--- orphan: true --- # Meta Reference Quantized Distribution ```{toctree} :maxdepth: 2 :hidden: self ``` The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations: {{ providers_table }} The only difference vs. the `meta-reference-gpu` distribution is that it has support for more efficient inference -- with fp8, int4 quantization, etc. Note that you need access to nvidia GPUs to run this distribution. This distribution is not compatible with CPU-only machines or machines with AMD GPUs. {% if run_config_env_vars %} ### Environment Variables The following environment variables can be configured: {% for var, (default_value, description) in run_config_env_vars.items() %} - `{{ var }}`: {{ description }} (default: `{{ default_value }}`) {% endfor %} {% endif %} ## Prerequisite: Downloading Models Please make sure you have llama model checkpoints downloaded in `~/.llama` before proceeding. See [installation guide](https://llama-stack.readthedocs.io/en/latest/references/llama_cli_reference/download_models.html) here to download the models. Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints. ``` $ ls ~/.llama/checkpoints Llama3.1-8B Llama3.2-11B-Vision-Instruct Llama3.2-1B-Instruct Llama3.2-90B-Vision-Instruct Llama-Guard-3-8B Llama3.1-8B-Instruct Llama3.2-1B Llama3.2-3B-Instruct Llama-Guard-3-1B Prompt-Guard-86M ``` ## Running the Distribution You can do this via Conda (build code) or Docker which has a pre-built image. ### Via Docker This method allows you to get started quickly without having to build the distribution code. ```bash LLAMA_STACK_PORT=5001 docker run \ -it \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ llamastack/distribution-{{ name }} \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct ``` If you are using Llama Stack Safety / Shield APIs, use: ```bash docker run \ -it \ -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ llamastack/distribution-{{ name }} \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \ --env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B ``` ### Via Conda Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available. ```bash llama stack build --template {{ name }} --image-type conda llama stack run distributions/{{ name }}/run.yaml \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct ``` If you are using Llama Stack Safety / Shield APIs, use: ```bash llama stack run distributions/{{ name }}/run-with-safety.yaml \ --port $LLAMA_STACK_PORT \ --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \ --env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B ```