# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the terms described in the LICENSE file in # the root directory of this source tree. from pathlib import Path from llama_models.sku_list import all_registered_models from llama_stack.apis.models import ModelInput from llama_stack.distribution.datatypes import Provider, ToolGroupInput from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig from llama_stack.providers.remote.inference.bedrock.bedrock import MODEL_ALIASES from llama_stack.templates.template import DistributionTemplate, RunConfigSettings def get_distribution_template() -> DistributionTemplate: providers = { "inference": ["remote::bedrock"], "memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"], "safety": ["remote::bedrock"], "agents": ["inline::meta-reference"], "telemetry": ["inline::meta-reference"], "eval": ["inline::meta-reference"], "datasetio": ["remote::huggingface", "inline::localfs"], "scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"], "tool_runtime": [ "remote::brave-search", "remote::tavily-search", "inline::code-interpreter", "inline::memory-runtime", ], } name = "bedrock" memory_provider = Provider( provider_id="faiss", provider_type="inline::faiss", config=FaissImplConfig.sample_run_config(f"distributions/{name}"), ) core_model_to_hf_repo = { m.descriptor(): m.huggingface_repo for m in all_registered_models() } default_models = [ ModelInput( model_id=core_model_to_hf_repo[m.llama_model], provider_model_id=m.provider_model_id, provider_id="bedrock", ) for m in MODEL_ALIASES ] default_tool_groups = [ ToolGroupInput( toolgroup_id="builtin::websearch", provider_id="tavily-search", ), ToolGroupInput( toolgroup_id="builtin::memory", provider_id="memory-runtime", ), ToolGroupInput( toolgroup_id="builtin::code_interpreter", provider_id="code-interpreter", ), ] return DistributionTemplate( name=name, distro_type="self_hosted", description="Use AWS Bedrock for running LLM inference and safety", container_image=None, template_path=Path(__file__).parent / "doc_template.md", providers=providers, default_models=default_models, run_configs={ "run.yaml": RunConfigSettings( provider_overrides={ "memory": [memory_provider], }, default_models=default_models, default_tool_groups=default_tool_groups, ), }, run_config_env_vars={ "LLAMA_STACK_PORT": ( "5001", "Port for the Llama Stack distribution server", ), }, )