# Llama CLI Reference The `llama` CLI tool helps you setup and use the Llama toolchain & agentic systems. It should be available on your path after installing the `llama-stack` package. ### Subcommands 1. `download`: `llama` cli tools supports downloading the model from Meta or HuggingFace. 2. `model`: Lists available models and their properties. 3. `stack`: Allows you to build and run a Llama Stack server. You can read more about this [here](/docs/cli_reference.md#step-3-building-configuring-and-running-llama-stack-servers). ### Sample Usage ``` llama --help ```
usage: llama [-h] {download,model,stack} ... Welcome to the Llama CLI options: -h, --help show this help message and exit subcommands: {download,model,stack}## Step 1. Get the models You first need to have models downloaded locally. To download any model you need the **Model Descriptor**. This can be obtained by running the command ``` llama model list ``` You should see a table like this:
+----------------------------------+------------------------------------------+----------------+ | Model Descriptor | HuggingFace Repo | Context Length | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-8B | meta-llama/Llama-3.1-8B | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-70B | meta-llama/Llama-3.1-70B | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-405B:bf16-mp8 | meta-llama/Llama-3.1-405B | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-405B | meta-llama/Llama-3.1-405B-FP8 | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-405B:bf16-mp16 | meta-llama/Llama-3.1-405B | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-8B-Instruct | meta-llama/Llama-3.1-8B-Instruct | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-70B-Instruct | meta-llama/Llama-3.1-70B-Instruct | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-405B-Instruct:bf16-mp8 | meta-llama/Llama-3.1-405B-Instruct | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-405B-Instruct | meta-llama/Llama-3.1-405B-Instruct-FP8 | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.1-405B-Instruct:bf16-mp16 | meta-llama/Llama-3.1-405B-Instruct | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.2-1B | meta-llama/Llama-3.2-1B | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.2-3B | meta-llama/Llama-3.2-3B | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.2-11B-Vision | meta-llama/Llama-3.2-11B-Vision | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.2-90B-Vision | meta-llama/Llama-3.2-90B-Vision | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.2-1B-Instruct | meta-llama/Llama-3.2-1B-Instruct | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.2-3B-Instruct | meta-llama/Llama-3.2-3B-Instruct | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.2-11B-Vision-Instruct | meta-llama/Llama-3.2-11B-Vision-Instruct | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama3.2-90B-Vision-Instruct | meta-llama/Llama-3.2-90B-Vision-Instruct | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama-Guard-3-11B-Vision | meta-llama/Llama-Guard-3-11B-Vision | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama-Guard-3-1B:int4-mp1 | meta-llama/Llama-Guard-3-1B-INT4 | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama-Guard-3-1B | meta-llama/Llama-Guard-3-1B | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama-Guard-3-8B | meta-llama/Llama-Guard-3-8B | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama-Guard-3-8B:int8-mp1 | meta-llama/Llama-Guard-3-8B-INT8 | 128K | +----------------------------------+------------------------------------------+----------------+ | Prompt-Guard-86M | meta-llama/Prompt-Guard-86M | 128K | +----------------------------------+------------------------------------------+----------------+ | Llama-Guard-2-8B | meta-llama/Llama-Guard-2-8B | 4K | +----------------------------------+------------------------------------------+----------------+To download models, you can use the llama download command. #### Downloading from [Meta](https://llama.meta.com/llama-downloads/) Here is an example download command to get the 3B-Instruct/11B-Vision-Instruct model. You will need META_URL which can be obtained from [here](https://llama.meta.com/docs/getting_the_models/meta/) Download the required checkpoints using the following commands: ```bash # download the 8B model, this can be run on a single GPU llama download --source meta --model-id Llama3.2-3B-Instruct --meta-url META_URL # you can also get the 70B model, this will require 8 GPUs however llama download --source meta --model-id Llama3.2-11B-Vision-Instruct --meta-url META_URL # llama-agents have safety enabled by default. For this, you will need # safety models -- Llama-Guard and Prompt-Guard llama download --source meta --model-id Prompt-Guard-86M --meta-url META_URL llama download --source meta --model-id Llama-Guard-3-8B --meta-url META_URL ``` #### Downloading from [Huggingface](https://huggingface.co/meta-llama) Essentially, the same commands above work, just replace `--source meta` with `--source huggingface`. ```bash llama download --source huggingface --model-id Meta-Llama3.1-8B-Instruct --hf-token
usage: llama model [-h] {download,list,prompt-format,describe} ... Work with llama models options: -h, --help show this help message and exit model_subcommands: {download,list,prompt-format,describe}You can use the describe command to know more about a model: ``` llama model describe -m Llama3.2-3B-Instruct ``` ### 2.3 Describe
+-----------------------------+----------------------------------+ | Model | Llama3.2-3B-Instruct | +-----------------------------+----------------------------------+ | HuggingFace ID | meta-llama/Llama-3.2-3B-Instruct | +-----------------------------+----------------------------------+ | Description | Llama 3.2 3b instruct model | +-----------------------------+----------------------------------+ | Context Length | 128K tokens | +-----------------------------+----------------------------------+ | Weights format | bf16 | +-----------------------------+----------------------------------+ | Model params.json | { | | | "dim": 3072, | | | "n_layers": 28, | | | "n_heads": 24, | | | "n_kv_heads": 8, | | | "vocab_size": 128256, | | | "ffn_dim_multiplier": 1.0, | | | "multiple_of": 256, | | | "norm_eps": 1e-05, | | | "rope_theta": 500000.0, | | | "use_scaled_rope": true | | | } | +-----------------------------+----------------------------------+ | Recommended sampling params | { | | | "strategy": "top_p", | | | "temperature": 1.0, | | | "top_p": 0.9, | | | "top_k": 0 | | | } | +-----------------------------+----------------------------------+### 2.4 Prompt Format You can even run `llama model prompt-format` see all of the templates and their tokens: ``` llama model prompt-format -m Llama3.2-3B-Instruct ```