# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. import json import httpx import openai import pytest from llama_stack import LlamaStackAsLibraryClient from llama_stack.distribution.datatypes import AuthenticationRequiredError from tests.common.mcp import make_mcp_server from tests.verifications.openai_api.fixtures.fixtures import ( case_id_generator, get_base_test_name, should_skip_test, ) from tests.verifications.openai_api.fixtures.load import load_test_cases responses_test_cases = load_test_cases("responses") @pytest.mark.parametrize( "case", responses_test_cases["test_response_basic"]["test_params"]["case"], ids=case_id_generator, ) def test_response_non_streaming_basic(request, openai_client, model, provider, verification_config, case): test_name_base = get_base_test_name(request) if should_skip_test(verification_config, provider, model, test_name_base): pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") response = openai_client.responses.create( model=model, input=case["input"], stream=False, ) output_text = response.output_text.lower().strip() assert len(output_text) > 0 assert case["output"].lower() in output_text retrieved_response = openai_client.responses.retrieve(response_id=response.id) assert retrieved_response.output_text == response.output_text next_response = openai_client.responses.create( model=model, input="Repeat your previous response in all caps.", previous_response_id=response.id ) next_output_text = next_response.output_text.strip() assert case["output"].upper() in next_output_text @pytest.mark.parametrize( "case", responses_test_cases["test_response_basic"]["test_params"]["case"], ids=case_id_generator, ) def test_response_streaming_basic(request, openai_client, model, provider, verification_config, case): test_name_base = get_base_test_name(request) if should_skip_test(verification_config, provider, model, test_name_base): pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") import time response = openai_client.responses.create( model=model, input=case["input"], stream=True, ) # Track events and timing to verify proper streaming events = [] event_times = [] response_id = "" start_time = time.time() for chunk in response: current_time = time.time() event_times.append(current_time - start_time) events.append(chunk) if chunk.type == "response.created": # Verify response.created is emitted first and immediately assert len(events) == 1, "response.created should be the first event" assert event_times[0] < 0.1, "response.created should be emitted immediately" assert chunk.response.status == "in_progress" response_id = chunk.response.id elif chunk.type == "response.completed": # Verify response.completed comes after response.created assert len(events) >= 2, "response.completed should come after response.created" assert chunk.response.status == "completed" assert chunk.response.id == response_id, "Response ID should be consistent" # Verify content quality output_text = chunk.response.output_text.lower().strip() assert len(output_text) > 0, "Response should have content" assert case["output"].lower() in output_text, f"Expected '{case['output']}' in response" # Verify we got both required events event_types = [event.type for event in events] assert "response.created" in event_types, "Missing response.created event" assert "response.completed" in event_types, "Missing response.completed event" # Verify event order created_index = event_types.index("response.created") completed_index = event_types.index("response.completed") assert created_index < completed_index, "response.created should come before response.completed" # Verify stored response matches streamed response retrieved_response = openai_client.responses.retrieve(response_id=response_id) final_event = events[-1] assert retrieved_response.output_text == final_event.response.output_text @pytest.mark.parametrize( "case", responses_test_cases["test_response_basic"]["test_params"]["case"], ids=case_id_generator, ) def test_response_streaming_incremental_content(request, openai_client, model, provider, verification_config, case): """Test that streaming actually delivers content incrementally, not just at the end.""" test_name_base = get_base_test_name(request) if should_skip_test(verification_config, provider, model, test_name_base): pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") import time response = openai_client.responses.create( model=model, input=case["input"], stream=True, ) # Track all events and their content to verify incremental streaming events = [] content_snapshots = [] event_times = [] start_time = time.time() for chunk in response: current_time = time.time() event_times.append(current_time - start_time) events.append(chunk) # Track content at each event based on event type if chunk.type == "response.output_text.delta": # For delta events, track the delta content content_snapshots.append(chunk.delta) elif hasattr(chunk, "response") and hasattr(chunk.response, "output_text"): # For response.created/completed events, track the full output_text content_snapshots.append(chunk.response.output_text) else: content_snapshots.append("") # Verify we have the expected events event_types = [event.type for event in events] assert "response.created" in event_types, "Missing response.created event" assert "response.completed" in event_types, "Missing response.completed event" # Check if we have incremental content updates created_index = event_types.index("response.created") completed_index = event_types.index("response.completed") # The key test: verify content progression created_content = content_snapshots[created_index] completed_content = content_snapshots[completed_index] # Verify that response.created has empty or minimal content assert len(created_content) == 0, f"response.created should have empty content, got: {repr(created_content[:100])}" # Verify that response.completed has the full content assert len(completed_content) > 0, "response.completed should have content" assert case["output"].lower() in completed_content.lower(), f"Expected '{case['output']}' in final content" # Check for true incremental streaming by looking for delta events delta_events = [i for i, event_type in enumerate(event_types) if event_type == "response.output_text.delta"] # Assert that we have delta events (true incremental streaming) assert len(delta_events) > 0, "Expected delta events for true incremental streaming, but found none" # Verify delta events have content and accumulate to final content delta_content_total = "" non_empty_deltas = 0 for delta_idx in delta_events: delta_content = content_snapshots[delta_idx] if delta_content: delta_content_total += delta_content non_empty_deltas += 1 # Assert that we have meaningful delta content assert non_empty_deltas > 0, "Delta events found but none contain content" assert len(delta_content_total) > 0, "Delta events found but total delta content is empty" # Verify that the accumulated delta content matches the final content assert delta_content_total.strip() == completed_content.strip(), ( f"Delta content '{delta_content_total}' should match final content '{completed_content}'" ) # Verify timing: delta events should come between created and completed for delta_idx in delta_events: assert created_index < delta_idx < completed_index, ( f"Delta event at index {delta_idx} should be between created ({created_index}) and completed ({completed_index})" ) @pytest.mark.parametrize( "case", responses_test_cases["test_response_multi_turn"]["test_params"]["case"], ids=case_id_generator, ) def test_response_non_streaming_multi_turn(request, openai_client, model, provider, verification_config, case): test_name_base = get_base_test_name(request) if should_skip_test(verification_config, provider, model, test_name_base): pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") previous_response_id = None for turn in case["turns"]: response = openai_client.responses.create( model=model, input=turn["input"], previous_response_id=previous_response_id, tools=turn["tools"] if "tools" in turn else None, ) previous_response_id = response.id output_text = response.output_text.lower() assert turn["output"].lower() in output_text @pytest.mark.parametrize( "case", responses_test_cases["test_response_web_search"]["test_params"]["case"], ids=case_id_generator, ) def test_response_non_streaming_web_search(request, openai_client, model, provider, verification_config, case): test_name_base = get_base_test_name(request) if should_skip_test(verification_config, provider, model, test_name_base): pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") response = openai_client.responses.create( model=model, input=case["input"], tools=case["tools"], stream=False, ) assert len(response.output) > 1 assert response.output[0].type == "web_search_call" assert response.output[0].status == "completed" assert response.output[1].type == "message" assert response.output[1].status == "completed" assert response.output[1].role == "assistant" assert len(response.output[1].content) > 0 assert case["output"].lower() in response.output_text.lower().strip() @pytest.mark.parametrize( "case", responses_test_cases["test_response_mcp_tool"]["test_params"]["case"], ids=case_id_generator, ) def test_response_non_streaming_mcp_tool(request, openai_client, model, provider, verification_config, case): test_name_base = get_base_test_name(request) if should_skip_test(verification_config, provider, model, test_name_base): pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") with make_mcp_server() as mcp_server_info: tools = case["tools"] for tool in tools: if tool["type"] == "mcp": tool["server_url"] = mcp_server_info["server_url"] response = openai_client.responses.create( model=model, input=case["input"], tools=tools, stream=False, ) assert len(response.output) >= 3 list_tools = response.output[0] assert list_tools.type == "mcp_list_tools" assert list_tools.server_label == "localmcp" assert len(list_tools.tools) == 2 assert {t["name"] for t in list_tools.tools} == {"get_boiling_point", "greet_everyone"} call = response.output[1] assert call.type == "mcp_call" assert call.name == "get_boiling_point" assert json.loads(call.arguments) == {"liquid_name": "polyjuice", "celcius": True} assert call.error is None assert "-100" in call.output message = response.output[2] text_content = message.content[0].text assert "boiling point" in text_content.lower() with make_mcp_server(required_auth_token="test-token") as mcp_server_info: tools = case["tools"] for tool in tools: if tool["type"] == "mcp": tool["server_url"] = mcp_server_info["server_url"] exc_type = ( AuthenticationRequiredError if isinstance(openai_client, LlamaStackAsLibraryClient) else (httpx.HTTPStatusError, openai.AuthenticationError) ) with pytest.raises(exc_type): openai_client.responses.create( model=model, input=case["input"], tools=tools, stream=False, ) for tool in tools: if tool["type"] == "mcp": tool["server_url"] = mcp_server_info["server_url"] tool["headers"] = {"Authorization": "Bearer test-token"} response = openai_client.responses.create( model=model, input=case["input"], tools=tools, stream=False, ) assert len(response.output) >= 3 @pytest.mark.parametrize( "case", responses_test_cases["test_response_custom_tool"]["test_params"]["case"], ids=case_id_generator, ) def test_response_non_streaming_custom_tool(request, openai_client, model, provider, verification_config, case): test_name_base = get_base_test_name(request) if should_skip_test(verification_config, provider, model, test_name_base): pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") response = openai_client.responses.create( model=model, input=case["input"], tools=case["tools"], stream=False, ) assert len(response.output) == 1 assert response.output[0].type == "function_call" assert response.output[0].status == "completed" assert response.output[0].name == "get_weather" @pytest.mark.parametrize( "case", responses_test_cases["test_response_image"]["test_params"]["case"], ids=case_id_generator, ) def test_response_non_streaming_image(request, openai_client, model, provider, verification_config, case): test_name_base = get_base_test_name(request) if should_skip_test(verification_config, provider, model, test_name_base): pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") response = openai_client.responses.create( model=model, input=case["input"], stream=False, ) output_text = response.output_text.lower() assert case["output"].lower() in output_text @pytest.mark.parametrize( "case", responses_test_cases["test_response_multi_turn_image"]["test_params"]["case"], ids=case_id_generator, ) def test_response_non_streaming_multi_turn_image(request, openai_client, model, provider, verification_config, case): test_name_base = get_base_test_name(request) if should_skip_test(verification_config, provider, model, test_name_base): pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.") previous_response_id = None for turn in case["turns"]: response = openai_client.responses.create( model=model, input=turn["input"], previous_response_id=previous_response_id, tools=turn["tools"] if "tools" in turn else None, ) previous_response_id = response.id output_text = response.output_text.lower() assert turn["output"].lower() in output_text