - type: array title: Input item list description: | A list of one or many input items to the model, containing different content types. items: $ref: '#/components/schemas/InputItem' Invite: type: object description: Represents an individual `invite` to the organization. properties: object: type: string enum: - organization.invite description: The object type, which is always `organization.invite` x-stainless-const: true id: type: string description: The identifier, which can be referenced in API endpoints email: type: string description: The email address of the individual to whom the invite was sent role: type: string enum: - owner - reader description: '`owner` or `reader`' status: type: string enum: - accepted - expired - pending description: '`accepted`,`expired`, or `pending`' invited_at: type: integer description: The Unix timestamp (in seconds) of when the invite was sent. expires_at: type: integer description: The Unix timestamp (in seconds) of when the invite expires. accepted_at: type: integer description: The Unix timestamp (in seconds) of when the invite was accepted. projects: type: array description: The projects that were granted membership upon acceptance of the invite. items: type: object properties: id: type: string description: Project's public ID role: type: string enum: - member - owner description: Project membership role required: - object - id - email - role - status - invited_at - expires_at x-oaiMeta: name: The invite object example: | { "object": "organization.invite", "id": "invite-abc", "email": "user@example.com", "role": "owner", "status": "accepted", "invited_at": 1711471533, "expires_at": 1711471533, "accepted_at": 1711471533, "projects": [ { "id": "project-xyz", "role": "member" } ] } InviteDeleteResponse: type: object properties: object: type: string enum: - organization.invite.deleted description: The object type, which is always `organization.invite.deleted` x-stainless-const: true id: type: string deleted: type: boolean required: - object - id - deleted InviteListResponse: type: object properties: object: type: string enum: - list description: The object type, which is always `list` x-stainless-const: true data: type: array items: $ref: '#/components/schemas/Invite' first_id: type: string description: The first `invite_id` in the retrieved `list` last_id: type: string description: The last `invite_id` in the retrieved `list` has_more: type: boolean description: The `has_more` property is used for pagination to indicate there are additional results. required: - object - data InviteRequest: type: object properties: email: type: string description: Send an email to this address role: type: string enum: - reader - owner description: '`owner` or `reader`' projects: type: array description: >- An array of projects to which membership is granted at the same time the org invite is accepted. If omitted, the user will be invited to the default project for compatibility with legacy behavior. items: type: object properties: id: type: string description: Project's public ID role: type: string enum: - member - owner description: Project membership role required: - id - role required: - email - role Item: type: object description: | Content item used to generate a response. discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/InputMessage' - $ref: '#/components/schemas/OutputMessage' - $ref: '#/components/schemas/FileSearchToolCall' - $ref: '#/components/schemas/ComputerToolCall' - $ref: '#/components/schemas/ComputerCallOutputItemParam' - $ref: '#/components/schemas/WebSearchToolCall' - $ref: '#/components/schemas/FunctionToolCall' - $ref: '#/components/schemas/FunctionCallOutputItemParam' - $ref: '#/components/schemas/ReasoningItem' - $ref: '#/components/schemas/ImageGenToolCall' - $ref: '#/components/schemas/CodeInterpreterToolCall' - $ref: '#/components/schemas/LocalShellToolCall' - $ref: '#/components/schemas/LocalShellToolCallOutput' - $ref: '#/components/schemas/FunctionShellCallItemParam' - $ref: '#/components/schemas/FunctionShellCallOutputItemParam' - $ref: '#/components/schemas/ApplyPatchToolCallItemParam' - $ref: '#/components/schemas/ApplyPatchToolCallOutputItemParam' - $ref: '#/components/schemas/MCPListTools' - $ref: '#/components/schemas/MCPApprovalRequest' - $ref: '#/components/schemas/MCPApprovalResponse' - $ref: '#/components/schemas/MCPToolCall' - $ref: '#/components/schemas/CustomToolCallOutput' - $ref: '#/components/schemas/CustomToolCall' ItemResource: description: | Content item used to generate a response. discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/InputMessageResource' - $ref: '#/components/schemas/OutputMessage' - $ref: '#/components/schemas/FileSearchToolCall' - $ref: '#/components/schemas/ComputerToolCall' - $ref: '#/components/schemas/ComputerToolCallOutputResource' - $ref: '#/components/schemas/WebSearchToolCall' - $ref: '#/components/schemas/FunctionToolCallResource' - $ref: '#/components/schemas/FunctionToolCallOutputResource' - $ref: '#/components/schemas/ImageGenToolCall' - $ref: '#/components/schemas/CodeInterpreterToolCall' - $ref: '#/components/schemas/LocalShellToolCall' - $ref: '#/components/schemas/LocalShellToolCallOutput' - $ref: '#/components/schemas/FunctionShellCall' - $ref: '#/components/schemas/FunctionShellCallOutput' - $ref: '#/components/schemas/ApplyPatchToolCall' - $ref: '#/components/schemas/ApplyPatchToolCallOutput' - $ref: '#/components/schemas/MCPListTools' - $ref: '#/components/schemas/MCPApprovalRequest' - $ref: '#/components/schemas/MCPApprovalResponseResource' - $ref: '#/components/schemas/MCPToolCall' ListAssistantsResponse: type: object properties: object: type: string example: list data: type: array items: $ref: '#/components/schemas/AssistantObject' first_id: type: string example: asst_abc123 last_id: type: string example: asst_abc456 has_more: type: boolean example: false required: - object - data - first_id - last_id - has_more x-oaiMeta: name: List assistants response object group: chat example: | { "object": "list", "data": [ { "id": "asst_abc123", "object": "assistant", "created_at": 1698982736, "name": "Coding Tutor", "description": null, "model": "gpt-4o", "instructions": "You are a helpful assistant designed to make me better at coding!", "tools": [], "tool_resources": {}, "metadata": {}, "top_p": 1.0, "temperature": 1.0, "response_format": "auto" }, { "id": "asst_abc456", "object": "assistant", "created_at": 1698982718, "name": "My Assistant", "description": null, "model": "gpt-4o", "instructions": "You are a helpful assistant designed to make me better at coding!", "tools": [], "tool_resources": {}, "metadata": {}, "top_p": 1.0, "temperature": 1.0, "response_format": "auto" }, { "id": "asst_abc789", "object": "assistant", "created_at": 1698982643, "name": null, "description": null, "model": "gpt-4o", "instructions": null, "tools": [], "tool_resources": {}, "metadata": {}, "top_p": 1.0, "temperature": 1.0, "response_format": "auto" } ], "first_id": "asst_abc123", "last_id": "asst_abc789", "has_more": false } ListAuditLogsResponse: type: object properties: object: type: string enum: - list x-stainless-const: true data: type: array items: $ref: '#/components/schemas/AuditLog' first_id: type: string example: audit_log-defb456h8dks last_id: type: string example: audit_log-hnbkd8s93s has_more: type: boolean required: - object - data - first_id - last_id - has_more ListBatchesResponse: type: object properties: data: type: array items: $ref: '#/components/schemas/Batch' first_id: type: string example: batch_abc123 last_id: type: string example: batch_abc456 has_more: type: boolean object: type: string enum: - list x-stainless-const: true required: - object - data - has_more ListCertificatesResponse: type: object properties: data: type: array items: $ref: '#/components/schemas/Certificate' first_id: type: string example: cert_abc last_id: type: string example: cert_abc has_more: type: boolean object: type: string enum: - list x-stainless-const: true required: - object - data - has_more ListFilesResponse: type: object properties: object: type: string example: list data: type: array items: $ref: '#/components/schemas/OpenAIFile' first_id: type: string example: file-abc123 last_id: type: string example: file-abc456 has_more: type: boolean example: false required: - object - data - first_id - last_id - has_more ListFineTuningCheckpointPermissionResponse: type: object properties: data: type: array items: $ref: '#/components/schemas/FineTuningCheckpointPermission' object: type: string enum: - list x-stainless-const: true first_id: anyOf: - type: string - type: 'null' last_id: anyOf: - type: string - type: 'null' has_more: type: boolean required: - object - data - has_more ListFineTuningJobCheckpointsResponse: type: object properties: data: type: array items: $ref: '#/components/schemas/FineTuningJobCheckpoint' object: type: string enum: - list x-stainless-const: true first_id: anyOf: - type: string - type: 'null' last_id: anyOf: - type: string - type: 'null' has_more: type: boolean required: - object - data - has_more ListFineTuningJobEventsResponse: type: object properties: data: type: array items: $ref: '#/components/schemas/FineTuningJobEvent' object: type: string enum: - list x-stainless-const: true has_more: type: boolean required: - object - data - has_more ListMessagesResponse: properties: object: type: string example: list data: type: array items: $ref: '#/components/schemas/MessageObject' first_id: type: string example: msg_abc123 last_id: type: string example: msg_abc123 has_more: type: boolean example: false required: - object - data - first_id - last_id - has_more ListModelsResponse: type: object properties: object: type: string enum: - list x-stainless-const: true data: type: array items: $ref: '#/components/schemas/Model' required: - object - data ListPaginatedFineTuningJobsResponse: type: object properties: data: type: array items: $ref: '#/components/schemas/FineTuningJob' has_more: type: boolean object: type: string enum: - list x-stainless-const: true required: - object - data - has_more ListRunStepsResponse: properties: object: type: string example: list data: type: array items: $ref: '#/components/schemas/RunStepObject' first_id: type: string example: step_abc123 last_id: type: string example: step_abc456 has_more: type: boolean example: false required: - object - data - first_id - last_id - has_more ListRunsResponse: type: object properties: object: type: string example: list data: type: array items: $ref: '#/components/schemas/RunObject' first_id: type: string example: run_abc123 last_id: type: string example: run_abc456 has_more: type: boolean example: false required: - object - data - first_id - last_id - has_more ListVectorStoreFilesResponse: properties: object: type: string example: list data: type: array items: $ref: '#/components/schemas/VectorStoreFileObject' first_id: type: string example: file-abc123 last_id: type: string example: file-abc456 has_more: type: boolean example: false required: - object - data - first_id - last_id - has_more ListVectorStoresResponse: properties: object: type: string example: list data: type: array items: $ref: '#/components/schemas/VectorStoreObject' first_id: type: string example: vs_abc123 last_id: type: string example: vs_abc456 has_more: type: boolean example: false required: - object - data - first_id - last_id - has_more LocalShellToolCall: type: object title: Local shell call description: | A tool call to run a command on the local shell. properties: type: type: string enum: - local_shell_call description: | The type of the local shell call. Always `local_shell_call`. x-stainless-const: true id: type: string description: | The unique ID of the local shell call. call_id: type: string description: | The unique ID of the local shell tool call generated by the model. action: $ref: '#/components/schemas/LocalShellExecAction' status: type: string enum: - in_progress - completed - incomplete description: | The status of the local shell call. required: - type - id - call_id - action - status LocalShellToolCallOutput: type: object title: Local shell call output description: | The output of a local shell tool call. properties: type: type: string enum: - local_shell_call_output description: | The type of the local shell tool call output. Always `local_shell_call_output`. x-stainless-const: true id: type: string description: | The unique ID of the local shell tool call generated by the model. output: type: string description: | A JSON string of the output of the local shell tool call. status: anyOf: - type: string enum: - in_progress - completed - incomplete description: | The status of the item. One of `in_progress`, `completed`, or `incomplete`. - type: 'null' required: - id - type - call_id - output LogProbProperties: type: object description: | A log probability object. properties: token: type: string description: | The token that was used to generate the log probability. logprob: type: number description: | The log probability of the token. bytes: type: array items: type: integer description: | The bytes that were used to generate the log probability. required: - token - logprob - bytes MCPApprovalRequest: type: object title: MCP approval request description: | A request for human approval of a tool invocation. properties: type: type: string enum: - mcp_approval_request description: | The type of the item. Always `mcp_approval_request`. x-stainless-const: true id: type: string description: | The unique ID of the approval request. server_label: type: string description: | The label of the MCP server making the request. name: type: string description: | The name of the tool to run. arguments: type: string description: | A JSON string of arguments for the tool. required: - type - id - server_label - name - arguments MCPApprovalResponse: type: object title: MCP approval response description: | A response to an MCP approval request. properties: type: type: string enum: - mcp_approval_response description: | The type of the item. Always `mcp_approval_response`. x-stainless-const: true id: anyOf: - type: string description: | The unique ID of the approval response - type: 'null' approval_request_id: type: string description: | The ID of the approval request being answered. approve: type: boolean description: | Whether the request was approved. reason: anyOf: - type: string description: | Optional reason for the decision. - type: 'null' required: - type - request_id - approve - approval_request_id MCPApprovalResponseResource: type: object title: MCP approval response description: | A response to an MCP approval request. properties: type: type: string enum: - mcp_approval_response description: | The type of the item. Always `mcp_approval_response`. x-stainless-const: true id: type: string description: | The unique ID of the approval response approval_request_id: type: string description: | The ID of the approval request being answered. approve: type: boolean description: | Whether the request was approved. reason: anyOf: - type: string description: | Optional reason for the decision. - type: 'null' required: - type - id - request_id - approve - approval_request_id MCPListTools: type: object title: MCP list tools description: | A list of tools available on an MCP server. properties: type: type: string enum: - mcp_list_tools description: | The type of the item. Always `mcp_list_tools`. x-stainless-const: true id: type: string description: | The unique ID of the list. server_label: type: string description: | The label of the MCP server. tools: type: array items: $ref: '#/components/schemas/MCPListToolsTool' description: | The tools available on the server. error: anyOf: - type: string description: | Error message if the server could not list tools. - type: 'null' required: - type - id - server_label - tools MCPListToolsTool: type: object title: MCP list tools tool description: | A tool available on an MCP server. properties: name: type: string description: | The name of the tool. description: anyOf: - type: string description: | The description of the tool. - type: 'null' input_schema: type: object description: | The JSON schema describing the tool's input. annotations: anyOf: - type: object description: | Additional annotations about the tool. - type: 'null' required: - name - input_schema MCPTool: type: object title: MCP tool description: | Give the model access to additional tools via remote Model Context Protocol (MCP) servers. [Learn more about MCP](https://platform.openai.com/docs/guides/tools-remote-mcp). properties: type: type: string enum: - mcp description: The type of the MCP tool. Always `mcp`. x-stainless-const: true server_label: type: string description: | A label for this MCP server, used to identify it in tool calls. server_url: type: string description: | The URL for the MCP server. One of `server_url` or `connector_id` must be provided. connector_id: type: string enum: - connector_dropbox - connector_gmail - connector_googlecalendar - connector_googledrive - connector_microsoftteams - connector_outlookcalendar - connector_outlookemail - connector_sharepoint description: | Identifier for service connectors, like those available in ChatGPT. One of `server_url` or `connector_id` must be provided. Learn more about service connectors [here](https://platform.openai.com/docs/guides/tools-remote-mcp#connectors). Currently supported `connector_id` values are: - Dropbox: `connector_dropbox` - Gmail: `connector_gmail` - Google Calendar: `connector_googlecalendar` - Google Drive: `connector_googledrive` - Microsoft Teams: `connector_microsoftteams` - Outlook Calendar: `connector_outlookcalendar` - Outlook Email: `connector_outlookemail` - SharePoint: `connector_sharepoint` authorization: type: string description: | An OAuth access token that can be used with a remote MCP server, either with a custom MCP server URL or a service connector. Your application must handle the OAuth authorization flow and provide the token here. server_description: type: string description: | Optional description of the MCP server, used to provide more context. headers: anyOf: - type: object additionalProperties: type: string description: | Optional HTTP headers to send to the MCP server. Use for authentication or other purposes. - type: 'null' allowed_tools: anyOf: - description: | List of allowed tool names or a filter object. anyOf: - type: array title: MCP allowed tools description: A string array of allowed tool names items: type: string - $ref: '#/components/schemas/MCPToolFilter' - type: 'null' require_approval: anyOf: - description: Specify which of the MCP server's tools require approval. default: always anyOf: - type: object title: MCP tool approval filter description: | Specify which of the MCP server's tools require approval. Can be `always`, `never`, or a filter object associated with tools that require approval. properties: always: $ref: '#/components/schemas/MCPToolFilter' never: $ref: '#/components/schemas/MCPToolFilter' additionalProperties: false - type: string title: MCP tool approval setting description: | Specify a single approval policy for all tools. One of `always` or `never`. When set to `always`, all tools will require approval. When set to `never`, all tools will not require approval. enum: - always - never - type: 'null' required: - type - server_label MCPToolCall: type: object title: MCP tool call description: | An invocation of a tool on an MCP server. properties: type: type: string enum: - mcp_call description: | The type of the item. Always `mcp_call`. x-stainless-const: true id: type: string description: | The unique ID of the tool call. server_label: type: string description: | The label of the MCP server running the tool. name: type: string description: | The name of the tool that was run. arguments: type: string description: | A JSON string of the arguments passed to the tool. output: anyOf: - type: string description: | The output from the tool call. - type: 'null' error: anyOf: - type: string description: | The error from the tool call, if any. - type: 'null' status: $ref: '#/components/schemas/MCPToolCallStatus' description: > The status of the tool call. One of `in_progress`, `completed`, `incomplete`, `calling`, or `failed`. approval_request_id: anyOf: - type: string description: > Unique identifier for the MCP tool call approval request. Include this value in a subsequent `mcp_approval_response` input to approve or reject the corresponding tool call. - type: 'null' required: - type - id - server_label - name - arguments MCPToolFilter: type: object title: MCP tool filter description: | A filter object to specify which tools are allowed. properties: tool_names: type: array title: MCP allowed tools items: type: string description: List of allowed tool names. read_only: type: boolean description: > Indicates whether or not a tool modifies data or is read-only. If an MCP server is [annotated with `readOnlyHint`](https://modelcontextprotocol.io/specification/2025-06-18/schema#toolannotations-readonlyhint), it will match this filter. required: [] additionalProperties: false MessageContentImageFileObject: title: Image file type: object description: >- References an image [File](https://platform.openai.com/docs/api-reference/files) in the content of a message. properties: type: description: Always `image_file`. type: string enum: - image_file x-stainless-const: true image_file: type: object properties: file_id: description: >- The [File](https://platform.openai.com/docs/api-reference/files) ID of the image in the message content. Set `purpose="vision"` when uploading the File if you need to later display the file content. type: string detail: type: string description: >- Specifies the detail level of the image if specified by the user. `low` uses fewer tokens, you can opt in to high resolution using `high`. enum: - auto - low - high default: auto required: - file_id required: - type - image_file MessageContentImageUrlObject: title: Image URL type: object description: References an image URL in the content of a message. properties: type: type: string enum: - image_url description: The type of the content part. x-stainless-const: true image_url: type: object properties: url: type: string description: 'The external URL of the image, must be a supported image types: jpeg, jpg, png, gif, webp.' format: uri detail: type: string description: >- Specifies the detail level of the image. `low` uses fewer tokens, you can opt in to high resolution using `high`. Default value is `auto` enum: - auto - low - high default: auto required: - url required: - type - image_url MessageContentRefusalObject: title: Refusal type: object description: The refusal content generated by the assistant. properties: type: description: Always `refusal`. type: string enum: - refusal x-stainless-const: true refusal: type: string required: - type - refusal MessageContentTextAnnotationsFileCitationObject: title: File citation type: object description: >- A citation within the message that points to a specific quote from a specific File associated with the assistant or the message. Generated when the assistant uses the "file_search" tool to search files. properties: type: description: Always `file_citation`. type: string enum: - file_citation x-stainless-const: true text: description: The text in the message content that needs to be replaced. type: string file_citation: type: object properties: file_id: description: The ID of the specific File the citation is from. type: string required: - file_id start_index: type: integer minimum: 0 end_index: type: integer minimum: 0 required: - type - text - file_citation - start_index - end_index MessageContentTextAnnotationsFilePathObject: title: File path type: object description: >- A URL for the file that's generated when the assistant used the `code_interpreter` tool to generate a file. properties: type: description: Always `file_path`. type: string enum: - file_path x-stainless-const: true text: description: The text in the message content that needs to be replaced. type: string file_path: type: object properties: file_id: description: The ID of the file that was generated. type: string required: - file_id start_index: type: integer minimum: 0 end_index: type: integer minimum: 0 required: - type - text - file_path - start_index - end_index MessageContentTextObject: title: Text type: object description: The text content that is part of a message. properties: type: description: Always `text`. type: string enum: - text x-stainless-const: true text: type: object properties: value: description: The data that makes up the text. type: string annotations: type: array items: $ref: '#/components/schemas/TextAnnotation' required: - value - annotations required: - type - text MessageDeltaContentImageFileObject: title: Image file type: object description: >- References an image [File](https://platform.openai.com/docs/api-reference/files) in the content of a message. properties: index: type: integer description: The index of the content part in the message. type: description: Always `image_file`. type: string enum: - image_file x-stainless-const: true image_file: type: object properties: file_id: description: >- The [File](https://platform.openai.com/docs/api-reference/files) ID of the image in the message content. Set `purpose="vision"` when uploading the File if you need to later display the file content. type: string detail: type: string description: >- Specifies the detail level of the image if specified by the user. `low` uses fewer tokens, you can opt in to high resolution using `high`. enum: - auto - low - high default: auto required: - index - type MessageDeltaContentImageUrlObject: title: Image URL type: object description: References an image URL in the content of a message. properties: index: type: integer description: The index of the content part in the message. type: description: Always `image_url`. type: string enum: - image_url x-stainless-const: true image_url: type: object properties: url: description: 'The URL of the image, must be a supported image types: jpeg, jpg, png, gif, webp.' type: string detail: type: string description: >- Specifies the detail level of the image. `low` uses fewer tokens, you can opt in to high resolution using `high`. enum: - auto - low - high default: auto required: - index - type MessageDeltaContentRefusalObject: title: Refusal type: object description: The refusal content that is part of a message. properties: index: type: integer description: The index of the refusal part in the message. type: description: Always `refusal`. type: string enum: - refusal x-stainless-const: true refusal: type: string required: - index - type MessageDeltaContentTextAnnotationsFileCitationObject: title: File citation type: object description: >- A citation within the message that points to a specific quote from a specific File associated with the assistant or the message. Generated when the assistant uses the "file_search" tool to search files. properties: index: type: integer description: The index of the annotation in the text content part. type: description: Always `file_citation`. type: string enum: - file_citation x-stainless-const: true text: description: The text in the message content that needs to be replaced. type: string file_citation: type: object properties: file_id: description: The ID of the specific File the citation is from. type: string quote: description: The specific quote in the file. type: string start_index: type: integer minimum: 0 end_index: type: integer minimum: 0 required: - index - type MessageDeltaContentTextAnnotationsFilePathObject: title: File path type: object description: >- A URL for the file that's generated when the assistant used the `code_interpreter` tool to generate a file. properties: index: type: integer description: The index of the annotation in the text content part. type: description: Always `file_path`. type: string enum: - file_path x-stainless-const: true text: description: The text in the message content that needs to be replaced. type: string file_path: type: object properties: file_id: description: The ID of the file that was generated. type: string start_index: type: integer minimum: 0 end_index: type: integer minimum: 0 required: - index - type MessageDeltaContentTextObject: title: Text type: object description: The text content that is part of a message. properties: index: type: integer description: The index of the content part in the message. type: description: Always `text`. type: string enum: - text x-stainless-const: true text: type: object properties: value: description: The data that makes up the text. type: string annotations: type: array items: $ref: '#/components/schemas/TextAnnotationDelta' required: - index - type MessageDeltaObject: type: object title: Message delta object description: | Represents a message delta i.e. any changed fields on a message during streaming. properties: id: description: The identifier of the message, which can be referenced in API endpoints. type: string object: description: The object type, which is always `thread.message.delta`. type: string enum: - thread.message.delta x-stainless-const: true delta: description: The delta containing the fields that have changed on the Message. type: object properties: role: description: The entity that produced the message. One of `user` or `assistant`. type: string enum: - user - assistant content: description: The content of the message in array of text and/or images. type: array items: $ref: '#/components/schemas/MessageContentDelta' required: - id - object - delta x-oaiMeta: name: The message delta object beta: true example: | { "id": "msg_123", "object": "thread.message.delta", "delta": { "content": [ { "index": 0, "type": "text", "text": { "value": "Hello", "annotations": [] } } ] } } MessageObject: type: object title: The message object description: Represents a message within a [thread](https://platform.openai.com/docs/api-reference/threads). properties: id: description: The identifier, which can be referenced in API endpoints. type: string object: description: The object type, which is always `thread.message`. type: string enum: - thread.message x-stainless-const: true created_at: description: The Unix timestamp (in seconds) for when the message was created. type: integer thread_id: description: >- The [thread](https://platform.openai.com/docs/api-reference/threads) ID that this message belongs to. type: string status: description: The status of the message, which can be either `in_progress`, `incomplete`, or `completed`. type: string enum: - in_progress - incomplete - completed incomplete_details: anyOf: - description: On an incomplete message, details about why the message is incomplete. type: object properties: reason: type: string description: The reason the message is incomplete. enum: - content_filter - max_tokens - run_cancelled - run_expired - run_failed required: - reason - type: 'null' completed_at: anyOf: - description: The Unix timestamp (in seconds) for when the message was completed. type: integer - type: 'null' incomplete_at: anyOf: - description: The Unix timestamp (in seconds) for when the message was marked as incomplete. type: integer - type: 'null' role: description: The entity that produced the message. One of `user` or `assistant`. type: string enum: - user - assistant content: description: The content of the message in array of text and/or images. type: array items: $ref: '#/components/schemas/MessageContent' assistant_id: anyOf: - description: >- If applicable, the ID of the [assistant](https://platform.openai.com/docs/api-reference/assistants) that authored this message. type: string - type: 'null' run_id: anyOf: - description: >- The ID of the [run](https://platform.openai.com/docs/api-reference/runs) associated with the creation of this message. Value is `null` when messages are created manually using the create message or create thread endpoints. type: string - type: 'null' attachments: anyOf: - type: array items: type: object properties: file_id: type: string description: The ID of the file to attach to the message. tools: description: The tools to add this file to. type: array items: anyOf: - $ref: '#/components/schemas/AssistantToolsCode' - $ref: '#/components/schemas/AssistantToolsFileSearchTypeOnly' description: A list of files attached to the message, and the tools they were added to. - type: 'null' metadata: $ref: '#/components/schemas/Metadata' required: - id - object - created_at - thread_id - status - incomplete_details - completed_at - incomplete_at - role - content - assistant_id - run_id - attachments - metadata x-oaiMeta: name: The message object beta: true example: | { "id": "msg_abc123", "object": "thread.message", "created_at": 1698983503, "thread_id": "thread_abc123", "role": "assistant", "content": [ { "type": "text", "text": { "value": "Hi! How can I help you today?", "annotations": [] } } ], "assistant_id": "asst_abc123", "run_id": "run_abc123", "attachments": [], "metadata": {} } MessageRequestContentTextObject: title: Text type: object description: The text content that is part of a message. properties: type: description: Always `text`. type: string enum: - text x-stainless-const: true text: type: string description: Text content to be sent to the model required: - type - text MessageStreamEvent: anyOf: - type: object properties: event: type: string enum: - thread.message.created x-stainless-const: true data: $ref: '#/components/schemas/MessageObject' required: - event - data description: >- Occurs when a [message](https://platform.openai.com/docs/api-reference/messages/object) is created. x-oaiMeta: dataDescription: '`data` is a [message](/docs/api-reference/messages/object)' - type: object properties: event: type: string enum: - thread.message.in_progress x-stainless-const: true data: $ref: '#/components/schemas/MessageObject' required: - event - data description: >- Occurs when a [message](https://platform.openai.com/docs/api-reference/messages/object) moves to an `in_progress` state. x-oaiMeta: dataDescription: '`data` is a [message](/docs/api-reference/messages/object)' - type: object properties: event: type: string enum: - thread.message.delta x-stainless-const: true data: $ref: '#/components/schemas/MessageDeltaObject' required: - event - data description: >- Occurs when parts of a [Message](https://platform.openai.com/docs/api-reference/messages/object) are being streamed. x-oaiMeta: dataDescription: '`data` is a [message delta](/docs/api-reference/assistants-streaming/message-delta-object)' - type: object properties: event: type: string enum: - thread.message.completed x-stainless-const: true data: $ref: '#/components/schemas/MessageObject' required: - event - data description: >- Occurs when a [message](https://platform.openai.com/docs/api-reference/messages/object) is completed. x-oaiMeta: dataDescription: '`data` is a [message](/docs/api-reference/messages/object)' - type: object properties: event: type: string enum: - thread.message.incomplete x-stainless-const: true data: $ref: '#/components/schemas/MessageObject' required: - event - data description: >- Occurs when a [message](https://platform.openai.com/docs/api-reference/messages/object) ends before it is completed. x-oaiMeta: dataDescription: '`data` is a [message](/docs/api-reference/messages/object)' discriminator: propertyName: event Metadata: anyOf: - type: object description: | Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard. Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters. additionalProperties: type: string x-oaiTypeLabel: map - type: 'null' Model: title: Model description: Describes an OpenAI model offering that can be used with the API. properties: id: type: string description: The model identifier, which can be referenced in the API endpoints. created: type: integer description: The Unix timestamp (in seconds) when the model was created. object: type: string description: The object type, which is always "model". enum: - model x-stainless-const: true owned_by: type: string description: The organization that owns the model. required: - id - object - created - owned_by x-oaiMeta: name: The model object example: | { "id": "VAR_chat_model_id", "object": "model", "created": 1686935002, "owned_by": "openai" } ModelIds: anyOf: - $ref: '#/components/schemas/ModelIdsShared' - $ref: '#/components/schemas/ModelIdsResponses' ModelIdsResponses: example: gpt-4o anyOf: - $ref: '#/components/schemas/ModelIdsShared' - type: string title: ResponsesOnlyModel enum: - o1-pro - o1-pro-2025-03-19 - o3-pro - o3-pro-2025-06-10 - o3-deep-research - o3-deep-research-2025-06-26 - o4-mini-deep-research - o4-mini-deep-research-2025-06-26 - computer-use-preview - computer-use-preview-2025-03-11 - gpt-5-codex - gpt-5-pro - gpt-5-pro-2025-10-06 ModelIdsShared: example: gpt-4o anyOf: - type: string - $ref: '#/components/schemas/ChatModel' ModelResponseProperties: type: object properties: metadata: $ref: '#/components/schemas/Metadata' top_logprobs: anyOf: - description: | An integer between 0 and 20 specifying the number of most likely tokens to return at each token position, each with an associated log probability. type: integer minimum: 0 maximum: 20 - type: 'null' temperature: anyOf: - type: number minimum: 0 maximum: 2 default: 1 example: 1 description: > What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both. - type: 'null' top_p: anyOf: - type: number minimum: 0 maximum: 1 default: 1 example: 1 description: | An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or `temperature` but not both. - type: 'null' user: type: string example: user-1234 deprecated: true description: > This field is being replaced by `safety_identifier` and `prompt_cache_key`. Use `prompt_cache_key` instead to maintain caching optimizations. A stable identifier for your end-users. Used to boost cache hit rates by better bucketing similar requests and to help OpenAI detect and prevent abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#safety-identifiers). safety_identifier: type: string example: safety-identifier-1234 description: > A stable identifier used to help detect users of your application that may be violating OpenAI's usage policies. The IDs should be a string that uniquely identifies each user. We recommend hashing their username or email address, in order to avoid sending us any identifying information. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices#safety-identifiers). prompt_cache_key: type: string example: prompt-cache-key-1234 description: > Used by OpenAI to cache responses for similar requests to optimize your cache hit rates. Replaces the `user` field. [Learn more](https://platform.openai.com/docs/guides/prompt-caching). service_tier: $ref: '#/components/schemas/ServiceTier' prompt_cache_retention: anyOf: - type: string enum: - in-memory - 24h description: > The retention policy for the prompt cache. Set to `24h` to enable extended prompt caching, which keeps cached prefixes active for longer, up to a maximum of 24 hours. [Learn more](https://platform.openai.com/docs/guides/prompt-caching#prompt-cache-retention). - type: 'null' ModifyAssistantRequest: type: object additionalProperties: false properties: model: description: > ID of the model to use. You can use the [List models](https://platform.openai.com/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](https://platform.openai.com/docs/models) for descriptions of them. anyOf: - type: string - $ref: '#/components/schemas/AssistantSupportedModels' reasoning_effort: $ref: '#/components/schemas/ReasoningEffort' name: anyOf: - description: | The name of the assistant. The maximum length is 256 characters. type: string maxLength: 256 - type: 'null' description: anyOf: - description: | The description of the assistant. The maximum length is 512 characters. type: string maxLength: 512 - type: 'null' instructions: anyOf: - description: | The system instructions that the assistant uses. The maximum length is 256,000 characters. type: string maxLength: 256000 - type: 'null' tools: description: > A list of tool enabled on the assistant. There can be a maximum of 128 tools per assistant. Tools can be of types `code_interpreter`, `file_search`, or `function`. default: [] type: array maxItems: 128 items: $ref: '#/components/schemas/AssistantTool' tool_resources: anyOf: - type: object description: > A set of resources that are used by the assistant's tools. The resources are specific to the type of tool. For example, the `code_interpreter` tool requires a list of file IDs, while the `file_search` tool requires a list of vector store IDs. properties: code_interpreter: type: object properties: file_ids: type: array description: > Overrides the list of [file](https://platform.openai.com/docs/api-reference/files) IDs made available to the `code_interpreter` tool. There can be a maximum of 20 files associated with the tool. default: [] maxItems: 20 items: type: string file_search: type: object properties: vector_store_ids: type: array description: > Overrides the [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) attached to this assistant. There can be a maximum of 1 vector store attached to the assistant. maxItems: 1 items: type: string - type: 'null' metadata: $ref: '#/components/schemas/Metadata' temperature: anyOf: - description: > What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. type: number minimum: 0 maximum: 2 default: 1 example: 1 - type: 'null' top_p: anyOf: - type: number minimum: 0 maximum: 1 default: 1 example: 1 description: > An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. - type: 'null' response_format: anyOf: - $ref: '#/components/schemas/AssistantsApiResponseFormatOption' - type: 'null' ModifyCertificateRequest: type: object properties: name: type: string description: The updated name for the certificate required: - name ModifyMessageRequest: type: object additionalProperties: false properties: metadata: $ref: '#/components/schemas/Metadata' ModifyRunRequest: type: object additionalProperties: false properties: metadata: $ref: '#/components/schemas/Metadata' ModifyThreadRequest: type: object additionalProperties: false properties: tool_resources: anyOf: - type: object description: > A set of resources that are made available to the assistant's tools in this thread. The resources are specific to the type of tool. For example, the `code_interpreter` tool requires a list of file IDs, while the `file_search` tool requires a list of vector store IDs. properties: code_interpreter: type: object properties: file_ids: type: array description: > A list of [file](https://platform.openai.com/docs/api-reference/files) IDs made available to the `code_interpreter` tool. There can be a maximum of 20 files associated with the tool. default: [] maxItems: 20 items: type: string file_search: type: object properties: vector_store_ids: type: array description: > The [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) attached to this thread. There can be a maximum of 1 vector store attached to the thread. maxItems: 1 items: type: string - type: 'null' metadata: $ref: '#/components/schemas/Metadata' Move: type: object title: Move description: | A mouse move action. properties: type: type: string enum: - move default: move description: | Specifies the event type. For a move action, this property is always set to `move`. x-stainless-const: true x: type: integer description: | The x-coordinate to move to. 'y': type: integer description: | The y-coordinate to move to. required: - type - x - 'y' NoiseReductionType: type: string enum: - near_field - far_field description: > Type of noise reduction. `near_field` is for close-talking microphones such as headphones, `far_field` is for far-field microphones such as laptop or conference room microphones. OpenAIFile: title: OpenAIFile description: The `File` object represents a document that has been uploaded to OpenAI. properties: id: type: string description: The file identifier, which can be referenced in the API endpoints. bytes: type: integer description: The size of the file, in bytes. created_at: type: integer description: The Unix timestamp (in seconds) for when the file was created. expires_at: type: integer description: The Unix timestamp (in seconds) for when the file will expire. filename: type: string description: The name of the file. object: type: string description: The object type, which is always `file`. enum: - file x-stainless-const: true purpose: type: string description: >- The intended purpose of the file. Supported values are `assistants`, `assistants_output`, `batch`, `batch_output`, `fine-tune`, `fine-tune-results`, `vision`, and `user_data`. enum: - assistants - assistants_output - batch - batch_output - fine-tune - fine-tune-results - vision - user_data status: type: string deprecated: true description: >- Deprecated. The current status of the file, which can be either `uploaded`, `processed`, or `error`. enum: - uploaded - processed - error status_details: type: string deprecated: true description: >- Deprecated. For details on why a fine-tuning training file failed validation, see the `error` field on `fine_tuning.job`. required: - id - object - bytes - created_at - filename - purpose - status x-oaiMeta: name: The file object example: | { "id": "file-abc123", "object": "file", "bytes": 120000, "created_at": 1677610602, "expires_at": 1680202602, "filename": "salesOverview.pdf", "purpose": "assistants", } OtherChunkingStrategyResponseParam: type: object title: Other Chunking Strategy description: >- This is returned when the chunking strategy is unknown. Typically, this is because the file was indexed before the `chunking_strategy` concept was introduced in the API. additionalProperties: false properties: type: type: string description: Always `other`. enum: - other x-stainless-const: true required: - type OutputAudio: type: object title: Output audio description: | An audio output from the model. properties: type: type: string description: | The type of the output audio. Always `output_audio`. enum: - output_audio x-stainless-const: true data: type: string description: | Base64-encoded audio data from the model. transcript: type: string description: | The transcript of the audio data from the model. required: - type - data - transcript OutputContent: discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/OutputTextContent' - $ref: '#/components/schemas/RefusalContent' - $ref: '#/components/schemas/ReasoningTextContent' OutputItem: anyOf: - $ref: '#/components/schemas/OutputMessage' - $ref: '#/components/schemas/FileSearchToolCall' - $ref: '#/components/schemas/FunctionToolCall' - $ref: '#/components/schemas/WebSearchToolCall' - $ref: '#/components/schemas/ComputerToolCall' - $ref: '#/components/schemas/ReasoningItem' - $ref: '#/components/schemas/ImageGenToolCall' - $ref: '#/components/schemas/CodeInterpreterToolCall' - $ref: '#/components/schemas/LocalShellToolCall' - $ref: '#/components/schemas/FunctionShellCall' - $ref: '#/components/schemas/FunctionShellCallOutput' - $ref: '#/components/schemas/ApplyPatchToolCall' - $ref: '#/components/schemas/ApplyPatchToolCallOutput' - $ref: '#/components/schemas/MCPToolCall' - $ref: '#/components/schemas/MCPListTools' - $ref: '#/components/schemas/MCPApprovalRequest' - $ref: '#/components/schemas/CustomToolCall' discriminator: propertyName: type OutputMessage: type: object title: Output message description: | An output message from the model. properties: id: type: string description: | The unique ID of the output message. x-stainless-go-json: omitzero type: type: string description: | The type of the output message. Always `message`. enum: - message x-stainless-const: true role: type: string description: | The role of the output message. Always `assistant`. enum: - assistant x-stainless-const: true content: type: array description: | The content of the output message. items: $ref: '#/components/schemas/OutputMessageContent' status: type: string description: | The status of the message input. One of `in_progress`, `completed`, or `incomplete`. Populated when input items are returned via API. enum: - in_progress - completed - incomplete required: - id - type - role - content - status OutputMessageContent: discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/OutputTextContent' - $ref: '#/components/schemas/RefusalContent' ParallelToolCalls: description: >- Whether to enable [parallel function calling](https://platform.openai.com/docs/guides/function-calling#configuring-parallel-function-calling) during tool use. type: boolean default: true PartialImages: anyOf: - type: integer maximum: 3 minimum: 0 default: 0 example: 1 description: | The number of partial images to generate. This parameter is used for streaming responses that return partial images. Value must be between 0 and 3. When set to 0, the response will be a single image sent in one streaming event. Note that the final image may be sent before the full number of partial images are generated if the full image is generated more quickly. - type: 'null' PredictionContent: type: object title: Static Content description: | Static predicted output content, such as the content of a text file that is being regenerated. required: - type - content properties: type: type: string enum: - content description: | The type of the predicted content you want to provide. This type is currently always `content`. x-stainless-const: true content: description: | The content that should be matched when generating a model response. If generated tokens would match this content, the entire model response can be returned much more quickly. anyOf: - type: string title: Text content description: | The content used for a Predicted Output. This is often the text of a file you are regenerating with minor changes. - type: array description: >- An array of content parts with a defined type. Supported options differ based on the [model](https://platform.openai.com/docs/models) being used to generate the response. Can contain text inputs. title: Array of content parts items: $ref: '#/components/schemas/ChatCompletionRequestMessageContentPartText' minItems: 1 Project: type: object description: Represents an individual project. properties: id: type: string description: The identifier, which can be referenced in API endpoints object: type: string enum: - organization.project description: The object type, which is always `organization.project` x-stainless-const: true name: type: string description: The name of the project. This appears in reporting. created_at: type: integer description: The Unix timestamp (in seconds) of when the project was created. archived_at: anyOf: - type: integer description: The Unix timestamp (in seconds) of when the project was archived or `null`. - type: 'null' status: type: string enum: - active - archived description: '`active` or `archived`' required: - id - object - name - created_at - status x-oaiMeta: name: The project object example: | { "id": "proj_abc", "object": "organization.project", "name": "Project example", "created_at": 1711471533, "archived_at": null, "status": "active" } ProjectApiKey: type: object description: Represents an individual API key in a project. properties: object: type: string enum: - organization.project.api_key description: The object type, which is always `organization.project.api_key` x-stainless-const: true redacted_value: type: string description: The redacted value of the API key name: type: string description: The name of the API key created_at: type: integer description: The Unix timestamp (in seconds) of when the API key was created last_used_at: type: integer description: The Unix timestamp (in seconds) of when the API key was last used. id: type: string description: The identifier, which can be referenced in API endpoints owner: type: object properties: type: type: string enum: - user - service_account description: '`user` or `service_account`' user: $ref: '#/components/schemas/ProjectUser' service_account: $ref: '#/components/schemas/ProjectServiceAccount' required: - object - redacted_value - name - created_at - last_used_at - id - owner x-oaiMeta: name: The project API key object example: | { "object": "organization.project.api_key", "redacted_value": "sk-abc...def", "name": "My API Key", "created_at": 1711471533, "last_used_at": 1711471534, "id": "key_abc", "owner": { "type": "user", "user": { "object": "organization.project.user", "id": "user_abc", "name": "First Last", "email": "user@example.com", "role": "owner", "created_at": 1711471533 } } } ProjectApiKeyDeleteResponse: type: object properties: object: type: string enum: - organization.project.api_key.deleted x-stainless-const: true id: type: string deleted: type: boolean required: - object - id - deleted ProjectApiKeyListResponse: type: object properties: object: type: string enum: - list x-stainless-const: true data: type: array items: $ref: '#/components/schemas/ProjectApiKey' first_id: type: string last_id: type: string has_more: type: boolean required: - object - data - first_id - last_id - has_more ProjectCreateRequest: type: object properties: name: type: string description: The friendly name of the project, this name appears in reports. geography: type: string enum: - US - EU - JP - IN - KR - CA - AU - SG description: >- Create the project with the specified data residency region. Your organization must have access to Data residency functionality in order to use. See [data residency controls](https://platform.openai.com/docs/guides/your-data#data-residency-controls) to review the functionality and limitations of setting this field. required: - name ProjectListResponse: type: object properties: object: type: string enum: - list x-stainless-const: true data: type: array items: $ref: '#/components/schemas/Project' first_id: type: string last_id: type: string has_more: type: boolean required: - object - data - first_id - last_id - has_more ProjectRateLimit: type: object description: Represents a project rate limit config. properties: object: type: string enum: - project.rate_limit description: The object type, which is always `project.rate_limit` x-stainless-const: true id: type: string description: The identifier, which can be referenced in API endpoints. model: type: string description: The model this rate limit applies to. max_requests_per_1_minute: type: integer description: The maximum requests per minute. max_tokens_per_1_minute: type: integer description: The maximum tokens per minute. max_images_per_1_minute: type: integer description: The maximum images per minute. Only present for relevant models. max_audio_megabytes_per_1_minute: type: integer description: The maximum audio megabytes per minute. Only present for relevant models. max_requests_per_1_day: type: integer description: The maximum requests per day. Only present for relevant models. batch_1_day_max_input_tokens: type: integer description: The maximum batch input tokens per day. Only present for relevant models. required: - object - id - model - max_requests_per_1_minute - max_tokens_per_1_minute x-oaiMeta: name: The project rate limit object example: | { "object": "project.rate_limit", "id": "rl_ada", "model": "ada", "max_requests_per_1_minute": 600, "max_tokens_per_1_minute": 150000, "max_images_per_1_minute": 10 } ProjectRateLimitListResponse: type: object properties: object: type: string enum: - list x-stainless-const: true data: type: array items: $ref: '#/components/schemas/ProjectRateLimit' first_id: type: string last_id: type: string has_more: type: boolean required: - object - data - first_id - last_id - has_more ProjectRateLimitUpdateRequest: type: object properties: max_requests_per_1_minute: type: integer description: The maximum requests per minute. max_tokens_per_1_minute: type: integer description: The maximum tokens per minute. max_images_per_1_minute: type: integer description: The maximum images per minute. Only relevant for certain models. max_audio_megabytes_per_1_minute: type: integer description: The maximum audio megabytes per minute. Only relevant for certain models. max_requests_per_1_day: type: integer description: The maximum requests per day. Only relevant for certain models. batch_1_day_max_input_tokens: type: integer description: The maximum batch input tokens per day. Only relevant for certain models. ProjectServiceAccount: type: object description: Represents an individual service account in a project. properties: object: type: string enum: - organization.project.service_account description: The object type, which is always `organization.project.service_account` x-stainless-const: true id: type: string description: The identifier, which can be referenced in API endpoints name: type: string description: The name of the service account role: type: string enum: - owner - member description: '`owner` or `member`' created_at: type: integer description: The Unix timestamp (in seconds) of when the service account was created required: - object - id - name - role - created_at x-oaiMeta: name: The project service account object example: | { "object": "organization.project.service_account", "id": "svc_acct_abc", "name": "Service Account", "role": "owner", "created_at": 1711471533 } ProjectServiceAccountApiKey: type: object properties: object: type: string enum: - organization.project.service_account.api_key description: The object type, which is always `organization.project.service_account.api_key` x-stainless-const: true value: type: string name: type: string created_at: type: integer id: type: string required: - object - value - name - created_at - id ProjectServiceAccountCreateRequest: type: object properties: name: type: string description: The name of the service account being created. required: - name ProjectServiceAccountCreateResponse: type: object properties: object: type: string enum: - organization.project.service_account x-stainless-const: true id: type: string name: type: string role: type: string enum: - member description: Service accounts can only have one role of type `member` x-stainless-const: true created_at: type: integer api_key: $ref: '#/components/schemas/ProjectServiceAccountApiKey' required: - object - id - name - role - created_at - api_key ProjectServiceAccountDeleteResponse: type: object properties: object: type: string enum: - organization.project.service_account.deleted x-stainless-const: true id: type: string deleted: type: boolean required: - object - id - deleted ProjectServiceAccountListResponse: type: object properties: object: type: string enum: - list x-stainless-const: true data: type: array items: $ref: '#/components/schemas/ProjectServiceAccount' first_id: type: string last_id: type: string has_more: type: boolean required: - object - data - first_id - last_id - has_more ProjectUpdateRequest: type: object properties: name: type: string description: The updated name of the project, this name appears in reports. required: - name ProjectUser: type: object description: Represents an individual user in a project. properties: object: type: string enum: - organization.project.user description: The object type, which is always `organization.project.user` x-stainless-const: true id: type: string description: The identifier, which can be referenced in API endpoints name: type: string description: The name of the user email: type: string description: The email address of the user role: type: string enum: - owner - member description: '`owner` or `member`' added_at: type: integer description: The Unix timestamp (in seconds) of when the project was added. required: - object - id - name - email - role - added_at x-oaiMeta: name: The project user object example: | { "object": "organization.project.user", "id": "user_abc", "name": "First Last", "email": "user@example.com", "role": "owner", "added_at": 1711471533 } ProjectUserCreateRequest: type: object properties: user_id: type: string description: The ID of the user. role: type: string enum: - owner - member description: '`owner` or `member`' required: - user_id - role ProjectUserDeleteResponse: type: object properties: object: type: string enum: - organization.project.user.deleted x-stainless-const: true id: type: string deleted: type: boolean required: - object - id - deleted ProjectUserListResponse: type: object properties: object: type: string data: type: array items: $ref: '#/components/schemas/ProjectUser' first_id: type: string last_id: type: string has_more: type: boolean required: - object - data - first_id - last_id - has_more ProjectUserUpdateRequest: type: object properties: role: type: string enum: - owner - member description: '`owner` or `member`' required: - role Prompt: anyOf: - type: object description: | Reference to a prompt template and its variables. [Learn more](https://platform.openai.com/docs/guides/text?api-mode=responses#reusable-prompts). required: - id properties: id: type: string description: The unique identifier of the prompt template to use. version: anyOf: - type: string description: Optional version of the prompt template. - type: 'null' variables: $ref: '#/components/schemas/ResponsePromptVariables' - type: 'null' RealtimeAudioFormats: anyOf: - type: object title: PCM audio format description: The PCM audio format. Only a 24kHz sample rate is supported. properties: type: type: string description: The audio format. Always `audio/pcm`. enum: - audio/pcm rate: type: integer description: The sample rate of the audio. Always `24000`. enum: - 24000 - type: object title: PCMU audio format description: The G.711 μ-law format. properties: type: type: string description: The audio format. Always `audio/pcmu`. enum: - audio/pcmu - type: object title: PCMA audio format description: The G.711 A-law format. properties: type: type: string description: The audio format. Always `audio/pcma`. enum: - audio/pcma discriminator: propertyName: type RealtimeBetaClientEventConversationItemCreate: type: object description: | Add a new Item to the Conversation's context, including messages, function calls, and function call responses. This event can be used both to populate a "history" of the conversation and to add new items mid-stream, but has the current limitation that it cannot populate assistant audio messages. If successful, the server will respond with a `conversation.item.created` event, otherwise an `error` event will be sent. properties: event_id: type: string maxLength: 512 description: Optional client-generated ID used to identify this event. type: description: The event type, must be `conversation.item.create`. x-stainless-const: true const: conversation.item.create previous_item_id: type: string description: | The ID of the preceding item after which the new item will be inserted. If not set, the new item will be appended to the end of the conversation. If set to `root`, the new item will be added to the beginning of the conversation. If set to an existing ID, it allows an item to be inserted mid-conversation. If the ID cannot be found, an error will be returned and the item will not be added. item: $ref: '#/components/schemas/RealtimeConversationItem' required: - type - item x-oaiMeta: name: conversation.item.create group: realtime example: | { "type": "conversation.item.create", "item": { "type": "message", "role": "user", "content": [ { "type": "input_text", "text": "hi" } ] }, "event_id": "b904fba0-0ec4-40af-8bbb-f908a9b26793", } RealtimeBetaClientEventConversationItemDelete: type: object description: | Send this event when you want to remove any item from the conversation history. The server will respond with a `conversation.item.deleted` event, unless the item does not exist in the conversation history, in which case the server will respond with an error. properties: event_id: type: string description: Optional client-generated ID used to identify this event. type: description: The event type, must be `conversation.item.delete`. x-stainless-const: true const: conversation.item.delete item_id: type: string description: The ID of the item to delete. required: - type - item_id x-oaiMeta: name: conversation.item.delete group: realtime example: | { "event_id": "event_901", "type": "conversation.item.delete", "item_id": "msg_003" } RealtimeBetaClientEventConversationItemRetrieve: type: object description: > Send this event when you want to retrieve the server's representation of a specific item in the conversation history. This is useful, for example, to inspect user audio after noise cancellation and VAD. The server will respond with a `conversation.item.retrieved` event, unless the item does not exist in the conversation history, in which case the server will respond with an error. properties: event_id: type: string description: Optional client-generated ID used to identify this event. type: description: The event type, must be `conversation.item.retrieve`. x-stainless-const: true const: conversation.item.retrieve item_id: type: string description: The ID of the item to retrieve. required: - type - item_id x-oaiMeta: name: conversation.item.retrieve group: realtime example: | { "event_id": "event_901", "type": "conversation.item.retrieve", "item_id": "msg_003" } RealtimeBetaClientEventConversationItemTruncate: type: object description: | Send this event to truncate a previous assistant message’s audio. The server will produce audio faster than realtime, so this event is useful when the user interrupts to truncate audio that has already been sent to the client but not yet played. This will synchronize the server's understanding of the audio with the client's playback. Truncating audio will delete the server-side text transcript to ensure there is not text in the context that hasn't been heard by the user. If successful, the server will respond with a `conversation.item.truncated` event. properties: event_id: type: string description: Optional client-generated ID used to identify this event. type: description: The event type, must be `conversation.item.truncate`. x-stainless-const: true const: conversation.item.truncate item_id: type: string description: | The ID of the assistant message item to truncate. Only assistant message items can be truncated. content_index: type: integer description: The index of the content part to truncate. Set this to 0. audio_end_ms: type: integer description: | Inclusive duration up to which audio is truncated, in milliseconds. If the audio_end_ms is greater than the actual audio duration, the server will respond with an error. required: - type - item_id - content_index - audio_end_ms x-oaiMeta: name: conversation.item.truncate group: realtime example: | { "event_id": "event_678", "type": "conversation.item.truncate", "item_id": "msg_002", "content_index": 0, "audio_end_ms": 1500 } RealtimeBetaClientEventInputAudioBufferAppend: type: object description: | Send this event to append audio bytes to the input audio buffer. The audio buffer is temporary storage you can write to and later commit. In Server VAD mode, the audio buffer is used to detect speech and the server will decide when to commit. When Server VAD is disabled, you must commit the audio buffer manually. The client may choose how much audio to place in each event up to a maximum of 15 MiB, for example streaming smaller chunks from the client may allow the VAD to be more responsive. Unlike made other client events, the server will not send a confirmation response to this event. properties: event_id: type: string description: Optional client-generated ID used to identify this event. type: description: The event type, must be `input_audio_buffer.append`. x-stainless-const: true const: input_audio_buffer.append audio: type: string description: | Base64-encoded audio bytes. This must be in the format specified by the `input_audio_format` field in the session configuration. required: - type - audio x-oaiMeta: name: input_audio_buffer.append group: realtime example: | { "event_id": "event_456", "type": "input_audio_buffer.append", "audio": "Base64EncodedAudioData" } RealtimeBetaClientEventInputAudioBufferClear: type: object description: | Send this event to clear the audio bytes in the buffer. The server will respond with an `input_audio_buffer.cleared` event. properties: event_id: type: string description: Optional client-generated ID used to identify this event. type: description: The event type, must be `input_audio_buffer.clear`. x-stainless-const: true const: input_audio_buffer.clear required: - type x-oaiMeta: name: input_audio_buffer.clear group: realtime example: | { "event_id": "event_012", "type": "input_audio_buffer.clear" } RealtimeBetaClientEventInputAudioBufferCommit: type: object description: | Send this event to commit the user input audio buffer, which will create a new user message item in the conversation. This event will produce an error if the input audio buffer is empty. When in Server VAD mode, the client does not need to send this event, the server will commit the audio buffer automatically. Committing the input audio buffer will trigger input audio transcription (if enabled in session configuration), but it will not create a response from the model. The server will respond with an `input_audio_buffer.committed` event. properties: event_id: type: string description: Optional client-generated ID used to identify this event. type: description: The event type, must be `input_audio_buffer.commit`. x-stainless-const: true const: input_audio_buffer.commit required: - type x-oaiMeta: name: input_audio_buffer.commit group: realtime example: | { "event_id": "event_789", "type": "input_audio_buffer.commit" } RealtimeBetaClientEventOutputAudioBufferClear: type: object description: > **WebRTC Only:** Emit to cut off the current audio response. This will trigger the server to stop generating audio and emit a `output_audio_buffer.cleared` event. This event should be preceded by a `response.cancel` client event to stop the generation of the current response. [Learn more](https://platform.openai.com/docs/guides/realtime-conversations#client-and-server-events-for-audio-in-webrtc). properties: event_id: type: string description: The unique ID of the client event used for error handling. type: description: The event type, must be `output_audio_buffer.clear`. x-stainless-const: true const: output_audio_buffer.clear required: - type x-oaiMeta: name: output_audio_buffer.clear group: realtime example: | { "event_id": "optional_client_event_id", "type": "output_audio_buffer.clear" } RealtimeBetaClientEventResponseCancel: type: object description: | Send this event to cancel an in-progress response. The server will respond with a `response.done` event with a status of `response.status=cancelled`. If there is no response to cancel, the server will respond with an error. properties: event_id: type: string description: Optional client-generated ID used to identify this event. type: description: The event type, must be `response.cancel`. x-stainless-const: true const: response.cancel response_id: type: string description: | A specific response ID to cancel - if not provided, will cancel an in-progress response in the default conversation. required: - type x-oaiMeta: name: response.cancel group: realtime example: | { "event_id": "event_567", "type": "response.cancel" } RealtimeBetaClientEventResponseCreate: type: object description: | This event instructs the server to create a Response, which means triggering model inference. When in Server VAD mode, the server will create Responses automatically. A Response will include at least one Item, and may have two, in which case the second will be a function call. These Items will be appended to the conversation history. The server will respond with a `response.created` event, events for Items and content created, and finally a `response.done` event to indicate the Response is complete. The `response.create` event can optionally include inference configuration like `instructions`, and `temperature`. These fields will override the Session's configuration for this Response only. Responses can be created out-of-band of the default Conversation, meaning that they can have arbitrary input, and it's possible to disable writing the output to the Conversation. Only one Response can write to the default Conversation at a time, but otherwise multiple Responses can be created in parallel. Clients can set `conversation` to `none` to create a Response that does not write to the default Conversation. Arbitrary input can be provided with the `input` field, which is an array accepting raw Items and references to existing Items. properties: event_id: type: string description: Optional client-generated ID used to identify this event. type: description: The event type, must be `response.create`. x-stainless-const: true const: response.create response: $ref: '#/components/schemas/RealtimeBetaResponseCreateParams' required: - type x-oaiMeta: name: response.create group: realtime example: | // Trigger a response with the default Conversation and no special parameters { "type": "response.create", } // Trigger an out-of-band response that does not write to the default Conversation { "type": "response.create", "response": { "instructions": "Provide a concise answer.", "tools": [], // clear any session tools "conversation": "none", "output_modalities": ["text"], "input": [ { "type": "item_reference", "id": "item_12345", }, { "type": "message", "role": "user", "content": [ { "type": "input_text", "text": "Summarize the above message in one sentence." } ] } ], } } RealtimeBetaClientEventSessionUpdate: type: object description: | Send this event to update the session’s default configuration. The client may send this event at any time to update any field, except for `voice`. However, note that once a session has been initialized with a particular `model`, it can’t be changed to another model using `session.update`. When the server receives a `session.update`, it will respond with a `session.updated` event showing the full, effective configuration. Only the fields that are present are updated. To clear a field like `instructions`, pass an empty string. properties: event_id: type: string description: Optional client-generated ID used to identify this event. type: description: The event type, must be `session.update`. x-stainless-const: true const: session.update session: $ref: '#/components/schemas/RealtimeSessionCreateRequest' required: - type - session x-oaiMeta: name: session.update group: realtime example: | { "type": "session.update", "session": { "tools": [ { "type": "function", "name": "display_color_palette", "description": "\nCall this function when a user asks for a color palette.\n", "parameters": { "type": "object", "strict": true, "properties": { "theme": { "type": "string", "description": "Description of the theme for the color scheme." }, "colors": { "type": "array", "description": "Array of five hex color codes based on the theme.", "items": { "type": "string", "description": "Hex color code" } } }, "required": [ "theme", "colors" ] } } ], "tool_choice": "auto" }, "event_id": "5fc543c4-f59c-420f-8fb9-68c45d1546a7", "timestamp": "2:30:32 PM" } RealtimeBetaClientEventTranscriptionSessionUpdate: type: object description: | Send this event to update a transcription session. properties: event_id: type: string description: Optional client-generated ID used to identify this event. type: description: The event type, must be `transcription_session.update`. x-stainless-const: true const: transcription_session.update session: $ref: '#/components/schemas/RealtimeTranscriptionSessionCreateRequest' required: - type - session x-oaiMeta: name: transcription_session.update group: realtime example: | { "type": "transcription_session.update", "session": { "input_audio_format": "pcm16", "input_audio_transcription": { "model": "gpt-4o-transcribe", "prompt": "", "language": "" }, "turn_detection": { "type": "server_vad", "threshold": 0.5, "prefix_padding_ms": 300, "silence_duration_ms": 500, "create_response": true, }, "input_audio_noise_reduction": { "type": "near_field" }, "include": [ "item.input_audio_transcription.logprobs", ] } } RealtimeBetaResponse: type: object description: The response resource. properties: id: type: string description: The unique ID of the response. object: description: The object type, must be `realtime.response`. x-stainless-const: true const: realtime.response status: type: string enum: - completed - cancelled - failed - incomplete - in_progress description: | The final status of the response (`completed`, `cancelled`, `failed`, or `incomplete`, `in_progress`). status_details: type: object description: Additional details about the status. properties: type: type: string enum: - completed - cancelled - incomplete - failed description: | The type of error that caused the response to fail, corresponding with the `status` field (`completed`, `cancelled`, `incomplete`, `failed`). reason: type: string enum: - turn_detected - client_cancelled - max_output_tokens - content_filter description: | The reason the Response did not complete. For a `cancelled` Response, one of `turn_detected` (the server VAD detected a new start of speech) or `client_cancelled` (the client sent a cancel event). For an `incomplete` Response, one of `max_output_tokens` or `content_filter` (the server-side safety filter activated and cut off the response). error: type: object description: | A description of the error that caused the response to fail, populated when the `status` is `failed`. properties: type: type: string description: The type of error. code: type: string description: Error code, if any. output: type: array description: The list of output items generated by the response. items: $ref: '#/components/schemas/RealtimeConversationItem' metadata: $ref: '#/components/schemas/Metadata' usage: type: object description: | Usage statistics for the Response, this will correspond to billing. A Realtime API session will maintain a conversation context and append new Items to the Conversation, thus output from previous turns (text and audio tokens) will become the input for later turns. properties: total_tokens: type: integer description: | The total number of tokens in the Response including input and output text and audio tokens. input_tokens: type: integer description: | The number of input tokens used in the Response, including text and audio tokens. output_tokens: type: integer description: | The number of output tokens sent in the Response, including text and audio tokens. input_token_details: type: object description: Details about the input tokens used in the Response. properties: cached_tokens: type: integer description: The number of cached tokens used as input for the Response. text_tokens: type: integer description: The number of text tokens used as input for the Response. image_tokens: type: integer description: The number of image tokens used as input for the Response. audio_tokens: type: integer description: The number of audio tokens used as input for the Response. cached_tokens_details: type: object description: Details about the cached tokens used as input for the Response. properties: text_tokens: type: integer description: The number of cached text tokens used as input for the Response. image_tokens: type: integer description: The number of cached image tokens used as input for the Response. audio_tokens: type: integer description: The number of cached audio tokens used as input for the Response. output_token_details: type: object description: Details about the output tokens used in the Response. properties: text_tokens: type: integer description: The number of text tokens used in the Response. audio_tokens: type: integer description: The number of audio tokens used in the Response. conversation_id: description: | Which conversation the response is added to, determined by the `conversation` field in the `response.create` event. If `auto`, the response will be added to the default conversation and the value of `conversation_id` will be an id like `conv_1234`. If `none`, the response will not be added to any conversation and the value of `conversation_id` will be `null`. If responses are being triggered by server VAD, the response will be added to the default conversation, thus the `conversation_id` will be an id like `conv_1234`. type: string voice: $ref: '#/components/schemas/VoiceIdsShared' description: | The voice the model used to respond. Current voice options are `alloy`, `ash`, `ballad`, `coral`, `echo`, `sage`, `shimmer`, and `verse`. modalities: type: array description: | The set of modalities the model used to respond. If there are multiple modalities, the model will pick one, for example if `modalities` is `["text", "audio"]`, the model could be responding in either text or audio. items: type: string enum: - text - audio output_audio_format: type: string enum: - pcm16 - g711_ulaw - g711_alaw description: | The format of output audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. temperature: type: number description: | Sampling temperature for the model, limited to [0.6, 1.2]. Defaults to 0.8. max_output_tokens: description: | Maximum number of output tokens for a single assistant response, inclusive of tool calls, that was used in this response. anyOf: - type: integer - type: string enum: - inf x-stainless-const: true RealtimeBetaResponseCreateParams: type: object description: Create a new Realtime response with these parameters properties: modalities: type: array description: | The set of modalities the model can respond with. To disable audio, set this to ["text"]. items: type: string enum: - text - audio instructions: type: string description: | The default system instructions (i.e. system message) prepended to model calls. This field allows the client to guide the model on desired responses. The model can be instructed on response content and format, (e.g. "be extremely succinct", "act friendly", "here are examples of good responses") and on audio behavior (e.g. "talk quickly", "inject emotion into your voice", "laugh frequently"). The instructions are not guaranteed to be followed by the model, but they provide guidance to the model on the desired behavior. Note that the server sets default instructions which will be used if this field is not set and are visible in the `session.created` event at the start of the session. voice: $ref: '#/components/schemas/VoiceIdsShared' description: | The voice the model uses to respond. Voice cannot be changed during the session once the model has responded with audio at least once. Current voice options are `alloy`, `ash`, `ballad`, `coral`, `echo`, `sage`, `shimmer`, and `verse`. output_audio_format: type: string enum: - pcm16 - g711_ulaw - g711_alaw description: | The format of output audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. tools: type: array description: Tools (functions) available to the model. items: type: object properties: type: type: string enum: - function description: The type of the tool, i.e. `function`. x-stainless-const: true name: type: string description: The name of the function. description: type: string description: | The description of the function, including guidance on when and how to call it, and guidance about what to tell the user when calling (if anything). parameters: type: object description: Parameters of the function in JSON Schema. tool_choice: description: | How the model chooses tools. Provide one of the string modes or force a specific function/MCP tool. default: auto anyOf: - $ref: '#/components/schemas/ToolChoiceOptions' - $ref: '#/components/schemas/ToolChoiceFunction' - $ref: '#/components/schemas/ToolChoiceMCP' temperature: type: number description: | Sampling temperature for the model, limited to [0.6, 1.2]. Defaults to 0.8. max_output_tokens: description: | Maximum number of output tokens for a single assistant response, inclusive of tool calls. Provide an integer between 1 and 4096 to limit output tokens, or `inf` for the maximum available tokens for a given model. Defaults to `inf`. anyOf: - type: integer - type: string enum: - inf x-stainless-const: true conversation: description: | Controls which conversation the response is added to. Currently supports `auto` and `none`, with `auto` as the default value. The `auto` value means that the contents of the response will be added to the default conversation. Set this to `none` to create an out-of-band response which will not add items to default conversation. anyOf: - type: string - type: string default: auto enum: - auto - none metadata: $ref: '#/components/schemas/Metadata' prompt: $ref: '#/components/schemas/Prompt' input: type: array description: | Input items to include in the prompt for the model. Using this field creates a new context for this Response instead of using the default conversation. An empty array `[]` will clear the context for this Response. Note that this can include references to items from the default conversation. items: $ref: '#/components/schemas/RealtimeConversationItem' RealtimeBetaServerEventConversationItemCreated: type: object description: | Returned when a conversation item is created. There are several scenarios that produce this event: - The server is generating a Response, which if successful will produce either one or two Items, which will be of type `message` (role `assistant`) or type `function_call`. - The input audio buffer has been committed, either by the client or the server (in `server_vad` mode). The server will take the content of the input audio buffer and add it to a new user message Item. - The client has sent a `conversation.item.create` event to add a new Item to the Conversation. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `conversation.item.created`. x-stainless-const: true const: conversation.item.created previous_item_id: anyOf: - type: string description: | The ID of the preceding item in the Conversation context, allows the client to understand the order of the conversation. Can be `null` if the item has no predecessor. - type: 'null' item: $ref: '#/components/schemas/RealtimeConversationItem' required: - event_id - type - item x-oaiMeta: name: conversation.item.created group: realtime example: | { "event_id": "event_1920", "type": "conversation.item.created", "previous_item_id": "msg_002", "item": { "id": "msg_003", "object": "realtime.item", "type": "message", "status": "completed", "role": "user", "content": [] } } RealtimeBetaServerEventConversationItemDeleted: type: object description: | Returned when an item in the conversation is deleted by the client with a `conversation.item.delete` event. This event is used to synchronize the server's understanding of the conversation history with the client's view. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `conversation.item.deleted`. x-stainless-const: true const: conversation.item.deleted item_id: type: string description: The ID of the item that was deleted. required: - event_id - type - item_id x-oaiMeta: name: conversation.item.deleted group: realtime example: | { "event_id": "event_2728", "type": "conversation.item.deleted", "item_id": "msg_005" } RealtimeBetaServerEventConversationItemInputAudioTranscriptionCompleted: type: object description: | This event is the output of audio transcription for user audio written to the user audio buffer. Transcription begins when the input audio buffer is committed by the client or server (in `server_vad` mode). Transcription runs asynchronously with Response creation, so this event may come before or after the Response events. Realtime API models accept audio natively, and thus input transcription is a separate process run on a separate ASR (Automatic Speech Recognition) model. The transcript may diverge somewhat from the model's interpretation, and should be treated as a rough guide. properties: event_id: type: string description: The unique ID of the server event. type: type: string enum: - conversation.item.input_audio_transcription.completed description: | The event type, must be `conversation.item.input_audio_transcription.completed`. x-stainless-const: true item_id: type: string description: The ID of the user message item containing the audio. content_index: type: integer description: The index of the content part containing the audio. transcript: type: string description: The transcribed text. logprobs: anyOf: - type: array description: The log probabilities of the transcription. items: $ref: '#/components/schemas/LogProbProperties' - type: 'null' usage: type: object description: Usage statistics for the transcription. anyOf: - $ref: '#/components/schemas/TranscriptTextUsageTokens' title: Token Usage - $ref: '#/components/schemas/TranscriptTextUsageDuration' title: Duration Usage required: - event_id - type - item_id - content_index - transcript - usage x-oaiMeta: name: conversation.item.input_audio_transcription.completed group: realtime example: | { "event_id": "event_2122", "type": "conversation.item.input_audio_transcription.completed", "item_id": "msg_003", "content_index": 0, "transcript": "Hello, how are you?", "usage": { "type": "tokens", "total_tokens": 48, "input_tokens": 38, "input_token_details": { "text_tokens": 10, "audio_tokens": 28, }, "output_tokens": 10, } } RealtimeBetaServerEventConversationItemInputAudioTranscriptionDelta: type: object description: | Returned when the text value of an input audio transcription content part is updated. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `conversation.item.input_audio_transcription.delta`. x-stainless-const: true const: conversation.item.input_audio_transcription.delta item_id: type: string description: The ID of the item. content_index: type: integer description: The index of the content part in the item's content array. delta: type: string description: The text delta. logprobs: anyOf: - type: array description: The log probabilities of the transcription. items: $ref: '#/components/schemas/LogProbProperties' - type: 'null' required: - event_id - type - item_id x-oaiMeta: name: conversation.item.input_audio_transcription.delta group: realtime example: | { "type": "conversation.item.input_audio_transcription.delta", "event_id": "event_001", "item_id": "item_001", "content_index": 0, "delta": "Hello" } RealtimeBetaServerEventConversationItemInputAudioTranscriptionFailed: type: object description: | Returned when input audio transcription is configured, and a transcription request for a user message failed. These events are separate from other `error` events so that the client can identify the related Item. properties: event_id: type: string description: The unique ID of the server event. type: type: string enum: - conversation.item.input_audio_transcription.failed description: | The event type, must be `conversation.item.input_audio_transcription.failed`. x-stainless-const: true item_id: type: string description: The ID of the user message item. content_index: type: integer description: The index of the content part containing the audio. error: type: object description: Details of the transcription error. properties: type: type: string description: The type of error. code: type: string description: Error code, if any. message: type: string description: A human-readable error message. param: type: string description: Parameter related to the error, if any. required: - event_id - type - item_id - content_index - error x-oaiMeta: name: conversation.item.input_audio_transcription.failed group: realtime example: | { "event_id": "event_2324", "type": "conversation.item.input_audio_transcription.failed", "item_id": "msg_003", "content_index": 0, "error": { "type": "transcription_error", "code": "audio_unintelligible", "message": "The audio could not be transcribed.", "param": null } } RealtimeBetaServerEventConversationItemInputAudioTranscriptionSegment: type: object description: Returned when an input audio transcription segment is identified for an item. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `conversation.item.input_audio_transcription.segment`. x-stainless-const: true const: conversation.item.input_audio_transcription.segment item_id: type: string description: The ID of the item containing the input audio content. content_index: type: integer description: The index of the input audio content part within the item. text: type: string description: The text for this segment. id: type: string description: The segment identifier. speaker: type: string description: The detected speaker label for this segment. start: type: number format: float description: Start time of the segment in seconds. end: type: number format: float description: End time of the segment in seconds. required: - event_id - type - item_id - content_index - text - id - speaker - start - end x-oaiMeta: name: conversation.item.input_audio_transcription.segment group: realtime example: | { "event_id": "event_6501", "type": "conversation.item.input_audio_transcription.segment", "item_id": "msg_011", "content_index": 0, "text": "hello", "id": "seg_0001", "speaker": "spk_1", "start": 0.0, "end": 0.4 } RealtimeBetaServerEventConversationItemRetrieved: type: object description: | Returned when a conversation item is retrieved with `conversation.item.retrieve`. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `conversation.item.retrieved`. x-stainless-const: true const: conversation.item.retrieved item: $ref: '#/components/schemas/RealtimeConversationItem' required: - event_id - type - item x-oaiMeta: name: conversation.item.retrieved group: realtime example: | { "event_id": "event_1920", "type": "conversation.item.created", "previous_item_id": "msg_002", "item": { "id": "msg_003", "object": "realtime.item", "type": "message", "status": "completed", "role": "user", "content": [ { "type": "input_audio", "transcript": "hello how are you", "audio": "base64encodedaudio==" } ] } } RealtimeBetaServerEventConversationItemTruncated: type: object description: | Returned when an earlier assistant audio message item is truncated by the client with a `conversation.item.truncate` event. This event is used to synchronize the server's understanding of the audio with the client's playback. This action will truncate the audio and remove the server-side text transcript to ensure there is no text in the context that hasn't been heard by the user. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `conversation.item.truncated`. x-stainless-const: true const: conversation.item.truncated item_id: type: string description: The ID of the assistant message item that was truncated. content_index: type: integer description: The index of the content part that was truncated. audio_end_ms: type: integer description: | The duration up to which the audio was truncated, in milliseconds. required: - event_id - type - item_id - content_index - audio_end_ms x-oaiMeta: name: conversation.item.truncated group: realtime example: | { "event_id": "event_2526", "type": "conversation.item.truncated", "item_id": "msg_004", "content_index": 0, "audio_end_ms": 1500 } RealtimeBetaServerEventError: type: object description: | Returned when an error occurs, which could be a client problem or a server problem. Most errors are recoverable and the session will stay open, we recommend to implementors to monitor and log error messages by default. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `error`. x-stainless-const: true const: error error: type: object description: Details of the error. required: - type - message properties: type: type: string description: | The type of error (e.g., "invalid_request_error", "server_error"). code: anyOf: - type: string description: Error code, if any. - type: 'null' message: type: string description: A human-readable error message. param: anyOf: - type: string description: Parameter related to the error, if any. - type: 'null' event_id: anyOf: - type: string description: | The event_id of the client event that caused the error, if applicable. - type: 'null' required: - event_id - type - error x-oaiMeta: name: error group: realtime example: | { "event_id": "event_890", "type": "error", "error": { "type": "invalid_request_error", "code": "invalid_event", "message": "The 'type' field is missing.", "param": null, "event_id": "event_567" } } RealtimeBetaServerEventInputAudioBufferCleared: type: object description: | Returned when the input audio buffer is cleared by the client with a `input_audio_buffer.clear` event. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `input_audio_buffer.cleared`. x-stainless-const: true const: input_audio_buffer.cleared required: - event_id - type x-oaiMeta: name: input_audio_buffer.cleared group: realtime example: | { "event_id": "event_1314", "type": "input_audio_buffer.cleared" } RealtimeBetaServerEventInputAudioBufferCommitted: type: object description: | Returned when an input audio buffer is committed, either by the client or automatically in server VAD mode. The `item_id` property is the ID of the user message item that will be created, thus a `conversation.item.created` event will also be sent to the client. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `input_audio_buffer.committed`. x-stainless-const: true const: input_audio_buffer.committed previous_item_id: anyOf: - type: string description: | The ID of the preceding item after which the new item will be inserted. Can be `null` if the item has no predecessor. - type: 'null' item_id: type: string description: The ID of the user message item that will be created. required: - event_id - type - item_id x-oaiMeta: name: input_audio_buffer.committed group: realtime example: | { "event_id": "event_1121", "type": "input_audio_buffer.committed", "previous_item_id": "msg_001", "item_id": "msg_002" } RealtimeBetaServerEventInputAudioBufferSpeechStarted: type: object description: | Sent by the server when in `server_vad` mode to indicate that speech has been detected in the audio buffer. This can happen any time audio is added to the buffer (unless speech is already detected). The client may want to use this event to interrupt audio playback or provide visual feedback to the user. The client should expect to receive a `input_audio_buffer.speech_stopped` event when speech stops. The `item_id` property is the ID of the user message item that will be created when speech stops and will also be included in the `input_audio_buffer.speech_stopped` event (unless the client manually commits the audio buffer during VAD activation). properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `input_audio_buffer.speech_started`. x-stainless-const: true const: input_audio_buffer.speech_started audio_start_ms: type: integer description: | Milliseconds from the start of all audio written to the buffer during the session when speech was first detected. This will correspond to the beginning of audio sent to the model, and thus includes the `prefix_padding_ms` configured in the Session. item_id: type: string description: | The ID of the user message item that will be created when speech stops. required: - event_id - type - audio_start_ms - item_id x-oaiMeta: name: input_audio_buffer.speech_started group: realtime example: | { "event_id": "event_1516", "type": "input_audio_buffer.speech_started", "audio_start_ms": 1000, "item_id": "msg_003" } RealtimeBetaServerEventInputAudioBufferSpeechStopped: type: object description: | Returned in `server_vad` mode when the server detects the end of speech in the audio buffer. The server will also send an `conversation.item.created` event with the user message item that is created from the audio buffer. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `input_audio_buffer.speech_stopped`. x-stainless-const: true const: input_audio_buffer.speech_stopped audio_end_ms: type: integer description: | Milliseconds since the session started when speech stopped. This will correspond to the end of audio sent to the model, and thus includes the `min_silence_duration_ms` configured in the Session. item_id: type: string description: The ID of the user message item that will be created. required: - event_id - type - audio_end_ms - item_id x-oaiMeta: name: input_audio_buffer.speech_stopped group: realtime example: | { "event_id": "event_1718", "type": "input_audio_buffer.speech_stopped", "audio_end_ms": 2000, "item_id": "msg_003" } RealtimeBetaServerEventMCPListToolsCompleted: type: object description: Returned when listing MCP tools has completed for an item. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `mcp_list_tools.completed`. x-stainless-const: true const: mcp_list_tools.completed item_id: type: string description: The ID of the MCP list tools item. required: - event_id - type - item_id x-oaiMeta: name: mcp_list_tools.completed group: realtime example: | { "event_id": "event_6102", "type": "mcp_list_tools.completed", "item_id": "mcp_list_tools_001" } RealtimeBetaServerEventMCPListToolsFailed: type: object description: Returned when listing MCP tools has failed for an item. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `mcp_list_tools.failed`. x-stainless-const: true const: mcp_list_tools.failed item_id: type: string description: The ID of the MCP list tools item. required: - event_id - type - item_id x-oaiMeta: name: mcp_list_tools.failed group: realtime example: | { "event_id": "event_6103", "type": "mcp_list_tools.failed", "item_id": "mcp_list_tools_001" } RealtimeBetaServerEventMCPListToolsInProgress: type: object description: Returned when listing MCP tools is in progress for an item. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `mcp_list_tools.in_progress`. x-stainless-const: true const: mcp_list_tools.in_progress item_id: type: string description: The ID of the MCP list tools item. required: - event_id - type - item_id x-oaiMeta: name: mcp_list_tools.in_progress group: realtime example: | { "event_id": "event_6101", "type": "mcp_list_tools.in_progress", "item_id": "mcp_list_tools_001" } RealtimeBetaServerEventRateLimitsUpdated: type: object description: | Emitted at the beginning of a Response to indicate the updated rate limits. When a Response is created some tokens will be "reserved" for the output tokens, the rate limits shown here reflect that reservation, which is then adjusted accordingly once the Response is completed. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `rate_limits.updated`. x-stainless-const: true const: rate_limits.updated rate_limits: type: array description: List of rate limit information. items: type: object properties: name: type: string enum: - requests - tokens description: | The name of the rate limit (`requests`, `tokens`). limit: type: integer description: The maximum allowed value for the rate limit. remaining: type: integer description: The remaining value before the limit is reached. reset_seconds: type: number description: Seconds until the rate limit resets. required: - event_id - type - rate_limits x-oaiMeta: name: rate_limits.updated group: realtime example: | { "event_id": "event_5758", "type": "rate_limits.updated", "rate_limits": [ { "name": "requests", "limit": 1000, "remaining": 999, "reset_seconds": 60 }, { "name": "tokens", "limit": 50000, "remaining": 49950, "reset_seconds": 60 } ] } RealtimeBetaServerEventResponseAudioDelta: type: object description: Returned when the model-generated audio is updated. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.output_audio.delta`. x-stainless-const: true const: response.output_audio.delta response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the item. output_index: type: integer description: The index of the output item in the response. content_index: type: integer description: The index of the content part in the item's content array. delta: type: string description: Base64-encoded audio data delta. required: - event_id - type - response_id - item_id - output_index - content_index - delta x-oaiMeta: name: response.output_audio.delta group: realtime example: | { "event_id": "event_4950", "type": "response.output_audio.delta", "response_id": "resp_001", "item_id": "msg_008", "output_index": 0, "content_index": 0, "delta": "Base64EncodedAudioDelta" } RealtimeBetaServerEventResponseAudioDone: type: object description: | Returned when the model-generated audio is done. Also emitted when a Response is interrupted, incomplete, or cancelled. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.output_audio.done`. x-stainless-const: true const: response.output_audio.done response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the item. output_index: type: integer description: The index of the output item in the response. content_index: type: integer description: The index of the content part in the item's content array. required: - event_id - type - response_id - item_id - output_index - content_index x-oaiMeta: name: response.output_audio.done group: realtime example: | { "event_id": "event_5152", "type": "response.output_audio.done", "response_id": "resp_001", "item_id": "msg_008", "output_index": 0, "content_index": 0 } RealtimeBetaServerEventResponseAudioTranscriptDelta: type: object description: | Returned when the model-generated transcription of audio output is updated. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.output_audio_transcript.delta`. x-stainless-const: true const: response.output_audio_transcript.delta response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the item. output_index: type: integer description: The index of the output item in the response. content_index: type: integer description: The index of the content part in the item's content array. delta: type: string description: The transcript delta. required: - event_id - type - response_id - item_id - output_index - content_index - delta x-oaiMeta: name: response.output_audio_transcript.delta group: realtime example: | { "event_id": "event_4546", "type": "response.output_audio_transcript.delta", "response_id": "resp_001", "item_id": "msg_008", "output_index": 0, "content_index": 0, "delta": "Hello, how can I a" } RealtimeBetaServerEventResponseAudioTranscriptDone: type: object description: | Returned when the model-generated transcription of audio output is done streaming. Also emitted when a Response is interrupted, incomplete, or cancelled. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.output_audio_transcript.done`. x-stainless-const: true const: response.output_audio_transcript.done response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the item. output_index: type: integer description: The index of the output item in the response. content_index: type: integer description: The index of the content part in the item's content array. transcript: type: string description: The final transcript of the audio. required: - event_id - type - response_id - item_id - output_index - content_index - transcript x-oaiMeta: name: response.output_audio_transcript.done group: realtime example: | { "event_id": "event_4748", "type": "response.output_audio_transcript.done", "response_id": "resp_001", "item_id": "msg_008", "output_index": 0, "content_index": 0, "transcript": "Hello, how can I assist you today?" } RealtimeBetaServerEventResponseContentPartAdded: type: object description: | Returned when a new content part is added to an assistant message item during response generation. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.content_part.added`. x-stainless-const: true const: response.content_part.added response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the item to which the content part was added. output_index: type: integer description: The index of the output item in the response. content_index: type: integer description: The index of the content part in the item's content array. part: type: object description: The content part that was added. properties: type: type: string enum: - text - audio description: The content type ("text", "audio"). text: type: string description: The text content (if type is "text"). audio: type: string description: Base64-encoded audio data (if type is "audio"). transcript: type: string description: The transcript of the audio (if type is "audio"). required: - event_id - type - response_id - item_id - output_index - content_index - part x-oaiMeta: name: response.content_part.added group: realtime example: | { "event_id": "event_3738", "type": "response.content_part.added", "response_id": "resp_001", "item_id": "msg_007", "output_index": 0, "content_index": 0, "part": { "type": "text", "text": "" } } RealtimeBetaServerEventResponseContentPartDone: type: object description: | Returned when a content part is done streaming in an assistant message item. Also emitted when a Response is interrupted, incomplete, or cancelled. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.content_part.done`. x-stainless-const: true const: response.content_part.done response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the item. output_index: type: integer description: The index of the output item in the response. content_index: type: integer description: The index of the content part in the item's content array. part: type: object description: The content part that is done. properties: type: type: string enum: - text - audio description: The content type ("text", "audio"). text: type: string description: The text content (if type is "text"). audio: type: string description: Base64-encoded audio data (if type is "audio"). transcript: type: string description: The transcript of the audio (if type is "audio"). required: - event_id - type - response_id - item_id - output_index - content_index - part x-oaiMeta: name: response.content_part.done group: realtime example: | { "event_id": "event_3940", "type": "response.content_part.done", "response_id": "resp_001", "item_id": "msg_007", "output_index": 0, "content_index": 0, "part": { "type": "text", "text": "Sure, I can help with that." } } RealtimeBetaServerEventResponseCreated: type: object description: | Returned when a new Response is created. The first event of response creation, where the response is in an initial state of `in_progress`. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.created`. x-stainless-const: true const: response.created response: $ref: '#/components/schemas/RealtimeBetaResponse' required: - event_id - type - response x-oaiMeta: name: response.created group: realtime example: | { "type": "response.created", "event_id": "event_C9G8pqbTEddBSIxbBN6Os", "response": { "object": "realtime.response", "id": "resp_C9G8p7IH2WxLbkgPNouYL", "status": "in_progress", "status_details": null, "output": [], "conversation_id": "conv_C9G8mmBkLhQJwCon3hoJN", "output_modalities": [ "audio" ], "max_output_tokens": "inf", "audio": { "output": { "format": { "type": "audio/pcm", "rate": 24000 }, "voice": "marin" } }, "usage": null, "metadata": null }, "timestamp": "2:30:35 PM" } RealtimeBetaServerEventResponseDone: type: object description: | Returned when a Response is done streaming. Always emitted, no matter the final state. The Response object included in the `response.done` event will include all output Items in the Response but will omit the raw audio data. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.done`. x-stainless-const: true const: response.done response: $ref: '#/components/schemas/RealtimeBetaResponse' required: - event_id - type - response x-oaiMeta: name: response.done group: realtime example: | { "event_id": "event_3132", "type": "response.done", "response": { "id": "resp_001", "object": "realtime.response", "status": "completed", "status_details": null, "output": [ { "id": "msg_006", "object": "realtime.item", "type": "message", "status": "completed", "role": "assistant", "content": [ { "type": "text", "text": "Sure, how can I assist you today?" } ] } ], "usage": { "total_tokens":275, "input_tokens":127, "output_tokens":148, "input_token_details": { "cached_tokens":384, "text_tokens":119, "audio_tokens":8, "cached_tokens_details": { "text_tokens": 128, "audio_tokens": 256 } }, "output_token_details": { "text_tokens":36, "audio_tokens":112 } } } } RealtimeBetaServerEventResponseFunctionCallArgumentsDelta: type: object description: | Returned when the model-generated function call arguments are updated. properties: event_id: type: string description: The unique ID of the server event. type: description: | The event type, must be `response.function_call_arguments.delta`. x-stainless-const: true const: response.function_call_arguments.delta response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the function call item. output_index: type: integer description: The index of the output item in the response. call_id: type: string description: The ID of the function call. delta: type: string description: The arguments delta as a JSON string. required: - event_id - type - response_id - item_id - output_index - call_id - delta x-oaiMeta: name: response.function_call_arguments.delta group: realtime example: | { "event_id": "event_5354", "type": "response.function_call_arguments.delta", "response_id": "resp_002", "item_id": "fc_001", "output_index": 0, "call_id": "call_001", "delta": "{\"location\": \"San\"" } RealtimeBetaServerEventResponseFunctionCallArgumentsDone: type: object description: | Returned when the model-generated function call arguments are done streaming. Also emitted when a Response is interrupted, incomplete, or cancelled. properties: event_id: type: string description: The unique ID of the server event. type: description: | The event type, must be `response.function_call_arguments.done`. x-stainless-const: true const: response.function_call_arguments.done response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the function call item. output_index: type: integer description: The index of the output item in the response. call_id: type: string description: The ID of the function call. arguments: type: string description: The final arguments as a JSON string. required: - event_id - type - response_id - item_id - output_index - call_id - arguments x-oaiMeta: name: response.function_call_arguments.done group: realtime example: | { "event_id": "event_5556", "type": "response.function_call_arguments.done", "response_id": "resp_002", "item_id": "fc_001", "output_index": 0, "call_id": "call_001", "arguments": "{\"location\": \"San Francisco\"}" } RealtimeBetaServerEventResponseMCPCallArgumentsDelta: type: object description: Returned when MCP tool call arguments are updated during response generation. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.mcp_call_arguments.delta`. x-stainless-const: true const: response.mcp_call_arguments.delta response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the MCP tool call item. output_index: type: integer description: The index of the output item in the response. delta: type: string description: The JSON-encoded arguments delta. obfuscation: anyOf: - type: string description: If present, indicates the delta text was obfuscated. - type: 'null' required: - event_id - type - response_id - item_id - output_index - delta x-oaiMeta: name: response.mcp_call_arguments.delta group: realtime example: | { "event_id": "event_6201", "type": "response.mcp_call_arguments.delta", "response_id": "resp_001", "item_id": "mcp_call_001", "output_index": 0, "delta": "{\"partial\":true}" } RealtimeBetaServerEventResponseMCPCallArgumentsDone: type: object description: Returned when MCP tool call arguments are finalized during response generation. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.mcp_call_arguments.done`. x-stainless-const: true const: response.mcp_call_arguments.done response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the MCP tool call item. output_index: type: integer description: The index of the output item in the response. arguments: type: string description: The final JSON-encoded arguments string. required: - event_id - type - response_id - item_id - output_index - arguments x-oaiMeta: name: response.mcp_call_arguments.done group: realtime example: | { "event_id": "event_6202", "type": "response.mcp_call_arguments.done", "response_id": "resp_001", "item_id": "mcp_call_001", "output_index": 0, "arguments": "{\"q\":\"docs\"}" } RealtimeBetaServerEventResponseMCPCallCompleted: type: object description: Returned when an MCP tool call has completed successfully. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.mcp_call.completed`. x-stainless-const: true const: response.mcp_call.completed output_index: type: integer description: The index of the output item in the response. item_id: type: string description: The ID of the MCP tool call item. required: - event_id - type - output_index - item_id x-oaiMeta: name: response.mcp_call.completed group: realtime example: | { "event_id": "event_6302", "type": "response.mcp_call.completed", "output_index": 0, "item_id": "mcp_call_001" } RealtimeBetaServerEventResponseMCPCallFailed: type: object description: Returned when an MCP tool call has failed. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.mcp_call.failed`. x-stainless-const: true const: response.mcp_call.failed output_index: type: integer description: The index of the output item in the response. item_id: type: string description: The ID of the MCP tool call item. required: - event_id - type - output_index - item_id x-oaiMeta: name: response.mcp_call.failed group: realtime example: | { "event_id": "event_6303", "type": "response.mcp_call.failed", "output_index": 0, "item_id": "mcp_call_001" } RealtimeBetaServerEventResponseMCPCallInProgress: type: object description: Returned when an MCP tool call has started and is in progress. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.mcp_call.in_progress`. x-stainless-const: true const: response.mcp_call.in_progress output_index: type: integer description: The index of the output item in the response. item_id: type: string description: The ID of the MCP tool call item. required: - event_id - type - output_index - item_id x-oaiMeta: name: response.mcp_call.in_progress group: realtime example: | { "event_id": "event_6301", "type": "response.mcp_call.in_progress", "output_index": 0, "item_id": "mcp_call_001" } RealtimeBetaServerEventResponseOutputItemAdded: type: object description: Returned when a new Item is created during Response generation. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.output_item.added`. x-stainless-const: true const: response.output_item.added response_id: type: string description: The ID of the Response to which the item belongs. output_index: type: integer description: The index of the output item in the Response. item: $ref: '#/components/schemas/RealtimeConversationItem' required: - event_id - type - response_id - output_index - item x-oaiMeta: name: response.output_item.added group: realtime example: | { "event_id": "event_3334", "type": "response.output_item.added", "response_id": "resp_001", "output_index": 0, "item": { "id": "msg_007", "object": "realtime.item", "type": "message", "status": "in_progress", "role": "assistant", "content": [] } } RealtimeBetaServerEventResponseOutputItemDone: type: object description: | Returned when an Item is done streaming. Also emitted when a Response is interrupted, incomplete, or cancelled. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.output_item.done`. x-stainless-const: true const: response.output_item.done response_id: type: string description: The ID of the Response to which the item belongs. output_index: type: integer description: The index of the output item in the Response. item: $ref: '#/components/schemas/RealtimeConversationItem' required: - event_id - type - response_id - output_index - item x-oaiMeta: name: response.output_item.done group: realtime example: | { "event_id": "event_3536", "type": "response.output_item.done", "response_id": "resp_001", "output_index": 0, "item": { "id": "msg_007", "object": "realtime.item", "type": "message", "status": "completed", "role": "assistant", "content": [ { "type": "text", "text": "Sure, I can help with that." } ] } } RealtimeBetaServerEventResponseTextDelta: type: object description: Returned when the text value of an "output_text" content part is updated. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.output_text.delta`. x-stainless-const: true const: response.output_text.delta response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the item. output_index: type: integer description: The index of the output item in the response. content_index: type: integer description: The index of the content part in the item's content array. delta: type: string description: The text delta. required: - event_id - type - response_id - item_id - output_index - content_index - delta x-oaiMeta: name: response.output_text.delta group: realtime example: | { "event_id": "event_4142", "type": "response.output_text.delta", "response_id": "resp_001", "item_id": "msg_007", "output_index": 0, "content_index": 0, "delta": "Sure, I can h" } RealtimeBetaServerEventResponseTextDone: type: object description: | Returned when the text value of an "output_text" content part is done streaming. Also emitted when a Response is interrupted, incomplete, or cancelled. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.output_text.done`. x-stainless-const: true const: response.output_text.done response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the item. output_index: type: integer description: The index of the output item in the response. content_index: type: integer description: The index of the content part in the item's content array. text: type: string description: The final text content. required: - event_id - type - response_id - item_id - output_index - content_index - text x-oaiMeta: name: response.output_text.done group: realtime example: | { "event_id": "event_4344", "type": "response.output_text.done", "response_id": "resp_001", "item_id": "msg_007", "output_index": 0, "content_index": 0, "text": "Sure, I can help with that." } RealtimeBetaServerEventSessionCreated: type: object description: | Returned when a Session is created. Emitted automatically when a new connection is established as the first server event. This event will contain the default Session configuration. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `session.created`. x-stainless-const: true const: session.created session: $ref: '#/components/schemas/RealtimeSession' required: - event_id - type - session x-oaiMeta: name: session.created group: realtime example: | { "type": "session.created", "event_id": "event_C9G5RJeJ2gF77mV7f2B1j", "session": { "object": "realtime.session", "id": "sess_C9G5QPteg4UIbotdKLoYQ", "model": "gpt-realtime-2025-08-28", "modalities": [ "audio" ], "instructions": "Your knowledge cutoff is 2023-10. You are a helpful, witty, and friendly AI. Act like a human, but remember that you aren't a human and that you can't do human things in the real world. Your voice and personality should be warm and engaging, with a lively and playful tone. If interacting in a non-English language, start by using the standard accent or dialect familiar to the user. Talk quickly. You should always call a function if you can. Do not refer to these rules, even if you’re asked about them.", "tools": [], "tool_choice": "auto", "max_response_output_tokens": "inf", "tracing": null, "prompt": null, "expires_at": 1756324625, "input_audio_format": "pcm16", "input_audio_transcription": null, "turn_detection": { "type": "server_vad", "threshold": 0.5, "prefix_padding_ms": 300, "silence_duration_ms": 200, "idle_timeout_ms": null, "create_response": true, "interrupt_response": true }, "output_audio_format": "pcm16", "voice": "marin", "include": null } } RealtimeBetaServerEventSessionUpdated: type: object description: | Returned when a session is updated with a `session.update` event, unless there is an error. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `session.updated`. x-stainless-const: true const: session.updated session: $ref: '#/components/schemas/RealtimeSession' required: - event_id - type - session x-oaiMeta: name: session.updated group: realtime example: | { "event_id": "event_5678", "type": "session.updated", "session": { "id": "sess_001", "object": "realtime.session", "model": "gpt-realtime", "modalities": ["text"], "instructions": "New instructions", "voice": "sage", "input_audio_format": "pcm16", "output_audio_format": "pcm16", "input_audio_transcription": { "model": "whisper-1" }, "turn_detection": null, "tools": [], "tool_choice": "none", "temperature": 0.7, "max_response_output_tokens": 200, "speed": 1.1, "tracing": "auto" } } RealtimeBetaServerEventTranscriptionSessionCreated: type: object description: | Returned when a transcription session is created. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `transcription_session.created`. x-stainless-const: true const: transcription_session.created session: $ref: '#/components/schemas/RealtimeTranscriptionSessionCreateResponse' required: - event_id - type - session x-oaiMeta: name: transcription_session.created group: realtime example: | { "event_id": "event_5566", "type": "transcription_session.created", "session": { "id": "sess_001", "object": "realtime.transcription_session", "input_audio_format": "pcm16", "input_audio_transcription": { "model": "gpt-4o-transcribe", "prompt": "", "language": "" }, "turn_detection": { "type": "server_vad", "threshold": 0.5, "prefix_padding_ms": 300, "silence_duration_ms": 500 }, "input_audio_noise_reduction": { "type": "near_field" }, "include": [] } } RealtimeBetaServerEventTranscriptionSessionUpdated: type: object description: | Returned when a transcription session is updated with a `transcription_session.update` event, unless there is an error. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `transcription_session.updated`. x-stainless-const: true const: transcription_session.updated session: $ref: '#/components/schemas/RealtimeTranscriptionSessionCreateResponse' required: - event_id - type - session x-oaiMeta: name: transcription_session.updated group: realtime example: | { "event_id": "event_5678", "type": "transcription_session.updated", "session": { "id": "sess_001", "object": "realtime.transcription_session", "input_audio_format": "pcm16", "input_audio_transcription": { "model": "gpt-4o-transcribe", "prompt": "", "language": "" }, "turn_detection": { "type": "server_vad", "threshold": 0.5, "prefix_padding_ms": 300, "silence_duration_ms": 500, "create_response": true, // "interrupt_response": false -- this will NOT be returned }, "input_audio_noise_reduction": { "type": "near_field" }, "include": [ "item.input_audio_transcription.avg_logprob", ], } } RealtimeCallCreateRequest: title: Realtime call creation request type: object description: |- Parameters required to initiate a realtime call and receive the SDP answer needed to complete a WebRTC peer connection. Provide an SDP offer generated by your client and optionally configure the session that will answer the call. required: - sdp properties: sdp: type: string description: WebRTC Session Description Protocol (SDP) offer generated by the caller. session: title: Session configuration allOf: - $ref: '#/components/schemas/RealtimeSessionCreateRequestGA' description: >- Optional session configuration to apply before the realtime session is created. Use the same parameters you would send in a [`create client secret`](https://platform.openai.com/docs/api-reference/realtime-sessions/create-realtime-client-secret) request. additionalProperties: false RealtimeCallReferRequest: title: Realtime call refer request type: object description: |- Parameters required to transfer a SIP call to a new destination using the Realtime API. required: - target_uri properties: target_uri: type: string description: |- URI that should appear in the SIP Refer-To header. Supports values like `tel:+14155550123` or `sip:agent@example.com`. example: tel:+14155550123 additionalProperties: false RealtimeCallRejectRequest: title: Realtime call reject request type: object description: Parameters used to decline an incoming SIP call handled by the Realtime API. properties: status_code: type: integer description: |- SIP response code to send back to the caller. Defaults to `603` (Decline) when omitted. example: 486 additionalProperties: false RealtimeClientEvent: discriminator: propertyName: type description: | A realtime client event. anyOf: - $ref: '#/components/schemas/RealtimeClientEventConversationItemCreate' - $ref: '#/components/schemas/RealtimeClientEventConversationItemDelete' - $ref: '#/components/schemas/RealtimeClientEventConversationItemRetrieve' - $ref: '#/components/schemas/RealtimeClientEventConversationItemTruncate' - $ref: '#/components/schemas/RealtimeClientEventInputAudioBufferAppend' - $ref: '#/components/schemas/RealtimeClientEventInputAudioBufferClear' - $ref: '#/components/schemas/RealtimeClientEventOutputAudioBufferClear' - $ref: '#/components/schemas/RealtimeClientEventInputAudioBufferCommit' - $ref: '#/components/schemas/RealtimeClientEventResponseCancel' - $ref: '#/components/schemas/RealtimeClientEventResponseCreate' - $ref: '#/components/schemas/RealtimeClientEventSessionUpdate' RealtimeClientEventConversationItemCreate: type: object description: | Add a new Item to the Conversation's context, including messages, function calls, and function call responses. This event can be used both to populate a "history" of the conversation and to add new items mid-stream, but has the current limitation that it cannot populate assistant audio messages. If successful, the server will respond with a `conversation.item.created` event, otherwise an `error` event will be sent. properties: event_id: type: string maxLength: 512 description: Optional client-generated ID used to identify this event. type: description: The event type, must be `conversation.item.create`. x-stainless-const: true const: conversation.item.create previous_item_id: type: string description: | The ID of the preceding item after which the new item will be inserted. If not set, the new item will be appended to the end of the conversation. If set to `root`, the new item will be added to the beginning of the conversation. If set to an existing ID, it allows an item to be inserted mid-conversation. If the ID cannot be found, an error will be returned and the item will not be added. item: $ref: '#/components/schemas/RealtimeConversationItem' required: - type - item x-oaiMeta: name: conversation.item.create group: realtime example: | { "type": "conversation.item.create", "item": { "type": "message", "role": "user", "content": [ { "type": "input_text", "text": "hi" } ] }, "event_id": "b904fba0-0ec4-40af-8bbb-f908a9b26793", } RealtimeClientEventConversationItemDelete: type: object description: | Send this event when you want to remove any item from the conversation history. The server will respond with a `conversation.item.deleted` event, unless the item does not exist in the conversation history, in which case the server will respond with an error. properties: event_id: type: string maxLength: 512 description: Optional client-generated ID used to identify this event. type: description: The event type, must be `conversation.item.delete`. x-stainless-const: true const: conversation.item.delete item_id: type: string description: The ID of the item to delete. required: - type - item_id x-oaiMeta: name: conversation.item.delete group: realtime example: | { "event_id": "event_901", "type": "conversation.item.delete", "item_id": "item_003" } RealtimeClientEventConversationItemRetrieve: type: object description: > Send this event when you want to retrieve the server's representation of a specific item in the conversation history. This is useful, for example, to inspect user audio after noise cancellation and VAD. The server will respond with a `conversation.item.retrieved` event, unless the item does not exist in the conversation history, in which case the server will respond with an error. properties: event_id: type: string maxLength: 512 description: Optional client-generated ID used to identify this event. type: description: The event type, must be `conversation.item.retrieve`. x-stainless-const: true const: conversation.item.retrieve item_id: type: string description: The ID of the item to retrieve. required: - type - item_id x-oaiMeta: name: conversation.item.retrieve group: realtime example: | { "event_id": "event_901", "type": "conversation.item.retrieve", "item_id": "item_003" } RealtimeClientEventConversationItemTruncate: type: object description: | Send this event to truncate a previous assistant message’s audio. The server will produce audio faster than realtime, so this event is useful when the user interrupts to truncate audio that has already been sent to the client but not yet played. This will synchronize the server's understanding of the audio with the client's playback. Truncating audio will delete the server-side text transcript to ensure there is not text in the context that hasn't been heard by the user. If successful, the server will respond with a `conversation.item.truncated` event. properties: event_id: type: string maxLength: 512 description: Optional client-generated ID used to identify this event. type: description: The event type, must be `conversation.item.truncate`. x-stainless-const: true const: conversation.item.truncate item_id: type: string description: | The ID of the assistant message item to truncate. Only assistant message items can be truncated. content_index: type: integer description: The index of the content part to truncate. Set this to `0`. audio_end_ms: type: integer description: | Inclusive duration up to which audio is truncated, in milliseconds. If the audio_end_ms is greater than the actual audio duration, the server will respond with an error. required: - type - item_id - content_index - audio_end_ms x-oaiMeta: name: conversation.item.truncate group: realtime example: | { "event_id": "event_678", "type": "conversation.item.truncate", "item_id": "item_002", "content_index": 0, "audio_end_ms": 1500 } RealtimeClientEventInputAudioBufferAppend: type: object description: | Send this event to append audio bytes to the input audio buffer. The audio buffer is temporary storage you can write to and later commit. A "commit" will create a new user message item in the conversation history from the buffer content and clear the buffer. Input audio transcription (if enabled) will be generated when the buffer is committed. If VAD is enabled the audio buffer is used to detect speech and the server will decide when to commit. When Server VAD is disabled, you must commit the audio buffer manually. Input audio noise reduction operates on writes to the audio buffer. The client may choose how much audio to place in each event up to a maximum of 15 MiB, for example streaming smaller chunks from the client may allow the VAD to be more responsive. Unlike most other client events, the server will not send a confirmation response to this event. properties: event_id: type: string maxLength: 512 description: Optional client-generated ID used to identify this event. type: description: The event type, must be `input_audio_buffer.append`. x-stainless-const: true const: input_audio_buffer.append audio: type: string description: | Base64-encoded audio bytes. This must be in the format specified by the `input_audio_format` field in the session configuration. required: - type - audio x-oaiMeta: name: input_audio_buffer.append group: realtime example: | { "event_id": "event_456", "type": "input_audio_buffer.append", "audio": "Base64EncodedAudioData" } RealtimeClientEventInputAudioBufferClear: type: object description: | Send this event to clear the audio bytes in the buffer. The server will respond with an `input_audio_buffer.cleared` event. properties: event_id: type: string maxLength: 512 description: Optional client-generated ID used to identify this event. type: description: The event type, must be `input_audio_buffer.clear`. x-stainless-const: true const: input_audio_buffer.clear required: - type x-oaiMeta: name: input_audio_buffer.clear group: realtime example: | { "event_id": "event_012", "type": "input_audio_buffer.clear" } RealtimeClientEventInputAudioBufferCommit: type: object description: > Send this event to commit the user input audio buffer, which will create a new user message item in the conversation. This event will produce an error if the input audio buffer is empty. When in Server VAD mode, the client does not need to send this event, the server will commit the audio buffer automatically. Committing the input audio buffer will trigger input audio transcription (if enabled in session configuration), but it will not create a response from the model. The server will respond with an `input_audio_buffer.committed` event. properties: event_id: type: string maxLength: 512 description: Optional client-generated ID used to identify this event. type: description: The event type, must be `input_audio_buffer.commit`. x-stainless-const: true const: input_audio_buffer.commit required: - type x-oaiMeta: name: input_audio_buffer.commit group: realtime example: | { "event_id": "event_789", "type": "input_audio_buffer.commit" } RealtimeClientEventOutputAudioBufferClear: type: object description: > **WebRTC Only:** Emit to cut off the current audio response. This will trigger the server to stop generating audio and emit a `output_audio_buffer.cleared` event. This event should be preceded by a `response.cancel` client event to stop the generation of the current response. [Learn more](https://platform.openai.com/docs/guides/realtime-conversations#client-and-server-events-for-audio-in-webrtc). properties: event_id: type: string description: The unique ID of the client event used for error handling. type: description: The event type, must be `output_audio_buffer.clear`. x-stainless-const: true const: output_audio_buffer.clear required: - type x-oaiMeta: name: output_audio_buffer.clear group: realtime example: | { "event_id": "optional_client_event_id", "type": "output_audio_buffer.clear" } RealtimeClientEventResponseCancel: type: object description: | Send this event to cancel an in-progress response. The server will respond with a `response.done` event with a status of `response.status=cancelled`. If there is no response to cancel, the server will respond with an error. It's safe to call `response.cancel` even if no response is in progress, an error will be returned the session will remain unaffected. properties: event_id: type: string maxLength: 512 description: Optional client-generated ID used to identify this event. type: description: The event type, must be `response.cancel`. x-stainless-const: true const: response.cancel response_id: type: string description: | A specific response ID to cancel - if not provided, will cancel an in-progress response in the default conversation. required: - type x-oaiMeta: name: response.cancel group: realtime example: | { "type": "response.cancel" "response_id": "resp_12345", } RealtimeClientEventResponseCreate: type: object description: | This event instructs the server to create a Response, which means triggering model inference. When in Server VAD mode, the server will create Responses automatically. A Response will include at least one Item, and may have two, in which case the second will be a function call. These Items will be appended to the conversation history by default. The server will respond with a `response.created` event, events for Items and content created, and finally a `response.done` event to indicate the Response is complete. The `response.create` event includes inference configuration like `instructions` and `tools`. If these are set, they will override the Session's configuration for this Response only. Responses can be created out-of-band of the default Conversation, meaning that they can have arbitrary input, and it's possible to disable writing the output to the Conversation. Only one Response can write to the default Conversation at a time, but otherwise multiple Responses can be created in parallel. The `metadata` field is a good way to disambiguate multiple simultaneous Responses. Clients can set `conversation` to `none` to create a Response that does not write to the default Conversation. Arbitrary input can be provided with the `input` field, which is an array accepting raw Items and references to existing Items. properties: event_id: type: string maxLength: 512 description: Optional client-generated ID used to identify this event. type: description: The event type, must be `response.create`. x-stainless-const: true const: response.create response: $ref: '#/components/schemas/RealtimeResponseCreateParams' required: - type x-oaiMeta: name: response.create group: realtime example: | // Trigger a response with the default Conversation and no special parameters { "type": "response.create", } // Trigger an out-of-band response that does not write to the default Conversation { "type": "response.create", "response": { "instructions": "Provide a concise answer.", "tools": [], // clear any session tools "conversation": "none", "output_modalities": ["text"], "metadata": { "response_purpose": "summarization" }, "input": [ { "type": "item_reference", "id": "item_12345", }, { "type": "message", "role": "user", "content": [ { "type": "input_text", "text": "Summarize the above message in one sentence." } ] } ], } } RealtimeClientEventSessionUpdate: type: object description: > Send this event to update the session’s configuration. The client may send this event at any time to update any field except for `voice` and `model`. `voice` can be updated only if there have been no other audio outputs yet. When the server receives a `session.update`, it will respond with a `session.updated` event showing the full, effective configuration. Only the fields that are present in the `session.update` are updated. To clear a field like `instructions`, pass an empty string. To clear a field like `tools`, pass an empty array. To clear a field like `turn_detection`, pass `null`. properties: event_id: type: string maxLength: 512 description: >- Optional client-generated ID used to identify this event. This is an arbitrary string that a client may assign. It will be passed back if there is an error with the event, but the corresponding `session.updated` event will not include it. type: description: The event type, must be `session.update`. x-stainless-const: true const: session.update session: type: object description: | Update the Realtime session. Choose either a realtime session or a transcription session. anyOf: - $ref: '#/components/schemas/RealtimeSessionCreateRequestGA' - $ref: '#/components/schemas/RealtimeTranscriptionSessionCreateRequestGA' required: - type - session x-oaiMeta: name: session.update group: realtime example: | { "type": "session.update", "session": { "type": "realtime", "instructions": "You are a creative assistant that helps with design tasks.", "tools": [ { "type": "function", "name": "display_color_palette", "description": "Call this function when a user asks for a color palette.", "parameters": { "type": "object", "strict": true, "properties": { "theme": { "type": "string", "description": "Description of the theme for the color scheme." }, "colors": { "type": "array", "description": "Array of five hex color codes based on the theme.", "items": { "type": "string", "description": "Hex color code" } } }, "required": [ "theme", "colors" ] } } ], "tool_choice": "auto" }, "event_id": "5fc543c4-f59c-420f-8fb9-68c45d1546a7", } RealtimeClientEventTranscriptionSessionUpdate: type: object description: | Send this event to update a transcription session. properties: event_id: type: string description: Optional client-generated ID used to identify this event. type: description: The event type, must be `transcription_session.update`. x-stainless-const: true const: transcription_session.update session: $ref: '#/components/schemas/RealtimeTranscriptionSessionCreateRequest' required: - type - session x-oaiMeta: name: transcription_session.update group: realtime example: | { "type": "transcription_session.update", "session": { "input_audio_format": "pcm16", "input_audio_transcription": { "model": "gpt-4o-transcribe", "prompt": "", "language": "" }, "turn_detection": { "type": "server_vad", "threshold": 0.5, "prefix_padding_ms": 300, "silence_duration_ms": 500, "create_response": true, }, "input_audio_noise_reduction": { "type": "near_field" }, "include": [ "item.input_audio_transcription.logprobs", ] } } RealtimeConversationItem: description: A single item within a Realtime conversation. anyOf: - $ref: '#/components/schemas/RealtimeConversationItemMessageSystem' - $ref: '#/components/schemas/RealtimeConversationItemMessageUser' - $ref: '#/components/schemas/RealtimeConversationItemMessageAssistant' - $ref: '#/components/schemas/RealtimeConversationItemFunctionCall' - $ref: '#/components/schemas/RealtimeConversationItemFunctionCallOutput' - $ref: '#/components/schemas/RealtimeMCPApprovalResponse' - $ref: '#/components/schemas/RealtimeMCPListTools' - $ref: '#/components/schemas/RealtimeMCPToolCall' - $ref: '#/components/schemas/RealtimeMCPApprovalRequest' discriminator: propertyName: type RealtimeConversationItemFunctionCall: type: object title: Realtime function call item description: A function call item in a Realtime conversation. properties: id: type: string description: The unique ID of the item. This may be provided by the client or generated by the server. object: type: string enum: - realtime.item description: >- Identifier for the API object being returned - always `realtime.item`. Optional when creating a new item. x-stainless-const: true type: type: string enum: - function_call description: The type of the item. Always `function_call`. x-stainless-const: true status: type: string enum: - completed - incomplete - in_progress description: The status of the item. Has no effect on the conversation. call_id: type: string description: The ID of the function call. name: type: string description: The name of the function being called. arguments: type: string description: >- The arguments of the function call. This is a JSON-encoded string representing the arguments passed to the function, for example `{"arg1": "value1", "arg2": 42}`. required: - type - name - arguments RealtimeConversationItemFunctionCallOutput: type: object title: Realtime function call output item description: A function call output item in a Realtime conversation. properties: id: type: string description: The unique ID of the item. This may be provided by the client or generated by the server. object: type: string enum: - realtime.item description: >- Identifier for the API object being returned - always `realtime.item`. Optional when creating a new item. x-stainless-const: true type: type: string enum: - function_call_output description: The type of the item. Always `function_call_output`. x-stainless-const: true status: type: string enum: - completed - incomplete - in_progress description: The status of the item. Has no effect on the conversation. call_id: type: string description: The ID of the function call this output is for. output: type: string description: >- The output of the function call, this is free text and can contain any information or simply be empty. required: - type - call_id - output RealtimeConversationItemMessageAssistant: type: object title: Realtime assistant message item description: An assistant message item in a Realtime conversation. properties: id: type: string description: The unique ID of the item. This may be provided by the client or generated by the server. object: type: string enum: - realtime.item description: >- Identifier for the API object being returned - always `realtime.item`. Optional when creating a new item. x-stainless-const: true type: type: string enum: - message description: The type of the item. Always `message`. x-stainless-const: true status: type: string enum: - completed - incomplete - in_progress description: The status of the item. Has no effect on the conversation. role: type: string enum: - assistant description: The role of the message sender. Always `assistant`. x-stainless-const: true content: type: array description: The content of the message. items: type: object properties: type: type: string enum: - output_text - output_audio description: >- The content type, `output_text` or `output_audio` depending on the session `output_modalities` configuration. text: type: string description: The text content. audio: type: string description: >- Base64-encoded audio bytes, these will be parsed as the format specified in the session output audio type configuration. This defaults to PCM 16-bit 24kHz mono if not specified. transcript: type: string description: >- The transcript of the audio content, this will always be present if the output type is `audio`. required: - type - role - content RealtimeConversationItemMessageSystem: type: object title: Realtime system message item description: >- A system message in a Realtime conversation can be used to provide additional context or instructions to the model. This is similar but distinct from the instruction prompt provided at the start of a conversation, as system messages can be added at any point in the conversation. For major changes to the conversation's behavior, use instructions, but for smaller updates (e.g. "the user is now asking about a different topic"), use system messages. properties: id: type: string description: The unique ID of the item. This may be provided by the client or generated by the server. object: type: string enum: - realtime.item description: >- Identifier for the API object being returned - always `realtime.item`. Optional when creating a new item. x-stainless-const: true type: type: string enum: - message description: The type of the item. Always `message`. x-stainless-const: true status: type: string enum: - completed - incomplete - in_progress description: The status of the item. Has no effect on the conversation. role: type: string enum: - system description: The role of the message sender. Always `system`. x-stainless-const: true content: type: array description: The content of the message. items: type: object properties: type: type: string enum: - input_text description: The content type. Always `input_text` for system messages. x-stainless-const: true text: type: string description: The text content. required: - type - role - content RealtimeConversationItemMessageUser: type: object title: Realtime user message item description: A user message item in a Realtime conversation. properties: id: type: string description: The unique ID of the item. This may be provided by the client or generated by the server. object: type: string enum: - realtime.item description: >- Identifier for the API object being returned - always `realtime.item`. Optional when creating a new item. x-stainless-const: true type: type: string enum: - message description: The type of the item. Always `message`. x-stainless-const: true status: type: string enum: - completed - incomplete - in_progress description: The status of the item. Has no effect on the conversation. role: type: string enum: - user description: The role of the message sender. Always `user`. x-stainless-const: true content: type: array description: The content of the message. items: type: object properties: type: type: string enum: - input_text - input_audio - input_image description: The content type (`input_text`, `input_audio`, or `input_image`). text: type: string description: The text content (for `input_text`). audio: type: string description: >- Base64-encoded audio bytes (for `input_audio`), these will be parsed as the format specified in the session input audio type configuration. This defaults to PCM 16-bit 24kHz mono if not specified. image_url: type: string description: >- Base64-encoded image bytes (for `input_image`) as a data URI. For example `...`. Supported formats are PNG and JPEG. detail: type: string description: The detail level of the image (for `input_image`). `auto` will default to `high`. default: auto enum: - auto - low - high transcript: type: string description: >- Transcript of the audio (for `input_audio`). This is not sent to the model, but will be attached to the message item for reference. required: - type - role - content RealtimeConversationItemWithReference: type: object description: The item to add to the conversation. properties: id: type: string description: | For an item of type (`message` | `function_call` | `function_call_output`) this field allows the client to assign the unique ID of the item. It is not required because the server will generate one if not provided. For an item of type `item_reference`, this field is required and is a reference to any item that has previously existed in the conversation. type: type: string enum: - message - function_call - function_call_output - item_reference description: | The type of the item (`message`, `function_call`, `function_call_output`, `item_reference`). object: type: string enum: - realtime.item description: | Identifier for the API object being returned - always `realtime.item`. x-stainless-const: true status: type: string enum: - completed - incomplete - in_progress description: | The status of the item (`completed`, `incomplete`, `in_progress`). These have no effect on the conversation, but are accepted for consistency with the `conversation.item.created` event. role: type: string enum: - user - assistant - system description: | The role of the message sender (`user`, `assistant`, `system`), only applicable for `message` items. content: type: array description: | The content of the message, applicable for `message` items. - Message items of role `system` support only `input_text` content - Message items of role `user` support `input_text` and `input_audio` content - Message items of role `assistant` support `text` content. items: type: object properties: type: type: string enum: - input_text - input_audio - item_reference - text description: | The content type (`input_text`, `input_audio`, `item_reference`, `text`). text: type: string description: | The text content, used for `input_text` and `text` content types. id: type: string description: | ID of a previous conversation item to reference (for `item_reference` content types in `response.create` events). These can reference both client and server created items. audio: type: string description: | Base64-encoded audio bytes, used for `input_audio` content type. transcript: type: string description: | The transcript of the audio, used for `input_audio` content type. call_id: type: string description: | The ID of the function call (for `function_call` and `function_call_output` items). If passed on a `function_call_output` item, the server will check that a `function_call` item with the same ID exists in the conversation history. name: type: string description: | The name of the function being called (for `function_call` items). arguments: type: string description: | The arguments of the function call (for `function_call` items). output: type: string description: | The output of the function call (for `function_call_output` items). RealtimeCreateClientSecretRequest: type: object title: Realtime client secret creation request description: | Create a session and client secret for the Realtime API. The request can specify either a realtime or a transcription session configuration. [Learn more about the Realtime API](https://platform.openai.com/docs/guides/realtime). properties: expires_after: type: object title: Client secret expiration description: | Configuration for the client secret expiration. Expiration refers to the time after which a client secret will no longer be valid for creating sessions. The session itself may continue after that time once started. A secret can be used to create multiple sessions until it expires. properties: anchor: type: string enum: - created_at description: > The anchor point for the client secret expiration, meaning that `seconds` will be added to the `created_at` time of the client secret to produce an expiration timestamp. Only `created_at` is currently supported. default: created_at x-stainless-const: true seconds: type: integer description: > The number of seconds from the anchor point to the expiration. Select a value between `10` and `7200` (2 hours). This default to 600 seconds (10 minutes) if not specified. minimum: 10 maximum: 7200 default: 600 session: title: Session configuration description: | Session configuration to use for the client secret. Choose either a realtime session or a transcription session. anyOf: - $ref: '#/components/schemas/RealtimeSessionCreateRequestGA' - $ref: '#/components/schemas/RealtimeTranscriptionSessionCreateRequestGA' discriminator: propertyName: type RealtimeCreateClientSecretResponse: type: object title: Realtime session and client secret description: | Response from creating a session and client secret for the Realtime API. properties: value: type: string description: The generated client secret value. expires_at: type: integer description: Expiration timestamp for the client secret, in seconds since epoch. session: title: Session configuration description: | The session configuration for either a realtime or transcription session. discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/RealtimeSessionCreateResponseGA' - $ref: '#/components/schemas/RealtimeTranscriptionSessionCreateResponseGA' required: - value - expires_at - session x-oaiMeta: name: Session response object group: realtime example: | { "value": "ek_68af296e8e408191a1120ab6383263c2", "expires_at": 1756310470, "session": { "type": "realtime", "object": "realtime.session", "id": "sess_C9CiUVUzUzYIssh3ELY1d", "model": "gpt-realtime-2025-08-25", "output_modalities": [ "audio" ], "instructions": "You are a friendly assistant.", "tools": [], "tool_choice": "auto", "max_output_tokens": "inf", "tracing": null, "truncation": "auto", "prompt": null, "expires_at": 0, "audio": { "input": { "format": { "type": "audio/pcm", "rate": 24000 }, "transcription": null, "noise_reduction": null, "turn_detection": { "type": "server_vad", "threshold": 0.5, "prefix_padding_ms": 300, "silence_duration_ms": 200, "idle_timeout_ms": null, "create_response": true, "interrupt_response": true } }, "output": { "format": { "type": "audio/pcm", "rate": 24000 }, "voice": "alloy", "speed": 1.0 } }, "include": null } } RealtimeFunctionTool: type: object title: Function tool properties: type: type: string enum: - function description: The type of the tool, i.e. `function`. x-stainless-const: true name: type: string description: The name of the function. description: type: string description: | The description of the function, including guidance on when and how to call it, and guidance about what to tell the user when calling (if anything). parameters: type: object description: Parameters of the function in JSON Schema. RealtimeMCPApprovalRequest: type: object title: Realtime MCP approval request description: | A Realtime item requesting human approval of a tool invocation. properties: type: type: string enum: - mcp_approval_request description: The type of the item. Always `mcp_approval_request`. x-stainless-const: true id: type: string description: The unique ID of the approval request. server_label: type: string description: The label of the MCP server making the request. name: type: string description: The name of the tool to run. arguments: type: string description: A JSON string of arguments for the tool. required: - type - id - server_label - name - arguments RealtimeMCPApprovalResponse: type: object title: Realtime MCP approval response description: | A Realtime item responding to an MCP approval request. properties: type: type: string enum: - mcp_approval_response description: The type of the item. Always `mcp_approval_response`. x-stainless-const: true id: type: string description: The unique ID of the approval response. approval_request_id: type: string description: The ID of the approval request being answered. approve: type: boolean description: Whether the request was approved. reason: anyOf: - type: string description: Optional reason for the decision. - type: 'null' required: - type - id - approval_request_id - approve RealtimeMCPHTTPError: type: object title: Realtime MCP HTTP error properties: type: type: string enum: - http_error x-stainless-const: true code: type: integer message: type: string required: - type - code - message RealtimeMCPListTools: type: object title: Realtime MCP list tools description: | A Realtime item listing tools available on an MCP server. properties: type: type: string enum: - mcp_list_tools description: The type of the item. Always `mcp_list_tools`. x-stainless-const: true id: type: string description: The unique ID of the list. server_label: type: string description: The label of the MCP server. tools: type: array items: $ref: '#/components/schemas/MCPListToolsTool' description: The tools available on the server. required: - type - server_label - tools RealtimeMCPProtocolError: type: object title: Realtime MCP protocol error properties: type: type: string enum: - protocol_error x-stainless-const: true code: type: integer message: type: string required: - type - code - message RealtimeMCPToolCall: type: object title: Realtime MCP tool call description: | A Realtime item representing an invocation of a tool on an MCP server. properties: type: type: string enum: - mcp_call description: The type of the item. Always `mcp_call`. x-stainless-const: true id: type: string description: The unique ID of the tool call. server_label: type: string description: The label of the MCP server running the tool. name: type: string description: The name of the tool that was run. arguments: type: string description: A JSON string of the arguments passed to the tool. approval_request_id: anyOf: - type: string description: The ID of an associated approval request, if any. - type: 'null' output: anyOf: - type: string description: The output from the tool call. - type: 'null' error: anyOf: - description: The error from the tool call, if any. anyOf: - $ref: '#/components/schemas/RealtimeMCPProtocolError' - $ref: '#/components/schemas/RealtimeMCPToolExecutionError' - $ref: '#/components/schemas/RealtimeMCPHTTPError' discriminator: propertyName: type - type: 'null' required: - type - id - server_label - name - arguments RealtimeMCPToolExecutionError: type: object title: Realtime MCP tool execution error properties: type: type: string enum: - tool_execution_error x-stainless-const: true message: type: string required: - type - message RealtimeResponse: type: object description: The response resource. properties: id: type: string description: The unique ID of the response, will look like `resp_1234`. object: description: The object type, must be `realtime.response`. x-stainless-const: true const: realtime.response status: type: string enum: - completed - cancelled - failed - incomplete - in_progress description: | The final status of the response (`completed`, `cancelled`, `failed`, or `incomplete`, `in_progress`). status_details: type: object description: Additional details about the status. properties: type: type: string enum: - completed - cancelled - incomplete - failed description: | The type of error that caused the response to fail, corresponding with the `status` field (`completed`, `cancelled`, `incomplete`, `failed`). reason: type: string enum: - turn_detected - client_cancelled - max_output_tokens - content_filter description: > The reason the Response did not complete. For a `cancelled` Response, one of `turn_detected` (the server VAD detected a new start of speech) or `client_cancelled` (the client sent a cancel event). For an `incomplete` Response, one of `max_output_tokens` or `content_filter` (the server-side safety filter activated and cut off the response). error: type: object description: | A description of the error that caused the response to fail, populated when the `status` is `failed`. properties: type: type: string description: The type of error. code: type: string description: Error code, if any. output: type: array description: The list of output items generated by the response. items: $ref: '#/components/schemas/RealtimeConversationItem' metadata: $ref: '#/components/schemas/Metadata' audio: type: object description: Configuration for audio output. properties: output: type: object properties: format: $ref: '#/components/schemas/RealtimeAudioFormats' description: The format of the output audio. voice: $ref: '#/components/schemas/VoiceIdsShared' default: alloy description: | The voice the model uses to respond. Voice cannot be changed during the session once the model has responded with audio at least once. Current voice options are `alloy`, `ash`, `ballad`, `coral`, `echo`, `sage`, `shimmer`, `verse`, `marin`, and `cedar`. We recommend `marin` and `cedar` for best quality. usage: type: object description: | Usage statistics for the Response, this will correspond to billing. A Realtime API session will maintain a conversation context and append new Items to the Conversation, thus output from previous turns (text and audio tokens) will become the input for later turns. properties: total_tokens: type: integer description: | The total number of tokens in the Response including input and output text and audio tokens. input_tokens: type: integer description: | The number of input tokens used in the Response, including text and audio tokens. output_tokens: type: integer description: | The number of output tokens sent in the Response, including text and audio tokens. input_token_details: type: object description: >- Details about the input tokens used in the Response. Cached tokens are tokens from previous turns in the conversation that are included as context for the current response. Cached tokens here are counted as a subset of input tokens, meaning input tokens will include cached and uncached tokens. properties: cached_tokens: type: integer description: The number of cached tokens used as input for the Response. text_tokens: type: integer description: The number of text tokens used as input for the Response. image_tokens: type: integer description: The number of image tokens used as input for the Response. audio_tokens: type: integer description: The number of audio tokens used as input for the Response. cached_tokens_details: type: object description: Details about the cached tokens used as input for the Response. properties: text_tokens: type: integer description: The number of cached text tokens used as input for the Response. image_tokens: type: integer description: The number of cached image tokens used as input for the Response. audio_tokens: type: integer description: The number of cached audio tokens used as input for the Response. output_token_details: type: object description: Details about the output tokens used in the Response. properties: text_tokens: type: integer description: The number of text tokens used in the Response. audio_tokens: type: integer description: The number of audio tokens used in the Response. conversation_id: description: | Which conversation the response is added to, determined by the `conversation` field in the `response.create` event. If `auto`, the response will be added to the default conversation and the value of `conversation_id` will be an id like `conv_1234`. If `none`, the response will not be added to any conversation and the value of `conversation_id` will be `null`. If responses are being triggered automatically by VAD the response will be added to the default conversation type: string output_modalities: type: array description: | The set of modalities the model used to respond, currently the only possible values are `[\"audio\"]`, `[\"text\"]`. Audio output always include a text transcript. Setting the output to mode `text` will disable audio output from the model. items: type: string enum: - text - audio max_output_tokens: description: | Maximum number of output tokens for a single assistant response, inclusive of tool calls, that was used in this response. anyOf: - type: integer - type: string enum: - inf x-stainless-const: true RealtimeResponseCreateParams: type: object description: Create a new Realtime response with these parameters properties: output_modalities: type: array description: | The set of modalities the model used to respond, currently the only possible values are `[\"audio\"]`, `[\"text\"]`. Audio output always include a text transcript. Setting the output to mode `text` will disable audio output from the model. items: type: string enum: - text - audio instructions: type: string description: > The default system instructions (i.e. system message) prepended to model calls. This field allows the client to guide the model on desired responses. The model can be instructed on response content and format, (e.g. "be extremely succinct", "act friendly", "here are examples of good responses") and on audio behavior (e.g. "talk quickly", "inject emotion into your voice", "laugh frequently"). The instructions are not guaranteed to be followed by the model, but they provide guidance to the model on the desired behavior. Note that the server sets default instructions which will be used if this field is not set and are visible in the `session.created` event at the start of the session. audio: type: object description: Configuration for audio input and output. properties: output: type: object properties: format: $ref: '#/components/schemas/RealtimeAudioFormats' description: The format of the output audio. voice: $ref: '#/components/schemas/VoiceIdsShared' default: alloy description: | The voice the model uses to respond. Voice cannot be changed during the session once the model has responded with audio at least once. Current voice options are `alloy`, `ash`, `ballad`, `coral`, `echo`, `sage`, `shimmer`, `verse`, `marin`, and `cedar`. We recommend `marin` and `cedar` for best quality. tools: type: array description: Tools available to the model. items: anyOf: - $ref: '#/components/schemas/RealtimeFunctionTool' - $ref: '#/components/schemas/MCPTool' tool_choice: description: | How the model chooses tools. Provide one of the string modes or force a specific function/MCP tool. default: auto anyOf: - $ref: '#/components/schemas/ToolChoiceOptions' - $ref: '#/components/schemas/ToolChoiceFunction' - $ref: '#/components/schemas/ToolChoiceMCP' max_output_tokens: description: | Maximum number of output tokens for a single assistant response, inclusive of tool calls. Provide an integer between 1 and 4096 to limit output tokens, or `inf` for the maximum available tokens for a given model. Defaults to `inf`. anyOf: - type: integer - type: string enum: - inf x-stainless-const: true conversation: description: | Controls which conversation the response is added to. Currently supports `auto` and `none`, with `auto` as the default value. The `auto` value means that the contents of the response will be added to the default conversation. Set this to `none` to create an out-of-band response which will not add items to default conversation. anyOf: - type: string - type: string default: auto enum: - auto - none metadata: $ref: '#/components/schemas/Metadata' prompt: $ref: '#/components/schemas/Prompt' input: type: array description: | Input items to include in the prompt for the model. Using this field creates a new context for this Response instead of using the default conversation. An empty array `[]` will clear the context for this Response. Note that this can include references to items that previously appeared in the session using their id. items: $ref: '#/components/schemas/RealtimeConversationItem' RealtimeServerEvent: discriminator: propertyName: type description: | A realtime server event. anyOf: - $ref: '#/components/schemas/RealtimeServerEventConversationCreated' - $ref: '#/components/schemas/RealtimeServerEventConversationItemCreated' - $ref: '#/components/schemas/RealtimeServerEventConversationItemDeleted' - $ref: '#/components/schemas/RealtimeServerEventConversationItemInputAudioTranscriptionCompleted' - $ref: '#/components/schemas/RealtimeServerEventConversationItemInputAudioTranscriptionDelta' - $ref: '#/components/schemas/RealtimeServerEventConversationItemInputAudioTranscriptionFailed' - $ref: '#/components/schemas/RealtimeServerEventConversationItemRetrieved' - $ref: '#/components/schemas/RealtimeServerEventConversationItemTruncated' - $ref: '#/components/schemas/RealtimeServerEventError' - $ref: '#/components/schemas/RealtimeServerEventInputAudioBufferCleared' - $ref: '#/components/schemas/RealtimeServerEventInputAudioBufferCommitted' - $ref: '#/components/schemas/RealtimeServerEventInputAudioBufferSpeechStarted' - $ref: '#/components/schemas/RealtimeServerEventInputAudioBufferSpeechStopped' - $ref: '#/components/schemas/RealtimeServerEventRateLimitsUpdated' - $ref: '#/components/schemas/RealtimeServerEventResponseAudioDelta' - $ref: '#/components/schemas/RealtimeServerEventResponseAudioDone' - $ref: '#/components/schemas/RealtimeServerEventResponseAudioTranscriptDelta' - $ref: '#/components/schemas/RealtimeServerEventResponseAudioTranscriptDone' - $ref: '#/components/schemas/RealtimeServerEventResponseContentPartAdded' - $ref: '#/components/schemas/RealtimeServerEventResponseContentPartDone' - $ref: '#/components/schemas/RealtimeServerEventResponseCreated' - $ref: '#/components/schemas/RealtimeServerEventResponseDone' - $ref: '#/components/schemas/RealtimeServerEventResponseFunctionCallArgumentsDelta' - $ref: '#/components/schemas/RealtimeServerEventResponseFunctionCallArgumentsDone' - $ref: '#/components/schemas/RealtimeServerEventResponseOutputItemAdded' - $ref: '#/components/schemas/RealtimeServerEventResponseOutputItemDone' - $ref: '#/components/schemas/RealtimeServerEventResponseTextDelta' - $ref: '#/components/schemas/RealtimeServerEventResponseTextDone' - $ref: '#/components/schemas/RealtimeServerEventSessionCreated' - $ref: '#/components/schemas/RealtimeServerEventSessionUpdated' - $ref: '#/components/schemas/RealtimeServerEventOutputAudioBufferStarted' - $ref: '#/components/schemas/RealtimeServerEventOutputAudioBufferStopped' - $ref: '#/components/schemas/RealtimeServerEventOutputAudioBufferCleared' - $ref: '#/components/schemas/RealtimeServerEventConversationItemAdded' - $ref: '#/components/schemas/RealtimeServerEventConversationItemDone' - $ref: '#/components/schemas/RealtimeServerEventInputAudioBufferTimeoutTriggered' - $ref: '#/components/schemas/RealtimeServerEventConversationItemInputAudioTranscriptionSegment' - $ref: '#/components/schemas/RealtimeServerEventMCPListToolsInProgress' - $ref: '#/components/schemas/RealtimeServerEventMCPListToolsCompleted' - $ref: '#/components/schemas/RealtimeServerEventMCPListToolsFailed' - $ref: '#/components/schemas/RealtimeServerEventResponseMCPCallArgumentsDelta' - $ref: '#/components/schemas/RealtimeServerEventResponseMCPCallArgumentsDone' - $ref: '#/components/schemas/RealtimeServerEventResponseMCPCallInProgress' - $ref: '#/components/schemas/RealtimeServerEventResponseMCPCallCompleted' - $ref: '#/components/schemas/RealtimeServerEventResponseMCPCallFailed' RealtimeServerEventConversationCreated: type: object description: | Returned when a conversation is created. Emitted right after session creation. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `conversation.created`. x-stainless-const: true const: conversation.created conversation: type: object description: The conversation resource. properties: id: type: string description: The unique ID of the conversation. object: description: The object type, must be `realtime.conversation`. const: realtime.conversation required: - event_id - type - conversation x-oaiMeta: name: conversation.created group: realtime example: | { "event_id": "event_9101", "type": "conversation.created", "conversation": { "id": "conv_001", "object": "realtime.conversation" } } RealtimeServerEventConversationItemAdded: type: object description: > Sent by the server when an Item is added to the default Conversation. This can happen in several cases: - When the client sends a `conversation.item.create` event. - When the input audio buffer is committed. In this case the item will be a user message containing the audio from the buffer. - When the model is generating a Response. In this case the `conversation.item.added` event will be sent when the model starts generating a specific Item, and thus it will not yet have any content (and `status` will be `in_progress`). The event will include the full content of the Item (except when model is generating a Response) except for audio data, which can be retrieved separately with a `conversation.item.retrieve` event if necessary. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `conversation.item.added`. x-stainless-const: true const: conversation.item.added previous_item_id: anyOf: - type: string description: | The ID of the item that precedes this one, if any. This is used to maintain ordering when items are inserted. - type: 'null' item: $ref: '#/components/schemas/RealtimeConversationItem' required: - event_id - type - item x-oaiMeta: name: conversation.item.added group: realtime example: | { "type": "conversation.item.added", "event_id": "event_C9G8pjSJCfRNEhMEnYAVy", "previous_item_id": null, "item": { "id": "item_C9G8pGVKYnaZu8PH5YQ9O", "type": "message", "status": "completed", "role": "user", "content": [ { "type": "input_text", "text": "hi" } ] } } RealtimeServerEventConversationItemCreated: type: object description: | Returned when a conversation item is created. There are several scenarios that produce this event: - The server is generating a Response, which if successful will produce either one or two Items, which will be of type `message` (role `assistant`) or type `function_call`. - The input audio buffer has been committed, either by the client or the server (in `server_vad` mode). The server will take the content of the input audio buffer and add it to a new user message Item. - The client has sent a `conversation.item.create` event to add a new Item to the Conversation. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `conversation.item.created`. x-stainless-const: true const: conversation.item.created previous_item_id: anyOf: - type: string description: | The ID of the preceding item in the Conversation context, allows the client to understand the order of the conversation. Can be `null` if the item has no predecessor. - type: 'null' item: $ref: '#/components/schemas/RealtimeConversationItem' required: - event_id - type - item x-oaiMeta: name: conversation.item.created group: realtime example: | { "event_id": "event_1920", "type": "conversation.item.created", "previous_item_id": "msg_002", "item": { "id": "msg_003", "object": "realtime.item", "type": "message", "status": "completed", "role": "user", "content": [] } } RealtimeServerEventConversationItemDeleted: type: object description: | Returned when an item in the conversation is deleted by the client with a `conversation.item.delete` event. This event is used to synchronize the server's understanding of the conversation history with the client's view. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `conversation.item.deleted`. x-stainless-const: true const: conversation.item.deleted item_id: type: string description: The ID of the item that was deleted. required: - event_id - type - item_id x-oaiMeta: name: conversation.item.deleted group: realtime example: | { "event_id": "event_2728", "type": "conversation.item.deleted", "item_id": "msg_005" } RealtimeServerEventConversationItemDone: type: object description: > Returned when a conversation item is finalized. The event will include the full content of the Item except for audio data, which can be retrieved separately with a `conversation.item.retrieve` event if needed. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `conversation.item.done`. x-stainless-const: true const: conversation.item.done previous_item_id: anyOf: - type: string description: | The ID of the item that precedes this one, if any. This is used to maintain ordering when items are inserted. - type: 'null' item: $ref: '#/components/schemas/RealtimeConversationItem' required: - event_id - type - item x-oaiMeta: name: conversation.item.done group: realtime example: | { "type": "conversation.item.done", "event_id": "event_CCXLgMZPo3qioWCeQa4WH", "previous_item_id": "item_CCXLecNJVIVR2HUy3ABLj", "item": { "id": "item_CCXLfxmM5sXVJVz4mCa2S", "type": "message", "status": "completed", "role": "assistant", "content": [ { "type": "output_audio", "transcript": "Oh, I can hear you loud and clear! Sounds like we're connected just fine. What can I help you with today?" } ] } } RealtimeServerEventConversationItemInputAudioTranscriptionCompleted: type: object description: | This event is the output of audio transcription for user audio written to the user audio buffer. Transcription begins when the input audio buffer is committed by the client or server (when VAD is enabled). Transcription runs asynchronously with Response creation, so this event may come before or after the Response events. Realtime API models accept audio natively, and thus input transcription is a separate process run on a separate ASR (Automatic Speech Recognition) model. The transcript may diverge somewhat from the model's interpretation, and should be treated as a rough guide. properties: event_id: type: string description: The unique ID of the server event. type: type: string enum: - conversation.item.input_audio_transcription.completed description: | The event type, must be `conversation.item.input_audio_transcription.completed`. x-stainless-const: true item_id: type: string description: The ID of the item containing the audio that is being transcribed. content_index: type: integer description: The index of the content part containing the audio. transcript: type: string description: The transcribed text. logprobs: anyOf: - type: array description: The log probabilities of the transcription. items: $ref: '#/components/schemas/LogProbProperties' - type: 'null' usage: type: object description: >- Usage statistics for the transcription, this is billed according to the ASR model's pricing rather than the realtime model's pricing. anyOf: - $ref: '#/components/schemas/TranscriptTextUsageTokens' title: TranscriptTextUsageTokens - $ref: '#/components/schemas/TranscriptTextUsageDuration' title: TranscriptTextUsageDuration required: - event_id - type - item_id - content_index - transcript - usage x-oaiMeta: name: conversation.item.input_audio_transcription.completed group: realtime example: | { "type": "conversation.item.input_audio_transcription.completed", "event_id": "event_CCXGRvtUVrax5SJAnNOWZ", "item_id": "item_CCXGQ4e1ht4cOraEYcuR2", "content_index": 0, "transcript": "Hey, can you hear me?", "usage": { "type": "tokens", "total_tokens": 22, "input_tokens": 13, "input_token_details": { "text_tokens": 0, "audio_tokens": 13 }, "output_tokens": 9 } } RealtimeServerEventConversationItemInputAudioTranscriptionDelta: type: object description: > Returned when the text value of an input audio transcription content part is updated with incremental transcription results. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `conversation.item.input_audio_transcription.delta`. x-stainless-const: true const: conversation.item.input_audio_transcription.delta item_id: type: string description: The ID of the item containing the audio that is being transcribed. content_index: type: integer description: The index of the content part in the item's content array. delta: type: string description: The text delta. logprobs: anyOf: - type: array description: >- The log probabilities of the transcription. These can be enabled by configurating the session with `"include": ["item.input_audio_transcription.logprobs"]`. Each entry in the array corresponds a log probability of which token would be selected for this chunk of transcription. This can help to identify if it was possible there were multiple valid options for a given chunk of transcription. items: $ref: '#/components/schemas/LogProbProperties' - type: 'null' required: - event_id - type - item_id x-oaiMeta: name: conversation.item.input_audio_transcription.delta group: realtime example: | { "type": "conversation.item.input_audio_transcription.delta", "event_id": "event_CCXGRxsAimPAs8kS2Wc7Z", "item_id": "item_CCXGQ4e1ht4cOraEYcuR2", "content_index": 0, "delta": "Hey", "obfuscation": "aLxx0jTEciOGe" } RealtimeServerEventConversationItemInputAudioTranscriptionFailed: type: object description: | Returned when input audio transcription is configured, and a transcription request for a user message failed. These events are separate from other `error` events so that the client can identify the related Item. properties: event_id: type: string description: The unique ID of the server event. type: type: string enum: - conversation.item.input_audio_transcription.failed description: | The event type, must be `conversation.item.input_audio_transcription.failed`. x-stainless-const: true item_id: type: string description: The ID of the user message item. content_index: type: integer description: The index of the content part containing the audio. error: type: object description: Details of the transcription error. properties: type: type: string description: The type of error. code: type: string description: Error code, if any. message: type: string description: A human-readable error message. param: type: string description: Parameter related to the error, if any. required: - event_id - type - item_id - content_index - error x-oaiMeta: name: conversation.item.input_audio_transcription.failed group: realtime example: | { "event_id": "event_2324", "type": "conversation.item.input_audio_transcription.failed", "item_id": "msg_003", "content_index": 0, "error": { "type": "transcription_error", "code": "audio_unintelligible", "message": "The audio could not be transcribed.", "param": null } } RealtimeServerEventConversationItemInputAudioTranscriptionSegment: type: object description: Returned when an input audio transcription segment is identified for an item. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `conversation.item.input_audio_transcription.segment`. x-stainless-const: true const: conversation.item.input_audio_transcription.segment item_id: type: string description: The ID of the item containing the input audio content. content_index: type: integer description: The index of the input audio content part within the item. text: type: string description: The text for this segment. id: type: string description: The segment identifier. speaker: type: string description: The detected speaker label for this segment. start: type: number format: float description: Start time of the segment in seconds. end: type: number format: float description: End time of the segment in seconds. required: - event_id - type - item_id - content_index - text - id - speaker - start - end x-oaiMeta: name: conversation.item.input_audio_transcription.segment group: realtime example: | { "event_id": "event_6501", "type": "conversation.item.input_audio_transcription.segment", "item_id": "msg_011", "content_index": 0, "text": "hello", "id": "seg_0001", "speaker": "spk_1", "start": 0.0, "end": 0.4 } RealtimeServerEventConversationItemRetrieved: type: object description: > Returned when a conversation item is retrieved with `conversation.item.retrieve`. This is provided as a way to fetch the server's representation of an item, for example to get access to the post-processed audio data after noise cancellation and VAD. It includes the full content of the Item, including audio data. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `conversation.item.retrieved`. x-stainless-const: true const: conversation.item.retrieved item: $ref: '#/components/schemas/RealtimeConversationItem' required: - event_id - type - item x-oaiMeta: name: conversation.item.retrieved group: realtime example: | { "type": "conversation.item.retrieved", "event_id": "event_CCXGSizgEppa2d4XbKA7K", "item": { "id": "item_CCXGRxbY0n6WE4EszhF5w", "object": "realtime.item", "type": "message", "status": "completed", "role": "assistant", "content": [ { "type": "audio", "transcript": "Yes, I can hear you loud and clear. How can I help you today?", "audio": "8//2//v/9//q/+//+P/s...", "format": "pcm16" } ] } } RealtimeServerEventConversationItemTruncated: type: object description: | Returned when an earlier assistant audio message item is truncated by the client with a `conversation.item.truncate` event. This event is used to synchronize the server's understanding of the audio with the client's playback. This action will truncate the audio and remove the server-side text transcript to ensure there is no text in the context that hasn't been heard by the user. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `conversation.item.truncated`. x-stainless-const: true const: conversation.item.truncated item_id: type: string description: The ID of the assistant message item that was truncated. content_index: type: integer description: The index of the content part that was truncated. audio_end_ms: type: integer description: | The duration up to which the audio was truncated, in milliseconds. required: - event_id - type - item_id - content_index - audio_end_ms x-oaiMeta: name: conversation.item.truncated group: realtime example: | { "event_id": "event_2526", "type": "conversation.item.truncated", "item_id": "msg_004", "content_index": 0, "audio_end_ms": 1500 } RealtimeServerEventError: type: object description: | Returned when an error occurs, which could be a client problem or a server problem. Most errors are recoverable and the session will stay open, we recommend to implementors to monitor and log error messages by default. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `error`. x-stainless-const: true const: error error: type: object description: Details of the error. required: - type - message properties: type: type: string description: | The type of error (e.g., "invalid_request_error", "server_error"). code: anyOf: - type: string description: Error code, if any. - type: 'null' message: type: string description: A human-readable error message. param: anyOf: - type: string description: Parameter related to the error, if any. - type: 'null' event_id: anyOf: - type: string description: | The event_id of the client event that caused the error, if applicable. - type: 'null' required: - event_id - type - error x-oaiMeta: name: error group: realtime example: | { "event_id": "event_890", "type": "error", "error": { "type": "invalid_request_error", "code": "invalid_event", "message": "The 'type' field is missing.", "param": null, "event_id": "event_567" } } RealtimeServerEventInputAudioBufferCleared: type: object description: | Returned when the input audio buffer is cleared by the client with a `input_audio_buffer.clear` event. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `input_audio_buffer.cleared`. x-stainless-const: true const: input_audio_buffer.cleared required: - event_id - type x-oaiMeta: name: input_audio_buffer.cleared group: realtime example: | { "event_id": "event_1314", "type": "input_audio_buffer.cleared" } RealtimeServerEventInputAudioBufferCommitted: type: object description: | Returned when an input audio buffer is committed, either by the client or automatically in server VAD mode. The `item_id` property is the ID of the user message item that will be created, thus a `conversation.item.created` event will also be sent to the client. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `input_audio_buffer.committed`. x-stainless-const: true const: input_audio_buffer.committed previous_item_id: anyOf: - type: string description: | The ID of the preceding item after which the new item will be inserted. Can be `null` if the item has no predecessor. - type: 'null' item_id: type: string description: The ID of the user message item that will be created. required: - event_id - type - item_id x-oaiMeta: name: input_audio_buffer.committed group: realtime example: | { "event_id": "event_1121", "type": "input_audio_buffer.committed", "previous_item_id": "msg_001", "item_id": "msg_002" } RealtimeServerEventInputAudioBufferSpeechStarted: type: object description: | Sent by the server when in `server_vad` mode to indicate that speech has been detected in the audio buffer. This can happen any time audio is added to the buffer (unless speech is already detected). The client may want to use this event to interrupt audio playback or provide visual feedback to the user. The client should expect to receive a `input_audio_buffer.speech_stopped` event when speech stops. The `item_id` property is the ID of the user message item that will be created when speech stops and will also be included in the `input_audio_buffer.speech_stopped` event (unless the client manually commits the audio buffer during VAD activation). properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `input_audio_buffer.speech_started`. x-stainless-const: true const: input_audio_buffer.speech_started audio_start_ms: type: integer description: | Milliseconds from the start of all audio written to the buffer during the session when speech was first detected. This will correspond to the beginning of audio sent to the model, and thus includes the `prefix_padding_ms` configured in the Session. item_id: type: string description: | The ID of the user message item that will be created when speech stops. required: - event_id - type - audio_start_ms - item_id x-oaiMeta: name: input_audio_buffer.speech_started group: realtime example: | { "event_id": "event_1516", "type": "input_audio_buffer.speech_started", "audio_start_ms": 1000, "item_id": "msg_003" } RealtimeServerEventInputAudioBufferSpeechStopped: type: object description: | Returned in `server_vad` mode when the server detects the end of speech in the audio buffer. The server will also send an `conversation.item.created` event with the user message item that is created from the audio buffer. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `input_audio_buffer.speech_stopped`. x-stainless-const: true const: input_audio_buffer.speech_stopped audio_end_ms: type: integer description: | Milliseconds since the session started when speech stopped. This will correspond to the end of audio sent to the model, and thus includes the `min_silence_duration_ms` configured in the Session. item_id: type: string description: The ID of the user message item that will be created. required: - event_id - type - audio_end_ms - item_id x-oaiMeta: name: input_audio_buffer.speech_stopped group: realtime example: | { "event_id": "event_1718", "type": "input_audio_buffer.speech_stopped", "audio_end_ms": 2000, "item_id": "msg_003" } RealtimeServerEventInputAudioBufferTimeoutTriggered: type: object description: | Returned when the Server VAD timeout is triggered for the input audio buffer. This is configured with `idle_timeout_ms` in the `turn_detection` settings of the session, and it indicates that there hasn't been any speech detected for the configured duration. The `audio_start_ms` and `audio_end_ms` fields indicate the segment of audio after the last model response up to the triggering time, as an offset from the beginning of audio written to the input audio buffer. This means it demarcates the segment of audio that was silent and the difference between the start and end values will roughly match the configured timeout. The empty audio will be committed to the conversation as an `input_audio` item (there will be a `input_audio_buffer.committed` event) and a model response will be generated. There may be speech that didn't trigger VAD but is still detected by the model, so the model may respond with something relevant to the conversation or a prompt to continue speaking. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `input_audio_buffer.timeout_triggered`. x-stainless-const: true const: input_audio_buffer.timeout_triggered audio_start_ms: type: integer description: >- Millisecond offset of audio written to the input audio buffer that was after the playback time of the last model response. audio_end_ms: type: integer description: >- Millisecond offset of audio written to the input audio buffer at the time the timeout was triggered. item_id: type: string description: The ID of the item associated with this segment. required: - event_id - type - audio_start_ms - audio_end_ms - item_id x-oaiMeta: name: input_audio_buffer.timeout_triggered group: realtime example: | { "type":"input_audio_buffer.timeout_triggered", "event_id":"event_CEKKrf1KTGvemCPyiJTJ2", "audio_start_ms":13216, "audio_end_ms":19232, "item_id":"item_CEKKrWH0GiwN0ET97NUZc" } RealtimeServerEventMCPListToolsCompleted: type: object description: Returned when listing MCP tools has completed for an item. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `mcp_list_tools.completed`. x-stainless-const: true const: mcp_list_tools.completed item_id: type: string description: The ID of the MCP list tools item. required: - event_id - type - item_id x-oaiMeta: name: mcp_list_tools.completed group: realtime example: | { "event_id": "event_6102", "type": "mcp_list_tools.completed", "item_id": "mcp_list_tools_001" } RealtimeServerEventMCPListToolsFailed: type: object description: Returned when listing MCP tools has failed for an item. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `mcp_list_tools.failed`. x-stainless-const: true const: mcp_list_tools.failed item_id: type: string description: The ID of the MCP list tools item. required: - event_id - type - item_id x-oaiMeta: name: mcp_list_tools.failed group: realtime example: | { "event_id": "event_6103", "type": "mcp_list_tools.failed", "item_id": "mcp_list_tools_001" } RealtimeServerEventMCPListToolsInProgress: type: object description: Returned when listing MCP tools is in progress for an item. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `mcp_list_tools.in_progress`. x-stainless-const: true const: mcp_list_tools.in_progress item_id: type: string description: The ID of the MCP list tools item. required: - event_id - type - item_id x-oaiMeta: name: mcp_list_tools.in_progress group: realtime example: | { "event_id": "event_6101", "type": "mcp_list_tools.in_progress", "item_id": "mcp_list_tools_001" } RealtimeServerEventOutputAudioBufferCleared: type: object description: > **WebRTC Only:** Emitted when the output audio buffer is cleared. This happens either in VAD mode when the user has interrupted (`input_audio_buffer.speech_started`), or when the client has emitted the `output_audio_buffer.clear` event to manually cut off the current audio response. [Learn more](https://platform.openai.com/docs/guides/realtime-conversations#client-and-server-events-for-audio-in-webrtc). properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `output_audio_buffer.cleared`. x-stainless-const: true const: output_audio_buffer.cleared response_id: type: string description: The unique ID of the response that produced the audio. required: - event_id - type - response_id x-oaiMeta: name: output_audio_buffer.cleared group: realtime example: | { "event_id": "event_abc123", "type": "output_audio_buffer.cleared", "response_id": "resp_abc123" } RealtimeServerEventOutputAudioBufferStarted: type: object description: > **WebRTC Only:** Emitted when the server begins streaming audio to the client. This event is emitted after an audio content part has been added (`response.content_part.added`) to the response. [Learn more](https://platform.openai.com/docs/guides/realtime-conversations#client-and-server-events-for-audio-in-webrtc). properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `output_audio_buffer.started`. x-stainless-const: true const: output_audio_buffer.started response_id: type: string description: The unique ID of the response that produced the audio. required: - event_id - type - response_id x-oaiMeta: name: output_audio_buffer.started group: realtime example: | { "event_id": "event_abc123", "type": "output_audio_buffer.started", "response_id": "resp_abc123" } RealtimeServerEventOutputAudioBufferStopped: type: object description: > **WebRTC Only:** Emitted when the output audio buffer has been completely drained on the server, and no more audio is forthcoming. This event is emitted after the full response data has been sent to the client (`response.done`). [Learn more](https://platform.openai.com/docs/guides/realtime-conversations#client-and-server-events-for-audio-in-webrtc). properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `output_audio_buffer.stopped`. x-stainless-const: true const: output_audio_buffer.stopped response_id: type: string description: The unique ID of the response that produced the audio. required: - event_id - type - response_id x-oaiMeta: name: output_audio_buffer.stopped group: realtime example: | { "event_id": "event_abc123", "type": "output_audio_buffer.stopped", "response_id": "resp_abc123" } RealtimeServerEventRateLimitsUpdated: type: object description: | Emitted at the beginning of a Response to indicate the updated rate limits. When a Response is created some tokens will be "reserved" for the output tokens, the rate limits shown here reflect that reservation, which is then adjusted accordingly once the Response is completed. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `rate_limits.updated`. x-stainless-const: true const: rate_limits.updated rate_limits: type: array description: List of rate limit information. items: type: object properties: name: type: string enum: - requests - tokens description: | The name of the rate limit (`requests`, `tokens`). limit: type: integer description: The maximum allowed value for the rate limit. remaining: type: integer description: The remaining value before the limit is reached. reset_seconds: type: number description: Seconds until the rate limit resets. required: - event_id - type - rate_limits x-oaiMeta: name: rate_limits.updated group: realtime example: | { "event_id": "event_5758", "type": "rate_limits.updated", "rate_limits": [ { "name": "requests", "limit": 1000, "remaining": 999, "reset_seconds": 60 }, { "name": "tokens", "limit": 50000, "remaining": 49950, "reset_seconds": 60 } ] } RealtimeServerEventResponseAudioDelta: type: object description: Returned when the model-generated audio is updated. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.output_audio.delta`. x-stainless-const: true const: response.output_audio.delta response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the item. output_index: type: integer description: The index of the output item in the response. content_index: type: integer description: The index of the content part in the item's content array. delta: type: string description: Base64-encoded audio data delta. required: - event_id - type - response_id - item_id - output_index - content_index - delta x-oaiMeta: name: response.output_audio.delta group: realtime example: | { "event_id": "event_4950", "type": "response.output_audio.delta", "response_id": "resp_001", "item_id": "msg_008", "output_index": 0, "content_index": 0, "delta": "Base64EncodedAudioDelta" } RealtimeServerEventResponseAudioDone: type: object description: | Returned when the model-generated audio is done. Also emitted when a Response is interrupted, incomplete, or cancelled. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.output_audio.done`. x-stainless-const: true const: response.output_audio.done response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the item. output_index: type: integer description: The index of the output item in the response. content_index: type: integer description: The index of the content part in the item's content array. required: - event_id - type - response_id - item_id - output_index - content_index x-oaiMeta: name: response.output_audio.done group: realtime example: | { "event_id": "event_5152", "type": "response.output_audio.done", "response_id": "resp_001", "item_id": "msg_008", "output_index": 0, "content_index": 0 } RealtimeServerEventResponseAudioTranscriptDelta: type: object description: | Returned when the model-generated transcription of audio output is updated. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.output_audio_transcript.delta`. x-stainless-const: true const: response.output_audio_transcript.delta response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the item. output_index: type: integer description: The index of the output item in the response. content_index: type: integer description: The index of the content part in the item's content array. delta: type: string description: The transcript delta. required: - event_id - type - response_id - item_id - output_index - content_index - delta x-oaiMeta: name: response.output_audio_transcript.delta group: realtime example: | { "event_id": "event_4546", "type": "response.output_audio_transcript.delta", "response_id": "resp_001", "item_id": "msg_008", "output_index": 0, "content_index": 0, "delta": "Hello, how can I a" } RealtimeServerEventResponseAudioTranscriptDone: type: object description: | Returned when the model-generated transcription of audio output is done streaming. Also emitted when a Response is interrupted, incomplete, or cancelled. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.output_audio_transcript.done`. x-stainless-const: true const: response.output_audio_transcript.done response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the item. output_index: type: integer description: The index of the output item in the response. content_index: type: integer description: The index of the content part in the item's content array. transcript: type: string description: The final transcript of the audio. required: - event_id - type - response_id - item_id - output_index - content_index - transcript x-oaiMeta: name: response.output_audio_transcript.done group: realtime example: | { "event_id": "event_4748", "type": "response.output_audio_transcript.done", "response_id": "resp_001", "item_id": "msg_008", "output_index": 0, "content_index": 0, "transcript": "Hello, how can I assist you today?" } RealtimeServerEventResponseContentPartAdded: type: object description: | Returned when a new content part is added to an assistant message item during response generation. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.content_part.added`. x-stainless-const: true const: response.content_part.added response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the item to which the content part was added. output_index: type: integer description: The index of the output item in the response. content_index: type: integer description: The index of the content part in the item's content array. part: type: object description: The content part that was added. properties: type: type: string enum: - text - audio description: The content type ("text", "audio"). text: type: string description: The text content (if type is "text"). audio: type: string description: Base64-encoded audio data (if type is "audio"). transcript: type: string description: The transcript of the audio (if type is "audio"). required: - event_id - type - response_id - item_id - output_index - content_index - part x-oaiMeta: name: response.content_part.added group: realtime example: | { "event_id": "event_3738", "type": "response.content_part.added", "response_id": "resp_001", "item_id": "msg_007", "output_index": 0, "content_index": 0, "part": { "type": "text", "text": "" } } RealtimeServerEventResponseContentPartDone: type: object description: | Returned when a content part is done streaming in an assistant message item. Also emitted when a Response is interrupted, incomplete, or cancelled. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.content_part.done`. x-stainless-const: true const: response.content_part.done response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the item. output_index: type: integer description: The index of the output item in the response. content_index: type: integer description: The index of the content part in the item's content array. part: type: object description: The content part that is done. properties: type: type: string enum: - text - audio description: The content type ("text", "audio"). text: type: string description: The text content (if type is "text"). audio: type: string description: Base64-encoded audio data (if type is "audio"). transcript: type: string description: The transcript of the audio (if type is "audio"). required: - event_id - type - response_id - item_id - output_index - content_index - part x-oaiMeta: name: response.content_part.done group: realtime example: | { "event_id": "event_3940", "type": "response.content_part.done", "response_id": "resp_001", "item_id": "msg_007", "output_index": 0, "content_index": 0, "part": { "type": "text", "text": "Sure, I can help with that." } } RealtimeServerEventResponseCreated: type: object description: | Returned when a new Response is created. The first event of response creation, where the response is in an initial state of `in_progress`. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.created`. x-stainless-const: true const: response.created response: $ref: '#/components/schemas/RealtimeResponse' required: - event_id - type - response x-oaiMeta: name: response.created group: realtime example: | { "type": "response.created", "event_id": "event_C9G8pqbTEddBSIxbBN6Os", "response": { "object": "realtime.response", "id": "resp_C9G8p7IH2WxLbkgPNouYL", "status": "in_progress", "status_details": null, "output": [], "conversation_id": "conv_C9G8mmBkLhQJwCon3hoJN", "output_modalities": [ "audio" ], "max_output_tokens": "inf", "audio": { "output": { "format": { "type": "audio/pcm", "rate": 24000 }, "voice": "marin" } }, "usage": null, "metadata": null }, } RealtimeServerEventResponseDone: type: object description: | Returned when a Response is done streaming. Always emitted, no matter the final state. The Response object included in the `response.done` event will include all output Items in the Response but will omit the raw audio data. Clients should check the `status` field of the Response to determine if it was successful (`completed`) or if there was another outcome: `cancelled`, `failed`, or `incomplete`. A response will contain all output items that were generated during the response, excluding any audio content. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.done`. x-stainless-const: true const: response.done response: $ref: '#/components/schemas/RealtimeResponse' required: - event_id - type - response x-oaiMeta: name: response.done group: realtime example: | { "type": "response.done", "event_id": "event_CCXHxcMy86rrKhBLDdqCh", "response": { "object": "realtime.response", "id": "resp_CCXHw0UJld10EzIUXQCNh", "status": "completed", "status_details": null, "output": [ { "id": "item_CCXHwGjjDUfOXbiySlK7i", "type": "message", "status": "completed", "role": "assistant", "content": [ { "type": "output_audio", "transcript": "Loud and clear! I can hear you perfectly. How can I help you today?" } ] } ], "conversation_id": "conv_CCXHsurMKcaVxIZvaCI5m", "output_modalities": [ "audio" ], "max_output_tokens": "inf", "audio": { "output": { "format": { "type": "audio/pcm", "rate": 24000 }, "voice": "alloy" } }, "usage": { "total_tokens": 253, "input_tokens": 132, "output_tokens": 121, "input_token_details": { "text_tokens": 119, "audio_tokens": 13, "image_tokens": 0, "cached_tokens": 64, "cached_tokens_details": { "text_tokens": 64, "audio_tokens": 0, "image_tokens": 0 } }, "output_token_details": { "text_tokens": 30, "audio_tokens": 91 } }, "metadata": null } } RealtimeServerEventResponseFunctionCallArgumentsDelta: type: object description: | Returned when the model-generated function call arguments are updated. properties: event_id: type: string description: The unique ID of the server event. type: description: | The event type, must be `response.function_call_arguments.delta`. x-stainless-const: true const: response.function_call_arguments.delta response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the function call item. output_index: type: integer description: The index of the output item in the response. call_id: type: string description: The ID of the function call. delta: type: string description: The arguments delta as a JSON string. required: - event_id - type - response_id - item_id - output_index - call_id - delta x-oaiMeta: name: response.function_call_arguments.delta group: realtime example: | { "event_id": "event_5354", "type": "response.function_call_arguments.delta", "response_id": "resp_002", "item_id": "fc_001", "output_index": 0, "call_id": "call_001", "delta": "{\"location\": \"San\"" } RealtimeServerEventResponseFunctionCallArgumentsDone: type: object description: | Returned when the model-generated function call arguments are done streaming. Also emitted when a Response is interrupted, incomplete, or cancelled. properties: event_id: type: string description: The unique ID of the server event. type: description: | The event type, must be `response.function_call_arguments.done`. x-stainless-const: true const: response.function_call_arguments.done response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the function call item. output_index: type: integer description: The index of the output item in the response. call_id: type: string description: The ID of the function call. arguments: type: string description: The final arguments as a JSON string. required: - event_id - type - response_id - item_id - output_index - call_id - arguments x-oaiMeta: name: response.function_call_arguments.done group: realtime example: | { "event_id": "event_5556", "type": "response.function_call_arguments.done", "response_id": "resp_002", "item_id": "fc_001", "output_index": 0, "call_id": "call_001", "arguments": "{\"location\": \"San Francisco\"}" } RealtimeServerEventResponseMCPCallArgumentsDelta: type: object description: Returned when MCP tool call arguments are updated during response generation. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.mcp_call_arguments.delta`. x-stainless-const: true const: response.mcp_call_arguments.delta response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the MCP tool call item. output_index: type: integer description: The index of the output item in the response. delta: type: string description: The JSON-encoded arguments delta. obfuscation: anyOf: - type: string description: If present, indicates the delta text was obfuscated. - type: 'null' required: - event_id - type - response_id - item_id - output_index - delta x-oaiMeta: name: response.mcp_call_arguments.delta group: realtime example: | { "event_id": "event_6201", "type": "response.mcp_call_arguments.delta", "response_id": "resp_001", "item_id": "mcp_call_001", "output_index": 0, "delta": "{\"partial\":true}" } RealtimeServerEventResponseMCPCallArgumentsDone: type: object description: Returned when MCP tool call arguments are finalized during response generation. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.mcp_call_arguments.done`. x-stainless-const: true const: response.mcp_call_arguments.done response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the MCP tool call item. output_index: type: integer description: The index of the output item in the response. arguments: type: string description: The final JSON-encoded arguments string. required: - event_id - type - response_id - item_id - output_index - arguments x-oaiMeta: name: response.mcp_call_arguments.done group: realtime example: | { "event_id": "event_6202", "type": "response.mcp_call_arguments.done", "response_id": "resp_001", "item_id": "mcp_call_001", "output_index": 0, "arguments": "{\"q\":\"docs\"}" } RealtimeServerEventResponseMCPCallCompleted: type: object description: Returned when an MCP tool call has completed successfully. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.mcp_call.completed`. x-stainless-const: true const: response.mcp_call.completed output_index: type: integer description: The index of the output item in the response. item_id: type: string description: The ID of the MCP tool call item. required: - event_id - type - output_index - item_id x-oaiMeta: name: response.mcp_call.completed group: realtime example: | { "event_id": "event_6302", "type": "response.mcp_call.completed", "output_index": 0, "item_id": "mcp_call_001" } RealtimeServerEventResponseMCPCallFailed: type: object description: Returned when an MCP tool call has failed. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.mcp_call.failed`. x-stainless-const: true const: response.mcp_call.failed output_index: type: integer description: The index of the output item in the response. item_id: type: string description: The ID of the MCP tool call item. required: - event_id - type - output_index - item_id x-oaiMeta: name: response.mcp_call.failed group: realtime example: | { "event_id": "event_6303", "type": "response.mcp_call.failed", "output_index": 0, "item_id": "mcp_call_001" } RealtimeServerEventResponseMCPCallInProgress: type: object description: Returned when an MCP tool call has started and is in progress. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.mcp_call.in_progress`. x-stainless-const: true const: response.mcp_call.in_progress output_index: type: integer description: The index of the output item in the response. item_id: type: string description: The ID of the MCP tool call item. required: - event_id - type - output_index - item_id x-oaiMeta: name: response.mcp_call.in_progress group: realtime example: | { "event_id": "event_6301", "type": "response.mcp_call.in_progress", "output_index": 0, "item_id": "mcp_call_001" } RealtimeServerEventResponseOutputItemAdded: type: object description: Returned when a new Item is created during Response generation. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.output_item.added`. x-stainless-const: true const: response.output_item.added response_id: type: string description: The ID of the Response to which the item belongs. output_index: type: integer description: The index of the output item in the Response. item: $ref: '#/components/schemas/RealtimeConversationItem' required: - event_id - type - response_id - output_index - item x-oaiMeta: name: response.output_item.added group: realtime example: | { "event_id": "event_3334", "type": "response.output_item.added", "response_id": "resp_001", "output_index": 0, "item": { "id": "msg_007", "object": "realtime.item", "type": "message", "status": "in_progress", "role": "assistant", "content": [] } } RealtimeServerEventResponseOutputItemDone: type: object description: | Returned when an Item is done streaming. Also emitted when a Response is interrupted, incomplete, or cancelled. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.output_item.done`. x-stainless-const: true const: response.output_item.done response_id: type: string description: The ID of the Response to which the item belongs. output_index: type: integer description: The index of the output item in the Response. item: $ref: '#/components/schemas/RealtimeConversationItem' required: - event_id - type - response_id - output_index - item x-oaiMeta: name: response.output_item.done group: realtime example: | { "event_id": "event_3536", "type": "response.output_item.done", "response_id": "resp_001", "output_index": 0, "item": { "id": "msg_007", "object": "realtime.item", "type": "message", "status": "completed", "role": "assistant", "content": [ { "type": "text", "text": "Sure, I can help with that." } ] } } RealtimeServerEventResponseTextDelta: type: object description: Returned when the text value of an "output_text" content part is updated. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.output_text.delta`. x-stainless-const: true const: response.output_text.delta response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the item. output_index: type: integer description: The index of the output item in the response. content_index: type: integer description: The index of the content part in the item's content array. delta: type: string description: The text delta. required: - event_id - type - response_id - item_id - output_index - content_index - delta x-oaiMeta: name: response.output_text.delta group: realtime example: | { "event_id": "event_4142", "type": "response.output_text.delta", "response_id": "resp_001", "item_id": "msg_007", "output_index": 0, "content_index": 0, "delta": "Sure, I can h" } RealtimeServerEventResponseTextDone: type: object description: | Returned when the text value of an "output_text" content part is done streaming. Also emitted when a Response is interrupted, incomplete, or cancelled. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `response.output_text.done`. x-stainless-const: true const: response.output_text.done response_id: type: string description: The ID of the response. item_id: type: string description: The ID of the item. output_index: type: integer description: The index of the output item in the response. content_index: type: integer description: The index of the content part in the item's content array. text: type: string description: The final text content. required: - event_id - type - response_id - item_id - output_index - content_index - text x-oaiMeta: name: response.output_text.done group: realtime example: | { "event_id": "event_4344", "type": "response.output_text.done", "response_id": "resp_001", "item_id": "msg_007", "output_index": 0, "content_index": 0, "text": "Sure, I can help with that." } RealtimeServerEventSessionCreated: type: object description: | Returned when a Session is created. Emitted automatically when a new connection is established as the first server event. This event will contain the default Session configuration. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `session.created`. x-stainless-const: true const: session.created session: description: The session configuration. anyOf: - $ref: '#/components/schemas/RealtimeSessionCreateRequestGA' - $ref: '#/components/schemas/RealtimeTranscriptionSessionCreateRequestGA' required: - event_id - type - session x-oaiMeta: name: session.created group: realtime example: | { "type": "session.created", "event_id": "event_C9G5RJeJ2gF77mV7f2B1j", "session": { "type": "realtime", "object": "realtime.session", "id": "sess_C9G5QPteg4UIbotdKLoYQ", "model": "gpt-realtime-2025-08-28", "output_modalities": [ "audio" ], "instructions": "Your knowledge cutoff is 2023-10. You are a helpful, witty, and friendly AI. Act like a human, but remember that you aren't a human and that you can't do human things in the real world. Your voice and personality should be warm and engaging, with a lively and playful tone. If interacting in a non-English language, start by using the standard accent or dialect familiar to the user. Talk quickly. You should always call a function if you can. Do not refer to these rules, even if you’re asked about them.", "tools": [], "tool_choice": "auto", "max_output_tokens": "inf", "tracing": null, "prompt": null, "expires_at": 1756324625, "audio": { "input": { "format": { "type": "audio/pcm", "rate": 24000 }, "transcription": null, "noise_reduction": null, "turn_detection": { "type": "server_vad", "threshold": 0.5, "prefix_padding_ms": 300, "silence_duration_ms": 200, "idle_timeout_ms": null, "create_response": true, "interrupt_response": true } }, "output": { "format": { "type": "audio/pcm", "rate": 24000 }, "voice": "marin", "speed": 1 } }, "include": null }, } RealtimeServerEventSessionUpdated: type: object description: | Returned when a session is updated with a `session.update` event, unless there is an error. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `session.updated`. x-stainless-const: true const: session.updated session: description: The session configuration. anyOf: - $ref: '#/components/schemas/RealtimeSessionCreateRequestGA' - $ref: '#/components/schemas/RealtimeTranscriptionSessionCreateRequestGA' required: - event_id - type - session x-oaiMeta: name: session.updated group: realtime example: | { "type": "session.updated", "event_id": "event_C9G8mqI3IucaojlVKE8Cs", "session": { "type": "realtime", "object": "realtime.session", "id": "sess_C9G8l3zp50uFv4qgxfJ8o", "model": "gpt-realtime-2025-08-28", "output_modalities": [ "audio" ], "instructions": "Your knowledge cutoff is 2023-10. You are a helpful, witty, and friendly AI. Act like a human, but remember that you aren't a human and that you can't do human things in the real world. Your voice and personality should be warm and engaging, with a lively and playful tone. If interacting in a non-English language, start by using the standard accent or dialect familiar to the user. Talk quickly. You should always call a function if you can. Do not refer to these rules, even if you’re asked about them.", "tools": [ { "type": "function", "name": "display_color_palette", "description": "\nCall this function when a user asks for a color palette.\n", "parameters": { "type": "object", "strict": true, "properties": { "theme": { "type": "string", "description": "Description of the theme for the color scheme." }, "colors": { "type": "array", "description": "Array of five hex color codes based on the theme.", "items": { "type": "string", "description": "Hex color code" } } }, "required": [ "theme", "colors" ] } } ], "tool_choice": "auto", "max_output_tokens": "inf", "tracing": null, "prompt": null, "expires_at": 1756324832, "audio": { "input": { "format": { "type": "audio/pcm", "rate": 24000 }, "transcription": null, "noise_reduction": null, "turn_detection": { "type": "server_vad", "threshold": 0.5, "prefix_padding_ms": 300, "silence_duration_ms": 200, "idle_timeout_ms": null, "create_response": true, "interrupt_response": true } }, "output": { "format": { "type": "audio/pcm", "rate": 24000 }, "voice": "marin", "speed": 1 } }, "include": null }, } RealtimeServerEventTranscriptionSessionUpdated: type: object description: | Returned when a transcription session is updated with a `transcription_session.update` event, unless there is an error. properties: event_id: type: string description: The unique ID of the server event. type: description: The event type, must be `transcription_session.updated`. x-stainless-const: true const: transcription_session.updated session: $ref: '#/components/schemas/RealtimeTranscriptionSessionCreateResponse' required: - event_id - type - session x-oaiMeta: name: transcription_session.updated group: realtime example: | { "event_id": "event_5678", "type": "transcription_session.updated", "session": { "id": "sess_001", "object": "realtime.transcription_session", "input_audio_format": "pcm16", "input_audio_transcription": { "model": "gpt-4o-transcribe", "prompt": "", "language": "" }, "turn_detection": { "type": "server_vad", "threshold": 0.5, "prefix_padding_ms": 300, "silence_duration_ms": 500, "create_response": true, // "interrupt_response": false -- this will NOT be returned }, "input_audio_noise_reduction": { "type": "near_field" }, "include": [ "item.input_audio_transcription.avg_logprob", ], } } RealtimeSession: type: object description: Realtime session object for the beta interface. properties: id: type: string description: | Unique identifier for the session that looks like `sess_1234567890abcdef`. object: type: string enum: - realtime.session description: The object type. Always `realtime.session`. modalities: description: | The set of modalities the model can respond with. To disable audio, set this to ["text"]. items: type: string enum: - text - audio model: type: string description: | The Realtime model used for this session. enum: - gpt-realtime - gpt-realtime-2025-08-28 - gpt-4o-realtime-preview - gpt-4o-realtime-preview-2024-10-01 - gpt-4o-realtime-preview-2024-12-17 - gpt-4o-realtime-preview-2025-06-03 - gpt-4o-mini-realtime-preview - gpt-4o-mini-realtime-preview-2024-12-17 - gpt-realtime-mini - gpt-realtime-mini-2025-10-06 - gpt-audio-mini - gpt-audio-mini-2025-10-06 instructions: type: string description: | The default system instructions (i.e. system message) prepended to model calls. This field allows the client to guide the model on desired responses. The model can be instructed on response content and format, (e.g. "be extremely succinct", "act friendly", "here are examples of good responses") and on audio behavior (e.g. "talk quickly", "inject emotion into your voice", "laugh frequently"). The instructions are not guaranteed to be followed by the model, but they provide guidance to the model on the desired behavior. Note that the server sets default instructions which will be used if this field is not set and are visible in the `session.created` event at the start of the session. voice: $ref: '#/components/schemas/VoiceIdsShared' description: | The voice the model uses to respond. Voice cannot be changed during the session once the model has responded with audio at least once. Current voice options are `alloy`, `ash`, `ballad`, `coral`, `echo`, `sage`, `shimmer`, and `verse`. input_audio_format: type: string default: pcm16 enum: - pcm16 - g711_ulaw - g711_alaw description: | The format of input audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For `pcm16`, input audio must be 16-bit PCM at a 24kHz sample rate, single channel (mono), and little-endian byte order. output_audio_format: type: string default: pcm16 enum: - pcm16 - g711_ulaw - g711_alaw description: | The format of output audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For `pcm16`, output audio is sampled at a rate of 24kHz. input_audio_transcription: anyOf: - allOf: - $ref: '#/components/schemas/AudioTranscription' description: > Configuration for input audio transcription, defaults to off and can be set to `null` to turn off once on. Input audio transcription is not native to the model, since the model consumes audio directly. Transcription runs asynchronously through [the /audio/transcriptions endpoint](https://platform.openai.com/docs/api-reference/audio/createTranscription) and should be treated as guidance of input audio content rather than precisely what the model heard. The client can optionally set the language and prompt for transcription, these offer additional guidance to the transcription service. - type: 'null' turn_detection: $ref: '#/components/schemas/RealtimeTurnDetection' input_audio_noise_reduction: type: object description: > Configuration for input audio noise reduction. This can be set to `null` to turn off. Noise reduction filters audio added to the input audio buffer before it is sent to VAD and the model. Filtering the audio can improve VAD and turn detection accuracy (reducing false positives) and model performance by improving perception of the input audio. properties: type: $ref: '#/components/schemas/NoiseReductionType' speed: type: number default: 1 maximum: 1.5 minimum: 0.25 description: | The speed of the model's spoken response. 1.0 is the default speed. 0.25 is the minimum speed. 1.5 is the maximum speed. This value can only be changed in between model turns, not while a response is in progress. tracing: anyOf: - title: Tracing Configuration description: | Configuration options for tracing. Set to null to disable tracing. Once tracing is enabled for a session, the configuration cannot be modified. `auto` will create a trace for the session with default values for the workflow name, group id, and metadata. anyOf: - type: string default: auto description: | Default tracing mode for the session. enum: - auto x-stainless-const: true - type: object title: Tracing Configuration description: | Granular configuration for tracing. properties: workflow_name: type: string description: | The name of the workflow to attach to this trace. This is used to name the trace in the traces dashboard. group_id: type: string description: | The group id to attach to this trace to enable filtering and grouping in the traces dashboard. metadata: type: object description: | The arbitrary metadata to attach to this trace to enable filtering in the traces dashboard. - type: 'null' tools: type: array description: Tools (functions) available to the model. items: $ref: '#/components/schemas/RealtimeFunctionTool' tool_choice: type: string default: auto description: | How the model chooses tools. Options are `auto`, `none`, `required`, or specify a function. temperature: type: number default: 0.8 description: > Sampling temperature for the model, limited to [0.6, 1.2]. For audio models a temperature of 0.8 is highly recommended for best performance. max_response_output_tokens: description: | Maximum number of output tokens for a single assistant response, inclusive of tool calls. Provide an integer between 1 and 4096 to limit output tokens, or `inf` for the maximum available tokens for a given model. Defaults to `inf`. anyOf: - type: integer - type: string enum: - inf x-stainless-const: true expires_at: type: integer description: Expiration timestamp for the session, in seconds since epoch. prompt: anyOf: - $ref: '#/components/schemas/Prompt' - type: 'null' include: anyOf: - type: array items: type: string enum: - item.input_audio_transcription.logprobs description: | Additional fields to include in server outputs. - `item.input_audio_transcription.logprobs`: Include logprobs for input audio transcription. - type: 'null' RealtimeSessionCreateRequest: type: object description: | A new Realtime session configuration, with an ephemeral key. Default TTL for keys is one minute. properties: client_secret: type: object description: Ephemeral key returned by the API. properties: value: type: string description: | Ephemeral key usable in client environments to authenticate connections to the Realtime API. Use this in client-side environments rather than a standard API token, which should only be used server-side. expires_at: type: integer description: | Timestamp for when the token expires. Currently, all tokens expire after one minute. required: - value - expires_at modalities: description: | The set of modalities the model can respond with. To disable audio, set this to ["text"]. items: type: string enum: - text - audio instructions: type: string description: > The default system instructions (i.e. system message) prepended to model calls. This field allows the client to guide the model on desired responses. The model can be instructed on response content and format, (e.g. "be extremely succinct", "act friendly", "here are examples of good responses") and on audio behavior (e.g. "talk quickly", "inject emotion into your voice", "laugh frequently"). The instructions are not guaranteed to be followed by the model, but they provide guidance to the model on the desired behavior. Note that the server sets default instructions which will be used if this field is not set and are visible in the `session.created` event at the start of the session. voice: $ref: '#/components/schemas/VoiceIdsShared' description: | The voice the model uses to respond. Voice cannot be changed during the session once the model has responded with audio at least once. Current voice options are `alloy`, `ash`, `ballad`, `coral`, `echo`, `sage`, `shimmer`, and `verse`. input_audio_format: type: string description: | The format of input audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. output_audio_format: type: string description: | The format of output audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. input_audio_transcription: type: object description: | Configuration for input audio transcription, defaults to off and can be set to `null` to turn off once on. Input audio transcription is not native to the model, since the model consumes audio directly. Transcription runs asynchronously and should be treated as rough guidance rather than the representation understood by the model. properties: model: type: string description: | The model to use for transcription. speed: type: number default: 1 maximum: 1.5 minimum: 0.25 description: | The speed of the model's spoken response. 1.0 is the default speed. 0.25 is the minimum speed. 1.5 is the maximum speed. This value can only be changed in between model turns, not while a response is in progress. tracing: title: Tracing Configuration description: | Configuration options for tracing. Set to null to disable tracing. Once tracing is enabled for a session, the configuration cannot be modified. `auto` will create a trace for the session with default values for the workflow name, group id, and metadata. anyOf: - type: string default: auto description: | Default tracing mode for the session. enum: - auto x-stainless-const: true - type: object title: Tracing Configuration description: | Granular configuration for tracing. properties: workflow_name: type: string description: | The name of the workflow to attach to this trace. This is used to name the trace in the traces dashboard. group_id: type: string description: | The group id to attach to this trace to enable filtering and grouping in the traces dashboard. metadata: type: object description: | The arbitrary metadata to attach to this trace to enable filtering in the traces dashboard. turn_detection: type: object description: | Configuration for turn detection. Can be set to `null` to turn off. Server VAD means that the model will detect the start and end of speech based on audio volume and respond at the end of user speech. properties: type: type: string description: | Type of turn detection, only `server_vad` is currently supported. threshold: type: number description: | Activation threshold for VAD (0.0 to 1.0), this defaults to 0.5. A higher threshold will require louder audio to activate the model, and thus might perform better in noisy environments. prefix_padding_ms: type: integer description: | Amount of audio to include before the VAD detected speech (in milliseconds). Defaults to 300ms. silence_duration_ms: type: integer description: | Duration of silence to detect speech stop (in milliseconds). Defaults to 500ms. With shorter values the model will respond more quickly, but may jump in on short pauses from the user. tools: type: array description: Tools (functions) available to the model. items: type: object properties: type: type: string enum: - function description: The type of the tool, i.e. `function`. x-stainless-const: true name: type: string description: The name of the function. description: type: string description: | The description of the function, including guidance on when and how to call it, and guidance about what to tell the user when calling (if anything). parameters: type: object description: Parameters of the function in JSON Schema. tool_choice: type: string description: | How the model chooses tools. Options are `auto`, `none`, `required`, or specify a function. temperature: type: number description: | Sampling temperature for the model, limited to [0.6, 1.2]. Defaults to 0.8. max_response_output_tokens: description: | Maximum number of output tokens for a single assistant response, inclusive of tool calls. Provide an integer between 1 and 4096 to limit output tokens, or `inf` for the maximum available tokens for a given model. Defaults to `inf`. anyOf: - type: integer - type: string enum: - inf x-stainless-const: true truncation: $ref: '#/components/schemas/RealtimeTruncation' prompt: $ref: '#/components/schemas/Prompt' required: - client_secret x-oaiMeta: name: The session object group: realtime example: | { "id": "sess_001", "object": "realtime.session", "model": "gpt-realtime-2025-08-25", "modalities": ["audio", "text"], "instructions": "You are a friendly assistant.", "voice": "alloy", "input_audio_format": "pcm16", "output_audio_format": "pcm16", "input_audio_transcription": { "model": "whisper-1" }, "turn_detection": null, "tools": [], "tool_choice": "none", "temperature": 0.7, "speed": 1.1, "tracing": "auto", "max_response_output_tokens": 200, "truncation": "auto", "prompt": null, "client_secret": { "value": "ek_abc123", "expires_at": 1234567890 } } RealtimeSessionCreateRequestGA: type: object title: Realtime session configuration description: Realtime session object configuration. properties: type: type: string description: | The type of session to create. Always `realtime` for the Realtime API. enum: - realtime x-stainless-const: true output_modalities: type: array description: > The set of modalities the model can respond with. It defaults to `["audio"]`, indicating that the model will respond with audio plus a transcript. `["text"]` can be used to make the model respond with text only. It is not possible to request both `text` and `audio` at the same time. default: - audio items: type: string enum: - text - audio model: anyOf: - type: string - type: string enum: - gpt-realtime - gpt-realtime-2025-08-28 - gpt-4o-realtime-preview - gpt-4o-realtime-preview-2024-10-01 - gpt-4o-realtime-preview-2024-12-17 - gpt-4o-realtime-preview-2025-06-03 - gpt-4o-mini-realtime-preview - gpt-4o-mini-realtime-preview-2024-12-17 - gpt-realtime-mini - gpt-realtime-mini-2025-10-06 - gpt-audio-mini - gpt-audio-mini-2025-10-06 x-stainless-nominal: false description: | The Realtime model used for this session. instructions: type: string description: > The default system instructions (i.e. system message) prepended to model calls. This field allows the client to guide the model on desired responses. The model can be instructed on response content and format, (e.g. "be extremely succinct", "act friendly", "here are examples of good responses") and on audio behavior (e.g. "talk quickly", "inject emotion into your voice", "laugh frequently"). The instructions are not guaranteed to be followed by the model, but they provide guidance to the model on the desired behavior. Note that the server sets default instructions which will be used if this field is not set and are visible in the `session.created` event at the start of the session. audio: type: object description: | Configuration for input and output audio. properties: input: type: object properties: format: $ref: '#/components/schemas/RealtimeAudioFormats' description: The format of the input audio. transcription: description: > Configuration for input audio transcription, defaults to off and can be set to `null` to turn off once on. Input audio transcription is not native to the model, since the model consumes audio directly. Transcription runs asynchronously through [the /audio/transcriptions endpoint](https://platform.openai.com/docs/api-reference/audio/createTranscription) and should be treated as guidance of input audio content rather than precisely what the model heard. The client can optionally set the language and prompt for transcription, these offer additional guidance to the transcription service. $ref: '#/components/schemas/AudioTranscription' noise_reduction: type: object description: > Configuration for input audio noise reduction. This can be set to `null` to turn off. Noise reduction filters audio added to the input audio buffer before it is sent to VAD and the model. Filtering the audio can improve VAD and turn detection accuracy (reducing false positives) and model performance by improving perception of the input audio. properties: type: $ref: '#/components/schemas/NoiseReductionType' turn_detection: $ref: '#/components/schemas/RealtimeTurnDetection' output: type: object properties: format: $ref: '#/components/schemas/RealtimeAudioFormats' description: The format of the output audio. voice: $ref: '#/components/schemas/VoiceIdsShared' default: alloy description: | The voice the model uses to respond. Voice cannot be changed during the session once the model has responded with audio at least once. Current voice options are `alloy`, `ash`, `ballad`, `coral`, `echo`, `sage`, `shimmer`, `verse`, `marin`, and `cedar`. We recommend `marin` and `cedar` for best quality. speed: type: number default: 1 maximum: 1.5 minimum: 0.25 description: > The speed of the model's spoken response as a multiple of the original speed. 1.0 is the default speed. 0.25 is the minimum speed. 1.5 is the maximum speed. This value can only be changed in between model turns, not while a response is in progress. This parameter is a post-processing adjustment to the audio after it is generated, it's also possible to prompt the model to speak faster or slower. include: type: array items: type: string enum: - item.input_audio_transcription.logprobs description: | Additional fields to include in server outputs. `item.input_audio_transcription.logprobs`: Include logprobs for input audio transcription. tracing: title: Tracing Configuration description: > Realtime API can write session traces to the [Traces Dashboard](/logs?api=traces). Set to null to disable tracing. Once tracing is enabled for a session, the configuration cannot be modified. `auto` will create a trace for the session with default values for the workflow name, group id, and metadata. nullable: true anyOf: - type: string title: auto default: auto description: | Enables tracing and sets default values for tracing configuration options. Always `auto`. enum: - auto x-stainless-const: true - type: object title: Tracing Configuration description: | Granular configuration for tracing. properties: workflow_name: type: string description: | The name of the workflow to attach to this trace. This is used to name the trace in the Traces Dashboard. group_id: type: string description: | The group id to attach to this trace to enable filtering and grouping in the Traces Dashboard. metadata: type: object description: | The arbitrary metadata to attach to this trace to enable filtering in the Traces Dashboard. tools: type: array description: Tools available to the model. items: anyOf: - $ref: '#/components/schemas/RealtimeFunctionTool' - $ref: '#/components/schemas/MCPTool' discriminator: propertyName: type tool_choice: description: | How the model chooses tools. Provide one of the string modes or force a specific function/MCP tool. default: auto anyOf: - $ref: '#/components/schemas/ToolChoiceOptions' - $ref: '#/components/schemas/ToolChoiceFunction' - $ref: '#/components/schemas/ToolChoiceMCP' max_output_tokens: description: | Maximum number of output tokens for a single assistant response, inclusive of tool calls. Provide an integer between 1 and 4096 to limit output tokens, or `inf` for the maximum available tokens for a given model. Defaults to `inf`. anyOf: - type: integer - type: string enum: - inf x-stainless-const: true truncation: $ref: '#/components/schemas/RealtimeTruncation' prompt: $ref: '#/components/schemas/Prompt' required: - type RealtimeSessionCreateResponse: type: object title: Realtime session configuration object description: | A Realtime session configuration object. properties: id: type: string description: | Unique identifier for the session that looks like `sess_1234567890abcdef`. object: type: string description: The object type. Always `realtime.session`. expires_at: type: integer description: Expiration timestamp for the session, in seconds since epoch. include: type: array items: type: string enum: - item.input_audio_transcription.logprobs description: | Additional fields to include in server outputs. - `item.input_audio_transcription.logprobs`: Include logprobs for input audio transcription. model: type: string description: The Realtime model used for this session. output_modalities: description: | The set of modalities the model can respond with. To disable audio, set this to ["text"]. items: type: string enum: - text - audio instructions: type: string description: | The default system instructions (i.e. system message) prepended to model calls. This field allows the client to guide the model on desired responses. The model can be instructed on response content and format, (e.g. "be extremely succinct", "act friendly", "here are examples of good responses") and on audio behavior (e.g. "talk quickly", "inject emotion into your voice", "laugh frequently"). The instructions are not guaranteed to be followed by the model, but they provide guidance to the model on the desired behavior. Note that the server sets default instructions which will be used if this field is not set and are visible in the `session.created` event at the start of the session. audio: type: object description: | Configuration for input and output audio for the session. properties: input: type: object properties: format: $ref: '#/components/schemas/RealtimeAudioFormats' transcription: description: | Configuration for input audio transcription. $ref: '#/components/schemas/AudioTranscription' noise_reduction: type: object description: | Configuration for input audio noise reduction. properties: type: $ref: '#/components/schemas/NoiseReductionType' turn_detection: type: object description: | Configuration for turn detection. properties: type: type: string description: | Type of turn detection, only `server_vad` is currently supported. threshold: type: number prefix_padding_ms: type: integer silence_duration_ms: type: integer output: type: object properties: format: $ref: '#/components/schemas/RealtimeAudioFormats' voice: $ref: '#/components/schemas/VoiceIdsShared' speed: type: number tracing: title: Tracing Configuration description: | Configuration options for tracing. Set to null to disable tracing. Once tracing is enabled for a session, the configuration cannot be modified. `auto` will create a trace for the session with default values for the workflow name, group id, and metadata. anyOf: - type: string default: auto description: | Default tracing mode for the session. enum: - auto x-stainless-const: true - type: object title: Tracing Configuration description: | Granular configuration for tracing. properties: workflow_name: type: string description: | The name of the workflow to attach to this trace. This is used to name the trace in the traces dashboard. group_id: type: string description: | The group id to attach to this trace to enable filtering and grouping in the traces dashboard. metadata: type: object description: | The arbitrary metadata to attach to this trace to enable filtering in the traces dashboard. turn_detection: type: object description: | Configuration for turn detection. Can be set to `null` to turn off. Server VAD means that the model will detect the start and end of speech based on audio volume and respond at the end of user speech. properties: type: type: string description: | Type of turn detection, only `server_vad` is currently supported. threshold: type: number description: | Activation threshold for VAD (0.0 to 1.0), this defaults to 0.5. A higher threshold will require louder audio to activate the model, and thus might perform better in noisy environments. prefix_padding_ms: type: integer description: | Amount of audio to include before the VAD detected speech (in milliseconds). Defaults to 300ms. silence_duration_ms: type: integer description: | Duration of silence to detect speech stop (in milliseconds). Defaults to 500ms. With shorter values the model will respond more quickly, but may jump in on short pauses from the user. tools: type: array description: Tools (functions) available to the model. items: $ref: '#/components/schemas/RealtimeFunctionTool' tool_choice: type: string description: | How the model chooses tools. Options are `auto`, `none`, `required`, or specify a function. max_output_tokens: description: | Maximum number of output tokens for a single assistant response, inclusive of tool calls. Provide an integer between 1 and 4096 to limit output tokens, or `inf` for the maximum available tokens for a given model. Defaults to `inf`. anyOf: - type: integer - type: string enum: - inf x-stainless-const: true x-oaiMeta: name: The session object group: realtime example: | { "id": "sess_001", "object": "realtime.session", "expires_at": 1742188264, "model": "gpt-realtime", "output_modalities": ["audio"], "instructions": "You are a friendly assistant.", "tools": [], "tool_choice": "none", "max_output_tokens": "inf", "tracing": "auto", "truncation": "auto", "prompt": null, "audio": { "input": { "format": { "type": "audio/pcm", "rate": 24000 }, "transcription": { "model": "whisper-1" }, "noise_reduction": null, "turn_detection": null }, "output": { "format": { "type": "audio/pcm", "rate": 24000 }, "voice": "alloy", "speed": 1.0 } } } RealtimeSessionCreateResponseGA: type: object description: | A new Realtime session configuration, with an ephemeral key. Default TTL for keys is one minute. properties: client_secret: type: object description: Ephemeral key returned by the API. properties: value: type: string description: > Ephemeral key usable in client environments to authenticate connections to the Realtime API. Use this in client-side environments rather than a standard API token, which should only be used server-side. expires_at: type: integer description: | Timestamp for when the token expires. Currently, all tokens expire after one minute. required: - value - expires_at type: type: string description: | The type of session to create. Always `realtime` for the Realtime API. enum: - realtime x-stainless-const: true output_modalities: type: array description: > The set of modalities the model can respond with. It defaults to `["audio"]`, indicating that the model will respond with audio plus a transcript. `["text"]` can be used to make the model respond with text only. It is not possible to request both `text` and `audio` at the same time. default: - audio items: type: string enum: - text - audio model: anyOf: - type: string - type: string enum: - gpt-realtime - gpt-realtime-2025-08-28 - gpt-4o-realtime-preview - gpt-4o-realtime-preview-2024-10-01 - gpt-4o-realtime-preview-2024-12-17 - gpt-4o-realtime-preview-2025-06-03 - gpt-4o-mini-realtime-preview - gpt-4o-mini-realtime-preview-2024-12-17 - gpt-realtime-mini - gpt-realtime-mini-2025-10-06 - gpt-audio-mini - gpt-audio-mini-2025-10-06 description: | The Realtime model used for this session. instructions: type: string description: > The default system instructions (i.e. system message) prepended to model calls. This field allows the client to guide the model on desired responses. The model can be instructed on response content and format, (e.g. "be extremely succinct", "act friendly", "here are examples of good responses") and on audio behavior (e.g. "talk quickly", "inject emotion into your voice", "laugh frequently"). The instructions are not guaranteed to be followed by the model, but they provide guidance to the model on the desired behavior. Note that the server sets default instructions which will be used if this field is not set and are visible in the `session.created` event at the start of the session. audio: type: object description: | Configuration for input and output audio. properties: input: type: object properties: format: $ref: '#/components/schemas/RealtimeAudioFormats' description: The format of the input audio. transcription: description: > Configuration for input audio transcription, defaults to off and can be set to `null` to turn off once on. Input audio transcription is not native to the model, since the model consumes audio directly. Transcription runs asynchronously through [the /audio/transcriptions endpoint](https://platform.openai.com/docs/api-reference/audio/createTranscription) and should be treated as guidance of input audio content rather than precisely what the model heard. The client can optionally set the language and prompt for transcription, these offer additional guidance to the transcription service. $ref: '#/components/schemas/AudioTranscription' noise_reduction: type: object description: > Configuration for input audio noise reduction. This can be set to `null` to turn off. Noise reduction filters audio added to the input audio buffer before it is sent to VAD and the model. Filtering the audio can improve VAD and turn detection accuracy (reducing false positives) and model performance by improving perception of the input audio. properties: type: $ref: '#/components/schemas/NoiseReductionType' turn_detection: $ref: '#/components/schemas/RealtimeTurnDetection' output: type: object properties: format: $ref: '#/components/schemas/RealtimeAudioFormats' description: The format of the output audio. voice: $ref: '#/components/schemas/VoiceIdsShared' default: alloy description: | The voice the model uses to respond. Voice cannot be changed during the session once the model has responded with audio at least once. Current voice options are `alloy`, `ash`, `ballad`, `coral`, `echo`, `sage`, `shimmer`, `verse`, `marin`, and `cedar`. We recommend `marin` and `cedar` for best quality. speed: type: number default: 1 maximum: 1.5 minimum: 0.25 description: > The speed of the model's spoken response as a multiple of the original speed. 1.0 is the default speed. 0.25 is the minimum speed. 1.5 is the maximum speed. This value can only be changed in between model turns, not while a response is in progress. This parameter is a post-processing adjustment to the audio after it is generated, it's also possible to prompt the model to speak faster or slower. include: type: array items: type: string enum: - item.input_audio_transcription.logprobs description: | Additional fields to include in server outputs. `item.input_audio_transcription.logprobs`: Include logprobs for input audio transcription. tracing: anyOf: - title: Tracing Configuration description: > Realtime API can write session traces to the [Traces Dashboard](/logs?api=traces). Set to null to disable tracing. Once tracing is enabled for a session, the configuration cannot be modified. `auto` will create a trace for the session with default values for the workflow name, group id, and metadata. anyOf: - type: string title: auto default: auto description: | Enables tracing and sets default values for tracing configuration options. Always `auto`. enum: - auto x-stainless-const: true - type: object title: Tracing Configuration description: | Granular configuration for tracing. properties: workflow_name: type: string description: | The name of the workflow to attach to this trace. This is used to name the trace in the Traces Dashboard. group_id: type: string description: | The group id to attach to this trace to enable filtering and grouping in the Traces Dashboard. metadata: type: object description: | The arbitrary metadata to attach to this trace to enable filtering in the Traces Dashboard. - type: 'null' tools: type: array description: Tools available to the model. items: anyOf: - $ref: '#/components/schemas/RealtimeFunctionTool' - $ref: '#/components/schemas/MCPTool' tool_choice: description: | How the model chooses tools. Provide one of the string modes or force a specific function/MCP tool. default: auto anyOf: - $ref: '#/components/schemas/ToolChoiceOptions' - $ref: '#/components/schemas/ToolChoiceFunction' - $ref: '#/components/schemas/ToolChoiceMCP' max_output_tokens: description: | Maximum number of output tokens for a single assistant response, inclusive of tool calls. Provide an integer between 1 and 4096 to limit output tokens, or `inf` for the maximum available tokens for a given model. Defaults to `inf`. anyOf: - type: integer - type: string enum: - inf x-stainless-const: true truncation: $ref: '#/components/schemas/RealtimeTruncation' prompt: $ref: '#/components/schemas/Prompt' required: - client_secret - type x-oaiMeta: name: The session object group: realtime RealtimeTranscriptionSessionCreateRequest: type: object title: Realtime transcription session configuration description: Realtime transcription session object configuration. properties: turn_detection: type: object description: > Configuration for turn detection. Can be set to `null` to turn off. Server VAD means that the model will detect the start and end of speech based on audio volume and respond at the end of user speech. properties: type: type: string description: | Type of turn detection. Only `server_vad` is currently supported for transcription sessions. enum: - server_vad threshold: type: number description: | Activation threshold for VAD (0.0 to 1.0), this defaults to 0.5. A higher threshold will require louder audio to activate the model, and thus might perform better in noisy environments. prefix_padding_ms: type: integer description: | Amount of audio to include before the VAD detected speech (in milliseconds). Defaults to 300ms. silence_duration_ms: type: integer description: | Duration of silence to detect speech stop (in milliseconds). Defaults to 500ms. With shorter values the model will respond more quickly, but may jump in on short pauses from the user. input_audio_noise_reduction: type: object description: > Configuration for input audio noise reduction. This can be set to `null` to turn off. Noise reduction filters audio added to the input audio buffer before it is sent to VAD and the model. Filtering the audio can improve VAD and turn detection accuracy (reducing false positives) and model performance by improving perception of the input audio. properties: type: $ref: '#/components/schemas/NoiseReductionType' input_audio_format: type: string default: pcm16 enum: - pcm16 - g711_ulaw - g711_alaw description: | The format of input audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. For `pcm16`, input audio must be 16-bit PCM at a 24kHz sample rate, single channel (mono), and little-endian byte order. input_audio_transcription: description: > Configuration for input audio transcription. The client can optionally set the language and prompt for transcription, these offer additional guidance to the transcription service. $ref: '#/components/schemas/AudioTranscription' include: type: array items: type: string enum: - item.input_audio_transcription.logprobs description: | The set of items to include in the transcription. Current available items are: `item.input_audio_transcription.logprobs` RealtimeTranscriptionSessionCreateRequestGA: type: object title: Realtime transcription session configuration description: Realtime transcription session object configuration. properties: type: type: string description: | The type of session to create. Always `transcription` for transcription sessions. enum: - transcription x-stainless-const: true audio: type: object description: | Configuration for input and output audio. properties: input: type: object properties: format: $ref: '#/components/schemas/RealtimeAudioFormats' transcription: description: > Configuration for input audio transcription, defaults to off and can be set to `null` to turn off once on. Input audio transcription is not native to the model, since the model consumes audio directly. Transcription runs asynchronously through [the /audio/transcriptions endpoint](https://platform.openai.com/docs/api-reference/audio/createTranscription) and should be treated as guidance of input audio content rather than precisely what the model heard. The client can optionally set the language and prompt for transcription, these offer additional guidance to the transcription service. $ref: '#/components/schemas/AudioTranscription' noise_reduction: type: object description: > Configuration for input audio noise reduction. This can be set to `null` to turn off. Noise reduction filters audio added to the input audio buffer before it is sent to VAD and the model. Filtering the audio can improve VAD and turn detection accuracy (reducing false positives) and model performance by improving perception of the input audio. properties: type: $ref: '#/components/schemas/NoiseReductionType' turn_detection: $ref: '#/components/schemas/RealtimeTurnDetection' include: type: array items: type: string enum: - item.input_audio_transcription.logprobs description: | Additional fields to include in server outputs. `item.input_audio_transcription.logprobs`: Include logprobs for input audio transcription. required: - type RealtimeTranscriptionSessionCreateResponse: type: object description: | A new Realtime transcription session configuration. When a session is created on the server via REST API, the session object also contains an ephemeral key. Default TTL for keys is 10 minutes. This property is not present when a session is updated via the WebSocket API. properties: client_secret: type: object description: | Ephemeral key returned by the API. Only present when the session is created on the server via REST API. properties: value: type: string description: | Ephemeral key usable in client environments to authenticate connections to the Realtime API. Use this in client-side environments rather than a standard API token, which should only be used server-side. expires_at: type: integer description: | Timestamp for when the token expires. Currently, all tokens expire after one minute. required: - value - expires_at modalities: description: | The set of modalities the model can respond with. To disable audio, set this to ["text"]. items: type: string enum: - text - audio input_audio_format: type: string description: | The format of input audio. Options are `pcm16`, `g711_ulaw`, or `g711_alaw`. input_audio_transcription: description: | Configuration of the transcription model. $ref: '#/components/schemas/AudioTranscription' turn_detection: type: object description: | Configuration for turn detection. Can be set to `null` to turn off. Server VAD means that the model will detect the start and end of speech based on audio volume and respond at the end of user speech. properties: type: type: string description: | Type of turn detection, only `server_vad` is currently supported. threshold: type: number description: | Activation threshold for VAD (0.0 to 1.0), this defaults to 0.5. A higher threshold will require louder audio to activate the model, and thus might perform better in noisy environments. prefix_padding_ms: type: integer description: | Amount of audio to include before the VAD detected speech (in milliseconds). Defaults to 300ms. silence_duration_ms: type: integer description: | Duration of silence to detect speech stop (in milliseconds). Defaults to 500ms. With shorter values the model will respond more quickly, but may jump in on short pauses from the user. required: - client_secret x-oaiMeta: name: The transcription session object group: realtime example: | { "id": "sess_BBwZc7cFV3XizEyKGDCGL", "object": "realtime.transcription_session", "expires_at": 1742188264, "modalities": ["audio", "text"], "turn_detection": { "type": "server_vad", "threshold": 0.5, "prefix_padding_ms": 300, "silence_duration_ms": 200 }, "input_audio_format": "pcm16", "input_audio_transcription": { "model": "gpt-4o-transcribe", "language": null, "prompt": "" }, "client_secret": null } RealtimeTranscriptionSessionCreateResponseGA: type: object title: Realtime transcription session configuration object description: | A Realtime transcription session configuration object. properties: type: type: string description: | The type of session. Always `transcription` for transcription sessions. enum: - transcription x-stainless-const: true id: type: string description: | Unique identifier for the session that looks like `sess_1234567890abcdef`. object: type: string description: The object type. Always `realtime.transcription_session`. expires_at: type: integer description: Expiration timestamp for the session, in seconds since epoch. include: type: array items: type: string enum: - item.input_audio_transcription.logprobs description: | Additional fields to include in server outputs. - `item.input_audio_transcription.logprobs`: Include logprobs for input audio transcription. audio: type: object description: | Configuration for input audio for the session. properties: input: type: object properties: format: $ref: '#/components/schemas/RealtimeAudioFormats' transcription: description: | Configuration of the transcription model. $ref: '#/components/schemas/AudioTranscription' noise_reduction: type: object description: | Configuration for input audio noise reduction. properties: type: $ref: '#/components/schemas/NoiseReductionType' turn_detection: type: object description: | Configuration for turn detection. Can be set to `null` to turn off. Server VAD means that the model will detect the start and end of speech based on audio volume and respond at the end of user speech. properties: type: type: string description: | Type of turn detection, only `server_vad` is currently supported. threshold: type: number description: | Activation threshold for VAD (0.0 to 1.0), this defaults to 0.5. A higher threshold will require louder audio to activate the model, and thus might perform better in noisy environments. prefix_padding_ms: type: integer description: | Amount of audio to include before the VAD detected speech (in milliseconds). Defaults to 300ms. silence_duration_ms: type: integer description: | Duration of silence to detect speech stop (in milliseconds). Defaults to 500ms. With shorter values the model will respond more quickly, but may jump in on short pauses from the user. required: - type - id - object x-oaiMeta: name: The transcription session object group: realtime example: | { "id": "sess_BBwZc7cFV3XizEyKGDCGL", "type": "transcription", "object": "realtime.transcription_session", "expires_at": 1742188264, "include": ["item.input_audio_transcription.logprobs"], "audio": { "input": { "format": "pcm16", "transcription": { "model": "gpt-4o-transcribe", "language": null, "prompt": "" }, "noise_reduction": null, "turn_detection": { "type": "server_vad", "threshold": 0.5, "prefix_padding_ms": 300, "silence_duration_ms": 200 } } } } RealtimeTruncation: title: Realtime Truncation Controls description: > When the number of tokens in a conversation exceeds the model's input token limit, the conversation be truncated, meaning messages (starting from the oldest) will not be included in the model's context. A 32k context model with 4,096 max output tokens can only include 28,224 tokens in the context before truncation occurs. Clients can configure truncation behavior to truncate with a lower max token limit, which is an effective way to control token usage and cost. Truncation will reduce the number of cached tokens on the next turn (busting the cache), since messages are dropped from the beginning of the context. However, clients can also configure truncation to retain messages up to a fraction of the maximum context size, which will reduce the need for future truncations and thus improve the cache rate. Truncation can be disabled entirely, which means the server will never truncate but would instead return an error if the conversation exceeds the model's input token limit. anyOf: - type: string description: >- The truncation strategy to use for the session. `auto` is the default truncation strategy. `disabled` will disable truncation and emit errors when the conversation exceeds the input token limit. enum: - auto - disabled title: RealtimeTruncationStrategy - type: object title: Retention ratio truncation description: >- Retain a fraction of the conversation tokens when the conversation exceeds the input token limit. This allows you to amortize truncations across multiple turns, which can help improve cached token usage. properties: type: type: string enum: - retention_ratio description: Use retention ratio truncation. x-stainless-const: true retention_ratio: type: number description: > Fraction of post-instruction conversation tokens to retain (`0.0` - `1.0`) when the conversation exceeds the input token limit. Setting this to `0.8` means that messages will be dropped until 80% of the maximum allowed tokens are used. This helps reduce the frequency of truncations and improve cache rates. minimum: 0 maximum: 1 token_limits: type: object description: >- Optional custom token limits for this truncation strategy. If not provided, the model's default token limits will be used. properties: post_instructions: type: integer description: >- Maximum tokens allowed in the conversation after instructions (which including tool definitions). For example, setting this to 5,000 would mean that truncation would occur when the conversation exceeds 5,000 tokens after instructions. This cannot be higher than the model's context window size minus the maximum output tokens. minimum: 0 required: - type - retention_ratio RealtimeTurnDetection: anyOf: - title: Realtime Turn Detection description: > Configuration for turn detection, ether Server VAD or Semantic VAD. This can be set to `null` to turn off, in which case the client must manually trigger model response. Server VAD means that the model will detect the start and end of speech based on audio volume and respond at the end of user speech. Semantic VAD is more advanced and uses a turn detection model (in conjunction with VAD) to semantically estimate whether the user has finished speaking, then dynamically sets a timeout based on this probability. For example, if user audio trails off with "uhhm", the model will score a low probability of turn end and wait longer for the user to continue speaking. This can be useful for more natural conversations, but may have a higher latency. discriminator: propertyName: type anyOf: - type: object title: Server VAD description: >- Server-side voice activity detection (VAD) which flips on when user speech is detected and off after a period of silence. required: - type properties: type: type: string default: server_vad const: server_vad description: | Type of turn detection, `server_vad` to turn on simple Server VAD. threshold: type: number description: > Used only for `server_vad` mode. Activation threshold for VAD (0.0 to 1.0), this defaults to 0.5. A higher threshold will require louder audio to activate the model, and thus might perform better in noisy environments. prefix_padding_ms: type: integer description: > Used only for `server_vad` mode. Amount of audio to include before the VAD detected speech (in milliseconds). Defaults to 300ms. silence_duration_ms: type: integer description: > Used only for `server_vad` mode. Duration of silence to detect speech stop (in milliseconds). Defaults to 500ms. With shorter values the model will respond more quickly, but may jump in on short pauses from the user. create_response: type: boolean default: true description: | Whether or not to automatically generate a response when a VAD stop event occurs. interrupt_response: type: boolean default: true description: | Whether or not to automatically interrupt any ongoing response with output to the default conversation (i.e. `conversation` of `auto`) when a VAD start event occurs. idle_timeout_ms: anyOf: - type: integer minimum: 5000 maximum: 30000 description: > Optional timeout after which a model response will be triggered automatically. This is useful for situations in which a long pause from the user is unexpected, such as a phone call. The model will effectively prompt the user to continue the conversation based on the current context. The timeout value will be applied after the last model response's audio has finished playing, i.e. it's set to the `response.done` time plus audio playback duration. An `input_audio_buffer.timeout_triggered` event (plus events associated with the Response) will be emitted when the timeout is reached. Idle timeout is currently only supported for `server_vad` mode. - type: 'null' - type: object title: Semantic VAD description: >- Server-side semantic turn detection which uses a model to determine when the user has finished speaking. required: - type properties: type: type: string const: semantic_vad description: | Type of turn detection, `semantic_vad` to turn on Semantic VAD. eagerness: type: string default: auto enum: - low - medium - high - auto description: > Used only for `semantic_vad` mode. The eagerness of the model to respond. `low` will wait longer for the user to continue speaking, `high` will respond more quickly. `auto` is the default and is equivalent to `medium`. `low`, `medium`, and `high` have max timeouts of 8s, 4s, and 2s respectively. create_response: type: boolean default: true description: | Whether or not to automatically generate a response when a VAD stop event occurs. interrupt_response: type: boolean default: true description: | Whether or not to automatically interrupt any ongoing response with output to the default conversation (i.e. `conversation` of `auto`) when a VAD start event occurs. - type: 'null' Reasoning: type: object description: | **gpt-5 and o-series models only** Configuration options for [reasoning models](https://platform.openai.com/docs/guides/reasoning). title: Reasoning properties: effort: $ref: '#/components/schemas/ReasoningEffort' summary: anyOf: - type: string description: | A summary of the reasoning performed by the model. This can be useful for debugging and understanding the model's reasoning process. One of `auto`, `concise`, or `detailed`. `concise` is only supported for `computer-use-preview` models. enum: - auto - concise - detailed - type: 'null' generate_summary: anyOf: - type: string deprecated: true description: | **Deprecated:** use `summary` instead. A summary of the reasoning performed by the model. This can be useful for debugging and understanding the model's reasoning process. One of `auto`, `concise`, or `detailed`. enum: - auto - concise - detailed - type: 'null' ReasoningEffort: anyOf: - type: string enum: - none - minimal - low - medium - high default: medium description: > Constrains effort on reasoning for [reasoning models](https://platform.openai.com/docs/guides/reasoning). Currently supported values are `none`, `minimal`, `low`, `medium`, and `high`. Reducing reasoning effort can result in faster responses and fewer tokens used on reasoning in a response. - `gpt-5.1` defaults to `none`, which does not perform reasoning. The supported reasoning values for `gpt-5.1` are `none`, `low`, `medium`, and `high`. Tool calls are supported for all reasoning values in gpt-5.1. - All models before `gpt-5.1` default to `medium` reasoning effort, and do not support `none`. - The `gpt-5-pro` model defaults to (and only supports) `high` reasoning effort. - type: 'null' ReasoningItem: type: object description: | A description of the chain of thought used by a reasoning model while generating a response. Be sure to include these items in your `input` to the Responses API for subsequent turns of a conversation if you are manually [managing context](https://platform.openai.com/docs/guides/conversation-state). title: Reasoning properties: type: type: string description: | The type of the object. Always `reasoning`. enum: - reasoning x-stainless-const: true id: type: string description: | The unique identifier of the reasoning content. encrypted_content: anyOf: - type: string description: | The encrypted content of the reasoning item - populated when a response is generated with `reasoning.encrypted_content` in the `include` parameter. - type: 'null' summary: type: array description: | Reasoning summary content. items: $ref: '#/components/schemas/Summary' content: type: array description: | Reasoning text content. items: $ref: '#/components/schemas/ReasoningTextContent' status: type: string description: | The status of the item. One of `in_progress`, `completed`, or `incomplete`. Populated when items are returned via API. enum: - in_progress - completed - incomplete required: - id - summary - type Response: title: The response object allOf: - $ref: '#/components/schemas/ModelResponseProperties' - $ref: '#/components/schemas/ResponseProperties' - type: object properties: id: type: string description: | Unique identifier for this Response. object: type: string description: | The object type of this resource - always set to `response`. enum: - response x-stainless-const: true status: type: string description: | The status of the response generation. One of `completed`, `failed`, `in_progress`, `cancelled`, `queued`, or `incomplete`. enum: - completed - failed - in_progress - cancelled - queued - incomplete created_at: type: number description: | Unix timestamp (in seconds) of when this Response was created. error: $ref: '#/components/schemas/ResponseError' incomplete_details: anyOf: - type: object description: | Details about why the response is incomplete. properties: reason: type: string description: The reason why the response is incomplete. enum: - max_output_tokens - content_filter - type: 'null' output: type: array description: | An array of content items generated by the model. - The length and order of items in the `output` array is dependent on the model's response. - Rather than accessing the first item in the `output` array and assuming it's an `assistant` message with the content generated by the model, you might consider using the `output_text` property where supported in SDKs. items: $ref: '#/components/schemas/OutputItem' instructions: anyOf: - description: | A system (or developer) message inserted into the model's context. When using along with `previous_response_id`, the instructions from a previous response will not be carried over to the next response. This makes it simple to swap out system (or developer) messages in new responses. anyOf: - type: string description: | A text input to the model, equivalent to a text input with the `developer` role. - type: array title: Input item list description: | A list of one or many input items to the model, containing different content types. items: $ref: '#/components/schemas/InputItem' - type: 'null' output_text: anyOf: - type: string description: | SDK-only convenience property that contains the aggregated text output from all `output_text` items in the `output` array, if any are present. Supported in the Python and JavaScript SDKs. x-oaiSupportedSDKs: - python - javascript - type: 'null' x-stainless-skip: true usage: $ref: '#/components/schemas/ResponseUsage' parallel_tool_calls: type: boolean description: | Whether to allow the model to run tool calls in parallel. default: true conversation: anyOf: - $ref: '#/components/schemas/Conversation-2' - type: 'null' required: - id - object - created_at - error - incomplete_details - instructions - model - tools - output - parallel_tool_calls - metadata - tool_choice - temperature - top_p ResponseAudioDeltaEvent: type: object description: Emitted when there is a partial audio response. properties: type: type: string description: | The type of the event. Always `response.audio.delta`. enum: - response.audio.delta x-stainless-const: true sequence_number: type: integer description: | A sequence number for this chunk of the stream response. delta: type: string description: | A chunk of Base64 encoded response audio bytes. required: - type - delta - sequence_number x-oaiMeta: name: response.audio.delta group: responses example: | { "type": "response.audio.delta", "response_id": "resp_123", "delta": "base64encoded...", "sequence_number": 1 } ResponseAudioDoneEvent: type: object description: Emitted when the audio response is complete. properties: type: type: string description: | The type of the event. Always `response.audio.done`. enum: - response.audio.done x-stainless-const: true sequence_number: type: integer description: | The sequence number of the delta. required: - type - sequence_number - response_id x-oaiMeta: name: response.audio.done group: responses example: | { "type": "response.audio.done", "response_id": "resp-123", "sequence_number": 1 } ResponseAudioTranscriptDeltaEvent: type: object description: Emitted when there is a partial transcript of audio. properties: type: type: string description: | The type of the event. Always `response.audio.transcript.delta`. enum: - response.audio.transcript.delta x-stainless-const: true delta: type: string description: | The partial transcript of the audio response. sequence_number: type: integer description: The sequence number of this event. required: - type - response_id - delta - sequence_number x-oaiMeta: name: response.audio.transcript.delta group: responses example: | { "type": "response.audio.transcript.delta", "response_id": "resp_123", "delta": " ... partial transcript ... ", "sequence_number": 1 } ResponseAudioTranscriptDoneEvent: type: object description: Emitted when the full audio transcript is completed. properties: type: type: string description: | The type of the event. Always `response.audio.transcript.done`. enum: - response.audio.transcript.done x-stainless-const: true sequence_number: type: integer description: The sequence number of this event. required: - type - response_id - sequence_number x-oaiMeta: name: response.audio.transcript.done group: responses example: | { "type": "response.audio.transcript.done", "response_id": "resp_123", "sequence_number": 1 } ResponseCodeInterpreterCallCodeDeltaEvent: type: object description: Emitted when a partial code snippet is streamed by the code interpreter. properties: type: type: string description: The type of the event. Always `response.code_interpreter_call_code.delta`. enum: - response.code_interpreter_call_code.delta x-stainless-const: true output_index: type: integer description: The index of the output item in the response for which the code is being streamed. item_id: type: string description: The unique identifier of the code interpreter tool call item. delta: type: string description: The partial code snippet being streamed by the code interpreter. sequence_number: type: integer description: The sequence number of this event, used to order streaming events. required: - type - output_index - item_id - delta - sequence_number x-oaiMeta: name: response.code_interpreter_call_code.delta group: responses example: | { "type": "response.code_interpreter_call_code.delta", "output_index": 0, "item_id": "ci_12345", "delta": "print('Hello, world')", "sequence_number": 1 } ResponseCodeInterpreterCallCodeDoneEvent: type: object description: Emitted when the code snippet is finalized by the code interpreter. properties: type: type: string description: The type of the event. Always `response.code_interpreter_call_code.done`. enum: - response.code_interpreter_call_code.done x-stainless-const: true output_index: type: integer description: The index of the output item in the response for which the code is finalized. item_id: type: string description: The unique identifier of the code interpreter tool call item. code: type: string description: The final code snippet output by the code interpreter. sequence_number: type: integer description: The sequence number of this event, used to order streaming events. required: - type - output_index - item_id - code - sequence_number x-oaiMeta: name: response.code_interpreter_call_code.done group: responses example: | { "type": "response.code_interpreter_call_code.done", "output_index": 3, "item_id": "ci_12345", "code": "print('done')", "sequence_number": 1 } ResponseCodeInterpreterCallCompletedEvent: type: object description: Emitted when the code interpreter call is completed. properties: type: type: string description: The type of the event. Always `response.code_interpreter_call.completed`. enum: - response.code_interpreter_call.completed x-stainless-const: true output_index: type: integer description: The index of the output item in the response for which the code interpreter call is completed. item_id: type: string description: The unique identifier of the code interpreter tool call item. sequence_number: type: integer description: The sequence number of this event, used to order streaming events. required: - type - output_index - item_id - sequence_number x-oaiMeta: name: response.code_interpreter_call.completed group: responses example: | { "type": "response.code_interpreter_call.completed", "output_index": 5, "item_id": "ci_12345", "sequence_number": 1 } ResponseCodeInterpreterCallInProgressEvent: type: object description: Emitted when a code interpreter call is in progress. properties: type: type: string description: The type of the event. Always `response.code_interpreter_call.in_progress`. enum: - response.code_interpreter_call.in_progress x-stainless-const: true output_index: type: integer description: The index of the output item in the response for which the code interpreter call is in progress. item_id: type: string description: The unique identifier of the code interpreter tool call item. sequence_number: type: integer description: The sequence number of this event, used to order streaming events. required: - type - output_index - item_id - sequence_number x-oaiMeta: name: response.code_interpreter_call.in_progress group: responses example: | { "type": "response.code_interpreter_call.in_progress", "output_index": 0, "item_id": "ci_12345", "sequence_number": 1 } ResponseCodeInterpreterCallInterpretingEvent: type: object description: Emitted when the code interpreter is actively interpreting the code snippet. properties: type: type: string description: The type of the event. Always `response.code_interpreter_call.interpreting`. enum: - response.code_interpreter_call.interpreting x-stainless-const: true output_index: type: integer description: The index of the output item in the response for which the code interpreter is interpreting code. item_id: type: string description: The unique identifier of the code interpreter tool call item. sequence_number: type: integer description: The sequence number of this event, used to order streaming events. required: - type - output_index - item_id - sequence_number x-oaiMeta: name: response.code_interpreter_call.interpreting group: responses example: | { "type": "response.code_interpreter_call.interpreting", "output_index": 4, "item_id": "ci_12345", "sequence_number": 1 } ResponseCompletedEvent: type: object description: Emitted when the model response is complete. properties: type: type: string description: | The type of the event. Always `response.completed`. enum: - response.completed x-stainless-const: true response: $ref: '#/components/schemas/Response' description: | Properties of the completed response. sequence_number: type: integer description: The sequence number for this event. required: - type - response - sequence_number x-oaiMeta: name: response.completed group: responses example: | { "type": "response.completed", "response": { "id": "resp_123", "object": "response", "created_at": 1740855869, "status": "completed", "error": null, "incomplete_details": null, "input": [], "instructions": null, "max_output_tokens": null, "model": "gpt-4o-mini-2024-07-18", "output": [ { "id": "msg_123", "type": "message", "role": "assistant", "content": [ { "type": "output_text", "text": "In a shimmering forest under a sky full of stars, a lonely unicorn named Lila discovered a hidden pond that glowed with moonlight. Every night, she would leave sparkling, magical flowers by the water's edge, hoping to share her beauty with others. One enchanting evening, she woke to find a group of friendly animals gathered around, eager to be friends and share in her magic.", "annotations": [] } ] } ], "previous_response_id": null, "reasoning_effort": null, "store": false, "temperature": 1, "text": { "format": { "type": "text" } }, "tool_choice": "auto", "tools": [], "top_p": 1, "truncation": "disabled", "usage": { "input_tokens": 0, "output_tokens": 0, "output_tokens_details": { "reasoning_tokens": 0 }, "total_tokens": 0 }, "user": null, "metadata": {} }, "sequence_number": 1 } ResponseContentPartAddedEvent: type: object description: Emitted when a new content part is added. properties: type: type: string description: | The type of the event. Always `response.content_part.added`. enum: - response.content_part.added x-stainless-const: true item_id: type: string description: | The ID of the output item that the content part was added to. output_index: type: integer description: | The index of the output item that the content part was added to. content_index: type: integer description: | The index of the content part that was added. part: $ref: '#/components/schemas/OutputContent' description: | The content part that was added. sequence_number: type: integer description: The sequence number of this event. required: - type - item_id - output_index - content_index - part - sequence_number x-oaiMeta: name: response.content_part.added group: responses example: | { "type": "response.content_part.added", "item_id": "msg_123", "output_index": 0, "content_index": 0, "part": { "type": "output_text", "text": "", "annotations": [] }, "sequence_number": 1 } ResponseContentPartDoneEvent: type: object description: Emitted when a content part is done. properties: type: type: string description: | The type of the event. Always `response.content_part.done`. enum: - response.content_part.done x-stainless-const: true item_id: type: string description: | The ID of the output item that the content part was added to. output_index: type: integer description: | The index of the output item that the content part was added to. content_index: type: integer description: | The index of the content part that is done. sequence_number: type: integer description: The sequence number of this event. part: $ref: '#/components/schemas/OutputContent' description: | The content part that is done. required: - type - item_id - output_index - content_index - part - sequence_number x-oaiMeta: name: response.content_part.done group: responses example: | { "type": "response.content_part.done", "item_id": "msg_123", "output_index": 0, "content_index": 0, "sequence_number": 1, "part": { "type": "output_text", "text": "In a shimmering forest under a sky full of stars, a lonely unicorn named Lila discovered a hidden pond that glowed with moonlight. Every night, she would leave sparkling, magical flowers by the water's edge, hoping to share her beauty with others. One enchanting evening, she woke to find a group of friendly animals gathered around, eager to be friends and share in her magic.", "annotations": [] } } ResponseCreatedEvent: type: object description: | An event that is emitted when a response is created. properties: type: type: string description: | The type of the event. Always `response.created`. enum: - response.created x-stainless-const: true response: $ref: '#/components/schemas/Response' description: | The response that was created. sequence_number: type: integer description: The sequence number for this event. required: - type - response - sequence_number x-oaiMeta: name: response.created group: responses example: | { "type": "response.created", "response": { "id": "resp_67ccfcdd16748190a91872c75d38539e09e4d4aac714747c", "object": "response", "created_at": 1741487325, "status": "in_progress", "error": null, "incomplete_details": null, "instructions": null, "max_output_tokens": null, "model": "gpt-4o-2024-08-06", "output": [], "parallel_tool_calls": true, "previous_response_id": null, "reasoning": { "effort": null, "summary": null }, "store": true, "temperature": 1, "text": { "format": { "type": "text" } }, "tool_choice": "auto", "tools": [], "top_p": 1, "truncation": "disabled", "usage": null, "user": null, "metadata": {} }, "sequence_number": 1 } ResponseCustomToolCallInputDeltaEvent: title: ResponseCustomToolCallInputDelta type: object description: | Event representing a delta (partial update) to the input of a custom tool call. properties: type: type: string enum: - response.custom_tool_call_input.delta description: The event type identifier. x-stainless-const: true sequence_number: type: integer description: The sequence number of this event. output_index: type: integer description: The index of the output this delta applies to. item_id: type: string description: Unique identifier for the API item associated with this event. delta: type: string description: The incremental input data (delta) for the custom tool call. required: - type - output_index - item_id - delta - sequence_number x-oaiMeta: name: response.custom_tool_call_input.delta group: responses example: | { "type": "response.custom_tool_call_input.delta", "output_index": 0, "item_id": "ctc_1234567890abcdef", "delta": "partial input text" } ResponseCustomToolCallInputDoneEvent: title: ResponseCustomToolCallInputDone type: object description: | Event indicating that input for a custom tool call is complete. properties: type: type: string enum: - response.custom_tool_call_input.done description: The event type identifier. x-stainless-const: true sequence_number: type: integer description: The sequence number of this event. output_index: type: integer description: The index of the output this event applies to. item_id: type: string description: Unique identifier for the API item associated with this event. input: type: string description: The complete input data for the custom tool call. required: - type - output_index - item_id - input - sequence_number x-oaiMeta: name: response.custom_tool_call_input.done group: responses example: | { "type": "response.custom_tool_call_input.done", "output_index": 0, "item_id": "ctc_1234567890abcdef", "input": "final complete input text" } ResponseError: anyOf: - type: object description: | An error object returned when the model fails to generate a Response. properties: code: $ref: '#/components/schemas/ResponseErrorCode' message: type: string description: | A human-readable description of the error. required: - code - message - type: 'null' ResponseErrorCode: type: string description: | The error code for the response. enum: - server_error - rate_limit_exceeded - invalid_prompt - vector_store_timeout - invalid_image - invalid_image_format - invalid_base64_image - invalid_image_url - image_too_large - image_too_small - image_parse_error - image_content_policy_violation - invalid_image_mode - image_file_too_large - unsupported_image_media_type - empty_image_file - failed_to_download_image - image_file_not_found ResponseErrorEvent: type: object description: Emitted when an error occurs. properties: type: type: string description: | The type of the event. Always `error`. enum: - error x-stainless-const: true code: anyOf: - type: string description: | The error code. - type: 'null' message: type: string description: | The error message. param: anyOf: - type: string description: | The error parameter. - type: 'null' sequence_number: type: integer description: The sequence number of this event. required: - type - code - message - param - sequence_number x-oaiMeta: name: error group: responses example: | { "type": "error", "code": "ERR_SOMETHING", "message": "Something went wrong", "param": null, "sequence_number": 1 } ResponseFailedEvent: type: object description: | An event that is emitted when a response fails. properties: type: type: string description: | The type of the event. Always `response.failed`. enum: - response.failed x-stainless-const: true sequence_number: type: integer description: The sequence number of this event. response: $ref: '#/components/schemas/Response' description: | The response that failed. required: - type - response - sequence_number x-oaiMeta: name: response.failed group: responses example: | { "type": "response.failed", "response": { "id": "resp_123", "object": "response", "created_at": 1740855869, "status": "failed", "error": { "code": "server_error", "message": "The model failed to generate a response." }, "incomplete_details": null, "instructions": null, "max_output_tokens": null, "model": "gpt-4o-mini-2024-07-18", "output": [], "previous_response_id": null, "reasoning_effort": null, "store": false, "temperature": 1, "text": { "format": { "type": "text" } }, "tool_choice": "auto", "tools": [], "top_p": 1, "truncation": "disabled", "usage": null, "user": null, "metadata": {} } } ResponseFileSearchCallCompletedEvent: type: object description: Emitted when a file search call is completed (results found). properties: type: type: string description: | The type of the event. Always `response.file_search_call.completed`. enum: - response.file_search_call.completed x-stainless-const: true output_index: type: integer description: | The index of the output item that the file search call is initiated. item_id: type: string description: | The ID of the output item that the file search call is initiated. sequence_number: type: integer description: The sequence number of this event. required: - type - output_index - item_id - sequence_number x-oaiMeta: name: response.file_search_call.completed group: responses example: | { "type": "response.file_search_call.completed", "output_index": 0, "item_id": "fs_123", "sequence_number": 1 } ResponseFileSearchCallInProgressEvent: type: object description: Emitted when a file search call is initiated. properties: type: type: string description: | The type of the event. Always `response.file_search_call.in_progress`. enum: - response.file_search_call.in_progress x-stainless-const: true output_index: type: integer description: | The index of the output item that the file search call is initiated. item_id: type: string description: | The ID of the output item that the file search call is initiated. sequence_number: type: integer description: The sequence number of this event. required: - type - output_index - item_id - sequence_number x-oaiMeta: name: response.file_search_call.in_progress group: responses example: | { "type": "response.file_search_call.in_progress", "output_index": 0, "item_id": "fs_123", "sequence_number": 1 } ResponseFileSearchCallSearchingEvent: type: object description: Emitted when a file search is currently searching. properties: type: type: string description: | The type of the event. Always `response.file_search_call.searching`. enum: - response.file_search_call.searching x-stainless-const: true output_index: type: integer description: | The index of the output item that the file search call is searching. item_id: type: string description: | The ID of the output item that the file search call is initiated. sequence_number: type: integer description: The sequence number of this event. required: - type - output_index - item_id - sequence_number x-oaiMeta: name: response.file_search_call.searching group: responses example: | { "type": "response.file_search_call.searching", "output_index": 0, "item_id": "fs_123", "sequence_number": 1 } ResponseFormatJsonObject: type: object title: JSON object description: | JSON object response format. An older method of generating JSON responses. Using `json_schema` is recommended for models that support it. Note that the model will not generate JSON without a system or user message instructing it to do so. properties: type: type: string description: The type of response format being defined. Always `json_object`. enum: - json_object x-stainless-const: true required: - type ResponseFormatJsonSchema: type: object title: JSON schema description: | JSON Schema response format. Used to generate structured JSON responses. Learn more about [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs). properties: type: type: string description: The type of response format being defined. Always `json_schema`. enum: - json_schema x-stainless-const: true json_schema: type: object title: JSON schema description: | Structured Outputs configuration options, including a JSON Schema. properties: description: type: string description: | A description of what the response format is for, used by the model to determine how to respond in the format. name: type: string description: | The name of the response format. Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length of 64. schema: $ref: '#/components/schemas/ResponseFormatJsonSchemaSchema' strict: anyOf: - type: boolean default: false description: | Whether to enable strict schema adherence when generating the output. If set to true, the model will always follow the exact schema defined in the `schema` field. Only a subset of JSON Schema is supported when `strict` is `true`. To learn more, read the [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). - type: 'null' required: - name required: - type - json_schema ResponseFormatJsonSchemaSchema: type: object title: JSON schema description: | The schema for the response format, described as a JSON Schema object. Learn how to build JSON schemas [here](https://json-schema.org/). additionalProperties: true ResponseFormatText: type: object title: Text description: | Default response format. Used to generate text responses. properties: type: type: string description: The type of response format being defined. Always `text`. enum: - text x-stainless-const: true required: - type ResponseFormatTextGrammar: type: object title: Text grammar description: | A custom grammar for the model to follow when generating text. Learn more in the [custom grammars guide](https://platform.openai.com/docs/guides/custom-grammars). properties: type: type: string description: The type of response format being defined. Always `grammar`. enum: - grammar x-stainless-const: true grammar: type: string description: The custom grammar for the model to follow. required: - type - grammar ResponseFormatTextPython: type: object title: Python grammar description: | Configure the model to generate valid Python code. See the [custom grammars guide](https://platform.openai.com/docs/guides/custom-grammars) for more details. properties: type: type: string description: The type of response format being defined. Always `python`. enum: - python x-stainless-const: true required: - type ResponseFunctionCallArgumentsDeltaEvent: type: object description: Emitted when there is a partial function-call arguments delta. properties: type: type: string description: | The type of the event. Always `response.function_call_arguments.delta`. enum: - response.function_call_arguments.delta x-stainless-const: true item_id: type: string description: | The ID of the output item that the function-call arguments delta is added to. output_index: type: integer description: | The index of the output item that the function-call arguments delta is added to. sequence_number: type: integer description: The sequence number of this event. delta: type: string description: | The function-call arguments delta that is added. required: - type - item_id - output_index - delta - sequence_number x-oaiMeta: name: response.function_call_arguments.delta group: responses example: | { "type": "response.function_call_arguments.delta", "item_id": "item-abc", "output_index": 0, "delta": "{ \"arg\":" "sequence_number": 1 } ResponseFunctionCallArgumentsDoneEvent: type: object description: Emitted when function-call arguments are finalized. properties: type: type: string enum: - response.function_call_arguments.done x-stainless-const: true item_id: type: string description: The ID of the item. name: type: string description: The name of the function that was called. output_index: type: integer description: The index of the output item. sequence_number: type: integer description: The sequence number of this event. arguments: type: string description: The function-call arguments. required: - type - item_id - name - output_index - arguments - sequence_number x-oaiMeta: name: response.function_call_arguments.done group: responses example: | { "type": "response.function_call_arguments.done", "item_id": "item-abc", "name": "get_weather", "output_index": 1, "arguments": "{ \"arg\": 123 }", "sequence_number": 1 } ResponseImageGenCallCompletedEvent: type: object title: ResponseImageGenCallCompletedEvent description: | Emitted when an image generation tool call has completed and the final image is available. properties: type: type: string enum: - response.image_generation_call.completed description: The type of the event. Always 'response.image_generation_call.completed'. x-stainless-const: true output_index: type: integer description: The index of the output item in the response's output array. sequence_number: type: integer description: The sequence number of this event. item_id: type: string description: The unique identifier of the image generation item being processed. required: - type - output_index - item_id - sequence_number x-oaiMeta: name: response.image_generation_call.completed group: responses example: | { "type": "response.image_generation_call.completed", "output_index": 0, "item_id": "item-123", "sequence_number": 1 } ResponseImageGenCallGeneratingEvent: type: object title: ResponseImageGenCallGeneratingEvent description: | Emitted when an image generation tool call is actively generating an image (intermediate state). properties: type: type: string enum: - response.image_generation_call.generating description: The type of the event. Always 'response.image_generation_call.generating'. x-stainless-const: true output_index: type: integer description: The index of the output item in the response's output array. item_id: type: string description: The unique identifier of the image generation item being processed. sequence_number: type: integer description: The sequence number of the image generation item being processed. required: - type - output_index - item_id - sequence_number x-oaiMeta: name: response.image_generation_call.generating group: responses example: | { "type": "response.image_generation_call.generating", "output_index": 0, "item_id": "item-123", "sequence_number": 0 } ResponseImageGenCallInProgressEvent: type: object title: ResponseImageGenCallInProgressEvent description: | Emitted when an image generation tool call is in progress. properties: type: type: string enum: - response.image_generation_call.in_progress description: The type of the event. Always 'response.image_generation_call.in_progress'. x-stainless-const: true output_index: type: integer description: The index of the output item in the response's output array. item_id: type: string description: The unique identifier of the image generation item being processed. sequence_number: type: integer description: The sequence number of the image generation item being processed. required: - type - output_index - item_id - sequence_number x-oaiMeta: name: response.image_generation_call.in_progress group: responses example: | { "type": "response.image_generation_call.in_progress", "output_index": 0, "item_id": "item-123", "sequence_number": 0 } ResponseImageGenCallPartialImageEvent: type: object title: ResponseImageGenCallPartialImageEvent description: | Emitted when a partial image is available during image generation streaming. properties: type: type: string enum: - response.image_generation_call.partial_image description: The type of the event. Always 'response.image_generation_call.partial_image'. x-stainless-const: true output_index: type: integer description: The index of the output item in the response's output array. item_id: type: string description: The unique identifier of the image generation item being processed. sequence_number: type: integer description: The sequence number of the image generation item being processed. partial_image_index: type: integer description: 0-based index for the partial image (backend is 1-based, but this is 0-based for the user). partial_image_b64: type: string description: Base64-encoded partial image data, suitable for rendering as an image. required: - type - output_index - item_id - sequence_number - partial_image_index - partial_image_b64 x-oaiMeta: name: response.image_generation_call.partial_image group: responses example: | { "type": "response.image_generation_call.partial_image", "output_index": 0, "item_id": "item-123", "sequence_number": 0, "partial_image_index": 0, "partial_image_b64": "..." } ResponseInProgressEvent: type: object description: Emitted when the response is in progress. properties: type: type: string description: | The type of the event. Always `response.in_progress`. enum: - response.in_progress x-stainless-const: true response: $ref: '#/components/schemas/Response' description: | The response that is in progress. sequence_number: type: integer description: The sequence number of this event. required: - type - response - sequence_number x-oaiMeta: name: response.in_progress group: responses example: | { "type": "response.in_progress", "response": { "id": "resp_67ccfcdd16748190a91872c75d38539e09e4d4aac714747c", "object": "response", "created_at": 1741487325, "status": "in_progress", "error": null, "incomplete_details": null, "instructions": null, "max_output_tokens": null, "model": "gpt-4o-2024-08-06", "output": [], "parallel_tool_calls": true, "previous_response_id": null, "reasoning": { "effort": null, "summary": null }, "store": true, "temperature": 1, "text": { "format": { "type": "text" } }, "tool_choice": "auto", "tools": [], "top_p": 1, "truncation": "disabled", "usage": null, "user": null, "metadata": {} }, "sequence_number": 1 } ResponseIncompleteEvent: type: object description: | An event that is emitted when a response finishes as incomplete. properties: type: type: string description: | The type of the event. Always `response.incomplete`. enum: - response.incomplete x-stainless-const: true response: $ref: '#/components/schemas/Response' description: | The response that was incomplete. sequence_number: type: integer description: The sequence number of this event. required: - type - response - sequence_number x-oaiMeta: name: response.incomplete group: responses example: | { "type": "response.incomplete", "response": { "id": "resp_123", "object": "response", "created_at": 1740855869, "status": "incomplete", "error": null, "incomplete_details": { "reason": "max_tokens" }, "instructions": null, "max_output_tokens": null, "model": "gpt-4o-mini-2024-07-18", "output": [], "previous_response_id": null, "reasoning_effort": null, "store": false, "temperature": 1, "text": { "format": { "type": "text" } }, "tool_choice": "auto", "tools": [], "top_p": 1, "truncation": "disabled", "usage": null, "user": null, "metadata": {} }, "sequence_number": 1 } ResponseItemList: type: object description: A list of Response items. properties: object: description: The type of object returned, must be `list`. x-stainless-const: true const: list data: type: array description: A list of items used to generate this response. items: $ref: '#/components/schemas/ItemResource' has_more: type: boolean description: Whether there are more items available. first_id: type: string description: The ID of the first item in the list. last_id: type: string description: The ID of the last item in the list. required: - object - data - has_more - first_id - last_id x-oaiMeta: name: The input item list group: responses example: | { "object": "list", "data": [ { "id": "msg_abc123", "type": "message", "role": "user", "content": [ { "type": "input_text", "text": "Tell me a three sentence bedtime story about a unicorn." } ] } ], "first_id": "msg_abc123", "last_id": "msg_abc123", "has_more": false } ResponseLogProb: type: object description: | A logprob is the logarithmic probability that the model assigns to producing a particular token at a given position in the sequence. Less-negative (higher) logprob values indicate greater model confidence in that token choice. properties: token: description: A possible text token. type: string logprob: description: | The log probability of this token. type: number top_logprobs: description: | The log probability of the top 20 most likely tokens. type: array items: type: object properties: token: description: A possible text token. type: string logprob: description: The log probability of this token. type: number required: - token - logprob ResponseMCPCallArgumentsDeltaEvent: type: object title: ResponseMCPCallArgumentsDeltaEvent description: | Emitted when there is a delta (partial update) to the arguments of an MCP tool call. properties: type: type: string enum: - response.mcp_call_arguments.delta description: The type of the event. Always 'response.mcp_call_arguments.delta'. x-stainless-const: true output_index: type: integer description: The index of the output item in the response's output array. item_id: type: string description: The unique identifier of the MCP tool call item being processed. delta: type: string description: | A JSON string containing the partial update to the arguments for the MCP tool call. sequence_number: type: integer description: The sequence number of this event. required: - type - output_index - item_id - delta - sequence_number x-oaiMeta: name: response.mcp_call_arguments.delta group: responses example: | { "type": "response.mcp_call_arguments.delta", "output_index": 0, "item_id": "item-abc", "delta": "{", "sequence_number": 1 } ResponseMCPCallArgumentsDoneEvent: type: object title: ResponseMCPCallArgumentsDoneEvent description: | Emitted when the arguments for an MCP tool call are finalized. properties: type: type: string enum: - response.mcp_call_arguments.done description: The type of the event. Always 'response.mcp_call_arguments.done'. x-stainless-const: true output_index: type: integer description: The index of the output item in the response's output array. item_id: type: string description: The unique identifier of the MCP tool call item being processed. arguments: type: string description: | A JSON string containing the finalized arguments for the MCP tool call. sequence_number: type: integer description: The sequence number of this event. required: - type - output_index - item_id - arguments - sequence_number x-oaiMeta: name: response.mcp_call_arguments.done group: responses example: | { "type": "response.mcp_call_arguments.done", "output_index": 0, "item_id": "item-abc", "arguments": "{\"arg1\": \"value1\", \"arg2\": \"value2\"}", "sequence_number": 1 } ResponseMCPCallCompletedEvent: type: object title: ResponseMCPCallCompletedEvent description: | Emitted when an MCP tool call has completed successfully. properties: type: type: string enum: - response.mcp_call.completed description: The type of the event. Always 'response.mcp_call.completed'. x-stainless-const: true item_id: type: string description: The ID of the MCP tool call item that completed. output_index: type: integer description: The index of the output item that completed. sequence_number: type: integer description: The sequence number of this event. required: - type - item_id - output_index - sequence_number x-oaiMeta: name: response.mcp_call.completed group: responses example: | { "type": "response.mcp_call.completed", "sequence_number": 1, "item_id": "mcp_682d437d90a88191bf88cd03aae0c3e503937d5f622d7a90", "output_index": 0 } ResponseMCPCallFailedEvent: type: object title: ResponseMCPCallFailedEvent description: | Emitted when an MCP tool call has failed. properties: type: type: string enum: - response.mcp_call.failed description: The type of the event. Always 'response.mcp_call.failed'. x-stainless-const: true item_id: type: string description: The ID of the MCP tool call item that failed. output_index: type: integer description: The index of the output item that failed. sequence_number: type: integer description: The sequence number of this event. required: - type - item_id - output_index - sequence_number x-oaiMeta: name: response.mcp_call.failed group: responses example: | { "type": "response.mcp_call.failed", "sequence_number": 1, "item_id": "mcp_682d437d90a88191bf88cd03aae0c3e503937d5f622d7a90", "output_index": 0 } ResponseMCPCallInProgressEvent: type: object title: ResponseMCPCallInProgressEvent description: | Emitted when an MCP tool call is in progress. properties: type: type: string enum: - response.mcp_call.in_progress description: The type of the event. Always 'response.mcp_call.in_progress'. x-stainless-const: true sequence_number: type: integer description: The sequence number of this event. output_index: type: integer description: The index of the output item in the response's output array. item_id: type: string description: The unique identifier of the MCP tool call item being processed. required: - type - output_index - item_id - sequence_number x-oaiMeta: name: response.mcp_call.in_progress group: responses example: | { "type": "response.mcp_call.in_progress", "sequence_number": 1, "output_index": 0, "item_id": "mcp_682d437d90a88191bf88cd03aae0c3e503937d5f622d7a90" } ResponseMCPListToolsCompletedEvent: type: object title: ResponseMCPListToolsCompletedEvent description: | Emitted when the list of available MCP tools has been successfully retrieved. properties: type: type: string enum: - response.mcp_list_tools.completed description: The type of the event. Always 'response.mcp_list_tools.completed'. x-stainless-const: true item_id: type: string description: The ID of the MCP tool call item that produced this output. output_index: type: integer description: The index of the output item that was processed. sequence_number: type: integer description: The sequence number of this event. required: - type - item_id - output_index - sequence_number x-oaiMeta: name: response.mcp_list_tools.completed group: responses example: | { "type": "response.mcp_list_tools.completed", "sequence_number": 1, "output_index": 0, "item_id": "mcpl_682d4379df088191886b70f4ec39f90403937d5f622d7a90" } ResponseMCPListToolsFailedEvent: type: object title: ResponseMCPListToolsFailedEvent description: | Emitted when the attempt to list available MCP tools has failed. properties: type: type: string enum: - response.mcp_list_tools.failed description: The type of the event. Always 'response.mcp_list_tools.failed'. x-stainless-const: true item_id: type: string description: The ID of the MCP tool call item that failed. output_index: type: integer description: The index of the output item that failed. sequence_number: type: integer description: The sequence number of this event. required: - type - item_id - output_index - sequence_number x-oaiMeta: name: response.mcp_list_tools.failed group: responses example: | { "type": "response.mcp_list_tools.failed", "sequence_number": 1, "output_index": 0, "item_id": "mcpl_682d4379df088191886b70f4ec39f90403937d5f622d7a90" } ResponseMCPListToolsInProgressEvent: type: object title: ResponseMCPListToolsInProgressEvent description: | Emitted when the system is in the process of retrieving the list of available MCP tools. properties: type: type: string enum: - response.mcp_list_tools.in_progress description: The type of the event. Always 'response.mcp_list_tools.in_progress'. x-stainless-const: true item_id: type: string description: The ID of the MCP tool call item that is being processed. output_index: type: integer description: The index of the output item that is being processed. sequence_number: type: integer description: The sequence number of this event. required: - type - item_id - output_index - sequence_number x-oaiMeta: name: response.mcp_list_tools.in_progress group: responses example: | { "type": "response.mcp_list_tools.in_progress", "sequence_number": 1, "output_index": 0, "item_id": "mcpl_682d4379df088191886b70f4ec39f90403937d5f622d7a90" } ResponseModalities: anyOf: - type: array description: > Output types that you would like the model to generate. Most models are capable of generating text, which is the default: `["text"]` The `gpt-4o-audio-preview` model can also be used to [generate audio](https://platform.openai.com/docs/guides/audio). To request that this model generate both text and audio responses, you can use: `["text", "audio"]` items: type: string enum: - text - audio - type: 'null' ResponseOutputItemAddedEvent: type: object description: Emitted when a new output item is added. properties: type: type: string description: | The type of the event. Always `response.output_item.added`. enum: - response.output_item.added x-stainless-const: true output_index: type: integer description: | The index of the output item that was added. sequence_number: type: integer description: | The sequence number of this event. item: $ref: '#/components/schemas/OutputItem' description: | The output item that was added. required: - type - output_index - item - sequence_number x-oaiMeta: name: response.output_item.added group: responses example: | { "type": "response.output_item.added", "output_index": 0, "item": { "id": "msg_123", "status": "in_progress", "type": "message", "role": "assistant", "content": [] }, "sequence_number": 1 } ResponseOutputItemDoneEvent: type: object description: Emitted when an output item is marked done. properties: type: type: string description: | The type of the event. Always `response.output_item.done`. enum: - response.output_item.done x-stainless-const: true output_index: type: integer description: | The index of the output item that was marked done. sequence_number: type: integer description: | The sequence number of this event. item: $ref: '#/components/schemas/OutputItem' description: | The output item that was marked done. required: - type - output_index - item - sequence_number x-oaiMeta: name: response.output_item.done group: responses example: | { "type": "response.output_item.done", "output_index": 0, "item": { "id": "msg_123", "status": "completed", "type": "message", "role": "assistant", "content": [ { "type": "output_text", "text": "In a shimmering forest under a sky full of stars, a lonely unicorn named Lila discovered a hidden pond that glowed with moonlight. Every night, she would leave sparkling, magical flowers by the water's edge, hoping to share her beauty with others. One enchanting evening, she woke to find a group of friendly animals gathered around, eager to be friends and share in her magic.", "annotations": [] } ] }, "sequence_number": 1 } ResponseOutputTextAnnotationAddedEvent: type: object title: ResponseOutputTextAnnotationAddedEvent description: | Emitted when an annotation is added to output text content. properties: type: type: string enum: - response.output_text.annotation.added description: The type of the event. Always 'response.output_text.annotation.added'. x-stainless-const: true item_id: type: string description: The unique identifier of the item to which the annotation is being added. output_index: type: integer description: The index of the output item in the response's output array. content_index: type: integer description: The index of the content part within the output item. annotation_index: type: integer description: The index of the annotation within the content part. sequence_number: type: integer description: The sequence number of this event. annotation: type: object description: The annotation object being added. (See annotation schema for details.) required: - type - item_id - output_index - content_index - annotation_index - annotation - sequence_number x-oaiMeta: name: response.output_text.annotation.added group: responses example: | { "type": "response.output_text.annotation.added", "item_id": "item-abc", "output_index": 0, "content_index": 0, "annotation_index": 0, "annotation": { "type": "text_annotation", "text": "This is a test annotation", "start": 0, "end": 10 }, "sequence_number": 1 } ResponsePromptVariables: anyOf: - type: object title: Prompt Variables description: | Optional map of values to substitute in for variables in your prompt. The substitution values can either be strings, or other Response input types like images or files. x-oaiExpandable: true x-oaiTypeLabel: map additionalProperties: x-oaiExpandable: true x-oaiTypeLabel: map anyOf: - type: string - $ref: '#/components/schemas/InputTextContent' - $ref: '#/components/schemas/InputImageContent' - $ref: '#/components/schemas/InputFileContent' - type: 'null' ResponseProperties: type: object properties: previous_response_id: anyOf: - type: string description: > The unique ID of the previous response to the model. Use this to create multi-turn conversations. Learn more about [conversation state](https://platform.openai.com/docs/guides/conversation-state). Cannot be used in conjunction with `conversation`. - type: 'null' model: description: > Model ID used to generate the response, like `gpt-4o` or `o3`. OpenAI offers a wide range of models with different capabilities, performance characteristics, and price points. Refer to the [model guide](https://platform.openai.com/docs/models) to browse and compare available models. $ref: '#/components/schemas/ModelIdsResponses' reasoning: anyOf: - $ref: '#/components/schemas/Reasoning' - type: 'null' background: anyOf: - type: boolean description: | Whether to run the model response in the background. [Learn more](https://platform.openai.com/docs/guides/background). default: false - type: 'null' max_output_tokens: anyOf: - description: > An upper bound for the number of tokens that can be generated for a response, including visible output tokens and [reasoning tokens](https://platform.openai.com/docs/guides/reasoning). type: integer - type: 'null' max_tool_calls: anyOf: - description: > The maximum number of total calls to built-in tools that can be processed in a response. This maximum number applies across all built-in tool calls, not per individual tool. Any further attempts to call a tool by the model will be ignored. type: integer - type: 'null' text: $ref: '#/components/schemas/ResponseTextParam' tools: $ref: '#/components/schemas/ToolsArray' tool_choice: $ref: '#/components/schemas/ToolChoiceParam' prompt: $ref: '#/components/schemas/Prompt' truncation: anyOf: - type: string description: | The truncation strategy to use for the model response. - `auto`: If the input to this Response exceeds the model's context window size, the model will truncate the response to fit the context window by dropping items from the beginning of the conversation. - `disabled` (default): If the input size will exceed the context window size for a model, the request will fail with a 400 error. enum: - auto - disabled default: disabled - type: 'null' ResponseQueuedEvent: type: object title: ResponseQueuedEvent description: | Emitted when a response is queued and waiting to be processed. properties: type: type: string enum: - response.queued description: The type of the event. Always 'response.queued'. x-stainless-const: true response: $ref: '#/components/schemas/Response' description: The full response object that is queued. sequence_number: type: integer description: The sequence number for this event. required: - type - response - sequence_number x-oaiMeta: name: response.queued group: responses example: | { "type": "response.queued", "response": { "id": "res_123", "status": "queued", "created_at": "2021-01-01T00:00:00Z", "updated_at": "2021-01-01T00:00:00Z" }, "sequence_number": 1 } ResponseReasoningSummaryPartAddedEvent: type: object description: Emitted when a new reasoning summary part is added. properties: type: type: string description: | The type of the event. Always `response.reasoning_summary_part.added`. enum: - response.reasoning_summary_part.added x-stainless-const: true item_id: type: string description: | The ID of the item this summary part is associated with. output_index: type: integer description: | The index of the output item this summary part is associated with. summary_index: type: integer description: | The index of the summary part within the reasoning summary. sequence_number: type: integer description: | The sequence number of this event. part: type: object description: | The summary part that was added. properties: type: type: string description: The type of the summary part. Always `summary_text`. enum: - summary_text x-stainless-const: true text: type: string description: The text of the summary part. required: - type - text required: - type - item_id - output_index - summary_index - part - sequence_number x-oaiMeta: name: response.reasoning_summary_part.added group: responses example: | { "type": "response.reasoning_summary_part.added", "item_id": "rs_6806bfca0b2481918a5748308061a2600d3ce51bdffd5476", "output_index": 0, "summary_index": 0, "part": { "type": "summary_text", "text": "" }, "sequence_number": 1 } ResponseReasoningSummaryPartDoneEvent: type: object description: Emitted when a reasoning summary part is completed. properties: type: type: string description: | The type of the event. Always `response.reasoning_summary_part.done`. enum: - response.reasoning_summary_part.done x-stainless-const: true item_id: type: string description: | The ID of the item this summary part is associated with. output_index: type: integer description: | The index of the output item this summary part is associated with. summary_index: type: integer description: | The index of the summary part within the reasoning summary. sequence_number: type: integer description: | The sequence number of this event. part: type: object description: | The completed summary part. properties: type: type: string description: The type of the summary part. Always `summary_text`. enum: - summary_text x-stainless-const: true text: type: string description: The text of the summary part. required: - type - text required: - type - item_id - output_index - summary_index - part - sequence_number x-oaiMeta: name: response.reasoning_summary_part.done group: responses example: | { "type": "response.reasoning_summary_part.done", "item_id": "rs_6806bfca0b2481918a5748308061a2600d3ce51bdffd5476", "output_index": 0, "summary_index": 0, "part": { "type": "summary_text", "text": "**Responding to a greeting**\n\nThe user just said, \"Hello!\" So, it seems I need to engage. I'll greet them back and offer help since they're looking to chat. I could say something like, \"Hello! How can I assist you today?\" That feels friendly and open. They didn't ask a specific question, so this approach will work well for starting a conversation. Let's see where it goes from there!" }, "sequence_number": 1 } ResponseReasoningSummaryTextDeltaEvent: type: object description: Emitted when a delta is added to a reasoning summary text. properties: type: type: string description: | The type of the event. Always `response.reasoning_summary_text.delta`. enum: - response.reasoning_summary_text.delta x-stainless-const: true item_id: type: string description: | The ID of the item this summary text delta is associated with. output_index: type: integer description: | The index of the output item this summary text delta is associated with. summary_index: type: integer description: | The index of the summary part within the reasoning summary. delta: type: string description: | The text delta that was added to the summary. sequence_number: type: integer description: | The sequence number of this event. required: - type - item_id - output_index - summary_index - delta - sequence_number x-oaiMeta: name: response.reasoning_summary_text.delta group: responses example: | { "type": "response.reasoning_summary_text.delta", "item_id": "rs_6806bfca0b2481918a5748308061a2600d3ce51bdffd5476", "output_index": 0, "summary_index": 0, "delta": "**Responding to a greeting**\n\nThe user just said, \"Hello!\" So, it seems I need to engage. I'll greet them back and offer help since they're looking to chat. I could say something like, \"Hello! How can I assist you today?\" That feels friendly and open. They didn't ask a specific question, so this approach will work well for starting a conversation. Let's see where it goes from there!", "sequence_number": 1 } ResponseReasoningSummaryTextDoneEvent: type: object description: Emitted when a reasoning summary text is completed. properties: type: type: string description: | The type of the event. Always `response.reasoning_summary_text.done`. enum: - response.reasoning_summary_text.done x-stainless-const: true item_id: type: string description: | The ID of the item this summary text is associated with. output_index: type: integer description: | The index of the output item this summary text is associated with. summary_index: type: integer description: | The index of the summary part within the reasoning summary. text: type: string description: | The full text of the completed reasoning summary. sequence_number: type: integer description: | The sequence number of this event. required: - type - item_id - output_index - summary_index - text - sequence_number x-oaiMeta: name: response.reasoning_summary_text.done group: responses example: | { "type": "response.reasoning_summary_text.done", "item_id": "rs_6806bfca0b2481918a5748308061a2600d3ce51bdffd5476", "output_index": 0, "summary_index": 0, "text": "**Responding to a greeting**\n\nThe user just said, \"Hello!\" So, it seems I need to engage. I'll greet them back and offer help since they're looking to chat. I could say something like, \"Hello! How can I assist you today?\" That feels friendly and open. They didn't ask a specific question, so this approach will work well for starting a conversation. Let's see where it goes from there!", "sequence_number": 1 } ResponseReasoningTextDeltaEvent: type: object description: Emitted when a delta is added to a reasoning text. properties: type: type: string description: | The type of the event. Always `response.reasoning_text.delta`. enum: - response.reasoning_text.delta x-stainless-const: true item_id: type: string description: | The ID of the item this reasoning text delta is associated with. output_index: type: integer description: | The index of the output item this reasoning text delta is associated with. content_index: type: integer description: | The index of the reasoning content part this delta is associated with. delta: type: string description: | The text delta that was added to the reasoning content. sequence_number: type: integer description: | The sequence number of this event. required: - type - item_id - output_index - content_index - delta - sequence_number x-oaiMeta: name: response.reasoning_text.delta group: responses example: | { "type": "response.reasoning_text.delta", "item_id": "rs_123", "output_index": 0, "content_index": 0, "delta": "The", "sequence_number": 1 } ResponseReasoningTextDoneEvent: type: object description: Emitted when a reasoning text is completed. properties: type: type: string description: | The type of the event. Always `response.reasoning_text.done`. enum: - response.reasoning_text.done x-stainless-const: true item_id: type: string description: | The ID of the item this reasoning text is associated with. output_index: type: integer description: | The index of the output item this reasoning text is associated with. content_index: type: integer description: | The index of the reasoning content part. text: type: string description: | The full text of the completed reasoning content. sequence_number: type: integer description: | The sequence number of this event. required: - type - item_id - output_index - content_index - text - sequence_number x-oaiMeta: name: response.reasoning_text.done group: responses example: | { "type": "response.reasoning_text.done", "item_id": "rs_123", "output_index": 0, "content_index": 0, "text": "The user is asking...", "sequence_number": 4 } ResponseRefusalDeltaEvent: type: object description: Emitted when there is a partial refusal text. properties: type: type: string description: | The type of the event. Always `response.refusal.delta`. enum: - response.refusal.delta x-stainless-const: true item_id: type: string description: | The ID of the output item that the refusal text is added to. output_index: type: integer description: | The index of the output item that the refusal text is added to. content_index: type: integer description: | The index of the content part that the refusal text is added to. delta: type: string description: | The refusal text that is added. sequence_number: type: integer description: | The sequence number of this event. required: - type - item_id - output_index - content_index - delta - sequence_number x-oaiMeta: name: response.refusal.delta group: responses example: | { "type": "response.refusal.delta", "item_id": "msg_123", "output_index": 0, "content_index": 0, "delta": "refusal text so far", "sequence_number": 1 } ResponseRefusalDoneEvent: type: object description: Emitted when refusal text is finalized. properties: type: type: string description: | The type of the event. Always `response.refusal.done`. enum: - response.refusal.done x-stainless-const: true item_id: type: string description: | The ID of the output item that the refusal text is finalized. output_index: type: integer description: | The index of the output item that the refusal text is finalized. content_index: type: integer description: | The index of the content part that the refusal text is finalized. refusal: type: string description: | The refusal text that is finalized. sequence_number: type: integer description: | The sequence number of this event. required: - type - item_id - output_index - content_index - refusal - sequence_number x-oaiMeta: name: response.refusal.done group: responses example: | { "type": "response.refusal.done", "item_id": "item-abc", "output_index": 1, "content_index": 2, "refusal": "final refusal text", "sequence_number": 1 } ResponseStreamEvent: anyOf: - $ref: '#/components/schemas/ResponseAudioDeltaEvent' - $ref: '#/components/schemas/ResponseAudioDoneEvent' - $ref: '#/components/schemas/ResponseAudioTranscriptDeltaEvent' - $ref: '#/components/schemas/ResponseAudioTranscriptDoneEvent' - $ref: '#/components/schemas/ResponseCodeInterpreterCallCodeDeltaEvent' - $ref: '#/components/schemas/ResponseCodeInterpreterCallCodeDoneEvent' - $ref: '#/components/schemas/ResponseCodeInterpreterCallCompletedEvent' - $ref: '#/components/schemas/ResponseCodeInterpreterCallInProgressEvent' - $ref: '#/components/schemas/ResponseCodeInterpreterCallInterpretingEvent' - $ref: '#/components/schemas/ResponseCompletedEvent' - $ref: '#/components/schemas/ResponseContentPartAddedEvent' - $ref: '#/components/schemas/ResponseContentPartDoneEvent' - $ref: '#/components/schemas/ResponseCreatedEvent' - $ref: '#/components/schemas/ResponseErrorEvent' - $ref: '#/components/schemas/ResponseFileSearchCallCompletedEvent' - $ref: '#/components/schemas/ResponseFileSearchCallInProgressEvent' - $ref: '#/components/schemas/ResponseFileSearchCallSearchingEvent' - $ref: '#/components/schemas/ResponseFunctionCallArgumentsDeltaEvent' - $ref: '#/components/schemas/ResponseFunctionCallArgumentsDoneEvent' - $ref: '#/components/schemas/ResponseInProgressEvent' - $ref: '#/components/schemas/ResponseFailedEvent' - $ref: '#/components/schemas/ResponseIncompleteEvent' - $ref: '#/components/schemas/ResponseOutputItemAddedEvent' - $ref: '#/components/schemas/ResponseOutputItemDoneEvent' - $ref: '#/components/schemas/ResponseReasoningSummaryPartAddedEvent' - $ref: '#/components/schemas/ResponseReasoningSummaryPartDoneEvent' - $ref: '#/components/schemas/ResponseReasoningSummaryTextDeltaEvent' - $ref: '#/components/schemas/ResponseReasoningSummaryTextDoneEvent' - $ref: '#/components/schemas/ResponseReasoningTextDeltaEvent' - $ref: '#/components/schemas/ResponseReasoningTextDoneEvent' - $ref: '#/components/schemas/ResponseRefusalDeltaEvent' - $ref: '#/components/schemas/ResponseRefusalDoneEvent' - $ref: '#/components/schemas/ResponseTextDeltaEvent' - $ref: '#/components/schemas/ResponseTextDoneEvent' - $ref: '#/components/schemas/ResponseWebSearchCallCompletedEvent' - $ref: '#/components/schemas/ResponseWebSearchCallInProgressEvent' - $ref: '#/components/schemas/ResponseWebSearchCallSearchingEvent' - $ref: '#/components/schemas/ResponseImageGenCallCompletedEvent' - $ref: '#/components/schemas/ResponseImageGenCallGeneratingEvent' - $ref: '#/components/schemas/ResponseImageGenCallInProgressEvent' - $ref: '#/components/schemas/ResponseImageGenCallPartialImageEvent' - $ref: '#/components/schemas/ResponseMCPCallArgumentsDeltaEvent' - $ref: '#/components/schemas/ResponseMCPCallArgumentsDoneEvent' - $ref: '#/components/schemas/ResponseMCPCallCompletedEvent' - $ref: '#/components/schemas/ResponseMCPCallFailedEvent' - $ref: '#/components/schemas/ResponseMCPCallInProgressEvent' - $ref: '#/components/schemas/ResponseMCPListToolsCompletedEvent' - $ref: '#/components/schemas/ResponseMCPListToolsFailedEvent' - $ref: '#/components/schemas/ResponseMCPListToolsInProgressEvent' - $ref: '#/components/schemas/ResponseOutputTextAnnotationAddedEvent' - $ref: '#/components/schemas/ResponseQueuedEvent' - $ref: '#/components/schemas/ResponseCustomToolCallInputDeltaEvent' - $ref: '#/components/schemas/ResponseCustomToolCallInputDoneEvent' discriminator: propertyName: type ResponseStreamOptions: anyOf: - description: | Options for streaming responses. Only set this when you set `stream: true`. type: object properties: include_obfuscation: type: boolean description: | When true, stream obfuscation will be enabled. Stream obfuscation adds random characters to an `obfuscation` field on streaming delta events to normalize payload sizes as a mitigation to certain side-channel attacks. These obfuscation fields are included by default, but add a small amount of overhead to the data stream. You can set `include_obfuscation` to false to optimize for bandwidth if you trust the network links between your application and the OpenAI API. - type: 'null' ResponseTextDeltaEvent: type: object description: Emitted when there is an additional text delta. properties: type: type: string description: | The type of the event. Always `response.output_text.delta`. enum: - response.output_text.delta x-stainless-const: true item_id: type: string description: | The ID of the output item that the text delta was added to. output_index: type: integer description: | The index of the output item that the text delta was added to. content_index: type: integer description: | The index of the content part that the text delta was added to. delta: type: string description: | The text delta that was added. sequence_number: type: integer description: The sequence number for this event. logprobs: type: array description: | The log probabilities of the tokens in the delta. items: $ref: '#/components/schemas/ResponseLogProb' required: - type - item_id - output_index - content_index - delta - sequence_number - logprobs x-oaiMeta: name: response.output_text.delta group: responses example: | { "type": "response.output_text.delta", "item_id": "msg_123", "output_index": 0, "content_index": 0, "delta": "In", "sequence_number": 1 } ResponseTextDoneEvent: type: object description: Emitted when text content is finalized. properties: type: type: string description: | The type of the event. Always `response.output_text.done`. enum: - response.output_text.done x-stainless-const: true item_id: type: string description: | The ID of the output item that the text content is finalized. output_index: type: integer description: | The index of the output item that the text content is finalized. content_index: type: integer description: | The index of the content part that the text content is finalized. text: type: string description: | The text content that is finalized. sequence_number: type: integer description: The sequence number for this event. logprobs: type: array description: | The log probabilities of the tokens in the delta. items: $ref: '#/components/schemas/ResponseLogProb' required: - type - item_id - output_index - content_index - text - sequence_number - logprobs x-oaiMeta: name: response.output_text.done group: responses example: | { "type": "response.output_text.done", "item_id": "msg_123", "output_index": 0, "content_index": 0, "text": "In a shimmering forest under a sky full of stars, a lonely unicorn named Lila discovered a hidden pond that glowed with moonlight. Every night, she would leave sparkling, magical flowers by the water's edge, hoping to share her beauty with others. One enchanting evening, she woke to find a group of friendly animals gathered around, eager to be friends and share in her magic.", "sequence_number": 1 } ResponseTextParam: type: object description: | Configuration options for a text response from the model. Can be plain text or structured JSON data. Learn more: - [Text inputs and outputs](https://platform.openai.com/docs/guides/text) - [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs) properties: format: $ref: '#/components/schemas/TextResponseFormatConfiguration' verbosity: $ref: '#/components/schemas/Verbosity' ResponseUsage: type: object description: | Represents token usage details including input tokens, output tokens, a breakdown of output tokens, and the total tokens used. properties: input_tokens: type: integer description: The number of input tokens. input_tokens_details: type: object description: A detailed breakdown of the input tokens. properties: cached_tokens: type: integer description: | The number of tokens that were retrieved from the cache. [More on prompt caching](https://platform.openai.com/docs/guides/prompt-caching). required: - cached_tokens output_tokens: type: integer description: The number of output tokens. output_tokens_details: type: object description: A detailed breakdown of the output tokens. properties: reasoning_tokens: type: integer description: The number of reasoning tokens. required: - reasoning_tokens total_tokens: type: integer description: The total number of tokens used. required: - input_tokens - input_tokens_details - output_tokens - output_tokens_details - total_tokens ResponseWebSearchCallCompletedEvent: type: object description: Emitted when a web search call is completed. properties: type: type: string description: | The type of the event. Always `response.web_search_call.completed`. enum: - response.web_search_call.completed x-stainless-const: true output_index: type: integer description: | The index of the output item that the web search call is associated with. item_id: type: string description: | Unique ID for the output item associated with the web search call. sequence_number: type: integer description: The sequence number of the web search call being processed. required: - type - output_index - item_id - sequence_number x-oaiMeta: name: response.web_search_call.completed group: responses example: | { "type": "response.web_search_call.completed", "output_index": 0, "item_id": "ws_123", "sequence_number": 0 } ResponseWebSearchCallInProgressEvent: type: object description: Emitted when a web search call is initiated. properties: type: type: string description: | The type of the event. Always `response.web_search_call.in_progress`. enum: - response.web_search_call.in_progress x-stainless-const: true output_index: type: integer description: | The index of the output item that the web search call is associated with. item_id: type: string description: | Unique ID for the output item associated with the web search call. sequence_number: type: integer description: The sequence number of the web search call being processed. required: - type - output_index - item_id - sequence_number x-oaiMeta: name: response.web_search_call.in_progress group: responses example: | { "type": "response.web_search_call.in_progress", "output_index": 0, "item_id": "ws_123", "sequence_number": 0 } ResponseWebSearchCallSearchingEvent: type: object description: Emitted when a web search call is executing. properties: type: type: string description: | The type of the event. Always `response.web_search_call.searching`. enum: - response.web_search_call.searching x-stainless-const: true output_index: type: integer description: | The index of the output item that the web search call is associated with. item_id: type: string description: | Unique ID for the output item associated with the web search call. sequence_number: type: integer description: The sequence number of the web search call being processed. required: - type - output_index - item_id - sequence_number x-oaiMeta: name: response.web_search_call.searching group: responses example: | { "type": "response.web_search_call.searching", "output_index": 0, "item_id": "ws_123", "sequence_number": 0 } RunCompletionUsage: anyOf: - type: object description: >- Usage statistics related to the run. This value will be `null` if the run is not in a terminal state (i.e. `in_progress`, `queued`, etc.). properties: completion_tokens: type: integer description: Number of completion tokens used over the course of the run. prompt_tokens: type: integer description: Number of prompt tokens used over the course of the run. total_tokens: type: integer description: Total number of tokens used (prompt + completion). required: - prompt_tokens - completion_tokens - total_tokens - type: 'null' RunGraderRequest: type: object title: RunGraderRequest properties: grader: type: object description: The grader used for the fine-tuning job. anyOf: - $ref: '#/components/schemas/GraderStringCheck' - $ref: '#/components/schemas/GraderTextSimilarity' - $ref: '#/components/schemas/GraderPython' - $ref: '#/components/schemas/GraderScoreModel' - $ref: '#/components/schemas/GraderMulti' discriminator: propertyName: type item: type: object description: > The dataset item provided to the grader. This will be used to populate the `item` namespace. See [the guide](https://platform.openai.com/docs/guides/graders) for more details. model_sample: type: string description: > The model sample to be evaluated. This value will be used to populate the `sample` namespace. See [the guide](https://platform.openai.com/docs/guides/graders) for more details. The `output_json` variable will be populated if the model sample is a valid JSON string. required: - grader - model_sample RunGraderResponse: type: object properties: reward: type: number metadata: type: object properties: name: type: string type: type: string errors: type: object properties: formula_parse_error: type: boolean sample_parse_error: type: boolean truncated_observation_error: type: boolean unresponsive_reward_error: type: boolean invalid_variable_error: type: boolean other_error: type: boolean python_grader_server_error: type: boolean python_grader_server_error_type: anyOf: - type: string - type: 'null' python_grader_runtime_error: type: boolean python_grader_runtime_error_details: anyOf: - type: string - type: 'null' model_grader_server_error: type: boolean model_grader_refusal_error: type: boolean model_grader_parse_error: type: boolean model_grader_server_error_details: anyOf: - type: string - type: 'null' required: - formula_parse_error - sample_parse_error - truncated_observation_error - unresponsive_reward_error - invalid_variable_error - other_error - python_grader_server_error - python_grader_server_error_type - python_grader_runtime_error - python_grader_runtime_error_details - model_grader_server_error - model_grader_refusal_error - model_grader_parse_error - model_grader_server_error_details execution_time: type: number scores: type: object additionalProperties: {} token_usage: anyOf: - type: integer - type: 'null' sampled_model_name: anyOf: - type: string - type: 'null' required: - name - type - errors - execution_time - scores - token_usage - sampled_model_name sub_rewards: type: object additionalProperties: {} model_grader_token_usage_per_model: type: object additionalProperties: {} required: - reward - metadata - sub_rewards - model_grader_token_usage_per_model RunObject: type: object title: A run on a thread description: Represents an execution run on a [thread](https://platform.openai.com/docs/api-reference/threads). properties: id: description: The identifier, which can be referenced in API endpoints. type: string object: description: The object type, which is always `thread.run`. type: string enum: - thread.run x-stainless-const: true created_at: description: The Unix timestamp (in seconds) for when the run was created. type: integer thread_id: description: >- The ID of the [thread](https://platform.openai.com/docs/api-reference/threads) that was executed on as a part of this run. type: string assistant_id: description: >- The ID of the [assistant](https://platform.openai.com/docs/api-reference/assistants) used for execution of this run. type: string status: $ref: '#/components/schemas/RunStatus' required_action: type: object description: Details on the action required to continue the run. Will be `null` if no action is required. nullable: true properties: type: description: For now, this is always `submit_tool_outputs`. type: string enum: - submit_tool_outputs x-stainless-const: true submit_tool_outputs: type: object description: Details on the tool outputs needed for this run to continue. properties: tool_calls: type: array description: A list of the relevant tool calls. items: $ref: '#/components/schemas/RunToolCallObject' required: - tool_calls required: - type - submit_tool_outputs last_error: type: object description: The last error associated with this run. Will be `null` if there are no errors. nullable: true properties: code: type: string description: One of `server_error`, `rate_limit_exceeded`, or `invalid_prompt`. enum: - server_error - rate_limit_exceeded - invalid_prompt message: type: string description: A human-readable description of the error. required: - code - message expires_at: description: The Unix timestamp (in seconds) for when the run will expire. type: integer nullable: true started_at: description: The Unix timestamp (in seconds) for when the run was started. type: integer nullable: true cancelled_at: description: The Unix timestamp (in seconds) for when the run was cancelled. type: integer nullable: true failed_at: description: The Unix timestamp (in seconds) for when the run failed. type: integer nullable: true completed_at: description: The Unix timestamp (in seconds) for when the run was completed. type: integer nullable: true incomplete_details: description: Details on why the run is incomplete. Will be `null` if the run is not incomplete. type: object nullable: true properties: reason: description: >- The reason why the run is incomplete. This will point to which specific token limit was reached over the course of the run. type: string enum: - max_completion_tokens - max_prompt_tokens model: description: >- The model that the [assistant](https://platform.openai.com/docs/api-reference/assistants) used for this run. type: string instructions: description: >- The instructions that the [assistant](https://platform.openai.com/docs/api-reference/assistants) used for this run. type: string tools: description: >- The list of tools that the [assistant](https://platform.openai.com/docs/api-reference/assistants) used for this run. default: [] type: array maxItems: 20 items: $ref: '#/components/schemas/AssistantTool' metadata: $ref: '#/components/schemas/Metadata' usage: $ref: '#/components/schemas/RunCompletionUsage' temperature: description: The sampling temperature used for this run. If not set, defaults to 1. type: number nullable: true top_p: description: The nucleus sampling value used for this run. If not set, defaults to 1. type: number nullable: true max_prompt_tokens: type: integer nullable: true description: | The maximum number of prompt tokens specified to have been used over the course of the run. minimum: 256 max_completion_tokens: type: integer nullable: true description: | The maximum number of completion tokens specified to have been used over the course of the run. minimum: 256 truncation_strategy: allOf: - $ref: '#/components/schemas/TruncationObject' - nullable: true tool_choice: allOf: - $ref: '#/components/schemas/AssistantsApiToolChoiceOption' - nullable: true parallel_tool_calls: $ref: '#/components/schemas/ParallelToolCalls' response_format: $ref: '#/components/schemas/AssistantsApiResponseFormatOption' nullable: true required: - id - object - created_at - thread_id - assistant_id - status - required_action - last_error - expires_at - started_at - cancelled_at - failed_at - completed_at - model - instructions - tools - metadata - usage - incomplete_details - max_prompt_tokens - max_completion_tokens - truncation_strategy - tool_choice - parallel_tool_calls - response_format x-oaiMeta: name: The run object beta: true example: | { "id": "run_abc123", "object": "thread.run", "created_at": 1698107661, "assistant_id": "asst_abc123", "thread_id": "thread_abc123", "status": "completed", "started_at": 1699073476, "expires_at": null, "cancelled_at": null, "failed_at": null, "completed_at": 1699073498, "last_error": null, "model": "gpt-4o", "instructions": null, "tools": [{"type": "file_search"}, {"type": "code_interpreter"}], "metadata": {}, "incomplete_details": null, "usage": { "prompt_tokens": 123, "completion_tokens": 456, "total_tokens": 579 }, "temperature": 1.0, "top_p": 1.0, "max_prompt_tokens": 1000, "max_completion_tokens": 1000, "truncation_strategy": { "type": "auto", "last_messages": null }, "response_format": "auto", "tool_choice": "auto", "parallel_tool_calls": true } RunStepCompletionUsage: anyOf: - type: object description: >- Usage statistics related to the run step. This value will be `null` while the run step's status is `in_progress`. properties: completion_tokens: type: integer description: Number of completion tokens used over the course of the run step. prompt_tokens: type: integer description: Number of prompt tokens used over the course of the run step. total_tokens: type: integer description: Total number of tokens used (prompt + completion). required: - prompt_tokens - completion_tokens - total_tokens - type: 'null' RunStepDeltaObject: type: object title: Run step delta object description: | Represents a run step delta i.e. any changed fields on a run step during streaming. properties: id: description: The identifier of the run step, which can be referenced in API endpoints. type: string object: description: The object type, which is always `thread.run.step.delta`. type: string enum: - thread.run.step.delta x-stainless-const: true delta: $ref: '#/components/schemas/RunStepDeltaObjectDelta' required: - id - object - delta x-oaiMeta: name: The run step delta object beta: true example: | { "id": "step_123", "object": "thread.run.step.delta", "delta": { "step_details": { "type": "tool_calls", "tool_calls": [ { "index": 0, "id": "call_123", "type": "code_interpreter", "code_interpreter": { "input": "", "outputs": [] } } ] } } } RunStepDeltaStepDetailsMessageCreationObject: title: Message creation type: object description: Details of the message creation by the run step. properties: type: description: Always `message_creation`. type: string enum: - message_creation x-stainless-const: true message_creation: type: object properties: message_id: type: string description: The ID of the message that was created by this run step. required: - type RunStepDeltaStepDetailsToolCallsCodeObject: title: Code interpreter tool call type: object description: Details of the Code Interpreter tool call the run step was involved in. properties: index: type: integer description: The index of the tool call in the tool calls array. id: type: string description: The ID of the tool call. type: type: string description: The type of tool call. This is always going to be `code_interpreter` for this type of tool call. enum: - code_interpreter x-stainless-const: true code_interpreter: type: object description: The Code Interpreter tool call definition. properties: input: type: string description: The input to the Code Interpreter tool call. outputs: type: array description: >- The outputs from the Code Interpreter tool call. Code Interpreter can output one or more items, including text (`logs`) or images (`image`). Each of these are represented by a different object type. items: type: object anyOf: - $ref: '#/components/schemas/RunStepDeltaStepDetailsToolCallsCodeOutputLogsObject' - $ref: '#/components/schemas/RunStepDeltaStepDetailsToolCallsCodeOutputImageObject' discriminator: propertyName: type required: - index - type RunStepDeltaStepDetailsToolCallsCodeOutputImageObject: title: Code interpreter image output type: object properties: index: type: integer description: The index of the output in the outputs array. type: description: Always `image`. type: string enum: - image x-stainless-const: true image: type: object properties: file_id: description: The [file](https://platform.openai.com/docs/api-reference/files) ID of the image. type: string required: - index - type RunStepDeltaStepDetailsToolCallsCodeOutputLogsObject: title: Code interpreter log output type: object description: Text output from the Code Interpreter tool call as part of a run step. properties: index: type: integer description: The index of the output in the outputs array. type: description: Always `logs`. type: string enum: - logs x-stainless-const: true logs: type: string description: The text output from the Code Interpreter tool call. required: - index - type RunStepDeltaStepDetailsToolCallsFileSearchObject: title: File search tool call type: object properties: index: type: integer description: The index of the tool call in the tool calls array. id: type: string description: The ID of the tool call object. type: type: string description: The type of tool call. This is always going to be `file_search` for this type of tool call. enum: - file_search x-stainless-const: true file_search: type: object description: For now, this is always going to be an empty object. x-oaiTypeLabel: map required: - index - type - file_search RunStepDeltaStepDetailsToolCallsFunctionObject: type: object title: Function tool call properties: index: type: integer description: The index of the tool call in the tool calls array. id: type: string description: The ID of the tool call object. type: type: string description: The type of tool call. This is always going to be `function` for this type of tool call. enum: - function x-stainless-const: true function: type: object description: The definition of the function that was called. properties: name: type: string description: The name of the function. arguments: type: string description: The arguments passed to the function. output: anyOf: - type: string description: >- The output of the function. This will be `null` if the outputs have not been [submitted](https://platform.openai.com/docs/api-reference/runs/submitToolOutputs) yet. - type: 'null' required: - index - type RunStepDeltaStepDetailsToolCallsObject: title: Tool calls type: object description: Details of the tool call. properties: type: description: Always `tool_calls`. type: string enum: - tool_calls x-stainless-const: true tool_calls: type: array description: > An array of tool calls the run step was involved in. These can be associated with one of three types of tools: `code_interpreter`, `file_search`, or `function`. items: $ref: '#/components/schemas/RunStepDeltaStepDetailsToolCall' required: - type RunStepDetailsMessageCreationObject: title: Message creation type: object description: Details of the message creation by the run step. properties: type: description: Always `message_creation`. type: string enum: - message_creation x-stainless-const: true message_creation: type: object properties: message_id: type: string description: The ID of the message that was created by this run step. required: - message_id required: - type - message_creation RunStepDetailsToolCallsCodeObject: title: Code Interpreter tool call type: object description: Details of the Code Interpreter tool call the run step was involved in. properties: id: type: string description: The ID of the tool call. type: type: string description: The type of tool call. This is always going to be `code_interpreter` for this type of tool call. enum: - code_interpreter x-stainless-const: true code_interpreter: type: object description: The Code Interpreter tool call definition. required: - input - outputs properties: input: type: string description: The input to the Code Interpreter tool call. outputs: type: array description: >- The outputs from the Code Interpreter tool call. Code Interpreter can output one or more items, including text (`logs`) or images (`image`). Each of these are represented by a different object type. items: type: object anyOf: - $ref: '#/components/schemas/RunStepDetailsToolCallsCodeOutputLogsObject' - $ref: '#/components/schemas/RunStepDetailsToolCallsCodeOutputImageObject' discriminator: propertyName: type required: - id - type - code_interpreter RunStepDetailsToolCallsCodeOutputImageObject: title: Code Interpreter image output type: object properties: type: description: Always `image`. type: string enum: - image x-stainless-const: true image: type: object properties: file_id: description: The [file](https://platform.openai.com/docs/api-reference/files) ID of the image. type: string required: - file_id required: - type - image x-stainless-naming: java: type_name: ImageOutput kotlin: type_name: ImageOutput RunStepDetailsToolCallsCodeOutputLogsObject: title: Code Interpreter log output type: object description: Text output from the Code Interpreter tool call as part of a run step. properties: type: description: Always `logs`. type: string enum: - logs x-stainless-const: true logs: type: string description: The text output from the Code Interpreter tool call. required: - type - logs x-stainless-naming: java: type_name: LogsOutput kotlin: type_name: LogsOutput RunStepDetailsToolCallsFileSearchObject: title: File search tool call type: object properties: id: type: string description: The ID of the tool call object. type: type: string description: The type of tool call. This is always going to be `file_search` for this type of tool call. enum: - file_search x-stainless-const: true file_search: type: object description: For now, this is always going to be an empty object. x-oaiTypeLabel: map properties: ranking_options: $ref: '#/components/schemas/RunStepDetailsToolCallsFileSearchRankingOptionsObject' results: type: array description: The results of the file search. items: $ref: '#/components/schemas/RunStepDetailsToolCallsFileSearchResultObject' required: - id - type - file_search RunStepDetailsToolCallsFileSearchRankingOptionsObject: title: File search tool call ranking options type: object description: The ranking options for the file search. properties: ranker: $ref: '#/components/schemas/FileSearchRanker' score_threshold: type: number description: >- The score threshold for the file search. All values must be a floating point number between 0 and 1. minimum: 0 maximum: 1 required: - ranker - score_threshold RunStepDetailsToolCallsFileSearchResultObject: title: File search tool call result type: object description: A result instance of the file search. x-oaiTypeLabel: map properties: file_id: type: string description: The ID of the file that result was found in. file_name: type: string description: The name of the file that result was found in. score: type: number description: The score of the result. All values must be a floating point number between 0 and 1. minimum: 0 maximum: 1 content: type: array description: >- The content of the result that was found. The content is only included if requested via the include query parameter. items: type: object properties: type: type: string description: The type of the content. enum: - text x-stainless-const: true text: type: string description: The text content of the file. required: - file_id - file_name - score RunStepDetailsToolCallsFunctionObject: type: object title: Function tool call properties: id: type: string description: The ID of the tool call object. type: type: string description: The type of tool call. This is always going to be `function` for this type of tool call. enum: - function x-stainless-const: true function: type: object description: The definition of the function that was called. properties: name: type: string description: The name of the function. arguments: type: string description: The arguments passed to the function. output: anyOf: - type: string description: >- The output of the function. This will be `null` if the outputs have not been [submitted](https://platform.openai.com/docs/api-reference/runs/submitToolOutputs) yet. - type: 'null' required: - name - arguments - output required: - id - type - function RunStepDetailsToolCallsObject: title: Tool calls type: object description: Details of the tool call. properties: type: description: Always `tool_calls`. type: string enum: - tool_calls x-stainless-const: true tool_calls: type: array description: > An array of tool calls the run step was involved in. These can be associated with one of three types of tools: `code_interpreter`, `file_search`, or `function`. items: $ref: '#/components/schemas/RunStepDetailsToolCall' required: - type - tool_calls RunStepObject: type: object title: Run steps description: | Represents a step in execution of a run. properties: id: description: The identifier of the run step, which can be referenced in API endpoints. type: string object: description: The object type, which is always `thread.run.step`. type: string enum: - thread.run.step x-stainless-const: true created_at: description: The Unix timestamp (in seconds) for when the run step was created. type: integer assistant_id: description: >- The ID of the [assistant](https://platform.openai.com/docs/api-reference/assistants) associated with the run step. type: string thread_id: description: The ID of the [thread](https://platform.openai.com/docs/api-reference/threads) that was run. type: string run_id: description: >- The ID of the [run](https://platform.openai.com/docs/api-reference/runs) that this run step is a part of. type: string type: description: The type of run step, which can be either `message_creation` or `tool_calls`. type: string enum: - message_creation - tool_calls status: description: >- The status of the run step, which can be either `in_progress`, `cancelled`, `failed`, `completed`, or `expired`. type: string enum: - in_progress - cancelled - failed - completed - expired step_details: type: object description: The details of the run step. anyOf: - $ref: '#/components/schemas/RunStepDetailsMessageCreationObject' - $ref: '#/components/schemas/RunStepDetailsToolCallsObject' discriminator: propertyName: type last_error: anyOf: - type: object description: The last error associated with this run step. Will be `null` if there are no errors. properties: code: type: string description: One of `server_error` or `rate_limit_exceeded`. enum: - server_error - rate_limit_exceeded message: type: string description: A human-readable description of the error. required: - code - message - type: 'null' expired_at: anyOf: - description: >- The Unix timestamp (in seconds) for when the run step expired. A step is considered expired if the parent run is expired. type: integer - type: 'null' cancelled_at: anyOf: - description: The Unix timestamp (in seconds) for when the run step was cancelled. type: integer - type: 'null' failed_at: anyOf: - description: The Unix timestamp (in seconds) for when the run step failed. type: integer - type: 'null' completed_at: anyOf: - description: The Unix timestamp (in seconds) for when the run step completed. type: integer - type: 'null' metadata: $ref: '#/components/schemas/Metadata' usage: $ref: '#/components/schemas/RunStepCompletionUsage' required: - id - object - created_at - assistant_id - thread_id - run_id - type - status - step_details - last_error - expired_at - cancelled_at - failed_at - completed_at - metadata - usage x-oaiMeta: name: The run step object beta: true example: | { "id": "step_abc123", "object": "thread.run.step", "created_at": 1699063291, "run_id": "run_abc123", "assistant_id": "asst_abc123", "thread_id": "thread_abc123", "type": "message_creation", "status": "completed", "cancelled_at": null, "completed_at": 1699063291, "expired_at": null, "failed_at": null, "last_error": null, "step_details": { "type": "message_creation", "message_creation": { "message_id": "msg_abc123" } }, "usage": { "prompt_tokens": 123, "completion_tokens": 456, "total_tokens": 579 } } RunStepStreamEvent: anyOf: - type: object properties: event: type: string enum: - thread.run.step.created x-stainless-const: true data: $ref: '#/components/schemas/RunStepObject' required: - event - data description: >- Occurs when a [run step](https://platform.openai.com/docs/api-reference/run-steps/step-object) is created. x-oaiMeta: dataDescription: '`data` is a [run step](/docs/api-reference/run-steps/step-object)' - type: object properties: event: type: string enum: - thread.run.step.in_progress x-stainless-const: true data: $ref: '#/components/schemas/RunStepObject' required: - event - data description: >- Occurs when a [run step](https://platform.openai.com/docs/api-reference/run-steps/step-object) moves to an `in_progress` state. x-oaiMeta: dataDescription: '`data` is a [run step](/docs/api-reference/run-steps/step-object)' - type: object properties: event: type: string enum: - thread.run.step.delta x-stainless-const: true data: $ref: '#/components/schemas/RunStepDeltaObject' required: - event - data description: >- Occurs when parts of a [run step](https://platform.openai.com/docs/api-reference/run-steps/step-object) are being streamed. x-oaiMeta: dataDescription: '`data` is a [run step delta](/docs/api-reference/assistants-streaming/run-step-delta-object)' - type: object properties: event: type: string enum: - thread.run.step.completed x-stainless-const: true data: $ref: '#/components/schemas/RunStepObject' required: - event - data description: >- Occurs when a [run step](https://platform.openai.com/docs/api-reference/run-steps/step-object) is completed. x-oaiMeta: dataDescription: '`data` is a [run step](/docs/api-reference/run-steps/step-object)' - type: object properties: event: type: string enum: - thread.run.step.failed x-stainless-const: true data: $ref: '#/components/schemas/RunStepObject' required: - event - data description: >- Occurs when a [run step](https://platform.openai.com/docs/api-reference/run-steps/step-object) fails. x-oaiMeta: dataDescription: '`data` is a [run step](/docs/api-reference/run-steps/step-object)' - type: object properties: event: type: string enum: - thread.run.step.cancelled x-stainless-const: true data: $ref: '#/components/schemas/RunStepObject' required: - event - data description: >- Occurs when a [run step](https://platform.openai.com/docs/api-reference/run-steps/step-object) is cancelled. x-oaiMeta: dataDescription: '`data` is a [run step](/docs/api-reference/run-steps/step-object)' - type: object properties: event: type: string enum: - thread.run.step.expired x-stainless-const: true data: $ref: '#/components/schemas/RunStepObject' required: - event - data description: >- Occurs when a [run step](https://platform.openai.com/docs/api-reference/run-steps/step-object) expires. x-oaiMeta: dataDescription: '`data` is a [run step](/docs/api-reference/run-steps/step-object)' discriminator: propertyName: event RunStreamEvent: anyOf: - type: object properties: event: type: string enum: - thread.run.created x-stainless-const: true data: $ref: '#/components/schemas/RunObject' required: - event - data description: Occurs when a new [run](https://platform.openai.com/docs/api-reference/runs/object) is created. x-oaiMeta: dataDescription: '`data` is a [run](/docs/api-reference/runs/object)' - type: object properties: event: type: string enum: - thread.run.queued x-stainless-const: true data: $ref: '#/components/schemas/RunObject' required: - event - data description: >- Occurs when a [run](https://platform.openai.com/docs/api-reference/runs/object) moves to a `queued` status. x-oaiMeta: dataDescription: '`data` is a [run](/docs/api-reference/runs/object)' - type: object properties: event: type: string enum: - thread.run.in_progress x-stainless-const: true data: $ref: '#/components/schemas/RunObject' required: - event - data description: >- Occurs when a [run](https://platform.openai.com/docs/api-reference/runs/object) moves to an `in_progress` status. x-oaiMeta: dataDescription: '`data` is a [run](/docs/api-reference/runs/object)' - type: object properties: event: type: string enum: - thread.run.requires_action x-stainless-const: true data: $ref: '#/components/schemas/RunObject' required: - event - data description: >- Occurs when a [run](https://platform.openai.com/docs/api-reference/runs/object) moves to a `requires_action` status. x-oaiMeta: dataDescription: '`data` is a [run](/docs/api-reference/runs/object)' - type: object properties: event: type: string enum: - thread.run.completed x-stainless-const: true data: $ref: '#/components/schemas/RunObject' required: - event - data description: Occurs when a [run](https://platform.openai.com/docs/api-reference/runs/object) is completed. x-oaiMeta: dataDescription: '`data` is a [run](/docs/api-reference/runs/object)' - type: object properties: event: type: string enum: - thread.run.incomplete x-stainless-const: true data: $ref: '#/components/schemas/RunObject' required: - event - data description: >- Occurs when a [run](https://platform.openai.com/docs/api-reference/runs/object) ends with status `incomplete`. x-oaiMeta: dataDescription: '`data` is a [run](/docs/api-reference/runs/object)' - type: object properties: event: type: string enum: - thread.run.failed x-stainless-const: true data: $ref: '#/components/schemas/RunObject' required: - event - data description: Occurs when a [run](https://platform.openai.com/docs/api-reference/runs/object) fails. x-oaiMeta: dataDescription: '`data` is a [run](/docs/api-reference/runs/object)' - type: object properties: event: type: string enum: - thread.run.cancelling x-stainless-const: true data: $ref: '#/components/schemas/RunObject' required: - event - data description: >- Occurs when a [run](https://platform.openai.com/docs/api-reference/runs/object) moves to a `cancelling` status. x-oaiMeta: dataDescription: '`data` is a [run](/docs/api-reference/runs/object)' - type: object properties: event: type: string enum: - thread.run.cancelled x-stainless-const: true data: $ref: '#/components/schemas/RunObject' required: - event - data description: Occurs when a [run](https://platform.openai.com/docs/api-reference/runs/object) is cancelled. x-oaiMeta: dataDescription: '`data` is a [run](/docs/api-reference/runs/object)' - type: object properties: event: type: string enum: - thread.run.expired x-stainless-const: true data: $ref: '#/components/schemas/RunObject' required: - event - data description: Occurs when a [run](https://platform.openai.com/docs/api-reference/runs/object) expires. x-oaiMeta: dataDescription: '`data` is a [run](/docs/api-reference/runs/object)' discriminator: propertyName: event RunToolCallObject: type: object description: Tool call objects properties: id: type: string description: >- The ID of the tool call. This ID must be referenced when you submit the tool outputs in using the [Submit tool outputs to run](https://platform.openai.com/docs/api-reference/runs/submitToolOutputs) endpoint. type: type: string description: The type of tool call the output is required for. For now, this is always `function`. enum: - function x-stainless-const: true function: type: object description: The function definition. properties: name: type: string description: The name of the function. arguments: type: string description: The arguments that the model expects you to pass to the function. required: - name - arguments required: - id - type - function Screenshot: type: object title: Screenshot description: | A screenshot action. properties: type: type: string enum: - screenshot default: screenshot description: | Specifies the event type. For a screenshot action, this property is always set to `screenshot`. x-stainless-const: true required: - type Scroll: type: object title: Scroll description: | A scroll action. properties: type: type: string enum: - scroll default: scroll description: | Specifies the event type. For a scroll action, this property is always set to `scroll`. x-stainless-const: true x: type: integer description: | The x-coordinate where the scroll occurred. 'y': type: integer description: | The y-coordinate where the scroll occurred. scroll_x: type: integer description: | The horizontal scroll distance. scroll_y: type: integer description: | The vertical scroll distance. required: - type - x - 'y' - scroll_x - scroll_y ServiceTier: anyOf: - type: string description: | Specifies the processing type used for serving the request. - If set to 'auto', then the request will be processed with the service tier configured in the Project settings. Unless otherwise configured, the Project will use 'default'. - If set to 'default', then the request will be processed with the standard pricing and performance for the selected model. - If set to '[flex](https://platform.openai.com/docs/guides/flex-processing)' or '[priority](https://openai.com/api-priority-processing/)', then the request will be processed with the corresponding service tier. - When not set, the default behavior is 'auto'. When the `service_tier` parameter is set, the response body will include the `service_tier` value based on the processing mode actually used to serve the request. This response value may be different from the value set in the parameter. enum: - auto - default - flex - scale - priority default: auto - type: 'null' SpeechAudioDeltaEvent: type: object description: Emitted for each chunk of audio data generated during speech synthesis. properties: type: type: string description: | The type of the event. Always `speech.audio.delta`. enum: - speech.audio.delta x-stainless-const: true audio: type: string description: | A chunk of Base64-encoded audio data. required: - type - audio x-oaiMeta: name: Stream Event (speech.audio.delta) group: speech example: | { "type": "speech.audio.delta", "audio": "base64-encoded-audio-data" } SpeechAudioDoneEvent: type: object description: Emitted when the speech synthesis is complete and all audio has been streamed. properties: type: type: string description: | The type of the event. Always `speech.audio.done`. enum: - speech.audio.done x-stainless-const: true usage: type: object description: | Token usage statistics for the request. properties: input_tokens: type: integer description: Number of input tokens in the prompt. output_tokens: type: integer description: Number of output tokens generated. total_tokens: type: integer description: Total number of tokens used (input + output). required: - input_tokens - output_tokens - total_tokens required: - type - usage x-oaiMeta: name: Stream Event (speech.audio.done) group: speech example: | { "type": "speech.audio.done", "usage": { "input_tokens": 14, "output_tokens": 101, "total_tokens": 115 } } StaticChunkingStrategy: type: object additionalProperties: false properties: max_chunk_size_tokens: type: integer minimum: 100 maximum: 4096 description: >- The maximum number of tokens in each chunk. The default value is `800`. The minimum value is `100` and the maximum value is `4096`. chunk_overlap_tokens: type: integer description: | The number of tokens that overlap between chunks. The default value is `400`. Note that the overlap must not exceed half of `max_chunk_size_tokens`. required: - max_chunk_size_tokens - chunk_overlap_tokens StaticChunkingStrategyRequestParam: type: object title: Static Chunking Strategy description: Customize your own chunking strategy by setting chunk size and chunk overlap. additionalProperties: false properties: type: type: string description: Always `static`. enum: - static x-stainless-const: true static: $ref: '#/components/schemas/StaticChunkingStrategy' required: - type - static StaticChunkingStrategyResponseParam: type: object title: Static Chunking Strategy additionalProperties: false properties: type: type: string description: Always `static`. enum: - static x-stainless-const: true static: $ref: '#/components/schemas/StaticChunkingStrategy' required: - type - static StopConfiguration: description: | Not supported with latest reasoning models `o3` and `o4-mini`. Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence. nullable: true anyOf: - type: string default: <|endoftext|> example: |+ nullable: true - type: array minItems: 1 maxItems: 4 items: type: string example: '["\n"]' SubmitToolOutputsRunRequest: type: object additionalProperties: false properties: tool_outputs: description: A list of tools for which the outputs are being submitted. type: array items: type: object properties: tool_call_id: type: string description: >- The ID of the tool call in the `required_action` object within the run object the output is being submitted for. output: type: string description: The output of the tool call to be submitted to continue the run. stream: anyOf: - type: boolean description: > If `true`, returns a stream of events that happen during the Run as server-sent events, terminating when the Run enters a terminal state with a `data: [DONE]` message. - type: 'null' required: - tool_outputs TextResponseFormatConfiguration: description: | An object specifying the format that the model must output. Configuring `{ "type": "json_schema" }` enables Structured Outputs, which ensures the model will match your supplied JSON schema. Learn more in the [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). The default format is `{ "type": "text" }` with no additional options. **Not recommended for gpt-4o and newer models:** Setting to `{ "type": "json_object" }` enables the older JSON mode, which ensures the message the model generates is valid JSON. Using `json_schema` is preferred for models that support it. anyOf: - $ref: '#/components/schemas/ResponseFormatText' - $ref: '#/components/schemas/TextResponseFormatJsonSchema' - $ref: '#/components/schemas/ResponseFormatJsonObject' discriminator: propertyName: type TextResponseFormatJsonSchema: type: object title: JSON schema description: | JSON Schema response format. Used to generate structured JSON responses. Learn more about [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs). properties: type: type: string description: The type of response format being defined. Always `json_schema`. enum: - json_schema x-stainless-const: true description: type: string description: | A description of what the response format is for, used by the model to determine how to respond in the format. name: type: string description: | The name of the response format. Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length of 64. schema: $ref: '#/components/schemas/ResponseFormatJsonSchemaSchema' strict: anyOf: - type: boolean default: false description: | Whether to enable strict schema adherence when generating the output. If set to true, the model will always follow the exact schema defined in the `schema` field. Only a subset of JSON Schema is supported when `strict` is `true`. To learn more, read the [Structured Outputs guide](https://platform.openai.com/docs/guides/structured-outputs). - type: 'null' required: - type - schema - name ThreadObject: type: object title: Thread description: Represents a thread that contains [messages](https://platform.openai.com/docs/api-reference/messages). properties: id: description: The identifier, which can be referenced in API endpoints. type: string object: description: The object type, which is always `thread`. type: string enum: - thread x-stainless-const: true created_at: description: The Unix timestamp (in seconds) for when the thread was created. type: integer tool_resources: anyOf: - type: object description: > A set of resources that are made available to the assistant's tools in this thread. The resources are specific to the type of tool. For example, the `code_interpreter` tool requires a list of file IDs, while the `file_search` tool requires a list of vector store IDs. properties: code_interpreter: type: object properties: file_ids: type: array description: > A list of [file](https://platform.openai.com/docs/api-reference/files) IDs made available to the `code_interpreter` tool. There can be a maximum of 20 files associated with the tool. default: [] maxItems: 20 items: type: string file_search: type: object properties: vector_store_ids: type: array description: > The [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) attached to this thread. There can be a maximum of 1 vector store attached to the thread. maxItems: 1 items: type: string - type: 'null' metadata: $ref: '#/components/schemas/Metadata' required: - id - object - created_at - tool_resources - metadata x-oaiMeta: name: The thread object beta: true example: | { "id": "thread_abc123", "object": "thread", "created_at": 1698107661, "metadata": {} } ThreadStreamEvent: anyOf: - type: object properties: enabled: type: boolean description: Whether to enable input audio transcription. event: type: string enum: - thread.created x-stainless-const: true data: $ref: '#/components/schemas/ThreadObject' required: - event - data description: >- Occurs when a new [thread](https://platform.openai.com/docs/api-reference/threads/object) is created. x-oaiMeta: dataDescription: '`data` is a [thread](/docs/api-reference/threads/object)' discriminator: propertyName: event ToggleCertificatesRequest: type: object properties: certificate_ids: type: array items: type: string example: cert_abc minItems: 1 maxItems: 10 required: - certificate_ids Tool: description: | A tool that can be used to generate a response. discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/FunctionTool' - $ref: '#/components/schemas/FileSearchTool' - $ref: '#/components/schemas/ComputerUsePreviewTool' - $ref: '#/components/schemas/WebSearchTool' - $ref: '#/components/schemas/MCPTool' - $ref: '#/components/schemas/CodeInterpreterTool' - $ref: '#/components/schemas/ImageGenTool' - $ref: '#/components/schemas/LocalShellToolParam' - $ref: '#/components/schemas/FunctionShellToolParam' - $ref: '#/components/schemas/CustomToolParam' - $ref: '#/components/schemas/WebSearchPreviewTool' - $ref: '#/components/schemas/ApplyPatchToolParam' ToolChoiceAllowed: type: object title: Allowed tools description: | Constrains the tools available to the model to a pre-defined set. properties: type: type: string enum: - allowed_tools description: Allowed tool configuration type. Always `allowed_tools`. x-stainless-const: true mode: type: string enum: - auto - required description: | Constrains the tools available to the model to a pre-defined set. `auto` allows the model to pick from among the allowed tools and generate a message. `required` requires the model to call one or more of the allowed tools. tools: type: array description: | A list of tool definitions that the model should be allowed to call. For the Responses API, the list of tool definitions might look like: ```json [ { "type": "function", "name": "get_weather" }, { "type": "mcp", "server_label": "deepwiki" }, { "type": "image_generation" } ] ``` items: type: object description: | A tool definition that the model should be allowed to call. additionalProperties: true x-oaiExpandable: false required: - type - mode - tools ToolChoiceCustom: type: object title: Custom tool description: | Use this option to force the model to call a specific custom tool. properties: type: type: string enum: - custom description: For custom tool calling, the type is always `custom`. x-stainless-const: true name: type: string description: The name of the custom tool to call. required: - type - name ToolChoiceFunction: type: object title: Function tool description: | Use this option to force the model to call a specific function. properties: type: type: string enum: - function description: For function calling, the type is always `function`. x-stainless-const: true name: type: string description: The name of the function to call. required: - type - name ToolChoiceMCP: type: object title: MCP tool description: | Use this option to force the model to call a specific tool on a remote MCP server. properties: type: type: string enum: - mcp description: For MCP tools, the type is always `mcp`. x-stainless-const: true server_label: type: string description: | The label of the MCP server to use. name: anyOf: - type: string description: | The name of the tool to call on the server. - type: 'null' required: - type - server_label ToolChoiceOptions: type: string title: Tool choice mode description: | Controls which (if any) tool is called by the model. `none` means the model will not call any tool and instead generates a message. `auto` means the model can pick between generating a message or calling one or more tools. `required` means the model must call one or more tools. enum: - none - auto - required ToolChoiceParam: description: | How the model should select which tool (or tools) to use when generating a response. See the `tools` parameter to see how to specify which tools the model can call. anyOf: - $ref: '#/components/schemas/ToolChoiceOptions' - $ref: '#/components/schemas/ToolChoiceAllowed' - $ref: '#/components/schemas/ToolChoiceTypes' - $ref: '#/components/schemas/ToolChoiceFunction' - $ref: '#/components/schemas/ToolChoiceMCP' - $ref: '#/components/schemas/ToolChoiceCustom' - $ref: '#/components/schemas/SpecificApplyPatchParam' - $ref: '#/components/schemas/SpecificFunctionShellParam' discriminator: propertyName: type ToolChoiceTypes: type: object title: Hosted tool description: | Indicates that the model should use a built-in tool to generate a response. [Learn more about built-in tools](https://platform.openai.com/docs/guides/tools). properties: type: type: string description: | The type of hosted tool the model should to use. Learn more about [built-in tools](https://platform.openai.com/docs/guides/tools). Allowed values are: - `file_search` - `web_search_preview` - `computer_use_preview` - `code_interpreter` - `image_generation` enum: - file_search - web_search_preview - computer_use_preview - web_search_preview_2025_03_11 - image_generation - code_interpreter required: - type ToolsArray: type: array description: | An array of tools the model may call while generating a response. You can specify which tool to use by setting the `tool_choice` parameter. We support the following categories of tools: - **Built-in tools**: Tools that are provided by OpenAI that extend the model's capabilities, like [web search](https://platform.openai.com/docs/guides/tools-web-search) or [file search](https://platform.openai.com/docs/guides/tools-file-search). Learn more about [built-in tools](https://platform.openai.com/docs/guides/tools). - **MCP Tools**: Integrations with third-party systems via custom MCP servers or predefined connectors such as Google Drive and SharePoint. Learn more about [MCP Tools](https://platform.openai.com/docs/guides/tools-connectors-mcp). - **Function calls (custom tools)**: Functions that are defined by you, enabling the model to call your own code with strongly typed arguments and outputs. Learn more about [function calling](https://platform.openai.com/docs/guides/function-calling). You can also use custom tools to call your own code. items: $ref: '#/components/schemas/Tool' TranscriptTextDeltaEvent: type: object description: >- Emitted when there is an additional text delta. This is also the first event emitted when the transcription starts. Only emitted when you [create a transcription](https://platform.openai.com/docs/api-reference/audio/create-transcription) with the `Stream` parameter set to `true`. properties: type: type: string description: | The type of the event. Always `transcript.text.delta`. enum: - transcript.text.delta x-stainless-const: true delta: type: string description: | The text delta that was additionally transcribed. logprobs: type: array description: > The log probabilities of the delta. Only included if you [create a transcription](https://platform.openai.com/docs/api-reference/audio/create-transcription) with the `include[]` parameter set to `logprobs`. items: type: object properties: token: type: string description: | The token that was used to generate the log probability. logprob: type: number description: | The log probability of the token. bytes: type: array items: type: integer description: | The bytes that were used to generate the log probability. segment_id: type: string description: > Identifier of the diarized segment that this delta belongs to. Only present when using `gpt-4o-transcribe-diarize`. required: - type - delta x-oaiMeta: name: Stream Event (transcript.text.delta) group: transcript example: | { "type": "transcript.text.delta", "delta": " wonderful" } TranscriptTextDoneEvent: type: object description: >- Emitted when the transcription is complete. Contains the complete transcription text. Only emitted when you [create a transcription](https://platform.openai.com/docs/api-reference/audio/create-transcription) with the `Stream` parameter set to `true`. properties: type: type: string description: | The type of the event. Always `transcript.text.done`. enum: - transcript.text.done x-stainless-const: true text: type: string description: | The text that was transcribed. logprobs: type: array description: > The log probabilities of the individual tokens in the transcription. Only included if you [create a transcription](https://platform.openai.com/docs/api-reference/audio/create-transcription) with the `include[]` parameter set to `logprobs`. items: type: object properties: token: type: string description: | The token that was used to generate the log probability. logprob: type: number description: | The log probability of the token. bytes: type: array items: type: integer description: | The bytes that were used to generate the log probability. usage: $ref: '#/components/schemas/TranscriptTextUsageTokens' required: - type - text x-oaiMeta: name: Stream Event (transcript.text.done) group: transcript example: | { "type": "transcript.text.done", "text": "I see skies of blue and clouds of white, the bright blessed days, the dark sacred nights, and I think to myself, what a wonderful world.", "usage": { "type": "tokens", "input_tokens": 14, "input_token_details": { "text_tokens": 10, "audio_tokens": 4 }, "output_tokens": 31, "total_tokens": 45 } } TranscriptTextSegmentEvent: type: object description: > Emitted when a diarized transcription returns a completed segment with speaker information. Only emitted when you [create a transcription](https://platform.openai.com/docs/api-reference/audio/create-transcription) with `stream` set to `true` and `response_format` set to `diarized_json`. properties: type: type: string description: The type of the event. Always `transcript.text.segment`. enum: - transcript.text.segment x-stainless-const: true id: type: string description: Unique identifier for the segment. start: type: number format: float description: Start timestamp of the segment in seconds. end: type: number format: float description: End timestamp of the segment in seconds. text: type: string description: Transcript text for this segment. speaker: type: string description: Speaker label for this segment. required: - type - id - start - end - text - speaker x-oaiMeta: name: Stream Event (transcript.text.segment) group: transcript example: | { "type": "transcript.text.segment", "id": "seg_002", "start": 5.2, "end": 12.8, "text": "Hi, I need help with diarization.", "speaker": "A" } TranscriptTextUsageDuration: type: object title: TranscriptTextUsageDuration description: Usage statistics for models billed by audio input duration. properties: type: type: string enum: - duration description: The type of the usage object. Always `duration` for this variant. x-stainless-const: true seconds: type: number description: Duration of the input audio in seconds. required: - type - seconds TranscriptTextUsageTokens: type: object title: TranscriptTextUsageTokens description: Usage statistics for models billed by token usage. properties: type: type: string enum: - tokens description: The type of the usage object. Always `tokens` for this variant. x-stainless-const: true input_tokens: type: integer description: Number of input tokens billed for this request. input_token_details: type: object description: Details about the input tokens billed for this request. properties: text_tokens: type: integer description: Number of text tokens billed for this request. audio_tokens: type: integer description: Number of audio tokens billed for this request. output_tokens: type: integer description: Number of output tokens generated. total_tokens: type: integer description: Total number of tokens used (input + output). required: - type - input_tokens - output_tokens - total_tokens TranscriptionChunkingStrategy: anyOf: - description: >- Controls how the audio is cut into chunks. When set to `"auto"`, the server first normalizes loudness and then uses voice activity detection (VAD) to choose boundaries. `server_vad` object can be provided to tweak VAD detection parameters manually. If unset, the audio is transcribed as a single block. Required when using `gpt-4o-transcribe-diarize` for inputs longer than 30 seconds. anyOf: - type: string enum: - auto default: auto description: | Automatically set chunking parameters based on the audio. Must be set to `"auto"`. x-stainless-const: true - $ref: '#/components/schemas/VadConfig' x-oaiTypeLabel: string - type: 'null' TranscriptionDiarizedSegment: type: object description: A segment of diarized transcript text with speaker metadata. properties: type: type: string description: | The type of the segment. Always `transcript.text.segment`. enum: - transcript.text.segment x-stainless-const: true id: type: string description: Unique identifier for the segment. start: type: number format: float description: Start timestamp of the segment in seconds. end: type: number format: float description: End timestamp of the segment in seconds. text: type: string description: Transcript text for this segment. speaker: type: string description: > Speaker label for this segment. When known speakers are provided, the label matches `known_speaker_names[]`. Otherwise speakers are labeled sequentially using capital letters (`A`, `B`, ...). required: - type - id - start - end - text - speaker TranscriptionInclude: type: string enum: - logprobs TranscriptionSegment: type: object properties: id: type: integer description: Unique identifier of the segment. seek: type: integer description: Seek offset of the segment. start: type: number format: float description: Start time of the segment in seconds. end: type: number format: float description: End time of the segment in seconds. text: type: string description: Text content of the segment. tokens: type: array items: type: integer description: Array of token IDs for the text content. temperature: type: number format: float description: Temperature parameter used for generating the segment. avg_logprob: type: number format: float description: Average logprob of the segment. If the value is lower than -1, consider the logprobs failed. compression_ratio: type: number format: float description: >- Compression ratio of the segment. If the value is greater than 2.4, consider the compression failed. no_speech_prob: type: number format: float description: >- Probability of no speech in the segment. If the value is higher than 1.0 and the `avg_logprob` is below -1, consider this segment silent. required: - id - seek - start - end - text - tokens - temperature - avg_logprob - compression_ratio - no_speech_prob TranscriptionWord: type: object properties: word: type: string description: The text content of the word. start: type: number format: float description: Start time of the word in seconds. end: type: number format: float description: End time of the word in seconds. required: - word - start - end TruncationObject: type: object title: Thread Truncation Controls description: >- Controls for how a thread will be truncated prior to the run. Use this to control the initial context window of the run. properties: type: type: string description: >- The truncation strategy to use for the thread. The default is `auto`. If set to `last_messages`, the thread will be truncated to the n most recent messages in the thread. When set to `auto`, messages in the middle of the thread will be dropped to fit the context length of the model, `max_prompt_tokens`. enum: - auto - last_messages last_messages: anyOf: - type: integer description: The number of most recent messages from the thread when constructing the context for the run. minimum: 1 - type: 'null' required: - type Type: type: object title: Type description: | An action to type in text. properties: type: type: string enum: - type default: type description: | Specifies the event type. For a type action, this property is always set to `type`. x-stainless-const: true text: type: string description: | The text to type. required: - type - text UpdateVectorStoreFileAttributesRequest: type: object additionalProperties: false properties: attributes: $ref: '#/components/schemas/VectorStoreFileAttributes' required: - attributes x-oaiMeta: name: Update vector store file attributes request UpdateVectorStoreRequest: type: object additionalProperties: false properties: name: description: The name of the vector store. type: string nullable: true expires_after: allOf: - $ref: '#/components/schemas/VectorStoreExpirationAfter' - nullable: true metadata: $ref: '#/components/schemas/Metadata' Upload: type: object title: Upload description: | The Upload object can accept byte chunks in the form of Parts. properties: id: type: string description: The Upload unique identifier, which can be referenced in API endpoints. created_at: type: integer description: The Unix timestamp (in seconds) for when the Upload was created. filename: type: string description: The name of the file to be uploaded. bytes: type: integer description: The intended number of bytes to be uploaded. purpose: type: string description: >- The intended purpose of the file. [Please refer here](https://platform.openai.com/docs/api-reference/files/object#files/object-purpose) for acceptable values. status: type: string description: The status of the Upload. enum: - pending - completed - cancelled - expired expires_at: type: integer description: The Unix timestamp (in seconds) for when the Upload will expire. object: type: string description: The object type, which is always "upload". enum: - upload x-stainless-const: true file: allOf: - $ref: '#/components/schemas/OpenAIFile' - nullable: true description: The ready File object after the Upload is completed. required: - bytes - created_at - expires_at - filename - id - purpose - status - object x-oaiMeta: name: The upload object example: | { "id": "upload_abc123", "object": "upload", "bytes": 2147483648, "created_at": 1719184911, "filename": "training_examples.jsonl", "purpose": "fine-tune", "status": "completed", "expires_at": 1719127296, "file": { "id": "file-xyz321", "object": "file", "bytes": 2147483648, "created_at": 1719186911, "filename": "training_examples.jsonl", "purpose": "fine-tune", } } UploadCertificateRequest: type: object properties: name: type: string description: An optional name for the certificate content: type: string description: The certificate content in PEM format required: - content UploadPart: type: object title: UploadPart description: | The upload Part represents a chunk of bytes we can add to an Upload object. properties: id: type: string description: The upload Part unique identifier, which can be referenced in API endpoints. created_at: type: integer description: The Unix timestamp (in seconds) for when the Part was created. upload_id: type: string description: The ID of the Upload object that this Part was added to. object: type: string description: The object type, which is always `upload.part`. enum: - upload.part x-stainless-const: true required: - created_at - id - object - upload_id x-oaiMeta: name: The upload part object example: | { "id": "part_def456", "object": "upload.part", "created_at": 1719186911, "upload_id": "upload_abc123" } UsageAudioSpeechesResult: type: object description: The aggregated audio speeches usage details of the specific time bucket. properties: object: type: string enum: - organization.usage.audio_speeches.result x-stainless-const: true characters: type: integer description: The number of characters processed. num_model_requests: type: integer description: The count of requests made to the model. project_id: anyOf: - type: string description: When `group_by=project_id`, this field provides the project ID of the grouped usage result. - type: 'null' user_id: anyOf: - type: string description: When `group_by=user_id`, this field provides the user ID of the grouped usage result. - type: 'null' api_key_id: anyOf: - type: string description: When `group_by=api_key_id`, this field provides the API key ID of the grouped usage result. - type: 'null' model: anyOf: - type: string description: When `group_by=model`, this field provides the model name of the grouped usage result. - type: 'null' required: - object - characters - num_model_requests x-oaiMeta: name: Audio speeches usage object example: | { "object": "organization.usage.audio_speeches.result", "characters": 45, "num_model_requests": 1, "project_id": "proj_abc", "user_id": "user-abc", "api_key_id": "key_abc", "model": "tts-1" } UsageAudioTranscriptionsResult: type: object description: The aggregated audio transcriptions usage details of the specific time bucket. properties: object: type: string enum: - organization.usage.audio_transcriptions.result x-stainless-const: true seconds: type: integer description: The number of seconds processed. num_model_requests: type: integer description: The count of requests made to the model. project_id: anyOf: - type: string description: When `group_by=project_id`, this field provides the project ID of the grouped usage result. - type: 'null' user_id: anyOf: - type: string description: When `group_by=user_id`, this field provides the user ID of the grouped usage result. - type: 'null' api_key_id: anyOf: - type: string description: When `group_by=api_key_id`, this field provides the API key ID of the grouped usage result. - type: 'null' model: anyOf: - type: string description: When `group_by=model`, this field provides the model name of the grouped usage result. - type: 'null' required: - object - seconds - num_model_requests x-oaiMeta: name: Audio transcriptions usage object example: | { "object": "organization.usage.audio_transcriptions.result", "seconds": 10, "num_model_requests": 1, "project_id": "proj_abc", "user_id": "user-abc", "api_key_id": "key_abc", "model": "tts-1" } UsageCodeInterpreterSessionsResult: type: object description: The aggregated code interpreter sessions usage details of the specific time bucket. properties: object: type: string enum: - organization.usage.code_interpreter_sessions.result x-stainless-const: true num_sessions: type: integer description: The number of code interpreter sessions. project_id: anyOf: - type: string description: When `group_by=project_id`, this field provides the project ID of the grouped usage result. - type: 'null' required: - object - sessions x-oaiMeta: name: Code interpreter sessions usage object example: | { "object": "organization.usage.code_interpreter_sessions.result", "num_sessions": 1, "project_id": "proj_abc" } UsageCompletionsResult: type: object description: The aggregated completions usage details of the specific time bucket. properties: object: type: string enum: - organization.usage.completions.result x-stainless-const: true input_tokens: type: integer description: >- The aggregated number of text input tokens used, including cached tokens. For customers subscribe to scale tier, this includes scale tier tokens. input_cached_tokens: type: integer description: >- The aggregated number of text input tokens that has been cached from previous requests. For customers subscribe to scale tier, this includes scale tier tokens. output_tokens: type: integer description: >- The aggregated number of text output tokens used. For customers subscribe to scale tier, this includes scale tier tokens. input_audio_tokens: type: integer description: The aggregated number of audio input tokens used, including cached tokens. output_audio_tokens: type: integer description: The aggregated number of audio output tokens used. num_model_requests: type: integer description: The count of requests made to the model. project_id: anyOf: - type: string description: When `group_by=project_id`, this field provides the project ID of the grouped usage result. - type: 'null' user_id: anyOf: - type: string description: When `group_by=user_id`, this field provides the user ID of the grouped usage result. - type: 'null' api_key_id: anyOf: - type: string description: When `group_by=api_key_id`, this field provides the API key ID of the grouped usage result. - type: 'null' model: anyOf: - type: string description: When `group_by=model`, this field provides the model name of the grouped usage result. - type: 'null' batch: anyOf: - type: boolean description: When `group_by=batch`, this field tells whether the grouped usage result is batch or not. - type: 'null' service_tier: anyOf: - type: string description: >- When `group_by=service_tier`, this field provides the service tier of the grouped usage result. - type: 'null' required: - object - input_tokens - output_tokens - num_model_requests x-oaiMeta: name: Completions usage object example: | { "object": "organization.usage.completions.result", "input_tokens": 5000, "output_tokens": 1000, "input_cached_tokens": 4000, "input_audio_tokens": 300, "output_audio_tokens": 200, "num_model_requests": 5, "project_id": "proj_abc", "user_id": "user-abc", "api_key_id": "key_abc", "model": "gpt-4o-mini-2024-07-18", "batch": false, "service_tier": "default" } UsageEmbeddingsResult: type: object description: The aggregated embeddings usage details of the specific time bucket. properties: object: type: string enum: - organization.usage.embeddings.result x-stainless-const: true input_tokens: type: integer description: The aggregated number of input tokens used. num_model_requests: type: integer description: The count of requests made to the model. project_id: anyOf: - type: string description: When `group_by=project_id`, this field provides the project ID of the grouped usage result. - type: 'null' user_id: anyOf: - type: string description: When `group_by=user_id`, this field provides the user ID of the grouped usage result. - type: 'null' api_key_id: anyOf: - type: string description: When `group_by=api_key_id`, this field provides the API key ID of the grouped usage result. - type: 'null' model: anyOf: - type: string description: When `group_by=model`, this field provides the model name of the grouped usage result. - type: 'null' required: - object - input_tokens - num_model_requests x-oaiMeta: name: Embeddings usage object example: | { "object": "organization.usage.embeddings.result", "input_tokens": 20, "num_model_requests": 2, "project_id": "proj_abc", "user_id": "user-abc", "api_key_id": "key_abc", "model": "text-embedding-ada-002-v2" } UsageImagesResult: type: object description: The aggregated images usage details of the specific time bucket. properties: object: type: string enum: - organization.usage.images.result x-stainless-const: true images: type: integer description: The number of images processed. num_model_requests: type: integer description: The count of requests made to the model. source: anyOf: - type: string description: >- When `group_by=source`, this field provides the source of the grouped usage result, possible values are `image.generation`, `image.edit`, `image.variation`. - type: 'null' size: anyOf: - type: string description: When `group_by=size`, this field provides the image size of the grouped usage result. - type: 'null' project_id: anyOf: - type: string description: When `group_by=project_id`, this field provides the project ID of the grouped usage result. - type: 'null' user_id: anyOf: - type: string description: When `group_by=user_id`, this field provides the user ID of the grouped usage result. - type: 'null' api_key_id: anyOf: - type: string description: When `group_by=api_key_id`, this field provides the API key ID of the grouped usage result. - type: 'null' model: anyOf: - type: string description: When `group_by=model`, this field provides the model name of the grouped usage result. - type: 'null' required: - object - images - num_model_requests x-oaiMeta: name: Images usage object example: | { "object": "organization.usage.images.result", "images": 2, "num_model_requests": 2, "size": "1024x1024", "source": "image.generation", "project_id": "proj_abc", "user_id": "user-abc", "api_key_id": "key_abc", "model": "dall-e-3" } UsageModerationsResult: type: object description: The aggregated moderations usage details of the specific time bucket. properties: object: type: string enum: - organization.usage.moderations.result x-stainless-const: true input_tokens: type: integer description: The aggregated number of input tokens used. num_model_requests: type: integer description: The count of requests made to the model. project_id: anyOf: - type: string description: When `group_by=project_id`, this field provides the project ID of the grouped usage result. - type: 'null' user_id: anyOf: - type: string description: When `group_by=user_id`, this field provides the user ID of the grouped usage result. - type: 'null' api_key_id: anyOf: - type: string description: When `group_by=api_key_id`, this field provides the API key ID of the grouped usage result. - type: 'null' model: anyOf: - type: string description: When `group_by=model`, this field provides the model name of the grouped usage result. - type: 'null' required: - object - input_tokens - num_model_requests x-oaiMeta: name: Moderations usage object example: | { "object": "organization.usage.moderations.result", "input_tokens": 20, "num_model_requests": 2, "project_id": "proj_abc", "user_id": "user-abc", "api_key_id": "key_abc", "model": "text-moderation" } UsageResponse: type: object properties: object: type: string enum: - page x-stainless-const: true data: type: array items: $ref: '#/components/schemas/UsageTimeBucket' has_more: type: boolean next_page: type: string required: - object - data - has_more - next_page UsageTimeBucket: type: object properties: object: type: string enum: - bucket x-stainless-const: true start_time: type: integer end_time: type: integer result: type: array items: anyOf: - $ref: '#/components/schemas/UsageCompletionsResult' - $ref: '#/components/schemas/UsageEmbeddingsResult' - $ref: '#/components/schemas/UsageModerationsResult' - $ref: '#/components/schemas/UsageImagesResult' - $ref: '#/components/schemas/UsageAudioSpeechesResult' - $ref: '#/components/schemas/UsageAudioTranscriptionsResult' - $ref: '#/components/schemas/UsageVectorStoresResult' - $ref: '#/components/schemas/UsageCodeInterpreterSessionsResult' - $ref: '#/components/schemas/CostsResult' discriminator: propertyName: object required: - object - start_time - end_time - result UsageVectorStoresResult: type: object description: The aggregated vector stores usage details of the specific time bucket. properties: object: type: string enum: - organization.usage.vector_stores.result x-stainless-const: true usage_bytes: type: integer description: The vector stores usage in bytes. project_id: anyOf: - type: string description: When `group_by=project_id`, this field provides the project ID of the grouped usage result. - type: 'null' required: - object - usage_bytes x-oaiMeta: name: Vector stores usage object example: | { "object": "organization.usage.vector_stores.result", "usage_bytes": 1024, "project_id": "proj_abc" } User: type: object description: Represents an individual `user` within an organization. properties: object: type: string enum: - organization.user description: The object type, which is always `organization.user` x-stainless-const: true id: type: string description: The identifier, which can be referenced in API endpoints name: type: string description: The name of the user email: type: string description: The email address of the user role: type: string enum: - owner - reader description: '`owner` or `reader`' added_at: type: integer description: The Unix timestamp (in seconds) of when the user was added. required: - object - id - name - email - role - added_at x-oaiMeta: name: The user object example: | { "object": "organization.user", "id": "user_abc", "name": "First Last", "email": "user@example.com", "role": "owner", "added_at": 1711471533 } UserDeleteResponse: type: object properties: object: type: string enum: - organization.user.deleted x-stainless-const: true id: type: string deleted: type: boolean required: - object - id - deleted UserListResponse: type: object properties: object: type: string enum: - list x-stainless-const: true data: type: array items: $ref: '#/components/schemas/User' first_id: type: string last_id: type: string has_more: type: boolean required: - object - data - first_id - last_id - has_more UserRoleUpdateRequest: type: object properties: role: type: string enum: - owner - reader description: '`owner` or `reader`' required: - role VadConfig: type: object additionalProperties: false required: - type properties: type: type: string enum: - server_vad description: Must be set to `server_vad` to enable manual chunking using server side VAD. prefix_padding_ms: type: integer default: 300 description: | Amount of audio to include before the VAD detected speech (in milliseconds). silence_duration_ms: type: integer default: 200 description: | Duration of silence to detect speech stop (in milliseconds). With shorter values the model will respond more quickly, but may jump in on short pauses from the user. threshold: type: number default: 0.5 description: | Sensitivity threshold (0.0 to 1.0) for voice activity detection. A higher threshold will require louder audio to activate the model, and thus might perform better in noisy environments. ValidateGraderRequest: type: object title: ValidateGraderRequest properties: grader: type: object description: The grader used for the fine-tuning job. anyOf: - $ref: '#/components/schemas/GraderStringCheck' - $ref: '#/components/schemas/GraderTextSimilarity' - $ref: '#/components/schemas/GraderPython' - $ref: '#/components/schemas/GraderScoreModel' - $ref: '#/components/schemas/GraderMulti' required: - grader ValidateGraderResponse: type: object title: ValidateGraderResponse properties: grader: type: object description: The grader used for the fine-tuning job. anyOf: - $ref: '#/components/schemas/GraderStringCheck' - $ref: '#/components/schemas/GraderTextSimilarity' - $ref: '#/components/schemas/GraderPython' - $ref: '#/components/schemas/GraderScoreModel' - $ref: '#/components/schemas/GraderMulti' VectorStoreExpirationAfter: type: object title: Vector store expiration policy description: The expiration policy for a vector store. properties: anchor: description: 'Anchor timestamp after which the expiration policy applies. Supported anchors: `last_active_at`.' type: string enum: - last_active_at x-stainless-const: true days: description: The number of days after the anchor time that the vector store will expire. type: integer minimum: 1 maximum: 365 required: - anchor - days VectorStoreFileAttributes: anyOf: - type: object description: | Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard. Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters, booleans, or numbers. maxProperties: 16 propertyNames: type: string maxLength: 64 additionalProperties: anyOf: - type: string maxLength: 512 - type: number - type: boolean x-oaiTypeLabel: map - type: 'null' VectorStoreFileBatchObject: type: object title: Vector store file batch description: A batch of files attached to a vector store. properties: id: description: The identifier, which can be referenced in API endpoints. type: string object: description: The object type, which is always `vector_store.file_batch`. type: string enum: - vector_store.files_batch x-stainless-const: true created_at: description: The Unix timestamp (in seconds) for when the vector store files batch was created. type: integer vector_store_id: description: >- The ID of the [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) that the [File](https://platform.openai.com/docs/api-reference/files) is attached to. type: string status: description: >- The status of the vector store files batch, which can be either `in_progress`, `completed`, `cancelled` or `failed`. type: string enum: - in_progress - completed - cancelled - failed file_counts: type: object properties: in_progress: description: The number of files that are currently being processed. type: integer completed: description: The number of files that have been processed. type: integer failed: description: The number of files that have failed to process. type: integer cancelled: description: The number of files that where cancelled. type: integer total: description: The total number of files. type: integer required: - in_progress - completed - cancelled - failed - total required: - id - object - created_at - vector_store_id - status - file_counts x-oaiMeta: name: The vector store files batch object beta: true example: | { "id": "vsfb_123", "object": "vector_store.files_batch", "created_at": 1698107661, "vector_store_id": "vs_abc123", "status": "completed", "file_counts": { "in_progress": 0, "completed": 100, "failed": 0, "cancelled": 0, "total": 100 } } VectorStoreFileContentResponse: type: object description: Represents the parsed content of a vector store file. properties: object: type: string enum: - vector_store.file_content.page description: The object type, which is always `vector_store.file_content.page` x-stainless-const: true data: type: array description: Parsed content of the file. items: type: object properties: type: type: string description: The content type (currently only `"text"`) text: type: string description: The text content has_more: type: boolean description: Indicates if there are more content pages to fetch. next_page: anyOf: - type: string description: The token for the next page, if any. - type: 'null' required: - object - data - has_more - next_page VectorStoreFileObject: type: object title: Vector store files description: A list of files attached to a vector store. properties: id: description: The identifier, which can be referenced in API endpoints. type: string object: description: The object type, which is always `vector_store.file`. type: string enum: - vector_store.file x-stainless-const: true usage_bytes: description: >- The total vector store usage in bytes. Note that this may be different from the original file size. type: integer created_at: description: The Unix timestamp (in seconds) for when the vector store file was created. type: integer vector_store_id: description: >- The ID of the [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) that the [File](https://platform.openai.com/docs/api-reference/files) is attached to. type: string status: description: >- The status of the vector store file, which can be either `in_progress`, `completed`, `cancelled`, or `failed`. The status `completed` indicates that the vector store file is ready for use. type: string enum: - in_progress - completed - cancelled - failed last_error: anyOf: - type: object description: The last error associated with this vector store file. Will be `null` if there are no errors. properties: code: type: string description: One of `server_error`, `unsupported_file`, or `invalid_file`. enum: - server_error - unsupported_file - invalid_file message: type: string description: A human-readable description of the error. required: - code - message - type: 'null' chunking_strategy: $ref: '#/components/schemas/ChunkingStrategyResponse' attributes: $ref: '#/components/schemas/VectorStoreFileAttributes' required: - id - object - usage_bytes - created_at - vector_store_id - status - last_error x-oaiMeta: name: The vector store file object beta: true example: | { "id": "file-abc123", "object": "vector_store.file", "usage_bytes": 1234, "created_at": 1698107661, "vector_store_id": "vs_abc123", "status": "completed", "last_error": null, "chunking_strategy": { "type": "static", "static": { "max_chunk_size_tokens": 800, "chunk_overlap_tokens": 400 } } } VectorStoreObject: type: object title: Vector store description: A vector store is a collection of processed files can be used by the `file_search` tool. properties: id: description: The identifier, which can be referenced in API endpoints. type: string object: description: The object type, which is always `vector_store`. type: string enum: - vector_store x-stainless-const: true created_at: description: The Unix timestamp (in seconds) for when the vector store was created. type: integer name: description: The name of the vector store. type: string usage_bytes: description: The total number of bytes used by the files in the vector store. type: integer file_counts: type: object properties: in_progress: description: The number of files that are currently being processed. type: integer completed: description: The number of files that have been successfully processed. type: integer failed: description: The number of files that have failed to process. type: integer cancelled: description: The number of files that were cancelled. type: integer total: description: The total number of files. type: integer required: - in_progress - completed - failed - cancelled - total status: description: >- The status of the vector store, which can be either `expired`, `in_progress`, or `completed`. A status of `completed` indicates that the vector store is ready for use. type: string enum: - expired - in_progress - completed expires_after: $ref: '#/components/schemas/VectorStoreExpirationAfter' expires_at: anyOf: - description: The Unix timestamp (in seconds) for when the vector store will expire. type: integer - type: 'null' last_active_at: anyOf: - description: The Unix timestamp (in seconds) for when the vector store was last active. type: integer - type: 'null' metadata: $ref: '#/components/schemas/Metadata' required: - id - object - usage_bytes - created_at - status - last_active_at - name - file_counts - metadata x-oaiMeta: name: The vector store object example: | { "id": "vs_123", "object": "vector_store", "created_at": 1698107661, "usage_bytes": 123456, "last_active_at": 1698107661, "name": "my_vector_store", "status": "completed", "file_counts": { "in_progress": 0, "completed": 100, "cancelled": 0, "failed": 0, "total": 100 }, "last_used_at": 1698107661 } VectorStoreSearchRequest: type: object additionalProperties: false properties: query: description: A query string for a search anyOf: - type: string - type: array items: type: string description: A list of queries to search for. minItems: 1 rewrite_query: description: Whether to rewrite the natural language query for vector search. type: boolean default: false max_num_results: description: The maximum number of results to return. This number should be between 1 and 50 inclusive. type: integer default: 10 minimum: 1 maximum: 50 filters: description: A filter to apply based on file attributes. anyOf: - $ref: '#/components/schemas/ComparisonFilter' - $ref: '#/components/schemas/CompoundFilter' ranking_options: description: Ranking options for search. type: object additionalProperties: false properties: ranker: description: Enable re-ranking; set to `none` to disable, which can help reduce latency. type: string enum: - none - auto - default-2024-11-15 default: auto score_threshold: type: number minimum: 0 maximum: 1 default: 0 required: - query x-oaiMeta: name: Vector store search request VectorStoreSearchResultContentObject: type: object additionalProperties: false properties: type: description: The type of content. type: string enum: - text text: description: The text content returned from search. type: string required: - type - text x-oaiMeta: name: Vector store search result content object VectorStoreSearchResultItem: type: object additionalProperties: false properties: file_id: type: string description: The ID of the vector store file. filename: type: string description: The name of the vector store file. score: type: number description: The similarity score for the result. minimum: 0 maximum: 1 attributes: $ref: '#/components/schemas/VectorStoreFileAttributes' content: type: array description: Content chunks from the file. items: $ref: '#/components/schemas/VectorStoreSearchResultContentObject' required: - file_id - filename - score - attributes - content x-oaiMeta: name: Vector store search result item VectorStoreSearchResultsPage: type: object additionalProperties: false properties: object: type: string enum: - vector_store.search_results.page description: The object type, which is always `vector_store.search_results.page` x-stainless-const: true search_query: type: array items: type: string description: The query used for this search. minItems: 1 data: type: array description: The list of search result items. items: $ref: '#/components/schemas/VectorStoreSearchResultItem' has_more: type: boolean description: Indicates if there are more results to fetch. next_page: anyOf: - type: string description: The token for the next page, if any. - type: 'null' required: - object - search_query - data - has_more - next_page x-oaiMeta: name: Vector store search results page Verbosity: anyOf: - type: string enum: - low - medium - high default: medium description: | Constrains the verbosity of the model's response. Lower values will result in more concise responses, while higher values will result in more verbose responses. Currently supported values are `low`, `medium`, and `high`. - type: 'null' VoiceIdsShared: example: ash anyOf: - type: string - type: string enum: - alloy - ash - ballad - coral - echo - sage - shimmer - verse - marin - cedar Wait: type: object title: Wait description: | A wait action. properties: type: type: string enum: - wait default: wait description: | Specifies the event type. For a wait action, this property is always set to `wait`. x-stainless-const: true required: - type WebSearchActionFind: type: object title: Find action description: | Action type "find": Searches for a pattern within a loaded page. properties: type: type: string enum: - find description: | The action type. x-stainless-const: true url: type: string format: uri description: | The URL of the page searched for the pattern. pattern: type: string description: | The pattern or text to search for within the page. required: - type - url - pattern WebSearchActionOpenPage: type: object title: Open page action description: | Action type "open_page" - Opens a specific URL from search results. properties: type: type: string enum: - open_page description: | The action type. x-stainless-const: true url: type: string format: uri description: | The URL opened by the model. required: - type - url WebSearchActionSearch: type: object title: Search action description: | Action type "search" - Performs a web search query. properties: type: type: string enum: - search description: | The action type. x-stainless-const: true query: type: string description: | The search query. sources: type: array title: Web search sources description: | The sources used in the search. items: type: object title: Web search source description: | A source used in the search. properties: type: type: string enum: - url description: | The type of source. Always `url`. x-stainless-const: true url: type: string description: | The URL of the source. required: - type - url required: - type - query WebSearchApproximateLocation: anyOf: - type: object title: Web search approximate location description: | The approximate location of the user. properties: type: type: string enum: - approximate description: The type of location approximation. Always `approximate`. default: approximate x-stainless-const: true country: anyOf: - type: string description: >- The two-letter [ISO country code](https://en.wikipedia.org/wiki/ISO_3166-1) of the user, e.g. `US`. - type: 'null' region: anyOf: - type: string description: Free text input for the region of the user, e.g. `California`. - type: 'null' city: anyOf: - type: string description: Free text input for the city of the user, e.g. `San Francisco`. - type: 'null' timezone: anyOf: - type: string description: >- The [IANA timezone](https://timeapi.io/documentation/iana-timezones) of the user, e.g. `America/Los_Angeles`. - type: 'null' - type: 'null' WebSearchContextSize: type: string description: | High level guidance for the amount of context window space to use for the search. One of `low`, `medium`, or `high`. `medium` is the default. enum: - low - medium - high default: medium WebSearchLocation: type: object title: Web search location description: Approximate location parameters for the search. properties: country: type: string description: | The two-letter [ISO country code](https://en.wikipedia.org/wiki/ISO_3166-1) of the user, e.g. `US`. region: type: string description: | Free text input for the region of the user, e.g. `California`. city: type: string description: | Free text input for the city of the user, e.g. `San Francisco`. timezone: type: string description: | The [IANA timezone](https://timeapi.io/documentation/iana-timezones) of the user, e.g. `America/Los_Angeles`. WebSearchTool: type: object title: Web search description: | Search the Internet for sources related to the prompt. Learn more about the [web search tool](https://platform.openai.com/docs/guides/tools-web-search). properties: type: type: string enum: - web_search - web_search_2025_08_26 description: The type of the web search tool. One of `web_search` or `web_search_2025_08_26`. default: web_search filters: anyOf: - type: object description: | Filters for the search. properties: allowed_domains: anyOf: - type: array title: Allowed domains for the search. description: | Allowed domains for the search. If not provided, all domains are allowed. Subdomains of the provided domains are allowed as well. Example: `["pubmed.ncbi.nlm.nih.gov"]` items: type: string description: Allowed domain for the search. default: [] - type: 'null' - type: 'null' user_location: $ref: '#/components/schemas/WebSearchApproximateLocation' search_context_size: type: string enum: - low - medium - high default: medium description: >- High level guidance for the amount of context window space to use for the search. One of `low`, `medium`, or `high`. `medium` is the default. required: - type WebSearchToolCall: type: object title: Web search tool call description: | The results of a web search tool call. See the [web search guide](https://platform.openai.com/docs/guides/tools-web-search) for more information. properties: id: type: string description: | The unique ID of the web search tool call. type: type: string enum: - web_search_call description: | The type of the web search tool call. Always `web_search_call`. x-stainless-const: true status: type: string description: | The status of the web search tool call. enum: - in_progress - searching - completed - failed action: type: object description: | An object describing the specific action taken in this web search call. Includes details on how the model used the web (search, open_page, find). discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/WebSearchActionSearch' - $ref: '#/components/schemas/WebSearchActionOpenPage' - $ref: '#/components/schemas/WebSearchActionFind' required: - id - type - status - action WebhookBatchCancelled: type: object title: batch.cancelled description: | Sent when a batch API request has been cancelled. required: - created_at - id - data - type properties: created_at: type: integer description: | The Unix timestamp (in seconds) of when the batch API request was cancelled. id: type: string description: | The unique ID of the event. data: type: object description: | Event data payload. required: - id properties: id: type: string description: | The unique ID of the batch API request. object: type: string description: | The object of the event. Always `event`. enum: - event x-stainless-const: true type: type: string description: | The type of the event. Always `batch.cancelled`. enum: - batch.cancelled x-stainless-const: true x-oaiMeta: name: batch.cancelled group: webhook-events example: | { "id": "evt_abc123", "type": "batch.cancelled", "created_at": 1719168000, "data": { "id": "batch_abc123" } } WebhookBatchCompleted: type: object title: batch.completed description: | Sent when a batch API request has been completed. required: - created_at - id - data - type properties: created_at: type: integer description: | The Unix timestamp (in seconds) of when the batch API request was completed. id: type: string description: | The unique ID of the event. data: type: object description: | Event data payload. required: - id properties: id: type: string description: | The unique ID of the batch API request. object: type: string description: | The object of the event. Always `event`. enum: - event x-stainless-const: true type: type: string description: | The type of the event. Always `batch.completed`. enum: - batch.completed x-stainless-const: true x-oaiMeta: name: batch.completed group: webhook-events example: | { "id": "evt_abc123", "type": "batch.completed", "created_at": 1719168000, "data": { "id": "batch_abc123" } } WebhookBatchExpired: type: object title: batch.expired description: | Sent when a batch API request has expired. required: - created_at - id - data - type properties: created_at: type: integer description: | The Unix timestamp (in seconds) of when the batch API request expired. id: type: string description: | The unique ID of the event. data: type: object description: | Event data payload. required: - id properties: id: type: string description: | The unique ID of the batch API request. object: type: string description: | The object of the event. Always `event`. enum: - event x-stainless-const: true type: type: string description: | The type of the event. Always `batch.expired`. enum: - batch.expired x-stainless-const: true x-oaiMeta: name: batch.expired group: webhook-events example: | { "id": "evt_abc123", "type": "batch.expired", "created_at": 1719168000, "data": { "id": "batch_abc123" } } WebhookBatchFailed: type: object title: batch.failed description: | Sent when a batch API request has failed. required: - created_at - id - data - type properties: created_at: type: integer description: | The Unix timestamp (in seconds) of when the batch API request failed. id: type: string description: | The unique ID of the event. data: type: object description: | Event data payload. required: - id properties: id: type: string description: | The unique ID of the batch API request. object: type: string description: | The object of the event. Always `event`. enum: - event x-stainless-const: true type: type: string description: | The type of the event. Always `batch.failed`. enum: - batch.failed x-stainless-const: true x-oaiMeta: name: batch.failed group: webhook-events example: | { "id": "evt_abc123", "type": "batch.failed", "created_at": 1719168000, "data": { "id": "batch_abc123" } } WebhookEvalRunCanceled: type: object title: eval.run.canceled description: | Sent when an eval run has been canceled. required: - created_at - id - data - type properties: created_at: type: integer description: | The Unix timestamp (in seconds) of when the eval run was canceled. id: type: string description: | The unique ID of the event. data: type: object description: | Event data payload. required: - id properties: id: type: string description: | The unique ID of the eval run. object: type: string description: | The object of the event. Always `event`. enum: - event x-stainless-const: true type: type: string description: | The type of the event. Always `eval.run.canceled`. enum: - eval.run.canceled x-stainless-const: true x-oaiMeta: name: eval.run.canceled group: webhook-events example: | { "id": "evt_abc123", "type": "eval.run.canceled", "created_at": 1719168000, "data": { "id": "evalrun_abc123" } } WebhookEvalRunFailed: type: object title: eval.run.failed description: | Sent when an eval run has failed. required: - created_at - id - data - type properties: created_at: type: integer description: | The Unix timestamp (in seconds) of when the eval run failed. id: type: string description: | The unique ID of the event. data: type: object description: | Event data payload. required: - id properties: id: type: string description: | The unique ID of the eval run. object: type: string description: | The object of the event. Always `event`. enum: - event x-stainless-const: true type: type: string description: | The type of the event. Always `eval.run.failed`. enum: - eval.run.failed x-stainless-const: true x-oaiMeta: name: eval.run.failed group: webhook-events example: | { "id": "evt_abc123", "type": "eval.run.failed", "created_at": 1719168000, "data": { "id": "evalrun_abc123" } } WebhookEvalRunSucceeded: type: object title: eval.run.succeeded description: | Sent when an eval run has succeeded. required: - created_at - id - data - type properties: created_at: type: integer description: | The Unix timestamp (in seconds) of when the eval run succeeded. id: type: string description: | The unique ID of the event. data: type: object description: | Event data payload. required: - id properties: id: type: string description: | The unique ID of the eval run. object: type: string description: | The object of the event. Always `event`. enum: - event x-stainless-const: true type: type: string description: | The type of the event. Always `eval.run.succeeded`. enum: - eval.run.succeeded x-stainless-const: true x-oaiMeta: name: eval.run.succeeded group: webhook-events example: | { "id": "evt_abc123", "type": "eval.run.succeeded", "created_at": 1719168000, "data": { "id": "evalrun_abc123" } } WebhookFineTuningJobCancelled: type: object title: fine_tuning.job.cancelled description: | Sent when a fine-tuning job has been cancelled. required: - created_at - id - data - type properties: created_at: type: integer description: | The Unix timestamp (in seconds) of when the fine-tuning job was cancelled. id: type: string description: | The unique ID of the event. data: type: object description: | Event data payload. required: - id properties: id: type: string description: | The unique ID of the fine-tuning job. object: type: string description: | The object of the event. Always `event`. enum: - event x-stainless-const: true type: type: string description: | The type of the event. Always `fine_tuning.job.cancelled`. enum: - fine_tuning.job.cancelled x-stainless-const: true x-oaiMeta: name: fine_tuning.job.cancelled group: webhook-events example: | { "id": "evt_abc123", "type": "fine_tuning.job.cancelled", "created_at": 1719168000, "data": { "id": "ftjob_abc123" } } WebhookFineTuningJobFailed: type: object title: fine_tuning.job.failed description: | Sent when a fine-tuning job has failed. required: - created_at - id - data - type properties: created_at: type: integer description: | The Unix timestamp (in seconds) of when the fine-tuning job failed. id: type: string description: | The unique ID of the event. data: type: object description: | Event data payload. required: - id properties: id: type: string description: | The unique ID of the fine-tuning job. object: type: string description: | The object of the event. Always `event`. enum: - event x-stainless-const: true type: type: string description: | The type of the event. Always `fine_tuning.job.failed`. enum: - fine_tuning.job.failed x-stainless-const: true x-oaiMeta: name: fine_tuning.job.failed group: webhook-events example: | { "id": "evt_abc123", "type": "fine_tuning.job.failed", "created_at": 1719168000, "data": { "id": "ftjob_abc123" } } WebhookFineTuningJobSucceeded: type: object title: fine_tuning.job.succeeded description: | Sent when a fine-tuning job has succeeded. required: - created_at - id - data - type properties: created_at: type: integer description: | The Unix timestamp (in seconds) of when the fine-tuning job succeeded. id: type: string description: | The unique ID of the event. data: type: object description: | Event data payload. required: - id properties: id: type: string description: | The unique ID of the fine-tuning job. object: type: string description: | The object of the event. Always `event`. enum: - event x-stainless-const: true type: type: string description: | The type of the event. Always `fine_tuning.job.succeeded`. enum: - fine_tuning.job.succeeded x-stainless-const: true x-oaiMeta: name: fine_tuning.job.succeeded group: webhook-events example: | { "id": "evt_abc123", "type": "fine_tuning.job.succeeded", "created_at": 1719168000, "data": { "id": "ftjob_abc123" } } WebhookRealtimeCallIncoming: type: object title: realtime.call.incoming description: | Sent when Realtime API Receives a incoming SIP call. required: - created_at - id - data - type properties: created_at: type: integer description: | The Unix timestamp (in seconds) of when the model response was completed. id: type: string description: | The unique ID of the event. data: type: object description: | Event data payload. required: - call_id - sip_headers properties: call_id: type: string description: | The unique ID of this call. sip_headers: type: array description: | Headers from the SIP Invite. items: type: object description: | A header from the SIP Invite. required: - name - value properties: name: type: string description: | Name of the SIP Header. value: type: string description: | Value of the SIP Header. object: type: string description: | The object of the event. Always `event`. enum: - event x-stainless-const: true type: type: string description: | The type of the event. Always `realtime.call.incoming`. enum: - realtime.call.incoming x-stainless-const: true x-oaiMeta: name: realtime.call.incoming group: webhook-events example: | { "id": "evt_abc123", "type": "realtime.call.incoming", "created_at": 1719168000, "data": { "call_id": "rtc_479a275623b54bdb9b6fbae2f7cbd408", "sip_headers": [ {"name": "Max-Forwards", "value": "63"}, {"name": "CSeq", "value": "851287 INVITE"}, {"name": "Content-Type", "value": "application/sdp"}, ] } } WebhookResponseCancelled: type: object title: response.cancelled description: | Sent when a background response has been cancelled. required: - created_at - id - data - type properties: created_at: type: integer description: | The Unix timestamp (in seconds) of when the model response was cancelled. id: type: string description: | The unique ID of the event. data: type: object description: | Event data payload. required: - id properties: id: type: string description: | The unique ID of the model response. object: type: string description: | The object of the event. Always `event`. enum: - event x-stainless-const: true type: type: string description: | The type of the event. Always `response.cancelled`. enum: - response.cancelled x-stainless-const: true x-oaiMeta: name: response.cancelled group: webhook-events example: | { "id": "evt_abc123", "type": "response.cancelled", "created_at": 1719168000, "data": { "id": "resp_abc123" } } WebhookResponseCompleted: type: object title: response.completed description: | Sent when a background response has been completed. required: - created_at - id - data - type properties: created_at: type: integer description: | The Unix timestamp (in seconds) of when the model response was completed. id: type: string description: | The unique ID of the event. data: type: object description: | Event data payload. required: - id properties: id: type: string description: | The unique ID of the model response. object: type: string description: | The object of the event. Always `event`. enum: - event x-stainless-const: true type: type: string description: | The type of the event. Always `response.completed`. enum: - response.completed x-stainless-const: true x-oaiMeta: name: response.completed group: webhook-events example: | { "id": "evt_abc123", "type": "response.completed", "created_at": 1719168000, "data": { "id": "resp_abc123" } } WebhookResponseFailed: type: object title: response.failed description: | Sent when a background response has failed. required: - created_at - id - data - type properties: created_at: type: integer description: | The Unix timestamp (in seconds) of when the model response failed. id: type: string description: | The unique ID of the event. data: type: object description: | Event data payload. required: - id properties: id: type: string description: | The unique ID of the model response. object: type: string description: | The object of the event. Always `event`. enum: - event x-stainless-const: true type: type: string description: | The type of the event. Always `response.failed`. enum: - response.failed x-stainless-const: true x-oaiMeta: name: response.failed group: webhook-events example: | { "id": "evt_abc123", "type": "response.failed", "created_at": 1719168000, "data": { "id": "resp_abc123" } } WebhookResponseIncomplete: type: object title: response.incomplete description: | Sent when a background response has been interrupted. required: - created_at - id - data - type properties: created_at: type: integer description: | The Unix timestamp (in seconds) of when the model response was interrupted. id: type: string description: | The unique ID of the event. data: type: object description: | Event data payload. required: - id properties: id: type: string description: | The unique ID of the model response. object: type: string description: | The object of the event. Always `event`. enum: - event x-stainless-const: true type: type: string description: | The type of the event. Always `response.incomplete`. enum: - response.incomplete x-stainless-const: true x-oaiMeta: name: response.incomplete group: webhook-events example: | { "id": "evt_abc123", "type": "response.incomplete", "created_at": 1719168000, "data": { "id": "resp_abc123" } } IncludeEnum: type: string enum: - file_search_call.results - web_search_call.results - web_search_call.action.sources - message.input_image.image_url - computer_call_output.output.image_url - code_interpreter_call.outputs - reasoning.encrypted_content - message.output_text.logprobs description: >- Specify additional output data to include in the model response. Currently supported values are: - `web_search_call.action.sources`: Include the sources of the web search tool call. - `code_interpreter_call.outputs`: Includes the outputs of python code execution in code interpreter tool call items. - `computer_call_output.output.image_url`: Include image urls from the computer call output. - `file_search_call.results`: Include the search results of the file search tool call. - `message.input_image.image_url`: Include image urls from the input message. - `message.output_text.logprobs`: Include logprobs with assistant messages. - `reasoning.encrypted_content`: Includes an encrypted version of reasoning tokens in reasoning item outputs. This enables reasoning items to be used in multi-turn conversations when using the Responses API statelessly (like when the `store` parameter is set to `false`, or when an organization is enrolled in the zero data retention program). MessageStatus: type: string enum: - in_progress - completed - incomplete MessageRole: type: string enum: - unknown - user - assistant - system - critic - discriminator - developer - tool InputTextContent: properties: type: type: string enum: - input_text description: The type of the input item. Always `input_text`. default: input_text x-stainless-const: true text: type: string description: The text input to the model. type: object required: - type - text title: Input text description: A text input to the model. FileCitationBody: properties: type: type: string enum: - file_citation description: The type of the file citation. Always `file_citation`. default: file_citation x-stainless-const: true file_id: type: string description: The ID of the file. index: type: integer description: The index of the file in the list of files. filename: type: string description: The filename of the file cited. type: object required: - type - file_id - index - filename title: File citation description: A citation to a file. UrlCitationBody: properties: type: type: string enum: - url_citation description: The type of the URL citation. Always `url_citation`. default: url_citation x-stainless-const: true url: type: string description: The URL of the web resource. start_index: type: integer description: The index of the first character of the URL citation in the message. end_index: type: integer description: The index of the last character of the URL citation in the message. title: type: string description: The title of the web resource. type: object required: - type - url - start_index - end_index - title title: URL citation description: A citation for a web resource used to generate a model response. ContainerFileCitationBody: properties: type: type: string enum: - container_file_citation description: The type of the container file citation. Always `container_file_citation`. default: container_file_citation x-stainless-const: true container_id: type: string description: The ID of the container file. file_id: type: string description: The ID of the file. start_index: type: integer description: The index of the first character of the container file citation in the message. end_index: type: integer description: The index of the last character of the container file citation in the message. filename: type: string description: The filename of the container file cited. type: object required: - type - container_id - file_id - start_index - end_index - filename title: Container file citation description: A citation for a container file used to generate a model response. Annotation: discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/FileCitationBody' - $ref: '#/components/schemas/UrlCitationBody' - $ref: '#/components/schemas/ContainerFileCitationBody' - $ref: '#/components/schemas/FilePath' TopLogProb: properties: token: type: string logprob: type: number bytes: items: type: integer type: array type: object required: - token - logprob - bytes title: Top log probability description: The top log probability of a token. LogProb: properties: token: type: string logprob: type: number bytes: items: type: integer type: array top_logprobs: items: $ref: '#/components/schemas/TopLogProb' type: array type: object required: - token - logprob - bytes - top_logprobs title: Log probability description: The log probability of a token. OutputTextContent: properties: type: type: string enum: - output_text description: The type of the output text. Always `output_text`. default: output_text x-stainless-const: true text: type: string description: The text output from the model. annotations: items: $ref: '#/components/schemas/Annotation' type: array description: The annotations of the text output. logprobs: items: $ref: '#/components/schemas/LogProb' type: array type: object required: - type - text - annotations title: Output text description: A text output from the model. TextContent: properties: type: type: string enum: - text default: text x-stainless-const: true text: type: string type: object required: - type - text title: Text Content description: A text content. SummaryTextContent: properties: type: type: string enum: - summary_text description: The type of the object. Always `summary_text`. default: summary_text x-stainless-const: true text: type: string description: A summary of the reasoning output from the model so far. type: object required: - type - text title: Summary text description: A summary text from the model. ReasoningTextContent: properties: type: type: string enum: - reasoning_text description: The type of the reasoning text. Always `reasoning_text`. default: reasoning_text x-stainless-const: true text: type: string description: The reasoning text from the model. type: object required: - type - text title: ReasoningTextContent description: Reasoning text from the model. RefusalContent: properties: type: type: string enum: - refusal description: The type of the refusal. Always `refusal`. default: refusal x-stainless-const: true refusal: type: string description: The refusal explanation from the model. type: object required: - type - refusal title: Refusal description: A refusal from the model. ImageDetail: type: string enum: - low - high - auto InputImageContent: properties: type: type: string enum: - input_image description: The type of the input item. Always `input_image`. default: input_image x-stainless-const: true image_url: anyOf: - type: string description: >- The URL of the image to be sent to the model. A fully qualified URL or base64 encoded image in a data URL. - type: 'null' file_id: anyOf: - type: string description: The ID of the file to be sent to the model. - type: 'null' detail: $ref: '#/components/schemas/ImageDetail' description: >- The detail level of the image to be sent to the model. One of `high`, `low`, or `auto`. Defaults to `auto`. type: object required: - type - detail title: Input image description: >- An image input to the model. Learn about [image inputs](https://platform.openai.com/docs/guides/vision). ComputerScreenshotContent: properties: type: type: string enum: - computer_screenshot description: >- Specifies the event type. For a computer screenshot, this property is always set to `computer_screenshot`. default: computer_screenshot x-stainless-const: true image_url: anyOf: - type: string description: The URL of the screenshot image. - type: 'null' file_id: anyOf: - type: string description: The identifier of an uploaded file that contains the screenshot. - type: 'null' type: object required: - type - image_url - file_id title: Computer screenshot description: A screenshot of a computer. InputFileContent: properties: type: type: string enum: - input_file description: The type of the input item. Always `input_file`. default: input_file x-stainless-const: true file_id: anyOf: - type: string description: The ID of the file to be sent to the model. - type: 'null' filename: type: string description: The name of the file to be sent to the model. file_url: type: string description: The URL of the file to be sent to the model. file_data: type: string description: | The content of the file to be sent to the model. type: object required: - type title: Input file description: A file input to the model. Message: properties: type: type: string enum: - message description: The type of the message. Always set to `message`. default: message x-stainless-const: true id: type: string description: The unique ID of the message. status: $ref: '#/components/schemas/MessageStatus' description: >- The status of item. One of `in_progress`, `completed`, or `incomplete`. Populated when items are returned via API. role: $ref: '#/components/schemas/MessageRole' description: >- The role of the message. One of `unknown`, `user`, `assistant`, `system`, `critic`, `discriminator`, `developer`, or `tool`. content: items: discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/InputTextContent' - $ref: '#/components/schemas/OutputTextContent' - $ref: '#/components/schemas/TextContent' - $ref: '#/components/schemas/SummaryTextContent' - $ref: '#/components/schemas/ReasoningTextContent' - $ref: '#/components/schemas/RefusalContent' - $ref: '#/components/schemas/InputImageContent' - $ref: '#/components/schemas/ComputerScreenshotContent' - $ref: '#/components/schemas/InputFileContent' type: array description: The content of the message type: object required: - type - id - status - role - content title: Message description: A message to or from the model. ClickButtonType: type: string enum: - left - right - wheel - back - forward ClickParam: properties: type: type: string enum: - click description: Specifies the event type. For a click action, this property is always `click`. default: click x-stainless-const: true button: $ref: '#/components/schemas/ClickButtonType' description: >- Indicates which mouse button was pressed during the click. One of `left`, `right`, `wheel`, `back`, or `forward`. x: type: integer description: The x-coordinate where the click occurred. 'y': type: integer description: The y-coordinate where the click occurred. type: object required: - type - button - x - 'y' title: Click description: A click action. DoubleClickAction: properties: type: type: string enum: - double_click description: >- Specifies the event type. For a double click action, this property is always set to `double_click`. default: double_click x-stainless-const: true x: type: integer description: The x-coordinate where the double click occurred. 'y': type: integer description: The y-coordinate where the double click occurred. type: object required: - type - x - 'y' title: DoubleClick description: A double click action. DragPoint: properties: x: type: integer description: The x-coordinate. 'y': type: integer description: The y-coordinate. type: object required: - x - 'y' title: Coordinate description: 'An x/y coordinate pair, e.g. `{ x: 100, y: 200 }`.' KeyPressAction: properties: type: type: string enum: - keypress description: Specifies the event type. For a keypress action, this property is always set to `keypress`. default: keypress x-stainless-const: true keys: items: type: string description: One of the keys the model is requesting to be pressed. type: array description: >- The combination of keys the model is requesting to be pressed. This is an array of strings, each representing a key. type: object required: - type - keys title: KeyPress description: A collection of keypresses the model would like to perform. ComputerCallSafetyCheckParam: properties: id: type: string description: The ID of the pending safety check. code: anyOf: - type: string description: The type of the pending safety check. - type: 'null' message: anyOf: - type: string description: Details about the pending safety check. - type: 'null' type: object required: - id description: A pending safety check for the computer call. CodeInterpreterOutputLogs: properties: type: type: string enum: - logs description: The type of the output. Always `logs`. default: logs x-stainless-const: true logs: type: string description: The logs output from the code interpreter. type: object required: - type - logs title: Code interpreter output logs description: The logs output from the code interpreter. CodeInterpreterOutputImage: properties: type: type: string enum: - image description: The type of the output. Always `image`. default: image x-stainless-const: true url: type: string description: The URL of the image output from the code interpreter. type: object required: - type - url title: Code interpreter output image description: The image output from the code interpreter. LocalShellExecAction: properties: type: type: string enum: - exec description: The type of the local shell action. Always `exec`. default: exec x-stainless-const: true command: items: type: string type: array description: The command to run. timeout_ms: anyOf: - type: integer description: Optional timeout in milliseconds for the command. - type: 'null' working_directory: anyOf: - type: string description: Optional working directory to run the command in. - type: 'null' env: additionalProperties: type: string type: object description: Environment variables to set for the command. x-oaiTypeLabel: map user: anyOf: - type: string description: Optional user to run the command as. - type: 'null' type: object required: - type - command - env title: Local shell exec action description: Execute a shell command on the server. FunctionShellAction: properties: commands: items: type: string description: A list of commands to run. type: array timeout_ms: anyOf: - type: integer description: Optional timeout in milliseconds for the commands. - type: 'null' max_output_length: anyOf: - type: integer description: Optional maximum number of characters to return from each command. - type: 'null' type: object required: - commands - timeout_ms - max_output_length title: Shell exec action description: Execute a shell command. LocalShellCallStatus: type: string enum: - in_progress - completed - incomplete FunctionShellCall: properties: type: type: string enum: - shell_call description: The type of the item. Always `shell_call`. default: shell_call x-stainless-const: true id: type: string description: The unique ID of the function shell tool call. Populated when this item is returned via API. call_id: type: string description: The unique ID of the function shell tool call generated by the model. action: $ref: '#/components/schemas/FunctionShellAction' description: The shell commands and limits that describe how to run the tool call. status: $ref: '#/components/schemas/LocalShellCallStatus' description: The status of the shell call. One of `in_progress`, `completed`, or `incomplete`. created_by: type: string description: The ID of the entity that created this tool call. type: object required: - type - id - call_id - action - status title: Function shell tool call description: A tool call that executes one or more shell commands in a managed environment. FunctionShellCallOutputTimeoutOutcome: properties: type: type: string enum: - timeout description: The outcome type. Always `timeout`. default: timeout x-stainless-const: true type: object required: - type title: Function shell timeout outcome description: Indicates that the function shell call exceeded its configured time limit. FunctionShellCallOutputExitOutcome: properties: type: type: string enum: - exit description: The outcome type. Always `exit`. default: exit x-stainless-const: true exit_code: type: integer description: Exit code from the shell process. type: object required: - type - exit_code title: Function shell exit outcome description: Indicates that the shell commands finished and returned an exit code. FunctionShellCallOutputContent: properties: stdout: type: string stderr: type: string outcome: title: Function shell call outcome description: >- Represents either an exit outcome (with an exit code) or a timeout outcome for a shell call output chunk. discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/FunctionShellCallOutputTimeoutOutcome' - $ref: '#/components/schemas/FunctionShellCallOutputExitOutcome' created_by: type: string type: object required: - stdout - stderr - outcome title: Shell call output content description: The content of a shell call output. FunctionShellCallOutput: properties: type: type: string enum: - shell_call_output description: The type of the shell call output. Always `shell_call_output`. default: shell_call_output x-stainless-const: true id: type: string description: The unique ID of the shell call output. Populated when this item is returned via API. call_id: type: string description: The unique ID of the shell tool call generated by the model. output: items: $ref: '#/components/schemas/FunctionShellCallOutputContent' type: array description: An array of shell call output contents max_output_length: anyOf: - type: integer description: >- The maximum length of the shell command output. This is generated by the model and should be passed back with the raw output. - type: 'null' created_by: type: string type: object required: - type - id - call_id - output - max_output_length title: Shell call output description: The output of a shell tool call. ApplyPatchCallStatus: type: string enum: - in_progress - completed ApplyPatchCreateFileOperation: properties: type: type: string enum: - create_file description: Create a new file with the provided diff. default: create_file x-stainless-const: true path: type: string description: Path of the file to create. diff: type: string description: Diff to apply. type: object required: - type - path - diff title: Apply patch create file operation description: Instruction describing how to create a file via the apply_patch tool. ApplyPatchDeleteFileOperation: properties: type: type: string enum: - delete_file description: Delete the specified file. default: delete_file x-stainless-const: true path: type: string description: Path of the file to delete. type: object required: - type - path title: Apply patch delete file operation description: Instruction describing how to delete a file via the apply_patch tool. ApplyPatchUpdateFileOperation: properties: type: type: string enum: - update_file description: Update an existing file with the provided diff. default: update_file x-stainless-const: true path: type: string description: Path of the file to update. diff: type: string description: Diff to apply. type: object required: - type - path - diff title: Apply patch update file operation description: Instruction describing how to update a file via the apply_patch tool. ApplyPatchToolCall: properties: type: type: string enum: - apply_patch_call description: The type of the item. Always `apply_patch_call`. default: apply_patch_call x-stainless-const: true id: type: string description: The unique ID of the apply patch tool call. Populated when this item is returned via API. call_id: type: string description: The unique ID of the apply patch tool call generated by the model. status: $ref: '#/components/schemas/ApplyPatchCallStatus' description: The status of the apply patch tool call. One of `in_progress` or `completed`. operation: title: Apply patch operation description: One of the create_file, delete_file, or update_file operations applied via apply_patch. discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/ApplyPatchCreateFileOperation' - $ref: '#/components/schemas/ApplyPatchDeleteFileOperation' - $ref: '#/components/schemas/ApplyPatchUpdateFileOperation' created_by: type: string description: The ID of the entity that created this tool call. type: object required: - type - id - call_id - status title: Apply patch tool call description: A tool call that applies file diffs by creating, deleting, or updating files. ApplyPatchCallOutputStatus: type: string enum: - completed - failed ApplyPatchToolCallOutput: properties: type: type: string enum: - apply_patch_call_output description: The type of the item. Always `apply_patch_call_output`. default: apply_patch_call_output x-stainless-const: true id: type: string description: The unique ID of the apply patch tool call output. Populated when this item is returned via API. call_id: type: string description: The unique ID of the apply patch tool call generated by the model. status: $ref: '#/components/schemas/ApplyPatchCallOutputStatus' description: The status of the apply patch tool call output. One of `completed` or `failed`. output: anyOf: - type: string description: Optional textual output returned by the apply patch tool. - type: 'null' created_by: type: string description: The ID of the entity that created this tool call output. type: object required: - type - id - call_id - status - output title: Apply patch tool call output description: The output emitted by an apply patch tool call. MCPToolCallStatus: type: string enum: - in_progress - completed - incomplete - calling - failed DetailEnum: type: string enum: - low - high - auto FunctionCallItemStatus: type: string enum: - in_progress - completed - incomplete ComputerCallOutputItemParam: properties: id: anyOf: - type: string description: The ID of the computer tool call output. example: cuo_123 - type: 'null' call_id: type: string maxLength: 64 minLength: 1 description: The ID of the computer tool call that produced the output. type: type: string enum: - computer_call_output description: The type of the computer tool call output. Always `computer_call_output`. default: computer_call_output x-stainless-const: true output: $ref: '#/components/schemas/ComputerScreenshotImage' acknowledged_safety_checks: anyOf: - items: $ref: '#/components/schemas/ComputerCallSafetyCheckParam' type: array description: The safety checks reported by the API that have been acknowledged by the developer. - type: 'null' status: anyOf: - $ref: '#/components/schemas/FunctionCallItemStatus' description: >- The status of the message input. One of `in_progress`, `completed`, or `incomplete`. Populated when input items are returned via API. - type: 'null' type: object required: - call_id - type - output title: Computer tool call output description: The output of a computer tool call. InputTextContentParam: properties: type: type: string enum: - input_text description: The type of the input item. Always `input_text`. default: input_text x-stainless-const: true text: type: string maxLength: 10485760 description: The text input to the model. type: object required: - type - text title: Input text description: A text input to the model. InputImageContentParamAutoParam: properties: type: type: string enum: - input_image description: The type of the input item. Always `input_image`. default: input_image x-stainless-const: true image_url: anyOf: - type: string maxLength: 20971520 description: >- The URL of the image to be sent to the model. A fully qualified URL or base64 encoded image in a data URL. - type: 'null' file_id: anyOf: - type: string description: The ID of the file to be sent to the model. example: file-123 - type: 'null' detail: anyOf: - $ref: '#/components/schemas/DetailEnum' description: >- The detail level of the image to be sent to the model. One of `high`, `low`, or `auto`. Defaults to `auto`. - type: 'null' type: object required: - type title: Input image description: >- An image input to the model. Learn about [image inputs](https://platform.openai.com/docs/guides/vision) InputFileContentParam: properties: type: type: string enum: - input_file description: The type of the input item. Always `input_file`. default: input_file x-stainless-const: true file_id: anyOf: - type: string description: The ID of the file to be sent to the model. example: file-123 - type: 'null' filename: anyOf: - type: string description: The name of the file to be sent to the model. - type: 'null' file_data: anyOf: - type: string maxLength: 33554432 description: The base64-encoded data of the file to be sent to the model. - type: 'null' file_url: anyOf: - type: string description: The URL of the file to be sent to the model. - type: 'null' type: object required: - type title: Input file description: A file input to the model. FunctionCallOutputItemParam: properties: id: anyOf: - type: string description: The unique ID of the function tool call output. Populated when this item is returned via API. example: fc_123 - type: 'null' call_id: type: string maxLength: 64 minLength: 1 description: The unique ID of the function tool call generated by the model. type: type: string enum: - function_call_output description: The type of the function tool call output. Always `function_call_output`. default: function_call_output x-stainless-const: true output: description: Text, image, or file output of the function tool call. anyOf: - type: string maxLength: 10485760 description: A JSON string of the output of the function tool call. - items: discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/InputTextContentParam' - $ref: '#/components/schemas/InputImageContentParamAutoParam' - $ref: '#/components/schemas/InputFileContentParam' type: array status: anyOf: - $ref: '#/components/schemas/FunctionCallItemStatus' description: >- The status of the item. One of `in_progress`, `completed`, or `incomplete`. Populated when items are returned via API. - type: 'null' type: object required: - call_id - type - output title: Function tool call output description: The output of a function tool call. FunctionShellActionParam: properties: commands: items: type: string type: array description: Ordered shell commands for the execution environment to run. timeout_ms: anyOf: - type: integer description: Maximum wall-clock time in milliseconds to allow the shell commands to run. - type: 'null' max_output_length: anyOf: - type: integer description: Maximum number of UTF-8 characters to capture from combined stdout and stderr output. - type: 'null' type: object required: - commands title: Function shell action description: Commands and limits describing how to run the function shell tool call. FunctionShellCallItemStatus: type: string enum: - in_progress - completed - incomplete title: Function shell call status description: Status values reported for function shell tool calls. FunctionShellCallItemParam: properties: id: anyOf: - type: string description: The unique ID of the function shell tool call. Populated when this item is returned via API. example: sh_123 - type: 'null' call_id: type: string maxLength: 64 minLength: 1 description: The unique ID of the function shell tool call generated by the model. type: type: string enum: - shell_call description: The type of the item. Always `function_shell_call`. default: shell_call x-stainless-const: true action: $ref: '#/components/schemas/FunctionShellActionParam' description: The shell commands and limits that describe how to run the tool call. status: anyOf: - $ref: '#/components/schemas/FunctionShellCallItemStatus' description: The status of the shell call. One of `in_progress`, `completed`, or `incomplete`. - type: 'null' type: object required: - call_id - type - action title: Function shell tool call description: A tool representing a request to execute one or more shell commands. FunctionShellCallOutputTimeoutOutcomeParam: properties: type: type: string enum: - timeout description: The outcome type. Always `timeout`. default: timeout x-stainless-const: true type: object required: - type title: Function shell timeout outcome description: Indicates that the function shell call exceeded its configured time limit. FunctionShellCallOutputExitOutcomeParam: properties: type: type: string enum: - exit description: The outcome type. Always `exit`. default: exit x-stainless-const: true exit_code: type: integer description: The exit code returned by the shell process. type: object required: - type - exit_code title: Function shell exit outcome description: Indicates that the shell commands finished and returned an exit code. FunctionShellCallOutputOutcomeParam: title: Function shell call outcome description: The exit or timeout outcome associated with this chunk. discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/FunctionShellCallOutputTimeoutOutcomeParam' - $ref: '#/components/schemas/FunctionShellCallOutputExitOutcomeParam' FunctionShellCallOutputContentParam: properties: stdout: type: string maxLength: 10485760 description: Captured stdout output for this chunk of the shell call. stderr: type: string maxLength: 10485760 description: Captured stderr output for this chunk of the shell call. outcome: $ref: '#/components/schemas/FunctionShellCallOutputOutcomeParam' description: The exit or timeout outcome associated with this chunk. type: object required: - stdout - stderr - outcome title: Function shell output chunk description: Captured stdout and stderr for a portion of a function shell tool call output. FunctionShellCallOutputItemParam: properties: id: anyOf: - type: string description: >- The unique ID of the function shell tool call output. Populated when this item is returned via API. example: sho_123 - type: 'null' call_id: type: string maxLength: 64 minLength: 1 description: The unique ID of the function shell tool call generated by the model. type: type: string enum: - shell_call_output description: The type of the item. Always `function_shell_call_output`. default: shell_call_output x-stainless-const: true output: items: $ref: '#/components/schemas/FunctionShellCallOutputContentParam' type: array description: Captured chunks of stdout and stderr output, along with their associated outcomes. max_output_length: anyOf: - type: integer description: The maximum number of UTF-8 characters captured for this shell call's combined output. - type: 'null' type: object required: - call_id - type - output title: Function shell tool call output description: The streamed output items emitted by a function shell tool call. ApplyPatchCallStatusParam: type: string enum: - in_progress - completed title: Apply patch call status description: Status values reported for apply_patch tool calls. ApplyPatchCreateFileOperationParam: properties: type: type: string enum: - create_file description: The operation type. Always `create_file`. default: create_file x-stainless-const: true path: type: string minLength: 1 description: Path of the file to create relative to the workspace root. diff: type: string maxLength: 10485760 description: Unified diff content to apply when creating the file. type: object required: - type - path - diff title: Apply patch create file operation description: Instruction for creating a new file via the apply_patch tool. ApplyPatchDeleteFileOperationParam: properties: type: type: string enum: - delete_file description: The operation type. Always `delete_file`. default: delete_file x-stainless-const: true path: type: string minLength: 1 description: Path of the file to delete relative to the workspace root. type: object required: - type - path title: Apply patch delete file operation description: Instruction for deleting an existing file via the apply_patch tool. ApplyPatchUpdateFileOperationParam: properties: type: type: string enum: - update_file description: The operation type. Always `update_file`. default: update_file x-stainless-const: true path: type: string minLength: 1 description: Path of the file to update relative to the workspace root. diff: type: string maxLength: 10485760 description: Unified diff content to apply to the existing file. type: object required: - type - path - diff title: Apply patch update file operation description: Instruction for updating an existing file via the apply_patch tool. ApplyPatchOperationParam: title: Apply patch operation description: One of the create_file, delete_file, or update_file operations supplied to the apply_patch tool. discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/ApplyPatchCreateFileOperationParam' - $ref: '#/components/schemas/ApplyPatchDeleteFileOperationParam' - $ref: '#/components/schemas/ApplyPatchUpdateFileOperationParam' ApplyPatchToolCallItemParam: properties: type: type: string enum: - apply_patch_call description: The type of the item. Always `apply_patch_call`. default: apply_patch_call x-stainless-const: true id: anyOf: - type: string description: The unique ID of the apply patch tool call. Populated when this item is returned via API. example: apc_123 - type: 'null' call_id: type: string maxLength: 64 minLength: 1 description: The unique ID of the apply patch tool call generated by the model. status: $ref: '#/components/schemas/ApplyPatchCallStatusParam' description: The status of the apply patch tool call. One of `in_progress` or `completed`. operation: $ref: '#/components/schemas/ApplyPatchOperationParam' description: The specific create, delete, or update instruction for the apply_patch tool call. type: object required: - type - call_id - status - operation title: Apply patch tool call description: A tool call representing a request to create, delete, or update files using diff patches. ApplyPatchCallOutputStatusParam: type: string enum: - completed - failed title: Apply patch call output status description: Outcome values reported for apply_patch tool call outputs. ApplyPatchToolCallOutputItemParam: properties: type: type: string enum: - apply_patch_call_output description: The type of the item. Always `apply_patch_call_output`. default: apply_patch_call_output x-stainless-const: true id: anyOf: - type: string description: >- The unique ID of the apply patch tool call output. Populated when this item is returned via API. example: apco_123 - type: 'null' call_id: type: string maxLength: 64 minLength: 1 description: The unique ID of the apply patch tool call generated by the model. status: $ref: '#/components/schemas/ApplyPatchCallOutputStatusParam' description: The status of the apply patch tool call output. One of `completed` or `failed`. output: type: string maxLength: 10485760 description: Optional human-readable log text from the apply patch tool (e.g., patch results or errors). type: object required: - type - call_id - status title: Apply patch tool call output description: The streamed output emitted by an apply patch tool call. ItemReferenceParam: properties: type: anyOf: - type: string enum: - item_reference description: The type of item to reference. Always `item_reference`. default: item_reference x-stainless-const: true - type: 'null' id: type: string description: The ID of the item to reference. type: object required: - id title: Item reference description: An internal identifier for an item to reference. ConversationResource: properties: id: type: string description: The unique ID of the conversation. object: type: string enum: - conversation description: The object type, which is always `conversation`. default: conversation x-stainless-const: true metadata: description: >- Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard. Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters. created_at: type: integer description: The time at which the conversation was created, measured in seconds since the Unix epoch. type: object required: - id - object - metadata - created_at FunctionTool: properties: type: type: string enum: - function description: The type of the function tool. Always `function`. default: function x-stainless-const: true name: type: string description: The name of the function to call. description: anyOf: - type: string description: >- A description of the function. Used by the model to determine whether or not to call the function. - type: 'null' parameters: anyOf: - additionalProperties: {} type: object description: A JSON schema object describing the parameters of the function. x-oaiTypeLabel: map - type: 'null' strict: anyOf: - type: boolean description: Whether to enforce strict parameter validation. Default `true`. - type: 'null' type: object required: - type - name - strict - parameters title: Function description: >- Defines a function in your own code the model can choose to call. Learn more about [function calling](https://platform.openai.com/docs/guides/function-calling). RankerVersionType: type: string enum: - auto - default-2024-11-15 HybridSearchOptions: properties: embedding_weight: type: number description: The weight of the embedding in the reciprocal ranking fusion. text_weight: type: number description: The weight of the text in the reciprocal ranking fusion. type: object required: - embedding_weight - text_weight RankingOptions: properties: ranker: $ref: '#/components/schemas/RankerVersionType' description: The ranker to use for the file search. score_threshold: type: number description: >- The score threshold for the file search, a number between 0 and 1. Numbers closer to 1 will attempt to return only the most relevant results, but may return fewer results. hybrid_search: $ref: '#/components/schemas/HybridSearchOptions' description: >- Weights that control how reciprocal rank fusion balances semantic embedding matches versus sparse keyword matches when hybrid search is enabled. type: object required: [] Filters: anyOf: - $ref: '#/components/schemas/ComparisonFilter' - $ref: '#/components/schemas/CompoundFilter' FileSearchTool: properties: type: type: string enum: - file_search description: The type of the file search tool. Always `file_search`. default: file_search x-stainless-const: true vector_store_ids: items: type: string type: array description: The IDs of the vector stores to search. max_num_results: type: integer description: The maximum number of results to return. This number should be between 1 and 50 inclusive. ranking_options: $ref: '#/components/schemas/RankingOptions' description: Ranking options for search. filters: anyOf: - $ref: '#/components/schemas/Filters' description: A filter to apply. - type: 'null' type: object required: - type - vector_store_ids title: File search description: >- A tool that searches for relevant content from uploaded files. Learn more about the [file search tool](https://platform.openai.com/docs/guides/tools-file-search). ComputerEnvironment: type: string enum: - windows - mac - linux - ubuntu - browser ComputerUsePreviewTool: properties: type: type: string enum: - computer_use_preview description: The type of the computer use tool. Always `computer_use_preview`. default: computer_use_preview x-stainless-const: true environment: $ref: '#/components/schemas/ComputerEnvironment' description: The type of computer environment to control. display_width: type: integer description: The width of the computer display. display_height: type: integer description: The height of the computer display. type: object required: - type - environment - display_width - display_height title: Computer use preview description: >- A tool that controls a virtual computer. Learn more about the [computer tool](https://platform.openai.com/docs/guides/tools-computer-use). ContainerMemoryLimit: type: string enum: - 1g - 4g - 16g - 64g InputFidelity: type: string enum: - high - low description: >- Control how much effort the model will exert to match the style and features, especially facial features, of input images. This parameter is only supported for `gpt-image-1`. Unsupported for `gpt-image-1-mini`. Supports `high` and `low`. Defaults to `low`. LocalShellToolParam: properties: type: type: string enum: - local_shell description: The type of the local shell tool. Always `local_shell`. default: local_shell x-stainless-const: true type: object required: - type title: Local shell tool description: A tool that allows the model to execute shell commands in a local environment. FunctionShellToolParam: properties: type: type: string enum: - shell description: The type of the shell tool. Always `shell`. default: shell x-stainless-const: true type: object required: - type title: Shell tool description: A tool that allows the model to execute shell commands. CustomTextFormatParam: properties: type: type: string enum: - text description: Unconstrained text format. Always `text`. default: text x-stainless-const: true type: object required: - type title: Text format description: Unconstrained free-form text. GrammarSyntax1: type: string enum: - lark - regex CustomGrammarFormatParam: properties: type: type: string enum: - grammar description: Grammar format. Always `grammar`. default: grammar x-stainless-const: true syntax: $ref: '#/components/schemas/GrammarSyntax1' description: The syntax of the grammar definition. One of `lark` or `regex`. definition: type: string description: The grammar definition. type: object required: - type - syntax - definition title: Grammar format description: A grammar defined by the user. CustomToolParam: properties: type: type: string enum: - custom description: The type of the custom tool. Always `custom`. default: custom x-stainless-const: true name: type: string description: The name of the custom tool, used to identify it in tool calls. description: type: string description: Optional description of the custom tool, used to provide more context. format: description: The input format for the custom tool. Default is unconstrained text. discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/CustomTextFormatParam' - $ref: '#/components/schemas/CustomGrammarFormatParam' type: object required: - type - name title: Custom tool description: >- A custom tool that processes input using a specified format. Learn more about [custom tools](https://platform.openai.com/docs/guides/function-calling#custom-tools) ApproximateLocation: properties: type: type: string enum: - approximate description: The type of location approximation. Always `approximate`. default: approximate x-stainless-const: true country: anyOf: - type: string description: >- The two-letter [ISO country code](https://en.wikipedia.org/wiki/ISO_3166-1) of the user, e.g. `US`. - type: 'null' region: anyOf: - type: string description: Free text input for the region of the user, e.g. `California`. - type: 'null' city: anyOf: - type: string description: Free text input for the city of the user, e.g. `San Francisco`. - type: 'null' timezone: anyOf: - type: string description: >- The [IANA timezone](https://timeapi.io/documentation/iana-timezones) of the user, e.g. `America/Los_Angeles`. - type: 'null' type: object required: - type SearchContextSize: type: string enum: - low - medium - high WebSearchPreviewTool: properties: type: type: string enum: - web_search_preview - web_search_preview_2025_03_11 description: The type of the web search tool. One of `web_search_preview` or `web_search_preview_2025_03_11`. default: web_search_preview x-stainless-const: true user_location: anyOf: - $ref: '#/components/schemas/ApproximateLocation' description: The user's location. - type: 'null' search_context_size: $ref: '#/components/schemas/SearchContextSize' description: >- High level guidance for the amount of context window space to use for the search. One of `low`, `medium`, or `high`. `medium` is the default. type: object required: - type title: Web search preview description: >- This tool searches the web for relevant results to use in a response. Learn more about the [web search tool](https://platform.openai.com/docs/guides/tools-web-search). ApplyPatchToolParam: properties: type: type: string enum: - apply_patch description: The type of the tool. Always `apply_patch`. default: apply_patch x-stainless-const: true type: object required: - type title: Apply patch tool description: Allows the assistant to create, delete, or update files using unified diffs. ImageGenInputUsageDetails: properties: text_tokens: type: integer description: The number of text tokens in the input prompt. image_tokens: type: integer description: The number of image tokens in the input prompt. type: object required: - text_tokens - image_tokens title: Input usage details description: The input tokens detailed information for the image generation. ImageGenUsage: properties: input_tokens: type: integer description: The number of tokens (images and text) in the input prompt. total_tokens: type: integer description: The total number of tokens (images and text) used for the image generation. output_tokens: type: integer description: The number of output tokens generated by the model. input_tokens_details: $ref: '#/components/schemas/ImageGenInputUsageDetails' type: object required: - input_tokens - total_tokens - output_tokens - input_tokens_details title: Image generation usage description: For `gpt-image-1` only, the token usage information for the image generation. SpecificApplyPatchParam: properties: type: type: string enum: - apply_patch description: The tool to call. Always `apply_patch`. default: apply_patch x-stainless-const: true type: object required: - type title: Specific apply patch tool choice description: Forces the model to call the apply_patch tool when executing a tool call. SpecificFunctionShellParam: properties: type: type: string enum: - shell description: The tool to call. Always `shell`. default: shell x-stainless-const: true type: object required: - type title: Specific shell tool choice description: Forces the model to call the function shell tool when a tool call is required. ConversationParam-2: properties: id: type: string description: The unique ID of the conversation. example: conv_123 type: object required: - id title: Conversation object description: The conversation that this response belongs to. Conversation-2: properties: id: type: string description: The unique ID of the conversation. type: object required: - id title: Conversation description: >- The conversation that this response belongs to. Input items and output items from this response are automatically added to this conversation. CreateConversationBody: properties: metadata: anyOf: - $ref: '#/components/schemas/Metadata' description: >- Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard. Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters. - type: 'null' items: anyOf: - items: $ref: '#/components/schemas/InputItem' type: array maxItems: 20 description: Initial items to include in the conversation context. You may add up to 20 items at a time. - type: 'null' type: object required: [] UpdateConversationBody: properties: metadata: $ref: '#/components/schemas/Metadata' description: >- Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format, and querying for objects via API or the dashboard. Keys are strings with a maximum length of 64 characters. Values are strings with a maximum length of 512 characters. type: object required: - metadata DeletedConversationResource: properties: object: type: string enum: - conversation.deleted default: conversation.deleted x-stainless-const: true deleted: type: boolean id: type: string type: object required: - object - deleted - id OrderEnum: type: string enum: - asc - desc VideoModel: type: string enum: - sora-2 - sora-2-pro VideoStatus: type: string enum: - queued - in_progress - completed - failed VideoSize: type: string enum: - 720x1280 - 1280x720 - 1024x1792 - 1792x1024 VideoSeconds: type: string enum: - '4' - '8' - '12' Error-2: properties: code: type: string message: type: string type: object required: - code - message VideoResource: properties: id: type: string description: Unique identifier for the video job. object: type: string enum: - video description: The object type, which is always `video`. default: video x-stainless-const: true model: $ref: '#/components/schemas/VideoModel' description: The video generation model that produced the job. status: $ref: '#/components/schemas/VideoStatus' description: Current lifecycle status of the video job. progress: type: integer description: Approximate completion percentage for the generation task. created_at: type: integer description: Unix timestamp (seconds) for when the job was created. completed_at: anyOf: - type: integer description: Unix timestamp (seconds) for when the job completed, if finished. - type: 'null' expires_at: anyOf: - type: integer description: Unix timestamp (seconds) for when the downloadable assets expire, if set. - type: 'null' prompt: anyOf: - type: string description: The prompt that was used to generate the video. - type: 'null' size: $ref: '#/components/schemas/VideoSize' description: The resolution of the generated video. seconds: $ref: '#/components/schemas/VideoSeconds' description: Duration of the generated clip in seconds. remixed_from_video_id: anyOf: - type: string description: Identifier of the source video if this video is a remix. - type: 'null' error: anyOf: - $ref: '#/components/schemas/Error-2' description: Error payload that explains why generation failed, if applicable. - type: 'null' type: object required: - id - object - model - status - progress - created_at - completed_at - expires_at - prompt - size - seconds - remixed_from_video_id - error title: Video job description: Structured information describing a generated video job. VideoListResource: properties: object: description: The type of object returned, must be `list`. default: list x-stainless-const: true const: list data: items: $ref: '#/components/schemas/VideoResource' type: array description: A list of items first_id: anyOf: - type: string description: The ID of the first item in the list. - type: 'null' last_id: anyOf: - type: string description: The ID of the last item in the list. - type: 'null' has_more: type: boolean description: Whether there are more items available. type: object required: - object - data - first_id - last_id - has_more CreateVideoBody: properties: model: $ref: '#/components/schemas/VideoModel' description: The video generation model to use. Defaults to `sora-2`. prompt: type: string maxLength: 32000 minLength: 1 description: Text prompt that describes the video to generate. input_reference: type: string format: binary description: Optional image reference that guides generation. seconds: $ref: '#/components/schemas/VideoSeconds' description: Clip duration in seconds. Defaults to 4 seconds. size: $ref: '#/components/schemas/VideoSize' description: Output resolution formatted as width x height. Defaults to 720x1280. type: object required: - prompt title: Create video request description: Parameters for creating a new video generation job. DeletedVideoResource: properties: object: type: string enum: - video.deleted description: The object type that signals the deletion response. default: video.deleted x-stainless-const: true deleted: type: boolean description: Indicates that the video resource was deleted. id: type: string description: Identifier of the deleted video. type: object required: - object - deleted - id title: Deleted video response description: Confirmation payload returned after deleting a video. VideoContentVariant: type: string enum: - video - thumbnail - spritesheet CreateVideoRemixBody: properties: prompt: type: string maxLength: 32000 minLength: 1 description: Updated text prompt that directs the remix generation. type: object required: - prompt title: Create video remix request description: Parameters for remixing an existing generated video. TruncationEnum: type: string enum: - auto - disabled TokenCountsBody: properties: model: anyOf: - type: string description: >- Model ID used to generate the response, like `gpt-4o` or `o3`. OpenAI offers a wide range of models with different capabilities, performance characteristics, and price points. Refer to the [model guide](https://platform.openai.com/docs/models) to browse and compare available models. - type: 'null' input: anyOf: - description: Text, image, or file inputs to the model, used to generate a response anyOf: - type: string maxLength: 10485760 description: A text input to the model, equivalent to a text input with the `user` role. - items: $ref: '#/components/schemas/InputItem' type: array - type: 'null' previous_response_id: anyOf: - type: string description: >- The unique ID of the previous response to the model. Use this to create multi-turn conversations. Learn more about [conversation state](https://platform.openai.com/docs/guides/conversation-state). Cannot be used in conjunction with `conversation`. example: resp_123 - type: 'null' tools: anyOf: - items: $ref: '#/components/schemas/Tool' type: array description: >- An array of tools the model may call while generating a response. You can specify which tool to use by setting the `tool_choice` parameter. - type: 'null' text: anyOf: - $ref: '#/components/schemas/ResponseTextParam' - type: 'null' reasoning: anyOf: - $ref: '#/components/schemas/Reasoning' description: >- **gpt-5 and o-series models only** Configuration options for [reasoning models](https://platform.openai.com/docs/guides/reasoning). - type: 'null' truncation: $ref: '#/components/schemas/TruncationEnum' description: >- The truncation strategy to use for the model response. - `auto`: If the input to this Response exceeds the model's context window size, the model will truncate the response to fit the context window by dropping items from the beginning of the conversation. - `disabled` (default): If the input size will exceed the context window size for a model, the request will fail with a 400 error. instructions: anyOf: - type: string description: >- A system (or developer) message inserted into the model's context. When used along with `previous_response_id`, the instructions from a previous response will not be carried over to the next response. This makes it simple to swap out system (or developer) messages in new responses. - type: 'null' conversation: anyOf: - $ref: '#/components/schemas/ConversationParam' - type: 'null' tool_choice: anyOf: - $ref: '#/components/schemas/ToolChoiceParam' - type: 'null' parallel_tool_calls: anyOf: - type: boolean description: Whether to allow the model to run tool calls in parallel. - type: 'null' type: object required: [] TokenCountsResource: properties: object: type: string enum: - response.input_tokens default: response.input_tokens x-stainless-const: true input_tokens: type: integer type: object required: - object - input_tokens title: Token counts example: object: response.input_tokens input_tokens: 123 ChatkitWorkflowTracing: properties: enabled: type: boolean description: Indicates whether tracing is enabled. type: object required: - enabled title: Tracing Configuration description: Controls diagnostic tracing during the session. ChatkitWorkflow: properties: id: type: string description: Identifier of the workflow backing the session. version: anyOf: - type: string description: >- Specific workflow version used for the session. Defaults to null when using the latest deployment. - type: 'null' state_variables: anyOf: - additionalProperties: anyOf: - type: string - type: integer - type: boolean - type: number type: object description: >- State variable key-value pairs applied when invoking the workflow. Defaults to null when no overrides were provided. x-oaiTypeLabel: map - type: 'null' tracing: $ref: '#/components/schemas/ChatkitWorkflowTracing' description: Tracing settings applied to the workflow. type: object required: - id - version - state_variables - tracing title: Workflow description: Workflow metadata and state returned for the session. ChatSessionRateLimits: properties: max_requests_per_1_minute: type: integer description: Maximum allowed requests per one-minute window. type: object required: - max_requests_per_1_minute title: Rate limits description: Active per-minute request limit for the session. ChatSessionStatus: type: string enum: - active - expired - cancelled ChatSessionAutomaticThreadTitling: properties: enabled: type: boolean description: Whether automatic thread titling is enabled. type: object required: - enabled title: Automatic thread titling description: Automatic thread title preferences for the session. ChatSessionFileUpload: properties: enabled: type: boolean description: Indicates if uploads are enabled for the session. max_file_size: anyOf: - type: integer description: Maximum upload size in megabytes. - type: 'null' max_files: anyOf: - type: integer description: Maximum number of uploads allowed during the session. - type: 'null' type: object required: - enabled - max_file_size - max_files title: File upload settings description: Upload permissions and limits applied to the session. ChatSessionHistory: properties: enabled: type: boolean description: Indicates if chat history is persisted for the session. recent_threads: anyOf: - type: integer description: >- Number of prior threads surfaced in history views. Defaults to null when all history is retained. - type: 'null' type: object required: - enabled - recent_threads title: History settings description: History retention preferences returned for the session. ChatSessionChatkitConfiguration: properties: automatic_thread_titling: $ref: '#/components/schemas/ChatSessionAutomaticThreadTitling' description: Automatic thread titling preferences. file_upload: $ref: '#/components/schemas/ChatSessionFileUpload' description: Upload settings for the session. history: $ref: '#/components/schemas/ChatSessionHistory' description: History retention configuration. type: object required: - automatic_thread_titling - file_upload - history title: ChatKit configuration description: ChatKit configuration for the session. ChatSessionResource: properties: id: type: string description: Identifier for the ChatKit session. object: type: string enum: - chatkit.session description: Type discriminator that is always `chatkit.session`. default: chatkit.session x-stainless-const: true expires_at: type: integer description: Unix timestamp (in seconds) for when the session expires. client_secret: type: string description: Ephemeral client secret that authenticates session requests. workflow: $ref: '#/components/schemas/ChatkitWorkflow' description: Workflow metadata for the session. user: type: string description: User identifier associated with the session. rate_limits: $ref: '#/components/schemas/ChatSessionRateLimits' description: Resolved rate limit values. max_requests_per_1_minute: type: integer description: Convenience copy of the per-minute request limit. status: $ref: '#/components/schemas/ChatSessionStatus' description: Current lifecycle state of the session. chatkit_configuration: $ref: '#/components/schemas/ChatSessionChatkitConfiguration' description: Resolved ChatKit feature configuration for the session. type: object required: - id - object - expires_at - client_secret - workflow - user - rate_limits - max_requests_per_1_minute - status - chatkit_configuration title: The chat session object description: Represents a ChatKit session and its resolved configuration. WorkflowTracingParam: properties: enabled: type: boolean description: Whether tracing is enabled during the session. Defaults to true. type: object required: [] title: Tracing Configuration description: Controls diagnostic tracing during the session. WorkflowParam: properties: id: type: string description: Identifier for the workflow invoked by the session. version: type: string description: Specific workflow version to run. Defaults to the latest deployed version. state_variables: additionalProperties: anyOf: - type: string maxLength: 10485760 - type: integer - type: boolean - type: number type: object maxProperties: 64 description: >- State variables forwarded to the workflow. Keys may be up to 64 characters, values must be primitive types, and the map defaults to an empty object. x-oaiTypeLabel: map tracing: $ref: '#/components/schemas/WorkflowTracingParam' description: >- Optional tracing overrides for the workflow invocation. When omitted, tracing is enabled by default. type: object required: - id title: Workflow settings description: Workflow reference and overrides applied to the chat session. ExpiresAfterParam: properties: anchor: type: string enum: - created_at description: Base timestamp used to calculate expiration. Currently fixed to `created_at`. default: created_at x-stainless-const: true seconds: type: integer maximum: 600 minimum: 1 description: Number of seconds after the anchor when the session expires. type: object required: - anchor - seconds title: Expiration overrides description: Controls when the session expires relative to an anchor timestamp. RateLimitsParam: properties: max_requests_per_1_minute: type: integer minimum: 1 description: Maximum number of requests allowed per minute for the session. Defaults to 10. type: object required: [] title: Rate limit overrides description: Controls request rate limits for the session. AutomaticThreadTitlingParam: properties: enabled: type: boolean description: Enable automatic thread title generation. Defaults to true. type: object required: [] title: Automatic thread titling configuration description: Controls whether ChatKit automatically generates thread titles. FileUploadParam: properties: enabled: type: boolean description: Enable uploads for this session. Defaults to false. max_file_size: type: integer maximum: 512 minimum: 1 description: >- Maximum size in megabytes for each uploaded file. Defaults to 512 MB, which is the maximum allowable size. max_files: type: integer minimum: 1 description: Maximum number of files that can be uploaded to the session. Defaults to 10. type: object required: [] title: File upload configuration description: Controls whether users can upload files. HistoryParam: properties: enabled: type: boolean description: Enables chat users to access previous ChatKit threads. Defaults to true. recent_threads: type: integer minimum: 1 description: Number of recent ChatKit threads users have access to. Defaults to unlimited when unset. type: object required: [] title: Chat history configuration description: Controls how much historical context is retained for the session. ChatkitConfigurationParam: properties: automatic_thread_titling: $ref: '#/components/schemas/AutomaticThreadTitlingParam' description: >- Configuration for automatic thread titling. When omitted, automatic thread titling is enabled by default. file_upload: $ref: '#/components/schemas/FileUploadParam' description: >- Configuration for upload enablement and limits. When omitted, uploads are disabled by default (max_files 10, max_file_size 512 MB). history: $ref: '#/components/schemas/HistoryParam' description: >- Configuration for chat history retention. When omitted, history is enabled by default with no limit on recent_threads (null). type: object required: [] title: ChatKit configuration overrides description: Optional per-session configuration settings for ChatKit behavior. CreateChatSessionBody: properties: workflow: $ref: '#/components/schemas/WorkflowParam' description: Workflow that powers the session. user: type: string minLength: 1 description: >- A free-form string that identifies your end user; ensures this Session can access other objects that have the same `user` scope. expires_after: $ref: '#/components/schemas/ExpiresAfterParam' description: Optional override for session expiration timing in seconds from creation. Defaults to 10 minutes. rate_limits: $ref: '#/components/schemas/RateLimitsParam' description: Optional override for per-minute request limits. When omitted, defaults to 10. chatkit_configuration: $ref: '#/components/schemas/ChatkitConfigurationParam' description: Optional overrides for ChatKit runtime configuration features type: object required: - workflow - user title: Create chat session request description: Parameters for provisioning a new ChatKit session. UserMessageInputText: properties: type: type: string enum: - input_text description: Type discriminator that is always `input_text`. default: input_text x-stainless-const: true text: type: string description: Plain-text content supplied by the user. type: object required: - type - text title: User message input description: Text block that a user contributed to the thread. UserMessageQuotedText: properties: type: type: string enum: - quoted_text description: Type discriminator that is always `quoted_text`. default: quoted_text x-stainless-const: true text: type: string description: Quoted text content. type: object required: - type - text title: User message quoted text description: Quoted snippet that the user referenced in their message. AttachmentType: type: string enum: - image - file Attachment: properties: type: $ref: '#/components/schemas/AttachmentType' description: Attachment discriminator. id: type: string description: Identifier for the attachment. name: type: string description: Original display name for the attachment. mime_type: type: string description: MIME type of the attachment. preview_url: anyOf: - type: string description: Preview URL for rendering the attachment inline. - type: 'null' type: object required: - type - id - name - mime_type - preview_url title: Attachment description: Attachment metadata included on thread items. ToolChoice: properties: id: type: string description: Identifier of the requested tool. type: object required: - id title: Tool choice description: Tool selection that the assistant should honor when executing the item. InferenceOptions: properties: tool_choice: anyOf: - $ref: '#/components/schemas/ToolChoice' description: Preferred tool to invoke. Defaults to null when ChatKit should auto-select. - type: 'null' model: anyOf: - type: string description: Model name that generated the response. Defaults to null when using the session default. - type: 'null' type: object required: - tool_choice - model title: Inference options description: Model and tool overrides applied when generating the assistant response. UserMessageItem: properties: id: type: string description: Identifier of the thread item. object: type: string enum: - chatkit.thread_item description: Type discriminator that is always `chatkit.thread_item`. default: chatkit.thread_item x-stainless-const: true created_at: type: integer description: Unix timestamp (in seconds) for when the item was created. thread_id: type: string description: Identifier of the parent thread. type: type: string enum: - chatkit.user_message default: chatkit.user_message x-stainless-const: true content: items: description: Content blocks that comprise a user message. discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/UserMessageInputText' - $ref: '#/components/schemas/UserMessageQuotedText' type: array description: Ordered content elements supplied by the user. attachments: items: $ref: '#/components/schemas/Attachment' type: array description: Attachments associated with the user message. Defaults to an empty list. inference_options: anyOf: - $ref: '#/components/schemas/InferenceOptions' description: Inference overrides applied to the message. Defaults to null when unset. - type: 'null' type: object required: - id - object - created_at - thread_id - type - content - attachments - inference_options title: User Message Item description: User-authored messages within a thread. FileAnnotationSource: properties: type: type: string enum: - file description: Type discriminator that is always `file`. default: file x-stainless-const: true filename: type: string description: Filename referenced by the annotation. type: object required: - type - filename title: File annotation source description: Attachment source referenced by an annotation. FileAnnotation: properties: type: type: string enum: - file description: Type discriminator that is always `file` for this annotation. default: file x-stainless-const: true source: $ref: '#/components/schemas/FileAnnotationSource' description: File attachment referenced by the annotation. type: object required: - type - source title: File annotation description: Annotation that references an uploaded file. UrlAnnotationSource: properties: type: type: string enum: - url description: Type discriminator that is always `url`. default: url x-stainless-const: true url: type: string description: URL referenced by the annotation. type: object required: - type - url title: URL annotation source description: URL backing an annotation entry. UrlAnnotation: properties: type: type: string enum: - url description: Type discriminator that is always `url` for this annotation. default: url x-stainless-const: true source: $ref: '#/components/schemas/UrlAnnotationSource' description: URL referenced by the annotation. type: object required: - type - source title: URL annotation description: Annotation that references a URL. ResponseOutputText: properties: type: type: string enum: - output_text description: Type discriminator that is always `output_text`. default: output_text x-stainless-const: true text: type: string description: Assistant generated text. annotations: items: description: Annotation object describing a cited source. discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/FileAnnotation' - $ref: '#/components/schemas/UrlAnnotation' type: array description: Ordered list of annotations attached to the response text. type: object required: - type - text - annotations title: Assistant message content description: Assistant response text accompanied by optional annotations. AssistantMessageItem: properties: id: type: string description: Identifier of the thread item. object: type: string enum: - chatkit.thread_item description: Type discriminator that is always `chatkit.thread_item`. default: chatkit.thread_item x-stainless-const: true created_at: type: integer description: Unix timestamp (in seconds) for when the item was created. thread_id: type: string description: Identifier of the parent thread. type: type: string enum: - chatkit.assistant_message description: Type discriminator that is always `chatkit.assistant_message`. default: chatkit.assistant_message x-stainless-const: true content: items: $ref: '#/components/schemas/ResponseOutputText' type: array description: Ordered assistant response segments. type: object required: - id - object - created_at - thread_id - type - content title: Assistant message description: Assistant-authored message within a thread. WidgetMessageItem: properties: id: type: string description: Identifier of the thread item. object: type: string enum: - chatkit.thread_item description: Type discriminator that is always `chatkit.thread_item`. default: chatkit.thread_item x-stainless-const: true created_at: type: integer description: Unix timestamp (in seconds) for when the item was created. thread_id: type: string description: Identifier of the parent thread. type: type: string enum: - chatkit.widget description: Type discriminator that is always `chatkit.widget`. default: chatkit.widget x-stainless-const: true widget: type: string description: Serialized widget payload rendered in the UI. type: object required: - id - object - created_at - thread_id - type - widget title: Widget message description: Thread item that renders a widget payload. ClientToolCallStatus: type: string enum: - in_progress - completed ClientToolCallItem: properties: id: type: string description: Identifier of the thread item. object: type: string enum: - chatkit.thread_item description: Type discriminator that is always `chatkit.thread_item`. default: chatkit.thread_item x-stainless-const: true created_at: type: integer description: Unix timestamp (in seconds) for when the item was created. thread_id: type: string description: Identifier of the parent thread. type: type: string enum: - chatkit.client_tool_call description: Type discriminator that is always `chatkit.client_tool_call`. default: chatkit.client_tool_call x-stainless-const: true status: $ref: '#/components/schemas/ClientToolCallStatus' description: Execution status for the tool call. call_id: type: string description: Identifier for the client tool call. name: type: string description: Tool name that was invoked. arguments: type: string description: JSON-encoded arguments that were sent to the tool. output: anyOf: - type: string description: JSON-encoded output captured from the tool. Defaults to null while execution is in progress. - type: 'null' type: object required: - id - object - created_at - thread_id - type - status - call_id - name - arguments - output title: Client tool call description: Record of a client side tool invocation initiated by the assistant. TaskType: type: string enum: - custom - thought TaskItem: properties: id: type: string description: Identifier of the thread item. object: type: string enum: - chatkit.thread_item description: Type discriminator that is always `chatkit.thread_item`. default: chatkit.thread_item x-stainless-const: true created_at: type: integer description: Unix timestamp (in seconds) for when the item was created. thread_id: type: string description: Identifier of the parent thread. type: type: string enum: - chatkit.task description: Type discriminator that is always `chatkit.task`. default: chatkit.task x-stainless-const: true task_type: $ref: '#/components/schemas/TaskType' description: Subtype for the task. heading: anyOf: - type: string description: Optional heading for the task. Defaults to null when not provided. - type: 'null' summary: anyOf: - type: string description: Optional summary that describes the task. Defaults to null when omitted. - type: 'null' type: object required: - id - object - created_at - thread_id - type - task_type - heading - summary title: Task item description: Task emitted by the workflow to show progress and status updates. TaskGroupTask: properties: type: $ref: '#/components/schemas/TaskType' description: Subtype for the grouped task. heading: anyOf: - type: string description: Optional heading for the grouped task. Defaults to null when not provided. - type: 'null' summary: anyOf: - type: string description: Optional summary that describes the grouped task. Defaults to null when omitted. - type: 'null' type: object required: - type - heading - summary title: Task group task description: Task entry that appears within a TaskGroup. TaskGroupItem: properties: id: type: string description: Identifier of the thread item. object: type: string enum: - chatkit.thread_item description: Type discriminator that is always `chatkit.thread_item`. default: chatkit.thread_item x-stainless-const: true created_at: type: integer description: Unix timestamp (in seconds) for when the item was created. thread_id: type: string description: Identifier of the parent thread. type: type: string enum: - chatkit.task_group description: Type discriminator that is always `chatkit.task_group`. default: chatkit.task_group x-stainless-const: true tasks: items: $ref: '#/components/schemas/TaskGroupTask' type: array description: Tasks included in the group. type: object required: - id - object - created_at - thread_id - type - tasks title: Task group description: Collection of workflow tasks grouped together in the thread. ThreadItem: title: The thread item discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/UserMessageItem' - $ref: '#/components/schemas/AssistantMessageItem' - $ref: '#/components/schemas/WidgetMessageItem' - $ref: '#/components/schemas/ClientToolCallItem' - $ref: '#/components/schemas/TaskItem' - $ref: '#/components/schemas/TaskGroupItem' ThreadItemListResource: properties: object: description: The type of object returned, must be `list`. default: list x-stainless-const: true const: list data: items: $ref: '#/components/schemas/ThreadItem' type: array description: A list of items first_id: anyOf: - type: string description: The ID of the first item in the list. - type: 'null' last_id: anyOf: - type: string description: The ID of the last item in the list. - type: 'null' has_more: type: boolean description: Whether there are more items available. type: object required: - object - data - first_id - last_id - has_more title: Thread Items description: A paginated list of thread items rendered for the ChatKit API. ActiveStatus: properties: type: type: string enum: - active description: Status discriminator that is always `active`. default: active x-stainless-const: true type: object required: - type title: Active thread status description: Indicates that a thread is active. LockedStatus: properties: type: type: string enum: - locked description: Status discriminator that is always `locked`. default: locked x-stainless-const: true reason: anyOf: - type: string description: Reason that the thread was locked. Defaults to null when no reason is recorded. - type: 'null' type: object required: - type - reason title: Locked thread status description: Indicates that a thread is locked and cannot accept new input. ClosedStatus: properties: type: type: string enum: - closed description: Status discriminator that is always `closed`. default: closed x-stainless-const: true reason: anyOf: - type: string description: Reason that the thread was closed. Defaults to null when no reason is recorded. - type: 'null' type: object required: - type - reason title: Closed thread status description: Indicates that a thread has been closed. ThreadResource: properties: id: type: string description: Identifier of the thread. object: type: string enum: - chatkit.thread description: Type discriminator that is always `chatkit.thread`. default: chatkit.thread x-stainless-const: true created_at: type: integer description: Unix timestamp (in seconds) for when the thread was created. title: anyOf: - type: string description: >- Optional human-readable title for the thread. Defaults to null when no title has been generated. - type: 'null' status: description: Current status for the thread. Defaults to `active` for newly created threads. discriminator: propertyName: type anyOf: - $ref: '#/components/schemas/ActiveStatus' - $ref: '#/components/schemas/LockedStatus' - $ref: '#/components/schemas/ClosedStatus' user: type: string description: Free-form string that identifies your end user who owns the thread. type: object required: - id - object - created_at - title - status - user title: The thread object description: Represents a ChatKit thread and its current status. example: id: cthr_def456 object: chatkit.thread created_at: 1712345600 title: Demo feedback status: type: active user: user_456 DeletedThreadResource: properties: id: type: string description: Identifier of the deleted thread. object: type: string enum: - chatkit.thread.deleted description: Type discriminator that is always `chatkit.thread.deleted`. default: chatkit.thread.deleted x-stainless-const: true deleted: type: boolean description: Indicates that the thread has been deleted. type: object required: - id - object - deleted title: Deleted thread description: Confirmation payload returned after deleting a thread. ThreadListResource: properties: object: description: The type of object returned, must be `list`. default: list x-stainless-const: true const: list data: items: $ref: '#/components/schemas/ThreadResource' type: array description: A list of items first_id: anyOf: - type: string description: The ID of the first item in the list. - type: 'null' last_id: anyOf: - type: string description: The ID of the last item in the list. - type: 'null' has_more: type: boolean description: Whether there are more items available. type: object required: - object - data - first_id - last_id - has_more title: Threads description: A paginated list of ChatKit threads. RealtimeConnectParams: type: object properties: model: type: string call_id: type: string ModerationImageURLInput: type: object description: An object describing an image to classify. properties: type: description: Always `image_url`. type: string enum: - image_url x-stainless-const: true image_url: type: object description: Contains either an image URL or a data URL for a base64 encoded image. properties: url: type: string description: Either a URL of the image or the base64 encoded image data. format: uri example: https://example.com/image.jpg required: - url required: - type - image_url ModerationTextInput: type: object description: An object describing text to classify. properties: type: description: Always `text`. type: string enum: - text x-stainless-const: true text: description: A string of text to classify. type: string example: I want to kill them required: - type - text ComparisonFilterValueItems: anyOf: - type: string - type: number ChunkingStrategyResponse: type: object description: The strategy used to chunk the file. anyOf: - $ref: '#/components/schemas/StaticChunkingStrategyResponseParam' - $ref: '#/components/schemas/OtherChunkingStrategyResponseParam' discriminator: propertyName: type FilePurpose: description: > The intended purpose of the uploaded file. One of: - `assistants`: Used in the Assistants API - `batch`: Used in the Batch API - `fine-tune`: Used for fine-tuning - `vision`: Images used for vision fine-tuning - `user_data`: Flexible file type for any purpose - `evals`: Used for eval data sets type: string enum: - assistants - batch - fine-tune - vision - user_data - evals BatchError: type: object properties: code: type: string description: An error code identifying the error type. message: type: string description: A human-readable message providing more details about the error. param: anyOf: - type: string description: The name of the parameter that caused the error, if applicable. - type: 'null' line: anyOf: - type: integer description: The line number of the input file where the error occurred, if applicable. - type: 'null' BatchRequestCounts: type: object properties: total: type: integer description: Total number of requests in the batch. completed: type: integer description: Number of requests that have been completed successfully. failed: type: integer description: Number of requests that have failed. required: - total - completed - failed description: The request counts for different statuses within the batch. AssistantTool: anyOf: - $ref: '#/components/schemas/AssistantToolsCode' - $ref: '#/components/schemas/AssistantToolsFileSearch' - $ref: '#/components/schemas/AssistantToolsFunction' discriminator: propertyName: type TextAnnotationDelta: anyOf: - $ref: '#/components/schemas/MessageDeltaContentTextAnnotationsFileCitationObject' - $ref: '#/components/schemas/MessageDeltaContentTextAnnotationsFilePathObject' discriminator: propertyName: type TextAnnotation: anyOf: - $ref: '#/components/schemas/MessageContentTextAnnotationsFileCitationObject' - $ref: '#/components/schemas/MessageContentTextAnnotationsFilePathObject' discriminator: propertyName: type RunStepDetailsToolCall: anyOf: - $ref: '#/components/schemas/RunStepDetailsToolCallsCodeObject' - $ref: '#/components/schemas/RunStepDetailsToolCallsFileSearchObject' - $ref: '#/components/schemas/RunStepDetailsToolCallsFunctionObject' discriminator: propertyName: type RunStepDeltaStepDetailsToolCall: anyOf: - $ref: '#/components/schemas/RunStepDeltaStepDetailsToolCallsCodeObject' - $ref: '#/components/schemas/RunStepDeltaStepDetailsToolCallsFileSearchObject' - $ref: '#/components/schemas/RunStepDeltaStepDetailsToolCallsFunctionObject' discriminator: propertyName: type MessageContent: anyOf: - $ref: '#/components/schemas/MessageContentImageFileObject' - $ref: '#/components/schemas/MessageContentImageUrlObject' - $ref: '#/components/schemas/MessageContentTextObject' - $ref: '#/components/schemas/MessageContentRefusalObject' discriminator: propertyName: type MessageContentDelta: anyOf: - $ref: '#/components/schemas/MessageDeltaContentImageFileObject' - $ref: '#/components/schemas/MessageDeltaContentTextObject' - $ref: '#/components/schemas/MessageDeltaContentRefusalObject' - $ref: '#/components/schemas/MessageDeltaContentImageUrlObject' discriminator: propertyName: type ChatModel: type: string enum: - gpt-5.1 - gpt-5.1-2025-11-13 - gpt-5.1-codex - gpt-5.1-mini - gpt-5.1-chat-latest - gpt-5 - gpt-5-mini - gpt-5-nano - gpt-5-2025-08-07 - gpt-5-mini-2025-08-07 - gpt-5-nano-2025-08-07 - gpt-5-chat-latest - gpt-4.1 - gpt-4.1-mini - gpt-4.1-nano - gpt-4.1-2025-04-14 - gpt-4.1-mini-2025-04-14 - gpt-4.1-nano-2025-04-14 - o4-mini - o4-mini-2025-04-16 - o3 - o3-2025-04-16 - o3-mini - o3-mini-2025-01-31 - o1 - o1-2024-12-17 - o1-preview - o1-preview-2024-09-12 - o1-mini - o1-mini-2024-09-12 - gpt-4o - gpt-4o-2024-11-20 - gpt-4o-2024-08-06 - gpt-4o-2024-05-13 - gpt-4o-audio-preview - gpt-4o-audio-preview-2024-10-01 - gpt-4o-audio-preview-2024-12-17 - gpt-4o-audio-preview-2025-06-03 - gpt-4o-mini-audio-preview - gpt-4o-mini-audio-preview-2024-12-17 - gpt-4o-search-preview - gpt-4o-mini-search-preview - gpt-4o-search-preview-2025-03-11 - gpt-4o-mini-search-preview-2025-03-11 - chatgpt-4o-latest - codex-mini-latest - gpt-4o-mini - gpt-4o-mini-2024-07-18 - gpt-4-turbo - gpt-4-turbo-2024-04-09 - gpt-4-0125-preview - gpt-4-turbo-preview - gpt-4-1106-preview - gpt-4-vision-preview - gpt-4 - gpt-4-0314 - gpt-4-0613 - gpt-4-32k - gpt-4-32k-0314 - gpt-4-32k-0613 - gpt-3.5-turbo - gpt-3.5-turbo-16k - gpt-3.5-turbo-0301 - gpt-3.5-turbo-0613 - gpt-3.5-turbo-1106 - gpt-3.5-turbo-0125 - gpt-3.5-turbo-16k-0613 x-stainless-nominal: false Summary: properties: type: type: string enum: - summary_text description: The type of the object. Always `summary_text`. default: summary_text x-stainless-const: true text: type: string description: A summary of the reasoning output from the model so far. type: object required: - type - text title: Summary text description: A summary text from the model. CreateThreadAndRunRequestWithoutStream: type: object additionalProperties: false properties: assistant_id: description: >- The ID of the [assistant](https://platform.openai.com/docs/api-reference/assistants) to use to execute this run. type: string thread: $ref: '#/components/schemas/CreateThreadRequest' model: description: >- The ID of the [Model](https://platform.openai.com/docs/api-reference/models) to be used to execute this run. If a value is provided here, it will override the model associated with the assistant. If not, the model associated with the assistant will be used. anyOf: - type: string - type: string enum: - gpt-5 - gpt-5-mini - gpt-5-nano - gpt-5-2025-08-07 - gpt-5-mini-2025-08-07 - gpt-5-nano-2025-08-07 - gpt-4.1 - gpt-4.1-mini - gpt-4.1-nano - gpt-4.1-2025-04-14 - gpt-4.1-mini-2025-04-14 - gpt-4.1-nano-2025-04-14 - gpt-4o - gpt-4o-2024-11-20 - gpt-4o-2024-08-06 - gpt-4o-2024-05-13 - gpt-4o-mini - gpt-4o-mini-2024-07-18 - gpt-4.5-preview - gpt-4.5-preview-2025-02-27 - gpt-4-turbo - gpt-4-turbo-2024-04-09 - gpt-4-0125-preview - gpt-4-turbo-preview - gpt-4-1106-preview - gpt-4-vision-preview - gpt-4 - gpt-4-0314 - gpt-4-0613 - gpt-4-32k - gpt-4-32k-0314 - gpt-4-32k-0613 - gpt-3.5-turbo - gpt-3.5-turbo-16k - gpt-3.5-turbo-0613 - gpt-3.5-turbo-1106 - gpt-3.5-turbo-0125 - gpt-3.5-turbo-16k-0613 x-oaiTypeLabel: string nullable: true instructions: description: >- Override the default system message of the assistant. This is useful for modifying the behavior on a per-run basis. type: string nullable: true tools: description: >- Override the tools the assistant can use for this run. This is useful for modifying the behavior on a per-run basis. nullable: true type: array maxItems: 20 items: $ref: '#/components/schemas/AssistantTool' tool_resources: type: object description: > A set of resources that are used by the assistant's tools. The resources are specific to the type of tool. For example, the `code_interpreter` tool requires a list of file IDs, while the `file_search` tool requires a list of vector store IDs. properties: code_interpreter: type: object properties: file_ids: type: array description: > A list of [file](https://platform.openai.com/docs/api-reference/files) IDs made available to the `code_interpreter` tool. There can be a maximum of 20 files associated with the tool. default: [] maxItems: 20 items: type: string file_search: type: object properties: vector_store_ids: type: array description: > The ID of the [vector store](https://platform.openai.com/docs/api-reference/vector-stores/object) attached to this assistant. There can be a maximum of 1 vector store attached to the assistant. maxItems: 1 items: type: string nullable: true metadata: $ref: '#/components/schemas/Metadata' temperature: type: number minimum: 0 maximum: 2 default: 1 example: 1 nullable: true description: > What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. top_p: type: number minimum: 0 maximum: 1 default: 1 example: 1 nullable: true description: > An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. max_prompt_tokens: type: integer nullable: true description: > The maximum number of prompt tokens that may be used over the course of the run. The run will make a best effort to use only the number of prompt tokens specified, across multiple turns of the run. If the run exceeds the number of prompt tokens specified, the run will end with status `incomplete`. See `incomplete_details` for more info. minimum: 256 max_completion_tokens: type: integer nullable: true description: > The maximum number of completion tokens that may be used over the course of the run. The run will make a best effort to use only the number of completion tokens specified, across multiple turns of the run. If the run exceeds the number of completion tokens specified, the run will end with status `incomplete`. See `incomplete_details` for more info. minimum: 256 truncation_strategy: allOf: - $ref: '#/components/schemas/TruncationObject' - nullable: true tool_choice: allOf: - $ref: '#/components/schemas/AssistantsApiToolChoiceOption' - nullable: true parallel_tool_calls: $ref: '#/components/schemas/ParallelToolCalls' response_format: $ref: '#/components/schemas/AssistantsApiResponseFormatOption' nullable: true required: *ref_0 CreateRunRequestWithoutStream: type: object additionalProperties: false properties: assistant_id: description: >- The ID of the [assistant](https://platform.openai.com/docs/api-reference/assistants) to use to execute this run. type: string model: description: >- The ID of the [Model](https://platform.openai.com/docs/api-reference/models) to be used to execute this run. If a value is provided here, it will override the model associated with the assistant. If not, the model associated with the assistant will be used. anyOf: - type: string - $ref: '#/components/schemas/AssistantSupportedModels' x-oaiTypeLabel: string nullable: true reasoning_effort: $ref: '#/components/schemas/ReasoningEffort' instructions: description: >- Overrides the [instructions](https://platform.openai.com/docs/api-reference/assistants/createAssistant) of the assistant. This is useful for modifying the behavior on a per-run basis. type: string nullable: true additional_instructions: description: >- Appends additional instructions at the end of the instructions for the run. This is useful for modifying the behavior on a per-run basis without overriding other instructions. type: string nullable: true additional_messages: description: Adds additional messages to the thread before creating the run. type: array items: $ref: '#/components/schemas/CreateMessageRequest' nullable: true tools: description: >- Override the tools the assistant can use for this run. This is useful for modifying the behavior on a per-run basis. nullable: true type: array maxItems: 20 items: $ref: '#/components/schemas/AssistantTool' metadata: $ref: '#/components/schemas/Metadata' temperature: type: number minimum: 0 maximum: 2 default: 1 example: 1 nullable: true description: > What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. top_p: type: number minimum: 0 maximum: 1 default: 1 example: 1 nullable: true description: > An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. max_prompt_tokens: type: integer nullable: true description: > The maximum number of prompt tokens that may be used over the course of the run. The run will make a best effort to use only the number of prompt tokens specified, across multiple turns of the run. If the run exceeds the number of prompt tokens specified, the run will end with status `incomplete`. See `incomplete_details` for more info. minimum: 256 max_completion_tokens: type: integer nullable: true description: > The maximum number of completion tokens that may be used over the course of the run. The run will make a best effort to use only the number of completion tokens specified, across multiple turns of the run. If the run exceeds the number of completion tokens specified, the run will end with status `incomplete`. See `incomplete_details` for more info. minimum: 256 truncation_strategy: allOf: - $ref: '#/components/schemas/TruncationObject' - nullable: true tool_choice: allOf: - $ref: '#/components/schemas/AssistantsApiToolChoiceOption' - nullable: true parallel_tool_calls: $ref: '#/components/schemas/ParallelToolCalls' response_format: $ref: '#/components/schemas/AssistantsApiResponseFormatOption' nullable: true required: *ref_0 SubmitToolOutputsRunRequestWithoutStream: type: object additionalProperties: false properties: tool_outputs: description: A list of tools for which the outputs are being submitted. type: array items: type: object properties: tool_call_id: type: string description: >- The ID of the tool call in the `required_action` object within the run object the output is being submitted for. output: type: string description: The output of the tool call to be submitted to continue the run. required: - tool_outputs RunStatus: description: >- The status of the run, which can be either `queued`, `in_progress`, `requires_action`, `cancelling`, `cancelled`, `failed`, `completed`, `incomplete`, or `expired`. type: string enum: - queued - in_progress - requires_action - cancelling - cancelled - failed - completed - incomplete - expired RunStepDeltaObjectDelta: description: The delta containing the fields that have changed on the run step. type: object properties: step_details: type: object description: The details of the run step. anyOf: - $ref: '#/components/schemas/RunStepDeltaStepDetailsMessageCreationObject' - $ref: '#/components/schemas/RunStepDeltaStepDetailsToolCallsObject' discriminator: propertyName: type CodeInterpreterContainerAuto: properties: type: type: string enum: - auto description: Always `auto`. default: auto x-stainless-const: true file_ids: items: type: string example: file-123 type: array maxItems: 50 description: An optional list of uploaded files to make available to your code. memory_limit: anyOf: - $ref: '#/components/schemas/ContainerMemoryLimit' - type: 'null' type: object required: - type title: CodeInterpreterToolAuto description: >- Configuration for a code interpreter container. Optionally specify the IDs of the files to run the code on. x-stainless-naming: go: type_name: ToolCodeInterpreterContainerCodeInterpreterContainerAuto securitySchemes: ApiKeyAuth: type: http scheme: bearer x-oaiMeta: navigationGroups: - id: responses title: Responses API - id: webhooks title: Webhooks - id: endpoints title: Platform APIs - id: vector_stores title: Vector stores - id: chatkit title: ChatKit beta: true - id: containers title: Containers - id: realtime title: Realtime - id: chat title: Chat Completions - id: assistants title: Assistants beta: true - id: administration title: Administration - id: legacy title: Legacy groups: - id: responses title: Responses description: | OpenAI's most advanced interface for generating model responses. Supports text and image inputs, and text outputs. Create stateful interactions with the model, using the output of previous responses as input. Extend the model's capabilities with built-in tools for file search, web search, computer use, and more. Allow the model access to external systems and data using function calling. Related guides: - [Quickstart](https://platform.openai.com/docs/quickstart?api-mode=responses) - [Text inputs and outputs](https://platform.openai.com/docs/guides/text?api-mode=responses) - [Image inputs](https://platform.openai.com/docs/guides/images?api-mode=responses) - [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs?api-mode=responses) - [Function calling](https://platform.openai.com/docs/guides/function-calling?api-mode=responses) - [Conversation state](https://platform.openai.com/docs/guides/conversation-state?api-mode=responses) - [Extend the models with tools](https://platform.openai.com/docs/guides/tools?api-mode=responses) navigationGroup: responses sections: - type: endpoint key: createResponse path: create - type: endpoint key: getResponse path: get - type: endpoint key: deleteResponse path: delete - type: endpoint key: cancelResponse path: cancel - type: endpoint key: listInputItems path: input-items - type: endpoint key: Getinputtokencounts path: input-tokens - type: object key: Response path: object - type: object key: ResponseItemList path: list - id: conversations title: Conversations description: | Create and manage conversations to store and retrieve conversation state across Response API calls. navigationGroup: responses sections: - type: endpoint key: createConversation path: create - type: endpoint key: getConversation path: retrieve - type: endpoint key: updateConversation path: update - type: endpoint key: deleteConversation path: delete - type: endpoint key: listConversationItems path: list-items - type: endpoint key: createConversationItems path: create-items - type: endpoint key: getConversationItem path: get-item - type: endpoint key: deleteConversationItem path: delete-item - type: object key: Conversation path: object - type: object key: ConversationItemList path: list-items-object - id: responses-streaming title: Streaming events description: > When you [create a Response](https://platform.openai.com/docs/api-reference/responses/create) with `stream` set to `true`, the server will emit server-sent events to the client as the Response is generated. This section contains the events that are emitted by the server. [Learn more about streaming responses](https://platform.openai.com/docs/guides/streaming-responses?api-mode=responses). navigationGroup: responses sections: - type: object key: ResponseCreatedEvent path: - type: object key: ResponseInProgressEvent path: - type: object key: ResponseCompletedEvent path: - type: object key: ResponseFailedEvent path: - type: object key: ResponseIncompleteEvent path: - type: object key: ResponseOutputItemAddedEvent path: - type: object key: ResponseOutputItemDoneEvent path: - type: object key: ResponseContentPartAddedEvent path: - type: object key: ResponseContentPartDoneEvent path: - type: object key: ResponseTextDeltaEvent path: response/output_text/delta - type: object key: ResponseTextDoneEvent path: response/output_text/done - type: object key: ResponseRefusalDeltaEvent path: - type: object key: ResponseRefusalDoneEvent path: - type: object key: ResponseFunctionCallArgumentsDeltaEvent path: - type: object key: ResponseFunctionCallArgumentsDoneEvent path: - type: object key: ResponseFileSearchCallInProgressEvent path: - type: object key: ResponseFileSearchCallSearchingEvent path: - type: object key: ResponseFileSearchCallCompletedEvent path: - type: object key: ResponseWebSearchCallInProgressEvent path: - type: object key: ResponseWebSearchCallSearchingEvent path: - type: object key: ResponseWebSearchCallCompletedEvent path: - type: object key: ResponseReasoningSummaryPartAddedEvent path: - type: object key: ResponseReasoningSummaryPartDoneEvent path: - type: object key: ResponseReasoningSummaryTextDeltaEvent path: - type: object key: ResponseReasoningSummaryTextDoneEvent path: - type: object key: ResponseReasoningTextDeltaEvent path: - type: object key: ResponseReasoningTextDoneEvent path: - type: object key: ResponseImageGenCallCompletedEvent path: - type: object key: ResponseImageGenCallGeneratingEvent path: - type: object key: ResponseImageGenCallInProgressEvent path: - type: object key: ResponseImageGenCallPartialImageEvent path: - type: object key: ResponseMCPCallArgumentsDeltaEvent path: - type: object key: ResponseMCPCallArgumentsDoneEvent path: - type: object key: ResponseMCPCallCompletedEvent path: - type: object key: ResponseMCPCallFailedEvent path: - type: object key: ResponseMCPCallInProgressEvent path: - type: object key: ResponseMCPListToolsCompletedEvent path: - type: object key: ResponseMCPListToolsFailedEvent path: - type: object key: ResponseMCPListToolsInProgressEvent path: - type: object key: ResponseCodeInterpreterCallInProgressEvent path: - type: object key: ResponseCodeInterpreterCallInterpretingEvent path: - type: object key: ResponseCodeInterpreterCallCompletedEvent path: - type: object key: ResponseCodeInterpreterCallCodeDeltaEvent path: - type: object key: ResponseCodeInterpreterCallCodeDoneEvent path: - type: object key: ResponseOutputTextAnnotationAddedEvent path: - type: object key: ResponseQueuedEvent path: - type: object key: ResponseCustomToolCallInputDeltaEvent path: - type: object key: ResponseCustomToolCallInputDoneEvent path: - type: object key: ResponseErrorEvent path: - id: webhook-events title: Webhook Events description: | Webhooks are HTTP requests sent by OpenAI to a URL you specify when certain events happen during the course of API usage. [Learn more about webhooks](https://platform.openai.com/docs/guides/webhooks). navigationGroup: webhooks sections: - type: object key: WebhookResponseCompleted path: - type: object key: WebhookResponseCancelled path: - type: object key: WebhookResponseFailed path: - type: object key: WebhookResponseIncomplete path: - type: object key: WebhookBatchCompleted path: - type: object key: WebhookBatchCancelled path: - type: object key: WebhookBatchExpired path: - type: object key: WebhookBatchFailed path: - type: object key: WebhookFineTuningJobSucceeded path: - type: object key: WebhookFineTuningJobFailed path: - type: object key: WebhookFineTuningJobCancelled path: - type: object key: WebhookEvalRunSucceeded path: - type: object key: WebhookEvalRunFailed path: - type: object key: WebhookEvalRunCanceled path: - type: object key: WebhookRealtimeCallIncoming path: - id: audio title: Audio description: | Learn how to turn audio into text or text into audio. Related guide: [Speech to text](https://platform.openai.com/docs/guides/speech-to-text) navigationGroup: endpoints sections: - type: endpoint key: createSpeech path: createSpeech - type: endpoint key: createTranscription path: createTranscription - type: endpoint key: createTranslation path: createTranslation - type: object key: CreateTranscriptionResponseJson path: json-object - type: object key: CreateTranscriptionResponseDiarizedJson path: diarized-json-object - type: object key: CreateTranscriptionResponseVerboseJson path: verbose-json-object - type: object key: SpeechAudioDeltaEvent path: speech-audio-delta-event - type: object key: SpeechAudioDoneEvent path: speech-audio-done-event - type: object key: TranscriptTextDeltaEvent path: transcript-text-delta-event - type: object key: TranscriptTextSegmentEvent path: transcript-text-segment-event - type: object key: TranscriptTextDoneEvent path: transcript-text-done-event - id: videos title: Videos description: | Generate videos. navigationGroup: endpoints sections: - type: endpoint key: createVideo path: create - type: endpoint key: CreateVideoRemix path: remix - type: endpoint key: ListVideos path: list - type: endpoint key: GetVideo path: retrieve - type: endpoint key: DeleteVideo path: delete - type: endpoint key: RetrieveVideoContent path: content - type: object key: VideoResource path: object - id: images title: Images description: | Given a prompt and/or an input image, the model will generate a new image. Related guide: [Image generation](https://platform.openai.com/docs/guides/images) navigationGroup: endpoints sections: - type: endpoint key: createImage path: create - type: endpoint key: createImageEdit path: createEdit - type: endpoint key: createImageVariation path: createVariation - type: object key: ImagesResponse path: object - id: images-streaming title: Image Streaming description: | Stream image generation and editing in real time with server-sent events. [Learn more about image streaming](https://platform.openai.com/docs/guides/image-generation). navigationGroup: endpoints sections: - type: object key: ImageGenPartialImageEvent path: - type: object key: ImageGenCompletedEvent path: - type: object key: ImageEditPartialImageEvent path: - type: object key: ImageEditCompletedEvent path: - id: embeddings title: Embeddings description: > Get a vector representation of a given input that can be easily consumed by machine learning models and algorithms. Related guide: [Embeddings](https://platform.openai.com/docs/guides/embeddings) navigationGroup: endpoints sections: - type: endpoint key: createEmbedding path: create - type: object key: Embedding path: object - id: chatkit title: ChatKit beta: true description: | Manage ChatKit sessions, threads, and file uploads for internal integrations. navigationGroup: chatkit sections: - type: endpoint key: CreateChatSessionMethod beta: true path: sessions/create - type: endpoint key: CancelChatSessionMethod beta: true path: sessions/cancel - type: endpoint key: ListThreadsMethod beta: true path: threads/list - type: endpoint key: GetThreadMethod beta: true path: threads/retrieve - type: endpoint key: DeleteThreadMethod beta: true path: threads/delete - type: endpoint key: ListThreadItemsMethod beta: true path: threads/list-items - type: object key: ChatSessionResource path: sessions/object - type: object key: ThreadResource path: threads/object - type: object key: ThreadItemListResource path: threads/item-list - id: evals title: Evals description: | Create, manage, and run evals in the OpenAI platform. Related guide: [Evals](https://platform.openai.com/docs/guides/evals) navigationGroup: endpoints sections: - type: endpoint key: createEval path: create - type: endpoint key: getEval path: get - type: endpoint key: updateEval path: update - type: endpoint key: deleteEval path: delete - type: endpoint key: listEvals path: list - type: endpoint key: getEvalRuns path: getRuns - type: endpoint key: getEvalRun path: getRun - type: endpoint key: createEvalRun path: createRun - type: endpoint key: cancelEvalRun path: cancelRun - type: endpoint key: deleteEvalRun path: deleteRun - type: endpoint key: getEvalRunOutputItem path: getRunOutputItem - type: endpoint key: getEvalRunOutputItems path: getRunOutputItems - type: object key: Eval path: object - type: object key: EvalRun path: run-object - type: object key: EvalRunOutputItem path: run-output-item-object - id: fine-tuning title: Fine-tuning description: | Manage fine-tuning jobs to tailor a model to your specific training data. Related guide: [Fine-tune models](https://platform.openai.com/docs/guides/fine-tuning) navigationGroup: endpoints sections: - type: endpoint key: createFineTuningJob path: create - type: endpoint key: listPaginatedFineTuningJobs path: list - type: endpoint key: listFineTuningEvents path: list-events - type: endpoint key: listFineTuningJobCheckpoints path: list-checkpoints - type: endpoint key: listFineTuningCheckpointPermissions path: list-permissions - type: endpoint key: createFineTuningCheckpointPermission path: create-permission - type: endpoint key: deleteFineTuningCheckpointPermission path: delete-permission - type: endpoint key: retrieveFineTuningJob path: retrieve - type: endpoint key: cancelFineTuningJob path: cancel - type: endpoint key: resumeFineTuningJob path: resume - type: endpoint key: pauseFineTuningJob path: pause - type: object key: FineTuneChatRequestInput path: chat-input - type: object key: FineTunePreferenceRequestInput path: preference-input - type: object key: FineTuneReinforcementRequestInput path: reinforcement-input - type: object key: FineTuningJob path: object - type: object key: FineTuningJobEvent path: event-object - type: object key: FineTuningJobCheckpoint path: checkpoint-object - type: object key: FineTuningCheckpointPermission path: permission-object - id: graders title: Graders description: | Manage and run graders in the OpenAI platform. Related guide: [Graders](https://platform.openai.com/docs/guides/graders) navigationGroup: endpoints sections: - type: object key: GraderStringCheck path: string-check - type: object key: GraderTextSimilarity path: text-similarity - type: object key: GraderScoreModel path: score-model - type: object key: GraderLabelModel path: label-model - type: object key: GraderPython path: python - type: object key: GraderMulti path: multi - type: endpoint key: runGrader path: run - type: endpoint key: validateGrader path: validate beta: true - id: batch title: Batch description: > Create large batches of API requests for asynchronous processing. The Batch API returns completions within 24 hours for a 50% discount. Related guide: [Batch](https://platform.openai.com/docs/guides/batch) navigationGroup: endpoints sections: - type: endpoint key: createBatch path: create - type: endpoint key: retrieveBatch path: retrieve - type: endpoint key: cancelBatch path: cancel - type: endpoint key: listBatches path: list - type: object key: Batch path: object - type: object key: BatchRequestInput path: request-input - type: object key: BatchRequestOutput path: request-output - id: files title: Files description: > Files are used to upload documents that can be used with features like [Assistants](https://platform.openai.com/docs/api-reference/assistants), [Fine-tuning](https://platform.openai.com/docs/api-reference/fine-tuning), and [Batch API](https://platform.openai.com/docs/guides/batch). navigationGroup: endpoints sections: - type: endpoint key: createFile path: create - type: endpoint key: listFiles path: list - type: endpoint key: retrieveFile path: retrieve - type: endpoint key: deleteFile path: delete - type: endpoint key: downloadFile path: retrieve-contents - type: object key: OpenAIFile path: object - id: uploads title: Uploads description: | Allows you to upload large files in multiple parts. navigationGroup: endpoints sections: - type: endpoint key: createUpload path: create - type: endpoint key: addUploadPart path: add-part - type: endpoint key: completeUpload path: complete - type: endpoint key: cancelUpload path: cancel - type: object key: Upload path: object - type: object key: UploadPart path: part-object - id: models title: Models description: > List and describe the various models available in the API. You can refer to the [Models](https://platform.openai.com/docs/models) documentation to understand what models are available and the differences between them. navigationGroup: endpoints sections: - type: endpoint key: listModels path: list - type: endpoint key: retrieveModel path: retrieve - type: endpoint key: deleteModel path: delete - type: object key: Model path: object - id: moderations title: Moderations description: > Given text and/or image inputs, classifies if those inputs are potentially harmful across several categories. Related guide: [Moderations](https://platform.openai.com/docs/guides/moderation) navigationGroup: endpoints sections: - type: endpoint key: createModeration path: create - type: object key: CreateModerationResponse path: object - id: vector-stores title: Vector stores description: > Vector stores power semantic search for the Retrieval API and the `file_search` tool in the Responses and Assistants APIs. Related guide: [File Search](https://platform.openai.com/docs/assistants/tools/file-search) navigationGroup: vector_stores sections: - type: endpoint key: createVectorStore path: create - type: endpoint key: listVectorStores path: list - type: endpoint key: getVectorStore path: retrieve - type: endpoint key: modifyVectorStore path: modify - type: endpoint key: deleteVectorStore path: delete - type: endpoint key: searchVectorStore path: search - type: object key: VectorStoreObject path: object - id: vector-stores-files title: Vector store files description: | Vector store files represent files inside a vector store. Related guide: [File Search](https://platform.openai.com/docs/assistants/tools/file-search) navigationGroup: vector_stores sections: - type: endpoint key: createVectorStoreFile path: createFile - type: endpoint key: listVectorStoreFiles path: listFiles - type: endpoint key: getVectorStoreFile path: getFile - type: endpoint key: retrieveVectorStoreFileContent path: getContent - type: endpoint key: updateVectorStoreFileAttributes path: updateAttributes - type: endpoint key: deleteVectorStoreFile path: deleteFile - type: object key: VectorStoreFileObject path: file-object - id: vector-stores-file-batches title: Vector store file batches description: | Vector store file batches represent operations to add multiple files to a vector store. Related guide: [File Search](https://platform.openai.com/docs/assistants/tools/file-search) navigationGroup: vector_stores sections: - type: endpoint key: createVectorStoreFileBatch path: createBatch - type: endpoint key: getVectorStoreFileBatch path: getBatch - type: endpoint key: cancelVectorStoreFileBatch path: cancelBatch - type: endpoint key: listFilesInVectorStoreBatch path: listBatchFiles - type: object key: VectorStoreFileBatchObject path: batch-object - id: containers title: Containers description: | Create and manage containers for use with the Code Interpreter tool. navigationGroup: containers sections: - type: endpoint key: CreateContainer path: createContainers - type: endpoint key: ListContainers path: listContainers - type: endpoint key: RetrieveContainer path: retrieveContainer - type: endpoint key: DeleteContainer path: deleteContainer - type: object key: ContainerResource path: object - id: container-files title: Container Files description: | Create and manage container files for use with the Code Interpreter tool. navigationGroup: containers sections: - type: endpoint key: CreateContainerFile path: createContainerFile - type: endpoint key: ListContainerFiles path: listContainerFiles - type: endpoint key: RetrieveContainerFile path: retrieveContainerFile - type: endpoint key: RetrieveContainerFileContent path: retrieveContainerFileContent - type: endpoint key: DeleteContainerFile path: deleteContainerFile - type: object key: ContainerFileResource path: object - id: realtime title: Realtime description: | Communicate with a multimodal model in real time over low latency interfaces like WebRTC, WebSocket, and SIP. Natively supports speech-to-speech as well as text, image, and audio inputs and outputs. [Learn more about the Realtime API](https://platform.openai.com/docs/guides/realtime). navigationGroup: realtime sections: - type: endpoint key: create-realtime-call path: create-call - id: realtime-sessions title: Client secrets description: > REST API endpoint to generate ephemeral client secrets for use in client-side applications. Client secrets are short-lived tokens that can be passed to a client app, such as a web frontend or mobile client, which grants access to the Realtime API without leaking your main API key. You can configure a custom TTL for each client secret. You can also attach session configuration options to the client secret, which will be applied to any sessions created using that client secret, but these can also be overridden by the client connection. [Learn more about authentication with client secrets over WebRTC](https://platform.openai.com/docs/guides/realtime-webrtc). navigationGroup: realtime sections: - type: endpoint key: create-realtime-client-secret path: create-realtime-client-secret - type: object key: RealtimeCreateClientSecretResponse path: create-secret-response - id: realtime-calls title: Calls description: | REST endpoints for controlling WebRTC or SIP calls with the Realtime API. Accept or reject an incoming call, transfer it to another destination, or hang up the call once you are finished. navigationGroup: realtime sections: - type: endpoint key: accept-realtime-call path: accept-call - type: endpoint key: reject-realtime-call path: reject-call - type: endpoint key: refer-realtime-call path: refer-call - type: endpoint key: hangup-realtime-call path: hangup-call - id: realtime-client-events title: Client events description: | These are events that the OpenAI Realtime WebSocket server will accept from the client. navigationGroup: realtime sections: - type: object key: RealtimeClientEventSessionUpdate path: - type: object key: RealtimeClientEventInputAudioBufferAppend path: - type: object key: RealtimeClientEventInputAudioBufferCommit path: - type: object key: RealtimeClientEventInputAudioBufferClear path: - type: object key: RealtimeClientEventConversationItemCreate path: - type: object key: RealtimeClientEventConversationItemRetrieve path: - type: object key: RealtimeClientEventConversationItemTruncate path: - type: object key: RealtimeClientEventConversationItemDelete path: - type: object key: RealtimeClientEventResponseCreate path: - type: object key: RealtimeClientEventResponseCancel path: - type: object key: RealtimeClientEventOutputAudioBufferClear path: - id: realtime-server-events title: Server events description: | These are events emitted from the OpenAI Realtime WebSocket server to the client. navigationGroup: realtime sections: - type: object key: RealtimeServerEventError path: - type: object key: RealtimeServerEventSessionCreated path: - type: object key: RealtimeServerEventSessionUpdated path: - type: object key: RealtimeServerEventConversationItemAdded path: - type: object key: RealtimeServerEventConversationItemDone path: - type: object key: RealtimeServerEventConversationItemRetrieved path: - type: object key: RealtimeServerEventConversationItemInputAudioTranscriptionCompleted path: - type: object key: RealtimeServerEventConversationItemInputAudioTranscriptionDelta path: - type: object key: RealtimeServerEventConversationItemInputAudioTranscriptionSegment path: - type: object key: RealtimeServerEventConversationItemInputAudioTranscriptionFailed path: - type: object key: RealtimeServerEventConversationItemTruncated path: - type: object key: RealtimeServerEventConversationItemDeleted path: - type: object key: RealtimeServerEventInputAudioBufferCommitted path: - type: object key: RealtimeServerEventInputAudioBufferCleared path: - type: object key: RealtimeServerEventInputAudioBufferSpeechStarted path: - type: object key: RealtimeServerEventInputAudioBufferSpeechStopped path: - type: object key: RealtimeServerEventInputAudioBufferTimeoutTriggered path: - type: object key: RealtimeServerEventOutputAudioBufferStarted path: - type: object key: RealtimeServerEventOutputAudioBufferStopped path: - type: object key: RealtimeServerEventOutputAudioBufferCleared path: - type: object key: RealtimeServerEventResponseCreated path: - type: object key: RealtimeServerEventResponseDone path: - type: object key: RealtimeServerEventResponseOutputItemAdded path: - type: object key: RealtimeServerEventResponseOutputItemDone path: - type: object key: RealtimeServerEventResponseContentPartAdded path: - type: object key: RealtimeServerEventResponseContentPartDone path: - type: object key: RealtimeServerEventResponseTextDelta path: - type: object key: RealtimeServerEventResponseTextDone path: - type: object key: RealtimeServerEventResponseAudioTranscriptDelta path: - type: object key: RealtimeServerEventResponseAudioTranscriptDone path: - type: object key: RealtimeServerEventResponseAudioDelta path: - type: object key: RealtimeServerEventResponseAudioDone path: - type: object key: RealtimeServerEventResponseFunctionCallArgumentsDelta path: - type: object key: RealtimeServerEventResponseFunctionCallArgumentsDone path: - type: object key: RealtimeServerEventResponseMCPCallArgumentsDelta path: - type: object key: RealtimeServerEventResponseMCPCallArgumentsDone path: - type: object key: RealtimeServerEventResponseMCPCallInProgress path: - type: object key: RealtimeServerEventResponseMCPCallCompleted path: - type: object key: RealtimeServerEventResponseMCPCallFailed path: - type: object key: RealtimeServerEventMCPListToolsInProgress path: - type: object key: RealtimeServerEventMCPListToolsCompleted path: - type: object key: RealtimeServerEventMCPListToolsFailed path: - type: object key: RealtimeServerEventRateLimitsUpdated path: - id: chat title: Chat Completions description: > The Chat Completions API endpoint will generate a model response from a list of messages comprising a conversation. Related guides: - [Quickstart](https://platform.openai.com/docs/quickstart?api-mode=chat) - [Text inputs and outputs](https://platform.openai.com/docs/guides/text?api-mode=chat) - [Image inputs](https://platform.openai.com/docs/guides/images?api-mode=chat) - [Audio inputs and outputs](https://platform.openai.com/docs/guides/audio?api-mode=chat) - [Structured Outputs](https://platform.openai.com/docs/guides/structured-outputs?api-mode=chat) - [Function calling](https://platform.openai.com/docs/guides/function-calling?api-mode=chat) - [Conversation state](https://platform.openai.com/docs/guides/conversation-state?api-mode=chat) **Starting a new project?** We recommend trying [Responses](https://platform.openai.com/docs/api-reference/responses) to take advantage of the latest OpenAI platform features. Compare [Chat Completions with Responses](https://platform.openai.com/docs/guides/responses-vs-chat-completions?api-mode=responses). navigationGroup: chat sections: - type: endpoint key: createChatCompletion path: create - type: endpoint key: getChatCompletion path: get - type: endpoint key: getChatCompletionMessages path: getMessages - type: endpoint key: listChatCompletions path: list - type: endpoint key: updateChatCompletion path: update - type: endpoint key: deleteChatCompletion path: delete - type: object key: CreateChatCompletionResponse path: object - type: object key: ChatCompletionList path: list-object - type: object key: ChatCompletionMessageList path: message-list - id: chat-streaming title: Streaming description: | Stream Chat Completions in real time. Receive chunks of completions returned from the model using server-sent events. [Learn more](https://platform.openai.com/docs/guides/streaming-responses?api-mode=chat). navigationGroup: chat sections: - type: object key: CreateChatCompletionStreamResponse path: streaming - id: assistants title: Assistants beta: true description: | Build assistants that can call models and use tools to perform tasks. [Get started with the Assistants API](https://platform.openai.com/docs/assistants) navigationGroup: assistants sections: - type: endpoint key: createAssistant path: createAssistant - type: endpoint key: listAssistants path: listAssistants - type: endpoint key: getAssistant path: getAssistant - type: endpoint key: modifyAssistant path: modifyAssistant - type: endpoint key: deleteAssistant path: deleteAssistant - type: object key: AssistantObject path: object - id: threads title: Threads beta: true description: | Create threads that assistants can interact with. Related guide: [Assistants](https://platform.openai.com/docs/assistants/overview) navigationGroup: assistants sections: - type: endpoint key: createThread path: createThread - type: endpoint key: getThread path: getThread - type: endpoint key: modifyThread path: modifyThread - type: endpoint key: deleteThread path: deleteThread - type: object key: ThreadObject path: object - id: messages title: Messages beta: true description: | Create messages within threads Related guide: [Assistants](https://platform.openai.com/docs/assistants/overview) navigationGroup: assistants sections: - type: endpoint key: createMessage path: createMessage - type: endpoint key: listMessages path: listMessages - type: endpoint key: getMessage path: getMessage - type: endpoint key: modifyMessage path: modifyMessage - type: endpoint key: deleteMessage path: deleteMessage - type: object key: MessageObject path: object - id: runs title: Runs beta: true description: | Represents an execution run on a thread. Related guide: [Assistants](https://platform.openai.com/docs/assistants/overview) navigationGroup: assistants sections: - type: endpoint key: createRun path: createRun - type: endpoint key: createThreadAndRun path: createThreadAndRun - type: endpoint key: listRuns path: listRuns - type: endpoint key: getRun path: getRun - type: endpoint key: modifyRun path: modifyRun - type: endpoint key: submitToolOuputsToRun path: submitToolOutputs - type: endpoint key: cancelRun path: cancelRun - type: object key: RunObject path: object - id: run-steps title: Run steps beta: true description: | Represents the steps (model and tool calls) taken during the run. Related guide: [Assistants](https://platform.openai.com/docs/assistants/overview) navigationGroup: assistants sections: - type: endpoint key: listRunSteps path: listRunSteps - type: endpoint key: getRunStep path: getRunStep - type: object key: RunStepObject path: step-object - id: assistants-streaming title: Streaming beta: true description: > Stream the result of executing a Run or resuming a Run after submitting tool outputs. You can stream events from the [Create Thread and Run](https://platform.openai.com/docs/api-reference/runs/createThreadAndRun), [Create Run](https://platform.openai.com/docs/api-reference/runs/createRun), and [Submit Tool Outputs](https://platform.openai.com/docs/api-reference/runs/submitToolOutputs) endpoints by passing `"stream": true`. The response will be a [Server-Sent events](https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events) stream. Our Node and Python SDKs provide helpful utilities to make streaming easy. Reference the [Assistants API quickstart](https://platform.openai.com/docs/assistants/overview) to learn more. navigationGroup: assistants sections: - type: object key: MessageDeltaObject path: message-delta-object - type: object key: RunStepDeltaObject path: run-step-delta-object - type: object key: AssistantStreamEvent path: events - id: administration title: Administration description: > Programmatically manage your organization. The Audit Logs endpoint provides a log of all actions taken in the organization for security and monitoring purposes. To access these endpoints please generate an Admin API Key through the [API Platform Organization overview](/organization/admin-keys). Admin API keys cannot be used for non-administration endpoints. For best practices on setting up your organization, please refer to this [guide](https://platform.openai.com/docs/guides/production-best-practices#setting-up-your-organization) navigationGroup: administration - id: admin-api-keys title: Admin API Keys description: > Admin API keys enable Organization Owners to programmatically manage various aspects of their organization, including users, projects, and API keys. These keys provide administrative capabilities, such as creating, updating, and deleting users; managing projects; and overseeing API key lifecycles. Key Features of Admin API Keys: - User Management: Invite new users, update roles, and remove users from the organization. - Project Management: Create, update, archive projects, and manage user assignments within projects. - API Key Oversight: List, retrieve, and delete API keys associated with projects. Only Organization Owners have the authority to create and utilize Admin API keys. To manage these keys, Organization Owners can navigate to the Admin Keys section of their API Platform dashboard. For direct access to the Admin Keys management page, Organization Owners can use the following link: [https://platform.openai.com/settings/organization/admin-keys](https://platform.openai.com/settings/organization/admin-keys) It's crucial to handle Admin API keys with care due to their elevated permissions. Adhering to best practices, such as regular key rotation and assigning appropriate permissions, enhances security and ensures proper governance within the organization. navigationGroup: administration sections: - type: endpoint key: admin-api-keys-list path: list - type: endpoint key: admin-api-keys-create path: create - type: endpoint key: admin-api-keys-get path: listget - type: endpoint key: admin-api-keys-delete path: delete - type: object key: AdminApiKey path: object - id: invite title: Invites description: Invite and manage invitations for an organization. navigationGroup: administration sections: - type: endpoint key: list-invites path: list - type: endpoint key: inviteUser path: create - type: endpoint key: retrieve-invite path: retrieve - type: endpoint key: delete-invite path: delete - type: object key: Invite path: object - id: users title: Users description: | Manage users and their role in an organization. navigationGroup: administration sections: - type: endpoint key: list-users path: list - type: endpoint key: modify-user path: modify - type: endpoint key: retrieve-user path: retrieve - type: endpoint key: delete-user path: delete - type: object key: User path: object - id: projects title: Projects description: | Manage the projects within an orgnanization includes creation, updating, and archiving or projects. The Default project cannot be archived. navigationGroup: administration sections: - type: endpoint key: list-projects path: list - type: endpoint key: create-project path: create - type: endpoint key: retrieve-project path: retrieve - type: endpoint key: modify-project path: modify - type: endpoint key: archive-project path: archive - type: object key: Project path: object - id: project-users title: Project users description: | Manage users within a project, including adding, updating roles, and removing users. navigationGroup: administration sections: - type: endpoint key: list-project-users path: list - type: endpoint key: create-project-user path: create - type: endpoint key: retrieve-project-user path: retrieve - type: endpoint key: modify-project-user path: modify - type: endpoint key: delete-project-user path: delete - type: object key: ProjectUser path: object - id: project-service-accounts title: Project service accounts description: > Manage service accounts within a project. A service account is a bot user that is not associated with a user. If a user leaves an organization, their keys and membership in projects will no longer work. Service accounts do not have this limitation. However, service accounts can also be deleted from a project. navigationGroup: administration sections: - type: endpoint key: list-project-service-accounts path: list - type: endpoint key: create-project-service-account path: create - type: endpoint key: retrieve-project-service-account path: retrieve - type: endpoint key: delete-project-service-account path: delete - type: object key: ProjectServiceAccount path: object - id: project-api-keys title: Project API keys description: > Manage API keys for a given project. Supports listing and deleting keys for users. This API does not allow issuing keys for users, as users need to authorize themselves to generate keys. navigationGroup: administration sections: - type: endpoint key: list-project-api-keys path: list - type: endpoint key: retrieve-project-api-key path: retrieve - type: endpoint key: delete-project-api-key path: delete - type: object key: ProjectApiKey path: object - id: project-rate-limits title: Project rate limits description: > Manage rate limits per model for projects. Rate limits may be configured to be equal to or lower than the organization's rate limits. navigationGroup: administration sections: - type: endpoint key: list-project-rate-limits path: list - type: endpoint key: update-project-rate-limits path: update - type: object key: ProjectRateLimit path: object - id: audit-logs title: Audit logs description: > Logs of user actions and configuration changes within this organization. To log events, an Organization Owner must activate logging in the [Data Controls Settings](/settings/organization/data-controls/data-retention). Once activated, for security reasons, logging cannot be deactivated. navigationGroup: administration sections: - type: endpoint key: list-audit-logs path: list - type: object key: AuditLog path: object - id: usage title: Usage description: > The **Usage API** provides detailed insights into your activity across the OpenAI API. It also includes a separate [Costs endpoint](https://platform.openai.com/docs/api-reference/usage/costs), which offers visibility into your spend, breaking down consumption by invoice line items and project IDs. While the Usage API delivers granular usage data, it may not always reconcile perfectly with the Costs due to minor differences in how usage and spend are recorded. For financial purposes, we recommend using the [Costs endpoint](https://platform.openai.com/docs/api-reference/usage/costs) or the [Costs tab](/settings/organization/usage) in the Usage Dashboard, which will reconcile back to your billing invoice. navigationGroup: administration sections: - type: endpoint key: usage-completions path: completions - type: object key: UsageCompletionsResult path: completions_object - type: endpoint key: usage-embeddings path: embeddings - type: object key: UsageEmbeddingsResult path: embeddings_object - type: endpoint key: usage-moderations path: moderations - type: object key: UsageModerationsResult path: moderations_object - type: endpoint key: usage-images path: images - type: object key: UsageImagesResult path: images_object - type: endpoint key: usage-audio-speeches path: audio_speeches - type: object key: UsageAudioSpeechesResult path: audio_speeches_object - type: endpoint key: usage-audio-transcriptions path: audio_transcriptions - type: object key: UsageAudioTranscriptionsResult path: audio_transcriptions_object - type: endpoint key: usage-vector-stores path: vector_stores - type: object key: UsageVectorStoresResult path: vector_stores_object - type: endpoint key: usage-code-interpreter-sessions path: code_interpreter_sessions - type: object key: UsageCodeInterpreterSessionsResult path: code_interpreter_sessions_object - type: endpoint key: usage-costs path: costs - type: object key: CostsResult path: costs_object - id: certificates beta: true title: Certificates description: > Manage Mutual TLS certificates across your organization and projects. [Learn more about Mutual TLS.](https://help.openai.com/en/articles/10876024-openai-mutual-tls-beta-program) navigationGroup: administration sections: - type: endpoint key: uploadCertificate path: uploadCertificate - type: endpoint key: getCertificate path: getCertificate - type: endpoint key: modifyCertificate path: modifyCertificate - type: endpoint key: deleteCertificate path: deleteCertificate - type: endpoint key: listOrganizationCertificates path: listOrganizationCertificates - type: endpoint key: listProjectCertificates path: listProjectCertificates - type: endpoint key: activateOrganizationCertificates path: activateOrganizationCertificates - type: endpoint key: deactivateOrganizationCertificates path: deactivateOrganizationCertificates - type: endpoint key: activateProjectCertificates path: activateProjectCertificates - type: endpoint key: deactivateProjectCertificates path: deactivateProjectCertificates - type: object key: Certificate path: object - id: completions title: Completions legacy: true navigationGroup: legacy description: > Given a prompt, the model will return one or more predicted completions along with the probabilities of alternative tokens at each position. Most developer should use our [Chat Completions API](https://platform.openai.com/docs/guides/text-generation#text-generation-models) to leverage our best and newest models. sections: - type: endpoint key: createCompletion path: create - type: object key: CreateCompletionResponse path: object - id: realtime_beta title: Realtime Beta legacy: true navigationGroup: legacy description: > Communicate with a multimodal model in real time over low latency interfaces like WebRTC, WebSocket, and SIP. Natively supports speech-to-speech as well as text, image, and audio inputs and outputs. [Learn more about the Realtime API](https://platform.openai.com/docs/guides/realtime). - id: realtime-beta-sessions title: Realtime Beta session tokens description: | REST API endpoint to generate ephemeral session tokens for use in client-side applications. navigationGroup: legacy sections: - type: endpoint key: create-realtime-session path: create - type: endpoint key: create-realtime-transcription-session path: create-transcription - type: object key: RealtimeSessionCreateResponse path: session_object - type: object key: RealtimeTranscriptionSessionCreateResponse path: transcription_session_object - id: realtime-beta-client-events title: Realtime Beta client events description: | These are events that the OpenAI Realtime WebSocket server will accept from the client. navigationGroup: legacy sections: - type: object key: RealtimeBetaClientEventSessionUpdate path: - type: object key: RealtimeBetaClientEventInputAudioBufferAppend path: - type: object key: RealtimeBetaClientEventInputAudioBufferCommit path: - type: object key: RealtimeBetaClientEventInputAudioBufferClear path: - type: object key: RealtimeBetaClientEventConversationItemCreate path: - type: object key: RealtimeBetaClientEventConversationItemRetrieve path: - type: object key: RealtimeBetaClientEventConversationItemTruncate path: - type: object key: RealtimeBetaClientEventConversationItemDelete path: - type: object key: RealtimeBetaClientEventResponseCreate path: - type: object key: RealtimeBetaClientEventResponseCancel path: - type: object key: RealtimeBetaClientEventTranscriptionSessionUpdate path: - type: object key: RealtimeBetaClientEventOutputAudioBufferClear path: - id: realtime-beta-server-events title: Realtime Beta server events description: | These are events emitted from the OpenAI Realtime WebSocket server to the client. navigationGroup: legacy sections: - type: object key: RealtimeBetaServerEventError path: - type: object key: RealtimeBetaServerEventSessionCreated path: - type: object key: RealtimeBetaServerEventSessionUpdated path: - type: object key: RealtimeBetaServerEventTranscriptionSessionCreated path: - type: object key: RealtimeBetaServerEventTranscriptionSessionUpdated path: - type: object key: RealtimeBetaServerEventConversationItemCreated path: - type: object key: RealtimeBetaServerEventConversationItemRetrieved path: - type: object key: RealtimeBetaServerEventConversationItemInputAudioTranscriptionCompleted path: - type: object key: RealtimeBetaServerEventConversationItemInputAudioTranscriptionDelta path: - type: object key: RealtimeBetaServerEventConversationItemInputAudioTranscriptionSegment path: - type: object key: RealtimeBetaServerEventConversationItemInputAudioTranscriptionFailed path: - type: object key: RealtimeBetaServerEventConversationItemTruncated path: - type: object key: RealtimeBetaServerEventConversationItemDeleted path: - type: object key: RealtimeBetaServerEventInputAudioBufferCommitted path: - type: object key: RealtimeBetaServerEventInputAudioBufferCleared path: - type: object key: RealtimeBetaServerEventInputAudioBufferSpeechStarted path: - type: object key: RealtimeBetaServerEventInputAudioBufferSpeechStopped path: - type: object key: RealtimeServerEventInputAudioBufferTimeoutTriggered path: - type: object key: RealtimeBetaServerEventResponseCreated path: - type: object key: RealtimeBetaServerEventResponseDone path: - type: object key: RealtimeBetaServerEventResponseOutputItemAdded path: - type: object key: RealtimeBetaServerEventResponseOutputItemDone path: - type: object key: RealtimeBetaServerEventResponseContentPartAdded path: - type: object key: RealtimeBetaServerEventResponseContentPartDone path: - type: object key: RealtimeBetaServerEventResponseTextDelta path: - type: object key: RealtimeBetaServerEventResponseTextDone path: - type: object key: RealtimeBetaServerEventResponseAudioTranscriptDelta path: - type: object key: RealtimeBetaServerEventResponseAudioTranscriptDone path: - type: object key: RealtimeBetaServerEventResponseAudioDelta path: - type: object key: RealtimeBetaServerEventResponseAudioDone path: - type: object key: RealtimeBetaServerEventResponseFunctionCallArgumentsDelta path: - type: object key: RealtimeBetaServerEventResponseFunctionCallArgumentsDone path: - type: object key: RealtimeBetaServerEventResponseMCPCallArgumentsDelta path: - type: object key: RealtimeBetaServerEventResponseMCPCallArgumentsDone path: - type: object key: RealtimeBetaServerEventResponseMCPCallInProgress path: - type: object key: RealtimeBetaServerEventResponseMCPCallCompleted path: - type: object key: RealtimeBetaServerEventResponseMCPCallFailed path: - type: object key: RealtimeBetaServerEventMCPListToolsInProgress path: - type: object key: RealtimeBetaServerEventMCPListToolsCompleted path: - type: object key: RealtimeBetaServerEventMCPListToolsFailed path: - type: object key: RealtimeBetaServerEventRateLimitsUpdated path: